
HAL Id: tel-00155225
https://pastel.hal.science/tel-00155225

Submitted on 16 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Axiomatisations and Types for Probabilistic and Mobile
Processes
Yuxin Deng

To cite this version:
Yuxin Deng. Axiomatisations and Types for Probabilistic and Mobile Processes. Modeling and
Simulation. École Nationale Supérieure des Mines de Paris, 2005. English. �NNT : �. �tel-00155225�

https://pastel.hal.science/tel-00155225
https://hal.archives-ouvertes.fr

Collège doctoral

THESE

pour obtenir le grade de

Docteur de l’Ecole des Mines de Paris
Spécialité: Informatique Temps réel, Robotique et Automatique

présentée et soutenue publiquement

par

Yuxin DENG

le 22 juillet 2005

Axiomatisations et types pour des processus

probabilistes et mobiles

Directeur de thèse : Davide SANGIORGI

Jury

Mme. Delia KESNER Présidente

M. Matthew HENNESSY Rapporteur

M. Roberto SEGALA Rapporteur

M. Roberto DI COSMO Examinateur

M. Davide SANGIORGI Examinateur

Résumé

Cette thèse se concentre sur des bases théoriques utiles pour l’analyse d’algorithmes et de pro-

tocoles pour des systèmes répartis modernes. Deux caractéristiques importantes des modèles pour

ces systèmes sont les probabilités et la mobilité typée : des probabilités peuvent être utilisées pour

quantifier des comportements incertains ou imprévisibles, et des types peuvent être utilisés pour

garantir des comportements sûrs dans des systèmes mobiles. Dans cette thèse nous développons

des techniques algébriques et des techniques basées sur les types pour l’étude comportementale des

processus probabilistes et mobiles.

Dans la première partie de la thèse nous étudions la théorie algébrique d’un calcul de processus

qui combine les comportements non-déterministe et probabiliste dans le modèle des automates prob-

abilistes proposés par Segala et Lynch. Nous considérons diverses équivalences comportementales

fortes et faibles, et nous fournissons des axiomatisations complètes pour des processus à états finis,

limitées à la récursion gardée dans le cas des équivalences faibles.

Dans la deuxième partie de la thèse nous étudions la théorie algébrique du π-calcul en présence

des types de capacités, qui sont très utiles dans les calculs de processus mobiles. Les types de

capacités distinguent la capacité de lire sur un canal, la capacité d’écrire sur un canal, et la capacité

de lire et d’écrire à la fois. Ils introduisent également une relation de sous-typage naturelle et

puissante. Nous considérons deux variantes de la bisimilarité typée, dans leurs versions retardées

et anticipées. Pour les deux variantes, nous donnons des axiomatisations complètes pour les termes

fermés. Pour une des deux variantes, nous fournissons une axiomatisation complète pour tous les

termes finis.

Dans la dernière partie de la thèse nous développons des techniques basées sur les types pour

vérifier la propriété de terminaison de certains processus mobiles. Nous fournissons quatre systèmes

de types pour garantir cette propriété. Les systèmes de types sont obtenus par des améliorations

successives des types du π-calcul simplement typé. Les preuves de terminaison utilisent des tech-

niques employées dans les systèmes de réécriture. Ces systèmes de types peuvent être utilisés pour

raisonner sur le comportement de terminaison de quelques exemples non triviaux : les codages des

fonctions récursives primitives, le protocole pour coder le choix séparé en terme de composition

parallèle, une table de symboles implementée comme une châıne dynamique de cellules.

Ces résultats établissent des bases pour une future étude de modèles plus avancés qui peuvent

combiner des probabilités avec des types. Ils soulignent également la robustesse des techniques

algébriques et de celles basées sur les types pour le raisonnement comportemental.

Abstract

The focus of this thesis are the theoretical foundations for reasoning about algorithms and pro-

tocols for modern distributed systems. Two important features of models for these systems are

probability and typed mobility: probabilities can be used to quantify unreliable or unpredictable

behaviour and types can be used to guarantee secure behaviour in systems with a mobile struc-

ture. In this thesis we develop algebraic and type-based techniques for behavioural reasoning on

probabilistic and mobile processes.

In the first part of the thesis we study the algebraic theory of a process calculus which combines

both nondeterministic and probabilistic behaviour in the style of Segala and Lynch’s probabilistic

automata. We consider various strong and weak behavioural equivalences, and we provide complete

axiomatisations for finite-state processes, restricted to guarded recursion in the case of the weak

equivalences.

In the second part of the thesis we investigate the algebraic theory of the π-calculus under the

effect of capability types, which are one of the most useful forms of types in mobile process calculi.

Capability types allow one to distinguish between the capability to read from a channel, to write

to a channel, and to both read and write. They also give rise to a natural and powerful subtyping

relation. We consider two variants of typed bisimilarity, both in their late and in their early version.

For both of them, we give complete axiomatisations on the closed finite terms. For one of the two

variants, we provide a complete axiomatisation for the open finite terms.

In the last part of the thesis we develop a type-based technique for verifying the termination

property of some mobile processes. We provide four type systems to guarantee this property. The

type systems are obtained by successive refinements of the types of the simply typed π-calculus.

The termination proofs take advantage of techniques from term rewriting systems. These type

systems can be used for reasoning about the terminating behaviour of some non-trivial examples:

the encodings of primitive recursive functions, the protocol for encoding separate choice in terms of

parallel composition, a symbol table implemented as a dynamic chain of cells.

These results lay out the foundations for further study of more advanced models which may

combine probabilities with types. They also highlight the robustness of the algebraic and type-

based techniques for behavioural reasoning.

i

To my parents

ii

Acknowledgements

I would like to express my gratitude to Davide Sangiorgi, my supervisor, for his inspiration,

guidance, and encouragement. He was always willing to discuss the problems that I encountered in

my research and my life. From him I have received invaluable help and advice.

I am very indebted to Catuscia Palamidessi. Her intelligence and enthusiasm had a substantial

influence on my research interests in the later period of my Ph.D. study. I have learned much from

her about the ways of doing research and the style of presenting it.

I owe a lot to Pierre-Louis Curien for having received me in his laboratory PPS and for having

made insightful comments on each piece of work that I have done. Without his generosity and

unconditional support, this thesis would not have been possible.

I am also very grateful to Yuxi Fu, my Master’s thesis supervisor, for having introduced me to

the field of process algebra.

PPS has offered creative and pleasant working atmosphere. I would like to thank all the past

and current members for their friendship and interesting discussions. In particular, I thank Samuel

Hym, Vincent Balat, and Fabien Tarissan for their help of correcting the resume in French.

I have the pleasure of having stayed three months in the MIMOSA project of INRIA Sophia-

Antipolis. Many thanks must go to Gérard Boudol and Ilaria Castellani for having provided the

friendly environment.

I appreciate the stimulating discussions with the members of COMETE and PARSIFAL projects

of INRIA Futurs. I thank particularly my colleagues Jun Pang and Tom Chothia for the nice

collaboration that we had.

I would also like to thank all my friends. They have made my time in Paris both fruitful and

enjoyable.

My special gratitude goes to my family, for their unfailing support.

The EU project PROFUNDIS has funded this research. The Department of Computer Science

in University of Bologna has sponsored me for two productive trips to Bologna.

iii

iv

Main Notations

Below are the important notations used in this thesis, with the section number of their first appear-

ance.

Metavariables

u, v, ... names 2.1

` labels 2.1

α, β actions 2.2.2

X,Y, ... process variables 2.1

E,F, ... process expressions 2.1

P,Q, ... π-calculus processes 2.2.2

ι sorts 2.2.3

p, q, r probabilities 3.1

η, θ discrete probability distributions 3.1

R,S relations 3.3

Γ,∆ type environments 2.2.5

S, T types 2.2.5

Miscellaneous symbols

bool boolean type 2.2.5

Nat natural number type 2.2.5

]T channel type 2.2.5

]nT channel type with level 5.2

iT, oS, b〈T, S〉 capability types 4.1.1

fpv (E) free process variables 2.1

{F̃ /X̃} substitution of expressions 2.1

{ṽ/ũ} substitution of names 2.2.2

fn(·) free names of specified entities 2.2.2

bn(·) bound names of specified entities 2.2.2

subj (α) subject of action 2.2.2

obj (α) object of action 2.2.2

∆]P configuration 4.1.2

Process constructions

v

0 inaction 2.1

`.E prefix 2.1

E + F nondeterministic choice 2.1

E | F parallel composition 2.1

νaE restriction 2.1

µXE recursion 2.1
∑

i∈1..mEi indexed nondeterministic choice 3.2
⊕

i∈1..n pi`i.Ei probabilistic choice 3.2

u(x).P input prefix 2.2.2

ūv.P output prefix 2.2.2

!u(x).P replicated input 2.2.2

if w then P else Q if-then-else 5.3.1

ϕPQ condition 4.1.1

Transitions
`

−→ labelled transition 2.1

→ strong probabilistic transition 3.2

→c strong combined transition 3.2

⇒ weak probabilistic transition 3.2
ε
⇒c weak combined transition 3.2

⇒c normal weak combined transition 3.2

Equivalences

≡R equivalences of distributions 3.3.1

∼ strong bisimilarity 3.3.2

∼c strong probabilistic bisimilarity 3.3.2

≈ weak probabilistic bisimilarity 3.3.2

' observational equivalence 3.3.2

h divergency-sensitive equivalence 3.3.2

l typed bisimilarity 4.1.3

l
e typed early bisimilarity 4.1.3

m a variant typed bisimilarity 4.4.1

vi

Contents

Abstract i

Acknowledgements iii

Main Notations v

Résumé en français 1

1 Introduction 15

1.1 Background . 15

1.2 Objectives . 17

1.3 Axiomatisations for Probabilistic Processes . 19

1.4 Axiomatisations for Typed Mobile Processes . 21

1.5 Termination of Mobile Processes by Typability . 24

1.6 Outline of the Thesis . 25

2 Preliminaries 27

2.1 A Calculus of Communicating Systems . 27

2.2 The π-calculus . 28

2.2.1 From CCS to the π-calculus . 28

2.2.2 The Untyped π-calculus . 29

2.2.3 Sorts and Sorting . 31

2.2.4 A Simple Example . 32

2.2.5 The Simply Typed π-calculus . 32

2.2.6 Subtyping . 34

3 Axiomatisations for Probabilistic Processes 37

3.1 Probabilistic Distributions . 37

3.2 A Probabilistic Process Calculus . 38

3.3 Behavioural Equivalences . 41

3.3.1 Equivalence of Distributions . 41

3.3.2 Behavioural Equivalences . 42

3.3.3 Probabilistic “Bisimulation up to” Techniques 44

vii

3.3.4 Some Properties of Strong Bisimilarity . 46

3.3.5 Some Properties of Observational Equivalence 48

3.4 Axiomatisations for All Expressions . 49

3.4.1 Axiomatizing Strong Bisimilarity . 49

3.4.2 Axiomatizing Strong Probabilistic Bisimilarity 52

3.5 Axiomatisations for Guarded Expressions . 53

3.5.1 Axiomatizing Divergency-Sensitive Equivalence 54

3.5.2 Axiomatizing Observational Equivalence . 56

3.6 Axiomatisations for Finite Expressions . 60

3.7 Summary . 62

4 Axiomatisations for Typed Mobile Processes 65

4.1 A Fragment of The Typed π-calculus . 65

4.1.1 Standard Operational Semantics . 65

4.1.2 Typed Labelled Transition System . 68

4.1.3 Typed Bisimilarity . 70

4.2 Proof System for the Closed Terms . 72

4.3 Axioms for Typed Bisimilarity . 74

4.3.1 The Axiom System . 75

4.3.2 Soundness and Completeness . 77

4.4 Other Equivalences . 82

4.4.1 Hennessy and Rathke’s Typed Bisimilarity 82

4.4.2 Early Bisimilarity . 88

4.5 Adding Parallelism . 88

4.6 Summary . 90

5 Termination of Mobile Processes by Typability 91

5.1 Preliminary Notations . 91

5.2 The Core System: the Simply Typed π-calculus with Levels 92

5.3 Allowing Limited Forms of Recursive Inputs . 95

5.3.1 The Type System . 95

5.3.2 Example: Primitive Recursive Functions . 97

5.4 Asynchronous Names . 98

5.4.1 Proving Termination with Asynchronous Names 99

5.4.2 Example: the Protocol of Encoding Separate Choice 104

5.5 Partial Orders . 105

5.5.1 The Type System . 105

5.5.2 Example: Symbol Table . 110

5.6 Summary . 111

6 Conclusions and Future Work 113

viii

A Proofs from Chapter 3 117

A.1 Proof of Lemma 3.14 . 117

A.2 Proof of Proposition 3.34 . 119

A.3 Proof of Lemma 3.36 . 122

A.4 Proof of Lemma 3.45 . 124

B Proofs from Chapter 4 127

B.1 Some More Derived Rules . 127

B.2 Proof of Theorem 4.36 . 128

C Proofs from Chapter 5 131

C.1 Proofs from Section 5.2 . 131

C.2 Proofs from Section 5.3 . 132

C.3 Extending T ′ with Polyadicity and Conditional . 134

C.4 Proofs from Section 5.4 . 135

C.5 Proofs from Section 5.5 . 139

C.6 Levels in the Join-calculus . 145

Bibliography 147

ix

x

Résumé en français

L’informatique vise à expliquer d’une manière rigoureuse comment les systèmes informatiques se

comportent. Actuellement la notion de système informatique inclut non seulement des systèmes

séquentiels, comme des programmes simples dans des ordinateurs isolés, mais également des systèmes

parallèles, comme des réseaux informatiques, et même des protéines en biologie et des particules en

physique. Les modèles mathématiques classiques (par exemple le λ-calcul [Bar84]), malgré leur

succès pour décrire des systèmes séquentiels, demeurent insuffisants pour raisonner sur des systèmes

parallèles.

Dans les années 80 les calculs de processus (parfois appelés algèbres de processus), notamment

CCS [Mil89a], CSP [Hoa85] et ACP [BK84, BW90], ont été proposés pour décrire et analyser des

systèmes parallèles. Tous ont été conçus autour de l’idée centrale d’interaction ou de commu-

nication entre processus. Dans ces formalismes, un système complexe est construit à partir de

ses sous-composants, par un petit ensemble d’opérateurs primitifs comme le préfixe, le choix non-

déterministe, la restriction, la composition parallèle et la récursion. La limitation de ces algèbres

traditionnelles est qu’elles ne peuvent pas être utilisées pour décrire efficacement des systèmes mo-

biles, c’est-à-dire des systèmes dont la topologie des liaisons change dynamiquement. Sur la base

de CCS, Milner, Parrow et Walker ont inventé le π-calcul [MPW92], qui réalise la mobilité par un

mécanisme où un nom reçu sur un canal peut être lui-même utilisé comme un nom de canal en

émission ou en réception. Le π-calcul est un formalisme très expressif. Il permet d’encoder des

structures de données [Mil91], le λ-calcul [Mil92] et les communications d’ordre supérieur (lorsque

des processus sont transmis à la place des noms) [San93]. En outre, il peut être utilisé comme un

outil de raisonnement sur des langages orientés objet [Wal95].

Comme aucune théorie n’atteindra tous les objectifs, un grand nombre de variantes et d’extensions

des calculs de processus classiques sont parues dans la littérature. Grossièrement ils peuvent être

regroupés en trois catégories en fonction des intentions des concepteurs.

• Pour mieux capturer quelques caractéristiques spécifiques des systèmes parallèles comme les

communications asynchrones, les communications d’ordre supérieur, les localités et les migra-

tions. On peut faire une longue liste d’exemples de calculs faits dans ce but : le π-calcul

asynchrone [HT91, Bou92], le πI-calcul [San96a], le Lπ-calcul [Mer00], le calcul Fusion [PV98],

le χ-calcul [Fu99], le calcul Join [Fou98], CHOCS [Tho95], HOπ [San93], Dπ [HR02b], Klaim

[DFP98], le calcul des Ambients Mobiles [CG00] et ses variantes, pour en citer juste quelques

uns.

1

2

• Pour équiper les processus mobiles de types, de sorte que les processus interagissent entre eux

d’une manière plus sûre et plus efficace. Par exemple, un certain nombre de systèmes de types

ont été conçus pour le π-calcul ; ils sont utilisés dans diverses applications comme la détection

statique des erreurs dans les programmes parallèles [Mil91], les optimisations de compilateur

[KPT99], le contrôle d’accès de ressources [PS96, HR02b]. En plus, ils garantissent d’autres

propriétés de sécurité comme l’exécution sans blocage [Kob98], la non-intervention [HY05] et

la terminaison [YBH04, DS04a].

• Pour soutenir le raisonnement sur les comportements probabilistes qui existent, par exemple,

dans les systèmes aléatoires, répartis et résistants aux pannes. L’approche générale que l’on

adopte est d’étendre avec des probabilités les modèles et les techniques existants qui ont déjà

été couronnés de succès dans les cadres non-probabilistes. La caractéristique commune des

calculs de processus probabilistes est l’existence de l’opérateur de choix probabiliste ; voir par

exemple des extensions probabilistes de CCS [GJS90, HJ90, Tof94, YL92], CSP probabiliste

[Low91], ACP probabiliste [And99] et le π-calcul asynchrone probabiliste [HP04].

Dans cette thèse nous illustrerons les calculs de processus des deuxième et troisième catégories

en détail.

Afin d’étudier un langage de programmation ou un calcul de processus, on doit fournir une

signification cohérente à chaque programme ou processus de ce langage. Cette signification est la

sémantique du langage ou du calcul. La sémantique est utile pour vérifier ou montrer que les pro-

grammes se comportent comme prévu. D’une manière générale, il y a trois approches principales

pour donner des sémantiques à un langage de programmation. L’approche dénotationnelle cherche

une fonction d’évaluation qui associe à un programme sa signification mathématique. Cette ap-

proche réussit à modéliser beaucoup de langages séquentiels ; un programme est interprété comme

une fonction du domaine des valeurs d’entrée vers le domaine des valeurs de sortie. Cependant,

jusqu’ici l’interprétation dénotationnelle des programmes parallèles n’est pas aussi satisfaisante que

le traitement dénotationnel des programmes séquentiels.

L’approche opérationnelle s’avère très utile pour donner des sémantiques aux systèmes parallèles.

Le comportement d’un processus est indiqué par sa sémantique opérationnelle structurelle [Plo81],

décrite par un ensemble de règles de transitions étiquetées inductivement définies sur la structure

des termes. De cette façon chaque processus correspond à un graphe de transitions étiquetées. La

limitation de la sémantique opérationnelle est qu’elle est trop concrète, car un graphe de transitions

peut contenir beaucoup d’états qui devraient intuitivement être confondus. On a alors proposé

beaucoup d’équivalences pour comparer les différents graphes de transitions.

L’approche axiomatique vise à comprendre un langage par quelques axiomes et règles d’inférence.

Son importance est motivée, entre autres, par les deux raisons suivantes.

• Les systèmes corrects, même s’ils ne sont pas complets, peuvent être utiles pour la manipulation

des termes par un humain ou par des machines. En exploitant ces systèmes, un certain nombre

de problèmes pratiques de vérification peuvent être abordés.

• Les systèmes complets aident à comprendre la nature des équivalences. Par exemple, la

différence entre deux équivalences peut être caractérisée par quelques axiomes, en partic-

3

ulier si en ajoutant ces axiomes à un système complet pour une équivalence on obtient un

système complet pour l’autre équivalence. Une autre méthode de comparaison est de fixer

une équivalence et de changer les expressions. Parfois on étend le système complet d’un sous-

langage au langage entier, en ajoutant quelques axiomes supplémentaires. Comme nous le

verrons plus tard, les deux phénomènes se produisent aux chapitres 3 et 4.

Dans les calculs de processus, un sujet important et toujours actif est d’explorer la connexion

entre les sémantiques opérationnelles et axiomatiques. Milner [Mil78] a été le premier à préconiser le

développement d’une algèbre des comportements qui obéit à un certain nombre d’axiomes exprimés

par des équations. Dans [Mil80] un lien direct est établi pour la première fois entre une théorie

algébrique et une équivalence comportementale basée sur une sémantique opérationnelle. Depuis,

un grand nombre de travaux portent sur les théories algébriques de processus, pour différentes

équivalences comportementales et dans divers calculs de processus. Cependant, on ne voit pas

beaucoup d’attention prêtée aux calculs de processus probabilistes et typés, bien qu’ils s’avèrent

être très utiles dans l’analyse des systèmes répartis modernes.

Objectifs

Cette thèse se concentre sur des bases théoriques utiles pour l’analyse d’algorithmes et de protocoles

pour des systèmes répartis modernes. Nous pensons que ce genre de raisonnement est important

parce que si un système est établi sans analyse rigoureuse de toutes les interactions possibles entre

ses composants, alors son comportement est souvent incorrect. En est témoin la découverte récente

des défauts de sécurité dans les protocoles de transmission sans fil comme IEEE 802,11 et Bluetooth

[BGW01, LL03].

Dans les systèmes répartis il est intéressant de considérer des modèles qui incluent des proba-

bilités. Une raison est qu’on espère que ces systèmes fournissent des services fiables en dépit de

l’occurrence de divers échecs. Les processus probabilistes peuvent être utilisés pour décrire des

systèmes résistants aux pannes. Par exemple, l’information probabiliste peut être utilisée pour indi-

quer le taux de perte des messages par les canaux de transmission défectueux. En plus, les modèles

probabilistes peuvent être utilisés pour casser la symétrie dans des problèmes de coordinations dis-

tribuées (par exemple, le problème des philosophes, le problème d’élection de chef, et le problème

de consensus), pour prévoir le comportement de systèmes basés sur le calcul des caractéristiques

d’exécution, et pour représenter et mesurer d’autres formes d’incertitude.

Un modèle pour les systèmes répartis devrait également inclure la caractéristique de mobilité.

Les systèmes physiques tendent à avoir une structure fixe. Mais la plupart des systèmes dans le

monde de l’information ne sont pas physiques car leurs liens peuvent être symboliques ou virtuels.

Par exemple, quand on clique sur un lien hypertexte dans une page web, un lien symbolique est créé

entre la machine et le serveur web à distance. Un exemple de lien virtuel est une connexion radio,

comme les liens entre les téléphones mobiles et un réseau de stations de base. Cette connexion radio,

avec des liens transitoires, a une structure mobile.

Avec la mobilité, les types s’avèrent être essentiels. Par exemple, la théorie du π-calcul non typé

est souvent insuffisante pour prouver des propriétés comportementales sur les processus. La raison

4

est que quand on utilise le π-calcul pour décrire un système, on suit normalement une méthode qui

détermine comment utiliser des noms. Mais cette méthode n’est pas explicite dans les processus et

elle ne peut donc pas jouer un rôle dans les preuves. Des types peuvent être utilisés pour rendre

une telle méthode explicite (cf. Partie IV de [SW01]). En outre, les types sont utiles pour exprimer

le contrôle de l’intervention, du droit d’accès, du déclassement robuste, de la composition sûre des

composants, et de la limite des consommations de ressources (par exemple, des allocations de temps

ou de mémoire).

Il y a une motivation pratique pour considérer les probabilités et la mobilité en même temps.

Comment un système de téléphone mobile peut-il s’exécuter de façon satisfaisante si le concepteur

ne considère jamais le comportement probable des utilisateurs ? Un certain nombre de modèles

probabilistes ont été présentés en tant que variantes des châınes de Markov, mais pour la mobilité

ils sont peu développés.

Dans la littérature, les probabilités et la mobilité typée sont souvent étudiées séparément. Des

techniques opérationnelles ont été développées, mais très peu d’efforts ont été faits sur des tech-

niques algébriques. Cependant, elles sont très utiles en informatique. Par exemple, dans le modèle

relationnel pour les bases de données [Cod70], les lois algébriques ont servi à l’optimisation de de-

mande [RG02]. Dans les calculs de processus, des équations algébriques peuvent être considérées en

tant que règles de réécriture pour la manipulation automatisée de termes [vdP01].

Dans cette thèse nous étudions des techniques algébriques en considérant l’impact de la mobilité,

des probabilités et des types sur les théories algébriques des calculs de processus. Puisque chaque

caractéristique présente de nouveaux problèmes non triviaux, il est difficile de développer d’emblée

des techniques algébriques pour des modèles basés sur la mobilité typée et les probabilités. Par

conséquent, il vaut mieux les étudier d’abord séparément. Dans le chapitre 3 nous considérons donc

des axiomatisations pour un calcul probabiliste sans mobilité, et dans le chapitre 4 nous fournissons

des axiomatisations pour un calcul de processus mobile typé sans probabilités. Les types que nous

utilisons sont les types de capacité [PS96], qui distinguent la capacité de lire sur un canal, la capacité

d’écrire sur un canal, et la capacité de lire et d’écrire à la fois. Ce genre de types sont utiles et

fondamentaux pour les calculs de processus. Ils ont été utilisés pour garantir l’échange de données

cohérentes sur des canaux, et pour contrôler des droits d’accès aux canaux. Des variantes des types

de capacités sont maintenant présentes dans presque tous les calculs de processus. Parfois, elles

deviennent une partie de la syntaxe, par exemple dans le Lπ-calcul et le calcul Join, seules les

capacités d’écrire peuvent être transmises.

Dans les calculs de processus mobiles, les types peuvent être utilisés comme une technique de

vérification pour analyser diverses propriétés des programmes concurrents, comme l’exécution sans

blocage [Kob98], l’exécution sans attente active [Kob00], et le flux d’information [HVY00, HR02a].

Dans le chapitre 5 nous développons une telle technique pour le problème de terminaison, qui est une

propriété importante que beaucoup d’algorithmes et protocoles dans les systèmes répartis doivent

garantir. Dans le cas des systèmes répartis symétriques, les algorithmes probabilistes sont souvent

plus efficaces que les algorithmes déterministes, au prix que certaines propriétés se produiront avec la

probabilité 1 mais pas nécessairement avec certitude. Pour tous les buts pratiques, cependant, cette

différence est insignifiante. Par conséquent, il est intéressant de parler de la terminaison probabiliste

5

aussi. Cependant, puisque la terminaison est elle-même un problème non trivial, nous considérons

des types sans probabilité.

Pour récapituler, dans cette thèse nous développons des techniques algébriques et des techniques

basées sur les types pour raisonner sur les processus avec probabilités et mobilité typée. Nous

considérons ces deux caractéristiques séparément, à la fois dans le cas des axiomatisations et celui

de la terminaison, mais nous croyons que notre travail contribue à établir des bases pour étudier des

modèles plus avancés qui peuvent combiner les probabilités avec la mobilité typée.

Avant de discuter dans les sections suivantes des motivations pour chaque sujet de la thèse, nous

devons présenter une certaine terminologie. Nous utilisons le concept général axiomatisations pour

désigner à la fois des systèmes d’axiomes et des systèmes de preuves. Pour une équivalence sur

un ensemble de termes, un système d’axiomes se compose de quelques axiomes équationnels et des

règles du raisonnement équationnel (c’est-à-dire, les règles de réfléxivité, de symétrie, de transitivité,

et les règles de congruence qui permettent de remplacer n’importe quel sous-terme d’un processus

par un terme équivalent). Un système de preuves a, en plus des axiomes et de certaines règles

du raisonnement équationnel, d’autres règles d’inférence. Généralement un système d’axiomes est

préférable à un système de preuves, parce que, par exemple, les techniques générales de la réécriture

de termes peuvent alors être applicables. Cependant, quand le calcul de processus en question inclut

des caractéristiques non triviales comme la récursion ou les types, parfois il est difficile d’obtenir

un système d’axiomes qui est complet parce que nous devons utiliser d’autres règles d’inférence,

c’est-à-dire, ce que nous obtenons est réellement un système de preuves. Dans ce cas nous appelons

aussi ce système une axiomatisation, comme on l’a fait dans la littérature [Mil89b, Par01]. Pour une

axiomatisation, la complétude signifie que si deux processus montrent un comportement semblable,

c’est-à-dire, leurs graphes de transition sont équivalents, alors on peut prouver qu’ils sont égaux

dans un système d’axiomes ou un système de preuves; la correction signifie l’inverse.

Axiomatisations pour les processus probabilistes

La dernière décennie a été témoin de l’intérêt croissant dans le domaine des méthodes formelles pour

la spécification et l’analyse des systèmes probabilistes [Seg95, BH97, AB01, PLS00, Sto02, CS02].

Dans [vGSS95] van Glabbeek et al. ont classifié les modèles probabilistes dans trois catégories :

les modèles réactifs, les modèles génératifs et les modèles stratifiés. Dans les modèles réactifs, une

probabilité est associée à chaque transition étiquetée, et pour chaque état la somme des probabilités

de ses transitions avec la même étiquette est 1. Les modèles génératifs diffèrent des modèles réactifs

parce que pour chaque état la somme des probabilités de toutes les transitions sortantes est 1. Les

modèles stratifiés ont plus de structure et pour chaque état soit il y a exactement une transition

étiquetée sortante soit il y a seulement des transitions non étiquetées et la somme de leurs probabilités

est 1.

Dans [Seg95] Segala a indiqué que ni les modèles réactifs ni les modèles génératifs ni les modèles

stratifiés ne capturent le vrai non-déterminisme, une notion essentielle pour modéliser la liberté

d’ordonnancement, la liberté d’implémentation, l’environnement externe et l’information incomplète.

Il a donc présenté une sorte de modèles, les automates probabilistes (PA), où les probabilités et le

6

a ba b

1/2 1/2 1/3 2/3

a
a

b b

1/2 1/8 1/81/4

1/2 1/2

2/31/3

a b

a

a
a a a b

b

1/2 1/2 1/3 2/3
1/21/2 1/2 1/2 1/3 2/3 1/2 1/2

a b
a c
b c

(1) reactive (2) generative (3) stratified

(4) SPA (5) PA

Figure 1: Modèles probabilistes

non-déterminisme sont tous deux pris en considération. Le choix probabiliste est exprimé par la

notion de transition, qui, dans les PA, mène à une distribution probabiliste sur des paires (action,

état) et des impasses (c’est-à-dire, des états qui n’ont pas de transitions sortantes). Le choix non-

déterministe, par contre, est exprimé par la possibilité de choisir différentes transitions. Segala

a proposé également une version simplifiée de PA appelée automates probabilistes simples (SPA),

qui sont comme les automates ordinaires mais sont tels qu’une transition étiquetée mène à une

distribution probabiliste sur un ensemble d’états au lieu d’un seul état.

La figure 1 donne un exemple des modèles probabilistes discutés ci-dessus. Dans les modèles

où les probabilités et le non-déterminisme sont présents à la fois, comme ceux des diagrammes (4)

et (5), une transition est représentée comme un paquet de flèches qui sont liées par un petit arc.

[SdV04] fournit une comparaison détaillée entre les différents modèles, et montre dans un certain

sens que les PA subsument tous les autres modèles ci-dessus sauf les modèles stratifiés.

Nous étudierons au chapitre 3 les systèmes d’axiomes pour un calcul de processus basé sur les PA,

dans le sens où la sémantique opérationnelle de chaque expression du langage est un automate1. Les

systèmes d’axiomes sont très importants car au niveau théorique, ils aident à comprendre le calcul

et à établir ses bases, et au niveau pratique, ils peuvent être utilisés comme un outil intéressant de

spécification et de vérification des systèmes. Notre calcul est essentiellement une version probabiliste

du calcul employé par Milner pour exprimer les comportements d’états finis [Mil84, Mil89b].

Nous considérerons deux équivalences fortes, une équivalence faible qui est commune dans la

littérature, ainsi qu’une notion d’équivalence faible ayant l’avantage d’être sensible à la diver-

gence. Pour les expressions sans récursion nous fournissons des axiomatisations complètes des quatre

équivalences. Pour les équivalences fortes nous donnons également des axiomatisations complètes

pour toutes les expressions, alors que pour les équivalences faibles nous obtenons ce résultat seule-

ment pour les expressions gardées.

La raison pour laquelle nous sommes intéressés par l’étude d’un modèle qui exprime le com-

1sauf le cas du blocage qui est traité légèrement différemment : en suivant la tradition des calculs de processus,

dans notre cas le blocage est un état, mais dans les PA il est un des composants possibles d’une transition.

7

portement non-déterministe et probabiliste, et d’une équivalence sensible à la divergence, est qu’un

des buts à long terme de cette ligne de recherche est de développer une théorie qui nous permettra

de raisonner sur des algorithmes probabilistes utilisés dans des systèmes répartis. Dans ce domaine

il est important d’assurer qu’un algorithme fonctionne sous n’importe quel ordonnanceur, et sous

d’autres facteurs inconnus ou incontrôlables. Le composant non-déterministe de notre calcul nous

permet de traiter toutes ces conditions d’une manière uniforme et élégante. En outre, dans beau-

coup d’applications des systèmes répartis il est important d’assurer l’exécution sans attente active,

et donc nous aurons besoin d’une sémantique qui n’ignore pas la divergence.

Nous finissons cette section par une discussion au sujet de certains travaux voisins dans cette

direction de recherche. Dans [Mil84] et [Mil89b] Milner a donné des axiomatisations complètes

pour la bisimilarité forte et l’équivalence observationnelle, respectivement, dans le cadre d’un noyau

de CCS [Mil89a]. Ces deux articles nous servent de point de départ : dans plusieurs preuves de

complétude qui comportent la récursion nous adoptons deux théorèmes de Milner : le théorème

de caractérisation équationnelle et le théorème de solution unique. Dans les section 3.4.1 et 3.5.2

nous étendons [Mil84] et [Mil89b] (pour les expressions gardées) respectivement, dans le cadre de

l’algèbre de processus probabiliste.

Dans [SS00] Stark et Smolka ont donné une version probabiliste des résultats de [Mil84]. Nous

étendons donc les résultats de [SS00] parce que nous considérons également le non-déterminisme.

Quand le choix non-déterministe est ajouté, la technique de Stark et Smolka pour prouver la cor-

rection des axiomes n’est plus utilisable (voir la discussion à l’annexe A.2.) La même remarque

s’applique également à [AÉI02] qui suit l’approche de [SS00] mais utilise quelques axiomes d’algèbre

d’itération pour caractériser la récursion. En revanche, notre version probabiliste de la technique

“bisimulation up to” [Mil89a] marche bien avec la technique ordinaire de l’induction sur les transi-

tions.

Dans [BS01] Bandini et Segala ont donné les axiomatisations des équivalences comportementales

fortes et faibles pour les calculs de processus correspondant aux SPA et à une version de SPA pourvue

d’une sémantique alternative. Puisque leur calcul de processus avec la sémantique non-alternative

correspond aux SPA, nos résultats de la section 3.6 peuvent être considérés comme une extension

de leurs travaux aux PA.

Pour l’algèbre de processus probabiliste de style ACP, plusieurs systèmes complets d’axiomes

sont apparus dans la littérature. Cependant, dans chacun de ces systèmes soit la bisimilarité faible

n’est pas étudiée [BBS95, And99], soit le choix non-déterministe est supprimé [BBS95, AB01].

Axiomatisations pour les processus mobiles typés

La théorie du π-calcul a été profondément étudiée [Mil99, SW01], et deux thèmes majeurs y sont

la théorie algébrique et les systèmes de types. La majeure partie de la théorie algébrique a été

développée sur le calcul non typé ; les résultats incluent les axiomatisations qui sont corrects et

complets sur les processus finis pour les équivalences comportementales principales : les bisimilarités

retardées et anticipées, les congruences retardées et anticipées [PS95, Lin94, Lin03], la bisimilarité

ouverte [San96b], l’équivalence de test [BD95]. Une grande partie de la recherche sur les types

8

s’est concentrée sur leurs effets comportementaux. Par exemple, on a proposé des variantes des

équivalences comportementales standards afin de tenir compte des types [PS96, SW01].

Nous étudierons au chapitre 4 l’impact des types sur la théorie algébrique du π-calcul. Plus

précisément, nous étudions des axiomatisations du π-calcul typé. Bien que quelques lois algébriques

pour les calculs typés de processus mobiles aient été considérées dans la littérature [SW01], nous

n’avons vu aucune axiomatisation.

Le système de types que nous considérons a des types de capacités (parfois appelés les types

I/O) [PS96, HR02b]. Ces types nous permettent de distinguer, par exemple, la capacité d’utiliser

un canal pour lire des noms de la capacité d’utiliser le canal pour écrire des noms. Un type montre

la capacité d’un canal et, en plus, les capacités des canaux portés par ce canal. Par exemple, le

type a : iobT (pour une expression appropriée de types) indique que le canal a peut être utilisé

seulement pour lire des noms ; et n’importe quel canal lu sur a peut être utilisé seulement pour

écrire des canaux qui ont la capacité d’écrire et de lire des noms de type T . Alors, le processus

a(x).x̄b.b(y).b̄y est bien typé dans l’environnement de typage a : iobT, b : bT . Rappelons que āb.P

désigne un processus qui veut écrire le nom b sur le canal a, puis continuer son exécution P ; a(x).P

désigne un processus qui veut lire un nom sur le canal a, puis reprendre son exécution P , où les

occurrences libres de x ont été remplacées par le nom que l’on a lu.

Dans les calculs pour la mobilité, les types de capacités sont devenus les types les plus utiles,

et dont les effets comportementaux sont les plus connus. Les capacités sont utiles pour protéger

des ressources ; par exemple, dans un modèle de client/serveur, elles peuvent être utilisées pour

empêcher un client de saisir le canal d’accès au serveur en lecture et de voler des messages au

serveur ; d’une façon similaire, elles peuvent être utilisées dans la programmation répartie pour

exprimer des contraintes de sécurité [HR02b]. Les capacités introduisent la relation de sous-typage :

les capacités d’écrire sont contravariantes, tandis que les capacités de lire sont covariantes. Par

exemple, nous montrons une relation de sous-typage à la figure 2, où une flèche indique la relation

de sous-typage. Il y a trois formes de types pour les noms de canaux : iT , oS et b〈T, S〉, elles

donnent aux noms les capacités de lire des valeurs du type T , d’écrire des valeurs du type S, ou

de faire les deux. Nous notons bT comme l’abréviation de b〈T, T 〉. La profondeur de l’imbrication

des capacités est 1 pour tous les types dans le diagramme (a), et 2 pour tous les types dans le

diagramme (b) (les définitions formelles des types et de la relation de sous-typage seront données

à la section 4.1.1). Le sous-typage est utile en particulier quand le π-calcul est exploité pour la

programmation orientée objet, ou pour donner une sémantique aux langages orientés objet.

Pour voir pourquoi l’addition des types de capacités a des conséquences sémantiques, considérons

P
def
= νc bc.a(y).(y | c) Q

def
= νc bc.a(y).(y.c+ c.y).

Ces processus ne sont pas comportementalement équivalents en π-calcul non typé. Par exemple,

si le canal lu sur a est c, alors P peut se terminer après 2 interactions avec l’observateur externe.

En revanche, Q se termine toujours après 4 interactions avec l’observateur. Cependant, si nous

imposons la condition que seulement la capacité de lire des canaux peut être transmise sur b, alors

P et Q montrent le même comportement dans n’importe quel contexte bien typé. Par exemple,

puisque l’observateur reçoit seulement la capacité de lire des noms sur c, il ne peut pas écrire c

9

ooTibT

bbT

(b)

 b<oT,bT>b<iT,bT>oiT

boT

 obT

biT

oTiT

bT

(a)

iiT ioT

Figure 2: Un exemple de la relation de sous-typage, où T = unit

sur a : les canaux écrits sur a exigent au moins la capacité d’écrire (cf. l’occurrence de y). Par

conséquent, dans le cas typé, les processus sont comparés par un observateur avec certaines capacités

(c’est-à-dire, types sur des canaux). Si l’on dénote ces capacités par ∆, alors la bisimilarité typée

entre P et Q est écrite P l∆ Q.

En π-calcul non typé, les systèmes de transitions étiquetés (LTS pour labelled transition systems)

sont définis sur des processus ; la transition P
α

−→ P ′ signifie que P peut accomplir l’action α et

puis devenir P ′. En π-calcul typé, les informations sur les capacités de l’observateur sont pertinentes

parce que l’observateur ne peut interroger des processus que par des interactions pour lesquelles il

a toutes les capacités nécessaires. Par conséquent les systèmes de transitions étiquetés typés (TLTS

pour typed labelled transition systems) sont définis sur des configurations, et une configuration ∆]P se

compose d’un processus P et des capacités ∆ (parfois nous appelons l’observateur ∆ l’environnement

externe). Maintenant une transition ∆]P
α

−→ ∆′]P ′ signifie que P devient P ′ après avoir accompli

une action α permise par l’environnement ∆, qui se transforme en ∆′ par ailleurs.

Une version de types de capacités a été présentée dans [PS96]. Et depuis on a proposé un certain

nombre de variantes et d’extensions. Nous suivons le système de Hennessy et Riely [HR02b], dans

lequel, au contraire du système dans [PS96] : (i) il existe deux opérations partielles sur les types

(meet et join) ; (ii) la règle de typage pour la construction comparaison (la construction utilisée pour

tester l’égalité entre deux noms) est très libérale, parce qu’elle peut être appliquée aux canaux de

n’importe quel type (dans [PS96] deux canaux peuvent être comparés s’il possèdent la capacité de

lire et la capacité d’écrire à la fois). Tandis que (i) simplifie seulement certains détails techniques,

(ii) semble essentiel. En effet, l’importance de la comparaison pour la théorie algébrique du π-calcul

est bien connue (c’est la raison principale de l’existence de la comparaison dans le calcul non typé).

La bisimilarité typée et l’utilisation des configurations pour définir la bisimilarité typée ont été

présentées dans [BS98]. Nous suivons une de ses variantes proposée par Hennessy et Rathke [HR04],

parce qu’elle emploie le système de types de [HR02b] et inclut la construction de comparaison.

Deux résultats importants que nous avons obtenus sont un système de preuve et un système

d’axiomes pour la bisimilarité typée (l). Le système de preuve a une preuve de correction simple

mais il marche seulement pour les termes fermés. Le système d’axiomes traite tous les termes finis.

10

Notre bisimilarité l est une variante de celle de [HR04]. Pour la bisimilarité typée de [HR04] nous

fournissons un système de preuve pour les termes fermés, et une axiomatisation indirecte pour tous

les termes parce qu’elle exploite le système de l. Nous n’avons pas pu donner une axiomatisation

directe qui ne dépend pas du système de l : les difficultés principales sont discutées à la section 4.4.1.

Tous les résultats sont donnés pour les versions retardées et anticipées des bisimilarités.

Les systèmes d’axiomes et les systèmes de preuves sont obtenus en modifiant certaines règles des

systèmes pour le π-calcul non typé, et en ajoutant quelques nouvelles lois. Les preuves de correction

et de complétude, bien que nous suivions le schéma général des preuves du calcul non typé, différent

beaucoup dans les détails. Un exemple de ceci est le traitement des canaux frais dans les actions de

lecture et la fermeture par les substitutions injectives que nous commentons ci-dessous.

Dans le π-calcul non typé, l’assertion suivante est vraie :

Si P l Q et σ est injective sur fn(P,Q), alors Pσ l Qσ.

Par conséquent, il est suffisant de considérer tous les canaux libres dans P,Q et un seul canal frais

en comparant les actions de lecture qu’accomplissent P et Q dans le jeu de bisimulation. Ce résultat

est crucial dans la théorie algébrique du calcul non typé. Par exemple, dans le système de preuve

pour la bisimilarité (version retardée) la règle d’inférence pour le préfixe de lecture est la suivante :

Si P{b/x} = Q{b/x} pour tout b ∈ fn(P,Q, c), où c est un canal frais,

alors a(x).P = a(x).Q.

Pour la bisimilarité typée la situation est différente. Prenons les processus

P
def
= a(x : obT).x̄c.c̄ Q

def
= a(x : obT).x̄c

et comparons-les contre un observateur ∆. Considérons ce qui se passe quand la variable x est

remplacée par un canal frais b, dont le type dans ∆ est S. Par la contrainte imposée par le typage,

S doit être un sous-type de obT (cf. Figure 2 (b)). Nous remarquons que les différents choix pour

S donnent des résultats différents. Par exemple, si S est obT lui-même, l’observateur n’a aucune

capacité de lire sur b, il ne peut donc pas communiquer avec P et Q sur b. C’est-à-dire, du point de

vue de l’observateur le préfixe écriture bc n’est pas observable et les deux processus sont considérés

comme équivalents. De même si S est boT alors le préfixe écriture c n’est pas observable. Cependant,

si S est bbT alors b̄c.c̄ n’est pas équivalent à b̄c, puisque toutes les écritures deviennent observables.

Cet exemple illustre les difficultés essentielles pour la formulation des systèmes de preuves pour les

bisimilarités typées :

1. La présence de sous-typage dans les substitutions change le type original d’une variable en un

de ses sous-types.

2. Le choix de ces sous-types joue sur l’équivalence comportementale.

3. Les différents sous-types peuvent être incompatibles (ils n’ont aucun sous-type commun) entre

eux (par exemple, boT et bbT dans l’exemple ci-dessus ; ils sont tous les deux sous-types de

obT).

11

Une conséquence de (2) et de (3), par exemple, est qu’il n’y a pas un “meilleur sous-type”, qui est un

type unique avec la propriété que l’équivalence sous ce type implique l’équivalence sous n’importe

quels autres types.

Un autre exemple des modifications apportées par des types dans la théorie algébrique est la

règle de congruence pour les préfixes : nous devons distinguer le cas dans lequel le sujet du préfixe

est un canal, du cas dans lequel le sujet est une variable. C’est une différence plutôt subtile et

technique ; elle est discutée à la Section 4.3.

Terminaison de processus mobiles par la typabilité

Un terme termine si toutes ses séquences de réduction sont de longueur finie. Dans les langages

de programmation, la terminaison signifie que tous les calculs dans un programme finiront par

s’arrêter. En informatique la terminaison a été intensivement étudiée dans les systèmes de réécriture

[DM79, DH95] et le λ-calcul [Gan80, Bou03] (où la normalisation forte est un synonyme souvent

utilisé). La terminaison a été également discutée dans les calculs de processus, notamment le π-

calcul.

En effet, la terminaison est intéressante dans la concurrence. Par exemple, si nous interrogeons

un processus, nous aimerions savoir qu’une réponse sera finalement produite (la terminaison toute

seule ne garantit pas ceci, mais elle serait l’ingrédient principal dans une preuve). D’une façon

similaire, quand nous chargeons une applet nous voudrions savoir que l’applet ne s’exécutera pas

infiniment sur notre machine, qui plus est en absorbant toutes les ressources informatiques (une

attaque du type “refus de service”). En général, si la vie d’un processus est infinie, nous voudrions

savoir que le processus ne demeure pas vivant simplement en raison de l’activité interne infinie, et

que le processus acceptera finalement des interactions avec l’environnement.

Deux langages de processus qui terminent ont été proposés dans [YBH04] et [San05]. Dans les

deux cas, les preuves de la terminaison se servent des relations logiques, une technique bien connue

pour les langages fonctionnels. Les langages de processus ainsi obtenus sont plutôt “fonctionnels”,

parce que les structures permises sont semblables à celles dérivées en encodant des fonctions comme

processus. En particulier, les langages sont très restrictifs sur les lectures imbriquées (c’est-à-dire, la

possibilité d’avoir des lectures sur des noms libres suivant d’autres lectures), et les lectures récursives

(c’est-à-dire, les réplications comme !a(x).P dans lequel le corps P peut appeler récursivement la

garde a de la réplication). On interdit entièrement de tels motifs dans [YBH04] ; on permet des

lectures imbriquées dans [San05] mais sous une forme très restreinte. Par exemple, le processus

a(x).!b.x̄.0 | āc.0 (1)

(parfois le 0 à la fin est omis) n’est légal ni pour [YBH04] ni pour [San05]. Les restrictions dans

[YBH04, San05] éliminent également des processus fonctionnels qui sont utiles, par exemple

F
def
= !a(n, b). if n = 1 then b̄〈1〉 else νc(ā〈n− 1, c〉 | c(m).b̄〈m ∗ n〉) (2)

qui représente la fonction factorielle.

12

Pour garantir la terminaison des processus mobiles nous proposons plusieurs systèmes de types

pour le π-calcul. Nous commençons par un système simple de types, qui ajoute une information de

niveau aux types du π-calcul simplement typé. L’information de niveau nous aide à construire une

mesure qui diminue le long de chaque chemin de réduction d’un processus bien typé. Par conséquent

le fait que cette mesure soit bien fondée implique la terminaison des processus. Comme le système

de types n’est pas très expressif, nous l’étendons en relachant quelques contraintes sur les lectures

imbriquées et les lectures récursives, pour obtenir trois systèmes étendus de types. L’utilité de ces

systèmes de types est montrée par trois exemples non triviaux : (1) il s’avère que toutes les fonctions

récursives primitives peuvent être encodées comme des processus qui terminent ; (2) la méthode qui

consiste à encoder les choix séparé en termes de composition parallèle, proposée dans [Nes00, SW01],

n’introduit pas de divergence ; (3) chaque demande à la table de symboles (implémentée comme une

châıne dynamique de cellules), proposée dans [Jon93, San99], reçoit toujours une réponse en temps

fini.

De façon générale, pour chaque système de types qui garantit la terminaison des processus

nous choisissons une mesure qui diminue après certains pas de réduction. Pour comparer deux

mesures, nous exploitons des ordres lexicographiques et des ordres multi-ensemble, des techniques

bien connues dans les systèmes de réécriture [DM79, DJ90]. Pour le système simple de types, la

mesure est seulement un vecteur qui compte, pour chaque niveau, le nombre d’écritures (qui ne

sont pas gardées par des lectures répliquées) sur les canaux dont les types ont ce niveau. Pour les

systèmes étendus de types, les idées sont semblables, mais les mesures deviennent plus sophistiquées

puisque nous leur permettons de diminuer après un certain nombre (inconnu et variable mais fini)

de réductions, avec quelques commutativités de réductions et des manipulations de processus.

Plan de la thèse

Nous introduisons au chapitre 2 quelques notions de base sur les calculs de processus comme CCS

et le π-calcul. Nous prêtons une large attention aux types des canaux ; nous rappelons les notions

de sortes, de types simples de canaux, et de sous-typage progressivement. Le matériel présenté dans

ce chapitre sert à préparer le développement technique des chapitres suivants.

Au chapitre 3 nous présentons un calcul de processus probabiliste qui inclut les choix non-

déterministe et probabiliste, en plus de la récursion. Nous donnons sa sémantique par les automates

probabilistes proposés par Segala et Lynch. Nous présentons deux équivalences fortes et deux

équivalences faibles. Nous montrons quelques propriétés des équivalences, en utilisant une version

probabiliste de la technique de preuve dite “bisimulation up to”. Pour les équivalences fortes nous

donnons des axiomatisations complètes pour toutes les expressions, mais pour les équivalences faibles

nous réalisons ce résultat seulement pour des expressions gardées. Nous conjecturons que dans le

cas général de la récursion non-gardée les équivalences faibles sont indécidables. Dans les preuves

de complétude, nos schémas de preuve sont inspirés par [Mil84, Mil89b, SS00], mais les détails sont

plus compliqués à cause de la présence des dimensions probabiliste et non-déterministe. En effet,

il s’avère que, pour obtenir une axiomatisation complète de l’équivalence d’observation, l’éxtension

probabiliste des trois lois concernant τ de Milner [Mil89a] ne serait pas suffisante, et que nous

13

avons besoin d’une nouvelle règle. Enfin, pour les expressions sans récursion nous fournissons des

axiomatisations complètes des quatre équivalences, avec des preuves de complétude bien simples.

Au chapitre 4 nous étudions la théorie algébrique d’un π-calcul de processus typés finis. Le

système de types utilise des types de capacités. Premièrement nous considérons un sous-langage

sans parallélisme. Ce petit langage montre déjà les obstacles principaux pour les axiomatisations.

En suivant [HR04] nous donnons la sémantique opérationnelle du langage par un système de transi-

tions étiquetées typées, sur lequel nous définissons la bisimulation typée (retardée). Deuxièmement

nous construisons un système complet de preuve pour les termes fermés. Ensuite nous présentons

une axiomatisation complète pour les termes ouverts. Le schéma de la preuve de complétude est

semblable à celui du π-calcul non typé [PS95]. Les détails, cependant, sont tout à fait différents, en

raison de la relation de sous-typage du système de types. Troisièmement nous rappelons la bisimi-

larité typée proposée dans [HR04], et fournissons un système de preuve pour les termes fermés, avec

une axiomatisation indirecte pour tous les termes. Quatrièmement nous prouvons que la différence

entre la bisimilarité retardée et la bisimilarité anticipée peut être capturée par un axiome. Finale-

ment nous admettons la composition parallèle. Son effet sur les axiomatisations est d’ajouter une

loi d’expansion pour éliminer toutes les occurrences de l’opérateur.

