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reste un exercice difficile. D’une part, car contrairement au reste du manuscrit, on y a
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moments passés ensemble à travailler, que ce soit sur les disques de turbomachine ou sur la
cuisson du chutney de mangue.

Rapporteurs, président et examinateurs du jury méritent également mes plus sincères
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(Ti’Frank et Steeve), et à tous les autres (Cindy, Yves, ...) pour leur aide au travail mais
aussi simplement pour tous les bons moments passés ensemble à ne pas travailler. Je remercie
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à remercier ici Gérard Porcher de m’avoir accueilli en monitorat à l’IUP d’Evry. J’aurais
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Résumé

Lors du dimensionnement des turbomachines, les motoristes sont tenus par la réglementation de
démontrer l’intégrité des pièces tournantes (disques et compresseurs) par un essai de survitesse : la
pièce ne doit pas éclater sous l’effet du chargement mécanique et thermique avant la vitesse imposée
par la réglementation. Cette exigence permet de garantir une marge de sécurité d’au moins 20 % entre
la vitesse d’éclatement et les conditions normales de fonctionnement.

L’évolution réglementaire permettra à terme d’utiliser des prévisions numériques préalablement
validées par des essais. Les simulations, réalisées à l’aide de calculs élastoplastiques par éléments finis
en grandes déformations, surestiment à l’heure actuelle la vitesse d’éclatement pour des pièces réalisées
en Udimet 720, un super alliage à base de Nickel.

Une prévision plus fiable de la vitesse d’éclatement nécessite une connaissance détaillée du
comportement elasto-visco-plastique et du type de rupture du matériau. La prévision de la vitesse
d’éclatement d’un disque en rotation est obtenue par analyse limite. Les paramètres du matériau
influents sur cette vitesse limite sont dégagés dans cette étude.

En conditions normales de fonctionnement, la température moyenne des disques est proche de
500◦C. A cette température, l’effet Portevin Le Chatelier (PLC) apparâıt lors d’essais de traction
sur des éprouvettes en Udimet 720. La simulation de cet effet nécessite l’utilisation d’un modèle de
comportement tenant compte du vieillissement dynamique. Ce modèle entraine généralement une
localisation de la vitesse de déformation sous forme de bandes. Une analyse de localisation a été
effectuée dans le but d’utiliser ce modèle pour des disques en rotation.

Il est démontré dans cette thèse deux résultats principaux au sujet de la simulation de l’éclatement
des disques en Udimet 720 : (i) à la température ambiante, la vitesse d’éclatement est principalement
influencée par le choix du critère de plasticité et par la contrainte limite à la rupture. (ii) à haute
température (500◦C), l’effet PLC change la réponse globale des disques sans pour autant modifier
significativement leur vitesse d’éclatement.

Cette thèse constitue le thème 3 du projet de recherche concerté entre Turboméca, l’Onéra, Snecma
et le Centre des Matériaux - Mines Paris - ParisTech intitulé ”Durée De Vie”. Ce projet est supporté
financièrement par la DGA et la DPAC.

Abstract

During design of turboshaft engines, regulation rules impose to manufacturers to prove integrity of
rotating parts (disks and compressor impellers) by overspeed experiments : parts should burst under
mechanical and thermal loads beyond the rotation speed imposed by the regulation. This requirement
guarantees a safety margin of at least 20 % between burst rotation rate and operating conditions.

The regulation evolution will make it possible to use numerical predictions, validated beforehand
by experimental testings. Simulations, performed using large deformations elastoplastic finite element
calculations, over-estimate at the moment the burst speed of disks designed in Udimet 720, a Nickel
based super-alloy.

More reliable predictions of burst speeds required a detailed knowledge of the elastoviscoplastic
behavior of the material. The prediction of the burst speed of a rotating disk is obtained by limit
analysis. Material parameters which affect the most this limit speed are provided in this work.

For operating conditions the average temperature of disks is close to 500◦C. At this temperature,
Portevin Le Chatelier (PLC) effect appears during tensile tests on specimens in Udimet 720.
Simulation of this effect requires to use a model taking into account dynamic strain ageing. This model
generally implies a localization of strain rate in bands. A localization analysis has been performed in
order to use this model for rotating disks.

Two main results are provided in this work about simulation of burst of disks designed in Udimet
720 : (i) at ambient temperature, the burst speed is mostly affected by yield criterion and ultimate
stress. (ii) at high temperature (500◦C), PLC effect changes the global response of disks without
significantly modifying their burst rotation speed.

This work forms a part of the concerted research project between Turboméca, Onéra, Snecma and
the Centre des Matériaux - Mines Paris - ParisTech entitled ”Durée De Vie” (service life). This project
is supported by the DGA and the DPAC.
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2 CHAPTER I. INTRODUCTION

I.1 Aims

The design of turbo-engines for aeronautical applications is subjected to strict regulation rules
aiming at avoiding incidents. Since manufacturers need to lighten engines as much as possible,
the knowledge in solids mechanics and material science has to be extended continuously.
Moreover, numerical methods of design are nowadays available to be utilized in the whole
design process to support engineers, and limit costs induced by complex experiments. This
work is devoted to the improvement of knowledge and know-how in non-linear solids mechanic
of turbo-engine disks, with a special attention given to the material characterisation and to
finite element simulations.

Turbo-engines are divided into two groups : the turbofans (aircraft engines) produce
thrust by accelerating air, the turboshafts (helicopter engines) drive an external rotor. In
this work, only turboshaft disks have been studied, but most results can be extended to
turbofans disks. The main difference between turbofans and turboshafts is the size and the
rotation rate. The materials used are similar.

Turboshafts as given in figure I.1, are usually divided in two stages, corresponding to
different rotating shafts. The first stage (the blue one), is constituted by the compressor and
the high pressure turbine. It provides heat energy to the second stage (the orange one), that
includes the power or free turbine which provides rotation mechanical energy to the gearbox.

Figure I.1 : Schematics showing a section of the Makila helicopter engine (Turbomeca).

Many materials are used in a turboshaft (see figure I.2), depending on the mechanical
and thermal loads applied on each part. Gears are subjected to high rotation rates and
contact forces, but not to high temperatures. They are usually made of steel. Disks and
compressor impellers are subjected to high rotation rates and high temperatures (up to
850◦C). Compressor impellers are designed using titanium alloys and turbine disks using
nickel based superalloys.

Regulation imposes manufacturers to validate a given reserve factor for rotating parts
between the operating and the burst rotation rates. Experiments are performed on disks and
impellers in order to evaluate the burst rotation speed at ambient or operating temperatures.
The number of tests for an engine is related to the number of different rotating parts: eight for
the engine given in figure I.3. The cost of such experiments leads designers to use numerical
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Figure I.2 : Schematics showing a section of the Arrius2 helicopter engine (Turbomeca).
Steel parts are marked by yellow, titanium alloys ones by blue, and nickel based superalloys
ones by red.

tools in order to limit the number of tests for each new engine.

Figure I.3 : The rotating parts of the Makila helicopter engine (Turbomeca).

The rotation rate of an helicopter turboshaft disk like the one given in figure I.4 is around
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ωo = 60 000 RPM (rounds per minute) for operating conditions and tends to go up to
ωb = 100 000 RPM at the burst stage. Typical dimensions of bored disks are ri = 8 mm
and ro = 60 mm for the inner and outer radius and e = 30 mm for the thickness but these
values are highly related to the engine size. Since the density of nickel based super-alloy is
close to 8 tons.m−3, the weight of an equivalent full disk with a rectangular section would be
close to 3 kg. The geometry of the disk can vary from an engine to another depending on its
link with the shaft. Disks can be bored and linked with the shaft by splines which results in
axisymmetry. Some are not bored with some holes to be linked to the shaft, which results in
unaxisymmetric conditions as in figure I.4.

Figure I.4 : Free turbine disk of the Arrius2 helicopter engine (Turbomeca)

The material points of a rotating disk are subjected to radial and tangential (hoop)
accelerations. One can show that for burst prediction, the tangential contribution can be
neglected (see appendix I.A). A static formulation with an external centrifugal load can be
used. The mechanical static problem of a rotating disk can roughly be approximated by
an uniaxial tensile test in the tangential direction, in which the disk tends to be separated
in two parts by the centrifugal load (see appendix I.A). This “uniaxial” approach is based
on the mechanical problem of a rotating ring. This approach becomes inaccurate when the
ratio ri/re decreases, because of the increasing radial stresses, but the approach provides
interesting estimations of the hoop (tangential) stresses in the disk. The separating stress σs

on a disk with a rectangular section, using the dimensions and parameters mentioned earlier,
is given as (see appendix I.A):

σs =
r3
o − r3

i

3(ro − ri)
ρω2 (I.1)

This “uniaxial” approach gives σs = 720 MPa for operating conditions (ω = 60 000 RPM)
and σs = 2000 MPa at burst conditions (ω = 100 000 RPM). This approach provides two
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main pieces of information: (i) tangential stresses prevail upon radial ones (ii) the average
tangential stress is related to the square of the rotation rate.

Y

X

Y

X
Fr

σθ

Figure I.5 : Analogy between disks and tensile specimens.

However, this approach is not applicable to the actual turbine disks for the following
reasons: (i) the increase of load with disk deformation is not taken into account (ii) the
complex geometries of present disks is far from a rotating ring (iii) the non-linear behavior
of the material is neglected. The first point can be treated taking into account a large strain
model (for example with actualized values for ro and ri). To illustrate the second point, one
can use an analogy between tensile tests on axisymmetric specimens and disks (see figure
I.5). Axisymmetrical disks can be compared to the smooth specimens since with the 1D
approach, the section remains the same all along the specimen. Non-axisymmetric disks can
be compared to the notched specimens. Such specimens can reach higher levels of stress than
the smooth ones because of the effect of geometry. One can expect the same effect on disks
with non uniform sections as given in figure I.4. The tensile behavior of the smooth specimens
is not sufficient to predict the stress response of notched specimens analytically. Similarly,
the direct use of the “uniaxial” approach, even with a large strain correction, would not be
correct for non-axisymmetric disks. Finite element simulations are then required. The third
point means that the burst rotation rate is highly related to material characteristics, such as
the yield behavior, and the sensitivity to damage and viscosity.

An approach based on non-linear finite element simulations of rotating disks is used in
this work to predict the limit load for turbo-engine disks. Non-linearities originate from the
material the behavior of which is described by non-linear and time dependent constitutive
equations, and geometric changes which are described by a finite strain formulation. Even
if material softening is not taken into account in the constitutive equations, the equilibrium
curve provided by the external loads and deformations of the structure reaches a limit point
(a maximum of the equilibrium curve) due to geometrical softening. The first aim of this
work is to provide a method to accurately predict the rotation rate corresponding to this
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limit point. Predictions will then be compared to experimental results.
Experiments performed by manufacturers on actual and test disks aim to evaluate their

burst rotation rate, or to demonstrate their integrity at higher rotation speeds than the
maximum rotation speed allowed in service. In both types of tests, the attention is focused
on the rotation rate and not on deformations of the structure, experiments are performed
prescribing the rotation rate. For a simple tension test, this would be equivalent to prescribe
the load applied on the specimen. In the case of a ductile material, fracture occurs at the
maximum point of the equilibrium curve (limit point), providing a failure external load value.
Another method would be to prescribe the angular momentum applied on disks. In this work
the case where the angular momentum is prescribed will not be treated. However, for a
ductile material, the fracture point is often located beyond the limit point.

The question of the uniqueness of this limit point has been considered very early in
material science history. Talking about necking of materials Considére explains in 1885 “
Nous n’avons entendu assigner à ce phénomène d’autre cause que le manque d’homogénéité
des métaux qui, étant essentiellement variable, ne saurait expliquer un fait constant. Nous
croyons en conséquence qu’il faut chercher ailleurs et que les faits se passent comme nous
allons l’exposer” (Considère, 1885). This is the first attempt to demonstrate that the load
where tensile instabilities occur is not related to material inhomogeneities, but to a structural
effect.

It is possible to estimate for a given disk made of a given material a limit load
corresponding to the burst rotation rate when this latter is prescribed. Non-linear finite
element simulations are accurate enough to predict this burst rotation rate when the geometry
of the disk and the material behavior are too complex to solve analytically. But the material
behavior and some numerical aspects have to be considered with attention. Characterisation
of the material is a fundamental point of this work. The mechanical behavior of the
nickel based super-alloy used to design turboshaft disks has to be perfectly determined at
the ambient temperature (rotating test conditions) and at operating temperature (close to
500◦C). One shall outline that behavior is totally different at different temperatures, mainly
because of the dynamic strain ageing that influences the behavior at 500◦C.

I.2 Outline

The outline of this work is sequential : each chapter is motivated by the conclusions of
previous ones, and motivates the following developments. Chapter II contains a general
stability analysis of elastoviscoplastic rotating disks. The relevancy of two empirical burst
criteria is considered in the case of a non-axisymmetric disk. For that purpose, the finite strain
formulation, material behavior and problem formulation are reviewed. The Hill stability and
uniqueness criteria are derived for the case of rotating disks and a local numerical indicator of
weakness of the material is proposed. The empirical criterion based on a critical cumulated
plastic strain, sometimes considered in practical applications, is studied in the case of two
different Nickel based superalloys. Finally finite element simulations of a rotating disk are
performed to evaluate the influence of yield criterion, hardening law, and viscosity on the
limit rotation rate.

The behavior of Udimet 720 at 20◦C and 500◦C is described in chapter III. Some
generalities are provided on Nickel based super-alloys, before concentrating on Udimet 720
which is used in the design of most turboshafts disks. Metallurgical aspects of this material
such as composition, microstructure, processing, and heat treatments, are presented. Then
the macroscopic behavior of this alloy at 20◦C and 500◦C is presented in two parts. For each
temperature, experiments, observations, and analysis performed to characterize behavior are
described. These experiments are utilized to develop constitutive equations in chapter IV
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and V.

The model at room temperature is utilized to predict the burst rotation rate of an
experimental disk from finite element simulations in chapter IV. Constitutive equations and
the identification procedure are presented. The obtained material parameters are validated
on a disk that has been stopped from rotating before burst, comparing experimental and
numerical residual deformations. Then the numerical and experimental burst rotation rates
are compared.

At 500◦C, the Portevin-Le Chatelier effect has been observed during uniaxial simple
tension tests on smooth axisymmetric specimens. A material model proposed by
(MacCormick, 1989) is used to simulate this effect. This complex material behavior is studied
during the last four chapters of this work. Chapter V presents the identification of parameters
of the model. Some theoretical and numerical aspects are addressed, and possible questions
are discussed about the sensitivity of model to time increment and mesh density during finite
element simulations.

In chapter VI, the numerical integration method of the model is presented. The main
topic of discussion is the original numerical method developed to accelerate finite element
simulations, in the presence of instabilities induced by the model. The mesh sensitivity of
results is studied, especially in the unstable range, looking for bands of localized plastic strain
rate. An original numerical tool, imitating some experimental methods for the detection of
bands location is presented. This tool is used to evaluate the influence of element size on band
type, width, velocity, and amplitude. This analysis is however restricted to the simulation of
a plate in tension.

Simulations of the Portevin-Le Chatelier effect in complex geometries are presented in
chapter VII. A 3D bifurcation analysis is preliminary performed in order to predict the onset
of PLC in any structure, and to predict the band orientation for simple tension and simple
shear. Simulations for smooth cylindrical specimens at 6 different prescribed strain rates
are then presented, using the numerical tools developed in the section VI. Simulations on
notched axisymmetric specimens at 5 prescribed strain rates are also analysed.

Finally, in chapter VIII, finite element simulations of the PLC effect for a rotating disk
are given to conclude this work. Axisymmetrical disks and 3D disks with holes are simulated
with small and large strain formulations. Consequences of strain ageing on disk burst are
discussed.

I.3 Notations

• Tensors and matrices :

Type Notation Example

scalar a Poisson ration ν

vector a Displacements field u

second order tensor a
∼

Cauchy stress tensor T
∼

fourth order tensor A
∼

∼

Elasticity tensor E
∼

∼

matrix n × m [A] 1 × m matrix of internal variables [X]

• Product :
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Notation Formula

x = a .b x = aibi (scalar product)

x = a
∼

.b xi = aijbj

x
∼

= a
∼

.b
∼

xij = aikbkj

x = a
∼

: b
∼

x = aijbij

x
∼

= A
∼

∼

: b
∼

xij = Aijklbkl

x = a × b cross product

x
∼

= a ⊗ b xij = aibj

X
∼

∼

= a
∼

⊗ b
∼

xijkl = aijbkl

• Stress and strain tensors:

Name Notation 1D uniaxial tension

Stress tensor in the context of small perturbation σ
∼

-

Cauchy stress tensor T
∼

F

S

First Piola-Kirchoff (PK1) stress tensor S
∼

F

S0

Second Piola-Kirchoff (PK2) stress tensor Π
∼

F0

S0

Small strain strain tensor ε
∼

∆L

L0

=
L − L0

L0

Deformation gradient F
∼

L

L0

where F0 and F are loads applied to the initial and current geometries, S0 and S are
the initial and current sections of the specimen respectively, L0 and L are its initial
and current lengths. The default stress and strain in this work will correspond to small
strain stress and strain.

• Abbreviations :
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RPM : Rounds Per Minute

HP : High Pressure

SOW : Second Order Work (Global)

MSOW : Modified Second Order Work (Global)

sow : second order work (Local)

msow : modified second order work (Local)

SS : Spin Softening

PM : Powder Metallurgy

SEM : Scanning Electron Microscopy

OM : Optic Microscopy

ST : Smooth Tensile

NT : Notch Tensile

S-Disk : Safe Disk

B-Disk : Burst Disk

DSA : Dynamic Strain Ageing

SRS : Strain Rate Sensitivity

PLC : Portevin Le Chatelier

MC : Mac Cormick

AE : Acoustic Emission

BLI : Band Location Indicator

DOF : Degrees of freedom
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10 RÉSUMÉ – CHAPITRE I

Résumé

Ce chapitre constitue une introduction générale au problème de l’éclatement des disques
de turbomachines. Le contexte industriel et la problématique y sont décrit : il s’agit de
vérifier la marge de sécurité imposée par la réglementation entre la vitesse d’éclatement
des disques et les conditions normales d’opération pour un moteur d’hélicoptère. Des essais
de survitesse, où un disque est accéléré en rotation jusqu’à la rupture, sont habituellement
effectué pour prévoir la vitesse d’éclatement. Un des objectifs de cette thèse est de prévoir
analytiquement/numériquement cette vitesse d’éclatement.

Une approche uniaxiale du problème mécanique d’un disque en rotation est présentée
ici. Ce problème consiste à déterminer la contrainte nécessaire pour séparer un disque
en deux morceaux. Avec cette approche, la contrainte circonferencielle pilote l’éclatement.
Cette approche, valable pour des anneaux minces, montre ses limites pour les disques réels
à géométrie complexe. Une prévision de l’éclatement par calculs élément finis est donc
envisagée. Dans ce cas, la vitesse d’éclatement est arbitrairement associée à la vitesse calculée
par analyse limite.

Le plan du manuscrit est ensuite présenté. Dans le chapitre II, la stabilité des disques
élasto-visco-plastique est étudiée. Différents critères d’éclatement sont comparés ainsi que
l’influence des paramètres de comportement du matériau sur la vitesse limite. Dans le chapitre
III, l’Udimet 720 est caractérisé à température ambiante ainsi qu’à 500◦C. Le chapitre IV
fournit l’exemple d’un calcul où la vitesse d’éclatement prévue est comparé avec des résultats
expérimentaux. Le chapitre V contient l’identification du matériau à 500◦C. Un modèle de
comportement tenant compte du vieillissement dynamique et permettant de simuler l’effet
Portevin - Le Chatelier est présenté. L’implémentation de ce modèle est étudié dans le
chapitre VI, et testé sur des éprouvettes axisymétriques dans le chapitre VII. Enfin, le chapitre
VIII contient des exemples de simulations de l’effet PLC dans des disques en rotation.
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II.1 Introduction

In a turbo-engine, components are submitted to severe conditions in term of temperature
gradient and centrifugal loading. Despite high operating rotation rates, designs are such
that global deformation remains reversible. However, overspeed events may occur. In order
to prevent any effect of these overspeed on the flight safety, Airworthiness Requirements
(CS-E or FAR, ...) impose to protect disks from burst by overspeed securities (electronic
and/or mechanical protection, ...) and to demonstrate the integrity of the engine rotors
at significantly higher rates than the operating rotation speed. Therefore, turbo-engine
manufacturers have to conduct disk burst analyses and disk integrity tests. In order to
validate the disk burst analyses, burst tests of experimental rotating disks are carried out.
Burst of experimental rotating disks may occur in one the following modes: (i) in a “rim peel”
burst, a portion of the outer diameter comes off while the hub section remains intact, (ii) in
a “hoop mode” burst, the entire disk disintegrates along radial planes in two or more parts.
Research concerning rotating disks bursts has been focused on: (I) the prediction from a limit
plastic analysis of the maximum suitable value of the angular velocity in case of overspeed,
(II) the prediction of the number of burst fragments, (III) the prediction of unexpected bursts
due to fatigue crack propagation, which is not related to an overspeed issue.

(I) : Among the earliest works concerning response of disks to centrifugal loads,
the elastic analytical studies carried out by (Love, 1927, Timoshenko and Goodier, 1934,
Roark and Young, 1982) document on the stress and strain fields. These results have been
used by (Laszlo, 1948, Percy et al., 1974) to suggest that burst occurs when the mean hoop
stress on a disk section becomes equal to the nominal tensile strength of the material,
determined from an uniaxial tensile stress. This criterion shows good correlation with
experimental results for rotating rings, but for solid or bored disks (Tvergaard, 1978) wonders
if this criterion gives a precise estimate of the maximum angular velocity, and (Manavi, 2006)
recommends the use of a burst factor between both aforementioned stresses. Moreover,
(Tvergaard, 1978) carries out a comparative review of several burst criteria, using an original
numerical method, for ductile bored disks of uniform thickness. Nowadays, the average hoop
stress criterion is still used, but the evaluation of the burst factor highly depends on disk
geometries. It will be shown in section II.4 to be inappropriate for a non-axisymmetric disk.
Another empirical criterion, appropriate for finite element simulations associates burst with
the step of calculation where an integration point reaches for the first time a critical value of
the cumulated plastic strain. This local criterion referred to as the “critical strain criterion”,
strongly depends on the material behavior, especially on the shape of the hardening curve.
The validity of this criterion for turbo-engine rotating disks will be discussed in section II.3.

(II) : Assuming a crack in a plane delimited by axial and radial directions, the
post-critical state of disks has been studied by (Kohl and Dhondt, 1993, Dhondt, 1994,
Bert and Paul, 1995, Dhondt and Kohl, 1999). The number of burst fragments, and the
translational kinetic energies of containment, are predicted, depending on the ratio of outside
to inside radius of the disk. These studies are useful in the case of small turbines like auxiliary
power units, where the certification requires that such fragments should be contained at a
normal rotation speed.

(III) : (Park and al., 2002, Bhaumik and al., 2002) observed fatigue fracture surfaces on
burst disks. This case differs from the overspeed situation, as burst would be caused by a
fatigue crack unstable propagation at normal operating speed and not by the loss of global
stability. Turbine disks have basically three critical regions where fatigue cracks can develop:
the fir-tree rim region, the assembly holes, and the hub region. Many investigations have
been performed, using finite element simulations, to evaluate the number of cycles required
for a crack to grow from an initial size to a final critical size, or to locate critical areas of the



II.1. INTRODUCTION 13

structure, corresponding to high radial, hoop or von Mises stress values. (Meguid et al., 2000)
show that maximum stresses are underestimated in fir-tree region with 2D finite element
analyses, and recommend the use of a 3D model. In the same region, (Claudio and al., 2004)
investigated the influence of the initial crack position, and (Witek, 2006) locates accurately
the critical areas close to the fir-tree. (Zhuang, 2000) conducted the same kind of analysis on
assembly hole region, and (Newman, 1996) outlined the influence of different load sequences
in any region. Finally, (Liu et al., 2005, Walz, 2006) performed probabilistic fracture analyses
to take into account the non-uniformity of the material. The sensitivity of the number of
cycles to failure with respect to the number and size of defects, and material properties such
as yield and fracture stress, are evaluated.

The present study focuses on computing the regulation reserve factor of the rotation
rate for a turbo-engine disk. The average hoop stress and the critical strain criteria are
shown not to be accurate to predict the burst speed. Generalized plasticity is assumed to
be responsible for burst, as in (I). A failure analysis for overloaded disks is performed using
an elastoviscoplastic constitutive law at large strain. In order to reproduce the experimental
testing procedure, the angular velocity is prescribed in simulations. The case where the
angular momentum is prescribed is not studied here (Tvergaard, 1978). However, prescribing
the angular momentum, the limit rotation rate can be overtake and well identified. In
the former case, burst of disks occurs when the limit load is reached while increasing the
angular velocity. A multiaxial stability criterion for burst, coinciding with the maximum of
the load displacement curve is presented, based on the modified global second order work
(MSOW). Spin-softening effect, which represents the increase of centrifugal load with radial
deformation, is neglected in most studies about rotating disk, which are performed within
a small deformation formulation. Material viscosity and non-uniform material properties
are also not usually considered, excepted in (Tvergaard, 1978) where imperfections in the
thickness of disks of uniform section are taken into account. In this paper the influence of
spin-softening and viscosity on response of non-axisymmetric disks is evaluated from finite
element simulations. An important and new feature of the analysis is the study of the influence
of material parameters such as yield criterion and hardening law on burst velocity. Finally,
the numerical local form of the second order work is shown to be appropriate to locate critical
areas of the structure.

Among turbo-engines, one can make a difference between turbofans (aircraft engines)
and turboshafts (helicopter engines). The purpose of a turbofan is to produce thrust by
accelerating air through the fan and the engine, while a turboshaft is devoted to drive an
external rotor. The size and nominal angular velocity of disk also differ. In this paper, an
example is given of a turboshaft disk, which is smaller but rotates faster than turbofan disks.

