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Résumé

Deux thématiques différentes des probabilités numériques et de leurs applications fi-
nancieres sont abordées dans ma these : I'une traite de ’approximation et de la simulation
d’équations différentielles stochastiques rétrogrades (EDSR), l'autre est liée aux options
américaines et les aborde du point de vue de 'optimisation de domaine et des perturba-
tions de frontiere.

La premiere partie de ma these revisite la question d’analyse de convergence dans la
discrétisation en temps d’ EDSR markoviennes (Y, Z) en une équation de programmation
dynamique de n pas de temps. Nous établissons un développement limité a 1’ordre 1 de
Verreur sur (Y, Z) : précisément, 'erreur trajectorielle sur X se transfere intégralement
sur ’EDSR et montre ainsi que si X est approché avec précision ou simulé exactement, de
meilleures vitesses sont possibles (en 1/n).

La seconde partie de ma these s’intéresse a la résolution des EDSR via le procédé de Picard
et les méthodes de Monte Carlo séquentielles. Nous avons montré que la convergence de
notre algorithme a lieu a vitesse géométrique et avec une précision indépendante au ler
ordre du nombre de simulations.

La derniere partie de ma these regroupe des premiers résultats sur la valorisation d’options
américaines par optimisation de la frontiere d’exercice. La clé de voite de ce type d’ap-
proche est la capacité a évaluer un gradient par rapport a la frontiere. Le temps continu
a été traité par Costantini et al (2006) et cette these couvre le cas discret des options
Bermuda.

Abstract

My thesis deals with two different themes of numerical probabilities and their financial
applications : the first one is the approximation and the simulation of backward stochastic
differential equations (BSDE). The second one concerns the American options and tackle
their pricing using domain optimization and boundary perturbations.

The first part of my thesis analyzes the convergence of the time discretization (via a n
steps dynamic programming equation) of markovian BSDE (Y, Z). We establish a Taylor
expansion for the error on (Y, Z) : it strongly depends on the error on X. Had we been
able to perfectly simulate X, we would have obtained an error on (Y, Z) of order 1/n.
The second part of my thesis is devoted to solving BSDE using Picard’s procedure and
a sequential Monte Carlo method. We prove that our algorithm converges geometrically
fast. Moreover, the accuracy is independent (at the first order) of the number of Monte
Carlo simulations.

The last part of my thesis presents basic results on the pricing of American options using
an optimization of the exercise region. The keystone of such an approach is the ability of
computing a gradient w.r.t the boundary. In continuous time, this work has been done by
Costantini et al (2006). This thesis deals with the discrete time.
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Introduction

La these que je présente se décompose en quatre parties plus ou moins distinctes, mais qui
appartiennent toutes au vaste domaine des probabilités numériques et de leur utilisation en
finance. Les deux thématiques principales sont les équations différentielles stochastiques
rétrogrades (notées EDSR par la suite) et les options américaines. La premiere partie
est consacrée au développement de I'erreur commise lors de la discrétisation d’ EDSR.
Dans la seconde partie, nous rappelons et établissons des résultats techniques liés a la
densité de transition d’un processus de diffusion et de son schéma d’ Euler, résultats que
nous utiliserons dans la troisieme partie. Celle-ci présente un algorithme de résolution
numérique des EDSR basé sur une méthode de Monte Carlo séquentielle. Dans la derniere
partie, nous développons une technique de valorisation des options américaines via un
calcul de sensibilité sur des domaines.

Méthodes numériques pour les EDSR

Les EDSR ont été introduites par J.M. Bismut en 1973 dans 'article Bismut [14]. Cet
article concernait le controle stochastique optimal et la version probabiliste du principe
du maximum de Pontryagin. Le premier résultat général concernant les EDSR date de
1990, il est di & E. Pardoux et S. Peng (voir Pardoux and Peng [81]). C’est en 1997 que
N. El Karoui, S. Peng et M.C. Quenez écrivent 'article fondateur de I’application des
EDSR a la finance (voir El Karoui et al. [27]), article que nous citerons maintes fois au
cours de ce manuscrit. Dans cette these, nous nous intéresserons plus particulierement aux
méthodes numériques de simulation des EDSR, a la vitesse de convergence des schémas
numériques et nous présenterons un algorithme de résolution des EDSR qui utilise une
technique de Monte Carlo séquentielle. Dans les parties I, II, et III, nous considérerons des
EDSR markoviennes du type

—dY; = f(t, Xy, Ys, Zy)dt — ZidWy, Yr = O(X7), (1)

ou le processus X satisfait ’équation progressive
¢ t
X ::U+/ b(s,Xs)ds+/ o(s, Xs)dWs. (2)
0 0

Nous supposerons aussi que X est a valeurs dans R%, Y & valeurs dans R et Z & valeurs
dans RY.

11



12 Introduction

Développement de I’erreur commise lors de la discrétisation d’ EDSR

Le but de cette premiére partie est d’étudier 'approximation en temps du triplet
(X,Y, Z), approximation que nous noterons (X, Y™ ZN). Nous discrétisons X grace
a un schéma d’Euler en temps continu & N pas de temps (tx, = kh)o<p<n, ot h = % :

XY =uwet
Vit € [thytra)y X' = XG5+ bltr, Xp)(t = tr) + o (tr, Xg ) (Wy = Wey).
L’équation (1) est approchée de maniere rétrograde par Ytjj\\f = q’(Xi)C) et

Y, =B, (Y,

tr41

) + hEq, f(tr, X2 Y 20,

tg? " tgy1?

thgZ :Etk (nk+1AW]:<)’ (3)

ou [, désigne I'espérance conditionnelle par rapport a ftk, et AWy =Wy, — Wy, Il est
bien connu que Perreur X~ — X en norme LP est d’ordre \/N Les résultats de cette partie
concernent les erreurs (Y — Y, ZV — Z), mesurées en norme LLP et presque siirement.
Les résultats en norme ILP présentés dans le théoreme 2.3 sont une généralisation de ceux
obtenus par Zhang [94] pour p = 2. Notre théoréme établit, sous des hypotheses d’ellipticité
de o et de bornitude des fonctions b, o, f et ®, que 'erreur

B =

N te+1
_ N
ep(N) = | max E[Y;, — Y/ !”E(kz: /tk |2 — 2] dt) :

9 1
est d’ordre N
Les résultats donnant un développement presque sir des erreurs (YN — Y, ZN — 7),
énoncés dans les théoremes 2.4 et 2.5, nous assurent que sous des hypotheses plus fortes
de dérivabilité et de bornitude des fonctions b, o, f et ®, nous avons

1

Y = Y, =t X )O8 - Xe) 40 () + 00X - X, )
1

Z — Zyy, = (b, X, ) (X)) — X4) + O (N) +O(IX]Y — X, %),

pour des fonctions 11 et ¥y explicites.

Bien str, puisque | X/ — Xy, | est de 'ordre de ﬁ en norme P, nous retrouvons bien
que l'erreur forte e,(N) est d’ordre ﬁ Mais notre résultat montre surtout que les er-
reurs (YN — Y, ZN — Z) dépendent principalement de I'erreur trajectorielle commise lors
de la discrétisation de X. Cela apporte a notre avis un éclairage nouveau sur l'approxi-
mation des EDSR, car il était communément admis que 'erreur est d’ordre \/% du fait de
I’équation de programmation dynamique (3). Nous montrons ainsi qu’il n’ en n’est rien.
Notamment dans le cas ot X se simule de maniére exacte aux instants (;), (comme dans
le cas du mouvement Brownien arithmétique ou géométrique, ou des processus d’Ornstein
Uhlenbeck), les erreurs sur Y et Z sont d’ordre % Cela ravive I'intérét pour des schémas
de discrétisation de X d’ordre 1, comme le schéma de Milshtein.

La premiere partie s’articule donc comme suit : le chapitre 1 concerne I'introduction du
probleme et rappelle les précédents travaux réalisés sur ce sujet. Le chapitre 2 présente les
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résultats principaux brievement exposés ci-dessus, ainsi que des expériences numériques
corroborant les résultats théoriques. Les chapitres 3, 4 et 5 contiennent respectivement
les preuves des théoremes 2.3, 2.4 and 2.5. Ces preuves utilisent des techniques d’analyse

stochastique, combinant des propriétés sur les martingales et du calcul de Malliavin.

Algorithme numérique pour la simulation des EDSR

La troisieme partie de cette these présente un algorithme numérique simulant une ap-
proximation de (Y, Z), solution de (1). Cet algorithme est basé sur une méthode de Monte
Carlo séquentielle et le principe d’itération de Picard. Plusieurs autres méthodes ont déja
été proposées dans la littérature : Ma, Protter, and Yong [74], Bally and Pages [6], Dela-
rue and Menozzi [24], Bouchard and Touzi [15], Zhang [94], Gobet, Lemor, and Warin [45]
et Bender and Denk [11]. Nous reviendrons plus en détails sur les différents algorithmes
présentés dans ces articles en introduction de la partie III. Disons simplement qu’elles
s’appuient principalement sur le principe de programmation dynamique (3) alors que nous
exploitons plutot le principe de contraction de Picard.

Description de P’algorithme

L’algorithme numérique que nous présentons ici ne résout pas a proprement parler
I’EDSR (1), mais il nous renvoie une solution approchée de ’équation aux dérivées par-
tielles (notée EDP par la suite) semilinéaire associée a cette EDSR

() Ou(t,x) + Lu(t,x) + f(t,z,u(t,z), (Oyuo)(t,z)) =0,
u(T,z) = ®(z),

ou L est défini par

1
Loapult,z) = 5 > lo0™ )it 2)07,, ult, w) + Y bilt, #)0pult, ).

1,J

Les résultats liant les EDP semilinéaires et les EDSR seront rappelés dans la section 9.4.
Ils sont das & Pardoux and Peng [82] entre autres. Nous pouvons aussi trouver certaines
preuves dans El Karoui et al. [27]. Plus récemment, Delarue and Menozzi [24] ont présenté
un résultat liant les solutions d” EDSR aux solutions d’ EDP quasilinéaires. C’est de ce
résultat que nous déduisons le théoreme 9.14, page 99, théoréeme que nous utiliserons tout
au long de cette partie : Si b, 0 et f sont des fonctions lipschitziennes et bornées, si o est
uniformément elliptique et si @ est de classe C; T (a €]0, 1]), alors la solution u de "EDP
(&) est C’;’Z. De plus, (Y3, Z¢)o<t<r solution de (1) satisfait

vt e [OvT]a (}/ta Zt) = (u(ta Xt)vaxu(tv Xt)a(tv Xt)) (4)

Nous noterons ug 'approximation de u fournie par notre algorithme a l'itération k. En
simulant X via un schéma d’Euler, nous déduisons de (4) une approximation de Y, notée
Y, et définie par V¥ = ug(t, X}V).
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Nous sommes jusqu’a présent restés volontairement assez vagues sur la maniere dont
nous construisons pratiquement uy. Le temps est venu de nous expliquer. A chaque étape
k, nous calculons wy sur une grille de points (73, X;)1<i<n, puis nous utilisons un
opérateur P, régulier et facilement différentiable, de type estimateur & noyaux, pour
construire uy en tout point d’un pavé de [0,7] x R?. Comme P est régulier, il nous
permet de calculer d,uy, et donc d’en déduire ZF grace a (4), i.e. ZF = (Oyupo)(t, X{V).
Les estimateurs a noyaux, et plus généralement les techniques de régression linéaire et
non linéaire seront présentés aux chapitres 10 et 11, d’apres les ouvrages Gyorfi, Kohler,
Krzyzak, and Walk [47] et Hérdle [50].

Pour finir la description de notre algorithme, il nous faut expliquer le passage d’ une
itération & 'autre. Au lieu de décrire directement ’algorithme que nous avons implémenté
et étudié, nous allons d’abord proposer un premier algorithme, plus simple, mais qui per-
mettra de comprendre le cheminement des idées telles qu’elles nous sont apparues. Une
premiéere idée consiste a utiliser le principe d’itération de Picard, décrit dans le corollaire
2.1 de El Karoui et al. [27]. L’idée est la suivante : nous pouvons écrire grace a (1)

T
Y; = E[®(X7) +/ f(s, X5, Yy, Zs)ds|F).
t

En utilisant (4), I’équation précédente devient

T
u(t,z) = By o[®(X7) + /t F(5, Xoyu(s, Xs), (0u0) (5, X,))ds],

ou E;, signifie que I'on calcule une espérance sachant que le processus X part de x en ¢.
En supposant qu’a l'itération k — 1 nous connaissons u_1 et sa premiere dérivée en temps,
un bon candidat pour uy serait

T
Et»[®(X7) —f—/t fs, Xg,up—1(8, Xs), (Opur—10)(s, Xs))ds]. (5)

Bien entendu, le calcul numérique de cette espérance se fait par une méthode de Monte
Carlo, et le processus X est remplacé par son approximation X~. Nous constatons ici
que le calcul direct de 0,u; semble difficile. L’idée précédemment exposée de calculer wuy,
en une grille de points, de le régulariser via I'opérateur P semble donc étre une bonne
idée. Ce premier algorithme sera étudié et comparé au second algorithme, décrit quelques
lignes plus bas, dans le chapitre 15.

Afin d’améliorer drastiquement la performance de l'algorithme ci-dessus, nous avons
mis en oeuvre une méthode de Monte Carlo séquentielle (ou adaptative). Cette technique
a été utilisée par Gobet and Maire [39] pour résoudre des EDP linéaires, liées par la
formule de Feynman-Kac a des espérances de fonctionnelles de processus de Markov. Plus
précisément, cette technique peut étre vue comme une méthode de variable de controle
adaptative, car elle va nous permettre, en soustrayant et en ajoutant un terme a (5), de
réduire la variance du terme de (5) dont on souhaite calculer ’espérance. Puisqu’a I'étape
k — 1 nous supposons u;_1 connu, il sera a la base de notre variable de controle. Grace a
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la formule d’Ito, nous pouvons écrire

T
wier(t) = ol (1, XF) = [0+ £ (5, X))
t
ot LV est 'opérateur associé & X™V. En introduisant +uy_1 dans (5), le nouveau candidat
pour uy est donc

M
1
up(t, z) = up_1(t, ) + Z S(XNY — w1 (T, XN
m:l

/ F(s, XN g1 (s, X™N), (Opup—10) (5, X)) + (0 + LY Yug_1(s, X™N)ds].

Pour expliquer intuitivement en quoi la variance est grandement réduite, il suffit de
remarquer que lorsque ug_1 est proche de u, dans la moyenne empirique les deux termes
(® — up_1 et l'intégrale) sont proches de 0 du fait de 'EDP satisfaite par u. C’est Ieffet
variable de controle adaptative.

L’expression ci-dessus de wuj n’est pas tout a fait exacte, dans la mesure ou wuj est
calculé via 'opérateur P, c’est a dire que nous calculons la valeur du terme de droite en
(T3, Xi)1<i<n points de la grille, puis nous utilisons 'opérateur P pour obtenir uy en tout
point de [0, 7] x R?. C’est dans un souci de clarté que tous les détails ne sont pas présentés
ici, ils le seront a la section 9.6.

Convergence de I’algorithme

La convergence de cet algorithme est énoncée dans le théoreme 13.10. Sous des hy-
potheses appropriées de dérivabilité et de bornitude des fonctions b et o, il est prouvé la
convergence A vitesse géométrique de U'erreur Y* — Y et Z¥ — Z dans la norme suivante

T
VI 5 :=E UO /Rd PV (z) Pe "l dzds

ou V' désigne un processus prévisible V : Q x [0,7T] x R? — RY. Dans le cas de Y et Z,
x représente le point de départ du processus X. Cette norme n’est pas tout & fait banale,
voici plusieurs éléments qui permettent de justifier 'utilisation de celle-ci. Le coefficient 3
provient de l’espace H?p 5(R?) utilisé dans El Karoui et al. [27] pour établir des estimées a
priori sur la différence entre les solutions de deux équations rétrogrades (voir la proposition
2.1 de cet article), estimées dont nous avons eu besoin au cours de la preuve du théoréme
13.10. Le coeflicient y provient de la combinaison de deux résultats différents, dont est issue
la proposition 7.4, un des principaux résultats de la partie II, mais aussi outil indispensable
aux preuves de la partie I1I. Le premier résultat dont est issue la proposition 7.4 provient
de I'ouvrage Bensoussan and Lions [13]. Il s’agit plus précisément du théoréme 6.12 page
130, et qui permet de majorer la solution v d’'une EDP du type (0; + L)v = f, w(T,) =0
de la maniere suivante

”atUH]LP(O,T;WO’p,u) + ||”UH]LP(0,T;W27P,H) <C HfH]LP(o,T;WOm,u) ‘

Ce résultat sera présenté au chapitre 7. Le second résultat est di a Bally and Matoussi
[5]. Leur proposition 1.6 établit le résultat d’équivalence de normes suivant : sous des



16 Introduction

hypotheses fortes de dérivabilité et de bornitude de b et o et pour toutes les fonctions
U e L'((0,T) x R, dt @ e #*ldz), on a

T
/ / (s,x)|dse” “x|d:v</ / E(|®(s, X5%)|)dse 2l dz
R4 ¢
< C/ / (s, 2)|dse M7l dz.
Rd

Avant de poursuivre, nous voudrions faire remarquer que l'intégration par rapport a

Ce résultat sera présenté au chapitre 6.

e Mldz qui apparait dans ||VHZ 5 peut étre interprétée comme une intégration par
rapport a la loi initiale de la diffusion X. Ce choix de norme nous semble assez crucial
pour mesurer la stabilité et la convergence de notre algorithme.

Le plan de la partie III est le suivant : le chapitre 9 présente le cadre de travail, rappelle
certains résultats connus sur les EDSR et leurs liens avec les EDP, ainsi que les techniques
de variables de controle adaptatives. La fin du chapitre est dédiée a la présentation de notre
algorithme. Le chapitre 10 introduit brievement les techniques de régression, et le chapitre
11 présente plus précisément les estimateurs a noyaux. Dans le chapitre 12, nous étudions
la convergence de 'estimateur P, inspiré des estimateurs & noyaux, c’est-a-dire que nous
nous intéressons a v—Puv et & 0,v— 0, (Pv), ol v est une fonction dérivable et bornée. Nous
présentons les principaux résultats de convergence de notre algorithme dans le chapitre
13, tandis que les preuves de ces résultats sont établies au chapitre 14. Les vitesses de
convergence sont standards et coincident avec celles de la littérature. En revanche, les
difficultés dans notre cas tiennent au choix d’ une norme & poids ||-|| .5 €t au fait que nous
travaillons en domaine infini. Pour finir, le chapitre 15 présente des expériences numériques
dans lesquelles nous avons appliqué notre algorithme a des exemples financiers, comme la
valorisation et la couverture d’options sous contraintes (cas d’un investisseur qui emprunte
de l'argent a un taux d’intérét supérieur au taux de placement sans risque, valorisation
d’options américaines,..)

Options bermuda - Valorisation par méthode de sensibilité
sur les domaines

La partie IV de cette these concerne la valorisation des options bermuda par méthode de
sensibilité sur les domaines. Afin de mieux comprendre la problématique, nous allons tout
d’abord présenter I'application de la méthode a la valorisation des options américaines.

Cas des options américaines

Une option américaine d’achat ou de vente est un instrument financier qui donne le droit
mais non 'obligation d’acheter ou de vendre une certaine quantité d’actifs financiers dits
risqués (actions, obligations, devises) a n’importe quelle date avant I’échéance T' et & un
prix convenu a l'avance (prix d’exercice). Pour obtenir ce droit, ’acheteur de 'option paie
au vendeur une prime (valeur de l'option). Une question importante est la détermination
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de cette prime a chaque instant ¢ précédant 1’échéance T'. La théorie moderne des options
américaines due a Bensoussan [12] et Karatzas [55] relie la valeur d’une option américaine
a la théorie de 'arrét optimal. Dans un marché complet, la valeur & I'instant ¢ d’une option
américaine d’échéance T' définie par un profit g(X;), on X est une diffusion de type (2),
est donnée par P(t, X;) ou

P(t,z) = sup E [67 I T(S’X?I)dsg(r, Xﬁ’w)] , (6)
T€(t,T]

le supremum étant pris sur lensemble des temps d’arréts a valeurs dans [t,T]. La
complétude du marché est assurée des lors que la matrice o est inversible. D’autre part,
comme nous le rappellerons dans le chapitre 16, on sait caractériser la valeur d’une option
américaine comme la solution d’une inéquation variationnelle parabolique du second ordre
(voir Bensoussan and Lions [13] et Jaillet et al. [54]). Ces deux approches font apparaitre
la région d’exercice de 1’option

E:={(t,x),t <T, z € R: P(t,x) = g(t,x)}.

Dans I’étude des options américaines, le probleme de la détermination de la région
d’exercice suscite un grand intérét, car il fait partie intégrante du probléeme d’évaluation
et permet de déterminer une stratégie optimale pour ’acheteur de I'option, car celui-ci a
tout intérét & exercer son droit au premier instant ou (¢, X;) appartient & £. Lorsque
I’ensemble £ est vide, le probleme se résume a 1’évaluation d’une option européenne.
L’étude de la région d’exercice en dimension 1 a été menée dans les articles suivants :
Van Moerbeke [91], Kim [57], Jacka [52], Barles et al. [10], et plus récemment dans
Lamberton and Villeneuve [66]. Le cas multidimensionnel a été traité dans les articles
Broadie and Detemple [18] et Villeneuve [93]. Les différents résultats apportés par ces
articles seront discutés dans la section 16.2.

Comme nous le verrons dans la proposition 16.8, le prix P(t,z) donné par (6) peut aussi
s’écrire

t,x
™ t,x
P(t,l’) = sup E 6*];5 D r(s, X5 )dsg(Tgl‘7thz) 7

DCt, T[xR4 ™

o tT g L N t . .
ol 75" désigne le premier instant ou (s, X5 )i<s<7 sort du domaine D, out D est un ouvert.

L’optimisation du terme de droite peut étre faite via un algorithme de gradient qui utilise la
sensibilité par rapport au domaine D. En termes mathématiques, cela veut dire qu’il nous
t,x
faut calculer la dérivée, par rapport au domaine D, de E [e‘ Je® T(S’Xﬁw)dsg(ﬁt)’za Xﬁ’fm) .
D
Cela a été étudié récemment par Costantini et al. [22]. Les auteurs introduisent la pertur-
bation spatiale d’'un domaine temps-espace D de la maniere suivante
D = {(t,z): (t,x +€b(t,x)) € D}, €e€R,

o 6# est une fonction C; 2(0,7] x R7Y). Is  définissent  aussi

t,x -
u(t,z) = E <g(T€t’x,Xt’m e~ JE (s, Xe )d5>, ot 2% est le premier temps de sortie de

t,x
Te
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(s, X4") du domaine D¢. Ils montrent alors

t,x
Oeuc(t,z)| _, =E <e— JP (s Xe s (7 — vg)0) (757, ngz)> : (7)

Cas des options bermuda

C’est le cadre de nos contributions. Comme pratiquement le cours d’une action n’est
connu qu’en un nombre fini de dates, calculer le prix d’une option américaine revient en
fait & calculer le prix d’une option bermuda, c’est-a-dire que le supremum de la formule
(6) est pris sur 'ensemble des temps d’arréts a valeurs dans ’];% =[TINTN o TN =
{to, - ,tn : 0=ty < t1 < --- <ty = T}. Cest pourquoi nous avons démontré, dans le
théoréme 17.15, une formule de sensibilité pour les options bermuda, analogue a (7). Pour

cela, nous avons introduit

N
DN7€ = U (tj7 Dti-)»
j=1

qui représente 'union des perturbations appliquées a chaque section D;; du domaine D.

tx
"N,e t,x
. o i : ¢ t
Comme précédemment, nous définissons u(t,z) = E (e Jo (s X )dsg(T]\}i,Xsz )),
N,e

N ‘s L N t .
ou T]\’,Ie désigne le premier instant s € ’1;% olt (s,Xs™) sort du domaine DN-€. Nous

démontrons le théoreme 17.15 qui énonce dans le cas r = 0 la formule de sensibilité

suivante
Oeufy (t, x) L:O =

N—-1
> Eia <1T}fvvw>tj/ p(tj, Xe;itj+1,m)(g — un)(tjs1,m)0 - W(tj+1,m)dam> :
ODtj 14

J=0,t;>t

ou do,, représente l'intégrale de surface et p désigne la densité de transition du processus
X.

Ce calcul de sensibilité peut a priori étre un point de départ pour développer une méthode
de valorisation d’options bermuda via une optimisation sur les domaines par un algorithme
de type gradient. De nombreuses questions se posent alors, comme par exemple le calcul
numérique de cette sensibilité : comment évaluer I'intégrale de surface et la valeur de g—upn
au bord ? Comment représenter les domaines de maniere efficace pour une modification
aisée de ceux-ci au fil des différentes étapes de I'optimisation (construction de D & partir
de D) ? Plusieurs pistes d’études ont été abordées pendant la these, en collaboration avec
Cristina Costantini ( Université “Gabriele d’Annunzio” de Chieti et Pescara, Italie). Ces
travaux sont en cours de réalisation et ne sont pas présentés dans ce manuscrit.

Mentionnons toutefois que pour le calcul de la sensibilité, il semble plus pertinent de
discrétiser I'espérance de l'intégrale de surface par une somme pondérée de valeurs de la
fonction g — un a la frontiere, fonction évaluée elle-méme efficacement par une méthode
de Monte Carlo séquentielle.
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Ce que nous présentons dans cette partie permet d’affiner notre compréhension de la
sensibilité O.uf, (¢, x) |c=o vis-a-vis de N, le nombre de dates d’exercice. En effet, il n’est
pas rare que les méthodes numériques de valorisation d’options bermuda aient des com-
portements indésirables par rapport a N : explosion de la variance dans I’approche de type
calcul de Malliavin (Lions and Régnier [70]); cumul des erreurs de régression dans I’ap-
proche de Longstaff and Schwartz [71]. Notre but est donc de mieux étudier la robustesse
O:-ufy(t, ) |e=o lorsque N est grand (asymptotiquement le cas américain). Nous établissons
des résultats de convergence lorsque N — oo, montrant que nous retrouvons la sensibilité
du cas continu, ce qui est loin d’étre trivial a priori. En fait, la preuve est incomplete et re-
pose sur un résultat technique sur les overshoots de diffusion. Nous améliorons au passage
certains résultats sur les overshoots, récemment étudiés dans Gobet and Menozzi [43]. En
dehors de sa convergence, nous montrons que la sensibilité reste bornée uniformément en
N lorsque g est de classe Hi4, ou dans le cas du put. Ces résultats eux non plus ne sont
pas évidents a la vue de la formule (3) puisque que la sensibilité s’écrit comme une somme
de N termes impliquant des densités de transition explosant lorsque N tend vers l'infini.

Cette partie doit étre vue comme un programme de recherche en cours sur la
valorisation des options bermuda/américaines par des optimisations de domaine, avec un
certain nombre de résultats prometteurs.

Les différentes parties de cette these ont fait ou feront ’objet de publications :

La premiere partie correspond a un article intitulé “Error expansion for the
discretization of Backward Stochastic Differential Equations”. Il a été publié dans
Stochastic Processes and their Applications, Volume 117, Issue 7, July 2007 pages 803 -
829. Cet article a été réalisé avec mon directeur de these Emmanuel Gobet.

Les secondes et troisiémes parties feront prochainement ’objet d’une publication sous
le titre “Solving BSDEs with adaptive control variates”, et probablement soumise au
journal Annals of Applied Probability.

La derniere partie fera aussi I’objet d’une publication sous le titre ”Pricing Bermudan
options via boundary sensitivities”. Elle sera probablement soumise au journal Finance
and Stochastics.

Deux articles concernant des travaux sur les options parisiennes ont aussi été réalisés
au cours de ma these. Ils ne sont pas joints a ce manuscrit, mais peuvent étre trouvés a

I’adresse http://www.cmap.polytechnique.fr/~labart/.

“Pricing double barrier Parisian Options using Laplace transforms”, réalisé avec J.
Lelong et soumis & Mathematical Finance depuis novembre 2006.

“Pricing Parisian Options using Laplace transforms”, réalisé avec J. Lelong et soumis a
Banque & Marchés depuis mai 2007.


http://www.cmap.polytechnique.fr/~labart/
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This part corresponds to an article published in the journal Stochastic Processes and
their Applications, Volume 117, Issue 7, July 2007 pages 803 - 829. It’s a joint work with
Emmanuel Gobet.






Chapter 1

Introduction

Let (Q2, F,P) be a given probability space on which is defined a g-dimensional standard
Brownian motion W, whose natural filtration, augmented with P-null sets, is denoted by
(Ft)o<t<r (T is a fixed terminal time). We consider the solution (X,Y, Z) to a decoupled
forward-backward stochastic differential equation (FBSDE in short). Namely, X is the
R?-valued process solution of

t t
Xy ::U+/ b(s,XS)ds—}—/ o(s, Xs)dWs, (1.1)

0 0
and Y (resp. Z) is a real-valued adapted (resp. predictable R%-valued) process solution of
—dY, = f(t, Xy, Yy, Zy)dt — Zy dWy, Y = &(Xp). (1.2)

We assume standard Lipschitz properties on the coefficients, which ensure existence and
uniqueness in appropriate Lo-spaces (see Pardoux and Peng [81], or Ma and Yong [72] for
numerous references). During the last decade, more and more attention has been paid to
these equations, because of their natural applications in Mathematical Finance or in the
probabilistic resolution of semi-linear partial differential equations (PDE in short): see El
Karoui et al. [27] or Pardoux [80].

Our aim is to study the most usual time approximation of (X,Y, 7). For X, we use
the Euler scheme X with N discretization times (t; = kh)o<p<n (h = % is the time
step). For convenience, set AW), = Wy, ., — Wy, (AW}, component-wise). X* is defined
by X =z and

t € [tr o], X = XN +b(te, X)) (= tr) + o (te, X{))(Wy — W, ). (1.3)

The backward SDE (1.2) is approximated by (Y, Z") defined in a backward manner by
VN = o(X]N) and

Yiiv :Etk (Kivﬂ) + hEtkf(tk’ Xt]Z’ Yéﬁs—l’ Zt]z)’ (1'4)
Wzl =By, (VY AWp), (1.5)

where E;, is the conditional expectation w.r.t. F;, and * is the transpose operator. Ad-
ditional tools are needed to derive a fully implementable scheme, in particular for the

25
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computations of conditional expectations. We refer to Bouchard and Touzi [15] for Malli-
avin calculus techniques, or to Gobet et al. [45], Lemor et al. [67] for empirical regression
methods. In this work, we leave these further questions and we only address the error
analysis between (Y, Z) and (YN, ZV).

On the one hand, Zhang [94] proves (in a slightly different form) that the error
maxp<y [V — Yy, ||z, < CN ~1/2_ This is done under rather minimal Lipschitz assump-
tions on b, o, f, ®. On the other hand, when f does not depend on z and the coefficients
are smooth, one knows that |Y{¥ — Yy| < CN~! (see Chevance [21]). We aim at filling the
gap regarding these two different rates of convergence. In the following, we prove that

e Chevance’s results are extended to the case of f depending also on z.
e the rate N ! holds true also for the difference |Z} — Zy|.

e more generally, for the other discretization times t;, we expand the error as

Vid =

173

Yy, — o (X = Xi,)| SCNT VXY — X P
(for an explicit and bounded random vector ay).
e an analogous expansion is available for Z.

Since |X}Y — Xy, |* has the same order in L, than N~!, the error on Y is mainly due
to the error Xt]Z — Xi,. Thus, Zhang’s results are a consequence of this expansion, and
Chevance’s ones as well since X' = X,. The gap is filled.

In addition, we learn from this expansion that if one could perfectly simulate X (as for
Brownian motion with constant drift, geometric Brownian motion or Ornstein-Uhlenbeck
process), the error on the BSDE would be of order N~! and not N~1/2 a5 stated by Zhang’s
results. Also, if one could use a discretization scheme for X of order 1 for the strong error
(for instance Milshtein scheme whenever possible), the error on the BSDE would be of
order N~! (we would need to extend our analysis to other discretization schemes, this is
straightforward for the Milshtein scheme).

The paper is organized as follows. In Section 2, we define the assumptions on the coef-
ficients, recall the connection between BSDEs and semi-linear PDEs (which is important
for our analysis). Finally, we state our main results. Firstly in Theorem 2.3, we extend
Zhang’s results to L, norm. Secondly in Theorem 2.4, we expand the error on Y. Lastly in
Theorem 2.5, we deal with the error on Z. Naturally, stronger and stronger assumptions
are required for theses theorems. Proofs of the three results are postponed to Sections 3,
4 and 5: we combine BSDE techniques, martingale estimates and Malliavin calculus.

Notation.

e Differentiation. If g : R? — RY is a differentiable function, its gradient V,g(z) =
(02,9(), .., O, g()) takes values in R? @ RY. At many places, V,g(x) will simply
be denoted ¢/(z). If g : R — R is a twice differentiable function, its Hessian H,(g)
takes values in R? ® R%: (H,(g))i; = 8§ixjg. If g: R x RY — R, ggy(x,y) takes

. " 02 . .
values in R? @ R%: (g, )ij = W@gyj’ for1<i<d,1<j<gq.



27

Function spaces. For an integer k£ > 1, we denote by Cf/z’k’k’k the set of continu-

ously differentiable functions ¢ : (t,z,y,2) € [0,T] x R? x R x R + ¢(t, z,y, ) such
that the partial derivatives 81508?8520?(?(@ x,y, z) exist for 2l + 11 +l2 + I3 < k and
are uniformly bounded. The analogous set of functions that not depend on y and z
is denoted by Cf/Q’k. This set is denoted by C£k+a)/2,k+a (o €]0,1]) if in addition
the highest derivatives are Holder continuous with index o w.r.t.  and a/2 w.r.t. ¢

(for a precise definition, see Ladyzenskaja et al. [64]).

Norm. For a d-dimensional vector U, we set |U[|?> = Zglzl U2 For a d x ¢
dimensional matrix A, A; denotes its #th column, and A? its &-th row. Moreover,

d7
AP =205 ALy

Constants. Let C' denote a generic constant which may depend on the coefficients
b,o, f,® and on the dimensions d and q. We will keep the same notation K (T') for
all finite, nonnegative, and nondecreasing functions w.r.t. T: they do not depend
on x and h. The generic notation K(T,x) stands for any function bounded by
K(T)(1+ |z|?), for some g > 0.

O(U) and Og(h). A random vector R is such that R = O(U) for a non-
negative random variable U if |R| < K(T,z)U (in particular, R = O(h) means
|R| < K(T,z)h). The notation R = Og(hP) means |R| < AYhP, where \Y is F, -
measurable, supy E(sup, [AY]?) < K(T, ), for ¢ > 1.

Etk and Vartk. Etk
B, (X?) — (B, (X))%

is the conditional expectation w.r.t. F; and Vary (X) =

Malliavin calculus. We use the notations of Nualart [78] for weak spaces D*?.

Discretization Let s € [ty, tx1[. We define n(s) = t.






Chapter 2

Main results

2.1 Hypotheses

The coefficients b : [0, T]xR? — R4, o : [0,T] xR — R4, f: [0, T] x RIx R xR — R
and ® : R? — R satisfy one of the following set of assumptions.
Hypothesis 2.1 The functions b,o, f and ® are bounded in x, are uniformly Lipschitz
continuous w.r.t. (x,y,z) and Hélder continuous of parameter % w.r.t. t. In addition, ®

s of class Cb2+°‘ for some « €]0,1[ and the matriz-valued function a = oo* is uniformly
elliptic.

33
Hypothesis 2.2 Assume Hypothesis 2.1 and that the functions b, o are in C7™, f is in

2333 o
Cp , @ is in C31 for some a €]0,1[.

Hypothesis 2.3 Assume Hypothesis 2.1 and that the functions b, o are in Cb2’4, fisin
05’4’4’4, ® is in Cy™* for some a €]0, 1[.

We do not assert that these smoothness and boundedness conditions are the weakest
ones for our error analysis, but they are sufficient. Investigations regarding minimal as-
sumptions would be certainly interesting but it is beyond the scope of the paper.

2.2 Connection between Markovian BSDE’s and semi-linear
parabolic PDE’s

We recall classical results connecting (Y, Z) and the solution and its gradient of the
following semi-linear PDE on [0, 7] x R%:
(O + L zy)ult, ) + f (t,2,u(t, x), Vou(t, z)o(t,x)) = 0, (2.1)
u(T, x) = &(x),
where L, is the second order differential operator
1 *
‘C(t,x) = 5 Z[UU ]’ij(ta ‘T)aglm] + Z bi(ta x)axz

i,J
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(see for instance Ma and Zhang [73] or Pardoux [80]).

Proposition 2.1. Under Hypothesis 2.1, one has
vt € [OvT]v Y;f = u(taXt)a Zt = ku(t7Xt)J(t7Xt)7 (22)

where wu is the unique classic solution C’;’Q of the PDE (2.1).
3
In addition under Hypothesis 2.2, u € C} ’3, and under Hypothesis 2.3, u € C’b2’4.

The first result of this Proposition corresponds to Theorem 2.1 of Delarue and Menozzi
[24]. The two last regularity results can be proved in the same way. In fact for this,

14+a/2,2
Cb+a/ +a;

we would only need b, 0 to be in the additional smoothness is used later for

Malliavin calculus computations.

2.3 Main results

We now turn to the statement of our results. Remind the following well-known upper
bound on the Euler Scheme, which is useful in the sequel.

Proposition 2.2. Let o and b be Lipschitz continuous. Then

Vp > 1, [E(sup [X¥ — X,[")]» < K(T.x)
t<T

3

In fact, for all p > 1 one has

. 1
E.( sup | XN — XP)P < K(T, Xp.)—— + | XY — X, |. 2.3
[tZ(tigtET| h t[P)]7 < K( tz)m | X5, | (2.3)

Our first result is an extension of the Lo estimates in Zhang [94] to L, estimates (see also
Gobet et al. [45]).

Theorem 2.3. Let us assume Hypothesis 2.1. Let ¢ > 0. We define the error

N-1 g )
N N 2 04
eq(N) = [Og}%xNEDQk -Y, —HE(;_O /tk \Z) — Zy|Pdt)z ],

where YN and ZN are defined by (1.4) and (1.5). Then |eq(N)| < K(T, w)ﬁ
By slightly strengthening the smoothness assumptions on b, 0, f and ®, we are able to
expand the error on Y.

Theorem 2.4. Let us assume Hypothesis 2.2. Then, the following expansion holds

Yy -

k

1
Yy, =Vau(ty, Xo ) (XY — Xy,) + Owl(y) + O(X} — Xu, ).

In view of Proposition 2.2, | X/ — X;, |* and N~! have the same order (in L,). Hence
it turns out that qu(tk,th)(Xt]X — X4,) is the first order term in the error Y;iv - Y,.
Obviously, this estimate implies that of Theorem 2.3. As mentioned in the introduction,
the evaluation of Yy by YON has still an accuracy of order N~—! since initial conditions
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for X and X coincide. Note that if there is no discretization error for the process X,
YN -y, = O(%), a fact which is not clear from equations (1.4) and (1.5). A nice
situation corresponds to o independent of = (this is a very specific situation where Euler
and Milshtein schemes are equal): in that case | X/ — X, ||z, = O(N~!) and one gets the
order of accuracy N~! for Y.

For Z which plays the role of a gradient relatively to Y, we get an analogous result

about the error, up to increasing by 1 the degree of smoothness of the coefficients.

Theorem 2.5. Let us assume Hypothesis 2.3. Then, the following expansion holds

zl —

k

. » 1
Zy, = (Vo[ Vau o] (tr, X (XY — X0,))" + Ok(ﬁ) +O0(1XY — X0, 1%).

Remark 2.6. The above results are sufficient to derive the weak convergence of the
renormalized error process [V N(YV;N — Y))]o<i<r and [VN(ZYN — Z;)]o<i<r, except that
one has to define YV and ZV between discretization times. For t € [ty, tx11], analogously
to (1.4) and (1.5) we define

Y;fN = Et (Y;fiv_H + (tk+1 - t)f(thtNa Y;fi\:_p ZtN))7
1
N _ N
2 = BV, (Wi = W),

Theorems 2.4 and 2.5 can be extended to all ¢t € [0,7]. We have
1
YV =Y, =Vau(t, Xo) (X - X;) + Ol5) + O(1X{ — X4f?),
* 1
ZN — 7 =(Va[Vaw o (6, X) (X} = X0)" + Oy(5) + O(XY = Xif2).

Theorem 3.5 of Kurtz and Protter [62] allows us to establish the weak convergence of the
processes VN (YN —Y), and vVN(ZN — Z). Indeed, the process [VN(X} — X{)|o<i<T
weakly converges to the solution of

q t t
U, _Z/o Va;ai(s,XS)Udes’—i-/O V.b(s, X,)Usds
i=1

d

1 <t y
+ — 8£ [ 87X8 j 87XS d‘/;ljj
53 [ tneils X5, X)

i,j=1 k=1

where (V¥);<; <, are independent standard Brownian motions and independent
of W.  Furthermore, the convergence is stable (see Jacod and Protter [53]).
Hence, [VN(XP — X;),VN(YY — V), VN(ZN — Zy), Xi|o<i<T weakly converges to
(U, Vau(t, Xe) U, ([Va[Vaeu o]*(t, Xe)|Up)*, Xio<e<r-

2.4 Comments

2.4.1 Weak Error

From Theorems 2.4 and 2.5 we can derive estimates related to the weak errors on Y and
Z.
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Theorem 2.7. Let 1 be a three times continuously differentiable function with bounded
derivatives. Let us assume Hypothesis 2.2. Then, one has

E((Y,Y) = (Yy,)) = O()-
Under Hypothesis 2.3, the same result applies to Z.

Proof : A Taylor expansion of v yields

E( (Y ) —(Ys,)) = E((Yy,) — Yy )" (Ya,) + O((Yy) —Yy,)?).

By using Theorem 2.4, we get

B[ (Y3, Vau(ti, X, (XL — X4,) + O(5p) + 00X = X, )],

=B/ (u(th, X))Vl Xi, ) (X3 = X0,)) + O(30)

Hypotheses on ¢ and w enable us to apply Remark 4.4 (see later in section 4) to
B (u(t, X)) Vau(ty, X, ) (XY — Xy,)). The result follows. O

Analyzing weak errors on Y and Z is admittedly useful, but studying pathwise estimates
can also be relevant. Actually, both estimates are complementary. For instance, practi-
tioners in finance are interested in finding hedging strategies. This corresponds to solving
BSDEs, where Y and Z respectively represent the value of the replicating portfolio and
the hedging strategy. On the one hand, Theorems 2.4 and 2.5 are suitable tools to study
theses quantities for computational issues. On the other hand, Theorem 2.7 enables us
to quantify the error on the distribution of the portfolio value, which is relevant in a risk
management perspective.

2.4.2 Global error of the numerical resolution of BSDE

As recalled in the introduction, there exist several techniques to numerically
solve BSDEs. The one we present here refers to Lemor et al. [67]; it turns to
be presumably the most efficient procedure.  The authors propose a numerical
scheme based on iterative regressions on function bases pox(-),p1k(-), - s Dg k(")
(each being represented as a vector), which coefficients are evaluated using
M extra independent simulations of (Xt]Z )0<k<N 1 and of the Brownian

. N,M LNM

Increments (AWk)OSkSN—I‘ Let (yk’ (th) Zl k (th) K qk (Xt]Z))OSkSN—l
denote the approximation of the solution of the discretized BSDE
(YtiV,Z{Ytk,--- ,Zév,tk)ogng—l computed in a backward manner with the following
algorithm.

e Initialization : for k = N take y]]:,[M( ) =@(-).

e [teration : for k=N —1,---,0, solve the ¢ least-squares problems :

M N, AWlm Nomy (2
m ,m
ot =aneig 1 3 O A o
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Then, compute aé\/[k as the minimizer of

x N N,M ;N M N, N,
r Z ’yk+1 tk+1 )+hf(tr, X th m7yk+1 (thﬁl): al,k'pl,k(th m))_a'po,k(th m)|2

Thus, define y,iVM() and Z%M() by

N,M
0,k “Pok("), 2Lk ()= a%c Puk()-

Actually, the true algorithm requires the use of additional truncation operators that we
have omitted for sake of simplicity, see Lemor et al. [67] for details. The following error

. . N.M _N,M
on the unknown regression functions (y, "™, 2" )1<i<q,0<k<N—1

N—
N N,M (5 N\ |2 N N,M (N2
max BIYY -y MO +hE Y |25 - 27 ()

is essentially bounded by NCjs,, where M and p respectively denote the number of
simulated paths and the set of functions. For suitable choices of M and p, Cys ) goes to
0 at a given rate. This result allows them to optimally tune the parameters to ensure a
given accuracy. Hence, summing this numerical error and the discretization’s one given by
Theorems 2.4 and 2.5 leads to the global error. For example, assume that || X/ — X, ||z, =
O(=). Then, from Theorem 2.4, we get E|Y;, — y,iV’M(XgZ)P < C(3z + NCumyp)-

2.5 Numerical Experiments

In this part, we draw some graphs to illustrate the results given by Theorems 2.3 and
2.4. To do so, one needs to explicitly know X and Y. Let us consider a Call option
pricing problem. We assume that X follows the Black-Scholes model in dimension d =
1, dTXti = pdt + odWy, with ¢ = 0.2, 4 = 0.1 and Xy = 100. The driver f is defined by
f(t,z,y,2) = —ry — 0z, where § = == and r = 0.02. The terminal condition ®(z) is
given by (z — K)4, where K = 100. The maturity of the option is 7' = 1. The continuous
backward equation can be solved, Y; is the price of a standard Call option (see El Karoui
et al. [27] for a detailed computation).

We compute X and YV by using (1.3) and (1.4) and get

X[ =Xy (1 + ph + o AW;),
YN =By, [o(X)INZN (1 = rh — 0AW;)].

Figure 2.1 refers to Theorem 2.3. We plot the evolution of the logarithm of ea(NV), e3(N)
and e4(N) w.r.t. log(N).

We use 1000 simulations to approximate the Ly,-norm e,(N) and to compute each
conditional expectation Y;iv , we use 1000 Monte Carlo simulations. We compute
log(ep(N))p=2,3.4 for N =27, j =1,---,7. Looking at the graph, we see that the evo-
lutions of log(ep(N))p=234 w.r.t. log(N) are almost linear. In view of Theorem 2.3, the
slope should be of order —%. By using a linear regression method, we get the parameters
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15

IR —— log(e2)
S ———-log(e3)

N —-— log(e4)
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Figure 2.1: Evolution of ea(N), e3(N),es(N) w.r.t. log(N)

a b std

Lo error | - 0.5179119 1.14106 | 0.0384534
L3 error | - 0.5321072 | 1.4078415 | 0.0367535
Ly error | - 0.5891505 | 1.858531 | 0.0662573

Table 2.1: Coefficients of the linear regression of log(e,(N)), p = 2,3,4 w.r.t. log(N).

a, b, std where log(e,(N)) = a xlog(IN) + b, and std represents the standard deviation of

the residuals. Table 2.1 sums up the values of a, b, std for p = 2,3,4. Clearly a is of order
1

5

Figure 2.2 refers to Theorem 2.4. We plot the evolution of log(a(NV)), where a(N) =
E[Y,N — Vi, — Vaulty, X ) (XY — Xi,)[2)7 wort. log(N), at time ¢, = £. We use
100 simulations to approximate the Ls-norm and to compute each Ytiv we use 10° Monte
Carlo simulations. N behaves as 27,j = 1,--- ,7. We note that log(a(N)) actually evolves
almost linearly w.r.t log(N). Regarding Theorem 2.4, the slope should be of order —1. If
we still use a linear regression,we get the slope a = —0.9123248, b = —1.0172153 and the

standard deviation of the residuals equals 0.0940069.
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Figure 2.2: Evolution of log(a(N)) and log(ea(N)) w.r.t. log(

N).
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Chapter 3

Proof of theorem 2.3

Extra notations for all the proofs. For any process U (except the Brownian incre-
ments AWy), we define AUy, = Ut]]\f — Uy, . Let 6, denote (s, Xy,Ys, Z;) and ft];’ denote
St Xng’ Ytjkvﬂ’ ZtJZ)

Zy, is defined as hZ;, := Ey, ﬁ:“ Zyds and we put AZ;, = ZtIZ —Zy, .

If ¢ = 2, the result has already been proved in Gobet et al. [45], under Lipschitz condi-
tions on b, o, f,®. Thanks to the inequality E|U[? < (E|U]2p)% for 2p > q, we only need
to prove the theorem for ¢ = 2p, where p € N*.

First, we give some estimates which can be easily established. We have, under Hypothesis
2.1, Vs € [tk,tk+1],

By, (X0 — Xo, [ + Yo = Y3, [ + | Zy — 24, |”7) < CIP. (3.1)

In the following computations, these estimates are repeatedly used.

N |2
3.1 Proof of maxy<,<y E[Y;, — Y| = O(RP).
We prove the following result, which is a bit more general.
Proposition 3.1. max;<p<ny Ey, |V, — YZCVPP = O;(h?) + |AX;|?.

By taking ¢ = 0, we get maxo<x<n E|Y;, — Yt]kVPp = O(hP).
Assume that we have

|AY|? < (14 Ch)Ey, |AYy i1 |* + Ch|AX,|> 4+ Ch2. (3.2)

Then, using the inequality (a + b)? < aP(1 + €(2P~1 — 1)) + bP(1 + 2p ) for 0 <e<1,
we deduce

C
hp—l)'

|AY|?P < (1 + Ch)PTE,, |AY; 1P + CPRP(JAX|? + Ch)P(1 +

Take the conditional expectation w.r.t. Fy, to get By, |AY;|?P < (1 + Ch)Ey,|AYjy1|?P +
h(h? +Et,|AXg|?). Using (2.3) for |AX}| and Gronwall’s lemma yields max;<g<n Et, | Yz, —

YN = O5(hP) + |AX; ] O
Now we prove the inequality (3.2). From (1.2) and (1.4) we obtain
tot
AY;, = By, (AYiq1) + By, / (f = f(65))ds. (3.3)
ty
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38 3. Proof of theorem 2.3

By applying Young’s inequality, that is (a + b)? < (1 +~vh)a® + (1 + %h)bQ, where v will
be fixed later, and using the Lipschitz property of f, we get

tr4+1
[AYi]* < (14 yh)(Ey, (AYi41))? + C(h + 7)[hQ + Eyy / | X5 — X [*ds]
tg
1 Tht1 N 12 thet1 N2
HCh+ DB [V Pls By [ |2 2P @)
'Y tk tg
Let us introduce Z;, (see extra notations at the beginning of Section 3):
bt N bt = 2 = N2
B, / Zs — Z] Pds = By, / | Zy — Zy, |*ds + BBy, | Zy, — Z] . (3.5)
tr ty
Thanks to the Cauchy Schwarz inequality we have
Bty (AYen AW < BBy, (|AYis1[?) = [Er, (AYis1) [P}
Hence, as hZ;, = By, ({Yy,,, + j;i’““ f(0s)ds}AWY), with a bounded f, it follows that
W\ Zy, — Z{ [P < d b (By, (|AY g1 |?) — |Ep (AYiy1)[?) + CH2. (3.6)
By plugging (3.5) and (3.6) into (3.4), we get

[AY[? < (14 vh) (B, (AYi41))?
lkt1

1 bt +
+C(h+)[h2+Etk/ yXS—XgZPds+Etk/ Ys = Y [Pds)
v tr tr
1 Bt = 12 2 2
+C(h+,y)[]Etk/ Zs — Zy,|"ds + B, (|AYj11]7) — [Ee, (AY4)[7].
tk

We can write Eq, |Ys — Ytivﬂ 2 < 2R, |Ys — §/§gk+l|2 + 2E;, |AY,11]?. By doing the same for
X5 — Xt]ZH, and taking v = C, we obtain

|AY;[? <(1+ Ch)Ey, |AYjia]? + ChIAXE|* + ChEy, | AYjiq]?

5 tet1 9 tet1 9
=+ C[h =+ Etk / ’XS - th‘ ds + Etk / ‘YS - Y%k+1| ds]
tE ty
tra = 9
+C[Etk/ |ZS _Ztk| dS]
tk
Using (3.1) yields |AY;|? < (1 + Ch)Ey, |AY; 11 |* + Ch|AX,|* + Ch2. O
t p

3.2 Proof of E( t:” ZN — Z,2dt): = O(hP).

First of all, we can split this summation into two terms
tet trt+1
/ \Z{ — Z,?dt)” < CE( Z/ Zy,, — Zi|*dt)” + CE( hz |AZ[%)”
2%

Thanks to (3.1), we have B(Y 00, [ [Zy, — Zif2dt)” < TP=U S0 [ E(Z,, —
Z,|?dt = O(hP).



3.2. Proof of E(Yp g [151 | 2N — z,|2dt)*

t

= O(hP). 39
Scheme of the proof ofE(h Z,ivzfol |A7k|2)p = O(hP). The first key point is to slice the
summation into small intervals and show that the result is true for small time intervals.

The second key point is to use Rosenthal’s inequality, see Theorem 2.12 page 23 of Hall
and Heyde [48]. By using (3.6) and taking the expectation, we can write :

k1 k’l
E(h) " |AZ[?)” < CE( ) Var, A1) + ChP. (3.7)
k=0 k=0

We use Rosenthal’s inequality to upper bound

kl kl
E(Y Var, AViy1)” < CE( DAYyt — By AYip)?,
k=0 k=0
k1
< O3 EAYY | + EAY,Y + E( Y (AY) — By, AYii1)) ™.
k=0

By plugging this inequality into (3.7) and using the previous estimate on |AYj|, we get

kl kl
E(h Y [AZ)" < O(h?) + CE( D (AY;, — Ey AYii1)) ™. (3.8)
k=0 k=0

We now tackle the term AYj, —E; AYj;. Using (3.3), we have ZQIZO(AY;C —E, AYy41) =
Z],?:O ti’““(IEtk ( ftjlf — f(05)))ds. By doing the same kind of proof as before, that is using
the fact that f is Lipschitz and the results on E|AX}|?? and E|AY;|?, we find

k1 K
E( Y (AY; ~ By, Vi)™ < O() + Chk PE(RS |AZ4[2)
k=0 o

By plugging this term back into (3.8), we can write (1 — C(hk)?)E(h ZZLO |AZ?)! =
O(hP). Consequently, if we choose ki < —— we come up with E(h Zil:O |AZ?)" =
(20)7 h
O(hP). This result can be extended to any summation involving at most Ak terms, where

Ak < —L—. We can cover the interval {0, --- , N —1} with a finite number of elementary

(20)7 h
intervals of size Ak and we get E(h Sy |AZy|?)” = O(hP), which completes our proof.
O

From this result and (3.1), we also deduce
N-1
E(h Y |AZ)" = O(hP), (3.9)
k=0

which is very useful in the following.






Chapter 4

Proof of Theorem 2.4.

To expand the error, we use usual techniques of stochastic analysis, combining martingale
estimates and Malliavin calculus tools.

4.1 Preliminary estimates

Sections 4 and 5 contain proofs with similar calculations, which are quite technical. In
order to be as clear as possible, we state two results really useful in the sequel, which are
related to Malliavin calculus (see Nualart [78]). The results give sufficient conditions for
expectations and conditional expectations to be small w.r.t. the time step h. They are
based on ideas from Kohatsu-Higa and Pettersson [59] and Gobet and Munos [44].

Proposition 4.1. Let F € A2 with By |F|* + sup;, ;<1 By, |DsF|* < 0o and let U
be an Ito process of the form Uy = Uy + fot asds + fg BsdWs, with supy, <s<r Ey, |os|? +
supy, < o<1 By, |Bs|? < 00. Then, V(t,1') such that tj, <t <t <tpyq,
1 1
By, [F(Ur — Up)]| < (' = t)[(Be, | FI?)2 ( Sup Etlos|?)?
t<s<t’

1 1
+(sup By [DoF|*)2( sup By |Bsl*)2].

t<s<t’/ t<s<t/

This proposition can be easily proved. Assume without loss of generality that F' and U
are one-dimensional. From the duality formula, we have Ey, [F( [ asds + [ B;dW)] =

E, [ ftt/(F as + DsF' - B5)ds]. Thanks to Cauchy Schwarz inequality and hypotheses on «
and (3, we get the result.

Definition 4.2. F satisfies the condition Ry, if F € D" and if Cyp(F) = ||F||r, +
> j<k SUP0<sy .5, <1 || Dy, F'll L, < 0.

Proposition 4.3. Let F satisfy the condition Rs. For simplicity we set dW? = ds.
Assume that U; € R? satisfies the following stochastic expansion property

q t s
U= c(t) /O e (s)( /n . e (r)dW; ) dWi (P)

where {(cgfl(t))tzo :0<i,j<q,0<iy <2} are adapted processes satisfying
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42 4. Proof of Theorem 2.4.

e V(i,j),1 < ij < q ¥Vt e [0,7], &Pt satisfies Ry, and

Z?]
U0
Cé’,p = SUPp<¢<T SUP1<;,j<q CQ,p( i (t)) <oo,p>1.

o V(i,j),1 < i,j < q VYt € [0,7], c?j(t),cgf(t),c%)(t),cffbl(t) satisfy Rl, and

CY, := SuPg<s<7 SUP1<; <o {C1p(c 5]] )+ Cl,p(%; (t)+ Cl,p( ) (1) + Cl,p( 5 ()}
< oo, p>1.

o V(i,5),0 < i, < ¢, Vt € [0,T], ci{f(t) C(I)J]l(t) cg[?() satisfy Ro, and Cé{p =

U2 Ul U0
SUPy< <7 SUPo<i,j<q1Co,p(¢; ; (t)) + Coplcy; (1)) + Coplcpp (8)} < oo, p > 1.

Thus, there is a constant K(T') which depends polynomially on Ca,(F), CQP,CI p,Cé{p (for
some p > 1) such that |E[FU]| < K(T)h.

Indeed, we have
§ U,0 "o U2 ; ;
E(FU;) = Z E(Fc;; (t)/ i) (3)(/( )%. (r)dW;)dw?)
0 n(s

= Z /0 /ns E(Dfﬂ [Dg{ch}O(t)}cg}l(s)]Cgf(r))dr ds

Then, the result readily follows.

Remark 4.4. Under Hypothesis 2.2, we can show (see later the proof of (5.9)) that for
each t, XtN — X, satisfies the expansion P. Hence, if F' satisfies Ro, Proposition 4.3 yields

[E[F(X{" - Xp)]| = O(h)

uniformly in ¢ € [0, 7], which is a very useful result for the sequel.
4.2 Expansion of Y}V -V,

In the following, we assume that Hypothesis 2.2 is in force. This implies in particular
that v is bounded, of class CS/ 23 (see Theorem 2.1). We also easily prove that Vp >
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1,Vk €{0,--- ,N — 1} (see Nualart [78] e.g.)
o £, ( sup ]Xt]2p) < K(T)(1+ \th\Qp), sup E ( sup |DsXi|P) <C,
t<t<T t<s<T t<t<T
sip By ( sup [D,DX)+  sup By sup [DuDDX[P)<C, (41)
te<s,r<T t<t<T te<s,r,u<T tp<t<T
o B (sup [X)[P) < K(T)(L+ X)), sup  Ey( sup |DXNP)<C,
L <t<T Nt <s<T tp <t<T

sup  Ey( sup |D.DsXNP)+  sup By ( sup |DyD.DsXN|P) < C. (4.2)
Nt <sr<T tp<t<T Nt <s,rv<T te<t<T
Due to the Markov property of (XfZ)k, one has Ytjkv = uN(tk,Xt]Z) for some Lipschitz
function u®V(ty, -) (see Gobet et al. [45]) with an obvious definition of u”Y. Actually, under
our assumptions, this function is even three times differentiable w.r.t. x. Thus, the
difference AY} can be written as follows:

AYk = (UN(tk,Xt]kV) — u(tk,Xt]Z)) + (u(tk,Xt]Z) — ’U,(tk,th)).

Since u is of class C’S / 2’3, the last term of the previous inequality becomes

u(te, X[)) — u(te, Xy,) = Vou(te, Xo, ) AXy + O(|AXg[?). (4.3)
To complete the proof, we apply the following lemma
Lemma 4.5. Under Hypothesis 2.2, |u™ (t, z) — u(ty, z)| < K(T,z)h.

The result above is new but not so surprising. Indeed, if f is identically zero, the
difference is only related to the weak approximation of ®(Xr) by ®(X¥): from Bally and
Talay [7], one knows that this is of order h.

The rest of this section is devoted to the proof of the lemma. We only give the proof for
tr = 0. We want to find an upper bound for [u¥(0,z) — u(0,z)| = |AYy|.

For the sake of clarity, we split the proof into several steps.

Step 1 : linearization of the error. We show that

AY), = By (AYg1&k + hfh(0n, ) AX ) + hxe), (4.4)

with
& = (14 hfy(00) + FL(03) AWR), (4.5)
w= [ (Gols, Xo) + £1(01)Gy (5. X0) + FL(01,) G (5, X)) ds (4.6)

1
- /0 (1= N [AX] frn(00)AX g + [, (00 (Y | = Yo ) + AZyf(0))AZ;

"

trp41

~Y;,) +2AX; f;’z(egc)Az;; + 27N

tr41

where Hg\k = At X7, Yt]k\:q, Z)+(1=X)8y, and Go, Gy, G, are bounded functions. ;From
(3.3) and by introducing f(6;, ), we have

AY;, = Ey, (AYiey + h(fY — £(8,)) + / (60 — 1(6,))ds). (4.7)

Uk
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By applying It6’s formula to f(6,) between t; and s we show that, under Hypothesis 2.2,
JUH B (£ (8y,) — f(6s))ds = h [;"+" By, (Go(s, Xs))ds, where Gq is a bounded function,

In the second term, perform a second order expansion of f around 6;, to get

ftJZ - f(etk) = fg/:(etk)AXk + f;(etk)AYk"Fl + f;(etk)AZZ; + fz:(etk)(}/tk+1 - Ytk)

1
T /0 (1= N[AXT L (O )AXe + (02 (VN — V)2 + AZLLL(O)AZE  (48)
XL OV, — Vi) + 2AX £ (O0)AZE + 20V, — Vi) (00 )AZE]dA.

Note that Eq, (Y, — Y3,) = Ey, J, t’““ Gy (s, Xs)ds. If we closely look at (4.8), we can see
that we need to develop AZg. By using (1.5), we can write

1 * 1 *

7 Bt (AYe 1 AWE) + 5 By (ulthr, Xeyr ) AWE).

Introducing the weak derivative of X, (see Nualart [78] p.109), the second term
of this summation equals hIE fttk P Veu(tpsr, Xey ) De Xy, dt, where Dy Xy,
VXt (VaXe) Lo(t, Xy). Since Zy, = Vau(t, Xe,)o(tr, Xz, ), one gets

N _
Ztk—

1
AZy = 3By, (AYi1 AWY)

1 tk+1 B
=+ h/ Etk (vxu(tk+17th+1)vatk+1 (VJ;Xt) 10’(t,Xt) — VIU(tk,th)O'(tk,th))dt
tg

The term in the second conditional expectation is equal to Viu(tri1,Xy,.,)
VXt (VaXe) Lot Xy) £ Vau(t, Xe)o(t, X¢) — Vau(t, Xy, )o(tg, X¢,): hence, two ap-
plications of It6’s formula (for the first contribution between t and ¢4, for the second
one between t; and t) prove that

lkt1 1
AZ; = / 1, (G5, Xo))ds + 1 Bey (AYi1 ATWR), (4.9)

2
for a bounded function G,. Plugging this equality and (4.8) into (4.7) yields (4.4).
Step 2 : another formula of AY[. First of all, we replace Ytﬁ . — Yy, by AV +
Yi,.1 — Y4, in the expression of xj. Then, easy computations combining Proposition 3.1
and estimates (3.1) show that

Xk = By, (xi) = Ox(h) + O(|AXL|* + |AZy[?). (4.10)
From (4.4), we deduce the following equality
N-1
AYy = E(AYNE - En1+h Y (Fr(0)AX + X))o+ &) (4.11)
=0

Now it is enough to show that all terms of this summation are O(h). In the following,
o = 1 and 771'250---&,1 fOI‘ZﬁN

Step 3 : some results on ny =&y &n_1.
We establish the following results on ny:

ny, satisfies the condition Ry uniformly in k, i.e. Vk,n, € D>

and maszvp(nk) < 00,Vp > 1, (4.12)
P P p
E(Og}ix]v\nk] )+ supE( max | Dy )+Ts;1<pTIE(O?1aX | Dy Dsnie|P) < 0. (4.13)
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k

Proof of (4.12). We have g = 1, and for i > 1
ni = 772'—1(1 + h’f:l//(eti—l) + f;(eti—l)AWi_l)' (4'14)

We begin to show that max<y [|7/|z, = O(1) for p > 1. Since f, and f. are bounded, we
easily prove that By, _, (14 hfy(0s,_,) + fL(0:,_,)AW;_1)* < (1 + Ch), whence E|n;|* <
(1+ Ch)E|ni—1|*’. We deduce that maxg<n |7z, = O(1).

Now, let us show that maxg<y E|D,ng|P = O(1), uniformly in . Let r be such that
th—1 <1 <t Vi <k—1,Dmm =0. We note that D,n = ni_1f.(6,_,). Fori > k+1,
we have

q
Dy = Dymi1 + hDp(nica fy(01,)) + > Dy(mica f2, (01, ) AWy,

=1
i—1 q 1—1
= 1 fL(On ) +h Y De(nify(65) + D> Delnif,(6:,)) AW, (4.15)
=k I=1 j=k

Applying Burkholder-Davis-Gundy’s inequality to the martingale
S De(ni £, (6:,)) AW yields

i—1 q i—1
E|Dypif? < CElni—1]? + Cph > " EIDy (0 f3(0:,))P + C Y EIR D Dy f1,(6:,)) 712

j=k =1 j=k
1—1 q 1—1

< CE[ne—1” + Ch Y _E[Dy(nif1(04,))F +C > b > EIDy(n; £, (0:,))
j=k =1 j=k

1—1
< CA+Ep_1lP) +Ch Y E[Dpl?,
j=k-+1

using the boundedness of the derivatives of f, max;<n ||n;]l = O(1), identity (2.2), u,0 €
C;’Q, and estimates (4.1). By applying Gronwall’s lemma, we get maxy<;<n E|D,n;|P <
C(1+Ene-1[P), th—1 <7 < U
Then, maxg<y E|D,n [P = O(1), uniformly in r € [0, T]. The proof concerning the deriva-
tive of order 2 can be done following the same scheme. O
Proof of (4.13). We begin to show that E(maxi<n |7%|P) < co. The idea is to use a
martingale property in order to apply Doob’s inequality. Since n; = n;—1+hn;i—1f,(0¢,_,) +
Mi—1f2(0r;_, ) AW;_1, one has nj, = 1 + Zf:ﬂhm—lfé(@ti_l) +mi—1f2(64,_,)AW;_1). Thus,

N k
B(max i) < c1 +E(; hiniall £ (01" + E(max | ;m—lfé(%_l)AWi—llp))~

The last term is upper bounded by CE(h Zfil Imi—1fL(6:,_)2): < Ch
Zf\[zl Elni—1f.(6:,_,)[P. Using the estimate (4.12), we get E(maxg<n |nx|F) < oo.
To prove that sup, <y E(maxg<y [Dpni[P) < oo, we proceed in the same way, by starting
from (4.15). For the second derivative, this is analogous.

