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Résumé

Motivation.

Au début du 20ème siècle, Larmor [42] a proposé que les champs magnétiques de la terre et
d’autres objets célestes proviennent d’un effet dynamo auto-entretenu : un écoulement d’un
fluide conducteur générerait un champ magnétique qui maintiendrait à son tour l’écoulement.
La plupart des travaux qui ont suivi cette prédiction ont été théoriques. Ces travaux et, plus
tard, des travaux numériques, ont été menés en géométrie sphérique, pour des raisons de com-
modité théorique et aussi de pertinence géophysique.

Il existe actuellement un effort international important pour vérifier expérimentalement
l’existence d’une dynamo fluide auto-entretenue. Une collaboration d’équipes françaises dirigées
par F. Daviaud (CEA-Saclay), S. Fauve (ENS-Paris) et J.-F. Pinton (ENS-Lyon) a participé à la
construction et l’exploitation d’une expérience “lourde” en sodium liquide au CEA-Cadarache,
et une expérience “légère” en eau au CEA-Saclay. Dans les deux expériences, le fluide est con-
tenu dans un cylindre, et mis en mouvement par des disques en contra-rotation (écoulement
dit de von Kármán), renforcés par des pales. Ce projet est nommé VKS.

La simulation numérique de la configuration de l’expérience VKS permettrait d’apporter
une meilleure compréhension au comportement très compliqué d’un champ magnétique cou-
plé à un champ de vitesse en régime turbulent et aussi de calculer des nombreuses quantités
qui, pour des raisons techniques, ne peuvent pas être mesurées expérimentalement. Notre
motivation est de développer et implémenter un code numérique adéquat au problème ici
présenté.

Plan de la thèse

Chapitre 1. Dans ce chapitre introductif, après avoir expliqué notre motivation pour cette
recherche, nous présentons les équations de Maxwell et de Navier-Stokes qui nous servent à
dériver les équations de la magnétohydrodynamique. Après avoir résumé les principaux faits
théoriques concernant les théorèmes anti-dynamos nous présentons, d’une manière qualita-
tive, un mécanisme d’induction (dit alpha-omega) par lequel l’effet dynamo peut se produire
dans une configuration de l’expérience VKS.

Chapitre 2. Après une discussion de l’état de l’art concernant des études menées dans un
contexte de l’écoulement de von Kármán nous présentons le modèle mathématique de la con-
figuration étudiée. Nous écrivons les équations et les conditions aux limites adimensionnées
décrivant le problème.
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Chapitre 3. Nous expliquons notre motivation pour l’utilisation de la formulation potentielle.
Nous introduisons une décomposition poloïdale-toroïdale des champs de vitesse et magné-
tique et nous écrivons les équations et les conditions aux limites dans une formulation poten-
tielle.

Chapitre 4. Nous présentons des détails concernant la discrétisation spectrale dans chacune
des directions spatiales. Nous considérons notamment le problème de la singularité à l’axe du
cylindre présent dans le système des coordonnées polaires ainsi que les méthodes pour traiter
des conditions aux limites discontinues.

Chapitre 5. Dans ce chapitre nous décrivons l’algorithme spectral pour résoudre les équa-
tions de magnétohydrodynamique en formulation potentielle. Nous mettons en évidence une
relation entre la méthode classique de fonction de Green et la méthode de matrice d’influence

que nous utilisons pour imposer les conditions aux limites couplées. Après avoir validé le
code dans le régime hydrodynamique (sans champ magnétique) nous proposons une nouvelle
méthode pour assurer les conditions de continuité du champ magnétique à la frontière entre le
cylindre et le vide.

Chapitre 6. Dans ce chapitre nous discutons les différents problèmes concernant la stabilité
de notre code. Nous proposons une méthode évitant des contributions singulières qui peu-
vent apparaître en géométrie cylindrique pendant l’évaluation du terme non-linéaire utilisant
une approche pseudo-spectrale. Nous argumentons aussi notre choix du schéma d’intégration
temporelle. Finalement, nous validons notre solveur Navier-Stokes sur les cas-tests bien docu-
mentés dans la littérature.

Chapitre 7. Dans ce chapitre nous présentons deux projets : dans le premier, nous nous
intéressons au phénomène d’une bifurcation turbulente qui à été observée récemment dans
l’expérience VKE (von Kármán Eau). Dans le second projet, nous simulons la turbulence ax-
isymétrique et nous comparons les résultats avec les prédictions théoriques et des observations
expérimentales. Les résultats que nous présentons dans ce chapitre sont préliminaires et peu-
vent être considérés comme des perspectives pour la future exploitation de notre code.

Chapitre 8. Conclusions concernant les chapitres 3 à 7.
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Équations MHD

Équations de Maxwell

Les équations de Maxwell décrivent la dynamique des champs magnétique et électrique.

∇× E = −∂B
∂t

(1a)

∇× H = j (1b)

∇ · D = χ (1c)

∇ · B = 0 (1d)

où E,H≡B/µ sont les champs électrique et magnétique, D = ǫE, B sont les champs d’induction
électrique et magnétique et χ et j sont les densité des charges électriques libres et des courants
respectivement. Les quantités µ et ǫ sont la perméabilité magnétique et la constante diélec-
trique. Dans l’équation (1b) nous avons négligé le courant de déplacement ∂D

∂t (approximation
quasi-stationnaire : pas d’ondes électro-magnétiques).
L’expression pour j est donné par la loi d’Ohm généralisée :

j = σ (E + u × B) , (2)

où u est la vitesse du milieu conducteur (ici du fluide) et σ est sa conductivité électrique. Les
conditions à la frontière entre les deux milieux non-ferromagnétiques peuvent être écrites sous
la forme suivante :

[n̂ × E] = 0 (3a)

[n̂ × B] = 0 (3b)

où la notation [·] indique un saut d’une quantité à la frontière entre deux domaines et n̂ est un
vecteur unité normal à la surface de cette frontière.

Équations de Navier-Stokes

Les équations de Navier-Stokes régissant l’évolution d’un fluide incompressible sont :

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p +

1
ρ

f + ν∆u

∇ · u = 0

où u est la vitesse du fluide, p est la pression et où f représente les forces externes. Les quan-
tités ρ et ν sont la densité du fluide et sa viscosité cinématique. Pour un fluide conducteur en
présence d’un champ magnétique cette force correspond à la force de Laplace :

f = j × B. (5)
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But de la thèse

La solution numérique d’un problème dynamo constitue une tâche particulièrement difficile.
Des nombreuses contraintes théoriques concernant la symétrie d’un écoulement capable de
produire l’effet dynamo ont été démontrées et sont connues sous le nom de théorèmes anti-

dynamos, le plus connu étant le théorème de Cowling [16]. Ces théorèmes ont exclu les champs
magnétiques axisymétriques ou indépendants d’une des coordonnées Cartésiennes. Ils inter-
disent aussi les écoulements plans et toroïdaux. En conséquence, les simulations de l’effet
dynamo doivent être effectuées dans un régime tri-dimensionnel. À la difficulté d’une sim-
ulation tridimensionnelle s’ajoutent les complications d’une géométrie confinée (ici un cylin-
dre), de la singularité sur l’axe du cylindre, de la condition de divergence nulle traduisant
l’incompressibilité du champ de vitesse du fluide et de l’absence de monopôles magnétiques
dans le cas du champ magnétique, ainsi que du couplage entre les deux champs. Dans cette
thèse nous décrivons un algorithme de résolution des équations de Navier-Stokes pour un flu-
ide incompressible et nous proposons une méthode qui rend possible l’extension du code au
problème magnétique.

Modèle mathématique

+Ω+Ω+Ω+Ω

−Ω−Ω−Ω−Ω

+h/2

-h/2

0

R
r

z

,

in
u B

ex
B

Figure 1: Modèle schématique de la géométrie de la configuration von Kármán cylindrique.

Nous considérons un fluide conducteur enfermé dans un récipient cylindrique de rayon
R = 1 et de hauteur h. Le fluide est mis en mouvement par les deux bases du cylindre tournant
avec les vitesses données par Ω+ et Ω−. Les indices + et − correspondent respectivement aux
disques situés à +h/2 et −h/2. La paroi latérale est immobile. Après avoir combiné les équa-
tions (1) et (4) on peut écrire les équations de la magnétohydrodynamique régissant l’évolution
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temporelle des champs magnétique et de vitesse dans une forme adimensionnée:




∂u
∂t

+ (u · ∇)u = −∇
(

p +
B2

2

)
+ (B · ∇)B +

1
Re

∆u,

∂B
∂t

= ∇× (u × B) +
1

Rm
∆B,

∇ · u = 0,

∇ · B = 0.

(6a)

(6b)

(6c)

(6d)

où Re ≡ R2Ω
ν est le nombre de Reynolds et Rm ≡ µσR2Ω est le nombre de Reynolds magnétique.

Les conditions aux limites sont l’adhérence (7) pour la vitesse et la continuité (8a) pour le champ
magnétique :

{
u|r=1 = 0

u|z=± h
2
= rΩ±êθ

(7a)

(7b)





[B] ≡ (Bin − Bex)|∂ = 0

lim
(r,z)→∞

Bex = 0

(8a)

(8b)

où |∂ indique une quantité évaluée à la surface du cylindre. L’équivalence de (3) et (8a) est
démontrée dans la section 3.6.

Décomposition poloïdale-toroïdale

Un champ vectoriel solénoïdal peut être représenté par deux potentiels scalaires. Pour les
champs de vitesse et magnétique nous avons :

u = ∇× (ψuêz) + ∇×∇× (φuêz) , (9a)

B = ∇× (ψBêz) + ∇×∇× (φBêz) , (9b)

où ψu, ψB sont les potentiels toroïdaux du champs de vitesse et du champ magnétique respec-
tivement et φu, φb sont les potentiels poloïdaux correspondants. Les écoulements toroïdal et
poloïdal sont représentés sur la figure 2. Le but de la décomposition toroïdale-poloïdale est
d’assurer le solenoïdicité de u et de B.

Après avoir substitué (9a) dans (6a) et (9b) dans (6b) les potentiels ψu, φu, ψB, φB peuvent
être découplés dans les termes provenant de la diffusion : pour la vitesse u nous écrivons les
équations pour la composante êz du rotationel et du double rotationel de (6a) et pour le champ
magnétique nous considérons la composante êz de l’équation (6b) et de son rotationel (6b).
Problème hydrodynamique :

êz · ∇ × (6a) ⇒ (∂t − Re−1∆)∆hψu = êz · ∇ × su (10a)

êz · ∇ ×∇× (6a) ⇒ (∂t − Re−1∆)∆∆hφu = −êz · ∇ ×∇× su (10b)

su ≡ (u · ∇)u − (B · ∇)B (10c)
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+Ω+Ω+Ω+Ω

−Ω−Ω−Ω−Ω

+Ω+Ω+Ω+Ω

−Ω−Ω−Ω−Ω

Figure 2: Structure qualitative des écoulements toroïdal (jaune/claire) et poloïdal
(rouge/sombre) dans la configuration axisymétrique en contra-rotation.

Les conditions d’adhérence pour le champ de vitesse peuvent s’écrire sous la forme suivante :

r−1∂θψu + ∂z∂rφu = 0

∂rψu = 0

−∆hφu = 0

φu = 0

∂2
rz∆hψu −

1
r

∂θ∆∆hφu = 0





r = 1

(11a)

(11b)

(11c)

(11d)

(11e)

ψu = −Ω±πr2

2
∂zφu = 0

−∆hφu = 0





z = ± h
2

(12a)

(12b)

(12c)

où l’équation (11e) est la condition de compatibilité1 par laquelle les équations en forme poten-
tielle doivent être complétées pour assurer que la solution correspond à celle des équations de
Navier-Stokes (6a).
Problème magnétique (conducteur/vide) :

êz · (6b) ⇒ (∂t − Rm−1∆)∆hφB = êz · sB (13a)

êz · ∇ × (6b) ⇒ (∂t − Rm−1∆)∆hψB = êz · ∇ × sB (13b)

sB ≡ −∇× (u × B) (13c)

∆φvac = 0 (13d)

1Cette forme est valide pour le cas hydrodynamique (B = 0).
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Les conditions aux limites sont :

1
r

∂θψB + ∂r (∂zφB − φvac) = 0

∂rψB = 0

∆φB = 0

∂zφB − φvac = 0
(

∂t − Rm−1 (∆ − r−2))(r−1∂θψB + ∂r∂zφB

)
+ Rm−1 2

r3 ∂z∂θφB = 0





r = 1

(14a)

(14b)

(14c)

(14d)

(14e)

1
r

∂θψB + ∂r (∂zφB − φvac) = 0

−∂rψB +
1
r

∂θ (∂zφB − φvac) = 0

∆hφB + ∂zφvac = 0





z = ± h
2

(15a)

(15b)

(15c)

où (14e) correspond à la condition de compatibilité magnétique. La dérivation de conditions
aux bords (11), (12), (14), (15) est présentée dans le chapitre 3.

La résolution numérique du problème donné par (10)-(15) est le sujet principal de cette
thèse. L’avantage de la formulation potentielle est surtout l’imposition de la condition de
solenoïdicité des champs (∇ · u = ∇ · B = 0) par construction – une tâche qui est difficile à ac-
complir dans les méthodes basées sur les variables primitives. La difficulté majeure est l’ordre
polynomial élevé des équations et des conditions aux limites ainsi que le couplage entre cer-
taines conditions.

Discrétisation spatiale

Nous utilisons la décomposition spectrale dans les trois directions spatiales. Dans la direction
azimutale, ce sont les fonctions trigonométriques qui sont le mieux adaptées. Dans la direc-
tion axiale, nous utilisons les polynômes de Chebyschev Tk(z). Pour la dépendance radiale,
la régularité de la solution à l’origine du système des coordonnées nécessite l’utilisation des
fonctions adaptées à la géométrie polaire. Suivant Matsushima & Marcus [58] nous utilisons
les polynômes radiaux Qm

n (r) satisfaisant aux conditions de régularité entre leur ordre polyno-
mial n et la parité du mode de Fourier m correspondant :

parité n + m doit être pair

ordre n ≥ |m|
(16)

Finalement une fonction scalaire f en géométrie de cylindre fini peut être écrite sous la forme
suivante:

f (r,θ,z) ≈
⌊M

2 ⌋
∑

m=−⌊M
2 ⌋

K−1

∑
k=0

N−⌊ m
2 ⌋−1

∑
η=0

[ f̂ m]kηeimθQm
m+2η(r)Tk

(
2z

h

)
(17)

où M, K, N sont les résolutions spatiales dans les directions azimutale, axiale et radiale respec-
tivement. La forme des polynômes radiales Qm

n (r) est donnée dans la section 4.4.

te
l-0

01
62

59
4,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
7



viii CONTENTS

Régularisation des conditions aux bords

La situation où le bord latéral est immobile et les bases du cylindre sont en rotation représente
une singularité (discontinuité) de vitesse dans les points de jonction des disques placés à z =± h

2
avec le bord situé à r = 1. Afin d’éviter l’effet de Gibbs, il est indispensable d’entreprendre une
des approches que nous discutons dans la section 4.6. Dans notre méthode nous utilisons la
régularisation des conditions aux limites singulières en variant la vitesse azimutale rΩ ≡ rΩ(r)

de sorte que les vitesses des disques s’accordent avec le bord latéral. Pour cela, deux méthodes
d’appliquer la régularisation s’imposent : varier le profil de la vitesse azimutale sur les bases
du cylindre uθ(r,z = ± h

2 ) ou sur le bord latéral uθ(z,r = 1) (voir fig. 3)

Figure 3: Les profils régularisés utilisés pour éliminer la discontinuité de vitesse dans les coins

à r = 1,z = ± h
2 . Gauche – régularisation sur les disques : uθ |z=± h

2
(r) = r

(
1 − e

r−1
δ

)
. Droite –

régularisation sur le bord latéral: uθ |r=1(z) = Ω+e−(1− 2z
h )/δ + Ω−e−(1+ 2z

h )/δ, uθ |z=± h
2
(r) = rΩ±

Solveur spectral

La partie la plus importante de cette thèse est la présentation de la méthode de solution du
problème en formulation potentielle (10)-(15). Dans le chapitre 5 nous présentons de façon
détaillée l’algorithme spectral appliqué au cas hydrodynamique (B = 0). Pour simplifier la
notation nous posons ψu ≡ ψ, φu ≡ φ,su ≡ s. L’idée générale est de résoudre l’équation (10) en
plusieurs étapes intermédiaires :

(∂t − Re−1∆)∆hψ = êz · ∇ × s ⇔
{

E f̂ψ = r̂hsψ

∆hψ̂ = f̂ψ
(18)

et

(∂t − Re−1∆)∆∆hφ = −êz · ∇ ×∇× s ⇔





E f̂φ = r̂hsφ

∆ f̂φ = ĝφ

∆hφ̂ = f̂φ

(19)
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où la notation E, r̂hs apparaît après avoir discrétisé les équations en temps utilisant un schéma
implicite de premier ordre (Euler) pour les termes linéaires et explicite de deuxième ordre
(Adams-Bashforth) pour les termes non-linéaires :

E f̂ψ ≡ (1 − ∆tRe−1∆) f̂ψ(r,z; t + ∆t)

r̂hsψ ≡ f̂ψ(r,z; t) +
∆t

2
êz · ∇ × (3s(r,z; t) − s(r,z; t − ∆t))

Eĝφ ≡ (1 − ∆tRe−1∆)ĝφ(r,z; t + ∆t)

r̂hsφ ≡ ĝφ(r,z; t) − ∆t

2
êz · ∇ ×∇× (3s(r,z; t)− s(r,z; t − ∆t))

La notation avec "chapeau" (ex. ψ̂) signifie que la quantité représente une transformé de Fourier
d’une fonction. Les équations (18)-(19) peuvent être résolues indépendamment pour chacun
des modes de Fourier car les opérateurs différentiels ne couplent pas des modes de Fourier.

Certaines conditions aux limites peuvent être imposées directement aux étapes correspon-
dant aux problèmes de Poisson où de Helmholtz. Pour cela nous utilisons une méthode clas-
sique dite méthode τ (voir section 5.2). Toutes les conditions (notamment les conditions cou-
plées) qui ne peuvent pas être imposées directement par la méthode-τ sont imposées en util-
isant la technique de matrice d’influence. L’idée de base de cette méthode est de trouver une
forme de conditions aux bords du type Dirichlet (qui peuvent être imposées directement par la
méthode τ) équivalentes aux conditions originales.

Matrice d’influence

Afin de donner une idée sur le principe de la méthode de matrice d’influence on peut consid-
érer un problème générique suivant :

L f = g ; B f |∂ = β (20)

où L est un opérateur différentiel (ex. L ≡ E∆∆h), f est une solution recherchée (ex. f ≡ φ̂

et g est le membre droit de l’équation (ex. g ≡ r̂hsφ). L’expression B f |∂ = β correspond à
des conditions aux bords trop compliquées pour pouvoir les satisfaire par la méthode τ (ex.
conditions (11)-(12)).

Il est possible de trouver une fonction σ telle que le système suivant ait la même solution
que (??) :

L f = g ; D f |∂ = σ (21)

L’opérateur D agissant aux bords ne correspond plus aux conditions originales données par
B mais il a l’avantage que les conditions qu’il définie peuvent être imposées par la méthode
τ. Afin de trouver la distribution des valeurs aux bords σ assurant l’équivalence entre (20) et
(21) nous décomposons la solution f en deux parties – la solution particulière f p et la solution
homogène f h :

f = f p + f h
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satisfaisant à :

L f p = g ; D f p|∂ = 0, (22a)

L f h = 0 ; B f h|∂ = β −B f p|∂ (22b)

où la solution particulière f p assure la satisfaction de l’équation L f = g et la solution homogène
f h a comme but d’assurer la satisfaction des conditions aux bords B f |∂ = β. La méthode de
matrice d’influence, qui nous permet de déterminer f h, est une forme discretisée de la méthode
de fonction de Green. Supposons que nous pourrions trouver une fonction de Green homogène
Gh(x;x′) satisfaisant

LGh(x;x′) = 0 ; BGh(x;x′)|x′′ = δ(x′′ − x′) (23)

où les opérateurs L, B utilisent la différentiation par rapport à la variable x. Dans ce cas la
solution homogène f h aurait la forme suivante:

f h(x) =
∮

S
Gh(x;x′)

(
β(x′) −B f p(x)|x′

)
da′ (24)

Il est aussi difficile de trouver Gh à partir de (23) que f h directement à partir de (22b). L’avantage
de Gh par rapport à f h est que Gh ne dépend pas du temps et peut donc être déterminé une
seule fois. La fonction f h doit être déterminée à chaque pas de temps. Il existe une méthode
analogue pour déterminer f h sans calculer Gh explicitement. Il s’agit de trouver à la place de
Gh une fonction test T(x;x′) satisfaisant

LT(x;x′) = 0 ; DT(x;x′)|x′′ = δ(x′′ − x′) (25)

La fonction T(x;x′) peut être facilement déterminée car les conditions aux bords dans (25) sont
données par l’opérateur D, donc ils sont imposable par la méthode τ. On montre dans la
section 5.4.2 que la solution f h peut être écrite comme:

f h(x) =
∮

S
T(x;x′)σ(x′)da′ (26)

où σ est donne par

σ(x′′) =
∮

S
I−1(x′′;x′)

(
β(x′) −B f p(x)|x′

)
da′ (27)

où I(x′′;x′) ≡ BT(x;x′)|x′′ est une fonction d’influence qui correspond à la matrice d’influence
dans une formulation discrète. Dans une simulation numérique les étapes correspondant aux
(22a), (27) et (26) sont effectués à chaque pas de temps et les étapes (25) et I → I−1, qui sont les
plus coûteuses en termes du temps de calcul, peuvent (et doivent) être effectuées une seule fois
pendant la phase de pré-traitement.

Les détails de la construction de la matrice d’influence pour le problème (10)-(12) sont ex-
posés dans la section 5.4.2. Dans la section 5.4.3 nous discutons le problème de l’inversibilité
de la matrice d’influence : nous proposons une méthode de régularisation basée sur une dé-
composition en valeurs singuliers (SVD). Nous développons aussi une méthode de précondi-
tionnement nécessaire pour diminuer le nombre de conditionnement CI . Pour la matrice corre-
spondant à la résolution spatiale (N = 96) × (K = 192) cette méthode nous permet de réduire
CI de O(1020) à O(108).
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Validation du solveur de Stokes

Afin de valider la partie implicite du solveur (sans terme non-linéaire – équations de Stokes)
avant de tester le cas complet (équations de Navier-Stokes) nous avons comparé les résultats
numériques obtenus par le code avec la solution analytique. Pour les modes de Fourier m =

{0,1,2} nous avons trouvé une forme polynomiale de ψ̂poly, r̂hs
poly

ψ , φ̂poly, r̂hs
poly

φ satisfaisant

aux équations (18)-(19) et aux conditions aux bords (12)-(12). Posant r̂hsψ ≡ r̂hs
poly

ψ , r̂hsφ ≡
r̂hs

poly

φ , nous avons calculé numériquement ψ̂ et φ̂ et nous les avons comparé avec les solutions
exactes ψ̂poly et φ̂poly. La figure 4 présente l’erreur relative définie comme :

ǫψ =
sup |ψ̂ − ψ̂poly|

sup |ψ̂poly|
; ǫφ =

sup |φ̂ − φ̂poly|
sup |φ̂poly|

Nous constatons que dans le cas d’une solution polynomiale, l’erreur est d’ordre O(10−14)

pour ǫψ et d’ordre O(10−12) pour ǫφ, ce qui est très près de la précision machine qui est d’ordre
O(10−15). Pour tester la satisfaction des équations pour un problème de Stokes, nous avons
étudié l’erreur définie comme :

ǫeqψ =
sup |E∆ψ̂ − r̂hsψ|

sup |r̂hsψ|
; ǫeqφ =

sup |E∆∆ψ̂ − r̂hsφ|
sup |r̂hsφ|

L’erreur relative de satisfaction des équations représenté sur la figure 4 (pour le mode de
Fourier m = 0) est d’ordre O(10−10)–O(10−7) pour ψ̂. Pour le potentiel poloïdal φ cette er-
reur est d’ordre O(10−10) dans l’intérieur de la domaine et d’ordre O(10−4)–O(10−1) près des
bords. Dans les sections 4.6 et 5.5 nous expliquons que la grande erreur près de la paroi pour
le potentiel φ̂ est une conséquence d’une singularité dans les coins du cylindre de la solution
du problème de Stokes et non pas de l’imprécision de la méthode numérique. Concernant

 1e-016
 1e-015
 1e-014
 1e-013
 1e-012
 1e-011
 1e-010
 1e-009
 1e-008
 1e-007
 1e-006

 0
 0.2

 0.4
 0.6

 0.8
 1

-1
-0.5

 0
 0.5

 1
 1e-016

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

rz

ǫm=0
eqψ

ǫm=0
eqψ

 1e-016

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

-1
-0.5

 0
 0.5

 1

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

rz

ǫm=0
eqφ

ǫm=0
eqφ

Figure 4: L’erreur de satisfaction des équations pour le mode de Fourier m = 0, après 100
itérations du solveur de Stokes. Résolution utilisée : K = 64, N = 32. À gauche : (surface en
haut) ǫm=0

eqψ
pour le problème de Stokes, (surface en bas) ǫm=0

ψ pour la solution polynomiale;

À droite : (surface en haut) ǫm=0
eqφ

pour le problème de Stokes, (surface en bas) ǫm=0
ψ pour la

solution polynomiale.
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la convergence de la méthode nous observons une bonne convergence exponentielle (voir fig.
5) ce qui prouve que le comportement singulier dans les coins du cylindre ne se reporte pas
sérieusement sur la convergence de la méthode.
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Figure 5: Coefficients spectraux pour le mode de Fourier m = 0, après 100 pas de temps du
solveur de Stokes (pas de terme non-linéaire). Résolution utilisée : K = 64, N = 32. À gauche :[
ψ̂0
]

k,n; À droite :
[
φ̂0
]

k,n.

Vers un solveur MHD

Les équations (13) décrivant l’évolution du champ magnétique à l’intérieur du cylindre peu-
vent être résolues utilisant une méthode analogue à celle appliquée au cas hydrodynamique
(Navier-Stokes). La résolution des équations à l’extérieur (vide) et la satisfaction des conditions
de continuité à la paroi entre les champs magnétiques interne et externe présentent un nou-
veau défi. Dans la section 5.6 nous proposons une nouvelle méthode basée sur l’accordement
du champ magnétique interne avec la solution externe dont la forme analytique est connu.
Cette méthode permet de trouver la solution interne satisfaisant aux conditions de continuité
(14)-(15) sans déterminer la solution externe explicitement.

L’idée de base

Dans le vide, à cause de l’absence de courants électriques, le champ magnétique Bvac est irro-
tationel et donc peut être représenté par le gradient d’un potentiel2 scalaire φvac :

∇× Bvac = 0 ⇒ Bvac = ∇φvac

Prenant en compte que le champ magnétique est solénoïdal (∇ · B = 0) nous en déduisons que
le potentiel φvac est une fonction harmonique satisfaisant à

∆φvac = 0

2Ceci est vrai pour un domaine simplement connexe
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avec les conditions aux bords du cylindre données par (14)-(15) et une condition aux limites
à l’infini φvac(x → ∞) = 0. On sait qu’une telle solution peut être représentée dans une base
spectrale constituée des harmoniques sphériques décrivant la dépendance angulaire.

φvac = ∑
l

∑
−l≤m≤l

φ̂vac
lm ρ−(l+1)Ylm(ξ,θ) (28)

θ
r

z

θ

ρ

ξ

Figure 6: Illustration de changement des
coordonnées : x(r,θ,z) 7→ x(ρ,θ,ξ).

La dépendance radiale ρ est fixée pour chacune des
harmoniques sphériques et n’introduit donc pas
des nouveaux degrés de liberté à la solution. La
forme donnée par (28) est exprimée en coordon-
nées sphériques (voir fig. 6). Il est alors néces-
saire d’effectuer une changement des coordonnées
pour pouvoir relier la solution interne avec la so-
lution externe. Dans un problème discret, le nom-
bre (L × M) de ces degrés de liberté est le même
que le nombre 2(K × N) × M des degrés de lib-
erté d’une solution intérieure (ψB,φB) évaluée aux
bords et correspond au nombre de points de bord. Le problème se réduit alors au problème
de satisfaction des conditions aux bords couplées imposées sur la solution interne (ψB,φB). La
technique de la matrice d’influence peut être employée pour satisfaire ces conditions. Dans
la section 5.6 nous présentons les détails de la construction de la matrice d’influence pour le
champs magnétique et nous expliquons comment la solution extérieure peut être éliminée du
schéma de résolution dans une étape de pré-traitement de la simulation. L’implémentation de
la méthode décrite dans la section 5.6 fera l’objet d’une future étude.

Stabilité/Validation

Dans le chapitre 6 nous complétons la présentation de la méthode spectrale par la discussion
des problèmes concernant l’évaluation du terme non-linéaire. Nous présentons aussi les ar-
guments pour le choix de la méthode d’intégration en temps la mieux adaptée au problème
considéré.

Évaluation du terme non-linéaire

Étant donné que nos équations potentielles (10) sont obtenues après avoir pris le rotationel où
le double rotationel de l’équation de Navier-Stokes, le terme non-linéaire s ≡ (u · ∇)u peut
être remplacé par s ≡ ω × u (où ω ≡ ∇× u) car ∇× [(u · ∇)u] = ∇× [ω × u]. L’évaluation
du terme non-linéaire fait appel à des produits de fonctions. Ces produits correspondent dans
l’espace spectral à des convolutions de fonctions. Nous utilisons l’approche pseudo-spectral
qui consiste à effectuer des dérivations dans l’espace spectrale et des produits des fonctions
dans l’espace physique. Le coût de calcul de la convolution est comparable au coût de la trans-
formation spectral↔physique effectuée dans un cas d’une méthode pseudo-spectral. Vu que
l’évaluation du terme non-linéaire représente une partie très coûteuse en temps de calcul il
est important de l’optimiser. L’évaluation du terme ω × u est plus economique que celle de
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(u · ∇)u parce qu’elle nécessite la transformation de 9 et non pas de 15 champs scalaires entre
les espaces spectral et physique.

Régularité

Le terme non-linéaire n’est pas calculé avec la même précision que les termes linéaires à cause
du phénomène de doublement3 des fréquences spectrales. Dans les codes spectraux, des fréquences
apparaissant dans le terme non-linéaire qui sont supérieurs à la fréquence maximale représentable
à une résolution spectrale donné ne sont pas retenues. Dans la section 6.1 nous proposons une
méthode d’évaluation du terme non-linéaire qui préserve sa régularité dans le sens de la con-
dition (16), même en présence des erreurs de troncature. Dans une formulation potentielle (10)
les termes non-linéaires sont :

sψ ≡ êz · ∇ × s =
1
r
[∂rrsθ − ∂θsr]

sφ ≡ −êz · ∇ ×∇× s = −1
r
[∂rrsr + ∂θsθ ] + ∆hsz

L’utilisation des routines effectuant la transformation physique→spectral assure par construc-
tion la régularité de s au sens de condition (16). La régularité des sψ et sφ impose néanmoins
sur s des conditions encore plus sévère : les termes [∂rrsθ − ∂θsr] et [∂rrsr + ∂θsθ ] doivent être
divisible par r. Ceci est d’autant plus difficile que aucun des termes ∂rrsθ , ∂θsr, ∂rrsr et ∂θsθ

est à priori divisible par r séparément. Analytiquement, les contributions singulières O( 1
r )

présentes dans ces termes s’annulent une fois que leurs combinaisons données par (29) sont
évaluées. Dans l’évaluation numérique du terme non-linéaire elles ne s’annulent pas à cause
des erreurs de troncature commises pour chacun des termes. Nous démontrons dans la section
6.1 que la régularité de sψ et sφ peut être assurée en effectuant toutes les opérations singulières
dans l’espace physique.

Intégration temporelle

Le choix du schéma d’intégration en temps influence fortement la stabilité du code. Les couches
limites présentes dans l’écoulement de von Kármán dans un cylindre fini peuvent être très
fines pour des valeurs du nombre de Reynolds plus élevées. Les fines structures correspon-
dant aux modes spectraux de haute fréquence spatiale peuvent, après leur amplification par
le terme non-linéaire, déstabiliser la simulation. Il est donc nécessaire d’utiliser un schéma
temporel qui amortit les haute fréquences spatiales. Nous avons choisi le schéma implicite
du premier ordre (Euler) car entre tous les schéma inconditionnellement stable (A-stable) il
amortit les hautes fréquences le plus fortement. Pour les termes non-linéaires nous utilisons
le schéma de Adams-Bashforth (du seconde ordre). Pour résumer, la discrétisation temporelle
Euler/Adams-Bashforth de l’équation de Navier-Stokes s’écrit comme :

(1 − ǫ∆)u(t + ∆t) = u(t) +
∆t

2
(3s(t) − s(t − ∆t))

3Le produit des deux fonction ayant une fréquence spectrale k a une fréquence 2k
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ce qui en formulation potentielle donne :

(1 − ǫ∆)∆hψ(t + ∆t) = ∆hψ(t) +
∆t

2

[
3sψ(t)− sψ(t − ∆t)

]

(1 − ǫ∆)∆∆hφ(t + ∆t) = ∆∆hφ(t) +
∆t

2

[
3sφ(t) − sφ(t + ∆t)

]

Les valeurs du pas de temps ∆t et de la résolution spatiale M × K × N typiquement utilisées
dans le code sont résumées dans le tableau 1 en fonction de nombre de Reynolds.

Re configuration ∆t résolution (M × K × N)

< O(500) 2D 0.05 - 0.1 1 × 32 × 16
500 - 1000 2D 0.02 - 0.05 1 × 64 × 32
1000 - 3000 2D 0.01 - 0.02 1 × 96 × 48
3000 - 5000 2D 0.005 - 0.01 1 × 128 × 64
5000 - 10000 2D 0.001 - 0.0025 1 × 180 × 90

< O(500) 3D 0.04 - 0.1 8 × 64 × 32
500 - 1000 3D 0.01 - 0.04 16 × 80 × 40
1000 - 3000 3D 0.025 - 0.01 32 × 100 × 60
3000 - 5000 3D 0.001 - 0.0025 (64-96)× 128 × 80

Table 1: Valeurs typiques du pas de temps ∆t et de la résolution spatiale pour des configura-
tions différentes.

Cas-test/Convergence

Nous avons validé notre solveur de Navier-Stokes en 2D et 3D sur des cas-test bien documentés
dans la littérature. La configuration axisymétrique a été testée d’abord dans une configuration
rotor-stator à Re = 1850 (écoulement stationnaire) avec une hauteur h = 2. Nous avons comparé
les valeurs numériques de uθ(r = 0) avec les résultats de Daube [17] et nous avons observé
un très bon accord. Cet écoulement subit une bifurcation de Hopf vers un état oscillant à
Re ≈ 2600. Concernant la fréquence des ces oscillations (mesurée à Re = 2800), nous avons
retrouvé un bon accord entre notre résultat et ceux de Daube [17], Speetjens [81] et Gelfgat
et al. [29]. Le code tri-dimensionnel a été testé dans une configuration rotor-stator où, pour un
rapport d’aspect h = 3.5, nous avons trouvé que le premier mode bifurquant correspondait à un
mode de fréquence azimutale m = 3 et à une valeur critique du nombre de Reynolds Rec = 2116.
Ce résultat diffère de moins de 1% de celui de Gelfgat et al. [29] (Rec = 2131).

Concernant la convergence spatiale du solveur de Navier-Stokes en formulation potentielle
nous observons une convergence exponentielle très légèrement dégradée du fait de la singu-
larité dans les coins du cylindre (voir fig. 7).
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Figure 7: Coefficients spectraux pour m = 0, après 100 pas de temps du solveur Navier-Stokes
(Re = 750, ∆t = 0.01). Résolution utilisée : K = 64, N = 32. À gauche :

[
ψ̂0
]
; À droite :

[
φ̂0
]
.

Applications et perspectives

Dans le chapitre 7 nous présentons les résultats préliminaires concernant une étude de la bi-
furcation turbulente et de la turbulence axisymétrique. Le contenu présentée dans ce chapitre
peut être aussi considéré comme une présentation des perspectives pour de futurs travaux.

Bifurcation turbulente

1
�����Ω

−
Ωone roll

one roll

two rolls

Figure 8: Boucle d’hysteresis pour le paramètre
de bifurcation (représentation qualitative).

Nous nous intéressons à un phénomène dé-
couvert récemment d’une bifurcation entre
deux états turbulentes dans l’écoulement de
von Kármán (Marié [54], Ravelet et al. [74]).
Expérimentalement, dans la situation à Re ≈
105 où un seul disque entraîne le fluide,
l’écoulement est turbulent et sa moyenne
temporelle correspond à une grande cellule
toroïdale. Dans la situation où les deux dis-
ques sont en contra-rotation rapide, deux
formes de l’écoulement moyen peuvent être
observées: avec une seule ou deux cellules toroïdales. La structure est choisie pour le système
dépend de la manière dont l’écoulement a été préparée. Figure 8 présente qualitativement un
diagramme de la "bifurcation" entre ces deux états, où le paramètre de contrôle est la différence
des couples mesurés expérimentalement. Une des raisons pour lesquelles cette transition est
très intéressante est que l’état "bifurquant" correspond à un champ moyenné en temps et non
pas à un champ instantané. Cette transition a un caractère statistique et n’est pas une bifur-
cation au sens de la théorie des systèmes dynamiques. Il est important de noter que cette
transition a été observée uniquement lorsque l’entraînement de l’écoulement a été aidé par des
pales courbées (voir fig. 9) collées aux disques tournants. Un des effets importants créé par
les pales est que l’intensité de l’écoulement poloïdal par rapport à l’écoulement toroïdal aug-
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�f �f fθ

�f fθ=

Straight blades Curved blades

α

Figure 9: Modèle schématique des pales droites et courbées. Vecteurs correspondent aux forces
avec lesquelles les pales forcent le fluide.

mente d’environ 10% pour les disques lisses (sans pale) à environ 70% pour le forçage avec les
pales. Le premier but de notre étude numérique est de s’approcher au maximum avec notre
simulation numérique à la configuration expérimentale c’est-à-dire de modéliser les pales ex-
périmentales et ainsi d’améliorer le rapport poloïdal/toroïdal. La transition turbulente, bien
visible à Re = O(105), peut être aussi observée à Re ≈ 5000, ce qui rend le problème accessible
aux simulations numériques.

L’implémentation des parois internes correspondant aux vraies pales dans un code spec-
tral est impossible. Nous modélisons l’effet des pales en introduisant une force en volume
axisymétrique qui, en s’adaptant au cours du temps, imite la force exercée sur le fluide par les
vraies pales. Cette force inertielle a pour but d’éviter que le fluide ait une composante de vitesse
perpendiculaire à la surface des pales (non-pénétration de la surface des pales). Nous avons
choisi la forme de cette fonction phénoménologiquement comme :

fθ = fn sin(α)êθ (31a)

fr = fn cos(α)êr (31b)

fn = fnên = fnζ(z)
[
(rΩ(r)− uaxi

θ )sin(α) − uaxi
r cos(α)

]3
ên (31c)

où Ω(r) décrit la vitesse azimutale des disques régularisés, ζ(z) est une fonction limitant cette
force inertielle aux voisinage des disques et fn est un coefficient scalaire contrôlant l’intensité
de ce forçage.

Jusqu’à présent nous avons testé uniquement les pales droites (α = π/2). Dans la section
7.1 nous comparons les écoulements obtenus dans des simulations avec seulement le forçage
visqueux imposé par les disques lisses avec ceux obtenus dans les mêmes configurations mais
avec l’ajout d’un forçage inertiel assuré par les disques avec les pales droites. Nos résultats
montrent que la force en volume adaptative peut reproduire qualitativement certains des effets
de vraies pales expérimentales. Notamment, nous avons observé l’amplification de l’intensité
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de l’écoulement poloïodal. Dans une simulation axisymétrique le rapport poloïdal/toroïdal a
changé de ≈ 13% à ≈ 45% grace a l’utilisation du forçage inertiel. Dans une simulation tri-
dimensionnelle ce rapport à passé de ≈ 13% à ≈ 27%. Nous espérons que, en augmentant
l’intensité du forçage, nous pourrons approcher encore plus la valeur expérimentale de 70%.

Turbulence axisymétrique

Pour la turbulence en deux dimensions cartésiennes, il existe une description statistique des
propriétés de ces écoulements et des quantités conservées par l’écoulement. Le but du projet
de N. Leprovost, B. Dubrulle, P. H. Chavanis et R. Monchaux ([45, 44, 60]) est d’établir une
description analogue pour la turbulence axisymétrique dans une géométrie cylindrique.

Il peut être démontré que, pour en écoulement axisymétrique d’un fluide parfait (dont
l’évolution est décrite par l’équation d’Euler) en absence de bords et de forçage, il existe une re-
lation entre les deux fonctions de courant, toroïdale σ et poloïdale η, qui satisfont aux relations
suivantes :

σ = Fη), (32a)

−∆∗η = ξ =
F(η)

2y
F′(η) + g(η). (32b)

où f et g sont des fonctions inconnues. Les deux fonctions de courant correspondent à l’écoulement
le plus probable (qui est stationnaire et axisymétrique). Dans cette configuration, plusieurs
quantités intégrales sont conservées au cours du temps : l’énergie, l’hélicité, la circulation et les
Casimirs.

Le but de notre projet numérique est de vérifier si ces prédictions théoriques s’appliquent
aussi à l’écoulement turbulent d’un fluide visqueux à haut Reynolds. Il est aussi intéressant
de vérifier comment les quantités conservées par un fluide parfait sont dissipées au cours du
temps dans un écoulement visqueux. Les observations expérimentales réalisées par Monchaux
et al. [60] montrent que dans l’écoulement de von Kármán en contra-rotation à Re = O(105) la
relation (32a) semble s’appliquer pour la partie intérieure (c.à.d. éloignée des bords du cylin-
dre) de l’écoulement et peut être écrite :

F(η) ≈ a1η + a3η3 (33)

Dans la section 7.2 nous étudions la relation entre σ et η dans le cas d’un écoulement où
l’axisymétrie est imposée et aussi dans le cas d’un écoulement tri-dimensionnel turbulent moyenné
en temps. Nous constatons que même si la relation σ = F(η) entre les deux fonctions de courant
n’est pas strictement satisfaite on peut néanmoins observer une trace de cette dépendance pour
la partie de l’écoulement éloignée des bords. Nous retrouvons que l’écoulement satisfait qual-
itativement à (33) ce qui est en accord avec les observations expérimentales (voir fig. 10).

Conclusions

Nous avons développé une approche numérique originale permettant la résolution des équa-
tions de la magnétohydrodynamique dans une géométrie cylindrique en formulation poten-
tielle (décomposition poloïdale-toroïdale). Cette méthode assure la nature solénoïdidale des champs
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Figure 10: Scatterplot de σ(η). L’échelle des couleurs indique la distance entre le point et le
centre du cylindre d(r,z) ≡ max{r, |z|}. À gauche : Mesures expérimentales dans le glycérol,
Re = 2000, turbine avec des pales; À droite : Simulation numérique Re = 3000, écoulement
moyenné en temps, simulation tri-dimensionnelle avec un forçage inertiel (pales), agrandisse-
ment de la région intérieure (d ≪ 1).

de vitesse et magnétique par construction. Nous utilisons la technique de la matrice d’influence

pour satisfaire aux conditions limites et aux conditions de continuité du champ magnétique
à la paroi du cylindre. La matrice d’influence nous permet aussi d’éviter le calcul du champ
magnétique externe à chaque pas de temps de la simulation.

Le solveur hydrodynamique a été validé sur des cas bien documentés dans la littérature
(configuration rotor-stator 2D et 3D). Nous avons aussi comparé les résultats numériques avec
une solution analytique pour un cas particulier de la solution polynomiale du problème de
Stokes. Le code possède la propriété de convergence spectrale. Il a été parallélisé utilisant le
protocole MPI afin de pouvoir effectuer des simulations très coûteuses de la turbulence tri-
dimensionnelle.

Le code a ensuite été appliqué à deux problèmes concernant la turbulence dans la géométrie
cylindrique : la bifurcation turbulente et la turbulence axisymétrique. Les résultats obtenus
sont en bon accord qualitatif avec les observations expérimentales et sont encourageants pour
l’obtention d’un accord quantitatif. La perspective la plus importante pour le code est son
extension aux problèmes magnétiques (implémentation de la matrice d’influence magnétique).
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Chapter 1

Introduction

1.1 Motivation

The earth’s magnetic field is believed to be one of the indispensable elements that make life
possible on our globe. This invisible shield protecting us from destructive radiation of ion-
ized particles ejected by our sun seems to be produced by a very complicated, meta-stable and
time-dependent mechanism. Several changes in the field’s polarity have occurred, which can
be deduced from geological observations of magnetization of rocks. Astronomical observa-
tions show that there exist planets and satellites (Mercury, Ganymede) which have their own
magnetic field, similar to the earth’s dipolar field. Evidence for topologically more complicated
fields has been reported for gas giants (Jupiter, Saturn, Uranus and Neptune) as well as stars
and galaxies. Probably the most impressive effects of the rapidly evolving magnetic field can
be observed on the sun’s surface in the form of spectacular protuberances.

All these observations suggest that the magnetic field is generated in a dynamical process.
This fact, together with other physical arguments, convinced the scientific community that the
magnetic field of celestial objects cannot be generated by a kind of solid magnet situated in the
kernel. In the beginning of the 20th century, Larmor [42] suggested that the magnetic fields of
the earth and other celestial bodies could result from a self-sustained dynamo, by which flow
of a conducting fluid would generate a magnetic field which would in turn act on the flow.
Most of the research which followed this prediction has been theoretical, and, later numeri-
cal, and has focused on a spherical geometry, for reasons of both mathematical simplicity and
geophysical relevance.

There is currently a major international research effort to create an experimentally self-
sustained fluid dynamo. In 2001 the first two working dynamos were reported by Gailitis
et al. [26] at Riga and by Steglitz & Müller [82] at Karlsruhe. Experimental realizations of
the dynamo effect have been performed in very constraining and topologically complicated
geometries. There are several reasons for this, including the fact that physically the most nat-
ural, spherical shape is very difficult to deal with experimentally. Astrophysical theories of
the dynamo effect assume that intense convection coupled with rotation is responsible for cre-
ating the necessary flow structures. For reasons of limited scale of experimental setups, it is
very difficult to implement a convection-driven dynamo. The Riga and Karlsruhe experiments
are implemented in rather complex variants of cylindrical geometry and include mechanical

1
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2 CHAPTER 1. INTRODUCTION

forcing of the flow. The VKS (von Kármán Sodium) experiment performed in Cadarache (see
Bourgoin et al. [9]) also belongs to this family of dynamo experiments. In contrast to the Riga or
Karlsruhe experiments, where periodization in one of the spatial directions was necessary, the
geometry is a finite cylinder which is much simpler and topologically equivalent to a sphere.
The magnetic effect observed in the VKS configuration, while not comparable to the geo- or
astro- physical models, can be produced by a more natural, i.e. confined and not periodized,
flow allowing a rich behavior and the feedback of the magnetic field on the flow1. The reader
can find more details concerning the VKS configuration in section 1.4.