This study begins with a brief review of the different finite strain sets of
constitutive equations, with the definition of kinematic variables and stress tensors
(section II.2). Elastic, elastoplastic and elastoviscoplastic constitutive equations are
considered (Besson et al., 2001a). The incremental formulation of a mechanical problem
is then presented in order to introduce Hill’s stability and uniqueness criteria (Hill, 1958,
Hill, 1959, Petryk, 1993, Tvergaard, 1993, Nguyen, 2000). These criteria are specialized
to the case of a rotating disk. A term corresponding to the spin-softening effect
is evidenced. In the same part, the local expression of the stability criteria
is presented like in (Drucker, 1950, Estrin and Kubin, 1988, Neilsen and Schreyer, 1993,
Stoughton and Yoon, 2006). A numerical local indicator of weak zones of a structure
is proposed. In the second part (section II.3), some simple analytical examples with
homogeneous solutions are treated in order to compare the stability criterion introduced
in section II.2 with the critical strain criterion. The results in terms of plastic strain at
the onset of instability, are compared in the case of simple tension and simple shear for two
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different nickel-base superalloys. In a third part (section II.4), finite element simulations are
performed on a power turbine disk. The mechanical response beyond the critical angular
velocity is obtained using an arc-length control method (Riks, 1979, Crisfield et al., 1997,
Jirasek and Bazant, 2002, Germain et al., 2007) and the limit angular velocity is estimated
for each computation. The average hoop stress criterion is tested. An important issue, not
systematically studied in literature, is the influence of the material model and parameters.
Simulations are carried out with different yield criteria, hardening laws. The effect of viscosity
in addition to elastoplastic material law is also evaluated. The influence of spin-softening is
investigated from a comparison between simulations with and without this effect.

II.2 Stability and uniqueness criteria

In this section, the stability analysis of a rotating disk is developed in five steps. The first two
steps refer to the geometrical and material non-linearities, through the description of finite
strain kinematic and static quantities, and through the introduction of elastic, elastoplastic
and elastoviscoplastic constitutive laws. The third step describes the local formulation of the
mechanical problem, the principle of virtual power, and the corresponding incremental form
called “principle of virtual second order work”. Then the two last steps deal with stability;
the first one enumerates general criteria, that are applied to the case of rotating disks in the
second one.

II.2.1 Finite strain formulation

A material point M belonging to a structure, is defined by its position X at time t0 in a
reference configuration. At time t, this point is at position x , which is a function of t and X .
The set of points M of the structure at time t0 defines the space Ω0 (initial configuration),
and their position at time t, the space Ω (current configuration). The deformation gradient
is denoted by F

∼

. The volume change J , the displacement vector u and the velocity vectors
V (Lagrangian description) and v (Eulerian description) are deduced from these quantities:

x = x (X , t), F
∼

(X , t) =
∂x (X , t)

∂X
; J = det(F

∼

) (II.1)

u (X , t) = x (X , t) − X (II.2)

V (X , t) =
∂u

∂t
=

∂x

∂t
, v (x , t) = V (x−1(x , t), t) (II.3)

The gradient of the velocity field is L
∼

. It can be decomposed into its symmetric part D
∼

,
called the strain rate tensor, and its skew symmetric part Ω

∼

, called the spin tensor:

L
∼

= Ḟ
∼

.F
∼

−1 = D
∼

+ Ω
∼

(II.4)

D
∼

=
1

2
(L
∼

+ L
∼

T ) (II.5)

Ω
∼

=
1

2
(L
∼

− L
∼

T ) (II.6)

The Cauchy stress tensor T
∼

links the current elementary load df with the current surface
element dS and the current direction n . It is an Eulerian quantity and corresponds to the
true stress state of the structure. The first Piola-Kirchhoff or Boussinesq stress tensor S

∼

links
the current elementary load df with the initial surface element dS0 and the initial direction
N . It is the simplest tensor to evaluate, especially from mechanical tests. It is a mixed
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quantity (Eulerian/Lagrangian). Finally the second Piola-Kirchhoff or Piola-Lagrange stress
tensor Π

∼

relates the back-transported elementary load df0 with the initial surface element
dS0 and the initial direction N . It is a Lagrangian quantity. These various stress tensors are
related to each other by means of the deformation gradient F

∼

:

df = T
∼

.n dS, df = S
∼

.N dS0, df0 = Π
∼

.N dS0 (II.7)

Π
∼

= F
∼

−1.S
∼

= JF
∼

−1.T
∼

.F
∼

−T (II.8)

II.2.2 Material behavior

The finite strain formulation for isotropic nonlinear material behavior adopted in this work
is based on the use of a local objective frame as proposed in (Sidoroff and Dogui, 2001,
Besson et al., 2001a, Bertram, 2005). Invariant stress and strain measures s

∼

and ė
∼

are
defined by transport of the Cauchy stress T

∼

and strain rate D
∼

into the corotational frame
characterized by the rotation Q

∼

(x , t). This change of frame takes place at each material
point:







s
∼

= Q
∼

.T
∼

.Q
∼

T

ė
∼

= Q
∼

.D
∼

.Q
∼

T

Q
∼

such as Q̇
∼

T
.Q
∼

= Ω
∼

(corotational)

(II.9)

The strain rate ė
∼

is then split into elastic and plastic contributions, the evolution of the latter
being given by the yield function f(s

∼

, R). Formally, this method makes it possible to keep the
same evolution equations for internal variables as in the small strain framework. A von Mises
criterion f and an isotropic hardening law R(p) are retained for the elastoplastic model:







ė
∼

= ė
∼

e + ė
∼

p

f(s
∼

, R) = J2(s
∼

) − R(p)

ė
∼

p = ṗ
∂f

∂s
∼

, ṗ ≥ 0

s
∼

= 2µe
∼

e + λtr(e
∼

e)1
∼

(II.10)

where J2(s
∼

) =

√

3

2
s
∼

dev : s
∼

dev is the second invariant of the stress tensor and s
∼

dev the

deviatoric part of the stress tensor. In the viscoplastic case, a viscoplastic flow rule g(f)
is added to compute the cumulative viscoplastic strain increment ṗ, where g is an invertible
monotonic function:

ṗ = g(f) (II.11)

The formulation is equivalent to the use of the Jaumann derivative for the Cauchy stress
tensor:

T
∼

J = Q
∼

T .ṡ
∼

.Q
∼

= Ṫ
∼

+ T
∼

.Ω
∼

− Ω
∼

.T
∼

(II.12)

II.2.3 Problem formulation

A solid Ω (initially Ω0) is submitted to body forces fi , to surface loads Ti on the part ∂Ω2

(initially ∂Ω2
0) of its boundary, and kinematical constraints on the part ∂Ω1 (initially ∂Ω1

0),
as shown in figure II.1.
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∂Ω2

∂Ω1 ∩∂Ω2 = /0

∂Ω = ∂Ω1 ∪∂Ω2

Ω

fi
Ti

∂Ω1

Figure II.1 : General mechanical problem of a rotating disk

The governing field equations of the problem are :







Material behavior

Equilibrium : div XS
∼

+ ρ0fi = 0 on Ω0

Boundary conditions : S
∼

.N = Ti on ∂Ω2
0 , u = u i on ∂Ω1

0

(II.13)

The two last equations can be combined in the weak formulation called the principle of
virtual power :

∫

Ω0

S
∼

: Ḟ
∼

∗

dv0

︸ ︷︷ ︸

PINT

=

∫

Ω0

ρ0fi .V ∗dv0 +

∫

∂Ω2

0

Ti .V ∗ds0

︸ ︷︷ ︸

PEXT

, ∀V ∗ such that V ∗ = 0 on ∂Ω1
0

(II.14)

with Ḟ
∼

∗

=
∂V ∗

∂X

It is useful to define an incremental formulation of the mechanical problem by time
derivation of II.13. The global form of this incremental formulation is called the principle of
virtual second order work (Nguyen, 2000)

div XṠ
∼

+ ρ0ḟi = 0 on Ω0 (II.15)
∫

Ω0

Ṡ
∼

: Ḟ
∼

∗

dv0

︸ ︷︷ ︸

P 2
INT

=

∫

Ω0

ρ0ḟi .V ∗dv0 +

∫

∂Ω2

0

Ṫi .V ∗ds0

︸ ︷︷ ︸

P 2
EXT

, ∀V ∗ such that V ∗ = 0 on ∂Ω1
0

(II.16)

II.2.4 Hill uniqueness and stability conditions

Two fundamental criteria for loss of uniqueness of the solution of the boundary value
problem, and loss of stability of an equilibrium can be deduced from the previous incremental
formulation of the finite strain mechanical problem. They have been derived by Hill
(Hill, 1958, Hill, 1959) with restricted conditions. They have been extended gradually to
more general cases (Nguyen, 2000). A sufficient condition for uniqueness is established by
considering two different solutions of the problem. The derivation of this criterion is given in
the appendix II.A.



II.2. STABILITY AND UNIQUENESS CRITERIA 17

Uniqueness is ensured if ∀(V 1,V 2) kinematically admissible (V 1 = V 2 = V i on ∂Ω1
0),

∫

Ω0

∆Ṡ
∼

: ∆Ḟ
∼

dv0 −
(
∫

Ω0

ρ0∆V .
∂fi

∂u
.∆V dv0 +

∫

∂Ω2

0

∆V .
∂Ti

∂u
.∆V ds0

)

> 0 (II.17)

with ∆(.) = (.)1 − (.)2

The second criterion is useful to detect the loss of stability of equilibrium. It can be
defined as the sensitivity of the internal second order work with respect to a perturbation.
This value becomes negative when equilibrium becomes unstable. This criterion is derived in
appendix II.B.

Equilibrium is stable if ∀V such that V = 0 on ∂Ω1
0,

∫

Ω0

Ṡ
∼

: Ḟ
∼

dv0 −
(
∫

Ω0

ρ0V .
∂fi

∂u
.V dv0 +

∫

∂Ω2

0

V .
∂Ti

∂u
.V ds0

)

> 0 (II.18)

The conditions II.18 and II.17 look similar. It is outlined in (Hill, 1959), that this
similarity depends on the linearity of the relation between the stress and strain rates. The
∆V fields admitted in II.17 are exactly those admitted in II.18. Indeed, both vanish on ∂Ω1

0

and are otherwise arbitrary. But the stress tensors ∆Ṡ
∼

and ∆Ḟ
∼

are generally not related

by the same relation as Ṡ
∼

and Ḟ
∼

. The conditions II.17 and II.18 are equivalent for the
linear comparison solid only. A connexion exists, even for a non-linear relation, between
both conditions, in the sense that II.17 reduces to II.18 when one field of the pair vanishes
identically. Finally, relations between stability and uniqueness conditions are :

{

(II.17) ⇒ (II.18)

(II.17) ⇔ (II.18) if Ṡ
∼

= L
∼

∼

: Ḟ
∼

(II.19)

II.2.5 Criteria for rotating disks

Considering the mechanical problem of a rotating disk, V i = 0 and the V fields admitted in
II.18 are kinematically admissible. In some mechanical problems, external loads f

i
and T i

do not depend on displacements in the structure. Then the second term in equations II.17
and II.18 vanishes. In contrast, the centrifugal load at a point M of the structure depends on
the current radius r at this point. Because this radius increases during the loading sequence,
the load also increases even if the angular velocity remains constant. This effect is called
spin-softening. It makes the second term of the criteria non zero, and favours instability.
This term has been evaluated (see appendix II.C) in order to rewrite the stability criterion
for rotating disks.

Equilibrium is stable if ∀V kinematically admissible,

MSOW =

∫

Ω0

(Ṡ
∼

: Ḟ
∼

− ρ0‖V × ω ‖2)dv0 > 0 (II.20)
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where ω is the vector of angular velocity, × is the vector product, and ‖.‖ denotes the
Euclidian norm of the vector.

If one can find V such that this global modified second order work (MSOW) becomes
negative, stability and uniqueness are lost.

The first term in equation II.20 is called the Second Order Work (SOW). The whole
expression, taking into account the spin softening term, is called from now the Modified
Second Order work (MSOW). The criterion II.20 is used in two different manners. The
first method consists in detecting the limit point of equilibrium curve, by looking at the
sign of second order work as given by the finite element solution. When the velocity field
produced by this solution VFEM makes condition II.20 fail, the limit point is reached, and the
solution becomes unstable and non unique. The search for instabilities is not performed for
all kinematically admissible velocity fields, but only for the current finite element solution.
However, this method is not indispensable, since the maximum of the equilibrium curve
can be also detected easily if simulations are performed with an arc-length control method.
Secondly, a local numerical indicator is proposed. Integration points with a negative local
modified second order work (msow) are detected. The weak zones of the structure can be
estimated, in an heuristic way, even if the condition II.20 remains true and equilibrium is
globally stable. It will be shown in section II.4 that this indicator is more accurate than the
cumulated plastic strain to predict where failure will occur.

A zone is said to be ”weak” around a material point when :

msow = Ṡ
∼

: Ḟ
∼

− ρ0‖V × ω ‖2 ≤ 0 at this point (II.21)

On shall note that the global modified (resp. normal) second order work is denoted
MSOW (resp. SOW). The local modified (resp. normal) second order work is denoted msow
(resp. sow). Then:

MSOW =

∫

Ω0

(msow)dv0 (II.22)

II.3 Evaluation of the local critical strain criterion

In this section, the relevancy of an empirical burst criterion coupled with finite element
simulations is investigated. This criterion sometimes used in practical applications associates
burst with the first step of calculation where a given critical cumulated plastic strain is reached
at an integration point. The critical cumulated plastic strain is provided by an uniaxial tensile
test, and corresponds to the point where the external load is maximum (limit point). The
stability criterion previously defined is applied to two simple mechanical problems (simple
tension and simple shear) solved for several material behaviors (elastic, elastoplastic, plastic,
and visco-plastic). The analytical problems are solved with a plane stress formulation at
large deformations. The stress and strain fields are homogeneous in the structure, at least
before instabilities occur. Actually, instability takes place at the point where geometrical
softening becomes larger than material hardening. Two different Nickel based superalloys are
chosen for the computation. Shear and tension critical plastic strains are evaluated for both
material. The empirical criterion turns out to be dependent on the material parameters.
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II.3.1 Simple Tension

A plate is submitted to a tensile test with prescribed displacements. The relation between
uniaxial stress values T1 (Cauchy) or S1 (PK1), and the corresponding deformation gradient
term F1 is obtained from II.10 in the purely elastic case:

T1 = E log(F1) where E is the Young’s modulus (II.23)

S1 = EF−2ν
1 log(F1) where ν is the Poisson ratio (II.24)

Then, using criterion II.18, the limit deformation FLIM
1 is evaluated for the elastic

behavior defined in II.12.

FLIM
1 = e

(
1

2ν

)

(II.25)

The instability of pure elastic material appears for large strain values. For example if
Poisson ratio is 0.3, the elastic simple tension instability can occur for more than 400%
strain (for F1). The elastoplastic instabilities can occur at lower values. The elastoplastic
constitutive equations are presented in II.10. The critical cumulated plastic strain pLIM for
which instability occurs is given by the solution of the following equation:

pLIM is such as
∂R

∂p
(pLIM ) =

R(pLIM )

1 − 2ν

E
R(pLIM )

(II.26)

It can be noted that usually, R(p) ≪ E and consequently the criterion formulated by
(Considère, 1885) is retrieved:

pLIM is such as
∂R

∂p
(pLIM ) = R(pLIM ) (II.27)

Numerical values of pLIM for this kind of behavior are given at the end of this section. The
assumption that R(p) ≪ E is kept in the following resolution. The critical cumulated plastic
strain may also be evaluated for the elastoviscoplastic law II.11. Either the plastic strain rate
or the total strain rate are assumed to remain constant. If the plastic strain rate ṗ remains
constant, then p̈ vanishes. The corresponding critical cumulated plastic strain is then given
by the following expression:

pLIM such as
∂R

∂p
(pLIM ) = R(pLIM ) + g−1(ṗ) (II.28)

If the total strain rate Ḟ1 remains constant, then the cumulated plastic strain verifies
(neglecting elastic strain):

F1 = 1 + Ḟ1t (II.29)

p = log(1 + Ḟ1t) (II.30)

ṗ =
Ḟ1

1 + Ḟ1t
= Ḟ1e

−p (II.31)
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p̈ = − Ḟ 2
1

(1 + Ḟ1t)2
= −ṗ2 (II.32)

The critical cumulated plastic strain is now given by the following expression:

pLIM solution of
∂R

∂p
(pLIM )ṗ = R(pLIM )ṗ + g−1(ṗ)ṗ − ∂g−1

∂ṗ
p̈ (II.33)

pLIM solution of
∂R

∂p
(pLIM ) = R(pLIM ) + g−1(ṗ) + Ḟ1e

−pLIM ∂g−1

∂ṗ
(II.34)

The influence of viscosity on the value of pLIM depends on the form of function
g−1(ṗ). Usually, flow rules are such that g−1(ṗ) are positive and increasing functions
(Lemaitre and Chaboche, 1994, Chaboche, 1989). Consequently, for both kinds of control
of displacements, instabilities with an elastoviscoplastic law will occur for a lower strain level
and a higher Cauchy stress level than for a purely elastoplastic law.

II.3.2 Simple Shear

A plate is submitted to a shear test controlled by applied displacements. A plane stress model
with large deformations is used. The limit shear strain FLIM

12 corresponding to instability
point is evaluated for the elastic law II.12.

FLIM
12 =

π

2
(II.35)

The limit point can also be evaluated for an elastoplastic law like II.10. The critical
cumulated plastic strain pLIM is then determined, assuming that R(p) ≪ E:

pLIM solution of
∂R

∂p
(pLIM ) = 2

√
3 tan(2

√
3pLIM )R(pLIM ) (II.36)

II.3.3 Application

These analytical solutions are applied for two different materials. Both are nickel-based super-
alloys and their behavior can be represented by non-linear hardening laws without viscosity
effect represented in figure II.2. For both super alloy R(p) is of the following form:

R(p) = R0 + Q1(1 − exp(−b1p)) + Q2(1 − exp(−b2p)) (II.37)

The parameters for both materials are:

Parameters E (GPa) R0 (MPa) Q1 (MPa) b1 Q2 (MPa) b2

Nickel based superalloy A 200 1217 1614 58 −1380 58

Nickel based superalloy B 200 1227 2118 15.1 −1280 22.1

(II.38)
Neglecting elastic contribution, the critical plastic strains pLIM are given in table II.39 for
both materials, and for both tests (simple tension and simple shear).

pLIM Tension Shear Ratio(Shear/Tension)

Nickel based superalloy A 0.042 0.05 0.7

Nickel based superalloy B 0.21 0.15 1.2

(II.39)
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One can observe significant differences between the critical values calculated for both
materials. These differences arise from the form of the two hardening curves. In the case
of Nickel based superalloy A, the critical strain for simple tension is lower than for simple
shear. The use of uniaxial strain criteria would probably be conservative for many problems
compared with the local form of the criterion II.18. In contrast, in the case of Nickel based
superalloy B, the critical strain for simple shear is lower than for simple tension. The use
of uniaxial strain criterion can be non conservative for structures submitted to a multiaxial
stress state. It should be replaced by the local form of criterion II.18.

Nickel based superalloy B
Nickel based superalloy A

True Strain
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Figure II.2 : Example of tensile behavior of Nickel based superalloy A and B. R0 denotes
the yield stress.

II.4 Simulation of rotating disks

Helicopter engines are usually composed of two main turbines. The first one, called ”high
pressure turbine”, is devoted to the production of a flow at a very high speed level from
the combustion of high pressure gas. The second one called ”power turbine” converts gas
flow into rotating power with a very high spin rate. Simulations are carried out on a
power turbine disk with the Zset finite element program (Besson and Foerch, 1997). Due to
assembly holes, one tenth of the disk, the red area in figure II.3, has been meshed with height
nodes linear elements. The selective integration method (Hughes, 1980) is used with a finite
strain formulation and an elastoplastic law for Nickel based superalloy B. The computation
is controlled by the applied centrifugal load. An arc-length method is used, in order to
avoid numerical divergence close to the limit point and to overcome it. Blades are taken into
account in the computation by the addition of mass elements on the external side of the disk.

The influence of spin-softening and material parameters such as yield criterion, hardening
law, and flow rule, on the equilibrium curve are investigated in the following sections. Each
parameter is modified and the equilibrium curve representing the normalized angular velocity
versus the normalized radial displacement on rim of disks is compared with the reference
curve. The instability point corresponding to the limit angular velocity ωLIM is estimated
from the global criterion II.20. It is marked with a △ on the reference curve. Moreover, it
can be proved that the criterion II.20 equals zero when the load parameter λ in the arc-length
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x

y

z

Figure II.3 : Free turbine disk geometry

method reaches its maximal value, as shown in appendix II.B. Then, for each set of material
parameters, this instability point coincides with the maximum of the equilibrium curve.

II.4.1 Influence of spin-softening

The spin-softening effect described in section II.2.5 leads to an earlier occurrence of
instabilities in the disks. Simulations can yet be performed without this effect, but the impact
of this assumption has to be evaluated. In practice, the spin-softening effect is accounted for
in the computation when the centrifugal load is evaluated for the current node positions
instead of the initial positions.

The equilibrium curve with and without spin-softening effect is given in figure II.4. The
calculation performed with spin-softening term constitutes the reference simulation and will
be used for all the following comparisons. It can be seen that the limit angular velocity is
about 5% higher when spin-softening is not considered. The average hoop stress on plane
containing the hole is evaluated during the reference simulation. If the semi-empirical criterion
where appropriate, the ratio between this average hoop stress and the nominal tensile strength
would be equal to 1 for the limit load. The sign of the local modified second order work (msow)
is also represented on the model for the reference simulation at three different steps: when
the first point with negative msow appears (�), at the maximum angular velocity (△), and
beyond the critical point (�). Weak zones of disk (with negative msow) are drawn in black
on these figures.

The spin softening term can also be neglected in the local indicator in order to see
its influence on the location of weak zones. The disk simulated in this part has been
experimentally burst. Since this disk holds five holes (see figure II.3), one can expect a
failure in five similar fragments. Five plane fracture faces are expected passing trough central
axis and an hole. But it is not the case. The photograph of a fragment of an experimental
burst disk is shown in figure II.5. One can observe that in zone 2 the fracture is deviated from
natural radial direction. Moreover in zone 1 fracture occur between two holes. The cumulated
plastic strain, the local second order work (sow) and the local modified second order work
(msow) given by the same finite element simulation are plotted at the limit point in order to
estimate which quantity is appropriate to qualitatively predict failure zones. Both zones of
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Figure II.4 : Influence of spin-softening on the equilibrium curve and sign of msow for three
special steps of the reference simulation.
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failure circled can not be detected looking on the cumulated plastic strain. Furthermore, the
plot of the sow does not locate the zone 2 as a risk zone. However, the msow is negative in
this zone. This zone appears only because of the spin-softening term.

Figure II.5 : Qualitative comparison between fracture location on a real disk and values
of the cumulated plastic strain, the local second order work (sow), and the local modified
second order work (msow) provided by the finite element simulation.

The influence of the spin-softening term in the stability criterion II.18 is also illustrated
in figure II.6 for the reference simulation. The global modified second order work (MSOW)
vanishes while the angular velocity is maximal. In contrast, without this term, an error is
made on the critical point location.
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Minimum msow
SOW/VT
MSOW/VT
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Figure II.6 : Influence of spin-softening on the stability criterion: MSOW, SOW, and
minimum msow in the disk are plotted as a function of radial displacements. MSOW and
SOW are divided by the total volume VT .

II.4.2 Influence of yield criterion

The plastic behavior is described by a yield surface that evolves during deformation. The yield
function specifies the shape of this surface, while the hardening law and the flow rule provide
its evolution. Two criteria representing this surface have been proposed by (Tresca, 1864)
and (Mises, 1913). Then, (Hosford, 1972) gave a generalized criterion, which contains the
previous surfaces as limit cases:

f(σ
∼

) = σeq − R; σeq =

[
(σ1 − σ2)

n + (σ2 − σ3)
n + (σ1 − σ3)

n

2

]1/n

(II.40)

where σ1 ≥ σ2 ≥ σ3 are the principal stresses and 1 ≤ n ≤ ∞

σeq replaces J2 in equations II.10. The yield stress can be chosen such that all criteria
coincide in tension. Then they strongly differ for simple shear. For the latter stress state,
the ratio between equivalent stresses for the same strain is maximal and equal to

√
3/2

or 13.5%. (Love, 1927, Timoshenko and Goodier, 1934, Roark and Young, 1982) have shown
that a rotating disk is mostly submitted to a biaxial load where the tangential stress is around
twice the radial one, like for a plane strain test. This difference between the results obtained
by simulations with both criteria (Tresca and von Mises) are shown in figure II.7. The two
yield criteria have been identified such that the tensile strength are the same. Considering
the limit angular velocity ωLIM , the difference is as high as 7%. This clearly shows the
importance of selecting the best suited yield function for the considered material.

II.4.3 Influence of the hardening law

The evolution of the yield surface with the cumulated plastic strain p is given by the hardening
law. If this evolution is the same in all directions, hardening is isotropic. This law is mainly
determined from the yield stress and the ultimate stress. (Devy et al., 1990) have shown
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R0 = R0[re f ], Rm = Rm[re f ], Tresca Y.C.
Ref. : R0 = R0[re f ], Rm = Rm[re f ], von Mises Y.C.
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Figure II.7 : Influence of yield criterion (Y.C.) on the equilibrium curve; comparison between
von Mises and Tresca criteria for the reference material parameters (Nickel based superalloy
B).

that during forming process of disks, quenching rate can vary from a ratio of 10 between
core and skin of the disk, implying a 10% difference in the hardening level. The influence of
the hardening law is represented in figure II.8. The reference curve is compared with three
different hardening laws : one with a 10% reduction of R0, one with a 5% reduction of Rm,
and one with both reductions. The yield stress R0 has no real influence on the limit angular
velocity, which is however very sensitive to ultimate stress Rm.

R0 = 0.9R0[re f ], Rm = 0.95Rm[re f ]

R0 = R0[re f ], Rm = 0.95Rm[re f ]

R0 = 0.9R0[re f ], Rm = Rm[re f ]

Ref. : R0 = R0[re f ], Rm = Rm[re f ]
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Figure II.8 : Influence of hardening law on the equilibrium curve; comparison for different
R0 and Rm.
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II.4.4 Influence of viscosity

The viscosity is introduced by a function g(f) between the plastic strain rate ṗ and the yield
surface f as in the equation II.11.

ṗ = g(f) = ε̇0 sinh

(
f

σ0

)

(II.41)

The viscosity effect increases when σ0 increases. The influence of this parameter for three
different flow rules and the reference plastic law is given in figure II.9. The arc-length control
method is easily usable for time-dependent material behaviors. The ultimate angular velocity
ωLIM has then been approximated from the criterion II.20, when this one is close to zero.
This critical angular velocity ωLIM is sensitive to viscosity, for a large value of the overstress
σ0. The viscosity of the material seems to make rotating disks more stable in term of angular
velocity.

