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tien au cours de ces trois années, mais aussi pour son excellente direction à la

fois avisée et exigeante à laquelle cette thèse doit beaucoup. C’est grâce à lui que

j’ai pu découvrir le domaine de l’analyse microlocale appliquée à l’analyse com-

plexe et le monde de la recherche. J’ai eu beaucoup de plaisir à être son étudiant.

J’aimerais aussi remercier Louis Boutet de Monvel pour sa lecture et les ex-

plications, suggestions et discussions qu’il m’a apportées, Bo Berndtsson pour sa

lecture et remarques et Xiaonan Ma pour sa lecture détaillée et ses corrections.

Je remercie Claude Viterbo, Bernard Helffer et Robert Berman de m’avoir fait

un grand honneur d’être membres de mon jury.

Je tiens à exprimer ma reconnaissance à Bo Berndtsson et Robert Berman

pour avoir fait de ma visit à l’Université de Göteborg en novembre-decembre

2006 un moment inoubliable et pour les discussions qu’on a eu pendant mon

séjour en Suède, qui ont été toutes très utiles.

Cette thèse a été effectuée au Centre de Mathématiques Laurent Schwartz

(CMLS) de l’Ecole Polytechnique, un laboratoire extrêmement accueillant et cha-

leureux dont je voudrais remercier tous les membres.





This Thesis consists of an introduction and the following papers:

Paper I: On the singularities of the Szegö projection for (0,q ) forms

Paper II: On the singularities of the Bergman projection for (0,q ) forms





Introduction

The Bergman and Szegö projections are classical subjects in several com-
plex variables and complex geometry. By Kohn’s regularity theorem for the ∂ -
Neumann problem (1963, [11]), the boundary behavior of the Bergman kernel is
highly dependent on the Levi curvature of the boundary. The study of the bound-
ary behavior of the Bergman kernel on domains with positive Levi curvature
(strictly pseudoconvex domains) became an important topic in the field then. In
1965, L. Hörmander ([9]) determined the boundary behavior of the Bergman ker-
nel. C. Fefferman (1974, [7]) established an asymptotic expansion at the diagonal
of the Bergman kernel. More complete asymptotics of the Bergman kernel was
obtained by Boutet de Monvel and Sjöstrand (1976, [6]). They also established an
asymptotic expansion of the Szegö kernel on strongly pseudoconvex boundaries.
All these developments concerned pseudoconvex domains. For the nonpseudo-
convex domain, there are few results. R. Beals and P. Greiner (1988, [1]) proved
that the Szegö projection is a Heisenberg pseudodifferential operator, under cer-
tain Levi curvature assumptions. Hörmander (2004, [10]) determined the bound-
ary behavior of the Bergman kernel when the Levi form is negative definite by
computing the leading term of the Bergman kernel on a spherical shell in Cn .

Other developments recently concerned the Bergman kernel for a high power
of a holomorphic line bundle. D. Catlin (1997, [4]) and S. Zelditch (1998, [16])
adapted a result of Boutet de Monvel-Sjöstrand for the asymptotics of the Szegö
kernel on a strictly pseudoconvex boundary to establish the complete asymp-
totic expansion of the Bergman kernel for a high power of a holomorphic line
bundle with positive curvature. Recently, a new proof of the existence of the
complete asymptotic expansion was obtained by B. Berndtsson, R. Berman and
J. Sjöstrand (2004, [3]). Without the positive curvature assumption, R. Berman
and J. Sjöstrand (2005, [2]) obtained a full asymptotic expansion of the Bergman
kernel for a high power of a line bundle when the curvature is non-degenerate.
The approach of Berman and Sjöstrand builds on the heat equation method of
Menikoff-Sjöstrand (1978, [15]). The expansion was obtained independently by
X. Ma and G. Marinescu (2006, [14]) (without a phase function) by using a spec-
tral gap estimate for the Hodge Laplacian.

Recently, Hörmander (2004, [10]) studied the Bergman projection for (0,q )
forms. In that paper (page 1306), Hörmander suggested: "A carefull microlocal
analysis along the lines of Boutet de Monvel-Sjöstrand should give the asymp-
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totic expansion of the Bergman projection for (0,q ) forms when the Levi form is
non-degenerate."

The main goal for this thesis is to achieve Hörmander’s wish-more precisely,
to obtain an asymptotic expansion of the Bergman projection for (0,q ) forms.
The first step of my research is to establish an asymptotic expansion of the Szegö
projection for (0,q ) forms. Then, find a suitable operator defined on the bound-
ary of domain which plays the same role as the Kohn Laplacian in the approach
of Boutet de Monvel-Sjöstrand.

This thesis consists two parts. In the first paper, we completely study the
heat equation method of Menikoff-Sjöstrand and apply it to the Kohn Laplacian
defined on a compact orientable connected CR manifold. We then get the full
asymptotic expansion of the Szegö projection for (0,q ) forms when the Levi form
is non-degenerate. We also compute the leading term of the Szegö projection.

In the second paper, we introduce a new operator analogous to the Kohn
Laplacian defined on the boundary of a domain and we apply the method of
Menikoff-Sjöstrand to this operator. We obtain a description of a new Szegö pro-
jection up to smoothing operators. Finally, by using the Poisson operator, we get
the full asymptotic expansion of the Bergman projection for (0,q ) forms when
the Levi form is non-degenerate.

In order to describe the results more precisely, we introduce some notations.
Let Ω be a C∞ paracompact manifold equipped with a smooth density of inte-
gration. We let T (Ω) and T ∗(Ω) denote the tangent bundle ofΩ and the cotangent
bundle ofΩ respectively. The complexified tangent bundle ofΩ and the complex-
ified cotangent bundle of Ω will be denoted by CT (Ω) and CT ∗(Ω) respectively.
We write 〈 , 〉 to denote the pointwise duality between T (Ω) and T ∗(Ω). We extend
〈 , 〉 bilinearly to CT (Ω)×CT ∗(Ω).

Let E be a C∞ vector bundle over Ω. The spaces of smooth sections of E over
Ω and distribution sections of E over Ωwill be denoted by C∞(Ω; E ) andD ′(Ω; E )
respectively. Let E ′(Ω; E ) be the subspace of D ′(Ω; E ) of sections with compact
support in Ω and let C∞0 (Ω; E ) =C∞(Ω; E )

⋂

E ′(Ω; E ).
Let C , D be C∞ vector bundles over Ω. Let

A : C∞0 (Ω; C )→D ′(Ω; D).

From now on, we write KA(x , y ) or A(x , y ) to denote the distribution kernel of A.
Let

B : C∞0 (Ω; C )→D ′(Ω; D).

We write
A ≡ B

if
KA(x , y ) = K B (x , y )+ F (x , y ),

where F (x , y )∈C∞(Ω×Ω;L (Cy , Dx )).
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0.1 The Szegö projection

For the precise definitions of some standard notations in CR geometry, see sec-
tion 2 of paper I . Let (X ,Λ1,0T (X )) be a compact orientable connected CR mani-
fold of dimension 2n−1, n ≥ 2. We take a smooth Hermitian metric ( | ) onCT (X )
so that Λ1,0T (X ) is orthogonal to Λ0,1T (X ) and (u | v ) is real if u , v are real tangent
vectors, where Λ0,1T (X ) = Λ1,0T (X ). The Hermitian metric ( | ) on CT (X ) induces,
by duality, a Hermitian metric on CT ∗(X ) that we shall also denote by ( | ). For
q ∈ N, let Λ0,q T ∗(X ) be the bundle of (0,q ) forms of X . The Hermitian metric ( | )
on CT ∗(X ) induces a Hermitian metric on Λ0,q T ∗(X ) also denoted by ( | ).

We take (d m ) as the induced volume form on X and let ( | ) be the inner prod-
uct on C∞(X ; Λ0,q T ∗(X )) defined by

( f | g ) =
∫

X

( f (z ) | g (z ))(d m ), f , g ∈C∞(X ; Λ0,q T ∗(X )).

Since X is orientable, there is a globally defined real 1 form ω0(z ) of length
one which is pointwise orthogonal to Λ1,0T ∗(X )⊕Λ0,1T ∗(X ), where

Λ1,0T ∗(X ) = Λ0,1T ∗(X ).

There is a real non-vanishing vector field Y which is pointwise orthogonal to
Λ1,0T (X )⊕Λ0,1T (X ). We take Y so that

〈Y ,ω0〉=−1, ‖Y ‖= 1.

The Levi form L p (Z , W ), p ∈ X , Z , W ∈ Λ1,0Tp (X ), is the Hermitian quadratic
form on Λ1,0Tp (X ) defined as follows:

For any Z , W ∈Λ1,0Tp (X ), pick eZ , fW ∈C∞(X ; Λ1,0T (X )) that satisfy

eZ (p ) =Z , fW (p ) =W . Then L p (Z , W ) =
1

2i

D

[eZ ,fW ](p ) ,ω0(p )
E

.
(0.1)

The eigenvalues of the Levi form at p ∈ X are the eigenvalues of the Hermitian
form L p with respect to the inner product ( | ) on Λ1,0Tp (X ).

Let �b be the Kohn Laplacian on X and let �(q )b denote the restriction to (0,q )
forms. Let

π(q ) : L2(X ; Λ0,q T ∗(X ))→Ker�(q )b

be the Szegö projection, i.e. the orthogonal projection onto the kernel of�(q )b . Let

Kπ(q )(x , y )∈D ′(X ×X ;L (Λ0,q T ∗y (X ),Λ
0,q T ∗x (X )))

be the distribution kernel of π(q ) with respect to (d m ). Formally,

(π(q )u )(x ) =

∫

Kπ(q )(x , y )u (y )d m (y ), u (y )∈C∞(X ; Λ0,q T ∗(X )).

We recall
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Definition 0.1. Given q , 0 ≤ q ≤ n − 1, the Levi form is said to satisfy condition
Y (q ) at p ∈ X if for any |J |= q , J = (j1, j2, . . . , jq ), 1≤ j1 < j2 < · · ·< jq ≤ n − 1, we
have

�

�

�

�

�

�

∑

j /∈J

λj −
∑

j∈J

λj

�

�

�

�

�

�

<
n−1
∑

j=1

�

�λj

�

� ,

where λj , j = 1, . . . , (n − 1), are the eigenvalues of L p . If the Levi form is non-
degenerate at p , then the condition is equivalent to q 6= n+, n−, where (n−, n+),
n−+n+ = n −1, is the signature of L p .

When Y (q ) holds at each point of X , Kohn (1972, [8]) proved that

Kπ(q )(x , y )∈C∞(X ×X ;L (Λ0,q T ∗(X ),Λ0,q T ∗(X ))).

When condition Y (q ) fails, one is interested in the Szegö projection on the level of
(0,q ) forms. If the Levi form is positive definite at each point of X , Boutet de Mon-
vel and Sjöstrand (1976, [6]) obtained the full asymptotic expansion for Kπ(0)(x , y ).
If Y (q ) fails, Y (q−1), Y (q+1) hold and the Levi form is non-degenerate, Beals and
Greiner (1988, [1]) proved that π(q ) is a Heisenberg pseudodifferential operator.
In particular, π(q ) is a pseudodifferential operator of order 0 type ( 1

2
, 1

2
).

The statement of the main results of paper I

Let Σ be the characteristic manifold of �(q )b . We have

Σ=
�

(x ,ξ)∈ T ∗(X ) \0; ξ=λω0(x ),λ 6= 0
	

.

Put

Σ+ =
�

(x ,ξ)∈ T ∗(X ) \0; ξ=λω0(x ),λ> 0
	

,

Σ− =
�

(x ,ξ)∈ T ∗(X ) \0; ξ=λω0(x ),λ< 0
	

.

We assume that the Levi form is non-degenerate at each point of X . Then the
Levi form has constant signature (n−, n+), n−+n+ = n −1. We define

Σ̂ = Σ+ if n+ =q 6= n−,

Σ̂ = Σ− if n− =q 6= n+,

Σ̂ = Σ+
⋃

Σ− if n+ =q = n−.

The main result of the first paper is the following

Theorem 0.2. Let (X ,Λ1,0T (X )) be a compact orientable connected CR manifold of
dimension 2n − 1, n ≥ 2, with a Hermitian metric ( | ). We assume that the Levi
form L is non-degenerate at each point of X . Then, the Levi form has constant
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signature (n−, n+), n− + n+ = n − 1. Let q = n− or n+. Suppose �(q )b has closed
range. Then π(q ) is a well defined continuous operator

π(q ) : H s (X ; Λ0,q T ∗(X ))→H s (X ; Λ0,q T ∗(X )),

for all s ∈R, and
WF ′(Kπ(q )) = diag (Σ̂× Σ̂),

where H s , s ∈R, is the standard Sobolev space of order s and

WF ′(Kπ(q )) =
�

(x ,ξ, y ,η)∈ T ∗(X )×T ∗(X ); (x ,ξ, y ,−η)∈WF (Kπ(q ))
	

.

Here WF (Kπ(q )) is the wave front set of Kπ(q ) in the sense of Hörmander (see Ap-
pendix A of the second paper for a review). Moreover, we have

Kπ(q ) = Kπ+ if n+ =q 6= n−,

Kπ(q ) = Kπ− if n− =q 6= n+,

Kπ(q ) = Kπ+ +Kπ− if n+ =q = n−,

where Kπ+(x , y ) satisfies

Kπ+(x , y )≡
∫ ∞

0

e iφ+(x ,y )t s+(x , y , t )d t

with
s+(x , y , t )∈Sn−1

1,0 (X ×X×]0,∞[;L (Λ0,q T ∗y (X ),Λ
0,q T ∗x (X ))),

s+(x , y , t )∼
∞
∑

j=0

s j
+(x , y )t n−1−j

in the symbol space Sn−1
1,0 (X ×X×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

where Sm
1,0, m ∈ R, is the Hörmander symbol space (see Appendix A of the first

paper for a review and references),

s j
+(x , y )∈C∞(X ×X ;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))), j = 0, 1, . . . ,

and

φ+(x , y )∈C∞(X ×X ), (0.2)

φ+(x ,x ) = 0, (0.3)

φ+(x , y ) 6= 0 if x 6= y , (0.4)

Imφ+(x , y )≥ 0, (0.5)

d xφ+ 6= 0, d yφ+ 6= 0 where Imφ+ = 0, (0.6)

d xφ+(x , y )|x=y =ω0(x ), (0.7)

d yφ+(x , y )|x=y =−ω0(x ), (0.8)

φ+(x , y ) =−φ+(y ,x ). (0.9)
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Similarly,

Kπ−(x , y )≡
∫ ∞

0

e iφ−(x ,y )t s−(x , y , t )d t

with

s−(x , y , t )∈Sn−1
1,0 (X ×X×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

s−(x , y , t )∼
∞
∑

j=0

s j
−(x , y )t n−1−j

in the symbol space Sn−1
1,0 (X ×X×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

where
s j
−(x , y )∈C∞(X ×X ;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))), j = 0, 1, . . . ,

and −φ−(x , y ) satisfies (0.2)-(0.9).
More properties of the phase φ+(x , y ) will be given in Theorem 0.4 and Re-

mark 0.5 below.

Remark 0.3. We notice that if Y (q − 1) and Y (q + 1) hold then �(q )b has closed
range.

The tangential Hessian ofφ+(x , y )

Until further notice, we assume that the Levi form is non-degenerate at each
point of X . The phaseφ+(x , y ) is not unique. we can replaceφ+(x , y ) by

eφ(x , y ) = f (x , y )φ+(x , y ), (0.10)

where f (x , y )∈C∞(X×X ) is real and f (x ,x ) = 1, f (x , y ) = f (y ,x ). Then eφ satisfies
(0.2)-(0.9). We work with local coordinates x = (x1, . . . ,x2n−1) defined on an open
set Ω⊂X . We want to know the Hessian

(φ+)′′ =

�

(φ+)′′x x (φ+)′′x y

(φ+)′′y x (φ+)′′y y

�

of φ+ at (p , p ) ∈ X ×X . Let U , V ∈ CTp (X )×CTp (X ). From (0.10), we can check
that
¬

eφ′′(p , p )U , V
¶

=



(φ+)′′(p , p )U , V
�

+



d f (p , p ),U
�


dφ+(p , p ), V
�

+



d f (p , p ), V
�


dφ+(p , p ),U
�

.

Thus, the Hessian (φ+)′′ ofφ+ at (p , p ) is only well-defined on the space

T(p ,p )H+ =
¦

W ∈CTp (X )×CTp (X );



dφ+(p , p ), W
�

= 0
©

.
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In view of (0.7) and (0.8), we see that T(p ,p )H+ is spanned by

(u , v ), (Y (p ), Y (p )), u , v ∈Λ1,0Tp (X )⊕Λ0,1Tp (X ).

We define the tangential Hessian ofφ+(x , y ) at (p , p ) as the bilinear map:

T(p ,p )H+×T(p ,p )H+→C,

(U , V )→
¬

(φ′′+)(p , p )U , V
¶

, U , V ∈ T(p ,p )H+.

In the section 9 of the first paper, we completely determined the tangential Hes-
sian of φ+(x , y ) at (p , p ). For the better understanding, we describe it in some
special local coordinates. For a given point p ∈X , let

U1(x ), . . . ,Un−1(x )

be an orthonormal frame ofΛ1,0Tx (X ) varying smoothly with x in a neighborhood
of p , for which the Levi form is diagonalized at p . We take local coordinates

x = (x1, . . . ,x2n−1), z j = x2j−1+ i x2j , j = 1, . . . , n −1,

defined on some neighborhood of p such that

ω0(p ) =
p

2d x2n−1, x (p ) = 0,

(
∂

∂ x j
(p ) |

∂

∂ xk
(p )) = 2δj ,k , j , k = 1, . . . , 2n −1

and

Uj =
∂

∂ z j
−

1
p

2
a j (x )

∂

∂ x2n−1
+

2n−2
∑

s=1

c j ,s (x )
∂

∂ xs
, j = 1, . . . , n −1,

where
∂

∂ z j
=

1

2
(
∂

∂ x2j−1
− i

∂

∂ x2j
), j = 1, . . . , n −1,

a j ∈C∞, a j (0) = 0, j = 1, . . . , n −1 and

c j ,s (x )∈C∞, c j ,s (0) = 0, j = 1, . . . , n −1, s = 1, . . . , 2n −2.

The integrability of Λ1,0T (X ), i.e. [Uj ,Uk ]∈Λ1,0T (X ) implies that

∂ a j

∂ z k
(0) =

∂ a k

∂ z j
(0), j , k = 1, . . . , n −1. (0.11)

Since the Levi form is diagonalized at p with respect to Uj (p ), j = 1, . . . , n −1, we
can check that (see (0.1))

∂ a j

∂ z k
(0)−

∂ a k

∂ z j
(0) = 2iλjδj ,k , j , k = 1, . . . , n −1, (0.12)
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where λj , j = 1, . . . , n −1, are the eigenvalues of L p .
If φ̂ ∈ C∞(X ×X ), φ̂(p , p ) = 0, d x ,y φ̂(p , p ) = d x ,yφ+(p , p ) and the tangential

Hessian of φ̂(x , y ) at (p , p ) is the same as the tangential Hessian of φ+(x , y ) at
(p , p ), then

φ̂(x , y ′,x2n−1)−φ+(x , y ′,x2n−1) =O(
�

�(x , y ′)
�

�

3
)

in some neighborhood of (p , p ), where y ′ = (y1, . . . , y2n−2). Moreover, we have the
following

Theorem 0.4. With the notations used before, in some neighborhood of (p , p ) ∈
X ×X , we have

φ+(x , y ) =
p

2(x2n−1− y2n−1)+ i
n−1
∑

j=1

�

�λj

�

�

�

�z j −w j

�

�

2
+

1

2

n−1
∑

j ,k=1

�∂ a j

∂ z k
(0)(z j z k −w j wk )

+
∂ a j

∂ z k
(0)(z j z k −w j w k )+

∂ a j

∂ z k
(0)(z j z k −w j w k )+

∂ a j

∂ z k
(0)(z j z k −w j wk )

�

+
n−1
∑

j=1

�

iλj (z j w j − z j w j )+
∂ a j

∂ x2n−1
(0)(z j x2n−1−w j y2n−1)

+
∂ a j

∂ x2n−1
(0)(z j x2n−1−w j y2n−1)

�

+
p

2(x2n−1− y2n−1) f (x , y )+O(
�

�(x , y )
�

�

3
),

f ∈C∞, f (0, 0) = 0, f (x , y ) = f (y ,x ),

y = (y1, . . . , y2n−1), w j = y2j−1+ i y2j , j = 1, . . . , n −1, (0.13)

where λj , j = 1, . . . , n −1, are the eigenvalues of L p andφ+ is as in Theorem 0.2.

Remark 0.5. We use the same notations as in Theorem 0.4. Since

∂ φ+

∂ x2n−1
(0, 0) 6= 0,

from the Malgrange preparation theorem (see Theorem B.6 of the first paper),
we have

φ+(x , y ) = g (x , y )(
p

2x2n−1+h(x ′, y ))

in some neighborhood of (0, 0), where g , h ∈ C∞, g (0, 0) = 1, h(0, 0) = 0 and
x ′ = (x1, . . . ,x2n−2). Put

φ̂(x , y ) =
p

2x2n−1+h(x ′, y ).

From the global theory of Fourier integral operators (see Proposition B.21 of the
first paper), we see that φ+(x , y ) and φ̂(x , y ) are equivalent at (p ,ω0(p )) in the
sense of Melin-Sjöstrand (see Definition B.20 of the first paper). Sinceφ+(x , y ) =
−φ+(y ,x ), we can replaceφ+(x , y ) by

φ̂(x , y )− φ̂(y ,x )
2

.
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Thenφ+(x , y ) satisfies (0.2)-(0.9). Moreover, we can check that

φ+(x , y ) =
p

2(x2n−1− y2n−1)+ i
n−1
∑

j=1

�

�λj

�

�

�

�z j −w j

�

�

2
+

1

2

n−1
∑

j ,k=1

�∂ a j

∂ z k
(0)(z j z k −w j wk )

+
∂ a j

∂ z k
(0)(z j z k −w j w k )+

∂ a j

∂ z k
(0)(z j z k −w j w k )+

∂ a j

∂ z k
(0)(z j z k −w j wk )

�

+
n−1
∑

j=1

�

iλj (z j w j − z j w j )+
∂ a j

∂ x2n−1
(0)(z j x2n−1−w j y2n−1)

+
∂ a j

∂ x2n−1
(0)(z j x2n−1−w j y2n−1)

�

+O(
�

�(x , y )
�

�

3
), (0.14)

where λj , j = 1, . . . , n−1, are the eigenvalues of L p . (Compare (0.14) with (0.13).)

The leading term of the Szegö projection

We have the following corollary of Theorem 0.2.

Corollary 0.6. There exist smooth functions

F+,G+, F−,G− ∈C∞(X ×X ; L (Λ0,q T ∗y (X ),Λ
0,q T ∗x (X )))

such that

Kπ+ = F+(−i (φ+(x , y )+ i 0))−n +G+ log(−i (φ+(x , y )+ i 0)),

Kπ− = F−(−i (φ−(x , y )+ i 0))−n +G− log(−i (φ−(x , y )+ i 0)).

Moreover, we have

F+ =
n−1
∑

0

(n −1−k )!s k
+(x , y )(−iφ+(x , y ))k + f+(x , y )(φ+(x , y ))n ,

F− =
n−1
∑

0

(n −1−k )!s k
−(x , y )(−iφ−(x , y ))k + f−(x , y )(φ−(x , y ))n ,

G+ ≡
∞
∑

0

(−1)k+1

k !
s n+k
+ (x , y )(−iφ+(x , y ))k ,

G− ≡
∞
∑

0

(−1)k+1

k !
s n+k
− (x , y )(−iφ−(x , y ))k , (0.15)

where
f+(x , y ), f−(x , y )∈C∞(X ×X ;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))).
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If w ∈Λ0,1T ∗z (X ), let

w ∧,∗ :Λ0,q+1T ∗z (X )→Λ
0,q T ∗z (X ), q ≥ 0,

be the adjoint of left exterior multiplication

w ∧ :Λ0,q T ∗z (X )→Λ
0,q+1T ∗z (X ).

That is,
(w ∧u | v ) = (u |w ∧,∗v ), (0.16)

for all u ∈ Λ0,q T ∗z (X ), v ∈ Λ0,q+1T ∗z (X ). Notice that w ∧,∗ depends anti-linearly on
w .

In section 9 of the first paper, we compute F+(x ,x ) and F−(x ,x ).

Proposition 0.7. For a given point x0 ∈X , let

U1(x ), . . . ,Un−1(x )

be an orthonormal frame of Λ1,0Tx (X ), for which the Levi form is diagonalized at
x0. Let e j (x ), j = 1, . . . , n −1, denote the basis of Λ0,1T ∗x (X ), which is dual to U j (x ),
j = 1, . . . , n − 1. Let λj (x ), j = 1, . . . , n − 1, be the eigenvalues of the Levi form Lx .
We assume that q = n+ and that

λj (x0)> 0 if 1≤ j ≤ n+.

Then

F+(x0,x0) = (n −1)!
1

2
|λ1(x0)| · · · |λn−1(x0)|π−n

j=n+
∏

j=1

e j (x0)∧e j (x0)∧,∗.

Proposition 0.8. For a given point x0 ∈X , let

U1(x ), . . . ,Un−1(x )

be an orthonormal frame of Λ1,0Tx (X ), for which the Levi form is diagonalized at
x0. Let e j (x ), j = 1, . . . , n −1, denote the basis of Λ0,1T ∗x (X ), which is dual to U j (x ),
j = 1, . . . , n−1. Let λj (x ), j = 1, . . . , n−1 be the eigenvalues of the Levi form Lx . We
assume that q = n− and that

λj (x0)< 0 if 1≤ j ≤ n−.

Then

F−(x0,x0) = (n −1)!
1

2
|λ1(x0)| · · · |λn−1(x0)|π−n

j=n−
∏

j=1

e j (x0)∧e j (x0)∧,∗.
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0.2 The Bergman projection

For the precise definitions of some standard notations in complex geometry and
several complex variables, see section 2 of paper II . In this section, we assume
that all manifolds are paracompact. Let M be a relatively compact open subset
with C∞ boundary Γ of a complex manifold M ′ of dimension n with a smooth
Hermitian metric ( | ) on its holomorphic tangent bundle.

Let F be a C∞ vector bundle over M ′. Let C∞(M ; F ), D ′(M ; F ) and H s (M ; F )
denote the spaces of restrictions to M of elements in C∞(M ′; F ), D ′(M ′; F ) and
H s (M ′; F ) respectively.

Let Λ1,0T (M ′) and Λ0,1T (M ′) be the holomorphic tangent bundle of M ′ and
the anti-holomorphic tangent boundle of M ′ respectively. We extend the Hermi-
tian metric ( | ) toCT (M ′) in a natural way by requiringΛ1,0T (M ′) to be orthogonal
to Λ0,1T (M ′) and satisfy

(u | v ) = (u | v ), u , v ∈Λ0,1T (M ′).

For p , q ∈N, letΛp ,q T ∗(M ′) be the bundle of (p ,q ) forms of M ′. The Hermitian
metric ( | ) onCT (M ′) induces a Hermitian metric on Λp ,q T ∗(M ′) also denoted by
( | ). Let (d M ′) be the induced volume form on M ′ and let ( | )M be the inner
product on C∞(M ; Λp ,q T ∗(M ′)) defined by

( f | h)M =
∫

M

( f | h)(d M ′), f , h ∈C∞(M ; Λp ,q T ∗(M ′)). (0.17)

Let r ∈C∞(M ′) be a defining function of Γ such that r is real, r = 0 on Γ, r < 0
on M and d r 6= 0 near Γ. From now on, we take a defining function r so that

‖d r ‖= 1 on Γ.

Put
ω0 = J t (d r ). (0.18)

Here J t is the complex structure map for the cotangent bundle.
LetΛ1,0T (Γ) be the holomorphic tangent bundle of Γ. The Levi form L p (Z , W ),

p ∈ X , Z , W ∈ Λ1,0Tp (Γ), is the Hermitian quadratic form on Λ1,0Tp (Γ) defined as
in (0.1).

For the convenience of the reader, we review the definition of the Kohn Lapla-
cian on (0,q ) forms. Let

∂ : C∞(M ′; Λ0,q T ∗(M ′))→C∞(M ′; Λ0,q+1T ∗(M ′))

be the part of the exterior differential operator which maps forms of type (0,q ) to
forms of type (0,q +1) and we denote by

∂ f
∗

: C∞(M ′; Λ0,q+1T ∗(M ′))→C∞(M ′; Λ0,q T ∗(M ′))
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the formal adjoint of ∂ . That is

(∂ f | h)M ′ = ( f | ∂ f
∗
h)M ′ , f ∈C∞0 (M

′; Λ0,q T ∗(M ′)), h ∈C∞(M ′; Λ0,q+1T ∗(M ′)),

where ( | )M ′ is defined by

(g | k )M ′ =
∫

M ′
(g | k )(d M ′), g , k ∈C∞0 (M

′; Λ0,q T ∗(M ′)).

We shall also use the notation ∂ for the closure in L2 of the ∂ operator, initially
defined on C∞(M ; Λ0,q T ∗(M ′)) and ∂

∗
for the Hilbert space adjoint of ∂ . The do-

main of ∂
∗

consists of all f ∈ L2(M ; Λ0,q+1T ∗(M ′)) such that for some constant
c > 0,

�

�

�( f | ∂ g )M
�

�

�≤ c




g




 , for all g ∈C∞(M ; Λ0,q T ∗(M ′)).

For such an f ,
g → ( f | ∂ g )M

extends to a bounded anti-linear functional on L2(M ; Λ0,q T ∗(M ′)) so

( f | ∂ g )M = ( ef | g )M

for some ef ∈ L2(M ; Λ0,q T ∗(M ′)). We have ∂
∗

f = ef . The ∂ -Neumann Laplacian on
(0,q ) forms is then the operator in the space L2(M ; Λ0,q T ∗(M ′))

�(q ) = ∂ ∂
∗
+ ∂
∗
∂ . (0.19)

We have

Dom�(q ) = {u ∈ L2(M ; Λ0,q T ∗(M ′)); u ∈Dom∂
∗⋂

Dom∂ ,

∂
∗
u ∈Dom∂ ,∂ u ∈Dom∂

∗
}.

As before, if w ∈Λ0,1T ∗z (M
′), let

w ∧,∗ :Λ0,q+1T ∗z (M
′)→Λ0,q T ∗z (M

′) (0.20)

be the adjoint of left exterior multiplication w ∧. (See (0.16).) Let γ denote the
operator of restriction to the boundary Γ. Put

D (q ) =Dom�(q )
⋂

C∞(M ;Λ0,q T ∗(M ′)).

We have

D (q ) =
¦

u ∈C∞(M ; Λ0,q+1T ∗(M ′)); γ(∂ r )∧,∗u = 0, γ(∂ r )∧,∗∂ u = 0
©

. (0.21)
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The boundary conditions

γ(∂ r )∧,∗u = 0, γ(∂ r )∧,∗∂ u = 0, u ∈C∞(M ,Λ0,q T ∗(M ′))

are called ∂ -Neumann boundary conditions.
Let

Π(q ) : L2(M ; Λ0,q T ∗(M ′))→Ker�(q )

be the Bergman projection, i.e. the orthogonal projection onto the kernel of�(q ).
Let

KΠ(q )(z , w )∈D ′(M ×M ;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′)))

be the distribution kernel of Π(q ). Formally,

(Π(q )u )(z ) =

∫

M

KΠ(q )(z , w )u (w )d M ′(w ), u (w )∈C∞0 (M ; Λ0,q T ∗(M ′)).

We recall

Definition 0.9. Given q , 0≤ q ≤ n − 1. The Levi form is said to satisfy condition
Z (q ) at p ∈ Γ if it has at least n −q positive or at least q +1 negative eigenvalues.
If the Levi form is non-degenerate at p ∈ Γ, let (n−, n+), n−+n+ = n − 1, be the
signature. Then Z (q ) holds at p if and only if q 6= n−.

When Z (q ) holds at each point of Γ, Kohn (1963, [11]) proved that

KΠ(q )(z .w )∈C∞(M ×M ;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))).

When condition Z (q ) fails, one is interested in the Bergman projection on the
level of (0,q ) forms. If the Levi form is positive definite at each point of Γ, Kerz-
man (1971, [13]) proved that

KΠ(0)(z , w )∈C∞(M ×M \diag (Γ×Γ)).

A complete asymptotic expansion of KΠ(0)(z , z ) at the boundary was given by Fef-
ferman (1974, [7]): There are functions a , b ∈C∞(M ) such that

KΠ(0)(z , z ) =
a (z )

r (z )n+1
+b (z ) log(−r (z )).

Here a (z ) is given for z ∈ Γ by Hörmander (1965, [9]). Complete asymptotics of
KΠ(0)(z , w )when z and w approach the same boundary point in an arbitrary way
was obtained by Boutet de Monvel and Sjöstrand (1976, [6]).
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Boundary reduction

The Hermitian metric ( | ) on CT (M ′) induces a Hermitian metric ( | ) on CT (Γ).
For z ∈ Γ, we identify CT ∗z (Γ)with the space

¦

u ∈CT ∗z (M
′); (u | d r ) = 0
©

. (0.22)

For q ∈N, the bundle of boundary (0,q ) forms is the vector bundle Λ0,q T ∗(Γ)with
fiber

Λ0,q T ∗z (Γ) =
¦

u ∈Λ0,q T ∗z (M
′); (u | ∂ r (z )∧ g ) = 0, ∀g ∈Λ0,q−1T ∗z (M

′)
©

(0.23)

at z ∈ Γ. In view of (0.21), we see that u ∈D (q ) if and only if

γu ∈C∞(Γ; Λ0,q T ∗(Γ)) (0.24)

and
γ∂ u ∈C∞(Γ; Λ0,q+1T ∗(Γ)). (0.25)

We take (dΓ) as the induced volume form on Γ and let ( | )Γ be the inner prod-
uct on C∞(Γ; Λ0,q T ∗(M ′)) defined by

( f | g )Γ =
∫

Γ

( f | g )dΓ, f , g ∈C∞(Γ; Λ0,q T ∗(M ′)). (0.26)

We assume that the Levi form is positive definite at each point of Γ and q =
0. As before, let π(0) be the Szegö projection for (0, 0) forms on Γ. Let P be the
Poisson operator for functions. That is, if u ∈C∞(Γ), then

Pu ∈C∞(M ), ∂ f
∗
∂ Pu = 0

and
γPu = u .

It is well-known (see ([6])) that

γ∂ Pπ(0) ≡ 0. (0.27)

From this, it is not difficult to see that

Π(0) = Pπ(0)(P∗P)−1P∗+ F, (0.28)

where
P∗ : E ′(M )→D ′(Γ)

is the operator defined by

(P∗u | v )Γ = (u | Pv )M , u ∈ E ′(M ), v ∈C∞(Γ)
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and
F (z , w )∈C∞(M ×M ).

From (0.28), we can obtain the full asymptotic expansion of the Bergman projec-
tion for functions.

In the case of (0,q ) forms, in general, the relation (0.27) doesn’t hold. This
makes it difficult to obtain a full asymptotic expansion of the Bergman projection
directly from the Szegö projection. Instead, we introduce a new operator�(q )β and
obtain a modified Szegö kernel such that (0.27) holds.

The operator�(q )β

Let

�(q )f = ∂ ∂ f
∗
+ ∂ f

∗
∂ : C∞(M ′; Λ0,q T ∗(M ′))→C∞(M ′; Λ0,q T ∗(M ′)) (0.29)

denote the complex Laplace-Beltrami operator on (0,q ) forms and denote by
σ�(q )f

the principal symbol of �(q )f . Let us consider the map:

F (q ) : H 2(M ; Λ0,q T ∗(M ′))→H 0(M ; Λ0,q T ∗(M ′))⊕H
3
2 (Γ; Λ0,q T ∗(M ′)),

u → (�(q )f u ,γu ). (0.30)

Given q , 0≤q ≤ n −1, we assume that

Assumption 0.10. F (k ) is injective, q −1≤ k ≤q +1.

Thus, the Poisson operator for �(k )f , q − 1 ≤ k ≤ q + 1, is well-defined. (See
section 4 of the second paper.) If M ′ is Kähler, then F (q ) is injective for any q ,
0≤q ≤ n . (See section 9 of the second paper for the definition and details.)

Let
P : C∞(Γ; Λ0,q T ∗(M ′))→C∞(M ; Λ0,q T ∗(M ′)) (0.31)

be the Poisson operator for �(q )f . It is well-known (see page 29 of Boutet de Mon-
vel [5]) that P extends continuously

P : H s (Γ; Λ0,q T ∗(M ′))→H s+ 1
2 (M ; Λ0,q T ∗(M ′)), ∀ s ∈R.

Let
P∗ : E ′(M ; Λ0,q T ∗(M ′))→D ′(Γ; Λ0,q T ∗(M ′))

be the operator defined by

(P∗u | v )Γ = (u | Pv )M , u ∈ E ′(M ; Λ0,q T ∗(M ′)), v ∈C∞(Γ; Λ0,q T ∗(M ′)).

It is well-known (see page 30 of [5]) that P∗ is continuous:

P∗ : L2(M ; Λ0,q T ∗(M ′))→H
1
2 (Γ; Λ0,q T ∗(M ′))
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and
P∗ : C∞(M ; Λ0,q T ∗(M ′))→C∞(Γ; Λ0,q T ∗(M ′)).

We use the inner product [ | ] on H−
1
2 (Γ; Λ0,q T ∗(M ′)) defined as follows:

[u | v ] = (Pu | Pv )M ,

where u , v ∈H−
1
2 (Γ; Λ0,q T ∗(M ′)). We consider (∂ r )∧,∗ as an operator

(∂ r )∧,∗ : H−
1
2 (Γ; Λ0,q T ∗(M ′))→H−

1
2 (Γ; Λ0,q−1T ∗(M ′)).

Note that (∂ r )∧,∗ is the pointwise adjoint of ∂ r with respect to ( | ). Let

T : H−
1
2 (Γ; Λ0,q T ∗(M ′))→Ker (∂ r )∧,∗ (0.32)

be the orthogonal projection onto Ker (∂ r )∧,∗ with respect to [ | ]. That is, if u ∈
H−

1
2 (Γ; Λ0,q T ∗(M ′)), then

(∂ r )∧,∗Tu = 0

and
[(I −T )u | g ] = 0, ∀ g ∈Ker (∂ r )∧,∗.

In section 4 of the second paper, we will show that T is a classical pseudodiffer-
ential operator of order 0 with principal symbol

2(∂ r )∧,∗(∂ r )∧.

Put
∂β = Tγ∂ P : C∞(Γ; Λ0,q T ∗(Γ))→C∞(Γ; Λ0,q+1T ∗(Γ)). (0.33)

∂β is a classical pseudodifferential operator of order one from boundary (0,q )
forms to boundary (0,q +1) forms,

∂β = ∂b + lower order terms, (0.34)

where ∂b is the tangential Cauchy-Riemann operator and

(∂β )2 = 0.

Let
∂β

†
: C∞(Γ; Λ0,q+1T ∗(Γ))→C∞(Γ; Λ0,q T ∗(Γ)),

be the formal adjoint of ∂β with respect to [ | ]. ∂β
†

is a classical pseudodifferential
operator of order one from boundary (0,q+1) forms to boundary (0,q ) forms and

∂β
†
= γ∂ f

∗
P.

Put
�(q )β = ∂β ∂β

†
+ ∂β

†
∂β : C∞(Γ; Λ0,q T ∗(Γ))→C∞(Γ; Λ0,q T ∗(Γ)).
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We assume that the Levi form is non-degenerate. Put

Σ−(q ) =
�

(x ,λω0(x ))∈ T ∗(Γ); λ< 0 and Z (q ) fails at x
	

,

Σ+(q ) =
�

(x ,λω0(x ))∈ T ∗(Γ); λ> 0 and Z (q ) fails at x
	

.

We apply the method of Menikoff-Sjöstrand to �(q )β and obtain operators

A ∈ L−1
1
2 , 1

2

(Γ; Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)), B−, B+ ∈ L0
1
2 , 1

2

(Γ; Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))

such that

�(q )β A + B−+ B+ ≡ I ,

WF ′(K B−) = diag (Σ−(q )×Σ−(q )),
WF ′(K B+) = diag (Σ+(n −1−q )×Σ+(n −1−q )),

∂βB− ≡ 0, ∂β
†
B− ≡ 0,

B− ≡ B †
− ≡ B 2

−,

where Lm
1
2 , 1

2

is the space of pseudodifferential operators of order m type ( 1
2

, 1
2
), B †
−

is the formal adjoint of B− with respect to [ | ]. We prove that

γ∂ P B− ≡ 0. (0.35)

(See section 7 of the second paper.) From this, we deduce the generalization of
(0.28)

Π(q ) = P B−T (P∗P)−1P∗+ F, (0.36)

where
P∗ : E ′(M ; Λ0,q T ∗(M ′))→D ′(Γ; Λ0,q T ∗(M ′))

is the operator defined by

(P∗u | v )Γ = (u | Pv )M , u ∈ E ′(M ; Λ0,q T ∗(M ′)), v ∈C∞(Γ; Λ0,q T ∗(M ′))

and
F (z , w )∈C∞(M ×M ;L (Λ0,q T ∗w (M

′),Λ0,q T ∗z (M
′))).

The statement of the main results of paper II

We recall the Hörmander symbol spaces

Definition 0.11. Let m ∈R. Let U be an open set in M ′×M ′.

Sm
1,0(U×]0,∞[;L (Λ0,q T ∗y (M

′),Λ0,q T ∗x (M
′)))

17



is the space of all a (x , y , t ) ∈ C∞(U×]0,∞[;L (Λ0,q T ∗y (M
′),Λ0,q T ∗x (M

′))) such that
for all compact sets K ⊂ U and all α ∈ N2n , β ∈ N2n , γ ∈ N, there is a constant
c > 0 such that
�

�

�∂ αx ∂
β

y ∂
γ

t a (x , y , t )
�

�

�≤ c (1+ |t |)m−|γ|, (x , y , t )∈ K×]0,∞[.

Sm
1,0 is called the space of symbols of order m type (1, 0). We write S−∞1,0 =

⋂

Sm
1,0.

Let Sm
1,0(U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))) denote the space of
restrictions to U

⋂

(M ×M )×]0,∞[ of elements in

Sm
1,0(U×]0,∞[;L (Λ0,q T ∗w (M

′),Λ0,q T ∗z (M
′))).

Let

a j ∈S
m j

1,0 (U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))), j = 0, 1, 2, . . . ,

with m j ↘−∞, j →∞. Then there exists

a ∈Sm0
1,0 (U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′)))

such that

a −
∑

0≤j<k

a j ∈Smk
1,0 (U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))),

for every k ∈N.
If a and a j have the properties above, we write

a ∼
∞
∑

j=0

a j in the space Sm0
1,0 (U
⋂

(M ×M )× [0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))).

Let
C , D : C∞0 (M ; Λ0,q T ∗(M ′))→D ′(M ; Λ0,q T ∗(M ′))

with distribution kernels

KC (z , w ), KD(z , w )∈D ′(M ×M ;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))).

We write
C ≡D mod C∞(U

⋂

(M ×M ))

if
KC (z , w ) = KD(z , w )+ F (z , w ),

where
F (z , w )∈C∞(U

⋂

(M ×M );L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′)))

and U is an open set in M ′×M ′.
The main result of the second paper is the following
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Theorem 0.12. Let M be a relatively compact open subset with C∞ boundary Γ of
a complex analytic manifold M ′ of dimension n. We assume that the Levi form is
non-degenerate at each point of Γ. Let q, 0≤ q ≤ n −1. Suppose that Z (q ) fails at
some point of Γ and that Z (q −1) and Z (q +1) hold at each point of Γ. Let

Γq =
�

z ∈ Γ; Z (q ) fails at z
	

(0.37)

so that Γq is a union of connected components of Γ. Then

KΠ(q )(z , w )∈C∞(M ×M \diag (Γq ×Γq );L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))).

Moreover, in a neighborhood U of diag (Γq ×Γq ), KΠ(q )(z , w ) satisfies

KΠ(q )(z , w )≡
∫ ∞

0

e iφ(z ,w )t b (z , w , t )d t mod C∞(U
⋂

(M ×M )) (0.38)

(for the precise meaning of the oscillatory integral
∫∞

0
e iφ(z ,w )t b (z , w , t )d t , see Re-

mark 1.4 of the second paper) with

b (z , w , t )∈Sn
1,0(U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))),

b (z , w , t )∼
∞
∑

j=0

b j (z , w )t n−j

in the space Sn
1,0(U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))),

b0(z , z ) 6= 0, z ∈ Γq ,

where

b j (z , w )∈C∞(U
⋂

(M ×M );L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))), j = 0, 1, . . . ,

and

φ(z , w )∈C∞(U
⋂

(M ×M )), (0.39)

φ(z , z ) = 0, z ∈ Γq , (0.40)

φ(z , w ) 6= 0 if (z , w ) /∈ diag (Γq ×Γq ), (0.41)

Imφ ≥ 0, (0.42)

Imφ(z , w )> 0 if (z , w ) /∈ Γ×Γ, (0.43)

φ(z , w ) =−φ(w , z ). (0.44)

For p ∈ Γq , we have

σ�(q )f
(z , d zφ(z , w )) vanishes to infinite order at z = p ,

(z , w ) is in some neighborhood of (p , p ) in M ′. (0.45)
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For z =w , z ∈ Γq , we have

d zφ =−ω0− i d r,

d wφ =ω0− i d r.

Moreover, we have

φ(z , w ) =φ−(z , w ) if z , w ∈ Γq ,

whereφ−(z , w )∈C∞(Γq×Γq ) is the phase appearing in the description of the Szegö
projection. See Theorem 0.2, Theorem 0.4 and Remark 0.5.

From (0.45) and Remark 0.5, it follows that

Theorem 0.13. Under the assumptions of Theorem 0.12, let p ∈ Γq . We choose
local complex analytic coordinates

z = (z 1, . . . , z n ), z j = x2j−1+ i x2j , j = 1, . . . , n ,

vanishing at p such that the metric on Λ1,0T (M ′) is

n
∑

j=1

d z j ⊗d z j at p

and

r (z ) =
p

2Im z n +
n−1
∑

j=1

λj

�

�z j

�

�

2
+O(|z |3),

where λj , j = 1, . . . , n − 1, are the eigenvalues of L p . (This is always possible.) We
also write

w = (w1, . . . , wn ), w j = y2j−1+ i y2j , j = 1, . . . , n .

Then, we can takeφ(z , w ) so that

φ(z , w ) =−
p

2x2n−1+
p

2y2n−1− i r (z )
�

1+
2n−1
∑

j=1

a j x j +
1

2
a 2n x2n

�

− i r (w )
�

1+
2n−1
∑

j=1

a j y j +
1

2
a 2n y2n

�

+ i
n−1
∑

j=1

�

�λj

�

�

�

�z j −w j

�

�

2

+
n−1
∑

j=1

iλj (z j w j − z j w j )+O
�

|(z , w )|3
�

(0.46)

in some neighborhood of (p , p ) in M ′×M ′, where

a j =
1

2

∂ σ�(q )f

∂ x j
(p ,−ω0(p )− i d r (p )), j = 1, . . . , 2n .
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The leading term of the Bergman projection

We have the following corollary of Theorem 0.12

Corollary 0.14. Under the assumptions of Theorem 0.12 and let U be a small
neighborhood of diag (Γq ×Γq ). Then there exist smooth functions

F,G ∈C∞(U
⋂

(M ×M ));L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′)))

such that

KΠ(q ) = F (−i (φ(z , w )+ i 0))−n−1+G log(−i (φ(z , w )+ i 0)).

Moreover, we have

F =
n
∑

j=0

(n − j )!b j (z , w )(−iφ(z , w ))j + f (z , w )(φ(z , w ))n+1,

G ≡
∞
∑

j=0

(−1)j+1

j !
bn+j+1(z , w )(−iφ(z , w ))j mod C∞(U

⋂

(M ×M )) (0.47)

where
f (z , w )∈C∞(U

⋂

(M ×M );L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))).

We have the following

Proposition 0.15. Under the assumptions of Theorem 0.12, let p ∈ Γq , q = n−. Let

U1(z ), . . . ,Un−1(z )

be an orthonormal frame of Λ1,0Tz (Γ), z ∈ Γ, for which the Levi form is diagonal-
ized at p . Let e j (z ), j = 1, . . . , n − 1 denote the basis of Λ0,1T ∗z (Γ), z ∈ Γ, which is
dual to U j (z ), j = 1, . . . , n − 1. Let λj (z ), j = 1, . . . , n − 1 be the eigenvalues of the
Levi form L z , z ∈ Γ. We assume that

λj (p )< 0 if 1≤ j ≤ n−.

Then

F (p , p ) = n !
�

�λ1(p )
�

� · · ·
�

�λn−1(p )
�

�π−n 2
�

j=n−
∏

j=1

e j (p )∧e
∧,∗
j (p )
�

◦ (∂ r (p ))∧,∗(∂ r (p ))∧,

(0.48)
where F is as in Corollary 0.14.

For the reader

We recall briefly some microlocal analysis that we used in this thesis in Appendix
A and B of paper I . These two papers can be read independently. We hope that
this thesis can serve as an introduction to certain microlocal techniques with
applications to complex geometry and CR geometry.
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On the singularities of the Szegö projection
for (0,q ) forms

Chin-Yu Hsiao

Abstract

In this paper we obtain the full asymptotic expansion of the Szegö

projection for (0,q ) forms. This generalizes a result of Boutet de Mon-

vel and Sjöstrand for (0, 0) forms. Our main tool is Fourier integral

operators with complex valued phase functions of Melin and Sjös-

trand.

Résumé

Dans ce travail nous obtenons un développement asymptotique

complet du projecteur de Szegö pour les (0,q ) formes. Cela généralise

un resultat de Boutet de Monvel et Sjöstrand pour les (0, 0) formes.

Nous utilisons des opérateurs intégraux de Fourier à phases com-

plexes de Melin et Sjöstrand.

Contents

1 Introduction and statement of the main results 2

2 Cauchy-Riemann manifolds, ∂ b -Complex and�b , a review 17

3 The hypoellipicity of�b 28

4 The characteristic equation 32

5 The heat equation, formal construction 39

6 Some symbol classes 50

7 The heat equation 64

8 The Szegö Projection 80

1



9 The leading term of the Szegö Projection 96

10 The Szegö projection on non-orientable CR manifolds 108

A Appendix: Microlocal analysis, a review 111

B Appendix: Almost analytic manifolds, functions and vector fields 130

1 Introduction and statement of the main results

Let (X ,Λ1,0T (X )) be a compact orientable connected CR manifold of dimension

2n − 1, n ≥ 2, (see Definition 2.1) and take a smooth Hermitian metric ( | ) on

CT (X ) so that Λ1,0T (X ) is orthogonal to Λ0,1T (X ) and (u | v ) is real if u , v are

real tangent vectors, where Λ0,1T (X ) = Λ1,0T (X ) and CT (X ) is the complexified

tangent bundle. For p ∈ X , let L p be the Levi form of X at p . (See (1.1) and

Definition 2.6.) Given q , 0≤ q ≤ n − 1, the Levi form is said to satisfty condition

Y (q ) at p ∈ X if for any |J |= q , J = (j1, j2, . . . , jq ), 1≤ j1 < j2 < · · ·< jq ≤ n − 1, we

have
�

�

�

�

�

�

∑

j /∈J

λj −
∑

j∈J

λj

�

�

�

�

�

�

<
n−1
∑

j=1

�

�λj

�

� ,

where λj , j = 1, . . . , (n − 1), are the eigenvalues of L p . (For the precise meaning

of the eigenvalues of the Levi form, see Definition 2.8.) If the Levi form is non-

degenerate at p , then Y (q ) holds at p if and only if q 6= n−, n+, where (n−, n+)
is the signature of L p , i.e. the number of negative eigenvalues of L p is n− and

n+ + n− = n − 1. Let �b be the Kohn Laplacian on X (see [6] or section 2) and

let �(q )b denote the restriction to (0,q )-forms. When condition Y (q ) holds, Kohn’s

L2 estimates give the hypoellipicity with loss of one dervative for the solutions

of �(q )b u = f . (See [11], [6] and section 3.) The Szegö projection is the orthog-

onal projection onto the kernel of �(q )b in the L2 space. When condition Y (q )
fails, one is interested in the Szegö projection on the level of (0,q )-forms. Beals

and Greiner (see [1]) used the Heisenberg group to obtain the principal term

of the Szegö projection. Boutet de Monvel and Sjöstrand (see [9]) obtained the

full asymptotic expansion for the Szegö projection in the case of functions. We

have been influenced by these works. The main inspiration for the present paper

comes from Berman and Sjöstrand [3].
We now start to formulate the main results. First, we introduce some nota-

tions. Let E be a C∞ vector bundle over a paracompact C∞ manifold Ω. The fiber

of E at x ∈ Ω will be denoted by Ex . Let Y ⊂⊂ Ω be an open set. From now on,

the spaces of smooth sections of E over Y and distribution sections of E over Y
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will be denoted by C∞(Y ; E ) and D ′(Y ; E ) respectively. Let E ′(Y ; E ) be the sub-

space of D ′(Y ; E ) whose elements have compact support in Y . For s ∈ R, we let

H s (Y ; E ) denote the Sobolev space of order s of sections of E over Y .

Let CT ∗(X ) be the complexified cotangent bundle. The Hermitian metric ( | )
on CT (X ) induces, by duality, a Hermitian metric on CT ∗(X ) that we shall also

denote by ( | ). Let Λ0,q T ∗(X ) be the bundle of (0,q )-forms of X . (See (2.5).) The

Hermitian metric ( | ) on CT ∗(X ) induces a Hermitian metric on Λ0,q T ∗(X ) (see

(2.3)) also denoted by ( | ).
We take (d m ) as the induced volume form on X . In local coordinates x =

(x1, . . . ,x2n−1), we represent the Hermitian inner product ( | ) on CT (X ) by

(u | v ) = 〈Hu , v 〉 , u , v ∈CT (X ),

where H (x ) ∈C∞ and H (x ) is positive definite at each point. Let h(x ) denote the

determinant of H . The induced volume form on X is given by

d m =
p

h(x )d x .

Let ( | ) be the inner product on C∞(X ; Λ0,q T ∗(X )) defined by

( f | g ) =
∫

X

( f (z ) | g (z ))(d m ), f , g ∈C∞(X ; Λ0,q T ∗(X )).

Let

π : L2(X ; Λ0,q T ∗(X ))→Ker�(q )b

be the Szegö projection, i.e. the orthogonal projection onto the kernel of�(q )b . Let

Kπ(x , y )∈D ′(X ×X ;L (Λ0,q T ∗y (X ),Λ
0,q T ∗x (X )))

be the distribution kernel ofπwith respect to (d m ). HereL (Λ0,q T ∗y (X ),Λ
0,q T ∗x (X ))

is the vector bundle with fiber over (x , y ) consisting of the linear maps from

Λ0,q T ∗y (X ) to Λ0,q T ∗x (X ). Formally,

(πu )(x ) =

∫

Kπ(x , y )u (y )
p

h(y )d y , u (y )∈C∞(X ; Λ0,q T ∗(X )).

We pause and recall a general fact of distribution theory. (See Hörmander

[17].) Let E and F be C∞ vector bundles over a paracompact C∞ manifold M

equipped with a smooth density of integration. Let

A : C∞0 (M ; E )→D ′(M ; F )

with distribution kernel

KA(x , y )∈D ′(M ×M ;L (Ey , Fx )).

Then the following two statements are equivalent

3



(a) A is continuous: E ′(M ; E )→C∞(M ; F ),

(b) KA ∈C∞(M ×M ;L (Ey , Fx )).

If A satisfies (a) or (b), we say that A is smoothing. Let

B : C∞0 (M ; E )→D ′(M ; F ).

From now on, we write K B (x , y ) or B (x , y ) to denote the distribution kernel of

B and we write A ≡ B or A ≡ B modC∞ if A − B is a smoothing operator. A is

smoothing if and only if A is continuous

A : H s
comp (M ; E )→H s+N

loc (M ; F ) for all N ≥ 0, s ∈R,

where

H s
loc (M ; F ) =

¦

u ∈D ′(M ; F ); ϕu ∈H s (M ; F ); ∀ϕ ∈C∞0 (M )
©

and

H s
comp (M ; E ) =H s

loc(M ; E )
⋂

E ′(M ; E ).

For z ∈X , let Λ1,0T ∗z (X ) = Λ
0,1T ∗z (X ) and let Λ1,0T ∗(X ) denote the vector bundle

with fiber Λ1,0T ∗z (X ) at z ∈X . Locally we can choose an orthonormal frame

ω1(z ), . . . ,ωn−1(z )

for Λ1,0T ∗z (X ), then

ω1(z ), . . . ,ωn−1(z )

is an orthonormal frame for Λ0,1T ∗z (X ). The (2n −2)-form

ω= i n−1ω1 ∧ω1 ∧ · · · ∧ωn−1 ∧ωn−1

is real and is independent of the choice of the orthonormal frame. Thusω can be

considered as a globally defined (2n−2)-form. Locally there is a real 1-formω0(z )
of length one which is orthogonal to Λ1,0T ∗z (X )⊕Λ0,1T ∗z (X ). ω0(z ) is unique up to

the choice of sign. Since X is orientable, there is a nowhere vanishing (2n − 1)-
form Q on X . Thus,ω0 can be specified uniquely by requiring that

ω∧ω0 = f Q ,

where f is a positive function. Thereforeω0, so chosen, is a uniquely determined

global 1-form. We callω0 the uniquely determined global real 1-form.

Since (u | v ) is real if u , v are real tangent vectors, there is a real non-vanishing

vector field Y which is orthogonal to Λ1,0T (X )⊕Λ0,1T (X ). We write 〈 , 〉 to denote
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the duality between Tz (X ) and T ∗z (X ). We extend 〈 , 〉 bilinearly toCTz (X )×CT ∗z (X ).
We take Y so that

〈Y ,ω0〉=−1, ‖Y ‖= 1.

Therefore Y is uniquely determined. We call Y the uniquely determined global

real vector field.

We recall that the Levi form L p , p ∈ X , is the Hermitian quadratic form on

Λ1,0Tp (X ) defined as follows:

For any Z , W ∈Λ1,0Tp (X ), pick eZ , fW ∈C∞(X ; Λ1,0T (X )) that satisfy

eZ (p ) =Z , fW (p ) =W . Then L p (Z , W ) =
1

2i

D

[eZ ,fW ](p ) ,ω0(p )
E

.
(1.1)

Let Σ be the characteristic manifold of �(q )b . We have

Σ=
�

(x ,ξ)∈ T ∗(X ) \0; ξ=λω0(x ),λ 6= 0
	

.

Put

Σ+ =
�

(x ,ξ)∈ T ∗(X ) \0; ξ=λω0(x ),λ> 0
	

,

Σ− =
�

(x ,ξ)∈ T ∗(X ) \0; ξ=λω0(x ),λ< 0
	

.

We assume that the Levi form is non-degenerate at each point of X . Then the

Levi form has constant signature (n−, n+), n−+n+ = n −1. We define

Σ̂ = Σ+ if n+ =q 6= n−,

Σ̂ = Σ− if n− =q 6= n+,

Σ̂ = Σ+
⋃

Σ− if n+ =q = n−.

The main result of this work is the following

Theorem 1.1. Let (X ,Λ1,0T (X )) be a compact orientable connected CR manifold

of dimension 2n − 1, n ≥ 2, with a Hermitian metric ( | ). (See Definition 2.1 and

Definition 2.2.) We assume that the Levi form L is non-degenerate at each point

of X . Then, the Levi form has constant signature (n−, n+), n− + n+ = n − 1. Let

q = n− or n+. Suppose �(q )b has closed range. Then π is a well defined continuous

operator

π : H s (X ; Λ0,q T ∗(X ))→H s (X ; Λ0,q T ∗(X )),

for all s ∈R, and

WF ′(Kπ) = diag (Σ̂× Σ̂),
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where

WF ′(Kπ) =
�

(x ,ξ, y ,η)∈ T ∗(X )×T ∗(X ); (x ,ξ, y ,−η)∈WF (Kπ)
	

.

Here WF (Kπ) is the wave front set of Kπ in the sense of Hörmander [14].
Moreover, we have

Kπ = Kπ+ if n+ =q 6= n−,

Kπ = Kπ− if n− =q 6= n+,

Kπ = Kπ+ +Kπ− if n+ =q = n−,

where Kπ+(x , y ) satisfies

Kπ+(x , y )≡
∫ ∞

0

e iφ+(x ,y )t s+(x , y , t )d t modC∞

with

s+(x , y , t )∈Sn−1
1,0 (X ×X×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

s+(x , y , t )∼
∞
∑

j=0

s j
+(x , y )t n−1−j

in the symbol space Sn−1
1,0 (X ×X×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

where Sm
1,0, m ∈ R, is the Hörmander symbol space (see Appendix A for a review

and references),

s j
+(x , y )∈C∞(X ×X ;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))), j = 0, 1, . . . ,

and

φ+(x , y )∈C∞(X ×X ), (1.2)

φ+(x ,x ) = 0, (1.3)

φ+(x , y ) 6= 0 if x 6= y , (1.4)

Imφ+(x , y )≥ 0, (1.5)

d xφ+ 6= 0, d yφ+ 6= 0 where Imφ+ = 0, (1.6)

d xφ+(x , y )|x=y =ω0(x ), (1.7)

d yφ+(x , y )|x=y =−ω0(x ), (1.8)

φ+(x , y ) =−φ+(y ,x ). (1.9)
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Similarly,

Kπ−(x , y )≡
∫ ∞

0

e iφ−(x ,y )t s−(x , y , t )d t modC∞

with

s−(x , y , t )∈Sn−1
1,0 (X ×X×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

s−(x , y , t )∼
∞
∑

j=0

s j
−(x , y )t n−1−j

in the symbol space Sn−1
1,0 (X ×X×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

where

s j
−(x , y )∈C∞(X ×X ;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))), j = 0, 1, . . . ,

and when q = n− = n+,

φ−(x , y ) =−φ+(x , y ).

Formulas for s 0
+(x ,x ) and s 0

−(x ,x ) will be given in Proposition 1.7 and Propo-

sition 1.8. More properties of the phase φ+(x , y ) will be given in Theorem 1.4 and

Remark 1.5 below.