Step 4 : we prove that E(AYxny) = O(h).
If ny were equal to 1, the results of Bally and Talay [7] would directly apply. Here
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the approach has to be different and we use techniques of Malliavin calculus. We have
E(AYyny) = E(npn®(XN) —nn®(X7)). Let us introduce X,V = (1= X)X, +AX}. Thus,

we have

BYiny) = [ Bl (K - X))o

As ® € C3T%, by using (4.12), (4.1) and (4.2), we note that an);(X:]FV’A) satisfies Rp. By
applying Remark 4.4, we deduce that E(AYyny) = O(h).

Step 5 : we prove that E(f.(6;,)AX;n;) = O(h). This is a very similar proof to Step
4, in a case where ®(x) = z.

Conclusion. We now work on hE(ZﬁBI Xini), where |Xx| < ANh + K(T, 2)| AX|? +
K(T,x)|AZ|*. Hence,

N—-1 N—-1 N—-1
Y E(xim)| <C Y EAN ni)h® + K(T, ) > hE(Ini| (|AX,? + |AZi))
1=0 1=0 1=0
N—-1
<K(T,2)h+ K(T,x) > hE(|n;||AZ;[*)
=0

[N

< )2
<K(T,2)h + K(T,z)(E(_max  |m])°)

N-1
1
(E(h ) |1AZ*)%)2.
=0
By using (4.13) on (7;); and the upper bound (3.9) we get that ]hE(Zi]\:Ol Ximi)| <
K(T,z)h. By combining this result and the results of Step 4 and Step 5, (4.11) shows
that |AYp| < K(T,x)h. Lemma 4.5 is proved. O



Chapter 5

Proof of Theorem 2.5.

As it could be expected, its proof is more difficult. The main extra ingredient is the
convergence of the weak derivative of the discrete BSDE (YV, ZV), with the rate of con-

1/2

vergence N~ /. The next paragraph is aimed at proving this result. In the following,

Hypothesis 2.3 is in force.

5.1 Proof of an intermediate result

Proposition 5.1. Let r €]0,t1[. Under Hypothesis 2.3, we have maxi<;<y E|D,AY;|? +
hE( SN DAZE?) = O(h), uniformly in 7.

This proposition is analogous to Theorem 2.3, where ¢ = 2, and the scheme of its proof as
well. However, there is a significative difference: the BSDE solved by the weak derivatives
(see (5.1-5.2-5.3)) has a non Lipschitz driver, which requires extra technicalities that we
detail. In what follows, we fix r €]0, ¢1[ and introduce some specific notations. X\t stands
for D, X;. In the case of Z;, which is a row vector, /Z\t is a matrix whose the i-th column is
DiZ}. Tt is well-known (Proposition 5.3 of El Karoui et al. [27]) that (?tv/Z\t)rgtST solves

. - T . . /\ T __,
}ft = (p;c(XT)XT + /t (f;/t(gs)Xs + f;(es)ifs + f;(es)Zs)dS - (/; Zs dWs)* (51)

Regarding (ﬁ,ﬁ), one obtains

Vi) =B [V, + WV i Xi 4 WV Sy Y, + WV fi 2, (5.2)
— 1 —
Zy :ﬁEtk [AWLYY (5:3)

where we set fot];’ = fo(tk,Xt]Z,Y;iVH,ZtJZ) and analogously for Vyft];f and szt]:.
Indeed, we can start from (1.4-1.5) and interchange conditional expectations and weak
derivatives (see Proposition 1.2.4 in Nualart [78]). Another way to get (5.2-5.3) is to
take advantage of the Markov structure of (X/V)j, to write Y = y™(#;, X{7), where the
function y” is the solution of a dynamic programming equation, and then apply the chain
rule. We omit further details.

From (2.2), we also have

Y, = Voult, X)Xy, Zi = Vao(Veuo) (t, X)X, (5.4)

47
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For the sake of clarity, let us write, for any process V', AVk =D Vt -D Vtk In particular,

/\

we have AZk: =D, (ZIZ>k 7tk) = Z Ztk, where Ztk is defined as thk =E,, ftk“ Z.ds
(see the beginning of Section 3).

5.1.1 Preparatory estimates

In this part we give some L,-estimates (p > 1), which are repeatedly used in the following

calculations.
o sup (K |XN\2P) < C\XN|2P (5.5)
1<j<N
E XN ) = 0(1 5.6
o E( max_ [X ) = O(1), (56)
. 1 VN2 VN2 TN 20\ _
o ) € 0.N =1, VNP < CIX R, E(max [VY[%) = O(1) (5.7)
o E( sup | X% + sup my + sup |Z*) = 0(1), (5.8)
0<t<T 0<t<T
e Let F satisfy R3. Then, |[E(F(X} — E(\t))| = O(h). Furthermore,
sup E|AX4% = O(hP). (5.9)
0<k<N

e Analogously to (3.1), Vs € [tk, tg4+1], we have
Ep, (1Xs = Xop [ + |V = Yo | +1Z5 = 24, |) = Ox(h7). (5.10)

Note that XY = o(0,), and X7 | = (1+hb,(t, X RS RICH (tg, X )AWE) XY for

1 <k < N. Thus, we easily get E;, \XN|2P <(1+ C’h)Etl\XN 1P, and (5.5) follows. The
proof of (5.6) can be done as the proof of (4.13).
Proof of (5.7). From (5.2), we use Young’s inequality and boundedness of V f to get

YN < (4 ) [E YY

t+12+Ch(h+ )(!XN| +Etl\Y 2+1ZN ). (5.11)

'L+1

From (5.3) and the Cauchy Schwarz inequality, we obtain h]@| < C(Ey, ]Y

7,+1
|E, Y, t+1 2).  Hence, with an appropriate choice of 7, (5.11) is reduced to |Yt5\f|2 <

(14 Ch)E,, \YN 2+ Ch|)/(g\:7\2, and thus Gronwall’s lemma yields

tir1
- N-1
Y2 < CE(IVAP +1 S IXNP) <C sup By XN
j=i i<j<N-1

Finally, estimates (5.5) and (5.6) complete the proof.

Proof of (5.8). E(supg<;<r ]5(:|2p) = O(1) follows from (4.1). The other estimates come
from this result and (5.4). -

__Proof of (5.9). Let us introduce X; = V,X:(V.X,) 10(0,2) and write X}V — X, =
XN X, + X — Xt

Since )/(\t = V. X(V.X,)"to(r, X,), a direct application of Proposition 4.1 with U; =
o(t, X;) gives E(F(X, — 5(\,5)) = O(h) for F satisfying Ry. Moreover, simple increment
estimates yield sup, <, E| X — 5(\t|2p = O(h?).
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—

It remains to study the impact of the difference X}¥ — X/. (X}V);>» and (X})i>, are
solutions of

— t
N _ / N g
X; —U(O,$)+/r b, (n(s), X n(s ds+2/ i)l ())X ()W,
t
X; =0(0,x) +/ (s, Xs)Xlds + Z/ (o) (s, X o) XLAW?. (5.12)
For the sake of simplicity, we take b = 0 and d = ¢ = 1. If we set o’( fo (s, Xs +
MXY — X,))d\, we observe that AX; solves the linear equation AX; = fo Xois )) -

o(s, XN))dW, + f $)AXsdWy, which solution is given by (see Theorem 56 p. 271 in
Protter [87])

AX, =€, /0 o (n(s), XV} — o(s, XN)|(dW, — o’ (s)ds)

t S
_ / ~ / o1 (v, XY (n(w), XX, )WY,
0 n(s)

(0l XYY + 20" (0, XN (n(v), X

50ra )))dv] (dWg — o’ (s)ds)

n(v

where ¢, = 1+ fo s)esdWs. This proves that A X, satisfies the property P. Analogously,
if we define o” fO "5, Xs + AMXY — X())d) and € =1+ f: ol (s, XN)eNaws,
simple computatlons lead to

— —

— t
XN = X =" [ () o), X)X, - o, X)X 4 0"(5) XIAX,)

s

(AW, — ol (s, XN)ds).

From the above representation, it is straightforward to conclude sup;<p E\A/)?t\%’ = O(hP).

Now, let us upper bound E(F(X}¥ — X/)) which can be decomposed into several terms.

o The contribution ___ associated to
f (n(s), Xﬁs))X]\(fs) — ol (s, XM XN](dWs — ol(s,XN)ds) satisfies
property 73, thus Proposition 4.3 yields the expected result.

S

f: E(FeN (eN)1o" (s) XA X0 (s, év))ds = O(h) in view of Remark 4.4.

e The contribution E(Fe) [[(eN)1o"(s)X.AX 0l (s, XN)ds) is equal to

e In the same way, the duality relationship ensures that the last contribution
E(Fel [H(eN) 10" (s)XLAX dWs) = [PE(Ds(Fel)(eN)1o"(s) XLAX )ds is a O(h)
(using here that F' satisfies Rj3).

Proof of (5.10). In view of E(\t = D, X; = V. X¢(V. X)) to(r, X,), the estimate on the
increments of X; becomes clear. The other ones easily follow. O
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5.1.2 Proof of maxi<i<n E‘Z\Y;P = O(h)

Assume that for some non negative random variable A, = Oy (h) + |AX.|? + |AZ|?,
one has

|AY;[? < (14 Ch)Ey, |AYi |* + hIAXE[? + hAOx(1). (5.13)

Take the expectation on both sides, use estimates (5.9) and those of Proposition 2.2 to get

N-1
E|AY,[? < CE|AYy[? + O(h) + Ch Y E(JAZ[?0k(1)).
k=0

On the one hand, as AYy = CI)I(XtJYV)@v — @’(XtN))/(;I\\,, clearly E[@\Z = O(h). On
the other hand, in view of (3.9) with p = 2, the summation above is a O(h). This proves
max; <<y E|[AY;[? = O(h).

Proof of (5.13). ;From (5.1) and (5.2), we obtain

_— o trt+1 — o
AV = By, (AViry) + Ey ( / VLN XN - £1(0,)X,
tg
+ Vy t];\c[}/ti\il - f;(as)i/s + vzft]ZZt]Z - f;(es)Zs}ds)'
Since f € 05’4’4’4, it follows that for any v > 0 (to be fixed later)

— S 1 tht1 — —
[AYR? <(1+vh) [y, (AYj1) [ + C(h + 7)IEtk(/ (IVafiy X5 = f2(0) X

tr

+ VYN = F OV + VoY ZY — f105) Z[?)ds) (5.14)
— 1
<(1+ 4R [Ep (AY31) > + C(h + 5)(7}% +T7), (5.15)

where we put T} = By, (f, " [[XG) = Xo P+ 1Y), Vs P+|Z0 ~ ZPlds), T¢ = By [i1 (h+

X = XN+ 1V, = YN 2412, — ZNPYITP + [T + | Z32)ds. To get (5.13), we need
to simplify (5.15), by estimating T}! and T7.

Term Tkl. Firstly, we write Etk]YN — ?s|2 < ZEtk]gC: — ?s|2 + 2Etk|mﬂ2. We do

tr4+1
the same for Xt]kV — Xs. Then, the usual increment estimates yield

By [VN | = Y + B, | XY — X.f? < O(h) + 218X 2 + 2B, | AV [

Secondly, analogously to (3.5), we have

et — bt — — =0
Etk/t |Z§Z—ZS\ ds:Etk/t Z4, — Zs| ds+hIEtk]ZngZtk| )

k k

Finally, we obtain T} < Ch(Og(h) + |AXe|? + By, | AV | + |AZ,[?).
Term T7. Easy calculations combining (3.1), Proposition 3.1 and (5.8) give T7 <
(Ok(h2) + h‘AXk|2 + h|AZk|2)Ok(1) = hAkOk(l)
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Conclusion. Plugging the estimates on T} and 77 into (5.15), we get

|AYL|? <(1+vh) By, (AYis1) 2 + Ch(h + >1Azk|2

+Ch(h + 7)(\AXIJQ+I€qtk!AYk+1| + ArOk(1)). (5.16)

Note that hZy, = Ey (AWi(Vi, + SO0 X + £5(0:)Ys + f1(0:)Zs]ds)), whence

—

hAZ,, = Etk(AWk(AYkH + ftk“ (@ )X +fy( )Ys + f1(6 S)Z]ds)). By proceeding as

before, we easily prove

hAZy [P < C(Er, |AYgi1|* = By, AYiia[?) + On(h?). (5.17)
Combining this upper bound with (5.16) for a good choice of v gives (5.13). O

5.1.3 Proof of hE(Z |AZk| 2) = O(h).

In view of (5.10), this is equivalent to prove hE( S ]AZ k|?) = O(h). To establish
this estimate, we start from (5.17) to get

N 1 —_—
hY EIAZ P <C Z (E|AY;|2 — E[Ey, AYji1|?) + CE|AYN |2 + O(h). (5.18)
k=1

Now, we work on |E§7k|2 - |EtkA/Y;1|2. The choice v = 2C? in (5.16) leads to
— _— _— 1 —
AV = [Be, (AYi1)* < VAIEy (AYiin)* + (55 + CB)AZy|
1., — —
+ MCh+ 5 ) (IAXE + B [AVep | + AxOx(1)).

From (5.9) and the result from Section 5.1.2, we have maxj<i<ny ]E(]A/X\k|2 + \A/?k]?) =
O(h). We also have E(A;Ox(1)) = O(h) + E(]AZklek( )). Consequently, for h small

enough, one has E|AY[2 — E|E,, (AYk+1)|2 < 2 E\AZklz + O(h?) + ChE(|AZ; |20k (1)).
Putting this estimate into (5.18) yields

N-1 N-1
1 fpg— 9 9
h ; E|AZ|> < O(h) + Ch kz_l E(|AZg|?0k(1)).

Inequality (3.9) with p = 2 directly shows that the sum above is a O(h). O

5.2 Expansion of Z}\ — Z,,

We recall that u € 05’4 owing to Hypothesis 2.3. From (4.9), we have AZ, = O(h) +
T [ (tepr, X)) = ultirn, Xepy ) AWE]. Let (X;")s>s denote the solution of the

SDE (1.1) starting at time s from Z. We write X; for X", Note that Xy = XA 1y

lkt1
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the same way, the Euler scheme starting at time ¢; at T is denoted by (X, Nt’“’ *)j>k. With
this notation we can rewrite AZj
Ny, XN

1 stks *
EEtk [(uN(tk-i-l’ th+1 tk) - u(tk’-i-l? th+1))AWk] + O(h)>

]. tk:ngZ *
:EEtk [(u(tk-i-h th+1 ) - u(tk-i-l? th+1))AWk]
1 Nt XN tr, XN .
B (i, X0 b, XOO)AW £ O). (5.19)

We work on the first two terms separately by proving

AZy =

te, XN
Lemma 5.2. %Etk[(u(tk_,_l,Xt:Htk) — ultprr, Xop ) AW = O(JAXk?) + O(h)
+ [Va(Vau o) (tr, Xi, ) AXE]*.

NztkvXtNk

tk’
Lemma 5.3. 1|E, [(u" (tg11, X, | )—u(tkH,thHtk JAW}]| = Ok(h).

The combination of these Lemmas completes the proof of Theorem 2.5.

5.2.1 Proof of Lemma 5.2.

N
For the sake of simplicity, let Ay Xy11 denote thlt’“ Xty (which is different from
Nt XN .
AXp1 =X, . f — Xt,,,). From a Taylor-Lagrange formula, we obtain

tk,Xt

utprn, Xy ") = wtrns Xy yy) = g (teans Xy ) AN Xgt1
1
+ / (1= A (AN Xps1)* Ho () (bis1, Xy + MAN Xps1) Ay Xgp 1A,
0
Thus, using the duality relationship, one has

te, XN .
Er [(u(terr, Xy %) = utyrrs Xep,, ) AW

tet+1

th+1 th+1 1
= R}C(t)dtJr/ Rz(t)dtJr/ (1= N)R3(N)d,

tr ty 0

with Rllﬂ(t) = Etk [(ANX’C‘Fl)*Hm(u) (tk+17 th+1)Dtth+1]7
Ri(t) = By, [l (thg1, Xy y ) De(ANXpt1)],
RY(A) = Eg [(ANn Xpr1) Ho (u) (b1s Xy + AAN X 1) An Xp 1 AWR].

Expansion of R,{,( ). Clearly Ay Xjy1 = AXy + Uy, — Uy, where U is an It6 process
with drift term as = b(s, X5 - tN’“) — b(s, Xs) and diffusion term f[s = O'(S,thxgz) -
o(s,Xs), both being bounded. Thus, we can apply Proposition 4.1, letting F =
Hy(u)(tps1, Xty ) De Xy, - Because u € 05’4 and in view of (4.1), we get
Ri(t) = O(h) + (AXy) By, [Hy () (trt1, Xegsr ) Di X, ).
We expand the latter factor. As Dy Xy, | = VxthH(Vth)*la(t, Xt), we have
Ha (1) (1, Xy ) Di Xy 1y = (o) (s Xy )t Xe) — Ha(u) (0, Xe)o (8, X0)
+ (Hz(u)(t, Xt)o(t, Xi) — Hy (U)(tkvth) (tr, X))
+ (Hyp(w) (b1, X)) Vo Xty (Vo Xo) ! = Io(t, X))
Hy(u)(tg, Xt )o(tk, Xt )-
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The first three contributions in the r.h.s. above can be handled in the same way and
we give a detailed proof only for the first one. It is enough to apply Proposition 4.1 with
F =o0(t,X;) and Us = Hy(u)(s, Xs). Then, Ey, [F'(Uy, ., —Uy)| is of order h with a constant
involving b, o, u and its derivatives up to order 4. Finally, this gives

R(t) = O(h) + (AXy)* Hy(u)(tr, X, )o(th, Xz, ),

uniformly in ¢ € [tg, tg+1]-
Expansion of R(t). For ty <t < tx11, we have

XN ¢ XNt XNt
Dt(ANXk-l—l) :[VIX t k(vat iy k)—l _[]O'(t,Xt ty k)

- [vatk+1 (vﬂCXt)il - I]U(ta Xt) - (U(tv Xt) - U(tkv th))

t]\]i7tk:)

X
+o(t, X, — oty X{) + o(tn, X)) — o(t, Xy,).

As before, apply Proposition 4.1 to each of these terms but the last one, with F' =
uly (thg1, Xt,,, ), using w,b,0 € 05’4 and (4.1). It follows that Ri(t) = O(h) +
By, [l (thg1, Xey )] (0 (Er,s Xt]kv) — 0(tg, Xt,)). An application of It6’s formula yields

d
RY(t) = O(h) + >l (tr, Xo,) (0" (tr, X1Y) — 0 (th, X3,)
=1
d .
= O(h+|AXLP) + Y, Va([07]) (b, Xi, ) A X,
i=1

uniformly in ¢ € [tg, tg+1]. Finally, simple matrix computations lead to
Ri(t) + Ri(t) = O(h + |AXg*) + [V (Veuo)* (tg, Xi, ) AX3]*.

Upper bound for Ri()\). To complete the proof of Lemma 5.2, note that it remains
to justify that R} (A\) = hO(h + |AX|?) uniformly in A\. The duality formula gives

tet1

Rz()\) :Etk [/ Dt[(ANXk+1)*Hx(U)(tk+1,th+1 + )\ANXk+1)ANXk+1]dt.
ty

The term in the integral equals Z‘ij:l[2Dt(ANXkJrl,i)ANXkH’jagmju(tkH,thH +

AANXkJrl) + ANXk+17Z'ANXk-+1,th(a%i7xju(tk+17th+1 + AANXkJrl))] Thanks to (41)

and (4.2) and successive applications of Proposition 4.1, we finally prove our assertion.

We omit further details. O

5.2.2 Proof of Lemma 5.3

As for Lemma 4.5, we only do the proof for ¢z = 0, i.e. we have to show
By, [(uN (81, X20F) — ulty, X" AWG]| < K(T,z)h?. We have E[(u®(t1, Xp"") —
u(t, Xp*))AW] = E[AY; AW]. By using (4.4), we come up with

=2

—1
E[AYIAW] = E[&1. En1 AYNAWGT+ E[h Y (f2(00)AX; + Xi)é1--&i—1 AWG],
=1
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where x; = E¢,(xi) (& and x; are defined in (4.5) and (4.6)). In the following 7; denotes
&..6—1 and 7 = 1. We easily prove that (7;)1<i<n has the analogous properties to
(mi)o<i<n. Estimates (4.12) and (4.13) remain valid for 77 and under Hypothesis 2.3, the
estimate (4.12) becomes

Mk satisfies R3 uniformly in k. (5.20)

Step 1 : Proof of E[¢;..En 1 AYNAW]] = E[inAYNAWS] = O(h?).
As before, we use the duality formula:

t1
E[jnAYNAW]] =E / (De[nN]AYN + iy De[AYN])dt.
0

Since 7y satisfies (5.20), we proceed as in Step 4 of Lemma 4.5 and we get
E(D:¢[nv]AYN) = O(h). Furthermore, we have

DiAYy] = (®'(XN) — &' (X7)) D XX 4+ &' (X7)(D: XY — D X7).

On the one hand, analogously to previous computations, we establish E(ny(®'(XY) —
(X)) DXY) = O(h).
On the other hand, we prove E(njy®'(X7)(D:X® — D;Xr)) = O(h). Thanks to (4.1) and
(4.12), nn®'(X7) satisfies condition R3. Then, by applying (5.9), we get the result.
Step 2 : Proof of E[hzl L0 AXGEL & 1 AWE] = O(h?).
This is a similar proof to the one done at Step 1, with ®(z) = «.
Step 3 : Proof of B[ YN ' xi,AW;] = O(h?).
A careful inspection of the definition of Gy, Gy and G appearing in (4.6) shows that under
Hypothesis 2.3, these functions are continuously differentiable w.r.t. the variable x (with
a bounded derivative). Hence, if we write y; = x} + fol(l — A)xZ(\)d\ with (see (4.6))

tit1
Xi —/t (Go(s, Xs) + f,(61,)Gy(s, Xs) + f2(04)G=(s, Xs))ds,

XEA) = AX] fr O AX; + £, (00 (VY = Yi)? + AZif(0))AZ]
20X o, (00 (VN | = Ya) + 2AX] L (00)AZF + 2V | = Vi) f,.(00)AZ;

tig1
we note that the random variable x; is in D*°. Thus and because ¥; = Ey, ();), one has
E[izﬁzAWS] = [XWZAWO fo XthUz + nthX2>dt]

The upper bound i = B, (xi) = O;(h) + O(|AX;|? + |AZ;|?) (see (4.10)) is sufficient
to show E[ZZ P xiDiii] = O(1) uniformly in ¢ (follow the arguments of the conclusion of
the proof of Lemma 4.5 and use (4.13) with 7).

Now, it remains to establish E[) _11 ﬁthxz] = O(1). On the one hand, clearly
Ey,[Dix}] = Oi(h) and we conclude E[Y.N7'#%;Dix}] = O(1) uniformly in ¢. On
the other hand, Xi can be decomposed into several contributions, which can be an-
alyzed with the same arguments Let us detail how to handle one of them, for in-
stance E[Zf\;l ﬁth(AXZ*f (QA)AZ*)] which has to be a O(1). We do the proof for
d =g =1 Write Dy(AX;f,.(00)AZ) = AXif,.(00) Di(AZ;) + Di(AXq) fr. (08)AZ; +
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AXZ-Dt(f;Z(Hg\i))AZi. As f" is bounded, we have

N— N-1
Z AXif, (02)Di(AZ))]| <E[Y 1l AXG]| £, (02)I[Di(AZ)]
=1 =1
N-1 1 1
B (nlP1aX:%) 2 ( Z |D:(AZ;)[%)) >
=1

Thanks to Proposition 5.1, (5.20) and Proposition 2.2, we get that
EN N BAX L (00)(DiAZ)] = O(1).  Analogously, using (5.20-3.9-5.9), we
obtain IE[ZNII ﬁi(DtAX ) fo (0 MAZ) = O(1). It remains to demonstrate that
B[N B AXDi(fo.(63)AZ]| = O(1). We have

Di(fr.(600)) = f;;,;zw?)(wtxzj + (1= A\)DeXy,)
+ Fomy O ADYN  + (1= N)DY2) + frn (02)ADLZY + (1= N Dy Z4,).

The most difficult term to bound among these three ones is the one which contains DtZt]y .
If we write )\DtZt]:[ + (1 — )\)Dtth = )\Dt(AZz) + Dtth., we obtain

N—
Z X fo(ONADU(AZ)AZ]|
- N-1 N N-1 )
< C(E(Z ID(AZ)")) 2 (ECY_ (1AXP 13 P1AZ)))?,
Nor v 1 1
< C(E(Y 1Di(AZ)I)* (B(Y_ 1AZ[*)?) * (B(max [il" max [AX[1)*,
1=1 i=1

Applying Proposition 5.1, (3.9), Proposition 2.2 and (4.13) (with 7) lead to
EN N mAX o (00)AD(AZ) A Z;) = O(1).  Proposition 2.2,  (3.9),
(5.6), (5.7), (5.8) and (5.20) enable us to prove that the others terms of
E[X N AX; Dy(fir,(62))AZ;] are O(1). m
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In this part, we state some technical results concerning the transition density function
of a diffusion process X, the regularity of the solution of a linear PDE, and the
convergence rate for the transition density function of the Euler scheme. These results
will be useful in Parts III and IV.

In the first chapter, we are interested in bounding both the transition density function of
X (denoted p(t,x;s,y)) and v'(s,y) = [pap(x)p(t,2;s,y)dx, where p is a weight
function specified later. p(¢,z;s,y) is the fundamental solution of a linear parabolic
PDE. Several results on bounds for the fundamental solution of a linear parabolic PDE
and for its derivatives can be found in the literature (See Aronson [2], Ladyzenskaja
et al. [64] and Friedman [28]). We use these bounds to prove a norm equivalence result
(see Proposition 6.12). This Proposition is quite similar to Bally and Matoussi [5],
Proposition 5.1 (recalled in Proposition 6.10), except for the assumptions on p
(Proposition 6.12 is proved for p(z) = e #I whereas Bally and Matoussi [5],
Proposition 5.1 is true for a more general function p) and on the coefficients of the

diffusion process. Beside that, Corollary 6.13 and Proposition 6.14 give an upper bound

v (s,y)
vt(to,z)

for , when (t9,z) and (s,y) are in the same neighbourhood.

The second chapter deals with the regularity of u, the solution of the parabolic PDE
(O + L)u(t,z) + f(t,x) = 0, with a null terminal condition. In particular, we recall
Bensoussan and Lions [13], Theorem 6.12, page 130 (see Theorem 7.1), which asserts
that  ||Opul| + [lul| + [|Ozul| + ||02u|| is bounded by |f|| in LP(0,T;WOPH)  (see
below the definition of LP(0,7;W%P#)). Then, we state in Proposition 7.4 that
[Osull + [|ul| + [|0zul| + ||02u|| is bounded by || f[| in Hg,x (see below the definition of
HgX) We also prove in Proposition 7.3, that d,u(t,x) is Holder continuous w.r.t. t of
order %

The last chapter of this part is devoted to the study of the convergence rate of the
density of the Euler scheme. We approximate the process X by its Euler scheme X% and
we study the difference between p(t,x;s,y) and p~ (¢, z;s,y), where pV is the transition
density of XV, Various expansions w.r.t. N for p(t,z;s,y) — p™¥ (t,2;s,y) can be found
in the literature. (See Bally and Talay [8], Konakov and Mammen [60] or Guyon [46]).
Guyon [46] makes precise the way the expansion of p(t,z;s,y) — p™ (t,7;s,y) explodes
when s goes to t. Theorem 8.1 states an upper bound for p(t, z;s,y) — p™(t,z;s,y), and
Corollary 8.2 proves that p(t, z; T, z) ~ pN(t,2;T,x) when T — t.






Chapter 6

Linear parabolic PDE and
diffusion process

This chapter deals with linear parabolic PDEs and the transition density function of a
diffusion process. It is organised as follows. First, we study the properties of the
fundamental solution of a linear parabolic PDE. We recall some results on the bounds for
the fundamental solution and for its derivatives w.r.t. time and space. These results
come from Ladyzenskaja et al. [64], Friedman [28], and Aronson [2]. Secondly, we deal
with the transition density of a diffusion process. This transition density function is the
fundamental solution of a linear PDE. Then, we state some properties of the bounds for
the transition density function and for its derivatives.

6.1 Introduction

Let us introduce some notations commonly used in the sequel.

e For any matrix M in R? ® R? and any vector V in R?, we define |M|?> and |V |?:
d d
|]W|2 = Zi:1 Z?:l ’Mij’2> |V|2 = Zi:1 Wz|2

o Let Cl’fb(Rp,Rq) be the set of C* functions from R? to RY with continuous and
uniformly bounded derivatives up to order k. The functions themselves don’t need
to be bounded.

o Let C’f ! be the set of continuously differentiable functions ¢ : (t,z) € [0,T] x RY
with continuous and uniformly bounded derivatives w.r.t. ¢ (resp. w.r.t. x) up to
order k (resp. up to order [).

e For any function v : R? — R and any z in R?, we define 0,v, d?v(z) in the following

way: 0,0(x) = (Op,v(x), - - Ouy, v(x)), and G2v(z) is a dx d matrix whose components
are (97v(x))i; = 03, v(x), 1 <i,j < d.

e Let (F, |||») be a Banach space. We define L?(0, T; F) the space of functions ¢ from
[0,7] into F s.t

H¢HLP 0,T;F) / ()| dt < oo.

61
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o Let W™PH m < 2 define the space of functions v : R¢ — R s.t.

hSA

ol = | 3 / el () Pdz | < oo,

k<m

We set H™# = W™ For m = 0, we set H* = HO*,
In particular, we get for ¢ : [0,7] x R? — R

T
T / dt / dze 7| g(t, ).
0 Rd

e For any m < 2,6 > 0 and ¢ > 0, let Hgl’” define the space of functions u :
[0,7] x R — R such that

T
HuH%{gzu :/ 5 |lu(s, )| 3m.p ds :/ / e~ 1zl Z |0%u(s, z)|2dxds < oo.
0 0 RY

k<m

e For any m < 2,0 > 0, > 0 and any diffusion process Xz, 0 < s < T starting from
z at time 0, let Hy"y define the space of functions w : [0, 7] x R? — R such that

H“Hl?qg‘; :/0 /Rde ulz| Z E|0%u(s, X%)|2dxds < oc.

k<m

Let us consider the following linear parabolic PDE on [0, T] x R¢:
(787& + L(t,m))u(ta SC) = 05 (61)

where the second order differential operator L; ;) is defined by

L zyult, ) Z a;j(t, x) .u(t, x) + Z bi(t, x)0z,u(t, ) + c(t, z)u(t, z), (6.2)

and a;;(t,z) = $[o0*];;(t, z).

Definition 6.1 (Fundamental solution). [Friedman [29] p. 141]

A fundamental solution of the parabolic operator L, — d; on [0,T] X R? is a function
[(t,2;7,€) defined for all (¢,z) € [0,T] x R? and (7,&) € [0,T] x R, with ¢ > 7, which
satisfies that for any continuous function f(x) with compact support, the function

ut.a) = [ Tl
satisfies
o (=0 + Lpaz)ult,z) =0,ifx € RY 7 <t<T,

u(t,x) — fx) if t \, 7.
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Definition 6.2 (Ellipticity condition). We say that the operator £, defined by (6.2), is
uniformly elliptic on [0, 7] x R? if there exist two positive constants o, o1 s.t., for any
vector ¢ and any (¢,z) € [0,T] x R?

d

ool¢f* < Z [00%]i,5(t, ©)&&5 < o1|¢).

ij=1

Remark 6.3. To be rigorous in the previous definition, we should say that £ is uniformly
parabolic (and not uniformly elliptic). By misnomer, researchers in probability com-
monly use the word “elliptic”, whereas the right term “parabolic” is used in the literature
on PDEs.

6.2 Properties of the fundamental solution of a linear
parabolic PDE

We recall some classical results on the regularity of the fundamental solution of (6.1),
denoted I'(¢, z; 7, ), and of its derivatives.

6.2.1 Bounds for the fundamental solution of (6.1)

This result, coming from Aronson [2], gives both upper and lower bounds for I'. These
bounds are proportional to a Gaussian kernel. We have the following proposition

Proposition 6.4 (Aronson [2]). Assume that the coefficients a, b, ¢ are bounded measurable
functions of (t,x) € [0,T] x R? and that o satisfies ellipticity condition (Definition 6.2).
There exist positive constants oy, o, K s.t.

K_171($ - gat - T) S F(t,l‘;T, g) S K72($ - €7t - T)u (63)

for all (t,x),(7,€) € [0,T] x R with t > T, where ~i(t,x) is the fundamental solution of
_lel?

SAu — O = 0, for i =1,2. We have v;(t,xz) = —L e 2%t The constant K depends

(27Tait)7
only on 0g,01,d, T and the suprema of the coefficients a,b,c. The constants oy, as depend

on gg,01 and d.

6.2.2 Bounds for the derivatives of I'(¢,z; £, 7) w.r.t. ¢, x,¢&.

The first result given here states a bound for 0 9:I'(¢,z;7,&) when 2r + s < 2, with
Holder type assumptions on the coefficients. We refer to Ladyzenskaja et al. [64] pages
376-377. The second result has been established in Friedman [28], page 261. It gives a
bound for 6;”+“8§F(t, z;7,§), 82182F(t,x +&;7,€) when |a| 4+ |b] < r, r a positive integer
and m = 0,1. Some regularity on the derivatives of the coefficients up to order r are
needed.

Proposition 6.5 (Ladyzenskaja et al. [64], pages 376-377). Assume that L is uniformly
elliptic (see Definition 6.2) and that the coefficients a,b,c are Hélder continuous of order
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a in x and § in t. There exist two positive constants ¢ (depending on og,01) and C
(depending on og,01,d,a), s.t.

_ (d+2r+s) _6\1—5\2

|0; T (t, 51, &)| < C(t—7) T e Tt where2r+s<2,t>T.

Proposition 6.6 (Friedman [28]). Assume that O%a(t,z), Okb(t,x), OFc(t,z) (0 < |k| <
r,r € N*), exist and are bounded continuous functions of (t,x) in [0,T] x R?.  We
also assume that L is uniformly elliptic. Then, for all 0 < |a| + |b] < r,m = 0,1,
8;”*“82F(t,x; 7,§) exist and are continuous functions. Moreover, there exist ¢,C two pos-
itive constants depending on oo, 01,d and on the bounds of Ofa, O%b, 0%c (k < 2) s.t.

¢ @ — &P
m-+a b . _
|0 TR (¢, w57, €)] < 7y P ( c :

t—T1

-7

¢ o2
m ab . —
oretr(t.a + 6.9l < o o (e ).

6.3 Properties of the transition density of a diffusion process

Let us introduce the d-dimensional diffusion process X of generator £. Xt s € [t,T]
is the solution of the following SDE

dX5" = b(s, X4%)ds + o (s, X1)dW,, X}* = . (6.4)
Let p(t,z, s, A) denote the transition probability function
pt, 7,5, A) =P (X5 € A) = P(XE" € A)

of the Markov process solution of (6.4). The following theorem, from Friedman [29], gives
us assumptions under which the transition probability function has density.

Theorem 6.7 (Friedman [29], page 149). Assume that o satisfies the ellipticity condition,
and that

Hypothesis 6.1 The functions a;;,b; are bounded on [0,T] x R? and uniformly Lipschitz
continuous on compact subsets of [0,T] x RY.
The functions a;; are Hélder continuous w.r.t. x, uniformly in (t,z) € [0,T] x R%.

Then, the transition probability function of the solution of the stochastic differential
equation (6.4) has a density, i.e.,

P(X! € A) = /A p(t,z35,9)dy, (¢ < s)

for any Borel set A, and p(t,z;s,y) is the fundamental solution of L5+ O, which means
that for any continuous function f(x) with compact support, the function

utia) = [ plt.ais)f(w)dy

satisfies
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o (O + Lyqzyu(t,z) =0, ifx € RY t<s<T,
o u(t,x) — f(x) ift /s.
The density function of the transition probability function is called the transition density

function. Tt satisfies backward and forward equations.

6.3.1 Backward and forward parabolic equations for the transition den-
sity function

We refer to Friedman [29], Chapter 6.5 and to Bensoussan and Lions [13], page 133
for more details. We deduce, from the above definition of the fundamental solution, that
p(t, x; s,y) satisfies in (¢, x) the backward parabolic equation

Op(t, w55,y) + 5 Sy aij(t, 2)02,, pt, x55,y) + Yoy bilt, ) D, p(t, 75 5,) = 0.
p(S,.I; S,y) = 5(‘T - y)

(6.5)
Under stronger hypotheses, p(t,z;s,y) satisfies in (s,y) a forward parabolic equation.
(See Bensoussan and Lions [13], page 134 for a proof.)

Hypothesis 6.2
1. o s elliptic,

2. The functions aij,(‘)xiaij,(‘)gixjaij,bi are bounded on [0,T] X R and are Holder con-
tinuous (of order ) w.r.t. x uniformly in (t,x) € [0,T] x R,

Then, p(t, x; s,y) satisfies in (s,y) the forward equation

_a?p(tv Z5Ss, y) + % Zgjzl 8§¢yj [a’ij(37 y)p(tv Z;s, y)] - Z?:l ayi [bi(87 y)p(t, T;s, y)] = 0.
(6.6)

6.3.2 Bounds for the transition density function

Since p(t, x; s,y), s > t is the fundamental solution of the operator L; , + J, we get that
Lo(t,z;m,y) i=p(T —t,z; T — 1,y), T < t, satisfies

d d
1
_atFO(tvx;Tay) + E bZ(T—t,$)a$1F0(t,l'7T, y) + 5 E aij<T_tax)a:%iij0(tax;Ta y) =0
im1 ij=1

and [paLo(t,x;7,9) f(y)dy — f(x) when ¢t \, 7. Hence, Io(t,z;7,y), 7 < t is
the fundamental solution of —0; + L1—¢,. Applying Propositions 6.4, 6.5 and 6.6 to
To(T —t,x;T — 7,y) enables us to state results similar to Propositions 6.4, 6.5 and 6.6 for
.

By using Proposition 6.4 and the formula of v;, we can rewrite the inequality (6.3). We
get
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Proposition 6.8. Assume that the coefficients a,b are bounded measurable functions of
(t,x) € [0,T] x R and that o is elliptic. There exist positive constants K, ag, ay s.L.
K1 _ _lz—y|? 1 _ _lz—y[?
—————e 2670 < p(t,x;s,y) < K—————e 2020670, (6.7)
(2may(s —t))2 (2mag(s —t))2
The constant K depends only on og,01,d, T and the suprema of the coefficients a,b. The

constants ag, a1 depend on ogy, 01 and d.

6.3.3 Bounds for the derivatives of the transition density function w.r.t.
t,x,y.

As the first two results (6.8) and (6.9) of the following proposition are exactly the same
as for I', we only briefly recall them. The third one (6.10) gives an upper bound for

0up(t, s 5,y).
Proposition 6.9.

1. Assume that L is uniformly elliptic and that the coefficients a,b are Holder contin-
uous of order a in x and § in t. There exist two positive constants c (depending on
00,01) and C (depending on og,01,d,a), s.t.

_(d42r+s) _ Jeoyl?
2

e st where2r +s<2, s> t. (6.8)

|01 95p(t, x5 5,y)| < Cs — 1)

2. Assume that OFa(t,z), 0%b(t,z), (0 < |k| < 2), exist and are bounded continu-
ous functions on [0,T] x RE. We also assume that L is uniformly elliptic. Then,
8;”‘*‘“82]7(@56; s,y) exist and are continuous functions for all 0 < |a| + [b] < 2,m =
0,1. Moreover, there exist ¢, C two positive constants depending on og,01,d and on
the bounds of 0%a, dkb, 0kc (k < 2) s.t.

C ly —xf
m-+a Qb . < -
oz edhpte.as | < s e (). 09
and
3 _cle—ul?
02p(t,x55,y)| < C(s — )" 3 e i, (6.10)

Proof of (6.10). We can differentiate (6.5) w.r.t. xy, for k =1,--- ,d. Then,

d d
1 1
azkatp(ta €58, y) - - 5 Z azkaij (ta x)agixjp(t7 Zz;s, y) - 5 Z Qij (t7 x)agixjxkp(tv x;s, y)
ij=1 i,j=1
d d
— Oy bi(t, 2)0u,p(t, w5 5,y) — Y bi(t, 2)02,,, p(t, w3 5, y).
i=1 i=1

Since |02,p(t, x;5,y)| < Zgzl |02, p(t, x5 s,y)| and oka(t,x), OFb(t,x), (0 < |k| < 2) exist
and are bounded continuous functions, we combine the previous equality with (6.9) (with
|b] = 0,m =1 and |a| = 0,1,2) to get (6.10). O
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6.4 A norm equivalence result

Before giving a norm equivalence result which will be useful in the sequel, we recall a
norm equivalence result which has been proved by Bally and Matoussi [5]. The authors
introduce p(z) := exp(F(z)), a weight function, where F : R? — R is a continuous function
s.t. there exists a constant R > 0 s.t. the restriction of F' to {|z| > R} is Cl%b. (The case
p = 1 had already been treated by Barles and Lesigne [9], and the case p(x) = (1 + |z|?)
had been handed by Kunita [61].)

Proposition 6.10 (Bally and Matoussi [5]). Assume b € Cl%b(Rd,Rd) and o €
C’l‘?b(Rd,RdXd). Let p be a weight function which satisfies the above properties. There
exist two constants ¢ > 0 and C > 0 s.t. for every ¥ € L'((0,T) x R?, p(x)dx ® dt)

e[, [ e aspwar < [ [ e X haspia)aa
<o [ [ wemasp

The constants ¢ and C' depend on T, p, the suprema of the first derivative of b and the
suprema of the first and second derivatives of o.

The inequality we establish now in Proposition 6.12 is weaker than the one of Proposition
6.10, since we are in the particular case p(x) = e #®l ;i > 0. We also assume different
hypotheses on b, c. Before stating this Proposition, for the sake of clearness, we introduce
the following notation

Definition 6.11. For any s,t € [0,T] and any z,y € R? such that ¢ < s we define

V' (s,y) :=/ e Wlp(t, 25, y)dz,
Rd
where p is a positive constant.

In the following, i is a positive constant.

Proposition 6.12 (Norm equivalence). Assume that the coefficients o,b are bounded mea-
surable functions of (t,z) € [0,T] x R and that o satisfies the ellipticity condition (Defi-
nition 6.2). We also assume that (6.4) has a unique weak solution (X%, W). There exist
two constants ¢ > 0 and C > 0 depending on T,d, u, K, a1, s (see Proposition 6.4 for the
definitions of K, a1, a2), and two constants ¢;,i = 1,2 depending on u,d,o; s.t. Yy € R

ﬁe—ulyleq(s—t) < Vi(s,y) < 21K et eyl (6.11)
Moreover, for every ¥ € L'((0,T) x R, e Mldz @ dt)

/ / (s,x)|dse” “|$|daz</ / (|%(s, X1%)])dse ol da
Rd

< C/ / (s, z)|dse Il de. (6.12)
Rd
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v (s,y)

vt(to,z)’
when (s,y) belongs to a neighbourhood of (¢, z). Corollary 6.13 ensues from Proposition

The following Corollary and the following Proposition give an upper bound for 4

6.12. Under stronger hypotheses than in Corollary 6.13, Proposition 6.14 states a more

v (s,y)

accurate bound for — .
vt(to,z)

Corollary 6.13. Under the assumptions of Proposition 6.12. For any s,tg belonging to
[t, T], for any z,y belonging to RY and for any hy, by satisfying |s—to| < hy and |x—y| < ha,
there exists a constant C' > 0 depending on d,u, T, K, a1, s and a constant co depending
on p,d,as such that

1
VG

Proposition 6.14. Assume that o satisfies the ellipticity condition, a,b are respectively

e Pheyt(s,y) < vi(s, ) < VCe® MUt (tg, x).

Cbg,C'g functions in space, and a,dya,0%a,b,d.b are C’,} function in time. For any s,tg
belonging to [t,T], for any x,y belonging to R? and for any hy, by, satisfying |s—to| < hy and
| — y| < hy, there exists a constant C' > 0 depending on T, pu,d, Koy, ae (see Proposition
6.4 for the definition of K, a1, az) and on the bounds of a,b and of the first derivatives of
a,0ya,02a,b,0.b in time and space such that

V(s,y) < (14 Chy) (1+C\f> (to, x

Before proving Proposition 6.12, let us state the following Lemma.

Lemma 6.15. Let I denote fRd dzeHl] - exp (—clz_yP), where ¢ > 0. For any

(s— t) s—t

5,t € [0,T] and any z,y € RY such that t < s, the following assertion holds

LN 2 (o) ol < < 9d (TN 42 (5 t) ul
2d \ ¢ c '

Proof of Lemma 6.15. First, we prove the r.h.s. of the previous inequality. Using a change

of variables in I yields

d/2 d/2
I = (z) / 1 / *H‘\/—Z+y|€ 2(5 D dz = (E) / E[Q*#\\/%Ws—ﬂryl}' (613)
2m(s —t)

¢ m(s —1)% €
1
Furthermore, Ele W “Ly'] < e*“|y|E[e“ﬁ‘WS*t|]. The components of Ws_; are in-
1 1 1 (s
dependent, then ]E[e”ﬂ?‘wsftl] < (E[e“@WS—t‘])d < 24E[ch(u—=WL )))? < 2% et
The last term being bounded, we get the upper bound for I.

: *H|LWs—t+y|
Concerning the lower bound, we use (6.13). Moreover, Ele ™'v2e ]

1 1
e_“|y‘E[e_“|v26W37t|] and E[E_MWCWS%'] > —— > 11W1 d
Bl v et ("' V3o

f

ALY

dp?(s—t)

sa¢ 4c . The last term being bounded from below, we get the lower bound for I. [

Proof of Proposition 6.12. We easily deduce (6.12) from (6.11) by multiplying (6.11) by
|¥(s,y)| and integrating w.r.t. y and s.
Upper bound for v!(s,y). Using the right hand side inequality of (6.7), we get

_ le—yf?
Vt(S, y) S -[{d/ eip"'xle 2&2(g—t) dx.
(2mag(s —t))2 JRY
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. . 1 t d dMQQQ(S*t) _ | |
Then, using Lemma 6.15 with ¢ = 52~ leads to v (s,y) < K2%™ 2 e MUl

Lower bound for v!(s,y). Using the left hand side inequality of (6.7), we get

t 1 _ | I _w
v (s,y) > y / e Mg 20160 dg,
K(2mon(s —t))z Jr?
. . 1 ¢ K _dptog(s=t) ly|
Then, using Lemma 6.15 with ¢ = 57— leads to v (5,9) < 5q€ 2 e MYl O

Proof of Corollary 6.13 . This result ensues from (6.11). From the r.h.s. of (6.11), we get
Vi(s,y) < K2%etheec2(5=De=lzl From the Lh.s., we have e #l#l < K2de=c1(s=tyt(s ).
Then,

Vi(s,y) < (K2d)26(62_61)(s_t) ethe (s, ).

A similar computation leads to vf(s,z) < (K24)2elc2—et)Tec2hiyt(t) 7)) and the result
follows. 0

Proof of Proposition 6.14. Let C' denote a generic constant depending on T', i, d, K, a1, ea.
The proof is done in the following way

e We first show that v!(s,y) can be written as an expectation of a function of the path
up to time s of a process Y starting in y at time ¢. This way of writing v!(s,y) is
essential to carry on the proof.

e Then, using this expression of v!(s,y) enables us to bound v!(s,y) by
v (to,y) (14 Cvhye) and

e to conclude the proof by showing that v*(s,y) < v!(s,x)(1 + Chy).

We write v!(s,y) as an expectation
We prove that vf(s,y) = By, [e #¥! exp( [ c(t + s — u,Y,)du)], where ¢ is a bounded
function depending on 8§azj, 0.b. To do so, we first use the forward equation (6.6) satisfied
by p(t,z;s,y) to get that v!(s,y) satisfies the following forward equation. Vs € [t, T, we
have

—asljt(& y) + % Z?j:l aij(s? y)aziyj Vt(sa y) + Z?:l E‘(S, y)ayz Vt(sv y) + 0(57 y)yt(sv y) = 0’
Vit y) = e Hbl.

where Fi(sa y) - Z?:l 8yj aij(57 y) - bi(sa y)? C(Sy y) = % Z%:l agiyjaij(& y) -
Then, we introduce n'(r,y) := v!(t + s — r,y), with r € [t +s — T, s]. n(r,y) follows the
backward equation

O (r,y) + 5 Yoy aij(t+ 5 = 19)05 0 (ryy) + 0 bt + 5 — ry)dyn' (t,y)
+c(t+s—r,ynt(r,y) =0,
nt(s, y) — e*#‘y|.

We also introduce the diffusion process Y satisfying

Vu € [r,s] dYy =b(t+s—u,Y,)du+o(t +s—u,Yy,)dWy, Y. =uy.
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Finally, to write n'(r,y) (and then v!(s,y)) as an expectation, we apply the Feynman-
Kac formula (see Appendix A.2.1) to the previous PDE satisfied by n'(r,y). We can use
Theorem A.6 since a, b and y — e #¥l satisfy the following conditions (which correspond

to the required assumptions to use the Feynman-Kac formula)
o y — e MYl satisfies the polynomial growth condition (Remark A.8).
e a,0;a,b are Lipschitz continuous functions in z, uniformly in time (Hypothesis A.3).

e a,0.a,02%a,b,0;b are bounded functions (Hypothesis A.2 and Remark A.8) and uni-
formly Holder continuous in [0, 7] x R? (Remark A.8).

e o satisfies the uniform ellipticity condition (Remark A.8).
Hence, nt(r,y) = E,.,[e H¥s] exp([7c(t + s — u, Yy)du)], where r € [t + s — T, s]. Since

t+s—1T < t, we can choose r =t in the previous equality. Furthermore, the definition of
1 gives ' (t,y) = v'(s,y). Thus,

Vi(s,y) =Ry [e“'YS| exp ( /t ) ot +5—u, Yu)du)} , (6.14)

d
with ¢(s,y) = 3 ZZ] 1 ylyjazg (8,9) = 2 izt Oybi(s, ).

Proof of v(s,y) < (14 CvVh) v (to,y), when [s — to| < hy
We separately deal with the two cases s > ty and s < tg. Let us begin with s > 3. Since
02a, 0,b are bounded, (6.14) enables us to bound (s, y)

Vi (s,y) < = ETOR,  [emtYslel” et muYaduy, (6.15)

Moreover, 92a, 9;b are C} in time, so c(t +s —u,Y,) < c(t +to — u, Y,) + K(s — to), and
e Y5l < emilViglerlYs=Yiol Then, (6.15) becomes

¢
Vt(S, y) < ecoo(sfto)Ety[efMYto ‘eft 0 c(t+t07u,Yu)duemY57Yt0 \] (616)

Ytﬁyiytiy
ulYs =Yg | Ft, | appears.

By conditioning w.r.t. F, in the previous inequality, the term E[e
We compute it in the following way

vty
t,Y,

Y ty 0 _ vty
E[eu\YS =Yy \|f | = [ule Yy, ||7:t ] = (Y;t,y)’

0

where ®(x) = E[e“‘ystoyz_ﬂ]. To bound ®(x) from above, we use Proposition A.10, with
g(z) = e*. We get

= (o)
Efer"" =l = 1 +/ P(u|Y{o" — x| > e)e de. (6.17)
0

Since d2a,d,b are uniformly bounded, using Lemma A.14 yields P(|Y{"" — z| > 5 <
K(T)exp(— EQt ). Hence, (6.17) leads to

,T o0 — 762 - t S—to
Efer"" ] < 14 K(T)/ ee e = 1+ K(T) V10,50
0 2v/2¢

<1+ CK(T)Vs —to. (6.18)
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Combining the previous inequality with (6.16) gives

vi(s,y) < (1+C(s —to))(1+ CK(T)Vs — to)v (to, ).

As s — tg < hy, we get the result.
We deal with the case s < tg, whose proof is similar to the previous one. We bound
vt(to,y) from below.

to
V{to,) = Beyle o exp( [ et + t0 — u, Yu)du)]
t
>Ety[ |YS|6 wlYiy—Ys| ft c(t+to—u,Yy)du fo (t+to— uYu)du]

> e 0 3,y W(VY),

where ¥(z) = E[e”* on@—ﬂ] As before, we can write E[e‘“'yjo’z_ﬂ] =1— [ e Py " —

x| = ©)de. By doing a similar computation to (6.18), we obtain

V(to,y) = (1= C(s = t0))(1 = CK(T)Vs — to)v' (s, ),

and the result follows.
Proof of v!(s,y) < (1 + Chy)v!(s,z), when |y — x| < hy
To do so, we apply a Taylor expansion formula to each component of the following sum

d
Vi(s,y) =V (s, ) = Y V(s Bioa) — V(s T),
i=1
where T; = (z1, 22, , Zi, Yit1, * ,Yd), Vi € {1, -+ ,d}, and Tp = y. For the i-th compo-

nent, we get

Vt(s,@_l)— t(s Ti) = (yi — / 89011/

where Eg\ = (1, ,xi—1, 2 + ANy — 24),Yit1, -+ ,yq). To conclude, it remains to prove

that for each i € {1,---,d}, O0p, (5, 7)) < OVi(s, ).

e Assume that |9,,0(s,y)| < Ce ¥, Then, d,,v'(s,7}) < Ce~ 1T} Since for each
i€ {1, ,d}, i — x| < hgy Op, v (s, 7)) < C’ehxe “'9”'. The Lh.s. of (6.11) (see
Proposition 6.12) ensures that d,, (s, 7)) < Cvi(s,z).

e We prove |9,,v!(s,y)| < Ce Y. By using (6.14), we get the following formula for
ayil/t(,s’ y)

Oy (s.y) = B [—W%Kt’ysgn(Yt’y)e‘“'Y;‘yleff cft--s—u Y )du

S
+ E[e‘“‘YS i eltrs—uye / Oyic(t + s — u, Y1), Y.V dul.
t
Applying Cauchy-Schwarz inequality to the previous equation yields
1
9y (5, )| < (Blem 22 cltpsmu iy ) (6.19)

9 ((E[wymfvy)?]ﬁ HE([ dyeltts - Yi’y)ainJ’ydu)Z]ﬁ) |
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Since a,b are respectively C’?’,C’f, |0y,¢| < C. Moreover, since d,a,d2a,d;b are
continuous and bounded, sup,<, < E|dy, V{2 < C (see Gihman and Skorohod [35],
page 59). Hence, (6.19) becomes

0, (s, )| < Cec= (DR 23,
Yi

Writing E[e~2¢Y""l] = E[e~2#Y""~¥+¥/] and applying (6.18) imply 0y, V' (s, y)| <
Ce Myl

O



Chapter 7

Properties of the solution of a
linear parabolic PDE

This chapter deals with the regularity of u, the solution of the parabolic PDE

(Or + Ly z)u(t,z) + f(t,x) =0,
{ u(T,z) = 0. (7.1)

In particular, we recall Theorem 6.12, page 130 of Bensoussan and Lions [13], which
asserts that [|9yul| + ||ul| +[|0zu| + ||02u| is bounded by ||f|| in LP(0,T; WOP#). Then,
we state in Proposition 7.4 that [|0yul| + |Jul| + ||0pul| + ||02ul| is bounded by || f|| in Hf x
We also prove in Proposition 7.3, that dyu(t, x) is Hélder continuous w.r.t. ¢ of order %
We assume
Hypothesis 7.1 (Hypotheses on f)
1. f satisfies the following polynomial growth condition: 3K > 0, > 1 s.t.

|f(t,z)| < K(1+ |z*), YO<t<T, Vo € R%
2. f is Hélder continuous on [0,T] x RY.

We also assume that the coefficients of L satisfy the following hypothesis
Hypothesis 7.2 (Hypotheses on o, b)

1. o is uniformly elliptic,

2. a;;,b; are bounded functions, and uniformly Hélder continuous on [0,T] x R,

3. a;j,b; are continuous Lipschitz functions in space, uniformly in time.

As recalled in Appendix A.2.1 (see Theorem A.6 and Remark A.8), we can use the
Feynman-Kac formula under Hypotheses 7.1, 7.2 to write u(t,z) = Et7w[ﬁTf(s,Xs)ds],

where X is the solution of the following d-dimensional stochastic differential equation
(SDE) dXs = b(s, Xs)ds + o(s, Xs)dWs.

73
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7.1 Regularity result in LP(O,T; WO,p,u)

We recall Theorem 6.12 page 130 of Bensoussan and Lions [13], with a null terminal
condition. Consider the following PDE

{ Oy + Lia)v(t, z) + c(t, x)v(t,x) + f(t,x) =0, 72)

v(T,z) =0.

which is a bit more general than (7.1), since the term c(t, z)v(t, z) has been added.
Theorem 7.1 ( Bensoussan and Lions [13]). Assume

e a,b,cc CY0, T[xRY) NL>(]0, T[xR%),

e c(t,x) > Cy >0,

e o is uniformly elliptic,

® (02,0)_1..q» 0s0 are bounded.
Assume f € LP(0,T; WOPH) N1L2(0,T; H*). Then, Vp > 2, the solution v of (7.2) is in
LP(0, T; W2PH) and Oy € ILP(0, T; WOPH). Furthermore, we have

||3tv||Lp(0,T;Wo,p,u) + ||UH]LP(O,T;W27PM) <C HfHLp(o,T;Wo,p,u) . (7.3)

Remark 7.2. The second assumption concerning c(t,z) is not restrictive. Assume v
satisfies (7.2) and the coefficients a, b follow the preceding assumptions. We also assume
c(t,x) > Cp, without any assumption on Cy. We get a result similar to Theorem 7.1 for

—Chit

u, solution of (7.1. By studying u(t,z) = v(t, x)e , we show that u solves the following

PDE

{ (O + Leo)ult,z) + (c(t, z) + C)u(t, x) + e Crtf(t, z) = 0,
u(T,z) = 0.

By choosing Cy s.t. C; > —Cy, we can apply Theorem 7.1 to u and get

10culleo o, ;wommy + 1ullierw2emy < CullfllLeor;wopwy- From this inequality, we de-
duce that v satisfies (7.3), where C' = C,e“17.

7.2 Hoélder continuity of d,u(t,z) w.r.t. ¢ of order 3.

The following proposition states a regularity result w.r.t ¢ of the derivative d,u(t, ),
where u is the solution of (7.1).

Proposition 7.3. Let u be the solution of (7.1). Assume Hypotheses 7.1, 7.2, that o and
b are in CZ in space and that f is bounded. Then, for all t,t € [0,T], we have

Deult,2) = dult, 2)] < Ol oo VIE — 1,

where C depends on d, o9, 01 and on the bounds for Oa, d%b, for k < 2.
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Proof. Assume without loss of generality that ¢ < t'. Since |0yu(t’,z) — dyu(t,z)| =
\/Z‘Ll |0z, u(t!, ) — Oy u(t, x)|?, we give an upper bound for |9, u(t', x) — 0y, u(t, z)|, Vi <

d. From the Feynman-Kac formula (see Theorem A.6), we deduce u(t,x)
ft , where (X;)s>; satisfies (6. 4) Let p(t,x; s y) be the transition density
functlon of X Then we can write O, u(t,z) = [pa dyft ., D(t, x5 8, y)ds.

T
Opu(t',z) — Oy u(t, ) = /Rd dy F(s,9)[0n,p(t' ;23 8,y) — Or,p(t, x5 5,9)|ds
t/

tl
f(8,9)0,p(t, x;5,y)ds :== Ay — As.
t

Then, we establish upper bounds for A; and As.

Upper bound for A,. Using (6.8) yields

¢ (d+1) o —y|? " ds
A <C /d / ds(s—t)" 2 e “ st <O —
[A2| < Cf| fll o ) s(s —1t) e <C|fll =

le—yl|?

since [pa dy(s — t)_gefc =t = ( )% Hence, we get [As| < C| fll VT —t.

alx

Upper bound for A;. First, we apply a Taylor formula to the difference
axip(t/a xz; s, y) - 8x1p(t,flf, S, y)

1
Op,p(t' 258, y) — O, p(t, x5 8,y) = (' — t)/ d)x@fxp()\t' + (1= Nt,x;8,9).
0

Using this formula and (6.10) yield

|z —y|?
A1l < Clflo =) / dy/ ds/ dA ¢ e TR
v (s — (W + (1— A1) F

<C|flla —t/ ds/ dA(s — (M + (1 — \)t)) "2

Since At' + (1 — )t € [t, 1], we can write

MOJ

l\.’)\w

(s — (M + (1= 1) % <

(s — (M 4+ (1 =Nt)Vs -t/
It remains to prove that ft,Tdsfol d/\(s_(/\t,+(1i>\)t))\/ﬁ < \/STt to get |A1] <
Ol fllo VF .

T 1 T—t 1
/ ds = 2/ 5 ; du
v (s—= A+ 1 =Nt)Vs -t 0 u? 4+ (1= A) (' = 1)
a= 7;)(2; ) 1

ﬁ/ T+ 02
= 2 arctan i
B (1_,\)(t/_t) =Nt -t )

T, 1
Thus, [, ds [, d/\(s—(/\t’+( 1 VT S \/Ffo 1 , and we get |A1] < C'||f]l VT —é.]

——dv
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7.3 Bound for Hu||fq§§{

Proposition 7.4. Assume o is uniformly elliptic, o € C'bl’l, b is CY1 and bounded, and
f e L?0,T; HgX) We also assume that u satisfies the PDE (7.1). Then,

2 2 2
Jalps +10eulys < C NI (7.4

Proof of Proposition 7.4. We do the proof in three steps, combining Theorem 7.1, page
74, and Proposition 6.12, page 67. Let us give the sketch of the proof.

: . 2 2 2 2

e We begin by showing that Hu||H§;;( + H(‘)tuHHg,X < C’(||u||H§# + ||8tu||Hg)
2 2 2

* Then, we prove [[ul[zu + (|10l < CllF 5y -

e To conclude, we show ||f|\%lg <C HfH?IZX

The first and third points can be proved using respectively the second and first inequality of
(6.12). Concerning the first point, we apply the second inequality of (6.12) with ¢ = 0 and
U(s,z) = e’*1p(s,x), where (s, ) = |u(s,z)|?, [0su(s,z)|?, |0zu(s,x)|?, and |02u(s,z)|?.
For the third point, we use the first inequality of (6.12), with ¥(s,z) = €% f%(s,z) and
t = 0. To prove the second point, we apply Theorem 7.1 to v(t,z) = e%u(t, x) and p = 2.
Since u(t, x) satisfies (7.1), we get that v(t,x) satisfies

—0p(t, ) — Lo gyv(t,z) + gv(t,x) = e%f(t,x),
v(T,z) =0.

According to the hypotheses of Proposition 7.4, we can apply Theorem 7.1 to get

Hat(e%u(t,ﬂs))‘

+ He%u(t,x)‘

< C'He%f(t,a:)‘

L2(0,T;Hm) L2(0,T;H2:») L2(0,T;Hn)’

which implies Hu||12qg,“ﬁ + ||8tu||§{g <C Hinfg’ and Proposition 7.4 is proved. O



Chapter 8

Convergence rate for the density
of the Euler scheme

The last chapter of this part is devoted to the study of the convergence rate of the density
of the Euler scheme. This part is devoted to the study of the difference p(t,z;s,y) —
pN(
(resp. XV). We aim at proving Theorem 8.1, which makes precise the way the upper
N(

t,x;s,7), where p (resp. p") denotes the transition density function of the process X

bound of |p(t,x;s,y) — p" (¢, z;s,y)| depends on N and (s —t). We also recall different

expansions for p(t,z;s,y) — p™¥ (¢, z; s,y) which can be found in the literature.

8.1 Introduction

Let us consider a d-dimensional diffusion process (Xs)i<s<7 and a g-dimensional Brow-
nian motion (Ws)i<s<7. X satisfies the following SDE

q
dX] =bi(s, Xo)ds + > oj(s, Xo)dW], X} =a'Vie {1, d}. (8.1)
j=1

We approximate X by its Euler scheme of order N > 1, say X” defined as follows.
We consider the subdivision {t =ty < t; < --- < ty = T} of the interval [¢,T], i.e.
ty :t—i—k$. We put X}¥ =z and, for all k € {0,--- , N — 1} and u € [ty, tps1],

XM= X0 4 by, XE) (= t)) + > 03 (b, X)W = W), Wi € {1, ,d}. (8.2)

j=1

Note that the continuous Euler scheme is an It6 process verifying
N “ N “ N
X)) =x +/ b(gp(s), X)) ds +/ o(p(s), Xy(s)) AW
¢ ¢

where p(u) := sup{ty : tx < u}.

If o is uniformly elliptic, the Markov process X (resp. the process X*) admits a transition
probability density, denoted p(t,z;s,y) (resp. p™ (t,z;s,%)). Let us state the main result
of this chapter, whose proof is postponed to Section 8.4.

7
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Theorem 8.1. Assume o is uniformly elliptic, b € 02,2 and o € 02’3, 0o € C’I} in space.
Then, V(s,z,y) € [t,T] x RY x RY, there exist a constant ¢ > 0 and a function K(T) non
decreasing in T and depending on the dimension d and on the upper bounds of o,b and
their derivatives s.t.

K(T)(T —t) clz —y/?

t,x58,y)| < —————5 exp( ﬁ)-

N
( N(s—t) =

Ip(t,z;8,y) — p

Corollary 8.2. Assume the same hypotheses as in the above theorem. From the last
inequality and Aronson’s inequality (6.7), page 66, we deduce

T —1. .
p(t,z; T, x) - N (8:3)

This inequality yields p(t,z; T, x) ~ p™(t,z; T, ) when T — t.

Remark 8.3. In the rest of this section, K(7T') denotes a non decreasing function in 7'
and C denotes a strictly positive constant depending on the dimension d and on the upper
bounds of ¢, b and their derivatives up to order 1 in time, order 2 in space for b, and order
3 in space for o.

Before giving a proof of Theorem 8.1, we first recall some other results on the upper
bound of p(t, z; s, y)—p™ (t, z; s,), obtained by Bally and Talay [8], Konakov and Mammen
[60], and Guyon [46]. Then, we give basic results on Malliavin calculus for elliptic It6
processes, which will be useful for the proof of Theorem 8.1.