Plasticity
Viscosity (ε̇0 = 10−8s−1,σ0 = 3 MPa)
Viscosity (ε̇0 = 10−8s−1,σ0 = 10 MPa)
Viscosity (ε̇0 = 10−8s−1,σ0 = 100 MPa)
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Figure II.9 : Influence of viscosity on the equilibrium curve

II.5 Conclusion

Burst of rotating disks in case of overspeed is assumed to be due to generalized plasticity. To
detect a corresponding critical angular velocity, (Hill, 1958) uniqueness and stability criteria
are presented for the case of centrifugal loading. These criteria were evaluated on simple
examples to show their relevance. Limit analyses were then performed on actual turbine
disks to evaluate the influence of the different parameters on the critical angular velocity.
It was shown that accounting for spin-softening is needed to obtain accurate predictions
of the instability. The role of the material constitutive equations was also studied. The
critical angular velocity is controlled by the ultimate stress (Rm) whereas the yield stress
(R0) plays a limited role. The critical velocity is increased when the material viscosity
increases. A material obeying a Tresca yield criterion leads to a lower critical velocity (about
7%) than a material described by von Mises plasticity having the same tensile behavior.
The dependence of the critical velocity on the material constitutive equations shows than an
accurate characterisation of the material is required when a precise evaluation (i.e. ±10%)
of ωLIM is needed.
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Résumé

Le problème de la charge limite que peut supporter un disque en rotation est traité dans
ce chapitre. L’objectif est de montrer que les critères analytiques empiriques existants
pour prévoir cette charge limite ne fonctionnent pas lorsque la géométrie du disque est
complexe. Un calcul élasto(visco)plastique par éléments finis est donc nécessaire. Pour
cela une formulation mécanique du problème en transformations finies est présentée. Les
critères d’unicité et de stabilité d’une évolution élastoplastique proposés par Hill sont énoncés,
puis appliqués au cas des disques en rotation. La forme locale du critère de stabilité est
utilisée comme indicateur de résistance mécanique des différentes zones du disques. Le critère
empirique local basé sur la déformation plastique maximale est étudié de manière analytique.
Puis, des calculs par éléments finis sont effectués afin d’évaluer la pertinence du critère semi
empirique basé sur la contrainte tangentielle moyenne.

Aucun des deux critères n’est satisfaisant pour prévoir la vitesse limite d’un disque de
géométrie complexe. Cette vitesse limite est obtenue à l’aide de calculs élasto(visco)plastiques
en transformations finies avec un pilotage du calcul réalisé par un algorithme à longueur d’arc.
L’influence de certains paramètres du calcul ou du matériau sur la valeur de la vitesse limite
est évaluée afin de compléter cette étude préliminaire. La prise en compte de l’augmentation
de l’effort avec la géométrie permet à travers l’indicateur de résistance local de situer des
zones de rupture qui n’apparaissent pas particulièrement ”faibles” sinon. Le choix du critère
de plasticité a également son importance : un écart de presque 7% est trouvé sur la vitesse
limite entre deux calculs effectués avec les critères de von Mises et de Tresca. Une variation
de 10% sur contrainte maximale entraine une variation d’environ 5% sur la vitesse limite,
alors que la limite élastique n’influe elle pas de manière significative. Enfin l’introduction
d’une surcontrainte due à la viscosité augmente la vitesse limite. Une bonne caractérisation
du matériau est donc nécessaire pour avoir une bonne précision sur la charge limite.
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III.1 Introduction to Udimet 720

The superalloy term was employed for the first time after the second world war in order
to describe a group of alloys developed for the turbines of aircraft engines. These alloys
offer a good resistance to oxidation and excellent mechanical properties, up to very high
temperatures (up to 1100➦C approximately for single-crystals). They are divided in three
classes : the iron based, the cobalt based and the nickel based. Since nickel based superalloys
offer the best mechanical properties (fatigue, tensile strength), they are widely used to design
turbines of aeroengines. For parts submitted to creep like blades, single crystal materials
are preferred. They can constitute approximately 50% of the weight of engines. The main
superalloy used nowadays in aeroengines disks is the Inconel 718, which can be used up
to 600◦C. The competition to continuously increase power of engines imposes nowadays
temperatures of disks up to 700◦C. Udimet 720 is a not so old superalloy that has been
designed to maintain high mechanical properties at such temperatures. Burst experiments
on disks are generally performed at room temperature. In order to perform non-linear finite
element simulations on disk, the mechanical behavior of Udimet 720 is characterized at this
temperature. For operating conditions, the average temperature of disks is close to 500◦C .
At this temperature, Portevin Le Chatelier (PLC) effects are observed in Udimet 720. The
influence of this effect on burst of disks has never been studied. The mechanical behavior of
Udimet 720 at 500◦C is then also characterized.

Numerous studies dealing with Udimet 720 can be found about creep and fatigue
behavior, micro-structures, heat treatments, strain rate sensitivity, and dynamic ageing.
Creep behavior of Udimet 720 has been studied by (Chateau, 1999) for forged material,
and by (Dubiez-LeGoff et al., 2004) for powder metallurgy (PM) material. For forged
material, the creep resistance can be improved stabilizing the spatial dispersion of hardening
precipitates. For PM Udimet 720, creep behavior is shown to be dependent on its
microstructure and stress level. (Luo and Bowen, 2004, Farnese, 2004) investigate the fatigue
behavior of Udimet 720 produced by powder metallurgy. Crack were found to initiate from
surface pores. The influence of heat treatment on the kinetics of precipitate dissolution,
re-precipitation and growth is presented in (Shimanuki et al., 1976) for Udimet 520 (a
similar material) and in (Monajati et al., 2004) for Udimet 720. A heat treatment map
for Udimet 720 is even proposed in (Monajati et al., 2004). In (Jackson and Reed, 1999,
Devaux, 2004) heat treatments and mechanical properties are related by a micro-structural
analysis. They showed that the hardening precipitate size can be controlled by heat
treatment, and explain how to find the optimum ageing treatment to improve tensile
strength. Residual stresses in disks made of nickel based superalloys are numerically
predicted by (Devy et al., 1990) after an oil quench, by (Salio et al., 2006) after lathing,
and experimentally measured by (Chiak et al., 2006). They provide solutions to reduce
residual stresses and dispersion of material properties in disks. The strain rate sensitivity
of such material has been studied by (Zhang et al., 2004, Zhang et al., 1997) for classical
positive sensitivity and by (Dybiec and Chaturvedi, 1991, Bhanu Sankara Rao et al., 1995,
Fournier et al., 2001, Girardin and Delafosse, 2004) in case of strain ageing and PLC effect.

Udimet 720 is produced either by forging or by powder metallurgy. Powder metallurgy
is not so interesting for small disks like helicopter ones. Indeed, it is quite easy to obtain an
homogeneous microstructure by forging for small parts. Moreover, with powder metallurgy,
inclusions of ceramic particles make the life time assessment too complex. For these reasons,
helicopter disks are designed with forged Udimet 720. In this part, the composition and
microstructure of the forged Udimet 720 used in turbo-engine helicopter disks are presented.
Information is provided about heat treatments, hardening mechanisms, and forming process.
Then the tensile behavior at two different temperatures is investigated. At room temperature,
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experiments have been performed on smooth and notched axisymmetric tensile specimens.
Test results and fractography examination are used to define an appropriate material model.
The significance of homogeneity of mechanical properties in disks is investigated. Damage
and viscosity sensitivities are also considered. At 500◦C, serrated yielding characteristic of
the Portevin le Chatelier is evidenced. Results of tensile tests for different global applied
strain rates are given and a material model is proposed.

III.1.1 Metallurgy

The chemical composition of Udimet 720 is given in the table III.1.

Elements C Cr Mo W Al Co Ti Fe Ni

Mass % Min. .008 15.5 2.75 1. 2.25 14 4.75 - Rem.

Mass % Max. .025 16.5 3.25 1.5 2.75 15.5 5.25 .5 Rem.

Table III.1 : Principal chemical elements for a typical composition of Udimet 720
(Farnese, 2004)

Udimet 720 is constituted with an austenitic matrix γ reinforced by the precipitation of
a coherent inter-metallic phase γ′. These phases γ and γ′ are face centered cubic (FCC) and
their lattice parameter differs by less than 0.1%. The γ matrix is mainly based on nickel, with
an high percentage of solid solution elements (Co, B, Mn, ...). The γ′ phase is composed by
Al and Ti atoms at the corners of cubes, and Ni atoms at the center of faces. γ′ precipitates
can be intergranular (primary γ′) or intragranular (secondary and tertiary γ′) as represented
in figure III.1.

Microstructure of the Udimet 720 used in this study has been observed after specimens
were etched with a Kalling’s solution1 during 30s. Scanning electron microscopy (SEM) and
optic microscopy (OM) observations are reported in figure III.2. One can observe in figure
III.2 that the γ grain size is around 10 µm. The size of primary γ′ which appear in figure
III.2 is around 2 µm. Secondary and tertiary γ′ are submicronic. Compositions of γ and γ′

have been obtained by energy-dispersive X-ray spectroscopy (see figure III.3). One can verify
that the γ phase is mainly constituted with Nickel, Chrome, and Cobalt. The primary γ′

phase contains Titanium and Aluminium.

III.1.2 Processing, heat treatments, and hardening mechanisms

The forging process of Udimet 720 is divided into three steps. Firstly, the vacuum induction
melting (VIM) homogenizes chemical composition and limits the quantity of Oxygen and
Nitrogen. Then, electro slag remelting (ESR) and the vacuum arc remelting (VAR) eliminate
impurities. The typical heat treatment used for Udimet 720 is given in figure III.4: a solution
heat treatment around 1100◦C, an oil quenching, and two ageing treatments.

The aim of heat treatments is to strengthen the material by modifications of the
microstructure. Hardening mechanisms of this material, that can be controlled by heat
treatments, are the interactions between particle and dislocations, the decrease of grain size,
and the solid solute elements. The intragranular γ′ precipitates play a significant role by their
interaction with dislocations. An optimum value exists either for secondary γ′ size that is
controlled by the cooling rate of the quench, and for tertiary γ′ size that is controlled by ageing
parameters. When a dislocation must pass through these fine precipitates, it can either shear
or by-pass them. In the first case the shear stress needed to pass the precipitate decreases

1(100 ml HCl, 100 ml ethanol, 5 g CuCl2)
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Figure III.1 : Schematic illustration of the major components of the heat-treated
microstructure of Udimet 720 (Jackson and Reed, 1999).
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Figure III.2 : Micro-structure of Udimet 720 observed from SEM after etching by Kalling’s
solution.

Figure III.3 : EDS measures of the compositions of primary γ′ precipitates (a) and γ matrix
(b).
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Figure III.4 : Schematic illustration of the standard heat treatment cycle currently employed
for Udimet 720 (Jackson and Reed, 1999).

while their size increase. In the second case the shear stress increases with precipitates size.
Optimum size of tertiary γ′ exists and is given in figure III.5. This optimum size is obtained
by the ageing heat treatment. The result of such treatment on macroscopic mechanical
properties is shown in figure III.6. The aged curve is 50 MPa higher than the quenched one.

Figure III.5 : Theoretical critical resolved shear stress versus particle diameter relationships
for the two deformation mechanisms at 700➦C (Jackson and Reed, 1999).
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Figure III.6 : Tensile curve of axisymmetric smooth specimens in Udimet 720 at room
temperature before and after ageing heat treatment for a prescribed strain rate of 10−3s−1.

III.2 Mechanical behavior at room temperature

The characterization of the tensile behavior of Udimet 720 at room temperature is presented
in this section. Tensile tests have been performed on smooth and notched axisymmetric
specimens. A range of global prescribed strain rates has been defined from machine capacities
(below 10−6s−1, tests are too long, and above 10−1s−1, precision of measure is too low). This
range has been explored in order to estimate the viscosity of the material at this temperature.
Fracture surfaces of specimens have been observed to determine the fracture mechanisms and
to check for development of damage (porosity or micro-cracks).

III.2.1 Tensile tests on smooth axisymmetric specimens

Displacement controlled tensile tests have been performed on smooth axisymmetric specimens
(gage length l = 30 mm, diameter d = 5 mm). The aim of such tests was to provide
information on the sensitivity to strain rate of mechanical properties such as yield and
failure stresses. The homogeneity of material properties in disks has also been investigated.
Specimens were extracted in two distinct zones (skin/core) of disks (see figure III.7). They are
oriented in the tangential direction, since the principal loading direction is in this direction
in rotating disks. The stress/strain curves for both cutting zones for an applied strain rate
equal to 10−3s−1 are plotted in figure III.8. No softening appears in the non-linear range due
to plastic deformation of the material. Moreover, deformation remains homogeneous in the
specimens all along experiments, as shown by strain field measurements. It must be noted
that absence of necking is quite unusual for a superalloy at ambient temperature. Failure
occurs for both specimens when the slope of curves becomes null. One can observe that yield
and failure stresses of both curves are very close, the only difference appears on the ultimate
elongation. Since the limit load is the quantity of interest in this study, an unique material
behavior can been used for the whole disk (skin and core), at least for a given strain rate.
The yield stress is closed to 1100 MPa and the ultimate strength near 1600 MPa.

In order to investigate the strain rate sensitivity, five different global applied strain rates
(10−1s−1, 10−2s−1, 10−3s−1, 10−4s−1, 10−5s−1) have been tested for skin and core materials.
Some differences appear in the curves, but a general trend cannot be extracted (positive or
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Figure III.7 : Zones of cutting of specimens in forged rolls. Specimens are extracted from
core or skin at rim of rolls.
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Figure III.8 : Tensile curve of axisymmetric smooth specimens in Udimet 720 at room
temperature for specimens cut in core or skin of rolls for a prescribed strain rate of 10−3s−1.
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negative sensitivity to strain rate). Furthermore, figure III.7 shows for core specimens that
the stress level is only slightly sensitive to strain rate: the relative standard deviation of stress
is below 3%. For high strain values, this deviation is around 1%. For a given strain level, the
average stress between the five tests is :

σa =

∑5

i=1 σ[10−is−1]

5
(III.1)

The standard deviation is :

σsd =

√
∑5

i=1(σ[10−is−1] − σa)
2

5
(III.2)

The relative standard deviation of stress is :

σrsd =
σsd

σa
(III.3)

Differences in stress level between different strain rates can be explained by a material
dispersion between specimens. Therefore, there is no need to describe the viscosity of the
material in the constitutive model at room temperature.
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Figure III.9 : Sensitivity of yield stress to the prescribed strain rate. The relative standard
deviation of stress between the five tests is plotted as a function of strain level. Prescribed
strain rates are 10−1s−1, 10−2s−1, 10−3s−1, 10−4s−1, 10−5s−1.

III.2.2 Tensile tests on notched axisymmetric specimens

Notched tensile specimens are appropriate to evaluate the sensitivity of the material to
damage. From fracture surface observations, one can determine if the fracture is brittle or
ductile. Two types of U-Notched specimens have been used in this work. The type of notched
tensile specimen (NT2 or NT4) depends on the ratio between their minimum diameter and
the radius of notch. If d is the minimum diameter of the specimen and r the radius of the
notch, NT4 are such that 10r/d = 4 and NT2 such that 10r/d = 2. A NT∞ is then equivalent
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to a smooth specimen. A NT0 is equivalent to a V-Notched specimen. Specimens of this
studies are such that d = 6 mm and r = 2.4 mm for NT4 and r = 1.2 mm for NT2. They
have all been extracted from an equivalent zone in the disk (see figure III.7).

Curves of the engineering stress versus radial deformation provided by notched tensile
tests, for two distinct geometries (NT2 and NT4) are plotted and compared with smooth
tensile ones for a prescribed strain rate equal to 10−3s−1 in figure III.10. The global stress,
equal to the external axial load F divided by the initial minimal section S0 is plotted as a
function of the current diameter reduction divided by the initial diameter. Notched tensile
specimens make it possible to reach higher levels of stress than the smooth ones because of
geometrical effects that increase stress triaxiality. Fracture of all specimens occurs at the
maximum of tensile curves. Observations of fracture surfaces are needed to specify the type
of fracture.
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Figure III.10 : Tensile curve of axisymmetric smooth specimens, and axisymmetric notched
specimens (NT2 and NT4) in Udimet 720 at room temperature for a prescribed strain rate
of 10−3s−1. Notch shape for NT2 and NT4 specimens.

III.2.3 Fractography

Photographs of broken smooth and notched specimens at room temperature and at 500◦C
are given in figure III.11. The orientation of fracture surfaces are different between both
temperatures. They reveal two different fracture mechanisms. Observations of fracture
surfaces have been performed on smooth tensile and on notched tensile specimens. Fracture is
ductile at a microscopic scale (see figure III.12). Some polished cross sections under fracture
surfaces of both type of specimens have also been observed like in figure III.13. There is
nearly no void in the material even for notched tensile specimens. Then, there is no need to
integrate damage in the material model.

As a summary, the tensile behavior of Udimet 720 at room temperature can be modeled by
elastoplastic equations with no viscosity or damage. Fracture is of ductile type, but because
fracture of all specimens occurs at the maximum load, an instability criterion is used to
predict fracture, rather than a ductile fracture criterion.
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Figure III.11 : Smooth and notched specimens in Udimet 720 after failure during tensile
tests at room temperature and 500◦C.
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(a)

(b)

Figure III.12 : Fracture surfaces of (a) a smooth specimen (b) a notched specimen at room
temperature for a prescribed strain rate of 10−3s−1.
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(a)

(b)

Figure III.13 : Longitudinal cross sections of fracture surfaces of (a) a smooth specimen
(b) a notched specimen at room temperature for a prescribed strain rate of 10−3s−1.
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III.3 Mechanical behavior at 500◦C

III.3.1 Portevin Le Chatelier effect

The mechanical behavior at 500◦C has been studied in order to observe serrated yielding
reported in the literature (Dybiec and Chaturvedi, 1991, Bhanu Sankara Rao et al., 1995,
Fournier et al., 2001, Girardin and Delafosse, 2004). This effect called the Portevin - Le
Chatelier effect (PLC) is mechanically induced by a negative strain rate sensitivity (SRS)
of the material in a given range of temperature and strain rate (see figure III.14). This
negative SRS is due to the dynamic strain ageing phenomenon (DSA). The DSA is generally
related to the dynamic interactions between mobile dislocations and diffusive process of solute
atoms, during on-going plastic deformation. For a general review of these phenomena the
reader should refer to (Graff, 2006). The DSA and potential resulting effects, SRS and PLC,
usually occur in f.c.c., b.c.c., and h.c.c. materials around a temperature TDSA = 0.3Tm,
where Tm is the melting temperature. For the Udimet 720, the value of TDSA is close to 500
◦C. But this value depends also on the range of applied strain rate.

Stress

Strain Rate

No Sensitivity

Positive Sensitivity

Negative Sensitivity

Figure III.14 : Schematic types of strain sensitivity for a purely plastic material, a classic
viscous material, and a material showing negative strain rate sensitivity.

III.3.2 Tensile tests on smooth axisymmetric specimens

Tensile tests have been performed on smooth axisymmetric specimens at 500◦C for three
different global prescribed strain rates. The global strain/stress curve of the test at 10−3s−1

is plotted in figure III.15. One can observe two types of serrations. The ones with large
amplitudes are probably due to the machine stiffness. We assume that the ones with small
amplitudes are due to the propagation of bands of localized plastic strain rate in the specimen.
Comparison between this curve with the ones at 10−4s−1 (figure III.16) and 10−5s−1 (figure
III.17) leads to the following observations:

• The critical plastic strain where serrations appears seems to decrease while the
prescribed strain rate decreases.
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• The number of large serrations decreases while the prescribed strain rate decreases and
disappears at 10−5s−1.

• The frequency of oscillations increases while the prescribed strain rate decreases.

• The amplitude of small oscillations increase while the prescribed strain rate decreases.

All these statements will be compared with finite element simulations in the chapter VII.
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Figure III.15 : Tensile curve of axisymmetric smooth specimens in Udimet 720 at 500◦C
for a prescribed strain rate of 10−3s−1.

III.3.3 Tensile tests on notched axisymmetric specimens

Some tensile tests have also been performed at 500◦C on notched tensile specimens. An
example of the tensile curve for a notched tensile test at 10−3s−1 is plotted in figure III.18.
No serrations seems to appear on the global curve. However the following experimental
aspect has to be taken into account. At 500◦C, measures provided by strain gages is very
noisy. For smooth tensile tests, the local axial elongation of a specimen is measured with a
strain gage. The global axial elongation is provided by the displacement of cross head, taking
into account the machine stiffness. Both measures can be coupled together to eliminate noise
without eliminating serrations (see figures III.15, III.16, and III.17). For notched tensile tests,
the minimal diameter reduction is also measured with a strain gage. But the global axial
deformation is not related to this measure. Curves have then to be smoothed to eliminate
noise and serrations can disappear. In chapter VII, we will investigate if serrations appears
during numerical simulations.

III.4 Conclusion

The tensile behavior of Udimet 720 has been characterized in this section at room temperature
and at 500◦C. At room temperature, this behavior can be modeled with elastoplastic
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Figure III.16 : Tensile curve of axisymmetric smooth specimens in Udimet 720 at 500◦C
for a prescribed strain rate of 10−4s−1.
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Figure III.17 : Tensile curve of axisymmetric smooth specimens in Udimet 720 at 500◦C
for a prescribed strain rate of 10−5s−1.



III.4. CONCLUSION 49

Radial deformation

E
n
g
in

ee
ri

n
g

st
re

ss
(M

P
a)

0.080.070.060.050.040.030.020.010

2000

1900

1800

1700

1600

1500

1400

1300

1200

Figure III.18 : Tensile curve of axisymmetric notched specimens in Udimet 720 at 500◦C
for a prescribed strain rate of 10−3s−1.

constitutive equations which will be developed in the chapter IV. Damage development
and strain rate sensitivity have not been evidenced and are therefore not taken into account.
An accurate fracture criterion seems to be the loss of stability of the structure. At 500◦C,
serrations due the PLC effect appears on tensile curves at different prescribed strain rates.
A model taking into account the DSA in the material will be described in the chapter V.
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Résumé

Ce chapitre détaille la caractérisation du matériau employé pour fabriquer les disques dans
les turbines d’hélicoptères. Les disques de turbomachines sont aujourd’hui réalisés en super-
alliages à base de Nickel. Ces matériaux présentent une très bonne résistance en traction et
en fatigue jusqu’à des hautes températures. Pour les moteurs d’hélicoptères, les températures
de fonctionnement peuvent monter jusqu’à 650◦C, L’Udimet 720 est un super alliage à base de
Nickel gardant ses propriétés mécaniques quasiment inchangées jusqu’à de telles températures.

Les essais d’éclatement de disques étant réalisés à température ambiante, le comportement
mécanique du matériaux a d’abord été caractérisé cette température. Pour cela des essais de
traction simple à déplacement imposé ont été effectués sur des éprouvettes axisymétriques
lisses et entaillées. Les principaux résultats déduit de ces essais sont :

• L’absence de sensibilité à la vitesse de déformation

• L’absence de striction sur les éprouvettes

• L’absence d’adoucissement sur les courbes contraintes/déformation

Des observations fractographiques ont également été réalisées afin de déterminer le type de
rupture et la sensibilité à l’endommagement du matériau. Ces observations indiquent que la
rupture est microscopiquement du type ductile, mais sans endommagement de type porosités
ou micro-fissures. Un critère de stabilité sera donc employé pour prévoir la rupture. Un
modèle de comportement de type élastoplastique est envisagé.

La température moyenne des disques en fonctionnement étant proche de 500◦C, le
comportement mécanique de l’Udimet 720 a également été caractérisé à cette température.
Des oscillations typiques de l’effet Portevin - Le Chatelier (PLC) apparaissent à cette
température dans l’Udimet 720 lors d’essais sur des éprouvettes de traction axisymétrique
lisses. Trois vitesses de déformation ont été testées. Lorsque la vitesse de déformations
diminue, le déformation critique ou les oscillations débutent diminue, alors que la fréquence
et l’amplitude moyenne des oscillations augmentent. Un modèle élasto-visco-plastique tenant
compte du vieillissement dynamique, phénomène engendrant l’effet PLC, est envisagé.
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IV.1 Introduction

During design of turbo-engines, regulation rules require to demonstrate a significant reserve
factor between operating rotation rate and burst rotation rate of critical parts such as disks.
Experimental tests are performed on disks in order to validate this reserve factor. Predictions
of this experimental bursting speed could be useful to analyse tests and reduce development
time. Many methods have been developed for that purpose. First, analytical calculations of
deformations in rotating disks have be performed for simple geometries and material behavior.
A semi-empirical criterion, based on the calculation of the average hoop stress, has been
proposed by (Robinson, 1944) later. It is still used to estimate burst speed of disks. But
because of complex geometries and material models, this criterion is not precise enough, and
numerical finite element simulations are nowadays performed to solve this problem.

Analytical solutions of disks with simple geometries are available in (Love, 1927,
Timoshenko and Goodier, 1934) for elastic material and (Laszlo, 1948) for material with
permanent deformations. They provide informations on the stress and strain states in rotating
disks. (Percy et al., 1974) performed an experimental study of burst strength of such disks.
Experimental results are compared with analytical solutions and with the semi-empirical
criterion proposed by (Robinson, 1944): a disk will burst when the average hoop stress equals
the tensile strength of the material. Still on the same geometry, (Tvergaard, 1978) performed
numerical computations of elastoplastic disks. This last article focuses on the possibility of
bifurcation away from the axisymmetric state, to see if this phenomenon may occur before the
maximum rotation rate. All these studies have been performed on axisymmetric disks with
simple geometries (rectangle or trapezoidal sections). Real turbo-engines disks shapes are
usually less regular and sometimes non axisymmetric. Experimental disks used to validate
numerical predictions of burst rotation rate are of complex shape with holes and notches. It
has been shown in chapter II that empirical criteria are inappropriate to predict the limit
load of such disks.

The aim of this chapter is to validate a method of prediction based on finite element
simulations of the burst rotation rate of elastoplastic experimental disks with complex
geometries. Two twin experimental disks have been manufactured in order to validate the
numerical prediction of burst rotation rate. The disk denoted B-disk has been burst by
increasing the rotation rate linearly. The experimental burst rotation rate denoted ωEXP

has been measured. The disk denoted S-disk has been stopped at ωS = 0.95ωEXP and taken
down from the experiment assembly. Anelastic deformations have been measured in order
to validate the material behavior. Photographs of the disks after experiments are given in
figure IV.1. In this study, finite element simulations are performed on the S-disk in order
to validate parameters of the elastoplastic material model. The same model is then used to
predict the numerical bursting speed of the B-disk.