Remark 1.2. We notice that if Y (q − 1) and Y (q + 1) hold then �(q )b has closed

range. (See section 7.)

Remark 1.3. If (X ,Λ1,0T (X )) is non-orientable, we also have results similar to The-

orem 1.1. (See section 10.)

In the rest of this section, we assume that the Levi form is non-degenerate at

each point of X . The phaseφ+(x , y ) is not unique. we can replaceφ+(x , y ) by

eφ(x , y ) = f (x , y )φ+(x , y ), (1.10)

where f (x , y )∈C∞(X×X ) is real and f (x ,x ) = 1, f (x , y ) = f (y ,x ). Then eφ satisfies

(1.2)-(1.9). We work with local coordinates x = (x1, . . . ,x2n−1) defined on an open

set Ω⊂X . We want to know the Hessian

(φ+)′′ =





(φ+)′′x x (φ+)′′x y

(φ+)′′y x (φ+)′′y y





of φ+ at (p , p ) ∈ X ×X . Let U , V ∈ CTp (X )×CTp (X ). From (1.10), we can check

that
¬

eφ′′(p , p )U , V
¶

=



(φ+)′′(p , p )U , V
�

+



d f (p , p ),U
�


dφ+(p , p ), V
�

+



d f (p , p ), V
�


dφ+(p , p ),U
�

.
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Thus, the Hessian (φ+)′′ ofφ+ at (p , p ) is only well-defined on the space

T(p ,p )H+ =
¦

W ∈CTp (X )×CTp (X );



dφ+(p , p ), W
�

= 0
©

.

In section 8, we will define T(p ,p )H+ as the tangent space of the formal hypersur-

face H+ (see (8.46)) at (p , p )∈X×X . In view of (1.7) and (1.8), we see that T(p ,p )H+
is spanned by

(u , v ), (Y (p ), Y (p )), u , v ∈Λ1,0Tp (X )⊕Λ0,1Tp (X ).

We define the tangential Hessian ofφ+(x , y ) at (p , p ) as the bilinear map:

T(p ,p )H+×T(p ,p )H+→C,

(U , V )→
¬

(φ′′+)(p , p )U , V
¶

, U , V ∈ T(p ,p )H+.

For p ∈X , we take local coordinates x = (x1, . . . ,x2n−1) defined on some neigh-

borhood of p such that

ω0(p ) =
p

2d x2n−1, x (p ) = 0.

If φ̂ ∈C∞(X ×X ), φ̂(p , p ) = 0, d x ,y φ̂(p , p ) = d x ,yφ+(p , p ) and the tangential Hes-

sian of φ̂(x , y ) at (p , p ) is the same as the tangential Hessian of φ+(x , y ) at (p , p ),
then

φ̂(x , y ′,x2n−1)−φ+(x , y ′,x2n−1) =O(
�

�(x , y ′)
�

�

3
)

in some neighborhood of (p , p ), where y ′ = (y1, . . . , y2n−2). Moreover, we have the

following (see section 9)

Theorem 1.4. For p ∈X , let

U1(x ), . . . ,Un−1(x )

be an orthonormal frame of Λ1,0Tx (X ) varying smoothly with x in a neighborhood

of p , for which the Levi form is diagonalized at p . We take local coordinates

x = (x1, . . . ,x2n−1), z j = x2j−1+ i x2j , j = 1, . . . , n −1,

defined on some neighborhood of p such that

ω0(p ) =
p

2d x2n−1, x (p ) = 0,

(
∂

∂ x j
(p ) |

∂

∂ xk
(p )) = 2δj ,k , j , k = 1, . . . , 2n −1
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and

Uj =
∂

∂ z j
−

1
p

2
a j (x )

∂

∂ x2n−1
+

2n−2
∑

s=1

c j ,s (x )
∂

∂ xs
, j = 1, . . . , n −1,

where
∂

∂ z j
=

1

2
(
∂

∂ x2j−1
− i

∂

∂ x2j
), j = 1, . . . , n −1,

a j ∈C∞, a j (0) = 0,
∂ a j

∂ z k
(0) = ∂ a k

∂ z j
(0), j , k = 1, . . . , n −1 and

c j ,s (x )∈C∞, c j ,s (0) = 0, j = 1, . . . , n −1, s = 1, . . . , 2n −2.

(This is always possible. see section 9.) We also write

y = (y1, . . . , y2n−1), w j = y2j−1+ i y2j , j = 1, . . . , n −1.

Then,

φ+(x , y ) =
p

2(x2n−1− y2n−1)+ i
n−1
∑

j=1

�

�λj

�

�

�

�z j −w j

�

�

2
+

1

2

n−1
∑

j ,k=1

�∂ a j

∂ z k
(0)(z j z k −w j wk )

+
∂ a j

∂ z k
(0)(z j z k −w j w k )+

∂ a j

∂ z k
(0)(z j z k −w j w k )+

∂ a j

∂ z k
(0)(z j z k −w j wk )

�

+
n−1
∑

j=1

�

iλj (z j w j − z j w j )+
∂ a j

∂ x2n−1
(0)(z j x2n−1−w j y2n−1)

+
∂ a j

∂ x2n−1
(0)(z j x2n−1−w j y2n−1)

�

+
p

2(x2n−1− y2n−1) f (x , y )+O(
�

�(x , y )
�

�

3
),

f ∈C∞, f (0, 0) = 0, f (x , y ) = f (y ,x ), (1.11)

where λj , j = 1, . . . , n −1, are the eigenvalues of L p .

Remark 1.5. We use the same notations as in Theorem 1.4. Since

∂ φ+

∂ x2n−1
(0, 0) 6= 0,

from the Malgrange preparation theorem (see Theorem B.6), we have

φ+(x , y ) = g (x , y )(
p

2x2n−1+h(x ′, y ))

in some neighborhood of (0, 0), where g , h ∈ C∞, g (0, 0) = 1, h(0, 0) = 0 and

x ′ = (x1, . . . ,x2n−2). Put

φ̂(x , y ) =
p

2x2n−1+h(x ′, y ).
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From the global theory of Fourier integral operators (see Proposition B.21), we

see that φ+(x , y ) and φ̂(x , y ) are equivalent at (p ,ω0(p )) in the sense of Melin-

Sjöstrand (see Definition B.20). Since φ+(x , y ) = −φ+(y ,x ), we can replace the

phaseφ+(x , y ) by

φ̂(x , y )− φ̂(y ,x )
2

.

Thenφ+(x , y ) satisfies (1.2)-(1.9). Moreover, we can check that

φ+(x , y ) =
p

2(x2n−1− y2n−1)+ i
n−1
∑

j=1

�

�λj

�

�

�

�z j −w j

�

�

2
+

1

2

n−1
∑

j ,k=1

�∂ a j

∂ z k
(0)(z j z k −w j wk )

+
∂ a j

∂ z k
(0)(z j z k −w j w k )+

∂ a j

∂ z k
(0)(z j z k −w j w k )+

∂ a j

∂ z k
(0)(z j z k −w j wk )

�

+
n−1
∑

j=1

�

iλj (z j w j − z j w j )+
∂ a j

∂ x2n−1
(0)(z j x2n−1−w j y2n−1)

+
∂ a j

∂ x2n−1
(0)(z j x2n−1−w j y2n−1)

�

+O(
�

�(x , y )
�

�

3
), (1.12)

where λj , j = 1, . . . , n−1, are the eigenvalues of L p . (Compare (1.12) with (1.11).)

We have the following corollary of Theorem 1.1. (See section 9.)

Corollary 1.6. There exist smooth functions

F+,G+, F−,G− ∈C∞(X ×X ; L (Λ0,q T ∗y (X ),Λ
0,q T ∗x (X )))

such that

Kπ+ = F+(−i (φ+(x , y )+ i 0))−n +G+ log(−i (φ+(x , y )+ i 0)),

Kπ− = F−(−i (φ−(x , y )+ i 0))−n +G− log(−i (φ−(x , y )+ i 0)).

Moreover, we have

F+ =
n−1
∑

0

(n −1−k )!s k
+(x , y )(−iφ+(x , y ))k + f+(x , y )(φ+(x , y ))n ,

F− =
n−1
∑

0

(n −1−k )!s k
−(x , y )(−iφ−(x , y ))k + f−(x , y )(φ−(x , y ))n ,

G+ ≡
∞
∑

0

(−1)k+1

k !
s n+k
+ (x , y )(−iφ+(x , y ))k ,

G− ≡
∞
∑

0

(−1)k+1

k !
s n+k
− (x , y )(−iφ−(x , y ))k , (1.13)

where

f+(x , y ), f−(x , y )∈C∞(X ×X ;L (Λ0,q T ∗y (X ),Λ
0,q T ∗x (X ))).
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If w ∈Λ0,1T ∗z (X ), let

w ∧,∗ :Λ0,q+1T ∗z (X )→Λ
0,q T ∗z (X ), q ≥ 0,

be the adjoint of left exterior multiplication

w ∧ :Λ0,q T ∗z (X )→Λ
0,q+1T ∗z (X ).

That is,

(w ∧u | v ) = (u |w ∧,∗v ),

for all u ∈ Λ0,q T ∗z (X ), v ∈ Λ0,q+1T ∗z (X ). Notice that w ∧,∗ depends anti-linearly on

w .

In section 9, we compute F+(x ,x ) and F−(x ,x ).

Proposition 1.7. For a given point x0 ∈X , let

U1(x ), . . . ,Un−1(x )

be an orthonormal frame of Λ1,0Tx (X ), for which the Levi form is diagonalized at

x0. Let e j (x ), j = 1, . . . , n −1, denote the basis of Λ0,1T ∗x (X ), which is dual to U j (x ),
j = 1, . . . , n − 1. Let λj (x ), j = 1, . . . , n − 1, be the eigenvalues of the Levi form Lx .

We assume that q = n+ and that

λj (x0)> 0 if 1≤ j ≤ n+.

Then

F+(x0,x0) = (n −1)!
1

2
|λ1(x0)| · · · |λn−1(x0)|π−n

j=n+
∏

j=1

e j (x0)∧e j (x0)∧,∗.

Proposition 1.8. For a given point x0 ∈X , let

U1(x ), . . . ,Un−1(x )

be an orthonormal frame of Λ1,0Tx (X ), for which the Levi form is diagonalized at

x0. Let e j (x ), j = 1, . . . , n −1, denote the basis of Λ0,1T ∗x (X ), which is dual to U j (x ),
j = 1, . . . , n−1. Let λj (x ), j = 1, . . . , n−1 be the eigenvalues of the Levi form Lx . We

assume that q = n− and that

λj (x0)< 0 if 1≤ j ≤ n−.

Then

F−(x0,x0) = (n −1)!
1

2
|λ1(x0)| · · · |λn−1(x0)|π−n

j=n−
∏

j=1

e j (x0)∧e j (x0)∧,∗.
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In the rest of this section, we will explain how to prove Theorem 1.1. Let M

be an open set in Rn and let f , g ∈C∞(M ). We write

f � g

if for every compact set K ⊂M there is a constant cK > 0 such that

f ≤ cK g , g ≤ cK f on K .

We will prove the following

Proposition 1.9. Let (X ,Λ1,0T (X )) be a compact orientable connected CR man-

ifold of dimension 2n − 1, n ≥ 2, with a Hermitian metric ( | ). Let (n−, n+),
n− + n+ = n − 1, be the signature of the Levi form. Let q = n− or n+. Suppose

�(q )b has closed range. Then for every local coordinate patch U with local coordi-

nates x = (x1, . . . ,x2n−1), the distribution kernel of π on U ×U is of the form

Kπ(x , y )≡
1

(2π)2n−1

∫

e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)dη modC∞,

a (∞,x ,η)∈S0
1,0(T

∗(U ) ;L (Λ0,q T ∗(U ),Λ0,q T ∗(U ))),

a (∞,x ,η)∼
∞
∑

0

a j (∞,x ,η)

in the symbol space S0
1,0(T

∗(U );L (Λ0,q T ∗(U ),Λ0,q T ∗(U ))),

where L (Λ0,q T ∗(U ),Λ0,q T ∗(U )) is the vector bundle with fiber (x ,η) consisting of

linear maps from Λ0,q T ∗x (U ) to Λ0,q T ∗x (U ),

a j (∞,x ,η)∈C∞(T ∗(U );L (Λ0,q T ∗(U ),Λ0,q T ∗(U ))), j = 0, 1, . . . ,

a j (∞,x ,λη) =λ−j a j (∞,x ,η),λ≥ 1,
�

�η
�

�≥ 1, j = 0, 1, . . . .

Here

ψ(∞,x ,η)∈C∞(T ∗(U )),

ψ(∞,x ,λη) =λψ(∞,x ,η),λ> 0,

Imψ(∞,x ,η)�
�

�η
�

� (dist ((x ,
η
�

�η
�

�

),Σ))2.

Moreover, for all j = 0, 1, . . .,

¨

a j (∞,x ,η) = 0 in a conic neighborhood of Σ+, if q = n−, n− 6= n+
a j (∞,x ,η) = 0 in a conic neighborhood of Σ−, if q = n+, n− 6= n+.

. (1.14)
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From the global theory of Fourier integral operators (see Melin-Sjöstrand [18]
and section 8), we get Theorem 1.1.

Now, we sketch the proof of Proposition 1.9. We will use the heat equation

method. We work with some real local coordinates x = (x1, . . . ,x2n−1) defined on

an open set Ω ⊂ X . We assume that q = n− or q = n+. We will say that a ∈
C∞(R+×Ω×R2n−1) is quasi-homogeneous of degree j if

a (t ,x ,λη) =λj a (λt ,x ,η)

for all λ> 0. We consider the problem

¨

(∂t +�
(q )
b )u (t ,x ) = 0 inR+×Ω

u (0,x ) = v (x )
. (1.15)

We shall start by making only a formal construction. We look for an approximate

solution of (1.15) of the form

u (t ,x ) = A(t )v (x )

A(t )v (x ) =
1

(2π)2n−1

∫

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)v (y )d y dη (1.16)

where formally

a (t ,x ,η)∼
∞
∑

j=0

a j (t ,x ,η),

a j (t ,x ,η) is a matrix-valued quasi-homogeneous function of degree −j .

We let the full symbol of �(q )b be:

full symbol of �(q )b =
2
∑

j=0

p j (x ,ξ)

where p j (x ,ξ) is positively homogeneous of order 2− j in the sense that

p j (x ,λη) =λ2−j p j (x ,η),
�

�η
�

�≥ 1, λ≥ 1.

We apply ∂t +�
(q )
b formally inside the integral in (1.16) and then introduce the

asymptotic expansion of �(q )b (a e iψ). Set (∂t +�
(q )
b )(a e iψ) ∼ 0 and regroup the

terms according to the degree of quasi-homogeneity. The phaseψ(t ,x ,η) should

solve






∂ ψ

∂ t
− i p0(x ,ψ′x ) =O(

�

�Imψ
�

�

N
), ∀N ≥ 0

ψ|t=0 =



x ,η
�

. (1.17)
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This equation can be solved with Imψ(t ,x ,η) ≥ 0 and the phase ψ(t ,x ,η) is

quasi-homogeneous of degree 1. Moreover,

ψ(t ,x ,η) =



x ,η
�

onΣ, d x ,η(ψ−



x ,η
�

) = 0 onΣ,

Imψ(t ,x ,η)� (
�

�η
�

�

t
�

�η
�

�

1+ t
�

�η
�

�

)dist ((x ,
η
�

�η
�

�

),Σ))2,
�

�η
�

�≥ 1.

Furthermore, there exists a function ψ(∞,x ,η) ∈ C∞(Ω× Ṙ2n−1) with a uniquely

determined Taylor expansion at each point of Σ such that for every compact set

K ⊂Ω× Ṙ2n−1 there is a constant cK > 0 such that

Imψ(∞,x ,η)≥ cK

�

�η
�

� (dist ((x ,
η
�

�η
�

�

),Σ))2,
�

�η
�

�≥ 1.

If λ ∈ C (T ∗Ωr 0), λ > 0 is positively homogeneous of degree 1 and λ|Σ <minλj ,

λj > 0, where ±iλj are the non-vanishing eigenvalues of the fundamental ma-

trix of �(q )b , then the solution ψ(t ,x ,η) of (1.17) can be chosen so that for every

compact set K ⊂Ω× Ṙ2n−1 and all indices α, β , γ, there is a constant cα,β ,γ,K such

that
�

�

�∂ αx ∂
β
η ∂

γ
t (ψ(t ,x ,η)−ψ(∞,x ,η))

�

�

�≤ cα,β ,γ,K e−λ(x ,η)t onR+×K .

(For the detail, see Menikoff-Sjöstrand[20] or section 4.)

We obtain the transport equations

(

T (t ,x ,η,∂t ,∂x )a 0 =O(
�

�Imψ
�

�

N
), ∀N

T (t ,x ,η,∂t ,∂x )a j + l j (t ,x ,η, a 0, . . . , a j−1) =O(
�

�Imψ
�

�

N
), ∀N .

(1.18)

Let p s
0 denote the subprincipal symbol of�(q )b (invariantly defined on Σ). (For

the precise meaning of subprincipal symbols, see Definition A.10 and Defini-

tion A.26.) Let Fρ be the fundamental matrix of �(q )b at ρ ∈ Σ. (For the precise

meaning of the fundamental matrix, see the discussion before Remark A.43.) We

write etr Fρ to denote
∑
�

�λj

�

�, where±iλj are the non-vanishing eigenvalues of Fρ.

Let

inf (p s
0 +

1

2
etr F ) = inf

�

λ; λ : eigenvalue of p s
0 +

1

2
etr F

�

.

We have on Σ+

inf (p s
0 +

1

2
etr F )

¨

= 0, q = n+
> 0, q 6= n+

. (1.19)

On Σ−

inf (p s
0 +

1

2
etr F )

¨

= 0, q = n−
> 0, q 6= n−

. (1.20)
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Let

c j (x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . .

be positively homogeneous functions of degree −j . In section 5, we shall show

that we can find solutions

a (t ,x ,η)∼
∞
∑

j=0

a j (t ,x ,η)

of the system (1.18) with

a j (0,x ,η) = c j (x ,η), j = 0, 1, . . . ,

where a j (t ,x ,η) is a matrix-valued C∞ quasi-homogeneous function of degree

−j . Moreover, a j (t ,x ,η) has unique Taylor expansions on Σ, for all j . Further-

more, there exists ε0 > 0 such that for every compact set K ⊂ Σ and all indices

α,β ,γ, j there exists a constant c > 0 such that
�

�

�∂
γ

t ∂
α

x ∂
β
η a j (t ,x ,η)

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)−j−|β |+γ

onR+× (K
⋂

Σ+) if q = n−, n− 6= n+ (1.21)

and
�

�

�∂
γ

t ∂
α

x ∂
β
η a j (t ,x ,η)

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)−j−|β |+γ

onR+× (K
⋂

Σ−) if q = n+, n− 6= n+. (1.22)

Let

a (t ,x ,η)∼
∞
∑

j=0

a j (t ,x ,η)

be the solutions of the system (1.18) with

a (0,x ,η) = I ,

where a j (t ,x ,η) is a C∞ matrix-valued quasi-homogeneous function of degree

−j and I ∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω) ,Λ0,q T ∗(Ω))) is the identity map. We write

(∂t +�
(q )
b )(e

iψb )∼ 0

if b solves the system (1.18), where b (t ,x ,η) ∼
∑∞

j=0 b j (t ,x ,η), b j (t ,x ,η) is a

matrix-valued quasi-homogeneous function of degree m − j , m ∈Z. We use

∂ b�
(q )
b =�

(q+1)
b ∂ b , ∂b

∗
�(q )b =�

(q−1)
b ∂b

∗
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and get

∂t (∂ b (e iψa ))+�(q+1)
b (∂ b (e iψa ))∼ 0

∂t (∂b
∗
(e iψa ))+�(q−1)

b (∂b
∗
(e iψa ))∼ 0.

Put

∂ b (e iψa ) = e iψâ , ∂b
∗
(e iψa ) = e iψ

ea .

We have

(∂t +�
(q+1)
b )(e iψâ )∼ 0,

(∂t +�
(q−1)
b )(e iψ

ea )∼ 0.

In view of (1.21) and (1.22) (see Proposition 5.7), we see that â and ea satisfy the

same decay estimates as in (1.21) or (1.22). This also applies to

�(q )b (a e iψ) = ∂ b (∂b
∗
a e iψ)+ ∂b

∗
(∂ b a e iψ)

= ∂ b (e iψ
ea )+ ∂b

∗
(e iψâ ).

Thus, ∂t (a e iψ) satisfies the same decay estimates as in (1.21) or (1.22). Since ∂tψ

satisfies the same decay estimates as in (1.21) or (1.22), ∂t a satisfies the same

decay estimates as in (1.21) or (1.22). Hence, there exist

a j (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω) ,Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

positively homogeneous of degree −j , and ε0 > 0, such that for every compact

set K ⊂Σ and all indices α,β , j there exists a constant c > 0 such that
�

�

�∂ αx ∂
β
η (a j (t ,x ,η)−a j (∞,x ,η))

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)−j−|β | (1.23)

and for all j = 0, 1, . . .,

¨

all derivatives of a j (∞,x ,η) vanish at Σ+, if q = n−, n− 6= n+
all derivatives of a j (∞,x ,η) vanish at Σ−, if q = n+, n− 6= n+

. (1.24)

Choose χ ∈ C∞0 (R2n−1) so that χ(η) = 1 when
�

�η
�

� < 1 and χ(η) = 0 when
�

�η
�

�> 2. We formally set

G =
1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)

− e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)
�

(1−χ(η))d t
�

dη
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and

S =
1

(2π)2n−1

∫

(e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η))dη.

In section 6, we will show that G is a pseudodifferential operator of order−1 type

( 1
2

, 1
2
). In section 7, we will show that

S+�(q )b ◦G ≡ I

and

�(q )b ◦S ≡ 0.

If �(q )b has closed range, then

N�(q )b +π= I =�(q )b N +π,

where N is the partial inverse of �(q )b . It is not difficult to see that

π≡S

and

N ≡ (I −S)G .

(See section 8.)
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2 Cauchy-Riemann manifolds, ∂ b -Complex and �b ,
a review

We will give a brief discussion of the basic elements of CR geometry in a setting

appropriate for our purpose. General references for this section are the books

Boggess [5], Chen-Shaw [6].
Let X be a real compact C∞ manifold of dimension 2n − 1, n ≥ 2. Let Tp (X )

and T ∗p (X ) be the tangent space of X at p and the cotangent space of X at p re-

spectively. We write T (X ) and T ∗(X ) to denote the bundles with fibers Tz (X ) and

T ∗z (X ) at z ∈ X respectively. Let CTp (X ) and CT ∗p (X ) be the complexified tangent

space of X at p and the complexified cotangent space of X at p respectively. That

is,

CTp (X ) =
¦

u + i v ; u , v ∈ Tp (X )
©

, CT ∗p (X ) =
n

u + i v ; u , v ∈ T ∗p (X )
o

.

We writeCT (X ) andCT ∗(X ) to denote the bundles with fibersCTz (X ) andCT ∗z (X )
at z ∈X respectively.
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Definition 2.1. Let X be a real C∞ manifold of dimension 2n − 1, n ≥ 2, and let

Λ1,0T (X ) be a subbundle of CT (X ). The pair (X ,Λ1,0T (X )) is called a CR manifold

or a CR structure if

(a) dimCΛ1,0Tp (X ) = n −1, p ∈X ,

(b) Λ1,0T (X )
⋂

Λ0,1T (X ) = 0, where Λ0,1T (X ) = Λ1,0T (X ),

(c) For any V1, V2 ∈ C∞(U ; Λ1,0T (X )), the Lie bracket [V1, V2] ∈ C∞(U ; Λ1,0T (X )),
where U is any open subset of X .

Definition 2.2. Let (X ,Λ1,0T (X )) be a CR manifold. A Hermitian metric ( | ) on

CT (X ) is a complex inner product ( | ) on each CTp (X ) depending smoothly on p

with the properties that Λ1,0Tp (X ) is orthogonal to Λ0,1Tp (X ) and (u | v ) is real if

u , v are real tangent vectors.

Until further notice, we assume that (X ,Λ1,0T (X )) is a compact orientable

connected CR manifold of dimension 2n −1, n ≥ 2, and we fix a Hermitian met-

ric ( | ) on CT (X ). Then there is a real non-vanishing vector field Y on X which is

pointwise orthogonal to Λ1,0T (X )⊕Λ0,1T (X ).
We write 〈 , 〉 to denote the duality between Tz (X ) and T ∗z (X ). We extend 〈 , 〉

bilinearly to CTz (X )×CT ∗z (X ).
The Hermitian metric ( | ) on CT (X ) induces, by duality, a Hermitian metric

onCT ∗(X ) that we shall also denote by ( | ) in the following way. For a given point

z ∈X , let Γ be the anti-linear map

Γ :CTz (X )→CT ∗z (X )

defined by

(u | v ) = 〈u ,Γv 〉 , u , v ∈CTz (X ). (2.1)

Forω, µ∈CT ∗z (X ), we put

(ω | µ) = (Γ−1µ | Γ−1ω). (2.2)

Let Λr (CT ∗(X )), r ∈N, be the vector bundle of r forms of X . That is, the fiber

of Λr (CT ∗(X )) at z ∈X is the vector space Λr (CT ∗z (X )) of all finite sums of

V1 ∧ · · · ∧Vr , Vj ∈CT ∗z (X ), j = 1, . . . , r.

Here ∧ denotes the wedge product. The Hermitian metric ( | ) on Λr (CT ∗(X )) is

defined by

(u 1 ∧ · · · ∧u r | v1 ∧ · · · ∧vr ) = det
�

(u j | vk )
�

1≤j ,k≤r
,

u j , vk ∈CT ∗(X ), j , k = 1, . . . , r, (2.3)
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and we extend the definition to arbitrary forms by sesqui-linearity.

Similarly, let Λr (CT (X )), r ∈ N, be the vector bundle with fiber Λr (CTz (X )) at

z ∈X , the set of all finite sums of

V1 ∧ · · · ∧Vr , Vj ∈CTz (X ), j = 1, . . . , r.

The duality 〈, 〉 between Λr (CT (X )) and Λr (CT ∗(X )) is defined by

〈v1 ∧ · · · ∧vr , u 1 ∧ · · · ∧u r 〉= det
�¬

v j , u k

¶�

1≤j ,k≤r
,

u j ∈CT ∗(X ), v j ∈CT (X ), j = 1, . . . , r.

and we extend the definition by bilinearity.

For z ∈X , let v ∈CTz (X ). For 0≤ r ≤ (2n −2), the contraction

v ù :Λr+1(CT ∗z (X ))→Λ
r (CT ∗z (X ))

is defined by

〈v1 ∧ · · · ∧vr , v ùu 〉= 〈v ∧v1 ∧ · · · ∧vr , u 〉

for all u ∈Λr+1(CT ∗z (X )), v j ∈CTz (X ), j = 1, . . . , r .

We have the pointwise orthogonal decomposition

CT (X ) = Λ1,0T (X )⊕Λ0,1T (X )⊕CY . (2.4)

Define the bundle Λ1,0T ∗(X ) of type (1, 0) by

Λ1,0T ∗(X ) = (Λ0,1T (X )⊕CY )⊥ ⊂CT ∗(X ).

Similarly, we set

Λ0,1T ∗(X ) = (Λ1,0T (X )⊕CY )⊥ ⊂CT ∗(X ).

For z ∈X , u ∈Λ1,0Tz (X ), v ∈Λ0,1Tz (X )⊕CY (z ), we have

〈v,Γu 〉= (v | u ) = 0,

where Γ is as in (2.1). Thus, ΓΛ1,0Tz (X )⊂Λ1,0T ∗z (X ). Since

dimΓΛ1,0Tz (X ) = dimΛ1,0T ∗z (X ) = n −1,

we have

Λ1,0T ∗z (X ) = ΓΛ
1,0Tz (X ).

Similarly,

Λ0,1T ∗z (X ) = ΓΛ
0,1Tz (X ).
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For z ∈X ,ω∈Λ1,0T ∗z (X ), µ∈Λ0,1T ∗z (X ), we have

(ω | µ) = (Γ−1µ | Γ−1ω).

Since Γ−1ω∈Λ1,0Tz (X ), Γ−1µ∈Λ0,1Tz (X ), we have

(ω | µ) = 0.

Thus, Λ1,0T ∗(X ) is pointwise orthogonal to Λ0,1T ∗(X ). For q ∈N, define

Λ0,q T ∗(X ) = Λq (Λ0,1T ∗(X )). (2.5)

That is, the fiber of Λ0,q T ∗(X ) at z ∈X is the vector space Λq (Λ0,1T ∗z (X )) of all finite

sums of

V1 ∧ · · · ∧Vq , Vj ∈Λ0,1T ∗z (X ), j = 1, . . . ,q .

Note that Λ0,q T ∗(X ) = 0 if q ≥ n . We use the Hermitian metric ( | ) on Λ0,q T ∗z (X ),
that is naturally obtained from Λq (CT ∗(X )). Similarly, for q ∈ N, let Λ0,q T (X ) be

the vector bundle with fiber Λq (Λ0,1Tz (X )) at z ∈X , the set of all finite sums of

V1 ∧ · · · ∧Vq , Vj ∈Λ0,1Tz (X ), j = 1, . . . ,q .

Let

d : C∞(X ; Λr (CT ∗(X )))→C∞(X ; Λr+1(CT ∗(X )))

be the usual exterior derivative. We recall that the exterior derivative d has the

following properties, where (b ), (c ) are special case of Cartan’s formula:

Lνω= νùdω+d (νùω).

Here ν is a smooth vector field,ω is a q-form andLνω is the Lie derivative ofω

along ν .

(a) If f ∈C∞(X ) then



V, d f
�

=V ( f ), V ∈C∞(X ; CT (X )).

(b) Ifφ ∈C∞(X ; CT ∗(X )) then



V1 ∧V2, dφ
�

=V1(



V2,φ
�

)−V2(



V1,φ
�

)−



[V1, V2],φ
�

, (2.6)

where V1, V2 ∈C∞(X ; CT (X )).

(c) Ifφ ∈C∞(X ; Λq−1(CT ∗(X ))), q ≥ 2, then
¬

V1 ∧ · · · ∧Vq , dφ
¶

=−
D

V2 ∧ · · · ∧Vq , d (V ù1 φ)
E

+V1(
¬

V2 ∧ · · · ∧Vq ,φ
¶

)

−
¬

[V1, V2]∧V3 ∧ · · · ∧Vq ,φ
¶

− · · ·−
¬

V2 ∧V3 ∧ · · · ∧ [V1, Vq ],φ
¶

, (2.7)

where Vj ∈C∞(X ; CT (X )), j = 1, . . . ,q .

20



(d) Forφ1 ∈C∞(X ; Λr (CT ∗(X ))),φ2 ∈C∞(X ; Λs (CT ∗(X ))), we have

d (φ1 ∧φ2) = dφ1 ∧φ2+(−1)rφ1 ∧dφ2.

(e) d 2 = 0.

Let

π0,q :Λq (CT ∗(X ))→Λ0,q T ∗(X )

be the orthogonal projection map.

Definition 2.3. The tangential Cauchy-Riemann operator:

∂ b : C∞(X ; Λ0,q T ∗(X ))→C∞(X ; Λ0,q+1T ∗(X ))

is defined by

∂ b =π0,q+1 ◦d .

We will show that

∂ b : C∞(X ; Λ0,q T ∗(X ))→C∞(X ; Λ0,q+1T ∗(X ))

is a complex, i.e. ∂
2

b = 0. This will follow from the equation d 2 = 0 and some

computations. We need the following

Lemma 2.4. Let q ≥ 1. Let ω be a smooth q-form. We assume that ω(x ) annihi-

lates Λ0,q Tx (X ), for all x ∈X . Then (dω)(x ) annihilates Λ0,q+1Tx (X ), for all x ∈X .

Proof. We proceed by induction over q . For q = 1, we let

V1, V2 ∈C∞(X ; Λ0,1T (X )),

then

〈V1 ∧V2, dω〉=V1(〈V2,ω〉)−V2(〈V1,ω〉)−〈[V1, V2],ω〉 .

Since [V1, V2]∈C∞(X ; Λ0,1T (X )), we have 〈[V1, V2],ω〉= 0. Thus,

〈V1 ∧V2, dω〉= 0.

Let q ≥ 2. Let ω be a smooth q-form. We assume that ω(x ) annihilates

Λ0,q Tx (X ), for all x ∈X . Let

V1, . . . , Vq+1 ∈C∞(X ; Λ0,1T (X )).
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From (2.7), we have

¬

V1 ∧ · · · ∧Vq+1, dω
¶

=−
D

V2 ∧ · · · ∧Vq+1, d (V ù1 ω)
E

+V1(
¬

V2 ∧ · · · ∧Vq+1,ω
¶

)

−
¬

[V1, V2]∧V3 ∧ · · · ∧Vq+1,ω
¶

− · · ·−
¬

V2 ∧V3 ∧ · · · ∧ [V1, Vq+1],ω
¶

.

Since

[V1, Vj ]∈C∞(X ; Λ0,1T (X )), j = 2, . . . ,q +1,

and

V1(
¬

V2 ∧ · · · ∧Vq+1,ω
¶

) = 0,

we have
¬

V1 ∧ · · · ∧Vq+1, dω
¶

=−
D

V2 ∧ · · · ∧Vq+1, d (V ù1 ω)
E

.

By the induction assumption, we have
D

V2 ∧ · · · ∧Vq+1, d (V ù1 ω)
E

= 0.

Thus,
¬

V1 ∧ · · · ∧Vq+1, dω
¶

= 0.

The lemma follows.

Proposition 2.5. We have

∂
2

b = 0.

Proof. If f ∈C∞(X ; Λ0,q T ∗(X )), then

0= d 2 f = d (π0,q+1d f +(I −π0,q+1)d f ).

Now (I −π0,q+1)d f annihilates Λ0,q+1T (X ) pointwise. In view of Lemma 2.4, we

see that

π0,q+2d ((I −π0,q+1)d f ) = 0.

Thus,

0=π0,q+2d 2 f

=π0,q+2dπ0,q+1d f +π0,q+2d ((I −π0,q+1)d f )

=π0,q+2dπ0,q+1d f

= ∂
2

b f .

The proposition follows.
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We take (d m ) as the induced volume form on X introduced in the begining

of the introduction. Let ( | ) be the inner product on C∞(X ; Λ0,q T ∗(X )) defined by

( f | g ) =
∫

X

( f (z ) | g (z ))(d m ), f , g ∈C∞(X ; Λ0,q T ∗(X )). (2.8)

Let ∂b
∗

be the formal adjoint of ∂ b , that is

(∂ b f | h) = ( f | ∂b
∗
h), f ∈C∞(X ; Λ0,q T ∗(X )), h ∈C∞(X ; Λ0,q+1T ∗(X )).

∂b
∗

is a first order differential operator and

∂b
∗

: · · · ←C∞(X ; Λ0,q T ∗(X ))←C∞(X ; Λ0,q+1T ∗(X ))← ·· · .

is a complex.

If w ∈Λ0,1T ∗z (X ), z ∈X , let

w ∧,∗ :Λ0,q+1T ∗z (X )→Λ
0,q T ∗z (X )

be the adjoint of left exterior multiplication

w ∧ :Λ0,q T ∗z (X )→Λ
0,q+1T ∗z (X ).

That is,

(w ∧u | v ) = (u |w ∧,∗v ),

for all u ∈ Λ0,q T ∗z (X ), v ∈ Λ0,q+1T ∗z (X ). Notice that w ∧,∗ depends anti-linearly on

w . Note that

(u |w ∧v1 ∧ · · · ∧vq ) =
¬

Γ−1w ∧Γ−1v1 ∧ · · · ∧Γ−1vq , u
¶

=
D

Γ−1v1 ∧ · · · ∧Γ−1vq , (Γ−1w )ùu
E

= ((Γ−1w )ùu | v1 ∧ · · · ∧vq )

where u ∈Λ0,q+1T ∗z (X ) and v j ∈Λ0,1T ∗z (X ), j = 1, . . . ,q . Thus,

(Γ−1w )ùu =w ∧,∗u , u ∈Λ0,q+1T ∗z (X ).

Locally we can choose an orthonormal frame

ω1(z ), . . . ,ωn−1(z )

for Λ1,0T ∗z (X ), then

ω1(z ), . . . ,ωn−1(z )
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is an orthonormal frame for Λ0,1T ∗z (X ). The (2n −2)-form

ω= i n−1ω1 ∧ω1 ∧ · · · ∧ωn−1 ∧ωn−1

is real and is independent of the choice of the orthonormal frame. Thus ω can

be considered as a globally defined (2n − 2)-form. Locally there is a real 1-form

ω0(z ) of length one which is orthogonal to

Λ1,0T ∗z (X )⊕Λ
0,1T ∗z (X ).

ω0(z ) is unique up to the choice of sign. Since X is orientable, there is a nowhere

vanishing (2n −1)-form Q on X . Thus,ω0 can be specified uniquely by requiring

that

ω∧ω0 = f Q ,

where f is a positive function. Thereforeω0, so chosen, is a uniquely determined

global 1-form. We callω0 the uniquely determined global real 1-form.

We have the pointwise orthogonal decomposition:

CT ∗(X ) = Λ1,0T ∗(X )⊕Λ0,1T ∗(X )⊕{λω0; λ∈C} . (2.9)

We take Y (already introduced after Definition 2.2 and (2.4)) so that

〈Y ,ω0〉=−1, ‖Y ‖= 1.

Therefore Y is uniquely determined. We call Y the uniquely determined global

real vector field. Note that

ω0 =−ΓY .

Definition 2.6. For p ∈ X , the Levi form L p is the Hermitian quadratic form on

Λ1,0Tp (X ) defined as follows:

For any Z , W ∈Λ1,0Tp (X ), pick eZ , fW ∈C∞(X ; Λ1,0T (X )) that satisfy

eZ (p ) =Z , fW (p ) =W . Then L p (Z , W ) =
1

2i

D

[eZ ,fW ](p ) ,ω0(p )
E

.
(2.10)

Here

[eZ ,fW ] = eZfW −fW eZ

denotes the commutator of eZ and fW .

The following lemma shows that the definition of the Levi form L p is inde-

pendent of the choices of eZ and fW .
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Lemma 2.7. Let eZ ,fW ∈C∞(X ; Λ1,0T (X )). We have

1

2i

D

[eZ ,fW ](p ) ,ω0(p )
E

=−
1

2i

D

eZ (p )∧fW (p ), dω0(p )
E

. (2.11)

Proof. In view of (2.6), we see that

D

eZ ∧fW , dω0

E

= eZ (
D

fW ,ω0

E

)−fW (
¬

eZ ,ω0

¶

)−
D

[eZ ,fW ],ω0

E

.

Sinceω0 is pointwise orthogonal to

Λ1,0T ∗(X )⊕Λ0,1T ∗(X ),

it pointwise annihilates

Λ1,0T (X )⊕Λ0,1T (X ).

We have
D

fW ,ω0

E

= 0,
¬

eZ ,ω0

¶

= 0.

Thus,

1

2i

D

[eZ ,fW ](p ) ,ω0(p )
E

=−
1

2i

D

eZ (p )∧fW (p ), dω0(p )
E

.

The lemma follows.

Definition 2.8. The eigenvalues of the Levi form at p ∈ X are the eigenvalues of

the Hermitian form L p with respect to the inner product ( | ) on Λ1,0Tp (X ).

For U , V ∈ C∞(X ; Λ1,0T (X )), we have [U , V ](p ) ∈ CTp (X ), p ∈ X . In view of

(2.4), we see that

[U , V ](p ) =λY (p )+h, h ∈Λ0,1Tp (X )⊕Λ1,0Tp (X ).

Note that



h ,ω0(p )
�

= 0

and




Y (p ) ,ω0(p )
�

=−1.

In view of (2.10), we have

[U , V ](p ) =−(2i )L p (U (p ) , V (p ))Y (p )+h. (2.12)

Next we compute ∂ b and ∂b
∗
.
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For each point z 0 ∈X , we can choose an orthonormal frame

e1(z ), . . . , en−1(z )

for Λ0,1T ∗z (X ) varying smoothly with z in a neighborhood of z 0. Let Z j (z ), j =
1, . . . , n − 1, denote the basis of Λ0,1Tz (X ), which is dual to e j (z ), j = 1, . . . , n − 1.

We have

d f = (
∑

e ∧j Z j +
∑

e ∧j Z j −ω∧0 Y ) f , f ∈C∞(X ).

If f (z )e j1(z ) ∧ · · · ∧ e jq (z ) ∈ C∞(X ; Λ0,q T ∗(X )) is a typical term in a general (0,q )-
form, we have

d ( f (z )e j1(z )∧ · · · ∧ e jq (z )) =
∑

�

(Z j f )e ∧j +(Z j f )e ∧j − (Y f )ω∧0
�

e j1 ∧ · · · ∧ e jq

+
q
∑

k=1

(−1)k−1 f (z )e j1 ∧ · · · ∧ (d e jk )∧ · · · ∧ e jq .

Thus,

∂ b ( f (z )e j1(z )∧ · · · ∧ e jq (z )) =
n−1
∑

j=1

Z j ( f )e j (z )∧e j1 ∧ · · · ∧ e jq

+
q
∑

k=1

(−1)k−1 f (z )e j1 ∧ · · · ∧ (∂ b e jk )∧ · · · ∧ e jq

= (
n−1
∑

j=1

Z j ( f )e ∧j )e j1 ∧ · · · ∧ e jq )

+ (
n−1
∑

j=1

(∂ b e j )∧e ∧,∗
j )( f (z )e j1 ∧ · · · ∧ e jq ).

For the given orthonormal frame, the map

e ∧j ◦Z j : C∞(X ; Λ0,q T ∗(X ))→C∞(X ; Λ0,q+1T ∗(X ))

is defined by

(e ∧j ◦Z j )( f (z )e j1(z )∧ · · · ∧ e jq (z )) =Z j ( f )e j (z )∧e j1 ∧ · · · ∧ e jq

and we extend the definition by linearity.

So for the given orthonormal frame we have the identification

∂ b ≡
n−1
∑

j=1

(e ∧j ◦Z j +(∂ b e j )∧e ∧,∗
j )
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and correspondingly

∂b
∗
≡

n−1
∑

j=1

(e ∧,∗
j ◦Z ∗j + e ∧j (∂ b e j )∧,∗),

where the map

e ∧,∗
j ◦Z ∗j : C∞(X ; Λ0,q+1T ∗(X ))→C∞(X ; Λ0,q T ∗(X ))

is defined by

(e ∧,∗
j ◦Z ∗j )( f (z )e j1(z )∧ · · · ∧ e jq+1(z )) =Z ∗j ( f )e j (z )∧,∗e j1 ∧ · · · ∧ e jq+1

and we extend the definition by linearity.

The Kohn Laplacian �b is given by

�b = ∂ b∂b
∗
+ ∂b

∗
∂ b .

From now on, we write �(q )b to denote the restriction to (0,q )-forms. We have

�(q )b =
n−1
∑

j ,k=1

h

�

e ∧j ◦Z j +(∂ b e j )∧e ∧,∗
j

��

e ∧,∗
k ◦Z ∗k + e ∧k (∂ b ek )∧,∗�

+
�

e ∧,∗
k ◦Z ∗k + e ∧k (∂ b ek )∧,∗��e ∧j ◦Z j +(∂ b e j )∧e ∧,∗

j

�

i

=
n−1
∑

j ,k=1

h

(e ∧j ◦Z j )(e
∧,∗
k ◦Z ∗k )+ (e

∧,∗
k ◦Z ∗k )(e

∧
j ◦Z j )

i

+ ε(Z )+ ε(Z ∗)+ zero order terms

=
n−1
∑

j ,k=1

(e ∧j e ∧,∗
k ◦Z j Z

∗
k + e ∧,∗

k e ∧j ◦Z ∗kZ j )

+ ε(Z )+ ε(Z ∗)+ zero order terms

=
n−1
∑

j ,k=1

(e ∧j e ∧,∗
k + e ∧,∗

k e ∧j ) ◦Z ∗kZ j +
n−1
∑

j ,k=1

e ∧j e ∧,∗
k ◦ [Z j ,Z ∗k ]

+ ε(Z )+ ε(Z ∗)+ zero order terms, (2.13)

where ε(Z ) denotes remainder terms of the form
∑n−1

k=1 a k (z )Zk with a k (z ) ∈C∞,

matrix-valued and similarly for ε(Z ∗).
Note that

e ∧j e ∧,∗
k + e ∧,∗

k e ∧j =δj ,k . (2.14)

We obtain the following
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Proposition 2.9. The Kohn Laplacian �(q )b is given by

�(q )b = ∂ b∂b
∗
+ ∂b

∗
∂ b

=
n−1
∑

j=1

Z ∗j Z j +
n−1
∑

j ,k=1

e ∧j e ∧,∗
k ◦ [Z j ,Z ∗k ]

+ ε(Z )+ ε(Z ∗)+ zero order terms,

where ε(Z ) denotes remainder terms of the form
∑

a k (z )Zk with a k (z ) smooth,

matrix-valued and similarly for ε(Z ∗).

3 The hypoellipicity of�b

We work with some real local coordinates x = (x1, . . . ,x2n−1) defined on an open

set Ω⊂X . In view of Proposition 2.9, we have

�(q )b = ∂ b∂b
∗
+ ∂b

∗
∂ b

=
n−1
∑

j=1

Z ∗j Z j +
n−1
∑

j ,k=1

e ∧j e ∧,∗
k ◦ [Z j ,Z ∗k ]

+ ε(Z )+ ε(Z ∗)+ zero order terms, (3.1)

where ε(Z ) and ε(Z ∗) are as in Proposition 2.9. Let qj , j = 1, . . . , n − 1, be the

principal symbols of Z j , j = 1, . . . , n −1. The principal symbol of �(q )b is

p0 =
n−1
∑

j=1

q j qj . (3.2)

The characteristic manifold Σ of �(q )b is

Σ=
�

(x ,ξ)∈ T ∗(X )r0; ξ=λω0(x ),λ 6= 0
	

, (3.3)

whereω0 is the uniquely determined global real 1-form.

From (3.2), we see that p0 vanishes to second order at Σ. Thus, Σ is a doubly

characteristic manifold of�(q )b and the subprincipal symbol of�(q )b is well-defined

on Σ. (For the precise meanings of doubly characteristic manifold and subprin-

cipal symbol, see Definition A.10, Definition A.11, Definition A.25 and Defini-

tion A.26.) For an operator of the form Z ∗j Z j this subprincipal symbol is given by
1

2i

¦

q j ,qj

©

and the contribution from the double sum in (3.1) to the subprincipal

symbol of �(q )b is

1

i

n−1
∑

j ,k=1

e ∧j e ∧,∗
k ◦

¦

qj ,q k

©

,
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where
¦

qj ,q k

©

denotes the Poisson bracket of qj and q k . (See Definition A.35.)

We get the subprincipal symbol of �(q )b on Σ (see Lemma A.12),

p s
0 = (

n−1
∑

j=1

−
1

2i

¦

qj ,q j

©

)+
n−1
∑

j ,k=1

e ∧j e ∧,∗
k

1

i

¦

qj ,q k

©

. (3.4)

From (2.12), we see that

[Z k ,Z j ] =−(2i )L(Z k ,Z j )Y mod (Λ1,0T (X )⊕Λ0,1T (X )),

where Y is the uniquely determined global real vector field. Note that the princi-

pal symbol of Z k is −q k . Hence,

¦

q k ,qj

©

= (2i )L(Z k ,Z j )σi Y onΣ, (3.5)

whereσi Y is the principal symbol of i Y . Thus,

p s
0 = (

n−1
∑

j=1

L(Z j ,Z j )−
n−1
∑

j ,k=1

2e ∧j e ∧,∗
k L(Z k ,Z j ))σi Y onΣ. (3.6)

In the rest of this section, we need some basic notions of symplectic geome-

try. See appendix A, after Definition A.26, for a reivew.

From now on, for any f ∈ C∞(T ∗(X )), we write H f to denote the Hamilton

field of f . (See Definition A.34.) We need the following

Lemma 3.1. Σ is a symplectic submanifold of T ∗(X ) if and only if the Levi form is

non-degenerate at each point of X .

Proof. Note that

Σ=
¦

(x ,ξ)∈ T ∗(X )r0; q1(x ,ξ) = · · ·=qn−1(x ,ξ) =q 1(x ,ξ) · · ·=q n−1(x ,ξ) = 0
©

.

Let CTρ(Σ) and CTρ(T ∗(X )) be the complexifications of Tρ(Σ) and Tρ(T ∗(X )) re-

spectively, where ρ ∈Σ. For ρ ∈Σ, we can choose the basis

Hq1 , . . . , Hqn−1 , Hq 1
, . . . , Hq n−1

for Tρ(Σ)⊥, where Tρ(Σ)⊥ is the orthogonal to CTρ(Σ) in CTρ(T ∗(X )) with respect

to canonical two form,

σ= dξ∧d x .

In view of (3.5), we have

σ(Hqj , Hq k
) =
¦

qj ,q k

©

=
2

i
L(Z k ,Z j )σi Y on Σ. (3.7)
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We notice that
¦

qj ,qk

©

= 0 on Σ. Thus, if the Levi form is non-degenerate at each

point of X , then σ is non-degenerate on Tρ(Σ)⊥, hence also on CTρ(Σ) and Σ is

therefore symplectic. Notice also that in that case

CTρ(Σ)
⋂

Tρ(Σ)⊥ = 0.

If Σ is a symplectic submanifold of T ∗(X ), from (3.7), it follows that the Levi

form is non-degenerate at each point of X . The lemma follows.

Let Fρ be the fundamental matrix of p0 at ρ = (p ,ξ0) ∈Σ. (see the discussion

before Remark A.43.) We can choose the basis

Hq1 , . . . , Hqn−1 , Hq 1
, . . . , Hq n−1

for CTρ(T ∗(X )) \CTρ(Σ). We notice that

Hp0 =
∑

j

(q j Hqj +qj Hq j
).

We compute the linearization of Hp0 at ρ

Hp0(ρ+
∑

(tk Hqk + sk Hq k
)) =O(|t , s |2)+

∑

j ,k

tk

¦

qk ,q j

©

Hqj

+
∑

j ,k

sk

¦

q k ,qj

©

Hq j
.

So the matrix Fρ of the linearization is expressed in the basis

Hq1 , . . . , Hqn−1 , Hq 1
, . . . , Hq n−1

by

Fρ =

� ¦

qk ,q j

©

0

0
¦

q k ,qj

©

�

. (3.8)

Again, from (3.5), we see that the non-vanishing eigenvalues of Fρ are

±2iλjσi Y (ρ), (3.9)

where λj , j = 1, . . . , n −1, are the eigenvalues of L p .

To compute further, we assume that the Levi form is diagonalized at the given

point p ∈X . Then

∑

j ,k

2e ∧j e ∧,∗
k L p (Z k ,Z j )σi Y =

∑

j

2e ∧j e ∧,∗
j L p (Z j ,Z j )σi Y . (3.10)
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From above, we see that on Σ and on the space of (0,q ) forms, p s
0 +

1
2
etr F has the

eigenvalues

n−1
∑

j=1

�

�λj

�

� |σi Y |+
∑

j /∈J

λjσi Y −
∑

j∈J

λjσi Y , |J |=q ,

J = (j1, j2, . . . , jq ), 1≤ j1 < j2 < · · ·< jq ≤ n −1,

(3.11)

where etr Fp denotes
∑
�

�µj

�

�, ±µj are the non-vanishing eigenvalues of Fp . Put

Σ− =
�

(x ,ξ)∈ T ∗(X )r0; ξ=λω0(x ),λ< 0
	

and

Σ+ =
�

(x ,ξ)∈ T ∗(X )r0; ξ=λω0(x ),λ> 0
	

.

We assume that the Levi form is non-degenerate at each point of X . Then the

Levi form has constant signature (n−, n+), n−+n+ = n−1. Since 〈Y ,ω0〉=−1, we

haveσi Y > 0 on Σ+,σi Y < 0 on Σ−.

Let

inf (p s
0 +

1

2
etr F ) = inf

�

λ; λ : eigenvalue of p s
0 +

1

2
etr F

�

.

From (3.11), we see that on Σ+

inf (p s
0 +

1

2
etr F )

¨

= 0, q = n+
> 0, q 6= n+

. (3.12)

On Σ−

inf (p s
0 +

1

2
etr F )

¨

= 0, q = n−
> 0, q 6= n−

. (3.13)

Definition 3.2. Given q , 0 ≤ q ≤ n − 1, the Levi form is said to satisfy condition

Y (q ) at p ∈ X if for any |J |= q , J = (j1, j2, . . . , jq ), 1≤ j1 < j2 < · · ·< jq ≤ n − 1, we

have
�

�

�

�

�

�

∑

j /∈J

λj −
∑

j∈J

λj

�

�

�

�

�

�

<
n−1
∑

j=1

�

�λj

�

� ,

where λj , j = 1, . . . , (n − 1), are the eigenvalues of L p . If the Levi form is non-

degenerate at p , then the condition is equivalent to q 6= n+, n−, where (n−, n+),
n−+n+ = n −1, is the signature of L p .

From now on, we assume that the Levi form

is non-degenerate at each point of X . (3.14)

From (3.11), (3.12), (3.13) and Definition 3.2, we have the following
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Proposition 3.3. Let (n−, n+), n−+n+ = n − 1, be the signature of the Levi form

L. p s
0 +

1
2
etr F is positive semi-definite and we have that (3.12), (3.13) hold and

p s
0 +

1
2
etr F is positive definite when Y (q ) holds, precisely when q /∈ {n+, n−}.

Let Ω be an open set in RN . Let P be a classical pseudodifferential operator

on Ω of order m > 1. P is said to be hypoelliptic with loss of one derivative if

u ∈ E ′(Ω) and Pu ∈H s
loc(Ω) implies u ∈H s+m−1

comp (Ω).
We recall classical works by Boutet de Monvel [7] and Sjöstrand [21].

Proposition 3.4. Let Ω be an open set inRN . Let P be a classical pseudodifferential

operator on Ω of order m > 1. The symbol of P takes the form

σP (x ,ξ)∼ pm (x ,ξ)+pm−1(x ,ξ)+pm−2(x ,ξ)+ · · · ,

where p j is positively homogeneous of degree j . We assume that Σ = p−1
m (0) is a

symplectic submanifold of codimension 2d , pm ≥ 0 and pm vanishes to precisely

second order on Σ. Let F be the fundamental matrix of pm . Let p s
m be the subprin-

cipal symbol of P. Then P is hypoelliptic with loss of one derivative if and only

if

p s
m (ρ)+

d
∑

j=1

(
1

2
+αj )

�

�µj

�

� 6= 0

at every point ρ ∈Σ for all (α1,α2, . . . ,αd ) ∈Nd , where ±iµj are the eigenvalues of

F at ρ.

Proposition 3.4 also holds if P is a matrix-valued classical pseudodifferential

operator on Ω of order m > 1 with scalar principal symbol.

From Proposition 3.4, we have the following

Proposition 3.5. We recall that we work with the assumption that the Levi form L

is non-degenerate at each point of X . �(q )b is hypoelliptic with loss of one derivative

if and only if Y (q ) holds at each point of X .

Remark 3.6. Kohn’s L2 estimates give the hypoellipicity with loss of one dervative

for the solutions�(q )b u = f under condition Y (q ). (See Folland-Kohn [11].) Kohn’s

method works as well when the Levi form L is degenerate.

4 The characteristic equation

In this section, we consider the characteristic equation for ∂t +�
(q )
b .

Let p0(x ,ξ) be the principal symbol of �(q )b . We work with some real local co-

ordinates x = (x1,x2, . . . ,x2n−1) defined on an open set Ω⊂ X . We identify Ω with

32



an open set inR2n−1. Let ΩC be an almost complexification of Ω. That is, ΩC is an

open set inC2n−1 withΩC
⋂

R2n−1 =Ω. We identify T ∗(Ω)withΩ×R2n−1. Similarly,

let T ∗(Ω)C be an open set inC2n−1×C2n−1 with T ∗(Ω)C
⋂

(R2n−1×R2n−1) = T ∗(Ω). In

this section, for any function f , we also write f to denote an almost analytic ex-

tension. (See Definition B.1.) We look for solutionsψ(t ,x ,η)∈C∞(R+×T ∗(Ω)\0)
of the problem







∂ ψ

∂ t
− i p0(x ,ψ′x ) =O(

�

�Imψ
�

�

N
), ∀N ≥ 0,

ψ|t=0 =



x ,η
�

(4.1)

with Imψ(t ,x ,η) ≥ 0. More precisely, we look for solutionsψ(t ,x ,η) ∈ C∞(R+×
T ∗(Ω) \ 0) with Imψ(t ,x ,η) ≥ 0 such that ψ|t=0 =




x ,η
�

and for every compact

set K ⊂ T ∗(Ω) \0, N ≥ 0, there exists cK ,N ≥ 0, such that
�

�

�

�

∂ ψ

∂ t
− i p0(x ,ψ′x )

�

�

�

�

≤ cK ,N

�

�Imψ
�

�

N
on R+×K .

Let f (x ,ξ), g (x ,ξ)∈C∞(T ∗(Ω)C). We write

f = g mod |Im (x ,ξ)|∞

if, given any compact subset K of T ∗(Ω)C and any integer N > 0, there is a con-

stant c > 0 such that

�

�( f − g )(x ,ξ)
�

�≤ c |Im (x ,ξ)|N , ∀(x ,ξ)∈ K .

Let U and V be C∞ complex vector fields on T ∗(Ω)C. We write

U =V mod |Im (x ,ξ)|∞

if

U ( f ) =V ( f )mod |Im (x ,ξ)|∞

and

U ( f ) =V ( f )mod |Im (x ,ξ)|∞ ,

for all almost analytic functions f on T ∗(Ω)C. In Appendix B, we discuss the no-

tions of almost analytic vector fields and equivalence of almost analytic vector

fields.

In the complex domain, the Hamiltonian field Hp0 is given by

Hp0 =
∂ p0

∂ ξ

∂

∂ x
−
∂ p0

∂ x

∂

∂ ξ
.
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We notice that Hp0 depends on the choice of almost analytic extension of p0 but

we can give an invariant meaning of the exponential map exp(−i t Hp0), t ≥ 0.

Note that Hp0 vanishes on Σ. We consider the real vector field

−i Hp0 +−i Hp0 .

Let Φ(t ,ρ) be the −i Hp0 +−i Hp0 flow. We notice that for every T > 0 there is an

open neighborhood U of Σ in T ∗(Ω)C such that for all 0 ≤ t ≤ T , Φ(t ,ρ) is well-

defined if ρ ∈U . Since we only need to consider Taylor expansions at Σ, for the

convenience, we assume that Φ(t ,ρ) is well-defined for all t ≥ 0 and ρ ∈ T ∗(Ω)C.

We have the following

Proposition 4.1. Let Φ(t ,ρ) be as above. Let U be a real vector field on T ∗(Ω)C
such that

U =−i Hp0 +−i Hp0 mod |Im (x ,ξ)|∞ .

Let Φ̂(t ,ρ) be the U flow. Then, for every compact set K ⊂ T ∗(Ω)C, N ≥ 0, there is

cN ,K (t )> 0, such that

�

�Φ(t ,ρ)− Φ̂(t ,ρ)
�

�≤ cN ,K (t )dist (ρ,Σ)N , ρ ∈ K .

Proof. This follows from Proposition B.13.

For t ≥ 0, let

G t =
�

(ρ,Φ(t ,ρ)); ρ ∈ T ∗(Ω)C
	

, (4.2)

whereΦ(t ,ρ) is as in Proposistion 4.1. We call G t the graph of exp (−i t Hp0). Since

Hp0 vanishes on Σ, we have

Φ(t ,ρ) =ρ if ρ ∈Σ.

G t depends on the choice of almost analytic extension of p0. Let p̂0 be another

almost analytic extension of p0. Let Ĝ t be the graph of exp (−i t Hp̂0). From Propo-

sition 4.1, it follows that G t coincides to infinite order with Ĝ t on diag (Σ×Σ), for

all t ≥ 0.

In Menikoff-Sjöstrand [20], it was shown that there exist g (t ,x ,η), h(t ,x ,η)∈
C∞(R+×T ∗(Ω)C) such that

G t =
�

(x , g (t ,x ,η), h(t ,x ,η),η); (x ,η)∈ T ∗(Ω)C
	

.

Moreover, there existsψ(t ,x ,η)∈C∞(R+×T ∗(Ω)C) such that

g (t ,x ,η)−ψ′x (t ,x ,η)
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and

h(t ,x ,η)−ψ′η(t ,x ,η)

vanish to infinite order on Σ, for all t ≥ 0. Furthermore, when (t ,x ,η) is real,

ψ(t ,x ,η) solves (4.1) and we have,

Imψ(t ,x ,η)�
t

1+ t
(dist ((x ,η),Σ))2, t ≥ 0,

�

�η
�

�= 1. (4.3)

For the precise meaning of�, see the discussion after Proposition 1.8. Moreover,

we have the following

Proposition 4.2. There exists ψ(t ,x ,η) ∈ C∞(R+ × T ∗(Ω) \ 0) such that Imψ ≥ 0

with equality precisely on ({0} × T ∗(Ω) \ 0)
⋃

(R+ × Σ) and such that (4.1) holds

where the error term is uniform on every set of the form [0, T ]×K with T > 0 and

K ⊂ T ∗(Ω)\0 compact. Furthermore,ψ is unique up to a term which is O(
�

�Imψ
�

�

N
)

locally uniformly for every N and

ψ(t ,x ,η) =



x ,η
�

onΣ, d x ,η(ψ−



x ,η
�

) = 0 onΣ.

Moreover, we have

Imψ(t ,x ,η)�
�

�η
�

�

t
�

�η
�

�

1+ t
�

�η
�

�

dist ((x ,
η
�

�η
�

�

),Σ))2, t ≥ 0,
�

�η
�

�≥ 1. (4.4)

Proposition 4.3. There exists a functionψ(∞,x ,η)∈C∞(T ∗(Ω)\0)with a uniquely

determined Taylor expansion at each point of Σ such that

For every compact set K ⊂ T ∗(Ω) \0 there is a constant cK > 0 such that

Imψ(∞,x ,η)≥ cK

�

�η
�

� (dist ((x ,
η
�

�η
�

�

),Σ))2,

d x ,η(ψ(∞,x ,η)−



x ,η
�

) = 0 on Σ.

