

Observation de paires d'atomes corrélées au travers de la collision de deux condensats de Bose-Einstein

Aurélien Perrin

Soutenance de thèse de doctorat, 29 novembre 2007

Optique non-linéaire

Point de vue classique

- Interaction non-linéaire : $\chi^{(2)}\mathbf{E}^2$
- Accord de phase:

$$\omega_p = \omega_1 + \omega_2$$

$$\mathbf{k_p} = \mathbf{k_1} + \mathbf{k_2}$$

Point de vue quantique

- Production de paires de photons corrélés.
- Tests fondamentaux de mécanique quantique.

Simultanéité dans la production de paires de photons

Production de paires de photons jumeaux

- Conversion paramétrique.
- Hamiltonien du système :

$$\widehat{H} = \chi^{(2)} \widehat{b} \widehat{a}_1^{\dagger} \widehat{a}_2^{\dagger} + \text{c.c.}$$

Mesure des coïncidences de détection

- Augmentation du taux de coïncidences.
- Quasi-simultanéité de la production des paires.
- Détecteur de photons uniques.

D.C. Burnham and D.L. Weinberg, Phys. Rev. Lett. 25, 84 (1970)

Simultanéité dans la production de paires de photons

Production de paires de photons jumeaux

- Conversion paramétrique.
- Hamiltonien du système :

$$\widehat{H} = \chi^{(2)} \widehat{b} \widehat{a}_1^{\dagger} \widehat{a}_2^{\dagger} + \text{c.c.}$$

Mesure des coïncidences de détection

- Augmentation du taux de coïncidences.
- Quasi-simultanéité de la production des paires.
- Détecteur de photons uniques.

D.C. Burnham and D.L. Weinberg, Phys. Rev. Lett. 25, 84 (1970)

Optique atomique

L. De Broglie

• Dualité onde - corpuscule :

$$\lambda_{dB} = \frac{h}{p}$$

• Lumière et matière peuvent être décrites de façon analogue dans le cadre de la mécanique quantique.

- Condensats de Bose-Einstein : source atomique cohérente.
- Interférométrie atomique, laser à atomes...
- Optique atomique non-linéaire ?

Mélange à 4 ondes

MIT (et NIST)

Point de vue "classique"

- Mélange à 4 ondes de matière $(\chi^{(3)})$.
- Phénomène non linéaire → interactions interatomiques.

Point de vue quantique

- Interaction : collisions élastiques entre deux atomes.
- Production de paires d'atomes corrélés.
- Detecteur d'atomes uniques ?
 - J. M. Vogels et al., Phys. Rev. Lett. 89, 020401 (2002)

Hélium métastable - un bon candidat

Détecteur d'atomes uniques

- Grande énergie interne (20 eV).
- Galette de microcanaux (MCP).
 - \rightarrow Détecteur bas bruit.

Ambition

- Mise en place d'une source de paires d'atomes corrélés.
- Démonstration de l'existence des paires.
- Caractérisation de la source.

Plan de l'exposé

1 Production de paires d'atomes

2 Mise en évidence des corrélations

- 3 Simulations stochastiques de la collision de deux condensats
- 4 Conclusion et perspectives

Plan de l'exposé

1 Production de paires d'atomes

2 Mise en évidence des corrélations

- 3 Simulations stochastiques de la collision de deux condensats
- 4 Conclusion et perspectives

Différentes étapes de refroidissement pour amener le gaz d'hélium métastable au seuil de condensation.

Excitation des atomes d'hélium : état métastable (Durée de vie $\sim 9000~\mathrm{s}).$

Refroidissement longitudinal : diode laser (transition fermée @1083 nm).

Piège : $\sim 10^8$ atomes.

Condensat de Bose-Einstein pur en $45 \text{ s} : 10^4 - 10^5 \text{ atomes}$.

Extraction du condensat par transfert Raman

 $2^{3}P_{0}$

Transfert Raman

Les atomes sont initialement piégés dans le sous niveau Zeeman $m_x = 1$.

Extraction du condensat par transfert Raman

Transfert Raman

- Désaccord : $\Delta = 400$ MHz.
- Impulsions lumineuses d'environ 500 ns.
- Plus de 80% d'efficacité de transfert.

Transfert d'impulsion

$$v_R = \hbar k_R / m = 9.2 \text{ cm/s}.$$

Collision de deux condensats

Transfert Raman

Le condensat est séparé en deux parties d'impulsions différentes

Rétroréflexion du faisceau polarisé σ^-

Collisions élastiques

- $v_R > \sqrt{\mu/m} \rightarrow \text{particules libres.}$
- Longueur de diffusion : $a_{00} = 5.3 \text{ nm}$
- Nombre atomes diffusés $\propto n^2$.
- Conservation énergie-impulsion → sphère.
 - Basse énergie : onde s.