Finite element simulations are performed with Zset program (Besson and Foerch, 1997)
with a large strain elastoplastic material model. Parameters of the model are fitted from
simple tensile tests on smooth axisymmetric specimens cut in a third disk (see chapter III).
Simple tensile tests on notched axisymmetric specimens (NT) are also performed. Validation
of parameters is provided from finite element simulations of notched tensile tests and of
the S-disk experiment. Special attention is given to the yield criterion by the introduction of
(Hosford, 1972) equivalent stress. Then the numerical burst rotation rate ωNUM of the B-disk
is evaluated, using an arc-length control method (see (Riks, 1979) and chapter II) to overcome
the maximal rotation rate. Burst of disk is assumed to coincide with the lost of stability of the
structure provided by the global stability condition of (Hill, 1958, Hill, 1959, Nguyen, 2000),
and then with the maximum of the equilibrium curve. Finally a more representative
simulation of experiments, that takes into account inertial terms is performed. Results are
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compared between experimental, static numerical, and dynamic numerical bursting speeds
for the B-disk.

S−Disk B−Disk

Figure IV.1 : Photographs of S-disk and B-disk after experiments

IV.2 Material properties

An isotropic elastoplastic model for the Nickel-based superalloy at room temperature is
proposed in this section. Since deformations of disks are significant, the centrifugal load varies
with the rotation rate w but also with the radius variation of material points. Therefore,
finite element simulations have been performed using a finite strain formulation for the
material model. Constitutive equations are based on the use of a local objective frame
(Besson et al., 2001a). Invariant stress and strain measures s

∼

and ė
∼

are defined by transport
of the Cauchy stress T

∼

and strain rate D
∼

into the corotational frame characterized by the
rotation field Q

∼

(x , t). The spin tensor Ω
∼

is the skew symmetric part of the velocity field L
∼

.

s
∼

= Q
∼

.T
∼

.Q
∼

T (IV.1)

ė
∼

= Q
∼

.D
∼

.Q
∼

T (IV.2)

Q
∼

such as Q̇
∼

T
.Q
∼

= Ω
∼

(corotational) (IV.3)

Tensile tests on smooth specimens at different global applied strain rates reveal that yield
stress is : (i) little sensitive to strain rate (see chapter III) (ii) non linear with two distinct
regimes in term of hardening, the stress/strain curve is flat and then hardening. An
elastoplastic model is then proposed as follow. The strain rate is split into elastic and plastic
contributions. The evolution of the plastic part ė

∼p
is given by the yield function f(s

∼

, R). The

equivalent stress seq considered is the one proposed in (Hosford, 1972) and will be discussed
further. Finally a non-linear hardening law R(p) is retained with two terms (one for each
range of deformation).
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ė
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e + ė
∼

p (IV.4)

f(s
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, R) = seq − R(p) (IV.5)
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n + (s1 − s3)

n

2

]1/n

(IV.6)

where s1 ≥ s2 ≥ s3 are the principal stresses and 1 ≤ n ≤ ∞

R(p) = R0 + Q1

(

1 − e−b1p
)

+ Q2

(

1 − e−b2p
)

(IV.7)

ė
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∂f
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, ṗ ≥ 0 (IV.8)
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∼

e + λtr(e
∼

e)1
∼

(IV.9)

The Poisson ratio ν and the density of the Nickel based superalloy have been obtained
in literature. Other parameters of the model have been identified from a tensile test on a
smooth specimen for a global applied strain rate equal to 10−3s−1. The Cauchy stress as
a function of true strain for this test is plotted in figure IV.2. Since there is no softening
on the conventional stress/strain curve and no necking on tensile specimens (deformations
remain homogeneous), this curve can be plotted easily up to specimen fracture. The Young’s
modulus E and the yield stress R0 are identified from the elastic part of the curve, while the
hardening law is provided by the plastic range of the curve. The convexity change of curves
is made from a combination between an hardening and a softening term in function R(p).
Softening parameters, with subscript 2, affect mostly the beginning of the plastic range (up
to 5%). Hardening parameters, with subscript 1, affect the whole plastic range. Finally, only
the parameter n in the equivalent stress seq is left undetermined and will be identified below.

Elasticity Density Hardening 1 Hardening 2

E 200 GPa ρ 8080 kg.m−3 Q1 2391 MPa Q2 − 1353 MPa

ν 0.3 b1 11.1 b2 17.8

R0 1211 MPa

Table IV.1 : Parameters for the nickel based superalloy at 20◦C

IV.3 Identification of the Yield parameter n from Notched
Tensile test simulation and validation from S-disk
residual deformations

Simulations of experiments on smooth and notched tensile specimens (see chapter III) have
first been performed using the von Mises equivalent stress in the Yield criterion. For smooth
specimen, the global experimental strain stress curves are obviously accurately reproduced.
Indeed, parameters have been obtained from these curves. Simulations of notched tensile
specimens were overestimating the global stress level. Same simulations have then been
performed with Tresca equivalent stress. Results were found in better agreement with
experimental curves. An equivalent stress to simulate accurately NT experiments has then
been chosen.

The two main isotropic yield criteria are based on von Mises and Tresca equivalent stresses.
They define two different yield surfaces that coincide for uniaxial stress state for the material
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Figure IV.2 : Stress/Strain curve for the nickel based superalloy at 20◦C for a global applied
strain rate equal to 10−3s−1

model proposed here. The equivalent stress seq has been proposed by (Hosford, 1972) in order
to model materials with isotropic yield surfaces different from the aforementioned ones. The
parameter n in the equivalent stress definition allows one to describe either von Mises surface
(n = 2 or n = 4), either Tresca one (n = 1 or n = ∞), or surfaces between them. The tensile
test on smooth specimens cannot be used to identify n because for this particular stress state
seq does not depend on n. An accurate manner to identify n is to perform plane strain or
shear tests. The ratio between von Mises and Tresca equivalent stresses for the same strain
is then equal to

√
3/2. Indeed, the principal stresses in the local frame for plane strain state

are close to s1 = s, s2 = s/2, s3 = 0. Notched tensile specimens are also useful because stress
is not homogeneous and cover many points of the yield surface. The resulting average stress
is then affected in finite element simulations by the choice of n. Using either elastoplastic
(Tvergaard, 1978) or elastic (Forest et al., 2006) behaviors, it can be shown that stress state

in a bored disk is close to plane strain state (σrr ≃ 1

2
σθθ, σzz ≃ 0). The knowledge of the

actual yield surface is then fundamental for rotating disk simulations. A precise identification
of n has been performed using NT tests validated on the S-disk experiment.

The global stress versus radial deformation curve of a notched tensile specimen is plotted
in figure IV.4. This experimental result has been compared with finite element simulations
of the same specimen using the von Mises equivalent stress (n = 4), and an equivalent stress
with n = 80 (close to Tresca). The latter criterion seems to be more accurate to reproduce
experiments. This type of comparison performed for several geometries (NT2 and NT4) and
prescribed strain rates, reveal that for the Nickel-based superalloy, Tresca yield criterion is
more accurate than von Mises one. n has been identified from these tests around 80.

This value can be verified on the S-disk based on a comparison between experimental
residual deformations and numerical ones. Anelastic deformations have been measured on
three reference points of the S-disk (see figure IV.5) after interrupting the test before failure as
represented. Finite element simulations of the experimental S-disk test have been performed
for material models with n = 4 (von Mises criterion), n = 20, and n = 80. The rotation rate
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Figure IV.3 : Axisymmetrical stresses according to plane stress approximation for bored
disks with ri/ro = 0.1 for (a) elastic behavior (Forest et al., 2006) (b) elastoplastic behavior
(Tvergaard, 1978) (ri inner radius, ro outer radius)
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Figure IV.4 : Experimental equilibrium curve of a notched tensile specimen at 10−3s−1.
Simulations of this equilibrium curve for n = 4 (Mises) and n = 80.

has been increased up to ωS , then the disk was unloaded. Numerical and experimental values
of the residual variations of R, t, s are compared in table IV.2. Residual deformations of R
and t are quite small (< 5%). Then, results given by the three material models are closed.
The experimental residual deformation of s is larger than 100%. Numerical values are then
highly sensitive to material model. This measure is then useful to identify the parameter
n. One can observe that results with von Mises criterion and for n = 20 underestimate
experimental values. The simulation performed with n = 80 provides precise estimations of
the experimental residual deformation. This model is then retained for the simulation of the
B-disk. It must be noted that with n = 80, the equivalent stress is very closed to Tresca.
However, due to the presence of vertexes on the yield surface, finite element simulation is
more difficult with this latter; so we keep the smooth surface with n = 80.

R s t

Experimental 1.2% 137% 3.3%

Mises 0.22% 21% 0.63%

n = 20 1% 93% 2.35%

n = 80 1.27% 119% 3.06%

Table IV.2 : Experimental and numerical values of residual deformations of reference lengths
for n = 4, n = 20, and n = 80.

IV.4 Numerical modelling of the burst of the B-disk

The simulation of the experimental test on the B-disk is performed on a twenty-fourth of the
disk (cf. figure IV.6). The mesh is constituted by 8 nodes elements, the selective integration
method is used with the finite strain formulation and the elastoplastic law described previously
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R

t

s

Figure IV.5 : Location of measured quantities on the S-disk. t denotes the thickness of the
disk at the marked point. R is the average radius around the whole disk. s denotes the slot
size.

with n = 80. The quasi-static computation is performed prescribing the centrifugal load
(proportional to the square of the rotation rate). An arc-length control method is used in
order to overcome the limit point induced by geometrical softening. The numerical burst
rotation rate ωNUM is then taken at the maximum of the global load/displacement curve
(equilibrium curve). Moreover, it can be proved using the global condition of (Hill, 1958)
that this value coincides with the loss of stability of the structure. This condition is that
the global stability is lost if any kinematically admissible velocity field V makes the global
modified second order work negative (MSOW):

Equilibrium is stable if ∀V kinematically admissible,

MSOW =

∫

Ω0

(Ṡ
∼

.Ḟ
∼

− ρ0‖V × ω ‖2)dv0 > 0 (IV.10)

where S
∼

is the first Piola-Kirchhoff stress tensor, F
∼

is the deformation gradient, ω is the
vector of angular velocity, × is the vector product, and ‖.‖ denotes the Euclidian norm of

the vector.

As shown in chapter II, this condition is redundant in the case of a quasi-static
computation with arc-length control method, but will be useful to detect the loss of stability
for a simulation taking into account inertial terms. The global load/displacement curve and
the MSOW divided by total volume are plotted in figure IV.7 as functions of the normalized
radial displacement at the rim of the disk. The external load, corresponding to the rotation
rate, is normalized with respect to the experimental burst rotation rate ωEXP . One can
observe that : (i) the loss of stability of the structure (i.e. when the MSOW become negative)
coincides with the limit point of the equilibrium curve (ii) the numerical burst rotation rate
ωNUM (marked with a △) coincides with the experimental one ωEXP showing the accuracy
of the prediction.
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Figure IV.6 : S-Disk and B-Disk geometry and mesh
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Figure IV.7 : Simulated equilibrium curve of the B-disk and the corresponding MSOW
for a static computation. The computed rotation rate is normalized with respect to the
experimental burst rotation rate. The equilibrium curve of the same simulation using von
Mises equivalent stress overestimates the burst rotation rate.
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IV.5 An alternative method to evaluate burst rotation rate of
the B-disk

The simulation performed in the previous part is accurate to predict the experimental burst
rotation rate, but the post-critical behavior is not correctly described using the arc-length
control method. Indeed, during experiment, the rotation rate increases linearly up to burst
which occurs suddenly. The rotation rate does not decrease like in the quasi-static simulation
performed with the arc-length method. An alternative method to reliably reproduce the
experiment is to perform simulations taking the dynamic term in the equilibrium equation into
account. The arc-length control method is not needed anymore. The simulation is performed
with the same implicit finite element program as previously. As remarked in (Foerch, 1996),
the inertial effect of the dynamic case is useful to assure convergence in strongly non-linear
problems even when there is effectively no global dynamic effect. The dynamic terms are
helpful when overestimated displacements are needed in static simulations to guarantee the
global equilibrium.
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Figure IV.8 : Simulated equilibrium curve of the B-disk and the corresponding MSOW
for a dynamic computation. The computed rotation rate is normalized with respect to the
experimental burst rotation rate.

The limit point (marked with a △) is defined from the stability condition as presented
in figure IV.7. The experimental burst rotation rate is again accurately predicted. The local
acceleration remains almost null while the rotation rate increases significantly. The dynamic
computation coincides with the static one, until the rotation rate reaches the maximum of
the equilibrium curve, the MSOW becomes negative and the accelerations of displacements
increase roughly to balance the stagnancy of rotation rate (cf.figure IV.9). Deformations tend
to infinity in some zones of the structure where the fracture of the disk should occur.

As a conclusion, we could say that both methods give a precise estimate of the
experimental burst rotation rate of the B-disk, even if the dynamic computation is more
physically realistic. These methods should now be applied to actual turbine disks.
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Résumé

Dans ce chapitre, un exemple de prédiction de la vitesse d’éclatement d’un disque expérimental
est présenté. Deux disques jumeaux sont testés expérimentalement. Le premier est accéléré
en rotation jusqu’à la rupture, alors que le second est arrêté et démonté à 95% de la vitesse
d’éclatement du premier.

Les paramètres de la loi de comportement élastoplastique sont identifiés à partir des essais
de traction sur éprouvettes lisses présentés dans le chapitre III. Les simulations des essais
sur les éprouvettes axisymétriques entaillées effectuées en utilisant la loi de comportement
ainsi établie avec le critère de plasticité de von Mises surestime le niveau des contraintes.
Les même paramètres avec le critère de Tresca permettent de mieux reproduire les courbes
établies lors des essais. Un critère intermédiaire entre von Mises et Tresca est retenu mais
il nécessite l’introduction d’un paramètre supplémentaire n.

La valeur du paramètre n est identifiée à partir de simulations sur le disque non éclaté.
Pour cela les déformations résiduelles sont relevées en trois points du disque non éclaté. Les
valeurs numériques correspondantes sont calculées pour différentes valeurs de n. Ce paramètre
est ainsi identifié à n = 80 ce qui donne un critère très proche de celui de Tresca.

Le modèle étant complètement établi et identifié, il est utilisé pour déterminer la vitesse
limite du disque éclaté. Un algorithme à longueur d’arc est d’abord utilisé afin de dépasser
le point limite. La vitesse obtenue cöıncide parfaitement avec la valeur expérimentale de la
vitesse d’éclatement. Dans un second temps, un calcul implicite dynamique tenant compte
des termes inertiels est effectué. La vitesse limite est alors déterminé à l’aide du critère de
stabilité de Hill. Cette vitesse cöıncide une nouvelle fois avec la valeur expérimentale. Le
thème de l’éclatement des disques à la température ambiante se clôt sur ce résultat.





Chapter -V-

Identification of material
parameters for Udimet 720 at

500◦C

Contents

V.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

V.2 Material model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

V.2.1 Constitutive equations . . . . . . . . . . . . . . . . . . . . . . . . . 66

V.2.2 Homogeneous solutions . . . . . . . . . . . . . . . . . . . . . . . . . 67

V.2.3 Material model parameters . . . . . . . . . . . . . . . . . . . . . . . 68

V.2.4 Tension of a plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

V.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

V.3.1 1D linear perturbation . . . . . . . . . . . . . . . . . . . . . . . . . 70

V.3.2 Stability conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



68CHAPTER V. IDENTIFICATION OF MATERIAL PARAMETERS FOR UDIMET 720 AT 500◦C

V.1 Introduction

The macroscopic load/displacement tensile curve of many materials exhibits serrations.
These serrations have been observed for Udimet 720 at 500◦C (see chapter III). This
discontinuous yielding, associated with the repeated propagation of bands of localized plastic
strain rate in tensile specimens, is due to dynamic strain ageing (DSA). DSA can be
associated with a negative strain rate sensitivity (SRS) of the material in some range of
strain rate and temperature, which can be evidenced by performing tensile tests at various
strain rates. DSA is related at a microscopic scale to dynamic interactions between mobile
dislocations and diffuse process of solute atoms. First observations of this phenomenon
have been reported by (Le Chatelier, 1909) in iron and steel between 80◦C and 250◦C;
and by (Le Chatelier and Portevin, 1923) in aluminium alloys at room temperature. Many
experimental evidences of the so called Portevin-Le Chatelier (PLC) effect in such materials
may be found in the references of (Neuhäuser, 1990), or in Scripta Metallurgica et Materialia,
Vol. 29-9, 1993.

Articles dealing with observations of PLC and DSA in nickel based superalloys are less
common, perhaps because of the temperatures at which these effects appear. Serrated yielding
has been observed by (Dybiec and Chaturvedi, 1991) in Inconel 718 : they investigated
the influence of heat treatments on the critical plastic strain (i.e. when serrations begin).
In (Bhanu Sankara Rao et al., 1995), PLC effect is observed on Inconel 718 during strain
controlled low cycle fatigue test. On the same material, (Fournier et al., 2001) evidenced the
link between PLC effect and shear fracture. The serrated flow appears around 500◦C, in
air and under secondary vacuum. Finally, (Girardin and Delafosse, 2004) outlines the role of
hydrogen during strain ageing in Nickel based alloys.

Material models attempting to describe the DSA and the PLC effects may be
separated into two main groups. (i) Kubin-Estrin (KE) models proposed first by
(Kubin and Estrin, 1985) and extended by (Zbib and Aifantis, 1988) are based on the
macroscopic description of deformation bands. The negative SRS is explicitly defined and
serrations are obtain from strain rate jumps. (ii) MacCormick (MC) models proposed
by (MacCormick, 1989) and improved by (Mesarovic, 1995) are based on a microscopic
description of the DSA based on an internal variable ta called ageing time. The negative SRS
and serrations are implicit consequences of constitutive equations. Some more sophisticated
models, improving previous ones (Fressengeas et al., 2005), can also be found among the
numerous references given in (Rizzi and Hähner, 2004).

In this work, a MC model is used to simulate the behavior of Udimet 720 at 500◦C.
The aim of this chapter is to provide model parameters to reproduce experimental results,
especially the negative SRS and the critical plastic strain when serrations begin. For that
purpose, the MC model is presented, and an homogeneous solution is calculated. Parameters
of Udimet 720 at 500◦C are identified from stress versus strain rate plots. Simulations of plates
in tension are performed with Zset F.E. program (Besson and Foerch, 1997) for a constant
applied global strain rate equal to 10−3s−1. A stability analysis of the model is performed :
(i) from the 1D linear perturbation method, the theoretical critical plastic strain is obtained;
(ii) from (Drucker, 1950, Hill, 1958) stability conditions, local and global loss of stability are
detected in the numerical solutions. The experimental, theoretical, and numerical critical
plastic strains are compared to validate model parameters.
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V.2 Material model

V.2.1 Constitutive equations

Constitutive equations of the material model are formulated in the small strain framework.
The strain rate tensor ε̇

∼

is split into elastic and plastic contributions, the evolution of the
latter being given by the yield function f .

ε̇
∼

= ε̇
∼e

+ ε̇
∼p

(V.1)

f(σ
∼

, p, ta) = J2(σ
∼

) − R(p) − P1Cs(p, ta) (V.2)

R(p) = R0 + Q
(

1 − e−bp
)

(V.3)

where J2(σ
∼

) is the second invariant of the stress tensor, R(p) is the nonlinear hardening law,
and P1Cs(p, ta) is the extra-hardening induced by strain ageing. The over-concentration of
solute atoms around dislocations Cs is estimated as a function of both internal variables of
the model : the cumulated plastic strain p and the ageing time ta.

Cs(p, ta) = Cm

(

1 − e−P2p
αtna
)

(V.4)

The maximal over-concentration is Cm. P2 characterises the rate of saturation of solute atoms
around dislocations. The intensity in stress of the ageing effect is characterized by parameter
P1 (unit MPa). In fact, only the product P1Cm can be identified based on mechanical tests.
The cumulated plastic strain rate ṗ is computed from the following viscoplastic hyperbolic
flow rule.

ṗ = g(f) = ṗ0 sinh

(〈f〉
K

)

(V.5)

where g is an invertible monotonic function. The ageing time increment is computed from
an implicit evolution law in which appears the cumulated plastic strain rate ṗ.

ṫa = 1 − ta
w

ṗ (V.6)

where w is the increment of the plastic strain which is produced when all the stopped
dislocations overcome their obstacles.

V.2.2 Homogeneous solutions

For a simple tension test in a plate at a constant strain rate ε̇0, variables are uniform in the
structure before the critical plastic strain pc. In the plastic domain, the cumulated plastic
strain rate ṗ is nearly constant while plastic deformation increases. Then the equation V.6
can be integrated analytically and provides an explicit expression of ta, as a function of ε̇0

and p.

ta(p) =
w

ε̇0

(

1 − e
− p

w

)

+
R0

Eε̇0

e
− p

w (V.7)

The uniaxial tensile stress σ1D is then given as a function of the cumulated plastic strain
p and rate ṗ from equations V.2,V.4,V.5.

σ1D(p) = Karcsinh

(
ṗ

ṗ0

)

+ R0 + Q
(

1 − e−bp
)

+ P1Cm

(

1 − e−P2p
αta(p)n)

(V.8)
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This expression is useful for the stability analysis performed in the next section. Indeed,
σ1D coincides with the response of the tensile plate before the critical plastic strain. Some
particular states of the material can be underlined, corresponding to specific values of ta
and σ1D. The min. and max. solutions correspond respectively to virgin and fully aged
states of the material. They represent the upper and lower limits for serrations, while the
extra-hardening is either null either equal to P1Cm. Another solution corresponds to elastic
loading/unloading, when ageing time increment dta = dt. The final state is obtained for

the constant value of ta =
w

ε̇
reached when p → +∞. This is the asymptotic value of the

homogeneous solution [V.7].

V.2.3 Material model parameters

Parameters presented in the table VII.1 have been obtained from various simple tensile tests
performed on cylindrical smooth tensile specimens for different applied strain rates. The
stress/strain curves have been smoothed in order to : (i) evaluate the hardening parameters
R0, Q, and b for the slowest test (ii) outline the negative strain rate sensitivity of the material
by plotting stress/strain rate curves at different deformation values. Hardening, viscous (K,
ṗ0) and ageing (P1Cm, P2, α) parameters have been identified, from the experimental data
on the stress/strain rate curve (see figure V.1). n and w are taken from (Graff et al., 2005).
The experimental curve at a constant strain rate of 10−3s−1 is plotted in figure V.2, with the
min., max., and homogeneous solutions for the parameters given by the identification. The
experimental solution is accurately limited by the max. and min. solutions, and differs from
the homogeneous one as soon as serrations begin. One can observe that pEXP

c ≈ 0.8%.
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Figure V.1 : Stress as a function of strain rate for experimental points and analytical
curves for parameters given in table VII.1. The model fits the experimental negative strain
rate sensitivity in the range [10−5s−1, 10−3s−1] for different plastic strain values.

V.2.4 Tension of a plate

The specimen geometry is a 12.5mm × 2.5mm plate, meshed with 2D 8 nodes plane stress
elements with reduced integration (4 Gauss points). The numerical solution of this problem
for a constant applied global strain rate equal to 10−3s−1 is drawn in figure V.3. The critical
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Elasticity Hardening Viscosity Ageing

E 200 GPa R0 1046 MPa K 1.55 MPa P1Cm 96 MPa

ν 0.3 Q 2200 MPa ṗ0 10−4 s−1 P2 4.1 s−n

b 1.88 α 0.55

n 0.33

w 10−4

Table V.1 : Material model parameters identified for the nickel based superalloy at 500◦C
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Figure V.2 : Homogeneous, minimum, and maximum solutions, compared with an
experimental simple tension test for the nickel based super-alloy at 500◦C. The strain rate is
for each solution equal to 10−3s−1.

plastic strain pc, obtained from the stability analysis performed further, is indicated on the
stress/strain curve. The maps of cumulated plastic strain rate ṗ and of ageing time ta are
drawn on the structure for a global applied strain ε = 3.2%. The analytical homogeneous
solution coincides with the numerical solution before instability occurs, and the numerical
critical plastic strain is close to the experimental value : pNUM

c ≈ 0.82%. This critical plastic
strain is evaluated from the criterion V.12, which detects the loss of homogeneity of the
solution in the plate. The good agreement between experimental and numerical values of
the critical plastic strain is obtained adjusting the material model parameter α. The 1D
linear perturbation analysis presented section V.3.1 is performed for different values of α, in
order to determine which value returns a theoretical critical plastic strain in agreement with
experimental results.

V.3 Stability analysis

In this section, the 1D linear perturbation analysis provides a method to predict the
theoretical critical cumulated plastic strain pc. Stability conditions help to detect the
corresponding numerical value in the 2D simulation. The critical plastic strain provided
by finite element simulations is highly related to the method and the time increments in the
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Figure V.3 : Homogeneous analytic solution and numerical solution of a tensile plate
at 500◦C. The strain rate is constant and equal to 10−3s−1. The plastic strain is 0.022.
(Animated picture)

integration of constitutive equations (see chapter VI). The numerical value of the critical
plastic strain have to coincide with the theoretical approach to validate simulations.

V.3.1 1D linear perturbation

The 1D linear perturbation method consists in applying a perturbation (δp, δta) to
a homogeneous solution in a infinite medium of a given material (MacCormick, 1989,
Mesarovic, 1995). For a given material and a given state of the structure - here a simple
tension at a given strain rate - this method predicts the critical plastic strain pc for which
instabilities may occur. The stability of the medium is evaluated from the evolution of the
perturbation rate (δṗ, δṫa).

(

δṗ

δṫa

)

= [M].

(

δp

δta

)

= G(ṗ)

(

A(p, ta) B(p, ta)

C(p, ta) D(p, ṗ, ta)

)

.

(

δp

δta

)

(V.9)

Terms of the transition matrix [M] are calculated from the analytical homogeneous
solution [V.7 - V.8].







