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Introduction

The Hanbury Brown and Twiss effect has been first demonstrated in 1956 [1], by
Robert Hanbury Brown and Richard Q. Twiss. The initial idea was to overcome
the limitations of Michelson interferometry in regard to the measurement of an-
gular sizes of stellar objects. Fluctuations of the atmosphere blur the interference
patterns and induce the need for large and expensive telescopes. They consequently
invented the principle of intensity interferometry [2]. In their field of radio astron-
omy, this method opened new possibilities [3]. Yet when they applied a similar
technique to a thermal light source [1], the correlations they demonstrated among
photons puzzled the scientific community .

They showed that the photons provided by a chaotic light source were corre-
lated. They demonstrated that the probability for photons to be grouped was larger
then the probability for the photons to be randomly distributed. This bunching be-
haviour of independent photons opposed the still classical idea some scientists had
about photons. The experiment therefore was a breakthough in modern physics,
and it took Roy J. Glauber up to 1962 [4, 5] in order to build up a complete theo-
retical description of the photonic quantum phenomena. This experiment, and the
theory related, opened the way to modern quantum optics. In 2005 Roy J. Glauber
has been awarded a Nobel prize in Physics precisely for his work on the Hanbury
Brown and Twiss effect and his quantum field description of light.

Nowadays, the Hanbury Brown and Twiss effect is used in various fields rang-
ing from astronomy to particle physics. The Hanbury Brown and Twiss correla-
tion is a quantum effect applying to all particles. Observations have been made
with bosonic photons, as well as fermionic electrons [6, 7, 8]. Its observation on
macroscopic atoms was still a landmark to set. Masami Yasuda and Fujio Shimizu
realised this exploit in 1996 by observing the correlations between Laser cooled
metastable Neon atoms [10].

The field of cold atom physics has since reached much lower temperatures,
specifically through the use of evaporative cooling techniques, and Bose-Einstein
condensation has eventually been reached in 1995 [11, 13, 12]. The Bose-Einstein
condensation of metastable Helium atoms in 2001 [14, 15] opened the way to fur-
ther investigation, and in particular to the measurement of the fundamental change
of the Hanbury Brown and Twiss effect at the condensation threshold. The evapo-
rative cooling of fermionic metastable Helium atoms in 2006 [16] made it further
possible to measure the Hanbury Brown and Twiss on fermionic neutral particles.

The realisation of the Hanbury Brown and Twiss experiment with metastable
Helium atoms would for sure be an interesting measurement. But more interest-
ingly, the capability of measuring this effect would demonstrate the possibility to
perform measurements at the phase-space cell scale. This means that such a real-
isation would render possible quantum correlation measurements in virtually any
quantum system that can be build in modern cold atom physics. That is the larger
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motivation behind this present work.

This Thesis

This thesis describes the realisation of those experiments, as carried out over the
period 2003-2006. As a member of the metastable Helium setup team of the group
of Atomic Optics at the Institut of Optics in Orsay, my work has been supervised by
Christoph Westbrook. During those years, we progressively went from the prepa-
ration of the setup, which implied a long fight with the atom cooling setup, to the
effective realisation of the experiments and analysis of the experimental data. Par-
ticular time and energy has been invested in the implementation and understanding
of the detection chain.

This thesis has taken particularly care in describing the Hanbury Brown and
Twiss effect and our proposed implementation of its measurement. It focuses ex-
tensively on the detection method, as the detector is the key to the measurement.
Finally it handles the experimental measurements as realised on thermal and Bose
condensed 4He atoms in 2005 at the Institut of Optics in Orsay [17], and on ther-
mal fermionic 3He atoms as realised in 2006 at, and in collaboration with, the Laser
Centrum of the Free University in Amsterdam [18].

Although the author of this thesis has actively participated to the outcome of
this research, the results presented undeniably results from a team work. With
Rodolphe Hoppeler and Denis Boiron, we underwent the painful unmouting and
reconstruction of the experimental setup, necessary to the integration of the detec-
tor. We were joined in the summer of 2004 by Aurelien Perrin for the effective
Bose-Einstein condensation and the acquisition and analysis of the experimental
4He data in Orsay. The insight of Alain Aspect and Christoph Westbrook proved
particularly useful to the understanding, analysis and publication of the results. The
team lost Rodoplhe Hoppeler yet was completed by Hong Chang and Valentina
Krachmalnicoff during the summer of 2005. With the latter, we have focused on
a deeper understanding of the detection deficiencies, and on the upgrade of the
detection capacities. The experimental work realised in Amsterdam by John Mc-
Namara, Tom Jeltes and Wim Vassen, and their control of their experimental setup,
was the key to our collaboration as to the Amsterdam measurements. The theoret-
ical analysis has essentially been performed by Denis Boiron, Jose Viana Gomes
and Michael Belsley [19].

The Layout

The layout of this thesis is subdivided in three chapters. The first Chapter deals
with the Hanbury Brown and Twiss effect. We give a historical background to its
measurement and come to a simple understanding and theory. We then will see
the particular interest of the cold atomic optics field as to the Hanbury Brown and
Twiss effect, and we will study briefly various other experimental measurements
of the Hanbury Brown and Twiss effect in this field, that have been carried out
previously or during the presented work. Finally, we will focus on the proposed
measurement of the Hanbury Brown and Twiss effect with metastable helium and a
micro-channel plate based position sensitive detector, and we will provide a simple,
yet complete theoretical understanding.
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The second Chapter deals with the detection chain. We briefly discuss the var-
ious detector options we had. We then will analyse the entire chain of the micro-
channel plate based delay-line detector, the only detector that seemed up to our
requirements. We will then concentrate on three crucial characteristics of the de-
tector: the detection efficiency, the detection rate and the resolution.

The third Chapter deals with the acquisition and analysis of the experimental
results. We first deal with the thermal 4He clouds acquired in Orsay, that demon-
strate the Hanbury Brown and Twiss effect. We then analyse the acquisition of
some Bose-Einstein condensate clouds, whose coherence induces the absence of
the Hanbury Brown and Twiss effect. Finally we will deal with the fermionic 3He
clouds acquired in Amsterdam, that demonstrate a negative Hanbury Brown and
Twiss effect.





CHAPTER 1

The Hanbury Brown and Twiss
Effect

Through this chapter, we will study the Hanbury Brown and Twiss effect. The
purpose of the first section is to give an overview of what was historically the
Hanbury Brown and Twiss experiment. The idea is to demystify the experiment on
one side, yet to show its originality and importance. We will remain in the world
of photonic optics as most readers are more familiar with the concepts involved.

The second section will deal with the Hanbury Brown and Twiss effect in cold
atom optics. We will briefly describe up to what extend cold atoms are an excellent
system for the study of this effect. We will then focus on several experimental
measurements that have been performed previously, or during the ongoing of this
present study.

The last section of this chapter deals with the proposed measurement with
metastable Helium. We will recall briefly why He∗ is particularly suitable for a
Hanbury Brown and Twiss type measurement. We will then describe the experi-
mental setup, and analyse the theory of the experiment. We will finally conclude
on several characteristics required for the detector, by outlining the expected signal
to noise ratio.
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1.1 Historical Overview

Robert Hanbury Brown (1916-2002) was a physicist and astronomer who pio-
neered the development of radar and radio astronomy. Having worked during the
Second World War on radar systems, Hanbury Brown decided to use his acquired
knowledge in radio technology to tackle a century old problem: measuring the
angular sizes of stars.

A first such measurement had been performed by Galileo Galilei [20]. Using
a fine cord to eclipse Vega, and considering his distance to that cord, he measured
the angular diameter to be 5 seconds of arc. Although undertaken in a very precise
way, this method gave a result three orders of magnitude off.

A first theoretical estimation was made by Isaac Newton. He considered that
if the sun were a stellar object like the stars, and if it were removed to a distance
that would make it a first magnitude star, then it would have an angular diameter
around 2 10−3 seconds of arc. This result is very close to the latest estimates of
Vega.

The third noteable attempt was performed by Albert A. Michelson and Francis
G. Pease in 1920 [21, 22]. They used a technique called amplitude interferometry,
since then often referred to as Michelson Interferometry.

We will have a short overview of this technique and its limits. Then we will
study an improved scheme of this technique as proposed by Hanbury Brown and
Twiss: the intensity interferometer. Finally we will see how this last technique
troubled many physicists who had a photonic vision of light, and led to the so
called Hanbury Brown and Twiss effect.

1.1.1 Michelson Interferometry

1.1.1.1 Principle

The idea behind Michelson interferometry is mostly a Young slit experiment as
shown in Figure 1.1A

If a pointlike quasi-monochromatic light source of wavelength λ lights a screen
through a slit P1, a squared sinc-function will show up. The observed figure is
the diffraction pattern of the slit. If a second slit P2 is introduced at a distance a

from the first, the sinc-function is modulated by a sinusoid of spatial frequency
L λ

a
, where L is the distance from the slits to the screen. This results from the two

quantum paths that the photons can follow. Those paths interfere with spatially
dependent relative phases, which gives the fringe pattern. In the case of a pointlike
light source, the contrast between the fringes is unity. This means that the dark
bands receive no light at all.

The position of the central bright band, band that is defined by the relative phase
between the two paths being zero, is defined by the geometry. If another pointlike
light source is introduced, slightly off in position, the observed interference and
diffraction pattern of this second light source is identical, but slightly displaced. If
now both sources are mutually incoherent and illuminate the double slit, the result-
ing intensity pattern is the sum of the independently obtained intensity patterns.
This has the effect of blurring out the individual patterns, and as such, reduce the
contrast of the fringes.
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Figure 1.1: In A, the Young slit experiment. The light amplitudes that go through the two
slits add up on the screen. The perceived intensity is the square of this amplitude sum. In B,
a Michelson interferometer. The light provided by a source s shines on a semi-transparent
mirror. The two out-comming fields are retro-reflected on two pinhole mirrors that have a
different distance as to the semitransparent mirror where the light fields recombine. The
interference is observed on a screen.
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In a more general way, if the quasi-monochromatic incoherent light source is
non pointlike, but has an angular size as seen from the slits, the contrast of the
fringes is reduced. Measuring the contrast of the fringes therefore amounts to
measuring the angular size of the source.

Conversely, if one changes the separation of the two slits, the fringes become
narrower whereas the separation between fringes pattern does not change. This
means we also have a dependence of the contrast on the separation of the pinholes.

1.1.1.2 Theory of Spatial Coherence

In a classical description of light, the light amplitude at a given point in space will
be expressed as the real part of an amplitude A(t). The light Amplitude at point Q

can then be expressed as:

AQ(t) = t1A1(t)+ t2A2(t + τ) (1.1.1)

where t1 and t1 are the complex amplitude transmission factors for the two slits,
A1 and A2 their light amplitudes. The τ translates the time difference for the two
beams to reach Q from P1 and P2.

The intensity of the light at Q is the time average of the square of the real part
of the amplitude, that can be written:

IQ = 〈A∗
Q(t)AQ(t)〉t (1.1.2)

where the brackets represent the time average. Introducing 1.1.1, we then obtain:

IQ = |t1|2I1 + |t2|2I2 +2Re(t1t2Γ12(τ)) (1.1.3)

where Γ12(τ) is the amplitude correlation function at the two slits defined by:

Γ12(τ) = 〈A∗
1(t)A2(t + τ)〉t (1.1.4)

If we consider that those light amplitudes are produced by a distant extended spa-
tially incoherent quasi-monochromatic source σ of wavelength λ, they can then be
expressed as the sum of the amplitudes originating from the various source ele-
ments:

Ai(t) =
Z

σ

A(x,y, t −‖S(x,y)Pi‖/c)

‖S(x,y)Pi‖
dxdy (1.1.5)

where ‖S(x,y)Pi‖ is the distance from the source element to the Young slit. If we
call d the average distance from the slits to the source, and we consider d much
larger then the typical source size, we then obtain:

Γ12(0)=

〈

Z

σ

Z

σ
A∗ (x,y, t −‖S(x,y)P1‖/c)A

(

x′,y′, t −‖S(x′,y′)P2‖/c
) dxdydx′dy′

d2

〉

t
(1.1.6)

This double integral averages to zero if (x,y) 6= (x′,y′), whereas for (x,y) = (x′,y′)
the two amplitudes have a spatially defined phase relationship:

Γ12(0) =
Z

σ

Iσ(x,y)

d2 e
2πi
λ

(‖S(x,y)P1‖−‖S(x′,y′)P2‖)dxdy (1.1.7)
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If we consider the two slits at equal distance from the source, yet with an angular
separation α, this expression simplifies to:

Γ12(0) =
1
d2

Z

σ
Iσ(x,y)e−i 2π

λ
xαdxdy (1.1.8)

This is a form of the Cittert-Zernike theorem [84]. It tells us that the amplitude
correlation at the two pinholes is the Fourier transform of the intensity distribution
at the source. We define the normalised correlation γ12 function as:

γ12(α,0) =
Γ12(0)√

I1I2
=

R

σ Iσ(x,y)e−i 2π
λ

xαdxdy
R

σ Iσ(x,y)dxdy
(1.1.9)

We note that γ(0,0) = 1 is the maximum value the function can reach. This function
describes the spatial coherence of the source. For a non punctual light source, the
angular width of γ(α,0) is inversely proportional to the spatial width of the source.
We define the coherence angle αc = λ/D, with D the diameter of the source. By
multiplying with the distance to the source, we get the coherence length:

lc = λ/θ (1.1.10)

with θ the angular size of the source as seen from the pinholes.

1.1.1.3 Theory of Temporal Coherence

If we now consider the source being no longer quasi-monochromatic but pointlike,
we rather define its frequency components:

A(t) =
Z +∞

0
a(ω)eiωtdω (1.1.11)

Furthermore we consider the angle between the pinholes α = 0. This means that the
pinholes coincident as seen from the source. We increase the distance to the source
for pinhole 1, which can be performed through an optical setup as demonstrated in
Figure 1.1B. The amplitude correlation function will then be:

Γ12(τ) = 〈A∗
1(t)A2(t + τ)〉t (1.1.12)

where τ = δd/c and δd the displacement of pinhole 1. Using the notation in 1.1.11,
this expression changes into:

Γ12(τ) =
Z +∞

0
a∗(ω)a(ω)e−iωτdω (1.1.13)

We call G(ω)dω = a∗(ω)a(ω)dω the spectral density of the light. We obtain the
result of the Wiener-Khinchin theorem [85] that tells us that the autocorrelation of a
stationary random process is given by the Fourier transform of its power spectrum.

We can again define the normalised amplitude correlation function:

γ(0,τ) =
Γ12(τ)√

I1I2
=

R +∞
0 G(ω)e−iωτdω

R +∞
0 G(ω)dω

(1.1.14)
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We note that this function maximises to 1 for τ = 0. It describes the temporal coher-
ence of the source. For a non monochromatic stationary light source, the temporal
width of γ(0,τ) is inversely proportional to the spectral width of the source. We
define the coherence time:

tc = 2π/∆ω = 1/∆ν (1.1.15)

with ∆ν the spectral width of the source.

1.1.1.4 Real World Experiment

In order to study the angular sizes of stars, Michelson used a telescope as repre-
sented in Figure 1.2. They measured with this telescope angular sizes of typically
20ms of arc with visible light. That requires a variable distance between the Young-
slit mirrors of a few meters.

P1

P2Q

atmosphere 

and space

star

Figure 1.2: The Michelson telescope. Two outer mirrors send the light to a central tele-
scope where they get overlapped. The contrast between the fringes can then be measured
at point of observation Q. A stabilised mounting as well as a fast integration time have to
compensate for the blurring due to atmospheric fluctuations as well as mechanical vibra-
tions.

The problem lies in the phase dependency between the two paths. If the path
difference changes in time, between the source and the slits due to atmospheric
perturbations, or between the slits and the observation point Q due to the mechan-
ical instability of the telescope, the temporal integration necessary to observation
would blur out the contrast.

Indeed if we introduce a time depending phase difference φ(t) in formula 1.1.6
it simplifies to the following expression:

Γ12(0) =
1
d2

Z

σ
Iσ(x,y)〈e−i( 2π

λ
xα+φ(t))〉tdxdy = 0 (1.1.16)

At the time of those measurements in 1920, this observation was done through
the trained eye of Michelson, who had to estimate instantaneously the contrast.
Even the best trained eye still needs a 10 ms integration time. Consequently, the
two arms of the telescope had to be severely stabilised.

Michelson worked with the full spectral range of the stars. Besides the fact
that the spatial coherence length of 1.1.10 still had to be convoluted with the effect
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of this spectral width, the temporal distances from the slits to the source had to
be within the coherence time of the source. That translates to a spatial control of
the mirrors of 400 nm. With the required mechanical stability, such a telescope is
already a master piece.

Furthermore, the polishing of the mirrors had to be within wavelength control,
else the fringes figure would blur out. This has certainly limited the sizes of the
mirrors. Consequently, the luminosity at the observation point was limited, and the
observation time limited by millisecond fluctuations of the atmosphere. In order to
see anything, full spectral range was required.

The measurements made by Michelson in 1920 were made with a 6m telescope.
Further attempts with a 15m telescope did not give reproduceable results. Conse-
quently, this technique was limited to only a very small range of large angular first
magnitude stars.

1.1.2 Intensity Interferometry

Hanbury Brown initially wanted to measure the angular size of two radio sources:
Cygnus A and Cassiopeia A. Theories ranges those sizes from minutes to millisec-
onds of arc. At the frequency of 125 MHz at which they worked, this would need
the slit separation in the worst case as large as the earth. That experiment required
two coherent independent oscillators as time references, a technique that was not
under control in 1949. In order to circumvent this necessity, Hanbury Brown and
Twiss thought of doing intensity interferometry [2, 3].

After the study of what intensity interferometry is, we will outline the advan-
tages it has over Michelson interferometry, whereafter we will have a short outlook
at some real life experiments produced by Hanbury Brown and Twiss.

1.1.2.1 Principle

An intensity interferometer is essentially a speckle measurement apparatus. A non-
punctual incoherent light sources, seen from a screen with an angular size θ, pro-
duces a speckle pattern on this screen, as shown in figure 1.3.

light source

screen

speckle 

pattern

Figure 1.3: The speckle pattern produced by a spatially incoherent light source.

The characteristic size of the spatial dependence is of the order of the spatial
coherence lc. The characteristic time at which this pattern evolves is of the order of
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the time coherence tc. For most sources, this evolution is sufficiently quick com-
pared to the detector integration time, that the speckle averages to a homogeneously
lighted screen. Observation of this pattern therefore requires either limiting con-
siderably the spectrum of the source, or working with a very fast detector.

1.1.2.2 Theory

In order to measure the typical size of the speckle fluctuations, we only have to
look at the spatial correlation between the intensities of two points P1(t) and P2(t)
evolving at the screen. the intensities are given by:

I1(t) = A∗
1(t)A1(t), I2(t) = A∗

2(t)A2(t) (1.1.17)

The intensity correlation function is obtained by:

〈I1(t)I2(t + τ)〉t = 〈A∗
1(t)A1(t)A

∗
2(t + τ)A2(t + τ)〉t (1.1.18)

If the amplitudes are random gaussian variables, that is the case for a classical light
source, this expression can be developed to:

〈I1(t)I2(t +τ)〉t = 〈A∗
1(t)A1(t)〉t〈A∗

2(t +τ)A2(t +τ)〉t +〈A∗
1(t)A2(t +τ)〉t〈A∗

2(t +τ)A1(t)〉t

(1.1.19)
This can be simplified to:

〈I1(t)I2(t + τ)〉t = I1I2 +Γ2
12(τ) = I1I2[1+ γ2(α,τ)] (1.1.20)

We note that the root-mean-square intensity correlation lengths and times are
√

2
times smaller then those obtained for the amplitude correlation.

1.1.2.3 Advantages

The single advantage of intensity correlation over amplitude correlation lies in the
fact that the method is not sensitive to small relative phase fluctuations, as long as
the difference in path length remains below the correlation time. If we introduce
a random phase fluctuation in the amplitude, it gets eliminated as we are doing an
intensity measurement.

This difference has yet huge practical consequences. As the fluctuations have
no longer any effect, the measurement can be integrated over much longer times,
eventually several separated nights. This makes it possible to strongly reduce the
spectral width of the source or the bandwidth of the detector, having for conse-
quence the significant increase of the correlation time.

This has for mechanical consequence that the collecting optics can be of very
poor quality as well as that their relative position to the source does not need nano-
metric precision. Furthermore, if the bandwidth is within the acquisition possibili-
ties of the electronics, the data acquired at both points P1 and P2 can be saved away
and treated a posteriori.

Finally, the only limitation to the bandwidth narrowing is the spectral density
and human patience. One still needs a significant signal to noise ratio which is
obtained through averaging. If one halves the bandwidth of the detector, the mea-
sured intensity correlation is divided by a factor 4. If shot noise is limiting the
signal to noise ratio, this bandwidth reduction has to be compensated by a fourfold
acquisition time. This number squares with the bandwidth reduction factor.
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1.1.2.4 Real World Experiment

A schematic design of the first telescope used by Hanbury Brown to measure the
angular sizes of Cygnus A and Cassiopeia A is given in Figure 1.4.

M
linear multiplier

D1 D2I1 I2

low-pass filters

correlation meter

Figure 1.4: A schematic design of the first intensity interferometer at Jodrell Bank. Two
radio telescopes focalise the signal on two radio detectors. A 2 kHz wide filter isolates the
150 MHz frequency. The low frequency components could be send over a telephone line
for an electronic correlation.

Together with Jennison and Das Gupta, they changed a traditional radio inter-
ferometer into an intensity interferometer. They worked at 150 MHz central fre-
quency, and, as the telescopes were eventually separated for very long distances,
with a bandwidth of 2 kHz as to send the intensity fluctuations over the telephone
line.

Although the interferometer was compatible with thousands of kilometers wide
separations, the maximum required separation proved to be of only a few kilome-
ters, as the sources proved much larger (several minutes of arc) then expected.

Yet the concept of intensity interferometry was proven and the results have
stood the test of time so far. The next step was to build an intensity interferometer
that would work in the optical spectrum. This proved yet rather difficult as some
physicians were to be convinced of the impossible thing.

1.1.3 The Hanbury Brown and Twiss Effect

As long as Hanbury Brown and Twiss were working in the radio spectrum, a classi-
cal wave description of the phenomena was of common acceptance as those waves
could both be visualised and generated with oscillators. The results of this work
were accepted. Yet within the field of the optical spectrum, a particle description
of light was prevailant among the physicists. In the particle world, the translation
of this intensity correlation was that the photons would arrive grouped together
at the detector. Indeed, if the intensity detectors were photon detectors, then the
probability of detecting a second photon close to a first one would be double that
of detecting it far away.

Physicists argued that if the source were completely random, how could those
statistically independent photons be grouped, or bunched? As the theoretical work
of Hanbury Brown and Twiss on that subject did not seem to convince everyone, a
proof of concept experiment was necessary [1].
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1.1.3.1 The Keystone Experiment

The schematic design of this Hanbury Brown and Twiss experiment is given in
Figure 1.5. With the help of a mercury lamp, providing a high spectral density
for certain wavelengths, a spectral filter, to keep only one wavelength, and a pin-
hole, they produced a very bright narrow bandwidth nearly punctual source. Two
independent photon amplifiers, a quantum detector brand new at the time, were
optically overlapped with the help of a beam splitter. A mechanical system al-
lowed one of the detectors to be spatially moved, so that the angular separation as
seen from the source could be tuned. They could consequently study the spatial
correlation.

mercury

lamp

lens

beam-splitter

pinhole

spectral

filter

correlator

pinhole

photo-

multiplier

pinhole

A) B)

Figure 1.5: In A, the experimental setup for the Hanbury Brown and Twiss experiment
for photons. A mercury source light combined with a filter produces a narrow bandwidth
intense source. The lens with the pinhole produces the small size. One photo-multiplier can
move transversely in respect to the optical path, changing the spatial separation between the
detectors. In B, the results of the correlation measurement. For a small spatial separation,
the probability of detecting two photons at the two detectors is double that probability
when the detectors are separated. The thermal photons are preferably grouped. (Figures A

adapted from [1], B extracted from [1])

The results were convincing and proved that indeed those independently emit-
ted photons were actually grouped. As Hanbury Brown and Twiss stated in their
conclusion:

This experiment shows beyond question that the photons in two coher-

ent beams of light are correlated, and that this correlation is preserved

in the process of photoelectric emission.

1.1.3.2 The Principle

The explanation of this phenomena resides in a proper description of the light
source, that has to take into account the bosonic nature of the photons, as well
as a geometrical description of the system.

Let us consider the system as displayed in Figure 1.6. We consider a photon
arriving from the source to the detector D1. The initial position of this photon,
at the point of emission, is defined within the ∆x and ∆y transverse sizes of the
source. Yet considering the arrival of this photon at detector D1, we also have a
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∆px

∆y

d

source
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plane

D1 D2

∆x

∆py

Figure 1.6: If a photon arrives from an extended source to a specific point, both its initial
position and speed are defined. The product of the two have yet to remain above a quantum
limit. This defines an area in the plane in which the photons belong to the same quantum
state. The detectors can either be within or outside their respective geometrically defined
quantum state area.

precise measurement of the equivalent momentum of the photon. We do yet know
that for a particle in a specific quantum state, the product of the transverse position
and momentum can only be measured within the limit ∆x∆px = ~/2, where ~ is
the reduced Planck constant.

If we consider as previously θ the angular size of the source as seen from the
detector, and L the distance from the source to the observation plane, we have
∆x = Lθ. We are looking for the angular fluctuation α of the momentum h/λ

possible for a same quantum state. We obtain α = λ
2θL

. When we consider the
spatial distance d between two photons having ∆px difference in momentum in the
observation plane, we find:

d =
λ

2θ
= lc/2 (1.1.21)

Consequently, if two similar photons are detected by the two detectors at a
distance within lc/2, those photons are in the same quantum state. If they are
measured at a distance much larger then lc/2, those photons behave in different
quantum states.

Thermal source All we need now is a correct understanding of the quantum
states occupation factors. We work with a white source at thermal equilibrium. In
such a source, the average occupation factor of the quantum states is very small
compared to 1. Yet for a particular quantum state, and in the case of bosonic parti-
cles, this occupation factor is either 0, 1, 2 or more with decreasing probabilities. If
a new photon is produced inside the source, its probability to join an empty quan-
tum state |nk = 0〉 can be written |a†

k |nk = 0〉|2 = a2. Its probability to join a quan-

tum state with a 1 occupation factor is yet
∣

∣

∣
a

†
k |nk = 1〉

∣

∣

∣

2
=
∣

∣

∣

√
2a

†
k |nk = 0〉

∣

∣

∣

2
= 2a2.
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In other words, the probability of having a second photon in a quantum state con-
sidering that there is already one, is double that of having this second photon in
any quantum states.

Those two considerations together lead to the already announced result; the
probability to measure two photons in a specific configuration at distance within
the coherence length is double the probability to find two photons in a specific
configuration at distance much larger then the coherence length.

Note that a similar explanation can be build up around the temporal coherence
and the relation ship between time and energy of a quantum state.

Coherent Source If we consider the case of a coherent source, such as a trans-
verse monomode Laser, then all the photons are in the same quantum state. Conse-
quently, there is no consideration to as whether or not the photons are in the same
quantum state. Also there will not be any spatial dependence of the normalised in-
tensity correlation function. Note that finding a photon outside the coherence area
calculated previously is of extremely low probability.

Fermionic Source As it happens, photons are bosons. Yet the explanation stated
previously is absolutely not specific to photons. It depends in no way on the electro-
magnetic nature of those particles. Consequently, one can wonder how other, for
instance massive particles, would behave. For sure one would have to define a dif-
ferent coherence time and length; we will address that problem in the next section.

Let us consider the case of fermionic particles. An important law ruling those
particles is the Pauli exclusion principle. Two indistinguishable fermions cannot
be in the same quantum state. This means that if a Hanbury Brown and Twiss
type experiment were performed with fermions, at distances small compared to the
correlation length, the simultaneous detection of two particles is impossible. The
particles will show an antibunching behaviour!

It is interesting to realise that for the photons, we have both a classical wave
theory and a quantum description to understand the bunching behaviour of pho-
tons. For the fermions, there is no such classical theory available. Only a quantum
description can provide an understanding of the fermionic antibunching. The three
behaviours have been summarised in Figure 1.7.

bosonic thermal source

0

1

2

fermionic thermal source

bosonic coherent source

detectors separationlc

Figure 1.7: The three normalised correlation functions for respectively a bosonic thermal
source, a bosonic coherent source and a fermionic thermal source.
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1.1.3.3 The Theory

A complete theoretical description of the photonic quantum phenomena has been
made by R. Glauber [4, 5] in 1962. The quality of the employed formalism with
which he described the correlation phenomena triggered many further studies, both
theoretical and experimental. It opened the way to modern quantum optics. This is
why Glauber has been awarded the Nobel prize of Physics for precisely this work
in 2005.

We will consider here a brief overview of this theory, and introduce some def-
initions. More specifically, we will have a brief overview of the properties of the
quantum correlation functions for bosonic and fermionic sources

Quantum Detection The first important consideration to make is the fundamen-
tal difference in the description of the detection of light between the classical and
quantum theory. Where the classical wave description measures the instantaneous
squared wave amplitude, the quantum theory destroys photons. This has some im-
portant, non classical consequences. The light field is affected by the detection as
it loses a photon at every single detection, and consequently one cannot perform
more measurements then the light field contains photons. We will more generally
call Ψ(r, t) the particle annihilation operator responsible for the detection at a po-
sition r and at a time t. Likewise we call Ψ†(r, t) its Hermitian adjoint particle
creation operator. Those operators can be expressed:

Ψ(r, t) = ∑
n

φn(r, t)ân Ψ†(r, t) = ∑
n

φ∗
n(r, t)â

†
n (1.1.22)

where {φn(r, t)}n is a basis of the system, ân and â†
n respectively the traditional

annihilation and creation operators in this basis.
Although those operators have sometimes been considered as mathematical

constructs as the positive and the negative frequency part of the field operator, it
must be realised that their individual properties are fundamental.

As we said, the detection process brings the quantum field from an initial state
|i〉 to a final state | f 〉, the associated probability amplitude is:

〈 f |Ψ(r, t) |i〉 (1.1.23)

The probability of detecting a particle in the field |i〉 is then the sum of the proba-
bilities over all final fields:

∑
f

|〈 f |Ψ(r, t) |i〉|2 = ∑
f

〈i|Ψ†(r, t) | f 〉〈 f |Ψ(r, t) |i〉 = 〈i|Ψ†(r, t)Ψ(r, t) |i〉

(1.1.24)
We note immediately that the two operator do not commute. If we consider the

vacuum state |vac〉, we have in the general case:

〈vac|Ψ†(r, t)Ψ(r, t) |vac〉 = 0 6= 〈vac|Ψ(r, t)Ψ†(r, t) |vac〉 (1.1.25)

simply because no particles can be detected, but can be created.
The two particle detection process, as considered by Hanbury Brown and Twiss’

experiment, detects two individual photons at two places and times:

〈 f |Ψ(r’, t ′)Ψ(r, t) |i〉 (1.1.26)
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The associated probability to the double particle detection is proportional to:

〈i|Ψ†(r, t)Ψ†(r’, t ′)Ψ(r’, t ′)Ψ(r, t) |i〉 (1.1.27)

In order to have a statistical description of those detection processes, one still has
to average over all possible initial states.

Correlation Functions Experimentally one can rarely fully control the prepara-
tion of the initial state. It often merely obeys some statistics. We therefore define
a density matrix ρ. The probability of finding the system in a state |i〉 is equal to
ρii = 〈i| ρ̂ |i〉. The statistical average of an observable Ô of the system can then be
written:

〈Ô〉 = tr(ρ̂Ô) (1.1.28)

where tr() is the trace function of the matrix. Naturally tr(ρ) = 1.
The detection probability is proportional to 1.1.24 in case of a completely spec-

ified quantum state. In case of a non-fully defined initial state, this probability is
more generally proportional to:

tr(ρ̂Ψ†(r, t)Ψ(r, t)) = ρ(r, t) (1.1.29)

where ρ(r, t) is the average photonic density.
Considering that the fields can be evaluated at separated positions and times,

we can define the first order correlation function as :

G(1)(r, t,r’, t ′) = tr(ρ̂Ψ†(r, t)Ψ(r’, t ′)) (1.1.30)

Similarly we can also define the second-order correlation function:

G(2)(r1, t1,r2, t2,r3, t3,r4, t4,) = tr(ρ̂Ψ†(r1, t1)Ψ
†(r2, t2)Ψ(r3, t3)Ψ(r4, t4))

(1.1.31)
We note that Hanbury Brown and Twiss’ experiment gave access to the more sim-
ple:

G(2)(r1, t1,r2, t2) = tr(ρ̂Ψ†(r1, t1)Ψ
†(r2, t2)Ψ(r2, t2)Ψ(r1, t1)) (1.1.32)

We can define for both correlation functions 1.1.30 and 1.1.32 the normalised cor-
relation functions:

g(1)(r, t,r’, t ′) =
G(1)(r, t,r’, t ′)
√

ρ(r, t)ρ(r’, t ′)
(1.1.33)

g(2)(r, t,r’, t ′) =
G(2)(r, t,r’, t ′)
ρ(r, t)ρ(r’, t ′)

(1.1.34)

We can note that both G(1)(r, t,r, t) = ρ(r, t) and G(2)(r, t,r’, t ′) are real and
positively defined. Furthermore, it can be easily shown [5] that:

G(1)(r, t,r, t)G(1)(r’, t ′,r’, t ′) ≥
∣

∣

∣
G(1)(r, t,r’, t ′)

∣

∣

∣

2
(1.1.35)

that is to say:
∣

∣

∣
g(1)(r, t,r’, t ′)

∣

∣

∣
≤ 1 (1.1.36)

with in particular g(1)(r, t,r, t) = 1.



30 CHAP 1 - THE HANBURY BROWN AND TWISS EFFECT

Chaotic Bosonic Quantum Field We consider a chaotic bosonic ensemble of
particles at high temperature thermal equilibrium. By injecting 1.1.22 into 1.1.32
and by considering only the spatial dependence, we can write:

G(2)(r1,r2) = ∑
klmn

φ∗
k(r1)φ

∗
l (r2)φm(r2)φn(r1)

〈

â
†
k â

†
l âmân

〉

(1.1.37)

considering the commutation relations for the bosonic annihilation and creation
operators:

[ân, âm] =
[

â†
n, â

†
m

]

= 0 (1.1.38)
[

ân, â
†
m

]

= δnm (1.1.39)

the correlation function can be simplified to [5]:

G(2)(r1,r2)= ρ(r1)ρ(r2)+
∣

∣

∣
G(1)(r1,r2)

∣

∣

∣

2
+∑

n

|φn(r1)|2 |φn(r2)|2
(

〈

â†
nâ†

nânân

〉

−2
〈

â†
nân

〉2
)

(1.1.40)
At high temperatures, the last term is linear with the total number of particles,
whereas the first two are quadratic: it can be simplified for a large number of
atoms to:

g(2)(r1,r2) = 1+
∣

∣

∣
g(1)(r1,r2)

∣

∣

∣

2
(1.1.41)

We thereby find back, although through a quantum description, the earlier obtained
results.

Chaotic Fermionic Quantum Field For a fermionic ensemble of particles, there
is no classical theory available. In quantum theory, the main difference lies in the
commutation relations of the annihilation and creation operators:

{ân, âm} =
{

â†
n, â

†
m

}

= 0 (1.1.42)
{

ân, â
†
m

}

= δnm (1.1.43)

where {a,b} = ab + ba is the anticommutator. Similar considerations as for the
bosons will then lead to the simple expression:

g(2)(r1,r2) = 1−
∣

∣

∣
g(1)(r1,r2)

∣

∣

∣

2
(1.1.44)

We note here that the fermionic nature of the particles does indeed exclude them
from being in the same position.

Bosonic Coherent Quantum Field With the realisation of the maser in 1954
[23], and the first laser in 1960 [24] , it became possible to produce an ensemble
of particles in the same coherent state. Although various people thought that the
statistical properties of those quantum fields were that of the narrow spectrum limit
of a thermal source, Glauber was the first to show that this was a wrong assumption
[4].

In a more general way, if all the particles are in the same quantum state φn(r1),
the correlation function simplifies to:

G(2)(r1,r2) = |φn(r1)|2 |φn(r2)|2
〈

â†
nâ†

nânân

〉

(1.1.45)

This normalises easily to:
g(2)(r1,r2) = 1 (1.1.46)
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1.2 Hanbury Brown and Twiss with Cold Atoms

As we have shown in the previous section, the Hanbury Brown and Twiss effect of
the photons has more to do with the symmetry of their wave-function rather than
with their electro-magnetic nature. As all nature’s entities have either a symmetric
or an anti-symmetric wavefunction, this means that the Hanbury Brown and Twiss
effect applies to all entities. Most of those entities have a massive nature.

The fact that the Hanbury Brown and Twiss effect does apply to massive parti-
cles has been demonstrated both for fermionic electrons [6, 7, 8], and very recently
fermionic neutrons [25]. Also atoms are good candidates for such experiments as
we will see. This is in particular thanks to the fact that they can both be easily
manipulated and easily cooled. We will have a short overview of various recent
experimental realisations of such measurements. We will study in particular the
conceptual differences between those experiments.

1.2.1 Cold Atom Optics

When Einstein demonstrated the photoelectric effect in 1905 [26], he showed that
light could need a particle-like description at times when wave based descriptions
had been satisfactory. In 1924, de Broglie generalised this concept to all massive
particles [27], by showing that one could associate an equivalent de Broglie wave-
length λdB to all particles considering their momentum p and the Planck’s constant
h:

λ′
dB = h/p (1.2.1)

Matter waves have since been demonstrated for electrons, neutrons and atoms.
The de Broglie wavelength of a sample of thermal particles can be defined as the
thermal de Broglie wavelength:

λdB = h/∆p (1.2.2)

where the momentum spread ∆p is induced by the thermal distribution. At
room temperatures, this wavelength is around the atomic electronic shell size, and
therefore the potential matter wave behaviours stay confined within the atom. If
one wants to observe collective matter wave behaviours, one has to significantly
reduce the momentum spread, and therefore the temperature. For Helium atoms
for instance, a one 1 µm wavelength is obtained only at temperatures of around
1 µK.

The developements of the last two decades in terms of atom physics have made
it possible to reach those temperatures with extremely high spectral densities. The
use of Laser-cooling techniques on trapped dilute gases allows reaching tempera-
tures of tens of micro-kelvins with very few losses [28, 29, 30]. The further use of
evaporative cooling techniques allowed eventually to reach Bose Einstein conden-
sation [11, 13, 12].

In atom physics, the spectral densities are of the same order as those in photonic
optics. Atomic optics have therefore become an excellent candidate to repeat the
Hanbury Brown and Twiss effect measurements performed formerly on photons.
The reasons why those experiments are worth considering lie in the fact that atoms
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are, unlike photons, massive particles. Furthermore atoms can be found, unlike
photons, both in bosonic and fermionic states. This opens up to a large variety of
experiments.

1.2.2 Hanbury Brown and Twiss Experiments with Cold Atoms

During the ongoing of this thesis several other groups have exploited the possi-
bilities of cold gases for the study of the Hanbury Brown and Twiss effect. It
is interesting to notice that all have taken different experimental choices, generally
depending on the possibilities of their respective setups. This is why we will briefly
overview those experimental realisations.

The experiments can be subdivided into two categories. On one hand we can
identify the experiments that use single atom counting techniques. The present
study is part of those. On the other hand we can identify the experiments that use
absorption schemes. We will see how the integrating nature of this type of detection
obliges the scientists to reduce the dimensionality of their source in order to study
the Hanbury Brown and Twiss effect.

1.2.2.1 Counting Techniques

Neutral atom counting has until recently been reserved to the high energy metastable
noble atoms. For those atoms, the high electronic internal energy makes single
atom counting nearly straightforward. The present study deals with this type of de-
tection. Yet it is worth mentioning the pioneering experiment of M. Yasuda and F.
Shimizu [10], that already in 1996 obtained extremely interesting results. During
the ongoing of this present study, a Fabry-Perrot cavity was used by A. Öttl & al
[31]. for the counting of alkaline 87Rubidium atoms. We will also take a glance at
their results.

Yasuda and Shimizu in 1996 M. Yasuda and F. Shimizu [10] realised already in
1996 an experiment that is very close in nature to the original Hanbury Brown and
Twiss experiment. The experimental setup is shown in Figure 1.8A.

It is essentially build around a metastable 20Ne magneto-optical trap. In this
magneto-optical trap, the temperature of the cloud is as low as 2.5 mK. The 20Ne∗

atoms are released from the source trap by the means of a 598 nm pumping laser
that transfers the atoms from the trapping 3S 3P2 state to the untrapped 3S 3P0.
The atoms fall under gravity to a gold coated mirror. As they hit the mirror, the
12 eV metastability extracts electrons from the mirror surface1, that are attracted
through an electric potential to a micro-channel plate based electron amplifier. The
electric pulses produced by the micro-channel plates are detected electronically.
Only temporal correlations can be studied.

This experimental realisation is a master piece. Although the temperature can
seem extremely low compared to usual temperatures, it is still very high in the
world of cold atom physics. This means that the associated temporal correlation
time is still quite short. The equivalent spectral width of the source can be easily
evaluated to ∆ν = kBT/h = 50 MHz. This gives temporal time correlations around

1A closer description on the detection of metastable atoms is presented in the next section, as a
similar technique is used in the Orsay 4He experiment.
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A) B)

Figure 1.8: In A, the experimental setup used by Yasuda and Shimizu. A pumping laser
extracts 20Ne∗ atoms from a magneto-optical trap. The falling atoms are defocused through
electrostatic lenses onto a golden mirror. The electrons extracted by the atoms from the
gold layer are attracted to electron amplifying devices. The outcoming signal is send to a
correlator. In B, the time correlation results. The bunching in the upper graph show the
Hanbury Brown and Twiss bunching effect of the thermal bosons. For the lower graph
the electrostatic lenses have been disactivated, in such way that several coherence areas
now cover the detector. This lowers the bunching height accordingly. This much lower ob-
tained bunching demonstrates that the first obtained bunching is not related to the detection
system. (Figures A and B extracted from [10])
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20 ns. Effectively, this number is slightly increased as the 598 nm pumping laser
outcouples only a certain spectral range. The effective vertical velocity distribution
at the trap level was 28 cm/s. This results in a typical 0.5 µs correlation time.

In order to compensate for the very low spatial coherence expected from this
setup, electrostatic lenses were used to defocus the coherence area over the size of
the gold mirror. This gold mirror consequently had to compensate the curvature of
the defocused coherence. The speed of the atoms as they reached the gold mirror
was as low as 4 m/s. The vertical spatial coherence length at the level of the mirrors
was consequently 2 µm. The curvature of the mirror therefore had to be calculated
within this limit. The radius of the curvature was 600 mm.

Also because the spectral density was still fairly low, the integration times were
long. Average pulse counts ranged from 100 s−1 to 200 s−1. That is one usefull
double count within the 0.5 µs correlation time every 10 kcounts. That is 0.02
useful double counts per second. Consequently, total integration times ranged in
the 45 hours of acquisition for the data published.

Figure 1.8B shows the results of the experiment. The upper graph shows the
result of the correlation experiment. It demonstrates the expected bunching with a
height of 100 ±30%. In the lower graph, the electrostatic lenses have been disac-
tivated such that the coherence area at the mirror level is very small compared to
the mirror size. Consequently, the bunching disappears in the averaging and only a
bunching of 19 ±15% is found. The differences between those two measurements
lie outside the error bars. They also showed that the bunching disappeared with the
tilting of the gold mirror.

This setup had one mayor inconvenience; the still high temperature. Further
cooling techniques were quite new at the time, and Yasuda and Shimizu priviledged
the study of the Hanbury Brown and Twiss effect over further cooling techniques of
their atomic sample. They had already earlier reproduced a young slit experiment
[9] with the Neon cloud. Cooler temperatures would have made the experiment (at
least for the measurement part) significantly easier. In particular, they could not
measure the coherent state that is the Bose-Einstein condensate.

On the other hand, they also had some advantages. All further drastic cool-
ing techniques require a sequential type experiment. There are currently several
attempts to do continuous radio-frequency cooling in an experiment [52, 53], but
none of those experiments has currently managed to get down continuously to the
Bose-Einstein condensate limit. In a continuous mode, integration is much more
advantageous as no time is lost in the production of the cloud. Furthermore, un-
til now nobody has managed to cool 20Ne∗ down to the Bose-Einstein condensate
limit as inelastic collisions (as we will discuss a little later) induce significant losses
at high densities [54]. Therefore going further with this type of experiment required
a different metastable noble gas: metastable helium. We will of course discuss this
extensively a little further.

Öttl & al. in 2005 The experimental setup of Öttl & al [31] is briefly described
in Figure 1.9A. It performs a time-resolved counting of single atoms outcoupled
from a 87Rb Bose-Einstein condensate with a microwave field. It is in that sense
very similar to the experiment of Yasuda & al. First we have to note though that
this experiment is not performed in a fully continuous mode. The condensate is
produced sequentially, and the outcoupling can only last until the complete deple-
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tion of the atomic sample. Yet if the time of this outcoupling is much longer then
the expected correlation length, the experiment can still be assimilated to a contin-
uous one. The big difference lies then in the detection that is performed through a
high finesse optical cavity.

photon

counter

A)

C)

B)

Figure 1.9: In A, a radio-frequency field outcouples Rubidium atoms from a Bose con-
densed cloud. After a time-of-flight the atoms are detected individually through the use of
a resonant optical cavity and a probe laser. In B, the counting statistics of the outcoupled
condensed atoms shows no bunching behaviour. It must be said though that the same tech-
nique applied to thermal atoms does not show a bunching behaviour. In C, the introduction
of a random phase component in the outcoupling radio-frequency field destroys the co-
herence of the Bose condensed atoms, demonstrating consequently their initial coherence.
(Figures A, B and C extracted from [31])

The idea behind such a high finesse cavity is that the transmission of a mode
resonant with the 87Rb optical transition drops even if just a single atom enters the
cavity. In order for such a cavity to be efficient, it has to be highly stabilised through
a first laser locking system. A second probe laser, resonant with the atomic transi-
tion, is given maximum transmission onto a photodiode. When an atom enters the
cavity, this affects the refractive index of the vacuum between the cavity mirrors.
This results in a higher absorption then emission rate, and most absorbed photons
are reemitted spontaneously. If the intensity of the probe laser is low enough, those
absorptions by this single atom can be retrieved in the output signal.

The waist of the detection cavity is 26 µm, the mirrors are separated by 178 µm.
The mean velocity of the atoms through the cavity is 84 cm/s, they spend conse-
quently 31 µs inside the cavity. With this cavity, Öttl & al. managed to study the
temporal correlation of the Bose-Einstein condensate, that proved as expected flat
as shown in Figure 1.9B. Practically, the unpublished correlation function of a ther-
mal gas also proved flat. This latter result can be easily understood if we look at
the characteristics of the detector.

The trapping frequencies of the cloud are ω⊥ = 2π× 29 Hz and ω‖ = 2π×
7 Hz. The critical condensation temperature lies around 180 nK. If we consider
a thermal cloud at this temperature, spatially evenly outcoupled by the microwave
antenna, we can estimate a temporal coherence of 270 µs, yet a spatial coherence
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of respectively 2.7 µm and 650 nm for the axial and longitudinal axis. Those have
to be compared respectively, considering the orientations of the setup, to 178 µm
and 26 µm. This leads to an expected approximate bunching height, as we will see
in paragraph 1.3.3.1, of 10−2%. In order to observe the bunching, higher trapping
frequencies and eventually a lighter mass would have been necessary.

They did yet manage to show the coherence of the Bose-Einstein condensate,
by outcoupling the atoms with a broadband thermal microwave field. The results
are published in Figure 1.9C. It shows that a random microwave field destroys the
coherence, something that would not have been possible with an already incoherent
field.

1.2.2.2 Absorption Imaging

The enormous advantage of metastable atoms is the ease at which single parti-
cle detection can be performed, and therefore intensity fluctuations can be stud-
ied. Other atomic species, and in particular alkaline atoms, are generally studied
through absorption imaging (besides the just mentioned resonant cavity method).
In such a process, a resonant laser is send through the atomic cloud. Induced ab-
sorption with spontaneous emission cycles extract photons from this beam, leaving
a shadow on a charge-coupled-device (CCD) camera at which the laser has been
pointed. The averaging of those photons, and the resolution generally available,
lead to the consideration that there is no single particle detection. One can in a
general case only study global, first order properties of the cloud.

Proposed by E. Altman & al [32], the idea was that in very specific cases,
the intensity fluctuations on the final image generally considered as noise, did still
contain usefull information. They proposed that one could still study intensity
correlations by studying the atom shot noise in time-of-flight images. This would
work if the atom shot noise prevails over photons and technical shot noise.

They proposed various schemes, one of which is the periodic optical lattice.
This experiment has consequently been performed by Fölling & al [33] and Rom
& al [34].

Fölling & al. in 2005 The group of I. Bloch in Mainz has studied [33] the pro-
posed experimental situation of a Bose gas in a 3-dimensional optical lattice. A
cold gas of Rubidium is loaded into an optical lattice, and then released. An image
of the expanding cloud is made through absorption imaging.

The principle behind this lattice experiment is illustrated in Figure 1.10A. We
considered the example of a 1-dimensional lattice. In such a lattice, the wavefunc-
tions of the particles are delocalised Bloch waves. The Bloch state energies are
organised in band structures. Each Bloch state is characterised by its energy, and
a crystal momentum ~q defined in the first Brillouin zone of the reciprocal lattice.
Effectively, a Bloch state is a superposition of states with equally spaced momenta
by 2~k. If an atom is in a specific Bloch state, then the probability of the atom to
be detected with any of the ~q + n2~k momenta are equal. Inversely, if an atom
is detected with a specific ~q + n2~k momentum, the probability that is belonged
to that specific Bloch state is high. If only the first energy band is occupied, and
the lattice size is infinite, there is an exact correspondance between the ~q +n2~k

momenta and a Bloch state.
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Figure 1.10: In A, the band structure in a periodic lattice. In a lattice, the wavefunctions
of the particles are delocalised Bloch waves. Those are characterised by an energy and a
momentum in the first Brillouin zone. The particle released from such a trap have a high
probability of being detected with a 2~k multiple momentum of the Bloch state charac-
terising momentum. In B, the density distribution for a cloud of bosonic Rubidium atoms
released from a lattice. No particular order is observed as the cloud is not superfluid. In C,
the correlation function of the density distribution shows that the probability of detecting
atoms within the same Bloch state is enhanced. (Figure A adapted from [34], B and C

extracted from [33])

Now we consider the bosonic Hanbury Brown and Twiss effect in such a lattice.
If an atom is in a specific Bloch state, the probability of finding another atom
within the same Bloch state is double the probability of finding an atom in any
other Bloch state. Consequently, the probability of detecting an atom with any
of the same ~q + n2~k momenta, is double that of finding the second atom with
any other ~q′ + n2~k momentum. The trick that made this experiment feasible
through absorption imaging is the fact that the second atom, although belonging
to the same state, could be detected with a completely different momentum from
the first. Absorption imaging is not a counting technique, and therefore the auto-
correlation of the signal of the first atom outweights any other pair correlation. But
because this pair is delocalised, the correlation signal builds up outside the central
autocorrelation.

Practically, the Mainz group has not been able to demonstrate the Hanbury
Brown and Twiss effect of thermal bosons in such a delocalised lattice. They man-
aged though to show a similar bosonic correlation in a Mott insulator regime. In
that regime, the dept of the periodic potential is such that the quantum states are
no longer delocalised. The atoms are confined to identified potential pits. Further-
more, atomic interactions and adiabatic loading of the lattice from a Bose-Einstein
condensate assure that each lattice site contains an integer number of atoms in the
ground state. The momentum distributions of those atoms are gaussian, and as the
lattice sites are numerous and respectively incoherent, the cloud after expansion
is gaussian with no noticeable first order interference pattern as shown in Figure
1.10B.

