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This Thesis consists of an introduction and the following papers:
Paper I: On the singularities of the Szeg6 projection for (0, g) forms

Paper II: On the singularities of the Bergman projection for (0, g) forms






Introduction

The Bergman and Szegd projections are classical subjects in several com-
plex variables and complex geometry. By Kohn's regularity theorem for the -
Neumann problem (1963, [11]), the boundary behavior of the Bergman kernel is
highly dependent on the Levi curvature of the boundary. The study of the bound-
ary behavior of the Bergman kernel on domains with positive Levi curvature
(strictly pseudoconvex domains) became an important topic in the field then. In
1965, L. Hormander ([9]) determined the boundary behavior of the Bergman ker-
nel. C. Fefferman (1974, [7]) established an asymptotic expansion at the diagonal
of the Bergman kernel. More complete asymptotics of the Bergman kernel was
obtained by Boutet de Monvel and Sjostrand (1976, [6]). They also established an
asymptotic expansion of the Szegt6 kernel on strongly pseudoconvex boundaries.
All these developments concerned pseudoconvex domains. For the nonpseudo-
convex domain, there are few results. R. Beals and P. Greiner (1988, [1]) proved
that the Szeg0 projection is a Heisenberg pseudodifferential operator, under cer-
tain Levi curvature assumptions. Hormander (2004, [10]) determined the bound-
ary behavior of the Bergman kernel when the Levi form is negative definite by
computing the leading term of the Bergman kernel on a spherical shell in C”.

Other developments recently concerned the Bergman kernel for a high power
of a holomorphic line bundle. D. Catlin (1997, [4]) and S. Zelditch (1998, [16])
adapted a result of Boutet de Monvel-Sjostrand for the asymptotics of the Szego
kernel on a strictly pseudoconvex boundary to establish the complete asymp-
totic expansion of the Bergman kernel for a high power of a holomorphic line
bundle with positive curvature. Recently, a new proof of the existence of the
complete asymptotic expansion was obtained by B. Berndtsson, R. Berman and
J. Sjostrand (2004, [3]). Without the positive curvature assumption, R. Berman
and J. Sjostrand (2005, [2]) obtained a full asymptotic expansion of the Bergman
kernel for a high power of a line bundle when the curvature is non-degenerate.
The approach of Berman and Sjostrand builds on the heat equation method of
Menikoff-Sjostrand (1978, [15]). The expansion was obtained independently by
X. Ma and G. Marinescu (2006, [14]) (without a phase function) by using a spec-
tral gap estimate for the Hodge Laplacian.

Recently, Hormander (2004, [10]) studied the Bergman projection for (0, q)
forms. In that paper (page 1306), Hormander suggested: "A carefull microlocal
analysis along the lines of Boutet de Monvel-Sjéstrand should give the asymp-



totic expansion of the Bergman projection for (0, g) forms when the Levi form is
non-degenerate."

The main goal for this thesis is to achieve Hormander’s wish-more precisely,
to obtain an asymptotic expansion of the Bergman projection for (0, g) forms.
The first step of my research is to establish an asymptotic expansion of the Szeg6
projection for (0, q) forms. Then, find a suitable operator defined on the bound-
ary of domain which plays the same role as the Kohn Laplacian in the approach
of Boutet de Monvel-Sjostrand.

This thesis consists two parts. In the first paper, we completely study the
heat equation method of Menikoff-Sjostrand and apply it to the Kohn Laplacian
defined on a compact orientable connected CR manifold. We then get the full
asymptotic expansion of the Szego projection for (0, g) forms when the Levi form
is non-degenerate. We also compute the leading term of the Szegd projection.

In the second paper, we introduce a new operator analogous to the Kohn
Laplacian defined on the boundary of a domain and we apply the method of
Menikoff-Sjostrand to this operator. We obtain a description of a new Szego pro-
jection up to smoothing operators. Finally, by using the Poisson operator, we get
the full asymptotic expansion of the Bergman projection for (0, q) forms when
the Levi form is non-degenerate.

In order to describe the results more precisely, we introduce some notations.
Let Q2 be a C* paracompact manifold equipped with a smooth density of inte-
gration. We let T(€2) and T*(©2) denote the tangent bundle of 2 and the cotangent
bundle of Q respectively. The complexified tangent bundle of 2 and the complex-
ified cotangent bundle of Q2 will be denoted by CT(2) and CT*(2) respectively.
We write (,) to denote the pointwise duality between T(£2) and T*#(£2). We extend
(,) bilinearly to CT(Q2) x CT*(£2).

Let E be a C* vector bundle over 2. The spaces of smooth sections of E over
2 and distribution sections of E over 2 will be denoted by C*(£2; E) and 2'(£2; E)
respectively. Let §(€2; E) be the subspace of 2'(€2; E) of sections with compact
support in 2 and let C2(; E) = C*(; E)(&'(); E).

Let C, D be C* vector bundles over . Let

A:CX(Q; C)— 2'(Q; D).

From now on, we write K4(x,y) or A(x,y) to denote the distribution kernel of A.
Let
B:CX(9; C)— 2'(9; D).

We write
A=B
if
Ka(x,y)=Kp(x,y)+ F(x,y),
where F(x,y) € C*(Qx Q; £(C,, Dy)).



0.1 The Szego projection

For the precise definitions of some standard notations in CR geometry, see sec-
tion 2 of paper I. Let (X, A°T(X)) be a compact orientable connected CR mani-
fold of dimension 2n—1, n > 2. We take a smooth Hermitian metric(|) on CT(X)
so that A T(X) is orthogonal to A T(X) and (u | v) isreal if u, v are real tangent
vectors, where A% T(X) = A T(X). The Hermitian metric (| ) on CT(X) induces,
by duality, a Hermitian metric on CT*(X) that we shall also denote by ( | ). For
g €N, let A% T*(X) be the bundle of (0, q) forms of X. The Hermitian metric ( | )
on CT*(X) induces a Hermitian metric on A%9 T*(X) also denoted by ( | ).

We take (d m) as the induced volume form on X and let (| ) be the inner prod-
uct on C®(X; A% T*(X)) defined by

(f1g) =f (f(2)] g(z)(dm), [, g€ C®(X; A% T*(X)).
X

Since X is orientable, there is a globally defined real 1 form wy(z) of length
one which is pointwise orthogonal to A T*(X) & A%! T*(X), where

AYOTH(X) = A0 T*(X).
There is a real non-vanishing vector field Y which is pointwise orthogonal to
AVT(X)d A T(X). We take Y so that

(Y,wo) =—1, |Y][=1.

The Levi form L,(Z, W), peX,Z, WeAW T,(X), is the Hermitian quadratic
form on AT, (X) defined as follows:

For any Z, W € A T,(X), pick Z, W e C®(X; A" T(X)) that satisfy
~ — — 1/~ = (0.1)
Z(p)=2, W(p)=W. Then L,(Z, W)= - (IZ, WI(p), 0(p))
The eigenvalues of the Levi form at p € X are the eigenvalues of the Hermitian
form L, with respect to the inner product ( | ) on A0 T,,(X).
Let O, be the Kohn Laplacian on X and let EIEf’) denote the restriction to (0, q)
forms. Let

7@ L(X; A% T*(X)) — Kerd?
be the Szego projection, i.e. the orthogonal projection onto the kernel of E]Ef’). Let
Kro(x,y) € 2’ (X x X; L(A™ T3 (X), AYTH(X)))
be the distribution kernel of 7(4) with respect to (d m). Formally,

(ﬂ(")u)(x)=fanJ(x,J’)U(J/)dm(y), u(y) € C*(X; A" T*(X)).

We recall



Definition 0.1. Given g, 0 < g < n — 1, the Levi form is said to satisfy condition
Y(g)atpeXifforany |J|=q, J =i j2.-jg) 1S j1<jo<-<js<n—1,we

have
n—1
2= A< 2 |
j=1

j¢J jeJ
where A;, j = 1,...,(n — 1), are the eigenvalues of L,. If the Levi form is non-

degenerate at p, then the condition is equivalent to g # n, n_, where (n_, n,),
n_+n,=n-—1,is the signature of L,.

When Y(qg) holds at each point of X, Kohn (1972, [8]) proved that
K o(x,y) € C®(X x X; ZL(A” T*(X), A* T*(X))).

When condition Y(q) fails, one is interested in the Szeg6 projection on the level of
(0,g) forms. If the Levi form is positive definite at each point of X, Boutet de Mon-
vel and Sjostrand (1976, [6]) obtained the full asymptotic expansion for Ko (x,y).
If Y(g) fails, Y(g—1), Y(g+1) hold and the Levi form is non-degenerate, Beals and
Greiner (1988, [1]) proved that 7(4) is a Heisenberg pseudodifferential operator.
In particular, 71'? is a pseudodifferential operator of order 0 type (%, % .

The statement of the main results of paper I

Let X be the characteristic manifold of Elgf’) . We have
Y={(x,8)e T(X)\0; &= Awy(x), A #0}.
Put

Y ={(x,8) € T*(X)\ 0; & = Awq(x), A > 0},
> ={(x,&) € T(X)\ 0; £ = Awp(x), A < 0}.

We assume that the Levi form is non-degenerate at each point of X. Then the
Levi form has constant signature (n_, n), n-+n, =n—1. We define

Y=xtif ny=q#n_,

=% if n_:q7én+,
fZ:Z+UZ_ if n,=qg=n_.

The main result of the first paper is the following

Theorem 0.2. Let(X,A"°T(X)) be a compact orientable connected CR manifold of
dimension 2n — 1, n > 2, with a Hermitian metric (| ). We assume that the Levi
form L is non-degenerate at each point of X. Then, the Levi form has constant



signature (n_,n;), n-+n, =n—1. Letq = n_ or ny. Suppose I:l(bq) has closed
range. Then 19 is a well defined continuous operator

D H(X; A% TH(X)) — H(X; A TH(X)),
foralls €R, and
WE'(K ) = diag (2 x X),

where H*, s € R, is the standard Sobolev space of order s and
WF'(Ky0)={(x,&,y,n) € T(X) x T*X); (x,&,y,—n) € WF (K@)} .

Here WF (K«) is the wave front set of K.« in the sense of Hérmander (see Ap-
pendix A of the second paper for a review). Moreover, we have

Ko =K+ if np=q#n_,
Kio=Ky if n_=q#ny,
Kyog=Ky++ K, if ny=q=n_,

where K.+(x,y) satisfies

o0

Kei(x,y)= f el9+is (x,y,t)dt
0

with
s4(x,y, 1) €S} (X x Xx]0,00[; L (A Ty*(X),AO’q T (X)),

si(x,y, 1)~ Zsi(x,y)t”‘l‘j

j=0
in the symbol space S} ;'(X x Xx]0,00[; £ (A% Ty*(X),AO"’ TH(X))),

where ST\, m € R, is the Hormander symbol space (see Appendix A of the first
paper for a review and references),

s (0,y) € C¥X % X; LA T, A THX)), j=0,1,...,

and
P+(x,y)e C*(X x X), 0.2)
P+(x,x)=0, (0.3)
P+(x,y)#0 if x#y, (0.4)
Im¢,(x,y)=0, (0.5)
dx¢p+#0, dy¢p,#0 where Im¢p, =0, (0.6)
dxP+(x,y)lx=y = wo(x), 0.7)
dy@i(x,¥)|x=y = —wo(x), (0.8)
P+(x,y) == (y,%). (0.9)



Similarly,

Kn—(x,y)EJ e tVis_(x,y,t)dt
0
with
5-(x%,y, 1) € 851 (X x Xx]0,00[; LA T?(X), A T*(X))),

s-(e,y,0)~ ) st (e y et

=0
in the symbol space S} ;'(X x Xx]0,00[; £ (A% T;‘(X),Ao"f TH(X))),
where

sL(x,y) € CX(X x X; LA T(X),A* T(X))), j=0,1,...,

and —¢ _(x,y) satisfies (0.2)-(0.9).
More properties of the phase ¢.(x,y) will be given in Theorem 0.4 and Re-
mark 0.5 below.