If λ ∈C (T ∗(Ω) \ 0), λ > 0 and λ|Σ <min
�

�λj

�

�, where ±i
�

�λj

�

� are the non-vanishing

eigenvalues of the fundamental matrix of �(q )b , then the solutionψ(t ,x ,η) of (4.1)

can be chosen so that for every compact set K ⊂ T ∗(Ω) \ 0 and all indices α, β , γ,

there is a constant cα,β ,γ,K such that

�

�

�∂ αx ∂
β
η ∂

γ
t (ψ(t ,x ,η)−ψ(∞,x ,η))

�

�

�≤ cα,β ,γ,K e−λ(x ,η)t onR+×K . (4.5)

For the proofs of Proposition 4.2 and Proposition 4.3, we refer the reader to

Menikoff-Sjöstrand [20]. From the positively homogeneity of p0, it follows that
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we can chooseψ(t ,x ,η) in Proposition 4.2 to be quasi-homogeneous of degree 1

in the sense that

ψ(t ,x ,λη) =λψ(λt ,x ,η), λ> 0.

(See Definition 5.1.) This makesψ(∞,x ,η) positively homogeneous of degree 1.

We recall that

p0 =q1q 1+ · · ·+qn−1q n−1.

We can take an almost analytic extension of p0 so that

p0(x ,ξ) = p 0(x ,ξ). (4.6)

From (4.6), we have

−
∂ ψ

∂ t
(t ,x ,−η)− i p0(x ,ψ

′
x (t ,x ,−η)) =O(

�

�Imψ
�

�

N
), t ≥ 0,

for all N ≥ 0, (x ,η) real. Since p0(x ,−ξ) = p0(x ,ξ), we have

−
∂ ψ

∂ t
(t ,x ,−η)− i p0(x ,−ψ

′
x (t ,x ,−η)) =O(

�

�Imψ
�

�

N
), t ≥ 0, (4.7)

for all N ≥ 0, (x ,η) real. From Proposition 4.2, we can takeψ(t ,x ,η) so that

ψ(t ,x ,η) =−ψ(t ,x ,−η), (x ,η) is real. (4.8)

Hence,

ψ(∞,x ,η) =−ψ(∞,x ,−η), (x ,η) is real. (4.9)

Put
eG t =

¦

(y ,η,x ,ξ); (x ,ξ, y ,η)∈G t

©

,

where G t is defined by (4.2). From (4.6), it follows that

Φ(t ,ρ) = Φ(−t ,ρ),

where Φ(t ,ρ) is as in Proposition 4.1. Thus, for all t ≥ 0,

G t = eG t . (4.10)

Put

C t =
n

(x ,ψ′x (t ,x ,η),ψ′η(t ,x ,η),η); (x ,η)∈ T ∗(ΩC)
o

(4.11)

and
eC t =

¦

(y ,η,x ,ξ); (x ,ξ, y ,η)∈C t

©

. (4.12)

Since C t coincides to infinite order with G t on diag (Σ×Σ), for all t ≥ 0, from

(4.10), it follows that C t coincides to infinite order with eC t on diag (Σ×Σ), for all

t ≥ 0. Letting t →∞, we get the following
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Proposition 4.4. Let

C∞ =
n

(x ,ψ′x (∞,x ,η),ψ′η(∞,x ,η),η); (x ,η)∈ T ∗(ΩC)
o

(4.13)

and
eC∞ =

¦

(y ,η,x ,ξ); (x ,ξ, y ,η)∈C∞
©

. (4.14)

Then eC∞ coincides to infinite order with C∞ on diag (Σ×Σ).

From Proposition 4.4 and the global theory of Fourier integral operators (see

Proposition B.21), we have the following

Proposition 4.5. The two phases

ψ(∞,x ,η)−



y ,η
�

∈C∞(Ω×Ω× Ṙ2n−1), −ψ(∞, y ,η)+



x ,η
�

∈C∞(Ω×Ω× Ṙ2n−1)

are equivalent in the sense of Definition B.20.

We recall that

Σ=
¦

(x ,ξ)∈ T ∗(Ω)r0; q1(x ,ξ) = · · ·=qn−1(x ,ξ) =q 1(x ,ξ) · · ·=q n−1(x ,ξ) = 0
©

.

For any function f ∈C∞(T ∗(Ω)), we use ef to denote an almost analytic extension

with respect to the weight function dist((x ,ξ),Σ). (See Definition B.1.) Set

eΣ=
n

(x ,ξ)∈ T ∗(Ω)Cr0; eq1(x ,ξ) = · · ·= eqn−1(x ,ξ) = eq 1(x ,ξ) · · ·= eq n−1(x ,ξ) = 0
o

.

(4.15)

We say that eΣ is an almost analytic extension with respect to the weight function

dist((x ,ξ),Σ) ofΣ. Let f (x ,ξ), g (x ,ξ)∈C∞(W ), where W is an open set in T ∗(Ω)C.

We write

f = g mod d∞Σ

if, given any compact subset K of W and any integer N > 0, there is a constant

c > 0 such that
�

�( f − g )(x ,ξ)
�

�≤ c dist ((x ,ξ),Σ)N , ∀(x ,ξ)∈ K .

From the global theory of Fourier integral operators (see Proposition B.21), we

only need to consider Taylor expansions at Σ. We may work with the following

coordinates

Proposition 4.6. Let ρ ∈ Σ. Then in some open neighborhood Γ of ρ in T ∗(Ω)C,

there are C∞ functions

ex j ∈C∞(Γ), eξj ∈C∞(Γ), j = 1, . . . , 2n −1,

such that
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(a) ex j , eξj , j = 1, . . . , 2n − 1, are almost analytic functions with respect to the

weight function dist((x ,ξ),Σ).

(b)

det
�∂ (x ,ξ)

∂ (ex , eξ)

�

6= 0 on (Γ)R,

where (Γ)R =Γ
⋂

T ∗(Ω) and ex = (ex1, . . . , ex2n−1), eξ= (eξ1, . . . , eξ2n−1).

(c) ex j , eξj , j = 1, . . . , 2n −1, form local coordinates of Γ.

(d) (ex , eξ) is symplectic to infinite order on Σ. That is,

{ex j , exk }= 0 mod d∞Σ , {eξj , eξk }= 0 mod d∞Σ ,

{eξj , exk }=δj ,k mod d∞Σ ,

where j , k = 1, . . . , 2n −1. Here
�

f , g
	

= ∂ f
∂ ξ

∂ g
∂ x
− ∂ f
∂ x
∂ g
∂ ξ

, f , g ∈C∞(Γ).

(e) We write ex ′, ex ′′, eξ′ and eξ′′ to denote (ex1, . . . , exn ), (exn+1, . . . , ex2n−1), (eξ1, . . . , eξn )
and (eξn+1, . . . , eξ2n−1) respectively. Then, eΣ

⋂

Γ coincides to infinite order with

¦

(ex , eξ); ex ′′ = 0, eξ′′ = 0
©

on Σ
⋂

(Γ)R and

Σ
⋂

(Γ)R =
¦

(ex , eξ); ex ′′ = 0, eξ′′ = 0, ex ′ and eξ′ are real
©

.

Furthermore, there is a (n−1)× (n−1)matrix of almost analytic functions A(ex , eξ)
such that for every compact set K ⊂ Γ and N ≥ 0, there is a cK ,N > 0, such that

�

�

�p0(ex , eξ)− i
¬

A(ex , eξ)ex ′′, eξ′′
¶

�

�

�≤ cK ,N

�

�

�(ex ′′, eξ′′)
�

�

�

N

on K ,

and when ex ′ and eξ′ are real, A(ex ′, 0, eξ′, 0) has only positive eigenvalues

|λ1| , . . . , |λn−1| ,

where±iλ1, . . . ,±iλn−1 are the non-vanishing eigenvalues of F (ex ′, 0, eξ′, 0), the fun-

damental matrix of �(q )b . In particular,

1

2
tr A(ex ′, 0, eξ′, 0) =

1

2
etr F (ex ′, 0, eξ′, 0).

Formally, we write

p0(ex , eξ) = i
¬

A(ex , eξ)ex ′′, eξ′′
¶

+O(
�

�

�(ex ′′, eξ′′)
�

�

�

N

). (4.16)
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Proof. See Menikoff-Sjöstrand [20].

Remark 4.7. Set

E =
¦

(t ,x ,ξ, y ,η)∈R+×T ∗(Ω)C×T ∗(Ω)C; (x ,ξ, y ,η)∈C t

©

,

where C t is defined by (4.11). Let (ex , eξ) be the coordinates of Proposition 4.6. In

the work of Menikoff-Sjöstrand [20], it was shown that there exists eψ(t , ex , eη) ∈
C∞(R+×Γ), where Γ is as in Proposition 4.6, such that







∂ eψ

∂ t
− i p0(ex , eψ′

ex ) =O(
�

�(ex ′′, eη′′)
�

�

N
), for all N > 0,

eψ|t=0 =



ex , eη
�

and eψ(t , ex , eη) is of the form

eψ(t , ex , eη) =



ex ′, eη′
�

+
¬

e−t A(ex ′,0,eη′,0)
ex ′′, eη′′

¶

+ eψ2(t , ex , eη)+ eψ3(t , ex , eη)+ · · · , (4.17)

where A is as in Proposition 4.6 and eψj (t , ex , eη) is a C∞ homogeneous polynomial

of degree j in (ex ′′, eη′′). If λ ∈ C (T ∗(Ω) \ 0), λ > 0 and λ|Σ < minλj with λj >

0, where ±iλj are the non-vanishing eigenvalues of the fundamental matrix of

�(q )b , then for every compact set K ⊂ Σ
⋂

(Γ)R and all indices α, β , γ, j , there is a

constant cα,β ,γ,j ,K such that

�

�

�∂ α
ex ∂

β
eη ∂

γ
t ( eψj (t , ex , eη))

�

�

�≤ cα,β ,γ,K e−λ(ex ,eη)t onR+×K . (4.18)

Put

eE =

¨

(t , ex ,
∂ eψ

∂ ex
(t , ex , eη),

∂ eψ

∂ eη
(t , ex , eη), eη); t ∈R+, ex , eη∈C∞(Γ)

«

.

We notice that eE coincides to infinite order with E on R+ × diag ((Σ
⋂

(Γ)R) ×
(Σ
⋂

(Γ)R)). (See [20].)

5 The heat equation, formal construction

We work with some real local coordinates x = (x1, . . . ,x2n−1) defined on an open

set Ω⊂X . We identify T ∗(Ω)with Ω×R2n−1.

Definition 5.1. We will say that a ∈ C∞(R+ × T ∗(Ω)) is quasi-homogeneous of

degree j if a (t ,x ,λη) =λj a (λt ,x ,η) for all λ> 0.
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It is easy to see that if a is quasi-homogeneous of degree j , then ∂ αx ∂
β
η ∂

γ
t a is

quasi-homogeneous of degree j −
�

�β
�

�+γ.

In this section, we consider the problem

¨

(∂t +�
(q )
b )u (t ,x ) = 0 inR+×Ω

u (0,x ) = v (x )
. (5.1)

We shall start by making only a formal construction. We look for an approximate

solution of (5.1) of the form

u (t ,x ) = A(t )v (x )

A(t )v (x ) =
1

(2π)2n−1

∫ ∫

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)v (y )d y dη (5.2)

where formally

a (t ,x ,η)∼
∞
∑

j=0

a j (t ,x ,η), a j (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))),

a j (t ,x ,η) is a quasi-homogeneous function of degree −j .

We let the full symbol of �(q )b be:

full symbol of �(q )b =
2
∑

j=0

p j (x ,ξ),

where p j (x ,ξ) is positively homogeneous of order 2− j . We apply ∂t +�
(q )
b for-

mally under the integral in (5.2) and then introduce the asymptotic expansion

of�(q )b (a e iψ). (See Proposition B.16.) Setting (∂t +�
(q )
b )(a e iψ)∼ 0 and regrouping

the terms according to the degree of quasi-homogeneity. We obtain the transport

equations

(

T (t ,x ,η,∂t ,∂x )a 0 =O(
�

�Imψ
�

�

N
), ∀N

T (t ,x ,η,∂t ,∂x )a j + l j (t ,x ,η, a 0, . . . , a j−1) =O(
�

�Imψ
�

�

N
), ∀N .

(5.3)

Here

T (t ,x ,η,∂t ,∂x ) = ∂t − i
2n−1
∑

j=1

∂ p0

∂ ξj
(x ,ψ′x )

∂

∂ x j
+q (t ,x ,η)

where

q (t ,x ,η) = p1(x ,ψ′x )+
1

2i

2n−1
∑

j ,k=1

∂ 2p0(x ,ψ′x )
∂ ξj ∂ ξk

∂ 2ψ(t ,x ,η)
∂ x j ∂ xk
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and l j is a linear differential operator acting on a 0, a 1, . . . , a j−1. We note that

q (t ,x ,η)→ q (∞,x ,η) exponentially fast in the sense of (4.5) and that the same

is true for the coefficients of l j .

Let C t , E be as in (4.11) and Remark 4.7. We recall that for t ≥ 0,

C t =
�

(x ,ξ, y ,η)∈ T ∗(Ω)C×T ∗(Ω)C; ξ=
∂ ψ

∂ x
(t ,x ,η), y =

∂ ψ

∂ η
(t ,x ,η)

�

,

E =
¦

(t ,x ,ξ, y ,η)∈R+×T ∗(Ω)C×T ∗(Ω)C; (x ,ξ, y ,η)∈C t

©

and for t > 0,

(C t )R = diag (Σ×Σ)=
�

(x ,ξ,x ,ξ)∈ T ∗(Ω)×T ∗(Ω); (x ,ξ)∈Σ
	

.

If we consider a 0, a 1, . . . as functions on E , then the equations (5.3) involve

differentiations along the vector field

ν =
∂

∂ t
− i Hp0 .

We can consider only Taylor expansions at Σ. Until further notice, our computa-

tions will only be valid to infinite order on Σ.

Consider ν as a vector field on E . In the coordinates (t ,x ,η) we can express

ν :

ν =
∂

∂ t
− i

2n−1
∑

j=1

∂ p0

∂ ξj
(x ,ψ′x )

∂

∂ x j
.

We can compute

div (ν ) =
1

i







2n−1
∑

j=1

∂ 2p0(x ,ψ′x )
∂ x j ∂ ξj

+
2n−1
∑

j ,k=1

∂ 2p0

∂ ξj ∂ ξk
(x ,ψ′x )

∂ 2ψ

∂ x j ∂ xk
(t ,x ,η)






. (5.4)

For a smooth function a (t ,x ,η)we introduce the 1
2

density on E

α= a (t ,x ,η)
p

d t d x dη

which is well-defined up to some factor i µ. (See Hörmander [14].) The Lie deriva-

tive of α along ν is

Lν (α) = (ν (a )+
1

2
div (ν )a )

p

d t d x dη.

We see from the expression for T that

(Ta )
p

d t d x dη= (Lν +p s
0(x ,ψ′x (t ,x ,η)))(a

p

d t d x dη), (5.5)
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where

p s
0(x ,ξ) = p1(x ,ξ)+

i

2

2n−1
∑

j=1

∂ 2p0(x ,ξ)
∂ x j ∂ ξj

is the subprincipal symbol (invariantly defined on Σ). Now let (ex , eξ) be the coor-

dinates of Proposition 4.6, in which p0 takes the form (4.16). In these coordinates

we have

Hp0(ex , eξ) = i

�

A(ex , eξ)ex ′′ ,
∂

∂ ex ′′

�

− i

®

tA(ex , eξ)eξ′′,
∂

∂ eξ′′

¸

+
∑

|α|=1,|β |=1

(ex ′′)α(eξ′′)βBαβ (ex , eξ,
∂

∂ ex
,
∂

∂ eξ
) (5.6)

and

ν =
∂

∂ t
+
�

A(ex , eψ′x )ex
′′,
∂

∂ ex ′′

�

+
∑

|α|=1,|β |=1

(ex ′′)α( eψ′x ′′)
βCαβ (ex ′, eψ′

ex ,
∂

∂ ex
). (5.7)

Here eψ(t , ex , eη) is as in Remark 4.7.

Let f (t ,x ,η)∈C∞(R+×T ∗(Ω)C), f (∞,x ,η)∈C∞(T ∗(Ω)C). We say that f (t ,x ,η)
converges exponentially fast to f (∞,x ,η) if

f (t ,x ,η)− f (∞,x ,η)

satisfies the same kind of estimates as (4.5). Recalling the form of eψwe obtain

ν = ν̃ =
∂

∂ t
+
�

A(ex ′, 0, eη′, 0)ex ′′,
∂

∂ ex ′′

�

+
∑

|α+β |=2,α 6=0

(ex ′′)α(eη′′)βDαβ (t , ex , eη,
∂

∂ ex
) (5.8)

where Dαβ converges exponentially fast to some limit as t →+∞. We have on Σ,

1

2
div (ν̃ ) =

1

2
tr A(ex ′, 0, eη′, 0) =

1

2
etr F (ex ′, 0, eη′, 0) (5.9)

where F (ex ′, 0, eη′, 0) is the fundamental matrix of �(q )b . We define ea (t , ex , eη) by

ea (t , ex , eη)
p

d t d ex d eη= a (t ,x ,η)
p

d t d x dη. (5.10)

Note that the last equation only defines ea up to i µ. We have

(Ta )
p

d t d x dη= ( eT ea )
p

d t d ex d eη
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where

eT =
∂

∂ t
+
�

A(ex ′, 0, eη′, 0)ex ′′,
∂

∂ ex ′′

�

+
1

2
etr F (ex ′, 0, eη′, 0)+p s

0(ex
′, 0, eη′, 0)+Q(t , ex , eη,

∂

∂ ex
). (5.11)

Here

Q(t , ex , eη,
∂

∂ ex
) =

∑

|α+β |=2,α 6=0

(ex ′′)α(eη′′)βDαβ (t , ex , eη,
∂

∂ ex
)

+
∑

|α+β |=1

(ex ′′)α(eη′′)βEαβ (t , ex , eη).

It is easy to see that Eαβ and Dαβ converge exponentially fast to some limits

Eαβ (∞, ex , eη) and Dαβ (∞, ex , eη) respectively. We need the following

Lemma 5.2. Let A be a d×d matrix having only positive eigenvalues and consider

the map

A : u 7→

*

A









x1

...

xd









,











∂ u
∂ x1

...
∂ u
∂ xd











+

on the space Pm (Rd ) of homogeneous polynomials of degree m . Then

exp(tA )(u ) = u ◦ (exp(t A))

and the mapA is a bijection except for m = 0.

Proof. We notice that U (t ) : u 7→ u ◦exp(t A) form a group of operators and that

(
∂U (t )
∂ t

)
�

�

�

t=0
=A .

This shows that U (t ) = exp(tA ). To prove the second statement, suppose that

u ∈ Pm , m ≥ 1 and A (u ) = 0. Then exp(tA )(u ) = u for all t , in other words

u (exp(t A)(x )) = u (x ), t ∈ R, x ∈ Rd . Since exp(t A)(x ) → 0 when t → −∞, we

obtain u (x ) = u (0) = 0, which proves the lemma.

Proposition 5.3. Let

c j (x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

be positively homogeneous functions of degree −j . Then, we can find solutions

a j (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,
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of the system (5.3) with

a j (0,x ,η) = c j (x ,η), j = 0, 1, . . . ,

where a j (t ,x ,η) is a quasi-homogeneous function of degree−j such that a j (t ,x ,η)
has unique Taylor expansions on Σ, for all j . Furthermore, let λ(x ,η) ∈ C (T ∗(Ω))
and λ|Σ < minτj , where τj are the eigenvalues of 1

2
etr F + p s

0 on Σ. Then for all

indices α,β ,γ, j and every compact set K ⊂ Σ there exists a constant c > 0 such

that
�

�

�∂
γ

t ∂
α

x ∂
β
η a j (t ,x ,η)

�

�

�≤ c e−tλ(x ,η) onR+×K . (5.12)

Proof. We only need to study Taylor expansions on Σ. Let (ex , eξ) be the coordi-

nates of Proposition 4.6. We define ea j (t , ex , eη) from a j (t ,x ,η) as in (5.10). In or-

der to prove (5.12), it is sufficient to prove the corresponding statement for ea j .

(See section 1 of Menikoff-Sjöstrand[20].) We introduce the Taylor expansion of

ea 0 with respect to (ex ′′, eη′′).

ea 0(t , ex , eη) =
∞
∑

0

ea j
0(t , ex , eη),

where ea j
0 is a homogeneous polynomial of degree j in (ex ′′, eη′′). Let

c0(ex , eη) =
∑

j=0

ec j
0(ex , eη),

where ec j
0 is a homogeneous polynomial of degree j in (ex ′′, eη′′). From eT ea 0 = 0, we

get

ea 0
0(t , ex ′, eη′) = e−t ( 1

2
etr F+p s

0 )
ec 0

0(ex , eη).

It is easy to see that for all indices α, β , γ and every compact set K ⊂ Σ there

exists a constant c > 0 such that
�

�

�∂
γ

t ∂
α
ex ∂

β
eη ea

0
0

�

�

�≤ c e−tλ(ex ,eη) onR+×K ,

where λ(ex , eη) ∈ C (T ∗(Ω)), λ|Σ <minτj . Here τj are the eigenvalues of 1
2
etr F +p s

0

on Σ.

Again, from eT ea 0 = 0, we get

(
∂

∂ t
+A +

1

2
etr F +p s

0)ea
j+1
0 (t , ex , eη) =eb j+1

0 (t , ex , eη)

where eb j+1
0 (t , ex , eη) satisfies the same kind of estimate as ea 0

0. By Lemma 5.2, we

see that exp(−tA ) is bounded for t ≥ 0. We deduce a similar estimate for the

44



function ea j+1
0 (t , ex , eη). Continuing in this way we get all the desired estimates for

ea 0. The next transport equation takes the form eT ea 1 = eb where eb satisfies the

estimates (5.12). We can repeat the procedure above and conclude that ea 1 satis-

fies the estimates (5.12). From above, we see that ea 0, ea 1 have the unique Taylor

expansions on Σ. Continuing in this way we get the proposition.

From Proposition 5.3, we have the following

Proposition 5.4. Suppose condition Y (q ) holds. Let

c j (x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

be positively homogeneous functions of degree −j . Then, we can find solutions

a j (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

of the system (5.3) with

a j (0,x ,η) = c j (x ,η), j = 0, 1, . . . ,

where a j (t ,x ,η) is a quasi-homogeneous function of degree −j and ε0 > 0 such

that for all indices α,β ,γ, j and every compact set K ⊂ Ω there exists a constant

c > 0 such that
�

�

�∂
γ

t ∂
α

x ∂
β
η a j (t ,x ,η)

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)−j−|β |+γ onR+×K . (5.13)

Proposition 5.5. Suppose condition Y (q ) fails. Let (n−, n+), n−+n+ = n − 1, be

the signature of the Levi form. Let

c j (x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

be positively homogeneous functions of degree −j . Then, we can find solutions

a j (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

of the system (5.3) with

a j (0,x ,η) = c j (x ,η), j = 0, 1, . . . ,

where a j (t ,x ,η) is a quasi-homogeneous function of degree −j and such that for

all indices α,β ,γ, j , every ε > 0 and compact set K ⊂Σ there exists a constant c > 0

such that
�

�

�∂
γ

t ∂
α

x ∂
β
η a j (t ,x ,η)

�

�

�≤ c e εt |η|(1+
�

�η
�

�)−j−|β |+γ onR+×K . (5.14)
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Furthermore, there exists ε0 > 0 such that for all indices α,β ,γ, j and every com-

pact set K ⊂Σ, there exists a constant c > 0 such that
�

�

�∂
γ

t ∂
α

x ∂
β
η a j (t ,x ,η)

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)−j−|β |+γ

onR+× (K
⋂

Σ+) if q = n−, n− 6= n+ (5.15)

and
�

�

�∂
γ

t ∂
α

x ∂
β
η a j (t ,x ,η)

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)−j−|β |+γ

onR+× (K
⋂

Σ−) if q = n+, n− 6= n+. (5.16)

We need the following formula

Proposition 5.6. Let Q be a C∞ differential operator on Ω of order k > 0 with full

symbol q (x ,ξ)∈C∞(T ∗(Ω)). For 0≤q ,q1 ≤ n −1, q , q1 ∈N, let

a (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q1 T ∗(Ω),Λ0,q T ∗(Ω))).

Then,

Q(x , Dx )(e iψ(t ,x ,η)a (t ,x ,η)) = e iψ(t ,x ,η)
∑

|α|≤k

1

α!
q (α)(x ,ψ′x (t ,x ,η))(Rα(ψ, Dx )a ),

where

Dx =−i∂x ,

Rα(ψ, Dx )a =Dα
y

¦

e iφ2(t ,x ,y ,η)a (t , y ,η)
©

�

�

�

y=x
,

φ2(t ,x , y ,η) = (x − y )ψ′x (t ,x ,η)− (ψ(t ,x ,η)−ψ(t , y ,η)).

For 0≤q ,q1 ≤ n −1, q , q1 ∈N, let

a j (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q1 T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . , (5.17)

be quasi-homogeneous functions of degree m − j , m ∈Z. We assume that

a j (t ,x ,η), j = 0, 1, . . . ,

are the solutions of the system (5.3). From the proof of Proposition 5.3, it follows

that for all indices α,β ,γ, j , every ε > 0 and compact set K ⊂ Σ there exists a

constant c > 0 such that
�

�

�∂
γ

t ∂
α

x ∂
β
η a j (t ,x ,η)

�

�

�≤ c e εt |η|(1+
�

�η
�

�)m−j−|β |+γ onR+×K . (5.18)
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Let

a (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q1 T ∗(Ω),Λ0,q T ∗(Ω))) (5.19)

be the asymptotic sum of a j (t ,x ,η). (See Definition 6.1 and Remark 6.2 for a

precise meaning.) We formally write

a (t ,x ,η)∼
∞
∑

j=0

a j (t ,x ,η).

Let

(∂t +�
(q )
b )(e

iψ(t ,x ,η)a (t ,x ,η)) = e iψ(t ,x ,η)b (t ,x ,η),

where

b (t ,x ,η)∼
∞
∑

j=0

b j (t ,x ,η),

b j (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q1 T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

b j (t ,x ,η) is a quasi-homogeneous function of degree m +2− j .

From Proposition 5.6, we see that for all N , every compact set K ⊂ Σ, ε > 0,

there exists c > 0 such that

�

�b (t ,x ,η)
�

�≤ c e εt |η|(
�

�η
�

�

−N
+
�

�η
�

�

2−N
(Imψ(t ,x ,η)N ) (5.20)

on R+×K ,
�

�η
�

�≥ 1.

Conversely, if

(∂t +�
(q )
b )(e

iψ(t ,x ,η)a (t ,x ,η)) = e iψ(t ,x ,η)b (t ,x ,η)

and b satisfies the same kind of estimates as (5.20), then a j (t ,x ,η), j = 0, 1, . . .,

solve the system (5.3) to infinite order atΣ. From this and the particular structure

of the problem, we will next show

Proposition 5.7. Let (n−, n+), n−+n+ = n − 1, be the signature of the Levi form.

Suppose condition Y (q ) fails. That is, q = n− or n+. Let

a j (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

be the solutions of the system (5.3) with

a 0(0,x ,η) = I , a j (0,x ,η) = 0 when j > 0,

where a j (t ,x ,η) is a quasi-homogeneous function of degree −j . Then we can find

a j (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,
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where a j (∞,x ,η) is a positively homogeneous function of degree −j , ε0 > 0 such

that for all indices α, β , γ, j , every compact set K ⊂Σ, there exists c > 0, such that
�

�

�∂
γ

t ∂
α

x ∂
β
η (a j (t ,x ,η)−a j (∞,x ,η))

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)−j−|β |+γ (5.21)

on R+×K ,
�

�η
�

�≥ 1.

Furthermore, for all j = 0, 1, . . .,

¨

all derivatives of a j (∞,x ,η) vanish at Σ+, if q = n−, n− 6= n+
all derivatives of a j (∞,x ,η) vanish at Σ−, if q = n+, n− 6= n+.

. (5.22)

Proof. We assume that q = n−. Put

a (t ,x ,η)∼
∑

j

a j (t ,x ,η).

Since a j (t ,x ,η), j = 0, 1, . . ., solve the system (5.3), we have

(∂t +�
(q )
b )(e

iψ(t ,x ,η)a (t ,x ,η)) = e iψ(t ,x ,η)b (t ,x ,η),

where b (t ,x ,η) satisfies (5.20). Note that we have the interwing properties

(

∂ b�
(q )
b =�

(q+1)
b ∂ b

∂b
∗
�(q )b =�

(q−1)
b ∂b

∗ . (5.23)

Now,
¨

∂b
∗
(e iψa ) = e iψ

ea

∂ b (e iψa ) = e iψâ ,

ea ∼
∑∞

j=−1 ea j (t ,x ,η), â ∼
∑∞

j=−1 â j (t ,x ,η), where

â j ∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q+1T ∗(Ω))), j = 0, 1, . . . ,

ea j ∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q−1T ∗(Ω))), j = 0, 1, . . . ,

and â j , ea j are quasi-homogeneous of degree 1− j . From (5.23), we have

(∂t +�
(q−1)
b )(e iψ

ea ) = e iψb1,

(∂t +�
(q+1)
b )(e iψâ ) = e iψb2,

where b1, b2 satisfy (5.20). Since b1, b2 satisfy (5.20), ea j , â j , j = 0, 1, . . ., solve the

system (5.3) to infinite order at Σ. We notice that

q −1 6= n−,q +1 6= n−.
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In view of the proof of Proposition 5.3, we can find ε0 > 0, such that for all indices

α, β , γ, j , every compact set K ⊂Σ−, there exists c > 0 such that







�

�

�∂
γ

t ∂
α

x ∂
β
η ea j (t ,x ,η)

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)1−j−|β |+γ
�

�

�∂
γ

t ∂
α

x ∂
β
η â j (t ,x ,η)

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)1−j−|β |+γ (5.24)

on R+×K ,
�

�η
�

�≥ 1.

Now �(q )b = ∂ b∂b
∗
+ ∂b

∗
∂ b , so �(q )b (e

iψa ) = e iψc , where c satisfies the same

kind of estimates as (5.24). From this we see that ∂t (e iψa ) = e iψd , where d has

the same properties as c . Since d = i (∂tψ)a + ∂t a and ∂tψ satisfy the same kind

of estimates as (5.24), ∂t a satisfies the same kind of estimates as (5.24). From this

we conclude that we can find a (∞,x ,η) ∼
∑∞

j=0 a j (∞,x ,η), where a j (∞,x ,η) is

a matrix-valued C∞ positively homogeneous function of degree −j , ε0 > 0, such

that for all indicesα, β , γ, j and every compact set K ⊂Σ−, there exists c > 0 such

that
�

�

�∂
γ

t ∂
α

x ∂
β
η (a j (t ,x ,η)−a j (∞,x ,η))

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)−j−|β |+γ

on R+×K ,
�

�η
�

�≥ 1.

If n− = n+, then

q −1 6= n+,q +1 6= n+.

We can repeat the method above to conclude that we can find

a (∞,x ,η)∼
∞
∑

j=0

a j (∞,x ,η),

where a j (∞,x ,η) is a matrix-valued C∞ positively homogeneous function of de-

gree −j , ε0 > 0, such that for all indices α, β , γ, j and every compact set K ⊂Σ+,

there exists c > 0 such that
�

�

�∂
γ

t ∂
α

x ∂
β
η (a j (t ,x ,η)−a j (∞,x ,η))

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)−j−|β |+γ

on R+×K ,
�

�η
�

�≥ 1.

Now, we assume that n− 6= n+. From (5.15), we can find ε0 > 0, such that for

all indices α, β , γ, j and every compact set K ⊂Σ+, there exists c > 0 such that
�

�

�∂
γ

t ∂
α

x ∂
β
η a j (t ,x ,η)

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)−j−|β |+γ

on R+×K ,
�

�η
�

�≥ 1.

The proposition follows.
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6 Some symbol classes

In this section we continue to work with some real local coordinates

x = (x1, . . . ,x2n−1)

defined on an open set Ω⊂X . We identify T ∗(Ω)with Ω×R2n−1.

Definition 6.1. Let r (x ,η) be a non-negative real continuous function on T ∗(Ω).
We assume that r (x ,η) is positively homogeneous of degree 1, that is, r (x ,λη) =
λr (x ,η), for λ≥ 1,

�

�η
�

�≥ 1. For 0≤q1,q2 ≤ n −1, q1,q2 ∈N and k ∈R, we say that

a ∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω)))

if

a ∈C∞(R+×T ∗(Ω);L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω)))

and for all indices α, β , γ, every compact set K ⊂Ω and every ε > 0, there exists a

constant c > 0 such that
�

�

�∂
γ

t ∂
α

x ∂
β
η a (t ,x ,η)

�

�

�≤ c e t (−r (x ,η)+ε|η|)(1+
�

�η
�

�)k+γ−|β |, x ∈ K ,
�

�η
�

�≥ 1.

Remark 6.2. It is easy to see that we have the following properties:

(a) If a ∈ Ŝk
r1

, b ∈ Ŝl
r2

then ab ∈ Ŝk+l
r1+r2

, a +b ∈ Ŝmax(k ,l )
min(r1,r2)

.

(b) If a ∈ Ŝk
r then ∂ γt ∂ αx ∂

β
η a ∈ Ŝ

k−|β |+γ
r .

(c) If a j ∈ Ŝ
k j
r , j = 0, 1, 2, . . . and k j ↘ −∞ as j →∞, then there exists a ∈ Ŝk0

r

such that a −
∑v−1

0 a j ∈ Ŝkv
r , for all v = 1, 2, . . .. Moreover, if Ŝ−∞r denotes

⋂

k∈R Ŝk
r then a is unique modulo Ŝ−∞r .

If a and a j have the properties of (c ), we write

a ∼
∞
∑

0

a j in the symbol space Ŝk0
r .

From Proposition 5.4, Proposition 5.5 and the standard Borel construction,

we get the following

Proposition 6.3. Let

c j (x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . .
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be positively homogeneous functions of degree −j . Then, we can find solutions

a j (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . .

of the system (5.3) with

a j (0,x ,η) = c j (x ,η), j = 0, 1, . . . ,

where a j (t ,x ,η) is a quasi-homogeneous function of degree −j such that

a j ∈ Ŝ−j
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)), j = 0, 1, . . . ,

for some r with r > 0 if Y (q ) holds and r = 0 if Y (q ) fails.

If the Levi form has signature (n−, n+), n−+n+ = n−1, then we can take r > 0,

¨

near Σ+, if q = n−, n− 6= n+,

near Σ−, if q = n+, n− 6= n+.

Again, from Proposition 5.7 and the standard Borel construction, we get the

following

Proposition 6.4. Suppose condition Y (q ) fails. We assume that the Levi form has

signature (n−, n+), n−+n+ = n −1. We can find solutions

a j (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . .

of the system (5.3) with

a 0(0,x ,η) = I , a j (0,x ,η) = 0 when j > 0,

where a j (t ,x ,η) is a quasi-homogeneous function of degree−j , such that for some

r > 0 as in Definition 6.1,

a j (t ,x ,η)−a j (∞,x ,η)∈ Ŝ−j
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

where

a j (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

and a j (∞,x ,η) is a positively homogeneous function of degree −j .

Furthermore, for all j = 0, 1, . . .,

¨

a j (∞,x ,η) = 0 in a conic neighborhood of Σ+, if q = n−, n− 6= n+,

a j (∞,x ,η) = 0 in a conic neighborhood of Σ−, if q = n+, n− 6= n+.
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Let b (t ,x ,η)∈ Ŝk
r , r > 0. Our next goal is to define the operator

B (t ,x , y ) =

∫

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)dη

as an oscillatory integral. We have the following

Proposition 6.5. Let

b (t ,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω)))

with r > 0. Then we can define

B (t ) : C∞0 (Ω; Λ0,q1 T ∗(Ω))→C∞(R+; C∞(Ω; Λ0,q2 T ∗(Ω)))

with distribution kernel

B (t ,x , y ) =

∫

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)dη

and B (t ) has a unique continuous extension

B (t ) : E ′(Ω; Λ0,q1 T ∗(Ω))→C∞(R+;D ′(Ω; Λ0,q2 T ∗(Ω))).

We have

B (t ,x , y )∈C∞(R+; C∞(Ω×Ωrdiag (Ω×Ω);L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω)))),

and

B (t ,x , y )|t>0 ∈C∞(R+×Ω×Ω;L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω))).

Proof. Let

S∗Ω=
¦

(x ,η)∈Ω× Ṙ2n−1;
�

�η
�

�= 1
©

,

and let

V ⊂R+×S∗Ω

be a neighborhood of

(R+× (Σ
⋂

S∗Ω))
⋃

({0}×S∗Ω)

such that

Vt =
�

(x ,η); (t ,x ,η)∈V
	

is independent of t for large t . Set

W =

(

(t ,x ,η)∈R+×Ω× Ṙ2n−1; (
�

�η
�

� t ,x ,
η
�

�η
�

�

)∈V

)

.
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Let χV ∈C∞(R+×S∗(Ω)) have its support in V , be equal to 1 in a neighborhood of

(R+×S∗Σ)
⋃

({0}×S∗Ω), and be independent of t , for large t . Set

χW (t ,x ,η) =χV (
�

�η
�

� t ,x ,
η
�

�η
�

�

)∈C∞(R+×Ω× Ṙ2n−1).

We have χW (t ,x ,λη) =χW (λt ,x ,η), λ> 0. We can choose V sufficiently small so

that
�

�ψ′x (t ,x ,η)−η
�

�≤

�

�η
�

�

2
in W. (6.1)

We formally set

B (t ,x , y ) =

∫

e i (ψ(t ,x ,η)−〈y ,η〉)(1−χW (t ,x ,η))b (t ,x ,η)dη

+

∫

e i (ψ(t ,x ,η)−〈y ,η〉)χW (t ,x ,η)b (t ,x ,η)dη

= B1(t ,x , y )+ B2(t ,x , y )

where in B1(t ,x , y ) and B2(t ,x , y ) we have introduced the cut-off functions (1−
χW ) and χW respectively. Choose χ ∈ C∞0 (R2n−1) so that χ(η) = 1 when

�

�η
�

� < 1

and χ(η) = 0 when
�

�η
�

� > 2. Since Imψ > 0 outside (R+ ×Σ)
⋃

({0} × Ṙ2n−1), we

have

Imψ(t ,x ,η)≥ c
�

�η
�

� outside W,

where c > 0. The kernel

B1,ε(t ,x , y ) =

∫

e i (ψ(t ,x ,η)−〈y ,η〉)(1−χW (t ,x ,η))b (t ,x ,η)χ(εη)dη

converges in C∞(R+×Ω×Ω;L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω))) as ε→ 0. This means that

B1(t ,x , y ) = lim
ε→0

B1,ε(t ,x , y )∈C∞(R+×Ω×Ω;L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω))).

To study B2(t ,x , y ) take a u (y )∈C∞0 (K ; Λ0,q1 T ∗(Ω)), K ⊂⊂Ω and set

χν (η) =χ(2−νη)−χ(21−νη), ν > 0, χ0(η) =χ(η).

Then we have
∞
∑

ν=0

χν = 1 and 2ν−1 ≤
�

�η
�

�≤ 2ν+1 whenη∈ suppχν , ν 6= 0.

We assume that b (t ,x ,η) = 0 if
�

�η
�

�≤ 1. If x ∈ K , we obtain for all indices α, β and

every ε > 0, there exists cε,α,β ,K > 0, such that
�

�

�Dα
x Dβ

η (χν (η)χW (t ,x ,η)b (t ,x ,η))
�

�

�≤ cε,α,β ,K e t (−r (x ,η)+ε|η|)(1+
�

�η
�

�)k−|β |. (6.2)
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Note that
�

�Dαχν (η)
�

�≤ cα(1+
�

�η
�

�)−|α| with a constant independent of ν . We have

B2,ν+1 =

∫ ∫

e i (ψ(t ,x ,η)−〈y ,η〉)χν+1(η)χW (t ,x ,η)b (t ,x ,η)u (y )d y dη

= 2(2n−1)ν

∫

e iλ(ψ(λt ,x ,η)−〈y ,η〉)χ1(η)χW (t ,x ,λη)b (t ,x ,λη)u (y )d y dη,

where λ= 2ν . Since (6.2) holds, we have
�

�

�Dα
η(χW (t ,x , 2νη)b (t ,x , 2νη))

�

�

�≤ c 2kν ,

if x ∈ K , 1 <
�

�η
�

� < 4, where c > 0. Since d y (ψ(λt ,x ,η)−



y ,η
�

) 6= 0, if η 6= 0, we

can integrate by parts and obtain

�

�B2,ν+1

�

�≤ c 2ν (2n−1+k−m )
∑

|α|≤m

sup |Dαu | .

Since m can be chosen arbitrary large, we conclude that
∑

ν

�

�B2,ν

�

� : converges

and that B (t ) defines an operator

B (t ) : C∞0 (Ωy ; Λ0,q1 T ∗(Ω))→C∞(R+×Ωx ; Λ0,q2 T ∗(Ω)).

Let B ∗(t ) be the formal adjoint of B (t )with respect to ( | ). From (6.1), we see that

ψ′x (t ,x ,η) 6= 0 on W . We can repeat the procedure above and conclude that B ∗(t )
defines an operator

C∞0 (Ωx ; Λ0,q2 T ∗(Ω))→C∞(R+×Ωy ; Λ0,q1 T ∗(Ω)).

Hence, we can extend B (t ) to

E ′(Ω; Λ0,q1 T ∗(Ω))→C∞(R+;D ′(Ω; Λ0,q2 T ∗(Ω)))

by the following formula

(B (t )u (y ) | v (x )) = (u (y ) | B ∗(t )v (x )), u ∈ E ′(Ω; Λ0,q1 T ∗(Ω)), v ∈C∞0 (Ω; Λ0,q2 T ∗(Ω)).

When x 6= y and (x , y ) ∈ Σ×Σ, we have dη(ψ(t ,x ,η)−



y ,η
�

) 6= 0, we can

repeat the procedure above and conclude that

B (t ,x , y )∈C∞(R+; C∞(Ω×Ωrdiag (Ω×Ω);L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω)))).

Finally, in view of the exponential decrease as t →∞ of the symbol b (t ,x ,η),
we see that the kernel B (t )|t>0 is smoothing.
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Let b (t ,x ,η) ∈ Ŝk
r with r > 0. Our next step is to show that we can also define

the operator

B (x , y ) =

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)d t
�

dη

as an oscillatory integral. We have the following

Proposition 6.6. Let

b (t ,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω)))

with r > 0. We assume that b (t ,x ,η) = 0 when
�

�η
�

�≤ 1. Then we can define

B : C∞0 (Ω; Λ0,q1 T ∗(Ω))→C∞(Ω; Λ0,q2 T ∗(Ω))

with distribution kernel

B (x , y ) =
1

(2π)2n−1

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)d t
�

dη

and B has a unique continuous extension

B : E ′(Ω; Λ0,q1 T ∗(Ω))→D ′(Ω; Λ0,q2 T ∗(Ω)).

Moreover, we have

B (x , y )∈C∞(Ω×Ωrdiag (Ω×Ω);L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω))).

Proof. Let W and χW (t ,x ,η) be as in Proposition 6.5. We formally set

B (x , y ) =
1

(2π)2n−1

∫ ∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)(1−χW (t ,x ,η))b (t ,x ,η)d t dη

+
1

(2π)2n−1

∫ ∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)χW (t ,x ,η)b (t ,x ,η)d t dη

= B1(x , y )+ B2(x , y )

where in B1(x , y ) and B2(x , y ) we have introduced the cut-off functions (1−χW )
and χW respectively. Since

Imψ(t ,x ,η)≥ c ′
�

�η
�

� outside W,

where c ′ > 0, we have
�

�

�e i (ψ(t ,x ,η)−〈y ,η〉)(1−χW (t ,x ,η))b (t ,x ,η)
�

�

�≤ c e−c ′|η|e−ε0t |η|(1+
�

�η
�

�)k , ε0 > 0
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and similar estimates for the derivatives. From this, we see that B1(x , y )∈C∞(Ω×
Ω;L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω))).

Choose χ ∈ C∞0 (R2n−1) so that χ(η) = 1 when
�

�η
�

� < 1 and χ(η) = 0 when
�

�η
�

�> 2. To study B2(x , y ) take a u (y )∈C∞0 (K ; Λ0,q1 T ∗(Ω)), K ⊂⊂Ω and set

B2,λ(x ) =
1

(2π)2n−1

∫ ∞

0

�

∫ ∫

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)χW (t ,x ,η)χ(
η

λ
)u (y )d y dη

�

d t .

We have

B2,2λ(x )− B2,λ(x ) =
λ2n−1

(2π)2n−1

∫ ∞

0

�

∫ ∫

e iλ(ψ(λt ,x ,η)−〈y ,η〉)χW (t ,x ,λη)b (t ,x ,λη)

(χ(
η

2
)−χ(η))u (y )d y dη

�

d t .

Since d y (ψ(λt ,x ,η)−



y ,η
�

) 6= 0, η 6= 0, we obtain
�

�

�

�

�

∫ ∫

e iλ(ψ(λt ,x ,η)−〈y ,η〉)χW (t ,x ,λη)b (t ,x ,λη)(χ(
η

2
)−χ(η))u (y )d y dη

�

�

�

�

�

≤ cλ−N
∑

|α|≤N

sup
�

�

�Dα
y ,ηχW (t ,x ,λη)b (t ,x ,λη)(χ(

η

2
)−χ(η))u (y )

�

�

�

≤ c ′λ−N e−ε0t |η|(1+ |λ|)k ,

where c , c ′, ε0 > 0. Hence B2(x ) = limλ→∞ B2,λ(x ) exists. Thus, B (x , y ) defines an

operator

C∞0 (Ωy ; Λ0,q1 T ∗(Ω))→C∞(Ωx ; Λ0,q2 T ∗(Ω)).

Let B ∗ be the formal adjoint of B with respect to ( | ). Sinceψ′x (t ,x ,η) 6= 0 on W ,

we can repeat the procedure above and conclude that B ∗ defines an operator

C∞0 (Ωx ; Λ0,q2 T ∗(Ω))→C∞(Ωy ; Λ0,q1 T ∗(Ω)).

We can extend B to

E ′(Ω; Λ0,q1 T ∗(Ω))→D ′(Ω; Λ0,q2 T ∗(Ω))

by the following formula

(Bu (y ) | v (x )) = (u (y ) | B ∗v (x )), u ∈ E ′(Ω; Λ0,q1 T ∗(Ω)), v ∈C∞0 (Ω; Λ0,q2 T ∗(Ω)).

Finally, when x 6= y and (x , y )∈Σ×Σ, we have

dη(ψ(t ,x ,η)−



y ,η
�

) 6= 0,

we can repeat the procedure above and conclude that

B (x , y )∈C∞(Ω×Ωrdiag (Ω×Ω);L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω))).
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Remark 6.7. Let

a (t ,x ,η)∈ Ŝk
0 (R+×T ∗(Ω);L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω))).

We assume a (t ,x ,η) = 0, if
�

�η
�

�≤ 1 and

a (t ,x ,η)−a (∞,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω)))

with r > 0, where

a (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q1 T ∗(Ω),Λ0,q2 T ∗(Ω))).

Then we can also define

A(x , y ) =

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)− e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)
�

d t
�

dη

as an oscillatory integral by the following formula:

A(x , y ) =

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)(−t )(iψ
′

t (t ,x ,η)a (t ,x ,η)+a ′t (t ,x ,η))d t
�

dη.

We notice that

(−t )(iψ′t (t ,x ,η)a (t ,x ,η)+a ′t (t ,x ,η))∈ Ŝk+1
r , r > 0.

Let B be as in the proposition 6.6. We can show that B is a matrix of pseu-

dodifferential operators of order k type ( 1
2

, 1
2
). We review some facts about pseu-

dodifferential operators of type ( 1
2

, 1
2
).

Definition 6.8. Let k ∈R and let 0≤q ≤ n −1, q ∈N.

Sk
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))

is the space of all

a ∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))

such that for every compact sets K ⊂ Ω and all α ∈ N2n−1, β ∈ N2n−1, there is a

constant cα,β ,K > 0 such that
�

�

�∂ αx ∂
β
ξ a (x ,ξ)

�

�

�≤ cα,β ,K (1+ |ξ|)k−
|β |
2 +

|α|
2 , (x ,ξ)∈ T ∗(Ω),x ∈ K .

Sk
1
2 , 1

2

is called the space of symbols of order k type ( 1
2

, 1
2
). We write

S−∞1
2 , 1

2

=
⋂

m∈RSm
1
2 , 1

2

, S∞1
2 , 1

2

=
⋃

m∈RSm
1
2 , 1

2

.
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Let a (x ,ξ)∈Sk
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))). We can also define

A(x , y ) =
1

(2π)2n−1

∫

e i〈x−y ,ξ〉a (x ,ξ)dξ

as an oscillatory integral and we can show that A is continuous

A : C∞0 (Ω; Λ0,q T ∗(Ω))→C∞(Ω; Λ0,q T ∗(Ω))

and has unique continuous extension

A : E ′(Ω; Λ0,q T ∗(Ω))→D ′(Ω; Λ0,q T ∗(Ω)).

Definition 6.9. Let k ∈ R and let 0 ≤ q ≤ n − 1, q ∈ N. A pseudodifferential

operator of order k type ( 1
2

, 1
2
) from sections of Λ0,q T ∗(Ω) to sections of Λ0,q T ∗(Ω)

is a continuous linear map

A : C∞0 (Ω; Λ0,q T ∗(Ω))→D ′(Ω; Λ0,q T ∗(Ω))

such that the distribution kernel of A is

KA = A(x , y ) =
1

(2π)2n−1

∫

e i〈x−y ,ξ〉a (x ,ξ)dξ

with a ∈Sk
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))). We call a (x ,ξ) the symbol of A. We

shall write

Lk
1
2 , 1

2

(Ω; Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))

to denote the space of pseudodifferential operators of order k type ( 1
2

, 1
2
) from

sections of Λ0,q T ∗(Ω) to sections of Λ0,q T ∗(Ω). We write

L−∞1
2 , 1

2

=
⋂

m∈R Lm
1
2 , 1

2

, L∞1
2 , 1

2

=
⋃

m∈R Lm
1
2 , 1

2

.

We recall the following classical proposition of Calderon-Vaillancourt.

Proposition 6.10. If A ∈ Lk
1
2 , 1

2

(Ω; Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)). Then, for every s ∈ R, A is

continuous

A : H s
comp(Ω; Λ0,q T ∗(Ω))→H s−k

loc (Ω; Λ0,q T ∗(Ω))

and

A : H s
loc(Ω; Λ0,q T ∗(Ω))→H s−k

loc (Ω; Λ0,q T ∗(Ω))

if A is properly supported. (For the precise meaning of properly supported opera-

tors, see the discussion before Definition A.6.)
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Proof. See Hörmander [15].

We need the following properties of the phaseψ(t ,x ,η).

Lemma 6.11. For every compact set K ⊂Ω and all α∈N2n−1, β ∈N2n−1, |α|+
�

�β
�

�≥
1, there exists a constant cα,β ,K > 0, such that
�

�

�∂ αx ∂
β
η (ψ(t ,x ,η)−




x ,η
�

)
�

�

�≤ cα,β ,K (1+
�

�η
�

�)
|α|−|β |

2 (1+Imψ(t ,x ,η))
|α|+|β |

2 , if |α|+
�

�β
�

�= 1

and
�

�

�∂ αx ∂
β
η (ψ(t ,x ,η)−




x ,η
�

)
�

�

�≤ cα,β ,K (1+
�

�η
�

�)1−|β |, if |α|+
�

�β
�

�≥ 2,

where x ∈ K , t ∈R+,
�

�η
�

�≥ 1.

Proof. For
�

�η
�

� = 1, we consider Taylor expansions of ∂x j (ψ(t ,x ,η)−



x ,η
�

), j =
1, . . . , 2n −1, at (x0,η0)∈Σ,

∂x j (ψ(t ,x ,η)−



x ,η
�

) =
∑

k

∂ 2ψ

∂ xk∂ x j
(t ,x0,η0)(xk −x (k )0 )

+
∑

k

∂ 2ψ

∂ ηk∂ x j
(t ,x0,η0)(ηk −η(k )0 )

+O(|(x −x0)|2+
�

�(η−η0)
�

�

2
),

where x0 = (x
(1)
0 , . . . ,x (2n−1)

0 ), η0 = (η
(1)
0 , . . . ,η(2n−1)

0 ). Thus, for every compact set

K ⊂Ω there exists a constant c > 0, such that
�

�∂x (ψ(t ,x ,η)−



x ,η
�

)
�

�≤ c
t

1+ t
dist ((x ,η),Σ)),

where x ∈ K , t ∈R+,
�

�η
�

�= 1. From (4.4), we have

Imψ(t ,x ,η)� (
t

1+ t
)dist ((x ,η),Σ))2,

�

�η
�

�= 1.

Hence,

(
t

1+ t
)

1
2 dist ((x ,η),Σ))� (Imψ(t ,x ,η))

1
2 ,
�

�η
�

�= 1.

Thus, for every compact set K ⊂Ω there exists a constant c > 0, such that
�

�∂x (ψ(t ,x ,η)−



x ,η
�

)
�

�≤ c (
t

1+ t
)

1
2 (Imψ(t ,x ,η))

1
2 ,
�

�η
�

�= 1,x ∈ K .

From above, we get for
�

�η
�

�≥ 1,

�

�∂x (ψ(t ,x ,η)−



x ,η
�

)
�

�=
�

�η
�

�

�

�

�

�

�

∂x (ψ(t
�

�η
�

� ,x ,
η
�

�η
�

�

)−

*

x ,
η
�

�η
�

�

+

)

�

�

�

�

�

≤ c
�

�η
�

�

1
2 (

t
�

�η
�

�

1+ t
�

�η
�

�

)
1
2 (Imψ(t ,x ,η))

1
2

≤ c ′(1+
�

�η
�

�)
1
2 (1+ Imψ(t ,x ,η))

1
2 ,
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where c , c ′ > 0, x ∈ K , t ∈ R+. Here K is as above. Similarly, for every compact

set K ⊂Ω there exists a constant c > 0, such that

�

�∂η(ψ(t ,x ,η)−



x ,η
�

)
�

�≤ c (1+
�

�η
�

�)−
1
2 (Imψ(t ,x ,η))

1
2 ,

where x ∈ K , t ∈R+ and
�

�η
�

�≥ 1.

For |α|+
�

�β
�

�≥ 2, we have

�

�

�∂ αx ∂
β
η (ψ(t ,x ,η)−




x ,η
�

)
�

�

�≤ c (1+
�

�η
�

�)1−|β |,

where c , x ∈ K , t ∈R+ and
�

�η
�

�≥ 1. Here K is as above.

The lemma follows.

We also need the following

Lemma 6.12. For every compact set K ⊂Ω and all α∈N2n−1, β ∈N2n−1, there exist

a constant cα,β ,K > 0 and ε > 0, such that

�

�

�∂ αx ∂
β
η (tψ

′
t (t ,x ,η))

�

�

�≤ cα,β ,K (1+
�

�η
�

�)
|α|−|β |

2 e−t ε|η|(1+ Imψ(t ,x ,η))1+
|α|+|β |

2 ,

if |α|+
�

�β
�

�≤ 1

and
�

�

�∂ αx ∂
β
η (tψ

′
t (t ,x ,η))

�

�

�≤ cα,β ,K (1+
�

�η
�

�)1−|β |e−t ε|η|, if |α|+
�

�β
�

�≥ 2,

where x ∈ K , t ∈R+,
�

�η
�

�≥ 1.

Proof. The proof of this lemma is essentially the same as the proof of Lemma 6.11.

We need the following

Lemma 6.13. For every compact set K ⊂Ω and all α∈N2n−1, β ∈N2n−1, there exist

a constant cα,β ,K > 0 and ε > 0, such that

�

�

�∂ αx ∂
β
η (e

i (ψ(t ,x ,η)−〈x ,η〉)
�

�

�≤ cα,β ,K (1+
�

�η
�

�)
|α|−|β |

2 e−Imψ(t ,x ,η)(1+ Imψ(t ,x ,η))
|α|+|β |

2 (6.3)

and
�

�

�∂ αx ∂
β
η (e

i (ψ(t ,x ,η)−〈x ,η〉tψ′t (t ,x ,η))
�

�

�

≤ cα,β ,K (1+
�

�η
�

�)
|α|−|β |

2 e−t ε|η|e−Imψ(t ,x ,η)(1+ Imψ(t ,x ,η))1+
|α|+|β |

2 , (6.4)

where x ∈ K , t ∈R+,
�

�η
�

�≥ 1.
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Proof. First, we prove (6.3). We proceed by induction over |α|+
�

�β
�

�. For |α|+
�

�β
�

�≤
1, from Lemma 6.11, we get (6.3). Let |α|+

�

�β
�

�≥ 2. Then
�

�

�∂ αx ∂
β
η (e

i (ψ(t ,x ,η)−〈x ,η〉)
�

�

�

=

�

�

�

�

�

�

∑

α′+α′′=α,β ′+β ′′=β ,(α′′,β ′′) 6=0

∂ α
′

x ∂
β ′

η (e
i (ψ(t ,x ,η)−〈x ,η〉)∂ α′′x ∂

β ′′

η (iψ(t ,x ,η)− i



x ,η
�

)

�

�

�

�

�

�

.

By the induction assumption, we have for every compact set K ⊂ Ω, there exists

a constant c > 0, such that
�

�

�∂ α
′

x ∂
β ′

η (e
i (ψ(t ,x ,η)−〈x ,η〉)

�

�

�≤ c (1+
�

�η
�

�)
|α′|−|β ′|

2 e−Imψ(t ,x ,η)(1+ Imψ(t ,x ,η))
|α′|+|β ′|

2 , (6.5)

where x ∈ K , t ∈R+,
�

�η
�

�≥ 1. From Lemma 6.11, we have
�

�

�∂ α
′′

x ∂
β ′′

η (iψ(t ,x ,η)− i



x ,η
�

)
�

�

�≤ c (1+
�

�η
�

�)
|α′′|−|β ′′|

2 (1+ Imψ(t ,x ,η))
|α′′|+|β ′′|

2 , (6.6)

where x ∈ K , t ∈R+,
�

�η
�

�≥ 1. Combining (6.5) with (6.6), we get (6.3).

From Leibniz’s formula, Lemma 6.12 and (6.3), we get (6.4).

Lemma 6.14. Let

b (t ,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))

with r > 0. We assume that b (t ,x ,η) = 0 when
�

�η
�

�≤ 1. Then

q (x ,η) =

∫ ∞

0

e i (ψ(t ,x ,η)−〈x ,η〉)b (t ,x ,η)d t ∈Sk−1
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))).

Proof. From Leibniz’s formula, we have

∂ αx ∂
β
η (e

i (ψ(t ,x ,η)−〈x ,η〉)b (t ,x ,η))

=
∑

α′+α′′=α,β ′+β ′′=β

(∂ α
′

x ∂
β ′

η e i (ψ(t ,x ,η)−〈x ,η〉)(∂ α′′x ∂
η′′

η b (t ,x ,η)).

From (6.3) and the definition of Ŝk
r , we have for every compact set K ⊂ Ω, there

exist a constant c > 0 and ε > 0, such that
�

�

�∂ αx ∂
β
η q (x ,η)

�

�

�

≤ c

∫ ∞

0

e−Imψ(t ,x ,η)(1+
�

�η
�

�)k+
|α|−|β |

2 (1+ Imψ(t ,x ,η))
|α|+|β |

2 e−εt |η|d t

≤ c ′(1+
�

�η
�

�)k−1+ |α|−|β |2 ,

where c ′ > 0, x ∈ K . The lemma follows.
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We will next show

Proposition 6.15. Let

b (t ,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))

with r > 0. We assume that b (t ,x ,η) = 0 when
�

�η
�

�≤ 1. Let

B : C∞0 (Ω; Λ0,q T ∗(Ω))→C∞(Ω; Λ0,q T ∗(Ω)),

E ′(Ω; Λ0,q T ∗(Ω))→D ′(Ω; Λ0,q T ∗(Ω)).

be as in Proposition 6.6. Then

B ∈ Lk−1
1
2 , 1

2

(Ω; Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))

with symbol

q (x ,η) =

∫ ∞

0

e i (ψ(t ,x ,η)−〈x ,η〉)b (t ,x ,η)d t

∈Sk−1
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))).

Proof. Choose χ ∈ C∞0 (R2n−1) so that χ(η) = 1 when
�

�η
�

� < 1 and χ(η) = 0 when
�

�η
�

�> 2. Take a u (y )∈C∞0 (Ω; Λ0,q T ∗(Ω)), then

Bu = lim
ε→0

1

(2π)2n−1

∫ ∞

0

�

∫

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)u (y )χ(εη)dη
�

d t

= lim
ε→0

1

(2π)2n−1

∫ ∞

0

e i〈x−y ,η〉
�

∫

e i (ψ(t ,x ,η)−〈x ,η〉)b (t ,x ,η)u (y )χ(εη)
�

dηd t

= lim
ε→0

1

(2π)2n−1

∫

e i〈x−y ,η〉q (x ,η)u (y )χ(εη)dη.

From Lemma 6.14, we know that q (x ,η)∈Sk−1
1
2 , 1

2

. Thus

lim
ε→0

1

(2π)2n−1

∫

e i〈x−y ,η〉q (x ,η)u (y )χ(εη)dη∈ Lk−1
1
2 , 1

2

(Ω; Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)).

We need the following

Lemma 6.16. Let

a (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))
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be a classical symbol of order k , that is

a (∞,x ,η)∼
∞
∑

j=0

a j (∞,x ,η)

in the symbol space Sk
1,0(T

∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))),

where

a j (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

a j (∞,x ,λη) =λk−j a j (∞,x ,η), λ≥ 1,
�

�η
�

�≥ 1, j = 0, 1, . . . ,

and Sk
1,0 is the Hörmander symbol space. We assume that a (∞,x ,η) = 0 when

�

�η
�

�≤ 1. Then

p (x ,η) =

∫ ∞

0

(e i (ψ(t ,x ,η)−〈x ,η〉)− e i (ψ(∞,x ,η)−〈x ,η〉))a (∞,x ,η)d t

∈Sk−1
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))).

Proof. We have

p (x ,η) =

∫ ∞

0

e i (ψ(t ,x ,η)−〈x ,η〉)(−t )iψ′t (t ,x ,η)a (∞,x ,η)d t . (6.7)

From (6.4), we can repeat the procedure in the proof of Lemma 6.14 to get the

lemma.