8.2 Previous results

The difference p(t,z;s,) — p™¥ (t, 2; 5,y) has been studied a lot. We can found several
results in the literature on expansions of this difference. First, we mention a result from
Bally and Talay [8] (Corollary 2.7). Let us assume o is elliptic (see Definition 6.2) (with
o only depending on x) and

Hypothesis 8.1 b,o are C®°(RY) functions whose derivatives of any order greater or
equal to 1 are bounded.

Using Malliavin calculus, Bally and Talay [8] have shown that

1 1
p<t7x;T7 y) _pN(tvx;T7y) = NWT(xay) + WRZZY(-T,Z/), (84)

with |mr(z,y)| + |RY (z,y)| < %exp(—@%), where ¢; > 0, ¢ > 0, ¢ a positive

constant, and K (-) a non decreasing function. We point out that ¢ is unknown, which
doesn’t enable us to deduce the behaviour of p — p when t / T.

Beside that, to bound from above p(0, z; 1,) —p~ (0, x; 1, y), Konakov and Mammen [60]
have proposed an analytical approach based on the so-called parametric method. Assume
o is elliptic (see Definition 6.2), and
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Hypothesis 8.2 b,0 are C®°(R?) functions whose derivatives of any order are bounded.

For each pair (z,y) they get an expansion of arbitrary order j of p™(0,2;1,y). The
coeflicients of the expansion depend on N

p(0,2:1,y) = p (0,251, y) = ZNZmoﬂc )+ 0(55) (85)

The coefficients have Gaussian tails : for each i they find constants ¢; > 0, co > 0 s.t. for
all N > 1 and all 7,y € R 7n,(0,2;1,y) < cjexp(—ca|z — y[?). To do so, they use
upper bounds for the partial derivatives of p (coming from Friedman [28]) and prove
analogous results on the derivatives of pV. As strong as is this result, nothing is said
about replacing 1 by ¢, for ¢ € [0,1]. That’s why we present now the work of Guyon [46].

Guyon [46] improves (8.4) and (8.5) in the following way. Assume o is elliptic (see
Definition 6.2) and Hypothesis 8.2

Definition 8.4. Let G;(RY),l € Z be the set of all measurable functions 7 : R? x (0, 1] x
RY — R s.t.

e forall t € (0,1],7(-;t,-) is infinitely differentiable,

o for all o, 3 € N?, there exist two constants ¢; > 0 and ¢ > 0 s.t. for all ¢ € (0,1]
and z,y € R,

050w (w; t,y)| < ext™ (AN exp(—colz — y[?/1).

The author has proved the following expansions

N_,_T™ TN
p p N + N2 (8.6)
Jj—1 J "
N TN, L?’LtJ TN, j
P p_AlNi—FZ;(t >7r +NJ’ (8.7)
1= 1=

where 7 € G1(R?), (7x,N > 1) is a bounded sequence in G4(R%). For each i > 1,
(mni, N > 1) is a bounded family in Go;—2(R?), and (71'?\772-,]\7 > 1), (TFKM,N > 1) are two
bounded families in Go;(RY). These expansions can be seen as improvements of (8.4) and
(8.5) : it allows infinite differentiation w.r.t. = and y and also makes precise the way the
coefficients explode when ¢ tends to 0.

Remark 8.5. Using the notations of Guyon [46], we can rewrite Theorem 8.1 as
Ip(t,z;8,y) — pN(t, 255, y)] < K(T)TTr where 7 € G1(RY). If we look at (8.7) with j = 1,

Nl

we get pIV —p = , where 7TN’1 € Qg(Rd). Then, Theorem 8.1 gives a better accuracy

for |p(t, z;s,y) — (t, x; 8,y)| when s tends to t.
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Before giving the proof of Theorem 8.1, we recall a result on upper bounds for the partial
derivatives w.r.t. = and y of p(t,x;s,y) and on the upper bound for p¥ (¢, z;s,y), which
will be useful in the sequel. It is stated in Guyon [46], Theorem 6, but it has essentially
been proved by Konakov and Mammen [60].

Theorem 8.6 (Guyon [46]). Assume o is uniformly elliptic and Hypothesis 8.2. Then,
vt € (0,1] and x € RY, N > 1, XN has a density pn(0,z;t,y) and py is a bounded
sequence in Go(R?).

Remark 8.7. The assumptions of Theorem 8.6 are stronger than the one we made in
Theorem 8.1. However, the proof of Theorem 8.1 only requires the following inequality

CK(T) (_c |z — y|? > |

Je > 0s.t. V(s,z,y) € (t,T] x R x RY pu(t,a;8,y) < - exp P

(s —1)2
which can be proved under the assumptions of Theorem 8.1.

The next section is devoted to recalling basic results on Malliavin calculus for elliptic
It6 processes. These results will be useful for the proof of Theorem 8.1.

8.3 Basic results on Malliavin calculus for elliptic It6 pro-
cesses

We refer the reader to Nualart [78], section 2.2, for more details of this section. Fix
a filtered probability space (€2, F, (F:),P) and let (W;);>0 be a g-dimensional Brownian
motion. For h(-) € H = L2([0, T],RY), W (h) is the Wiener stochastic integral fOT h(t)dWr.
Let S denote the class of random variables of the form F' = f(W (hy), -+, W (hy)) where
f is a C*° function with derivatives having a polynomial growth, (hy,--- ,h,) € H™ and
n > 1. For F € S, we define its derivative DF = (DiF := (D}{F,--- ,D{F))icjo1) as the
H valued random variable given by

=1

The operator D is closable as an operator from LP(Q) to LP(Q; H), for p > 1. Its domain
is denoted by A'? w.r.t. the norm ||F|, , = [E[F|" + E(|DF|[%,)]}/P. We can define the
iteration of the operator D, in such a way that for a smooth random variable F', the
derivative D*F is a random variable with values on H®*. As in the case k = 1, the
operator DF is closable from S C ILP(Q) into LP(Q; H®¥), p > 1. If we define the norm

k
I1E )y = EIFP + > E(|D/F|[fe)],
j=1

we denote its domain by A®P. Finally, set AR = ﬂpzlAk’p, and A% = ﬂk,pzlAk’p. One
has the following chain rule property
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Proposition 8.8. Fiz p > 1. For f € C{(R%LR), and F = (Fy,---,Fy)* a random
vector whose components belong to AYP, f(F) € A and for t > 0, one has Dy(f(F)) =
I/ (F)DF, with the notation

Dy Fy
D,F = : e R? @ RY.
Dy Fy

We now introduce §, the Skorokhod integral, defined as the adjoint operator of D.
Proposition 8.9. § is a linear operator on L2([0,T] x Q,RY) with values in L?(Q) s.t.

e the domain of & (denoted by Dom(d)) is the set of processes u € L2([0,T] x Q,RY)
s.t. [E([] DiF - wdt)| < c(u) |F|l2 for any F € AM2,

o If u belongs to Dom(6), then 6(u) is the one element of L?(Q) characterised by the
integration-by-parts formula

T
VF € AY? E(F§(u)) =E (/ D;F - utdt> .
0

Remark 8.10. If u is an adapted process belonging to L2([0, 7] x 2, RY), then the Skorohod
integral and the It6 integral coincide : §(u) = fOT ugdWy, and the preceding integration-
by-parts formula becomes

T T
VFe A E (F/ utth> = </ DF - utdt> : (8.8)
0 0

In the following, this equality is called the duality formula.

We recall some standard results related to the integration-by-parts formula. The Malli-
avin covariance matrix of a smooth random variable F is defined by v/ = fOT D,F[D,F|*dt.
The following proposition corresponds to the first part of Proposition 2.4 of Gobet and
Munos [44], or to Proposition 3.2.1 page 160 of Nualart [79].

Proposition 8.11 (Gobet and Munos [44]). Let o be a multi-index, F' be a random
variable in Ak s.t. det(vF) is almost surely positive with 1/det(vF) € Np>1LP and G
belongs to AF>>°. Then, for any smooth function g with polynomial growth, provided that
k1 and ko are large enough (depending on o), there exists a random variable Hy(F,G) in
any ILP s.t.

E[0%g(F)G] = E[g(F)Ha(F,G)].

Now, we intend to apply such a result with F' =Y}, where Y is some It6 process. (For
example we can take F' = X; or ' = X}¥). We only consider a specific class of elliptic Ito
processes defined in the following Proposition. The proposition we state is quite similar
to Proposition 4.2 of Gobet [37]. The difference is based on the fact that in Gobet [37]
the coefficients b, o are assumed to be C'*° and bounded. In our case, b and o are in C’g 2,
The following result is derived from Kusuoka and Stroock [63].
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Proposition 8.12. We assume o is uniformly elliptic (see Definition 6.2), b € C';’Q and
o€ 02’2. Consider v, a map from R into R, satisfying the non-anticipative condition
0 <w(s) <s for any s. Let (Y{")i>0 be the d-dimensional Ité process defined by

t t
Y=ot [ W) Yids+ [ olv(s), V).
0 0

Then, fort >0, Yy € A2 and for k < 2,p > 1, there is a function K(T) (not depending
onv), s.t.

sup [V (@)l < K(T)(1 + |x).
te[0,T

The Malliavin covariance matriz of Y¥ is a.s. invertible and its inverse, denoted I'Y belongs
to Np>1LP. Moreover, we have ||I'Y (x)||, < %, uniformly in x and v.

Integration by parts formula : for all p > 1, for all multi-index o s.t. || < 2, for all
s € [0,T] and t € (0,T] and for any functions f and g in C)ﬁ'(Rd,R), there exist a
random variable Hy(g(YY), YY) € LP and a function K(T) (uniform in v,z,s,t, f and g)

s.t.

EL [0/ (V) (Y2)] = Eulf (YY) Ha(g(Y2), Y2)), (3.9)
with
el Ha (o), Y17 < K g (8.10)

2

All these results are given in the article of Kusuoka and Stroock [63]. The first one,
concerning the estimates of Sobolev norms ||-|| k.p 18 stated in Theorem 2.19. The inequality
on the Malliavin covariance matrix is stated in Theorem 3.5. (8.10) is owed to Theorem
1.20 and Corollary 3.7.

8.4 Proof of Theorem 8.1

To prove Theorem 8.1, we combine Theorem 8.6 and Proposition 8.12. The scheme of
the proof is the following

e Use a PDE and Ito’s calculus to write the difference p™ (¢, z;s,y) — p(t, z; s, %)

s d

= [ B | S0, X 0) = i X)) 00iplr XYi5,1)
t i=1

1 d

43 D (asel): X)) = a5 X020 XY, | dr = By + B (811)
ij=1

e Prove the intermediate result V(r, z,y) € [t, s] x R x R?

oo o ()] < ey (220) e (<) sy

s—r s—1t

where ¢, ¢ > 0.



8.4. Proof of Theorem 8.1 83

e Use Malliavin calculus, Theorem 8.6 and the intermediate result, to show that

each term FE; and FEs of the sum of the r.h.s. of (8.11) is bounded by
K(T)(T—-t) 1 _le—yl?
N T exp(—c — ).

(s—t) 2~

Definition 8.13. We say that a term E(t, z, s, y) satisfies the property P if V(t,z, s,y) €
[0, 7] x RY x [t,T] x R?

KI)(T-t) 1 |z —yf?
E(t,z,s,y) < N o E exp <—cs_t> . (P)

8.4.1 Proof of equality (8.11)
Let us consider the following PDE, where s € [t, T'.
{ (Or + Lpz))u(r,z) =0, Vrelt,s],Vo e R?
where L, ,) is defined by (6.2). We also assume that f is continuous and satisfies a
polynomial growth condition. Applying Feynman-Kac formula (see Appendix A.2.1) gives
u(t, ) = By .[f(Xs)]- By using the terminal condition of the PDE, we also have u(s, X) =
f(XN). Then,

Ero f(XD) = F(X5)] = Ealu(s, XJY) — u(t,z)]. (8.13)

On the other hand, E; .[f(XY)— f(Xs)] can also be written using the transition density
p(t,x;s,y) of X, and the density p™¥ (t,z;s,y) of XV. We get

Eoalf(x) - / S (¢ 23 5,9) — plt,z: 5, 9))dy. (8.14)

Besides that, using It6’s formula yields

S S d
By zfu(s, XN) — u(t, )] =E¢ [/ Oru(r, Xﬂv)dr] +Ei g / Z bi(go(r),Xg(r))aziu(r, Xiv)dr]
t toi=1

+ Etx / Z a/lj ))82 (T> XT],V)d?”

4,j=1

From PDE we have dyu(r, X») = —Lu(r, X}V), then the above equality becomes

E¢ »[u(s, X;V) —u(t,z)] =Ei 4

s d
/t Z(bl(gp(’l“),Xﬁr)) - bi(T7 Xﬂv)amzu(’l“, X7J‘V)d7d]

438 | [ Z i (plr), X2) = aiyr, X )02, ulr, X2 )dr
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Since u(t,z) = [pa f(y)p(t,z;5,y)dy we get dp,u(t,x) = [pa f(y)0u,p(t, x; s, y)dy, and
hence

E¢ »[u(s, X;V) —u(t,x)] =

s d
Etq /Rd dyf(y)/t Z(bi@(?“),Xﬁr)) — bi(r, X)) 0e,p(r, X 5, y)dr
1 N\ 52 N.
+ iEt,x / dyf / ;1 al] )) aij(r7 Xr ))aac xj (’I”, Xr 737y)dr
(8.15)

Combining (8.13), (8.14) and (8.15) yields the following equality, which is true for all
continuous functions f continuous with polynomial growth

» FW)N (t, 5 8,y) — pt,2;5,y)]dy = (8.16)
s d
Et,x /]R‘i dyf(y)/ Z(bl<90(r)7Xﬁr)) - bi(rv X,ZV))(?xip(r, Xﬁv;svy)dr
t i=1
1
+ 5B / dyf(y / Z aij((r), X)) — aij(r, X\))05 4 p(r, X155, y)dr
3,j=1

To get (8.11), we put the r.h.s. of (8.16) on the left one and we choose f(y) =
pN(t,z;s y) p(t,@;s,y) —Eea [0 04 (b( (’I“),X]\E ))fb-(r X)) 0p,p(r, XN s, y)dr —
IIEmft 7] 1 (aij(cp( ),Xﬁr)) —a;;(r, X, ))@%ixjp(r XN s,y)dr. We can do so since

o pV(t,x;5,-) is C°(R?) with polynomial growth (see the Examples page 305, point 2)
of Kusuoka and Stroock [63]). This result also ensues from the fact that p” (¢, z; s, -)
can be written as a convolution product of Gaussian random variables,

° 8§p(t,az;s, ), 0 < k < 3 are continuous with polynomial growth (see Proposition
6.9),

e the functlon U:yr—Ey ft o (b (p(r), Xfa\zr)) —b;(r, X,{V))&Tip(r, XN s, y)dr —
B, [P ” 1 (aij (o(r ),Xg(r))—aij(r, X,N))@%ixjp(r, XN:s,y)dr is continuous. We
check it by looking at the rest of the proof. In the following of the demonstration, we
split this integral into four terms E11, E12, Fo1, Fos. Each of these terms can be writ-
ten as [’ dr fso(r) B¢ . [0Fp(r, XN, s,y)g(@(r),Xg(r),u,XéV)]du, where k € {0,1,2,3}
and g is bounded continuous (see (8.19) for example). Thus, writing the expectation
as an integral and using the two preceding points lead to the continuity of W,

e since each term FEii, E1g, Eo1, E99 satisfies property (P) (see definition 8.13, page
83), the function ¥(y) has polynomial growth.

Consequently, the chosen function f 1is continuous with polynomial growth.
Jga f?(y)dy = 0 leads to f(y) = 0 a.e. As f is continuous, f is null everywhere and
(8.11) follows.
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8.4.2 Proof of the intermediate result

We prove inequality (8.12). Em[exp(—cw)] = Jpa exp(—cM)pN(t,x;r, z)dz.

S—r S—r

Using Remark 8.7, we get

_ XN 2 K(T 42 42
Et [exp (—cy | )] < ( )d / exp (—0M> exp <—C'M> dz
s—r (r—t)z Jrd s—r r—t

1 lyi — 2| i — 2]
< K(T)IL —c— = ) dy
> ( ) 'L_l/l;mexp( c s—7 €Xp & r—t Ziy

1 L2 1 L2
and / 7exp(—c|y2 il ) exp(—c’u)dzi is the convolution
R o (s—r) S—r 2 (r—t) r—t
2c 2!

product of the density of two Gaussian random variables N (—z;, 5-F) and N (y;, %52)
computed at 0 (see Lemma A.16, page 265). The integral is equal to

1 — yil?

exp (—M) Then, we get
2m (=t + 51 Tt

1
1 L a2 2 _ 1 T
/ exp (el AN p (Lol A e o (BTN o (e iUl
RVT—t s—r r—t s — ¢t p—

and (8.12) follows.

8.4.3 Upper bound for F;
We recall that E = fts Et s [2?21(171’(%0(7“),Xﬁr)) — b;(r, X,{V))(?wip(r, Xﬁv; s,y)} dr. For

each 4, we apply Ito’s formula to b;(u, XV) between u = ¢(r) and u = r. We get

r r q
bi((r), X Dpy) = bilr, X¥) = / ol du + / > Bikdwy, (8.17)
w(r) o(r) —1
where !, depends on 0;b, d,b,0%b,0, and (3, = bel-(u,XfLV)a(go(r),Xﬁr)). Since b, o
belong to 05’2,01}’3, o’ and (B%%);<p<, are uniformly bounded. Using (8.17) and the
duality formula (8.8) yield

T

d S T
Bi= > [ Bl [ 0 XN ispaldut Bl [ Du(0uplr XYis) - Bidul)dr
i—1 ’t p(r) w(r)

= E11 + Eo, (8.18)

where (3¢ is a row vector of ¢ components. We upper bound Ej; and Ejs.

Bound for E;; = Zle fts Et,a:[f;(r) Ou;p(r, X N5 s, y)ad, duldr.
Since 25:1 Ou,p(r, XN s,9)al, < |aw||0up(r, XN, s,y)| and a, is uniformly bounded in w,

we have T_t fs
Bul <€ [ B0, XX s p)ldr.
t
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N |2
Beside that, from Proposition 6.9, |9.p(r, XN, s,9)| < —<a5r exp ( - c%) Then,
2

(s—r

T—t (¢ 1 ly — XN|?
|En| <C ~ /t(S—T)dJerEt’z [exp<—cs_; dr.

Using the intermediate result (8.12) yields

1 |z —yl”
|E1| < K(T exp( dr
N \/s—r (518 s—1

T—t 1 |z — y|?
= ( ) N (S_t)dgl eXp( c S—t )

and thus F1; satisfies property P (see Definition 8.13).

Bound for Ei» = Y0, [ Bl ) Dul@up(r, X5 5,y)) - Biduldr

To rewrite Eia, we use the expression of () and Proposition 8.8, which gives
Du(0a,p(r, X5 5,9)) = Va (0a,p(y, X1 5,9))o (0(r), X),))- Then,

By = / / )ZEW 02, p(r, X2 5, ) [(007) (p(r), XN ) (Vabi(t, X)) 4)dus.
r i,k=1
(8.19)

Using the integration-by-parts formula (8.9), we get that

Et0[0%,2,0(r, X5 5,9)[(00™) (0 (r), X)) (Vabi(u, X37)) Jx]
= Et[02,0(r, X;\5 5,9) He, ([(007) (0(r), X S ) (Vi (u, X)) T X)),

where ey, is a vector whose k-th component is 1 and other components are 0. Let H ék (r,u)
denote He, ([(c0™)(p(r), X, (T))(V bi(u, X))k, XN), we write

S T d d
By — / dr / S Eeal> ] 0np(r, XN 5, 9) HE (r,0)]du.
t w(r) p—1 i=1

From (8.10), we deduce E.[|H{ ( (r,u)|P]/P < CcED_ where C only de-

(r— t)1/27
pends on [0|oo, |020|0os |0zbloo, [0%,blee.  Since EM[ZZ 1 Oz, p(7, Xﬁv;s,y)Hék] <
Et 2 [|0xp(r, X, N.g ,Y)||He,|], we apply Holder’s inequality to get
N d+l._d
Fip < CK d'I“ 1/2Et7w[’8$p(7“, Xr ;s,y)‘ d ]d+1 du.
Using Proposition 6.9 leads to |9,p(r, XN;s,9)| < Cd+1 exp(—ciw_s)_(ivlz), and com-
(s—r) 2

bining this inequality with the intermediate result yields

d2
d+1 CK(T s —r\ 20d+1) —zl?
Bt . [|0xp(r, X5 5, 9)| /) < (é < > exp (—c’y’> . (8.20)
(s—r)= \s—1 s—t
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Hence, F15 is bounded by

CK(T) T-—t ly — x|\ [° 1 1
Eyp < exp (—c / dr.

It remains to compute ft dr. To do so, we split the interval [t, s

1
HNi/2 d+1_ d2
(r— ) (s—r) 2 2@+D

into [t, ¢+ 51, [t + 5%, s]. Thus,

/S 1 1 < 1 /t“zt dr L1 / dr
< _ar
RN G LR CEDEERC TP

s—r) 2 2

CE(T) T—t (_Cly—ﬂﬁl2

An easy computation leads to F1s < GonT N OXP p—

P.

), and 1y satisfies property

8.4.4 Upper bound for F,

1 d

We recall By = /t Eialg > (aij(e(r), X Dyy) = aij(r, XV)03 p(y, XN 5, 9)]dr. As
ij=1

we did for Ej, we apply Ito’s formula to a;;(u, X)) between ¢(r) and r. We

get a;j(p(r), X]\Q ) = ag(r, XNy = f;m Y du + f;m 8¢ dW,, where ~,] depends on

0,0,0,0,0,b,02,0 and 6% is a row vector of size q, whose [-th component is ((55)1 =

d: O, aii(u, XN o (o(r), XN ). Then, using the duality formula (8.8) leads to
k=1 Yz u w(r)

Ey = Z / {Et» / ez P(T XN s, )V du 4 By, ] Du(aiwjp(r, XN:s,y)) - 09 du]}dr

i,5=1 w(r)

= FEo1 + FEoo.

Bound for Ey = ch'lj:1 [ Bl o(r )82 p(r, XN: s, y)v du)dr.

xlx]
We can treat this term as we did for Ei2. As o,b, 00, 0,0, (9 o are C’l in space, 'yU has
the same properties as the term [(o0™)(p(r), X o(r ))(V bi(u, XN))*] appearing in (8.19).
Thus, Es; satisfies property P.

Bound for Ey; = szzl [ Bt [f;(r) Dy (03,4,0(r, XN:s,y)) - 64 duldr.

To rewrite Foo, we use the expression of 89 and Proposition 8.8, which asserts

Du(0,,0(r, X5 5,9)) = Va (02,0, p(r, X7V3 5,9))o ((r), X J,)). Thus,

1‘1.1’7 aclac] p(r

En Y [ ar / B al02, 00l X255, 9)[(007) (9(r), X)) (Tt (0 X)) el

ij,k=1 o(r)

To complete this proof, we split Fos in two terms : E%Z (resp E222) corresponds to the
integral in 7 from ¢ to ¢ + 25 (resp. from ¢ + 5% to s).
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e On [t,t + 25|, E}, is bounded by

s—t

1 T—t "5 3 N
|E22| < C/t Et7ft[|amimjmkp(r’ Xr ;S,y)”d?“.

N
Using Proposition 6.9 and the intermediate result gives

K(T)(T—-t) 1 z—y2\ [T 1
1
|Eyp| < C N -1 exp [ —c /t (7617'.

Hence, E9o satisfies P.

e On [t+ 25, 5], we use the integration by part formula (8.9) of Proposition 8.12, with
laf =

d s

T
d’r/ Et,x[axip(ra X7]‘V’S7y)HéJk]du’
©

—t
igk=17 5 (r)

where Héjk = Hejk([(aa*)(go(r),Xg(r))(vgcaij(u, X))k, XN), and ey, is a vector
full of zeros except the j-th and the k-th components. Using Holder’s inequality and
(8.10) (remember that o € C;’S), we obtain

T—t [° 1 _d_
E3 < CK(T)—+— By [|0sp(r, XN 5,y)| S |7 dr (8.21)
By applying (8.20), we get
T—t 1 —yl? s 1
E222 < CK(T) s— exp <—CM> / —dr,
N 1+L s—1 s—t +
(5 _ t) 2(d+1) 425 (5 — 7”) 2d+2

and the result follows.
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Solving a BSDE with adaptive
control variates

89






91

This part is devoted to the study of a numerical algorithm solving backward stochastic
differential equations (BSDEs for short) of the following type

5 { —dY; = [(t, X, Ys, Ze)dt — ZedWy, Y = ®(Xp), (8.22)

Xe=a+ [1b(s, X)ds + [} o(s, X)dWs.

Several algorithms for solving BSDEs can be found in the literature. Let us list them
chronologically.
In 1994, Ma, Protter, and Yong [74] present an algorithm, called the four step scheme,
which solves a class of more general BSDEs, general in the sense that b and o, the
coefficients of the diffusion, may depend on y and z. In fact, they solve the associated
quasilinear PDE through a finite difference approximation. However, such an algorithm
cannot run well in high dimensions. Moreover, they assume restrictive hypotheses on the
coeflicients.
In 1997, Chevance [21] suggests a method based on random quantization techniques. The
author gives an upper bound for Y under strong regularity hypotheses for f and ®. The
error on Z is not presented.
In 2001, Briand, Delyon, and Mémin [17] provide a numerical scheme for BSDEs based
on the approximation of the Brownian motion using a summation of Bernoulli random
variables. This numerical scheme can easily be implemented. The authors have proved
the convergence of their scheme, but no rate of convergence is given.
In 2003, Bally and Pages [6] present an algorithm for solving reflected BSDEs by using
quantization techniques. The authors replace the process X by a Markov chain with
finite state space, which are the points of an optimal quantization grid. Once they have
computed the transition probabilities on this grid, they easily implement a dynamic
programming equation to solve the reflected BSDE.
In 2004, Delarue and Menozzi [24] provide a method for solving FBSDEs
(Forward-Backward SDEs), based on quantization techniques and deterministic grids.
In 2004, Bouchard and Touzi [15] discretize the above BSDE w.r.t. the time and get a
dynamic programming equation. They compute the conditional expectations appearing
in the dynamic programming equation by using Malliavin calculus techniques. The
authors analyse the error on Y but not on Z. Besides, the numerical scheme seems to be
hard to implement and computationally demanding.
In 2005, Gobet, Lemor, and Warin [45] propose a scheme based on iterative regression
functions which are approximated by projections on vector spaces of functions, with
coefficients evaluated with Monte Carlo simulations.
In 2007, Bender and Denk [11] propose a forward scheme which avoids nesting of
conditional expectations backwards through the time steps. Instead, it mimics the
Picard type iteration for BSDEs and, consequently, has nestings of conditional
expectations along the iterations. This work has some connections with our approach
but it does not handle the issue of error analysis for conditional expectations. The
authors use the regression based on least squares Monte Carlo method to approximate
the conditional expectation, as it was suggested in Gobet et al. [45].

This part is organised as follows. In Chapter 9, we set up the framework and recall
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standard results on BSDEs. We also describe our algorithm based on a sequential Monte
Carlo technique and on a Picard’s iterations method. The algorithm also requires an
estimator which computes pointwise the value of a function from its values at some points
of a fixed grid. After having introduced the regression analysis in Chapter 10, based on
the books of Gyorfi et al. [47] and Hérdle [50], we present in Chapter 11 a non parametric
regression technique : the kernel estimate, which enables to build the estimator P,, (see
Section 11.3). In Chapter 12, we state some properties on the convergence of the estimator
Pp. Section 12.3 and Section 12.4 deal with the convergence rate of P,v—v and 9, (P,v) —
0,v, where v is a C1? function. In Chapter 13, we state the main convergence result of
our algorithm. Chapter 14 is devoted to establish technical results needed to prove the
result on the convergence of our algorithm announced in Chapter 13. Finally, we present
in Chapter 15 numerical experiments based on financial issues.



Chapter 9

Framework and Hypotheses

9.1 Statement of the problem

Let (Q2, F,P) be a given probability space on which is defined a g-dimensional standard
Brownian motion W, whose natural filtration, augmented with P-null sets, is denoted
(Fi)o<t<r (T is a fixed terminal time). We aim at numerically approximating the solution
(Y, Z) of the following forward backward stochastic differential equation (FBSDE) with
fixed terminal time T

- d}/t = f(taXt; }/t’ Zt)dt - thWt7 YT = (P(XT)7 (91)

where f:[0,7] x RY x R x RY — R, X is the R%valued process solution of
t t
X, =2 +/ b(s, X.)ds + / o (s, X.)dWs, 9.2)
0 0

b:[0,7T] xR — R? and o : [0,T] x R? — R4, The main focus of this work is to
provide and analyse an algorithm, based on a Monte Carlo method, which approximates
the solution (Y, Z) of (9.1). Section 9.3 page 95 presents some results on BSDEs stated by
Pardoux and Peng [81] and El Karoui et al. [27]. In Section 9.4, page 96, we recall several
results linking FBSDEs and partial differential equations (PDEs in short) and stated by
Pardoux and Peng [82], Ma et al. [74] and Delarue and Menozzi [24]. More precisely, we
link (Y, Z) the solution of the above BSDE to u, the solution of the following PDE :

() Ou(t,x) + Lu(t,x) + f(t,z,u(t, ), (Oyuo)(t,z)) =0,
uw(T,x) = ®(x),

where L is defined by

1
Liapult,z) = 5 > loo™)ij(t, 2)03, ult, x) + Y bilt, 2)0wult, ).

i?j
According to these results, we get u € C’; 2 and

vt € [OaT]v (Y}/, Zt) = (u(taXt)7axu(taXt)U(taXt))'

93
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In Section 9.5, we briefly recall a variance reduction technique useful in the description
of our algorithm: the adaptive control variate method. In Section 9.6, page 103, we
describe our algorithm, which builds uy, an approximation of u, and deduces (Y%, Z¥),
the approximation of (Y, Z) by using the following formula

vt e [0,T], V¥ = up(t, X)), ZF = opup(t, XN)o(t, X}V,

where X% is an approximation of X. More precisely, we build u; recursively in the
following way

Uk(t, l’) = ,Pﬁ(ukfl +@k)(t7$)7

where Wy, (, ) is given by (9.13), page 104 and P is a kernel estimator described in Section
11.3, page 119.

9.2 Notations
e Elements of R? are encoded as row vectors and | - | is the Euclidean norm on R
° C]’; denotes the set of C*¥~1 functions whose k-th derivative is piecewise continuous.

o Let Cﬁb(RP,Rq) be the set of C*¥ functions from RP to RY with continuous and
uniformly bounded derivatives up to order k. The functions themselves don’t need
to be bounded.

o Let C’f’l be the set of continuously differentiable functions ¢ : (¢,z) € [0,T] x R?
with continuous and uniformly bounded derivatives w.r.t. ¢ (resp. w.r.t. x) up to
order k (resp. up to order [).

e L?(RY) denotes the set of the g-dimensional random variables which are F; measur-
able and square integrable. For ¢ = 1, we also use the notation L2.

e HZ(RY) denotes the set of the predictable processes ¢ : Q x [0,T] — R? (as row
vectors) such that E fOT |p¢|?dt is finite. For ¢ = 1, we also use the notation H2..

o Let > 0and & € H2(RY), [|¢]5 denotes E [ e|¢y[2dt. HZ 4(RY) = {¢ € HE(RY) :
I[1% < oo}

e Let X be a solution of (9.2), g1 : [0,7] x R? — R, and g : R? — R. We introduce
\I/(tmql(sv ')792(')? X(IE)) = gQ(X%$) + ftT gl(st?I)ds‘

e K(T) denotes a generic function non decreasing in 7.

e If f is a Lipschitz function, L; denotes its Lipschitz constant.
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9.3 Results on general BSDEs

This part is devoted to recall some standard results on general BSDE of the following
type

~dY, = f(s,Ys, Zs)ds — ZdWs, Yr=¢ (9.3)

where ¢ is an Fp measurable random variable and f: Q x RT x RxR? — R is P B® B?
measurable. f is called the driver of the BSDE. We say that (f,¢) are standard parameters
if £ belongs to L2T, if f(-,0,0) belongs to H% and if f is uniformly Lipschitz in the sense
of there exists C' > 0 s.t.

V(y1,y2, 21, 22), |flw.t,y1,21) — flw,t,y2, 22)| < C(lyr — y2| + |21 — 22]), dP x dt a.e.
From Pardoux and Peng [81] and El Karoui et al. [27], we have

Theorem 9.1. Let (f,£) be standard parameters, there exists a unique couple of processes
(Y, Z) € H2 x HA(RY) which solves (9.3).

A proof can be found in the paper of Pardoux and Peng [81]. A shorter proof using a
priori estimates has been done by El Karoui et al. [27], page 20.

Proposition 9.2 (A Priori Estimates, El Karoui et al. [27], Proposition 2.1). Let
((f%,€9;i = 1,2) be two standard parameters of the BSDE and ((Y?, Z%);i = 1,2) be two
square integrable solutions. Let Ly be a Lipschitz constant for I, and put 0Y; = Y,;' —Y?
and Safy = fH(t, Y2, Z2) — f2(t, Y2, Z2). For any (A, u, ) such that u > 0,2\*> > Ly, and
B> Ls(2+ N\) + u?, it follows that

1
lov3 < T [eﬂTWYT!Q) s kuz} ,

A2 1
§Z|% < —=— [eﬁT]E §Yr?) + — ||6af 2].
1625 N1, ([6Y7]%) 2 10215

For a proof of this Proposition, see El Karoui et al. [27], page 18. From this proof, we
derive that the Picard iterative sequence converges almost surely to the solution of the
BSDE.

Corollary 9.3 (Corollary 2.1, El Karoui et al. [27]). Let 8 be such that 2(1 + T)L; <
B, where Ly defines the Lipschitz constant of f. Let (Yk,Zk) be the sequence defined
recursively by (Yo =0, Zo = 0) and

LAV P TR, 26— (Y aw, TR — ¢
Then, the sequence (Y*, Z%) converges to (Y, Z), dP x dt a.s. (and in H%’ﬁ(R) X ]H[%ﬂ(Rq))
as k goes to +o0.
We refer to El Karoui et al. [27], page 21 for a proof of the previous Corollary.

Remark 9.4. FBSDEs introduced before are in a quite complex way examples of BSDEs
parametrised by the initial condition x of the forward SDE (9.2). The parametrised gener-
ator is given here by f(t, X{’(w),y, z) and the terminal condition by {(w) = ®(XF(w)). We
refer to El Karoui et al. [27], Section2.4, for a study of BSDEs depending on parameters.
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9.4 Connection between FBSDEs and Partial Differential
Equations

In this section, we study the relation between forward backward equations and partial
differential equations (PDEs). First, we give a generalisation of the Feynman-Kac formula
to semilinear parabolic PDEs, as stated by Pardoux and Peng [82]. Then, we recall that
under smoothness conditions the function u(t,x) := Yf’z is in some sense a solution of a
PDE (see also Pardoux and Peng [82]). Finally, we deal with some more general FBSDEs,
in which the coefficients of the diffusion b and ¢ may depend on Y and Z. These FBSDEsS,
introduced by Antonelli [1] and then by Ma et al. [74], provide an extension of the Feynman-
Kac representation to a certain class of quasilinear parabolic PDEs. We remind a result
stated by Delarue and Menozzi [24].

9.4.1 FBSDEs ans semilinear parabolic differential equations

We aim at explaining the link between the following semilinear parabolic differential
equation :

(&) Owu(t, ) + Lu(t,z) + f(t, z,u(t,x), (Opuo)(t,z)) =0,
u(T,x) = &(x),

where u : Ry x R — R and

1
E(t,x)u(tu $) = 5 Z[UU*]ij (ta SU)aimJU(t, Jj) + Z bl(ta x)@zlu(t, CC),
2,J %

and the decoupled FBSDE

(Eo) Vset,T), Xe® =a+ [ bu, X" du + [ o(u, Xi")dW,,
VN YE = o(xE) + [T fu, X5 YT, 25 du — [T ZEaw,.

The following result has been stated by Peng [84] (see also Pardoux and Peng [82],
Theorem 3.1, or El Karoui et al. [27], Proposition 4.3). This is a generalisation of the
Feynman-Kac formula to semi-linear parabolic PDEs.

Theorem 9.5 (Pardoux and Peng [82], Theorem 3.1). Ifu € C%2([0,T] x R?) solves (&),
then ¥(t,x) € [0,T] x RY, u(t,z) = Y;"*, where {(Y&™, ZE%)t < s < T}i>0.crd 05 the
unique solution of the FBSDE (Ey). Furthermore, we have

Vs € [t,T], (YE*, ZL%) = (u(s, X1), 0pu(s, X2¥)o (s, X17)). (9.4)

Conversely, Pardoux and Peng [82] have proved that when b, 0, f and ® are globally
Lipschitz continuous w.r.t. (x,y,z) and uniformly in ¢ (for f), the FBSDE (Ej) provides
the unique viscosity solution of the semilinear parabolic PDE (&)). We also refer to El
Karoui et al. [27], Theorem 4.2 for a proof of this result. First, let us remind the definition
of a viscosity solution.
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Definition 9.6 (Viscosity solution). Let v € C([0,T] x RY) satisfying Vo € R, v(T, z) =
®(x). v is said to be a viscosity sub-solution (resp. super-solution) of equation (&)
if for any (t,x) € [0,7] x R? and ¢ € C%2(]0,T] x R?) such that ¢(¢,z) = v(t,z) on
{(t,z) : (t,x) is a minimum (resp. maximum) of (¢ —v)},

dp(t, ) + Lo(t, x) + f(t, 2,0t 2), (Oupo)(t, x)) = 0
(resp. Orp(t,x) + Lo(t,z) + f(t,z, o(t,x), (Oppo)(t,x)) < 0).

v is said to be a viscosity solution of (&) if it is both a viscosity sub- and super-solution

of (50)

Theorem 9.7 (Pardoux and Peng [82], Theorem 4.3). Assume b,o, f and ® are globally
Lipschitz continuous w.r.t. (z,y,z) uniformly in t (for f). The function u(t,x) := Ytt’x is
the unique viscosity solution of the backward parabolic PDE (&).

Under stronger hypotheses on b, o, f and ®, we can show that u(t, x) := Ytt’x solves PDE
(&) in the classic sense. We recall the following result, stated by Pardoux and Peng [82]
(see also El Karoui et al. [27], Proposition 4.4).

Theorem 9.8 (Pardoux and Peng [82], Theorem 3.2). Assume b,o, f and ® are C’l?jb.
Then, u(t,z) == Y;"" belongs to CY2([0,T] x R?) and solves the PDE (&).

Remark 9.9. From the beginning of this Chapter, we have assumed that Y is a one
dimensional process. The previous theorem is true even if Y is a p-dimensional process,
p > 1, whereas Theorem 9.7 holds true when p = 1.

9.4.2 FBSDEs and quasilinear parabolic differential equations

Here, we consider more general FBSDEs, in which the coefficients b and o, appearing
in (9.2), may depend on Y and Z. For a given d € N*, we consider the functions b :
0,T] xRIxRx R - R f:]0,T] xR xR xRY = R%, 5 : [0,7] x R x R — RI¥4,
® : R — R. Analogously to (£) and (Ep), we define

Opu(t, z) + (b(t, z,u(t, x), Ozu(t, x)o(t, x,u(t, x))), Oyu(t, z))
+%tr(a(t,x, u(t,x))@%xu(t,x))

+f(t, z,u(t, x), (Opu(t,x)o)(t, z,u(t,x))) = 0,

U(va) = CI)(x)a

(&)

with a(t, z,y) = (c0*)(t,z,y), (z,y) € RY x R, and the FBSDE

(5D Vselt,T), X =a+ [7b(u, X%, Yu®, Z%)du + [ o(u, X5", Y™ )dW,,
VYT = RO+ [ XY, 20 ) du— [ 25 AW

Ma et al. [74], Pardoux and Tang [83] and Delarue [23] have investigated in detail the link
between (£)) and (E(). We recall some results coming from Ma et al. [74] and Delarue
and Menozzi [24].

Hypothesis 9.1
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1. The functions b,o, f and ® are C? functions with first order derivatives in x,y,z
being bounded by some constant L > 0.

2. The function o satisfies
o(t,z,y)o*(t,z,y) > v(jyDI, V (t,z,y) € [0,T] x R x R,
for some positive continuous function v(-).

3. There exist a function A\ and two constants C > 0 and o € (0,1), such that ® is
bounded in C*+*(RY), and for all (t,x,y,z) € [0,T] x R? x R x R,
lo(t,z,y) + f(t,2,0,2)| < C,
[b(t, 2, y,0)] < A(y)-

Proposition 9.10 (Ma et al. [74], Proposition 3.1). Assume Hypothesis 9.1. Then,
the PDE (&)) admits a wunique classical solution wu(t,z), which is bounded and
Ou(t, ), Opu(t, ) and 2, u(t,z) are bounded as well.

Theorem 9.11 (Ma et al. [74], Theorem 4.1). Assume Hypothesis 9.1. Then, the forward
backward SDE (Ej) admits a unique adapted solution (X,Y,Z) where

YT = u(s, X0T), 257 = Oguls, X")o (s, X0, uls, X07)), (9-5)
with u(t, x) being the solution of PDE (€]).
Remark 9.12. Ma et al. [74] have studied a more general FBSDE, in the sense that the
backward equation of (E}) they consider is Yo" = ®(X27) + fsT flu, XG° Yo Z2%)du —
fST 6 (u, X5°, Yib" Z5"YdW,, where & satisfies Ma et al. [74], Hypothesis A.3. Proposition
9.10 and Theorem 9.11 are also valid when the backward equation of (E) is Yt =
XY + [T flu, X V", 2 du — [T 6(u, X0, Y™, Z55)dW,.

Under Hypothesis 9.2 below, Delarue and Menozzi [24] state in Theorem 2.1 that the
PDE (&) admits a unique strong solution, whose partial derivatives of order one in ¢ and
one and two in x are bounded on the whole domain by known parameters.

Hypothesis 9.2 b, 0, f and ® are bounded in space and have at most linear growth in the
other variables, are uniformly Lipschitz continuous w.r.t. all the variables. o is uniformly
elliptic and ® is bounded in C*+*(R%).

Theorem 9.13 (Delarue and Menozzi [24]). Assume Hypothesis 9.2. Then, (E}) admits
a solution w € CY2([0,T] x RY,R) and there exists a constant C, only depending on T and
on known parameters deriving from Hypothesis 9.2, such that ¥ (t,x) € [0,T] x R,

[ult, )| + [Ozu(t, )| + 07, u(t, )| +Ou(t, @)

+ sup  [|t— |72 |0sult, x) — Bpu(t, )] < C.
t'€[0,T),t#£t

Moreover, u is unique in the class of functions i € C([0,T] x R4, R) N C12([0, T[xR%, R)
which satisfy sup g)cpo,rixre ([U(t; )| + |050(t, z)[) < +oo.

From Ma et al. [74], Pardoux and Tang [83] and Delarue [23], Delarue and Menozzi [24]
deduce that the relationship between (£)) and (E{) can be summed up as in (9.5).
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9.4.3 Application to our problem

We recall that our goal is to provide an algorithm to approximate (Y, Z), the solution

of the FBSDE
—dY; = f(t, X1, Vi, Zp)dt — Z,dW,,

(E){§ Yr =®(Xp),
Xe=x+ fot b(s, Xs)ds + f(f o(s, Xs)dWs,

We introduce the following semi-linear PDE

() ou(t, ) + Lu(t,z) + f(t,z,u(t,x), (Oyuo)(t,z)) =0,
u(T,z) = ®(z),

First, we state some hypotheses.

Hypothesis 9.3 The driver f satisfies for allt € [0,T] and for all (x1,y1,21), (2, Y2, 22) €
R? x R x R4*4,

|f(t, 21,91, 21) — f(t, 22,92, 22)| < Ly(|w1 — 22| + [y1 — yo| + |21 — 22|).

Hypothesis 9.4 o and b satisfy the following conditions

Vt € [0,T] and Va,y € RY, |o(t,z) — o(t,y)| + |b(t,z) — b(t,y)| < C(jz —y|).

Hypothesis 9.5 The functions b, o, f and ® are bounded in x, f satisfies Hypothesis 9.3
and o and b satisfy Hypothesis 9.4. @ is of class CI?JFO‘, a €]0,1] and o is uniformly elliptic.

The following Theorem is an easy consequence of Theorem 9.13

Theorem 9.14. Assume b,o and f are Lipschitz functions in all their variables and
bounded. We also assume o is uniformly elliptic and ® is of class C,?Jra, a €]0,1]. Then,
the solution u of PDE (£) belongs to 02’2. Furthermore, (Y:, Zt)o<t<T solution of (E)
satisfies

vt e [OvTL (Y;fa Zt) - (u(ta Xt)vazu(tht)U(tht))' (9'6)

9.5 Sequential Monte Carlo and Variance Reduction Tech-
niques

We are often interested in computing p = E(X ), where X is a random variable. In many
cases we are not able to compute p exactly. To overcome this problem we can use Monte
Carlo methods. The first idea to approximate y consists of computing X,, = %Z?:l X
The Strong Law of Large Numbers and the Central Limit Theorem state that X, converges
almost surely to p with the rate of convergence %, where o2 denotes the relative variance.
One way to improve the rate of convergence is to reduce the value of o2. To do so, we can
use variance reduction techniques like control variate or importance sampling. We refer to
Halton [49] for a survey of the principal techniques used in implementing the Monte Carlo

method and its applications.
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Before introducing adaptive control variate, we recall the control variate technique. The
basic idea of control variate is to write E(X) as

E(X) =E(X - Y) +E(Y),

where E(Y) can be explicitly computed and Var(X — YY) is smaller than Var(X). In the
following part we give the example of a linear adaptive control variate coming from Kim
and Henderson [58] or Glynn and Szechtman [36].

9.5.1 Adaptive control Variate

Let us consider the control variate family (Y'(0);6 € ©), where © is an open set of RP.
We also assume E(Y(0)) =0 for all § € ©. Then, E(X —Y(0)) = p. We aim at finding 6*
which minimises the variance of (X — Y (#)). We restrict the problem by dealing with the
linear case, e.g.

p
Y=Y 6,Ci=0"C,
i=1

where C' is a random variable of R? such that E(C') = 0 and 6 is a deterministic vector of
RP. We approximate p by

n

_ 1 i T i
= 5 (X! =07C)

where (X!, .-+ X") (vesp. (C!,---,C™)) is a sample of size n following the law of X (resp.
(). The strong law of large numbers gives i, 22, 1 and the Central Limit Theorem states

Vil — 1) 2% N0, Var(X — 67C)),

and Var(X — 07C) = E(X — 67C)? — (E(X))2. Since we want to minimise the variance,
we are looking for 6* which cancels the gradient

VgVar(X — #1C) = —2E(XC — CCT¥). (9.7)
If the covariance matrix A = Cov(C, C) is invertible, we get
6* = A71p, (9.8)

where 8 = Cov(X, C) is defined by ; = Cov(X,C;), for i = 1,--- ,p. Since Cov(X,C)
and Cov(C, () are usually unknown, we can estimate 6* with

0, = A B (9.9)

with
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where C,, = % Z?Zl (Y is a vector in RP. From this value of 6,,, we deduce two estimators
of u

n n
A . 1 . 4
~ T - T
Hn = E Z(XZ - anl)a Hp = E Z(XZ - ei—lcz)7
i=1 =1
where 6, 1 is computed using (X1!,---,X*7!) and (C!,.-- ,C"1). [, is an adaptive
estimator of i, whereas fi,, is not. One can show that fi,, satisfies a Central Limit Theorem,

e.g.

Vil — ) 5 N(0,67), (9.10)

n—od

where 62 = Var(X — Y (6*)). Concerning [i,,, we can state the following Theorem

Theorem 9.15. Assume X € L*(R) and C € L4(RP). Then, fi, converges almost surely
to u and

VT, — ) % N(0,6%).

The proof of the previous Theorem is based on the Law of Large Numbers and the
Central Limit Theorem for martingales. We refer to Duflo [25], Chapter 2 or to Hall and
Heyde [48] for more details on martingales theory.

Instead of approximating 0* defined in (9.8) by 6,, defined in (9.9), we can use the Robbins-
Monro algorithm to build 6,

Oni1 = Op — Y F (0, X" C™TYY, (9.11)
where
F(eann+17 CnJrl) — 2(Xn+1cn+1 . Cn+1(0n+1)T0n)7

and ~y, satisfies Y, v, = o0 and >, 72 < oo. This choice for F corresponds to the value
of the gradient we want to cancel in (9.7). Theorem Duflo [25], Theorem 1.4.26 enables
to prove that 6,, constructed with (9.11) converges almost surely to #*. By plugging this
value of 6, in fi,, and 7,, defined above, we also get (9.10) and Theorem 9.15.

More generally, we can use an adaptive control variate algorithm to compute E(f(X)),
where f is a multivariate smooth function. We refer to Maire [75]. The author studies
regular functions f using a Fourier basis on periodised functions, Legendre and Tchebitchev
polynomial bases. He reduces the dimensional effect by computing these approximations
on Korobov-like spaces.

This part has been devoted to adaptive control variate, but we can also make use of
adaptive importance sampling. In Baggerly et al. [4], the authors apply an adaptive
importance sampling for a Markov chain with scoring. They establish conditions for
exponential convergence of learning algorithms for Markov chains with scoring.
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9.5.2 Application to the valuation of E(¥(X,, s > t)|X; = z)

We would like to apply an adaptive control variate method to the numerical valuation
of

E(U(Xs, s > t)| X = ),

where (X;); is solution of an It6 stochastic differential equation and ¥ belongs to a class
of functionals related to Feynman Kac representations.

The Monte Carlo method for SDEs offers a mean of calculating solutions to certain types
of parabolic partial differential equation and so has applications in various fields including
stochastic control, particle physics and econometrics. They are usually used for high di-
mensional problems or when the functionals are complex. Before speaking about an adap-
tive control variate method applied to compute the above expectation, we refer to Newton
[77], where the author develops methods of control variates and importance sampling for
the valuation of expectations of the above type. In both cases, a perfect variate (e.g.
one which is unbiased and has zero variance) is first constructed by means of the Funke-
Shevlyakov-Haussmann integral representation theorem for functionals of It6 processes.
These involve terms which cannot be computed exactly but which can be approximated
to yield unbiased estimators of the desired integrals with reduced variances.

Typically, to evaluate u(0, ) by Monte Carlo means, where u(t, z) = E; »[g(X7)], the cen-
tred perfect control variate is the stochastic integral ¥ = fOT Vau(s, Xs)o(s, Xs)dWs. In
practice, one uses an approximation of V,u and a discretization of the stochastic integral.
An alternative centred control variate is v(0, x) —&—fOT((?t +L)v(s, Xs)ds—v(T, Xr), where v
approximates u. This has been introduced by Gobet and Maire [40] in an alternative way
(adaptive control variate) to solve the Poisson equation with Dirichlet boundary condi-
tions over square domains. By using the Feynman Kac formula, we can write the solution
of the Poisson equation as an expectation of the above type. Thus, this method is based
on Feynman Kac computations of pointwise solutions combined with a global approxima-
tion on Chebyshev polynomials. Pointwise solutions were computed using walk-on-spheres
(WOS) simulations of stopped Brownian motion, which induces a simulation error due to
the absorption layer thickness. The authors have observed a geometric reduction of both
the simulation error and the variance with the number of steps of the algorithm. The
global error is comparable to standard deterministic spectral methods while avoiding the
resolution of a linear system.

In Gobet and Maire [39], the authors generalise their previous work to the computation
of the above expectation where X is a linear Markov process with or without absorb-
ing/reflecting boundary or a jump process. They use an adaptive control variate algorithm
to compute Monte Carlo approximations of solutions of linear partial differential equations,
which are connected through the Feynman Kac formula to linear Markov processes (with
or without absorbing/reflecting boundary) and jump processes. They prove that the bias
and the variance decrease geometrically with the number of steps of their algorithm.
Concerning an adaptive importance sampling method to compute such an expectation, we
refer to Arouna [3]. The author presents an importance sampling scheme based on a para-
metric change of drift which is adaptively selected through a Monte Carlo computation by
using a suitable sequence of approximation (namely, a Robbins Monro type algorithm).
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More precisely, the author aims at computing option prices via Monte Carlo simulations.
By the Girsanov theorem, he introduces a drift term into the expectation defining the
option price. Then, he uses a truncated version of the Robbins Monro algorithm to find
the drift which optimally reduces the variance. The author proves that for a large class
of payoff functions, this version of the Robbins Monro algorithm converges a.s. to the
optimal drift.

9.6 An algorithm for BSDEs

In the previous section we have seen that, under Hypothesis 9.5, solving the FBSDE (E)
boils down to solving PDE (£). Let u denote the solution of the PDE (£) and (Y, Z) the
solution of the FBSDE (F). The algorithm provides an approximation of u (denoted wy,)
and of its gradient d,u (denoted d,uz). To get (Y*, Z¥), the approximation of (Y, Z), we
use the relation (9.6), where the process X has been replaced by XV, the approximation
of X, and u and 0,u have been replaced by u; and J,uy

vt e [0,T), V¥ = wp(t, X)), ZF = opur(t, X))o (t, XN). (9.12)
We approximate the process X by using Euler’s scheme. X ¥ is defined by X(])V =z and

Vs € [07 T]: dXév = b(tp(s),Xﬁs))ds + G(@(S),Xﬁs))dWs,

where ¢(s) = sup{ty : & < s} and {0 = t9p < t1 < --- < ty = T} is a regular
subdivision of the interval [0,7]. The time step is denoted h = % Now, we

describe our algorithm to compute iterative approximations (ug)r>0 of the global
solution u. These approximations rely on the computations of E[¥(g1, g2, X (x))],
where ¢1,g2 depend on &, f and the approximations of wup_; and their
derivatives, at some points (tz,xz)lgign = (tf, fl,“-ar?’d)lgign, and where
U (t,g1(s,-),92(-), X(x)) = gg(XéfC + ft g1(s, X")ds, for some functions g; and gy. We
point out that the choice of these points depends on the iteration. At the end of the

description of the algorithm, we will be able to precise how to choose these points.
Initialisation. We begin with ug = 0.

Iteration k, Step 1. Assume that an approximated solution wuy_; of class C12
is built at stage & — 1, and that we are able to compute Oyup_1,02up_1, Ok 1
at any point (¢,z). Applying Itd’s formula to wp_q yields wg_q1(t,x) =
E[W (¢, — (8 + LN Jug—1(s,-), up—1(T, ), XN (z))], where

1 *
LNu(s, XNy = 3 > lo0*ij(0(s), X2\ 0050, u(s, XX) + Z bi( X)) Ou(s, X2,

i’j

We would like to compute a correction wy = u — up_1 on this approximation. Using It6’s
formula and the PDE (&) yield u(t,xz) = E[¥ (¢, f(s,-,u(s,-), (Ozuo)(s,-)), ®(-), X (x))].
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Then, we get

wi(t, ) =E [@(X5") = up 1 (T, X))
T
+/ £ (s, X5 u(s, XE7), (Opuo) (s, X)) + (0 + LN Yug—1 (s, XD ds|Gr—1
t

Remark 9.16. As we will see in Definition 9.20, Gr_; is the filtration generated by the
set of all random variables used to build ug_1. In the above equation, we compute the
expectation w.r.t. the law of X and X% and not to the law of wj_q, which is Gi_;
measurable.

However, since u is unknown, we are not able to compute wg. We introduce a new
correction term wy, which corresponds to wy after having replaced u by ug_1 in f.

(@) = E [@(XF") = o (T, X7

T
+ / F (5, X5 g1 (5, X27), (Qpup—10) (5, X27)) + (05 + LY Yug1 (s, XV07)ds| Gy
t

We intend to compute a Monte Carlo approximation of wy(t;, ;). Consequently, we
have

M:

[ XNy gy (T, XN (9.13)

m=1

T
+ / f(s,X;”’k’N,uk_l(s,X?’k’N),(8xuk_1a)(s,X§”’k’N))+(at+£N)uk_1(s,X§”’k’N)ds ,
t

using M independent simulations of the paths X™*/ (z). They are also generated inde-
pendently of everything else. To be as clear as possible, we have removed the superscripts
(t,z) from X¥ in the above expectation, but we still deal with processes X starting from
z at time t. XV is the approximation of X when using Euler scheme, i.e. X(])V =z and
for t € [tg, tpa1]

XN = X 4 b, X (= te) + o(ty, X)Wy — W) (9.14)

The above relation enables to easily simulate X”~. The computation of the integral in
(9.13) can be done in several ways

e we can approximate the integral with a Riemann summation,
e or with a trapeze integration method,

e we can also use that for any function fj, ftT fo(u)du = (T —t)E(fo(U)), where U fol-
lows a uniform law on [t, T, i.e. we can approximate E[ f Yids] by Lt M Y.
The first two methods are quite long, because we need to compute the value of uy_; and
its derivatives in several points for each m in {1,---,M}. Since we are interested in
approximating an expectation, the last method is more efficient: for each m, we pick at
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random only one s in [t, 7], and we compute the value of u;_; and its derivatives in
(so, X2®N) . Since we compute an average for m = 1,---, M, this method doesn’t
generate any bias error. However, its variance is bigger than the one we would have
obtained if we had used one of the first two methods.

Iteration k, Step 2. In order to build a global approximation wy based on the values
W (tF, 2¥);, we use kernel functions. We denote by P, the estimator build from kernel
functions. We admit here that P, is C! in time and Cg in space. We refer to Section 11.3,
page 119, for a detailed explanation of the construction of P,. The approximation of a

function v(t, z), denoted P,v(t,x) can be written

rn(t, )
fn(t, x)

Pru(t, z) = 92T A(B) fu(t, x)), (9.15)

where
o ru(t,@) = i Sy K (5 Ko (524)0(T, X3),

o fult) = o S Ko (55 KL (5525),

the points (T}, X;)1<i<n are uniformly distributed on [0, 7] x [~a, a]?,

A(B) = (2a)?,

e and g is such that (see Figure 9.1)

0 ify<0,
9(y) = 1 ify>1, (9.16)
—yt 427 ify e [0,1],

graph of g

Figure 9.1: graph of ¢

for some positive and Cg kernel functions K, K;. The functions K, K; can be chosen
among several kernel functions (see Hardle [50]) like quartic, triweight, or Gaussian kernels.
The study of these kernels is postponed to Chapter 11. Since we want to solve the PDE
on [0,7] x R4, we have to choose the interval [—a, a] large enough.
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Remark 9.17. (t,x) — Puu(t,z) is a 05’2 function, i.e. P,v is a Cb! function and
022 Pnv is piecewise continuous. Then, we can apply It6’s formula to functions defined by
(9.15).

The proof of the convergence of the algorithm has been done using random points
(T3, Xi)1<i<n changing at each iteration. This means that in fact P, should be written
735, where k denotes the rank of the iteration. To be precise, at iteration k, we have

k

Phu(t.) = D TNB) L 0,0) (9.17)

where

SR t—Tk z— XFk

k i 7
ta)=——3 K K, ,
fn( ax) Tlhthd o t< hy > < h, >

and the points (Tik,Xf)lgign are chosen ii.d. and independent from the points
(TF, XF')1<i<n,for k' # k. We compute ug(t, z) using the following formula

up(t, z) = P (up_1 + @) (t, ). (9.18)

This formula enables us to get dyuk(t, ), d2uk(t, z), and dyuk(t,z) by computing the
derivative w.r.t. z,t of P¥(uy_1 +wWg)(t,z). We are now able to precise a little the choice
of the points (TF, X¥); at which W, is to be computed. Looking at (9.18) and (9.17), we
can see that we need the value of u;_1; and wy at (Tf,Xf)l Thus, (tf’,xf)l should be
equal to (TF, XF);.

At this stage, we can proceed to the next iteration. We compute (Y*, Z¥) with the
following relation

vt e [0,T), YF=up(t, X)), ZF=(0,uro)(t, X).

Remark 9.18. We need to build an estimator which is C' in time and Cg in space since
we apply 1t6’s formula to the functions ug, k > 0 (see Iteration k, Step 1), and wuy is built
by using PF (see (9.18)).

Remark 9.19. Since uy is computed using (9.18), uy is a random variable depending on
the points {(TF, X¥)1<i<n} used by P¥, the random variables needed to compute uy_1,
and the processes kaN(a;f), 1 <m < M,1<i<n appearing in the computation of 7.

Definition 9.20 (Definition of the filtration Gi). Let Gy define the filtration generated
by the set of all random variables used to build wuy. Using (9.18), we can write

gk = gk—l \ G(Ak78k)7

where Ay, := {(TF, XF)1<i<n}, the set of random points used at step k to build the
estimator P¥, S = {X™FN(2F)1 < m < M,1 < i < n}, the set of independent
simulations of the paths X™* (2¥) and Gj_; is the filtration generated by the set of all
random variables used to build ug_1.
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9.7 Pros and cons of our algorithm - Comparison with the
other techniques

As we said in the introduction of Part III, there exist several techniques for numerically
solving BSDEs. We can list them into three categories

1. the ones which solve the associated PDE with a finite difference approximation (e.g.
Ma et al. [74]) ,

2. the ones which solve the dynamic programming equation with Monte Carlo methods
VN = o(x}\) and

Y;fiv =y, (Y;tivﬂ) + hEy, f (tk, Xt]Z7 thcvﬂ’ ZtJZ)’
th]Z =K, (YN AW}),

let1

where E; is the conditional expectation w.r.t. 5, and XV satisfies (9.14).
Bouchard and Touzi [15] simulates these equations using Malliavin calculus tech-
niques, while Gobet et al. [45] use empirical regression techniques in the spirit of
Longstaff-Schwartz algorithm for American options.

3. the ones which use a quantization technique (e.g. Chevance [21], Bally and Pages
[6], Delarue and Menozzi [24]) to implement the dynamic programming equation.

Let us present the advantages and drawbacks of the three methods listed above. The

method consisting of solving the associated PDE through a finite difference approximation
doesn’t perform well in high dimension. The quantization technique presented in Delarue
and Menozzi [24] can be used for solving high dimensional problems. However the algo-
rithm provides piecewise constant solutions on cells. The algorithms using Monte Carlo
tools and the above dynamic programming equation provide regular solutions in space for
each time step t;. However, the variance of the solutions are not robust in NV, i.e. their
values blow up when N tends to oco. Bouchard and Touzi [15] compute the conditional
expectations appearing in the dynamic programming equation by using Malliavin calculus
integration by parts. The weights computed with Malliavin calculus require a lot of com-
putational time. These algorithms based on the dynamic programming equation do not
take advantage of the time regularity of the solution, and this is a major difference with
ours.
Our algorithm provides a regular solution in space AND in time. Moreover, we use Monte
Carlo methods which still run well in high dimensions and which are quite accurate here
since we use adaptive control variates. However, the operator P depends on the dimension,
which will probably affects the speed of the algorithm.

9.8 Glimpse of the ingredients for the proof of the conver-
gence

For proving the convergence of the algorithm, we need to bound P, v — v and 9,(P,v) —
0,v in a weighted Sobolev norm HH%E o which depends on 3, appearing in the definition
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of the space H2. 5 introduced in Section 9. The ||-|| 5 norm, associated to this space, enables
to state a priori estimates for BSDEs:

T
2 - 2
lollg = [ [ e (e, X2 Pdnds,

This choice of norm is crucial. This norm also depends on u, a parameter which appears in
the technical PDE results of Part II. Since the building of P, is based on a kernel estimator,
This

the error ||P,v — /UH%IEL,X will be bounded by terms of order h?, h} and §, = m.

result comes from the study of E[% —v(t,x)]?, where ;’;gg corresponds to a standard
kernel estimator (see the beginning of Chapter 11). To bound E[;Zgi; —v(t,x))?, we split

rn(t,z)

it in two terms: the bias error (E[fn(t 2~ v(t,x)])? and the variance error Var(r”(t’x)).

fn(t,z)
The bias error is bounded by terms of order h? and h:. The variance error provides an

Tihg‘ Since Ppv(t, x) corresponds to ;:EZQQQT)\(B)fn(tax))» which

is not an estimator studied in the literature, we detail the computations of ||Pnv — ’U”%{gx
in Chapter 11. 7
Moreover, the HH%IS . horm involves the trajectory of the process X which take values in

error of order ¢, =

R9. Since we numerically choose the points (7}, X;)1<i<n in [0,7T] x [~a,a]?, some errors

linked to the truncation induced by the kernel function appear. They are of order h; and

hyz. They also depend on a, u and 3. We refer to Theorem 12.42 for an overview of the
2

upper bound for [|P,v — UHHZ,X'

The study of ||0z(Ppv) — amuufqu leads to error terms of order hZ, §, = coming

1
nhehdt2?

from E[aﬁ’&(’iﬁ) — d,v(t, z)]2. The truncation error terms are of order }% and %




Chapter 10

Regression Analysis

We refer the reader to Gyorfi et al. [47], Chapter 1 to get a more detailed introduction
on regression analysis, and to Gyorfi et al. [47], Chapter 2 and Hérdle [50] for more details
on non parametric regression.

10.1 Introduction

In regression analysis, one considers a random vector (X,Y’), where X is R%valued and
Y is R-valued, and one is interested in how the value of the so-called response variable Y
depends on the value of the observation vector X. This means that one wants to find a
measurable function f : R? — R, such that f(X) is a “good approximation of Y, that
is, f(X) should be close to Y in some sense, which is equivalent to making |f(X) — Y|
“small”. Since X and Y are random vectors, |f(X) — Y| is random as well, therefore we
introduce the so-called .2 risk or mean squared error of f,

E[f(X) - Y],

and we try to make it as small as possible. So, we are interested in finding a (measurable)
function m* : R¢ — R such that

Elm*(X)-Y|? = min E|f(X)-Y]|%
[m*(X) \ f:%}in—ld& |f(X) \

We can easily check that
m(z) =E(Y|X =x)
minimises the L% risk. m is called the regression function.

Practically, the distribution of (X,Y) (and hence the regression function) is usually
unknown. Therefore it is impossible to predict Y using m(X). But it is often possible
to observe data according to the distribution of (X,Y) and to estimate the regression
function from these data. More precisely, let (X1,Y7),---,(X,,Y,) be iid. random
variables following the law of (X,Y) with EY? < co. Let D,, be the set of data defined
by D, = {(X1,Y1), -+ ,(Xpn,Yn)}. In the regression function estimation one uses the data

109
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D,, to construct an estimate m,, : R* — R of the regression function m.

