Méthodes non linéaires de remise en forme de faisceaux pour amplificateur de puissance à fibre multimode

Laurent Lombard

A. Brignon, J.P. Huignard, E. Lallier Thales Research & Technology P. Georges, G. Pauliat, G. Lucas-Leclin, G. Roosen Laboratoire Charles Fabry

de l'Institut d'Optique

Introduction

- Concept « amplificateur multimode + correction de faisceau »
- Performances de l'amplificateur
- Correction de faisceau par « **beam cleanup** » (nettoyage de faisceau) dans un **cristal photoréfractif**
- Correction de faisceau par beam cleanup par diffusion
 Brillouin stimulée (SBS) dans une fibre multimode
- Conclusion et perspectives

Les fibres dans les lasers de puissance 🚱

Intérêts des fibres pour les lasers de puissance?

- Bon rendement Optique-Optique (recouvrement pompe signal)
 - ✓ fibres double cœur
 - ✓ dopage ytterbium
- ✓ Réduction des problèmes thermiques (répartis sur la longueur)
- ✓ Disponibilité des diodes de pompe haute puissance
- ✓ Hautes puissances / énergies accessibles (fibres à grand cœur)

Puissance/énergie ⇔ augmenter la taille du coeur 🚱

dommage optique

- effets non linéaires (surtout en régime impulsionnel)

=> nécessité d'augmenter le diamètre du cœur

Solution classique:

Fibres grand cœur (Large Mode Area, 30µm) quasi monomodes (ON 0.06)

Plus de **puissance**

ou énergie

Air-clad LMA

Solution originale:

Fibres

très grand cœur (ON 0.2, >50µm) très multimodes (M² > 10)

Très hautes puissances/énergies Qualité de faisceau dégradée M² >> 1 => Ajout d'un système de remise en forme

Remise en forme non linéaire après un amplificateur à fibre multimode de haute puissance

Comment retrouver la qualité de faisceau après l'amplificateur multimode avec une bonne efficacité ?

Performances de l'amplificateur à fibre multimode 🚱

Fibre multimode dopée Yb, 55 µm diam. coeur, ON 0.2 pompée par diode (300W@940nm)

entrée:

6

laser monomode, 0.1 W **sortie**:

- ~ 18 W @ 60 W (pompe)
- ~ 100 W @ 300 W (pompe)

très multimode ($M^2 \sim 10$)

Introduction

 Correction de faisceau par beam cleanup dans un cristal photoréfractif

- Principes du beam cleanup par mélange à deux ondes
- Beam cleanup avec compensation des fluctuations de phase
- Beam cleanup auto-référencé
- Résultats expérimentaux
- Correction de faisceau par beam cleanup par diffusion Brillouin stimulée (SBS) dans une fibre multimode
- Conclusion

Beam cleanup dans un cristal photoréfractif - principe G

Beam cleanup par mélange à deux ondes dans un cristal photoréfractif

R et S interfèrent dans le cristal et inscrivent un hologramme volumique décalé de $\pi/2$

 L'énergie de S (et non sa phase) est transférée à R

Beam cleanup dans un cristal photoréfractif – exp. 1 🚱

(10)

Beam cleanup dans un cristal photoréfractif – exp. 2 🕞

(11)

Recyclage de la polarisation: indépendant de la dépolarisation dans la fibre multimode

Recyclage de la polarisation

Faisceau de référence

Soutenance de thèse L. Lombard, 3 octobre 2005

beam cleanup par mélange à deux ondes auto-référencé dans un cristal photoréfractif

• Efficacité du cristal = 78% Efficacité totale de conversion = 63% Convertisseur Oscillateur de faisceau Yb: non linéaire MM SM 18 W 11.6 W dépolarisé Polarisé linéairement M²=1.2 $M^2 = 7.4$

Limitation : inversion de domaines ferro-électriques à forte puissance

- Perspectives pour une montée en puissance
 - Diamètre de faisceau plus importante (ici 2 mm soit 350 W/cm²)
 - Autres matériaux photoréfractifs (Co:BaTiO₃, LiNbO₃)

Introduction

 Correction de faisceau par beam cleanup dans un cristal photoréfractif

Correction de faisceau par beam cleanup par diffusion
 Brillouin stimulée (SBS) dans une fibre multimode

- Présentation de la diffusion Brillouin stimulée (SBS)
- 2 effets intéressants : conjugaison de phase et beam cleanup
- Etude théorique de l'effet dans une fibre multimode
- Etude **expérimentale**
- Boucle auto-alignée
- Conclusion

Diffusion Brillouin stimulée 💮

SBS, Stimulated Brillouin Scaterring

Miroir à conjugaison de phase par SBS 🚱

Dans les matériaux massifs, la **diffusion Brillouin** se traduit par un effet de **conjugaison de phase**

conjuguée en phase

-> Qu'en est il de l'effet Brillouin dans les fibres?