Just as for many experimental investigations, there exists a need for performing a numerical
simulation of the problem in order to obtain a better understanding of the complicated behavior
of coupled velocity and magnetic fields in a turbulent regime as well as to compute quantities
that for technical reasons cannot be measured experimentally.

From these arguments arises our motivation to develop and implement a numerical method
which is well suited to modeling the configuration of the VKS experiment.

Numerical method

Paradoxically, a numerical simulation of a flow in a simple finite-cylinder geometry is much
harder to implement than an equivalent method for topologically complicated geometries of
the Riga or Karlsruhe experiments. From the computational point of view, modeling cylindri-
cal flows which are periodic in the axial direction is a completely different and much easier
problem than for a finite domain. Performing a numerical simulation of the dynamo effect in
a configuration corresponding to the VKS experiment represents a challenging task, consisting
of developing a method for solving the magnetohydrodynamic equations resulting from the
Maxwell and Navier-Stokes equations in the finite cylinder geometry. This problem presents
several important difficulties that must be addressed in order to ensure physical and mathe-
matical consistency.

• The geometry of the problem while topologically simple, is difficult to handle correctly
because of geometrical singularities which appear in the mathematical formulation of the
problem formulated in cylindrical coordinates (axis and corners). The regularity of the
solution must be ensured by a suitable method in order to achieve acceptable stability
and convergence properties. We take special care of this problem by using a regular basis
of radial polynomials developed by Matsushima & Marcus [58] satisfying the regularity
conditions at the cylinder axis. Concerning the corner singularity which emerges from
the discontinuity of the boundary conditions for the velocity at the contact point between
rotating cylinder bases and immobile mantle, we treat this problem by applying regular-
ization of the boundary conditions.

• Another kind of problem is ensuring the incompressibility of the velocity field and, even
more important, the solenoidal character of the magnetic field (non-existence of magnetic
monopoles). Imposing these constraints is far from trivial and requires employing so-
phisticated and complex techniques. They can be divided into two categories: those that

1In the Riga and Karlsruhe experiments, the flow structures producing the dynamo are imposed by the bound-
aries without letting the flow reorganize itself freely under the influence of the magnetic field.
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1.1. MOTIVATION 3

impose ∇ · u = ∇ · B = 0 (to some accuracy) at each time step of the simulation and those
which represent velocity and magnetic fields by intermediate variables in such a way
that u and B are divergence-free by construction. Each of these approaches has its diffi-
culties, advantages and drawbacks. We consider in this work the second methodology by
performing the decomposition of solenoidal fields into poloidal and toroidal scalar poten-
tials. This approach, first formulated by Marques [55] for the periodic Couette flow and
further applied in [56] to linear stability of Rayleigh-Bénard convection in finite cylinder,
has to our knowledge never been implemented for time-evolution of a three-dimensional
flow in a finite cylinder.

• The last problem we underline is the formulation and imposition in the numerical algo-
rithm of the boundary condition for the magnetic field. The difficulty emerges from the
fact that the magnetic field in the problem considered is not limited to the finite domain.
An external magnetic field satisfying the asymptotic condition B(r → ∞) ∼ 1

r3 at infinity
must additionally match the internal field at the boundary. This is a particularly diffi-
cult problem for the spectral method we want to use in our solver because, for this class
of discretization, splitting of the computational domain between two regions – internal
and external (a non-simply-connected domain) – is not obvious2. We propose a novel
method for determining the internal field satisfying the matching condition with the ex-
ternal field without extending the domain beyond the finite cylinder and without solving
for the external field. This method, formulated for spectral methods, can be applied un-
der the condition that the external medium is a vacuum. In this work, mathematical
and algorithmic details are given, without being implemented in a numerical code. This
task can be considered as a perspective for the future, extending the working hydrody-
namic code. A quite general method for non-spectral methods was proposed by Iskakov
et al. [38]. Both approaches can be seen as numerical implementations of Green functions
method commonly used in analytical electrostatics. From the mathematical and technical
point of view they are, however, very different.

In this work we limit ourselves to the development of the hydrodynamic code using a
method which can be applied in the future also to the fully coupled hydromagnetic problem.
However, in addition to presenting a detailed methodology for the Navier-Stokes solver in po-
tential formulation using the poloidal-toroidal decomposition, we prepare the theoretical and
algorithmic background for including the magnetic field in future versions of the numerical
code. The most important contribution of this work is developing and validating an algo-
rithm for solving time-dependent, three-dimensional Navier-Stokes equations in finite cylin-
drical geometry ensuring the incompressibility of the field by using the potential formulation.
From the technical point of view this study addresses the problem of satisfying high differ-
ential order, coupled boundary conditions by means of the influence matrix method, and can
be considered as a contribution to this class of numerical methods. A first step toward future
extension of the code to hydromagnetic problems has been made. A novel algorithm for sat-
isfaction of the matching conditions for the magnetic field at the cylinder boundary has been

2One could consider use of the spectral element method or, for example, a mixed spectral / finite element ap-
proach.
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4 CHAPTER 1. INTRODUCTION

proposed. The method is based on extending the influence matrix protocol already used for
the hydrodynamic problem. Additionally it was our ambition to implement a highly accurate,
pseudo-spectral code preserving the regularity properties of the mathematical formulation by
correct handling of the coordinate system singularities.

In the following sections we present the outline of this thesis followed by the introductory
material concerning the magnetohydrodynamic equations and the dynamo effect.

1.2 Outline of this thesis

This thesis consists of two parts: the first, presenting a mathematical description of the problem
investigated completed by a brief overview of the state of art in the relevant research fields, and
the second containing the details of the numerical method.

Chapter 1 – Introduction In addition to the introductory matter already exposed, we present
the Maxwell and Navier-Stokes equations which lead to the equations of magnetohydrody-
namics to which we will often refer in the further parts of this text. This is also necessary for
explaining a general mechanism of the dynamo effect described at the end of this chapter.

Part I : System description

Chapter 2 – The von Kármań flow After discussing the state of the art concerning numeri-
cal studies relevant for this problem we present the mathematical model corresponding to the
configuration investigated. The equations are presented in dimensionless form and the set of
hydrodynamic and magnetic equations is defined together with the specification of the corre-
sponding boundary conditions.

Chapter 3 – Poloidal-toroidal decomposition Here we communicate the motivation for us-
ing a potential approach for satisfying the divergence-free constraint. The current approach is
briefly compared against other possible methods. This introductory discussion is followed
by the details of translation of the equations of magnetohydrodynamics into the potential
poloidal-toroidal formulation. A new set of equations is derived, together with the associated
boundary conditions. The evidence for the compatibility condition is demonstrated. Advantages
and drawbacks of the potential formulation are discussed.

Part II : Numerical method – Spectral solver

Chapter 4 – Spectral discretization In this chapter we explain the spatial discretization tech-
nique used in our spectral solver, paying special attention to the singular aspects of the polar
coordinates. The regular polynomials are introduced together with more standard Fourier and
Chebyshev spectral bases. The approach undertaken for regularizing the singular boundary
conditions in cylinder corners is presented.

te
l-0

01
62

59
4,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
7



1.2. OUTLINE OF THIS THESIS 5

Chapter 5 – Spectral solver Here we present the method for solving the discretized Navier-
Stokes equations in poloidal-toroidal formulation. Apart from describing the classical τ-method
in one and three directions we expose the methodology for solving high-order differential equa-
tions by the multi-step algorithm. The following material presents the influence matrix technique
employed for imposing the boundary condition. We also demonstrate the equivalence between
the classical Green functions method and the influence matrix approach. This chapter is com-
pleted by necessary tests and convergence analysis of the linear Stokes-flow solver. After gen-
eral conclusions concerning the algorithm we present at the theoretical and practical level a
novel method for satisfaction of the matching conditions for the magnetic field. This method is
explained by referring to the influence matrix protocol discussed before.

Chapter 6 – Stability/Validation We propose the method for stable evaluation of the non-
linear term and ensuring its regularity even in the presence of errors typically introduced by
methods of evaluation of the nonlinear term by the pseudo-spectral approach (transformation,
truncation and aliasing errors). We follow by presenting the semi-implicit time integration
scheme well suited for the problem at hand. Validation of the hydrodynamic code followed by
discussion of the method is presented at the end of this chapter.

Chapter 7 – Applications of the code to a few problems concerning turbulence in cylindrical
geometry are presented in this chapter. These are decaying turbulence in axisymmetric cylindri-
cal flows and adaptation of the spectral code to study the global bifurcation recently discovered
by Marié [54] and Ravelet et al. [74]. A method for modeling the effect of interior boundaries
(blades situated at rotating cylinder bases) through the introduction of self-adapting volume
forces is described. Both of these preliminary studies can be considered as a presentation of
perspectives for future work.

Chapter 8 – Concluding remarks Conclusions concerning work presented throughout this
thesis are underlined and the possible perspectives for future applications of the method and
of the numerical code are stated in this chapter.
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6 CHAPTER 1. INTRODUCTION

1.3 Magnetohydrodynamic equations

In this section we introduce the basic equations of electrodynamics – the Maxwell equations
and the Navier-Stokes equations for incompressible fluids. Taking these two descriptions as
a base we derive the equations of magnetohydrodynamics which include coupling between
magnetic and velocity fields.

1.3.1 Maxwell equations

The time evolution of magnetic and electric fields is described by the Maxwell equations [39, 75]

∇× E = −∂B
∂t

(1.1a)

∇× H = j +
∂D
∂t

(1.1b)

∇ · D = χ (1.1c)

∇ · B = 0 (1.1d)

where E and H ≡ B/µ denote electrical and magnetic fields, D = ǫE and B are electrical and
magnetic induction fields and χ and j are densities of electric free charges and currents. Quan-
tities µ and ǫ denote magnetic permeability and dielectric constant3. The first equation (1.1a) is
Faraday’s law of induction. The second (1.1b) is Ampere’s law. Equations (1.1c,d) are Gauss’s
laws for electricity and magnetism. The first of them is a generalization of Coulomb’s law and
the second one expresses the non-existence of magnetic monopoles.

Quasi-steady approximation

In this work we will consider the quasi-steady approximation i.e. a situation when the displace-
ment current ∂tD can be neglected. This choice can be justified by comparing the characteristic
time scales of the problem. It can be seen from (1.1a) that

|E| ≈ L
T |B|

and then, comparing the terms in (1.1b) gives

|∂tD|
|∇ × H| ≈

ǫ|E|/T
|B|/(µL)

≈ |E|L
c2T |B| ≈

( L
cT

)2

≪ 1 (1.2)

where c is the light speed in the considered medium, L and T are characteristic length scale
(typically the system dimension) and the characteristic time scale which can be understood as
the time needed for an information characteristic for a particular problem to propagate from
one point of the system to another. Since in this work we are interested with magnetohydrody-
namics at the laboratory scale without taking into account the electromagnetic radiation then

3In general, µ ≡ µ(x) and ǫ ≡ ǫ(x) are tensors since they express a linear relation between two vector fields. We
will, however, make the assumption that µ = const and ǫ = const are scalars describing homogeneous properties of
media considered.
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1.3. MAGNETOHYDRODYNAMIC EQUATIONS 7

the characteristic information corresponds to the flow velocity |u| ≈ L/T . For non-relativistic
flows (|u| ≪ c) (1.2) demonstrates that the displacement current ∂tD influences the system very
little. More complete discussion of the Maxwell equation in a magnetohydrodynamical context
is provided by Roberts [75]. Therefore, equation (1.1b) can now be reduced to:

∇× H = j (1.3)

For a conductor of electrical conductivity σ, moving with the velocity u, the current density
can be written as:

j = σ (E + u × B) (1.4)

which is effectively the generalization of Ohm’s law. The contribution χu to j, coming from free
charges convected by the fluid, can be neglected in the quasi-steady approximation (see Roberts
[75]). Equations (1.3) and (1.4) will be used later for eliminating the current density j from the
Maxwell equations.

Boundary conditions

In view of future applications it is necessary to explain the boundary conditions between two
physically different electromagnetic regimes. In practical situations we are often interested in
a magnetically sensitive fluid of a finite volume surrounded by some other medium. Since
the equations or constants such as µ, ǫ, σ in neighboring domains can be different because
of different physical properties, it is necessary to define boundary conditions which would
ensure the correct matching between the solutions. Mathematical idealization of boundaries
(i.e. considering them as two-dimensional surfaces) can often represent a spatial singularity
over the global domain and therefore an integral formulation is needed to evaluate the fields
on them. It can be shown by integrating Maxwell’s equations (1.1) over infinitesimally small
volumes and circuits placed on surfaces separating two possibly different physical regions (see
Jackson [39], Roberts [75]) that the following relations are satisfied:

[n̂ × E] = 0 (1.5a)

[n̂ × H] =

{
0 if σ < ∞

Js if σ → ∞
(1.5b)

[n̂ · B] = 0 (1.5c)

[n̂ · D] = Qs (1.5d)

[n̂ · j] = 0 (1.5e)

where [·] measures the discontinuity at a boundary i.e. the difference between values obtained
for a given expression by evaluating limits going from the opposite sides of the surface.
Conditions (1.5) are mutually dependent. For unsteady fields the solenoidal character of B
(1.1d) follows form Faraday’s law (1.1a). Therefore, because (1.5a) is obtained from (1.1a) and
(1.5c) from (1.1d) then (1.5c) is a consequence of (1.1a). For equations (1.5b) and (1.5e) we
have a similar situation: because ∇ · j = 0 can be deduced from (1.1b) therefore (1.5e) follows
from (1.5b). Concerning equation (1.5d), it can be considered as a definition of the surface
charges Qs so, it does not act as a condition on D. In summary the complete and minimal set of
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8 CHAPTER 1. INTRODUCTION

conditions for a general non-steady case can be reduced to four scalar conditions imposed on
the tangential components of electric and magnetic field. Additionally, after assuming that the
media considered are not ferromagnetic and that their conductivity is finite4 we can write:

[n̂ × E] = 0 (1.6a)

[n̂ × B] = 0 (1.6b)

The above system of equations implies that

[B] = 0 (1.7)

but the reverse implication does not hold. However, if the surrounding medium is a vacuum
then, because of absence of electric currents, the magnetic field satisfies

∇× Bvac = 0 ⇒ Bvac = ∇φvac (1.8)

and by using (1.1d) we show that
∆φvac = 0 (1.9)

In this context we can regard (1.5c) as defining n̂ · ∇φvac over the boundary. If additionally
the surrounding vacuum extends to infinity, there generally exists a condition that B → 0 as the
distance R → ∞. In such a case, given that the magnetic potential φvac satisfies the Laplace equa-
tion with Neumann boundary conditions, the uniqueness theorem for the solutions to Laplace’s
equation tells us that φvac can be determined up to a constant. This implies that a unique Bvac

can be found. Knowledge of the solution in the vacuum fixes through (1.6b) the two tangen-
tial components of B on the boundary, conditioning the solution in the non-vacuum regime.
Therefore a unique B can be found without solving for E. A more rigorous demonstration will
be provided in section 3.6. The sufficient boundary conditions for determining B are then

[B] = 0

B R→∞−→ 0

1.3.2 Navier-Stokes equations

The dynamics of fluid flow is described by the Navier-Stokes equations. In the particular case
of an incompressible Newtonian fluid, they can be presented in the following form:

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p +

1
ρ

f + ν∆u (1.11a)

∇ · u = 0 (1.11b)

where ρ is the fluid density, ν is the kinematic viscosity and f denotes volume forces. In the
presence of the magnetic field, the Lorentz force can act on an electrically conducting fluid with
the electric current distribution j:

f = j × B. (1.12)

The Coulomb force χE can be neglected here because of the quasi-steady approximation (see
Roberts [75]).

4When conductivity is infinite, a boundary layer model must be introduced to define adequate boundary condi-
tions (see Roberts [75] for more detailed discussion)
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1.3. MAGNETOHYDRODYNAMIC EQUATIONS 9

1.3.3 Magnetohydrodynamics equations

When a conducting fluid is moving in the presence of a magnetic field, the contribution of
σu × B in (1.4) must be taken into account. The coexistence of the electric currents and the
magnetic field implies that the volume forces (1.12) must be considered in the Navier-Stokes
equations (1.11). In such a case the Maxwell equations together with the Navier-Stokes equa-
tions could already be considered as the equations of magnetohydrodynamics. However, since
magnetohydrodynamics mostly concerns the interaction between the fluid flow and the mag-
netic field then it is better to eliminate all other variables which are of less interest for a hydro-
magnetic problem. For identifying the influence of the magnetic field on the fluid, it is natural
to choose (1.3) rather then (1.4) as the definition of j, because the fluid velocity u is not present
in (1.3):

j =
1
µ
∇× B (1.13)

Deriving (1.13) from (1.3) we supposed that µ = const is homogeneous and therefore it can be
moved in front of ∇×. By combining (1.13) with (1.12) we can express the volume force in
terms of the magnetic field only

f =
1
µ

(∇× B) × B. (1.14)

Using (1.11b) this force can be decomposed into the magnetic pressure and the magnetic convective

term5:

f =
1
µ

(B · ∇)B −∇B2

2µ
(1.15)

Substituting (1.15) into (1.11a) leads to the following form of the Navier-Stokes equation:

∂u
∂t

+ (u · ∇)u = −1
ρ
∇
(

p +
B2

2µ

)
+

1
ρµ

(B · ∇)B + ν∆u (1.16)

The influence of the fluid motion on the magnetic field is related to the generation of the electric
currents (1.4) through the effect of induction. Substituting (1.4) into (1.13) and taking the curl
of the expression obtained gives us:

∇× (σE) + ∇× (σu × B) =
1
µ
∇×∇× B (1.17)

By using ∇×∇× = ∇(∇ · B) − ∆B together with (1.1d) and after expressing E in terms of B
using (1.1a) and assuming that σ = const we can write (1.17) as

−σ
∂B
∂t

+ σ∇× (u × B) = − 1
µ

∆B (1.18)

5The adjective "convective" is used by analogy with the form of the hydrodynamic convective term (u · ∇)u. The
term (B · ∇)B corresponds to the contribution of the magnetic stress tensor acting in the direction of the magnetic
field. The magnetic pressure term B2/2µ corresponds to the contribution along the direction of a surface element
across which the magnetic tensor is acting, and in this sense behaves as a pressure.
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10 CHAPTER 1. INTRODUCTION

Summarizing, the system of the magnetohydrodynamic equations can be written in the
following form:





∂u
∂t

+ (u · ∇)u = −1
ρ
∇
(

p +
B2

2µ

)
+

1
ρµ

(B · ∇)B + ν∆u,

∂B
∂t

= ∇× (u × B) +
1

µσ
∆B,

∇ · u = 0,

∇ · B = 0.

(1.19a)

(1.19b)

(1.19c)

(1.19d)

1.4 Dynamo effect

The dynamo effect is the process of self-sustained generation of a permanent magnetic field
through the mechanism of mutual interaction between the flow of electrically conducting medium
and the induced magnetic field. This process is represented by the term ∇× (u × B) in (1.19b).
If one neglects the retro action of the magnetic field on the velocity field (the configuration of the
kinematic dynamo problem) then the eigenvalues of the operator B 7→ ∇ × (u × B) + Rm−1∆B
with positive real part define the critical magnetic Reynolds number Rmc corresponding to the
threshold of the kinematic dynamo. The existence of such eigenvalues depend on the boundary
conditions imposed on B, its topology, and also on the form of the particular fluid flow. These
conditions were extensively studied theoretically and resulted in the following anti-dynamo the-
orems specifying the conditions under which the dynamo cannot exist. According to Busse [12]
and Proctor [73], these constraints can be divided into three categories:

i Bounding theorems: Lower bounds on magnetic Reynolds numbers or related quantities
that are necessary for amplifying magnetic fields,

ii Structures and symmetries of magnetic fields that cannot be generated by the dynamo
process (among them Cowling’s Theorem, demonstrated in 1934, which is probably the
most famous),

iii Structures and symmetries of velocity fields that cannot be dynamos (e.g. Toroidal Theo-
rem).

We recall here the most important anti-dynamo theorems corresponding to cases ii and iii:

ii magnetic field

• Cowling’s Theorem: (Cowling [16])
An axisymmetric magnetic field cannot be sustained through a dynamo effect

This theorem was further extended to problems of time-dependent magnetic and
velocity fields as well as to compressible flows having nonuniform but axisymmetric
distribution of the electrical conductivity.

• Second Cowling’s Theorem: (Cowling [16])
A magnetic field independent of one of the Cartesian coordinates cannot be sustained through

a dynamo effect
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1.4. DYNAMO EFFECT 11

iii velocity field

• Toroidal Theorem: (Elsasser [23], Bullard & Gellman [11])
A purely toroidal flow cannot sustain a magnetic field through a dynamo effect.

• Plane flow:
A plane flow cannot produce a dynamo effect.

• Radial flow: (Namikawa & Matsushita [61])
A compressible radial flow of a form u = f (x)êr (having only the spherical radial component)

cannot produce a dynamo effect.

These findings have essential importance for theoretical, experimental and numerical studies
of the dynamo effect. The Cowling theorems challenged Larmor’s hypothesis of a dynamo-
generated magnetic field since the measured Earth’s magnetic field is almost axisymmetric. It
took almost a quarter of a century until Backus [1] and Herzenberg [34] demonstrated mathe-
matically that nonaxisymmetric fields could indeed be generated.

Table 1.1 presents the recapitulation of known conditions for the existence of homogeneous
dynamos.

properties of magnetic field of velocity field

axisymmetry NO YES
purely toroidal NO NO
purely poloidal NO(?) YES
helical symmetry YES YES

Table 1.1: Summary of the symmetry properties of the magnetic and velocity fields condition-
ing the existence of homogeneous dynamos.

Several models of dynamos, not necessarily spherical, have been created and for some of
them, experimental confirmation is also available. We mention here some of these dynamo
models:

B
�

Figure 1.1: Bullard dynamo.

Solid-body dynamos The Bullard dynamo is the simplest of
existing solid-body models. The metallic disk rotating around
its axis is put inside a coil whose contacts are connected: one to
disk’s origin and the second to its periphery. This system, being
extremely simple, has been much studied theoretically. We as-
sign to the solid-dynamo class also the configuration of Lowes
& Wilkinson [51] which in 1963 has proved experimentally to
produce a dynamo. This is a mixed, solid-fluid dynamo, where
the fluid motion plays an important role but the dynamo ac-
tion is essentially dependent on the magnetic susceptibility of
solid components used in the experiment and therefore cannot
be considered to be generated by the flow itself only.
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12 CHAPTER 1. INTRODUCTION

Figure 1.2: Model of the Roberts-
type Karlsruhe experiment (Steglitz
& Müller [83]).

Periodic G.O. Roberts dynamo This configuration con-
sist of a periodic flow independent of the vertical coor-
dinate z, defined as u = sin(y)ex + sin(x)ey + (cos(x) −
cos(y))ez. While the flow is two-dimensional, it can
induce and sustain a magnetic field dependent on z.
The experimental realization of this model, performed
at Karlsruhe, consists of a flow pumped through a sys-
tem of alternating upstream and downstream oriented
tubes enclosed in a helically shaped canal forcing an ex-
ternal helical flow. Such an unnaturally forced flow cor-
responds to the aforementioned mathematical form. The
dynamo action in this configuration was first reported
in 2000 by Steglitz & Müller [82]. It is worth mentioning
that this kind of dynamo model is essentially laminar.

Figure 1.3: Schematic
model of the
Ponomarenko-type
dynamo of Riga ex-
periment (Gailitis et al.

[26]).

Ponomarenko Dynamo The Ponomarenko [71] flow is, similarly
to the Karlsruhe configuration, an example of a constrained dy-
namo with helical symmetry. Figure 1.3 shows a schematic model
of the Riga experiment implementing the Ponomarenko-type dy-
namo. A propeller forces the helical flow in liquid sodium pump-
ing it through a cylindrical tube. The returning flow is confined
to a thin shell surrounding the cylinder. The whole vessel is sur-
rounded by an immobile layer of liquid sodium. The dynamo
action in this experiment was reported in 2000 (see Gailitis et al.

[26]).

Both working experiments (Riga and Karlsruhe) confirmed that a
helical flow can be qualified as dynamo-friendly. This is because he-
lical fields (both the velocity and the magnetic field) suffer from no
constraints imposed by the anti-dynamo theorems (see table 1.1).

Figure 1.4: Model of the von Kármán
Sodium (VKS) Cadarache experiment
(Bourgoin et al. [9]).

von Kármán configuration – VKS The configuration
in which we are interested in this study is that of the
VKS (von Kármán Sodium) experiment performed at
Cadarache (Bourgoin et al. [9]). The configuration is
a finite cylinder of aspect ratio height

radius ≈ 2 filled with
liquid sodium. The flow is forced by counter-rotating
disks situated near the cylinder bases (see figure 1.4).
This flow is called the von Kármán swirling flow and
can produce, for high Reynolds numbers, a turbulent
flow of strong helicity. In contrast to the previously
described models and experimental setups, this con-
figuration is expected to produce a turbulence-driven
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1.4. DYNAMO EFFECT 13

dynamo through a complex mechanism of magnetic induction called the α-Ω effect. This kind
of flow is very much less constrained by the boundaries and allows the free development of a
retro-acting effect of the Lorentz force on the flow. No dynamo action has been observed up
to now in this configuration, but a strong magnetic induction has been measured by Bourgoin
et al. [9]. A new experiment called VKS2, capable of reaching higher magnetic Reynolds num-
bers, is currently being studied. There is a chance that dynamo action will be observed in this
second setup.

Figure 1.5: Schematic models of spheri-
cal dynamo experiments. Left: Wisconsin
(Forest et al. [25]). Right: Maryland (Shew
et al. [79])
.

Spherical dynamos Similarly to the VKS’s finite
cylinder configuration, the spherical geometry is
weakly constraining. The experimental setups of
Maryland (see Shew et al. [79]) and Wisconsin (see
Forest et al. [25]) are examples of homogeneous dy-
namo models implemented in the spherical geom-
etry. The helicity of the flow is produced by forc-
ing it using internal propellers and by rotating the
spherical vessel around its vertical axis. Addition-
ally, convective forces supporting the mechanical
forcing are produced by a system of heating and
cooling boundaries. No dynamo has been reported
up to this date in the Wisconsin experiment and the
Maryland experiment is currently under construc-
tion.

Mechanism of induction

To understand how amplification of a magnetic field can be achieved in the configuration of
the VKS experiment, it is necessary to consider two classical effects of induction: the Ω-effect
and the α-effect. We present here only a brief, qualitative graphical explanation of these mech-
anisms. The most important fact is that lines of magnetic field can be deflected by the flow of
fluid of finite conductivity. The bigger the magnetic Reynolds number the more pronounced is
this effect.

Ω-effect In the first stage, an initial, e.g. vertical, magnetic field is tilted by a shear flow as it is
shown on figure 1.6. This effect creates an induced magnetic field perpendicular to the original
one. This effect cannot guarantee a dynamo by itself since the necessary condition is that the
induced field have the same direction as the initial one.

α-effect In the second stage, the α-effect creates, from the horizontal magnetic field obtained
through the Ω-effect, a secondary vertical induced field. This new field can ensure amplifica-
tion of the initial field having the same orientation. The α-effect, introduced in 1955 by Parker
[68], is far more complicated than the Ω-effect. It can appear in a flow of non-zero helicity
(translation + rotation). This effect can be produced by non-axisymmetric, helical fluctuations
of the velocity field. Since the mean flow in the VKS configuration is axisymmetric the α-effect
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14 CHAPTER 1. INTRODUCTION

B
�

B
�

�

B⊥

�

Figure 1.6: A graphical explanation for the Ω-effect. A new induced magnetic field B⊥ (hori-
zontal dashed arrow), is created from an initial field B (thick vertical arrow). Horizontal arrows
represent the velocity field.

can appear here only in a turbulent regime. This is very different from the Karlsruhe and Riga
configurations where the dynamo effect is produced by the mean flow, which can be considered
laminar, and not by fluctuations. A graphical interpretation is provided on figure 1.7.

B⊥

�

j�

z
ˆwe

ˆveθ

a) b)

c) d)

e)
j�

indB
�

f)

Figure 1.7: A graphical explanation for the α-effect. A secondary induced magnetic field Bind

is created from B⊥ (B⊥ being induced through the Ω-effect: see fig. 1.6). The direction of the
magnetic field generated by electrical currents j is the same as that of the initial field B (see fig.
1.6).

The von Kármán swirling flow has the capacity to produce both the Ω and α effects since
the shear flow is generated by counter-rotating disks. The Ekman pumping creates a poloidal
flow which, together with the toroidal component of velocity, results in flow having non-zero
helicity.
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1.4. DYNAMO EFFECT 15

1.4.1 Concluding remarks

The material presented in this section gives an idea about the difficulty in realization of both
experimental and numerical study of a liquid dynamo. From the numerical point of view,
the anti-dynamo theorems very much complicate the task, since they exclude axisymmetric as
well as two-dimensional and plane flows. This means that a successful numerical simulation
of the dynamo effect must be three-dimensional. Additionally, interaction between the velocity
and magnetic fields requires ensuring the full coupling of these two variables in a numerical
algorithm. All attempts to impose an ad-hoc velocity field (e.g. provided by experimental mea-
surements or purely hydrodynamic simulations) which is the main idea of kinematic-dynamo
approximation cannot reveal the self-sustaining character of a true dynamo effect.

Several numerical codes have been developed. Some of these simulate the kinematic dy-
namo and others treat the coupled problem. In spherical geometry, probably the most famous
example of successful simulation of the dynamo effect is that of Glatzmaier & Roberts [31] cor-
responding to the Earth’s dynamo model. For this configuration, the authors even observed
a magnetic polarity reversal which is known to have occured many times in the Earth’s his-
tory. In cylindrical geometry, periodicity in the axial direction can be assumed in some type
of dynamos (e.g Ponomarenko or Taylor-Couette dynamo). An example of a numerical code
solving a fully coupled problem in such geometry is that of Willis & Barenghi [89] applied to
Taylor-Couette dynamo. The Roberts dynamo has been realized experimentally in Karlsruhe
and was also simulated numerically using a kinematic dynamo code by Tilgner [85]. In this
problem periodicity was imposed in two spatial directions.

The finite cylinder geometry seems to be the most difficult to implement since its only pe-
riodic direction is the angular one. Decoupling of the boundary conditions, by using spherical
harmonics, can be used in the spherical geometry but cannot be used directly in the finite
cylinder geometry. At present there exists no numerical code capable of solving the fully cou-
pled hydromagnetic problem in this configuration. Implementing of the numerical method
described throughout this thesis and proposing a method of extending it to the magnetohydro-
dynamic problem are the foundation for a three-dimensional magnetohydrodynamic solver in
the finite cylinder geometry.
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Part I

System description
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Chapter 2

The von Kármán flow

2.1 Brief overview of studies

To situate this work in a more general context we will provide a brief overview of studies
concerning the cylindrical von Kármán flow.

2.1.1 History

Open system The von Kármán flow owes its name to T. von Kármán who in 1921 introduced
the problem of the flow in the semi-infinite domain bounded by a single rotating disk (see von
Kármán [41]). He demonstrated that it is possible to solve the Navier-Stokes problem by using
a similarity transformation leading to a system of two coupled nonlinear ordinary differential
equations. The solutions to this system are called self-similar. One of the first solutions in this
configuration was numerical, provided in 1934 by Cochran [14] who showed the characteristic
effect of centrifugal Ekman pumping due to the rotation of the disk. The study was further
advanced by Bödewadt [4] who found another self-similar solution for the fluid in solid-body
rotation in contact with an infinite stationary disk. Batchelor [3], in 1951, extended the problem
to the flow confined between two infinite rotating disks. In addition to the disk rotation ratio s,
he introduced a new control parameter: the Reynolds number Re based on the gap between the
disks. He did not, however, solve the problem explicitly, but provided instead some predictions
concerning the nature of this flow. A number of solutions has been found since by analytical
and numerical means – we also mention here the studies by Stewartson [84] and Zandbergen
& Dijkstra [91].

The von Kármán flow controlled by these two parameters (s, Re) proved to have a rich
variety of qualitatively different accessible states even before the transition to turbulence.

Finite system The first numerical study concerning disks of finite radius were performed in
1965 by Pearson [70] and followed by Brady & Durlofsky [10] who in 1987 provided asymptotic
numerical results for configurations with disks of large but finite radii. Brady & Durlofsky [10]
were able to simulate both open and free-slip configurations, in which lateral sidewalls were
either absent or constrained only the radial component of velocity. Their results, supported
also by earlier experimental and numerical observations by Dijkstra & van Hejst [20], proved
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20 CHAPTER 2. THE VON KÁRMÁN FLOW

that the end conditions influence the flow over the entire domain and not only the end region.
The confined flow in the counter-rotating configuration (s < 0) has proved to be quite different
from the self-similar solutions mainly due to the separation of the boundary layer (near the
disks) and the interior shear layer situated between two regions of opposite azimuthal veloci-
ties.

2.1.2 Stability analysis

The von Kármán flow in finite cylinder geometry is a very rich flow. The variation of three
control parameters (Re, s,Γ ≡ height

radius ) allows for an impressively large spectrum of qualitatively
different solutions (even in a laminar regime). Defined in a simple geometry, this configuration
is especially interesting for exploring the influence of its symmetries on the flow and transitions
that it can undergo. From the computational point of view, the SO(2) symmetry (azimuthal
rotational symmetry) of the equations and the boundary conditions describing this fully three-
dimensional flow can be efficiently exploited. This is also a reason for why this configuration
is extensively studied in the context of transition to complex and turbulent flows. All these
properties of the von Kármán flow, which is increasingly considered as one of the classical
configurations, explain the constant interest of the scientific community in further exploring its
complex behavior.

Chronologically, the first studies were devoted to the stability of the axisymmetric flows
(mainly because of computational limitations). In the rotor-stator configuration, vortex break-

down forming characteristic recirculation bubbles was observed by number of authors (Lugt &
Abboud [52], Daube & Sorensen [18], Lopez [46], Daube [17]). This now very well documented
configuration became a benchmark for testing axisymmetric codes. Following Lopez & Shen
[48], Speetjens [81] and a number of other authors, we will validate our method in the axisym-
metric configuration by reproducing the stationary state at Re = 1800 and, for Re = 2800, the
non-stationary, oscillating flow, for which we will compare the bifurcation threshold and the os-
cillation frequency against previous findings. The increasing computational power of modern
computers has made it possible to study three-dimensional instabilities. Breaking of axisym-
metry has become the subject of several studies, of which we can mention these of Gauthier
et al. [28], Gelfgat et al. [29], Blackburn & Lopez [7], Lopez et al. [50] and Nore et al. [64]. Insta-
bilities can be of different types: boundary-layer instabilities – leading to propagating spirals
– or circular vortices (Gauthier et al. [27]), or shear layer instabilities (s < 0) – from which arise
rotating waves – or funnel-like vortices observed by Lopez et al. [49]. Many other phenomena
have been observed for different sets of (Re, s,Γ) such as negative spirals (Gauthier et al. [27])
or modulated traveling waves and heteroclinic cycles (Nore et al. [65, 64, 63]).

Three-dimensional instability precedes the axisymmetric one for Γ < 1.6 and Γ > 2.8. We
have selected as the test problem for validating our code in three dimensions, a configuration
with (s = −1,Γ = 3.5, Re = 2150), where the flow takes the form of a helical spiral. In section
6.3.2 we compare our results with those of Lopez et al. [47] and Gelfgat et al. [29].
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2.2. MATHEMATICAL MODEL 21

2.1.3 Turbulence

Apart from the analysis of the stability of laminar von Kármán flows there exist a number of
interesting phenomena that can be observed in the turbulent regime. The cylindrical geometry
is very well suited for studying the properties of turbulent flows subjected to strong symmetry
constraints. For example, according to the Taylor-Proudman theorem, sufficiently rapid rota-
tion causes a flow to be independent of the direction of the rotation axis. In this regime one
can expect to observe two-dimensional turbulence. This was recently explored by Swinney et
al. [2, 40]. A related problem concerns laws describing decaying two-dimensional turbulence,
which has been investigated mainly in Cartesian geometry (e.g. Yin [90]). However, decaying
two-dimensional turbulence in a system with SO(2) symmetry is still not very well understood.
Some results have been provided by Leprovost [44]. One of the future plans for our code will
be further investigation of this problem.
Still in the context of turbulent von Kármán flow, Marié [54] and Ravelet et al. [74] have re-
cently discovered a very interesting instability, arising in a highly turbulent flow (Re ≈ 106) in
a counter-rotating configuration (s < 0). In this transition, a two-cell mean flow, with a shear
layer at the cylinder mid-plane, undergoes switching to a one-cell mean flow with the shear
layer next to the disk rotating with lower frequency. This bifurcation has a purely statistical be-
havior and is still very little understood. According to Ravelet et al. [74] this transition can also
be observed for moderate values of Reynolds number Re ≈ 5000 – a regime accessible to our
numerical simulations. In chapter 7 we discuss the present state of our project to investigate
this turbulent bifurcation numerically.

2.2 Mathematical model

2.2.1 System description

The flow configuration we are interested in uses an electrically conducting fluid of kinematic
viscosity ν and density ρ. The container is a cylindrical vessel whose two bases can rotate with
direction and speed given by Ω+ et Ω− (fig. 2.1). The indices + and − correspond to disks situ-
ated at +h/2 and −h/2 where h is the height of the cylinder. The lateral boundary is immobile.
Non-dimensioning lengths by the radius R, we can redefine h to be the height-to-radius aspect
ratio. The magneto-hydrodynamical properties of the fluid and of the surrounding vacuum
were defined in section 1.3. We recall here equations (1.19) describing this configuration





∂u
∂t

+ (u · ∇)u = −1
ρ
∇
(

p +
B2

2µ

)
+

1
ρµ

(B · ∇)B + ν∆u,

∂B
∂t

= ∇× (u × B) +
1

µσ
∆B,

∇ · u = 0,

∇ · B = 0.

(2.1a)

(2.1b)

(2.1c)

(2.1d)

This system of equations has a unique solution when completed by appropriate boundary con-
ditions which are no-slip for the velocity field (2.2a,b) and continuity between internal and
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22 CHAPTER 2. THE VON KÁRMÁN FLOW

+Ω+Ω+Ω+Ω

−Ω−Ω−Ω−Ω

+h/2

-h/2

0

R
r

z

,

in
u B

ex
B

Figure 2.1: Schematic model of the cylindrical von Kármán configuration.

external parts of the magnetic field (2.2c) (see sections 1.3.1 and 3.6 for discussion of the conti-
nuity conditions):





u|r=R = 0,

u|z=± h
2

= rΩ±êθ ,

[B]∂ = 0,

B|(r,z)→∞ = 0.

(2.2a)

(2.2b)

(2.2c)

(2.2d)

In the above equations the symbol ∂ represents the entire domain boundary. The notation |∂,
|r=R, |z=± h

2
denote evaluation at a specified boundary and [·]∂ measures the discontinuity at

the boundary1. One can notice that the velocity conditions (2.2) lead to a discontinuity at the
cylinder corners; we will address this problem in section 4.6.

1Discontinuity is measured as a difference between values obtained for a given expression by evaluating lim-
its going from different directions (i.e. inside and outside the cylinder). See section 1.3.1 for a discussion of the
boundary conditions.
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2.2. MATHEMATICAL MODEL 23

2.2.2 Dimensionless equations

The system of equations (2.1) can be made dimensionless using the following scales:

u : U ⇒ u∗ =
u
U

B : B ⇒ B∗ =
B
B

r : L ⇒ r∗ =
r
L

t : T ⇒ t∗ =
t

T
p : P ⇒ p∗ =

p

P
The characteristic units of velocity L and of length U can be taken to be one of the geometric
lengths and the imposed velocity of the boundaries, respectively. There still remains a free
choice for the time scale however – the candidates are: T = L/c, T = L/U or T = µσL2. From
fastest to slowest time scales – L/c is the characteristic time scale of propagation of electromag-
netic waves, L/U is the characteristic time of advection by the fluid flow and finally, T = µσL2

is the characteristic time of diffusion of the magnetic field in the considered conducting media.
For our purposes the most natural choice is the advective scale because it is also the charac-
teristic time for the purely hydrodynamic problem with forcing which we will consider in this
thesis. Therefore we define the characteristic time scale as

T = L/U .

Once this choice has been made we can write the dimensionless form of (2.1b)

UB
L

∂B∗

∂t∗
=

UB
L ∇∗ × (u∗ × B∗) +

B

µσL2 ∆∗B∗, (2.3)

and after simplifying:
∂B∗

∂t∗
= ∇∗ × (u∗ × B∗) +

1
Rm

∆∗B∗ (2.4)

where Rm = µσLU is the magnetic Reynolds number which represents the ratio between inten-
sities of magnetic advection and diffusion. The bigger the value of Rm, the more the magnetic
field is influenced by the flow. One can notice that the magnetic scale B is no longer present
in (2.4). This is because equation (2.4) is linear in B∗ so that the solution to it can be arbitrarily
scaled. Therefore we will choose the magnetic scale B along with the nondimensionalization
for the Navier-Stokes equation (2.1a):

U
T

∂u∗

∂t∗
+

U 2

L (u∗ · ∇∗)u∗ = − 1
ρL∇∗

(
P p∗ +

B2B∗2

2µ

)
+

B2

ρµL (B∗ · ∇∗)B∗ +
νU
L2 ∆∗u∗ (2.5)

Using the characteristic scales listed below

T = L/U
B =

√
µρU

P = ρU 2
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24 CHAPTER 2. THE VON KÁRMÁN FLOW

we obtain the dimensionless form of (2.1a)

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −∇∗

(
p∗ +

B∗2

2

)
+ (B∗ · ∇∗)B∗ +

1
Re

∆∗u∗ (2.6)

where Re = LU
ν is the Reynolds number which represents the ratio between characteristic scales

of advective/inertial and viscous effects. In the absence of the magnetic field, if Re is small, the
flow behaves more like Stokes viscous flow. If Re is large then the flow approaches ideal fluid
dynamics governed by the Euler equation.

To simplify notation, we will not retain the ∗ superscript denoting dimensionless variables.
From here we will use only dimensionless variables by default.

2.2.3 Equations of magnetohydrodynamics

Here we present the complete system of equations of magnetohydrodynamics (2.1) in dimen-
sionless form and under the assumptions made in the previous section concerning characteris-
tic time and spatial scales of the configuration we will consider:





∂u
∂t

+ (u · ∇)u = −∇
(

p +
B2

2

)
+ (B · ∇)B +

1
Re

∆u,

∂B
∂t

= ∇× (u × B) +
1

Rm
∆B,

∇ · u = 0,

∇ · B = 0.

(2.7a)

(2.7b)

(2.7c)

(2.7d)

The boundary conditions have the same form as previously given in (2.2) except for the cylinder
radius which is now fixed to R = 1.





u|r=1 = 0,

u|z=± h
2

= rΩ±êθ ,

[B]∂ = 0,

B|(r,z)→∞ = 0.

(2.8a)

(2.8b)

(2.8c)

(2.8d)

We should have dropped Ω± in (2.8) since we already selected U for the velocity scale but,
because we will need it to regularize the boundary conditions (requiring Ω ≡ Ω(r) ≈ 1), we
will keep this dimensionless parameter.
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Chapter 3

Poloidal-toroidal decomposition

3.1 Motivation

One of the most difficult numerical problems presented by the three-dimensional incompress-
ible Navier-Stokes equations is that we must solve simultaneously for u and p but all the con-
ditions – the boundary conditions and incompressibility – are imposed only on the velocity
field while none are defined for the pressure. This is because the pressure in the incompress-
ible formulation is not a real physical quantity because it lacks thermodynamic meaning. The
pressure serves only to counterbalance the nonlinear term which is the source of the divergence
in the Navier-Stokes equations. The lack of boundary conditions for the pressure is sometimes
treated by the ad-hoc introduction of some pressure boundary condition, notably in the family
of methods based on projection-diffusion schemes. There are two main approaches to solving the
Navier-Stokes equations without formulating any fictitious boundary conditions for the pres-
sure field. The first method is to solve for (u, p) fields (e.g. [86, 47]) or (u,ω) (e.g. [78, 17, 33, 81])
using a Green function formalism, which in a discrete implementation has the name of influence

matrix or capacitance matrix method. Another approach is to express the velocity in terms of
other variables in such a manner that the divergence-free condition is satisfied by construction.
The potential methods belong to this second category and rely on the existence of a vector poten-
tial for an arbitrary solenoidal field F which is equivalent to Stoke’s theorem:

∇ · F = 0 ⇔ F = ∇× A

where the vector potential A can be determined up to the gradient of an arbitrary scalar func-
tion.
The scalar potential method is another example of construction of a divergence-free field. By set-
ting A ≡ ψê + ∇× (φê) we obtain the poloidal(φ)-toroidal(ψ) decomposition of a solenoidal field
F

F = ∇× (ψê) + ∇×∇× (φê)

where ê denotes a unit vector. This representation includes an additional gauge freedom for
the choice of ψ and φ which we will examine in the following sections. It is clear that using one
of the above representations, the ∇ · u = 0 condition is satisfied because of ∇ ·∇× (·) = 0. The
proof of existence of such potentials for an arbitrary solenoidal field can be found in [55].

25

te
l-0

01
62

59
4,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
7



26 CHAPTER 3. POLOIDAL-TOROIDAL DECOMPOSITION

To understand where the name poloidal-toroidal comes from, consider a finite geometry with
a rotational symmetry like a sphere or a cylinder. In the cylindrical case of interest to us, we
arbitrarily fix the unit vector ê = êz to be parallel to the cylinder axis (while in the spherical case
one would fix ê = êr). The names poloidal-toroidal correspond to two main field line structures
present in an axisymmetric field. Example structures are schematically represented on figure
3.1 showing basic flow structures in cylindrical von Kármán flow with counter-rotating disks.
The toroidal flow corresponds to motion with only azimuthal velocity. Poloidal flow contains,
in an axisymmetric case, radial and axial components of the velocity and generally forms recir-
culation rolls in the r × z plane. For a non-axisymmetric configuration, the two potentials have
no clear associations with simple topological structures.

+Ω+Ω+Ω+Ω

−Ω−Ω−Ω−Ω

+Ω+Ω+Ω+Ω

−Ω−Ω−Ω−Ω

Figure 3.1: Two main topological flow structures in a case of counter-rotating disks: red (dark)
– poloidal flow lines, yellow (light) – toroidal flow lines.