Au chapitre 5 nous considérons plusieurs systèmes de types tels que les processus bien typés

dans chaque système terminent. D’abord, nous présentons un système simple de types, qui ajoute de

l’information de niveau aux types du π-calcul simplement typé. Puis nous donnons trois améliorations

de ce système, en vue notamment de traiter les lectures imbriquées et les lectures récursives. Pour

tous les systèmes de types (sauf le deuxième, qui peut capturer toutes les fonctions récursives

et primitives) nous présentons également des bornes supérieures du nombre de pas de normalisa-

tion. Ces bornes dépendent des structures des processus et des types des noms dans les processus.

Nous montrons l’utilité des systèmes de types sur trois exemples non triviaux : les codages des

fonctions récursives et primitives, la méthode pour coder le choix séparé par la composition par-

allèle [Nes00, SW01], une table de symboles implémentée par une châıne dynamique de cellules

[Jon93, San99].

Au chapitre 6 nous récapitulons les résultats de cette thèse et discutons quelques directions pour

les travaux futurs.

Provenance du matériel

Cette thèse est partiellement basée sur des écrits publiés. La présentation d’un calcul de processus

probabiliste et les axiomatisations de plusieurs équivalences comportementales probabilistes sont

déjà parues dans [DP05] ; l’étude du π-calcul typé et les axiomatisations des bisimilarités typées

ont été rapportées dans [DS04b, DS05]; le développement des systèmes de types pour assurer la

propriété de terminaison de π-processus a été présenté dans [DS04a].

14

Chapter 1

Introduction

1.1 Background

Computer science aims to explain in a rigorous way how computational systems behave. Nowadays

the notion of computational systems includes not only sequential systems, such as single programs in

free-standing computers, but also concurrent systems, such as computer networks, and even proteins

in biology and particles in physics. Some classical mathematical models (e.g. the λ-calculus [Bar84]),

in spite of their success for describing sequential systems, turn out to be insufficient for reasoning

about concurrent systems.

In the 1980’s process calculi (sometimes called process algebras), notably CCS [Mil89a], CSP

[Hoa85] and ACP [BK84, BW90], were proposed for describing and analyzing concurrent systems.

All of them were designed around the central idea of interaction or communication between pro-

cesses. In these formalisms, complex systems are built from simple subcomponents structurally,

by a small set of primitive operators such as prefix, nondeterministic choice, restriction, parallel

composition and recursion. The limitation of these traditional process algebras is that they are not

able to effectively specify mobile systems, i.e., systems with a dynamically changing communication

topology. On the basis of CCS, Milner, Parrow and Walker developed the π-calculus [MPW92],

which achieves mobility by a powerful name-passing mechanism. The π-calculus is a very expres-

sive formalism. It allows to encode data structures [Mil91], the λ-calculus [Mil92] and higher-order

communications [San93]. Furthermore, it can be used for reasoning about object-oriented languages

[Wal95].

As no single theory will serve all purposes, a great many variants and extensions of the classical

process calculi have appeared in the literature. In the case of process calculi for distributed systems,

there are three strands of work that have been developed and shown to be extremely important.

• The first strand is concerned with tuning the syntactic constructions of terms in order to better

capture some specific features of concurrent systems such as asynchronous communications,

higher-order communications, localities and migrations. In this respect one can make a long

list: the asynchronous π-calculus [HT91, Bou92], the πI-calculus [San96a], the Lπ-calculus

[Mer00], the Fusion calculus [PV98], the χ-calculus [Fu99], the Join calculus [Fou98], CHOCS

15

16 CHAPTER 1. INTRODUCTION

[Tho95], HOπ [San93], Dπ [HR02b], Klaim [DFP98], the Ambient calculus [CG00] and its

variants, just to name a few.

• The second strand consists in equipping untyped process calculi with types so that processes

interact in a safer and more efficient way. For example, a number of type systems are de-

signed for the π-calculus; they are used in various applications such as static detection of

errors in concurrent programs [Mil91], compiler optimizations [KPT99], resource access con-

trol [PS96, HR02b], guaranteeing other security properties such as deadlock-freedom [Kob98],

noninterference [HY05] and termination [YBH04, DS04a].

• The third strand deals with probabilistic process calculi that support reasoning about prob-

abilistic behaviour, as exhibited for instance in randomized, distributed and fault-tolerant

systems. The typical approach is based on extending with probabilities existing models and

techniques that have already proved successful in the nonprobabilistic settings. The usual

feature of probabilistic process calculi is the existence of a probabilistic choice operator, see

for example probabilistic extensions of CCS [GJS90, HJ90, Tof94, YL92], probabilistic CSP

[Low91], probabilistic ACP [And99] and probabilistic asynchronous π-calculus [HP04].

Briefly speaking, this thesis includes our contributions in the second and third strands.

In order to study a programming language or a process calculus, one needs to assign a consistent

meaning to each program or process under consideration. This meaning is the semantics of the

language or calculus. Semantics is useful to verify or prove that programs behave as intended. Gen-

erally speaking, there are three major approaches for giving semantics to a programming language.

The denotational approach seeks a valuation function which maps a program to its mathematical

meaning. This approach has been very successful in modelling many sequential languages; programs

are interpreted as functions from the domain of input values to the domain of output values. How-

ever, so far denotational interpretation of concurrent programs has not been as satisfactory as the

denotational treatment of sequential programs.

The operational approach is shown to be quite useful for giving semantics of concurrent systems.

The behaviour of a process is specified by its structural operational semantics [Plo81], described via a

set of labelled transition rules inductively defined on the structure of a term. In this way each process

corresponds to a labelled transition graph. The shortcoming of operational semantics is that it is

too concrete, as a transition graph may contain many states which should be intuitively identified.

Thus a lot of equivalences have been proposed and different transition graphs are compared modulo

some equivalence relations.

The axiomatic approach aims at understanding a language through a few axioms and inference

rules. Its importance is motivated by, among others, the following two reasons.

• Sound systems, even if they are not complete, may be useful for human or machine manipu-

lation of terms. By exploiting these systems, a number of practical verification problems can

be addressed.

• Complete systems help gaining insight into the nature of the operators and the equivalences

involved. For example, the difference between two equivalences can be characterised by a

1.2. OBJECTIVES 17

few axioms, particularly if adding these axioms to a complete system for one equivalence

gives a complete system for the other equivalence. Another way of comparison is to fix a

notion of equivalence and vary the expressions. Sometimes one lifts a complete system from a

sublanguage to the whole language, by adding some extra axioms. Comparisons of both kinds

are carried out in Chapter 3 and Chapter 4.

To explore the connection between operational and axiomatic semantics has always been an

important and active subject in process calculi. Milner [Mil78] was the first person to advocate

the development of an algebra of behaviours which are subject to a number of axioms expressed

as equations. In [Mil80] a direct link is made for the first time between an algebraic theory and

a behavioural equivalence based on an operational semantics. Since then there has been a large

amount of work on algebraic theories of processes, for various behavioural equivalences in a wide

range of process calculi. However, no much attention was paid to probabilistic and typed process

calculi, though they turn out to be very useful in the analysis of modern distributed systems.

1.2 Objectives

This thesis focuses on the theoretical foundations of reasoning about algorithms and protocols for

modern distributed systems. We believe that this kind of reasoning is important because, as happens

too often, if a system is built without rigorous analysis of all the possible interactions between its

components, then its behaviour is frequently incorrect. One witness is the recent discovery of security

flaws in the IEEE 802.11 and the Bluetooth wireless communication protocols [BGW01, LL03].

For distributed systems it is interesting to consider models which encompass probabilities. One

reason is that these systems are expected to provide reliable services despite the occurrence of

various types of failure. Probabilistic processes can be used to describe fault-tolerant systems. For

example, probabilistic information can be used for specifying the rate at which faulty communication

channels drop messages and for verifying message-delivery properties of the corresponding system.

In addition, probabilistic modelling can be used to break symmetry in distributed coordination

problems (e.g. dining philosophers’ problem, leader election problem, and consensus problem), to

predict system behaviour based on the calculation of performance characteristics, and to represent

and quantify other forms of uncertainty.

A model for distributed systems should also include the feature of mobility. Physical systems

tend to have a fixed structure. But most systems in the information world are not physical; their

links may be symbolic or virtual. For example, when one clicks on a hypertext in a web page, he

induces a symbolic link between his machine and the remote web server. These symbolic links can

be created or destroyed on the fly. An example of a virtual link is a radio connection, like the linkage

between mobile phones that are roaming around and a network of base stations. Systems like these,

with transient links, have a mobile structure.

With mobility, types turn out to be essential. For example, the theory of the untyped π-calculus

is often insufficient to prove “expected” behavioural properties of processes. The reason is that when

one uses the π-calculus to describe a system, one normally follows a discipline that controls how

names may be used; but this discipline is not explicit in π-terms, and therefore it cannot play a role

18 CHAPTER 1. INTRODUCTION

in proofs. Types can be used to make such discipline explicit (cf. Part IV of [SW01]). Furthermore,

types are useful for expressing control of interference, access rights, robust declassification, secure

composition of components, as well as bounds on resource consumptions (e.g. time or memory

allocations).

In fact, there is a strong practical motivation for considering both probability and mobility.

How can a mobile phone system perform to satisfaction if the designer never considers the probable

behaviour of users? A number of probabilistic models have been introduced which are variants of

Markov chains, but for mobility they are at an early stage.

In the literature, probability and typed mobility are usually studied separately. Corresponding

operational techniques have been developed. But very little has been done on algebraic techniques.

However, algebraic techniques are very useful in computer science. For example, in the relational

model for database [Cod70], algebraic laws have served as a basis for query optimisation and queries

could be efficiently implemented through indexing and join techniques [RG02]. In process calculi,

algebraic equations may be considered as rewriting rules for automated term manipulation [vdP01].

In this thesis we investigate algebraic techniques by considering the impact of probability and

type mobility on the algebraic theories of process calculi. As each feature introduces new and non-

trivial problems, to develop algebraic techniques for models that have both probability and typed

mobility would be very complex. Therefore it is better to study them first in isolation. Due to this

reason, in Chapter 3 we consider axiomatisations for a probabilistic calculus without mobility, and

in Chapter 4 we provide axiomatisations for a typed mobile process calculus without probability.

The types that we shall use are capability types [PS96], which distinguish between input capability,

output capability, both input and output capability. This kind of types are one of the most useful and

basic form of types in process calculi. They have been used to ensure type-consistent data exchange

on communication channels, and to control access rights to channels and locations. Variants of

capability types are now present in almost all experimental process calculi such as Klaim [DFP98],

Spi [Aba99], and the Ambients Calculus [LS00]. Sometimes, they even become part of the syntax,

e.g. in the Join calculus and the Lπ-calculus only output capabilities can be transmitted.

In mobile process calculi, types themselves can be used as a verification technique to analyse var-

ious properties of concurrent programs, such as deadlock [Kob98], livelock [Kob00], and information

flow [HVY00, HR02a]. In Chapter 5 we develop one such technique for the problem of termination,

which is an important property that many algorithms and protocols in distributed systems need to

guarantee. In the case of symmetric distributed systems, probabilistic algorithms are usually more

efficient than their deterministic counterparts, at the (insignificant) price that certain properties

will happen with probability one but not necessarily with certainty (e.g., when tossing a fair coin,

a “head” will eventually occur with probability one, but not with certainty). For all practical pur-

poses, however, this difference is meaningless. Therefore, it is interesting to talk about probabilistic

termination as well. However, since termination is itself a non-trivial problem, we consider types in

isolation, without probability.

To summarise, in this thesis we develop algebraic and type-based techniques for reasoning about

processes that feature probability and typed mobility. We consider the two features separately,

both in the case of axiomatisations and in the case of termination, but we believe that our work

1.3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES 19

contributes building the basis for studying more advanced models which may combine probability

with typed mobility.

Before proceeding to discuss in the following sections the motivations for each research topic

of the thesis, we need to introduce some terminology. We use the general concept axiomatisations

to mean both axiom systems and proof systems. For an equivalence on a set of terms, an axiom

system consists of some equational axioms and the rules of equational reasoning (that is, rules on

reflexivity, symmetry, transitivity, and congruence rules that make it possible to replace any subterm

of a process by an equivalent term). A proof system has, in addition to axioms and rules of equational

reasoning, other inference rules. Usually an axiom system is preferable to a proof system, because

for example general techniques from term rewriting may then be applicable. However, when the

process calculus in question includes non-trivial features such as recursion or types, sometimes it

is hard to get a complete axiom system because we have to use other inference rules, i.e., what we

obtain is actually a proof system. In that case we still call that system an axiomatisation, as in

literature [Mil89b, Par01]. For an axiomatisation, completeness means that if two processes exhibit

similar behaviour, i.e., their transition graphs are equivalent, then they are provably equal in the

axiom system or the proof system; soundness means the converse.

1.3 Axiomatisations for Probabilistic Processes

The last decade has witnessed increasing interest in the area of formal methods for the specification

and analysis of probabilistic systems [Seg95, BH97, AB01, PLS00, Sto02, CS02]. In [vGSS95] van

Glabbeek et al. classified probabilistic models into reactive, generative and stratified. In reactive

models, each labelled transition is associated with a probability, and for each state the sum of the

probabilities with the same label is 1. Generative models differ from reactive ones in that for each

state the sum of the probabilities of all the outgoing transitions is 1. Stratified models have more

structure and for each state either there is exactly one outgoing labelled transition or there are only

unlabelled transitions and the sum of their probabilities is 1.

In [Seg95] Segala pointed out that neither reactive nor generative nor stratified models capture

real nondeterminism, an essential notion for modeling scheduling freedom, implementation freedom,

the external environment and incomplete information. He then introduced a model, the probabilistic

automata (PA), where both probability and nondeterminism are taken into account. Probabilistic

choice is expressed by the notion of transition, which, in PA, leads to a probabilistic distribution

over pairs (action, state) and deadlock. Nondeterministic choice, on the other hand, is expressed

by the possibility of choosing different transitions. Segala proposed also a simplified version of PA

called simple probabilistic automata (SPA), which are like ordinary automata except that a labelled

transition leads to a probabilistic distribution over a set of states instead of a single state.

Figure 1.1 exemplifies the probabilistic models discussed above. In models where both probability

and nondeterminism are present, like those of diagrams (4) and (5), a transition is usually represented

as a bundle of arrows linked by a small arc. [SdV04] provides a detailed comparison between the

various models, and argues that PA subsume all other models above except for the stratified ones.

We shall investigate in Chapter 3 axiom systems for a process calculus based on PA, in the sense

20 CHAPTER 1. INTRODUCTION

a ba b

1/2 1/2 1/3 2/3

a
a

b b

1/2 1/8 1/81/4

1/2 1/2

2/31/3

a b

a

a
a a a b

b

1/2 1/2 1/3 2/3
1/21/2 1/2 1/2 1/3 2/3 1/2 1/2

a b
a c
b c

(1) reactive (2) generative (3) stratified

(4) SPA (5) PA

Figure 1.1: Probabilistic models

that the operational semantics of each expression of the language is a probabilistic automaton1.

Axiom systems are important both at the theoretical level, as they help gaining insight into the

calculus and establishing its foundations, and at the practical level, as tools for systems specification

and verification. Our calculus is basically a probabilistic version of the calculus used by Milner to

express finite-state behaviours [Mil84, Mil89b].

We shall consider two strong equivalences, one weak equivalence common in the literature, plus

one novel notion of weak equivalence having the advantage of being sensitive to divergency. For

recursion-free expressions we provide complete axiomatisations of all the four equivalences. For the

strong equivalences we also give complete axiomatisations for all expressions, while for the weak

equivalences we achieve this result only for guarded expressions.

The reason why we are interested in studying a model which expresses both nondeterministic

and probabilistic behaviour, and an equivalence sensitive to divergency, is that one of the long-term

goals of this line of research is to develop a theory which will allow us to reason about probabilis-

tic algorithms used in distributed computing. In that domain it is important to ensure that an

algorithm will work under any scheduler, and under other unknown or uncontrollable factors. The

nondeterministic component of the calculus allows coping with these conditions in a uniform and

elegant way. Furthermore, in many distributed computing applications it is important to ensure

livelock-freedom (progress), and therefore we will need a semantics which does not simply ignore

divergencies.

We end this section with a discussion about some related work in this research direction. In

[Mil84] and [Mil89b] Milner gave complete axiomatisations for strong bisimulation and observational

equivalence, respectively, for a core CCS [Mil89a]. These two papers serve as our starting point:

in several completeness proofs that involve recursion we adopt Milner’s equational characterisation

theorem and unique solution theorem. In Section 3.4.1 and Section 3.5.2 we extend [Mil84] and

[Mil89b] (for guarded expressions) respectively, to the setting of probabilistic process algebra.

1Except for the case of deadlock, which is treated slightly differently: following the tradition of process calculi, in

our case deadlock is a state, while in PA it is one of the possible components of a transition.

1.4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES 21

In [SS00] Stark and Smolka gave a probabilistic version of the results of [Mil84] by replacing

nondeterministic choice with probabilistic choice. So we extend the results of [SS00] in that we con-

sider also nondeterminism. Note that when nondeterministic choice is added, Stark and Smolka’s

technique of proving soundness of axioms is no longer usable. (See the discussion at the beginning

of Appendix A.2.) The same remark applies also to [AÉI02] which follows the approach of [SS00]

but uses some axioms from iteration algebra to characterise recursion. In contrast, our probabilis-

tic version of “bisimulation up to” techniques [Mil89a] work well when combined with the usual

transition induction.

In [BS01] Bandini and Segala axiomatized both strong and weak behavioural equivalences for

process calculi corresponding to SPA and to an alternated-model version of SPA. As their pro-

cess calculus with non-alternating semantics corresponds to SPA, our results in Section 3.6 can be

regarded as an extension of that work to PA.

For probabilistic process algebra of ACP-style, several complete axiom systems have appeared

in the literature. However, in each of the systems either weak bisimulation is not investigated

[BBS95, And99] or nondeterministic choice is prohibited [BBS95, AB01].

1.4 Axiomatisations for Typed Mobile Processes

The theory of the π-calculus has been studied in depth [Mil99, SW01]. Relevant parts of it are

the algebraic theory and the type systems. Most of the algebraic theory has been developed on

the untyped calculus; the results include axiomatisations that are sound and complete on finite

processes for the main behavioural equivalences: late and early bisimilarity, late and early congruence

[PS95, Lin94, Lin03], open bisimilarity [San96b], testing equivalence [BD95]. But at the same time,

much of the research on types has focused on their behavioural effects. For instance, modifications

of the standard behavioural equivalences have been proposed so as to take types into account

[PS96, SW01].

We shall study in Chapter 4 the impact of types on the algebraic theory of the π-calculus.

Precisely, we study axiomatisations of the typed π-calculus. Although algebraic laws for typed

calculi of mobile processes have been considered in the literature [SW01], we are not aware of any

axiomatisation.

The type system that we consider has capability types (sometimes called I/O types) [PS96,

HR02b]. These types allow us to distinguish, for instance, the capability of using a channel in input

from that of using the channel in output. A capability type shows the capability of a channel and,

recursively, of the channels carried by that channel. For instance, a type a : iobT (for an appropriate

type expression T) says that channel a can be used only in input; moreover, any channel received at

a may only be used in output — to send channels which can be used both in input and in output.

Thus, process a(x).x̄b.b(y).b̄y.0 (sometimes the trailing 0 is omitted) is well-typed under the type

assignment a : iobT, b : bT . We recall that āb.P is the output at a of channel b with continuation P ;

a(x).P is an input at a with x a placeholder for channels received in the input whose continuation

is P .

On calculi for mobility, capability types have emerged as one of the most useful forms of types,

22 CHAPTER 1. INTRODUCTION

ooTibT

bbT

(b)

 b<oT,bT>b<iT,bT>oiT

boT

 obT

biT

oTiT

bT

(a)

iiT ioT

Figure 1.2: An example of subtyping relation, with T = unit

and one whose behavioural effects are most prominent. Capabilities are useful for protecting re-

sources; for instance, in a client-server model, they can be used for preventing clients from using

the access channel to the server in input and stealing messages to the server; similarly they can be

used in distributed programming for expressing security constraints [HR02b]. Capabilities give rise

to subtyping: the output capability is contravariant, whereas the input capability is covariant. As

an example, we show a subtyping relation in Figure 1.2, where an arrow from one type to another

means that the source of the arrow is a subtype of the target. There are three forms of types for

channel names: iT, oS and b〈T, S〉; they correspond to the capability to receive values of type T ,

send values of type S, or to do both. We use bT as an abbreviation of b〈T, T 〉. The depth of nesting

of capabilities is 1 for all types in diagram (a), and 2 for all types in diagram (b). (The formal

definitions of types and subtyping relation will be given in Section 4.1.1.) Subtyping is useful when

the π-calculus is used for object-oriented programming, or for giving semantics to object-oriented

languages.

To see why the addition of capability types has semantic consequences, consider

P
def
= νc bc.a(y).(y | c) Q

def
= νc bc.a(y).(y.c+ c.y).

These processes are not behaviourally equivalent in the untyped π-calculus. For instance, if the

channel received at a is c, then P can terminate after 2 interactions with the external observer. By

contrast, Q always terminates after 4 interactions with the observer. However, if we require that only

the input capability of channels may be communicated at b, then P and Q are indistinguishable in

any (well-typed) context. For instance, since the observer only receives the input capability on c, it

cannot resend c along a: channels sent at a require at least the output capability (cf. the occurrence

of y). Therefore, in the typed setting, processes are compared w.r.t. an observer with certain

capabilities (i.e., types on channels). Denoting with ∆ these capabilities, then typed bisimilarity

between P and Q is written P l∆ Q.

In the untyped π-calculus, labelled transition systems (LTS) are defined on processes; the transi-

tion P
α

−→ P ′ means that P can perform action α and then become P ′. In the typed π-calculus, the

information about the observer capabilities is relevant because the observer can only test processes

on interactions for which the observer has all needed capabilities. Hence typed labelled transition

1.4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES 23

systems (TLTS) are defined on configurations, and a configuration ∆]P is composed of a process

P and the observer capabilities ∆ (we sometimes call ∆ the external environment). A transition

∆]P
α

−→ ∆′]P ′ now means that P can evolve into P ′ after performing an action α allowed by the

environment ∆, which in turn evolves into ∆′.

Capability types have been introduced in [PS96]. A number of variants and extensions have

then been proposed. We follow Hennessy and Riely’s system [HR02b], in which, in contrast with

the system in [PS96]: (i) there are partial meet and join operations on types; (ii) the typing rule for

the matching construct (the construct used for testing equality between channels) is very liberal, in

that it can be applied to channels of arbitrary types (in [PS96] only channels that possess both the

input and the output capability can be compared). While (i) only simplifies certain technical details,

(ii) seems essential. Indeed, the importance of matching for the algebraic theory of the π-calculus

is well-known (it is the main reason for the existence of matching in the untyped calculus).

Typed bisimilarity and the use of configurations for defining typed bisimilarity have been intro-

duced in [BS98]. We follow a variant of them put forward by Hennessy and Rathke [HR04], because

it uses the type system of [HR02b] and includes the matching construct.

Two important results that we have obtained are a proof system and an axiom system for typed

bisimilarity (l). The proof system has a simple correctness proof but only works on the closed

terms. The axiom system is for all finite processes. The bisimilarity l is a variant of the one in

[HR04]. For the typed bisimilarity in [HR04] we provide a proof system for the closed terms, and

an indirect axiomatisation of all terms that exploits the system of l. We have not been able to give

a direct axiomatisation: the main difficulties are discussed in Section 4.4.1. All results are given for

both the late and the early versions of the bisimilarities.

The axiomatisations are obtained by modifying some of the rules of the systems for the untyped

π-calculus, and by adding a few new laws. While the proofs of soundness and completeness follow

the general schema of the proofs of the untyped calculus, they have quite different details. An

example of this is the treatment of fresh channels in input actions and the closure under injective

substitutions, that we comment on below.

In the untyped π-calculus, the following holds:

If P l Q and σ is injective on fn(P,Q), then Pσ l Qσ.

Hence it is sufficient to consider all free channels in P,Q and one fresh channel when comparing the

input actions of P and Q in the bisimulation game. This result is crucial in the algebraic theory of

untyped calculi. For instance, in the proof system for (late) bisimilarity the inference rule for input

is:

If P{b/x} = Q{b/x} for all b ∈ fn(P,Q, c), where c is a fresh channel,

then a(x).P = a(x).Q.

For typed bisimilarity the situation is different. Take the processes

P
def
= a(x : obT).x̄c.c̄ Q

def
= a(x : obT).x̄c

and compare them w.r.t. an observer with capabilities ∆. Consider what happens when the variable

x is replaced by a fresh channel b, whose type in ∆ is S. By the constraint imposed by types, S

24 CHAPTER 1. INTRODUCTION

must be a subtype of the type obT for x (see Figure 1.2 (b)). Now, different choices for S will give

different results. For instance, if S is obT itself, then the observer has no input capability on b, thus

cannot communicate with P and Q at b. That is, from the observer’s point of view the output bc

is not observable and the two processes evolve to equivalent ones. Similarly if S is boT then the

output c is not observable. However, if S is bbT then b̄c.c̄ is not equivalent to b̄c, since all outputs

become observable. This example illustrates the essential difficulties in formulating proof systems

for typed bisimilarities:

1. Subtyping appears in substitutions and changes the original type of a variable into one of its

subtypes.

2. The choice of this subtype is relevant for behavioural equivalence.

3. Different subtypes may be incompatible (have no common subtype) with one another (for

instance, boT and bbT in the example above; they are both subtypes of obT).

A consequence of the last two clauses, for instance, is that there is not a “best subtype”, that is a

single type with the property that equivalence under this type implies equivalence under any other

types.

Another example of the consequences brought by types in the algebraic theory is the congruence

rule for prefixes: we have to distinguish the cases in which the subject of the prefix is a channel

from the case in which the subject is a variable. This is a rather subtle and technical difference,

that is discussed in Section 4.3.

1.5 Termination of Mobile Processes by Typability

A term terminates if all its reduction sequences are of finite length. As far as programming languages

are concerned, termination means that computation in programs will eventually stop. In computer

science termination has been extensively investigated in term rewriting systems [DM79, DH95]

and λ-calculi [Gan80, Bou03] (where strong normalization is a synonym more commonly used).

Termination has also been discussed in process calculi, notably the π-calculus.

Indeed, termination is interesting in concurrency. For instance, if we interrogate a process, we

may want to know that an answer is eventually produced (termination alone does not guarantee

this, but termination would be the main ingredient in a proof). Similarly, when we load an applet

we would like to know that the applet will not run for ever on our machine, possibly absorbing all

the computing resources (a “denial of service” attack). In general, if the lifetime of a process can

be infinite, we may want to know that the process does not remain alive simply because of non-

terminating internal activity, and that, therefore, the process will eventually accept interactions

with the environment.

Languages of terminating processes are proposed in [YBH04] and [San05]. In both cases, the

proofs of termination make use of logical relations, a well-known technique from functional languages.

The languages of terminating processes so obtained are however rather “functional”, in that the

structures allowed are similar to those derived when encoding functions as processes. In particular,

1.6. OUTLINE OF THE THESIS 25

the languages are very restrictive on nested inputs (that is, the possibility of having free inputs

underneath other inputs), and recursive inputs (that is, replications !a(x).P in which the body P

can recursively call the guard a of the replication). Such patterns are entirely forbidden in [YBH04];

nested inputs are allowed in [San05] but in a very restricted form. For example, the process

a(x).!b.x̄.0 | āc.0 (1.1)

is legal neither for [YBH04] nor for [San05]. The restrictions in [YBH04, San05] actually rule out

also useful functional processes, for instance

F
def
= !a(n, b). if n = 1 then b̄〈1〉 else νc(ā〈n− 1, c〉 | c(m).b̄〈m ∗ n〉) (1.2)

which represents the factorial function.

To guarantee the termination property of mobile processes we propose several type systems

(which are quite different from the type systems discussed in Section 1.4) for the π-calculus. We

start from a core type system, which adds level information to the types of the simply typed π-

calculus. The level information helps us to construct a measure which decreases along with each

reduction path of a well-typed process. Therefore the well-foundedness of the measure implies the

desired termination property of processes. As the core type system is not very expressive, we extend

it by relaxing some constraints on nested inputs and recursive inputs, thus we obtain three extended

type systems. The usefulness of these type systems are shown by some non-trivial examples. For

instance, it turns out that all primitive recursive functions can be encoded as terminating processes;

the protocol of encoding separate choice in terms of parallel composition proposed in [Nes00, SW01]

does not introduce divergency; each request to the symbol table (implemented as a dynamic chain

of cells) given in [Jon93, San99] is always answered within finite amount of time.

Roughly, for each type system to prove termination we choose a measure which decreases after

finite steps of reduction. To compare two measures, we exploit lexicographic and multiset orderings,

well-known techniques in term rewriting systems [DM79, DJ90]. For the core type system, the

measure is just a vector recording, for each level, the number of outputs (unguarded by replicated

inputs) at channels with that level in the type. For the extended type systems, the ideas are

similar, but the measures become more sophisticated since we allow them to decrease after some

finite (unknown and variable) number of reductions, up to some commutativities of reductions and

process manipulations.

1.6 Outline of the Thesis

The material presented in Chapter 2 is meant to prepare the technical development in the rest of the

thesis. We introduce some basic notions about process calculi, with CCS and the π-calculus as our

templates. We then focus on channel types; we review sorts, simple channel types and subtyping

progressively.

In Chapter 3 we introduce a probabilistic process calculus which includes both nondeterministic

and probabilistic choice, as well as recursion. We give its semantics in terms of Segala and Lynch’s

probabilistic automata. We introduce two strong equivalences and two weak equivalences. We show

26 CHAPTER 1. INTRODUCTION

some properties of the equivalences, using a probabilistic version of “bisimulation up to” proof tech-

niques. For the strong equivalences we give complete axiomatisations for all expressions, while for

the weak equivalences we achieve this result only for guarded expressions. We conjecture that in

the general case of unguarded recursion the “natural” weak equivalences are undecidable. In the

completeness proofs, our proof schemas are inspired by [Mil84, Mil89b, SS00], but the details are

more involved due to the presence of both probabilistic and nondeterministic dimensions. Indeed,

it turns out that, to give a complete axiomatisation of observational equivalence, the simple proba-

bilistic extension of Milner’s three τ -laws [Mil89a] would not be sufficient, thus we need a new rule.

At last, for recursion-free expressions we provide axiomatisations of all the four equivalences, whose

completeness proofs are very simple.

In Chapter 4 we study the algebraic theory of a finite π-calculus with capability types. Firstly we

consider a sublanguage without parallelism. This small language already shows the major obstacles

for axiomatisations. Following [HR04] we give the operational semantics of the language in terms

of a typed labelled transition system, from which we define typed (late) bisimulation. Secondly we

set up a complete proof system for closed terms. Then we present a complete axiom system for

open terms. The schema of the completeness proof is similar to that for the untyped π-calculus

[PS95]. The details, however, are quite different, due to the rich subtyping relation of the type

system. Thirdly we recall the typed bisimilarity proposed in [HR04], and provide a proof system

for closed terms, together with an indirect axiomatisation for all terms. Fourthly we show that

the difference between late and early bisimilarity can be captured by one axiom. Lastly we admit

parallel composition. Its effect on the axiomatisations is to add an expansion law to eliminate all

occurrences of the operator.

In Chapter 5 we consider several type systems such that well-typed processes under each system

are ensured to terminate. First, we present a core type system, which adds level information to the

types of the simply typed π-calculus. Then we give three refinements of the core system. Nested

inputs and recursive inputs are the main patterns we focus on. For all the type systems (except for

the second one, which can capture primitive recursive functions) we also present upper bounds to

the number of steps well-typed processes take to terminate. Such bounds depend on the structure

of the processes and on the types of the names in the processes. We show the usefulness of the type

systems on some non-trivial examples: the encodings of primitive recursive functions, the protocol

for encoding separate choice in terms of parallel composition from [Nes00, SW01], a symbol table

implemented as a dynamic chain of cells from [Jon93, San99].

In Chapter 6 we summarise the achievements of this thesis and discuss some directions for

potential future work.

Provenance of the material

This thesis is partially based on published material. The presentation of a probabilistic process cal-

culus and the axiomatisations of several probabilistic behavioural equivalences appeared in [DP05];

the study of the typed π-calculus and the axiomatisation of typed bisimilarity were presented in

[DS04b, DS05]; the type systems for ensuring the termination property of π-processes were proposed

in [DS04a].

Chapter 2

Preliminaries

This chapter introduces some basic notions about process calculi. They are going to be lifted to richer

settings in the following chapters by accommodating probabilities and more advanced types. The

presentation is based on CCS and the π-calculus, and partly guided by two textbooks [Mil99, SW01].

2.1 A Calculus of Communicating Systems

We presuppose an infinite set of process variables, Var = {X,Y, ...}, and an infinite set of names,

N = {u, v, ...}. We use the set of conames, N = {ū | u ∈ N}. Given a special name τ , we let

` range over the set of labels, L = N ∪ N ∪ {τ}. A label represents an indivisible action that a

communicating system performs, such as reading a datum, or sending a datum. The class of process

expressions Eccs is given by the following grammar:

E,F ::= 0 | `.E | E + F | E | F | νuE | X | µXE

The expression 0 represents inaction. The prefix `.E describes the behaviour of first performing

an action labelled ` then behaving like E. The sum or nondeterministic choice E+F behaves either

like E or F nondeterministically. The parallel composition E | F allows each of its components to

behave independently, but also to synchronize with each other by a handshake on a complementary

name. The restriction νuE restricts the scope of u to E. The recursion µXE provides infinite

behaviour by unfolding itself to be E{µXE/X}. Operator precedence is (1) prefix, restriction,

recursion, (2) parallel composition, and (3) nondeterministic choice.

Note that in CCS [Mil89a] the operators differ a little. The restriction νuE is written E\u.

There is also a renaming operator E[v1/u1, ..., vn/un], which is not present here; its job is largely

done by syntactic substitution of names. We shall write E{ṽ/ũ} for syntactic substitution of names

ṽ for names ũ.

We use fpv (E) for the set of free process variables (i.e., not bound by any µX) in E. As

usual we identify expressions which differ only by a change of bound process variables. We shall

write E{F1, ..., Fn/X1, ..., Xn} or E{F̃ /X̃} for the result of simultaneously substituting Fi for each

occurrence of Xi in E (1 ≤ i ≤ n), renaming bound variables if necessary.

27

28 CHAPTER 2. PRELIMINARIES

act
`.E

`
−→ E

sum1 E
`

−→ E′

E + F
`

−→ E′

par1 E
`

−→ E′

E | F
`

−→ E′ | F
com1 E

u
−→ E′ F

ū
−→ F ′

E | F
τ

−→ E′ | F ′

res E
`

−→ E′

νuE
`

−→ νuE′
for u 6= ` rec

E{µXE/X}
`

−→ E′

µXE
`

−→ E′

Table 2.1: The transition rules for Eccs

For operational semantics, we use a labelled transition system

(Eccs,L, {
`

−→⊆ Eccs × Eccs | ` ∈ L})

with Eccs as the set of states and L as transition labels. The transition relation is defined as the

smallest relation generated by the rules in Table 2.1. The symmetric rules of sum1, par1 and com1

are omitted. As can be seen from the rule com1, for a communication between two processes to

take place, one of them must offer an atomic action u, the other its complementary action ū. The

communication results in a τ -action, meaning that the communication serves as synchronisation and

the result is invisible. On the other hand, in some literature on the analysis of distributed systems,

parallel composition is defined as in CSP [Hoa85], where a communication between two processes

occurs if both of them offer the same action u, and the result is still a u-action.

2.2 The π-calculus

We first give the motivation and introduce the untyped π-calculus. Then we focus on channel types;

we review sorts, simple channel types and subtyping progressively.

2.2.1 From CCS to the π-calculus

A significant limitation of CCS, as argued in [Mil99], is that it is not able to naturally specify

communicating systems with dynamically changing connectivity. For example, let us consider the

system composed of three components P,Q and R as displayed in Figure 2.1(1). Initially P and R

are connected by the link a, while P and Q are connected by b. In the configuration of Figure 2.1(2),

P and Q have evolved into P ′ and Q′ respectively and the link to R has moved from P to Q. Since

CCS gives us no way of creating new links among existing components, we are not able to specify

the system in (1) as a CCS expression that can evolve into (2). However, this kind of evolution

occurs often in many real systems. For instance, we may imagine R as a critical section that are

accessed by P and Q successively. A natural way of dealing with link mobility like this is to give

actions more structures so that links can be passed around in communicating systems. This is the

method adopted by the π-calculus.

2.2. THE π-CALCULUS 29

P Q

R

P’

R

a a

b b

(2)(1)

Q’

Figure 2.1: Link mobility

2.2.2 The Untyped π-calculus

Let the set N of names be defined as in Section 2.1. The set Pπ of processes is defined by the

following syntax:

P,Q ::= 0 | u(x).P | ūv.P | P | Q | P +Q | νuP | !u(x).P

The input prefix u(x).P can receive any name via u and continue as P with the received name

substituted for x. The output prefix ūv.P can send v via u and continue as P . The replicated

input !u(x).P can be thought of as an infinite composition u(x).P | u(x).P | · · ·, and it can encode

recursive definitions [Mil91]. For example, take the simple CCS expression E
def
= µX(u.(X | X)),

which has the infinite behaviour:

E
u

−→ E | E
u

−→ E | E | E
u

−→ ...

The same effect can be derived by using a replicated input:

νv(v̄ |!v.u.(v̄ | v̄))
τ

−→
u

−→ νv(v̄ | v̄ |!v.u.(v̄ | v̄))
τ

−→
u

−→ νv(v̄ | v̄ | v̄ |!v.u.(v̄ | v̄))
τ

−→
u

−→ ...

All other operators (inaction, sum, restriction, and parallel composition) keep their meaning as in

Section 2.1.

The π-calculus has two name-binding operators. In the processes u(v).P and νvP the occurrences

of v in P are considered bound with scope P . An occurrence of a name in a process is free if it

is not bound. We write bn(P) (resp. fn(P)) for the set of names that have a bound (resp. free)

occurrence in P . Changing a bound name into a fresh name is called alpha-conversion, and we

identify processes up to alpha-conversion.

A substitution {v/u} is a function on names that maps u to v and acts as identity on other

names. Hence the postfix operator P{v/u} is defined as the result of replacing all free occurrences

of u in P by v, possibly applying alpha-conversion to avoid name capture by introducing unintended

bound occurrences of names.

Convention: When considering a collection of processes and substitutions, we assume that each

bound name of the processes is chosen to be unique, i.e., different from other names of the processes

and the substitutions.

30 CHAPTER 2. PRELIMINARIES

kind α subj (α) obj (α) fn(α) bn(α)

input uv u v {u, v} ∅

free output ūv u v {u, v} ∅

bound output ū(v) u v {u} {v}

internal action τ - - ∅ ∅

Table 2.2: Terminology and notation for actions

The early style [MPW92] of operational semantics for processes in Pπ is specified via a labelled

transition system

(Pπ,Act , {
α

−→⊆ Pπ × Pπ | α ∈ Act})

where Act stands for the set of actions, of which there are four kinds.

1. The internal action τ . As in CCS, P
τ

−→ Q means that P can evolve into Q without any

interaction with the environment. Internal actions arise from internal communication within

a process.

2. An input action uv. The transition P
uv
−→ Q means that P can receive v along u before

evolving into Q. This departs from CCS because an input action contains the actual received

value. Input actions arise from input prefixes.

3. A free output action ūv. The transition P
ūv
−→ Q implies that P can emit the free name v

along name u. Free output actions arise from output prefixes.

4. A bound output action ū(v). Intuitively, P
ū(v)
−→ Q means that P can emit the private name v

(i.e. v is bound in P) along u before evolving into Q. Bound output actions arise from free

output actions which carry names out of their scope, as in the process νv(ūv.Q) for example.

Table 2.2 displays each kind of action, its subject, its object, its set of free names, and its set of

bound names. We let n(α)
def
= fn(α) ∪ bn(α) denote the set of names occurring in α.

The transition relation
α

−→ is defined by the rules in Table 2.3. The symmetric rules of sum1,

par1, com1 and close1 are omitted. Some of the rules deserve to be explained. We see from the rule

in that u(x).P can receive any name via u, and when a name is received it is substituted for the

placeholder x in P . The rule open expresses extrusion of the scope of the name v, which can be seen

in the rule close1. A process capable of performing a bound output ū(v) can interact with a process

that can receive v via u and in which v is not free. The interaction is represented by a τ -transition,

and in the derivative the two components are within the scope of a restriction νv. We may say that

the scope of v is opened via open while closed again via close1. The scope of the restricted name

is extended to include the process that receives it. The side condition in the rule par1 is necessary

because it prevents free names in Q from being incorrectly identified as bound names in P ′. The

rule rep captures the idea that !u(x).P can spawn infinitely many copies of u(x).P and each copy

can perform an input action as in the rule in.

Sometimes we use the notation
α

=⇒ which is an abbreviation for (
τ

−→)∗
α

−→ (
τ

−→)∗, where (
τ

−→)∗

is the reflexive and transitive closure of
τ

−→.

2.2. THE π-CALCULUS 31

in
u(x).P

uv
−→ P{v/x}

out
ūv.P

ūv
−→ P

sum1 P
α

−→ P ′

P +Q
α

−→ P ′
par1

P
α

−→ P ′ bn(α) ∩ fn(Q) = ∅

P | Q
α

−→ P ′ | Q

com1
P

ūv
−→ P ′ Q

uv
−→ Q′

P | Q
τ

−→ P ′ | Q′
close1

P
ū(v)
−→ P ′ Q

uv
−→ Q′ v 6∈ fn(Q)

P | Q
τ

−→ νv(P ′ | Q′)

res
P

α
−→ P ′ u 6∈ n(α)

νuP
α

−→ νuP ′
open

P
ūv
−→ P ′ v 6= u

νvP
ū(v)
−→ P ′

rep
!u(x).P

uv
−→!u(x).P | P{v/x}

Table 2.3: The transition rules for Pπ

The capacity to change the connectivity of a network of processes is the crucial difference between

the π-calculus and CCS. Let us consider an example based on Figure 2.1. Suppose two processes

P,Q need to use some resource R in a critical section. Initially only process P has access to the

resource, represented by a communication link a. After an interaction with Q along other link b

this access is transferred to Q. This kind of behaviour can be described in the π-calculus as follows:

process P that sends a along b is b̄a.P ′ (suppose a does not appear in P ′); process Q that receives

some link along b and then uses it to send data c is b(x).x̄c.Q′′. The interaction between P and Q

is formulated as:

b̄a.P ′ | b(x).x̄c.Q′′ τ
−→ P ′ | āc.Q′′.

After the interaction, the connection between P and R disappears while a new connection between

Q′ and R is built, where Q′ is the process āc.Q′′.

The π-calculus presented above is monadic in that a message consists of exactly one name.

Sometime we want to send messages consisting of more than one name. So it is useful to allow

polyadic inputs and outputs: u(x1, ..., xn).P and ū〈v1, ..., vn〉.Q. Accordingly we can extend the

transition rules in Table 2.3 to allow for polyadic communication:

u(x̃).P | ū〈ṽ〉.Q
τ

−→ P{ṽ/x̃} | Q

where x̃ and ṽ have the same length. After the extension we obtain the polyadic π-calculus [Mil91].

2.2.3 Sorts and Sorting

To regulate the use of names, Milner introduced the notion sorting [Mil91], which is essential to avoid

disagreement in the arities of tuples carried by a given name in the polyadic π-calculus. Assume a

basic collection Σ of sorts. To every name u is assigned a sort ι, and we write u : ι. A sort list over

Σ is a finite sequence ι̃ = ι1, ..., ιn of sorts. Σ∗ is the set of all sort lists over Σ. We write ũ : ι̃ if

ui : ιi for all i with 1 ≤ i ≤ n. A sorting over Σ is a partial function

f : Σ 7→ Σ∗

32 CHAPTER 2. PRELIMINARIES

P

(2)(1)

Q1 Q2

v1, v2

Q1 Q2

P

v1, v2

Figure 2.2: A printer example

and we say that a process respects f if, for every subterm of the form u(ṽ).P or ū〈ṽ〉.Q,

if u : ι then ṽ : f(ι).

For example, for the process F in (1.2), let us choose Σ = {Sa, Sbc, Nat} with

a : Sa, b : Sbc, c : Sbc, m : Nat, n : Nat.

Then a sorting f respected by F is such that

f :

{
Sa 7→ Nat, Sbc

Sbc 7→ Nat.

2.2.4 A Simple Example

Before proceeding to the formal presentation of type systems for the π-calculus, we informally explain

the usefulness of types, capability types in particular, by a simple example from [PS96]. Imagine

the common situation in which two processes must cooperate in the use of a shared resource such

as a printer. The printer provides a request channel u on which the client processes send their data

for printing. If one client process has the form Q1
def
= ūv1.ūv2.0, then we expect that executing

the program νu(P | Q1 | Q2) should result in the print jobs represented by v1 and v2 eventually

being received and processed, in that order, by the printer process P (see Figure 2.2(1), where an

arrow from one process to another means that some data are transmitted from the source of the

arrow to the target). However, this is not necessarily the case: a misbehaving implementation of

Q2 can disrupt the protocol expected by P and Q1 simply by reading print requests from u and

throwing them away: Q2
def
= !u(v).0 (see Figure 2.2(2)). We can prevent this kind of bad behaviour

by distinguishing three kinds of access to a channel – the capability to write values, the capability

to read values, and the capability to do both – and requiring each process to use its channels with

some prescribed capabilities. Here, for instance, the client processes should only be allowed to write

to u. The printer, on the other hand, should only read from u. When we impose this constraint,

process Q2 will be ruled out because it attempts to read from u.

2.2.5 The Simply Typed π-calculus

To begin with, we introduce some terminology and notation concerning types. An assignment of a

type T to a name u is of the form u : T . A type environment is a finite set of assignments of types

2.2. THE π-CALCULUS 33

T ::= V | L types

V ::= L | bool | Nat value types

L ::=]V channel types

Γ ::= ∅ | Γ, x : T type environments

w ::= x | true, false | 0, 1, 2, · · · values

P, Q ::= 0 | u(x : V).P | ūw.P | P | Q | P + Q | (νa : L)P | !u(x : V).P processes

T-in
Γ ` u :]V Γ, x : V ` P

Γ ` u(x : V).P
T-out

Γ ` u :]V Γ ` w : V Γ ` P

Γ ` ūw.P
T-nil

Γ ` 0

T-par
Γ ` P Γ ` Q

Γ ` P | Q
T-sum

Γ ` P Γ ` Q

Γ ` P + Q
T-res

Γ, a : L ` P

Γ ` (νa : L)P

T-rep
Γ ` u(x : V).P

Γ `!u(x : V).P

Table 2.4: Processes, types and typing rules of the simply typed π-calculus

to names, where the names in the assignments are all different. We use Γ,∆ to range over type

environments. Sometimes we regard a type environment Γ as a partial function from names to types.

Thus we write Γ(u) for the type assigned to u by Γ, and say that the names of the assignments in

Γ are the names on which Γ is defined. We write dom(Γ) for the set of names of the assignments in

Γ. When dom(Γ) ∩ dom(∆) = ∅, we write Γ,∆ for the union of Γ and ∆.

A process type judgment Γ ` P asserts that process P is well typed under the type environment

Γ, and a value type judgment Γ ` w : V that value w has type V under the type assumptions in Γ.

We say P is well typed under Γ if the judgment Γ ` P can be derived by using the typing rules of

a given type system.

A channel is a name that may be used to engage in communications. The values are the objects

that can be exchanged along channels. The channel types are the types that can be ascribed to

channels. The value types are the types that can be ascribed to values. In the π-calculus, channel

types can be used as value types. In other words, we allow channels to be transmitted as values,

and hence allow mobility.

Since our purpose in this section is to introduce the type system of the simply typed π-calculus

rather than to propose a pragmatic notation for programming, we adopt an explicitly typed presen-

tation in which every bound name is annotated with a type. The syntax of types and processes as

well as the typing rules are shown in Table 2.4. The syntactic distinction between value types and

channel types is made by the use of V to range over value types and L over channel types (the letter

C is reserved for other use later). However, in typing and operational rules, unless important for

the sense we will use only the letters S, T , which stand for arbitrary types. We observe that in the

simply typed π-calculus there is only one channel type constructor]V . A type assignment u :]V

means that u can be used as a channel to carry values of type V . Value types include channel types

34 CHAPTER 2. PRELIMINARIES

and basic types, thus both channels and basic values are allowed to be communicated. In the above

table, we only display the typing rules for processes. The typing rules for values are the usual ones.

For example, we may have the following rules:

Γ, x : T ` x : T Γ ` true : bool Γ ` 0 : Nat
...

For simplicity we only consider two basic types: bool, for boolean values, and Nat, for natural

numbers. Values of basic types are said to be of first-order because, unlike channels, they cannot

carry other values. We also assume some basic operations on first-order values. For example, we

may use addition (n+m), subtraction (n−m), multiplication (n∗m) for Nat expressions. To avoid

being too specific, we do not give a rigid syntax and typing rules for first-order expressions. We just

assume a separate mechanism for evaluating expressions of type Nat.

The inert process 0 is well typed under any type environment. The parallel composition and the

sum of two processes are well typed if each is well typed in isolation. A process (νa : L)P is well

typed if P observes the constraints imposed both by the type environment and by the declared type

L of the new name a. Note that here L is a channel type. In an input u(x : V).P the subject u

should have a channel type, which is compatible with the type of x, moreover, the body P is well

typed under the extension of Γ with the type of x. The case for !u(x : V).P is similar. An output

ūw.P is well typed if u has a channel type compatible with that of w, and P itself is well typed.

The transition rules for typed processes are similar to those of the untyped processes (Table 2.3).

We just need to annotate bound names with their types. For example, the rule open would take

this form:

P
(νṽ:Ṽ)ūw
−→ P ′ a ∈ fn(w) \ {ṽ, u}

(νa : L)P
(νṽ:Ṽ ,a:L)ūw

−→ P ′

Given the operational semantics for typed processes, we can prove the subject reduction property,

which represents the fact that type judgments are invariant under computation. In particular, if

Γ ` P and P
τ

−→ P ′ then it holds that Γ ` P ′.

2.2.6 Subtyping

Subtyping is a preorder on types. If S is a subtype of T then all operations available on values of

type T are also available on values of type S; therefore an expression of type S can always replace

an expression of type T . The possibility of having operations that work on all subtypes of a given

type is a major advantage of subtyping in a programming language.

We shall write subtype judgments in the form S <: T , which asserts that S is a subtype of T

(equally T is a supertype of S). A type construct is covariant in its i-th argument if the construct

preserves the direction of subtyping in that argument. Dually, a type construct is contravariant

in its i-th argument if the construct inverts the direction of subtyping in that argument. A type

construct is invariant in its i-th argument if it is both covariant and contravariant in that argument.

We now refine channel types by distinguishing between the capabilities of using a channel in

input or in outputs. For this we introduce the types iV and oV , with the intended meanings: iV

2.2. THE π-CALCULUS 35

S-ref
T <: T

S-tra
T <: T ′ T ′ <: T ′′

T <: T ′′
S-bi

]T <: iT

S-bo
]T <: oT

S-ii
T <: T ′

iT <: iT ′
S-oo

T <: T ′

oT ′ <: oT

S-bb
T <: T ′ T ′ <: T

]T <:]T ′

T-ins
Γ ` u : iV Γ, x : V ` P

Γ ` u(x : V).P
T-outs

Γ ` u : oV Γ ` w : V Γ ` P

Γ ` ūw.P

subsum
Γ ` u : T T <: T ′

Γ ` u : T ′

(rules T-ins and T-outs replace T-in and T-out respectively)

Table 2.5: Additional rules on subtyping

is the type of a channel that can be used only in input and that carries values of type V ; similar

for oV w.r.t. output. By extending the simply typed π-calculus with the two capability types, we

obtain the simply typed π-calculus with subtyping. For this, we redefine channel types as

L ::=]V | iV | oV channel types

and use the additional rules reported in Table 2.5.

We briefly comment on the subtyping rules. The rules S-ref and S-tra show that <: is a preorder.

The axioms S-bi and S-bo show that a name of all capabilities can be used in places where only the

input or only the output capability is required. Rule S-ii says that i is a covariant construct, while

S-oo says that o is a contravariant construct. Finally S-bb shows that] is invariant.