In general, estimates won’t be equal to the regression function. To compare different
estimates, we need an error criterion to measure the difference between the regression
function and an arbitrary estimate m,,. In the literature, several distinct error criteria are
used, like the pointwise error, the supremum norm error, and the IL? error

| mala) = m(a) P

where the integration is performed w.r.t. the Lebesgue measure, C is a fixed subset of R,
and p > 1 is arbitrary (often p = 2 is used). Recall that the main goal is to find a function
f such that the L2 risk E|f(X) —Y|? is small. The minimal value of this IL? risk is reached
by the regression function m. One can show that the L? risk E[|m,(X) — Y|?|D,] of an
estimate m,, satisfies

E[lmn(X) = Y*| D] = /Rd [ (@) = m(@)]*u(dz) + Elm(X) - Y%,

where 4 denotes the distribution of X. Thus, the L% risk of an estimate m,, is close to the
optimal value if and only if the L? error

/ () — () () (10.1)
Rd

is close to zero. Therefore, we will use the L error (10.1) in order to measure the quality
of an estimate.

10.2 Consistency

Now, we define the modes of convergence of the regression estimates usually used. The
first and weakest property an estimate should satisfy is the following: as the sample
size grows, the estimator should converge to the estimated quantity, i.e., the error of the
estimate should converge to zero for a sample size tending to infinity. Such estimates
are called consistent. To measure the error of a regression estimate, we use the L2 error
defined in (10.1).

The estimate m,, depends on the data D,,, so the L2 error (10.1) is a random variable. We
are interested in the convergence in mean of this random variable to zero as well as in the
almost sure convergence of this random variable to zero.

Definition 10.1. A sequence of regression function estimates {my} is called strongly
consistent for a certain distribution of (X,Y), if

lim [ (my(x) — m(z))?u(dz) = 0, with probability one.
n—oo
A regression function estimate may be consistent for a certain class of distributions
of (X,Y), but not consistent for others. It is clearly desirable to have estimates that
are consistent for a large class of distributions. We are interested in distribution-free or
universal properties of m,. The concept of universal consistency is important in non
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parametric regression because the mere use of a non parametric estimate is normally a
consequence of a partial or total lack of information about the distribution of (X,Y).
Since in many situations we do not have any prior information about the distribution,
it is essential to have estimates that perform well for all distributions. This very strong
requirement of universal goodness is formulated as follows

Definition 10.2. A sequence of regression function estimates {my,} is called weakly
universally consistent (resp. strongly universally consistent) if it is weakly (resp.
strongly) consistent for all distributions of (X,Y) with E(Y?) < oco.

10.3 Rate of convergence

If an estimate is universally consistent, then the L? error of the estimate converges to
zero for a sample size tending to infinity, regardless of the true underlying distribution of
(X,Y). But this says nothing about how fast this happens. Clearly, it is desirable to have
estimates for which the L2 error converges to zero as fast as possible.

To study the rate of convergence of an estimate m,, we look at the expectation of the L2
error

E / () — (@) Pp(dz). (10.2)

A natural question to ask is whether there exist estimates for which (10.2) converges to zero
at some fixed, nontrivial rate for all distributions of (X,Y"). Unfortunately, such estimates
do not exist, i.e., for any estimate the rate of convergence may be arbitrarily slow. In
order to get nontrivial rates of convergence, one has to restrict the class of distributions,
e.g., by imposing some smoothness assumptions on the regression function.

10.4 Parametric Estimation

The classical approach for estimating a regression function is the so-called parametric
regression function. Here, one assumes that the structure of the regression function is
known and depends only on finitely many parameters, and one uses the data to estimate
the (unknown) values of these parameters.

The linear regression estimate is an example of such an estimate. In linear regression,
one assumes that the regression function is a linear combination of the components of

= (z', - 2%, ie.

d
m(zt, - x?) :ao—l—Zaixi (zt,---, 2% e RY)
i=1

for some unknown ag, - -+ ,aq € R. Then, one uses the data to estimate these parameters,
e.g., by applying the least square principle, where one chooses the coefficients ag, - - - , aq
of the linear function such that it best fits the given data:

n 2

1
(&07"' >&d) = argmin 72

ao,~~-,ad€Rd n ]:1

d
Yi—a0 =3 ai;
=1
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Here X; denotes the i-th component of X;. Finally, one defines the estimate by

1 () = g + Za:v (z', -, 2% e RY).

Parametric estimates usually depend on few parameters, therefore they are suitable even
for small sample sizes n, if the parametric model is appropriately chosen. Furthermore,
they are often easy to interpret. For instance, in a linear model, the absolute value of the
coefficient a; indicates how much the i-th component of X affects the value of Y, and the
sign of a; describes the nature of the influence (increases or decreases the value of Y).
However, parametric estimates have a big drawback. Regardless of the data, a parametric
estimate cannot approximate the regression function better than the best function which
has the assumed parametric structure. For example, a linear regression estimate will
produce a large error for every sample size, if the true underlying regression function is
not linear and cannot be well approximated by linear functions.

For univariate X, one can often use a plot of the data to choose a proper parametric
estimate. For multivariate X, there is no easy way to visualise the data. Thus, especially
for multivariate X, it is not clear how to choose a proper form of a parametric estimate,
and a wrong form will undoubtedly lead to a bad estimate. This inflexibility concerning
the structure of the regression function is avoided by so-called non parametric regression
estimates.

10.5 Non parametric Regression

In this section, we describe four paradigms of nonparametric regression : local averag-
ing, local modelling, global modelling (or least square estimation) and penalised
modelling. Recall that the data can be written as

Y;:'m(Xi)—i—ei, i:1,--~,n.

where ¢; = Y; — m(X;) satisfies E(ei‘Xi) = (. Thus, Y; can be considered as the sum of the
value of the regression function at X; and some error €; where the expected value of the
error is zero. This motivates the construction of the estimates by local averaging, i.e.
estimation of m(z) by the average of those Y; where X; is “close” to z. Such an estimate
can be written as

mp(z) =Y Wai(z) - Vi,
i=1

where the weights W), ;(z) = W, i(z, X1, -+ , X)) € R depend on X7, -, X,,. Usually the
weights are nonnegative and W, ;(z) is “small” if X; is “far” from x.

An example of such an estimate is the partitioning estimate. Here, one chooses a finite or
countably infinite partition P, = {4, 1, An2,--- } of R? consisting of Boole sets Ap; C RA
and defines, for x € A, ;, the estimate by averaging Y;’s when the corresponding X;’s is
in An,jv i.e.

n
Yicq Ixiea, ;Y
>l

i=1 +X;€AL ;

mp(x) = for x € Ay, ;.
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1x,ea, ;

where 14 is the indicator function of the A set, so W, ;(x) = DD
=1 i n,j

,forxz e A, ;.

We use the convention % = 0.
The second example of a local averaging estimate is the Nadaraya- Watson estimate. Let
K : RY = R, be a so-called kernel function, and let 2 > 0 be a given bandwidth. The
kernel estimate is defined by

S K (255 v,

my(x) = (10.3)
2im K (Iith)
K(thXi
so Wy i(x) = m If one uses the naive kernel K (x) = 1j,<1, then
=1 0
ie1 Lo x,<nYi
() = 2=t Moz (10.4)

n bl
> ic1 La—x;1<h

i.e. one estimates m(x) by averaging Y;’s such that the distance between X; and x is not
greater than h. Fore more general K : R? — R, one uses a weighted average of the Yj,
where the weight of Y; depends on the distance between X; and x.

The kernel estimate (10.3) can be considered as locally fitting a constant to the data. In
fact, it is easy to see ( Gyorfi et al. [47], Problem 2.2, page 29) that one has

1 — r—X;
my(x) = arg min — K Z) Y; — ¢).
(o) = emmin S 1 (T ) (-

A generalisation of this leads to the local modelling paradigm: instead of locally fitting
a constant to the data, one locally fits a more general function which depends on several
parameters. Let g(-, {ag}i_;) : R? — R be a function depending on the parameters
{ak}zzl. For each x € R%, choose the values of these parameters by a local least square
criterion

N o1 " r— X;

{ak(2) oy = argmin ~ 3 K ( ) (¥; - 9(Xi, {ar}ien)-

1 M4 h
{ak}k:1 =1

Evaluate the function g for these parameters at the point  and use this as an estimate of

m(z):

mn(2) = g(z, {aK ()} o).

The most popular example of a local modelling estimate is the local polynomial kernel
estimate. Here, one locally fits a polynomial to the data. For example, for d = 1, X is
real-valued and g(z, {ax(2)},_,) = 2221 aprh1t,

A generalisation of the partitioning estimate leads to global modelling or least square
estimates. Let P, = {A,1,A4n2, -} be a partition of R and let G,, be the set of all
piecewise constant functions with respect to the partition, i.e.,

Gn =< ajla,, :a;€Ry. (10.5)
J
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Then, it is easy to see (Gyorfi et al. [47], Problem 2.3 page 29) that the partitioning
estimate (10.4) satisfies

() = argmin{lzf(Xi) —YZ-\Q}. (10.6)
fegn Mo

Hence, it minimises the empirical £2 risk
1 n
— Y 1) = Yif? (10.7)
=1

over G,. Least square estimates are defined by minimising the empirical L.? risk over a
general set of functions G, (instead of (10.5)). Observe that it doesn’t make sense to
minimise (10.7) over all (measurable) functions f, because this may lead to a function
which interpolates the data and hence is not a reasonable estimate. Thus, one has to
restrict the set of functions over which one minimises the empirical L.? risk. Examples of
possible choices for the set G, are sets of piecewise polynomials w.r.t. a partition P, or
sets of smooth piecewise polynomials (splines). The use of spline spaces ensures that the
estimate is a smooth function.

Instead of restricting the set of functions over which one minimises, one can also add a
penalty term to the functional to be minimised. Let J,(f) > 0 be a term penalising the
“roughness” of a function f. The penalised modelling or penalised least square
estimate m,, is defined by

mn :arg;nin{iZU(Xi) _E|2+Jn(f)}7 (108)
=1

where one minimises over all measurable functions f. A popular choice for J,(f) in the
case d =1 is

Jdﬁzkg/vﬂm%a

where )\, is some positive constant.

10.6 Bias-Variance Tradeoff

Let m,, be an arbitrary estimate. For any z € R?, we can write the expected error of
m, at x as

El[mn(x) — m(x)*] = Ellmn(z) — Elma(@)]] + [E[ma(2)] — m(z)[?
= Var(my,(z)) + |Bias(m,(x))|*.

This also leads to a similar decomposition of the following L.? norm
B[ [ mo(w) ~ m(a)u(de) = [ Ellma(x) ~ m(o)Plu(do)
= /Var(mn(a?)),u(dx) + / |Bias(my, (z))|*u(dx).
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The importance of these decompositions is that the integrated variance and the integrated
squared bias depend in opposite ways on the wiggliness of an estimate. If one increases the
wiggliness of an estimate, then usually the integrated bias will decrease, but the integrated
variance will increase (so-called bias-variance tradeoff). For the naive kernel (10.4) and
under regularity conditions on the underlying distribution, one has

/Var(mn(x))u(dx) = 01# +o <nlhd) , /|Bias(mn(as))\2u(dx) = coh® + o(h?).

Here, h denotes the bandwidth of the kernel estimate which controls the wiggliness of
the estimate, c; is some constant depending on the conditional variance Var(-‘X =),
the regression function is assumed to be Lipschitz continuous and co is some constant
depending on the Lipschitz constant. The value h* of the bandwidth for which the sum of
the integrated variance and the squared bias is minimal depends on ¢; and cy. Since the
underlying distribution, and hence ¢; and cs, are unknown, in applications it is important
to have methods which choose the bandwidth automatically using only the data D,,. Such
methods are described in Gyorfi et al. [47], Part 2.4 page 26.






Chapter 11

Kernel Estimates

The preceding chapter was devoted to introducing the regression method, and particu-
larly the nonparametric regression. We have presented four paradigms of nonparametric
regression. In this chapter, we focus on a local averaging estimate : the Nadaraya-Watson
estimate. The chapter is organised as follows : first, we present different kernel functions.
Then, we state a result on the consistency of kernel estimates and on the rate of conver-
gence for a naive kernel. Finally, we build the estimator P, required by our algorithm
(see 9.15), from the regression function m,, described in the preceding section and give
some properties on Py.

11.1 Introduction
The kernel estimate of a regression function takes the form, for z € R?
Y K (55 Y
S K (55)

The second equality shows that the Nadaraya-Watson estimator can be seen as a weighted

znjwn,i(x)yi. (11.1)
=1

(local) average of the response variables Y; (note 13" W, ;(z) = 1). In fact, the
Nadaraya-Watson estimator shares this weighted local average property with several other
smoothing techniques, e.g. k-nearest neighbour and spline smoothing (see Hérdle [50],
Sections 3.2 and 3.4). Here, the bandwidth h, > 0 depends only on the sample size n,
and the function K : R? — R is called a kernel. See Table 11.1 for some examples.

e Note that the bandwidth h,, determines the degree of smoothness of m,,. To see this,
let h,, go to either extreme. If h, — 0, then W,,; — n if z = X, and is not defined
elsewhere. Hence, at an observation X;, m,(X;) — Y;, i.e. we get an interpolation
of the data. On the other hand, if h, — oo, then W,,; — 1 for all values of z, and
mn(X;) — Y, i.e. the estimator is a constant function that assigns the sample mean
of Y to each x. Choosing h,, such that a good compromise between over and under
smoothing is achieved, is a burning issue.

e If the denominator is equal to zero, the numerator is also equal to zero, and the
estimate is set to zero.

117
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Uniform %1|x|§1
Triangle (1= |z|) 1)<
Epanechnikov | 2(1 — 22)1,<
Quartic 12(1— 2?)*1 511
Triweight %(1 — 9U2) 1|x|§1
Gaussian \/% eXp(—%fL’Q)
Cosinus 7 cos(5x)

Table 11.1: Kernel Functions

e There are applications, especially in biology, where the researcher is able to control
the values that the predictor variable X will take on and Y is the sole random
variable. Hence X will no longer be a random variable, while Y still is. This setup is
usually referred to as the fized design. In that case, the Nadaraya-Watson estimator

employs weights of the form W, ;(z) = W&))’ where 1, the density of the points
(xi)1<i<n is known (it is induced by the researcher). We refer to Gasser and Miiller
[33] and Gasser and Miiller [34] for more details on fixed design model.

We recall that we deal with random design models.

11.2 Consistency

The first result, coming from Hérdle [50], Proposition 3.1.1, states that m,,(z) converges
in probability to m(x).

Proposition 11.1 (Héardle [50], Proposition 3.1.1). Assume the stochastic design model
my, defined in (11.1) with a one-dimensional predictor variable X and

1. [|K(z)|dz < oo,

2. limy oo oK (7) = 0,

3. EY? < o0,

4. n— 00, h, —0, nh, — oo.

Then, at every point of continuity of m(z), u(z) and o?(x), with u(x) > 0,
. P
> Woi@)¥: & m(a).
i=1

The second result, coming from Gyorfi et al. [47], Theorem 5.1 proves the weak universal
consistency of kernel estimates under general conditions on h, and K. The proof uses
Stone’s Theorem (see Gyorfi et al. [47], Theorem 4.1).
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Theorem 11.2 (Gyorfi et al. [47], Theorem 5.1). Assume that there are balls Sy, of radius
r and balls Sy r of radius R centred at the origin (0 <r < R), and a constant b > 0 such
that

bl%GSO,r S K(x) S bleSO’R

(bozed kernel) and consider the kernel estimate my,. If hy, — 0 and nh,, — oo, then the
kernel estimate is weakly universally consistent (see Definition 10.2).

Finally, the following Theorem bounds the rate of convergence of E [ |my(z) —
m(x)|>u(dz) for a naive kernel and a Lipschitz continuous regression function.

Theorem 11.3 (Gyorfi et al. [47], Theorem 5.2). For a kernel estimate with a naive kernel
assume that Var(Y'|X = z) < o2 for allz € RY, |m(z) —m(2)| < Clz—z| for all z,z € RY,
and X has a compact support S*. Then,

2
B [ ha(e) — i) < 67 WP OE | g

where ¢ depends only on the diameter of S* and on d. Thus, for

1
2 2\ d+2
B — (o +SUp;ese [m(2)) ) 7

2
we have

£ [ i (2) = m(o)Pp(de) < (% + sup Im(z)/} 7 Oy,
zZES*

Remark 11.4. Theorem 11.3 only concerns the upper bound E [ |my,(z) — m(z)|?u(dz).
The study of E [ |m/,(z) — m/(x)|?u(dz) has not been done. Moreover, the integral is
computed w.r.t. the measure u(dz), whose support is compact.

11.3 Construction of our estimator

We aim at explaining the construction of our estimator P, (see (9.15), page 105), from
the kernel estimator m,, (see (11.1), page 117),

mp () = Zo <x;j(1) " = zn: Whi(2)Y.

-X;
Z:‘L:IK(xhn ) i=1

We recall that we want to build an estimator which approximates a function v and

its derivatives v,d,v,0%v, v at some point (t,x) € [0,7] x R? while we only know
u(t;, 1) 1 <i<mn,1<j<d. This estimator should consequently be C! in time and C’2
in space. Adding time in the above expression for m,, leads to

2ALICILT e D LR CH.
Z?:thC?HTi)Kw( hz ) " "’

my(t,z) =
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where K; : R — R and K, : RY — Rt. We also choose h; # hy. m, has been
introduced to approximate the unknown function m(z) = E[Y|X = z|, when we only
have at our disposal a finite set of data D,, = {(T1, X1,Y1), -+, (T, Xn, Yy)}.

In our case, we know the relation between T, X and Y since Y = v(T, X) (then, m = v),
when assuming that the statistic error ¢ = 0. However, we only know the value of v at
some points (T}, X;), and we need to quickly compute the value of v,dv,d,v,d%v at
some point (¢,z). That’s why we have chosen to write P,v(t,x) as a weighted linear
combination of v(T;, X;),1 < i < n, where the weights ani(t, x) are easily differentiable.
K+ ;,;>K )
P K () Ka (50)

We choose the same weights as for m,,: W, ;(t,z) = where K; and

K, are Cz positive functions.

Besides that, 7P, should be continuous and differentiable. Therefore, we
multiply > ", W,i(t,z)v(T;, X;) by a regularising function ¢ computed at
2TA(B) i Yy Ko 52K (5254 to get

1 <« t—1T; z—X;
Zwmtx (T3, X;)g <2T)\(B)nhthdZKt< " >Kx< - >>
T =1 *

g(2TA(B) fn(t, x))
fu(t, x)

= rp(t, x)

where

1 < t—T, z—X;
Tn(t7$) - W ZKt < ht > KLI: < h ) v(ﬂaX’i>7

T

-1 - X
f”(t’@:nhthdZKt( hy >K (m h >

Remark 11.5. We compute g at 2T)\(B)%hd S Kt(ﬂ)Kz (‘T*
reason: the function f,(¢,x) converges to TA( 77 When n goes to infinity for ¢ €]0,T[ and

|z;| < a,i=1,---,d. Then, g (ZT)\( )W S K ;;)Kw (%)) converges to 1

Xi) for the following

when n goes to co. Hence, if f,, ~ T}\(B) Ppo(t,x) = ;”Ei Ig which is a standard estimator.

The function g has an impact on P, only when f,, is strictly positive and small (compared
1
TAB) )-

The functions r,, and f, are Cg functions. We choose the following Cz function g,

0 ify<O,
9(y) = 1 ify>1,
i o? ifyelo,1].

We refer to Figure 9.1 for a graph of g. g regularises y ;| Wy, ;(t, z)v(T;, X;) and makes
Pn a C’g function in space and C'' function in time, because

e g makes P,v(t, z) continuous, since contrary to Hérdle [50], page 25 and Gyorfi et al.
[47], page 19, we don’t need specific convention like 8 =0,
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o Ppu(t,x) = rn(t,m)w = 2T\(B)ry(t,x)G(2TAN(B) fn(t,z)), where
— 9y
G(y) == Ty
0 ify<O,
G(y) = 5 ify>1,
—y3+2y ifyelo,1].

(we plot on Figure 11.1 the graph of G).

graph of G

U U U U U U U
-0.2 0.0 02 0.4 0.6 0.8 1.0 12

Figure 11.1: graph of G

Then, G is continuous, G’ is continuous in 1 but not in 0, since G'(0) = 0
and lim\o0G'(y) = 2. 0,,Pnv(t,z) = 2TA(B)0y,rn(t,x)G(TA(B)fn(t,x)) +
(2TN(B))*r,(t, )0y, fn(t, )G (2TN(B) fy(t,)). 7, and f, are C’g functions. Since
G'(2TA(B) fn(t,z)) is discontinuous on {t,z : f,(t,z) = 0}, which is also {t,z :
ra(t,2) =0}, (2TN(B))?rn(t, )0y, fn(t, z)G'(2TN(B) fu(t, z)) is continuous in (¢, ).
Then Vi € {1,---,d}, Oy, (Pnv)(t, z) is continuous. We prove in the same way that
O0¢(Ppv)(t, x) is continuous.

e Since G is continuous, r, and f, are C’g functions and G’, G” are piecewise continu-
ous, V(i,j) € {1,---,d}, 0?x;x;Ppv(t, ) is piecewise continuous.
We summarise this paragraph in the following proposition
Proposition 11.6. The estimator P,v(t, ) of a function v : [0,T] x R* — R defined by

92T A(B) fu(t, ))
RO (11.2)

Pru(t,z) = rp(t, )

where K, and K; are Cg positive functions,

1 < t—T, z—X;
Tn(t7x) = W Z‘I:{t < ht > Kac < h ) U(E,Xi),
T =1 r

1 " t—1T; T — X;
e = () 5 (50),
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and g : R — R such that

0 ify <0,
g(y) = 1 oify>1,
—yt+2y% ify€[0,1],

s a Cg function in space and a C' function in time.

Remark 11.7. We give some useful upper bounds for g and its first derivative. The
function x — @ is bounded by 2, ¢’ is bounded by 2, z —— % is bounded by 4 and
T — % is bounded by 2.

11.4 Property of our estimator

Proposition 11.8. Assume v is bounded by a constant C,. Then, the estimator Ppv
defined by (11.2) satisfies

|Pro(t, )| < Co,

102 (Prv)(t, z)| < CT)‘(B)C”’ht’thrlt'

[ Koo Koo
hihd

9

10,(Pav) (t,2)| < CTA(B)C,

C(TA(B))*

CTX(B)C, Cy
02 Pao)t,0)] = S el 2o + SO EDC G|cf0
ez

- hy hﬁ”

C(TX(B))*C,
o 10 K 2 + e 2 )
t N

where C' is a strictly positive constant.
Proof. Looking at (11.2), we deduce

fu(t; 2)|v]oo
fa(t, )

Since v is bounded by C, and g by 1, we get V(t,z) € [0,T] x RY, |Pv(t,z)| < C,. We
differentiate (11.2) to get

Pro(t, z)| < 92T A(B) fu(t, x)).

g (2T\(B) fn(t,x))
fu(t, )

9(2TA(B) fu(t, x))
fa(t, @)
o SETN B0,

N [t x)

On, (Ppv)(t, ) =0y, (t, x) + 2T A(B)ry(t, x)

Oz, fn(t, @)

Ox, fn(t, ).

As @ is bounded by 2, 8xirn(t,x)w < 4T>\(B)CUM. As ¢

In(t,z) hehdH!
is bounded by 2, the last two terms are bounded by CTA(B)CU%, where C
tily

depends on d, and the second result ensues.
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The same kind of proof yields |9;(P,v)(t,z)| < CTA(B )Cv% The computation
of agixj (Ppv)(t, z) leads to

02,2, (Pav)(t, @) =2TA(B)0Z i (t, ) G(2TN(B) fu(t, 7))
+(2TA(B )) O, (t, 2)G'(2TN(B) fu(t, 7))
+ (2TA(B))*0n,rn(t, 2)G' (2T A(B) fu(t, 7)) 0u, fo t, )
+Tn(tyﬂf)(2T/\( V202, fu (8, 2)G' 2T A(B) fu(t, )
+ 10 (t, ) (2TN(B))0x, fu(t, )0z, fu(t, ) G" (2T A(B) fult, 2)),

8xj fn(tv x)

\_/\_/

where G(y) = %. Analysing each term of the sum yields

CTX C(TX(B))*C,
02(Pun) 1. 0)] < R ORI+ S B 0,
t e

C(TA(B))*Cy

27 2d+2 |Kt|go(|aIKx|go + ‘Kx|oo,a£Kl‘|00)

11.4.1 Application to our algorithm

In our algorithm, we build w in the following way
up(t, z) = PE(up_y +wp)(t, ),

where PF is defined by (11.2) and
m,k, N m,k,N
= Z [ (XmRNY gy (T, XN

T
+ / F (5 K2R g (s, XIRNY, (@ 1) (5, XEEN) ) (0 + LY Yuga (5, XN ) dis
t

Proposition 11.9. Assume f,o,b and ® are bounded. Then, Vk € N, there exists a
constant Cy depending on | floo, |P|oos |T|oos |bloos @, Mty hyy T and all the bounds for K, K,
and their derivatives up to order 1 for K; and 2 for K, such that

V(t,x) € [0,T] x Rd, lug (t, )| + |Opug(t, )| + |Opuk(t, z)| + |3§uk(t,az)| < Ck.  (11.3)

Proof of Proposition 11.9. We do it recursively. For k = 0, (11.3) is true since ug = 0.
Assume (11.3) is true at step k — 1 and let Cx_; denote the constant which bounds uj_1
and its derivatives as in (11.3). Since f, ®,b, 0, up_1, Oup_1, Oxu_1,0>us_1 are bounded,
we get that (ux—1 + wg) (¢, z) is bounded. Using Proposition 11.8 yields the result. O






Chapter 12

Convergence rate of our estimator

This chapter is devoted to study the rate convergence of P,v — v, where P,v is the
estimator of a function v, which has been defined in (9.15), page 105. We recall

rn(S,7)
fn(s,y)

o 7u(s,y) = m >ie Kt(%)Kz(yﬁfi)U(TuXi),

o fuls,9) = mpopr iy Ke(S5) Ka(Y520).

We aim at studying Ppv — v and 9;(P,v) — 0zv, in norm H||H$ N (see the definition of

an(sv y) =

g(2TA(B) fn(s,y)), where

the norm below), where ¢ denote a function from [0,7] into R* such that ¢(s) = <,

where 7 > 0 and « € [0,1[. X is the diffusion process defined in (9.2), page 93 and its
transition density is denoted p. The scheme of the chapter is the following: in Section

12.1, we recall some notations and give new definitions. In Section 12.2, we state some
preliminary results on fy, Oy fn, Tn, Oxrn in L2 norm. Section 12.3 states the convergence
for P,v — v and Section 12.4 states the convergence for 0,(P,v) — 0,v.

12.1 Notations and Assumptions

First, let us recall some Definitions given in Part II.

Definition 12.1 (Definition of K, a1, ag and ellipticity condition). We recall the definition
of some constants used in this Section and introduced in Part II.

1. 0g and o1 denote the constants appearing in Definition 6.2, page 63: ¢ is uniformly
elliptic on [0, 7] x R? if there exist two positive constants o, oy s.t., for any vector
¢ and any (t,7) € [0,T] x R?

d
o0lé]> < Y [o0™i st 2)6i5 < oal¢f.

ij=1

2. K, a1, and as denote the constants introduced in Proposition 6.4, page 63:
Assume that the coefficients a, b are bounded measurable functions of (¢,z) € [0, T] x

125
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R? and that o is elliptic. There exist positive constants K, a1, o s.t.

K1 _lz—y|? 1 __lz—y?
e 2aq (s—t) S p(t,x7 s, y) S K v e 2ag(s—t)

(2mas (s — 1))? (2mas(s — 1))?

The constant K depends only on g, 01,d, T and the suprema of the coefficients a, b,
where a denotes co*. The constants ag, @1 depend on ¢y, o1 and d.

Let us recall the definition of v!(s,y) introduced in Definition 6.11, page 67

Definition 12.2. For any s,t € [0,T] and any z,y € R? such that ¢ < s we define

V(s y) = / e Hlp(t, ; 5, y)da,
Rd
where p is the transition density function of the process X defined by (9.2).
We recall the definition of the norm |-|| HE introduced in Part 1T :

Definition 12.3. For any § > 0, 11 > 0 and any diffusion process (X;)o<s<7 starting from
x at time 0, let H g « define the space of deterministic functions v : [0,7] x R? — R such
that

T
lol2 = / 5 / e~ HIeIE [y (s, X7 Pdids < oo,
sX 0 Rd

. . 2 T
Using the above definition of v, we also get HUHHZX =/ % [ dyr®(s,y)|v(s, y)|>.
We also recall the definition of Hgl’“ introduced at the beginning of in Part II.

Definition 12.4. For any 8 > 0, m < 2, and p > 0, let HE,”’“ define the space of
deterministic functions v : [0, 7] x R? — R such that

ol = /T 55 [[0(5, ) 2y ds = /T eﬂs/ el 3 |oku(s, ) Pdads < oo.
0 0 R f<m
For m = 0, we set H’ﬁ'“ = Hg’“.
In the whole section we consider the following assumption
Hypothesis 12.1

1. The set of points {(T;, X;),1 < i < n} are uniformly distributed on [0,T] x [~a, a]?,
B := By (0,a) = [~a,a]? and \(B) := (2a)%.

2. Kernel function K is defined on the compact support [—1,1], is bounded by |K¢|~o,
is even, positive, Cg and fR Ki(u)du = 1.

3. Kernel function K is defined on the compact support [—1,1]%, is bounded by |Ky|oo,
and is such that

Vy = (yla e )yd) € Rd7 Kx(y) = Hd:lK%(y])7

where forj=1,--- ,d K :R — R is an even positive C’g function and fR K%(u)du =
1.
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4. 6n denotes and TA(B)dy, << 1.

_1
nhihd’

5. hy << a and hy << % Since we study the convergence when hy and hy tend to 0O,
we assume in the following that hy <1 and h;y < 1.

Definition 12.5. Let f denote the uniform density on [0,7] x [~a,a]?. f(s,y) =
1

7aB) Lselo.1LyeB-

12.2 Preliminary Results

First, we recall a well known result really used in the sequel

Lemma 12.6 (Bias-Variance decomposition). Let X be an R? square integrable random
variable

d
EIX[? = [EX|*+ )" VarX;.
=1

Lemma 12.7. Let ¢ : R — R be a bounded function with compact support [—1,1]%, and
h>0. Then, [pa¢ (¥)dx < (Qh)d]¢|
Moreover, if ¢ satisfies fRd w)du =1, fRd (%) dz = h?.

Lemma 12.8. For all (s,y) € [0,T] x RY, we define

C s —T; y—Xi
Sy)—nth< Iy >9m< hy >,
i=1

where g; is a positive bounded function with compact support in [—1,1], g, is a positive

bounded function with compact support in [—1, 1]d, and C is a positive constant.

hshd
0 < E(a(s,y)) < €27 |gi]ocl g2 oo (B)lyeBoo(O,a+hz)'

d
If fR gi(u)du =1 and fRd gz(u)du =1, E(a(s,y)) < C%lyeBm(o,a—s—hz)-

h¢hd

Va’r(a( )) < 022d+1|g |2 |g$ [ee} T)\( )lyeBoo(07a+hx)'

Using TA\(B)d, << 1 yields

h2h2d

E(a®(s,y)) < 0222d+3‘gt‘go‘gx’goleeBm(O,aJrhz)‘

2 2d
If [pge(w)du =1 and [ga go(u)du = 1, (E(a(s,y)))? CZ(T}S\(leGBOO(OaJrhI) and

hiR24
E(a®(s,y)) < C*29%2|4l2 |90 30 rrnrmyye Lye Boo (0,0 ha) -
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Proof of Lemma 12.8. We do the proof for C' = 1.
s—=1T y— X1 1 /T s—r / y—z
E == ]E T == d d x )
(a(s,y)) <gt < W > g < > >> o Jy T\ ) e

and Lemma 12.7 ends the first part of the proof.
1 S—T1 y—X1 1 2 S—T1 2 y—X1
V. = —V. — | 9z <-E .
ar(a(s, y)) = —Var (gt ( D ) g ( W )) = <gt )%\ T

Then, Var(a(s,y)) < ﬁ(m fOT drg? <%) [ dzg? <yh_z) Lemmas 12.7 and 12.6 end the

x

proof. O

Lemma 12.9. For all (s,y) € [0,T] x RY, we define

C <& s—T; y—X;
ag(s,y) = — > ( D )gx ( - ) o(T3, Xi),
i=1 z

where gy is a bounded function with compact support in [—1,1], g, is a bounded function

with compact support in [—1,1]% and ¢ is a continuous function from [0,T] x R? in R.

E(%(Say)) <C (T)\(B))g/o drg; <ht> /deg:r <hm> ¢(r, 2),
2 T _ _
Var(ag(s,y)) < 7ﬂ§®/0 drth <shtr) /degg (thz) ¢2(7‘, z).

Using TA(B)d, << 1 yields

24202, pd (T s—r y—z
E 2 <2 T M= d 2(°2 ° / d 2 (9 = 2 .
(a¢(s,y)) = (T)\(B))2 A T3¢ < h > B 2y hz (b (T7 2)
Proof of Lemma 12.9. We do the proof for C' = 1.
s —1T; - X
Elag(s,9) =B (g (") g0 (£ ) 071, X1)
ht hy
1 T s—r Yy—z
= d dzg, ,2).
g Jy o (57) fye (M) oo
Since g; (resp. g.) has its support in [—1, 1] (resp. [~1,1]%), the first result follows.
s—T - X
Var(ag(s,y)) = Var(gt < » 1> Gz (y W 1) gb(Tl,Xl)).

— T - X
< %E [93 <S I 1) & (y s 1) d’Q(Tl’Xl)} '

The third result comes from Lemma 12.6. O

[

3

Lemma 12.10. Assume that the coefficients o and b are Lipschitz and bounded measurable
functions on [0,T] x R? and that o satisfies the ellipticity condition. Let f be a function
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from [0,T] x R? into RY, g; a positive bounded function with compact support in [—1,1]
and g, a positive bounded function with compact support in [—1,1]%. Then,

T T o _
/ dses / dy(s, y) / drgt<8 ) / a2, <y ) F(r.2) <
0 R‘i 0 ht Rd hw

K(T)hthg /OT red” /Rd dzuo(r, 2)f(r, 2),

where K(T') depends on d, i, |gt|cos |gz|c0, K, 01 and aq.

Proof of Lemma 12.10. Since g; and g, have their support in [—1,1], |s — r| < h; and
ly — 2| < hg, €% < ePMePT we can apply Corollary 6.13, page 68, to get 10(s,y) <
Celithaee2he)0(1 7). We obtain

T T _ _
| s [ s [ drgt(s ) [ 0 (y) fr2) <
0 Rd 0 hy R hy
T T B B
C’ed“hwe(’ngCZ)ht/ drePr dzuo(r,z)f(r,z)/ dsgy ST /dygx y—= .
0 ]Rd 0 ht Rd h;r

Using Lemma 12.7, page 127 yields [pa dyg. (y};z) < (2h2)%ge|so. Since |s — | < hy,
fOT ngt <%) < 2|gt‘ooht Then, we get

T T _ _
[ [ anttan [ (S52) [ o (45) 1
0 R4 0 he R4 ha

T
< C|gt|oo|gm‘oohthg€d#hze(ﬁ+02)ht/ dreﬁr/ d2v°(r, 2) f(r, 2),
0 R4

and the result follows. O
Lemma 12.11. Assume that the coefficients o and b are Lipschitz and bounded measurable

functions on [0,T] x R? and that o satisfies the ellipticity condition. Let gy be a function
from [0,T] x R into R and g : [0,T] x R? — R defined such that

oo =5 ( [ .00

where X is the diffusion process satisfying (9.2), page 93 and p is its transition density
function. Let 1) : s — €5%¢(s), where 8> 0, and ¢ is a bounded function from [0,T] into
R*. Then,

/OT dsip(s) /Rd dyv’(s,y)E (/STgS(r, X;?’y)dr> < </OT §(s)ds> lgollZze

T
and |9l s( / <T—s>§<s>ds) ool
b, X 0 B8,X
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Proof. We assume that the coefficients ¢ and b are Lipschitz and bounded measurable
functions on [0, T] x R? and that o satisfies the ellipticity condition to provide a transition
density function to the process X. We easily deduce the second result from the first one,

since

T
lolfe = [ dse®sts) [ s, (s.0)
T T
< /0 ds(T — s)eﬁsﬁ(s) /]Rd dyyo(s,y)E (/S gg(r, Xﬁ’y)dr> .

Let us show the first result. The L.h.s. of the first inequality to be proved is equal
to fOT dse5¢(s) Jga dyr%(s,y) Jga dz fsT drga(r,2)p(s,y;r,2). By using the definition of
19(s,y) and the Chapman-Kolmogorov equation, which states

Vt<s< T, Va§ SR pta ) = [ pltaisnlpls, T

we get [ra dyv®(s,y)p(s,y;r,2) = V°(r, 2). Since s < r, we obtain

T T
/ dseﬁsé(«ﬁ)/ dyvo(s,y)/ dZ/ drgg(r, 2)p(s,y;r, 2)
0 R4 Rd s
T T
</ §(s)ds/ dreﬁr/ dzuo(r, z)gg(r, z),
0 0 R4
and the proof is over. O

12.2.1 Results on f,

Let f,(s,y) be defined in the following way

1 - s—1T; y— X;
n b — K KI .
Inl#:9) nhyh ; ' ( hi ) ( ha )

We plot in Figure 12.1 the graph of f, on [0.5,1.5] x [-1.5,1.5]. We choose n = 500,

hy = nl—l/?, and h, = # These values of h; and h, are consistent with Theorem 11.3,

page 119. The random points (7, X;)i=1,... » are chosen on [0, 1] x [—1,1] with a uniform
law. The kernel functions K, and K; are triweight functions (see Table 11.1, page 118).

Remark 12.12. The function f,(s,y) approximates #@186[07T]1y6[_a7a}d. Looking at
Figure 12.1, we see that the approximation is quite bad close to the boundary of [0, 1] x
[~1,1]. More generally, one can say that f,, approximates quite well f(s,y) in [hy, T —
h¢] X [~a + hg,a — hy]?. However, the approximation on [0,T] x [—a,a]? \ [h, T — hy] x
[—a + hy,a — hy]? is quite poor.

Lemma 12.13. For all (s,y) € [0,T] x RY,

1 T . N '
= ! I (e Vd s
Elf(s,y)] TAB) /th Ki(r)drIlj_, /1\/_:_% K (z;)dz;, (12.1)
t x

and E[fn(s,y)] < 7 1B . Moreover, for (s,y) € [ht,T — h] X Boo(0,a — hy), E[fn(s,y)] =

>
~
—
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Figure 12.1: graph of f,, on [0, 1] x

function fn with n=500
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[—1,1] with n = 500

Proof of Lemma 12.13. A simple change of variables leads to (12.1). Let (s,y) € [h, T —
hi] X Boo(0,a — h;). Then,

1 1
Blfuto0)) = ey [ K0y [ Kiay)aa,

and the result follows.

Lemma 12.14. For all (s,y) €

Proof. We refer to Lemma 12.8, page 127 with C =

[0, 71

xR, E

O
Kt o Kz
[fn(say)] 2d+2%1y63w(0,a+h1)-
hc“ gt = K and g, = K. O

Proposition 12.15. Assume that the coefficients o and b are Lipschitz and bounded mea-

surable functions on [0,T] x R? and that o satisfies the ellipticity condition.

0

T _
/ dse™ / dyr® (s, Y)E(fu(s,)) — F(s,9)]?
B

K(T)

W [he + e_“aad_lhw],

where K(T') is a function non decreasing in T and depending on d, 3, u, K and as.

Proof. From Lemma 12.13, we deduce E(f,(s,y)) —

B+ (0,a —

he), and [E(fn(s,y)) —

f(s,

yl <

#
TA(B

f(s,y) =0 for (s,y) € [he, T — ha] X
on [0,h] X B, [T — hy,T] x B and
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[ht, T — ht] X B\ Boo(0,a — hg). Hence,

T s — 1 ht o
/O dsc” /B s DE (3. 9) 6.0 € s | dse? /B dy°(s, 1)

2
0

1 T
s Bs 0
TR /Tht dse /dev (s,9) (12.2)
1 T-he 0
+/ dse s/ dyv-(s,y).
(TX(B))? Jp, B\Boo (0,a—hy) pisy)

Since 10(s,y) < 27K e%e~ MYl (see Proposition 6.12, page 67), we get

ht ht
/ dseﬁs/ dyr®(s,y) < 2dK/ dse(*8+c2)s/ dye M < 22dd%£de(ﬁ+c2)htht, (12.3)
0 R 0 R H

T T 92d f
/ dseﬁs/ dyr®(s,y) < / dseﬁs/ dy¥(s,y) < —d—de(ﬁJrC?)Tht. (12.4)
T—hy B T—hy R dz M

It remains to bound [[° " dsePs . dyr%(s,y). Since
he B\Boso(0,a—hy)

/ dyyo(s, y) < 20 [ g2 o —Hla—ha) / dy < 22dK60236*“(a*h1)ad*1hx,
B\Boo (0,a—ha) yEB\Bao (0,a—ha)
(12.5)

we obtain ffi_ht dsebs fB\Boo(o a—hy) dy¥(s,y) < 22¢KePte)Tpe—mla=he)qd=1p = Plug-
ging the previous result, (12.3) and (12.4) in (12.2) ends the proof. O

Proposition 12.16. There exist three constants ¢, C' and C" depending on d, |Kt|s and
|Ky|oo such that for all € < (TA(B))~2 and (s,y) € [0,T] x R%, the following assertions
hold

ce2T)\(B)> ,

P(|fn(s,y) —E(fn(s,y))| > €) <2exp <_ 5

, Sn T\(B
E (Ifn(s,9) = E(fu(8: 01 (5.0)—B( fu(5.0))|¢) <C (62 + TA(B)) exp <—C€5n()> :

6n 2 2T\(B
E (Ifn(s,9) = E(fu (8 9) "L 1, (s.0)—E(fu (5.0 5¢) <C <62 + TA(B)) exp <—C€(5n()>

on, c
T CaamR P (‘TMB)&n) |

Proof of Proposition 12.16. We begin to prove the first assertion. To do so, we apply
Berstein’ s inequality (see Lemma A.11, page 264) to P(|f.(s,y) — E(fu(s,y))| > €). Ac-

cording to this Lemma, the random variable X; corresponds to htlhd K; (s;tTl K, y;fl ,
=T; —Xi
@ = 0b = KK and o = glevar(k (55 K, (52)) <

2d+1% (see Lemma 12.8, page 127 with ¢4 = K; and g, = K,). Then, for all
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e>0
P(|fn(s,y) = E(fu(s,9))| > €) <2 ne’
n\S$Y n\S, Y €) S Z2€eXp 2d+2|Kt‘ | K22, 2€¢| Kt|oo| K| oo )
TA(B)hehi 3hihd
2
Co€
<2 _
-1
where cg = (202 K| K, 2, v 2l

Then, let us prove the second assertion. Using (A.9) leads to

E1:=E (|fa(s,9) = E(fa(5,0))*L o (s.)-E(fn(s0))) >¢)
= (| fals,) ~ Bl 0| > )+ [ Blfals1) = Blfu(s:0))| > Va)do

We use the first assertion to bound P(|f.(s,y) — E(fu(s,v))| > ¢€), P(|fn(s,y) —
E(f.(s,9))| > /) and the fact that ¢ < (T'A(B))~? yields

By < 2¢%exp (-W) + 2/200 exp (—MTA( C‘)ﬂ - f)) (12.6)

Let us compute I := [ exp (—W) dz.

I =

/:M( " e <‘6n<:m< qfx T f)) et / ;(3»-2 o (_MTA( C(;x n f))
=1 + Is.

We easily get

(TA(B))~2 coxT)\(B) 20 CoezT)\(B)
n< —E S e € e (S )
1= / P ( 2, ) dr < aB) P < 2, )

Concerning I, we obtain

L < / exp < f) dr = / 2u exp <_cou) du,
(TA(B))-2 20 (TA(B))~1 20n

and fT)\ (B))- 12uexp< Cou) ( NeD) + 8 >exp< Mﬁ). As TA(B)S, <1
and €2 < (TA(B))~2, we obtain

On coe’TA(B)
<O, —" R St
hi+lL<G T (B) P ( 2, :

where C = %(1 + %) Combining this result and (12.6) yields the result.
We prove the third assertion. Using (A.9), page 264 leads to

Ey:=E (|fn(37 y) - ]E(fn(sv y))|41|fn(s,y)—E(fn(s,y))\>6)
- €4P(’fn(57y) - ]E(fn(svy))’ > 6) + /4 P(‘fn(&y) - E(fn(sﬂl/))‘ > $1/4)d.%'.
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Then, we apply the first assertion to bound P(|f,(s,y) —E(fn(s,y))| > €) and P(|f,(s,y) —
E(fa(s,y))| > «/*), and we get

TA(B)ée o co\/x
By < 26 ks el A 2/ . . 12.
2= %€ eXp( 26, > T2, e ) ) (12.7)

Let us compute I := [T exp (— 6n(T)\(ch))@+:v1/4)> dz.

J pu—

(X (B~ VT * o/

— d — d
g o ( 6(TA(B) 1 + a:l/4>> o /m(Bw o < 6u(TA(B) T + x1/4>> "
c=J1 + Jo.
We get
(TA(B))~* TNB (TA(B))~? TN B
J1 < /4 exp (—W) der = /2 2u exp (_002)\5()U> du.

By integration by parts we get

(TA(B))~2
/ Y exp <_00TA<B>U> du

2 205,
[ —4ws, ( cTA(B)u (TA(B))‘2+ 45, /(TMB))‘QGX _aTABuY
coTAB) P 26, P oTAB) Jo P 20,

o <‘zanzf§<3>> LO(TLLA(S(HB»E‘ ’ c%<TSj?B>>2]

e coe?TAB)\ [ 5 46, N 862
X — .
P 20, © wTAB) " A(TA(B))?

Thus, J; < 01% exp (—%;\(B)) (€2 + %), where C] has been defined above.

Concerning Jy, we obtain

oo 1/4 oo
T 3 CoU
J: S/ exp | — da;—/ 4u’ exp <—> du.
* Sy ( 20n > (TA(B))~1 20n

An integration by parts formula leads to

& 3 colt cou 86 u  4852u?  19203u o
) 4u”’ exp o5 dr = — |exp 55 + 53— T 3
(TA(B))~1 n n €0 i) € (TA(B))~1

19253 /°° ( 00u>
+ — exp | ——— ) du.
CO (T)\(B))—l 2571

As TA(B)d,, < 1, among these terms the largest one is CO(;;\SW exp <_W%\(B))' Then,

Joy < C2(T>\(2W exp <_Wg\(3))’ where Cy = %(1 + % + % + %). Combining (12.7) and
the upper bounds for J; and Js yields the result. 0
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12.2.2 Results on 0, f,
For all (s,y) € [0,T] x R?, for all i € {1,--- ,d},

—X;
O fulovn) = - hd“ Z < ) 0, K, (yhz) |

Lemma 12.17. For all (s,y) € [0,T] x R?, for alli € {1,--- ,d}, the following assertion
holds

| Kt1210x, 1413

2 2d+3
E(Or, fn(s,y))” <2 leeﬁw(ﬂ,a—i—hw)‘
Proof. We apply Lemma 12.8, page 127 to C = hd'H’ gt = K and g, = 0y, K. O

Proposition 12.18. There exist two constants ¢ and C depending on d, |Ki|s and
02, K| oo such that for all € < (h,TA(B))™2 and (s,y) € [0,T] x R?, the following asser-
tion holds

E (\&len(s, y) - E(E)xlfn(s, y))|2 1‘8zifn(s,y)7E(8zifn 5,y

(sy)I>
) ce’h2T\(B)
< 2, n - em AT )
<o( gm0 (75

Proof of Proposition 12.18. Let us introduce f;(s,y) = h%amfn(s,y). Then,

E (102, fn(8,9) = E(Or, fn(5:9))1 Lo, fu(s,)—E(0s, fu(s.9))] >

1 £
:@EOfn(S,y)—IE(f( D)Ly s )

We apply Proposition 12.16 page 132 to f}L (instead of f,,) and to eh, (instead of €), and
the result follows. O

Proposition 12.19. Assume that the coefficients o and b are Lipschitz and bounded mea-
surable functions on [0,T] x R? and that o satisfies the ellipticity condition.

T s K(T) o o
/0 dse? /B Ay (5, ) B (1) € G

where K(T) is a function non decreasing in T and depending on d, 3, i1, | KL |so, K and as.

Proof of Proposition 12.19. We recall that h, << a, hy << % and

E (O, fn(s,y)) =
) 01 () s (052

L ! /T drK <
d+1 t
hhTTA(B) Jy A

We integrate [* dx;0,, KL <y’h;fl) and we get

[ Y — T (Y —a Yyit+a
— dx;0,. K =K' K
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If y; belongs to [—a + hg,a — hy], K¢ (yli“> = 0. Then

L[ i [ Yi— T i

Hence, ‘E(axlfn(s y))‘ < ﬁlyeB\Bm(Oa ha)o and

KZ2
/ dse® [y (s, Eu ol )P < / ase” [ o )

We use (12.5), page 132, to end the proof.
O

12.2.3 Results on r,

Let r,(s,y) be defined in the following way

n

1 s—1T; y—X;
Tn(svy) = W ZKt < hy > K, ( h > ¢(T‘27Xz)7
T =1 r

where ¢ is a function from [0, 7] x R to R.

Proposition 12.20. Assume ¢ : [0,T] x R — R is a function bounded by Cy. Then, for
all (s,y) € [0,T] x RY,

& 20| K 2 O30

d+1
le@m(o,whz), Var(ry(s,y)) < 2°° TA(B) Y€ Boo (0,a+hy)-

(Elra(s,)])* <

. . [Ke |2 | K |2C2
Using TA(B)d6, << 1 yields E(r2(s,y)) < 2d+2W1yeBm(0,a+hm)-

Assume ¢ : [0,T] x RY — RT is a continuous function. Then,
)

E(rn(s,y))* < }M%(Q;i?(m)?/:drl(f (Sh_tr> / dz K2<
Var(ry(s,y)) < M/Tdrf(tz (S;tr>/d K2( " >¢2(r 2).

Using TA(B)d, << 1 yields

E(r2(s,y)) < ]m/:drm ( ht’">/deK§ (yh_xz> #2(r, 2).

Proof of Proposition 12.20. First, we consider the case ¢ : [0,7] x R? — RT is a function
bounded by Cy.

1 =T y—X;

By using Lemma 12.8, page 127 with C' = %, gt = K; and g, = K, yields the result.

Finally, we assume 1 is a continuous function. Using Lemma 12.9, page 128 with C = ht%’

g+ = K; and g, = K, yields the result. ]
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12.2.4  Results on 0,,r,

For all (s,y) € [0,T] x R, for all i € {1,---,d},

1 = —~T; - X;
axiTn('S?y) = ZKt <S A > aﬂcsz <y n > QZ)(TIMXZ))
i=1 x

nhyhd :
where ¢ is a function from [0, 7] x R? to R.

Proposition 12.21. Assume ¢ : [0,T] x RY — R is a function bounded by Cy. For all
(s,y) €[0,T] x RY, for alli € {1,---,d},

2d+30¢2>|}<t|go|azz~l<x|2
1
h2(TA(B))? y&Boo Dyarthe)-
T

E[0; 7 (s, Z/)]2 <

Assume ¢ : [0,T] x R* — R* is a bounded function, continuously differentiable in space.
Then,

IE(Ox;mn(s, )| < 2m(1lyi+a\§hz + 1|yralshz)
1 1

T S—7r y—z
“rira |, () f oo () et

Var(Og;mn(s,y)) < 1/TdrK2 (S_T>/dz(8 K,)? (y—z) ¢*(r, 2)
ri'n » Y _nhtthT)\(B) 0 t ht B ZT; AT ha: 3 .

I

Proof of Proposition 12.21. Assume ¢ is bounded by Cyg, we apply Lemma 12.8, page 127
with C = %, gt = Ky and g, = 0., K, and we use TA(B)d,, << 1.

tily
In the case ¢ differentiable in space, we write

1 1 T s—r Y —z
E(0z,rn(s,y)) = hthch_lT/\(B)/O drKy (h) /deail?iK$< Iy >¢(Taz)-

We integrate by parts [ dzi0, K} (%) ¢(r, z) and we get

a

1 , i (Vi % _ i Yi—a i i (Yita i
w [t (Y ) o) = 3 (M) otrnat) (M) ot

+/ dz;0q, P(, z)KfE <ylh_zl> ,

—a

where z; denotes the vector (z1, -+, 2i—1,Y, Zit1, " ,24). Since ¢ is bounded, Lemma
12.7, page 127 ends the proof for E(9;,7(s,y)). Concerning Var(9y,r,(s,y)), we apply
Lemma 12.9, page 128 C = htT{m gt = K; and g, = 0., K.

O

Proposition 12.22. Let f, be defined as above. Let T, be such that T,(s,y) =
m > K? (Sthl) K2 (%) o(T;, X;), where ¢ is a positive function. For all (s,y) €
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[0,T] x RY, for alli € {1,---,d},

_ 62 C On 1
E((axifn(say))an(say)) Sht g+2Avlz(5ay) + hohd+? <T)\(B) + (T)\(B))2> B}z(S»?J)
Co, 1

L N Y
) Y

where C' depends on |K¢|oo and |0z, Kz|oo and

Al(s,y) =E <Kt4 (8 ;LtTl) (K0, Ky )? (y;X1> (T, X1)> :

xT

B =5 (K2 (30 ) k2 () emx).
ch =2 (3 (S31) (20,500 () ot x0))

€T

Proof. For the sake of clearness, we use the following notations: for all j € {1,---,d},
Ki(j) = Ko (552), o) 1= Ko (Y5522), and (04, K,)(7) = (02, ,) (1522 ). Using the
definition of 0y, fr(s,y), we get

1
(Oni fn(5,9))? = = 2 (ZKt ) (0, Kz)? Z Ki(i)K1(5)(0x, Ky )(')(@cin)(j)) :
,5=1,i#j
First, we develop (9x, fn(s,v))*Tn(s,y)
1 n
(O f(5:9)) (5, y) =705 > K7 (K) K (k)$(Th, Xi) (12.9)
n°hy hy —1

Y OKI)0n K G+ D m(i)Kt(j)<azsz><i><amsz>(j)]-
=1

i.j=1,i#j

We write

> KEG)0r K)* () Y KE(R)KZ(k)6(Th, X) = ZK4 VK2 () (00, K2) () 0(T5, X;)

+ Z K7 (5)(02,52)* () K7 (k) K (k) (T, Xi). (12.10)

Ji:k=1,5#k
Then,
> K()Ki(5) (00, Ka) (0)(02,K2) (7)Y K7 (k) K2 (k) (T, X)) = (12.11)
i,j=1,i#j k=1
> Ky()Ki(5) (00, K2) (0) (0, Ko ) () K7 (k) K2 (k) (T, Xie)
i,j,k= liyéji;ékj;ék
+2 Z K3 (1)K (5) (00, K2 () (02, K2) () K2 (D) (T, X5).

1,7=1,i#j
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Combining (12.9), (12.10) and (12.11) and taking the expectation leads to

E((9r, Ju(5,9))Ta(s,y)) = Sh;hw E(KA(1)K2(1)(00, K2 2(1)6(T1, X1)

+n(n — DE(KF (1)(0x, Ko)*(1)E(KF (1) K2 (1)6(T1, X1))
) K

+n(n —1)(n — 2)(B(K (1) (9, K,) (1)) *E(KF (1) KZ(1)¢(T1, X1))
+2n(n — DE(K;(1)(9, K) (1) E(KG (1) KZ(1)(8, K2)(1)d(Th, X1))] -
Applying Lemma 12.8, page 127 ends the proof. O

12.3 Convergence of P,v — v

In this Section we assume v is a deterministic function. Let us recall (9.15): P,v(s,y) =

;ZEZ’ z; 9(2T\(B) fn(s,y)), where

_T X;
d Tn(svy) = mz;& Kt(sTtTl)Kl‘(yh ) (T’HX)

o fu(s,y) = m Z?:l Kt(%)Kx(y;;Xl)

We aim at studying ||P,v — v||? HE X is the diffusion process defined in (9.2), page 93

and its transition density is denoted p.

Remark 12.23. For all random functions F' and G from [0, T] x R? into RY independent
of X, we have

T
el :/ dse [ doe B IF(s, X2) ~ G5, X2) PP,

/dseﬁs/ dy°(s,9)|F(s,y) — G(s,y)[*.

Moreover,
T
BIF Gy = | dse® [ doe MEIF(nX) - Gl XD
B,X 0 R4

T
- / dse™ / dy® (s, y)E|F (s, y) — G(s,9),
0 R4

where 1(s,y) is defined in Definition 12.2, page 126.

Proposition 12.24 (Bias-Variance decomposition). Let F' and G be two random functions
from [0, T] x R? into RY independent of X.

q
EIF -Gl = IE(F = Gk + > IStd(Fs - Gl

where Std(Y (s,y)) = (VarY (s,y))'/? corresponds to the standard deviation of the real r.v.
Y(s,y).
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Proof. From Remark 12.23 and using the bias-variance decomposition (see Lemma 12.6),
we get

T
BIF -Gl = [ ase® [ ds ) EFs) - Gls. )P

T q
b [ dse [ g (s) Y Var(E(s.9) - Gils.).
0 R4 i—1

From Remark 12.23, we get

T
BIPw— ol = [ dse® [ aptenBPals) —os P (1212)

We won’t study P,v(s,y) — v(s,y) directly. We introduce A, (s,y) and B,(s,y), defined
by

Definition 12.25. A,(s,y) and B, (s,y) are defined in the following way

An(s,y) = TAB)rn(s,y)Lsciomlyen,  Bul(s,y) = TA(B)ru(s,y).

Remark 12.26. The functions A, (s,y) and By,(s,y) are “standard” estimators of v(s, y).
The functions A,, and B,, are close to each other, they only differ on [—h, 0] N [T, T + hy] X

By (a+hy)\B. The function (s,y) —— TA(B)1s¢(o,111lyep corresponds to m The func-
tion (s,y) — mg(QT)\(B)fn(s, y)), appearing in the definition of P, approximates

1 _ 1 1
Ok The study of Ppv— A,, corresponds to the study of 7fn(s,y)g(2T)\(B)fn(s, Y)) o)

The study of E |jv — anqugX will be done in three steps. Introducing A, and B, in

E ||Ppv — v||§{57X yields
2 2 2 2
E||Pyv — UHHZ,X < 3E||Pnv — AnHng +3E ||A,, — BnHHEﬂX +3E || B, — UHHE,X . (12.13)

In Section 12.3.1, we study E| A4, — B”Hi’[;x' In Section 12.3.2, we deal with
E||Pov — An|[30 , and in Section 12.3.3 we consider E || B, — v||%x . Section 12.3.4 ends
B,X 9 B8,X
the study of E ||jv — P”“”HS,X'

12.3.1 Study of E||A, — Bn\ﬁ{gx

Using the definitions of A, (s,y) and B(s,y), we get

An(s,y) — Bu(s,y) = TA(B)ra(s, y)(1 — Lecjo,mlyen) = ~TAB)ra(s,y)1is¢0,1}0iyeB)}-

From Remark 12.23, we write

T
E |l An = Bullzp: = /0 dse” /Rd dyv° (s, y)E| An(s,y) — Ba(s,y)I.
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Theorem 12.27. Assume that the coefficients o and b are Lipschitz and bounded measur-
able functions on [0, T] x R and that o satisfies the ellipticity condition. We also assume

v 1s bounded by C,.
E|A, — Bn||§{5’x < K(T)e Ma? ' h,.

K(T) is a function non decreasing in T and depending on d, 3, |Kt|cos | Kz|co, Cy and
on K, as.

Proof of Theorem 12.27. Using the above expression of A,(s,y) — Bn(s,y), we get

E|An(s,y) — Bn(s,y)[> = (TA(B))’Elrn (s, y) " Lis¢o. 1 oiye B

If v is bounded, using Proposition 12.20, page 136, yields E|A,(s,y) — Bn(s,y)> <
Cg2d+2‘Kt‘go‘Kﬁ‘gol{s¢[O,T]}U{y¢B}1y€Boo(0,a+hz)' Moreover, using (12.5), page 132 leads

to
T T
/ dseﬁs/ dyr®(s,y) < 22dKe_“aad_1hx/ elfte2)s
0 Y€Boo (0,a+hy)\B 0
< Ko(T)e Ha% 1 h,, (12.14)
where Ky(T') is a function non decreasing in 7' and depending on d, a, 3, K and . ]

12.3.2 Study of E |P,v — An||§fgx

By using the definition of P,v(s,y) and A,(s,y), we write

Pov(s,y) — An(s,y) = ru(s, y) M9(2TA(B)fn(S, y)) = TA(B)Lsepo,r)1lyeB| -
(12.15)

Before integrating w.r.t. e?10(s,y)dsdy, we study Ppv(s,y) — A,(s,y) w.r.t. the value of
y in the Lemmas 12.28, 12.29, 12.30 and 12.31 (as we integrate w.r.t. s € [0,7], we never
study the case s ¢ [0,7]). Then, we bound E|P,v(s,y) — A,(s,y)|? in Proposition 12.32.
To conclude, we bound E ||P,, — A"H%IELX in Theorem 12.33.

Lemma 12.28. On the set {y ¢ Boo(0,a + hy)}, Prv(s,y) — An(s,y) = 0.

Proof. If y ¢ Bx(0,a + hy), the second term in (12.15) is null. Moreover, there exists
at least one j € {1,---,d} such that d(y;, B) > h,. thus, Vz € B, K%(%T:z) = 0. Since
Vi=1,---,n, X; € B, we get f,(s,y) = 0. Looking at the definition of g in Proposition

11.6 (see page 121) yields mg(ZTA(B)fn(s,y)) = 0. Hence, the result follows. O

Lemma 12.29. On the set {y € Bso(0,a + hy) \ B}, if v is bounded by C,, |Pnv(s,y) —
An(S,y)| S C’U'

Proof. If y € Bs(0,a+ hy) \ B, the second term in (12.15) is null. Ppo(s,y) — An(s,y) =

%Q(QT)\(B)fn(s,y)). Since ¢ is bounded by 1 and

|Tn(57y)| < fn(say) sup ’U(S,y)’.
(5,9)€[0,T]x Boo (0,a+hz)\ B

The result follows. O
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On the set {y € B}, we bound from above P,v(s,y) — An(s,y) of two manners (see
Lemmas 12.30 and 12.31)
Lemma 12.30. On the set {y € B}, if v is bounded by C,, |Ppv(s,y) — An(s,y)| <
BC,TA(B)| fu(s,y) — f(s,y)l.
Proof of Lemma 12.30. If y € B and s € [0,7] we write Ppu(s,y) — An(s,y) =
(8, Y) [mg(QT)\(B)fn(s,y)) — T/\(B)}. Since y € B, f(s,y) = #(B) (we refer to
Definition 12.5, page 127, for the definition of f). We write Ppv(s,y) — An(s,y) =
ZE (g(2TA(B) fu(5,9)~TA(B) fuls,)). Then, we study j(x) := g(2TA(B)z)~TA(B)z.
3(F(5.9)) = 3(rsg) = 0.

19(fuls,9)) = 3(F (5, 9)] < [fuls,9) = F (5,918 |00 < BTAB)|fuls,y) — f(s,9)l-

As before, we use [r,(s,y)| < fn(s,9) Sup(s y)ejo.r1x B 1v(8,9)], and the result follows. [

Lemma 12.31. On the set {y € B}, |Pav(s,y) — An(s,y)| < 8(TA(B))?|rn(s, y)|| fuls,y)—
Fls.y)l.

Proof of Lemma 12.31. |Ppu(s,y) — An(s,y)] < |ra(s, )|| (QT)\( ) fn(s,y)) —
T>L(B>|' We introduce g :  — M 9(f(s,y) = (B) Thus, [g(fn(s,y)) —
g(f (s, )| <17l fuls,y) — f(s,9)]; and 7'loo < 8(TA(B))*. O

Proposition 12.32. Let € be such that 0 < e < (TA(B))™!. On the set {y € B} and for
v bounded by C,, we get

E|Pno(s,y) — An(s,y)* <1286X(TA(B))'E(ri(s,y))
+C(TA(B))?[E(fals,9)) = F(s,9)[
0.

OB (&4 i) o (- TAED)

where C' depends on Cy,d, |Ki|so and | K| and ¢ depends on d, |Ki|so and |Ky|oo-

Proof. We introduce 15, (s ,)~E(f,(s,9))|>¢ A 1|£, (s,9)—=E(fa(s,y))|<e> and We split Ppo(s,y) —
Ay (s,y) w.r.t. these indicators. On the set {|fn(s,y) — E(fn(s,v))| > €}, we use Lemma
12.30 to bound |P,v(s,y) — An(s,y)|. On the other set, we use Lemma 12.31. We get

Prv(s,y) — An(s,y)[> SOCS(TAB))?| fn(s,y) = F(: )11 (5.) Bl fu(5.0)) >
+ 64(TA(B)) 12 (s, ) (5, 4) — F(5, ) P11, (5.0)—B(fo (.0 | <e-
Then, we use |fu(s,y) — f(5,9)| < [fa(s,9) = E(fa(s,9))| + [E(fa(s,9)) — f(s,y)|- Using
rn(s,y)| < Cufals,y) yields
EIPav(s,5)—An(s, )2 < 128(TAB)*E(r2 (5, )

T 128C2(TAB) E(f2(5, 1) E(fuls, ) — F(s )]

+18CHTAB))E[ fa(5,y) = E(fa(8, 9)* L) £ (50)E( fu(s.0)) ]

+18CH(TAB))IE(fu(s,9)) = F(5, 9)IPP(| fuls,9) — E(fuls, 1)) > €).
We bound the second term of the r.h.s. of the above inequality using Lemma 12.14, page

131. We use Proposition 12.16, page 132 to bound the third and fourth terms. The result
follows. O
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Using Proposition 12.32 and Lemmas 12.28 and 12.29 enables us to state the following
Theorem

Theorem 12.33. Assume that the coefficients o and b are Lipschitz and bounded measur-
able functions on [0,T] x RY and that o satisfies the ellipticity condition. If v is bounded
by Cy, Ve > 0 such that €2 < (TA\(B))2,

E1Pav — Anll3 | <Ko(T)ETAB)? ol |

+ K1 (T)(hs + e "a% " hy)
5 ce’T\(B)
+ Ko(T)(TA(B))? (62 + TA(B)) exp (%) ;

where Ko(T), K1(T) and Ko(T') are functions non decreasing in T. Ko(T) depends on
| Kt|oos | Kzloo, B, 2,d, pu and K. Kq(T) depends on Cy,d, 3, K and ay. Ko(T) depends on
Co,dy | Kt|oos | Kz|oo, K, ity B and aq.