Now comes the interesting part. Inside their lattice sites, the atoms are cer-
tainly not in a delocalised Bloch state. They are in a state with a very well defined
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position, and a non-defined momentum. When an atom is detected after a long
time-of-flight, we measure a very well defined momentum, yet the initial lattice
site is unknown. The state in which the atom has been detected can therefore only
be expressed as a superposition of all the lattice site wavefunctions. As the lattice
sites are countable and periodic, the resulting superposition has necessarily a peri-
odic structure. In fact, the superposition of those states that results in a particular
momentum detection is a Bloch state like structure. Therefore, the atom is, through
its detection, projected into a specific Bloch state, and as usual, the probability of
finding a second atom in that same Bloch state is double the probability of finding
an atom in any other Bloch state and thus momentum. As the Bloch state momen-
tum distribution is periodic, the auto-correlation of the final density distribution
shows a periodic structure, as shown in Figure 1.10C. It must be clear though, that
this periodic structure only arises because of the Hanbury Brown and Twiss effect,
because the bosons tend to be in the same quantum state.

Experimentally, the initial trap lattice is 3-dimensional, and therefore the final
periodicity is also 3-dimensional. Because of the absorption imaging, one dimen-
sion is projected, and only 2 remain. We have chosen here to display only a 1-
dimensional cut of the obtained density distribution and the density auto-correlation.

Rom & al. in 2006 The same group in Mainz also managed to trap sympa-
thetically cooled fermionic potassium 40K inside the lattice [34]. As discussed
previously, the Fermi exclusion principle makes is impossible for two atoms to be
found in the same quantum state. In terms of the lattice experiment, this means
that if an atom is detected with a certain momentum ~q, no second atom can be
detected with any of the momenta ~q+n2~k. They have been able to show this for
a thermal cloud in a delocalised lattice.

A) B)

Figure 1.11: In A, the density distribution for a cloud of bosonic Potassium atoms released
from a lattice. No particular order is observed. In B, the correlation function of the density
distribution shows that the exclusion principle prevents two atoms from being detected
within the same Bloch state. (Figure A and B extracted from [34])

Figure 1.11A shows the cut of an expanding cloud of potassium 40K originating
from a 3-dimensional lattice. The density profile is roughly a thermal gaussian,
and no interference patterns are detected. In Figure 1.11B the auto-correlation of
the density profile shows an anti-bunching in the Bloch states. The fact that the
antibunching is not a hundred percent is essentially related to the resolution of the
optical system.
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Estève & al. in 2005 Another team of the group of Atom Optics in Orsay has
performed a second Hanbury Brown and Twiss effect measurement with Rubidium
on an atom-chip [35]. On such a chip, the current going through a micro-metre
scaled wire, with an external homogeneous magnetic field, produces an ellongated
highly confining trapping potential. Trapping frequencies on this setup are 7 to
20 Hz on the longitudinal axis, and 2.85 kHz on the transverse direction. If the gas
is cooled sufficiently, the trap is nearly one-dimensional. They are able to work at
temperatures of 2.1 ~ω⊥/kB.

Thanks to the low dimensionality, absorption imaging can be used to study
density fluctuations in situ. If two atoms are in the same quantum state, they are
likely to be measured within the coherence volume defined by λ3

dB. This means
that the variance of the atom number N in such a phase-space cell is provided by:

δN2 =
〈

N2〉−〈N〉2 = 〈N〉+ 〈N〉2 (1.2.3)

Whereas the first term is completely classical, the second term results from the
Hanbury Brown and Twiss effect. If a larger volume is considered, then the vari-
ance is provided by:

δN2 = 〈N〉+ 〈N〉2 /g (1.2.4)

where g is the number of elementary phase-space cells λ3
dB in the volume. This

result had already been discussed by A. Einstein in 1925 [86]. Thanks to the low
dimensionality of their trap, and to an optical resolution of 10 µm, the Orsay team
has been able to get g factors around 100. This made this density fluctuation mea-
surement possible.

Figure 1.12: The variance of the local cloud density as a function of the mean density. At
high temperatures (white circles), the phase-space cell is small compared to the resolution
and the variance has a classical shot noise evolution. At low temperatures (black circles),
the variance shows a quadratic evolution characteristic of the bosonic bunching effect.
(Figure extracted from [35])

In Figure 1.12 has been displayed the variance as a function of the mean density
on the chip experiment. The white circles correspond to a hot thermal cloud. At
high temperatures, the phase-space cell is small and the g factor is large. The
quantum contribution to the variance is negligible. The black circles correspond
to clouds at much lower temperatures. They have a g factor around 140. The
quadratic behaviour of the variance is clearly visible.
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1.3 The Orsay Helium Experiment

We have just seen that cold atoms are a particularly interesting system for the
study of the Hanbury Brown and Twiss effect. This in particular because the spec-
tral density can be considerably increased with the use of cooling techniques, but
also because they can be easily manipulated or eventually detected. In 2001 was
first cooled down to Bose-Einstein condensate temperatures a sample of metastable
atoms [14, 15]. This opened the possibility to an improved version of Yasuda and
Shimizu’s experiment.

We will study some of the particularities of this atom species: the triplet metastable
Helium. We will see in particular how it can be cooled and detected. Then we will
establish a simple experimental scheme by which we can study some correlation
properties of a cold metastable cloud, and we will establish a simple theory in or-
der to get some insight on the expected results. Finally we will study the most
important experimental characteristics that influence the signal to noise ratio.

1.3.1 Triplet Metastable Helium

We will have a short look at the particularity of 4He, and we will discover rapidly:
why the use of a metastable state, the problems that raises and how those are solved.
Then we will have a short overview of the recently cooled fermionic 3He∗[16].
Finally we will discuss the advantages of those metastable over casual alkaline
species.

1.3.1.1 4He∗

The He atoms can be found in two stable isotopes: 3He and 4He. The first one is
a fermion and has a natural abundance of 10−6 on earth, the second one is a boson
much more abundant. The 4He atom in its ground state is not a good candidate
for dilute atom cooling. First of all because it has no global spin, so it cannot
be trapped magnetically. Secondly because the first optical transition is 20 eV
off, which makes it extremely difficult to find a coherent optical source for optical
trapping and cooling.

The 4He atom in its first 19.8 eV excited state, the triplet 23S1 state, shows none
of those inconveniences. It has a spin induced magnetic moment that allows for
magnetic trapping. It has optical transitions to the 23P and 33P triplet excited states
at easily accessible wave-lengths, i.e. 1.08 µm and 389 nm, as shown in Figure
1.13. More precisely, the optical transition to the 23P2 state is closed (which means
that the 23P2 state can practically only decay to the 23S1 state [36]), which permits
a very efficient optical cooling. The width of this optical transition is 1.6 MHz.

Furthermore, the optical transition of this 23S1 state to the ground state being
forbidden both for non spin and angular momentum conservation reasons, the 23S1

state has a 7900s lifetime [37, 38, 39]. This results in its qualification as the triplet
metastable state2: 4He∗. At the timescale of atom cooling experiments, this lifetime
is far from being the limiting lifetime so that it can be considered infinite3.

2The singlet 21S0 state is also metastable but with a much shorter lifetime of 19 ms. The transition
with the ground state conserves the spin. This state can also not be magnetically trapped.

3With current ultra-high vacuums of 10−11 mbar, lifetime due to collisions with background gas
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Figure 1.13: The 4He energy levels, showing the main two optical transitions. The transi-
tion used experimentally has been highlighted. (Figure adapted from [57])

Last but not the least, the s-wave scattering length of He∗ is large and positive:
7.5 nm [55, 40, 41]. This makes not only evaporative cooling efficient, but also
establishes the stability of the resulting Bose-Einstein condensate.

1.3.1.2 Inelastic Collisions

Though the triplet 4He seems to be a very good candidate for atom cooling experi-
ments, it shows an important inelastic collision rate [42, 43]. Indeed the ionisation
energy is 25eV from the ground state, such that the 2×19.8eV energy released in a
inelastic collision is enough to ionise one of the atoms, phenomena called Penning
ionisation. This energy is also sufficient to ionise any other atomic species X in the
vacuum chamber, leading to "one-body" Penning ionisation:

He∗ + He∗ −→ He + He+ + e− (1.3.1)

He∗ + X −→ He + X+ + e− (1.3.2)

Although the one-body Penning ionisation can be controlled by the quality of
the vacuum, the two-body losses are important inside the trap, and renders evap-
orative cooling impossible. Fortunately calculations have shown [44, 45] that in a
spin polarised sample of triplet He∗ atoms (i.e. atoms in the same magnetic sub-
state), the 2 and 3-body inelastic collision rates are inhibited with a factor of 105 for
non-spin conservation reasons. This theoretical result made the effective conden-
sation of this species plausible, and opened the experimental race to its realisation
[14, 15, 46, 47].

Though sufficiently low in order not to obstruct Bose-Einstein condensation,
the low ion rate produced throughout the process, translating both the density and
the atom number, provides a monitor to the dynamics inside the trap. Various
studies have taken use of this monitor to analyse the properties of the cold clouds,
one of which is the decay of the Bose-Einstein condensate [48, 49].

is already in order of 120 s.



1.3 The Orsay Helium Experiment 43

1.3.1.3 3He∗

Unlike 4He, 3He has a nuclear spin of 1
2 . Consequently its triplet metastable 23S1

state shows a hyperfine structure of F = 3/2 and F = 1/2 (splitting 6740 MHz).
Its triplet excited states 23P1 and 23P2 also show hyperfines structures. The optical
transition between the 23S1 and the 23P0,1,2 states is similar to the 4He∗ optical
transitions at 1083 nm. The energy levels of the 3He structure are shown in Figure
1.14.
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Figure 1.14: The useful 3He energy levels, in comparison with the 4He energy levels. The
optical transitions used experimentally have been highlighted. (Figure adapted from [66])

If magnetically trapped, the 23S1
3He∗ atoms are necessarily in one of the mag-

netic sub-states |F,mF〉 = |1/2,+1/2〉, |3/2,+1/2〉 or |3/2,+3/2〉. As the colli-
sions at cold temperatures between identical 23S1 states are prohibited by the Pauli
exclusion principle, evaporative cooling of a 3He sample can only be performed
through a mixture. Although the mixture of any of those sub-states would seem a
good idea, Penning ionisation strongly inhibits the lifetime of such a mixture. It
is therefore necessary to introduce another atomic species. The Amsterdam 3He
experiment naturally opted for the 4He∗.

The single mixture that inhibits inelastic collision is between the fermionic
|3/2,+3/2〉 and the bosonic |J,mJ〉= |1,+1〉 states. Furthermore, the interspecies
scattering length is evaluated to a34 = +28.8± 4 nm [55, 16]. This ensures very
effective sympathetic cooling, and the Amsterdam 3He experiment has succeeded
in this [16].

1.3.1.4 Detection

The reasons that renders the cooling of He∗ specifically interesting reside in its de-
tection possibilities. One can proceed to an optical detection through absorption of
diffusion imaging, and most of the He∗ condensing groups do so. Yet this detection
is not very efficient due to border-line wave-lengths 4, nor would that make some

41.083 µm is at the very edge of silicone based cameras detection spectra.
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studies on He∗ particularly more interesting then on Alkaline atoms, that are easier
to handle.

The strength of He∗ atoms lies precisely in its 19.8 eV internal energy. This
is enough to ionise anything but ground state helium. One of the nice aspects is
the Penning ionisation we just mentioned, that gives an indirect and continuous
indicator through the ion rate. But when a He∗ atom hits a metallic surface, it will
also extract secondary electrons. Those electrons can then be amplified through
an electric potential and collisions in an electron multiplier. Thus for any single
initial He∗ atom, a macroscopic signal of electrons is produced, allowing single
atom detection.

A particular such detector is the micro-channel plate. A micro-channel plate
is a thin glass plate showing a lattice of small channels. An electric potential is
applied between the two faces of the plates such that each channel works as a tiny
(around 10 µm diameter) electron multiplier. In contrast, the typical diameter of
the plate is several centimeters. Each plate consequently has millions of channels,
and the detection is localised on the plate. This can be used for position sensitive
detection schemes. A closer description of micro-channel plates can be found in
the next chapter.

A nice aspect of micro-channel plates is their virtual insensitivity to back-
ground noise. Though various types of particles can trigger off a detection (high
energy photons, accelerated ions, metastable atoms...), the minimal required en-
ergy is sufficient to render those events unlikely. Hence the detection statistics are
shot-noise limited, and make this detector very suitable for the study of rare events.

For those reasons, the Orsay Helium team has chosen to use a micro-channel
plate from its very beginning, and made the experiment particular suitable for
studying quantum atom optics.

1.3.2 The Hanbury Brown and Twiss Experiment With He∗

As we have seen, He∗ is potentially an interesting species for the study of the Han-
bury Brown and Twiss effect. It can be cooled down to the lowest temperature, pro-
ducing high spectral dense sources, and single atom detection is straightforward.
In Orsay we dispose of a source of ultra-cold 4He∗. The Atomic Physics group
at the Vrije Universiteit of Amsterdam managed to sympathetically cool 3He∗ to
similar temperatures. This openend the way to the study of both the bosonic bunch-
ing as well as the fermionic antibunching. We will have a brief description of the
two sources. A detailed description of the two experiments can be found in the
manuscripts of former students in respectively Orsay [56, 57, 58, 59, 60, 61, 62, 63]
and Amsterdam [64, 65, 66, 67, 68, 69]. Then we will outline the proposed exper-
iment, and we will proceed to a simple theoretical study of this experiment.

1.3.2.1 The Sources

If we want to perform a Hanbury Brown and Twiss like experiment, the correlation
lengths far from the source essentially depend on the initial sizes of the source.
Furthermore, the acquisition time depends on the spectral density. This involves in
terms of atom optics both the temperature of the source as well as the number of
atoms at those temperatures.
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The dimensional properties of a cold cloud of atoms are mostly determined
by the magnetic trap. Both experiments employ a clover-leaf trap for this purpose
[50, 51]. These magnetic configurations generally produce anisotropic magnetic
traps. These traps simplify, if employed at very low temperatures, to an anisotropic
harmonic trap. We can thus distinguish a lower longitudinal trapping frequency,
which corresponds in both experiments to the horizontal x axis. The two other
transverse trapping frequencies along the horizontal y and the vertical z axis are
identical. Generally, the longitudinal trapping frequency is much lower then the
other two, resulting in cigar shaped atomic clouds as displayed in Figure 1.15. The
trapping frequencies at the Orsay 4He experiment are respectively ωy = ωz = 2π×
1150 Hz and ωx = 2π× 47 Hz for 4He∗. In Amsterdam, the trapping frequencies
were respectively ωy = ωz = 2π×506 Hz and ωx = 2π×54 Hz for 3He∗5.

x

z

y

Figure 1.15: The initial atomic source is anisotropic. The transverse identical ωy and ωz

trapping frequencies are much higher then the longitudinal ωx trapping frequency. This
results in cigar shaped cloud.

The effective root-mean-square sizes of a thermal cloud in a harmonic trap are
given by:

sα =

√

kBT

mω2
α

(1.3.3)

with α indicating one of the three dimensions. This shows that the cloud size does
not only scale with the inverse of the trapping frequency, but also with the square
root of the temperature. This means that cooling down the atomic sample will not
simply increase the spectral density, but also increases the spatial correlation length
at a far distance.

Temperatures that can be attained are typically around 1 µK for both experi-
ments. The number of atoms ranges typically from 104 to 105.

1.3.2.2 The Experiment

The idea behind the Hanbury Brown and Twiss experiment with the Orsay 4He
experiment seems very close to the original optical experiment. We place a He∗

intensity interferometer at a far equivalent distance from the cloud, and see the cor-
relations build up. The intensity interferometer would be some spatially sensitive

5Reference [16] indicates lower trapping frequencies. Those have been increased for signal to
noise ratio considerations.
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micro-channel plate based detector, that would assure both the counting mecha-
nism, as well as the various detector separations.

Just as in the case of the photonic equivalent, particles still have to get to the
detector. This could be done by using an outcoupling Raman Laser [10] or a radio-
frequency [31], yet the resulting spatial correlation function would depend more on
the characteristics of the spatial and spectral outcoupling device rather then those
of the initial cloud. The simplest way of preserving the cloud properties is obtained
by switching off the magnetic trap and simply have the atoms fall to the detector
by gravity, as represented in Figure 1.16.

Figure 1.16: Schematic view of the experiment. A cold thermal cloud of He∗ drops on a
position sensitive micro-channel plate based detector. All the positions and arrival times of
the individual atoms are saved and the correlation function is computed.

Though this experiment looks very alike both [10, 31] and the optical equiv-
alent, there are some fundamental differences. Whereas the latter experiments
are continuous (or semi-continuous), the Helium experiment is pulsed. When the
atomic cloud is released, it expands through the momentum distribution of the
atoms. If the time of flight before detection is long enough, the final spatial distri-
bution of the cloud essentially translates the initial momentum distribution. This
distribution, and its correlation, is unchanged during the diabatic switch-off of the
magnetic trap.

When one takes a 3-dimensional image of the cloud after this time of flight,
one can then calculate the momentum correlation function. Yet as it happens, the
use of a position sensitive micro-channel plate based detector does not exactly take
an instantaneous 3-dimensional image. The detector measures a flux, the flux of
the cold cloud as it falls on the detector. If the thermal momentum distribution
width is small compared to the speed acquired by gravity, the cloud barely expands
during its detection, and the two detection processes are equivalent. The properties
of the cloud correspond to those at the average arrival time. The thermal energy
is given by kBT ≃ 8.7× 10−11 eV , whereas the gravitational energy is given by
mgh ≃ 5.3×10−8 eV . We will therefore neglect the expansion of the cloud during
the detection.

As we simply study the 3-dimensional momentum distribution, all 3-dimensions
are treated equivalently. In particular, the temporal correlation that can be expected
at the detector merely translates the vertical initial size of the cloud. This is unlike
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[10, 31] where there is a continuous particle extraction, and the temporal correla-
tion that can be expected at the detector is in relation with the spectral width of
the source or outcoupler. This is also unlike the traditional optical experiment. It
seems difficult to produce a photonic analogy. It would require a pulsed source
within a dispersive extended medium in order to obtain similar results.

1.3.2.3 The Theory

For the theoretical description we will make a number of approximations. The
first is, as just discussed, that we will neglect the expansion of the cloud during its
detection. Furthermore, we will estimate that there are no interactions during the
switch-off of the trap and during the time-of-flight. This maintains the momentum
distribution during the time-of-flight. Finally, we will only consider the extreme
cases of a pure gaussian thermal gas or the Bose-Einstein condensate. [70, 19, 56]
treat the theory more extensively and the reader is advised to refer to them. The
results of the presented simple analysis will be largely sufficient to interpret our
data with the current signal to noise ratio.

We will present here a theoretical description in two extreme limits: the case of
a bosonic cloud far above the condensation limit, and the one of a pure condensate.
Finally we will study briefly how the bosonic thermal cloud results can be adapted
to a fermionic thermal cloud.

The Bosonic Thermal Source The Hamiltonian of a 3-dimensional harmonic
potential of oscillation frequencies ωα in the α direction is:

Ĥ =
p̂2

2m
+

1
2

m(ω2
x x̂2 +ω2

y ŷ2 +ω2
z ẑ2) (1.3.4)

This can be written in the momentum space representation time-independent Schrödinger
equation:

εjφj(p) =
p2

2m
φj(p)− 1

2
m~

2

[

∑
α=x,y,z

ω2
x

∂2

∂p2
α

]

φj(p) (1.3.5)

The eigenfunctions solution to this equation can be written:

φ0
j (p) = ∏

α=x,y,z

A jαe
− p2

α
2σ2

α H jα(pα/σα) (1.3.6)

with σα =
√

m~ωα the harmonic oscillator ground-state size, H jα the Hermite poly-
nomial of order jα, A jα = (

√
πσα2 jα( jα)!)−1/2 the normalisation factor. The eigen-

energies are given by εj = ∑α=x,y,z ~ωα( jα +1/2), that leads, at high temperature,
to the Maxwell-Boltzmann occupation factor of each state pj = e−εj/kBT .

We can define both the momentum density function ρt=0(p) and the first order

momentum correlation function G
(1)
t=0(p,p′) in the trap. According to [70], one

then finds:

ρt=0(p) =
N

(
√

2πmkBT )3 ∏
α

e
− p2

α
2mkBT (1.3.7)

G
(1)
t=0(p,p′) =

N

(
√

2πmkBT )3 ∏
α

e
− 1

2

(

pα+p′α
2
√

mkBT

)2

e
− (pα−p′α)2

2

(√
mkBT

m~ωα

)2

(1.3.8)
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For similar reasons as shown earlier, in the case of a bosonic thermal gas:

G(2)(p,p′) = ρ(p)ρ(p′)+
∣

∣

∣
G(1)(p,p′)

∣

∣

∣

2
(1.3.9)

As the interesting dependence of this correlation functions lies essentially in (p−
p′)/2, we will average this correlation function over the mean position (p+p′)/2.
We then obtain the following correlation function:

G̃
(2)
t=0(∆p) =

N2

(
√

4πmkBT )3



∏
α

e
− ∆p2

α
4mkBT +∏

α

e
− ∆p2

α
2

(√
2mkBT

m~ωα

)2


 (1.3.10)

The momenta are measured after a t0 time of flight through a spatially sensitive
detector. Neglecting the expansion of the cloud through the detection process, we
can associate to every momenta the position of detection:

p → r =

(

t0Px

m
,
t0Py

m
,
t0Pz

m

)

(1.3.11)

where we consider that the surface of the detector is at z = 0. By introducing the
transformation, we obtain the following result:

ρt0(r) =
N
√

m
3

(t0
√

2πkBT )3 ∏
α

e
− r2

αm

2t20 kBT (1.3.12)
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We note that the cloud after expansion has an isotropic Gaussian distribution
of root-mean-square size t0

√
kBT√
m

. This leads logically to an isotropic Gaussian two-

particle correlation function that is a
√

2 larger. We do yet notice the Gaussian
bunching on top of the classical correlation function. This bunching is anisotropic.
The root-mean-square size on each axis α is t0~ωα√

2mkBT
. This is to be compared with

the root-mean-square sizes of the anisotropic cloud inside the trap
√

kBT
mω2

α
. We

immediately notice the inversion of the anisotropy between the initial cloud and
the bunching. For consistency with [19, 17, 18], we will define the half-width
half-maximum correlation length lα:

lα =
~ωαt0√
mkBT

=
~t0

msα
(1.3.14)

Several remarks can be made. The first is that the correlation length simply scales
with the time, just like the cloud itself. Therefore the further the measurement, the
larger the correlation length. The second remark is that as expected, the correlation
length scales inversely with the initial cloud size sα, just as with the optical equiva-
lent. Because the clouds size is temperature dependent, the final correlation length
will also be so.

We can then finally write the normalised second order correlation function:

g̃
(2)
t0 (∆r) = 1+∏

α

e
− ∆r2

α
l2α (1.3.15)
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The Fermionic Thermal Source In the case of fermionic thermal atoms:

G(2)(p,p′) = ρ(p)ρ(p′)−
∣

∣

∣
G(1)(p,p′)

∣

∣

∣

2
(1.3.16)

The rest of the calculations being identical, we end up with:

g̃
(2)
t0 (∆r) = 1−∏

α

e
− ∆r2

α
l2α (1.3.17)

The Bose-Einstein condensate As discussed previously, the fact that all the
atoms are in the same quantum state simplifies greatly the calculation of the corre-
lation functions. As all the atoms are also in the ground state, we obtain:

G(2)(p,p′) = ρ0(p)ρ0(p′) (1.3.18)

where ρ0(p) is the momentum density of all the atoms in the ground state. We
obtain as considered earlier:

g̃
(2)
t0 (∆r) = 1 (1.3.19)

1.3.3 Signal to Noise Ratio

The feasibility of an experiment is given by its signal to noise ratio for a certain
acquisition time. Although the signal to noise ratio can generally be increased by
elongating the acquisition time, the experimentalist will in the end have to deal with
his own limited patience. Furthermore, for random processes the signal to noise
ratio only scales with the square root of the time spend in the lab. The initial scaling
factor is preferably a stimulating amount. As the densities inside the Bose-Einstein
condensate time-of-flight are much higher then those for the thermal gases, and the
correlation squares with the density, we did not expect major difficulties for the
acquisition of the condensed clouds. We will therefore concentrate on the thermal
clouds.

The cloud is detected through a detector. The properties of this detector is
likely to influence the signal to noise ratio. We will see to what extend the detector
can be expected to influence the signal to noise ratio, and then we will analyse the
signal to noise ratio.

1.3.3.1 The Detector

The key to the Hanbury Brown and Twiss experiment is the detector, as there is
no analysis without measurement. A detector has some general characteristics that
require focus. It has both a finite size, a detectivity and a finite resolution.

Detector Size The effect of the finite size of the detector on the detection of the
time-of-flight is essentially a geometric cut on the final shape of the detected cloud.
Up to now, we considered the number of atoms in the cloud N. Experimentally
though, it is easier to work with the number of effectively detected atoms N′.

In order to bring in the corrections, we will consider the use of a circular de-
tector of radius R. N′ is then defined as the integral of the atomic density with
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Let us now consider the amplitude of the correlation function G̃
(2)
t0 (∆r = 0) in the

absence of any quantum bunching effect:
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with coth() the hyperbolic cotangent. The result of this calculation is fairly impor-
tant, as the smaller the detector, the higher the signal. Usually one would expect
the opposite, yet the wings of the gaussian time of flight participate very little to
the calculation of the correlation, as the squared density is very low. A detector that
would simply detect the centre of the atomic cloud would be nearly as efficient. If
for some reason, the number of detected atoms were limited by the detector, lim-
iting the size of the detector could be an interesting strategy. Of course, keeping
the same number of detected atoms while reducing the detector size means that we
increase the initial number of atoms in the cloud, and thus the detection rate. As
in general detectors are more likely to be limited in particle rate rather then in the
total number of atoms, the rate would be more interesting to study. We will come
back to this point in the next chapter.

Detectivity The question of the detectivity is a fundamental question. What hap-
pens if the detector does not detect all the atoms? The question is particularly
interesting because it separates the notion of correlated and entangled particles.
Entangled particles can be produced for example through a two-photon emission
process [71], molecular breakup [72], or as we have realised on the Orsay 4He
experiment through a collision process [73]. Although an extremely interesting
quantum system is produced in such a process [74], as the final entangled state has
fundamental quantum properties, the correlation statistics are classical. In such
an entangle process, the presence of a particle in a certain state establishes the
existence of another particle in a related state. If several pairs are generated, the
correlation can be normalised. The number of total correlations squares with the
number of individual particles N, whereas the bunching related to this perfect cor-
relation scales with N. Consequently the normalised correlation bunching evolves
in 1/N. If only N′ = ηN particles are detected, due to the detectivity η, the total
number of detected pairs will be ηN′, whereas the background correlation scales
with N′2. The correlation bunching height consequently evolves with η/N′. It is
strongly affected by the detectivity.

For our Hanbury Brown and Twiss correlated atoms, this is not the case. There
is no proper entanglement between atoms. The atoms are statistically correlated.
This correlation originates from a quantum process that is the stimulated emission.
In that emission, the probability for an atom to occupy a certain state depends on
the occupation number of that state. The probability to end up in an occupied state
is double the probability to end up in an empty state in the case of bosons. If an
atom is detected through a detector of quantum efficiency η, a state is occupied
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and the probability to detect an atom in the same state, whatever η, is still double
the probability to detect an atom just anywhere else. Therefore the normalised
correlation function is unaffected by the quantum efficiency.

The number of detected atoms changes naturally with the quantum efficiency
through N′ = ηN. But if N can be tuned freely, as the number of atoms in the trap
can be tuned, the experiment is not affected by the detector’s quantum efficiency.
We will see in the next chapter that some considerations can make us care about
it, but for the moment we will simply state that, as long as we use the number of
detected atoms N′, the correlation does not change with the detectivity.

Resolution Up to now, we have always considered that we had a perfect mea-
surement of the 3 coordinates of each atom. In real life, the experimentalist has to
deal with the resolution of the detector. If this resolution is big compared to the
observed phenomena, one can imagine that the signal is just washed out over the
background. This resolution hence has a direct impact on the expected bunching
height. The expected bunching is convoluted with the resolution of the detector.
If we call dα the root-mean-square resolution of the detector following the α axis,
and we consider dα small both compared to the detector size and the cloud size, we
expect to measure:
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g̃(2)(∆r) = 1+h×∏
α

e
− ∆r2

α
l2α+2×2×d2

α (1.3.23)

with h = ∏α
lα√

l2
α+(2dα)2

the height of the bunching. The factor 2 with which the

resolution compares to the correlation length is due for
√

2 to the root-mean-square
definition rather then the half-width half-maximum, for

√
2 to the fact that the

resolution is a one particle value, whereas the correlation concerns two atoms.
This means that if one wants to observe the bunching, the resolution of the

detector has to be at least of comparable size, or smaller then the correlation length
at the detector level. If the resolution is insufficient, the height of the bunching
might well be small compared to 1, and might not distinct itself from the noise.
Furthermore, for a limited resolution, we will see a temperature dependence of the
bunching height h. For smaller temperatures, the correlation length lα compares
larger to the resolution then at higher temperatures. Depending on the temperature,
we will not only observe changes in the correlation length, but consequently also
in the bunching height.

1.3.3.2 The Signal to Noise Ratio

The calculation of the signal to noise ratio requires essentially a definition of signal
and noise. Figure 1.17 indicate the graphically the definitions of signal and noise
both for bosons 1.17A and fermions 1.17B. The signal is the area contained in the
mid-gray toned area. That area corresponds to the quantum bunching effect. We
will be either looking for its bosonic presence or for its fermionic absence. In the
absence of any background signal, the noise will correspond essentially to the shot
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Figure 1.17: In A, the correlation expected for a thermal bosonic cloud as provided by
formula 1.3.23. The mid-gray area corresponds to the Hanbury Brown and Twiss effect
and is the signal. The shot noise fluctuations induced by the addition of the black and
mid-gray area, will limit the contrast and is the noise. In B, the correlation expected for a
thermal fermionic cloud as provided by formula 1.3.23. The signal resides in the absence
of the mid-gray area. The noise is given by the shot noise fluctuations of the black area
to which the mid-gray area has been subtracted. It must be noted in both cases that the
resolution of the detector does not change the surface of the mid-gray area. It does affect
the black area meanwhile.

noise fluctuations of the dark-gray toned area. To this area has to be respectively
added or subtracted the area of the bunching in case of bosons and fermions.

As we just mentioned, the signal corresponds to the mid-gray areas in Figure
1.17. This corresponds eventually to the integral of the second term of the cor-
relation function in Formula 1.3.22, i.e. the term corresponding to the quantum
bunching, over ∏α[0,

√

l2
α +(2dα)2]. This is nearly equivalent to an integration

over the entire space. This one can be simply evaluated to:
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)3
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with ω the geometric mean of the three ωα. We immediately notice that the signal
does not depend on the resolution. Although the limited resolution does smear
out the detected bunching, it does not change the integral of the bunching. This
is logical, in the sense that the detection does not change the physical correlation
between the particles, only their measured respective distance. The resolution will
yet influence the noise.

The noise is the square-root of the dark-gray area plus/minus the bunching.
That is equivalent to the square-root of the integral of the total expression of 1.3.22
over ∏α[0,

√

l2
α +(2dα)2]. In the high temperature limit, this expression can be

approximated by:
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Finally we can write the signal to noise ratio:
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If we take into account the size of the detector, and considering it scales large
compared to the correlation length and the resolution, we finally obtain:
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We will come back to this expression as soon as we have the experimental detector
characteristics.
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Conclusion

We have studied throughout this chapter the Hanbury Brown and Twiss effect. In
particular we studied the historical discovery of this effect by Hanbury Brown and
Twiss. We have seen how the initial interest in the intensity interferometry for
the study of stellar entities, raised questions in the quantum field on the nature
of the particles. We have seen how theories have been experimentally approved,
or disproved, and eventually led to a proper quantum description of correlations.
This latest effort has only recently been awarded through the 2005 Nobel prize of
Physics for R. Glauber.

That the Hanbury Brown and Twiss effect was discovered through a description
of light and the observation of stars is not extraordinary. Scientists have always had
their eyes pointed at the stars, and many historical advances in physics have been
made through the understanding of hence observed phenomena. Nowadays, the
Hanbury Brown and Twiss effect has been observed in fields ranging from optics
to particle physics. The particularly high phase-space densities obtained with latest
cooling techniques in cold atom physics generated hope to obtain similar signal
to noise ratios as in photonic optics. A first pioneering result had been obtained
by Yasuda and Shimizu in 1996, at still fairly high temperatures; the potentials
of radio-frequency cooled atomic samples were looming. During the ongoing of
this present study, several groups have been investigating the Hanbury Brown and
Twiss effect, reflecting the fascination this quantum effect still generates among
the physicists.

We investigated the particularity of the metastable helium experiments, with
the possibility of a simple quantum detection scheme. The close to zero back-
ground noise rates of the micro-channel plate detectors, detectors that can convert
a single particle signal into a macroscopic cloud of electrons, made them appear
extremely useful for a Hanbury Brown and Twiss type experiment. A simple theory
explaining the expected results has been demonstrated and enabled the calculation
of the signal to noise ratio for this particular experiment.

Out of the signal to noise ratio we retain several important parameters. The
main one is definitely the temperature. This affects the signal to noise ratio through
several mechanisms. The first one is through its influence on the initial cloud size.
The cloud is trapped in a harmonic trap. The size of the cloud in such a trap de-
pends on the kinetic energy of the various atoms, and thus the temperature. As the
correlation length after propagation scales inversely with the source size, the use of
lower temperatures increases the final coherence volume, and the signal it contains
accordingly. We must stress the importance of the trapping characteristics though.
If the cloud were trapped in an infinitely bounding box potential, the temperature
would not act upon the final correlation length.

Meanwhile, the temperature also affects the phase-space density. Atom cooling
reached the Bose-Einstein condensation, because it does not simply decrease the
spectral width of the atomic sample, but also increases the spectral density mean-
while. When working with colder samples, the size of the cloud after time of flight
is smaller, but also denser. This higher spectral density concentrates statistically
more particles in the same coherence area, and increases the signal to noise ratio
accordingly. Working at the coldest possible temperatures therefore seems the key
to success. In both Orsay and Amsterdam, working temperatures of the thermal gas
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laid in the micro-Kelvin range. The thermal clouds in both experiments suffered a
phase change around 0.5 µK. Therefore we expected the experiments to be carried
out around 1 µK in order to be in a correct thermal regime.

The second extremely important parameter that stands out of the signal to noise
ratio study is the resolution, and a lot of energy has been invested during last years
to get a hold on it. Our study shows in particular the importance of the ratio of the
resolution and the correlation length. A non-favourable ratio would smear out the
bunching, lowering meanwhile the bunching height. Although the total correlation
volume associated to the bunching does not change, the underlying noise does in-
crease with the increase of the apparent correlation length, consequently reducing
contrast. Naturally this ratio can be reduced favourably by increasing the correla-
tion length through a longer time-of-flight. Unfortunately, the fall height necessary
for such an increase squares with the time-of-flight. For practical reasons, and
also in order to maintain the versatility of the setup, we have been limiting the fall
height in the 50 cm region. Note that the detector size is not an argument.

Before starting any experimental realisation, it is worth considering the cor-
relation length we expect after a 50 cm time-of-flight at 1 µK. The correlation
length depends on the trapping frequency that varies with the axis. The trapping
frequencies at the Orsay 4He experiment are respectively ωy = ωz = 2π×1150 Hz
and ωx = 2π× 47 Hz for 4He∗. In Amsterdam, the trapping frequencies were re-
spectively ωy = ωz = 2π× 506 Hz and ωx = 2π× 54 Hz for 3He∗. Consequently
the correlation lengths expected are around ly = lz = 800 µm and lx = 32 µm for
the 4He∗ in Orsay, and ly = lz = 400 µm and lx = 43 µm for the 3He∗ in Amster-
dam. The z axis also has its equivalent correlation times that range lt = 250 µs
and lt = 130 µs in Orsay and Amsterdam respectively. In order to have a signifi-
cant bunching height and signal to noise ratio we require therefore a detector with
a spatial resolution in the 30 µm range, and a temporal resolution in the 100 µs
range.

The third parameter that we have not directly studied is the maximum detec-
tion rate. We will study the influence of the detection rate at the end of the next
chapter, when we will be able to distinguish global and local rate. For the moment
we simply note that the signal to noise ratio scales linearly with the number of de-
tected atoms. If a single time-of-flight has an insufficient signal to noise ratio to
properly observe the Hanbury Brown and Twiss effect, we will for sure be able to
average over several time-of-flights. The problem is that the signal to noise ratio
will only scale with the square-root of the number of realisations. It is therefore
much more interesting to double the number of atoms in a single time-of-flight,
rather then to double the number of realisations. Typical atom rates with which we
work are 10katoms in a typical 10ms width time-of-flight. We therefore expect the
detector to deal with typical mean particle rates of 1Matoms/s. Finally the detector
is required to maintain similar rates over at least 10ms.

This is the book of specifications of the micro-channel plate based detector that
is to fulfil the role of the intensity interferometer. In the next chapter we propose to
analyse the detector that complied best with those specifications: the micro-channel
plate based delay-line detector.



CHAPTER 2

The Detector

The measurement of the Hanbury Brown and Twiss effect with He∗ requires a
micro-channel plate based position sensitive detector. Several types of position
sensitive devices exist, the most common in use being the phosphor screen coupled
to a CCD camera. We have just determined though, that such a detector would
require single atom counting capacities with incoming atomic rates in the order of
1 Matoms/s. We would also appreciate a resolution in the order of 30 µm. Finally,
this detection rate has to be maintained over at least 10 ms.

We will overview in the first section of this chapter the various position sen-
sitive detection systems types that exist. We will be able to easily eliminate most
detectors for non compliance to our requirements. It must be noticed though that
this overview merely deals with the current state-of-art. As the electronic technolo-
gies involved are evolving in a very rapid pace, a similar experiment in the future
might take a different choice.

We then focus on the single detector we found to comply most to our needs: the
delay-line detector. We study the entire detection chain, from the micro-channel
plate detection down to the computer acquisition and analysis tools.

Finally specific focus is given to the detection efficiency, the detection rate
and the resolution. Those are the essential physical characteristics that influence
directly the outcome of the experiment. This study also provides a deeper under-
standing of the mechanisms involved in the detection.
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2.1 Detectors Overview

Behind the micro-channel plate stack used for the detection of energetic particles,
various detection schemes can be used to image the out-coming electron clouds.
We will discuss in this section the various schemes that are currently employed to
do so. Most of those techniques have been developed in the field of nuclear physics.
They have often been designed to deal with pulsed or continuous experiments,
that have an average event rate in the kHz order, and that have to deal with a few
particles with low separations in time. They therefore can deal generally with very
high particle rates, but only for a few particles, and for very short timings.

We will first discuss a traditional use of phosphor screens, combined with CCD
cameras, that is interesting for imaging purposes, and that is specifically employed
for night-vision devices. We will then study briefly the use of resistive anodes for
position sensitivity. Then we will see how the delay-line detector complies to our
needs. Finally we will discuss briefly some improved delay-line detector detection
schemes that might prove interesting in the future.

2.1.1 Phosphor Screens

The idea behind the use of a phosphor screen with a CCD camera is illustrated in
Figure 2.1. The electrons coming from the micro-channel plate stack are attracted

MCP stack
Phosphor layer
glass plate

optical imaging 
system

CCD camera

Figure 2.1: The electrons provided by the micro-channel plate stack are attracted to a
phosphor coated glass plate. The photons produced by the electronic excitation of the
phosphor are collected through an imaging system on a CCD camera.

towards a phosphor coated glass screen. The electrons excite the phosphor, that
re-emits the energy through photonic emission. The photons are collected through
an optical system and imaged on a CCD camera.

The global system is quite performing in terms of resolution. Sub-pixel anal-
ysis can lead to resolutions below 100 µm. The problem of this system is the
acquisition rate.

The timings we require for the proposed Hanbury Brown and Twiss experi-
ment are around the 50 µs. We therefore require a camera that can handle a 20 kHz
acquisition rate. With the expected particle flux, this still produces up to 50 de-
tected atoms on a single image. If the atoms are homogeneously spread over the
image, this is still reasonable. Yet with cold atomic clouds or more specifically
Bose-Einstein condensates, the spatial densities are much higher and it will be im-
possible to distinguish the atoms. We would therefore require a CCD camera that
can take up to 200 k images per second.
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Considering a 256×256 8 bits CCD matrix, this produces a data flux of 13 Gbytes/s.
Currently, no electronic serial connection can handle such data transfers. This
therefore requires cameras with integrated memories. Currently no such cameras
exist with sufficient performances. The best CMOS based cameras currently avail-
able can deal with 5 kframes/s (Photron) in full resolution. With reduced resolution
they can eventually work up to 150 kframes/s, but a reduced resolution.

If progress in terms of fast CMOS sensors continues at current pace, the phos-
phor screen might become an option though one day. Computer power will then
also have to be available to deal with the 200 Mbytes of data of every acquisition
in a reasonable time. More sophisticated CMOS technologies might also appear
that could allow for selective reading of the pixels. That could lower considerably
the data rate.

2.1.2 Charge Division Devices

An interesting way of getting position sensitive information from the electronic
pulses provided by the micro-channel plate is to subdivide the signal and study its
physical properties. An example would be a resistive anode [75], as illustrated in
Figure 2.2A. The electronic pulse provided by the micro-channel plate stack drops
on a resistive plate. On the four sides of the plate, a collection wire evacuates the
captured electric charges. Because of a high resistivity, the electric charges will
seek an optimal exit to the output channels. Consequently, the charge distribution
on the four exists depends on the arrival position, and the measurement of those
charges will provide after calculation the position of the particle. An alternative
would be to measure the rising front slope of the impulses, that also depends on
the initial position of the particle.
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Figure 2.2: In A, an illustration of a resistive anode position sensitive device. Depending
on where the electron shower occurs, the relative amplitudes at the two exits vary. This
relation can be used to determine the position. In B, an illustration of a delay-line anode
position sensitive device. According to the position of the electronic shower, the relative
delay of the two electric signals in the two directions of the wire change. Measuring those
arrival times makes it possible to retrieve the position.

Another example is a delay-line [76], as illustrated in 2.2B. In this case the
impulse is collected on a wound wire. This results into a propagation of two elec-
tronic signals in each direction along the wire. If one measures the arrival time of
the two impulses at the end of the wires, one can by taking the difference of the
arrival times retrieve the position of the particle.
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The physical measurements of the divided charges can be performed by triv-
ial components. The charge can be measured by amplitude-to-digital converters.
Arrival times can be measured by time-to-digital converters. Each particle con-
sequently generates up to four informations. The total data rate is thus propor-
tional to the particle rate, that for our required atom rate will generate data rates of
16 Mbytes/s. This is far more reasonable then the previous 13 Gbytes/s. Also the
associated analysis times are reasonable.

The performances of the charge division devices all depend on two factors. The
quality of the measurement electronics and the physical properties of the anode.
They also all have in common a tradeoff between the particle rate and the resolu-
tion. For example, for a given time-to-digital converter coding step, a delay-line
anode will give a better relative timing if the delay-line is longer. Yet if the delay-
line is longer, it takes longer for the pulse to quit the line, and during that time no
other particle can be detected. Samelike, the higher the resistivity of the resistive
anode, the better the charge division, yet it also takes longer for the charges to quit
the anode.

The performances of those detectors are therefore strongly related to those of
the state-of-art of the electronics. At the time that we were seeking for a detec-
tor, the delay-line anodes were the commercially available detectors most tuned to
our requirements. The available resistive anode detectors had made a tradeoff in
favour of the resolution rather then the acquisition rate. This is understandable as
most detector users work at much lower acquisition rates. At the date of our acqui-
sition, the Roentdek Handel GmbH’s DLD80, with a 80 ns delay-line, was the only
heard of detector compatible with our resolution requirements and our acquisition
rates. It was sold with a potential acquisition rates of several Mcounts/s, and with
a 200 µm spatial resolution. The time resolution was 1 ns.

2.1.3 Advanced Charge Division Devices

The enormous benefit of charge division devices, is the simplicity of the measure-
ment components, and the little information they generate. This key advantage is
also a drawback. Those components can not deal with double counting situations,
and they ultimately limit the acquisition rate.

Modern signal sampling and acquisition devices have meanwhile grown so per-
forming that they can compete with the amplitude and time-to-digital converters.
Instead of converting the analogue signal in a series of simple measurements, brute
force can today be used to simply acquire the total analogue signal over extended
periods. A complex post software analysis can then extract more, and eventually
better information from the divided charges.

Such an advanced delay-line detection scheme has been implemented by the
Groupe de Physique des Matériaux at INSA Rouen [77]. By coupling a multi-
channel 4 GHz sampling rate digitiser to a delay-line, and by using deconvolution
techniques, they have been able to produce a delay-line detector with a 100 µm res-
olution and a 1.5 ns deadtime. The draw back of the advanced detection scheme,
is that they generate huge amounts of data, and that they require a time-consuming
data analysis. This is currently confining the Rouen group to kHz acquisition rates.
We will discuss in Appendix 3 an advanced detection scheme, though far less ambi-
tious, we have implemented in Orsay, and we will understand why we are currently
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happy with a simple delay-line detector.
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2.2 The Delay-Line Detector

In this section we will have a much closer look at the implementation of a delay-
line detector as overviewed in Figure 2.3.

A)

B)

C)

D)

Figure 2.3: Pictures of the entire detector system. In A, the atoms trigger an electric pulse
in a micro-channel plate stack. The electrons are captured in B by a Roentdek DLD80
delay-line detector mounted on a CF160 ultrahigh vacuum flange. In C, pulse amplification
and discrimination is performed by Roentdek’s DLATR-6 box, the discriminated pulses
have their arrival time measured by a CTNM4 time-to-digital converter. Finally the digital
data is send to a computer in D for acquisition and further analysis.

We will first consider a little more closely the way micro-channel plates work
and behave, and conclude on the micro-channel plates we have chosen. Thereafter
we will explorer in more detail the way the delay-lines work. Then we will focus
on a crucial part: the electronics behind the delay-lines. Finally we will deal with
an often neglected part: the computer acquisition software.

2.2.1 The micro-channel plates

Micro-channel plates can be seen as thin glass plates pierced with many tiny chan-
nels. In reality those plates are made by forming an array of millions of glass tubes,
tens of microns large, that are then cut into slices around a millimetre thick. The
inner coating of those glass tubes is highly resistive, the outer coating of the plates
is metalised in order to provide parallel electric connection to all channels . By ap-
plying a electric potential to the plate, all channels are transformed in continuous
dynode electron multipliers.
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Figure 2.4: A sample of commercially produced microchannel plates (BURLE Electro-
Optics, Inc).

2.2.1.1 Mechanism

Each channel is a dynode electron multiplier. In such a multiplier, electrons are
accelerated in an electric potential. Those electrons are forced into collision with
the channel that has a small angle with the electric field, hence ejecting secondary
electrons from the substrate in number proportional to the acquired energy of the
electron. Those secondary electrons are in turn also accelerated into another colli-
sion, and so on. Thus is set off an exponential amplification mechanism. Thanks
to the very light mass of the electrons, such an amplification process takes around
100 ps. With proper electronics, such an event can be timed to some tens of pi-
coseconds.

front rear

energetic
particle

metallic surface

resistive glass tube
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Figure 2.5: An energetic particle hitting the channel liberates its energy by extracting
electrons. Those electrons are accelerated by an electric potential applied between the
front and rear side metalised surfaces of the micro-channel plate. Hitting in their turn the
glass tube, the number of those secondary electrons increases exponentially.

The first electrons are produced by the energy released at the impact of the
to-be-detected particle. This energy therefore needs to be sufficient to extract
those electrons. This energy can be introduced by energetic photons, accelerated
ions or alpha-particles, or metastable atoms. The necessity for a relatively high
electron extraction energy translates into a very low dark count rate, lower then
1count/cm2/s. Consequently micro-channel plates are very suitable for observa-
tions requiring long (typically a second) observation times.
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2.2.1.2 Multiple micro-channel plates

A standard micro-channel plate has an amplification factor of 103 −104. The volt-
age, on which this gain is strongly depending, is limited by the thickness of the
plate. Using too high voltages sets off destructive electric arcs. Increasing the
thickness of the plates is however not the solution. Ionisation of the background
gas, and corrosion of the glass coating by the increasingly dense electron cloud
produce positive ions that are accelerated to the entrance of the channel. There
they can trigger echo counts. This problem can be overcome by adding up 2 or
3 micro-channel plates. By opposing the angles between the successive micro-
channel plates channels, as shown in Figure 2.6, the faulty ions are forced into an
early collision midway. Consequently, the total thickness, and therefore the total
voltage, and thus the gain, can be increased up to the requirements without affect-
ing the quality of the detection. Most common, the double and triple stack config-
urations are called chevron and Z-stack configurations. A chevron configuration
can produce up to 108 electrons for a single count.

72
0 

µm

12 µm

VMCP

Figure 2.6: Two micro-channel plates in chevron configuration. The angles of the channels
are inverted in order to prevent produced ions to reach the entrance and triggering echo
counts. A single voltage can be applied to the double stack if the micro-channel plates
have similar electric resistances. Inter-surface contact is then enough to assure the circuit
is closed.

2.2.1.3 Gain and pulse-height distribution

The electron amplification procedure is a pure birth process, also known as a Yule
process [78]. The resulting electron number distribution, after a constant ampli-
fication time, is exponential. This means that the expected amplitudes from the
electronic pulses provided by the micro-channel plates have an exponential dis-
tribution. Exponential pulse height distributions are generally unhandy for parti-
cle counting. They do not allow for double counting detection schemes, as those
schemes need precise information on the pulse height.

Fortunately the amplification process saturates at high gain. If the electronic
density is too high, the static electric potential is screened by the electron cloud
itself, strongly reducing the amplification efficiency. The exponential distribution
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is then transformed into a more gaussian distribution. This effect is particularly
useful for counting imaging because it assures an homogeneous image. When
saturating, and as illustrated in Figure 2.7, a trigger can clearly distinguish noise
from signal, and all pulses are detected. If the detector shows a inhomogenous
ampltiude distribution, this can be overcome through the discrimination process. In
order to reach saturation, two or more micro-channel plates are generally required.
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Figure 2.7: The amplitude distribution can be easily measured with a modern oscilloscope.
A metallic plate is put behind the micro-channel plates, with a slightly positive potential.
The electrons go into the plate, producing a current. This current is measured at both
sides of a resistance. At low gain, the amplitude distribution is exponential and cannot
be distinguished from the background noise. If one increases the gain, it saturates and a
distinguishable counts peak appears. Noise is then easily discriminated.

Various parameters influence on the gain. One of them is the voltage. Voltage
dependence is exponential until saturation of the process. Another static parameter
is the channel aspect ratio. The gain of micro-channel plate is given by the ratio
of the length of the channel, divided by the diameter of the channel. This ratio is
generally of 60. Consequently the choice of the channel diameter does not affect
the gain, but it does change the maximum particle rate.