SBS: un problème dans une fibre monomode 🚱

Seuil Brillouin (empirique): $e^{gI_pL} = e^{21}$

Puissance réfléchie (ua)

Brillouin en fibre multimode: comportement 1

Les réseaux Brillouin sont alignés avec tous les modes de la fibre.

=> Conjugaison de phase observé par le groupe de Eichler, 1991

 \leftarrow

La qualité de faisceau est restituée après double passage dans l'amplificateur aberrant.

Soutenance de thèse L. Lombard, 3 octobre 2005

Brillouin en fibre multimode: comportement 2 🕞

mode 0 (LP₀₁)

mode 2 (LP₀₃)

mode 1 (LP₀₂)

n_{clad}

n_{core}

Les réseaux Brillouin réfléchissent tous les modes de fibre vers le mode fondamental de la fibre

=> Beam cleanup

observations expérimentales: Bruesselbach, CLEO 93 Mocofanescu, LEOS 2004

L'onde Stokes est le mode fondamental : la qualité est excellente.

e cleanup s expérimentales:

Rien!

observations expérimentales: Lombard, 2003-2005

=> Modélisation de l'effet pour isoler les cas :

- de conjugaison de phase,
- de beam cleanup.

- Introduction
- Correction de faisceau par beam cleanup dans un cristal photoréfractif
- Correction de faisceau par beam cleanup par diffusion Brillouin stimulée (SBS) dans une fibre multimode
 - Présentation de la diffusion Brillouin stimulée (SBS)
 - 2 effets intéressants : conjugaison de phase et beam cleanup
 - Etude théorique de l'effet dans une fibre multimode
 - Équations de base (Hellwarth, 1978)
 - Prévisions du modèle
 - Etude expérimentale
 - Boucle auto-alignée
- Conclusion

²² Modélisation de la SBS dans une fibre multimode (Hellwarth 78) 📀

Cas général

Hyp. : le spectre de gain Brillouin est plat. (l'onde acoustique réagit immédiatement à l'excitation de la figure d'interférence)

Équation générale stationnaire de l'effet Brillouin dans la fibre multimode pour le mode n

$$\frac{dc_n^s(z)}{dz} = \alpha g_B \sum_{i,j,m} \left[\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi_i \psi_j^* \psi_m \psi_n^*(x,y) dx dy \right) c_i^p c_j^{*p} c_m^s(z) e^{i \left(\beta_i^p - \beta_j^p - \beta_m^s + \beta_n^s\right) z} \right]$$

Simplification: cas du seuil de l'effet

Résolution de l'équation linéarisée: écriture vectorielle

 $\begin{bmatrix} c_1^s \end{bmatrix} \begin{bmatrix} c_1^p \end{bmatrix}$

Ecriture matricielle

$$C^{s} = \begin{bmatrix} c_{2}^{s} \\ \vdots \\ c_{i}^{s} \\ \vdots \\ c_{N}^{s} \end{bmatrix} ; C^{p} = \begin{bmatrix} c_{2}^{p} \\ \vdots \\ c_{i}^{p} \\ \vdots \\ c_{N}^{p} \end{bmatrix}$$

$$M(n,m) = \sum_{i,j} \left[c_i^p c_j^{*p} R_{ijmn} K_{ijmn} \right]$$

- Configuration pompe
- Géométrie de la fibre

Équation linéarisée de l'effet Brillouin: une équation aux vecteurs propres!

$$\frac{\gamma}{-2\alpha g_B}C^s = M \cdot C^s$$

Solutions de cette équation

Vecteurs propres $V^{(i)}$

Valeurs propres $\Lambda^{(i)}$

Configurations Stokes : *C* associée au gain Brillouin :

Tri des solutions :

 $C^{s(i)} = V^{(i)}$ $\gamma^{(i)} = -2\alpha g_B \cdot \Lambda^{(i)}$ $\gamma^{(0)} > \gamma^{(1)} > \dots > \gamma^{(N)}$

Nouvelle base des modes de fibre: chaque combinaison de mode présente un gain Brillouin