In particular, for e =0 we get

E || Pnv — Anufqg’x < K1 (T)(hs + e "% hy) + Ko(T)TA(B)6,.

Proof of Theorem 12.33.

T
BIPw = Ay, = [ dse® [ dp s EPw(s.0) - Aufo )

If v is bounded by C,, we combine Lemmas 12.28, 12.29 and Proposition 12.32 to get

T
B[Puw — Ay <2 [ dse? dy (s, )
0 0 (0,a+he)\B

+ 128€%( / dseﬁs/ dyv? (s, y)E(r2(s, y))
/ dseﬂS/ dyv(s,9)[E(fa(s,9)) — f(s,9)”

+ O(TA(B))? <62+T)\(n )>exp< CEQTA )/ dseﬂS/dyu 5,9),

where C' depends on C,, d, |K¢|oo and |K;|oo and ¢ depends on d, |Kt|so and |Ky|eo. We
use the last result of Proposition 12.20, page 136 to bound E(r2(s,y)). We use (12.14)
to bound fo dse’ me(O’a+hI)\B dy1°(s,y) and Proposition 12.15, page 131 to bound the
third term. Beside that, (6.11), page 67 leads to

T T
K
/ dseﬁS/ dy¥(s,y) < QdK/ dse(ﬁ+02)5/ dye MVl < 22dd%—dTe(ﬁ+c2)T. (12.16)
0 Rd 0 R4 K

We use (12.16) to bound the last term. We get

E||Ppv — An||§{u < KO(T)ef“aadflhx

e (TX(B s—r y—z

+ K(T )(ht+€ ““ad )

+ K(T)(TX(B))? (é’ + T;SELB)) exp <_“2T52(B)> ,
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where Ko(T') depends on C,,,d, 3, K and ay. K(T') depends on C,, d, | Kt|oo, | Kz|0o, K, 1ty 5

and ay. To conclude, we apply Lemma 12.10, page 128 with g, = K?, g, = K2 and

f=wv. O
2

12.3.3 Study of E||B, — UHHZ,X

By using the definition of B,, we get

B, (s,y) —v(s,y) = TA(B)rn(s,y) —v(s,y).

Proposition 12.24, page 139 gives us

2 2 2 L
E|B, — UHHZ,X = |E(B, — U)HHZ,X + ||Std(B,, — U)HHZ,x' The scheme of the Section is
the following. We bound ||Std(B, —v)H%{gX in Proposition 12.34. Then, we study

IE(B,, — v)||Hg . To do so, Lemma 12.35 splits E(B,(s,y)) — v(s,y) in four terms. From
Lemma 12.36 to Lemma 12.39, we study these four terms. Using these results we bound
|E(B, — )”ng in Proposition 12.40. Theorem 12.41 ends the Section by bounding

2
E|Ba = vllf

Proposition 12.34. Assume that the coefficients o and b are Lipschitz and bounded mea-
surable functions on [0,T] x R? and that o satisfies the ellipticity condition.

2 2
ISt(By — )y < K(TITAB)G ol -
where K(T) depends on p,d,B,K,a1 and «s. If v is bounded by C,,
we get || Std(B —v)HHu < K'(T)TX(B)én, where K'(T) depends on

Coy | Kt|oos | Kz|oo, 4, d, ﬂ,K a1 and oo.

Proof of Proposition 12.3/.
) T
IS8, = 0l = [ e’ [ (s, ) V(B s.9) = (s.9)
= (T\(B / dsePs /Rd dyv® (s, y)Var(ry (s, )).

Using Proposition 12.20, page 136 yields

IStd(By—0)l3 <

T
s s—r y—z
nh2h2d/ dseP /Rddyv s y/o dthQ( » )/deK§< ™ >v2(r,z).

As above, we apply Lemma 12.10, page 128 with g, = K?, g, = K2 and f = v to get the

result. If v is bounded, we combine Proposition 12.20, page 136 and (12.16) to get the
result. O

Second, we study ||E(B, — U)leﬁlgx- First, let us split E(B,(s,y)) —v(s,y).
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Lemma 12.35. For all (s,y) € [0,T] x R%,

BB, () = 0(s.8) = /R dz/ K, ( )Kt (ﬂ;”) (w(r, 2) — v(s, 2))
+ hthg/Rd dz/o drK, <h_x> K, <Sl;r> (v(s, 2) — v(s, 7))
_ f;flg:/cdz/oner <yhx2> K, <3;tr) u(r, 2)
B htlhg /]Rd 42 /[ht,O]U[T,TJrht] Al (yh_xz) e (8;:) v(:3)

= Bl(sa y) + BZ(Svy) + BS(Sa y) + B4(Say)‘

Proof. We can write v(s,y) = v(s,y) hhd Jpa A=K, (%= fT+ht drKy(%:").  Since
E(Bn(s,y)) = ﬁfB dex(y};Z)fo dr Ky (7 )v(r, 2), the result follows. O

Through the following four Lemmas, we study the norms || B (s, y) qug o | B2(s,y) H%Ig o
2 2 ’ ’
Bs(s. )3 and [ Bats, )l

Lemma 12.36. Assume that the coefficients o and b are Lipschitz and bounded measurable
functions on [0,T] x R? and that o satisfies the ellipticity condition. We also assume v is
a function C' in time. There exists a function K(T) such that

2 2
1Bl ) e < K(DRE 0l

where K(T') depends on d, i, |Kt|oo, | Kz|oo, 8, K, 1, and ag. If O is bounded, we get
||Bl(s,y)||zgx < K'(T)h?, where K'(T) depends on |0;v|>, and on the same parameters
as K(T). ’

Proof. We recall

Bu(s,y) = h:h%/w dz/OTder (yhj> K <Sl;r> (w(r, ) — v(s, 2)).

Write v(r, z) — v(s, z) = [] dyv(t, z)dt. Since |r — s| < hy, we get

) 9d+2 L (y—= s\ [rhe )
Bi(s,y) < — dzK; dth (Opu(t, z))°dt.  (12.17)
he  Jrd ha ) Jo he ) oo,

Applying Lemma 12.10, page 128 gives

r+he

T
| B1(s, y) |50 §K0(T)ed“h“ht/ drem/ dz1(r, z)/ (Opv(t, 2))%dt,  (12.18)
sx 0 R4 r—hy

where Ko(T) depends on |Kt|oo, |[Kz|oo, 8, K and ag. We write f:jﬁt(@v(t,z))wt =
fOT 1 p,<r<t+h, (Ov(t, 2))2dt and 7 < ePhteft. Moreover, Corollary 6.13 (see page 68)
gives 10(r, z) < Ce®2M10(t, 2), where C depends on d, i1, T, K, oy and ap. Equality (12.18)
becomes

T
IBa(s,ly, < CRUD)M e [Care [ aad(e, )0, 2)7,
’ 0 R
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and the result follows.
If Opv is bounded, (12.17) becomes

Bi(s,y) < 22| K 3| Ko 3|00l b7
We use (12.16) to conclude. O

Lemma 12.37. Assume that the coefficients o and b are Lipschitz and bounded measurable
functions on [0, T] x R? and that o satisfies the ellipticity condition. We also assume v is
a function C? in space. There exists a function K (T) such that

1Bals, )l < KT 020 .

where K(T) depends on d, i1, |Kz|oo, 3, K, a1, and ao. In particular, if O?v is bounded, we
get ||B2(5,y)||12qu < K'(T)h%, where K'(T) depends on |0%v|%, and on the same parame-
ters as K(T). 7

Proof of Lemma 12.37. The proof is analogous to the one of Lemma 12.36, except that
we exploit the symmetry of the kernel to get more accurate estimates (h: instead of h2
only). We recall

Bs( d drK,
(s,y) hthd/Rdz/ r (

We apply a Taylor expansion formula to each component of the following sum

) (U)ot
d

v(s, z) Zv 5,%i) —v(s,Zi—1),
=1

where Z; = (21,22, , Zi, Yi+1, "+ »Yd), Vi € {1,--- ,d}, and Zg = y. For alli € {1,--- ,d},
we get

v(s,Z;) — v(s,Zi—1) = (2i — ¥i)O0z,0(8,Zi—1) —i—/ l dl(z; — l)@%iv(s,fﬁ)

where Eé = (z1,-+,2i-1,1,Yi+1, - ,Yq). Plugging this result in the definition of Ba(s,y)
leads to
RN r y—z\ . (s—r
By(s = ;/Rd dz/ drK, (hz) K ( » ) (zi — ¥i) Oz, v(8,Zi—1)

hthd Z/Rd dz/ Arf ( > e < htr> /Z Az = 0%, 0(5,7),

The first integral of the r.h.s. of the above expression is null since for all
i€ {l,---,d}, [pdzKL (u)( zi —y;)) = 0 (K! is an even function). More-

over, |z — 1| < hyg, fo drE (") < h and fRddew(y,;z)f;idl]@giv(s,éé)\ <
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(2hy )d H'l]K oo fy1+hgc dzy - j‘yz 1+hxd yz—l—hgc dl\a2 (s, £)| Hence,

Yi—1—hg
9d—i+1 y1+he Yi—1+ha Yi+he
|By(s,y)| < | Kz \OOZ — / dzl.../ dZH/ dl|o2 v|(s, z)
he” y1—hg Yi—1—hg Yyi—hg

< 29| Koo ZBé(s, ).

i=1
hz — hz [3 hz =
where Bi(s,y) hl 5 fyy11+h dzy - ?z__lljh dz;— 1fy+ dl|8§iv|(s,zé), and
(B(s,y))? < 2%‘;_1/ dz - / dzi_l/ dl|8§ivl2(s,éé).
y1—ha Yi—1—ha Yi—ha
Beside that,
d
|| Ba(s, y)HHH < d2|KL. 2, || Bi(s,y HH# . (12.19)
=1

It remains to upper bound |’B§(s, y)qug
X

B3, = [ dse? [ an (o) (B,
B8,X 0 Rd

<2pi=t [ dsePs [ dy° " d e dz; " dl|9? v|?(s, Z
= T yv (Svy) 21 Zi—1 | :):1'1}’ (5722')'
0 R y1—hz Yi—1—he Yi—ha

Corollary 6.13, page 68 gives 19(s,y) < Cetihe10(s,zl) where C depends on
T, p,d, K, a1, az. Then

T
HB;(S,y)HZZX < CZ’hi_Ze’“h”/O dse’ /]Rd dféuo(s,fé)wgiv\Q(S,ZD
X/dyllzl—mylyﬁhw“'/d?/ill—héyi§1+hm~
R R
Thus, HBE(&Z/)HZEX < C2%pletihs HagsziIgX Plugging this result in (12.19) ends the
proof. O

Lemma 12.38. Assume that the coefficients o and b are Lipschitz and bounded measurable

functions on [0,T] x R? and that o satisfies the ellipticity condition. If v is bounded by
o

Gy we get | By(s. o)} < K(T)e V3", where K(T) depends on d. s, K. B, 0,C, and

K| oo- ’

Proof of Lemma 12.38. Assume that v is bounded.
Bs(s,y) = —@ fBC dz foT drK, (%) K (%) v(r, z).

3 s,y)) > hd Be Bliyi—z1|<hs " Yyg—2za|<he

T
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Moreover, fBC d’21|y1—21\§hz ce 1|yd—2d|§hz < 1y¢Bm(0,a—hz)(2hI)d' Then,

T
IBatsn)lfy, < PURLRECE [ dse [ sy,
B 0 Boo(0,a—haz)

Using (6.11) page 67 leads to
fOT dse’ fm dy¥(s,y) < 2¢KeBte)TT fm dye~#IWl. Tt remains to bound
fBoo(O,afhl) dye ™+

— — 4=l — 4=y — 4=yl
/ dye™ MY <d/ dyie Vi /dyge v ---/dyde varal o (12.20)
Boo (0,a—hy) ly1|>a—hy R R

4 g
Thus, fmdye_“‘m < %6 vate hz), which ends the proof.

O]

Lemma 12.39. Assume that the coefficients o and b are Lipschitz and bounded measurable
functions on [0, T] x R? and that o satisfies the ellipticity condition. If v is bounded by C.,,
we get ||B4(s,y)\|12qu < K(T)hy, where K(T) depends on d, u, K, 3, s, Cy and | Ky|so.

Proof of Lemma 12.39. We recall

1 y—z s—r
By(s,y :—/dz/ der( )K ( >Us,y.
) hehd S5 Jmhe0uir b hy "\ (5,9)

Since v is bounded, |B4(s,y)] < h?—;:g fB dex(y};Z) fl[fht,o]U[T,T+ht} dth(%).
Using Lemma 12.7, page 127 yields [pdeK,(%=) < hd. Since |s —
7“ < h’t7 fi)ht dth(%) < |Kt‘oo fght drlr—ht§s§r+ht < ht|Kt|oo]-—2ht§s§ht and

T+h _ .
fT+ ‘ dth(Sh—tT) < he| Kt|oo 17— ny<s<7+2n,- We easily get

V(Say) € [O7T] X Rd? ’B4(37y)| < CU|Kt|00186[0,ht}U[T—ht,T]7

and we deduce

ht T
1BaCs, )% < C2IELP (/ [ P [ u0<s,y>).
B.X 0 Rd T—hy R4

Inequalities (12.3) and (12.4) page 132 end the proof.
O

Combining Lemmas 12.35, 12.36, 12.37, 12.38 and 12.39 leads to the following Proposi-
tion.

Proposition 12.40. Assume that the coefficients o and b are Lipschitz and bounded mea-
surable functions on [0,T] x R? and that o satisfies the ellipticity condition.

1. Assume v is a CY2 function and v is bounded by C,. Then,
2 o
BB, — )l | <KD 050l +h2 [020]5 )+ K (D) + o)

where K(T) depends on d7 Ky K7 Oél,OéQ,ﬂ, Cw |Kt|oo and ’Kx’oo
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2. Assume v is a C;’Z function and let Cy, denote the constant bounding v, dyv, d,v and
O2v. Then,

2 4 —t=a
IE(B = v) 3 < K(T) (he+h+ e ),
where K(T') depends on d, u, K, a1, aa, 3, Cy, | Ki|oo and | Ky|so-

Combining Propositions 12.34 page 144 and Proposition 12.40 leads to the following
Theorem

Theorem 12.41. Assume that the coefficients o and b are Lipschitz and bounded mea-
surable functions on [0,T] x R? and that o satisfies the ellipticity condition.

1. Assume v is a CY? function and v is bounded by C,. Then,
2 2 2 2 4 192,12
E 1B — ol  SK(TYTABw ol 3 10wl -+ [|020][3 )
+ K(T) (e Va" + hy),
where K(T') depends on d, u, K, a1, g, 3, Cy, | Ki|oo and | Ky|so-

2. Assume v is a C;’Q function and let C, denote the constant bounding v, Oy, d,v and
02v. Then,

E|Ba — vl < K(T) (T)\(B)én +hE 4 b+ e*%“) :

where K(T) depends on d, u, K, a1, a9, 8, Cy, | Kt|oo and |Kz|so-

12.3.4 Conclusion

Combining (12.13) page 140, Theorem 12.27 page 141, Theorem 12.33 page 143 and
Theorem 12.41 yields the following Theorem

Theorem 12.42. Assume that the coefficients o and b are Lipschitz and bounded mea-
surable functions on [0,T] x R? and that o satisfies the ellipticity condition.

1. Assume that v is a CY? function and v is bounded by C,. Then, Ye > 0 such that
€2 < (TAX(B))™?2
2 2 2 4 2 2 2
BI1Pww — ol , <) (GNP + T + 1) ol +12 10l )

+ K(T) [e’%“ + hy + e*“aadflhx}

+ K(T)(T\(B))? (62 + TfE‘B)) exp (—“21;:(3)> ,

where K(T) depends on d7 K, K7 05170527[37 Cw |Kt|oo and ’Kz‘|oo

2. Assume that v is a C’;’Q function and let C,, denote the constant bounding v, Oy, Opv
and 0%v. Then,

E|[Puv —vlfn < K(T) (TAB)Sn + he + hj + e Va4 e Hqd=1h, ),
Hﬁ,X T

where K(T') depends on d, u, K, a1, o, 3, Cy, | Ki|oo and | Kyz|so-
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12.4 Convergence of 9,(P,v) — 0,v

This part is devoted to study
d
2 2
E |0, Prv — &UUHH’,&X = E E ||0z, Prv — amiuHHg’X, (12.21)
i=1

where

g(2TA(B) fn(s,y))
fn(svy)
g(2TA(B) ful
fa(s,y)

9’ RTA(B) fn(s,Y))

8%. (an)(& y) :8“7“71(57 y) fn(s y)

+ 2T N(B)ru(s,y)

8xifn(5a y)

2. fa(s,)

- Tn(say)
and
o n(s,y) = m > i Kt(%)Ka:(y%fi)U(E‘,Xi),

* fuls,y) = m Sy KR Ea (M52).

The study of ||0y, (Pnv) — 8351.1)]]315 . will be done in three steps. Introducing Og; Ap, and
Og; Bp, 10 ||03,v — Oy, (P"U)H?{E,x yields
|0z, (Pnv) — 8$iv||?{g,x <30z, (Ppv) — a:cz'AnHiIg’X

+ 3100, An = 02, Bullps 31102, Bn — a0l . (12.22)

The scheme of this Section is the following: in Section 12.4.1, we study
E||0x, Ay — c‘)xiBanqu. In Section 12.4.2, we deal with E ||8,,(P,v) — E)IZ.AHH%EX, and

in Section 12.4.3 we consider E |0y, By, — ﬁxivaqu. Section 12.4.4 ends the study of
) :
E (|05(Ppv) — axUHHgﬂx'

2
12.4.1 Study of E ||0, A, — aan”Hg’X
Let us recall the definitions of A, (s,y) and By(s,y)

An(sa y) = TA(B)rn(s, y)lsG[O,T] 1y637 Bn(s’ y) = T)\(B)’I“n(S, y)

Remark 12.43. By misnomer, 0,,A,(s,y) denotes TA(B)0z, (s, y)1scio,mlyen, and
Oz, Br(s,y) denotes TA(B)0z,mn(S,y).

8%“’471(3’ y) - 6$iBn(Sv Z/) - T)‘(B)axirn(sv y)(lsE[O,T]lyEB - 1)
= —TXNB)0x;rn(5,Y)L1s¢ (0,1} ufye B} -

From Remark 12.23, page 139, we write

T
B 10rAn = 0Bl = [ dse? [ (s, 0)BI0n Aus.9) = Or Bl )l
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Theorem 12.44. Assume that the coefficients o and b are Lipschitz and bounded measur-
able functions on [0, T] x R and that o satisfies the ellipticity condition. We also assume
v is bounded by C,. For alli € {1,--- ,d},

e—uaad—l

E ||axiAn - 8ziBnHiIgYX < K(T) L

K(T) i a  function non  decreasing in 1T and  depending  on

d, 3, |Kt|oo> |Km|ooa |8x2K:c|oo> Cy and on K, .

Proof of Theorem 12.44. Using the above expression of 0y, A, (s,y) — 0z, Bn(s,y), we get

E|0x, An(5,y) = 0w, Bu(s,y)|* = (TA(B))*E|0z, (s, )L {sgio,m1010¢ B

If v is bounded, wusing Proposition 12.21, page 137, yields E|0;An(s,y) —

(‘)xiBn(s,y)]Q < 2d+10§’Kt’go’a:cin|goé1{s¢[O,T}}U{y¢B}1y€Bm(0,a+hl)' MOI"GOVGI",
1{s¢[O,T}}U{y¢B}1y€Boo(0,a+hx) is bounded by 1y€Bm(0,a+hx)\B (see Section 12.3.1 page 140
for a detailed proof). (12.14) page 141 ends the proof. O

12.4.2 Study of E [[0,(Py0) — 0 Au| 3 |

By using the definition of P,v(s,y) and A,(s,y), we write

02, Pnv(8,y) — Oz, An(8,y) = Ou,1n(5,y) f(iy)g@TA(B)fn(s, y)) — TA(B)1co,r)lyen
(12.23)

g (2TA(B) fn(s, 1)) Q(QTA(B)f”(S’y))ax,fn(s Y)-

fn(s,y) f2(s,y)

Before integrating w.r.t. e%510(s,y)dsdy, we study 0, Pnv(s,y) — Oz, An(s,y) w.r.t. the
value of y in the Lemmas 12.45, 12.46, 12.47 and 12.48. Then, we bound E|d,, Prv(s,y) —
Oz, An(s,y)|? in Proposition 12.49. To conclude, we bound E ||0,, P, — aziAnH?{g . in The-
orem 12.50.

+ 2TA(B)rp(s,y)

azifn(sa y) - rn(sa y)

Lemma 12.45. On the set {y ¢ Boo(0,a + hy)}, Vi € {1,---,d}, Oz, Pnv(s,y) —
O, An(s,y) = 0.

Proof of Lemma 12.45. If y ¢ Boo(0,a + hy), the indicator in (12.23) is null. Moreover,
there exists at least one j € {1,--- ,d} such that d(y;, B) > h,. Thus, Vz € B, K%(%) =
0. Since Vi = 1,---,n, X; € B, we get fu(s,y) = 0. Looking at the definition of
g in Proposition 11.6 (see page 121) yields W = rn(s,y)w =
(s, y)%W = 0. Hence, the result follows. O
Lemma 12.46. On the set {y € Bx(0,a + hy) \ B}, if v is bounded by C,, for all

ie {1, ,d},

K
E|Dz, (Pav)(s,y) — O, An(s,9)|* <

where K(T') depends on d,|K¢|so, |0z, Kz|oo and C,.



152 12. Convergence rate of our estimator

Proof of Lemma 12.46. Let us introduce

- X;
Tulsv) = nhhdHZ ( )|ale<th >

If y € B(0,a + hy) \ B, the indicator in (12.23) is null. Since % is bounded
by 2 < 2 PEEPGQTAB)fu(s.y) < ATAB)Cuf,(s,y), and as |ra(s,y)| <

3\/§ - fn(svy)
Cofu(s,y), |ra(s, y)|LEEFBED 0, £ (s,4)| < ATA(B)Co|0y, fu(s,y)|.  Since ¢ is
bounded by 3\8/3 < 2, the term 2T\(B )|rn(s,y)\wmﬁfn(s y)| is bounded

by 4TX(B)Cy|0z, fu(s,y)|. To conclude, we use |9y, fn(s,y)| < Fi(s,y) and Lemma 12.8
page 127, which states E(f,(s,v))? < WC(B))% where C' depends on d, |K¢~ and
|02, K| oo O

On the set {y € B}, we bound 0y, (Pnv)(s,y) — 0z, An(s,y) of two manners (see Lemmas
12.47 and 12.48), which enables us to state Proposition 12.49.

Lemma 12.47. On the set {y € B}, if v is bounded by C,, for alli € {1,---,d},
[0, (Puv)(5,y) = Oy An(s,y)| <8(TA(B))? |0, (s, )| fu (5, 9) = F(5,9)]
+ 8TAN(B)Cy| 0, fr(s,y)|-

Proof of Lemma 12.47. Ify € B and s € [0, T}, the first term of 0, (Ppv)($, y)— 0z, An(s,v)
is Oy,rn(s,y) [ NG g(2T\(B) fn(s,y)) — T)\(B)]. By using the proof of Lemma 12.31,
page 142, we get that

Orura(o) |

G(2TAB) £ (5,9) — TA(B)] ' < S(TAB)) 90,5, )| (5, 9) — F(s.3).
(12.24)

L
Jn(s,9)

Since ¢’ and @ are bounded by 2 and |ry, (s, y)| < Cy fn(s,y), the last two terms of (12.23)
are bounded by 4T'\(B) |0z, fn(s, y)|- O

Lemma 12.48. On the set {y € B}, for alli e {1,--- ,d},
|02, Prv(s,y) — O, An(s, y)| §8(T)‘(B))2|amirn(5»y)”fn(say) — f(s,)]
+ 24(TA(B))?[rn(s, y)l10u, fu (s, ).

Proof of Lemma 12.48. We use (12.24) to bound the first term of (12.23). Since @ is

bounded by 4 and % is bounded by 2, the last two terms of (12.23) are respectively
bounded by 16(TA(B))?|rn(s,y)||0x, fu(s,y)| and 8(TA(B))?[rs(s, y)||0, fa (s, y)|- O

Proposition 12.49. Let ¢y be such that 0 < ¢ < (TA(B))~!. On the set {y € B} and
for v bounded by C,,, we get for all i € {1,--- ,d},

62
E|0z, (Pnv)(5,y) — Ou,Au(5,9)|* < Coeg(TA(B)) E(a, (s, 9))* + Coh%(TA(B))‘lE(rn(s, v))°

T

OB (g Bl = Tls. ) + (3000, 5.0)?)

+C(T/\}(Lf))2 <€0+ T;\S( )> exp< cqﬂ(}i()) +CT);L(QB)6"eXP <—T)\(CB)5H> ;

x T
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where C' depends on Cy, d, | Kt|oo, |Kz|oo and |0y, Kz|eo and ¢ depends on d,|Ki|oo, | Kz|oo
and |0z; Kz|oo, and Cy is a strictly positive constant.

Proof of Proposition 12.49. We introduce L1, fu(5,0)— 02 E(fu(s0))[>1 and
1‘3%fn(&y),a%E(fn(s,y))‘Sel, and we split 0, (Pnv)(s,y) — Oz, An(s,y) w.r.t. these
indicators. On the set {|0g, fn(s,y) — E(Oy, fu(s,y))| > €1}, we use Lemma 12.47 to
bound |0z, (Prv)(s,y) — 0z, An(s,y)|. On the other set, we use Lemma 12.48. We get
10; (Pav)(5,y) — O, An(s, )| <8(TA(B))?|0s,70 (s, )l fals,y) — F(5,9))
+ 24(T)‘(B))2|7"n(5= Y10z, fn(s, y)|1\811-fn(S,y)*aziE(fn(s,y))\SEl
+ 8TA(B)Co| 0, fr (5, ) Lo, fu(5.9)~E (00, fn(s,3))>e1 -

Using this formula, we study E|0,,(Pnv)(s,y) — Ox, An(s, y)|%.
First, let us deal with |0,7(s, y)||fu(s,y) — F(s,y)|. We introduce 1|4, (s 1)~ E(fn(s.5))><0
and 17, (s.4)—B(fu (s,9))|<co 10 [0, 70 (5, 9)|[ fn (s, y) = f (5, y)| and we apply | fn(s,y)— f(s,y)| <
| fa(s,y) = E(fuls, 9))| +[E(fu(s,9)) = F(s,9)] and |0z,70(s,9)| < Cofri(5,), where f, has
been defined in the proof of Lemma 12.46. We get
B[00 (s, y) P fu(s,y) = [(s,9)]* < 263E|0s,70 (s, y)[?
+ 2CS|E(f7L(Sa y)) - ?(87 y)|2E(T:’L(5> y))2

+ QCgEan(S7 y) - E(fn(sa y))‘21\fn(s,y)fIE(fn(s,y))|>eo (?:L(S’ y))Q]

Lemma 12.8 page 127 yields IE(fiL(s,y))2 < W, where C' depends on d, |K;|~ and

|02, Kz|oo. We use Cauchy-Schwarz inequality,

(Fu(s:9)” < 2B(Fo(5,9)) = Fu(5,9))? + 2(E(f,,(s,9)))°
and Proposition 12.16, page 132 to bound the third term.

Second, we study (T)\(B))2’TTL(S7y)|’8mifn(87y)|1|8wifn(S,y)_aw,L-E(fn(&y))‘§€1' From
lafifn(svy” S ‘8331fn(87y) - E(arzfn(say»’ + ’E(aiﬂzf'ﬂ(svy))’a it fOHOWS

(TAB))'E[rs (s, 9)|0, fn (s, )P L0, 1o (5:9)— 00, Efusa)<er) < 261(TA(B))Elra (s,9)]
+2(TA(B)) E[r (s, )|[E(Dz, fuls, 1)),
and we use Proposition 12.20, page 136, to bound E[r2(s,y)] in the second term of the
above inequality.
Finally, we study TA(B)|0, (s, Y)|1ja,, fu(s0)~E(@s, fu(sa))|>er- WItING [0z, fn(s,y)| <
|02, fn (5, y) — E(Og, fr(s, )| + [E(Oz, fu(s, )| leads to

(T)\(B))QEH&EZ fn(37 y)‘21\8wi fn(s,y)—E(axifn(s,y))\>51] <
2(TA(B))*E[|0z, fn(5: ) = B, fn(5:9)* L0y, f(5.0)~E0s, fu(s0))|>€1)
+ 2(TA(B))?[E(y, fu(5,9)) P10, fn(5,y) — E(Dr, fu(5,9))] > €1).

The second term is bounded by 2(TA(B))?|E(dy, fn(s,vy))|>. Proposition 12.18, page 135
enables us to bound the first term. We get

E (102, fn(5,y) = E(Ds; fu(s,9))]? 1\azifn(s,y),E(azifn(s,y))\>€1)

) ce2h2TA(B)
< 2 n _ 1'%z .
< (it ) o0 (5
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By choosing €1 = Z—Z, the result follows. O
Lemmas 12.45, 12.46 and Proposition 12.49 enables us to state the following Theorem.

Theorem 12.50. Assume that the coefficients o and b are Lipschitz and bounded measur-
able functions on [0,T] x RY and that o satisfies the ellipticity condition. If v is bounded
by Cy, Veo > 0 satisfying €2 < (TA(B))™2, for alli € {1,--- ,d},

- Ky(T)
x =  h2

T

(hy + e M2a?1hy)

E||0z, (Prv) — awiAnH%{g

62
+KDNTAB) (53 1ol + uaxvn?{ux)

DA (5 ) (L) ST ()

Ko(T) depends on |Ki|oo, |Kz|oo, 8, 2,d, i and K. Ki(T) depends on Cy,d, | K|, 3, K
and ag. Ko(T') depends on Cy, d, | Ki|oo, | Kz|oo, K, pt, 0 and as.
In particular, for g = 0 we get

SE(T)
X~ h2

TX(B)by, c
+ Ky(T) (hZT/\( )on + h(Z)exp <_T)\(B)5n>> .

+ Ko(T)

10, (Puv) — 9, Al (he t ot h)

Proof of Theorem 12.50.

T
E Ha:m(,an) - 8:B¢An”?{/‘;7X = /(; dse” /]Rd dyV0(37y)E’8mi (an)(57y) - a;viAn(&y)’Q-

If v is bounded by C,, we combine Lemmas 12.45, page 151, Lemme 12.46, page 151
and Proposition 12.49, page 152 to get

c [r s
B10s (Pu) — on Ay < [Fase [ sy
o (0,a+ha)\B

dyv®(s,y (h2 [E(fu(s,9)) = f(5,9)|* + (E(u, fu(s,9)))?)

<> (H52) - o (i

T
></ dseﬁs/ dyr® (s, y),
0 B

where C' depends on Cj,d, |K¢|oo and |0z, Ky|eo and ¢ depends on d, |K;|oo and |Kz|oo-
We use (12.14), page 141 to bound the first term, and (12.16), page 143 to bound the
last one. Proposition 12.15, page 131 and Proposition 12.19, page 135 bound the third
term. It remains to bound the second term. To do so, we use the last result of Proposition

+ Co(TX(B / dseﬁs/ dyr®(s,y) (2E(0p, (s, y))* + hQE(rn(s,y))Q)
dseﬁs/
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12.20, page 136 to bound E(r2(s,y)), and the second part of Proposition 12.21, page 137
to bound E(9,,7,(s,y))%. We get

@) [ ase [ ans.0) (FE@urats ) + SR <
% T2d+2 / dseﬁs/dyu s y/ dth2< ];T>/deKg <yh_xz> v2(r, 2)
2 ap
+ 4ef 20 [ Kaloe (2T)\ / dseﬁs/ dyr® (s, y)
hz B\Bac (0,a—ha)
2d+1(T)\(
Bs K2 K2 ] 2
T [ [ [ (57) 2 (1) ot
(TA(B))? / ﬂ/ 0 / 2( 7")/ 2( —Z) 2
R e dse”® [ dyv” (s, drK dz(0. K, = ) v(r, 2).
qUr [ ase [ awt [ ) [ (5 e

To conclude, we apply Lemma 12.10, page 128 with g, = K?, g, = K2 and f = v and
(12.5), page 132. O

2
12.4.3 Study of E ||0,B,, — 8IUHH5X
By using the definition of B,, we get

Oz, Br(s,y) — 0z,0(s,y) = TA(B)0y,rn(s,y) — Oz, v(s,y).
Proposition 12.24, page 139 gives us
E Haszn - anv”%{gx = ||]E(8CE~;BTL - 8@”)”?{’5)( + HStd(axiBn - 8@”)”12?5)( The scheme
of the Section is the following. We bound ||Std(0y,Bn — ariv)”?{gx in Proposition

12.51.  Then, we study ||E(8xiBn_8:p¢U)H§{§X' To do so, Lemma 12.52 splits

E(Oy, Bn(s,y)) — Oz, v(s,y) in four terms. From Lemma 12.53 to Lemma 12.56, we study
these four terms. Using these results we bound [|E(0y, B, — Gxiv)H?{gX in Proposition

12.40. Theorem 12.41 ends the Section by bounding E ||0,, By, — &Eivaqu

Proposition 12.51. Assume that the coefficients o and b are Lipschitz and bounded

measurable functions on [0,T] x R? and that o satisfies the ellipticity condition. For

allie {1, - ,d},

TA(B)sn
ISHd(02, B = 0e,0) g < (D)= ol

where K(T') depends on p,d,[,|Kt|cc, |0z, Kz|oo, K,a1 and ag. If v is bounded
by C,, we get |[Std(By, )HHu < K’(T)%, where K'(T) depends on
Co, | Kt|oo, |02, Kz |oos iy d, B, K, 01 and .

Proof of Proposition 12.51.
T
I8td(@s, By~ o)y = [ dse® [y, )Var(0s, Bu(s.9)  Duo(s. ).
’ 0 Rd

= (TX(B / dseﬁs/ dyv° (s, y)Var(9,,7n(5,9)).
Rd
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Using the second part of Proposition 12.21, page 137 yields

B 2
HStd(acciBn aziv)HHgYXS

TAB) (T 4 . T L (s—r e,
e, o [t [kt (352) [ asouse (V5 )

To conclude, we apply Lemma 12.10, page 128 with g; = K2, g, = (9:,K;)? and f = v. If

v is bounded, we combine the first part of Proposition 12.21, page 137 and (12.16), page
143 to get the result. O

Second, we study ||E(0y,Bn — 8951.11)]\%15)(. First, let us split E(0y, Bn(s,y)) — Oz, v(s,y).
Lemma 12.52. For all (s,y) € [0,T] x RY, for alli € {1,--- ,d},

E(0z, Br(8,y))—0z,v(s,y)

o /Rddz/ dri, ( > t( f;r>(8xiv(r,z)—6miv(s,z))
i /RddZ/ drK, < > <S_r> (0 0(s, 2) — D05, 1))
—W/cdz/ drﬁmin< > (3_7“)

d/ / drK, ( > < >8xlv(s Y)
hg Jra [—h,0JU[T, T+ hy]
Bi(s,y) + By(s,y) + Bi(s,y) + Bi(s,y)-
Proof of Lemma 12.52. We can write
0, 0(8,y) = O, 0(8,y) » hd Jga dzK, ( )fT+ht drK; (sh;:) Since

E(Oy, Bn(s,y)) = hd“ fB dz04, Ky, ( )fo drK; ( )v(r, z), we get

E(Oz,Bn(s,y)) — 0z,v(s,y) =
1/TdK S_T/d Lok (=2 ol 2) — Ko (=2 0. 0(s, )
o rK, » y z o Owie | T v(r, z -\ I V(S Yy
- T
hthdH/ch/ dr0y, Ky ( )Kt< i, )v(r,z)
y—z s—r

—— [ 4 drK, K By (s, ).

h¢hd /]Rd Z/[—ht,O]U[T,T—&—hz} ' < hy ) t< hy ) (s,)

We integrate by parts [pa dziéaxiK;(%%f)v(r, z), we get [—KL(¥= “H)u(r, )] % +
e dziK;(%%f)8xiv(r, z). Since K: has a support in [—1,1], the first term is null and
the result follows. O

The following four Lemmas study the norms | Bi(s, y)H?{gX, || Bi(s, y)\ﬁ{g o
- 2 . 2 ' ’
HBZI‘)(Say)”Hg,X and HBZ(Syy)”HgX
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Lemma 12.53. Assume that the coefficients o and b are Lipschitz and bounded measurable
functions on [0,T] x R? and that o satisfies the ellipticity condition. We also assume v

satisfies Vt,t' € [0,T),Vz € RY, Vi € {1,---,d}, |0z,0(t,x) — Op,v(t', ] < Cy/|t

where C' is a positive constant. We get for all i € {1,--- ,d}, HBl(s,y)HHg,X < K(T )ht,
where K(T') depends on d, u, K, 3, as,C and C,.

Proof of Lemma 12.53. We recall
Bi(s,y) = mf[@d dzfoner(%)Kt(%)(@xiv(r, z) — Ogv(s,z)). Using the
Hypothesis on v, we get (Bi(s,y))> < C?h;. We use (12.16), page 143 to bound
1B (s ) s =

Lemma 12.54. Assume that the coefficients o and b are Lipschitz and bounded measurable
functions on [0,T] x R? and that o satisfies the ellipticity condition. We also assume v is
a function C? in space. There exists a function K(T) such that for alli € {1,--- ,d},

o 2
1Bs, iy < KO ||o20 5

where K(T) depends on d,u,|Kzloo, 3, K,1, and ao. If 0%v is bounded, we get
HBg(s,y)H?{gX < K'(T)h2, where K'(T) depends on |02v|%, and on the same parameters
as K(T). ’

Proof of Lemma 12.54. We recall
Bi(s,y) = ﬁ Jra dz fOT dr K (%) Ki(%57) (0z,0(s, 2) — 9z,0(s,y)). We apply a Taylor
expansion formula to each component of the following sum

d
0z, 0(8,2) — O, v(s,y) = Zain(S,fj) — 0y, 0(8,Zj-1),
j=1
where Vj € {1,---,d}, Z; = (21,22, ,2j,Yj+1, " ,¥Ya), and Zg = y. For all j €
{13 ad}v we get

zj
0y, 0(8,Z5) — Og,v(5,Zj-1) :/y dl@gixjv(s,fé),

j
where Eé- = (21, ,%j-1,1,Yj+1, - ,ya). Plugging this result in the definition of Bé(s, Y)

leads to

d .
Ri _ 1 y—z -r e !
Bs(s,y) = hthcxl ;/}Rd dz K, < Iy ) /0 dr Ky ( hy ) /y dlaxixj (872])

J

Moreover, fOT dr Ky( ﬂ) < hy and  [padzK, (y_z)f;? dl|8§i (s,zé)| <
(2h2) I K| oo fyyllJrhhz dzy - fyilltf:m dz; yﬁhx  dl|og, (s,?é)| Hence,
d : . .
. 9d—j+1  ryi1tha Yj—1+ha Yj+he _
Bis.) < Kale > 5 [ e / e [ a2 ol(s.2)
j=1 T y1—hg Yj—1—ha yj—ha

d
<2 Keloo Y By (s,0),
j=1
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where B (s,y) := h] : fyyllJr:’” fyj 1+h$ y3+h”” dl| o2, |(s,z§). We end the
proof as we did for Lemma 12. 37, page 146 0

Lemma 12.55. Assume that the coefficients o and b are Lipschitz and bounded mea-
surable functions on [0,T] x R? and that o satisfies the ellipticity condition. If v and
Ozv are bounded by C,, we get ||B§(5,y)||§{§x < K(T)h—lze*%a, where K(T) depends on
d,pu, K, 3,0, Cyy and | Ky|oo-

Proof of Lemma 12.55. We recall
Bg(s,y) = _Ahthld“ [5d= fOT dr@zin(y};Z)Kt(%)v(r, z). Moreover,

l.epe = 21216[ a,a] z] 1€[— aa}lzJER\[ aa]]-z]+1€R ) szR ::ZlAjy

—ZlA +14, + Z 1a;.

Jj=i+1

We use the above decomposition of 1__z to compute Bg(s, Y).
) .. i T _ _
First, let us compute Bj(s,y) := —# Z;zll fA]- dz [y droy, K (52) K (555 )v(r, 2).

We integrate by parts [ dz0, KL (%) v(r, z) and we get hy [p dzi0p,0(r, 2) KL (yil;z’)
Then,

o 2 i—1
Bél(say)Z / dz K2( ) 02| :L“|oo Z/ dzl‘yl —z1|<hg * 1|yd —zq|<hg"

Since fAj dzLy, —i<he  Yyamsal<he < (2ha)?Ly¢p. (0.0-h,), and using the proof of
Lemma 12.38, page 147 gives Héél(s,y)ﬂzgx < K(T)eiﬁ(aihz).

Second, we compute Biy(s,y) := —W Ja, dz fOT drz, K (% 2) K (%" )v(r, 2). We inte-
grate by parts fR\[ dzz&le’ (yle) v(r, 2).

1 (Vi — zi yi +a ; (vi—a ;
— dz;0., K, <> v(r,z) =— K; ( ) v(r,zy) + K. < ) v(r,zL,)
hg R\[—a,a] he hy e

+/ dz;0y,v(r, z)K <yl_ z>a
R\[—a,a] hl

where z; denotes the vector (z1,-+:,2i—1,¥,2it1," " ,2d)- Then, B§2(s,y)2 .
C?|K, \oohz (1‘yz+a|<hx + 1\yra|<h) C2\Kx\oo fA 21y, oyj<hy  Ljyy—zgl<h., and then
Bi,(s,y)? < C?|K, |Ooh2(1|yz+a‘<hx + 1, a|<hx) + C?|K, %1 yiBo(0a—hy)-  We obtain
| Bia(s. )z < K(D)(1 ﬁ)e (aha)

Finally, we compute ng,(s,y) = hd“ Zj it fA dz fo dry, K, (4= )Kt( ) (r,2).
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We integrate by parts f[ dz;0z, K& (ylh;f) v(r, z).

_a7a]

1 Ay — 2 -y — 4 -y .
W o dzi0z, K, <y hxz ) v(r,z) =— K. <y W a> v(r, z;) + K. <y h—: a) v(r, zL,)
-l-/ dzi0p,0(r, 2) K. <yZ —_ Zi) .
[~a.a] he
Then, 333(5, y)2 <

: Ka|2 d
Cg‘Km‘go@(l\yi+a|Shz + 1|yi—a\§hz) + Cg% Zj:iJrl fAj dzl\y1—21|§hz - 1\yd—zd|§hz'
By ~using = the previous results for B§1(3, ?J)Q and B§2(57 9)27 we  get
~ 2 i
| By, )l | < KDL+ e V™", -

Lemma 12.56. Assume that the coefficients o and b are Lipschitz and bounded measurable
functions on [0,T] x R? and that o satisfies the ellipticity condition. If Op,v is bounded
by C,, we get HBf'l(s,y)HZgX < K(T)ht, where K(T') depends on d,u, K, 3, as,Cy, and
1Kt oo ’

Proof of Lemma 12.56.

We recall Bi(s,y) = —m Jga dz ﬁ*ht,O}U[T,T+ht] dr Ko (52) K (%5)0z,v(s, y). - Since
Jz,v is bounded, Bi(s,y) < %ﬁg Jra 2K (57) f[—ht,O]u[T,T—&—ht] drK;(%"). We end the
proof as we did for Lemma 12.39, page 148. O

Combining Lemmas 12.52 to 12.56 leads to the following Proposition

Proposition 12.57. Assume that the coefficients o and b are Lipschitz and bounded
measurable functions on [0,T] x RY and that o satisfies the ellipticity condition. We
also assume that v and Oy,v are bounded by C, and v satisfies Vt,t' € [0,T],Vz € R¢,
|0z, 0(t, x) — Oy, v(t', x)| < C\/|t/ —t|, where C is a positive constant.

1. Assume that v is a C? function is space. Then,
2 2 (192,112 I —ba
IB0n B~ 0n0)ly , <Ka(TIR2 020l +80(T) (e 41 )

where Ko(T) depends on d,p, K,a1,as,8 and |Ki|le and Ki(T) depends on
Ca dauaKa 061,062,57 Cva |Kt|oo and ’Kz|oo

2. Assume in addition that 0%v is bounded by C,. Then,
Dy

1 _»,
5005~ 0n0)lfy < KT (ot 12+ e,

where K(T) depends on C,d, u, K, a1, a9, 3,Cy, | Kt|oo and |Kz|so-

Combining Proposition 12.51, page 155 and Proposition 12.57 leads to the following
Theorem
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Theorem 12.58. Assume that the coefficients o and b are Lipschitz and bounded measur-
able functions on [0, T] x R and that o satisfies the ellipticity condition. We also assume
that v and d,v are bounded by C, and v satisfies Vt,t' € [0,T],Vx € RY, Vi € {1,--- ,d},
|0z, 0(t, ) — O, u(t' )| < C\/|t — t|, where C is a positive constant.

1. Assume that v is a C? function in space. Then, for alli € {1,--- ,d},

TX(B)d 2
2 2 2 (192
1008~ Bnolfy <o) (T2 oy 02 020y )

1 —u,
+ K\(T) <he Vi +ht>,

where Ko(T) depends on d,p, K,a1,as,8 and |Ki|leo and Ki(T) depends on
Ca d7 M, Ka a1, 02, ﬂ7 va ‘Kt‘oo and ’KJ:|OO
2. Assume that v is a 02’2 function and let C, denote the constant bounding v, Oyv, Oxv
and 0%v. Then, for alli € {1,--- ,d},
TA(B)(S,—L 2 1 _e,
4}7/;2E +ht+hx+h7x€ Vd ’
where K(T') depends on C,d, pu, K, a1, a9, 3, Cy, |Ki|eo and |K;|so.

00,8~ 2u0lye < (1)

12.4.4 Conclusion

Combining (12.21) page 150, (12.22) page 150, and Theorem 12.44 page 151, Theorem
12.50, page 154 and Theorem 12.58 yields the following Theorem

Theorem 12.59. Assume that the coefficients o and b are Lipschitz and bounded mea-
surable functions on [0,T] x R% and that o satisfies the ellipticity condition. We also
assume that v and Oyv are bounded by C, and v satisfies Vt,t' € [0,T],Vo € R,
|0,v(t, z)—0zv(t', )| < Cy/|t' — t|, where C is a positive constant. For all €g > 0 satisfying
€5 < (TA(B))?,

1. Assume that v is a C? function in space. Then,

e TXB)é,
B10.(Po0) - ol < () ((rNB)PE + TN 1 12) Lol

1 — g
+ K(T) [hth;Q + h—e_““ad_l +hle v ]
(TA(B))? [ 4 5n ce3TA(B) TA(B)d,
w2\ amy ) P 5 T

x x

C

+ K(T)

where K(T') depends on C,d, pu, K, a1, a9, 3,Cy, | Ki|eo and |Ky|so.

2. Assume that v is a 02’2 function and let C, denote the constant bounding v, Oyv, Oxv
and 0%v. Then,

E ||ax(7)n’0) — &{UH?{ELX < K(T) (hth;2 + hi + hgle_ﬁ“)

TX(B)j, e Higd! TA(B)o, c
+ K(T) ( = + I + % exp “TaBw, ) |

x x

o (_TA(B)én

)

)
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where K(T') depends on C,d, u, K, a1, a9, 3,Cy, | Ki|oo and |Kz|so-

Remark 12.60. Looking at the first result stated in Theorem 12.42, we notice that the
coefficients in front of HvHiI;S‘( and ”‘%U”%Ig,x are proportional to h%, h? and 6,. They

correspond to the error terms due to the Ly error E|P,v — v|?: h? and h} come from
the bias error |[E(P,v — v)|? and 6, corresponds to the variance error Var(P,v). In other
words, had we studied E|P,v(t,z) — v(t,z)|? without integrating w.r.t. eftdt @ e #I*ldz,
we would only have obtained an error of order h%, h? and J,. Since we integrate w.r.t. x,
the truncation error h; + e_%a + e Heqd=1h, appears.

Since we study 9,Ppv — ;v in Theorem 12.59, it is consistent to get errors of order hi,
%, hih 2, e Faqd—1p 1,

x






Chapter 13

Convergence Results of our
algorithm

We recall that our goal is to prove the convergence of our algorithm which approximates
(Y, Z), the solution of the BSDE

_dYt = f(t7Xt7}/;f7 Zt)dt - thWt7
(E)q Yr=&(X7),
X =a+ [1b(s, Xs)ds + [} o(s, X)dW.

Theorem 9.14, page 99, links (Y, Z) to u, the solution of the following PDE :

() Opu(t, ) + Lu(t,z) + f(t, z,u(t,x), (Oyuo)(t,z)) =0,
uw(T,z) = ®(z),

where L is defined by

1
Lipayult,r) = 5 > loo™)i(t,2)07,, ult, z) + > bi(t, )0, ult, ).
2, )

According to this Theorem, under Hypothesis 9.5, page 99, we get u € C’b1 2 and
vt € [0, T], (Yi, Zt) = (u(t, Xy), Opu(t, X¢)o(t, Xt)).

Our algorithm (described in Section 9.6, page 103), builds u, an approximation of u, and
deduces (Y*, Z¥), the approximation of (Y, Z) by using the following formula

Ve [0,T], V¥ = up(t, X)), ZF = 0pup(t, XN)o(t, X}V,

where X% is an approximation of X. More precisely, we build u recursively in the
following way

Uk(t, JI) = P,?(”U,k,l +@k)(t7x)a

where Wy (t,x) is given by (9.13), page 104 and P* is a Kernel estimator described in
Section 11.3, page 119 and studied in Chapter 12, page 125.
In this chapter, we show that ||Y* —Y||i”3+HZk - Z”iﬂ tends to 0 when k goes to

163



164 18. Convergence Results of our algorithm

infinity, where || - || .5 i a given norm specified below. After giving some Definitions
and Notations in Section 13.1, we state in Section 13.2 the main result of this chapter :
Theorem 13.10, which proves the convergence of our algorithm. This theorem ensues from
two Propositions (Proposition 13.11 and Proposition13.12). We prove Proposition 13.11
in Section 13.3. Proposition 13.12 page 167 is quite long to establish. We present the
scheme of the proof of Proposition 13.12 in Section 13.4. This proof combines results from
Chapter 12 and from the next Chapter.

13.1 Definitions and Notations

In the whole Chapter 13, we assume Hypothesis 12.1, page 126, concerning the param-
eters used to build P¥. First, let us recall some Definitions given in Part II.

Definition 13.1 (Definition of K, aq, ag, 0¢, 01 and ¢). We recall the definition of some
constants used in this Section and introduced in Part II.

1. og and o1 denote the constants appearing in Definition 6.2, page 63: ¢ is uniformly
elliptic on [0, 7] x R? if there exist two positive constants o, oy s.t., for any vector
¢ and any (t,z) € [0,T] x R?

d
o0lél> < ) loo™]is(t, 2)6i; < oul¢f.

3,j=1

2. K, ay, and ag denote the constants introduced in Proposition 6.4, page 63:
Assume that the coefficients o and b are bounded measurable functions of (¢,z) €
[0, 7] x R? and that o is elliptic. There exist positive constants K, oy, as s.t.

K1 _ lz—y? 1 _ _l=—y?
- e 2aq (s—t) S p(t,$7 s, y) g K - e 2ag(s—t)

(2may(s —t))2 (2mag(s —t))2
The constant K depends only on og, o1,d, T and the suprema of the coefficients o, b.
The constants ag and «q depend on og, o1 and d.

3. ¢ denotes the constant introduced in Theorem 8.1, page 78:
Assume o is uniformly elliptic, b € C’bl’2 and o € C;’g, Oyo € C’b1 in space. Then,
V(s,z,y) € [t,T] x RY x RY, there exist a constant ¢ > 0 and a function K (7) non
decreasing in T' and depending on the dimension d and on the upper bounds of o,b
and their derivatives s.t.

K(T)(T -1 clz —y|?
[p(t, 5 5,y) = p™ (t, 258, y)| < X dH) exp(— | | )-
N(s—t)=z s—1
Under these hypotheses, we also have
K(T clz — y|?
()] € O (- S0,
(s —1t)2 s—t

Second, let us recall the definitions of H g + and H g )
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Definition 13.2. For any § > 0, for any p > 0 and any diffusion process (Xs)o<s<r
starting from x at time 0, which transition density function is denoted p, H g I defines the

space of functions v : [0,7] x R? — R such that
T ~
ol = [ e [ et elmju(s, X2 Paods < o
8.X 0 Rd

Using the definition of v, we also get |[v|5n = fOT P [oadyr®(s,y)|v(s,y)|?, where
B,X
vi(s,y) = Jpa e Molp(t, 25 5,y) (see Definition 6.11, page 67).

Definition 13.3. For any § > 0 and pu > 0, let Hg define the space of functions v :
[0, 7] x R — R such that

T
ol = [ e [ e ¥lots,a) P,
0 R4

From Proposition 6.12, page 67, we deduce the following Proposition

Proposition 13.4 (Norm equivalence). Assume that the coefficients o,b are Lipschitz
bounded measurable functions on [0,T] x R? and that o satisfies the ellipticity condition.
There exist two constants ¢ > 0 and C > 0 depending on T,d, u, K, a1, a0 s.t. for every
ve LY(0,T) x R, ePtdt @ e=Holdr)

2 2 2
oy < ol < C ol
Definition 13.5 (Definition of Hj(R?)).

1. For any 8 > 0, we define (Hg(Rq), |- 1l,,5) the set of predictable processes V' :
Q x [0,T] x R — R? such that

T
IVIZ%5:=E UO /Rd 3|V, () [Pe 1 dads

is finite.

2. Let (X,Y, Z) be the solution of (E) (see page 99), u the solution of (£), (see page
99), and (Y*, Z*) and X defined as above. By using the previous definition, we
get

T
|y — YkHiﬁ =E {/0 /Rd P lu(s, X¥) — uk(s,Xév’xﬂQe_“'x'dxds] , (13.1)

T
12— 2", ,=E [ /0 /]R €7 1(0u0)(5, XT) = (Dpuno) (s, X;V’“"f)Fe‘“'fdxds] :
(13.2)

We can do it since u, ug, Oyu and Oyuy are bounded (see Theorem 9.14, page 99 and
Proposition 11.9, page 123), then [|Y — Yk||z’ﬁ and || Z — Zk||zﬂ are finite.

Remark 13.6. We point out that the expectation appearing in the above definition of
Yk — Yﬂiﬂ and || Z% — ZHiﬁ is computed w.r.t. the law of X, X" and all the random
variables used to compute ug. We refer to Remark 9.19 for a detailed survey.
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Definition 13.7 (Definition of Y* and Z* ). Let (Y*, Z¥) be two processes given by
Vit e [O7T]a Y/;Ek = uk(tht)a Zf = a:zfuk(ta Xt)o-(tht)'

Remark 13.8. Since Y and Y* are processes both depending on the process X and since
u and uy are bounded, we can write

T
1Y — YkHiﬁ =E [/0 e’ /Rd lu(s, X7) — ug(s, X%)[2e Ml dxds

T
=E Hu - ukHQH‘B"X = /O dseﬁs /Rd dyV0(87y)E|U<S, y) - uk(sv y)|2

We refer to Definition 12.2 (page 126), for the definition of 1%(s,y). The same result holds
~, 9 ~ 9 T

for || Z — ZkHuﬁ |1 Z — Zk||uﬂ = E||0yuo — BxukaquEX = /o dsel® [oa dyv®(s, y)|0puo —

83;Uk0'|2(5, y)

Finally, we give some notations commonly used in the sequel.

Definition 13.9 (Euler Scheme). We approximate X by its Euler scheme of order N > 1,
denoted XN , and defined as follows. We consider the subdivision {0 =ty < t; < -+ <
ty = T} of the interval [0, T}, i.e. t, = k% We put X} =z and, forall k € {0,--- , N—1}
and t € [tk,thrl], Vi € {1, s ,d},

q
X0 = X i (e, Xt — i) + > it X)) (W] = W), (13.3)
=1

Note that the continuous Euler scheme is an Itd process verifying

t t
XtN:ar—i—/O b(w(s)aXﬁsﬂdH/o (io(s), X o)) AW

where p(t) := sup{ty : tx, < t}.

13.2 Results

Theorem 13.10. Assume that o is uniformly elliptic, b € C’I}’Z and o € C;’S, o0 € C’I} in
space. We also assume that f is a bounded Lipschitz function (whose Lipschitz constant
is noted Ly) and ® € CZt*. Then, Y —Y* and Z — Z* converge to 0 in norm Il .5 when
N,n,a, h;l,h;l and M, the parameters introduced in the description of the Algorithm
(see Section 9.6) related to the discretization scheme, the kernel estimator, and the Monte
Carlo method, tend to +00. More precisely, we have
k|2 k|2 K(T) Sk 2 Sk 2
1Y =Y, 5 +112 = 2%, 5 <C—5= + EDUY = Y7l 5+ 12 = 27, )

and ||Y — ?kHiﬁ +||Z - ZkHiﬂ geometrically converge to a constant C depending on the
above parameters when k goes to infinity. Moreover C goes to 0 when N,n,a,h;" ht_l

s Mg

and M tend to +oo. K(T') depends on the dimension d, u, the upper bounds of o,b and
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their derivatives, K, ¢ and avy. Moreover, if (8, hy, hy,n, M, N,a) are chosen such that the

following 1 is smaller than 1,

| : 2\ LKD) | K(T)
limsup (|[Y¥ -V +1zF -z <C— + 1,
sup (| s + 125 = Zl) < O3 + 12
where
41+ T)L2
m= g K1) (TAB)I (L4 M%) 4 02 4 17)
Ke(T) - “nagd=lyp -2y ol Val
C1 =Nz *+ Kal) (TAGB)SWhL? + (oo hoe a2 4 0 e 405

K, (T) depends on i, 3,d, | Kt|oo, [ Kz|oo, |0:Kz|oos Cus Ly and the upper bounds for f, b,
o and and their derivatives, on ¢, K, a1, ag and oy and o1. Kc(T) depends on the
dimension d, u, 3, the upper bounds for f and ® and for o,b and their derivatives, on c,

and on K, as and ay.
The proof of this Theorem ensues from the two following Propositions.

Proposition 13.11. Assume that o is uniformly elliptic, b € 02’2 and o € C;’?’, oo € C}
in space. We also assume that f is a bounded Lipschitz function and ® € C§+a. Then,
there exists a constant C depending on |u|so, |02, |02U|oo, |0loo and pu and a function
K(T) such that

2 2 K(T) ~ 2 = ko112
1Y =Y*, s+ 12 =25, <C—= +E@(IY — YL+ 12 =281, ),
where K (T') depends on the dimension d, p, the upper bounds of o,b and their derivatives,
K, c and ay.
Proposition 13.11 is proved in Section 13.3.

Proposition 13.12. Assume that o satisfies the ellipticity condition, b € C;’Q, o€ 03’3,
0o is C’l} i space. We also assume that f is a bounded Lipschitz function and ® € C’nga.
Then,

~ 9 Sk rk—112 Sk—1)2
1Y = V55 12 = 250 5 <m (1Y = V57 5+ 12 = 25715 5) + O,

where 11 and Cy1 are defined in Theorem 13.10. We can choose parameters
(B, hgy heyny M, N, a) such that m < 1 and Cy tends to 0 when (h;l,ht_l,n,M, N,a) go to
00.

Proof of Theorem 13.10. Let C' denote ||Y||ZB + ||Z||iﬁ From Proposition 13.12, we get

1—-m

2 Sl 2
1Y =Y, +12 = Z¥|l, 5 < niC +

Hence, Y — f/kﬂiﬁ—}— |Z — Zk”/i,ﬁ < (C - 1?}71> + ﬁC’l. Then, from Proposition
13.11, we deduce
K(T)

C 1
Y — vF|? Z-75% <o Lk (nf (0 = 22 .
I s + 1 lus <O + KM M\ C - )+ 7O
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Since 1 < 1,

. 2 2 K(T) K(T)
lim sup Yk vy +zF -z <(C———= 4+ ———=C1,
s (JVF =Vl + 125 = Zl,5) < O53= + 7

and the r.h.s. of the previous inequality tends to 0 when N,n,a,h, ", ht_1 and M tend to
~+00. O

Remark 13.13 (Analysis of the terms bounding [|Y — Yk”ig +1|Z - Zk”iﬁ) Looking
at Theorem 13.10 and more particularly to the constants C; and 71, we notice that if we
neglect N we get the error terms 2—3, h2, hih;2, h;le_““ad_l. These terms appear in the

upper bound for |jv — P"UH%IEX and ||0zv — (%;(an)|]ng (see Theorem 12.42 page 149

and Theorem 12.59 page 160). The error terms h;h;2 and hy'e *@a?~! appearing in O}
are due to the boundary discontinuities (related to the gradient). We guess that a suitable
modification of our algorithm might remove these errors. This is left for further research.

Remark 13.14. The constant M, which denotes the number of Monte Carlo simulations
used to compute Wy (see Section 9.6), only appears in the contraction constant 7;. This
deeply relies on the adaptive control variates method. Had we implemented a non adaptive
method (using naive Picard iterations as presented in the introduction of the manuscript),
M~! would have appeared in C. This would have led to a choice of M quite large.

13.3 Proof of Proposition 13.11

Under the Hypotheses of Proposition 13.11, we can apply Theorem 9.13, page 98, which
states u € 02’2. We recall (13.1) and (13.2), the starting point of our proof.

T
|Y* — Y”iﬁ =E [/ / eP¥lu(s, XT) — uk(s,Xév’x)Qe_“mdxds} ,
’ 0 JRrd
T
|Z* — ZHiﬁ =E {/ / e%|(9puo) (s, XT) — (6muka)(s,XsN’$)|26_“|xdxds] :
’ 0 JRd

We split [|Y* — YHiﬂ (resp.|| Z¥ — ZHig) into two terms, by introducing u(s, Xéw) (resp.
dpuc(s, X)), Since

[u(s, X3) — ug(s, X;70) [ < 2 (Ju(s, X7) = uls, X07)? + Ju(s, X17) = ug(s, X1)|?)
and

|axU0'(S, X;C) - 8$uka(sv XéV,x)‘Q <2 (!a@ua(s, X;E) - 8xu0(3, X;]V7x)’2
+|0puo (s, XNT) — 8xuka(s,XsN’x)|2) ,

proving Proposition 13.11 comes down to study in Lemma 13.15
T
E {/ / P lu(s, X)) — u(s,XéN’x)Fe_“'xdxds] and
0 JRrd

T
E {/ / % |0uo (s, X%) — 8xUU(S,X£V’x)‘2€M|I|d$d8:|
0o Jrd
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and to study in Lemma 13.16

T
E [/ / e u(s, XNo) — uk(s,X;N’“”)]Qe_“ﬂd:cds} =E|lu—ug|5+  and
0o Jrd 5.X

N

T
E {/ / |0 uo (s, XN — 8xuko(3,XéV’x)|26“|xdxds] = E ||0,u0 — dyupo||3n
0 JRd B,xN

Assume the following two Lemmas hold.

Lemma 13.15. Assume u, Oyu and 0%u are bounded by Cy and o and b are bounded
Lipschitz functions. Then, there exists a function K(T') non decreasing in T and depending

on the Lipschitz constant of o and b such that

T K(T
E {/ / P lu(s, XT) — u(s,XéV’“”)Pe“x'dxds] < Cuﬁ,
0 Rd N

T
K(T
E [/ / |0 uo (s, X2) — 8xu0(5,XéV’z)|2e“|$d:cds] < Cu|a|oog.
0 Rd N

Lemma 13.16. Assume o is uniformly elliptic, b € C;’z and o € C;’?’, 0s0 € Cl} in space.
Then, there exists a function K(T) non decreasing in T such that

2 2
Eflu = uillge < K(DE v = ugllpy
E||0puc — Opupo |3 < K(T)E ||0puo — dpupo |3
B, xN B, X

where K(T) depends on the dimension d, p the upper bounds for o,b and their derivatives,
K, c and .

Then, combining Lemmas 13.15 and 13.16 and Remark 13.8, page 166 ends the proof of
Proposition 13.11.

Proof of Lemma 13.15. Since wu,0yu,0%u,0 and 0,0 are bounded, |u(s, X%) —
w(s, X)) < CulX® — XN7| and |0,uo(s, XT) — Opuo(s, Xo)| < Culoloo] XZ — X7,
Using Theorem A.4, page 262, yields the result. O

Proof of Lemma 13.16.
First, we study E U(;‘F Jra P |u(s, X — uk(s,Xév’x)]%_“mdxds‘gk} and

E [fOT Jga P3| 0,uo (s, XN — &cuka(s,Xév’x)Pe_“':"dxds‘gk}, which are respectively

|lu — ’U,k;H?{u N and ||Oyuoc — 8xuka||§{u N
B,X 8,X

T
il = [ s [y [ dre s, 0,55,
) 0

Then, by using the upper bound for p” recalled in the beginning of section 13.1, we get

T 2
1 _
o =il < K(T)/O dse” /Rd dy /Rd dze= Moy — uy|2(s, y)—r exp <_C|~”ﬁy|> _

s2 s
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From Lemma 6.15 page 68, and Proposition 6.12 page 67, we deduce

2 d da
/ dzell L e <_c|ﬂf—y|> < od <E) 2 U2 _ulyl < 92 (E) (S5, 05 ).
R4 3 S o B c

82 ¢

Hence

2 T
Ju= il < K@ [Case® [y [ doe - s g)p0,355.0)
B8,xN 0 R4 R4

The procedure being the same for ||d,uc — d,upo||5m , as for ' — ug |30 .+ we deduce
5,X B,X

from this proof the second inequality of Lemma 13.16. O

13.4 Proof of Proposition 13.12

We recall the assumption under which Proposition 13.12 is stated

Hypothesis 13.1 Assume o is uniformly elliptic, b € C;’z and o € Cbl’s, 0o € Cl} mn
space. We also assume f is a bounded Lipschitz function and ® € C§+a.

Remark 13.17. Under Hypothesis 13.1, u defined as the solution of (£), page 163 is a
C’I} 2 function. We refer to Theorem 9.13, page 98 for a proof of this assertion.

Definition 13.18 (Definition of C,, and Ly). If f is a Lipschitz function, we recall Ly
denotes its Lipschitz constant. If u is a function such that u, d;u, d,u and d?u are bounded,
C,, denotes |u|oo V |01t oo V |02t so V |02 0o

We recall the result of Proposition 13.12
~ 2 =12 ~ k12 Sk 112
1Y = V55 512 = 200 5 <m (1Y = V57U 5+ 12 = 25715 5) + O,

where 77 and C are defined in Theorem 13.10, page 166. Before giving the scheme of the
proof of Proposition 13.12, let us give some definitions.