- \bullet Séparation spatiale des condensats : ~ 1 ms.
- Expansion spatiale due aux interactions : $\sim 150 \ \mu s$

Collisions élastiques

- $v_R > \sqrt{\mu/m} \rightarrow \text{particules libres}$.
- Longueur de diffusion : $a_{00} = 5.3 \text{ nm}$
- Nombre atomes diffusés $\propto n^2$.
- Conservation énergie-impulsion → sphère.
 - Basse énergie : onde s.

- \bullet Séparation spatiale des condensats : ~ 1 ms.
- Expansion spatiale due aux interactions : $\sim 150 \ \mu s$

Collisions élastiques

- $v_R > \sqrt{\mu/m} \to \text{particules libres.}$
- Longueur de diffusion : $a_{00} = 5.3 \text{ nm.}$
- Nombre atomes diffusés $\propto n^2$.
- Conservation énergie-impulsion → sphère.
 - Basse énergie : onde s.

- Séparation spatiale des condensats : ~ 1 ms.
- Expansion spatiale due aux interactions : $\sim 150~\mu s$

Collisions élastiques

- $v_R > \sqrt{\mu/m} \rightarrow \text{particules libres}$.
- Longueur de diffusion : $a_{00} = 5.3$ nm.
- Nombre atomes diffusés $\propto n^2$.
- Conservation énergie-impulsion \rightarrow sphère.
- Basse énergie : onde s.

- \bullet Séparation spatiale des condensats : ~ 1 ms.
- Expansion spatiale due aux interactions : $\sim 150 \ \mu s$.

Collisions élastiques

- $v_R > \sqrt{\mu/m} \to \text{particules libres}$.
- Longueur de diffusion : $a_{00} = 5.3$ nm.
- Nombre atomes diffusés $\propto n^2$.
- Conservation énergie-impulsion \rightarrow sphère.
- Basse énergie : onde s.

- Séparation spatiale des condensats : ~ 1 ms.
- Expansion spatiale due aux interactions : $\sim 150 \ \mu s$.

Détecteur d'atomes uniques

Hélium métastable : He*

- Temps de vol : 320 ms.
- Etat métastable → Energie interne de 20 eV.
- Capable d'extraire un électron d'une surface.

MCP

- Ø 8 cm.
- 1 He* donne 10^7 electrons en ~ 1 ns.
- Efficacité de détection : $\sim 10 \%$.

Un détecteur résolu en temps et en position

Temps d'arrivée des atomes sur la galette

- TDC : $\Delta t = 400 \text{ ps.}$
- Flux $\sim 400 \text{ kat/s}$.

Position des atomes sur le détecteur

Lignes à retard

- $x \to n\Delta t$, n entier.
- Taille d'un pixel spatial = $200 \ \mu \text{m} \ (\sim 10^5 \text{ pixels})$
- Résolution: 300 μm et 1 ns RMS

Long temps de vol : $(x, y, t) \longleftrightarrow (v_x, v_y, v_z)$

Un détecteur résolu en temps et en position

Temps d'arrivée des atomes sur la galette

- TDC : $\Delta t = 400 \text{ ps.}$
- Flux $\sim 400 \text{ kat/s}$.

Position des atomes sur le détecteur

Lignes à retard

- $x \to n\Delta t$, n entier.
- Taille d'un pixel spatial = $200 \ \mu \text{m} \ (\sim 10^5 \text{ pixels})$
- Résolution: 300 μm et 1 ns RMS

Long temps de vol : $(x, y, t) \longleftrightarrow (v_x, v_y, v_z)$

Résultats expérimentaux

Plan de l'exposé

- Production de paires d'atomes
- 2 Mise en évidence des corrélations

- 3 Simulations stochastiques de la collision de deux condensats
- 4 Conclusion et perspectives

Mesure de la fonction $g^{(2)}$

Comment mettre en évidence les paires produites par collision?

$$G^{(2)}(\mathbf{v}_1, \mathbf{v}_2) = \langle n(\mathbf{v}_1) \ n(\mathbf{v}_2) \rangle$$

 $G^{(2)}(\mathbf{v}_1, \mathbf{v}_2) \Longrightarrow$ Probabilité de détecter conjointement un atome de vitesse \mathbf{v}_1 et un atome de vitesse \mathbf{v}_2 .

- Phénomène aléatoire : $G^{(2)}(\mathbf{v}_1, \mathbf{v}_2) = \langle n(\mathbf{v}_1) \rangle \langle n(\mathbf{v}_2) \rangle$.
- Mise en évidence des corrélations :

$$g^{(2)}(\mathbf{v}_1, \mathbf{v}_2) = \frac{G^{(2)}(\mathbf{v}_1, \mathbf{v}_2)}{\langle n(\mathbf{v}_1) \rangle \langle n(\mathbf{v}_2) \rangle} \neq 1$$

Dans le halo de collision, on s'attend à ce que $g^{(2)}(\mathbf{v}, -\mathbf{v}) > 1$.