Remark 0.3. We notice that if Y(g — 1) and Y(g + 1) hold then D(bq) has closed
range.

The tangential Hessian of ¢ (x,y)

Until further notice, we assume that the Levi form is non-degenerate at each
point of X. The phase ¢.(x,y) is not unique. we can replace ¢ (x,y) by

o (x, )= f(x,7)p+(x,3), (0.10)

where f(x,y)e C*(XxX)isrealand f(x,x)=1, f(x,y)= f(y,x). Then $satisﬁes
(0.2)-(0.9). We work with local coordinates x =(xy,...,X2,—1) defined on an open
set 2 C X. We want to know the Hessian

(92), (9+),
(0, (92,

of ¢, at (p,p) € X x X. Let U, V € CT,(X) x CT,(X). From (0.10), we can check
that

(¢+)” = l

<$N(p’p)U, V> = <(¢+)H(l9» p)U, V) + <df(p,p), U> <d¢+(p’p)’ V>
+(df(p,p), V) {d¢+(p,p) U).

Thus, the Hessian (¢..)” of ¢, at (p, p) is only well-defined on the space

TippyHy = {W € CT,(X) x CT,,(X); (d ¢ (p, p), W) =0}.
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In view of (0.7) and (0.8), we see that T, , H, is spanned by
(u,v), (Y(p),Y(p)), u,veA’T,(X)® A" T,(X).
We define the tangential Hessian of ¢, (x,y) at (p, p) as the bilinear map:

TippHe X TippyHy = C,
(U, V)= {((@)(p,p)U, V), U, VET,,H,.

In the section 9 of the first paper, we completely determined the tangential Hes-
sian of ¢4(x,y) at (p, p). For the better understanding, we describe it in some
special local coordinates. For a given point p € X, let

Ul(X), ceey Un_l(X)

be an orthonormal frame of A° T;,(X) varying smoothly with x in a neighborhood
of p, for which the Levi form is diagonalized at p. We take local coordinates

X=(X1,...,X2n1), Zj=Xpj_1+iXyj, j=1,...,n—1,
defined on some neighborhood of p such that

wo(p)=v2dx,-1, x(p)=0,

0 0
()| —(p)=264, j,k=1,....2n—1
(3xj(p)| ﬁxk(p)) Ojr Jok "

and -
0 1 —
Uj:(”)_zj_\/_ J(x) +Zc,s(x) on—1,
where
0 1 0 .0 ]
—:—( —1 ),]:1,...,11—1,

3zj 2 3x2j_1 6x2]-
aj€C*a;0)=0,j=1,...,n—1and
cjs(x)eC* ¢cjs(0)=0, j=1,...,n—1, s=1,...,2n—2.
The integrability of A°T(X), i.e. [U;, Ux] € AM°T(X) implies that

%(0)_%(0) n—1. 0.11)

Since the Levi form is diagonalized at p with respect to U;(p), j =1,...,n—1, we
can check that (see (0.1))

%(0)——(0) 2010k, i, k= _
ibik, j,k=1,...,n—1, 0.12)



where 4;, j =1,...,n—1, are the eigenvalues of L,.

If g € C*(XxX), (p,p)=0, dryd(p,p) = d.,P+(p, p) and the tangential
Hessian of ¢(x,y) at (p, p) is the same as the tangential Hessian of ¢ (x,y) at

(p,p), then
ny / / INE:
P(x, ¥, Xan1) = §4(x,¥, x20-1) = O(|(x, "))
in some neighborhood of (p, p), where y’ = (31, ..., 2n-2). Moreover, we have the
following

Theorem 0.4. With the notations used before, in some neighborhood of (p,p) €
X x X, we have

n—1 n—1 oa:
¢+(x,y)=\/§(x2n1—y2n1)+i;|lj||zj—wj{2+%j;1(a—2(0)(zjzk—ijk)

a; _ o a(Zj _ _ a; _ —
+ 5_216(0)(ij’€ — Lijk)+ a_Ek(O)(ZjZk — LUlek)-i‘ a_Zk(O)(ZjZk — LUj wk))

n—1
. _ _ da;
+Z(Mj(zjwj_zjwj)+ax : (0)(zjxX2n-1— WjYon—1)
=1

2n—1

oa;:
A (O)E o = T 72n1)) + V281 = Yon ) £, )+ O )],

0X2pn1
fec®, f(0,00=0, f(x,y)=f(,x),
Y= Yon1), Wj=ysja+iyy, j=1,...,n—1, (0.13)

wherel;, j =1,...,n—1, are the eigenvalues of L, and ¢ is as in Theorem 0.2.

Remark 0.5. We use the same notations as in Theorem 0.4. Since

o
99+ (0,000,
axzn—l

from the Malgrange preparation theorem (see Theorem B.6 of the first paper),
we have

P+(x,y)=g(x,y)V2x2-1 + h(x',y))

in some neighborhood of (0,0), where g, h € C*, g(0,0) = 1, h(0,0) = 0 and
x'=(%1,...,X2,_2). Put

A(x,y)=V2xp_1 + h(x,y).

From the global theory of Fourier integral operators (see Proposition B.21 of the
first paper), we see that ¢, (x,y) and (,zg(x,y) are equivalent at (p, wo(p)) in the
sense of Melin-Sjostrand (see Definition B.20 of the first paper). Since ¢, (x,y)=
—$+(y, x), we can replace ¢.(x,y) by

$(x,y)— p(y,x)
. .

8



Then ¢ (x,y) satisfies (0.2)-(0.9). Moreover, we can check that

n—1 n-l1 oa;
$+(2,9) = V2(X2n-1— Yon-1) + z}Z 2] |2 = w;| + %j;(a—ji(oxzjzk — wjwi)

Ej _ o adj _ _ 651 _ —
+ 5o ONE 2= W 04) + 5022k = wyi) + 5 L0024~ wy))

n—1
) _ da;
+]Z:1:(Mj(zj w;—2zjw;)+ an_l(())(.z]‘xZn_l — WjY2n-1)
Jda;
i j

— — 3
. (0)(Zjx2n1 —Ww jy2n—1)) +0(|(x,»)|), (0.14)

where 4;, j =1,...,n—1, are the eigenvalues of L,. (Compare (0.14) with (0.13).)

The leading term of the Szego projection

We have the following corollary of Theorem 0.2.

Corollary 0.6. There exist smooth functions
F.,Gy, F.,G_€ C¥(X x X; L(A™T*(X), A% T} (X))
such that
Krv = F(—i(@+(x,y)+10))™" + G, log(—i(¢+(x,y) +10)),
Kz =F.(—-i(¢-(x,y)+1i0))™" + G_log(—i(¢-(x,y) +10)).
Moreover, we have

n—1
E =) (n—1-k)s (x,y)—ig(x,) + Fulo, y N (x, 1)),
0

n—1
Eo=) (n=1-k)isk(x,y)—i¢-(x,y) + f-(6, y)p-(x,y))",
0

— N (_1)k+1 n+k : k
G:= Il Sy (6, y)=ig+(x,y))",
X (_1)k+1
G_z;%sﬁk(x,y)(—iqs_(x,y))k, 0.15)

where
[, y), f-(x,y) € CX(X % X; LA TH(X), A7 T*(X))).



If w e A®!TH(X), let
W s A0+ TZ*(X) N0 TZ*(X)’ q>0,
be the adjoint of left exterior multiplication
w" : A% THX) — A®H TH(X).
That is,

(wu | v)=(u | w"*v), (0.16)

for all u € A% T*X), v € A+ T*(X). Notice that w”* depends anti-linearly on
w.
In section 9 of the first paper, we compute F,(x,x)and F_(x, x).

Proposition 0.7. For a given point x, € X, let
Ui(x),..., Up-1(x)

be an orthonormal frame of A'° T,(X), for which the Levi form is diagonalized at
Xo. Let ej(x), j =1,...,n — 1, denote the basis of A\°' T*(X), which is dual to Uj(x),
j=1...,n—1. Let Aj(x), j = 1,...,n — 1, be the eigenvalues of the Levi form L,.
We assume that q = n,. and that

Ai(x0)>0 if 1<j<ny.

Then

1 j=n+
E4 (%0, X0) = (1= D!Z [21(%o)| -+ [ A1 (o) 7™ [ T eitxo)e;(xo).
j=1

Proposition 0.8. For a given point x, € X, let
Ui(x),..., Up-1(x)

be an orthonormal frame of A'° T, (X), for which the Levi form is diagonalized at
Xo. Let ej(x), j =1,...,n — 1, denote the basis of A% T*(X), which is dual to ﬁj(x),
Jj=1,...,n—=1. LetAj(x), j =1,...,n—1 bethe eigenvalues of the Levi form L. We
assume that g = n_ and that

Ai(x)<0 if 1<j<n_.

Then

Jj=n_

F (x0,%0)=(n— 1)!% |A1(x0)] -+ [ A1 (x0)| " l_[ ej(xo)/\ej(xo)/\'*-

j=1

10



0.2 The Bergman projection

For the precise definitions of some standard notations in complex geometry and
several complex variables, see section 2 of paper II. In this section, we assume
that all manifolds are paracompact. Let M be a relatively compact open subset
with C® boundary I' of a complex manifold M’ of dimension n with a smooth
Hermitian metric (| ) on its holomorphic tangent bundle.

Let F be a C* vector bundle over M’. Let C*(M; F), 2’(M; F) and H$(M; F)
denote the spaces of restrictions to M of elements in C*(M’; F), 2’(M’; F) and
H$(M’; F) respectively.

Let AL°T(M’) and A% T(M’) be the holomorphic tangent bundle of M’ and
the anti-holomorphic tangent boundle of M’ respectively. We extend the Hermi-
tian metric (| ) to CT(M’) in a natural way by requiring A T(M’) to be orthogonal
to A% T(M’) and satisfy

(ulv)=[@|v), u,ve A" T(M).

For p, g €N, let A»9T*(M’) be the bundle of (p, g) forms of M’. The Hermitian
metric (| ) on CT(M’) induces a Hermitian metric on A9 T*(M’) also denoted by
(|). Let (dM’) be the induced volume form on M’ and let ( | ) be the inner
product on C*(M; AP4 T*(M’)) defined by

(fl h)M:J (f I h)(AdM), f,heC®(M;APIT*M")). 0.17)
M

Let r € C*(M’) be a defining function of I" such that r isreal, r=0onT, r <0
on M and dr # 0 near I'. From now on, we take a defining function r so that

l[dr||=1 on T.

Put
wo=7'(dr). (0.18)

Here J! is the complex structure map for the cotangent bundle.

Let AL°T(T") be the holomorphic tangent bundle of I'. The Levi form L,(Z S W),
peX,Z, WeALT,(I), is the Hermitian quadratic form on A°T,(I") defined as
in (0.1).