13.4.1 Definitions
Definition 13.19 (Definition of ?k,ik). Consider the linear BSDE

T T
yf:q)(XT)+/ f(s,Xs,Yskl,Zfl)ds—/ Zraw,. (13.4)
t t

(?I;,Zf)og s<T 1s the unique solution to (13.4). The solution is uniquely defined because
f(s, Xg, YE-1 ZE-1) € H2(R) (see Section 9.3).

We introduce the function H

Definition 13.20 (Definition of H). Let H : [0,7] x RY — R satisfy the following linear
PDE

{ (Or+ L)H(t,x) + f(t, z,up—1(t,x), (Ogur—10)(t,x)) — f(t,z,u(t,z), (Oyuo)(t,z)) =0,
H(T,z) =0,

(13.5)
where u is the solution of (£) (see page 99) and wuy is the approximated solution of u
constructed with our algorithm (see Section 9.6).



18.4. Proof of Proposition 13.12 171

Remark 13.21. We recall that Gy is the filtration generated by the set of all random
variables used to build ug_1.

Proposition 13.22. Assume that the coefficients o and b are Lipschitz and bounded mea-
surable functions on [0,T] x R% and that o satisfies the ellipticity condition. We also
assume that f is a bounded Lipschitz function, and ® is of class Cb2+°‘. Then, H(t,x)
admits the stochastic representation

H(t,z) (13.6)

T
E—1 [/ Fs, X up 1 (s, X2%), (Orup—10) (5, X)) = f(s, X%, u(s, X%), (Byuo)(s, XoT))ds|
t
on [0,T] x R?, (Xﬁ’x)tgsgr_p satisfies
Xbr = a:—i—/ b(r, Xﬁ’m)dr—i—/ o(r, XE)YdW,..
t ¢

Ex_1(:) means E(:|Gx_1). Moreover, H and 0,H are bounded.

Corollary 13.23. Assume that the coefficients o and b are Lipschitz and bounded mea-
surable functions on [0,T] x R, and that o satisfies the ellipticity condition. We also
assume that f is bounded.

1. If f is Lipschitz, o and b are C’b2 in space and ® is of class Cg'm, we get that H
satisfies, for all t,t" € [0,T],

|0:H(t ,2) — 0. H(t,z)| < C|flocV |t —t, (13.7)
where C' depends on d,oq,01 and on the bounds for 83@0, a’;b, for k < 2.
2. If o is C;’l, we get
1H1 + 100y | < K(),
where K(T') depends on o, its derivatives, |f|so, i, d, 5, K and as.

Proof of Proposition 15.22. The stochastic representation of H ensues from the Feynman-
Kac formula. We can apply Theorem A.6, page 263 since

e Hypotheses A.2 and A.3 page 262 are satisfied : b and ¢ being Lipschitz and bounded
functions, they follow the linear growth condition and the above equation satisfied
by (Xg’z)tg s<7 admits a unique strong solution,

e H satisfies the polynomial growth condition (A.6), page 263. We use Remark A.8,
page 263 to prove it. Looking at the assumptions required in the Remark, one notice
that we only have to prove

ft,x) = f(t,z,up—1(t, x), (Opug—10)(t,x)) — f(t, z,u(t, x), (Ozuc)(t,x))

is Lipschitz in ¢t and z and satisfies |f(t,z)| < L(1 4 |#|*?), where L > 0 and n > 1
(the assumptions on b and o required in the Remark are satisfied). We easily prove
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that f satisfies the polynomial growth condition since f is bounded ( by 2|fleo). We
show that f is Lipschitz in ¢ and z, by using that f and o are Lipschitz in all their
variables and that v and up_1 are Cb1’2 (see Theorem 9.14 page 99 and Proposition
11.9 page 123).

Since f is bounded, the stochastic representation of H enables to deduce that H is bounded
by 2T|f|s. To prove that |0y H | is bounded, we use the stochastic representation and
we introduce p, the transition density function of X

T ~
H(t, ) :/Rd dy/t dsf(s,y)p(t,z;s,y).

Since p satisfies (6.8) (see page 66), we can easily prove that the derivative of H(t,z) w.r.t.

x is
T ~
0.H(tx) = [ dy [ dsf(s,0)0un(t.z5.0).
R4 t
: : s _cle=y® I
By using (6.8), we obtain |0, H (t,z)] < 2C|f|s tT\/%fRd dye” st (S_lt)%, which is

bounded by a constant depending on 7', d,|f|s,C and ¢ (C and ¢ are some constants
defined in Proposition 6.9, page 66 and depending on d, oy and o1). 0

Proof of Corollary 13.23. To prove the first assertion, we apply Proposition 7.3, page 74.
We can do it since f, defined in the proof of Proposition 13.22, is bounded and Lipschitz,
o is assumed to be elliptic and ¢ and b are bounded and Lipschitz.

The second assertion, stating || H Hzg,;( + ||0.H qug LSK (T), is proved by using Theorem
7.1, page 74. Since o is uniformly elfiptic, Cg in space and b is C'!, we can apply Remark
7.2 page 74 to get

2 2 72
[H 20 75w2.20) + 1OH 20 mowro2my < K(T) || fllL20,mw0.2.0)5

where K(T) only depends on o and its derivatives.  Since f is bounded, we
have ||f|]i2(0T,W0,2,u) is bounded by Ky(T'), which depends on |f|o and p. Then,
||HHH2J2(07T;W2,27#) + H@tHHH%z(O’T;WO,Q,M) < K(T), where K (T') depends on o, its derivatives,

| floo and pu.
First, let us prove H@tHH%{gX < K(T). Using Definition 12.5 page 127 yields

T
oty = [ dse? [ (s, lotPs.n)

Proposition 13.4, page 165 gives
oA, < ClaHE, = CfTdse® fudye #MOHR(s.y).  Then,
H@tHH%{gX < CePT fOT ds [pa dye "Y|0,H|?(s,y). Recalling  that

HatHH]i?(O,T;WOv?vH) = foT ds fRd dye‘”'y‘|8tH(s,y)|2 and HatHH]i?(O,T;WO&H) < K(T) ends
the proof of H@tHH?{gX < K(T). The same kind of proof states HHH;M < K(T). O
» 8,X
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13.4.2 Scheme of the proof

Studying the difference Y — Y requires to split it into two terms YV — V" and V" — Yk,
and to prove the convergence of each of them. The same argument applies for Z — Z¥.
Then, the differences Y — Y* and Z — Z* are studied in the following way :

1. We show in the next Section (see Theorem 14.2 page 177) that if ®(X7) and f are
standard parameters (see Section 9.3 page 95 for a definition of standard parameters),

2
u,ﬂ) )

(13.8)

we get

2
2(1 +T)L3

— k. 2 k. 2
1Y =Y, g+ 1Z2—-2"1,5< 3

~ 2 ~
(Il = V1), 5112 — 25!

2. We prove in the next Section (see Theorem 14.4 page 178) that under Hypothesis
13.1 page 170,

TA(B)oy, n Ks(T)
MNR? N2h2
TA(B)oy,
Mh?2

krr) 2 2 k 2
+3(E|H — PEH 0 o E |0:H = 0p(PEH) s )

—k ~ 2 —k =~
IY" =Y (|, 5 +1Z" =27 5 < Ko(T)

112 Ske—1112
+ K (T) (Il =V 5+ 12 = 2575 )

2 2
+B(E u— Pl +olE |0,u — 0, (PEu) s ). (13.9)

Ko(T) depends on p, 3,d, | Kt|oo, | Kz |oos |02 Kz|oos Cuy Ly Ly and on K, ag and «;.
Ki(T) is a function depending on p, 3, d, | K¢|oo, | Kz|oos |02 Kz|oo, Ly and the upper
bounds for b and o, and their derivatives, on ¢, K, aj, ag and og and o;. Ky(7T)
depends on the dimension d, u, 3, the upper bounds for f and ¢ and for o,b and
their derivatives, on ¢, and on K, as and «q.

3. We use the results on the error between a function and its approximation by the
kernel method to bound E(|ju — Pﬁu”fggx) and Ex_1(||H — PﬁHH?{gX) (see Chapter

12, Theorem 12.42, page 149). Since u is a C';’Q function (see Remark 13.17 page
170)

E[Phu =l < K(T) (TA(B)an 4R+ hE e VA 4 eHagd-l hx) ,

where K(T') depends on d, u, K, a1, aa, 3, Cyy | Koo and | Ky |oo-
Since H is a C'? function and is bounded by 27| f|~ (see Proposition 13.22), we

apply Theorem 12.42, page 149 with €2 = T)‘\SELB)

2 2 2
o [PEH — Hlly | <K(T) ((TNB)S, + 1) |y +12 lout Ty )
+ K(T) [e‘%“ + Ry + e a8y + TA(B)&H} ,

where K (T') depends on d, u, K, a1, g, B, | floo, | Kt|oo and |Ky|co-
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4. We use the results on the error between the first derivative of a bounded func-

tion and the first derivative of its approximation by the kernel method to bound
E |[0yu — ax(PT]fu)H?{gX and Ey_1 |0, H — ax(PﬁH)HiIEX (see Chapter 12, Theorem
12.59, page 160). ’ ’

Under Hypothesis 13.1, u is a C’; 2 function. Then,

m(Pﬁu) — Oyu

2 Cw. TAB)S, e Magd-!
‘ <K(T) <hth;2 +h2 4 hotevae 4 DAL 2) p e ) .
HY « h hy

T

where K(T') depends on C,d, u, K, a1, a,3,Cy, |Ki|eo and |K;|s. We have used
e T < V.

Under Hypothesis 13.1, Proposition 13.22 page 171 and Corollary 13.23 page 171
state that H and 0, H are bounded by K(T)|f|~ and H satisfies Vt,t' € [0,T],Vz €

Re, |0, H (t,z) — 0, H(t',x)| < C\/|t' — t|, where C is a positive constant. Then, we
On

can apply Theorem 12.59, page 160 with 63 = TA(B)’

2
(PRH) — 8xHHHM < K(T) (TA(B)3,hy + h2) | H 2 2.
B8.X p.X

1 _ g, TXB)d,
+ K(T) (hth;2 + h—we—ﬂaad—l +hole Va4 (h?)> ,

T

where K( ) depends on C,d, u, K, ozl,ozz,ﬁ | floos [ Ktloo and |Kz|oo. We have used
VZ > e =, for z < 1. Moreover, since || H||? HEH is bounded by K(T') (see Corollary

13.23, page 171), we can bound K (T )T/\ B)(s" HHHHQH, by K(T )TA(,LE) ~. We get

2
() = 0ut |, < Ko(DIE [y
1 _n
+ K1(T) (htth + —eHagdT 4 pleTva"

where Ko(T") depends on C,d, i, K, a1, a2, B, | floos | Kt|oo and |Ky|eo and Ki(T") de-
pends on ¢ and its derivatives and on the preceding parameters.

. We use Proposition 7.4, page 76 to conclude. Under Hypothesis 13.1, ¢ is uniformly

elliptic, o € C’;’l and b is C1'! and bounded. Then, H satisfies the PDE (13.5) (see
page 170) and we get

2 2 712
1 g +10eH s < C Tl

where f(t,z) = f(t,x, up_1(t,x), (Opup_10)(t,x)) — f(t, 2z, ut,z), (Dpuc)(t, z)).
Since EHfH;gX = fOT dse® [p, dve 7IE|f(s, X7)? and f is Lipschitz, we get

2 2
B H 2 +ENOH |
T
< 0L§/ dseﬁS/ dze MR | (u — up_1) (s, XT) 2 + E|o(8pu — Opup—_1) (s, X2)|?,
0 R4

2 2 112 ~7._ 112
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6. Combining the five preceding points, we get that 1, and C; appearing in Proposition
13.12, page 167 are the following

2
A
B

Kc(T)
“1= N2

+ Ky(T) (TA(B)Sn(1 + M~ 'h?) + h2 + k),
+ K, (T) <T)\(B)6nh;2 + (hy + hye MaqdYho2 4 pole” va® + hi) ,

K(T') depends on Ly, i1, 3,d, | K¢|oo, | Kz|oo, |02 Kz |oo, Cu and the upper bounds for f,
b, o and their derivatives, on ¢, K, a1, az and o¢ and o1. K;(T') depends on the
dimension d, u, 3, the upper bounds for f and ® and for ¢,b and their derivatives,
on ¢, and on K, ay and a;. We can choose parameters (3, hy, hy,n, M, N, a) such
that 171 < 1 and C; tends to 0 when (h;l,ht_l,n,M, N,a) go to co.






Chapter 14

Proofs of the key results

14.1 Point 1: Definition of ¥' and Z' and study of Y — V"
and Z — 7"

We recall BSDE (13.4)
. T _ ~ T_,
Y, :(I)(XT)+/ f(s,Xs,nk—l,Zg—l)ds—/ Z . dW.
t t

Before stating the existence and uniqueness of the solution of (13.4), we point out

Remark 14.1. Since (Y/Skfl,z(ffl)ossgj“ = (uk,l(s,Xs),(8$uk,1a)(s,X5))0§S§T and o
is bounded, we deduce from Proposition 11.9, page 123, that (?kil,Zkfl) belongs to
H% 5(R) x H% 5(R?). This equation admits a unique solution in HZ(R) x H2(RY).

The following theorem states (13.8) (see page 173). The proof is based on Proposition
9.2.

Theorem 14.2. Assume ®(Xr) and f are standard parameters (see Section 9.3 for a
definition of standard parameters). Let Ly denote the Lipschitz constant of f. Let (?k, Zk)
be the solution of (13.4). For any B > 0 and any p > 0,

—k 2 —k 2 2(1+T)L2 ~ 0 1.2 12
1Y =V g+ 17 = 200 < =5 (I = 412 = 257 )
Proof of Theorem 14.2. Let us consider the following BSDEs

—dYy = f(t, Xy, Ye, Zy)dt — ZydWy, Y7 = @(X7),
—dYy = f(t, X, YL 28 Ydt — ZFdw,, YV = ®(Xr).

Y, Z) and }N/k_l, Z5=1Y are two elements of H2. ,(R) x HZ2. ,(R). By Proposition 9.2 (see
T8 T,5
page 95), with Ly = 0 and 8 = p?, we obtain

T L T T - -

/ ¢*E(|Y, — YV4I?|Gr1]ds < 5/ BB f(s, X, Ys, Zs) — f(5, Xo, YETU, ZE71) 2| G1)ds,
0 0
T o 1 T . ~

/ B[ Z, — ZfIQ{Qk_l]ds < ﬁ/ B E[| f(s, X, Ys, Zs) — f(5, Xs, YETU, ZE71) 2| Gyr)ds.
0 0

177
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Now, since f is Lipschitz continuous with constant Lf, we get

T
A1 R SR AR AL P
0
2(1+T)L%
E

By integrating w.r.t. e *ldz and taking the expectation, the result follows. O

T
/ P E [|Y5 VR 4z, - Z;H\?\gk,l} ds.
0

Proposition 14.3. Let (Yk,Zk) be the solution of (13.4) and wuy be the solution of the
following PDE

(0 + L)ug(t,x) + f(t,z,up—1(t, ), (Opur—10)(t,x)) =0,
{ (T, z) = ®(x). (14.1)
Then,
vt € [0,T], (V1,2)) = (u(t, Xo), (a0 (8, X0)). (14.2)

Moreover, ¥(t,z) € [0,T] x R, wg(t,x) = u(t,z) + H(t,x) where H satisfies the PDE
(13.5)

{ (O + L)H(t,x) + f(t, z,up—1(t, ), (Opur—10)(t,x)) — f(t, z,u(t, z), (Opuo)(t,x)) = 0,
H(T,z)=0.
Proof. By applying Itd’s formula to (s, Xs) we get
du (s, Xs) = (Opug(s, Xs) + Lug(s, Xs))ds + (0,uro)(s, Xs)dWs.
Since wy, satisfies (14.1), it follows that
—du (s, Xs) = f(s, Xs,up—1(8, Xs), (Oxur—10)(s, Xs))ds — (0zuro) (s, Xs)dWs,

with (T, X7) = ®(X7). Thus, {ur—1(s, Xs), (Ozug—10)(s, Xs),s € [0,T]} is equal to
the unique solution of the BSDE (13.4), and the result follows. We easily check that
ug(t,x) = u(t,x)+ H(t,x) where H satisfies (13.5) page 170, since u satisfies (£) (see page
99). O

. —k = —k 5
14.2 Point 2: Study of Y —Y* and 7~ — Z*
The result announced is an obvious consequence of the following Theorem.

Theorem 14.4. Let (?k,Zk) be the solution of (13.4) page 170 and (Y*, Z*) be defined
by (14.2) page 178. Assume o is uniformly elliptic, b € C';’Z and o € C}°, By € Cl in
space. We also assume that f and ® are bounded, f is Lipschitz and u,yu, Opu and 0*u
are bounded by a constant Cy,. Then,

TA(B)6,
MN
112 Ske—1112
(Il =7 5+ 12 = 25745 5) - (143)

7" = VF  <3E|H —PEH|%0 43K [l — Prul’ +Ko(T)
w8 = n H;X n Hg,x 0

Ky(T) TA(B)dn
N2 M

+ + K1 (T)
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If TA(B)é, <1, we get

=k k2 2 2
1Z° = Z¥|, 5 < Blo2E 0. H = 0a(PYH) [0 +3l0%E |9 = O (P [

TA(B)S, K}(T) TA(B)S,

K\(T e
+ Kol )MNhg N2h2 Mh2

+ K{(T)

112 Ske—1112
(Il =P 5+ 12 = 25745 )
(14.4)

Ko(T) depends on p, 3,d, | Kt|oo, | Kz|oos Cuy L, Lo and on K, ay and ay. Kq(T) depends
on i, 3,d,|Kt|oo, | Kz|oo: Ly and the upper bounds for b and o, and their derivatives, on c,
K, a1, as and oo and 1. Ko(T) depends on the dimension d, p, 3, the upper bounds for
f and ® and for o,b and their derivatives, on ¢, and on K, as and . For i =0,1,2,
K/(T) depends on |0y Ky|oo and on the same parameters as K;(T).

14.2.1 Proof of (14.3) : A first decomposition

By using (14.2) page 178 and the definition of (Y*, Z*) (see Definition 9.20, page 106),

— _ 2
we can apply Remark 13.8, page 166 ||Yk - Yk||uﬂ =E | — ukH?{gX Let p denote the
transition density of the process X. Conditioning w.r.t. Gi_;, which contains all the
random variables used to build uz_1, leads to

T
i~ unlly, = | [ dse® [ doe [ Blm(s,) - (s, ) PlGualp(0.055. )]

= [ ase [ PRl - ww)Plgdn] . (149

where 19(s,y) has been introduced in Definition 6.11, page 67. The study of
E||ax — uk||?{ux will be done in three steps, corresponding to the three terms appear-
ing in the following decomposition

Lemma 14.5. We recall that Ay denotes the set of points {(TF, XF),1 <i < n} used by
the operator PF. Then,

E[(k — ur)?(5,9)|Gr—1] = B[ — ur)(s,9)|Gr—1])* + Var(E[(Tr — wr)(s,y)|Gr-1, Ak]|Gr—1)
+ E [Var((wg — uk)(s,9)|Gr—1, Ar)|Gr-1] -

Proof. First, we introduce Ay in the conditional expectation

E[(ur — ur)*(s,y)|Gr—1] = E [E[(Ur — ur)*(s,y)|Gr—1, Akl |Gr—1] - (14.6)
Then, we use the bias-variance decomposition
E[(@ — ur)(5,9)|Gr—1, Ar] = (B[ — ur) (s, y)|Gr—1, Ar])* + Var((@, — ur)(s,9)|Gr—1, A).

Plugging this result in (14.6) leads to

El(@, — un)*(5 )| G 1] =E | (El(@ — ) (5,9)|Gk—1, A4])* | Go |
+E [Var((@g — uk)(s,9)|Gr-1, Ar) [Gr-1] - (14.7)



180 14. Proofs of the key results

Using again the bias-variance decomposition for the first term of the above r.h.s. brings
about

E [(E[(ﬂk — i) (5,9)|Gr—1, Ax])? ‘gk—l} = (E[(@ — u)(s,y)|Gr—1])*
+ Var(E[(ux — ug) (s, y)|Gk—1, Ax]|Gr—1)-

Plugging the previous result in (14.7) yields the result. O

14.2.2 Proof of (14.3) : Study of E[(u; — ux)(s,y)|Gk-1]

Proposition 14.6. Assume that o is uniformly elliptic, b € C;’Q and o € C;’g, Oso € C’I}
in space. We also assume that f and ® are bounded. Then, there exists a function K(T),

non decreasing in T such that

T
E[/O dsebs /Rd VU(s,y)(E[(ﬂk —uk>(8,y)‘gk71])2dy] < K]\(f?

+3E [ / s [ P s Elte =Pl y>]>2dy]

+ 3E [/OT dse’s /Rd VO (s, y)(E[(H — PFH)(s,y) \gk_l])2dy] .

K(T) depends on the dimension d, p, 3, the upper bounds for f and ® and for o,b and
their derivatives, on c, appearing in Theorem 8.1, page 78, and on K and as defined in
Proposition 6.4, page 63.

First, we recall

U,k(S,y) = ,PS(U,]{,1 +@k)(say)7 (148)

M
1
where wWg(s,y) Z [ mkN ) —u_1(T, kaN) (14.9)

m:l

T
+/ [f (7’, X;mk’Naukfl(ra X:“n’k’N)a (awukflo-)(n X;mk’N)) + (at + EN)ukfl(rv X;n7k7N)]dr :

Before bounding E [fo dseP® [oa (s, y)(E[(T), — ug)(s,y) ‘Qk,l])Qdy} , we develop E|[(uy, —
ug)(S,y)|Gr—1] in the following Lemma.

Lemma 14.7. The following decomposition holds

E[(@, — u) (s, 9)|Gr—1] =E[(u — Pyu)(s,y)] + E[(H — PYH)(s,y)|Gr1]
+E Pﬁ(E[A(s,y)\Qkfﬂ)’gkﬂ} , (14.10)

where A(s,y) := @(XJTV’S’y) — d(X3Y)

T
+/ [f(r, Xﬂv,uk_l(r, XTJ,V), (Opug—10)(r, XTN)) — f(r, Xy up—1(r, X)), (Ogug—_10)(r, X;))]dr.
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Moreover, if the assumptions of Theorem 8.1, page 78, are satisfied and if f and ® are
bounded,
K(T)
[E[AGs, 9)Gr—1ll = = VT = 8(1@foc + (T = )[floo),
where K(T') is a function non decreasing in T and depending on the dimension d, the
upper bounds for o,b and their derivatives, and on c.

Proof of Proposition 14.6. By using Lemma 14.7, we easily deduce the last two terms of
Proposition 14.6. It remains to show that

. [/DT dseBs /Rd yo(s,y) (E[ps(E[A(s,y)]gkﬂ)‘gk1])2dy} < K]\(fg)

To do so, we write

TA S
PABIA s, )IG1-1]) = B g(2TAB) o). (14.11)

ok _xk . .
where r2(s,y) = m S Kt(%)Kx(yhfl JE[A(TF, XF)|Gr_1]. Since g is bounded

and r2(5,9) < fal(s,y)|E[A|Gr—1]|oo, using the second part of Lemma 14.7 yields

K'(T)

Pr(EIA(s,)|Gr]) < =

(12lo + [ flo0)

where K'(T') is a function non decreasing in 7" and depending on d and on the upper
bounds for b and o and their derivatives and on c. Estimate (12.16), page 143, yields the
result. O

Proof of Lemma 14.7. Since Uy, is Gr_1-measurable, we get
E[(uy, — ur)(5,9)|Gk—1] = Wr(s,y) — B[P} (ur—1 + @1)(5,9)|Gr—1]. (14.12)
Conditioning w.r.t. A in the above expectation leads to
E[P} (ue—1 + k) (s, y)|Gk-1] = E | P} (ue—1 + E[Wk|Gr—1])(s,4)|Gr—1] - (14.13)
Moreover, taking the conditional expectation w.r.t. Gi_; in the formula (14.9) gives
E[wy(s,y)|Gr-1] = E[q’(XéV’S’y) —up—1(T, erpv’s’y)lgkfl]-i-

T
E[/ [f (7, XN gy (r, XN, (Opup_10) (1, va’s’y)) + (0% + LY Yug—1 (r, X259 dr|Gr—1 ).

S

By applying It6’s formula to uj_; between s and T to the process X V¥ we can simplify
the above expression and get

(uk—1 + E[@k|Gr1])(5,9) = E[@(X7")] (14.14)

T
+E {/ f (7“, XY a1 (r, XN, (Opup—10) (7, X,{V’s’y)) dr|Gr—1| -
S
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Finally, applying It6’s formula to u; between s and 71" to the process X*¥ and using the
PDE (14.1) page 178 satisfied by @y lead to

T
ug(s,y) =E [‘I’(X;’y) +/ [, XPY uga (r, X7Y), (Opug—10) (r, X72Y)) dr|Gr—
S
Plugging this term in (14.14) gives

(up—1 + E[wr|Gr-1])(s,y) = Tr(s,y) + E[@(Xév’s’y) — (X))

T
+E,, [/ [f(r, X,{V, ug—1(r, Xﬁv), (Opug—10)(r, X1{V))

—f(r, X, up—1(r, X)), (Opu—10)(r, X;))|dr|Gr—1]
— ﬂk(,s’y) +E[A(S,y)|gk_1]. (14.15)

Recalling that @y = v + H and combining (14.12), (14.13) and (14.15) end the proof of
(14.10).
Let us show the inequality E[A(s,y)|Gr_1] < %\/T — 5(|®|oo + |floo). To do so, we

write
T
E[A(s,y)|Gk—1] =E[®(X7"Y) — ®(X7¥)] + E [/ [, XN g (7, X0V, (Opu—10) (r, X))
—f(r, X, up—1(r, X), (Opug—10)(r, X;))|dr|Gg—1] -

Let pV denote the tramsition demsity of XN. Then, E[®(XN™Y) — &(X5Y)] =
Jga ®(u)(p™ (s,y;T,u) — p(s,y; T,u))du. By using Theorem 8.1, page 78, we get

cClu — 2
‘E[(I)(quﬂvy&y) - ®(X7)]] < K](VT)\/m Re \@(u)|(T_18)g€Xp <_|TZ|> du
< \@ymK}Vﬂ\ﬁT_ .

The same proof holds for  E[[7[f(r, XN, up_1(r, XN), (Osup_10)(r, X)) —

S

flr, Xp up—1(r, X)), (Ogug—10)(r, X;))]dr|Gr—1]:

|E8,y [f(ra X”{V’ uk—l(T7 sz)a (axuk—lo-)(ra Xiv)) - f(ra Xr, uk—l(ra XT)v (aﬂfuk—la)(ra XT))|g/€—1] ‘

[ 7000100, @rtt0) (. 0) (0 5, 570) = ol )

K(T) T-s
< = 7
- N r—38

[ floo-

Integrating both sides w.r.t. r between s and T leads to the result. O

14.2.3 Proof of (14.3) : Study of Var(E[(ar — uk)(s,vy)|Gk-1, Ax]|Gr-1)

Proposition 14.8. Assume that o is uniformly elliptic, b € C';’Q and o € C;’g, 0s0 € C’I}
in space. We also assume that f and ® are bounded. Then, there exists a function K(T)



14.2. Point 2: Study of?k Y% and Z° — ZF 183

such that

T
E [/0 dsebBs /Rd ,/O(s,y) Var(E[(wg — uk) (s, y)|Gr—1, Akl |Gr—1)dy] < K]\(fj;)

+ 3E [ /0 ' dse” /R ) O(s,y) Var((u — PEu)(s, y))dy}

+ 3E [/OT dse’s /Rd VO(s,y) Var((H — P*H) (s, y)]gk_l)dy} .

K(T) depends on the dimension d, p, 3, the upper bounds for f and ® and for o,b and

their derivatives, on ¢ and on K and as.
Before proving Proposition 14.8, we state the following Lemma.

Lemma 14.9. Assume that o is uniformly elliptic, b € 05’2 and o € C’;’?’, Oio € Cl} mn
space. We also assume that f and ® are bounded. Then, there exists a constant K(T)
non decreasing in T such that
K(T)

N2~
K(T) depends on the dimension d, the upper bounds for f and ® and for o,b and their

Var(PEE[A(s, y)|Gr-1]|Gk—1) <

derivatives, and on c.

Remark 14.10. The upper bound stated in the previous Lemma is not optimal: it doesn’t
depend on n although Var((P¥E[A(s,y)|Gk—1])|Gk—1) tends to 0 when n goes to infinity.

Proof of Proposition 14.8. We know that E[(up — ug)(s,y)|Gk-1,A4k] = ur(s,y) —
Pr(ugp_1(s,y) +E[wk(s,y)|Gr_1]). Using (14.15) the definition of 7, (see Proposition 14.3
page 178) and the definition of uy (see 14.8 page 180) yields

E[(ur — ur) (s, 9)|Gk—1, Al = (v — Pru)(s,y) + (H — Py H)(s,y) — PRE[A(s,9)|Gx1],
and hence,

Var(E[(tx — ur)(s, y)|Ge-1, Arl|Gr—1) <3Var((u — Piu)(s,y))
+3Var((H — Py H)(s,y)|Gr—1)
+ 3Var(PFE[A(s, y)|Ge—1]|Gr—1)-

Then, we use Lemma 14.9 to bound Var(P*E[A(s, y)|Gx_1]|Gk_1). Using (12.16) page 143
ends the proof. 0

Proof of Lemma 14.9. We use (14.11) page 181 to develop Var(P*E[A(s, y)|Gk—1]|Gk—1)-

TA S
Var(PABIA 5, )[G1-1]-1) = Vo (T2 g0\ (B) (5. 0))1Ge1 )
r(s.y) :
<E [(fn(s,y)9(2TA(B)fn(8,y))) \Qm] :

g is bounded and |75 (s,9)| < fn(5,%)|E[A|Gr_1]]co- Using the second part of Lemma 14.7
page 180 ends the proof. O
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14.2.4 Proof of (14.3) : Study of E [Var((u — ux)(s,y)|Gr_1, Ar)|Gr_1]

Proposition 14.11. Assume that o is uniformly elliptic, b € 02’2 and o € C’bl’?’, oo € C}
in space. We also assume that f is Lipschitz and u, Oy, Opu and 0%u are bounded by a
constant C,,. It holds

' TA(B)S,
E U dseﬂs/ (s, )E [Var( (@ — up)(5,9)|Gr1, AR)Gr_1] dy | < KO(T)]\(M\)Z
0 R4
TA(B)S,
+K1(T)§\/[)(E l|lu — ququEX +E ||0pu — axuk*lH%{Z,X)'

Ko(T) is a function depending on p,[,d,|K¢|eo, | Kz|oos Cus L, Lo and on K and «s.
K(T) is a function depending on p,3,d,|Ki|so, |Kz|oo, Lf and the upper bounds for b
and o, and their derivatives, on ¢ and on K, a1, and as.

Remark 14.12. The above proposition characterises the use of the adaptive control vari-
ate method: -7 is multiplied by E [ju — uj_ 1||Hu +E ||0zu — Opug— 1||Hu . This term,

among others, enables the geometric convergence of the algorithm.
Before proving Proposition 14.11, let us state two Lemmas.

Lemma 14.13. Assume that f,b and o are Lipschitz functions. We also assume that
u, Oyu, Opu and O>u are bounded by a constant C,. There exists a function K(T) non
decreasing in T such that

E [Var((ur — uk)(s,y)|Gr—1, Ak)|Gr-1] < K(T)Dj\\(ﬁ\)f%

32(TA(B))*(1 + L) s —TF — Xk
- Mnh?h2d FE (KE <ht1> K; <?Jh1) E((©* + F2)(Tf7Xf)gk—1,Ak)|gk_1> ;
t'e T

where T'(s,y) = fsT(&Eu—Oxuk_l)(r,X,{V’s’y)a(gp(r), ﬁf)y)dW O(s = f (Jlu —

ug—1](r, Xﬁv’s’y) + |0zuoc — Oyug_10|(r, Xﬁv’s’y))dr and K(T) depends on d, C’u, Ly, L, and
the upper bounds for K; and K,.

Lemma 14.14. Assume that o is uniformly elliptic, b € C 2and o € C’ , Qo € C’1

in space. Let T'(s,y) = fsT(&Eu — Opug—_1)(r, Xﬂv’s’y)a(cp(r), ﬁf)’y)dW and O(s,y) =

f (lu = w1 |(r, X2*Y) + |8puo — pup—_10]|(r, Xi¥5Y))dr. Then,
E((02 + T2)(TF, X§)|Gro1, Ar) < (1 + o2 Vi (TF, XF),
where

T
Vi—1(s,y) =E </ (Ju — up_1|*(r, X3Y) 4 |0t — Opug_1|*(r, Xf’y))dr|gk_1> (14.16)

. K(T)(T -3

clz —yl?
(|u — wp_1 (7, 2) + |Oprt — Opup—1 | (r, z))( )(d+1)/ exp | —— — dzdr,

K(T) and ¢ have been introduced in Theorem 8.1. K(T) depends on d and the upper
bounds for b and o and their derivatives.
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Proof of Proposition 14.11. We combine Lemmas 14.13 and 14.14 to do the proof.

The first term in the r.h.s. of the Proposition comes from K(T)%,
which appears in Lemma 14.13, and from (12.16) page 143. By com-

bining Lemmas 14.13 and 14.14, we notice that the remaining term to bound from above is

ST )5 [ 7 e oot (K7 (S525) 2 (520) Vera(TE, XG0 ) ]

Since

s—Tf — XY
E<Kt2< Iy 1>K:§ (y . 1> Vk—l(leaXf)’gk—l) =

T;(B)/ dr K2 ( htr>/deK§ (yh_xz> Vi1 (r, 2),

we can apply Lemma 12.10, page 128, to get

T _ Tk _ Xk:
E [ | s e [ e (Kf ( ) ) K? (y 1) vk_1<Tf,Xf>|gk_1) dy]
0 Rd hy hy

(14.17)
T)hiheE </ dteﬁt/Rddzv 2)Vi-a(t, ))

where K(T) depends on d,pu, K, o, as. Let us bound from above
(fo dtp(t) [pa dzvO(t, 2) Vi1 (t, z)), where Vj,_1(t, 2) is defined by (14.16).

First, we compute fo dtebt Jga dz10(t, 2)E (ftT lu — up_1|?(r, Xﬁ’z)dr|gk_1). To do

so, we apply Lemma 12.11 page 129 with ¢ = 1 and g9 = v — up_1. We obtain

fOT dteP [qdz10(t, 2)E <ftT lu — up_1]?(r, Xﬁ’z)drlgk,1> <Tlu-— uk*lﬁ{g,x' Taking the

expectation of the above inequality leads to

T T
B ([ e [ a8 ([ 1u— P XENdrG ) ) < TE = el
0 R4 t B,X

(14.18)
The same kind of proof leads to
T T
E </ dte’gt/ dz10(t, 2)E </ |0pu — Opug_1|*(r, Xf:z)dr|gk_1)> <
0 R4 t
TE ||0yu — amuk_lnilgx . (14.19)
Second, we compute

T T —z|?
= Jo dte? fodzO(t,2) [ dr foo dylu — we P y) b exo (250 By
using successively the r.h.s. of (6.11) page 67, which gives 10(t,2z) < 2¢Kecte 1l
Lemma 6.15 page 68, and the Lh.s. of (6.11), we deduce

1 cly — z|? 9d 2 K 2 o
dz10(t _ <2 cattdp? /(4e)(r—t) o —ply
/Rd zy(’z)(r_t)d§1 exp< r—t (c) Jr—t c

d/2 2 2
< 23d( ) / K ecgt—clr-l—%(r—t)VO(
C

N rY).

(14.20)
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Introducing (14.20) into I leads to

T T 1
’T/ dteﬁt/ dr / dyl/o T,y U—Uk—IQTay7
A e S ) *(r.v)

where K'(T) is non decreasing in T and depends on d, ¢, K, a1, as and u. Since t < r,
eﬁt <eP and I < K'(T fo dtft drreﬁr Jga dyr®(r,y)|u — wp—1*(r,y). We get I <
fo dreP” [oq dyv®(r, y)|u — ug_1|*(r,y). Taking the expectation yields

E(I) < K'(D)E||u— g1z - (14.21)

Defining

= fOT dteP! [qadz10(t, 2) ftT Jga |0zu — Opup_q|*(r, y)m exp( ‘y Z' )dydr
the same proof yields E(I,) < K'(T)E||0zu — Oyup— 1HHM . Combining the previous
result, (14.17), (14.18), (14.19) and (14.21) ends the proof. O

Proof of Lemma 14.13. First, we develop Var((uy — ug)(s,y)|Gr—1,Ag). Since ug(s,y) =
Pk (ugp_1 +wk)(s,y), where Wy (s,y) is defined by (14.9) page 180, we get

Var((@y — up)(s,y)|Gr—1. Ar) = Var(uk(s, y)|Gr-1, Ar) = Var(Py (@) (s, 9)|Gk—1, Ar)-

We write PR (@) (s, y) = 122 g(2TA(B) fuls, 1)),
where 7Y (s,y) = mZizl K2 hti )Km(y;lfzk Yy (TF, XF). Since 9%) ig hounded by

N

and g(2T\(B )fn(s,y))m is Ap-measurable, we get

3v3

Var((ug — uk)(5,)|Gr-1, A) < 8(TA(B))*Var(ry; (s, ) |Gr—1, Ar), (14.22)
Moreover,
Var(r), (s, y)|Gk—1, Ax) = (14.23)

o (y—XF — ik vk
K; h Var(wy, (17", X;)|Gr—1, Ak)-

n2h2h2d Z <
N, Tk Xk

By applying Ito’s formula to u between TF and T to the process (X, ' )TZT;C and to

; N.TF X
up—1 between T} and T" to the process (X, )TZTZ_;C, we get

1
Var (@ (T, XF) |G, Ar) = 37 Var (o = uie)(TF, XH)

T
+/ [f(?’, X7{V7uk*1(rﬂ X7{V)7 (axukflo')(n szv)) + (at + ,CN)’U,(T, quv)]dr
Tk

T
+/ (aﬂ?u(’r? X7{V) _a’tuk—l(ra X,N))O‘((,O(T),Xﬁr))dwrgk_l,Ak> )

k
Ti

T 2
< %E (/ F(r, XN w1 (r, X, (Opup—10) (r, X)) + (8 + LY Yu(r, X,N)]dr) |Gr—1, Ak

k
Ti

2
T
E ( <axu<r,XzV>—axuk_mX,%V»o—(so(r),Xﬁr))dWr) G 1, A
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To bound the first term, we introduce f(r, XN, u(r, X}N), (9yuc)(r, X)) in the sum
Fr, XN w1 (r, XN, (Opug—10)(r, X)) + (0 + LN )u(r, X). Since f is Lipschitz con-
tinuous with constant Ly and satisfies (0, + L)u + f = 0, we get

‘f(rv X7]’V’ uk’—l(r? Xﬁ)?(awuk—lo-)(’r? sz)) + (at + EN)u(r, Xr{v)‘ <
Li(Ju— up—1|(r, XX) + |0pup—10 — dpuo|(r, X))

d
2 Ibilrs X7Y) = Bilp(r), X0y 1 Osulr, X7V
d
+% > o0 (r, XY) = [0 (0 (r), X107, ulr, X1

ij=1

Since f,b and o are Lipschitz continuous and u, dyu, O,u and d?u are bounded, we get

£, X gy + (1, X)), (Qpui—10) (r, X)) + (9 + LY )ulr, X)) <

1 T
Ly (|u — up_1|(r, X,{V) + |Opug—10 — Oyuo|(r, Xﬁv)) +dCy(Ly + §L‘27) ( + ’XN Xw(r)|> .

Using the definitions of ¢, I" and Lemma A.3, page 261 yields

K'(T) 4(L7 +1)
MN M

Var(@k(Tik? sz)’gk—h Ak) < E((@2 + FQ)(Tikv sz)’gk—h Ak)v

(14.24)

where K'(T) depends on d, Cy,, Ly and L,. Combining (14.22), (14.23), (14.24), taking the
conditional expectation w.r.t. Gr_1 and applying the first part of Lemma 12.8 page 127
end the proof. 0

Proof of Lemma 14.14.

2
T
E(T*(TF, X{)|Gr-1. Ar) = E (/ (Opu — Opup—1)(r, Xy)d(@(r),Xﬁr))dWO |Gre—1, Ak |

k
Ti

T
< \o\goE [/k |Opu — 8xuk,1\2(r, Xﬁv)drlgkl,flk] )
T’L

Let us denote V0 (TF, XF) == Err xr (f;; |0zt — Opup_1)?(r, X,],V)dr|gk_1,,4k) . We de-
velop '

T
Vkofl(sa y) =E </ ‘63:@0 - 8wuk—1|2(ra X7N7S7y)dr|gk—l) )

T
= / /d 001 — Opug_1)2(r, 2)p™ (s, y; 7, 2)dzdr.
s R
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Then, we write p™ (s, y;7, 2) = p(s,y;7,2) + (p™ (5,957, 2) — p(s,y;7, 2)), and we use The-

orem 8.1, page 78, to bound from above p (s, y; 7, 2) — p(s,y; 7, 2).
T
V2 (s,y) <E (/ |0pu — Opug_1|?(r, Xf’y)dr|gk_1>
S

K(T)(T —s) [T 2 1 clz —y/?
+ N/; /Rd ‘6Iu—8$Uk71’ (T, Z)(y"—s)w exp _73 dZd?",

and we get the bound for E(I'2(TF, X¥)|Gx_1,As). By doing the same kind of proof to
bound E(©*(TF, XF)|Gx_1, Ar), we get the result. O

14.2.5 Proof of (14.3) : Conclusion

— -2
We recall ||Yk = Yk||u’/3 = E||a, — ukaqu Combining (14.5) page 179, Lemma 14.5
page 179, Proposition 14.6 page 180, Proposition 14.8 page 182 and Proposition 14.11
page 184 leads to
TA(B)oy,
MN

(E = el | +E [00u - axuk_lH?quX> . (14.25)

75— VM, <BE|H — PEHI%e  +3E [u— Prull  +Ko(T)
B = ntlHy x nlHg
Ky (T) TX(B)oy,
N2 M
K(T) depends on pu, 3, d, | Kt|oo, | Kz|oo, Cus L, Loy K and ag. K7 (T') is a function depend-
ing on u, B,d, |K¢|so, | Kz|oo, Ly and the upper bounds for b and o, and their derivatives,

_l’_

+ K1 (T)

on ¢ and on K, aj, and ag. K3(T) depends on the dimension d, u, 3, the upper bounds
for f and ® and for o,b and their derivatives, on ¢, and on K and as.
We apply Remark 13.8, page 166 and we get E||u—uk_1||?qu =Y — Yk_l”iﬂ' To

. . = 2
conclude, it remains to bound E ||0,u — 8muk_1\|12qu from above by || Z — Zk*1||uﬁ up to
a factor. We recall ’

E |0 — dyu [y = E ( /O " gt /R a2 (1, 2)|Deu(t,2) — D a(r, Z)Pdr) |
By using the definition of the ellipticity condition (see Definition 6.2, page 63), we get
|0,u(t, 2) — Opup_1(t, 2)|* < Z—?]a(t, 2)(0pu(t, 2) — Opup—1(t, 2))|%
and then,
200

po
Plugging this result in (14.25) ends the proof of (14.3) page 178.

Ske—1112
E 0su = Qawalfys < 220112 = 25707 (14.26)

k=2
Let us now prove (14.4), page 179. We study HZk - Zk”uﬁ = E ||0yuro — 6x“k0||HgX-
Then, ’

—k Sk 2 _
1Z" = Z¥||,,.5 < |o]3E [|85 — Ovur s -

We follow the scheme of the proof of (14.3). Some results, as Lemma 14.5 page 179 and
Lemma 14.7 page 180 can be easily adapted to the study of 0, — O, ur. In such a case,
we don’t do the proofs again.
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14.2.6 Proof of (14.4): A first decomposition

As in (14.5) page 179, we get the following equality

E || 0zux — (%cukH?{g’X =K [/OT dse’* /Rd I/O(S,y)EHE)xﬁk(s?y) — 8xuk(s,y)\2‘gk_ﬂdy .
(14.27)
The study of E ||0yux — GxukH%Iu’X will be done in three steps, corresponding to the three
terms appearing in the following decomposition
Lemma 14.15. We recall that Ay, denotes the set of points {(TF, X¥),1 <i < n} used by

the approximation P,lf. Then,

E(|0,tk — Opur|*(s,y)|Gr—1] = [E[(0xTr — Opur)(s,y)|Gr—1]|?

d
+ Z Var(E[(Ox, Tk — Oz, ur) (s, y)|Gr—1, Akl|Gk—1)
=1

d
+ > E[Var((9a,a, — 9z,ur) (3, 9)|Grk-1, Ax)|Gr—1] -

i=1

We prove this Lemma as we have proved Lemma 14.5 page 179.

14.2.7 Proof of (14.4): Study of E[(0,uy — J,ux)(s,vy)|Gk_1]

Proposition 14.16. Assume o is uniformly elliptic, b € C;’Q and o € 01’3, 00 € C’,} in
space. We also assume f and ® are bounded. Then, there exists a function K(T'), non
decreasing in T such that

T
E[/o dseB /Rd VO0(s, 9)|E[(Duty, — Dpur,) (s, ) |Gr—1]dy] < igg

v [ aset [ o) Bl 0~ au(PE) )]

T
+ 3E UO dsePs /Rd VO0(s,y)[E[(0.H — 83:(7’5[{))(8724)\%1“2614 .

K(T) depends on the dimension d, p, 3, the upper bounds for 0Ky, Ky, f and ® and for
o,b and their derivatives, on ¢, and on K and as.

Before bounding E [fOT dsel® [oa (s, y)|E[(Oxs, — 8xuk)(s,y)‘gk_1]|2dy], we develop
E[(0,ux — Opug)(s,y)|Gr—1] in the following Lemma.

Lemma 14.17. The following decomposition holds
E[(0xT — Ozug)(5,)|Gr—1] =E[(9eu — 0. (PFu))(s,y)] + E[(9.H — 8,(P¥H))(s,y)|Gr_1]
+ E [0, (PH(EIA(s, 9)/Gk 1)1k

where A(s,y) := @(XJTV’S’y) — d(X7Y)

T
+ / f(?", XTN> uk—l(ra er*v)a (awuk—la) (’I”, XTN)) - f(T, Xr, uk—l(ra XT)7 (aﬂﬂuk‘—la)(rv XT))dr'
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Moreover, if the assumptions of Theorem 8.1, page 78, are satisfied,

B[A . )[Gin] < VT S(( 0] + (7 - 9)1 ).

where K(T') depends on the dimension d, the upper bounds for o,b and their derivatives,
and on c.

We prove Lemma 14.17 as Lemma 14.7 page 180.

Proof of Proposition 14.16. By using Lemma 14.17, we easily deduce the last two terms
of Proposition 14.16. It remains to show that

2 K(T)
s k
U s [ 2(s.9) [B0LPEEIAG 1G] ] < T
To do so, we use (14.11), page 181, and differentiate it.
81317177, ( 7y)

Oz, (PR(E[A(s, y)|Gr-1])) = ey JCTMB)fu(s.9) (14.28)
+9TA(B) D) 0T A(B) (5,9 Fu (52 9) — 2D GOTAB) (5, )00 Fu5: )
fu(s,y) TiJn f2( ) n{S, s fn(8,Y),

Tk y—XF kE vk . g9(z) /
where r(s,9) = =ik S0, Ko () Ko (S BIATE, XB)IGi1]. Since 42 and g (2)

are bounded by 2, we get

o (5,9)
fn(s,y)
Since [r7(s, )| < | fu(s, 9)[E[AIGr-1]loo and |0z,75 (5, 9)| < |00, fu (5, Y)[E[A|Gr-1]] oo, we
combine Lemma 12.17 page 135 and the second part of Lemma 14.17 to get

K'(T)
= N2

0@(7’5(E[A(8,y)lgk—ﬂ))) < ATA(B)|0s,77 (5,)| + 8TA(B)

B 0.1t

B, (PEEIAGs, )]Gk 1)) 02 0, K (012 + 171,

where K'(T') is a function non decreasing in 7' and depending on d and on the upper
bounds for b and o and their derivatives and on ¢. By using (12.16) page 143, the result
easily follows. 0

14.2.8 Proof of (14.4): Study of Var(E[(0,,Tx — 0, ux) (s, y)|Ge—1, Ar]|Gr_1)

Proposition 14.18. Assume o is uniformly elliptic, b € C;’Q and o € C}°, 9,0 € C,} in
space. We also assume f and ® are bounded. Then, there exists a function K(T) such
that

T
E [/ dse /Rd V0(s,y) Var(E[(Or, U — Or,u) (5, 9)|Gk—1, Arl|Gr—1)dy] <
0

T
ﬁ(? ok [ /0 dse /R VO (s, y) Var(@eu = 0r, (Pyu)) (s, y))dy}

+ 3E [/OT dse’® /Rd V0(s,y) Var((0y, H — 0y, (P¥H)) (s, y)gk_l)dy} .

K(T) depends on the dimension d, u, 3, the upper bounds for Oy, Ky, K¢, f and ® and for
o,b and their derivatives, on ¢, K and as.
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Before proving Proposition 14.18, we state the following Lemma.
Lemma 14.19. Assume o is uniformly elliptic, b € C;’Q and o € C;"g, 0t0 € C’b1 in space.
We also assume f and ® are bounded. Then, there exists a constant K (T') such that
K(T)
N2p2°
K(T) depends on the dimension d, the upper bounds for Oy, Kz, K, f and ® and for o,b

and their derivatives, and on c.

Var(dy,(PFE[A(s,9)|Gk-1])|Gr—1) <

Remark 14.20. The upper bound stated in the previous Lemma is not optimal: it doesn’t
depend on n although Var(d,, (PFE[A(s, y)|Gk—1])|Gk—1) tends to 0 when n goes to infinity.

Proof of Proposition 14.18. We know that E[(0,ux — Orug)(s,y)|Gr—1, Ak] = Ozuk(s,y) —
Oz (PX(up_1(s,y) + E[wg(s,y)|Gr_1])). Using (14.15), page 182, and the definition of @y,
(see Proposition 14.3, page 178) yields
E[(0xty — Opug)(s, y)|Gr—1, Ax] =(0ru — ax(PSU))(Sa y) + (0 H — 8w(7>r]fH))(37 Y)
- 8I(P7§E[A(sa y)|gk—1])7

and hence,

Var(E[(axﬂk - 6&?iuk>(sv y)’gkflv Ak] ‘gkfl) S?’V&r((ariu - azz (Pﬁu))(sv y))
+ 3Var((9s, H — 92, (P H))(5,y)|Gr—1)
+ 3Var (9, (PRE[A(s, )| Gk-1])|Gr—1)-

Then, we use Lemma 14.19 to bound Var(d,,(P*E[A(s,4)|Gk_1])|Gk_1). Using (12.16),
page 143, ends the proof. ]

Proof of Lemma 14.19. We use (14.28) to develop Var(0,, (P E[A(s,v)|Gk_1])|Gk_1)-

aﬂ%rn ( )
fn(s5:9)

mgl(2T>\(B)fn(S’ Y)) 0z, fn(s, y)gk_1>

Var(9, (PEEIA (s, |G 1])|Ge1) < 3Var( g(TA(B >fn<s,y>>rgk1)

+ 12(T/\(B))2Var<

+3Va < i (5,9) 92TA(B) fu(5,9))a, fu(5,9)|G (14.29)
T fn( ) n\5,Y))0z; Jn\S,Y)|YEk-1 |, .
Since < (m) is bounded by 2, we get
2
Var (25 010 (3) 1, 5. 61 ) SE@}J I g(TAB) ol 0) \%-1)

< 8(TA(B))’E(18s, (1 (5,9))*|Gr—1). (14.30)

Since ¢’ is bounded by 2 and 75 (s,y) < fu(s,%)|E[A|Gk—1]|co,

TA S
Var (" (TA) o500 5001001 ) < AEAIG 1B s,

(14.31)
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Analogously, one has

Var (5L 01 15,00 5,01 ) < SN EIA Gl B 5,00
(14.32)
Plugging (14.30), (14.31) and (14.32) into (14.29) yields

Var (0, (PRE[A(s,y)|Gr-1])|Gr—1) <24(TA(B))*E(|a, (' (5, 9))|*|Gr—1)
+ 72(TA(B))?E[A|Gk 1] |cc BBy, fn(s, )2

Using Lemma 12.17 page 135 and the second part of Lemma 14.17 page 189 ends the
proof. ]

14.2.9 Proof of (14.4): Study of E[Var((9,,ux — Ou,ur)(8,9)|Gr-1, Ar)|Gr_1]

Proposition 14.21. Assume o is uniformly elliptic, b € C’;’Q and o € Cl’?’, oo € C’I}
in space. We also assume that f is Lipschitz and u, Oy, Opu and 0?u are bounded by a
constant C,,. It holds

T
| [ dse® [ s B IVar(0nmk ~ (5,91 Ge 1. AIG 1 | <
0 R
TX(B)oy, TX(B)oy,
MNRZ Mh2
Ko(T) is a function depending on p,3,d, | Kt|co, | Kz|oo, |02, Kzloo, Cus L, Loy K and .

K(T) is a function depending on p,B3,d, o, |Ki|oo, | Kz|oo, |0n; Kzloo, Ly and the upper
bounds for b and o, and their derivatives, on ¢, K, a1, and as.

Ko(T) + K1(T) (E lu = gl +E 05— &Euk,leqg’X) .

Before proving Proposition 14.21, let us state the following Lemma.

Lemma 14.22. Assume f,b and o are Lipschitz, and TA(B)é, << 1. We also assume
that u, Oyu, Opu and O>u are bounded by a constant C,. There exists a function K(T) such
that

TN B)o,
E [Var (02,0 — Op,ur) (s, Y)|Gk-1, Ak) |Gr—1] < K(T)]W(]W)L?

C(TA(B))? s—TF y— X

WE K Ttl (0, Ka)? | =+ ) E((©7 + *)(TF, XT)|Gr1, Ar)
(T)\(B))457% 2 Tk Yy — X 9 9

+W]E Kt ht (K &le ) T ((@ +F )(Tl,Xl)‘gk 1aAk)

Co(TA(B))* 2 (8 =TFY 2 (y—X¥ 2 p2yrk yk
+WE K hy K T h, E((©° + I')(T7, X1)|Gk-1, Ak)

# SN (12 (218 (w2t (U558 mio? + 1) at XG40

Mnh2h3*2 hy .
where Co depends on Ly, | Kt|oo and |02, K| 0 -
F(Say) = fST U(()O(T)7 J\ES),y)(a u - 8zuk71)(7"7 X7{V757y)dWr and

O(s,y) = fST lu — up_q|(r, XYY 4 |Opuo — Bpup_r0|(r, XX *Y)dr. K(T) depends on
d,Cy, Ly, Ly and the upper bounds for Ky, K; 0;, K., and C depends on Ly.
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Proof of Proposition 14.21. We combine Lemma 14.22 and Lemma 14.14 page 184 to do
the proof. The first term in the r.h.s. of the Proposition comes from K(T') TA}(]@;", the
first term of the r.h.s. of Lemma 14.22, and from (12.16) page 143. The second term
appearing in Proposition 14.21 ensues from the four other terms of the r.h.s. of Lemma
14.22. We combine Lemma 14.14, the second part of Lemma 12.9 page 128 and the proof

of Proposition 14.11 page 184 to get it. O

Proof of Lemma 14.22. First, we develop Var((9y,ur — Oy, ur)(s,y)|Gr—1,Ax).  Since
Oz, uk(8,Yy) = Op,(PF(up_1 + Wk)(s,y)), where wy(s,y) is defined by (14.9) page 180, we
get

Var((0y,ur, — Oz, uk)(8,Y)|Gr—1, Ar) = Var(0y,ui (s, y)|Gr—1, Ak)
= Var(0y, (P (W) (s, y))|Gr—1, Ar)-

We use (14.28) page 190 to write

WQ(QT)\(B)fn(Svy))

(s.n) : L
+2T)\(B)fn(87y)g (2TA(B) fn(s,Y)) 0z, fn (s, y) 72(5,1)

0s, (Pr (W) (5,y)) =

92T N(B) fn(3,9)) 0, fn(s, ),

—TF Xk
where r¥(s,y) = m Yoy Kt(sh—t’)Kx(y - Ywy(TF, XF). Then,

03,71, (5,9)
fn(s,y)

n 12<TA<B>>QVar(’mg%mw)fn(s, 9)0s. o5, 9) G 1, Ak)

+ 3Var <;§Ej ;’; G2TNB) fu(5,9))0a, Fu(5,1)|Gk1, Ak> .

Var(0y, (P (W) (s,))|Gr—1, Ar) < 3Var< g2TA(B) fn(s,9))|Gk—1, Ak)

Let us bound from above the three following terms

O, T (s,
o Var( 24 EE (2TA(B) fu(s,9)) Gk, Ar )

Since @ is bounded by 2 and W is Ax-measurable, we get

Var(w“y)wmw)fn(s,y>>|gk_1,Ak) < 16(TA(B))*Var(Ds,r (5. 9)|Ge1, Ar).

fn(s,v)
(14.33)

and Var(0,,r?(s,y)) =

Zi'n

1 - s—TF y— Xk
———3 DK i) (0, K,)? (L= ) Var(w, (TF, X¥)|G '
n%?h?gd“; t( hy >( Kaz) ( I > ar(wi (T, X1)|Gr—1, Ar)

(14.34)
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° Var(f ésfﬁ /(2TA( )fn(87y))a$ifn(87y)‘gk717~/4k)

Since % is bounded by 4, we obtain

Var (( y; '(2TA(B) fu(5.9)) o, fu(5.9)|Gro1. Ar) <

Jal
G4(TA(B))?|0u, fu(s, ) [* Var(ryy (s,9)|Gr-1, Ak)-

o Var(EHCBGRTNB) ful(5.))0s, ful5,9)]Gr. A
g9(z

Since 2) is bounded by 2, we get

Var (G TAB) 501) O ol )]G, A <
32(TAN(B)) 0, fu(s,y) [ Var(ry (s,9)|Gr—1, Ar)-
Combining (14.23) page 186, (14.33) and (14.34) yields

Var (0, »(Pk(@k)(s Y)|Gr—1, Ax) <

48(T\(B —TF — Xk

n2h2h2d+2 YK < )<8sz> (y W 1)Var<wk<zz’f,Xf>|gk_1,Ak>
i=1

| S64(TA(B)) s, fu(s,9) ZKQ (

2},27,2d
n<hi h%

o (y— XF — ok ok
K2 T Var(wy (17", X;')|Gr—1, Ak)-

By taking the conditional expectation w.r.t. Gr_1, using (14.24) page 187 and Lemma
12.9, page 128, we get
TAB)d,
B (Va0 (P 5, ) 001, 40)) < KDY
CONB U+ L) (L, (s—Th
Mnh2h24+2 !

t

) @ (L) (7 + 0t G A

(TAB))! 2N~ g2 (5T o (y— X} =k xk
+CWE ‘axlfn(&y)’ ;Kt ht Kx T Var(wk(ﬂ 7Xi)|gk717-/4k:) .

It remains to apply Proposition 12.22, page 137 to get
(TAB))* o~ o2 (5 TFN o (v — XF o (mk xk
WE |8z1fn(57y)‘ ;Kf/ ht K:v T Var(wk(Tz 7Xi )|gk—17~/4k) S

O e (7 (0 ) (e p? (50 ) VGt b A

nh?hatt? ha

W(l + TX(B)d,)E <Kt ( " )Kg <yhxl> Var(wk(Tf,Xf)\gk_l,Ak))

Co(TXB 36n S—Tk _Xk B
N

t x

where Cp depends on |K|s and |0z, Kz|oo- Applying (14.24) page 187 and Lemma 12.9
page 128 ends the proof. O
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14.2.10 Proof of (14.4) : Conclusion

We recall HZ - Zk||uﬁ < |o|XE |07 — O Uk;HH;L . Combining (14.27) page 189,
Lemma 14.15 page 189, Proposition 14.16 page 189, Proposmon 14.18 page 190 and Propo-
sition 14.21 page 192 leads to

=k k2 2 2
12" = 24|, 5 <3l01%E0:H — 0u(PEH) | jyn  +3l012E 9 = 0 (Pl
T)‘(B)(sn + KQ(T)

MNh? N2h2

TA(B)dn 2 2
TMRZ (E lu = w1l +E(|O5u — aﬂ&uk—IHHg’X> :

+ Ko(T)
+ Kl(T)

Ko(T) depends on p, 3, d, |Kt|oo, | Kz|oo, |0z; Kz|oo, Cu, Ly Loy K and ag. Ki(T') depends
on u,3,d,|Ki|so, | Keloos |02, Kz|oo, Ly and the upper bounds for b and o, and their
derivatives, on ¢, K, a1, and ag. Ko(T) depends on the dimension d, u,3, the upper
bounds for |K|eo, | Kz|oos |0z, Ku|oo, f and @ and for o,b and their derivatives, on ¢, K
and a. We end this step as we did in section 14.2.5, page 188.






Chapter 15

Numerical Experiments

This part is devoted to the illustration of the results stated in Chapter 13, and more

particularly in Theorem 13.10, page 166. Before presenting the numerical experiments we
have done, we mention that the source code has been done in C++4, and the graphs have
been drawn using the Scilab and Nsp (see Chancelier et al. [19]) softwares.
First, we discuss the choice of the parameters a,n, h;, hy, M and N and the choice of the
kernel function. Second, we focus on the numerical convergence of Y — Y* and Z — Z* to
0 for the ||-[|, 5 norm, when the parameters N,n,a, h;' hy ! and M go to infinity. To do
so, one needs to explicitly know Y and Z. That’s why we study in Section 15.4 a BSDE
whose solution is a Black Scholes Call option. In Section 15.5, we deal with the pricing of
contingent claims with constraints on the wealth or portfolio processes. The first example
concerns hedging claim with higher interest rate for borrowing (see Subsection 15.5.1).
This boils down to solving a nonlinear BSDE. The second example handles the pricing of
an American put option. This is equivalent to solve a reflected BSDE (RBSDE for short).
According to El Karoui et al. [26], we approximate the solutions of the RBSDEs (via
penalisation) by a sequence of standard BSDEs with penalizations. The third example
concerns the pricing of an American Put under a portfolio constraint (see Subsection
15.5.3). Using a result from Peng [85], we link the pricing of such an option with a BSDE
with penalisation on y and z.

15.1 Choice of the parameters a,n, h,, h;, M and N

e We recall that [—a, a] is the interval where the points X;,1 < i < n (see the Definition
of P, page 105) are chosen. The choice of a depends on the value of o and T'. Assume
we want to find the value of (Y}, Z;)o<t<r when (X;)o<i<7 belongs to the interval
[x—,z4]. Then, we need to compute pointwise u and dyu on [r_,x;]. Since X
satisfies (15.3), if the starting point of X belongs to [z_,z], (Xt)o<t<r belongs
to [x_ —20VT, 2y + (1 — %Q)T + 20+/T) with a probability of 0.95 (if we assume
w— %2 > 0). Hence, since uy is given by (9.18) (see page 106) and wy is defined
by (9.13) (see page 104), we need to know the value of uy, Oyug, 02uy, and dyuy on
[t_ —20VT,xq + (u — %Q)T + 20V/T). The points {(ﬂj,Xg)lgign,lgjgk} used by
the kernel estimator P to build uy, should be chosen in an interval of size 2a larger
than 40T + (pu — "—;)T +xp—x_.

197
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o We recall the values of C'y and 77 given by Theorem 13.10 page 166

41+ T)L2
m = g 4 Ky (1) (TABB)SW(L+ M h) 4B+ 1)

Kc(T)
G1= NZh2

+ K,(T) <T)\(B)5nh;2 + (B + hoe P9 NYRo2 + hole VA + hi) .

Sufficient conditions for C'; to converge to 0 are the following

— & << hg,
— h << h%,
1 d+2
— = << hghGt2.
Here, we implicitly assume that a is large enough to neglect the exponential terms.

The above choice of hy, h; and n also implies that n; < 1 (for 3 large enough)
independently of M. The fact that M only appears in the contraction constant n

deeply relies on the adaptive control variate method. Had we considered a non
adaptive method (like Picard iterations), C; would have depended on M. In such
a case, we should choose M large. In our case, we don’t need to choose M large.

This will be confirmed by the numerical experiments.

To get contributions in C of the same order, i.e.

1 ~ ‘in ~ he ~ h2
N2h2  h2  h2 v
we can take
N ~ nﬁ
hy ~ 0@ (15.1)
hy ~ nﬁlﬁ%

2
With this choice of parameters, we get Cy ~ n~ 4+3. We observe that N doesn’t need to
be large (this will be confirmed by the numerical experiments).

Let us deal with the practical choice of parameters. We choose the dimension d = 1 and
n ~ 10% (n represents the number of random points (7}, X;) used by P). We consider the
case a ~ 1 (this is true for a normal model, see the Black Scholes Call option in Section 15.4
for details). This value of a is not very large, although the previous discussion considered a
large enough to neglect the terms depending on it. The choice of h; and h,, is not as easy as
it seems to be. Indeed, the theoretical rules (15.1) ensure that the global error on Y and Z

goes to 0 at a given rate. In practice, we may be more concerned by the error on Y, and

in this case, the choice hy = h, = (%)1/3

seems to be a good heuristic rule. As we
said above, the value of N doesn’t need to be large, in the following we choose N ~ 100.
Concerning M, we choose M ~ 100. In Subsection 15.4.4, we study the convergence of

the algorithm w.r.t. N and M from a numerical point of view.
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15.2 Choice of the kernel function

The kernel functions K; and K, must satisfy Hypothesis 12.1 (see page 126), e.g. K is
defined on the compact support [—1,1], is a C’; positive bounded non-odd function such
that [, Ki(u)du = 1. K, is defined on the compact support [—1, 1]9, is a positive bounded
function such that K,(y) = H;lzl K%(y]) KJ:R—Risa C? bounded non-odd function
such that [p K%(u)du =1, for all j € {1,---,d}. From Table 11.1, page 118, we deduce
that the Quartic and the Triweight kernels satisfy the above conditions concerning K.
In addition to the Quartic and Triweight kernels, the Epanechnikov kernel satisfies the
conditions on K;. We also test our algorithm with a truncated Gaussian kernel. Let us

consider

1 1.2
K(z) = e 2" 1< = K9(7)1)3)<6-

Ver

From a numerical point of view, K9(z) is null for x < —6 and is equal to 1 for = > 6.

Then, numerically, K9 is a Cg function. Its support is [—6, 6], it is an even function and
satisfies [p K9(u)du = 1. In the following, K9 is called the truncated Gaussian kernel.
The numerical study of the different kernels is done in the following example.