Remark 6.17. Let

a (t ,x ,η)∈ Ŝk
0 (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))).

We assume a (t ,x ,η) = 0, if
�

�η
�

�≤ 1 and

a (t ,x ,η)−a (∞,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))

with r > 0, where a (∞,x ,η) is as in Lemma 6.16. By Lemma 6.14 and Lemma 6.16,

we have
∫ ∞

0

�

e i (ψ(t ,x ,η)−〈x ,η〉)a (t ,x ,η)− e i (ψ(∞,x ,η)−〈x ,η〉)a (∞,x ,η)
�

d t

=

∫ ∞

0

e i (ψ(t ,x ,η)−〈x ,η〉)(a (t ,x ,η)−a (∞,x ,η))d t

+

∫ ∞

0

(e i (ψ(t ,x ,η)−〈x ,η〉)− e i (ψ(∞,x ,η)−〈x ,η〉))a (∞,x ,η))d t

∈Sk−1
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))).
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Let

A(x , y ) =
1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)−

e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)
�

d t
�

dη

be as in the Remark 6.7. Then as in Proposition 6.15, we can show that

A ∈ Lk−1
1
2 , 1

2

(Ω; Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))

with symbol

q (x ,η) =

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈x ,η〉)a (t ,x ,η)− e i (ψ(∞,x ,η)−〈x ,η〉)a (∞,x ,η)
�

d t

∈Sk−1
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))).

We have the following

Proposition 6.18. Let

a (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))

be a classical symbol of order k . Then

a (x ,η) = e i (ψ(∞,x ,η)−〈x ,η〉)a (∞,x ,η)

∈Sk
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))).

Proof. In view of Lemma 6.13, we have for every compact set K ⊂ Ω and all α ∈
N2n−1, β ∈N2n−1, there exists a constant cα,β ,K > 0, such that
�

�

�∂ αx ∂
β
η (e

i (ψ(∞,x ,η)−〈x ,η〉)
�

�

�≤ cα,β ,K (1+
�

�η
�

�)
|α|−|β |

2 e−Imψ(∞,x ,η)(1+ Imψ(∞,x ,η))
|α|+|β |

2 ,

where x ∈ K ,
�

�η
�

�≥ 1. From this and Leibniz’s formula, we get the proposition.

7 The heat equation

Until further notice, we work with some real local coordinates

x = (x1, . . . ,x2n−1)

defined on an open set Ω⊂X . Let

b (t ,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))
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with r > 0. We assume that b (t ,x ,η) = 0 when
�

�η
�

�≤ 1. From now on, we write

1

(2π)2n−1

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)d t
�

dη

to denote the kernel of pseudodifferential operator of order k −1 type ( 1
2

, 1
2
) from

sections of Λ0,q T ∗(Ω) to sections of Λ0,q T ∗(Ω)with symbol

∫ ∞

0

e i (ψ(t ,x ,η)−〈x ,η〉)b (t ,x ,η)d t ∈Sk−1
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))).

(See Proposition 6.15.)

Let

a (t ,x ,η)∈ Ŝk
0 (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))).

We assume that a (t ,x ,η) = 0 when
�

�η
�

�≤ 1 and that

a (t ,x ,η)−a (∞,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))) with r > 0,

where

a (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))

is a classical symbol of order k . From now on, we write

1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)− e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)
�

d t
�

dη

to denote the kernel of pseudodifferential operator of order k −1 type ( 1
2

, 1
2
) from

sections of Λ0,q T ∗(Ω) to sections of Λ0,q T ∗(Ω)with symbol

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈x ,η〉)a (t ,x ,η)− e i (ψ(∞,x ,η)−〈x ,η〉)a (∞,x ,η)
�

d t

in Sk−1
1
2 , 1

2

((T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))). (See Lemma 6.14 and Lemma 6.16.) From

Proposition 5.6, we have the following

Proposition 7.1. Let Q be a C∞ differential operator on Ω of order m . Let

b (t ,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))

with r > 0. We assume that b (t ,x ,η) = 0 when
�

�η
�

�≤ 1. Set

Q(e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)) = e i (ψ(t ,x ,η)−〈y ,η〉)c (t ,x ,η),

c (t ,x ,η)∈ Ŝk+m
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), r > 0.
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Put

B (x , y ) =
1

(2π)2n−1

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)d t
�

dη,

C (x , y ) =
1

(2π)2n−1

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)c (t ,x ,η)d t
�

dη.

We have

Q ◦ B ≡C .

Proposition 7.2. Let Q be a C∞ differential operator on Ω of order m . Let

b (t ,x ,η)∈ Ŝk
0 (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))).

We assume that b (t ,x ,η) = 0 when
�

�η
�

�≤ 1 and that

b (t ,x ,η)−b (∞,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))

with r > 0, where

b (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))

is a classical symbol of order k . Set

Q
�

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)− e i (ψ(∞,x ,η)−〈y ,η〉)b (∞,x ,η)
�

= e i (ψ(t ,x ,η)−〈y ,η〉)c (t ,x ,η)− e i (ψ(∞,x ,η)−〈y ,η〉)c (∞,x ,η),

where

c (t ,x ,η)∈ Ŝk+m
0 (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))),

c (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))

is a classical symbol of order k +m . Then

c (t ,x ,η)− c (∞,x ,η)∈ Ŝk+m
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))

with r > 0. Put

B (x , y ) =
1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)−

e i (ψ(∞,x ,η)−〈y ,η〉)b (∞,x ,η)
�

d t
�

dη,

C (x , y ) =
1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)c (t ,x ,η)−

e i (ψ(∞,x ,η)−〈y ,η〉)c (∞,x ,η)
�

d t
�

dη.

We have

Q ◦ B ≡C .
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We return to our problem. From now on, we assume that our operators are

properly supported. We assume that Y (q ) holds. Let

a j (t ,x ,η)∈ Ŝ−j
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . , r > 0,

be as in Proposition 6.3 with a 0(0,x ,η) = I , a j (0,x ,η) = 0 when j > 0. Let

a (t ,x ,η)∼
∞
∑

j=0

a j (t ,x ,η)

in the symbol space Ŝ0
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))),

where r > 0. Let

(∂t +�
(q )
b )
�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)
�

= e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η). (7.1)

From Proposition 5.6, we see that for every compact set K ⊂ Ω, ε > 0 and all

indices α, β and N ∈N, there exists cα,β ,N ,ε,K > 0 such that
�

�

�∂ αx ∂
β
η b (t ,x ,η)

�

�

�≤ cα,β ,N ,ε,K e t (−r (x ,η)+ε|η|)(
�

�η
�

�

−N
+
�

�η
�

�

2−N
(Imψ(t ,x ,η))N ), (7.2)

where t ∈R+, x ∈ K ,
�

�η
�

�≥ 1. Choose χ ∈C∞0 (R2n−1) so that χ(η) = 1 when
�

�η
�

�< 1

and χ(η) = 0 when
�

�η
�

�> 2. Set

A(x , y ) =
1

(2π)2n−1

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)(1−χ(η))d t
�

dη. (7.3)

We have the following proposition

Proposition 7.3. Suppose Y (q ) holds. Let A = A(x , y ) be as in (7.3). We have

�(q )b A ≡ I .

Proof. We have

�(q )b

� 1

(2π)2n−1
e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)(1−χ(η))

�

=
1

(2π)2n−1
e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)(1−χ(η))

−
1

(2π)2n−1

∂

∂ t

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)
�

(1−χ(η)),

where b (t ,x ,η) is as in (7.1), (7.2). From Proposition 7.1, we have

�(q )b ◦A ≡
1

(2π)2n−1

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)(1−χ(η))d t
�

dη

−
1

(2π)2n−1

∫

�

∫ ∞

0

∂

∂ t

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)
�

(1−χ(η))d t
�

dη.
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From (7.2), it follows that

1

(2π)2n−1

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)(1−χ(η))d t
�

dη

is smoothing. Choose a cut-off functionχ1(η)∈C∞0 (R2n−1) so thatχ1(η) = 1 when
�

�η
�

�< 1 and χ1(η) = 0 when
�

�η
�

�> 2. Take a

u (y )∈C∞0 (Ω; Λ0,q T ∗(Ω)),

then

lim
ε→0

1

(2π)2n−1

∫ ∫

�

∫ ∞

0

∂

∂ t

�

e i (ψ(t ,x ,η)−〈y ,η〉a (t ,x ,η)
�

(1−χ(η))χ1(εη)u (y )d t
�

dηd y

= lim
ε→0

−1

(2π)2n−1

∫ ∫

e i〈x−y ,η〉(1−χ(η))χ1(εη)u (y )dηd y .

Hence

1

(2π)2n−1

∫

�

∫ ∞

0

∂

∂ t

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)
�

(1−χ(η))d t
�

dη≡−I .

Thus

�(q )b ◦A ≡ I .

Remark 7.4. We assume that Y (q ) holds. From Proposition 7.3, we know that, for

every local coordinate patch X j , there exists a properly supported operator

A j :D ′(X j ; Λ0,q T ∗(X j ))→D ′(X j ; Λ0,q T ∗(X j ))

such that

A j : H s
loc(X j ; Λ0,q T ∗(X j ))→H s+1

loc (X j ; Λ0,q T ∗(X j ))

and

�(q )b ◦A j − I : H s
loc(X j ; Λ0,q T ∗(X j ))→H s+m

loc (X j ; Λ0,q T ∗(X j ))

for all s ∈R and m ≥ 0. We assume that X =
⋃k

j=1 X j . Let
¦

χj

©

be a C∞ partition

of unity subordinate to
¦

X j

©

and set

Au =
∑

j

A j (χj u ), u ∈D ′(X ; Λ0,q T ∗(X )).

A is well-defined as a continuous operator

A : H s (X ; Λ0,q T ∗(X ))→H s+1(X ; Λ0,q T ∗(X ))
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for all s ∈R. We notice that A is properly supported. We have

�(q )b ◦A − I : H s (X ; Λ0,q T ∗(X ))→H s+m (X ; Λ0,q T ∗(X ))

for all s ∈R and m ≥ 0.

Now we assume that Y (q ) fails. Let

a j (t ,x ,η)∈ Ŝ−j
0 (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

and

a j (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . ,

be as in Proposition 6.4. We recall that for some r > 0,

a j (t ,x ,η)−a j (∞,x ,η)∈ Ŝ−j
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))), j = 0, 1, . . . .

Let

a (∞,x ,η)∼
∞
∑

j=0

a j (∞,x ,η)

in the symbol space S0
1,0(T

∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))). (7.4)

Here S0
1,0 is the Hörmander symbol space. Let

a (t ,x ,η)∼
∞
∑

j=0

a j (t ,x ,η)

in the symbol space Ŝ0
0(R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))). (7.5)

We take a (t ,x ,η) so that for every compact set K ⊂ Ω and all indices α, β , γ, k ,

there exists c > 0, c is independent of t , such that
�

�

�

�

�

∂
γ

t ∂
α

x ∂
β
η (a (t ,x ,η)−

k
∑

j=0

a j (t ,x ,η))

�

�

�

�

�

≤ c (1+
�

�η
�

�)−k−1+γ−|β |, (7.6)

where t ∈R+, x ∈ K ,
�

�η
�

�≥ 1, and

a (t ,x ,η)−a (∞,x ,η)∈ Ŝ0
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))

with r > 0. Let

(∂t +�
(q )
b )
�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)
�

= e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η). (7.7)

Then

b (t ,x ,η)∈ Ŝ2
0(R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω)))
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and

b (t ,x ,η)−b (∞,x ,η)∈ Ŝ2
r (R+×T ∗(Ω);L (Λ0,q T ∗(Ω),Λ0,q T ∗(Ω))) (7.8)

with r > 0, where b (∞,x ,η) is a classical symbol of order 2. Moreover, we have

(∂t +�
(q )
b )
� 1

(2π)2n−1

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)− e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)
��

=
1

(2π)2n−1

�

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)− e i (ψ(∞,x ,η)−〈y ,η〉)b (∞,x ,η)
�

. (7.9)

From Proposition 5.6, we see that for every compact set K ⊂Ω and all indices

α, β and N ∈N, there exists cα,β ,N ,K > 0 such that
�

�

�∂ αx ∂
β
η b (t ,x ,η)

�

�

�≤ cα,β ,N ,K (
�

�η
�

�

−N
+
�

�η
�

�

2−N
(Imψ(t ,x ,η))N ), (7.10)

where t ∈R+, x ∈ K ,
�

�η
�

�≥ 1. Thus,
�

�

�∂ αx ∂
β
η b (∞,x ,η)

�

�

�≤ cα,β ,N ,K (
�

�η
�

�

−N
+
�

�η
�

�

2−N
(Imψ(∞,x ,η))N ). (7.11)

From (7.8), (7.10) and (7.11), it follows that for every compact set K ⊂ Ω, ε > 0

and all indices α, β and N ∈N, there exists cα,β ,N ,ε,K > 0 such that
�

�

�∂ αx ∂
β
η

�

b (t ,x ,η)−b (∞,x ,η)
�

�

�

�

≤ cα,β ,N ,ε,K

�

e t (−r (x ,η)+ε|η|)(
�

�η
�

�

−N
+
�

�η
�

�

2−N
(Imψ(t ,x ,η))N )

�
1
2
, (7.12)

where t ∈R+, x ∈ K ,
�

�η
�

�≥ 1, r > 0.

Choose χ ∈ C∞0 (R2n−1) so that χ(η) = 1 when
�

�η
�

� < 1 and χ(η) = 0 when
�

�η
�

�> 2. Set

G (x , y ) =
1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)−

e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)
�

(1−χ(η))d t
�

dη. (7.13)

Put

S(x , y ) =
1

(2π)2n−1

∫

e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)dη. (7.14)

We have the following

Proposition 7.5. We assume that Y (q ) fails. Let G and S be as in (7.13) and (7.14)

respectively. Then

S+�(q )b ◦G ≡ I

and

�(q )b ◦S ≡ 0.
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Proof. We have

�(q )b

� 1

(2π)2n−1
e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)

�

=
1

(2π)2n−1
e i (ψ(t ,x ,η)−〈y ,η〉)

�

b (t ,x ,η)− i
∂ ψ

∂ t
a −

∂ a

∂ t

�

,

where b (t ,x ,η) is as in (7.7). Letting t →∞, we get

�(q )b

� 1

(2π)2n−1
e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)

�

=
1

(2π)2n−1
e i (ψ(∞,x ,η)−〈y ,η〉)b (∞,x ,η),

where b (∞,x ,η) is as in (7.8) and (7.11). From (7.11), we have

1

(2π)2n−1

∫

e i (ψ(∞,x ,η)−〈y ,η〉)b (∞,x ,η)dη

is smoothing. Thus

�(q )b ◦S ≡ 0.

In view of (7.9), we have

�(q )b

� 1

(2π)2n−1

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)(1−χ(η))

− e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)(1−χ(η)
��

=
1

(2π)2n−1

�

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)

− e i (ψ(∞,x ,η)−〈y ,η〉)b (∞,x ,η)
�

(1−χ(η))

−
1

(2π)2n−1

∂

∂ t

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)
�

(1−χ(η)).

From Proposition 7.2, we have

�(q )b ◦G =�(q )b

� 1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)

− e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)
�

(1−χ(η))d t
�

dη
�

≡
1

(2π)2n−1

�

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)

− e i (ψ(∞,x ,η)−〈y ,η〉)b (∞,x ,η)
�

(1−χ(η))d t
�

dη

−
∫

�

∫ ∞

0

∂

∂ t

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)
�

(1−χ(η))d t
�

dη
�

.
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In view of (7.11) and (7.12), we see that

1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)

− e i (ψ(∞,x ,η)−〈y ,η〉)b (∞,x ,η)
�

(1−χ(η))d t
�

dη

=
1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)− e i (ψ(∞,x ,η)−〈y ,η〉)
�

b (∞,x ,η)(1−χ(η))d t
�

dη

+
1

(2π)2n−1

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)
�

b (t ,x ,η)−b (∞,x ,η)
�

(1−χ(η))d t
�

dη

is smoothing.

Choose a cut-off function χ1(η) ∈ C∞0 (R2n−1) so that χ1(η) = 1 when
�

�η
�

� < 1

and χ1(η) = 0 when
�

�η
�

�> 2. Take a u ∈C∞0 (Ω; Λ0,q T ∗(Ω)), then

lim
ε→0

1

(2π)2n−1

∫

�

∫ ∞

0

∂

∂ t

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)
�

(1−χ(η))χ1(εη)u (y )d t
�

dηd y

= lim
ε→0

1

(2π)2n−1

∫

e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)(1−χ(η))χ1(εη)u (y )dηd y

− lim
ε→0

∫

e i〈x−y ,η〉(1−χ(η))χ1(εη)u (y )dηd y .

Hence

1

(2π)2n−1

∫

�

∫ ∞

0

∂

∂ t

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)
�

(1−χ(η))d t
�

dη≡S− I .

Thus

S+�b ,q ◦G ≡ I .

In the remainder of this section, we recall some facts about Hilbert space the-

ory that will be useful later. We recall that C∞(X ; Λ0,q T ∗(X )) carries an inner prod-

uct

(u | v ) =
∫

X

(u (z ) | v (z ))(d m ), u ∈C∞(X ; Λ0,q T ∗(X )), v ∈C∞(X ; Λ0,q T ∗(X )).

(See (2.8).) The completion will be denoted L2(X ; Λ0,q T ∗(X )). Let A be as in Re-

mark 7.4. A has a formal adjoint

A∗ :D ′(X ; Λ0,q T ∗(X ))→D ′(X ; Λ0,q T ∗(X ))

(A∗u | v ) = (u | Av ), u ∈C∞(X ; Λ0,q T ∗(X )), v ∈C∞(X ; Λ0,q T ∗(X )).
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Lemma 7.6. A∗ is well-defined as a continuous operator

A∗ : H s (X ; Λ0,q T ∗(X ))→H s+1(X ; Λ0,q T ∗(X ))

for all s ∈R. Moreover, we have

A∗ ≡ A

Proof. The first statement is a consequence of the theorem of Calderon and Vail-

lancourt. (See Proposition 6.10.) In view of Remark 7.4, we see that �(q )b ◦A ≡ I .

Thus

A∗ ◦�(q )b ≡ I .

We have

A∗−A ≡ A∗ ◦ (�(q )b ◦A)−A

≡ (A∗ ◦�(q )b ) ◦A −A

≡ A −A

≡ 0.

The lemma follows.

From this, we get a two-sided parametrix for �(q )b .

Proposition 7.7. We assume that Y (q ) holds. Let A be as in Remark 7.4. Then

�(q )b ◦A ≡ A ◦�(q )b ≡ I .

Proof. In view of Lemma 7.6, we have A∗ ≡ A. Thus

I ≡�(q )b ◦A ≡ A∗ ◦�(q )b ≡ A ◦�(q )b .

Remark 7.8. The existence of a two-sided parametrix for �(q )b under condition

Y (q ) is a classical result. See Beals-Greiner [1].

Definition 7.9. Suppose Q is a closed densely defined operator

Q : H ⊃DomQ→RanQ ⊂H ,

where H is a Hilbert space. Suppose that Q has closed range. By the partial in-

verse of Q , we mean the bounded operator N : H →H such that

Q ◦N =π2, N ◦Q =π1 on DomQ ,
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where π1, π2 are the orthogonal projections in H such that

Ranπ1 = (KerQ)⊥, Ranπ2 =RanQ .

In other words, for u ∈H , let

π2u =Qv, v ∈ (KerQ)⊥
⋂

DomQ .

Then,

N u = v.

Set

Dom�(q )b =
n

u ∈ L2(X ; Λ0,q T ∗(X )); �(q )b u ∈ L2(X ; Λ0,q T ∗(X ))
o

.

Lemma 7.10. We consider �(q )b as an operator

�(q )b : L2(X ; Λ0,q T ∗(X ))⊃Dom�(q )b → L2(X ; Λ0,q T ∗(X )).

If Y (q ) holds, then �(q )b has closed range.

Proof. Suppose u j ∈Dom�(q )b and

�(q )b u j = v j → v in L2(X ; Λ0,q T ∗(X )).

We have to show that there exists u ∈Dom�(q )b such that

�(q )b u = v.

From Proposition 7.7, we have

�(q )b A = I − F1, A�(q )b = I − F2,

where Fj , j = 1, 2, are smoothing operators. Now,

A�(q )b u j = (I − F2)u j → Av in L2(X ; Λ0,q T ∗(X )).

Since F2 is compact, there exists a subsequence

u jk → u in L2(X ; Λ0,q T ∗(X )), k →∞.

We have (I − F2)u = Av and

�(q )b u jk →�
(q )
b u in H−2(X ; Λ0,q T ∗(X )), k →∞.

Thus �(q )b u = v . Now v ∈ L2(X ; Λ0,q T ∗(X )), so u ∈ Dom�(q )b . We have proved the

lemma.
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It follows that Ran�(q )b = (Ker�(q )b )
⊥. Notice also that �(q )b is self-adjoint. Now,

we can prove the following classical proposition of Beals and Greiner. (See [1].)

Proposition 7.11. Suppose Y (q ) holds. Then dim Ker�(q )b < ∞. Let π be the or-

thogonal projection onto Ker�(q )b and N be the partial inverse. Thenπ is a smooth-

ing operator and N = A + F where A is as in Proposition 7.7 and F is a smoothing

operator. Let N ∗ be the formal adjoint of N ,

(N ∗u | v ) = (u |N v ), u ∈C∞(X ; Λ0,q T ∗(X )), v ∈C∞(X ; Λ0,q T ∗(X )).

Then,

N ∗ =N on L2(X ; Λ0,q T ∗(X )).

Proof. From Proposition 7.7, we have

A�(q )b = I − F1, �(q )b A = I − F2,

where F1, F2 are smoothing operators. Thus Ker�(q )b ⊂Ker (I−F1). Since F1 is com-

pact, Ker (I − F1) is finite dimensional and contained in C∞(X ; Λ0,q T ∗(X )). Thus

dim Ker�(q )b <∞ and Ker�(q )b ⊂C∞(X ; Λ0,q T ∗(X )).
Let

�

φ1,φ2, . . . ,φm
	

be an orthonormal basis for Ker�(q )b . The projection π is

given by

πu =
m
∑

j=1

(u |φj )φj .

Thus π is a smoothing operator. Notice that I −π is the orthogonal projection

onto Ran�(q )b since �(q )b is formally self-adjoint with closed range.

For u ∈C∞(X ; Λ0,q T ∗(X )), we have

(N −A)u = (A�(q )b + F1)N u −Au

= A(I −π)u + F1N u −Au

=−Aπu + F1N (�(q )b A + F2)u

=−Aπu + F1(I −π)Au + F1N F2u .

Here

−Aπ, F1(1−π)A : H s (X ; Λ0,q T ∗(X ))→H s+m (X ; Λ0,q T ∗(X ))

for all s ∈R and m ≥ 0, so −Aπ, F1(1−π)A are smoothing operators. Since

F1N F2 : E ′(X ; Λ0,q T ∗(X ))→C∞(X ; Λ0,q T ∗(X ))

→ L2(X ; Λ0,q T ∗(X ))→C∞(X ; Λ0,q T ∗(X )),
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F1N F2 is a smoothing operator. Thus

N = A + F, F is a smoothing operator.

Since

Nπ=πN = 0=N ∗π=πN ∗ = 0,

we have

N ∗ = (N�(q )b +π)N
∗ =N�(q )b N ∗ =N .

The proposition follows.

Now, we assume that Y (q ) fails but that Y (q − 1), Y (q + 1) hold. In view of

Lemma 7.10, we see that �(q−1)
b and �(q+1)

b have closed range. We write ∂
(q )

b to

denote the map

∂ b : C∞(X ; Λ0,q T ∗(X ))→C∞(X ; Λ0,q+1T ∗(X )).

Let ∂
(q ),∗
b denote the formal adjoint of ∂ b . We have

∂
(q ),∗
b : C∞(X ; Λ0,q+1T ∗(X ))→C∞(X ; Λ0,q T ∗(X )).

Let N (q+1)
b and N (q−1)

b be the partial inverses of�(q+1)
b and�(q−1)

b respectively. From

Proposition 7.11, we have

(N (q+1)
b )∗ =N (q+1)

b , (N (q−1)
b )∗ =N (q−1)

b ,

where (N (q+1)
b )∗ and (N (q−1)

b )∗ are the formal adjoints of N (q+1)
b and N (q−1)

b respec-

tively. Letπ(q+1)
b andπ(q−1)

b be the orthogonal projections onto the kernels of�(q+1)
b

and �(q−1)
b respectively. Put

N = ∂
(q ),∗
b (N (q+1)

b )2∂
(q )

b + ∂
(q−1)

b (N (q−1)
b )2∂

(q−1),∗
b (7.15)

and

π= I − (∂
(q ),∗
b N (q+1)

b ∂
(q )

b + ∂
(q−1)

b N (q−1)
b ∂

(q−1),∗
b ). (7.16)

In view of Proposition 7.11, we see that N is well-defined as a continuous opera-

tor

N : H s (X ; Λ0,q T ∗(X ))→H s (X ; Λ0,q T ∗(X )) (7.17)

and π is well-defined as a continuous operator

π : H s (X ; Λ0,q T ∗(X ))→H s−1(X ; Λ0,q T ∗(X )), (7.18)

for all s ∈R.

Let π∗ and N ∗ be the formal adjoints of π and N respectively. We have the

following
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Lemma 7.12. If we consider π and N as operators

π, N :D ′(X ; Λ0,q T ∗(X ))→D ′(X ; Λ0,q T ∗(X )),

then

π∗ =π, N ∗ =N , (7.19)

�(q )b π= 0=π�(q )b , (7.20)

π+�(q )b N = I =π+N�(q )b , (7.21)

πN = 0=Nπ, (7.22)

π2 =π. (7.23)

Proof. From (7.15) and (7.16), we get (7.19).

For u ∈C∞(X ; Λ0,q+1T ∗(X )), we have

0= (�(q+1)
b π

(q+1)
b u | π(q+1)

b u )

= (∂
(q+1)

b π
(q+1)
b u | ∂

(q+1)

b π
(q+1)
b u )+ (∂

(q ),∗
b π

(q+1)
b u | ∂

(q ),∗
b π

(q+1)
b u ).

Thus,

∂
(q+1)

b π
(q+1)
b = 0, ∂

(q ),∗
b π

(q+1)
b = 0. (7.24)

Hence, by taking the formal adjoints

π
(q+1)
b ∂

(q+1),∗
b = 0, π(q+1)

b ∂
(q )

b = 0. (7.25)

Similarly,

∂
(q−1)

b π
(q−1)
b = 0, π(q−1)

b ∂
(q−1),∗
b = 0. (7.26)

Note that

∂
(q ),∗
b �

(q+1)
b =�(q )b ∂

(q ),∗
b , ∂

(q−1)

b �(q−1)
b =�(q )b ∂

(q−1)

b . (7.27)

Now,

�(q )b (∂
(q ),∗
b N (q+1)

b ∂
(q )

b + ∂
(q−1)

b N (q−1)
b ∂

(q−1),∗
b )

= ∂
(q ),∗
b �

(q+1)
b N (q+1)

b ∂
(q )

b + ∂
(q−1)

b �(q−1)
b N (q−1)

b ∂
(q−1),∗
b

= ∂
(q ),∗
b (I −π(q+1)

b )∂
(q )

b + ∂
(q−1)

b (I −π(q−1)
b )∂

(q−1),∗
b

=�(q )b .
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Here we used (7.24), (7.26) and (7.27). Hence,

�(q )b π= 0.

We have

π�(q )b = (�
(q )
b π)

∗ = 0,

where (�(q )b π)
∗ is the formal adjoint of �(q )b π. We get (7.20).

Now,

�(q )b N =
�

∂
(q ),∗
b �

(q+1)
b (N (q+1)

b )2∂
(q )

b + ∂
(q−1)

b �(q−1)
b (N (q−1)

b )2∂
(q−1),∗
b

�

= ∂
(q ),∗
b (I −π(q+1)

b )N (q+1)
b ∂

(q )

b + ∂
(q−1)

b (I −π(q−1)
b )N (q−1)

b ∂
(q−1),∗
b

= ∂
(q ),∗
b N (q+1)

b ∂
(q )

b + ∂
(q−1)

b N (q−1)
b ∂

(q−1),∗
b

= I −π. (7.28)

Here we used (7.24), (7.26) and (7.27). Thus,

�(q )b N +π= I .

We have

π+N�(q )b = (�
(q )
b N +π)∗ = I ,

where (�(q )b N +π)∗ is the formal adjoint of �(q )b N +π. We get (7.21).

Now,

N (I −π) =N (∂
(q ),∗
b N (q+1)

b ∂
(q )

b + ∂
(q−1)

b N (q−1)
b ∂

(q−1),∗
b )

= ∂
(q ),∗
b (N (q+1)

b )2∂
(q )

b ∂
(q ),∗
b N (q+1)

b ∂
(q )

b

+ ∂
(q−1)

b (N (q−1)
b )2∂

(q−1),∗
b ∂

(q−1)

b N (q−1)
b ∂

(q−1),∗
b .

From (7.24), (7.25) and (7.27), we have

∂
(q )

b ∂
(q ),∗
b N (q+1)

b = (I −π(q+1)
b )∂

(q )

b ∂
(q ),∗
b N (q+1)

b

=N (q+1)
b �(q+1)

b ∂
(q )

b ∂
(q ),∗
b N (q+1)

b

=N (q+1)
b ∂

(q )

b ∂
(q ),∗
b �

(q+1)
b N (q+1)

b

=N (q+1)
b ∂

(q )

b ∂
(q ),∗
b (I −π(q+1)

b )

=N (q+1)
b ∂

(q )

b ∂
(q ),∗
b .

Similarly, we have

∂
(q−1),∗
b ∂

(q−1)

b N (q−1)
b =N (q−1)

b ∂
(q−1),∗
b ∂

(q−1)

b .
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Hence,

N (I −π) = ∂
(q ),∗
b (N (q+1)

b )2N (q+1)
b ∂

(q )

b ∂
(q ),∗
b ∂

(q )

b

+ ∂
(q−1)

b (N (q−1)
b )2N (q−1)

b ∂
(q−1),∗
b ∂

(q−1)

b ∂
(q−1),∗
b

= ∂
(q ),∗
b (N (q+1)

b )2N (q+1)
b �(q+1)

b ∂
(q )

b

+ ∂
(q−1)

b (N (q−1)
b )2N (q−1)

b �(q−1)
b ∂

(q−1),∗
b

= ∂
(q ),∗
b (N (q+1)

b )2(I −π(q+1)
b )∂

(q )

b

+ ∂
(q−1)

b (N (q−1)
b )2(I −π(q−1)

b )∂
(q−1),∗
b

= ∂
(q ),∗
b (N (q+1)

b )2∂
(q )

b + ∂
(q−1)

b (N (q−1)
b )2∂

(q−1),∗
b

=N .

Here we used (7.25) and (7.26). Thus,

Nπ= 0.

We have

πN = (Nπ)∗ = 0,

where (Nπ)∗ is the formal adjoint of Nπ. We get (7.22).

Finally,

π= (�(q )b N +π)π=π2.

We get (7.23).

The lemma follows.

Lemma 7.13. If we restrict π to L2(X ; Λ0,q T ∗(X )), then π is the orthogonal projec-

tion onto Ker�(q )b . Thus, π is well-defined as a continuous operator

π : L2(X ; Λ0,q T ∗(X ))→ L2(X ; Λ0,q T ∗(X )).

Proof. From (7.20), we get Ran (π) ⊂ Ker�(q )b in the space of distributions. From

(7.21), we get πu = u , when u ∈Ker�(q )b , so Ran (π) =Ker�(q )b and

π2 =π=π∗π=π∗.

For ϕ,φ ∈C∞(X ; Λ0,q T ∗(X )), we get

((1−π)ϕ | πφ) = 0

so Ran (I −π)⊥ Ran (π) and ϕ = (I −π)ϕ+πϕ is the orthogonal decomposition.

It follows that π restricted to L2(X ; Λ0,q T ∗(X )) is the orthogonal projection onto

Ker�(q )b .
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Lemma 7.14. If we consider �(q )b as an unbounded operator

�(q )b : L2(X ; Λ0,q T ∗(X ))⊃Dom�(q )b → L2(X ; Λ0,q T ∗(X )),

then �(q )b has closed range and

N : L2(X ; Λ0,q T ∗(X ))→Dom�(q )b =
¦

u ∈ L2(X ; Λ0,q T ∗(X )) ;

�(q )b u ∈ L2(X ; Λ0,q T ∗(X ))
o

is the partial inverse.

Proof. From (7.21) and Lemma 7.13, we see that

N : L2(X ; Λ0,q T ∗(X ))→Dom�(q )b

and Ran�(q )b ⊃Ran (I −π). If

�(q )b u = v, u , v ∈ L2(X ; Λ0,q T ∗(X )),

then (I −π)v = (I −π)�(q )b u = v since π�(q )b =�
(q )
b π= 0. Hence

Ran�(q )b ⊂Ran (I −π)

so �(q )b has closed range.

From (7.22), we know that Nπ=πN = 0. Thus, N is the partial inverse.

From Lemma 7.13 and Lemma 7.14 we get the following classical result. (See

also Beals-Greiner [1].)

Proposition 7.15. We assume that Y (q ) fails but that Y (q −1) and Y (q +1) hold.

Then�(q )b has closed range. Let N andπ be as in (7.15) and (7.16) respectively. Then

N is the partial inverse of �(q )b and π is the orthogonal projection onto Ker�(q )b .

8 The Szegö Projection

In this section, we assume that Y (q ) fails. From Proposition 7.5, we know that,

for every local coordinate patch X j , there exist

G j ∈ L−1
1
2 , 1

2

(X j ; Λ0,q T ∗(X j ),Λ0,q T ∗(X j ))

and

S j ∈ L0
1
2 , 1

2

(X j ; Λ0,q T ∗(X j ),Λ0,q T ∗(X j ))
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such that
(

S j +�
(q )
b G j ≡ I

�(q )b S j ≡ 0
(8.1)

in the spaceD ′(X j ×X j ;L (Λ0,q T ∗(X j ),Λ0,q T ∗(X j ))). Furthermore, the distribution

kernel KS j of S j is of the form

KS j (x , y ) =
1

(2π)2n−1

∫

e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)dη, (8.2)

whereψ(∞,x ,η)∈C∞(T ∗(X j )) and

a (∞,x ,η)∈C∞(T ∗(X j );L (Λ0,q T ∗(X j ),Λ0,q T ∗(X j )))

are as in Proposition 4.3 and (7.4). From now on, we assume that S j and G j are

properly supported operators.

We assume that X =
⋃k

j=1 X j . Let χj be a C∞ partition of unity subordinate to
¦

X j

©

. From (8.1), we have
(

S jχj +�
(q )
b G jχj ≡χj

�(q )b S jχj ≡ 0
(8.3)

in the spaceD ′(X j ×X j ;L (Λ0,q T ∗(X j ),Λ0,q T ∗(X j ))). Thus,
(

S+�(q )b G ≡ I

�(q )b S ≡ 0
(8.4)

in the spaceD ′(X ×X ;L (Λ0,q T ∗(X ),Λ0,q T ∗(X ))), where

S, G :D ′(X ; Λ0,q T ∗(X ))→D ′(X ; Λ0,q T ∗(X )),


















Su =
k
∑

j=1

S j (χj u ), u ∈D ′(X ; Λ0,q T ∗(X ))

G u =
k
∑

j=1

G j (χj u ), u ∈D ′(X ; Λ0,q T ∗(X ))

. (8.5)

Let

S∗,G ∗ :D ′(X ; Λ0,q T ∗(X ))→D ′(X ; Λ0,q T ∗(X ))

be the formal adjoints of S and G respectively. As in Lemma 7.6, we see that S∗

and G ∗ are well-defined as continuous operators
(

S∗ : H s (X ; Λ0,q T ∗(X ))→H s (X ; Λ0,q T ∗(X ))

G ∗ : H s (X ; Λ0,q T ∗(X ))→H s+1(X ; Λ0,q T ∗(X ))
, (8.6)

for all s ∈R. We have the following
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Lemma 8.1. Let S be as in (8.4), (8.5). We have

S ≡S∗S.

It follows that

S ≡S∗

and

S2 ≡S.

Proof. From (8.4), it follows that

S∗+G ∗�(q )b ≡ I .

We have

S ≡ (S∗+G ∗�(q )b ) ◦S

≡S∗S+G ∗�(q )b S

≡S∗S.

The lemma follows.

Let

H = (I −S) ◦G . (8.7)

H is well-defined as a continuous operator

H : H s (X ; Λ0,q T ∗(X ))→H s+1(X ; Λ0,q T ∗(X ))

for all s ∈R. The formal adjoint H ∗ is well-defined as a continuous operator

H ∗ : H s (X ; Λ0,q T ∗(X ))→H s+1(X ; Λ0,q T ∗(X )),

for all s ∈R.

Lemma 8.2. Let S and H be as in (8.4), (8.5) and (8.7). Then

SH ≡ 0, (8.8)

S+�(q )b H ≡ I . (8.9)

Proof. We have

SH ≡S(I −S)G ≡ (S−S2)G ≡ 0

since S2 ≡S, where G is as in (8.4). From (8.4), it follows that

S+�(q )b H =S+�(q )b (I −S)G

≡ I −�(q )b SG

≡ I .

The lemma follows.
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Lemma 8.3. Let H be as in (8.7). Then

H ≡H ∗.

Proof. Taking the adjoint in (8.9), we get

S∗+H ∗�(q )b ≡ I .

Hence

H ≡ (S∗+H ∗�(q )b )H ≡S∗H +H ∗�(q )b H .

From Lemma 8.1 and Lemma 8.2, we have

S∗H ≡SH ≡ 0.

Hence

H ≡H ∗�(q )b H ≡H ∗.

Summing up, we get the following

Proposition 8.4. We assume that Y (q ) fails. Let

(

S :D ′(X ; Λ0,q T ∗(X ))→D ′(X ; Λ0,q T ∗(X ))

H :D ′(X ; Λ0,q T ∗(X ))→D ′(X ; Λ0,q T ∗(X ))

be as in (8.5) and (8.7). Then, S and H are well-defined as continuous operators

S : H s (X ; Λ0,q T ∗(X ))→H s (X ; Λ0,q T ∗(X )), (8.10)

H : H s (X ; Λ0,q T ∗(X ))→H s+1(X ; Λ0,q T ∗(X )), (8.11)

for all s ∈R. Moreover, we have

H�(q )b +S ≡S+�(q )b H ≡ I , (8.12)

�(q )b S ≡S�(q )b ≡ 0, (8.13)

S ≡S∗ ≡S2, (8.14)

SH ≡HS ≡ 0, (8.15)

H ≡H ∗. (8.16)

Remark 8.5. If

S′, H ′ :D ′(X ; Λ0,q T ∗(X ))→D ′(X ; Λ0,q T ∗(X ))
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satisfy (8.10)-(8.16), then

S′ ≡ (H�(q )b +S)S′ ≡SS′ ≡S(�(q )b H ′+S′)≡S

and

H ′ ≡ (H�(q )b +S)H ′ ≡ (H�(q )b +S′)H ′ ≡H�(q )b H ′ ≡H (�(q )b H ′+S′)≡H .

Thus,(8.10)-(8.16) determine S and H uniquely up to smoothing operators.

Remark 8.6. Proposition 8.4 is motivated by the work of Boutet de Monvel and

Sjöstrand [9]. See also Beals-Greiner [1].

Now we can prove the following

Proposition 8.7. We assume that Y (q ) fails. Suppose �(q )b has closed range. Let N

be the partial inverse of �(q )b and let π be the orthogonal projection onto Ker�(q )b .

Then

N =H + F,

π=S+K ,

where H, S are as in Proposition 8.4, F , K are smoothing operators.

Proof. We may replace S by I −�(q )b H and we have

�(q )b H +S = I =H ∗�(q )b +S∗.

Now,

π=π(�(q )b H +S) =πS, (8.17)

hence

π∗ =S∗π∗ =π=S∗π. (8.18)

Similarly,

S = (N�(q )b +π)S =πS+N F1, (8.19)

where F1 is a smoothing operator. From (8.17) and (8.19), we have

S−π=S−πS =N F1. (8.20)

Hence

(S∗−π)(S−π) = F ∗1 N 2F1.

On the other hand,

(S∗−π)(S−π) =S∗S−S∗π−πS+π2

=S∗S−π
=S−π+ F2,
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where F2 is a smoothing operator. Here we used (8.17) and (8.18). Now,

F ∗1 N 2F1 :D ′(X ; Λ0,q T ∗(X ))→C∞(X ; Λ0,q T ∗(X ))

→ L2(X ; Λ0,q T ∗(X ))→C∞(X ; Λ0,q T ∗(X )).

Hence F ∗1 N 2F1 is smoothing. Thus S−π is smoothing.

We have,

N −H =N (�(q )b H +S)−H

= (I −π)H +NS−H

=NS−πH

=N (S−π)+ F3

=N F4+ F3

where F4 and F3 are smoothing operators. Now,

N −H ∗ =N ∗−H ∗

= F ∗4 N + F ∗3
= F ∗4 (N F4+ F3+H )+ F ∗3 .

Note that

F ∗4 N F4 :D ′(X ; Λ0,q T ∗(X ))→C∞(X ; Λ0,q T ∗(X ))

→ L2(X ; Λ0,q T ∗(X ))→C∞(X ; Λ0,q T ∗(X )).

and

F ∗4 H : H s (X ;Λ0,q T ∗(X ))→H s+m (X ;Λ0,q T ∗(X ))

for all s ∈ R and m ≥ 0. Hence N −H ∗ is smoothing and so is (N −H ∗)∗ = N −
H .

From Proposition 8.4 and Proposition 8.7, we obtain the following

Theorem 8.8. We assume that Y (q ) fails. Let (n−, n+), n− + n+ = n − 1, be the

signature of the Levi form L. Suppose �(q )b has closed range and recall this is the

case when Y (q−1) and Y (q+1) hold. Letπ be the Szegö projection, that is,π is the

orthogonal projection onto Ker�(q )b . Then for every local coordinate patch U ⊂ X ,

the distribution kernel of π on U ×U is of the form

Kπ(x , y )≡
1

(2π)2n−1

∫

e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)dη modC∞, (8.21)
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a (∞,x ,η)∈S0
1,0(T

∗(U ) ;L (Λ0,q T ∗(U ),Λ0,q T ∗(U ))),

a (∞,x ,η)∼
∞
∑

0

a j (∞,x ,η)

in the symbol space S0
1,0(T

∗(U );L (Λ0,q T ∗(U ),Λ0,q T ∗(U ))),

where

a j (∞,x ,η)∈C∞(T ∗(U );L (Λ0,q T ∗(U ),Λ0,q T ∗(U ))), j = 0, 1, . . . ,

a j (∞,x ,λη) =λ−j a j (∞,x ,η),λ≥ 1,
�

�η
�

�≥ 1, j = 0, 1, . . . ,

and Sm
1,0, m ∈R, is the Hörmander symbol space. Hereψ(∞,x ,η) is as in Proposi-

tion 4.3 and (4.9). We recall that

ψ(∞,x ,η)∈C∞(T ∗(U )),

ψ(∞,x ,λη) =λψ(∞,x ,η),λ> 0,

Imψ(∞,x ,η)�
�

�η
�

� (dist ((x ,
η
�

�η
�

�

),Σ))2,

ψ(∞,x ,η) =−ψ(∞,x ,−η). (8.22)

Moreover, for all j = 0, 1, . . .,

¨

a j (∞,x ,η) = 0 in a conic neighborhood of Σ+, if q = n−, n− 6= n+,

a j (∞,x ,η) = 0 in a conic neighborhood of Σ−, if q = n+, n− 6= n+.
(8.23)

In the rest of this section, we will study the singularities of the distribution

kernel of the Szegö projection. We need

Definition 8.9. Let M be a real paracompact C∞ manifold and let Λ be a C∞

closed submanifold of M . Let U be an open set in M . We let C∞Λ (U ) denote the

set of equivalence classes of f ∈C∞(U ) under the equivalence relation

f ≡ g in the space C∞Λ (U )

if for every z 0 ∈Λ
⋂

U , there exists a neighborhood W ⊂U of z 0 such that

f = g +h on W,

where h ∈C∞(W ) and h vanishes to infinite order on Λ
⋂

W .
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In view of Proposition 4.3, we see that ψ(∞,x ,η) has a uniquely determined

Taylor expansion at each point ofΣ. Thus, we can defineψ(∞,x ,η) as an element

in C∞Σ (T ∗(X )). We also write ψ(∞,x ,η) for the equivalence class of ψ(∞,x ,η) in

the space C∞Σ (T ∗(X )).
Let M be a real paracompact C∞ manifold and let Λ be a C∞ closed subman-

ifold of M . If x0 ∈Λ, we let A(Λ, n ,x0) be the set

A(Λ, n ,x0) = {(U , f 1, . . . , f n ); U is an open neighborhood of x0, f 1, . . . , f n ∈C∞Λ (U ),

f j |Λ⋂U = 0, j = 1, . . . , n , and d f 1, . . . , d f n are linearly independent

over C at each point of U}. (8.24)

Definition 8.10. If x0 ∈Λ, we let Ax0(Λ, n ,x0) denote the set of equivalence classes

of A(Λ, n ,x0) under the equivalence relation

Γ1 = (U , f 1, . . . , f n )∼ Γ2 = (V, g 1, . . . , g n ), Γ1,Γ2 ∈ A(Λ, n ,x0),

if there exists an open set W ⊂U
⋂

V of x0 such that

g j ≡
n
∑

k=1

a j ,k f k in the space C∞Λ (W ), j = 1, . . . , n ,

where a j ,k ∈C∞Λ (W ), j , k = 1, . . . , n , and
�

a j ,k

�n

j ,k=1
is invertible.

If (U , f 1, . . . , f n )∈ A(Λ, n ,x0), we write (U , f 1, . . . , f n )x0 for the equivalence class

of (U , f 1, . . . , f n ) in Ax0(Λ, n ,x0), which is called the germ of (U , f 1, . . . , f n ) at x0.

Definition 8.11. Let M be a real paracompact C∞ manifold and let Λ be a C∞

closed submanifold of M . A formal manifold Ω of codimensin k at Λ associated

to M is given by:

For each point of x ∈Λ, we assign a germ Γx ∈ Ax (Λ, k ,x ) in such a way that

for every point x0 ∈Λ has an open neighborhood U such that there exist

f 1, . . . , f k ∈C∞Λ (U ), f j |Λ⋂U = 0, j = 1, . . . , k , d f 1, . . . , d f k are linearly

independent over C at each point of U , having the following property:

whatever x ∈U , the germ (U , f 1, . . . , f k )x is equal to Γx .

Formally, we write

Ω= {Γx ; x ∈Λ} .

If the codimension of Ω is 1, we call Ω a formal hypersurface at Λ.

Let Ω= {Γx ; x ∈Λ} and Ω1 =
¦

eΓx ; x ∈Λ
©

be two formal manifolds at Λ. If Γx =
eΓx , for all x ∈Λ, we write

Ω=Ω1 at Λ.
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Definition 8.12. Let Ω = {Γx ; x ∈Λ} be a formal manifold of codimensin k at Λ
associated to M , where Λ and M are as above. The tangent space of Ω at x0 ∈Λ is

given by:

the tangent space of Ω at x0 =
¦

u ∈CTx0(M );
¬

d f j (x0), u
¶

= 0, j = 1, . . . , k
©

,

where CTx0(M ) is the complexified tangent space of M at x0 and (U , f 1, . . . , f k ) is

a representative of Γx0 . We write Tx0(Ω) to denote the tangent space of Ω at x0.

Let (x , y ) be some coordinates of X ×X . From now on, we use the notations ξ

and η for the dual variables of x and y respectively.

Remark 8.13. For each point (x0,η0,x0,η0)∈ diag (Σ×Σ), we assign a germ

Γ(x0,η0,x0,η0) = (T
∗(X )×T ∗(X ),ξ−ψ′x (∞,x ,η), y −ψ′η(∞,x ,η))(x0,η0,x0,η0). (8.25)

Let C∞ be the formal manifold at diag (Σ×Σ):

C∞ =
¦

Γ(x ,η,x ,η); (x ,η,x ,η)∈ diag (Σ×Σ)
©

.

C∞ is strictly positive in the sense that

1

i
σ(v, v )> 0

for all v ∈ Tρ(C∞) \CTρ(diag (Σ×Σ)), where ρ ∈ diag (Σ×Σ). Here σ is the sym-

plectic two form on CT ∗ρ(X )×CT ∗ρ(X ).

We have the following

Proposition 8.14. There exists a formal manifold J+ =
¦

J(x ,η); (x ,η)∈Σ
©

at Σ as-

sociated to T ∗(X ) such that

codimJ+ = n −1 (8.26)

and for all (x0,η0)∈Σ, if (U , f 1, . . . , f n−1) is a representative of J(x0,η0), then
¦

f j , f k

©

≡ 0 in the space C∞Σ (U ), j , k = 1, . . . , n −1, (8.27)

p0 ≡
n−1
∑

j=1

g j f j in the space C∞Σ (U ), (8.28)

where g j ∈C∞Σ (U ), j = 1, . . . , n −1, and

1

i
σ(H f j , H f j

)> 0 at (x0,η0)∈Σ, j = 1, . . . , n −1. (8.29)

We also write f j to denote an almost analytic extension of f j . Then,

f j (x ,ψ′x (∞,x ,η)) vanishes to infinite order on Σ, j = 1, . . . , n −1. (8.30)
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Moreover, we have

Tρ(C∞) ={(v +
n−1
∑

j=1

t j H f j (x0,η0), v +
n−1
∑

j=1

s j H f j
(x0,η0));

v ∈ T(x0,η0)(Σ), t j , s j ∈C, j = 1, . . . , n −1}, (8.31)

where ρ = (x0,η0,x0,η0)∈ diag (Σ×Σ) and C∞ is as in Remark 8.13.

Proof. See [20].

We return to our problem. We need the following

Lemma 8.15. We have

ψ′′ηη(∞, p ,ω0(p ))ω0(p ) = 0 (8.32)

and

Rank
�

ψ′′ηη(∞, p ,ω0(p ))
�

= 2n −2, (8.33)

for all p ∈X .

Proof. Sinceψ′η(∞,x ,η) is positively homogeneous of degree 0, it follows that

ψ′′ηη(∞, p ,ω0(p ))ω0(p ) = 0.

Thus,

Rank
�

ψ′′ηη(∞, p ,ω0(p ))
�

≤ 2n −2.

From

Imψ(∞,x ,η)�
�

�η
�

�dist ((x ,
η
�

�η
�

�

); Σ)2

it follows that

Imψ′′ηη(∞, p ,ω0(p ))V 6= 0, if V /∈
�

λω0(p ); λ∈C
	

.

Thus, for all V /∈
�

λω0(p ); λ∈C
	

, we have

D

ψ′′ηη(∞, p ,ω0(p ))V, V
E

=
D

Reψ′′ηη(∞, p ,ω0(p ))V, V
E

+ i
D

Imψ′′ηη(∞, p ,ω0(p ))V, V
E

6= 0.

We get (8.33).
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Until further notice, we assume that q = n+. For p ∈ X , we take local coordi-

nates

x = (x1,x2, . . . ,x2n−1)

defined on some neighborhood Ω of p ∈X such that

ω0(p ) = d x2n−1, x (p ) = 0 (8.34)

and

Λ0,1Tp (X )⊕Λ1,0Tp (X ) =







2n−2
∑

j=1

a j
∂

∂ x j
; a j ∈C, j = 1, . . . , 2n −2







.

We take Ω so that if x0 ∈Ω then η0,2n−1 > 0 whereω0(x0) = (η0,1, . . . ,η0,2n−1).
Until further notice, we work in Ω and we work with the local coordinates

x . Choose χ(x ,η) ∈ C∞(T ∗(X )) so that χ(x ,η) = 1 in a conic neighborhood of

(p ,ω0(p )), χ(x ,η) = 0 outside T ∗(Ω), χ(x ,η) = 0 in a conic neighborhood of Σ−

and χ(x ,λη) = χ(x ,η) when λ > 0. We introduce the cut-off functions χ(x ,η)
and (1−χ(x ,η)) in the integral (8.21):

Kπ(x , y )≡ Kπ+(x , y )+Kπ−(x , y ),

Kπ+(x , y )≡
1

(2π)2n−1

∫

e i (ψ(∞,x ,η)−〈y ,η〉)χ(x ,η)a (∞,x ,η)dη,

Kπ−(x , y )≡
1

(2π)2n−1

∫

e i (ψ(∞,x ,η)−〈y ,η〉)(1−χ(x ,η))a (∞,x ,η)dη. (8.35)

Now, we study Kπ+ . We write t to denote η2n−1. Put η′ = (η1, . . . ,η2n−2). We have

Kπ+(x , y )≡

1

(2π)2n−1

∫

e i (ψ(∞,x ,(η′,t ))−〈y ,(η′,t )〉)χ(x , (η′, t ))a (∞,x , (η′, t ))dη′d t

=
1

(2π)2n−1

∫ ∞

0

(

∫

e i t (ψ(∞,x ,(w ,1))−〈y ,(w ,1)〉)t 2n−2χ(x , (t w , t ))a (∞,x , (t w , t ))d w )d t

(8.36)

where η′ = t w , w ∈R2n−2. The stationary phase method of Melin and Sjöstrand

(see Proposition B.15) then permits us to carry out the w integration in (8.36), to

get

Kπ+(x , y )≡
∫ ∞

0

e i tφ+(x ,y )s+(x , y , t )d t (8.37)
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with

s+(x , y , t )∼
∞
∑

j=0

s j
+(x , y )t n−1−j

in the symbol space Sn−1
1,0 (Ω×Ω×]0,∞[; L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))), (8.38)

where s j
+(x , y ) ∈ C∞(Ω×Ω; L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))), j = 0, 1, . . ., and φ+(x , y ) ∈
C∞(Ω×Ω) is the corresponding critical value. (See Proposition B.14 for a review.)

For x ∈Ω, letσ(x )∈R2n−2 be the vector:

(x , (σ(x ), 1))∈Σ+. (8.39)

Since

d w (ψ(∞,x , (w , 1))−



y , (w , 1)
�

) = 0 at x = y , w =σ(x ),

it follows that when x = y , the corresponding critical point is w =σ(x ) and con-

sequently

φ+(x ,x ) = 0, (8.40)

(φ+)′x (x ,x ) =ψ′x (∞,x , (σ(x ), 1)) = (σ(x ), 1), (φ+)′y (x ,x ) =−(σ(x ), 1). (8.41)

The following is well-known (see Proposition B.14)

Proposition 8.16. In some open neighborhood Q of p in Ω, we have

Imφ+(x , y )≥ c inf
w∈W

�

Imψ(∞,x , (w , 1))+
�

�d w (ψ(∞,x , (w , 1))−



y , (w , 1)
�

)
�

�

2
�

,

(x , y )∈Q ×Q , (8.42)

where c is a positive constant and W is some open set of the origin in R2n−2.

We have the following

Proposition 8.17. In some open neighborhood Q of p in Ω, there is a constant

c > 0 such that

Imφ+(x , y )≥ c
�

�x ′− y ′
�

�

2
, (x , y )∈Q ×Q , (8.43)

where x ′ = (x1, . . . ,x2n−2), y ′ = (y1, . . . , y2n−2) and

�

�x ′− y ′
�

�

2
= (x1− y1)2+ · · ·+(x2n−2− y2n−2)2.

Proof. From

ψ(∞,x , (w , 1))−



y , (w , 1)
�

=



x − y , (w , 1)
�

+O(|w −σ(x )|2)
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we can check that

d w (ψ(∞,x , (w , 1))−



y , (w , 1)
�

) =



x ′− y ′, d w
�

+O(|w −σ(x )|),

where σ(x ) is as in (8.39) and x ′ = (x1, . . . ,x2n−2), y ′ = (y1, . . . , y2n−2). Thus, there

are constants c1, c2 > 0 such that

�

�d w (ψ(∞,x , (w , 1))−



y , (w , 1)
�

)
�

�

2 ≥ c1

�

�x ′− y ′
�

�

2− c2 |w −σ(x )|2

for (x , w ) in some compact set of Ω× Ṙ2n−2. If c1

2

�

�(x ′− y ′)
�

�

2 ≥ c2 |w −σ(x )|2, then

�

�dω(ψ(∞,x ,ω)−



y ,ω
�

)
�

�

2 ≥
c1

2

�

�(x ′− y ′)
�

�

2
. (8.44)

Now, we assume that
�

�(x ′− y ′)
�

�

2 ≤ 2c2

c1
|w −σ(x )|2. We have

Imψ(∞,x , (w , 1))≥ c3 |w −σ(x )|2 ≥
c1c3

2c2

�

�(x ′− y ′)
�

�

2
, (8.45)

for (x , w ) in some compact set of Ω×Ṙ2n−2, where c3 is a positive constant. From

(8.44), (8.45) and Proposition 8.16, we have

Imφ+(x , y )≥ c
�

�(x ′− y ′)
�

�

2

for x , y in some neighborhood of p , where c is a positive constant. We get the

proposition.

Remark 8.18. For each point (x0,x0)∈ diag (Ω×Ω), we assign a germ

H+,(x0,x0) = (Ω×Ω,φ+(x , y ))(x0,x0).

Let H+ be the formal hypersurface at diag (Ω×Ω):

H+ =
�

H+,(x ,x ); (x ,x )∈ diag (Ω×Ω)
	

. (8.46)

The formal conic conormal bundle Λφ+t of H+ is given by: For each point

(x0,η0,x0,η0)∈ diag ((Σ+
⋂

T ∗(Ω))× (Σ+
⋂

T ∗(Ω))),

we assign a germ

Λ(x0,η0,x0,η0) = (T
∗(U )×T ∗(U ),ξj − (φ+)′x j

t , j = 1, . . . , 2n −1,

ηj − (φ+)′y j
t , j = 1, . . . , 2n −2, φ+(x , y ))(x0,η0,x0,η0),
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where t = η2n−1

(φ+)′y2n−1

and U ⊂Ω is an open set of x0 such that

(φ+)′y2n−1
6= 0 on U ×U .

Then,

Λφ+t =
n

Λ(x ,η,x ,η); (x ,η,x ,η)∈ diag ((Σ+
⋂

T ∗(Ω))× (Σ+
⋂

T ∗(Ω)))
o

. (8.47)

Λφ+t is a formal manifold at diag ((Σ+
⋂

T ∗(Ω))× (Σ+
⋂

T ∗(Ω))). In fact, Λφ+t is

the positive Lagrangean manifold associated to φ+t in the sense of Melin and

Sjöstrand. (See [18] and Appendix B.)

Let (W, f 1(x ,ξ, y ,η), . . . , f 4n−2(x ,ξ, y ,η))be a representative ofΓ(x0,η0,x0,η0), where

Γ(x0,η0,x0,η0) is as in (8.25). Put

Γ′(x0,η0,x0,η0)
= (W, f 1(x ,ξ, y ,−η), . . . , f 4n−2(x ,ξ, y ,−η))(x0,η0,x0,η0).

Let C ′∞ be the formal manifold at diag (Σ+×Σ+):

C ′∞ =
n

Γ′(x ,η,x ,η); (x ,η,x ,η)∈ diag (Σ+×Σ+)
o

. (8.48)

We notice that ψ(∞,x ,η)−



y ,η
�

and φ+(x , y )t are equivalent at each point of

diag ((Σ+
⋂

T ∗(Ω))× (Σ+
⋂

T ∗(Ω))) in the sense of Definition B.20. From the global

theory of Fourier integral operators (see Proposition B.21), we get

Λφ+t =C ′∞ at diag ((Σ+
⋂

T ∗(Ω))× (Σ+
⋂

T ∗(Ω))). (8.49)

See Proposition B.7 and Proposition B.21, for the details. Formally,

C∞ =
¦

(x ,ξ, y ,η); (x ,ξ, y ,−η)∈Λφ+t

©

.

Put

φ̂+(x , y ) =−φ+(y ,x ).

We claim that

Λφ+t =Λφ̂+t at diag ((Σ+
⋂

T ∗(Ω))× (Σ+
⋂

T ∗(Ω))), (8.50)

where Λφ̂+t is defined as in (8.47). From Proposition 4.5, it follows that φ+(x , y )t
and −φ+(y ,x )t are equivalent at each point of diag ((Σ+

⋂

T ∗(Ω))× (Σ+
⋂

T ∗(Ω)))
in the sense of Definition B.20. Again from the global theory of Fourier integral

operators we get (8.50).

From (8.50), we get the following
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Proposition 8.19. There is a function f ∈C∞(Ω×Ω), f (x ,x ) 6= 0, such that

φ+(x , y )+ f (x , y )φ+(y ,x ) (8.51)

vanishes to infinite order on x = y .

From (8.51), we can replaceφ+(x , y ) by

1

2
(φ+(x , y )−φ+(y ,x )).

Thus, we have

φ+(x , y ) =−φ+(y ,x ). (8.52)

From (8.41), we see that

(x , d xφ+(x ,x ))∈Σ+, d yφ+(x ,x ) =−d xφ+(x ,x ).

We can replaceφ+(x , y ) by

2φ+(x , y )




d xφ+(x ,x )




+




d xφ+(y , y )






.

Thus,

d xφ+(x ,x ) =ω0(x ), d yφ+(x ,x ) =−ω0(x ). (8.53)

Similarly,

Kπ−(x , y )≡
∫ ∞

0

e iφ−(x ,y )t s−(x , y , t )d t ,

where Kπ−(x , y ) is as in (8.35). From (8.22), it follows that when q = n− = n+, we

can takeφ−(x , y ) so that

φ+(x , y ) =−φ−(x , y ).

Our method above only works locally. From above, we know that there exist

open sets X j , j = 1, 2, . . . , k , X =
⋃k

j=1 X j , such that

Kπ+(x , y )≡
∫ ∞

0

e iφ+,j (x ,y )t s+,j (x , y , t )d t

on X j × X j , where φ+,j satisfies (8.40), (8.42), (8.43), (8.49), (8.52), (8.53) and

s+,j (x , y , t ), j = 0, 1, . . . , are as in (8.38). From the global theory of Fourier inte-

gral operators, we have

Λφ+,j t =C ′∞ =Λφ+,k t at diag ((Σ+
⋂

T ∗(X j

⋂

Xk ))× (Σ+
⋂

T ∗(X j

⋂

Xk ))),
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for all j , k , whereΛφ+,j t , Λφ+,k t are defined as in (8.47) and C ′∞ is as in (8.48). Thus,

there is a function f j ,k ∈C∞((X j

⋂

Xk )× (X j

⋂

Xk )), such that

φ+,j (x , y )− f j ,k (x , y )φ+,k (x , y ) (8.54)

vanishes to infinite order on x = y , for all j , k . Let χj (x , y ) be a C∞ partition of

unity subordinate to
¦

X j ×X j

©

with

χj (x , y ) =χj (y ,x )

and set

φ+(x , y ) =
∑

χj (x , y )φ+,j (x , y ).