²⁵ Modélisation de la SBS dans une fibre multimode (Hellwarth 78) G

Solution physique

 $\begin{array}{ll} \mbox{Solutions de} & \left\{ C^{s(i)}, \gamma^{(i)} \right\}, & \gamma^{(0)} > \gamma^{(1)} > ... > \gamma^{(N)} \\ \mbox{Au seuil, on a} & \\ \mbox{(empiriquement):} & \gamma^{(0)}L = 21 \end{array} \end{array}$

L'onde Stokes est une **somme incohérente** de toutes **les solutions**:

Modélisation de la SBS dans une fibre multimode (Hellwarth 78) G

Solution physique

 $\begin{array}{ll} \text{Solutions de} & \left\{ C^{s(i)}, \gamma^{(i)} \right\}, \quad \gamma^{(0)} > \gamma^{(1)} > \ldots > \gamma^{(N)} \end{array} \\ \text{i'équation} \end{array}$

Au seuil, on a (empiriquement): $\gamma^{(0)}L=21$

Cas de conjugaison de phase : $V^{(0)} = C^{p*}$ la plus importante valeur propre est prépondérante. $\gamma^{(0)} \approx 2\gamma^{(i)}$

Champ électrique Stokes:

$$E_{s}(x,y) = e^{\frac{1}{2}\gamma^{(0)}L}e^{i\phi^{(0)}}\sum_{n}c_{n}^{s(0)}\psi_{n}(x,y)$$

$$I_{s}(x,y) \propto \left[e^{21}\left|\sum_{n}c_{n}^{s(0)}\psi_{n}(x,y)\right|^{2}\right]$$

$$= E^{p*}(x,y)$$

Un peu de physique: analysons la matrice M 📀

$$M(n,m) = \sum_{i,j} \left[c_i^p c_j^{*p} R_{ijmn} K_{ijmn} \right]$$

Réseau simple
Le terme en {i, j,m, n} représente
la diffraction du mode Pompe i
sur le réseau d'interférence
créé par les modes Pompe et Stokes j et m,
vers le mode Stokes n.
Le miroir acoustique

Facteur
'accord de phase
$$K_{ijmn} = \frac{1}{L} \int_0^L e^{i\Delta\beta_{ijmn}z-\mu z} dz$$
 Le miroir acoustique
 $\Delta\beta_{ijmn} = \beta_i^p - \beta_j^p - \beta_m^s + \beta_n^s$
Facteur
de recouvrement $R_{ijmn} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi_i \psi_j^* \psi_m \psi_n^*(x, y) dx dy$ Les modes sont-ils
bien superposés?

ď

Rôle du facteur d'accord de phase K 📀

M = TC

Rôle du facteur d'accord de phase K (+)

Le miroir acoustique a-t-il le **bon angle**? $\Delta\beta_{ijmn} = \beta_i^p - \beta_j^p - \beta_m^s + \beta_n^s$

TC

0 < L < ∞

TPC

0 < L < 10m

Deux régimes de longueur

Rôle du facteur d'accord de phase K 🚱

Rôle du facteur d'accord de phase K 🚱

Régime de conjugaison de phase: il y a **doublement du gain** (réseaux **superposés**) pour le **conjugué en phase**

$$\frac{\gamma}{-2\alpha g_B}C^s = M \cdot C^s$$

Dans une fibre longue, les termes presque cohérents TPC disparaissent

M = TC + TPC

Il y a une **longueur maximale L**_{max} au delà de laquelle il n'y a **plus de superposition** des réseaux (le conjugué n'est plus favorisé)

Fibre à saut d'indice et Fibre à gradient d'indice 🚱

Rôle du facteur de recouvrement R_{iimn}

	Courte (L<10m)	Longue
Fibre à Saut d'Indice	Bonne conjugaison de phase	rien
Fibre à Gradient d'Indice	Conjugaison de phase ou beam cleanup suivant les conditions d'injection	Beam cleanup

Introduction

 Correction de faisceau par beam cleanup dans un cristal photoréfractif

- Correction de faisceau par beam cleanup par diffusion
 Brillouin stimulée (SBS) dans une fibre multimode
 - Présentation de la diffusion Brillouin stimulée (SBS)
 - 2 effets intéressants : conjugaison de phase et beam cleanup
 - Etude théorique de l'effet dans une fibre multimode
 - Etude **expérimentale**
 - Boucle auto-alignée
- Conclusion

Conjugaison de phase par SBS dans une FSI courte G

=> Conjugaison de phase de bonne qualité dans une FSI courte.