15.3 BSDEs and Application to Finance

We refer to El Karoui et al. [27] for general results on the applications of the BSDEs to
finance. We consider a riskless asset P? governed by the equation

where r; is the short rate. In addition, we consider d risky stocks satisfying fori =1,--- ,d
. . . d . .
dP} = Pl(bjdt + Y o dW7}).
j=1
We denote by (F;) the o-algebra generated by the Brownian motion W and augmented.

An investor invests at time ¢ an amount 7 of the wealth V; in the ith stock.

A self financing trading strategy is a pair (V,7), where V is the market value and
1 d)*

m=(m", -, m)* is the portfolio process, such that (V| ) satisfies

T
dVy = rVidt + wj oy (dWy + tht),/ lofm|2dt < o Pa.s,
0

where 6 is a predictable and bounded-valued process, such that b;—r;1 = 0,0, dPQdta.s,
and 1 is the vector whose every component is one. From El Karoui et al. [27], Theorem
1.1, we know that if £ is a positive square integrable contingent claim, there exists an
hedging strategy (V,m) against £ such that

dVy = riVidt + mfop0dt + o dWy, Vi =E&. (15.2)
Moreover, we get
V; = E[HLE|F] a.s. where dH. = —H(rods + 05dW,), H! = 1.
Then, finding (V,7) boils down to solving the linear BSDE (15.2).
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15.4 A first example : the Black Scholes Call option
We assume that X follows in dimension d =1
dX, = (MO - ";) dt + odW,, Xo =, (15.3)
where W is a real P-Brownian motion. (Y, Z) solves the BSDE
—dY, = f(t, X,, Yy, Zy)dt — Z,dWy,  Yr = ®(Xr), (15.4)

where the driver f is such that

Ho —T
g

f(t,z,y,z) = —ry — 0z where § =

and the terminal condition @ is ®(x) = (e* — K)T. The parameters are given in Table
15.1.

Lo | O r T| K
0.1 10.2]0.02] 1100

Table 15.1: Option Parameters

Lemma 15.1. Solving BSDE (15.4) boils down to computing the hedging strategy against
®(X7) of a standard Black Scholes Call option. We get

Y, = e "I Eg[(S7 — K)T| A,
where dSy = S(rdt + 0dBy), Sy = €* and B is a Q-Brownian motion.

Proof. In fact, applying El Karoui et al. [27], Theorem 1.1 gives ¥; = Ep[HL®(X71)|F],
where H; has been defined above. Then, Hy = e‘”‘*‘ewﬁ%gzt and we can write

Y, = G_T(T_t)EQ[(I)(XT”ft], a.s.
where Q is the risk neutral probability measure such that % = e~ Wr—30°T  Gince
dX; = (r— %Z)dt + 0dBy, where B is a Q-Brownian motion, and by defining X; = log(S;),
we get the result. O

Remark 15.2. By using Lemma 15.1, we get a closed formula for Y;. Y; = F(¢,5;),
where F is the price function of a standard Call option. Since Y; = u(t, X;) and Z; =
(Ozuo)(t, X;), we deduce Z; = 0, F(t, St)oSy.

15.4.1 Convergence of ||Y — Yk”i,ﬁ and || Z — ZkHiﬂ

We want to prove that ||Y — Y’“||Z gand [|Z — ZkHiﬁ converge when k goes to infinity.
We recall

T
|y — YkHiﬁ =E [/0 /Rd P lu(s, X7 — uk(s,X;V’x)Qe_“md:cds} ,

T
1Z — z’fuiﬁ =K UO /Rd 5 |(puc) (s, XT) — (Opupo)(s, Xév’“"”)\%’""”dxds] .
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By using Remark 13.8 page 166 and (6.11) page 67, we approximate ||Y — Yk||iﬁ and
2
1Z — Z*||,, 5 by

T
HY - Yk”i g / / eﬂSE‘u(s7 y) - Uk(S, y>‘2€_ﬂ|y‘dyd57 (155)
’ 0 JRrd
) T
12245~ [ [ EIOu0)(5,0) ~ (Oruno) s 9)Pe M dyds,
’ 0 JRd
To approximate the integral w.r.t. y, we choose y in [4.5,4.8]. This interval corresponds
to [x_,x4], which has been defined at the beginning of Section 15.1. This means that
we compute the error ||V — YkHiﬁ and || Z — Zk||iﬁ when (St)o<t<7 belongs to [90,120].
We also take 4 = 1 and 8 = 0. The above expectations are computed w.r.t. the points

{(Tij, X%j)lgign,lgjgk} used by the kernel estimator P¥ to build uj. We plot the distribu-
tion of the following errors

T prry
o =v) = [ [ ulo.y) — wnls.g)Pe Wy,
0 T_

T prxy
(7"~ 7) = /0 [ 102511 — @) s, e My,

We use a truncated Gaussian kernel with the parameters listed in Table 15.2.

n N | M | hy | hy | 2a
2500 | 100 | 100 | 0.1 | 0.1 | 1.2

Table 15.2: Algorithm Parameters

With the value 2a = 1.2, we choose the points (X7);>11<i<n in [4.1,5.28]. Figure 15.1
represents the evolution w.r.t. k of the density of the error e(Y* —Y) and e(Z* — Z) for 50
scenarii. The means of the distributions, denoted e,,(Y*—Y) and e,,(Z* — Z), respectively

error density for Yok - Y error density for 2°k-Z

900

800

700:
eoo:
soo: 150
ADO:
300:

200-{ 1 |

100

Figure 15.1: Density of the error Y* —Y and Z* — Z

approximate ||Y — YkHiﬂ and || Z — ZkHiﬂ. They are listed in Table 15.4.1. We also write
down in Table 15.4.1 the variance of the distributions, denoted e, (Y*—Y) and e,(Z* - Z).
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We notice that e,,(Y* —Y) is almost divided by 100 between the first and the fifth
iterations. Moreover, it drastically decreases between the first and the second iterations.
From iteration 2, the algorithm doesn’t reduce so much the error on Y. e,,(Z* — Z) is
almost divided by 4 between the first and the fifth iterations. A contrary to e,,(Y* —Y),
em(Z% — Z) decreases more slowly, and seems to be stabilised from the fourth iteration.

Concerning the evolution of e, (Y*—Y) and e,(Z*—Z) w.r.t. k, we remark that Zgﬁi;:}{g ~
16 and ©Z,=2) ~ 2. We also notice that ey (Y* —Y) drastically decreases between the

ey (Z°—2)
first and the second iterations and decreases slowly from iteration 2. This is consistent

with the evolution of e,,(Y* —Y) w.r.t. k.

em(YF =Y) | en(ZF - 2) eo(YE —Y) | e (ZF — Z)
k=1 0.0743476 0.0265350 k=1 | 0.0051774 0.0040402
k=2 0.0014802 0.0104687 k=2 | 0.0005904 0.0026707
k=3 0.0010029 0.0082452 k=3 | 0.0003638 0.0022511
k=4 | 0.0008865 0.0076881 k=4 | 0.0003268 | 0.0025221
k=5 | 0.0008373 0.0075321 k=5 | 0.0003188 0.0022863
Figure 15.2: Evolution of e,,(Y*—Y") and Figure 15.3: Evolution of e,(Y* —Y") and
em(ZF — Z) wrt. k eo(ZF — Z) wrt. k

15.4.2 Pointwise convergence

In the preceding subsection, we have studied the convergence of the algorithm for the
|[[l,, 5 norm. The graphs 15.4 and 15.5 represent the evolution w.r.t. k of the errors uy —u
and (Oyup, — Ozu)o on [0,1] x [4.5,4.81]. The right column represents the level curves of
the errors.

Looking at Figure 15.4, we notice that at the second iteration, the error is already quite
small. This corroborates the remarks we have done about Table 15.4.1. A contrary to
Figure 15.4, Figure 15.5, drawing the evolution of the error on d,uc w.r.t. k, is not
satisfying. We don’t notice any drastic reduction of the error when k increases. If we
carefully look at Figures 15.4 and 15.5, we remark that the errors on u and d,uc are quite
bad for T near to 1 and for a spot around K. This is due to the singularity of the payoff
function at S = K. Since the algorithm builds a C];’Z function, we cannot get a good
approximation of the payoff function, which is C°.

15.4.3 Influence of n

The asymptotic complexity of the algorithm is of order K Mn?, where K denotes the
number of iterations, M the number of Monte Carlo simulations used to compute wy, (see
(9.13), page 104) and n the number of random points used by the operator P. Then, the
value of n has a strong impact on the computational time of our algorithm. First, we
check that the complexity of the algorithm is of order K Mn?, then we study the efficiency
of the algorithm w.r.t. the computational time.
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Figure 15.4: Evolution of the error on u w.r.t. k
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Complexity of the algorithm

Table 15.6 represents the time spent by the algorithm to compute the value of Y and
Z5, which are the approximations of Y and Z at the fifth iteration, when n = 500,
1000 and 2500 and for N = M = 10. We plot log(time) w.r.t. log(n) in Figure 15.7.
Since the complexity is K Mn?, the slop must be of order 2. By using a linear regression
method, we get the parameters a,, by, std,, where log(time) = a,, x log(n) + b,, and std,
represents the standard deviation of the residuals: std, = 0.0194057, b, = —9.6265698
and a, = 1.7679698.

n 500 | 1000 | 2500
time (second) | 3.96 | 12.92 | 67.89

Figure 15.6: Computational time for different values of n

Figure 15.7: Evolution of log(time) w.r.t log(n)

We also study the evolution of the computational time w.r.t. the value of M, although
theoretically, as we said in Section15.1, the value of M doesn’t affect the limiting error.
This will be confirmed in Subsection 15.4.4, where we study the impact of M on e,, (Y*—Y)
and e,,(Z* — Z). Table 15.8 represents the time spent by the algorithm to compute the
value of Y and Z°, which are the approximations of Y and Z at the fifth iteration, when
M = 10, 50 and 100 and for n = 500 and N = 10.We plot log(time) w.r.t. log(M) in
Figure 15.9. Since the complexity is K Mn?, the slop must be of order 1. By using a linear
regression method, we get the parameters ay, bys, stdyr, where log(time) = apr*xlog(M)+
byr, and stdys represents the standard deviation of the residuals: stdy; = 0.0263865,
by = —0.5323893 and ajp; = 0.8241543. We have got ay ~ 1.76 and ap; ~ 0.82. These
coefficients are not so far from the theoretic values given by the asymptotic complexity of
the algorithm (i.e. ay =2 and ap; = 1).

Efficiency of the algorithm v.s. computational time

Table 15.3 represents the evolution of the error on Y (denoted e, (Y* —Y)) for different
values of n, and for N = M = 10. Since the values of h, and h; change when n changes
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M 10 50 100
time (second) | 3.96 | 14.23 | 26.80

Figure 15.8: Computational time for different values of M

Figure 15.9: Evolution of log(time) w.r.t log(M)

(see (15.1)), we specify the different values of these parameters. Figure 15.10 represents
the evolution of log(e,,(Y? —Y)) and log(e,(Z° — Z)) w.r.t. log(n). By using a linear
regression method, we get the parameters a,, by, std,, where log(en (Y5 —Y)) = Ay *
log(n) + by, and std, represents the standard deviation of the residuals: std, = 0.0091393,
by = 0.7361349 and a, = —1.0147081. We also get the parameters a., b., std., where
log(em(Z® — Z)) = a, * log(n) + b,, and std, represents the standard deviation of the
residuals: std, = 0.0067187, b, = —3.516634 and a, = —0.4784886. We notice that
the error on Y decreases linearly with n and the error on Z decreases as /n. Since the
computational time increases as n? (see previous Subsection), improving the error on Y
and especially on Z costs a lot in term of computational time.

4 —— log(e(Y"k-2)
5.6 — log(e(z"k-2))

Figure 15.10: Evolution of e,,(Y?® —Y) and e,,(Z° — Z) w.r.t log(n)
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n | 500 (hy = hy = 0.13) | 1000 (hy = hy = 0.1) | 2500 (hg = hy = 0.078)
k=1 0.1067746 0.0737104 0.0621128
k=2 0.0045913 0.0020142 0.0010975
k=3 0.0037402 0.0017277 0.0007527
k=4 0.0037202 0.0017123 0.0006969
k=5 0.0038930 0.0018623 0.0007485

Table 15.3: Evolution of e,,(Y* —Y) w.r.t. k for different values of n

n | 500 (hy = hy = 0.13) [ 1000 (hy = hy = 0.1) | 2500 (hg = hy = 0.078)
k=1 0.0357527 0.0311915 0.0284791
k=2 0.0164547 0.0118549 0.0072938
k=3 0.0148545 0.0105162 0.0071240
k=4 0.0146653 0.0104761 0.0068115
k=5 0.0151874 0.0110527 0.0070327

Table 15.4: Evolution of e,,(Z* — Z) w.r.t. k for different values of n

15.4.4 Influence of M and N

207

In this section, we want to show that the values of M and N do not affect e, (Y* —Y)
and e,,(Z* — Z) much, as we have foretold it in Section 15.1. We keep the same parameters
as in Tables 15.1 and 15.2, except that we change the value of N in Tables 15.5 and 15.6,
and the value of M in Tables 15.7 and 15.8.

N=10

N=50 N=100

N=500

0.0743641

0.0738299 | 0.0743476

0.0734905

0.0010729

0.0015602 | 0.0014802

0.0015361

0.0009750

0.0009144 | 0.0010029

0.0009863

0.0008497

0.0009315 | 0.0008865

0.0009587

W‘WTT“W‘W‘
QU | W[ N~

0.0009265

0.0009624 | 0.0008373

0.0008692

Table 15.5: Evolution of e,,(Y* —Y) w.r.t. k and N

N=10

N=50 N=100

N=500

0.0273184

0.0270381 | 0.0265350

0.0270870

0.0074741

0.0113869 | 0.0104687

0.0112863

0.0069694

0.0078171 | 0.0082452

0.0077122

0.0068796

0.0080186 | 0.0076881

0.0077423

W‘W‘W‘W‘W‘
Tk | W N -

0.0072260

0.0077805 | 0.0075321

0.0072681

Table 15.6: Evolution of e,,(Z* — Z) w.r.t. k and N
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M=10 M=50 M=100 M=500
0.0738116 | 0.0746727 | 0.0743476 | 0.0739790
0.0011348 | 0.0012501 | 0.0014802 | 0.0011098
0.0009754 | 0.0010027 | 0.0010029 | 0.0009499
0.0009433 | 0.0009787 | 0.0008865 | 0.0009293
0.0009641 | 0.0008824 | 0.0008373 | 0.0009633

WW‘W‘WW‘
Ui | W~

Table 15.7: Evolution of e,,(Y* —Y) w.r.t. k and M

M=10 M=50 M=100 M=500
0.0270811 | 0.0276510 | 0.0265350 | 0.0270689
0.0075221 | 0.0075821 | 0.0104687 | 0.0074627
0.0075100 | 0.0075407 | 0.0082452 | 0.0071787
0.0074765 | 0.0076484 | 0.0076881 | 0.0072807
0.0068578 | 0.0066434 | 0.0075321 | 0.0074454

WW‘W‘WW‘
U | W I~

Table 15.8: Evolution of e,,(Z* — Z) w.r.t. k and M

We notice from Tables 15.5, 15.6, 15.7 and 15.8 that changing the value of M or N
doesn’t change the values of e,,(Y* —Y) and e,,(Z¥ — Z). M and N don’t have a big
impact on the errors e,,(Y* —Y) and e,,(Z¥ — Z). Since N is always bigger that 3.16
(= hg 1/ 2), and M is bigger than 1, these results confirm what we have predicted in Section
15.1.

15.4.5 Influence of the kernel

We plot in Figure 15.11 the graphs of the three kernels we study in this part : Quartic,
Triweight and Gaussian. Table 15.4.5 gives the evolution of e,,(Y* —Y) and e,,(Z* — 2)

Figure 15.11: Different kernels

w.r.t. k when using a Gaussian kernel, a Triweight kernel and a Quartic kernel respectively.
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We keep the same parameters as for the Gaussian kernel (Tables 15.1 and 15.2). For the
Triweight and Quartic kernels, we only change h, and h;, which are chosen equal to 0.2.

Gaussian | Triweight | Quartic Gaussian | Triweight | Quartic
k=1 | 0.0743476 | 0.0569964 | 0.0607659 k=1 | 0.0265350 | 0.0296810 | 0.0285901
k=2 | 0.0014802 | 0.0010012 | 0.0010628 k=2 | 0.0104687 | 0.0105762 | 0.0100127
k=3 | 0.0010029 | 0.0007176 | 0.0008328 k=3 | 0.0082452 | 0.0092400 | 0.0086051
k=4 | 0.0008865 | 0.0007517 | 0.0008022 k=4 | 0.0076881 | 0.0090822 | 0.0085337
k=5 | 0.0008373 | 0.0007492 | 0.0007522 k=5 | 0.0075321 | 0.0093429 | 0.0083038
Figure 15.12: Evolution of e,,(Y* —Y) Figure 15.13: Evolution of e,,(Z* — 2)
w.r.t. k w.r.t. k

We notice that the Triweight and Quartic kernels give a better accuracy than the Gaus-
sian one when we compute e,,,(Y* —Y"), but this is the opposite for e,,(Z* — Z).
15.4.6 Hedging Strategy

We consider the Black Scholes Call option described at the beginning of the section
whose parameters are summed up in Table 15.9.

o o r T K SO
0.110.2(0.02]| 1] 100 | 100

Table 15.9: Option Parameters for the hedging

We want to check whether our algorithm provides the correct hedging strategy for such
an option. We keep the algorithm parameters of Table 15.2. We use a Gaussian kernel.
The strategy (wealth, portfolio) satisfies (15.2) with £ = ®(X7). We can also write

d‘/t = 5(t, St)dSt + (V;: - 5(t, St)St)’l“dt,

where S has been introduced in Lemma 15.1 and satisfies dS; = Sy(podt + odWy). 6(t, St)
is equal to g—ﬁ and represents the quantity of stocks invested. If we consider that the value
of (¢, Sy) is constant between two trading dates, we deduce from the above equation that

Vi € {07 T 7N - 1}7 Wi+1 = Wierh + 5(t17 Stz)(St - Stierh)7

141

where 0 :=ty < t; < --- <ty := T are the trading dates, and h = % = t;11 — t;, for all
1=0,---,N —1. When h is small, we also have

Vi € {0, - N — 1}, Vi — V;gl = (5(752‘, Stl)(St — Stl) + (V%Z — (S(ti, StZ)Stl)rh (156)

it+1 i+l

The value of the wealth at time 0 is the price of the option at time 0, i.e. Vj = Yy. The
value of §(t, S;) is related to Z; in the following way 0(¢, S;) = aistt We use our algorithm
to get an approximated value of Yy and Z;,, ¢ = 1,---,N. If our algorithm performs
well, the tracking error er := Vi — (S — K)T, where Vr is computed using Vy = Yok,
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k

0(ti, St;) = UZSttZ and (15.6), should be small. We draw in Figure 15.14 an histogram of the

value of er for 10000 trajectories of S and k = 5. We compare it with the histogram of
the value of er when d(¢;, St,) is computed exactly (see Remark 15.2).

histogram of the hedging error T

Figure 15.14: histogram of e

15.4.7 Comparison with Picard’s Algorithm

We compare our algorithm based on a sequential Monte Carlo method (SMC algorithm
for short) with an algorithm using Picard’s iterations, based on Corollary 9.3, page 95
(Picard’s algorithm for short). Picard’s algorithm is simpler than the SMC algorithm
since we don’t use any adaptive control variate. We can described it in the SMC algorithm
framework (see Section 9.6, page 103). The procedure is the same, except for (9.13) and
(9.18). (9.13) becomes

M T
() = 12 [@(X?”“N) + / F (5 XPRN (5, XIFN), (@l ) (5, X)) ds} .
m=1

Since there is no correction term in the above definition of Wt (t,z), (9.18) is replaced by
ul (t,x) = PE(wl)(t,z). Figure 15.15 draws the evolution of e,,(Y* —Y) and e,,(Z% — Z)
w.r.t. k when using Picard’s algorithm and the SMC algorithm. Figure 15.16 draws the
evolution of e,(Y* —Y) and e,(Z* — 7).

We notice that e, (Y*—~Y), e (2%~ 2), e,(Y*—Y) and e,(Z* — Z) when using Picard’s
algorithm are larger than the ones ensuing from the SMC algorithm.

15.5 Second example : Constrained portfolios

Pricing of contingent claims with constraints on the wealth or portfolio processes leads
to deal with nonlinear backward equations for the fair price of claims.
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evolution of _M(Y"k-Y) w.rtk evolution of e_M(z*k-2) w.r.tk
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Figure 15.15: Evolution of e,,(Y* —Y) and e,(Z* — Z) wr.t. k
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Figure 15.16: Evolution of e,(Y* —Y) and e,(Z* — Z) wr.t. k

15.5.1 Hedging claim with higher interest rate for borrowing

We refer to El Karoui et al. [27] for this first example of constrained portfolio. We
consider the case where the investor is allowed to borrow money at time ¢ at an interest
rate R > r, where r is the bond rate. We borrow and invest money in the bond at the
same time, but we restrict ourselves to policies in which the amount borrowed at time ¢ is
equal to (V; — Zle 71)~. The strategy (wealth, portfolio) (V,7) satisfies

4 _
dVy = rVidt + nfo0dt + m;o0dWy — (R — 1) (Vt _ Zﬁ) dt.
i=1
Finding the strategy (V,7) consists in solving BSDE (15.4) with the nonlinear driver
f(t,:v,y,z) =—ry—0z+ (R - r)(y — i)—_

A first case : ®(z) = (e — K)*
The option parameters are summed up in Table 15.10.

Lemma 15.3. Let (Yf’R, Z:’R) denote the solution of

—dY; = fPR(t, X0, Yy, Zy)dt — ZydWy, Y = ®(X7), (15.7)
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o o T R T K So
0.05 | 0.2 ] 0.04 | 0.06 | 0.5 | 100 | 100

Table 15.10: Option Parameters

where the driver % is such that foR(t,z,y,2) = —ry — 0z + (R — r)(y — 2)” and
®(z) = (e"—K)*. Then, (Y;"%, Z1'1) is equal to (Y;E, ZF), where (YR, ZE) is the solution
of the BSDE

—dY; = [P, Xy, Yy, Zy)dt — ZydWy,  Yp = ®(X7), (15.8)

with fRR(t, x,y,2) = —Ry — @z.

R
Proof. We can rewrite " (t,z,y, 2) = —Ry— B2 4 (R—r)(y—2)*. Since Y} < Z7t for
all t € [0,T] (we can prove it by using the closed formula giving the value of a standard Call
option and its derivative w.r.t. S;), we get that f%(¢, X;, V;E, ZF) = fR8(t, Xy, Y,R, ZF).
Applying Proposition 9.2, page 95 ends the proof. O

With the option parameters of Table 15.10, we get Y = 7.156 and 6%(0,5p) = f—i =

0.611. As before, we run 50 times our algorithm and we take the mean of Yok, Z(I)“ over the
50 values. The algorithm parameters are summed up in Table 15.11. Figure 15.17 plots

n N | M| hy hy 2a
2500 | 100 | 100 | 0.07 | 0.07 | 0.84

Table 15.11: Algorithm Parameters

the evolution of Y ™** (NL price) and 65" (NL hedging) w.r.t. k, where (Y"-f0k zrRk)

is the approximated solution of (15.7). We notice that the value YOT’R’k is always below

evolution of the mean of Y w.r.tk evolution of the mean of delta w.r.t k

0.612-

0.610
0.608

0.606-

7.1 0.604
0.602
0.600

0.598

0.596

BS price ——— BS hedging
NL hedging

Figure 15.17: Evolution of YOT’R’k and 56’R’k wrt. k

L i

Y2 (while they should be equal) and the relative error on & s#—) s twice smaller
0

Y-y ok . . o
than the one on YOT’R’k (=-—#—)- There is a bias between Y and YOT’R’k. This bias
0
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persists when we compute YOR’R’k. Although the results on the convergence of Y* — Y in
Il .5 Dorm are quite good, we notice again that the pointwise error on Y is not negligible.

A second case : ®(z) = (e” — K1)t —2(e* — K9)T
In such a case, we cannot prove a result co}gresponding to Lemma 15.3. Since the payoff
is not (e — K)*, we don’t have YV, < ZTt anymore, and then Yy # Y{*. Using the

comparison Theorem (see El Karoui et al. [27], Theorem 2.2), we only get upper and lower
bounds for Yj.

Lemma 15.4. Let (Y, Z%"), i = 1,2 be the solution of

—dYy = "1 (t, Vs, Zy)dt — ZydWy, Y = (ST — K;)+.
We also define (Y5F, Z0F), i = 1,2, the solution of

—dY; = [V, Zy)dt — ZydWy, Yp = (St — Ki) 4

We recall that (Y™R, ZR) denotes the solution of (15.7), where ®(x) = (e*—K1)T —2(e® —
K2)+. Then, we get Y;T’R > Y-tl,r . 2}/;2’]%, )/t’l‘,R > Y;l,r _ 2}/1-52,7“7 Y;r,R > thl,R N 2}/;2,1% and
}/;:T‘,R S }/?LR _ 2Yi277“'

Proof. We only prove the first assertion, i.e. Y;T’R > Y;l’r — 2}/;2’}?‘. The other ones can
be deduced in the same way. (Y17 —2Y2E ZLr — 272E) is the solution of a BSDE with
terminal condition ® and whose driver is f(w, t) = f="(t,Y,"", z}") = 2fBR (¢, YR, 221,
To apply the comparison Theorem (see El Karoui et al. [27], Theorem 2.2), it remains to
prove that fmR(t, Y,"" — 2v 2%z —2228) > f(w,t).

f’/‘,R(t’ }/tl,T' _ 2}/152,R, Ztlﬂ' - QZE,R) . f(w,t) _ _r(nl,r _ 2Y;27R) _ MOO—_ T(Ztlﬂ“ _ QZtQ,R)

Zl,r _ 2ZQ,R - _ _
F(R—r) |V — oyl _ 2 ; Y 1o TZtl’T RV 4 o RthR)7
g g g
2R g _ 9 2R T
=(R—r) (2 L _gyPB |y oy 2L 2T .
g g
zZhr

To conclude, we use that = > —x and Y;l’r < ]

By using the preceding Lemma and the option parameters of Table 15.12, we deduce
that YOT’R belongs to [2.76, 3.6]. Table 15.14 sums up the evolution of the mean of Y (over

50 values) w.r.t. k. The algorithm parameters are summed up in Table 15.13. We notice
that the values Y, for k& > 2 are in the interval [2.76, 3.6].

po | o | T R | T |Ki| Ky | S
0.05 0.2 ]0.01]0.06|0.25]| 95 | 105 | 100

Table 15.12: Option Parameters
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n N | M| hg he | 2a
2500 | 100 | 100 | 0.05 | 0.05 | 0.6

Table 15.13: Algorithm Parameters

iteration | mean of Y | variance of Y

k=1 2.6148572 0.0016014
k=2 3.1168342 0.0019487
k=3 3.1069206 0.0018843
k=4 3.1007172 0.0021258
k=5 3.1058564 0.0024850

Table 15.14: Evolution of mean of Yok w.r.t. k

15.5.2 Application to American options
We consider an asset S following the Black Scholes model
dSt == St(,u(]dt + O'th), So == em,

where W is a real P-Brownian motion. We introduce the risk neutral probability QQ, whose
density w.r.t. P is % = e Wr—30°T (6 = F=T). S satisfies

dSt = St(’l”dt + O'dBt),
where B is a Q-Brownian motion. The price of an American put option is

Vi = P(t,St), where P(t,z) = sup Eq (e_T(T_t) (K — Sﬁ’x)Jr) ,
T€T, T
and T; 7 is the set of stopping times with values in [t,T]. As in section 15.4, we introduce
X = log(S:), and we get

2

” ) dt + odWy, Xo = . (15.9)

dX; = (MO— b}

We define ®(z) = (K — €”); and A, the generator of X such that A = %288—;2 + (r—

"—22)8% —r. By using Lamberton and Lapeyre [65], Section 5.3.2, we get that the American

Put satisfies the following partial differential equation

max (®(z) —v(t, x), Ov(t,x) + Av(t,z)) =0 a.e. in [0,7] x R,
(T, z) = ®(x).

Relation between reflected BSDEs and parabolic PDEs

We aim at linking the solution of the above PDE and the solution of the following
reflected BSDE (RBSDE in short)

—d}/t = (—’I"Y;g - GZt)dt - thWt + th,
Yr=(K—eXT),, V; > (K —eXt),, 0<t<T,
Jo {¥e = () = ¥), }dK, = 0,



15.5. Second example : Constrained portfolios 215

where X has been defined in (15.9). Using El Karoui et al. [26], Theorem 8.5 yields that
Ytt’x, solution of the above RBSDE, is equal to v(t, x), the solution of the preceding PDE.
Then, finding the price of an American put option boils down to solving a reflected BSDE.

Approximation via penalisation of solutions of RBSDESs

Our algorithm is not able to solve RBSDEs. That’s why we present here a way of
approximating solutions of RBSDEs by a sequence of standard BSDEs with penalisation.
This method has been introduced by El Karoui et al. [26], Section 6 for proving the
Xt)

existence of a solution of RBSDE transforming the constraint ¥; > (K — e**) into a

penalisation.
T T
Y, = (T, Xr) +/ F(s, Xy, Yo, Zo)ds + K — K, — / Z,dW,,
t t

T
Y, > g(t, X,), / (Vs — gls, X,))dK, = 0.
t

Let us consider the following sequence of BSDEs
Yi = g(T, Xr) +/ F(s X, Y, Z1)ds +i/ (Yi — g(s, X)) "ds / Zidw.,
t t ¢

whose solution is denoted (Y?, Z%). We define K; = ZJ;T(Y; — g(s,Xs))"ds. El Karoui
et al. [26] prove that (Y, Z¢, K*) converges to (Y, Z, K), solution of the above RBSDE,
when i goes to infinity. Moreover, Y is an increasing sequence (converging to Y).

Application to our algorithm

Using the previous result and more particularly the definition of Y enables to approxi-
mate Y from below with our algorithm, (Y solves a standard BSDE). Then, the algorithm
should give lower bounds for Y, closer and closer to Y when ¢ increases. Consider an option
whose parameters are given in Table 15.15.

140 o r |T| K | So
0.05 | 0.4 ]0.05| 1 {100 | 100

Table 15.15: Option Parameters

As a reference, we choose the values given by the Kamrad Ritchken tree method (com-
puted with PREMIAY): Yy = 13.66, 69 = —0.394. The parameters of our algorithm are
given in Table 15.16.

As before, we run 50 times our algorithm and we compute the mean and the variance of
Yoi’k, Zé’k over all the 50 values, for kK =1,---,10 and ¢ = 0.5, 1, 5 and 10. Figures 15.18
and 15.19 draw the evolution of Yoi’k and 5é’k (mean and variance) w.r.t. k, when i = 0.5,
1, 5 and 10. We notice that the variance of Yoi’k and 6é’k is very big when ¢ = 5,10 and
when k is small. When £ increases, the variance becomes smaller but it still oscillates.

'PREMIA is a pricing software developped by the MathFi team of INRIA Rocquencourt, see
http://wuw.premia.fr


http://www.premia.fr
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n N | M | hg he | 2a
2500 | 100 | 100 | 0.12 | 0.12 | 2.4

Table 15.16: Algorithm Parameters

evolution of the mean of Y w.r.t. k for different values of i evolution of the variance of Y w.r.t. k for different values of i
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Figure 15.18: Evolution of Yoi’k (mean and variance) w.r.t. ¢ and k

Figure 15.20 zooms on the mean of Yoi * and 5é’k for k greater than 3. According to the
theory, the values of YOZ’k should be smaller than Yy (13.66). Looking at Figure 15.20, we

notice that for ¢ = 10, Yolo’k oscillates around Yy w.r.t. k. 5é’k seems to converge around
—0.39.

15.5.3 American option with constraint on the portfolio

As we have linked American options to BSDEs with penalisation related to y in Subsec-
tion 15.5.2, we can link American options with constraints on the portfolio with BSDEs
with penalisations related to (y, z). First, we recall some results coming from Peng [85].

evolution of the mean of delta w.r.t. k for different values of i evolution of the variance of delta w.r.t. k for different values of i
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Figure 15.19: Evolution of 56’k (mean and variance) w.r.t. ¢ and k
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evolution of the mean of Y w.r.t. k for different values of i evolution of the mean of delta w.r.t. k for different values of i
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Figure 15.20: Evolution of the mean of Yoi’/LC and 5§ w.r.t. k

BSDEs with constraints on (y, z)

In the previous part, we have considered BSDEs with constraints on y. This part
generalises the previous one, since we are dealing with BSDEs with constraints on y and
z. We consider the following BSDE

T T
Y, =¢ +/ f(s,Ys, Zg)ds + (Kp — Ky) — / ZsdWs, (15.10)
t t
such that
o(t, Yz, Z) =0, ae., as. (15.11)

where ¢ : Q x [0, 7] x R x R? is a non negative function, globally Lipschitz w.r.t. (y, z) and
such that E fOT |p(s,Ys, Zs)|*ds < 0o. According to Peng [85], Section 4, such a BSDE does
not have a unique solution. Peng [85] defines in Definition 4.1 the smallest f-supersolution
on [0,7] of BSDE (15.10) with constraint (15.11). To construct the smallest solution of
the previous BSDE the author introduces the sequence

T T
y;‘:u/ f(s, Y1, 7Y ds+z/ o(s, Y, Z0) ds/ Z AW, (15.12)
t t

He proves in Theorem 4.2 that the sequence Y converges monotonously up to Y. Z% and
K converge to Z and K in L2. Moreover, (Y, Z, K) is the smallest f-supersolution of
BSDE (15.10) with constraint (15.11).

Application to American option with constraint on the portfolio

We still consider an American Put option and we impose a constraint on the amount m
involved in the asset. We refer to Peng and Xu [86], Section 7.2 for more details on the
following examples.

Example 1: No borrowing
We consider the case where no borrowing is allowed. This means that 7; should be smaller
than Y;. By using Peng and Xu [86], Proposition 7.3, we know that the price process Y is
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the same as the one in complete market, i.e. we don’t need to borrow money to replicate
an American Put option. The function ¢ defined in (15.12) is

o , 7N\ T

o3 2 = (v gl )+ (v - 2)
We consider the parameters given in Tables 15.15 and 15.16. Figures 15.21 and 15.22
show the evolution of sz,k and (56’k w.r.t. ¢ and k. We notice that for ¢ = 10 there is no
convergence to Yy and §p anymore.

evolution of the mean of Y w.r.t. the iterations for different values of i evolution of the mean of Y w.r.t. the iterations for different values of i
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Figure 15.21: Evolution of Yoi’k w.r.t. ¢ and k

evolution of the mean of delta w.r.t. the iterations for different values of i evolution of the mean of delta w.r.t. the iterations for different values of i
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Figure 15.22: Evolution of 56’k w.r.t. ¢ and k

Example 2: No short-selling

In such a case, m; should be positive for ¢t € [0,7]. The solution of (15.10) under the
constraints Y; > ¢(¢, X;) and 7 > 0 is

v, — K, y€[0,7T)
' (K—e¥r)y, t=T
7 =0,
K, — Krt, y €[0,7)

KrT+ K — (K —eX1),, t=T.
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Then, we should get Yy = K. The function ¢ defined in (15.12) is

oo vi, ) = (v =gl )+ (£

g

Figure 15.23 draw the evolutions of Yoi’k and 5é’k w.r.t. k for i = 0.5 and ¢ = 1. We notice
that Y00'5’k converges to 34, Yol’k converge to 55, whereas the theoretic value of the limit is
100. 68'5’k converges to —0.52, 5é’k converges to —0.43, and the theoretic value of the limit
is 0. For i > 2, the evolutions of Yoi’k and 5é’k w.r.t. k diverge. The study of the sequence

.. T .. .. T .. .. T .. ..
v =§+/ f(s,Y;J,ZQJ)dsﬂ/ ¢1(s,}gﬁ,zgﬂ)ds+j/ Ga(s, Y, Z07)ds
t t t
T ..
—/ ZH dw,
t

where

61(5,Y39,29) = (V39 — g(s, X)) and da(s, Y29, Zi9) = ( : )

for different values of 7 and j doesn’t work too. We plot in Figure 15.24 the evolution of
Y()i’l’k and 5é’l’k for i = 1,5,10,15 and 20, and for j = 1. We notice that the bigger i is,
the higher Ybi’l’lo is, but still below 100. Figure 15.25 represents the evolution of Yg’l’k
and (58’1’]C w.r.t. ¢ € [20,100] and k for j = 1. We notice that for i« = 80 and ¢ = 100, Yg’l’k
still converges to a value bigger than 100. Moreover, 56’1’10 for ¢ < 40 are less than —1,
which is not compatible with the theory (we should get § in [—1, 1]). If we increase j, the
result is worse than for j = 1. As we can see in Figure 15.26, there is no convergence of
Yoi’l"r”]C and 66’1'5’k when k increases, even if i = 0.5.

evolution of the mean of Y w.r.t. the iterations for different values of i evolution of the mean of delta w.r.t. the iterations for different values of i
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Figure 15.23: Evolution of Yoi’k and 5é’k w.r.t. i and k
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evolution of the mean of Y w.r.t. the iterations for different values of i and j=1
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Figure 15.24: Evolution of Yoz’l’k
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Figure 15.25: Evolution of Yoi’l’k
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evolution of the mean of delta ... the iterations for different values of i and j=1
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Part IV

Pricing American options with
boundary sensitivities
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In this part, we tackle the problem of the numerical valuation of Bermudan options using
domain optimization techniques. For this, we compute domain sensitivities w.r.t. small
perturbations of the boundary. After a review of known sensibility results in Section 17 in
the American case, we prove new results in the Bermudan one. The design of a relevant
algorithm based on this sensitivity analysis is not presented in this manuscript, although
we have studied alternative schemes in collaboration with Cristina Costantini (University
“Gabriele d’Annunzio”, Chieti and Pescara, Italy). This is still a work in progress. Results
presented in Chapter 18 concern the robustness of the sensitivity estimate as the number
of exercise dates increases. We prove convergence and uniform bounds under different sets
of assumptions. Our proofs are based on techniques related to the analysis of asymptotic
overshoot. We mention that one of our results has not been completely proved (Conjecture
1).

The following chapter presents standard results on the valuation of American/Bermudan
options. The connection with the domain optimization issue is made in Chapter 17.






Chapter 16

Motivations

16.1 Framework and Hypotheses

We consider the R%-valued diffusion process (X*?) solution of
X ::c+/ b(r,Xr)dr—k/ o(r, X )dW,, (16.1)
t t

where (W})¢>0 is a g-dimensional Brownian motion defined on a filtered probability space
(Q, F, (Ft)t>0,P) satisfying usual conditions. Hypothesis 16.1-1 ensures the existence of a
unique strong solution to (16.1).

Hypothesis 16.1 Let a be in |0, 1].

1. Smoothness of order 1 4+ . b and o belong to Hi4q, o €]0,1] (see the definition of
Hita at the beginning of Section 17),

2. Uniform ellipticity. For some ag > 0, it holds & - [oo*](t,z)¢ > aglé|? for any
(t,x,€) € ]0,T] x RY x R,

3. D is a C? domain.

The uniform ellipticity condition is satisfied when X represents the log-price of the
underlying asset.

16.2 Pricing American options

The valuation of American options is still a major issue in asset pricing. The buyer of
such a contract is given the right to exercise the option at any time 7 between now (say t)
and the maturity 7. We assume that the vectors of prices or log-prices of the underlying
asset X evolve according to the SDE (16.1). We also assume that the market is complete
and that the instantaneous rate is of the form (r(s, Xs))s<t<7. If the payoff at time 7 is
g(7, X;) (with g a continuous function satisfying suitable integrability conditions), the fair
price of the option is given by (see Karatzas [55])

P(t,z) = sup E [e* I T(S’Xéﬁx)dsg(r, Xﬁx)] , (16.2)
T€[t,T)
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the supremum being taken over all stopping times with values in [¢,T]. There is no simple
numerical method available to evaluate the price of American options. We refer the reader
to Fu et al. [31] for a review of numerical methods to handle this issue.

16.2.1 Standard results on American options

Definition 16.1 (Continuation region and exercise region). C := {(t,z), t < T,z € R?:
P(t,z) > g(t,z)} is called the continuation region and &£ := {(t,z), t < T,z € R :
P(t,z) = g(t,x)} is called the exercise region. We also define the t-sections for every
t€[0,T[by & := {x € R?: P(t,z) = g(t,x)}. Since P and g are continuous functions, C
is an open set of | — oo, T[xR%.

Let us define Ay, the operator of X such that A; = %Zf}j:l[aa*]i,j(t,x)% +
Zle bi(t,x)a%i — r(t,x). By using Lamberton and Lapeyre [65], Section 5.3.2, we get
that P(t,x), defined by (16.2), solves the following partial differential equation

max (g(x) — v(t,x), v (t,z) + Aw(t,x)) =0 ae. in [0,7T] x RY,
v(T,z) = g(T,x).

In other words, one can say that P satisfies the equation

{@ma@+Aww@=Oina (16.3)

v=yg on PC,

where PC denotes the parabolic boundary of C (see Definition 17.1).

Let us recall some standard results on the exercise region for standard put American
options (i.e. with a single underlying asset). We consider the following 1-dimensional
Black Scholes model for the log-price

1
dXt = (T -0 — 50'2)dt + O'th,

where § is the continuous dividend rate. Let By := sup{z € R : (t,z) € £} denote
the immediate exercise boundary. Van Moerbeke [91] and Jacka [52] show that By is
continuous. Kim [57] and Jacka [52] show that B, is increasing in ¢. Kim [57] proves that
Bp- =limy_p By =log(K A 5K). (ie. C; =|log(K A %K), +400[). In the pioneer work of
Van Moerbeke [91], the behaviour of By as t approaches T was investigated. Barles et al.
[10] proved the following estimate for the case § =0

lim K5 =1. (16.4)

=T O'K\/(T — t)log(7)

The above estimate remains valid whenever 0 < § < r, as it can be proved by the method
of Barles et al. [10]. Lamberton and Villeneuve [66] give rigorous results for the cases
r < d and r = §. Namely, the authors show that the parabolic behaviour stated by Van
Moerbeke [91] does hold in the case r < 0.
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Second, we recall some results on the exercise region of American options on multiple
assets. We consider the following d-dimensional Black Scholes model

d d
dXt:(r—di—§ O‘%)dt—i— aijdwf, Zzl,'-',d.
Jj=1 Jj=1

Broadie and Detemple [18] analyse several types of American options on two or more
assets. The authors study options on the maximum of two assets, dual strike options,
spread options and others. For each of these contracts they characterise the optimal
exercise regions and develop valuation formulae. They also derive results for American
option contracts with non convex payoffs, such as American capped exchange options.
For this option, the authors explicitly identify the optimal exercise boundary. Villeneuve
[93] studies the non emptiness and the shape of the exercise region of American options
written on several assets. The author states an analytic theorem which characterises the
non emptiness of the exercise region. He also studies a particular class of payoff functions
for which he explicitly identifies the shape and the asymptotic behaviour near maturity
of the associated exercise region. These results can be viewed as the multidimensional
version of Kim’s results.
The following Proposition sums up some properties of the exercise region £

Proposition 16.2 (Villeneuve [93], Proposition 1.1). Let us consider the following d-

dimensional Black Scholes model
‘ 1 d d .
dX} = (r — 6 — §Zag)dt+ > oydWi, i=1,--- d.
j=1 j=1

where § stands for the dividend rate and the matriz o is invertible. We consider P(t,z) =
sup,¢f,7) E [e_’"(T_t)g(Xi’x)], the price of an American option where the payoff g is a
nonzero function. The exercise region £ defined above satisfies the following properties

e & is closed on ] — oo, T[xR?,
o The family (&)i<T is non decreasing,
o Vt<T, & CO={x:g(x)>0}.

Proposition 16.3 (Smooth-fit principle). Let us consider P, the price of an American
option with payoff g and r constant

P(t,x) = sup E [e_T(T_t)g(T, Xﬁ”")] ,
TE[L,T)

Under Hypotheses on b,o and g described in Friedman [29], page 489, we get that at the
boundary of C, VP = Vg.

Remark 16.4. An important sufficient condition required to satisfy the smooth-fit con-
dition is that g should be C? (see Friedman [29], page 489 or Brekke and Oksendal [16]).
Therefore, if ¢ is the payoff of a Put or a Call option, we cannot apply the above Propo-
sition.
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Remark 16.5. In the particular case of an American put option in dimension 1 and in
the Black Scholes model, the smooth-fit condition is satisfied. We refer to Myneni [76],
Section 4 for a proof of it.

Remark 16.6. In the recent paper Villeneuve [92], the author investigates sufficient con-
ditions that ensure the optimality of threshold strategies for optimal stopping problems
with finite or perpetual maturities. His result is based on a local-time argument that
enables to give an alternative proof that the smooth-fit principle applies as soon as the
payoff function is differentiable.

16.2.2 Optimal domain approach

We recall

Lemma 16.7. The smallest optimal stopping time of (16.2) is given by 7* := inf{t < s <
T: P(s, X5") = g(s, Xo")}.

We refer to the proof of Lamberton and Lapeyre [65], Theorem 3.2, Chapter 5 for a
proof of the Lemma. Using this Lemma, we get

Proposition 16.8. Let P(t,z) be defined by (16.2). We can also write

t,x )
P(t,z)= sup E|e " T(S’Xﬁ’L)dsg(TgI,Xﬂt_gx) , (16.5)

DC)0,T[xR4

where Tlt)’x =inf{s > 1t: (S,Xﬁ’m) ¢ D}, i.e. Tgx is the first exit time of (s, X;’m)tSSST from
D, and D is an open set of |0, T[xR?.

Proof. Since the exit time of an open set by the JF;-adapted continuous time-

space process (t,X:); is a stopping time and ng € [t,7] , we have

t,x
_ ™ t,x t t
SUPpcjo,r[xrd E | € Je7 (s X ds g (21 Xng) < P(t, ).
To prove the converse inequality, we distinguish two cases.
e If 7* =t, the choice D = () clearly leads to Tf)’x =t. Thus, 7" = Tgx and
t,

xT
-
— D (s, X0%)ds [ t,x it
e ft ( s ) g(TD 7XTt,a:)
D

P(t,z) < sup E
DC]0,T[xR4

o If 7* > t, then 7% = inf{s >t : (5, X;) ¢ C}. D =Cn (]J0,T[xR?) is an open set of
10, T[xR? and T;)’x = 7%, which ends the proof.

O]

In the following, the alternative characterisation of P(¢,x), given by (16.5), will be useful.
Let us state in the next section a result equivalent to Proposition 16.8 for Bermudan
options.
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16.3 Pricing Bermudan options

A Bermudan option can be exercised on prespecified days during the life of the option. It
is reasonable to say that Bermudan options are an hybrid of European options, which can
only be exercised on the option expiry date, and American options, which can be exercised
at any time during the option life time. As a consequence, under same conditions, the
value of a Bermudan option is greater than (or equal to) a European option but smaller
than (or equal to) an American option. We assume the same hypotheses than in Section
16.2. We define

PN(t,z) = sup E|e S r&XeNdsgr xtay] (16.6)

N
767;T

where ’Z;N = [t,T)INTN, and TV := {tg,t1,--- ,tx}suchthat 0 =ty < t; < --- <ty =T.
We can also prove (see Lamberton and Lapeyre [65], Chapter 2, Section 5.1) that PN
satisfies the dynamic programming equation

PN(tN,x) =g(tn,x), Yz € R,

and foralln < N —1

tn41

t,- .
PN(tna ) — max (g(tn’ .)’ E [e_ tn T(S,Xs )dSPN(tn+1, Xf:jrl )i|) .
Before stating a result equivalent to Proposition 16.8, let us give a definition

Definition 16.9 (Definition of D;, and DN). Let j be an integer of {0,---, N}. Dy,
denotes the section of D at t = t;, i.e. to Dy; = D’t_tv. Then, (t;,Dy,) € [0,T] x R¢, and
)

we define

N
DV = Jt;, D).
j=1

As for American options, the following Lemma holds

Lemma 16.10. The smallest optimal stopping time of (16.6) is given by T3 := inf{s €
T PN (s, X5") = g(s, X5}

From this Lemma, we deduce the following Proposition

Proposition 16.11. Let PV (t,z) be defined by (16.6). We can also write

t,z

T t,z
PN(t, x) — SupE 6_ ft N T(S7X5 )d'sg(TJt\’fx, X:_,tz’z) )

DN N

where Ti" = inf{t; >t : Xttf ¢ Dy}, ie. T is the first exit time from a domain DN for

. t,x
the time-space process (ti, X; " )i<t,<T-

This Proposition can be proved as Proposition 16.8.
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16.4 Intuitive approach for pricing Bermudan options

The optimization of the r.h.s. of (16.5) (resp. (16.6)) could be carried out by a “gradient”
algorithm that uses the sensitivity with respect to the domain D (resp. DV). We present
in the following chapter a tractable formula for these sensitivities. The formula for the
sensitivity w.r.t. D has been stated by Costantini et al. [22]. We give in Theorem 17.15
the formula for the sensitivity w.r.t. DV.

The principle of domain optimization is not new and has already appeared in the liter-
ature. Garcia [32] and Ibanez and Zapatero [51] have introduced parametrisations of the
exercise region (in simple cases) and discussed the optimization issue (without computing
the gradient). In the case of Bermudan Asian options, the frontier has specific properties
which enabled Fu and Wu [30] to establish a formula for the sensitivity w.r.t the parameter
characterising the domain. We go even further and prove a formula for the sensitivity in
a more general case.



Chapter 17

Boundary sensitivities

17.1 A sensitivity formula in continuous time

Costantini et al. [22] have studied the sensitivity, with respect to a time dependent
domain D, of expectations of functionals of a diffusion process stopped at the exit from
D or normally reflected at the boundary of D. They have established a differentiability
result and given an explicit expression for the gradient that allows the gradient to be
computed by Monte Carlo methods. The section is organised as follows. First, we recall
some smoothness definitions for the time-space domain D. Then, we state the main results
of Costantini et al. [22], by focusing on diffusion processes stopped at the boundary. We
also give a way to use these results in the pricing of American options.

17.1.1 Time-space domains

In the sequel D stands for a bounded time-space domain in ]0,7T [de, T is a fixed
terminal time. The boundary of D is denoted, as usual, by dD. Regularity assumptions
on the domain D will be formulated in terms of Holder spaces with time-space variables
(see Lieberman [69], page 46). Let D' be an arbitrary time-space domain. If the index of
regularity is a = k + « for k a non negative integer and a €]0, 1], then H,(D') is a Banach
space of functions f of class C LgJ’k(D’ ) with Holder continuous k-th derivatives, namely
with a finite norm | f|, pr where

flapr = > suplof0)f| + [flap+ < f >ap
Bl+2i<k P

Y] ey
Wlth [f]a,D’ = Z sup sup ‘8xat]f(t7 .fL') 81’8t f(j,y)’
18 2j=k SYED (t2)ED\{(s9)} [pd((t, ), (s,))]

10207 f(t,2)—020] f(s,2)|
and < f >,p= { 18|+ 2j=k—15UP(s 2)eD SUP(1,2)eD\ {(s,2)} IH\“’“)/t2 for k1,

0 for £k =0.

Whenever convenient, we may denote (Hq(R x R?), |- |, gxra) by (Ha, |- |a). The following
smoothness definition for the time-space domain D will be used (cf Friedman [28], page
64).

231
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Definition 17.1. The domain D is of class H, (a > 1) (D € H, for short) if, for every
(to, o) € D U (0, T[xR9), there exists a neighborhood Jto, to + €3[x Ba(zo, €0), an index

i and a function ¢o € Hy(Jto, to + €2[x Ba—1((x}, -,z 1 abt, - 2d), e0)) s.t

oD U (]0, T[XRd)U]to, to + eg[de(xo, 60) =
{(ta ‘T) S Gtoa tO + 6(2)[U[07T]) X Bd(x()? EO) Xy = ¢O(tvxlv ety Lg—1, L1y axd)}'

Let

Do ={z:(0,z) € 0D — dD U (]0, T[xR4)},
Dy ={z:(T,z) € 9D — 9D U (J0, T[xR%)}.

Dy and Dr are open sets and we assume that they are non empty domains that coincide
with the interior of their closure (cf Friedman [28], Section 3.2). We also assume (cf
Friedman [28], Section 3.2) that the time section of D, Dy = {z : (t,z) € D}, is a domain
that coincides with the interior of its closure, for every t €]0, T'[. If D is of class H, (a > 1)
the set PD = 0D — {0} x Dy is the parabolic boundary of D (see Lieberman [69], pages 7
and 13).

If D is of class ‘H1, D satisfies an exterior tusk condition, which is analogous to the exterior
(Wiener’s) cone condition for time independent domains. We refer to Lieberman [68] for
more details on the following proposition.

Proposition 17.2 (Tusk condition). Assume D € Hy. For some R > 0,5 > 0, at any
point (tg, xo) € PD, there is a tusk

T ={(t,x):tg <t <to+0,|r—x0—Tovt—to|> < R*(t —to)},
for some Tg € R?, such that T intersects D only at (to, xo).

If D is of class Ha, all the domains Dy, for t € [0,T], satisfy the uniform interior and
exterior sphere condition with the same radius ry. Moreover (see Lieberman [69], Section
X.3), the signed spatial distance F' given by

F(t,z) = —d(z,0D;), forx € Df,d(x,0D;) <o 0<t<T,
, B d(xvapt)v for x € Dt,d(flf,apt) <ro 0<t< CZ’7

belongs to Ha({(¢,z) : 0 <t < T,d(z,0D;) < ro}) and VF(t,z) is the unit normal vector
to Dy at map, () the nearest point to x in 9D, (also called the projection of z on 0D;). F
can be extended as Ha([0, T] x R?) function with bounded derivatives, preserving the sign.
In the following, we denote Vr € RY, by Vop(r) := {(t,z) € [0,T] x R? : d(x,0D;) < r} a
neighborhood of size r of the so called side.

Proposition 17.3 (Local diffeomorphism). Assume D' C R? is a domain of class C? with
compact boundary OD'. For all s € OD', there are two open bounded sets US and V¥, a
Cl-diffeomorphism F*$ (G* = (F*)~!) from U* (s € U®) into (—rg,m0) X V* such that

. USCRdH(—?”o,TQ)XVSCRXRCZ_I,
x+— (N Z) = (A 22,, -+, 2q) such that x = g5(Z) + )\W(gs(E)),

where gs is a mapping of D" in a neighborhood of s.
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17.1.2 Known results

We still consider a d-dimensional process X%® satisfying (16.1), which starting point
(t,z) is in D. We introduce the infinitesimal generator of X

Lu(t,z) = Vu(t,z)b(t, z) + %Tr(Hu(t, x)[oo”|(t, x)),
where Hu denotes the Hessian matrix of u. We also define
Definition 17.4 (Definition of 75:%).
™% = inf{s >t : (s, X") ¢ D}
is the first exit time from a domain D for the time-space process (s, X ﬁx) selt,T]-

Note that 757 is a bounded stopping time, since 7% < T. We focus on the expectation
of functionals of the process X stopped at the exit from D, of the form

Tt’x T Tt!z s ,T
u(t,x) = E (g(Tt’x,Xifz)e_ J els,X5%)ds —/ e I et Xs MT’f(s,X?”‘)ds) , (17.1)
t

and on its sensitivity w.r.t. D. The data f, g, ¢ are bounded continuous functions on R*+1,
First, we recall a result which relates u to the solution of a Cauchy-Dirichlet type PDE in
the time-space domain D.

Proposition 17.5 (Feynman-Kac’s formula and a priori estimates on u). Assume Hy-
pothesis 16.1, D € Hy, ¢ € Ha, f € Ha and g € C*Y with o €]0,1[. Then, u is the unique
solution of class C12(D) N C*9(D) to

ou+Lu—cu=f inD,
u=gqg on PD.

In addition, if D is of class Hita and g € Hita, the function u belongs to Hitqo(D) and
it holds |u|14ap < K(|f
up to the boundary).

a0+ |9l1+a,p) (in particular Vu is well defined and continuous

Second, we recall the main contribution of Costantini et al. [22], namely the sensitivity
7t , T t,x s t,x .
of E [ g(7%, X:f,cr)e_ft ols,X5")ds _ ftT e Ji elr Xz )d’"f(s, Xﬁ’x)ds w.r.t. spatial per-

turbations of D. We define a spatial perturbation of the time-space domain D in the
following way:

Definition 17.6 (Spatial perturbation).
D ={(t,x) : (t,x +€b(t,z)) € D}, e€R,

for some map 6 : [0,T] x R? — R?.  Moreover, we assume 6 is a function of class
Cy2([0,T] x RY).
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Theorem 17.7. Assume Hypothesis 16.1, D € Hi1q, ¢ € Ha, f € Ha and g € Hiyo with
a €]0,1[. Let (t,z) be in DUDy and set

Th" = inf{s >t : (s, X}") ¢ D}

€

Tet’z t, t,x s t, .
Then, uf(t,z) = E | g(ri™", X545 e~ Ji es:Xads _ e e Je C(T’er)drf(s,Xé’x)ds> is
Te

differentiable w.r.t. € at ¢ =0 and
Tt,z ,z
O (t, )] g = E (e S e X (T — Vg ) (-, Xiff"&) .

Remark 17.8. Note that Vu in the above expression is well defined on the boundary
since u is of class Hi1q (D). In view of the formula above and because u = g on PD, only
normal perturbations of # have an impact on the derivative of u(t, ).

17.1.3 Application to American options

Looking at (16.3), we notice that P satisfies an equation similar to the one appearing
in Proposition 17.5, where D corresponds to the unknown continuation region C. Finding
the price of an American option can be seen as determining C. Assume we want to solve
the following equation

8tvk(t7 l‘) + .At’Uk(t, l‘) =0 in Dy,
V=g on PDy,

where Dy, € Hi4q is a sequence of domains. The Feynman-Kac formula gives
Tltc’x +
wlt,z) = E ( e >ng<T,i’x,Xjfz>> ,
k

where T]i’r =inf{s > ¢: (s,Xﬁ’x) ¢ Di}. If D, = C, we get vy = P and since P(t,x) is also
given by (16.5), 861),2(15,33)‘6:0
new way for numerically pricing American options :

must be null. This enables us to give an intuitive idea of a

Algorithm 1.
e Step 0: We start with a domain Dy.

o Step k: Assume Dy_1 and Ocvg,_4(t, x)|E:O are known. We build Dy, from Dy_1. We
perturb Dy, to get D;, in the gradient direction.

o Using Theorem 17.7, we  get an exact erpression (modulo

Monte Carlo simulations) for Ocvp,(t, ) L:O, which is

" t,x T T
devi(t,z)|_, =E (e— Jot (s X s (G — v g)6) (1) ,Xj;z,z)>.

o We compare 8€v,€€(t,m)‘620 with 661),2_1(75,3:)‘6:0. If the first one is smaller than the
second, we keep this choice for Dy, otherwise we change it.
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o We continue until we find a ko for which 861},20(75,3:)‘6: is smaller than a small

0
threshold.

Remark 17.9. This algorithm is not rigorous. Its vocation is to give a general idea of the
application of Theorem 17.7 to the pricing of American options. In particular, no details
concerning the construction of the sequence D; are given.

Remark 17.10. The smooth-fit condition enables us to justify in an other way the fact
that 661),2(15,:13)‘6:0 must be null for Dy = C. If Dy = C, we get vy = P and then (VP —
Vg)o)(.”, ngfw) = 0, which yields 0cv(t,x)| _, = 0.

17.2 A sensitivity formula in discrete time

As it has been done by Costantini et al. [22], we would like to get a formula for
86u6(t,x)‘
puted for 7

—o = 0 in a discrete time setting, e.g. when u, defined by (17.1), is com-
L% with values in ’Z;% (see the beginning of Section 16.3 for a definition). Since

we aim at using this formula for the pricing of Bermudan options, we only consider the
case f =0.

17.2.1 Definitions and Notations

Definition 17.11 (Definition of D;; and DN). Let j be an integer of {0,--- , N}. We recall
that Dy, belongs to R? and corresponds to the section of D at t = tj, i.e. to Dy, = D‘tft-'
)

Then, (t;,Dy;) € [0,T] x R?, and we define

N
DN = | Jt;,Dy)).
j=1
Definition 17.12 (Definition of 75").
T;\’,I = inf{t; > ¢: Xfl’x ¢ Dy, }

is the first exit time from a domain D for the time-space process (;, Xf;x)tie[t,T]- From
the definition of Tf\}m, we deduce that T]t\}z takes values in ’Z;%

In this part, we focus on the expectation of functionals of the process X stopped as soon
as (t;, szx) ¢ DN. Let us define uy, the discrete version of u

t,x
b= (e B )dsghfv’”‘}Xifx)) |

N

Note that uy is the continuation value function of the Bermudan options, so that the
price function is given by PN (t,,-) = max(g(tn,-), un(tn, ")) (see Section 16.3). We define
a spatial perturbation of the space domain Dy; in the following way:

Definition 17.13 (Definition of Dj, and DNe),

D ={z:z+ef(t,z) €Dy}, e€R
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for some map 6 : [0,T] x R? —— R?  Moreover, we assume 6 is a function of class
C;’Q([O, T] x R?). We also define

N
N,e __ . €
D - U (t]7 Dt])
i=1
It remains to introduce T]t\}xe

Definition 17.14 (Definition of 74").
b =inf{t; >t : X;" ¢ D}
is the first exit time from a domain D¢ for the time-space process (t;, XZ ,’x)tie[t,ﬂ. Clearly,
t,x . N !
Ty takes values in ’];T.
We aim at computing dufy (¢, x)}E:O = 0, where

t,x
TNyé t,x
URT (t7 x) - ]E (e_ ft 0(87XS )dsg(TJt\}i’ Xitz,bz )) .

N,e

17.2.2 Main result

Theorem 17.15. Assume Hypothesis 16.1 and ¢ = 0. Let p denote the transition density
of X. Then, ¥(t,z) € D, it holds

Ocufy (t, x) L:O =

N—-1
Z Et,x <1T]t\}w>tj /81) p(t]‘, th; tj+1’ m) (.g - UN)(tj-H? m)9 : W(tj-i-h m)dam> )
tj+1

J=0,t;>t
where do,, denotes the boundary integral.

Remark 17.16. Theorem 17.15 only deals with the case ¢ = 0. However, the case ¢ # 0
can be done following the same proof.

Remark 17.17. In the case of Bermudan options, we know that un(s,y) = g(s,y) for y
at the boundary of C. Hence, looking at the formula stated in Theorem 17.15, we notice
that the r.h.s. is null as soon as D = C. Then, 8€u§v(t,x)‘€
This corroborates the result of Proposition 16.11.

o is null as soon as D = C.

Lemma 17.18. Assume Hypothesis 16.1. Let f be a continuous function. p denotes the
transition density of X. Then, it holds for all t;,t; € 'Z;]}C such that i < j

1 : _
lim —E (f(tja Xf?’x)lXt, €D X, gé’]_)t,) = / p(tia €5 tjv m)f(tb m)(e ’ W) (tj7 m>d0m
e—0 € J J j J J 3Dtj

Proof of Lemma 17.18. Note first that it is enough to prove the limit for positive functions,
since any function can be written as f = fT — f~. For the sake of simplicity, we do the
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proof for i = 0 and j = 1. Let us compute € :=E (f(tl,Xff)(ItheDE Xt1¢'Dt1)>. Using
17
the transition density of X yields

I =/ f(t,y)p(t, st y)dy.
€ \Dtl

For € small enough, we get Df \ Dy, C V,,,(9D,). Since 0Dy, is compact, there exists a
finite number of points (s;)1<;<k in Dy, such that V;,(0Ds,) € Uy<ijep UY, where Ut =
B (si,€0). Then, we construct a partition of unity corresponding to (Ui)lggk, i.e. non
negative Cp° functions (x;)i<i<k verifying Supp(x;) C U* and Zle xi =1 on Dy, (ie.
Di, UV (0Dy,)). We get

k

Z/ W)t y)pt, =ty y)dy = > I (17.2)
UiNDs \Dt1 i=1
Let us compute I}
i-/ Gt )pltaitn o)y = | F)dy.  (173)
UinD;, \Dy, UinDs \ Dy,

First, let us work on U’ N D;, \ Dy,. Using Definition 17.1, we can assume without loss
of generality that on U’, the boundary of Dy, is parametrised w.r.t. y as y1 = ¢(7),
where § = (y2, -+ ,¥a), @ € Hita. Then, U'NIDy,, = {y € U’ : y1 = ¢(¥)}, and
UnDi, ={y € U': y1 > ¢(y)}. The outward normal vector to 9Dy, at point y = (¢(7),7)
is given by

1
1 *8y2¢@)
W) = s
T+ Vo) P |
_8ydd)(y)

Moreover, D NU" = {y € U’ : y+ €l(t1,y) € Dy} = {y € U’ : y1 + eb1(t1,y) <
¢(y2 +92(t17y)7’ o 7Z/d+9d(t1,y))}- ThHS,

U'nD; ND§, ={y €U :¢H) <y < dya+02(t1,y), - ,ya + balts,y)) — ed(t1,y)}.

Besides, since ¢ € Hi4(U?), a Taylor expansion leads to

o) — eV 1+ [Vo@)|*7 (3) - 0(t1,y)
ce' T < p(ya 4 O2(t1, ), ya+ Oa(tr,y)) — B, y) < 6(7)
1+ |Vo@) 27 () - 0(t1,y) + ce'

In addition, on U’ N D§, N D§,, one has |y; — ¢(y)| < ce. Thus, we can replace 0(t1,y) by
0(t1, (¢(y),y)) in the above inequality. This leads to

Ay cU'nDy, NDy, C Af,
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where

AT =y e U 6(m) <y < 9@) — /1 + [VO@IET () - (11, (6(7), 7)) £ e ).

Since the function F' is positive, we can use this result to bound (17.3). One gets

Fly)dy < If < / F(y)dy.

A7 Af

It remains to prove that both upper and lower bounds divided by € converge to the same

limit as € — 0. We only detail the upper bound. Because of the specific form of Aj, it is
relevant to integrate w.r.t. yi, which directly leads to

i ? [ Foy= [ Fe@.0VIF NOPT @), (6),5)]
A] BSS " (steo)

e—0 €

Since
lime—o ¢ [4- F)dy = [pa-1 g o) FO@). VI V@R @) - 0(tr, (6(7), 7))~ dy, we
get

i 1 = /B( F@.0)VI+ V6@PR @) -0t (60).7) .