G(ṗ) = −g′ = −dg

df
; A(p, ta) =

∂(R + P1Cs)

∂p
; B(p, ta) =

∂(P1Cs)

∂ta

C(p, ta) = − ta
w

∂(R + P1Cs)

∂p
; D(p, ṗ, ta) = − ta

w

∂(P1Cs)

∂ta
+

ṗ

w

1

g′

(V.10)

Eigenvalues of the matrix [M] linking (δp, δta) to (δṗ, δṫa) are evaluated. The stability is



V.3. STABILITY ANALYSIS 73

lost when these eigenvalues become purely real and positive (MacCormick, 1989). Eigenvalues
λ of [M] are solutions of :

λ2 + 2Φλ + λ2
0 = 0 with, Φ = −G

[
A + D

2

]

; λ2
0 = G2 [AD − BC] > 0; ∆ = Φ2 − λ2

0 (V.11)

The existence of real eigenvalues depends on the sign of ∆. If ∆ > 0, eigenvalues are real.
If ∆ < 0, eigenvalues are complex and the sign of their real parts is the sign of −Φ. For a
given constant strain rate, three types of eigenvalues exist. This type depends on the plastic
strain rate value, as represented in figure V.4. In area a❖, eigenvalues are complex with a
negative real part, the perturbation evolves in a sinusoidal decreasing manner. In area b❖,
eigenvalues are complex with a positive real part, the perturbation evolves in a sinusoidal
increasing manner. In area c❖, eigenvalues are real and positive, the perturbation evolves
in an exponential increasing manner. (MacCormick, 1989) has shown that the instability
occurs when eigenvalues become real. Then, for a constant strain rate equal to 10−3s−1, the
theoretical critical plastic strain rate is pTH

c = 0.8% (cf. figure V.4), that is close to the
experimental value.
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Figure V.4 : Bifurcation diagram for a simple tensile state at a constant strain rate equal
to 10−3s−1

V.3.2 Stability conditions

During the stable homogeneous evolution, ageing time ta tends slowly towards its asymptotic

value
w

ε̇
. When serrations begin, most of the structure is submitted to elastic unloading

(dta = dt), while plastic strain rate is concentrated in bands where ta falls down to 0. An
accurate tool to detect such unstable areas is the condition of negative second order work
(Drucker, 1950, Hill, 1958) :

σ̇
∼

: ε̇
∼

< 0 (V.12)

Even if this condition is fulfilled locally, the global stability of the structure is ensured as
long as global stability condition is satisfied (Hill, 1958):
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Equilibrium is stable if ∀V kinematically admissible,

∫

Ω

(

σ̇
∼

: ε̇
∼

)

dv > 0 (V.13)

Local instabilities coincide with drops of ta (cf. figure V.5(a)). Global instabilities are
accompanied with serrations on the global load/displacement curve, i.e. when the external
load decreases. The frequency and intensity of drops of the external load can be measured
from the global stability condition (cf. figure V.5(b)). In most cases, the “local instability”
(first drop of ta) occurs just before the global one (begin of serrations). The local instability
condition provides a good estimate of the critical strain. Indeed, for a global strain rate of
10−3s−1, the numerical plastic strain is pNUM

c ≈ 0.82%, that is close to experimental and
theoretical values.
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Figure V.5 : (a) Local indicator (second order work) and ageing time at a given Gauss
Point (b) Global indicator and load applied on the structure for a tensile plate simulation at
a global strain rate equal to 10−4s−1.
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RÉSUMÉ – CHAPITRE V 77

Résumé

Les paramètres de la loi de comportement élasto-visco-plastique avec vieillissement dynamique
sont identifiés dans ce chapitre. Dans un premier temps, les équations du modèle sont
présentées, et une solution homogène 1D est proposée. L’identification proprement dite est
ensuite réalisée :

• Les paramètres élasto-plastiques sont déterminés à partir des valeurs moyennes des
courbes de traction (sans tenir compte des oscillations dues au PLC)

• Les paramètres de viscosité et de vieillissement dynamique sont établis à partir du
diagramme contrainte/vitesse de déformation, notamment dans la zone présentant une
sensibilité négative à la vitesse de déformation.

• L’ensemble des paramètres sont validés en comparant expérience et simulation. La
courbe expérimentale oscille autour de la solution homogène tout en restant borné par
les solutions minimum et maximum correspondant aux état vierge et infiniment vieilli
du matériau.

La déformation plastique cumulée critique est enfin évaluée de manière expérimentale,
théorique à l’aide d’une analyse de perturbation 1D du modèle, et numérique à l’aide d’une
simulation par éléments finis sur une plaque en traction. Les trois valeurs cöıncident ce qui
valide une fois encore les paramètres du modèle.
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VI.1 Introduction

The Portevin-Le Chatelier (PLC) effect is associated with the repeated propagation of bands
of localized plastic strain rate in test specimens, due to dynamic strain ageing (DSA). DSA
can be associated to a negative strain rate sensitivity (SRS) of the material in some range of
strain rate and temperature, which can be evidenced by performing tensile tests at various
constant strain rates. Depending on the strain rate, the PLC effect occurs at a more or
less high deformation value, which constitutes the critical strain between stable and unstable
behavior. Finite element modelling in the unstable domain requires to give special attention
to some parameters of non-linear simulations : mesh and time increment sensitivity.

The two main material models used to describe strain ageing are KE type models
(Kubin and Estrin, 1985), and MC type ones (MacCormick, 1989). Recent studies make
use of both models. Many observations of the PLC effect are also available in the literature.
The reader interested in observations and models is referred to the numerous references in
(Rizzi and Hähner, 2004) or (Graff, 2006). Less common are the studies dealing with finite
element modelling of the PLC effect, either with KE (Kok et al., 2003, Benallal et al., 2006)
or with MC (Zhang et al., 2001, Graff et al., 2004, Graff et al., 2005) models. Two main
questions arise when performing finite element simulations of the PLC effect on various
structures : (i) how the material model constitutive equations are locally integrated (ii)
how results depend on mesh density and time integration.

(i) In the framework of FEM, constitutive equations can be integrated using an
explicit scheme (Press et al., 1988, Touzot and Dabounou, 1993) like Runge-Kutta methods.
An implicit scheme (Simo and Taylor, 1985, Aravas, 1996, Chaboche and Cailletaud, 1996,
Foerch et al., 1997) called Θ-method or modified mid-point method can also been used,
but lead to more tedious mathematical developments. Integration of constitutive equations
may become numerically difficult if large internal variables increments occur for small time
increments. Both methods have to be improved by a combination of automatic stepping and
error correction. In the MC strain ageing model, both internal variables (i.e. the cumulated
plastic strain p and the ageing time ta) can undergo large local increments, that can slow
down or even stop the global solution convergence. A mixed algorithm combining explicit and
implicit methods, associated with an automatic control of time steps, is presented here for
the particular case of the MC model. Results of simulations of a plate in tension performed
with this algorithm have been compared with results provided by a pure explicit scheme.

(ii) The main difficulty while modelling PLC effect is to accurately reproduce the
load/displacement curve and bands of localized plastic strain rate. Kinematic parameters
of such bands have been evaluated experimentally from thermal fields measured with a fast
multi-detector infrared camera (Louche et al., 2005), optical observations associated with
digital image correlation analysis (Halim et al., 2007), or from acoustic emission (AE) and
laser extensometry measures (Chmelik et al., 2002, Chmelik et al., 2007). The appearance
of serrations and the displacement of bands can be truly different from a given strain
rate, temperature, or strain value to another. Serrations have been classified in three
main types (A,B, and C), depending on their aspect. These types are associated with
three different kinematic behaviors of localized bands of plastic strain rate. The type of
bands at a given deformation value for a Al-Mg alloy, is given in (Lebyodkin et al., 2000),
depending on the strain rate and temperature. The kinematic characteristics of bands is
also studied in (Hähner and Rizzi, 2004, Rizzi and Hähner, 2004, Jiang et al., 2007) from 1D
modelling. Finally, finite element simulations of A,B and C type bands can be found in
(Zhang et al., 2001, Kok et al., 2003, Dierke et al., 2007).

While efficient tools exist to extract from experiments the type and kinematic parameters
of a band, they have not been applied to FE simulations yet. In this chapter, the kinematic
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behavior of A,B, and C bands is reviewed. An original numerical tool to detect the type
and kinematic parameters of a band is provided: the Band Location Indicator (BLI). BLI is
used to evaluate the strain rate sensitivity analysis of the MC model for the simulation of a
plate in tension. A detailed analysis of the mesh sensitivity of localized phenomena is then
performed. The influence of the element size on the critical plastic strain, the serrations, the
band type, and the kinematic band parameters, is investigated.

VI.2 Numerical integration of MC constitutive equations

Finite element resolution of a non-linear mechanical problem is performed using incremental
procedures (Besson et al., 2001a). The displacement field in the structure is estimated at
different steps of the calculation to satisfy the global equilibrium equation. A global procedure
(on the whole structure) is used to compute this displacement field at each global step. It
requires the calculation of the global stiffness matrix. A local procedure (at each integration
point) provides local contributions to the global stiffness matrix used in the global procedure.
During this incremental procedure, constitutive equations are integrated at each integration
point using one of the two following method (Runge-Kutta and Θ − method).

VI.2.1 Runge-Kutta method

The constitutive equations of an elastoviscoplastic material model can usually be put together
in the following form :

Ż = F(Z, ε̇
∼

) (VI.1)

where Z contains the scalar and tensorial internal/state variables of the model, and ε̇
∼

denotes
the total strain rate. In non-linear computations, the integration of this equation is performed
at each time increment in order to provide the stress state at the end of the increment. This
integration can be performed with methods which depend on the specific form of the flow
rule or yield criterion such as radial or secant return, or with generalized methods such as
explicit and implicit integration schemes. The easiest integration method is the first order
explicit one, also called forward Euler method :

Zt+∆t = Zt + ∆Z (VI.2)

∆Z = ∆tŻt = ∆tF(Zt,∆ε
∼

t) (VI.3)

The updated variables at the end of the increment (t + ∆t) are evaluated from variables and
variables rates at time t. This method relies on the first order Taylor development of Zt+∆t.
Function F is assumed to be constant and equal to its initial value (i.e. at t) on the whole
time increment ∆t. This method becomes obviously inaccurate increasing the global time
increment ∆t, and consequently the global strain increment ∆ε

∼

t.

However the method can be improved by a combination of Taylor developments at higher
order, automatic stepping, and error correction. This combination constitutes the Runge-
Kutta method of integration (Press et al., 1988, Touzot and Dabounou, 1993). The global
time increment ∆t is divided in sub-steps δtk such that ∆t =

∑

k δtk. The local time step δtk
is controlled by an error correction. By this way, large local time increments are used when Ż
is rather constant with respect to time, and small ones when Ż varies a lot. A development at
higher order Zt+∆t is also acceptable, if it allows larger sub-steps δtk for the same precision.
In our finite element program, we use the Runge-Kutta method up to the fourth order. This
method provides high confidence in the the quality of integration, but can be quite expensive
during calculation (Besson et al., 2001a).
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VI.2.2 Θ-method

The evaluation of the increment of state variables ∆Z with implicit integration methods is
performed from unknown values of rate of state variables Ż at an intermediate point in the
increment :

∆Z = ∆tŻt+Θ∆t = ∆tF(Zt+Θ∆t,∆ε
∼

t+Θ∆t) (VI.4)

Zt+Θ∆t = Zt + Θ∆Z (VI.5)

where Θ ∈ [0; 1] characterizes the position of the point where the evaluation of variables takes
place. Θ = 0 corresponds to the Euler scheme presented previously, and Θ = 1 is a fully
implicit integration. The variable increment ∆Z is then evaluated by solving the following
non-linear system with respect to ∆Z:

R = ∆Z − ∆tF(Zt + Θ∆Z,∆ε
∼

t+Θ∆t) < ǫ (VI.6)

where R is called the local residual. A Newton-Raphson algorithm is used to solve the non-
linear system. It requires the calculation of the Jacobian matrix associated to system VI.6.

J =
∂R

∂∆Z
= 1 − ∆t

∂F

∂∆Z

∣
∣
∣
∣

t+Θ∆t

(VI.7)

The Jacobian matrix for the strain ageing model is given in the appendix VI.A. The
calculation of this matrix is usually convenient for classical elastoviscoplastic models, and
provides a quadratic global convergence.

The precision of integration is evaluated from the local residual value after resolution
of the non-linear system VI.6. If the local residual is below a given value, then integration
is validated. If not, there is a local divergence of integration. Using the Θ-method, the
global time increment ∆t does not generally need to be divided in sub-steps to reach local
convergence, excepted in case of large increments of internal variables. Then local divergences
can occur.

VI.2.3 Control of local time increment and switching method

In the Runge-Kutta method, the global time increment is divided in numerous sub-steps. The
global time increment ∆t can be divided as needed to reach the requested precision. Using
an implicit method allows in general to avoid this division. But in case of large increments of
internal variables, local divergences occur and the global time increment has to be divided.

In the case of the MC model, internal variables increments are locally so large (mainly
during localized phenomena such as bands of plastic strain rate), that at these integration
points, the integration of constitutive equations cannot been performed with a pure Θ-
method. An original numerical method has been implemented in order to integrate with the
Θ-method everywhere in the structure excepted at such integration points. At the beginning
of each global time increment, the integration is performed for each integration point using Θ-
method. When local divergences occur, the integration of constitutive equations at concerned
integration points is performed using the Runge-Kutta method. Consequently, the local
integration can be performed in the whole structure at each global time increment. The
interest of this switching method is to avoid local divergences of the integration, that lead to
a reduction of the global time increment and then slow down the simulation.

VI.2.4 Control of global time increment

The size of global time increments during simulations is mainly controlled by the convergence
of the global resolution of the equilibrium equation. For each time step, some iterations are
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needed before the global residual R becomes larger than a fixed value r. This global residual
would vanish if the global equilibrium equation were fully satisfied.

R = |Fext − Fint| < r for an absolute ratio (VI.8)

R =
|Fext − Fint|

|Fext|
< r for a relative ratio (VI.9)

where Fext is the external force vector, and Fint is the internal force vector. (VI.10)

Once, this condition is fulfilled, another global increment begins using a global time increment
depending on the number of iterations needed to complete global convergence at the previous
time increment. If the global convergence is not fulfilled, the global time increment is reduced,
and calculation restart at the beginning of previous time increment. Global divergence occur
when the maximal allowed number of iterations (given by the user) is reached, when the
global residual R increases during iterations, or in case of a local divergence. The global
convergence can then be affected by the local divergence of the integration of constitutive
equations. That is why the switching method presented in part VI.2.3 is essential. With this
method, local divergences are avoided, and large time increments can be performed.

However, there is a disadvantage using this method. For simulations performed using the
MC model, serrations on the stress/strain curves can be missed because of too large global
time increments. A maximum value for the global time increments is fixed to solve this
problem. The sensitivity of the onset of serrations with respect to this maximum value is
analysed in the following part.

VI.2.5 Global time increment and method sensitivity

In this section, two numerical methods for the integration of constitutive equations are
presented and compared, in terms of global time increment sensitivity of the results. The
first integration method is an explicit fourth order Runge Kutta method with automatic time
stepping. The second one is an implicit mid-point method (Θ-method) solved by a Newton-
Raphson method, improved by the local switch to the Runge Kutta method described in
section VI.2.3. Simulations have been performed on the plate in tension of chapter V with the
same prescribed global precision r for both methods, at a constant strain rate ε̇ = 10−3s−1, for
different values of the maximum allowed global strain increment ∆εmax per global increment.
For each method the value of the critical cumulated plastic strain pc, for which the numerical
local instability occurs is evaluated. One can observe in figure VI.1 that a small value of
∆εmax is needed to capture an accurate value of the critical plastic strain. An accurate value
of the critical plastic strain is obtained for a maximal strain increment below 10−4. This value
is arbitrary taken as a reference value for the maximum increment of global strain increment
for any simulation performed using MC model.

VI.3 Band nomenclature and location indicator

In this section, the band nomenclature is reviewed. Then, an original numerical tool is
presented to determine the type of bands during finite element simulations. This tool is used
to evaluate the strain rate sensitivity of localized phenomena in a plate in tension. Simulations
have been performed with constitutive equations of chapter V, and parameters for the MC
model given in table VI.1.
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Figure VI.1 : Critical plastic strain pc provided by Runge-Kutta method and modified
Θ-Method for the simulation of a plate in tension at a given strain rate equal to 10−3s−1.
Simulations are performed for different values of ∆εmax.

Elasticity Hardening Viscosity Ageing

E 200 GPa R0 1046 MPa K 1.55 MPa P1Cm 96 MPa

ν 0.3 Q 2200 MPa ṗ0 10−4 s−1 P2 4.1 s−n

b 1.88 α 0.77

n 0.33

w 10−4

Table VI.1 : Material model parameters identified for the nickel based superalloy at 500◦C

VI.3.1 Band nomenclature

The type of localization bands can be described either by the type of serration on
the global stress/strain curve (Lebyodkin et al., 2000), or at the surface of the tested
specimens considering the way these deformation bands are spatio-temporally organized
(Rizzi and Hähner, 2004, Halim et al., 2007, Chmelik et al., 2007). In the present work,
spatio/temporal aspects of localization are considered. Type A bands are associated with
repetitive continuous propagations along the specimen in the same direction. They often
nucleate at the same end of the specimen. Type B bands corresponds to hopping propagations
in the axial tensile direction of the specimen with typical reflections at the edges of the
specimen. Type C bands are characterized by random nucleation anywhere in the specimen
with almost no continuous propagation. Curves presenting band location in a specimen
versus time for the three types are given in figure VI.2. Schematic representations (top of
figure VI.2) are drawn from acoustic emission (AE) measurements of band location proposed
in (Chmelik et al., 2002, Chmelik et al., 2007) (bottom of figure VI.2). Moreover, in these
article, the type of bands detected during experiments on an Al-Mg alloy is related to strain
level and strain rate. The band type always starts with C. Then it remains C for low strain
rates, switch to B for intermediate strain rates, and to A for high strain rates.
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Figure VI.2 : Schematic and experimental locations of acoustic events associated with
passing of type A,B, and C bands. In schematic figures (upper ones), y is the tensile axis.
Experimental figures (lower ones) are taken from (Chmelik et al., 2002, Chmelik et al., 2007)
for a Al-Mg alloy at ε̇ = 2.67 × 10−6s−1 (C type), ε̇ = 1.33 × 10−5s−1 (C and B types),
ε̇ = 8 × 10−6s−1 (A type).

VI.3.2 Numerical detection of bands - The BLI tool

An original numerical method to detect the band type in a finite element simulation
is proposed here. The aim of this method is to reproduce the experimental acoustic
measurements performed by (Chmelik et al., 2002, Chmelik et al., 2007) on an Al-Mg alloy.
In these experiments, passing of PLC bands is spatially associated with acoustic emission
(AE) events. Typical results provided by this method were given in figure VI.2. Each acoustic
event in one of the 20 slices axially located on the test sample is marked by a black square.
One can then observe the location of bands at different stages of experiments.

At a given point of the structure, the passing of a band and AE events are related with
a large value of the cumulated plastic strain rate in the zone where it is detected. A simple
numerical tool, called Band Location Indicator (BLI), has been implemented in the finite
element program Zset (Besson and Foerch, 1997), to mimic the AE detection tool. At each
time step of the non-linear simulation, the program checks for each integration point if the
cumulated plastic strain rate ṗ is larger than a given value (for example 5 times the external
strain rate applied on the whole structure). If this condition is fulfilled, i.e. if the integration
point is located“ in the band ”, the program returns the time step value and the axial location
of this integration point. This method of analysis has been tested on a plate in tension at a
constant global strain rate equal to 10−2s−1 for the nickel based superalloy considered in this
work. The plate is the same as in chapter V, meshed with 80 2D 8 nodes plane stress elements
with reduced integration (898 DOF). The cutting value of the cumulated plastic strain rate
for the BLI is 5 × 10−2s−1. The simulation has been performed with a maximum allowed
strain increment in agreement with the value prescribed in section VI.2.5 (∆εmax = 10−4).
25000 steps have been used during the simulation from 0 to 20% (corresponding to a time of
20s). Results are outlined in figure VI.3.

This simulation reveals the three types of bands, depending on the overall deformation
value. First, for low deformation values, the random nucleation of C-type bands is evidenced.
Then for intermediate deformation values, the hopping propagation with boundary reflection
of B-type appears. Finally for high deformation values, the continuous propagation in a
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repetitive fashion of A-type bands is observed.

Figure VI.3 : Simulation of types A,B, and C bands for a plate in tension at a constant
strain rate equal to 10−2s−1. First line shows the location of bands as a function of time
provided by the Band Location Indicator (BLI). Second line is three zooms on first line
where C, B, and A types appears. Third line contains the corresponding serrations. Fourth
line is the global stress/strain curve of this simulation.

VI.3.3 Evaluation of band width and velocity from the BLI tool

This method is also accurate to evaluate the width Lb and the velocity Vb of bands (see figure
VI.4). The velocity of bands is related to the average slope of BLI curves. One can observe
that this velocity does not seem to vary during the whole simulation, whatever the band type
is. The width of band is related to the thickness of curves. Since the BLI detects points
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in the whole width of specimens, the inclination of bands have to be taken into account to
calculate the true width of bands (see figure VI.4).

α

Lb

LtLt

l
t

y

1

Vb

ti

Plate at t = tiTop

Bottom

BLI Curve

Figure VI.4 : Measures of the band velocity Vb and the band width Lb using BLI curves.
A schematic BLI curve is drawn on the left and a band in a plate at t = ti on the right. l
denotes the plate width and Lt the width measured on BLI the curve. The true width of a
band is then Lb = Lt − l tan(α).

VI.3.4 Application : strain rate sensitivity

The BLI is useful to compare different simulations at different global applied strain rates.
On figure VI.5, bands location is plotted as a function of time for three different strain rate:
10−2s−1, 10−4s−1, 10−6s−1. Simulations have been performed on the same mesh with the
same calculation parameters given in section VI.3.2. The corresponding global stress/time
curves are plotted in figure VI.6. The critical plastic strain, serrations, and type of bands
is highly sensitive to strain rate. For the higher strain rate, three types of bands are found,
while for lower ones, only C type bands appear. These result are in good agreement with
experimental observations made in (Chmelik et al., 2002, Chmelik et al., 2007) on a different
material. C type bands appear for low strain rate or for low strain level. A and B type bands
appear for higher strain and strain rate levels. One can also verify the statements formulated
in the chapter III about experimental observations: when the strain rate decreases, the critical
plastic strain decreases and the frequency (with respect to global strain) and amplitude of
oscillations increase.

The influence of strain rate on the velocity of bands Vb, and on the amount of plastic
strain rate carried by the band ∆p is investigated. Are Vb and ∆p intrinsic properties of
the material or are they functions of ε̇? Some measures of the band velocity Vb have been
performed in figure VI.5 for ε̇ = 10−2s−1, ε̇ = 10−4s−1, ε̇ = 10−6s−1. The average amount of
plastic strain rate carried by bands ∆p is also measured for the three prescribed strain rates.
This quantity is estimated at an integration point at the center of the plate, measuring height
of steps on the temporal plastic strain rate evolution at this point. On the one hand, the
velocity seems to be linearly related to the prescribed strain rate. On the other, the amount
of plastic strain rate appears to be a intrinsic property of the material, since ∆p is always
measured between 0.003 and 0.007 for any prescribed strain rate, any strain level, and any
mesh (see section VI.4).
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Figure VI.5 : Location of bands along a plate in tension for three different prescribed strain
rates.
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Figure VI.6 : Global stress/time curve for a plate in tension for three different prescribed
strain rates.
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Prescribed strain rate ε̇ (s−1) Vb (mm.s−1) ∆p

10−2 35 0.005

10−4 3.5 0.005

10−6 0.35 0.005

Table VI.2 : Estimates of the velocity (Vb), and of the average plastic increment carried by
the band (∆p), for different prescribed strain rates.

VI.4 Mesh sensitivity of localization phenomena

A mesh sensitivity analysis of the MC model is performed considering the effect of the element
size on the global load/displacement curve and the shape, type and characteristics of localized
bands. Six different meshes of a 12.5 × 2.5mm plate have been used, the number of degrees
of freedom (DOF) varies from 250 to 116354. The simulation of a tensile test has been
performed for each mesh using the same material parameters, at two prescribed strain rates
equal to 10−2s−1 and 10−4s−1. Serrations and the type and shape of bands are firstly studied
from a qualitative point of view. Some characteristic parameters of A-B type bands are then
evaluated for each mesh, to perform a quantitative analysis of the mesh sensitivity of the MC
model.

VI.4.1 Qualitative analysis

Serrations

The difference between the average stress for different mesh densities and the corresponding
analytical homogeneous solution (see chapter V) is plotted on figure VI.7 as a function of the
cumulated plastic strain p.

σPlotted =
F

S0

− σHomogeneous (VI.11)

σHomogeneous = Karcsinh

(
ṗ

ṗ0

)

+ R0 + Q
(

1 − e−bp
)

+ P1Cm

(

1 − e−P2p
αtna
)

(VI.12)

The critical plastic strain does not depend on the mesh density. The shape of serrations
seems also to be rather mesh independent. The frequency and the amplitude of oscillations
are about the same for all meshes, but solutions do not coincide. The reasons for these
differences lie in the impact of the mesh density on the detailed behavior of bands. This
behavior can be observed with the band location indicator (BLI) presented in section VI.3.2
to locate the position of bands at a each step of the simulations.

Location of bands

The location of bands provided by the BLI is given as a function of time in figure VI.8 for four
different meshes. The type of band (A,B,C) observed for each mesh density is found to be
mesh dependent. The evolution of the band type with respect to time is C-A-C for the coarse
mesh (250 DOF), C-B-A for the reference one (898 DOF) used for the strain rate sensitivity
analysis, C-A-B for the fine one (3394 DOF), and C-A-C for the very fine one (13186 DOF).
Evolutions are different for each mesh, but C bands always appear at the beginning between
times 7.5s and 10s. Then a single band of type A or B propagates. A quantitative analysis
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Figure VI.7 : Numerical global serrated stress minus homogeneous stress ( F
S0
−σHomogeneous)

for tensile plates at a constant strain rate of 10−4s−1. Simulations have been performed for
five different meshes, for the same boundary value problem and material parameters.

of kinematic parameters of such bands will be performed in the next section. Indeed, looking
at BLI figures, the velocity of such bands seems to be mesh independent.

Shape of bands

The distribution of C bands on the sample surface is represented for the four different meshes
in figure VI.9. The cumulated plastic strain rate ṗ and the ageing time ta are drawn for the
same deformation value. The total strain is ε = 9%, in the range where C type bands are
observed for all meshes. When the mesh is refined, the number of bands increases and the
band width decreases.

VI.4.2 Quantitative analysis

The quantitative analysis of the mesh sensitivity performed here is based on the measure of
kinematic parameters of an A or B type band. This analysis is performed from simulations of
plates in tension at a constant strain rate ε̇ = 10−2s−1. The velocity of the band is denoted
Vb. The amount of plastic strain carried by the band is ∆p = p2 − p1, where p1 is the plastic
strain before the band passing and p2 after it. The maximal value of the plastic strain rate in
the band is denoted ṗmax. Finally, the width of the band is denoted Lb. All these kinematics
parameters are reviewed on the schematic figure VI.10. This figure is built from numerical
plots of the plastic strain rate and plastic strain along the plate, during the passing of a single
band (see figure VI.11) of type A or B.

Neglecting the elastic strain rate contribution, a relation between band parameters exists
(Gomiero et al., 1992).