2.2.1.4 Flux saturation

The amplification of a single count can saturate. But the detection of a particle also
influences the detection of following particles. The channel that has been used for
the first detection shows an electronic depletion. In the case a chevron or a Z-stack
configuration has been used, the electrons coming from the first micro-channel
plate spread eventually over several channels in the second micro-channel plate.
Hence a small region shows an electronic depletion that strongly influences the
local amplification process. Consequently micro-channel plates show a maximum
local flux.
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This electronic depletion is compensated by a strip current. Because of the
high resistances of the channels, this current is low. If the electronic depletion is
over 10% of the strip current, a micro-channel plate is often saturated [79]. For a
7.5 cm diameter chevron stack with a total resistance of 26 MΩ operated at 2300 V,
if the average number of electrons per count is of 107, the maximum local flux is
of 125 kparticles/cm2/s.

Note that having channels with smaller diameters increases this maximum flux.
Although smaller diameter does not decrease the electrical resistance of a single
channel as long as the aspect ratio is conserved, it does increase the number of
channels per surface unit. Hence the surface resistance is reduced and thereby the
maximum flux increased.

Note that the resistance of those micro-channel plates can be reduced by apply-
ing a special coating to the channels, hence increasing the strip current and same-
like the maximum flux by a factor 10. The limit of such coating is the eventual
heating of the micro-channel plate and the necessity for high power high voltage
supplies. Furthermore, experience shows [80] that the lifetime of such coating is
still a limiting factor. Less then a year is to be expected before those micro-channel
plates return to a standard behaviour.

2.2.1.5 Our Choice

Our first choice has gone to BURLE’s Long-LifeT M micro-channel plates. We
have bought a chevron stack of 8 cm diameter micro-channel plates, with an aspect
ratio of 60, channel diameter of 12 µm, centre-to-centre spacing of 15 µm, detector
quality. The bias angle of the channels is of 8◦. We had, to say the least, some
surprises.

Noise The first surprise came from the background noise. Indeed at 2300 kV
of operation, our detection system showed a darkcount of 1300 counts/s. This
darkcount is much higher when the micro-channel plates have just been put under
vacuum, and lowers progressively with the operation time. In earlier experiments,
different micro-channel plates produced by Hamamatsu Corporation did not show
such darkcounts. This number was also in contradiction with the specifications of
0.3 counts/cm2/s.

Imaging of those darkcounts showed that they were spatially very localised,
as shown in figure 2.8. The spikes correspond probably to some border effects
with eventually trapped gas. This is how they disappear with the time as the gas
is being pumped away. As they are very localised, they can, once imaging has
been implemented, be cut out of the data easily. After this cut out, the noise rate
is 0.3counts/s/cm2, as in the specifications. It can be neglected when compared to
the expected particle rate.

Gain Also the gain distribution showed some surprises. Figure 2.9A is a plot
of the average amplitude of the pulses versus their position at the 2300 V opera-
tion voltage (The method through which this map has been acquired is presented
in Appendix 3). It shows that the detector has regions of high gain, and regions
of lower gain. Figure 2.9B shows the amplitude distributions in respectively the
low and high gain region. One distinguishes that the lower gain regions have an
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Figure 2.8: Image of the darkcounts on the detector. The signal has been integrated over
50 s. At the border of the image, one can distinguish some intense hot-spots (the intensity
scale is logarithmic). The counts in the middle occur at a very low count rate, and are likely
due to ambient light. The hotspots can change when the detector is put under vacuum again.
They are likely due to residual gas.

exponential type distribution, whereas the higher gain regions show clearly a gain
saturation.

Because the gain does not saturate at various places, this inhomogeneous gain
distribution inevitably results in a inhomogeneous detection efficiency as we will
see in the next section. No discriminator level can cope with the entire detector.

The reason for this spatially depending gain is not yet understood. Hypotheses
do exist. The most likely is a bad mounting of the micro-channel plates. Indeed, for
flux considerations we bought micro-channel plates thinner then those the mount-
ing rings for the detector where made for. Consequently forces are not evenly
applied to the outer diameter of the chevron stack and the distance between the two
micro-channel plates is not evenly distributed. One can imagine this has an impact
on the gain. Unmouting and remounting of the micro-channel plate stack induced
a change in the gain distribution, that confirms the mechanical sensitivity of the
setup. Hence the configuration at which we employed the detector in Amsterdam
was different from what it was in Orsay. The only change made to the detector
in between was a short unmounting of the micro-channel plate stack. The recent
acquisition of a second stack of micro-channel plates and also of a spacer that can
be put between the micro-channel plates will make experimentation possible, and
could show the validity of this theory.

2.2.2 The Delay-Line Detector

The delay-line detector we have used is commercially distributed and designed by
Roentdek Handels GmbH [81]. We opted for the DLD80, as illustrated in Figure
2.10.

This detector essentially consists of a micro-channel plate stack mounted in
front of a delay-line. We will briefly study how this delay-line works. We will
then have a look at the operation voltages in order to use the detector in its optimal
conditions. A detailed study on the relation of the delay-line and the resolution is
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Figure 2.9: In A, the average amplitude plotted versus position. This graph has been
obtained using a 4 channel oscilloscope. One can distinguish regions of low and high
gains. The amplitude distributions of the squares inside the figure have been plotted in B.
The lower gain regions show an exponential distribution. The lower part of this distribution
is cut off because of the trigger levels used in the reconstruction method (see Appendix 3).
The high gain regions show a saturated gain.

Figure 2.10: Techincal drawing of the DLD80 delay-line detector. A micro-channel plate
stack is mounted mechanically in front of a delay-line. The ensemble is mounted on a
CF160 vacuum flange. An electric feedthrough assures the transport of the signals and the
high voltages into the vacuum chamber. (Figure from [81])
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provided in Appendix 1.

2.2.2.1 Mechanism

Principle A delay-line is a line for which the length cannot be neglected when
compared to the speed of the electronic pulse and the typical time constants in-
volved. If one considers now an electronic pulse released somewhere in that wire,
it is possible, by measuring the arrival times at each side of the wire, to retrieve the
position from where this pulse has been released (see Figure 2.11).
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Figure 2.11: The principle of a delay-line. The electrons produced by a micro-channel
plate stack is guided through a differential electric potential to a copper signal line. The
resulting potential difference with a close reference line triggers the propagation of an
electric signal along the two directions of the wire. At the end of the wire, the signal is am-
plified, discriminated and the arrival time is measured through a time-to-digital converter.
the difference between the two arrival times indicate the position of the initial electronic
pulse.

In the case of our detector, the electrons forming the electric pulse leave the
micro-channel plates at a certain position. By a positive differential potential be-
tween the rear-side of the micro-channel plate stack and the signal line, those elec-
trons go into the latter. This electric charge is evacuated through the transmission
line. The differential DC voltage between the signal and reference line induced by
those electrons can then be discriminated and their arrival time measured.

If we call t1 and t2 respectively the arrival times at both sides of the wire.
Those can be written t + x/vc +C1 and t − x/vc +C2, where t is the arrival time of
the particle on the micro-channel plate, x the position on the micro-channel plate,
vC the velocity of the charge inside the wire, C1 and C2 two constants depending on
the global configuration and the definition of x = 0. The position can then indeed
be obtained simply:

x = (t1 − t2)× vc (2.2.1)

The velocity of the charges is in this delay-line of the order of c/3. Considering a
time resolution of 400 ps and a micro-channel plate diameter of 8 cm, the number
of pixels is then as low as 2.

Furthermore, this simple system works in case the detector is one dimensional.
Yet in reality the detector has two dimensions, that have to be covered.

A Helical Delay-Line A simple way to solve those two problems is to wind the
delay-line as illustrated in Figure 2.12.
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winded delay-line
metallic anode

t1 t2

effective x-axis

Figure 2.12: In order to increase the resolution, and to cover the entire detector surface,
the delay-line is wound 100 times. The resulting apparent transverse charge velocity is
then divided by 100, and with the same factor the resolution is increased. The electrons
that come out of the micro-channel plates cover several wires, such that the final pulse as
detected by the discriminator is the average of several. The centre-of-gravity of that pulse
consequently has sub-wire resolution.

The wires are winded 100 times around a metallic anode. The winding axis is
then the measurement axis. As the equivalent speed has been reduced by 100 as
well, the number of pixels has increased with the same factor.

The resolution is not limited to the number of spirals as one could easily imag-
ine. Indeed, as the dense electron cloud leaves the channels from the micro-channel
plate, they spread spatially over a number of wires. Dispersion in the delay-line en-
sures that the different pulses in the various spirals overlap each other by the time
they reach the discriminator. By evaluating the centre-of-gravity of the resulting
pulse, one obtains sub-wire resolution in the same manner as sub-pixel resolution
can be obtained with a CCD camera.

In order to obtain sensitivity in the other spatial dimension, a second wire is
put between the first wire and the anode, and is winded along the other axis.

2.2.2.2 Operating voltages

The only tuneable parameters are the voltages of the signal and reference wires,
as well as that of the metallic anode. The potentials applied to the X and Y wires
are identical, given the electronics we bought. These potentials influence both the
detectivity of the detector, as well as its resolution.

Potentials and Detectivity A particle is detected by the discriminator if the am-
plitude of the electronic pulse it produces goes above the threshold level. This
depends not only on the ability of the micro-channel plates to amplify sufficiently,
but also on the delay-lines to collect the electrons. The latter depends on the elec-
tric potentials that are applied to the wires. In Figure 2.13 we have plotted various
graphs that indicate the position reconstructed counting rate as a function of the
various electric potentials. Throughout all the graphs, we have used successive
detected time-of-flights at 1 mK released from a magneto-optical trap with nearly
identical number of atoms. In Figure 2.13A, we have plotted the number of counts
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Figure 2.13: In A, the measured number counts as a function of the potential Usignal −Urear

for 1 mK time-of-flights. For this measurement Urear = 0 V, Usignal −Ure f erence = 40 V. and
Uanode = 15 V. In B, the number of counts versus Usignal −Ure f erence. For this measurement
Urear = 0 V, Uanode = 15 V and Usignal = 180 V. In C, the measured number of counts
versus Uanode −Urear, with Urear = 0 V, Usignal = 200 V and Ure f erence = 160 V.

as a function of the potential difference between the rear-side of the micro-channel
plate stack (at Urear = 0 V), and the collecting signal wire. During this measure-
ment we kept Uanode = 15 V and Usignal −Ure f erence = 40 V. We simply note that
the counting maximises around 200 V, and consequently we have fixed the voltage
to that level.

In Figure 2.13B, we considered the collecting efficiency as a function of Usignal−
Ure f erence. During this measurement, we kept Urear = 0V, Uanode = 15 V and
Usignal = 180 V. If both wires detect the same number of electrons, the differential
discriminator will not detect any pulse. Maximum detection is performed when the
signal line collects all the electrons, and the reference line none. We simply note
from the graph that as long as Usignal −Ure f erence > 20 V, the maximum counts are
detected. Effectively, we tend to work with Usignal −Ure f erence = 40 V.

In Figure 2.13C, we plotted the effect of the collecting anode potential on the
detection efficiency. Using Urear = 0 V, Usignal = 200 V and Ure f erence = 160 V, we
note that somewhere for Uanode between Usignal and Ure f erence, the detection starts
to drop. We have therefore fixed Uanode = 90 V for usual data acquistion.

Potentials and Resolution We can also suspect the electric potentials to affect
the resolution of the detector. Although the resolution, and the way it is measured,
is extensively studied in the next section, we will simply consider the same data
studied in Figures 2.13. Hence we plotted in Figures 2.14, the resolution for the
same data as a function of the same potential differences. We note immediately that
the resolution and the detectivity behave in the same way: the better the detectivity,
the better the resolution. This is not susprising as we will learn a little further.
Indeed, we will see that the resolution and the pulse height are intimately related, as
is the pulse height and the detectivity. Those two series of graphs are consequently
at first order equivalent.

A special remark had yet to be made for Figure 2.14C. In this graph, the reso-
lution seems specifically worse between 160 V and 190 V. Above those voltages,
resolution becomes better again, and stable. Actually, if one observes the resolu-
tion method closely, one would discover that the resolution goes progressively from
one regime below 160 V, to another regime above 190 V. The two regimes provide
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Figure 2.14: In A, the resolution as a function of the potential Usignal −Urear for 1 mK time-
of-flights. For this measurement Urear = 0 V, Usignal −Ure f erence = 40 V. and Uanode = 15 V.
In B, the resolution versus Usignal −Ure f erence. For this measurement Urear = 0 V, Uanode =
15 V and Usignal = 180 V. In C, the resolution versus Uanode −Urear, with Urear = 0 V,
Usignal = 200 V and Ure f erence = 160 V.

two distinct distributions, and in the intermediate regime the counts are transfered
progressively from one to the other distribution. This specific point might deserve
more attention for better understanding of the delay-line detector.

2.2.3 The Electronics

The pulses that come out of the delay-line still have to be analysed. This can be
done in several manners. One of this manner is by using an oscilloscope. This
method is discussed in Appendix 3. The use of an oscilloscope proves to be partic-
ularly expensive in terms of price, but also expensive in terms of network bandwith,
storage space and computing power.

While the use of digital scopes or digital analysers has been made possible only
in the past years with the very cheap prices of fast memory components, there has
since long been a much cheaper, and equally effective solution. This solution is the
combination of a constant fraction discriminator and a time-to-digital converter.
The former associates a logical pulse to the analog pulse from the delay-line, the
latter measures the arrival time of that logical pulse and writes it to a memory.

2.2.3.1 Analog to Logical

The vendor of the detector also sold us the electronics with it. The description here
below is mostly their choice. The electronic box, the DLATR6 from Roentdek,
takes as input the high voltages coming from the detector, it outputs the logical
NIM signals for the time-to-digital converter. We will briefly see how the analogue
pulses are extracted from the high voltages and then amplified. We will then study
the purpose of the constant fraction discriminator.

Pulse Extraction The DLATR6 box has 6 channels. Four channels are provided
for the outputs of the two delay-lines. Furthermore two channels are provided for
the front and rear side of the micro-channel plates. In order to extract the high
frequency signal pulse from the high voltage necessary for operation, each channel
has been cabled as drawn in Figure 2.15A.
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Figure 2.15: The electronic circuitry inside the Roentdek DLATR box. In A, the electronic
high frequency signal is extracted from the high voltage through a simple RC circuit. The
high frequency output goes to the fast amplifier. In B, the signal from the MCP channel
are amplified in respect to the ground. In C, the signals from the delay-lines are amplified
differentially between the signal and the reference delay-line.

The RC high pass filter sends the frequencies above 9 MHz to the amplifier.
Note that the 1 MΩ resistance between the power supply and the detector com-
ponents is not negligible compared to the 26 MΩ resistance of the micro-channel
plate stack. Consequently, the high voltage supply’s indication does not correspond
to the effective micro-channel plate voltage. This resistance has to be taken into
account.

Pulse Amplification The difference in treatment between the delay-lines and the
micro-channel plate signals lies in the amplification. Whereas the signals from
the micro-channel plates are amplified with respect to the ground, the outputs of
the reference line and the signal line are amplified differentially in respect to each
other. The latter has the great advantage of being less sensitive to electronic noise.

Indeed, apart from the detector, many electronic devices are necessary to the
success of the experiment. Many of them generate radio-frequencies. In particular,
the metastable helium cells used in the setup to lock the lasers employ a 27 MHz
radio-frequency to maintain the discharge. The antenna of those cells happened to
not have been isolated, as before this detector no other high frequencies were used.
Consequently, the entire experimental room is drawn into a 27 MHz sinusoidal
signal and its harmonics, who are in the middle of our signal spectrum.

If the reference line catches this noise signal, the signal line also catches it and
the signal disappears at the differential amplification. For the cable that goes to
the micro-channel plate, this noise elimination does not occur, and the amplified
micro-channel plate signal shows a high level of background noise.

We managed to lower that noise by changing the wire configuration. Though
much better, the result was not yet satisfactory. It is not clear at this point where
the problem lies exactly. Overall poor grounding of the experiment might also be
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an issue. As this fifth micro-channel plate signal was globally unnecessary, and
considering the flux limitations of the time-to-digital converter we decided not to
use the micro-channel plate timing signals in the presented experiments.

Pulse Discrimination Once the signal has been amplified, it still needs discrim-
ination. Discrimination has a double purpose. On one hand it has to discriminate
signal from noise. This is generally done by fixing a threshold under which fluctu-
ations are considered noise. The second purpose is to associate a time to the pulse.
This point deserves special care.

tt0t1 t2

signal

noise

V

thresholdV0

Figure 2.16: A leading edge discriminator’s behaviour. A threshold is fixed. Below this
threshold fluctuations are considered noise, above they are considered signal. This same
level can then be used as the timing reference. Yet if two identical pulses with different
amplitudes pass, they induce different timings t1 and t2 with respect to their maximum t0.

Let us consider using a leading edge discriminator as shown in Figure 2.16. In
a leading edge discriminator, the timing pulse is triggered when the signal reaches
a constant level. A problem arises when the amplitude of the signal is not con-
stant, which is the case with our pulses coming from the micro-channel plates. In
that case, the timing of the triggering is not constant in respect to the time of the
maximum. This phenomena is called logically the walk.

The solution to the problem of the walk for identically shaped pulses with dif-
ferent amplitudes is the constant fraction discriminator. This discriminator behaves
as indicated in Figure 2.17. The initial signal is divided in two parts. One part is
amplified with a factor k generally in the order of 0.5. The other part is delayed by
τ generally in the order of the half-width half-height of the pulse. A comparator
then triggers the logical impulse.

This discriminator can easily be put into mathematical form. The comparator
triggers at the solution of the following equation.

A× f (t − τ)− k×A× f (t) = 0 (2.2.2)

The solutions of this equation are naturally independent from the amplitude factor
A, which is what we were looking for. We note though that the solutions do depend
on the pulse shape provided by f .

The resulting logical NIM signal is then send to the time-to-digital converter
for measurement. Eventually, the delay in the constant fraction discriminator can
be changed manually between 2, 4, 6, 8 and 10 ns. This affects the quality of
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Figure 2.17: In A, the circuit of a typical constant fraction discriminator. The analog
signal is, on one hand delayed by a time τ, on the other side amplified with a factor k. The
resulting signals trigger the logical output in a comparator. In B, the two resulting shapes
after change as they enter the comparator. The time is always triggered from the same
height compared to the maximum. If the shapes of successive pulses are identical but not
their amplitude, the correct timing is still respected. The constant fraction discriminator
still needs a leading edge discriminator to establish the validity of the pulse height.

the constant fraction discriminator, and changes consequently the resolution of the
detector (the resolution measurement method is discussed in the next section). We
have plotted in Figure 2.18 the result of such a study on 1 mK clouds. The resulting
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Figure 2.18: The resolution of the detector for 1 mK time-of-flights versus the delays of
the delay-line discriminators.

graph shows a minimum at a delay of 6 ns. We have used the constant fraction
discriminator for the data with a delay of 4 ns...

2.2.3.2 Logical to Digital

The time-to-digital converter is mainly a counter that compares the logical input
pulse with a reference clock signal. Practically the quartz clock used is rarely
up to the resolution of the time-to-digital converter, that requires a special design
that introduces some difficulties. Furthermore, the digitising of the time-to-digital
converter happens on a certain number of bits. This introduces a maximum mea-
sureable time after which the time-to-digital converter starts counting at zero again.
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Differential Linearity The design of a time-to-digital converter is very close to
the scheme indicated in Figure 2.19. A single time reference is split into several
channels. Each channel is compared with the input pulse, but they have different
time delays before reaching that signal. Those time delays are equally distributed
between n and n+1 clock periods. The first channel in phase with the input channel
triggers the detection, and writes its counting to a First-In First-Out buffer memory.
The deadtime of this memory fixes the deadtime of the time-to-digital converter.
Finally the output of this First-In First-Out buffer is send to a larger one through a
switch, where it is mixed with the data of other time-to-digital converters.
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Figure 2.19: A typical design of a time-to-digital converter chip. The time period of a
quartz is subdivided in coding steps by creating various channels with different delays.
The clock signal in those channels is compared with the input channel. The channel most
in phase with an incoming pulse adds its number to the clock pulse counter. The result is
stocked into a local First-In First-Out memory.

If designed properly, each channel has equiprobability of detecting the signal.
Yet if the delays in the various channels are not equally distributed, this probability
can be non-uniform. The average of the differences between those probabilities
and the expected value is called the non-differential linearity.

This is for physics experiments yet not the best criteria, as time is never mea-
sured in an absolute way. Events are generally measured with respect to a trigger.
This is also the case for our delay-lines for which X2 is measured with respect to
X1. The statistics that have to be looked after is the differential linearity. This is
done by checking the variations in the probabilities of all the differences for a ran-
dom set of data. The quality of our image as well the resolution will depend on
this differential linearity. We will though see, that for the time-to-digital converters
used, the differential linearity is not a limiting factor.

Time Extension The width of the memory in use fixes generally the maximum
measureable time of a time-to-digital converter. Depending on the period in which
the time-to-digital converter has been designed, the FIFO memory will be either
16 bits, 32 bits and tomorrow 64 bits or more. The number of bits n effectively
used is generally slightly lower. The total period T after which the counter starts
counting at zero again can then simply be calculated with the coding step τ as
T = 2n × τ.
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In the case of a 15bits coding time-to-digital converter at 400ps, this period
is of 13 µs. Although this may seem ages in the world of high energy physics, a
branch of physics that makes most common use of time-to-digital converters, in
our very low energy physics, this is far too short. The shortest time of flights we
expect are already tens of milliseconds long. That means 103 periods! We need a
time extension mechanism.

The only proper way of doing so is integrating the time extension mechanisms
into the design of the time-to-digital converter. This can be done by adding an
additional counter to the design, that brings in a marker to the switch between
the various time-to-digital converters every period, as shown in Figure 2.20. The
marker would separate the data between before and after the marker. As one marker
is provided every period, one simply has to count them in order to rebuild the time.
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Figure 2.20: Various time-to-digital converter channels are sent to a same first-in first-out
buffer through a switch. At that point, two markers per period are also added in order to
allow proper time reconstruction beyond the time-to-digital converter period. The output
of the FIFO buffer can be send to various supports depending on the further design of the
global device.

The problem lies yet in the switch, that does not respect the chronological order
of the various times and markers that it receives. It simply reads one by one each
incoming channel, streaming through the data if available. If a pulse arrives close to
the marker, in the sense that the switch can invert them, then we cannot determine
the period in which that pulse arrived, and we have potentially period error on its
arrival time.

If we call δt the maximum time difference at which the switch can potentially
invert two channels, then the frequency at which the time-to-digital converter gen-
erates a marker should at least be 1

T−δt
. As in general δt ≪ T/2, the easiest fre-

quency to handle is 2/T . In other words, the time-to-digital converter generates
two markers per period; one called up, the other called down. With those two
markers introduced into the flux of events (more commonly called stops), one can
with a fairly simple algorithm rebuild the time scale up to infinity.

First Generation We had great difficulty in finding a time-to-digital converter
that was up to our needs. With the two delay-lines the detector had, we needed at
least four channel at nearly 1 Mhits/s each. That gives a total flux of several Mhits/s
on the exit bus over several milliseconds. Although in high energy physics the peak
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particle rates can be much higher, they only concern a very little number of hits
a small and fast FIFO memory can easily deal with. The global particle rates are
generally tuned down to several thousands of events per second as to be compatible
with detector, electronics and computer acquisition rates. Consequently, most time-
to-digital converters have been designed for those needs, and cannot cope with high
mean fluxes.

Furthermore, we needed the time extension mechanism. As this is only of
use in a very few cases, most of the commercial time-to-digital converters do not
implement that mechanism.

Finally, we needed of course sufficiently short codings times and quality in
order not to be limited by the time-to-digital converter.

The only time-to-digital converter we found that was compliant with our needs
was the CTNM4 build by the electronics department at the Institute of Nuclear
Physics in Orsay. As we will deal with the particle rates in the next section. We
will simply state that the coding step of the CTNM4 is of 400 ps. Thanks to a clean
design, the useful differential linearity is 10%. And the global maximum particle
rate is of 2.8 MHz. This is the time-to-digital converter we used for the acquisition
of the 4He data.

Second Generation As we were still limited, as we will see in the next section,
by the flux of the time-to-digital converter, we were looking for a new time-to-
digital converter. Meanwhile, a commercial spin-off had been created at the Institut
of Nuclear Physics, that implemented new technologies for the design of time-to-
digital converters.

This company, IsiTech, had no time-to-digital converter compatible with our
needs, yet it was fairly simple for them to design one specifically, which is what
they did. The resulting IsiTime 02 has a coding step of 275 ps, a differential linear-
ity of 1%, but more specifically a maximum global particle rate of 80 MHz. This
is, as we will see, way beyond our needs. This time-to-digital converter has been
used for the acquisition of the 3He data.

2.2.4 The Computer Acquisition

The computer acquisition was a crucial part to the proposed Hanbury Brown and
Twiss experiment. Not just in the sense that the data had to go from the time-
to-digital converter to the computer, but also once it is in the computer, one still
has to be able to analyse it in optimal conditions. It was therefore necessary to
make the right choice in the platform, that is an ensemble of tools sticking together
and offering a large set of possibilities. Thereafter we still had to develop a user
friendly interface, that would help us scientists in acquiring the data and analysing
it, but also would foresee future developments in the acquisition devices. Finally,
we decided for a central server implementation as to maximise ease of maintenance
and use.

2.2.4.1 The Platform Root

The choice of a platform is not straightforward. Several parameters have to be
taken into account, some of which might be easily overseen. We will discuss most
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of those parameters and will conclude on the platform we have chosen.

User Requests The choice of a platform is a technical choice as much as a po-
litical one. The political choice of a working platform is a fair one, and has to be
taken into consideration. As the experiments are largely evolving by the work of
PhD students, the programmer of one program will be gone 3 years later and other
must be able to follow their work achieved. A platform with a low adoption bar-
rier is therefore of high importance. Furthermore, the experimental work achieved
in the laboratories by those students, is also considered as a preparation to further
life in, for instance, industry. Developing skills during this period that are actu-
ally useful is preferable. Finally for most scientists the platform is just a tool. At
some point they learnt to master one of those tools, they like to stick with it. Also
students that come in have generally been formed in a limited set of languages,
remaining compatible with those is a nice thing to do. Several objections have yet
to be expressed in regard to those considerations.

Considering the fact that all programming languages are fairly similar, if a
student has indeed developed a complex interface with a specific language, the
entry barrier to the understanding of that code will, if under-documented, be very
high whatever the platform is. Another student, without proper skills and will, will
not be able to amend that program whatever it has been programmed in. Experience
in the laboratory shows that this is indeed the case for a specific Matlab program.
The entry barrier should yet remain low so that simple tasks can be executed by
everyone.

Statistics on the former students from the Institute of Optics show that the most
common computer languages used after school are C/C++, Matlab, Visual Basic
and Java. If the first two languages are common for people with a scientific back-
ground, the other two languages are rarely taught to technical engineers. Those
languages are indeed more dedicated to financial spreadsheets or Internet based
applications. It is therefore impossible to please all needs, and some choice has to
be taken.

Concerning the abilities of both scientists in place, and students coming in,
they are of a large variety. The older generation is generally proficient in Fortran.
The newer generations know languages as wide as Fortran (Paris Sud), Java (Poly-
technique), C/C++ (Institute of Optics), Scilab (Polytechnique), Matlab (Institut of
Optics). Furthermore, those languages taught are still changing as the IT industry
is far from being stable. We currently see new upcoming languages such as Python
or C#. Sticking to all of them is impossible.

In the end a choice has to be made. Considering the fact that most scientists
have little or no knowledge in information technology, it is best to establish a cer-
tain number of objective technical criteria and make ones choice according to them.
Finally, one has to take into account the request of a graphical user interface.

Performance The main concern we had about the analysis of the data was the
performance of the platform. Indeed, we were about to do statistical physics and
we wanted to see physical details that would need a lot of averaging.

Time would prove that for a single data point we needed to average over 1500
time of flights of around 10,000 particles, to each of which we had to apply a



2.2 The Delay-Line Detector 81

O(N2) correlation algorithm. If the user really wanted to eventually multiply his
calculations on this data, all this had to be done in a reasonable amount of time.

When one is looking for performance, one is thinking of basic hard compiled
languages: that means that the end program can run directly on the processor. Most
modern languages (such as Java, Visual Basic, C#) are run inside some "sandbox",
that take care of memory management, buffer overflow and other security issues.
This has a strong performance cost. Other languages are not even compiled, yet
simply interpreted (such as Matlab, Igor Pro, Python). Although very handy for
prototyping, this has a severe speed cost.

The only performing structured languages are Fortran and C/C++. The for-
mer compilers have undergone with the time heavy optimising for scientific use,
whereas the second language is mostly used for hardware driving (nearly all mod-
ern operating systems are written in C/C++). Benchmarks show a general perfor-
mance gain of those languages from 10 to a 100 times faster than the sandboxed
languages.

In particular, Matlab has been programmed for a large part with Java, a lan-
guage that is only starting to worry about performance. Even preprogrammed opti-
mised algorithms can show a factor 100 performance lost in comparison to a plain
handwritten algorithm under C.

Available Tools The choice is not just a language, but also the tools provided
with this language. Although one can of course use external scriptable plotting
tools such as GnuPlot, for user convenience and experience consistency having an
integrated platform is better. Matlab is such an integrated platform, offering a large
set of toolkits for nearly any needs. Scilab, an open source imitation of the first,
is faster yet is less rich in its possibilities. Languages such as Java, C# or Visual
Basic offer no real integrated platform for scientific purposes.

Fortran and C/C++ have several scientific libraries available, yet only a few
complete integrated platforms. The most known Fortran library is the open source
Paw, that has turned into a mess after 30 years of existence. The upcoming C/C++
library, heavily used in particle physics, is Root [82]. A very extended platform that
offers possibilities ranging from data storage, network computing, plotting and fit-
ting. Furthermore, this platform even offers a C/C++ interpreter that allows mixing
of compiled and interpreted code written in the same language. It consequently
offers performance of the compiled code with the ease of use of interpreted code.

Data Structures The memory of the computer, just as its storage space, behaves
like a single long array. Consequently, many calculating platforms, and in particu-
lar Matlab, exploit this layout by adopting arrays or matrices. Although this is very
convenient, and highly optimisable, in the case the data also has an matrix type
layout, if the data has nothing to do with matrices, one still has to fit with it.

The use of different structures can help the understanding of what one is pro-
gramming. If this may not be a critical parameter, it certainly influences the ease-
of-use of the platform.

The Paw and Root platforms both showed data structures, and tools, for the
statistical analysis of particles. Those two platform have indeed been developed
at the CERN for use at their experiments. It happens that we are doing the same
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physics in that sense.

Compatibility Last but not the least, a language has to show a certain level of
compatibility. If the platform scores insufficient in a certain domain, it must be pos-
sible to use and fit in an external library. Specifically for the hardware acquisition,
drivers provided by the hardware vendors are necessary.

Generally, the fallback language is C. All drivers are written in C. Many addi-
tional libraries are written in C. Many platforms offer the possibility to integrate C.
Matlab even offers its own compiler, and C modules can be written to compensate
its overall bad performance. It must also be said that all mayor hardware vendors
offer a driver interface specifically for Matlab.

Yet in nearly all cases, that means mixing up languages, increasing significantly
the complexity of that chosen platform. Only the choice of the already C/C++ Root
offers a coherent user experience.

The Choice The choice has logically gone to Root. This platform offers a large
set of possibilities, specifically oriented to the way we study physics. It is the
only integrated platform that offers easily the performance we need. Note that it
has been developed with in mind the Terabytes of data it has to handle with the
opening of the Large Hadron Collider (CERN).

Documentation is fine. A beginners manual gives a very nice introduction to its
possibilities. Advanced documentation could have been better, yet is compensated
by the open source code. We have through our use encountered a certain number
of bugs. Those can yet easily be spotted through the source code, and the Root
development team proved very responsive in fixing those bugs. The main worry
has gone to the still unstable interpreter, that does not allow for much programming
mistakes.

Furthermore, Root is multiplatform in the sense that it runs under various op-
erating systems. This allowed for interesting network setups. The license of Root
is very liberal, enabling free use of nearly any kind. Global user experience is pos-
itive, yet the need of a graphical user interface was an evidence. This ended up in
the programming of Heevman.

2.2.4.2 The Interface Heevman

Root is mainly a console type program, requiring large amounts of code to be lined
up. As to render Root useable to everyone, an advanced acquisition platform was to
be developed that would make it possible to acquire and access the data easily, but
that can also be updated easily in order to integrate new devices. We have invested
a large effort into this interface we call Heevman.

Heevman stands for the HElium EVent MANager. As its name indicates, its
main purpose is to give the user access to the various events that are the experi-
mental cycles of the He∗ clouds. This is done in two stages: acquisition of the data
and analysis of the data.

Acquisition The key words for the a good acquisition are persistence and con-
sistency. One of the flaws in data acquisition can indeed be the scattering of the
data in various formats, in various places with various conventions. This makes
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analysis of the data for users different from the one that acquired the data close to
impossible. By imposing the way data is saved, the program assures that anybody
will be able to retrieve the data at any point.

acquisition frame

c++ interpreter
and terminal

data
buffer

 interface

database
interface

Figure 2.21: A screenshot of the acquisition program during the acquistion of some 1 mK
clouds. At the right bottom we distinguish the terminal from which Root is launched. We
then open the left window corresponding to the Heevman interface. From that point is
launched the upper right windows that is in charge of the acquisition. Several parameters
and properties can be tuned for later understanding of the acquired data. A plugin mech-
anism ensures forward compatibility with eventually new devices. We can distinguish 3
plugins corresponding to the acquisition of 1 oscilloscope and 2 time-to-digital converter.
Only one is activated though. Additional properties allow for automatic acquisition as well
as the running of analysis scripts on the freshly acquired data. If saved, the acquired data
is streamed to the data buffer whereafter it can be written definitely to the database.

The acquisition frame, showed in Figure 2.21, attributes a certain number of
properties to each event. Those include the date of the acquisition as well as a
unique identifier number for that date. Together, those assure a unique identity to
all events, and thereby also its name. Furthermore they are attributed the name
of the user that acquired the data, the type of data the user has saved in the event
and a more detailed description of what the user had in mind when he acquired the
data. This replaces favourably the experiment logbook, that is often insufficiently
maintained and where information is difficult to retrieve. Eventually, some phys-
ical parameters can be saved with the event, if those are crucial for the analysis
of the data. It makes it also possible to automate studies depending on specific
parameters.

A versatile plugin system assures that the acquisition frame is and remains
compatible with changes in the acquisition devices. This plugin system assures



84 CHAP 2 - THE DETECTOR

with little difficulty, the integration of all devices in the acquisition philosophy.
The data structure of the event is sufficiently open, yet limiting, that further im-
provements are possible without breaking the consistency. Currently plugins exist
for the acquisition from two time-to-digital converters as well as two oscilloscopes.
A second type of plugin triggers the acquisition. We currently use the LPT1 port
(commonly known as the parallel port) for this, as it is TTL compatible.

Scripts can be used inside the acquisition frame in order to visualise the data
as they are acquired. The realtime changes the user can bring to those scripts make
them a very powerful tool, as the user can analyse immediately the details he is
looking for. Altering or changing of script is a button click away. Those scripts can
eventually be compiled if the task is heavy.

The user has the option for saving away automatically the data. This data is
written away to a single database type structure, that is lightly compressed. This
slight compression does not simply assure that the data takes less space, it also
assures a maximum throughput from disk to memory. Indeed, in that transaction,
the bottleneck lies in reading from disk. Reducing the size of the data and sending
it through the processor for decompression can increase the transaction time. This
is even more crucial if you plan to use the data from the network. Although this
was initially planned, a better solution is presented a little further.

Analysis Once all the events are saved in the single data structure, the main dif-
ficulty is to access them easily. This is done through the analysis interface shown
in Figure 2.22. In this frame data is originally organised by date. Possibility is
however given to organise the data in ones own convenience through the creation
of specific selections. Those selections only contain references such that only a
single copy of each event exists.

scripts

entire
database

personal
collections

selection
management

Figure 2.22: A screenshot of the analysis program. The left windows gives access to the
root of all the data in the database, through a dropdown menu. Personal collections can
also be made. Various selections can be managed and two type of scripts applied to them.

Besides organising the data, one has to analyse them. Two type of scripts can
be applied to them: individual scripts that analyse the events independently, and
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grouped scripts that are capable of extracting statistical informations. Together,
those scripts offer nearly unlimited possibilities.

Conclusions Heevman has proven fairly useable. It is able to handle the 70 giga-
bytes of data we acquired already, and all the results presented in this thesis have
been analysed through this interface.

Documentation has been written that enables installation and use of the pro-
gram. Development documentation is still lacking. A website has been set up in
order for other institutes to use it, and the website has been referenced at Root’s
website.

Heevman is still in an early development stage. Some important functionalities
are still missing, and various irritating flaws and bugs still lie around. Overall user
experience is yet very positive.

2.2.4.3 The Computer Setup

The acquisition and the analysis of the data require a physical support. This is re-
alised through an acquisition desktop computer and an analysis server. The acquisi-
tion desktop runs a Microsoft operating system as currently most device manufac-
tures only ship drivers for those operating systems. The server runs a GNU/Linux
operating system. Although initially we planned to run it as a simple data server,
distant graphical access possibilities made a computing intensive server a much
more powerful solution.

Data Access The initial idea behind the central server was to have a single place
for the data. The idea was to share the data on a single computer on the network,
and that other clients would access it for analysis.

The problem with network access for data is the throughput of the network.
Even if the data is compressed, this still remains low. If a correlation is calculated,
this may not be the limiting factor. But when one scans for simple information, the
lost time is significant. This kind of setup also makes the use of the scheme beyond
high speed connections a pain.

The highest data access is thus provided if the data is computed at the same
place as where it remains. This can be done by copying the data to all working
desktops, or having a powerful server to which everybody can access. Maintenance
and cost favour the second solution.

Maintenance The great advantage behind central servers are the low mainte-
nance costs. Indeed, with both Root and Heevman as heavily evolving programs,
updates were, specifically in the beginning, of common tasks. Furthermore, also
the database increased daily.

Updating those entities at a single server takes much less time then updating a
whole park of computers.

Cost A correlation calculation is potentially a processor power and memory con-
suming activity. Achievement in a minimum time requires a powerful computer.
Acquiring such a computer for each user would yet be a loss of power. Indeed,
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although a must when doing calculations, most of the time the possibilities of the
computer are highly unexploited.

Putting into place a single server that serves several users drastically increases
the user time over total time ratio. In order to circumvent overload, an overpow-
ered dual processor solution is preferable. Consequently, two users can launch
calculations at the same time without speed loss.

The Setup The server is a dual Intel Xeon solution with 2 Gigabytes of memory.
Furthermore, two 160 Gigabytes harddisks in RAID 1 (mirroring) configuration
assure both minimal access time as well as backup in case one disk brakes.

Nx Clients

(Both Linux and Windows)

No Root/Heevman install

Linux Data Server

Nx and File server

Complete Root/Heevman install

Acquisition Windows Computer

Complete Root/Heevman install

Figure 2.23: Computer network solution. The acquisition is performed with a Windows
desktop computer. The acquired data is immediately transfered to a workhorse server.
Access to this server is provided through a graphical protocol and various networked thin
clients. Only the acquisition computer and the server have a Root/Heevman installation.

The network access is provided through the open source FreeNX server. This
server enhances the traditional X protocol with compression and lower latencies,
making it even feasible over a modem connection. This graphical server gives a
graphical desktop access to the computer from practically anywhere in the world.

On the client side, users only have to install the free NX client, multi-platform,
solution distributed by Nomachine. When providing a SSH access through the
local firewall, the server can be accessed from the local network as well as from
the internet.

This solution proved extremely handy and powerful.
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2.3 Detector Characteristics

In the previous section we had a detailed overview of the various components of the
detection system. We have seen in the previous chapter that several characteristics
of this detection system are crucial to the signal to noise ratio of the proposed Han-
bury Brown and Twiss experiment. We therefore propose an extended overview of
those properties. We will in particular analyse the detection efficiency, the detec-
tion rate and the resolution of the detector.

2.3.1 Detection Efficiency

The exact knowledge of the detection efficiency is not of primal importance to the
proposed Hanbury Brown and Twiss experiment. As we discussed in paragraph
1.3.3.1, the phenomena we are looking at is a statistical property. If only a part of
the atoms is detected, this statistical property remains.

Yet even in the proposed experiment, the detection efficiency can have its im-
portance. The signal to noise ratio shows a severe dependence on the temperature
of the atomic sample. This leads us to work at as low temperatures as possible.
For the study of the properties of an atomic cloud, we will be limited by both
the condensation threshold temperature TC or the Fermi temperature TF , where the
statistical properties are likely to change. Neglecting mean field effects, those tem-
peratures in a harmonic trap are given respectively by:

kBTC = ~ω(N/1.202)1/3 = ~ω
(

N′/(η1.202)
)1/3

(2.3.1)

kBTF = ~ω(6N)1/3 = ~ω
(

6N′/η
)1/3

(2.3.2)

where ω is the geometrical trapping frequency, N the total number of atoms in the
trap, N′ the number of detected atoms with the detection efficiency η. If we want to
work at low temperatures, while keeping the number of detected atoms as high as
possible in order to preserve the signal to noise ratio we will ultimately be limited
by the condensation threshold. This limit can be increased if we have an as high
detection efficiency as possible.

We will discuss the two essential parts on which depends the total detection
efficiency: on one hand the efficiency of the analog part of the detector, on the
other hand the atomic reconstruction.

2.3.1.1 Analog Part

The analog part of the detection can be subdivided into two processes. The first
one is the effective detection by the micro-channel plate of the incoming particles.
This process is accounted for by the triggering by the particle of the electron am-
plification process. The second part lies in the detection of the produced pulse.
This happens if the amplitude of the electronic pulse is above the discriminator
threshold. Practically, one can detect more signals then effectively produced.

Quantum Efficiency The probability for a particle to extract secondary electrons
as it hits the micro-channel plate, we will call the quantum efficiency of the detec-
tor, mostly depends on the nature of the particles. This probability is very high in
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the case of 2 keV accelerated ions, and can be brought to nearly 100% . In the case
of metastable atoms, the electronic extraction mechanism is quite different [87].
The associated energy is much lower, yet still fairly high compared to the metallic
electron extraction energy (typically 3 eV).

Once some initial secondary electrons have been extracted, those still have
to go into the channels for amplification. This is not a problem if the extraction
process took place inside the channel, but particles have also a chance to hit the
outer surface of the micro-channel plate. Although the secondary electrons can
be forced into the channel by the use of external electric field [83], the quantum
efficiency in the case of energetic ions is generally associated to the probability of
falling into a channel. This can be simply calculated as the holes over total surface
ratio. In the case of our micro-channel plates, this reaches 60%.

The total quantum efficiency has previously been estimated on a different micro-
channel plate for He∗ to 25%±15% [59]. [43] states a detection efficiency of 9%.

Electronic Detectivity Each time a particle has extracted secondary electrons,
those are amplified inside the micro-channel plate. The resulting electronic pulse,
collected by the delay-lines, still need sufficient amplitude for detection by the dis-
criminator. The inhomogeneous gain distribution of our micro-channel plates, as
shown in paragraph 2.2.1.5, consequently has a direct impact on the detectivity
dsitribution. As we have seen before, the micro-channel plate shows regions of
high saturating gains and regions of low non-saturating gains. Whereas in the re-
gions of high gain we can employ a threshold that discriminates all the electronic
pulses, in the low gain regions we necessarily lose some counts through the dis-
crimination.

The electronic detectivity maps of the micro-channel plates at 2300 V as em-
ployed in Orsay and in Amsterdam are shown in respectively Figure 2.24A and
2.24B. Assuming that the quantum efficiency is homogenous, those maps account
for the spatial probability of electronic detection of a particle that has triggered an
electronic shower. They have been produced by integrating a homogeneous particle
flow on the detector surface. This homogeneous flux is obtained when producing
1 mK time-of-flights. The normalisation procedure is discussed a little later.

We notice the evolution of the detectivity map between Orsay and Amster-
dam. This evolution has simply been induced by the mechanical unmounting and
mounting of the micro-channel plate stack. This indicates that the current problem
is essentially mechanical. In particular we notice that even the detectivity hole in
the middle of the Orsay map dissapeared.

On the lower Figures 2.24C and 2.24D we displayed the electronic detectivity
distribution. We note first of all, just as the maps already showed, that the detec-
tivity in Amsterdam was more evenly distributed over the detector surface. In both
cases though, we notice a local maximum around 1 for the detectivity. As a mat-
ter of fact, we have defined this maximum to be of electronic detectivity 1. The
reason for this is fairly simple. If we consider the lower amplitude distribution as
presented in Figure 2.9, that has been taken in a high gain region, the discrimina-
tor levels can be and is placed below the amplitude distribution. This means that
all electronic pulses are effectively detected by the discriminator. This region has
therefore a 100% detectivity from the electronic point of view. A region that has a
slightly lower gain will still have the essential part of the pulse heights above the
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Figure 2.24: In A, the spatial detection efficiency of the detector as employed in Orsay
at 2300 V. The map has been obtained by integrating a homogeneous flux. In C has been
plotted the detectivity distribution for this map. We identify the maximum in the distribu-
tion as a 100% detection efficiency. In dark gray has been plotted the distribution for the
entire detector map, in light gray only the area within the black circle. In B and D have
been plotted the map and the distribution as obtained in Amsterdam in similar experimental
conditions.
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discriminator level. It will therefore also show an electronic detectivity of 1. Con-
sequently, the electronic detectivty map has a more favourable distribution then the
amplitude map. It must be said though that we work precisely at the maximum
micro-channel plate voltage for the electronic detectivty to be as homogeneous as
possible. This has consequences on both the resolution and the particle flux, as we
will see a little further.

The choice of this maximum as 100% detectivity is not straightforward though.
The number of particles used for those images is significant and the shot noise as-
sociated is negligible compared to the maximum’s distribution width. In particular,
it seems difficult to understand how certain regions could have a detectivity above
100%, as currently displayed in Figure 2.24. Image deformations mostly account
for this. If one considers that the image is supposed to be a perfect disc, one re-
alises that the imaging procedure is not fully linear. For a homogeneous flux, this
non-linearity produces regions of increased and decreased intensities, and broadens
the detectivity distribution. In particular, the non-linearity of the detector occurs
essentially at the border of the detector where electric fields are less homogeneous.
If we do not consider the border of the detection region, we effectively observe a
narrowing of the detectivity distribution, as shown in Figure 2.24. We will there-
fore simply consider that the choice is reasonable, without saying it is the single
possible choice.

If we consider the maximum of the detectivity distribution to correspond to a
100% electronic detectivity, the average electronic detectivity of a homogeneous
flux in Orsay and Amsterdam were respectively 67% and 77%. We must note that
those images also depend on our capacity to rebuild the positions of the atoms, as
we will see a little further.

Detection Overshot The discriminator is supposed to discriminate the signal
from background noise. Effectively, if no physical signal arrives at the micro-
channel plate, few, or very localised, signals are detected. A problem remains
though with noise that is generated by the detection of the electronic pulses. The
analog pulses generate sinusoids and echos due to impedance mismatch in the ana-
log detection chain. The amplitudes of these echos can be enough to trigger the
discriminator.

An easy way of spotting those echos is through observation of the delay func-
tion. We simply plot in a graph the time difference between two successive counts,
and if in the final histogram bins go beyond a usual statistical behaviour, the over-
shot can be attributed to the echos. In Figure 2.25 we have plotted the delay func-
tions for the four outputs of the delay-lines we use. The black curve indicates the
usual statistical behaviour expected.

The afterpulsing count depends strongly on both the amplification level, the
constant fraction discriminator level and the spatial distribution of the clouds. For
the 1 mK time-of-flight data shown in Figure 2.25, the overshot represents respec-
tively 11.9%, 9.8%, 10.7% and 13.6% for the channels x1, x2, y1 and y2. If a
specific channel is to be used for a detection efficiency measurement, those per-
centages have to be subtracted.

In order for the afterpulsing to be problematic, it still requires reconstruction.
After reconstruction, the afterpulsing overshort only represents 2% of the total flux.
Still for delays bellow 300 ns they are 60% of the signal, and in terms of correla-
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Figure 2.25: The delay functions for respectively channels x1, x2, y1 and y2. The black
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counting. Most of the aftershots occur within 300 ns.



92 CHAP 2 - THE DETECTOR

tions they will strongly affect the correlation function of the atomic flux at lower
times. This is the reason why we will consider a 300 ns dead-time at the moment
we will be calculating the correlations.

2.3.1.2 Atomic Reconstruction

Once the different pulses from the delay-line detector have been discriminated,
their arrival time is measured by the time-to-digital converter and this arrival time
is sent to the computer. The computer then contains a long list of arrival times with
their corresponding channel number. Those arrival times then have to be correlated
in order to define the position of the incoming particles. As we will only be able to
use the atoms if we are able to define their position, this reconstruction process is
entirely part of the total detection efficiency. In Appendix 2 has been detailed the
reconstruction algorithm employed, labeled the Time Bulb algorithm.

We will briefly highlight some considerations related to this correlation nec-
essary to the reconstruction and discuss how this reconstruction mechanism exac-
erbates the detectivity inhomogeneity. Finally we express the reconstruction effi-
ciency in respect to a single channel detection.

Some Considerations When working with time-of-flights, it is more convenient
to consider the time-of-flight as detected on a single channel, i.e. before atomic
reconstruction. As is demonstrated a little further, the one channel detection is
fairly insensitive to the particle rate in the limits we work. It does not change
the shape of the time-of-flight distribution. We will therefore always take a single
channel count as reference.

In order for an atomic detection to be useable, we require to rebuild its position
and arrival time. Although theoretically we need only 3 different arrival times
among x1, x2, y1, y2 and t, where t is the arrival time as measureable from the
micro-channel plate, Appendix 2 explains why we practically need x1, x2, y1 and
y2. The atom is thus effectively taken into consideration only if we measure the
4 delay-line arrival times. This means that the number of reconstructed atoms is
at maximum the least of the individual number of counts on the various channels.
We will therefore always take x1 as a reference as it happens to have the minimum
number of counts of the 4 channels.

The probabilities of detection of the pulses on the various delay-lines are not
independent. The amplitudes of the 4 electric delay-line pulses coming from one
single atom are indeed related. As the discriminators have been set in such manner
that the counts on each line are roughly identical, if a pulse height is higher then
the threshold for one discriminator, it is likely to be so for all the others as well.

Reconstruction Inhomogeneity The probability of detection of a pulse is strongly
related to the pulse height, that depends on the position. In Figure 2.26 we have
displayed approximately the probability of electronic detection on one of the chan-
nels as a function of X . In order to build this graph, we have divided the number of
counts at a position X that had the 4 signals necessary to its reconstruction, by all
that had at least the two signals necessary for the definition of the X axis position.
If we call p(X) the probability of detecting a signal on one of the delay-lines, and
assuming that this probability is equal on the 4 delay-lines, the numerator is given
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Figure 2.26: The approximate electronic channel detectivity as a function of X . It is the
square root of the average probability of detecting 4 signals on the 4 delay-lines divided by
the average probability of detecting the 2 x1 and x2 signals.

by 〈p(X)4〉Y . The denominator is given by 〈p(X)2〉Y . We therefore take the square
root:

√

〈p(X)4〉Y /〈p(X)2〉Y ∼ 〈p(X)〉Y (2.3.3)

The graph shows clearly that in certain regions, the electronic detectivity is close
to 1, underlining previous statements. But in other regions, detectivity falls be-
low 70%. When not averaged over Y , this is expected to be even lower. As the
plotted values must be taken to the power 4 before three dimensional reconstruc-
tion can be performed, the reconstruction stresses even more the spatial detectivity
inhomogeneity.

This has further consequences. If we consider that a pulse is detected when it is
detected by at least one of the delay-lines, then the total number of detected atoms
is likely to be larger then the number of counts on a single channel. This has to be
taken into account when one is willing to determine the quantum efficiency of the
micro-channel plates using a single channel count.