The typing rules T-ins and T-outs are similar to the rules T-in and T-out, except that now the

subject of a prefix is checked to have the appropriate input or output capability. The old rules are

derivable from the new ones.

36 CHAPTER 2. PRELIMINARIES

Chapter 3

Axiomatisations for Probabilistic

Processes

In this chapter we study a process calculus which combines both nondeterministic and probabilistic

behaviour in the style of Segala and Lynch’s probabilistic automata. We consider various strong and

weak behavioural equivalences, and we provide complete axiomatisations for finite-state processes,

restricted to guarded recursion in the case of the weak equivalences. We conjecture that in the

general case of unguarded recursion the “natural” weak equivalences are undecidable.

The contents of this chapter are organized as follows. First we briefly recall some basic concepts

and definitions about probabilistic distributions. In Section 3.2 we introduce a probabilistic process

calculus, with its syntax and operational semantics. In Section 3.3 we define the four behavioural

equivalences we are interested in, and we extend the “bisimulation up to” techniques of [Mil89a] to

the probabilistic setting. These techniques are extensively used for the proofs of soundness of some

axioms, especially in the case of the weak equivalences. In Sections 3.4 and 3.5 we give complete

axiomatisations for the strong equivalences and for the weak equivalences respectively, restricted

to guarded expressions in the second case. Section 3.6 gives complete axiomatisations for the four

equivalences in the case of the finite fragment of the language. The interest of this section is that we

use different and much simpler proof techniques. At last we conclude with some discussions about

the conjecture mentioned above.

3.1 Probabilistic Distributions

Let M be a set. A function η : M 7→ [0, 1] is called a discrete probability distribution, or distribution

for short, on M if the support of η, defined as spt(η) = {x ∈ M | η(x) > 0}, is finite or countably

infinite and
∑

x∈M η(x) = 1. If η is a distribution with finite support and N ⊆ spt(η) we use the set

{(si : η(si))}si∈N to enumerate the probability associated with each element of N . To manipulate

37

38 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

the set we introduce the operator] defined as follows.

{(si : pi)}i∈I] {(s : p)}
def
={

{(si : pi)}i∈I\j ∪ {sj : (pj + p)} if s = sj for some j ∈ I

{(si : pi)}i∈I ∪ {(s : p)} otherwise.

{(si : pi)}i∈I] {(tj : pj)}j∈1..n
def
=

({(si : pi)}i∈I] {(t1 : p1)})] {(tj : pj)}j∈2..n

Given some distributions η1, ..., ηn on S and some real numbers r1, ..., rn ∈ [0, 1] with
∑

i∈1..n ri = 1,

we define the convex combination r1η1 + ... + rnηn of η1, ..., ηn to be the distribution η such that

η(s) =
∑

i∈1..n riηi(s), for each s ∈ S.

Lemma 3.1 If η is a convex combination of η1, ..., ηn and each ηi (i ≤ n) is a convex combination

of some distributions θ1, ..., θm on S, then η is also a convex combination of θ1, ..., θm.

Proof: Suppose that η = r1η1 + ... + rnηn with
∑

i∈1..n ri = 1, and that ηi = pi1θ1 + ...+ pimθm

with
∑

j∈1..m pij = 1, for all i ≤ n. For each s ∈ S, we have that

η(s) =
∑

i∈1..n

riηi(s) =
∑

i∈1..n

ri
∑

j∈1..m

pijθj(s) =
∑

j∈1..m

∑

i∈1..n

ripijθj(s).

So η is the convex combination (
∑

i∈1..n ripi1)θ1 + ...+(
∑

i∈1..n ripim)θm. Indeed it can be checked

that
∑

j∈1..m

∑
i∈1..n ripij = 1. ut

3.2 A Probabilistic Process Calculus

The set Var of process variables and the set L of labels are defined as in Section 2.1. We let ξ range

over the set Var ∪ L. The class of expressions E is defined by the following syntax:

E,F ::=
⊕

i∈1..n

pi`i.Ei |
∑

i∈1..m

Ei | X | µXE

Here
⊕

i∈1..n pi`i.Ei stands for a probabilistic choice operator, where the pi’s represent positive

probabilities, i.e., they satisfy pi ∈ (0, 1] and
∑

i∈1..n pi = 1. When n = 0 we abbreviate the

probabilistic choice as 0; when n = 1 we abbreviate it as `1.E1. Sometimes we are interested in

certain branches of the probabilistic choice; in this case we write
⊕

i∈1..n pi`i.Ei as p1`1.E1 ⊕ · · · ⊕

pn`n.En or (
⊕

i∈1..(n−1) pi`i.Ei)⊕pn`n.En where
⊕

i∈1..(n−1) pi`i.Ei abbreviates (with a slight abuse

of notation) p1`1.E1 ⊕ · · ·⊕ pn−1`n−1.En−1. The second construction
∑

i∈1..mEi stands for indexed

nondeterministic choice, and occasionally we may write it as E1 + ...+ Em.

Definition 3.2 The variable X is weakly guarded (resp. guarded) in E if every free occurrence

of X in E occurs within some subexpression `.F (resp. `.F but ` 6= τ), otherwise X is weakly

unguarded (resp. unguarded) in E.

The operational semantics of an expression E is defined as a probabilistic automaton whose

states are the expressions reachable from E and the transition relation is defined by the axioms and

3.2. A PROBABILISTIC PROCESS CALCULUS 39

var X → ϑ(X) psum
⊕

i∈1..n pi`i.Ei →
⊎

i∈1..n{(`i, Ei : pi)}

rec
E{µXE/X} → η

µXE → η
nsum

Ej → η

Σi∈1..mEi → η
for some j ∈ 1..m

Table 3.1: Strong transitions

inference rules in Table 3.1, where E → η describes a transition that leaves from E and leads to a

distribution η over (Var ∪ L) × E . We shall use ϑ(X) for the special distribution {(X, 0 : 1)}. It is

evident that E → ϑ(X) iff X is weakly unguarded in E.

The behaviour of each expression can be visualized by a transition graph. For instance, the

expression (1
2a ⊕ 1

2b) + (1
3a ⊕ 2

3c) + (1
2b ⊕

1
2c) exhibits the behaviour drawn in diagram (5) of

Figure 1.1.

As in [BS01], we define the notion of combined transition as follows: E →c η if there exists a

collection {ηi, ri}i∈1..n of distributions and probabilities such that
∑

i∈1..n ri = 1, η = r1η1+...+rnηn

and E → ηi, for each i ∈ 1..n.

Lemma 3.3 If η = r1η1 + ...+ rnηn and E →c ηi for each i ≤ n, then E →c η.

Proof: Suppose that for each i ≤ n, ηi is a convex combination of ηi1, ..., ηimi
, with E → ηij for

j ≤ mi. Let ⋃

i∈1..n

{ηi1, ..., ηimi
} = {θ1, ..., θm}

Clearly each ηi (i ≤ n) is also a convex combination of θ1, ..., θm. It follows from Lemma 3.1 that

η is a convex combination of θ1, ..., θm. Note that E → θj for each j ≤ m. Therefore we have the

result that E →c η. ut

We now introduce the notion of weak transitions, which generalizes the notion of finitary weak

transitions in SPA [Sto02] to the setting of PA. First we discuss the intuition behind it. Given an

expression E, if we unfold its transition graph, we get a finitely branching tree. By cutting away

all but one alternative in case of several nondeterministic candidates, we are left with a subtree

with only probabilistic branches. A weak transition of E is a finite subtree of this kind, called weak

transition tree, such that in any path from the root to a leaf there is at most one visible action. For

example, let E be the expression µX(1
2a⊕

1
2τ.X). It is represented by the transition graph displayed

in Diagram (1) of Figure 3.1. After one unfolding, we get Diagram (2) which represents the weak

transition E ⇒ η, where η = {(a, 0 : 3
4), (τ, E : 1

4)}.

Formally, weak transitions are defined by the rules in Table 3.2. Rule wea1 says that a weak

transition tree starts from a bundle of labelled arrows derived from a strong transition. The meaning

of Rule wea2 is as follows. Given two expressions E,F and their weak transition trees tr(E), tr(F),

if F is a leaf of tr(E) and there is no visible action in tr(F), then we can extend tr(E) with tr(F) at

node F . If Fj is a leaf of tr(F) then the probability of reaching Fj from E is pqj , where p and qj are

the probabilities of reaching F from E, and Fj from F , respectively. Rule wea3 is similar to Rule

40 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

E

E

E

a τ

1/2 1/2

a τ

1/2 1/2

E

1/2 1/2

τa

0

0

(2)(1)

0

Figure 3.1: A weak transition

wea1
E → η

E ⇒ η

wea2
E ⇒ {(`i, Ei : pi)}i] {(`, F : p)} F ⇒ {(τ, Fj : qj)}j

E ⇒ {(`i, Ei : pi)}i] {(`, Fj : pqj)}j

wea3
E ⇒ {(`i, Ei : pi)}i] {(τ, F : p)} F ⇒ {(hj , Fj : qj)}j

E ⇒ {(`i, Ei : pi)}i] {(hj , Fj : pqj)}j

wea4
E ⇒ {(τ, Ei : pi)}i ∀i, Ei ⇒ ϑ(X)

E ⇒ ϑ(X)

Table 3.2: Weak transitions

wea2, with the difference that we can have visible actions in tr(F), but not in the path from E to

F . Rule wea4 allows to construct weak transitions to unguarded variables. Note that if E ⇒ ϑ(X)

then X is unguarded in E.

For any expression E, we use δ(E) for the unique distribution {(τ, E : 1)}, called the virtual

distribution of E. We define a weak combined transition: E
ε
⇒c η if there exists a collection

{ηi, ri}i∈1..n of distributions and probabilities such that
∑

i∈1..n ri = 1, η = r1η1 + ... + rnηn and

for each i ∈ 1..n, either E ⇒ ηi or ηi is δ(E). We write E ⇒c η if every component of η is derived

from a weak transition, namely, E ⇒ ηi for all i ≤ n. Note in particular that for any expression E

we can derive a virtual distribution by E
ε
⇒c δ(E), but E 6⇒c δ(E).

Lemma 3.4 1. If E
ε
⇒c η then τ.E ⇒c η;

2. If E
ε
⇒c ϑ(X) then E ⇒ ϑ(X).

Proof: The first clause is easy to show. Let us consider the second one. If ϑ(X) is a convex

combination of η1, .., ηn and E ⇒ ηi for all i ∈ 1..n, then each ηi must assign probability 1 to (X, 0),

thus ηi = ϑ(X). ut

Lemma 3.5 1. If η = r1η1 + ...+ rnηn and E
ε
⇒c ηi for each i ≤ n, then E

ε
⇒c η.

3.3. BEHAVIOURAL EQUIVALENCES 41

2. If η = r1η1 + ...+ rnηn and E ⇒c ηi for each i ≤ n, then E ⇒c η.

Proof: Similar to the proof of Lemma 3.3. ut

3.3 Behavioural Equivalences

In this section we define four behavioural equivalences, namely, strong bisimulation, strong proba-

bilistic bisimulation, divergency-sensitive equivalence and observational equivalence. We also intro-

duce a probabilistic version of “bisimulation up to” techniques to show some interesting properties

of the behavioural equivalences.

To define behavioural equivalences in probabilistic process calculi, it is customary to consider

equivalence of distributions with respect to equivalence relations on processes.

3.3.1 Equivalence of Distributions

If η is a distribution on M1 ×M2, s ∈ M1 and N ⊆ M2, we write η(s,N) for
∑

t∈N η(s, t). We lift

an equivalence relation on E to a relation between distributions over (Var ∪L) × E in the following

way.

Definition 3.6 Given two distributions η1 and η2 over (Var∪L)×E, we say that they are equivalent

w.r.t. an equivalence relation R on E, written η1 ≡R η2, if

∀N ∈ E/R, ∀ξ ∈ Var ∪ L, η1(ξ,N) = η2(ξ,N).

Lemma 3.7 Given three distributions η1, η2, η3 and an equivalence relation R, if η1 ≡R η2 and

η2 ≡R η3 then η1 ≡R η3.

Proof: Straightforward by definition. ut

The above lemma says that ≡R is transitive. It follows immediately that ≡R is an equivalence rela-

tion. Next we report two fundamental lemmas that underpin many other results in the subsequent

sections.

Lemma 3.8 If η1 ≡R1 η2 and R1 ⊆ R2 then η1 ≡R2 η2.

Proof: Let N ∈ E/R2. Since R1 is contained in R2, we know that N is the disjoint union of a

family of sets {Ni}i∈I such that Ni ∈ E/R1 for each i ∈ I. It follows from η1 ≡R1 η2 that

∀i ≤ n, ∀ξ ∈ Var ∪ L, η1(ξ,Ni) = η2(ξ,Ni).

Therefore we have

η1(ξ,N) =
∑

i∈I η1(ξ,Ni) =
∑

i∈I η2(ξ,Ni) = η2(ξ,N).

ut

Lemma 3.9 Let η = r1η1 + ... + rnηn and η′ = r1η
′
1 + ... + rnη

′
n with

∑
i∈1..n ri = 1. If ηi ≡R η′i

for each i ≤ n, then η ≡R η′.

42 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

Proof: For any N ∈ E/R and ξ ∈ Var ∪ L, we have

η(ξ,N) =
∑

i∈1..n

riηi(ξ,N) =
∑

i∈1..n

riη
′
i(ξ,N) = η′(ξ,N).

Therefore η ≡R η′ by definition. ut

3.3.2 Behavioural Equivalences

Strong bisimulation is defined by requiring equivalence of distributions at every step. Because of the

way equivalence of distributions is defined, we need to restrict to bisimulations which are equivalence

relations.

Definition 3.10 An equivalence relation R ⊆ E × E is a strong bisimulation if E R F implies:

• whenever E → η1, there exists η2 such that F → η2 and η1 ≡R η2.

Two expressions E,F are strong bisimilar, written E ∼ F , if there exists a strong bisimulation R

s.t. E R F .

If we allow a strong transition to be matched by a strong combined transition, then we get a

relation slightly coarser than strong bisimulation.

Definition 3.11 An equivalence relation R ⊆ E ×E is a strong probabilistic bisimulation if E R F

implies:

• whenever E → η1, there exists η2 such that F →c η2 and η1 ≡R η2.

We write E ∼c F , if there exists a strong probabilistic bisimulation R s.t. E R F .

To show that ∼c is an equivalence relation, we need the following lemma, which can be used to

prove the transitivity of ∼c.

Lemma 3.12 If E ∼c F then whenever E →c η, there exists η′ such that F →c η
′ and η ≡∼c

η′.

Proof: Suppose that η = r1η1 + ... + rnηn and E → ηi for i ≤ n. Since E ∼c F , there exists η′i

for each i ≤ n such that F →c η
′
i and ηi ≡∼c

η′i. Now let η′ = r1η
′
1 + ...+ rnη

′
n. By Lemma 3.3 we

know that F →c η
′. By Lemma 3.9 it holds that η ≡∼c

η′. ut

We now consider the case of the weak bisimulation. The definition of weak bisimulation for PA

is not at all straightforward. In fact, the “natural” weak version of Definition 3.10 would be the

following one.

Definition (Tentative). An equivalence relation R ⊆ E × E is a weak bisimulation if E R F

implies:

• whenever E → η1, then either η1 ≡R δ(F) or there exists some η2 such that F ⇒ η2 and

η1 ≡R η2.

E and F are weak bisimilar, written E � F , whenever there exists a weak bisimulation R s.t.

E R F .

3.3. BEHAVIOURAL EQUIVALENCES 43

E G

a

τ

1/2 1/2 1/2
1/2

ττ

a a a

0 0

0

τ τ

1/2 1/2

0 0 0

a a

F

0

a

τ

Figure 3.2: Transition graphs of E,F and G

Unfortunately the above definition is incorrect because it defines a relation which is not transitive.

That is, there exist E, F and G with E � F and F � G but E 6� G. For example, consider the

following expressions (their transition graphs are displayed in Figure 3.2) and relations:

E
def
= (1

2τ.a⊕
1
2τ.a) + (1

2 τ.a⊕
1
2a)

F
def
= 1

2τ.a⊕
1
2τ.a

G
def
= τ.a

R1
def
= {(E,F), (F,E), (E,E), (F, F), (a, a), (0, 0)}

R2
def
= {(F,G), (G,F), (F, F), (G,G), (a, a), (0, 0)}

It can be checked that R1 and R2 are weak bisimulations according to the tentative definition.

However we haveE 6� G. To see this, consider the transitionE → η, where η = {(τ, a : 1
2), (a, 0 : 1

2)}.

From G there are only two possible weak transitions G ⇒ η1 and G ⇒ η2 with η1 = {(τ, a : 1)}

and η2 = {(a, 0 : 1)}. Now, among the three distributions δ(G), η1 and η2, none is equivalent to η.

Therefore, E and G are not bisimilar. Nevertheless, if we consider the weak combined transition:

G⇒c η
′ where η′ = 1

2η1 + 1
2η2, we observe that η ≡ η′.

The above example suggests that for a “good” definition of weak bisimulation it is necessary

to use combined transitions. So we cannot give a weak variant of Definition 3.10, but only of

Definition 3.11, called weak probabilistic bisimulation.

Definition 3.13 An equivalence relation R ⊆ E × E is a weak probabilistic bisimulation if E R F

implies:

• whenever E → η1, there exists η2 such that F
ε
⇒c η2 and η1 ≡R η2.

We write E ≈ F whenever there exists a weak probabilistic bisimulation R s.t. E R F .

The following lemma is indispensable to show the transitivity of ≈.

Lemma 3.14 Let R be a weak probabilistic bisimulation. If E R F then whenever E
ε
⇒c η, there

exists η′ such that F
ε
⇒c η

′ and η ≡R η′.

Proof: See Appendix A.1. ut

44 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

Lemma 3.15 Let R =
⋃

i{Ri | Ri is a weak probabilistic bisimulation}. Then the equivalence

closure of R, written R∗, is a probabilistic weak bisimulation.

Proof: If E R∗ F then there exist some weak probabilistic bisimulations η1, ..., ηn and some

expressions E0, .., En such that E ≡ E0, En ≡ F , and for all i with 0 ≤ i < n, we have Ei Ri Ei+1.

If E → η0 then there exists η1 such that E1
ε
⇒c η1 and η0 ≡R0 η1. For all i with 1 ≤ i < n, by

Lemma 3.14 there exists ηi+1 such that Ei+1
ε
⇒c ηi+1 and ηi ≡Ri

ηi+1. By Lemma 3.8 and the

transitivity of ≡R∗ it holds that η0 ≡R∗ ηn. ut

Because of the above lemma we can equivalently express ≈ as R∗, which is the biggest weak

probabilistic bisimulation.

As usual, observational equivalence is defined in terms of weak probabilistic bisimulation.

Definition 3.16 Two expressions E,F are observationally equivalent, written E ' F , if

1. whenever E → η1, there exists η2 such that F ⇒c η2 and η1 ≡≈ η2;

2. whenever F → η2, there exists η1 such that E ⇒c η1 and η1 ≡≈ η2.

The following lemma plays the same role as Lemma 3.14, and the proof of the former is similar

to that of the latter. Then it is evident that ' is an equivalence relation.

Lemma 3.17 Suppose E ' F . If E ⇒c η then there exists η′ s.t. F ⇒c η
′ and η ≡≈ η′.

Often observational equivalence is criticised for being insensitive to divergency. We therefore

introduce a variant which does not have this shortcoming.

Definition 3.18 An equivalence relation R ⊆ E ×E is a divergency-sensitive equivalence if E R F

implies:

• whenever E → η1, there exists η2 such that F ⇒c η2 and η1 ≡R η2.

We write E h F whenever there exists a divergency-sensitive equivalence R s.t. E R F .

Here the difference from Definition 3.13 is that we use the transition F ⇒c η2 in place of F
ε
⇒c η2

to match a strong transition. In other words, F cannot stay idle; it must make some real move.

It is easy to see that h lies between ∼c and '. For example, we have that µX(τ.X + a) and

τ.a are related by ' but not by h (this shows also that h is sensitive to divergency), while τ.a

and τ.a + a are related by h but not by ∼c. Further, τ.a and a are not related by h because the

transition τ.a → {τ, a : 1} cannot be matched up by a ⇒c {a, 0 : 1}. So h does not simply detect

divergency, it counts internal moves in a certain sense.

One can check that all the relations defined above (except for �) are indeed equivalence relations

and we have the inclusion ordering: ∼ (∼c (h (' (≈.

3.3.3 Probabilistic “Bisimulation up to” Techniques

In the classical process algebra, the conventional approach to show E ∼ F , for some expressions

E,F , is to construct a binary relation R which includes the pair (E,F), and then to check that R

3.3. BEHAVIOURAL EQUIVALENCES 45

is a bisimulation. This approach can still be used in probabilistic process algebra, but things are

more complicated because of the extra requirement that R must be an equivalence relation. For

example we cannot use some standard set-theoretic operators to construct R, because, even if R1

and R2 are equivalences, R1R2 and R1 ∪R2 may not be equivalences.

To avoid the restrictive condition and at the same time to reduce the size of the relation R,

we introduce the probabilistic version of “bisimulation up to” techniques, whose usefulness will be

exhibited in the next section.

In the following definitions, for a binary relation R we denote the relation (R ∪ ∼)∗ by R∼.

Similar for other notations such as R≈ and R'.

Definition 3.19 A binary relation R is a strong bisimulation up to ∼ if E R F implies:

1. whenever E → η1, there exists η2 such that F → η2 and η1 ≡R∼
η2;

2. whenever F → η2, there exists η1 such that E → η1 and η1 ≡R∼
η2.

A strong bisimulation up to ∼ is not necessarily an equivalence relation. It is just an ordinary

binary relation included in ∼, as shown by the next proposition.

Proposition 3.20 If R is a strong bisimulation up to ∼, then R∼ is a strong bisimulation and

R ⊆∼.

Proof: If E R∼ F then there exist some expressions E0, ..., En such that E ≡ E0, En ≡ F , and

for all i with 1 ≤ i < n we have either Ei ∼ Ei+1 or Ei R Ei+1. Suppose that Ei → ηi. If

Ei R Ei+1 then there exists ηi+1 such that Ei+1 → ηi+1 and ηi ≡R∼
ηi+1. If Ei ∼ Ei+1 then

there exists ηi+1 such that Ei+1 → ηi+1 and ηi ≡∼ ηi+1. Since ∼⊆ R∼, we know from Lemma 3.8

that ηi ≡R∼
ηi+1. So in both cases we have matching transitions and ηi ≡R∼

ηi+1, which implies

η0 ≡R∼
ηn by Lemma 3.7. Therefore R∼ is a strong bisimulation, i.e., R∼ ⊆∼. Since R ⊆ R∼, it

follows that R ⊆∼. ut

One can also define a strong probabilistic bisimulation up to ∼c relation and show that it is

included in ∼c.

Lemma 3.21 Let R be a strong probabilistic bisimulation up ∼c. If E R F then whenever E →c η,

there exists η′ such that F →c η
′ and η ≡R∼c

η′.

Proof: Similar to the proof of Lemma 3.12. ut

Proposition 3.22 If R is a strong probabilistic bisimulation up to ∼c, then R ⊆∼c.

Proof: Similar to the proof of Proposition 3.20. The only difference is that when matching

transitions, we use Lemma 3.21 instead of directly applying the definitions. ut

For weak probabilistic bisimulation, the “up to” relations can be defined as well, but we need to

be careful.

Definition 3.23 A binary relation R is a weak probabilistic bisimulation up to ≈ if E R F implies:

46 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

1. whenever E ⇒ η1, there exists η2 such that F
ε
⇒c η2 and η1 ≡R≈

η2;

2. whenever F ⇒ η2, there exists η1 such that E
ε
⇒c η1 and η1 ≡R≈

η2.

In the above definition, we are not able to replace the first double arrow in each clause by a simple

arrow. Otherwise, the resulting relation is not included in ≈. A counterexample is R = {(τ.a.0, 0)},

as in the nonprobabilistic setting [SM92].

Proposition 3.24 If R is a weak probabilistic bisimulation up to ≈, then R ⊆≈.

Proof: Similar to the proof of Proposition 3.22. ut

Definition 3.25 A binary relation R is an observational equivalence up to ' if E R F implies:

1. whenever E ⇒ η1, there exists η2 such that F ⇒c η2 and η1 ≡R≈
η2;

2. whenever F ⇒ η2, there exists η1 such that E ⇒c η1 and η1 ≡R≈
η2.

As expected, observational equivalence up to ' is useful because of the following property.

Proposition 3.26 If R is an observational equivalence up to ', then R ⊆'.

Proof: Note that if R is an observational equivalence up to ', then it is also a weak probabilistic

bisimulation up to ≈. So R≈ ⊆≈ and it becomes evident that R ⊆' by the definition of observa-

tional equivalence. ut

3.3.4 Some Properties of Strong Bisimilarity

In this section we show some properties of strong bisimilarity, by exploiting the probabilistic “bisim-

ulation up to” techniques introduced in Section 3.3.3 and Milner’s transition induction technique

[Mil89a].

Proposition 3.27 ∼ and ∼c are congruence relations.

Proof: This is a special version of the proof of Proposition 3.35, to which we shall give detailed

arguments. ut

Proposition 3.28 µXE ∼ E{µXE/X}.

Proof: Observe that µXE → η iff E{µXE/X} → η. ut

Lemma 3.29 If fpv (E) ⊆ {X̃, Z} and Z 6∈ fpv (F̃) then

E{E′/Z}{F̃ /X̃} ≡ E{F̃ /X̃}{E′{F̃ /X̃}/Z}.

Proof: By induction on the structure of E. ut

We now extend two results seen in nonprobabilistic process algebra [Mil84]. It should be em-

phasized that the “strong bisimulation up to” technique plays an important role in the subsequent

proofs, because in these two cases it is difficult to directly construct an equivalence relation and

prove that it is a strong bisimulation.

3.3. BEHAVIOURAL EQUIVALENCES 47

Proposition 3.30 µX(E +X) ∼ µXE.

Proof: We show that the relation

R = {(F{µX(E +X)/X}, F{µXE/X} | F ∈ E and fpv (F) ⊆ {X}}

is a strong bisimulation up to ∼. Below we prove the following two assertions:

1. If F{µX(E +X)/X} → η1 then there exists η2 s.t. F{µXE/X} → η2 and η1 ≡R∼
η2;

2. If F{µXE/X} → η2 then there exists η1 s.t. F{µX(E +X)/X} → η1 and η1 ≡R∼
η2.

We consider (1) by induction on the depth of the inference F{µX(E+X)/X} → η1. Let us examine

two typical cases, among others.

• F ≡ X : Then (E + X){µX(E + X)/X} → η1 by a shorter inference. Hence, by induction

hypothesis, (E + X){µXE/X} → η2 with η1 ≡R∼
η2. Then we have either µXE → η2 or

E{µXE/X} → η2. From the latter case we can also derive that µXE → η2.

• F ≡ µZF
′: Then F ′{µX(E + X)/X}{F{µX(E + X)/X}/Z} → η1 by a shorter inference.

By Lemma 3.29 we have F ′{F/Z}{µX(E +X)/X} → η1. By induction hypothesis, we have

F ′{F/Z}{µXE/X} → η2 s.t. η1 ≡R∼
η2. Inversely it is easy to derive that F{µXE/X} → η2.

Similarly (2) can be shown by induction on the depth of the inference F{µXE/X} → η2. For

example, if F ≡ X , then E{µXE/X} → η2 by a shorter inference. By induction hypothesis, there

exists η1 s.t. E{µX(E + X)/X} → η1 and η1 ≡R∼
η2. By rule nsum we have (E + X){µX(E +

X)/X} ≡ E{µX(E +X)/X}+X{µX(E +X)/X} → η1. At last by rule rec we infer that µX(E +

X) → η1. ut

The lemma below states that if X is weakly guarded in E, then different substitutions for X do

not affect the first transition of E.

Lemma 3.31 Suppose fpv (E) ⊆ {X} and all free occurrences of X in E are weakly guarded. If

E{F/X} → η1 with η1 ≡ {(`i, Ei : pi)}i then Ei takes the form E′
i{F/X}; Moreover, for any G,

E{G/X} → η2 with η2 ≡ {(`i, E′
i{G/X} : pi)}i and η1 ≡R∼

η2 where

R = {(E{F/X}, E{G/X}) | E ∈ E and fpv (E) ⊆ {X}}.

Proof: By transition induction. ut

Proposition 3.32 If E ∼ F{E/X} and X weakly guarded in F , then E ∼ µXF .

Proof: Similar to the proof of Proposition 3.30. Now we take R as:

R = {(G{E/X}, G{µXF/X} | G ∈ E and fpv (G) ⊆ {X}}

Let us consider the case that G ≡ X . Suppose E → η1. Since E ∼ F{E/X}, there exists η′1 s.t.

F{E/X} → η′1 and η1 ≡∼ η′1. By Lemma 3.31 there exists η2 s.t. F{µXF/X} → η2 and η′1 ≡R∼
η2.

By rule rec we have µXF → η2. By Lemma 3.8 and the transitivity of ≡R∼
, we have η1 ≡R∼

η2.

With similar reasoning, one can show that if µXF → η2 there exists η1 s.t. E → η1 and η1 ≡R∼
η2.

ut

48 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

3.3.5 Some Properties of Observational Equivalence

In this section we report some properties of h and ', especially those concerning recursions. As in

last section, we heavily rely on the “bisimulation up to” techniques and transition induction.

Proposition 3.33 1. E ≈ F iff τ.E ' τ.F ;

2. If τ.E ' τ.E + F and τ.F ' τ.F + E then τ.E ' τ.F .

Proof: The first clause is straightforward. For the second one, it suffices to prove that E ≈ F .

Consider the relation

R = {(E,F) | E,F ∈ E , τ.E ' τ.E + F and τ.F ' τ.F + E}.

We show that R is a weak probabilistic bisimulation up to ≈. Suppose that E ⇒ η. By the condition

E + τ.F ' τ.F and Lemma 3.17, there exists η′ s.t. τ.F ⇒c η
′ and η ≡≈ η′. Since τ.F ≈ F , by

Lemma 3.14 there exists η′′ s.t. F
ε
⇒c η

′′ and η′ ≡≈ η′′. Then it is easy to see that η ≡R≈
η′′.

Similar result holds when E and F exchange their roles. ut

Proposition 3.34 If E ' F then µXE ' µXF .

Proof: We show that the relation

R = {(G{µXE/X}, G{µXF/X}) | E,F,G ∈ E and E ' F}

is an observational equivalence up to '. To achieve this goal, we need to prove the important

property that ' is closed under all substitutions. See Appendix A.2 for more details. ut

Proposition 3.35 ' is a congruence relation.

Proof: Given Ẽ ' F̃ , we need to show the following three clauses:

1.
⊕

i pi`i.Ei '
⊕

i pi`i.Fi

2.
∑

i∈1..nEi '
∑

i∈1..n Fi

3. µXE1 ' µXF1.

Among them, the first two clauses are easy to prove; the third one is shown in Proposition 3.34.

ut

We use a measure dX(E) to count the depth of guardedness of the free variable X in expression

E.

dX(X)
def
= 0

dX(Y)
def
= 0

dX(a.E)
def
= dX(E) + 1

dX(τ.E)
def
= dX(E)

dX(
⊕

i pi`i.Ei)
def
= min{dX(`i.Ei)}i

dX(
∑

iEi)
def
= min{dX(Ei)}i

dX(µY E)
def
= dX(E)

3.4. AXIOMATISATIONS FOR ALL EXPRESSIONS 49

If dX(E) > 0 then X is guarded in E.

The following Lemma is a counterpart of Lemma 3.31.

Lemma 3.36 Let dX(G) > 1. If G{E/X} ⇒c η then G{F/X} ⇒c η
′ such that η ≡R∗ η′ where

R = {(G{E/X}, G{F/X}) | for any G ∈ E}.

Proof: See Appendix A.3. ut

Proposition 3.37 If E ' F{E/X} and X is guarded in F then E ' µXF .

Proof: We show that the relation R = {(G{E/X}, G{µXF/X}) | for any G ∈ E} is an observa-

tional equivalence up to '. That is, we need to show the following assertions:

1. if G{E/X} ⇒ η then there exists η′ s.t. G{µXF/X} ⇒c η
′ and η ≡R≈

η′;

2. if G{µXF/X} ⇒ η′ then there exists η s.t. G{E/X} ⇒c η and η ≡R≈
η′.

We concentrate on the first clause since the second one is similar. The proof follows closely the

arguments in proving Proposition 3.34, thus we only consider the case that G ≡ X .

We write G(E) for G{E/X} and G2(E) for G(G(E)). Since E ' F (E), we have E ' F 2(E)

since ' is an congruence relation by Proposition 3.35. If E ⇒ η then by Lemma 3.17 there exists

θ1 s.t. F 2(E) ⇒c θ1 and η ≡≈ θ1. Since X is guarded in F , i.e., dX(F) > 0, then it follows

that dX(F 2(X)) > 1. By Lemma 3.36, there exists θ2 s.t. F 2(µXF) ⇒c θ2 and θ1 ≡R∗ θ2. From

Proposition 3.28 we have µXF ∼ F 2(µXF), thus µXF ' F 2(µXF). By Lemma 3.17 there exists

η′ s.t. µXF ⇒c η
′ and θ2 ≡≈ η′. From Lemma 3.8 and the transitivity of ≡R≈

it follows that

η ≡R≈
η′. ut

It is not difficult to see that all the propositions proved in this section for ', except for Propo-

sition 3.33, are also valid for h. In other words, h is a substitutive congruence relation.

3.4 Axiomatisations for All Expressions

In this section we provide sound and complete axiomatisations for two strong behavioural equiva-

lences: ∼ and ∼c. The class of expressions to be considered is E .

3.4.1 Axiomatizing Strong Bisimilarity

First we present the axiom system Ar, which includes all axioms and rules displayed in Table 3.3.

We assume the usual rules for equality (reflexivity, symmetry, transitivity and substitutivity), and

the alpha-conversion of bound variables.

The notation Ar ` E = F (and Ar ` Ẽ = F̃ for a finite sequence of equations) means that the

equation E = F is derivable by applying the axioms and rules from Ar. The following theorem

shows that Ar is sound with respect to ∼.

Theorem 3.38 (Soundness of Ar) If Ar ` E = E′ then E ∼ E′.

50 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

S1 E + 0 = E

S2 E + E = E

S3
∑

i∈I Ei =
∑

i∈I Eρ(i) ρ is any permutation on I

S4
⊕

i∈I pi`i.Ei =
⊕

i∈I pρ(i)`ρ(i).Eρ(i) ρ is any permutation on I

S5 (
⊕

i pi`i.Ei) ⊕ p`.E ⊕ q`.E = (
⊕

i pi`i.Ei) ⊕ (p+ q)`.E

R1 µXE = E{µXE/X}

R2 If E = F{E/X}, X weakly guarded in F, then E = µXF

R3 µX(E +X) = µXE

Table 3.3: The axiom system Ar

Proof: The soundness of the recursion axioms R1-3 is shown in Section 3.3.4; the soundness of

S1-4 is obvious, and S5 is a consequence of Definition 3.6. ut

For the completeness proof, the basic points are: (1) if two expressions are bisimilar then we

can construct an equation set in a certain format (standard format) that they both satisfy; (2)

if two expressions satisfy the same standard equation set, then they can be proved equal by Ar.

This schema is inspired by [Mil84, SS00], but in our case the definition of standard format and the

proof itself are more complicated due to the presence of both probabilistic and nondeterministic

dimensions.

Definition 3.39 Let X̃ = {X1, ..., Xm} and W̃ = {W1,W2, ...} be disjoint sets of variables. Let

H̃ = {H1, ..., Hm} be expressions with free variables in X̃ ∪ W̃ . In the equation set ζ : X̃ = H̃,

we call X̃ formal variables and W̃ free variables. We say ζ is standard if each Hi takes the form
∑

j Ef(i,j) +
∑

lWh(i,l) where Ef(i,j) =
⊕

k pf(i,j,k)`f(i,j,k).Xg(i,j,k). We call ζ weakly guarded if

there is no Hi s.t. Hi → ϑ(Xi). We say that E provably satisfies ζ if there are expressions

Ẽ = {E1, ..., Em}, with E1 ≡ E and fpv (Ẽ) ⊆ W̃ , such that Ar ` Ẽ = H̃{Ẽ/X̃}.

We first recall the theorem of unique solution of equations originally appeared in [Mil84]. Adding

probabilistic choice does not affect the validity of this theorem.

Theorem 3.40 (Unique solution of equations I) If ζ is a weakly guarded equation set with free

variables in W̃ , then there is an expression E which provably satisfies ζ. Moreover, if F provably

satisfies ζ and has free variables in W̃ , then Ar ` E = F .

Proof: Exactly as in [Mil84]. ut

Below we give an extension of Milner’s equational characterisation theorem by accommodating

probabilistic choice.

Theorem 3.41 (Equational characterisation I) For any expression E, with free variables in

W̃ , there exist some expressions Ẽ = {E1, ..., Em}, with E1 ≡ E and fpv (Ẽ) ⊆ W̃ , satisfying m

3.4. AXIOMATISATIONS FOR ALL EXPRESSIONS 51

equations

Ar ` Ei =
∑

j∈1..n(i)

Ef(i,j) +
∑

j∈1..l(i)

Wh(i,j) (i ≤ m)

where Ef(i,j) ≡
⊕

k∈1..o(i,j) pf(i,j,k)`f(i,j,k).Eg(i,j,k).

Proof: By induction on the structure of E, similar to the proof in [Mil84]. ut

The following completeness proof is closely analogous to that of [SS00]. It is complicated some-

what by the presence of nondeterministic choice. For example, to construct the formal equations, we

need to consider a more refined relation Liji′j′ underneath the relation Kii′ while in [Mil84, SS00]

it is sufficient to just use Kii′ .

Theorem 3.42 (Completeness of Ar) If E ∼ E′ then Ar ` E = E′.

Proof: Let E and E′ have free variables in W̃ . By Theorem 3.41 there are provable equations

such that E ≡ E1, E
′ ≡ E′

1 and

Ar ` Ei =
∑

j∈1..n(i)

Ef(i,j) +
∑

j∈1..l(i)

Wh(i,j) (i ≤ m)

Ar ` E′
i′ =

∑

j′∈1..n′(i′)

E′
f ′(i′,j′) +

∑

j′∈1..l′(i′)

Wh′(i′,j′) (i′ ≤ m′)

with

Ef(i,j) ≡
⊕

k∈1..o(i,j)

pf(i,j,k)`f(i,j,k).Eg(i,j,k)

E′
f ′(i′,j′) ≡

⊕

k′∈1..o′(i′,j′)

p′f ′(i′,j′,k′)`
′
f ′(i′,j′,k′).E

′
g′(i′,j′,k′).

Let I = {〈i, i′〉 | Ei ∼ E′
i′}. By hypothesis we have E1 ∼ E′

1, so 〈1, 1〉 ∈ I. Moreover, for each

〈i, i′〉 ∈ I, the following holds, by the definition of strong bisimilarity:

1. There exists a total surjective relation Kii′ between {1, ..., n(i)} and {1, ..., n′(i′)}, given by

Kii′ = {〈j, j′〉 | 〈f(i, j), f ′(i′, j′)〉 ∈ I}.

Furthermore, for each 〈j, j′〉 ∈ Kii′ there exists a total surjective relation Liji′j′ between

{1, ..., o(i, j)} and {1, ..., o′(i′, j′)}, given by

Liji′j′ = {〈k, k′〉 | `f(i,j,k) = `′f ′(i′,j′,k′) and 〈g(i, j, k), g′(i′, j′, k′)〉 ∈ I}.

2. Ar `
∑

j∈1..l(i)Wh(i,j) =
∑

j′∈1..l′(i′)Wh′(i′,j′).

Now, let Liji′j′ (k) denote the image of k ∈ {1, ..., o(i, j)} under Liji′j′ and L−1
iji′j′(k

′) the preimage

of k′ ∈ {1, ..., o′(i′, j′)} under Liji′j′ . We write [k]iji′j′ for the set L−1
iji′j′ (Liji′j′(k)) and [k′]iji′j′ for

Liji′j′(L
−1
iji′j′ (k

′)). It follows from the definitions that

1. If 〈i, i′1〉 ∈ I, 〈i, i′2〉 ∈ I, 〈j, j′1〉 ∈ Kii′1
and 〈j, j′2〉 ∈ Kii′2

, then [k]iji′1j′1
= [k]iji′2j′2

.

2. If q1 ∈ [k]iji′j′ and q2 ∈ [k]iji′j′ , then `f(i,j,q1) = `f(i,j,q2) and Eg(i,j,q1) ∼ Eg(i,j,q2).

52 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

Define νijk =
∑

q∈[k]iji′j′
pf(i,j,q) for any i′, j′ such that 〈i, i′〉 ∈ I and 〈j, j′〉 ∈ Kii′ ; define

ν′i′j′k′ =
∑

q′∈[k′]iji′j′
p′f ′(i′,j′,q′) for any i, j such that 〈i, i′〉 ∈ I and 〈j, j′〉 ∈ Kii′ . It is easy to see

that whenever 〈i, i′〉 ∈ I, 〈j, j′〉 ∈ Kii′ and 〈k, k′〉 ∈ Liji′j′ then νijk = ν′i′j′k′ .

We now consider the formal equations, one for each 〈i, i′〉 ∈ I:

Xi,i′ =
∑

〈j,j′〉∈Kii′

Hf(i,j),f ′(i′,j′) +
∑

j∈1..l(i)

Wh(i,j)

where

Hf(i,j),f ′(i′,j′) ≡
⊕

〈k,k′〉∈Liji′j′

(
pf(i,j,k)p

′
f ′(i′,j′,k′)

νijk
)`f(i,j,k).Xg(i,j,k),g′(i′,j′,k′).

These equations are provably satisfied when each Xi,i′ is instantiated to Ei, since Kii′ and Liji′j′

are total and the right-hand side differs at most by repeated summands from that of the already

proved equation for Ei. Note that each probabilistic branch pf(i,j,k)`f(i,j,k).Eg(i,j,k) in Ei becomes

the probabilistic summation of several branches like

⊕

q′∈[k′]iji′j′

(
pf(i,j,k)p

′
f ′(i′,j′,q′)

νijk
)`f(i,j,k).Eg(i,j,k)

in Hf(i,j),f ′(i′,j′){Ei/Xi,i′}i, where 〈i, i′〉 ∈ I, 〈j, j′〉 ∈ Kii′ and 〈k, k′〉 ∈ Liji′j′ . But they are

provably equal because

∑
q′∈[k′]iji′j′

(
pf(i,j,k)p

′

f′(i′,j′,q′)

νijk
) =

pf(i,j,k)

νijk
·
∑

q′∈[k′]iji′j′
p′f ′(i′,j′,q′)

=
pf(i,j,k)

νijk
· ν′i′j′k′ = pf(i,j,k)

and then the axiom S5 can be used. Symmetrically, the equations are provably satisfied when each

Xi,i′ is instantiated to E′
i′ ; this depends on the surjectivity of Kii′ and Jiji′j′ .

Finally, we note that each Xi,i′ is weakly guarded in the right-hand sides of the formal equations.

It follows from Theorem 3.40 that ` Ei = E′
i′ for each 〈i, i′〉 ∈ I, and hence ` E = E′. ut

3.4.2 Axiomatizing Strong Probabilistic Bisimilarity

The difference between ∼ and ∼c is characterised by the following axiom:

C
∑

i∈1..n

⊕

j

pij`ij .Eij =
∑

i∈1..n

⊕

j

pij`ij .Eij +
⊕

i∈1..n

⊕

j

ripij`ij .Eij

where
∑

i∈1..n ri = 1. It is easy to show that the expressions on the left and right sides are strong

probabilistic bisimilar. We denote Ar ∪ {C} by Arc .

Theorem 3.43 (Soundness and completeness of Arc) E ∼c E
′ iff Arc ` E = E′.

Proof: The soundness part follows immediately by the definition of →c. Below we focus on the

completeness part.

Let E and E′ have free variables in W̃ . By Theorem 3.41 there are provable equations such that

E ≡ E1, E
′ ≡ E′

1 and

Arc ` Ei = Ai (i ≤ m)

3.5. AXIOMATISATIONS FOR GUARDED EXPRESSIONS 53

Arc ` E
′
i′ = A′

i′ (i′ ≤ m′)

where Ai ≡
∑

j∈1..n(i) Ef(i,j) +
∑

j∈1..l(i)Wh(i,j) and

Ef(i,j) ≡
⊕

k∈1..o(i,j)

pf(i,j,k)`f(i,j,k).Eg(i,j,k)

Similar for the form of A′
i′ .

Next we shall use axiom C to saturate the right hand side of each equation with some summands

so as to transform each Ai (resp. A′
i′) into a provably equal expression Bi (resp. B′

i′) which satisfies

the following property:

(*) For any C1, C2 ∈ B̃ ∪ B̃′ with C1 ∼c C2, if C1 → η1 then there exists some η2 s.t.

C2 → η2 and η1 ≡∼c
η2.

Initially we set B̃ = Ã and B̃′ = Ã′. Let V = {(C1, C2) | C1 ∼c C2 and C1, C2 ∈ Ã ∪ Ã′}.

Clearly the set V is finite because there are finitely many expressions in Ã ∪ Ã′. Without loss of

generality, we take a pair (C1, C2) from V such that C1 ≡ A′
i′ ∈ Ã′ and C2 ≡ Ai ∈ Ã (we do

similar manipulations for other three cases, namely (i) C1, C2 ∈ Ã; (ii) C1, C2 ∈ Ã′; (iii) C1 ∈ Ã

and C2 ∈ Ã′). If A′
i′ → η′ then for some η we have Ai →c η and η ≡∼c

η′, by the definition of ∼c.

If Ai → η (obviously we are in this case if η = ϑ(X)) we do nothing but go on to pick another pair

from V to do the analysis. Otherwise η is a convex combination η = r1η1 + ...+ rnηn and Ai → ηj

for each j ≤ n. Hence each ηj must be in the form {(`f(i,j,k), Eg(i,j,k) : pf(i,j,k))}k and Ef(i,j) is a

summand of Ai (so it is also a summand of Bi). By axiom C we have

Arc ` Bi = Bi +
⊕

j∈1..n

⊕

k

rjpf(i,j,k)`f(i,j,k).Eg(i,j,k).

Now we update Bi to be to the expression on the right hand side of last equation. To this point we

have finished the analysis to the pair (C1, C2). We need to pick a different pair from V to iterate

the above procedure. When all the pairs in V are exhausted, we end up with B̃ and B̃′ which are

easy to be verified to satisfy property (*). Observe that only axiom C is involved when updating

Bi, so we have the following results:

Arc ` Ei = Bi (i ≤ m)

Arc ` E′
i′ = B′

i′ (i′ ≤ m′)

From now on, by using the above equations as our starting point, the subsequent arguments are like

those for Theorem 3.42, so we omit them. ut

3.5 Axiomatisations for Guarded Expressions

Now we proceed with the axiomatisations of the two weak behavioural equivalences: h and '. We

are not able to give a complete axiomatisation for the whole set of expressions (and we conjecture

that it is not possible, see Section 3.7), so we restrict to the subset of E consisting of guarded

expressions only. An expression is guarded if for each of its subexpression of the form µXF , the

variable X is guarded in F (cf. Definition 3.2).

54 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

R2′ If E = F{E/X}, X guarded in F, then E = µXF

T1
⊕

i piτ.(Ei +X) = X +
⊕

i piτ.(Ei +X)

T2 (
⊕

i pi`i.Ei) ⊕ pτ.(F +
⊕

j qjhj.Fj) + (
⊕

i pi`i.Ei) ⊕ (
⊕

j pqjhj .Fj)

= (
⊕

i pi`i.Ei) ⊕ pτ.(F +
⊕

j qjhj .Fj)

T3 (
⊕

i pi`i.Ei) ⊕ p`.(F +
⊕

j qjτ.Fj) + (
⊕

i pi`i.Ei) ⊕ (
⊕

j pqj`.Fj)

= (
⊕

i pi`i.Ei) ⊕ p`.(F +
⊕

j qjτ.Fj)

Table 3.4: Some laws for the axiom system Agd

3.5.1 Axiomatizing Divergency-Sensitive Equivalence

We first study the axiom system for h. As a starting point, let us consider the system Arc . Clearly,

S1-5 are still valid for h, as well as R1. R3 turns out to be not needed in the restricted language

we are considering. As for R2, we replace it with its (strongly) guarded version, which we shall

denote as R2′ (see Table 3.4). As in the standard process algebra, we need some τ -laws to abstract

from invisible steps. For h we use the probabilistic τ -laws T1-3 shown in Table 3.4. Note that T3

is the probabilistic extension of Milner’s third τ -law ([Mil89b] page 231), and T1 and T2 together

are equivalent, in the nonprobabilistic case, to Milner’s second τ -law. However, Milner’s first τ -law

cannot be derived from T1-3, and it is actually unsound for h. Below we let Agd ={R2′, T1-3}

∪Arc\{R2-3}.

Theorem 3.44 (Soundness of Agd) If Agd ` E = E′ then E h E′.

Proof: The rule R2′ can be shown to be sound as Proposition 3.37. The soundness of T1-3, and

therefore of Agd , is evident. ut

For the completeness proof, it is convenient to use the following saturation property, which relates

operational semantics to term transformation, and which can be shown by using the probabilistic

τ -laws and the axiom C.

Lemma 3.45 (Saturation) 1. If E ⇒ η with η = {(`i, Ei : pi)}i, then Agd ` E = E +
⊕

i pi`i.Ei;

2. If E ⇒c η with η = {(`i, Ei : pi)}i, then Agd ` E = E +
⊕

i pi`i.Ei;

3. If E ⇒ ϑ(X) then Agd ` E = E +X.

Proof: The first and third clauses are proved by transition induction on the inference of E ⇒ η;

the second clause can be considered as a corollary of the first one. See Appendix A.4 for more

details. ut

To show the completeness of Agd , we need some notations. Given a standard equation set

ζ : X̃ = H̃, which has free variables W̃ , we define the relations →ζ⊆ X̃ × P((Var ∪ L) × X̃) (the

notation P(V) represents all distributions on V) as Xi →ζ η iff Hi → η. From →ζ we can define

3.5. AXIOMATISATIONS FOR GUARDED EXPRESSIONS 55

the weak transition ⇒ζ in the same way as in Section 3.2. We write Xi ζ Xk iff Xi ⇒ζ η, with

η = {(`j, Xj : pj)}j∈J , k ∈ J and `k = τ . We shall call ζ guarded if there is no Xi s.t. Xi ζ Xi.

We call ζ saturated if for all X ∈ X̃, X ⇒ζ η implies X →ζ η. The variable W is guarded in ζ if it

is not the case that X1 →ζ ϑ(W) or X1 ζ→ζ ϑ(W).

For guarded expressions, the equational characterisation theorem and the unique solution theo-

rem given in last section can now be refined, as done in [Mil89b].

Theorem 3.46 (Equational characterisation II) Every guarded expression E with free vari-

ables W̃ provably satisfies a standard guarded equation set ζ with free variables in W̃ . Moreover, if

W is guarded in E then W is guarded in ζ.

Proof: By induction on the structure of E. Consider the case that E ≡
⊕

i∈I pi`i.Ei. For

each i ∈ I, let Xi be the distinguished variable of the equation set ζi for Ei. We can define ζ as

{X =
⊕

i∈I pi`i.Xi} ∪
⋃

i∈I ζi, with the new variable X distinguished. All other cases are the same

as in [Mil89b]. ut

Lemma 3.47 Let E provably satisfies the standard guarded equation set ζ. Then there is a satu-

rated, standard, and guarded equation set ζ′ provably satisfied by E.

Proof: Let ζ be the equation set X̃ = H̃ and Agd ` Ẽ = H̃{Ẽ/X̃}. By using Lemma 3.45,

we show that if Xi ⇒ η then Agd ` Ei = Ei +
⊕

j pj`j.Ej when η ≡ {(`j, Xj : pj)}j , and

Agd ` Ei = Ei +X when η ≡ ϑ(X). Repeat this procedure for all weak transitions of Ei, at last

we get Agd ` Ei = H ′
i{Ẽ/X̃}. Hence we can take ζ′ to be the equation set X̃ = H̃ ′. ut

Theorem 3.48 (Unique solution of equations II) If ζ is a guarded equation set with free vari-

ables in W̃ , then there is an expression E which provably satisfies ζ. Moreover, if F provably satisfies

ζ and has free variables in W̃ , then Agd ` E = F .