3.2 Poloidal-toroidal decomposition and the gauge freedom

We now introduce the poloidal-toroidal decomposition of the velocity and magnetic induction
fields:

u = ∇× (ψuêz) + ∇×∇× (φuêz) , (3.1a)

B = ∇× (ψBêz) + ∇×∇× (φBêz) . (3.1b)

The components of the velocity are:

ur =
1
r

∂θψu + ∂z∂rφu, (3.2a)

uθ = −∂rψu +
1
r

∂z∂θφu, (3.2b)

uz = −∆hφu. (3.2c)
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3.3. POTENTIAL FORM OF THE MHD EQUATIONS 27

One important thing to notice is that this formulation contains a gauge freedom for the choice of
ψu,ψB,φu,φB. The way to identify the gauge freedom is to find the class of solutions satisfying
homogeneous problems u = 0 and B = 0. This leads to:

uhom = 0 = ∇×
(

ψhomêz

)
+∇×∇×

(
φhomêz

)

0 = ∇×
(

ψhomêz

)
+∇

(
∇ ·

(
φhomêz

))
−∆

(
φhomêz

)

0 = êz ×∇hψhom +∇∂zφhom −
(

∆φhom
)

êz

0 = êz ×∇hψhom +∇h∂zφhom −
(

∆hφhom
)

êz

⇓
êz × u = 0 ⇒ êz ×∇hψhom = −∇h∂zφhom (3.3a)

êz · u = 0 ⇒ ∆hφhom = 0 (3.3b)

where ∇h = ∇− ∂zêz, ∆h = ∆ − ∂2
z and the upper index hom denotes potentials corresponding

to a homogeneous vector field. By (3.3b) the poloidal potential φ is determined up to a harmonic
function on each domain slice perpendicular to ez. Therefore the gauge freedom for the choice
of the poloidal potential φ can be stated as:

φ ∼ φ + φhom ; ∆hφhom = 0 (3.4)

Once the choice for φhom is made, using (3.3a), ψhom can be determined up to an arbitrary
function of the vertical coordinate z. Therefore the toroidal potentials ψu,ψB ≡ ψ inherit the same
gauge freedom:

ψ ∼ ψ + h(z) (3.5)

The existence of ψhom satisfying (3.3a) for all φhom satisfying (3.3b) is ensured through the Stokes
theorem in two dimensions:

∇× (3.3b) = 0 ⇒ ∆h∂zφhom = 0 ⇒ ∇h · (∇h∂zφhom) = 0 ⇒
⇒ ∃ψhom ; −∇h(∂zφhomêz) = ∇× ψhomêz

⇓
(3.3a)

3.3 Potential form of the MHD equations

Substituting (3.1) into (2.7) results in equations whose linear parts couple three fields (ψu,φu, p)

and two fields (ψB,φB). Because of the semi-implicit numerical approach which we intend to
use for time integration, the separation of variables in the linear parts of equations (2.7) is es-
sential. It is easy to accomplish this decoupling given that the êz components of the successive
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28 CHAPTER 3. POLOIDAL-TOROIDAL DECOMPOSITION

curls of a vector field F = ∇× (ψêz) + ∇×∇× (φêz) have simple expressions:

êz · F = −∆hφ, (3.6a)

êz · ∇ × F = −∆hψ, (3.6b)

êz · ∇ ×∇× F = ∆∆hφ. (3.6c)

and that, for a divergence-free field ∇ · F = 0, the Laplace operator ∆ commutes with the ∇×
operator:

∇× ∆F = ∆∇× F (3.7)

We will use (3.7), (3.6) to separate the potentials in the linear parts of equations (2.7a) and (2.7b).

êz · ∇ × (∂t − Re−1∆)u = −(∂t − Re−1∆)∆hψu (3.8a)

êz · ∇ ×∇× (∂t − Re−1∆)u = (∂t − Re−1∆)∆∆hφu (3.8b)

êz · (∂t − Rm−1∆)B = −(∂t − Rm−1∆)∆hφB (3.9a)

êz · ∇ × (∂t − Rm−1∆)B = −(∂t − Rm−1∆)∆hψB (3.9b)

We can now write equations (2.7) in potential form:

(∂t − Re−1∆)∆hψu = êz · ∇ × su (3.10a)

(∂t − Re−1∆)∆∆hφu = −êz · ∇ ×∇× su (3.10b)

(∂t − Rm−1∆)∆hφB = êz · sB (3.11a)

(∂t − Rm−1∆)∆hψB = êz · ∇ × sB (3.11b)

where

su ≡ (u · ∇)u − (B · ∇)B (3.12a)

sB ≡ −∇× (u × B) (3.12b)

One can notice that the pressure p is no longer present in potential equations (3.10) corre-
sponding to the original equations (2.7a) written in primitive variables, because we took the
curl of the Navier-Stokes equation (2.7a). This is justified because the pressure is no longer
necessary when its only task is to introduce an additional degree of freedom necessary for sat-
isfying the divergence-free constraint, which, for the poloidal-toroidal representation (3.1), is
already satisfied by construction.

3.4 Compatibility condition

3.4.1 Equivalence of potential and primitive variable formulation

Up to now we have not proved the equivalence between the potential and primitive variable
formulations. Since we took the curl of equations (2.7a) and (2.7b) they gained an additional
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3.4. COMPATIBILITY CONDITION 29

degree of freedom which we must fix in such a way that these equations in potential form (3.10-
3.11) define the same velocity u and magnetic field B as the original MHD equations (2.7).
We will first write (2.7) in a compact form, which will let us use a common form for (3.10) and
(3.11):

(
∂t − Re−1∆

)
u + su

︸ ︷︷ ︸
= −∇

(
p + B2/2

)

fu = −∇
(

p + B2/2
)

gu ≡∇× fu = 0 (3.13a)

(
∂t − Rm−1∆

)
B + sB

︸ ︷︷ ︸
= 0

gB = 0 (3.13b)

where we used a basic rule of potential theory:

f = ∇p ⇔ ∇× f = 0 (3.14)

Then we can write side by side the primitive variable formulation (2.7) and potential formula-
tion (3.10), (3.11) using g ≡ gu,gB:

primitive variables potential formulation

g = 0 ⇒
{

ê · g = 0
ê · ∇ × g = 0

where ê is a unit vector (ê = êz for (3.10)-(3.11)).
We will now prove that, for g defined over a simply connected domain Ω, the potential and
primitive variable formulations are equivalent if additional conditions (3.15c) and (3.15d) are
satisfied:

g = 0 ⇔





ê · g = 0 in Ω

ê · ∇ × g = 0 in Ω

∇ · g = 0 in Ω

n̂ · g = 0 on ∂Ωh

(3.15a)

(3.15b)

(3.15c)

(3.15d)

where n̂ is the normal vector to the boundary, and ∂Ωh is the boundary of slices Ωh ⊂ Ω per-
pendicular to ê. The rightwards implication of (3.15) is obvious, and the leftwards implication
of (3.15) is proved as follows:

0 = ê · g
0 = ê · ∇ × g

}
⇒ g = ∇hκ

∇ · g = 0





⇒ ∆hκ = 0

∂κ
∂n = 0 on ∂Ωh





⇒ κ = κ0(e) ⇒ g = 0 (3.16)

te
l-0

01
62

59
4,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
7



30 CHAPTER 3. POLOIDAL-TOROIDAL DECOMPOSITION

where the subscript h restricts differential operators to the directions perpendicular to ê, which
we shall call horizontal, e denotes the coordinate corresponding to ê, which we call vertical,
and the two-dimensional version of (3.14) has been used.
Condition (3.15c) is satisfied for gu defined in (3.13a) because g ≡ ∇× fu and for gB defined
in (3.13b) because of (2.7d). The boundary condition (3.15d), which we shall call the compati-

bility condition, ensuring equivalence of both formulations, has a quite intuitive meaning as the
normal projection of the original equations on the boundary. This permits the system, which
has lost some information by taking the curl, to preserve some information about the original
equations. Condition (3.15d) is sufficient but not unique – other boundary conditions ensuring
(3.15) can exist. Discussion of the compatibility condition for a general domain (not restricted
to simply-connected domains) can be found in [55].

Axisymmetric case

We will now specialize the above discussion to the cylindrical geometry where we shall choose
ê ≡ êz and n̂ ≡ êr. What we want to demonstrate is that for axisymmetric fields the compati-
bility condition (3.15d) is not necessary to guarantee the identity (3.15). This is because we can
deduce ∆hκ(r,z) = 0 ⇒ κ = κ0(z) from (3.16) without specifying ∂κ

∂n = 0 at the boundary r = 1:

∆hκ(r,z) = 1
r ∂rr∂rκ(r,z) = 0 ⇒ κ(r,z) = a0(z) ln(r) + κ0(z) = κ0(z)

⇓
g = ∇hκ = ∂rκ ⇒ ∂rκ0 = g = 0

(3.17)

where a0(z) = 0 because of regularity constraints at the axis r = 0. We will use this property for
defining the boundary conditions for the axisymmetric Fourier mode in section 5.3.

3.4.2 Hydrodynamic compatibility condition

We will now write the compatibility condition (3.15d) for the hydrodynamic problem in poten-
tial variables with ê ≡ êz , n̂ ≡ êr and ∂Ωh ≡ (r = 1):

0 = êr · gu = êr · ∇ × fu = êr · ∇ ×
((

∂t − Re−1∆
)

u + su

)
=

=
( 1

r ∂θ êz − ∂zêθ

)
·
((

∂t − Re−1∆
)

u + su

) (3.18)

Because derivatives ∂θ and ∂z act in directions parallel to the boundary r = 1, they vanish for
all terms in fu which are zero at this boundary (i.e. u and su). Therefore the compatibility
condition (3.18) for the velocity takes the following form:

(
1
r

∂θ êz − ∂zêθ

)
· ∆u = 0

The êθ and êz components of the vector Laplacian have the following form:

êθ · ∆u =

(
∆ − 1

r2

)
uθ +

2
r2 ∂θur (3.19a)

êz · ∆u = ∆uz (3.19b)
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3.5. HYDRODYNAMIC BOUNDARY CONDITIONS 31

After substituting (3.2) into (3.19) and fixing the gauge freedom (3.4) via φu|r=1 = 0, the poten-
tial form of the compatibility condition can be written as:

∂2
rz∆hψu −

1
r

∂θ∆∆hφu = 0 at r = 1 (3.20)

3.4.3 Magnetic compatibility condition

For the magnetic field in potential formulation, the magnetic compatibility condition (3.15d) can
be derived in an analogous way as for the velocity:

êr · gB = êr ·
((

∂t − Rm−1∆
)

B + sB

)
= 0

but contrary to the velocity, the magnetic field does not vanish on the boundary so ∂tB 6= 0. As
for the nonlinear term sB defined in (3.12b), it vanishes at the boundary because u|r=1 = 01.

êr ·
(

∂t − Rm−1∆B
)

= 0

In polar coordinates the radial component of the vector Laplace operator has the following
form

êr · ∆B =

(
∆ − 1

r2

)
Br −

2
r2 ∂θ Bθ (3.21)

Using (3.21) and substituting the potential form of Br and Bθ analogous to (3.2) we obtain the
potential form of the magnetic compatibility condition:

(
∂t −

1
Rm

(
∆ − 1

r2

))(
1
r

∂θψB + ∂r∂zφB

)

︸ ︷︷ ︸
Br

− 1
Rm

2
r2 ∂θ ∂rψB︸︷︷︸

Bθ

= 0 at r = 1 (3.22)

where the gauge was fixed via φB|r=1 = 0 in order to simplify the expression for Bθ .

3.5 Hydrodynamic boundary conditions

We consider here the case of non-slip boundary conditions for velocity given by (2.8a,b). In
potential variables these conditions can be written as follows:
At r = 1:

1
r

∂θψu + ∂z∂rφu

︸ ︷︷ ︸
ur

= 0, (3.23a)

−∂rψu +
1
r

∂z∂θφu

︸ ︷︷ ︸
uθ

= 0, (3.23b)

−∆hφu︸ ︷︷ ︸
uz

= 0. (3.23c)

1Since the expression êr · ∇ × (u × B)|r=1 does not involve normal derivatives of u which may not be zero at
r = 1, therefore the condition u|r=1 = 0 is sufficient to guarantee sB|r=1 = 0
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32 CHAPTER 3. POLOIDAL-TOROIDAL DECOMPOSITION

At z = ± h
2 :

1
r

∂θψu + ∂z∂rφu = 0, (3.24a)

−∂rψu +
1
r

∂z∂θφu = rΩ±, (3.24b)

−∆hφu = 0. (3.24c)

As we discussed in section 3.2, there exists additional freedom for choosing ψu and φu: the
gauge freedom. By fixing

φu(r = 1) = 0 (3.25)

we can further simplify (3.23b):

φu(r = 1) = 0 ⇒ ∂θφu = ∂zφu = 0 at r = 1

⇓
∂rψu = 0 at r = 1 (3.26a)

It is also possible to simplify (3.24a,b). The gauge freedom φu(r = 1) = 0 together with (3.24c)
results in the Laplace equation on a horizontal disk with homogeneous boundary conditions.
Such a problem has only the zero solution so we have:

φu(z = ±h/2) = 0 (3.27)

Now we rewrite equation (3.24a) as

0 =
1
r

∂θψu + ∂z∂rφu = r

[
−1

r
∂θ

(−ψu

r

)
+

1
r

∂rr

(
∂zφu

r

)]
= rêz · ∇ ×

(−ψu

r
êr +

∂zφu

r
êθ

)

so, using (3.14), on each horizontal disk there exists a scalar potential f (r,θ) such that

−ψu

r
êr +

∂zφu

r
êθ = ∇h f = ∂r f êr +

1
r

∂θ f êθ ⇒
{

ψu = −r∂r f

∂zφu = ∂θ f
(3.28)

On the other hand we can now write

rΩ± = −∂rψu +
1
r

∂θ∂zφu = ∂rr∂r f +
1
r

∂2
θ f = r∆h f

but from (3.27) and ∂zφu = ∂θ f follows ∂θ f (r = 1,θ) = 0 ⇒ f (r = 1,θ) = f0, so we have

r∆h f = Ω± with f (r = 1,θ) = f0 (3.29a)

⇓
f = f0 +

Ω±π

2

(
r2 − 1

)

Then using (3.28) we can write the conditions equivalent to (3.24a,b):

ψu = −r∂r f = −Ω±πr2

2
∂zφu = ∂θ f = 0

}
at z = ±h

2
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3.6. MAGNETIC BOUNDARY CONDITIONS 33

Equations (3.10) have five Laplacians acting in the horizontal directions and three acting in
the vertical directions. Thus five conditions should be imposed on the lateral boundary and
three at each cylinder disk. The number of conditions (3.24) imposed on z = ±h/2 matches,
however the no-slip conditions (3.23) imposed on r = 1 give us only three of five conditions
needed. One of the two remaining conditions is the gauge freedom (3.25) that we already used
for simplifying the no-slip conditions. The second is the compatibility condition (3.20) for the
hydrodynamic potential problem. Therefore the complete system of boundary conditions is

r−1∂θψu + ∂z∂rφu = 0

∂rψu = 0

−∆hφu = 0

φu = 0

∂2
rz∆hψu −

1
r

∂θ∆∆hφu = 0





at r = 1

(3.30a)

(3.30b)

(3.30c)

(3.30d)

(3.30e)

ψu = −Ω±πr2

2
∂zφu = 0

−∆hφu = 0





at z = ± h
2

(3.31a)

(3.31b)

(3.31c)

3.6 Magnetic boundary conditions

While equations (3.11) for the magnetic induction are of lower differential order than those
for the velocity (3.10), the corresponding magnetic boundary conditions are more problematic.
The magnetic field is not specified on the boundary but must instead satisfy the matching rules
defined at the surface between two different regimes (see section 1.3.1).

3.6.1 General case

For the time-dependent fields in a non-ferromagnetic medium of finite electrical conductivity,
the complete set of boundary conditions is defined in (1.6) and results in four scalar conditions.
We recall these equations here:

[n̂ × E] = 0 (3.32a)

[n̂ × B] = 0 (3.32b)

If no further assumptions concerning the nature of the magnetic field can be made on either
side of the boundary then the equations describing the two physically distinct regimes have
form (2.7) and differ only in their dimensionless parameters Re and Rm. Since equation (3.32a)
refers to the electric field E which we already eliminated from the MHD equations, we now
need to relate the condition imposed on E and the potentials ψB, φB. This can be done by
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34 CHAPTER 3. POLOIDAL-TOROIDAL DECOMPOSITION

deriving conditions for the magnetic vector potential A instead of the electric field. There exists
a direct relation between the magnetic vector potential satisfying

B = ∇× A (3.33)

and the poloidal-toroidal decomposition (3.1b) into the scalar potentials ψB and φB:

B = ∇× A = ∇× (ψBêz + ∇× (φBêz)) , (3.34)

so we have
A = ψBêz + ∇× (φBêz) . (3.35)

Equation (3.33) defines the magnetic vector potential up to a gradient of an arbitrary scalar
potential φA

A ∼ A + ∇φA

On the other hand from (1.1a) we have

∇× E = −∂B
∂t

⇒ ∇×
(

E +
∂A
∂t

)
= 0 ⇒ E = −∂A

∂t
−∇φE

where φE in the stationary problem corresponds to the electrostatic potential satisfying ∆φE =

χ/ǫ and in a non-stationary case depends on the form of A. Due to the gauge freedom for the
choice of A, it is legitimate to set φE = 0 but one can prefer to preserve this degree of freedom for
other purposes. Fixing it would fix also the gauge for ψB and φB which can be used to simplify
the boundary conditions as was done for the velocity conditions in section 3.5. Therefore the
continuity condition (3.32a) is equivalent to

[
n̂ × ∂A

∂t

]
= −

[
n̂ ×∇φE

]
.

We can require [φE] = 0 without fixing the gauge freedom for φA completely2. Then we can
write [

n̂ × ∂A
∂t

]
= 0.

If the magnetic vector potential A satisfy [n̂ × A] = 0 at some initial time (which we can always
suppose), for the non-stationary problem, the continuity of ∂t[n̂ × A] is equivalent to the conti-
nuity of [n̂ × A]. To summarize, we shall write the boundary conditions for the magnetic field
and the magnetic vector potential as:

[n̂ × A] = 0 ⇔ [n̂ × E] = 0 (3.36a)

[n̂ × B] = 0 (3.36b)

Now the continuity conditions (3.36) can be translated into the conditions for magnetic scalar

2Fixing [φE] means only that we can specify it only on a single side of the boundary.
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3.6. MAGNETIC BOUNDARY CONDITIONS 35

potentials. On the lateral boundary r = 1, n̂ = êr, using (3.36) together with (3.34) and (3.35) we
obtain at r = 1:

[êr × A] = 0 ⇔
{

[Aθ ] = 0 ⇔ [∂rφB] = 0
[Az] = 0 ⇔ [ψB] = 0

(3.37a)

[êr × B] = 0 ⇔
{

[Bθ ] = 0 ⇔
[
−∂rψB + 1

r ∂z∂θφB

]
= 0

[Bz] = 0 ⇔ [−∆hφB] = 0
(3.37b)

Similarly, at the top and bottom disks z = ± h
2 , n̂ = êz we have

[êz × A] = 0 ⇔
{

[Ar] = 0 ⇔
[ 1

r ∂θφB

]
= 0

[Aθ ] = 0 ⇔ [∂rφB] = 0
(3.38a)

[êz × B] = 0 ⇔
{

[Br] = 0 ⇔
[ 1

r ∂θψB + ∂z∂rφB

]
= 0

[Bθ ] = 0 ⇔
[
−∂rψB + 1

r ∂z∂θφB

]
= 0

(3.38b)

Are these conditions sufficient to define a well-posed problem? Equations (3.11) have two
Laplacians acting in the vertical direction and four Laplacians acting in the horizontal direc-
tion. This means that four conditions must be given on the lateral cylinder boundary and two
conditions on each of the two disks. The four conditions given by (3.32) or (3.36) are not suf-
ficient, however. This is because they involve an additional unknown field, the external field
outside the cylinder. We can define the external magnetic problem in the same manner as we
defined the internal problem in (3.11):

(∂t − Rm−1
ex ∆)∆hφBex = êz · sBex (3.39a)

(∂t − Rm−1
ex ∆)∆hψBex = êz · ∇ × sBex (3.39b)

Considering two different regimes (B and Bex) requires twice as many conditions as a single-
regime system.
We shall note however that the poloidal-toroidal formulation has the gauge freedom which
allows us to arbitrarily set both internal and external potentials φB, φBex at the boundary as we
already did for the velocity potential φu in (3.25). This would give two additional equations.
Additionally, fixing the gauge freedom for the poloidal potentials simplifies the boundary con-
ditions. Setting in (3.37b)

φB|r=1 = φBex

∣∣∣
r=1

= 0 (3.40)

leads to the following simplifications at r = 1:
[
−∂rψB +

1
r

∂z∂θφB

]
= 0 ⇒ [∂rψB] = 0

and using (3.40) in (3.38b) gives at z = ± h
2 :

[
1
r

∂θψB + ∂z∂rφB

]
= 0

[
−∂rψB +

1
r

∂z∂θφB

]
= 0





⇒ [∂zφB] = 0, [ψB] = 0
(3.41)

(3.42)
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36 CHAPTER 3. POLOIDAL-TOROIDAL DECOMPOSITION

These simplifications can be derived by repeating the same procedure as for the boundary con-
ditions for the velocity (see. section 3.5) and using the ability to differentiate jump condition in
the directions tangent (but not normal) to the surface. The last two missing conditions needed
to complete the system (3.11), (3.39a) are the magnetic compatibility condition (3.22) for both in-
ternal and external fields. Finally the complete system of boundary conditions for the magnetic
potentials at the boundary between two different conducting fluids has the following form:

[−∂rψB] = 0

[ψB] = 0

[∂rφB] = 0

[−∆hφB] = 0

φB = 0

φBex = 0
(

∂t − Rm−1 (∆ − r−2))(r−1∂θψB + ∂r∂zφB

)
− Rm−12r−2∂θ∂rψB = 0

(
∂t − Rm−1

ex

(
∆ − r−2))(r−1∂θψBex + ∂r∂zφBex

)
− Rm−1

ex 2r−2∂θ∂rψBex = 0





r = 1

[ψB] = 0

[∂zφB] = 0

φB = 0

φBex = 0





z = ± h
2

3.6.2 Conductor/vacuum configuration

The case when the fluid of finite electric conductivity is restricted to a finite volume (here a
cylinder) and is surrounded by vacuum is of special importance to us, because it models well
the experimental configuration of the VKS experiment. As it was already explained in sec-
tion 1.3.1, the boundary condition for the magnetic field can be simplified. We recall that the
external magnetic field in vacuum satisfies

∇× Bvac = 0 ⇒ B = ∇φvac

In this case the continuity of all three components of the magnetic field are sufficient condi-
tions to uniquely determine both the internal and external fields. The equations describing the
internal field are given in (3.11) while the external problem is reduced to

∆φvac = 0 (3.45)

Equations (3.11) and (3.45) contain five Laplacians acting in the horizontal direction and three
acting in the vertical direction. Continuity of the magnetic field at the boundary gives us three
scalar conditions:

[B] = 0 ⇒





Br = Bvac
r ⇒ 1

r
∂θψB + ∂r (∂zφB − φvac) = 0

Bθ = Bvac
θ ⇒ −∂rψB +

1
r

∂θ (∂zφB − φvac) = 0

Bz = Bvac
z ⇒ −∆φB + ∂z (∂zφB − φvac) = 0

(3.46a)

(3.46b)

(3.46c)
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3.7. DISCUSSION 37

The magnetic potential φvac corresponds to the potentials ψBex and φBex used in the previous
subsection. It defines the external magnetic field Bex in vacuum. Since the relation between
these variables is indirect, the equations and boundary conditions for the configuration with the
vacuum as the external medium must be derived independently from the general formulation.
Instead of the gauge choice (3.40), we can choose φB in a way to satisfy

(∂zφB − φvac)|r=1 = 0 (3.47)

Then the complete system of boundary conditions, including the magnetic compatibility con-
dition (3.22), takes the following form:
At r = 1, we have

[Br] = 0 ⇒ 1
r

∂θψB + ∂r (∂zφB − φvac) = 0 (3.48a)

[Bθ ] = 0 ⇒ ∂rψB = 0 (3.48b)

[Bz] = 0 ⇒ ∆φB = 0 (3.48c)

gauge ⇒ ∂zφB − φvac = 0 (3.48d)

magnetic compatibility condition ⇒
(
∂t − Rm−1

(
∆ − r−2

))(
r−1∂θψB + ∂r∂zφB

)

+Rm−1 2
r3 ∂z∂θφB = 0

(3.48e)

where the form of the magnetic compatibility condition (3.22) was altered by a different choice
of the gauge condition (3.48d) and simplified using (3.48b).
At z = ±h/2, conditions (3.46) remain unchanged. In section 5.6 we will explain how to nu-
merically solve (3.11) with the boundary conditions (3.46).

3.7 Discussion

3.7.1 Advantages/disadvantages

A natural question that the reader could ask about the idea of the toroidal-poloidal decompo-
sition is: What are the advantages of this approach over the traditional primitive variables or
velocity-vorticity formulations? Some reasons can be outlined:

• The first reason for using a potential formulation is to satisfy the incompressibility con-
straint which is difficult to accomplish by non-potential methods.

• There is no need to solve for the hydrodynamic pressure since it has been completely
removed from potential equations.

• The induction equation (2.7b), contrary to the Navier-Stokes equation (2.7a), does not
contain a pressure term, which is used in the primitive variable formulation for impos-
ing the divergence-free condition. For this reason some algorithms introduce a fictitious
pressure term. In the toroidal-poloidal formulation the magnetic field is solenoidal by
construction.
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38 CHAPTER 3. POLOIDAL-TOROIDAL DECOMPOSITION

• Because all operators in potential equations (3.10) and (3.11) act on scalar fields, the Pois-
son solver needed for implementing a semi-implicit scheme for time integration is sim-
pler. In contrast, vector operators like ∆F couple the components of the vector field and
diagonalization of the corresponding Poisson problem requires the introduction of rede-
fined variables (see [86] or [69] for an adequate methodology).

• Single type of spectral expansion can be used for scalar potentials. For vector fields each
component has different type of radial/azimuthal expansion; see the discussion in section
4.4.

Of course there is always a price to pay for removing serious problem, here the incompress-
ibility constraint. A new difficulty has appeared in the potential formulation: equations (3.10)
and (3.11) are of higher differential order than the equivalent equations (2.7) and the associ-
ated boundary conditions are far more complex: some of them couple the potentials and are of
high differential order (e.g. compatibility conditions). Imposing such complicated conditions
requires sophisticated methods. The influence matrix technique is the method of choice when
complex and possibly coupled boundary conditions must be satisfied, but, as the reader will
see in section 5.4, proves to be quite difficult to implement.

In the primitive variable formulation, solving for the pressure field requires a method which
is similar to the influence matrix approach. Taking this into account, the primitive variable and
potential formulations can be considered comparable in terms of technical difficulty.

3.7.2 Concluding remarks

In this chapter we have introduced a potential formulation of the magnetohydrodynamic equa-
tions (2.7), where the poloidal-toroidal decomposition of the solenoidal vector fields u and B
has been used to impose the divergence-free constraint. According to the physical model stud-
ied, the appropriate boundary conditions (2.8) have been stated in their potential form and sim-
plified. In particular, the necessity for imposing the compatibility condition, ensuring equiva-
lence between the primitive variable and the poloidal-toroidal description, has been explained
and a possible form of this condition has been given for both velocity and magnetic fields (see
section 3.4). The MHD equations (3.10) and (3.11) in the scalar potential form define four equa-
tions whose linear parts are decoupled. This greatly simplifies the numerical method used for
solving the system when a semi-implicit time integration scheme is performed. We recall that
the original vector equations (2.7), written in cylindrical coordinates, couple components of the
vector fields.

Notation concerning the velocity and magnetic potentials introduced in this chapter will be
widely used in the following chapters. The numerical method explained in this thesis is fo-
cused on solving the equations in the form given by (3.10) and (3.11) with boundary conditions
stated in (3.30), (3.31), (3.46) and (3.48). We assemble here all of these equations and boundary
conditions:
Hydrodynamic problem:
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3.7. DISCUSSION 39

(∂t − Re−1∆)∆hψu = êz · ∇ × su (3.49a)

(∂t − Re−1∆)∆∆hφu = −êz · ∇ ×∇× su (3.49b)

su ≡ (u · ∇)u − (B · ∇)B (3.49c)

Boundary conditions:

r−1∂θψu + ∂z∂rφu = 0

∂rψu = 0

−∆hφu = 0

φu = 0

∂2
rz∆hψu −

1
r

∂θ∆∆hφu = 0





r = 1

(3.50a)

(3.50b)

(3.50c)

(3.50d)

(3.50e)

ψu = −Ω±πr2

2
∂zφu = 0

−∆hφu = 0





z = ± h
2

(3.51a)

(3.51b)

(3.51c)

Magnetic problem (conductor/vacuum):

(∂t − Rm−1∆)∆hφB = êz · sB (3.52a)

(∂t − Rm−1∆)∆hψB = êz · ∇ × sB (3.52b)

sB ≡ −∇× (u × B) (3.52c)

∆φvac = 0 (3.52d)

Boundary conditions:

1
r

∂θψB + ∂r (∂zφB − φvac) = 0

∂rψB = 0

∆φB = 0

∂zφB − φvac = 0
(

∂t − Rm−1 (∆ − r−2))(r−1∂θψB + ∂r∂zφB

)
+ Rm−1 2

r3 ∂z∂θφB = 0





r = 1

(3.53a)

(3.53b)

(3.53c)

(3.53d)

(3.53e)

1
r

∂θψB + ∂r (∂zφB − φvac) = 0

−∂rψB +
1
r

∂θ (∂zφB − φvac) = 0

∆hφB + ∂zφvac = 0





z = ± h
2

(3.54a)

(3.54b)

(3.54c)
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Part II

Numerical method – Spectral solver

41
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Chapter 4

Spectral discretization

4.1 Introduction

There exist two main categories of numerical methods used for solving partial derivatives. The
difference between them is essentially the way the differential expressions are evaluated. In
the first category are local methods, sometimes called finite precision or fixed precision methods
and to this class belong techniques like finite difference/volume/elements. Spectral methods
represent the second family, called global or spectral precision methods.
We present in this chapter a brief and definitely not comprehensive comparison of both classes
together with arguments playing a role for the choice of a method best suited to our needs.
The necessary introduction of spatial discretization models in all three dimensions êr, êθ , êz is
presented in this chapter while paying special attention to the various singularity issues of a
cylindrical coordinate system of finite size.

4.1.1 Local methods

The adjective "local" means that to evaluate an expression containing differential operators at
a given point, only its neighborhood (fixed number of points situated in its proximity) is taken
into account. These methods are characterized by an algebraic convergence, i.e. the error ǫ of
approximation of an exact solution by the discrete solution decays with a fixed order D:

ǫ ∼ N−D,

where N is the spatial resolution of the method. Local methods are also sometimes called finite

precision methods.

4.1.2 Spectral precision

For this class of methods, a truncated series of orthogonal functions is used to represent the
solution. In this sense, one should no longer think of spatial discretization in terms of parti-
tioning the computational domain into some number of points/volumes/elements. In spectral
methods the solution is decomposed in a basis of orthogonal functions appropriate for a given
geometry and problem specificity. The solution is uniquely represented by the spectral coef-

ficients of the weighted sum of basis functions. For spectral methods the analytical rules for

43
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44 CHAPTER 4. SPECTRAL DISCRETIZATION

differentiating the basis functions imply how the coefficients defining the solution should be
transformed under differentiation. Because each basis function is defined over the global do-
main, spectral methods are called global. In other words, knowledge of the whole solution is
needed to evaluate a differential expression in a single point.

The most important advantage of spectral methods is their spatial convergence property.
For an infinitely differentiable solution, these techniques have an exponential convergence i.e.

ǫ ∼ exp(−N)

where N is the number of basis functions used for representing a solution. This means that
the convergence of a spectral method is always faster than that of a method converging as any
finite power of N. This is the reason why these methods are sometimes said to be of infinite

precision.

Singularity and spectral methods

As was mentioned in the introduction, exponential convergence is possible under the condition
that the solution is C∞. When the function has only m continuous derivatives the general theory
of polynomial approximation predicts that the order of a spectral method becomes algebraic:

ǫ ∼ N−(m+δ)

where δ does not depend on m. Therefore, in practice, spectral methods are advantageous
mainly for problems where the solution is regular, or the singularity can in some way be elimi-
nated or damped.

4.1.3 Advantages and limitations of spectral methods

As it is not the subject of this work to make a comprehensive comparison of different discretiza-
tion approaches, we outline only the most important advantages and drawbacks of local and
spectral methods in order to justify the choice we have made for the numerical method.

local methods spectral methods
algebraic convergence exponential convergence (less resolution is needed)
no geometry restrictions only simple geometries are permitted
less susceptible to singularities singularities deteriorate convergence

(one should note however that singularities often reduce
the convergence of spectral methods to the level that
local methods have without singularities)

Because the geometry of the investigated problem is quite simple (finite cylinder) the use of
spectral methods seems natural. Moreover, since the numerical code is intended to be used
for studying three-dimensional turbulent hydromagnetic flows, high spatial precision makes
it possible to reduce the resolution needed for performing computationally expensive simula-
tions. In the following sections we will define the spectral basis appropriate for the cylindrical
geometry.
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4.2. AZIMUTHAL DIRECTION 45

4.2 Azimuthal direction

It is natural to use the Fourier basis for representing a function’s angular dependence. Let f (θ)

be periodic over the interval θ ∈ [0,2π]. The truncated Fourier-series approximation can be
stated as:

f (θ) ≈
⌊M

2 ⌋
∑

m=−⌊M
2 ⌋

f̂ meimθ ,

where M is the azimuthal resolution and
⌊

M
2

⌋
denotes the largest integer smaller than M

2 .
Quantity

⌊
M
2

⌋
correspond to the number of Fourier modes (for the circular domain it corre-

sponds to the maximal angular frequency which can be represented by this approximation)
and f̂ m are spectral coefficients of the expansion of f in the Fourier basis. The symbolˆindicates
that the quantity is related to the spectral space.

Since we will solve the Navier-Stokes and induction equations using a pseudo-spectral
method, evaluation of nonlinear terms requires the use of collocation points. The product of
functions in physical space corresponds to the convolution of their spectral transforms f̂ g = f̂ ∗ ĝ,
but for evaluating nonlinear terms it is easier to perform this in physical space using discrete
function values f l ≡ f (θl) evaluated at Gauss quadrature abscissas1:

θl =
2πl

M
; l = 0 . . . M − 1. (4.1)

Additionally, if f : R → R, then coefficients f̂ m corresponding to negative m can be determined

from those with positive m because of the relation f̂−m = f̂ m, where − denotes complex conju-
gate. We then have:

f (θ) ≈
⌊M

2 ⌋
∑

m=0
f̂ meimθ +

⌊M
2 ⌋

∑
m=1

f̂ me−imθ . (4.2)

This series can be further split into even and odd modes whose spectral coefficients are real
numbers

f (θl) = f̂ 0 + 2
⌊M

2 ⌋
∑

m=1
ℜ( f̂ m)cos(mθl) − 2

⌊M−1
2 ⌋

∑
m=1

ℑ( f̂ m)sin(mθl), (4.3)

where f̂ 0 ∈ R and if M is an even number then f̂ ⌊M/2⌋ ∈ R. It can be seen that the number of
real spectral coefficients { f̂ 0,ℜ( f̂ m),ℑ( f̂ m)} in the above expression is the same as the number
of collocation points M. Therefore the dimensions of spectral and physical spaces in the sense
of number of degrees of freedom are the same. When solving differential equations, the most
important property of trigonometric functions is that they are eigenfunctions of differential
operators. In a discrete representation, differential operators in Fourier space take the form of
a diagonal matrix:

g = ∂θ f ⇔ ĝm′
= imδm′

m f̂ m ⇔ ĝm = im f̂ m.

1This is equivalent to computing the convolution under the condition that dealiasing is used in order to avoid
casting of high frequencies to the low ones having extrema at the same collocation points. See Canuto et al. [13] for
more details.
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46 CHAPTER 4. SPECTRAL DISCRETIZATION

This property is the basis of a very important characteristic of numerical methods built around
the spectral Fourier expansion: each of the Fourier modes can be treated separately, i.e. the
Fourier modes are decoupled.

Fourier mode separation

The consequence of the diagonal form of differential operators is that for an expression that is
linear in θ, all operations can be performed separately on each of Fourier modes. In fact they
can be further decomposed into even and odd modes represented only by real coefficients. Let
us take as an example a three dimensional Poisson problem stated for f : R → R and g : R → R:

∆ f (r,θ,z) = g(r,θ,z). (4.4)

According to what we said about separability of mode-decomposed functions, this equation is
equivalent to a system of M separate 2D Poisson problems:

∆0 f̂ 0(r,z) = ĝ0(r,z),

...

∆mℜ
(

f̂ m(r,z)
)

= ℜ (ĝm(r,z)) ,

∆mℑ
(

f̂ m(r,z)
)

= ℑ (ĝm(r,z)) ,

...

∆M−1 f̂ M−1(r,z) = ĝM−1(r,z)

where ∆m ≡ 1
r ∂rr∂r − m2

r2 + ∂2
z and the Fourier transform f (r,θ,z) F→ f̂ m(r,z) was applied to

both sides of (4.4). This property not only reduces the computational cost of the solver, but
also allows for quite straightforward parallelization, since each of these 2D Poisson problems
can be executed by a separate process. This advantage should not be underestimated, since the
Poisson solver is often in practice the crucial and time consuming part of an elliptic PDE solver.

4.3 Axial direction

Because in the vertical direction z the finite cylindrical domain has two boundaries (upper
and bottom disks), then Chebyshev polynomials can be successfully employed for the spectral
basis. The Chebyshev polynomials are defined as follows:

Tk(z) = cos (k arccos(z)) (4.5)

where k is the polynomial order. This polynomial basis is orthogonal on the interval [−1,1]

over a weight (1 − z2)−
1
2 .

The spectral approximation of function f (z) defined over the range [−h/2, h/2] can be written
as:

f (z) ≈
K−1

∑
k=0

f̂kTk

(
2z

h

)
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4.3. AXIAL DIRECTION 47

where K denotes the axial resolution and K − 1 is the polynomial order of the Chebyshev ap-
proximation.

Chebyshev-Gauss grid

The abscissas of the associated Gauss quadrature for Chebyshev polynomials are defined as
follows:

zk = cos

(
π(k + 1

2)

K

)
; k = 0,1, . . . ,K − 1. (4.6)

The min-max property

The Chebyshev polynomials are widely used in spectral collocation methods because of their
excellent approximation properties. In fact, they are nearly the same as the min-max polynomials

which, among polynomials of the same degree, have the smallest maximum deviation from the
approximated function (see Press et al. [72]). This property makes it possible to significantly
minimize the number of spectral coefficients used to represent the approximated function to a
given precision.

Differential operator

There exist simple recursive formulas for evaluating values and derivatives of functions repre-
sented by Chebyshev series. They can be derived from the relation:

Tk+1 = 2zTk(z) − Tk−1(z) ; k ≥ 1

Spectral coefficients of the derivative g(z) = ∂z f (z) are given by the following formula:

ĝk = ĝk+2 +
4
h
(k + 1) f̂k+1 ; k = K − 2,K − 1, . . . ,0

ĝK = ĝK−1 = 0

from which we can deduce the matrix form of the differential operator ∂z which is:

Zk′,k =

{
2k if (k > k′ and k + k′ is odd)
0 otherwise

and for ∂2
z we have

Z2
k′,k =

{
k(k2 − k′2) if (k > k′ + 1 and k + k′ is even)
0 otherwise

Both Zk′,k and Z2
k′,k are scattered upper triangular matrices. For example, matrix Z2

k′,k is of the
following form (Xe and Xo denote non-null elements multiplying either even or odd coeffi-
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48 CHAPTER 4. SPECTRAL DISCRETIZATION

cients f̂k) : 


0 0 Xe 0 Xe 0 Xe 0

0 0 Xo 0 Xo 0 Xo

0 0 Xe 0 Xe 0

0 0 Xo 0 Xo

0 0 Xe 0

0 0 Xo

0 0

0




and can be further easily decomposed into a triangular block matrix by performing even/odd
separation of rows and columns.




0 Xe Xe Xe

0 Xe Xe

0 Xe

0

0 Xo Xo Xo

0 Xo Xo

0 Xo

0




We will use this matrix organization later for optimizing the 2D spectral Poisson solver.

4.4 Radial direction

4.4.1 Regularity condition

The radial direction is quite different in nature from both the azimuthal and axial directions
because the associated spectral basis must take into account the coordinate singularity at the
origin r = 0. A regularity condition should be respected by functions representing the radial
dependence in polar coordinates. The role of this condition is to guarantee that a spectrally
represented function is C∞ in its entire domain including the origin. The non-satisfaction of
the regularity condition can, for some problems, deteriorate the accuracy and convergence of
spectral method since the solution can contain contributions which are non-analytic at the co-
ordinate origin. In some situations it is observed that the non-regular spectral solution can be
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4.4. RADIAL DIRECTION 49

affected by different types of spurious modes2. For finite-difference methods, spurious waves
oscillating from point to point called two-delta or sawtooth were reported by Colonius [15] and
Vichnevetsky & Bowle [88]. For pseudo-spectral methods, high-frequency spurious modes oc-
cupying the entire domain can appear. Additionally, the grid clustering around the origin often
strongly affect the scheme’s CFL criterion restricting the maximal time step of a semi-implicit
or explicit time integration. The problem does not exist in Cartesian coordinate system – in two
dimensions an arbitrary continuous function can be represented by a series of monomials xiyj:

f (x,y) =
∞

∑
i=0

∞

∑
j=0

f̂ijx
iyj.

However, when a function of polar coordinates (r,θ) is represented by Fourier polynomials in
angular direction êθ , there exist relations between the azimuthal modes indexed by m and the
parity and order of polynomials representing the radial dependence on r. The proper way of
defining such a series is:

f (r,θ) =
∞

∑
m=−∞

∞

∑
n=m

n+m is even

f̂ m
n rneimθ . (4.7)

The relations in (4.7) between n and m can be derived by performing a transformation from
Cartesian to polar coordinates on a 2D monomial xiyj.

Singular effects – graphical interpretation

It is useful to graphically explain some of the effects of the polar coordinate singularity, since it
is sometimes not so intuitive to qualitatively understand how violation of regularity conditions
can affect results obtained.
All singular contributions to a function defined as

f (r,θ) =
∞

∑
m=−∞

∞

∑
n=0

f m
n rneimθ

can be identified analytically by determining the non-differentiable terms which are either of
polynomial order incompatible with the corresponding Fourier mode, or have a polynomial
order of the wrong parity.

Parity relation (n + m even) On the left of figure 4.1 we show a graphical interpretation of the
effect of parity mismatch between radial and azimuthal functions. When an odd radial function
is combined with an even function of angle, as for f (r,θ) = r, the corresponding indices m = 0
and n = 1 do not satisfy relations given in (4.7) which leads to a nondifferentiable function at
r = 0. The function becomes perfectly regular when considering f (r,θ) = r2, since m = 0 and
n = 2 satisfy the regularity condition (see fig. 4.1-right).

2Here it should be noted that these "spurious modes" are due to the singularity at the origin, which results from
the polar coordinate representation. In general, there is no reason to consider the coordinate origin as a physically
special point.
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50 CHAPTER 4. SPECTRAL DISCRETIZATION
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f (r,θ) = r2

Figure 4.1: Coordinate singularity effects: Parity mismatch. Left: f (r,θ) = r; Right: f (r,θ) = r2

Polynomial order (n ≥ m) When the parity of the radial function is that of the parity of the
corresponding Fourier mode but the polynomial order does not satisfy n ≥ m then another
kind of singularity can be observed. On figure 4.2-left it can be seen that depending on the

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

f (r,θ) = r2 + 4
3 cos(4θ)

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

f (r,θ) = r2 + 4r2

3 cos(4θ)

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

f (r,θ) = r2 + 4r4

3 cos(4θ)

Figure 4.2: Coordinate singularity effects. Left: discontinuity of value; Middle: discontinuity
of Laplacian; Right: regular function

direction θ along which the origin r = 0 is approached, the function f (r → 0,θ) → fr=0(θ) takes
different values, becoming undefined at the coordinate origin. When the polynomial order
in the radial direction is higher but not yet sufficiently high then the function is continuous
but not infinitely differentiable at the origin (see figure 4.2-middle). The function becomes
analytical beginning from n = m (see figure 4.2-right) when the angle-dependent contributions
are sufficiently damped.

Clustering at r = 0 It is important to attenuate successive frequencies when approaching the
coordinate origin in order to avoid an excessive clustering of smaller and smaller spatial scales.
On the left of figure 4.3 we show a situation where all azimuthal modes are combined with the
same radial polynomial r2. On the right, the regular situation is presented where the clustering
effect is no longer present.
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-1 -0.5  0  0.5  1
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r2 + 32r2 cos(2θ) = 0.5

r2 + 32r2 cos(4θ) = 0.5

r2 + 32r2 cos(8θ) = 0.5

r2 + 32r2 cos(16θ) = 0.5
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r2 + 32r2 cos(2θ) = 0.5

r2 + 32r4 cos(4θ) = 0.5

r2 + 32r8 cos(8θ) = 0.5

r2 + 32r16 cos(16θ) = 0.5

Figure 4.3: Clustering effect – contours of f m(r,θ) = 0.5. Left: f m(r,θ) = r2 + 32r2 cos(mθ);
Right: f m(r,θ) = r2 + 32rm cos(mθ)

4.4.2 Regularization of an arbitrary spectral basis

The easiest way of imposing the correct parity and order for radial polynomials would be us-
ing the monomial basis: f̂ m(r) = ∑i f̂ir

m+2i. Monomial basis is, however, numerically very
ill-conditioned and cannot be used. Correct parity of radial functions defined over r ∈ [0,1] can
be achieved by even or odd Chebyshev polynomials defined over r ∈ [−1,1] but used only for
r ≥ 0. This approach was implemented by several authors (see [86, 48, 56, 81]). A commonly
used approach for dealing with coordinate singularity due to the order mismatch is regulariza-
tion (i.e. suppresion) of few low-order modes in the radial direction in order to ensure (n ≥ m).
Typically Chebyshev polynomials are used, accompanied by some additional axis conditions
guaranteeing the Cn≪∞ class3 for the approximated function. It is unclear how the partial satis-
faction of regularity conditions can affect the solution to a particular problem. Trying to impose
the regularity conditions for more or all radial modes by imposing increasingly many condi-
tions, generally leads, for iterative schemes for time integration, to ill-conditioned solvers or
severe time step restrictions (see Matsushima & Marcus [58]). This is because transformation
of Chebyshev polynomials to the monomial basis, in which the regularity conditions can be
imposed, is very ill-conditioned.
In finite difference, volume or element methods it is the clustering effect rather than coordi-
nate singularity which affects the solution. Non-polar grids can be used as a remedy in this
case. This prohibits, however, mixed algorithms using a Fourier expansion in the periodic
(azimuthal) direction and treating the radial direction by a non-spectral method.