Paires d'atomes corrélés

Mesure expérimentale

- \bullet Faible nombre de paires détecté \to moyennage.
- Mesure de $g^{(2)}(\mathbf{V}) = \frac{\int_{\mathcal{S}} d^3\mathbf{v} \ G^{(2)}(\mathbf{v}, -\mathbf{v} + \mathbf{V})}{\int_{\mathcal{S}} d^3\mathbf{v} \ n(\mathbf{v})n(-\mathbf{v} + \mathbf{V})}$

Interprétation qualitative

- Existence de paires d'atomes corrélés.
- Anisotropie de la corrélation ↔ Anisotropie du condensat.

Interprétation de la largeur des corrélations

Image physique

- $\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{v}_3 + \mathbf{v}_4$
- Incertitude sur \mathbf{v}_i :

$$\mathbf{v}_3 + \mathbf{v}_4 = \delta \mathbf{v} \neq \mathbf{0}$$

• Heisenberg : $m\Delta v \sim \frac{\hbar}{\Delta x}$

Résultats des ajustements

- Axe long $\sim 0.09~v_R$: bon ordre de grandeur.
- Axe court $\sim 0.004 \ v_R$: limité par la résolution $(0.014 \ v_R)$.

Hauteur corrélations

Dépendance de la hauteur des corrélations avec $N_{\rm sc}$

•
$$g^{(2)}(\mathbf{V} = \mathbf{0}) = \frac{\text{fortuite} + \text{vraie}}{\text{fortuite}} = 1 + \eta.$$

• $\eta = \frac{\text{vraie}}{\text{fortuite}} \propto \frac{N_{\text{sc}}}{N_{\text{sc}}^2}.$

Corrélations locales

Mesure expérimentale

- Diffusion des paires Processus aléatoire.
- Interférences quantiques : Effet Hanbury Brown Twiss.
- $\bullet \ \ Bosons \longleftrightarrow groupement.$

Mesure du volume de cohérence de la source.

- Largeurs de corrélation ↔ taille initiale de la source.
- Effet ondulatoire → dualité onde-corpuscule

Corrélations locales

Mesure expérimentale

- Diffusion des paires Processus aléatoire.
- Interférences quantiques : Effet Hanbury Brown Twiss.
- ullet Bosons \longleftrightarrow groupement.

Mesure du volume de cohérence de la source.

- \bullet Largeurs de corrélation \leftrightarrow taille initiale de la source.
- \bullet Effet ondulatoire \rightarrow dualité onde-corpuscule.

Plan de l'exposé

Production de paires d'atomes

- 2 Mise en évidence des corrélations
- 3 Simulations stochastiques de la collision de deux condensats
- 4 Conclusion et perspectives

Principe général

- Collisions de deux CBE : grand nombre de modes.
- Calcul numérique quasi-impossible.
- ullet Méthodes stochastiques \longrightarrow temps de calcul raisonnable.
- Séjour Univ. of Queensland (K. Kheruntsyan, P. Drummond).

- Prise en compte de tous les effets quantiques...
- Résultats obtenus comparables aux résultats expérimentaux.
- Limitation de la durée de la collision : $t_{\text{sim}} = 25 \mu \text{s}$.

Comparaison avec les résultats expérimentaux

Corrélations

- Largeurs corrélation \sim Largeurs condensat.
- anisotropie (axe court axe long).
- Hauteur compatible avec le petit modèle corpusculaire.

- Interprétation encore valable pour différentes valeurs des paramètres de la collision.
- ullet Expérience ightarrow régime spontané confirmé.

Plan de l'exposé

- Production de paires d'atomes
- 2 Mise en évidence des corrélations

- 3 Simulations stochastiques de la collision de deux condensats
- Conclusion et perspectives

Conclusion

Une source de paires d'atomes corrélés.

- Corrélation opposée : caractère corpusculaire.
- Corrélation locale : caractère ondulatoire.
- ullet ightarrow dualité onde corpuscule.
- \iff Dissociation de molécules.

Système de détection capable de caractériser la source.

- Equivalent atomique des photodétecteurs.
- Compatibilité largeurs des corrélations locales et opposées.
- Régime spontané.

Outil pour étudier corrélations plus complexes

- Inégalités de Bell.
- Réduction des fluctuations : $N_{\mathbf{v}} = N_{-\mathbf{v}}$.

Mesure de la réduction de fluctuations

- Réduction des fluctuations du nombre d'occupation de deux modes opposés.
- Découpage de la sphère.

• Qualité de la réduction des fluctuations :

$$V_{A-C} = V_{B-D} \sim 0.2$$

• Limitation expérimentale \rightarrow efficacité de détection $\epsilon \sim 10\%$:

$$V_{\rm exp} = \sqrt{1 - \epsilon} \sim 0.95$$

Remerciements

Hanbury Brown et Twiss

T. Jeltes & al, Nature **445**, 402 (2007)

Violation inégalités de Bell

J.G. Rarity and P.R. Tapster, *PRL* **64**, 2495 (1990)