Proof: Nearly the same as the proof of Theorem 3.40, just replacing the recursion rule R2 with

R2′. ut

The completeness result can be proved in a similar way as Theorem 3.42. The main difference

is that here the key role is played by equation sets which are not only in standard format, but also

saturated. The transformation of a standard equation set into a saturated one is obtained by using

Lemma 3.45.

Theorem 3.49 (Completeness of Agd) If E and E′ are guarded expressions and E h E′ then

Agd ` E = E′.

Proof: By Theorem 3.46 there are provable equations such that E ≡ E1, E
′ ≡ E′

1 and

Arc ` Ei = Ai (i ≤ m)

Arc ` E
′
i′ = A′

i′ (i′ ≤ m′)

For any C ∈ Ã ∪ Ã′, we assume by Lemma 3.47 that C is saturated. Therefore it is easy to show

that C ⇒c η implies C →c η. Let C′ ∈ Ã ∪ Ã′. We note the interesting property that if C h C′

56 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

T4 `.τ.E = `.E

T5 If τ.E = τ.E + F and τ.F = τ.F + E then τ.E = τ.F .

Table 3.5: Two τ -laws for the axiom system Ago

and C → η then there exists η′ s.t. C′ →c η
′ and η ≡h η′. Thanks to this property the remaining

arguments are quite similar to that in Theorem 3.43, thus are omitted. ut

3.5.2 Axiomatizing Observational Equivalence

In this section we focus on the axiomatisation of '. In order to obtain completeness, we can

follow the same schema as for Theorem 3.42, with the additional machinery required for dealing

with observational equivalence, like in [Mil89b]. The crucial point of the proof is to show that,

if E ' F , then we can construct an equation set in standard format which is satisfied by E and

F . The construction of the equation is more complicated than in [Mil89b] because of the subtlety

introduced by the probabilistic dimension (cf. Theorem 3.53). Indeed, it turns out that the simple

probabilistic extension of Milner’s three τ -laws would not be sufficient, and we need an additional

rule for the completeness proof to go through. We shall further comment on this rule at the end of

Section 3.6.

The probabilistic extension of Milner’s τ -laws are axioms T1-4, where T1-3 are those introduced

in previous section, and T4, defined in Table 3.5, takes the same form as Milner’s first τ -law [Mil89b].

In the same table T5 is the additional rule mentioned above. We let Ago = Agd∪{T4-5}.

Theorem 3.50 (Soundness of Ago) If Ago ` E = F then E ' F .

Proof: Rule T5 is proved to be sound in Proposition 3.33. The soundness of T4, and therefore of

Ago , is straightforward. ut

The rest of the section is devoted to the completeness proof of Ago . First we need two basic

properties of weak combined transitions.

Lemma 3.51 1. If E
ε
⇒c η then τ.E ⇒c η;

2. If E
ε
⇒c ϑ(X) then E ⇒ ϑ(X).

Proof: The first clause is easy to show. Let us consider the second one. If ϑ(X) is a convex

combination of η1, .., ηn and E ⇒ ηi for all i ∈ 1..n, then each ηi must assign probability 1 to (X, 0),

thus ηi = ϑ(X). ut

Lemma 3.52 If E
ε
⇒c η with η = {(`i, Ei : pi)}i then Agd ` τ.E = τ.E +

⊕
i pi`i.Ei.

Proof: It follows from Lemma 3.51 and Lemma 3.45. ut

The following theorem plays a crucial role in proving the completeness of Ago .

3.5. AXIOMATISATIONS FOR GUARDED EXPRESSIONS 57

Theorem 3.53 Let E provably satisfy ζ and F provably satisfy ζ′, where both ζ and ζ′ are standard,

guarded equation sets, and let E ' F . Then there is a standard, guarded equation set ζ′′ satisfied

by both E and F .

Proof: Suppose that X̃ = {X1, ..., Xm}, Ỹ = {Y1, ..., Yn} and W̃ = {W1,W2, ...} are disjoint sets

of variables. Let

ζ : X̃ = H̃

ζ′ : Ỹ = J̃

with fpv (H̃) ⊆ X̃ ∪ W̃ , fpv (J̃) ⊆ Ỹ ∪ W̃ , and that there are expressions Ẽ = {E1, ..., Em} and

F̃ = {F1, ..., Fn} with E1 ≡ E, F1 ≡ F , and fpv (Ẽ) ∪ fpv (F̃) ⊆ W̃ , so that

Ago ` Ẽ = H̃{Ẽ/X̃}

Ago ` F̃ = J̃{F̃ /Ỹ }.

Consider the least equivalence relation R ⊆ (X̃ ∪ Ỹ) × (X̃ ∪ Ỹ) such that

1. whenever (Z,Z ′) ∈ R and Z → η, then there exists η′ s.t. Z ′ ε
⇒c η

′ and η ≡R η′;

2. (X1, Y1) ∈ R and if X1 → η then there exists η′ s.t. Y1 ⇒c η
′ and η ≡R η′.

Clearly R is a weak probabilistic bisimulation on the transition system over X̃ ∪ Ỹ , determined by

→
def
=→ζ ∪ →ζ′ . Now for two given distributions η = {(`i, Xi : pi)}i∈I , η

′ = {(hj , Yj : qj)}j∈J , with

η ≡R η′, we introduce the following notations:

Kη,η′ = {(i, j) | i ∈ I, j ∈ J, `i = hj and (Xi, Yj) ∈ R}

νi =
∑

{pi′ | i′ ∈ I, ui′ = `i, and (Xi, Xi′) ∈ R} for i ∈ I

νj =
∑

{pj′ | j′ ∈ J, vj′ = hj , and (Yj , Yj′) ∈ R} for j ∈ J

Since η ≡R η′ it follows by definition that if (i, j) ∈ Kη,η′ , for some η, η′, then νi = νj . Thus we can

define the expression

Gη,η′

def
=

⊕

(i,j)∈Kη,η′

piqj
νi

`i.Zij

which will play the same role as the expression Hf(i,j),f ′(i′,j′) in the proof of Theorem 3.42. On the

other hand, if η = η′ = ϑ(X) we simply define the expression Gη,η′

def
= X .

Based on the above R we choose a new set of variables Z̃ such that

Z̃ = {Zij | Xi ∈ X̃, Yj ∈ Ỹ and (Xi, Yj) ∈ R}.

Furthermore, for each Zij ∈ Z̃ we construct three auxiliary finite sets of expressions, denoted by

Aij , Bij and Cij , by the following procedure.

1. Initially the three sets are empty.

2. For each η with Xi → η, arbitrarily choose one (and only one — the same principle applies

in other cases too) η′ (if it exists) satisfying η ≡R η′ and Yj ⇒c η
′, construct the expression

Gη,η′ and update Aij to be Aij ∪{Gη,η′}; Similarly for each η′ with Yj → η′, arbitrarily choose

one η (if it exists) satisfying η ≡R η′ and Xi ⇒c η, construct Gη,η′ and update Aij to be

Aij ∪ {Gη,η′}.

58 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

3. For each η with Xi → η, arbitrarily choose one η′ (if it exists) satisfying η ≡R η′, Yj
ε
⇒c η

′

but not Yj ⇒c η
′, construct the expression Gη,η′ and update Bij to be Bij ∪ {Gη,η′}.

4. For each η′ with Yj → η′, arbitrarily choose one η (if it exists) satisfying η ≡R η′, Xi
ε
⇒c η

but not Xi ⇒c η, construct Gη,η′ and update Cij to be Cij ∪ {Gη,η′}.

Clearly the three sets constructed in this way are finite. Now we build a new equation set

ζ′′ : Z̃ = L̃

where ζ′′11 is the distinguished variable and

Lij =

{ ∑
G∈Aij

G if Bij ∪ Cij = ∅

τ.(
∑

G∈Aij∪Bij∪Cij
G) otherwise.

We assert that E provably satisfies the equation set ζ′′. To see this, we choose expressions

Gij =

{
Ei if Bij ∪ Cij = ∅

τ.Ei otherwise

and verify that Ago ` Gij = Lij{G̃/Z̃}.

In the case that Bij ∪ Cij = ∅, all those summands of Lij{G̃/Z̃} which are not variables are of

the forms: ⊕

(i,j)∈Kη,η′

piqj
νi

`i.Ei or
⊕

(i,j)∈Kη,η′

piqj
νi

`i.τ.Ei.

By T4 we can transform the second form into the first one. Then by some arguments similar to

those in Theorem 3.42, together with Lemma 3.45, we can show that

Ago ` Lij{G̃/Z̃} = Hi{Ẽ/X̃} = Ei.

On the other hand, if Bij ∪ Cij 6= ∅, we let Cij = {D1, ..., Do} (Cij = ∅ is a special case of the

following argument) and D =
∑

l∈1..oDl{G̃/Z̃}. As in last case we can show that

Ago ` Lij{G̃/Z̃} = τ.(Hi{Ẽ/X̃} +D).

For any l with 1 ≤ l ≤ o, let Dl{G̃/Z̃} =
⊕

k pkuk.Ek. It is easy to see that Ei
ε
⇒c η with

η = {(uk, Ek : pk)}k. So by Lemma 3.52 it holds that

Ago ` τ.Ei = τ.Ei +Dl{G̃/Z̃}.

As a result we can infer

Ago ` τ.Ei = τ.Ei +D = τ.Ei + (Ei +D).

by Lemma 3.45. Similarly,

Ago ` τ.(Ei +D) = τ.(Ei +D) + Ei.

Consequently it follows from T5 that

Ago ` τ.Ei = τ.(Ei +D) = τ.(Hi{Ẽ/X̃} +D) = Lij{G̃/Z̃}.

3.5. AXIOMATISATIONS FOR GUARDED EXPRESSIONS 59

X1

X1

a

a

a
τ

1/2

1/2

Y1

Y2

a a

1/2 1/2

Y3
a

τ

a

Z

a

(1) (2) (3)

Figure 3.3: Observationally equivalent states X1, Y1 and Z

(i, j) Aij Bij Cij

(1, 1) { 1
2a.Z22 ⊕

1
2a.Z23} ∅ ∅

(1, 2) {a.Z23} ∅ {τ.Z13}

(1, 3) {a.Z22} ∅ ∅

(2, 1) { 1
2a.Z22 ⊕

1
2a.Z23} { 1

4a.Z22 ⊕
1
4a.Z23 ⊕

1
2τ.Z11} ∅

(2, 2) {a.Z23,
1
2a.Z23 ⊕

1
2τ.Z13} ∅ {τ.Z23}

(2, 3) {a.Z22} { 1
2a.Z22 ⊕

1
2τ.Z13} ∅

Table 3.6: The construction of sets Aij , Bij , Cij

In the same way we can show that F provably satisfies ζ′′. At last ζ′′ is guarded because ζ and ζ′

are guarded. ut

To help understanding the proof of the above theorem, we illustrate the construction of the

equation set ζ′′ by a simple example. Consider the equation sets ζ and ζ′ as follows.

ζ : X1 = a.X2 ζ′ : Y1 = 1
2a.Y2 ⊕

1
2a.Y3

X2 = a.X2 + 1
2a.X2 ⊕

1
2τ.X1 Y2 = a.Y3 + τ.Y3

Y3 = a.Y2

The two equation sets describes the transition graphs in Figure 3.3 (1) and (2) respectively. Note

that if E1, E2 provably satisfy ζ, and F1, F2, F3 provably satisfy ζ′, then E1 ' F1 ' µZ(a.Z) (cf.

Figure 3.3 (3)).

Let R be the equivalence relation that has a unique equivalence class {X1, X2, X3, Y1, Y2}. It is

easy to check that R is a weak bisimulation on the transition system over X̃ ∪ Ỹ . Now we take new

variables {Zij | 1 ≤ i ≤ 2, 1 ≤ j ≤ 3} and form the sets Aij , Bij and Cij for each variable Zij , as

displayed in Table 3.6, by using the procedure presented in the above proof.

60 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

We construct the equation set ζ′′, based on all expressions shown in Table 3.6.

ζ′′ : Z11 = 1
2a.Z22 ⊕

1
2a.Z23

Z12 = τ.(a.Z23 + τ.Z13)

Z13 = a.Z22

Z21 = τ.(1
2a.Z22 ⊕

1
2a.Z23 + 1

4a.Z22 ⊕
1
4a.Z23 ⊕

1
2τ.Z11)

Z22 = τ.(a.Z23 + 1
2a.Z23 ⊕

1
2τ.Z13 + τ.Z23)

Z23 = τ.(a.Z22 + 1
2a.Z22 ⊕

1
2τ.Z13)

We can see that E1 provably satisfies ζ′′ by substituting E1, τ.E1, E1, τ.E2, τ.E2, τ.E2 for

Z11, Z12, Z13, Z21, Z22, Z23, respectively; similarly F1 provably satisfies ζ′′ by substituting F1, τ.F2,

F3, τ.F1, τ.F2, τ.F3 for these variables.

Theorem 3.54 (Completeness of Ago) If E and F are guarded expressions and E ' F , then

Ago ` E = F .

Proof: A direct consequence by combining Theorem 3.46, 3.53 and 3.48. ut

3.6 Axiomatisations for Finite Expressions

In this section we consider the recursion-free fragment of E , that is the class Ef of all expressions

which do not contain constructs of the form µXF . In other words all expressions in Ef have the

form:
∑

i

⊕
j pijuij .Eij +

∑
k Xk.

We define four axiom systems for the four behavioural equivalences studied in this paper. Basi-

cally As,Asc ,Afd ,Afo are obtained from Ar, Arc , Agd , Ago respectively, by cutting away all those

axioms and rules that involve recursions.

As
def
= {S1-5} Asc

def
= As∪{C}

Afd
def
= Asc∪{T1-3} Afo

def
= Afd∪{T4-5}

Theorem 3.55 (Soundness and completeness) For any E,F ∈ Ef ,

1. E ∼ F iff As ` E = F ;

2. E ∼c F iff Asc ` E = F ;

3. E h F iff Afd ` E = F ;

4. E ' F iff Afo ` E = F .

The soundness part is obvious. The completeness can be shown by following the lines of previous

sections. However, since there is no recursion here, we have a much simpler proof which does not

use the equational characterisation theorem and the unique solution theorem. Roughly speaking,

3.6. AXIOMATISATIONS FOR FINITE EXPRESSIONS 61

all the clauses are proved by induction on the depth of the expressions. We define the depth of a

process, d(E), as follows.

d(0) = 0

d(X) = 1

d(
⊕

i pi`i.Ei) = 1 +max{Ei}i

d(
∑

iEi) = max{d(Ei)}i

The completeness proof of Afo is a bit tricky. In the classical process algebra the proof can

be carried out directly by using Hennessy Lemma [Mil89a], which says that if E ≈ F then either

τ.E ' F or E ' F or E ' τ.F . In the probabilistic case, however, Hennessy Lemma does not hold.

For example, let

E
def
= a and F

def
= a+ (

1

2
τ.a⊕

1

2
a).

We can check that: (1) τ.E 6' F , (2) E 6' F , (3) E 6' τ.F . In (1) the distribution {(τ, E : 1)} cannot

be simulated by any distribution from F . In (2) the distribution {(τ, a : 1
2), (a, 0 : 1

2)} cannot be

simulated by any distribution from E. In (3) the distribution {(τ, F : 1)} cannot be simulated by

any distribution from E.

Fortunately, to prove the completeness of Afo , it is sufficient to use the following weaker property.

Lemma 3.56 (Promotion) For any E,F ∈ Ef , if E ≈ F then Afo ` τ.E = τ.F .

Proof: By induction on d = d(E) + d(F). We consider the nontrivial case that d > 0.

If X is a nondeterministic summand of E, then E → ϑ(X). Since E ≈ F it holds that F
ε
⇒c

ϑ(X). By Lemma 3.51 we have τ.F ⇒ ϑ(X). It follows from (the recursion-free version of)

Lemma 3.45 that Afd ` τ.F = τ.F +X .

Let
⊕

i∈I pi`i.Ei be any summand of E. Then we have E → η, with η = {(`i, Ei : pi)}i∈I .

Since E ≈ F , there exists η′, with η′ = {(hj , Fj : qj)}j∈J s.t. F
ε
⇒c η

′ and η ≡≈ η′. For any

k, l ∈ I with `k = `l and Ek ≈ El, it follows from T4 and induction hypothesis that Afo ` `k.Ek =

`k.τ.Ek = `l.τ.El = `l.El. By S5 we can derive that Afo `
⊕

i∈I pi`i.Ei =
⊕

i′∈I′ p′i′`
′
i′ .E

′
i′ , where

the process on the right hand side is “compact”, i.e., for any k′, l′ ∈ I ′, if `′k′ = `′l′ and E′
k′ = E′

l′

then k′ = l′. Similarly we can derive Afo `
⊕

j∈J qjhj .Fj =
⊕

j′∈J′ q′j′h
′
j′ .F

′
j′ with the process on

the right hand side “compact”. From η ≡≈ η′ and the soundness of Afd, it is easy to prove that

Afo `
⊕

i′∈I′ p′i′`
′
i′ .E

′
i′ =

⊕
j′∈J′ q′j′h

′
j′ .F

′
j′ since each probabilistic branch of one process is provably

equal to a unique branch of the other process. It follows that Afo `
⊕

i∈I pi`i.Ei =
⊕

j∈J qjhj .Fj .

By (a recursion-free version of) Lemma 3.52 we infer Afo ` τ.F = τ.F +
⊕

j∈J qjhj.Fj = τ.F +
⊕

i∈I pi`i.Ei.

In summary Afo ` τ.F = τ.F +E. Symmetrically Afo ` τ.E = τ.E+F . Therefore Afo ` τ.E =

τ.F by T5. ut

The promotion lemma is inspired by [FY03], where a similar result is proved for a language of

mobile processes.

At last, the completeness part of Theorem 3.55 (4) can be proved as Lemma 3.56. Note that

for any k, l ∈ I with uk = ul and Ek ≈ El, we derive Afo ` uk.Ek = ul.El by using T4 and the

promotion lemma instead of using induction hypothesis.

62 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

S1 E + 0 = E

S2 E + E = E

S3
∑

i∈I Ei =
∑

i∈I Eρ(i) ρ is any permutation on I

S4
⊕

i∈I pi`i.Ei =
⊕

i∈I pρ(i)`ρ(i).Eρ(i) ρ is any permutation on I

S5 (
⊕

i pi`i.Ei) ⊕ p`.E ⊕ q`.E = (
⊕

i pi`i.Ei) ⊕ (p+ q)`.E

C
∑

i∈1..n

⊕
j pij`ij .Eij =

∑
i∈1..n

⊕
j pij`ij .Eij +

⊕
i∈1..n

⊕
j ripij`ij .Eij

T1
⊕

i piτ.(Ei +X) = X +
⊕

i piτ.(Ei +X)

T2 (
⊕

i pi`i.Ei) ⊕ pτ.(F +
⊕

j qjhj .Fj) + (
⊕

i pi`i.Ei) ⊕ (
⊕

j pqjhj .Fj)

= (
⊕

i pi`i.Ei) ⊕ pτ.(F +
⊕

j qjhj .Fj)

T3 (
⊕

i pi`i.Ei) ⊕ p`.(F +
⊕

j qjτ.Fj) + (
⊕

i pi`i.Ei) ⊕ (
⊕

j pqj`.Fj)

= (
⊕

i pi`i.Ei) ⊕ p`.(F +
⊕

j qjτ.Fj)

T4 `.τ.E = `.E

T5 If τ.E = τ.E + F and τ.F = τ.F + E then τ.E = τ.F .

R1 µXE = E{µXE/X}

R2 If E = F{E/X}, X weakly guarded in F, then E = µXF

R2′ If E = F{E/X}, X guarded in F, then E = µXF

R3 µX(E +X) = µXE

In C, there is a side condition
∑

i∈1..n ri = 1.

Table 3.7: All the axioms and rules

It is worth noticing that rule T5 is necessary to prove Lemma 3.56. Consider the following two

expressions: τ.a and τ.(a + (1
2τ.a ⊕

1
2a)). It is easy to see that they are observational equivalent.

However, we cannot prove their equality if rule T5 is excluded from the system Afo . In fact, by using

only the other rules and axioms it is impossible to transform τ.(a+ (1
2τ.a⊕

1
2a)) into an expression

without a probabilistic branch pτ.a occurring in any subexpression, for some p with 0 < p < 1. So

it is not provably equal to τ.a, which has no probabilistic choice.

3.7 Summary

In this chapter we have proposed a probabilistic process calculus which corresponds to Segala and

Lynch’s probabilistic automata. We have presented strong bisimilarity, strong probabilistic bisimi-

larity, divergency-sensitive equivalence and observational equivalence. Sound and complete inference

systems for the four behavioural equivalences are summarized in Table 3.8.

Note that we have axiomatized divergency-sensitive equivalence and observational equivalence

only for guarded expressions. For unguarded expressions whose transition graphs include τ -loops,

we conjecture that the two behavioural equivalences are undecidable and therefore not finitely

axiomatizable. The reason is the following: in order to decide whether two expressions E and F are

3.7. SUMMARY 63

strong equivalences finite expressions all expressions

∼ As: S1-5 Ar: S1-5,R1-3

∼c Asc: S1-5,C Arc: S1-5,R1-3,C

weak equivalences finite expressions guarded expressions

h Afd: S1-5,C,T1-3 Agd: S1-5,C,T1-3,R1,R2′

' Afo: S1-5,C,T1-5 Ago: S1-5,C,T1-5,R1,R2′

Table 3.8: All the inference systems

observationally equivalent, one can compute the two sets

SE = {η | E ⇒ η} and SF = {η | F ⇒ η}

and then compare them to see whether each element of SE is related to some element of SF and vice

versa. For guarded expressions E and F , the sets SE and SF are always finite and thus they can

be compared in finite time. For unguarded expressions, these sets may be infinite, and so the above

method does not apply. Furthermore, these sets can be infinite even when we factorize them with

respect to an equivalence relation as required in the definition of weak probabilistic bisimulation.

For example, consider the expression E = µX(1
2a⊕

1
2τ.X). It can be proved that SE is an infinite

set {ηi | i ≥ 1}, where

ηi = {(a, 0 : (1 −
1

2i
)), (τ, E :

1

2i
)}.

Furthermore, for each i, j ≥ 1 with i 6= j we have ηi 6≡R ηj for any equivalence relation R which

distinguishes E from 0. Hence the set SE modulo R is infinite.

It should be remarked that the presence of τ -loops in itself does not necessarily cause non-

decidability. For instance, the notion of weak probabilistic bisimulation defined in [Seg95, CS02]

is decidable for finite-state PA. The reason is that in those works weak transitions are defined in

terms of schedulers, and one may get some weak transitions that are not derivable by the (finitary)

inference rules used in this paper. For instance, consider the transition graph of the above example.

The definition of [Seg95, CS02] allows the underlying probabilistic execution to be infinite as long

as that case occurs with probability 0. Hence with that definition one has a weak transition that

leads to the distribution θ = {(a, 0 : 1)}. Thus each ηi becomes a convex combination of θ and δ(E),

i.e. these two distributions are enough to characterise all possible weak transitions. By exploiting

this property, Cattani and Segala gave a decision algorithm for weak probabilistic bisimulation in

[CS02].

In this chapter we have chosen, instead, to generate weak transitions via (finitary) inference rules,

which means that only finite executions can be derived. This approach, which is also known in the

literature ([SL94]), has the advantage of being more formal, and in the case of guarded recursion

it is equivalent to the one of [Seg95, CS02]. In the case of unguarded recursion, however, we feel

that it would be more natural to consider also the “limit” weak transitions of [Seg95, CS02]. The

axiomatisation of the corresponding notion of observational equivalence is an open problem.

64 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

Chapter 4

Axiomatisations for Typed Mobile

Processes

In this chapter we study the impact of types on the algebraic theory of the π-calculus. The type

system has capability types, which give rise to a natural and powerful subtyping relation – the main

source of challenges and interests of this chapter. We consider two variants of typed bisimilarity,

both in their late and in their early version. For both of them, we give complete axiomatisations

for the closed finite terms. For one of the two variants, we provide a complete axiomatisation for

the open finite terms.

The contents of this chapter are presented in the following order. In Section 4.1 we introduce

the syntax, semantics and typed bisimilarity for a version of the π-calculus without parallelism.

This small language already shows the major obstacles for axiomatisations and hence makes the

presentation of our ideas neater. In Section 4.2 we set up a complete axiomatisation for closed terms.

In Section 4.3 we axiomatize the typed bisimilarity for all finite terms. In Section 4.4 we examine

other equivalences and relate their axiomatisations to the results obtained in the previous sections.

In Section 4.5 we show how the operator of parallel composition is admitted in the language. The

effect on the axiomatisations is to add an expansion law to eliminate all occurrences of the operator.

Finally we end this chapter with some concluding remarks.

4.1 A Fragment of The Typed π-calculus

In this section we review the π-calculus (without parallelism), capability types, the usual operational

semantics, typed labelled transition system as well as typed bisimilarity.

4.1.1 Standard Operational Semantics

We assume an infinite set of channels, ranged over by a, b, . . ., and an infinite set of variables, ranged

over by x, y, We write ∗ for the unit value (we shall use unit as the only base type). Channels,

variables and ∗ are the names, ranged over by u, v, Below is the syntax of finite processes (also

65

66 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

called terms).

P,Q ::= 0 | τ.P | u(x : T).P | ūv.P | P +Q | (νa : T)P | ϕPQ
ϕ ::= [u = v] | ¬ϕ | ϕ ∧ ψ

It has the usual constructors of finite monadic π-calculus: inaction, prefix, sum and restriction.

The match constructor is replaced by a more general condition, ranged by ϕ, ψ etc, and produced

by match, negation and conjunction. Mismatching like [u 6= v] abbreviates ¬[u = v]. We also use

∨, which can be derived from ∧ as usual. Here ϕPQ is an if-then-else construct on the boolean

condition ϕ. We omit the else branch Q when it is 0. We have not included an operator of recursion

because our main results in this chapter are about axiomatisations for finite terms. However, all

results and definitions in Section 4.1 remain valid when recursion is added.

There is a channel-binding and a variable-binding operator. In (νa : S)P the displayed occur-

rence of channel a is binding with scope P . In u(x : T).P the occurrence of variable x is binding

with scope P . An occurrence of a channel (resp. variable) in a process is bound if it lies within

the scope of a binding occurrence of the channel (resp. variable). An occurrence of a channel or a

variable in a process is free if it is not bound. We write fn(P) and fv(P) for the set of free names

and the set of free variables, respectively, in P . We use n(ϕ) for all names appearing in ϕ. When ϕ

has no variables, [[ϕ]] denotes the boolean value of ϕ.

When fv (P) 6= ∅, P is an open term. We can make open terms closed by the use of closing

substitutions, ranged over by σ, σ′, σi, · · ·, which are substitutions mapping variables to channels

and acting as identity on channels (thus similar to the concept of ground substitution used in term

rewriting systems [Zan03]). In the calculus, the distinction between channels and variables simplifies

certain technical details; see for instance the discussion on the rules for substitutivity of prefixes

in Section 4.3: the rules are different depending on whether the prefixes use channels or variables.

(This is not the case in the untyped case: for instance, [PS95] does not distinguish between variables

and channels, but it is quite straightforward to adapt the work to the case where there is such a

distinction.)

The standard operational semantics is presented in the late style in Table 4.1. The symmetric

rule of sum is omitted. In a transition P
α

−→ P ′, the closed term P may become open in P ′ after

performing the action α. As usual there are four forms of actions: τ (interaction), a(x : T) (input),

āb (free output), ā(b : T) (bound output). We also use α to range over the set of extended prefixes,

which contains the tau, the input prefixes, the output prefixes and the bound output prefixes. The

bound output ū(a : T).P is an abbreviation of (νa : T)ūa.P . As in Section 2.2.2 we use subj (α),

bn(α) and n(α) to stand for the subject, bound name and names of α. As usual we identify terms

up to alpha-conversion.

We recall the capability types, as from [HR04, HR02b]. The subtyping relation <: and the typing

rules for processes are displayed in Table 4.2. We write T :: TYPE to mean that T is a well-defined

type. There are three forms of types for channel names: iT, oS and b〈T, S〉, they correspond to

the ability to receive values of type T , send values of type S, or to do both. For simplicity we often

abbreviate b〈T, T 〉 to bT (which is actually the simple channel type]T given in Section 2.2.5). As

shown in [HR02b], this extension to the original I/O types (cf. Section 2.2.6) makes it possible to

define two partial operators meet (u) and join (t). But the definitions of the two operators are

4.1. A FRAGMENT OF THE TYPED π-CALCULUS 67

in
a(x : T).P

a(x:T)
−→ P

out
āb.P

āb
−→ P

tau
τ.P

τ
−→ P

sum P
α

−→ P ′

P +Q
α

−→ P ′

true
[[ϕ]] = True P

α
−→ P ′

ϕ P Q
α

−→ P ′
false

[[ϕ]] = False Q
α

−→ Q′

ϕ P Q
α

−→ Q′

open
P

āb
−→ P ′ a 6= b

(νb : T)P
ā(b:T)
−→ P ′

res
P

α
−→ P ′ b 6∈ n(α)

(νb : T)P
α

−→ (νb : T)P ′

Table 4.1: Transition rules

rather long, so we do not repeat them and recommend the reader to consult Section 6 of [HR02b].1

Intuitively, the meet (resp. join) of T and S is the union (resp. intersection) of their capabilities.

Proposition 4.1 Given types T1, T2 and S with T1 <: T2.

1. If Ti u S are defined, for i = 1, 2, then T1 u S <: T2 u S;

2. If Ti t S are defined, for i = 1, 2, then T1 t S <: T2 t S;

3. T1 u T2 = T1;

4. T1 t T2 = T2.

Proof: Following the definitions of meet and join, the result is straightforward by structural

induction on types. ut

A type environment ∆ is a partial function from channels and variables to types; we write ∆c

and ∆v for the channel and variable parts of ∆, respectively. A type environment is undefined on

infinitely many channels and variables (to make sure it can always be extended). We will often

view, and talk about, ∆c as a set of assignments of the form a : T , describing the value of ∆c on all

the channels on which ∆c is defined. Similarly for ∆v. If ∆(u) is defined and takes the form iT or

b〈T, S〉, then the predicate ∆(u)↓
i

holds and we write ∆(u)i for T , otherwise the predicate ∆(u)6↓
i

holds, indicating that ∆ has no input capability on u. Similarly for ∆(u)o and ∆(u)↓
o

(output

capability). Notice that ∆(u)↓
i

is covariant and ∆(u)↓
o

is contravariant.

Proposition 4.2 Suppose that u, v ∈ dom(∆) and ∆(u) <: ∆(v).

1. If ∆(v)↓
i

then ∆(u)i <: ∆(v)i;

2. If ∆(v)↓
o

then ∆(v)o <: ∆(u)o.

1The only modification we have made is as follows. If two channel types T and S have no common capability,

then in our setting T t S is undefined, while in [HR02b] T t S is defined to be a maximal type, which is a supertype

of every channel type.

68 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

Types:

unit :: TYPE

T :: TYPE

iT, oT :: TYPE

T, S :: TYPE S <: T

b〈T, S〉 :: TYPE

Subtyping:

T <: T

T <: T ′ T ′ <: T ′′

T <: T ′′

T <: T ′

iT <: iT ′

T <: T ′

oT ′ <: oT

T <: T ′

b〈T, S〉 <: iT ′

T <: T ′

b〈S, T ′〉 <: oT

T <: T ′ S <: S′

b〈T, S′〉 <: b〈T ′, S〉

Typing rules:

Γ(u) <: T

Γ ` u : T

Γ ` P Γ ` Q

Γ ` P +Q

Γ, x : T ` P Γ ` u : iT

Γ ` u(x : T).P

Γ ` 0

Γ, a : T ` P

Γ ` (νa : T)P

Γ ` u : oT Γ ` v : T Γ ` P

Γ ` ūv.P

Γ ` P

Γ ` τ.P

Γ ` P Γ ` Q n(ϕ) ⊆ dom(Γ)

Γ ` ϕ P Q

Table 4.2: Types and typing rules

The typing rules for processes are standard except for conditions. We impose no constraint for

the types of names appearing in conditions. The reason is discussed in Section 1.4. This mild

modification does not affect the proofs of the following two results [PS96, HR02b, HR04].

Lemma 4.3 (Substitution) If Γ ` a : T and Γ, x : T ` P , then Γ ` P{a/x}.

Theorem 4.4 (LTS subject reduction) Suppose Γ ` P and P
α

−→ P ′.

1. if α = τ then Γ ` P ′.

2. if α = a(x : T) then Γ(a) ↓i and Γ, x : T ` P ′.

3. if α = āb then Γ(a) ↓o, Γ ` b : Γ(a)o and Γ ` P ′.

4. if α = ā(b : T) then Γ(a) ↓o, Γ, b : T ` b : Γ(a)o and Γ, b : T ` P ′.

4.1.2 Typed Labelled Transition System

Two known TLTSs were presented in [BS98, HR04], both of them were given in early style. We

prefer to write a TLTS in late style, so as to define the late version of bisimilarity in a concise way.

4.1. A FRAGMENT OF THE TYPED π-CALCULUS 69

Red P
τ

−→ P ′

∆] P
τ

−→ ∆] P ′
Out

∆(a) ↓i

∆] āb.P
āb
−→ ∆ u b : ∆(a)i] P

In
∆(a) ↓o

∆] a(x : T).P
a(x:T)
−→ ∆, x : T] P

Open
∆] P

āb
−→ ∆′] P ′ a 6= b

∆] (νb : T)P
ā(b:T)
−→ ∆′] P ′

Res
∆] P

α
−→ ∆′] P ′ a 6∈ n(α)

∆] (νa : T)P
α

−→ ∆′] (νa : T)P ′
Sum

∆] P
α

−→ ∆′] P ′

∆] P +Q
α

−→ ∆′] P ′

True
[[ϕ]] = True ∆] P

α
−→ ∆′] P ′

∆] ϕPQ
α

−→ ∆′] P ′
False

[[ϕ]] = False ∆] Q
α

−→ ∆′] Q′

∆] ϕPQ
α

−→ ∆′] Q′

Table 4.3: Typed LTS

First we extend the subtyping relation to type environments, but only considering the types

of channels. So Γ <: ∆ means that Γv = ∆v, dom(∆c) ⊆ dom(Γc) and Γc(a) <: ∆c(a) for all

a ∈ dom(∆c).

Definition 4.5 A configuration is a pair ∆]P which respects some type environment Γ, i.e., Γ <: ∆

and Γ ` P .

The above definition implies the condition fv (P) ⊆ dom(∆v), because we have fv (P) ⊆ dom(Γv)

by Γ ` P and dom(Γv) = dom(∆v) by Γ <: ∆. Since alpha-conversion is implicitly used throughout

this thesis, we may assume bn(P) ∩ dom(∆) = ∅. Here there exists a mild difference from the

definitions of configuration given in [BS98, HR04]. We do not require the environment to have

knowledge of all the free channels used by P . The less knowledge it grasps, the weaker testing

power it owns when observing the behaviour of P . In Table 4.3, we present a transition system built

on this definition. In the premise of rule Red, P
τ

−→ P ′ stands for the standard reduction relation

of the typed π-calculus, as given in Table 4.1.

Using the partial meet operation, we can extend a type environment ∆ to ∆ u u : T , which is

just ∆, u : T if u 6∈ dom(∆), otherwise it differs from ∆ at name u because the capability of this

name is extended to be ∆(u)uT (if ∆(u)uT is undefined, then so is ∆uu : T). In this way we can

define ∆1 u∆2 as the meet of two environments ∆1 and ∆2. In rule Out, the process sends channel

b to the environment, so the latter should be dynamically extended with the capability on b thus

received. For this, we use the meet operator, and exploit the following property on types:

R <: T and R <: S imply T u S defined and R <: T u S

for any type T, S and R. (This property does not hold for the capability types as in Section 2.2.6.)

The next three fundamental lemmas describe various properties of the TLTS. They underpin

many later results. The well-definedness of our TLTS is based on Lemma 4.6. The close relationship

between processes and configurations is reflected by their corresponding transitions, as can be seen

in Lemma 4.7. Finally Lemma 4.8 says that the more capabilities an environment owns, the more

behaviours it can observe on a process.

70 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

Lemma 4.6 (TLTS subjection reduction) If ∆]P is a configuration which respects Γ and ∆]P
α

−→

∆′]P ′, then ∆′]P ′ is also a configuration, respecting Γ′, where

1. if α = τ then ∆′ = ∆ and Γ′ = Γ.

2. if α = a(x : T) then ∆′ = ∆, x : T and Γ′ = Γ, x : T .

3. if α = āb then ∆′ = ∆ u b : ∆(a)i and Γ′ = Γ.

4. if α = ā(b : T) then ∆′ = ∆, b : ∆(a)i and Γ′ = Γ, b : T .

Proof: By induction on depth of inference. LTS subject reduction theorem is needed. ut

Lemma 4.7 Suppose that ∆]P is a configuration.

1. ∆]P
τ

−→ ∆]P ′ iff P
τ

−→ P ′.

2. ∆]P
a(x:T)
−→ ∆, x : T]P ′ iff ∆(a) ↓o and P

a(x:T)
−→ P ′.

3. ∆]P
āb
−→ ∆ u b : ∆(a)i]P

′ iff ∆(a) ↓i and P
āb
−→ P ′.

4. ∆]P
ā(b:T)
−→ ∆, b : ∆(a)i]P

′ iff ∆(a) ↓i and P
ā(b:T)
−→ P ′.

Proof: By induction on depth of inference. ut

Lemma 4.8 Suppose that ∆]P
α

−→ ∆′]P ′, Γ <: ∆ and Γ]P is a configuration. Then Γ]P
α

−→ Γ′]P ′

and Γ′ <: ∆′.

Proof: Straightforward by using the preceding lemma. ut

4.1.3 Typed Bisimilarity

When comparing two typed actions, to require them to be syntactically the same is too restrictive.

For example one would not be able to say (νa : T1)ūa is bisimilar to (νa : T2)ūa under the environ-

ment ∆ = u : bobT , where T1 = boT, T2 = bbT . Therefore we do not check types in the bisimulation

game. We shall write |α | for the action α where its type annotations have been stripped off.

P l∆ Q reads “P and Q are bisimilar under type environment ∆”. The type environment ∆ is

used as follows: ∆c shows the channels that are known to the external observer testing the processes

in the bisimulation game, and the types with which the observer is allowed to use such channels. By

contrast, ∆v shows the set of variables that may appear free in the processes and the types for these

variables show how the observer can instantiate such variables (in closing substitutions). Therefore:

the channels of ∆c are to be used by the observer, with the types indicated in ∆c; the variables

in ∆v are to be used by the processes, but the observer can instantiate them following the types

indicated in ∆v.

A process is closed if it does not have free variables; similarly a type environment is closed if it

is only defined on channels. Otherwise, processes and type environments are open. We first define

l∆ on the closed terms, then on the open terms. Bisimilarity is given in the late style; we consider

the early style in Section 4.4.2.

4.1. A FRAGMENT OF THE TYPED π-CALCULUS 71

Definition 4.9 A family of symmetric binary relations over closed terms, indexed by type envi-

ronments, and written {R∆}∆, is a typed bisimulation whenever P R∆ Q implies that, for two

configurations ∆]P and ∆]Q,

1. if ∆]P
α

−→ ∆′]P ′ and α is not an input action, then for some Q′, ∆]Q
β

−→ ∆′]Q′, |α |=|β |

and P ′ R∆′ Q′.

2. if ∆]P
a(x:T)
−→ ∆′]P ′, then for some Q′, ∆]Q

a(x:S)
−→ ∆′′]Q′ and for all b with ∆c ` b : ∆(a)o it

holds that P ′{b/x} R∆ Q′{b/x}.

Two processes P and Q are typed ∆-bisimilar, written P l∆ Q, if there exists a typed bisimulation

{R∆}∆ such that P R∆ Q.

The difference w.r.t. typed bisimilarity as in [BS98, HR04] is that, in the input clause, the

type environment ∆ is not extended. In other words, the knowledge of the external observer does

not change through interactions with the process in which the value transmitted is supplied by the

observer itself (by contrast, the knowledge does change when the value is supplied by the process;

cf. rule Out in Table 4.3). Therefore l∆ is optimised for reasoning on finite systems. To deal with

infinite systems, it is more suitable to use the alternative equivalence where the environment can be

extended. We shall turn to this topic in Section 4.4.1.

Definition 4.10 Two processes P and Q are bisimilar under the environment ∆ = ∆c, x̃ : T̃ ,

written P l∆ Q, if ∆]P , ∆]Q are configurations and, for all b̃ with ∆c ` b̃ : T̃ , it holds that

P{b̃/x̃} l∆c
Q{b̃/x̃}.

The intuition behind the above definition is that channels are capabilities while variables are

obligations of the environment. The environment is obliged to fill in the variables at the specified

types. Once the obligations are determined, they cannot be strengthened or weakened. That’s why

variables are invariant in the subtyping relation on type environments given before.

Below we report three basic properties of typed bisimilarity.

Lemma 4.11 If P l∆ Q and ∆ <: ∆′, then P l∆′ Q.

Proof: By Lemma 4.7, 4.8 and the definition of typed bisimilarity. ut

The intuition behind this lemma is quite clear. When two processes exhibit similar behaviours

under an environment with stronger discriminating power, they are also indistinguishable by a

weaker environment. In the presence of distinction between channels and variables, we have the

following interesting property for typed bisimilarity.

Lemma 4.12 If P l∆,x:T Q and S <: T then P l∆,x:S Q.

Proof: It follows easily from the definition of typed bisimilarity on open terms. ut

As we said before in Section 1.4, generally speaking, typed behavioural equivalences are not closed

under injective substitutions. Nevertheless, if a substitution only maps channels and variables to

other channels and variables of the same types respectively (called type-preserving substitution), we

do have the property seen in untyped π-calculus, as expressed by the lemma below. (With a slight

abuse of notation, here we use σ to stand for type-preserving substitutions.)

72 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

Lemma 4.13 If P l∆ Q then Pσ l∆σ Qσ for σ injective on fn(P,Q) ∪ dom(∆) and ∆σ is the

type environment which maps σ(u) to ∆(u) for all u ∈ dom(∆).

Proof: Similar to the proof in untyped setting. It follows from the fact that ∆]P
α

−→ ∆′]P ′

implies ∆σ]Pσ
ασ
−→ ∆′σ]P ′σ, for injective type-preserving substitution σ. ut

Since all processes are finite, and we do not use recursive types, in P l∆ Q, the environment

∆ can always be taken to be finite (i.e., defined only on a finite number of channels and variables):

it is sufficient that ∆ has enough names fresh w.r.t. P and Q, for all relevant types. This can be

proved with a construction similar to that in Lemma 4.34. In the remainder of the chapter all type

environments are assumed to be finite. (If ∆ is infinite, our proof systems in Section 4.2 and 4.4.1

remain sound and complete; the axiom system in Section 4.3 is still sound, but its completeness proof

relies on the finiteness of ∆.) We should stress, however, that all results and definitions presented

up to this section are also valid for non-finite processes (i.e., processes extended with recursion) and

for infinite type environment.

4.2 Proof System for the Closed Terms

In this section we present a proof system for the closed terms.

The proof system P for typed bisimilarity is composed of all inference rules and axioms in

Table 4.4. Whenever we write P =∆ Q it is intended that both ∆]P and ∆]Q are configurations

(see Definition 4.5 and the explanations immediately follow the definition), and in this section P,Q

are deemed to be closed terms. The rules are divided into six groups, namely those for: substitutivity,

sums, looking up the type environment, conditions, restrictions and alpha-conversion. The rules that

are new or different w.r.t. those of the untyped π-calculus are marked with an asterisk.

Tin* shows that an input prefix is not observable if the observer has no output capability on

the subject of the input. This comes as no surprise because the only means that the observer uses

for testing a process is to communicate with it. When no communication happens, he/she simply

regards the process being tested as 0. Tout* is the symmetric rule, for output. Twea* gives

us weakening for type environments, corresponding to Lemma 4.11. In Ires*, the side condition

a 6∈ dom(∆) is added for the sake of clarity, but formally it is not needed because of the definition

of configurations and our convention on bound names. Note that different types T1, T2 are used for

the processes in the conclusion. We cannot replace Ires* with two simpler rules such as

• If P =∆ Q then (νa : T)P =∆ (νa : T)Q

• (νa : T1)P =∆ (νa : T2)P ,

for equalities like (νb : biT)āb.b(x : iT).0 =a:iobT (νb : boT)āb.b(x : oT).0 could not be derived (due

to the constraints given by the well-typedness of processes). Similarly for rule Iinc*.

Iinc* and Iout* are the rules for substitutivity for input and output prefixes. In Iinc*, the

well-definedness of the two configurations ∆]a(x : T1).P and ∆]a(x : T2).Q implies the condition:

∆(a)o <: Ti for i = 1, 2. In Iout*, the observer knowledge of the type of b may increase when the

4.2. PROOF SYSTEM FOR THE CLOSED TERMS 73

Iinc* If P{b/x} =∆ Q{b/x} for all b with ∆c ` b : ∆(a)o then

a(x : T1).P =∆ a(x : T2).Q.

Iout* If P =∆ub:∆(a)i Q then āb.P =∆ āb.Q

Itau If P =∆ Q then τ.P =∆ τ.Q

Isum If P =∆ Q then P +R =∆ Q+R

Ires* If P =∆ Q then (νa : T1)P =∆ (νa : T2)Q a 6∈ dom(∆)

S1 P + 0 =∆ P

S2 P + P =∆ P

S3 P +Q =∆ Q+ P

S4 P + (Q+ R) =∆ (P +Q) +R

Tin* If ∆(a)6↓
o

then a(x : T).P =∆ 0

Tout* If ∆(a)6↓
i

then āu.P =∆ 0

Twea* If P =∆ Q and ∆ <: ∆′ then P =∆′ Q

Ca ϕ P Q =∆ P if [[ϕ]] = True

Cb ϕ P Q =∆ Q if [[ϕ]] = False

R1 (νa : T)0 =∆ 0

R2 (νa : T)α.P =∆ 0 if subj(α) = a

R3 (νa : T)(νb : S)P =∆ (νb : S)(νa : T)P

R4 (νa : T)(P +Q) =∆ (νa : T)P + (νa : T)Q

R5 (νa : T)α.P =∆ α.(νa : T)P if a 6∈ n(α)

A P =∆ Q if P alpha-equivalent to Q

Table 4.4: The proof system P for the closed terms

74 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

processes emit b themselves (for the type under which b is emitted is composed with the possible

type of b in ∆).

Compared with the proof system for untyped π-calculus [PS95], Tin* and Tout* are the main

differences.

Theorem 4.14 (Soundness of P) If P ` P =∆ Q then P l∆ Q.

Proof: By constructing appropriate bisimulations. ut

The completeness proof uses a standard strategy. By using the axioms S1-4, R1-5 and Ca-b,

we can transform each closed term into a canonical form
∑

i αi.Pi. If P and Q are bisimilar, their

canonical forms P ′ and Q′ are provably equal by induction on the depth of P ′ +Q′.

Theorem 4.15 (Completeness of P) If P l∆ Q then P ` P =∆ Q, where P and Q are closed

terms.

Proof: This proof differs from the completeness proof of untyped π-calculus [MPW92] in one place:

instead of showing that each summand of P is provably equivalent to a summand in Q, we only

require that each active summand of P is matched by an active summand of Q, and vice versa.

By active summand, we mean that the prefix can perform actions allowed by the environment ∆.

More precisely, if ai(xi : Ti).Pi is a summand of P and ∆(ai)↓o then this is an active input prefix.

Similarly for output prefixes. Inactive summand is provably equivalent to 0 by Tin* and Tout*,

thus can be consumed by S1. After finite steps of transformation, we have P ` P =∆

∑n
i=1 αi.Pi

and P ` Q =∆

∑m
j=1 βj.Qj , where all summands in P and Q are active.

Suppose that αi = ā(b : T1). Then ∆]P
ā(b:T1)
−→ ∆, b : ∆(a)i]Pi. Hence there is some βj = ā(b : T2)

such that Pi l∆,b:∆(a)i Qj . Since the depth of Pi + Qj is less than the depth of P + Q, we can

use induction hypothesis to derive P ` Pi =∆,b:∆(a)i Qj . By A we assume that the bound name

b 6∈ dom(∆), so ∆, b : ∆(a)i = ∆u b : ∆(a)i. Therefore we have P ` āb.Pi =∆ āb.Qj by Iout*, and

furthermore P ` ā(b : T1).Pi =∆ ā(b : T2).Qj by Ires*.

Suppose that αi = a(x : T1). Then ∆]P
a(x:T1)
−→ ∆′]Pi. There must exist a βj = a(x : T2)

such that Pi{b/x} l∆ Qj{b/x}, for all b s.t. ∆c ` b : ∆(a)o. Now observe that the depth of

Pi{b/x} +Qj{b/x} is less than the depth of P +Q, thus it follows from induction hypothesis that

P ` Pi{b/x} =∆ Qj{b/x}. Using Iinc* we infer that P ` a(x : T1).Pi =∆ a(x : T2).Qj .

Other cases can be analyzed similarly. As a result, each active summand of P is provably equal

to some active summand of Q. Symmetric arguments also hold. ut

4.3 Axioms for Typed Bisimilarity

In this section we give an axiom system for typed bisimilarity and prove its soundness and com-

pleteness. This axiomatisation is for all finite terms of the language given in Section 4.1, including

both open and closed terms.

4.3. AXIOMS FOR TYPED BISIMILARITY 75

4.3.1 The Axiom System

The axiom system A for typed bisimilarity is presented in Table 4.5. Roughly speaking, it is obtained

from P by adding some axioms for dealing with conditions. In open terms usually the conditions

cannot be simply eliminated by Ca-b, so we need the axioms C1-7 and R6-7 to manipulate them.

We use the notation ϕ ⇒ ψ to mean that ϕ logically implies ψ; in C1 the condition ϕ ⇐⇒ ψ

means that ϕ and ψ are logically equivalent. In view of C3 and R6, axiom R1 is redundant. The

rule Iinc* of P now becomes the concise axiom Iin* in A. Tvar* shows that a variable can only

be instantiated with channels that in the type environment have types compatible with that of

the variable. Tpre* is used to replace names underneath a match. It implies, in the presence of

other axioms of A, a more powerful axiom: [x = a]P =∆ [x = a]P{a/x} if ∆(a) <: ∆(x), which

substitutes through P . In the untyped setting, Tpre* has no side condition. Here we need one to

ensure well-typedness of the process resulting from the substitution, since the names in the match

can have arbitrary — and possibly unrelated — types.

The following axioms and rules are derivable from {S1-S4, C1-C6, Tvar*}. More derived

rules are given in Appendix B.1.

C8 P =∆ ϕP + ¬ϕP C9 ϕPQ =∆ ϕP + ¬ϕQ

C10 [ϕ ∨ ψ]P =∆ ϕP + ψP C11 ϕ(P +Q) =∆ ϕP + ϕQ

Cnn1 [a = b]P =∆ 0 if a 6= b Tvn1 [x = a]P =∆ 0 if a 6∈ dom(∆)

Cnn2 [a 6= b]P =∆ P if a 6= b Tvn2 [x 6= a]P =∆ P if a 6∈ dom(∆)

Tv1 P =∆,x:T 0 if there exists no a ∈ dom(∆) s.t. ∆(a) <: T

Note that in Iin* and Iout*, the free names of the input and output prefixes are channels rather

than variables. Below we discuss:

1. the unsoundness of the rules in which (some or all) the channels are replaced by variables;

2. other rules, that are valid for variables;

3. why these other rules are not needed in the axiom system.

Intuitively the reason for (1) is the different usage of channels and variables that appear in a type

environment: the information on channels tells us how these channels are to be used by the external

environment, while the information on variables tells us how these variables are to be instantiated

inside the tested processes.

To see that Iin* is unsound when the subject of the prefix is a variable, take ∆c

def
= a : boT, b : oT

and ∆
def
= ∆c, x : b〈oT, bT 〉. Then we have

[y = b]τ l∆,y:∆(x)o 0

because ∆(x)o = bT and no c in ∆ satisfies the condition ∆c ` c : bT and can therefore instantiate

y. However,

x(y : oT).[y = b]τ 6l∆ x(y : oT).0.