3In practice usually 2 ≤ n ≤ 4.
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52 CHAPTER 4. SPECTRAL DISCRETIZATION

4.4.3 Regular basis of radial polynomials

In this work we will use, following Matsushima & Marcus [58], a polynomial basis which pre-
serves the C∞ property of approximated functions in polar coordinates and yet is numerically
well-conditioned. These polynomials Qm

n (α, β;r) are defined by the singular Sturm-Liouville
equation
((

1 − r2
)1−α

rβ

d

dr

((
1 − r2)α

rβ d

dr

)
− |m|(|m| + β − 1)

r2 + n(n + 2α + β − 1)

)
Qm

n (α, β;r) = 0,

(4.8)
defined over r ∈ [0,1] with 0 ≤ |m| ≤ n, where α ∈ [0,1] and β is a positive integer. With the
special choice of α = 1, β = 1, Qm

n (1,1;r) are related to Legendre and shifted Jacobi polynomi-
als used by Leonard & Wray [43]. The n order polynomials Qm

n (α, β;r) associated with the m

Fourier mode have the following expression

Qm
n (α, β;r) ≡

n−|m|
2

∑
p=0

(−1)p+ n−|m|
2 Γ

(
n+|m|+γ−1

2 + p
)

Γ
(

2|m|+β+1
2

)

p!
(

n−i|m|
2 − p

)
!Γ
(

2|m|+β+1
2 + p

)
Γ
(

2|m|+γ−1
2

) r|m|+2p, (4.9)

with γ = 2α + β and Γ is the gamma function4. Qm
n (α, β;r) are complete and orthogonal with

respect to the weight function

w(α, β;r) ≡ rβ

(1 − r2)1−α
.

so that the inner product is
∫ 1

0
Qm

n (α, β;r)Qm
n′(α, β;r)w(α, β;r)dr = Im

n (α, β)δnn′

The normalized basis function Φm
n (α, β;r) can be defined as

Φm
n (α, β;r) ≡ 1√

Im
n (α, β)

Qm
n (α, β;r) (4.10)

There exist recurrence formulas for evaluating Qm
n (α, β;r) ≡ Qm

n (r) as well as the integration
constants Im

n (α, β) ≡ Im
n in a number of operations proportional to n − |m|. The formulas can be

found in [58] and in Appendix A. An arbitrary radial function f̂ m(r) associated with Fourier
mode m can be decomposed in the basis of polynomials Φm

n (α, β;r) = Φm
n (r):

f̂ m(r) ≈
2(N−1) if m is even

2N−1 if m is odd

∑
n=|m|

n+m is even

f̂ m
n Φm

n (r) (4.11)

where N denotes the spatial resolution in radial direction (number of collocation points) and
2(N − 1), 2N − 1 correspond to the polynomial orders for even and odd modes m respectively.
We define N̂ – the polynomial order of spectral expansion in radial direction:

N̂ ≡ N̂(N,m) =

{
2(N − 1) m is even
2N − 1 m is odd

(4.12)

4An extension of the factorial to complex and real number arguments.
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4.4. RADIAL DIRECTION 53

so that, f̂ m(r) ∼ O(rN̂). Notation f̂ m(r) represents a Fourier transform of a real function f (r,θ)

in the sense of transform given in (4.3). To obtain the spectral coefficients f̂ m
n from the original

function f (r,θ), first the fast Fourier transform can be used to determine f̂ m(r) and then the
inverse of (4.11) can be stated as

f̂ m
n =

∫ 1

0
f̂ m(r)Φm

n (r)w(r)dr. (4.13)

The Gauss quadrature formula for (4.13) is then

f̂ m
n =

∫ 1

0
f̂ m(r)Φm

n (r)w(r)dr =
N−1

∑
i=0

f̂ m(ri)Φm
n (ri)wi + ǫ. (4.14)

Points {ri} are the abscissas of the quadrature and ǫ is the error of the formula (ǫ = 0 if
f̂ m(r)Φm

n (r) is of order less than or equal to 2(N − 1)). For a given m the corresponding ra-
dial expansion is defined by N − ⌊m

2 ⌋ coefficients { f m
n ; n = m,m + 2, . . . , N̂}.

4.4.4 Differential operators

To construct the Poisson solver, two generic operators acting in the êr direction must be defined.
These are

r∂r , r2 (4.15)

Other operators used along with the Poisson solver are

1
r2 ,

1
r

∂rr∂r ≡
1
r2 (r∂r)

2 (4.16)

and can be constructed from (4.15). All these operators preserve parity.

Recursive formulas

The recurrence relations defining the way in which spectrally represented functions are altered
by applying to them the operators (4.15) were derived by Matsushima & Marcus [58]. In general
these relations can be written for a generic operator H as

g(r,θ) = H f (r,θ) ⇒ ĝm
n = Ĥm(n,n′) f̂ m

n′

m
n+2u

∑
n′=n−2l

n+m even

L̂m(n,n′)ĝm
n′ =

n+2u′

∑
n′=n−2l′
n+m even

R̂m(n,n′) f̂ m
n′ ; n = |m|,2|m|, . . . , N̂

(4.17)

where L̂m(n,n′) ≡ [L̂m]
j
i and R̂m(n,n′) ≡ [R̂m]

j
i with i = n′−|m|

2 , j = n−|m|
2 ; i, j = 0, . . . , N̂ −

⌊
m
2

⌋
−

1 are banded matrices defining the matrix operator Ĥm(n,n′) ≡ [Ĥm]
j
i in the following sense:

[L̂m]
j
i [ĝ

m]i = [R̂m]
j
i [ f̂ m]i ⇒ [Ĥm] =

(
[L̂m]

)−1
[R̂m] (4.18)

The existence of recurrence relations has an important consequence: acting with such an oper-
ator on a vector can be done in O

(
(dL + dR)(N −

⌊
m
2

⌋
)
)

operations. The quantities dL ≈ l + u
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54 CHAPTER 4. SPECTRAL DISCRETIZATION

and dR ≈ l′ + u′ are the number of all non-zero diagonals in banded matrices [L̂m] and [R̂m]

and l, l′,u,u′ are the numbers of their sub-/super- diagonals. For small values of dL,dR, this
can significantly improve performance compared with the case when a full matrix [H] is used

with the operation count O
((

N −
⌊

m
2

⌋)2
)

. In table 4.1 we stated the numbers l, l′,u,u′ corre-

sponding to the matrix operators (4.15)-(4.16)5 and to some of their combinations. A similar

Operator
L R

l u dL l’ u’ dR

r∂r 0 1 2 0 1 2

r2 0 0 1 1 1 3

1
r2 1 1 3 0 0 1

(r∂r)2 0 2 3 0 2 3

(r∂r)2 − m2 0 2 3 0 2 3

(r∂r)2 + λr2 1 3 5 0 2 3

Table 4.1: Numbers of lower (l, l′) and upper (u, u′) diagonals in the left and right matrices
[L̂m] and [R̂m].

decomposition into banded left and right matrices [L] and [R] is possible for a quite large class
of differential operators acting on various polynomial expansions. Tuckerman [87] shows a
systematic way to construct such matrices and recursion relations.

4.5 Discretization in 3D

To synthesize what we have presented in the preceding sections we shall define the spectral
discretization we use in cylindrical coordinates. The following formula applies to scalar func-
tions defined over (r,θ,z) ∈ [0,1] × [0,2π] × [− h

2 , h
2 ]:

f (r,θ,z) ≈
⌊M

2 ⌋
∑

m=−⌊M
2 ⌋

K−1

∑
k=0

N̂

∑
n=|m|

n+m even

f̂ m
kneimθQm

n (r)Tk

(
2z

h

)
(4.19)

where f̂ m
kn are complex coefficients and Tk and Qm

n are defined by (4.5) and (4.9). We can write
(4.19) also as:

f (r,θ,z) ≈
⌊M

2 ⌋
∑

m=−⌊M
2 ⌋

K−1

∑
k=0

N−⌊ m
2 ⌋−1

∑
η=0

[ f̂ m]kηeimθQm
m+2η(r)Tk

(
2z

h

)
(4.20)

where coefficients { f̂ m
kn} were replaced by their matrix representation [ f̂ m]kη .

Since we are interested only in real functions, using trigonometric formulation like that given
in (4.3) is more appropriate.

5The recurrence relation for the 1
r2 operator is numerically unstable: tri-diagonal LU decomposition without

pivoting can be used instead.
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4.6. BOUNDARY CONDITION REGULARIZATION 55

4.6 Boundary condition regularization

The boundary conditions defined in (2.2) present a singularity in the azimuthal component of
velocity uθ at r = 1, z = ± h

2 since the upper and bottom disks rotate while the lateral boundary
remains steady. The boundary conditions can be restated as

uθ |r=1(θ,z) = 0 and uθ |z=± h
2
(r,θ) = ±rΩ±,

where Ω± is the angular velocity of the disks situated at z = ± h
2 measured in rad

s . It is clear
that such conditions are contradictory, i.e. discontinuous at the corner points. From the math-
ematical point of view, a solution to a PDE with a finite number of singular points presents no
problem and does not prohibit existence of a solution smooth everywhere except at these spe-
cial points. However, in numerical schemes this problem should be treated with special care.
As we already mentioned, spectral methods do not converge exponentially for a non-regular
solution. This is because series of smooth functions, which is the case of most spectral decom-
positions, cannot converge uniformly to a singular or discontinuous solution. If nothing is done
to prevent it, one should expect to observe the Gibbs phenomenon causing spurious oscillations
propagating into the whole domain and not confined to the neighborhood of the singularity.
For local methods the situation is different: the singularity problem is less severe here since it
may concern only a close neighborhood of the singular point (typically the characteristic length
is on the order of the grid interval). Finite volume methods have additionally the advantage
of a local integral formulation and therefore the discontinuity presents an even less serious
problem for them. However in some cases (e.g. Georgiu et al. [30]), spurious oscillations can
contaminate the solution in the entire domain. In the problem of solutocapillary instabilities
studied by Martin-Witkowski & Walker [57], the authors were required to explicitly filter the
solution to achieve a acceptable convergence. Additionally, local methods are known to have
much higher numerical diffusion or dispersion6.

4.6.1 Overview of singularity treatment techniques

We will present here a very brief overview of approaches addressing the singularity problem
concentrating on applications to spectral methods. We should differentiate between

• techniques having as an aim recovering the convergence of a method without claiming
to capture the mathematically exact solution of the singular problem,

• those which approach the exact solution to the singular problem,

• and those which try to employ a physically justified model which is no longer singular.

Filters

The first class is the singularity filters. The local methods belong to this group because they
filter the effect of the singularity at the smallest available scale preventing in many cases its

6Whether the scheme is dissipative or dispersive depends on its spatial order parity. Even orders are more
diffusive while the odd ones increase dispersion.
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56 CHAPTER 4. SPECTRAL DISCRETIZATION

propagation to the rest of the computational domain. Spectral methods on the other hand
must use an explicit filtering. A filter can be implemented by approximating the Heaviside-like
functions defining the solution at the boundary by a steep but smooth profile. For a cylinder
with rotating bases, the singular boundary conditions are:

uθ |r=1(z) = 0 , uθ |z=± h
2
(r) =

{
rΩ± if r < 1
0 otherwise

, (4.21)

or, equivalently, as

uθ |r=1(z) =

{
0 if − h

2 < z <
h
2

Ω± z = ± h
2

, uθ |z=± h
2
(r) = rΩ±. (4.22)

We can regularize boundary condition (4.21) by replacing it by the following one:

uθ |z=± h
2
(r) = r(1 − rµ)Ω± (4.23)

where µ is an arbitrary but reasonably large even integer (e.g. µ = 10). Another choice is to
regularize the velocity on the lateral boundary by approximating (4.22) by:

uθ |r=1(z) =

(
2z

h

)µ

×
{

Ω+ if z ≥ 0
Ω− if z < 0

(4.24)

The system with boundary conditions (4.23) and (4.24) no longer defines the same problem as
(4.21) or (4.22), but has the advantage of being almost regular. It is not yet perfectly regular
since, even with stationary corner conditions (i.e. without discontinuity of the velocity), it can
still be proved (Moffatt [59]) that higher order derivatives are singular. In fact, the analytic
solution for the vorticity contains the term O(r1.74...) meaning that the second derivative in r

diverges at the corner. The consequence is that even continuous boundary conditions lead to a
singular solution due to the singularity of the geometry. In practice this singularity is qualified
as weak and ussually does not prevent the solution from converging exponentially7.

Still, an important question can be asked: Can one be sure that regularizing the boundary
conditions at an ad hoc selected scale does not affect the properties of global large-scale flow?
The answer to this question, but concerning solid state mechanics, is known as the Saint-Venant

principle [76]. One of many existing formulations is that of Solomon [80]. The principle states
that

"a system of forces statically equivalent to zero, applied to a portion of the boundary, of diame-
ter comparable with the smallest of the body’s dimensions, produces displacements, deforma-
tions and tensions considerable only at distances comparable with this diameter".

Several works are focused on formulating and determining the applicability of a similar
statement concerning fluid dynamics applications. A recent review can be found in Horgan
[37] and seems to justify validity of this idea.

7Convergence can, however, be deteriorated slightly for some resolutions when successive Moffatt rolls appear
but are not yet well-captured by the representable spatial scales (see Nguyen [62]). This "weak" singularity can be
more severe if a numerical method requires the solution to be C≥4.
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4.6. BOUNDARY CONDITION REGULARIZATION 57

Singularity subtraction The main idea of this approach is to decompose the solution into a
regular unknown part and an a priori known analytic form of the singular solution valid in
the neighborhood of the corner. Then, only the regular part must be treated by a numerical
algorithm. The feedback of the local singular solution on the numerical one can be filtered
down to the scales representable by the spatial resolution. The main advantage of this method
is that it recovers the convergence of the scheme and approaches at the same time the math-
ematically exact solution. This method was introduced in [77] for a driven cavity problem.
An application of this approach to injection of fluid into a cylindrical channel was presented
by Botella & Peyret [8]. The results obtained using this kind of method are generally of high
precision and often provide a benchmark for a particular problem. The main drawback of this
approach is that it requires knowledge of the solution near the singular point. For a 2D driven
cavity problem, the nature of the singularity was given by [19] and Moffatt [59] for a Stokes
flow. This task becomes more difficult when considering inertial (Navier-Stokes) flows and, for
many configurations, the solution is unknown. Additionally, for 3D flows, determining an an-
alytical solution becomes extremely difficult (see Hills & Moffatt [35]). Finally the problem of
physical mechanism is still not addressed by this class of methods. There is no reason to expect
these techniques to model the microscopic behavior of a real fluid in the neighborhood of the
corner. The filter-based methods can sometimes be better suited for a particular application,
especially if some experimental data can help to adjust the a priori unknown scale of filtering.

Physically motivated methods Since this subject extends far beyond the interests of this
work, we only briefly mention here some ideas for physically justified treatments of singu-
lar conditions. The natural way of thinking would point to methods from molecular dynamics.
These are well suited for this kind of problem since they reflect the microscopic nature of the
fluid at the smallest scales. However, for several reasons, these methods are very hard to adapt
to problems containing both large and small scales. Application to non steady flows is also
problematic here. Several continuous (macroscopic) approaches have been proposed as a com-
promise between a continuous and a molecular description. These all introduce a spatially lim-
ited physical effect which effectively removes the singularity. We should mention here methods
based on the variable slippage as well as the surface viscosity or dynamic surface tension ap-
plicable to free-surface problems. A comprehensive review of physically justified models, as
well as other regularization techniques, is provided by Nguyen [62].

4.6.2 Boundary velocity regularization

In this work we use singularity filtering by replacing the original Dirichlet boundary conditions
on the top and bottom disks by a function satisfying continuous boundary conditions (see
figure 4.4-left). We justify this choice by the fact that we are not interested in finding the solution
to the singular problem. In experimental setups like VKS, the boundary conditions are not
discontinuous: The forcing is not obtained by rotating the lids, but rather by rotating blades of
diameter smaller than that of the cylinder, placed near the upper and bottom bases. We define
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58 CHAPTER 4. SPECTRAL DISCRETIZATION

a regularized profile for uθ |z=± h
2

as follows:

uθ |z=± h
2
(r) = ±r

(
1 − e

r−1
δ

)

︸ ︷︷ ︸
Ω±(r)

(4.25)

This form is similar to (4.23) but allows control of the steepness of the profile by varying δ. In
practice, we use 0.005 < δ < 0.05. This function differs by more than 10% from that defined
in (2.2b) only on a small range, approximately 1 − 2δ /r < 1 (see fig. 4.6.2). As was shown
by Lopez & Shen [48], for comparing with results obtained using different methods and for
benchmark purposes it is enough to use a small δ ≈ 0.005 if sufficient spectral resolution is
used to represent such a steep profile. Another reason to prefer (4.25) over (4.23) is that, for

Figure 4.4: Regularized profile used for elimination of the discontinuous boundary condi-
tions at the cylinder corners. Left – regularization on upper and bottom disks: uθ |z=± h

2
(r) =

r
(

1 − e
r−1

δ

)
. Right – regularization on lateral cylinder’s mantle: uθ |r=1(z) = Ω+e−(1− 2z

h )/δ +

Ω−e−(1+ 2z
h )/δ, uθ |z=± h

2
(r) = rΩ±

a given order N̂ of the polynomial approximation, (4.25) results in the much steeper profile
than that corresponding to (4.23) with µ = N̂ − 1 (see figure 4.6). Once we have changed Ω± ≡
const. → Ω±(r), the boundary condition (3.51a) for the toroidal potential ψu must be updated
togeather with (4.25). Since the boundary conditions are axisymmetric, we can determine ψu

by solving (3.51a) with ∂θφu = 0:

∂rψu|z=± h
2
(r) = rΩ±(r) ⇒ ψu|z=± h

2
(r) =

1
2

r2 + δ(δ − r)e
r−1

δ + δ2e−
1
δ︸ ︷︷ ︸

≈0

. (4.26)

where the integration constant was fixed in order to satisfy ψu|z=± h
2
(r = 0) = 0. Note that the

last term in (4.26) can be considered negligible8 for typically used values of δ. The inconvenient
aspect of using a non-polynomial profile is that the error of satisfaction of the boundary and
axis conditions by a spectral polynomial approximation of (4.26) can be non-negligible (see
figure 4.6). In order to numerically obtain a spectral representation of ψu|z=± h

2
(r) defined in

8For δ < 0.03 we have δ2e−
1
δ < 10−17 which is below a machine’s double precision round-off error O(10−15).
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 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

δ = 0.05
δ = 0.005

Figure 4.5: Example of regularized profiles for uθ |z=± h
2
(r) = r

(
1 − e

r−1
δ

)
.

(4.26) satisfying at the same time ψu|z=± h
2
(r = 0) = ∂rψu|z=± h

2
(r = 0) = ∂rψu|z=± h

2
(r = 1) = 0

with machine precision, one can use the following procedure:

1) Project (4.25) on a regular radial basis of odd polynomials corresponding to the m = 1
Fourier mode (see (4.11)). This should be performed using Gauss-Radau collocation
points (which include the boundary point).

2) Integrate the approximation obtained by applying −
∫ r

0 dr in the spectral space and rep-
resent the result in the basis of the radial polynomials corresponding to m = 0.

Another possible choice for regularizing the boundary conditions is to apply a filter to the
lateral boundary while keeping the velocity profile on the upper and bottom disk unchanged
(see figure 4.4-right):

uθ |r=1(z) = Ω+e−(1− 2z
h )/δ + Ω−e−(1+ 2z

h )/δ, (4.27a)

uθ |z=± h
2
(r) = rΩ±, (4.27b)

This kind of regularization is similar to that of Lopez & Shen [48]. The corresponding boundary
conditions for ψu|r=1(z) can be obtained by applying −

∫ 1
0 dr to (4.27):

ψu|r=1(z) = −rΩ+e−(1− 2z
h )/δ − rΩ−e−(1+ 2z

h )/δ,

ψu|z=± h
2
(r) = − r2Ω±

2
.

Note on the minimal spatial resolution

Regularization of the boundary condition imposes a lower bound on the spectral resolution
– the spectral approximation must be able to represent the regularization profiles smoothly.
In consequence, trying to approach the solution of a singular problem by setting a very steep
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 0
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Figure 4.6: Main graph: Comparison between regular profiles represented by polynomials of

order O(r9). Solid line: uθ |z=± h
2
(r) = r

(
1 − r8

)
; Dashed line: uθ |z=± h

2
(r) ≈ r

(
1 − e

r−1
δ

)
.

Sub-graphs: Zoom on the sensitive points shows that a polynomial approximation of a non-
polynomial profile does not satisfy required boundary conditions at r = 0 and r = 1.

profile increases considerably the spatial resolution required. Additionally, Lopez & Shen [48]
observed that the actual resolution should be approximately twice the minimal resolution suf-
ficient for representing the regularization profiles. This is because the nonlinear term produces
modes of twice as high frequency as those necessary for describing the boundary condition.te

l-0
01

62
59

4,
 v

er
si

on
 1

 - 
14

 J
ul

 2
00

7



Chapter 5

Spectral solver

5.1 Introduction

This chapter presents the numerical method for solving the Navier-Stokes equation for the in-
compressible fluid in toroidal-poloidal variable formulation. The material exposed throughout
this chapter represents the main contribution of this thesis.
We will start by formulating one- and two- dimensional Poisson/Helmholtz solvers (for ax-
ial and radial directions). We will follow by deriving the methodology for solving the high
order elliptic/parabolic problem resulting from the Stokes equation in potential formulation
using the Poisson solvers. Before presenting the influence matrix method for satisfaction of the
boundary conditions we will discuss an analytic analogue of this technique – the Green func-
tion method. Analysis of the precision and convergence properties of the linear Stokes solver
will be provided. Finally we will describe a method for solving the magnetic problem in the
conductor-vacuum configuration.

5.2 Poisson solver

We will present in this section an algorithm for solving the Poisson equation:

∆ f = g ; B f |∂ = β (5.1)

where B is the boundary condition operator (B ≡ 1 for Dirichlet boundary conditions and B ≡
∂

∂n for Neumann boundary conditions). The method will also be applied to solve Helmholtz
systems:

(∆ + λ) f = g ; B f |∂ = β (5.2)

Helmholtz problems appear in semi-implicit time integration schemes, where an equation of
type (∂t − Re−1∆) f = g is discretized in time as follows

f i+1 − f i

∆t
− Re−1∆ f n+1 = gn

E︷ ︸︸ ︷
(1 − ∆rRe−1

︸ ︷︷ ︸
ǫ

∆) f n+1 = f n + ∆tgn

61
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62 CHAPTER 5. SPECTRAL SOLVER

Here the first-order implicit Euler scheme was used for f and the first-order explicit Euler
scheme for g.

We will present first the methodology called the τ-method for solving a one dimensional
version of (5.1) or (5.2). The extension of this method to two dimensions using the partial

diagonalization technique will be presented in section 5.2.2.

5.2.1 τ method – one dimension

The Poisson equation (5.1) is known to have a unique solution if appropriate (Dirichlet or Neu-
mann1) boundary conditions are specified on each of the domain boundaries.

In a discrete spectral representation, where differential operators are represented by matri-
ces and functions by vectors of spectral coefficients, equations (5.1) and (5.2) can be written in
matrix-vector form:

[L] [ f ] = [g] ; [B] [ f ] = [β] (5.3)

where [L] denotes the differential operator’s matrix corresponding to the Poisson operator (L≡
∂2

x) or to the Helmholtz operator (L ≡ ∂2
x + λ) and [ f ] and [g] are column vectors of spectral

coefficients and [B] is a matrix corresponding to the boundary condition operator B. As an
example, for [ f ] the expansion coefficients of f (x) in the basis of Chebyshev polynomials T we
would have:

f (xi) = ∑
j

Tj(xi) f j ≡ [T]ij [ f ]j ≡ [T] [ f ]

(B f )|xi
= ∑

j

(BTj)|xi
f j ≡ [BT]ij [ f ]j ≡ [B] [ f ]

Poisson problem (λ = 0): In this situation, the operator L ≡ ∂2
x, which has a non-trivial ker-

nel, corresponds to a singular matrix [L] (the last two rows are zero). In order for (5.3) to have
a solution it is necessary that [g] satisfy the compatibility/solvability condition which can be
generally written as:

ker([L]†) ⊥ [g] (5.4)

Here, (5.4) implies that the last two coefficients of [g] must be zero. This expresses the fact
that g, which is defined as a second derivative of f , must be two orders lower in polynomial
degree. Thus system defined by the matrix [L] =

[
∂2

x

]
has a unique solution only if additional

conditions2 on f are specified. These conditions can be imposed by replacing the last two rows
in [L] by the boundary condition matrix [B] and the last two coefficients in [g] by the boundary
values [β]. The system obtained, which we will identify by an additional overbar, can be solved
by a standard Gaussian elimination

[L] [ f ] = [g] ⇔

 Llo

B




 f


 =


 g

β


 (5.5)

1For Neumann boundary conditions, the solution is determined up to a constant
2The number of conditions that can be imposed is equal to the dimension of the nullspace of the differential

operator: for ∂2
x, two conditions can be imposed.
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5.2. POISSON SOLVER 63

The subscript lo denotes the low-frequency part of a quantity. If g does not satisfy (5.4) (i.e. the
last two coefficients are non-zero), then we can still solve the system by modifying [L] and [g]

but at the price of losing the information contained in the two highest-frequency modes. The
consequence is that we commit an error τ defined via

[L] [ f ] = [g] ⇒ [L] [ f ] = [g] + [τ]

where [τ] is a vector containing only the two highest frequencies. This method of solving an
incompatible system is known as the τ-method.

Helmholtz problem (λ 6= 0): A similar situation occurs if operator L≡ ∂2
x + λ is used in (5.5).

However in this case, the resulting matrix [L] has a null kernel and can be inverted without
specifying any additional boundary or solvability conditions. Trying to impose the boundary
conditions would result in an overdetermined system. Applying the τ-method by applying the
modifications to [L] and [g]

[L] → [L] and [g] → [g]

produces the τ error, regardless of the form of [g].

The good property of the τ-method is that the error of the solution vector [ f ] (which should
not be confused with the high-frequency τ-error of satisfaction of the equation) is distributed
among all frequencies.

Schur decomposition

It is possible to solve for the low-frequency part flo of the solution f separately from the high
frequencies. This can be done by performing the Schur decomposition of a matrix for which
the last rows have been replaced by the boundary conditions. System (5.5) can be written in
the following form:




L′
lo L′

hi

Blo Bhi







flo

fhi




=




glo

β




(5.6)

The equations for each of the blocks can be written as follows:

[
L′

lo

]
[ flo] +

[
L′

hi

]
[ fhi] = [glo] (5.7a)

[Blo] [ flo] + [Bhi] [ fhi] = [β] (5.7b)
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64 CHAPTER 5. SPECTRAL SOLVER

These can be rewritten in a form giving the equation for [ flo] and the formula for determining
[ fhi] once [ flo] is known:

([
L′

lo

]
−
[
L′

hi

]
[Bhi]

−1 [Blo]
)

︸ ︷︷ ︸
[L∗]

[ flo] = [glo] −
[
L′

hi

]
[Bhi]

−1 [β]
︸ ︷︷ ︸

[g∗]

⇓

[ flo] = [L∗]−1 [g∗]

[ fhi] = [Bhi]
−1 ([β] − [Blo] [ flo]) (5.8)

The matrix [L∗] is an approximation of the operator of the boundary value Laplace/Poisson
problem, which differs from the discrete approximation of the differential expression corre-
sponding to

[
∂2

x

]
. Without boundary conditions, matrix [L] ↔ ∆ has only null eigenvalues. The

operator [L], while defining a correct Poisson problem (5.5), does not have a spectrum similar to
that of the Laplacian, since for B corresponding to Dirichlet boundary conditions its spectrum
contain positive and complex eigenvalues. In contrast to [L], the [L∗] matrix has a spectrum
which approximates the spectrum of the ∂2

x operator

Sp([L∗]) ≈ Sp(∂2
x) = −k2 ; k = 0, . . . ,∞

with −k2 being the eigenvalue corresponding to the eigenmode of frequency k. This is also
the appropriate operator to use when considering the diagonalization technique for solving a
two-dimensional problem.

Even/odd separation

As we already mentioned in section 4.3 it is possible to separate the even and odd Chebyshev
coefficients and the corresponding matrix elements in order to make the matrix block-diagonal.
This reduces the computational cost associated with performing matrix operations on vectors
of Chebyshev coefficients. After permuting rows and columns of operator

[
D2

z

]
↔ ∂2

z we can
write the one-dimensional Poisson boundary value problem (5.3) as follows:




0 Xe Xe Xe

0 Xe Xe

0 Xe

Be Be Be Be

0 Xo Xo Xo

0 Xo Xo

0 Xo

Bo Bo Bo Bo







f e
lo

f e
lo

f e
lo

f e
hi

f o
lo

f o
lo

f o
lo

f o
hi




=




ge
lo

ge
lo

ge
lo

βe

f o
lo

f o
lo

f o
lo

βo




(5.9)

te
l-0

01
62

59
4,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
7



5.2. POISSON SOLVER 65

where subscripts e, o stand for even and odd coefficients respectively. The even and odd bound-
ary conditions [Be], [Bo] can be defined as follows:

[B]e =
1
2

(
[B]+ + [B]−

)
βe =

1
2

(
[β]+ + [β]−

)

[B]o =
1
2

(
[B]+ − [B]−

)
βo =

1
2

(
[β]+ − [β]−

)

where the + and − subscripts denote rows of B evaluating boundary values at +1 and −1. This
system is equivalent to two completely separate equations:

[L]
e
[ f ]e = [g]

e

[L]
o
[ f ]o = [g]

o

Each of these two systems can be solved by Schur decomposition.

5.2.2 Partial diagonalization method – two/three dimensions

In two dimensions the spectral coefficients representing solutions can be written in a matrix
form f (r,z) ↔ [f]kn where the column direction (indexed by k ∈ [0,K − 1]) corresponds to êz

and the row direction (indexed by n ∈ [0, N − 1]) corresponds to êr. Using this notation we can
write the two-dimensional discrete version of Poisson equation (5.1) as

[ f ]
[
D2

r

]T
+
[
D2

z

]
[ f ] = [ g ] ; [Bz] [ f ] = [ βz ] , [ f ] [Br] = [βr] (5.11)

We consider a full cylinder (and not the cylindrical shell) for which the regularity at the cylinder
axis replaces one of the boundary conditions. In this case, there are two boundary conditions to
satisfy in the êz direction and only one in the radial direction êr: thus [Bz] and [ βz ] are matrices
of size 2 × K and 2 × N while [cr], [βr] are vectors of dimensions N and K).

In cylindrical geometry it is possible to decompose a three-dimensional problem into a set
of decoupled two-dimensional problems, one for each of the Fourier modes, since differential
operators in the azimuthal direction are diagonal in Fourier space (see section 4.2). We can then
write a matrix form of the three dimensional Poisson equation as

[ f ]
([

D2
r

]T − m2 [R−2]T
)

︸ ︷︷ ︸
1
r ∂rr∂r−m2

r2

+
[
D2

z

]
︸ ︷︷ ︸

∂2
z

[ f ] = [ g ] . (5.12)

We introduce the Helmholtz operator Hm
λ defined as follows:

Hm
λ ≡ 1

r

∂

∂r
r

∂

∂r
− m2

r2 + λ ↔ [Hm
λ ] . (5.13)

Then equation (5.12) can be written in the following form

[ f ] [Hm
0 ]T +

[
D2

z

]
[ f ] = [ g ] (5.14)
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66 CHAPTER 5. SPECTRAL SOLVER

Equation (5.14) cannot be solved directly because operators
[
D2

z

]
and [Hm

0 ]T are placed on
different sides of [ f ]. The standard technique for solving such an equation is to diagonalize one
or both matrices, which transforms a two-dimensional problem into a set of one-dimensional
problems or even a set of scalar equations (see Canuto et al. [13]). We prefer a partial diagonal-
ization approach, where only one matrix (we shall choose

[
D2

z

]
) diagonalized and then, a set of

M × (K − 2) one-dimensional problems must be solved in the remaining direction êr. In order
to be able to perform the diagonalization, we must first transform the

[
D2

z

]
operator using the

previously discussed Schur decomposition. The operator
[
D∗2

z

]
(of size (K − 2)× (K − 2)) con-

structed in this way has the boundary conditions incorporated and its spectrum approximates
that of the continuous problem (5.1) with boundary conditions.

Let us denote [W] the diagonalization matrix (i.e. the matrix whose columns are the eigen-
vectors) and [Λ] the diagonal matrix of the eigenvalues λ = {λ0,λ1, . . . ,λK−3} of the

[
D∗2

z

]

operator: [
D∗2

z

]
= [W]−1 [Λ] [W]

Then (5.14) can be transformed as follows

[ f ] [Hm
0 ]T + [W]−1 [Λ] [W] [ f ] = [ g∗ ]

[W] [ f ] [Hm
0 ]T + [Λ] [W] [ f ] = [W] [ g∗ ]

[̃ f ] [Hm
0 ]T + [Λ] [̃ f ] = [̃ g∗ ]

[̃ f ]k

(
[Hm

0 ]T + λk [1]
)

= [̃ g∗ ]k, k = 0, . . . ,K − 3

[̃ f ] [Hm
λ ]T = [̃ g∗ ] (5.15)

where [̃ f ] = [W] [ f ] and [̃ g∗ ] = [W] [ g∗ ]. Linear system (5.15) must be solved for each Fourier
mode m and for each eigenvalue λ (in total M × (K − 2) one-dimensional equations).
For a given m, the expression in (5.15) is a shorthand for the following sequence of (K − 2)

one-dimensional equations, each of size N:

[̃ f ]0
[
Hm

λ0

]T
= [̃ g∗ ]0

[̃ f ]1
[
Hm

λ1

]T
= [̃ g∗ ]1

...

[̃ f ]K−3

[
Hm

λK−3

]T
= [̃ g∗ ]K−3

Note that diagonalization of
[
D2

z

]
need be performed only once for the entire simulation, in a

preprocessing step, separately for even
[
D∗2

z

]e and odd
[
D∗2

z

]o blocks of the second derivative

matrix (5.9). Once [̃ f ] is found, the final solution vector [ f ] can be found by applying [W]−1:

[ f ] = [W]−1 [̃ f ] (5.16)
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5.2. POISSON SOLVER 67

5.2.3 Solving the Helmholtz equation – τ-method in radial direction

If one decides to impose the boundary conditions through the τ-method and perform diago-
nalization in the axial direction, then the general method described using the example of the
Chebyshev polynomials should be optimized for treating the radial direction in order to take
advantage of the partial (and not full) diagonalization. Generally, the direction requiring lower
spatial resolution, is treated by diagonalizing the corresponding operator. This is because this
leads to an algorithm where at each step of the time iteration loop multiplying by the diago-
nalization matrix is necessary. In our problem, the spatial resolution typically used in the axial
direction is not smaller than in the radial direction. However, since the even and odd blocks of
the axial Laplacian ∂2

z (see (5.9)) can be diagonalized independently, the cost of multiplying of a
single Fourier mode by the diagonalization matrix, which is block-diagonal, can be reduced to

2
(

N −
⌊

m
2

⌋)(
K
2 − 1

)2
operation. Diagonalization performed in the radial direction would re-

quire K(
(

N −
⌊

m
2

⌋)
− 1)2 operations. Therefore, for configurations with K < 2

(
N −

⌊
m
2

⌋)
, diag-

onalization in the axial direction is justified3. For a problem discretized with spectral resolution
M×K× N the algorithm has a computational cost of O(M×K2 × N) operations. We must then
solve M × (K − 2) one-dimensional Poisson problems, each of size N −

⌊
m
2

⌋
, where M, K, N

are the azimuthal, axial and radial directions respectively. If a recursion relation of size d ≪ N

exist4 for this Poisson problem, its solution requires only O(d × N) operations (see section
4.4.4). Solution of the Poisson problem in three dimensions, thus requires O(M × K × N × d)

operations, which is less than the cost of multiplying the system by the diagonalization matrix.

Band-diagonal matrix formulation

Let us consider the following Helmholtz problem:

Hλ f = g (5.17)

with the Helmholtz operator H defined in (5.13). This differential equation, which appears
in the two-dimensional formulation of the Poisson solver based on the partial diagonalization
method, can be written using operators r2 and r∂r, for which there exist simple recursive for-
mulas (see appendix A)

1
r

∂

∂r
r

∂

∂r
− m2

r2 + λ =
1
r2

(
(r∂r)

2 − m2 + λr2)

⇓
r2Hλ f = r2g ⇔ Lλ f = Rr2g

3For high angular resolution, where M / N, the diagonalization in the radial direction can be optimal.
4In fact, recursive formulas corresponding to the banded-matrix formulation of an ODE problem in one dimen-

sion can be derived for a large class of spectral approximations, among them Chebyshev or Legendre polynomials.
For detailed description of a methodology for defining the banded-matrix formulation for differential operator see
Tuckerman [87].
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68 CHAPTER 5. SPECTRAL SOLVER

where Lλ and R are the left and right operators defining r2Hλ in the sense of equation (4.17).
In matrix notation, the Helmholtz problem in the radial direction can be stated as follows

[ L ]
[

f ′
]
= [ R ]

[
r2 ]

︸ ︷︷ ︸
[ Q ]

[ g ] (5.18)

where prime superscript in f ′ means that no boundary conditions have yet been imposed on
the system. The correct way of imposing the boundary conditions ⌋ f |∂ = β on (5.18) is the
following:

[ Q ]−1 [ L ] [ f ] = [ g ] + τ1 [ δi,N−1 ]

[ B ] · [ f ] = β
⇔ [ Q ]−1 [ L ] [ f ] = [ g ] (5.19)

where the horizontal bar means that the boundary conditions have been incorporated into the
matrices and corresponding right-hand-sides according to definition (5.5). The above formula-
tion is not equivalent to the following one

[ L ] [ f ] = [ Q ] [ g ] + τ1 [ δi,N−1 ]

[ B ] · [ f ] = β
⇔ [ L ] [ f ] = [ Q ] [ g ] (5.20)

which is easier to implement but, according to Matsushima & Marcus [58], leads to large er-
rors near the boundary and therefore should not be used. The matrix [ Q ] is penta-diagonal
but its inverse [ Q ]−1 is a dense matrix. In order to take an advantage of the banded-matrix

formulation it is necessary to express the solution [ f ] = [ Q−1L ]
−1

[ g ] in terms of a corrected
solution to the system [ L ] [ f ] = [Q] [ g ]. The linear system defined by the matrix [ L ] can be
solved efficiently using the LU-decomposition since, for a banded matrix, the LU-factors are
also band-diagonal.
The derivation of this algorithm is the following:

[ Q ]−1 [ L ] [ f ] = [ g ]

[ Q ] [ Q ]−1 [ L ] [ f ] = [ Q ] [ g ]

 Q




 Q−1L

B




 f


 =


 Q




 g

β





 Q






 Q−1L


+


 0

B − x






 f


 =


 Q




 g

β


 ; [ x ]i ≡

[
Q−1L

]
N−1,i

([ L ] + [ Q ]i,N−1 ⊗ [B − x])
︸ ︷︷ ︸

[ L′ ]

[ f ] = [ Q ] [ g ] (5.21a)

where we assumed that m = 0 to simplify the notation:
(

N −
⌊

m
2

⌋)
− 1 → N − 1. For m 6= 0

expression
(

N −
⌊

m
2

⌋)
− 1 should be substituted in place of N − 1.
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5.2. POISSON SOLVER 69

Sherman-Morison-Woodbury formula It is possible to express [ L′ ]−1 using [ L ]−1. The
Sherman-Morrison-Woodbury (SMW) theorem (see Golub & van Loan [32] for a proof) states
that if a matrix A is altered by a perturbation a such that A → A + a ≡ A′, and if the perturba-
tion is of the form a ≡ v ⊗ w ≡ vwT then its inverse can be written as:

A′−1
= A−1 − (A−1v)(1 + wTA−1v)−1(wTA−1)

Applying this formula to (5.21a) gives

[ f ] =

(
[ L ]−1 − [ L ]−1 [ Q ]i,N−1 ⊗ [B − x] [ L ]−1

1 − [B − x] [ L ]−1 [ Q ]i,N−1

)
[ Q ] [ g ] (5.22)

It can be shown by performing straightforward simplification of (5.22) that the solution vector
[ f ] can be written as

[ f ] =
[

f ′
]
+ τ [ G ] ; τ ≡ β − [ B ] · [ f ′ ]

[ B ] · [ G ]
(5.23)

with [ f ′ ] ≡ [ L ]−1 [ Q ] [ g ] and [ G ] ≡ [ L ]−1 [ Q ]i,N−1. The formula stated in (5.23) requires
O(N) operations assuming that all matrix operations are preformed taking into account the
band-diagonal structure of [ L ] and [ Q ].

Stable algorithm

The formulation (5.23) is, however, numerically instable for large N since the dominant ele-
ment of each row of matrix [ L ] is situated on the first super-diagonal. In order to derive a
stable algorithm it is necessary to perform a cyclic permutation [ P ] of rows of [ L ] such that
[ P ] [ L ] ≡

[
LP
]
:

[
LP
]

i+1,j
= [ L ]i,j ; i = 0, . . . , N − 2

[
LP
]

0,j
= [ L ]N−1,j

Since the first row of the matrix
[

LP
]

breaks its penta-diagonal structure then it is necessary to

apply once again the SMW technique in order to compute
[

LP
]−1 efficiently. Let [ LP ] be the

matrix defined as follows:

 LP


 −→




a

LP


 ≡ [LP]

where a is an arbitrary value whose order of magnitude is that of the diagonal values of [LP].
The matrix [LP] defined in this way is penta-diagonal (2 sub- and 2 super- diagonals) and
diagonally dominant, ensuring stable inversion. Inserting the SMW formula expressing [ L ]

in terms of [LP] in (5.22) leads to the formulation of Matsushima & Marcus [58], for which the
solution [ f ] can be written as

[ f ] =
[

f ′′
]
+ τ1 [ G1 ] + τ2 [ G2 ] (5.24)
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70 CHAPTER 5. SPECTRAL SOLVER

where [ f ′′ ] ≡
(
[LP]

)−1 [
yP
]

and
[
yP
]
≡ [ P ] [ Q ] [ g ]. Vectors [ G1 ] and [ G2 ] are defined as

[ G1 ] ≡
(
[LP]

)−1
[ P ] [ Q ]i,N−1 ; [ G2 ] ≡

(
[LP]

)−1

i,0
(5.25)

Coefficients τ1, τ2 are given by the following formulas:

τ1 ≡
(
(yP

0 − [ F ] ·
[

f ′′
]
)([ B ] · [ G2 ]) − ([ F ] · [ G2 ])(β − [ B ] ·

[
f ′′
]
)
)

/ξ

τ2 ≡ −
(
(yP

0 − [ F ] ·
[

f ′′
]
)([ B ] · [ G1 ]) − ([ F ] · [ G1 ] − QN−1,N−1)(β − [ B ] ·

[
f ′′
]
)
)

/ξ

with

ξ ≡ ([ F ] · [ G1 ] − QN−1,N−1)([ B ] · [ G2 ]) − ([ F ] · [ G2 ])([ B ] · [ G1 ])

and [ F ] denotes the last row of [ L ].

5.3 High order PDE solver

The two-dimensional Poisson solver described in the preceding section is an essential tool for
solving the Navier-Stokes problem. We will use it for numerically solving the potential equa-
tions (3.49) with the boundary conditions (3.50), (3.51) where we have replaced (3.51a) by its
regularized form (4.26). To simplify the notation we will drop the u subscript denoting quanti-
ties related to the velocity:

ψ ≡ ψu, φ ≡ φu, s ≡ su, etc.

This notation will hold unless it is redefined explicitly. We then have:

(∂t − Re−1∆)∆hψ = êz · ∇ × s︸ ︷︷ ︸
sψ

(5.27a)

(∂t − Re−1∆)∆∆hφ = −êz · ∇ ×∇× s︸ ︷︷ ︸
sφ

(5.27b)

together with

r−1∂θψ + ∂z∂rφ = 0

∂rψ = 0

−∆hφ = 0

φ = 0

∂2
rz∆hψ − 1

r
∂θ∆∆hφ = 0





at r = 1

(5.28a)

(5.28b)

(5.28c)

(5.28d)

(5.28e)

ψ =
∫ r

0
rΩ±(r)dr

∂zφ = 0

−∆hφ = 0





at z = ± h
2

(5.29a)

(5.29b)

(5.29c)
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5.3. HIGH ORDER PDE SOLVER 71

In (5.29), Ω±(r) = 1 − e
r−1

δ and therefore from (4.26) we have
∫ r

0
rΩ±(r)dr ∼= 1

2
r2 + δ(δ − r)e

r−1
δ .

The appropriate way to solve such multi-Laplacian differential equations is to construct a
multi-step scheme involving solutions to the ordinary Poisson problem. A classical illustra-
tion of this idea is the two-dimensional Navier-Stokes problem in streamfunction formulation.

5.3.1 2D Navier-Stokes in streamfunction formulation

We will take a look at this example because it is in many points similar to our problem. We con-
sider a 2D incompressible flow u(x,y) ≡ (u(x,y),v(x,y)) in Cartesian coordinates represented
by its streamfunction Ψ satisfying

u = ∇× Ψêz ⇔
{

u = −∂yΨ

v = ∂xΨ
(5.30)

and related to the vorticity ω through the following relation

∆Ψ = −ω with ω = êz · ∇ × u. (5.31)

The flow defined by (5.30) is divergence-free by construction. The first step for deriving the
equation for Ψ is to take êz · ∇× of the Navier-Stokes equations obtaining

(∂t − ν∆)ω = −(u · ∇)ω with u|∂ = 0, (5.32)

where we specified no-slip boundary conditions. After replacing u and ω by their expressions
(5.30) and (5.31) we obtain the pure streamfunction formulation:

(∂t − ν∆)∆Ψ = {Ψ,∆Ψ} with

{
Ψ|∂ = 0
∂Ψ
∂n̂

∣∣∣
∂
= 0

. (5.33)

where { f , g} = ∂ f
∂x

∂g
∂y −

∂ f
∂y

∂g
∂x is the Poisson bracket. In order to solve (5.32) or (5.33) we need first

to introduce a time integration scheme. Let us consider an implicit method for the diffusive,
linear term and explicit for the advective, nonlinear term.

ωn+1 − ωn

∆t
= ν∆ωn+1 − (un · ∇)ωn

which leads to the following (u,ω) formulation

(1 − ǫ∆)︸ ︷︷ ︸
E

ωn+1 = ωn − ∆t(un · ∇)ωn

︸ ︷︷ ︸
sn

with un+1|∂ = 0, (5.34)

or the equivalent Ψ formulation:

(1 − ǫ∆)︸ ︷︷ ︸
E

∆Ψn+1 = ∆Ψn + ∆t{Ψn,∆Ψn}︸ ︷︷ ︸
−sn

with

{
Ψn+1|∂ = 0
∂Ψn+1

∂n̂

∣∣∣
∂
= 0.

(5.35)
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72 CHAPTER 5. SPECTRAL SOLVER

where ǫ ≡ ν∆t. The difficult point about both (5.34) and (5.35) is satisfaction of the boundary
conditions. In (5.34) the problem is that all constraints are imposed on the velocity field and
none are defined for the vorticity. This is because there is no physical boundary conditions
that ω should respect. This kind of indirect boundary condition cannot be implemented di-
rectly by the τ-method. One could think that the situation is much simpler for (5.35), since
all boundary conditions (5.33) are defined for the same variable Ψ and moreover, they are of
standard Dirichlet and Neumann type. Unfortunately, the matrix corresponding to the fourth
order operator E∆ with the last four rows replaced by the boundary conditions stated in (5.33)
has several spurious5 eigenvalues which do not correspond to physical growth rates of any of
the solutions to (5.33).