Reconstruction Efficiency In particular, as the reconstruction efficiency is po-
sition sensitive, the global reconstruction efficiency depends on the density distri-
bution of the cloud on the detector. If compared to a single channel count, at low
particle rates, a homogeneous particle flow shows a reconstruction efficiency of
81%. Cold clouds around 1 µK show a recontruction efficiency of 93%.

Those numbers have to be compared with the previously stated electronic de-
tectivity of 67% for a homogenous flow. If we consider a small 1 mK time-of-flight,
and we consider the number of detected atoms of channel X1, 81% of those counts
will effectively be rebuild into spatially defined atoms. The resulting map will
yet only represent 67% of the expected counts. This means that the used chan-
nel missed 1− 67/81 = 17% of the atoms that triggered the micro-channel plate.
Considering that 12% of the counts were due to an overshot, the discriminator has
missed 1−67/81× (100−12)/100 = 27% of the physical counts.
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2.3.1.3 Measurements

In order to measure the total detectivity, several possibilities are available. Either
one can compare the detector measurement with a differently calibrated method,
or one can study the statistical properties of the cold clouds. We present here two
methods. The first one uses an optical calibration as performed in Amsterdam
on the experiment. The second one uses the condensation threshold as point of
comparison.

Amsterdam A cold cloud of helium atoms can also be observed through absorp-
tion imaging. One shines a resonant laser on the cold cloud. The atoms absorb
some photons that are remitted spontaneously in random directions. Spatially, the
laser lacks photons as a function of the cloud density. One can therefore easily
measure the density distribution of the cloud over the waist of the laser. Eventu-
ally, through knowledge of both the atomic properties and the characteristics of the
camera, one can give a fairly precise measurement of the physical atomic density.

Through the use of such a camera, the research team in Amsterdam has been
able to characterise their own micro-channel plate based detector. The compar-
ison between the measurements performed by their micro-channel plate detector
and ours therefore allowed for an indirect calibration of our detection efficiency.
Through the measurement of both a 1 µK cloud of 3He and 4He this resulted in a
single channel detection efficiency of respectively 11.3% and 13.7%. This is the
comparison between the number of atoms we expected to measure, considering the
temperatures of the clouds and the total time-of-flight, and those that we effectively
measure on channel x1. Considering our previous statements as to the electronic
efficiency and the reconstruction efficiency, this bring us to approximate values of
the micro-channel plate quantum efficiency of respectively 13.6% and 16.4% for
the 4He and 3He measurements.

The quality of this measurement is difficult to estimate. We have not been
personally involved into the calibration measurement. Furthermore we have un-
derstood that the calibration is already several years old. The performances of their
micro-channel plate may have changed significantly in between.

Condensed Fraction During the acquisition of the many cold clouds required for
the Hanbury Brown and Twiss measurement, we had in particular for the 0.6 µK
population, a large number of clouds that had a condensed fraction of atoms. As
we will explain in the next chapter, this condensed fraction can be easily spot-
ted, and we can discriminate the two populations. In particular, neglecting atomic
interactions, the cold clouds that have no condensed fraction obey the relation:

kBTC ≥ ~ω(N/1.202)1/3 = ~ω
(

N′/(η1.202)
)1/3

(2.3.4)

If we plot in a graph for all cold clouds the number of detected atoms N′ versus
the measured temperature of the cloud, all the obtained points have to be situated
under the condensation threshold curve that is consequently defined by:

N′
C(T ) = η1.202

(

kBT

~ω

)3

(2.3.5)
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Figure 2.27: The number of thermal atoms detected as on channel x1 versus the mea-
sured temperatures of the clouds. The clouds were part of a statistical ensemble that also
contained thermal clouds with condensed fractions. Those have been eliminated from the
group as saturation processes falsify the statistics. Consequently the condensation thresh-
old black curve is to adjust right above the thermal clouds. This happens for a single
channel detection efficiency around 18± 2%. The clouds plotted above the condensation
threshold do not have a detected Bose-Einstein condensate. The condensation threshold
has been placed considering effective errors in temperature measurements.

This function is parametrised by the detectivity η. In Figure 2.27 we have plotted
the number of one channel detected atoms versus the temperature for a large set of
cold clouds. Statistically we have found in this sample of clouds, a large number of
clouds that actually contained a Bose-Einstein condensate. Although the plotting
of those clouds is irrelevant, as the saturation of the micro-channel plate severely
deteriorates the statistical properties of those clouds (as will be shown in paragraph
3.2.2.1), this knowledge assures us that the condensation threshold is supposed to
adjust neatly to the data points. This can be done by fitting by hand the detectivity
parameter of the black curve. We then find the detectivity of η = 0.18±0.02 to be
a reasonable value.

This measurement leads to quantum efficiencies in the order of 20% . Although
this number seems reasonable, we have not yet accounted for the coupled fraction
of the cold atoms in the measured magnetic substate. The atom are trapped in the
23S1 m = 1 magnetic substate. Once the trap currents are switched off, Foucault
currents appear that make the magnetic field change sign. Consequently the trip-
plet state redistributes itself over the three magnetic substate. As only the m = 0
magnetic substate is field insensitive, it has been decided to only perform the de-
tection on this substate. The two other substate are eliminated through the use of
a magnetic gradient. This is unlike the experiment in Amsterdam where no such
redistribution occurs, and where we do not have to account for this coupling fac-
tor. The coupled fraction is in the order of 10%. Latest estimates seem to indicate
that at those low temperatures, the coupled fraction would be around 14.3% [56].
But that would still mean that nearly all those coupled atoms are effectively de-
tected. This is not just unlikely, but also in total contradiction with the previous
Amsterdam measurement. Therefore, this result is inconsistent in its present state.
We have neglected in this description the atomic interactions. Taking into account
those interactions and the use of a better thermometry might provide more consis-
tent results.
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2.3.2 Detection Rate

As we have seen in the previous chapter, the signal to noise ratio is directly pro-
portional to the total number of detected atoms. For the time-of-flight at a given
temperature, the maximum number of detected atoms will be directly related to the
maximum particle flow that can be acquired. An extensive study of the maximum
detection rate is therefore a requirement.

The total detection rate is limited through the various sub-systems that com-
pose the detector. Some induce a local limitation on the particle flow, others be-
have globally. Some have as an effect to lower the detection efficiency, others will
simply impose an absolute barrier. We will study first the parts of the detector that
impose local flux limitations. Then we will study in detail some dead-time mecha-
nisms that drastically reduce the detection efficiency at high particle flows. Finally
we will have a short look on some flow limitations of the electronics.

2.3.2.1 Local Saturation

Most of the sub-devices are essentially sensitive to a global particle rate. One
large exception is the micro-channel plate stack. The highly resistive channels of
the micro-channel plate are parallelised through the use of a metallic coating on
the outer sides of the plate. When one channel has been emptied of its electrons
because it has been used for a detection, its efficiency for a second detection is
lowered. Each detection leaves a large number of positive charges inside the chan-
nel. The emission of secondary electrons is expected to lower with nearby positive
charges.

We have stated in paragraph 2.2.1.4 that this saturation mechanism would limit
the local particle flow to 125 kparticles/cm2/s, as the micro-channel plate stack
we use complies to the physical characteristics we mentioned. This was only an
estimation. We have performed a measurement of this saturation. Through the
use of an oscilloscope, using the method described in Appendix 3, we are able to
retrieve both the position, arrival time and pulse height for each detected atom. In
Figure 2.28 we have plotted the result of a saturation measurement.

A large 1.6 µK cold cloud falls on the detector. The reason why we work at low
temperatures is in order to have a maximum local/global particle rate ratio. With
the constant fraction discriminator and the time-to-digital converter, we record the
arrival times simultaneously from one of the delay-lines. With the oscilloscope we
also save the analog signals from the delay-lines that enables reconstruction of the
atomic position through the procedure described in Appendix 3. The time-of-flight
histogram plotted has been obtained with the time-to-digital converter. The small
inset in the graph shows the evolution of the mean analog pulse height as a function
of time.

We can distinguish clearly that the pulse height drops at 1.7± 0.2 Matoms/s
global particle rate. At this temperature, and also considering the detectivity map,
this corresponds to a maximum local particle rate of 82± 10 katoms/cm2/s. This
is fairly close to the expected maximum rate for this detector. Furthermore we see
that the cold cloud is not symmetric compared to the 308.3 ms theoretical average
arrival time. This means that there is a time constant involved in the saturation
process. Considering the reestablishment of the pulse height, this constant is in the
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Figure 2.28: The gray histogram plots the time-of-flight distribution of a 1.6 µK cloud. We
note that the cloud is not symmetric compared to the 308.3 ms arrival time because of the
detector saturation. By studying the average pulse height distribution as a function of time,
we note a clear drop in the pulse height that corresponds to a 1.7± 0.2 Matoms/s global
particle rate. This produces equivalently a 82± 10 katoms/cm2/s local detected particle
rate.

milliseconds timescale.

2.3.2.2 Deadtimes

The delay-line detector has several dead-times. A dead-time is a period after a
single detection during which no further signal can be detected. We will see how
we can distinguish the simple electronic dead-time, and an additional dead-time
related to the atomic reconstruction procedure. Finally we will state on the total
dead-time behaviour.

The Electronic Dead-Time The electronic detection of the various atomic pulses,
and more specifically the constant fraction discriminator and the time-to-digital
converter shows an electronic dead-time. The constant fraction discriminator pro-
duces a NIM pulse, and during the build-up of this pulse, no further pulse can be
detected. The time-to-digital converter on the other hand requires a certain time to
write the data of the pulse measurement to the first FIFO buffer. During this time,
no other pulse can be encoded, and this results in a dead-time.

As those two operations, discrimination and encoding, occur simultaneously,
the total electronic dead-time is the maximum of the two dead-times. This happens
to be τelec = 30 ns. Note that the various channels of detection behave indepen-
dently. This means that the detection of a pulse on one channels does not influence
the detectivity on an other channel. Furthermore, the dead-time is non-cumulative.
This means that during the detection of an initial pulse, no second pulse can trig-
ger the electric components that would elongate the effective dead-time. The de-
tectivity for each channel dchannel as a function of the incident pulse rate φi with
Poissonian statistics is then traditionally provided by:

dchannel = 1/(1+φiτelec) (2.3.6)
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For φi = 1/τelec = 33 Matoms/s this results in a 50% detection efficiency. Note that
the effectively detected channel pulse rate can be written φec = dchannel ∗ φi. This
expression shows a high incident atom rate asymptote at 1/τelec = 33 Matoms/s.
This is therefore the maximum detected atom rate. In the lower limit, the detectivity
is constant and equal to 1.

The Reconstruction Dead-Time A detected atom has both a position and an
arrival time, that need to be rebuild from the data provided by the various chan-
nels. This is done through the reconstruction procedure detailed in Appendix 2.
The problem with the currently employed Time Bulb algorithm lies in its unimple-
mented ability of rebuilding atoms with overlapping time signals.

If two signals provided by two distinct channels of the four delay-line outputs
arrive within a 85 ns period corresponding to the delay-line length τdl , they belong
potentially to a same atom. If two atom arrive within a 85 ns period, their vari-
ous impulses provided by the various channels necessarily verify this mentioned
relation, and the reconstruction algorithm currently does not rebuild any of the two
atoms. It would require further testing as to what signal goes with what atom.

The effect of this reconstruction procedure is equivalent to that of a dead-time.
The difference with the electronic dead-time lies yet in the fact that this dead-time
is cumulative. The detection of a second atom within the dead-time of a first atom
results in the anhiliation of both the detections, and elongates the total dead-time.

In order for an atom to be effectively detected, no other detection should oc-
cur one τdl period after its detection, and should not have occurred one period τdl

before its detection. In the case of our Poissonian incident atom rate φi, the prob-
ability of such an occurrence is provided by dreconstr = exp(−2φiτdl). Note that
the use of additional τerror = 5ns error bars in the reconstruction procedure lowers
this detectivity to dreconstr = exp(−2φi(τdl + τerror). This results in a maximum ef-
fective detection rate of 1/(2(τdl + τerror)) = 2.04 Matoms/s at an incident rate of
5.56 Matoms/s.

The just mentioned result does not take into account though that the various
signals from a single atom are also separated up to as much as 85 ns, depend-
ing on the position of the atoms. If an atom falls in the middle of the detec-
tor, the time difference between the various channels is zero. Yet if an atom
falls at the border of the detector, this time difference is maximum and has to be
taken into account for the flux calculation. The detectivity results consequently in
dreconstr = exp(−2φi(2τdl + τerror) in the worse case scenario. Effectively, the de-
tectivity depends on the position distribution of the atoms. This can be easily sim-
ulated and we find respectively the efficiencies d1mK = exp(−2φi(1.56τdl + τerror)
and d0.5µK = exp(−2φi(1.26τdl +τerror) in the case of a homogeneously distributed
cloud, and that of a centred gaussian distribution of 1 cm root-mean-square width
(considering a homogeneous detection efficiency).

The Effective Dead-Time The effective dead-time characteristics of the detector
combines both the electronic dead-time and the reconstruction dead-time. This has
some none trivial consequences. Naively, one would expect that the addition of
the two effects would lower the detection efficiency. This is not the case. If an
atom has a missing signal, it cannot be rebuild. Consequently, each signal that
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is not correlated to at least one signal per other channel, is eliminated, as it can
not participate to the reconstruction of an atom anyway. If two successive atoms
have their various channels overlapping, then the electronic dead-time is likely to
eliminate some of the signals. This results in the fact that one of the atoms, and its
signals, is likely to get eliminated, resulting eventually in the reconstruction of the
other atom.

Developing a simple model in this case is slightly more difficult, so we will
simply consider some simulations. In Figure 2.29A we plotted the simulated re-
construction efficiency as a function of the incident atom rate (note that we consider
that all atoms are detected by the micro-channel plate and the discriminators). The
dashed line considers a 0.5 µK time-of-flight and does not take into account the
electronic dead-time. It lies effectively in the gray area between the best case and
worse case scenarios discussed previously. The continuous line, also at 0.5 µK
corresponds to the simulation that takes into account the electronic dead-time. We
note that this electronic dead-time does indeed improve the efficiency of the re-
construction. Furthermore, the curve seems exponential. It is easily approximated
through the formula exp(−φiτ f inal), with τ f inal = 138 ns.
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Figure 2.29: In A, the simulated reconstruction efficiency as a function of the total parti-
cle rate. The vertical axis is logarithmic. The dashed line indicates the efficiency for 4He
0.5 µK clouds with a 308.3 ms time-of-flight without taking into account the electronic
dead-time. The continuous line corresponds to the same clouds considering the electronic
dead-time. The worst and best case scenarios correspond respectively to homogenous and
centered particle flows without considering the electronic dead-time. In B has been calcu-
lated the effective dead-time for 4He clouds falling for 308.3 ms versus their temperature.
The increase of the dead-time with the temperature simply results from the larger spreading
of the atomic clouds.

Considering that within our working limits, the reconstruction remains expo-
nential as a function of the incident atom rate, we have plotted in Figure 2.29B the
simulated τ f inal for bosonic clouds after a 308 ms time-of-flight as a function of
the temperature. We note in particular that for homogeneously spread clouds, such
as for 1 mK time-of-flights, τ f inal = 183 ns.

Experimental Values The just mentioned simulations suppose that all signals
are physical and none are missing. This is not the case for our experimental data.
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We therefore have to measure the reconstruction dead-time experimentally. We
have seen in paragraph 2.3.1.2, that the low-rate reconstruction efficiencies are
81% for 1 mK clouds, whereas respectively 95%, 93% and 92% at 0.6 µK, 1 µK and
1.5 µK. This is unlike the simulations that assume a 100% reconstruction efficiency
for low particles rates.

The associated experimental dead-times are measured, for 4He clouds falling
for 308.3 ms, 120 ns for the 1 mK clouds, and respectively 158 ns, 140 ns and
132 ns for the 0.6 µK, 1 µK and 1.5 µK clouds. This is unlike the simulations.
Those measurements have though been performed for total particle rates below
700 katoms/s as this was a limiting acquisition rate as shown in the next paragraph.
In this range, the measured reconstruction efficiencies are smaller then the those of
the simulations. Although the measurements do not show the expected behaviour,
they are not yet in contradiction with the simulations. It is difficult to extrapolate
what happens experimentally at higher particle flows, although the simulations can
be expected as a higher bound.

2.3.2.3 Global Detection Rates

Finally, the detector has some additional flux limitations that are given by the speed
of the electronics. In particular the time-to-digital converters show a maximum
particle rate, related to the speed of its components. We will first have a small
overlook of our first time-to-digital converter, the CTNM4. Then we will easily
understand what brought us to the design of a second time-to-digital converter, the
IsiTime02.

The CTNM4 The CTNM4 (standing for Convertisseur Temps NuMerique) is an
already fairly old time-to-digital converter build at the Institute of Nuclear Physics
in Orsay. The originality of this time-to-digital converter lies in the fact that it had
been designed with in mind the many possible applications, and several features
had been implemented that had been unnecessary until our use. The two essential
features were the ability to define with an external control the acquisition frame
length, and the second was the use of the extended time feature in order to measure
periods larger then the internal 5.6 µs cycle.

In addition though, we also wanted to drive the time-to-digital converter into
the high acquisition rate regime. The global architecture of the time-to-digital con-
verter, as presented in Figure 2.30, had in mind the various uses that could be made
of it. The time coding is performed by an Application Specific Integrated Circuit
(ASIC). This is mainly a micro-processor specifically designed for the time-to-
digital conversion. The measured data streams through a first FIFO memory buffer
to a Digital Signal Processor. The latter is a programmable micro-processor. This
means that one can implement various hard-coded algorithms, that can apply vari-
ous tasks to the data. This DSP streams the data in its turn to a second FIFO buffer,
whereafter the data is send through a handshaking protocol to a National Instru-
ments NI6534 acquisition card. The last sends the data through the PCI bus to the
memory of a desktop computer.

As in all acquisitions, this system has a bottleneck. That means that there is
one specific place in the acquisition frame that limits the total data flux. We have
indicated in Figure 2.30 the various maximum flows. The unit W indicates a Word,
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Figure 2.30: The schematic design of the CTNM4 time-to-digital converter. The unit W

indicates a 32 bit integer called word. A specifically designed ASIC performs the time-to-
digital conversion. The results streams to a FIFO memory where it waits for analysis in
a DSP. The latter is programmed to simply stream the data to the output where a second
FIFO regulates the transfer to a National Instruments NI6534 digital acquisition board.
The large onboard memory of the NI6534 ensures a smooth streaming of the data to the
computer memory. The bottleneck of this system is the DSP at 3.6 MW/s.

that is a 32 bit integer. Each time coding requires a 32 bit integer, and each par-
ticle therefore requires either 4 or 5 words. The bottleneck is not provided by the
1 MW/s PCI transfer rate. Let us note first of all that the theoretical transfer rate of
the PCI bus is 33 MW/s, yet the many other components that use this parallel bus,
limit its performance. Yet as the total number of detected atoms is in our experi-
ment far lower then the 32/4 Matoms, the NI6534 memory completely screens the
PCI bus.

Consequently the acquisition rate is limited to the 3.6 MW/s transfer rate of the
DSP, this despite the fact that the program implemented in this processor has been
limited to simply copying the input to the output. This time-to-digital converter
consequently limits the acquisition rate to either 700 katoms/s in the case of a 5
channels use, or 900 katoms/s in the case of a 4 channels use. In a single channel
use, the time-to-digital converter would be limited to 3.6 MW/s. As we were lim-
ited by this 4 channel acquisition rate, we have sought for a faster time-to-digital
converter.

The IsiTime02 The IsiTime02 has been specifically designed for our use by a
company, IsiTech, based in Orsay. The number of possibilities have been kept
sober, and limited to our requirements. Thanks to the sober design, the time-to-
digital converter can yet deal far better with our high atom rates. The layout of the
time-to-digital converter has been provided in Figure 2.31.

The time-to-digital conversion has been implemented in a modern high-frequency
FPGA. The total acquisition rate of this device is 80 MW/s. That brings us to
12 MW/s per channel, the total acquisition rate. Note that even if one uses a single
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Figure 2.31: The schematic design of the IsiTime02 time-to-digital converter. Thetime-
to-digital converter is programmed in a Field-Programmable Gate Array, the data streams
directly to a large fast onboard memory. After the time-of-flight, data can be acquired
easily to the computer.

channel, 12 MW/s will still be the maximum acquisition rate. This is due to the se-
rialisation procedure described in paragraph 2.2.3.2. The data is directly streamed
to an onboard 6 MW total memory, that can handle all the data we need. Finally,
the data is transfered towards the computer memory over the PCI bus. Considering
all the other flux saturations, this time-to-digital converter can handle more then
effectively required.

2.3.3 Resolution

The signal to noise ratio of the Hanbury Brown and Twiss experiment depends
strongly on the detector’s spatial resolution. The ultimate resolution one can ex-
pect from a delay-line detector depends on the time-to-digital converter coding
step and are for this specific detector respectively 79 µm and 55 µm when using
the CTNM4 or the IsiTime02 time-to-digital converter. Demonstration of this is
provided in Appendix 1. Those resolutions are both in the order of the expected lx
correlation length, and the resulting bunching heights are expected in the order of
40%. Practically, the resolution is expected worse because noise has to be consid-
ered, and special focus is required. In particular, we will show that the resolution
strongly depends on the experimental conditions.

We will first outline the methods we have used to actually measure the reso-
lution. Then we will study some of the resolution dynamics that will eventually
influence the proposed experiment.

2.3.3.1 Measurement Methods

Usually, in order to measure the resolution, one would put a mask in front of the
detector, and study the edge properties of the obtained image. We have undergone
this process only recently, and further studies are still required before we can con-
clude on this. We have not undertaken this method earlier because it requires to
break the ultra-high vacuum, which is always a time consuming procedure. Also
we have found different methods to measure the resolution, that we will briefly
outline here.
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Time Sum Method The Time Sum method has been studied exhaustively in Ap-
pendix 1. We will therefore simply summarise its main characteristics.

The essential point is to realise that the two signals coming from the opposite
sides of the same delay-line initiated by a single particle have a logical relation
between them. Their total time of propagation through the delay line is indeed
equal to delay-line length. If we add those two times, and subtract twice the arrival
time, one should get a single constant as a result. Likewise, if we sum the two
signals provided by one delay-line and subtract the sum of the signals of the other
delay-line, the result should also be a constant. If this is not the case, and if the
resulting distribution of what we will call the Time Sum, has a certain width, then
this width necessarily affects the resolution. Consequently, this measurement can
be linked in some extent to the resolution.

The enormous advantage of this method is the ease at which we can measure
a resolution. When one changes a parameter on the experiment, one single time-
of-flight spectrum provides enough information for the measurement of the reso-
lution during that time-of-flight. Figure 2.32 shows such a distribution as acquired
through a single 1 mK time-of-flight of 40 katoms. The measured width, through
the gaussian fit, attributes a 180 µm average root-mean-square resolution to this
time-of-flight.
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Figure 2.32: A Time Sum distribution obtained for a 1mK time-of-flight. The distribution
has been fitted with a gaussian. The resolution is measured to 180µm.

The first conclusion we have to draw from this method is that we do not mea-
sure the total resolution. We simply measure the effect of the electronic detection of
the pulses. We can not measure the resolution induced by the micro-channel plate
stack detection, nor any other physical principle that would disturb the detection.
Practically, the electronic detection proves to be the main limit to the resolution
though. Second conclusion, this measurement is equivalent to the measurement of
the resolution only under a certain number of hypotheses explained in Appendix 1.
Although those hypothesis seem very reasonable, we have no way to check them,
and we will have to live with them. The last point is, as explained in Appendix
1, that we depend on an average Time Sum map in order to substract a spatial de-
pendence of the supposed Time Sum constant. Although in Orsay this map proved
relatively stable over time, for the data taken in Amsterdam we do not have the
same behaviour. Furthermore, if a parameter is changed, it is difficult to estimate
the impact on this map, and rebuilding this map for every parameter change can
prove extremely time and disk-space consuming.

Another important aspect to notice is that the graph in Figure 2.32 has been
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fitted with a gaussian function. Although this seems reasonable as to the usual def-
inition of the resolution, it must be said that the difference between this gaussian
fit and the effective resolution will have to be taken into account for a better cal-
culation of the expected bunching height and signal to noise ratio. We will discuss
this point in paragraph 3.1.4.1. The simple gaussian fit is enough for studying the
resolution dynamics.

The Oscilloscope Method Instead of detecting the pulses through a constant
fraction discriminator, one can also choose to acquire the signal through a four-
channel oscilloscope, and rebuild the arrival times through post-analysis of the
acquired analog signals. This method has been detailed in Appendix 3. The fi-
nal resolution can then as previously be measured through the Time Sum method,
although one circumvents some key electronic components, and in particular one
preserves the pulse heights. Eventhough this method does not provide an in-the-
end useful measurement, it does allow for some specific studies and deeper under-
standing of the resolution limiting processes. We will therefore mention some of
the results obtained with this analysis.

The Correlation Method The above measurements give a nice indication of how
the resolution can behave. They are yet build upon a certain number of hypothesis
that might well be completely false. Those hypothesis are the equivalence between
the various detection channels, and their respective independence of the fluctua-
tions. It is therefore important to see whether those methods provide a right order
of magnitude as to the real resolution.

The only way of effectively measuring a resolution is by using a physically de-
fined signal. This can be done by adding a mask between the source and the detec-
tor, but the correlations we would like to observe also constitute a physical signal.
In particular, we have previously made estimates of the correlation length along the
x axis of around 32 µm. This compares small to the

√
2×

√
2×180 = 360 µm two

particle half-width half-maximum resolution measured just above. This means that
the spatial extend along the x axis of the (anti)bunching will be limited essentially
by the detector resolution function. The success of the proposed experiment would
therefore provide us with an independent resolution measurement.

To cut a long story short, we did succeed in the correlation measurement, and
we have been able to measure the resolution independently. We will come back to
this point in the next section, so we will simply state the two main conclusion to
this. The first is to notice that in order to get this measurement, we need typically
1000 time-of-flights, and still the signal to noise ratio is much lower then the one
we have seen in the Time Sum method. This method is consequently interesting,
and important as to our statements, yet not very useful for a practical resolution
measurement. Changing parameters freely with this method is an extremely time
consuming practise. The second point is that, at first order, the bunching widths
measured do correspond very well to the results obtained through the Time Sum
method. Consequently, although the Time Sum method does not provide an abso-
lute measurement tool, we do feel quite confident in its use. We will come back to
this point as we will analyse the measured bunching widths.
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2.3.3.2 Dynamics

In paragraph 2.2.2.2 we have shown some detector operating voltages that influence
the resolution, and that have been optimised. It would yet be wrong to assume that
the resolution of the detector is some absolute constant. Through our use of the
detector, we have experienced various fluctuations of this resolution, that depends
strongly on various dynamic properties. We will discuss the way the bunching
height affects the resolution. We will then deduce logically the spatial dependence
of the resolution. We will then address the particle flux dependence of the resolu-
tion. Finally we will discuss the sensitivity of the resolution to the electro-magnetic
environment.

Pulse Height Through the oscilloscope method described earlier, we can access
both the position and the pulse height of all atoms falling on the detector. We can
therefore, by using in addition the Time Sum method, measure the resolution of
the detector as a function of the pulse height. The result of this measurement on
several 1mK clouds has been displayed in Figure 2.33. The graphs shows that the
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Figure 2.33: The resolution of the detection versus the pulse height of the atoms. Both
the position and the pulse height have been measured through an oscilloscope acquisition.
Therefore this curve does not correspond to the effective resolution dependence in usual
experimental conditions.

higher the pulse height, the better the resolution. The graph can not be used in the
present state though. Normally data is acquired through the discriminator time-to-
digital converter system, and we are concerned by the corresponding resolution.
This curve is specific to the oscilloscope acquisition. It allows though for a better
understanding of the eventual pulse height dependence, as finally the two detec-
tion procedures are conceptually similar. This subject is addressed more deeply in
Appendix 3.

If the pulse height is low, the fluctuations of the signal are less negligible com-
pared to the signal, and the resolution is strongly affected by background noise,
or component jitters. For large pulse heights, jitters and background noise can
eventually be neglected, and the resolution is optimal.

Position In the previous section, we have studied briefly the position sensitiv-
ity of the electronic pulse height distribution. Although this dependence is simply
related to mechanical constraints, and has no relation with some fundamental pa-
rameter of the micro-channel plates, it does affect the resolution. We have just
studied the dependency of the resolution on the pulse height, we can expect this
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to directly produce a spatial resolution distribution. That specific distribution is
shown in Figure 2.34. In this Figure we have plotted the resolution as a function
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Figure 2.34: The spatial dependence of the resolution. The resolution has been averaged
and measured over a series of 1mK clouds using the Time Sum method.

of the spatial variables X and Y as acquired for some 1mK time-of-flights. The
resolution has been obtained through the Time Sum method. We note that we have
regions were resolutions are as good as 120 µm. The detector is consequently close
to the specifications. The equivalence of this resolution map with the previously
shown amplitude map (Figure 2.7) is striking. This seems to stress the previous
hypothesis that the resolution depends strongly on the pulse height.

This makes it also feasible to use the resolution as a tool to characterise the
micro-channel plate. An inhomogeneous resolution seems to indicate directly an
inhomogeneous pulse height distribution. The advantage of this method over the
analysis of the detection efficiency map is that the influence of the discriminator
level is much smaller.

The consequence of this position sensitivity for the proposed Hanbury Brown
and Twiss study is straightforward. The various temperatures we would like to
study average differently over the detector surface, and consequently we are to
expect different resolutions for the various clouds. This means that we will have to
study the average resolution for each temperature if we want to be able to interpret
correctly the results. The effective impact of this spatial dependency is though not
very important in our specific situation. The centre of all the clouds will indeed
cover the same area, and it is precisely the centre of the cloud that participates
most to the correlation buildup. It is yet to be considered.

Particle Rate A more important aspect is the particle rate effect on the resolution.
We have seen previously how the average pulse height lowers at local saturating
particle rates. Consequently, we can expect an effect of the particle rate on the
resolution. The study of this effect is not simple though.

Two different particle rates can affect the resolution: the global and the local
particle rate. The reasons are different. The global detection rate is easily expected
to deteriorate the analog amplification and discrimination process. The electronic
pulses provided by the delay-lines are separated from the high potential through a



2.3 Detector Characteristics 107

capacitor and a resistance as shown previously in Figure 2.15A. The typical time
scale associated to this operation is RC = 110 ns. This means that if two consec-
utive signals are expected to undergo an identical analog process, they should be
separated by an similar time scale. Else, in particular, the discrimination of the sec-
ond pulse will be affected by the first pulse. Typical global particle rates at which
we are looking are around 500 katoms/s. This is in the same order of magnitude.

For the local particle rate, we have shown a distinct drop in the pulse height at
82±10 katoms/cm2/s. It is not clear why the resolution would change before this
pulse height drops, yet this idea cannot be set aside that easily.

We therefore need an experimental study of those parameters. The problems
is the spatial dependence of the resolution, and our current inability to completely
control the shapes of the falling clouds. It is consequently fairly difficult to dissoci-
ate a local particle rate, from a global particle rate study. Currently, we do not have
that possibility on the Orsay 4He experiment. In Figure 2.35 we have plotted the
fluctuations of the resolution as a function of a local detected, and rebuild, particle
rate.
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Figure 2.35: The resolution in the centre of the detector as a function of the locally detected
and rebuild atom rate. Three different samples of clouds have been used. The triangles
correspond to 1 mK clouds, the squares and the circles to respectively 1 µK and 0.61 µK
clouds.

The graph is effectively build out of 3 different data sets. The triangles are data
provided by 1 mK time-of-flights. The squares and the circles were respectively
1 µK and 0.61 µK data sets. Each data set has been averaged over various time-
of-flights. The resolution has been measured through the Time Sum method. The
detection area has been considered in the middle of the detector, as indicated with
the black rectangle in Figure 2.34, that can be associated the maximum detection
rates.

First observation is of course that the higher the particle rate, the worse the
resolution. One can easily loose 60% in the resolution between a large and a small
time-of-flight. We further observe that the three data sets are relatively consistent
among each-other. This leads to think that the rate dependence is locally defined. A
closer look at the graph shows a slight offset between the various data sets though.
It is difficult to say whether this is due to the fact that the data has been taken
on various days, or to the fact that the global particle rates affect the resolution.
The ratio between the maximum local particle rate, and the average particle rate,
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depends on the temperature after all.
We have tried further attempts to map the resolution spatially, and study its

local fluctuations as a function of the particle rate. This study has not given clear
evidence though, that the local saturation is the reason to the resolution loss. We
will therefore simply state that the fluctuation of the resolution as a function of the
particle rate has to be taken into consideration when using the delay-line detec-
tor. More specifically to our proposed experiment, as we will always work at the
maximum global particle rates, we can expect a severe difference in the average
resolutions between the various temperatures we will study. This will be all the
more important as the correlation procedure will privilege high local particle rates.

Background Noise A last parameter, that has little to do with the data acquired,
is the effect of the background noise on the resolution. Three plasma Helium cells
are used for the locking systems of our lasers. The plasma is established and main-
tained through a ∼ 27 MHz oscillating fields. Those fields have not been isolated,
and consequently the entire room is modulated at those frequency fields. Although
the physics of the experiment are barely affected by those fields, they and their
harmonics lie precisely in the bandwith of our delay-line detector.

The intensity of the radio-frequency fields can be modulated with the level of
the amplification of the electronic resonators. Although this modulation is not lin-
ear, as various resonances may appear, we can study easily the resolution of the
detector in various electronic situations. Keeping all other parameters identical,
we have measured resolutions of respectively 200 µm, 174 µm and 197 µm with
respectively a low, medium and high amplification level of the electronic oscilla-
tors. This test shows clearly the sensitivity of the detector setup to the electronic
background.

We have tried to shield the electronic detector equipment from the global en-
vironment through the use of various Faraday isolation techniques. Although this
has substantially lowered some part of the noise, success has not been up to the
expectations, likely due to the 10 m wavelength of the noise for which we always
are in the near field. The problem is currently being solved by shielding better the
radio emitters.
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Conclusion

In Chapter 1, we have seen how the use of a micro-channel plate based detector
would enable us to measure the Hanbury Brown and Twiss effect with a cold gas
of He∗ atoms. We have in particular established the signal to noise ratio for such
an experiment, and we have seen what characteristics of the detector are essential
to the experiment.

Throughout this Chapter, we have focused on the implementation of such a
detector. We have considered first of all the various implementations that exist of
micro-channel plate based detectors. We have discussed in particular the use of
phosphor screens and resistive anodes that enable position sensitivity. We have
seen that unfortunately, despite the excellent resolutions those systems offer, they
can not handle the high particle flows we need to detect. We have dealt briefly with
the delay-line based detector, that seemed more adequate to our needs. Eventu-
ally, we have discussed some more advanced delay-lines based solutions, that offer
better position sensitivity, but that are currently not yet ready for our use.

We then have focused much closer on our implementation of a delay-line de-
tector as bought from Roentdek Handels GmbH. We have analysed closely the
characteristics to be expected from a chevron micro-channel plate stack, and we
have noticed in particular the severe spatial pulse height inhomogeneity we experi-
enced with our Burle Industries Inc micro-channel plate stack. We then discussed
some aspects of the delay-lines, and in particular we have dealt with the operating
voltages. Then we have focussed on the electronic part of the acquisition chain,
with in particular the amplification, discrimination and time measurement of the
electronic pulses coming from the delay-lines. Finally we have discussed quite
extensively the computer and software implementation of the detector. This im-
plementation did not only require a lot of time, but also proved to be a key to the
success of the proposed experiment.

In the last section of this Chapter, we have focussed deliberately on three fun-
damental characteristics of the detector: the detection efficiency, the detection rate
and the resolution.

Although the proposed study of the Hanbury Brown and Twiss effect does not
depend on the detection efficiency, optimisation of signal to noise ratio and general
interest for further experiments have drawn our attention to this point. We have
seen how to characterise the detectivity in respect to some of the measurements we
can perform. We have also noticed how the total detection efficiency depends on
both the mechanical situation of the micro-channel plate stack and the shape of the
detected cloud. We have eventually performed two measurements of the detection
efficiency, but the results are inconsistent.

The study of the detection rate has provided us with some fundamental lim-
itations. We consequently have noticed the local saturation of the micro-channel
plates, that will have dramatic consequences as to the detection of Bose-Einstein
condensates. Then we have studied the dead-times induced by both the electronics
and the atomic reconstruction, that impose an ultimate limit to the use of a delay-
line detector. We must add though that the previously detailed improved detection
scheme pushes those limits slightly further. Finally we have dealt with some tech-
nical limitations of the time-to-digital converter we had planned. We also showed
how the realisation of a new time-to-digital converter made it possible to overcome
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those limitations.
The last point we have discussed extensively, and on which the signal to noise

ratio is highly dependent, is the resolution. We have detailed the methods through
which we were able to analyse this resolution. Further reference on this is pro-
vided in the Appendixes. We then have analysed various dynamics that influence
the resolution such as the pulse height and consequently the position. Also the
particle rate and the electronic background noise influence strongly the resolution.
The effective resolution will have to be measured specifically in the experimental
conditions in order to be relevant.

This detailed overview of our implementation of the delay-line detector now
enables us to come back to the proposed Hanbury Brown and Twiss effect exper-
iment, and in particular we will be able to establish the effective signal to noise
ratio to expect. We recall the previously established formula:
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Considering that we know now the characteristics of the detector, we can es-
tablish the effective signal to noise ratio for the proposed experiment. We re-
call the trapping frequencies for the 308.3 ms time-of-flight of the 4He atoms
to be ωy = ωz = 2π× 1150 Hz and ωx = 2π× 47 Hz in Orsay. In Amsterdam
the trapping frequencies for the 3He atoms with their 359 ms time-of-flight are
ωy = ωz = 2π×506 Hz and ωx = 2π×54 Hz.
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Figure 2.36: In A, the number of time-of-flights required for a given temperature and a
number of detected atoms, in order to get a signal to noise ratio of 1 for the 4He clouds in
Orsay. The black curves correspond to various upper bounds the acquisition has to respect.
In B, the same graph for the 3He to be acquired in Amsterdam.

In Figure 2.36 we have plotted the number of time-of-flights, as a function of
the detected number of atoms and the temperature, required to obtain a signal to
noise ratio of 1. In Figure 2.36A we have plotted the corresponding graph for
Orsay. The plotted graph considers an average resolution of 250 µm. We have
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furhermore introduced several limitations of the detector and the physics. We plot-
ted the curve corresponding to the limitations introduced by the maximum flux of
the time-to-digital converter. We cannot acquire data above this limit. We also note
the micro-channel plate local saturation limit above which signals can loose their
physical significance. We also introduced the previously discussed condensation
threshold, that keeps us from working with lower temperatures.

In Figure 2.36B we have plotted the corresponding graph for Amsterdam. Here
we have also considered a resolution of 250 µm. Here we have no longer the
limit of the time-to-digital converter as we introduced the IsiTime02 time-to-digital
converter. The Fermi limit, linking the number of detected atoms to their Fermi
temperature, is not really a limit. There is indeed no phase transition as we cross the
barrier. It separates the classical from the quantum statistical behaviours though.

We note that, especially in Orsay, we are at the limit of the feasibility of the
proposed experiment. We will have to acquire clouds in the µK temperature range,
and we will need several hundreds of thermal clouds as to have an appreciable
signal to noise ratio. Having signal to noise ratios significantly exceeding 1 is yet
quite possible, and we can hope to perform measurements beyond the measurement
of the bunching volume.

We now simply have to proceed to the acquisition and analysis the data.





CHAPTER 3

The Results

The feasibility of the experiment has been shown through the study of the signal
to noise ratio and the detailed analysis of the detector characteristics. This chapter
deals with the experimental demonstration of this feasibility.

Data for the Hanbury Brown and Twiss effect measurement has been acquired
in two tides. The first tide consisted of the measurement of the 4He∗ data in spring
2005 in Orsay. Those results have been published in [17]. The second tide con-
sisted of the measurement of both 4He∗ and 3He∗ clouds in the summer of 2006 in
Amsterdam. Those results have been published in [18].

In this chapter we first present the acquisition, analysis and measurements on
the thermal 4He∗ clouds as acquired in Orsay. We will in particular note how the
results fit to the theory.

We then study in detail the acquisition and analysis of the Bose-Einstein con-
densates. We will notice that the implementation of the detector reached its limits
as to this experiment.

In the last part we will only focus on the 3He∗ clouds acquired in Amsterdam.
We will discuss briefly the acquisition conditions. The analysis techniques used
are identical as for the thermal bosons, and require no further focus. Emphasis is
therefore put on the measurements performed on this data.
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3.1 Thermal Cloud of Bosonic Atoms

The measurement of the Hanbury Brown and Twiss effect in a thermal cloud was
expected to be the most difficult part to realise, as compared to the Bose-Einstein
condensates for which the atomic densities seemed favourable. As we discussed
before, the resolution of the detector is just within acceptable values, and also the
time-to-digital converter limited the particle flow. A. Öttl & al. [31] have not
succeeded in visualising the thermal correlation precisely for this reason.

We will see how additional difficulties have limited us to the acquisition of
three data sets. Then we will study in detail the way those data sets have been
analysed. Finally we will discuss the results.

3.1.1 The Acquisition

During the acquisition of data on a working experiment, the human patience is
among the main limiting properties. A working experiment is rarely completely
autonomous. Even in the case of the Orsay 4He experiment, where both experiment
piloting and data acquisition have been completely automated, there still has to be
a human supervisor to deal with the experiment’s particularities as well as to decide
on the data that is to be acquired.

We will briefly study some of those particularities, that in the long run tickle the
patience of the experimentalists, and we will see briefly the time it took to acquire
the data for the present measurement. Finally we will outline the acquired data.

3.1.1.1 Experimental Conditions

The experiment has several points that need constant surveillance.

Source Temperature The first is the temperature of the liquid nitrogen cooled
Helium source. This temperature influences directly the longitudinal speed of the
atoms as they enter the Zeeman slower, thus the efficiency of the Zeeman slower
and consequently the loading rate of the magneto-optical trap, the number of atoms
in the magneto-optical trap, and anything that follows. Two reasons make those
temperature fluctuations particularly unhelpful.

The first one lies in the fact that when working with cold gases, the high non-
linear efficiency of the evaporation cooling mechanism as to the number of the
atoms in the trap, makes one end up either with or without atoms in the end. Yet
many problems can come up that prevent a final cold cloud to be produced. There-
fore a certain time is necessary each time to identify this cause.

The second reason lies in the fact this problem does not occur that often, the
fluctuations lie in the order of 5 to 6 hours. Therefore, this is rarely the problem
one thinks of first when the cold clouds disappear.

The reasons for this problem lies either in the fact that the bottle is empty,
something that can be foreseen. Or in the fact that ice (H2O) is stuck inside the
tube that brings the liquid nitrogen through the source. This can only be solved by
heating up the source, and cooling it down again. An operation that takes at least
40 minutes of active operation.
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A recent installation of a pressurised withdrawal tube has made the cooling
procedure much more efficient, and the problem today is generally limited to the
empty bottle.

Laser Locking The laser system we have is exclusively made of distributed
Bragg reflector diode lasers. Although they have a linewidth of around 2MHz,
that is fairly large compared to the 1.6MHz large transition, they are very easy in
use. This in particular in comparison with the use of solid state LNA lasers.

They yet have to be locked to a 4He∗ transition and this is done with some
radio-frequency excited Helium cells. The age of the electronic circuits that rule
those Helium cells do not inspire absolute stability, and interruptions in the plasma
excitations are frequent. Furthermore, the low power output of the laser diodes
(50mW typically) forces us to use only the minimal power necessary for the lock-
ing system. Further small misalignments and fluctuating cell intensities make the
locking system relatively sensitive to the electronic and mechanical environment.

Consequently, one of the three lasers unlocked on average every 30 minutes.
This is including night-time data acquisition, when the outside environment is more
stable. Each time the lasers have to be relocked, loosing at least two experimental
runs: the first for the discovery, the second to lock in again.

The Bias Field A big problem with a clover-leaf magnetic trap configuration is
the difficulty of producing a stable bias field. This bias field controls both the depth
of the trap, that is important for the temperature control by the radiofrequency evap-
orative ramp, as well as the trapping frequencies. This small field is produced by
the difference of two intense magnetic fields. The fluctuations are generally low as
the same electric current is used for the two magnetic dipole and quadrupole fields.
An additional independent current is yet used to control beyond the geometrical
defined properties.

Formerly, the Orsay 4He experiment used a Hall probe to measure the fluctua-
tions of that additional current in order to stabilise it [58, 56]. This led to 20 kHz
fluctuations of the bias field. During the new build up of the experiment, we de-
cided to do without this locking system, and to rely on the current control of the
power supplies solely. Although we have no precise measurement on whether we
gained or lost, we ended up with two problems. One is a 10 Hz oscillation of the
bias field. The second is a large thermal fluctuation of the bias field. When we
use the high intensity power supplies with the magnetic coils for a long period,
both the temperatures of the power supply and the coils increase, and thereby their
electrical resistance. This affects the current control, and we observe fluctuations
of the bias field.

This problem is easily solved by running the experiment continuously. The
system requires fifteen minutes to stabilise. Once it has been stabilised, we just
keep it running and it remains stable. It implies that we do not like stopping the
experiment for whatever reason.

The time-to-digital converter A new problem we introduced with the Hanbury
Brown and Twiss experiment was the CTNM4 time-to-digital converter. The prob-
lem of this time-to-digital converter does not simply lie in its 700 kparticles/s lim-
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itation, but more worryingly in the fact that when it reaches that limit, it goes out
of control. A time-to-digital converter that would simply stop the acquisition when
saturating would have been nice. This time-to-digital converter decides that when
saturated, it stops for that run, yet it renders all following data completely unusable.
This means that when the time-to-digital converter reaches that limit, we have to
reinitialise it manually (as this has not been software implemented). In order to
avoid that limit, and considering the high intensity instabilities of our cold clouds
(typically 100% fluctuations), we had to work far from the time-to-digital converter
limits. This was certainly not profitable to the signal to noise ratio.

Outside Temperature A last problem we had is more of an anecdote order, yet
pretty interesting as we had a similar problems in Amsterdam. The data has been
acquired during spring 2005. As acquisition and parallel analysis went on, time
passed. Eventually, by the end of the acquisition, summer was just around the
corner. As the outside temperature increased, the cooling filtered tap water we use
for the magnetic coils also increased in temperature. As we were working at the
very edge of the possibilities of the power supplies, the slight cooling efficiency
decrease affected the resistance of the coils that brought the power supplies over
their limit. We then had to work with slightly reduced fields.

3.1.1.2 Acquisition Time

Several parameters influenced on the total acquisition time. The importance of this
acquisition time is that the signal to noise ratio evolves with the square root of it.
That means that if one wants to double the signal to noise ratio, one has to quadru-
ple the number of time-of-flights and thus the acquisition time. Ultimately the ac-
quisition time will be affected by, and limited by, the patience of the experimenters.
Those are unlikely to enjoy doubling the signal to noise ratio after already 4 weeks
of data acquisition. That would indeed mean spending an additional 3 months on
that acquisition.

The problem was that the setup was not in its best shape. Cold clouds had only
a few atoms (typically 8 katoms od detected atoms), and this number was strongly
fluctuating. Each production of a cold cloud takes around 1 minute. In total, around
4000 useable cold clouds have been acquired, and some other 1000 unused. This
is already two weeks of data acquisition. With the various laboratory issues raised
above and other, the total time spend in the lab for the simple acquisition of the
data has been close to three weeks. Those were spread out over 5 weeks as the
parallel analysis had to provide some understanding and directions.

3.1.1.3 Data Sets

All the above considerations have ended up in the acquisition of three distinct cold
cloud populations. An overview of the global data set has been produced in Figure
3.1.

In this figure, we plotted a histogram representing the integrated squared num-
ber of atoms of the time-of-flights versus their temperature. The signal to noise
ratio is proportional to the square root of the selected area. The large distribution
in the number of atoms of the time-of-flights renders this graph more practical then
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Figure 3.1: Temperature distribution of the time-of-flights weighted with their squared
number of atoms. The respective areas of the three distinct data sets give an estimate of
their respective signal to noise ratios.

a simple summing of the number of atoms in each time-of-flight. Identical areas
hence indicate very similar signal to noise ratios.

Bose-Einstein Condensates Closer analysis of the data, and in particular the two
dimensional y versus x plotting of the atoms, show that some time of flights have
small Bose-Einstein condensated fractions. This is not what we want at this point
as we only want to analyse pure thermal clouds. The problematic clouds then have
to be removed. Thanks to the 3-dimensional detector, they can be spotted very
easily.

Formerly, when the setup was equipped with a 1-dimensional micro-channel
plate detector, the detection of small Bose-Einstein condensates within large ther-
mal clouds was problematic and required some smart fitting scheme [59, 58, 56].
In Figure 3.2A it is hard to distinguish the characteristic features of a Bose-Einstein
condensate. With the three dimensions, one can make a 2-dimensional image
where the human eye can spot the condensate, as in Figure 3.2B. One can also
project this image on the x axis of the condensate, and by cutting out the unuseful
wings of the thermal cloud, increase significantly the detectability of the conden-
state. The obtained figure has been plotted in 3.2C. A simple computer analyses
can then be used to discriminate the cloud population with a condensated fraction.

The possibility of measuring the density distribution in three dimensions is
currently specific to our Orsay 4He experiment. This ability could be used in the
future to study small condensed fractions within thermal clouds.

Three Populations The temperature of the first population is around 0.61 µK,
the second is around 1.03 µK, the last population is around 1.48 µK. From now on
we will refer to these three populations by their temperature. On the global data
set has been applied a cut, that besides discriminating the condensated clouds, only
keeps certain data ranges. We consequently distinguish a first set of 615 clouds at
0.61 µK average temperature with a 0.064 µK RMS spread. The second data set
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Figure 3.2: In A, The traditional time-of-flight distribution for a 0.6µK cloud. One can
not distinguish a condensated fraction of 4He. In, B the spatial distribution shows an
intense cigar-shaped condensed fraction. The projection along the x axis in C shows clearly
the condensated fraction in the highlighted region. In this distribution, a Bose-Einstein
condensate can be spotted with a simple algorithm.
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contains 1174 clouds at 1.03±0.093 µK. Finally the last data set of 1976 thermal
clouds ranges 1.48±0.11 µK.

Reference Data We also acquired some reference data. If we would manage to
show that we observe a bunching in the correlation function of the data, then we
would still have to prove that this bunching is not due to the detector itself.

For this data we simply acquired some "hot" time-of-flights. The thermal
clouds at temperatures around 1 mK have correlation lengths that are far too short
for us to observe, at least with the current resolution. They amount to 25 µm for
the largest correlation lengths. The expected bunching height at this temperature
is consequently reduced to less then 0.05%. Luckily those data points are very
quick to acquire as we can produce a new cloud every second. We have used 500
time-of-flights for this result.

3.1.2 The Analysis

The analysis of the thermal bosonic clouds is fairly straightforward. Background
noise is very low so we can simply apply the definition of the normalised correla-
tion function g̃(2)(∆r). In that case the particle correlation function is divided by
the local average density correlation.

3.1.2.1 The Correlation

The correlation procedure simply consists in histogramming all the differences in
time and position between the various atoms belonging to a single time-of-flight.
This means that within a time-of-flight all pairs are taken into consideration, and
for each ∆r effectively encountered in a single time-of-flight, the corresponding bin
of a 3-Dimensional histogram is incremented by 1. At the end of this procedure,
one ends up with the ∆r distribution of all the pairs. For a large number of atoms,
this distribution tends towards G̃(2)(∆r).