	Courte (L<10m)	Longue
Fibre à Saut d'Indice	Bonne conjugaison de phase OK	rien
Fibre à Gradient d'Indice	Conjugaison de phase ou beam cleanup suivant les conditions d'injection	Peam cleanup ?

"Beam cleanup" par SBS dans une FGI longue 🚱

Sout_1_fresnel_avant.avi

Sout_2_Stokes_FGI_foc_65w.avi

=> Beam cleanup dans une FGI longue... mais vers LP₁₁!

	Courte (L<10m)	Longue
Fibre à Saut d'Indice	Bonne conjugaison de phase OK	rien ?
Fibre à Gradient d'Indice	Conjugaison de phase ou beam cleanup suivant les conditions d'injection	Beam cleanup OK mais LP 11

Retour incohérent par SBS dans une FSI longue 💮

égaux

	Courte (L<10m)	Longue
Fibre à Saut d'Indice	Bonne conjugaison de phase OK	rien Retour incohérent (sans réflexion parasite)
Fibre à Gradient d'Indice	Conjugaison de phase ou beam cleanup suivant les conditions d'injection	Beam cleanup OK mais LP 11

Introduction

 Correction de faisceau par beam cleanup dans un cristal photoréfractif

- Correction de faisceau par beam cleanup par diffusion
 Brillouin stimulée (SBS) dans une fibre multimode
 - Présentation de la diffusion Brillouin stimulée (SBS)
 - 2 effets intéressants : conjugaison de phase et beam cleanup
 - Etude théorique de l'effet dans une fibre multimode
 - Etude expérimentale
 - Boucle auto-alignée
- Conclusion

Importance de l'effet de cavité 🚱

Effet de la cavité :

- Baisse du seuil
- Stabilisation du mode

Boucle Brillouin pour imposer beam cleanup vers LP₀₁?

On a vu :

- Importance de la cavité, baisse du seuil et stabilisation
- La fibre GI renvoie naturellement le mode LP₁₁.

de plus :

 Nous avons remarqué qu'une fibre GI de 30m peut propager le mode fondamental sans couplage vers les autres modes ni dépolarisation

d'où l'idée suivante :

Difficulté: alignement très sensible. Comment injecter le mode fondamental sans injecter les autres modes?

Grâce au filtre:

Beam cleanup dans une cavité SBS auto-alignée 🚱

Solution: Une **fibre monomode** est **soudée** à l'extrémité de la **fibre multimode** => alignement parfait des coeurs

filtre = fibre monomode:

- Le mode LP₀₁ se propage dans la fibre monomode puis est couplée
- dans le mode fondamental (et les modes symétriques supérieurs) de la FGI
- Les **autres modes** (dont LP₁₁) ne se **propagent pas** dans la fibre monomode.

Beam cleanup dans une cavité SBS auto-alignée 🚱

Brevet déposé 0509093 (06.09.05), accepté pour publication, Optics Letters

- Introduction
- Correction de faisceau par beam cleanup dans un cristal photoréfractif
- Correction de faisceau par beam cleanup par diffusion
 Brillouin stimulée (SBS) dans une fibre multimode
- Conclusion

Amplificateur multimode

 Réalisation de l'amplificateur à fibre multimode, obtention de puissances maximales de 100W CW, gestion des problèmes thermiques

Réalisation du **beam cleanup** par mélange à deux ondes dans un **cristal photoréfractif**:

- Boucle de rétroaction pour compensation active du piston de phase
- Schéma de mélange à deux ondes auto-référencé (78% efficacité photoréfractif à une puissance de 15W)

Réalisation du beam cleanup par SBS dans une fibre multimode

- Etude théorique détaillée de la diffusion Brillouin dans une fibre. Identification des conditions de conjugaison de phase et de beam cleanup.
- Etude expérimentale détaillée, confirmation des résultats théoriques
- Schéma de la boucle de cleanup auto-alignée dans la FGI

Beam cleanup dans un cristal photoréfractif, perspectives pour une montée en puissance:

- Diamètre de faisceau plus importante (ici 2 mm soit 350 W/cm2)
- Autres matériaux photoréfractifs (Co:BaTiO3, LiNbO3)

Beam cleanup par effet Brillouin:

- Extraction de la puissance Stokes
- Recyclage de la polarisation
- Vers une boucle « tout fibré » en continu

Extension à des puissances / énergies plus importantes:

- Fibres à très gros cœurs (diamètres >100µm)
- Amplification distribuée (mise en phase cohérente)