From (8.54) and the global theory of Fourier integral operators, it follows that

φ+,j (x , y )t andφ+(x , y )t are equivalent at each point of

diag ((Σ+
⋂

T ∗(X j ))× (Σ+
⋂

T ∗(X j )))

in the sense of Definition B.20, for all j . Again, from the global theory of Fourier

integral operators, we get the main result of this work

Theorem 8.20. Let (X ,Λ1,0T (X )) be a compact orientable connected CR manifold

of dimension 2n − 1, n ≥ 2. We assume that the Levi form has signature (n−, n+),
n−+n+ = n −1. Let q = n− or n+. Suppose �(q )b has closed range. Then, we have

Kπ = Kπ+ if n+ =q 6= n−,

Kπ = Kπ− if n− =q 6= n+,

Kπ = Kπ+ +Kπ− if n+ =q = n−,

where Kπ+(x , y ) satisfies

Kπ+(x , y )≡
∫ ∞

0

e iφ+(x ,y )t s+(x , y , t )d t modC∞

with

s+(x , y , t )∈Sn−1
1,0 (X ×X×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

s+(x , y , t )∼
∞
∑

j=0

s j
+(x , y )t n−1−j

in the symbol space Sn−1
1,0 (X ×X×]0,∞[; L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))), (8.55)

where

s j
+(x , y )∈C∞(X ×X ;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))), j = 0, 1, . . . ,
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φ+(x , y )∈C∞(X ×X ),

φ+(x ,x ) = 0,

φ+(x , y ) 6= 0 if x 6= y ,

Imφ+(x , y )≥ 0,

d xφ+ 6= 0, d yφ+ 6= 0 where Imφ+ = 0,

d xφ+(x , y )|x=y =ω0(x ), (8.56)

d yφ+(x , y )|x=y =−ω0(x ), (8.57)

φ+(x , y ) =−φ+(y ,x )

Moreover,φ+(x , y ) satisfies (8.43) and (8.49). Similarly,

Kπ−(x , y )≡
∫ ∞

0

e iφ−(x ,y )t s−(x , y , t )d t modC∞

with

s−(x , y , t )∈Sn−1
1,0 (X ×X×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

s−(x , y , t )∼
∞
∑

j=0

s j
−(x , y )t n−1−j

in the symbol space Sn−1
1,0 (X ×X×]0,∞[; L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

where

s j
−(x , y )∈C∞(X ×X ;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))), j = 0, 1, . . . ,

and when q = n− = n+,

φ−(x , y ) =−φ+(x , y ).

9 The leading term of the Szegö Projection

To compute the leading term of the Szegö projection, we have to know the tan-

gential Hessian ofφ+(x , y ) at each point of diag (X×X ) (see (9.1)), whereφ+(x , y )
is as in Theorem 8.20. We work with local coordinates x = (x1, . . . ,x2n−1) defined

on an open set Ω ⊂ X . The tangential Hessian of φ+(x , y ) at (p , p ) ∈ diag (X ×X )
is the bilinear map:

T(p ,p )H+×T(p ,p )H+→C,

(u , v )→
¬

(φ′′+)(p , p )u , v
¶

, u , v ∈ T(p ,p )H+, (9.1)
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where H+ is as in (8.46) and

(φ+)′′ =





(φ+)′′x x (φ+)′′x y

(φ+)′′y x (φ+)′′y y



 .

From (8.56) and (8.57), we have
¬

(d xφ+(p , p ), d yφ+(p , p )), (u , v )
¶

= 0, u , v ∈Λ1,0Tp (X )⊕Λ0,1Tp (X )

and
¬

(d xφ+(p , p ), d yφ+(p , p )), (Y (p ), Y (p ))
¶

= 0.

Thus, T(p ,p )H+ at (p , p ) is spanned by

(u , v ), (Y (p ), Y (p )), u , v ∈Λ1,0Tp (X )⊕Λ0,1Tp (X ). (9.2)

Now, we compute the the tangential Hessian of φ+(x , y ) at (p , p ) ∈ diag (X ×
X ). We need to understand the tangent space of the formal manifold

J+ =
¦

J(x ,η); (x ,η)∈Σ
©

at ρ = (p ,λω0(p ))∈Σ+, λ> 0, where J+ is as in Proposition 8.14.

Let λj , j = 1, . . . , n − 1, be the eigenvalues of the Levi form L p . We recall

that 2i
�

�λj

�

�

�

�σi Y (ρ)
�

�, j = 1, . . . , n − 1 and −2i
�

�λj

�

�

�

�σi Y (ρ)
�

�, j = 1, . . . , n − 1, are the

non-vanishing eigenvalues of the fundamental matrix Fρ. (See (3.9).) Let Λ+ρ ⊂
CTρ(T ∗(X )) be the span of the eigenspaces of Fρ corresponding to 2i

�

�λj

�

�

�

�σi Y (ρ)
�

�,

j = 1, . . . , n−1. It is well known (see [21], [20] and Boutet de Monvel-Guillemin [8])
that

Tρ(J+) =CTρ(Σ)⊕Λ+ρ, Λ+ρ = Tρ(J+)⊥,

where Tρ(J+)⊥ is the orthogonal to Tρ(J+) in CTρ(T ∗(X )) with respect to the sym-

pletic two formσ. We need the following

Lemma 9.1. Let ρ = (p ,λω0(p ))∈Σ+, λ> 0. Let

Z 1(x ), . . . ,Z n−1(x )

be an orthonormal frame of Λ1,0Tx (X ) varying smoothly with x in a neighborhood

of p , for which the Levi form is diagonalized at p . Let qj (x ,ξ), j = 1, . . . , n − 1, be

the principal symbols of Z j (x ), j = 1, . . . , n −1. Then, Λ+ρ is spanned by
¨

Hqj (ρ), if 1
i

¦

qj ,q j

©

(ρ)> 0

Hq j
(ρ), if 1

i

¦

qj ,q j

©

(ρ)< 0
. (9.3)

We recall that (see (3.5))

1

i

¦

qj ,q j

©

(ρ) =−2λL p (Z j ,Z j ).
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Proof. In view of (3.8), we see that Hqj (ρ) and Hq j
(ρ) are the eigenvectors of the

fundamental matrix Fρ corresponding to
¦

qj ,q j

©

(ρ) and
¦

q j ,qj

©

(ρ), for all j .

SinceΛ+ρ is the span of the eigenspaces of the fundamental matrix Fρ correspond-

ing to 2iλ
�

�λj

�

�, j = 1, . . . , n−1, where λj , j = 1, . . . , n−1, are the eigenvalues of the

Levi form L p . Thus, Λ+ρ is spanned by

¨

Hqj (ρ), if 1
i

¦

qj ,q j

©

(ρ)> 0

Hq j
(ρ), if 1

i

¦

qj ,q j

©

(ρ)< 0
.

We assume that (U , f 1, . . . , f n−1) is a representative of Jρ. We also write f j to

denote an almost analytic extension of f j , for all j . It is well known that (see [20]
and (8.30)) there exist h j (x , y )∈C∞(X ×X ), j = 1, . . . , n −1, such that

f j (x , (φ+)′x )−h j (x , y )φ+(x , y )

vanishes to infinite order on x = y , j = 1, . . . , n −1. (9.4)

From Lemma 9.1, we may assume that

¨

H f j (ρ) =Hqj (ρ), if 1
i

¦

qj ,q j

©

(ρ)> 0

H f j (ρ) =Hq j
(ρ), if 1

i

¦

qj ,q j

©

(ρ)< 0
. (9.5)

Here qj , j = 1, . . . , n −1, are as in Lemma 9.1.

We take local coordinates

x = (x1, . . . ,x2n−1), z j = x2j−1+ i x2j , j = 1, . . . , n −1,

defined on some neighborhood of p such that

ω0(p ) =
p

2d x2n−1, x (p ) = 0,

(
∂

∂ x j
(p ) |

∂

∂ xk
(p )) = 2δj ,k , j , k = 1, . . . , 2n −1

and

Z j =
∂

∂ z j
−

1
p

2
a j (x )

∂

∂ x2n−1
+

2n−2
∑

s=1

c j ,s (x )
∂

∂ xs
, j = 1, . . . , n −1,

where Z j , j = 1, . . . , n −1, are as in Lemma 9.1,

∂

∂ z j
=

1

2
(
∂

∂ x2j−1
− i

∂

∂ x2j
), j = 1, . . . , n −1,
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a j ∈C∞, a j (0) = 0, j = 1, . . . , n −1 and

c j ,s (x )∈C∞, c j ,s (0) = 0, j = 1, . . . , n −1, s = 1, . . . , 2n −2. (9.6)

Since
¬

[Z j ,Z k ](p ),ω0(p )
¶

= 0 and
¬

[Z j ,Zk ](p ),ω0(p )
¶

= 2iλjδj ,k , we can check

that

∂ a j

∂ z k
(0) =

∂ a k

∂ z j
(0), j , k = 1, . . . , n −1,

∂ a j

∂ z k
(0)−

∂ a k

∂ z j
(0) = 2iλjδj ,k , j , k = 1, . . . , n −1, (9.7)

where λj , j = 1, . . . , n −1, are the eigenvalues of L p . Let ξ= (ξ1, . . . ,ξ2n−1) denote

the dual variables of x . We have

qj (x ,ξ) =
i

2
(ξ2j−1+ iξ2j )−

i
p

2
a j (x )ξ2n−1+ i

2n−2
∑

s=1

c j ,s (x )ξs , j = 1, . . . , n −1,

where qj , j = 1, . . . , n −1, are as in Lemma 9.1. We may assume that

λj > 0, j = 1, . . . ,q , λj < 0, j =q +1, . . . , n −1.

From (9.5), we can check that

f j (x ,ξ) =−
i

2
(ξ2j−1− iξ2j )+

i
p

2
a j (x )ξ2n−1− i

2n−2
∑

s=1

c j ,s (x )ξs +O(
�

�(x ,ξ′)
�

�

2
),

j = 1, . . . ,q , ξ′ = (ξ1, . . . ,ξ2n−2)

f j (x ,ξ) =
i

2
(ξ2j−1+ iξ2j )−

i
p

2
a j (x )ξ2n−1+ i

2n−2
∑

s=1

c j ,s (x )ξs +O(
�

�(x ,ξ′)
�

�

2
),

j =q +1, . . . , n −1, ξ′ = (ξ1, . . . ,ξ2n−2). (9.8)

We write

y = (y1, . . . , y2n−1), w j = y2j−1+ i y2j , j = 1, . . . , n −1,

∂

∂w j
=

1

2
(
∂

∂ y2j−1
− i

∂

∂ y2j
),

∂

∂w j
=

1

2
(
∂

∂ y2j−1
+ i

∂

∂ y2j
), j = 1, . . . , n −1

and
∂

∂ z j
=

1

2
(
∂

∂ x2j−1
+ i

∂

∂ x2j
), j = 1, . . . , n −1.

From (9.4) and (9.8), we have

− i
∂ φ+

∂ z j
+

i
p

2
a j

∂ φ+

∂ x2n−1
= h j (x , y )φ+(x , y )+O(

�

�(x , y )
�

�

2
), j = 1, . . . ,q ,

i
∂ φ+

∂ z j
−

i
p

2
a j

∂ φ+

∂ x2n−1
= h j (x , y )φ+(x , y )+O(

�

�(x , y )
�

�

2
), j =q +1, . . . , n −1. (9.9)
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From (9.9), it is straight forward to see that

∂ 2φ+

∂ z j ∂ z k
(0, 0) =

∂ a j

∂ z k
(0),

∂ 2φ+

∂ z j ∂ z k
(0, 0) =

∂ a j

∂ z k
(0), 1≤ j ≤q , 1≤ k ≤ n −1,

∂ 2φ+

∂ z j ∂ z k
(0, 0) =

∂ a j

∂ z k
(0),

∂ 2φ+

∂ z j ∂ z k
(0, 0) =

∂ a j

∂ z k
(0), q +1≤ j ≤ n −1, 1≤ k ≤ n −1,

∂ 2φ+

∂ z j ∂wk
(0, 0) =

∂ 2φ+

∂ z j ∂w k
(0, 0) = 0, 1≤ j ≤q , 1≤ k ≤ n −1,

∂ 2φ+

∂ z j ∂wk
(0, 0) =

∂ 2φ+

∂ z j ∂w k
(0, 0) = 0, q +1≤ j ≤ n −1, 1≤ k ≤ n −1,

∂ 2φ+

∂ z j ∂ x2n−1
(0, 0)+

∂ 2φ+

∂ z j ∂ y2n−1
(0, 0) =

∂ a j

∂ x2n−1
(0), 1≤ j ≤q ,

∂ 2φ+

∂ z j ∂ x2n−1
(0, 0)+

∂ 2φ+

∂ z j ∂ y2n−1
(0, 0) =

∂ a j

∂ x2n−1
(0), q +1≤ j ≤ n −1. (9.10)

Since d xφ+|x=y =ω0(x ), we have

f j (x , (φ+)′x (x ,x )) = 0, j = 1, . . . , n −1.

Thus,

i
∂ φ+

∂ z j
(x ,x )−

i
p

2
a j (x )

∂ φ+

∂ x2n−1
(x ,x ) =O(|x |2), j = 1, . . . ,q ,

− i
∂ φ+

∂ z j
(x ,x )+

i
p

2
a j (x )

∂ φ+

∂ x2n−1
(x ,x ) =O(|x |2), j =q +1, . . . , n −1. (9.11)

From (9.11), it is straight forward to see that

∂ 2φ+

∂ z j ∂ z k
(0, 0)+

∂ 2φ+

∂ z j ∂wk
(0, 0) =

∂ a j

∂ z k
(0), 1≤ j ≤q , 1≤ k ≤ n −1,

∂ 2φ+

∂ z j ∂ z k
(0, 0)+

∂ 2φ+

∂ z j ∂w k
(0, 0) =

∂ a j

∂ z k
(0), 1≤ j ≤q , 1≤ k ≤ n −1,

∂ 2φ+

∂ z j ∂ z k
(0, 0)+

∂ 2φ+

∂ z j ∂wk
(0, 0) =

∂ a j

∂ z k
(0), q +1≤ j ≤ n −1, 1≤ k ≤ n −1,

∂ 2φ+

∂ z j ∂ z k
(0, 0)+

∂ 2φ+

∂ z j ∂w k
(0, 0) =

∂ a j

∂ z k
(0), q +1≤ j ≤ n −1, 1≤ k ≤ n −1,

∂ 2φ+

∂ z j ∂ x2n−1
(0, 0)+

∂ 2φ+

∂ z j ∂ y2n−1
(0, 0) =

∂ a j

∂ x2n−1
(0), 1≤ j ≤q ,

∂ 2φ+

∂ z j ∂ x2n−1
(0, 0)+

∂ 2φ+

∂ z j ∂ y2n−1
(0, 0) =

∂ a j

∂ x2n−1
(0), q +1≤ j ≤ n −1. (9.12)
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Sinceφ+(x , y ) =−φ+(y ,x ), from (9.10), we have

∂ 2φ+

∂ z j ∂wk
(0, 0) =−

∂ 2φ+
∂w j ∂ z k

(0, 0)

=−
∂ 2φ+

∂w j ∂ z k
(0, 0) = 0, q +1≤ k ≤ n −1.

Combining this with (9.12), we get

∂ 2φ+

∂ z j ∂ z k
(0, 0) =

∂ a j

∂ z k
(0), 1≤ j ≤q , q +1≤ k ≤ n −1. (9.13)

Similarly,

∂ 2φ+

∂ z j ∂ z k
(0, 0) =

∂ a j

∂ z k
(0), 1≤ j ≤q , 1≤ k ≤q ,

∂ 2φ+

∂ z j ∂ z k
(0, 0) =

∂ a j

∂ z k
(0), q +1≤ j ≤ n −1, q +1≤ k ≤ n −1. (9.14)

From (9.10) and (9.12), we have

∂ 2φ+

∂ z j ∂wk
(0, 0) =

∂ a j

∂ z k
(0)−

∂ 2φ+

∂ z j ∂ z k
(0, 0)

=
∂ a j

∂ z k
(0)−

∂ a k

∂ z j
(0) =−2iλjδj ,k , 1≤ j , k ≤q . (9.15)

Similarly,
∂ 2φ+

∂ z j ∂w k
(0, 0) = 2iλjδj ,k , q +1≤ j , k ≤ n −1. (9.16)

Sinceφ+(x ,x ) = 0, we have

∂ 2φ+

∂ x2n−1∂ x2n−1
(0, 0)+2

∂ 2φ+

∂ x2n−1∂ y2n−1
(0, 0)+

∂ 2φ+

∂ y2n−1∂ y2n−1
(0, 0) = 0. (9.17)

Combining (9.10), (9.12), (9.13), (9.14), (9.15), (9.16) and (9.17), we completely

determine the tangential Hessian ofφ+(x , y ) at (p , p ).

Theorem 9.2. For p ∈X , let

Z 1(x ), . . . ,Z n−1(x )

be an orthonormal frame of Λ1,0Tx (X ) varying smoothly with x in a neighborhood

of p , for which the Levi form is diagonalized at p . We take local coordinates

x = (x1, . . . ,x2n−1), z j = x2j−1+ i x2j , j = 1, . . . , n −1,
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defined on some neighborhood of p such that

ω0(p ) =
p

2d x2n−1, x (p ) = 0,

(
∂

∂ x j
(p ) |

∂

∂ xk
(p )) = 2δj ,k , j , k = 1, . . . , 2n −1

and

Z j =
∂

∂ z j
−

1
p

2
a j (x )

∂

∂ x2n−1
+

2n−2
∑

s=1

c j ,s (x )
∂

∂ xs
, j = 1, . . . , n −1,

where
∂

∂ z j
=

1

2
(
∂

∂ x2j−1
− i

∂

∂ x2j
), j = 1, . . . , n −1,

a j ∈C∞, a j (0) = 0,
∂ a j

∂ z k
(0) = ∂ a k

∂ z j
(0), j , k = 1, . . . , n −1 and

c j ,s (x )∈C∞, c j ,s (0) = 0, j = 1, . . . , n −1, s = 1, . . . , 2n −2.

We also write

y = (y1, . . . , y2n−1), w j = y2j−1+ i y2j , j = 1, . . . , n −1.

Then,

φ+(x , y ) =
p

2(x2n−1− y2n−1)+ i
n−1
∑

j=1

�

�λj

�

�

�

�z j −w j

�

�

2
+

1

2

n−1
∑

j ,k=1

�∂ a j

∂ z k
(0)(z j z k −w j wk )

+
∂ a j

∂ z k
(0)(z j z k −w j w k )+

∂ a j

∂ z k
(0)(z j z k −w j w k )+

∂ a j

∂ z k
(0)(z j z k −w j wk )

�

+
n−1
∑

j=1

�

iλj (z j w j − z j w j )+
∂ a j

∂ x2n−1
(0)(z j x2n−1−w j y2n−1)

+
∂ a j

∂ x2n−1
(0)(z j x2n−1−w j y2n−1)

�

+
p

2(x2n−1− y2n−1) f (x , y )+O(
�

�(x , y )
�

�

3
),

f ∈C∞, f (0, 0) = 0, f (x , y ) = f (y ,x ), (9.18)

where λj , j = 1, . . . , n −1, are the eigenvalues of L p .

We have the classical formulas
∫ ∞

0

e−t x t m d t =

(

m !x−m−1, if m ∈Z, m ≥ 0
(−1)m

(−m−1)! x
−m−1(logx + c −

∑−m−1
1

1
j
), if m ∈Z, m < 0

. (9.19)

Here x 6= 0, Rex ≥ 0 and c is the Euler constant, i.e.

c = lim
m→∞

(
m
∑

1

1

j
− log m ).
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Note that
∫ ∞

0

e iφ+(x ,y )t
∞
∑

j=0

s j
+(x , y )t n−1−j d t

= lim
ε→0+

∫ ∞

0

e−(−iφ+(x ,y )t+ε)
∞
∑

j=0

s j
+(x , y )t n−1−j d t .

We have the following corollary of Theorem 8.20

Corollary 9.3. There exist smooth functions

F+,G+, F−,G− ∈C∞(X ×X ; L (Λ0,q T ∗y (X ),Λ
0,q T ∗x (X )))

such that

Kπ+ = F+(−i (φ+(x , y )+ i 0))−n +G+ log(−i (φ+(x , y )+ i 0)),

Kπ− = F−(−i (φ−(x , y )+ i 0))−n +G− log(−i (φ−(x , y )+ i 0)).

Moreover, we have

F+ =
n−1
∑

0

(n −1−k )!s k
+(x , y )(−iφ+(x , y ))k + f+(x , y )(φ+(x , y ))n ,

F− =
n−1
∑

0

(n −1−k )!s k
−(x , y )(−iφ−(x , y ))k + f−(x , y )(φ−(x , y ))n ,

G+ ≡
∞
∑

0

(−1)k+1

k !
s n+k
+ (x , y )(−iφ+(x , y ))k ,

G− ≡
∞
∑

0

(−1)k+1

k !
s n+k
− (x , y )(−iφ−(x , y ))k , (9.20)

where s k
+, k = 0, 1, . . ., are as in (8.55) and

f+(x , y ), f−(x , y )∈C∞(X ×X ;L (Λ0,q T ∗y (X ),Λ
0,q T ∗x (X ))).

In the rest of this section, we assume that q = n+. We will compute the lead-

ing term of Kπ+ . For a given point p ∈X , we can take local coordinates

x = (x1,x2, . . . ,x2n−1)

defined on some neighborhood Ω of p ∈X such that

w0(p ) = d x2n−1, x (p ) = 0,
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Λ1,0Tp (X )⊕Λ0,1Tp (X ) =







2n−2
∑

j

a j
∂

∂ x j
; a j ∈C







and

(
∂

∂ x j
(p ) |

∂

∂ xk
(p )) =δj ,k . j , k = 1, . . . , 2n −1.

In the local coordinates x , we represent the Hermitian inner product ( | ) on

CT (X ) by

(u | v ) = 〈Hu , v 〉 ,

where u , v ∈ CT (X ), H is a positive definite Hermitian matrix. Let h(x ) denote

the determinant of H . The induced volume form on X is given by
p

h(x )d x . We

have

h(p ) = 1.

Now,

(Kπ+ ◦Kπ+)(x , y )≡
∫ ∞

0

∫ ∞

0

�

∫

e i tφ+(x ,w )+i sφ+(w ,y )s+(x , w , t )s+(w , y , s )
p

h(w )d w
�

d t d s .

Let s = tσ, we get

(Kπ+◦Kπ+)(x , y )≡
∫ ∞

0

∫ ∞

0

�

∫

e i tφ(x ,y ,w ,σ)s+(x , w , t )s+(w , y , tσ)t
p

h(w )d w
�

dσd t ,

where

φ(x , y , w ,σ) =φ+(x , w )+σφ+(w , y ).

It is easy to see that Imφ(x , y , w ,σ)≥ 0,

d wφ(x , y , w ,σ)|x=y=w = (σ−1)ω0(x ).

Thus,

x = y =w , σ= 1, x is real,

are real critical points.

Now, we will compute the Hessian of φ at x = y =w = p , p is real, σ= 1. We

write Hφ(p ) to denote the Hessian of φ at x = y =w = p , p is real, σ = 1. Hφ(p )
has the following form

Hφ(p ) =





0 t(φ+)′x
(φ+)′x (φ+)′′x x +(φ+)

′′
y y



 .

104



Since

(φ+)′x (p ) =ω0(p ) = d x2n−1,

we have

Hφ(p ) =









0, 0, . . . , 0, 1
... A, ∗
1 ∗ ∗









,

where A is the linear map

A :Λ1,0Tp (X )⊕Λ0,1Tp (X )→Λ1,0Tp (X )⊕Λ0,1Tp (X ),

〈Au , v 〉=
D

((φ+)′′x x +(φ+)
′′
y y )u , v

E

, ∀ u , v ∈Λ1,0Tp (X )⊕Λ0,1Tp (X ).

From (9.18), it follows that A has the eigenvalues:

2i
�

�λ1(p )
�

� , 2i
�

�λ1(p )
�

� , . . . , 2i
�

�λn−1(p )
�

� , 2i
�

�λn−1(p )
�

� , (9.21)

on Λ1,0Tp (X )⊕Λ0,1Tp (X )with respect to ( | ), where

λj (p ), j = 1, · · · , (n −1)

are the eigenvalues of the Levi form L p . Since

(
∂

∂ x j
(p ) |

∂

∂ xk
(p )) =δj ,k . j , k = 1, . . . , 2n −1,

we have,

det(
Hφ(p )

i
) = 22n−2

�

�λ1(p )
�

�

2 · · ·
�

�λn−1(p )
�

�

2
. (9.22)

From the stationary phase formula (see Proposition B.15), we get

(Kπ+ ◦Kπ+)(x , y )≡
∫ ∞

0

e i tφ1(x ,y )a (x , y , t )d t ,

where

a (x , y , t )∼
∞
∑

j=0

a j (x , y )t n−1−j

in the symbol space Sn−1
1,0 (Ω×Ω× [0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

a j (x , y )∈C∞(Ω×Ω;L (Λ0,q T ∗(X ),Λ0,q T ∗(X ))), j = 0, 1, . . . ,
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andφ1(x , y ) is the corresponding critical value. Moreover, we have

a 0(p , p ) =
�

det
Hφ(p )

2πi

�− 1
2

s 0
+(p , p ) ◦ s 0

+(p , p )
p

h(p )

= 2
�

�λ1(p )
�

�

−1 · · ·
�

�λn−1(p )
�

�

−1
πn s 0

+(p , p ) ◦ s 0
+(p , p ), (9.23)

where s 0
+ is as in (8.55). We notice that

φ1(x ,x ) = 0, (φ1)′x (x ,x ) = (φ+)′x (x ,x ), (φ1)′y (x ,x ) = (φ+)′y (x ,x ). (9.24)

From (9.19), it follows that

(Kπ+ ◦Kπ+)(x , y )≡ F1(−i (φ1(x , y )+ i 0))−n +G1 log(−i (φ1(x , y )+ i 0))

≡ F+(−i (φ+(x , y )+ i 0))−n +G+ log(−i (φ+(x , y )+ i 0)), (9.25)

where

F1 =
n−1
∑

0

(n −1−k )!a j (−iφ1)k + f 1φ
n
1 , f 1 ∈C∞(Ω×Ω;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

G1 ∈C∞(Ω×Ω;L (Λ0,q T ∗y (X ),Λ
0,q T ∗x (X ))), F+ and G+ are as in Corollary 9.3. From

(9.24) and (9.25), we see that

s 0
+(x ,x ) = a 0(x ,x ).

From this and (9.23), we get

2
�

�λ1(p )
�

�

−1 · · ·
�

�λn−1(p )
�

�

−1
πn s 0

+(p , p ) ◦ s 0
+(p , p ) = s 0

+(p , p ). (9.26)

Let

Nx (p s
0 +

1

2
etr F ) =

�

u ∈Λ0,q T ∗x (X ); (p
s
0 +

1

2
etr F )(x ,ω0(x ))u = 0

�

,

where p s
0 is the subprincipal symbol of �(q )b and F is the fundamental matrix of

�(q )b . From the asymptotic expansion of �(q )b (e
iφ+s+), we see that

s 0
+(p , p )u ∈Np (p s

0 +
1

2
etr F )

for all u ∈Λ0,q T ∗p (X ). (See section 5.) Let

I1 = (
1

2
|λ1| · · · |λn−1|)−1πn s 0

+(p , p ).
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From (9.26), we see that

I 2
1 = I1. (9.27)

Since

K (π+)∗ ≡ Kπ+

and

φ+(x , y ) =−φ+(y ,x ),

we have

(s 0
+)
∗(p , p ) = s 0

+(p , p )

and hence

I ∗1 = I1, (9.28)

where (π+)∗ is the adjoint of π+, s ∗0(p , p ) and I ∗1 are the adjoints of s0(p , p ) and I1

in the space

L (Λ0,q T ∗p (X ),Λ
0,q T ∗p (X )))

with respect to ( | ) respectively. Note that

dimNp (p s
0 +

1

2
etr F ) = 1.

(See section 3.) Combining this with (9.27), (9.28) and s 0
+(p , p ) 6= 0, it follows that

I1 :Λ0,q T ∗p (X )→Λ
0,q T ∗p (X )

is the orthogonal projection ontoNp (p s
0 +

1
2
etr F ).

For a given point p ∈X , let

Z 1(x ), . . . ,Z n−1(x )

be an orthonormal frame of Λ1,0Tx (X ), for which the Levi form is diagonalized at

p . Let e j (x ), j = 1, . . . , n − 1 denote the basis of Λ0,1T ∗x (X ), which is dual to Z j (x ),
j = 1, . . . , n − 1. Let λj (x ), j = 1, . . . , n − 1 be the eigenvalues of the Levi form Lx .

We assume that

λj (p )> 0 if 1≤ j ≤ n+.

Then

I1 =
j=n+
∏

j=1

e j (p )∧e ∧,∗
j (p ) at p .

(See section 3.) Summing up, we have proved
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Proposition 9.4. For a given point x0 ∈X , Let

Z 1(x ), . . . ,Z n−1(x )

be an orthonormal frame of Λ1,0Tx (X ), for which the Levi form is diagonalized at

x0. Let e j (x ), j = 1, . . . , n − 1 denote the basis of Λ0,1T ∗x (X ), which is dual to Z j (x ),
j = 1, . . . , n−1. Let λj (x ), j = 1, . . . , n−1 be the eigenvalues of the Levi form Lx . We

assume that q = n+ and that

λj (x0)> 0 if 1≤ j ≤ n+.

Then

F+(x0,x0) = (n −1)!
1

2
|λ1(x0)| · · · |λn−1(x0)|π−n

j=n+
∏

j=1

e j (x0)∧e j (x0)∧,∗.

10 The Szegö projection on non-orientable CR man-
ifolds

In this section, (X ,Λ1,0T (X )) is a compact connected not necessarily orientable

CR manifold of dimension 2n−1, n ≥ 2. We will use the same notations as before.

The definition of the Levi form (see 2.6) depends on the choices ofω0. However,

the number of non-zero eigenvalues is independent of the choices of ω0. Thus,

it makes sense to say that the Levi-form is non-degenerate. As before, we assume

that the Levi form L is non-degenerate at each point of X . We have the following

Lemma 10.1. Let (n−, n+), n− +n+ = n − 1, be the signature of the Levi-form L.

(The signature of the Levi-form L depends on the choices of ω0.) If n− 6= n+ at a

point of X , then X is orientable.

Proof. Since X is connected, n− 6= n+ at a point of X implies n− 6= n+ at each

point of X . Let X =
⋃

Uj , where Uj is a local coordinate patch of X . On Uj , we

can choose an orthonormal frame

ω1,j (x ), . . . ,ωn−1,j (x )

for Λ1,0T ∗x (Uj ), then

ω1,j (x ), . . . ,ωn−1,j (x )

is an orthonormal frame for Λ0,1T ∗x (Uj ). The (2n −2)-form

ωj = i n−1ω1,j ∧ω1,j ∧ · · · ∧ωn−1,j ∧ωn−1,j
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is real and is independent of the choice of the orthonormal frame. There is a real

1-form ω0,j (x ) of length one which is orthogonal to Λ1,0T ∗x (Uj )⊕Λ0,1T ∗x (Uj ). We

take ω0,j so that n− < n+ on Uj . Since ω0,j is unique up to sign and n− < n+ on

Uj , for all j , we have

ω0,j (x ) =ω0,k (x ) on Uj

⋂

Uk ,

soω0 is globally defined. The lemma follows.

We only need to consider the case n− = n+. We recall that if n− = n+ then�(q )b

has closed range. In view of the proof of Theorem 8.20, we have the following

Theorem 10.2. Let (n−, n+) be the signature of the Levi form. We assume that

q = n− = n+. Put

Σ̂ =
�

(x ,ξ)∈ T ∗(X ) \0; ξ=λω0(x ),λ 6= 0
	

,

whereω0 is the locally unique real 1 form determined up to sign by

‖ω0‖= 1, ω0⊥(Λ0,1T ∗(X )⊕Λ1,0T ∗(X )).

Then π is a well defined operator

π : H s
loc (X ; Λ0,q T ∗(X ))→H s

loc (X ; Λ0,q T ∗(X )),

for all s ∈R, and

WF′(Kπ) = diag (Σ̂× Σ̂),

where

WF′(Kπ) =
�

(x ,ξ, y ,η)∈ T ∗(X )×T ∗(X ); (x ,ξ, y ,−η)∈WF(Kπ)
	

.

Here WF(Kπ) is the wave front set of Kπ in the sense of Hörmander [14].
For every local coordinate patch U, we fix aω0 on U. We define

Σ+ =
�

(x ,ξ)∈ T ∗(U ) \0; ξ=λω0(x ),λ> 0
	

,

Σ− =
�

(x ,ξ)∈ T ∗(U ) \0; ξ=λω0(x ),λ< 0
	

.

We have

Kπ = Kπ+ +Kπ− on U ×U ,

where Kπ+(x , y ) satisfies

Kπ+(x , y )≡
∫ ∞

0

e iφ+(x ,y )t s+(x , y , t )d t on U ×U
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with

s+(x , y , t )∈Sn−1
1,0 (U ×U×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

s+(x , y , t )∼
∞
∑

j=0

s j
+(x , y )t n−1−j

in the symbol space Sn−1
1,0 (U ×U×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

where

s j
+(x , y )∈C∞(U ×U ;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))), j = 0, 1, . . . ,

φ+(x , y )∈C∞(U ×U ),

φ+(x ,x ) = 0,

φ+(x , y ) 6= 0 if x 6= y ,

Imφ+(x , y )≥ 0,

d xφ+ 6= 0, d yφ+ 6= 0 where Imφ+ = 0,

d xφ+(x , y )|x=y =ω0(x ),

d yφ+(x , y )|x=y =−ω0(x ),

φ+(x , y ) =−φ+(y ,x ).

Moreover,φ+(x , y ) satisfies (9.18). Similarly,

Kπ−(x , y )≡
∫ ∞

0

e iφ−(x ,y )t s−(x , y , t )d t modC∞

with

s−(x , y , t )∈Sn−1
1,0 (U ×U×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

s−(x , y , t )∼
∞
∑

j=0

s j
−(x , y )t n−1−j

in the symbol space Sn−1
1,0 (U ×U×]0,∞[;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))),

where

s j
−(x , y )∈C∞(U ×U ;L (Λ0,q T ∗y (X ),Λ

0,q T ∗x (X ))), j = 0, 1, . . . ,

φ−(x , y ) =−φ+(x , y ).
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A Appendix: Microlocal analysis, a review

We will give a brief discussion of microlocal analysis in a setting appropriate

for our purpose. For more details on the subject, see Hörmander [15], Grigis-

Sjöstrand [12] and Melin-Sjöstrand [18]. Our presentation is essentially taken

from Grigis-Sjöstrand [12] and Hörmander [15].
Let Ω ⊂ Rn be an open set. From now on, we write xα = xα1

1 · · ·xαn
n , ∂ αx =

∂ α1
x1
· · ·∂ αn

xn
, Dα

x = Dα1
x1
· · ·Dαn

xn
and |α| = α1 + · · ·+αn , where x = (x1, . . . ,xn ), Dx j =

−i∂x j . We have the following

Definition A.1. Let Ω⊂Rn be an open set. Let m ∈R. Sm (Ω×RN ) is the space of

all a ∈ C∞(Ω×RN ) such that for all compact sets K ⊂ Ω and all α ∈ Nn , β ∈ NN ,

there is a constant c > 0 such that
�

�

�∂ αx ∂
β
ξ a (x ,ξ)

�

�

�≤ c (1+ |ξ|)m−|β |, (x ,ξ)∈ K ×RN .

Sm is called the space of symbols of order m . We write S−∞ =
⋂

Sm , S∞ =
⋃

Sm .

We next study asymptotic sums of symbols.

Proposition A.2. Let Ω ⊂ Rn be an open set. Let a j ∈ Sm j (Ω×RN ), j = 0, 1, 2, . . .

with m j ↘−∞, j →∞. Then there exists a ∈Sm0(Ω×RN ) unique modulo (i.e. up

to some element in) S−∞(Ω×RN ), such that a −
∑

0≤j<k a j ∈Smk (Ω×RN ), for every

k ∈N.

Proof. See Grigis-Sjöstrand [12] or Hörmander [14].

If a and a j have the properties of Proposition A.2, we write

a ∼
∞
∑

0

a j

and we call a the asymptotic sum of a j .

Definition A.3. LetΩ⊂Rn be an open set. The set Sm
cl (Ω×RN )of all a ∈Sm (Ω×RN )

such that

a (x ,ξ)∼
∞
∑

0

a j (x ,ξ),

where a j ∈C∞(Ω×RN ) is positively homogeneous of degree m − j when |ξ| ≥ 1,

will be called the space of classical symbols of order m .

The positively homogeneity in the definition means that

a j (x ,λξ) =λm−j a j (x ,ξ), |ξ| ≥ 1, λ≥ 1.
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Definition A.4. Let Ω ⊂ Rn be an open set. A function ϕ(x ,ξ) ∈ C∞(Ω× ṘN ) is

called a phase function if for all (x ,ξ)∈Ω× ṘN :

(a) Imϕ(x ,ξ)≥ 0,

(b) ϕ(x ,λξ) =λϕ(x ,ξ) for all λ> 0,

(c) dϕ 6= 0.

Let Ω ⊂ Rn be an open set. Let D ′(Ω) be the space of Schwartz distributions

on Ω. Let

E ′(Ω) =
�

u ∈D ′(Ω); supp u is compact
	

.

Let ϕ(x ,ξ) be a phase function on Ω× ṘN and let a (x ,ξ) ∈Sm (Ω×RN ). Choose a

cut-off function χ(ξ) ∈ C∞(RN ) so that χ(ξ) = 1 when |ξ|< 1 and χ(ξ) = 0 when

|ξ|> 2. For all u ∈C∞0 (Ω), set

I (a ,ϕ)u = lim
ε→0

∫

e iϕ(x ,ξ)a (x ,ξ)u (x )χ(εξ)d x dξ. (A.1)

Then I (a ,ϕ)∈D ′(Ω). More precisely, we have the following

Proposition A.5. Let Ω ⊂ Rn be an open set. Let ϕ(x ,ξ) be a phase function on

Ω×ṘN . Then there is a unique way of defining I (a ,ϕ)∈D ′(Ω) for a ∈S∞ such that

I (a ,ϕ) is defined by

I (a ,ϕ) =

∫

e iϕ(x ,ξ)a (x ,ξ)dξ

when a ∈Sm (Ω×RN ), m <−N and such that for every m ∈R, the map

Sm (Ω×RN )3 a → I (a ,ϕ)

is continuous.

Proof. See Grigis-Sjöstrand [12] or Hörmander [14].

Let Y ⊂ Rm1 , Z ⊂ Rm2 be open sets. We recall that the Schwartz kernel theo-

rem(see Hörmander [17]) states that there is a bijection between the set of distri-

butions K ∈D ′(Y ×Z ) and the set of continuous linear operators

A : C∞0 (Z )→D
′(Y ).

The correspondence is given by

〈Au , v 〉Y = 〈K , v ⊗u 〉Y×Z , u ∈C∞0 (Z ), v ∈C∞0 (Y ),
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where 〈 , 〉Y and 〈 , 〉Y×Z denote the duality brackes for D ′(Y )×C∞0 (Y ) and D ′(Y ×
Z )×C∞0 (Y ×Z ) respectively and (v ⊗u )(y , z ) = v (y )u (z ). We call K the distribu-

tion kernel of A, and write K = KA . Moreover, the following two conditions are

equivalent:

(i) KA ∈C∞(Y ×Z ),

(ii) A is continuous E ′(Z )→C∞(Y ).

If A satisfies (i) or (ii), we say that A is smoothing. Let B be a continuous linear

operator

B : C∞0 (Z )→D
′(Y ).

We write A ≡ B if A − B is a smoothing operator.

In order to simplify the discussion of composition of some operators, it is

convenient to introduce the notion of properly supported operators. Let C be a

closed subset of Y ×Z . We say that C is proper if the two projections

Πy : (y , z )∈C → y ∈ Y

Πz : (y , z )∈C → z ∈Z

are proper, that is the inverse image of every compact subset of Y and Z respec-

tively is compact.

A continuous linear operator

A : C∞0 (Z )→D
′(Y )

is said to be properly supported if supp KA ⊂ Y ×Z is proper. If A is properly

supported, then A is continuous

C∞0 (Z )→E
′(Y )

and A has a unique continuous extension

C∞(Z )→D ′(Y ).

Definition A.6. Let Y ⊂Rm1 , Z ⊂Rm2 be open sets. Let ϕ be a phase function on

Y ×Z × ṘN . Let a ∈Sm (Y ×Z ×RN ). Then a Fourier integral operator of order m

is a continuous linear map

A : C∞0 (Z )→D
′(Y )

such that KA = I (a ,ϕ). Formally we write

Au (y ) =

∫ ∫

e iϕ(y ,z ,ξ)a (y , z ,ξ)u (z )d z dξ, u ∈C∞0 (Z ).
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Definition A.7. Let Ω ⊂ RN be an open set. Let m ∈ R. A pseudodifferential

operator of order m is a continuous linear map:

A : C∞0 (Ω)→D
′(Ω)

such that

KA =
1

(2π)N
I (a ,ϕ)

with a ∈Sm (Ω×Ω×RN ), ϕ(x , y ,ξ) = (x − y )ξ. Formally,

Au (x ) =
1

(2π)N

∫ ∫

e i (x−y )ξa (x , y ,ξ)u (y )d y dξ, u ∈C∞0 (Ω).

We shall write Lm (Ω) to denote the space of pseudodifferential operators of order

m .

We collect some facts about pseudodifferential operators. For the proofs, see

Grigis-Sjöstrand [12] or Hörmander [15].
Let Ω⊂RN be an open set. Let

Au (x ) =
1

(2π)N

∫ ∫

e i (x−y )ξa (x , y ,ξ)u (y )d y dξ (A.2)

be a pseudodifferential operator of order m , where a ∈Sm (Ω×Ω×RN ). Then we

have the following properties:

(a) A is continuous

C∞0 (Ω)→C∞(Ω)

and has unique continuous extension

E ′(Ω)→D ′(Ω).

(b) If a ∈ S−∞(Ω×Ω×RN ), then KA ∈ C∞(Ω×Ω) and A is continuous E ′(Ω)→
C∞(Ω), conversely if KA ∈ C∞, then there is a ∈ S−∞(Ω×Ω×RN ) such that

(A.2) holds.

We write L−∞(Ω) to denote the space of operators with a ∈S−∞(Ω×Ω×RN ).

(c) We recall that the singular support of KA is the smallest closed subset L of

Ω×Ω such that KA ∈ C∞((Ω×Ω) \ L). We write sing supp KA to denote the

singular support of KA . Then

sing supp KA ⊂ diag (Ω×Ω)= {(x ,x )∈Ω×Ω} .
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(d) A has decomposition A = A ′+A ′′, where A ′ ∈ Lm (Ω) is properly supported

and A ′′ ∈ L−∞(Ω).

(e) Let A = A ′+A ′′ be the decomposition in (d). Set

A ′u (x ) =
1

(2π)N

∫ ∫

e i (x−y )ξâ (x , y ,ξ)u (y )d y dξ, u ∈C∞0 (Ω).

Then

a (x ,ξ) := e−i xξA ′(e i xξ)∈Sm (Ω×RN )

and has the asymptotic expansion

a (x ,ξ)∼
∑

α∈NN

1

α!
(∂ αξ Dα

y â (x , y ,ξ))
�

�

�

x=y
. (A.3)

We call a (x ,ξ) the symbol of A. a (x ,ξ) is up to some element in S−∞(Ω×
RN ). We write a (x ,ξ) =σA(x ,ξ). Moreover,

Au (x )≡
1

(2π)N

∫

e i xξa (x ,ξ)û (ξ)dξ

=
1

(2π)N

∫

e i〈x−y ,ξ〉a (x ,ξ)u (y )d y dξ,

where û (ξ) is the Fourier transform of u ∈C∞0 (Ω).

(f ) Let

(u | v ) =
∫

u (y )v (y )d y

be the inner product on L2(Ω). We define the adjoint

A∗ : C∞0 (Ω)→D
′(Ω)

by (Au | v ) = (u | A∗v ), u , v ∈C∞0 (Ω). The distribution kernel of A∗ is

KA∗(x , y ) = KA(y ,x )

and A∗ ∈ Lm (Ω). Moreover, σA∗ ∈ Sm and σA∗ has the following asymptotic

formula

σA∗(x ,ξ)∼
∑

α∈NN

1

α!
∂ αξ Dα

xσA(x ,ξ). (A.4)

(g) Let A ∈ Lm (Ω), B ∈ Lm ′(Ω), with at least one of A, B properly supported.

Then A ◦ B ∈ Lm+m ′(Ω) and

σA◦B (x ,ξ)∼
∑

α∈NN

∂ αξ σA(x ,ξ)Dα
xσB (x ,ξ)

α!
. (A.5)
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(h) We writeS (RN ) to denote the set of allφ ∈C∞(RN ) such that

sup
x

�

�xβ∂ αφ(x )
�

�<∞

for all multi-indices α and β . Let S ′(RN ) be the dual space of S (RN ), i.e.

S ′(RN ) is the space of all continuous linear forms onS (RN ). We recall that

the Sobolev space H s (RN ), s ∈ R, is the space of all u ∈ S ′(RN ) such that

û (ξ) is locally square integrable and

‖u ‖2
s =

1

(2π)N

∫

�

�û (ξ)2
�

� (1+ |ξ|2)s dξ<∞,

where û (ξ) is the Fourier transform of u . Define the Fréchet space

H s
loc(Ω) =

¦

u ∈D ′(Ω); ϕa ∈H s (RN ), ∀ϕ ∈C∞0 (Ω)
©

and

H s
comp(Ω) =H s

loc(Ω)
⋂

E ′(Ω).

If A ∈ Lm (Ω), then A is continuous

H s
comp(Ω)→H s−m

loc (Ω).

If A ∈ Lm (Ω) is properly supported, then A is continuous

H s
loc(Ω)→H s−m

loc (Ω).

Our next aim is to define pseudodifferential operators on a manifold. First

we must discuss changes of variables and the notions of principal symbol and

subprincipal sympol. Let κ : Ω→ Ωκ be a diffeomorphism map, where Ω, Ωκ are

open sets in RN . If A ∈ Lm (Ω), we want to study

eA = (κ−1)∗ ◦A ◦κ∗ : C∞0 (Ωκ)→C∞(Ωκ),

u ∈C∞0 (Ωκ)→ A(u ◦κ) ◦κ−1 ∈C∞(Ωκ).

We have the following

Proposition A.8. Let Ω, Ωκ ⊂RN be open sets. Let

κ :Ω→Ωκ

be a diffeomorphism. If A ∈ Lm (Ω). Then

eA = (κ−1)∗ ◦A ◦κ∗ ∈ Lm (Ωκ).
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Moreover, we have the asymptotic expansion

σ
eA(κ(x ),ξ)∼

∑

α∈NN

∂ αξ a (x , tκ′(x )ξ)Dα
y e i〈ρx (y ),ξ〉

α!

�

�

�

�

y=x

, (A.6)

where ρx (y ) = κ(y )−κ(x )−κ′(x )(y − x ) vanishes of second order at x . The terms

in the series are in Sm−| α2 |(Ω×RN ).

Proof. See Hörmander [14].

Definition A.9. LetΩ⊂RN be an open set. Let A ∈ Lm (Ω). We define the principal

symbol of A as the image ofσA in

(Sm/Sm−1)(Ω×RN ).

We then have a surjective map

Lm →Sm/Sm−1(Ω×RN )

which gives rise to a bijection

Lm/Lm−1→Sm/Sm−1(Ω×RN ).

Let Ω ⊂ RN be an open set. Let Lm
cl (Ω) ⊂ Lm (Ω) be the space of pseudodif-

ferential operators A with σA ∈ Sm
cl . For such an operator we can identify the

principal symbol in Sm
cl /S

m−1
cl with the positively homogenous function a m (x ,ξ)

in the asymptotic expansion

σA ∼
∞
∑

0

a m−j (x ,ξ), (A.7)

where a m−j (x ,ξ) is positively homogenous function of degree m − j .

Returning to the changes of variables for eA ∈ Lm (Ωκ), we see from (A.6) that

σ
eA(κ(x ),ξ)−σA(x , tκ′(x )ξ)∈Sm−1(Ω×RN ). (A.8)

If a , ea denote the principal symbols of A, eA, we get the relation

ea (κ(x ),ξ) = a (x , tκ′(x )ξ). (A.9)

Definition A.10. Let Ω⊂RN be an open set. Let A ∈ Lm
cl (Ω) with symbol σA(x ,ξ)

as in (A.7). The subprincipal symbol of A is defined by

a s (x ,ξ) = a m−1(x ,ξ)+
i

2

N
∑

j=1

∂ 2a m (x ,ξ)
∂ x j ∂ ξj

. (A.10)
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Definition A.11. Let Ω⊂RN be an open set. Let A ∈ Lm
cl (Ω) with symbol σA(x ,ξ)

as in (A.7). We say that (x0,ξ0) is a doubly characteristic point of A if

(a) a m (x0,ξ0) = 0,

(b) ( ∂ a m

∂ ξj
)(x0,ξ0) = 0, j = 1, . . . , N ,

(c) ( ∂ a m

∂ x j
)(x0,ξ0) = 0, j = 1, . . . , N .

We need the following (see Sjöstrand [21])

Lemma A.12. Let Ω⊂RN be an open set. Suppose that P = AQ1Q2+ B, where A ∈
Lm

cl (Ω), Q1, Q2 ∈ L0
cl(Ω), B ∈ Lm−1

cl (Ω) are properly supported classical pseudodiffer-

ential operators with principal symbols a , q1, q2, b respectively. Let ρ ∈ T ∗(Ω)r 0

be a point where q1 =q2 = 0. If we write the symbol of P as

p (x ,ξ) = pm (x ,ξ)+pm−1(x ,ξ)mod Sm−2

where pm and pm−1 are positively homogeneous of degree m and m − 1, then the

subprincipal symbol of P at ρ is given by the formula

p s (ρ) =b (ρ)+a (ρ)(2i )−1 �q1,q2
	

(ρ).

In particular, if E ∈ Lk
cl(Ω) is an elliptic operator with principal symbol e (x ,ξ), that

is e (x ,ξ) 6= 0, for all (x ,ξ) ∈Ω, then the subprincipal symbols of E ◦P and P ◦ E at

ρ are e (ρ)p s (ρ).

Let Ω, Ωκ be open sets in RN . Let

κ :Ω→Ωκ

be a diffeomorphism. Let A ∈ Lm
cl (Ω)with symbolσA(x ,ξ) as in (A.7). Let

eA = (κ−1)∗ ◦A ◦κ∗ ∈ Lm
cl (Ωκ)

with symbol

σ
eA ∼

∞
∑

j=0

ea m−j ,

where ea m−j is positively homogeneous of degree m − j . Let ρ = (x0, tκ′(x0)ξ0) be

a doubly characteristic point of A. From Taylor’s formula, we have

a m (x ,ξ) =
2N
∑

j ,k=1

a j ,k (x ,ξ)qj (x ,ξ)qk (x ,ξ) near ρ,
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where a j ,k , j , k = 1, . . . , 2N , are positively homogeneous C∞ functions of degree

m and qj , j = 1, . . . , 2N , are positively homogeneous C∞ functions of degree 0

with qj (ρ) = 0, j = 1, . . . , 2N . If Q j ∈ L0
cl(Ω) and A j ,k ∈ Lm

cl (Ω) are properly sup-

ported classical pseudodifferential operators with principal symbols qj and a j ,k

respectively, then

A =
∑

j ,k

A j ,kQ jQk + B

near ρ, where B ∈ Lm−1
cl (Ω). We denote the principal symbol of B by b . We have

eA =
∑

j ,k

eA j ,k eQ j eQk + eB

near eρ = (κ(x0),ξ0), where eA j ,k = (κ−1)∗ ◦A j ,k ◦κ∗ ∈ Lm
cl (Ωκ), eQ j = (κ−1)∗ ◦Q j ◦κ∗ ∈

Lm
cl (Ωκ), eB = (κ

−1)∗ ◦ B ◦κ∗ ∈ Lm
cl (Ωκ). We denote the principal symbols by ea j ,k , eqj

and eb . From Lemma A.12, we have

a s (ρ) =b (ρ)+ (2i )−1
∑

j ,k

a j ,k (ρ)
¦

qj ,qk

©

(ρ)

and

ea s (eρ) =eb (eρ)+ (2i )−1
∑

j ,k

ea j ,k (eρ)
¦

eqj , eqk

©

(ρ),

where a s and ea s are the subprincipal symbols of A and eA respectively. In view of

(A.9), we have a s (ρ) = ea s (eρ). Summing up, we have proved

Proposition A.13. Let Ω, Ωκ be open sets in RN . Let

κ :Ω→Ωκ

be a diffeomorphism. Let A ∈ Lm
cl (Ω)with symbolσA(x ,ξ) as in (A.7). Then

eA = (κ−1)∗ ◦A ◦κ∗ ∈ Lm
cl (Ωκ)

with symbol

σ
eA ∼

∞
∑

j=0

ea m−j ,

where ea m−j is positively homogeneous of degree m − j . We have

ea m (κ(x ),ξ) = a m (x , tκ′(x )ξ).

Moreover, if (x0, tκ′(x0)ξ0) is a doubly characteristic point of A, then (κ(x0),ξ0) is

also a doubly characteristic point of eA and

ea s (κ(x0),ξ0) = a s (x0, tκ′(x0)ξ0),

where a s , ea s denote the subprincipal symbols of A and eA respectively.

119



Definition A.14. Let m ∈R. A pseudodifferential operator of order m on a para-

compact C∞ manifold Ω is a continuous linear map

A : C∞0 (Ω)→C∞(Ω)

such that for every local coordinate patch Ωκ ⊂Ωwith coordinates

Ωκ 3 x → κ(x ) = (x1, . . . ,xN )∈ eΩκ ⊂RN ,

we have

(κ−1)∗ ◦A ◦κ∗ ∈ Lm (eΩκ).

We shall write A ∈ Lm (Ω) and extend A to a map

E ′(Ω)→D ′(Ω).

Definition A.15. Let Ω be a paracompact C∞ manifold of dimension N . Let m ∈
R. Sm (T ∗(Ω)) is the set of all a ∈C∞(T ∗(Ω)) such that pullback to T ∗(eΩκ) = eΩκ×RN

is in Sm (eΩκ×RN ) for every coordinate patch Ωκ with coordinates eΩκ.

Definition A.16. LetΩbe a paracompact C∞manifold of dimension N . Sm
cl (T

∗(Ω))
is the set of all a ∈Sm (T ∗(Ω)) such that pullback to T ∗(eΩκ) = eΩκ×RN is in Sm

cl (eΩκ×
RN ) for every coordinate patch Ωκ with coordinates eΩκ. We call Sm

cl (T
∗(Ω)) the

space of classical symbols of order m .

Lemma A.17. Let Ω1 and Ω2 be open sets in RN and let

φ :Ω1→Ω2

and

Φ :Ω1→GL (N ,R)(the group of invertible N ×N matrices)

be C∞ maps. Then

a 1(x ,ξ) = a 2(φ(x ),Φ(x )ξ)

is in Sm (Ω1×RN ) for every a 2 ∈Sm (Ω2×RN ).

Proof. See Hörmander [14].

From Lemma A.17, we see that to check that a ∈ Sm (T ∗(Ω)) it is enough to

check the requirement of Definition A.15 for an atlas and the definition agrees

with our earlier one if Ω⊂RN .
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Definition A.18. Let Ω be a paracompact C∞ manifold of dimension N . If A ∈
Lm (Ω) then the restriction of A to Ωκ identified with eΩκ defines a symbol in

Sm/S−∞(eΩκ×RN ),

where Ωκ is a local coordinate patch with coordinates eΩκ. If

a κ ∈Sm (T ∗(Ωκ))

is the pullback of a representative then

a κ−a κ′ ∈Sm−1(T ∗(Ωκ
⋂

Ωκ′))

by Proposition A.8 for every pair of coordinate patches. With a locally finite par-

tition of unity
¦

ψj

©

subordinate to a covering by coordinate patches Ωκj we set

a =
∑

ψj a κj ∈Sm (T ∗(Ω))

and obtain

a −a κ ∈Sm−1(T ∗(Ωκ))

for every κ. This determines a modulo Sm−1(T ∗(Ω)) so we define the principal

symbol of A as the image of a in

Sm/Sm−1(T ∗(Ω)).

Let Ω be a paracompact C∞ manifold. Let A ∈ Lm
cl (Ω) with symbol σA(x ,ξ) as

in (A.7). We identify the principal symbol of A with a m .

Definition A.19. Let Ω be a paracompact C∞ manifold. Let A ∈ Lm (Ω). If a ∈
Sm (T ∗(Ω)) is the principal symbol of A then A is said to be non-characteristic at

(x0,ξ0)∈ T ∗(Ω)r0 if

ab −1∈S−1(T ∗(Ω))

in a conic neighborhood of (x0,ξ0) for some b ∈ S−m (T ∗(Ω)). We say that (x ,ξ) ∈
T ∗(Ω) \ 0 is a characteristic point of A if (x ,ξ) is not a non-characteristic point of

A. Let Σ be the set of characteristic points of A. We call Σ the characteristic set of

A. Σ is a closed conic subset of T ∗(Ω) \0.

Let Ω be a paracompact C∞ manifold. Let A ∈ Lm
cl (Ω) with symbol σA(x ,ξ) as

in (A.7). The condition of the definition A.19 is equivalent to a m (x0,ξ0) 6= 0 and

Σ=
�

(x ,ξ)∈ T ∗(Ω); a m (x ,ξ) = 0
	

.
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Definition A.20. Let Ω be a paracompact C∞ manifold. Let A ∈ Lm
cl (Ω) and let

Σ be the characteristic set of A. We say that (x ,ξ) ∈ Σ is a doubly characteristic

point of A if for every local coordinate patchΩκ, (x ,ξ)∈Ωκ, with local coordinates
eΩκ, (x ,ξ) is a doubly characteristic point of eA, where eA is the pull back of A to eΩκ.

If every (x ,ξ) ∈Σ is a doubly characteristic point, we call Σ doubly characteristic

set.

Definition A.21. Let Ω be a paracompact C∞ manifold and let A ∈ Lm
cl (Ω). Let

ρ = (x0,ξ0) be a doubly characteristic point of A. Let Ωκ, ρ ∈ Ωκ, be a local coor-

dinate patch with local coordinates eΩκ and let eA be the pull back of A to eΩκ. The

subprincipal symbol of A at ρ is the value ea s (ρ), where ea s is the subprincipal

symbol of eA.

In view of Proposition A.13, we see that the definition above makes sense. We

must review some facts about pseudodifferential operators between sections of

vector bundles. This will be important in this work.

Definition A.22. Let E and F be complex C∞ vector bundles over a C∞ manifold

Ω. Let m ∈R. Then a pseudodifferential operator of order m from sections of E

to sections of F is a continuous linear map

A : C∞0 (Ω; E )→C∞(Ω; F )

such that for every open set Y ⊂Ωwhere E and F are trivialized by

φE : EY → Y ×Ce , φF : FY → Y ×C f ,

there is a f × e matrix of pseudodifferential operators A j ,k ∈ Lm (Ω) such that

(φF (Au )|Y )j =
∑

k

A j ,k (φE u )k , u ∈C∞0 (Y ; E ).

We shall then write A ∈ Lm (Ω; E , F ).

For every coordinate patch Ωκ ⊂Ω, let

v 1
κ, v 2

κ, . . . , v e
κ

and

w 1
κ, w 2

κ, . . . , w f
κ

be local frames of E and F respectively. Then, for every α ∈ C∞(Ωκ; E ) and a ∈
C∞(Ωκ; F ), we have

α=
∑

j

αj
κ(x )v

j
κ(x ), a =

∑

j

a j
κ(x )w

j
κ(x ),
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where αj
κ(x ), a j

κ(x )∈C∞(Ωκ). If Ωκ′
⋂

Ωκ 6=φ, we write

α=
∑

j

αj
κv j
κ =

∑

j

α
j
κ′v

j
κ′ ,

a =
∑

j

a j
κw j

κ =
∑

j

a j
κ′w

j
κ′ .

We have








α1
κ′(x )

...

αe
κ′(x )









= eκ′,κ(x )









α1
κ(x )
...

αe
κ(x )









,









a 1
κ′(x )

...

a f
κ′(x )









= f κ′,κ(x )









a 1
κ(x )
...

a f
κ(x )









,

where eκ′,κ(x ), f κ′,κ(x ) are the transition matrices of E and F respectively.

LetL (E , F ) be the vector bundle over T ∗(Ω) \ 0 with fiber at (x ,ξ) consisting

of the linear maps from Ex to Fx . Every α∈C∞(T ∗(Ω);L (E , F )) is represented by

α(x ,ξ) =
�

a j ,k
vκ,wκ
(x ,ξ)

�

,

α(x ,ξ) : Ex → Fx ,
∑

j

s j v j
κ(x )→

∑

j

t j w j
κ(x ), t j =

∑

k

a j ,k
vκ,wκ
(x ,ξ)sk , x ∈Ωκ. (A.11)

If Ωκ
⋂

Ωκ′ 6=φ, we have
�

a j ,k
vκ′ ,wκ′

(x ,ξ)
�

= f κ′,κ(x ) ◦
�

a j ,k
vκ,wκ
(x ,ξ)

�

◦ eκ,κ′(x ). (A.12)

We have the following

Definition A.23. Let E and F be complex C∞ vector bundles over a C∞ manifold

Ω. Let m ∈R. Sm (T ∗(Ω);L (E , F )) is the set of all

α∈C∞(T ∗(Ω);L (E , F ))

such that if we write α= (a j ,k
vκwκ(x ,ξ)) as in (A.11), then

a j ,k
vκ,wκ
(x ,ξ)∈Sm (T ∗(Ωκ)) for every j , k .