For the convenience of the reader, we review the definition of the Kohn Lapla-
cian on (0, g) forms. Let

5: COO(M/; A4 T*(M/)) N COO(M/; AOa+1 T*(M/))

be the part of the exterior differential operator which maps forms of type (0, g) to
forms of type (0, g + 1) and we denote by

3y CX(M'; AT TH (M) — CX(M'; A T*(M)

11



the formal adjoint of 3. That is
(@ I W =(f 187 W, f € CXM's AT (M), he C¥(M'; A1 T*(M")),

where ( | )y is defined by

(glkw=] (glk)NdM), g ke Cr(M; AT (M)

M/

We shall also use the notation & for the closure in L? of the  operator, initially
defined on C*(M; A% T*(M")) and 0 for the Hilbert space adjoint of 0. The do-
main of & consists of all f € L*(M; A%a+1T+(M")) such that for some constant
c>0,

(718 <cllg]]. forall g < C=(F; A% (M),

For such an f, .
g§—=(f198m

extends to a bounded anti-linear functional on L*(M; A% T*(M")) so

(F12gm=(f|&u

for some f € L2(M; A®I T*(M")). We have 7 f=f. The d-Neumann Laplacian on
(0, g) forms is then the operator in the space L?(M; A% T*(M’))

09=330 +0 0. (0.19)
We have
DomO“ = {u € L>(M; A> T*(M")); u € Domg*ﬂDomg,
Jdue Domd,du < Domg*}.
As before, if w € A% T*(M’), let
w™* s ASTLTHMY) — A% TH(M) (0.20)

be the adjoint of left exterior multiplication w”. (See (0.16).) Let y denote the
operator of restriction to the boundary I'. Put

D' =DomO () C®(M ; A% T*(M")).
We have

DY = {u e C®(M; A>T T*(M")); (@ rY™*u =0, y(0r)"ou = 0}. 0.21)

12



The boundary conditions
(@r)u=0, y(@r™ou =0, ucC®M A% T*(M))

are called 2-Neumann boundary conditions.
Let
@ : L*(M; A® T*(M")) — KerO?

be the Bergman projection, i.e. the orthogonal projection onto the kernel of 0@,
Let
Knw(z, w)€ 2'(M x M; £(A* T (M), A>T (M)

be the distribution kernel of IT?), Formally,
(M9u)(z)= f Ko (z, w)u(w)dM'(w), u(w)e CP(M; A>T (M")).
M

We recall

Definition 0.9. Given q, 0 < g < n — 1. The Levi form is said to satisfy condition
Z(q) at p €T if it has at least n — g positive or at least g + 1 negative eigenvalues.
If the Levi form is non-degenerate at p €T, let (n_,n.), n_-+n, =n—1, be the
signature. Then Z(qg) holds at p ifand onlyif g # n_.

When Z(q) holds at each point of I', Kohn (1963, [11]) proved that
Kio(z.w) € C®(M x M; (AT (M), A>T T*(M"))).

When condition Z(q) fails, one is interested in the Bergman projection on the
level of (0, q) forms. If the Levi form is positive definite at each point of I', Kerz-
man (1971, [13]) proved that

Kgo(z, w) € C®°(M x M \ diag(I" x I')).

A complete asymptotic expansion of Kpw(z, z) at the boundary was given by Fef-
ferman (1974, [7]): There are functions a, b € C*(M) such that

a(z)
r(z)n+1

Kqo(z,z)= + b(z)log(—r(z)).

Here a(z) is given for z € I' by Hormander (1965, [9]). Complete asymptotics of
Kno(z, w) when z and w approach the same boundary point in an arbitrary way
was obtained by Boutet de Monvel and Sjostrand (1976, [6]).
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Boundary reduction

The Hermitian metric ( | ) on CT(M’) induces a Hermitian metric (| ) on CT(I').
For z €T, we identify CT(I') with the space

fueCT(M"); (u|dr)=0}. (0.22)

For g €N, the bundle of boundary (0, g) forms is the vector bundle A%4 T*(I") with
fiber

AT ={u e AT (M'); (u | 9r(2) A g)=0, Vg €A T (M)} (0.23)
at z €T'. In view of (0.21), we see that u € D@ if and only if
yu € C®(T; A% T(I)) (0.24)

and _
ydu € C™(T; A% TI)). (0.25)

We take (dI') as the induced volume form on I" and let ( | ) be the inner prod-
uct on C®(T'; A% T*(M")) defined by

(f1&hk= J (f18)dr, f,geCo(I; AT (M)). (0.26)
I

We assume that the Levi form is positive definite at each point of I' and g =
0. As before, let 7 be the Szego projection for (0,0) forms on I'. Let P be the
Poisson operator for functions. That is, if u € C®(I'), then

PueC®(M), 9; 0Pu=0

and
YyPu=u.

It is well-known (see ([6])) that
roPr¥=o. (0.27)
From this, it is not difficult to see that
9 = prOp*p)y'P*+F, (0.28)

where o
P*:&(M)— 2'(I)
is the operator defined by

(P'u|v)r=(u|Pv)y, ues& (M), veC®I)
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and
F(z,w)e C®(M x M).

From (0.28), we can obtain the full asymptotic expansion of the Bergman projec-
tion for functions.
In the case of (0, g) forms, in general, the relation (0.27) doesn’t hold. This

makes it difficult to obtain a full asymptotic expansion of the Bergman projection

directly from the Szegd projection. Instead, we introduce a new operator IZI([;.” and

obtain a modified Szego kernel such that (0.27) holds.
The operator El;?)
Let
O =33 +3; 3 : C¥(M’; A T*(M") - C(M'; A% T*(M")) (0.29)

denote the complex Laplace-Beltrami operator on (0,q) forms and denote by

0« the principal symbol of IZI(;’). Let us consider the map:
1

FD 1 H2(M; A% T*(M')) — H(M; A% T*(M')) @ H?(T; A% T*(M")),
u— (O u,ru). (0.30)
Given g, 0 < g < n —1, we assume that
Assumption 0.10. FX) js injective,q —1<k <q+1.

Thus, the Poisson operator for Dgck), g—1<k <q+1,is well-defined. (See
section 4 of the second paper.) If M’ is Kdhler, then F@ is injective for any g,
0 < g < n. (See section 9 of the second paper for the definition and details.)

Let

P:C®(; A% T*( M) — C®°(M; A% T*(M)) (0.31)
be the Poisson operator for Djf’). It is well-known (see page 29 of Boutet de Mon-
vel [5]) that P extends continuously

P HY(T; A% T*(M")) — H* 2 (M; A% T*(M)), V s €R.

Let
P*: &' (M; A TH (M) — 9'(T; A% T(M"))

be the operator defined by
(Pru | v)r=(u | Pv)y, uc& (M; A% T(M), ve C®T; A% T*M")).
It is well-known (see page 30 of [5]) that P* is continuous:
P*: L(M; A9 T*(M)) — Hz(T; A% T*(M"))
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and
P*: C®(M; A*7T*(M')) — C*(I; A T*(M)).

We use the inner product [ |] on H ‘%(F; A%4T+(M’)) defined as follows:
[ | v]=(Pu | Pv)y,
where u, ve H ‘%(F; A% T*(M’)). We consider (8 r)"* as an operator
(@r)™ : H™3(T; A% T (M) — H™2(T; AL (M),
Note that (8 r)* is the pointwise adjoint of 1 with respect to (| ). Let
T H 2(T; A% T*(M")) — Ker (2 r)™* (0.32)

be the orthogonal projection onto Ker (8 r)"* with respect to [ | ]. That s, if u €
H~2(T; A% T*(M")), then B
@r)Tu=0

and _
(I-T)u|gl=0, VY geKer(dr)* .

In section 4 of the second paper, we will show that T is a classical pseudodiffer-
ential operator of order 0 with principal symbol

200V @r).

Put
0p = Tyd P: C*([; A% T*(I")) — C™(T; A>*1 T(I)). (0.33)

Jp is a classical pseudodifferential operator of order one from boundary (0, q)
forms to boundary (0, g + 1) forms,

0 = 0, +lower order terms, (0.34)
where g, is the tangential Cauchy-Riemann operator and
() =0.

Let
3 CX(T; A T(I) — C¥(I5 A% (),

be the formal adjoint of % with respectto [ |]. %T is a classical pseudodifferential
operator of order one from boundary (0, g+1) forms to boundary (0, g) forms and

% =15 P

Put
=35 35 +35 3 : CX; A T(D) — C¥(T; A (D).
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We assume that the Levi form is non-degenerate. Put
Y7 (g)={(x, Awo(x)) € T*('); A <0 and Z(q) fails at x },
YH(g)={(x, Awo(x)) € T*(); A>0 and Z(q) fails at x } .
We apply the method of Menikoff-Sjostrand to D%” and obtain operators
Ae L;% (I; A% T*T),A> T*)), B_,B; € LO%’%(F; A TT), A% T*(I))
such that

OfA+B_+B,=1,

WF'(Kp_)=diag(X"(q) x X7(q)),
WF'(Kp,)=diag(X"(n—1-g)x X" (n—1-¢q)),
%B_ =0, %TB_ =0,

B_=B'=B?,

where L', is the space of pseudodifferential operators of order m type (%, %), B!
is the formal adjoint of B_ with respect to [ | ]. We prove that

ydPB_=0. (0.35)

(See section 7 of the second paper.) From this, we deduce the generalization of
(0.28)
19 = PB_T(P*P)'P*+F, (0.36)

where
P &' (M; A% T*(M') — 9'(T; A% T*(M))

is the operator defined by
(P'u | v)r=(u | Pv)y, u€&'(M; A% T(M"), ve C¥(T; A% T (M)

and
F(z,w)€ C®(M x M; L(A* T* (M), A>1 T(M"))).

The statement of the main results of paper 11

We recall the Hormander symbol spaces

Definition 0.11. Let m €R. Let U be an open setin M’ x M’.

STo(UX]0,00[; L (AT (M), A T;(M")))
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is the space of all a(x,y,t) € C*(Ux]0,00[; L (A% Ty*(M’),AOv‘? T*(M"))) such that
for all compact sets K C U and all a € N?", f € N?", y € N, there is a constant
¢ > 0 such that

8287 9] a(x,y, 1) < c(L+ty" W, (x,y, £) € Kx]0,00].

S7", is called the space of symbols of order m type (1,0). We write S73° =(")S/%.
Let 87 (U((M x M)x]0,00[; (A% T*(M"),A% T*(M’))) denote the space of
restrictions to U[ (M x M)x]0,00[ of elements in

Sy (Ux]0,00; LA™ Ty (M"), A>T T;(M")).
Let
a; €Sy3(U[ (M x M)x]0,00[; (A T}, (M), A% T(M"))), j =0,1,2,...,
with m; \, —o00, j — 0o. Then there exists
a € ST (U( (M x M)x]0,00[; L (A T (M), A T;(M"))
such that

a— Y a;eSys(U[ M x M)x]0,00[; LA T (M), A% TH(M"),

0<j<k

for every k €N.
If a and a; have the properties above, we write

a~ a; inthespace Sy5(U("\(M x M) x [0,00[; L(A T5(M'), A>T T(M"))).

j=0

Let
C,D: Cgo(M; A T* (M) — 9'(M; A>T T*(M))

with distribution kernels

Kelz, w), Kp(z, w) € 7'(M x M; Z(A% T (M), A% T*(M)).