ε̇ ≈ 〈ṗ〉 =
Lb

L

1

2
ṗmax (VI.13)

≈ ∆p

∆t
=

∆pVb

L
(VI.14)

⇒ ∆pVb ≈
1

2
Lbṗmax ≈ Lε̇ (VI.15)



92
CHAPTER VI. MESH AND TIME INCREMENT SENSITIVITY OF LOCALIZED

PHENOMENA FOR THE MACCORMICK (MC) MODEL

Figure VI.8 : Location of bands for a plate in tension for four different mesh densities at a
constant strain rate of 10−2s−1. (Animated picture)
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Figure VI.9 : Cumulated plastic strain rate and ageing time for four DOF number for plates
in tension at a constant strain rate of 10−2s−1, and for a global strain of ε = 9% (t = 9s).
The shape of C type bands vary with respect to the strain rate.

YY

p1
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Figure VI.10 : Kinematic simplified model of a band, based on the numerical results of
figure VI.11
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0.0030.00250.0020.00150.0010.00050

12.5

0

A
x

ia
l 

p
o

si
ti

o
n

 i
n

 t
h

e 
p

la
te

 (
m

m
)

Figure VI.11 : Cumulated plastic strain rate and cumulated plastic strain along a plate in
tension. Curves are plotted from numerical values extracted at the center of the plate in the
finite element simulation of a A type band. The prescribed strain rate is ε̇ = 10−4s−1.

where L is the total length of the plate, ε̇ the prescribed strain rate, 〈ṗ〉 the average of ṗ
along the plate and ∆t the time for the band to propagate from one edge of the specimen
to the other. Lε̇ is the prescribed displacement rate. Neglecting the elastic strain rate, this
quantity is equivalent to the permanent plastic elongation rate associated with a band.

Numerical measurements of the kinematic parameters of bands have been performed for
the 6 meshes, when the band turns to type A or B. The prescribed strain rate is 10−2s−1

and the global strain ε = 17% (t = 17s), in a range of deformation where single bands
are propagating for all meshes. Results are presented in table VI.3 and in figure VI.12.
Simulations are performed with 8 nodes quadratic elements. The element sizes are normalized
by the value for minimum element size (0.052 mm for 116354 DOF).

Element size (mm) DOF Vb (mm.s−1) Lb (mm) ∆p ṗmax (s−1)

1.25 250 0.398 163.5 0.0038 0.13

0.625 898 0.358 80.8 0.004 0.21

0.3125 3394 0.313 38.8 0.0039 0.54

0.15625 13186 0.305 21.2 0.0057 0.85

0.078125 51970 0.284 10 0.0052 1.8

0.05208 116354 0.254 7.37 0.0059 3.75

Table VI.3 : Estimates of the velocity (Vb) and width (Lb) of bands, of the plastic increment
carried by the band (∆p), of the maximum plastic strain rate (ṗmax) for different meshes.

On figure VI.12, the element sizes are normalized by the value for minimum element
size (0.052 mm for 116354 DOF). Parameters are also normalized by their value for
the minimum element size. Then the plotted values correspond to Vb/Vb(116354DOF ),
∆p/∆p(116354DOF ), Lb/Lb(116354DOF ), and (ṗmax)−1/(ṗmax)−1(116354DOF ). The
amount of plastic strain ∆p and the velocity of bands Vb are found to be mesh independent.
The band width Lb and the inverse of the maximum plastic strain rate (ṗmax)−1 are linearly
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related to the mesh size.
∆p and (ṗmax)−1 evolutions with respect to mesh density are less regular than Vb and

Lb ones. For example, Vb is really mesh independent, whereas ∆p seems to decrease a little
with respect to element size. This imperfection in numerical results arises from the fact that
(ṗmax)−1 is not constant in a band during its the whole propagation from an edge to the
other. Moreover, values measured for (ṗmax)−1 and ∆p are affected by the presence of the
edges of the plate.

However, even with such rough measures of ∆p and (ṗmax)−1, the relation (VI.15) can
be verified. In the case of the finest mesh, we get ∆pVb = .149 mm/s and 1/2Lbṗmax =
.138 mm/s, while Lε̇ = .125 mm/s. And these quantities are more or less constant for all
different mesh densities.
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Figure VI.12 : Evolution of the velocity (Vb) and width (Lb) of bands, of the plastic
increment carried by the band (∆p), of the maximum plastic strain rate (ṗmax) for different
element sizes. Values are normalized with respect to values at the minimum element size.
DOF number goes from 250 to 116354.

A parallel can be drawn between the propagation of bands of plastic deformation and wall
painting. The band width Lb is equivalent to the number of hair in the brush (proportional
to the width of the brush), the band velocity Vb to its motion velocity, the amount of plastic
strain ∆p to the quantity of paint spread out per hair per coat, the maximum plastic strain
rate ṗmax to the quantity of paint laid per second per hair, and the rate of plastic elongation
∫

ṗdy ≈ Lε̇ to the flux of paint between the paintbrush and the wall. The effect of a mesh
refinement is like using a smaller brush (with less hair on it), and pressing stronger on it,
the axial speed of the brush and paint quantity in a coat yet remain the same. During the
propagation of a band of plastic strain rate (resp. in wall painting), whatever the mesh (resp.
brush) size, the rate of plastic elongation (resp. the flux of paint) remains constant. Then,
depending on which quantities need to be accurately reproduced, the mesh will have to be
refined or not.

VI.5 Conclusion

MC model has been designed to reproduce the development of bands of localized plastic
strain rate. As many mechanical models for localized phenomena, result depends on the
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mesh density. The method of integration of constitutive equations also affects solutions. In
this work, an original numerical method of integration, coupling implicit and explicit methods,
is presented. A detailed mesh sensitivity analysis is performed. The width of bands and the
maximal plastic strain rate are found to be mesh dependent, whereas their velocity or the
amount of plastic strain carried are mesh insensitive.
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98 RÉSUMÉ – CHAPITRE VI

Résumé

Une étude de sensibilité du modèle de vieillissement dynamique est présentée ici: sensibilité
à la méthode d’intégration, au pas de temps, à la vitesse de déformation, et au maillage. Les
différentes méthodes d’intégration générale de la loi de comportement sont présentées. Une
méthode mixte implicite/explicite est proposée afin d’optimiser le ratio précision/temps de
calcul. Enfin une valeur maximale de l’incrément de déformation plastique entre chaque pas
de calcul est proposée pour simuler correctement l’apparition d’instabilités dans une plaque
en traction. L’analyse de sensibilité à la vitesse de déformation et au maillage est effectuée
en observant la localisation en bandes de vitesse de déformation plastique caractéristique de
l’effet PLC. La nomenclature des différents types de bandes est rappelée. Un outil numérique
original de détection de la position des bandes au cours du calcul est proposé : le BLI (Band
Location Indicator). Cet outil est utilisé pour évaluer la sensibilité du type de bande à la vitesse
de déformation imposée. Il permet également de mesurer certains paramètres cinématiques
des bandes comme leur vitesse ou leur largeur.

L’analyse de sensibilité au maillage est ensuite développée, à une vitesse de déformation
imposée donnée, de manière qualitative puis quantitative. Qualitativement, le type des
bandes semble dépendre de la finesse du maillage alors que l’apparition, la fréquence, et
l’amplitude des oscillations sur la courbe contrainte/déformation en sont indépendantes.
Quantitativement, quatre paramètres cinématiques sont mesurés : la vitesse et la quantité
de plasticité apportée par les bandes ne dépendent pas du maillage, leur largeur et l’inverse
du maximum du taux de plasticité dans la bande dépendent linéairement de la taille des
éléments. Le recours à un modèle non-local est ainsi conseillé mais n’est pas traité dans cette
étude.
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VII.1 Introduction

The MC model is used in this part to perform simulations of the PLC effect on more complex
geometries than plates in tension. In this chapter simulations are performed on smooth (ST)
and notched (NT) axisymmetric specimens. Aims of this chapter are : (i) to reproduce
trends deduced from experimental results in the chapter III about the critical strain and the
frequency and amplitude of serrations, (ii) to analyse the influence of 3D simulations on band
type, orientation, and shape for different prescribed strain rates, (iii) to detect if the PLC
effect appears during simulations of NT specimens, even if no serrations have been observed
on experimental curves.

It has been demonstrated in the chapter VI that the detection of critical plastic strain
requires small enough time increments, and that the bands width and number depend on mesh
density. The band spatial orientation is also obviously related to the mesh density. Bands can
deviate from their natural inclination because of poor geometrical representation. Simulations
have then been performed with time increments such that global strain increments never
exceeds 10−4. If the mesh is fine enough, the band orientation is mesh independent. The
mesh density for smooth tensile specimens is taken fine enough to evaluate precise values of
band orientation. The validation of the critical plastic strain and band orientations has been
made from a theoretical analysis of the model based on the linear perturbation method.

In the pioneering article of (MacCormick, 1989), a linear perturbation analysis is
performed to predict the instability strain above which strain localization occurs for simple
tension. A good agreement is found between experimental and theoretical critical values.
In (Mesarovic, 1995) an analysis with the same model is performed taking into account the
testing machine stiffness. Finally, in (Benallal et al., 2006), the linear perturbation method
is also used with a KE type model, to define a range of unstable plastic strain rate. However,
there seems to be no general stability analysis available of the MC model. On the one hand,
bifurcation analyses in the 3D case do not exist for the DSA phenomenon. On the other hand,
these bifurcation criteria have not been used to predict the onset of instabilities in structural
components or samples with complex geometries.

The linear perturbation method has been developed in a general elastoviscoplastic
framework in (Barbier, 1999). Among the numerous applications of this method, one can refer
to (Barbier et al., 1998, Barbier et al., 1999, Besson et al., 2001b). Following these examples,
a 3D linear stability analysis of the MC model is performed in this chapter. First, the general
framework of the theory is outlined. Then, the MC constitutive equations are presented
and the general bifurcation criterion is derived to provide : (i) an indicator of the critical
plastic strain for uniaxial stress states, that can be used for general cases (ii) a prediction
of the orientation of bands for simple shear, and for uniaxial tension using either 2D or
3D modelling. The onset of instability criterion is validated for simple tension and simple
shear by a comparison with numerical results. Then simulations performed on 3D smooth
axisymmetric specimens are presented with focus on the orientation and type of bands, and
on the onset, frequency and amplitude of serrations. The same analysis is finally performed
on notched axisymmetric specimens.

VII.2 Linear perturbation analysis

In this section, vectors are denoted by � , second order tensors by �
∼

, and fourth order tensors
by �

∼

∼

. [�] denotes a matrix which can contain either scalars or the components of tensorial

quantities.
[
�
∼

]
(resp.

[

�
∼

∼

]

) is the Voigt notation of the second (resp. fourth) order tensor �
∼

(resp. �
∼

∼

).
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VII.2.1 Theory

The theory of stability analysis using the linear perturbation method is fully developed
in (Barbier, 1999, Barbier et al., 1999). At a given stage of the deformation path of a
structure, an infinitely small perturbation is applied, and the resulting perturbed deformation
is analysed. The displacement vector is denoted by u (x , t). The perturbation is assumed to
be of the following form :

∆u = δU exp(iqn .x + λt) (VII.1)

The growth rate of the perturbation is related to λ. The mechanical state of a material point
is characterized by variables denoted [Z] =

[
σ
∼

, [X]
]

where σ
∼

is the stress tensor and [X] is
the set of internal variables. The elastoviscoplastic constitutive equations of the material are
:

[

Ż
]

=
[
F([Z] , ε̇

∼

)
]
⇐⇒

{

σ̇
∼

= F
∼ σ

(σ
∼

, [X] , ε̇
∼

)
[

Ẋ
]

=
[
FX(σ

∼

, [X])
] (VII.2)

Applying a perturbation to the system leads to :

[

∆Ż
]

=

[
∂F

∂Z

]

[∆Z] +

[
∂F

∂ε̇
∼

]
[
∆ε̇

∼

]
(VII.3)

Assuming that
[

∆Ż
]

= λ [∆Z] and ∆ε̇
∼

= λ∆ε
∼

, the perturbation [∆Z] is then linearly related

to the perturbed strain by :

[∆Z] =

[

I − 1

λ

∂F

∂Z

]
−1 [∂F

∂ε̇
∼

]
[
∆ε

∼

]
= [H(λ)]

[
∆ε

∼

]
(VII.4)

with the matrix form :
[

I − 1

λ

∂F

∂Z

]

=

[ [

H
∼

∼

1

]

[H2]

[H3] [H4]

]

(VII.5)

where

[

H
∼

∼

1

]

=

[

I
∼

∼

− 1

λ

∂F
∼ σ

∂σ
∼

]

(VII.6)

[H2] = − 1

λ

∂F
∼ σ

∂ [X]
(VII.7)

[H3] = − 1

λ

∂ [FX]

∂σ
∼

(VII.8)

[H4] = [I] − 1

λ

∂ [FX]

∂ [X]
(VII.9)

(VII.10)

where [I] is the unity matrix and I
∼

∼

is the fourth order unity tensor. The sub-matrix of [H(λ)]

relating the perturbation of total strain ∆ε
∼

to the perturbation of stress ∆σ
∼

is denoted
[H

∼

∼

p(λ)]. The perturbation of stress is then :

∆σ
∼

= H
∼

∼

p(λ) : ∆ε
∼

(VII.11)
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[

H
∼

∼

p(λ)
]

is calculated from previous relations i (
[

Ẋ
]

is assumed not to depend directly on

ε̇
∼

):

[

H
∼

∼

p(λ)
]

=

[ [

I
∼

∼

]

[0]

]T [

I − 1

λ

∂F

∂Z

]
−1





[
∂F

∼ σ

∂ε̇
∼

]

[0]



 =
[[

H
∼

∼

1

]

− [H2] [H4]−1 [H3]
]
−1
[
∂F

∼ σ

∂ε̇
∼

]

(VII.12)

The equilibrium equation in the absence of body forces and inertia terms gives a linear
homogeneous system of equations for δ U :

div (∆σ
∼

) = 0 ⇔ div
(

H
∼

∼

p(λ) : ∆ε
∼

)

= 0 (VII.13)

Introducing the perturbation of strain,

∆ε
∼

= (grad
∼

∆u )s = iq(n ⊗ δU )s exp(iqn .x + λt) (VII.14)

the following eigenvalue problem has to be solved (using the minor symmetry of H
∼

∼

p(λ)):

[

−q2 exp(iqn .x + λt)
(

n .H
∼

∼

p(λ).n
)]

.δU = 0 (VII.15)

Then, the growth condition of the perturbation takes the form:

∃n such that det
(

n .H
∼

∼

p(λ).n
)

= 0 for λ ≫ λh (VII.16)

where λh is the characteristic velocity of the homogeneous evolution, λh is commonly chosen
to be equal to ṗ/p.

VII.2.2 Prediction of the critical plastic strain

Constitutive equations of the MC material model are given in the chapter V. [X] reduces to
:

[X] = [p, ta] ,
[

Ẋ
]

= [FX] = [Fp, Fta ] =
[
ṗ, ṫa

]
(VII.17)

The evolution laws of variables are defined as follow :

• Elasticity :

σ = E
∼

∼

: ε̇
∼e

= E
∼

∼

:
(

ε̇
∼

− ε̇
∼p

)

= E
∼

∼

:
(
ε̇
∼

− ṗN
∼

)
= F

∼ σ
where N

∼

=
∂f

∂σ
∼

(VII.18)

• Yield criterion :

f(σ
∼

, p, ta) = J2(σ
∼

) − R(p) − P1Cs(p, ta) (VII.19)

• Extra-concentration of solute atoms around dislocations :

Cs(p, ta) = Cm

(

1 − e−P2p
αtna
)

(VII.20)

• Ageing kinetics :

ṫa = 1 − ta
w

ṗ = Fta (VII.21)
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• Flow rule :

ṗ = g(f) = ṗ0 sinh

(〈f〉
K

)

= Fp (VII.22)

• Nonlinear isotropic hardening law :

R(p) = R0 + Q
(

1 − e−bp
)

(VII.23)

The components of

[
∂F

∂Z

]

and

[
∂F

∂ε̇
∼

]

for this model are given in the appendix VII.A.

Since this model contains only two internal variables, [H4]−1 can be calculated explicitly in

order to obtain another expression of
[

H
∼

∼

p(λ)
]

from equation VII.12.

[

H
∼

∼

p(λ)
]

=
[[

H
∼

∼

1

]

− [H2] [H4]−1 [H3]
]
−1

= λ2 det ([H4])
[

H
∼

∼

s

]

(VII.24)

where

[

H
∼

∼

s(λ)
]

=

[

λ2 det ([H4(λ)]) I
∼

∼

− λ det ([H4(λ)])
∂F

∼ σ

∂σ
∼

− H
∼

∼

5(λ)

]
−1

(VII.25)

The derivation of this equation and the calculation of det ([H4(λ)]) and H
∼

∼

5(λ) are given in

the appendix VII.B. The growth condition VII.16 becomes:

∃n such that
[
λ2 det ([H4(λ)])

]3
det
[

n .H
∼

∼

s(λ).n
]

= 0 for λ ≫ λh (VII.26)

The first term
[
λ2 det ([H4(λ)])

]3
does not depend on n . It is useful to predict the critical

plastic strain, but cannot be used to predict orientation of bands. Furthermore, for uniaxial
stress states (Benallal et al., 2006), condition VII.26 is reduced to:

λ2 det [H4(λ)] = 0 (VII.27)

which can be written as follow after introducing the constitutive equations and parameters
(see appendix VII.B) :

λ2 + 2Φλ + λ2
0 = 0

Φ =
1

2

(

g′
(

H + Cp −
ta
w

Cta

)

+
ṗ

w

)

λ2
0 = (H + Cp)

ṗg′

w

(VII.28)

where

g′ =
dg

df
(VII.29)

H =
∂R

∂p
(VII.30)

Cp = P1

∂Cs

∂p
(VII.31)

Cta = P1

∂Cs

∂ta
(VII.32)

(VII.33)
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The growth condition is fulfilled when ∆ = Φ2 − λ2 = 0 and the critical growth rate
is then λc = Φ. The results of the 1D linear perturbation analysis of (MacCormick, 1989)
are retrieved. In principle, our 3D analysis can be used to predict the critical strain for any
multiaxial loading conditions on infinite solids. The critical growth rate λc must be strictly
positive to let the perturbation grow.

λc =
1

2

[
ta
w

Ctag
′ −
(

ṗ

w
+ (H + Cp)g

′

)]

(VII.34)

In the MC model presented in this study, g′, H, Cp remain positive. Therefore, the
perturbation can grow only because Cta is also positive. The positive effective hardening
H + Cp slows down the perturbation growth rate. The perturbation will grow slowly if
the strain rate ṗ is large. It will grow faster if the ageing time is high. Moreover, the
perturbation rate becomes unbounded when g′ becomes infinite, which corresponds to purely
plastic material.

The pertinence of the condition (VII.28) to detect instability points has been evaluated
for simple tension and simple shear. Finite element simulations of both problems have
been performed at different strain rate levels (cf. figures VII.1 and VII.2), using material
parameters for a nickel based superalloy at 500◦C.

Elasticity Hardening Viscosity Ageing

E 200 GPa R0 1046 MPa K 1.55 MPa P1Cm 96 MPa

ν 0.3 Q 2200 MPa ṗ0 10−4 s−1 P2 4.1 s−n

b 1.88 α 0.55

n 0.33

w 10−4

Table VII.1 : Material model parameters identified for the nickel based superalloy at 500◦C

The numerical critical values of the cumulated plastic strain pnum
c have been calculated

for both problems for four different values of overall strain rate ε̇. Simulations have been
performed using a maximum allowed strain increment in agreement with the value prescribed
in chapter VI (∆εmax = 10−4). The corresponding theoretical values have been evaluated
using condition (VII.28). The value of λ(p/ṗ) at the critical point is also calculated. If
λc(pc/ṗ) ≫ 1 the perturbation should grow easily.

Both analytical problems are solved in 1D like in chapter V. ta is given as a function
of p and ṗ, integrating (VII.21). Then, ṗ is formulated as a function of p. This expression
is approximated from the elastoplastic constitutive equations without viscosity and strain
ageing. All variables are then functions of p, and the theoretical critical plastic strain pth

c can
be calculated. The only difference between simple tension and simple shear lies in the relation
between ṗ and the applied strain rate ε̇. For a general 3D isotropic elastoplastic problem (i.e.
with no viscosity and no strain ageing) with von Mises yield criterion:

ṗ =
N
∼

: E
∼

∼

: ε̇
∼

H(p) + N
∼

: E
∼

∼

: N
∼

=
2µN

∼

: ε̇
∼

H(p) + 3µ
(VII.35)

where H(p) =
dR

dp
and µ is the shear modulus. For simple tension of an incompressible

material:

ṗ =
Eε̇11

H(p) + E
where E is the Young’s modulus (VII.36)
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For simple shear:

ṗ =
2Eε̇12√

3(H(p) + E)
(VII.37)

Theoretical and numerical values for the critical plastic strain are compared in the table
VII.2. A good agreement can be noted for both, simple tension and simple shear.

Strain rate Simple Tension Simple Shear

pth
c [λc(pc/ṗ)]th] pnum

c pth
c [λc(pc/ṗ)]th pnum

c

10−5 s−1 0.0281 % 12 0.0291 % 0.0290 % 14 0.0285 %

10−4 s−1 0.183 % 14 0.198 % 0.210 % 17 0.222 %

10−3 s−1 0.796 % 42 0.826 % 0.958 % 53 0.958 %

10−2 s−1 2.84 % 131 3.04 % 3.43 % 176 3.47%

Table VII.2 : Values of the critical plastic strain for simple tension and simple shear for
four different applied strain rates

VII.2.3 Estimation of band orientation

The band orientation for infinite solid problems can be predicted by the linear perturbation
analysis. The relation between the perturbation of stress ∆σ

∼

and the total perturbation of
strain ∆ε

∼

has to be explicitly formulated as :

∆σ
∼

= H
∼

∼

p(λ) : ∆ε
∼

(VII.38)

One can prove (see appendix VII.C) for the strain ageing model that :

∆σ
∼d

=
µ

3µṗ + λσeq

[

2wσeqI
∼

∼

+ 9µ
ṗHeq(λ) − λσeq

3µ + Heq(λ)

σ
∼d

σeq
⊗

σ
∼d

σeq

]

: ε
∼d

(VII.39)

∆σm = 3Kεm (VII.40)

where, σ
∼d

(resp. ε
∼d

) is the deviatoric part of the perturbed stress (resp. strain) tensor, and
σm (resp. εm) its trace. K is the bulk modulus. Then, H

∼

∼

p(λ) can be explicitly formulated :

H
∼

∼

p(λ) =
1

3µṗ + λσeq

[

λσeqE
∼

∼

+ 3KµṗI
∼

⊗ I
∼

− 9µ2 λσeq − ṗHeq(λ)

3µ + Heq(λ)

σ
∼d

σeq
⊗

σ
∼d

σeq

]

(VII.41)

where E
∼

∼

is the tensor of elastic moduli. The equivalent hardening rate Heq(λ) is calculated

from the constitutive equations of the strain ageing model (see appendix VII.C) :

Heq(λ) = H +
λ

g′
+ Cp −

Ctataλ

wλ + ṗ
(VII.42)

=
w

g′(wλ + ṗ)

(

λ2 +

(

g′
(

H + Cp −
ta
w

Cta

)

+
ṗ

w

)

λ + (H + Cp)
g′ṗ

w

)

(VII.43)

=
w

g′(wλ + ṗ)

(
λ2 + 2Φλ + λ2

0

)
(VII.44)

One can observe that the growth condition for an uniaxial stress state VII.28 implies that
Heq(λ) = 0. Moreover when the growth rate becomes infinite, the perturbation is unbounded
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and the limit of moduli H
∼

∼

p(λ) is :

lim
λ→∞

H
∼

∼

p(λ) =







E
∼

∼

if limλ→+∞ Heq(λ) = +∞

E
∼

∼

− 9µ2

3µ + Cst

σ
∼d

σeq
⊗

σ
∼d

σeq
if lim

λ→+∞

Heq(λ) = Cst
(VII.45)

When limλ→+∞ Heq(λ) = +∞, the growth condition of unbounded perturbation
det(n .E

∼

∼

.n ) = 0 is never satisfied because the elasticity tensor E
∼

∼

is positive definite.

limλ→+∞ Heq(λ) is a finite value only if g′ becomes infinite (see VII.34). Considering such
a purely plastic behavior, i.e. without viscosity effect, the limit of Heq(λ) when λ becomes
infinite is :

lim
λ→∞

Heq(λ) = H + Cp −
Ctata

w
= Hl (VII.46)

And, with this assumption,

lim
λ→∞

H
∼

∼

p(λ) = E
∼

∼

− 9µ2

3µ + Hl

σ
∼d

σeq
⊗

σ
∼d

σeq
(VII.47)

which is exactly the tangent modulus of a purely plastic material with strain ageing terms.
In order to predict the band orientation for simple tension and simple shear, the MC model
is assimilated to this purely plastic material. Unbounded perturbations are considered. Then
we have the approximation :

H
∼

∼

p(λ) ≃ E
∼

∼

− 9µ2

3µ + Hl

σ
∼d

σeq
⊗

σ
∼d

σeq
(VII.48)

Results concerning bands of localization for such a material are well known.
The orientation of bands is then predicted as in (Rice, 1976, Benallal and Comi, 1996,
Besson et al., 2001a) and the same directions as for an elastoplastic material with softening
behavior are retrieved. It can be emphasized that the localization process is due to the strain
ageing terms even within this approximation. Indeed, without strain ageing, Hl = H > 0 and
no localization is possible. Hl can be negative only because Cta > 0 (strain ageing). The angle
between the first principal stress and the normal to the band is 35◦for bi-dimensional simple
tension (plane stress) and 45◦for simple shear. These values coincide with the numerical
results plotted in figures VII.1 and VII.2, whatever the level of cumulated plastic strain in
the bands. The case of three-dimensional structures is treated in the following section.

VII.3 Simple tension specimens

In the literature, most finite element simulations of the PLC effect have been performed
on 2D geometries (Tsukahara and Iung, 1999, Graff et al., 2004, Graff et al., 2005). 2D
axisymmetric meshes have been used by (Benallal et al., 2006) on smooth and notched tensile
specimens. The maximum number of degrees of freedom (DOF) for these simulations
is 41940 for ST specimens and 14427 for notched specimens, with one-point integration
elements. Simulation with 3D meshes can be found in (Zhang et al., 2001) on smooth flat and
axisymmetric specimens, with respectively 7783 and 7011 DOF and eight nodes incompatible
mode elements. In (Kok et al., 2003), simulations of 3D flat specimens are performed with
5970 DOF using a model for polycrystalline plasticity. Finally, in (Hopperstad et al., 2006),
simulations of 3D smooth tensile specimens are performed with 81855 DOF and one-point
integration elements. In this section the mesh of smooth tensile specimens is build-up from 20-
nodes elements with reduced integration for a total number of 192708 DOF. In the following
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Figure VII.1 : Simulations of a simple tensile plate at a constant strain rate equal to
10−3s−1, map of the plastic strain rate, after 2.5% overall deformation. The angle between
band normal and tensile axis is found to be close to 35.5◦.