Definition A.24. Let E and F be complex C∞ vector bundles over a C∞ manifold

Ω and let a (x ,ξ) ∈Sm (T ∗(Ω);L (E , F )). We say that a (x ,ξ) is a classical symbol, if

we write a (x ,ξ) =
�

a j ,k
vκ,wκ(x ,ξ)

�

as in (A.11), then a j ,k
vκ,wκ is a classical symbol, for

every j , k . We shall write Sm
cl (T

∗(Ω);L (E , F )) to denote the space of all classical

symbols.
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Let E and F be complex C∞ vector bundles over a C∞ manifold Ω and let

A ∈ Lm (Ω; E , F ). For every coordinate patch Ωκ, we write

A = (A j ,k
vκ,wκ
), A j ,k

vκ,wκ
∈ Lm (Ω),

A : C∞0 (Ωκ; E )→C∞(Ωκ; F ),
∑

j

s j (x )v j
κ(x ) 7→

∑

j

t j (x )w j
κ(x ), t j =

∑

k

A j ,k
vκ,wκ

sk . (A.13)

We define the symbol of A as

σA(x ,ξ) =
�

σA
j ,k
vκ ,wκ
(x ,ξ)

�

.

If Ωκ′
⋂

Ωκ 6=φ, we have

�

A j ,k
vκ′ ,wκ′

�

= f κ′,κ(x ) ◦
�

A j ,k
vκ,wκ

�

◦ eκ,κ′(x ). (A.14)

From (A.14), we have
�

σA
j ,k
v
κ′ ,wκ′
(x ,ξ)

�

− f κ′,κ(x )
�

σA
j ,k
vκ ,wκ
(x ,ξ)

�

eκ,κ′(x )∈Sm−1(T ∗(Ωκ′
⋂

Ωκ);L (E , F )).
(A.15)

We define the principal symbol of A at (x ,ξ)∈ T ∗(Ωκ) as the image ofσA(x ,ξ) in

(Sm/Sm−1)(T ∗(Ωκ);L (E , F )).

From (A.15), we see that the principal symbol of A is well-defined as an element

in

(Sm/Sm−1)(T ∗(Ω);L (E , F )).

We write Lm
cl (Ω; E , F ) to denote the space of pseudodifferential operators of

order m from sections of E to sections of F withσA ∈Sm
cl (T

∗(Ω);L (E , F )).

Definition A.25. Let E and F be complex C∞ vector bundles over a C∞ manifold

Ω and let A ∈ Lm
cl (Ω; E , F ). For every coordinate Ωκ, we write A = (A j ,k

vκ,wκ), A j ,k
vκ,wκ ∈

Lm (Ωκ), as in (A.13). We say that (x0,ξ0) ∈ T ∗(Ωκ) \ 0 is a doubly characteristic

point of A if (x0,ξ0) is a doubly characteristic point of A j ,k
vκ,wκ for every j , k .

Definition A.26. Let E and F be complex C∞ vector bundles over a C∞ manifold

Ω and let A ∈ Lm
cl (Ω; E , F ). Let (x0,ξ0) be a doubly characteristic point of A. For

every coordinate Ωκ, (x0,ξ0) ∈ T ∗(Ωκ) \ 0, we write A = (A j ,k
vκ,wκ), A j ,k

vκ,wκ ∈ Lm (Ωκ),
as in (A.13). Let a s ,j ,k

vκ,wκ(x0,ξ0) be the subprincipal of A j ,k at (x0,ξ0), for every j , k .

From (A.14) and Lemma A.12 , we have
�

a s ,j ,k
vκ′ ,wκ′

(x0,ξ0)
�

= f κ′,κ(x0)
�

a s ,j ,k
vκ,wκ
(x0,ξ0)

�

eκ,κ′(x0) (A.16)
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on T ∗(Ωκ
⋂

Ωκ′), where eκ′,κ(x ), f κ′,κ(x ) are the transition matrices of E and F re-

spectively. We define the subprincipal symbol of A at (x0,ξ0) as

�

a s ,j ,k
vκ,wκ
(x0,ξ0)

�

∈L (Ex0 , Fx0).

From (A.16), we see that the subprincipal of A is invariantly defined at every dou-

bly characteristic point of A.

We must make some comments on symplectic geometry. This will also be

important in this work. Our presentation is essentially taken from Duistermaat

[10], Hörmander [15] and Sjöstrand [21].
First, we review some facts about symplectic vector spaces.

Definition A.27. An antisymmetric nondegenerate bilinear form on a finite di-

mensional vector space E is called a symplectic form on E . A symplectic vector

space is a pair (E ,σ) consisting of a finite dimensional vector space E and a sym-

plectic formσ on E .

σ is nondegenerate means that

σ(v, v ′) = 0, ∀v ′ ∈ E ⇒ v = 0.

Definition A.28. If (E1,σ1), (E2,σ2) are symplectic vector spaces and

T : E1→ E2

is a linear bijection with T ∗σ2 =σ1, that is

σ1(v, w ) =σ2(T v, Tw ), v, w ∈ E1,

then T is called a symplectic isomorphism.

In the vector space T ∗(Rn ) = {(x ,ξ); x ,ξ∈Rn} the symplectic form

σ=
∑

dξj ∧d x j

is the bilinear form

σ((x ,ξ), (x ′,ξ′)) =



x ′ ,ξ
�

−



x ,ξ′
�

.

If e j and εj are the unit vectors along the x j and ξj axes respectively, then we

have for j , k = 1, . . . , n

σ(e j , ek ) =σ(εj ,εk ) = 0,

σ(εj , ek ) =−σ(ek ,εj ) =δj k
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where δj k = 1 when j = k and δj k = 0 when j 6= k .

Let (E ,σ) be a symplectic vector space. Note that the linear bijection map-

ping

A : E → T ∗(Rn )

sending the vectors (e1, . . . , en , f 1, . . . , f n ) into the standard basis of T ∗(Rn ) is a

symplectic isomorphism if and only if for all j , k = 1, . . . , n







σ(e j , ek ) = 0,

σ( f j , f k ) = 0,

σ( f j , ek ) =δj ,k .

(A.17)

(e1, . . . , en , f 1, . . . , f n ) is called symplectic coordinates of (E ,σ)

Lemma A.29. Every symplectic vector space (E ,σ) admits a linear symplectic iso-

morphism

T : E → T ∗(Rn ).

Proof. See Duistermaat [10] or Hörmander [15].

If L is a linear subspace of E then we define its orthocomplement Lσ in E

with respect toσ by

Lσ = {e ∈ E ;σ(e , l ) = 0 for all l ∈ L} .

We have the following rules

L ⊂M ⇒Mσ ⊂ Lσ,

(Lσ)σ = L,

(L
⋂

M )σ = Lσ+Mσ, (L+M )σ = Lσ
⋂

Mσ,

dim Lσ = dim E −dim L.

Definition A.30. A linear subspace L of E is called isotropic, Lagrangian resp.

involutive, if L ⊂ Lσ, L = Lσ and L ⊃ Lσ respectively.

Definition A.31. A symplectic form on a manifold Ω is a 2-formσ on Ω such that

dσ= 0

and σρ is a symplectic form on Tρ(Ω), for each ρ ∈Ω. A symplectic manifold is a

pair (Ω,σ) consisting of a manifold Ω and a symplectic formσ on Ω.
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Definition A.32. A submanifold V of a symplectic manifold is called symplectic,

isotropic, Lagrangian, involutive respectively, if at every point of V the tangent

space of V has this property.

Suppose (M ,σ), (N ,τ) are symplectic manifolds. Let

Φ : M →N

be a C∞-map. Let DΦ be the differential map, that is,

DΦρ : Tρ(M )→ Tρ(N )

v →
d

d t
(Φ ◦α(t ))

�

�

�

t=0
,

where α(t ) is a C 1-curve with α(0) =ρ and α′(0) = v .

Definition A.33. If (M ,σ), (N ,τ) are symplectic manifolds and

Φ : M →N

is a diffeomorphism withΦ∗τ=σ, that is, DΦρ is a symplectic isomorphism from

(Tρ(M ),σρ) to (TΦ(ρ)(N ),τΦ(ρ)) for all ρ ∈M , then Φ is called a canonical transfor-

mation.

Definition A.34. Let (M ,σ) be a symplectic manifold. For any f ∈ C∞(M ) the

Hamilton field H f is the unique C∞ vector field on M such that H f ùσ=−d f . We

notice that H f ùσ is a 1-form defined by

(H f ùσ)ρ(eρ) =σρ(H f (ρ), eρ),

where eρ ∈ Tρ(M ).

Definition A.35. Let (M ,σ) be a symplectic manifold. If f , g ∈ C∞(M ) then the

Poisson brackets
�

f , g
	

∈C∞(M ) are defined by

�

f , g
	

=H f g =σ(H f , Hg ).

Remark A.36. In symplectic coordinates (x ,ξ), we have

H f =
∑

j

(
∂ f

∂ ξj

∂

∂ x j
−
∂ f

∂ x j

∂

∂ ξj
).

Let Ω be a C∞ manifold. Let

π : T ∗(Ω)→Ω

be the natural projection map.
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Definition A.37. The canonical 1-form on T ∗(Ω) is the 1-form α given by

α(x ,ξ) = ξ ◦Dπ(x ,ξ) for all (x ,ξ)∈ T ∗(Ω).

Definition A.38. σ= dσ is called the canonical 2-form on T ∗(Ω).

Remark A.39. (a) In canonical coordinates (x ,ξ)we have

α=
∑

ξj d x j

and hence

σ=
∑

dξj ∧d x j .

(b) T ∗(Ω)with canonical 2-formσ is a symplectic manifold.

Let (M ,σ) be a symplectic manifold. If

Φ : M → T ∗(Rn )

is a canonical transformation, then Φ is called a canonical coordinatization. It

is well-known that the functions x1, . . . ,xn ,ξ1, . . . ,ξn form local canonical coordi-

nates of (M ,σ) if and only if for all j , k = 1, . . . , n :

¦

x j ,xk

©

= 0,
¦

ξj ,ξk

©

= 0,
¦

ξj ,xk

©

=δj k .

We call {x1, . . . ,xn ,ξ1, . . . ,ξn} the symplectic coordinates of (M ,σ).

Proposition A.40. Suppose (M ,σ) is a symplectic manifold. Then dim M is even,

say 2n, and for each m0 ∈M there is a canonical coordinates of a neighborhood U

of m0.

Proof. See Duistermaat [10] or Hörmander [15].

Let (S,σ) be a symplectic vector space. Let Q(x ,ξ) be a real positive semi-

definite quadratic form in S. Let

Q(X , Y ) =



X ,Q ′′Y
�

be the corresponding symmetric form. Here Q ′′ is the Hessian of Q(x ,ξ). We have

the following definition

Definition A.41. The linear map F in S is defined by

σ(Y , F X ) =Q(Y , X ), X , Y ∈S

will be called the fundamental matrix of Q .
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The symmetry of Q means that

σ(F X , Y ) =−σ(X , F Y ),

that is, F is skew symmetric with respect to σ. We notice that the preceding

definition is still applicable if Q is complex valued provied we replace S by its

complexification

SC = {X + i Y ; X , Y ∈S}

with the obvious complex symplectic structure.

Proposition A.42. Let Q(x ,ξ) be a real positive semi-definite quadratic form in S.

Let

Q(X , Y ) =



X ,Q ′′Y
�

be the corresponding symmetric form. Here Q ′′ is the Hessian of Q(x ,ξ). Then one

can choose symplectic coordinates x ,ξ such that

Q(x ,ξ) =
k
∑

j=1

1

2
µj (x 2

j +ξ
2
j )+

k+l
∑

k+1

x 2
j

where µj > 0.

Proof. See Hörmander [15].

From Proposition A.42, we see that ±iµj are the non-vanishing eigenvalues

of the fundamental matrix F of Q . We write etr F =
∑k

j=1

�

�µj

�

�.

Let Ω be a C∞ manifold of dimension n . Let p ∈ Ω and let f ∈ C 2(Ω) with

d f (p ) = 0. In local coordinates (x1, . . . ,xn ), we define

f ′′p =

�

∂ 2 f

∂ x j ∂ xk
(p )

�n

j ,k=1

.

Since d f (p ) = 0, f ′′p is well-defined as a linear map

f ′′p : Tp (Ω)→C,

t , s →
D

t , f ′′p s
E

,

where t , s ∈ Tp (Ω).
If (S,σ) is a symplectic manifold and f ∈C 2(S) is real valued, d f = 0 at ρ ∈S.

Let Fρ be the fundamental matrix of f ′′ρ . We also call Fρ the fundamental matrix

of f . In symplectic coordinates (x ,ξ) the matrix F becomes
 

∂ 2 f
∂ x∂ ξ

∂ 2 f
∂ ξ∂ ξ

− ∂ 2 f
∂ x∂ x

− ∂ 2 f
∂ ξ∂ x

!

.

From this we see that the fundamental matrix F is the linearization of H f .

129



Remark A.43. The symplectic reduction of quadratic forms is an old topic in me-

chanics. It is also important for the study of hypoelliptic operators. See Boutet

de Monvel [7] and Sjöstrand [21].

B Appendix: Almost analytic manifolds, functions and
vector fields

We will give a brief discussion of almost analytic manifolds, functions and vector

fields in a setting appropriate for our purpose. For more details on the subject,

see Melin-Sjöstrand [18].
Let W ⊂Cn be an open set and let f ∈C∞(W ). In this section, we will use the

following notations:

∂ f =
n
∑

j=1

∂ f

∂ z j
d z j

and

∂ f =
n
∑

j=1

∂ f

∂ z j
d z j .

Definition B.1. Let W ⊂Cn be an open set and letφ(z ) be a positive continuous

function on W . If f ∈C∞(W ), we say that f is almost analytic with respect to the

weight function φ if, given any compact subset K of W and any integer N ≥ 0,

there is a constant c > 0 such that
�

�

�∂ f (z )
�

�

�≤ cφ(z )N , ∀z ∈ K .

Whenφ(z ) = |Im z |we simply say that f is almost analytic.

Definition B.2. Let f 1, f 2 ∈C∞(W )with W ,φ as above. We say that f 1 and f 2 are

equivalent with respect to the weight function φ if, given any compact subset K

of W and any integer N > 0, there is a constant c > 0 such that

�

�( f 1− f 2)(z )
�

�≤ cφ(z )N , ∀z ∈ K .

Whenφ(z ) = |Im z |we simply say that they are equivalent and we write

f 1 ∼ f 2.

The following proposition is due to Hörmander. For a proof, see [18].

Proposition B.3. Let W ⊂Cn be an open set and let WR =W
⋂

Rn . If f ∈C∞(WR)
then f has an almost analytic extension, uniquely determined up to equivalence.
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Definition B.4. Let U be an open subset of Cn and let Λ be a C∞ submanifold of

codimension 2k of U . We say that Λ is an almost analytic manifold if for every

point z 0 of Λ
⋂

Rn there exist an open neighborhood V of z 0 in U and k complex

C∞ almost analytic functions f 1, . . . , f k defined on V such that

Λ
⋂

V is defined by the equations f 1(z ) = · · ·= f k (z ) = 0,

∂ f 1, . . . ,∂ f k are linearly independent over C at every point of V .

Definition B.5. Let Λ1 and Λ2 be two C∞ closed submanifolds of an open set

U ⊂Cn . We say that Λ1 and Λ2 are equivalent (and we write Λ1 ∼ Λ2) if they have

the same intersection with Rn and the same dimension and if for every open set

V ⊂⊂U and N ∈Nwe have

dist (z ,Λ2)≤ cN ,V |Im z |N , z ∈V
⋂

Λ1, cN ,V > 0.

It is trivial that ∼ is an equivalence relation and that Λ1 and Λ2 are tangen-

tial to infinite order in the real points when Λ1 ∼ Λ2. We recall the Malgrange

preparation theorem (see Theorem 7.57 in Hörmander [17])

Theorem B.6. Let f j (t ,x ), j = 1, . . . , n, be complex valued C∞ functions in a neigh-

borhood of (0, 0) in Rn+m with f j (0, 0) = 0, j = 1, . . . , n, and

det

�

∂ f j (0, 0)
∂ tk

�n

j ,k=1

6= 0.

If g ∈C∞ in a neighborhood of (0, 0)we can then find qj (t ,x )∈C∞ in a neighbor-

hood of (0, 0), j = 1, . . . , n, and r (x )∈C∞ in a neighborhood of 0 so that

g (t ,x ) =
n
∑

j=1

qj (t ,x ) f j (t ,x )+ r (x )

in a neighborhood of (0, 0).

In section 8, we need the following

Proposition B.7. Let W be an open neighborhood of the origin in Cn+m . Let

f j (z , w ), g j (z , w ), j = 1, . . . , n, be almost analytic functions on W with f j (0, 0) = 0,

g j (0, 0) = 0, j = 1, . . . , n,

det

�

∂ f j (0, 0)
∂ z k

�n

j ,k=1

6= 0

and ∂ g 1, . . . ,∂ g n are linearly independent over C at the origin. Let

Λ1 =
�

(z , w )∈W ; f 1(z , w ) = . . .= f n (z , w ) = 0
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and

Λ2 =
�

(z , w )∈W ; g 1(z , w ) = . . .= g n (z , w ) = 0
	

.

If Λ1 coincides to infinite order with Λ2 at (0, 0)we can then find a j ,k (z , w )∈C∞ in

a neighborhood of (0, 0), j , k = 1, . . . , n, with det
�

a j ,k (0, 0)
�n

j ,k=1
6= 0 so that

g j (z , w )−
n
∑

k=1

a j ,k (z , w ) f k (z , w )

vanishes to infinite order at (0, 0), for all j .

Proof. We write z = x + i y , w = u + i v , where x , y ∈ Rn , u , v ∈ Rm . From

Theorem B.6, it follows that

g j (x , u ) =
n
∑

k=1

a j ,k (x , u ) f k (x , u )+ r (u ), j = 1, . . . , n ,

in a real neighborhood of (0, 0), where a j ,k (x , u ) ∈ C∞ in a real neighborhood of

(0, 0), j , k = 1, . . . , n . Since Λ1 coincides to infinite order with Λ2 at (0, 0), it follows

that r (u ) vanishes to infinite order at 0. Since f k (0, 0) = 0, k = 1, . . . , n , we have

d g j (0, 0) =
n
∑

k=1

a j ,k (0, 0)d f k (0, 0), j = 1, . . . , n .

Hence

det
�

a j ,k (0, 0)
�n

j ,k=1
6= 0.

Let a j ,k (z , w ) be an almost analytic extension of a j ,k (x , u ) to a complex neigh-

borhood of (0, 0), where j , k = 1, . . . , n . Then

g j (z , w )−
n
∑

k=1

a j ,k (z , w ) f k (z , w )

also vanishes to infinite order at (0, 0), for all j .

We need the following

Lemma B.8. Let Ω, Ωκ be open sets in Rn . Let

κ :Ω→Ωκ

be a diffeomorphism. Let ΩC and ΩCκ be open sets in Cn with

ΩC
⋂

Rn =Ω, ΩCκ
⋂

Rn =Ωκ.
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Let

eκ :ΩC→ΩCκ
be an almost analytic extension of κ. We take ΩC and ΩCκ so that eκ is a diffeomor-

phism. If Λ is an almost analytic manifold of ΩC, then eκ(Λ) is an almost analytic

manifold of ΩCκ . Moreover, if

κ̂ :ΩC→ΩCκ
is another almost analytic extension of κ and κ̂ is a diffeomorphism, then

κ̂(Λ)∼ eκ(Λ).

Furthermore, if Λ1 ∼Λ2, then

eκ(Λ1)∼ eκ(Λ2),

where Λ1 and Λ2 are almost analytic manifolds of ΩC.

We shall now generalize the notion of almost analytic manifolds. We have the

following

Definition B.9. Let X be a n dimensional real paracompact C∞ manifold. An

almost analytic manifold Λ associated to X is given by

(a) A locally closed set ΛR. (Locally closed means that every point of ΛR has an

neighborhoodω in X such that ΛR
⋂

ω is closed inω.)

(b) A covering of ΛR by open coordinate patches

κα : X ⊃Xα→Ωα ⊂Rn , α∈ J

and almost analytic manifolds Λα ⊂ΩCα with

Λα
⋂

Rn :=ΛαR = κα(Xα
⋂

ΛR).

Here ΩCα ⊂ Cn is some open set with ΩCα
⋂

Rn = Ωα and the Λα shall satisfy

the following compatibility conditions: If

κβα = κβ ◦κ−1
α : κα(Xα

⋂

Xβ )→ κβ (Xα
⋂

Xβ )

and if eκβα is an almost analytic extension of κβα, then eκβα(Λα) and Λβ are

equivalent near all points of κβ (Xα
⋂

Xα
⋂

ΛR).

The Λα are called local representatives of Λ and we shall say that two almost

analytic manifolds Λ, Λ′ associated to X are equivalent (and we write Λ ∼ Λ′) if

ΛR =Λ′R and if the corresponding local representatives are equivalent as in (b ).
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Similarly we extend the notion of almost analytic functions and equivalence

of almost analytic functions.

Definition B.10. Let W be an open subset of Cn and let V be a complex C∞

vector field on W . We say that V is almost analytic if V ( f ) is almost analytic and

V ( f )∼ 0 for all almost analytic functions f on W .

We identify Cn with R2n . We shall denote the real coordinates by x j , y j , j =
1, . . . , n , and the complex coordinates by z j = x j + i y j , j = 1, . . . , n .

Definition B.11. Let W be an open subset of Cn and let

U =
n
∑

j=1

a j (z )
∂

∂ z j
+

n
∑

j=1

b j (z )
∂

∂ z j
,

V =
n
∑

j=1

c j (z )
∂

∂ z j
+

n
∑

j=1

d j (z )
∂

∂ z j
,

be complex C∞ vector fields on W , where

a j (z ),b j (z ), c j (z ), d j (z )∈C∞(W ), j = 1, . . . , n .

We say that U and V are equivalent if

a j (z )− c j (z )∼ 0, b j (z )−d j (z )∼ 0

for all j . If U and V are equivalent, we write

U ∼V.

Clearly U is almost analytic if and only if

U ∼
n
∑

j=1

a j (z )
∂

∂ z j
,

where a j , j = 1, . . . , n , are almost analytic. We have the following easy lemma

Lemma B.12. Let W be an open subset of Cn and let V be an almost analytic

vector field on W . Then

V ( f )∼ (V +V )( f ) for all almost analytic functions f . (B.1)

If U is a real vector field on W and

U ( f )∼V ( f ) for all almost analytic functions f ,

then

U ∼V +V .
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We have the following

Proposition B.13. Let W be an open subset of Cn and let Σ be a C∞ closed sub-

manifold of Rn . Let V be an almost analytic vector field on W . We assume that

V = 0 on Σ.

Let Φ(t ,ρ) be the V +V flow. Let U be a real vector field on W such that

U ∼V +V .

Let Φ̂(t ,ρ) be the U flow. Then, for every compact set K ⊂ W , N ≥ 0, there is a

cN ,K (t )> 0, such that
�

�Φ(t ,ρ)− Φ̂(t ,ρ)
�

�≤ cN ,K (t )dist (ρ,Σ)N , ρ ∈ K .

Proof. We have the following well-known fact: If Z is a smooth vector field on an

open set Ω ⊂ Rn with Z (x0) = 0 and Ψ(t ,x ) = exp (t Z )(x ), then Ψ(t ,x0) = x0 and

∂ αx Ψ(t ,x )|x=x0 , α ∈ Nn , only depend on (∂ βx Z )(x0), β ∈ Nn . In our situation, we

therefore have that Φ(t ,ρ), Φ̂(t ,ρ) have the same Taylor expansion at every point

of Σ.

The following proposition is useful (see section 2 of Melin-Sjöstrand [18])

Proposition B.14. Assume that f (x , w ) is a C∞ complex function in a neighbor-

hood of (0, 0) in Rn+m and that

Im f ≥ 0, Im f (0, 0) = 0, f ′x (0, 0) = 0, det f ′′x x (0, 0) 6= 0. (B.2)

Let ef (z , w ), z = x + i y , w ∈ Cm , denote an almost analytic extension of f to a

complex neighborhood of (0, 0) and let z (w ) denote the solution of

∂ ef

∂ z
(z (w ), w ) = 0

in a neighborhood of 0 in Cm . Then,

∂

∂w
( ef (z (w ), w ))−

∂

∂w
ef (z , w )|z=z (w ), w is real

vanishes to infinite order at 0∈Rm . (B.3)

Moreover, there is a constant c > 0 such that near the origin we have

Im ef (z (w ), w )≥ c |Im z (w )|2 , w ∈Rm (B.4)

and

Im ef (z (w ), w )≥ c inf
x∈Ω

�

Im f (x , w )+
�

�d x f (x , w )
�

�

2
�

, w ∈Rm , (B.5)

where Ω is some open set of the origin in Rn .

We call ef (z (w ), w ) the corresponding critical value.
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Proof. For a proof of (B.4), see [18]. We only prove (B.5). In view of the proof of

(B.4) (see p.147 of [18]), we see that

Im ef (z (w ), w )≥ c
�

inf
t∈Rn ,|t |≤1

Im f (Re z (w )− t |Im z (w )| , w )+ |Im z (w )|2
�

(B.6)

for w small, where w is real and c is a positive constant. Using the almost ana-

lyticity, we get by Taylor’s formula:

f ′x (x , w ) = f ′′z z (z (w ), w )(x − z (w ))+O(|x − z (w )|2+ |Im z (w )|2) (B.7)

for x , w small, where w is real. Since f ′′z z is invertible near the origin, we have

that when w ∈Rm is close to the origin,

|Im z (w )|2 ≥ c
�

� f ′x (Re z (w )− t |Im z (w )| , w )
�

�

2

for all t ∈ Rn , |t | ≤ 1, where c is a positive constant. From this and (B.6), we get

(B.5).

In the following, we let z = z (w ) be the point defined as above. We recall the

stationary phase formula of Melin and Sjöstrand

Proposition B.15. Let f (x , w ) be as in Proposition B.14. Then there are neighbor-

hoods U and V of the origin in Rn and Rm respectively and differential operators

C f ,j in x of order ≤ 2j which are C∞ functions of w ∈V such that
�

�

�

�

�

∫

e i t f (x ,w )u (x , w )d x−
�

det

 

t ef ′′z z (z (w ), w )
2πi

!

�− 1
2
e i t ef (z (w ),w )

N−1
∑

0

(C f ,j eu )(z (w ), w )t −j

�

�

�

�

�

≤ cN t −N− n
2 , t ≥ 1, (B.8)

where u ∈ C∞0 (U × V ). Here ef and eu are almost analytic extensions of f and u

respectively. The function

�

det

 

t ef ′′z z (z (w ), w )
2πi

!

�− 1
2

is the branch of the square root of

�

det

 

t ef ′′z z (z (w ), w )
2πi

!

�−1

which is continuously deformed into 1 under the homotopy

s ∈ [0, 1]→ i−1(1− s ) ef ′′z z (z (w ), w )+ s I ∈GL (n ,C).
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We need the following asymptotic formula (see Melin-Sjöstrand [18])

Proposition B.16. Let P ∈ Lm (Rn ) and let ϕ(x ) ∈ C∞(Rn ) satisfy Imϕ ≥ 0 and

dϕ 6= 0 where Imϕ = 0. Let u (x )∈C∞0 (Rn ). If p (x ,ξ) is the full symbol of P, then

P(e i tϕ(x )u (x ))∼ e i tϕ(x )
∑

α

1

α!
ep (α)(x , tϕ′x (x ))

1

α!
Dα

y (u (y )e
i tρ(x ,y ))|y=x (B.9)

with asymptotic convergence in Sm
0,1(Rn×R+), where ep is an almost analytic exten-

sion of p and

ρ(x , y ) =ϕ(y )−ϕ(x )−
¬

y −x ,ϕ′x (x )
¶

.

Definition B.17. The C∞ function ϕ(x ,θ ) defined in an open conic set V ⊂Rn ×
RN \0 is called a non-degenerate complex phase function if

(a) dϕ 6= 0.

(b) ϕ(x ,θ ) is positively homogeneous of degree 1.

(c) Put

C =
¦

(x ,θ )∈V ; ϕ′θ (x ,θ ) = 0
©

.

The differentials d ( ∂ ϕ
∂ θj
), j = 1, . . . , N , are linearly independent over the com-

plex numbers on C .

(d) Imϕ ≥ 0.

Letφ(x ,θ ) be a non-degenerate complex phase function in a conic open sub-

set Γ of Rn × ṘN . Let

Cφ =
¦

(x ,θ )∈ Γ;φ′θ (x ,θ ) = 0
©

.

By Euler’s homogeneity relation, we have φ(x ,θ ) = θ .φ′θ (x ,θ ) = 0 on Cφ and

therefore Imφ vanishes on Cφ. So does d (Imφ), for otherwise there would be a

change of sign of Imφ.

Let eφ be an almost analytic extension of φ in a conic open set eΓ ⊂ Cn × ĊN ,
eΓ
⋂

(Rn × ṘN ) = Γ. We can choose eφ such that eφ is homogeneous of degree 1. Set

eφ′
eθ
= (∂

eθ1
eφ, . . . ,∂

eθN
eφ)

and
eφ′
ex = (∂ex1

eφ, . . . ,∂
exn
eφ).

Let

C
eφ =
¦

(ex , eθ )∈ eΓ; eφ′
eθ
(ex , eθ ) = 0

©

, (B.10)

Λ
eφ =
¦

(ex , eφ′
ex (ex , eθ )); (ex , eθ )∈C

eφ

©

. (B.11)
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Λ
eφ is an almost analytic manifold and

(Λ
eφ)R =Λ eφ

⋂

(Rn × Ṙn ) =
¦

(x ,φ′x (x ,θ )); (x ,θ )∈Cφ
©

.

Let eφ1 be another almost analytic extension ofφ in eΓ. We have

Λ
eφ ∼Λ eφ1

.

(See [18].) Moreover, we have the following

Proposition B.18. For every point (x0,ξ0) ∈ (Λ eφ)R and after suitable change of

local x coordinates, Λ
eφ is equivalent to a manifold

−ex =
∂ h(eξ)

∂ eξ
, eξ∈CN

in some open neighborhood of (x0,ξ0), where h is an almost analytic function and

Im h ≥ 0 on RN with equality at ξ0.

Definition B.19. An almost analytic manifold satisfying the conditions of Propo-

sition B.18 at every real point for some real symplectic coordinate (x ,ξ) is called

a positive Lagrangean manifold.

Letϕ andψbe non-degenerate phase functions defined in small conic neigh-

borhoods of (x0,θ0)∈Rn×ṘN and (x0, w0)∈Rn×ṘM respectively. We assume that

ϕ′θ (x0,θ0) = 0,ψ′w (x0, w0) = 0 and that

ϕ′x (x0,θ0) =ψ′x (x0, w0) = ξ0,

where the last equation is a definition. Put λ0 = (x0,ξ0). We have the following

definition

Definition B.20. We say that ϕ and ψ are equivalent at λ0 for classical symbols

if there is a conic neighborhood Λ of (x0,θ0) such that for every distribution

A =

∫

e iϕ(x ,θ )a (x ,θ )dθ ,

where a (x ,θ )∈Sm
cl (Rn ×RN )with support in Λ, there exists

b (x , w )∈S
m+N−M

2
cl (Rn ×RM )

with support in a conic neighborhood of (x0,ω0) such that

A − B ∈C∞,

where B =
∫

e iψ(x ,w )b (x , w )d w and vise versa.
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The global theory of Fourier integral operators with complex phase is the fol-

lowing

Proposition B.21. Let ϕ and ψ be non-degenerate phase functions defined in

small conic neighborhoods of (x0,θ0) ∈ Rn × ṘN and (x0, w0) ∈ Rn × ṘM respec-

tively. We assume that ϕ′θ (x0,θ0) = 0,ψ′w (x0, w0) = 0 and that

ϕ′x (x0,θ0) =ψ′x (x0, w0) = ξ0.

Then ϕ andψ are equivalent at (x0,ξ0) for classical symbols if and only if Λ
eϕ and

Λ
eψ are equivalent in some neighborhood of (x0,ξ0), where eϕ and eψ are almost

analytic extensions of ϕ andψ respectively and Λ
eϕ, Λ

eψ are as in (B.11).
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On the singularities of the Bergman
projection for (0,q ) forms

Chin-Yu Hsiao

Abstract

We obtain the full asymptotic expansion of the Bergman projec-

tion for (0,q ) forms when the Levi form is non-degenerate. This gen-

eralizes a result of Boutet de Monvel and Sjöstrand for (0, 0) forms.

We introduce a new operator analogous to the Kohn Laplacian de-

fined on the boundary of a domain and we apply the heat equation

method of Menikoff and Sjöstrand to this operator. We obtain a de-

scription of a new Szegö projection up to smoothing operators. Fi-

nally, by using the Poisson operator, we get our main result.

Résumé

Nous obtenons un développement asymptotique de la singular-

ité du noyau de Bergman pour les (0,q ) formes quand la forme de

Levi est non-dégénérée. Cela généralise un résultat de Boutet de

Monvel et Sjöstrand pour les (0, 0) formes. Nous introduisons un

nouvel opérateur analogue au laplacien de Kohn, défini sur le bord

du domaine et nous y appliquons la méthode de Menikoff-Sjöstrand.

Cela donne une description modulo des opéreateurs régularisants

d’un nouvel projecteur de Szegö. Finalement, en utilisant l’opérateur

de Poisson, nous obtenons notre résultat principal.
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1 Introduction and statement of the main results

In this paper, we assume that all manifolds are paracompact. (For the precise

definition, see page 156 of Kelley [19].) Let M be a relatively compact open sub-

set with C∞ boundary Γ of a complex manifold M ′ of dimension n with a smooth

Hermitian metric ( | ) on its holomorphic tangent bundle. (See (1.1).) The Hermi-

tian metric induces a Hermitian metric on the bundle of (0,q ) forms of M ′ (see

the discussion after (1.1) and section 2) and a positive density (d M ′)(see (1.3)).

Let � be the ∂ -Neumann Laplacian on M (see Folland and Kohn [9] or (1.6))

and let �(q ) denote the restriction to (0,q ) forms. For p ∈ Γ, let L p be the Levi

form of Γ at p (see (1.12) or Definition 2.2). Given q , 0 ≤ q ≤ n − 1, the Levi

form is said to satisfy condition Z (q ) at p ∈ Γ if it has at least n − q positive or

at least q + 1 negative eigenvalues. When condition Z (q ) holds at each point of

Γ, Kohn’s L2 estimates give the hypoellipicity with loss of one dervative for the

solutions of �(q )u = f . (See [9] or Theorem 3.6.) The Bergman projection is the

orthogonal projection onto the kernel of �(q ) in the L2 space. When condition

Z (q ) fails at some point of Γ, one is interested in the Bergman projection on the

level of (0,q ) forms. When q = 0 and the Levi form is positive definite, the exis-

tence of the complete asymptotic expansion of the singularities of the Bergman

projection was obtained by Fefferman [8] on the diagonal and subsequently by

Boutet de Monvel and Sjöstrand (see [7]) in complete generality. If q = n −1 and

the Levi form is negative definite, Hörmander [17] obtained the corresponding

asymptotics for the Bergman projection in the distribution sense. We have been

influenced by these works.

We now start to formulate the main results. First, we introduce some nota-

tions. Let Ω be a C∞ manifold. We let T (Ω) and T ∗(Ω) denote the tangent bundle

2



of Ω and the cotangent bundle of Ω respectively. The complexified tangent bun-

dle of Ω and the complexified cotangent bundle of Ω will be denoted by CT (Ω)
and CT ∗(Ω) respectively. Let E be a C∞ vector bundle over Ω. The fiber of E at

x ∈ Ω will be denoted by Ex . Let Y ⊂⊂ Ω be an open set. The spaces of smooth

sections of E over Y and distribution sections of E over Y will be denoted by

C∞(Y ; E ) and D ′(Y ; E ) respectively. Let E ′(Y ; E ) be the subspace of D ′(Y ; E )
of sections with compact support in Y . For s ∈ R, we let H s (Y ; E ) denote the

Sobolev space of order s of sections of E over Y . Put

H s
loc (Y ; E ) =
¦

u ∈D ′(Y ; E ); ϕu ∈H s (Y ; E ), ∀ϕ ∈C∞0 (Y )
©

and

H s
comp (Y ; E ) =H s

loc(Y ; E )
⋂

E ′(Y ; E ).

Let F be a C∞ vector bundle over M ′. Let C∞(M ; F ), D ′(M ; F ), H s (M ; F ) denote

the spaces of restrictions to M of elements in C∞(M ′; F ),D ′(M ′; F ) and H s (M ′; F )
respectively. Let C∞0 (M ; F ) be the subspace of C∞(M ; F ) of sections with com-

pact support in M .

Let Λ1,0T (M ′) and Λ0,1T (M ′) be the holomorphic tangent bundle of M ′ and

the anti-holomorphic tangent boundle of M ′ respectively. (See (2.4).) In local

coordinates z = (z 1, . . . , z n ), we represent the Hermitian metric on Λ1,0T (M ′) by

(u | v ) = g (u , v ), u , v ∈Λ1,0T (M ′),

g =
n
∑

j ,k=1

g j ,k (z )d z j ⊗d z k , (1.1)

where g j ,k (z ) = g k ,j (z ) ∈C∞, j , k = 1, . . . , n , and
�

g j ,k (z )
�n

j ,k=1
is positive definite

at each point. We extend the Hermitian metric ( | ) toCT (M ′) in a natural way by

requiring Λ1,0T (M ′) to be orthogonal to Λ0,1T (M ′) and satisfy

(u | v ) = (u | v ), u , v ∈Λ0,1T (M ′).

The Hermitian metric ( | ) on CT (M ) induces, by duality, a Hermitian metric

on CT ∗(M ) that we shall also denote by ( | ). (See (2.9).) For q ∈N, let Λ0,q T ∗(M ′)
be the bundle of (0,q ) forms of M ′. (See (2.6).) The Hermitian metric ( | ) on

CT ∗(M ′) induces a Hermitian metric on Λ0,q T ∗(M ′) also denoted by ( | ). (See

(2.11).)

Let r ∈C∞(M ′) be a defining function of Γ such that r is real, r = 0 on Γ, r < 0

on M and d r 6= 0 near Γ. From now on, we take a defining function r so that

‖d r ‖= 1 on Γ.
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The Hermitian metric ( | ) on CT (M ′) induces a Hermitian metric ( | ) on

CT (Γ). For z ∈ Γ, we identify CT ∗z (Γ)with the space

¦

u ∈CT ∗z (M
′); (u | d r ) = 0
©

. (1.2)

We associate to the Hermitian metric
∑n

j ,k=1 g j ,k (z )d z j⊗d z k a real (1, 1) form

( see page 144 of Kodaira [20])

ω= i
n
∑

j ,k=1

g j ,k d z j ∧d z k .

Let

d M ′ =
ωn

n !
(1.3)

be the volume element (see also (2.12)) and let ( | )M be the inner product on

C∞(M ; Λ0,q T ∗(M ′)) defined by

( f | h)M =
∫

M

( f | h)(d M ′) =

∫

M

( f | h)
ωn

n !
, f , h ∈C∞(M ; Λ0,q T ∗(M ′)). (1.4)

Similarly, we take (dΓ) as the induced volume form on Γ (see (2.18)) and let ( | )Γ
be the inner product on C∞(Γ; Λ0,q T ∗(M ′)) defined by

( f | g )Γ =
∫

Γ

( f | g )dΓ, f , g ∈C∞(Γ; Λ0,q T ∗(M ′)). (1.5)

Let4Γ be the real Laplacian on Γ and denote byσ4Γ the principal symbol of4Γ.

Let

∂ : C∞(M ′; Λ0,q T ∗(M ′))→C∞(M ′; Λ0,q+1T ∗(M ′))

be the part of the exterior differential operator which maps forms of type (0,q ) to

forms of type (0,q +1) and we denote by

∂ f
∗

: C∞(M ′; Λ0,q+1T ∗(M ′))→C∞(M ′; Λ0,q T ∗(M ′))

the formal adjoint of ∂ . That is

(∂ f | h)M ′ = ( f | ∂ f
∗
h)M ′ , f ∈C∞0 (M

′; Λ0,q T ∗(M ′)), h ∈C∞(M ′; Λ0,q+1T ∗(M ′)),

where ( | )M ′ is defined by

(g | k )M ′ =

∫

M ′

(g | k )(d M ′), g , k ∈C∞0 (M
′; Λ0,q T ∗(M ′)).
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We shall also use the notation ∂ for the closure in L2 of the ∂ operator, initially

defined on C∞(M ; Λ0,q T ∗(M ′)) and ∂
∗

for the Hilbert space adjoint of ∂ . The do-

main of ∂
∗

consists of all f ∈ L2(M ; Λ0,q+1T ∗(M ′)) such that for some constant

c > 0,
�

�

�( f | ∂ g )M
�

�

�≤ c




g




 , for all g ∈C∞(M ; Λ0,q T ∗(M ′)).

For such an f ,

g → ( f | ∂ g )M

extends to a bounded anti-linear functional on L2(M ; Λ0,q T ∗(M ′)) so

( f | ∂ g )M = ( ef | g )M

for some ef ∈ L2(M ; Λ0,q T ∗(M ′)). We have ∂
∗

f = ef . The ∂ -Neumann Laplacian on

(0,q ) forms is then the self-adjoint operator in the space L2(M ; Λ0,q T ∗(M ′)) (see

chapter I of [9])
�(q ) = ∂ ∂

∗
+ ∂

∗
∂ . (1.6)

We notice that

Dom�(q ) = {u ∈ L2(M ; Λ0,q T ∗(M ′)); u ∈Dom∂
∗⋂

Dom∂ ,

∂
∗
u ∈Dom∂ , ∂ u ∈Dom∂

∗
} (1.7)

and C∞(M ; Λ0,q T ∗(M ′))
⋂

Dom�(q ) is dense in Dom�(q ). (See also page 14 of [9].)
Let

�(q )f = ∂ ∂ f
∗
+ ∂ f

∗
∂ : C∞(M ′; Λ0,q T ∗(M ′))→C∞(M ′; Λ0,q T ∗(M ′)) (1.8)

denote the complex Laplace-Beltrami operator on (0,q ) forms and denote by

σ�(q )f
the principal symbol of �(q )f . Let γ denote the operator of restriction to the

boundary Γ. Let us consider the map:

F (q ) : H 2(M ; Λ0,q T ∗(M ′))→H 0(M ; Λ0,q T ∗(M ′))⊕H
3
2 (Γ; Λ0,q T ∗(M ′)),

u → (�(q )f u ,γu ). (1.9)

Given q , 0≤q ≤ n −1, we assume that

Assumption 1.1. F (k ) is injective, q −1≤ k ≤q +1.

Thus, the Poisson operator for �(k )f , q − 1 ≤ k ≤ q + 1, is well-defined. (See

section 4.) If M ′ is Kähler, then F (q ) is injective for any q , 0≤ q ≤ n . (See section

9 for the definition and details.)
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We write 〈 , 〉 to denote the duality between Tz (M ′) and T ∗z (M
′). We extend 〈 , 〉

bilinearly to CTz (M ′)×CT ∗z (M
′). Let ∂

∂ r
be the dual vector of d r . That is

(u |
∂

∂ r
) = 〈u , d r 〉 , (1.10)

for all u ∈CT (M ′). Put

ω0 = J t (d r ), (1.11)

where J t is the complex structure map for the cotangent bundle. (See (2.2).)

Let Λ1,0T (Γ) and Λ0,1T (Γ) be the holomorphic tangent bundle of Γ and the

anti-holomorphic tangent bundle of Γ respectively. (See (2.22).) The Levi form

L p (Z , W ), p ∈ Γ, Z , W ∈ Λ1,0Tp (Γ), is the Hermitian quadratic form on Λ1,0Tp (Γ)
defined as follows:

For any Z , W ∈Λ1,0Tp (Γ), pick eZ , fW ∈C∞(Γ; Λ1,0T (Γ)) that satisfy

eZ (p ) =Z , fW (p ) =W . Then L p (Z , W ) =
1

2i

D

[eZ ,fW ](p ) ,ω0(p )
E

.
(1.12)

The eigenvalues of the Levi form at p ∈ Γ are the eigenvalues of the Hermitian

form L p with respect to the inner product ( | ) on Λ1,0Tp (Γ). If the Levi form is

non-degenerate at p ∈ Γ, let (n−, n+), n−+n+ = n−1, be the signature and notice

that Z (q ) holds at p if and only if q 6= n−.

We recall the Hörmander symbol spaces

Definition 1.2. Let m ∈R. Let U be an open set in M ′×M ′.

Sm
1,0(U×]0,∞[;L (Λ0,q T ∗y (M

′),Λ0,q T ∗x (M
′)))

is the space of all a (x , y , t ) ∈ C∞(U×]0,∞[;L (Λ0,q T ∗y (M
′),Λ0,q T ∗x (M

′))) such that

for all compact sets K ⊂ U and all α ∈ N2n , β ∈ N2n , γ ∈ N, there is a constant

c > 0 such that
�

�

�∂ αx ∂
β

y ∂
γ

t a (x , y , t )
�

�

�≤ c (1+ |t |)m−|γ|, (x , y , t )∈ K×]0,∞[.

Sm
1,0 is called the space of symbols of order m type (1, 0). We write S−∞1,0 =

⋂

Sm
1,0.

Let Sm
1,0(U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))) denote the space of

restrictions to U
⋂

(M ×M )×]0,∞[ of elements in

Sm
1,0(U×]0,∞[;L (Λ0,q T ∗w (M

′),Λ0,q T ∗z (M
′))).

Let

a j ∈S
m j

1,0 (U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))), j = 0, 1, 2, . . . ,
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with m j ↘−∞, j →∞. Then there exists

a ∈Sm0
1,0 (U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′)))

such that

a −
∑

0≤j<k

a j ∈Smk
1,0 (U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))),

for every k ∈N. (See Proposition 1.8 of Grigis-Sjöstrand [11] or Hörmander [13].)
If a and a j have the properties above, we write

a ∼
∞
∑

j=0

a j in the space Sm0
1,0 (U
⋂

(M ×M )× [0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))).

Let

Π(q ) : L2(M ; Λ0,q T ∗(M ′))→Ker�(q )

be the Bergman projection, i.e. the orthogonal projection onto the kernel of�(q ).
Let

KΠ(q )(z , w )∈D ′(M ×M ;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′)))

be the distribution kernel of Π(q ). Formally,

(Π(q )u )(z ) =

∫

M

KΠ(q )(z , w )u (w )d M ′(w ), u (w )∈C∞0 (M ; Λ0,q T ∗(M ′)).

Let X and Y be C∞ vector bundles over M ′. Let

C , D : C∞0 (M ; X )→D ′(M ; Y )

with distribution kernels

KC (z , w ), KD(z , w )∈D ′(M ×M ;L (Xw , Yz )).

We write

C ≡D mod C∞(U
⋂

(M ×M ))

if

KC (z , w ) = KD(z , w )+ F (z , w ),

where F (z , w )∈C∞(U
⋂

(M ×M );L (Xw , Yz )) and U is an open set in M ′×M ′.

Given q , 0≤q ≤ n −1. Put

Γq =
�

z ∈ Γ; Z (q ) fails at z
	

. (1.13)

If the Levi form is non-degenerate at each point of Γ, then Γq is a union of con-

nected components of Γ.

The main result of this work is the following

7



Theorem 1.3. Let M be a relatively compact open subset with C∞ boundary Γ of

a complex analytic manifold M ′ of dimension n. We assume that the Levi form is

non-degenerate at each point of Γ. Let q, 0≤ q ≤ n −1. Suppose that Z (q ) fails at

some point of Γ and that Z (q −1) and Z (q +1) hold at each point of Γ. Then

KΠ(q )(z , w )∈C∞(M ×M \diag (Γq ×Γq );L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))).

Moreover, in a neighborhood U of diag (Γq ×Γq ), KΠ(q )(z , w ) satisfies

KΠ(q )(z , w )≡
∫ ∞

0

e iφ(z ,w )t b (z , w , t )d t mod C∞(U
⋂

(M ×M )) (1.14)

(for the precise meaning of the oscillatory integral
∫∞

0
e iφ(z ,w )t b (z , w , t )d t , see Re-

mark 1.4 below) with

b (z , w , t )∈Sn
1,0(U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))),

b (z , w , t )∼
∞
∑

j=0

b j (z , w )t n−j

in the space Sn
1,0(U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))),

b0(z , z ) 6= 0, z ∈ Γq ,

where

b j (z , w )∈C∞(U
⋂

(M ×M );L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))), j = 0, 1, . . . ,

and

φ(z , w )∈C∞(U
⋂

(M ×M )), (1.15)

φ(z , z ) = 0, z ∈ Γq , (1.16)

φ(z , w ) 6= 0 if (z , w ) /∈ diag (Γq ×Γq ), (1.17)

Imφ ≥ 0, (1.18)

Imφ(z , w )> 0 if (z , w ) /∈ Γ×Γ, (1.19)

φ(z , w ) =−φ(w , z ). (1.20)

For p ∈ Γq , we have

σ�(q )f
(z , d zφ(z , w )) vanishes to infinite order at z = p ,

(z , w ) is in some neighborhood of (p , p ) in M ′. (1.21)
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For z =w , z ∈ Γq , we have

d zφ =−ω0− i d r,

d wφ =ω0− i d r.

Moreover, we have

φ(z , w ) =φ−(z , w ) if z , w ∈ Γq ,

whereφ−(z , w )∈C∞(Γq×Γq ) is the phase appearing in the description of the Szegö

projection in [18]. See Theorem 1.5 and Theorem 7.15 below.

Remark 1.4. Letφ(z , w ) and b (z , w , t ) be as in Theorem 1.3. Let y = (y1, . . . , y2n−1)
be local coordinates on Γ and extend y1, . . . , y2n−1 to real smooth functions in

some neighborhood of Γ. We work with local local coordinates

w = (y1, . . . , y2n−1, r )

defined on some small neighborhood U of p ∈ Γq . Let u ∈ C∞0 (U ; Λ0,q T ∗(M ′)).
Choose a cut-off function χ(t )∈C∞(R) so that χ(t ) = 1 when |t |< 1 and χ(t ) = 0

when |t |> 2. Set

(Bεu )(z ) =

∫ ∫ ∞

0

e iφ(z ,w )t b (z , w , t )χ(εt )u (w )d t d w .

Since d yφ 6= 0 where Imφ = 0 (see (7.31)), we can integrate by parts in y and t

and obtain

lim
ε→0
(Bεu )(z )∈C∞(M ; Λ0,q T ∗(M ′)).

This means that

B = lim
ε→0

Bε : C∞(M ; Λ0,q T ∗(M ′))→C∞(M ; Λ0,q T ∗(M ′))

is continuous. We write B (z , w ) to denote the distribution kernel of B . Formally,

B (z , w ) =

∫ ∞

0

e iφ(z ,w )t b (z , w , t )d t .

From (1.21) and Remark 1.5 of [18] it follows that

Theorem 1.5. Under the assumptions of Theorem 1.3, let p ∈ Γq . We choose local

complex analytic coordinates

z = (z 1, . . . , z n ), z j = x2j−1+ i x2j , j = 1, . . . , n ,
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vanishing at p such that the metric on Λ1,0T (M ′) is

n
∑

j=1

d z j ⊗d z j at p

and

r (z ) =
p

2Im z n +
n−1
∑

j=1

λj

�

�z j

�

�

2
+O(|z |3),

where λj , j = 1, . . . , n − 1, are the eigenvalues of L p . (This is always possible. See

Lemma 3.2 of [17].) We also write

w = (w1, . . . , wn ), w j = y2j−1+ i y2j , j = 1, . . . , n .

Then, we can takeφ(z , w ) so that

φ(z , w ) =−
p

2x2n−1+
p

2y2n−1− i r (z )
�

1+
2n−1
∑

j=1

a j x j +
1

2
a 2n x2n

�

− i r (w )
�

1+
2n−1
∑

j=1

a j y j +
1

2
a 2n y2n

�

+ i
n−1
∑

j=1

�

�λj

�

�

�

�z j −w j

�

�

2

+
n−1
∑

j=1

iλj (z j w j − z j w j )+O
�

|(z , w )|3
�

(1.22)

in some neighborhood of (p , p ) in M ′×M ′, where

a j =
1

2

∂ σ�(q )f

∂ x j
(p ,−ω0(p )− i d r (p )), j = 1, . . . , 2n .

We have the following corollary of Theorem 1.3

Corollary 1.6. Under the assumptions of Theorem 1.3 and let U be a small neigh-

borhood of diag (Γq ×Γq ). Then there exist smooth functions

F,G ∈C∞(U
⋂

(M ×M ));L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′)))

such that

KΠ(q ) = F (−i (φ(z , w )+ i 0))−n−1+G log(−i (φ(z , w )+ i 0)).

Moreover, we have

F =
n
∑

j=0

(n − j )!b j (z , w )(−iφ(z , w ))j + f (z , w )(φ(z , w ))n+1,

G ≡
∞
∑

j=0

(−1)j+1

j !
bn+j+1(z , w )(−iφ(z , w ))j mod C∞(U

⋂

(M ×M )) (1.23)
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where

f (z , w )∈C∞(U
⋂

(M ×M );L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))).

If w ∈Λ0,1T ∗z (M
′), let

w ∧,∗ :Λ0,q+1T ∗z (M
′)→Λ0,q T ∗z (M

′) (1.24)

be the adjoint of left exterior multiplication

w ∧ :Λ0,q T ∗z (M
′)→Λ0,q+1T ∗z (M

′).

That is,

(w ∧u | v ) = (u |w ∧,∗v ), (1.25)

for all u ∈Λ0,q T ∗z (M
′), v ∈Λ0,q+1T ∗z (M

′). Notice that w ∧,∗ depends anti-linearly on

w .

Let Λ0,1T ∗(Γ) be the bundle of boundary (0, 1) forms. (See (2.23) and (2.29).)

Proposition 1.7. Under the assumptions of Theorem 1.3, let p ∈ Γq , q = n−. Let

Z 1(z ), . . . ,Z n−1(z )

be an orthonormal frame of Λ1,0Tz (Γ), z ∈ Γ, for which the Levi form is diagonal-

ized at p . Let e j (z ), j = 1, . . . , n − 1 denote the basis of Λ0,1T ∗z (Γ), z ∈ Γ, which is

dual to Z j (z ), j = 1, . . . , n − 1. Let λj (z ), j = 1, . . . , n − 1 be the eigenvalues of the

Levi form L z , z ∈ Γ. We assume that

λj (p )< 0 if 1≤ j ≤ n−.

Then

F (p , p ) = n !
�

�λ1(p )
�

� · · ·
�

�λn−1(p )
�

�π−n 2
�

j=n−
∏

j=1

e j (p )∧e ∧,∗
j (p )
�

◦ (∂ r (p ))∧,∗(∂ r (p ))∧,

(1.26)

where F is as in Corollary 1.6.

In the rest of this section, we outline the proof of Theorem 1.3. We assume

that the Levi form is non-degenerate at each point of Γ. We pause and recall a

general fact of distribution theory. (See Hörmander [16].) Let E , F be C∞ vector

bundles over C∞ manifolds G and H respectively. We take smooth densities of

integration on G and H respectively. Let

A : C∞0 (G ; E )→D ′(H ; F )

with distribution kernel

KA(x , y )∈D ′(H ×G ;L (Ey , Fx )).

Then the following two statements are equivalent
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(a) A is continuous: E ′(G ; E )→C∞(H ; F ),

(b) KA ∈C∞(H ×G ;L (Ey , Fx )).

If A satisfies (a) or (b), we say that A is smoothing. Let

B : C∞0 (G ; E )→D ′(H ; F ).

From now on, we write K B (x , y ) or B (x , y ) to denote the distribution kernel of B

and we write

A ≡ B

if A − B is a smoothing operator.

Let

P : C∞(Γ; Λ0,q T ∗(M ′))→C∞(M ; Λ0,q T ∗(M ′)) (1.27)

be the Poisson operator for �(q )f which is well-defined since we assumed (1.9) to

be injective. It is well-known that P extends continuously

P : H s (Γ; Λ0,q T ∗(M ′))→H s+ 1
2 (M ; Λ0,q T ∗(M ′)), ∀ s ∈R.

(See page 29 of Boutet de Monvel [5].) Let

P∗ : E ′(M ; Λ0,q T ∗(M ′))→D ′(Γ; Λ0,q T ∗(M ′))

be the operator defined by

(P∗u | v )Γ = (u | Pv )M , u ∈ E ′(M ; Λ0,q T ∗(M ′)), v ∈C∞(Γ; Λ0,q T ∗(M ′)).

It is well-known (see page 30 of [5]) that P∗ is continuous:

P∗ : L2(M ; Λ0,q T ∗(M ′))→H
1
2 (Γ; Λ0,q T ∗(M ′))

and

P∗ : C∞(M ; Λ0,q T ∗(M ′))→C∞(Γ; Λ0,q T ∗(M ′)).

We use the inner product [ | ] on H− 1
2 (Γ; Λ0,q T ∗(M ′)) defined as follows:

[u | v ] = (Pu | Pv )M ,

where u , v ∈H− 1
2 (Γ; Λ0,q T ∗(M ′)). We consider (∂ r )∧,∗ as an operator

(∂ r )∧,∗ : H− 1
2 (Γ; Λ0,q T ∗(M ′))→H− 1

2 (Γ; Λ0,q−1T ∗(M ′)).

Note that (∂ r )∧,∗ is the pointwise adjoint of ∂ r with respect to ( | ). Let

T : H− 1
2 (Γ; Λ0,q T ∗(M ′))→Ker (∂ r )∧,∗ (1.28)
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be the orthogonal projection onto Ker (∂ r )∧,∗ with respect to [ | ]. That is, if u ∈
H− 1

2 (Γ; Λ0,q T ∗(M ′)), then

(∂ r )∧,∗Tu = 0

and

[(I −T )u | g ] = 0, ∀ g ∈Ker (∂ r )∧,∗.

In section 4, we will show that T is a classical pseudodifferential operator of order

0 with principal symbol

2(∂ r )∧,∗(∂ r )∧.

For q ∈ N, let Λ0,q T ∗(Γ) be the bundle of boundary (0,q ) forms. (See (2.29).) If

u ∈C∞(Γ; Λ0,q T ∗(M ′)), then u ∈Ker (∂ r )∧,∗ if and only if u ∈C∞(Γ; Λ0,q T ∗(Γ)). Put

∂β = Tγ∂ P : C∞(Γ; Λ0,q T ∗(Γ))→C∞(Γ; Λ0,q+1T ∗(Γ)). (1.29)

∂β is a classical pseudodifferential operator of order one from boundary (0,q )
forms to boundary (0,q +1) forms. It is easy to see that

∂β = ∂b + lower order terms, (1.30)

where ∂b is the tangential Cauchy-Riemann operator. (See [9] or section 6.) In

section 6, we will show that

(∂β )2 = 0.

Let

∂β
†

: C∞(Γ; Λ0,q+1T ∗(Γ))→C∞(Γ; Λ0,q T ∗(Γ)),

be the formal adjoint of ∂β with respect to [ | ]. ∂β
†

is a classical pseudodifferential

operator of order one from boundary (0,q+1) forms to boundary (0,q ) forms. In

section 6, we will show that

∂β
†
= γ∂ f

∗
P.

Put

�(q )β = ∂β ∂β
†
+ ∂β

†
∂β : C∞(Γ; Λ0,q T ∗(Γ))→C∞(Γ; Λ0,q T ∗(Γ)).

For simplicity, we assume that Γ = Γq , Γq 6= Γn−1−q . We can repeat the method

of [18] (see section 7) to construct

A ∈ L−1
1
2 , 1

2

(Γ; Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)), B ∈ L0
1
2 , 1

2

(Γ; Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))

such that

A�(q )β + B ≡ B +�(q )β A ≡ I ,

∂βB ≡ 0, ∂β
†
B ≡ 0,

B ≡ B † ≡ B 2,
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where Lm
1
2 , 1

2

is the space of pseudodifferential operators of order m type ( 1
2

, 1
2
) (see

Definition 7.11) and B † is the formal adjoint of B with respect to [ | ]. Moreover,

K B (x , y ) satisfies

K B (x , y )≡
∫ ∞

0

e iφ−(x ,y )t b (x , y , t )d t ,

where φ−(x , y ) and b (x , y , t ) are as in Theorem 7.15. In section 8, we will show

that

Π(q ) ≡ P BT (P∗P)−1P∗ mod C∞(M ×M )

and

P BT (P∗P)−1P∗(z , w )≡
∫ ∞

0

e iφ(z ,w )t b (z , w , t )d t mod C∞(M ×M ),

whereφ(z , w ) and b (z , w , t ) are as in Theorem 1.3.

Acknowledgements. The author would like to thank his advisor Johannes Sjös-

trand for his patience, guidance and inspiration.

2 Terminology and notations, a review

In this section, we will review some standard terminology in complex geometry.

For more details on the subject, see Kodaira [20].
Let E be a finite dimensional vector space with a complex structure J . By

definition, a complex structure J is a R-linear map

J : E → E

that satisfies

J 2 =−I .

Let CE be the complexification of E . That is,

CE = {u + i v ; u , v ∈ E } .

Any vector in CE can be written

f = u + i v

where u , v ∈ E and anyR-linear map between real vector spaces can be extended

to a C-linear map between the complexifications, simply by putting

T f = Tu + i T v.
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In particular, we can extend J to a C-linear map

J :CE →CE .

Clearly, it still holds that J 2 = −I . This implies that we have a decomposition as

a direct sum

CE =Λ1,0E ⊕Λ0,1E

where

J u = i u if u ∈Λ1,0E

and

J u =−i u if u ∈Λ0,1E .

Let us now return to our original situation where E = Tp (M ′), p ∈M ′. Given

holomorphic coordinates

z j = x j + i y j , j = 1, . . . , n

we get a basis for Tp (M ′)

∂

∂ x1
,
∂

∂ y1
, . . . ,

∂

∂ xn
,
∂

∂ yn
.

The complex structure J on Tp (M ′) is defined by










J (
∂

∂ x j
) =

∂

∂ y j
, j = 1, . . . , n ,

J (
∂

∂ y j
) =−

∂

∂ x j
, j = 1, . . . , n .