The remedy to this problem is the influence matrix method which we will discuss in detail
in section 5.4. In this approach we solve the following successive Poisson problems

E f = sn f |∂ = b (5.36a)

∆Ψn+1 = f Ψn+1
∣∣∣
∂
= 0 (5.36b)

which no longer correspond to (5.35), since we arbitrarily set Dirichlet boundary conditions
for f . However, this system can be solved directly by using the τ-method, without generating
spurious modes. The key idea of the influence matrix method is the following statement:

There exist b = b(sn) such that the solutions Ψ
n+1 to (5.36) and to (5.35) are the same.

The influence matrix technique gives the recipe for finding the correct b.

5.3.2 Multi-Poisson solver

Since the Navier-Stokes equations in the poloidal-toroidal variables are, in many respects, sim-
ilar to the streamfunction formulation discussed above, we will apply the same logic while de-
veloping the multi-step resolution methodology for (5.27). Because they are treated differently,
we prefer to present separately the equations for the axisymmetric Fourier mode m = 0 and for
situations with m 6= 0. Since the problems for different Fourier modes are decoupled, we shall
simplify the notation by using f̂ ≡ f̂ m to refer to the Fourier component under consideration.

5Here it is important that the operator E∆ ↔ (1 − ∆tν∆)∆ involves a discrete time evolution over the time
interval ∆t. The important difference between E and ∆ is that E does not need any boundary conditions in order
to be invertible which is not the case for ∆. Therefore substituting some rows of operator E involving the time
evolution is much more delicate since it alters not only spatial modes but also the associated growth rates. The
spurious modes can grow while iterating such a system, making the solver unstable. The operator E is known to
support imposing of only one boundary condition.
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5.3. HIGH ORDER PDE SOLVER 73

Axisymmetric mode (m = 0)

The axisymmetric parts of equations (5.27) in multi-step formulation, after applying the Fourier
transformation, can be stated for ψ̂ as follows:

E f̂ψ = r̂hsψ ;





f̂ψ

∣∣∣
z=± h

2

= σ̂fψ
(r) ⇔ ψ̂

∣∣
z=± h

2
=
∫ r

0 rΩ̂±(r)dr
∫ 1

0 f̂ψ rdr = 0 ⇔ ∂rψ̂|r=1 = 0
(5.37a)

∆hψ̂ = f̂ψ ; ψ̂
∣∣
r=0 = 0 (5.37b)

and for φ̂:

Eĝφ = r̂hsφ ; ĝφ

∣∣
∂

= σ̂gφ ⇔
{

∂2
rzφ̂
∣∣
r=1 = 0

∂zφ̂
∣∣
z=± h

2
= 0 (5.38a)

∆ f̂φ = ĝφ ; f̂φ

∣∣∣
∂

= 0 ⇔ ∆hφ̂
∣∣
∂
= 0

∆hφ̂ = f̂φ ; φ̂
∣∣
r=1 = 0 (5.38b)

where ∆ ≡ ( 1
r ∂rr∂r + ∂2

z), ∆h ≡ ( 1
r ∂rr∂r), E ≡ (1 − ǫ∆) and ǫ ≡ Re−1∆t. Once the operator

(∂t − Re−1∆) is replaced with E ≡ (1 − ǫ∆) the meaning of the corresponding right-hand-sides
ŝψ, ŝφ also change: they now denote the êz component of curl and double curl of the nonlinear
term according to (3.49c) but they also contain the terms coming from the implicit time dis-
cretization evaluated at the preceding time step. For the first-order implicit Euler scheme the
new {ŝψ, ŝφ} 7→ {r̂hsψ, r̂hsφ} is defined by the following expression

E{∆hψ̂,∆∆hφ̂}t+∆t = ∆t{ŝψ, ŝφ}t+∆t + {∆hψ̂,∆∆hψ̂}t

︸ ︷︷ ︸
{r̂hsψ,r̂hsφ}

(5.39)

While presenting the boundary conditions we used the "⇔" symbol to indicate the corre-
sponding, but not always equivalent, original boundary conditions given in (5.28) and (5.29).
The Dirichlet boundary conditions defined by the boundary values σ̂fψ

(5.37a) and σ̂gφ (5.38a)
remain unknown at this stage. They will be determined later using the influence matrix tech-
nique in such a way as to satisfy the actual boundary conditions stated on the right of the "⇔"
symbol. The reason why the conditions ψ̂

∣∣
z=± h

2
=
∫ r

0 rΩ̂±(r)dr and ∂zφ̂
∣∣
z=± h

2
= 0 cannot be

imposed directly on ψ̂ in (5.37b) and on φ̂ in (5.38b) is that the operator ∆h ≡ 1
r ∂rr∂r does not

contain ∂2
z and so no vertical condition (z = ± h

2 ) can be added to the corresponding equations.
One can notice that the compatibility condition (5.28e) is not present in (5.37) and (5.38). The

reason for this is that the axisymmetric fields in potential variables do not require any ad-
ditional boundary conditions in order to be compatible with the original primitive-variable
formulation (see section 3.4.1 for the proof).

Neumann boundary conditions for axisymmetric modes The identity
∫ 1

0 f̂ψ rdr = 0 ⇔ ∂rψ̂|r=1 =

0 in (5.37a) is not trivial and needs to be explained. Similarly, the origin of the new condition
ψ̂|r=0 = 0 in (5.37b) is not clear. The property that the Neumann boundary condition ∂rψ̂|r=1 = 0
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74 CHAPTER 5. SPECTRAL SOLVER

imposed on the axisymmetric mode ψ̂ must be translated into an integral condition on f̂ψ is
characteristic of the Poisson equation in polar coordinates. To illustrate this, we consider the
following equation in two dimensions:

∆ f ≡
(

1
r

∂rr∂r −
1
r2 ∂2

θ

)
f = g (5.40)

The scalar functions f , g can be decomposed simultaneously into Fourier ( f (r,θ)
F→ f̂ m(r)) and

polynomial ( f̂ m(r) → f̂ m
n ) bases respecting the regularity rules explained in section 4.4.1:

f (r,θ) =
∞

∑
m=−∞

∞

∑
n=m

n+m even

f̂ m
n rnêimθ

g(r,θ) =
∞

∑
m=−∞

∞

∑
n=m

n+m even

ĝm
n rnêimθ

Substituting the above expansion into (5.40) gives

∞

∑
m=−∞

∞

∑
n=m

n+m even

(n2 − m2) f̂ m
n rn−2êimθ =

∞

∑
m=−∞

∞

∑
n=m

n+m even

ĝm
n rnêimθ (5.41)

resulting for a given m in the following system of relations between coefficients f̂n+2 ≡ f̂ m
n+2

and ĝn ≡ ĝm
n :

0(2m + 0) f̂m = 0 (5.42a)

2(2m + 2) f̂m+2 = ĝm (5.42b)

4(2m + 4) f̂m+4 = ĝm+2 (5.42c)

6(2m + 6) f̂m+6 = ĝm+4 (5.42d)

...

(n2 − m2) f̂n = ĝn−2 (5.42e)

...

One can see that the coefficient f̂m cannot be determined from (5.42a) and another condition
must be added. This is of course not surprising – the Laplacian requires one condition per
boundary in order to be invertible. Let us consider imposing the Dirichlet boundary condition
f̂ (r = 1) = σ̂:

f̂m + f̂m+2 + f̂m+4 + f̂m+6 + . . . = σ̂ (5.43)

It is clear that the above condition determines f̂m. Now, we look at the Neumann boundary
condition ∂r f̂ (r = 1) = σ̂

m f̂m + (m + 2) f̂m+2 + (m + 4) f̂m+4 + (m + 6) f̂m+6 + . . . = σ̂ (5.44)

te
l-0

01
62

59
4,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
7



5.3. HIGH ORDER PDE SOLVER 75

This determines f̂m only if m > 0. Moreover, for m = 0, (5.44) is inconsistent with (5.42). Sub-
stituting (5.42) into (5.44) with m = 0 we obtain the solvability condition that ĝn must satisfy in
order to define a well-posed problem:

ĝ0
0

2
+

ĝ0
2

4
+

ĝ0
4

6
+

ĝ0
6

8
+ . . . = σ̂0 (5.45)

which can also be written as: ∫ 1

0
ĝ0(r)r dr = σ̂0 (5.46)

This condition is a particular case of a solvability/compatibility condition for a general domain:
∫

g dv =
∫

∆ f dv =
∫
∇ f · n̂ ds (5.47)

which written for the unit disk r ≤ 1 gives
∫ 1

0
r dr

∫ 2π

0
dθ g =

∫ 2π

0
dθ ∂r f (5.48)

For non-axisymmetric Fourier modes, the integrals on either side of (5.48) vanish.
Therefore, the conclusion is that for the axisymmetric modes, the right-hand-side of the

Poisson equation with Neumann boundary conditions must satisfy the solvability condition.
In other words, the condition imposed on a normal derivative of f̂ must be turned into an in-
tegral condition on ĝ. The remaining degree of liberty f̂ 0

0 can be fixed by imposing an arbitrary
Dirichlet condition on f̂ 0(r = r0).

We can apply this consideration to the Neumann boundary condition ∂rψ̂0|r=1 = 0 defined
in (5.37a). This condition must be replaced by the compatibility condition

∫ 1
0 f̂ 0

ψ rdr = 0 corre-
sponding to (5.46). We fix the remaining degree of freedom by requiring ψ̂0|r=0 = 0 in (5.37b).

Non-axisymmetric modes

The multi-step resolution scheme for non-axisymmetric modes ψ̂ can be written as follows:

E f̂ψ = r̂hsψ ; f̂ψ

∣∣∣
∂

= σ̂fψ
⇔
{ (

ψ̂
)∣∣

z=± h
2

= 0
(
− im

r ψ̂ + ∂z∂rφ̂
)∣∣

r=1 = 0
(5.49a)

∆hψ̂ = f̂ψ ; ∂rψ̂
∣∣
r=1 = 0 (5.49b)

and for φ̂:

Eĝφ = r̂hsφ ; ĝφ

∣∣
∂

= σ̂gφ ⇔
{ (

∂zφ̂
)∣∣

z=± h
2

= 0
(
∂2

rz∆hψ̂ − im
r ∆∆hφ̂

)∣∣
r=1 = 0

(5.50a)

∆ f̂φ = ĝφ ; f̂φ

∣∣∣
∂

= 0 ⇔ ∆hφ̂
∣∣
∂
= 0 (5.50b)

∆hφ̂ = f̂φ ; φ̂
∣∣
r=1 = 0 (5.50c)

where ∆ ≡ ( 1
r ∂rr∂r − m2

r + ∂2
z), ∆h ≡ ( 1

r ∂rr∂r − m2

r ) and E ≡ (1 − ǫ∆). The boundary conditions
written on the right of braces are the actual ones and are supposed to be satisfied using the
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76 CHAPTER 5. SPECTRAL SOLVER

influence matrix method which will give us σ̂fψ
and σ̂gφ . Here it should be mentioned that

since, for non-axisymmetric modes the conditions (5.28a) and (5.28e) cannot be decoupled,
they cannot be imposed separately on ψ̂ and φ̂. The reason for which we assigned arbitrarily
these coupled conditions to (5.49a) and (5.50a) is to show that the number of the equations and
of the boundary conditions matches.

5.4 Influence matrix

This is a powerful tool which can be used to satisfy very complicated boundary conditions,
even those coupling several functions. This technique is a discrete analogue of the Green func-
tions method used in analytic calculations (especially in electromagnetic problems). While the
general concept is classic, in practice the influence matrix method is not very well known and
by consequence is relatively rarely implemented in numerical algorithms. To understand the
reason why this method is considered unusual, it is necessary to go into the details of practical
implementation. This can give an idea about the level of difficulty, robustness and computa-
tional cost of this approach. Before exposing the whole methodology, we prefer to present the
general idea on a classic example from electrostatic theory. We believe that the influence ma-
trix method can be better or more intuitively understood by showing the analogy between this
technique and the Green functions method applied to a simple physical problem.

5.4.1 Green function method

We will base our presentation on the formulation of Jackson [39]. Let us consider a finite vol-
ume V bounded by the surface S. Let ρ be the electric charge density inside the volume V. The
electric scalar potential Φ can be determined for this system from the Poisson equation

∆Φ = − ρ

ǫ0
(5.51)

where ǫ0 is the electrical permeability of vacuum. This equation must be completed by Dirich-
let or Neumann boundary conditions in order to define a well-posed problem with a unique
solution. The electric potential corresponding to a single isolated (in a vacuum) point charge q

situated at position x′ has the following form

Φ(x) =
1

4πǫ0

q

|x − x′| (5.52)

and it can be verified that

∆Φ =
q

4πǫ0
∆

(
1

|x − x′|

)
= −δ(x − x′)

ǫ0
q (5.53)

where δ represents the Dirac distribution.

Principle of field superposition In order to obtain a solution for a continuous distribution
ρ(x) of charges surrounded by a vacuum, we use the principle of additivity of the electric
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5.4. INFLUENCE MATRIX 77

potential (which follows directly from additivity of charge and from the linear dependence
between the charge density and the electric potential):

Φ(x) =
1

4πǫ0

∫
ρ(x′)
|x − x′|d

3x′. (5.54)

The potential Φ(x) defined in (5.54) represents, however, only a particular solution which can-
not satisfy arbitrarily imposed boundary conditions. This is because we have chosen to con-
struct the solution for a continuous distribution of charges from a particular solution (5.52)
corresponding to a point-source potential. In general there exists a class of functions G(x;x′)
called Green functions satisfying

∆G(x,x′) = −4πδ(x − x′) (5.55)

where
G(x;x′) =

1
|x − x′| + Gh(x,x′) (5.56)

with homogeneous part Gh satisfying the Laplace equation

∆Gh(x;x′) = 0. (5.57)

General solution The general solution for Φ can be constructed from G by using Green’s sec-

ond identity: ∫

V
(φ∆ψ − ψ∆φ)d3x =

∮

S

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
da (5.58)

from which, by substituting ψ → G(x,x′) and φ → Φ(x,x′), we obtain

Φ(x) =
1

4πǫ0

∫

V
ρ(x′)G(x;x′)d3x′ +

1
4π

∮

S

(
G(x;x′)

∂Φ

∂n′ − Φ(x′)
∂G(x;x′)

∂n′

)
da′ (5.59)

Since the boundary values Φ(x′) and normal derivatives ∂Φ
∂n are present in (5.59), we can ensure

the satisfaction of either Dirichlet or Neumann boundary conditions by choosing Gh in such a
way as to make the surface integral depend only on a single type of boundary condition. We
will satisfy Dirichlet boundary conditions by choosing

GD(x;x′) = 0 for x′ on S (5.60)

which implies the following form of solution:

Φ(x) =
1

4πǫ0

∫

V
ρ(x′)GD(x;x′)d3x′ − 1

4π

∮

S
Φ(x′)

∂GD(x;x′)
∂n′ da′ (5.61)

and for Neumann boundary conditions we will require

∂GN(x;x′)
∂n′ = −4π

S
for x′ on S (5.62)

which follows from the Stokes theorem for which we have
∮

S

∂G

∂n′ da′ = 4π (5.63)
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78 CHAPTER 5. SPECTRAL SOLVER

Thus, for Neumann boundary conditions the general solution takes the following form

Φ(x) = 〈Φ〉S +
1

4πǫ0

∫

V
ρ(x′)GN(x;x′)d3x +

1
4π

∮

S
GN(x;x′)

∂Φ

∂n′ da′ (5.64)

where 〈Φ〉S is the average value of the potential over the whole surface.

Conclusions

This short classic demonstration shows a very important property of a solution written in terms
of Green functions. The Green functions G(x;x′) do not formally depend on a particular distri-
bution of charges on the surface S and satisfy simple boundary conditions. This means that for
a given type of problem, regardless of the particular realization of the system, the solution can
be written in terms of functions depending only on the geometry. This has an essential con-
sequence for the influence matrix method – the Green functions for a given geometry can be
found once and for all, and there is no need to determine them at each time step of a temporal
integration (assuming that the properties of the boundary do not depend on time).

One can ask: What arguments allow us to think that the reasoning shown for the simple
problem stated in (5.51) apply to the high order differential equations (5.27)? Not only are
the equations different, but they are also time-dependent and the boundary conditions (5.28)
and (5.29) are far more complex and cannot be qualified as being of Dirichlet or Neumann
type. Although this is true, we should remember that the reason for which the Green function
method works for Dirichlet and Neumann boundary condition is that the Poisson problem with
this kind of boundary condition is well-posed. The principle of field superposition, on the other
hand, is more general and follows form the linearity of equations. In our problem equations
(5.27) follows from equation (2.7a) for the velocity u for which all boundary conditions are of
Dirichlet type and, therefore, corespond to the well-posed problem.

Additionally, when considering a single iteration of a semi-implicit time integration scheme,
equation (2.7a) can be written as

(1 − ǫ∆)︸ ︷︷ ︸
E

un+1 = un + s −∇
(

p +
B2

2

)

︸ ︷︷ ︸
RHSn(u,B)

(5.65)

where the analogy with (5.51) can be written as E ↔ ∆ and un+1 ↔ Φ and RHSn(u,B) ↔− ρ
ǫ0

.
Another difference is that operator E does not have the same formal properties as ∆, mainly
because it has a trivial kernel while ∆ does not. This would mean that E does not permit speci-
fying the boundary conditions. This is, however, an artifact of discretization of the continuous
problem. We know that operator (∂t − Re−1∆) requires both initial and boundary conditions,
and for this reason we treat E in the same manner as ∆. Of course these are only qualitative
arguments and in general the nonlinear Navier-Stokes equations cannot be compared to the
Poisson problem6. We will however make a common assumption that we can treat a single

6Especially since the Navier-Stokes equation in three dimensions has not yet been proved to define a well-posed
problem.

te
l-0

01
62

59
4,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
7



5.4. INFLUENCE MATRIX 79

time step as a quasi-static situation with the right-hand-side RHSn(u,B) independent of un+1.
This allows us to treat equation (5.65) for u as well as equations (5.27) for (ψ,φ) as linear.

5.4.2 Discrete Green functions method – influence matrix

Before starting to translate the methodology presented for the electrostatic example into a dis-
crete matrix formulation let us try to estimate the potential computational/storage cost of such
an algorithm in a practical numerical implementation. We consider a discretized volume with
collocation points situated at positions xi. We want to determine the solution [Φ]i satisfying
Dirichlet boundary conditions. The Green functions G(xi;xj) can be represented by a matrix
[G]ij with i, j ∈ 0 . . . N3 − 1, where N3 is the total number of points in a three-dimensional com-
putational domain and N represents the typical resolution along a single direction. The Green
functions satisfy

N3−1

∑
i

[∆]ki[G]ij = [δ]kj (5.66)

The notation [∆] represents the matrix7 corresponding to the Laplace operator ∆. The solution
vector [Φ]i can then be constructed using the analogy to formula (5.61):

[Φ]i =
N3−1

∑
k

[G]ik[ρ]k +
O(N2)

∑
l

[∂nG]il [Φ|∂]l

where O(N2) indicates the order of magnitude of the total number of boundary points, which
can differ depending on a particular geometry. Note that in three dimensions with N = O(100),
the total number of points can be of order of millions, making it impossible to compute and
store [G] which would then be a matrix of dimension of order O(106). This is the reason why
in numerical algorithms the Green functions can be used only for satisfying the boundary con-
ditions and not to calculate the whole solution. In order to compute the second sum in the
above expression, only O(N2) Green functions are needed. This number corresponding to a
two-dimensional domain is much smaller, but can still be on the order of several thousands.
This may still seem too much to solve a three-dimensional problem thousands of times. How-
ever, if the geometry considered has at least one periodic dimension, then the Fourier transform
can be used, and since this problem is linear, it can be solved separately for each of N Fourier
modes. This means that instead of solving O(N2) three-dimensional problems one needs to
solve O(N2) two-dimensional problems:

∀m
O(N2)

∑
i

[∆m]ki[Ĝ
m]il = [δ]kl ; i = 0 . . .O(N2), k, l = 0 . . .O(N) (5.67)

where Ĝm are the Green functions used for satisfying the boundary conditions on the mth

Fourier mode. The dimension of the boundary of a single mode is O(N). The total cost mea-
sured in number of operations of to compute Ĝm for all Fourier modes is

(number of Fourier modes)× (number of boundary points per single mode)× (cost of solution to 2D problem)

7Note that this is only formal notation – in practical implementations, in more than one dimension, an operator is
never stored as a single matrix acting in all directions. Each spatial direction has an associated differential operator
matrix of size equal to the resolution in this direction.
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80 CHAPTER 5. SPECTRAL SOLVER

which gives us
O(N) × O(N) × O(N3) = O(N5)

Taking into account that a single step of time integration for a three-dimensional solution has
complexity O(N4), we conclude that the overall cost of finding all necessary Green function for
a three-dimensional problem in a geometry with at least one periodic dimension is comparable
to the cost of O(N) time iterations of the solver. This cost is acceptable.

The methodology

We will now describe the algorithm for satisfying the boundary conditions in a form which can
be applied to our problem. We have already described in section 5.3 a multi-step solver capable
of producing a solution under the condition that we know the boundary values σ̂fψ

and σ̂gφ . We
will now derive the algorithm for finding these values.

For reasons of simplicity and generality we will present the methodology for a problem
stated as follows

L f = g ; (B f )|∂ = β (5.68)

and we see that the above problem can be associated with (5.49) and (5.50) by substituting

L ≡
{

E∆h

E∆∆h

}
, f ≡

{
ψ̂

φ̂

}
, g ≡

{
r̂hsψ

r̂hsφ

}

where the boundary conditions (B f )|∂ = β would correspond to those indicated by braces in
(5.49) and (5.50). We expect these boundary conditions to be equivalent to Dirichlet boundary
conditions imposed on f̂ψ and ĝφ:

{
f̂ψ

ĝφ

}∣∣∣∣∣
∂

=

{
σ̂fψ

σ̂gφ

}

which can be written in terms of ψ̂ and φ̂ as:
{

∆h

∆∆h

}

︸ ︷︷ ︸
D

{
ψ̂

φ̂

}∣∣∣∣∣
∂

=

{
σ̂fψ

σ̂gφ

}

︸ ︷︷ ︸
σ

(5.69)

In (5.69), the boundary conditions defined by

D f = σ (5.70)

can be considered easy to impose because they correspond to Dirichlet boundary conditions
imposed on f̂ψ and ĝφ. The existence of σ such that

L f = g

B f |∂ = β
⇔ L f = g

D f |∂ = σ
(5.71)
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5.4. INFLUENCE MATRIX 81

follows from the assumption that equation L f = g with the boundary conditions defined by B
or D has a unique solution.

Now we can present the methodology for the influence matrix method applied to the
generic problem (5.68). In order to separate the problem of satisfying the equation from that of
satisfying the boundary condition, we decompose solution f into particular and homogeneous
parts:

f = f p + f h (5.72)

satisfying

L f p = g ; (D f p)|∂ = 0 (5.73a)

L f h = 0 ; (B f h)|∂ = β − (B f p)|∂ (5.73b)

where the particular solution f p satisfies the original inhomogeneous differential equation in
(5.68) but with the arbitrary boundary conditions (5.73a), and the homogeneous solution f h

satisfies the related homogeneous differential equation with the actual boundary conditions
from (5.68). It can be checked that f = f p + f h satisfies both the equation and the boundary
conditions given in (5.68).

We suppose that (5.73a) can be easily solved. The difficult task is to find f h from (5.73b)
because we do not yet know how to impose the boundary conditions involving operator B.
However, somewhat improved because f h is responsible only for satisfying the boundary con-
ditions and not for satisfying the original inhomogeneous differential equation stated in (5.68)
with the right-hand-side g which varyies from one timestep to another.
Now we can use the idea of homogeneous Green functions. Let Gh(x,x′) be defined as the solution
to the following problem:

LGh(x;x′) = 0 ; BGh(x;x′)|x′′ = δ(x′′ − x′) (5.74)

where operators L, B involve differentiation and evaluation of variable x and not x′, x′′ ∈ S.
The homogeneous solution f h can be written as

f h(x) =
∮

S
Gh(x;x′)

(
β(x′) −B f p(x)|x′

)
da′ (5.75)

We now have a formula for f h but we do not know Gh and one can argue that finding Gh is as
difficult as finding f h directly from (5.73b). This is true, but the essential difference is that Gh

is completely independent of the boundary values β, the right hand side g and the particular
solution f p. This makes it possible to consider even a computationally expensive algorithm for
finding Gh. Depending only on the operators L and B which do not change in time, Gh can be
determined in the preprocessing stage of a numerical time-dependent simulation.

There exists an indirect way for determining f h which, as we will see later, is equivalent to
finding Gh. We introduce the test function T(x;x′) which is the solution to the following problem

LT(x;x′) = 0 ; DT(x;x′)|x′′ = δ(x′′ − x′) (5.76)
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82 CHAPTER 5. SPECTRAL SOLVER

which we can solve because the boundary conditions given by operator D can be imposed
directly in our solver. It can be shown using (5.76) and (5.70) that function f h can be written as
the surface integral:

f h(x) =
∮

S
T(x;x′)σ(x′)da′ (5.77)

This definition involves the unknown distribution of boundary values σ which must be deter-
mined. By applying the boundary operator B to both sides of (5.77) and by using the boundary
condition stated in (5.73b) we obtain

B f h|x′′ = −B f p|x′′ + β(x′′) =
∮

S

(
BT(x;x′)

)∣∣
x′′︸ ︷︷ ︸

I(x′′;x′)

σ(x′)da′ (5.78)

where we defined a new function I(x′′;x′), which we will call the influence function, depending
only on the boundary points x′, x′′ ∈ S. The influence function I(x′′;x′) obtained by evaluating

I(x′′;x′) = BT(x;x′)|x′′ (5.79)

captures the influence of the choice of the test point x′ on the value of the boundary condition
B evaluated at x′′.
In order to solve equation (5.78) for σ we introduce transformation I defined as

I [σ(x′′)] =
∮

S
I(x′′;x′)σ(x′)da′. (5.80)

We assume existence of the transformation I−1 defined as

I−1[ρ(x′′)] =
∮

S
I−1(x′′;x′)ρ(x′)da′ (5.81)

which is the inverse of I in the following sense:

I−1 [I [σ(x′′)]
]

= σ(x′′)

⇓
∮

S
(I−1 ∗ I)(x′′;x′)σ(x′)da′ = σ(x′′)

⇓
∮

S

(∮

S
I−1(x′′;x′′′)I(x′′′;x′)da′′′

)
σ(x′)da′ = σ(x′′)

⇓
∮

S
I−1(x′′;x′′′)I(x′′′;x′)da′′′ = δ(x′′ − x′)

We see that by construction I and I−1 satisfy

(I ∗ I−1)(x′′;x′) = (I−1 ∗ I)(x′′;x′) = δ(x′′ − x′) (5.82)
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5.4. INFLUENCE MATRIX 83

Applying I−1 to both sides of (5.78) we finally obtain an expression for σ:

I−1
[∮

S
I(x′′;x′)σ(x′)da′

]
= I−1

[
B f h|x′′

]

⇓
∮

S

(
I−1 ∗ I

)
(x′′;x′)

︸ ︷︷ ︸
δ(x′′−x′)

σ(x′)da′ = I−1 [−B f p|x′′ + β(x′′)
]

⇓

σ(x′′) =
∮

S
I−1(x′′;x′)

(
−B f p|x′ + β(x′)

)
da′ (5.83)

where all the terms in integral (5.83), except for B f p|x′ , can be calculated once in the preprocess-
ing step of the simulation. The term B f p|x′ must be evaluated at each time step after determin-
ing f p from (5.73a). Once σ is calculated, f h can be obtained from (5.77) and the final solution
f = f p + f h is determined.

We can also solve for f without calculating f h explicitly. Equivalence (5.71) justifies the
following implicit definition of f .

L f = g ; (D f )|∂ = σ (5.84)

It is possible now to a posteriori determine the homogeneous Green function Gh. Substitut-
ing (5.83) into (5.77) gives:

f h(x) =
∮

S
T(x;x′)

[∮

S
I−1(x′;x′′)

(
−B f p|x′′ + β(x′′)

)
da′′
]

da′ =

=
∮

S

[∮

S
T(x;x′)I−1(x′;x′′)da′

](
−B f p|x′′ + β(x′′)

)
da′′

and by comparing with (5.75) Gh can be identified as

Gh(x;x′) =
∮

S
T(x;x′′)I−1(x′′;x′)da′′ (5.85)

Influence matrix

We are now ready to write the discrete version of the algorithm presented in the preceding
paragraph – the influence matrix method. The algorithm can be divided into a few general
steps, referring to formulas already presented.
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84 CHAPTER 5. SPECTRAL SOLVER

Algorithm
for each m

Preprocessing

1. ∀x′ ∈ S solve (5.76) to find T(x;x′)

2. Construct I(x;x′) from (5.79)

3. Construct I−1(x;x′) from (5.82)

For each time step

4. Solve (5.73a) in order to obtain a particular solution f p

5. Calculate −B f p|∂ + β

6. Find σ from (5.83)

7. Solve (5.84) in order to obtain the final solution f

We will employ the following notation:

Types of fields

ψ̂, φ̂ Spectral representation of toroidal and poloidal potentials corresponding to
the Fourier mode m solutions to (5.49)-(5.50) or (5.37)-(5.38).

ψ̂p, φ̂p Particular solutions satisfying (5.49) or (5.37) with σ̂fψ
= 0 and (5.50) or (5.38) with σ̂gφ = 0.

ψ̂h, φ̂h Homogeneous solutions satisfying (5.49) or (5.37) with r̂hsψ = 0 and (5.50) or (5.38)
with r̂hsφ = 0.

ψ̂t, φ̂t Test functions which are solution to (5.49) and (5.50) or (5.37) and (5.38) with δ-type
boundary values for σ̂fψ

and σ̂fφ
(the boundary condition will be explained later).

A one-index expression [ f ]ρ will denote a vector and two-index (and usually boldface) ex-
pression [f]κν will denote a matrix with κ indexing rows and ν indexing columns.

Indices and matrix/vector notation

[
ψ̂s

]
ρ

≡
[
ψ̂s

]
κν

Matrix of spectral coefficients in Fourier-Chebyshev-Radial basis.

κ ∈ [0,K − 1] indexes Chebyshev modes (axial direction – Tκ(
2z
h ))

ν ∈
[
0, N −

⌊
m
2

⌋]
indexes radial modes (radial direction – Qm

ν (r))
ρ ∈

[
0,K
(

N −
⌊

m
2

⌋)
− 1
]

indexes all spectral coefficients corresponding to a given
mode (ρ =

(
κ
(

N −
⌊

m
2

⌋)
+ ν
)
)

s ∈ {e,o} indicates whether even or odd part (regarding êz direction)
of the field is referenced (also s ∈ {e = 0,o = 1}).
Even (symmetric) and odd (anti-symmetric) parts are defined

as follows: f̂s(z) = f̂ (z)+(−1)s f̂ (−z)
2
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5.4. INFLUENCE MATRIX 85

〈
ψ̂t
〉js

i
≡
([

ψ̂t
]js
)∣∣∣

i
Matrix of boundary values (still in spectral space)

i ↔ x′′ depending on its value, i references a particular spectral coefficient
of a boundary function either on (r = 1) or on (z = ± h

2 )

i ∈





k︷ ︸︸ ︷
{ke}︸︷︷︸

even on r=1

, {ko}︸︷︷︸
odd on r=1

,

n︷ ︸︸ ︷
{ne}︸︷︷︸

symmetric on z=± h
2

, {no}︸︷︷︸
antisymmetric on z=± h

2





js ↔ x′ identifies a test function obtained for δ-type boundary conditions
specified for js’th spectral coefficient of a boundary function

for
〈

ψ̂t,m=0
s

〉js
: js ∈ {ns}, for

〈
ψ̂t,m 6=0

s

〉js
: js ∈ {ks}

for
〈
φ̂t

s

〉js : js ∈ {{ks}, {ns}}
ke indicates an even coefficient of the Chebyshev expansion of boundary

values on (r = 1) : ke ∈ [0, K−1
2 ] ↔

[
f̂ (r = 1)

]
2ke

ko indicates an odd coefficient of the Chebyshev expansion of boundary

values on (r = 1) : ko ∈ [K+1
2 ,K − 1] ↔

[
f̂ (r = 1)

]
2(ko− K+1

2 )+1

ne indicates a spectral coefficient of the radial expansion of boundary
values on (z = ± h

2 ) obtained for z-reflection symmetric

part of solution : ne ∈
[
K,K + N −

⌊
m
2

⌋
− 1
]
↔
[

f̂ (z=+ h
2 )+ f̂ (z=− h

2 )
2

]

(ne−K)

no indicates a spectral coefficient of radial expansion of boundary
values on (z = ± h

2 ) obtained for z-reflection antisymmetric solution:

no ∈
[
K + N −

⌊
m
2

⌋
,K + 2

(
N −

⌊
m
2

⌋)
− 1
]
↔
[

f̂ (z=+ h
2 )− f̂ (z=− h

2 )
2

]

(no−K−N+⌊m
2 ⌋+1)

We will use x to represent either r or z in expressions that concern both variables. Similarly, i

and js can reference rows or columns depending on context.

Step 1. The homogeneous solutions
[
ψ̂h
]

and
[
φ̂h
]

can be decomposed into a basis of test

solutions
[
ψ̂t

s

]js and
[
φ̂t

s

]js . The discrete analogue of (5.77) can be written as

[
ψ̂h
]

= ∑
s={e,o}

∑
js

[
ψ̂t

s

]js

[
φ̂h
]

= ∑
s={e,o}

∑
js

[
φ̂t

s

]js

The first step is to construct the set of test solutions by choosing the δ-type boundary conditions
for σ corresponding to (5.76). In the axisymmetric case m = 0 this can be done by substituting
σ̂gφ ≡ δ(x′′ − x′) in (5.37) and (5.38) and for other modes m 6= 0 we will set σ̂fψ

≡ δ(x′′ − x′) in
(5.49) and (5.50). The systems which one must solve in order to obtain the set of test solutions,
according to the previously described notation, will have the following form:
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86 CHAPTER 5. SPECTRAL SOLVER

Axisymmetric case m = 0:

ψ̂t:

[̃
f̂ t

ψ

]js[
−ǫHλ− 1

ǫ

]T

= 0 ;





〈
f̂ t
ψ

〉js

n
= δn,js ⇔ f̂ t

ψ

∣∣∣
z=± h

2

(r′′) = δ(r′′ − r′)
〈[

f̂ t
ψ

]js [∫ 1
0 rdr

]T
〉

k

= 0 ⇔
∫ 1

0 f̂ t
ψ rdr = 0

(5.86a)

[̃
ψ̂t
]js

[H0]
T

=
[̃

f̂ t∗
ψ

]js

;
([

ψ̂t
]js
)∣∣∣

r=0

k
= 0 ⇔ ψ̂t

∣∣
r=0 = 0 (5.86b)

where the notation (·)|r=0
k denotes the k’th coefficient of a quantity evaluated at (r = 0).

φ̂t:

[̃
ĝt

φ

]js[
−ǫHλ− 1

ǫ

]T

= 0 ;
〈

ĝt
φ

〉js

i
= δi,js ⇔ ĝt

φ

∣∣∣
∂
(x′′) = δ(x′′ − x′) (5.87a)

[̃
f̂ t

φ

]js

[Hλ]
T

=
[̃

ĝt∗
φ

]js

;
〈

f̂ t
φ

〉js

i
= 0 ⇔ f̂ t

φ

∣∣∣
∂

= 0 (5.87b)

[̃
φ̂t
]js

[H0]
T

=
[̃

f̂ t∗
φ

]js

;
〈
φ̂t
〉js

k
= 0 ⇔ φ̂t

∣∣
r=1 = 0 (5.87c)

For a given js, these systems of linear matrix equations, which must be solved for each m,
correspond to the three-dimensional Poisson solver based on the τ-method (see section 5.2.1)
and the partial diagonalization technique described in section 5.2.2. The methodology for con-

structing matrices like
[̃
ψ̂t
]js

or
[̃

f̂ t∗
]js

was described in section 5.2.1. Note that the above

matrix equations are defined only for the K − 2 eigenvalues λk ∈ {λ0,λ1, . . . ,λK−3} defined in
(5.13). The two highest frequencies corresponding to k = {K − 1,K − 2} can be obtained from

(5.8) once the low frequency solutions
[̃
ψ̂t
]js

and
[̃
φ̂t
]js

are known. The test solutions
[
ψ̂t
]js

and
[
ψ̂t
]js can be obtained by applying the inverse transformation corresponding to (5.16).

The methodology for constructing the Helmholtz operator [Hλ] was described in section 5.2.2.
The time-step evolution operator E ≡ (1 − ǫ∆) can also be written using the Helmholtz oper-

ator
[
−ǫHλ− 1

ǫ

]
. The boundary conditions at (z = ± h

2 ) specified to the right of the semicolons
in (5.86-5.87) are imposed by the τ-method and are incorporated into the ∗-marked matrices
obtained from Schur decomposition of matrix operators corresponding to ∂2

z . Boundary condi-
tions at (r = 1) are satisfied by replacing the last row in Helmholtz operators by the boundary
condition vector and the last row in the right-hand-side matrix by the boundary values as was
shown in (5.5).

Non-axisymmetric cases m 6= 0:

The procedure for obtaining the tilde ˜ and star * marked matrices as well as the Helmholtz
matrices is the same as that described for the axisymmetric case.
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5.4. INFLUENCE MATRIX 87

The following matrix equations must be solved in order to obtain the test solution for m 6= 0:

ψ̂t:

[̃
f̂ t

ψ

]js[
−ǫHλ− 1

ǫ

]T

= 0 ;
〈

f̂ t
ψ

〉js

i
= δi,js ⇔ f̂ t

ψ

∣∣∣
∂
(x′′) = δ(x′′ − z′) (5.88a)

[̃
ψ̂t
]js

[H0]
T

=
[̃

f̂ t∗
ψ

]js

;
〈[

ψ̂t
]js [∂r]

T
〉

k
= 0 ⇔





∂rψ̂t
∣∣
r=1 = 0

⇓
ψ̂t
∣∣
z=± h

2
= 0

(5.88b)

The boundary conditions in (5.88a) and (5.88b) require some comments. One can notice that
the test point z′ and the corresponding index js concern only the (r = 1) boundary. This sug-
gests that the test functions obtained for x′ ≡ r′ indexed by (js ∈ {ns}) are forbidden since they
should play no role in satisfaction of the boundary condition for the homogeneous function ψ̂h.
Solutions ψ̂t obtained for such boundary conditions would certainly contain non-zero values
at the boundary (z = ± h

2 ) and this would conflict with the boundary condition ψ̂h
∣∣
z=± h

2
= 0. It

can be seen that all test functions corresponding to test points x′ ≡ z′ and indexes (js ∈ {ks})
satisfy the ψ̂t

∣∣
z=± h

2
= 0 condition. This is because δ-type boundary conditions specified only

at (r = 1) imply f̂ t
ψ

∣∣∣
z=± h

2

= 0. Since the Poisson equation (5.88b) should be satisfied on each

horizontal disk8, therefore on (z =± h
2 ) it actually corresponds to the Laplace equation with ho-

mogeneous Neumann boundary conditions which is known to have only constant solutions.
However the only constant solution permitted for non-axisymmetric modes due to the regu-
larity constraints is ψ̂t|z=± h

2
(r) = 0 which is exactly the boundary conditions that ψ̂h should

satisfy. This implication is indicated at the right of equation (5.88b).
φ̂t:

[̃
ĝt

φ

]js[
−ǫHλ− 1

ǫ

]T

= 0 ;
〈

ĝt
φ

〉
i
= δi,js ⇔ ĝt

φ

∣∣∣
∂
(x′′) = δ(x′′ − x′) (5.89a)

[̃
f̂ t

φ

]js

[Hλ]
T

=
[̃

ĝt∗
φ

]js

;
〈

f̂ t
φ

〉
i

= 0 ⇔ f̂ t
φ

∣∣∣
∂

= 0 (5.89b)

[̃
φ̂t
]js

[H0]
T

=
[̃

f̂ t∗
φ

]js

;
〈
φ̂t
〉

k
= 0 ⇔ φ̂t

∣∣
r=1 = 0 (5.89c)

The final solutions
[
ψ̂t
]

and
[
φ̂t
]

can be obtained from
[̃
ψ̂t
]js

and
[̃
φ̂t
]js

by applying the
inverse transformation corresponding to (5.16)

Step 2. The influence matrix can be constructed after or in parallel with construction of the

test functions
[̃
ψ̂t
]js

and
[̃
φ̂t
]js

. Once a test function is obtained we can evaluate the boundary
operators on it. Of course, only those operators which correspond to the boundary conditions

8This is because [H0] corresponds to ∆h which does not contain ∂2
z
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88 CHAPTER 5. SPECTRAL SOLVER

that have not already been satisfied for the test functions9 must be used for building the influ-
ence matrix.

For the axisymmetric modes, these operators are written to the right of the Dirichlet σ-
conditions in (5.37a) and (5.38a). In order to exploit the parity properties of the test solutions in
z, we will use the even (s′ = e) and odd (s′ = o) combinations of the original boundary operators.
We will use Bs′′ as a placeholder for the boundary operators of parity s′′. An operator can be
qualified as even if it preserves parity (ex.

[
∂2

z

]
[ fs] =

[
(∂2

z f )s

]
) and similarly, an operator can be

qualified as odd if it changes the parity of a solution (ex. [∂z] [ fs] = [(∂z f )1−s]). In the definitions
below, T js stands for a test function of parity s corresponding to the js’th test point. We shall
employ the following notation to classify the even and odd combinations (identified by s′) of
boundary values obtained by applying an operator of parity s′′ to a test function of parity s:

〈Bs′′〉s′

z=± h
2

T js(r,z) ≡
(Bs′′T

js)|z= h
2
(r) + (−1)s′(Bs′′T

js)|z=− h
2
(r)

2
≡
〈
Bs′′ |s

′
T
〉js

k

〈Bs′′〉s′
r=1 T js(r,z) ≡ (Bs′′T

js)|r=1(z) + (−1)s′(Bs′′T
js)|r=1(−z)

2
≡
〈
Bs′′ |s

′
T
〉js

n

The following rules can be specified for
〈
Bs′′ |s

′
T
〉js

quantities:

〈
Bs′ |s

′
T
〉js

n1−s

= 0
〈
Bs′ |1−s′T

〉js

ns

= 0

〈
Bs′ |s

′
T
〉js

k1−s

= 0
〈
Bs′ |1−s′T

〉js

ks

= 0

Using this notation we can write the matrix expression equivalent to (5.79):





[
I0

ψ

]e

[
I0

ψ

]o





≡




〈
1|eψ̂t

〉js
ne

〈
1|oψ̂t

〉js
no


 =




〈1〉e
z=± h

2

〈1〉o
z=± h

2





 ψ̂t




js





[
I0

φ

]e

[
I0

φ

]o





≡




〈
∂2

rz|eφ̂t
〉js

ke

〈
∂z|eφ̂t

〉js
ne

〈
∂2

rz|oφ̂t
〉js

ko

〈
∂z|eφ̂t

〉js
no




=




〈
∂2

rz

〉e

r=1

〈∂z〉e
z=± h

2

〈
∂2

rz

〉o

r=1

〈∂z〉o
z=± h

2





 φ̂t




js

9It is necessary that such conditions be satisfied also by the particular solution at each timestep.
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5.4. INFLUENCE MATRIX 89

The influence matrix for the axisymmetric modes has the following structure:




I0,e
ψ

I0,o
ψ

I0,e
φ

I0,o
φ




For the nonaxisymmetric modes the boundary conditions to be imposed by the influence
matrix are specified to the right of the Dirichlet σ-conditions in (5.49a)10 and (5.50a). The result
of applying these boundary operators to the non-axisymmetric test functions can be written as
follows:





[
Im

ψ

]e

[
Im

ψ

]o





≡




〈
im|eψ̂t

〉js
ke

〈
∂2

rz|o f̂ t
ψ

〉js

ke

〈
im|oψ̂t

〉js
ko

〈
∂2

rz|e f̂ t
ψ

〉js

ko




=




〈im〉e
r=1

〈
∂2

rz∆h

〉o

r=1

〈im〉o
r=1

〈
∂2

rz∆h

〉e

r=1







ψ̂t




js





[
Im

φ

]e

[
Im

φ

]o





≡




〈
∂2

rz|eφ̂t
〉js

ke

〈
−im∆|o f̂ t

φ

〉js

ke

〈
∂z|eφ̂t

〉js
ne

〈
∂2

rz|oφ̂t
〉js

ko

〈
−im∆|e f̂ t

φ

〉js

ko

〈
∂z|oφ̂t

〉js
no




=




〈
∂2

rz

〉e

r=1

〈−im∆∆h〉o
r=1

〈∂z〉e
z=± h

2

〈
∂2

rz

〉o

r=1

〈−im∆∆h〉e
r=1

〈∂z〉o
z=± h

2







φ̂t




js

10The condition φ̂t|z=± h
2

= 0 is not taken into acount since it is automatically satisfied for m 6= 0 (see comments
concerning (5.88b))
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90 CHAPTER 5. SPECTRAL SOLVER

The influence matrix for the non-axisymmetric modes has the following structure:

[I]m ≡




Im,e

Im,o



≡




Im,e
ψ Im,e

φ

Im,o
ψ Im,o

φ




Step 3. Writing equation (5.82) we have assumed that the inverse I−1(x′′;x′) of the influence
function I(x′′;x′) exists. In discrete formulation this would mean that for each m ∈ [0, M̂] the
influence matrix [I]m is invertible. In fact, this assumption is never met. The influence matrices
are singular for several reasons. The first issue is geometric. The finite cylinder has corners
at which both conditions, imposed on (z = ± h

2 ) and (r = 1), must be satisfied simultaneously.
Some conditions are therefore redundant. In the situation when the test functions are selected
by choosing the δ-conditions at the boundary in the spectral rather than physical space, the
redundant conditions correspond to a particular combination of conditions evaluated for all
test functions and cannot be easily identified. Moreover, the singularity of the influence matrix
can also depend on the restriction of a discrete Poisson solver. Because of the τ-method used
for satisfying the boundary conditions at each level of the multi-step solver, some solutions are
not accessible or can be linearly dependent.
As an example we consider a test function

[
ψ̂t
]kK̂ corresponding to the test point of the high-

est frequency in the êz direction. Such conditions lead to an intermediate test solution
[

f̂ t
ψ

]kK̂

which contains only the highest coefficients
[

f̂ t
ψ

]kK̂

K̂,n
. These coefficients are replaced by the zero

boundary values (τ-method) in the right-hand-side of the equation for
[
ψ̂t
]
, which becomes the

Laplace equation with homogeneous Dirichlet (for m = 0) or Neumann (for m 6= 0) boundary
conditions. Taking into account the regularity restrictions for the solutions corresponding to
m 6= 0 we obtain the null solution corresponding to a null column in the influence matrix.
It is also possible that some rows of the influence matrix, corresponding to the highest frequen-
cies evaluated at the boundary, are zero. This can occur when a boundary operator like ∂z

decreases the polynomial order of test functions. The number of null rows is not necessarily
equal to the number of null columns, but the number of linearly independent rows is the same
as the number of linearly independent columns.
The last class of singularity can be of numerical origin. Some boundary value distributions
can be almost linearly dependent which can result in ill-conditioned influence matrix. Also,
because some conditions incorporated in the influence matrix are of much higher differential
order then others, the structure of the influence matrix is very inhomogeneous and a simple
scaling does not necessarily improve the situation. The effect of numerical singularity is that
the influence matrix, in addition to zero singular values corresponding to previously described
effects, has some number of nearly zero singular values.
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5.4. INFLUENCE MATRIX 91

A remedy to the problems described above was proposed by Tuckerman [86] and consists
of identifying the spurious and weakly (numerically) spurious combinations of test functions
by diagonalizing the influence matrix. In this approach, one replaces the zero eigenvalues
by an arbitrary value (say 1). The matrix obtained by this arbitrary manipulation of its spec-
trum becomes invertible. The idea behind this is that the eigenvectors corresponding to the
zero eigenvalues play no role in satisfaction of the boundary conditions and can therefore be
multiplied by an arbitrary value. This is of course true only under the condition that the lin-
ear system of equations defined by the singular matrix and the right-hand-side represents an
under-determined problem. This in turn is possible only if the right-hand-side satisfies the
compatibility condition (5.4). Because the particular solutions (constructed in step 4) are de-
termined using the same multi-step solver that we used for the test functions and the same
boundary operators are used for building the right-hand-side of the influence matrix problem
(step 5.), there is a priori a good chance that this constructed right-hand-side vector satisfies the
compatibility condition.