To see this, let us look at the possible closing substitutions. In dom(∆c), a is the only channel

satisfying ∆c ` a : ∆(x), and so the only substitution we need to consider is {a/x}. After applying

76 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

Iin* If P =∆,x:∆(a)o Q then a(x : T1).P =∆ a(x : T2).Q

Icon If P =∆ Q then ϕP =∆ ϕQ

Tvar* [x 6= a1] · · · [x 6= am]P =∆ 0 if {b ∈ dom(∆c) | ∆(b) <: ∆(x)} ⊆ {a1, · · · , am}

Tpre* [x = a]α.P =∆ [x = a](α{a/x}).P if ∆(a) <: ∆(x)

C1 ϕ P =∆ ψ P if ϕ⇐⇒ ψ

C2 [a = b]P =∆ [a = b]Q if a 6= b

C3 ϕ P P =∆ P

C4 ϕ P Q =∆ ¬ϕ Q P

C5 ϕ(ψP) =∆ [ϕ ∧ ψ]P

C6 ϕ (P1 + P2) (Q1 +Q2) =∆ ϕ P1 Q1 + ϕ P2 Q2

C7 ϕ (α.P) =∆ ϕ (α.ϕP) if bn(α) ∩ n(ϕ) = ∅

R6 (νa : T)[a = u]P =∆ 0 if a 6= u

R7 (νa : T)[u = v]P =∆ [u = v](νa : T)P if a 6= u, v

P\{Iinc*, Ca-b, R1}

Table 4.5: The axiom system A

this substitution, the resulting closed terms are not bisimilar:

a(y : oT).[y = b]τ 6l∆ a(y : oT).0

This holds because the observer can send b along a and, after the communication, y is instantiated

to be b, thus validating the condition y = b and liberating the prefix τ . When the subject of the

prefix is a variable, the following rule is needed in place of Iin*:

Iv1 If P =∆,y:∆(x)i Q then x(y : T1).P =∆ x(y : T2).Q

In rule Iout*, both the subject and object of the output prefix are channels. The rule is also

valid when the object is a variable. However, it is not valid if the subject is a variable. As a

counterexample, let ∆c

def
= a : iT ,b : bbT and ∆

def
= ∆c, x : b〈iT, bT 〉. Then we have a l∆ua:iT 0

but x̄a.a 6l∆ x̄a.0 because, under the substitution {b/x}, it holds that b̄a.a 6l∆ b̄a.0. When the

subject of the prefix is a variable, we need the following rule:

Iv2 If P =∆uv:∆(x)o Q then x̄v.P =∆ x̄v.Q

We show, by means of an example, why rules Iin* and Iout* are sufficient in the axiom system

(rules Iv1 and Iv2 are derivable, see Appendix B.1). Consider the equality

x(y : iiT).y l∆ x(y : ioT).0

where ∆
def
= a : bibT, b : ibT , x : bibT . First, we infer

y =∆′ 0 for ∆′ = ∆, y : ibT (1)

proceeding as follows:

4.3. AXIOMS FOR TYPED BISIMILARITY 77

y =∆′ [y = b]y + [y 6= b]y by C8

=∆′ [y = b]y by Tvar*

=∆′ [y = b]b by Tpre*

=∆′ [y = b]0 by Tin*

=∆′ 0 by C3

Then we derive x(y : iiT).y =∆ x(y : ioT).0 in a similar way:

x(y : iiT).y

=∆ [x = a]x(y : iiT).y + [x 6= a]x(y : iiT).y by C8

=∆ [x = a]x(y : iiT).y by Tvar*

=∆ [x = a]a(y : iiT).y by Tpre*

=∆ [x = a]a(y : ioT).0 by (1), Iin*, Icon

=∆ x(y : ioT).0 by Tpre*, Tvar*, C8

4.3.2 Soundness and Completeness

The soundness of the axioms displayed in Table 4.5, and therefore of A, is easy to be verified.

Theorem 4.16 (Soundness of A) If A ` P =∆ Q then P l∆ Q.

The remainder of the section is devoted to proving the completeness of A. The schema of the

proof is similar to that for the untyped π-calculus [PS95]. The details, however, are quite different.

An example of this is the manipulation of terms underneath input and output prefixes mentioned

above. We discuss below another example, related to the issue of invariance of bisimilarity under

injective substitutions. In the untyped case, the process x | a (the operational semantics of parallel

composition is standard and will be given in Section 4.5) is equal to x.a+a.x+τ when x is instantiated

to a, to x.a+a.x otherwise. This can be expressed by expanding the process by means of conditions:

that is, using conditions to make a case analysis on the possible values that the variable may take.

Thus, x | a is expanded to [x= a](x | a)+[x 6= a](x | a). Now, underneath [x= a] we know that x will

be a, and therefore x | a can be rewritten as x.a+a.x+τ , whereas underneath [x 6= a] we know that x

will not be a and therefore x | a can be rewritten as x.a+a.x. In general, the expansion of a process

with a free variable x produces a summand [x 6= a1] · · · [x 6= an]P where a1, · · · , an are all channels

(different from x) that appear free in P . The mismatch [x 6= a1] · · · [x 6= an] tells us that x in P will

be instantiated to a fresh channel, which is sufficient for all manipulations of P involving x, since

bisimulation is invariant under injective substitutions. In the typed calculus, by contrast, knowing

that x is fresh may not be sufficient: we may also need the information on the type with which x

will be instantiated. This type may be different from the type T of x in the type environment: x

could be instantiated to a fresh channel whose type is a subtype of T (the behavioural consequences

of this type information can be seen in the example at the end of Section 4.4.1). We have therefore

adopted a strategy different from that in the proof for untyped calculi: rather than manipulating

processes that begin with “complete” sequences of mismatches — as in the untyped case — we try

to cancel them, using rule Tvar*; further, the conditional expansion of a process takes into account

also the names that appear in the type environment.

78 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

Definition 4.17 A condition ϕ is satisfiable if [[ϕσ]] = True for some closing substitution σ. Given

a set of names V , a condition ϕ is complete on V if for some equivalence relation R on V , called

the equivalence relation corresponding to ϕ, it holds that ϕ ⇒ [u = v] iff uRv and ϕ ⇒ [u 6= v] iff

¬(uRv), for any u, v ∈ V .

In the untyped setting which does not distinguish channels from variables, like in [PS95], every

complete condition is satisfiable, and two substitutions satisfying the same complete condition relate

to each other by some injective substitution. In this chapter, however, due to the distinction

between variables and channels and the concept of closing substitution, there exist some conditions

which are complete but not satisfiable. For instance, ϕ = [x = a] ∧ [a = b] ∧ [b 6= c] is complete

on V = {x, a, b, c}, with the equivalence classes {{x, a, b}, {c}}. This condition is not satisfiable

because closing substitutions do not map channels to other channels, then σ(a) = a 6= b = σ(b) for

any closing substitution σ, i.e., [[ϕσ]] = False. In a typed setting, there are even fewer conditions

which are satisfiable. For a given type environment ∆ = ∆c, x̃ : T̃ we are only interested in closing

substitutions of the form (called legal substitution on ∆): σ = {b̃/x̃} where ∆c ` b̃ : T̃ . As to the

simple condition [xi = a], with xi, a ∈ dom(∆), if ∆(a) 6<: Ti, the substitution {a/xi} is illegal and

not considered. So no legal substitution can satisfy [xi = a], i.e., the condition is not satisfiable.

Lemma 4.18 If ϕ is complete on dom(∆) and ∅ ⊂ dom(∆v) ⊂ dom(∆), there is at most one legal

substitution which satisfies ϕ.

Proof: Since ϕ is complete, there is a corresponding equivalence relation R. For ϕ to be satisfiable

by a closing substitution σ on dom(∆), each equivalence class of R, say {u1, · · · , un}, must meet

the following two conditions.

• Not all ui are variables. Otherwise, for any a ∈ dom(∆c), ϕ ⇒ [ui 6= a]. Then ϕσ ⇒

[σ(ui) 6= a] for all a ∈ dom(∆c), contradicting the definition of closing substitution, which

maps variables to channels, i.e., σ(ui) ∈ dom(∆c).

• There is no more than one channel in any equivalence class. Otherwise, let a, b be two channels

and ϕ⇒ [a = b], then ϕσ ⇒ [a = b], i.e., [[ϕσ]] = False.

As a result, in each equivalence class there is one and only one channel, possibly with some variables.

So the class looks like {a, x1, · · · , xn−1} where n ≥ 1. The substitution which satisfies ϕ must map

all the variables in the equivalence class into its unique channel. Moreover, to ensure that ϕ is

satisfied by a legal substitution, there is a third constraint imposed on the equivalence class:

• ∆(a) <: ∆(xi) for all i ≤ n− 1.

All these conditions determine the uniqueness of the legal substitution, if it exists. ut

Lemma 4.19 If ϕ and ψ are complete conditions on dom(∆) and are satisfied by the same legal

substitution on ∆, then ϕ⇐⇒ ψ.

Proof: ϕ ∧ ψ is also satisfiable by the same legal substitution. Then ϕ⇐⇒ ϕ ∧ ψ ⇐⇒ ψ because

ϕ and ψ are complete conditions. ut

4.3. AXIOMS FOR TYPED BISIMILARITY 79

The following lemma shows that in the presence of complete conditions, it is sufficient to test

one substitution for typed bisimilarity of open terms.

Lemma 4.20 Let P ≡ ϕP ′ and Q ≡ ϕQ′, with ϕ complete on dom(∆). If σ is a legal substitution

on ∆, σ satisfies ϕ and Pσ l∆c
Qσ, then P l∆ Q.

Proof: By Lemma 4.18, besides σ there is no other substitution ρ = {c̃/x̃} with ∆c ` c̃ : T̃ which

can satisfy ϕ. In other words, (ϕP ′)ρ l∆c
0 l∆c

(ϕQ′)ρ. Therefore we have P l∆ Q by the

definitions of typed bisimilarity. ut

As in [PS95], the definition of head normal form exploits complete conditions. Here the difference

is that we only consider those conditions which can be satisfied by some legal substitutions, while

in [PS95] all complete conditions are involved because all of them are satisfiable.

Definition 4.21 (head normal form) We say that P is in head normal form w.r.t. ∆ if P is of

the form ∑

i

ϕiαi.ϕ
′
iPi

where for all i,

1. bn(αi) 6∈ dom(∆);

2. ϕi is complete on dom(∆) and satisfiable by some legal substitution on ∆;

3. ϕ′
i = ϕi if αi is an input or free action;

4. ϕ′
i = ϕi ∧ (

∧
v∈dom(∆)[a 6= v]) if αi = ū(a : T).

The proof of completeness is established by induction on the depth, d(P), of a head norm form

(hnf) P . Its depth is defined as:

d(0)
def
= 0

d(
∑n

i=1 ϕiαi.ϕ
′
iPi)

def
= 1 +max{d(Pi) | 1 ≤ i ≤ n}

Lemma 4.22 For each process P and environment ∆, with fv (P) ⊆ dom(∆v), there is some H of

no greater depth than P and in hnf w.r.t. ∆, such that A ` P =∆ H.

Proof: By structural induction on processes. Let V = dom(∆). We consider two interesting cases.

The first is when P ≡ α.P ′. Let x be any variable in V . If for each channel a ∈ V , ∆(a) 6<: ∆(x),

then we use Tv1 to derive that A ` P =∆ 0. Otherwise, suppose Vx = {a1, · · · , an} collects

all channels in V such that ∆(ai) <: ∆(x). As in the untyped setting [PS95] we can infer that

A ` P =∆

∑m
i=1 ψiα.ψiP

′, where each ψi is complete on V , but not necessarily satisfiable by some

legal substitution on ∆. There are two occasions where ψi is not satisfiable.

1. If ψi ⇒ [a = b] for a, b ∈ dom(∆c) and a 6= b, we use Cnn1 to get A ` ψiα.ψiP
′ =∆ 0.

2. If ψi ⇒ [x 6= a1] · · · [x 6= an] we can use Tvar* to derive that A ` ψiα.ψiP
′ =∆ 0.

80 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

So we can remove the summand ψiα.ψiP
′ if ψi is not satisfiable. All other summands are satisfiable

by some legal substitutions because ψi ⇒ [x = ai] for one ai ∈ Vx and ψi ⇒ [x 6= b] for any other

b ∈ dom(∆c).

The second case is when P ≡ ψ Q R. By induction hypothesis Q and R can be transformed

into hnf w.r.t. ∆: A ` Q =∆

∑n
i=1 ψiαi.ψ

′
iQi and A ` R =∆

∑m
j=1 ψjαj .ψ

′
jRj . Let us examine the

general case that n,m > 0. By C9 and C11, it is easy to see that

A ` P =∆

n∑

i=1

[ψ ∧ ψi]αi.ψ
′
iQi +

m∑

j=1

[¬ψ ∧ ψj]αj .ψ
′
jRj .

Clearly ψ can be reduced to a disjunctive normal form
∨s

k=1

∧t
l=1 ϕkl where s, t ≥ 1 and ϕkl is

a match [ukl = vkl] or mismatch [ukl 6= vkl]. Let Q′
i = αi.ψ

′
iQi. We transform each summand

[ψ ∧ ψi]Q
′
i as follows.

A ` [ψ ∧ ψi]Q
′
i =∆ [(

∨s
k=1

∧t
l=1 ϕkl) ∧ ψi]Q

′
i by C1

=∆ [
∨s

k=1(ψi ∧
∧t

l=1 ϕkl)]Q
′
i by C1

=∆

∑s
k=1[ψi ∧

∧t
l=1 ϕkl]Q

′
i by C10

Now we assert that each summand [ψi ∧
∧t

l=1 ϕkl]Q
′
i is provably equal to 0 or ψiQ

′
i.

Let φk =
∧t

l=2 ϕkl if t > 1, and φk = True if t = 1. So by C1 we have A ` [ψi ∧
∧t

l=1 ϕkl]Q
′
i =∆

[ϕk1 ∧φk ∧ψi]Q
′
i. Here ϕk1 may be a match or mismatch. We look at match first. Let ϕk1 = [uk1 =

vk1] for some uk1 , vk1 s.t. uk1 6= vk1 .

1. If uk1 , vk1 ∈ V , then [ϕk1 ∧ φk ∧ ψi] is semantically equivalent either to False or to [φk ∧ ψi]

because ψi is complete on V . That is, we can infer A ` [ϕk1 ∧ φk ∧ ψi]Q
′
i =∆ 0 or A `

[ϕk1 ∧ φk ∧ ψi]Q
′
i =∆ [φk ∧ ψi]Q

′
i.

2. If uk1 , vk1 6∈ V , then uk1 , vk1 are channels because fv(P) ⊆ V . By Cnn1 we get A `

[ϕk1 ∧ φk ∧ ψi]Q
′
i =∆ 0.

3. If uk1 ∈ V and vk1 6∈ V , then vk1 is a channel but uk1 can be either a channel or a variable.

(a) uk1 is also a channel. We infer A ` [ϕk1 ∧ φk ∧ ψi]Q
′
i =∆ 0 by Cnn1.

(b) uk1 is a variable, i.e., uk1 ∈ x̃. We infer A ` [ϕk1 ∧ φk ∧ ψi]Q
′
i =∆ 0 by Tvn1.

When ϕk1 is a mismatch [uk1 6= vk1] we apply similar arguments. In Case 1 the result is the same.

In the last two cases, using Cnn2 or Tvn2 we infer that A ` [ϕk1 ∧ φk ∧ ψi]Q
′
i =∆ [φk ∧ ψi]Q

′
i.

Since there are only t components in
∧t

l=1 ϕkl, we can repeat this inference for at most t times and

eventually get either A ` [ψi ∧
∧t

l=1 ϕkl]Q
′
i =∆ 0 or A ` [ψi ∧

∧t
l=1 ϕkl]Q

′
i =∆ ψiQ

′
i.

Similar result can be got for [¬ψ ∧ ψj]αj .ψ
′
jRj as well.

In summary we have shown that each summand of P can either be removed or put into the form

of the summands of a hnf. ut

Theorem 4.23 (Completeness of A) If P l∆ Q then A ` P =∆ Q.

4.3. AXIOMS FOR TYPED BISIMILARITY 81

Proof: Let ∆ = ∆c, x̃ : T̃ . If there is no legal substitution on ∆, i.e., no ã with ∆c ` ã : T̃ , then

by Tv1 we have that A ` P =∆ 0 =∆ Q.

Below we suppose that there exist legal substitutions on ∆. By Lemma 4.22 we assume that P

and Q are in hnf w.r.t. ∆. Let

A ` P =∆

∑

i

ϕiαi.Pi and A ` Q =∆

∑

j

ψjβj .Qj .

For any summand ϕiαi.Pi of P , let σi be a legal substitution on ∆ which satisfies ϕi (actually

σi is the only legal substitution satisfying ϕi, according to Lemma 4.18). So if ϕi ⇒ [x = a]

then ∆(a) <: ∆(x) and xσi = a. By using Tpre* we can transform the action αi into αiσi

which contains no free variable. For example, if αi = x̄y and ϕi ⇒ [x = a] ∧ [y = b], then

ϕix̄y.Pi =∆ ϕixσiyσi.Pi ≡ ϕab.Pi. Furthermore, if the action αiσi is disallowed by the environment

(e.g., αiσi = āb and ∆(a)6↓
i
, similar for input actions), then by Tin* and Tout* the summand

ϕiαi.Pi is provably equal to 0 and thus can be consumed by S1. After finite steps of transformation,

all remaining summands are active, i.e., can perform some actions allowed by ∆. We do similar

transformation for Q.

Now we prove by induction on the depth of P +Q that each active summand of P is provably

equal to some active summand of Q. An active summand ϕiαi.Pi of P gives rise to a transition

∆c]Pσi
αiσi−→ ∆′

c
]Piσi. Since P l∆ Q, we have Pσi l∆c

Qσi. So there is a matching transition

∆c]Qσi
βjσi

−→ ∆′′
c
]Qjσi contributed by some active summand ψjβj .Qj of Q, with ψj satisfied by σi.

By Lemma 4.19 we know that ϕi ⇐⇒ ψj . From the definition of l∆c
we have:

1. if αiσi = βjσi = τ then Piσi l∆c
Qjσi;

2. if αiσi = βjσi = āb, for some channels a, b, then Piσi l∆cub:∆(a)i Qjσi;

3. if αiσi = ā(b : T1) and βjσi = ā(b : T2) for some channels a, b then Piσi l∆c,b:∆(a)i Qjσi;

4. if αiσi = a(x : T1) and βjσi = a(x : T2), for some a and x, then for all c with ∆c ` c : ∆(a)o

it holds that Piσi{c/x} l∆c
Qjσi{c/x}.

Let us analyze the last two cases in details. In Case 3, σi is also a legal substitution on

∆, b : ∆(a)i. By Lemma 4.20 one can infer that Pi l∆,b:∆(a)i Qj. By induction hypothesis

A ` Pi =∆,b:∆(a)i Qj . By Iout*, Ires*, Icon and C1 it can be inferred that A ` ϕiā(b :

T1).Pi =∆ ψj ā(b : T2)Qj . The required result is got by using Tpre*.

In Case 4, we have that Piσi{c/x} l∆c
Qjσi{c/x} for all c satisfying the condition ∆c ` c :

∆(a)o. Note that Pi = ϕiP
′
i and Qj = ψjQ

′
j. By Lemma 4.18, any substitution ρ = {c̃/x̃, d/x},

with ∆c ` c̃ : T̃ , d : ∆(a)o, which can satisfy ϕi and ψj , must coincide with σ on variables x̃. That

is, ρ = σ{d/x}. Therefore Piρ l∆c
Qjρ. For any other substitution, say ρ′, [[ϕiρ

′]] = [[ψjρ
′]] = False,

and so Piρ
′
l∆c

0 l∆c
Qjρ

′. Consequently for all ρ we have Piρ l∆c
Qjρ, i.e., Pi l∆,x:∆(a)o Qj .

Now applying induction hypothesis, A ` Pi =∆,x:∆(a)o Qj. It follows that A ` a(x : T1).Pi =∆ a(x :

T2).Qj by Iin*. Then we can infer A ` ϕiαi.Pi =∆ ψjβj .Qj by using Icon, C1 and Tpre*, in the

listed order. ut

82 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

4.4 Other Equivalences

In this section we study a variant bisimilarity proposed in [HR04], which allows extension of en-

vironments and enjoys a nice contextual property. Proof systems for closed terms are given. An

indirect axiomatisation is got by resorting to the system A of Section 4.3. We also show that the

difference between late and early style of typed bisimilarity is characterised by one axiom.

4.4.1 Hennessy and Rathke’s Typed Bisimilarity

Proof System for Closed Terms

In the input clause of l (Definition 4.9), the type environment ∆ is not extended. By contrast,

extensions are allowed in the bisimilarity used in [HR04]. We denote with m∆ the variant of l∆

which allows extension; its definition is obtained from that of l∆ by using the following input clause:

• if ∆]P
a(x:T)
−→ ∆′]P ′, then for some Q′, ∆]Q

a(x:S)
−→ ∆′′]Q′ and ∆,∆′′′ ` b : ∆(a)o implies

P ′{b/x} R∆,∆′′′ Q′{b/x}, for any channel b and closed type environment ∆′′′ with dom(∆′′′)∩

(fn(P,Q) ∪ dom(∆)) = ∅.

Similarly, ∆ can be extended in the definition on open terms.

Lemma 4.24 If P m∆ Q then P l∆ Q.

In m∆, the environment collects the knowledge of the observer relative to the tested processes,

in the sense that the environment only tells us what the observer knows of the free channels of

the processes. In contrast, in l∆, the environment collects the absolute knowledge of the observer,

including information on channels that at present do not appear in the tested processes, but that

might appear later — if the observer decides to send them to the processes. The main advantage

of m∆ is that the environment is allowed to invent an unbounded number of distinct names, so

it is more suitable for infinite systems. On the other hand, l∆ allows us to express more refined

interrogations on the equivalence of processes, for it gives us more flexibility in setting the observer

knowledge. Indeed, while m-equivalences can be expressed using l (Lemma 4.24), the converse is

false. For instance, the processes

P
def
= a(x : boT).[x = y]τ Q

def
= a(x : boT).0

are in the relation l∆, for ∆
def
= a : oboT, b : bbT, y : obT . However, they are not in a relation mΓ,

for any Γ: the observer can always create a new channel of type boT , and use it to instantiate both

x and y, thus validating the condition [x= y].

In the following lemma we give two properties of m∆. They are analogous to Lemma 4.11 and

4.13 respectively, and can be proved as their counterparts.

Lemma 4.25 1. If P m∆ Q and ∆ <: ∆′, then P m∆′ Q.

2. If P m∆ Q then Pσ m∆σ Qσ for σ injective on fn(P,Q) ∪ dom(∆) and ∆σ is the type

environment which maps σ(u) to ∆(u) for all u ∈ dom(∆).

4.4. OTHER EQUIVALENCES 83

An important property which is enjoyed by m∆ but not by l∆ is as follows.

Lemma 4.26 If P m∆ Q and a 6∈ fn(P,Q) ∪ dom(∆), then P m∆,a:T Q.

This lemma says that increasing capabilities on irrelevant channels does not raise an observer’s

discriminating power. The reason is that the observer already has the ability to create new channels,

since in the definitions of bisimulations we test all channels with appropriate types for the case of

input.

Lemma 4.27 It holds that a(x : T1).P m∆ a(x : T2).Q, if the following two conditions are satisfied.

(i) P{b/x} m∆ Q{b/x} for all b with ∆c ` b : ∆(a)o;

(ii) given c 6∈ fn(P,Q) ∪ dom(∆), P{c/x} m∆,c:T Q{c/x} for all T <: ∆(a)o.

Proof: The action of the configuration ∆]a(x : T1).P can be matched by that of ∆]a(x : T2).Q.

So we only show that P{b/x} m∆,∆′ Q{b/x} for any b and ∆′ with dom(∆′) ∩ fn(P,Q) = ∅ and

∆,∆′ ` b : ∆(a)o. There are two possibilities:

1. b ∈ dom(∆). When ∆′ = ∅, the result follows from the hypothesis (i). For other ∆′, we get

the result indirectly by using Lemma 4.26.

2. b 6∈ dom(∆). We consider the case that ∆′ = b : T with T <: ∆(a)o. Base on this case,

the result for other ∆′ with ∆′ = b : T,∆′′ can be inferred from Lemma 4.26. From (ii)

we know that P{c/x} m∆,c:T Q{c/x}. Since bisimulation is insensitive to injective type-

preserving substitutions by Lemma 4.25 (2), we have P{c/x}{b/c} m∆,b:T Q{c/x}{b/c}. That

is, P{b/x} m∆,∆′ Q{b/x}, which is the required result.

ut

We can derive a proof system for m with a simple modification of that for l in Section 4.2. Let

P ′ be the system obtained from P by replacing rule Iinc* with Iinc′:

Iinc′ If • P{b/x} =∆ Q{b/x} for all b with ∆c ` b : ∆(a)o, and

• given c 6∈ fn(P,Q) ∪ dom(∆),

P{c/x} =∆,c:T Q{c/x} for all T <: ∆(a)o,

then a(x : T1).P =∆ a(x : T2).Q.

The quantification on T in the premises is finite: any type has only finitely many subtypes.

Theorem 4.28 P ′ ` P =∆ Q iff P m∆ Q, where P and Q are closed.

Proof: According to Lemma 4.27, rule Iinc′ is sound. The soundness of other rules is easy to

show. The completeness proof is similar to that of P (Theorem 4.15). ut

Indirect Axiomatisation

The previous definition of m involves infinitely many substitutions. Nevertheless we show in the

following lemma that there exists an efficient characterisation of the equivalence which employs

only finitely many substitutions. This characterisation result relies on the assumption that the set

84 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

of subtypes of any type is finite and the environment contains finitely many variables (the terms

could even be extended with non-finite operators such as recursion, as long as they contain finitely

many free variables). First, we introduce a notation. Let T̃ = T1, · · · , Tn. There are only finitely

many different types, say S1, . . . , Sm, each of which is a subtype of some Ti for i ≤ n. Then we pick

n fresh names (which do not appear in ∆, P and Q) ai1, · · · , ain for each type Si and extend ∆ in

the following way.

Env(∆, T̃ , P,Q)
def
= ∆ ∪ {aik : Si | 0 < i ≤ m, 0 < k ≤ n, aik 6∈ fn(∆, P,Q)}

Lemma 4.29 Suppose ∆
def
= ∆c, x̃ : T̃ . If for each legal substitution σ on Env(∆, T̃ , P,Q) it holds

that Pσ mEnv(∆c,T̃ ,P,Q) Qσ, then P m∆ Q.

Proof: Let ∆1 = Env(∆c, T̃ , P,Q), and the length of the tuple T̃ be n with n > 0. We prove

a stronger result P m∆1,x̃:T̃ Q and then conclude by Lemma 4.25 (1). We shall show that

P{b̃/x̃} m∆1,∆′ Q{b̃/x̃} for any b̃ and closed environment ∆′ s.t. dom(∆′) ∩ fn(P,Q) = ∅ and

∆1,∆
′ ` b̃ : T̃ . We proceed by induction on the number of names appearing in b̃ but not in dom(∆1),

which is defined as follows.

num(∅)
def
= 0

num(̃b)
def
=

{
num(b1 · · · bn−1) + 1 if bn 6∈ dom(∆1)

num(b1 · · · bn−1) otherwise

• Base step. Suppose num(̃b) = 0. When ∆′ = ∅, the result follows from the hypothesis. For other

∆′, the result is got indirectly by using Lemma 4.26.

• Inductive step. Suppose that the result holds for all b̃ which satisfy the conditions in the hypothesis

and num(̃b) ≤ k. Given another b̃ with num(̃b) = k+ 1. Without loss of generality we assume that

there exists a c 6∈ dom(∆1) and l ≤ n such that b1 = b2 = · · · = bl = c and bi 6= c for all i > l. Then

∆1,∆
′ can be rewritten as ∆2, c : Si for some ∆2 and Si s.t. Si ≤ Tj for all j ≤ l. Choose one

name from {ai1, · · · , ain}, say aij , which is different from any names in bl+1, · · · , bn, and construct

a substitution

σ = {aij/x1, · · · , aij/xl, bl+1/xl+1, · · · , bn/xn}

Obviously ∆2 ` aij : T1, · · · , aij : Tl, bl+1 : Tl+1, · · · , bn : Tn and num(aij, · · ·, aij , bl+1, · · · , bn) ≤ k.

By induction hypothesis Pσ m∆2 Qσ. From Lemma 4.25 (2) we have

Pσ{c/aij} m∆2{c/aij} Qσ{c/aij}

i.e., P{b̃/x̃} m∆2{c/aij} Q{b̃/x̃}. As aij 6∈ dom(∆2{c/aij}), by Lemma 4.26 we get P{b̃/x̃} m∆3

Q{b̃/x̃} for ∆3 = ∆2{c/aij}, aij : Si = ∆1,∆
′, which is just the required result. ut

Below we establish a property of l∆, corresponding to Lemma 4.26 for m∆. It allows the

extension of ∆ in a limited way. The proof employs the concept of depth of a process P , written

d(P), which we define as follows.

d(0)
def
= 0 d(P +Q)

def
= max{d(P), d(Q)}

d(α.P)
def
= 1 + d(P) d(ϕPQ)

def
= max{d(P), d(Q)}

d((νa : S)P)
def
= d(P) d(P | Q)

def
= d(P) + d(Q)

4.4. OTHER EQUIVALENCES 85

One can verify that if ∆]P
α

−→ ∆′]P ′ then d(P) > d(P ′) and fn(P ′) ⊆ fn(P) ∪ bn(α).

Lemma 4.30 Given two closed terms P and Q, let ∆ = ∆0, c1 : T, ..., cn : T with n ≥ d(P + Q)

and ci 6∈ fn(P,Q) for all i ∈ 1..n. If P l∆ Q then P l∆,a:T Q for a 6∈ fn(P,Q) ∪ dom(∆).

Proof: By induction on the depth of P + Q. If d(P + Q) = 0 then it is obvious that P l∆,a:T

0 l∆,a:T Q. Below we suppose d(P +Q) > 0. If ∆, a : T]P
α

−→ ∆′]P ′ there must exist some ∆′′ s.t.

∆′ = ∆′′, a : T because a does not affect the transition. In other words, we have ∆]P
α

−→ ∆′′]P ′.

Since P l∆ Q, we have a matching transition ∆]Q
β

−→ ∆′′′]Q′, where | α |=| β |. It follows that

∆, a : T]Q
β

−→ ∆′′′, a : T]Q′. There are two cases:

1. α is not an input action. In this case ∆′′ = ∆′′′ and P ′
l∆′′ Q′. By induction hypothesis we

have P ′
l∆′′,a:T Q′.

2. α is an input action b(x : S). Then for each d with ∆ ` d : ∆(b)o it holds that P ′{d/x} l∆

Q′{d/x}.

(a) If d ∈ dom(∆0) with ∆0 ` d : ∆(b)o, then n ≥ d(P + Q) > d(P ′{d/x} + Q′{d/x}) and

ci 6∈ fn(P ′{d/x}, Q′{d/x}) for i ∈ 1..n. By induction hypothesis we have P ′{d/x} l∆,a:T

Q′{d/x}.

(b) If c1 : T, ..., cn : T ` d : ∆(b)o, then without loss of generality we may assume that

d = c1. It can be checked that n − 1 ≥ d(P + Q) − 1 ≥ d(P ′{d/x} + Q′{d/x}) and

ci 6∈ fn(P ′{d/x}, Q′{d/x}) for i ∈ 2..n. We can now appeal to induction hypothesis and

get the result that P ′{d/x} l∆,a:T Q′{d/x}.

(c) If a : T ` a : ∆(b)o, then T <: ∆(b)o and thus ∆ ` c1 : ∆(b)o, which implies P ′{c1/x} l∆

Q′{c1/x}. As {a/c1} is an injective type-preserving substitution, we have

P ′{c1/x}{a/c1} l∆{a/c1} Q
′{c1/x}{a/c1}

i.e., P ′{a/x} l∆{a/c1} Q
′{a/x}. Now observe that

i. n− 1 ≥ d(P +Q) − 1 ≥ d(P ′{a/x} +Q′{a/x}),

ii. ci 6∈ fn(P ′{a/x}, Q′{a/x}) for i ∈ 2..n,

iii. c1 6∈ fn(P ′{a/x}, Q′{a/x}) ∪ dom(∆{a/c1}).

By induction hypothesis we have P ′{a/x} l∆{a/c1},c1:T Q′{a/x}. Note that ∆{a/c1}, c1 :

T = ∆, a : T .

In summary, for each d with ∆, a : T ` d : ∆(b)o, it always holds that P ′{a/x} l∆,a:T Q′{a/x},

which is the required result.

ut

We know from Lemma 4.24 that l∆ is weaker than m∆. This gives rise to an interesting

question: whether there exists some ∆∗ such that under the extended environment ∆,∆∗ we have

that P l∆,∆∗ Q iff P m∆ Q. We shall give a positive answer to this question, though we did not

86 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

succeed in obtaining the counterpart of Theorem 4.23 for m. The encountered problem is discussed

at the end of this subsection.

We define the depth, d(T), of a type T , indicating the maximum number of nesting of capabilities

in it.

d(unit) = 0 d(iT) = d(oT) = 1 + d(T)

d(b〈T, S〉) = 1 +max{d(T), d(S)}

Let Γ ` P . Each name in P has a type, either recorded in the syntax of P or in Γ. If T1, . . . , Tn

are all such types, d(Γ, P) is max{d(Ti) | 1 ≤ i ≤ n}. Now, if ∆]Pi is a configuration, for

i = 1, 2, then there are type environments Γi such that Γi <: ∆ and Γi ` Pi. In this case, we

set d(P1, P2,Γ1,Γ2) as max{d(Γ1, P1), d(Γ2, P2)}. There are only finitely many different types with

depth less than or equal to d(P1, P2,Γ1,Γ2), say S1, . . . , Sm, and ∆v is defined on finitely many

variables, say x1, . . . , xk. We can pick up n fresh (hitherto unused) channels ai1, . . . , ain for each

Si, where n = max{k, d(P1 + P2)}, and construct a type environment

Env(∆, P1, P2,Γ1,Γ2) = {aij : Sij | 0 < i ≤ m, 0 < j ≤ n}.

We say that P1 m∆ P2 under Γ1,Γ2 if Γi <: ∆ and Γi ` Pi (i = 1, 2).

Lemma 4.31 If P1 m∆ P2 under Γ1,Γ2 then P1 l∆,Env(∆,P1,P2,Γ1,Γ2) P2.

Proof: By Lemma 4.26 we have P1 m∆,Env(∆,P1,P2,Γ1,Γ2) P2. Then the result follows from Lemma

4.24. ut

In the above lemma, P1, P2 can be either closed or open. For the opposite direction, we consider

closed terms first.

Lemma 4.32 If ∆]Pi respects Γi, Pi is closed, for i = 1, 2, and P1 l∆,Env(∆,P1,P2,Γ1,Γ2) P2, then

P1 m∆ P2.

Proof: By induction on the depth of P1 + P2. In the case d(P1 + P2) = 0, it is immediate that

P1 m∆ 0 m∆ P2. Below we suppose d(P1 + P2) > 0. Let ∆∗ = Env(∆, P1, P2,Γ1,Γ2). Since

dom(∆∗) ∩ fn(P1, P2) = ∅, all actions of the configuration ∆,∆∗]P1 can be performed by ∆]P1,

and vice versa. Suppose that ∆]P1
α

−→ ∆′]P ′
1. It is easy to see that there is a matching transition

∆]P2
β

−→ ∆′′]P ′
2.

1. If α is not an input action, then | α |=| β |, ∆′ = ∆′′ and P ′
1 l∆′,∆∗ P ′

2. Suppose that

∆′]P ′
i respects Γ′

i for i = 1, 2. Clearly d(P ′
1, P

′
2,Γ

′
1,Γ

′
2) ≤ d(P1, P2,Γ1,Γ2) by Lemma 4.6.

From Lemma 4.30 we have P ′
1 l∆1 P

′
2 where ∆1 = ∆′,∆∗, Env(∆′, P ′

1, P
′
2,Γ

′
1,Γ

′
2). Now it

follows from Lemma 4.11 that P ′
1 l∆′,Env(∆′,P ′

1,P ′

2,Γ′

1,Γ′

2) P
′
2. By induction hypothesis we get

P ′
1 m∆′ P ′

2.

2. If α is an input action a(x : T), then P ′
1{b/x} l∆,∆∗ P ′

2{b/x} for all b with ∆,∆∗ ` b :

∆(a)o. Note that ∆,∆∗ ⊇ ∆1 for some ∆1 = Env(∆,∆(a)o, P
′
1, P

′
2) by the definition of

Env(∆, T̃ , P1, P2) given in the beginning of this subsection. So for all c with ∆1 ` c : ∆(a)o

4.4. OTHER EQUIVALENCES 87

we have P ′
1{c/x} l∆,∆∗ P ′

2{c/x}. It can be checked that ∆1]P
′
i{c/x} is a configuration

respecting Γ′
i

def
= Γi,∆

∗ for i = 1, 2. As

d(∆1, P
′
1{c/x}, P

′
2{c/x},Γ

′
1,Γ

′
2) ≤ d(∆, P1, P2,Γ1,Γ2)

we have P ′
1{c/x} l∆2 P

′
2{c/x}, where

∆2 = ∆,∆∗, Env(∆1, P
′
1{c/x}, P

′
2{c/x},Γ

′
1,Γ

′
2)

by Lemma 4.30. It follows from Lemma 4.11 that P ′
1{c/x} l∆3 P

′
2{c/x} where ∆3 = ∆1,

Env(∆1, P
′
1{c/x}, P

′
2{c/x},Γ

′
1,Γ

′
2). By induction hypothesis we get P ′

1{c/x} m∆1 P
′
2{c/x}.

By Lemma 4.29 it follows that P ′
1 m∆,x:∆(a)o P

′
2, which is the required result.

ut

Lemma 4.33 If ∆]Pi respects Γi, for i = 1, 2, and P1 l∆,Env(∆,P1,P2,Γ1,Γ2) P2 then P1 m∆ P2.

Proof: Similar to the second case of the proof in Lemma 4.32. Let ∆ = ∆c, x̃ : T̃ and ∆∗ =

Env(∆, P1, P2,Γ1,Γ2). Then for any legal substitution σ on ∆,∆∗ we have that P1σ l∆c,∆∗ P2σ.

We also have ∆c,∆
∗ ⊇ ∆1 for some ∆1 = Env(∆c, T̃ , P1, P2). So for all ρ = {c̃/x̃} with ∆1 ` c̃ : T̃

we have P1ρ l∆c,∆∗ P2ρ. One can prove that ∆1]Piρ is a configuration respecting Γ′
i

def
= Γi,∆

∗.

Obviously d(∆1, P1ρ, P2ρ,Γ
′
1,Γ

′
2) = d(∆, P1, P2,Γ1,Γ2), so P1ρ l∆2 P2ρ for some environment

∆2 = ∆c,∆
∗, Env(∆1, P1ρ, P2ρ,Γ

′
1,Γ

′
2). It follows that P1ρ l∆1,Env(∆1,P1ρ,P2ρ,Γ′

1,Γ′

2) P2ρ. By

Lemma 4.32 we have P1ρ m∆1 P2ρ, which implies P1 m∆ P2 by Lemma 4.29. ut

Combining Lemma 4.31 and 4.33 we have the result below.

Lemma 4.34 P1 m∆ P2 under Γ1,Γ2 iff P1 l∆,Env(∆,P1,P2,Γ1,Γ2) P2.

As a consequence of this lemma, we obtain the following theorem.

Theorem 4.35 P1 m∆ P2 under Γ1,Γ2 iff A ` P1 =∆,Env(∆,P1,P2,Γ1,Γ2) P2.

Directly axiomatizing m appears far from straightforward due to complications entailed by sub-

typing. We consider an example. Let T
def
= unit and

∆
def
= a : oboT, y : obT

R
def
= τ.((νc : bT)ȳc.c̄+ a(x : boT).[x = y]τ)

R1
def
= τ.((νc : bT)ȳc.0 + a(x : boT).[x = y]τ)

R2
def
= τ.((νc : bT)ȳc.c̄+ a(x : boT).0).

It holds that

R+R1 +R2 m∆ R1 +R2.

Here y can be instantiated by channels with subtypes of obT , which can be seen in Figure 1.2 (b).

When y is instantiated by a channel with type boT , we can simulate R with R1. For other subtypes

of obT , we can simulate R with R2. That is, we have two equivalent processes, say P and Q, with

a free variable y, and the actions from a summand of P have to be matched by different summands

of Q, depending on the types of the channels used to instantiate y. It appears hard to capture this

relationship among terms using axioms involving only the standard operators of the π-calculus.

88 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

4.4.2 Early Bisimilarity

All bisimilarities considered so far in this chapter are in the late style. As usual, the early versions

are obtained by commuting the quantifiers in the input clause of bisimilarity. For example, typed

early bisimulation is defined as in Definition 4.9 except for using the following input clause:

• if ∆]P
a(x:T)
−→ ∆′]P ′, then for each b with ∆c ` b : ∆(a)o there exists some Q′ such that

∆]Q
a(x:S)
−→ ∆′′]Q′ and P ′{b/x} R∆ Q′{b/x}.

As in the untyped case, the difference between late and early equivalences is captured by the axiom

SP [PS95]:

SP a(x : T1).P + a(x : T2).Q

=∆ a(x : T1).P + a(x : T2).Q+ a(x : T3).([x = u]PQ)

All results in this chapter also hold for the early versions of the equivalences, when rule SP is added.

For example, by letting the early version of l be le, Ae be A∪{SP} and Pe be P ∪{SP}, we can

establish the counterparts of Theorem 4.15 and 4.23.

Theorem 4.36 1. P le
∆ Q iff Pe ` P =∆ Q, where P and Q are closed;

2. P le
∆ Q iff Ae ` P =∆ Q.

Proof: See Appendix B.2. ut

4.5 Adding Parallelism

So far the only π-calculus operator that we have not considered is parallel composition. When it is

admitted, Table 4.1 should be extended with the following three transition rules (their symmetric

rules are omitted).

par
P

α
−→ P ′ bn(α) ∩ fn(Q) = ∅

P | Q
α

−→ P ′ | Q
com

P
āb
−→ P ′ Q

a(x:S)
−→ Q′

P | Q
τ

−→ P ′ | Q′{b/x}

close
P

ā(b:T)
−→ P ′ Q

a(x:S)
−→ Q′

P | Q
τ

−→ (νb : T)(P ′ | Q′{b/x})

In the typed setting, we incorporate the standard typing rule

Γ ` P Γ ` Q

Γ ` P | Q

into Table 4.2. The TLTS shown in Table 4.3 is now extended with one rule:

Par
∆] P

α
−→ ∆′] P ′ bn(α) ∩ fn(Q) = ∅

∆] P | Q
α

−→ ∆′] P ′ | Q

After the above modifications, all definitions and results in Section 4.1 are still valid.

To lift the results in Section 4.2, 4.3 and 4.4 to the full π-calculus, it suffices to enrich Table 4.4

with the two rules in Table 4.6. As in untyped π-calculus, the expansion law E* is used to reduce

the parallel composition of two terms into the sum of parallel-free terms. In the typed setting we add

4.5. ADDING PARALLELISM 89

Ipar* Assume ∆0]P respects Γ1, ∆0]Q respects Γ2, and ∆ = ∆0, Env(∆0, P,Q,Γ1,Γ2).

If P =∆ Q and ∆ ` R then P | R =∆ Q | R
E* Assume P ≡ Σiϕiαi.Pi and Q ≡ Σjψjβj .Qj where no αi (resp. βj) binds

a name free in Q (resp. P). Let ∆]P | Q respect Γ. Then infer:

P | Q =∆

∑
i ϕiαi.(Pi | Q) +

∑
j ψjβj .(P | Qj) +

∑
αi opp βj

[ϕi ∧ ψj ∧ (ui = vj)]τ.Rij

where αi opp βj , ui, vj and Rij are defined as follows:

1. αi is ūiw, βj is vj(x : T) and Γ(w) <: T ; then Rij is Pi | Qj{w/x};

2. αi is ūi(w : S), βj is vj(x : T) and S <: T ; then Rij is (νw : S)(Pi | Qj{w/x});

3. the converse of (1) or (2).

Table 4.6: Two rules for parallel composition

conditions on types in order to check the typability of the resulting process Rij . Rule Ipar* says

that if ∆ cannot distinguish P from Q, then it cannot distinguish P | R from Q | R either, provided

that: (i) ∆ contains enough fresh channels; (ii) R requires no capabilities beyond the knowledge of

∆. Note that we cannot do without the first condition, i.e., the rule cannot be simplified as:

For any ∆, if P =∆ Q and ∆ ` R then P | R =∆ Q | R

which is unsound for l (though it is sound for m). The point is that when comparing P | R and

Q | R, the observer may first increase his knowledge by interacting with R, then distinguish P from

Q by the new knowledge. For example, let ∆
def
= a : bT, e : bT, b : T and

P
def
= a(x : T).[x 6= b]τ Q

def
= a(x : T).0 R

def
= (νc : T)ēc.

It is easy to see that P l∆ Q and ∆ ` R but P | R 6l∆ Q | R. After the interaction with R,

the environment evolves into ∆, c : T . Later the new channel c may be used to instantiate x, thus

validating the condition x 6= b and liberating the prefix τ .

The soundness of E* is easy to show. To prove that Ipar* is sound, we define a family of

relations R = {R∆}∆ where

R∆ = {((νã : T̃1)(P | R), (νã : T̃2)(Q | R)) | P l∆u∆′ Q, ∆ u ∆′ ` R,

∆ = ∆0, Env(∆0, P,Q,Γ1,Γ2), ∆0 u ∆′]P respects Γ1, ã : T̃1,

and ∆0 u ∆′]Q respects Γ2, ã : T̃2, for some ∆0,∆
′, Γ1,Γ2}.

Then it can be proved that R is a typed bisimulation.

In general, if P l∆ Q then the equality P =∆ Q can be inferred in two steps:

1. By E*, Ipar* and Twea* we infer P =∆ P ′ and Q =∆ Q′, where both P ′ and Q′ are

parallel-free terms.

2. After the above preprocessing job, we infer P ′ =∆ Q′ by the proof systems and axiomatisations

presented in previous sections.

90 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

4.6 Summary

In this chapter we have constructed a proof system and an axiom system for typed bisimilarity (l).

For the variant bisimilarity proposed in [HR04], we have provided a proof system for closed terms,

and an indirect axiomatisation of all terms that depends on the system of l. Early versions of

the systems are obtained by adding one axiom SP. All the systems are proved to be sound and

complete.

As partial meet and join operators do not exist in the original capability types [PS96], we adopt

in this chapter one of their extensions, Hennessy and Rathke’s types [HR04]. An alternative path to

take is to go in the opposite direction and add some syntactic constraints to capability types, thus

only certain shapes of types are legal and partial meet and join operators exist upon the legal types.

For instance, in synchronous localised π-calculus there are two forms of legal types: oo · · ·oB and

bo · · ·oB where B is a basic type. It is easy to see that the two operators exist because whenever

T <: S holds, then either T ≡ S or T ≡ bT ′, S ≡ oT ′ for some T ′, which means:

1. if T <: T1, T2 and T1 6≡ T2 then T1 u T2 = T ;

2. if T1, T2 <: T and T1 6≡ T2 then T1 t T2 = T .

Therefore axiomatisation in synchronous localised π-calculus is a special case of the problem ad-

dressed in this chapter.

Chapter 5

Termination of Mobile Processes

by Typability

Many modern programming languages are equipped with some notions of typing to statically detect

programming errors. In mobile process calculi types are shown to be useful for reasoning about the

behaviour of processes. In this chapter we use type-based method to reason about the terminating

behaviour of mobile processes.

We give four type systems that ensure termination of well-typed π-calculus processes. The

systems are obtained by successive refinements of the types of the simply typed π-calculus. For

all (but one of) the type systems we also present upper bounds to the number of steps well-typed

processes take to terminate. The termination proofs use techniques from term rewriting systems.

We show the usefulness of the type systems on some non-trivial examples: the encodings of prim-

itive recursive functions, the protocol for encoding separate choice in terms of parallel composition,

a symbol table implemented as a dynamic chain of cells.

5.1 Preliminary Notations

To begin with, we introduce some notations about vectors, partial orders and multisets. We write

0i as the abbreviation of a vector 〈nk, nk−1, · · · , n1〉 where k ≥ 1, ni = 1 and nj = 0 for all j 6= i

(1 ≤ i, j ≤ k), and 0 for a vector with all 0 components. The binary operator sum can be defined

between two vectors. Let ϕ1
def
= 〈nk, nk−1, · · · , n1〉, ϕ2

def
= 〈ml,ml−1, · · · ,m1〉 and k ≥ l. First we

extend the length of ϕ2 to k by inserting (k − l) zeros to the left of ml to get an equivalent vector

ϕ′
2. Then we do pointwise addition over two vectors with equal length. We also define an order

between two vectors of equal length as follows: 〈nk, nk−1, · · · , n1〉 ≺ 〈mk,mk−1, · · · ,m1〉 iff ∃i ≤ k

with nj = mj for j > i and ni < mi.

Let U be a set and > a strict partial order on U . Following [Bez03], we write a multiset M over

U in the form M = [x1, . . . , xn], where xi ∈ U for 1 ≤ i ≤ n (when n = 0 we get the empty multiset

[]); we use (M]M′) for the union of M and M′, and write >mul for the multiset ordering (on

multisets over U) induced by >. A multiset becomes smaller, in the sense of >mul, by replacing one

91

92 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

T-in
` u :]nV x : V ` P

` u(x).P
T-out

` u :]nV ` w : V ` P

` ūw.P
T-nil

` 0

T-par
` P ` Q

` P | Q
T-sum

` P ` Q

` P +Q
T-res

a : L ` P

` νaP

T-rep
` u :]nV x : V ` P ∀v ∈ os(P), lv (v) < n

`!u(x).P

Table 5.1: The core type system

or more of its elements by any finite number (including zero) of smaller elements. It can indeed be

shown that if > is well-founded then so is >mul [Bez03].

In this chapter we make no syntactic difference between channels and variables, both of them are

names. We shall restrict our attention to the termination property of closed processes, i.e., processes

without free names of bool or Nat types.

5.2 The Core System: the Simply Typed π-calculus with

Levels

Our first type system for termination is obtained by making mild modifications to the types and

typing rules of the simply typed π-calculus (cf. Section 2.2.5). We assign a level, which is a natural

number, to each channel name and incorporate it into the type of the name. Now the syntax of

channel type takes the new form:

L ::=]nV channel types

n ::= 1, 2, · · · levels

For convenience of presentation, in this chapter we only study type systems à la Church, and

each name is assigned a type a priori. Hence we do not annotate bound names with types. We write

x : T to mean that the name x has type T . A judgment ` P says that P is a well-typed process, and

` w : V says that w is a well-typed value of type V . Our core type system is displayed in Table 5.1.

The main difference from the simply typed π-calculus lies in the rule T-rep, in which os(P) is a

set collecting all names in P which appear as subjects of those outputs that are not underneath any

replicated input (we say this kind of outputs are active). Specifically, os(P) is defined inductively

as follows:

os(0)
def
= ∅ os(ūw.P)

def
= {u} ∪ os(P)

os(!u(x).P)
def
= ∅ os(P | Q)

def
= os(P) ∪ os(Q)

os(u(x).P)
def
= os(P) os(P +Q)

def
= os(P) ∪ os(Q)

os(νaP)
def
= os(P)

5.2. THE CORE SYSTEM: THE SIMPLY TYPED π-CALCULUS WITH LEVELS 93

The function lv(v) calculates the level of channel v from its type. If v :]nV then lv(v) = n.

The purpose of using levels is to rule out recursive inputs as, for instance, in the process

ā |!a.b̄ |!b.ā (5.1)

where the two replicated processes can call each other thus producing a divergence. Our type system

requires that in any replication !a(x).P , the level of a is greater than the level of any name that

appears as subject of an active output of P . In other words, a process spawned by the resource

!a(x).P can only access other resources with a lower level. Process (5.1) is therefore illegal because

!a.b̄ requires lv(a) > lv(b) while !b.ā expects lv(b) > lv(a). For the same reason, for the process

P
def
= a(x).!x.c̄ |!c.b̄ to be well typed it is necessary that names received along channel a have a

higher level than lv(c). Therefore P | āb is illegal, since, due to the right component of P , we have

lv(c) > lv(b). As a final example, consider the process

ā |!a.(c̄ |!b.ā). (5.2)

In this process, there is an output at a underneath the replication at a. The output at a, however, is

not active in the body c̄ |!b.ā of the replication because it is located underneath another replication.

Therefore this process is typable by our type system. We call T this type system and write T ` P

to mean that P is a well-typed process under T . The subject reduction theorem of the simply typed

π-calculus can be easily adapted to T .