Note that whereas the binning in the Oxy plane is imposed by an already limit-
ing pixel size, the resolution on the z axis is four orders of magnitude preciser then
the phenomena we plan to measure. In order to increase the number of pairs per
bin we increase the bin size to a value in the range of the correlation length. The
z bins sizes have been chosen to respectively 50 µs in the Orsay experiment and
25 µs in the Amsterdam experiment.

In order to get the statistical distribution, and thus the correlation function, one
simply has to average this distribution over a large number of experimental real-
isations. This is done by adding up all those histograms for each time-of-flight.
When added up, the histograms are not weighted. This is important to realise. The
number of atoms fluctuates strongly, and the number of pairs goes as the square of
the number of atoms. Consequently large clouds participate more then the smaller
clouds to the final correlation function. By adding up simply the histogram, we as-
sure the same statistical weight to all pairs. As background noise can be neglected
even for the smaller time-of-flights, all pairs are equally of physical interest. We
consequently obtain:

G̃(2)(∆r) = ∑
i

G̃
(2)
i (∆r) (3.1.1)
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This method assures the best signal to noise ratio. Let us assume that each cor-
relation histogram of time-of-flight i containing Ni atoms is weighted with λi ∝ Nα

i

before addition. The total correlation signal is proportional to ∑i λiN
2
i = ∑i N2+α

i ,
whereas the total correlation shot noise can be written proportional to

√

∑i(λiNi)2 =
√

∑i N2+2α
i (the shot noise for a single cloud scales linearly with the weight factor).

The signal to noise ratio ratio can then simply be written as:

snr(α) ∝
∑i N2+α

i
√

∑i N2+2α
i

(3.1.2)

This function maximises for α = 0, in other words, when the histograms are simply
added up. Note that this result would have been different if, for instance, back-
ground noise was limiting the signal to noise ratio.

As we have initially 3 variables, the correlation histogram is also 3-dimensional.
As the display of such a histogram is awkward, we plotted in Figure 3.3B a 1-
dimensional extract of the 3-dimensional correlation. The plotted curve is the total
correlation of all the Orsay bosonic time-of-flights at 0.61 µK plotted versus ∆t

and averaged over various couples of (∆x,∆y) that have been chosen within the
coherence zone. In Figure 3.3A we plotted the time-of-flight integrated over xy

for comparison, and integrated over all the time-of-flights as well. We note first of
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Figure 3.3: Figure A shows a temporal slice of the averaged time-of-flight distribution.
One can recognise the Gaussian shape of the thermal cloud. Figure B shows a temporal
slice of the raw averaged pairs-histogram as a function of ∆t. The overall Gaussian shape
results from the auto-convolution of the thermal cloud. The small bunching at ∆t = 0
corresponds to the Hanbury Brown and Twiss effect.

all that the correlation function retrieves the gaussian temporal shape of the time-
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of-flights. The root-mean-square width is a
√

2 larger, as established in paragraph
1.3.2.3. But more importantly, we notice the small bunching in the centre of the
correlation function. As expected, the height is only a few percent, yet this is
clearly the bosonic bunching statistics we were looking for.

3.1.2.2 The Normalisation Procedure

In order to normalise the correlation, it should be divided by the auto-correlation
of the density distribution. We can not normalise each cloud by it self, as the auto-
correlation of each density distribution shows the same fluctuations as the pair
distributions. We would simply eliminate the quantum bunching like any other
fluctuation. We therefore use an averaged time-of-flight obtained by summing up
all the time-of-flights. The density fluctuations disappear at averaging. We hence
effectively measure:

g̃′(2)(∆r) =
∑i G̃

(2)
i (∆r)

R

(∑i ρi(r))(∑i ρi(r+∆r))dr
(3.1.3)

We must note that this normalisation is insufficient. We must consider both
the atom number fluctuations as well as the temperature distribution over which
we average. The correlation amplitude goes as the square of the number of atoms
Ni per time of flight. The prefactor αi depends on the shape of the time-of-flight,
and therefore on the temperature. The integrated pairs correlation amplitude is

therefore provided by ∑i G̃
(2)
i (0) = ∑i αiN

2
i , whereas the amplitude of the auto-

correlation of the averaged time-of-flights is provided by
R

(∑i ρi(r))2dr = α′(∑i Ni)
2,

where we consider α′ as a function of all (αi,Ni) couples. Finally:

g̃′(2)(0) = ∑
i

αiN
2
i /α′(∑

i

Ni)
2 (3.1.4)

The values Ni are known, and consequently the normalisation can be improved by
multiplying with (∑i Ni)

2/∑i N2
i . The problem with the normalisation procedure

lies in α′ and the αi distribution, that can not be accounted for. Taking correctly
into consideration the atom number fluctuations, we managed to normalise the
amplitude of g̃′(2)(0) to 0.97 instead of 1. The three remaining percent are due to
the temperature distribution.

Consequently, as shown in Figure 3.4, also the temporal shape is not correctly
normalised in its full extend, specifically at the lower temperatures. A mistake
of a few percent characterises the temporal shape of the normalisation procedure.
Consequently, a naive normalisation does not work out correctly. As the normalisa-
tion of the Bose-Einstein condensates will show even more difficulties, a different
method is necessary.

As adjustements were to be made, we decided to simplify the normalisation
procedure meanwhile. The function we use for the normalisation of G̃(2)(∆t) is
limited to the auto-correlation of the averaged time-of-flight only with (∆x,∆y) =
(0,0). This result is obtained by averaging the auto-correlation calculated for each
temporal column of the averaged 3-dimensional time-of-flight. We consequently
obtain a 1-dimensional function that will have to normalise a 3-dimensional pairs
correlation histogram. Each temporal column of this pairs correlation histogram
is then divided by this function. We thus perform only a temporal normalisation.
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Figure 3.4: The normalised correlation function for the 0.61 µK clouds plotted versus ∆t.
The fact that the correlation function is not fully flat results from an imperfect normalisa-
tion procedure. This can not deal with the temperature distribution of the time-of-flights.
For the fitting procedure, this fluctuation is taken into account through a second order
polynomial fit.

We then use a second degree polynomial to fit the naively normalised correlation
column. The first order of the polynomial is fixed to zero in order to preserve the
symmetry of the correlation. We consequently fit the amplitude of g̃′(2)(∆t = 0)
with the zero order, and its curvature through the second order. In this fit the co-
herence zone is excluded, as we do not want to normalise the bunching amplitude.
The constant coefficient obtained from the fit for each temporal column is used to
divide that specific column. Consequently, in the absence of a quantum bunching
behaviour, the correlation at ∆t = 0 is fit to 1. The dark gray curve in Figure 3.4,
for ∆t larger then 1 ms, is an example of a fitted polynomial. Its value at ∆t = 0 is
necessarily 1 due to the division of the correlation by its zero order.

Several objections can be raised by this method. The fact that the density auto-
correlation at (∆x,∆y) = (0,0) has been used to normalise the pairs correlation with
(∆x,∆y) 6= (0,0) seems problematic. However even at the lowest temperatures, the
root-mean-square size of the atomic cloud is several centimetres large, whereas the
interesting coherence zone amounts to a maximum of millimetres. Consequently
the correlation function does not evolve a lot within the study area. Furthermore,
the temporal dependence of the gaussian time-of-flight is independent of x and
y. Therefore the temporal dependence for all the auto-correlation functions with
(∆x,∆y) 6= (0,0), within the study area, are identical. Using the same function for
the normalisation procedure makes no theoretical difference.

A more important objection is the induced systematic error. If the same cor-
relation function is used to normalise all the temporal correlation columns, then a
noise fluctuation in this normalising auto-correlation function induces a systematic
error in each column measurement. Although this is true, we can notice that the
error bars on this auto-correlation function are orders of magnitude smaller then
those of the pairs correlation histogram. If we consider n time-of-flights with on
average N atoms in each time-of-flight, the signal to noise ratio comparison can

be written as snrauto−correlation

snrpairs histogram
=

1/
√

(∑Ni)2

1/
√

∑N2
i

=
√

nN

nN
= 1√

n
. In the typical case of 1000
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time-of-flights, this amounts 1/30. In order for this procedure to introduce a sig-
nificant systematic error in the results, we would need an anomaly of 30 standard
deviations off. Such an occurrence is very unlikely.

3.1.3 The Results

The normalised pairs correlation function shows, as we have just seen in Figure
3.4, an increased signal for small time separations that could be attributed to the
quantum Hanbury Brown and Twiss effect. In order to prove that this is indeed the
case, we will prove first that the signal is not produced by some characteristics of
the detector. Then we will study this temporal correlation for various temperatures,
and show that it behaves as expected. The will study the spatial dependence of the
observed bunching and see how this agrees with the theory.

3.1.3.1 Reference Data

The bunching we observe in Figure 3.4 has a typical temporal dependence of
200 µs. Most typical time constants involved in the detection process are far shorter.
The electronics related to the delay-lines have typical time constants of less then
300 ns (see paragraph 2.3.1.1 and 2.3.2.2). It seems unlikely that those electron-
ics induce such long signal correlation. The only device that is expected to have
comparable time scale behaviours is the micro-channel plate stack (see paragraph
2.2.1.4). We have dealt with the saturation of those devices. Yet the correlation
expected from a saturating appliance would rather be an anti-correlation. Conse-
quently it seems very unlikely that the observed phenomena can be attributed to
any technical issue.
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Figure 3.5: The temporal correlation function of the 1 mK clouds. The expected bunching
height is, considering the detector resolution, far below noise. Therefore this correlation
function is expected flat. The fact that it is indeed, show that the previously shown bunch-
ing is not related to any technical noise.

In order to be sure about this, we analyse the series of thermal clouds at milli-
Kelvin temperatures. At the temperature, the cloud after expansion is much larger
then the detector. Also the time-of-flight distribution is several hundreds of mil-
liseconds large rather then the typical 10 ms for the micro-Kelvin temperatures.
Figure 3.5 shows the temporal correlation of those hot clouds integrated over the
same coherence area as earlier. This correlation has been fitted and normalised
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with a simple constant. The time constants at which the time-of-flights at those
temperatures evolve are indeed much longer then the observation time scale, and
consequently the correlation seems flat.

More important, we do not observe any correlation or anti-correlation signal
at the same time scale as before. This is an important prove that the previously
observed bunching is the result of a physical process rather then a technical.

3.1.3.2 Temporal Correlation

The temporal normalised correlation functions for the three cold thermal sets have
been plotted in Figure 3.6. In those graphs, the time dependence has been replaced
by the previously discussed spatial dependence. The short time during which the
cloud is effectively detected compares small to the average time-of-flight of t0 =
308.3ms. This makes this flux detection nearly equivalent to a local 3-Dimensional
picture. We therefore simply replace the arrival times of the particles through the
simple operation z −→ (t−t0)v0, where v0 = gt0 ≃ 3 m/s is the mean arrival speed.
Furthermore, the error-bars displayed are simply the square root of the number of
pairs in each 50 µs bin.
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Figure 3.6: The correlation functions of the various cold samples along the z axis. The
correlations have been averaged over a coherence area detailed in Figure 3.8. The observed
bunchings for small separations correspond to the Hanbury Brown and Twiss effect. The
black curves are the result of a Gaussian fit of the bunchings. We note that, as expected,
both the bunching heights and sizes increase inversely with the temperature.

We observe a positive bunching of the 4He for the three temperatures. Fur-
thermore we observe that the width of this bunching increases as the temperature
decreases. This behaviour is expected as at lower temperatures the initial source
cloud is smaller (see paragraph 1.3.2.3). As with the cooling all correlation lengths
increase in comparison to the resolution of the detector, this has as a direct result
the increase of the bunching height (see paragraph 1.3.3.1). This bunching height
increase is easily spotted in the graphs as well. The signal hence behaves as ex-
pected for the Hanbury Brown and Twiss effect.

3.1.3.3 Spatial Correlation

The three dimensions of the correlations are identical from the physical point of
view. Yet the use of a detector with different effective spatial resolutions along
the 3 axis, combined with the anisotropy of the initial cloud, results in various
qualities of the rendering of the bunching along the 3 axis. The extremely well
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defined temporal (z) resolution makes that dimension privileged for a quantitative
analysis of the bunching properties. In particular, the fits of Figure 3.6 give a fairly
well defined value of lz. But this figure has been obtained by averaging over several
couples of (∆X ,∆Y ) already. For a single couple of (∆X ,∆Y ), the signal to noise
ratio is 3 times lower. Once we have determined the experimental value of lz, we
can then use this value to fit just the height of the bunching along the z axis for
each single (∆X ,∆Y ). The results of those fits have been plotted versus (∆X ,∆Y )
in Figure 3.7.
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Figure 3.7: The spatial correlation functions of the various cold samples. Those his-
tograms result from a temporal fit of the 3-dimensional normalised correlation histogram
at variable spatial separations, with only the bunching height as a free parameter. The ob-
served spatial bunchings are inversely anisotropic in respect to the trapped cloud sizes. The
bunching width is limited by the resolution of the detector, that also lowers the bunching
height. The 50◦ angle in respect to the axis of the detector is because the detector is rotated
with precisely that angle.

In order to understand the shape of the observed bunching, we first note that
the magnetic trapping properties induce a cigar-shaped trapped cold cloud. As the
correlation lengths after expansion of the clouds are inversely proportional to the
cloud size (see paragraph 1.3.2.3), we expect the correlation volume to be pancake-
shaped. Once projected on the detector, that leaves another cigar shape. The axis
of the magnetic trap have an angle of 50◦ with those of the delay-lines, and con-
sequently the cigar-shaped bunching should appear rotated in respect to the axis of
the detector.

If we observe the figure, this is indeed what we see. Furthermore, the bunching
seems to be both higher and larger at lower temperatures, just like we stated in
paragraph 1.3.3.1. The cigar shape of the coherence area does not respect the
aspect ratio of 20 of the trapped cloud. This problem is related to the limiting
resolution of the detector, and is precisely the reason why we do not observe a
bunching height of 1. This also means that the observed bunching width along the
x axis should barely change with the temperature.

The view of this Figure 3.7 makes it possible now to understand over which
coherence area the previously shown time correlations have been averaged. We
stated previously that the temporal pair correlation displayed had been averaged
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over a certain number of couples (∆X ,∆Y ) in order to increase the signal to noise
ratio. The couples effectively used are displayed in Figure 3.8. In comparison to
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Figure 3.8: The black area correspond to the coherence area over which all the temporal
correlation signals have been averaged. The anisotropy of this area is to adapt it to the effec-
tive anisotropic coherence area. In total, 10 spatial separations are used, increasing by

√
10

the signal to noise ratio in the various curves. They correspond to the couples (∆X ,∆Y ) ∈
{(0,0),(1,0),(0,−1),(1,−1),(2,−1),(1,−2),(2,−2),(3,−2),(2,−3),(3,−3)}.

Figure 3.7, we note that all those pixels have been chosen within the anisotropy of
the bunching. The total noise evolves with the square root of the number of pixels,
whereas the signal increases as a linear addition of the bunching signal for each
couple (∆X ,∆Y ). As long as the correlation pixels averaged are chosen near the
centre of the bunching, the averaging increases the signal to noise ratio. When the
additional contribution to the quantum bunching is smaller then the additional con-
tribution to the noise, the averaging over the additional pixels dereases the signal to
noise ratio. Consequently, as soon as the correlation pixels are chosen too far from
the centre, where the bunching signal is smaller, the signal to noise ratio decreases.
We note that in all cases the observed bunching height is decreased through this av-
eraging procedure. Consequently, the real bunching heights measured are not those
displayed in Figure 3.6. The heights can only be extracted from an appropriate fit
of the XY -correlation.

3.1.4 Measurements

The expected bunching height we have mentioned in Chapter 1 has been calculated
considering a resolution that is both homogeneous and gaussian. In Chapter 2 we
have seen that although the resolution function can be well approximated with a
gaussian, it is not. The error on the area made by the gaussian fit approximation is
13%, and this error affects the bunching height in at least an equivalent amount.

In order to make some meaningful measurements on the data, we will measure
correctly the normalised resolution function of the detector. We will then see how
this resolution function affects the bunching. Then we will perform some measure-
ments and discuss the results.

Note that the following analysis has not been performed identically in [17]. In
that article we had a simpler approach, that provides similar results though. Also
the quantity of data used here is 30% larger than presented in [17].
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3.1.4.1 The Resolution Functions

In the previous Chapter we have seen that the resolution depends on the position
as much as on flux characteristics. The real resolution that influences our Hanbury
Brown and Twiss measurement is therefore not the average resolution of the detec-
tor surface, as we have studied previously, yet rather the average resolution over
our cold time-of-flights. Officially, even this is insufficient though. The correlation
procedure is not sensitive to the average resolution weighted with the density, yet
rather to the average resolution weighted with the density squared. We can obtain
this distribution relatively easily. We correlate the atoms, and if two atoms are
situated in a small correlation volume, their respective time sum are added to the
squared density time sum distribution.

Futhermore, the use of a gaussian function to fit the resolution is inappropri-
ate. The use of such a fit leaves out up to 13% of the Time Sum distribution area.
Those 13% are concentrated in the wings of the Time Sum distribution, that due to
their large extend, lower the measured bunching height. If we simply use the fitted
gaussian as the resolution function, we will overestimate the expected bunching
by 13%. We therefore require a more accurate analytical description of the ex-
perimental resolution distribution. As gaussians are convenient to our theoretical
description, we decided to use the sum of three gaussians:

fresol(∆x) =
1

∑i=1,2,3

√
2πAiσi

∑
i=1,2,3

Aie
− ∆x2

2σ2
i (3.1.5)

Note that this is the two-particle resolution function. Futhermore, the use of ∆x as
a variable should not hide the identical role of both the y and x dimension in this
measurement. We proceeded to the fit by fitting the wings with the first gaussian of
amplitude A3 and root-mean-square width σ3. We fix those parameters in a second
fit in which we add the second gaussian of free parameters A2 and σ2, and we also
fit a more central part of the distribution. Finally we add the third gaussian with
parameters A1 and σ1, fix the parameters of the other two gaussians, and fit the
entire distribution. Figure 3.9 shows the normalised Time Sum distribution for the
time-of-flights at 0.61µK fitted with the three gaussian sum.

The fitted values we obtain at 0.61 µK are respectively A1 = 0.79, A2 = 0.198
and A3 = 0.014 for the amplitudes, and σ1 = 278 µm, σ2 = 576 µm and σ3 =
1178 µm for the standard deviations. At 1µ K, the resolution is measured to A1 =
0.82, A2 = 0.164 and A3 = 0.017 for the amplitudes, and σ1 = 265 µm, σ2 =
578 µm and σ3 = 1121 µm for the standard deviations. Finally, at 1.48 µK the
resolution is described by A1 = 0.95, A2 = 0.05 with σ1 = 255 µm and σ2 = 706 µm
(A3 is negligible). It seems from this measurement that the hotter clouds show
better resolutions, as the local particle flux was lower.

The correctness of the Time Sum procedure is not yet demonstrated. We have
established in Appendix 1, that this measurement is at best equivalent to the reso-
lution measurement. But we do not really measure the resolution. We will there-
fore introduce an adjustment parameter γ, that scales all the standard deviations
σ′

i = γσi. As long as γ ≃ 1, the final measured time sum function should not be
too far from the real double atom resolution function. The measurement of this
parameter will give us also a final indication as to the validity of the Time Sum
method.
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Figure 3.9: The correlated Time Sum distribution for the clouds at 0.61µK. The mea-
surement of this distribution through a three gaussian sum is relevant for the use in the
spatial fitting procedure. Equivalent distributions are produced and fitted for the other two
temperature samples.

The measured correlation is the convolution between g̃(2) and the two atom
resolution function:

g̃
(2)
expected(∆x,∆y,∆z) = fresol ⊗ g̃(2)(∆x,∆y,∆z)

= 1± 1
(∑i=1,2,3 Aiσ

′
i)

2 e
− ∆z2

l2z ∏
α=x,y

∑
i=1,2,3

Aiσilα
√

2σ′2
i + l2

α

e
− ∆α2

2σ′2
i

+l2α (3.1.6)

We can now use this function to fit the various results. In particular we use the
function:

b′measured(∆z) = h′e
− ∆z2

l′2z (3.1.7)

as explained previously to fit the temporal axis. The value of h′ obtained through
this fit is not physically significant. As the histogram has been averaged over the
coherence area for higher signal to noise ratio, the value of h′ does not reflect
directly the bunching height.

We fit the 2-dimensional histograms previously detailed through the function:

bmeasured(∆x,∆y) =
h

(∑i=1,2,3 Aiσi)2 ∑
i=1,2,3

Aiσie
− ∆x2

2γ2σ2
i ∑

i=1,2,3

Aiσie
− ∆y2

2γ2σ2
i
+l2y (3.1.8)

This function has as free parameters γ the resolution factor, ly the correlation length
along the y axis, and h the bunching height. The correlation length along the x axis
is expected to be small compared to γσi and is therefore fixed to zero.

3.1.4.2 The Correlation Lengths

In Figure 3.10 we have plotted the results of the fit measurements. The first graph
we will consider is in Figure 3.10C. In this graph we have plotted the results
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Figure 3.10: The results provided by the free parameters from the 1-dimensional, and 2-
dimensional fitting procedures. The indicated error bars are the root-mean-square errors
provided by the fitting procedure. In A is plotted the fitted correlation lengths along the z

axis. In B is plotted the fitted correlation lengths along the y axis. In C is plotted the resolu-
tion factor that accounts for the eventual inadequacy between the resolution measurement
by the Time Sum method, and the effective resolution influencing the bunching width. In
D has been plotted the measured bunching heights. The theoretical curve has been chosen
to correspond to the bunching height as resulting from the resolution functions measured
for the 1 µK sample.
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of γ. This resolution factor emerges essentially from the x axis fitting of the 2-
dimensional bunchings presented in Figure 3.6. They translate the ratio between
the two particle resolution as measured on the bunching width, that is mainly deter-
mined by the resolution on the x axis, and the two particle resolution as measured
through the Time Sum method. The black line represents the statistical average of
those three measurements, and is equivalent to 1. This means that the Time Sum
seems to present coherent results as to the resolution measurement, and confirms
this method as an excellent tool for monitoring the resolution.

The next two graphs that deserve attention are in Figure 3.10A and 3.10B. In
those graphs we have plotted respectively the fitted correlation length along the z

and y axis. The former have been obtained on the data presented in Figure 3.6,
whereas the latter have been obtained through the 2-dimensional fit. Note that the
measurement of the latter also depends on the integration of the resolution function.
The fact that the resolution factor provides us with satisfactory results gives us
high confidence in those correlation length measurements. We can consequently
conclude that the experimental measurements coincide within error bars with the
theoretical black curves defined by lα = ~ωαt0√

mkBT
.

Finally we draw the attention to the graph presented in Figure 3.10D, that plots
the 2-dimensional fitted bunching heights for the three temperatures. The black
curve plotted is the theoretically expected bunching height considering the three
gaussian resolution function as found for the 1.03 µK sample. Although the two
higher temperature’s bunching heights are in good agreement with the expecta-
tions, the 0.61 µK data point is several error bars off the theory. Although no
proper study has been carried out yet in the full understanding of this phenomena,
this could have to do with the interactions during the expansion of the cloud.

The results of nearly all these measurements have a strong relation with the res-
olution of the detector. We can avoid this dependence if we measure the bunching
volume.

3.1.4.3 The Bunching Volume

The measured correlation bunching results from the convolution of the Hanbury
Brown and Twiss effect and the resolution functions. This convolution strongly
changes both the measured correlation lengths as well as the bunching height. Yet
as the resolution function is normalised, the volume of the initial bunching is con-
served. A more physical way of saying so would be to consider that the finite
resolution smears out the bunching over a larger area, but does not change the
number of correlated atoms. Consequently the bunching volume is independent of
the resolution. Only the signal to noise ratio of its measurement is affected by it.

The resolution on the experiment is not constant, as we have seen in the previ-
ous chapter. It depends for instance on the particle rate, local saturation processes
and the spatial distribution of the atoms. Also the measurement method of the
resolution is imperfect, and can induce errors in the interpretation of the results.
The measurement of the bunching volume on the other side is independent of any
experimental conditions, and does not depend on any resolution model.

The easiest way of measuring the correlation volume is by integrating the nor-
malised correlation function over the coherence volume. The results of this proce-
dure has been plotted in Figure 3.11. The black circles correspond to the integrated
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Figure 3.11: The measured correlation volumes. The black circles correspond to a basic
integration of the bunching in the 3-dimensional normalised pairs histogram. The error
bar correspond to the integrated error on those pairs. The gray triangles correspond to
the integrated fitting functions, using the fitted parameters. The error bars result from a
statistical sum of the error bars of those fitted parameters. The black curve corresponds to
the resolution independent theory.

bunching signals. The measured signal to noise ratios are in increasing order of
temperature respectively 10.3, 9.8 and 6.94.

The gray triangles correspond to the integration of the earlier defined fit func-
tion, introducing the fitted parameters displayed in Figures 3.10, as well as the
earlier defined resolution parameters. We note that the results of this operation fit
very well to the simply integrated results, except for the 0.61 µK sample. The er-
ror bars are higher as the error bars of the various used parameters were supposed
independent. Through the use of a fit procedure, this is not true, and the gray error
bars are consequently overestimated.

Finally the black curve corresponds to the theoretical formula:

V (T ) =
√

π
3
lxlylz (3.1.9)

We note that this volume does not depend on the resolution We note that the exper-
imental results fit within the error bars to the theoretical values.
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3.2 Bose-Einstein Condensate

We have just shown that the statistical disorder in a thermal gas induces quantum
correlations, and that we are able to show them. In the case of a Bose-Einstein
condensate, the situation is completely different. All the atoms have the same
wave-function, and consequently have the same density and momentum distribu-
tion (if we do not consider interactions, else see [70]). A Bose-Einstein condensate
is a coherent object, as all the atoms are in the same quantum state. This results not
only in a completely different second-order correlation function, but also has in im-
portant impact on the way the experiment can be performed, and the interpretation
that can be given to the results.

We will study briefly how the concept of the condensate influences the corre-
lation measurement and we will have a look at the data we acquired. Then we will
study the way we circumvented some technical difficulties raised by the acquisition
of the Bose-Einstein condensate and we will finally discuss the results.

3.2.1 The Condensates

The properties during the expansion of a Bose-Einstein condensate are completely
different from those of a thermal gas. We will discuss what those properties are,
how they influenced the way we acquired the data, and finally how they lead to a
saturation of the detector.

3.2.1.1 Finite Size

In a thermal gas, the kinetic energy is isotropically distributed through thermali-
sation. Even though the initial shape of the cloud can show a strong anisotropy
due to an anisotropic trapping potential, the final density distribution of a thermal
cloud after a long time-of-flight reflects the initial momentum distribution that is
isotropic. For a Bose-Einstein condensate it is a different story.

As we have seen before, all atoms are in the fundamental eigen-state of the
trapping potential. The associated eigen-state wave function inherits from the ge-
ometric properties of the trap, and the trapped Bose-Einstein condensate is cigar
shaped. All the atoms have the same momentum distribution. When the atoms
are released from the trap, they all leave with the same momentum distribution.
The reason why they will not all hit the detector at the same time and position,
is because this momentum distribution has a certain width defined by the initial
confinement parameters. The higher the confinement, or trapping frequencies, the
larger the momentum distribution. If the trapping potential is anisotropic, then
so is the initial momentum distribution, and the cigar shaped cloud evolves into a
pancake shape.

All the atoms remain in the phase-space cell defined by the initial cigar and the
final pancake. This cell is elementary and therefore very small. What we are look-
ing for are the correlations of the atoms within this single elementary phase-space
cell. What we would like to demonstrate is the coherence of the atoms over the
total limited size of the final condensate. This is intrinsically problematic as error-
bars at the edge of the condensate diverge. We must state consequently that even
in the best case scenario, the result of the second order correlation measurement of
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the Bose-Einstein condensate in this time-of-flight scheme is intrinsically subject
to debate.

We have not considered here the interactions between the atoms. These add an
additional difficulty to the analysis.

3.2.1.2 Density and Interactions

The thermal clouds with which we have worked are nearly perfect gases. This
means that the atom-atom interactions lead to thermalisation, but induce no macro-
scopic properties. This consideration is only true as long as the interaction energy
4π~

2a
M

ρ2 (with a the scattering length, ρ the atomic density and M the atomic mass)
is small compared to the thermal energy kBT . The Bose-Einstein condensate corre-
sponds to a macroscopic population of atoms in the most dense of all eigen-states,
of ground state energy 3~ω/2, with ω the mean trapping frequency. Depending on
the number of atoms in this ground state, and thus on the density, the mean field
effect of the atomic interactions can no longer be neglected.

This mean-field produces an equivalent pressure that compensates the trap-
ping potential and goes as the square of the number of atoms in the Bose-Einstein
condensate. This has as a direct consequence that the size of the Bose-Einstein
condensate in the trap depends on its number of atoms. At switch off, during the
first phase of the expansion of the Bose-Einstein condensate, the interactions can
no longer be neglected and the mean-field energy is converted into kinetic energy.
This energy conversion increases further the size of the Bose-Einstein condensate
after expansion. Finally, the size of the Bose-Einstein condensate after expansion
depends on the number of atoms, over which we have currently little experimental
control.

This point is particularly problematic for the analysis. We discussed before that
small fluctuations, not in the amplitude but the shape of the clouds, induce imper-
fections in the normalisation procedure. With the experimental atom fluctuations
we have, it is extremely difficult to acquire a large number of time-of-flights that
have the same characteristics. Consequently, besides the finite size restrictions,
we have to deal with an imperfect normalisation procedure due to the cloud size
distribution.

3.2.1.3 Saturation

As we just mentioned, the density of the Bose-Einstein condensate is an order of
magnitude larger then the density in a thermal cloud. This is still true after expan-
sion. This raises the problem of the local saturation of the micro-channel plate. We
have seen in the previous chapter that the maximum local flow is 82 kcounts/cm2/s
before saturation of the micro-channel plate. A condensate of typically 10 katoms
produces atomic flows of typically 800 katoms/cm2/s. This amounts far above the
detection possibilities. We will therefore expect a saturation of the detection, that
affects the temporal signal severely. This will limit even more the analysis of the
Bose-Einstein condensate as we will see a little further.
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3.2.1.4 The Data

Bose-Einstein condensates do have some advantages however. The main advantage
that we already have mentioned in the previous section is the influence of its char-
acteristic shape on its detectability. If we produce a Bose-Einstein condensate with
a small uncondensed thermal cloud, it is extremely easy to separate the condensed
fraction from the thermal cloud. As the density of the Bose-Einstein condensate is
much higher, we can in particular neglect the part of the thermal cloud that over-
laps with the Bose-Einstein condensate. We therefore do not need to acquire pure
Bose-Einstein condensates, and that was an experimental simplification.
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Figure 3.12: A typical cloud as acquired and used for the analysis of the Bose-Einstein
condensate second order correlation. The left graph shows the arrival time distribution. The
right image displays the image. We can distinguish clearly the dense regions corresponding
to the Bose-Einstein condensate. We cut the data of the Bose-Einstein condensate out of the
3-dimensional picture. The much lower densities of the background thermal gas remaining
inside the Bose-Einstein condensate region are negligible.

We acquired 1500 time-of-flights, some of which still had some noticeable
thermal fraction. Figure 3.12 shows a typical time-of-flight as acquired in this
process. Practically, we will use the 3-dimensional properties of the detector to
extract only the Bose-Einstein condensate out of the time-of-flight for analysis.

3.2.2 The Analysis

Initially, the analysis performed on the Bose-Einstein condensates was identical to
the analysis applied to the thermal bosons. The problem was the normalisation.
A different strategy was to be followed. We will outline first the difficulties we
encountered. Then we will discuss the solution we adopted.

3.2.2.1 Saturation

The analysis of the Bose-Einstein condensates suffers two mayor difficulties. On
one hand we have the inhomogeneous detection efficiency, that shows a detectivity
hole in the middle of the Bose-Einstein condensate. On the other hand we have the
saturation of the micro-channel plate, that strongly deforms the temporal signal.



136 CHAP 3 - THE RESULTS

Figure 3.13 shows how strongly the time-of-flight of a Bose-Einstein condensate is
affected by the two phenomena. In the left figure, we can see the image of a Bose-
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Figure 3.13: Another time-of-flight as acquired for the Bose-Einstein condensate correla-
tion measurement. In the left graph, the image of the acquired Bose-Einstein condensate
shows distinctly a hole in the middle of the cloud. The oval drawn corresponds to the shape
the cloud is supposed to have. The right image displays the cloud density projected on the
Oty plane. Along the y axis, we retrieve the detectivity hole of the detector. But along
the t axis, the cloud also does not fill up the oval region that corresponds to the theoretical
shape. This is due to the saturation of the detector. We can distinguish clearly that at the
early arrival times, the atoms are detected. Then the electronic depletion of the micro-
channel plate drastically reduces the detectivity, and the cloud is no longer symmetric with
respect to the 308.3 ms arrival time.

Einstein condensate on the detector. Whereas the theoretical shape should have
been oval like, the quantum gas seems to be separated in two parts. Eventually,
one half seems far less intense then the other one. This results directly from the
detectivity map shown in the previous chapter. Note that this effect is not specific
to the Bose-Einstein condensates.

In the right figure has been plotted the long axis of the Bose-Einstein con-
densate versus the arrival times of the atoms. We distinguish clearly the arrival
front of the cloud, yet after this arrival front the detector saturates. The root-mean-
square time-width of the cloud is consequently in the order of some milliseconds.
The average arrival time, in respect to the theoretical 308.3 ms, also evolves in
the millisecond scale depending, on the position. The detected density distribu-
tion depends strongly on the number of atoms in the Bose-Einstein condensate.
Consequently none of the detected Bose-Einstein condensates are alike and the
normalisation procedure will fail as we will see.

3.2.2.2 Problematic Normalisation

In order to understand a little better why the normalisation procedure is to fail, we
will study some of the correlation function properties. We will neglect any quantum
statistical behaviour, and we will simply consider the normalisation procedure of
the correlation of various density distributions. Those density distributions ρ have
a spatial dependence essentially in y, a time dependence in t, and will also change
with the realisation i. We can therefore write ρ(y, t, i). If we write the averaging
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procedure over the variable x of quantity Q(x) as 〈Q(x)〉x, we can note that for two
independent variables x and y we have 〈〈Q(x,y)〉x〉y = 〈〈Q(x,y)〉y〉x = 〈Q(x,y)〉x,y.
The previously used normalisation procedure can then be considered proportional
to:

g̃(2)(τ) ∝
〈ρ(y, t, i)ρ(y, t + τ, i)〉y,t,i

〈〈ρ(y, t, i)〉i〈ρ(y, t + τ, i)〉i〉y,t
=

n(τ)

d(τ)
(3.2.1)

If there is an inconsistency of the density distributions between the various realisa-
tions, this normalisation fails. As the correlation will be performed on the temporal
variable, we can expect different influences of the temporal and spatial fluctuations
of the densities on the normalisation. Let us consider a simple model of our Bose-
Einstein condensates samples, that will bring understanding of the various cloud
characterisics that influence this normalisation.

We will consider each Bose-Einstein condensate density distribution as some
simple statistical sample, in such way that n(τ) and d(τ) are two gaussian distri-
butions. If they have respectively as width σn and σd , then we can approximately
express the half-width half-maximum of the correlation function σg as:

σg =
σn

√

1−σ2
n/σ2

d

(3.2.2)

In the ideal situation, the normalised correlation function should be flat, and there-
fore the half-width half-maximum be infinite. This corresponds of course to σn =
σd . We will now extract from the individual cloud properties the expressions of σn

and σd , and see that they are not equal for our Bose-Einstein condensates.
For each cloud realisation we will define the average arrival time T (y, i) =

〈tρ(y,t,i)〉t

〈ρ(y,t,i)〉t
that has as standard deviations σi

T (y) and σ
y
T (i). The latter is to be distin-

guished from the cloud’s temporal width st(y, i), that has as a standard deviations
σi

st
(y) and σ

y
st (i).

The width of the correlation 〈ρ(y, t, i)ρ(y, t +τ, i)〉t is
√

2st(y, i). Once averaged

over position and realisations, this amounts up to σn =
√

2
√

s2
t +(σi

st
)2 +(σy

st )
2.

On the other hand 〈ρ(y, t, i)〉i has a width of
√

s2
t +(σi

T )2. This multiplies with
√

2

once correlated and finally σd =
√

2
√

s2
t +(σi

T )2 +(σi
st
)2 +(σy

st )
2. Note that we

do not retrieve σ
y
T in the latter width, that shows that only the differences between

the realisations have an impact. The difference lies solely in the term (σi
T )2, that

should compare small to the others if we want the normalisation to be successful.
This means that the average arrival time, as a function of y, should not vary between
the various realisations.

If we analyse the data in order to extract some typical values, we obtain a typ-

ical cloud width of st(y, i) = 1.32 ms with
√

(σi
st
)2 +(σy

st )
2 = 0.54 ms. Yet on

the other hand we have an arrival time distribution width of σi
T = 1.66 ms. Con-

sequently the expected half-width half-maximum for the normalised correlation
function is as low as 2.7 ms. Previously we have studied a thermal bunching of
5% over 200 µs. For the Bose-Einstein condensate we will see a 50% evolution
over 2.7 ms of the correlation function even without any quantum behaviours. This
means that the fluctuations of the normalised correlation function for the Bose-
Einstein condensates due to the imperfect normalisation procedure are as large as
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the quantum bunching we have been observing. Under those circumstances, it is
impossible to show that the Bose-Einstein condensate does not show a bunching ef-
fect, as we will not be able to distinguish the normalisation error from the eventual
bunching signal.

3.2.2.3 Solution

The solution lies for sure in the annihilation of σi
T . This can be done fairly easily as

illustrated in Figure 3.14. For each Bose-Einstein condensate, projected as earlier
on the y axis, we only consider the part of the Bose-Einstein condensate with y >
−5 pixels. This is to get rid of the problems induced by the detectivity hole. We
simply keep the larger part of the signal. We then cut the cloud between y = −5
pixels and y = 80 pixels into 8 slices. For each slice we determine the average
arrival time T (y, i), as well as the root-mean-square cloud width st(y, i). We can
then fit T (y, i) in function of y with a second order polynomial as shown in the left
graphs of Figure 3.14. In those graphs have been displayed the density distributions
ρ(y, t) for three different realisations. The centres of the dark-gray crosses indicate
the average arrival times measured in function of y, the vertical length of the cross
indicates the error-bars. This error-bar is taken into account during the fitting of
the black lined polynomial.

The polynomial value with corresponding y is subtracted for each atom from
its temporal coordinate, and 307 ms is added. The time-of-flights hence obtained
have been displayed in the right graphs. Consequently T (y, i) is the same for any y

and i, and σi
T = 0 ms. The normalisation should perform much better.

We still have to debate the relevance of this method though. Although we
merely focus on the temporal correlation behaviour of the Bose-Einstein conden-
sate time-of-flights, and that a temporal translation does not affect the correlation,
we will average over the same coherence area as previously. This induces an av-
erage temporal shift over the coherence area of Ts = 140 µs. This value has been
obtained by averaging over all the time-of-flights, and by averaging over the entire
condensate. If some quantum phenomena produces a temporal correlation that has
a typical time scale small compared to this time shift, then the shift will smear out
the correlation. If the correlation is much longer then the time shift will have little
effect.

If we consider that the eventual correlation is gaussian along the time axis
t, with a correlation length lt , and is constant over the coherence area, then the
dimming effect of the time shift d(lt) can be simply expressed by:

d(lt) =
lt
√

π

Ts

er f

(

Ts

2lt

)

(3.2.3)

In Figure 3.15 we have plotted the attenuation factor due to the time shifts
as expected for a gaussian temporal bunching. We have plotted the graph in the
spatial coordinate z in order to be consistent with previous calculations. We note
that as long as the eventual correlation length is larger then 200 µm, the bunching
should remain visible. Considering that at 0.5 µK, the z axial correlation length for
a thermal gas is 1 mm, this shifting operation seems reasonable.
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Figure 3.14: The left graphs show the density distributions projected onto the Oyt plane
of three different Bose-Einstein condensates. For each time-of-flight, the average arrival
time as a function of y is fitted through a second order polynomial. The arrival times of
the atoms are then shifted as a function of y, in such manner that it straightens the fitted
polynomial. The density distributions resulting from this procedure have been displayed
in the right graphs.
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Figure 3.15: This curve indicates the eventual additional bunching reduction that has to be
considered due to the time shift procedure. It shows that despite the procedure, we could
still easily detect correlation lengths along the z axis above 200 µm.

3.2.3 The Result

In Figure 3.16 we have plotted the result of the temporal correlation function. We
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Figure 3.16: The result of the second order correlation measurement along the z axis for
a sample of 1500 Bose-Einstein condensates. The function remains effectively flat up to
10 mm before the limitations of the analysis procedure induce uncontrolled fluctuations.

see that the correlation function is flat up to 6 mm. Actually, the correlation re-
mains flat up to 10 mm after which we reach the the limits of this analysis. That
means that we cannot study the coherence of the condensate above those corre-
lation lengths. In this sense the work performed by [31] is very complementary,
eventhough they consider quite different temporal correlations. Their methods al-
low for a study of the coherence properties over much longer times scales. The use
of a radio-frequency outcoupler makes it possible to get beyond the finite size limit
we have necessarily in this time-of-flight method. On the other hand, we have been
able to show that the condensate shows no correlations within the typical thermal
bounds.
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3.3 Thermal Cloud of Fermionic Atoms

Early 2006, the group of Atomic Physics of the Vrije Universiteit obtained, through
the leading of W. Vassen, the first degenerate Bose-Fermi mixture of metastable
atoms. With our recent success of the measurement of the Hanbury Brown and
Twiss effect on 4He, this was an excellent opportunity to measure the Hanbury
Brown and Twiss for the fermionic 3He. Although the Amsterdam setup has never
been specifically designed to receive a detector as large as our delay-line detector,
it happens that there was just the space to add the detector. This led to a our fruitfull
collaboration.

We will discuss first of all how this collaboration has worked out effectively,
and brought to the acquisition of the data. Then we will briefly discuss the results
of the acquisition. Finally we will study the measurements we have been able to
perform.

3.3.1 The Acquisition

The acquisition of the fermionic data has taken place in Amsterdam. Consequently
the experimental setup required some preparation in order for the detector to fit.
We will oversee briefly how we have prepared this collaboration. Then we will
detail some characteristics of the experimental setup in Amsterdam, and in the way
they differ from the Orsay setup. Then we will study briefly the data we acquired.

3.3.1.1 Preparation

In order to implement the detector to the setup, it required a new vacuum chamber.
The chamber that is currently used in Orsay did not fit in the mechanical support of
the Amsterdam 3He experiment. We therefore designed a new chamber that would
receive a turbo-pump as well as an ion pressure gauge.

The Amsterdam team installed a vacuum valve at the lower part of their setup,
to which the detector chamber would be attached. The use of the valve would sim-
plify greatly the installation as no baking of the upper chamber would be neces-
sary. Only the detector chamber would require some minimal baking. The pressure
in this lower chamber could have some defects as the pumped chamber was also
separated from the trapping chamber by two additional turbo-pumps. We could
consequently open up the detector chamber after only 3 days of baking at some
100◦C.

We had moved the detector by truck from Orsay, as well as some electronic
equipment. The latter included all the necessary electronics for the detection scheme:
constant fraction discriminator, voltage supplies, time-to-digital converters, acqui-
sition computer. The time-to-digital converter and the computer were synchronised
to the driving system of the Amsterdam 3He experiment. The acquired data was
send to the server in Orsay for analysis. At that point, besides some severe back-
ground noise on the micro-channel plate, the detector was ready for acquisition.

3.3.1.2 The Experimental Setup

The Amsterdam 3He experiment experiment has many similarities to the Orsay
4He experiment. Only the technical implementations differ. We will see in a first
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time the fundamental consequences of working with the isotope mixture. Then we
will discuss some particularities of the Dutch time-of-flight in terms of magnetic
fields, and we will address some additional technical instabilities.

The Isotope Separation The 3He is cooled sympathetically by the 4He, yet we
only want to observe the 3He. The micro-channel plate based detector does not
distinguish the two species, and therefore we need to clean the mixture from the
4He before we let it drop. Let us consider some of the trapping properties of the
two species.

The Landé factor for the employed 23S1 |1,+1〉 4He state is gJ = gS ≃ 2.002.
The Landé factor for the trapped 23S1 |3/2,+3/2〉 3He state is gF = 2

3 gS + 1
3 gI ≃

1.335. This has as a consequence that the magnetic potentials seen by the two
atoms, provided respectively by µBgJmJB and µBgFmFB, are identical. They do
not have the same mass though, and consequently the trapping frequencies of the
3He atoms are

√

4/3 times larger than those of 4He, and the fermions are more
confined. On the other hand, the two isotopes have the same temperature in the
mixture, and consequently the velocity of the 3He atoms also scales

√

4/3 times
larger. Finally, at high temperature, both end up with the same density distribution.

Although at first sight the magnetic and kinetic properties of the two isotopes
seem alike, we can still use a simple radio-frequency knife in order to extract the
4He from the mixture only. The radio-frequency ramp couples the magnetic sub-
states of the atoms. Hence the 4He is transfered from the trapped state |1,+1〉 to
the non-trapped |1,0〉 state. The 3He is transfered from the trapped |3/2,+3/2〉
state, to the also trapped |3/2,+1/2〉 state. This state switches to the non-trapped
|3/2,−1/2〉 state. The energy quanta associated to those two transitions are respec-
tively hν4 = µBgJ(1− 0)B and hν3 = µBgF(3/2− 1/2)B. The ratio consequently
amounts to ν3/ν4 = gF/gJ ≃ 0.667. This induces that during the radio-frequency
evaporation ramp, essentially the 4He atoms get coupled, as the 3He atoms get
cooled down sympathetically by the bosons before the radio-frequency knife can
reach the fermionic population. The loading of the magnetic trap therefore requires
significantly more bosons than fermions.

In particular, at the centre of the trap, the magnetic field is non-zero as that
would induce spin flip losses. The magnetic bias field we worked with in Am-
sterdam was 0.75 G, inducing centre trap coupling frequencies of respectively
ν4 = 2.1 MHz and ν3 = 1.4 MHz for 4He and 3He. Using a radio-frequency ramp
that goes down to ν4 ensures consequently the complete depletion of bosonic he-
lium atoms in the trap. The fact that the frequency difference ν4−ν3 = 0.6 MHz is
much larger then kBT/h ∼ 21 kHz at the temperatures we work ensures us that the
fermionic thermal distribution is not affected by the radio-frequency ramp. Figure
3.17 illustrates this.

Practically the last radio-frequency ramp goes down from 3 MHz to 2 Mhz,
cooling down the mixture to micro-Kelvin temperatures as well as depleting the
4He atoms. The fact that those two operations are performed by a single ramp
implies that the mixture is not at thermal equilibrium at the end of the ramp. In
particular, once the 4He has left the trap, there is no reason for the cold 3He gas to
thermalise, as elastic collisions are forbidden. This means that we are not quite in
the theoretical situation we have described previously. We do not expect though to
measure any difference with the current signal to noise ratio.
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Figure 3.17: The splitting of the various magnetic substates of 4He∗ an 3He∗ in a harmonic
magnetic field with an additional bias field. In the experimental conditions, a 0.75 G
bias field produces a 2.1 MHz energy shift between the bosonic substates, whereas only
a 1.4 MHz shift between the fermionic substates. This makes it possible to empty the
magnetic trap of the bosons though the use of a radio-frequency ramp, without affecting
the fermionic population.

Switch Off Unlike the Orsay 4He experiment we do not detect a magnetic field
insensitive cloud. This is not only related to the fact that there is no magnetic insen-
sitive sub-state for 3He. The switch off of the magnetic field is not as sudden as on
the Orsay 4He experiment experiment, and we do not observe the same population
spreading over the various magnetic substates neither for 4He nor 3He. The 3He
atoms observed at the level of the detector remained in the same 23S1 |3/2,+3/2〉
state.

The logical consequence is that the cloud is affected by the magnetic fields dur-
ing the free fall. There are non-zero eddy currents that remain after the switch off,
producing magnetic fields. Magnetic field gradients produce a force on the atoms,
yet only localised second order field fluctuations change the statistical properties
of the cloud. Whereas the latter are unlikely, the time-of-flight is definitely affected
by the magnetic field gradients. This means that there is possibly a systematic error
on the temperature measurement.

More importantly, the various currents of the quadrupole and dipole coils are
switched off with a controlled 10 µs delay in order for the cloud to fall to the
detector. This does not simply mean that the magnetic fields have their importance
during the time-of-flight, but also that the switch off is not as adiabatic as we could
have hoped.

Additional Instabilities In addition, various unforeseen technical difficulties have
complicated the procedure of this enterprise. The first element to bring up difficul-
ties has been the micro-channel plate stack. We expected the 3 days of baking to
deal with the gases trapped in the stack. Practically, 3 weeks have been necessary
for the micro-channel plates to reach stability.

Also the freshly employed IsiTime02 time-to-digital converter is suspected to
having influenced the stability. Previously mentioned Time Sum maps, globally
stable over the Orsay acquisition period, have shown instabilities in Amsterdam.
It is not clear how those Time Sums have changed exactly, but the new time-to-
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digital converter has been the only new element in the acquisition chain. Eventual
electronic background noise had been measured to much lower levels then in Orsay
and can reasonably be eliminated as a cause. Though this undoubtly influenced
our resolution measurements, it is not clear whether the resolution itself changed
as well.

Also the bias field of the magnetic trap has shown significant fluctuations. This
influences directly the transverse trapping frequencies, that fluctuated up to 4%. A
post selection on the data therefore also had to be performed in order to guarantee
consistency in this issue.

An anecdote: even the outside temperature had some interesting effects on the
data acquisition. As we were taking data in July, we were in mid heat wave, and
unlike the Dutch norm, the weather was extraordinary. Sufficiently indeed for the
temperature regulator not to be able to cope with the temperature fluctuations. With
an additional high level of humidity, water condensed to the cooled water supplies
in the ceiling, and we have been literally taking data in the rain. This has eventually
contributed to a much larger stability of the experiment during the early morning,
and has shifted the acquisition hours accordingly.

3.3.1.3 The Data

Initially, we had foreseen 4 weeks of data acquisition in Amsterdam. Although we
ended up with doubling this period, the order of magnitude was correct, eventhough
at the cost of intensive acquisition periods. Two weeks have been necessary to get
both the detector installed and running, and for the setup to produce cold 3He
clouds. As soon as we had the first cold 3He clouds, and after a long night of data
acquisition, we had the first proof of the fermionic antibunching, right in time for
the ICAP conference. This produced the sufficient motivation to work on to the
improvement of the results, as well as the acquisition of 4He data. Finally data has
also been acquired with a defocusing laser beam, not presented in this manuscript.

We will first deal with the 4He data acquired. Then we will study the various
3He populations acquired.

The Dutch Bosons One of the desires had been to check again the bosonic
bunching behaviour in Amsterdam. Therefore we simply had to produce a cold
4He cloud, a step easier to produce then the mixture. Confident in our new time-to-
digital converter and its high acquisition rates, we acquired a large set of time-of-
flights. After analysis of the data, we surprisingly did not discover any noticeable
bunching. Later, data has been acquired at more reasonable acquisition rates, and
eventually a bunching showed up. The bunching height was yet not up to the ex-
pectations.

The data is not presented in this study as it definitely deserves closer attention.
The 4He and 3He suffer, despite their mass difference, essentially the same mag-
netic fields during the expansion. As the 3He as we will see, behaves correctly, the
effect cannot be explained by this alone. There is though a major difference be-
tween 4He and 3He: the first can have elastic collisions between undistinguishable
atoms, the second can not. The 4He cloud therefore suffers hydrodynamic expan-
sion at the beginning of the switch off. The thermalisation occurring during such
an expansion tends to cool down the cloud, but also to increase the apparent size
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of the initial cloud. Consequently the expectations, depending on the temperature
measurement, increase, whereas the effective bunching size decreases.