Step 4. The final solution can be written as the sum of particular and homogeneous solutions
f (x) = f p(x) + f h(x) (see (5.73a)) which can be stated for ψ̂ and φ̂m as follows

[
ψ̂
]
=
[
ψ̂p
]
+
[
ψ̂h
]

[
φ̂
]
=
[
φ̂p
]
+
[
φ̂h
]

We will find the particular solution by choosing the homogeneous boundary conditions σ: In
the axisymmetric case m = 0 we will choose σ̂gφ = 0 in (5.37) and (5.38) and for other modes
m 6= 0 we will set σ̂fψ

= 0 in (5.49) and (5.50). Thus the systems which one must solve for each m

and λ in order to obtain the particular solution, in matrix notation will have the following form:

Axisymmetric case m = 0:

ψ̂p:

[̃
f̂

p
ψ

][
−ǫH

λ− 1
ǫ

]T

=
[̃
r̂hs

∗

ψ

]
;





〈
f̂

p
ψ

〉
n

= 0 ⇔ f̂
p
ψ

∣∣∣
z=± h

2

= 0
〈[

f̂
p
ψ

][∫ 1
0 rdr

]T
〉

k

= 0 ⇔
∫ 1

0 f̂
p
ψ rdr = 0

(5.91a)

[̃
ψ̂p
]
[H0]

T
=
[̃

f̂
p∗
ψ

]
;
〈
ψ̂p
〉

k
= 0 ⇔ ψ̂p

∣∣
r=0 = 0 (5.91b)
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92 CHAPTER 5. SPECTRAL SOLVER

φ̂p:

[̃
ĝ

p
φ

][
−ǫH

λ− 1
ǫ

]T

=
[̃
r̂hs

∗

φ

]
;
〈

ĝ
p
φ

〉
i
= 0 ⇔ ĝ

p
φ

∣∣∣
∂

= 0 (5.92a)

[̃
f̂

p
φ

][
Hλ

]T
=
[̃

ĝ
p∗
φ

]
;
〈

f̂
p
φ

〉
i
= 0 ⇔ f̂

p
φ

∣∣∣
∂

= 0 (5.92b)

[̃
φ̂p
]
[H0]

T
=
[̃

f̂
p∗
φ

]
;
〈
φ̂p
〉

k
= 0 ⇔ φ̂p

∣∣
r=1 = 0 (5.92c)

Non-axisymmetric cases m 6= 0:

ψ̂p:

[̃
f̂

p
ψ

][
−ǫH

λ− 1
ǫ

]T

=
[̃
r̂hs

∗

ψ

]
;
〈

f̂
p
ψ

〉
i
= 0 ⇔ f̂

p
ψ

∣∣∣
∂
= 0 (5.93a)

[̃
ψ̂p
]
[H0]

T
=
[̃

f̂
p∗
ψ

]
;
〈[

ψ̂p
]
[∂r]

T
〉

k
= 0 ⇔





∂rψ̂p
∣∣
r=1 = 0

⇓
ψ̂p
∣∣
z=± h

2
= 0

(5.93b)

φ̂p:

[̃
ĝ

p
φ

][
−ǫH

λ− 1
ǫ

]T

=
[̃
r̂hs

∗

φ

]
;
〈

ĝ
p
φ

〉
i
= 0 ⇔ ĝ

p
φ

∣∣∣
∂

= 0 (5.94a)

[̃
f̂

p
φ

][
Hλ

]T
=
[̃

ĝ
p∗
φ

]
;
〈

f̂
p
φ

〉
i
= 0 ⇔ f̂

p
φ

∣∣∣
∂

= 0 (5.94b)

[̃
φ̂p
]
[H0]

T
=
[̃

f̂
p∗
φ

]
;
〈
φ̂p
〉

k
= 0 ⇔ φ̂p

∣∣
r=1 = 0 (5.94c)

The final solutions
[
ψ̂p
]

and
[
φ̂p
]

can be obtained from
[̃
ψ̂p
]

and
[̃
φ̂p
]

by applying the in-
verse transformation corresponding to (5.16).

Step 5. In order to obtain σ from (5.83) it is necessary to evaluate at each time step the differ-
ence between the boundary condition values obtained for the particular solution f p and their
desired values β. Using notation from step 2, we can write the vector corresponding to the
expression −B f p|x′ + β(x′) in the following way:

Axisymmetric modes:
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5.4. INFLUENCE MATRIX 93





[
Rhs0

ψ

]e

[
Rhs0

ψ

]o





≡




〈(∫ r

0
rΩ̂(r)dr

)∣∣∣∣
e

− 1|eψ̂p

〉

ne〈(∫ r

0
rΩ̂(r)dr

)∣∣∣∣
o

− 1|oψ̂p

〉

no








[
Rhs0

φ

]e

[
Rhs0

φ

]o





≡




〈
−∂2

rz|eφ̂p
〉js

ke

〈
−∂z|eφ̂p

〉js
ne

〈
−∂2

rz|oφ̂p
〉js

ko

〈
−∂z|eφ̂p

〉js
no




, [Rhs]0 ≡




Rhs0,e
ψ

Rhs0,o
ψ

Rhs0,e
φ

Rhs0,o
φ




Non-axisymmetric modes:

[Rhs]m ≡




Rhsm,e

Rhsm,o



≡




〈
−im|eψ̂p − ∂2

rz|eφ̂p
〉

ke

〈
−∂2

rz|o f̂
p
ψ + im∆|o f̂

p
φ

〉
ke

〈
−∂z|eφ̂p

〉
ne

〈
−im|oψ̂p − ∂2

rz|oφ̂p
〉

ko

〈
−∂2

rz|e f̂
p
ψ + im∆|e f̂

p
φ

〉
ko

〈
−∂z|oφ̂p

〉
no




Step 6. The boundary values σ̂fψ
and σ̂gφ needed to solve (5.37), (5.38), (5.49) and (5.50) can be

found by solving the following linear systems:
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94 CHAPTER 5. SPECTRAL SOLVER

For the axisymmetric mode:




I0,e
ψ

I0,o
ψ

I0,e
φ

I0,o
φ







σ̂0,e
fψ

σ̂0,o
fψ

σ̂0,e
fψ

σ̂0,o
fψ




=




Rhs0,e
ψ

Rhs0,o
ψ

Rhs0,e
φ

Rhs0,o
φ




(5.95)

For non-axisymmetric modes:




Im,e
ψ Im,e

φ

Im,o
ψ Im,o

φ







σ̂m,e
fψ

σ̂m,o
gφ

σ̂m,o
fψ

σ̂m,e
gφ




=




Rhsm,e

Rhsm,o




(5.96)

Step 7. Finally the solutions ψ̂ and φ̂ can be found by solving (5.37), (5.38), (5.49) and (5.50)
with σfψ

and σgφ obtained in step 5.

Axisymmetric case m = 0:

ψ̂:

[̃
f̂ ψ

][
−ǫH

λ− 1
ǫ

]T

=
[̃
r̂hs

∗
ψ

]
;





〈
f̂ψ

〉
n

=
[
σ̂fψ

]
⇔ f̂ψ

∣∣∣
z=± h

2

= σ̂fψ

〈[
f̂ψ

][∫ 1
0 rdr

]T
〉

k

= 0 ⇔
∫ 1

0 f̂ψ rdr = 0
(5.97a)

[̃
ψ̂
]
[H]

T
=
[̃

f̂
∗
ψ

]
;
〈
ψ̂
〉

k
= 0 ⇔ ψ̂

∣∣
r=0 = 0 (5.97b)

φ̂:

[̃
ĝφ

][
−ǫH

λ− 1
ǫ

]T

=
[̃
r̂hs

∗
φ

]
;
〈

ĝφ

〉
i

=
[
σ̂gφ

]
⇔ ĝφ

∣∣
∂

= σ̂gφ (5.98a)

[̃
f̂ φ

][
Hλ

]T
=
[̃

ĝ∗
φ

]
;
〈

f̂φ

〉
i
= 0 ⇔ f̂φ

∣∣∣
∂

= 0 (5.98b)

[̃
φ̂
]
[H]

T
=
[̃

f̂
∗
φ

]
;
〈
φ̂
〉

k
= 0 ⇔ φ̂

∣∣
r=1 = 0 (5.98c)
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5.4. INFLUENCE MATRIX 95

Non-axisymmetric cases m 6= 0:

ψ̂:

[̃
f̂ ψ

][
−ǫH

λ− 1
ǫ

]T

=
[̃
r̂hs

∗
ψ

]
;
〈

f̂ψ

〉
i
=
[
σ̂fψ

]
⇔ f̂ψ

∣∣∣
∂
= σ̂fψ

(5.99a)

[̃
ψ̂
]
[H]

T
=
[̃

f̂
∗
ψ

]
;
〈[

ψ̂
]
[∂r]

T
〉

k
= 0 ⇔





∂rψ̂
∣∣
r=1 = 0

⇓
ψ̂
∣∣
z=± h

2
= 0

(5.99b)

φ̂:

[̃
ĝφ

][
−ǫH

λ− 1
ǫ

]T

=
[̃
r̂hs

∗
φ

]
;
〈

ĝφ

〉
i

=
[
σ̂gφ

]
⇔ ĝφ

∣∣
∂

= σ̂gφ (5.100a)

[̃
f̂ φ

][
Hλ

]T
=
[̃

ĝ∗
φ

]
;
〈

f̂φ

〉
i
= 0 ⇔ f̂φ

∣∣∣
∂

= 0 (5.100b)

[̃
φ̂
]
[H]

T
=
[̃

f̂
∗
φ

]
;
〈
φ̂
〉

k
= 0 ⇔ φ̂

∣∣
r=1 = 0 (5.100c)

The final solutions
[
ψ̂
]

and
[
φ̂
]

can be obtained from
[̃
ψ̂
]

and
[̃
φ̂
]

by applying the inverse
transformation corresponding to (5.16).

5.4.3 Towards an invertible influence matrix

Discussing the singular character of the influence matrix in the preceding section we men-
tioned that, according to Tuckerman [86] its inverse matrix can be diagonalized in order to
identify the spurious modes corresponding to the zero (or almost zero) eigenvalues satisfying
{µi < ǫµ}. The threshold parameter ǫµ must be tuned experimentally. The singular eigenvec-
tors, for a problem with the right-hand-sides given by (5.95)-(5.96) satisfying the compatibility
condition (5.4), have no influence on the satisfaction of the boundary conditions incorporated
in the influence matrix. Therefore, the zero eigenvalues can be replaced by arbitrary but non-
zero values and then the inverse matrix can be obtained from the reciprocals of its corrected
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96 CHAPTER 5. SPECTRAL SOLVER

spectrum {µ∗}:

[I] = [W]
[
δj,iµi

]
[W]−1 −→ [W]

[
δj,iµ

∗
i

]
[W]−1 = [I∗]

where µ∗
i =

{
1 if |µi| < ǫµ

µi otherwise

⇓

[I∗]−1 = [W]

[
δj,i

µ∗
i

]
[W]−1

(5.101)

where [W] is the diagonalizing matrix. Two conditions are necessary for this method to work:

• The influence matrix must be diagonalizable – a condition necessary for the existence of
the regular matrix [W]

• The eigenvalues satisfying µi < ǫµ, corresponding to the spurious modes, must be clearly
distinguishable from the other ones. This means that the difference between the smallest
valid eigenvalues and the largest spurious eigenvalues must be much bigger than the
difference between one small valid eigenvalue and another.

As an example let us consider the influence matrix corresponding to m = 1 and to the spatial
resolution (N = 96) × (K = 192). The Reynolds number is Re = 10000 and the time step ∆t =

0.01, which corresponds to ǫ−1 = Re
∆t = 106. The magnitudes of the eigenvalues of the even block[

I1,e
]

of matrix
[
I1
]

are presented on figure 5.1-left. It is not obvious how many singular values

 0  50  100  150  200  250

µ
i

i

106

103

1

10−3

10−6

10−9

10−12

 0  20  40  60  80  100  120  140

µ
i

i

106

103

1

10−3

10−6

10−9

10−12

Figure 5.1: Magnitudes of eigenvalues {|µi|} of
[
I1,e
]

(m = 1). Left: (N = 96) × (K = 192),
ǫ−1 = Re

∆t = 106; Right: (N = 48) × (K = 96), ǫ−1 = Re
∆t = 104.

should be considered as spurious. One can propose the last two values 0.91× 10−13, .72× 10−13

as they are the smallest ones and are both of the same order of magnitude. The problem is,
however, more difficult: the same analysis performed for a different resolution (N = 48)× (K =

96) suggests that only the last singular eigenvalue may be considered spurious (see figure 5.1-
right). The number of the spurious eigenvalues of the influence matrix should not depend
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5.4. INFLUENCE MATRIX 97

on the spectral resolution. It depends only on the geometry and on the kind of boundary
conditions. The number of weakly spurious eigenvalues which appear in consequence of the
finite machine accuracy can, however, differ from one resolution to another. Tests performed
for several resolutions, modes m and values of ǫ−1 showed that the number of distinguishable
spurious eigenvalues can vary from 1, for low spectral resolutions and small values of ǫ−1, up
to 4, for high resolutions or very big values of ǫ−1.

Since the low-resolution problems are less susceptible to the numerical inaccuracy and do
not suffer from weakly spurious modes, one can try to correct the same number of eigenvalues
for all resolutions: e.g. if for a given mode m and for a low resolution only one spurious
eigenvalue can be identified, then for all resolutions for this mode the smallest eigenvalue
should be considered spurious. This approach leads, however, to an unstable solver, which
for high resolutions suffers from high-frequency oscillations degrading the smoothness of the
solution and affecting the stability of a time integration scheme. Trying to decrease the time
step amplifies even more the weakly spurious modes by increasing the condition number of
the influence matrix.

The number of lost meaningful digits in a numerical solution to a linear system defined
by a matrix is approximately proportional to the decimal logarithm of its condition num-
ber. The eigenvalues presented on figure 5.1 correspond to a matrix with condition number

CI∗ ≡ max{µ∗
i }

min{µ∗
i }

≈ 1017 when the two smallest eigenvalues are set to 1. This means that the in-

verse matrix
[
I1,e
]

can be significantly perturbed even by a numerical noise of order O(10−15).
It seems therefore necessary to choose the threshold parameter ǫµ in order to guarantee a rea-
sonable conditioning of the influence matrix and not only to cut off the distinguishable eigen-
values/eigenmodes. This criterion was also adopted by Tuckerman [86] and Speetjens [81].

On the other hand, treating an increasing number of small eigenvalues as spurious as the
resolution is increased leads to errors in satisfaction of the boundary conditions. If only one
condition is incorporated in the influence matrix method, and if this condition is evaluated
only on a single type of test function then there exists a simple interpretation of the weakly
spurious modes and eigenvalues: if an eigenvalue becomes, for high resolutions, smaller then
a threshold of acceptable matrix conditioning, then the corresponding mode plays almost no
role in satisfaction of the boundary condition under the given machine accuracy. This does
not necessarily means that the system has lost some degrees of freedom, but rather that these
degrees of freedom cannot be fixed by the test functions used for constructing the influence
matrix. When more than one condition must be satisfied by the influence matrix method and
different classes of test functions are used to build the matrix, then weakly spurious eigenval-
ues can appear because of bad scaling of the influence matrix. If this is the case, then even if
a linear combination of the test functions satisfying all boundary conditions exists, it can be
impossible to find by solving the linear system defined by the influence matrix. Speetjens [81]
observed that for an a priori known (from analytic solution) distribution of the boundary val-
ues (corresponding to σ in (5.71)) the correct solution can be found by the solver for virtually
all resolutions and values of ǫ−1. If the influence matrix technique is used instead, the solver
becomes conditionally stable with upper bound for ǫ−1 depending on the spectrum of the in-
fluence matrix and with the lower bound given by the CFL condition for the explicitly time-
evolved nonlinear term. Our observations confirm those of Speetjens [81]. For example, for
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98 CHAPTER 5. SPECTRAL SOLVER

resolution (M = 8) × (N = 48) × (K = 96) the time integration of Stokes equation, performed
using the first-order implicit Euler scheme, diverges for ǫ−1

> 105 and m > 0. The axisymmetric
mode m = 0 converges for all values of ǫ−1. Our explanation for this is that the influence matrix
for the axisymmetric mode m = 0 decouples the poloidal and toroidal test functions evaluating
a single type of boundary condition per single type of test function (angular velocity at z = ± h

2
on ψ̂t and normal velocity on φ̂t). In this situation, the argument that weakly spurious modes
play no role in satisfaction of the boundary conditions is valid. For m > 0 all test functions
are coupled via boundary conditions of different nature (e.g. compatibility condition). This
leads to a very bad scaling of the influence matrix. Additionally we observed that for high
resolutions the influence matrix for m > 0 is very poorly diagonalizable. This means that the
diagonalization matrix [W] is very ill-conditioned for the inversion. We verified that some of
the column vectors building [W] are almost linearly dependent.

Diagonalization vs SVD

We propose a slight modification to the procedure proposed by Tuckerman [86] consisting of re-
placing the diagonalization of the influence matrix by its singular value decomposition (SVD).
The singular matrix can be regularized using the SVD by performing steps analogous to those
from (5.101):

[I] = [U]
[
δj,iγi

]
[V]T −→ [U]

[
δj,iγ

∗
i

]
[V]T = [I∗]

where γ∗
i =

{
1 if |γi| < ǫγ

γi otherwise

⇓

[I∗]−1 = [V]

[
δj,i

γ∗
i

]
[U]T

(5.102)

where [U] and [V] are orthogonal matrices and {γi} are the singular values which are real and
positive.
The first thing to notice is that the process (5.102) makes use of the orthogonality of [U] and
[V] i.e. [U]−1 = [U]T and [V]−1 = [V]T. The singular value decomposition, in contrast to the
eigenvalue decomposition, exists for all matrices (even those which are not diagonalizable) and
is better conditioned than the diagonalization of a general matrix. On figure 5.2-left we present
the singular values of the matrix for which norms of eigenvalues are presented on figure 5.1-
left. It can be seen on figure 5.2-left that smallest singular value is better separated from the
others than for eigenvalues (see fig. 5.1-left). The condition number of the influence matrix
[I∗] regularized by correcting its last eigenvalue is, however, still very big: CI∗ ≈ 1020. The
main advantage of the SVD over diagonalization resides in the ability to apply it even to a very
poorly diagonalizable matrices.

Scaling

The matrix condition number can be decreased by scaling. If scaling is performed by dividing
each row by its norm, the condition number of the matrix can be significantly reduced, down to
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γ
′′ i

Figure 5.2: Singular values {γi} (ǫ−1 = Re
∆t = 106, m = 1, (N = 96) × (K = 192)). Left: actual

matrix
[
I1,e
]
. Right: scaled matrix

[
I1,e
]′′ ≡ [ α ]

[
I1,e
]
[ β ].

C = 1011. Additional scaling of columns does not significantly changes the condition number.
Further enhancing of the influence matrix is possible by scaling matrix blocks correspond-

ing to different combinations of types of test functions and boundary conditions. The influence
matrices [Ip,m] for m > 0 have 9 characteristic blocks corresponding to combinations of 3 classes
of test functions (ψ̂t and φ̂t selected for delta-type conditions at r = 1 and φ̂t selected for delta-
type conditions at z = ± h

2 ) and 3 different boundary conditions. The matrix norms bji of each
of the blocks are:

[
I1,e
]

=




b11 = 107 b12 = 1 b13 = 1

b21 = 10−2 b22 = 10−5 b23 = 10−5

b31 = 0 b32 = 10−5 b33 = 10−4




(5.103)

The numbers were determined for the influence matrix corresponding to the resolution (N =

96)× (K = 192) and were provided to give a qualitative idea about differences between norms
of different matrix blocks. We now wish to scale the block-rows and block-collumns in such a
way as to make the norms of the resulting scaled blocks b′ji equal to one another.

[α] [Ip,m] [β] =




α1 0 0

0 α2 0

0 0 α3







b11 b12 b13

b21 b22 b23

0 b32 b33







β1 0 0

0 β2 0

0 0 β3


 =




b′11 b′12 b′13

b′21 b′22 b′23

0 b′32 b′33


 (5.104)
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100 CHAPTER 5. SPECTRAL SOLVER

In general there exist no such {αi} and {βi} satisfying b11 = b12 = b13 = b21 = b22 = b23 = b32 =

b33 = 1. We can instead require

α1β1b11 = α2β2b22 = α3β3b33 = 1

α2β1b21 = α1β2b12

α3β1b31 = α1β3b13

(5.105)

The system (5.105) has an infinite number of possible solutions, from which we can select the
following:

α1 =

√
b21b32b33

b11b12b23
α2 =

√
b32b33

b22b23
α3 = 1

β1 =

√
b11b23

b11b21b32b33
β2 =

√
b23

b22b32b33
β3 =

1
b33

(5.106)

The influence matrix
[
I1,e
]

scaled using (5.106) has the following structure:

[
I1,e
]′

=




b′11 = 1 b′12 = 10−2 b′13 = 10−2

b′21 = 10−2 b′22 = 1 b′23 = 1

b′31 = 0 b′32 = 1 b′33 = 1




and the condition number C ′
I ≈ 1011. This condition number is the same as for a simple row or

column scaling. However, if the block scaling is followed by row scaling, then the condition
number obtained after correcting only the smallest singular value is further decreased down
to C ′′

I ≈ 108. The singular values of matrix
[
I1,e
]′′ scaled in this way are presented on figure

5.2-right. The condition number of each block of the influence matrix corresponding to m = 0
can be decreased by scaling its rows only.

Conclusions

The regularization of the influence matrix performed using SVD preceded by the scaling of
the matrix blocks and rows11 makes it possible to use the influence matrix method for high
resolutions (e.g. (M = 128) × (K = 192) × (N = 96)). The same threshold for the condition
number of the influence number can be used for all resolutions and values of ǫ−1. This thresh-
old was fixed in our numerical code to C ′′

I < 1010, which means that all singular values γ′′
s for

11The order in which the scaling is performed is important: first the block-scaling and then the row scaling.
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5.5. TESTS - STOKES PROBLEM IN 2D 101

type of matrix number of spurious values
[
I0,p

ψ

]′′
2

[
I0,p

φ

]′′
3

[
I0<m<⌊ M

2 ⌋,p
]′′

1
[
I⌊

M
2 ⌋,e
]′′

4
[
I⌊

M
2 ⌋,o
]′′

3

Table 5.1: Number of spurious modes for different types of matrix blocks building the scaled
influence matrices [Im,p]′′.

which maxi |γ′′
i |

γ′′
s

≥ 1010 are treated as spurious or weakly spurious are set to an arbitrary non-zero
value. The number of spurious modes identified does not depend on the spectral resolution.
The influence matrices corresponding to the Fourier modes m = 0 and m = ⌊M/2⌋ have differ-
ent number of spurious singular values. This is because their structures differ from those of the
matrices corresponding to 0 < m < ⌊M/2⌋. Table 5.4.3 presents numbers of spurious modes
that can be identified for the different types of blocks comprising the influence matrices.

5.5 Tests - Stokes problem in 2D

In this section we present the validation of the implicit solver presented throughout this chap-
ter. In order to isolate properties of the spectral solver from the specific problems concerning
evaluation of the nonlinear term we consider the Stokes problem corresponding to equations
(5.27) for which we choose s = 0 (see definition of s in (3.49c)). This methodology not only
makes it possible to test the spectral solver independently from the pseudo spectral algorithm
for evaluation of the nonlinear terms, but, in addition, the numerical solution can be compared
against an analytic solution calculated for the linear problem. Let us consider a single step of
an implicit, first-order Euler scheme, for a discrete time integration:

E∆hψ (tn+1) = ∆hψ (tn)︸ ︷︷ ︸
rhsψ

(5.107a)

E∆∆hφ (tn+1) = ∆∆hφ (tn)︸ ︷︷ ︸
rhsφ

(5.107b)

We are interested in finding an analytic polynomial solution corresponding to a single step of
the iteration (5.107) assuming that rhsψ and rhsφ can be considered independent of ψ (tn+1) and
φ (tn+1). With this assumption, rhsψ and rhsφ no longer define a Stokes problem, but on the
other hand, a polynomial solution to (5.107) can then exists.
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102 CHAPTER 5. SPECTRAL SOLVER

5.5.1 Polynomial solutions

In order to (5.107) has a polynomial solution in addition to the boundary conditions (3.50)-
(3.51) some additional, but not explicitly known, conditions must be satisfied by both the so-
lution (ψ,φ) and the right-hand-side (rhsψ,rhsφ). To solve this problem a symbolic algorithm
implemented in MapleTM was developed. The general idea is to treat the solution (ψ,φ), as well
as the the right-hand-side (rhsψ,rhsφ), as unknown functions having more degrees of freedom
that it would be normally necessary for satisfaction of the equation (5.107) and the boundary
conditions. The additional degrees of freedom of such an under-determined problem can be
used for selecting the polynomial solution. We will present briefly this algorithm.

If the Fourier transform is applied to (5.107) then the solution can be found separately for
each azimuthal mode. Let ψ̂poly ≡ ψ̂m

poly(r,z), φ̂poly ≡ φ̂m
poly(r,z) denote reference polynomial

solutions corresponding to the Fourier mode m and satisfying (5.107) with the right hand sides

r̂hs
poly

ψ , r̂hs
poly

φ . We represent {ψ̂poly, φ̂poly, r̂hs
poly

ψ , r̂hs
poly

φ , Ω
poly
± } as monomial series of order

O(zKr2N+m).

ψ̂poly(r,z) =
N

∑
n=0

K

∑
k=0

aknzkr2n+m, φ̂poly(r,z) =
N

∑
n=0

K

∑
k=0

bknzkr2n+m

r̂hs
poly

ψ (r,z) =
N

∑
n=0

K

∑
k=0

cknzkr2n+m, r̂hs
poly

φ (r,z) =
N

∑
n=0

K

∑
k=0

dknzkr2n+m

Ω
poly
+ = −Ω

poly
− =

N

∑
n=0

enr2n+m

(5.108)

–1

0

1

z

–1 0 1
r

Figure 5.3: Axisymmetric mode m = 0. Poloidal
component of the velocity (û

poly
r , ûpoly

z ).

All these polynomials together represent
a system of 4(N + 1)(K + 3) degrees of
freedom. We expect that for sufficiently
large N and K there exists a combina-
tion of {akn, bkn, ckn, dkn, en} for which
functions (5.108) satisfy both the equations
and the boundary conditions. After sub-
stituting (5.108) into (5.107) we obtain the
underdetermined linear system of 2(N +

1)(K + 1) equations. Solving such a sys-
tem produces a new reduced set of un-
fixed coefficients. Some of these free coeffi-
cients can be fixed by imposing on system

(ψ̂poly, φ̂poly, r̂hs
poly

ψ , r̂hs
poly

φ ,Ωpoly
± ) the bound-

ary conditions. Finally, a solution satisfying
both the equations and the boundary condi-
tions can be identified. Such a solution can
still have several degrees of freedom which
can be fixed so as to limit, for instance, their
polynomial order or to impose a particular symmetry. We are mainly interested in fixing a non-
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5.5. TESTS - STOKES PROBLEM IN 2D 103

trivial solution containing several frequencies and corresponding to a possibly realistic profile
Ω±. Here we present an example set of polynomials found for the axisymmetric mode (m = 0)
by requiring Ω

poly
± = ±(1 − r6). The available degrees of freedom have been fixed in order to

obtain a flow having two recirculation rolls separated by the mid-plane z = 0.

ψ̂poly(r,z) =
1
64

z(−30z2 + 33z4 + 5)r8 − 5
48

z(z − 1)(z + 1)(5z2 − 1)r6 − 1
2

z5r2(5.109a)

r̂hs
poly

ψ (r,z) = −z(−690z2 + 33z4 + 185)r6 +
3
4

z(−1970z2 + 425 + 1609z4)r4 (5.109b)

−60z(z − 1)(z + 1)(5z2 − 1)r2 − 40z3 + 2z5 (5.109c)

φ̂poly(r,z) = −1
2
(r − 1)3(r + 1)3(z − 1)2(z + 1)2 ∗ z (5.109d)

r̂hs
poly

φ (r,z) = −72z(5z2 − 33)r4 − 96z(3z4 + 108 − 131z2)r2 + 1248z5 (5.109e)

+4344z − 6456z3 (5.109f)

The potentials ψ̂poly and φ̂poly correspond to the following velocity:

û
poly
r = −3r(z − 1)(z + 1)(5z2 − 1)(r − 1)2(r + 1)2 (5.110a)

û
poly
θ (r,z) = −1

8
zr(r − 1)(r + 1)(−30r4z2 + 5r4 + 33r4z4 + 8r2z4 + 8z4) (5.110b)

û
poly
z = 6z(z − 1)2(z + 1)2(r − 1)(r + 1)(3r2 − 1) (5.110c)

–0.5

0

0.5

–1 1
z

u
poly
θ (r = 1

2 ,z)

0

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1
r

u
poly
θ (r,z = 1)

Figure 5.4: Axisymmetric mode m = 0. Left: Azimuthal velocity profile at r = 1
2 ; Right: Az-

imuthal velocity profile at z = h/2 = 1 : rΩ
poly
+ = r(1 − r6).

Tests

Comparing analytic polynomial solutions with the numerically obtained ones has as its aim to
validate the implementation of the multi-step solver. It is expected that for the polynomial right
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104 CHAPTER 5. SPECTRAL SOLVER

hand sides r̂hsψ = r̂hs
poly

ψ and r̂hsφ = r̂hs
poly

φ the solver should give correct solutions ψ̂ = ψ̂poly,
φ̂ = φ̂poly provided that sufficient spectral resolution is used. In this situation, no truncation
error should be made by the τ-method. For a single Fourier mode, we define the relative error
of a numerical solution (ψ̂, φ̂) as

ǫψ ≡ ǫm
ψ =

sup |ψ̂m − ψ̂m
poly|

sup |ψ̂m
poly|

(5.111a)

ǫφ ≡ ǫm
φ =

sup |φ̂m − φ̂m
poly|

sup |φ̂m
poly|

(5.111b)

For all polynomial solutions which have been used in the validation process, we obtained nu-
merical solutions whose relative errors were typically of order O

(
10−14

)
and never exceeding

O
(
10−12

)
(see the bottom surfaces on figure 5.5). The error in satisfaction of the boundary

conditions, which for a generic boundary operator B and boundary values β we define as
ǫBφ = sup|Bφ̂ − β|, was of order O(10−14).

This validation procedure was performed for several polynomial solutions corresponding
to Fourier modes ranging from m = 0 to m = 5. Therefore we can conclude that for polynomial
solutions our solver produces correct solutions to machine precision, which is a good argument
for proving correctness of implementation of the equations and the boundary conditions in the
poloidal-toroidal formulation. Of course, in real applications where the solutions are always
truncated, this validation methodology is insufficient.

5.5.2 Non-polynomial case

If the right-hand-sides r̂hs
m

ψ and r̂hs
m

φ do not correspond to a polynomial solution or if the
spectral solver resolution is insufficient to represent the polynomial solution without truncat-
ing some coefficients then the equations can no longer be satisfied exactly. The idea of the
τ-method is to sacrifice satisfaction of the equations corresponding to the highest frequencies
of the right-hand-side in favour of exact satisfaction of the boundary conditions. This approach
is justified as long as the high frequencies in the right-hand-sides are small compared to the low
frequencies. Spectral methods ensure this condition since the magnitude of the spectral coeffi-
cients of right-hand-sides arising during time integration of well-resolved fields should decay
exponentially.

The situation for a multi-step solver using the τ-method for imposing the boundary con-
ditions is slightly different. Since the intermediate solutions f̂ψ, ĝφ and f̂φ suffer from the τ-
error distributed between all spectral coefficients the error committed by (ψ̂, φ̂) is no longer
restricted to the highest frequency equations, but is also present for lower frequency equations.
However, when the error of satisfaction of the equations is computed in physical instead of in
spectral space, one observes that the error is concentrated in the very close neighborhood of the
boundaries, rapidly decaying with the distance from the boundaries (see figure 5.5-left). This
behavior is similar to that observed for a standard one-step τ-solver. We define the error of
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5.5. TESTS - STOKES PROBLEM IN 2D 105

satisfaction of the equations as

ǫeqψ =
|E∆hψ̂ − r̂hsψ|

sup |r̂hsψ|
, ǫeqφ =

|E∆∆hφ̂ − r̂hsφ|
sup |r̂hsφ|

(5.112)

This error depends significantly on the right-hand-side functions r̂hsψ and r̂hsφ. For completely
arbitrary right-hand-sides, the boundary conditions can be very constraining and can lead to
a nearly singular solution suffering from spurious oscillations. The maximal relative error
(5.112), while still mainly restricted to the neighborhood of the boundaries, can then reach a
level significantly higher than 100%. During time integration, however, when the right-hand-
sides are calculated from the solution found at the previous timestep, the errors ǫeqψ ,ǫeqφ are
considerably smaller. Typically12, these errors are O(0.01) for non-axisymmetric modes ψ̂m

and of order O(0.1) for φ̂m. For the axisymmetric mode m = 0 the maximal error of satisfac-
tion of the equation for ψ̂0 is smaller, O(10−6) on the boundaries and O(10−10) for the internal
points. This is much less than for φ̂0, for which the error in cylinder corners reaches O(1)!
There is an explanation for this. The axisymmetric poloidal flow defined by φ̂0 describes a two-
dimensional flow in a rectangular container with stationary walls. For this configuration, an
analytic asymptotic solution for the flow near the container corners was provided by Moffatt
[59]. This solution is not infinitely regular in the corner. The second derivative of the vortic-
ity diverges13 which implies that the bi-Laplacian of the velocity also diverges at the domain
corners. The error ǫm

eqφ
(5.112) measures satisfaction of (5.27b) which corresponds to the axial

component of the Laplacian of the Navier-Stokes equations. For exact solutions to the con-
tinuous two-dimensional Stokes problem this quantity must therefore diverge at the cylinder
corners unlike the numerically computed value, which is forced to be finite and regular. This
explains the high level of error for φ̂0. The Stokes solutions in the proximity of the corners are
also singular for three-dimensional flows (some analytic results have been provided by Hills
& Moffatt [35]). This is the reason why, for the non-axisymmetric modes, we can observe the
same corner singularity for both ψ̂m and φ̂m, which are coupled for m 6= 0 (see figure 5.6).
Satisfaction of the Navier-Stokes equation at the corners is ensured since it follows from the
satisfaction of the boundary condition, which our solver imposes to precision O

(
10−14

)
.

At the interior points, the relative error (5.112) for all Fourier modes very rapidly reaches a
level of order O(10−6) (at a distance of only two points away from the boundaries this error is
O(10−4)). This proves that, for the multi-step solver, the non-satisfaction of the equations for
low frequencies does not have severe consequences for the spatial distribution of the error in
physical space.
On figure 5.5 we show the decimal logarithm of the relative error (5.112) for ψ̂0 and φ̂0 evalu-
ated in physical space. The errors represented on figure 5.5 are computed after 100 timesteps.
The relative error for m = 2 is presented on figure 5.6. One should note that the errors that

12Here we consider only right-hand-sides obtained from time iteration performed without the nonlinear term.
Generally, the nonlinear term introduces arbitrary components to the right-hand-side, due to the truncation errors
as well as amplified high frequencies because of multiplication. In consequence, the right-hand-sides r̂hsψ and r̂hs

m
φ

in the nonlinear solver can be weakly incompatible with the boundary conditions and can amplify the equation
satisfaction error. We will consider these and other properties of the nonlinear solver in section 6.1.

13ω ∼ r1.74...
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Figure 5.5: Error of satisfaction of equations for m = 0, after 100 time-iterations of a linear multi-
step solver. Resolution used: K = 64, N = 32. Left: (upper surface) ǫm=0

eqψ
for Stokes problem,

(bottom surface) ǫm=0
eqψ

for polynomial solution (5.109); Right: (upper surface) ǫm=0
eqφ

for Stokes
problem, (bottom surface) ǫm=0

eqφ
for polynomial solution (5.109).
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Figure 5.6: Error of satisfaction of equations for m = 2, after 100 time-iterations of a linear multi-
step solver. Resolution used: K = 64, N = 32. Left: (upper surface) ǫm=2

eqψ
for Stokes problem,

(bottom surface) ǫm=2
eqψ

for polynomial solution; Right: (upper surface) ǫm=2
eqφ

for Stokes problem,
(bottom surface) ǫm=2

eqφ
for polynomial solution.

we are discussing represent quite severe criteria, since we analyze the satisfaction of the curl
and double curl of the original Navier-Stokes equations governing the velocity. It should be
expected that, for resolution K = 64, N = 32 the maxima of the high-frequency spectrum14 of
the errors in satisfying the original Navier-Stokes equations would correspond to the maxima
of ǫm

eqψ
and ǫm

eqφ
divided by coefficients of orders O(64) and O(642), respectively.

14These high-frequency errors correspond to errors situated near the boundary.
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5.5. TESTS - STOKES PROBLEM IN 2D 107

Spatial convergence

The important indicator of spatial convergence for spectral methods is the decay rate of high-
frequency coefficients in the solution fields. For a well-behaved solver in the absence of volume
and boundary singularities, the magnitude of spectral coefficients should decay rapidly15 with
their frequency. On figures 5.7 and 5.8 we represent in logarithmic scale the spectral coefficients
corresponding to a solution obtained after 100 timesteps of the linear (Stokes) solver. The spec-
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Figure 5.7: Spectral coefficients for m = 0, after 100 timesteps of a linear multi-step solver.
Resolution used: K = 64, N = 32. Left:

[
ψ̂0
]
; Right:

[
φ̂0
]
.

tral coefficients presented on figures 5.7, 5.8 were obtained by initializing the linear simulation
with arbitrary spectral coefficients of low frequency (magnitude of initial coefficients O(10−2)).
The spectral coefficients for the axisymmetric mode ψ̂0 behave correctly, showing exponential
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Figure 5.8: Spectral coefficients for m = 1, after 100 timesteps of a linear multi-step solver.
Resolution used: K = 64, N = 32. Left:

[
ψ̂1
]
; Right:

[
φ̂1
]
.

decay with frequency (figure 5.7-left). Convergence of other modes (figures 5.7-5.9) is not per-

15It is expected that for a laminar flow this decay rate should be exponential. The existence of thin boundary
layers can significantly influence the convergence.
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Figure 5.9: Spectral coefficients for m = 2, after 100 timesteps of a linear multi-step solver.
Resolution used: K = 64, N = 32. Left:

[
ψ̂2
]
; Right:

[
φ̂2
]
.

fectly exponential (i.e. high frequency spectral coefficients seem not to decrease below a level
O(10−12)). This can almost certainly be attributed to the existence of the corner singularities.

5.6 Towards an MHD solver

In this section we present a method for solving the magnetic equations (3.52) with the boundary
conditions stated in (3.53)-(3.54). To our knowledge, at present, there exist no methods applica-
ble to the spectral formulation in a finite cylinder. The main problem is due to the topologically
different nature of the external region (vacuum) which is not simply-connected. Additionally
the external domain is unbounded and extends to infinity which imposes use of a different class
of spectral basis for representing the external solution. Finally, the internal boundary of the ex-
ternal region (a cylindrical hole) makes imposition of the boundary conditions very problem-
atic16. A possible approach can be to define the induction equation in an integral formulation.
The most important advantage is then that no boundary conditions must be specified. Using
this formulation Dobler & Rädler [21] solved a stationary kinematic dynamo problem in cylin-
drical geometry and provided a mathematical formulation for a temporal eigenvalue prob-
lem17. A similar integro-differential formulation for finite-volume/boundary-element method
was proposed by Iskakov et al. [38]. Both methods can be seen as examples of the Green func-
tion method applied to a particular space-discretization.

We present here a method for solving the induction equation (2.7b) in the poloidal-toroidal
formulation (3.52) in a configuration where the internal domain is a finite cylinder of finite
conductivity and the external medium is a vacuum. This technique can also be considered as a
variant of the Green function method, applied to a purely differential formulation.

16In spherical coordinates such a boundary (a spherical hole) is associated with a single (radial) variable. In
cylindrical coordinates, imposition of the boundary conditions on an internal boundary (cylindrical hole), cannot
be performed by standard spectral methods.

17The magnetic field is represented as B(x, t) = B̃(x)eγt, with γ being a complex number.
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5.6. TOWARDS AN MHD SOLVER 109

5.6.1 External solution in vacuum

If the medium surrounding the cylinder is a vacuum, we will show that the external mag-
netic field can be expressed in terms of the internal field. For problems where the boundary
conditions are imposed on a spherical boundary, this was demonstrated by Dudley & James
[22]. However, if the boundary cannot be associated with a condition for a single variable
(e.g. r = R), the problem becomes more complicated. We will present a numerical method for
finding the internal solution independently from the external one, which can be determined a

posteriori if needed.

We use spherical coordinates to express the external solution because, outside a cylinder
of finite length, it must satisfy φvac(ρ → ∞) → 0, where ρ is the spherical radius satisfying
ρ = r2 + z2 (outside an infinitely long or axially periodic cylinder, cylindrical coordinates would
be the natural choice). The general solution to ∆φvac = 0 satisfying this boundary condition is

φvac = ∑
l

∑
−l≤m≤l

φ̂vac
lm ρ−(l+1)Ylm(ξ,θ) =

= ∑
m

eimθ ∑
l≥|m|

φ̂vac
lm ρ−(l+1)clmPlm(cos(ξ))

with clm =

√
2l + 1

4π

(l − m)!
(l + m)!

(5.113)

whereξ is the polar angle and θ is the longitude. Functions Ylm(ξ,θ) are the spherical har-
monics describing the angular dependence of the solution and Plm are the associated Legendre
polynomials. The most important property of (5.113) is that for a given longitudinal mode m,
the solution (5.113) has degrees of freedom associated only with its polar dependence on ξ.
These degrees of freedom are counted by the single index l. The radial dependence of (5.113)
is fixed! This means that in order to determine φ̂vac

m it is sufficient to specify its values on a one-
dimensional boundary.

θ
r

z

θ

ρ

ξ

Figure 5.10: Illustration of coordinate
mapping : x(r,θ,z) 7→ x(ρ,θ,ξ).

The shape of the boundary does not play any role –
as long as the boundary is simply connected it can
be parametrized. The conditions (3.53)-(3.54) spec-
ified at the cylinder boundaries (r = 1,z) ∪ (r,z =

± h
2 ), for a given m, are also one-dimensional. It is

then possible to perform a coordinate change and
establish a relation between the free coefficients
φ̂vac and the boundary functions (ψ̂B, φ̂B)(x ∈ (r =

1,z)∪ (r,z =± h
2 )) through the matching conditions

(3.53)-(3.54). The relations between (r,z) and (ρ,ξ)

are the following:

ρ2 = r2 + z2 tanξ =
r

z

sinξ =
r

ρ
cosξ =

z

ρ

(5.114)
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110 CHAPTER 5. SPECTRAL SOLVER

A graphical description of both cylindrical and spherical coordinates is presented on figure
5.10. In order to express the differential expressions present in boundary conditions (3.53-3.54)

we will need to write ∂φvac

∂r

∣∣∣
z=± h

2

and ∂φvac

∂z

∣∣∣
r=1

in terms of ∂φvac

∂ρ

∣∣∣
ξ

and ∂φvac

∂ξ :




∂

∂r
∂

∂z


 =




∂ρ

∂r

∂ξ

∂r
∂ρ

∂z

∂ξ

∂z







∂

∂ρ

∂

∂ξ


 (5.115)

where the matrix elements can be evaluated by using (5.114)

∂ρ

∂r
=

dρ

dρ2
∂ρ2

∂r
=

r

ρ
= sinξ

∂ξ

∂r
=

dξ

d tanξ

∂tanξ

∂r
= cos2 ξ

1
z

=
z

ρ2 =
cosξ

ρ

∂ρ

∂z
=

dρ

dρ2
∂ρ2

∂z
=

z

ρ
= cosξ

∂ξ

∂z
=

dξ

d tanξ

∂tanξ

∂z
= −cos2 ξ

r

z2 = − r

ρ2 = −sinξ

ρ

(5.116)

Substituting (5.116) into (5.117) gives:




∂

∂r
∂

∂z


 =




r

ρ

z

ρ2

z

ρ
− r

ρ2







∂

∂ρ

∂

∂ξ


 (5.117)

We introduce functions {φ̂Y
l } defined as

φ̂Y
l (ρ,ξ) ≡ φ̂Y

lm(ρ,ξ) = ρ−(l+m+1)cl+m,mPl+m,m(cos(ξ)) ; l = 0, . . . , L − 1 (5.118)

so that, for a given Fourier mode φ̂vac
m of φvac, we have:

φ̂vac(ρ,ξ) ≡ φ̂vac
m (ρ,ξ) =

L−1

∑
l=1

φ̂vac
l φ̂Y

lm(ρ,ξ) (5.119)

The partial derivatives ∂φvac

∂r and ∂φvac

∂z present in (3.53)-(3.54) can be determined by evaluating
∂φ̂Y

l
∂r and ∂φ̂Y

l
∂z using (5.117):

∂φ̂Y
l

∂r
=

r

ρ

∂φY
l

∂ρ
+

z

ρ2

∂φY
l

∂ξ

∂φ̂Y
l

∂z
=

z

ρ

∂φY
l

∂ρ
− r

ρ2

∂φY
l

∂ξ

(5.120)

where ∂φY
l

∂ρ and ∂φY
l

∂ξ , by using (5.118), can be written as:

∂φ̂Y
l

∂ρ
= − l + m + 1

ρ
φ̂Y

l = −(l + m)ρ−(l+m+2)cl+m,mPl+m,m(cos(ξ))

∂φ̂Y
l

∂ξ
= −ρ−(l+m+1)cl+m,m sin(ξ)︸ ︷︷ ︸

r/ρ

P′
l+m,m(cos(ξ)︸ ︷︷ ︸

z/ρ

)
(5.121)
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5.6. TOWARDS AN MHD SOLVER 111

Substituting (5.121) into (5.120) results in the following expressions

∂φ̂Y
l

∂r
(r,z) = cl+m,mρ−(l+m)

[
− r

ρ3

(
(l + m)ρPl+m,m(z/ρ) + zP′

l+m,m(z/ρ)
)]

(5.122a)

∂φ̂Y
l

∂z
(r,z) = cl+m,mρ−(l+m)

[
− 1

ρ3

(
(l + m)zρPl+m,m(z/ρ) − r2P′

l+m,m(z/ρ)
)]

(5.122b)

ρ ≡ ρ(r,z) =
√

r2 + z2

5.6.2 Continuity conditions

For simplicity, we will drop the B subscript, so that in this section we have:

ψ ≡ ψB, φ ≡ φB, ψ̂ ≡ ψ̂B, φ̂ ≡ φ̂B

Before presenting the method for solving (3.52), we will further simplify the corresponding
boundary conditions (3.53)-(3.54) by writing them in a form corresponding to the m’th az-
imuthal Fourier mode:

imψ̂ + r∂r

(
∂zφ̂ − φ̂vac

)
= 0

∂rψ̂ = 0

∆φ̂ = 0

∂zφ̂ − φ̂vac = 0
(

∂t − Rm−1 (∆ − r−2))
(

im

r
ψ̂ + ∂2

rzφ̂

)
+ Rm−1 2im

r3 ∂zφ̂ = 0





at r = 1

(5.123a)

(5.123b)

(5.123c)

(5.123d)

(5.123e)

imψ̂ + r∂r

(
∂zφ̂ − φ̂vac

)
= 0

−r∂rψ̂ + im
(
∂zφ̂ − φ̂vac

)
= 0

∆hφ̂ + ∂zφ̂vac = 0





at z = ± h
2

(5.124a)

(5.124b)

(5.124c)

Equations (5.123)-(5.124) can be further simplified by considering problems for m = and m 6= 0
separately.