108
CHAPTER VII. PREDICTION OF CRITICAL STRAIN AND BAND ORIENTATION.

SIMULATIONS OF AXISYMMETRIC SPECIMENS

Figure VII.2 : Simulations of a simple shear square at a constant strain rate equal to
10−4s−1, map of the plastic strain rate, after 1.5% overall deformation. The angle between
band normal and direction of principal stresses is found to be close to 45◦.
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section, the number of DOF for notched tensile mesh is 160788. Both meshes are represented
with boundary conditions used for simulations in figure VII.3.

Finite element simulations have been performed on smooth axisymmetric specimens
in order to validate trends deduced from experimental results in the chapter III: when
the prescribed strain rate decreases, (i) the critical strain decreases, (ii) the frequency of
oscillations increases, (iii) the amplitude of oscillations increases. Six different prescribed
strain rates have been simulated (ε̇ = 10−6 s−1 to ε̇ = 10−1 s−1). The effect of the machine
stiffness is not taken into account in this work. Band type and orientation with respect to
the prescribed strain rate have also been determined.

VII.3.1 Band orientation : symmetry breaking in axisymmetric test
samples

Simulations of axisymmetric specimens have been performed by (Benallal et al., 2006) using
2D axisymmetric meshes and by (Zhang et al., 2001) and (Hopperstad et al., 2006) using 3D
meshes. In these studies, bands have generally a conical shape. Sometimes two intersecting
bands are observed (Hopperstad et al., 2006). To our knowledge there is no simulation
available in literature with a full symmetry breaking in axisymmetric samples, i.e. a lonely
band propagating like in plates in tension. For small strain rates (below 10−4 s−1), this
phenomenon has been observed during simulations of smooth axisymmetric specimens.

Angles between band normal and tensile direction have been measured for all
simulations. Results of these measures are plotted in figure VII.4. The theoretical study
developed in section VII.2 announces that the expected angle for tri-dimensionnal simple
tension is the same as for a purely plastic material, that is close to 42◦(Rice, 1976,
Benallal and Comi, 1996).

This value is accurately recovered for ε̇ = 10−6 s−1 and ε̇ = 10−5 s−1, when a lonely
band propagates in the structure. But as soon as twin bands propagate (ε̇ = 10−4 s−1

and ε̇ = 10−3 s−1), this value decreases and seems to tends to 35◦(ε̇ = 10−2 s−1), which is
the theoretical angle value for a bi-dimensional simple tension. Finally when ε̇ = 10−1 s−1

no direction can be evaluated because a infinite number of bands are propagating together
forming a conical shape. The same type of shape has been observed in (Benallal et al., 2006)
on 2D axisymmetric models.

One shall wonder if the orientation of such bands is directly related to the strain rate,
or if the angle varies because of band shape. The explanation proposed in this work is that
when the material tends to a purely plastic behavior (for lower strain rates), the model is
more unstable and bands tend to localize with an unique axial but also radial orientation.
Axisymmetry of bands is broken. The theoretical approach of a tri-dimensional simple tension
is valid (42◦). For higher strain rates the viscosity stabilizes the solution which tends then
to localize only with a given axial orientation but with no preferential radial position. Then
many bands are propagating together, rotating around tensile axis. The orientation of bands
is deviated and the angle with tensile axis is reduced. This proposition has to be validated
using other materials.

VII.3.2 Band type and serration shape

The critical plastic strain for each simulation is evaluated in this section. Frequencies
(with respect to global strain) and amplitude of serrations are compared between different
prescribed strain rates. Finally the type of bands for each simulation is investigated using
the band location indicator (BLI).

The numerical critical plastic strain in simulations is provided from stability criteria like
in chapter V. The average frequencies and maximum amplitudes for different strain rates are



110
CHAPTER VII. PREDICTION OF CRITICAL STRAIN AND BAND ORIENTATION.

SIMULATIONS OF AXISYMMETRIC SPECIMENS

Figure VII.3 : Mesh and boundary conditions of smooth and notched (NT4) axisymmetric
specimens
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Figure VII.4 : Orientation and shape of bands for different strain rates in a smooth
axisymmetric specimen.
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taken from plots of the average stress minus the corresponding analytic homogeneous solution,
like in figure VI.7. Finally, measures of the velocity of bands are made on the graphs of band
location plotted in figures VII.5,VII.6,VII.7,VII.8,VII.9,VII.10. The results of these measures
are summarized in the table VII.3. One can verify when the prescribed strain rate increases
that: the orientation changes (see section VII.3.1), the average frequency (with respect to
global strain) and the maximum amplitude decreases, the critical plastic strain increases,
following more or less the theoretical prediction given in the table VII.2, the velocity of
bands increases linearly with a slope close to 10 000 mm.

Strain rate 10−6 s−1 10−5 s−1 10−4 s−1 10−3 s−1 10−2 s−1 10−1 s−1

Orientation of
bands (◦)

41 40 39 36 34.5 −

Average
frequency of
serrations (%−1)

− 40 12 7 4 −

Maximum ampli-
tude of serrations
(MPa)

− 15 12 10 10 8

Critical plastic
strain (%)

− − 0.18 0.81 2.2 6.2

Velocity of bands
(mm.s−1)

0.023 0.15 1.3 8.5 80 790

Table VII.3 : Angle between the tensile axis and the band normal, average frequency
and maximal amplitude of serration, critical plastic strain, and celerity of bands for the six
different applied strain rates. A − means that no result is provided because of a very poor
precision, or senseless readings.

Figures VII.5,VII.6,VII.7,VII.8,VII.9,VII.10 contain for each strain rate: the global
stress/strain curve with a zoom on serrations, a view of finite element solutions of the
cumulated plastic strain rate ṗ, and the location of bands as a function of time provided
by the band location indicator (BLI) presented in chapter VI. Two finite element maps are
plotted for each strain rate, the first is an external view of the whole specimen, the second
one is a cross section view of half of the specimen in order to observe the internal shape of
bands. The type and shape of bands observed for each simulation can then be compared.
The nomenclature of bands is reviewed in chapter VI. Basically, A type bands propagate
continuously with a constant regular shape, while C type bands propagate only on short
distances with a varying shape. B type bands are between both behavior, hopping and
reflecting against top and bottom edges of the specimen.

A type bands can be observed for high values of strain rate. In figure VII.5 (ε̇ = 10−1 s−1),
the shape and the evolution of the band are regular and propagate always in the same
direction. In figure VII.6 (ε̇ = 10−2 s−1), two A type bands are propagating simultaneously,
implying irregularities on their shapes and on serrations. From figure VII.7 (ε̇ = 10−3 s−1),
B type bands begin to appear. Their shape is no more regular and some are trying to reflect
at edges. In figure VII.8 (ε̇ = 10−4 s−1), bands are clearly of B-types. The corresponding
serrations are still quite regular. In figure VII.9 (ε̇ = 10−5 s−1) and VII.10 (ε̇ = 10−6 s−1),
bands hesitate between B and C type with short hopping propagations. They can nucleate
at anytime anywhere in the specimen.
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Figure VII.5 : Global stress/strain curve, location of bands as a function of time, zoom on
serrations and plastic strain rate in the specimen at the end of the simulation for a smooth
axisymmetric specimen at a prescribed strain rate ε̇ = 10−1 s−1. (Animated picture)
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Figure VII.6 : Global stress/strain curve, location of bands as a function of time, zoom on
serrations and plastic strain rate in the specimen at the end of the simulation for a smooth
axisymmetric specimen at a prescribed strain rate ε̇ = 10−2 s−1. (Animated picture)
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Figure VII.7 : Global stress/strain curve, location of bands as a function of time, zoom on
serrations and plastic strain rate in the specimen at the end of the simulation for a smooth
axisymmetric specimen at a prescribed strain rate ε̇ = 10−3 s−1. (Animated picture)
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Figure VII.8 : Global stress/strain curve, location of bands as a function of time, zoom on
serrations and plastic strain rate in the specimen at the end of the simulation for a smooth
axisymmetric specimen at a prescribed strain rate ε̇ = 10−4 s−1. (Animated picture)
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Figure VII.9 : Global stress/strain curve, location of bands as a function of time, zoom on
serrations and plastic strain rate in the specimen at the end of the simulation for a smooth
axisymmetric specimen at a prescribed strain rate ε̇ = 10−5 s−1. (Animated picture)
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Figure VII.10 : Global stress/strain curve, location of bands as a function of time, zoom on
serrations and plastic strain rate in the specimen at the end of the simulation for a smooth
axisymmetric specimen at a prescribed strain rate ε̇ = 10−6 s−1. (Animated picture)
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VII.4 Notch tensile specimens

A similar analysis is performed on a notched axisymmetric specimen (see figures
VII.12,VII.13,VII.14,VII.15,VII.16). Serrations are observed on curves of global stress versus
radial deformation. For the experimentally tested prescribed strain rate (ε̇ = 10−3 s−1),
serrations are very smalls. The accuracy of experimental results is maybe too low to detect
such oscillations. Some experiments at lower strain rates, where numerical serrations appear
bigger, should be appropriate to valid the model.

Another important observation is that bands are mainly contained in the notch, even if
for most strain rates, they are trying to escape from it. The shape of bands inside specimens
are drawn in figure VII.11. One can observe that for low strain rates, bands are contained in
the notch. For higher strain rates, they nucleate in the notch but can propagate out of it.

The critical plastic strain, and the amplitude and frequency of serrations seem to follow the
same evolution as for smooth specimens when the prescribed strain rate increases. Finally,
for low strain rates, the frequency and amplitude of serrations are larger than for smooth
specimens.

VII.5 Conclusion

In this section, a criterion is proposed to estimate the critical plastic strain for a multiaxial
problem in an infinite solid. This criterion is obtained from a general 3D linear perturbation
analysis of the MC model. The linear perturbation analysis is also used to predict the
orientation of bands for bi-dimensionnal and tri-dimensionnal tension, and for simple shear.
These predictions are found to be in good agreement with simulations of a plate in tension
and a sheared square.

Simulations of smooth axisymmetric specimens are then performed. Experimental
observations of chapter III are compared with numerical ones. Numerical and experimental
critical plastic strains are in good agreement. The shape, frequency, and amplitude of
serrations are not perfectly reproduced during finite element simulations. The testing machine
stiffness should perhaps be taken into account in simulations. However, the dependence of
these parameters to strain rate is the same for finite element solution as for experiments.

Moreover, the band orientation in such specimens is more or less found in good
agreement with the theoretical prediction (42◦). For low strain rates, the axisymmetry of
localized phenomena is broken and lonely bands can propagate in the specimen with the
accurate orientation (predicted by theoretical approach). For high strain rate, bands become
axisymmetric and the theoretical prediction is no more satisfied.

Finally, simulations on notched axisymmetric specimens show that localization
phenomena can occur without being detected during experiment. Serrations for high and
intermediate strain rates are found to be very small. Bands are mostly concentrated in
notches or inside specimens. Then they can be invisible during experiments.
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Figure VII.11 : Shape of bands inside a notched axisymmetric specimen for different strain
rates.
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Figure VII.12 : Global stress/strain curve, location of bands as a function of time, zoom on
serrations and plastic strain rate in the specimen at the end of the simulation for a notched
axisymmetric specimen at a prescribed strain rate ε̇ = 10−2 s−1. (Animated picture)
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Figure VII.13 : Global stress/strain curve, location of bands as a function of time, zoom on
serrations and plastic strain rate in the specimen at the end of the simulation for a notched
axisymmetric specimen at a prescribed strain rate ε̇ = 10−3 s−1. (Animated picture)
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Figure VII.14 : Global stress/strain curve, location of bands as a function of time, zoom on
serrations and plastic strain rate in the specimen at the end of the simulation for a notched
axisymmetric specimen at a prescribed strain rate ε̇ = 10−4 s−1. (Animated picture)
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Figure VII.15 : Global stress/strain curve, location of bands as a function of time, zoom on
serrations and plastic strain rate in the specimen at the end of the simulation for a notched
axisymmetric specimen at a prescribed strain rate ε̇ = 10−5 s−1. (Animated picture)
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Figure VII.16 : Global stress/strain curve, location of bands as a function of time, zoom on
serrations and plastic strain rate in the specimen at the end of the simulation for a notched
axisymmetric specimen at a prescribed strain rate ε̇ = 10−6 s−1. (Animated picture)
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RÉSUMÉ – CHAPITRE VII 127

Résumé

Dans ce chapitre, on s’intéresse aux prédictions de la déformation plastique critique (où les
oscillations commencent) et de l’orientation des bandes de vitesse de déformation plastique,
pour des structures et des sollicitions plus complexes que la plaque en traction simple. Une
analyse de bifurcation par perturbation linéaire est effectuée. La théorie générale de ce type
d’analyse est rappelée. Un critère permettant de prédire la déformation plastique cumulée
critique pour les problèmes de solides infinis (traction simple, cisaillement simple) est proposé,
puis validé par comparaison avec des simulations par éléments finis à plusieurs vitesses de
déformation. Les orientations des bandes pour des simulations 2D en traction et cisaillement
simple sont également correctement prédites par l’étude analytique.

On s’intéresse ensuite aux simulations 3D des éprouvettes lisses testées expérimentalement
(cf. chapitre III). Le maillage 3D autorise une brisure de symétrie des bandes qui sont
planes et non coniques comme dans les études existantes. Cependant pour de grandes
vitesses de déformation, on retrouve la propagation en cône. Les constatations expérimentales
faites au chapitre III sur la fréquence et l’amplitude des oscillations sont retrouvées. La
déformation plastique critique correspond à peu près aux valeurs théoriques prévues. Pour
finir, des simulations 3D sur éprouvettes axisymétriques entaillées sont réalisées. La position
des bandes et notamment leur propension à sortir de l’entaille pour différentes vitesses de
déformations imposées est analysée.
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DISKS

VIII.1 Introduction

This last chapter applies all developments proposed in this work. The MC model proposed in
chapters III and V, and analysed in chapters VI, and VII is used for simulations of rotating
disks like in chapters II and IV. The aim of this chapter is to answer the following questions:
(a) Is the limit rotation rate reduced by strain ageing ? (b) Do inertial effects occur earlier
in rotating disks because of localized bands ? (c) Where do bands of localized plastic strain
rate appear in disks ? Do they affect the von Mises and hoop stress fields ? (d) Is there a
symmetry breaking like for 3D axisymmetric specimens (see chapter VII) ?

Simulations have been performed first on an axisymmetric disk with a rectangular section,
in order to answer questions (a) and (b). Calculations with small strain and large strain
formulations have been considered. The effect of inertial terms has also been evaluated
performing an implicit dynamic simulation. Then, simulations have been done on a non
axisymmetric disk to answer to questions (c) and (d). The influence of holes on the localization
of plastic strain rate has been investigated.

For all simulations minimal and maximal constitutive curves are plotted. They correspond
to minimal and maximal material behaviors described in chapter V. The aim of this part is
not to simulate the PLC effect in actual disks. Then, disks with simplified geometries have
been modeled in order to accelerate simulations. However, a realistic loading path is used for
all simulations: the rotation rate increases from 0 RPM to 60 000 RPM in 1000 s.

VIII.2 Axisymmetric disk simulations

The axisymmetric disk simulated in this part is bored with a rectangular section. Inner
radius value is ri = 30 mm, outer radius ri = 120 mm, and thickness e = 10 mm. The
first simulation has been performed using a small strain quasi-static formulation. Rotation
rate versus radial deformation is plotted in figure VIII.1. Curves provided by simulations
performed with minimum (resp. maximum) model corresponding to null (resp. full) extra-
hardening (Cs = 0 (resp. Cs = P1Cm)) are also plotted. One can observe steps with a
constant stress increment on the curve obtained with the MC model, like ones observed in
plates in tension at a constant stress rate.

PLC effect at a constant stress rate has been experimentally observed by
(Fellner et al., 1991) on an Al-Mg alloy and compared with results of tests at a constant
strain rate. They observed only A type bands at different constant stress rates, whereas
with the same material, A,B, and C types are observed at different constant strain rates.
Still on an Al-Mg alloy, (Kovacs et al., 2000) distinguish three ranges of stress rate were
steps are more or less regular. (Chmelik et al., 2007) have investigated the location where
bands nucleate for tests performed at a constant stress rate on Al-Mg alloys. Modelling
of such bands at a constant stress rate and associated theoretical studies can be found in
(Kubin and Estrin, 1985) and (Zbib and Aifantis, 1988).

Maps of the cumulated plastic strain rate for six points of the equilibrium curve defined in
figure VIII.1 are drawn in figure VIII.2. A band nucleates at the bore of the disk (point A).
Then, this band propagates quickly along disk section (points B,C,D), and disappears at its
rim (point E,F). Obviously, propagation is associated with horizontal parts of the equilibrium
curve. Nucleation and disappearing of the band are associated with vertical parts. In this
simulation and in following ones, time is linearly related to the rotation rate. The propagation
time is then very brief compared with disappearing and nucleating time. Since this simulation
is performed with a small strain formulation, there is no geometrical softening. Then limit
rotation rates for MC, minimal and maximal behaviors do not exist.

Simulations of a rotating disks with a rectangular section taking into account a finite
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Figure VIII.1 : Equilibrium curves of an axisymmetric disk with a rectangular section using
the MC model and minimal and maximal behaviors. A zoom is plotted on a step of the curve
to locate some points for which maps will be drawn in figure VIII.2.
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Figure VIII.2 : Maps of cumulated plastic strain rate corresponding to A,B,C,D,E,F points
of figure VIII.1
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strain formulation have been performed using MC, minimal, and maximal models. Because
of geometrical softening, a limit rotation rate can be calculated for each model. These limit
rotation rates are provided by asymptotic values on equilibrium curves like in chapter II,
when the influence of viscosity on the actual disk response is investigated. In order answer
question (a), the limit rotation rate calculated using the MC model is compared with those
obtained with minimal and maximal models. The equilibrium curves are plotted figure VIII.3.
Since the MC limit rotation rate is found to be between minimal and maximal limit rotation
rates, one can say that the limit rotation rate of a rotating disk is not significantly affected by
the PLC effect. The corresponding values are wMIN

LIM = 48 230 RPM for the minimal model,
wMAX

LIM = 49 670 RPM for the maximal model, and wMC
LIM = 48 780 RPM for the MC model.
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Figure VIII.3 : Equilibrium curves of an axisymmetric disk with a rectangular section using
the MC model and minimal and maximal behaviors. A large strain formulation is taken into
account.

In order to solve question (b), the same calculations are performed taking into account
inertial terms. A dynamic implicit resolution is used like in chapter IV. Results of these
simulations are plotted in figure VIII.4. The MC, minimal and maximal curves are the same
as in figure VIII.3 and can be compared with the dynamic MC equilibrium curve. One
can observe that steps do not coincide between MC and dynamic MC simulations. But
their height and width are not so different between both simulations. Moreover, even if
for the dynamic MC simulation, the last step does not appear, the limit rotation rate is
wDY NAMICMC

LIM = 48 300 RPM. This value is slightly above the minimal one.

VIII.3 3D disk simulations

3D simulations have been performed on a simplified disk like in section VIII.2. Geometry and
mesh of the simplified non axisymmetric disk is drawn on the figure VIII.6. Since number
of DOF is truly higher than for 2D simulations, calculations have not been brought up to
the limit load (see figure VIII.5). The aim of such simulations is to observe the localization
phenomena and to answer questions (c) and (d). For that purpose, maps of the plastic strain
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Figure VIII.4 : Equilibrium curves of an axisymmetric disk with a rectangular section using
the MC model and minimal and maximal behaviors. A large strain formulation and inertial
terms (dynamic effects) are taken into account.

rate, of the von Mises and hoop stresses, during the passing of a band, have been observed.

Maps of plastic strain rate at A,B,C,D,E points (see figure VIII.5) are plotted in figure
VIII.6. Bands are nucleating along the bore (points B). Then, when the plastic strain rate
is maximal, they are located in the cross constituted by bore and hole (points C,D), before
disappearing in holes (point E,A). Maps of von Mises and hoop stresses at B point are plotted
for the MC simulation in figure VIII.7. Maps of same stresses at rotation rate corresponding
to B point are also plotted for the minimum simulation. Differences between both behavior
is evidenced neither for von Mises stress, nor for hoop stress. Finally, symmetry breaking has
not been observed contrary to smooth and notched axisymmetric specimens in chapter VII.

VIII.4 Conclusion

Four important questions have been answered in this part about simulation of the PLC effect
in rotating disks.

(a) The limit rotation rate does not seem to be affected by the use of the MC strain ageing
model. The rotation rate increases with constant steps beyond the limit value which would
be found without strain ageing (minimal behavior).

(b) Taking into account inertial terms in the mechanical formulation does not significantly
affect the limit load. Simulations are different with and without these terms but the limit
rotation rate is not significantly affected by the implicit dynamic resolution.

(c) For both disks, bands of localized plastic strain rate are propagating on horizontal
parts of the equilibrium curve. For axisymmetric disks, bands are propagating from bore to
rim, “painting” the whole disk with plastic strain. For non axisymmetric disks, bands are
concentrated around holes. Then, plastic strain is localized in a cross constituted by the
bore and the four holes. This localization does not increase locally the von Mises and hoop
stresses.
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Figure VIII.5 : Equilibrium curves of a non axisymmetric disk using the MC model and
minimal and maximal behaviors. A large strain formulation is taken into account. A zoom
is plotted on a step of the curve to locate some points for which maps will be drawn in figure
VIII.6
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Figure VIII.6 : Maps of cumulated plastic strain rate corresponding to points A,B,C,D,E
of figure VIII.5
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Figure VIII.7 : Maps of the von Mises and hoop stresses for a rotation rate corresponding
to B point of figure VIII.5. Maps for the MC and minimum models are drawn in order to
evaluate the influence of PLC localized bands on stress fields.
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(d) Symmetry breaking in 3D disks was not obtained like for smooth and notched
axisymmetric specimens.
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Résumé

Ce dernier chapitre permet de mettre en valeur l’ensemble des développements présentés tout
au long de ce manuscrit. Le modèle de vieillissement dynamique pour l’Udimet 720 à 500◦C
envisagé dans le chapitre III, identifié dans le chapitre V, et testé dans les chapitres VI et VII,
est utilisé pour simuler des disques en rotation comme dans les chapitres II et IV. L’objectif
de cette partie est d’analyser l’influence de l’effet PLC sur la réponse mécanique de disques
en rotation.

Deux disques sont simulés. Le premier est axisymétrique alésé à section rectangulaire.
Une première simulation est présentée où la courbe d’équilibre vitesse de rotation /
déplacement radial présente des marches similaires aux observations faite dans la littérature
de l’effet PLC pour des essais de traction à contrainte imposée. Les vitesse limite avec et
sans vieillissement dynamique sont comparées. L’influence des termes d’inertie est également
évaluée à l’aide d’un calcul dynamique implicite.

Le second disque est non axisymétrique, alésé et percé de quatre trous périphériques. La
localisation en bande est observée pour détecter une éventuelle brisure de symétrie comme sur
les éprouvettes axisymétriques du chapitre VII.

Les principaux résultats de ce chapitre sont : (a) La vitesse limite des disques en rotation
n’est pas abaissé de manière significative par le vieillissement dynamique. (b) Les termes
d’inertie (accélération) ne sont pas amplifiés par l’effet PLC dans les mêmes disques; la vitesse
limite n’est pas modifiée. (c) La localisation en bandes se fait autour des zones trouées du
second disque. (d) Nous n’avons pas observé de brisure de symétrie.





Conclusions – Prospects



142 CONCLUSIONS – PROSPECTS

During design of turbo-engines, regulation rules impose to manufacturers to prove
integrity of rotating parts by overspeed experiments. Rotating parts are submitted to a
centrifugal load related to their rotation rate. The burst rotation rates has to be at least
20% above the operating rotating rate. Predictions of the burst rotation rate performed from
structural analysis are also acceptable, but they have to be validated first by a comparison
with overspeed experiments.

Structural analysis is performed either analytically, or using finite element simulations.
Analytical calculations are mostly acceptable in case of simple geometries and linear
mechanical problems, using strength of material methods or elastic theory. They provide
useful informations on the stress state of structures. The finite element method is needed
in case of complex geometries and/or non-linear mechanical problems. Using finite element
simulations, material and geometrical non-linearities can be taken into account. Complex
geometries, complex material behaviors and complex loading paths are nowadays currently
considered by engineers to estimate the limit (failure) load of a part. The limit load is
evaluated by criteria that can be based on the material (fracture criterion) or on the structure
(stability criterion).

For a rotating disk, submitted to a centrifugal load that increases continuously like in
overspeed experiments, the tensile behavior of the material in which disks are designed has
to be determined. In this work, a structural analysis of rotating disk using finite element
method is proposed in order to predict the burst rotation rate of turbo-engines disks.

This analysis is applied to the case of turbine disks for helicopter engines designed in
Udimet 720, a nickel based superalloy. An experimental result of an overspeed experiment
is used to validate the analysis. Since overspeed experiments are performed either at room
temperature, or at the average operating temperature (500◦C), the mechanical behavior of
Udimet 720 has been characterized in both cases. This characterisation is performed using
mechanical testing and observations. Burst of disks has been predicted by combining finite
element simulations with an appropriate failure criterion depending on the material and
structure characteristics.

Main results

The numerous results presented in this work, can be divided in four main parts related to:
(i) the mechanical behavior of Udimet 720 (ii) the numerical prediction of the limit load for
rotating disks (iii) the use of a strain ageing model for finite element simulations (iv) the
influence of strain ageing on rotating disk response.

(i) The mechanical behavior of Udimet 720 at room temperature and at 500◦C has been
characterized in chapter III. Udimet 720 presents an original fracture behavior at room
temperature. It differs from behaviors that are currently observed on metallic materials at this
temperature. Indeed, tensile behavior of Udimet 720 is such that failure occurs exactly at the
limit point of the load/displacement curve, when the slope is almost zero. Neither softening on
tensile curves nor diffuse necking in specimens have been observed. This particular behavior is
also observed for tensile tests on notched specimens. Such a behavior would be acceptable for
a “brittle” material but fractography observations have revealed ductile fracture mechanisms
at a microscopic scale. Failure seems to be associated for this material at room temperature
with the loss of stability of the mechanical equilibrium. Moreover, at this temperature,
Udimet 720 seems to be sensitive neither to strain rate, nor to damage. An elastoplastic
model for Udimet 720 at room temperature has then been identified. Parameters for this
model are given in chapter IV.