Although such a theory could explain the obtained results, it is still unclear
why this would have occurred in Amsterdam rather then in Orsay. Trapped atomic
densities were of the same order of magnitude, and even higher in Orsay in the
experimental conditions. The difference lies only in the switch off. In Amsterdam
we had this unusual delay between the various coils that could have produced non-
trivial expansions, and the atoms remain mainly in the same magnetic |1,+1〉 field
sensitive substate. In Orsay we worked with the atoms transfered to the |1,0〉
magnetic substate, at an early stage of the expansion. A thorough study would
therefore have to be carried out for comparison of those two situations in order to
fully explain the results obtained in Amsterdam. At least the density dependence
of this effect leads us to strongly suspect the non-linear interactions.

The Fermions Just like in the Orsay experiment, we have tried to address several
temperature groups. After a post selection, based on flux, detectivity topography
and bias field considerations, we were left with three distinct populations. The first
data sample is composed of 1139 time-of-flights and has an average temperature
of 0.53± 0.05 µK. The second population is composed of 1361 time-of-flights of
average temperature 0.99±0.06 µK. The last population is 2482 time-of-flights of
average temperature 1.4± 0.1 µK. In Figure 3.18 we have plotted the number of
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Figure 3.18: The dots represent the number of atoms versus the temperature for various
clouds belonging to the 0.53 µK and 0.99 µK populations. The black curve corresponds to
the Fermi limit considering a η = 0.15 detectivity. If this detectivity is of the right order,
this means we work with clouds having degeneracy parameters down to T/TF = 0.5.

detected atoms versus the temperature for the two sets of 0.53 µK and 0.99 µK
clouds. We have also plotted the Fermi temperature limit defined by:

kBTF = ~ω(6N)1/3 = ~ω
(

6N′/η
)1/3

(3.3.1)

considering a detection efficiency of η = 0.15. Although we are still not clear
about the detection efficiency, if η is indeed of this order, we have clouds with de-
generacy parameters down to T/TF = 0.5. This brings us to the consideration that
those clouds are not obeying to Boltzmann statistics any longer as we have been
assuming. Effectively, the difference between the measured temperature through a
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gaussian fit, and the real temperature would be 10%. The Fermi pressure enlarges
the cloud, and therefore the temperature is overestimated through the simple fitting
procedure. On the other hand, the initial cloud size is no longer as simply related
to the temperature as previously. Here the Fermi pressure also enlarges the cloud
size. If we consider the temperature fit as a simple cloud size measurement though,
the definition of T as the temperature might be wrong, but both errors compensate
and the theory defined previously remains correct as long as we also measure the
correlation length with gaussians. We will therefore stick to this simple theory for
those clouds. It must be added also, that attempts to measure the real tempera-
ture of the clouds through more advanced fitting schemes have failed. As we do
not know the detection efficiency with certainty, and that independent degeneracy
measurements do not give consistent results, this seems currently the better option.

3.3.2 Results

For the analysis, we proceeded in an identical way as for the 4He atoms in Orsay.
We can therefore advance directly to the observation of the results.

3.3.2.1 Temporal Correlation

The temporal normalised correlation functions for the three fermionic sets have
been plotted in Figure 3.19. We observe first of all the antibunching related to the
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Figure 3.19: The correlation functions of the various cold samples along the z axis. The
observed dips for small separations correspond to the antibunching Hanbury Brown and
Twiss effect. The black curves are the result of a Gaussian fit of the antibunchings. We
note that, as expected, both the antibunching depths and sizes increase inversely with the
temperature.

Hanbury Brown and Twiss effect applied to fermions. The correlation at ∆z = 0
should have been zero, yet just like for the bosons, the depth is limited by the reso-
lution of the detector. The correlation length is clearly longer for the lower temper-
atures, which induces indirectly also larger depths of the observed anti-bunching.
Those observations agree with out expectations (see paragraph 1.3.2.3).

3.3.2.2 Spatial Correlation

Again we use the position sensitivity of the detector to observe the spatial correla-
tions. The results have been displayed in Figure 3.20. First at all, at 0.53 µK, we
distinguish clearly the anisotropy inversion of the initial cigar-shaped cloud. We
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Figure 3.20: The spatial correlation functions of the various cold fermionic samples. The
observed spatial antibunchings are inversely anisotropic in respect to the trap densities.
The antibunching width is limited by the resolution of the detector, that also lowers the
antibunching height.

also observe the x axis bunching width, that is enlarged by the resolution function
of the detector. The other two correlations are not as clear. In particular the spatial
correlations for the 1 µK sample seems to be much thinner then the correlations
for the 0.53 µK clouds. The correlations for the 1.4 µK clouds do not even show
clearly the anisotropy inversion. We will perform some measurements in order to
quantify those deviations.

3.3.3 Measurements

In order to measure correctly, we need the resolution functions of the detector in
the various situations. We will expose the results of those resolution measurements.
Then we will analyse the correlation measurements we performed, and conclude
on the correlation volumes.

3.3.3.1 The Resolution Functions

Concerning the resolution function, we hoped for a better resolution in Amsterdam
as the time-to-digital converter we used had a smaller coding step, and also the
electronic environment was measured much cleaner then in Orsay. Experimentally,
this was not the case.

We use the same Gaussians sum function as previously. We then obtain A1 =
0.49, A2 = 0.48, A3 = 0.03 and σ1 = 244 µm, σ2 = 460 µm, σ3 = 1280 µm for
the 0.53 µK clouds. At 1 µK we measure A1 = 0.51, A2 = 0.43, A3 = 0.06 and
σ1 = 244 µm, σ2 = 460 µm, σ3 = 1290 µm. At 1.4 µK the parameters are A1 = 0.47,
A2 = 0.45, A3 = 0.08 and σ1 = 251 µm, σ2 = 481 µm, σ3 = 1280 µm.

The first observation is that those three resolution functions are roughly iden-
tical. This does not necessarily mean that the resolutions are identical. We have
noticed throughout the Amsterdam acquisition process that the Time Sum map was
not as stable as in Orsay. The limiting element may well be the Time Sum map,
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that has been taken identical for those three measurements.
Furthermore we note that the resolution is of the same order as in Orsay. Con-

sidering the fact that the effective particle rates used are much higher, we may
eventually attribute this to the rate dependence on the resolution. It is not clear
though whether this has to do with the more homogeneous detection efficiency
rather then the use of better electronics in a cleaner environment.

3.3.3.2 The Correlation Lengths

Through the use of the upper parameters for the spatial resolution functions, we
fit the various antibunchings. The results have been displayed in Figure 3.21. The
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Figure 3.21: The results provided by the free parameters from the 1-dimensional, and 2-
dimensional fitting procedures. The indicated error bars are the root-mean-square errors
provided by the fitting procedure. In A is plotted the fitted correlation lengths along the
z axis. In B is plotted the fitted correlation lengths along the y axis. In C is plotted the
resolution factor that accounts for the possible inadequacy between the resolution mea-
surement by the Time Sum method, and the effective resolution influencing the bunching
width. In D has been plotted the measured antibunching heights. the theoretical curve
has been chosen to correspond to the antibunching height as resulting from the resolution
functions measured for the 1 µK sample.

results of the fit confirm the observations made previously. The graph in Figure
3.21C shows the resolution factors γ. We note that at both 0.53 µK and 1.4 µK,
the resolution factor is smaller but still close to 1. For the 1 µK sample, the an-
tibunching width is half the resolution. Meanwhile the antibunching height, in
Figure 3.21D, is also higher than expected from the resolution, indicating that the
observed deviation could be explained effectively by a better resolution. For the
1.4 µK clouds, we measure a y axis correlation length shorter then the resolution,
confirming our previous observations. There is no proper explanation to this. Fi-
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nally only the temporal correlation lengths, shown in Figure 3.21A, are consistent
with the theory.

As the fitting method can be error prone, we will see how the correlation inte-
gration behaves.

3.3.3.3 The Bunching Volume

In Figure 3.22 we have displayed the measurements of the correlation volumes.
As previously, the black dots correspond to the correlation histogram integration
whereas the gray triangles correspond to the integrated fit functions, using the fit-
ted parameters. We observe that, unlike for the correlation lengths, the measured
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Figure 3.22: The measured anticorrelation volumes. The black circles correspond to the
absolute value of a basic integration of the bunching in the 3-dimensional normalised pairs
histogram. The error bar correspond to the integrated error on those pairs. The gray tri-
angles correspond to the absolute value of the integrated fitting functions, using the fitted
parameters. The error bars result from a statistical sum of the error bars of those fitted
parameters. The black curve corresponds to the resolution independent theory.

integrated antibunching volumes for the two higher temperatures behave according
to theory. Even the fitted correlation volume is still within acceptable error from
theory. We note though, that for the lowest temperature, the integrated volume is
several error bars off theory, whereas the fit seems to provide a consistent result.
The signal to noise ratios are respectively 20, 8.7 and 7 for the 0.53 µK, 1 µK and
1.4 µK samples.





Conclusion

Throughout this thesis, we have studied the experimental measurement of the Han-
bury Brown and Twiss effect with metastable helium atoms. We have started this
study by describing the Hanbury Brown and Twiss effect from a general and his-
torical point of view. We have then been quick to realise how cold atoms could be
an excellent candidate to its measurement, and we have dealt with some other in-
teresting experimental realisations. We then came to the description of the present
study, and after analysis of the particularities of the metastable helium condensing
setups, we have seen how those systems are particular good candidates to the Han-
bury Brown and Twiss effect measurement. We have finally provided the reader
with a simple, but complete theoretical model of the presented experiment, and we
have in particular established the signal to noise ratio.

The understanding of the signal to noise ratio has provided us with some key
characteristics necessary for the detection system in order for the measurement
to be viable. This has strongly oriented the choice of the detector. The use of a
micro-channel plate based delay-line detector imposed itself as the best solution.
We have studied thoroughly the implementation of such a detector, through the
entire acquisition chain. Finally we have focused on three mayor characteristics
as to the present and further studies. We discussed the detection efficiency, the
detection rate as well as the resolution of the detector.

The characteristics of detector showed clearly that the experiment was feasible
in terms of signal to noise ratio. Consequently, all we had to do was to acquire
the data. The last part of this thesis showed how we effectively succeeded in the
measurement of Hanbury Brown and Twiss effect. We have shown how the bosonic
4He atoms bunch together in an expanding thermal gas. We have even been able
to measure precisely the bunching volume and some correlation lengths. We have
shown to some extend, that the coherent Bose-Einstein condensate has no such
atomic bunching effect. Finally we have demonstrated that the fermionic nature
of the 3He atoms induces an atomic anti-bunching effect as two fermions cannot
occupy a same quantum state.

The interest of this present study lies not that much in the demonstration of the
Hanbury Brown and Twiss effect. Sure, the results presented have a particularly
high signal to noise ratio compared to previous studies, and the conceptual simplic-
ity of the experiment makes it a particularly illustrating realisation. Yet previous
studies should not be undermined, and fundamentally this present work brings little
news as to the Hanbury Brown and Twiss effect in physics.

The main interest of this work lies in the fact that it provides the scientific
community with an extremely powerful tool as to the analysis of quantum atomic
optics. We have seen throughout this thesis, that the detection system employed
has many lacks. In particular we have been regretting the inhomogeous gain, that
induced many non trivial detection effects, and that has not favoured the micro-
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channel plate local saturation as it forced us to work at high gain. This brought
ill problems as to the detection of Bose-Einstein condensates. The very recent im-
plementation of a new micro-channel plate stack build by a different industrial,
Hamamatsu Photonics, seems to provide much more encoureaging results. We
have also seen that the resolution is not up to the expectations. Other users of
similar detections systems pretend to have 100 µm resolutions. It is therefore not
excluded that progress can still be made on this side. Yet even with all its deficien-
cies, the combination of He∗ and a micro-channel plate based delay-line detector
system outperformed all the other cold atom experimental setups by the quality of
its signal to noise ratio, and the versatility of the clouds configurations it can work
with.

The high signal to noise ratio, the high resolution of the system, the large de-
tection area covering two optical recoils of the He∗ atoms, makes it possible to
perform individual particles correlations on a wide variety of physical systems.
Since the first publication of the results, new theoretical systems are proposed for
experimental study with this unique setup. In particular, during the ongoing of this
work, we have been able to study such a different system.

The experiment, that will be thoroughly desribed in the thesis of Aurélien Per-
rin who has been leading this work, consist of a mechanical collision between two
Bose-Einstein condensates. A condensate is divided into two parts that are each
accelerated optically to one photon recoil. The resulting differential velocity in-
duces collisions between individual atoms of both condensates. Those ponctual
collisions redistribute the momentum angularly between the two colliding atoms,
and as the condensates separate further on one axis, a collisional sphere is formed
containing all the collided atoms. The idea of the two particle collision mechanism
necessarily leads to the fact that if a particle is found at a certain angular position in
the collision sphere, its entangled counter part is heading in the opposite direction.
Thanks to the use of the delay-line detector, we have been able to experimentally
prove this particle correlation.

Even more interestingly, this experiment has brought us back to the Hanbury
Brown and Twiss effect. The Hanbury Brown and Twiss effect is often seen as a
quantum effect resulting from some thermal distribution. This can be in terms of
an optical classical light source, or in the presented study of a thermal gas. But the
Hanbury Brown and Twiss effect applies to any incoherent quantum phenomena. In
particular, the random angular distribution of the atomic pairs after collision is such
an incoherent quantum phenomena. This means that the angular distribution of the
atoms after the collision will obey Hanbury Brown and Twiss like statistics. Just
as previously in the thermal gas, the atoms are preferably grouped on the collision
sphere. We have demonstrated this effect experimentally.

What we currently have not yet been able to show, is that the Hanbury Brown
and Twiss effect applies to the atomic pairs rather than to the individual atoms of
the collision. Doing so would be an experimental prove of the quantum entangle-
ment of the two colliding atoms, and would project the metastable helium setup
right into the modern world of quantum optics. All tools are now ready for this to
happen.



Appendixes

In the Appendixes we propose to come back to several aspects of the position
sensitive delay-line detector. We analyse those specific points as they raised many
questions during the ongoing of this research.

The first Appendix deals with the resolution measurement we have been us-
ing extensively for the characterisation of the detector: the Time Sum method. It
proved some insight on the combination of the analogue delay-line with the digital
time-to-digital converter. It then makes understanding of the Time Sum method
straightforward, and a brief case study is proposed.

The second Appendix deals with the atomic reconstruction method. The four
signals provided by the delay-lines must be correlated in order to define the position
and arrival times of the atoms. The algorithm to do so is not universal, and we study
here our implementation. The understanding of this algorithm provides with some
insight as to the ultimate limitations of the delay-line technique.

The third Appendix deals with the characterisation we have performed of the
detector through the use of an Oscilloscope. The combination of a high perfor-
mance oscilloscope with the delay-line detector has provided us with some insight
as to the poor performances of the micro-channel plate stack. It also learned us to
appreciate the usual electronic acquisition chain.
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A.1 The Resolution Measurement

One of the major properties of the time-to-digital converter is that it discretises the
initially continuous time. This discretisation has little effect on the arrival times
of the atoms, as the physical times constants range much larger then the discreti-
sation time. Yet we also use those discretised times to establish the position on
the detector through the delay-line mechanism. The resulting pixels size is in the
200µm order, that can in no way be neglected compared to the expected 30µm cor-
relation lengths. We will therefore study in detail in this annex the effect of the
discretisation on the position definition.

We will proceed by first defining correctly the resolution of the detector. Then
we will see how, what we will call the Time Sum, enables the measurement of the
resolution. Finally, we will end with some real case studies.

A.1.1 Some Considerations

Let us consider a particle arriving at a time t at position (x,y). The time is in
seconds and the positions x and y are measured in meters from the centre of the
detector. Both x and y belong to the interval [−R,R] with R the radius of the micro-
channel plate. The electron shower of the micro-channel plate produces the various
pulses on the two delay-lines, and analogically the pulses arrive with a time tx1 =
t−x/vx +Cx1, tx2 = t +x/vx +Cx2, ty1 = t−y/vy +Cy1 and ty2 = t +y/vy +Cy2 at the
end of the delay-lines. vx and vy are the apparent speeds of the signals respectively
along the x and y axis through the winded delay-line. We recall that the delay-lines
have different lengths and thus vy 6= vx, yet they are relatively close and we will
consider them equal vy = vx = vc. Cx1, Cx2, Cy1 and Cy2 are different time constants
that can be determined experimentally (we will see a little further that they depend
on the position though).

The effective signal produced by the time-to-digital converter and send to the
computer are the number of clock cycles of time period dt that separate the signal
from the start trigger of the time-to-digital converter. This value is digital and we
can write:

X1 = E(tx1/dt) = E

(

t − x/vc +Cx1

dt

)

(A.1.1)

X2 = E(tx2/dt) = E

(

t + x/vc +Cx2

dt

)

(A.1.2)

Y1 = E(ty1/dt) = E

(

t − y/vc +Cy1

dt

)

(A.1.3)

Y2 = E(ty2/dt) = E

(

t + y/vc +Cy2

dt

)

(A.1.4)

where E(x) is the function that takes the highest lower integer value to the real x.
We note that Xi and Yi are dimensionless. They have to be multiplied with dt in
order to retrieve a temporal dimension. From now on we will work dimensionless
as it proves convenient.
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A.1.1.1 Number of Pixels

Let us consider a particle arriving at specific time t0 such that E( t0+Cx1
dt

) = t0+Cx1
dt

.

If we consider that N = E(2R/vc

dt
), then X1 = E(−x/vc

dt
) can have N possible values

depending on the position. The questions is, what are the number of values for the
pair (X1,X2) ?.

Suppose we have a detector for which E(Cx2−Cx1
dt

) = Cx2−Cx1
dt

, in that case X2 can
be simply evaluated to:

X2 =
t0 +C1

dt

+
Cx2 −CX1

dt

−X1 −1 (A.1.5)

In other words, X2 changes in the same fashion as X1, and there are only N possible
values for the pair as a function of x.

Yet if the particle arrives at t1 = t0 + τ with τ ∈ [0,dt [, X1 still has N possible
values evaluated to t0+Cx1

dt
+E(−x/vc+τ

dt
). But in that case we have:

X2 =
t0 +Cx1

dt

+
Cx2 −Cx1

dt

+E(
x/vc + τ

dt

) (A.1.6)

Depending on the value of x this can lead to either one, two or three different
values of the couple (X1,X2) for the same position but various τ. This has as a
consequence that the difference X2(x, t)−X1(x, t) can take effectively 2N different
values, and the pixels size sp is dtvc/2 rather then dtvc. This does not mean that the
resolution is the root-mean-square width of a single dtvc/2 pixel!

A.1.1.2 The Resolution

We define the resolution along the x axis as the root-mean-square width of the
distribution vc

X2−X1
2 −x. Experimentally we will rather measure the dimensionless

X2−X1− 2x
vcdt

distribution width. The relation between the two is simply a sp multi-
plication. The latter distribution has been drawn in Figure A.23. The distribution is

C
x1
−C

x2

d t

+1-1

Figure A.23: The theoretical distribution of X2 −X1 − 2x
vcdt

of particles randomly detected
by the delay-line detector. The results is the convolution between the squared error func-
tions induced by the discrimination process.

simply a triangle centred in Cx2−Cx1
dt

, with a base of 2. The root-mean-square width
of such a distribution is 0.41. The best theoretical resolution to be expected from
a delay-line detector therefore is 0.41sp. That is to be compared with the 0.29sp

root-mean-square width of a sp width squared pixel. We note that
√

2×0.29 = 0.41
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and that the observed triangle is also the autoconvolution of the the sp square. The
result is finally self explanatory as this width simply translates the convolution be-
tween the typical one unit error induced by the digitising process on each channel.
Note also that the result is smaller then 2× 0.29, that would have been the width
of the pixel if we simply had the time-to-digital converter resolution. The partial
redundancy of the information between X1 and X2 does provide us with sub-time-
to-digital converter resolution.

We have seen in Chapter 2 that the constants Cx1, Cx2, Cy1 and Cy2 are constant
in time, but can show a position dependence. At least, we have observed that both
Cx1 +Cx2 and Cy1 +Cy2 show a position dependency. If we introduce the position
dependency of those constants, then we will have to look after the local resolution.
That means that we have to consider the distribution width of X2 − X1 − 2x

vcdt
−

Cx2−CX1
dt

(x). By definition, the width of this distribution is identical.

A.1.1.3 The Jitter

Let us now consider that the micro-channel plate makes a δx root-mean-square
error on the detection of the position. A simple simulation shows immediately
that the measured root-mean-square width of the X2 − X1 − 2x

vcdt
distribution is

√

2×0.292 +(δx/sP)2. For a large error, the width of this distribution measures
directly the resolution of the detection.

We have to note that measuring in an exact way the wrong position is identical
to having a jitter on the discriminator and measuring the exact position. It is hence
easy to demonstrate that two independent δtx =

√
2δx/vc jitters on the two channels

produce the same result. If this distribution were to be studied, and a width larger
then 0.41 were to be measured, it would be impossible to say what caused the
resulting resolution. It does not really matter though. The width of this distribution
tells us the resolution we have to work with.

A.1.2 The Time Sum

Experimentally, we do not have access to the exact position of the atoms as they
fall on the detector. We have only access to the 4 mentioned signals and eventually
the 5th micro-channel plate signal. The latter is equal to TMCP = E(t/dt). Out of
those 5 signals, we can distinct 3 interesting relations:

SUM1 = X1 +X2 −2TMCP ≃ Cx2 +Cx1

dt

(A.1.7)

SUM2 = Y1 +Y2 −2TMCP ≃ Cy2 +Cy1

dt

(A.1.8)

SUM3 = (Y1 +Y2)− (X1 +X2) ≃
(Cy2 +Cy1)− (Cx2 +Cx1)

dt

(A.1.9)

Naturally, those three sums are distributions that have widths. We will study how
we can relate those widths to the resolution of the detector.

A.1.2.1 The Plain Distributions

Let us simply consider the simulations of SUM1 and SUM3. They have been shown
respectively in Figure A.24A and Figure A.24B. Several observations can be made.
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Figure A.24: Respectively in A and B, the simulated distributions of SUM1 and SUM3.

In C and D, we have introduced a spatial dependency of both Cx2+Cx1
dt

and
Cy2+Cy1

dt
that has

been subtracted before histogramming.

The first is that those distributions are discrete combs. This is simple to explain as,
unlike previously, we do not substract a continuous variable. The individual time
sums are all made out of digital values. The result can only be an integer. The sec-
ond observation is that the two distribution are centred at respectively Cx2+Cx1

dt
= 1.5

and (Cy2+Cy1)−(Cx2+Cx1)
dt

=−1.7. This is also what we expected. The last observation
is not much more surprising as the root-mean-square width of SUM1 is 0.71 and
the width of SUM3 is 0.59. The second value corresponds to

√

(4)×0.29, and the
distribution is simply the convolution of the 4 channels’ one pixel errors. The first
distribution corresponds to the convolution of the 2 channels with one pixel error,
and the third channel whose error suffered the multiplication by 2. The resulting
distribution has therefore a

√
12 +12 +22 0.29 =

√
6 0.29 width.

We have mentioned earlier that we discovered experimentally a spatial depen-
dence of both Cx2+Cx1

dt
and Cy2+Cy1

dt
. This has to be accounted for and we will have

to either study only the local distribution or substract the average constant sums.
The second possibilities is realised fairly easily and provides us with the continu-
ous variable we were hoping for. The resulting distributions for both SUM1 and
SUM3 have been plotted in Figure A.24C and A.24D. This operation preserves all
the properties of the distribution, besides the mean values that has been subtracted
to 0. We observe much better though the results of the various convolutions.

A.1.2.2 The Link to the Resolution

We propose to reuse our two radical scenarios used previously for the establishment
of the resolution. In the case the electron shower does not quit the micro-channel
plate at the right position but is mistaken again with a root-mean-square error of
δx and δy, we notice directly that the introduced random variable gets eliminated
through the summing process. The discretisation process does not change anything
to this fact, and the final distribution is changed in no way. This is rather reassuring.
The opposite would have meant that the delay-line could detect the supposed to be
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position of particles: a fair selling argument though... The delay-line can utmost
account for its own mistakes thanks to the information redundancy.

When we introduce the same δtx =
√

2δx/vc and δty =
√

2δy/vc gaussian jitters
in the timing of all the 4 delay-line channels, and also a δtMCP jitter on the micro-
channel plate channel, we can then easily discover (and foresee) the distributions
to take a gaussian shape. The widths of the distribution adopt respectively:

σSUM1 =
√

6×0.292 +δx2/s2
p +4δt2/d2

t (A.1.10)

σSUM3 =
√

4×0.292 +δx2/s2
p +δy2/s2

p. (A.1.11)

The second result simplifies to
√

4×0.292 +2δx2/s2
p if the two spatial dimen-

sions are equivalent and finally we can establish the following relations:

dx = dy = d =
1√
2

σSUM3 × sp (A.1.12)

Using the SUM3 is therefore totally equivalent to using the definition of the res-
olution for its determination. This is true though as long as the resolution is lost
because of the propagation through the wire, the amplification, the discrimination
or the time-to-digital converting. Any physical process that would affect the hit
point of the atom, the propagation of the electrons through the micro-channels or
the behaviour of the electronic cloud in the space between the micro-channel plates
and the delay-lines, cannot be detected. Therefore the result of this measurement
is only a lower limit to the effective resolution.

A.1.2.3 Discussion

Two questions remain. How far is this measurement equivalent to the measurement
of the resolution? We note that as long as the behaviour of the detector is identical
along the x and the y axis, the measurement of SUM3 is to produce the same result
as (X1 +Y1)− (X2 +Y2). Experimental study of those two axis indicates that those
behaviours are indeed alike.

Considering this equivalence, can we improve artificially the resolution of the
detector by imposing a boundary on SUM3? Unfortunately, the answer is no. Im-
posing constraints on the distribution of SUM3 does not affect the distribution of
(X1 +Y1)− (X2 +Y2), nor X1 −X2 or Y1 −Y2. Consequently, the equivalence of
those measurements is only guaranteed as long as the four components keep their
statistical independence.

A.1.3 Real Case Study

We propose to analyse some real data. This will enable us to discuss a mayor
subjects. We did suppose indeed there was an equivalence betwee, dx and dy. We
will study how far this is true

A.1.3.1 The Time Sum Maps

In order to study the time sum distributions, we will first have to map Cx2+Cx1
dt

(x,y)

and Cy2+Cy1

dt
(x,y). We proceed by first rebuilding all the atoms, with their arrival
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time produced by the micro-channel plate channel. During the reconstruction pro-
cess, we associate to each atom its value of SUM1 and SUM2. Once build, we
simple draw into two maps the values that get averaged locally. In other words, we
obtain the maps of 〈SUM1〉N (x,y) 〈SUM2〉N (x,y). Yet as we have noticed earlier,

those are identical to the maps Cx2+Cx1
dt

(x,y) and Cy2+Cy1

dt
(x,y).

Later on, for technical reasons mentioned earlier, we did no longer use the
micro-channel plate channel. The arrival times of those atoms have therefore been
calculated through dt(X1 + X2)/2. Although those arrival time are slightly less
precise as Cx2+Cx1

dt
(x,y) gets involved, the fact that the time resolution is overkill

anyway implies that this does not matter at all. The consequence of this is though
that we can no longer calculate SUM1 and SUM2. For the data in Amsterdam
we therefore only dispose of the SUM3 map, that is obtained through a similar
procedure as SUM1 and SUM2. For each atom we simply stock the value of (Y1 +
Y2)− (X1 + X2) = SUM3. This is mapped and averaged to 〈SUM3〉N (x,y). This

map is equal to (Cy2+Cy1)−(Cx2+Cx1)
dt

(x,y). In Figure A.25A, B and C we respectively
plotted 〈SUM1〉N (x,y), 〈SUM2〉N (x,y) and 〈SUM3〉N (x,y) in Orsay acquired with
the CNTM4 time-to-digital converter. In Figure A.25D we plotted 〈SUM3〉N (x,y)
in Amsterdam acquired with the IsiTime02 time-to-digital converter.
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Figure A.25: In A is plotted the Time Sum map corresponding to SUM1 as acquired in
Orsay with the CTNM4 time-to-digital converter. In B and C are respectively plotted the
averaged maps of SUM2 and SUM3 processed over the same data. In D has been plotted
SUM3 as acquired in Amsterdam with the IsiTime02 time-to-digital converter.

Out of those maps, we can make several remarks. The first is to notice the
amplitude of the time sum maps. Those lay in the 10 units scale. Our earlier
consideration of the 〈SUM〉N (x,y) as continuous variables compared to the discrete
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SUM(x,y) makes sense.
The second remark is that we can see that the SUM1 map shows a horizontal

gradient, whereas the SUM2 maps shows a vertical gradient. It thereby makes
sense to say that the constants Cx2 and Cx1 essentially depend on x, the same can be
said for Cy2 and Cy1 and y considering the SUM2 map. This is rather reassuring. It
means that the variations are not related to some problem with the micro-channel
plate, yet rather to the geometry of the delay-lines. We do not understand yet why
this dependence occurs exactly. The SUM3 map is the difference of those two
maps.

The last remark concerns the numerous anomalies we can identify in the Am-
sterdam SUM3 map. Those anomalies do not necessarily appear in the detectivity
maps presented earlier. This illustrates what we mentioned just above. The time
sums only measure the resolution if the jitters behave symmetrically. Apparently,
this is not always the case, although we do not understand why this would be a
localised phenomena.

A.1.3.2 The Time Sums

Now that we have obtained the constants fluctuations map, we can effectively study
the sum distributions. We plot in a histogram simply SUM(x,y)−〈SUM〉N (x,y).
The results have been shown for SUM1, SUM2 and SUM3 in Orsay and the CTNM4
time-to-digital converter in respectively Figure A.26A, B and C. The SUM3 of the
data acquired in Amsterdam with the IsiTime02 time-to-digital converter is shown
in Figure A.26D. The gaussian fit measures respectively for Orsay σSUM1 = 1.38,
σSUM2 = 1.46 and σSUM3 = 1.30. For Amsterdam we obtain σSUM3 = 2.93. Let us
recall furthermore that the pixels sizes are sp = 192 µm with the CTNM4 and sp =
133 µm with the IsiTime02. We consequently measure a resolution of respectively
dxy = 180 µm in Orsay and dxy = 275 µm in Amsterdam. Further comments on
those values can be found in Chapter 2.

The resulting values for the Jitters are δtx = 200 ps, δty = 250 ps, δtMCP =
180 ps. Those are all of the same order of magnitude. They are equivalent to an
error on the positions of the atoms of δx = 160 µm. In Amsterdam the average
jitter δtxy = 395 ps induced an additional error of δx = 270 µm.

The stability of this method is still not clear. In Orsay we globally experienced
a good stability of this measurement. In Amsterdam, with the new time-to-digital
converter overall feeling was a bad stability. It is likely that this is related to a
lower stability of the new electronics.
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Figure A.26: In A, B and C have been plotted the experimental distributions of
SUM(x,y)−〈SUM〉N (x,y) for respectively SUM1, SUM2 and SUM3 as acquired in Or-
say with the CNTM4 time-to-digital converter. In D has been plotted the same distribution
of SUM3 for the data acquired in Amsterdam. The Gaussian curves are fits.
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A.2 The Atomic Reconstruction Algorithm

We propose here to describe the algorithm that is used for the reconstruction of
the 3-dimensional time-of-flight from the data provided by the time-to-digital con-
verter. Depending on the acquisition rate, the reconstruction can indeed be more
or less complicated, and thinking about the optimal way of doing so has already
produced numerous headaches.

Thinking about all the complicated intricated situations in which we have fake
signals, echos, or overlapping atoms keeps us from the fact that a vast majority of
the atoms are easy to reconstruct. Consequently we have adopted a reconstruction
algorithm, called the "Time Bulb" algorithm, that enabled us to progressively set
aside the difficulties. We will present the algorithm in its principle, and then we
will study the various steps that take us progressively into the complications.

A.2.1 The Time Bulb Algorithm

In order to understand the algorithm, we will first recall the aspect of the incoming
data. Then we will deal with the idea behind the Time Bulb notion. Finally we will
see how the algorithm scales with the number of total atoms N.

A.2.1.1 The Data

The logical pulses produced by the constant fraction discriminator enter the time-
to-digital converter for time measurement. The black box corresponding to the
time-to-digital converter has various input channels that share the same data trans-
fer mechanism as discussed in paragraph 2.2.3.2. The fact that we use a single
box with various channels is a necessity as those various channels need to be syn-
chronous. The consequence is though that the output data of the various channels
is mixed up in a single serial buffer memory. Each time signal has off course been
stamped with the corresponding channel number.

Initially, we used 5 channels of the time-to-digital converter. The first was for
the signal discriminated from the micro-channel plate input voltage tMCP, the other
four correspond to the outputs of the two delay-lines tx1, tx2, ty1 and ty2. When the
times quit the time-to-digital converter, they correspond to an integer number that
is the count of clock-cycles between the measured pulse and the start trigger of the
time-of-flight measurement. Before being saved, this integer is though multiplied
with the clock-cycle period.

Finally, the apparent data we get from the time-to-digital converter behaves
as a long list. Each entry of this list contains two informations: the channel of the
time-to-digital converter that measured the entry and the physical arrival time. This
is the input to the Time Bulb algorithm.

A.2.1.2 The Time Bulbs

As we have seen previously, the data between the various channels is correlated.
We know that if the 5 signals tMCP, tx1, tx2, ty1 and ty2 come from a single physi-
cal atom, we have a number of relations between them. We could check all those
relations between all the signals, yet that would be a O(N5) correlation algorithm.
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Furthermore, inconsistent or impossible choices would produce a rather compli-
cated algorithm.

In order to reduce significantly the complexity and processing time we make
use first of all of the rough temporal order of the data provided by the time-to-
digital converter. As we have seen in Chapter 2, the serialisation mechanism of the
parallel data acquisition cannot guarantee the exact temporal order of the various
signals. But at larger time scales, order is respected. We therefore correlate the
data over significantly shorter time scales. We currently consider a loose 5µs time
scale. Furthermore we take a vague correlation criteria. Hence we simply state
that for two signals to be from a single atom, they need to be separated within a
certain interval. This can be seen as each signal building up a time bulb around
it. If two time bulbs from two signals touch each other, the two signals may be-
long to a single atom, and they will be linked explicitly. This leads to a graphical
overview as in Figure A.27. The size of each time bulb is essentially related to
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Figure A.27: An overview of the time bulb procedure. All the individual arrival times
on the various time-to-digital converter channels are associated a time bulb. If the time
bulb of two signals overlap, they belong to the same conglomerate. This means that they
potentially belong to the same initial particle.

the delay-line length, with some additional error bars. It has been determined ex-
perimentally through the analysis of the width of the distributions of the time dif-
ferences between distinct channels. All signals that potentially belong to the same
atom then form a time bulb conglomerate. If the acquisition rate is not too high,
those conglomerates are distinguishable heaps, that can be correlated individually
to reconstruct definitely the atomic arrival times and positions.

A.2.1.3 Scaling

Thanks to the initial rough order of the data, the complexity of this algorithm is
O(N), still with a signification prefactor. The reconstruction rate with a modern
3 GHz Intel Xeon based server is close to 15 katoms/s. The memory consumption
would also have a linear dependency. This can yet be significantly reduced if we
consider that the conglomerates are statistically limited in size. A conglomerate
with a temporal time extension above the 5 µs are most unlikely, although not
technically impossible. If such a heap where yet to exist, there would be not logical
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relation between the first and the last time bulb, apart from the overlap off all the
time bulbs that separate them. Its analyse could be easily split.

Consequently the analysis of the total list can be cut into many small parts. A
single 4000 time bulbs stack is allocated, and the list is analysed through 2 k time
bulb bits. Border effects are avoided through the use of circular buffer techniques.
The advantage of this procedure is that one can potentially analyse infinitely large
lists of data with a very low memory consumption.

A.2.2 The Extrication Procedure

Once the data has been organised in a heap of conglomerates, we still have to
disentangle everything in order to produce the atomic positions and arrival times.
This is done through several lectures of the bulb stack. Here we detail the various
lectures processed. We should note first though that the tMCP channel is not in
use today anymore, for reasons explained previously. We will therefore no longer
consider it.

A.2.2.1 Round 1: the Cleaning

The first thing to be noticed is that in order to correctly rebuild an atom, we require
a precise position. The arrival time is not that important as the time resolution
is already overkill. We rather loose an atom then have an atom with an incorrect
position. Consequently we require the four tx1, tx2, ty1 and ty2 signals for an atom
to be rebuildable.

We can therefore eliminate all the individual time bulbs that are not overlapping
at least one bulb on each critical channel. This cleans up considerably the time bulb
stack, and also lightens many conglomerates. If we consider again Figure A.27, we
would eliminate in this process not only time bulbs 6 and 7, but also time bulb 8.
Although this bulb is indeed attached to an conglomerate containing all the required
signals, it has no direct overlap with them. This process can break up in smaller
parts many large conglomerates and its execution in the first round is fundamental.

A.2.2.2 Round 2: the Simple Cases

The key to this round is to notice that a large majority of the conglomerates, es-
pecially after the cleaning round, has no specific problems and contain only the
4 required signals. We measure that 80% of the conglomerates after cleaning are
ready for reconstruction. We associate to each of those conglomerates a new signal
we call an atom, for which we calculate both the position and arrival time. Note
that no further testing is performed on the 4 signals. The quality of the final result
is only assured by the large statistical improbability of an error.

All the data presented in this thesis has been build up to this second round.
We do indeed assure the reconstruction of a large majority of the data with a high
quality factor. Any further mechanism will mean extricating complex conglom-
erates, and will need the introduction of discriminatory criteria. Not only is that
process more complicated, it is also prone to systematic errors. As the quantum
efficiency of the detector was not a critical criteria to the proposed study of the
Hanbury Brown and Twiss effect, this effort has not been applied to this study.
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A.2.2.3 Round 3: the Disentanglement

Although the third round has not been applied, its case has been studied. Let us
recall that the only conglomerates left are those containing at least the 4 critical
signals plus at least 1 other. In such a heap, we have to apply additional selection
criteria for the reconstruction of an atom. The criteria we have adopted concerns
what we have called the time sum (tx1 + tx2)− (ty1 + ty2) previously. We expect
this time sum to equal 0±15 ns for an atom to be valid. We study all the possible
quadruplet combinations, until one quadruplet satisfies the discrimination criteria.
We then use the specific quadruplet to build an atom, and continue the study of
the quadruplets left. The right image in Figure A.28 shows the image of a recon-
struction of a 1 mK time-of-flight taking into account the complex case as opposed
to the left image in Figure A.28 that stops at round 2. The right images counts
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Figure A.28: In the left picture, only the atoms build through the simple recontruction
have been plotted. In the right figure the complex build atoms have been added.

8% more atoms then the left image. Yet, a significant number of black spots have
appeared on the image. Also the signal outside the circle of the micro-channel
plate has increased significantly. The latter means that also a background noise
inside the image has appeared. This can be observed in the upper middle zone that
shows clear in the left image and dark in the right image. This is easily under-
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Figure A.29: The distribution of (tx1 + tx2)− (ty1 + ty2). Unlike the distributions shown
earlier, the signals do not necessarily belong to the same atoms. Therefore a large wing
exist beyond the central spike.
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stood as we look at Figure A.29. This graph shows the distribution of the time sum
(tx1 + tx2)− (ty1 + ty2) of all the possible quadruplets in the conglomerates left after
the second round. The central spike deals with the atoms we were looking for. The
width of this spike accounts for the ±15 ns error bar we left to the time sum for
reconstruction. We observe though outside the spike an important background sig-
nal, that accounts for all the random unrelated quadruplets that can appear. This is
all the more important as the atom rate is high, and is already not negligible at this
average 300 katoms/s rate. For cold time-of-flights, the introduced relative fake
atoms number can be far larger.

It seems clear from this graph though that the use of a smaller error bar would
also decrease the number of wrongly rebuild atoms. The only way of doing so
is by introducing the time sum map presented earlier. One can then find for each
quadruplet the expected average time sum, and the error bars can then be reduced
to 2×

√
2 the spatial resolution. This requires though that the user keeps track

of the time sum map, that can show inconsistencies between time-to-digital con-
verters, cables and eventually micro-channel plate evolutions. It will also result in
an artificially imposed resolution. That raises a lot of pain the present study can
do without. The recent atom-pairs experiment we have performed is a little more
sensitive to quantum efficiency, and work has been oriented into this direction.
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A.3 The Oscilloscope Detection

In general, the signals provided by the delay-line detector are amplified, then dis-
criminated with a constant fraction discriminator and finally measured with a time-
to-digital converter. The enormous advantage of this method is that the amount of
data generated scales linearly with the amount of particles, and the quality of the
measurement can be fairly high. The drawback of this method is that one loses the
information on the bunching height, one is ultimately limited by the resolution of
the time-to-digital converter, and overlapping signals result in erroneous informa-
tion.

We have already mentioned how "advanced" delay-line techniques have en-
abled other groups [77] in improving the performances of the delay-line detector
through the use of digitisers. By acquiring the entire analogue signal over the time-
pulse period, the use of post processing techniques can extract both arrival times
and amplitudes from the signals. The use of envelope detection techniques enable
[77] even to separate overlapping signals and they claim a 35 ps error on the arrival
times of their impulses at 4 GHz sampling rate and a 1 GHz bandwidth.

If this method is applied with real-time analysis of the data, the final quantity
of the data still scales linearly with the total number of atoms, yet requires huge
processing power. With their current implementation, the group is limited to a
2 kHz particle acquisition rate. The technique seems therefore of no particular
interest to our setup. Yet with the recent progress of fast electronics, oscilloscopes
with high memory depths have made their appearance in the market. In particular
LeCroy proposes oscilloscopes with over 50 M samples memory per channel for
"reasonable" pricing.

We will study briefly in this Appendix the way we have been working with a
Lecroy WaveMaster oscilloscope (borrowed from Lecroy) and our delay-line de-
tector to get a wider understanding of our detector performances. We will study
in a first time the rough implementation of the technique and its fundamental lim-
itations. Then we will focus more precisely on the method with which we have
measured the arrival times of the pulses, and will comment on the resolution of
this method.

A.3.1 The Setup

The four channels of the scope are connected to the outputs of the amplifiers of
the delay-line signals. Because the oscilloscope used had no additional trigger
channel, the signal of x1 goes through a radio-frequency switch. This additional
switch slightly lowers the amplitude of this first channel, but it allows us to trigger
on the first channel. The acquisition gate is consequently externally controlled.

The characteristics of the oscilloscope are generous. A 6 Ghz bandwidth, up
to 10 GHz sampling rate of 8 bits, 4 channels with each 50 M acquisition points.
Considering an effective sampling rate of 1 Ghz, this allows an entire cold time-of-
flight to be measured, and thus to study saturation effects. Practically, a bug in the
scope driver only allowed us to acquire 25 Mps per channel at our sampling rate.

The scope is connected to the local network, and the data can be transfered
easily to the acquisition computer. Each time of flight takes however 100 Mbytes
of scope data. This has to be transfered to the acquisition computer. The acquisi-
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tion computer compresses the data and sends it to the dataserver. After the basic
compression, the four channels acquisition takes 40 MBytes of disk space. The
whole process, not specifically optimised though, takes over 40 s.

Those number have to be compared with a typical time-to-digital converter
acquisition. A 25 ms acquition at 1 Matoms/s produce an uncompressed amount of
900 kbytes. The data ratio is 100. We have also acquired data at 2.5 Ghz sampling,
where the data ratio is 250. The simple discriminator time-to-digital converter
approach has some fundamental advantages.

A.3.2 The Analysis

Once the analog signal has been acquired it needs processing. We want to extract
from all the pulses, on the four channels, their characteristic arrival time. Once
we have found the arrival times for the four channels, the resulting data can then
undergo the same reconstruction procedure as mentioned earlier. We can then also,
through the Time Sum mechanism measure the resolution, and therefore the quality
of the procedure. The first thing to do is to define a trigger level above which the
pulse is considered detected. Once a pulse has been detected and is isolated, we
have tried essentially two different techniques in order to define the arrival time.

The first technique consists of fitting the pulse with, what we considered, an
appropriate fitting function. In Figure A.30A, we have plotted a pulse as provided
by the Lecroy scope. The sampling rate was of 1 GHz. The amplitude provided is
in mV. We see clearly that the pulse is not symmetric in respect to its maximum. We
have tried to take this into account by using asymmetric fitting functions. The best
result we have obtained though, was by simply using a gaussian fit. An explanation
for this can probably be found in the enhancement of the gaussian fit procedure in
the analysis framework Root.
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Figure A.30: In A, an electronic pulse as detected with the Lecroy oscilloscope. The
arrival time of the pulse has been fitted with a gaussian function. In B, the same pulse
undergoes the constant fraction discriminator process. The zero point is obtained through
the fitting of a second order polynomial.

For the fitting procedure, we first determine the maximum of the pulse. Then
we fit the pulse with user defined bounderies in respect to this maximum. Figure
A.30A shows the result of a gaussian fit. Although this fit seems inappropriate,
we must note that the systematic errors due to the fitting procedure occur on the
4 channels. When defining the position, the systematic errors are subtracted, and
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have far less influence as to the quality of the result. Although the systematic errors
depend strongly on the amplitude of the pulse, the fact that for a same atom, the
four pulses have similar amplitudes also reduces this problem. Consequently, the
quality of the fitting procedure is more related to the stability of the fit rather then
the choice of the function. As the gaussian function has been most optimised, it
provides the best results.

The second approach we have tried was to simulate the constant fraction dis-
criminator. In the constant fraction discriminator, the signal is split into two. One
signal is delayed by a time τ, the other is amplified with a factor k generally smaller
then 1. The two signals are then compared. Figure A.30B shows the result of the
comparison, with τ = 4 ns and k = 1. The point at which the resulting pulse equals
zero corresponds to the arrival time. In order to obtain sub-nanosecond resolution,
the pulse is fitted through a second-order polynomial.

A.3.3 Discussion

It is interesting to consider that the constant fraction discriminator method provides
better results then the fitting procedure. For the same data samples, the fitting pro-
cedure provides us with 316 µm average resolution, whereas the constant fraction
discriminator method has a 272 µm resolution. The constant fraction discriminator
is the tool currently employed electronically on the experiment. It is interesting to
realise that its concept stands up against more complex methods.

We have also changed both the amplification factor k and the delay τ. The
best results have clearly been obtained with k = 1. This can be explained by the
relatively high noise level on the 8 bits oscilloscope. We can consider that 2 bits
were lost to noise, and one bits has been lost to inappropriate scaling. Therefore, we
effectively worked with a 5 bits scope. This is not overwhelming. In the constant
fraction discriminator method, the effective noise is reduced as different acquisition
points are compared. This noise reduction is maximised if the two pulses have
equal weight.
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Figure A.31: The resolution of the detector for 1 mK time-of-flights versus the delays of
the simulated delay-line discriminators. The data has been acquired at 2.5 GHz sampling
rate.

More interestingly, the quality of the constant fraction discriminator procedure
as a function of τ shows a behaviour similar to the delay of the electronic device as
considered in Figure 2.18. In Figure A.31 we have plotted the average resolution as
a function of τ as measured with the oscilloscope. We observe a similar optimum
for τ = 5 ns. For this data, a sampling rate of 2.5 GHz has been used.



172 APPENDIXES

Concerning the 2.5 GHz sampling rate, we observe globally a better resolution
then at 1 GHz. We are not yet up to the standards we have obtained with a classical
electronic constant fraction discriminator for similar clouds. This means that either
an even higher sampling rate, or a better resolution of the scope is required. In
both cases, this means an even higher amount of data for similar performances as
obtained with simple electronics. The fact that also the oscilloscope is much more
expensive then the electronic equivalent, makes us fairly happy with our current
detection system.

An interesting advantage of the oscilloscope method is though that is provides
us with the pulse height for all the atoms. This enabled us to produce the graphs
depending on the pulse height shown in Chapter 2. Furthermore, a more compli-
cated analysis as implemented by [77] might give us better resolution through the
oscilloscope method. We have not taken the time yet to implement their algorithm.



Résumé

Introduction

L’effet Hanbury Brown et Twiss a été mis en évidence pour la première fois en
1956 [1], par Robert Hanbury Brown et Richard Q. Twiss. Leur recherche ini-
tiale portait sur le contournement des contraintes intrinsèques à l’interférométrie
de Michelson dans la mesure des tailles angulaires des objets cellestes. Ceci les a
amenés à inventer le concept d’interférométrie d’intensité [2]. Dans leur domaine
de l’astronomie radio, cette méthode ouvrait de nouvelles mesures [3]. Mais ce fut
quand ils appliquèrent une technique similaire à une source de lumière thermique
[1], que les corrélations qu’ils mirent en évidence étonnèrent le communauté sci-
entifique.

Ils montrèrent que les photons provenant d’une source de lumière chaotique
étaient corrélés; la probabilité pour des photons d’arriver de manière groupée était
supérieure à la probabilité que ces photons arrivent de manière totalement aléa-
toire. Cette tendance au groupement de photons indépendants allait à l’encontre
de l’idée classique que certains scientifiques se concevaient des photons. Cette ex-
périence fut par conséquent une véritable percée dans la physique moderne, et il
a fallut attendre 1962 pour que Roy J. Glauber définisse une description théorique
complète de ce phénomène photonique quantique [4, 5]. Cette expérience et sa
théorie ouvrirent la voie à l’optique quantique moderne. En 2005 le prix Nobel
de physique a été attribué à Roy J. Glauber précisément pour son travail sur l’effet
Hanbury Brown et Twiss et sa description quantique des champs de lumière.

De nos jour, l’effet Hanbury Brown et Twiss est utilisé dans des domaines
variés allant de l’astronomie à la physique des particules. Des observations ont été
réalisées avec les photons bosoniques, autant qu’avec des électrons fermioniques
[6, 7, 8]. L’observation sur des atomes massives était encore un défi à relever.
Masami Yasuda et Fujio Shimizu l’ont relevé en 1996 en observant des corrélations
entre atomes de Néon provenant d’une nuage d’atomes refroidis par Laser [10].

La domaine des atomes froids a depuis atteint des températures autrement plus
froides, en particulier à travers le refroidissement évaporatif, et la seuil de con-
densation de Bose-Einstein a été franchie en 1995 [11, 13, 12]. La condensation
de Bose-Einstein d’atomes d’hélium métastables en 2001 [14, 15] a ouvert la voie
à une étude plus approfondie, et particulièrement le changement fondamental de
l’effet Hanbury Brown et Twiss au seuil de condensation. Le refroidissement éva-
poratif d’atomes métastables d’hélium fermioniques en 2006 [16] a en particulier
permis de mesurer l’effet Hanbury Brown et Twiss sur des particules fermioniques
électriquement neutres.

La réussite de la mesure dans une expérience de l’effet Hanbury Brown et
Twiss avec des atomes d’hélium métastables serait sans aucun doute intéressant.
Mais plus particulièrement, cette réussite démontrerait notre capacité à étudier des
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systèmes quantiques à l’échelle d’une cellule de l’espace des phases. Cela signifie
encore que nous pourrions mesurer des corrélations quantiques dans virtuellement
toutes les systèmes quantiques que nous propose la physique des atomes froids
moderne. C’est cette motivation qui soutient le travail présenté.

Cette Thèse

Cette thèse décrit la réalisation de ces expériences conduites sur la période 2003-
2006. En tant que membre de l’équipe Hélium Métastable du groupe d’Optique
Atomique de l’Institut d’Optique à Orsay, mon travail a été supervisé par Christoph
Westbrook. Pendant ces années, nous sommes passé progressivement de la prépa-
ration du montage expérimental, ce qui a entraîné une lutte acharnée avec le sys-
tème de refroidissement des atomes, à la réalisation expérimentale des expériences
et l’analyse des données. Des efforts particuliers ont été investi dans la mise en
oeuvre et la compréhension de la chaîne d’acquisition.