Before proceeding to prove the termination property of well-typed processes, we need some

preliminary notations. If name a appears as the subject of some active output in a subterm of P

and lv(a) = i, then we say a has at least one output (subject) occurrence at level i. It does not

matter whether a is free or bound in the whole process P . For example, let

Q
def
= (νd :]1Nat)(a(x).b(y).(x̄y | c̄d.c̄d.d̄3)).

It is easy to see that Q is a well-typed process if the types of a, b and c are]3]1Nat,]3Nat and

]2]1Nat, respectively. In this process x and d have one output occurrence at level 1 respectively,

c has two output occurrences at level 2, a and b have zero output occurrence at any level. Thus,

the identity of names that appear in output occurrences is not important: what we need is the

number of output occurrences of names belonging to the same level, and this for each level. For

every well-typed process P , we use ni to stand for the number of output occurrences at level i; hence

ni is simply calculated by scanning the process expression. Then the weight, wt(P), of a process

P is the vector 〈nk, nk−1, · · · , n1〉, with k representing the highest level on which the process has

non-zero output occurrence. As to the process Q defined above, it has the weight wt(Q) = 〈2, 2〉.

Formally we have the following definition of wt(P). It is related to the set os(P) since we only count

the levels of names appearing in os(P).

wt(0)
def
= 0 wt(ūw.P)

def
= wt(P) + 0lv(u)

wt(!u(x).P)
def
= 0 wt(P | Q)

def
= wt(P) + wt(Q)

wt(u(x).P)
def
= wt(P) wt(P +Q)

def
= max{wt(P), wt(Q)}

wt(νaP)
def
= wt(P)

94 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

The next lemma says that weight is a good measure because it decreases at each reduction

step. This property leads naturally to the termination theorem of well-typed processes, by the

well-foundedness of weight.

Lemma 5.1 Suppose T ` P, P
τ

−→ P ′, then wt(P ′) ≺ wt(P).

Proof: By induction on transitions. See Appendix C.1. ut

Theorem 5.2 If T ` P , then P terminates.

Proof: By induction on the weight of well typed processes.

• Base case: All processes with weight 0 are terminating because they have no active output.

• Inductive step: Suppose all processes with weights less than wt(P) are terminating. We show

that P is also terminating. Consider the set I = {i | P τ
−→ Pi}. For each i ∈ I we know that:

(i) T ` Pi by the subjection reduction property of T , (ii) wt(Pi) ≺ wt(P) by Lemma 5.1. So

each such Pi is terminating by induction hypothesis, which ensures that P is terminating.

ut

The type system T provides us with a concise way of handling nested inputs. For example, let

a :]1]1Nat, b :]2Nat, c :]1Nat, then process (1.1) is well-typed and therefore terminating. Similarly,

process (5.2) is well-typed if the types of a, b and c are]2Nat,]3Nat and]1Nat, respectively.

Lemma 5.1 implies that the weight of a process gives us a bound on the time that the process

takes to terminate. First we define the size of a process as the whole number of literals in the process

expression.

Proposition 5.3 Let n and k be the size and the highest level in a well-typed process P , respectively.

Then P terminates in polynomial time O(nk).

Proof: Let wt(P) be 〈nk, ..., n1〉, thus
∑k

i=1 ni < n. The worst case is that when an active output

of level i is consumed, all (less than n) new active outputs appear at level i− 1. Hence one output

occurrence of level i gives rise to at most f(i) steps of reduction, where

f(i) =

{
1 if i = 1

1 + n ∗ f(i− 1) if i > 1.

In other words,

f(i) =

i−1∑

j=0

nj =
ni − 1

n− 1
.

Since the weight of P is 〈nk, ..., n1〉, the length of any reduction sequence from P is bounded by
∑k

i=1 ni ∗ f(i). As

k∑

i=1

ni ∗ f(i) ≤
k∑

i=1

ni ∗ f(k) = (
k∑

i=1

ni) ∗ f(k) < n ∗ f(k) =
n(nk − 1)

n− 1

we know that P terminates in time O(nk). ut

5.3. ALLOWING LIMITED FORMS OF RECURSIVE INPUTS 95

As a consequence of Proposition 5.3 we are not able to encode the simply typed λ-calculus into

the π-calculus with type system T , according to the known result that computing the normal form

of a non-trivial λ-term cannot be finished in elementary time [Sta79, Loa98]. However, we shall

see in the next section an extension of T that makes it possible to encode all primitive recursive

functions (some of which are not representable in the simply typed λ-calculus).

5.3 Allowing Limited Forms of Recursive Inputs

The previous type system allows nesting of inputs but forbids all forms of recursive inputs (i.e.

replications !a(x).P with the body P having active outputs at channel a). In this and the following

sections we study how to relax this restriction.

5.3.1 The Type System

Let us consider a simple example. Process P below has a recursive input: underneath the replication

at a there are two outputs at a itself. However, the values emitted at a are “smaller” than the value

received. This, and the fact that the “smaller than” relation on natural numbers is well-founded,

ensures the termination of P . In other words, the termination of P is ensured by the relation among

the subjects and objects of the prefixes – rather the subjects alone as it was in the previous system.

P
def
= ā〈10〉 |!a(n). if n > 0 then (ā〈n− 1〉 | ā〈n− 1〉)
τ

−→ ā〈9〉 | ā〈9〉 |!a(n). if n > 0 then (ā〈n− 1〉 | ā〈n− 1〉)

For simplicity, the only well-founded values that we consider are naturals. But the arguments below

apply to any data type on whose values a well-founded relation can be defined.

We use function out(P) to extract all active outputs in P . The definition is similar to that

of os(P) in Section 5.2. The main difference is that each element of out(P) is a complete output

prefix, including both subject and object names. For example, we have out(!a(x).P) = ∅ and

out(āw.P) = {āw} ∪ out(P).

In the typing rule, in any replication !a(x).P we compare the active outputs in P with the input

a(x) using the relation / below. We have that b̄w / a(x) holds in two cases: (1) b has a lower level

than a; (2) b and a have the same level, but the object w of b is provably smaller than the object x

of a. For this, we assume a mechanism for evaluating (possibly open) integer expressions that allows

us to derive assertions such as x− i < x if i > 0. We adopt an eager reduction strategy, thereby the

expression in an output is evaluated before the output fires.

Definition 5.4 Let u :]nS and v :]mT . We write v̄w / u(x) if one of the two cases holds: (i)

m < n; (ii) m = n, S = T = Nat and w < x.

By substituting the following rule for T-rep in Table 5.1, we get the extended type system T ′.

The second condition in the definition of / allows us to include some recursive inputs and gives us

the difference from T .

T-rep
` u :]nV x : V ` P ∀v̄w ∈ out(P ′), v̄w / u(x)

`!u(x).P

96 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

The termination property of T ′ can also be proved with a schema similar to the proof in last

section. However, the details are more complex because we need to be clear about how the first-

order values in which we are interested evolve with the reduction steps. So we use a measure which

records, for each output prefix, the value of the object and the level information of the subject.

More precisely, the measure is a compound vector, which consists of two parts: the Nat-multiset and

the weight, corresponding to each aspect of information that we wish to record.

To a given process P and level i, with 0 < i ≤ k and k is the highest level in P , we assign a

unique Nat-multiset MP,i = [n1, · · · , nl], with nj ∈ N ∪ {∞} for all j ≤ l. (Here we consider ∞ as

the upper bound of the infinite set N.) Intuitively, this multiset is obtained as follows. For each

active output b̄w in P with lv(b) = i, there are three possibilities. If w is a constant value (w ∈ N),

then w is recorded in MP,i. If w contains variables of type Nat, then a ∞ is recorded in MP,i.

Otherwise, w is not of type Nat and thus contributes nothing to the Nat-multiset. For instance,

suppose a :]3Nat, b :]2Nat, c :]1Nat and P
def
= ā〈1〉 | ā〈1〉 | b̄〈2〉 |!a(n).b̄〈n + 1〉 | b(n).c̄〈n〉, then

T ′ ` P and there are three Nat-multisets: MP,3 = [1, 1], MP,2 = [2] and MP,1 = [∞]. Formally,

we define MP,i as follows:

M0,i
def
= [] MνaP,i

def
= MP,i

M!a(x).P,i
def
= [] MP |Q,i

def
= MP,i]MQ,i

Ma(x).P,i
def
= MP,i MP+Q,i

def
= MP,i]MQ,i

Māw.P,i
def
=





MP,i] [w] if a :]iNat and w ∈ N

MP,i] [∞] if a :]iNat and fvn(w) 6= ∅

MP,i otherwise

where fvn(w) is the set of variables of type Nat. We define an operator ↘ to combine a set of

Nat-multisets {MQ,i | 0 < i ≤ k} with the weight of Q (as defined in the previous section),

wt(Q) = 〈nk, · · · , n1〉, so as to get a compound vector tQ = 〈(MQ,k;nk), · · · , (MQ,1;n1)〉. For the

above example wt(P) = 〈2, 1, 1〉, so tP = {MP,i | 0 < i ≤ k} ↘ wt(P) = 〈([1, 1]; 2), ([2]; 1), ([∞]; 1).

The order ≺ and the operator + can be extended to compound vectors.

Definition 5.5 Suppose tP = 〈(sk), · · · , (s1)〉 and tQ = 〈(s′k), · · · , (s′1)〉, where si = MP,i;ni and

s′i = MQ,i;n
′
i for 0 < i ≤ k.

1. si ≺ s′i if MP,i <mul MQ,i ∨ (MP,i = MQ,i ∧ ni < n′
i)

2. si = s′i if MP,i = M′
Q,i ∧ ni = n′

i

3. si + s′i = MP,i]M′
Q,i;ni + n′

i

4. tP ≺ tQ if ∃i ≤ k, sj = s′j for j > i and si ≺ s′i

5. tP = tQ if si = s′i for all i ≤ k

6. tP + tQ = 〈(sk + s′k), · · · , (s1 + s′1)〉

Using compound vectors as the measure, we can build, with similar proof schemas, the counter-

parts of Lemma 5.1 and Theorem 5.2.

5.3. ALLOWING LIMITED FORMS OF RECURSIVE INPUTS 97

Lemma 5.6 If T ′ ` P and P
τ

−→ P ′ then tP ′ ≺ tP .

Proof: See Appendix C.2. ut

Theorem 5.7 If T ′ ` P then P terminates.

Proof: Followed from Lemma 5.6. ut

Note that the measure used here is much more powerful than that in Section 5.2. With weights,

we can only prove the termination of processes which always terminate in polynomial time. By

using compound vectors, however, as we shall see in Section 5.3.2, we are able to capture the

termination property of some processes which terminate in time O(f(n)), where f(n) a is primitive

recursive function. For example, we can write a process to encode the repeated exponentiation, where

E(0) = 1, E(n + 1) = 2E(n). Once received a number n, the process does internal computation in

time O(E(n)) before sending out its result.

5.3.2 Example: Primitive Recursive Functions

For simplicity of presentation, we have concentrated mainly on monadic communication. However,

it is easy to extend our calculus and type systems to allow polyadic communications and an if-then-

else construct 1 (see Appendix C.3), which are needed in this example. The advantage of T ′ over

T lies in the fact that primitive recursive functions can now be captured.

Definition 5.8 (Primitive recursive functions)[Bec80] The class of primitive recursive functions

consists of those functions that can be obtained by repeated application of composition and primitive

recursion starting with (1) the successor function, f(x) = x+1, (2) the zero function, f(x) = 0, (3)

the generalized identity functions f
(n)
i (x1, · · · , xn) = xi, with the generating rules for composition

and primitive recursion being

1. Composition f(x1, · · · , xn) = g(e1(x1, · · · , xn), · · · , em(x1, · · · , xn))

2. Primitive recursion

{
f(0, x2, · · · , xn) = e(x2, · · · , xn)

f(x1 + 1, x2, · · · , xn) = g(x1, f(x1, · · · , xn), x2, · · · , xn)

Proposition 5.9 All primitive recursive functions can be represented as terminating processes in

the π-calculus.

Proof: A function f(x̃) can be represented as a process Fa which has replicated input like !a(x̃, y).R,

where name a is called port of F , with type Tm,n =]m(Ñat,]nNat) where m > n. After receiving

via a some arguments x̃ and a return channel y, process R does some computation, and finally the

result is delivered at y. For the three basic functions, the results are returned immediately. This

1For convenience of presention, in the rest of the thesis we shall use an if-then-else construct in place of the

nondeterministic choice construct, instead of considering the two constructs simultaneously.

98 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

style of encoding follows from Milner’s encoding of λ-terms into π-processes [Mil92]. In the similar

way can the correctness of the following five encodings be verified.

The encoding of the three basic functions is straightforward.

(1) The zero function Fa
def
= !a(x, y).ȳ〈0〉.

(2) The successor function Fa
def
= !a(x, y).ȳ〈x+ 1〉

(3) The identity functions F
(i,n)
a

def
= !a(x̃, y).ȳ〈xi〉.

By assigning to a the type T2,1, the three processes defined above are typable in our core type

system T , thus typable in T ′.

(4) Composition

Suppose that Eiai
is defined for ei with the type of ai being Tmi,ni

for all 1 ≤ i ≤ m, and Gc is

defined for g with the type of c being Tm′,n′ . By induction hypothesis, they are well typed in T ′.

Then we can define Fa for f as:

Fa
def
= !a(x̃, y).(νãb̃c)(E1a1

| ā1〈x̃, b1〉 | · · · | Emam
| ām〈x̃, bm〉

| b1(z1). · · · .bm(zm).c̄〈z̃, y〉 | Gc)

Let m′′ = max{m1, · · · ,mm,m
′}+1 and give name a the type Tm′′,n′ . It can be easily checked that

process Fa is typable in T ′.

(5) Primitive recursion

Suppose that Eb is defined for e with the type of b being Tm1,n1 , and Ga′ is defined for g with

the type of a′ being Tm2,n2 . By induction hypothesis they are well typed in T ′. We define Fa as

follows.

Fa
def
= !a(x̃, y). if x1 = 0 then (νb)(Eb | b̄〈x2, · · · , xn, y〉)

else (νb′)(ā〈x1 − 1, x2, · · · , xn, b
′〉

| b′(z).(νa′)(Ga′ | ā′〈x1 − 1, z, x2, · · · , xn, y〉))

Let m = max{m1,m2} + 1 and give type Tm,n2 to a. It is easy to see that Fa is well typed in T ′.

ut

For the process F in (1.2), which represents the factorial function, it is typable if we give name

a the type]2(Nat,]1Nat). By contrast, the encoding of functions that are not primitive recursive

may not be typable. An example is Ackermann’s function.

5.4 Asynchronous Names

In this section we start a new direction for extending our core type system of Section 5.2: we prove

termination by exploiting the structure of processes instead of the well-foundedness of first-order

values. The goal of the new type systems (in this and in the next section) is to gain more flexibility

in handling nested inputs. In the previous type systems, we required that in a replicated process

!a(x).P , the highest level should be given to a. This condition appears rigid when we meet a process

like !a.b.ā because we do not take advantage of the level of b. This is the motivation for relaxing

the requirement. The basic idea is to take into account the sum of the levels of two input subjects

5.4. ASYNCHRONOUS NAMES 99

a, b, and compare it with the level of the output subject a. However, this incurs another problem.

Observe the following reduction:

P
def
= ā | b̄ |!a.b.ā
τ

−→ b̄ | b.ā |!a.b.ā
τ

−→ ā |!a.b.ā

The weight of P does not decrease after the first step of reduction (we consume a copy of ā but

liberate another one). Only after the second reduction does the weight decrease. Further, P might

run in parallel with another process, say Q, that interferes with P and prevents the second reduction

from happening. This example illustrates two new problems that we have to consider: the weight

of a process may not decrease at every step; because of interferences and interleaving among the

activities of concurrent processes, consecutive reductions may not yield “atomic blocks” after which

the weight decreases.

In the new type system we allow the measure of a process to decrease after a finite number

of steps, rather than at every step, and up to some commutativities of reductions and process

manipulations. This difference has a strong consequence in the proofs. For technical reasons related

to the proofs, we require certain names to be asynchronous.

5.4.1 Proving Termination with Asynchronous Names

A name a is asynchronous if all outputs with subject a are followed by 0. That is, if āv.P appears in

a process then P = 0. A convenient way of distinguishing between synchronous and asynchronous

names is using Milner’s sorts (cf. Section 2.2.3). Thus we assume two sorts of names, ιa and ιs,

for asynchronous and synchronous names respectively, with the requirement that all names in ιa

are syntactically used as asynchronous names. We assume that all processes are well-sorted in this

sense and will not include the requirements related to sorts in our type systems. (We stick to using

both asynchronous and synchronous names instead of working on asynchronous π-calculus, because

synchronous π-calculus is sometimes useful – see for instance the example in Section 5.5.2 – and it is

more expressive [Pal03]. However, all the results in this paper are valid for asynchronous π-calculus

as well.)

We make another syntactic modification to the calculus (with an if-then-else construct in place

of the nondeterministic choice in Table 2.4) by adding a construct to represent a sequence of inputs

underneath a replication:

κ ::= u1(x1). · · · .un(xn) n ≥ 1 and ∀i < n, ui : ιa

P ::= . . . |!κ.P

This addition is not necessary – it only simplifies the presentation. It is partly justified by the

usefulness of input sequences in applications. (It also strongly reminds us of the input pattern

construct of the Join-calculus [Fou98]). We call κ an input pattern. Note that all but the last input

subject in κ are required to be asynchronous. As far as termination is concerned, we believe that

the constraint – and therefore the distinction between asynchronous and synchronous names – can

be lifted. However, we do not know how to prove Theorem 5.10 without it.

100 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

The usual form of replication !u(x).P is now considered as a special case where the input pattern

has length 1, i.e., it is composed of just one input prefix. We extend the definition of weight to input

patterns by taking account of the levels of input subjects: wt(u1(x1). · · · .un(xn)) = 0k1 + · · ·+ 0kn

where lv(ui) = ki. The typing rule T-rep in Table 5.1 is replaced by the following one.

T-rep
` κ.P wt(κ) � wt(P)

`!κ.P

Intuitively, this rule means that we consume more than what we produce. That is, to produce

a new process P , we have to consume all the prefixes from u1(x1) to un(xn) on the left of P , which

leads to the consumption of corresponding outputs at u1, · · · , un. Since the sum of weights of all

the outputs is larger than the weight of P , the whole process has a tendency to decrease its weight.

Although the idea behind this type system (T ′′) is simple, the proof of termination is non-trivial

because we need to find out whether and when a whole input pattern is consumed and thus the

measure decreases. The rest of the subsection is devoted to proving the following theorem.

Theorem 5.10 If T ′′ ` P then P terminates.

Below we briefly explain the structure of the proof and proceed in four steps. Firstly, we decorate

processes and transition rules with tags, which indicate the origin of each reduction: whether it is

caused by calling a replicated input, a non-replicated input or it comes from an if-then-else structure.

This information helps us to locate some points, called landmarks, in a reduction path. If a process

performs a sequence of reductions that are locally ordered (that is, all and only the input prefixes

of a given input pattern are consumed), then the process goes from a landmark to the next one

and decreases its weight (Lemma 5.12). (This is not sufficient to guarantee termination, since

in general the reductions of several input patterns may interleave and some input patterns may

be consumed only partially.) Secondly, by taking advantage of the constraint about asynchronous

names, we show a limited form of commutativity of reductions (Lemma 5.13). Thirdly, by commuting

consecutive reductions, we adjust a reduction path and establish on it some locally ordered sequences

separated by landmarks. Moreover, when an input pattern is not completely consumed, we perform

some manipulations on the derivatives of processes and erase some inert subprocesses. Combining

all of these with the result of Step 1, we are able to prove the termination property of tagged

processes Lemma (5.14). Finally, the termination of untagged processes follows from the operational

correspondence between tagged and untagged processes (Lemma 5.11), which concludes our proof

of Theorem 5.10.

We begin with introducing the concepts of atomic tag, tag and tagged process. Atomic tags

are names from a separate infinite set N ′, which is disjoint from the set N used for constructing

untagged processes. We use the function ρ : N ′ 7→ N to associate every atomic tag with a natural

number. Note that we require N ′ to be an infinite set so that it can always supply fresh atomic tags

as we need. We let l, l′, l1, · · · range over atomic tags and ε stand for a special atomic tag by setting

ρ(ε) = 0. A tag is a pair (l, n) where l is an atomic tag and n is an integer with n ≤ ρ(l). We let

t, t′, · · · range over tags and write ε as the abbreviation of the special tag (ε, 0). The only difference

between tagged processes and untagged ones is that the former gives tags for all non-replicated

inputs.

P ::= · · · | ut(x).P

5.4. ASYNCHRONOUS NAMES 101

if-t
if true then P else Q

ε′
−→ P

if-f
if false then P else Q

ε′
−→ Q

com1
P

(νã)ūw
−→ P ′ Q

utw
−→ Q′ ã ∩ fn(Q) = ∅

P | Q
t

−→ (νã)(P ′ | Q′)
in
ut(x).P

utw
−→ P{w/x}

rep
κ = u1(x1). · · · .un(xn) l fresh ρ(l) = n

!κ.P
u
(l,1)
1 w
−→ !κ.P | (u

(l,2)
2 (x2). · · · .u

(l,n)
n (xn).P){w/x1}

Table 5.2: Transition rules for tagged processes

Note that we do not give tags to input patterns. A tagged process P is regular if the only tag that

appears in P is the special tag ε. On the contrary, if there is a tag t with t 6= ε in P , then P is

irregular. We reserve the tag ε′ for the transition rules if-t and if-f (see Table 5.2). Unlike ε, ε′ only

appears in transitions, not in tagged processes. We define the operator erase(·) to erase all tags in

a tagged process so as to get an untagged process. Let P be a tagged process. We define wt(P) as

wt(erase(P)), and we write T ′′ ` P if T ′′ ` erase(P). The transition rules for tagged processes are

the same as in Table 2.3 except for rules in, com1, rep, if-t and if-f, which are displayed in Table 5.2. In

the rule rep, a fresh atomic tag l is introduced to witness the invocation of the replicated input !κ.P .

The result of invoking !κ.P is the generation of a new process (u
(l,2)
2 (x2). · · · .u

(l,n)
n (xn).P){w/x1}.

The condition ρ(l) = n relates l to κ by requiring the number of input prefixes in κ to be ρ(l). So

if an input prefix has tag (l, ρ(l)) then it originates from the last input prefix in κ.

Note that substitutions of names do not affect tags. More precisely, we have that (at(x).P)

{c/b} = (a{c/b})t(x).P{c/b}. From the transition rules it can be seen that tags are never used as

values to be transmitted between processes and that there is no substitution for tags.

Tags give us information about the transitions of tagged processes. For example, if P is regular

and P
t

−→ P ′, then at least we know the following information:

• if t = ε′ then an if-then-else structure in P disappears when P evolves into P ′;

• if t = ε then the reduction results from an internal communication between an active output

and a non-replicated input;

• if t = (l, 1) then the reduction results from an internal communication between an active

output and a replicated input of the form !u1(x1). · · · .uρ(l)(xρ(l)).Q; moreover, if ρ(l) > 1 then

P ′ has a subprocess u
(l,2)
2 (x2). · · · .u

(l,ρ(l))
ρ(l) (xρ(l)).Q.

We define the operator (·)◦, which is complementary to erase(·), to translate untagged processes

into regular processes by giving all non-replicated inputs the special tag ε.

0◦
def
= 0 (u(x).P)◦

def
= uε(x).P ◦

(ūw.P)◦
def
= ūw.P ◦ (νaP)◦

def
= νaP ◦

(P | Q)◦
def
= P ◦ | Q◦ (!κ.P)◦

def
= !κ.P ◦

(if w then P else Q)◦
def
= if w then P ◦ else Q◦

102 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

Note that erase(P ◦) = P holds but (erase(P))◦ = P may not be valid. For example !a.b.c̄ | ā
(l,1)
−→

!a.b.c̄ | b(l,2).c̄ ≡ P ′, and thus (erase(P ′))◦ =!a.b.c̄ | bε.c̄ 6= P ′. However, there exists operational

correspondence between tagged and untagged processes since tags do not have semantic meaning

and the purpose of using tags is to identify every newly created process from some replicated process.

This is precisely what the next lemma shows.

Lemma 5.11 Let P be a tagged process and Q an untagged one.

1. If P
t

−→ P ′ then erase(P)
τ

−→ erase(P ′).

2. If Q
τ

−→ Q′ and erase(P) = Q, then P
t

−→ P ′ and erase(P ′) = Q′ for some t.

As expressed in Lemma 5.12 and 5.13, (well-typed) tagged processes have some interesting

properties such as decrement of weight after some specific steps of reduction and commutativity

of reductions.

Lemma 5.12 1. If P
ε

−→ P ′ then wt(P) � wt(P ′).

2. If P
ε′

−→ P ′ then wt(P) � wt(P ′)

3. If P
(l,1)
−→ P1

(l,2)
−→ · · ·Pn−1

(l,n)
−→ P ′ and n = ρ(l) > 0 then wt(P) � wt(P ′).

Proof: See Appendix C.4. ut

Generally speaking, commutativity of reductions does not hold in the π-calculus. For instance,

the process P = a.b | ā | b̄ has reduction path P
τa−→

τb−→ but not
τb−→

τa−→, where
τc−→ means that

an internal communication happens on channel c. As we shall see in the next two lemmas, this

property does hold in the presence of certain constraints. We write P
t̃

=⇒ R for P
t1−→ · · ·

tn−→ R,

where t̃ = t1 · · · tn.

Lemma 5.13 1. If P is regular and P
t̃

=⇒ R
(l,i)
−→ R1

t
−→ R′, t ∈ {ε, ε′} and i < ρ(l), then there

exists R′
1 such that R

t
−→ R′

1

(l,i)
−→ R′.

2. If P is regular and P
t̃

=⇒ R
(l′,j)
−→ R1

(l,i)
−→ R′, l 6= l′, j < ρ(l′) and i ≤ ρ(l), then there exists

some R′
1 such that R

(l,i)
−→ R′

1

(l′,j)
−→ R′.

Proof: See Appendix C.4. ut

In the following lemma, we make full use of commutativity and reorganize a reduction path in a

way easy of pinpointing landmarks, which witness the decrement of the measure that we choose for

the beginning process of the path.

Lemma 5.14 All the regular tagged processes terminate.

Proof: We sketch the idea of the proof; more details are given in Appendix C.4.

Let P be a regular tagged process. We show that P terminates by induction on its weight wt(P).

• Base case: All processes with weight 0 must be terminating because they have no active outputs.

• Inductive step: Suppose P is non-terminating and thus has an infinite reduction sequence

P ≡ P0
t1−→ P1

t2−→ · · ·
ti−→ Pi

ti+1
−→ · · ·

5.4. ASYNCHRONOUS NAMES 103

Now the tag t1 takes one of the three forms: ε′, ε or (l, i). By doing case analysis we can prove that

in every case there always exists some Q such that: (i) Q is also non-terminating; (ii) Q is regular;

(iii) wt(P) � wt(Q). When Q is found, we get a contradiction since by induction hypothesis all

processes with weights less than wt(P) are terminating. So the supposition is false and P should

be terminating.

In seeking for this Q, we carefully manipulate the reduction path of P by commuting reductions

(Lemmas 5.13) in order to put all tags belonging to the same input pattern in contiguous positions.

Then we can use Lemma 5.12 to prove (iii). If an input pattern cannot be completed, which means

that its continuation does not contribute to the subsequent reductions of P , we can substitute 0

for the continuation. For example, suppose P
def
= νa2(ā1 |!a1.a2.R1) | R2 and there is a reduction

sequence like:

P
(l,1)
−→ P1

t2−→ P2
t3−→ · · ·

with P1 ≡ νa2(a
(l,2)
2 .R1 |!a1.a2.R1) | R2. Since a

(l,2)
2 .R1 is never consumed in the reduction sequence,

it contributes nothing to the subsequent reductions starting from P1. So we can safely take Q to be

νa2(0 |!a1.a2.R1) | R2, and the same transition sequence can still be made, with 0 in place of the

top level a
(l,2)
2 .R1 in all derivatives.

Consequently, for each new atomic tag l with ρ(l) > 0 created by the derivatives of P , either we

have found the complete input pattern corresponding to l, or the input pattern cannot be completed

but no l appears in the infinite reduction path starting from Q. As a result, no new tag appears in

Q, i.e. (ii) is satisfied. ut

Now we are ready to prove Theorem 5.10 by applying the last lemma.

Proof of Theorem 5.10:

By Lemma 5.11 it is easy to prove the following claim:

Let P be a untagged process and Q be a tagged process such that erase(Q) = P , then

P is non-terminating iff Q is non-terminating.

Since erase(P ◦) = P , it follows that P ◦ is non-terminating iff P is non-terminating. By the

definition of the translation (·)◦ we know that P ◦ is regular. Therefore Lemma 5.14 applies and P ◦

must be terminating, which in turn implies the termination of P . ut

Proposition 5.15 For a process P well-typed under T ′′, let n and k be its size and the highest

level, respectively. Then P terminates in polynomial time O(nk+1).

Proof: Let wt(P) be 〈nk, ..., n1〉. From the proof Lemma 5.14 we know that: (i) commutation

of reductions does not change the length of a reduction sequence; (ii) the measure diminishes from

one landmark to the next one; (iii) the distance between two neighboring landmarks is less than n.

In addition, by similar arguments as in the proof of Proposition 5.3 it can be shown that in each

locally ordered reduction path there are at most n(nk−1)
n−1 landmarks. Therefore the whole length of

each reduction path is bounded by n2(nk−1)
n−1 . ut

104 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

[Σn
i=1āidi.Pi]

def
= νs (s̄〈true〉

| Πn
i=1νe āi〈di, s, e〉.e(x). if x then [Pi] else 0)

[Σm
i=1bi(z).Qi]

def
=

νt (t̄〈true〉

| Πm
i=1νg (ḡ

| !g.bi(z, s, e).t(x). if x then

(s(y). if y then

(t̄〈false〉 | s̄〈false〉 | ē〈true〉 | [Qi])

else

(t̄〈true〉 | s̄〈false〉 | ē〈false〉 | ḡ))

else

t̄〈false〉 | b̄i〈z, s, e〉))

where t, s and e are fresh and Πn
i=1Pi means P1 | · · · | Pn.

Table 5.3: The protocol of encoding separate choice

5.4.2 Example: the Protocol of Encoding Separate Choice

Consider the following protocol which is used for encoding separate choice (the summands of the

choice are either all inputs or all outputs) by parallel composition [Nes00], [SW01, Section 5.5.4].

One of the main contributions in [Nes00] is the proof that the protocol does not introduce divergence.

Here we prove it using typability.

The protocol uses two locks s and t. When one input branch meets a matching output branch,

it receives a datum together with lock s and acknowledge channel e. Then the receiver tests t and

s sequentially. If t signals failure, because another input branch has been chosen, the receiver is

obliged to resend the value just received. Otherwise, it continues to test s. When s also signals

success, the receiver enables the acknowledge channel and let the sender proceed. At the same time,

both t and s are set to false to prevent other branches from proceeding. If the test of s is negative,

because the current output branch has committed to another input branch, the receiver should

restart from the beginning and try to catch other send-requests. This backtracking is implemented

by recursively triggering a new copy of the input branch.

Usually when a protocol employs a mechanism of backtracking, it has a high probability to give

rise to divergence. The protocol in this example is an exception. However, to figure out this fact

is non-trivial, one needs to do careful reasoning so as to analyze the possible reduction paths in

all different cases. With the aid of type system T ′′, we reduce the task to a routine type-checking

problem. We show that the protocol does not add any infinite loop by proving that the typability of

[Pi] and [Qi] implies that of [Σiāidi.Pi] and [Σibi(z).Qi]. Then we conclude by Theorem 5.10. Here

we take the i-th branch of input guarded choice as an example and assume that bi does not appear

in Qi. Suppose that [Qi] is typable by T ′′ and the highest level of names in Qi is n with n > 1. Let

us give type]1bool to t, type]n+1Nat to g and type]2(Tz,]
1bool,]1bool) to bi where Tz is the type

5.5. PARTIAL ORDERS 105

of the datum z. Take g.bi(z, s, e) as the input pattern, noted as κ, and abbreviate its continuation

as P . Then !κ.P is well typed under T ′′ because wt(κ) = 〈1, · · · , 1, 0〉 and wt(P) = 〈1, · · · , 0, 3〉 (the

dots stand for a 0-sequence of length (n− 2)), thus wt(κ) � wt(P).

5.5 Partial Orders

The purpose of our final type system is to type processes even if they contain replications whose

input and output parts have the same weight. Of course not all such processes can be accepted.

For instance, !a.b.(ā | b̄) should not be accepted, since it does not terminate when running together

with ā | b̄. However, we might want to accept

!g(a, b).a.(ḡ〈a, b〉 | b̄) (5.3)

where a and b have the same type. Processes like (5.3) are useful. For instance they often appear in

systems composed of several “similar” processes (an example is the chain of cells in Section 5.5.2).

In (5.3) the input pattern g(a, b).a and the continuation ḡ〈a, b〉 | b̄ have the same weight, which

makes rule T-rep of T ′′ inapplicable. In the new system, termination is proved by incorporating

partial orders into certain channel types. For instance, (5.3) will be accepted if the partial order

extracted from the type of g shows that b is below a (both b and a being names that are received

along g).

5.5.1 The Type System

We present the new type system T ′′′. The general structure of the associated termination proof

goes along the same line as the proof in Section 5.4.1. But now we need a measure which combines

lexicographic and multiset orderings.

To begin with, we introduce some preliminary notations. Let A be a set and R ⊆ A × A be

a partial order on elements of A. The set of names appearing in elements of R is n(R) = {a |

aRb ∨ bRa for some b}. Let x̃ be a tuple of names x1, · · · , xn, we write the length n of the tuple as

| x̃ |. In the following, we define some operators for partial orders. They will be used for simplifying

the presentation of our typing rules in Table 5.4.

Definition 5.16 Let R ⊆ N × N and S ⊆ Nat × Nat be two partial orders and x̃ is a tuple of

names in N . We define two operators / and ∗ to transform one partial order into the other.

1. R/x̃
def
=





∅ if n(R) ∩ x̃ = ∅

{(i, j) | xiRxj} if n(R) ⊆ x̃

undefined otherwise

2. S ∗ x̃
def
= {(xi, xj) | iSj} if max{n(S)} ≤| x̃ |

As shown by the following lemma, the two operators are complementary to each other to some

extent.

Lemma 5.17 1. (R/x̃) ∗ x̃ = R if n(R) ⊆ x̃

106 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

2. (S ∗ x̃)/x̃ = S if max{n(S)} ≤| x̃ |

Proof: By the definition of / and ∗ directly. ut

Remark: In this paper we use partial order in a very narrow sense. We require each partial

order on names to satisfy the following two conditions: (i) mathematically it is a strict partial order

(irreflexive, antisymmetric and transitive); (ii) all names in n(R) are of the same type (this type is

written TR).

Let R be a partial order. We extract the sub-partial order defined on n(R)\ x̃ by R⇓x̃= {(a, b) |

a, b 6∈ x̃ and aRc1R· · ·Rcnb for some c̃ ⊆ x̃ and n ≥ 0}. Given two partial orders R1, R2 with

TR1 = TR2 , we let R1 +R2 be R1 ∪R2 if such a union is a partial order. Otherwise, it is undefined.

The operator os(·) of Section 5.2 is now refined to be mosR(·), which defines a multiset recording

all subject occurrences of names in active outputs and with type TR.

mosR(0)
def
= []

mosR(!u(x̃).P)
def
= []

mosR(u(x̃).P)
def
= mosR(P)

mosR(νaP)
def
= mosR(P)

mosR(ūw̃.P)
def
=

{
[u]]mosR(P) if u : TR

mosR(P) otherwise

mosR(P | Q)
def
= mosR(P)]mosR(Q)

mosR(if b then P else Q)
def
= mosR(P)]mosR(Q)

The operator mosR(·) can be extended to input patterns by defining: mosR(κ)
def
= mosR(ū1x̃1 |

· · · | ūnx̃n) if κ = u1(x̃1). · · · .un(x̃n).

Let R be a partial order and Rmul be the induced multiset ordering on multisets over n(R).

The binary relation defined below will act as the second component of our measure, which is a

lexicographic ordering with weight of processes as its first component.

Definition 5.18 Let R be a partial order on names, Q be a process, P be either an input pattern or

a process. It holds that P R̂ Q if the following three conditions are satisfied, for some multisets on

names M1,M2 and M: (i) mosR(P) = M]M1; (ii) mosR(Q) = M]M2; (iii) M1 Rmul M2.

Essentially the relation R̂ is an extension of the multiset ordering Rmul. One can easily prove that

R̂ is also well-founded: if R is finite, then there exists no infinite sequence like P0 R̂ P1 R̂ P2 R̂ · · ·

Now we are well-prepared to present our types and type system. Here we consider polyadic

π-calculus and redefine channel type as follows.

L ::=]nS Ṽ where ∀i, j ∈ n(S), Vi = Vj

where S ⊆ Nat× Nat is a partial order on the indexes of Ṽ (that is, if | Ṽ |= m then S is a partial

order on the set {1, ...,m}). The condition in the definition says that if i and j are two indexes

related by S, then the i-th and j-th components of Ṽ have the same type.

If νaP is a subprocess of Q, we say that the restriction νa is unguarded if νaP is not underneath

any input or output prefix. More precisely, we define a set ur(P) to collect all unguarded restrictions

5.5. PARTIAL ORDERS 107

in P .

ur(0)
def
= ∅ ur(u(x̃).P)

def
= ∅

ur(!u(x̃).P)
def
= ∅ ur(ūw̃.P)

def
= ∅

ur(νaP)
def
= {a} ∪ ur(P) ur(P | Q)

def
= ur(P) ∪ ur(Q)

ur(if b then P else Q)
def
= ur(P) ∪ ur(Q)

If we pull all unguarded restrictions of Q to the outmost positions, the resulting process νãQ′

has the same behavior as Q. In literature this property is often characterized by a sequence of

structural rules describing scope extension, see for example [Par01]. Since we assume that bound

names are different from free names, the side conditions of those rules are met automatically. We

use this property implicitly and often write Q as νãQ′ without unguarded restrictions in Q′.

Besides the two sorts ιa and ιs introduced in the beginning of Section 5.4.1, now we need another

sort ιr. It requires that

if α.P is a process with subj(α) : ιr then ur(P) = ∅.

In other words, if a name of sort ιr appears in the subject position of a prefix (either input or output),

then the continuation process has no unguarded restrictions. This technical condition facilitates the

presentation of Definition 5.19.

Suppose κ = a1(x̃1). · · · .an(x̃n) and each ai has type]mi

Si
Ṽ . We extract a partial order from κ

by defining Rκ = S1 ∗ x̃1 ∪ · · · ∪Sn ∗ x̃n. It is well defined because all the bound names are assumed

to be different from each other. For example, if κ = a1(x11, x12, x13).a2(x21, x22, x23), S1 = {(1, 2)}

and S2 = {(2, 1)}, then we have Rκ = {(x11, x12), (x22, x21)}.

Definition 5.19 Let κ = u1(x̃1). · · · .un(x̃n). The relation κ :� P holds if one of the following two

cases holds: (i) wt(κ) � wt(P); (ii) wt(κ) = wt(P), κ R̂κ P and un : ιr.

The second condition indicates the improvement of T ′′′ over T ′′. We allow the input pattern to

have the same weight as that of the continuation, as long as there is some partial order to reflect a

tendency of decrement.

The typing rules of T ′′′ are presented in Table 5.4. Now the judgment R ` P means that P is

a well-typed process and the free names in P respect the (possibly empty) partial order R. In the

premise of rule T-in, if there exists some non-empty partial order relation on x̃, then it is exactly

captured by R, the partial order built upon free names of P . In rule T-out for R + S ∗ ṽ to be well

defined, the partial order on ṽ should not conflict with the partial order exhibited by P . Similarly

in rules T-par and T-if the partial orders contributed by P and Q should be compatible and thus

can be combined together. As we only consider the partial order on free names of νaP , in rule T-res

all pairs concerning a are deleted from R while the relative partial order relation on other names

are kept intact. In rule T-rep the appearance of the replication operator does not affect the existing

partial order, but it requires the validity of the condition κ :� P , which plays an important role in

Lemma 5.21 and gives us the possibility of doing termination proof.

In Definition 5.19 the constraint imposed on un is used to prohibit potential extension of partial

orders caused by the restriction operator. Let us consider two examples, concerning two different

occurrences of restricted names.

108 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

T-in
u :]nS Ṽ x̃ : Ṽ R ` P S = R/x̃

R⇓x̃` u(x̃).P
T-nil

∅ ` 0

T-out
u :]nS Ṽ w̃ : Ṽ R ` P

R + S ∗ w̃ ` ūw̃.P
T-par

R1 ` P R2 ` Q

R1 + R2 ` P | Q

T-if
b : bool R1 ` P R2 ` Q

R1 + R2 ` if b then P else Q
T-res

a : L R ` P

R⇓a` νaP

T-rep
R ` κ.P κ :� P

R `!κ.P

Table 5.4: Typing rules of T ′′′

(i) Underneath an input pattern

P
def
= !g(a, b).a.νc(ḡ〈b, c〉 | b̄) | ḡ〈a, b〉 | ā | ḡ〈a, b〉
τ

−→ !g(a, b).a.νc(ḡ〈b, c〉 | b̄) | a.νc(ḡ〈b, c〉 | b̄) | ā | ḡ〈a, b〉
τ

−→ !g(a, b).a.νc(ḡ〈b, c〉 | b̄) | νc(ḡ〈b, c〉 | b̄) | ḡ〈a, b〉

≡ νd(!g(a, b).a.νc(ḡ〈b, c〉 | b̄) | ḡ〈b, d〉 | b̄ | ḡ〈a, b〉)
def
= νdP ′

(ii) Outside an input pattern

Q
def
= !g(a, b).a.(ḡ〈a, b〉 | b̄) | ḡ〈a, b〉 | ā.νcḡ〈b, c〉
τ

−→ !g(a, b).a.(ḡ〈a, b〉 | b̄) | a.(ḡ〈a, b〉 | b̄) | ā.νcḡ〈b, c〉
τ

−→ !g(a, b).a.(ḡ〈a, b〉 | b̄) | ḡ〈a, b〉 | b̄ | νcḡ〈b, c〉

≡ νd(!g(a, b).a.(ḡ〈a, b〉 | b̄) | ḡ〈a, b〉 | b̄ | ḡ〈b, d〉)
def
= νdQ′

Let the type of name g be]2{(1,2)}(]
1
∅V,]

1
∅V). Assume R = {(a, b)} and R′ = {(a, b), (b, d)}. If

the condition an : ιr in Definition 5.19 was lifted, then both P and Q would be well typed: in the

first example, it could be derived that R ` P and R′ ` P ′; in the second example, R ` Q and

R′ ` Q′. In both cases the new name d extends the partial order R to be R′.

However, the process P does not terminate because it can make cyclic reduction and the two steps

from P to νP ′ form a cycle. Therefore the structure in (i) is dangerous and should be disallowed.

The process Q always terminates in at most 6 steps, but ruling out the structure in (ii) simplifies

our proof of Lemma 5.22.

For this type system, we have the following subject reduction property.

Theorem 5.20 (Subject reduction) Suppose R ` P and P
α

−→ P ′.

1. If α = τ due to a communication then R ` P ′.

2. If α = τ due to a conditional then R′ ` P ′ with R = R′ + R′′ for some R′ and R′′.

5.5. PARTIAL ORDERS 109

3. If α = aw̃ then there exists n,S and Ṽ such that

(a) a :]nS Ṽ and w̃ : Ṽ

(b) if S ∗ w̃ is a partial order then R + S ∗ w̃ ` P ′.

4. If α = (νb̃)āw̃ then there exists n,S,R′ and Ṽ such that

(a) a :]nS Ṽ and w̃ : Ṽ

(b) R′ ` P ′

(c) R = (R′ + S ∗ w̃)⇓b̃

Proof: See Appendix C.5. Most efforts are made to check the consistency of partial orders in the

type environments. ut

The following lemma is the counterpart of Lemma 5.12.

Lemma 5.21 Suppose that ur(P) = ∅, R ` P , P
(l,1)
−→ P1

(l,2)
−→ · · ·Pn−1

(l,n)
−→ P ′ and n = ρ(l) > 0.

Then one of the following two cases holds.

1. wt(P) � wt(P ′);

2. P R̂ P ′ and ur(P ′) = ∅.

Proof: See Appendix C.5. ut

With the last lemma we are able to prove Lemma 5.22, whose role in T ′′′ is the same as that of

Lemma 5.14 in T ′′.

Lemma 5.22 All the regular tagged processes (well-typed under T ′′′) terminate.

Proof: Compared with the proof of Lemma 5.14, the main difference is that when we have

completed some input patterns and get a reduction sequence like

P0
t̃1=⇒ P1

ε
−→ P2

t̃2=⇒ · · ·
ε′

−→ Pi−1
t̃i=⇒ Pi · · ·

it may be possible that ∀j < i, wt(Pj) = wt(Pj+1). Let R ` P0, we can show by contradiction

that the sequence of processes of equal weight is finite, by the well-foundedness of Rmul . See

Appendix C.5 for more details. ut

Finally we have the following termination theorem for T ′′′, due to the operational correspondence

between tagged and untagged process and Lemma 5.22.

Theorem 5.23 If R ` P then P terminates. Moreover, let n and k be its size and the highest level,

then P terminates in time O(nk+3).

Proof: The proof of termination is straightforward. Let us look at the time complexity. Clearly the

sizes of the two sets n(R) and mosR(P) are less than n. If there is a sequence P0 R̂ P1 R̂ · · · R̂ Pm,

then it can be shown that m < n2. By similar arguments as in the proof of Proposition 5.15 it can

be shown that in each locally ordered reduction path there are at most n(nk−1)
n−1 landmarks and the

distance between two neighbouring landmarks is less than n3. Therefore the whole length of each

reduction path is bounded by n4(nk−1)
n−1 . ut

110 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

1, Chinese 2, English 5, French

(Italian, i)
 ...

a b c e nil

(French, f)

Figure 5.1: An example of symbol table

G
def
= !g(a, b, n, s).a(t, x).

if t = s then

x̄〈n〉.ḡ〈a, b, n, s〉

else if b = nil then

x̄〈n+ 1〉.νc(ḡ〈c, nil, n+ 1, t〉 | ḡ〈a, c, n, s〉)

else b̄〈t, x〉.ḡ〈a, b, n, s〉

ST0
def
= νg(G | ḡ〈a, nil, 1, s0〉)

STm
def
= ST0 | ā〈t1, x1〉 | · · · | ā〈tm, xm〉

Table 5.5: The implementation of a symbol table

5.5.2 Example: Symbol Table

This example comes from [Jon93, San99]. It is about the implementation of a symbol table as a

chain of cells. In Table 5.5 G is a generator for cells; ST0 is the initial state of the symbol table

with only one cell; STm is the system in which the symbol table has m pending requests.

Every cell of the chain stores a pair (n, s), where s is a string and n is a key identifying the

position of the cell in the chain. A cell is equipped with two channels so as to be connected to

its left and right neighbours. The first cell has a public left channel a to communicate with the

environment and the last cell has a right channel nil to mark the end of the chain. Once received a

query for string t, the table lets the request ripple down the chain until either t is found in a cell, or

the end of the chain is reached, which means that t is a new string and thus a new cell is created to

store t. In both cases, the key associated to t is returned as a result. See Figure 5.1 for a concrete

example, where three cells and two requests are shown; the first cell stores the string “Chinese” and

its key “1”, while the first request queries the string “French” and an answer will be delivered at

channel f . There is parallelism in the system: many requests can be rippling down the chain at the

same time.

As to termination, the example is interesting for at least two reasons. (1) The chain exhibits a

syntactically challenging form. The replicated process G has a sophisticated structure of recursive

inputs: the input pattern has inputs at g and a, while the continuation has a few outputs at g and

one output at b, which has the same type as a. (2) Semantically, the chain is a dynamic structure,

which can grow to finite but unbounded length, depending on the number of requests it serves.

5.6. SUMMARY 111

Moreover, the chain has a high parallelism involving independent threads of activities. The number

of steps that the symbol table takes to serve a request depends on the length of the chain, on the

number of internal threads in the chain, and on the value of the request.

Suppose T
def
=]2∅(String,]1Nat), S

def
= {(1, 2)} and let the type of g be]1S(T, T, Nat, String), where

String is the type for strings. We consider nil as a constant name of the language studied in this

section and take it for the bottom element of any partial order R ⊆ N ×N with TR = T . For any

m ∈ N, process STm is well typed under T ′′′ and thus terminating.

5.6 Summary

In this chapter we have proposed a core type system and three extensions of it to ensure termina-

tion of processes in the π-calculus. Based on the type systems we are able to prove the termination

property of some challenging applications: the encodings of primitive recursive functions, the pro-

tocol for encoding separate choice in terms of parallel composition, a symbol table implemented as

a dynamic chain of cells. For all (but one of) the type systems we also present upper bounds to the

number of steps well-typed processes take to terminate.

We believe that the idea of using levels can be applied to other name-passing calculi. For

instance, in Appendix C.6, we have checked that in the Join-calculus [Fou98] the type system

presented in Section 5.4 can be simplified. Intuitively, this is because the Join-calculus can be

encoded into a sublanguage of the asynchronous π-calculus with each input channel being unique,

thus our assumption about asynchronous names in Section 5.4 is automatically met and recursive

inputs are easier to be handled.

In Section 1.5 we have already discussed related work on termination, notably [San05] and

[YBH04]. Our systems are incomparable with those in [San05] and [YBH04]. Roughly, in [San05]

and [YBH04] processes are mainly “functional” and indeed include the standard encodings of the

λ-calculus into the π-calculus. These processes are not typable in our type systems. In this chapter

the processes are mainly “imperative”. For instance, the examples in sections 5.4.2 and 5.5.2 are not

typable in [San05] and [YBH04]. One way of interpreting the results of this chapter is to consider

combinatory approach (on which our termination proofs are based) as a complementary technique

to logical relations (on which [San05] and [YBH04] are based) for showing termination of processes.

It would be interesting to see whether the two approaches can be successfully combined.

112 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

Chapter 6

Conclusions and Future Work

In this thesis we have investigated various issues on probabilistic processes and typed mobile pro-

cesses. The major contributions are, briefly, the following:

1. A complete axiomatisation of a calculus which contains both nondeterministic and probabilistic

choice, and recursion. We have axiomatized both strong and weak behavioural equivalences.

It is the first time, as far as we know, that a complete axiomatisation of weak behavioural

equivalences is presented for a language of this kind.

2. A complete axiomatisation of typed bisimilarity in the π-calculus with capability types. An

indirect axiomatisation of a variant typed bisimilarity given in [HR04]. To our knowledge, this

is the first attempt towards an algebraic theory of typed mobile processes.

3. A core type system and three refinements of it for guaranteeing termination property of well-

typed processes in the π-calculus. In the termination proofs we have exploited two term

rewriting techniques: lexicographic and multiset orderings. In contrast, the conventional

proof techniques for concurrency, such as coinduction and structural induction, do not play

an important role here.

In summary, we have developed algebraic techniques for reasoning about the behaviour of prob-

abilistic processes and typed mobile processes. We have also studied a type-based technique for

verifying the termination property of mobile processes. These results lay out the foundations for

further study of more advanced models which may combine probability with typed mobility. They

also highlight the robustness of the algebraic and typed-based techniques for behavioural reasoning.

In the rest of this chapter we discuss possible future work, including several problems that have

been left open.

Generalisation of the results

Due to the difficulty discussed at the end of Section 4.4.1 we are only able to give an indirect

axiomatisation of the bisimilarity proposed by Hennessy and Rathke [HR04]. We are not clear

whether it is possible to directly axiomatize the equivalence in the language considered in Chapter 4.

113

114 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

We do not know at present how to adapt our results to the language in [BS98] either. We recall

that the main differences are: (i) no distinction between channels and variables, (ii) no matching

construct, (iii) the use of Pierce and Sangiorgi’s types. Because of (i), some care is needed in a

proof system, for instance in defining the appropriate rules for manipulating names that will later

be bound in an input. Because of (ii), the expansion law cannot be used without appropriate

modification. Another issue is axiomatisations of typed weak bisimilarities. In this case, however,

types may not be so central, and the addition of the usual tau laws [Mil89a] might be sufficient.

For Hennessy and Rathke’s bisimilarity, as well as the typed bisimilarity defined in [SW01], there

are results that relate them to contextual equivalences such as barbed equivalence. It would be

interesting to see what kind of contextual equivalence (if any) corresponds to our typed bisimilarity

(Definition 4.9).