We write o
C=D mod C*(U[ \(M x M))
if
KC(Z’ w) = KD(Z! w)+ F(Z» LU),
where

F(z,w)€ CX(U( (M x M); LA™ T;,(M"), A>T} (M")))

and U is an open setin M’ x M’.
The main result of the second paper is the following

18



Theorem 0.12. Let M be a relatively compact open subset with C* boundary1 of
a complex analytic manifold M’ of dimension n. We assume that the Levi form is
non-degenerate at each point of I'. Letq, 0 < q < n — 1. Suppose that Z(q) fails at
some point of I and that Z(q — 1) and Z(q + 1) hold at each point of T'. Let

I'y={z€l’;Z(q) failsat z } (0.37)
so that Ty is a union of connected components of I'. Then
Kia(z, w) € C®(M x M\ diag(T'y x Tp); LAY T*(M’), A>9 T*(M"))).

Moreover, in a neighborhood U of diag(I';, xI'y), K (z, w) satisfies
Ky (z, w)zf e Wiz w, t)dt mod C“’(Uﬂ(ﬂxﬁ)) (0.38)
0
(for the precise meaning of the oscillatory integral fooo ei?@Wip(z, w,t)dt, see Re-
mark 1.4 of the second paper) with
b(z, w, 1) €S} (U[ (M x M)x]0,00[; L(A™T7,(M"), A T; (M),

b(z,w,t) Nij(z, w)t"

j=0

in the space S} (U (" (M x M)x]0,00[; £ (A% T*(M’), A% T*(M"))),
bo(z,2)#0, z€T,
where

bj(z,w)€ CX(U[ (M x M); LA T (M), A T} (M), j =0,1,...,

and
¢z, w)e C*(U( (M x M), (0.39)
¢(z,2)=0, z€TIy, (0.40)
¢(z,w)#0 if (z,w) ¢ diag(l'y xI'y), (0.41)
Im¢ >0, (0.42)
Im¢(z,w)>0 if (z,w)¢I xT, (0.43)
P(z,w)=—¢(w,2). (0.44)

Forp €1y, we have

UD(fm(z, d.¢(z,w)) vanishes to infinite order at z=p,

(z, w) is in some neighborhood of (p, p) in M'. (0.45)
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Forz=w, z€l'y, we have
dz¢)::—100—'id’3
dyp =woy—1idr.

Moreover, we have
Pz,w)=¢_(z,w) if z,wely,

where ¢_(z, w) € C*(I';xI',) is the phase appearing in the description of the Szegd
projection. See Theorem 0.2, Theorem 0.4 and Remark 0.5.

From (0.45) and Remark 0.5, it follows that

Theorem 0.13. Under the assumptions of Theorem 0.12, let p € I';. We choose
local complex analytic coordinates

z2=(21,...,2n), Zj=Xpj1+ix;, j=1,...,m,

vanishing at p such that the metric on AV T(M’) is

Zdz,-@dfj at p

j=1
and .
r(z)=v2Imz,+ Y A|z;| +0(zP),

j=1
where Aj, j =1,...,n — 1, are the eigenvalues of L,. (This is always possible.) We
also write

w=(w,...,wy,), Wj=xoj1+ikyy, j=1,...,n.
Then, we can take ¢ (z, w) so that
2n-1

. 1
Pz, w)= —V2x01 + \/Eyz,,_l — tr(z)(l + Z a;jxj+ EQanZn)
=1

2n—1

n—1
—irw)(1+ Y @y + %ﬁznm) +i ) ||]z - wif

j=1 j=1

n—1
+ ) iA(Zw; —2w))+ O(I(z, W)I?’) (0.46)
j=1
in some neighborhood of (p, p) in M’ x M’, where

—_ f
2 ﬁxg

1 00

aj (p,—wo(p)—idr(p)), j=1,...,2n.
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The leading term of the Bergman projection
We have the following corollary of Theorem 0.12

Corollary 0.14. Under the assumptions of Theorem 0.12 and let U be a small
neighborhood of diag(I'y x I';). Then there exist smooth functions

E,G € C(U( (M x M)); L(A™ T, (M), A9 T;/(M)))
such that
Knw = F(—i(¢(z, w)+i0)) "'+ Glog(—i(¢(z, w)+i0)).

Moreover, we have

F=Z(ﬂ — (2, w)=ig(z, w)Y + f(z, w)¢(z, w))"*,

j=0

6= e w)igzw)) mod CXU( M xTD)  (0.47)

=
where
flz, w)e C®(U( M x M); LA™ T (M), A1 T;(M"))).
We have the following

Proposition 0.15. Under the assumptions of Theorem 0.12, letp €'y, g =n_. Let
Ui(z),...,Up-1(2)

be an orthonormal frame of A\°T,(T), z €T, for which the Levi form is diagonal-
ized at p. Letej(z), j =1,...,n — 1 denote the basis of \>' T*T'), z € T, which is
dual to ﬁj(z), j=1...,n—1. Let Aj(z), j =1,...,n — 1 be the eigenvalues of the
Levi form L,, z €I'. We assume that

Ai(p)<0if 1<j<n_.
Then

j=n_

a2 [ T espre) () o @r(p)@r(p)Y,

j=1

F(p,p)=n!|Ai(p)]---
(0.48)
where F is as in Corollary 0.14.
For the reader

We recall briefly some microlocal analysis that we used in this thesis in Appendix
A and B of paper I. These two papers can be read independently. We hope that
this thesis can serve as an introduction to certain microlocal techniques with
applications to complex geometry and CR geometry.
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On the singularities of the Szego projection
for (0, q) forms

Chin-Yu Hsiao

Abstract

In this paper we obtain the full asymptotic expansion of the Szeg6
projection for (0, g) forms. This generalizes a result of Boutet de Mon-
vel and Sjostrand for (0,0) forms. Our main tool is Fourier integral
operators with complex valued phase functions of Melin and Sj6s-
trand.

Résumé

Dans ce travail nous obtenons un développement asymptotique
complet du projecteur de Szegd6 pour les (0, g) formes. Cela généralise
un resultat de Boutet de Monvel et Sjostrand pour les (0,0) formes.
Nous utilisons des opérateurs intégraux de Fourier a phases com-
plexes de Melin et Sjostrand.
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1 Introduction and statement of the main results

Let (X,A"°T(X)) be a compact orientable connected CR manifold of dimension
2n —1, n > 2, (see Definition 2.1) and take a smooth Hermitian metric (| ) on
CT(X) so that A°T(X) is orthogonal to A®' T(X) and (u | v) is real if u, v are
real tangent vectors, where A% T(X) = A'°T(X) and CT(X) is the complexified
tangent bundle. For p € X, let L, be the Levi form of X at p. (See (1.1) and
Definition 2.6.) Given ¢q, 0 < g < n — 1, the Levi form is said to satisfty condition
Y(g)atpeXifforany |J|=q, J = j2--jg)h 1S j1<jo<-<j,<n—1,we

have
n—1

2= 2 < 2l

J¢] i€l j=1
where A;, j =1,...,(n — 1), are the eigenvalues of L,. (For the precise meaning
of the eigenvalues of the Levi form, see Definition 2.8.) If the Levi form is non-
degenerate at p, then Y(q) holds at p if and only if g # n_,n., where (n_,n.)
is the signature of L,, i.e. the number of negative eigenvalues of L, is n_ and
niy+n_=n-—1. Let O, be the Kohn Laplacian on X (see [6] or section 2) and
let D(bq) denote the restriction to (0, q)-forms. When condition Y(q) holds, Kohn’s
L? estimates give the hypoellipicity with loss of one dervative for the solutions
of Df)u = f. (See [11], [6] and section 3.) The Szeg6 projection is the orthog-
onal projection onto the kernel of Elgn in the L? space. When condition Y(q)
fails, one is interested in the Szeg6 projection on the level of (0, g)-forms. Beals
and Greiner (see [1]) used the Heisenberg group to obtain the principal term
of the Szegd projection. Boutet de Monvel and Sjostrand (see [9]) obtained the
full asymptotic expansion for the Szeg6 projection in the case of functions. We
have been influenced by these works. The main inspiration for the present paper
comes from Berman and Sjostrand [3].

We now start to formulate the main results. First, we introduce some nota-
tions. Let E be a C* vector bundle over a paracompact C* manifold €2. The fiber
of E at x € Q will be denoted by E,. Let Y cC £ be an open set. From now on,
the spaces of smooth sections of E over Y and distribution sections of E over Y
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will be denoted by C*(Y; E) and 2'(Y; E) respectively. Let &’(Y; E) be the sub-
space of 2’(Y; E) whose elements have compact support in Y. For s € R, we let
H’(Y; E) denote the Sobolev space of order s of sections of E over Y.

Let CT*(X) be the complexified cotangent bundle. The Hermitian metric ( | )
on CT(X) induces, by duality, a Hermitian metric on CT*(X) that we shall also
denote by ( | ). Let A% T*(X) be the bundle of (0, g)-forms of X. (See (2.5).) The
Hermitian metric ( | ) on CT*(X) induces a Hermitian metric on A% T*(X) (see
(2.3)) also denoted by ( | ).

We take (dm) as the induced volume form on X. In local coordinates x =
(x1,...,X2,-1), we represent the Hermitian inner product ( | ) on CT(X) by

(u|v)=(Hu,v), u,veCT(X),

where H(x) e C* and H(x) is positive definite at each point. Let h(x) denote the
determinant of H. The induced volume form on X is given by

dm=+/h(x)dx.
Let (| ) be the inner product on C®(X; A% T*(X)) defined by

(f1g) =f (f(2)] g(2))dm), f,g € C™(X; A T*(X)).
X

Let
m: LA(X; A% TH(X)) — Kerl!?

be the Szego projection, i.e. the orthogonal projection onto the kernel of Elgf) . Let
Kr(x,y)€ 7'(X x X; LA™ T(X), A T(X)))

be the distribution kernel of 7t with respect to (d m). Here £ (A%4 Ty*(X ), A% (X))
is the vector bundle with fiber over (x,y) consisting of the linear maps from
A0 Ty*(X) to A% T*(X). Formally,

(mu)(x) =J Kr(x,y)u(y)v h(y)dy, uly)eC™(X; AT (X)).

We pause and recall a general fact of distribution theory. (See Hérmander
[17].) Let E and F be C* vector bundles over a paracompact C* manifold M
equipped with a smooth density of integration. Let

A:CY(M; E)— 9'(M; F)
with distribution kernel
Ka(x,y)€e 2'(M x M; £4(E,, F,)).

Then the following two statements are equivalent
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(a) Aiscontinuous: §'(M; E)— C®(M; F),
(b) Ky C®(M x M; £(E,, F.)).
If A satisfies (a) or (b), we say that A is smoothing. Let
B:C*(M; E)— 9'(M; F).