Axisymmetric case (m = 0)

For the axisymmetric mode, simplification is straightforward: by substituting m = 0 into (5.123)-
(5.124) we obtain:

∂r

(
∂zφ̂ − φ̂vac

)
= 0

∂rψ̂ = 0

∆φ̂ = 0

∂zφ̂ − φ̂vac = 0





at r = 1

(5.125a)

(5.125b)

(5.125c)

(5.125d)
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112 CHAPTER 5. SPECTRAL SOLVER

where the magnetic compatibility condition was dropped, since it is not necessary for the ax-
isymmetric mode (see section 3.4.1 for explanations). At the top and bottom disks (z = ± h

2 ) we
have:

∂r

(
∂zφ̂ − φ̂vac

)
= 0

∆hψ̂ = 0 ⇐ ψ̂ = 0 ⇐ ∂rψ̂ = 0

r−1∂rr∂rφ̂ + ∂zφ̂vac = 0





at z = ± h
2

(5.126a)

(5.126b)

(5.126c)

where the leftward implication in (5.126b) follows from the gauge choice for ψ which is de-
termined up to an arbitrary function of coordinate z. We can therefore choose ψ̂(r = 0,z) = 0,
which together with ∂rψ̂ = 0 implies ψ̂ = 0 at z = ± h

2 .
From (5.125)-(5.126) we conclude that for the axisymmetric mode, the toroidal (ψ̂) and poloidal
(φ̂) potentials are completely decoupled. This is analogous to the velocity potentials ψ̂u and φ̂u

whose axisymetric components are also decoupled. The external solution φ̂vac is coupled only
to φ̂.

Non-axisymmetric case (m 6= 0)

Boundary conditions at r = 1 remains in the form (5.123) while (5.124), corresponding to z =

± h
2 , can be further simplified. For m 6= 0 we can write

∂zφ̂ − φ̂vac =
r

im
∂rψ̂ at (r,z = ±h

2
) ∪ (r = 1,z) (5.127)

which follows directly from (5.124b) and (5.123b,d). We substitute (5.127) into (5.124a) obtain-
ing:

0 = imψ̂ + r∂r

( r

im
∂rψ̂
)

=
r2

im
∆hψ̂ at z = ±h

2
(5.128)

Using (5.128) together with (5.123b) one can notice that ψ̂ satisfies at z = ± h
2 the Laplace equa-

tion with homogeneous Neumann conditions which for non-axisymmetric modes implies:

ψ̂ = 0 at z = ±h

2
(5.129)

Using (5.129) we can deduce from (5.124b) that

∂zφ̂ − φ̂vac = 0 at z = ±h

2
(5.130)

Therefore, the final set of continuity conditions at z = ± h
2 can be written as:

∆hψ̂ = 0 or ψ̂ = 0

∂zφ̂ − φ̂vac = 0

∆hφ̂ + ∂zφ̂vac = 0





at z = ± h
2

(5.131a)

(5.131b)

(5.131c)
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5.6. TOWARDS AN MHD SOLVER 113

5.6.3 Multi-Poisson solver for induction equation

We will formulate the multi-step procedure for solving the induction equation in toroidal-
poloidal formulation (3.52) with the boundary conditions specified in the preceding section.
The formulation will be analogous to that presented for the hydrodynamic problem in section
5.3.2. We begin by redefining symbols E, r̂hsψ and r̂hsφ as follows:

E ≡ (∂t − Rm−1∆)

r̂hsψ ≡ r̂hsψB
≡ êz · sB

r̂hsφ ≡ r̂hsφB
≡ êz · ∇ × sB

sB ≡ −∇× (u × B)

Axisymmetric mode (m = 0):

For potential ψ̂ we have:

E f̂ψ = r̂hsψ ;





∫ 1
0 f̂ψ rdr = 0 ⇔ ∂rψ̂|r=1 = 0

f̂ψ

∣∣∣
z=± h

2

= 0 ⇔ ∆hψ̂
∣∣
z=± h

2
= 0 ⇔ ∂rψ̂|z=± h

2
= 0

(5.132a)

∆hψ̂ = fψ ; ψ̂
∣∣
r=0 = 0 (5.132b)

To the left of the semi-colon we have written the PDE and to the right we have written the
boundary condtions which we will impose on this PDE.
For φ̂ we have:

E f̂φ = r̂hsφ ; f̂φ

∣∣∣
∂

= σ̂fφ
⇔





(
f̂φ + ∂2

z φ̂
)∣∣∣

r=1
= 0 ⇔ ∆φ̂

∣∣
r=1 = 0

(
f̂φ + ∂zφ̂vac

)∣∣∣
z=± h

2

= 0 ⇔
(
∆hφ̂ + ∂zφ̂vac

)∣∣
z=± h

2
= 0

(5.133a)

∆hφ̂ = f̂φ ; φ̂|r=1 = σ̂φ ⇔
(
∂zφ̂ − φ̂vac

)∣∣
r=1 = 0 (5.133b)

and for coefficients φ̂vac
l :

∆φ̂vac = 0 ;

{
φ̂vac(ρ → ∞) = 0

∂r(∂zφ̂ − φ̂vac)
∣∣
∂

= 0
(5.136)

We have written the equation (5.136) for φ̂vac in order to define a complete system of equations
and boundary conditions, but this equation need not be solved, since the form of φ̂vac satisfying
φ̂vac(ρ → ∞) → 0 is known and given in (5.113). This leaves only the boundary conditions at
the solid boundary ∂ that remain to be satisfied.
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114 CHAPTER 5. SPECTRAL SOLVER

Non-axisymmetric modes (m 6= 0):

E f̂ψ = r̂hsψ ;





f̂ψ

∣∣∣
r=1

= σ̂fψ
⇔

(
imψ̂ + r∂r(∂zφ̂ − φ̂vac) = 0

)∣∣
r=1

f̂ψ

∣∣∣
z=± h

2

= 0 ⇔ ∆hψ̂
∣∣
z=± h

2
= 0 ⇔ ∂rψ̂|z=± h

2
= 0

(5.137a)

∆hψ̂ = fψ ; ∂rψ̂|r=1 = 0 (5.137b)

E f̂φ = r̂hsφ ; f̂φ

∣∣∣
∂

= σ̂fφ
⇔





(
f̂φ + ∂2

z φ̂
)∣∣∣

r=1
= 0 ⇔ ∆φ̂

∣∣
r=1 = 0

(
f̂φ + ∂zφ̂vac

)∣∣∣
z=± h

2

= 0 ⇔
(
∆hφ̂ + ∂zφ̂vac

)∣∣
z=± h

2
= 0

(5.138a)

∆hφ̂ = f̂φ ; φ̂|r=1 = σ̂φ ⇔
(
∂zφ̂ − φ̂vac

)∣∣
r=1 = 0 (5.138b)

∆φ̂vac = 0 ;





φ̂vac(ρ → 0) = 0(
∂t − Rm−1

(
∆ − r−2

))(
im
r ψ̂ + ∂r∂zφ̂

)
+

+Rm−1 2im
r3 ∂zφ̂ = 0

(5.139)

It can seem strange that the magnetic compatibility condition, which concerns essentially the
internal solution only, is specified in (5.139) as a boundary condition for φ̂vac. The fact that we
have written this condition in (5.139) does not mean that it is imposed on φ̂vac alone. The com-
patibility condition as well as the conditions defined by σ̂fψ

, σ̂fφ
and σ̂φ are coupled and must be

imposed by the influence matrix technique. The reason for writing these boundary conditions
next to the differential equations (5.137)-(5.139) of the multi-step solver is to show that the total
number of the boundary conditions matches the differential order of the equations. Only these
boundary conditions which are explicitly written for ψ̂ and φ̂ (without using σ̂) can be imposed
directly (by the τ-method) at the indicated level of the multi-step procedure.

5.6.4 Influence matrix for the magnetic problem

The boundary conditions specified by σ̂fφ
, σ̂φ in (5.133), (5.137), (5.138) and also those from

(5.136) and (5.139) must be imposed by the influence matrix technique discussed in section 5.4
for the Stokes solver.

Main idea Before applying this methodology to the magnetic problem we recall briefly the
key idea, which is a decomposition of the solutions φ, ψ into homogeneous and particular
parts. The homogeneous solutions (φh, ψh), satisfy equations (3.52c) with r̂hsψ = r̂hsφ = 0 and
with the boundary conditions (3.53)-(3.54). The particular solutions (φp, ψp) satisfy (3.52c) but
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5.6. TOWARDS AN MHD SOLVER 115

with simplified boundary conditions (i.e all conditions that cannot be satisfied directly by the
multi-step solver are replaced by homogeneous Dirichlet conditions). This can by written as:

ψ = ψp + ψh = ψp + ∑σi
ψψt

i

φ = φp + φh = φp + ∑σi
φφt

i

where {ψt
i}, {φt

i} – called the test functions – build the unknown homogeneous solutions. The
influence matrix defines a linear system whose solution is {σi

ψ} and {σi
φ}.

After this qualitative digression, we return now to our problem. The test functions needed
to construct the influence matrix are the following:

{φ̂t
k ; k = 1, . . . ,K} :





σ̂fφ

∣∣∣
r=1

(z) = δ(z − zk)

σ̂fφ

∣∣∣
z=± h

2

(r) = 0

σ̂φ

∣∣
r=1 (z) = 0

{φ̂t
n ; n = 1, . . . ,2Nm} :





σ̂fφ

∣∣∣
r=1

(z) = 0

σ̂fφ

∣∣∣
z=± h

2

(r) = δ(r − rn) ; z =

{
h
2 if n ≤ Nm

− h
2 if Nm

< n ≤ 2Nm

σ̂φ

∣∣
r=1 (z) = 0

{φ̂t
k′ ; k′ = 1, . . . ,K} :





σ̂fφ

∣∣∣
r=1

(z) = 0

σ̂fφ

∣∣∣
z=± h

2

(r) = 0

σ̂φ

∣∣
r=1 (z) = δ(z − zk′)

(5.140)

where K denotes the axial resolution and Nm ≡ N −⌊M/2⌋ is the number of radial polynomials
associated with the m’th Fourier mode. For non-axisymmetric modes we have additionally:

{ψ̂t
k ; k = 1, . . . ,K} :





σ̂fψ

∣∣∣
r=1

(z) = δ(z − zk)

σ̂fψ

∣∣∣
z=± h

2

(r) = 0
(5.141)

where the braces to the right of (5.140)-(5.141) indicates how equations (5.132)-(5.133) and
(5.137)-(5.138) must be modified in order to define the test solution. The notation δ(r− rn), δ(z−
zk) should be understood as defining solutions whose boundary values are non-zero only at a
single point or, in spectral space, for single spectral coefficient.
The test functions φ̂Y

l for the external potential φvac are defined by (5.118):

{φ̂Y
l ; l = 1, . . . ,2Nm + K} ≡ {ρ−(l+m)cl+m,mPl+m,m(z/ρ) ; l = 1, . . . ,2Nm + K} (5.142)

To simplify the presentation, we will not separate even and odd terms in the influence matrix.
In practical implementation this should be done for reasons of both accuracy and performance.
This separation can be performed in the same way as for the hydrodynamic problem in section
5.4.2.
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116 CHAPTER 5. SPECTRAL SOLVER

Influence matrix for axisymmetric mode (m = 0):

On a schematic view below we present the influence matrix and the corresponding right-hand-
side vector built from the particular solution which is obtained from (5.133) by setting σ̂fφ

=

σ̂φ = 0.

φ̂t
k φ̂t

n φ̂t
k′ φ̂Y

l↓ ↓ ↓ ↓
∆φ̂|r=1 :

(∆hφ̂ + ∂zφ̂vac)|z=± h
2

:

(∂zφ̂ − φ̂vac)|r=1 :

∂r(∂zφ̂ − φ̂vac)|∂ :




∆ ∂2
z ∂2

z 0

∆h 0 0 ∂z

∂z ∂z ∂z −1

∂2
rz ∂2

rz ∂2
rz −∂r







σ̂k
fφ

σ̂n
fφ

σ̂k′
φ

φ̂vac
l




=




−∆φ̂p

−∆hφ̂p

−∂zφ̂p

−∂2
rzφ̂p




K

2N

K

2N + K

K 2N K 2N + K
(5.143)

The solution to this linear system is a vector of unknown coefficients/boundary values. Coef-
ficients {σ̂k

fφ
, σ̂n

fφ
, σ̂k′

φ } determine the internal solution for the poloidal potential φ̂ while {φ̂vac
l }

define the external solution φ̂vac.

We precise that the elements of the influence matrix defining the linear system (5.143) are
actually the boundary values of the test functions {φ̂t

k, φ̂t
n, φ̂t

k′ , φ̂
Y
l } after applying to them the

corresponding parts of the boundary operators. We have placed the operator symbols inside
the influence matrix in (5.143) to indicate that the corresponding matrix block is obtained by
applying that operator to the corresponding test function (indicated above the influence ma-
trix). The operators written to the left of (5.143) indicate which of the boundary conditions
stated in (5.123)-(5.124) is being imposed by the corresponding matrix row. Numbers K,2N in-
dicate either the size of the corresponding boundary (rows) or the number of the test functions
(columns).
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5.6. TOWARDS AN MHD SOLVER 117

Influence matrix for non-axisymmetric modes (m 6= 0):

For the non-axisymmetric modes the influence matrix system can be constructed as follows:

φ̂t
k φ̂t

n φ̂t
k′ ψ̂t

k φ̂Y
l

↓ ↓ ↓ ↓ ↓

(∆hφ̂ + ∂zφ̂vac)|z=± h
2

:

∆φ̂|r=1 :

∂r(∂zφ̂ − φ̂vac)|r=1 :

C(φ̂, ψ̂)|r=1 :

(∂zφ̂ − φ̂vac)|∂ :




∆h 0 0 0 ∂z

∂2
z ∆ ∂2

z 0 0

∂2
rz ∂2

rz ∂2
rz im −∂r

C1
φ C1

φ C1
φ C1

ψ 0

∂z ∂z ∂z 0 −1







σ̂n
fφ

σ̂k
fφ

σ̂k′
φ

σ̂k
ψ

φ̂vac
l




=




−∆hφ̂p

−∆φ̂p

−∂2
rzφ̂p

RHSC

−∂zφ̂p




2Nm

K

K

K

2Nm

+K

2Nm K K K 2Nm + K
(5.144)

where C ≡ C1 − C0 is a time-discretized form of the magnetic compatibility condition, with C1

and C0 defined as follows:

C1{φ̂(t), ψ̂(t)} = C1
ψψ̂(t) + C1

φφ̂(t)

C1
ψψ̂(t) =

(
1 − ∆tRm−1

︸ ︷︷ ︸
ǫ

(∆ − r−2)

)
imr−1ψ̂(t)

C1
φφ̂(t) =

(
1 − ∆tRm−1

︸ ︷︷ ︸
ǫ

(∆ − r−2)

)
∂2

rzφ̂(t) + ǫ
2im

r3 ∂zφ̂(t)

C0{φ̂(t), ψ̂(t)} = imr−1ψ̂(t − ∆t) + ∂2
rzφ̂(t − ∆t)

(5.145)

For solutions represented by the homogeneous and particular parts the discretized magnetic
compatibility condition can be written as:

C
{

φ̂, ψ̂
}

= C1{φ̂p, ψ̂p
}

+ C1
{

φ̂h, ψ̂h
}
− C0{φ̂, ψ̂

}
= 0

thus, the expression RHSC present in (5.144) has the following form:

RHSC
{

φ̂p, ψ̂p, φ̂, ψ̂
}
≡ −C1{φ̂p, ψ̂p

}
+ C0{φ̂, ψ̂

}

The time discretization scheme used for the magnetic compatibility condition must be the same
as that used for integration of the induction equation. In (5.145) we used the first-order implicit
Euler scheme. In addition to the particular and test solutions, the final solution from the pre-
ceding timestep is neccessary to evaluate the magnetic compatibility condition.
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118 CHAPTER 5. SPECTRAL SOLVER

Evaluation of ψ̂Y
l :

The test functions ψ̂Y
l and their derivatives ∂rψ̂Y

l and ∂zψ̂Y
l can be evaluated using (5.118) and

(5.122) at the collocation points of either Chebyshev or radial polynomials, depending on
whether the values are to be evaluated at the lateral or horizontal boundary. These values
must to be transformed into spectral space before entering them into the influence matrix.

One can notice that the form of the radial dependence of φ̂Y
l ∼ ρ−(l+m) is very ill-conditioned

for larger values of l and m. The reason for using this form of test functions was to simplify
the presentation of the method. A possible better-conditioned method would be to solve the
external Laplace problem for the test functions numerically in spherical coordinates mapping
the semi-infinite range of the spherical radius ρ to a finite interval and then using Chebyshev
polynomials. We would continue to use spherical harmonics in the angular directions and
δ-type Dirichlet boundary conditions.

5.6.5 Elimination of external solution

One can notice that the right-hand sides of the influence matrix systems (5.143)-(5.144)) do not
depend on the external potential in the vacuum. This means that the coefficients {σ̂fφ

, σ̂φ, σ̂fψ
}

defining the internal solution can be found independently from {φ̂vac
l } defining the external

potential. The Schur factorization can be performed on the influence matrix: we can write the
influence matrix system in a block-matrix form




A B

C D







σ

φvac




=




α

β




(5.146)

where A, B,C, D correspond to the matrix blocks in (5.143)-(5.144) separated by the thick solid
lines. From (5.146) we obtain

Aσ + Bφvac = α

Cσ + Dφvac = β
⇒

φvac = D−1(β − Cσ)

⇓(
A − BD−1C

)
σ =

(
α − BD−1β

)

Therefore, we can define the influence matrix system for the internal problem as:

Iintσ = RHSint

where
Iint ≡

(
A − BD−1C

)
RHSint ≡

(
α − BD−1β

)

The influence matrix Iint can be constructed once and for all in the preprocessing step. The
right-hand-side vector RHSint must be evaluated at each timestep. The inverse matrix D−1

as well as (Iint)−1 musto be evaluated after regularizing the entire influence matrix (5.143) or
(5.144) by the method explained in section 5.4.3.
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5.7. CONCLUDING REMARKS 119

5.7 Concluding remarks

In this chapter we have presented the linear part of the spectral Navier-Stokes solver for in-
compressible flows in toroidal-poloidal formulation. The classic τ-method for satisfaction of
boundary conditions for the Poisson problem has been formulated: first, for one-dimensional
problems in either axial or radial directions and then, for a two-dimensional solver in (r,z)
plane. On top of the Poisson solver we have built our multi-step spectral solver in the toroidal-
poloidal variable formulation. The influence matrix method for satisfaction of the high differen-
tial order coupled boundary conditions has been explained in detail. The relation between the
influence matrix method and the classic Green function method has been outlined.

We have addressed technical issues concerning the singular character of the influence ma-
trix. We have proposed the singular value decomposition for elimination of the singular vec-
tors/values from the influence matrix. The problem of inversion of a regularized, but very
ill-conditioned influence matrix, was solved by performing an appropriate scaling.

The precision of the method has been checked against exact polynomial solutions and
against the numerically obtained solutions of the Stokes problem. The solver has been proved
to have the properties expected of a spectral-precision method.

A method for solving the induction equation for the magnetic field in the toroidal-poloidal
formulation has been introduced. By using an analogous methodology to that presented for
the hydrodynamic Navier-Stokes solver we succeeded in defining the problem for the mag-
netic potentials satisfying the continuity conditions between the internal and external magnetic
fields. The method allows us to solve for the internal field without determining the external
field. Practical implementation of this method is left for the future work.
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Chapter 6

Stability/Validation

In the preceding chapter we presented the spectral solver for the Stokes/Navier-Stokes equa-
tions, focusing on the problem of satisfaction of the boundary conditions in potential formula-
tion. In this chapter we complete the presentation of the entire algorithm by discussing in detail
problems concerning evaluation of the nonlinear term of the Navier-Stokes equations. We also
discuss arguments for the choice of the time integration scheme best suited for the problem
in hand. We validate our Navier-Stokes solver on 2D and 3D test problems well documented
in the literature. Finally we discuss the convergence and stability properties of the complete
implementation of the Navier-Stokes solver.

6.1 Nonlinear term

In order to evaluate the nonlinear term (6.2) the point-by-point product of functions must be
computed. The product of two functions in physical space correspond to their convolution in
spectral space (which is the statement of the convolution theorem):

f̂ g = f̂ ∗ ĝ ≡
∫

f̂ (k′)ĝ(k − k′)dk′ ↔
[

f̂ g
]

k
= ∑

i+j=k

f̂i ĝj
i, j ∈ [0, N − 1]

k ∈ [0,2(N − 1)]
(6.1)

Convolution of two functions sampled at N collocation points has therefore complexity of
O(N2) and can be further optimized by using the fast transform based on the FFT algorithm
(see Orszag [66]). We use the pseudo-spectral approach, introduced by Orszag [67], which is an
alternative to computing the convolution and consists of the following steps:

• transforming the spectral field into physical space,

• computing functions products at collocation points corresponding to the Gauss-type quadra-
ture abscissas for the spectral expansion used for the spectral solver,

• transforming the computed products back to spectral space.

In terms of computational complexity, the pseudo-spectral approach is equivalent to computing
the convolution since the transformation spectral↔physical can be optimized using the FFT
algorithm.

121
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122 CHAPTER 6. STABILITY/VALIDATION

In the potential problem stated in (3.49) and (3.52) the nonlinear terms sψu ≡ êz ·∇× su, sφu ≡
êz · ∇ ×∇× su and sφB

≡ êz · sB, sψB
≡ êz · ∇ × sB can be computed in the spectral space once

su and sB are evaluated. We recall the form of su and sB given also in (3.49c) and (6.2):

su ≡ (u · ∇)u − (B · ∇)B (6.2a)

sB ≡ −∇× (u × B) (6.2b)

Terms (6.2) involve evaluation of the following generic nonlinear terms:

(f · ∇)f (6.3a)

f × g (6.3b)

Computing (6.3a) in cylindrical coordinates require transformation of 12 three-dimensional
fields into physical space. After that step 3 more inverse transforms for the three components
of the nonlinear term must be computed. The total cost is therefore 15 transforms of a three-
dimensional fields. The second form (6.3b) requires a total of 9 transformations. For situations
where the curl of the Navier-Stokes equations is taken, the curl of the nonlinear term (6.3a) can
be written as

∇× [ (f · ∇)f ] ≡ ∇×
[
−f × (∇× f) +

1
2
∇(f · f)

]

⇓
∇× [ (f · ∇)f ] ≡ −∇× [ f × (∇× f) ] (6.4)

where the right-hand-side of (6.4) requires only 9 transformations instead of 15.

Since, in this chapter, we will consider evaluation of the nonlinear term in the hydrody-
namic problem (B ≡ 0) only, then we will restore the simplified notation from the preceding
chapter:

s ≡ su, ,ψ ≡ ψu, φ ≡ φu, sψ ≡ sψu , sφ ≡ sφu

Using (6.4) we can write the nonlinear terms sψ, sφ in the following form:

sψ ≡ êz · ∇ × s = −êz · ∇ × (u × ω) (6.5a)

sφ ≡ −êz · ∇ ×∇× s = êz · ∇ ×∇× (u × ω) (6.5b)

where ω ≡∇× u is the vorticity.

6.1.1 Evaluation of −u × ω

Since all differential operators acting in the radial direction have a recurrence implementation
(see section 4.4.4) which preserves the parity between the operand and solution, thus the mod-
ified methodology for evaluating of the components of the velocity u and vorticity ω as well as
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6.1. NONLINEAR TERM 123

of the nonlinear term components must be defined. In the cylindrical coordinates the velocity
and vorticity are defined using the toroidal and poloidal potentials as:

u ≡
(

1
r

∂θψu + ∂2
rzφu

)
êr +

(
1
r

∂2
θzφu − ∂rψu

)
êθ + (∆hφu) êz (6.6)

ω ≡
(

1
r

∂θuz − ∂zuθ

)
êr + (∂zur − ∂ruz) êθ +

1
r
(∂rruθ − ∂θur) êz = (6.7)

=

(
∂2

rzψu −
1
r

∂θ∆φu

)
êr +

(
1
r

∂2
θzψu − ∂r∆φu

)
êθ +

1
r
(−∆hψu) êz

These expressions must be transformed into a form which preserves the parity of radial poly-
nomials and make use only of the following set of radial operators:

{
r2,

1
r2 , r∂r, r2∆h, ∆h ≡

1
r2 (r2∆h)

}
(6.8)

This is possible when instead of transforming u and ω into physical space one transforms the
modified fields:

u∗ ≡ rur êr + ruθ êθ + uzêz = (∂θψu + r∂2
rzφu)êr + (∂2

θzφu − r∂rψu)êθ + (∆hφu)êz (6.9a)

ω∗ ≡ rωrêr + rωθ êθ + ωzêz = (∂θuz − ∂zu∗
θ )êr + (∂zu∗

r − r∂ruz)êθ + (−∆hψu)êz (6.9b)

where the êr and êθ components of u and ω have been multiplied by r. Modified vector com-
ponents u∗

r ≡ r ur, u∗
θ ≡ r uθ ,ω∗

r ≡ r ωr ,ω∗
θ ≡ r ωθ have the same parity as the scalar functions

ψ and φ and can therefore be treated using the same differential operators (6.8). The modified
nonlinear term s∗ obtained from (6.9) has the following form:

s∗ = r srêr + r sθ êθ + szêz = −u∗ × ω∗ =

= −(u∗
θ ωz − uzω∗

θ )êr − (uzω∗
r − u∗

r ωz)êθ −
1
r2 (u∗

r ω∗
θ − u∗

θ ω∗
r )êz

and finally the nonlinear terms used in (3.49) can be written as

sψ ≡ êz · ∇ × s =
1
r2 [r∂rs∗θ − ∂θs∗r ] (6.10a)

sφ ≡ −êz · ∇ ×∇× s = − 1
r2

[
∂z (r∂rs∗r + ∂θs∗θ ) − r2∆hsz

]
(6.10b)

6.1.2 Regularity of the nonlinear term

Our multi-step spectral solver not only requires the right-hand-side s to be regular (i.e. to obey
the rules of correct parity and polynomial order) but also it requires this for its curl and the
double curl. This means that the nonlinear term s, obtained using the pseudo-spectral method,
must be super-regular. While using the appropriate transforms for converting the modified
physical field s∗ into its spectral representation ensures the regularity of ŝ∗ then this cannot
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124 CHAPTER 6. STABILITY/VALIDATION

ensure the regularity of sψ and sφ. Acting with r−2 operator in (6.10) requires the operand to be
dividable by r2 in order to avoid a singular behavior. Even stronger conditions must be satisfied
if one want to match the regularity condition for all Fourier modes of the nonlinear terms sψ

and sφ, for which the radial polynomials must be at least of order O(rm). To summarize, the
necessary condition for regularity of the nonlinear term’s Fourier mode m is:

1
r2 [r∂rs∗θ − im s∗r ] = ∑

n≥0
ηnr2n+m (6.11a)

− 1
r2

[
∂z (r∂rs∗r + im s∗θ ) − r2∆hsz

]
= ∑

n≥0
ξnr2n+m (6.11b)

where we have further simplified notation by using s ≡ ŝ. The Nonlinear term s must obey the
same regularity rules as the velocity u:

sr = ∑
n≥0

anr2n+|m−1| (6.12a)

sθ = ∑
n≥0

bnr2n+|m−1| (6.12b)

sz = ∑
n≥0

cnr2n+m (6.12c)

but these are not all the conditions that s must satisfy. It can be easily verified that, by substitut-
ing an arbitrary s of the form (6.12) into (6.11), the obtained expression does not correspond to
the sums stated to the right of (6.11). The nonlinear term s is, however, not arbitrary: if no error
is introduced by evaluation of the nonlinear term then, under condition that u and ω used to
compute s were regular, the regularity conditions stated in (6.11) and (6.12) are satisfied. One
can verify this by substituting a regular form of velocity u (being defined in the same way as
(6.12)) into construction sequence (6.9)-(6.10). While performing this substitution, the singular
terms can appear but they are canceled by opposite-sign singularities coming from different
terms. Therefore it seems necessary that all terms be computed accurately in order to ensure
this cancellation and, by consequence, the regularity of the final solution.

Unfortunately in a numerical code one should not expect this condition to be met. Spectral
representation of the vector components of the nonlinear term s∗ are affected by several types
of error: aliasing, truncation and limited precision of forward and back transforms. If we per-
form a full dealiasing (padding with twice the number of coefficients instead of the commonly
used 3

2 -rule) and apply the differential operator on the extended vectors of 2N coefficients then
this error can be limited only to the negligible error of spectral→physical→spectral transfor-
mations. This approach is very costly, taking into account that the evaluation of the nonlinear
term has complexity at best O(N3 log2 N). Full dealiasing will multiply the time necessary for
evaluating of the nonlinear term by a factor ≈ 4.5.

Matsushima & Marcus [58] suggest that all terms that could potentially suffer, in the spec-
tral space, from singular operations (like dividing by r) should be evaluated in physical space
(at collocation points excluding the coordinate origin) and transformed back to the spectral
space using the radial transform ensuring the correct polynomial order for a given Fourier
mode. This approach, while straightfrward to apply for the nonlinear term s, cannot be used
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6.1. NONLINEAR TERM 125

directly for sψ and sφ which involve curl and double curl of the nonlinear term. The definition
(6.10) involves evaluation of several differential terms that must be evaluated in spectral space.
Therefore one would have to divide by r separately for each of these terms so as to perform in
spectral space only secure operations (without division by r):

1
r

∂rr sθ ⇔ 1
r

∂rr
2 sθ

r
=

secure︷ ︸︸ ︷
(2 + r∂r)

sθ

r︸︷︷︸
not allowed

Unfortunately the nonlinear term’s components sr and sθ cannot be divided by r in physical
space and transformed back to the spectral space using the transformation for mode m. They
are of order O(r|m−1|) and after dividing by r the result would be of order O(r|m−1|−1) which
is incompatible with transformation defined for mode m requiring O(r|m−1|). In particular for
m = 1 such terms would diverge at r = 0. The terms of order r|m−1|−1 are subtracted for m > 0
while evaluating expressions

sψ =
1
r
(∂rr sθ − im sr) (6.13a)

sφ = −1
r
(∂rr sr + im sθ) + ∆hsz (6.13b)

In order to be able to annihilate the singular terms already in physical space we will separate
the operators present in expressions (6.13) into two parts : "secure", giving the regular solution
of order O(rm) regardless of the accuracy of the operand and "delicate" combination, which
depends on accuracy and which we will evaluate in physical space. As an example, we can
take the operator 1

r2 (r∂r − m) which we qualify "secure" because unlike 1
r ∂r it can be applied to

terms of order O(rm) without generating terms in rm−2:

1
r2 (r∂r − m)rm =

1
r2 (mrm − mrm) = 0

Similarily, for sψ we will write:

sψ =
1
r

∂rr sθ −
im

r
sr

0︷ ︸︸ ︷
−m

r
sθ +

m

r
sθ =

=
1
r2 (r∂r − m)
︸ ︷︷ ︸

secure

s∗θ +
m

r2 [s∗θ − i s∗r ]
︸ ︷︷ ︸

delicate

(6.14)

and for sψ:

sφ = −∂z




1
r2 (r∂r − m)
︸ ︷︷ ︸

secure

s∗θ +
m

r2 [s∗r + i s∗θ ]
︸ ︷︷ ︸

delicate


+ ∆h︸︷︷︸

secure

sz (6.15)
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126 CHAPTER 6. STABILITY/VALIDATION

The horizontal Laplace operator ∆h ≡ 1
r ∂rr∂r − m2

r2 has the same property of annihilating rm−2

terms. The "delicate" terms can be evaluated in the quasi-physical1 space because no differen-
tial operators acting in the êr or êz direction are involved. This evaluation in the quasi-physical
space does not suffer form the aliasing errors in the êr and êz directions and is secure for divid-
ing by r. Thus the singular terms can be annihilated with better precision in the physical space
and then the almost regular combination which we will denote s−u and s+

u can be transformed
back into spectral space using radial transformation compatible with Fourier mode m.

ŝ− =
m

r2 [(s∗u)θ − i(s∗u)r] ŝ+ =
m

r2 [(s∗u)r + i(s∗u)θ ] (6.16)

This final transformation (s−, s+)→ (ŝ−, ŝ+) of the almost regular quantities s− and s+ ensures,
to the machine precision, the regularity of ŝ− and ŝ+.

Conclusions on evaluation of the nonlinear term

The presented approach guaranties stable evaluation of the potential nonlinear terms sψ and sφ

because aliasing and truncation errors can appear here only after annihilation of the singular
terms. Errors due to the limited precision of a spectral↔physical transforms do not affect
seriously evaluation of 1

r2 operator in (6.16). For the delicate terms, 1
r2 is applied in the physical

space where this operation has no severe regularity constraints and after transforming back
to the spectral space, regularity is recovered since the transformation for radial polynomials
enforces the correct polynomial order for a given Fourier mode m. Operators like 1

r2 (r∂r − m)

or ∆m
h ≡ 1

r ∂rr∂r − m2

r2 behave regularly because they do not decrease the polynomial order of the
operand.

The expression for sψ and sφ can be stated as:

sψ =
1
r2 (r∂r − m)s∗θ
︸ ︷︷ ︸

spectral space

+ s−︸︷︷︸
physical space

sφ =
1
r2


−∂z[(r∂r − m)s∗r +

physical space︷︸︸︷
s+ ] + r2∆m

h sz




︸ ︷︷ ︸
spectral space

The additional cost that must be paid for applying this methodology is to perform one
additional transform for s− (s+ = −i s−). This changes the cost of evaluation of the nonlinear
term measured in the number of spectral↔physical transformations from 9 to 10. This can be
considered negligible.

1By quasi-physical, we mean that the only transformation performed is in the êθ direction where the differential
operator ∂θ ↔ im is diagonal and can be easily evaluated.
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6.2. TIME INTEGRATION 127

6.2 Time integration

As was already suggested we will use an implicit scheme for the linear difussive terms while
treating all other terms with an explicit method. For choosing a particular scheme at hand, one
should take into account the properties of implicit schemes for a given order. We consider six
unconditionally stable (A-stable2) methods: first-order backward Euler, Crank-Nicolson (trape-
zoidal), backward differentiation (retarded Euler), Adams type, Lees type and two-step trape-
zoidal. The corresponding time-step evolution operators differ in their capability of damping
the high spatial frequencies in an evolving function.

This property is of particular interest to us since the von Kármán flow has boundary layers
situated next to the rotating cylinder bases. For higher Reynolds numbers, this layer can be
very thin which requires high-frequency modes to represent it spectrally. Additionally the
singular character of the boundary conditions in the cylinder corners generates and requires
high frequency modes3. Hopefully these effects are most pronounced in the proximity of the
boundaries, where the axial Chebyshev and radial polynomial grid is finest. In situations with
counter-rotating bases, a shear layer can also require high frequency modes in order to be well
represented.

We mention these phenomena to attract the reader’s attention to the fact that the von Kár-
mán flow, because of its nature, generates small scales, i.e. high spatial frequencies, and a
time-integration scheme should take this fact into account in order to ensure stability of the
solver. A necessary condition for spectral methods to work is that the spectral coefficients rep-
resenting the solution should decay with their index or frequency. The nonlinear term in the
Navier-Stokes equation can be seen as a generator and amplifier of high frequencies while the
viscous term damps these high frequencies. The intensity of this damping depends on the
particular time integration scheme and on the way the Laplacian is evaluated. For systems
naturally generating higher frequencies (e.g. von Kármán flow) the dampind must be strong
enough to oppose the effect of the nonlinear term.

We present a brief and simplified analysis of this property for a one-dimensional diffusion
equation

∂u

∂t
= ν∆u

For reasons of simplicity we will represent u in the Fourier basis (von Neumann stability analysis)
rather than in Chebyshev or radial polynomials bases. This analysis will therefore have only
qualitative meaning since in this approach the effect of boundaries is neglected. This is, how-
ever, sufficient to identify general properties of the time discretization schemes discussed. We
then have

u(x, t) = ∑
k

û(k, t)eikx

A general two-step time integration scheme can be written after Beam & Warming [5] as fol-
lows:

(1 + ξ)ûn+1 − (1 + 2ξ)ûn + ξûn−1 = ∆tν︸︷︷︸
ǫ

(−k2)
[
θûn+1 + (1 − θ + η)ûn − ηûn−1

]
(6.18)

2A-stable methods can be at most second-order acurate.
3While the regularization of the boundary condition establishes a maximal sufficient frequency, this can be much

higher than the frequency necessary to represent the flow far from the boundaries.
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128 CHAPTER 6. STABILITY/VALIDATION

where we have substituted the eigenvalues spec(∆) = −k2 in place of the Laplace operator. For
unconditional stability, ξ,θ,η must satisfy

θ ≥ η +
1
2

ξ ≥ −1
2

ξ ≤ θ + η − 1
2

and if η = ξ − θ + 1/2 then the scheme is second-order accurate.
We wish to write a two-step iterative process (6.18) in a one-step form of type

G1ūn+1 = G0ūn ⇒ ūn+1 = G−1
1 G0︸ ︷︷ ︸

G

ūn (6.19)

where G is called the amplification factor. To do so we introduce an auxiliary variable ẑ so that
(6.18) can be written in matrix notation (6.19) by defining

ūn =

[
ûn

ẑn

]

ẑn = ûn−1

This makes it possible to write (6.18) using only two time steps n + 1 and n:

(1 + ξ + k2ǫθ)ûn+1 = [1 + 2ξ − k2ǫ(1 − θ + η)]ûn − (ξ + k2ǫη)ẑn

ẑn+1 = ûn (6.20)

so that (6.19) corresponding to (6.20) can be written as:




1 + ξ + k2ǫθ 0

0 1







ûn+1

ẑn+1


 =




1 + 2ξ − k2ǫ(1 − θ + η) k2ǫη − ξ

1 0







ûn

ẑn




G1 ūn+1 = G0 ūn

The amplification matrix G ≡ G−1
1 G0 is characterized by its eigenvalues µ1, µ2 which can be found

from the characteristic polynomial P(µ) of G:

P(µ) = (1 + ξ + k2ǫθ)µ2 − (1 + 2ξ − k2ǫ(1 − θ + η))µ − k2ǫη + ξ

The values of θ, ξ, η corresponding to the time integration schemes considered are presented
in table 6.2.

Schemes that attenuate the high frequencies have to satisfy the criterion

lim
k→∞

max{|µ1(k)|, |µ2(k)|} < 1 (6.21)

te
l-0

01
62

59
4,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
7



6.2. TIME INTEGRATION 129

Method θ ξ η Order µ1, µ2 lim
k→∞

|max{µ1,µ2}|

Backward Euler 1 0 0 1 0, 1
1+k2ǫ

0

Crank-Nicolson 1/2 0 0 2 0, 2−k2ǫ
2+k2ǫ

1

Backward differentiation 1 1/2 0 2 2±
√

1−2k2ǫ
3+2k2ǫ

0

Adams type 3/4 0 −1/4 2 2±
√

4−4k2ǫ−3k4ǫ2

4+3k2ǫ

√
3/3

Lees type 1/3 −1/2 −1/3 2 − k2ǫ±
√
−3k4ǫ2+9

3+2k2ǫ
1

Two-step trapezoidal 1/2 −1/2 −1/2 2 ±
√

1−k4ǫ2

1+k2ǫ
1

Table 6.1: List of A-stable one- and two-step schemes (based on Beam & Warming [6])

Asymptotic values for all the schemes as well as an expression for µ1, µ2 are presented in table
6.2. Only three methods have the property (6.21): backward Euler, backward differentiation
and Adams type. The behavior of µ1, µ2 as of the functions of k for fixed ǫ = 1 is presented on
figure 6.2 for all schemes considered. We decided to use the first order backward Euler scheme
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Figure 6.1: Plots of p = { |µ1(k)| – solid line, |µ2(k)| – dashed line, lim
k→∞

max{|µ1(k)|, |µ2(k)|} –

dot-dash line } for A-stable schemes.

for linear terms because it attenuates the high frequencies faster than all other methods. If
second order accuracy is needed then the backward differentiation represent a natural choice
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130 CHAPTER 6. STABILITY/VALIDATION

and the Adams-type scheme can possibly be considered for situationd where weaker damping
of high-frequency modes is sufficient. Tests performed with the Crank-Nicolson method con-
firmed that for this scheme, nonlinear simulation was unstable even for quite small Reynolds
numbers Re ≈ 300. This behavior was also observed for the von Kármán flow by Speetjens [81]
and Lopez et al. [47] and also by Marcus [53] in the Taylor-Couette configuration. Choosing
smaller values of the time-step helps very little in this situation since ∆t ∼ k−2 for constant
ǫ and the maximal time-step quickly becomes very small for higher spatial resolutions. The
nonlinear term is treated by a second order explicit Adams-Bashforth scheme:

sn+1 =
1
2

(
3sn − sn−1

)

so that the backward Euler/Adams-Bashforth time integration scheme for the Navier-Stokes
equation can be written as

(1 − ǫ∆)un+1 = un +
∆t

2

(
3sn − sn−1

)

and the corresponding scheme for potentials ψ̂ and φ̂ takes the following form:

(1 − ǫ∆)∆hψn+1 = ∆hψn +
∆t

2

(
3sn

ψ − sn−1
ψ

)

(1 − ǫ∆)∆∆hφn+1 = ∆∆hφn +
∆t

2

(
3sn

φ − sn−1
φ

)

The maximal time step ∆t depends on the Reynolds number. Typically starting from state

Re configuration ∆t resolution (M × K × N)

< O(500) 2D 0.05 - 0.1 1 × 32 × 16
500 - 1000 2D 0.02 - 0.05 1 × 64 × 32
1000 - 3000 2D 0.01 - 0.02 1 × 96 × 48
3000 - 5000 2D 0.005 - 0.01 1 × 128 × 64
5000 - 10000 2D 0.001 - 0.0025 1 × 180 × 90

< O(500) 3D 0.04 - 0.1 8 × 64 × 32
500 - 1000 3D 0.01 - 0.04 16 × 80 × 40
1000 - 3000 3D 0.025 - 0.01 32 × 100 × 60
3000 - 5000 3D 0.001 - 0.0025 (64-96)× 128 × 80

Table 6.2: Typical values of time-step ∆t and resolution for different configurations. Typical
steepness of the regularization profile is δ ≈ 0.01

u = 0 requires 4-10 smaller ∆t compared to that which can be used for evolving a fully devel-
oped state at the same Reynolds number. This is because the state u = 0 is incompatible with
the boundary conditions. In first few iterations a boundary layer is created near the rotating
cylinder lids. This also requires higher spatial resolution. This can be avoided by performing
about 100 initial steps of the linear Stokes solver (ŝ = 0). In table 6.2 we present the values of ∆t

and spatial resolutions typically used for performing nonlinear simulations for different values
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6.3. TESTS 131

of Re. A comprehensive study of stability properties of different combinations of temporal and
spatial discretization schemes is provided by Hirsch [36].

6.3 Tests

6.3.1 Axisymmetric rotor-stator configuration

The code was first tested on a well documented problems in the axisymmetric rotor-stator
configuration for aspect ratio h = 2.The first test is the reproduction of the characteristic steady
state for Re ≈ 1850 where the flow exhibits two recirculation bubbles (one large and the other
much smaller) situated approximatively at (r = 0,z = 1/2) and (r = 0,z = 0). The contour plot

Figure 6.2: Contours of
Stokes poloidal stream-
function η (from Daube
[17]). Re = 1850, h = 2
(rotor-stator).

Figure 6.3: Rotor-stator configuration for Re = 1850 and the
aspect ratio h = 2. Left half of the figure represents contours
of the poloidal streamfunction η superposed with vector
plot of poloidal velocity field urêr + uzêz. The right half
visualizes contours of toroidal streamfunction σ. The color
map represents intensity of the toroidal flow uθ .

of the Stokes streamfunctions defined as

σ(r,z) = −r∂rψm=0
u (r,z) η(r,z) = −r∂rφm=0

u (r,z) (6.23)

presented on figure 6.3 matches very well the one presented by Daube [17] (figure 6.2) and is
similar to those of Lopez & Shen [48] but obtained for the aspect ratio h = 2.5. A quantitative
matching between our results and the previous findings by Daube [17] and Lugt & Abboud
[52] is established by comparing the profiles of axial velocity uz on the cylinder’s axis (see fig-
ure 6.5). This test shows an excellent agreement between our results obtained using poloidal-
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132 CHAPTER 6. STABILITY/VALIDATION

toroidal formulation (fig 6.5b) and the velocity-vorticity code (fig. 6.5a).

Figure 6.4: Configuration rotor-
stator for Rec ≈ 2150 and the as-
pect ratio h = 3.5. The graph rep-
resents isosurface of axial veloc-
ity uz ≈ 0.