Cette thèse décrit avec application l’effet Hanbury Brown et Twiss et notre
proposition expérimentale de sa mesure. Elle se concentre longuement sur la méth-
ode de détection dans la mesure où le détecteur est la clé de l’expérience. Enfin,
cette thèse décrit les mesures expérimentales effectuées sur les nuages thermiques
et les condensats de Bose-Einstein de 4He en 2005 à l’Institut d’Optique à Orsay,
et sur les nuages thermiques fermioniques de 3He en 2006 en collaboration avec le
Laser Centrum à l’université Libre d’Amsterdam [18].

Bien que l’auteur de cette thèse ait participé activement à l’aboutissement de
ces recherches, les résultats présentés proviennent indiscutablement d’un travail
d’équipe. Avec Rodolphe Hoppeler et Denis Boiron, nous avons entrepris le dé-
montage et remontage difficile du montage expérimental, nécessaire à l’accueil du
détecteur. Nous avons été rejoint pendant l’été 2004 par Aurélien Perrin. Les con-
naissances et analyses d’Alain Aspect et Christoph Westbrook se sont montrées
particulièrement utiles lors de notre compréhension, analyses et publications des
résultats. L’équipe perdit Rodolphe Hoppeler, mais fut complétée par Hong Chang
et Valentina Krachmalnicoff pendant l’été 2005. Avec cette dernière, nous nous
sommes penchés plus intensivement sur les faiblesses du détecteur et son amélio-
ration. Le travail expérimental réalisé par John McNamara, Tom Jeltes et Wim
Vassen, et leur maîtrise de leur dispositif expérimental, a permis le succes de notre
collaboration à Amsterdam. L’étude théorique a pour l’essentiel été réalisé par
Denis Boiron, Jose Viana Gomes et Michael Belsley [19].

Le Plan

Cette thèse est subdivisée en trois chapitres. Le premier chapitre analyse l’effet
Hanbury Brown et Twiss. Nous détaillerons ainsi l’histoire liée à sa mesure, et ar-
riverons à une compréhension simple de sa théorie. Nous aborderons alors l’intérêt
de l’optique atomique en rapport avec l’effet Hanbury Brown et Twiss, et nous
étudierons brièvement quelques autres mesures de l’effet Hanbury Brown et Twiss
qui ont été réalisées dans ce domaine avant ou pendant cette thèse. Enfin nous
nous concentrons sur l’étude présente : la mesure de l’effet Hanbury Brown et
Twiss dans un gaz d’atomes d’hélium métastable à travers un détecteur sensible
en position à base de galettes à micro-canaux. Nous produirons une description
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théorique simple mais complète de l’expérience.
Le deuxième chapitre analyse la chaîne de détection. Nous discuterons briève-

ment les options que nous avions quant au détecteur. Nous passerons ensuite en
revue toute la chaîne de détection d’un détecteur à base de galettes à micro-canaux
combinées à des lignes à retard, le seul détecteur qui était compatible avec nos be-
soins. Nous nous attarderons finalement sur trois caractéristiques primordiales du
détecteur : l’efficacité de détection, le taux d’acquisition et la résolution.

Dans le troisième chapitre, nous aborderons l’acquisition et l’analyse de don-
nées expérimentales. Nous évoquerons d’abord les nuages thermiques de 4He
que nous avons produites à Orsay, et qui font état de l’effet Hanbury Brown et
Twiss. Ensuite nous analyserons l’acquisition faite de quelques condensats de
Bose-Einstein, dont les propriétés de cohérence conduisent à l’absence de l’effet
Hanbury Brown et Twiss. Enfin, nous parlerons des nuages thermiques des fermions
3He que nous avons produites à Amsterdam, et qui montrent un effet Hanbury
Brown et Twiss négatif.

L’Effet Hanbury Brown et Twiss

L’effet Hanbury Brown et Twiss a été découvert en 1952 [2, 3] quand l’astrophysicien
Robert Hanbury Brown (1916-2002) chercha un moyen de mesurer la taille angu-
laire d’objets célestes, en contournant quelques limitations d’ordre technique de
l’interférométrie de Michelson dans le domaine des ondes radios. Pour l’interférométrie
de Michelson, la lumière émise par une source se voit interférer avec elle-même
après avoir parcourue deux chemins optiques différents. Deux télescopes spatiale-
ment séparés collectent ainsi la lumière émise par une source thermique, et les
deux faisceaux ainsi reçus sont superposés. Le contraste de la figure d’interférence
obtenue renseigne alors sur la cohérence des deux faisceaux. Pour une source non-
ponctuelle, l’étendue de la zone de cohérence au niveau des télescopes est alors
donnée par la longueur de cohérence:

lc = λ/θ (A.3.1)

où λ correspond à la longueur d’onde de la source, θ la taille angulaire de la source
vue des télescopes.

Hanbury Brown et Twiss décidèrent, plutôt que de faire interférer les deux am-
plitudes, de mesurer l’intensité lumineuse reçu sur chaque télescope, et de corréler
les fluctuations d’intensité. Lorsque les deux télescopes se trouvent dans la même
zone de cohérence, ces fluctuations sont corrélées, tandis que si les détecteurs
sont trop éloignés, il n’y a pas de corrélation. L’avantage de cette méthode était
qu’elle permettait entre autres un dispositif beaucoup moins coûteux. C’est quand
ils répétèrent l’expérience sur une source de lumière visible [1] que l’expérience
souleva une véritable contreverse. En utilisant des photo-multiplicateurs, et donc
en faisant une détection de photons uniques, ils montrèrent que les photons issus
d’une lampe de Sodium étaient corrélés. Ceci allait à l’encontre de l’image clas-
sique que de nombreux physiciens avaient de la statistique photonique.

Il a fallu attendre 1962 pour que R. Glauber [4, 5] écrive une théorie permettant
de comprendre pleinement ce phénomène quantique. La raison de cette corrélation
s’expliquait simplement par la nature bosonique des photons. Dans la statistique
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d’apparence chaotique d’une source, l’émission d’un photon est stimulé dans le
modes contenant déjà des photons. Par conséquent, la probabilité de détecter un
photon dans un mode où on a déjà détecté un premier photon, est plus élevé que
de détecter ce photon dans un mode quelconque. Si les particules avaient été des
fermions, le principe d’exclusion de Pauli aurait précisément interdit des nombres
d’occupation supérieurs à 1, et la corrélation aurait manifesté une anti-corrélation
dans la zone de cohérence. Enfin, si la source de lumière avait été une source co-
hérente, tel un laser, tous les photons auraient été dans le même mode quantique, et
leur détection individuel à l’intérieur de ce mode serait parfaitement aléatoire. Les
photons provenant d’une source cohérente ne sont pas corrélés. Étant donné que
l’effet Hanbury Brown et Twiss n’est dû qu’à la nature bosonique ou fermionique
des atomes, cette corrélation peut se mesurer sur l’ensemble des particules. En
particulier, elle s’applique aux atomes massifs.

L’avènement des méthodes de refroidissement des atomes [28, 29, 30] a permis
d’étendre largement les propriétés quantiques des atomes. La création de sources
d’atomes cohérentes [11, 13, 12] permettait ainsi d’étudier l’ensemble des trois
cas mentionnés. Une première mesure de l’effet Hanbury Brown et Twiss a été
faite par M. Yasuda et F. Shimizu en 1996 en utilisant une source thermique de
bosons, du néon métastable 20Ne∗. La métastabilité de cet atome permet la dé-
tection d’atomes uniques à travers des galettes à micro-canaux. C’est cette même
particularité que nous exploitons dans notre expérience. L’étude menée par Ya-
suda et Shimizu porte sur un nuage d’atomes à 1 mK. La condensation de l’hélium
métastable 4He réalisée en 2001 [14, 15] ainsi que le refroidissement sympathique
de l’hélium métastable 3He en 2006 [16], vont nous permettre d’étudier ces effets
dans d’autres configurations.

Le principe de l’expérience est simple. Un nuage piégé d’hélium métastable est
refroidi à des températures de l’ordre de 1 µK. Éventuellement, le refroidissement
se poursuit jusqu’à la condensation de Bose-Einstein dans le cas des 4He. Le piège
est alors coupé afin que les atomes tombent sous l’effet de la gravité sur le détecteur
un demi mètre plus bas. Les atomes sont détectés individuellement. Le temps de
coupure du piège étant très bref, les positions et temps d’arrivée des atomes sont
essentiellement déterminés par la distribution de vitesse initiale. L’effet Hanbury
Brown et Twiss se traduit par la corrélation en temps et en position d’arrivée des
atomes, qui suivent une trajectoire balistique. Les longueurs de corrélation attendus
dans l’axe α au niveau du détecteur sont données par:

lα =
~t0

msα
(A.3.2)

où sα est la taille du nuage piégé selon cet axe, t0 le temps de chute et m la masse
des atomes. Considérant les températures à laquelle nous travaillons, ainsi qu’aux
propriétés anisotropiques du piège, cela nous donne des longueurs de corrélation
de respectivement ly = 800 µm et lx = 32 µm selon les deux axes communs au piège
et au détecteur. Pour que nous puissions effectivement mesurer cette corrélation, il
nous faut un pouvoir de résolution de l’ordre de 100 µm au niveau du détecteur, et
cela avec des taux de 106 atomes/s. Le détecteur que nous avons trouvé compatible
avec ces besoins est le détecteur à base de galettes à micro-canaux combinées à des
lignes à retard de Roentdek [81].
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Le Détecteur

Les galettes à micro-canaux sont des plaques de verre, percées de trous, qui trans-
forment l’arrivée d’une particule énergétique en une nuage d’électrons à travers
une amplification en cascade. Les électrons ainsi produites par l’arrivée d’une
seule particule, peuvent, vu leur nombre de 107 à 108, être détectées à travers de
l’électronique traditionelle. La détection spatiale au niveau des galettes peut être
effectué à travers des dispositifs électroniques qui récupèrent localement les élec-
trons. Celui à base de lignes à retard a retenu notre attention. Ainsi une simple ligne
recueille, à travers des différences de potentiel, les électrons issus des galettes. De
chaque côté de la ligne, on mesure les temps d’arrivée des impulsions électriques
ainsi produites. En faisant la différence de ces temps, on remonte au point d’impact
des électrons sur la ligne. En réalité, la ligne est bobinée sur la totalité de la surface,
tant pour augmenter la précision de la mesure, que pour couvrir l’intégralité de la
surface du détecteur. Sa longueur temporelle est ainsi de 80 ns. Enfin, la seconde
dimension du positionnement est assurée par une deuxième ligne à retard bobinée
perpendiculaire à la première.

Les performances du détecteur dépendent du système dans sa globalité. Ce sys-
tème contient ainsi les galettes à micro-canaux et les lignes a retard, l’électronique
des discrimination et de détection des impulsions, mais aussi notre capacité à com-
prendre et analyser informatiquement ces résultats. Une description complète du
détecteur est donc nécessaire.

Nous constatons d’abord, une grande in-homogénéité de l’efficacité de détec-
tion. Cette in-homogénéité nous conduit à utiliser de grandes tensions d’opération
pour ces galettes, que nous exploitons dans le mode comptage. Cela abaisse par
contre les taux de saturation de ces galettes. Pour les lignes à retard nous nous
contentons essentiellement d’une description et d’une caractérisation des tensions
électriques d’opération. Nous utilisons un discriminateur à fraction constante pour
avoir un temps d’arrivée qui ne dépend pas de la hauteur de l’impulsion élec-
trique. Ce temps est mesuré avec un convertisseur temps-numérique d’une résolu-
tion de 400 ns. Ce convertisseur transfère les données vers l’ordinateur chargé de
l’enregistrement et de l’analyse.

Le système de détection est caractérisé par trois propriétés essentielles. L’efficacité
de détection n’influe que peu sur le résultat de la mesure de l’effet Hanbury Brown
et Twiss. Elle serait primordiale pour des expériences d’intrication. Sa calibration
n’a jamais été faite de manière très approfondie. Nous proposons toutefois deux
mesures, avec des méthodes sans doute plus intéressantes que les résultats.

Le taux maximal de détection a été un des facteurs limitants de l’expérience.
Plusieurs éléments interviennent. Les galettes saturent quand le nombre d’électrons
extraits est trop important. Cela conduit essentiellement à une saturation locale
estimée à 82 katomes/cm2/s. Il y a un temps mort attribué à l’électronique de
conversion, mais aussi à l’utilisation des lignes à retard. Il est ainsi impossible
de reconstruire les positions de deux atomes qui sont arrivés dans un interval de
temps trop court. Dans la pratique, cela vaut 140 ns pour le détecteur. Le dernier
facteur limitant a été le convertisseur. Un premier convertisseur nous limitait ainsi
à 700 katomes/s. Cette limitation forte nous a amené à faire développer un nouveau
convertisseur qui a une limite théorique de 12 Matomes/s.

La résolution s’avère aussi une propriété complexe. Le premier point à con-
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stater est que la redondance partielle des mesures, 4 temps d’arrivée pour les deux
lignes pour trois coordonnées, va permettre de mesurer cette résolution à la volée
sur des données quelconques. Elle dépend ainsi de la hauteur des impulsion élec-
troniques extraites des galettes, de la position sur la galette, du taux local d’atomes
et même du bruit électronique ambiant. En pratique cette résolution est de l’ordre
de 250 µm.

Ainsi, de part ses caractéristiques, ce détecteur est juste compatible avec nos
besoins. La résolution, au moins 10 fois plus grande que ce qu’il nous faudrait pour
les longueurs de corrélation les plus courtes, devrait baisser le contraste de la cor-
rélation d’autant. Par ailleurs, les taux de détection devraient limiter nos ambitions
en termes de flux. En particulier, le flux maximal local risque de compromettre la
détection des condensats.

Les Résultats

Nous présentons les trois groupes de résultats principaux. Le premier groupe con-
cerne les nuages thermiques de bosons. Nous avons pris trois séries d’environ
1000 mesures autour de 0.61 µK, 1.03 µK et 1.48 µK. Parce que le piège est har-
monique, la taille de la source initiale dépend de la température. L’utilisation de
ces séries permettra ainsi de vérifier les dépendances des longueurs de corrélation.
Pour observer les corrélations, on fait l’histogramme tridimensionnelle de toutes
les différences de positions et de temps d’arrivée des atomes. On observe alors
aisément une petite excroissance dans la fonction de corrélation gaussienne (la dis-
tribution de vitesse est gaussienne), de l’ordre de 5%, qui correspond, compte tenu
de la résolution, à l’effet Hanbury Brown et Twiss recherché. Après normalisation,
on peut procéder à des mesures des longueurs de corrélation selon les trois axes.
Ces mesures sont en accord avec les résultats attendus. En particulier, le volume
équivalent du regroupement dans la fonction de corrélation ne dépend pas de la
résolution; sa valeur est en parfait accord avec les résultats attendus. Le rapport
signal à bruit est de l’ordre de 10 sur cette dernière mesure.

Le deuxième groupe concerne les condensats de Bose-Einstein. Il convient
d’abord de remarquer que ces condensats ne sont pas purs. Pour un grand nom-
bre de nuages, la partie thermique de la distribution était encore significative.
L’utilisation de la résolution tridimensionnelle du détecteur permet toutefois d’éliminer
l’essentiel des atomes thermiques, la fraction thermique sous le condensat étant en
densité négligeable par rapport à celle du condensat. Cette densité va d’ailleurs
saturer le détecteur localement. De part le mécanisme de saturation, cela se traduit
dans les faits par une détection quasi exclusive des fronts d’arrivée des conden-
sats. Afin que le moyennage puisse se faire, et que la normalisation de toutes
ces nuages différentes puisse s’effectuer, cette saturation va nécessiter un redresse-
ment spatio-temporelle des données. Ce redressement limite un peu l’interprétation
des données. Dans la limite des séparations supérieures à 200 µm, la fonction de
corrélation ne montre pas de corrélations particulières, comme attendue pour une
source cohérente.

Enfin, le dernier groupe concerne les fermions acquis à l’université d’Amsterdam.
Là encore nous avons trois séries autour de 0.53 µK, 0.99 µK et 1.4 µK. En procé-
dant de la même manière que pour les bosons, on observe un anti-groupement dans
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la fonction de corrélation. Cet anti-groupement s’accorde à la théorie avec une
qualité similaire que dans le cas des bosons. Le rapport signal à bruit varie de 20 à
la température la plus basse, à 7 pour la température la plus élevée.

Conclusion

L’intérêt de l’étude présentée ne se situe pas particulièrement dans la démonstration
de l’effet Hanbury Brown et Twiss. Naturellement, les résultats apportés ont un
rapport signal à bruit particulièrement élevé comparé à des études précédentes, et
la simplicité conceptuelle de l’expérience la rend particulièrement illustratrice.

L’intérêt principal de ce travail se situe dans le fait qu’elle apporte à la com-
munauté scientifique un outil particulièrement puissant quant à l’étude de l’optique
quantique atomique. Nous avons constaté à travers cette thèse que le système de
détection employé manifeste beaucoup de faiblesses. En particulier, nous avons re-
gretté le gain in-homogène, ce qui a induit de nombreux effets complexes, ce qui a
amplifié le problème de la saturation dans la mesure où il nous forçait à travailler à
des gains élevés. Cette saturation a rendu particulièrement hasardeuse la détection
des condensats. La mise en oeuvre très récente d’un autre paire de galettes à micro-
canaux produites par un autre industriel, Hamamatsu Photonics, semble produire
des résultats encourageants. Nous avons aussi constaté que la résolution n’était pas
au niveau attendu. D’autres utilisateurs de systèmes de détection similaires disent
avoir des résolutions de 100 µm. Il n’est donc pas exclu que du progrès puisse être
réalisé dans ce domaine. Néanmoins, même avec tous ces défauts, la combinaison
de He∗ avec un détecteur à base de lignes à retard et de galettes à micro-canaux
a détrôné l’ensemble des autres expériences d’atomes froids par la qualité de son
rapport signal à bruit, et la multiplicité des configurations qu’elle est en mesure
d’explorer.

Le rapport signal à bruit élevé, la haute résolution du système et la taille de la
zone de détection couvrant plus de deux vitesses de recul rendent possible l’étude
des corrélations de particules individuelles sur une grande variété de systèmes
physiques. En particulier, pendant ces travaux, nous avons pu étudier un tel sys-
tème différent.

L’expérience, qui sera décrite exhaustivement dans la thèse d’Aurélien Perrin,
est une collision entre deux condensats de Bose-Einstein. Une condensat est divisé
en deux parties qui sont accélérées optiquement à une vitesse de recul de photon.
Le différentiel de vitesse provoque des collisions entre des atomes individuels des
deux condensats. Ces collisions ponctuelles redistribuent l’impulsion de manière
angulaire entre les deux atomes, et à mesure que les condensats se séparent de
plus en plus, une sphère collisionelle est formée contenant tous les atomes ayant
subis une collision. Le principe même d’une collision à deux particules induit
que si on trouve une particule à un angle donné dans la sphère de collision, on
retrouve nécessairement son partenaire intriqué dans la direction opposée. Grâce à
l’utilisation des lignes à retard, nous avons pu mettre en évidence expérimentale-
ment cette corrélation.

Plus intéressant encore, cette expérience nous a ramené à l’effet Hanbury Brown
et Twiss. L’effet Hanbury Brown et Twiss est souvent considéré comme un ef-
fet quantique résultant d’une certaine distribution thermique. Cela est le cas pour
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une source thermique optique classique, ou comme dans cette étude pour un gaz
atomique. Mais l’effet Hanbury Brown et Twiss s’applique à toute phénomène
quantique incohérente. En particulier, la distribution angulaire aléatoire des paires
atomiques est un phénomène quantique incohérent. Cela signifie que la distribu-
tion angulaire des atomes après la collision obéit à des statistiques du type Hanbury
Brown et Twiss. De la même manière que précédemment pour le gaz thermique, les
atomes se regroupent préférentiellement sur la sphère de collision. Nous l’avons
démontré expérimentalement.

Ce que nous n’avons pas pu démontrer jusqu’à présent, c’est que cet effet Han-
bury Brown et Twiss s’applique au pairs atomiques plutôt que sur les atomes in-
dividuels de la collision. Y parvenir reviendrait à démontrer expérimentalement
l’intrication quantique des deux atomes, et lancerait le dispositif de l’hélium mé-
tastable directement dans le monde moderne de l’optique quantique. Tous les outils
sont prêts pour cet évènement.
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Publications

Here we provide the three letters that we have published in respect to the work pre-
sented in this thesis. The first letter deals with the theory associated to the experi-
ment. It provides a theoretical description of the first and second order correlation
functions in a ballistically expanding non-interacting bosonic clouds. Unlike the
description found in this thesis, this letter also analyses the correlation around the
condensation threshold.

The second letter deals with the bosonic data acquired in Orsay. It demon-
strates our ability to detect the bosonic bunching behaviour in 3 dimensions. It
shows in particular the temperature dependence of the correlation length for the
thermal clouds. It also shows the correlation function for a Bose-Einstein conden-
sate, demonstrating the second order coherence of those clouds.

The third letter deals with the data acquired in Amsterdam. It shows that we
have been able to detect both the fermionic anti-bunching behaviour, as well as the
bosonic bunching, on the same apparatus considering both 3He∗ and 4He∗. Futher-
more, in demonstrates the increase of the coherence length through a defocalising
atomic lens. This affects directly the measured anti-bunching height.
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I. INTRODUCTION

Whether a source emits photons or massive particles, if it
is to be used in an interferometric experiment, an essential
property is its coherence. The study of coherence in optics
has shown that more than one kind of coherence can be
defined �1�. The most familiar type of coherence is known as
first order coherence and is related to the visibility of inter-
ference fringes in an interferometer. It is proportional to the
value of the correlation function of the associated field. Sec-
ond order coherence is less intuitive and corresponds to the
correlation function of the intensity or squared modulus of
the field. From a particle point of view, second order coher-
ence is a way of quantifying density correlations and is re-
lated to the probability of finding one particle at a certain
location given that another particle is present at some other
location. Particle correlations can arise simply from ex-
change symmetry effects and exist even when there is no
interaction between the particles. This fact was clearly dem-
onstrated in the celebrated Hanbury Brown Twiss experiment
which showed a second order correlation for photons coming
from widely separated points in a thermal source such as a
star �2�.

Analogous correlations in massive particles have also
been studied, particularly in the field of nuclear physics
�3–7�. Spatial correlations using low energy electrons have
also been studied �8,9�. The advent of laser and evaporative
cooling techniques has also made it possible to look for cor-
relations between neutral atoms and recently a wide variety
of different situations have been studied �10–16�. Correlation
phenomena are generally richer when using massive particles
because they can be either bosons or fermions, they often
have a more complex internal structure and a large range of
possible interactions with each other. In the field of ultracold
atoms, the many theoretical papers to date have included
treatments of bosons in a simple three-dimensional �3D� har-
monic trap �17,18�, a one-dimensional �1D� bosonic cloud in
the Thomas-Fermi regime and Tonks-Girardeau limit
�19–21�, the Mott insulator or superfluid phase for atoms

trapped in optical lattices �22� and the two-dimensional �2D�
gas �23�.

Almost all these theoretical treatments have dealt with
atomic clouds at thermal equilibrium. On the other hand, all
the experiments so far except Ref. �16� have measured cor-
relations in clouds released from a trap which expand under
the influence of gravity and possibly interatomic interactions.
It is generally not trivial to know how the correlation prop-
erties evolve during expansion. Moreover, matter waves have
different dispersion characteristics than light. All this raises
interesting questions concerning the value of the correlation
lengths during the atomic cloud expansion. In particular we
would like to know how to use the results of Ref. �17� to
analyze the experimental results of Ref. �15�, a conceptually
simple experiment in which second order correlations were
measured in a freely expanding cloud of metastable helium
atoms. The correlation length was defined as the characteris-
tic length of the normalized second order correlation func-
tion. We will use the same definition in this paper �see Sec.
II A for details�.

To illustrate a more general question that comes up in
thinking about the coherence of de Broglie waves, consider a
beam of particles with mean velocity v hitting a detector.
Two obvious length scales come immediately to mind, the de
Broglie wavelength � / �m�v� associated with the velocity
spread �v and the length associated with the inverse of the
energy spread of the source �v /m��v�2. These two scales are
obviously very different if v is large compared to the velocity
spread. In this paper, we will show that in an experiment
such as Ref. �15�, the correlation length corresponds to nei-
ther of the above length scales, although they can be relevant
in other situations. We find that the correlation length after an
expansion time t of a cloud of initial size s is �t /ms. This
result is the atom optical analog of the van Cittert-Zernike
theorem �24�. It has also been stated in a different form in
Ref. �25�. For the special case of an ideal gas in a harmonic
trap of oscillation frequency �, the correlation length can be
recast as ��t where � is the thermal de Broglie wavelength.
Hence the correlation length after expansion is simply di-
lated compared to that at equilibrium with the same scaling
factor as the spatial extent of the cloud itself.

We will confine ourselves here to the case of a cloud of
noninteracting atoms released suddenly from a harmonic
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trap. The paper is organized as follows. We will begin in Sec.
II with some simple definitions and general results about the
correlation properties of a noninteracting cloud both at ther-
mal equilibrium in a trapping potential and after a ballistic
expansion. Without making any assumptions about the form
of the trapping potential, we can only find simple analytical
results in the limit of a nondegenerate gas. Next we will
make a more exact and careful treatment by specializing to
the very important case of a harmonic potential. We intro-
duce the flux operator �26� involved in the experimental elec-
tronic detection with metastable helium and then calculate
the correlation function of the flux. We will summarize the
results and give a physical interpretation in Sec. IV. This
interpretation will allow us to comment on the rather differ-
ent case of a continuous beam as in the experiments of Refs.
�7,10,14�. In Sec. V we will use our results to analyze the
experimentally important problem of finite detector resolu-
tion. Finally, the Appendix adds some detailed calculations
concerning the expressions found in Sec. III B.

II. GENERAL RESULTS ON CORRELATION FUNCTIONS

OF NONINTERACTING GASES

Here we recall some basic results concerning the density
and first and second order correlation functions for a cloud of
noninteracting bosons at thermal equilibrium. A more de-
tailed analysis can be found in Ref. �17�. Theoretical treat-
ments that take into account interatomic interactions can be
found in Refs. �17,18,27�. We also give some approximate
results for a noninteracting gas after it has expanded from a
trap.

A. Definitions

Consider a cloud of N atoms at thermal equilibrium at a
temperature T, confined in a trapping potential. This poten-
tial is characterized by ��j ,�j

0�r�� the energy and wave func-
tion of level j �here supposed nondegenerate for simplicity�.
In second quantization, one defines the field operators

�̂†�r� = �
j

�j
*�r�âj

†, �̂�r� = �
j

�j�r�âj.

The operator âj
† creates and âj annihilates one particle in

state ��j	 whereas �̂†�r� creates and �̂�r� annihilates a par-
ticle at position r.

Correlation functions and the atomic density are statistical
averages of such field operators. We use the Bose-Einstein
distribution, 
âj

†âk	=�jk�e	��j−��−1�−1 where 	=1/ �kBT�, kB

is the Boltzmann constant and 
 is the chemical potential.
The value of 
 ensures the normalization �j
âj

†âj	=N. We
can then define

�a� the first order correlation function G�1��r ,r��
= 
�̂†�r��̂�r��	,

�b� the second order correlation function G�2��r ,r��
= 
�̂†�r��̂�r��̂†�r���̂�r��	,

�c� and the density �eq�r�= 
�̂†�r��̂�r�	=G�1��r ,r�.
Several other first and second order correlation functions

can be defined �see below� but these are the most common

ones. The first order correlation function appears in interfer-
ence experiments whereas second order correlation functions
are related to intensity interference or density fluctuation.
First and second order correlation functions are connected
for thermal noninteracting atomic clouds. The G�2� function
contains a statistical average of the type 
âj

†âkâl
†ân	 which

can be calculated through the thermal averaging procedure
�Wick theorem �28��. One finds 
âj

†âkâl
†ân	= 
âj

†âj	
âk
†âk	

���jl�kn+�jn�kl�+ 
âj
†âj	�kl�jn, which leads to

G�2��r,r�� = �eq�r��eq�r�� + �G�1��r,r���2 + �eq�r���r − r�� .

The last term is the so-called shot-noise term. It will be ne-
glected in the following because it is proportional to N

whereas the others are proportional to N2.
It is convenient to define a normalized second order cor-

relation function

g�2��r,r�� =
G�2��r,r��

�eq�r��eq�r��
.

If the cloud has a finite correlation length, then for distances
larger than this length the first order correlation function van-
ishes. Then g�2��r ,r�=2 and g�2��r ,r��→1 when �r−r��
→. This means that the probability of finding two particles
close to each other is enhanced by a factor of 2, compared to
the situation where they are far apart. This is the famous
bunching effect first observed by Hanbury Brown and Twiss
with light �2�.

The above expression of the G�2� function cannot be ap-
plied in the vicinity and below the Bose-Einstein transition
temperature. The calculation of 
âj

†âkâl
†ân	 is performed in

the grand canonical ensemble which assumes the existence
of a particle reservoir that does not exist for the condensate.
It is well known �29� that this gives unphysically large fluc-
tuations of the condensate at low enough temperature. This
pathology disappears at the thermodynamic limit if there is
an interatomic interaction �29�. It has also been shown that it
cancels for a finite number of noninteracting particles if one
uses the more realistic canonical ensemble �30�. One way to
keep using the grand canonical ensemble is to add the ca-
nonical result for the ground state �17�. This approach is
validated by the results in Ref. �30� and will be used in the
following. The largest deviation is expected to occur near the
transition temperature �30�. The contribution of the ground
state is −
â0

†â0	2�j0�k0�l0�n0. Then, with �0 the ground-state
density, it follows that,

G�2��r,r�� = �eq�r��eq�r�� + �G�1��r,r���2 − �0�r��0�r�� .

�1�

The normalized second-order then becomes

g�2��r,r�� = 1 +
�G�1��r,r���2

�eq�r��eq�r��
−

�0�r��0�r��
�eq�r��eq�r��

.

Because the ground state density is negligible for a ther-
mal cloud, the normalized correlation function g�2��r ,r�� still
goes from 2 to 1 as the separation of r and r� increases. On
the other hand, for a BEC at T=0, only the ground state is
occupied. Then �G�1��r ,r���2=�eq�r��eq�r��=�0�r��0�r�� and
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g�2��r ,r��=1. The amount of particle bunching present in
the second order correlation function can be quantified as
g�2��r ,r��−1 and this typically decays exponentially as the
modulus squared of the separation between the two points
increases. We define the correlation length to be the charac-
teristic length over which the amount of particle bunching
decays, that is the distance over which g�2��r ,r��−1 decays
to 1/e of its maximum value. The correlation length of a
BEC is infinite. Such a system is said to exhibit bunching at
high temperature over the correlation length and no bunching
in the condensed phase.

B. Correlations in an expanding cloud

In most experiments, particle correlations and other char-
acteristics are not directly measured in the atom cloud, �Ref.
�16� is an exception�. Rather, the cloud is released from a
trap and allowed to expand during a “time of flight” before
detection. For a sufficiently long time of flight, and neglect-
ing interactions between the atoms, the positions one mea-
sures at a detector reflect the initial momenta of the particles.
The results of Sec. II A concerning the correlation functions
in position space all have analogs in momentum space. In
fact the correlation functions in the two reciprocal spaces are
closely related. At equilibrium, i.e., inside the trap, the fol-
lowing relationships can be easily derived:

� dpG�1��p,p�e−ip·r/� =� dRG�1��R − r/2,R + r/2� ,

� drG�1��r,r�eiq·r/� =� dPG�1��P − q/2,P + q/2� .

In other words, the spatial correlation length is related to
the width of the momentum distribution and the momentum
correlation length is related to the width of the spatial distri-
bution, i.e., the size of the cloud. No equally simple and
general relationship holds for the second order correlation
functions. This is because, close to the BEC transition tem-
perature, and at points where the ground state wave function
is not negligible, the special contribution of the ground state,
the last term in Eq. �1� must be included, and this contribu-
tion depends on the details of the confining potential. On the
other hand, for an ideal gas far from the transition tempera-
ture one can neglect the ground state density, make the ap-
proximation that the correlation length is very short, neglect
commutators such as �r̂ , p̂�, and then write the thermal den-

sity operator as �̂=e−	�P̂2/2m�e−	V�r̂�. These approximations
lead to

G�2��p,p�� = �eq�p��eq�p�� + �G�1��p,p���2

and

G�1��P − q/2,P + q/2� � e−	�P2/2m�� dre−	V�r�eiq·r/�.

One sees that in this limit, the interesting part of G�2� in
momentum space is proportional to the square of the Fourier
transform of the density distribution and independent of the

mean momentum P. This result is the analog of the van
Cittert-Zernike theorem �24�. For a trapped cloud of size s�

in the � direction, one has a momentum correlation “length”
given by

p�
�coh� =

�

s�

. �2�

If atoms are suddenly released from a trap and allowed to
freely evolve for a sufficiently long time t, the positions of
the particles reflect their initial momenta and the spatial cor-
relation length at a detector is given by

l�
�d� =

p�
�coh�

m
t =

�t

ms�

. �3�

The normalized second order correlation function is then
a Gaussian of rms width l�d� /2. This result was experimen-
tally confirmed in Ref. �15�. One wonders however, to what
extent the approximations we have made are valid. The
clouds used in Ref. �15� were in fact very close to the tran-
sition temperature so that effects due to the Bose nature of
the density matrix may be important. Although the time of
flight was very long, it is useful to quantify the extent to
which identifying the momentum correlation length in the
trap with the spatial correlation length at the detector is ac-
curate. Finally, the effect of gravity on the falling atoms
never appears in the above approximate treatment, and we
would like to clarify the role it plays. In order to answer
these questions we undertake a more careful calculation. We
will confine ourselves to atoms initially confined in a har-
monic trap, a good approximation to the potential used in
most experiments, and happily, one for which the eigenstates
and energies are known exactly.

III. DENSITY AND CORRELATION FUNCTIONS FOR A

HARMONIC TRAP

A. At equilibrium in the trap

The eigenfunctions for a three-dimensional harmonic po-
tential of oscillation frequency �� in the � direction, are
given by

�j
0�r� = �

�=x,y,z

A j�
e−r�

2 /2��
2
H j�

�r�/��� .

Here ��=� /m�� is the harmonic oscillator ground-state
size, H j�

is the Hermite polynomial of order j� and A j�

= ����2 j��j��!�−1/2. The eigenenergies are given by �j

=��=x,y,z����j�+1/2�. Then �17,29�, with ��=	��� and 
̃
=
−���� /2, one finds

�eq�r� =
1

�3/2�
l=1



e	l
̃�
�

1

��
1 − e−2��l

e−tanh���l/2��r�
2 /��

2 �

and
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G�1��r,r�� =
1

�3/2�
l=1



e	l
̃�
�

1

��
1 − e−2��l

exp�− tanh� ��l

2
�

�� r� + r��

2��

�2

− coth� ��l

2
�� r� − r��

2��

�2� .

The above expressions can be transformed into more familiar
forms in limiting cases:

�i� For high temperature, 
→− and one recovers the
Maxwell-Boltzmann distribution. The density is �eq�r�
= N

�3 ����e−���/2��r�
2

/��
2 � with �=�2� /mkBT the thermal de

Broglie wavelength. The size of the cloud is s�=�� /��

=kBT /m��
2 . The first order correlation function is

G�1��r,r�� =
N

�3�
�

��e−���/2�„�r� + r���/2��…2
e−�„�r� − r���/�…2

.

�4�

Using our definition, the correlation length is l�t�=� /2�.
�ii� For a temperature close to but above the Bose-

Einstein transition temperature, one must keep the summa-
tion over the index l. The density is �eq�r�
= 1

�3 g3/2�e	
̃��e−���/2��r�
2

/��
2 ��, where ga�x�=�l=1

 xl / la is a Bose
function. The first order correlation function is

G�1��r,r�� =
1

�3�
l=1


el	
̃

l3/2

��
�

e−���l/2�„�r� + r���/2��…2
e−��/l�„�r� − r���/�…2

.

As the temperature decreases, the number of values of l that
contribute significantly to the sum increases. It is then clear
from the above expression for G�1� that the correlation length
near the center of the trap will increase and that the normal-
ized correlation function is no longer Gaussian. Far from the
center, only the l=1 term is important and the correlation
function remains Gaussian. Thus close to degeneracy the
correlation length is position dependent �for an explicit ex-
ample see Sec. III B 5�.

�iii� Near and below the transition temperature, the sec-
ond order correlation function is given by Eq. �1� with

�0�r�= e	
̃

1−e	
̃ ��
e−r�

2 /��
2

�����3 . As the temperature decreases, the cor-

relation at zero distance, g�2��0,0� decreases from 2 to 1 and
the correlation length increases. Around the transition tem-
perature, g�2��0,0� is already significantly different from 2
since the condensate peak density is already very large for a
noninteracting harmonically trapped cloud �31�. At T=0, the
correlation length is infinite and g�2��r ,r��=1.

B. Correlations in a harmonically trapped cloud after

expansion

Here we consider the cloud after expansion. First we dis-
cuss two classes of detection methods which must be distin-
guished before calculating correlation functions.

1. Detection

We assume that the trapping potential is switched off in-
stantaneously at t=0. The cloud expands and falls due to
gravity. Two types of detection can be performed:

�a� Snap shot. An image is taken of the entire cloud at
t= t0. We have then access to

Gim
�2��r,t0;r�,t0� = 
�̂†�r,t0��̂�r,t0��̂†�r�,t0��̂�r�,t0�	 .

The usual imaging technique is absorption, and so one has
access to the above correlation functions integrated along the
imaging beam axis. This was used for the experiments of
Refs. �12,13�.

�b� Flux measurement. The atoms are detected when
they cross a given plane. We will only consider the situation
in which this plane is horizontal at z=H. One has access to

G fl
�2��r = �x,y,z = H�,t;r� = �x�,y�,z� = H�,t��

= 
Î�r,t�Î�r�,t��	 ,

where Î is the flux operator defined below. The detection
systems required for such experiments correspond most
closely to those of Refs. �10,15�, in which a microchannel
plate, situated below the trapped cloud, recorded the arrival
times and in one case the positions of the atoms. It also
corresponds closely to imaging a cloud that crosses a thin
sheet of light �32�, or to the experiment of Ref. �14�, in
which the transmission of a high finesse optical cavity
records atoms as they cross the beam.

These two correlation functions are different, but if the
detection is performed after a long time of flight, they are in
fact nearly equivalent. This equivalence will be discussed in
the following.

The flux operator is defined quantum mechanically by

Î�r,t� =
�

m
Im��̂†�r,t��z�̂�r,t�� =

�

2mi
��̂†�r,t��z�̂�r,t�

− �z�̂
†�r,t��̂�r,t�� .

The flux has thus the dimensions of a density times a veloc-
ity. We will give the explicit expression of this velocity in the

Sec. III B 4. Here, the atomic field operators �̂�r , t� depend
on space coordinates as well as on time. They represent the
time evolution of the atomic field during the flight of the
atoms, falling from the trap. The field operators for the fall-
ing cloud can be easily derived if we assume that there are no
interactions between the atoms and that the occupation num-
ber in each mode is constant �as in free expansion�. In this
case, these operators can be defined as

�̂†�r,t� = �
j

�j
*�r,t�âj

†, �̂�r,t� = �
j

�j�r,t�âj,

where the spatiotemporal dependence is carried by the wave
function and the statistical occupation by the creation and
annihilation operators.

2. Ballistic expansion of a harmonic oscillator stationary state

After switching off the trap, the harmonic oscillator wave
functions noted �j

0 are no longer stationary states. There are
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two ways to calculate the correlation after expansion: propa-
gation of wave functions or propagation of the density matrix
�the Schrödinger or the Heisenberg picture�. In the following
we will use the first approach which is physically more trans-
parent �see Ref. �33� for the Heisenberg picture�.

The ballistic expansion of a cloud is easy to calculate with
the appropriate Green function. The Green function K is de-
fined as

�j�r,t� = �
−



dr0K�r,t;r0,t0��j
0�r0,t0� .

As the �j
0 functions are stationary states for t�0, we can

take t0=0 in the following. The Green function for particles
in an arbitrarily time-varying quadratic potential is known
�34�. After expansion, the potential is only due to gravity and
the Green function is then

K�r,t;r0� = � m

2i��t
�3/2

eia�r − r0�2
eib�z+z0�e−ic

with a= m

2�t
, b= mgt

2�
, and c= mg2t3

24�
.

One can then derive an analytical expression of �j�r , t�
�35,36�,

�j�r,t� = ei��r,t��
�

eij����+3�/2�

��t − i
�j

0�r̃� , �5�

where ��=tan−1� 1
��t

�,

��r,t� =
m

2�t
��x̃�xt�

2 + �ỹ�yt�
2 + �z̃�zt�

2 + 2gt2�z −
1

8
gt2��

− c −
3�

4
�6�

and, with r̃= �x̃ , ỹ , z̃�,

x̃ =
x

1 + �x
2
t2

, ỹ =
y

1 + �y
2
t2

, z̃ =

H −
1

2
gt2

1 + �z
2
t2

. �7�

In the case of flux measurement, the position of the de-
tector is fixed at z=H. The phase ��x̃ , ỹ , t� is global as it does
not depend on the index j; it will cancel in second order
correlation measurements. This is in contrast to interferomet-
ric measurements where it is this phase that gives rise to
fringes. The above results show that after release, the wave
function is identical to that in the trap except for a phase
factor and a scaling factor in the positions �37�. This scaling
is obviously a property of a harmonic potential, and it con-
siderably simplifies the expression of the correlation func-
tions as we will see below.

3. Flux operator

Using �zHn�z�=2nHn−1�z�, the spatial derivative of the
wave function can be written

�z�j�r,t� =
m

�
��iv2 − v1�� jz

�z,t�

− iv3
jz� jz−1�z,t��� jx

�x,t�� jy
�y,t� ,

where the velocities v1, v2, and v3 are time dependent and
are given by

v1�t� = �z

H −
1

2
gt2

1 + �z
2
t2 , �8�

v2�t� =
1

t
�H +

1

2
gt2 −

H −
1

2
gt2

1 + �z
2
t2 � , �9�

v3�t� =
2�z�z

1 + �z
2
t2

ei�z. �10�

The velocity v2 is usually much larger than the other two and
will give the dominant contribution for the mean flux and the
second order correlation function. An atom with zero initial
velocity will acquire after a time t a velocity gt which is
close to v2�t�. The flux operator is

Î�r,t� = �
j,k

�v2�j
*�k −

1

2
�v3

k�j
*�k−1z

+ v3
*j�j−1z

* �k��âj
†
âk,

�11�

where j−1z is the vector �jx , jy , jz−1� and where we write
�=��r , t�.

4. Mean density and mean flux

We will first calculate the mean density ��r , t�
= 
�̂†�r , t��̂�r , t�	. Using Eq. �5�, one finds easily that

��r , t�= 1

��
1+��

2 t2 �eq�r̃�. This means that the density has the

same form during expansion up to an anisotropic scale factor
given by Eq. �7� �37,38�. The statistical average of Eq. �11�
leads to


Î�r,t�	 = �
j

�v2��j�
2 −

jz

2
�v3� jz

* � jz−1 + v3
*� jz

� jz−1
* ��� jx

� jy
�2�

�
âj
†
âj	 .

Because v3� jz

* � jz−1= i
�v3�

1+�z
2t2 � jz

0 �z̃�� jz−1
0 �z̃�=−v3

*� jz
� jz−1

* , the

second term cancels out. Then, without any approximation,


Î�r,t�	 =
v2�t�

�
�

1 + ��
2
t2

�eq�r̃� = v2�t���r,t� .

The flux is proportional to the density of a cloud at thermal
equilibrium with rescaled coordinates. This means that the
mean flux of an expanding noninteracting cloud is propor-
tional to the atomic density without any approximation. This
result holds with and without gravity taken into account.
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5. Second order correlation

Here we calculate the correlation functions. A discussion
is given in the next section. The snap-shot correlation func-
tion is

Gim
�2��r,t;r�,t� = �

j,k,l,n

�j
*�k�l�

*�n�
âj
†
âkâl

†
ân	 .

Using Eq. �5�, one finds, without any approximation �except
the neglect of the shot-noise term�:

Gim
�2��r,t;r�,t� =

1

�
�

�1 + ��
2
t2�

���eq�r̃��eq�r̃�� + �G�1��r̃, r̃���2 − �0�r̃��0�r̃��� .

As in the case of the mean density, the snap-shot correlation
function has the same form as in the trap except for an an-
isotropic scale factor.

The calculation of G
fl

�2� is similar,


Î�r,t�Î�r�,t��	 = − � �

2m
�2

�
j,k,l,n

��j
*��z�k� − ��z�j

*��k�

���l�
*��z�n�� − ��z�l�

*��n��
âj
†
âkâl

†
ân	 .

Two major differences appear compared to the mean flux
calculation: the terms in v3 and the phase factor ��+3� /2 in
Eq. �5� do not cancel. This makes the exact calculation very
tedious. It is postponed to the Appendix.

Experiments are usually performed in situations satisfying
two conditions: �1� the width of the cloud after expansion is
much larger than that of the trapped cloud, and �2� the mean
velocity acquired during free fall is much larger than the
velocity spread of the trapped cloud. The first condition
means that ��t�1 and the second one that gt�kBT /m. The
latter condition also means that the mean arrival time, t0

=2H /g, is much larger than the time width kBT /mg2 of
the expanding cloud. With these approximations the scale
factors become quite simple. x̃� x

�xt0
, ỹ� y

�yt0
and z̃

�
H−�1/2�gt2

�zt0
�

g�t0−t�

�z
. In particular, the coordinate z̃ is propor-

tional to the arrival time t. This means that in experiments
that measure arrival times, the results have the same form
when expressed as a function of vertical position.

In the correlation function of the flux, the above approxi-

mations also lead to v2�2gH and �jzv3 /v2�� kBT

��z

�z

2H

=
sz

2H
where sz is the width of the cloud inside the trap and

where the typical value of the occupied trap level, jz, is

�
kBT

��z
. The term containing v3 is then very small compared to

the one proportional v2. In Ref. �15� for instance the above
ratio is �10−5. We will neglect terms containing v3 in the
following. The phase factors �� in Eq. �5� are also very small
since ��t�1 and can be neglected �see the Appendix�.

Under all these approximations, one finds

G fl
�2��r,t;r�,t�� =

v2v2�

�
�

�1 + ��
2
t2��1 + ��

2
t�2�

��eq�r̃��eq�r̃��

+ �G�1��r̃, r̃���2 − �0�r̃��0�r̃��� .

We again find the same correlation function as in the trap,
rescaled by a slightly different factor compared to G

im

�2�. This
factor simply reflects the expansion of the cloud between the
times t and t�.

The scaling laws for the harmonic potential result in a
very simple expression for the correlation lengths at the de-
tector,

l�
�d� = l�t�1 + ���t�2. �12�

Where l�
�d� is the correlation length along the � direction at

the detector and l�
�t� is the correlation length in the trap. If the

gas is far from degeneracy l�t�= �
2�

, and we recover the result
of Eq. �3�. Close to degeneracy the correlation length is po-
sition dependent. In the case of a pulse of atoms as in Ref.
�15�, this formula applies along all three space axes. In ad-
dition, when making a flux measurement, one often ex-
presses the longitudinal correlation length as a correlation
time. For a pulse of atoms from a harmonic trap, with a mean
velocity v at the detector, the correlation time is

t�coh� =
lz
�d�

v

= l�t��z

g
. �13�

It is independent of the propagation time as long as �zt�1.
These calculations are illustrated in the following figures.

For simplicity we have used an isotropic trapping potential.
As pointed out above, the normalized second-order correla-
tion functions g

im

�2� and g
fl

�2� are virtually identical with typical
parameters �see the Appendix� and we will use the shorter
notation g�2�. In Fig. 1 we show the normalized correlation
function g�2��r̃ ,0� as a function of r̃�r /�t for various tem-
peratures in the vicinity the Bose-Einstein phase transition
T*. We use the saturation of the excited state population to
define T* �31�. This is the correlation function at the center

of the cloud. One sees that at T=T* �the thick dashed line in
the figure�, the correlation function at zero distance is already
significantly diminished compared to higher temperatures.
The correlation length, on the other hand, is larger than
��t /2�. Also, one sees that the correlation function is al-
most flat for temperatures a few percent below T*.

In many experiments of course, one does not measure the
local correlation function, but the correlation function aver-
aged over all points in the sample �15�. The effect of this
averaging is shown in Fig. 2. We plot g

m

�2��r̃�

=
�dRG�2��R+r̃e,R�

�dRG�1��R+r̃e,R+r̃e�G�1��R,R�
, where the vector e is a unit vector

in some direction. One sees that the amplitude of the corre-
lation function decreases more slowly, and that after averag-
ing, the correlation length hardly varies as one passes T*.

To illustrate how local the effects which distinguish Figs.
1 and 2 are, we also plot in Fig. 3 the value of g�2��r̃ , r̃�, the
zero distance correlation function as a function of r̃ in the
vicinity of the cloud center. One sees that even below T*, the
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correlator is close to 2 at a rescaled distance of a few times
the harmonic oscillator length scale. We can simply interpret
this effect by observing that at r̃ the effective chemical po-
tential is 
−V�r̃�. Away from the center, the effective chemi-
cal potential is small and this part of the cloud can be de-
scribed as a Boltzmann cloud.

Before interpreting these results further, we recall some of
our assumptions and their possible violation. First, we obtain
Eq. �12� if we make a semiclassical approximation assuming
that kBT greatly exceeds the energy spacing in the trap in
each dimension of space. In an anisotropic trap, this condi-
tion can be violated in one or two dimensions and then cor-
relation length along these directions will be larger and can
become infinite for a small enough temperature. Second, we
have assumed a noninteracting gas throughout.

Repulsive interactions inflate the trapped cloud, and thus
reduce the length l�d� at the detector. We expect this to be the
main effect for atomic clouds above the Bose-Einstein tran-
sition threshold, where the effects of atomic interactions are
typically small. The reduction is typically a few percent.
Even slightly below T*, the condensate density is quite high,
expelling the thermal atoms from the center of the trap. The
effects of interactions inside the trap and during the cloud’s
expansion cannot be neglected. Taking them into account is
then complex and beyond the scope of this paper.

IV. PHYSICAL INTERPRETATIONS

The main result of this paper is that in an experiment
which averages over a detector in the sense of Fig. 2, even at
T=T*, the correlation lengths at the detector are well ap-
proximated by

l�
�d� = l�t���t .

The correlation length increases linearly with the time of
flight. A simple way to understand this result is to consider
the analogy with optical speckle. Increasing the time of flight
corresponds to increasing the propagation distance to the ob-
servation plane in the optical analog. The speckle size, i.e.,
the correlation length, obviously increases linearly with the
propagation distance. Another way to understand the time
dependence is to remark that after release, the atomic cloud
is free and the phase space density should be constant. Since
the density decreases with time as �����t� and the spread of
the velocity distribution is constant, the correlation volume
must increase by the same factor �25�.

Yet another way to look at the correlation length is to
observe that, far from degeneracy, the correlation length in-
side the trap is the thermal de Broglie wavelength, that is,

�
2�

=� /�p where �p=m�v is the momentum width of the
cloud. By analogy, after expansion, the correlation length is
� / ��p�loc, where ��p�loc is the “local” width of the momen-

FIG. 1. �Color online� Two-body normalized correlation func-
tion at the trap center, g�2��r̃ ,0� for 106 atoms as a function of the
position r̃=r /�t for various temperatures around transition tem-
perature. The horizontal axis is labelled in units of the size of the
harmonic oscillator wave function �. The thick dashed line corre-
sponds to the transition temperature T* defined in Ref. �31� and is
93.37�� /kB for 106 atoms. The temperature step is 0.4�� /kB. The
thermal de Broglie wavelength is �0.26�. The effect of the ground
state population is clearly visible in the reduction of g�2��0,0�, and
in the rapid flattening out of the correlation function slightly below
T*.