(2.1)

J does not depend on the choice of holomorphic coordinates.

The complex structure map

J t : T ∗p (M
′)→ T ∗p (M

′),

for the cotangent space is defined as the adjoint of J , that is 〈J u ,ν〉 = 〈u , J t ν〉,
u ∈ Tp (M ′), v ∈ T ∗p (M

′). We have

¨

J t (d x j ) =−d y j , j = 1, . . . , n ,

J t (d y j ) = d x j , j = 1, . . . , n .
(2.2)

We can now apply our previous discussion of complex structures on real vector

spaces to Tp (M ′) and T ∗p (M
′). We then get decompositions

CTp (M ′) = Λ1,0Tp (M ′)⊕Λ0,1Tp (M ′),

CT ∗p (M
′) = Λ1,0T ∗p (M

′)⊕Λ0,1T ∗p (M
′). (2.3)
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For u ∈Λ1,0Tp (M ′), ν ∈Λ0,1T ∗p (M
′),

−i 〈u ,ν〉=



u , J t ν
�

= 〈J u ,ν〉= i 〈u ,ν〉 .

Thus,

〈u ,ν〉= 0.

In terms of local coordinates z = (z 1, . . . , z n ), z j = x j + i y j , j = 1, . . . , n , we have

Λ1,0Tp (M ′) =







n
∑

j=1

a j
∂

∂ z j
; a j ∈C, j = 1, . . . , n







,

Λ0,1Tp (M ′) =







n
∑

j=1

a j
∂

∂ z j
; a j ∈C, j = 1, . . . , n







(2.4)

and

Λ1,0T ∗p (M
′) =







n
∑

j=1

a j d z j ; a j ∈C, j = 1, . . . , n







,

Λ0,1T ∗p (M
′) =







n
∑

j=1

a j d z j ; a j ∈C, j = 1, . . . , n







. (2.5)

Here
∂

∂ z j
=

1

2
(
∂

∂ x j
− i

∂

∂ y j
),

∂

∂ z j
=

1

2
(
∂

∂ x j
+ i

∂

∂ y j
), j = 1, . . . , n ,

and

d z j = d x j + i d y j , d z j = d x j − i d y j , j = 1, . . . , n .

For p , q ∈N, the bundle of (p ,q ) forms of M ′ is given by

Λp ,q T ∗(M ′) = Λp (Λ1,0T ∗(M ′))∧Λq (Λ0,1T ∗(M ′)). (2.6)

That is, the fiber of Λp ,q T ∗(M ′) at z ∈ M ′ is the vector space Λp (Λ1,0T ∗z (M
′)) ∧

Λq (Λ0,1T ∗z (M
′)) of all finite sums of

W1 ∧ · · · ∧Wp ∧V1 ∧ · · · ∧Vq ,

where

Wk ∈Λ1,0T ∗z (M
′), k = 1, . . . , p , Vj ∈Λ0,1T ∗z (M

′), j = 1, . . . ,q .
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Here ∧ denotes the wedge product.

We recall that if
�

g j ,k

�

1≤j ,k≤n
is a positive definite Hermitian matrix then the

(1, 1) tensor form g =
∑n

j ,k=1 g j ,k d z j ⊗d z k can be viewed as a Hermitian metric

( | ) on CT (M ′) in the following way:

1

2
(g (u , v )+ g (v, u )) = (u | v ) = g (u , v ), u , v ∈Λ1,0T (M ′),

(u |w ) = 0, u ∈Λ1,0T (M ′), w ∈Λ0,1T (M ′),

(u | v ) = (u | v ), u , v ∈Λ0,1T (M ′).

We can check that

(J u | J v ) = (u | v ), u , v ∈CT (M ′).

For t , s ∈ T (M ′), we write

t =
1

2
(u +u ), s =

1

2
(v +v ), u , v ∈Λ1,0T (M ′).

Then,

(t | s ) =
1

4
(u | v )+

1

4
(u | v ) =

1

2
Re (u | v )

is real. Thus, the Hermitian metric g induces a J -invariant Riemannian metric

( | ) on T (M ′).
The Hermitian metric ( | ) on CT (M ) induces, by duality, a Hermitian metric

onCT ∗(M ) that we shall also denote by ( | ) in the following way. For a given point

z ∈M ′, let A be the anti-linear map

A :CTz (M ′)→CT ∗z (M
′)

defined by

(u | v ) = 〈u , Av 〉 , u , v ∈CTz (M ′). (2.7)

Since ( | ) and 〈, 〉 are real, A maps Tz (M ′) to T ∗z (M
′). A simple computation shows

that

J t A J = A, J A−1 J t = A−1.

In particular (since A is anti-linear),

AΛ1,0Tz (M ′) = Λ1,0T ∗z (M
′), AΛ0,1Tz (M ′) = Λ0,1T ∗z (M

′). (2.8)

Forω, µ∈CT ∗z (M
′), we put

(ω | µ) = (A−1µ | A−1ω). (2.9)

We have

(ω | µ) = 0 ifω∈Λ1,0T ∗z (M
′), µ∈Λ0,1T ∗z (M

′). (2.10)
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The Hermitian metric ( | ) on Λp ,q T ∗(M ′) is defined by

(w1 ∧ · · · ∧wp ∧u 1 ∧ · · · ∧uq | t1 ∧ · · · ∧ tp ∧v1 ∧ · · · ∧vq )

= det
�

(w j | tk )
�

1≤j ,k≤p
det
�

(u j | vk )
�

1≤j ,k≤q
,

u j , vk ∈Λ0,1T ∗(M ′), j , k = 1, . . . ,q , w j , tk ∈Λ1,0T ∗(M ′), j , k = 1, . . . , p , (2.11)

and we extend the definition to arbitrary (p ,q ) forms by sesqui-linearity.

We associate to the Hermitian metric
∑n

j ,k=1 g j ,k (z )d z j⊗d z k a (1, 1) form (see

page 144 of Kodaira [20])

ω= i
n
∑

j ,k=1

g j ,k d z j ∧d z k .

ω is a real (1, 1) form. Put G (z ) = det
�

g j ,k (z )
�n

j ,k=1
. Then by an elementary cal-

culation (see page 146 of Kodaira [20]),

ωn = i n n !G (z )d z 1 ∧d z 1 ∧ · · · ∧d z n ∧d z n . (2.12)

Since
�

g j ,k (z )
�n

j ,k=1
is positive definite, G (z )> 0. Therefore using

d M ′ =
ωn

n !
(2.13)

as the volume element, we define the integral of a continuous function f (z ) on

M by

∫

M

f (z )(d M ′) =

∫

M

f (z )
ωn

n !
=

∫

M

f (z )i nG (z )d z 1 ∧d z 1 ∧ · · · ∧d z n ∧d z n . (2.14)

We work with local coordinates

z j = x2j−1+ i x2j , j = 1, . . . , n .

Put

Fj ,k (z ) = (
∂

∂ x j
|
∂

∂ xk
), j , k = 1, . . . , 2n

and

F (z ) = det
�

Fj ,k (z )
�

1≤j ,k≤2n
.

Lemma 2.1. We have

p

F (z )d x1 ∧d x2 ∧ · · · ∧d x2n =
ωn

n !
. (2.15)
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Proof. For a given point p ∈M ′, we may assume that

ω(p ) = i
n
∑

j=1

d z j ∧d z j .

Thus,

(
∂

∂ x j
(p ) |

∂

∂ xk
(p )) = 2δj ,k , j , k = 1, . . . , 2n ,

and
p

F (p )d x1 ∧d x2 ∧ · · · ∧d x2n = 2n d x1 ∧d x2 ∧ · · · ∧d x2n .

By an elementary calculation,

ωn

n !
(p ) = i n d z 1 ∧d z 1 ∧ · · · ∧d z n ∧d z n

= 2n d x1 ∧d x2 ∧ · · · ∧d x2n .

The lemma follows.

Let ( | )M be the inner product on C∞(M ; Λp ,q T ∗(M ′)) defined by

( f | h)M =
∫

M

( f | h)(d M ′), f , h ∈C∞(M ; Λp ,q T ∗(M ′)). (2.16)

The Hermitian metric ( | ) on CT (M ′) induces a Hermitian metric ( | ) on

CT (Γ). For p ∈ Γ, we have

Tp (Γ) =
�

u ∈ Tp (M ′); 〈u , d r 〉= (u |
∂

∂ r
) = 0

�

,

where
∂

∂ r
= A−1d r.

Here A is as in (2.7). We take (dΓ) as the induced volume form on Γ. Let x =
(x1, . . . ,x2n−1) be a system of local coordinates on Γ. Put

h j ,k (x ) = (
∂

∂ x j
|
∂

∂ xk
), j , k = 1, . . . , 2n −1.

Put

H (x ) = det
�

h j ,k (x )
�2n−1

j ,k=1
. (2.17)

Then,

dΓ=
p

H (x )d x1 ∧ · · · ∧d x2n−1. (2.18)
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We identify CT ∗p (Γ)with the space

�

u ∈CT ∗p (M
′);
�

u ,
∂

∂ r

�

= (u | d r ) = 0

�

. (2.19)

Put

Cp = Tp (Γ)
⋂

J Tp (Γ),

C ∗p = T ∗p (Γ)
⋂

J t T ∗p (Γ)

and

ω0 = J t (d r ), (2.20)

Y = J (
∂

∂ r
). (2.21)

We have

Cp =
¦

u ∈ Tp (Γ);



u ,ω0(p )
�

= 0
©

, C ∗p =
n

u ∈ T ∗p (Γ);



u , Y (p )
�

= 0
o

.

Note that

dimRCp = dimRC ∗p = 2n −2.

As before, we have

CCp =Λ1,0Tp (Γ)⊕Λ0,1Tp (Γ)

and

CC ∗p =Λ
1,0T ∗p (Γ)⊕Λ

0,1T ∗p (Γ),

where

J u = i u if u ∈Λ1,0Tp (Γ),

J u =−i u if u ∈Λ0,1Tp (Γ) (2.22)

and

J tµ= iµ if µ∈Λ1,0T ∗p (Γ),

J tµ=−iµ if µ∈Λ0,1T ∗p (Γ). (2.23)

We have the orthogonal decompositions with respect to ( | )

CTp (Γ) = Λ1,0Tp (Γ)⊕Λ0,1Tp (Γ)⊕
�

λY (p ); λ∈C
	

,

CT ∗p (Γ) = Λ
1,0T ∗p (Γ)⊕Λ

0,1T ∗p (Γ)⊕
�

λω0(p ); λ∈C
	

.
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We notice that

J (i Y +
∂

∂ r
) = J
�

i J (
∂

∂ r
)+

∂

∂ r

�

=−i (i Y +
∂

∂ r
).

Thus, i Y + ∂
∂ r
∈Λ0,1T (M ′). Near Γ, put

T ∗,0,1
z =
¦

u ∈Λ0,1T ∗z (M
′); (u | ∂ r (z )) = 0

©

(2.24)

and

T 0,1
z =
�

u ∈Λ0,1Tz (M ′); (u | (i Y +
∂

∂ r
)(z )) = 0

�

. (2.25)

We have the orthogonal decompositions with respect to ( | )

Λ0,1T ∗z (M
′) = T ∗,0,1

z ⊕
¦

λ(∂ r )(z ); λ∈C
©

, (2.26)

Λ0,1Tz (M ′) = T 0,1
z ⊕
�

λ(i Y +
∂

∂ r
)(z ); λ∈C
�

. (2.27)

Note that

T ∗,0,1
z =Λ0,1T ∗z (Γ), T 0,1

z =Λ0,1Tz (Γ), z ∈ Γ.

For q ∈N, the bundle of boundary (0,q ) forms is given by

Λ0,q T ∗(Γ) = Λq (Λ0,1T ∗(Γ)). (2.28)

Note that

Λ0,q T ∗z (Γ) =
¦

u ∈Λ0,q T ∗z (M
′); (u | ∂ r (z )∧ g ) = 0, ∀g ∈Λ0,q−1T ∗z (M

′)
©

. (2.29)

Let ( | )Γ be the inner product on C∞(Γ; Λ0,q T ∗(M ′)) defined by

( f | g )Γ =
∫

Γ

( f | g )dΓ, f , g ∈C∞(Γ; Λ0,q T ∗(M ′)), (2.30)

where dΓ is as in (2.18).

We recall the following

Definition 2.2. For p ∈ Γ, the Levi form L p (Z , W ), Z , W ∈Λ1,0Tp (Γ), is the Hermi-

tian quadratic form on Λ1,0Tp (Γ) defined as follows:

For any Z , W ∈Λ1,0Tp (Γ), pick eZ , fW ∈C∞(Γ; Λ1,0T (Γ)) that satisfy

eZ (p ) =Z , fW (p ) =W . Then L p (Z , W ) =
1

2i

D

[eZ ,fW ](p ) ,ω0(p )
E

.
(2.31)

Here

[eZ ,fW ] = eZfW −fW eZ

denotes the commutator of eZ and fW .
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It is easy to see that the definition of the Levi form L p is independent of the

choices of eZ and fW . We give it in detail for the convenience of the reader

Lemma 2.3. Let eZ ,fW ∈C∞(Γ; Λ1,0T (Γ)). We have

1

2i

D

[eZ ,fW ](p ) ,ω0(p )
E

=−
1

2i

D

eZ (p )∧fW (p ), dω0(p )
E

. (2.32)

Proof. See Lemma 2.7 of [18].

Definition 2.4. The eigenvalues of the Levi form at p ∈ Γ are the eigenvalues of

the Hermitian form L p with respect to the inner product ( | ) on Λ1,0Tp (Γ).

Now, we work with local coordinates z = (z 1, . . . , z n ) defined on some neigh-

borhood U ⊂M ′ of p ∈ Γ. We have

d r =
n
∑

j=1

∂ r

∂ z j
d z j +

n
∑

j=1

∂ r

∂ z j
d z j

and

ω0 = J t (d r ) = i
n
∑

j=1

∂ r

∂ z j
d z j − i

n
∑

j=1

∂ r

∂ z j
d z j .

Then by an elementary calculation,

dω0 =−2i
n
∑

j ,k=1

∂ 2r

∂ z k∂ z j
d z k ∧d z j .

From this and Lemma 2.3, we get the following

Proposition 2.5. Let U =
∑n

k=1 u k
∂
∂ z k

, V =
∑n

j=1 v j
∂
∂ z j
∈Λ1,0Tp (Γ). Then,

L p (U , V ) =
n
∑

j ,k=1

∂ 2r

∂ z k∂ z j
(p )u k v j . (2.33)

3 The ∂ -Neumann problem, a review

The ∂ -Neumann problem is a generalization to several complex variables of the

Laplace operator of one complex variable and the Cauchy-Riemann operator

∂ /∂ z . In this section, we will give a brief discussion of the ∂ -Neumann prob-

lem in a setting appropriate for our purpose. General references for this section

are the books by Hörmander [15], Folland-Kohn [9] and Chen-Shaw [3].
As in section 1, let M be a relatively compact open subset with C∞ boundary

Γ of a complex analytic manifold M ′ of dimension n with a Hermitian metric
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g =
∑n

j ,k=1 g j ,k d z j ⊗ d z k on its holomorphic tangent bundle. We will use the

same notations as before. Let x = (x1, . . . ,x2n−1) be a system of local coordinates

on Γ and extend x1, . . . ,x2n−1 to real smooth functions in some neighborhood of

Γ. We recall that (see (2.18)) the induced volume form on Γ is given by

dΓ=
p

H (x )d x1 ∧ · · · ∧d x2n−1,

where

H (x ) = det
�

h j ,k (x )
�2n−1

j ,k=1
, h j ,k (x ) = (

∂

∂ x j
|
∂

∂ xk
), j , k = 1, . . . , 2n −1.

We assume that

d M ′ = |F (x , r )|d x1 ∧ · · · ∧d x2n−1 ∧d r,

where d M ′ is as in (2.13) and F (x , r )∈C∞. From (2.15), we see that

dΓ= |F (x , 0)|d x1 ∧ · · · ∧d x2n−1. (3.1)

We have the following

Lemma 3.1. For all f ∈C∞(M ; Λ0,q T ∗(M ′)), g ∈C∞(M ; Λ0,q+1T ∗(M ′)),

(∂ f | g )M = ( f | ∂ f
∗
g )M +(γ f | γ(∂ r )∧,∗g )Γ, (3.2)

where (∂ r )∧,∗ is defined by (1.24). We recall that ∂ f
∗

is the formal adjoint of ∂ and

γ is the operator of restriction to the boundary Γ.

Proof. By using a partition of unity we may assume that f and g are supported in

a coordinate patch U ⊂M ′. Let x = (x1, . . . ,x2n−1) be a system of local coordinates

on Γ. We work with local coordinates z = (x1, . . . ,x2n−1, r ). Put

d M ′ = |F (x , r )|d x1 · · ·d x2n−1d r.

Let H be the Heaviside function. Then

(∂ f | g )M =
∫

Cn

H (−r )(∂ f | g ) |F (x , r )|d x d r

=

∫

Cn

(∂ (H (−r ) f ) | g ) |F (x , r )|d x d r

+

∫

Cn

δ(−r )((∂ r )∧ f | g ) |F (x , r )|d x d r

= ( f | ∂ f
∗
g )M +(γ f | γ(∂ r )∧,∗g )Γ.

The lemma follows.
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As in section 1, We also use the notation ∂ for the closure in L2 of the ∂ oper-

ator, initially defined on C∞(M ; Λ0,q T ∗(M ′)). We notice that

Dom∂ = {u ∈ L2(M ; Λ0,q T ∗(M ′)); there exist u j ∈C∞(M ; Λ0,q T ∗(M ′)), j = 1, 2, . . . ,

and v ∈ L2(M ; Λ0,q+1T ∗(M ′)), such that u j → u in L2(M ; Λ0,q T ∗(M ′)),

j →∞, and ∂ u j → v in L2(M ; Λ0,q+1T ∗(M ′)), j →∞}. (3.3)

We write ∂ u = v .

The Hilbert space adjoint ∂
∗

of ∂ is defined on the domain of ∂
∗

consisting of

all f ∈ L2(M ; Λ0,q+1T ∗(M ′)) such that for some constant c > 0,
�

�

�( f | ∂ g )M
�

�

�≤ c




g




 , for all g ∈C∞(M ; Λ0,q T ∗(M ′)).

For such a f ,

g → ( f | ∂ g )M

extends to a bounded anti-linear functional on L2(M ; Λ0,q T ∗(M ′)) so

( f | ∂ g )M = ( ef | g )M

for some ef ∈ L2(M ; Λ0,q T ∗(M ′)). We have ∂
∗

f = ef .

From Lemma 3.1, it follows that

Dom∂
∗⋂

C∞(M ; Λ0,q+1T ∗(M ′)) =
¦

u ∈C∞(M ; Λ0,q+1T ∗(M ′)); γ(∂ r )∧,∗u = 0
©

(3.4)

and

∂
∗
= ∂ f

∗
on Dom∂

∗⋂
C∞(M ; Λ0,q+1T ∗(M ′)). (3.5)

The ∂ -Neumann Laplacian on (0,q ) forms is then the operator in the space

L2(M ; Λ0,q T ∗(M ′))
�(q ) = ∂ ∂

∗
+ ∂

∗
∂ .

We notice that �(q ) is self-adjoint. (See chapter I of Folland-Kohn [9].) We have

Dom�(q ) = {u ∈ L2(M ; Λ0,q T ∗(M ′)); u ∈Dom∂
∗⋂

Dom∂ ,

∂
∗
u ∈Dom∂ ,∂ u ∈Dom∂

∗
}.

Put

D (q ) =Dom�(q )
⋂

C∞(M ;Λ0,q T ∗(M ′)).

From (3.4), we have

D (q ) =
¦

u ∈C∞(M ; Λ0,q+1T ∗(M ′)); γ(∂ r )∧,∗u = 0, γ(∂ r )∧,∗∂ u = 0
©

. (3.6)
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In view of (2.29), we see that u ∈D (q ) if and only if

γu ∈C∞(Γ; Λ0,q T ∗(Γ)) (3.7)

and

γ∂ u ∈C∞(Γ; Λ0,q+1T ∗(Γ)). (3.8)

We have the following

Lemma 3.2. Let q ≥ 1. For every u ∈Dom∂
∗⋂

C∞(M ; Λ0,q+1T ∗(M ′)), we have

∂
∗
u ∈Dom∂

∗⋂
C∞(M ; Λ0,q T ∗(M ′)).

Proof. Let u ∈ Dom∂
∗⋂

C∞(M ; Λ0,q+1T ∗(M ′)). For g ∈ C∞(M ; Λ0,q−1T ∗(M ′)), we

have

0= (∂ f
∗
∂
∗
u | g )M = (∂

∗
u | ∂ g )M − (γ(∂ r )∧,∗∂

∗
u | γg )Γ

= (u | ∂ ∂ g )M − (γ(∂ r )∧,∗∂
∗
u | γg )Γ

=−(γ(∂ r )∧,∗∂
∗
u | γg )Γ.

Here we used (3.2). Thus,

γ(∂ r )∧,∗∂
∗
u = 0.

The lemma follows.

Definition 3.3. The boundary conditions

γ(∂ r )∧,∗u = 0, γ(∂ r )∧,∗∂ u = 0, u ∈C∞(M ,Λ0,q T ∗(M ′))

are called ∂ -Neumann boundary conditions.

Definition 3.4. The ∂ -Neumann problem in M is the problem of finding, given

a form f ∈C∞(M ; Λ0,q T ∗(M ′)), another form u ∈D (q ) verifying

�(q )u = f .

Definition 3.5. Given q , 0≤ q ≤ n − 1. The Levi form is said to satisfy condition

Z (q ) at p ∈ Γ if it has at least n −q positive or at least q +1 negative eigenvalues.

If the Levi form is non-degenerate at p ∈ Γ, let (n−, n+), n−+n+ = n − 1, be the

signature. Then Z (q ) holds at p if and only if q 6= n−.

We have the following classical results (see Folland-Kohn [9])
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Theorem 3.6. (Kohn) We assume that Z (q ) is satisfied at each point of Γ. Then

Ker�(q ) is a finite dimensional subspace of C∞(M ; Λ0,q T ∗(M ′)), �(q ) has closed

range and Π(q ) is a smoothing operator. That is, the distribution kernel

KΠ(q )(z , w )∈C∞(M ×M ;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))).

Moreover, there exists an operator

N (q ) : L2(M ; Λ0,q T ∗(M ′))→Dom�(q )

such that

N (q )�(q )+Π(q ) = I on Dom�(q ),

�(q )N (q )+Π(q ) = I on L2(M ; Λ0,q T ∗(M ′)).

Furthermore, N (q )
�

C∞(M ; Λ0,q T ∗(M ′))
�

⊂ C∞(M ; Λ0,q T ∗(M ′)) and for each s ∈ R
and all f ∈C∞(M ; Λ0,q T ∗(M ′)), there is a constant c > 0, such that





N (q ) f






s+1
≤ c




 f






s

where ‖ ‖s denotes any of the equivalent norms defining H s (M ; Λ0,q T ∗(M ′)).

Theorem 3.7. (Kohn) Suppose that Z (q ) fails at some point of Γ and that Z (q−1)
and Z (q +1) hold at each point of Γ. Then,

Π(q )u = (I − ∂ N (q−1)∂
∗
− ∂

∗
N (q+1)∂ )u , u ∈Dom∂

∗⋂
C∞(M ; Λ0,q T ∗(M ′)),

where N (q+1) and N (q−1) are as in Theorem 3.6. In particular,

Π(q ) : Dom∂
∗⋂

C∞(M ; Λ0,q T ∗(M ′))→D (q ).

4 The operator T

By Assumption 1.1, the map

F (q ) : H 2(M ; Λ0,q T ∗(M ′))→H 0(M ; Λ0,q T ∗(M ′))⊕H
3
2 (Γ; Λ0,q T ∗(M ′)),

u → (�(q )f u ,γu ),

is injective. The Poisson operator

P : C∞(Γ; Λ0,q T ∗(M ′))→C∞(M ; Λ0,q T ∗(M ′))
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of �(q )f is well-defined. That is, if

u ∈C∞(Γ; Λ0,q T ∗(M ′)),

then

Pu ∈C∞(M ; Λ0,q T ∗(M ′)), �(q )f Pu = 0

and

γPu = u .

Moreover, if v ∈C∞(M ; Λ0,q T ∗(M ′)) and �(q )f v = 0, then

v = Pγv.

It is well-known (see page 29 of [5]) that P extends continuously

P : H s (Γ; Λ0,q T ∗(M ′))→H s+ 1
2 (M ; Λ0,q T ∗(M ′)), ∀ s ∈R.

Let

P∗ : E ′(M ; Λ0,q T ∗(M ′))→D ′(Γ; Λ0,q T ∗(M ′))

be the operator defined by

(P∗u | v )Γ = (u | Pv )M , u ∈ E ′(M ; Λ0,q T ∗(M ′)), v ∈C∞(Γ; Λ0,q T ∗(M ′)).

It is well-known (see page 30 of [5]) that P∗ is continuous:

P∗ : L2(M ; Λ0,q T ∗(M ′))→H
1
2 (Γ; Λ0,q T ∗(M ′))

and

P∗ : C∞(M ; Λ0,q T ∗(M ′))→C∞(Γ; Λ0,q T ∗(M ′)).

Let L be a classical pseudodifferential operator on a C∞ manifold. From now

on, we letσL denote the principal symbol of L. The operator

P∗P : C∞(Γ; Λ0,q T ∗(M ′))→C∞(Γ; Λ0,q T ∗(M ′))

is a classical elliptic pseudodifferential operator of order−1 and invertible (since

P is injective). (See Boutet de Monvel [4].) Let
p

−4Γ be the square root of −4Γ.

It is well-known (see [4]) that

σP∗P =σ(2
p
−4Γ)−1 . (4.1)

Let

(P∗P)−1 : C∞(Γ; Λ0,q T ∗(M ′))→C∞(Γ; Λ0,q T ∗(M ′))

be the inverse of P∗P . (P∗P)−1 is a classical elliptic pseudodifferential operator of

order 1 with scalar principal symbol. We have

σ(P∗P)−1 =σ2
p
−4Γ . (4.2)
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Definition 4.1. The Neumann operatorN (q ) is the operator on C∞(Γ; Λ0,q T ∗(M ′))
defined as follows:

N (q ) f = γ
∂

∂ r
P f , f ∈C∞(Γ; Λ0,q T ∗(M ′)).

The following is well-known (see page 95 of [10])

Lemma 4.2.
N (q ) : C∞(Γ; Λ0,q T ∗(M ′))→C∞(Γ; Λ0,q T ∗(M ′))

is a classical elliptic pseudodifferential operator of order 1 with scalar principal

symbol and we have

σN (q ) =σp−4Γ . (4.3)

We use the inner product [ | ] on H− 1
2 (Γ; Λ0,q T ∗(M ′)) defined as follows:

[u | v ] = (Pu | Pv )M = (P∗Pu | v )Γ, (4.4)

where u , v ∈H− 1
2 (Γ; Λ0,q T ∗(M ′)). We consider (∂ r )∧,∗ as an operator

(∂ r )∧,∗ : H− 1
2 (Γ; Λ0,q T ∗(M ′))→H− 1

2 (Γ; Λ0,q−1T ∗(M ′)).

Let

T : H− 1
2 (Γ; Λ0,q T ∗(M ′))→Ker (∂ r )∧,∗ =H− 1

2 (Γ; Λ0,q T ∗(Γ)) (4.5)

be the orthogonal projection onto Ker (∂ r )∧,∗ with respect to [ | ]. That is, if u ∈
H− 1

2 (Γ; Λ0,q T ∗(M ′)), then

(∂ r )∧,∗Tu = 0

and

[(I −T )u | g ] = 0, ∀ g ∈Ker (∂ r )∧,∗.

Lemma 4.3. T is a classical pseudodifferential operator of order 0 with principal

symbol

2(∂ r )∧,∗(∂ r )∧.

Moreover,

I −T = (P∗P)−1(∂ r )∧R , (4.6)

where

R : C∞(Γ; Λ0,q T ∗(M ′))→C∞(Γ; Λ0,q−1T ∗(M ′))

is a classical pseudodifferential operator of order −1.
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Proof. Let

E = 2(∂ r )∧,∗�(∂ r )∧,∗�†+2
�

(∂ r )∧,∗�†(∂ r )∧,∗,

E : H− 1
2 (Γ; Λ0,q T ∗(M ′))→H− 1

2 (Γ; Λ0,q T ∗(M ′)),

where
�

(∂ r )∧,∗�† is the formal adjoint of (∂ r )∧,∗ with respect to [ | ]. That is,

[(∂ r )∧,∗u | v ] = [u |
�

(∂ r )∧,∗�†v ],

u ∈H− 1
2 (Γ; Λ0,q T ∗(M ′)), v ∈H− 1

2 (Γ; Λ0,q−1T ∗(M ′)).

We can check that
�

(∂ r )∧,∗�†= (P∗P)−1(∂ r )∧(P∗P). (4.7)

Thus, the principal symbol of E is

2(∂ r )∧,∗(∂ r )∧+2(∂ r )∧(∂ r )∧,∗.

Since ‖d r ‖= 1= (




∂̄ r






2
+ ‖∂ r ‖2)

1
2 on Γ, we have





∂̄ r






2
= ‖∂ r ‖2 =

1

2
on Γ. (4.8)

From this, we can check that

2(∂ r )∧,∗(∂ r )∧+2(∂ r )∧(∂ r )∧,∗ = I : H− 1
2 (Γ; Λ0,q T ∗(M ′))→H− 1

2 (Γ; Λ0,q T ∗(M ′)),

where I is the identity map. E is a classical elliptic pseudodifferential operator

with principal symbol I . Then dim Ker E <∞. Let G be the orthogonal projection

onto Ker E and N be the partial inverse. Then G is a smoothing operator and N

is a classical elliptic pseudodifferential operator of order 0 with principal symbol

I (up to some smoothing operator). We have

E N +G = 2
�

(∂ r )∧,∗�(∂ r )∧,∗�†+2
�

(∂ r )∧,∗�†(∂ r )∧,∗
�

N +G = I (4.9)

on H− 1
2 (Γ; Λ0,q T ∗(M ′)). Put

eT = 2(∂ r )∧,∗�(∂ r )∧,∗�†N +G .

Note that

Ker E =
n

u ∈H− 1
2 (Γ; Λ0,q T ∗(M ′)); (∂ r )∧,∗u = 0,

�

(∂ r )∧,∗�†u = 0
o

.

From this and (∂ r )∧,∗ ◦ (∂ r )∧,∗ = 0, we see that

eT g ∈Ker (∂ r )∧,∗, g ∈H− 1
2 (Γ; Λ0,q T ∗(M ′)).
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From (4.9), we have

I − eT = 2
�

(∂ r )∧,∗�†(∂ r )∧,∗N

and

[(I − eT )g | u ] = [2
�

(∂ r )∧,∗�†(∂ r )∧,∗N g | u ]
= [2(∂ r )∧,∗N g | (∂ r )∧,∗u ]

= 0, u ∈Ker (∂ r )∧,∗, g ∈H− 1
2 (Γ; Λ0,q T ∗(M ′)).

Thus,

g = eT g +(I − eT )g

is the orthogonal decomposition with respect to [ | ]. Hence,

eT = T.

The lemma follows.

Now, we assume that Z (q ) fails at some point of Γ and that Z (q−1) and Z (q+
1) hold at each point of Γ. We recall that

Π(q )u = (I − ∂ N (q−1)∂
∗
− ∂

∗
N (q+1)∂ )u , u ∈Dom∂

∗⋂
C∞(M ; Λ0,q T ∗(M ′)).

(See Theorem 3.7.)

Proposition 4.4. We assume that Z (q ) fails at some point of Γ and that Z (q − 1)
and Z (q +1) hold at each point of Γ. Then,

Π(q )u =Π(q )PT (P∗P)−1P∗u

= (I − ∂ N (q−1)∂
∗
− ∂

∗
N (q+1)∂ )PT (P∗P)−1P∗u ,

u ∈C∞(M ; Λ0,q T ∗(M ′)), (4.10)

where N (q+1), N (q−1) are as in Theorem 3.6 and T is as in (4.5). In particular,

Π(q ) : C∞(M ; Λ0,q T ∗(M ′))→D (q ).

Proof. Let u ∈C∞(M ; Λ0,q T ∗(M ′)). We claim that

u −Π(q )PT (P∗P)−1P∗u ∈
�

Ker�(q )
�⊥

. (4.11)

Let v ∈Dom∂
∗⋂

C∞(M ; Λ0,q T ∗(M ′)). From Theorem 3.7, we know that

Π(q )v ∈D (q ).
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Since Π(q )v is harmonic,

Π(q )v = PγΠ(q )v.

Note that

P(P∗P)−1P∗ : C∞(M ; Λ0,q T ∗(M ′))→Ker�(q )f

is the orthogonal projection with respect to ( | )M . That is,

( f −P(P∗P)−1P∗ f | Pγg )M = 0, f , g ∈C∞(M ; Λ0,q T ∗(M ′)).

We have

(Π(q )PT (P∗P)−1P∗u | Π(q )v )M
= (PT (P∗P)−1P∗u | Π(q )v )M
= (PT (P∗P)−1P∗u | PγΠ(q )v )M
= (P(P∗P)−1P∗u | PγΠ(q )v )M
= (u | Π(q )v )M . (4.12)

Thus,

(u −Π(q )PT (P∗P)−1P∗u | Π(q )v )M = 0. (4.13)

Since Dom∂
∗⋂

C∞(M ; Λ0,q T ∗(M ′)) is dense in L2(M ; Λ0,q T ∗(M ′)), we get (4.11).

Thus,

Π(q )u =Π(q )PT (P∗P)−1P∗u .

Since PT (P∗P)−1P∗u ∈ Dom∂
∗⋂

C∞(M ; Λ0,q T ∗(M ′)), we get the last identity in

(4.10). The proposition follows.

5 The principal symbols of γ∂ P and γ∂ f
∗
P

First, we compute the principal symbols of ∂ and ∂ f
∗
. For each point z 0 ∈ Γ, we

can choose an orthonormal frame

t1(z ), . . . , tn−1(z ) (5.1)

for T ∗,0,1
z varying smoothly with z in a neighborhood of z 0, where T ∗0,1

z is defined

by (2.24). Then (see (2.26))

t1(z ), . . . , tn−1(z ), tn (z ) :=
∂ r (z )







∂ r (z )









is an orthonormal frame for Λ0,1T ∗z (M
′). Let

T1(z ), . . . , Tn−1(z ), Tn (z ) (5.2)
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denote the basis of Λ0,1Tz (M ′)which is dual to

t1(z ), . . . , tn (z ).

We have (see (2.27))

Tn =
i Y + ∂

∂ r




i Y + ∂
∂ r







. (5.3)

Note that

T1(z ), . . . , Tn−1(z ) is an orthonormal frame for Λ0,1Tz (Γ), z ∈ Γ, (5.4)

and

t1(z ), . . . , tn−1(z ) is an orthonormal frame for Λ0,1T ∗z (Γ), z ∈ Γ. (5.5)

We have

∂ f =
�

n
∑

j=1

t ∧j Tj

�

f , f ∈C∞(M ′).

If f (z )t j1(z )∧· · ·∧t jq (z )∈C∞(M ′; Λ0,q T ∗(M ′)) is a typical term in a general (0,q )
form, we have

∂ f =
n
∑

j=1

(Tj f )t ∧j t j1 ∧ · · · ∧ t jq

+
q
∑

k=1

(−1)k−1 f (z )t j1 ∧ · · · ∧ (∂ t jk )∧ · · · ∧ t jq .

So for the given orthonormal frame we have

∂ =
n
∑

j=1

t ∧j ◦Tj + lower order terms

=
n−1
∑

j=1

t ∧j ◦Tj +
(∂ r )∧







∂ r









◦
i Y + ∂

∂ r




i Y + ∂
∂ r







+ lower order terms (5.6)

and correspondingly

∂ f
∗
=

n−1
∑

j=1

t ∧,∗
j ◦T ∗j +

(∂ r )∧,∗







∂ r









◦
i Y − ∂

∂ r




i Y + ∂
∂ r







+ lower order terms. (5.7)

We consider

γ∂ P : C∞(Γ; Λ0,q T ∗(M ′))→C∞(Γ; Λ0,q+1T ∗(M ′))
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and

γ∂ f
∗
P : C∞(Γ; Λ0,q+1T ∗(M ′))→C∞(Γ; Λ0,q T ∗(M ′)).

γ∂ P and γ∂ f
∗
P are classical pseudodifferential operators of order 1. From (4.8),

we know that







∂ r







=
1
p

2
on Γ.

We can check that












i Y +
∂

∂ r













=
p

2 on Γ.

Combining this with (5.6), (5.7) and (4.3), we get

γ∂ P =
n−1
∑

j=1

t ∧j ◦Tj +(∂ r )∧ ◦ (i Y +
p

−4Γ)+ lower order terms (5.8)

and

γ∂ f
∗
P =

n−1
∑

j=1

t ∧,∗
j ◦T ∗j +(∂ r )∧,∗ ◦ (i Y −

p

−4Γ)+ lower order terms. (5.9)

From Lemma 3.2, it follows that

γ∂ f
∗
P : C∞(Γ; Λ0,q+1T ∗(Γ))→C∞(Γ; Λ0,q T ∗(Γ)). (5.10)

Put

Σ+ =
�

(x ,λω0(x ))∈ T ∗(Γ)r0; λ> 0
	

,

Σ− =
�

(x ,λω0(x ))∈ T ∗(Γ)r0; λ< 0
	

. (5.11)

We recall thatω0 = J t (d r ). In section 8, we need the following

Proposition 5.1. The map

γ(∂ r )∧,∗∂ P : C∞(Γ; Λ0,q T ∗(Γ))→C∞(Γ; Λ0,q T ∗(Γ)).

is a classical pseudodifferential operator of order one from boundary (0,q ) forms

to boundary (0,q ) forms and we have

γ(∂ r )∧,∗∂ P =
1

2
(i Y +
p

−4Γ)+ lower order terms. (5.12)

In particular, it is elliptic outside Σ−.
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Proof. Note that

γ(∂ r )∧,∗∂ P = γ(∂ r )∧,∗∂ P +γ∂ P(∂ r )∧,∗ (5.13)

on the space C∞(Γ; Λ0,q T ∗(Γ)). From (5.8), we have

γ(∂ r )∧,∗∂ P =
n−1
∑

j=1

�

(∂ r )∧,∗t ∧j

�

◦Tj+
�

(∂ r )∧,∗(∂ r )∧
�

◦ (i Y +
p

−4Γ)

+ lower order terms

and

γ∂ P(∂ r )∧,∗ =
n−1
∑

j=1

�

t ∧j (∂ r )∧,∗
�

◦Tj+
�

(∂ r )∧(∂ r )∧,∗
�

◦ (i Y +
p

−4Γ)

+ lower order terms.

Thus,

γ(∂ r )∧,∗∂ P +γ∂ P(∂ r )∧,∗ =
n−1
∑

j=1

�

t ∧j (∂ r )∧,∗+(∂ r )∧,∗t ∧j

�

◦Tj

+
�

(∂ r )∧(∂ r )∧,∗+(∂ r )∧,∗(∂ r )∧
�

◦ (i Y +
p

−4Γ)

+ lower order terms. (5.14)

Note that

t ∧j (∂ r )∧,∗+(∂ r )∧,∗t ∧j = 0, j = 1, . . . , n −1, (5.15)

and

(∂ r )∧(∂ r )∧,∗+(∂ r )∧,∗(∂ r )∧ =
1

2
. (5.16)

Combining this with (5.14) and (5.13), we get (5.12).

Note that

σi Y+
p
−4Γ(x ,ξ) =−〈Y ,ξ〉+ ‖ξ‖= |ξ|+(ω0 | ξ)≥ 0

with equality precisely when ξ=−λω0, λ≥ 0. The proposition follows.

For z ∈ Γ, put

I 0,q T ∗z (M
′) =
¦

u ∈Λ0,q T ∗z (M
′); u = (∂ r )∧g , g ∈Λ0,q−1T ∗z (M

′)
©

. (5.17)

I 0,q T ∗z (M ) is orthogonal to Λ0,q T ∗z (Γ). In section 7, we need the following
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Proposition 5.2. The operator

γ(∂ r )∧∂ f
∗
P(P∗P)−1 : C∞(Γ; I 0,q T ∗(M ′))→C∞(Γ; I 0,q T ∗(M ′)).

is a classical pseudodifferential operator of order one,

γ(∂ r )∧∂ f
∗
P(P∗P)−1 = (i Y −

p

−4Γ)
p

−4Γ+ lower order terms. (5.18)

It is elliptic outside Σ+.

Proof. Note that

γ(∂ r )∧∂ f
∗
P(P∗P)−1 = γ(∂ r )∧∂ f

∗
P(P∗P)−1+γ∂ f

∗
P(P∗P)−1(∂ r )∧ (5.19)

on the space C∞(Γ; I 0,q T ∗(Γ)). From (5.9) and (4.2), we have

γ(∂ r )∧∂ f
∗
P(P∗P)−1 =

n−1
∑

j=1

�

(∂ r )∧t ∧,∗
j

�

◦
�

T ∗j ◦2
p

−4Γ
�

+
�

(∂ r )∧(∂ r )∧,∗
�

◦
�

(i Y −
p

−4Γ) ◦2
p

−4Γ
�

+ lower order terms (5.20)

and

γ∂ f
∗
P(P∗P)−1(∂ r )∧ =

n−1
∑

j=1

�

t ∧,∗
j (∂ r )∧
�

◦
�

T ∗j ◦2
p

−4Γ
�

+
�

(∂ r )∧,∗(∂ r )∧
�

◦
�

(i Y −
p

−4Γ) ◦2
p

−4Γ
�

+ lower order terms. (5.21)

Thus,

γ(∂ r )∧∂ f
∗
P(P∗P)−1+γ∂ f

∗
P(P∗P)−1(∂ r )∧

=
n−1
∑

j=1

�

t ∧,∗
j (∂ r )∧+(∂ r )∧t ∧,∗

j

�

◦
�

T ∗j ◦2
p

−4Γ
�

+
�

(∂ r )∧,∗(∂ r )∧+(∂ r )∧(∂ r )∧,∗
�

◦
�

(i Y −
p

−4Γ) ◦2
p

−4Γ
�

+ lower order terms.

(5.22)

Combining this with (5.19), (5.15) and (5.16), we get (5.18). The proposition fol-

lows.

6 The operator�(q )β
Put

∂β = Tγ∂ P : C∞(Γ; Λ0,q T ∗(Γ))→C∞(Γ; Λ0,q+1T ∗(Γ)). (6.1)
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We recall that (see (4.5)) the orthogonal projection T onto Ker (∂ r )∧,∗ with respect

to [ | ] is a classical pseudodifferential operator of order 0 with principal symbol

2(∂ r )∧,∗(∂ r )∧.

(See Lemma 4.3.) ∂β is a classical pseudodifferential operator of order one from

boundary (0,q ) forms to boundary (0,q +1) forms.

Lemma 6.1. We have

(∂β )2 = 0.

Proof. Let u , v ∈C∞(Γ; Λ0,q T ∗(Γ)). We claim that

[Tγ∂ P(I −T )γ∂ Pu | v ] = 0. (6.2)

We have

[Tγ∂ P(I −T )γ∂ Pu | v ] = [γ∂ P(I −T )γ∂ Pu | v ] (since v ∈Ker (∂ r )∧,∗)

= (Pγ∂ P(I −T )γ∂ Pu | Pv )M

= (∂ P(I −T )γ∂ Pu | Pv )M (∂ P f ∈Ker�(q )f , ∀ f ∈C∞)

= (P(I −T )γ∂ Pu | ∂ f
∗
Pv )M (since Pv ∈Dom∂

∗
)

= [(I −T )γ∂ Pu | γ∂ f
∗
Pv ].

From Lemma 3.2, we have

γ∂ f
∗
Pv ∈Ker (∂ r )∧,∗.

Thus,

[(I −T )γ∂ Pu | γ∂ f
∗
Pv ] = 0.

We get (6.2), and hence

Tγ∂ Pγ∂ Pu = Tγ∂ PTγ∂ Pu , u ∈C∞(Γ; Λ0,q T ∗(Γ)).

Now,

(∂β )2 = Tγ∂ PTγ∂ P = Tγ∂ Pγ∂ P = Tγ∂
2
P = 0.

The lemma follows.

We pause and recall the tangential Cauchy-Riemann operator. For z ∈ Γ, let

π0,q
z :Λ0,q T ∗z (M

′)→Λ0,q T ∗z (Γ)

36



be the orthogonal projection map (with respect to ( | )). We can check that

π0,q
z = 2(∂ r (z ))∧,∗(∂ r (z ))∧.

For an open set U ⊂ Γ, the tangential Cauchy-Riemann operator:

∂b : C∞(U ; Λ0,q T ∗(Γ))→C∞(U ; Λ0,q+1T ∗(Γ))

is now defined as follows: for anyφ ∈C∞(U ; Λ0,q T ∗(Γ)), let eU be an open set in M ′

with eU ∩Γ =U and pick φ1 ∈C∞( eU ; Λ0,q T ∗(M ′)) that satisfies π0,q
z (φ1(z )) =φ(z ),

for all z ∈U . Then ∂bφ is defined to be a smooth section in C∞(U ; Λ0,q+1T ∗(Γ)):

z →π0,q
z (γ∂ φ1(z )).

It is not difficult to check that the definition of ∂b is independent of the choice of

φ1. Since ∂
2
= 0, we have ∂b

2
= 0 and we have the following boundary complex

∂b : · · · →C∞(U ;Λ0,q T ∗(Γ))→C∞(U ;Λ0,q+1T ∗(Γ))→ ·· · .

Let ∂b
∗

be the formal adjoint of ∂b with respect to ( | )Γ, that is

(∂ b f | h)Γ = ( f | ∂b
∗
h)Γ, f ∈C∞0 (U ;Λ0,q T ∗(Γ)), h ∈C∞(U ;Λ0,q+1T ∗(Γ)).

∂b
∗

is a differential operator of order one from boundary (0,q+1) forms to bound-

ary (0,q ) forms and

∂b
∗

: · · · ←C∞(U ;Λ0,q T ∗(Γ))←C∞(U ;Λ0,q+1T ∗(Γ))← ·· · .

is a complex.

From the definition of ∂b , we know that

∂b = 2(∂ r )∧,∗(∂ r )∧γ∂ P.

Since the principal symbol of T is 2(∂ r )∧,∗(∂ r )∧, it follows that

∂β = ∂b + lower order terms. (6.3)

Let

∂β
†

: C∞(Γ; Λ0,q+1T ∗(Γ))→C∞(Γ; Λ0,q T ∗(Γ)), (6.4)

be the formal adjoint of ∂β with respect to [ | ], that is

[∂β f | h] = [ f | ∂β
†
h], f ∈C∞(Γ; Λ0,q T ∗(Γ)), h ∈C∞(Γ; Λ0,q+1T ∗(Γ)).

∂β
†

is a classical pseudodifferential operator of order one from boundary (0,q+1)
forms to boundary (0,q ) forms.
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Lemma 6.2. We have

∂β
†
= γ∂ f

∗
P.

Proof. Let u ∈C∞(Γ; Λ0,q T ∗(Γ)), v ∈C∞(Γ; Λ0,q+1T ∗(Γ)). We have

[∂βu | v ] = [Tγ∂ Pu | v ] = [γ∂ Pu | v ]
= (Pγ∂ Pu | Pv )M = (∂ Pu | Pv )M

= (Pu | ∂ f
∗
Pv )M = [u | γ∂ f

∗
Pv ],

and the lemma follows.

Remark 6.3. We can check that on boundary (0,q ) forms, we have

∂β
†
= γ∂ f

∗
P = ∂b

∗
+ lower order terms. (6.5)

Set

�(q )β = ∂β
†
∂β + ∂β∂β

†
:D ′(Γ; Λ0,q T ∗(Γ))→D ′(Γ; Λ0,q T ∗(Γ)). (6.6)

�(q )β is a classical pseudodifferential operator of order two from boundary (0,q )
forms to boundary (0,q ) forms. We recall that the Kohn Laplacian on Γ is given

by

�(q )b = ∂b∂b
∗
+ ∂b

∗
∂b :D ′(Γ; Λ0,q T ∗(Γ))→D ′(Γ; Λ0,q T ∗(Γ)).

From (6.3) and (6.5), we see that

σ�(q )b
=σ�(q )β

and the characteristic manifold of �(q )β is

Σ=Σ+
⋃

Σ−,

where Σ+, Σ− are given in (5.11). (See section 3 of [18].) Moreover, σ�(q )β
vanishes

to second order on Σ and we have

�(q )β =�
(q )
b + L 1, (6.7)

where L 1 is a classical pseudodifferential operator of order one with

σL 1 = 0 at each point of Σ. (6.8)

The following is well-known (see Lemma 3.1 of [18])

Lemma 6.4. Σ is a symplectic submanifold of T ∗(Γ) if and only if the Levi form is

non-degenerate at each point of Γ.
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Let p s
β denote the subprincipal symbol of �(q )β (invariantly defined on Σ) and

let Fβ (ρ) denote the fundamental matrix of σ�(q )β
at ρ ∈ Σ. We write etr Fβ (ρ) to

denote
∑
�

�λj

�

�, where ±iλj are the non-vanishing eigenvalues of Fβ (ρ). From

(6.7) and (6.8), we see that

p s
β +

1

2
etr Fβ = p s

b +
1

2
etr Fb on Σ,

where p s
b is the subprincipal symbol of �(q )b and Fb is the fundamental matrix of

σ�(q )b
. We have the following

Lemma 6.5. Let ρ = (p ,ξ)∈Σ. Then

1

2
etr Fβ +p s

β =
n−1
∑

j=1

�

�λj

�

� |σi Y |+
�

n−1
∑

j=1

L p (T j , Tj )−
n−1
∑

j ,k=1

2t ∧j t ∧,∗
k L p (T k , Tj )
�

σi Y at ρ,

(6.9)

where λj , j = 1, . . . , n − 1, are the eigenvalues of L p and Tj , t j , j = 1, . . . , n − 1, are

as in (5.4) and (5.5).

Proof. See section 3 of [18].

It is not difficult to see that on Σ the action of 1
2
etr Fβ +p s

β on boundary (0,q )
forms has the eigenvalues

n−1
∑

j=1

�

�λj

�

� |σi Y |+
∑

j /∈J

λjσi Y −
∑

j∈J

λjσi Y , |J |=q ,

J = (j1, j2, . . . , jq ), 1≤ j1 < j2 < · · ·< jq ≤ n −1.

(6.10)

(See section 3 of [18].) We assume that the Levi form is non-degenerate at p ∈ Γ.

Let (n−, n+), n−+n+ = n −1, be the signature of L p . Since 〈Y ,ω0〉=−1, we have

σi Y > 0 on Σ+,σi Y < 0 on Σ−.

Let

inf (p s
β +

1

2
etr Fβ )(ρ) = inf

�

λ; λ : eigenvalue of (p s
β +

1

2
etr Fβ )(ρ)
�

, ρ ∈Σ.

From (6.10), we see that at (p ,ω0(p ))∈Σ+,

inf (p s
β +

1

2
etr Fβ )

¨

= 0, q = n+
> 0, q 6= n+

. (6.11)

At (p ,−ω0(p ))∈Σ−,

inf (p s
β +

1

2
etr Fβ )

¨

= 0, q = n−
> 0, q 6= n−

. (6.12)
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Definition 6.6. Given q , 0 ≤ q ≤ n − 1, the Levi form is said to satisfy condition

Y (q ) at p ∈ Γ if for any |J | = q , J = (j1, j2, . . . , jq ), 1 ≤ j1 < j2 < · · · < jq ≤ n − 1, we

have
�

�

�

�

�

�

∑

j /∈J

λj −
∑

j∈J

λj

�

�

�

�

�

�

<
n−1
∑

j=1

�

�λj

�

� ,

where λj , j = 1, . . . , (n − 1), are the eigenvalues of L p . If the Levi form is non-

degenerate at p , then the condition is equivalent to q 6= n+, n−, where (n−, n+),
n−+n+ = n −1, is the signature of L p .

From now on, we assume that the Levi form

is non-degenerate at each point of Γ. (6.13)

By classical works of Boutet de Monvel [6] and Sjöstrand [26], we get the fol-

lowing

Proposition 6.7. �(q )β is hypoelliptic with loss of one derivative if and only if Y (q )
holds at each point of Γ.

7 The heat equation for�(q )β
In this section, we will apply some results of Menikoff and Sjöstrand [24] to con-

struct approximate orthogonal projection for�(q )β . Our presentation is essentially

taken from [18]. The reader who is familiar with [18] may go directly to Theo-

rem 7.15.

Until further notice, we work with real local coordinates x = (x1,x2, . . . ,x2n−1)
defined on a connected open set Ω⊂ Γ. Thus, the Levi form has constant signa-

ture on Ω. For any C∞ function f , we also write f to denote an almost analytic

extension. (For the precise meaning of almost analytic functions, we refer the

reader to Definition 1.1of [23].) We let the full symbol of �(q )β be:

full symbol of �(q )β ∼
∞
∑

j=0

qj (x ,ξ),

where qj (x ,ξ) is positively homogeneous of order 2− j .

First, we consider the characteristic equation for ∂t +�
(q )
β . We look for solu-

tionsψ(t ,x ,η)∈C∞(R+×T ∗(Ω) \0) of the problem






∂ ψ

∂ t
− iq0(x ,ψ′x ) =O(

�

�Imψ
�

�

N
), ∀N ≥ 0,

ψ|t=0 =



x ,η
�

(7.1)
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with Imψ(t ,x ,η)≥ 0.

Let U be an open set in Rn and let f , g ∈C∞(U ). We write

f � g

if for every compact set K ⊂U there is a constant cK > 0 such that

f ≤ cK g , g ≤ cK f on K .

We have the following

Proposition 7.1. There exists ψ(t ,x ,η) ∈ C∞(R+ × T ∗(Ω) \ 0) such that Imψ ≥ 0

with equality precisely on ({0} × T ∗(Ω) \ 0)
⋃

(R+ × Σ) and such that (7.1) holds

where the error term is uniform on every set of the form [0, T ]×K with T > 0 and

K ⊂ T ∗(Ω) \0 compact. Furthermore,

ψ(t ,x ,η) =



x ,η
�

onΣ, d x ,η(ψ−



x ,η
�

) = 0 onΣ,

ψ(t ,x ,λη) =λψ(λt ,x ,η), λ> 0,

Imψ(t ,x ,η)�
�

�η
�

�

t
�

�η
�

�

1+ t
�

�η
�

�

dist ((x ,
η
�

�η
�

�

),Σ))2, t ≥ 0,
�

�η
�

�≥ 1. (7.2)

Proposition 7.2. There exists a functionψ(∞,x ,η)∈C∞(T ∗(Ω)\0)with a uniquely

determined Taylor expansion at each point of Σ such that

For every compact set K ⊂ T ∗(Ω) \0 there is a constant cK > 0 such that

Imψ(∞,x ,η)≥ cK

�

�η
�

� (dist ((x ,
η
�

�η
�

�

),Σ))2,

d x ,η(ψ(∞,x ,η)−



x ,η
�

) = 0 on Σ.

If λ ∈C (T ∗(Ω) \ 0), λ > 0 and λ|Σ <min
�

�λj

�

�, where ±i
�

�λj

�

� are the non-vanishing

eigenvalues of the fundamental matrix of �(q )β , then the solutionψ(t ,x ,η) of (7.1)

can be chosen so that for every compact set K ⊂ T ∗(Ω) \ 0 and all indices α, β , γ,

there is a constant cα,β ,γ,K such that

�

�

�∂ αx ∂
β
η ∂

γ
t (ψ(t ,x ,η)−ψ(∞,x ,η))

�

�

�≤ cα,β ,γ,K e−λ(x ,η)t onR+×K . (7.3)

For the proof of Proposition 7.1 and Proposition 7.2, we refer the reader to

Menikoff-Sjöstrand [24].

Definition 7.3. We will say that a ∈ C∞(R+ × T ∗(Ω)) is quasi-homogeneous of

degree j if a (t ,x ,λη) =λj a (λt ,x ,η) for all λ> 0.
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We consider the problem
(

(∂t +�
(q )
β )u (t ,x ) = 0 inR+×Ω

u (0,x ) = v (x )
. (7.4)

We shall start by making only a formal construction. We look for an approximate

solution of (7.4) of the form

u (t ,x ) = A(t )v (x )

A(t )v (x ) =
1

(2π)2n−1

∫ ∫

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)v (y )d y dη (7.5)

where formally

a (t ,x ,η)∼
∞
∑

j=0

a j (t ,x ,η), a j (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))),

a j (t ,x ,η) is a quasi-homogeneous function of degree −j .

We apply ∂t +�
(q )
β formally under the integral in (7.5) and then introduce the

asymptotic expansion of �(q )β (a e iψ). Setting (∂t +�
(q )
β )(a e iψ)∼ 0 and regrouping

the terms according to the degree of quasi-homogeneity. We obtain the transport

equations
(

T (t ,x ,η,∂t ,∂x )a 0 =O(
�

�Imψ
�

�

N
), ∀N

T (t ,x ,η,∂t ,∂x )a j + l j (t ,x ,η, a 0, . . . , a j−1) =O(
�

�Imψ
�

�

N
), ∀N .

(7.6)

Here

T (t ,x ,η,∂t ,∂x ) = ∂t − i
2n−1
∑

j=1

∂ q0

∂ ξj
(x ,ψ′x )

∂

∂ x j
+q (t ,x ,η)

where

q (t ,x ,η) =q1(x ,ψ′x )+
1

2i

2n−1
∑

j ,k=1

∂ 2q0(x ,ψ′x )
∂ ξj ∂ ξk

∂ 2ψ(t ,x ,η)
∂ x j ∂ xk

and l j (t ,x ,η) is a linear differential operator acting on a 0, a 1, . . . , a j−1. We can

repeat the method of [18] (see Proposition 5.7 of [18]) to get the following

Proposition 7.4. Let (n−, n+), n−+n+ = n − 1, be the signature of the Levi form

on Ω. We can find solutions

a j (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))), j = 0, 1, . . . , (7.7)

of the system (7.6) with

a 0(0,x ,η) = I , a j (0,x ,η) = 0 when j > 0, (7.8)
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where a j (t ,x ,η) is a quasi-homogeneous function of degree −j , such that a j has

unique Taylor expansions on Σ. Moreover, we can find

a j (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))), j = 0, 1, . . . ,

where a j (∞,x ,η) is a positively homogeneous function of degree −j , ε0 > 0 such

that for all indices α, β , γ, j , every compact set K ⊂Σ, there exists c > 0, such that
�

�

�∂
γ

t ∂
α

x ∂
β
η (a j (t ,x ,η)−a j (∞,x ,η))

�

�

�≤ c e−ε0t |η|(1+
�

�η
�

�)−j−|β |+γ (7.9)

on R+×K ,
�

�η
�

�≥ 1.

Furthermore, for all j = 0, 1, . . .,

¨

all derivatives of a j (∞,x ,η) vanish at Σ+ if q 6= n+
all derivatives of a j (∞,x ,η) vanish at Σ− if q 6= n−

(7.10)

and
¨

a 0(∞,x ,η) 6= 0 at each point of Σ+ if q = n+
a 0(∞,x ,η) 6= 0 at each point of Σ− if q = n−

. (7.11)

Definition 7.5. Let r (x ,η) be a non-negative real continuous function on T ∗(Ω).
We assume that r (x ,η) is positively homogeneous of degree 1, that is, r (x ,λη) =
λr (x ,η), for λ≥ 1,

�

�η
�

�≥ 1. For 0≤q ≤ n −1 and k ∈R, we say that

a ∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)))

if

a ∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)))

and for all indices α, β , γ, every compact set K ⊂Ω and every ε > 0, there exists a

constant c > 0 such that
�

�

�∂
γ

t ∂
α

x ∂
β
η a (t ,x ,η)
�

�

�≤ c e t (−r (x ,η)+ε|η|)(1+
�

�η
�

�)k+γ−|β |, x ∈ K ,
�

�η
�

�≥ 1.

Remark 7.6. It is easy to see that we have the following properties:

(a) If a ∈ Ŝk
r1

, b ∈ Ŝl
r2

then ab ∈ Ŝk+l
r1+r2

, a +b ∈ Ŝmax(k ,l )
min(r1,r2)

.

(b) If a ∈ Ŝk
r then ∂ γt ∂ αx ∂

β
η a ∈ Ŝ

k−|β |+γ
r .

(c) If a j ∈ Ŝ
k j
r , j = 0, 1, 2, . . . and k j ↘ −∞ as j →∞, then there exists a ∈ Ŝk0

r

such that a −
∑v−1

0 a j ∈ Ŝkv
r , for all v = 1, 2, . . .. Moreover, if Ŝ−∞r denotes

⋂

k∈R Ŝk
r then a is unique modulo Ŝ−∞r .
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If a and a j have the properties of (c ), we write

a ∼
∞
∑

0

a j in the symbol space Ŝk0
r .

From Proposition 7.4 and the standard Borel construction, we get the follow-

ing

Proposition 7.7. Let (n−, n+), n−+n+ = n − 1, be the signature of the Levi form

on Ω. We can find solutions

a j (t ,x ,η)∈C∞(R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))), j = 0, 1, . . .

of the system (7.6) with

a 0(0,x ,η) = I , a j (0,x ,η) = 0 when j > 0,

where a j (t ,x ,η) is a quasi-homogeneous function of degree−j , such that for some

r > 0 as in Definition 7.5,

a j (t ,x ,η)−a j (∞,x ,η)∈ Ŝ−j
r (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))), j = 0, 1, . . . ,

where

a j (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))), j = 0, 1, . . . ,

and a j (∞,x ,η) is a positively homogeneous function of degree −j .

Furthermore, for all j = 0, 1, . . .,
¨

a j (∞,x ,η) = 0 in a conic neighborhood of Σ+, if q 6= n+,

a j (∞,x ,η) = 0 in a conic neighborhood of Σ−, if q 6= n−.

Remark 7.8. Let

b (t ,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)))

with r > 0. We assume that b (t ,x ,η) = 0 when
�

�η
�

�≤ 1. Letχ ∈C∞0 (R2n−1) be equal

to 1 near the origin. Put

Bε(x , y ) =

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)d t
�

χ(εη)dη.