From now on, we write Kg(x,y) or B(x,y) to denote the distribution kernel of
B and we write A= B or A = B modC® if A — B is a smoothing operator. A is
smoothing if and only if A is continuous

A:HS (M;E)— HS™N(M; F) forall N >0,s €R,

comp loc

where
HY (M; F)={u € 7'(M; F); pu € H'(M; F); V¢ € CX(M)}

loc

and
H! (M;E)=H

comp 10C(M; E)ﬂ (g)/(M; E)
For z € X, let A1 T*(X) = A% T*(X) and let A'°T*(X) denote the vector bundle

with fiber AMT*(X) at z € X. Locally we can choose an orthonormal frame
wi(2),..., wy-1(2)

for A T*(X), then
w1(2),...,w,-1(2)

is an orthonormal frame for A®! T*(X). The (2n — 2)-form

n

W=i"TWI AL A AWy AW y_q

isreal and is independent of the choice of the orthonormal frame. Thus w can be
considered as a globally defined (2n—2)-form. Locally there is areal 1-form wq(z)
of length one which is orthogonal to A T*(X) ® A% T*(X). wy(z) is unique up to
the choice of sign. Since X is orientable, there is a nowhere vanishing (2n — 1)-
form Q on X. Thus, w, can be specified uniquely by requiring that

wAwo= fQ,

where f is a positive function. Therefore wy, so chosen, is a uniquely determined
global 1-form. We call w, the uniquely determined global real 1-form.

Since (u | v)isrealif u, v are real tangent vectors, there is a real non-vanishing
vector field Y which is orthogonal to A T(X) & A%! T(X). We write (,) to denote

4



the duality between T (X) and T(X). We extend (,) bilinearly to CT,(X)x CT*(X).
We take Y so that
(Y,wo)=-1, [|[Y||=1.

Therefore Y is uniquely determined. We call Y the uniquely determined global
real vector field.

We recall that the Levi form L,, p € X, is the Hermitian quadratic form on
AT, (X) defined as follows:

For any Z, W € AT, (X), pick Z, W € C®(X; A0 T(X)) that satisfy

Up)=2, W(p)=W. Then L,(z, W)= 5 (IZ, Wi(p), o0(p).

(1.1)

Let X be the characteristic manifold of Dg’) . We have
Y={(x,8)e T*(X)\0; &£ = Awo(x), A #0}.
Put

¥ ={(x,&) € T"(X)\ 0; & = Awo(x), A >0},
> ={(x,&) € T(X)\ 0; £ = Awp(x), A < 0}.

We assume that the Levi form is non-degenerate at each point of X. Then the
Levi form has constant signature (n_, n), n-+n, =n—1. We define

i=Z+ if n+:q7én_,
> if n_:q#n+,

S=
izZ*UZ‘ if n,=qg=n_.

The main result of this work is the following

Theorem 1.1. Let (X,A"°T(X)) be a compact orientable connected CR manifold
of dimension 2n — 1, n > 2, with a Hermitian metric( | ). (See Definition 2.1 and
Definition 2.2.) We assume that the Levi form L is non-degenerate at each point
of X. Then, the Levi form has constant signature (n_,ny), n_+n, =n—1. Let
q =n_ or ny. Suppose D(hq) has closed range. Then 1 is a well defined continuous
operator

7 HS(X; A% T*(X)) — H(X; A% T*(X)),

foralls €R, and
WF'(K,) = diag(X x %),



where
WF'(K)={(x,&,y,n) € T*(X) x T(X); (x,&,y,—n) € WE(K,)}.

Here WF (K}) is the wave front set of K. in the sense of Hoirmander [14].
Moreover, we have

K,=Ky+ if n,=q#n_,
K,=K, if n_.=q#ny,
K,=K++K, if n,=q=n_,

where K+(x,y) satisfies
K.+ (x,y)= f e!?+)its (x,y,t)dt mod C®
0

with

5+(0,7, 1) € 8751 (X x Xx]0, 00f; L(A% T*(X), A% T*(X)),

so(6,y,0)~ D sty

j=0

in the symbol space S!';" (X x Xx]0,00[; L(A* T;(X),AO"’ TH(X))),

,0

where S\, m € R, is the Hoirmander symbol space (see Appendix A for a review

and references),
si(x,y) € C¥(X x X; LA T7(X), A% TH(X))), j =0,1,...,
and

$.(x,y) € C¥(X x X),
¢+(x,x)=0,

P+(x,y)£0 if x#y,

Im¢,(x,y)=0,

dx¢p+#0, dy¢p,#0 where Im¢, =0,
dx¢+(xry)|x=y = wo(x),

dy¢+(x:J/)|x:y = —wo(x),

¢+(x,7) ==, (7, %).

(1.2)
(1.3)
(1.4)
(1.5)
(1.6)
(1.7)
(1.8)
(1.9)



Similarly,
Ki-(x,y)= f e!9-is (x,y,t)dt mod C®
0

with

5-(x,, 1) € 7 (X x Xx]0,00[; LA T(X), A% T (X)),

s_(x,y,t)~ Zsf(x,y)t”‘l‘j

j=0

in the symbol space Sy ;'(X x Xx]0,00[; £ (A T(X), AY TH(X))),

where
s'(x,y) € C®(X x X; L (A% Ty*(X),AO"’ THX)), j=0,1,...,

and whenq=n_=n,,
¢—(xry) = _¢+(x’y)-

Formulas for s9(x,x) and s°(x, x) will be given in Proposition 1.7 and Propo-
sition 1.8. More properties of the phase ¢(x,y) will be given in Theorem 1.4 and
Remark 1.5 below.

. . (9)
Remark 1.2. We notice that if Y(g — 1) and Y(g + 1) hold then IZIbq

range. (See section 7.)

has closed

Remark 1.3. If (X, A'°T(X)) is non-orientable, we also have results similar to The-
orem 1.1. (See section 10.)

In the rest of this section, we assume that the Levi form is non-degenerate at
each point of X. The phase ¢.(x,y) is not unique. we can replace ¢.(x,y) by

d(x,y)=fx,y)p+(x,y), (1.10)

where f(x,y)e C*(XxX)isrealand f(x,x)=1, f(x,y)= f(y,x). Then gg satisfies
(1.2)-(1.9). We work with local coordinates x =(x3,...,X2,-1) defined on an open
set Q2 € X. We want to know the Hessian

(92, (94,
(62, (94,

of ¢, at (p,p) € X x X. Let U, V € CT,(X) x CT,(X). From (1.10), we can check
that

(9+)" =

(9"(p,p)U, V) =((¢+)'(p,P)U, V) +(d f(p,p), U) (dp+(p,p), V)
+(df(p,p), V) (do(p,p),U).



Thus, the Hessian (¢, )’ of ¢, at (p, p) is only well-defined on the space
TipHe ={W € CT,(X) x CT,(X); (d¢+(p, p), W) = 0}.

In section 8, we will define 7, ,)H as the tangent space of the formal hypersur-
face H, (see (8.46)) at (p, p) € X x X. Inview of (1.7) and (1.8), we see that T(,, ,,H,
is spanned by

(u,v), (Y(p),Y(p)), u,veAT,(X)® A" T,(X).
We define the tangential Hessian of ¢.(x, y) at (p, p) as the bilinear map:

TippHy X TippyHy = C,
(U, V)= ((@)p,p)U,V), U, VET,,H,.

For p € X, we take local coordinates x = (x,...,X2,-1) defined on some neigh-
borhood of p such that

wo(p)= ﬁden—l; x(p)=0.

If g € C*(X x X), d(p,p)=0, dx,qu(p, p)=d.,¢.(p, p)and the tangential Hes-
sian of @(x,y) at (p, p) is the same as the tangential Hessian of ¢_.(x,y) at (p, p),
then

P,y Xon1) = (6, ¥ Xan1) = O (x, 7))

in some neighborhood of (p, p), where y’ =(y1, ..., ¥2n—2). Moreover, we have the
following (see section 9)

Theorem 1.4. Forp € X, let
Ui(x),..., Uy (x)

be an orthonormal frame of A*° T,,(X) varying smoothly with x in a neighborhood
of p, for which the Levi form is diagonalized at p. We take local coordinates

X=(X1,...,Xon1), Z2j=Xpj_1+ixy5, j=1,...,n—1,
defined on some neighborhood of p such that

wo(p)= ‘/zdenfl; x(p)=0,

o 0
- R =20 , ',k:1,...,2 -1
(3xj(p)| axk(p)) e n



and

3 2n—2
=2 _ . 1...,n—1,
=52 J.A52M+§}ym n
where 5 1 2 p
_— —1 ), j:].,...,n_].,
aZj 2 axZ]‘_l aij
a; € C®, a;(0)=0, 52(0)= 5(0), j,k=1,...,n— 1 and

cjs(x)eC*, ¢cjs(0)=0, j=1,...,n—1, s=1,...,2n—2.
(This is always possible. see section9.) We also write

Y= Yon1), Wi=ysj1+iysj, j=1,...,n—1.

Then,
n—1 )
¢+(x J’)—‘/_(xzn 1~ Yon- 1)"'ZZ|A ||Z] w]~ + = Z (5—2(0)(ij]€—ij]€)
j=1 j k=1

2% LI WO+ Y0z, 2k W
6_ —L( )Z;Zk — w]wk)+ ( Nz;zk — ijk)+a—zk( )(ZjZk—w]‘LUk))

3
+Z(M (zjw; — z]w])—i- - L (0)(z X201 — W Y2n1)

j=1
+521m@mM %pmﬂ+fmnlnmvuw+aWyﬂ)
fec™, f0,00=0, f(x,y)=f(yx), (1.11)

where Aj, j =1,...,n—1, are the eigenvalues of L,.

Remark 1.5. We use the same notations as in Theorem 1.4. Since

99+
ax2n—1

(0,0)#0,
from the Malgrange preparation theorem (see Theorem B.6), we have

P+ (x,y)=g(x,y)V2x25-1 4+ h(x',y))

in some neighborhood of (0,0), where g, h € C*, g(0,0) = 1, h(0,0) = 0 and
x'=(x1,...,X,_2). Put

(ﬁ(x,J/) = ‘/zxZn—l + h(x/!y)-



From the global theory of Fourier integral operators (see Proposition B.21), we
see that ¢, (x,y) and @(x,y) are equivalent at (p, wo(p)) in the sense of Melin-
Sjostrand (see Definition B.20). Since ¢, (x,y) = —¢ +(¥,x), we can replace the
phase ¢.(x,y) by _
P(x,y)— Py, x)
2
Then ¢ (x,y) satisfies (1.2)-(1.9). Moreover, we can check that

n—1 n—1 3 )
¢-+(x,9) = V2(X20-1 — Yon1)+ z]Z 2] |2 — w;| + %j;l(a—ji(oxzjzk — wjw)

a; _ o a(Zj _ _ a; _ —
+ a—zk(O)(ZjZk - Lijk)+ a_Ek(O)(ZjZk - ijk)+ a_Zk(O)(ZjZk —Ww;j wk))

2n—1

n—1
] _ daj
+ 'El(l)Lj(ij]'—Zjo)—Fax J (0)(ij2n—l_wjy2n—l)
]:

ﬁﬁj _ _ 3
+ 5 ——(0)Zj %201 = W yon)) + O, 1)), (1.12)
X2n—1

where 4;, j =1,...,n—1, are the eigenvalues of L,. (Compare (1.12) with (1.11).)

We have the following corollary of Theorem 1.1. (See section 9.)
Corollary 1.6. There exist smooth functions
F,G.,F,G_€C®(X x X; L(A Ty*(X),AO’q T (X))
such that
Kr+ = F(=i(@(x,y)+i0))" + G log(—i(¢+(x,y) +0)),
Ke- = F-(=i(¢p-(x,)+i0)) " +G_log(—i(¢_(x, ) + i0)).