Our type system in Chapter 4 allows matching names to have arbitrary types. It is not clear

how to restrict our use of matching. Limiting matching to names of compatible types might pose a

problem for subject reduction. On the other hand, allowing matching only on names with types of the

form bT , as in [PS96], would seem difficult, for matching plays an important role in axiomatisations.

For example, one would not be able to rewrite x | ȳ as x.ȳ+ȳ.x+[x = y]τ under the type environment

∆ = x : iT, y : oT . In [HR04], a particular typing rule for matching is presented, which allows meet

of types on successful matches. It might be interesting to know whether the presence of this typing

rule would affect the validity of our proof systems.

Type inference

In Chapter 5 for the sake of simplicity we have given our type systems in the Church version. It

is not difficult to transform them into the Curry version. For the Curry version of T and T ′, it is

possible to check automatically whether a program is well-typed by using type inference, following

for instance Vasconcelos and Honda’s type inference algorithm for polyadic π-calculus [VH93]. Here

one needs an extra constraint, which is a partial order between levels of names. By inspecting the

structure of a process, this task can be done in linear time w.r.t. the size of the process. For T ′′

and T ′′′, however, type inference is not straightforward. In the future we would like to investigate

efficient type inference algorithms for them.

Parallel composition

Parallel composition plays an important role for modelling distributed concurrent systems, as it

allows to specify the structural properties of systems composed of several interacting parts. However,

having both recursion and parallel composition in a process calculus complicates the matters to

establish a complete axiomatisation, mostly because this can give rise to infinite-state systems even

with the guardedness condition. For example, let E be the expression µX(a.(X | b)), then we can

easily see that there is an infinite transition graph starting from E, though it is guarded in the sense

of Definition 3.2. Milner points out in [Mil89b] that in order to have a complete axiomatisation

for CCS with both recursion and parallel composition, a sufficient condition is that the parallel

composition does not occur in the body of any recursive expression.

115

In [DPP05] we relax this restriction by requiring, instead, that free variables do not appear in

the scope of parallel composition1. In addition, due to the difficulty of defining parallel composition

on probabilistic automata as discussed in [Seg95], we have refined the probabilistic process calculus

given in Chapter 3. We restrict ourselves to simple probabilistic automata in [DPP05], and we have

given complete axiomatisations for strong bisimilarity and observational equivalence. To obtain the

completeness of the axiomatisations, we have developed a probabilistic version of the expansion law

to eliminate all occurrences of parallel composition. In order to do that, we heavily rely on the

condition that only closed terms are put in parallel. We are now considering how to adapt these

results to axiomatize probabilistic branching bisimilarity.

Metric semantics of probabilistic processes

Usually probabilistic bisimulation is adapted from the classical notion of bisimulation by treating

probabilities as labels (see for example [LS91, Seg95, PLS00, DP05]), but this does not provide a

robust relation, since quantities are matched only when they are identical. Processes that differ for

a very small probability, for instance, would be considered just as different as processes that perform

completely different actions. This is particularly relevant to security systems where specifications

can be given as perfect, but impractical processes and other, practical processes are considered safe

if they only differ from the specification with a negligible probability.

To find a more flexible way to differentiate processes, researchers in this area have borrowed

from pure mathematics the notion of metric [DJGP02, DJGP04, vBW04, vBW01]. A metric is

defined as a function that associates a distance with a pair of processes. In [DCPP05] we have

defined a notion of metric called state-metric. It turns out that in a probabilistic transition system

each state-metric corresponds to a probabilistic bisimulation and that the greatest state-metric

corresponds to probabilistic bisimilarity. Furthermore, the greatest state-metric can be characterised

as the greatest fixed point of a monotonous function on state-metrics, which is closely analogous

to Milner’s characterisation of bisimilarity as the greatest fixed point of a monotonous function on

bisimulations [Mil89a]. We would like to investigate whether it is possible to apply state-metrics to

some fully-fledged probabilistic process calculus.

Implementation of the π-calculus

We consider it an interesting problem to develop a fully distributed implementation of the (syn-

chronous) π-calculus (π) [Mil99] using a probabilistic asynchronous π-calculus (πpa) [HP04] as an

intermediate language. The reason of requiring a probabilistic calculus is that it has been shown

impossible to implement certain mechanisms of the π-calculus without using randomization [Pal03].

Some results in this research direction are obtained in [PH04], but the part on implementation is

very preliminary. A more realistic and efficient implementation remains to be worked out.

We believe it important that an implementation does not introduce livelocks (or other kinds of

unintended outcomes), hence the translation from π to πpa should preserve livelock-freedom, and

1A similar restriction is adopted, independently, in [BB05] for axiomatizing observational equivalence in a generic

nonprobabilistic process algebra.

116 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

the semantics should be sensitive to divergency. For this reason, a probabilistic testing semantics is

introduced in [PH04]. However, it turns out that probabilistic testing semantics is rather difficult

to use. The correctness proofs are ad-hoc, by hand, and rather complicated. For the realistic (and

necessarily more sophisticated) implementation, we need feasible and (at least in part) automatic

proof methods. So it is appealing to investigate a divergency-sensitive bisimulation-like semantics.

In the future, we plan to extend our results on divergency-sensitive equivalence obtained in Chapter 3

to the probabilistic asynchronous π-calculus.

Specification and verification of modern distributed systems

Unlike other probabilistic process algebras, πpa has the advantage of being able to describe mobile

systems. To equip πpa with capability types might make it a good candidate language for specifying

randomized, distributed, and mobile computational systems. Thus, as a natural development of our

work, it is interesting to build an algebraic theory for this language by combining our results on

probabilistic and mobile processes. A possible way to proceed is to first extend the results on finite

processes in Chapter 3 to the setting of πpa, then take type information into account as we have

done in Chapter 4. As far as finite processes are concerned, this does not seem to be a difficult

task. By contrast, we do not know how to extend our results in Chapter 5 so that probabilistic

termination can be ensured by typability. We are not aware of any work on this problem.

Once an algebraic theory for typed πpa is built, one might be able to exploit it to develop

some automated verification tools, which would pave the way for verifying some useful randomized

distributed algorithms and protocols. Therefore, another possible research direction is to develop

automated tools that can check probabilistic and/or typed bisimulations, for which the results on

axiomatisations in this thesis would be useful.

Appendix A

Proofs from Chapter 3

A.1 Proof of Lemma 3.14

We begin with several derived rules.

Lemma A.1 The following rules are derivable:

wea2’
E

ε
⇒c {(`i, Ei : pi)}i] {(`, F : p)} F

ε
⇒c {(τ, Fj : qj)}j

E
ε
⇒c {(`i, Ei : pi)}i] {(`, Fj : pqj)}j

wea3’
E

ε
⇒c {(`i, Ei : pi)}i] {(τ, F : p)} F

ε
⇒c {(hj, Fj : qj)}j

E
ε
⇒c {(`i, Ei : pi)}i] {(hj, Fj : pqj)}j

wea4’
E

ε
⇒c {(τ, Ei : pi)}i ∀i, Ei

ε
⇒c ϑ(X)

E
ε
⇒c ϑ(X)

Proof: By induction on inference. We also need to prove some other derived rules at first. For

example, Before inferring wea2’ we need to show its simpler version:

wea2”
E ⇒ {(`i, Ei : pi)}i] {(`, F : p)} F

ε
⇒c {(τ, Fj : qj)}j

E ⇒c {(`i, Ei : pi)}i] {(`, Fj : pqj)}j

The whole proof is tedious and non-instructive so it is omitted here. ut

Lemma A.2 Let R be a weak probabilistic bisimulation. If E R F then whenever E ⇒ η, there

exists η′ such that F
ε
⇒c η

′ and η ≡R η′.

Proof: By transition induction, on the depth of the inference by which the transition E ⇒ η is

inferred. We argue by cases on the last rule used.

• wea1: This is the induction basis. The result follows from the definition of weak probabilistic

bisimulation.

• wea2: Let η = {(`i, Ei : pi)}i∈I] {(`, Ej : pqj)}j∈J , η1 = {(`i, Ei : pi)}i∈I] {(`, E′ : p)},

η2 = {(τ, Ej : qj)}j∈J , E ⇒ η1 and E′ ⇒ η2. By induction hypothesis, there exists η′1 such

117

118 APPENDIX A. PROOFS FROM CHAPTER 3

that F
ε
⇒c η

′
1 and η1 ≡R η′1. Let η1(`, [E

′]R) = r for the equivalence class [E′]R ∈ E/R

with E′ as its representative. It is clear that r ≥ p. Since η1 ≡R η′1, we have η′1 in the form

{(`, Fi : qi)}i∈I1] {(hi, Fi : qi)}i∈I2 such that

1. I1 ∩ I2 = ∅;

2. for all i ∈ I1, Fi R E′;

3. for all i ∈ I2, either hi 6= ` or (Fi, E
′) 6∈ R;

4.
∑

i∈I1
qi = r.

From condition 2 and induction hypothesis, we know that for each i ∈ I1 there exists η2i s.t.

Fi
ε
⇒c η2i, η2 ≡R η2i and η2i in the form {(τ, Fij : qij)}j∈Ji

. By repeated use of rule wea2’ we

can infer F
ε
⇒c η

′
2 where

η′2 = {(`, Fij : qiqij)}i∈I1,j∈Ji
] {(hi, Fi : qi)}i∈I2 .

Now let η′ = r−p
r η′1 + p

rη
′
2. By Lemma 3.5 we know that F

ε
⇒c η

′. We can verify that η ≡R η′

as follows. For any N ∈ E/R and h ∈ L, there are three possibilities:

1. h 6= `: Then η(h,N) = η1(h,N) = η′1(h,N) = η′2(h,N). Hence

η′(h,N) =
r − p

r
η′1(h,N) +

p

r
η′2(h,N) =

r − p

r
η(h,N) +

p

r
η(h,N) = η(h,N).

2. h = ` and E′ 6∈ N : Then we have

η′(h,N) = r−p
r η′1(h,N) + p

rη
′
2(h,N)

= r−p
r η′1(h,N) + p

r (
∑

i∈I1
qiη2i(τ,N) + η′1(h,N))

= r−p
r η′1(h,N) + p

r (
∑

i∈I1
qiη2(τ,N) + η′1(h,N))

= r−p
r η′1(h,N) + p

r (rη2(τ,N) + η′1(h,N))

= η′1(h,N) + pη2(τ,N)

= η1(h,N) + pη2(τ,N)

= η(h,N)

3. h = ` and N = [E′]R: Then we have

η′(h,N) = r−p
r η′1(h,N) + p

rη
′
2(h,N)

= r−p
r η1(h,N) + p

r (
∑

i∈I1
qiη2i(τ,N))

= r−p
r r + p

r (
∑

i∈I1
qiη2(τ,N))

= (r − p) + p
r (rη2(τ,N))

= (r − p) + pη2(τ,N)

= (η1(h,N) − p) + pη2(τ,N)

= η(h,N)

• wea3: Similar to the last case.

A.2. PROOF OF PROPOSITION 3.34 119

• wea4: Then η = ϑ(X). Let η1 = {(τ, Ei : pi)}i, Ei ⇒ ϑ(X) for each i and E ⇒ η1. By

induction hypothesis there exists η′1 such that F
ε
⇒c η

′
1 and η1 ≡R η′1. It is clear that η′1 must

be in the form {(τ, Fj : qj)}j and by induction hypothesis Fj
ε
⇒c ϑ(X) for each j. Therefore

by rule wea4’ we infer F
ε
⇒c ϑ(X). By taking η′ as ϑ(X), the desired result follows.

ut

Now Lemma 3.14 follows immediately from Lemma A.2, 3.5 and 3.9.

A.2 Proof of Proposition 3.34

In [SS00] Stark and Smolka used a special function f that associates a probability to a nonprob-

abilistic transition so as to form a probabilistic transition. For example, let E ≡ 1
3a ⊕ 2

3b, then

f(E
a

−→ 0) = 1
3 and f(E

b
−→ 0) = 2

3 . The function f can be characterised as f = supi≥0fi for some

functions f0, f1, ... that take nonprobabilistic transitions to probabilities and respect some ordering.

Therefore in the soundness proofs of some axioms, to show that f(E
a

−→ E′) = f(F
a

−→ F ′),

it suffices to prove by induction on i that: (1) fi(E
a

−→ E′) ≤ f(F
a

−→ F ′) for all i ≥ 0; (2)

fi(F
a

−→ F ′) ≤ f(E
a

−→ E′) for all i ≥ 0. In the presence of nondeterministic choice, however,

this technique becomes unusable because now the probability with which an expression performs

an action and evolves into another expression is not deterministic any more. For example, let

E
def
= (1

3a ⊕ 2
3b) + (1

2a ⊕ 1
2c), then what is the value of f(E

a
−→ 0)? Should it be 1

3 , 1
2 , or some

value between them? Now the meaning of the function f is unclear because it depends on how

the nondeterminism is resolved. Nevertheless our “bisimulation up to” techniques work well with

Milner’s transition induction technique, as can be seen in the proof of Proposition 3.34.

Lemma A.3 1. If E → {(`i, Ei : pi)}i then E{G/X} → {(`i, Ei{G/X} : pi)}i;

2. If E ⇒ {(`i, Ei : pi)}i then E{G/X} ⇒ {(`i, Ei{G/X} : pi)}i;

3. If E ⇒c {(`i, Ei : pi)}i then E{G/X} ⇒c {(`i, Ei{G/X} : pi)}i;

4. If E
ε
⇒c {(`i, Ei : pi)}i then E{G/X}

ε
⇒c {(`i, Ei{G/X} : pi)}i.

Proof: Straightforward by induction on inference. ut

Lemma A.4 1. If E → ϑ(X) and G→ η then E{G/X} → η.

2. If E ⇒ ϑ(X) and G→ η then E{G/X} ⇒ η.

Proof: Straightforward by examining the structure of E. ut

Lemma A.5 If E{G/X} → η then one of the following two cases holds.

1. E → ϑ(X) and G→ η;

2. η = {(`i, Ei{G/X} : pi)}i and E → {(`i, Ei : pi)}i.

120 APPENDIX A. PROOFS FROM CHAPTER 3

Proof: By induction on the depth of the inference of E{G/X} → η. ut

Proposition A.6 If E ≈ F then E{G/X} ≈ F{G/X} for any G ∈ E.

Proof: Consider the relation R = {(E{G/X}, F{G/X}) | E,F ∈ E and E ≈ F}. Since ≈ is

an equivalence relation, it follows that R is also an equivalence relation. So if we can show the

assertion:

“If E{G/X} → η1 then there exists η2 s.t. F{G/X}
ε
⇒c η2 and η1 ≡R η2”

then it follows from Definition 3.13 that R is a weak probabilistic bisimulation.

We now prove the above assertion. From Lemma A.5 we know that there are two possibilities:

1. E → ϑ(X) and G → η1. Thus F
ε
⇒c ϑ(X) because E ≈ F . From Lemma 3.51 we know that

F ⇒ ϑ(X). By Lemma A.4 it follows that F{G/X} ⇒ η1. We can simply take η1 as η2 and

finish this case.

2. η1 = {(`i, Ei{G/X} : pi)} and E → θ1 = {(`i, Ei : pi)}i. Since E ≈ F there exists θ2 =

{(hj, Fj : qj)}j s.t. F
ε
⇒c θ2 and θ1 ≡≈ θ2. By Lemma A.3 we can derive F{G/X}

ε
⇒c η2 =

{(hj, Fj{G/X} : qj)}j . Observe that for any E′, F ′ ∈ {Ei}i ∪ {Fj}j it holds that E′ ≈ F ′ iff

E′{G/X} R F ′{G/X}. Hence it follows from θ1 ≡≈ θ2 that η1 ≡R η2 and we complete the

proof of this case.

ut

Proposition A.7 If E ' F then E{G/X} ' F{G/X} for any G ∈ E.

Proof: Due to symmetry, it suffices to verify that if E{G/X} → η1 then there exists η2 s.t.

F{G/X} ⇒c η2 and η1 ≡≈ η2. From Lemma A.5 we know that there are two possibilities:

1. E → ϑ(X) and G → η1. Thus F ⇒c ϑ(X) because E ' F . From Lemma 3.51 we know that

F ⇒ ϑ(X). By Lemma A.4 it follows that F{G/X} ⇒ η1. We we can simply take η1 as η2

and finish this case.

2. η1 = {(`i, Ei{G/X} : pi)} and E → θ1 = {(`i, Ei : pi)}i. Since E ' F there exists θ2 =

{(hj, Fj : qj)}j s.t. F ⇒c θ2 and θ1 ≡≈ θ2. By Lemma A.3 we can derive F{G/X} ⇒c η2 =

{(hj, Fj{G/X} : qj)}j . By Proposition A.6 it holds that for any E′, F ′ ∈ {Ei}i ∪ {Fj}j if

E′ ≈ F ′ then E′{G/X} ≈ F ′{G/X}. Hence it follows from θ1 ≡≈ θ2 that η1 ≡≈ η2 and we

complete the proof of this case.

ut

Lemma A.8 1. The following rules are derivable:

A.2. PROOF OF PROPOSITION 3.34 121

D1
Ej ⇒ η

Σi∈1..nEi ⇒ η
for some j ∈ 1..n D2

E{µXE/X} ⇒ η

µXE ⇒ η

D3
Ej ⇒c η

Σi∈1..nEi ⇒c η
for some j ∈ 1..n D4

E{µXE/X} ⇒c η

µXE ⇒c η

D5
E ⇒c {(`i, Ei : pi)}i] {(`, F : p)} F ⇒c {(τ, Fj : qj)}j

E ⇒c {(`i, Ei : pi)}i] {(`, Fj : pqj)}j

D6
E ⇒c {(`i, Ei : pi)}i] {(τ, F : p)} F ⇒c {(hj , Fj : qj)}j

E ⇒c {(`i, Ei : pi)}i] {(hj , Fj : pqj)}j

2. If
∑

i∈1..nEi ⇒ η then Ej ⇒ η for some j ∈ 1..n, with a shorter inference.

3. If µXE ⇒ η then E{µXE/X} ⇒ η, with a shorter inference.

Proof: Straightforward by induction on inference. ut

Proof of Proposition 3.34 Let ρ = {µXE/X} and σ = {µXF/X}. We show that the relation

R = {(Gρ,Gσ) | E,F,G ∈ E and E ' F}

is an observational equivalence up to '. Because of symmetry we only need to show that if Gρ⇒ η

there exists η′ s.t. Gσ ⇒c η
′ and η ≡R≈

η′. The proof is carried out by induction on the depth of

the inference of Gρ⇒ η. There are several cases depending on the structure of G.

• G ≡ X : Then Gρ ≡ µXE ⇒ η. By Lemma A.8 we have a shorter inference with the conclusion

Eρ ⇒ η. By induction hypothesis there exists θ s.t. Eσ ⇒c θ and η ≡R≈
θ. Since E ' F we

have Eσ ' Fσ by Proposition A.7. By Lemma 3.17 there exists η′ s.t. Fσ ⇒c η
′ and θ ≡≈ η′.

By rule D4 it holds that µXF ⇒c η
′. At last it follows from Lemma 3.8 and the transitivity

of ≡R≈
that η ≡R≈

η′.

• G ≡
∑

i∈1..nGi: If Gρ ⇒ η then by Lemma A.8, Gjρ ⇒ η for some j ∈ 1..n with a shorter

inference. By induction hypothesis there exists η′ s.t. Gjσ ⇒c η
′ and η ≡R≈

η′. By rule D3

it holds that Gσ ⇒c η
′.

• G ≡ µY G
′: If Gρ ⇒ η then by Lemma A.8 there is a shorter inference with conclusion

G′ρ{Gρ/Y } ≡ G′{G/Y }ρ⇒ η. By induction hypothesis there exists η′ s.t. G′{G/Y }σ ⇒c η
′

and η ≡R≈
η′. By rule D4 it can be derived that Gσ ⇒c η

′.

• G ≡
⊕

i∈I pi`i.Gi: In this caseGρ → θ = {(`i, Giρ : pi)}i∈I . When η = ϑ(Y) for some variable

Y the argument is simple. So we suppose that η is a distribution on L × E . By induction on

inference it can be proved that η is an extension of θ, i.e., there is a partition of I into three

disjoint set I1, I2 and I3 such that

1. ∀i ∈ I2 ∪ I3, Giρ⇒ θi with a shorter inference than that of Gρ ⇒ η;

2. ∀i ∈ I2, θi = {(τ, Eij : pij)}j ;

3. ∀i ∈ I3, `i = τ and θi = {(`ij , Eij : pij)}j ;

122 APPENDIX A. PROOFS FROM CHAPTER 3

4. η = {(`i, Giρ : pi)}i∈I1]
⊎

i∈I2
{(`i, Eij : pipij)}j]

⊎
i∈I3

{(`ij , Eij : pipij)}j.

For each i ∈ I2 ∪ I3, by induction hypothesis there exists θ′i such that Giσ ⇒c θ
′
i, θi ≡R≈

θ′i

and

1. ∀i ∈ I2, θ
′
i = {(τ, Fik : qik)}k;

2. ∀i ∈ I3, θ
′
i = {(hik, Fik : qik)}k.

Let m,n be the sizes of I2 and I3 respectively. Using rule D5 for m times and rule D6 for n

times, we can derive Gσ ⇒c η
′, where

η′ = {(`i, Giσ : pi)}i∈I1]
⊎

i∈I2

{(`i, Fik : piqik)}k]
⊎

i∈I3

{(hik, Fik : piqik)}k.

It remains to show that η ≡R≈
η′.

Let p =
∑

i∈I1
pi, θ

′ = {(`i, Giρ : pi/p)}i∈I1 and θ′′ = {(`i, Giσ : pi/p)}i∈I1 . It is immediate

that θ′ ≡R≈
θ′′. For all i ∈ I2, we let ηi = {(`i, Eij : pij)}j and η′i = {(`i, Fik : qik)}k. It

follows from θi ≡R≈
θ′i that ηi ≡R≈

η′i. Obviously we can rewrite η and η′ as:

η = pθ′ +
∑

i∈I2
piηi +

∑
i∈I3

piθi

η′ = pθ′′ +
∑

i∈I2
piη

′
i +

∑
i∈I3

piθ
′
i

By Lemma 3.9 we have the desired result that η ≡R≈
η′.

ut

A.3 Proof of Lemma 3.36

Lemma A.9 Let dX(G) = n > 0 and η = {(`i, Gi : pi)}i∈I . Suppose G{E/X} → η. For all i ∈ I,

it holds that Gi = G′
i{E/X} and

1. If `i = τ then dX(G′
i) ≥ n;

2. If `i 6= τ then dX(G′
i) ≥ n− 1.

Proof: By induction on the depth of the inference of G{E/X} → η. Let us examine the structure

of G.

• G ≡ X or Y : Impossible because dX(E) = 0.

• G ≡
⊕

i pi`i.Gi: Straightforward by definition.

• G ≡
∑

i∈1..nGi: Then G{E/X} → η must be derived from a shorter inference with conclusion

Gj{E/X} → η for some j ∈ 1..n. Thus the result follows from induction hypothesis, noting

that dX(Gj) ≥ dX(G).

• G ≡ µYG
′: Then G{E/X} → η is derived from the shorter inference of

G′{E/X}{G{E/X}/Y } ≡ G′{G/Y }{E/X} → η.

So the result follows from induction hypothesis, by noting that dX(G′{G/Y }) = dX(G).

A.3. PROOF OF LEMMA 3.36 123

ut

Lemma A.10 Let dX(G) = n and η = {(`i, Gi : pi)}i∈I . Suppose G{E/X} ⇒ η. For all i ∈ I, it

holds that

1. If n > 0 and `i = τ then Gi = G′
i{E/X} and dX(G′

i) ≥ n;

2. If n > 1 and `i 6= τ then Gi = G′
i{E/X} and dX(G′

i) ≥ n− 1.

Proof: By induction on the depth of the inference of G{E/X} ⇒ η. There are three cases,

depending on the last rule used in the inference.

• wea1: In this case G{E/X} → η and the result follows from Lemma A.9.

• wea2: Then η = {(`i, Gi : pi)}i∈I] {(`0, Hj : p0qj)}j∈J and G{E/X} ⇒ η is derived from the

shorter inferences G{E/X} ⇒ {(`i, Gi : pi)}i∈I] {(`0, G0 : p0)} and G0 ⇒ {(τ,Hj : qj)}j∈J .

By induction hypothesis, for each i ∈ I ∪ {0}, it holds that

1. If n > 0 and `i = τ then Gi = G′
i{E/X} and dX(G′

i) ≥ n;

2. If n > 1 and `i 6= τ then Gi = G′
i{E/X} and dX(G′

i) ≥ n− 1.

Particularly for G0 there are two cases:

1. if `0 = τ then G0 = G′
0{E/X} and dX(G′

0) ≥ n > 0. By induction hypothesis on the

transition of G′
0{E/X}, we have Hj = H ′

j{E/X} and dX(H ′
j) ≥ dX(G′

0) ≥ n for each

j ∈ J ;

2. if `0 6= τ then G0 = G′
0{E/X} and dX(G′

0) ≥ n − 1 > 0. By induction hypothesis on

the transition of G′
0{E/X}, we have Hj = H ′

j{E/X} and dX(H ′
j) ≥ dX(G′

0) ≥ n− 1 for

each j ∈ J .

• wea3: Then η = {(`i, Gi : pi)}i∈I] {(hj, Hj : qj)}j∈J and G{E/X} ⇒ η is derived from the

shorter inferences of G{E/X} ⇒ {(`i, Gi : pi)}i∈I]{(τ,G0 : p0)} and G0 ⇒ {(hj , Hj : qj)}j∈J .

By induction hypothesis, for each i ∈ I ∪ {0}, it holds that

1. If n > 0 and `i = τ then Gi = G′
i{E/X} and dX(G′

i) ≥ n;

2. If n > 1 and `i 6= τ then Gi = G′
i{E/X} and dX(G′

i) ≥ n− 1.

Particularly for G0 we have G0 = G′
0{E/X} and dX(G′

0) ≥ n > 0. By induction hypothesis

on the transition of G′
0{E/X}, it follows that for each j ∈ J

1. if hj = τ then Hj = H ′
j{E/X} and dX(H ′

j) ≥ dX(G′
0) ≥ n for each j ∈ J ;

2. n > 1 and hj 6= τ then Hj = H ′
j{E/X} and dX(H ′

j) ≥ dX(G′
0) − 1 ≥ n− 1.

ut

Lemma A.11 Suppose dX(G) > 1, η = {(`i, Gi : pi)}i∈I and G{E/X} ⇒ η. Then Gi = G′
i{E/X}

for each i ∈ I. Moreover, G{F/X} ⇒ η′ and η ≡R∗ η′, where η′ = {(`i, G′
i{F/X} : pi)}i∈I and

R = {(G{E/X}, G{F/X}) | for any G ∈ E}.

124 APPENDIX A. PROOFS FROM CHAPTER 3

Proof: A direct consequence of Lemma A.10. ut

Proof of Lemma 3.36 Let η = r1η1+...+rnηn and G{E/X} ⇒ ηi for each i ≤ n. By Lemma A.11,

for each i ≤ n, there exists η′i s.t. G{F/X} ⇒ η′i and ηi ≡R∗ η′i. Now let η′ = r1η
′
1 + ... + rnη

′
n,

thus G{F/X} ⇒c η
′. By lemma 3.9 it follows that η ≡R∗ η′. ut

A.4 Proof of Lemma 3.45

Proof:

1. We proceed by transition induction on the inference of E ⇒ η. There are three cases, con-

cerning the last rules used.

• wea1: Then E → η and there are several subcases.

(a) psum: Then E ≡
⊕

i pi`i.Ei and the result is obvious by axiom S2.

(b) nsum: Then E ≡
∑

i∈I Fi and Fj → η for some j ∈ I, with a shorter inference.

By induction hypothesis we infer Agd ` Fj = Fj +
⊕

i pi`i.Ei, from which we have

Agd ` E ≡
∑

i∈I Fi =
∑

i∈I Fi +
⊕

i pi`i.Ei = E +
⊕

i pi`i.Ei.

(c) rec: Then E ≡ µXE
′ and E′{E/X} → η for some E′, with a shorter inference. By

induction hypothesis Agd ` E′{E/X} = E′{E/X} +
⊕

i pi`i.Ei. By axiom R1 we

have Agd ` E = E′{E/X} = E′{E/X} +
⊕

i pi`i.Ei = E +
⊕

i pi`i.Ei.

• wea2: Then E ⇒ {(`i, Ei : pi)}i] {(`, F : p)}, F ⇒ {(τ, Fj : qj)}j and η ≡ {(`i, Ei :

pi)}i] {(`, Fj : pqj)}j . So we can infer as follows.

Agd ` E
IH
= E +

⊕
i pi`i.Ei ⊕ p`.F

IH
= E +

⊕
i pi`i.Ei ⊕ p`.(F +

⊕
j qjτ.Fj)

T3
= E +

⊕
i pi`i.Ei ⊕ p`.(F +

⊕
j qjτ.Fj) +

⊕
i pi`i.Ei ⊕

⊕
j pqj`.Fj

= E +
⊕

i pi`i.Ei ⊕
⊕

j pqj`.Fj

• wea3: Then E ⇒ {(`i, Ei : pi)}i] {(τ, F : p)}, F ⇒ {(hj , Fj : qj)}j and η ≡ {(`i, Ei :

pi)}i] {(hj , Fj : pqj)}j . So we can infer as follows.

Agd ` E
IH
= E +

⊕
i pi`i.Ei ⊕ pτ.F

IH
= E +

⊕
i pi`i.Ei ⊕ pτ.(F +

⊕
j qjhj .Fj)

T2
= E +

⊕
i pi`i.Ei ⊕ pτ.(F +

⊕
j qjhj .Fj) +

⊕
i pi`i.Ei ⊕

⊕
j pqjhj .Fj

= E +
⊕

i pi`i.Ei ⊕
⊕

j pqjhj .Fj

2. Let η = r1η1 + ... + rnηn, ηi ≡ {(`ij , Eij : pij)}j and E ⇒ ηi, for each i ≤ n. We can do the

following inference.

Agd ` E
(1)
= E +

∑
i∈1..n

⊕
j pij`ij .Eij

C
= E +

∑
i∈1..n

⊕
j pij`ij .Eij +

⊕
i

⊕
j ripij`ij .Eij

= E +
⊕

i

⊕
j ripij`ij .Eij

A.4. PROOF OF LEMMA 3.45 125

3. By induction on the inference E ⇒ ϑ(X). There are two cases, depending on the last rules

used.

• wea1: This case includes several subcases.

– var: Then E ≡ X and the result is obvious by axiom S2.

– nsum: Then E ≡
∑

i∈I Ei and Ej ⇒ ϑ(X) for some j ∈ I. By induction hypothesis

we infer Agd ` Ej = Ej +X , from which we have Agd ` E ≡
∑

i∈I Ei =
∑

i∈I Ei +

X = E +X .

– rec: Then E ≡ µYE
′ and E′{E/Y } → ϑ(X) for some E′ and Y 6= X . By induction

hypothesis Agd ` E′{E/Y } = E′{E/Y } + X . By axiom R1 we have Agd ` E =

E′{E/Y } = E′{E/Y } +X = E +X .

• wea4: Then E ⇒ {(τ, Ei : pi)}i and for each i it holds that Ei ⇒ ϑ(X). By the result

of Clause 1 just proved above, we know that Agd ` E = E +
⊕

i piτ.Ei. By induction

hypothesis on each Ei we infer Agd ` E = E +
⊕

i piτ.(Ei +X). At last it follows from

T1 that Agd ` E = E +
⊕

i piτ.(Ei +X) +X = E +X .

ut

126 APPENDIX A. PROOFS FROM CHAPTER 3

Appendix B

Proofs from Chapter 4

B.1 Some More Derived Rules

Cvn [x = a]P =∆ [x = a][x 6= a1] · · · [x 6= an]P if a 6∈ {ai | 1 ≤ i ≤ n}

Tv2 P =∆ [x = a1]P + [x = a2]P + · · · + [x = an]P

if {b ∈ dom(∆c) | ∆(b) <: ∆(x)} = {a1, · · · , an}

Tv3 If P =∆,x:T Q then P =∆,x:S Q for S <: T

Iv1 If P =∆,y:∆(x)i Q then x(y : T1).P =∆ x(y : T2).Q

Iv2 If P =∆uv:∆(x)o Q then x̄v.P =∆ x̄v.Q

Proof: Among all the rules, the proof of Iv2 is the hardest, so we report it below in details and

omit the others.

Let {b ∈ dom(∆c) | ∆(b) <: ∆(x)} = {a1, · · · , an}. When n = 0, the result is immediate by

using Tv1. Suppose n > 0. For each i ≤ n, ∆(ai) <: ∆(x), there are two possibilities: (i) if ∆(ai)6↓i

then āib.P =∆ 0 =∆ āib.Q by Tout*; (ii) if ∆(ai)↓i, then we have ∆(x)o <: ∆(ai)o <: ∆(ai)i by

Proposition 4.2. There are two cases, depending on name v.

• v is a channel, say b. It follows from P =∆ub:∆(x)o Q that P =∆ub:∆(ai)i Q by Twea*. Using

Iout*, we have

āib.P =∆ āib.Q (B.1)

Finally,

x̄b.P =∆ [x = a1]x̄b.P + · · · + [x = an]x̄b.P by Tv2

=∆ [x = a1]ā1b.P + · · · + [x = an]ānb.P by Tpre*

=∆ [x = a1]ā1b.Q+ · · · + [x = an]ānb.Q by (B.1)

=∆ x̄b.Q by Tpre*, Tv2

• v is a variable, say y. By hypothesis, ∆]x̄y.P and ∆]x̄y.Q are configurations, then it holds

that ∆(y) <: ∆(x)o. By Proposition 4.1, it is easy to see that ∆ u y : ∆(x)o = ∆. Let the set

{b ∈ dom(∆c) | ∆(b) <: ∆(y)} = {b1, · · · , bm}. We consider the non-trivial case that m > 0.

For each i ≤ n, j ≤ m, by Proposition 4.2 we have

∆(bj) <: ∆(y) <: ∆(x)o <: ∆(ai)o <: ∆(ai)i.

127

128 APPENDIX B. PROOFS FROM CHAPTER 4

So ∆ubj : ∆(ai)i = ∆ = ∆uy : ∆(x)o. Therefore we can rewrite the hypothesis P =∆uy:∆(x)o

Q as P =∆ubj:∆(ai)i Q. Using Iout*, we get the result

āibj.P =∆ āibj .Q (B.2)

At last we can do the inference.
x̄y.P

=∆ [x = a1]x̄y.P + · · · + [x = an]x̄y.P by Tv2

=∆ [x = a1][y = b1]x̄y.P + · · · + [x = a1][y = bm]x̄y.P+

· · · + [x = an][y = b1]x̄y.P + · · · + [x = an][y = bm]x̄y.P by Tv2

=∆ [x = a1][y = b1]ā1b1.P + · · · + [x = a1][y = bm]ā1bm.P+

· · · + [x = an][y = b1]ānb1.P + · · · + [x = an][y = bm]ānbm.P by Tpre*

=∆ [x = a1][y = b1]ā1b1.Q + · · · + [x = a1][y = bm]ā1bm.Q+

· · · + [x = an][y = b1]ānb1.Q + · · · + [x = an][y = bm]ānbm.Q by (B.2)

=∆ x̄y.Q by Tpre*, Tv2

ut

B.2 Proof of Theorem 4.36

Proof: We sketch the completeness proof of clause (ii), which is carried out by induction on the

depth of P +Q; clause (i) can be shown in a similar way. Assume that P,Q are in hnf w.r.t. ∆ and

∆ = ∆c, x̃ : T̃ . Let ∆]Q be a configuration respecting Γ. For some complete condition ϕ which are

satisfiable by some legal substitution on ∆, let Pϕ,a be the sum of all active summands ϕiαi.Pi of

P such that {C1,Tpre∗} ` ϕiαi.Pi =∆ ϕa(x : Ti).Pi. We write

Pϕ,a =

n∑

i=1

ϕa(x : Ti).Pi and Qϕ,a =

m∑

j=1

ϕa(x : Sj).Qj

The key of the proof is to find, for each 1 ≤ i ≤ n, a term Ri satisfying the following two properties.

Ae ` ϕa(x : Ti).Pi =∆ ϕa(x : Γ(a)i).Ri (B.3)

Ae ` Qϕ,a =∆ Qϕ,a + ϕa(x : Γ(a)i).Ri (B.4)

Let σ = {b̃/x̃} be a substitution which satisfies ϕ and ∆c ` b̃ : T̃ . From Pσ le
∆c
Qσ we derive that

Pϕ,aσ l
e
∆c

Qϕ,aσ. Given ∆c]Pϕ,aσ
a(x:Ti)
−→ ∆′]Piσ, for each b ∈ {b ∈ dom(∆c) | ∆c(b) <: ∆c(a)o} =

{c1, · · · , ck} we have a matching transition ∆c]Qϕ,aσ
a(x:SJ(i,b))

−→ ∆′′]QJ(i,b)σ such that

Piσ{b/x} l
e
∆c
QJ(i,b)σ{b/x}

for some function J from [1, n] and {ci | 1 ≤ i ≤ k} to [1,m]. By the definition of hnf, Pi and

QJ(i,b) are of the form ϕP ′
i and ϕQ′

J(i,b) respectively. Here ϕ is complete on dom(∆), but not on

dom(∆) ∪ {x}. We can complete it by adding conditions on the top which respects {b/x}. Let

ϕb = [x = b] ∧
∧

u∈dom(∆)\b[x 6= u]. It is easy to see that

([ϕb ∧ ϕ]P ′
i)σ{b/x} l

e
∆c

([ϕb ∧ ϕ]Q′
J(i,b))σ{b/x}.

B.2. PROOF OF THEOREM 4.36 129

By Lemma 4.20 we have [ϕb ∧ ϕ]P ′
i l

e
∆,x:∆(a)o

[ϕb ∧ ϕ]Q′
J(i,b). By induction hypothesis

Ae ` ϕbPi =∆,x:∆(a)o ϕbQJ(i,b). (B.5)

Now define Si,l for l ≤ k by

Si,1 = QJ(i,c1)

Si,l = [x = cl] QJ(i,cl) Si,l−1 for 1 < l ≤ k

Let Ri be defined as Si,k. Using C9 and Cvn, we decompose binary conditions in Ri into unary

conditions.

Ae ` Ri =∆,x:∆(a)o ϕck
QJ(i,ck) + ϕck−1

QJ(i,ck−1) + · · · + ϕc1QJ(i,c1)

On the other hand by Tv2 and Cvn we have

Ae ` Pi =∆,x:∆(a)o ϕck
Pi + · · · + ϕc1Pi.

By using (B.5) we have Ae ` Pi =∆,x:∆(a)o Ri, from which we infer that Ae ` a(x : Ti).Pi =∆ a(x :

Γ(a)i).Ri and Ae ` ϕa(x : Ti).Pi =∆ ϕa(x : Γ(a)i).Ri by Iin* and Icon. So we get the property in

(B.3).

Finally with axiom SP we can show by induction on 0 < l ≤ k that

Ae ` Qϕ,a =∆ Qϕ,a + ϕa(x : Γ(a)i).Si,l. (B.6)

Therefore (B.4) follows because it is the special case of (B.6) when l = k. ut

130 APPENDIX B. PROOFS FROM CHAPTER 4

Appendix C

Proofs from Chapter 5

C.1 Proofs from Section 5.2

Lemma C.1 For two well-typed processes P and P ′, if w : x (i.e., w and x have the same type)

and P ′ = P{w/x}, then wt(P) = wt(P ′).

Proof: Trivial. ut

Below we use | wt(P) | to stand for the length of the vector wt(P).

Lemma C.2 Suppose T ` P and P
α

−→ P ′, then | wt(P ′) | ≤ | wt(P) |.

Proof: Straightforward by induction on the structure of P . ut

Since the length of a vector can be extended by inserting zeros to the left end, we often assume

implicitly, for simplicity of presentation, that several vectors have already been extended so as to

be of equal length when discussing their relationship.

Lemma C.3 Suppose T ` P, P
aw
−→ P ′, lv(a) = i, wt(P) = 〈nk, nk−1, · · · , n1〉 and wt(P ′) =

〈mk,mk−1, · · · ,m1〉. Then mj ≤ nj for all j satisfying i ≤ j ≤ k.

Proof: By induction on the transition of P
aw
−→ P ′.

1. P ≡ a(x).P1
aw
−→ P1{w/x} ≡ P ′, in this case, wt(P) = wt(P1) = wt(P ′) by lemma C.1.

2. P ≡ P1 | P2, P1
aw
−→ P ′

1 and P ′ ≡ P ′
1 | P2, then we have

wt(P) = wt(P1) + wt(P2) = 〈n1
k, n

1
k−1, · · · , n

1
1〉 + 〈n2

k, n
2
k−1, · · · , n

2
1〉

wt(P ′) = wt(P ′
1) + wt(P2) = 〈m1

k,m
1
k−1, · · · ,m

1
1〉 + 〈n2

k, n
2
k−1, · · · , n

2
1〉

By induction hypothesis, ∀j, i ≤ j ≤ k,m1
j ≤ n1

j , it follows that mj = m1
j +n2

j ≤ n1
j +n2

j = nj .

3. P ≡ νbP1, P1
aw
−→ P ′

1, P
′ ≡ νbP ′

1 and b 6= a, then wt(P1) = wt(P) = 〈nk, nk−1, · · · , n1〉,

wt(P ′
1) = wt(P ′) = 〈mk,mk−1, · · · ,m1〉. By induction hypothesis, we know that ∀j, i ≤ j ≤

k,mj ≤ nj .

131

132 APPENDIX C. PROOFS FROM CHAPTER 5

4. P ≡ P1 + P2, P1
aw
−→ P ′

1 and P ′ ≡ P ′
1, then

wt(P) = max{wt(P1), wt(P2)} = max{〈n1
k, n

1
k−1, · · · , n

1
1〉, 〈n

2
k, n

2
k−1, · · · , n

2
1〉}

wt(P ′) = wt(P ′
1) = 〈m1

k,m
1
k−1, · · · ,m

1
1〉

By induction hypothesis, ∀j, i ≤ j ≤ k,m1
j ≤ n1

j , so m1
j ≤ n1

j ≤ nj .

5. P ≡!a(x).P1
aw
−→ P | P1{w/x} ≡ P ′. According to T-rep, any name which appears as subject of

active output in P1 has a level lower than that of a. Suppose wt(P1) = 〈n′
l, n

′
l−1, · · · , n

′
1〉, then

l < lv(a) = i. Hence wt(P ′) = wt(P) + wt(P1{w/x}) = wt(P) + wt(P1) = 〈nk, · · · , nl+1, nl +

n′
l, nl−1 + n′

l−1, · · · , n1 + n′
1〉. Therefore mj = nj for all j satisfying l ≤ i ≤ j ≤ k.

ut

Lemma C.4 Suppose T ` P, P
(νb̃)āw
−→ P ′, lv(a) = i, wt(P) = 〈nk, nk−1, · · · , n1〉 and wt(P ′) =

〈mk,mk−1, · · · ,m1〉. Then mi < ni and mj ≤ nj for all j satisfying i < j ≤ k.

Proof: Similar to the proof of Lemma C.3. As an example, let us consider one case. Suppose

P ≡ āw.P1
āw
−→ P1 ≡ P ′. After the transition, process P lost one output occurrence at level i

previously contributed by name a. Other output occurrences remain unchanged. So it holds that

mi = ni − 1 and mj = nj for all j 6= i. ut

Proof of Lemma 5.1

By induction on the transition system. We consider a typical case. Suppose P ≡ P1 | P2,

P1
aw
−→ P ′

1, P2
(νb̃)āw
−→ P ′

2 and P ′ ≡ (νb̃)(P ′
1 | P ′

2). Let lv(a) = i and

wt(P) = wt(P1) + wt(P2) = 〈n1
k, n

1
k−1, · · · , n

1
1〉 + 〈n2

k, n
2
k−1, · · · , n

2
1〉

wt(P ′) = wt(P ′
1) + wt(P ′

2) = 〈m1
k,m

1
k−1, · · · ,m

1
1〉 + 〈m2

k,m
2
k−1, · · · ,m

2
1〉

It follows from Lemma C.3 that ∀j, i ≤ j ≤ k,m1
j ≤ n1

j . From Lemma C.4 we infer that m2
i < n2

i

and ∀j, i < j ≤ k,m2
j ≤ n2

j . Combining the two results, we can draw the conclusion that mi < ni

and ∀j, i < j ≤ k,mj ≤ nj , in other words, wt(P ′) ≺ wt(P). ut

C.2 Proofs from Section 5.3

When P is known or unimportant, we simply write Mi for MP,i. There are two additional special

vectors widely used in this section.

1. 0′
i = 〈(Mk;nk), · · · , (M1;n1)〉 where (1) ∀j ≤ k,Mj = []; (2) 〈nk, · · · , n1〉 = 0i.

2. 0′′
ij = 〈(Mk;nk), · · · , (M1;n1)〉 where (1) Mi = [j] and Ml = [] for all l such that l 6= i; (2)

〈nk, · · · , n1〉 = 0i.

The proofs of the following lemmas are carried out by induction on the transition P
α

−→ P ′.

Here we write a :]i¬Nat to mean that a :]iT and T 6= Nat for some T .

C.2. PROOFS FROM SECTION 5.3 133

Lemma C.5 Suppose T ′ ` P and P
aw
−→ P ′.

1) If a :]i¬Nat, then tP ′ ≺ tP + 0′
i

2) If a :]iNat, then tP ′ ≺ tP + 0′′
iw.

Proof: Let tP = 〈(Mk;nk), · · · , (M1;n1)〉 and tP ′ = 〈(M′
k;n′

k), · · · , (M′
1;n

′
1)〉. We consider two

typical cases.

1. P ≡ a(x).P1
aw
−→ P1{w/x} ≡ P ′.

(a) If a :]i¬Nat, then all Nat values and output occurrences in P remain intact after the

transition. So tP ′ = tP ≺ tP + 0′
i.

(b) If a :]iNat, there are two subcases.

i. If ∀b̄u ∈ out(P1), x 6∈ fvn(u) then no new Nat value is created in P1. So we have

tP ′ = tP ≺ tP + 0′′
iw.

ii. For each active output b̄u with fvn(u) = {x}, new constant values are generated. Let

u{w/x} = m ∈ N. Since u is consider as ∞ in Mlv(b) and it becomes m in M′
lv(b),

we infer that M′
lv(b) ≺ Mlv(b) by the fact that m < ∞. As wt(P) does not change,

hence tP ′ ≺ tP ≺ tP + 0′′
iw.

2. P ≡!a(x).P1
aw
−→ P | P1{w/x} ≡ P ′.

(a) If a :]i¬Nat, in this case only the first condition in Definition 5.4 is applicable, which

ensures that all active outputs in P1 have levels lower than i. So wt(P ′) ≺ wt(P) + 0i

and Mj = M′
j for all j ≥ i. Therefore it holds that tP ′ ≺ tP + 0′

i.

(b) If a :]iNat, there are also two subcases.

i. If ∀b ∈ os(P1), lv(b) < i, then we are in the same situation as that of case 2.(a). So

tP ′ ≺ tP + 0′
i ≺ tP + 0′′

iw.

ii. If there are outputs at level i in P1, say b̄u, then rule T-rep requires that u < x, i.e.,

u{w/x} < w. It is easy to see that MP1{w/x},i ≺ [w]. It follows that M′
i ≺ Mi] [w].

Although it may occur that n′
i > ni, the relation tP ′ ≺ tP + 0′′

iw still holds because

the compound vector is constructed in such a way that Nat-multisets are compared

in a higher priority than output occurrences.

3. The other three cases can be analyzed by using induction hypothesis.

ut

Lemma C.6 Suppose T ′ ` P and P
(νb̃)āw
−→ P ′.

1) If a :]i¬Nat, then tP ′ � tP − 0′
i.

2) If a :]iNat, then tP ′ � tP − 0′′
iw.

Proof: By induction on transitions. Consider the base case. Suppose that P ≡ āw.P1
āw
−→ P1 ≡ P ′.

If a :]i¬Nat, P lost one output occurrence after the transition. There is no change for Nat values

in P1. So wt(P ′) = wt(P) − 0i and MP ′,j = MP,j for all j ≤| wt(P) |. In other words, we have

134 APPENDIX C. PROOFS FROM CHAPTER 5

tP ′ = tP − 0′
i. If a :]iNat, P lost one output occurrence and a constant w at channel a. So

MP ′,i = MP,i − [w], wt(P ′) = wt(P)− 0i and ∀j 6= i,MP ′,j = MP,j , which means tP ′ = tP − 0′′
iw.

For other cases, induction hypothesis is applied. ut

Proof of Lemma 5.6

Similar to the proof of Lemma 5.1. We consider the base case, the other cases follow from

induction hypothesis. Let P ≡ P1 | P2, P1
aw
−→ P ′

1, P2
(νb̃)āw
−→ P ′

2 and P ′ ≡ (νb̃)(P ′
1 | P ′

2).

1. If a :]i¬Nat, then we have that tP ′

1
≺ tP1 + 0′

i from Lemma C.5 and tP ′

2
� tP2 − 0′

i from

Lemma C.6. So it can be derived that tP ′ = tP ′

1
+ tP ′

2
≺ tP1 + 0′

i + tP2 − 0′
i = tP1 + tP2 = tP .

2. If a :]iNat, then from Lemma C.5 we have the result that tP ′

1
≺ tP1 + 0′′

iw and from Lemma

C.6 we have tP ′

2
� tP2 − 0′′

iw. Hence it holds that tP ′ = tP ′

1
+ tP ′

2
≺ tP1 + 0′′

iw + tP2 − 0′′
iw =

tP1 + tP2 = tP . ut

C.3 Extending T ′ with Polyadicity and Conditional

To allow for polyadic communication and if-then-else constructor, the extension of typing rules is

straightforward.

T-rep
` u :]nṼ x̃ : Ṽ ` P ∀v̄〈w̃〉 ∈ out(P), v̄〈w̃〉 / u(x̃)

`!u(x̃).P

T-if
` w : bool ` P ` Q
` if w then P else Q

The definition of / should be changed accordingly.

Definition C.7 Suppose u :]n(T1, · · · , Tk) and v :]m(S1, · · · , Sl). We write v̄〈w̃〉 / u(x̃) if one of

the two cases holds:

1. m < n

2. both of the following two conditions are met:

(a) m = n and k = l

(b) there exists some i ≤ k such that Ti = Nat, wi < xi and wj ≤ xj for all j 6= i with

Tj = Nat.

In clause 2 we require that at least one argument of first-order should decrease its value, while

in monadic case the unique first-order argument decreases.

In an input u(x̃) or an output v̄〈w̃〉, the order of arguments in the tuples x̃ and w̃ is not important.

Without loss of generality, we assume that arguments of type Nat are always in the left end. In

other words, we may consider that a tuple x̃ is composed of two parts: x̃ = x̃1; x̃2, and xi is of type

Nat only if it is an element of x̃1. That is, all elements of x̃2 are of channel type or bool type.

C.4. PROOFS FROM SECTION 5.4 135

Let v̄〈wn, · · · , w1;w
′
m, · · · , w

′
1〉 be an active output appearing in process P . Define wi below for

every wi, where i ∈ {1, · · · , n}.

wi =

{
wi if wi is a constant, i.e., fvn(wi) = ∅

∞ otherwise.

The definition of Nat-multiset, for the case of output, needs to be modified.

Mv̄w.P,i =

{
MP,i] [wn, · · · , w1] if v :]i(Ñat; T̃)

MP,i otherwise

where w = 〈wn, · · · , w1;w
′
m, · · · , w

′
1〉. The intuition is that during a communication we consume

an output v̄w and probably get some new outputs at level i, of the form v̄〈wn − mn, · · · , w1 −

m1;w
′
m, · · · , w

′
1〉. As wi −mi < wi for some i and wj −mj ≤ wj for all other j with i, j ≤ n, we

immediately infer that MP ′,i <mul MP,i. The definition of compound vector remains unchanged.

For conditionals, we can extend the definition of weight in this way: wt(if b then P else Q) =

max{wt(P), wt(Q)}. According to the new definition of Nat-multiset, properties similar to Lemma

C.5 and C.6 are easy to prove. Lemma 5.6 and Theorem 5.7 still hold.