FIG. 2. �Color online� Two-body normalized correlation func-
tion g

m

�2��r̃� for 106 atoms as a function of r̃. This function is an
average of the two-body correlation function over the cloud. The
conditions are the same conditions as for Fig. 1. Unlike Fig. 1, the
shape is always almost Gaussian and converges more slowly to a
flat correlation for low temperatures. This is because only a small
region around r̃=0 is fully sensitive to the quantum atomic
distribution.

FIG. 3. �Color online� Two-body normalized correlation func-
tion g�2��r̃ , r̃� for 106 atoms as a function of r̃. The conditions are
the same as for Fig. 1. Even for T�T* the correlation goes to 2 far
from the center. This is due to the finite spatial extent of the con-
densate. It can also be understood in terms of the chemical potential

�r̃� which, in a local density approximation, decreases as r̃ in-
creases and thus the correlation is equivalent to that of a hotter
cloud.
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tum distribution. As the pulse of atoms propagates, fast and
slow atoms separate, so that at a given point in space the

width in momentum is reduced by a factor
s�

�vt
.

For a continuous beam, the formula �12� only applies in
the transverse directions. In the longitudinal direction, an
argument in terms of a local thermal de Broglie wavelength
can be used to find the coherence length or time. If the atoms
travel at velocity v without acceleration, the momentum
spread and correlation length remain constant. Defining the
energy width of the beam as �E=mv�v, one finds a corre-
lation time � /v=� /�E �7�. In the presence of an acceleration
such as gravity, the momentum spread of the beam decreases
�the energy spread at any point �E is constant�, which in-
creases the correlation length. The correlation time, however,
remains � /�E �10�.

The result that the coherence length of a cloud of atoms
can vary with the distance of propagation, is in apparent
contradiction with the results of Refs. �39,40�. Those papers
give convincing reasons, both experimental and theoretical,
for why the dispersion associated with the propagation of
massive particles should not result in an increase of the co-
herence length. The contradiction is resolved by noting that
the Mach-Zender interferometer considered in that work is
sensitive to the function f�r , t�=�dRG�1��R , t ;R+r , t�. If the
Hamiltonian commutes with the momentum operator, i.e., if
plane waves are stationary states, one can easily demonstrate
that the function f and hence its width are independent of the
time t. The experiments we analyze are sensitive to the
modulus of G�1� whose width will always increase with time.
Thus the coherence length can depend on the interferometer
as well as the source.

The role of the acceleration of gravity in these experi-
ments is minor. It governs the propagation time and the
speed of the particles when they reach the detector. In a
pulsed beam, gravity has no effect on the correlation length,
although it does affect the correlation time. It also renders
the rescaling of the z coordinate linear for large times so that
the correlation function in position z and time have the same
form. Without gravity �cancellation with a magnetic field
gradient for example�, a pulse of atoms would take longer to
reach the detector, thereby giving the correlation length more
time to dilate, and in addition they would hit the detector at
a lower velocity. The correlation time would then increase

with time and its order of magnitude would be
��t0

vT
= ��

kBT
t0

where vT=kBT /m is the thermal velocity and t0=vT /H is
the time of flight to the detector.

V. EFFECT OF FINITE DETECTOR RESOLUTION

In the preceding sections, the detector was considered
ideal, i.e., with arbitrarily good spatial and temporal resolu-
tion. Here we will consider a model of a more realistic de-
tector, in which we suppose that the spatial resolution in the
x-y plane is Gaussian. This is often the case due to smearing
in pixels �13,16� and is also approximately true in Ref. �15�.
To simplify the discussion we will restrict our analysis to the
case T�T* and use a Maxwell-Boltzmann distribution rather
than Bose-Einstein distribution. In this case, each direction

of space is independent and we will only consider one direc-
tion at a time in the following.

There are three different scales in the problem: the size of

the cloud at the detector s�t��kBT

m
t, the correlation length at

the detector l�d� and the rms width of the detector resolution
function d. The definition of the resolution function is that

for a density ��x�=Ae−x
2/2s�t�2

, the observed density is given
by a convolution

�obs�x� =� dx0��x0�
e−�1/2���x − x0�/d�2

2�d

=
A

1 + d2/s�t�2
e−�x2/2�s�t�2+d2��.

Similarly if G�1��x ,x��=Aei�e−�x + x��2/2�2s�2
e−�x − x��2/2�l�d��2

is
the first order correlation function and Gobs

�1� �x ,x�� the ob-
served one, we have

�Gobs
�1� �x,x���2 =� dx0dx0��G

�1��x0,x0���
2

�
e−�1/2���x − x0�/d�2

2�d

e−�1/2���x� − x0��/d�2

2�d
�14�

=
�A�2

�1 + d2/s2�t���1 + 4d2/�l�d��2�

�e−��x + x��2/4�s�t�2+d2��e−��x − x��2/�l�d��2+4d2�

�15�

Consequently, with �=x ,y and z:
�i� The amplitude of the normalized correlation function

becomes

gobs
�2� �0,0� = �Gobs

�1� �0,0�
�obs�0�

�2

= 1 + �
�

 1 + d�
2 /s�

2�t�

1 + 4d�
2 /�l�

�d��2
.

�ii� The observed widths of the cloud are s��t�
→s�

2�t�+d�
2 .

�iii� The observed correlation lengths are l�
�d�

→�l�
�d��2+ �2d��2. The factor 2 can be understood as 2

�2 where the first term comes from the fact that d� is
defined for one particle and not for a pair of particles and the
second one comes from the fact that the correlation length is
not defined as an rms width.

In the experiment of Ref. �15� the trapped cloud had a
cigar shape. At the detector the cloud was spherical but the
correlation volume was anisotropic with l

x

�d�
�d� l

y

�d� /4. In
the third �vertical� direction, the resolution width was much
smaller than any other length scale. The observed contrast of

the correlation function was therefore approximately,
l
x

�d�

2d
.

VI. CONCLUSION

The most important conclusion of this paper is that the
expansion of a noninteracting cloud from a harmonic trap in
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thermal equilibrium, admits a rather simple, analytical treat-
ment of the time variation of the density and the correlation
functions. In such a pulse of atoms, correlation lengths scale
in the same way as the size of the density profile. The agree-
ment with experiment indicates that the neglect of interac-
tions is a good approximation above the BEC transition tem-
perature. An important next step however, is to examine
interaction effects so that the next generation of experiments,
which will be more precise and better resolved, can be fully
interpreted.
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APPENDIX

Explicit expression of the flux correlation function

We found in Sec. III B, the following expression for the
flux operator:

Î�r,t� = �
j,k

�v2�j
*�k −

1

2
�v3

k�j
*�k−1z

+ v3
*j�j−1z

* �k��âj
†
âk,

where j−1z is the vector �jx , jy , jz−1� and where we write
�=��r , t�.

The second order correlation function for the flux is then,


Î�r,t�Î�r�,t��	 = �
j,k,l,n

�v2�j
*�k −

1

2
�v3

kz�j
*�k−1z

+ v3
*jz�j−1z

* �k��
� �v2���l

*�n� −
1

2
�v3�

nz��l
*�n−1z

�

+ v�3
*lz��l−1z

* �n���
�
âj

†
âkâl

†
ân	 .

Neglecting the shot-noise and ground-state contributions,
this leads to


Î�r,t�Î�r�,t��	 = 
Î�r,t�	
Î�r�,t��	 + Re�A�

with

A = �
j,l
�v2v2��j

*�j��l��l
* +

1

2
v3v3�

jzlz�j
*�j−1z

� �l−1z
��l

*

+
1

2
v3v�3

*lz�j
*�j��l−1z

��l−1z

* − v2v3�
jz�j

*�j−1z
� �l��l

*

− v2�v3
lz�j

*�j��l−1z
��l

*�
âj
†
âj	
âl

†
âl	 .

We write A=�i=1
5 Ti where the Ti terms can be recast, using

tan ��=1/��t, tan ��� =1/��t�, ��=��� −��, ��j����� −���
= j ·�, �l

0=�l
0�r̃�, and �l�

0=�l
0�r̃��,

T1 = v2v2��
j,l

�j
*�j��l��l

*
âj
†
âj	
âl

†
âl	 =

v2v2�

�
�

�1 + ��
2
t2��1 + ��

2
t�2�

�
j,l

�j
0��j

0�l
0��l

0
ei���j�−l������−���
âj

†
âj	
âl

†
âl	

=
v2v2�

�
�

�1 + ��
2
t2��1 + ��

2
t�2���j

�j
0��j

0
eij·�
âj

†
âj	�2

,

T2 =
1

2
v3v3��

j,l

jzlz�j
*�j−1z

� �l−1z
��l

*
âj
†
âj	
âl

†
âl	 =

−
1

2

�v3v3��

�
�

�1 + ��
2
t2��1 + ��

2
t�2���

j

jz�j
0��j−1z

0
eij·�
âj

†
âj	���

l

lz�l−1z

0 ��l
0
e−il·�
âl

†
âl	� ,

T3 =
1

2
v3v�3

*�
j,l

lz�j
*�j��l−1z

��l−1z

* 
âj
†
âj	
âl

†
âl	 =

1

2

�v3v3��

�
�

�1 + ��
2
t2��1 + ��

2
t�2���j

�j
0��j

0
eij·�
âj

†
âj	���

l

lz�l−1z

0 ��l−1z

0
e−il·�
âl

†
âl	� ,

T4 = − v2v3��
j,l

jz�j
*�j−1z

� �l��l
*
âj

†
âj	
âl

†
âl	 = − i

v2�v3��

�
�

�1 + ��
2
t2��1 + ��

2
t�2���j

jz�j
0��j−1z

0
eij·�
âj

†
âj	���

l

�l
0��l

0
e−il·�
âl

†
âl	� ,
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T5 = − v2�v3�
j,l

lz�j
*�j��l−1z

��l
*
âj

†
âj	
âl

†
âl	 = − i

v2��v3�

�
�

�1 + ��
2
t2��1 + ��

2
t�2���j

�j
0��j

0
eij·�
âj

†
âj	���

l

lz�l−1z

0 ��l
0
e−il·�
âl

†
âl	� .

The term T1 is a real number which is not the case for T2, T3,
T4, and T5.

Calculation for harmonic oscillator stationary states

All the above terms can be calculated analytically. All the
series are identical in the direction x and y. We are then left
with the calculation of three series in only one direction,

�
n=0



n�n−1
0 �z̃��n

0�z̃��e−nu,

�
n=0



n�n
0�z̃��n−1

0 �z̃��e−nu,

�
n=0



n�n−1
0 �z̃��n−1

0 �z̃��e−nu.

The function gu�z̃ , z̃��=�n=0
 �n

0�z̃��n
0�z̃��e−nu is known �17,29�

and its expression is

gu�z̃, z̃�� =
1

���1 − e−2u�
exp�− tanh�u

2
�� z̃ + z̃�

2�
�2

− coth�u

2
�� z̃ − z̃�

2�
�2� .

Using

z̃�n
0�z̃� = �

2

z̃�â + â†��n

0	 = �
2

�n�n−1
0 �z̃� + n + 1�n+1

0 �z̃�� ,

one finds

z̃gu�z̃, z̃�� =
�

2
�� n�n−1

0 �z̃��n
0�z̃��e−nu

+ eu � n�n
0�z̃��n−1

0 �z̃��e−nu� .

It follows easily that

�
n=0



n�n−1
0 �z̃��n

0�z̃��e−nu =
2

�

z̃ − euz̃�

1 − e2u
gu�z̃, z̃�� ,

�
n=0



n�n
0�z̃��n−1

0 �z̃��e−nu =
2

�

z̃� − euz̃

1 − e2u
gu�z̃, z̃�� .

Moreover,

�n=0


n�n−1

0 �z̃��n−1
0 �z̃��e−nu = e−u�gu�z̃, z̃�� − �ugu�z̃, z̃��� .

Then,

�
n=0



n�n−1
0 �z̃��n−1

0 �z̃��e−nu = � 1

1 − e−2u
+

1

2� z̃ + z̃�

2� cosh
u

2
�

2

−
1

2� z̃ − z̃�

2� sinh
u

2
�

2

�e−ugu�z̃, z̃�� .

Explicit expression of the flux correlation

function—Part II

We define G
B

�1��r ,r� ,u�=�n
�n

0�r��n
0�r��e−nu. This

function, the 3D equivalent of the function gu, is connected
to the one-body correlation function by G�1��r ,r��
=�l=1

 e	l
̃G
B

�1��r ,r� , l�� with ��=	���.
Then,

T1 =
v2v2�

�
�

�1 + ��
2
t2��1 + ��

2
t�2���l

e	l
̃GB
�1��r̃, r̃�,l� − i���2

,

T2 = −
1

2

�v3v3��

�
�

�1 + ��
2
t2��1 + ��

2
t�2�

��
l

e	l
̃
2

�

z̃ − el�z−i�zz̃�

1 − e2�l�z−i�z�
GB

�1��r̃, r̃�,l� − i���
� ��

k

e	k
̃
2

�

z̃� − ek�z+i�zz̃

1 − e2�k�z+i�z�
GB

�1��r̃, r̃�,k� + i��� ,
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T3 =
1

2

�v3v3��

�
�

�1 + ��
2
t2��1 + ��

2
t�2���l

e	l
̃GB
�1��r̃, r̃�,l� − i��� � ��k

e	k
̃� 1

1 − e−2�k�z+i�z�
+

1

2� z̃ + z̃�

2� cosh
k�z + i�z

2
�

2

−
1

2� z̃ − z̃�

2� sinh
k�z + i�z

2
�

2

�e−�k�z+i�z�GB
�1��r̃, r̃�,k� + i��� ,

T4 = − i
v2�v3��

�
�

�1 + ��
2
t2��1 + ��

2
t�2�

��
l

e	l
̃
2

�

z̃ − el�z−i�zz̃�

1 − e2�l�z−i�z�
GB

�1��r̃, r̃�,l� − i��� � ��
k

e	k
̃GB
�1��r̃, r̃�,k� + i��� ,

T5 = − i
�v3�v2�

�
�

�1 + ��
2
t2��1 + ��

2
t�2���l

e	l
̃GB
�1��r̃, r̃�,l� − i��� � ��

k

e	k
̃
2

�

z̃� − ek�z+i�zz̃

1 − e2�k�z+i�z�
GB

�1��r̃, r̃�,k� + i��� .

The dominant term is T1 and is the one used in Sec. III B 5.

Contribution of neglected terms in the correlation of the

flux

Here we evaluate the neglected terms T2 to T5 and the
shot-noise contribution. They will be evaluated in the case of
clouds far above BEC threshold. Under this assumption, all
the functions are separable in the variables x ,y, and t and the
summation over the index l in the preceding equations re-
duces to the single term l=1.

Shot-noise contribution

Using the above analysis one can show that the main term
is still proportional to v2v2�. The additional term is then,

v2v2�

�
�

�1 + ��
2
t2��1 + ��

2
t�2�

e	
̃GB
�1��r̃, r̃�,� − i��GB

�1��r̃, r̃�,i�� .

For t= t�, �=0 and G
B

�1��r̃ , r̃� ,0�=��r̃− r̃��. The shot-noise
term is then

v2
2

�
�

�1 + ��
2
t2�

�eq�r̃���r̃ − r̃�� .

As expected, this term corresponds also to the one at equi-
librium with rescaled coordinates.

T2–T5 contribution

We have G
fl.
�2��r , t ;r� , t��= 
Î�r , t�Î�r� , t��	= 
Î�r , t�	

�
Î�r� , t��	+Re�A� where A=�i=1
5 Ti.

Case t= t�:

�a� �=0, then T1=
v2v2�

�
�

�1+��
2 t2��1+��

2 t�2�
�G�1��r̃ , r̃���2, T2

and T3 are real number and Re�T4�=Re�T5�=0.
�b� One finds, to leading orders, g�2��0,0 , t ;0 ,0 , t�−2

� 1
8
� sz

H
�2�1−2

t−t0

t0
��1−

�z
2

6
� where sz is the initial size of the

cloud in the vertical direction and t0=2H /g.
�c� The deviation from 2 is extremely small in the ex-

perimental conditions of Ref. �15� ��10−11� but shows that
the bunching is strictly speaking not 2 at the center. This
behavior is expected for any flux correlation function of dis-
persive waves �41�.

�d� The correlation lengths at the detector are not
modified by the additional terms.

Case t� t�:
�a� The correlation function can be written as

g�2��0,0,t;0,0,t�� = 1 +
�GB

�1��r̃, r̃�,� + i���2

GB
�1��r̃, r̃,��GB

�1��r̃�, r̃�,��
�1 + �� .

�b� where

�GB
�1��r̃,r̃�,�+i���2

GB
�1��r̃,r̃,��GB

�1��r̃�,r̃�,��
� e−��t − t��/t�coh��2�1−��z

2�/6�1−��t+t�−2t0�/t0�

and
�c�

� �
1

8
�wz

H
�2�1 − � t + t� − 2t0

t0
���1 −

�z
2

6
�

−
3

2��zt0�z�
2� t − t�

t0
�2�1 +

�z

3
� .

We have neglected terms in �z , �t− t0�3 , �t�− t0�3 , �t− t0�2�t�
− t0� , �t− t0��t�− t0�2, and higher orders.

�d� The value of � is extremely small ��10−10� using

Ref. �15�. The deviation from e−��t − t�� / t
�coh��2

is mainly due to
the mean time �t+ t�� /2 contribution and changes the value
of the correlation time in the wings of the time of flight by
�3%. The effect of the phase factor � is negligible.
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overexpressed oncogene by QPCR in prostate

cancer, with 72.0% of cases overexpressing

ERG (21). By using a combination of assays,

we found evidence of fusion with TMPRSS2

in 20 of 22 (990%) cases that overexpressed

ERG or ETV1, suggesting that the fusion is the

most likely cause for the overexpression. FISH

analysis on a set of 29 prostate cancer cases

selected independently of any knowledge of

ERG or ETV1 expression indicates that 23 of

29 (79%) had TMPRSS2:ETV1 fusions or

ERG rearrangement. It is possible that this

cohort is not representative of all prostate

cancer samples and that this may be an

overestimate of the prevalence of TMPRSS2

fusions with ETS family members, because

our split-signal approach can detect addi-

tional rearrangements involving ERG. How-

ever, the reported frequencies of ERG or

ETV1 overexpression in prostate cancer with

our fusion transcript and FISH results sug-

gest that TMPRSS2 fusions with ETV1 or

ERG occur in the majority of prostate cancer

cases. Coupled with the high incidence of pros-

tate cancer [an estimated 232,090 new cases

will be diagnosed in the United States in 2005

(22)], the TMPRSS2 fusion with ETS family

members is likely to be the most common re-

arrangement yet identified in human malig-

nancies and the only rearrangement present

in the majority of one of the most prevalent

carcinomas.

Future efforts will be directed at character-

izing the expressed protein products, including

the effects of N-terminal truncation of ERG and

ETV1, and identifying downstream targets and

the functional role of the fusions in prostate

cancer development. Importantly, the existence

of TMPRSS2 fusions with ETS family mem-

bers in prostate cancer suggests that causal

gene rearrangements may exist in common

epithelial cancers but may be masked by the

multiple nonspecific chromosomal rearrange-

ments that occur during tumor progression.
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Hanbury Brown Twiss Effect for

Ultracold Quantum Gases
M. Schellekens,1 R. Hoppeler,1 A. Perrin,1 J. Viana Gomes,1,2

D. Boiron,1 A. Aspect,1 C. I. Westbrook1*

We have studied two-body correlations of atoms in an expanding cloud above
and below the Bose-Einstein condensation threshold. The observed correlation
function for a thermal cloud shows a bunching behavior, whereas the corre-
lation is flat for a coherent sample. These quantum correlations are the atomic
analog of the Hanbury Brown Twiss effect. We observed the effect in three
dimensions and studied its dependence on cloud size.

Nearly half a century ago, Hanbury Brown

and Twiss (HBT) performed a landmark ex-

periment on light from a gaseous discharge

(1). The experiment demonstrated strong cor-

relations in the intensity fluctuations at two

nearby points in space despite the random or

chaotic nature of the source. Although the

effect was easily understood in the context of

classical statistical wave optics, the result was

surprising when viewed in terms of the quan-

tum theory. It implied that photons coming

from widely separated points in a source such

as a star were Bbunched.[ On the other hand,

photons in a laser were not bunched (2, 3).

The quest to understand the observations stim-

ulated the birth of modern quantum optics

(4). The HBT effect has since found applica-

tions in many other fields from particle physics

(5) to fluid dynamics (6).

Atom or photon bunching can be under-

stood as a two-particle interference effect

(7). Experimentally, one measures the joint

probability for two particles emitted from two

separated source points, A and B, to be de-

tected at two detection points, C and D. One

must consider the quantum mechanical am-

plitude for the process AYC and BYD as

well as that for AYD and BYC. If the two

processes are indistinguishable, the amplitudes

interfere. For bosons, the interference is con-

structive, resulting in a joint detection proba-

bility that is enhanced compared with that of

two statistically independent detection events,

whereas for fermions the joint probability is

lowered. As the detector separation is increased,

the phase difference between the two ampli-

tudes grows large enough that an average

over all possible source points A and B washes

out the interference, and one recovers the sit-

REPORTS
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uation for uncorrelated detection events. This

fact was used by HBT to measure the angular

size of a star (8), but another major conse-

quence of the observation was to draw attention

to the importance of two-photon amplitudes

and how their interference can lead to sur-

prising effects. These quantum amplitudes

must not be confused with classical electro-

magnetic field amplitudes (3). Two-photon

states subsequently led to many other striking

examples of Bquantum weirdness[ (9). In con-

trast to a chaotic source, all photons in a single

mode laser are in the same quantum state.

Hence, there is only one physical process and

no bunching effect. A similar effect is ex-

pected for atoms in a Bose-Einstein conden-

sate (BEC).

Two-particle correlations have been ob-

served both for cold neutral atoms (10–12)

and for electrons (13–15), and three-particle

correlations (16–18) at zero distance have also

been used to study atomic gases. But the full

three-dimensional effect and its dependence

on the size and degeneracy of a sample has

yet to be demonstrated for massive particles.

Here, we demonstrate the effect for a trapped

cloud of atoms close to the BEC transition

temperature released onto a detector capable

of individual particle detection. We extract,

for varying cloud sizes, a three-dimensional

picture of the correlations between identical

particles produced by quantum interference.

We also show that a BEC shows no such cor-

relations. The results are in agreement with

an ideal gas model and show the power of

single particle detection techniques applied

to the study of degenerate quantum gases.

The calculation of the phase difference of

the possible two-particle detection amplitudes

given in (7) can be adapted to the case of par-

ticles of mass m traveling to a detector in a

time t. One can show that the correlation

length observed at the detectors, that is, the

typical detector separation for which inter-

ference survives, is li 0
It
msi
, where s

i
is the

source size along the direction i, I is the

reduced Planck_s constant, and we have as-

sumed that the size of the cloud at the de-

tector is much larger than the initial size. The

optical analog of this expression, for a source

of size s and wavelength l at a distance L

from the observation plane, is l 0 Ll/2ps.

This is the length scale of the associated

speckle pattern. The formula can be recov-

ered for the case of atoms traveling at con-

stant velocity v toward a detector at distance

L if one identifies h/mv with the deBroglie

wavelength corresponding to velocity v. The

formula we give is also valid for atoms ac-

celerated by gravity, and the interpretation of

l as the atomic speckle size remains valid. A

pioneering experiment on atom correlations

used a continuous beam of atoms (10). For a

continuous beam, the correlation time, or equiv-

alently, the longitudinal correlation length, de-

pends on the velocity width of the source and

not on the source size. Thus, the longitudinal

and transverse directions are qualitatively dif-

ferent. By contrast, our measurements are per-

formed on a cloud of atoms released suddenly

from a magnetic trap. In this case, the three

dimensions can all be treated equivalently, and

the relation above applies in all three. Because

the trap is anisotropic, the correlation func-

tion is as well, with an inverted ellipticity.

Our sample is a magnetically trapped cloud

of metastable helium atoms evaporatively

cooled close to the BEC transition tempera-

ture (19) (about 0.5 mK for our conditions).

Our source is thus very small, and together

with a long time of flight (308 ms) and

helium_s small mass, we achieve a large

speckle size or correlation volume (30 mm by

800 mm by 800 mm), which simplifies the

detection problem. For example, the observa-

tions are much less sensitive to the tilt of the

detector than in (10).

To detect the atoms, we use an 8-cm-

diameter microchannel plate detector (MCP).

It is placed 47 cm below the center of the

magnetic trap. A delay line anode permits

position-sensitive detection of individual par-

ticles in the plane of the detector (20) (Fig. 1).

Atoms are released from the trap by suddenly

turning off the magnetic field. About 10% of

these atoms are transferred to the magnetic

field–insensitive m 0 0 state by nonadiabatic

transitions (19) and fall freely to the detector.

The remaining atoms are removed by applying

additional magnetic field gradients during the

time of flight. For each detected atom, we

record the in-plane coordinates x and y and the

time of detection t. The atoms hit the detector

at 3 m/s with a velocity spread below 1%, and

so we convert t into a vertical position z. The

observed root mean square (rms) resolution is

d È 250 mm in x and y and 2 nm in z. These

data allow us to construct a three-dimensional

histogram of pair separations (Dx, Dy, and Dz)

for all particles detected in a single cloud. The

histograms are summed over the entire atom-

ic distribution and over many shots, typically

1000 (21).

Because of our good resolution along z,

we begin by concentrating on the correlation

function along this axis. Normalized corre-

lation functions for various experimental

conditions are shown in Fig. 2A. To compute

the normalized correlation function, we di-

vide the pair separation histogram by the

autoconvolution of the average single parti-

cle distribution along z. We also normalize

the correlation function to unity for large sep-

arations. This amounts to dividing, for each

elementary pixel of our detector, the joint de-

tection probability by the product of the indi-

vidual detection probabilities at the two pixels.

This gives us the usual normalized correlation

function g(2)(Dx 0 0, Dy 0 0, Dz). The HBT

bunching effect corresponds to the bump in

the top three graphs of Fig. 2A. The fourth

graph shows the result for a BEC. No correla-

tion is observed. EA detector saturation effect in

the BEC data required a modified analysis pro-

cedure (21).^ We have also recorded data for a

cloud with a 2-mm radius and 1-mK temper-

ature for which the correlation length is so

small that the bunching effect is washed out by

the in-plane detector resolution. Experimentally,

the normalized correlation function in this case

is indeed flat to within less than 1%.

We plot (Fig. 2B) the normalized corre-

lation functions in the Dx j Dy plane and for

Dz 0 0 for the same three data sets. The data

in Fig. 2B show the asymmetry in the cor-

relation function arising from the difference

in the two transverse dimensions of the trapped

cloud. The long axis of the correlation function

is orthogonal to that of the magnetic trap.

Fig. 1. Schematic of the apparatus. The trapped cloud has a cylindrical symmetry with oscillation
frequencies of wx/2p 0 47 Hz and wy/2p 0 wz/2p 0 1150 Hz. During its free fall toward the
detector, a thermal cloud acquires a spherical shape. A 1-mK temperature yields a cloud with an
rms radius of about 3 cm at the detector. Single particle detection of the neutral atoms is possible
because of each atom’s 20-eV internal energy that is released at contact with the MCP. Position
sensitivity is obtained through a delay-line anode at the rear side of the MCP.
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We expect the experimental normalized

correlation function for a thermal bosonic gas

to be described by

g
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We have assumed here that the gas is non-

interacting and that the velocity and density

distribution remain roughly Gaussian even

close to the BEC transition temperature. Nu-

merical simulations indicate that this is a good

approximation when the correlation function

is averaged over the entire cloud (22). As dis-

cussed above, the correlation lengths should

be inversely proportional to the sizes, s
i
, of

the sample. In a harmonic trap with trapping

frequency w
i
along the i direction, one has

si 0
ffiffiffiffiffiffiffi

kBT

mw 2
i

q

, where kB is Boltzmann_s con-

stant and T is the temperature of the atoms.

Because T is derived directly from the time

of flight spectrum, we shall plot our data as a

function of T rather than of s. The parameter

h would be unity for a detector whose res-

olution width d is small compared with the

correlation length. Our d is smaller than ly
but larger than lx, and in this case the con-

volution by the detector resolution results in

an h given roughly by lx/2d È 5%. We use

Eq. 1 to fit the data by using h and the li as

fit parameters and compare the results to the

ideal gas model (21).

The results for l
x
, l

y
, and l

z
for our three

temperatures are plotted in Fig. 3A. The fitted

values of l
x
are È450 mm and are determined

by the detector resolution rather than the true

coherence length along x. The value of l
y
has

been corrected for the finite spatial resolution

of the detector. The fitted value of l
z
requires

no correction, because in the vertical direction

the resolution of the detector is much better. l
y

and l
z
are consistent and agree with the pre-

diction using the known trap frequencies and

temperatures. Figure 3B shows the fitted value

of h versus temperature, along with the pre-

diction of the same ideal gas model as in Fig.

3A, using the measured detector resolution.

The data are in reasonable agreement with the

model, although we may be seeing too little

contrast at the lowest temperature. The run at

0.55 mK was above, but very close to, the BEC

transition temperature. (We know this because,

when taking data at 0.55 mK, about one-third

of the shots contained small BECs; these

runs were eliminated before plotting Fig. 2.)

Future work will include examining whether

the effect of the repulsive interactions between

atoms or finite atom number must be taken into

account.

The results reported here show the power

of single particle detection in the study of

quantum gases. The correlations we have ob-

served are among the simplest that should be

present. Two recent experiments have shown

correlations in a Mott insulator (11) as well as

in atoms produced from the breakup of mole-

cules near a Feshbach resonance (12). Im-

proved observations of these effects may be

possible with individual particle detection.

Other atom pair production mechanisms, such

as four-wave mixing (23, 24), can be inves-

tigated. A fermionic analog to this experiment

using 3He would also be (25) of great interest.
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Quantum Coherence in an

Optical Modulator
S. G. Carter,1* V. Birkedal,1. C. S. Wang,2 L. A. Coldren,2

A. V. Maslov,3 D. S. Citrin,4,5 M. S. Sherwin1-

Semiconductor quantum well electroabsorption modulators are widely used
to modulate near-infrared (NIR) radiation at frequencies below 0.1 terahertz
(THz). Here, the NIR absorption of undoped quantum wells was modulated by
strong electric fields with frequencies between 1.5 and 3.9 THz. The THz field
coupled two excited states (excitons) of the quantum wells, as manifested by
a new THz frequency- and power-dependent NIR absorption line. Nonpertur-
bative theory and experiment indicate that the THz field generated a coherent
quantum superposition of an absorbing and a nonabsorbing exciton. This quan-
tum coherence may yield new applications for quantum well modulators in
optical communications.

Quantum three-state systems in which two of

the states are strongly coupled by an intense

laser field have been widely studied in atom-

ic and molecular systems (1). The energies

of the quantum states are altered as they are

Bdressed[ by the strong light-matter interac-

tion. Such dressed states were first observed

by Autler and Townes (AT) in a molecular

system driven by a strong radio-frequency field

and probed by weak microwaves (2). When a

radio-frequency resonance occurred, the micro-

wave absorption line split in two. In three-state

systems with weak coupling to the environ-

ment, AT splitting can evolve into electromag-

netically induced transparency (EIT), in which

a strong coupling beam induces transparency

at a resonance at which the undriven system is

opaque (3). This transparency is due to quan-

tum interference between the dressed states.

EIT is the basis for slow (4) and stopped light

(5, 6) in atomic systems.

A variety of quantum systems similar to

atomic three-state systems can be engineered

in semiconductor quantum wells (QWs). A

QW is a layer of one semiconductor grown

between semiconductors with larger band gaps

(7). The layer with the smaller gap is suffi-

ciently thin that well-defined sets of quantized

states, or subbands, are associated with elec-

tron motion parallel to the growth direction.

Within each subband, there is a continuum of

states associated with different momenta par-

allel to the plane of the QW (perpendicular

to the growth direction). AT-like splitting (8),

quantum interference (9, 10), and EIT (11, 12)

have been reported in QWs, but their observa-

tion has been more difficult than in atoms and

molecules. This is in part because of much

larger absorption linewidths, which result from

disorder, from stronger coupling to the envi-

ronment, or from scattering between subbands.

We have fabricated a particularly simple

three-level system in undoped QWs (Fig. 1).

The excitation with the lowest frequency oc-

curs at about 350 THz (wavelength 857 nm or

energy 1.46 eV) when an electron is promoted

from the filled valence subband of highest

energy (labeled h1) to the empty conduction

subband of lowest energy (labeled e1). The

excited electron binds with the hole it left be-

hind to form an exciton with a hydrogen-like

wave function in the QW plane. Transitions

between different in-plane states (e.g., the 1s

and 2p states) are allowed only for in-plane

THz polarizations (13, 14), which are not

present in the experiments discussed here. The

lowest exciton state is labeled h1X. The next

exciton state, h2X, consists of an electron from

e1 and a hole from the second highest valence

subband, h2. NIR transitions between the crys-

tal ground state and h2X are not allowed be-

cause of quantum mechanical selection rules.

However, intersubband transitions from h1X to

h2X are allowed for THz radiation polarized

in the growth direction. The three states anal-

ogous to those in an AT picture are the crystal

ground state, the lowest exciton h1X, and the

second exciton h2X (15).

This report explores the NIR absorption

of undoped QWs at low temperatures (È10 K)

when they are driven by strong electric fields

polarized in the growth direction with frequen-

cies between 1.5 and 3.9 THz. Because the

frequency of the THz laser is about 1% of that

required to create an exciton, the strong laser

field does not alter the populations of the quan-

tum states of the system. Near 3.4 THz, the

drive frequency is resonant with the transition

between the two lowest exciton states. The AT

splitting of excitons driven by strong intersub-

band radiation is experimentally observed, and

theoretical predictions (16, 17) are confirmed.

The sample consists of 10 In
0.06

Ga
0.94

As

QWs (each 143 )) separated by Al
0.3
Ga

0.7
As

barriers (300 )). InGaAs QWs were used

instead of GaAs QWs so that the GaAs sub-

strate was transparent for NIR light near the

exciton energies. A 100-nm layer of aluminum

was deposited on the surface of the sample

on which the QWs were grown. The metallic

boundary condition improved THz coupling

and ensured that the THz field at the QWs

was polarized almost perfectly in the growth

direction (18). The interband absorption was

probed using broadband, incoherent, NIR light

from an 850-nm light-emitting diode focused

onto the sample backside to a spot size È250

mm in diameter. The NIR intensity was less

than 0.3 W/cm2. As illustrated in Fig. 1, the

NIR beam was transmitted through the trans-

parent substrate, interacted with the QWs, was

reflected off of the Al layer, and was then

collected and sent to a monochromator with

an intensified charge-coupled device detec-

tor. The reflected NIR beam was measured

during the 1 to 1.5 ms at the peak of the THz
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LETTERS

Comparison of the Hanbury Brown–Twiss effect for
bosons and fermions
T. Jeltes1, J. M. McNamara1, W. Hogervorst1, W. Vassen1, V. Krachmalnicoff2, M. Schellekens2, A. Perrin2,

H. Chang2, D. Boiron2, A. Aspect2 & C. I. Westbrook2

Fifty years ago, Hanbury Brown and Twiss (HBT) discovered
photon bunching in light emitted by a chaotic source1, highlight-
ing the importance of two-photon correlations2 and stimulating
the development of modern quantum optics3. The quantum inter-
pretation of bunching relies on the constructive interference
between amplitudes involving two indistinguishable photons,
and its additive character is intimately linked to the Bose nature
of photons. Advances in atom cooling and detection have led to
the observation and full characterization of the atomic analogue of
the HBT effect with bosonic atoms4–6. By contrast, fermions
should reveal an antibunching effect (a tendency to avoid each
other). Antibunching of fermions is associated with destructive
two-particle interference, and is related to the Pauli principle
forbidding more than one identical fermion to occupy the
same quantum state. Here we report an experimental comparison
of the fermionic and bosonic HBT effects in the same apparatus,
using two different isotopes of helium: 3He (a fermion) and 4He (a
boson). Ordinary attractive or repulsive interactions between
atoms are negligible; therefore, the contrasting bunching and
antibunching behaviour that we observe can be fully attributed
to the different quantum statistics of each atomic species. Our
results show how atom–atom correlation measurements can
be used to reveal details in the spatial density7,8 or momentum
correlations9 in an atomic ensemble. They also enable the direct
observation of phase effects linked to the quantum statistics of a
many-body system, which may facilitate the study of more exotic
situations10.

Two-particle correlation analysis is an increasingly important
method for studying complex quantumphases of ultracold atoms7–13.
It goes back to the discovery, by Hanbury Brown and Twiss1, that
photons emitted by a chaotic (incoherent) light source tend to be
bunched: the joint detection probability is enhanced, compared to
that of statistically independent particles, when the two detectors are
close together. Although the effect is easily understood in the context
of classical wave optics14, it took some time to find a clear quantum
interpretation3,15. The explanation relies on interference between the
quantum amplitude for two particles, emitted from two source
points S1 and S2, to be detected at two detection points D1 and D2

(see Fig. 1). For bosons, the two amplitudes D1h jS1i D2h jS2i and
D1h jS2i D2h jS1i must be added, which yields a factor of 2 excess in
the joint detection probability, if the two amplitudes have the same
phase. The sum over all pairs (S1,S2) of source points washes out the
interference, unless the distance between the detectors is small
enough that the phase difference between the amplitudes is less
than one radian, or equivalently if the two detectors are separated
by a distance less than the coherence length. Study of the joint
detection rates versus detector separation along the i direction then

reveals a ‘bump’ whose width li is the coherence length along that
axis1,5,16–19. For a source size si (defined as the half width at e21/2 of a
gaussian density profile) along the i direction, the bump has a half
width at e21 of li5 ht/(2pmsi), where m is the mass of the particle, t
the time of flight from the source to the detector, and h Planck’s
constant. This formula is the analogue of the formula li5 Ll/(2psi)
for photons, if l5 h/(mv) is identifiedwith the de Broglie wavelength
for particles travelling at velocity v5 L/t from the source to the
detector.

For indistinguishable fermions, the two-body wavefunction is
antisymmetric, and the two amplitudes must be subtracted, yielding
a null probability for joint detection in the same coherence volume.
In the language of particles, it means that two fermions cannot have
momenta and positions belonging to the same elementary cell of

1Laser Centre Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands. 2Laboratoire Charles Fabry de l’Institut d’Optique, CNRS, Univ. Paris-sud, Campus

Polytechnique RD 128, 91127 Palaiseau Cedex, France.
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Figure 1 | The experimental set-up. A cold cloud of metastable helium
atoms is released at the switch-off of amagnetic trap. The cloud expands and
falls under the effect of gravity onto a time-resolved and position-sensitive
detector (microchannel plate and delay-line anode) that detects single
atoms. The horizontal components of the pair separationDr are denotedDx
andDy. The inset shows conceptually the two 2-particle amplitudes (in black
or grey) that interfere to give bunching or antibunching: S1 and S2 refer to
the initial positions of two identical atoms jointly detected at D1 and D2.
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phase space. As a result, for fermions the joint detection rate versus
detector separation is expected to exhibit a dip around the null
separation. Such a dip for a fermion ensemble must not be confused
with the antibunching dip that one can observe with a single particle
(boson or fermion) quantum state—for example, resonance fluor-
escence photons emitted by an individual quantum emitter20. In
contrast to the HBT effect for bosons, the fermion analogue cannot
be interpreted by any classical model, either wave or particle, and
extensive efforts have been directed towards an experimental demon-
stration. Experiments have been performed with electrons in
solids21,22 and in a free beam23, and with a beam of neutrons24, but
none has allowed a detailed study and a comparison of the pure
fermionic and bosonic HBT effects for an ideal gas. A recent experi-
ment using fermions in an optical lattice25, however, does permit
such a study and is closely related to our work.

Here we present an experiment in which we study the fermionic
HBT effect for a sample of polarized, metastable 3He atoms (3He*),
and we compare it to the bosonic HBT effect for a sample of polar-
ized, but not Bose condensed, metastable 4He atoms (4He*) pro-
duced in the same apparatus at the same temperature. We have
combined the position- and time-resolved detector, previously
used5,26 for 4He*, with an apparatus with which ultracold samples
of 3He* or 4He* have recently been produced27. Fermions or bosons
at thermal equilibrium in a magnetic trap are released onto the
detector, which counts individual atoms (see Fig. 1) with an effi-
ciency of approximately 10%. The detector allows us to construct
the normalized correlation function g(2)(Dr), that is, the probability
of joint detection at two points separated by Dr, divided by the
product of the single detection probabilities at each point.
Statistically independent detection events result in a value of 1 for
g(2)(Dr). A value larger than 1 indicates bunching, while a value less
than 1 is evidence of antibunching.

We produce gases of pure 3He* or pure 4He* by a combination of
evaporative and sympathetic cooling in an anisotropic magnetic trap
(see Methods). Both isotopes are in pure magnetic substates, with
nearly identical magnetic moments and therefore nearly identical
trapping potentials, so that trapped non-degenerate and non-inter-
acting samples have the same size at the same temperature. The
temperatures of the samples yielding the results of Fig. 2, asmeasured
by the spectrum of flight times to the detector, are 0.536 0.03 mK and
0.526 0.05 mK for 3He* and 4He*, respectively. The uncertainties
correspond to the standard deviation of each ensemble. In a single
realization, we typically produce 73 104 atoms of both 3He* and
4He*. The atom number permits an estimate of the Fermi and
Bose–Einstein condensation temperatures of approximately 0.9 mK
and 0.4 mK, respectively. Consequently, Fermi pressure in the trapped
3He* sample has a negligible (3%) effect on the trap size, and repuls-
ive interactions in the 4He* sample have a similarly small effect. The
trapped samples are therefore approximately gaussian ellipsoids
elongated along the x axis with an r.m.s. size of about 1103
123 12 mm3. To release the atoms, we turn off the current in the
trapping coils and atoms fall under the influence of gravity. The
detector, placed 63 cm below the trap centre (see Fig. 1), then records
the x–y position and arrival time of each detected atom.

The normalized correlation functions g(2)(0,0,Dz) along the z (ver-
tical) axis, for 3He* and 4He* gases at the same temperature, are
shown in Fig. 2. Each correlation function is obtained by analysing
the data from about 1,000 separate clouds for each isotope (see
Methods). Results analogous to those of Fig. 2 are obtained for cor-
relation functions along the y axis, but the resolution of the detector
in the x–y plane (about 500 mm half width at e21 for pair separation)
broadens the signals. Along the x axis (the long axis of the trapped
clouds), the expected widths of the HBT structures are one order of
magnitude smaller than the resolution of the detector and are there-
fore not resolved.

Figure 2 shows clearly the contrasting behaviours of bosons and
fermions. In both cases we observe a clear departure from statistical

independence at small separation. Around zero separation, the fer-
mion signal is lower than unity (antibunching) while the boson signal
is higher (bunching). Because the sizes of the 3He* and 4He* clouds at
the same temperature are the same, as are the times of flight (pure free
fall), the ratio of the correlation lengths is expected to be equal to the
inverse of the mass ratio, 4/3. The observed ratio of the correlation
lengths along the z axis in the data shown is 1.36 0.2. The individual
correlation lengths are also in good agreement with the formula
lz5 ht/(2pmsz), where sz is the source size along z. Owing to the finite
resolution, the contrast in the signal, which should ideally go to 0 or
2, is reduced by a factor of order ten. The amount of contrast reduc-
tion is slightly different for bosons and fermions, and the ratio should
be about 1.5. The measured ratio is 2.46 0.2. This discrepancy has
several possible explanations. First, the magnetic field switch-off is
not sudden (timescale ,1ms), and this could affect bosons and
fermions differently. Second, systematic errors may be present in
our estimate of the resolution function. The resolution, however,
does not affect the widths of the observed correlation functions along
z, and thus we place the strongest emphasis on this ratio as a test of
our understanding of boson and fermion correlations in an ideal gas.
More information on uncertainties and systematic errors, as well as a
more complete summary of the data, are given in Supplementary
Information.

Improved detector resolutionwould allow amore detailed study of
the correlation function, and is thus highly desirable. The effect of the
resolution could be circumvented by using a diverging atom lens to
demagnify the source4. According to the formula l5 ht/(2pms), a
smaller effective source size gives a larger correlation length. We have
tried such a scheme by creating an atomic lens with a blue-detuned,
vertically propagating, laser beam, forcing the atoms away from its
axis (see Methods). The laser waist was not large compared to the
cloud size, and therefore our ‘lens’ suffered from strong aberrations,
but a crude estimate of the demagnification, neglecting aberrations,
gives about 2 in the x–y plane. Figure 3 shows a comparison of
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Figure 2 | Normalized correlation functions for 4He* (bosons) in the upper

plot, and 3He* (fermions) in the lower plot. Both functions are measured at
the same cloud temperature (0.5 mK), and with identical trap parameters.
Error bars correspond to the square root of the number of pairs in each bin.
The line is a fit to a gaussian function. The bosons show a bunching effect,
and the fermions show antibunching. The correlation length for 3He* is
expected to be 33% larger than that for 4He* owing to the smaller mass. We
find 1/e values for the correlation lengths of 0.756 0.07mm and
0.566 0.08mm for fermions and bosons, respectively.

NATURE |Vol 445 |25 January 2007 LETTERS

403

Nature   ©2007 Publishing Group



g(2)(Dz) for fermions with and without the defocusing lens. We
clearly see a greater antibunching depth, consistent with larger cor-
relation lengths in the x–y plane (we have checked that ly is indeed
increased) and therefore yielding a smaller reduction of the contrast
when convolved with the detector resolution function. As expected,
the correlation length in the z direction is unaffected by the lens in the
x–y plane. Although our atomic lens was far from ideal, the experi-
ment shows that it is possible to modify the HBT signal by optical
means.

To conclude, we emphasize that we have used samples of neutral
atoms at a moderate density in which interactions do not play any
significant role. Care was taken to manipulate bosons and fermions
in conditions as similar as possible. Thus the observed differences can
be understood as a purely quantum effect associated with the
exchange symmetries of wavefunctions of indistinguishable particles.

The possibility of having access to the sign of phase factors in a
many-body wavefunction opens fascinating perspectives for the
investigation of intriguing analogues of condensed-matter systems,
which can now be realized with cold atoms. For instance, one could
compare the many-body state of cold fermions and that of ‘fermio-
nized’ bosons in a one-dimensional sample28,29. Our successful
manipulation of the HBT signal by interaction with a laser suggests
that other lens configurations could allow measurements in position
space (by forming an image of the cloud at the detector) or in any
combination of momentum and spatial coordinates.

METHODS
Experimental sequence.Clouds of cold 4He* are produced by evaporative cool-

ing of a pure 4He* sample, loaded into a Ioffe–Pritchard magnetic trap30. The

trapped state is 23S1,mJ5 1, and the trap frequency values are 47Hz and 440Hz

for axial and radial confinement, respectively. The bias field is 0.75G, corres-

ponding to a frequency of 2.1MHz for a transition between the mJ5 1 and

mJ5 0 states at the bottom of the trap. After evaporative cooling, we keep the

radio frequency evaporation field (‘r.f. knife’) on at constant frequency for

500ms, then wait for 100ms before switching off the trap. In contrast to the

experiments of ref. 5, atoms are released in a magnetic-field-sensitive state.

To prepare 3He* clouds, we simultaneously load 3He* and 4He* atoms in the

magnetic trap27. The trapping state for 3He* is 23S1, F5 3/2,mF5 3/2, and axial

and radial trap frequencies are 54Hz and 506Hz—the difference compared to
4He* is only due to themass. The two gases are in thermal equilibrium in the trap,

so that 3He* is sympathetically cooled with 4He* during the evaporative cooling

stage. Once the desired temperature is reached, we selectively eliminate 4He*

atoms from the trap using the r.f. knife. The gyromagnetic ratios for 4He* and
3He* are 2 and 4/3 respectively, so that the resonant frequency of the m5 1 to

m5 0 transition for 4He* is 3/2 times larger than the m5 3/2 to m5 1/2 trans-
ition for 3He*. An r.f. ramp from 3MHz to 1.9MHz expels all the 4He* atoms
from the trap without affecting 3He*. We then use the same trap switch-off
procedure to release the 3He* atoms (also in a magnetic-field-sensitive state)
onto the detector. We can apply magnetic field gradients to check the degree of
spin polarization of either species.

Correlation function.The detailed procedure leading to this correlation is given
in ref. 5. Briefly, we convert arrival times to z positions, and then use the three-
dimensional positions of each atom to construct a histogram of pair separations
Dr in a particular cloud. We then sum the pair distribution histograms for 1,000
successive runs at the same temperature. For separations much larger than the
correlation length, this histogram reflects the gaussian spatial distribution of the
cloud. To remove this large-scale shape and obtain the normalized correlation
function, we divide the histogramby the autoconvolution of the sumof the 1,000
single-particle distributions.

Atom lens experiment.A 300mW laser beamwith an elliptical waist of approxi-
mately 1003 150mm2 propagates vertically through the trap. The laser fre-
quency is detuned by 300GHz from the 23S1 to 23P2 transition. After turning
off themagnetic trap, and waiting 500ms for magnetic transients to die away, the
defocusing laser is turned on for 500ms.
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RÉSUMÉ

Cette thèse détaille la mesure des corrélations d’intensité quantiques dans des
gaz d’hélium métastable. La mesure s’est opérée sur des gaz thermiques bosoniques
4He et fermioniques 3He ainsi que sur des condensats de Bose-Einstein.

En 1956, Robert Hanbury Brown et Richard Twiss ont mesuré la corrélation
entre des photons provenant d’une même source thermique. Ils avaient ainsi mis
en évidence que les photons emis par une telle source arrivaient préférentielle-
ment groupés sur le détecteur. Ce groupement charactérise les bosons provenant
d’une source non-cohérente. Les fermions manifestent un anti-groupement dans
les mêmes conditions.

En utilisant des atomes d’hélium métastables, dont l’utilisation de galettes à
micro-canaux facilite la détection individuelle, nous avons pu mettre en évidence
un regroupement similaire des bosons 4He provenant de sources thermiques de
l’ordre du microkelvin. La cohérence des condensats de Bose-Einstein n’a pas
permis de dégager une corrélation particulière, comme attendue. Une mesure sur
des gaz thermiques des fermions 3He a permis de mettre en évidence leur anti-
groupement. Un soin particulier a été pris pour décrire le détecteur à base de
galettes de microcanaux et de lignes à retard, une des clés de la réussite de la
mesure.

ABSTRACT

This thesis deals with the measurement of the quantum intensity correlations
in gases of métastable Helium. The measurement has been performed on thermal
gases of bosonic 4He and fermionic 3He, as well as on Bose-Einstein condensates.

In 1956, Robert Hanbury Brown et Richard Twiss measured the correlation
between photons emitted from a single thermal source. The consequently demon-
strated that the photons emitted by such a source tend to arrive grouped on a de-
tector. This bunching characterises bosons from a non-coherent source. Fermions
show an anti-bunching behaviour in the same conditions.

By using metastable Helium atoms, that can be detected individually through
the use of micro-channel plates, we have been able to show a similar bunching of
bosons 4He from thermal sources around the microkelvin. As expected, the co-
herence of the Bose-Einstein condensates did not produce a particular correlation.
The measurement on thermal gases of fermionic 3He has demonstrated the anti-
bunching. Particular effort has been employed in describing the micro-channel
plate based delay-line detector, the key to the experiment.
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