Moreover, we have
n—1

Ey = (n—1=k)sk0e, y) =i (x, y)F + Fr(x, ) (x, )",
0

F = Z(n —1—k)s*(x, ) (—ip_(x, )" + f-(x, y)@(x, )",
0
X _(_1)k+1

G+ E; %Sﬁ+k(x’y)(_i¢+(x!ynk;

x (_1)k+1

G- EXO: — My i), (1.13)

where
fe(x,y), fo(x,y) € CO(X x X; L(A™ Ty*(X),AO'q T (X))
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If w e A®!TH(X), let
W AO'qHTZ*(X) 5 A0 Tz*(X)’ q>0,
be the adjoint of left exterior multiplication
w" : A% THX) — A% THX).
That is,
(w'u | v)=(u|w™v),

for all u € A®1T*(X), v € A>7* T*(X). Notice that w"* depends anti-linearly on
w.
In section 9, we compute F,(x,x)and F_(x, x).

Proposition 1.7. For a given point x, € X, let
Ui(x),..., Up1(x)

be an orthonormal frame of A'° T, (X), for which the Levi form is diagonalized at
xo. Letej(x), j=1,...,n— 1, denote the basis of A% T*(X), which is dual to ﬁj(x),
j=1...,n—=1. Let Aj(x), j = 1,...,n — 1, be the eigenvalues of the Levi form L,.
We assume that q = n,. and that

Ai(x0)>0 if 1<j<n,.

Then

j=n+

Fy(x9,x0) =(n— 1)!% (o)l Ana(xo)l " | | (o) ej(xo)™
j=1

Proposition 1.8. For a given point x, € X, let
Ui(x),...,Up1(x)

be an orthonormal frame of A'° T, (X), for which the Levi form is diagonalized at
Xo. Letej(x), j =1,...,n — 1, denote the basis of A\>! T*(X), which is dual to ﬁj(x),
j=1,...,n=1. LetAj(x), j =1,...,n—1 be the eigenvalues of the Levi form L. We
assume that q = n_ and that

Ai(x0)<0 if 1<j<n_.

Then
Jj=n_

F (x9,%0)=(n— 1)!% |A1(x0)] -+ [ A1 (x0)| " l_[ ej(xo)/\ej(xo)/\'*-

j=1

11



In the rest of this section, we will explain how to prove Theorem 1.1. Let M
be an open set in R” and let f, g € C*(M). We write

f=g
if for every compact set K C M there is a constant cx > 0 such that
f<ckg g=<ckxf onKk.
We will prove the following

Proposition 1.9. Let (X,A"°T(X)) be a compact orientable connected CR man-
ifold of dimension 2n — 1, n > 2, with a Hermitian metric ( | ). Let (n_,n),
n_+ ny = n— 1, be the signature of the Levi form. Let q = n_ or n.. Suppose
D(b”” has closed range. Then for every local coordinate patch U with local coordi-
nates x =(x,...,X2,-1), the distribution kernel of t on U x U is of the form

K:(x,y)=

(27'[)2”1—1 f ei(l#'(ooyxvn)—(y,n))a(oo’x’ n)dn mOd COO)

a(oo,x,n) €S ((T*(U); LA™ T*(U), A* T*(U))),

a(oo,x,n) ~Zaj(oo,x,n)
0
in the symbol space S| \(T*(U); £(A*7T*(U), A% T*(U))),

where £ (A% T+(U), A% T*(U)) is the vector bundle with fiber (x,n) consisting of
linear maps from A>1 T*(U) to A>1T*(U),

aj(0o,x,n) € C*(T*(U); LA™ T*(U), A T*(U))), j=0,1,...,

a;(co,x,An)=A"a;(00,x,n),A>1,

n|>1, j=0,1,....
Here
Y (o0, x,n) € CP(TH(U)),

(00, x,An) = AY(o0,x,n),A >0,

Im (o0, x,m) = |n| (dist((x, ﬁ), D).

Moreover, forall j =0,1,...,

{ a;(oo,x,n)=0 inaconic neighborhood of ¥*, if g=n_, n_#ny, (1.14)

a;(oo,x,n)=0 in aconic neighborhood of >~, if g=n,, n_#n,.

12



From the global theory of Fourier integral operators (see Melin-Sjostrand [18]
and section 8), we get Theorem 1.1.

Now, we sketch the proof of Proposition 1.9. We will use the heat equation
method. We work with some real local coordinates x = (x;,..., X2,—1) defined on
an open set 2 C X. We assume that g = n_ or g = n,. We will say that a €
C>*(R,4 x Q x R2"~1) is quasi-homogeneous of degree j if

a(t,x,An)=Ma(At,x,n)
for all A > 0. We consider the problem

() — i
{ (6:+0,u(t,x)=0 inRyxQ (1.15)

u(0,x)=rv(x)

We shall start by making only a formal construction. We look for an approximate
solution of (1.15) of the form

u(t,x)=A(t)v(x)

A(tv(x)= Jei(w(t”"”)‘<y’”))a(t,x,r))v(y)dydr) (1.16)

(271-)21171
where formally
a(t,x,n)’\“zaj(t,x,n),
j=0
a(t,x,n)is amatrix-valued quasi-homogeneous function of degree —j.
We let the full symbol of EIEJE’) be:

2
full symbol of O\ = Z pi(x,&)
j=0

where p;(x, &) is positively homogeneous of order 2 — j in the sense that
pi(x,An)=A*"p;(x,n), {77| >1, A>1.

We apply J; + D(bq) formally inside the integral in (1.16) and then introduce the
asymptotic expansion of ng’)(aeiw). Set (0, + Dgf))(ae“/’) ~ 0 and regroup the
terms according to the degree of quasi-homogeneity. The phase (¢, x,1) should
solve

0
3_1/; — ipo(x, )= O(|Imy "), YN 2 0

Ylimo=(x,1)

(1.17)
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This equation can be solved with Imy(¢,x,n) > 0 and the phase (t,x,n) is
quasi-homogeneous of degree 1. Moreover,

Y(t,x,n)=(x,n) on¥%, d, (¢ —(x,n))=00n%,

)dist((x, =) E)P, |n|=1.

i
Furthermore, there exists a function (00, x,7) € C*®(Q x R27~1) with a uniquely
determined Taylor expansion at each point of X such that for every compact set

K c Q x R27-1 there is a constant cx > 0 such that

Im) (o0, x,1) > ck |n~ (dist((x, i), ),

n|

au
1+t|n|

Imy(z,x,1) = (||

n|>1.

If A € C(T*2\0), A > 0 is positively homogeneous of degree 1 and Aly;, < minA;,
Aj >0, where £iA; are the non-vanishing eigenvalues of the fundamental ma-
trix of Elg]q), then the solution y/(z, x,n) of (1.17) can be chosen so that for every
compact set K C Q x R2"~! and all indices @, 3, 7, there is a constant ¢, ,,x such
that

axa nﬁ atr(l/)(t) X, 77) - 1/)(00»36, T’))’ < Ca,ﬁ,y,Ke_Mx'n)t on R-ﬁ- X K.

(For the detail, see Menikoff-Sjostrand[20] or section 4.)
We obtain the transport equations

{ T(t,x,1,,8,)a,=O(my]|"), VN (1.18)

T(t,x,0,8,8.)a;+1(t,x,0,ao,...,a;-1)=O(|Imy|"), YN.

Let p, denote the subprincipal symbol of I:l(bq) (invariantly defined on X). (For
the precise meaning of subprincipal symbols, see Definition A.10 and Defini-
tion A.26.) Let F, be the fundamental matrix of Dg’) at p € X.. (For the precise
meaning of the fundamental matrix, see the discussion before Remark A.43.) We
write {f F, to denote Y |2, where +i; are the non-vanishing eigenvalues of F,.

Let

1. 1.
inf(p, + Etr F)= inf{k; A :eigenvalue of p; + EtrF} .

We have on X+

. 1. :0, q:n+
f(p;+-trF . 1.1
inf(py + S tr ){ 0. g#n, (1.19)
On X~
| =0, g=n_
inf(p, + -tr F . 1.20
inf(ps + 5t ){ 0, atn. (1.20)

14



Let
cj(x,n) € CO(THQ); LA™ T (), A*1T(S)), j=0,1,...

be positively homogeneous functions of degree —j. In section 5, we shall show
that we can find solutions

a(t,x,n)’\’zaj(t,x,n)
j=0

of the system (1.18) with

a;j(0,x,n)=cj(x,n), j=0,1,...,

where a;(,x,n) is a matrix-valued C* quasi-homogeneous function of degree
—Jj. Moreover, a;(t,x,n) has unique Taylor expansions on %, for all j. Further-
more, there exists & > 0 such that for every compact set K C X and all indices
a, 3,7, ] there exists a constant ¢ > 0 such that

3t78x“3nﬂaj(t,x,n)’ < ce®tlnl(1 + |n|)—j—|ﬁ|+r

onRLx(KﬂZJ“) ifg=n_,n_#n, (1.21)
and
a;’axaanﬁaj(t,x,n)‘ < cemrll(1 4 [n]y71P b
onR, x (Kﬂz—) ifg=n,,n_#n,. (1.22)
Let

a(t)x)n)wzaj(t)xyn)

j=0

be the solutions of the system (1.18) with
a(O) xr T’) = I)

where a;(t,x,n) is a C* matrix-valued quasi-homogeneous function of degree
—j and I € C®(T*(Q2); L(A%T*(2),A% T*(2))) is the identity map. We write

@, +0)e"b)~0

if b solves the system (1.18), where b(t,x,n) ~ Zj’;o bj(t,x,n), bj(t,x,n) is a
matrix-valued quasi-homogeneous function of degree m — j, m € Z. We use

J— —_ —k _1)—%*
2,0 =03, 3, 0 =0Y"3,
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and get
2,(@p(e™a))+07 " (@,(e™ a)) ~0
2,3 (e™a)+09 (@, (e a))~0.
Put
2,(eVa)=ea, g, (eVa)=eVa.
We have
@, +0 e a)~o0,
& +07 ) e@)~o0.

In view of (1.21) and (1.22) (see Proposition 5.7), we see that 4 and a satisfy the
same decay estimates as in (1.21) or (1.22). This also applies to

0" (ae™)=0,(3, ae™)+3y (Gpae’™)
= Eb(e"wﬁ) +a_b*(ei¢d)'

Thus, J,(ae'¥) satisfies the same decay estimates as in (1.21) or (1.22). Since &,
satisfies the same decay estimates as in (1.21) or (1.22), J;a satisfies the same
decay estimates as in (1.21) or (1.22). Hence, there exist

aj(0o,x,n) € C*(T"(Q); LA™ T*(Q) , A" T*()), j =0,1,...,

positively homogeneous of degree —j, and g, > 0, such that for every compact
set K ¢ ¥ and all indices a, 3, j there exists a constant ¢ > 0 such that

820P(a;(t,x,m)— a;(00,x,m))| < ce~'IMl(1 4 |n|)~-Il (1.23)

and forall j=0,1,...,

(1.24)

all derivatives of a (0o, x,n) vanish at >+, if g=n_, n_#n,
all derivatives of a (oo, x,n) vanish at -, if g=n,, n_#n,

Choose y € CP(R?*"!) so that y(n) = 1 when |T)| < 1 and y(n) = 0 when
|n| > 2. We formally set

1 ©
G - l(#’(’%%’))‘(%”l)) t’ ,
(Zﬂ)Z”IJ (J:) N e

— et~ (oo, x,m) (1 = z(m)dt )
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and
1

(27-[)2n—1
In section 6, we will show that G is a pseudodifferential operator of order —1 type
(3»3)- In section 7, we will show that

f (e eorn=(rm) g (oo, x, m)dn.