It was observed experimentally by Escudier [24] and nu-
merically by Daube & Sorensen [18], Lopez [46], Daube [17],
Gelfgat et al. [29] and Speetjens [81] that this flow under-
goes a Hopf bifurcation toward a flow oscillating with a
frequency approximately 0.25 times the rotation frequency.
This transition occurs at a Reynolds number near 2600. In
this test we found the frequency f = 0.0377 which corre-
sponds to the period T = 26.55. This result falls into the
range of values previously found for this configuration (see
table 6.3.1) and the remaining differences can be most prob-
ably attributed to the differences in the treatment of the
boundary conditions (regularization). The simulation was
performed at the time step ∆t = 0.01 and high spatial reso-
lution K × N = 140 × 70 in order to well represent the sharp
regularization profile corresponding to δ = 0.06 imposed on
the lateral boundary r = 1 (see section 4.6.2) as proposed
by Lopez & Shen [48] and also used by Speetjens [81]. The
time evolution uθ(r = 0.5,z = 0, t) was shown on figure 6.6.
The normalized power spectrum of these oscillations is pre-
sented on figure 6.7.

Method Reference T

u − ω Daube [17] 25.52
η − ω Daube [17] 25.84
u − ω Speetjens [81] 26.61
u − p Gelfgat et al. [29] ≈ 26.7
ψ − φ this work 26.55

Table 6.3: Oscillation period in rotor-stator configuration
with h = 2 at Re = 2800.

6.3.2 First instability in 3D

To test the code’s calculation of non-axisymmetric instabilities we have chosen a configuration
with one rotating and one steady disk (rotor-stator). For the aspect ratio of h = 3.5 we found
that the first bifurcating mode is m = 3 for Reynolds number Rec = 2116. This result is in good
agreement with preceding work of Gelfgat et al. [29] where the critical Reynolds number was
estimated at Re = 2131. A characteristic spiral analogous to that visualized by Lopez et al. [47]
for the same configuration is represented on figure 6.4.
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Figure 6.5: Profile of vertical velocity uz at r = 0 for Re = 1850, h = 2 (rotor-stator). a) Profile
from Daube [17]: results obtained using η − ω (*) and u − ω (◦) are superposed. b) Profile at
t = 3000 obtained using poloidal-toroidal decomposition ψ − φ.

 0.07

 0.072

 0.074

 0.076

 0.078

 0.08

 0.082

 0.084

 0.086

 0.088

 3700  3750  3800  3850  3900  3950  4000

t

Figure 6.6: Saturated state of time evolution
of uθ(r = 0.5,z = 0) for the rotor-stator con-
figuration at Re = 2800, h = 2.
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Figure 6.7: Density power spectrum of uθ(r =

0.5,z = 0) from figure 6.6.
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Figure 6.8: Time history of uθ(r = 0.5,z = 0) for the rotor-stator configuration at Re = 2800,
h = 2. Left: from Speetjens [81]. Right: current work.
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134 CHAPTER 6. STABILITY/VALIDATION

6.4 Spectral convergence

The Navier-Stokes solver presents qualitatively the same convergence properties as the linear
linear solver described in section 5.5. We present on figures (6.9)-(6.11) the decimal logarithm
of absolute value of spectral coefficients for Fourier modes m = 0,1,2. The convergence of the
nonlinear solution can be qualified as quasi-exponential, which is most probably due to the
singular character of the solution to the Stokes equation near the cylinder corners.
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Figure 6.9: Spectral coefficients for m = 0, after 100 time-iterations of a nonlinear multi-step
Navier-Stokes solver (Re = 750, ∆t = 0.01). Resolution used: K = 64, N = 32. Left:
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]
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φ̂0
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Figure 6.10: Spectral coefficients for m = 1, after 100 time-iterations of a nonlinear multi-step
Navier-Stokes solver (Re = 750, ∆t = 0.01). Resolution used: K = 64, N = 32. Left:

[
ψ̂1
]
; Right:[

φ̂1
]
.

te
l-0

01
62

59
4,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
7



6.5. PARALLELIZATION 135

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 0
 5

 10
 15

 20
 25

 30

 0
 10

 20
 30

 40
 50

 60

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

n
k

[
ψ̂2
][

ψ̂2
]

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 0
 5

 10
 15

 20
 25

 30

 0
 10

 20
 30

 40
 50

 60

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

n
k

[
φ̂2
][

φ̂2
]

Figure 6.11: Spectral coefficients for m = 2, after 100 time-iterations of a nonlinear multi-step
Navier-Stokes solver (Re = 750, ∆t = 0.01). Resolution used: K = 64, N = 32. Left:
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]
; Right:[

φ̂2
]
.

6.5 Parallelization

As was already mentioned in the preceding chapters, the separability of almost the entire algo-
rithm (except for the nonlinear term) between the Fourier modes make it possible to parallelize
the code in a quite straightforward manner. Our code was parallelized using the MPI protocol
which made it possible to run even a very time consuming three-dimensional simulations with
resolutions like 128 × 160 × 90.

Spectral methods are often considered to be poorly suited for parallelization as they require
the exchange of all the data at each timestep of the simulation. In our code, all the necessary
data exchange is done within two calls to the MPI_Alltoall MPI subroutine treating, in total,
10 three-dimensional fields at each time step. Even though this can seem a quite large oper-
ation, on the IBM Power4 architecture with 64 processors we found that the time overhead
per timestep due to the data exchange is compensated by more optimal usage of the processor
cache memory: each processor of the parallelized code treats smaller data portions which can
more easily fit into processor’s fast internal memory (cache). We observed that the CPU time
consumed by the parallel code treating the same problem as the serial code is often smaller.
We should however mention that the efficiency of the parallel code is conditioned by the speed
and the latency of the inter-processor network: the IBM Power4 architecture, which we have
tested, have particularly fast connection between the nodes which use the mixed model fast

network/shared memory communication between processors. We can therefore conclude that for
modern massively parallel computers parallelization of our pseudo-spectral code not only does
not degrade its efficiency but can actually enhance it.

For additional technical information about the MPI parallelization of our code see appendix
B.
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136 CHAPTER 6. STABILITY/VALIDATION

6.6 Concluding remarks

In this chapter we considered the problem of regularity of the evaluation of the nonlinear term.
We discuss the singularities due to truncation and finite precision errors typically committed
during forward and backward transforms. We proposed a modified method for evaluating the
nonlinear term4 in cylindrical geometry. This approach is not sensitive to the transformation
nor to the aliasing errors since all potentially irregular operations are performed in physical
and not spectral space.

The choice of the first-order implicit Euler time integration scheme for the Navier-Stokes
solver was justified taking into account the frequency damping properties of several popular
unconditionally stable algorithms. We found that the fast attenuation of the high frequencies
naturally existing in the von Kármán flow is necessary for guaranteeing the stability of the
solver. This is in agreement with observations of Marcus [53] concerning the Taylor-Couette
flow as well as with experience of Lopez et al. [47] and Speetjens [81] for the von Kármán flow.
The backward differentiation scheme used by Lopez et al. [47] is a possible candidate method
which has the frequency-damping property and is second order acurate.

The Navier-Stokes solver was validated against well-documented test problems in axisym-
metric and non-axisymmetric configurations. For all tests performed, we obtained a good
agreement with previous results.
The code was parallelized using the MPI protocol which makes it possible to apply even to
problems requiring high spatial resolutions.

4More exactly: axial component of the curl and double curl of the nonlinear term.
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Chapter 7

Applications & perspectives

In this chapter we present the preliminary results of our ongoing projects concerning the tur-
bulent bifurcation and axisymmetric turbulence. These findings can be considered as a presen-
tation of the perspectives for future studies.

7.1 Turbulent bifurcation

The aim of this project is to investigate the bifurcation between two turbulent states in the von
Kármán flow (Marié [54], Ravelet et al. [74]). This phenomenon was named by its discovers
global bifurcation but, since this term already has a well-defined and different meaning in dy-
namical systems theory, we shall use the term turbulent bifurcation instead. Experimentally,
when one disk is rotated at high speed, the meridional flow is turbulent and consists of one
large toroidal cell. When both disks counter-rotate at high speeds, either one or two toroidal
cells may be obtained. Which of the two flows is realized depends on the path followed in
increasing the disk rotation speeds. The control parameter for this bifurcation (which in the
experiment is the torque difference) presents a strong hysteresis loop. Once the system inhibits
the bifurcation from the symmetric two-cell configuration toward the one-cell flow it can only
switch between the asymmetric one-cell flows, never reaching the symmetric state.

1
�	
��Ω

−
Ωone roll

one roll

two rolls

Figure 7.1: Hysteresis loop for bifurcation para-
meter – qualitative representation.

This bifurcation appears only when rotating
disk is aided by curved blades (see fig. 7.2).
These blades increase the poloidal flow, mak-
ing the ratio of the toroidal to the poloidal
flow close to 1. This can also be achieved us-
ing straight blades, but the turbulent bifurca-
tion has never been observed in this config-
uration – transition from the two-cell to the
one-cell flow is continuous if straight blades
are used. The importance of the blade curva-
ture is probably due to the fact that it mod-
ifies the intensity with which the disks eject
the flow radially.
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138 CHAPTER 7. APPLICATIONS & PERSPECTIVES

f �f fθ

�f fθ=

Straight blades Curved blades

α

Figure 7.2: Schematic model of straight and curved blades. Vectors correspond to the forces
which the blades exert on the flow. The angle α is defined as the line between a line joining a
point on the blade’s surface to the origin and the vector normal to the blade at this point.

This bifurcation, or coexistence, was discovered by Marié [54] at large Reynolds numbers –
Re ≈ 106 – a regime which cannot be attained by a realistic well-resolved numerical simulations
on present-day computers. Ravelet et al. [74] recently discovered that this coexistence could also
be observed at Re ∼ 5000, which is accessible numerically. Modeling the blades in a numerical
(especially spectral) code is not obvious and requires some approximations.

7.1.1 The effect of blades

Because we cannot implement the actual blades in our spectral code, we limit ourselves to
modeling only their most important effect. We assume that these effects are: increasing the
efficiency of the disks in forcing the flow and modulating the of radial injection rate of the flow
near the rotating disks.

We model both effects by adding a bulk force which is axisymmetric and localized near the
disks:

fθ = fn sin(α)êθ (7.1a)

fr = fn cos(α)êr (7.1b)

fn = fnên = fnζ(z)
[
(rΩ(r)− uaxi

θ )sin(α) − uaxi
r cos(α)

]3
ên (7.1c)

where forces fr, fθ , fn and angle α are represented on figure 7.2. Coefficient fn corresponding
to the intensity of forcing can be adjusted empirically. For a straight blade we have α = π

2 and
for curved blade α ≡ α(r) is a parametric description of the blade’s shape. For straight blades,
the force is designed in such a way as to make the angular velocity closer to Ω(r) near the
disks (this region is described by ζ(z)); see figure 7.2-left. For curved blades, this force tends
to anichlate the component of the relative (flow-blade) velocity which is normal to the blade
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Figure 7.3: Left: Representation of limiting function ζ(z). Right: regularization profile Ω(r).

surface (see figure 7.2-right).
The envelope function ζ(z) is quite arbitrary and we have chosen the following shape (see
figure 7.3-left)

ζ(z) =
2
π

arctan
(

exp
( |z| − h∗

κ

))
(7.2)

where h∗ is the distance, from the cylinder mid-plane, at which the force starts to act on the
flow. Parameter κ controls the steepness of the limiting function ζ(z).

The force defined in (7.1) is self-adapting to actual flow configuration. The nonlinearity
fn ∼ [. . .]3 of this force is designed to allow small deviations from the velocity that our forces
tend to impose and, on the other hand, to act more strongly on larger deviations. These criteria
are the result of empirical tests with differently behaving forces.

7.1.2 Preliminary results

At present we have tested our code only with the self-adapting force corresponding to straight
blades (α = π/2). According to observations of Ravelet et al. [74], we should not expect to
reproduce the turbulent bifurcation in this configuration, but we can already check how well
this force ensures the imposed velocity profile in the neighborhood of the rotating disks. At
present we are interested in qualitative changes to the flow structure, especially the ratio of
the poloidal to toroidal components of the velocity. All results presented in this subsection
correspond to configurations with exactly counter-rotating disks (s ≡ Ω+=1

Ω−
= −1).

Poloidal-to-toroidal ratio In the experimental setup, the role of blades is to make the inten-
sities of the poloidal and toroidal flows comparable. The original, and main, motivation for
this was to create a situation favorable for dynamo action in the VKS experiment. Experiments
were performed in water to determine the optimal shape of the blades. It was found that the
best forcing is obtained when the blades force the flow with their convex side. The turbulent
bifurcation, in which we are interested, occurs, however, only when the blades force the fluid
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Figure 7.4: Configuration: Experimental data (laser Doppler velocimetry) for time-averaged
flow for Re = 1.25 × 105 (figure from Marié [54]). Left: poloidal velocity. Right: contour plot of
angular velocity uθ . Grid of black points correspond to locations at which the flow was probed.
Red line separates the regions for which the data was obtained experimentally from those for
which the data was obtained by extrapolation.

with their concave side.

Our aim is to obtain a flow whose qualitative topology is as close as possible to that ob-
served experimentally. Figure 7.4 presents the time-averaged flow in the experimental config-
uration with straight blades [74]. The measurements have been obtained using laser Doppler
velocimetry (LDV).

Axisymmetric flow at Re = 500 We have tested the effect of the forces modeling rotating
blades on configurations with imposed axisymmetry (Re = {500,1500}) and also on fully three-
dimensional configurations (Re = {3000,5000}). We have compared the simulation without in-
ternal bulk forces (viscous forcing) for several values of the Reynolds number, with simulations
where the flow was additionally driven by the self-adapting force of different intensities (iner-

tial/bulk forcing). In configurations with bulk forcing, the flow is strongly affected by the rotat-
ing disks only in a thin layer situated near the disks (fig. 7.5). For axisymmetric flow equation
(6.6) shows that the poloidal potential φ generates the meridional velocity urêr + uzêz while
the toroidal potential ψ generates the azimuthal velocity uθ êθ . We will measure the intensity
of these velocities by sup |urêr + uzêz| and sup |uθ êθ | (sup |uθ | = 1 by our choice of nondimen-
sionalization). The intensity of the poloidal flow is approximately 13% of that of the toroidal
flow. The topology of this flow also matches the experimental observations concerning the
flow forced using smooth disks. The situation remains qualitatively similar if one increases
the Reynolds number. On figure 7.6 we present the flow structures for Re = 1500, a regime, in
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Figure 7.5: Configuration: imposed axisymmetry for Re = 500, δ = 0.006, viscous forcing. Left:
contours of uθ . Right: contours of the poloidal stream function; clockwise (red/light) and
counter-clockwise (blue/dark); arrows correspond to the poloidal velocity and they are colored
according to their magnitude.

which the flow with imposed axisymmetry is steady. Even for Reynolds number Re = 5000, a
regime in which the flow is three-dimensional and chaotic (figures 7.7, 7.14), the time-averaged
flow (fig. 7.8), shows that the flow topology does not change significantly and the intensity of
the poloidal flow still remains limited to only 13%.

The situation changes even if a weak bulk forcing is applied: the poloidal-to-toroidal ratio
is increased up to 51% for the flow at Re = 500 (see fig. 7.9).

It is difficult to define a parameter corresponding to the actual intensity of forcing. The
same coefficient fn in (7.1) can correspond to strong forcing for low-Reynolds flows and to
weak forcing for turbulent flows. We shall consider as weak the forcing which does not modify
significantly the thickness of the boundary layer near the rotating disks. With viscous forcing
the boundary layer is very thin (contours of uθ are almost tangent to the cylinder bases). For
extremely strong bulk forcing, velocity of the fluid selected by the function ζ(z) should be that
of the corresponding rotating disks (contours of uθ perpendicular to the cylinder bases).

The flow is strongest near the cylinder center, and results from a strong radial flow concen-
trated near the shear layer at z = 0. The toroidal flow is also much more equally distributed
over the entire volume: the toroidal flow corresponding to 50% of the maximal flow speed
reaches the area of the mid-plane shear layer. This new characteristic of the toroidal flow can
also be seen on figure 7.4 corresponding to the experimental data.
One might expect that by further increasing the forcing intensity, this ratio might increase even
further. This is, however, not the case, since the shear layer at the mid-plane of the cylinder is
unstable with stronger forcing or for higher Reynolds numbers. As can be seen on figure 7.10,
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Figure 7.6: Configuration: imposed axisymmetry for Re = 1500, δ = 0.006, viscous forcing.
Left: contours of uθ . Right: contours of the poloidal stream function; clockwise (red/light)
and counter-clockwise (blue/dark); arrows correspond to the poloidal velocity and they are
colored according to their magnitude.

for stronger forcing (still for Re = 500), the flow attains an oscillating (similarily to the flow at
Re = 5000 without inertial forcing: see fig. 7.11) state for which the poloidal-to-toroidal ratio
decreases to 45%.

The Reynolds number we use is based on the velocity of the boundary disks. A configu-
ration with bulk forcing may be turbulent at the same Reynolds number for which a flow is
laminar under viscous forcing. Since the self-adapting force changes in time and space during
the simulation, it would be more intuitive to base the Reynolds number on, for example, the
maximal velocity of the flow at some distance from the cylinder boundaries. This would give
a better idea of how strong the forcing is or, by referring to the experiment, how efficient the
blades are in forcing the fluid. Regardless of the Reynolds number, the flow with viscous forc-
ing only can never have the same topology as the flow with inertial forcing.

In order to approach the turbulent regime of experimental configurations (for which Re ≈
105) we performed a simulation with weak inertial forcing for Re = 3000. The flow is not yet
fully turbulent but is already very chaotic (see figures 7.15-left, 7.16 and the time series on figure
7.13). The flow structures, for time-averaged1 state from which we extracted the axisymmetric
mode, are represented on figure 7.12. Comparing to the time-averaged simulation performed

1The flow was averaged over approximatively 30 disk rotation periods.
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Figure 7.7: Configuration: three-dimensional simulation for Re = 5000, δ = 0.01, viscous forc-
ing. Left: contours of uθ . Right: contours of the poloidal stream function; clockwise (red/light)
and counter-clockwise (blue/dark); arrows correspond to the poloidal velocity and they are
colored according to their magnitude.

at Re = 5000 with viscous forcing (fig. 7.8) the poloidal flow streamlines take on a more circular
shape for bulk-forced flow at Re = 3000 (fig. 7.12). This also matches better the experimental
measurements (fig. 7.4). The topology of the toroidal flow corresponds quite well to the ex-
perimental one. The flow undergoes strong angular rotation even near the shear layer (see fig.
7.15). This is very different from the situation with viscous forcing in which the strong toroidal
flow remains limited to the neighborhood of the boundaries (fig. 7.14-right). We expect that
with stronger forcing we should obtain a flow topology even more similar to the experimental
one but, for numerical reasons, we could not check this yet.

We can conclude that the self-adapting force yields flow structures which are qualitatively
similar to those observed in the experiment with disks reinforced by straight blades.

Turbulent bifurcation – perspectives At present, we have not reproduced the turbulent bi-
furcation observed by Marié [54] and Ravelet et al. [74]. As already mentioned, this bifurcation
requires using curved blades. The self-adapting volume force corresponding to curved blades
has not yet been tested. With straight blades, varying the rotation ratio of the disk from s = −1
to s = −0.75 displaces the shear layer toward the slower disk. The shear layer changes its posi-
tion continuously with the rotation ratio s. This is in agreement with experimental observations
made for straight blades (Marié [54]).

We plan to study the effect of self-adapting forces corresponding to curved blades and to
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Figure 7.8: Configuration: three-dimensional, time-averaged flow for Re = 5000, δ = 0.01, vis-
cous forcing. Left: contours of uθ . Right: contours of the poloidal stream function; clockwise
(red/light) and counter-clockwise (blue/dark); arrows correspond to the poloidal velocity.

investigate other, possibly more stable, forms of volume forces. At present, the force adapts
itself at each timestep without taking into account its form at the preceding time step. We will
test different time integration schemes in order to select that which is the most effective and
stable.

Stability/computational cost

Simulations without the self-adapting force were performed for Re = 5000 at resolution (M =

128) × (K = 120) × (N = 90). Other parameters of this run were: δ = 0.01, ∆t = 0.001. Because
only a few runs were executed, we are at present unsure whether the simulation could be per-
formed with less resolution and/or a larger time step. For simulations without self-adapting
forces, the timestep is conditioned by the stability of the nonlinear term of the Navier-Stokes
equations.

When self-adapting forces are added, the stability of the time integration scheme is strongly
affected. In order to run the simulation with a reasonable resolution and time-step, we had to
run successive short-time simulations with forces whose intensity was progressively increased.
The saturated state was simulated at Re = 3000, δ = 0.01, ∆t = 0.001.

In order to obtain time-averaged flows at least 100 rotations of cylinder disks were neces-
sary. Each of the three-dimensional simulations (Re = {3000,5000}) running on 64 IBM Power4
(1.3 GHz) processors took approximately 24 hours to complete 100 disk rotations. The code ran
at approximatively 2Gflops per single processor, i.e. 128 Gflops in total.
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Figure 7.9: Configuration: imposed axisymmetry for Re = 500, δ = 0.006, κ = 0.033, weak in-
ertial forcing. Left: contours of uθ . Right: contours of the poloidal stream function; clockwise
(red/light) and counter-clockwise (blue/dark); arrows correspond to the poloidal velocity and
they are colored according to their magnitude.
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Figure 7.10: Configuration: imposed axisymmetry for Re = 500, δ = 0.006, κ = 0.033, average
inertial forcing. Left: contours of uθ . Right: contours of the poloidal stream function; clockwise
(red/light) and counter-clockwise (blue/dark); arrows correspond to the poloidal velocity and
they are colored according to their magnitude.
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Figure 7.11: Time evolution of ur at a particular flow location: imposed axisymmetry for Re =

5000, δ = 0.006, viscous forcing.
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Figure 7.12: Configuration: three-dimensional, time-averaged flow for Re = 3000, δ = 0.01,
κ = 0.033, weak inertial forcing. Left: contours of uθ . Right: contours of the poloidal stream
function; clockwise (red/light) and counter-clockwise (blue/dark); arrows correspond to the
poloidal velocity and they are colored according to their magnitude.
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Figure 7.13: Time evolution of the maximal spectral coefficient of poloidal potential φ for
Fourier mode m = 0: imposed axisymmetry for Re = 3000, δ = 0.01, weak inertial forcing.
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148 CHAPTER 7. APPLICATIONS & PERSPECTIVES

Figure 7.14: Configuration: instantaneous flow for Re = 5000, δ = 0.01, viscous forcing. Left:
isosurfaces of uz; 75% of min uz (upper), 25% of max uz (lower). Right: isosurfaces of uθ ; 25%
of max uθ (upper), 75% of min uθ (lower)

Figure 7.15: Configuration: Re = 3000, δ = 0.01, weak inertial forcing. Left: isosurfaces of uθ ;
75% of min uθ (lower), 25% of max uθ (upper). Right: isosurfaces of uθ for time-averaged flow;
75% of min uθ (lower), 25% of max uθ (upper)

te
l-0

01
62

59
4,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
7



7.1. TURBULENT BIFURCATION 149

Figure 7.16: Configuration: Re = 3000, δ = 0.01, weak inertial forcing. Left: isosurfaces of ur;
75% of min ur (mid-plane), 75% of max ur (near to the disks). Right: isosurfaces of uz; 75% of
min uz (green/dark), 75% of max uz (yellow/light)

Figure 7.17: Configuration: time-averaged flow for Re = 3000, δ = 0.01, weak inertial forcing.
Left: isosurfaces of ur; 75% of min ur (mid-plane), 75% of max ur (near to the disks). Right:
isosurfaces of uz; 75% of min uz (green/dark), 75% of max uz (yellow/light)
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150 CHAPTER 7. APPLICATIONS & PERSPECTIVES

7.2 Axisymmetric turbulence

For two-dimensional turbulence in a Cartesian geometry, there exists a statistical description
of the properties of these flows and of the conserved quantities. The goal of the project of N.
Leprovost, B. Dubrulle, Chavanis and R. Monchaux ([45, 44, 60]) at CEA-Saclay is to establish
equivalent relations for decaying axisymmetric turbulence.

7.2.1 Theoretical framework

The equations obeyed by the axisymmetric flow of an ideal fluid with cylindrical components
(ur,uθ ,uz) are:

∂tur + ur∂rur + uz∂zur −
u2

θ

r
= −1

ρ
∂r p, (7.3a)

∂tuθ + ur∂ruθ + uz∂zuθ +
uθur

r
= 0, (7.3b)

∂tuz + ur∂ruz + uz∂zuz = −1
ρ

∂z p. (7.3c)

where p is the pressure and ρ denotes the fluid density. To facilitate the comparison with the
theory which uses specific notation, it is convenient to use the streamfunctions σ and η of the
toroidal and poloidal components of the axisymmetric flow. We define:

σ = ruθ (7.4a)

ξ =
ω

r
(7.4b)

y =
r2

2
(7.4c)

where ω = ω · êθ is the vorticity and satisfies:

ω = −
[

∂2
z

r
+ ∂r

∂r

r

]
η = −

[
1

2y
∂2

z + ∂2
y

]
η ⇔ ξ = −∆∗η (7.5)

There exists a direct relation between the toroidal and poloidal potentials (ψ,φ)

u = ∇× (ψêz) + ∇×∇× (φêz) ,

and the streamfunctions (σ,η):

σ = −r∂rψ (7.6a)

η = −r∂rφ (7.6b)

We can rewrite (7.3) as:

∂tσ + {η,σ} = 0 (7.7a)

∂tξ + {η,ξ} = ∂z

(
σ2

4y2

)
(7.7b)

where { f , g} ≡ ∂y f ∂zg − ∂z f ∂yg is the Poisson bracket.
For an ideal fluid undergoing no forcing, the following quantities are conserved over time:
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7.2. AXISYMMETRIC TURBULENCE 151

• the energy:

E =
1
2

∫
u2dx =

1
2

∫
(u2

r + u2
z)rdrdz +

1
2

∫
u2

θrdrdz,

=
1
2

∫
ξηdydz +

1
4

∫
σ2

y
dydz (7.8)

• the Casimirs:
C =

∫
C(σ)dydz, (7.9)

where C is an arbitrary function (we will consider C(σ) ≡ Cn(σ) ≡ σn).

• the helicity:

H =
1

2π

∫
ω · urdrdz,

=
∫

ξσdydz. (7.10)

• the circulation:
Γ =

∫
ξdydz (7.11)

Although when viscosity is included, these quantities are no longer conserved, it is interesting
to investigate how they are dissipated. In addition it can be proved ([44], Monchaux et al. [60])
that the most probable flow for the steady solutions of (7.7) satisfy:

σ = F(η), (7.12a)

−∆∗η = ξ =
F(η)

2y
F′(η) + g(η). (7.12b)

where F and g are unknown functions. It remains to verify if, in the case of decaying turbulence,
the relation (7.12a) is at least approximatively valid and if the hypothesis that F(η) = αη is a
linear (or at least very simple) function is justified.

7.2.2 Experimental confirmations

The theory of two-dimensional turbulence in cylindrical geometry is formulated for an axi-
symmetric flow. It is not possible to impose axisymmetry of the turbulent flow in an exper-
iment. It is, however, interesting to verify if the time-averaged three-dimensional turbulent
flow obeys some of the predictions derived for the axisymmetric configuration. Its mean flow
is axisymmetric so one can find corresponding poloidal and toroidal streamfunctions and ver-
ify whether there exists a correlation described by the function F present in (7.12a). The first
experimental results, obtained using laser Doppler velocimetry in turbulent von Kármán flow2

at Re = O(105)−O(106), were recently obtained by Monchaux et al. [60] and show that there is
a strong correlation between the streamfunctions σ and η of the time-averaged turbulent flow.
The experimentally determined function F has been found to have the following form:

F(η) ≈ a1η + a3η3 (7.13)

2Blades were placed on the rotating disks in order to ensure stronger forcing.
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Figure 7.18: Scatterplot of σ(η). Color denotes the distance from the cylinder center d(r,z) =

max{r, |z|}. Configuration: Re = 5000, time-averaged three-dimensional simulation (saturated
chaotic state – see figs. 7.7 and 7.8), viscous forcing. Left: full domain; Right: enlargement of
the locations distant from the cylinder boundaries (d ≪ 1).

This relation seems to be valid only for the internal region of the container (i.e. sufficiently far
from the boundaries). This is not surprising since the theory works for unforced fluid in the
absence of boundaries. It should be noted that the form (7.13) represents only a general trend
and the deviations from this formula increase when approaching the cylinder boundaries. It
is not clear if the results obtained for the time-averaged flow can be considered relevant for
a flow with imposed axisymmetry. The aim of our numerical study is to better understand
the nature of the correlation (7.13) and to provide the results for configurations with imposed
axisymmetry.

7.2.3 Numerical results

We have performed two kinds of analysis: for saturated and decaying turbulence at Re = 5000
with imposed axisymmetry, and for three-dimensional time-averaged flow at Re = {5000,3000}.
The flow at Re = 3000 was additionally forced by the self-adapting bulk force discussed in the
preceding section (we will denote this configuration by Re = 3000∗). We will first present our
observations concerning the three-dimensional time-averaged configurations since they corre-
spond better to the experimental study of Monchaux et al. [60].

Time-averaged 3D

The flows that we have observed at Re = 5000 and Re = 3000∗ are not, strictly speaking, turbu-
lent. They are rather chaotic. Up to this moment we have tested only fully developed chaotic
states in three dimensions. We have not performed studies of decaying three-dimensional tur-
bulence. It is impossible to obtain a reasonable time average of the decaying state at Re =

{5000,3000∗}. The flow becomes laminar in to quickly, which prevents us from computing a
meaningful time average. This is also the reason for which the experimental measurements

te
l-0

01
62

59
4,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
7



7.2. AXISYMMETRIC TURBULENCE 153

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.02 -0.01  0  0.01  0.02

-1

-0.5

 0

 0.5

 1

η

σ

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.02 -0.01  0  0.01  0.02

-0.2

-0.1

 0

 0.1

 0.2

η

σ

Figure 7.19: Scatterplot of σ(η). Color denotes the distance from the cylinder center d(r,z) =

max{r, |z|}. Configuration: Re = 3000∗, time-averaged forced three-dimensional simulation
(saturated chaotic state – see figs. 7.12), weak inertial forcing. Left: full domain; Right: en-
largement of the locations distant from the cylinder boundaries (d ≪ 1).

must be performed for very high Reynolds numbers.

The streamfunctions of the time-averaged flow corresponding to the fully developed state
at Re = 5000 are represented on figure 7.8. The analogous structures are represented for Re =

3000∗ on figure 7.12. On figures 7.18 and 7.19 we show the scatter-plots of the toroidal stream-
function σ as a function of poloidal stramfunction η. The points are colored according to their
distance d from the cylinder origin defined as:

d(r,z) = max{r, |z|}

Violet (dark) points represent domain locations far from the boundaries (d ≪ 1) and the yellow
(light) points are situated near the boundaries d ≈ 1. The figures 7.18 and 7.19 show that in the
central region of the cylinder (d ≪ 1) the streamfuncions obey approximately the relation:

σ ≈ a1η + a3η3 + . . . (7.14)

This is especially true on 7.19-right which, for the reason explained in section 7.1, correspond
better to the experimental configuration. These results agree with the experimental observa-
tions of Monchaux et al. [60]. The preliminary numerical study show, that even for forced flow
the law σ = F(η), predicted for unforced ideal fluid, seems to apply, at least approximatively,
to the points distant from the boundaries. Our simulation of a forced three-dimensional flow
corresponds well to the experimental configuration but is far from the mathematical model for-
mulated for the two-dimensional flows. A study of a decaying turbulent (or nearly turbulent)
flow in configuration with imposed axisymmetry should be, however, more relevant.
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154 CHAPTER 7. APPLICATIONS & PERSPECTIVES

7.2.4 Imposed axisymmetry

We performed a simulation of decaying flow for Re = 5000 with imposed axisymmetry. The
state was prepared by running a simulation without bulk forcing in an exactly counter-rotating
configuration until we obtained saturated oscillating state (the axisymmetric flow at Re = 5000
is not yet chaotic). The disk rotation velocity was then set to zero. Figure 7.21 presents the flow
at different times. The correlation between the toroidal and poloidal streamfunctions, far from
the boundaries, is strongest on the middle figure (t = 100). This is probably because just after
stopping the disks (t = 10) the flow still remembers the forced situation. On the other hand,
in the later figure (t = 200) the flow near the cylinder origin almost disappears. The structures
present near the boundaries are not directly correlated at any time.

The analysis performed using scatterplots (see 7.20) also confirms that the best correlation
is obtained for time t = 100 when the structures far from the boundaries are still present and
are not yet dominated by the vortices near the boundaries. The figure corresponding to t = 200
seems also to display the relation (7.14), but, enlargement shows that the correlation is already
very perturbed near the cylinder origin. Figure 7.22 presents superposed poloidal (black con-
tours) and toroidal (color) streamfunctions for times t = {10,100,200}. It is clear that the best
correlation is realized for t = 100.

We expect that for more turbulent flows, several small-scale vortices should be produced
by the flow and that their decay should be slower. The influence of boundaries on the decaying
vortices should also decrease for higher Reynolds numbers. In the limit, in an ideal fluid the
vortices should no longer feel the boundaries.

Our analysis, performed on an initially oscillating but not chaotic flow, qualitatively con-
firms that the unforced vortices, unperturbed by the boundaries, obey (but only approxima-
tively) the relation (7.14). In a viscous flow, in the presence of the boundaries, the conditions
favorable for satisfaction of (7.14) can be realized only over a relatively short time.

We plan to extend our analysis of this problem by studying higher Reynolds numbers and
also initial conditions for decaying flow prepared using bulk forcing simulating rotating blades.
We hope that this will allow us to better understand the influence on (7.12a) of the forcing, the
viscosity, and of the boundaries as well as to write more precisely the nature of this relation. We
will also determine how quantities which are conserved in the ideal fluid are dissipated in the
presence of viscosity. Finally, we will compare the time average of our 3D calculated fields with
the experimental measurements of averaged velocities obtained by laser-Doppler velocimetry.
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Figure 7.20: Scatterplot of σ(η). Color denotes the distance from the cylinder center d(r,z) =

max{r, |z|}. Figures from top left to bottom right correspond to successive moments of decay-
ing flow at Re = 5000 with viscous forcing and imposed axisymmetry (see also fig. 7.21).
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Figure 7.21: Successive states (from top to bottom) t = {1,100,200} of decaying flow with vis-
cous forcing and imposed axisymmetry for Re = 5000. Left: contours of toroidal streamfunction
σ. Right: contours of poloidal streamfunction η.
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7.2. AXISYMMETRIC TURBULENCE 157

Figure 7.22: Succesive states (from left to right) t = {10,100,200} of decaying flow of imposed
axisymmetry for Re = 5000 (viscous forcing). Contours of the poloidal streamfunction η are
superposed with the toroidal streamfunction σ represented by the color map. The region of
interest is (r < 0.5, |z| < 0.75); the extent of the entire domain is (r ≤ 1, |z| ≤ 1).
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Chapter 8

Concluding remarks

Brief review

This work, motivated by a need for a numerical tool adequate for investigating the dynamo
effect in cylindrical von Kármán flow, concentrate on developing of necessary numerical tools
that could be applied to this phenomenon. The level of complexity of this problem required us
to limit ourselves only to the most important and decisive aspects of the project undertaken.
The most important element necessary to solve the equations of magnetohydrodynamics in
the geometry of a finite cylinder is the developpment of a solver guaranteeing the solenoidal
character of both velocity and magnetic fields. In three dimensions this is never a trivial task.

We presented throughout this dissertation a pseudo-spectral method for solving the three-
dimensional incompressible Navier-Stokes equation in potential poloidal-toroidal formulation.
We believe that this method can be further extended to the magnetic problem since the in-
duction equation governing evolution of the magnetic field has a simpler structure than the
Navier-Stokes equation and the method presented can be almost directly applied to this case.
The main difficulty concerning inclusion of the magnetic field into the existing solver is satis-
faction of the matching conditions between its internal (inside the cylinder) and external part
(which extends to infinity). We developed at theoretical and algorithmic level a novel method
for dealing with this problem and we demonstrated the idea of including it into the method
presented for a purely hydrodynamical configuration.

The study, concerning solving the Navier-Stokes equations in the potential formulation can
be considered as an independent and quite challenging problem. This kind of method, pri-
marily introduced by Marques et al. [56] was already tested on a Raighlei-Benard convection
problem. While preserving the original mathematical formulation proposed by Marques [55]
we introduced a quite different methodology based on the influence matrix technique for deal-
ing with the coupled boundary conditions emerging from the potential formulation. Such a
method can be further extended to the magnetic problem.

Validation of the hydrodynamic code tested against well-documented problems in the liter-
ature proved that the poloidal-toroidal decomposition used in conjunction with the influence
matrix approach can be successfully applied to impose the divergence-free character of time-
dependent fields.

In view of future computationally expensive projects, the numerical code was parallelized
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160 CHAPTER 8. CONCLUDING REMARKS

using the MPI protocol. This made it possible to simulate nearly turbulent flow for Re = 5000
with a spatial resolution of 128 × 160 × 90.

Poloidal-toroidal decomposition

The potential formulation proposed by Marques in [55, 56] was further extended to the in-
duction equation for the magnetic field. The boundary conditions ensuring correct matching
between internal and external magnetic field were formulated. The evidence for the necessity
of the compatibility condition was demonstrated for both the hydrodynamical and the magnetic
problems written in poloidal-toroidal variables. This condition is a particular case of the con-
dition derived by Marques [55] for general (and not only simply connected) domains.

The most important advantage of using the toroidal-poloidal decomposition is the exact (by
construction) imposition of the divergence-free character of the velocity and magnetic fields.
For the induction equation, the potential formulation make it possible to solve for the mag-
netic field without introducing an artificial (numeric) magnetic pressure which has no physical
meaning. Additionally, using scalar functions instead of components of vector fields simplifies
and homogenizes the usage of differential operators.

The most perturbing drawback of potential formulation are the high-order differential equa-
tions and coupled boundary conditions. This requires using complicated methods and makes
the development and testing of tasks difficult to carry out.

Spectral solver

The spectral code described in this work solves the Navier-Stokes equation for an incompress-
ible fluid in a finite cylinder geometry in the poloidal-toroidal formulation. The boundary
conditions have been regularized to ensure a correct spatial convergence. The axis singularity
inherent in the cylindrical coordinates is handled by using a regular basis of radial polyno-
mials due to Matsushima & Marcus [58] having properties similar to those of the Legendre
polynomials. This is, in our opinion, preferable to imposing regularity conditions on a general
purpose spectral basis like Chebyshev polynomials up to some arbitrarily chosen polynomial
order. Tests performed for analytical polynomial solutions to the single-step Stokes iteration
with an adequate right-hand side showed that if the spectral solution is not truncated, then
the solver reproduces analytical solutions with nearly machine precision. In a real situation
when the solution is not a polynomial, the solver shows correct behavior manifested by an ex-
ponential convergence of spectral coefficients of the solution. The errors of satisfaction of the
potential equations (corresponding to the curl and double curl of the Navier-Stokes equations)
is very small O(10−10) for the interior point. The less precise satisfaction of the equations at the
boundary points is the consequence of singular character of solutions to the Stokes/Navier-
Stokes problem in the cylinder corners. This singularity concerns, however, the double curl of
the Navier-Stokes equations and not the equations themselves. The limit conditions are satis-
fied by our solver up to the machine precision.

This work proved that solving of high-order PDE with coupled boundary conditions is pos-
sible even if the mathematical description as well as the practical implementation are far from
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simple. A method for preconditioning combined with the SVD decomposition of the influ-

ence matrix used for imposing some of the boundary conditions was proposed as a remedy for
growth of the matrix condition number for higher spatial resolutions. It was reported by others
(see Speetjens [81]) and also confirmed by ourselves that, without addressing this problem, the
ill-conditioned influence matrix cannot be used for simulations requiring finer resolutions or
smaller time steps.

Matching of the external magnetic field

We proposed a method for matching the internal and external magnetic fields for the magnetic
problem in a spectral formulation. Similar method was already formulated for a spherical
geometry by Dudley & James [22] and we generalized it to cylindrical geometry (and possibly
others used for spectral methods). This method is based on decomposing the external solu-
tion in its natural basis of spherical harmonics for which boundary conditions can be defined
separately for each basis function. We defined the problem of satisfaction of the continuity
conditions at the cylinder’s boundary by performing a change of coordinates from spherical to
cylindrical. The resulting boundary conditions, which after this operation are no longer decou-
pled, can be solved by incorporating them into the influence matrix. The method also admits
elimination of the external field from the solving protocol by performing a Schur decomposi-
tion of the influence matrix in the preprocessing step. Practical implementation of this method
represents a near perspective and natural continuation for the work presented in this thesis.

Stability/Validation

The nonlinear term suffers from several types of errors which appear when one uses a pseudo-
spectral evaluation of product of functions. These errors can seriously affect stability of the
method in the case when a regular basis of polynomials is used in the radial direction. Such
a regular basis is very sensitive to all operations, performed in spectral space, violating the
regularity rules. We propose a remedy for this problem by using a modified methodology for
pseudo-spectral evaluation of the nonlinear term. This method makes it possible to perform all
potentially singular operations in the physical space where the singularity is not as severe as in
the spectral space.

The nonlinear Navier-Stokes code has been tested on problems documented in the literature
for which we obtained satisfactory results.

Applications & perspectives

The preliminary application of the code to the problems of decaying axisymmetric turbulence
and to the turbulent bifurcation represent perspectives for future research.
In the context of axisymmetric decaying turbulence we discussed the validity of some theo-
retical predictions concerning correlation between two streamfunctions defined for an axisym-
metric ideal fluid or decaying turbulence. The observed correlations seem, under several con-
ditions, to confirm the theory. For a three-dimensional simulation followed by an analogous
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162 CHAPTER 8. CONCLUDING REMARKS

study applied to the time-averaged flow we obtained results in qualitative agreement with ex-
perimental observations. The next step in advancing this work would be to determine how
quantities like momentum, energy, helicity, which are conserved for a perfect fluid, are dissi-
pated in the presence of viscosity.

In the context of the turbulent bifurcation the need for introducing internal boundaries in
form of blades situated at the cylinder basis has been demonstrated by experiments. Curved
blades are reported to be necessary to observe the turbulent bifurcation. Since inclusion of in-
ternal boundaries is not possible in a spectral code, we have introduced a mechanism which we
believe to be capable of qualitatively reproducing the effect of blades used in the experimental
setup. A self-adapting bulk forces has been incorporated into the explicit part of the time-
integration scheme. The preliminary results obtained for a configuration modeling straight
blades showed a big change in proportion between intensities of the poloidal and toroidal
flows compared to the disk-driven flow. In experiment, the poloidal-to-toroidal ratio is ap-
proximately equal to 1. In our case, this ratio changed from ≈ 0.13 for disk-driven flow at
Re = 5000, to ≈ 0.27 for the flow at Re = 3000 additionally driven by the bulk forces modeling
blades. The topology of the time-averaged flow, simulated in this second configuration, also
corresponds better to the topology of the experimental flow.

While we have not observed the turbulent bifurcation in few simulation performed up to
now, the general changes observed in flow characteristics encourage us to continue this study.
Investigating of a non-symmetric counter rotating configuration with volume forces modeling
curved blades seems to be necessary in order to reproduce the experimental results.

te
l-0

01
62

59
4,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
7



Appendix A

Recursive formulas for radial
polynomials

Recurrence formula for evaluating the radial polynomial Qm
n (α, β;r) ≡ Qm

n (r), corresponding
to mth Fourier mode, is given by:

−(n − |m| + 2)(n + |m| + β + 1)(2n + γ − 3)Qm
n+2(r)

+(2n + γ − 1)
[
(2n + γ − 3)(2n + γ + 1)r2 − 2n(n + γ − 1)

−2|m|(|m|+ β − 1) − (γ − 3)(β + 1)]Qm
n (r)

−(n − |m| + γ − β − 2)(n + |m| + γ − 3)(2n + γ + 1)Qm
n−2 = 0.

(A.1)

with starting values

Qm
m(r) = r|m| (A.2a)

Qm
m+2(r) =

2|m| + γ − 1
2

(
2|m| + γ + 1
2|m| + β + 1

r2 − 1
)

r|m|. (A.2b)

The recurrence relation for the normalizing coefficients Im
n is:

Im
n =

(2n + γ − 5)(n − |m| + γ − β − 2)(n + |m| + γ − 3)

(n − |m|)(n + |m| + β − 1)(2n + γ − 1)
Im
n−2, (A.3)

where the starting values Im
m are given by

Im
m =

Γ
(
|m| + β+1

2

)
Γ
(

γ−β
2

)

2Γ
(
|m| + γ+1

2

) (A.4)

and Γ is the gamma function: an extension of the factorial to complex and real number argu-
ments.
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164 APPENDIX A. RECURSIVE FORMULAS FOR RADIAL POLYNOMIALS
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Figure A.1: Example of a few radial polynomials Qm
n for Fourier modes m = {0,1,2,3} (on

figure: Rm,n(r) ≡ Qm
n (r)).
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Appendix B

Remarks concerning MPI
parallelization

Most massively parallel machines use the distributed memory model i.e. each processor has its
own amount of the accessible memory. This avoids some conflicts in accessing the particular
memory location simultaneously by several processors. However, it requires data exchange to
be realized over an inter-nodal network. The speed and the latency of that network is crucial
for parallel applications requiring frequent exchange of large data.

The most computationally expensive part of a parallel pseudo-spectral code is evaluation
of the nonlinear terms. The spectral→physical→spectral transformation must be performed at
each timestep. This requires the entire data describing three-dimensional fields to be exchanged
between processors at each timestep. In our case the total size of data is 9 × M × K × N, where
M,K, N are the spatial resolutions in azimuthal, axial and radial directions, respectively. For
higher resolution, this represents a very large data set.

In our pseudo-spectral code, parallelized according to the distributed memory model (here,
the MPI protocol), each processor treats the data corresponding to a single (or a few) Fourier
modes1. More precisely, the processor treating the mth Fourier mode uses the real parts of
the poloidal potential φ̂m and the imaginary part of ψ̂m. Similarly, the processor treating the
−mth Fourier mode uses real parts of the toroidal potential ψ̂−m and the imaginary part of ψ̂−m.
For azimuthal spatial resolution M, this makes it possible, to distribute the tasks between M

processors.
The spectral↔physical transformations in the radial and axial directions can be performed

independently by each processor. The FFT transform in the azimuthal direction requires, how-
ever, transposition of the entire data in order that each processor have access to all Fourier
modes. There exist free parallel implementations of the FFT algorithm (like FFTW ver. <3.0)
which performs this transposition, but we preferred to implement this operation ourselves and
to apply after that step a serial FFT algorithm on each processor independently. This allowed
us to reduce the number of data exchange operations to only two calls to the highly optimized
MPI collective communication routines MPI_Alltoall per single simulation timestep.

On figure B.1 we present the schematic idea of distribution of the data between processors

1Actually, since the real and imaginary parts of the Fourier modes of our spectral fields are decoupled, each
processor can treat only half of the mode: either its real or imaginary part.
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166 APPENDIX B. REMARKS CONCERNING MPI PARALLELIZATION

in spectral and physical space:

m=0   
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Figure B.1: Schematic model of distribution of the data between processors. Left: spectral
space; Right: physical space.
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