Combining this result and (17.2) ends the proof. O

Remark 17.19. Under the assumptions of Lemma 17.18, a similar proof yields to

o1 v
lim ~E (f(t, X/ L, ep, x, ¢07 ) = /8 otz m)f(t,m)(0 ) (b, m)do,
ty

e—0 €

Remark 17.20. Since 1th€Dtj — ].th €Ds — 1Xt'€/Dt'1Xt'¢/D§. — 1Xt-€'D§7Xt-¢'Dt- we com-
j J J J j J j J J
bine Lemma 17.18 and Remark 17.19 to get

o1 .
lim ~E (f(tj,Xf;w)lth €D, — 1th €D§j> = /aD p(ti, ziti,m)f(tj, m)(0- 1) (t;, m)doy,.
t

e—0 €

Proof of Theorem 17.15. We aim at proving the following more general result: Vi €
{0,---,N —1}, it holds for 1 <k < N —i

Deuly y,(ti, )| _, = (17.4)

™

k+i—1
Z Eti@ 1 tivz>t. / p(t]7Xt]7tj+lay)(g - uN)(tJ-i-l?y)H ' ﬁ(tj-i-hy)do—y 5
=i J D,

where u?v’k(t“m) = Eti,z <g(T;\Z}:/§,€’XTj\?"Z )>, T]t\;:]f,e = inf{tl >t X:li’z ¢ Dl]’\;f} and

k+1 N
N7 Pp—
DZJ: = U (tj7D§j) U (tjvptj)'
Jj=I+1 j=l+k+1

In particular, Dév N = DN, This result is more general than the one stated in Theorem
17.15, but it is also less readable because of several indexes, that’s why we only present in
Theorem 17.15 the case k = N. We prove Theorem 17.15 recursively.
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e First, let us prove (17.4) for £ = 1 and for any i. In that case, Dle’e
(ti+1, D) U] i+2(tj; Dt;). We have to compute

Uﬁvvl(ti,ﬂf) —un(t;, )

€

and to take the limit when e goes to 0. We develop u; (t;, x)

u?V,l(tux) = Et“:p ( (T]t\’;’f67X ti,x )) 5

N,1,e

=Bia <1th+1€D +1g( Nl € X, to® )) +Et; (1Xti+1¢D§i+1g(ti+1’Xti+1)) :
(17.5)

. ti,T —
We can write Et, » <1Xt e, 9N o X ts )> =

tit1 N,1,e
t k)
Ey, o <1Xti+lepé 1E[9(Tl\;le’Xrﬁ’fe)IftiH])‘ On the indicator 1x, i €D5,, 0 We

tig1, X,
ti, i+1sNg +1 ti,x
have 7y7 = 7y "', and then Eti,m[g(TA}J’e,Xﬁt\;f NFi] = un(tivr, Xeo)-
sL,€

Thus, (17.5) becomes

u§V71(ti7 IIJ‘) — Eti,:p <1Xti+1 €D§i+1 UN(ti+17 XtiJrl)) + Eti,x (lXti+1¢'D§i+1g(ti+17 Xti+1)) .

Noticing that

un(ti,z) = Ey, ( Xt;, 1 €Dty UN (ti—‘thti_,.l)) +Et o <1Xti+1¢Dti+1g(ti+17Xti+1>> :
(17.6)

we get

iy (t2) = uy (b, 2) = By (un = 9) (b1, Xy ) (x,y, emy, | — L,y em,) )
and Remark 17.20 enables to get

uS1(t, ) —un(t;,
fiy Vi) (i o) (17.7)

e—0 €

Eti,x (/
0Dy

and the case k = 1 is proved for any 1.

p(ti, Xt,5tivr, m)(g — un)(tiv1,m)0 - 7 (tit, m)d0m> ,

i+1

o Assume (17.4) is true for £ — 1. We have to compute

uf/\/,k(tia 33‘) - uN(ti7 l’)
€

and to take the limit when e goes to 0. We develop ugy ;. (4, z)

t’
ioa(t ) = B (9004 X))

3R, €

t747
- Et“ <1X7§1+1 eDs JFlg(T]\f g € XT]t\}.’Ife)> + Eti,ac (1Xti+1¢D§i+1g(ti+l’ Xti+1)) .
(17.8)
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We can write Et; « <1th+1 ;| q( ]’f\;’ze,X e )) =
Ey, o <1Xti+16'D6_ 1]E[g(T]t\}’lfe,X b ‘.7-}”1 > On the event {th.Jrl € Ds +1} we

ti, tz+17Xt1+1 ti, € ti,x
have T]\ka e = TNj—1, »and then Etm[ (T]\lfk € ervi*f )‘ftm] = ufy 1 (tiv1, Xi7))-
’ 7€

Equality (17.8) becomes
ufy i (ti, ®) = Et, o (1Xti+1epgi+1U%,k_l(tiH,Xtm)) + B <1Xti+1¢D§ng(ti+1vXti+1)) :

Using (17.6) and introducing +E;, (lXtiHGDE.HUN(tiJrlaXt¢+1)) in the difference

uy 1. (ti, ©) — un(t;, z) yield

u?\/,k(tiv x) - uN(tia x) =E¢ o ((UN — g)(tit1, Xti+1>(1Xt +1€D; 1Xti+1 €Dt; 14 ))

+ Eti,x <1Xti+1 E,D’Z'Jrl [uﬁV,k—l(ti-i-l? th‘+1) —UN (ti-i-lv Xti+1 )]) :

tit1

Using Remark (17.20), the hypothesis of recurrence and the equality

=1t t,weget

14.,x 1
i+1:3t T >
TN N

oy T X Lot ep,

tit1 i+1

uly (L, x) —un(t;, )

lim — =

e—0 €

Eti,I / p(tﬂth;t’L-f—l;m)(g_uN)( Z+17 )6 n( ’L-‘rlam)dUW
8DtiJrl

k+i—1
+ Z EH-L ti,® <lTjtvz>t /B’D p(tjathvt]+lay)(g_uN)( J+1, Y )9 n( j+17y)do-y> 3
Jj=i+1 it

and the result follows.



Chapter 18

Robustness of duf(t, )| _, with
respect to NV

In the previous chapter, we have proved Theorem 17.15: under Hypothesis 16.1 and
with ¢ =0, V(¢,z) € D, it holds

Deuty (8, 2)| _y = (18.1)
N-1
Ey o <1thv’z>tj/ p(tj, X5 tj41,y)(9 — un)(tjr1,9)0 - W(tﬁhy)d%) )
j=0.t;>t ODi; 44
(18.2)
where P denotes the transition density of X, and

un(t,z) =E (g(Tff,XiiJ) = E;2[g9(7n, X7 )]. We also recall that {t)p < --- < ty}isa

regular subdivision of [0, 7], with ¢ty =0, ty =T and step h = %

At first sight, the above sensitivity estimate strongly depends on N. Indeed, it consists
of a sum of N terms. Moreover, the transition density may give very large terms when
tj+1 —t; — 0. The aim of the chapter is to analyse more precisely the dependency of
86“?\7 (tv x) ‘6:0
algorithm would certainly take advantage of an a priori knowledge of the behaviour of

w.r.t. N. This will help us in the future implementation work: an efficient

this gradient. This dependency w.r.t. N may be an important issue, since numerical
algorithms for pricing Bermudan options often face problems as the exercise frequency
increases. This formula can also help us to study limy_. 8€u§\,(t,x)’6:0: do we get the
American case, i.e. the sensitivity formula of Costantini et al. [22] (see Theorem 17.7), or
a similar one?

In this chapter, we first address the issue of the convergence of 3&},(75,:6)‘620 when N
tends to infinity. It appears that this is a highly non trivial problem which is deeply
related to the overshoot of the diffusion process. We present in Section 18.1 partial

results to analyse the convergence of Beuﬁv(t,x)‘ whose limit seems to be

e=0’
Ocu(t, x)‘ezo. For this, we use recent results on overshoots stated by Gobet and Menozzi
[43] and establish stronger results. Nevertheless, our proof of convergence is incomplete

and relies on an unproved (but reasonable) conjecture.

241
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In Section 18.2, we fully prove that if g € Hi4q, the gradient dcufy (¢, ‘T)L:o is uniformly
bounded w.r.t. N. In Section 18.3, we extend this result to the case g is the payoff of a
put option (piecewise C1). At last, Section 18.4 brings together technical results used
through the chapter. These results are essentially the adaptation to time-dependent
domains of known results stated in the case of time-independent domains.

In the whole chapter, we assume Hypothesis 16.1, i.e.
Hypothesis 18.1 Let a be in |0, 1].

1. Smoothness of order 1 + a.. b and o belong to Hita, « €]0,1] (see the definition of
Hita at the beginning of Section 17),

2. Uniform ellipticity. For some ag > 0, it holds & - [o0*|(t, )¢ > aglé|? for any
(t,2,€) € [0,T] x RY x R,

3. D is a C? domain.

18.1 Convergence of 8€u§v(t,x)‘6:0 when N — oo

We recall that 7% := inf{s > t : (s, X2") ¢ D} (see Definition 17.4), and u(t,z) =
E¢2[g(7, X7)]. The aim of this section is to prove the following result

Theorem 18.1. For g € Hita, Y(t,z) € D, one has

D (1,2)] _y = BealLecr(Vu— Vg) - 0(7, X))

In other words, the boundary sensitivity in discrete time asymptotically coincides with
the one we get in continuous time (see Theorem 17.7). The proof consists of the combina-
tion of two new results stated below. For this, we need to introduce the Gaussian random
walk s, = > ", G*, where G*,i = 1,--- ,n are i.i.d. standard centred normal variables.
We also introduce its hitting time 7+ := inf{n > 0: s, > 0} (77 €]0, +00[). One knows
that the overshoot s, + is such that Eg[s,+] = % (see Chang and Peres [20] for a proof)

52
and that ¢y := ;?E()O[[sftr]] = —CE}Q/%) = 0.5823... (see Siegmund [89] for a proof).

Theorem 18.2. For any continuous function f € H,, for any (t,x) € D, one has

N-1
> VhE,

J=0,t;>t

1TN>tj /8'1) p(tijtjvtj+17y)f(tja y)do'y]
i1
N—oo 1

— —— ;. |1,
Eo[s,+] © [ <r

f(T’ XT)
|o*VF|(1,X;) ]|’

Conjecture 1. For g € Hitq, for x € 9Dy and t < T one has

\}E(g - UN)(t,l') ]\H—OO) EO[‘%’*] ((Vg - Vu) ’ VF’U*VFD (t,l‘).

The convergence is uniform in (t,x).
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Proof of Theorem 18.1. In view of the above conjecture, we can replace in (18.1) (g —
un)(tjr1,y) by VhEo[s.+] (Vg — Vu) - VF|o*VF|) (tj+1,y). Then, we apply Theorem
18.2 with f(t,x) = Eo[s;+] (Vg — Vu) - VF|c*V F|) 0-1)(t, x). The results readily follows.

O

Recently, Gobet and Menozzi [43] have proved an analogous result to Conjecture 1.

Theorem 18.3 (Theorem 2.3, Gobet and Menozzi [43]). For g € Hita, for (t,z) € D,
one has
1 N—oo

ﬁ(u —un)(t,x) —— Bz (Lrcr(Vg — Vu) - VE(1,X,)|0*VF|(1, X;)) .

By comparing Theorem 18.3 with Conjecture 1, we notice that only the factor ¢
differs (since for x € 9Dy, one has (1,X;) = (t,x) and u = g). Then, the limit is
discontinuous w.r.t. z at the boundary. As explained in Gobet and Menozzi [43], the
crucial tool is the mean of the overshoot in a one dimensional Brownian case. In that

setting, (W) o (Vhs;)i, and we are interested in two quantities: Eg[s,+] when
the initial point x is on the boundary, and lim, .. Eo[snj] —y = ¢y (where
7,5 :=inf{n > 0: s, > y}) when the initial point is not at the boundary. This intuitively

explains why Conjecture 1 differs from the results stated in Gobet and Menozzi [43].
This intuition should also help us to establish the conjecture in the general case, even if
we haven’t got enough time to provide a complete proof.

Let us now prove Theorem 18.2. For this, we recall the definition of diffusion overshoots
and known asymptotic results.

Definition 18.4 (Overshoot). The overshoot is related to the distance of a process to
the boundary, when it exits the domain. More precisely, the overshoot of a process X is
given by F~ (7, X£¥), where 7y is defined in Definition 17.12 and F is the signed spatial
distance to 0D.

Since F is Lipschitz continuous in time and space, we easily get that F~(ry, X£7) is
of order v/h in L, norms, then it is interesting to study the asymptotics of the rescaled
overshoot

Yy = h 2R (1, X5).
We recall some properties satisfied by Yy

Proposition 18.5 (Tightness of the overshoot, Gobet and Menozzi [43]). For some ¢ > 0,
one has

sup Et,z[exp(c[h_l/QF_(s ATN, Xeoary )]?)] < 0.
h>0,s€[t,T]
Theorem 18.6 (Joint laws associated to the overshoot, Gobet and Menozzi [43]). Let ¢
be a continuous function with compact support. For all (t,x) € DUDy, s € [t,T],y > 0,

h—0 %
Et,x[lTNSS¢(XTN)IF—(TN,XTN)zy\/E] - Et,x[17§8¢(XT)(1 — H(y/|o"VF(r, X:)]))],

with H(y) := (Eo[s;+]) " [{ Pols,+ > z]dz, where s,+ is defined at the beginning of the
section.
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In  other  words, (T8, Xon, Y2 F~ (1, X1y ))  weakly  converges  to
(1, X+, |0*VF(r,X;)|Y) where Y is a random variable independent of (7, X;), and whose
cumulative function is equal to H. Y has the asymptotic law of the renormalised

52
Brownian overshoot, and E(Y) = QEEOO[[STtr]] := ¢p. From Siegmund [89], we know that
co = —4(17\/2/—? = 0.5823... and from Chang and Peres [20], we get Eg[s,+] = %

Proof of Theorem 18.2. For any 0 < p < v such that for any N, one has ﬁ\/% < 3, set

YN (1) = Et o (f(TNv XTN)1F—(TN,XTN)€]O,M\/E[17N<T> )

where the assumptions on f are given in Theorem 18.2. By the above weak convergence,
one has

A}iinoo YN () =B (f (7, X)L oo v rirx,) v elo,ulr<T)

e rxT Po(sp4 > 2)
= Et,x (f(T, XT)1T<T/ o 0T+d2>
0

EO[ST+]
p f(r, X7) Po(s++ > moormxo)
= E; . 1, T dz. 18.3
fiE (!a*VFmXTN T Eols] s (189)

Let us define DZH ={y e R : d(y,Dy,,,) < pvV/hY. From the definition of ¢n(u), one
can easily write
N—1
Yn(p) = < >tEt,$ (1TN:tj+1f(tj+1’th+1)1F*(tj+1,th+1)€]0,#\/E[> '
J=U,t4

Then, we write 1ry=t,,, = lryst; — Loy<tjo- Since F7(¢j11, Xy, ) is null on 1ry<t, .,

we get

N-1
Y (p) = Z E¢» <17’N>t]' /D”

p(tj, Xe;itjr1,9) f (41, y)dy) :
J=0,t;>t tir1

\Dtj 11
and

N-1
Yn(p) = Vh Z Et .z <1TN>tj /8D“

J=0,t;>t tit1

p(ty, Xt3tivn, y) f (41, y)d0y> -

Hence, it appears that Theorem 18.2 only consists of proving that

/ N—o0 f(r, X7) Po(sr+ > mrorix)
]E x T )
ol T <|a*VF<T,XT>| T Eofs,d]

for u = 0. Let us prove it for any p. Our methodology is the following

e For all p, po in [0, 7],

sup [V (1) — i (p2)] < C(E)|p — p2|®, (18.4)
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e the sequence 9y is uniformly bounded.

The first statement yields the sequence 1)y is equicontinuous. By combining it with the
second statement, we apply the Arzela-Ascoli theorem: there exists a subsequence which
converges uniformly. Then, the identification of the limit is achieved using the limit

(18.3) of ¥ ().

Step 1: ¢y is uniformly bounded. It is more convenient to rewrite ¥ (1) using the
local parametrisation. For this, let us start from ¥ ().

wN( ) ]Etw Z 1t, 1<TN/f Y 1h 1/2p— (t y)e}ou[p( i— 17Xt1 15 ’Lv )dy
1=1,t;>t

The integration set is in V,,(9D;,). Since 0Dy, is compact, there exists a finite number
of points (sij)i1<j<k in 0Dy, such that V;((0Dy,) € Uj<j<i U'J. We associate to them
G, F*, U, V* and g, ; defined in Proposition 17.3. As we have done at the beginning
of the proof of Lemma 17.18, we construct a partition of unity corresponding to (U"7)1<;<p,
i.e. non negative C§° functions (x;)1<j<k verifying Supp(x;) C U™ and Z§:1 xj =1on
Dy, UV, (0Dy,;). We get

. N
W= Eea| D Li i<y /Uinj(y)f(tiay)lh—l/QF(ti,y)e]O,p,[p(ti—bXti—l;tiﬂy)dy ;

i=1,t;>t

and according to Proposition 17.3, for y in U™ we can write y = gs, . (2) + A7 (gs,, (%)),
where \ € [—79,70] and Z € V%I, We change variables in the above equality and we obtain

N

;,th/2
NOEDY o1t 1<TN/0 d)\/vj dz

J=l=1,t;>t
ptio1, Xe,_y3ti, g, (2) + AT (g5, (2))) (|det(Jac(G™) x5 f) (ti, 9., (2) + A7 (g, , (2)))],

A last change of variable v = h~1/2) yields

h1/2z Z B .[1 11<TN/ dz//vwdz

J=1li=1t;>t
p(t’i—hXti—l; i?gsij(z) + h1/21/n (gsz ( )))(’det(JaC(GZ’J))‘X] )(ti?gsi,j (E) + hl/Zl/W(QSi,j (E)))]
Let 27 denote s ;(Z) + h1/2un(gs (Z)). This enables to deduce

() = (18.5)

k N
hl/ZZ Z Et,m 1 1<TN/ de(tl 1>th 1?tlv )(‘det(JaC(GLJ)MXJ )(tlvzﬁ])]

j=1i=1t;>t Vi

We use the Aronson inequality (6.7) and the definition of z; 9 t0 bound p(tio1, Xe, 13ty 2 ),

z1’747

we obtain

C 195, () — X, |
(z lath 13 Zv 'u)<(27'rh)d/2€Xp< L n ! 6'“. (186)
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If |gs, ;(2) — Xy,_,| is larger than 72 for instance, the contribution of this term in (18.5)

is exponentially small w.r.t. h and it gives a negligible contribution in (18.5). Other-
wise, we can assume that g, () and Xy,_, are both in U™, If we write F™I(X;,_,) =
(F(ti, Xt,_1),Zi—1) and (0,2) = F"7(gs, (%)), we get, since F"*/ is Lipschitz continuous,
Z —Zic1|? + F?(t5, Xy,_,) < Clgs, ;(Z) — Xy,_,|>. Representing this lower bound in (18.5)
and integrating w.r.t. z gives

al 2
) F=2(ti, X,
‘TMV('“” = Et» |:1ti_1<7—N exp (—c(htl)>} .
i=1,t;>t

To conclude to the boundedness of ¢ (i), we use the following Lemma 18.7 and Propo-
sition 18.8 (recall that F?2(t;,x) = d*(z,0Dy,) for x close to ODy,).

Lemma 18.7. For all s € [t;,t;41], it holds

d*(Xy.,0D, d*(Xy., 0D,
exp (—c(t”h)> < Cexp (—c(tjhtj)> .

Proof of Lemma 18.7. The above inequality is obtained by using the regularity of F', i.e.
the signed spatial distance introduced in Definition 17.1.

d(Xy,,0D5)% = F*(s,Xy,),
Moreover, for X, close to 9D,
|F(s, Xt,) — F(t;, Xy,)| < Ch
and the result follows. O

Proposition 18.8. There is a positive constant ¢ such that

T pls d(Xy,,0D;)?
/ Pio(s < 7n, X5 ¢ Ds)ds < Ch Z Ktz | 1ry>t; exp (—CW = O(h).
t .
j=0,t;>t

The proof of Proposition 18.8 is postponed to Section 18.4.

Step 2: We prove supy [¢y (1) — ¥y (p2)| < C(f)[p — p2l|®, for any pi, p2 € [0, 7.
We can bound the difference by two terms I} and s, defined by

E N
Le=0"25" N Eeally,cry / dzp(tion, Xe, it 2)))
j=1i=1,t;>t Vi
x| (|det(Jac(G™))|x; ) (i, z]) — (|det(Jac(G™))x; ) (i, 2] ],
=037 3" Erally_<ny /V ~dz(|det(Jac(G*))[x; f)(ti, 2,7)
j=1i=1t;>t >

X ‘p(ti—lv Xtifl;th ZLJ) - p(ti—h Xti71;ti7 Z:;,’J)H
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Bound for ;. Since p— (|det(Jac(Gi7j))|Xjf)(ti, z,ijj) is an H, function, we get

Il S Ch’ul _M2|Oz ]Etx 1tz 1<TN de( — 17Xt-b 1 Z7 27{)
Vi 14

Jj=li=1t;>t

We end the computation as for the boundedness of o\ (n) and it gives
I < CVh|u — pa|®.

Bound for I,. We use a Taylor formula to develop p(ti—1,Xt,_ 1,751,2’] ) —
p( i— I’th 1atlazu2)

P(tic1, Xe,yito, 25 ) =p(tio1, Xoy 5t 23]) =
V(i — p)i(gs,, 2) / Oyplti 1, Xiy_ st Aol + (1= N)2id )i
Then, we get

I <

1 k N
Chym—my/ A" D Eia [1“_1@,/_dzyaypy(ti_l,xtz St A+ (1= Nz
0 Vg

Jj=1li=1t;>1

where C' depends on the suprema of the function pu +—— (|det(Jac(G%9))|x; f)(t, 257). We
use (6.9), page 66, to bound 9,p. We obtain

C
I Shdjful — p2]

/dAZ Z Ei

j=li=1t;>t

Azl + (1= Xy, 2
ti— 1<7'N/ dZGXP( | G +( h)z,uz iz 1| )] .

Since )\z,ﬂf + (1 - )\)zug =9gs,,(Z) + \f()\,ul + (1 = A)p2)7i(gs; ;(Z)) and p1 and pz are in
i,j J . (D)=Xi |2

[0, z], we bound exp( Az 1 )\)h Xt > by C'exp <CW>. We end

the proof in the same way as for I1 and get Is < C|u1 — pe2|, which ends the proof. O

18.2 Boundedness of 86u§\,(t,:r:)‘e:0 when g € Hi,

Theorem 18.9. Assume g is a Hitq function. Then, it holds
|Deuy (t, )| —y < C,

where C' doesn’t depend on N,t and x.

The proof of Theorem 18.9 is based on two propositions: Proposition 18.10 and Propo-
sition 18.8, stated page 248 and 246.

Proof of Theorem 18.9. Using the definition of uy yields

(g - UN)(thrl’ ) Et;+1:y[ (thrlv y) - g(TN7 XTN)]‘
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Since y € 0Dy, ,,, by using Proposition 18.10 page 248, we prove that (g — un)(tj+1,y) is
bounded by Cv/h. Using (18.1) and the fact that € is bounded lead to

N-1
Dy (t, )| g SCVR Y By (1#%]_ /m) p(tj,th;tj+1,y)day>. (18.7)
ti+1

—X,. |2
Moreover, it holds p(t;, X¢;;tj41,y) < %exp <—c|y htjl ) Inequality (18.7) becomes

|Oculy (t, )| Z E 1 ex —cM do.
N 70 = h(d 1)/ L@ TR >t oD, ., p h y-
J

j 0,tj>t
(18.8)

In the special case Dy, = {y € R?: y; > 0}, we have

— X, |? d(X;.,0D;. X! |?
/ eXp(_cw htjr )day:exp<_c\< )H/exp< i ht| )dyl_
9Dt 11

lyi—X |

Forall l € {2,---,d}, [gexp (—c

— X;. |2 X,.,0D
/ exp —ci‘y 4| do <Ch(d D2 exp | —c d(Xt,,0 tJ“) )
oD, h h
J+1

For the general case, we use Proposition 17.3 to map locally Dy, , as a half space: in these
maps, d(y, 9Dy, )
For more details, we refer to Gobet [38], Lemma 3.4.5.. Plugging this result in (18.8) leads

) dy; < CvVh. One gets

has a simple expression which enables to boil down to the first case.

to
N-1
d(X¢,, 0D, )2
|(9Eu§\7(t,x)’620§0 Z Et » 1T1:f\}z>tj exp <_C J - j+1
J=0,t;>t

,0D
It remains to show that Z] —0,t;>t Btz [1 te sy, OXP <_C(t1+1)>} = O(1). To do

so, we use Lemma 18.7 and Proposition 18.8. O

Proposition 18.10. For any Hiis function g, it holds
Vo edD;, Eiulg(ta, Xey) —g(t,z)] < CVh,
where h = % and T =inf{t; > t: (t,; szx) ¢ D}.

This result has been recently proved in Gobet and Menozzi [43].

18.3 Boundedness of 0.u(t, :c)L:O when g(z) = (K — "),

This case is more involved technically because g is only piecewise C.
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Theorem 18.11. Assume g(t,z) = (K — %)t and log(K) € 9Dy. Then, it holds
|Decuy (t,2)|_y < C,
where C' doesn’t depend on N.

The additional assumption on 0Dy is not a restriction because when the dividend rate
¢ is smaller than the interest rate r, one knows that it is satisfied by the optimal domain.

Proposition 18.12. Let f(t,z) = (K —e®)*. Hence,
Vo e dDy, B lf(rn, Xoy) — f(t,2)] < OV,
where h = % and Tt =inf{t; > t: (t;, szm) ¢ D}.

Proof of Theorem 18.11. The proof is similar to the proof of Theorem 18.9: by using
Proposition 18.12, we show that |(g — un)(tj+1,¥)| < CvVh. Then, we use the proof of
Theorem 18.9 to conclude. O

Proof of Proposition 18.12. One knows from Gobet and Menozzi [42] that Proposition
18.12 is a consequence of the two following lemmas. O

Lemma 18.13. There are some positive constants C and Ngy such that for N > Ny, for
any i € {0,--- ,N — 1}, one has for X;, € Dy,

P (El t e [tz‘,ti+1] : Xt ¢ Dt‘ftz) < CP(Xti+1 ¢ DtiJrl |ftl)
The proof of this lemma is postponed to Section 18.4.

Lemma 18.14. Assume g(t,x) = (K — e®)*. Define 7° = inf{u > s : (u, X,) ¢ D}. For
all s € [t,T], we denote Vs := Elg(7°, X;s)|Fs]. For all i € {0,--- ,N — 1}, on the set
{Tn > t;, 7% < ti11}, one has

’E[le — Vo | Fru]| < CVh.

Proof of Lemma 18.14. The scheme of the proof is the following

1. We prove E[V},., — V4,

Fu] < CVR+ KK, [Lﬁgifp (X)],
2. We show
log(K) .1 T
E+ |:L (X):| < C\/E + lim — E [lsg.,-twl leG[log(K),log(K)+e[]dS'

.
rli+1
e—0 € tiv1

. T .
3. We split A, := fti+1 E o [1,c tipr Lx,ellog(K) Jog(K)+<[/ds in two terms, namely Al and
A?, and prove that lime_g 1A} < CVh.

4. We prove lime_o 1 A2
‘ + s,lo — i1, Xe 2
CvVh+ fgﬂ ds fol AE, ., [F(t“Xt-H) exp (_CF( Jog(K))~AF(ti41,Xe,, )| ﬂ

s—tiq1 s—tit+1

IN

5. We deduce from the preceding point that lim._q %Ag < CVh.
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Step 1 By using the definition of V', we get E[V;,,, — Vit | Fre,] = E[(K —exp(X +,41))" —
(K — eXp(XTti))+‘thi]. It6-Tanaka’s formula applied to x — (K — )y and (e*), leads
to

i

rtitl
(K — exp(X 1i41)) " — (K — exp(X1,)) " = — / Lexp(x.)<xd(€™)
L

K 7li+1
= drtos(K) (xy.

w5y [, areeoc)

Taking the conditional expectation gives
E ¢ [(K— eXp(Xsz‘H ))+] = (K — eXp(XTti))+

K log(K
“E.. + B [L;tgiil )(X)] .

tit1
T 1
/ eXleZexs (b(s, Xs) + 50'2(5,X5))d8

ti

Since b and o2 are bounded, we get
1 _ .
B (K = exp(Xaiia ) = (K = exp(X00)) ]| <K (bloo + 51012 Bye[r551 — 71
i+l

K o
+ 5B (L85 (x).

By using Gobet and Menozzi [42], Lemma 3.2 with g(¢,x) = t, we get E_¢, [rli+1 — 7] <
C+vh. Hence,

E[Vlfi+1 -V

i1

K o
Fru] < CVh+ S Eq, [ plosti) X)} .

Step 2 is devoted to proving

T
log(K NP
E ¢ [L;i(rl )(X)} < C\/E+ llirilnf E/t E_ [1s§7ti+1 ]-XSE[log(K),log(K)—l—e[]d‘S'
i+1
We recall
log(K) T
Lfy (X) =lm= [ L efog(io) tog(r) (0 (5, Xs)ds.
First, by Fatows Lemma, E. (Llﬁfﬁ()(X)) < liminfe 0 E,(Z.), where Z. =
tit1
% :tz 1X5€[10g(K),log(K)+6[02(57Xs)ds‘
Second, let us prove that

.. . T .
liminf. ,0E ¢ [Z] < CvVh + liminf. g % fti+1 E. ¢ []_SSTti+1 1x, [log(K),log(K)+e[]ds- Since
Th < ti+1 we can write

T
Erti [ZE] = / ' ETti |:1s§7'ti+1 1XS€[log(K),log(K)+e[i| ds (189)

123

ti+1 T
— [ Pt € o), 1o () + s+ [ B Lt L chorcyiontr e

i tiv1
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Let p denote the continuous transition density function of the process X. By the esti-

mate (6.7) page 66, one has p(7%, X +,,s,y) <

Ttiy

<—, which is enough to prove (by an
s—Tti

application of the dominated convergence theorem)

1 tit1 tit1

lim — P, (X € [log(K),log(K) + €[)ds = / p(T", X4, 8,1og(K))ds

T
e—0€ Jrt; Tti

tit1 c
< ——ds = .
< /th‘ mds O(Vh)

Combining the previous result and (18.9) leads to
log(K) 1T
Effi {LHHI (X):| < C\/E + lim inf E / Erti [1s<7—i¢+1 1X5E[log(K),log(K)Jre[]ds'
e tir1 -
T

Step 3 Let us denote Ae = f;i-H E—rtz‘ [1s§7—ti+1 1XS€[log(K),log(K)+e[]d5- If Xti+1 ¢ Dti+17

) T
Tt“Ll — ti+1' Hence7 we get LﬁH—l ]ETti []'thurl %Dti+l ISSTti+1 1X56[10g(K)710g(K)+5[]d8 = O’ and

T
Ae = / E e [1Xti+1 €D¢; 14 15S7’t’i+1 1X5G[log(K),log(K)Jre[]dS'
tit1

We introduce 7} := inf{s > ¢ : F(s,X;) > ro}. We split Ac in two terms depending on

L t;
the position of s w.r.t. 70",

T
Ae = /t Eth‘ [1Xti+1€Dti+1 1T:é+1 Ssgrtiﬂ 1X56[10g(K),1og(K)+6[]d8
i+1

T

. 7l 2

" /t B [lth‘HEDiiﬂ 1s<7:é+178<7—ti+1 lxse[l‘)g(K)JOg(K)-FE[]ds = A+ AL
i1 = =

Let us bound liminf._.g %Ag To do so, we write

T
1
Ae < / Bt |:1Xti+1€Dti+l lrté“ <rtitl /\sIE'rté+1 []'Xse[lOg(K)JOg(K)‘f’d] ds.
tit1 T > T

Then, using as before the upper bound for the transition density function, we easily get
liminfc_g %Ai < CE_4 |:1Xti+1€Dti+1IPti+1(TT%+1 < 7-t1-+1)}, We apply Gobet and Menozzi

[42], (4) page 14 to derive Py, (7it' < 7ti+1) < CF*(ti41, Xy,,,). Finally, an application
of Gobet and Menozzi [42], Lemma 4.1 gives liminf._o 1Al < C Vh.

T
Step 4 We recall Az = LH—I E [1Xti+1 €Dty 15§7:3+1,537ti+1 1XSE[log(K),log(K)—i—s[]ds' It

remains to prove liminf._,q %Ag < Cv/h. First, we split A2 in two terms.
5 tit2
Aq :/t E.e [1Xti+1 €Dty 1537%'*'1 s<rliHl 1Xs€[log(K),log(K)+e[]dS
i+1

T

. A21 22

+ /t E e [1Xti+1 €D¢; 14 1s<7_:(i)+1 s<rli+l 1Xs€[10g(K),log(K)+e[]dS = Ae + Ae :
i+2 - -

The first term A2! can be easily bounded as before by C Vh.
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Let us bound A2?. We introduce the process (Ys)sept,,, 7] = (F (8, Xs))se[tr,1)- Note
that the restriction of the signed distance function F(s,-) to {z : 0 < F(s,z) < ro} is
bijective. Then we can rewrite A2

T
22
Ag :/t E, ¢ [1Yti+120Eti+1[ STt parlit ]-YSe[F(s,log(K)),F(s,log(K)+e)[] ds,
i+2 Y,

“’1 denotes inf{s > t,11 : Y5 = a}. We introduce ¢, the transition density function

where 7/
of the process Y killed at 0 and rg. Under our assumptions, ¢ is well defined and satisfies
(upper) Aronson estimates (see Gobet [37], (10) page 173) as well as its derivatives. Then,

it follows
22 g
hnnglf A /t-+2 E. [1yti+120q (tit1, Yiir, s, F(s,10g(K))) 9, F (s, log(K))} ds.

Then, we apply a Taylor formula to ¢ between Y;, - and 0. Since Y(s,y), ¢(tit+1,0,s,y) =
0, we get q( Z+1,Y}i+1,s,F(s,log(K))) = Y31 fo o ( i1, AYg ., ,F(s,log(K))) dr. Tt
gives

F(s,1og(K)) — \Y;,. ,|?
hmlnf A22 < C’/ ds/ dN\E [”1 exp <—c| (s, log(K) tia >] .
'L+2

t; s —1tit1

Using the definition of Y leads to
lim inf 1AE < cVh
€E— €
T 1 Fltiv1, X, )T F(s,log(K)) — AF(tiz1, X1, ,)|?
+/ dS/ d)\]Eq—ti |: ( +1, t7,+1) exp <C| (S, Og( )) ( +1, tz+1)| >:| '
i+2 0

5 —tiy1 s —tit1

s—tit1 s—tit1

A + CAF(t, 2
Step 5 Let us denote T(s, \) := E -, {F(t’“’X%H) exp <_C|F(s,1og(K)) AF(tir1,Xe; ) )]

We aim at proving that ftiTJr2 ds fol d\T(s,\) < Cvh. We split T(s,\) in two terms,

depending on the distance between Xy, , and 0Dy, .
F(ti+17Xti 1)+ \F(s,log(K)) - )‘F(ti+17Xti 1)|2
T(s,\) =E_ [ p— tH;r exp | —c pa— + 1F(t¢+1,Xti+1)ZTo
F(ti-i-l?Xti 1)+ \F(s,log(K)) - )‘F(ti-‘rleti 1)‘2
R [ s — ti+: P S —ti+1 . 1F(ti+1’Xti+1)§’"0 )

Since F is bounded and s € [ti;2,7T], the first term of the above r.h.s. is bounded
by hP t; ( (i+17Xti+1) > T()). Moreover, F(ti—&—laXtHl) = F(Tti,XtHl) + (ti+1 —
)0 F (t, Xy where t € [t t;11]. Then, F(tiy1,Xy,,,) > 7o leads to F(r%, Xy, ) >
70 — h|O¢F |, and for h small enough (such that ro — h|0iF|c > 75), one gets

z+l)7

. T
Bros (Fltin, Xip1) 2 70) < Pree (P71, Xy ,) > ) < P (1K = Koy > ).

Since 7% and t;4; are close to each other, this probability is exponentially small (see
Lemma A.14, page 265) and %P.rti (F(tiy1, Xt 1) = 10) = Opoi(h). Thus, we get
T(S,)\) = Opol(h)

F(tz+1>th+1) ’F(salog( )) )‘F(tl-i-l? Xt1+1)‘ 1
eXp —C 5 — tl+1 F(ti+1,Xti+1)§TO i

+ E t;
i S_tz—f—l

ot () + T (s, N).
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It remains to prove ftiT+2 fol T1(s,\)d\ds < CV/h.
We rewrite 11 (s, A) by using the transition density of X
T1 8 )\

F t; F(s,log(K)) — A\F(t; 2
/ Ftiv1,y)" exp (_C! (s, log(K)) (tiv1,y)l
§—ti1 s —tim

> 1F(ti+1vy)§”’0p( Xth ; tl+17 y)dy

We use (6.7), page 66, to bound p: p(7%, X +;,tir1,y) < \/ﬁexp (—c

Then, we change variables by introducing z = F(t;11,y), which leads to

1<, F(s,10g(K)) — \z|2
Ti(s,\) < C E 2S00 ovp <—c| (s, log(K)) Z|>

2
|y7X7.t~; | )

tip1—Thi

RS — lit1 s —tit1
1 F~1(t; — X 2
% 7exp <_C| ( 74+172) - 'rtz > ‘81,F71(t1/+1’z)‘ dZ.
\/ti_:,_l—Tti tig1 — T

Since z < rg, we bound 9, F~!(t;41, z) and we write
Fﬁl(ti_i_l, Z) — Xq-ti = Fﬁl(ti_;,_l, Z) — Fﬁl(Tti, 0) ( i+l — T )8t (%, 0) + zaxF’l(tiH,E),

where £ € [%,t;11] and Z € [0, 2]. The time derivative is uniformly bounded and the space
one does not vanish since z € [0, 7). By using the inequality (a — b)? > 3a® — 2b?, we get

F—l . - X 12 2
exp (C| (t2+172) : th| > S Cexp (C’Z> .

tip1 —7hi tip1 — Tl
We deduce
271 F(s,log(K)) — A\z|? 22 dz
Ti(s,\) < C 2 CEST0 oxp <—c‘ (5, log(K)) | ) exp <—c’ t_) )
R S~ tiy1 5 —tlit1 tiv1 = 7% ) \ftipz1 — T

2c'z

[F (s, log(K)) = AT 2 2

We change variables in the above inequality, by setting u =

U
(s,\) < Cy/tiz1 —Th / exp | —c exp(——)du.
s —tit1 §— i1 2
Let us introduce zg and og defined by xy = V2F(slog(K)) g g2 = _C=tis) ey
0 0 0 A/ tig1—7hi 0 eA2(tiqp1—7h) " )

Ti(s,\) < CI(s,\) where

Vit —1h [ |zg — ul? u?
_To— ult Y du.
I(s,\) = / uexp( 202 5 )du

exp(—
s — i1 ) (

Let us prove ft fo s, A)dAds < CV'h. In view of applying Lemma A.17, page 266, we
rewrite I in the followmg way

|zo—ul?

7 1 o exp(— g o) _u?
I(s,\) = 2my/ A — u 208 ) exp(— 5 )du.
¢ A\ —tiv1 Jo V/2mod V2T
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Using the second part of Lemma A.17 leads to

2

o
/ 1 2 —z2/(202) T 2(1+02)
I(s,\) <2my/< I
cAs—tip1 \ 1+05 /2n0} 1+05+\/27(1+ 0f)

= 11(s,\) + Ia(s, \).
Replacing oy and zg by their values leads to

I (5.0 = V2md \tiyg — T ) exp <_cF2(s,log(K))> ’

CeA2(tipg — Th) + (s — titr s —tit1

IQ(S, )\) =

2/mcd |F(s,1og(K))|A(tip1 — ) exp < cc' F%(s,log(K)) >
X - .
V5 Tt (eX2(tipr — 74) + (s — ti41))? A} (tipr — 7h) + (s — tig1)

We aim at proving that [, ds [y dA1(s,\) < CVh and [;| ds [y d\Ix(s,)) < CVh.
Let us compute fol d\I1 (s, N).

[ 160 = Vare i e (_cF2<3,10g(K))) [ S

0 S_ti—i-l ti+1 —Ttl) —|-C,(8—?fi_|_1)7
B r\/ z+1 —Tt cF2 (s,log(K)) ! dA
S — tH_l 0 M +1 .
c(s—tit1)

A change of variables leads to
1 2 / F2 l K t’L _
/ Ls N = Y27 o <_C<80g(>>> arctan | (| 1 =T )
0 Vs —tit1 s —tit1 (s —tit1)

Since for x > 0, arctan(z) < x, we get

/T /lll(s,A)dAdsg/T vamved Vi — 7t < CFQSb%(») s,

tivo 8§ — i1 8§ —tit1

Since F(T,log(K)) = 0 and by assumptions, we get co(1T —s) < F(s,log(K)) < c1(T —s).
Then,

T — 2
/ / Li(s, \)dAds < V2mVce m/ T eXP <—C”(S)> ds.
tit2 t1+2 i+l

s — i1
/
Since Yu > 0, ul/te—u < C, we get exp ( C,i t+)1> < C,% and

IlsAd)\ds<C’\/11—7-t/ < CVh.
/’L+2 / " z+2 Vv - S S — t2+1)3/4

It remains to prove ftT ds fol d\I5(s,\) < Cvh. To do so, we introduce the change of
variables r = cA%(t;41 — 7%) + /(s — t;41). Hence,
C2ymd el i) (s, log (K))| ( cc'F2(s,1og(K))> p
o lexp | — T,
VS = lit1 Jer(s—tisn) r3/2 P r
2\/>C c(tip1—T4)+c (s—tiv1) @ B 2\/77_6/ n <1 N C(ti+1 _ Tti)> .

a (s — tit1)

<
VS —Ttiv1 Jo (s—tit1) r VS —Ttit1

/0 (s \)dA =
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Then, fiﬂ fol Ir(s,\)d\ds < 2y/mc ftiTJrz W In (1 + %) We change variables

C(t7;+1 —’Tti )
c(s—tit1)

In(1
/ / I(s,\)dA\ds < 2y/7Ved \/ Z+1—7'1t1/ - BZU dv < CVh.
v
z+2

by defining v = and we obtain

18.4 Proofs of technical results

This part is devoted to the proofs of Lemma 18.13 and Proposition 18.8

18.4.1 Proof of Lemma 18.13

We recall the result stated in Lemma 18.13:
There are some positive constants C' and Ny such that for N > Ny, for any i €
{0,---, N — 1}, one has for Xy, € Dy,

P(3t€ [titiv1] : X¢ ¢ Di|F) < CP(Xiyy & Doy | o)

i+1

i+1‘f7'ti) > %

Proof of Lemma 18.13. Assume that on the set t; < 78 < t;41, P(Xy,,, & Dy
Then,

]P)(Xti+1 ¢ Dti+1 ’th) = [1 1 <t +1P(Xti+1 ¢ Dti+1 }thi) 7,]

> GP(T“ < tip1]F).

One gets P(t% < t;11|F,) < CP(Xy,,, & Dy, |F,)- Since P(rh < tipq|F,) =P3 t €
[tistit1] + X¢ ¢ Dt‘}}i), the result follows. It remains to prove that on the set t; < 7 <
tiv1, P(Xi,,, € Diyy |[Frei) = & To do so, we adapt the proof of Gobet [37], Lemma 5.1:
in the cited paper, the author deals with a time independent C? domain D. Since D is

regular, it satisfies an uniform exterior sphere condition, and it also satisfies an uniform
truncated exterior cone condition. In our case, D being a regular time dependent domain,
the exterior cone condition is replaced by an exterior tusk condition (see Proposition 17.2).
Since D € H;, there exists R > 0, § > 0, Tg € R? and the tusk

Too = {(s,2) : TH < s < 7Y 46, |x — X0y — ToV/'s — 7H|? < R*(s — %)},

such that Tz, intersects D only at (7%, X +). Then, for h small enough (i.e. h <), we
get

P(Xti+1 ¢ Dy ‘7:7—%‘) > P((ti+1?Xti+l) € ,Tfo{j: t )

i+1}

Under Hypothesis 16.1, we can use a Aronson type lower bound for the conditional density
of Xy,,, (see (6.7), page 66). This yields

P(Xti+1 ¢ Dti+1 |}—7—t ) >

C/ exXp ( y
Yily=X 1, —Ton/tig1 70 |2<R2(tiy1—7%) tigp —7h
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yixfti

tip1—Tti

Let z := . This change of variables gives

]P)(XtiJrl ¢ Di; ‘]:7—’%‘) > C/ eXp(—CZQ)dZ.

|z—Zo|<R?

The r.h.s. is equal to a strictly positive constant independent of ¢, which ends the proof. [

18.4.2 Proof of Proposition 18.8

We recall the result stated in Proposition 18.8:
There exists a positive constant ¢ such that

T N—-1
/ Pt,x(s < TNaXS ¢ Ds)ds < Ch Z Et,x
t

7=0,t;>t

= O(h).

d(X;.,0D;.)?
1;y ¢, €Xp <_C(tﬂhtﬂ)>

For proving Proposition 18.8, we follow the proof of Gobet and Menozzi [41], Lemma

10, i.e. we prove three Lemmas, equivalent to Gobet and Menozzi [41], Lemmas 14, 15
and 17. Although in the cited paper the domain D doesn’t depend on time, we can easily
adapt their proofs to a time dependent domain. When the adaptation is straightforward,
we only refer to this paper, otherwise, we do the proofs.

Lemma 18.15. It holds ftT Py (s < v, X5 ¢ Dg)ds < CVh.
Proof of Lemma 18.15.

T N-1 ti+1
/ Pro(s < 7n, Xs & D)ds = > / P (t; < T, X5 ¢ Ds)ds. (18.10)
t . ts
j:O,tht J

Moreover, Py . (t; < v, Xs ¢ Ds) = B[l <ryP(Xs ¢ Ds‘ftj)]. We develop P(X, ¢
Dy|F,).-
P(Xs ¢ Ds|F,) = P(Xs ¢ Ds, Xy, € Ds|F,) + P(Xs ¢ Ds, Xy, ¢ Ds|F,).  (18.11)
We bound the first term of the r.h.s. of 18.11 by using Lemma A.14
P(Xs ¢ Ds, Xy, € Ds|Fy;) <P (|Xs — Xy > d(Xy;,0Dy)|F;)

d*(Xy,,0D;) )

- (18.12)

< Cexp (—c

d?(Xy. 0Dy,
Using Lemma 18.7 leads to P(X, ¢ Ds, Xy; € Ds‘ftj) < Cexp (—C(Xt]f;t])>.

We bound the second term of the r.h.s. of 18.11 in the following way
Et 21t <ryP(Xs & Ds, Xy, ¢ Ds‘ftj)] <P (Xe; ¢ Ds, Xy; € Dyy) < Pyo(d(Xy,,0Dy,) < Ch).

The second inequality ensues from the equality |F(tj, X)) — F(s, th)‘ < ch. From this,
we deduce

Et,m[lt‘j<TNIP(XS ¢ DS7Xt]' ¢ Ds‘ft]')] S Et,x[lt‘j<TNE[1d(th ,aDtj)SCh}ftha

d®(X;.,0D;.
ltj<TNIE [exp <—c(t]ht])> ‘ftj” .

< elEt,x
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Combining the previous result, (18.12) and (18.11) and (18.10) leads to

d(Xy,, 0Dy )?
1ry>t; exp <—c(t]ht])>] . (18.13)

The above result also corresponds to the inequality of Proposition 18.8. Let us show that

2
hZ] o Etm [ n>t; €XP <—cd(th’;?Dtj)>] = O(V/h). First, we write
N-1
d(X;,,0D;,)?
h Z Ea [1ry>t; exp (_thg

<h+z/ Bt [ rn>tE lexp (‘C = haDt )‘ft”

Combining (18.13), Lemma A.14 and the last inequality of (18.12) with s =¢; and ¢; =t
leads to

N-1

T
/ Pra(s <7y, Xo ¢ Do)ds S Ch ) Eyg
t :
7=0

T d(Xs,0D,)?

T
/ Pia(s < 7N, Xs ¢ Ds)ds < h —i—/ Et o |:17'N>8 exp <—ch>] ds. (18.14)
¢ ¢

Then, we split the last expectation

d(X,, 0Dy)? d(X,, 0Dy)?
R s | R T e s |

+ Et,l‘ I:lTN>51d(X5,DS)>T eXp <_C h

where 7 is defined in Definition 17.1. By using Lemma A.14, we show that the second
term of the r.h.s. of the above equality is Op(h). Plugging this result in (18.14) yields

T ™N F2 X
/ Pyo(s < 7, X & Ds)ds < Ch+ Ey [/ 15 x.)<20 €XP <_C(S};s)> ds} ‘
t t

4

Applying Itd’s formula to F(s, X;) gives d{F(s, Xs)) = |(6VF)(s, Xs)|?ds. Since o is
uniformly elliptic and X € 0Ds(r0/2), |(cVF)(s, Xs)|? > ao, where ag is a strictly positive
constant. Then, d(F'(s, Xs)) > aods, and the occupation times formula leads to

ro/4

T 2
/t Pi»(s < 7N, Xs ¢ Ds)ds < Ch+C exp <—cyh> Eto[LY, (F(-, X.))]dy.

(18.15)

—ro/4

Moreover, E; 4[LY, (F(-,X.))] < E;z[L%(F(-,X.))]. Since o and b are bounded, Tanaka’s
formula enables to write E; o [LY(F (-, X.))] < E¢z[F~ (-, X.)] + C. Since F~ is a bounded
function, we get B¢ ,[LY, (F (-, X.))] < C, and the proof is over. O

Lemma 18.16. E;,[L% (F(-, X.))] < CVh.
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Proof of Lemma 18.16. We apply It6-Tanaka’s formula to F(s, X) between ¢t and 7
_ _ ™ 1,
F (TN,XTN) =F (t,l')—/ ]'F(S,Xs)<0dF(S7X5)+iLTN(F('7X'))'
t

Since (t,z) € D, F~(t,x) = 0, we get

1 ) -
B | 3P0 (PO X0) = P (o) | < B | [ L <ot . X0
t

Since F' is a C? function, we can use Itd’s formula to get E; UtTN 1F(5,X5)<odF(8, XS)] =
ftT E: . [15<7N 1p(s,x,)<0(0F + E)F(S,XS)] ds. Since b, o, F and its derivatives are
bounded, we obtain E; , [1s<TN1F(s,XS)<0(5t + L)F (s, XS)] < CP(s < 7y, Xs ¢ Ds), and

1

T
5LQN(F(-,X.)) — F_(TN,XTN):| ‘ < C’/ Pi.(s < v, Xs & Ds)ds.  (18.16)

Et,z |:
Hence, since the r.h.s. is bounded by Cv/h (see Lemma 18.15), it remains to control the

expectation of the overshoot: Et.[F~ (7w, Xry)] = Son Bt o[F~ (ti, Xt,)1ry=s,]. Since
Loy=t; = Loys>tiy — 17'N2ti+1 and Et,z[ (t“Xti) TNZti-H] = 0, we obtain

Et,x[ TNJ ZEtx t’Mth) TN>ti,1]

]

= Z Et:$[1TN>ti—1 1Xt1-_1 Eva'Dti_l (ro/z)E[F_ (ti7 Xti)

N
+ ZEtax[]‘TN>ti711Xzi_1¢V5'Dti_l(r0/2)}E[F_(t’i7Xti) i—l]]’ (18'17)

=1
Since E[F_ (tl, th) ftifl] = 1th¢DtlE[F_ (tl, th)
F=(ti—1, Xt;), we get

ftifl} and F_(ti,Xti) S Ch +

Etvz[17N>ti—11Xti71¢vapti71<r0/2)E[F_ (ti7th') J:ti—l]] < ChEt,w[lTN>ti—11Xti¢Dti]

+ ]Et,w [1TN>ti71 lXti—l ﬁéV@Dti_l (7.0/2)E[F_ (ti*h th)) |‘7:t7,‘—1]'

Moreover, Bz[lryst 1x, | ¢Vop, (s BIE ™ (tits Xi)) | Fri s ] < CP(Xe — Xo | >

7‘0/2) == Opol(h) and Etvx[17N>ti711Xti¢Dti] = Etyx[lTNZti]’ then

N
ZEt,x[lmxH1Xti,1¢vm;ti_1(TO/Q)E[F_(tzv Xi:)|Ft; 111 = Opor(h).-

i=1
Combining this result with (18.17) leads to

N

Bt o [F™ (7w, XTN)] = Z Et7$[17N>ti—11Xti_1 EV@Dti_l(roN)E[F_ (ti, Xt,)
i=1

tia)] OPOZ(h‘>'

(18.18)
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It remains to bound from above E[F ™ (t;, Xy, )|F,_,| on the set 1,5, lx,. | Von,, | (r0/2)"
E[F™(ti, X¢,)|Fe, ] = B[ o0 o E[F7 (8, Xy,) ‘7:7_ti71”.7:t1,71], where 7! is defined in Defi-

nition 17.4. Since F'~ is a Lipschitz function, we get

14, StiE[Fi (ts, Xti) “7:7—%'—1] < C(h+ EHth — XTti—l | ‘thi_l])thi_l <t < C\/E].Tti_l <t;"

Finally, we obtain E[F~(t;, X¢,)|F,_,] < CVhP(rt-1 < ti| F4,_,). Plugging this result in
(18.18) and using Lemma 18.13 gives

N
Et,Z[F_(TNvXTN)] SC\/EZEt»z[17N>ti—l]‘Xti_levabti_l(rO/Q)IP)(Xti ¢ Dy,

ftiﬂ)] + Opol(h)7

i=1
N
< C\/EZ]Etyai[lTN>ti—11Xti¢Dti] + Opol(h) = O(\/E)’
i=1
which ends the proof. The last equality ensues from 1, |1 X:,¢Di, = 1=t O

Lemma 18.17. Fory € [—ro/4,70/4], Ei oLy (F (-, X.))] < C(ly| + Vh).

Proof of Lemma 18.17. Tanaka’s formula gives
Bt o (L (F(, X)) =2E 2 [(F (8, Xry) —y)” — (F(t,2) —y)7]

T
+ 2]Et,x |:/ 1F(s,XS)§y18§TNd(F(57Xs)) . (18.19)
t

Since (F(t,z) —y)~ > 0 and [(F(rn,Xry) — y)7] < F (v, X7y) + |yl, we get
Et o [(F(mn, Xoy) —y)” — (F(t,2) —y) 7] < Eio[F~ (7, Xry)] + |y|- Moreover, combining
(18.16), Lemma 18.16 and Lemma 18.15 yields that E, ,[F~(7y, X, )] is bounded by v/h.
We get

Evol(F(rn, Xoy) = )~ = (F(t,2) = y) ] < C(Vh+ [y)).

Since o, b, F and its derivatives are bounded, bounding the last term of (18.19) is equivalent
to bounding w(y) := Eq [ftT 1F(5,Xs)gyls§md3] . We aim at proving that w(y) < C(vVh+
ly|). For y < 0, since w is increasing, Lemma 18.15 leads to w(y) < w(0) < Cvh. For
y > 0, it is enough to upper bound w(y) — w(0) by C(y + vh). We have

T
w(y) —w(0) =E; [/ Lo<r(s,x.)<yls<ryds| .
t

Since [y| < 3, X5 € Vap,(ry/2)- Then, d(F(s, Xs)) > aods and we get w(y) — w(0) <

%Et,z [ftT Lo<p(s,x)<yls<rn A{F (s, Xs)>} . Using the occupation times formula leads to

1 v
o) = 0(0) < o [ B [L (FC X))o
0
Since the expectation of the local time LY (F'(-,X.)) is bounded for u € [0, 2], we get

w(y) —w(0) < Cy, and the proof is over. O
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Proof of Proposition 18.8. The first inequality corresponds to (18.13). To prove the second
inequality, we use (18.15). It remains to bound ff%% exp (—c%) E; . [LY\ (F(-, X.))]dy by
Ch. To do so, we use Lemma 18.17, and we get

T ro/4 y2
/ Prols <7w, Xs ¢ Ds)ds < C exp <—ch) (lyl + Vh)dy.
¢ —ro/4

An easy computation leads to the result. O
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Appendix

A.1 Diffusions and Euler Scheme

Let (Q, F,P) be a probability space on which is defined a g-dimensional standard Brow-
nian motion W, whose natural filtration, augmented with P-null sets, is denoted by
(Fi)o<t< (T is a fixed terminal time) and b : [0, 7] x R? — R? and ¢ : [0,T] x RY — R4,

Definition A.1. Consider the stochastic differential equation
dX; = b(t, Xt)dt + O'(t, Xt)th, Xo ==. (Al)

A solution of (A.1) is an F; adapted d-dimensional process (X;)o<t<7 such that
T
/ 1b(s, X.)| + |o(s, X,)[2ds < +00 P p.s.,
0
¢ t
P p.s.,Vte[0,T],X; == —i—/ b(s, Xs)ds +/ o(s, Xs)dWs.
0 0

Hypothesis A.1 There exists K > 0 such that Vt € [0,T), Y,y € R?,

lo(t,) — o (t,y)| + [b(t, ) — bit,y)| < Kz — ],
vt € [0,T),Va € RY, |o(t,2)| + [b(t,2)| < K(1+|a]).

Theorem A.2. Assume Hypothesis A.1. Then, (A.1) has a unique solution X, and
E[supy<; [Xs[?] < +o0.
A.1.1 Euler scheme

Let n € Nyt = kWT,O < k < N. We define X, the approximation of X, by Xév ==z
and for ¢ € [tg, txi1]

XN = X 4 b, X0 (= te) + o(ty, X)Wy — Wyy). (A.2)
We easily deduce the following Lemma from (A.2).

Lemma A.3. Assume o and b are bounded. For all t € [tg,tp+1] and for all p > 1,
E[| XY — X2 < %, where K(T') depends on p, |ble and |o|oo-

261
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Study of the convergence rate

Theorem A.4. Assume Hypothesis A.1 and there exists a > 0 such that V0 < s <t <
T,Vz € R?

lo(t,x) —o(s,z)| + |b(t,z) — b(s,z)| < C(1+ |z|)(t — s).
Then,

Vp>1, E(sup | XY — X4|?P) <

t<T - N2p6(1+’x‘2p)’

where 3 = min(a, 3).

A.2 Linear PDEs
Let us consider the following linear parabolic PDE defined on S = [0, 7] x R%:

(8t + ﬁ(t,x))u(tv x) = f(tv 1‘), (A3)
uw(T,z) = ®(z),

where L ) is the second order differential operator

L zyult,r) = Z a;j(t, x)aizju(t, x) + Z bi(t, )0y, u(t, x) + c(t, z)u(t, z),

and a;;(t, x) = 3[oo*];;(t, z).

Definition A.5 (Ellipticity condition). We say that the matrix o satisfies the ellipticity
condition if there exists a constant o9 > 0 s.t. Y(t,z) € [0,T] x R? o(t,z)o*(t,z) >
Ugletg)Rd'

A.2.1 The Cauchy Problem and a Feynman-Kac representation

We recall one version of the Feynman-Kac formula, coming from Karatzas and Shreve
[56], page 366. In this section we consider a solution to the stochastic integral equation

Xt =g +/ b(0, X;)do +/ o(0, Xy")dWy; t < s < oo. (A.4)
t t

under the standing assumptions that

Hypothesis A.2 the coefficients b;(t, ), 0;i(t,x) : [0,00) x R — R are continuous and
satisfy the following linear growth condition

[b(t, 2)” + [o(t, 2)[* < K2(1+|al?)

for every 0 <t < o0, z,y € RY, where K is a positive constant.

Hypothesis A.3 The equation (A.4) has a weak solution (X“* W), (Q, F,P),{Fs} for
every pair (t,x); and the solution is unique in the sense of probability law.
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With an arbitrary but fixed T' > 0 and appropriate constants L > 0, A > 1 we consider
the functions ®(x) : R? — R, f(t,2) : [0,T] x R? — R and k(t,z) : [0,T] x R? — R which
are continuous and satisfy

1®(x)] < L(1 4 |z]**) or ®(z) >0 Vo e R?
f(t,2)| < L(L+[2[*) or f(t,z)>0 Ve eR?, 0<t<T.

Theorem A.6 (Feynman-Kac formula). Under the preceding assumptions and hypotheses
A.2 and A.3, suppose that v(t,z) : [0,T] x R? — R? is continuous, is of class C*2([0,T) x
RY) and satisfies the Cauchy problem

o+ Lv+kv+ f=0 in[0,T) x RY (A.5)
v(T,z) = ®(z), =R
as well as the polynomial growth condition

< 2. d .
O?t%%\v(t,x)] < M1+ |z|*); = eRY (A.6)

for some M > 0,u > 1. Then, v(t,z) admits the stochastic representation

T T s
o(t,7) = By [@(Xﬂ exp(~ [ KO, X))+ [ (s, Xexp(~ [ kw,xe)de)ds]
t t t
(A.7)
on [0,T] x R?, in particular, such a solution is unique.

Remark A.7. Assume o,b are continuous functions of (t,7) € [0,7] x R? and Lipschitz
functions in z, uniformly in time: 3K < oo s.t.

|O-(ta$) - J(ta y)| + ‘b(t,l’) - b(tvy)‘ < K’:U - y’? vt > O7vx7y € Rd'
Then, (A.4) has a unique strong (and weak) solution.

Remark A.8. For conditions under which the Cauchy problem (A.5) has a solution
satisfying the polynomial growth (A.6), one should consult Friedman [28] Chapter I. One
set of conditions under which there exists a unique solution v of the Cauchy problem (A.5)
satisfies (A.6) are the following

e Uniform ellipticity condition of Definition A.5.
e Boundedness: the functions a;j, b;, k are bounded in [0, 7] x R4,

e Holder continuity: the functions a;;, b;, k and f are uniformly Holder continuous in
[0, T] x R%.

e Polynomial growth: f and ® satisfy: |f(¢, )| < L(1 + |z|?*) in [0,T] x RY, ®(t, )
and [®(z)] < L(1 + |=[*),

where L > 0, > 1. The first three conditions can be relaxed somewhat by making them
local requirements. We refer the reader to Friedman [29] page 147 for more details.
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Remark A.9. Conversely to the Feynman-Kac formula, define v(¢,z) by formula (A.7).
Assume that o, b, k are C? in space and their partial derivatives w.r.t. z are continuous
and bounded. f,® are supposed to be C? in space and their partial derivatives up to order

2 satisfy a polynomial growth condition :
3C > 0s.t. |f(t,z)| +|®(x)] <CA+ ||lz|™), Vz € R4

From Theorem 2.2 of Talay [90] we get that v(¢,x) defined by formula (A.7) is twice
continuously differentiable w.r.t. = and is solution of (A.5).

A.3 Well-known inequalities

A.3.1 On positive random variables

Proposition A.10. Let X be a positive random variable, and g be a C function. We
also assume g is monotone or g' is integrable. Then, we have

X [e%)
E[g(X)] = ¢(0) + E| /O ¢ (€)de] = g(0) + /0 P(X > o) (e)de. (AS)

Let X be a positive random variable with density. We have
E[X1xs] = €P(X > €) + / P(X > 2)dx (A.9)

Proof. To prove the first part of (A.8), we use that g is C'. Concerning the second equality,
we write

X [e%)
E| /0 ¢ (€)de] = K] /0 1xseg/(€)de].

Since ¢ is integrable (or g is monotone), we apply Fubini’s theorem to get the second
equality.
To prove (A.9), we introduce f, the density of X, and we use Fubini’s theorem.

/GOOP(X > x)dr = /EOO /:O f(y)dydw—/jo dm/jo dylys.f(y)

— [ sy - 9 = EX 1] - 2(X 2 )

A.3.2 Bernstein’s inequalities
On independent random variables

We refer to Gyorfi et al. [47], page 594, for a proof of the following lemma.

Lemma A.11 (Bernstein (1946)). Let X1,---, X, be independent real-valued random
variables, let a,b € R with a < b, and assume that X; € [a,b] with probability one (i =
1,---,n). Let 0> = 23 | Var(X;) > 0. Then, for all e >0,

P ( ! zn:(xi _E(X)))

n -
=1

7162
> 6) < 2¢ 20%+2¢(b-a)/3
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On martingales

We refer to Revuz and Yor [88], page 145, for the following inequality.
Proposition A.12 (Bernstein’s inequality). Let My, t > 0 be a martingale s.t. MO =
0, <M >;< Ay a.s. where Ay is deterministic. For y > 0 we have P(M; > y) <e 2At

Remark A.13. Let X be a diffusion process satisfying dXs = b(s, Xs)ds +
o(s,Xs)dWs, X; = x. We assume b,o are uniformly bounded. From the previous
proposition one easily deduce, for y > 0

T — 2
PO 2 ) < KD (55 s )

On It processes

We refer to Gobet [37], Lemma 4.1 for a proof of the following Lemma.

Lemma A.14. Let (Y:)i>0 be an Ité process defined by dY: = bidt + ordWs, with adapted
and uniformly bounded coefficients. Let S and S’ be two stopping times upper bounded by
T,st. 0<S—S<AZT. Then, for anyp > 1 and ¢ > 0, there exists a constant ¢ > 0
and a function K(T'), s.t. for anyn >0, one has

2
P( sup [Y; —Ysllge > n|Fs | < K(T)exp <_c”> :
tels,s'] A

E( sup HYt Ys||pa ‘.7:5> < CAP2,

(exp< P05.00)) 7. < oy (052D,

A.4 Convolutions and Integral computations

A.4.1 Convolution

Definition A.15 (Convolution). Let f and g be two functions defined on R. The convo-
lution of f and g is written f x g. It is defined as the integral of the product of the two
functions after one is reversed and shifted

(f * )y /f —2)g

Lemma A.16 (Application to Gaussian density functions). Let f : © —

2
1 - % d
7/727“72 € 20 an

frar— e e~ . It holds

Grgom = [ e e
m) = e 20 e T = e a?) .
g R V2mwo2 V2 V2m /1 + o2
More generally, if f (resp. g) is the density function of N'(m,c) (resp. N(m',o’)) we get
1 1 _ (m4m/)?
(F *9)(0) = =t R,

V2r\o'? 4 o?
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A.4.2 Integral computations

0 pe—u2/2 o—(z-u)?/(202)

Lemma A.17. Let I, be [, u du. It holds

V2 V2no?
o2 efa:2/(20'2) T
Il = 5 —+ 2[0.
1+o0° 2ro? l+o
22
2 —22/(202) || T 2(1+02)

Moreover, I; < -2 ¢ € .
P = 1402 Vano? 1402 \/27r(1+02)

A. Appendix

Proof. We get the above equality by integrating I; by parts. The inequality ensues from

the first part of Lemma A.16.

O]
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