S+0%eG=1

and
07 eS=0.
If Elgf) has closed range, then
NOY +rn=1=0"N+mr,
where N is the partial inverse of Df). It is not difficult to see that
=S

and

N=(I-9)G.

(See section 8.)

Acknowledgements. The author would like to thank his advisor Johannes Sjos-
trand for his patience, guidance and inspiration.

2 Cauchy-Riemann manifolds, J,-Complex and 0,
areview

We will give a brief discussion of the basic elements of CR geometry in a setting
appropriate for our purpose. General references for this section are the books
Boggess [5], Chen-Shaw [6].

Let X be a real compact C* manifold of dimension 2n — 1, n > 2. Let T,(X)
and T;(X) be the tangent space of X at p and the cotangent space of X at p re-
spectively. We write T(X) and T*(X) to denote the bundles with fibers T,(X) and
T¥(X) at z € X respectively. Let CT,(X) and CT;(X) be the complexified tangent
space of X at p and the complexified cotangent space of X at p respectively. That
is,

CH(X)={u+iv;u,ve,(0}, CT)={u+iv;u,veT;(0}.

We write CT(X) and CT*(X) to denote the bundles with fibers CT,(X) and CT(X)
at z € X respectively.
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Definition 2.1. Let X be a real C*® manifold of dimension 2n — 1, n > 2, and let
AYT(X) be a subbundle of CT(X). The pair (X, A"°T(X)) is called a CR manifold
or a CR structure if

(@ dimcAYT,(X)=n—-1,p€eX,
(b) AMT(X)(A*' T(X)=0, where A®' T(X) = A" T(X),

(c) For any Vi, V5 € C*(U; A T(X)), the Lie bracket [V}, 15] € C*(U; A T(X)),
where U is any open subset of X.

Definition 2.2. Let (X,A"°T(X)) be a CR manifold. A Hermitian metric ( | ) on
CT(X)is a complex inner product ( | ) on each CT,(X) depending smoothly on p
with the properties that A0T,(X) is orthogonal to A®!T,(X) and (u | v) is real if
u, v are real tangent vectors.

Until further notice, we assume that (X,A'"°T(X)) is a compact orientable
connected CR manifold of dimension 2n — 1, n > 2, and we fix a Hermitian met-
ric (| ) on CT(X). Then there is a real non-vanishing vector field Y on X which is
pointwise orthogonal to A T(X) & A% T(X).

We write (,) to denote the duality between T(X) and T(X). We extend (,)
bilinearly to CT(X) x CT(X).

The Hermitian metric ( | ) on CT(X) induces, by duality, a Hermitian metric
on CT*(X) that we shall also denote by ( | ) in the following way. For a given point
z € X, letI" be the anti-linear map

I':CT,(X)— CT(X)

defined by
(u|v)=(u,I'v), u,veCT,(X). 2.1

For w, u € CT}(X), we put
(wlwW)=0C"p|TI ). (2.2)

Let A"(CT*(X)), r €N, be the vector bundle of r forms of X. That is, the fiber
of A"(CT*(X)) at z € X is the vector space A"(CT (X)) of all finite sums of

UA--AV, VeCT/(X), j=1,...,1.

Here A denotes the wedge product. The Hermitian metric (| ) on A"(CT*(X)) is
defined by

(U1 A--ANu, | vl/\---/\vr):det((uj | vk))

1<j,k<r’

uj, v, €CT(X), j,k=1,...,r, (2.3)
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and we extend the definition to arbitrary forms by sesqui-linearity.
Similarly, let A"(CT(X)), r € N, be the vector bundle with fiber A"(CT,(X)) at
z € X, the set of all finite sums of

ViA-AV, VECT(X), j=1,...,.
The duality (,) between A’(CT(X)) and A"(CT*(X)) is defined by

(vl/\---/\vr,ul/\---/\ur):det(<v]~,uk>)

1<jk<r’

uj e CT*(X),v; eCT(X),j=1,...,r.

and we extend the definition by bilinearity.
Forze X, let v e CT,(X). For 0 <r <(2n —2), the contraction

v ATHCTI(X) — AT (CTE (X))

is defined by
(A Av, v u)=(VAVI A AV, 1)

forall u e A"} (CTHX)), v; €eCT(X), j=1,...,r.
We have the pointwise orthogonal decomposition

CTX)=A"T(X)e A" T(X)®CY. (2.4)
Define the bundle A°T*(X) of type (1,0) by
AP THX) = (A" T(X)® CY)! c CT*(X).

Similarly, we set
AP THX) = (A T(X)® CY) c CTH(X).

Forze X, u e A" T,(X), ve A»' T,(X)® CY(z), we have
(vTu)=(|u)=0,
where I'is as in (2.1). Thus, TAY T, (X) € AV T(X). Since
dimIAY T(X) =dimA" T (X)=n -1,

we have

ALY TZ*(X) =TAYT,(X).
Similarly,

A TZ*(X) =TA" T,(X).
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Forz € X, w € A\ THX), u € A®' T(X), we have
(@lw)=C"u|r " w).
Since ' 'w e AV T,(X), T 'u e A®' T,(X), we have
(w|u)=0.
Thus, A T#(X) is pointwise orthogonal to A%! T*(X). For g €N, define
A T*(X) = AT (AY T*(X)). (2.5)

That s, the fiber of A% T*(X) at z € X is the vector space A7(A%! T*(X)) of all finite
sums of
ViA-AV, eNITH(X), j=1,...,q.

Note that A% T*(X) =0 if g > n. We use the Hermitian metric (| ) on A% T*(X),
that is naturally obtained from A(CT*(X)). Similarly, for g € N, let A% T(X) be
the vector bundle with fiber A7(A%! T, (X)) at z € X, the set of all finite sums of

VA AV, GEA T, j=1,....q.

Let
d : C*(X; N'(CT*(X))) = C*(X; A(CT* (X))

be the usual exterior derivative. We recall that the exterior derivative d has the
following properties, where (b), (¢) are special case of Cartan’s formula:

Lyw=v'dw+dv'w).

Here v is a smooth vector field, w is a g-form and .%, w is the Lie derivative of w
along v.

(@) If f € C*(X) then (V,d f) = V(f), V € C=(X; CT(X)).
(b) If ¢ € C(X; CT*(X)) then
(WA, de)=Vi((¢))— V(W ¢))— (¥, ¥l ¢), (2.6)
where Vi, ; € C*(X; CT(X)).
(©) If ¢ € Co(X; A-Y(CT*(X))), g > 2, then
<V1/\"'/\Vq,d¢>=—<Vé/\"'/\Vq,d(V1-‘¢)>

+U((BA-AV,9))
—((VL VIAVA-AV,¢)
_..._<V2/\V3/\.../\[V1’V],¢>, (2.7)

where V; € C*(X; CT(X)), j=1,...,9.
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(d) For ¢; € C®(X; A(CT*(X))), ¢p» € C*(X; AS(CT*(X))), we have
AQiNP)=dp, NP+ (=1) @1 Ad,.

(e) d?=0.

Let
7% AI(CT*X)) — A% T*(X)

be the orthogonal projection map.
Definition 2.3. The tangential Cauchy-Riemann operator:
011 C¥(X; AY T*(X)) — C(X; A%TH T*(X)

is defined by
517 = ﬂ:O,q-H od.

We will show that
05 : Co(X; A T(X)) — C(X; A T*(X))

is a compley, i.e. 52 = 0. This will follow from the equation d? = 0 and some
computations. We need the following

Lemma 2.4. Letq > 1. Let w be a smooth q-form. We assume that w(x) annihi-
lates \>1T,(X), for all x € X. Then (d w)(x) annihilates N>+ T,(X), for all x € X.

Proof. We proceed by induction over q. For g =1, we let
Vi, b € C*(X; A*' T(X)),

then
(A, dw) = Vi({(, w)) — (U, w)) = ([U, V], w).

Since [V}, 5] € C®(X; A>T (X)), we have ([, V5], w) =0. Thus,
(WA, dw)=0.

Let g > 2. Let w be a smooth g-form. We assume that w(x) annihilates
AT, (X), forall x € X. Let

Vi,..., Vo1 € CX0G A T(X)).
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From (2.7), we have

(Vins AV, deo) == (VA AV, d(V20)) + U((BA A Vi, )

(M VIAGA AV, @) == (BAB A AT, V] ).
Since
[V, V] € C¥(X; A T(X)),j=2,...,q+1,
and
‘/1(<‘/2/\"'/\%+1,0)>):0,
we have

<‘/1/\"'/\‘47+1,d(1)> :_<‘/2/\A‘/q+l!d(‘/1_lw)>
By the induction assumption, we have
(BA AV, d(w)) =0,

Thus,
<V1/\---/\ 14,+1,dw> =0.

The lemma follows. O

Proposition 2.5. We have
d,=0.

Proof. 1If f € C*(X; A% T*(X)), then
0=d*f=d(x>"df+I—r""*")d f).

Now (I — n%4*1)d f annihilates A%7*1 T(X) pointwise. In view of Lemma 2.4, we
see that
721241 — n®™d f)=0.

Thus,
0= 710"7+2d2f
— ﬂo’q+2dﬂ0'q+ldf+ ﬂo,q+2d((I _ 7T0'q+1)df)
— 7'50"7+2d7'50’q+1 df
—2
=0,f.
The proposition follows. O
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We take (d m) as the induced volume form on X introduced in the begining
of the introduction. Let (| ) be the inner product on C*®(X; A% T*(X)) defined by

(f18) =J (f(2)] g(z)(dm), [, g€ C®(X; A*T*(X)). (2.8)
X

Let 6_b* be the formal adjoint of 0, that is
@sf I W)=(f 13, h), f € C¥(X; A1 T*(X)), h € C¥(X; A>T T*(X).
5_17* is a first order differential operator and
Gy 1eer = CO(X; AT TH(X)) — C(X; A9 THX)) = -

is a complex.
fweATHX), zeX, let

w/\,* . AO,q+l TZ*(X) N AO,q TZ*(X)
be the adjoint of left exterior multiplication
w” : A% T (X) — A% T(X).

That is,
(wu | v)=(u | w"*v),

for all u € A®1TH(X), v € A%+ T*(X). Notice that w"* depends anti-linearly on
w. Note that

(UlwAviA-Avy)= <F_1w/\F_IU1A---/\F_1vq,u>
= <1"‘1v1A---/\l"‘lvq,(l"_lw)"u>

=T 'w)YulviA--Avy)
where u € A7 T*(X) and v; € A% T*(X), j =1,...,q. Thus,
T 'w)'u=w"*u, ue A" TH(X).
Locally we can choose an orthonormal frame
wi(2),...,wn-1(2)

for A T*(X), then
1(2),...,0,-1(2)
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is an orthonormal frame for A®! T*(X). The (2n — 2)-form

rn

w=1 _161)1 /\51 VARERWAN /\En_l

is real and is independent of the choice of the orthonormal frame. Thus w can
be considered as a globally defined (2n — 2)-form. Locally there is a real 1-form
wo(z) of length one which is orthogonal to

A TH(X) @ A% TH(X).

wo(z) is unique up to the choice of sign. Since X is orientable, there is a nowhere
vanishing (2n — 1)-form Q on X. Thus, w, can be specified uniquely by requiring
that

wAwo= fQ,
where f is a positive function. Therefore wy, so chosen, is a uniquely determined

global 1-form. We call w, the uniquely determined global real 1-form.
We have the pointwise orthogonal decomposition:

CT*X)=AVT*X)® A" THX)® {Awo; A€ C}. (2.9)
We take Y (already introduced after Definition 2.2 and (2.4)) so that
(Y,wo)=—1, [IY|I=1.