At 500◦C, serrations appear on global stress/strain curves. The Portevin Le Chatelier
(PLC) effect is evidenced. The elastoviscoplastic model proposed by MacCormick (MC
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model) has been identified for Udimet 720 at 500◦C. The identification procedure and
resulting parameters for this model were described in chapter V. A special attention is
given during identification procedure to the critical plastic strain where serrations start to
occur. It is shown that parameter α of the MC model plays the most important role to
reproduce the critical plastic strain.

(ii) The limit load for a rotating disk has been estimated using finite element simulations,
as it is described in chapter II. Simulations have been performed taking into account
deformations of disk (finite strain formulation) and the non-linear mechanical behavior of
Udimet 720. When the geometrical softening overtakes material hardening, the limit load is
reached. An arc-length control method has been used in order to overcome this limit point.
Hill’s uniqueness and stability criteria are presented in chapter II. The global loss of stability
coincides with the limit point and validate the numerical estimate of the limit rotation rate.
The local form of the stability criterion is particularly accurate to detect zones of the disk
where failure will occur.

An important contribution of this work is the sensitivity analysis of the numerical limit
load for an actual disk with respect to material hardening parameters and to the yield
function. The ultimate tensile strength and the yield criterion are the two parameters which
have to be particularly well identified in order to accurately estimate the limit rotation rate.
Following this recommendation, the yield criterion proposed by Hosford has been introduced
in the constitutive equations of the material model for Udimet 720 at room temperature.
This criterion allows one to describe isotropic yield surfaces between yield surfaces associated
with von Mises and Tresca criteria. Using this criterion, experiment on notched specimens
are perfectly simulated. The burst rotation rate of an experimental disk is also accurately
predicted in chapter IV. On the same disk, a simulation was also performed taking into
account inertial terms in the mechanical equilibrium. The dynamic limit load coincides with
the quasi-static one and with the sudden growth of the acceleration of deformations.

(iii) PLC serrations are usually associated with a localization phenomena: the propagation
of a band of plastic strain rate. PLC bands are classified in different types. An original
numerical tool called the Band Location Indicator (BLI) is proposed to evaluate the band
type, width, and velocity. Because of the localized phenomena, the“mesh and time integration
objectivity” of simulations performed using the MC model has been investigated. An implicit
method can be used to integrate the local constitutive equation. This efficient method is
presented in chapter VI. The mesh sensitivity analysis performed in the same chapter shows
that the global strain/stress curve is not significantly affected by the mesh density. Localized
phenomena are partially related to the element size, in particular the width and the number
of bands.

The prediction of the onset of serration has been investigated in chapter VII. A criterion
based on a 3D linear perturbation analysis provides accurate values of this critical strain
for infinite solid problems. The orientation of bands is also theoretically determined from
this analysis. These predictions are validated on simple tension and simple shear examples.
Simulations have been performed on 3D smooth and notched axisymmetric specimens. A
symmetry breaking of PLC bands from conical to plane is observed in simulations for the
first time. The theoretical angle (≈ 42◦) is accurately simulated for low prescribed strain
rates. Symmetry breaking of bands was observed on simulations of 3D notched specimens for
the first time.

The identification and simulation approach can be extended to a large range of materials.
Recent attempts to simulate the behavior of aluminium alloys (Benallal et al., 2006,
Dierke et al., 2007), steels (Belotteau, 2008) and zirconium alloys (Graff et al., 2005) show
the ability of the rather simple MC model to account for several features of DSA in materials
and structures.
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(iv) To close this work, the MC model has been used for simulations of rotating disks
in chapter VIII. The strain ageing does not seem to affect the limit rotation rate of disks.
However, the global response and the location of deformation localization is affected by strain
ageing and could potentially lead to earlier failures because of higher local stresses.

Prospects

Using the same classification of topics as in the previous section, the following prospects are
proposed:

(i) It would be useful to identify a comprehensive constitutive model behavior for Udimet
720 valid for a large range of temperature. A material model taking into account thermal
effects would allow one to improve finite element simulations of the PLC effect. Moreover, it
would be possible to perform simulations using actual temperature fields for simulations of
rotating disks to reproduce operating conditions.

A better understanding of failure mechanisms of Udimet 720 at room temperature and at
500◦C is also needed. Indeed, even if for both temperatures, failure occurs during all tensile
tests at the global limit point, fracture surfaces are not identical. Mechanisms are different
between both temperatures and have then to be characterized. A better understanding of
links between static strain ageing (SSA) and dynamic strain ageing (DSA) and fracture would
be useful, since these effects exist in many materials (Hopperstad et al., 2007).

Finally the anisotropy of material properties in disks could be investigated. In particular,
an anisotropic yield criterion should be identified.

(ii) In order to take into account all forces applied on a rotating disk, dynamic implicit
simulations prescribing the rotating motion or the angular momentum should be tested.
Adding defect in the structure or in boundary conditions, it would make it possible to
study effects of vibrations in such structures. The influence of defects in disks could also
be investigated in term of toughness. It would be interesting to observe if a micro-crack
could propagate enough during an overspeed experiment to cause an earlier failure.

(iii) The mesh sensitivity analysis of the MC model performed in this work prompts us to
develop a non local strain ageing model. The difficulty is now to determine the variable (ta,
p, ṗ, Cs,...), the gradient of which really affects the behavior and to define the corresponding
characteristic length.

(iv) Finally, concerning the strain ageing in rotating disks, recent works on the influence
of PLC on failure have to be considered in order to evaluate with precision if this effect can
accelerate failure of actual disks. In this case the whole design procedure of disks designed
in Udimet 720 would have to be reconsidered.

Viscoplastic instabilities can now be considered in large scale finite element simulations.
We think that in the future, they should be taken into account for the design of components
or at least for analysis of failure initiation and propagation.
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Appendix I.A : Calculation of the centrifugal load and uniaxial
approach of a rotating disk

An inertial reference frame Fi = (O,e 1, e 2, e 3) is defined. The centrifugal load associated
with the rotation arround axis (O,e 3) with an angular velocity w, arrises from the calculation
of fictitious forces in the rotating frame of reference. The rotating frame of reference is
Fr = (O,e r, e θ, e 3):

e r = cos(wt)e1 + sin(wt)e2

e θ = − sin(wt)e1 + cos(wt)e2

(.1)

if both frames coincides at t = 0. The fictitious forces attached to the rotating frame acting
on a material point (density ρ, position r , velocity V in the rotating frame) are:

Fcentrifugal = ρω × (ω × r ) (Centrifugal force)

Feuler = ρω̇ × r (Euler force)

Fcoriolis = 2ρω × V (Coriolis force)

(.2)

where ω = ωe 3. The coriolis force is neglected in this work. The ratio between tangential
and radial contributions to external load is defined by:

η =
|ρω̇ × r |

|ρw × (ω × r )| =
ω̇

ω2
(.3)

The characteristic loading path of a rotating disk is such that the rotation rate ω increases
linearly from 0 RPM to 100 000 RPM (≈ 10 000 Rad.s−1) in almost 1000 s. Then, η =
1/(ω̇t2) with ω̇ ≈ 10 Rad.s−2. At the begining of experiment, η is significant, but the stress
level is not. For significant stress levels, the ratio becomes very small. For example, for
a rotation rate equal to 100 Rad.s−1 (1% of the maximum), the ratio η is equal to 0.0001.
Therefore the tangential term in the acceleration can be neglected. The rotating disk problem
can be treated as a static problem with an external centrifugal load equal to the opposite of
the centrifugal acceleration.

The separation load of a disk in two parts is calculated from the sum of the scalar product
between the centrifugal load and axis y (see figure below). For a disk Ω with a rectangular
section and the dimensions given in this chapter (ρ is the density).

Fs =

∫

Ω

ρrω2e r.y dΩ (.4)

=

∫ e

0

∫ π

0

∫ ro

ri

ρrω2 sin θdz rdθdr (.5)

= ρeω2 [− cos θ]π0

[
r3

3

]ro

ri

(.6)

= 2ρeω2 (r3
o − r3

i )

3
(.7)

The separating stress σs is then :

σs =
Fs

S
=

Fs

2e(ro − ri)
=

r3
o − r3

i

3(ro − ri)
ρω2 (.8)
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Appendix II.A : Derivation of the loss of uniqueness criterion
II.17

A load parameter λ is defined in order to decompose the applied loads of mechanical problem
II.13 in time and space dependent terms:

fi (u , t) = λ(t)f̃i (u ) and Ti (u , t) = λ(t)T̃i (u ) (.9)

This parameter is helpful to differentiate loads with respect to time.

ḟi = λ̇f̃i + λV .
∂f̃i

∂u
et Ṫi = λ̇T̃i + λV .

∂T̃i

∂u
(.10)

The principle of virtual second order work is written in a different form than II.16:

∫

Ω0

Ṡ
∼

: Ḟ
∼

∗

dv0 =λ̇

(
∫

Ω0

ρ0f̃i .V ∗dv0 +

∫

∂Ω2

T̃i .V ∗ds0

)

+

λ

(
∫

Ω0

ρ0V .
∂f̃i

∂u
.V ∗dv0 +

∫

∂Ω2

0

V .
∂T̃i

∂u
.V ∗ds0

)

+

∫

∂Ω1

0

(

Ṡ
∼

.N
)

.V ids0 , ∀V ∗ = V i on ∂Ω1
0

(.11)

If (Ṡ
∼1

, V 1) and (Ṡ
∼2

,V 2) are two different solutions of the mechanical problem II.16 for

a given value of load parameter λ and load rate λ̇, the following relations are fulfilled:

• Principle of virtual second order work for the solution 1 with V ∗ = V 1:

∫

Ω0

Ṡ
∼1

: Ḟ
∼ 1

dv0 =λ̇

(
∫

Ω0

ρ0
˙̃
fi.V 1dv0 +

∫

∂Ω2

0

˙̃Ti.V 1ds0

)

+

λ

(
∫

Ω0

ρ0V 1.
∂f̃i

∂u
.V 1dv0 +

∫

∂Ω2

0

V 1.
∂T̃i

∂u
.V 1ds0

)

+

∫

∂Ω1

0

(

Ṡ
∼

.N
)

.V ids0

(.12)

• Principle of virtual second order work for the solution 2 with V ∗ = V 1:

∫

Ω0

Ṡ
∼2

: Ḟ
∼ 1

dv0 =λ̇

(
∫

Ω0

ρ0
˙̃
fi.V 1dv0 +

∫

∂Ω2

0

˙̃Ti.V 1ds0

)

+

λ

(
∫

Ω0

ρ0V 2.
∂f̃i

∂u
.V 1dv0 +

∫

∂Ω2

0

V 2.
∂T̃i

∂u
.V 1ds0

)

+

∫

∂Ω1

0

(

Ṡ
∼

.N
)

.V ids0

(.13)
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• Subtraction (.12)-(.13):

∫

Ω0

(Ṡ
∼1

−Ṡ
∼2

) : Ḟ
∼ 1

dv0 = λ

(
∫

Ω0

ρ0(V 1−V 2).
∂f̃i

∂u
.V 1dv0+

∫

∂Ω2

0

(V 1−V 2).
∂T̃i

∂u
.V 1ds0

)

(.14)

• Same result using V ∗ = V 2:

∫

Ω0

(Ṡ
∼1

−Ṡ
∼2

) : Ḟ
∼ 2

dv0 = λ

(
∫

Ω0

ρ0(V 1−V 2).
∂f̃i

∂u
.V 2dv0+

∫

∂Ω2

0

(V 1−V 2).
∂T̃i

∂u
.V 2ds0

)

(.15)

• Subtraction (.14)-(.15):

∫

Ω0

∆Ṡ
∼

: ∆Ḟ
∼

dv0 = λ

(
∫

Ω0

ρ0∆V .
∂f̃i

∂u
.∆V dv0 +

∫

∂Ω2

0

∆V .
∂T̃i

∂u
.∆V ds0

)

(.16)

If two distinct solutions (Ṡ
∼1

,V 1) and (Ṡ
∼2

,V 2) exist, they must satisfy equation .16. Finally,
the following expression is therefore a sufficient condition for uniqueness of the solution:

∀(V 1,V 2) kinematically admissible,

∫

Ω0

∆Ṡ
∼

: ∆Ḟ
∼

dv0 −
(
∫

Ω0

ρ0∆V .
∂fi

∂u
.∆V dv0 +

∫

∂Ω2

0

∆V .
∂Ti

∂u
.∆V ds0

)

> 0 (.17)

with ∆(.) = (.)1 − (.)2
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Appendix II.B : Derivation of the loss of stability criterion II.18

The loss of stability criterion (II.18) is obtained by considering the influence of a perturbation
of the load parameter λ around an equilibrium state (λ0, u 0) at time t0. A small load
increment λ1ǫ (ǫ is a small time increment) is introduced in the system, and the different
quantities are developed at time t = t0 + ǫ.

λt = λ0 + ǫλ1 with λ̇ = lim
ǫ→0

λt − λ0

ǫ
(.18)

u t = u 0 + ǫu 1 with V = u̇ = lim
ǫ→0

u t − u 0

ǫ
(.19)

S
∼ t

= S
∼0

+ ǫS
∼1

with Ṡ
∼

= lim
ǫ→0

S
∼ t

− S
∼0

ǫ
(.20)

f
t
= f (u t) = f

0
+ ǫf

1
with f

0
= f (u 0) and ḟ =

∂f

∂u
.u̇ =

∂f

∂u
.V = lim

ǫ→0

f
t
− f

0

ǫ
(.21)

T t = T (u t) = T 0 + ǫT 1 with T 0 = T (u 0) and Ṫ =
∂T

∂u
.u̇ =

∂T

∂u
.V = lim

ǫ→0

T t − T 0

ǫ
(.22)

The principle of virtual power at t0 is :

∫

Ω0

S
∼0

: Ḟ
∼

∗

dv0

︸ ︷︷ ︸

PINT

= λ0

(
∫

Ω0

ρ0f̃i 0
.V ∗dv0 +

∫

∂Ω2

0

T̃i 0
.V ∗ds0

)

︸ ︷︷ ︸

PEXT

, ∀V ∗ = 0 on ∂Ω1
0 (.23)

The same principle at t = t0 + ǫ is written with the previous developments and ordered
according to the powers of ǫ :

∫

Ω0

(S
∼0

+ ǫ.S
∼1

) : Ḟ
∼

∗

dv0 = (λ0 + ǫ.λ1)

(
∫

Ω0

ρ0(f̃i 0
+ ǫ.f̃i 1

).V ∗dv0

+

∫

∂Ω2

0

(T̃i 0
+ ǫ.T̃i 1

).V ∗ds0

)

, ∀V ∗ = 0 on ∂Ω1
0 (.24)

[
∫

Ω0

S
∼0

: Ḟ
∼

∗

dv0 − λ0

(∫

Ω0

ρ0f̃i 0
.V ∗dv0 +

∫

∂Ω2

0

T̃i 0
.V ∗ds0

)]

+

ǫ

[
∫

Ω0

S
∼1

: Ḟ
∼

∗

dv0 − λ0

(∫

Ω0

ρ0f̃i 1
.V ∗dv0 +

∫

∂Ω2

0

T̃i 1
.V ∗ds0

)

−

λ1

(∫

Ω0

ρ0f̃i 0
.V ∗dv0 +

∫

∂Ω2

0

T̃i 0
.V ∗ds0

)]

+

ǫ2

[

λ1

(∫

Ω0

ρ0f̃i 1
.V ∗dv0 +

∫

∂Ω2

0

T̃i 1
.V ∗ds0

)]

= 0 , ∀V ∗ = 0 on ∂Ω1
0

(.25)
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The Oth order term corresponds to the equilibrium equation at time t0 and consequently
vanishes. If the energy ωp supplied by the perturbation ǫλ1 to move from an equilibrium
state at time t0 to another one at time t is positive, then the equilibrium at time t0 is stable.
This virtual energy ω∗

p is :

ω∗

p = ǫ

[

λ1

(∫

Ω0

ρ0(f̃i 0
+ ǫ.f̃i 1

).V ∗dv0 +

∫

∂Ω2

0

(T̃i 0
+ ǫ.T̃i 1

).V ∗ds0

)]

, V ∗ = 0 on ∂Ω1
0

(.26)
Combining this expression with equation (.25), another expression of ω∗

p is calculated :

ω∗

p =

∫

Ω0

S
∼1

: Ḟ
∼

∗

dv0 − λ0

(∫

Ω0

ρ0f̃i 1
.V ∗dv0 +

∫

∂Ω2

0

T̃i 1
.V ∗ds0

)

, V ∗ = 0 on ∂Ω1
0 (.27)

The equilibrium is stable if ∀V ∗ kinematically admissible, ω∗

p remains positive. Finally, when
ǫ tends to 0, the criterion (II.18) is obtained :

The equilibrium is stable if ∀V = 0 on ∂Ω1
0

∫

Ω0

Ṡ
∼

: Ḟ
∼

dv0 −
(
∫

Ω0

ρ0V .
∂fi

∂u
.V dv0 +

∫

∂Ω2

0

V .
∂Ti

∂u
.V ds0

)

> 0 (.28)

Moreover, λ is also the load parameter in the arc-length control method. In the previous
derivation, the instability occurs when ω∗

p vanishes, i.e. when λ1 vanishes. When ǫ tends to 0,

λ1 tends to the load parameter rate λ̇. Therefore, the instability of the equilibrium coincides
with the maximum value of the load parameter in the arc-length control method.
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Appendix II.C : Calculation of the spin-softening term in
uniqueness and stability criteria

In order to simplify the expression of criteria in the case of a rotating disks, it is useful to

differentiate the centrifugal load with respect to the displacements
∂fi

∂u . The centrifugal load
fi is related to the rotating vector ω and the current position x . The axe of the rotation
pass trough the origin of the frame.

fi = ω × (x × ω )

= (ω .ω )x − (ω .x )ω

= ‖ω ‖2x − (ω ⊗ ω ).x

(.29)

fi can then be differentiated with respect to u :

∂fi

∂u
= ‖ω ‖2I

∼

− ω ⊗ ω (.30)

This expression can be substituted in the spin-softening term :

V .
∂fi

∂u
.V = ‖ω ‖2‖V ‖2 − V .(ω ⊗ ω ).V

= ‖V × ω ‖2

(.31)

Loss of uniqueness and stability criterion in case of rotating disk is then :

The solution is stable and unique if ∀V kinematically admissible,

∫

Ω0

(Ṡ
∼

.Ḟ
∼

− ρ0‖V × ω ‖2)dv0 > 0 (.32)
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Appendix VI.A : Calculation of the residual R and Jacobian
matrix J for the strain ageing model

• Calculation of the residual :
R = ∆Z − ∆tF(Zt + Θ∆Z,∆ε

∼

t+Θ∆t) = 0

R
∼ ε

∼e

= ∆ε
∼e

+ ∆ε
∼p

− ∆ε
∼

= ∆ε
∼e

+ N
∼

∆p − ∆ε
∼

(.33)

Rp = ∆p − g(f)∆t (.34)

Rta = ∆ta − ∆t +
ta
w

∆p (.35)

• Calculation of the Jacobian matrix :

J =
∂R

∂∆Z
= 1 − ∆t

∂F

∂∆Z

∣
∣
∣
∣

t+Θ∆t

∂Rε
∼e

∂∆Z
:

∂Rε
∼e

∂∆ε
∼e

= I
∼

∼

+ Θ∆p(N
∼

∼

: E
∼

∼

) (.36)

∂Rε
∼e

∂∆p
= N

∼

(.37)

∂Rε
∼e

∂∆ta
= 0

∼

(.38)

∂Rp

∂∆Z
:

∂Rp

∂∆ε
∼e

= −Θ∆tg′(N
∼

∼

: E
∼

∼

) (.39)

∂Rp

∂∆p
= 1 − Θ∆tg′(H + Cp) (.40)

∂Rp

∂∆ta
= 1 − Θ∆tg′

Cta

ta
(.41)

∂Rta

∂∆Z
:

∂Rta

∂∆ε
∼e

= 0
∼

(.42)

∂Rta

∂∆p
=

ta
w

(.43)

∂Rta

∂∆ta
= 1 + Θ

∆p

w
(.44)
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where :

N
∼

=
∂f

∂σ
∼

N
∼

∼

=
∂N

∼

∂σ
∼

E
∼

∼

is the elasticity tensor

g′ =
dg

df

H =
∂R

∂p

Cp = P1

∂Cs

∂p

Cta = P1

∂Cs

∂ta
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Appendix VII.A : Calculation of

[
∂F

∂Z

]

and

[
∂F

ε̇
∼

]

for the strain

ageing model
[
∂F

∂Z

]

=

[[
∂F

∼ σ

∂Z

]

,

[
∂FX

∂Z

]]

=

[[
∂F

∼ σ

∂Z

]

,

[
∂Fp

∂Z

]

,

[
∂Fta

∂Z

]]

•
[
∂F

∼ σ
∂Z

]

=

[
∂F

∼ σ

∂σ
∼

,
∂F

∼ σ

∂p ,
∂F

∼ σ

∂ta

]

∂F
∼ σ

∂σ
∼

= −ṗN
∼

∼

− ∂ṗ

∂f

(
N
∼

⊗ N
∼

)
(.45)

∂F
∼ σ

∂p
=

∂ṗ

∂f

∂(R + P1Cs)

∂p
N
∼

= g′(Cp + H)N
∼

(.46)

∂F
∼ σ

∂ta
=

∂ṗ

∂f

∂(P1Cs)

∂ta
N
∼

= g′CtaN∼ (.47)

•
[
∂Fp

∂Z

]

=
[

∂Fp

∂σ
∼

,
∂Fp

∂p ,
∂Fp

∂ta

]

∂Fp

∂σ
∼

=
∂ṗ

∂f
N
∼

= g′N
∼

(.48)

∂Fp

∂p
= −∂ṗ

∂f

∂(R + P1Cs)

∂p
= −g′(Cp + H) = a (.49)

∂Fp

∂ta
= −∂ṗ

∂f

∂(P1Cs)

∂ta
= −g′Cta = b (.50)

•
[
∂Fta
∂Z

]

=
[

∂Fta

∂σ
∼

, ∂Fta

∂p , ∂Fta

∂ta

]

∂Fta

∂σ
∼

= − ta
w

∂ṗ

∂f
N
∼

= −g′ta
w

N
∼

(.51)

∂Fta

∂p
=

ta
w

∂ṗ

∂f

∂(R + P1Cs)

∂p
=

g′ta
w

(Cp + H) = c (.52)

∂Fta

∂ta
= − ṗ

w
+

ta
w

∂ṗ

∂f

∂(P1Cs)

∂ta
= − ṗ

w
+ =

g′ta
w

Cta = d (.53)

• ∂F
∂ε̇

∼

=

(

I
∼

∼

0

)
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Appendix VII.B : Calculation of [H4], and
[

H
∼

∼

s(λ)
]

[H4] =

(

1 − a
λ

−b
λ

−c
λ

1 − d
λ

)

(.54)

[H4]−1 =
1

det ([H4])

(

1 − d
λ

b
λ

c
λ

1 − a
λ

)

(.55)

λ2 det ([H4]) = λ2 − (a + d)λ + (ad − bc) (.56)

[H2] = − 1

λ

[
∂F

∼ σ

∂p
,
∂F

∼ σ

∂ta

]

, [H3] = − 1

λ

[
∂Fp

∂σ
∼

,
∂Fta

∂σ
∼

]

(.57)

[H2] [H4]−1 [H3] =
1

λ2 det ([H4])










[
(1 − d

λ
)
∂Fp

∂σ
∼

+
b

λ

∂Fta

∂σ
∼

]
⊗

∂F
∼ σ

∂p
+
[
(1 − a

λ
)
∂Fta

∂σ
∼

+
c

λ

∂Ftp

∂σ
∼

]
⊗

∂F
∼ σ

∂ta
︸ ︷︷ ︸

H
∼

∼

5(λ)











(.58)

[

H
∼

∼

p(λ)
]

=
[

H
∼

∼

1 − [H2] [H4]−1 [H3]
]
−1

(.59)

=

[

H
∼

∼

1 −
H
∼

∼

5

λ2 det ([H4])

]
−5

= λ2 det ([H4])
[

H
∼

∼

s(λ)
]

(.60)

where

[

H
∼

∼

s(λ)
]

=

[

λ2 det ([H4]) I
∼

∼

− λ det ([H4])
∂F

∼ σ

∂σ
∼

− H
∼

∼

5(λ)

]
−1

(.61)
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Appendix VII.C : Calculation of H
∼

∼

p(λ)

To calculate H
∼

∼

p(λ), useful constitutive equations are :

σ
∼d

= 2µ(ε
∼d

− ε
∼

p) , σm = trace (σ
∼

) = 3Kεm = 3Ktrace (ε
∼

) (.62)

f(σ
∼

, p, ta) = σeq − R(p) − P1Cs(p, ta) (.63)

σeq = J2(σ
∼

) =

√

3

2
σ
∼d

: σ
∼d

, ṗ =

√

3

2
ε̇
∼

p : ε̇
∼

p (.64)

ε̇
∼

p =
3

2
ṗ

σ
∼d

σeq
(.65)

ṗ = g(f) (.66)

ṫa = 1 − taṗ

w
(.67)

Assuming that ∆�̇ = λ∆� :

(.67) ⇒ ∆ta = − taλ

wλ + ṗ
∆p (.68)

(.63), (.66), (.68) ⇒ ∆σeq =

[

H +
λ

g′
+ Cp −

Ctataλ

wλ + ṗ

]

∆p = Heq(λ)∆p (.69)

(.65) ⇒ σ
∼d

: ∆ε̇
∼

p = σeq∆ṗ (.70)

(.62), (.70) ⇒ ∆σeq = 3µ

(
σ
∼d

: ∆ε
∼d

σeq
− ∆p

)

(.71)

Then, perturbing equations (.65) and (.62):

∆ε
∼

p =
3ṗ

2λ

∆σ
∼d

σeq
+

3

2

σ
∼d

σeq
∆p − 3ṗ

2λσeq

σ
∼d

σeq
∆σeq (.72)

∆σd = 2µ(∆ε
∼d

− ∆ε
∼

p) (.73)

Hence, eliminating in previous equations ∆ε
∼

p, ∆p, and ∆σeq :

∆σ
∼d

=
µ

3µṗ + λσeq

[

2wσeqI
∼

∼

+
9µ(ṗHeq(λ) − λσeq

3µ + Heq
(λ)

σ
∼d

σeq
⊗

σ
∼d

σeq

]

: ∆ε
∼d

(.74)

∆σm = 3Kεm (.75)

Finally,

H
∼

∼

p(λ) =
1

3µṗ + λσeq

[

λσeqE
∼

∼

+ 3KµṗI
∼

⊗ I
∼

− 9µ2 λσeq − ṗHeq(λ)

3µ + Heq(λ)

σ
∼d

σeq
⊗

σ
∼d

σeq

]

(.76)
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