For u ∈C∞0 (Ω; Λ0,q T ∗(Γ)), we can show that

lim
ε→0
(

∫

Bε(x , y )u (y )d y )∈C∞(Ω; Λ0,q T ∗(Γ))
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and

B : C∞0 (Ω; Λ0,q T ∗(Γ))→C∞(Ω; Λ0,q T ∗(Γ))

u → lim
ε→0
(

∫

Bε(x , y )u (y )d y ),

is continuous. Formally,

B (x , y ) =

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)d t
�

dη.

Moreover, B has a unique continuous extension

B : E ′(Ω; Λ0,q T ∗(Γ))→D ′(Ω; Λ0,q T ∗(Γ))

and

B (x , y )∈C∞(Ω×Ωrdiag (Ω×Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))).

For the details, we refer the reader to Proposition 6.6 of [18].

Remark 7.9. Let

a (t ,x ,η)∈ Ŝk
0 (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))).

We assume a (t ,x ,η) = 0, if
�

�η
�

�≤ 1 and

a (t ,x ,η)−a (∞,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)))

with r > 0, where

a (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))).

Then we can also define

A(x , y ) =

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)− e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)
�

d t
�

dη

(7.12)

as an oscillatory integral by the following formula:

A(x , y ) =

∫

�

∫ ∞

0

e i (ψ(t ,x ,η)−〈y ,η〉)(−t )(iψ
′

t (t ,x ,η)a (t ,x ,η)+a ′t (t ,x ,η))d t
�

dη.

We notice that

(−t )(iψ′t (t ,x ,η)a (t ,x ,η)+a ′t (t ,x ,η))∈ Ŝk+1
r , r > 0.
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We recall the following

Definition 7.10. Let k ∈R. Sk
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))) is the space of all

a ∈C∞(T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)))

such that for every compact sets K ⊂ Ω and all α ∈ N2n−1, β ∈ N2n−1, there is a

constant cα,β ,K > 0 such that
�

�

�∂ αx ∂
β
ξ a (x ,ξ)
�

�

�≤ cα,β ,K (1+ |ξ|)k−
|β |
2 +

|α|
2 , (x ,ξ)∈ T ∗(Ω),x ∈ K .

Sk
1
2 , 1

2

is called the space of symbols of order k type ( 1
2

, 1
2
).

Definition 7.11. Let k ∈ R. A pseudodifferential operator of order k type ( 1
2

, 1
2
)

from sections of Λ0,q T ∗(Γ) to sections of Λ0,q T ∗(Γ) is a continuous linear map

A : C∞0 (Ω; Λ0,q T ∗(Γ))→D ′(Ω; Λ0,q T ∗(Γ))

such that the distribution kernel of A is

KA = A(x , y ) =
1

(2π)2n−1

∫

e i〈x−y ,ξ〉a (x ,ξ)dξ

with a ∈ Sk
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))). We call a (x ,ξ) the symbol of A. We

shall write

Lk
1
2 , 1

2

(Ω; Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))

to denote the space of pseudodifferential operators of order k type ( 1
2

, 1
2
) from

sections of Λ0,q T ∗(Γ) to sections of Λ0,q T ∗(Γ).

We recall the following classical proposition of Calderon-Vaillancourt. (See

Hörmander [14].)

Proposition 7.12. If A ∈ Lk
1
2 , 1

2

(Ω; Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)). Then, for every s ∈ R, A is

continuous

A : H s
comp(Ω; Λ0,q T ∗(Γ))→H s−k

loc (Ω; Λ0,q T ∗(Γ)).

We have the following

Proposition 7.13. Let

a (t ,x ,η)∈ Ŝk
0 (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))).

We assume a (t ,x ,η) = 0, if
�

�η
�

�≤ 1 and

a (t ,x ,η)−a (∞,x ,η)∈ Ŝk
r (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)))
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with r > 0, where

a (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))).

Let

A(x , y ) =
1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)−

e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)
�

d t
�

dη

be as in (7.12). Then

A ∈ Lk−1
1
2 , 1

2

(Ω; Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))

with symbol

q (x ,η) =

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈x ,η〉)a (t ,x ,η)− e i (ψ(∞,x ,η)−〈x ,η〉)a (∞,x ,η)
�

d t

∈Sk−1
1
2 , 1

2

(T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))).

Proof. See Lemma 6.16 and Remark 6.17 of [18].

From now on, we write

1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)− e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)
�

d t
�

dη

to denote the kernel of pseudodifferential operator of order k −1 type ( 1
2

, 1
2
) from

sections of Λ0,q T ∗(Γ) to sections of Λ0,q T ∗(Γ)with symbol

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈x ,η〉)a (t ,x ,η)− e i (ψ(∞,x ,η)−〈x ,η〉)a (∞,x ,η)
�

d t ,

where a (t ,x ,η) and a (∞,x ,η) are as in Proposition 7.13.

The following is essentially well-known (See page 72 of [24].)

Proposition 7.14. Let Q be a properly supported pseudodifferential operator on Ω
of order k > 0 with classical symbol q (x ,ξ)∈C∞(T ∗(Ω)). Let

b (t ,x ,η)∈ Ŝm
0 (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))).

We assume that b (t ,x ,η) = 0 when
�

�η
�

�≤ 1 and that

b (t ,x ,η)−b (∞,x ,η)∈ Ŝm
r (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)))
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with r > 0, where

b (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)))

is a classical symbol of order m . Then,

Q(e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)) = e i (ψ(t ,x ,η)−〈y ,η〉)c (t ,x ,η)+d (t ,x ,η), (7.13)

where

c (t ,x ,η)∈ Ŝk+m
0 (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))), (7.14)

c (t ,x ,η)∼
∑

α

1

α!
q (α)(x ,ψ′x (t ,x ,η))(Rα(ψ, Dx )b ) (7.15)

in the symbol space Ŝk+m
0 (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))),

c (t ,x ,η)− c (∞,x ,η)∈ Ŝk+m
r (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))), r > 0, (7.16)

d (t ,x ,η)∈ Ŝ−∞0 (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))), (7.17)

d (t ,x ,η)−d (∞,x ,η)∈ Ŝ−∞r (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))), r > 0. (7.18)

Here

c (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))) (7.19)

is a classical symbol of order k +m ,

d (∞,x ,η)∈S−∞1,0 (T
∗(Ω);L (Λ0,q T ∗(M ′),Λ0,q T ∗(M ′)))

(For the precise meaning of S−∞1,0 , see Definition 1.2.) and

Rα(ψ, Dx )b =Dα
y

¦

e iφ2(t ,x ,y ,η)b (t , y ,η)
©

�

�

�

y=x
,

φ2(t ,x , y ,η) = (x − y )ψ′x (t ,x ,η)− (ψ(t ,x ,η)−ψ(t , y ,η)).

Moreover, put

B (x , y ) =
1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)b (t ,x ,η)−

e i (ψ(∞,x ,η)−〈y ,η〉)b (∞,x ,η)
�

d t
�

dη,

C (x , y ) =
1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)c (t ,x ,η)−

e i (ψ(∞,x ,η)−〈y ,η〉)c (∞,x ,η)
�

d t
�

dη.

We have

Q ◦ B ≡C .
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As in section 1, we put

Γq =
�

z ∈ Γ; Z (q ) fails at z
	

and set

Σ−(q ) =
�

(x ,ξ)∈Σ−; Z (q ) fails at x
	

, Σ+(q ) =
�

(x ,ξ)∈Σ+; Z (q ) fails at x
	

.

From Proposition 7.7 and Proposition 7.14, we can repeat the method of [18] to

get the following

Theorem 7.15. We recall that we work with the assumption that the Levi form is

non-degenerate at each point of Γ. Given q, 0≤q ≤ n −1. Suppose that Z (q ) fails

at some point of Γ. Then there exist

A ∈ L−1
1
2 , 1

2

(Γ; Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)), B−, B+ ∈ L0
1
2 , 1

2

(Γ; Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))

such that

WF ′(K B−) = diag (Σ−(q )×Σ−(q )),
WF ′(K B+) = diag (Σ+(n −1−q )×Σ+(n −1−q )) (7.20)

and

A�(q )β + B−+ B+ ≡ B−+ B++�
(q )
β A ≡ I , (7.21)

∂βB− ≡ 0, ∂β
†
B− ≡ 0, (7.22)

∂βB+ ≡ 0, ∂β
†
B+ ≡ 0, (7.23)

B− ≡ B †
− ≡ B 2

−, (7.24)

B+ ≡ B †
+ ≡ B 2

+, (7.25)

where B †
− and B †

+ are the formal adjoints of B− and B+ with respect to [ | ] respec-

tively and

WF ′(K B−) =
�

(x ,ξ, y ,η)∈ T ∗(Γ)×T ∗(Γ); (x ,ξ, y ,−η)∈WF(K B−)
	

.

Here WF (K B−) is the wave front set of K B− in the sense of Hörmander [13]. See

Definition A.4 for a review.

Moreover near diag (Γq ×Γq ), K B−(x , y ) satisfies

K B−(x , y )≡
∫ ∞

0

e iφ−(x ,y )t b (x , y , t )d t
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with

b (x , y , t )∈Sn−1
1,0 (Γ×Γ×]0,∞[;L (Λ0,q T ∗y (Γ),Λ

0,q T ∗x (Γ))),

b (x , y , t )∼
∞
∑

j=0

b j (x , y )t n−1−j in Sn−1
1,0 (Γ×Γ×]0,∞[;L (Λ0,q T ∗y (Γ),Λ

0,q T ∗x (Γ))),

b0(x ,x ) 6= 0 if x ∈ Γq , (7.26)

(A formula for b0(x ,x ) will be given in Proposition 7.17.) where Sm
1,0, m ∈R, is the

Hörmander symbol space (see Definition 1.2),

b j (x , y )∈C∞(Γ×Γ;L (Λ0,q T ∗y (Γ),Λ
0,q T ∗x (Γ))), j = 0, 1, . . . ,

and

φ−(x , y )∈C∞(Γ×Γ), (7.27)

φ−(x ,x ) = 0, (7.28)

φ−(x , y ) 6= 0 if x 6= y , (7.29)

Imφ−(x , y )≥ 0, (7.30)

d xφ− 6= 0, d yφ− 6= 0 where Imφ− = 0, (7.31)

d xφ−(x , y )|x=y =−ω0(x ), (7.32)

d yφ−(x , y )|x=y =ω0(x ), (7.33)

φ−(x , y ) =−φ−(y ,x ). (7.34)

Similarly, near diag (Γn−1−q ×Γn−1−q ),

K B+(x , y )≡
∫ ∞

0

e iφ+(x ,y )t c (x , y , t )d t

with

c (x , y , t )∈Sn−1
1,0 (Γ×Γ×]0,∞[;L (Λ0,q T ∗y (Γ),Λ

0,q T ∗x (Γ))),

c (x , y , t )∼
∞
∑

j=0

c j (x , y )t n−1−j in Sn−1
1,0 (Γ×Γ×]0,∞[;L (Λ0,q T ∗y (Γ),Λ

0,q T ∗x (Γ))),

where

c (x , y )∈C∞(Γ×Γ;L (Λ0,q T ∗y (Γ),Λ
0,q T ∗x (Γ))), j = 0, 1, . . . ,

and −φ+(x , y ) satifies (7.27)-(7.34).
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We only give the outline of the proof of Theorem 7.15. For all the details, we

refer the reader to section 7 and section 8 of [18]. Let

a j (t ,x ,η)∈ Ŝ−j
0 (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))), j = 0, 1, . . . ,

and

a j (∞,x ,η)∈C∞(T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))), j = 0, 1, . . . ,

be as in Proposition 7.7. We recall that for some r > 0

a j (t ,x ,η)−a j (∞,x ,η)∈ Ŝ−j
r (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))), j = 0, 1, . . . .

Let

a (∞,x ,η)∼
∞
∑

j=0

a j (∞,x ,η) in S0
1,0(T

∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))). (7.35)

Let

a (t ,x ,η)∼
∞
∑

j=0

a j (t ,x ,η) in Ŝ0
0(R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ))). (7.36)

We take a (t ,x ,η) so that for every compact set K ⊂ Ω and all indices α, β , γ, k ,

there exists c > 0, c is independent of t , such that
�

�

�

�

�

∂
γ

t ∂
α

x ∂
β
η (a (t ,x ,η)−

k
∑

j=0

a j (t ,x ,η))

�

�

�

�

�

≤ c (1+
�

�η
�

�)−k−1+γ−|β |, (7.37)

where t ∈R+, x ∈ K ,
�

�η
�

�≥ 1, and

a (t ,x ,η)−a (∞,x ,η)∈ Ŝ0
r (R+×T ∗(Ω);L (Λ0,q T ∗(Γ),Λ0,q T ∗(Γ)))

with r > 0.

Choose χ ∈ C∞0 (R2n−1) so that χ(η) = 1 when
�

�η
�

� < 1 and χ(η) = 0 when
�

�η
�

�> 2. Set

A(x , y ) =
1

(2π)2n−1

∫

�

∫ ∞

0

�

e i (ψ(t ,x ,η)−〈y ,η〉)a (t ,x ,η)−

e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)
�

(1−χ(η))d t
�

dη. (7.38)

Put

B (x , y ) =
1

(2π)2n−1

∫

e i (ψ(∞,x ,η)−〈y ,η〉)a (∞,x ,η)dη. (7.39)
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Since a j (t ,x ,η), j = 0, 1, . . ., solve the transport equations (7.6), we can check that

B +�(q )β A ≡ I ,

�(q )β B ≡ 0.

From the global theory of Fourier integral operators (see Melin-Sjöstrand [23]),

we get

K B ≡ K B− +K B+ ,

wher K B− and K B+ are as in Theorem 7.15. By using a partition of unity we get the

global result.

Remark 7.16. For more properties of the phaseφ−(x , y ), see section 8 and section

9 of [18].

We can repeat the computation of the leading term of the Szegö projection

(see section 9 of [18]), to get the following

Proposition 7.17. Let p ∈ Γq , q = n−. Let

Z 1(x ), . . . ,Z n−1(x )

be an orthonormal frame of Λ1,0Tx (Γ), for which the Levi form is diagonalized at

p . Let e j (x ), j = 1, . . . , n − 1, denote the basis of Λ0,1T ∗x (Γ), which is dual to Z j (x ),
j = 1, . . . , n − 1. Let λj (x ), j = 1, . . . , n − 1, be the eigenvalues of the Levi form Lx .

We assume that

λj (p )< 0 if 1≤ j ≤ n−.

Then

b0(p , p ) =
1

2

�

�λ1(p )
�

� · · ·
�

�λn−1(p )
�

�π−n

j=n−
∏

j=1

e j (p )∧e j (p )∧,∗,

where b0 is as in (7.26).

In section 8, we need the following

Proposition 7.18. Suppose that Z (q ) fails at some point of Γ. Let B− be as in

Theorem 7.15. Then,

γ∂ P B− ≡ 0. (7.40)

Proof. In view of Theorem 7.15, we know that

Tγ∂ P B− = ∂βB− ≡ 0, γ∂ f
∗
P B− = ∂β

†
B− ≡ 0.
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Combining this with (∂ ∂ f
∗
+ ∂ f

∗
∂ )P = 0, we have

γ∂ f
∗
Pγ∂ P B− =−γ∂ Pγ∂ f

∗
P B− ≡ 0

and

γ∂ f
∗
P(I −T )γ∂ P B− = γ∂ f

∗
Pγ∂ P B−−γ∂ f

∗
PTγ∂ P B− ≡ 0. (7.41)

Combining this with (4.6), we get

γ∂ f
∗
P(P∗P)−1(∂ r )∧Rγ∂ P B− ≡ 0.

Thus,

γ(∂ r )∧∂ f
∗
P(P∗P)−1(∂ r )∧Rγ∂ P B− ≡ 0. (7.42)

In view of Proposition 5.2, we know that

γ(∂ r )∧∂ f
∗
P(P∗P)−1 : C∞(Γ; I 0,q T ∗(M ′))→C∞(Γ; I 0,q T ∗(M ′))

is elliptic near Σ−, where I 0,q T ∗z (M
′) is as in (5.17). Since

WF ′(K B−)⊂ diag (Σ−×Σ−),

we get

(∂ r )∧Rγ∂ P B− ≡ 0.

(See Proposition A.6 and Proposition A.7.) Thus, by (4.6),

(I −T )γ∂ P B− ≡ 0.

The proposition follows.

8 The Bergman projection

Given q , 0≤q ≤ n −1. In this section, we assume that Z (q ) fails at some point of

Γ and that Z (q−1) and Z (q+1) hold at each point of Γ. In view of Proposition 4.4,

we know that

Π(q ) : C∞(M ; Λ0,q T ∗(M ′))→D (q ).

Put

K = γΠ(q )P : C∞(Γ; Λ0,q T ∗(Γ))→C∞(Γ; Λ0,q T ∗(Γ)). (8.1)

Let K † be the formal adjoint of K with respect to [ | ]. That is,

K † :D ′(Γ; Λ0,q T ∗(Γ))→D ′(Γ; Λ0,q T ∗(Γ))

[K †u | v ] = [u | K v ], u ∈D ′(Γ; Λ0,q T ∗(Γ)), v ∈C∞(Γ; Λ0,q T ∗(Γ)).
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Lemma 8.1. We have

K †v = K v,

v ∈C∞(Γ; Λ0,q T ∗(Γ)).

Proof. For u , v ∈C∞(Γ; Λ0,q T ∗(Γ)), we have

[K u | v ] = [γΠ(q )Pu | v ]
= (Π(q )Pu | Pv )M

= (Pu | Π(q )Pv )M

= [u | K v ].

Thus,

K †v = K v.

The lemma follows.

We can extend K to

D ′(Γ; Λ0,q T ∗(Γ))→D ′(Γ; Λ0,q T ∗(Γ))

by the following formula

[K u | v ] = [u | K †v ], u ∈D ′(Γ; Λ0,q T ∗(Γ)), v ∈C∞(Γ; Λ0,q T ∗(Γ)).

Lemma 8.2. Let u ∈D ′(Γ; Λ0,q T ∗(Γ)). We have

WF (K u )⊂Σ−.

Proof. Let u ∈D ′(Γ; Λ0,q T ∗(Γ)). We have

(γ(∂ r )∧,∗∂ P)(K u ) = 0.

In view of Proposition 5.1, we know that γ(∂ r )∧,∗∂ P is elliptic outside Σ−. The

lemma follows.

Lemma 8.3. Let B− be as in Theorem 7.15. We have

B−K ≡ K B− ≡ K .

Proof. Let A, B− and B+ be as in Theorem 7.15. In view of Theorem 7.15, we have

B−+ B++A�(q )β ≡ I .
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We may replace B+ by I −A�(q )β − B− and get

B−+ B++A�(q )β = I .

It is easy to see that

�(q )β K = 0.

Thus,

K = (B−+ B++A�(q )β )K = (B−+ B+)K . (8.2)

Let u ∈D ′(Γ; Λ0,q T ∗(Γ)). From Lemma 8.2, we know that

WF (K u )⊂Σ−.

Note that

WF ′(K B+)⊂ diag (Σ+×Σ+).

Thus,

B+K u ∈C∞,

so B+K is smoothing and

(B−+ B+)K ≡ B−K .

From this and (8.2), we get

K ≡ B−K

and

K = K † ≡ K † B †
− ≡ K B−.

The lemma follows.

We pause and introduce some notations. Let X and Y be C∞ vector bundles

over M ′ and Γ respectively. Let

C , D : C∞(Γ; Y )→D ′(M ; X )

with distribution kernels

KC (z , y ), KD(z , y )∈D ′(M ×Γ;L (Yy , Xz )).

We write

C ≡D mod C∞(M ×Γ)

if

KC (z , y ) = KD(z , y )+ F (z , y ),

where F (z , y )∈C∞(M ×Γ;L (Yy , Xz )).
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Lemma 8.4. We have

Π(q )P B− ≡Π(q )P modC∞(M ×Γ). (8.3)

Proof. From Lemma 8.3, we have

K = γΠ(q )P ≡ K B− = γΠ(q )P B−.

Thus,

Π(q )P = PγΠ(q )P ≡ PγΠ(q )P B− modC∞(M ×Γ).

We get (8.3).

Put

Q = P B−T (P∗P)−1P∗ : C∞(M ; Λ0,q T ∗(M ′))→C∞(M ; Λ0,q T ∗(M ′)), (8.4)

where T is as in (4.5).

Proposition 8.5. We have

Q ≡Π(q ) modC∞(M ×M ).

Proof. We have

Π(q )Q =Π(q )P B−T (P∗P)−1P∗ ≡Π(q )PT (P∗P)−1P∗ modC∞(M ×M ). (8.5)

Here we used (8.3). From (8.5) and the first part of (4.10), we get

Π(q )Q ≡Π(q ) modC∞(M ×M ). (8.6)

From Theorem 3.7, we have

Π(q )Q = (I − ∂
∗
N (q+1)∂ − ∂ N (q−1)∂

∗
)Q ,

where N (q+1) and N (q−1) are as in Theorem 3.6. From (7.40), (7.22) and Lemma 6.2,

we see that

∂Q ≡ 0, ∂
∗
Q ≡ 0 modC∞(M ×M ).

Thus,

Π(q )Q = (I − ∂
∗
N (q+1)∂ − ∂ N (q−1)∂

∗
)Q ≡Q modC∞(M ×M ).

From this and (8.6), the proposition follows.
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Let x = (x1, . . . ,x2n−1) be a system of local coordinates on Γ and extend

x1, . . . ,x2n−1

to real smooth functions in some neighborhood of Γ. We write

(ξ1, . . . ,ξ2n−1,θ )

to denote the dual variables of (x1, . . . ,x2n−1, r ). We write

z = (x1, . . . ,x2n−1, r ), x = (x1, . . . ,x2n−1, 0)

and

ξ= (ξ1, . . . ,ξ2n−1), ζ= (ξ1, . . . ,ξ2n−1,θ ).

Until further notice, we work with the local coordinates z = (x , r ) defined on

some neighborhood of p ∈ Γ.

We represent the Riemannian metric on T (M ′) by

h =
2n
∑

j ,k=1

h j ,k (z )d x j ⊗d xk , d x2n = d r,

where h j ,k (z ) = hk ,j (z ), j , k = 1, . . . , n , and
�

h j ,k (z )
�

1≤j ,k≤2n
is positive definite at

each point of M ′. Put
�

h j ,k (z )
�−1

1≤j ,k≤2n
=
�

h j ,k (z )
�

1≤j ,k≤2n
.

It is well-known (see page 99 of [25]) that

�(q )f =−
1

2

�

h2n ,2n (z )
∂ 2

∂ r 2
+2

2n−1
∑

j=1

h2n ,j (z )
∂ 2

∂ r ∂ x j
+T (r )
�

+lower order terms, (8.7)

where

T (r ) =
2n−1
∑

j ,k=1

h j ,k (z )
∂ 2

∂ x j ∂ xk
. (8.8)

Note that

T (0) =4Γ+ lower order terms (8.9)

and

h2n ,2n (x ) = 1, h2n ,j (x ) = 0, j = 1, . . . , 2n −1. (8.10)

We let the full symbol of �(q )f be:

full symbol of �(q )f =
2
∑

j=0

qj (z ,ζ)

where qj (z ,ζ) is a homogeneous polynomial of order 2− j in ζ. We have the

following
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Proposition 8.6. Let φ− ∈C∞(Γ×Γ) be as in Theorem 7.15. Then, in some neigh-

borhood U of diag (Γq ×Γq ) in M ′×M ′, there exists a smooth function

eφ(z , y )∈C∞((M ×Γ)
⋂

U )

such that

eφ(x , y ) =φ−(x , y ),

Im eφ ≥ 0,

d z
eφ 6= 0, d y
eφ 6= 0 where Im eφ = 0,

Im eφ > 0 if r 6= 0, (8.11)

and

q0(z , eφ′z )

vanishes to infinite order on r = 0. We write ∂
∂ r (z ) to denote ∂

∂ r
acting in the z

variables. We have

∂

∂ r (z )
eφ(z , y )|r=0 =−i

p

−σ4Γ(x , (φ−)′x ) (8.12)

in some neighborhood of x = y , where

Re
p

−σ4Γ(x , (φ−)′x )> 0.

Proof. From (8.7) and (8.8), we have

q0(z ,ζ) =
1

2
h2n ,2n (z )θ 2+

2n−1
∑

j=1

h2n ,j (z )θξj + g (z ,ξ),

g (x ,ξ) =−
1

2
σ4Γ , (8.13)

where g (z ,ξ) is the principal symbol of − 1
2

T (r ).
We consider the Taylor expansion of q0(z ,ζ)with respect to r ,

q0(z ,ζ) =
1

2
θ 2−

1

2
σ4Γ +

∞
∑

j=1

g j (x ,ξ)r j +
∞
∑

j=1

s j (x ,ζ)θ r j . (8.14)

We introduce the Taylor expansion of eφ(z , y )with respect to r ,

eφ(z , y ) =φ−(x , y )+
∞
∑

1

φj (x , y )r j .

Let

φ1(x , y ) =−i
p

−σ4Γ(x , (φ−)′x ).
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Since (φ−)′x |x=y = −ω0(x ) is real, we choose the branch of
p

−σ4Γ(x , (φ−)′x ) so

that

Re
p

−σ4Γ(x , (φ−)′x )> 0

in some neighborhood of x = y , r = 0. Put

eφ1(z , y ) =φ−(x , y )+ rφ1(x , y ).

We have

q0(z , ( eφ1)′z ) =O(r ).

Similarly, we can findφ2(x , y ) so that

q0(z , ( eφ2)′z ) =O(r 2),

where eφ2(z , y ) =φ−(x , y ) + rφ1(x , y ) + r 2φ2(x , y ). Continuing in this way we get

the phase eφ(z , y ) such that

eφ(x , y ) =φ−(x , y )

and

q0(z , eφ′z )

vanishes to infinite order on r = 0. The proposition follows.

Remark 8.7. Let eφ(z , y ) be as in Proposition 8.6 and let

d (z , y , t )∈Sm
1,0(M ×Γ×]0,∞[;L (Λ0,q T ∗y (M

′),Λ0,q T ∗z (M
′)))

with support in some neighborhood of diag (Γq × Γq ). (For the meaning of the

space Sm
1,0(M ×Γ×]0,∞[;L (Λ0,q T ∗y (M

′),Λ0,q T ∗z (M
′))), see Definition 1.2.) Choose

a cut-off function χ(t ) ∈ C∞(R) so that χ(t ) = 1 when |t | < 1 and χ(t ) = 0 when

|t |> 2. For all u ∈C∞(Γ; Λ0,q T ∗(M ′)), set

(Dεu )(z ) =

∫ ∫ ∞

0

e i eφ(z ,y )t d (z , y , t )χ(εt )u (y )d t d y .

Since Im eφ ≥ 0 and d y
eφ 6= 0 where Im eφ = 0, we can integrate by parts in y , t and

obtain

lim
ε→0
(Dεu )(z )∈C∞(M ; Λ0,q T ∗(M ′)).

This means that

D = lim
ε→0

Dε : C∞(Γ; Λ0,q T ∗(M ′))→C∞(M ; Λ0,q T ∗(M ′))

is continuous. Formally,

D(z , y ) =

∫ ∞

0

e i eφ(z ,y )t d (z , y , t )d t .
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Proposition 8.8. Let

B−(x , y ) =

∫ ∞

0

e iφ−(x ,y )t b (x , y , t )d t

be as in Theorem 7.15. We have

P B−(z , y )≡
∫ ∞

0

e i eφ(z ,y )t
eb (z , y , t )d t modC∞(M ×Γ)

with
eb (z , y , t )∈Sn−1

1,0 (M ×Γ×]0,∞[;L (Λ0,q T ∗y (M
′),Λ0,q T ∗z (M

′))),

eb (z , y , t )∼
∞
∑

j=0

eb j (z , y )t n−1−j

in the space Sn−1
1,0 (M ×Γ×]0,∞[;L (Λ0,q T ∗y (M

′),Λ0,q T ∗z (M
′))), where

eb j (z , y )∈C∞(M ×Γ;L (Λ0,q T ∗y (M
′),Λ0,q T ∗z (M

′))), j = 0, 1, . . . .

Proof. Put

b (x , y , t )∼
∞
∑

j=0

b j (x , y )t n−1−j

and formally set

eb (z , y , t )∼
∞
∑

j=0

eb j (z , y )t n−1−j .

We notice that

B−(x , y )∈C∞(Γ×Γ \diag (Γq ×Γq );L (Λ0,q T ∗y (Γ),Λ
0,q T ∗z (Γ))).

For simplicity, we may assume that b (x , y , t ) = 0 outside some small neighbor-

hood of diag (Γq ×Γq ). Put

�(q )f (eb (z , y , t )e i eφt ) = ec (z , y , t )e i eφt .

From (7.29) and (8.11), we know that near diag (Γq × Γq ), eφ(z , y ) = 0 if and only

if x = y , r = 0. From this observation, we see that if ec (z , y , t ) vanishes to infinite

order on diag (Γq ×Γq )×R+, we can integrate by parts and obtain

lim
ε→0

∫ ∞

0

e i eφt
ec (z , y , t )χ(εt )d t ≡ 0 modC∞(M ×Γ),
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where χ(t ) is as in Remark 8.7. Thus, we only need to consider the Taylor ex-

pansion of eb (z , y , t ) on x = y , r = 0. We introduce the asymptotic expansion of

�(q )f (eb e i eφt ). Setting

�(q )f (eb e i eφt )∼ 0

and regrouping the terms according to the degree of homogeneity. We obtain the

transport equations
¨

T (z , y ,∂z )eb0(z , y ) = 0

T (z , y ,∂z )eb j (z , y )+ l j (z , y ,eb0(z , y ), . . . ,eb j−1(z , y )) = 0, j = 1, 2, . . . .
(8.15)

Here

T (z , y ,∂z ) =−i
2n−1
∑

j=1

∂ q0

∂ ξj
(z , eφ′z )

∂

∂ x j
− i
∂ q0

∂ θ
(z , eφ′z )

∂

∂ r

+R(z , y ),

where

R(z , y ) =q1(z , eφ′z )+
1

2i

2n
∑

j ,k=1

∂ 2q0(z , eφ′z )
∂ ξj ∂ ξk

∂ 2
eφ

∂ x j ∂ xk
, x2n = r, ξ2n = θ ,

and l j is a linear differential operator acting on eb0(z , y ), . . . ,eb j−1(z , y ).
We introduce the Taylor expansion of eb0(z , y )with respect to r ,

eb0(z , y ) =b0(x , y )+
∞
∑

1

b j
0(x , y )r j .

Since
∂ q0

∂ θ
|r=0 = θ

and
eφ′r |r=0 =−i
p

−σ4Γ(x , (φ−)′x ),

we have
∂ q0

∂ θ
(z , eφ′z )|r=0 6= 0

in some neighborhood of x = y . Thus, we can find b 1
0(x , y )r such that

T (z , y ,∂z )(b0(x , y )+b 1
0(x , y )r ) =O(|r |)

in some neighborhood of r = 0, x = y . We can repeat the procedure above to find

b 2
0(x , y ) such that

T (z , y ,∂z )(b0(x , y )+
2
∑

k=1

b k
0 (x , y )r k ) =O(|r |2)
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in some neighborhood of r = 0, x = y . Continuing in this way we solve the first

transport equation to infinite order at r = 0, x = y .

For the second transport equation, we can repeat the method above to solve

the second transport equation to infinite order at r = 0, x = y . Continuing in this

way we solve (8.15) to infinite order at r = 0, x = y .

Put

eB (z , y ) =

∫ ∞

0

e i eφ(z ,y )t
eb (z , y , t )d t .

From the construction above, we see that

�(q )f
eB ≡ 0 modC∞(M ×Γ), γ eB ≡ B−. (8.16)

It is well-known (see chapter XX of [14]) that there exists

G : C∞(M ; Λ0,q T ∗(M ′))→C∞(M ; Λ0,q T ∗(M ′))

such that

G�(q )f +Pγ= I on C∞(M ; Λ0,q T ∗(M ′)). (8.17)

From this and (8.16), we have

eB = (G�(q )f +Pγ) eB ≡ P B− modC∞(M ×Γ).

The proposition follows.

From Proposition 8.8, we have

C (z , y ) := P B−T (P∗P)−1(z , y )≡
∫ ∞

0

e i eφ(z ,y )t c (z , y , t )d t modC∞(M ×Γ)

with

c (z , y , t )∈Sn
1,0(M ×Γ×]0,∞[;L (Λ0,q T ∗y (M

′),Λ0,q T ∗z (M
′))),

c (z , y , t )∼
∞
∑

j=0

c j (z , y )t n−j

in the space Sn
1,0(M ×Γ×]0,∞[;L (Λ0,q T ∗y (M

′),Λ0,q T ∗z (M
′))). Let

C ∗ : C∞(M ; Λ0,q T ∗(M ′))→D ′(Γ; Λ0,q T ∗(M ′))

be the operator defined by

(C ∗u | v )Γ = (u | C v )M , u ∈C∞(M ; Λ0,q T ∗(M ′)), v ∈C∞(Γ; Λ0,q T ∗(M ′)).
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The distribution kernel of C ∗ is

C ∗(y , z )≡
∫ ∞

0

e−i eφ(z ,y )t c ∗(y , z , t )d t modC∞(Γ×M ) (8.18)

where

c ∗(y , z , t )∈Sn
1,0(Γ×M×]0,∞[;L (Λ0,q T ∗z (M

′),Λ0,q T ∗y (M
′))),

(c ∗(y , z , t )µ | ν ) = (µ | c (y , z , t )ν ), µ∈Λ0,q T ∗z (M
′), ν ∈Λ0,q T ∗y (M

′),

c ∗(y , z , t )∼
∞
∑

j=0

c ∗j (y , z )t n−j

in Sn
1,0(Γ×M×]0,∞[;L (Λ0,q T ∗z (M

′),Λ0,q T ∗y (M
′))). The oscillatory integral (8.18) is

defined as follows: Let u ∈C∞(M ; Λ0,q T ∗(M ′)). Set

(C ∗εu )(y ) =

∫ ∫ ∞

0

e−i eφ(z ,y )t c ∗(y , z , t )χ(εt )u (z )d t d z ,

where χ is as in Remark 8.7. Since d x
eφ 6= 0 where Im eφ = 0, we can integrate by

parts in x and t and obtain

lim
ε→0
(C ∗εu )(y )∈C∞(Γ; Λ0,q T ∗(M ′)).

This means that

C ∗ = lim
ε→0

C ∗ε : C∞(M ; Λ0,q T ∗(M ′))→C∞(Γ; Λ0,q T ∗(M ′))

is continuous.

We can repeat the proof of Proposition 8.6 to find

φ(z , w )∈C∞(M ×M )

such that

φ(z , y ) = eφ(z , y ),

Imφ ≥ 0,

Imφ > 0 if (z , w ) /∈ Γ×Γ

and

q0(w ,−φ
′
w )

vanishes to infinite order on r = 0. Since φ−(x , y ) = −φ−(y ,x ), we can take

φ(z , w ) so that

φ(z , w ) =−φ(w , z ).

63



As in the proof of Proposition 8.8, we can find

a ∗(w , z , t )∈Sn
1,0(M ×M × [0,∞[;L (Λ0,q T ∗z (M

′),Λ0,q T ∗w (M
′))),

a ∗(w , z , t )∼
∞
∑

j=0

a ∗j (w , z )t n−j

in Sn
1,0(M ×M×]0,∞[;L (Λ0,q T ∗z (M

′),Λ0,q T ∗w (M
′))), such that

a ∗(y , z , t ) = c ∗(y , z , t )

and

�(q )f (a
∗(w , z , t )e−iφ(z ,w )t )

vanishes to infinite order on diag (Γq ×Γq )×R+. From (8.17), we have

PC ∗(w , z )≡
∫ ∞

0

e−iφ(z ,w )t a ∗(w , z , t )d t modC∞(M ×M ).

Thus,

C P∗(z , w ) = P B−T (P∗P)−1P∗(z , w )≡
∫ ∞

0

e iφ(z ,w )t a (z , w , t )d t modC∞(M ×M ),

a (z , w , t )∈Sn
1,0(M ×M × [0,∞[;L (Λ0,q T ∗w (M

′),Λ0,q T ∗z (M
′))),

a (z , w , t )∼
∞
∑

j=0

a j (z , w )t n−j

in the space Sn
1,0(M×M×]0,∞[;L (Λ0,q T ∗w (M

′),Λ0,q T ∗z (M
′))). From this and Propo-

sition 8.5, we get the main result of this work

Theorem 8.9. Given q, 0 ≤ q ≤ n − 1. Suppose that Z (q ) fails at some point of Γ
and that Z (q −1) and Z (q +1) hold at each point of Γ. Then

KΠ(q )(z , w )∈C∞(M ×M \diag (Γq ×Γq );L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))).

Moreover, in a neighborhood U of diag (Γq ×Γq ), KΠ(q )(z , w ) satisfies

KΠ(q )(z , w )≡
∫ ∞

0

e iφ(z ,w )t a (z , w , t )d t mod C∞(U
⋂

(M ×M )) (8.19)

with

a (z , w , t )∈Sn
1,0(U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))),
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a (z , w , t )∼
∞
∑

j=0

a j (z , w )t n−j

in the space Sn
1,0(U
⋂

(M ×M )×]0,∞[;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))),

a 0(z , z ) 6= 0, z ∈ Γq ,

where

a j (z , w )∈C∞(U
⋂

(M ×M );L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))), j = 0, 1, . . . ,

and

φ(z , w )∈C∞(U
⋂

(M ×M )), (8.20)

φ(z , z ) = 0, z ∈ Γq , (8.21)

φ(z , w ) 6= 0 if (z , w ) /∈ diag (Γq ×Γq ), (8.22)

Imφ ≥ 0, (8.23)

Imφ(z , w )> 0 if (z , w ) /∈ Γ×Γ, (8.24)

φ(z , w ) =−φ(w , z ). (8.25)

For p ∈ Γq , we have

σ�(q )f
(z , d zφ(z , w )) vanishes to infinite order at z = p ,

(z , w ) is in some neighborhood of (p , p ) in M ′. (8.26)

For z =w , z ∈ Γq , we have

d zφ =−ω0− i d r,

d wφ =ω0− i d r.

As before, we put

B−(x , y )≡
∫ ∞

0

e iφ−(x ,y )t b (x , y , t )d t ,

b (x , y , t )∼
∞
∑

j=0

b j (x , y )t n−1−j ,

and

KΠ(q )(z , w )≡
∫ ∞

0

e iφ(z ,w )t a (z , w , t )d t

a (z , w , t )∼
∞
∑

j=0

a j (z , w )t n−j .

65



Since Π(q ) ≡ P B−T (P∗P)−1P∗,

(P∗P)−1 = 2
p

−4Γ+ lower order terms

and

T = 2(∂ r )∧,∗(∂ r )∧+ lower order terms,

we have

a 0(x ,x ) = 2σp−4Γ(x , (φ−)′y (x ,x ))b0(x ,x )2(∂ r (x ))∧,∗(∂ r (x ))∧, x ∈ Γ.

Since (φ−)′y (x ,x ) =ω0(x ) and ‖ω0‖= 1 on Γ, it follows that

a 0(x ,x ) = 4b0(x ,x )(∂ r (x ))∧,∗(∂ r (x ))∧. (8.27)

From this and Proposition 7.17, we get the following

Proposition 8.10. Under the assumptions of Theorem 8.9, let p ∈ Γq , q = n−. Let

Z 1(z ), . . . ,Z n−1(z )

be an orthonormal frame of Λ1,0Tz (Γ), z ∈ Γ, for which the Levi form is diagonal-

ized at p . Let e j (z ), j = 1, . . . , n − 1 denote the basis of Λ0,1T ∗z (Γ), z ∈ Γ, which is

dual to Z j (z ), j = 1, . . . , n − 1. Let λj (z ), j = 1, . . . , n − 1 be the eigenvalues of the

Levi form L z , z ∈ Γ. We assume that

λj (p )< 0 if 1≤ j ≤ n−.

Then

a 0(p , p ) =
�

�λ1(p )
�

� · · ·
�

�λn−1(p )
�

�π−n 2
�

j=n−
∏

j=1

e j (p )∧e ∧,∗
j (p )
�

◦(∂ r (p ))∧,∗(∂ r (p ))∧. (8.28)

9 Examples

The aim of this section is to illustrate the results in some simple examples. First,

we will show that when M ′ is Kähler (see below), then F (q ) is injective for any q ,

0≤q ≤ n . We recall that F (q ) is defined by (1.9).

As before, let g =
∑n

j ,k=1 g j ,k d z j ⊗d z k be the Hermitian metric on Λ1,0T (M ′)
and let

ω= i
n
∑

j ,k=1

g j ,k d z j ∧d z k
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be the associated real (1, 1)-form. We call g a Kähler metric if dω = 0. ω is

then called its Kähler form. A complex manifold endowed with a Kähler metric is

called a Kähler manifold.

Let

∂ : C∞(M ′; Λp ,q T ∗(M ′))→C∞(M ′; Λp+1,q T ∗(M ′))

be the part of the exterior differential operator which maps forms of type (p ,q )
to forms of type (p +1,q ) and we denote by

∂ ∗f : C∞(M ′; Λp+1,q T ∗(M ′))→C∞(M ′; Λp ,q T ∗(M ′))

the formal adjoint of ∂ . The following is well-known (see page 113 of Morrow

and Kodaira [25])

Proposition 9.1. If M ′ is Kähler, then

∂ ∂ ∗f + ∂
∗

f ∂ = ∂ ∂ f
∗
+ ∂ f

∗
∂

on the space C∞(M ′; Λp ,q T ∗(M ′)), 0≤ p ,q ≤ n.

Note that

∂ ∗f u = 0, u ∈C∞(M ′; Λ0,q T ∗(M ′)), ∂ u = 0, u ∈C∞(M ′; Λp ,n T ∗(M ′))

and

∂ f
∗
u = 0, u ∈C∞(M ′; Λp ,0T ∗(M ′)), ∂ u = 0, u ∈C∞(M ′; Λn ,q T ∗(M ′)).

Now, we assume that M ′ is Kähler. We claim that F (q ) is injective, for any q ,

0 ≤ q ≤ n . Given q , 0 ≤ q ≤ n . Let u ∈ Ker F (q ). Then, u ∈ C∞(M ; Λ0,q T ∗(M ′)),
∂ u = 0, ∂ f

∗
u = 0 and γu = 0. From Proposition 9.1, we can check that

∂ u = 0.

We work with local coordinates z = (z 1, . . . , z n ) defined on some neighborhood of

p ∈ Γ. We write

u =
∑

J

u J d z J , J = (j1, . . . , jq ), 1≤ j1 < j2 < · · ·< jq ≤ n .

Since ∂ u = 0, for any J ,
∂ u J

∂ z j
= 0, j = 1, . . . , n .

u J is holomorphic and γu J = 0. Thus, u J = 0 and consequently u = 0. We have

proved the claim.
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9.1 Complex projective space

For a point (ξ0,ξ1, . . . ,ξn )∈Cn+1 \ (0, 0, . . . , 0),

ξ= {(λξ0,λξ1, . . . ,λξn ); λ∈C}

is a complex line through 0 = (0, 0, . . . , 0). The collection of all complex lines

through 0 is called the n-dimensional complex projective space and denoted by

CPn . A point ξ of CPn represents a complex line

ξ= {(λξ0, . . . ,λξn ); λ∈C} .

ξ0, . . . ,ξn are called the homogeneous coordinates of ξ ∈ CPn and denoted by

ξ= (ξ0, . . . ,ξn ). The equality

(ξ′0, . . . ,ξ′n ) = (ξ0, . . . ,ξn )

means that ξ′0 =λξ0, . . . ,ξ′n =λξn for some λ 6= 0, λ∈C. Put

Uj =
¦

ξ= (ξ0, . . . ,ξn )∈CPn ; ξj 6= 0
©

. (9.1)

ξ∈Uj is represented as

ξ= (
ξ0

ξj
, . . . ,

ξj−1

ξj
, 1,
ξj+1

ξj
, . . . ,

ξn

ξj
).

The map

z j : ξ→ z j (ξ) = (
ξ0

ξj
, . . . ,

ξj−1

ξj
,
ξj+1

ξj
, . . . ,

ξn

ξj
)

= (z 1, . . . , z n ) (9.2)

gives local coordinates on Uj whereUj = z j (Uj ) =Cn . If

z = (z 1, . . . , z n )∈ z j (Uj

⋂

Uk ), j > k ,

then z k 6= 0. The coordinates transformations

τk ,j : z j (Uj

⋂

Uk )→ z k (Uj

⋂

Uk ),

(z 1, . . . , z n )→ (
z 1

z k
, . . . ,

z k−1

z k
,

z k+1

z k
, . . . ,

z j−1

z k
,

1

z k
,

z j+1

z k
, . . . ,

z n

z k
) (9.3)

are biholomorphic. CPn is a complex manifold obtained by glueing the (n + 1)-
copies of Cn via the isomorphisms (9.3).
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On Uν , put

a ν (ξ) =
1

|ξν |2
(|ξ0|2+ · · ·+ |ξn |2), ξ= (ξ0, . . . ,ξn ). (9.4)

Now, we work with local coordinates

z = (z 1, . . . , z n ) = (
ξ0

ξν
, . . . ,

ξν−1

ξν
,
ξν+1

ξν
, . . . ,

ξn

ξν
) (9.5)

defined on Uν . Then,

a ν (z ) = 1+
n
∑

j=1

�

�z j

�

�

2
.

We can check that

∂ ∂ log a ν (z ) =
n
∑

j ,k=1

g j ,k d z j ∧d z k ,

where

g j ,k =
1

a ν (z )2
(a ν (z )δj ,k − z j z k ). (9.6)

Here δj ,k = 0 if j 6= k , δj ,k = 1 if j = k . The Hermitian metric
∑n

j ,k=1 g j ,k d z j ⊗d z k

is easily seen to be positive definite. Note that

a ν (z ) =
�

�eν ,µ(z )
�

�

2
aµ(z ), eν ,µ =

ξµ

ξν
on Uν

⋂

Uµ.

eν ,µ is a non-vanishing holomorphic function. Hence

∂ ∂ log a ν (z ) = ∂ ∂ log aµ(z ) on Uν

⋂

Uµ.

Thus,
∑n

j ,k=1 g j ,k d z j ⊗d z k gives a Hermitian metric on CPn . Its associated real

(1, 1)-form is given by

ω= i∂ ∂ log a ν (z )

= i d ∂ log a ν (z ) on Uν ,

since d = ∂ +∂ . Therefore dω= 0 and
∑n

j ,k=1 g j ,k d z j ⊗d z k is a Kähler metric on

CPn .

Now, we fix the Hermitian metric above onCPn . Let

r (ξ) =
1

|ξ|2
(−λ0 |ξ0|2−λ1 |ξ1|2− · · ·−λk0

�

�ξk0

�

�

2
+λk0+1

�

�ξk0+1

�

�

2
+ · · ·+λn |ξn |2),

where |ξ|2 = |ξ0|2+ · · ·+ |ξn |2, λj > 0, j = 0, 1, . . . , n . Put

Γ= {ξ∈CPn ; r (ξ) = 0} , M = {ξ∈CPn ; r (ξ)< 0} .

It is easy to see that d r 6= 0 at each point of Γ.
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Lemma 9.2. Γ is connected.

Proof. Let ξ= (ξ0, . . . ,ξn ), ξ′ = (ξ′0, . . . ,ξ′n )∈ Γ. We have

λ0 |ξ0|2+λ1 |ξ1|2+ · · ·+λk0

�

�ξk0

�

�

2
=λk0+1

�

�ξk0+1

�

�

2
+ · · ·+λn |ξn |2

and

λ0

�

�ξ′0
�

�

2
+λ1

�

�ξ′1
�

�

2
+ · · ·+λk0

�

�

�ξ′k0

�

�

�

2

=λk0+1

�

�

�ξ′k0+1

�

�

�

2

+ · · ·+λn

�

�ξ′n
�

�

2
.

Since C is connected, we can find continuous curves

c j (t ) : [0, 1]→C, j = 0, 1, . . . , n ,

such that

c j (0) = ξj , c j (1) = ξ′j , j = 0, 1, . . . , n .

Put

d (t )2 =
λ0 |c0(t )|2+ · · ·+λk0

�

�ck0(t )
�

�

2

λk0+1

�

�ck0+1(t )
�

�

2
+ · · ·+λn |cn (t )|2

.

Then,

d (0) = d (1) = 1.

Put

c (t ) : [0, 1]→ Γ
t → (c0(t ), . . . , ck0(t ), d (t )ck0+1(t ), . . . , d (t )cn (t )).

Then,

c (0) = ξ, c (1) = ξ′.

The lemma follows.

Now, we work with local coordinates

(z 1, . . . , z n ) = (
ξ1

ξ0
,
ξ2

ξ0
, . . . ,

ξn

ξ0
)

defined on U0. Then,

r (z ) =
1

a 0(z )
(−λ0−λ1 |z 1|2− · · ·−λk0

�

�z k0

�

�

2
+λk0+1

�

�z k0+1

�

�

2
+ · · ·+λn |z n |2),

where a 0(z ) = 1+
∑n

j=1

�

�z j

�

�

2
. Let U =
∑n

k=1 u k
∂
∂ z k

, V =
∑n

j=1 v j
∂
∂ z j
∈ Λ1,0Tp (Γ),

p ∈ Γ. From (2.33), we have

L p (U , V ) =
1

a 0(p )




d r (p )






(−
k0
∑

j=1

λj u j w j +
n
∑

j=k0+1

λj u j w j ). (9.7)
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We notice that U =
∑n

j=1 u j
∂
∂ z j
∈Λ1,0Tp (Γ) if and only if

n
∑

j=1

∂ r

∂ z j
u j =−

k0
∑

j=1

λj z j u j +
n
∑

k0+1

λj z j u j = 0, p = (z 1, . . . , z n ). (9.8)

Proposition 9.3. The Levi form is non-degenerate at each point of Γ and we have

Γ=Γk0 . That is, the number of negative eigenvalues of the Levi form is k0.

Proof. Let p = (z 1, . . . , z n ) ∈ Γ and let U =
∑n

j=1 u j
∂
∂ z j
∈ Λ1,0Tp (Γ). If L p (U , W ) = 0

for all W ∈Λ1,0Tp (Γ), from (9.7), (9.8), we see that

(u 1, . . . , u n ) = c (z 1, . . . , z n ), c ∈C.

From (9.8), we have

−
k0
∑

j=1

λj z j u j +
n
∑

k0+1

λj z j u j = c (−
k0
∑

j=1

λj

�

�z j

�

�

2
+

n
∑

k0+1

λj

�

�z j

�

�

2
) =λ0c = 0.

Thus, c = 0 and consequently the Levi form is non-degenerate at p .

We compute the signature of the Levi form at

z 0 = (0, . . . , 0,

r

λ0

λn
)∈ Γ.

From (9.8), we have

Λ1,0Tz 0(Γ) =







n−1
∑

j=1

u j
∂

∂ z j
; u j ∈C, j = 1, . . . , n −1







.

For U =
∑n−1

k=1 u k
∂
∂ z k

, V =
∑n−1

j=1 v j
∂
∂ z j
∈Λ1,0Tz 0(Γ), we have

L z 0(U , V ) =
1

a 0(z 0)‖d r (z 0)‖
(−

k0
∑

j=1

λj u j w j +
n−1
∑

j=k0+1

λj u j w j ).

Thus, the number of negative eigenvalues of L z 0 is k0. The proposition follows.

From Theorem 1.3, we know that if q 6= k0, then

KΠ(q ) ∈C∞(M ×M ;L (Λ0,q T ∗w (M
′),Λ0,q T ∗z (M

′))).
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If q = k0, then Z (q − 1) and Z (q + 1) hold at each point of Γ. From Theorem 1.3,

we have

KΠ(q ) ≡
∫ ∞

0

e iφ(z ,w )t b (z , w , t )d t modC∞(M ×M )

with

b (z , w , t )∈Sn
1,0(M ×M×]0,∞[;L (Λ0,q T ∗w (M

′),Λ0,q T ∗z (M
′))),

b (z , w , t )∼
∞
∑

j=0

b j (z , w )t n−j

in the space Sn
1,0(M ×M×]0,∞[;L (Λ0,q T ∗w (M

′),Λ0,q T ∗z (M
′))),

b0(z , z ) 6= 0, z ∈ Γ.

We continue to work with local coordinates

(z 1, . . . , z n ) = (
ξ1

ξ0
,
ξ2

ξ0
, . . . ,

ξn

ξ0
)

defined on U0. We study the leading term of KΠ(q ) at

z 0 = (0, . . . , 0,

r

λ0

λn
).

It is straight forward to see that

g (z 0) =
n−1
∑

j=1

1

a 0(z 0)
d z j ⊗d z j +

1

a 0(z 0)2
d z n ⊗d z n ,

‖d r (z 0)‖2 = 2λnλ0

and

∂ r (z 0) =
1

a 0(z 0)

p

λ0λn d z n ,

where

a 0(z 0) =
λn +λ0

λn
.

We can check that
p

a 0(z 0)
∂

∂ z 1
, . . . ,
p

a 0(z 0)
∂

∂ z n−1

is an orthonormal frame of Λ0,1Tz 0(Γ) and the eigenvalues of L z 0 are

−
1

‖d r (z 0)‖
λ1, . . . ,−

1

‖d r (z 0)‖
λk0 ,

1

‖d r (z 0)‖
λk0+1, . . . ,

1

‖d r (z 0)‖
λn .
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Put

e1 =
1
p

a 0(z 0)
d z 1, . . . , en−1 =

1
p

a 0(z 0)
d z n−1.

From Proposition 1.7, we have

b0(z 0, z 0) = 2 |λ1| · · · |λn−1| |d r (z 0)|−(n+1)π−n
�

k0
∏

j=1

e ∧j e ∧,∗
j

�

◦ (∂ r (z 0))∧,∗(∂ r (z 0))∧.

9.2 Spherical shell inCn

Consider the spherical shell

M = {z ∈Cn ; R0 < |z |<R1} ,

where 0<R0 <R1, n ≥ 3 and

|z |=
p

|z 1|2+ · · ·+ |z n |2.

We take the Hermitian metric

g =
n
∑

j ,k=1

d z j ⊗d z k

on Λ1,0T (Cn ). The Levi form of

Γ= {z ∈Cn ; |z |=R0}
⋃

{z ∈Cn ; |z |=R1}

has n−1 positive eigenvalues at the outer boundary but n−1 negative eigenval-

ues at the inner one. We consider (0, n −1) forms. Since n ≥ 3, Z (n −2) and Z (n )
hold at each point of Γ. From Theorem 1.3, we know that

KΠ(n−1) ∈C∞(M ×M \diag (Γn−1×Γn−1);L (Λ0,n−1T ∗w (C
n ),Λ0,n−1T ∗z (C

n ))).

In a neighborhood U of diag (Γn−1×Γn−1), KΠ(n−1)(z , w ) satisfies

KΠ(n−1)(z , w )≡
∫ ∞

0

e iφ(z ,w )t b (z , w , t )d t mod C∞(U
⋂

(M ×M )) (9.9)

with

b (z , w , t )∈Sn
1,0(U
⋂

(M ×M )×]0,∞[;L (Λ0,n−1T ∗w (C
n ),Λ0,n−1T ∗z (C

n ))),

b (z , w , t )∼
∞
∑

j=0

b j (z , w )t n−j
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in the space Sn
1,0(U
⋂

(M ×M )×]0,∞[;L (Λ0,n−1T ∗w (Cn ),Λ0,n−1T ∗z (Cn ))),

b0(z , z ) 6= 0, z ∈ Γn−1.

Put

r (z ) =
p

2(R0− |z |) near Γn−1.

We have d r = 1 and

∂ r =−
1

p
2 |z |
(z 1d z 1+ · · ·+ z n d z n ).

We consider

p = (0, . . . , 0, R0)∈ Γn−1.

We can check that
∂

∂ z 1
, . . . ,

∂

∂ z n−1

is an orthonormal frame of Λ0,1Tp (Γ) and the eigenvalues of L p are

−
1
p

2R0

, . . . ,−
1
p

2R0

.

From Proposition 1.7, we have

b0(p , p ) = (
p

2R0)−(n−1)π−n
�

n−1
∏

j=1

d z ∧j d z ∧,∗
j

�

◦ (d z ∧,∗
n d z ∧n ).

A Appendix: The wave front set of a distribution, a
review

We will give a brief discussion of wave front set in a setting appropriate for our

purpose. For more details on the subject, see Hörmander [14], Hörmander [16]
and Grigis-Sjöstrand [11]. Our presentation is essentially taken from [11]. For all

the proofs of this section, we refer the reader to chapter 7 of [11], chapter V I I I

of [14] and chapter X V I I I of [16].
We will asume the reader is familiar with some basic notions and facts of mi-

crolocal analysis such as: Hörmander symbol spaces, pseudodifferential opera-

tors. Nevertheless we recall briefly some of this notions.

Let Ω ⊂ Rn be an open set. From now on, we write xα = xα1
1 · · ·xαn

n , ∂ αx =
∂ α1

x1
· · ·∂ αn

xn
, Dα

x = Dα1
x1
· · ·Dαn

xn
and |α| = α1 + · · ·+αn , where x = (x1, . . . ,xn ), Dx j =

−i∂x j . We have the following
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Definition A.1. Let m ∈ R. Sm
1,0(Ω×RN ) is the space of all a ∈ C∞(Ω×RN ) such

that for all compact sets K ⊂ Ω and all α ∈ Nn , β ∈ NN , there is a constant c > 0

such that
�

�

�∂ αx ∂
β
ξ a (x ,ξ)
�

�

�≤ c (1+ |ξ|)m−|β |, (x ,ξ)∈ K ×RN .

Sm
1,0 is called the space of symbols of order m . We write S−∞1,0 =

⋂

Sm
1,0, S∞1,0 =
⋃

Sm
1,0.

Let Y ⊂ Rm1 , Z ⊂ Rm2 be open sets. We recall that the Schwartz kernel theo-

rem(see Hörmander [16]) states that there is a bijection between the set of distri-

butions K ∈D ′(Y ×Z ) and the set of continuous linear operators

A : C∞0 (Z )→D
′(Y ).

The correspondence is given by

〈Au , v 〉Y = 〈K , v ⊗u 〉Y×Z , u ∈C∞0 (Z ), v ∈C∞0 (Y ),

where 〈 , 〉Y and 〈 , 〉Y×Z denote the duality brackes for D ′(Y )×C∞0 (Y ) and D ′(Y ×
Z )×C∞0 (Y ×Z ) respectively and (v ⊗u )(y , z ) = v (y )u (z ). We call K the distribu-

tion kernel of A, and write K = KA . Moreover, the following two conditions are

equivalent:

(i) KA ∈C∞(Y ×Z ),

(ii) A is continuous E ′(Z )→C∞(Y ).

If A satisfies (i) or (ii), we say that A is smoothing. Let B be a continuous linear

operator

B : C∞0 (Z )→D
′(Y ).

We write A ≡ B if A − B is a smoothing operator.

In order to simplify the discussion of composition of some operators, it is

convenient to introduce the notion of properly supported operators. Let C be a

closed subset of Y ×Z . We say that C is proper if the two projections

Πy : (y , z )∈C → y ∈ Y

Πz : (y , z )∈C → z ∈Z

are proper, that is the inverse image of every compact subset of Y and Z respec-

tively is compact.

A continuous linear operator

A : C∞0 (Z )→D
′(Y )
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is said to be properly supported if supp KA ⊂ Y ×Z is proper. If A is properly

supported, then A is continuous

C∞0 (Z )→E
′(Y )

and A has a unique continuous extension

C∞(Z )→D ′(Y ).

Definition A.2. Let k ∈R. A pseudodifferential operator of order k type (1, 0) is a

continuous linear map

A : C∞0 (Ω)→D
′(Ω)

such that the distribution kernel of A is

KA = A(x , y ) =
1

(2π)n

∫

e i〈x−y ,ξ〉a (x ,ξ)dξ

with a ∈Sk
1,0(T ∗(Ω)). We shall write Lk

1,0(Ω) to denote the space of pseudodifferen-

tial operators of order k type (1, 0).

Definition A.3. Let

A =
1

(2π)n

∫

e i (x−y )ξa (x ,ξ)dξ∈ Lm
1,0(Ω), a ∈Sm

1,0(T
∗(Ω)).

Then A is said to be elliptic at (x0,ξ0)∈ T ∗(Ω)r0 if

ab −1∈S−1
1,0(T

∗(Ω))

in a conic neighborhood of (x0,ξ0) for some b ∈S−m
1,0 (T ∗(Ω)).

From now on, all pseudofifferential operators in this section will be assumed

properly supported.

Definition A.4. Let u ∈D ′(Ω), (x0,ξ0)∈ T ∗(Ω)\0. We say that u is C∞ near (x0,ξ0)
if there exists A ∈ L0

1,0(Ω) elliptic at (x0,ξ0), such that Au ∈ C∞(Ω). We let WF (u )
be the set of points in T ∗(Ω) \0, where u is not C∞.

Lemma A.5. Let u ∈D ′(Ω). Then u ∈C∞(Ω) if and only if WF (u ) = ;.

Let K ∈D ′(Ω×Ω). Put

WF ′(K ) =
�

(x ,ξ, y ,η); (x ,ξ, y ,−η)∈WF (K )
	

.
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Proposition A.6. Let

A =
1

(2π)n

∫

e i (x−y )ξa (x ,ξ)dξ∈ Lm
1,0(Ω), a ∈Sm

1,0(T
∗(Ω)).

Let Λ be the smallest closed cone in T ∗(Ω) \ 0 such that for any χ ∈ C∞(T ∗(Ω)),
χ(x ,λξ) =χ(x ,ξ) and χ = 0 in some conic neighborhood of Λ, we have

χa ∈S−∞1,0 (T
∗(Ω)).

Then

WF ′(KA) = diag (Λ×Λ).

Moreover, let u ∈D ′(Ω). Then,

WF (Au )⊂Λ
⋂

WF (u ).

Proposition A.7. Let

K : C∞0 (Ω)→D
′(Ω)

with distribution kernel K ∈D ′(Ω×Ω). We assume that

WF ′(K )⊂
�

(x ,ξ,x ,ξ); (x ,ξ)∈ T ∗(Ω) \0
	

.

Then, there is a unique way of definingK u for every u ∈ E ′(Ω) so that the map

u ∈ E ′(Ω)→K u ∈D ′(Ω)

is continuous. Moreover, we have

WF (K u )⊂{(x ,ξ); (x ,ξ,x ,ξ)∈WF ′(K )

for some (x ,ξ)∈WF (u )}.
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