C.4 Proofs from Section 5.4

Proof of Lemma 5.12

1. There is a communication performed between a non-replicated input and an output mes-

sage. That is, P ≡ (νb̃)(aε(x).P1 | āw.Q1 | Q2) for some a, P1, Q1, Q2, w and b̃, and

P ′ ≡ (νb̃)(P1{w/x} | Q1 | Q2). Therefore we have that

wt(P) = wt(P1) + wt(āw) + wt(Q1) + wt(Q2)

� wt(P1) + wt(Q1) + wt(Q2) = wt(P ′)

2. To derive this kind of transition, either if-t or if-f is used. If if-t is used then we have that

P ≡ (νb̃)((if true then P1 else Q1) | Q2) and P ′ ≡ (νb̃)(P1 | Q2) for some b̃, P1, Q1 and

Q2. Depending on the relation between wt(P1) and wt(Q1) we have wt(P) � wt(P ′) if

wt(P1) ≺ wt(Q1) and wt(P) = wt(P ′) if wt(P1) � wt(Q1). The symmetric case for if-f is

similar.

3. By the transition rule rep, each time a replicated process is invoked a fresh tag is produced. So

there is no replicated process invoked in Pi for 1 ≤ i ≤ n− 1. Then there are two possibilities:

(a) No replicated process invoked in P either. Therefore all communications take place

between non-replicated inputs and outputs. Reasoning as in clause 1, one can derive that

wt(P) � wt(P1) � · · · � wt(P ′)

(b) A replicated process !κ.Q, with κ = a1(x1). · · · .an(xn), is invoked in P and a new process

(a
(l,2)
2 (x2). · · · .a

(l,n)
n (xn).Q)σ, for some σ, is spawned. The subsequent reductions con-

sume the input prefixes from a
(l,2)
2 σ(x2) to a

(l,n)
n σ(xn) and their corresponding outputs.

136 APPENDIX C. PROOFS FROM CHAPTER 5

Thus we have the relation

wt(P ′) + wt(κ) = wt(P) + wt(Qσ′).

Substitution of names does not affect the weight of a process, so wt(Qσ′) = wt(Q). The

side condition of rule rep requires that wt(κ) � wt(Q). Hence we have the conclusion

that wt(P) � wt(P ′).

ut

Proof of Lemma 5.13

Let n = ρ(l).

1. Since P is regular, the transition with tag (l, i) must originate from a communication between

an active output and a replicated input. So R must be of the form:

{
(νb̃)(!a1(x1). · · · .an(xn).P | ā1w | Q) if i = 1

(νb̃)(!a1(x1). · · · .an(xn).P | (a
(l,i)
i (xi). · · · .a

(l,n)
n (xn).P)σ | ā′iw | Q) if 1 < i < n

with aiσ = a′i. To have a subsequent transition with tag ε, Q must be of the form: cε(x).Q1 |

c̄w.Q2 | Q3 for some c, w,Q1, Q2 and Q3. It is evident that R also have the reduction path

R
ε

−→ R′
1

(l,i)
−→ R′. The case for t = ε′ is also straightforward.

2. Let m = ρ(l′). As in the proof of clause 1 we know that the transitions with non-special

tags come from replicated inputs. Depending on whether l and l′ come from the same input

pattern or not, we have the following two cases:

(a) They are generated by two different input patterns, that is, there exist at least two

replicated inputs in P , say !a1(x1). · · · .an(xn).P1 and !b1(x1). · · · .bm(xm).P2 respectively.

There are four possibilities. Let us consider the typical case that j 6= 1 and i 6= 1. Then

R should be of the form

R ≡ (νc̃)(!b1(y1). · · · .bn(yn).P2 |!a1(x1). · · · .an(xn).P1

| (b
(l′,j)
j (yj). · · · .b

(l′,m)
m (ym).P2)σ1 | (a

(l,i)
i (xi). · · · .a

(l,n)
n (xn).P1)σ2

| b̄′jw
′ | Q)

with bjσ1 = b′j . Since j < ρ(l′) the consumption of bjσ1(yj) does not liberate any output,

and an output on aiσ2 should be directly available in Q so as to make the subsequent

communication on aiσ2 possible, which means that

Q ≡

{
ā′iw | Q2 if i < n

ā′iw.Q1 | Q2 if i = n

with aiσ2 = a′i. Obviously in both cases R can take another reduction path: R
(l,i)
−→

R′
1

(l′,j)
−→ R′ for some R′

1.

(b) l and l′ originate from the same input pattern !a1(x1). · · · .an(xn).P1, which has been

invoked two times. The arguments are similar to Case (a).

C.4. PROOFS FROM SECTION 5.4 137

ut

Proof of Lemma 5.14

We consider the inductive step. Suppose P has an infinite reduction sequence P ≡ P0
t1−→

P1
t2−→ · · ·

ti−→ Pi
ti+1
−→ · · ·. We shall do case analysis to find some process Q satisfying the three

conditions: (i) Q is also non-terminating; (ii) Q is regular; (iii) wt(P) � wt(Q).

At first it is clear that if tj = (l, i) and i < ρ(l), then the atomic tag l is generated by invoking

an input pattern, since in P there are only special tags.

Case 1: If t1 = ε′, by Lemma 5.12 there are two possibilities. If wt(P) � wt(P1) we can set

Q = P1. If wt(P) = wt(P1), we need to start the search from t2. Note that any reduction sequence

by consecutively using rules if-t or if-f is finite since the size of the starting process decreases step

by step. So we will find either a tag ε′ that decreases weight or a tag of the form ε or (l, i), which

directs the analysis to Case 2 or Case 3 accordingly.

Case 2: If t1 = ε, then by Lemma 5.12 we know that wt(P) � wt(P1). P1 is just the process Q we

are finding.

Case 3: If t1 = (l, i) and ρ(l) > 0, then i = 1 since P is regular. Let n = ρ(l).

−If n = 1, then by Lemma 5.12 it holds that wt(P) � wt(P1). So we can set Q = P1.

− If n > 1 and hence a new process R
def
= (a

(l,2)
2 (x2). · · · .a

(l,n)
n (xn).R0)σ appears in P1.

1. If R does not participate in any communication among the infinite sequence P1
t2−→ · · ·

ti−→

Pi
ti+1
−→ · · ·, then replacing R with 0 does not affect the sequence. More precisely, let P1 =

(νc̃)(!a1(x1). · · · .an(xn).R0 | R | R1), for some R1, and Q = (νc̃)(!a1(x1). · · · .an(xn).R0 | 0 |

R1). Q can produce the same infinite reduction sequence as that of P1 with 0 in place of R at

the top level, but with wt(Q) ≺ wt(P) because P consumes an output during the transition

P
(l,1)
−→ P1.

2. If R participates in a communication among the sequence, then there exists i such that ti =

(l, 2). We need to classify all the reductions between P1 and Pi. There are two subcases to

consider.

(a) If all tj for 1 < j < i are of the forms ε or ε′, then we use Lemma 5.13 for (i− 2) times

and push (l, 1) forward until to the proper left of (l, 2). The resulting sequence is of the

form:

P
t2−→ P ′

2
t3−→ · · ·

ti−1
−→ P ′

i−1

(l,1)
−→

(l,2)
−→ P ′

i −→ · · ·

By Lemma 5.12, we have the relations

wt(P) � wt(P ′
2) � · · · � wt(P ′

i−1)

(b) If there is a partition of the set {j | 1 < j < i} by I1 and I2 such that all tj ∈ C1 = {ti | i ∈

I1} = {t11, · · · , t1k} are of the forms ε or ε′ and all tj ∈ C2 = {ti | i ∈ I2} = {t21, · · · , t2k′}

are of the form (lj , nj) with ρ(lj) > 0.

i. If ∀j ∈ I2, nj < ρ(lj), i.e., no input pattern is complete (since for each j not all tags

from (lj , 1) to (lj , ρ(lj)) are in the set C2), then by using Lemma 5.13 for finite many

138 APPENDIX C. PROOFS FROM CHAPTER 5

times we can push all tags in C1 to the left of (l, 1) and preserve their order. The

sequence changes into this form:

P
t11−→ P11

t12−→ · · ·
t1k−→ P1k

(l,1)
−→

t21−→ · · ·
t2k′

−→
(l,2)
−→ · · ·

Similarly, by using Lemma 5.13, we can push all tags in C2 to the right of (l, 2).

P
t11−→ P11

t12−→ · · ·
t1k−→ P1k

(l,1)
−→

(l,2)
−→ P ′

i
t21−→ · · ·

t2k′

−→ · · ·

By Lemma 5.12 it follows that

wt(P) � wt(P11) � · · · � wt(P1k).

ii. If there is a set I ′2 ⊆ I2 such that ∀j ∈ I ′2, tj = (lj , ρ(lj)), i.e., all tags in I ′2 are

the tags of ending inputs in some input patterns. These patterns can be completed

by tags between (1, l) and (l, 2). We shall use Lemma 5.13 to sort out all complete

patterns and push them to the left of (l, 1).

A. Starting from (l, 1) we scan the sequence forward to find the first tag (l1, ρ(l1))

for some atomic tag l1 because we want to make all tags with atomic tag l1 be

in consecutive positions by “sequeezing out” other tags to the left of (l1, 1) or to

the right of (l1, ρ(l1)). All tags between (l1, 1) and (l1, ρ(l1)) are of one of the

three forms: ε, ε′ or (lj , nj) with nj < ρ(lj). As we did in Case i, it is feasible to

push all ε and ε′ backward and all (lj , nj) forward so that only tags with atomic

tag l1 are left between (l1, 1) and (l1, ρ(l1)) (these tags are already in ascending

order since they come from the same input pattern, say a1(x1). · · · .aρ(l1)(xρ(l1)),

and the consumption of these input prefixes goes from left to right). After the

operations, we get a reduction sequence like

P
(l,1)
−→ · · ·

ε
−→

ε′
−→ · · ·

(l1,1)
−→

(l1,2)
−→ · · ·

(l1,ρ(l1))
−→︸ ︷︷ ︸

τ l1

· · ·
(lj ,nj)
−→ · · ·

(l,2)
−→ · · ·

B. Find the next tag (l2, ρ(l2)) for some atomic tag l2 and make all tags with atomic

tag l2 in consecutive positions. Now we can treat tags in group τ l1 as a whole

and push them backward just as what we do for tag ε. We repeat this operation

for other group τ lj as long as (lj , ρ(lj)) lies between (l, 1) and (l, 2). At the end

of this stage, we have a sequence as follows.

P
(l,1)
−→ · · ·

τ l1

=⇒ · · ·
τ l2

=⇒ · · ·
τ lj

=⇒ · · ·
(l,2)
−→ · · ·

where
τ lj

=⇒ stands for
(lj ,1)
−→

(lj ,2)
−→ · · ·

(lj ,ρ(lj))
−→ .

C. For other tags tj with j 6∈ I ′2 and j ∈ I2, which do not belong to a complete

group, we push them forward to the right of (l, 2), keeping their order. At this

moment, there are still tags like ε and ε′ between (l, 1) and (l, 2).

P
(l,1)
−→ · · ·

t
−→ · · ·

τ l1

=⇒ · · ·
t

−→ · · ·
τ lj

=⇒ · · ·
(l,2)
−→ · · ·

where t ∈ {ε, ε′}.

C.5. PROOFS FROM SECTION 5.5 139

D. Push (l, 1) forward until to the proper left of (l, 2) so as to yield this sequence:

P
t

−→ P ′
11 · · ·

t
−→

τ l1

=⇒ · · ·
t

−→
τ lj

=⇒ · · ·
t

−→ P ′
j′kj′

(l,1)
−→

(l,2)
−→ P ′

i · · ·

where t ∈ {ε, ε′}. By Lemma 5.12 it follows that

wt(P) � wt(P ′
11) � · · · � wt(P ′

j′kj′
)

In the above four steps, when we commute reductions like
(lj ,nj)
−→

ti−→, the condition

nj < ρ(lj) is always satisfied. This ensures the correct use of Lemma 5.13.

If n = 2, by Lemma 5.12 and the transitivity of �, we have that wt(P) � wt(P ′
i) and so Q can

be set as P ′
i . If n > 2 we repeat the operations done for (l, 1) on (l, i) with 1 < i < ρ(l). There are

two possibilities for the ultimate result:

1) either (l, i+ 1) does not appear in the subsequent reductions, then we replace the process R
def
=

(a
(l,i+1)
i+1 (xi+1). · · · .a

(l,n)
n (xn).R0)σ with 0 and get a non-terminating process Q such that wt(P) �

wt(Q);

2) or we complete the input pattern with atomic tag l and have a sequence like

P
ti−→ · · ·

(l,1)
−→

(l,2)
−→ · · ·

(l,n)
−→ Q

tj

−→ · · ·

In this case we also have wt(P) � wt(Q) according to previous operations and Lemma 5.12.

Note that there are possibly three kinds of tags lying in the ultimate sequence between P and

Q:

1) tags ε or ε′;

2) tags belonging to complete input patterns;

3) tags not belonging to complete input patterns, but the continuations of these incomplete input

patterns are discarded in Q since we have substituted 0 for them.

Therefore each new atomic tag l with ρ(l) > 0 created by the derivatives of P is usded up when

reaching Q. As P is regular, Q must be regular as well. Hence the induction hypothesis applies and

it maintains that Q is terminating. At this point contradiction arises. ut

C.5 Proofs from Section 5.5

Lemma C.8 If n(R) ∩ x̃ = ∅ then (R + R′)⇓x̃= R + R′⇓x̃.

Proof: Let R′′ = R + R′.

(R + R′)⇓x̃

= {(a, b) | a, b 6∈ x̃ and aR′′c1R′′ · · ·R′′cnR′′b for some c̃ ⊆ x̃ and n ≥ 0}

= {(a, b) | a, b 6∈ x̃ and aRb}

∪{(a, b) | a, b 6∈ x̃ and aR′c1R′ · · ·R′cnR′b for some c̃ ⊆ x̃ and n ≥ 0}

= R∪R′⇓x̃

= R + R′⇓x̃

ut

140 APPENDIX C. PROOFS FROM CHAPTER 5

Let R be a partial order and σ be a substitution of names. We say Rσ is well defined if

Rσ = {(xσ, yσ) | (x, y) ∈ R} is a partial order. For the multiset M = [x1, · · · , xn] we write

Mσ = [x1σ, · · · , xnσ].

Lemma C.9 If M1 Rmul M2 then

(1) M1 R′
mul M2 with R′ = R + S.

(2) (M1]M) Rmul (M2]M) for any multiset M over n(R).

(3) M1σ Rσmul M2σ when Rσ is well defined.

Proof: We only need the definition of multiset ordering. (1) Since R′ is a superset of R, it

holds that xRy implies xR′y. (2) Trivial. (3) Since Rσ is well defined, it follows that xRy implies

xσ Rσ yσ. ut

Given a multiset M and a partial order R on names, we extract from M a sub-multiset in the

following way:

MR(x)
def
=

{
M(x) x ∈ n(R)

0 x 6∈ n(R)

Note that here we consider a multiset M with elements from set V as a function M : V 7→ N (cf.

[Bez03]). Clearly all elements in MR belong to n(R).

The following lemma provides an alternative characterisation of the relation R̂. It shows that

names not in n(R) are invariant with respect to the multiset ordering.

Lemma C.10 Suppose P R̂ Q, M1 = mosR(P) and M2 = mosR(Q). Then M1
R Rmul M2

R.

Proof: From P R̂ Q we know that: (i) M1 = M]M1; (ii) M2 = M]M2; (iii) M1 Rmul M2.

Since all elements in M1 and M2 belong to n(R), it is easy to see that M1
R = MR] M1 and

M2
R = MR]M2. From Lemma C.9(2), it follows that M1

R Rmul M2
R. ut

Lemma C.11 If the partial order R is finite, then there exists no infinite sequence like

P0 R̂ P1 R̂ P2 R̂ · · ·

Proof: Since R is finite, it is well-founded, so is the induced multiset ordering Rmul. Suppose

there exists such an infinite sequence. Let Mi = mosR(Pi). By Lemma C.10, we would have the

sequence

M0
R Rmul M

1
R Rmul M

2
R Rmul · · ·

which contradicts the well-foundedness of Rmul. ut

Lemma C.12 If P R̂ Q then

(1) P R̂′ Q with R′ = R + S

(2) P | R R̂ Q | R

(3) Pσ R̂σ Qσ when R̂σ is well defined.

(4) P ′ R̂ Q′ with mosR(P) = mosR(P ′) and mosR(Q) = mosR(Q′).

C.5. PROOFS FROM SECTION 5.5 141

Proof: Straightforward. The first and third clause of Lemma C.9 are used to prove (1) and (3)

respectively. ut

The next two lemmas illustrate the basic properties of the type system T ′′′.

Lemma C.13 If R ` P then n(R) ⊆ fn(P).

Proof: By trivial induction on the structure of P . ut

Lemma C.14 If R ` P , x̃ : w̃, σ = {w̃/x̃} and Rσ is well defined, then Rσ ` Pσ.

Proof: The derivation of R ` P forms a tree tr with the conclusion as root. If we replace all

occurrences of xi with wi we get another tree tr′. By induction on the depth of tr′ it can be shown

that tr′ is a valid derivation tree with root Rσ ` Pσ. ut

Proof of Theorem 5.20

By induction on the depth of the derivation P
α

−→ P ′. Let us consider the last rule used in the

derivation.

1. Rule in In this case P = a(x̃).P1 and P ′ = P1σ, where σ = {w̃/x̃}. From R ` P we infer

that a :]nS Ṽ , x̃ : Ṽ , R′ ` P1, S = R′/x̃ and R = R′⇓x̃.

(a) If S = ∅ then n(R′) ∩ x̃ = ∅. Obviously R′σ is well defined since R′σ = R′. By Lemma

C.14 we have R′σ ` P1σ. Observe that S ∗ w̃ = ∅ and R′⇓x̃= R′, i.e., R′σ = R′ = R′⇓x̃

+∅ = R + S ∗ w̃. Therefore it holds that R + S ∗ w̃ ` P ′.

(b) If S 6= ∅, then n(R′) ⊆ x̃ by definition and S ∗ x̃ = R′ by Lemma 5.17. By hypothesis

S ∗ w̃ is a partial order, so R′σ is well defined since R′σ = (S ∗ x̃)σ = S ∗ w̃. By

Lemma C.14 we have R′σ ` P1σ. The conclusion is straightforward by noting that

R + S ∗ w̃ = R′⇓x̃ +R′σ = ∅ + R′σ = R′σ.

2. Rule com1 We have P = P1 | P2, P1
(νb̃)āw̃
−→ P ′

1, P2
aw̃
−→ P ′

2, b̃ ∩ fn(P2) = ∅ and P ′ = (νb̃)(P ′
1 |

P ′
2). From R ` P we derive that R1 ` P1, R2 ` P2 and R = R1 + R2. By induction

hypothesis on the transition of P1 we have the following results: (1) a :]nS Ṽ and w̃ : Ṽ ; (2)

R′
1 ` P ′

1; (3) R1 = (R′
1 + S ∗ w̃)⇓b̃. By inductive assumption on the transition of P2 we infer

that R2 + S ∗ w̃ ` P ′
2. Using T-par it follows that R2 + R′

1 + S ∗ w̃ ` P ′
1 | P ′

2. Using T-res

we have that (R2 + R′
1 + S ∗ w̃) ⇓b̃` (νb̃)(P ′

1 | P ′
2). By the condition b̃ ∩ fn(P2) = ∅ and

Lemma C.13, b̃∩ n(R2) = ∅ holds. By using Lemma C.8 we have that (R2 +R′
1 + S ∗ w̃)⇓b̃=

R2 + (R′
1 + S ∗ w̃)⇓b̃= R2 + R1 = R. Therefore R ` P ′ is valid.

3. Rule rep Suppose P =!κ.P1 with κ = a(x̃).κ′. Let σ = {w̃/x̃}. After the transition P

changes into P ′ = P | (κ′.P1)σ. From R `!κ.P1 we have R ` κ.P1 according to the typing

rule T-rep. Applying the arguments in Case 1 to κ.P1 we have the results: (1) a :]nS Ṽ and

w̃ : Ṽ ; (2) if S ∗ w̃ is a partial order then R+ S ∗ w̃ ` (κ′.P1)σ. Using T-par we can infer that

R + S ∗ w̃ + R ` P ′, i.e., R + S ∗ w̃ ` P ′.

142 APPENDIX C. PROOFS FROM CHAPTER 5

4. Rule open Let P = νcP1. The transition P
(νb̃,c)āw̃
−→ P ′ comes from P1

(νb̃)āw̃
−→ P ′ with c ∈

fn(w̃) − {b̃, a}. From R ` P we have that R′ ` P1 and R = R′ ⇓c. By induction hypothesis

on the transition of P1 we have the following results: (1) a :]nS Ṽ and w̃ : Ṽ ; (2) R′′ ` P ′ (3)

R′ = (R′′ + S ∗ w̃)⇓b̃. Therefore R = R′⇓c= ((R′′ + S ∗ w̃)⇓b̃)⇓c= (R′′ + S ∗ w̃)⇓{b̃,c}. Now

all conditions required for P are satisfied and thus we complete this case.

5. Rule if-t Let P = if true then P1 else P2 and P ′ = P1. From R ` P we have that

R1 ` P1, R2 ` P2 and R = R1 + R2. By setting R′ = R1 and R′′ = R2 the conclusion is

obvious. The symmetric rule if-f is similar.

6. Rule par1 and res Followed from induction hypothesis. ut

Let R ` P . If P appears underneath an input prefix as in a(x̃).P , then either all names in n(R)

are shielded by the prefix or none of them is bound. In other words, x̃ cannot include only a portion

of names in n(R). This observation is made explicit by the following lemma, where we write ∃!i...

to mean that there exists a unique i satisfying the succeeding condition. Usually if name a is given

type]nS Ṽ we say that the partial order of a is S, written as po(a) = S.

Lemma C.15 Suppose R0 ` P and R ` κ.P with κ = a1(x̃1). · · · .an(x̃n) and n ≥ 1. Then one of

the following two cases holds.

1. Rκ = ∅

2. ∃!i ≤ n,Rκ = po(ai) ∗ x̃i

Proof: We prove a stronger proposition: when the conditions in the above hypothesis are met,

then one of the following two cases holds:

1. ∀i ≤ n, po(ai) = ∅ ∧ n(R0) ∩ x̃i = ∅ ∧ R = R0.

2. ∃!i ≤ n, po(ai) = S 6= ∅∧n(R0) ⊆ x̃i∧R0 = S∗x̃i∧(∀j 6= i, po(aj) = ∅∧n(R0)∩x̃j = ∅)∧R = ∅.

By induction on the length of κ. Since κ.P is well-typed, the sub-process an(x̃n).P must be

well-typed as well. Let R1 ` an(x̃n).P . Then R1 = R0⇓x̃n
, an :]mS Ṽ , x̃n : Ṽ and S = R0/x̃n. Let

κ′ = a1(x1). · · · .an−1(x̃n−1).

1. If R0 = ∅ then S = ∅, i.e., po(an) = ∅. We also have R1 = R0 = ∅. Now take a(x̃n).P as

P and κ′ as κ, we can do similar reasoning to show that po(an−1) = ∅ and R2 = R1 = ∅

if R2 ` an−1(x̃n−1).an(x̃n).P . Repeat the game until a1, it can be shown at last that ∀i ≤

n, po(ai) = ∅ ∧ R = R0.

2. If R0 6= ∅ there are two possibilities.

(a) n(R0) ⊆ x̃n. In this case we have S 6= ∅ but R0 ⇓x̃n
= ∅ and R0 = S ∗ x̃n. So it

holds that po(an) 6= ∅ and R1 = ∅. By the arguments of Case 1, it is easy to see that

∀j ≤ n− 1, po(aj) = ∅ ∧ Rj = R1 = ∅. Since we assume that bound names are different

from each other, n(R0) ∩ x̃j = ∅ holds.

C.5. PROOFS FROM SECTION 5.5 143

(b) n(R0) ∩ x̃n = ∅. In this case S = ∅ and R1 = R0. By induction hypothesis on R `

κ′.an(x̃n).P , we have the following results: (1) either ∀i ≤ n−1, po(ai) = ∅∧n(R0)∩x̃i =

∅ ∧ R = R0 (2) or ∃!i ≤ n − 1, po(ai) = S′ 6= ∅ ∧ n(R0) ⊆ x̃i ∧ R0 = S′ ∗ x̃i ∧ (∀j 6=

i, po(aj) = ∅ ∧ n(R0) ∩ x̃j = ∅ ∧ R = ∅). The conclusion follows immediately.

ut

Proof of Lemma 5.21

By the transition rule rep, each time a replicated process is invoked a fresh tag is produced. So

there is no replicated process invoked in Pi for 1 ≤ i ≤ n− 1. Then there are two possibilities:

1. No replicated process is invoked in P either. Therefore all communications on ai, with 1 ≤

i ≤ n, take place between non-replicated inputs and outputs. By similar analysis in Lemma

5.12, one can derive that

wt(P) � wt(P1) � · · · � wt(P ′)

2. A replicated process !κ.Q, with κ = a1(x̃1). · · · .an(x̃n), is invoked in P and a new process

(a
(l,2)
2 (x̃2). · · · .a

(l,n)
n (x̃n).Q)σ is spawned. The subsequent reductions consume the input pre-

fixes from a
(l,2)
2 σ(x̃2) to a

(l,n)
n σ(x̃n) and their corresponding outputs. Then we have the relation

wt(P ′) + wt(κ) = wt(P) + wt(Qσ′)

Note that substitution of names does not affect the weight of a process, so wt(Qσ′) = wt(Q).

According to the side condition of rule T-rep there are two cases:

(a) wt(κ) � wt(Q). It follows that wt(P) � wt(P ′).

(b) wt(κ) = wt(Q), κ Rκ Q and an : ιr. First, observe that P must be of the following form

in order to have the reduction sequence.

P =!a1(x̃1). · · · .an(x̃n).Q | b̄1w̃1 | · · · | b̄nw̃n.R1 | R2

with a1 = b1 and bi+1 = ai+1σ1 · · ·σi for i ≥ 1 by letting σi = {w̃i/x̃i}. Let σ = σ1 · · ·σn.

According to our bound name convention that bound names are different from each other,

x̃i ∩ x̃j = ∅ if i 6= j. If follows that bi = aiσ for all i ≥ 1. Hence we have the result that

mosR(κσ) = mosR(b̄1w̃1 | · · · | b̄nw̃n). We also have P ′ in the form:

P ′ =!a1(x̃1). · · · .an(x̃n).Q | Qσ | R1 | R2

Let P1 =!a1(x̃1). · · · .an(x̃n).Q, P2 = b̄1w̃1 | · · · | b̄nw̃n.R1 and P ′
2 = Qσ | R1. From

R ` P we have the results that R1 ` P1, R2 ` P2 and R3 ` R with R = R1 + R2 + R3.

Let R21 = Σn
i=1po(bi) ∗ w̃i and R22 ` R1. Then R2 = R21 +R22. Note that R1 ` κ.Q is

valid and by Lemma C.15 there are two possibilities:

i. Rκ = ∅

ii. ∃!i ≤ n,Rκ = po(ai) ∗ x̃i

144 APPENDIX C. PROOFS FROM CHAPTER 5

From the condition κ R̂κ Q we know that Rκ 6= ∅, so the second possibility is true. It

follows that R21 = po(bi)∗ w̃i = Rκσi = Rκσ by bound name convention. Hence we have

the following inference sequence

κ R̂κ Q

⇒ κσ R̂κσ Qσ by Lemma C.12(3)

⇒ κσ R̂21 Qσ Rκσ = R21

⇒ (b̄1w̃1 | · · · | b̄nw̃n) R̂21 Qσ by Lemma C.12(4)

⇒ (b̄1w̃1 | · · · | b̄nw̃n) | R1 R̂21 Qσ | R1 by Lemma C.12(2)

⇒ P2 R̂21 P ′
2 by Lemma C.12(4)

⇒ P1 | P2 | R2 R̂21 P1 | P ′
2 | R2 by Lemma C.12(2)

⇒ P R̂ P ′ by Lemma C.12(1)

Since an : ιr we have that ur(Q) = ∅, thus ur(Qσ) = ∅ and no unguarded restriction is liberated

by the reduction sequence. Note that bn and an are of the same type, hence of the same sort, which

means that ur(R1) = ∅. Theorefore P ′ has no unguarded restrictions either. ut

Proof of Lemma 5.22

Suppose that there exists an infinite reduction sequence like

P0
τ l1

=⇒ P1
ε′

−→ P2
τ l2

=⇒ · · ·
ε′

−→ Pi−1
τ l

=⇒ Pi · · · (C.1)

then there must be infinitely many transitions
τ lj

=⇒ because the transition
ε′

−→ decreases the size of

processes. Let P0 = νãQ0, without unguarded restrictions in Q0, i.e., ur(Q0) = ∅. Suppose R ` P0,

then Q0 is also well-typed, say R0 ` Q0 for some R0. There is a corresponding reduction sequence

starting from Q0:

Q0
τ l1

=⇒ Q1
ε′

−→ Q2
τ l2

=⇒ · · ·
ε′

−→ Qi−1
τ l

=⇒ Qi · · ·

By Lemma 5.21 and transition rules if-t and if-f we know that no unguarded restriction is created

in the sequence, thus ∀j ≤ i, Pj = νãQj and wt(Pj) = wt(Qj). From Lemma 5.21 and Subject

Reduction Theorem we have that all Qj are well-typed, noted as Rj ` Qj , and

• if Qj
τ ln

=⇒ Qj+1 then Rj = Rj+1 and Qj R̂j Qj+1

• if Qj
ε′

−→ Qj+1 then Rj = Rj+1 + R′
j+1 for some R′

j+1.

If follows that ∀j ≤ i,R = Rj + R′′
j for some R′′

j and by Lemma C.12(1) if Qj R̂j Qj+1 then

Qj R̂ Qj+1. Let Mj = mosR(Qj). It can be derived that

• if Qj
τ ln

=⇒ Qj+1 then Mj
R Rmul M

j+1
R by Lemma C.10.

• if Qj
ε′

−→ Qj+1 then Mj
R R=

mul M
j+1
R by rules if-t and if-f

where the notation M R=
mul M

′ means M Rmul M
′ or M = M′. Since there are infinitely many

transitions
τ lj

=⇒ in (C.1), there are infinitely many Rmul in the sequence

M0
R Rmul M

1
R R=

mul M
2
R Rmul · · ·

which contradicts the well-foundedness of Rmul.

Consequently, by means of commuting reductions used in Lemma 5.14, we can always find a Q

with wt(P0) � wt(Q) in finite number of steps. ut

C.6. LEVELS IN THE JOIN-CALCULUS 145

P ::= 0 | x〈y〉 | def D in P | P | P ′ processes

D ::= T | J . P | D ∧D′ definitions

J ::= x〈y〉 | J | J ′ join-patterns

` P1 | P2
 ` P1, P2 Str-join

` 0
 ` Str-null

D1 ∧D2 `
 D1, D2 ` Str-and

T `
 ` Str-nodef

` def D in P
 Dσ ` Pσ Str-def

J . P ` Jσ −→ J . P ` Pσ Red

Table C.1: Syntax and semantics of the Join-calculus

C.6 Levels in the Join-calculus

The idea of introducing level information into type system so as to enforce termination is also

applicable in other process calculi. In this section, we investigate termination of processes in the

Join-calculus [Fou98] by taking advantage of levels as we did in Section 5.2. We recall the syntax

and semantics of the Join-calculus in Table C.1. Detailed description about the calculus can be

found in [Fou98].

For ease of understanding, we consider the monadic Join-calculus. The extension to allow

polyadic communication is straightforward. We preserve all notations of [Fou98] for the syntax

and semantics, but add two multisets mdv[J] and mdv[P] which are defined below.

mdv[x〈y〉]
def
= [x]

mdv[J | J ′]
def
= mdv[J]]mdv[J ′]

mdv[def D in P]
def
= mdv[P]

mdv[P | Q]
def
= mdv[P]]mdv[Q]

mdv[0]
def
= []

The reason of using multisets instead of the set dv[J] given in [Fou98] comes from the mechanism

of inter-process synchronisation of the Join-calculus: pattern-matching. Consider the following two

processes:

Q
def
= def x〈〉 . x〈〉 in x〈〉

Q′ def
= def x〈〉 | x〈〉 . x〈〉 in x〈〉

Obviously Q′ is terminating while Q is not. Without multiset, we would not be able to distinguish

Q′ from Q and wrongly take both of them as illegal processes. For the type system, we assume

that the only primitive type is unit and we do not consider polymorphism. Hence the concepts of

type scheme and simple type environment in [Fou98] coincide with type and typing environment

respectively. Due to these simplification our type system becomes less complicated than the original

146 APPENDIX C. PROOFS FROM CHAPTER 5

T-message
Γ ` x :]nV Γ ` y : V

Γ ` x〈y〉
T-par

Γ ` P Γ ` Q
Γ ` P | Q

T-def
Γ1,Γ2 ` D :: Γ2 Γ1,Γ2 ` P

Γ1 ` def D in P
T-null

Γ ` 0

T-rule

Γ, ỹ : Ṽ `
∏

i∈1..n

xi〈yi〉 Γ, ỹ : Ṽ ` P lv(x̃) >mul lv(mdv[P])

Γ `
∏

i∈1..n

xi〈yi〉 . P :: Γ ↓x̃

T-and Γ ` D1 :: Γ1 Γ ` D2 :: Γ2
Γ ` D1 ∧D2 :: Γ1 ⊕ Γ2

T-nodef
Γ ` T :: Γ′

T-soup
∀P ∈ P ,Γ ` P ∀D ∈ D,Γ ` D

Γ ` D ` P T-multi Γ ` D :: Γ′

Γ ` D

Figure C.1: Typing rules for the join calculus

one presented in [Fou98]. The syntax of types is the same as that of π-calculus studied in Section

5.2. Given a set of names N , the restriction of type environment Γ on N , written Γ ↓N , is a

new type environment which only binds names belonging to N . Let N = {x1, · · · , xn}, we define

lv(N) = {lv(x1), · · · , lv(xn)} as the multiset of levels for names in N . The typing rules are reported

in Figure C.1, where
∏

i∈1..n Pi represents the parallel composition P1 | · · · | Pn and >mul is the

multiset ordering between two multisets of natural numbers.

The rule T-rule requires the condition lv(mdv[J]) >mul lv (mdv[P]) in order to make J . P

typable. It means that some output channels in J are replaced by finite number of lower level

channels in P . According to the semantics of the join calculus, the only effective reduction relation

is

J . P ` Jσ −→ J. ` Pσ.

Since the substitution σ does not affect level information, as a whole the chemical soup will loose

some level information after the reduction step. This phenomenon is reflected in the decrement of

our measure, weight, which is now defined on both processes and soups.

wt(0) = 0 wt(x〈y〉) = 0i if lv(x) = i

wt(P | Q) = wt(P) + wt(Q) wt(def D in P) = wt(P)

wt(J | J ′) = wt(J) + wt(J ′)

wt(D ` P) =
∑

i∈1..n wt(Pi) if P = {Pi | 1 ≤ i ≤ n}

As usual, the proofs of weakening and substitution lemmas are quite easy. The proof of subject

reduction theorem is simpler than that in [Fou98] because no type variable is involved. Details are

omitted.

Lemma C.16 If Γ ` J . P then wt(J) � wt(P).

Proof: By definitions it holds that lv (mdv[J]) >mul lv(mdv[P]) iff wt(J) � wt(P). ut

Theorem C.17 If D ` P is a well-typed chemical soup, there is no infinite reduction sequence

starting from the soup.

C.6. LEVELS IN THE JOIN-CALCULUS 147

Proof: We need to prove three claims.

1. Claim 1: If D1 ` P1
 D2 ` P2 then wt(D1 ` P1) = wt(D2 ` P2). It is trivial by examining

all structural rules.

2. Claim 2: If D1 ` P1 −→ D2 ` P2 then wt(D1 ` P1) � wt(D2 ` P2). The only reduction rule

is J . P ` Jσ −→ J . P ` Pσ. Following from Lemma C.16, it holds that wt(Jσ) = wt(J) �

wt(P) = wt(Pσ), thus wt(D1 ` P1) � wt(D2 ` P2).

3. Claim 3: If D1 ` P1

∗−→
∗ D2 ` P2 then wt(D1 ` P1) � wt(D2 ` P2). This is easy by

using the first two claims.

The required result follows from Claim 3. ut

148 APPENDIX C. PROOFS FROM CHAPTER 5

Bibliography

[AB01] Suzana Andova and J. C. M. Baeten. Abstraction in probabilistic process algebra. In

Tools and Algorithms for the Construction and Analysis of Systems, volume 2031 of

Lecture Notes in Computer Science, pages 204–219. Springer, 2001.

[Aba99] Martin Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–

786, 1999.

[AÉI02] Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. Equational axioms for probabilistic

bisimilarity (preliminary report). Technical Report RS-02-6, BRICS, 2002.

[And99] Suzana Andova. Process algebra with probabilistic choice. Technical Report CSR 99-12,

Eindhoven University of Technology, 1999.

[Bar84] Henk Barendregt. The lambda Calculus: Its Syntax and Semantics. North-Holland, 1984.

[BB05] Jos C. M. Baeten and Mario Bravetti. A ground-complete axiomatization of finite state

processes in process algebra. In Proceedings of the 16th International Conference on

Concurrency Theory, Lecture Notes in Computer Science. Springer, 2005. To appear.

[BBS95] Jos C. M. Baeten, Jan A. Bergstra, and Scott A. Smolka. Axiomatizing probabilistic

processes: ACP with generative probabilities. Information and Computation, 121(2):234–

255, 1995.

[BD95] Michele Boreale and Rocco De Nicola. Testing equivalences for mobile processes. Infor-

mation and Computation, 120:279–303, 1995.

[Bec80] Frank S. Beckman. Mathematical Foundations of Programming. Addison-Wesley, 1980.

[Bez03] Marc Bezem. Mathematical background. In Term Rewriting Systems, pages 790–825.

Cambridge University Press, 2003.

[BGW01] Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting mobile communications:

The insecurity of 802.11. In Proceedings of the 7th Annual International Conference on

Mobile Computing and Networking, pages 180–189. ACM Press, 2001.

[BH97] Christel Baier and Holger Hermanns. Weak bisimulation for fully probabilistic processes.

In Proceedings of the 9th International Conference on Computer Aided Verification, vol-

ume 1254 of Lecture Notes in Computer Science, pages 119–130. Springer, 1997.

149

150 BIBLIOGRAPHY

[BK84] Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous communication.

Information and Computation, 60:109–137, 1984.

[Bou92] Gérard Boudol. Asynchrony and the π-calculus (note). Technical Report RR-1702,

INRIA Sophia-Antipolis, 1992.

[Bou03] Gérard Boudol. On strong normalization in the intersection type discipline. In Pro-

ceedings of the 6th International Conference on Typed Lambda Calculi and Applications,

volume 2701 of Lecture Notes in Computer Science, pages 60–74. Springer, 2003.

[BS98] Michele Boreale and Davide Sangiorgi. Bisimulation in name-passing calculi without

matching. In Proceedings of the 13th Annual IEEE Symposium on Logic in Computer

Science, pages 165–175. IEEE, Computer Society Press, 1998.

[BS01] Emanuele Bandini and Roberto Segala. Axiomatizations for probabilistic bisimulation.

In Proceedings of the 28th International Colloquium on Automata, Languages and Pro-

gramming, volume 2076 of Lecture Notes in Computer Science, pages 370–381. Springer,

2001.

[BW90] Jos C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 1990.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Science,

240(1):177–213, 2000.

[Cod70] E.F. Codd. A relational model for large shared databanks. Communications of the ACM,

13(6):377–387, 1970.

[CS02] Stefano Cattani and Roberto Segala. Decision algorithms for probabilistic bisimulation.

In Proceedings of the 13th International Conference on Concurrency Theory, volume

2421 of Lecture Notes in Computer Science, pages 371–385. Springer, 2002.

[DCPP05] Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. Metrics for action-

labelled quantitative transition systems. In Proceedings of the 3rd Workshop on Quan-

titative Aspects of Programming Languages, Electronic Notes in Theoretical Computer

Science, 2005. To appear.

[DFP98] Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. Kaim: a kernel language for

agents interaction and mobility. IEEE Transactions on Software Engineering, 24(5):315–

330, 1998.

[DH95] Nachum Dershowitz and Charles Hoot. Natural termination. Theoretical Computer

Science, 142(2):179–207, 1995.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of

Theoretical Computer Science, chapter 6, pages 243–320. North-Holland, 1990.

BIBLIOGRAPHY 151

[DJGP02] Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden. The

metric analogue of weak bisimulation for probabilistic processes. In Proceedings of the

17th Annual IEEE Symposium on Logic in Computer Science, pages 413–422. IEEE

Computer Society, 2002.

[DJGP04] Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden. Metrics

for labelled markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings.

Communications of the ACM, 22(8):465–476, 1979.

[DP05] Yuxin Deng and Catuscia Palamidessi. Axiomatizations for probabilistic finite-state

behaviors. In Proceedings of the 8th International Conference on Foundations of Software

Science and Computation Structures, volume 3441 of Lecture Notes in Computer Science,

pages 110–124. Springer, 2005.

[DPP05] Yuxin Deng, Catuscia Palamidessi, and Jun Pang. Compositional reasoning for

probabilistic finite-state behaviors, 2005. Submitted. A draft version is available at

http://www.pps.jussieu.fr/∼yuxin/publications/par.ps.

[DS04a] Yuxin Deng and Davide Sangiorgi. Ensuring termination by typability. In Proceedings of

the 3rd IFIP International Conference on Theoretical Computer Science, pages 619–632.

Kluwer, 2004.

[DS04b] Yuxin Deng and Davide Sangiorgi. Towards an algebraic theory of typed mobile pro-

cesses. In Proceedings of the 31st International Colloquium on Automata, Languages

and Programming, volume 3142 of Lecture Notes in Computer Science, pages 445–456.

Springer, 2004.

[DS05] Yuxin Deng and Davide Sangiorgi. Towards an algebraic theory of typed mobile pro-

cesses. Theoretical Computer Science, 2005. To appear.

[Fou98] Cédric Fournet. The Join-Calculus: A Calculus for Distributed Mobile Programming.

PhD thesis, École Polytechnique, Paris, France, 1998.

[Fu99] Yuxi Fu. Variations on mobile processes. Theoretical Computer Science, 221(1–2):327–

368, 1999.

[FY03] Yuxi Fu and Zhenrong Yang. Tau laws for pi calculus. Theoretical Computer Science,

308:55–130, 2003.

[Gan80] Robin O. Gandy. Proofs of strong normalization. In To H.B. Curry: Essays on Combi-

natory Logic, Lambda Calculus and Formalism. Academic Press, 1980.

[GJS90] Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. Algebraic reasoning for

probabilistic concurrent systems. In Proceedings of IFIP TC2 Working Conference on

Programming Concepts and Methods, 1990.

152 BIBLIOGRAPHY

[HJ90] Hans Hansson and Bengt Jonsson. A calculus for communicating systems with time and

probabilities. In Proceedings of IEEE Real-Time Systems Symposium, pages 278–287.

IEEE Computer Society Press, 1990.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[HP04] Oltea M. Herescu and Catuscia Palamidessi. Probabilistic asynchronous pi-calculus.

Technical report, INRIA Futurs and LIX, 2004.

[HR02a] Matthew Hennessy and James Riely. Information flow vs. resource access in the asyn-

chronous pi-calculus. ACM Transactions on Programming Languages and Systems,

24(5):566–591, 2002.

[HR02b] Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.

Information and Computation, 173(1):82–120, 2002.

[HR04] Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in

the presence of subtyping. Mathematical Structures in Computer Science, 14:651–684,

2004.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication.

In Proceedings of the 5th European Conference on Object-Oriented Programming, volume

512 of Lecture Notes in Computer Science, pages 133–147. Springer, 1991.

[HVY00] Kohei Honda, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Secure information

flow as typed process behaviour. In Proceedings of the 9th European Symposium on Pro-

gramming Languages and Systems, volume 1782 of Lecture Notes in Computer Science,

pages 180–199. Springer, 2000.

[HY05] Kohei Honda and Nobuko Yoshida. Noninterference through flow analysis. Journal of

Functional Programming, 2005. To appear.

[Jon93] Cliff B. Jones. A π-calculus semantics for an object-based design notation. In Proceedings

of the 4th International Conference on Concurrency Theory, volume 715 of Lecture Notes

in Computer Science, pages 158–172. Springer, 1993.

[Kob98] Naoki Kobayashi. A partially deadlock-free typed process calculus. ACM Transactions

on Programming Languages and Systems, 20(2):436–482, 1998.

[Kob00] Naoki Kobayashi. Type systems for concurrent processes: From deadlock-freedom to

livelock-freedom, time-boundedness. In Proceedings of the 1st IFIP International Con-

ference on Theoretical Computer Science, volume 1872 of Lecture Notes in Computer

Science, pages 365–389. Springer, 2000.

[KPT99] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-

calculus. ACM Transactions on Programming Languages and Systems, 21(5):914–947,

1999.

BIBLIOGRAPHY 153

[Lin94] Huimin Lin. Symbolic bisimulation and proof systems for the π-calculus. Technical

Report 7/94, School of Cognitive and Computing Sciences, University of Sussex, 1994.

[Lin03] Huimin Lin. Complete inference systems for weak bisimulation equivalences in the π-

calculus. Information and Computation, 180(1):1–29, 2003.

[LL03] A. Laurie and B. Laurie. Serious flaws in bluetooth security lead to disclosure of personal

data, 2003. http://bluestumbler.org.

[Loa98] Ralph Loader. Notes on simply typed lambda calculus. Technical Report 381, LFCS,

University of Edinburgh, 1998.

[Low91] Gavin Lowe. Probabilities and Priorities in Time CSP. PhD thesis, Oxford, 1991.

[LS91] Kim G. Larsen and Aren Skou. Bisimulation through probabilistic testing. Information

and Computation, 94(1):1–28, 1991.

[LS00] Francesca Levi and Davide Sangiorgi. Controlling interference in ambients. In Proceedings

of the 27th ACM symposium on Principles of Programming Languages, pages 352–364.

ACM Press, 2000.

[Mer00] Massimo Merro. Locality in the π-calculus and applications to distributed objects. PhD

thesis, Ecole des Mines de Paris, France, 2000.

[Mil78] Robin Milner. Synthesis of communicating behaviour. In Proceedings of the 7th Sympo-

sium on Mathematical Foundations of Computer Science, volume 64 of Lecture Notes in

Computer Science, pages 71–83. Springer, 1978.

[Mil80] Robin Milner. A calculus of communicating systems. volume 92 of Lecture Notes in

Computer Science. Springer, 1980.

[Mil84] Robin Milner. A complete inference system for a class of regular behaviours. Journal of

Computer and System Science, 28:439–466, 1984.

[Mil89a] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil89b] Robin Milner. A complete axiomatisation for observational congruence of finite-state

behaviours. Information and Computation, 81:227–247, 1989.

[Mil91] Robin Milner. The polyadic π-calculus: A tutorial. Technical Report ECS-LFCS-91-180,

Department of Computer Science, University of Edingburgh, 1991.

[Mil92] Robin Milner. Functions as processes. Mathematical Structures in Computer Science,

2(2):119–141, 1992.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Univer-

sity Press, 1999.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, part

I/II. Information and Computation, 100:1–77, 1992.

154 BIBLIOGRAPHY

[Nes00] Uwe Nestmann. What is a ‘good’ encoding of guarded choice? Information and Com-

putation, 156:287–319, 2000.

[Pal03] Catuscia Palamidessi. Comparing the expressive power of the synchronous and the asyn-

chronous pi-calculus. Mathematical Structures in Computer Science, 13(5):685–719, 2003.

[Par01] Joachim Parrow. An introduction to the pi-calculus. In Handbook of Process Algebra,

pages 479–543. Elsevier, 2001.

[PH04] Catuscia Palamidessi and Oltea M. Herescu. A randomized encoding of the π-calculus

with mixed choice. Technical report, INRIA Futurs and LIX, 2004.

[Plo81] Gordon Plotkin. A structural approach operational semantics. Technical Report DAIMI-

FN-19, Computer Science Department, Aarhus University, 1981.

[PLS00] Anna Philippou, Insup Lee, and Oleg Sokolsky. Weak bisimulation for probabilistic

systems. In Proceedings of the 11th International Conference on Concurrency Theory,

volume 1877 of Lecture Notes in Computer Science, pages 334–349. Springer, 2000.

[PS95] Joachim Parrow and Davide Sangiorgi. Algebraic theories for name-passing calculi. In-

formation and Computation, 120(2):174–197, 1995.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.

Mathematical Structures in Computer Science, 6(5):409–454, 1996.

[PV98] Joachim Parrow and Björn Victor. The fusion calculus: Expressiveness and symmetry

in mobile processes. In Proceedings of the 13th Annual IEEE Symposium on Logic in

Computer Science, pages 176–185. IEEE, Computer Society Press, 1998.

[RG02] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-

Hill, 2002.

[San93] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-

Order Paradigms. PhD thesis CST–99–93, Department of Computer Science, University

of Edingburgh, 1993.

[San96a] Davide Sangiorgi. π-calculus, internal mobility and agent-passing calculi. Theoretical

Computer Science, 167:235–274, 1996.

[San96b] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informatica, 33:69–

97, 1996.

[San99] Davide Sangiorgi. The typed π-calculus at work: A proof of jones’s parallelisation

transformation on concurrent objects. Theory and Practice of Object-Oriented Systems,

5(1):25–33, 1999.

[San05] Davide Sangiorgi. Termination of processes. Mathematical Structures in Computer Sci-

ence, 2005. To appear.

BIBLIOGRAPHY 155

[SdV04] Ana Sokolova and Erik P. de Vink. Probabilistic automata: system types, parallel

composition and comparison. In Validation of Stochastic Systems: A Guide to Current

Research, volume 2925 of Lecture Notes in Computer Science, pages 1–43. Springer, 2004.

[Seg95] Roberto Segala. Modeling and verification of randomized distributed real-time systems.

Technical Report MIT/LCS/TR-676, PhD thesis, MIT, Dept. of EECS, 1995.

[SL94] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic processes.

In Proceedings of the 5th International Conference on Concurrency Theory, volume 836

of Lecture Notes in Computer Science, pages 481–496. Springer, 1994.

[SM92] Davide Sangiorgi and Robin Milner. The problem of “weak bisimulation up-to”. In

Proceedings of the 3th International Conference on Concurrency Theory, volume 630 of

Lecture Notes in Computer Science, pages 32–46. Springer, 1992.

[SS00] Eugene W. Stark and Scott A. Smolka. A complete axiom system for finite-state proba-

bilistic processes. In Proof, language, and interaction: essays in honour of Robin Milner,

pages 571–595. MIT Press, 2000.

[Sta79] Richard Statman. The typed λ-calculus is not elementary recursive. Theoretical Com-

puter Science, 9(1):73–81, 1979.

[Sto02] Mariëlle Stoelinga. Alea jacta est: verification of probabilistic, real-time and parametric

systems. PhD thesis, University of Nijmegen, 2002.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes.

Cambridge University Press, 2001.

[Tho95] Bent Thomsen. A theory of higher order communicating systems. Information and

Computation, 116(1):38–57, 1995.

[Tof94] Chris Tofts. Processes with probabilities, priority and time. Formal Aspects of Comput-

ing, 6(5):536–564, 1994.

[vBW01] Franck van Breugel and James Worrell. An algorithm for quantitative verification of

probabilistic transition systems. In Proceedings of the 12th International Conference on

Concurrency Theory, volume 2154 of Lecture Notes in Computer Science, pages 336–350.

Springer, 2001.

[vBW04] Franck van Breugel and James Worrell. A behavioural pseudometric for probabilistic

transition systems. Theoretical Computer Science, 2004. In press.

[vdP01] Jaco van de Pol. A prover for the mucrl toolset with applications – version 0.1. Technical

Report SEN-R0106, CWI, Amsterdam, 2001.

[vGSS95] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive, generative, and

stratified models of probabilistic processes. Information and Computation, 121(1):59–80,

1995.

156 BIBLIOGRAPHY

[VH93] Vasco Thudichum Vasconcelos and Kohei Honda. Principal typing schemes in a polyadic

π-calculus. In Proceedings of the 4th International Conference on Concurrency Theory,

volume 715 of Lecture Notes in Computer Science, pages 524–538. Springer, 1993.

[Wal95] David Walker. Objects in the π-calculus. Information and Computation, 116(2):253–271,

1995.

[YBH04] Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong normalisation in the pi-

calculus. Information and Computation, 191(2):145–202, 2004.

[YL92] Wang Yi and Kim Larsen. Testing probabilistic and nondeterministic processes. In

Proceedings of the 12th IFIP International Symposium on Protocol Specification, Testing

and Verification, pages 47–61. North Holland, 1992.

[Zan03] Hans Zantema. Termination. In Term Rewriting Systems, pages 181–259. Cambridge

University Press, 2003.