Therefore Y is uniquely determined. We call Y the uniquely determined global
real vector field. Note that
Wy = —IY.

Definition 2.6. For p € X, the Levi form L, is the Hermitian quadratic form on
A T,(X) defined as follows:

For any Z, W € AMT,(X), pick Z, W € C>®(X; A T(X)) that satisfy

Z(p)=2, W(p)=W. Then L,(Z, W)= % <[Z  W(p) ,wo(p)> .

(2.10)

Here

7, W =2W-WZ
denotes the commutator of Z and W

The following lemma shows that the definition of the Levi form L, is inde-
pendent of the choices of Z and W.
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Lemma2.7. LetZ, W € C®(X; A1’ T(X)). We have

(2. W), 0op) == (Z) A WpLdoyp)).  @1)
Proof. Inview of (2.6), we see that
(ZAW,dey) =Z((W,w0) - W(Z,wo)— (17, W], w).

Since w, is pointwise orthogonal to

AMTH(X) @ A™ TH(X),
it pointwise annihilates
AV T(X)® A*' T(X).
We have .
<W, 0)0> = 0, <Z, (1)0> =0.

Thus,

{2, Wip)p)) =~ (Z(p) A W(p), dn(p))

2i 2i
The lemma follows. O

Definition 2.8. The eigenvalues of the Levi form at p € X are the eigenvalues of
the Hermitian form L, with respect to the inner product (| ) on AT, (X).

For U,V € C®(X; A" T(X)), we have [U , V](p) € CT,(X), p € X. In view of
(2.4), we see that

[U,VI(p)=2AY(p)+h, he A T,(X)® A" T,(X).

Note that
<h »0)0(79» =0

and

(Y(p),wo(p)) =—1.

In view of (2.10), we have

[U,VI(p)=—(2i)L,(U(p), V(p))Y(p)+ h. 2.12)

Next we compute 5b and 6_b*.
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For each point z, € X, we can choose an orthonormal frame

ei(z),...,e,—1(2)

for A% T*(X) varying smoothly with z in a neighborhood of z,. Let Z;(z), j =
1,...,n—1, denote the basis of A®! T,(X), which is dual to e;(z), j =1,...,n—1.
We have

df=()_elZi+Y e\ Z;— wyY)f, feCX(X).
If f(z)ej,(z) A+ Aej,(z) € C°(X; A% T*(X)) is a typical term in a general (0, q)-
form, we have

d(f(2)ej,(2)A - Ae (@)= D (Zif)e) +(Z; e} — (Y flw))e, A~ Ae,
q

+D (D) f(2)ej A A(dep) A Aey,.

k=1

Thus,

31(f(2)ej(2) A+ Aej,(2)= Y _Zi(flej(z) e; A+ Ae,

j=1
q
+D (=¥ f(2)ey A A(@yeg) Ao e,
k=1
n—1
Z(sz(f)ef)ej] A= Nej,)
j=1

+O_(@ve) e} f(2)e A Aey,).
j=1

For the given orthonormal frame, the map
ejA 0Z;: C¥(X; A% TH(X)) — C¥(X; A% TH(X))
is defined by
(e]f‘ oZ;)(f(z)e;(z)A---Nej (2)) =Zi(flej(z)ej, A+ A ej,

and we extend the definition by linearity.
So for the given orthonormal frame we have the identification

—

e
o= (e}oZ; +(0pe;)e;)
1

~.
I
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and correspondingly
. n—1 _
o, = Z(e]’.\'* oZ;+e;(0pe;)""),
j=1
where the map
e o Z7 : C(X; A7 T*(X)) - C(X; A T*(X)
is defined by

(e 0 Z)(f(2)e;,(2) A=+ Ney,, ()= Z;(flej(z) e, A Aej,,,

and we extend the definition by linearity.
The Kohn Laplacian 0, is given by

e
Dbzﬁbﬁb +6b ﬁb.
From now on, we write I:lgf) to denote the restriction to (0, g)-forms. We have

n—1
0= 3 [(eh oz, +@ueyyel) (e o 2 + e)(@ren)™)
Jrk=1

+(€]/C\'* OZZ + e]/(\(gb ek)’\’*) (e]/\ on + (Ebej)/\ej{\'*)]
n—1
= > [te) oz el 02+ (e 0 e} o 2]
j k=1
+ &(Z)+ e(Z*) + zero order terms
n—1
S trenzeargonzy

k=1

+&(Z)+ e(Z*)+ zero order terms
n-l n—1

= Z (e]’.\e,/c\'* + e,’c\'*e]’.\)OZZZj + Z e]’.\e,/c\'* o[Z;,Z}]
Jrk=1 jok=1

+ &(Z)+ £(Z*) + zero order terms, (2.13)

where £(Z) denotes remainder terms of the form Zz;i ai(z)Z, with ar(z) € C*®,
matrix-valued and similarly for £(Z*).
Note that
ejAeQ'*Jre,?'*ejA:éj,k. (2.14)

We obtain the following
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(q) -

Proposition 2.9. The Kohn Laplacian T, is given by
ng) = 51,_1,* + 6b*3b
n—1 n—1

=Y ZZi+ Y eleytolz;,Z]

+&(Z)+ £(Z*)+ zero order terms,

where ¢(Z) denotes remainder terms of the form Zak(z)Zk with a(z) smooth,
matrix-valued and similarly for e(Z*).

3 The hypoellipicity of 7,

We work with some real local coordinates x = (x, ..., x2,-1) defined on an open
set 2 C X. In view of Proposition 2.9, we have

—1
=) 717 +ZeA o2, 7]
j=1 J,k=1

+&(Z)+ e(Z*)+ zero order terms, 3.1)

where £(Z) and &(Z*) are as in Proposition 2.9. Let g;, j = 1,...,n — 1, be the

principal symbols of Z;, j =1,...,n — 1. The principal symbol of ngq) is

po= d,4;- 3.2)
=1

The characteristic manifold ¥ of D(bq) is

Y={(x,8)e T (X)\0; £ = Awy(x),A #0}, 3.3)

where wy is the uniquely determined global real 1-form.

From (3.2), we see that p, vanishes to second order at >.. Thus, ¥ is a doubly
characteristic manifold of D(q) and the subprincipal symbol of D(q) iswell-defined
on X. (For the precise meanings of doubly characteristic manifold and subprin-
cipal symbol, see Definition A.10, Definition A.11, Definition A.25 and Defini-
tion A.26.) For an operator of the form Z;Z; this subprincipal symbol is given by
zll {ﬁ] q]} and the contribution from the double sum in (3.1) to the subprincipal
symbol of I]b is

EWTUEAL

]kl
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where {qj,ﬁk} denotes the Poisson bracket of g; and q,. (See Definition A.35.)

(q)

We get the subprincipal symbol of (0J,"” on X (see Lemma A.12),

-1 n—1

Z A @ p+ 2 e qqu} (3.4)

j=1 Jjrk=1
From (2.12), we see that
[Z,Zi] =—(2i)L(Zk,Z;)Y mod (A" T(X) ® A*! T(X)),

where Y is the uniquely determined global real vector field. Note that the princi-
pal symbol of Z; is —g,.. Hence,

{ak’qj}:(zi)L(Zk;Zj)O'iY ony, (3.5)
where o ;y is the principal symbol of i Y. Thus,
_(ZL(Z],Z) Z 2/ e L(Zi, Z;))oiy on X, (3.6)
k=1

In the rest of this section, we need some basic notions of symplectic geome-
try. See appendix A, after Definition A.26, for a reivew.

From now on, for any f € C®(T*(X)), we write H; to denote the Hamilton
field of f. (See Definition A.34.) We need the following

Lemma 3.1. X is a symplectic submanifold of T*(X) if and only if the Levi form is
non-degenerate at each point of X.

Proof. Note that
={(x,£) € TCONO; (%, &) == G 1(x,8) =7,(x,&)-- =7, (x,§) =0}.

Let CT,(X) and CT,(T*(X)) be the complexifications of T,(X) and T,(T*(X)) re-
spectively, where p € 3. For p € %, we can choose the basis

qu’""Hqﬂ*I’HEI"."HE}'L—I

for T,(X)*, where T,(X)* is the orthogonal to CT,(X) in CT,(T*(X)) with respect
to canonical two form,
o=diNdx.

In view of (3.5), we have
_ 2
o(H,, Hak)z{qj,qk}z;L(Zk,zj)a-iy onX. (3.7)
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We notice that {qj, qk} =0on X. Thus, if the Levi form is non-degenerate at each
point of X, then o is non-degenerate on T,(X)*, hence also on C7,(X) and X is
therefore symplectic. Notice also that in that case

CT,(D)( () =0.

If X is a symplectic submanifold of T*(X), from (3.7), it follows that the Levi
form is non-degenerate at each point of X. The lemma follows. O

Let F, be the fundamental matrix of p, at p =(p, o) € 2. (see the discussion
before Remark A.43.) We can choose the basis
H,,...,Hy, ,,Hg,,...,Hy

n-1

for CT,(T*(X))\ CT,(X). We notice that
Hy, = Z(ﬁijIj +q; Hﬁj)-
j

We compute the linearization of H,, at p

Hp(p + Y (txHy, +skHg ) =00t + >t {417, } H,,
Jk
+2 s {dwar} .
Jk
So the matrix F, of the linearization is expressed in the basis

Hg,...,Hy,_,Hg,...,Hg, |

F, :( tawa} 0 ) (3.8)

0 {ﬁk» qj }
Again, from (3.5), we see that the non-vanishing eigenvalues of F, are

by

where 4;, j =1,...,n—1, are the eigenvalues of L,.
To compute further, we assume that the Levi form is diagonalized at the given
point p € X. Then

Zze]/.\ellc\'*Lp(Zk;Zj)O'iY:Zze]{\ej{\’*Lp(Zj,Zj)O'iy. (3.10)
ik j
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From above, we see that on X and on the space of (0, g) forms, p; + %tNrF has the

eigenvalues
n—1
Z|)LJ| |0'iY|+ZAjO'iY—Z)LjO'iy, |]| =q,
j=1 j¢J jeJ (3.11)

IJ=0ujzrjgh 1S i<jo<--<j;<n-—1,
where tr F, denotes ) | U \, +u; are the non-vanishing eigenvalues of F,. Put
YT ={(x,8)e T (X)\0; £ = Awo(x), A < 0}
and
Y={(x,8) e T (X)\0; & = Awo(x), A > 0}.

We assume that the Levi form is non-degenerate at each point of X. Then the
Levi form has constant signature (n_,n.), n_+n, =n—1. Since (Y, w¢) = —1, we
haveo;y >0onX*, o;y <0onX-.

Let

inf(p; + étNrF) = inf{k; A : eigenvalue of p; + %ffF} :

From (3.11), we see thaton X+

. 1. =0, g=ny4
f(p.+=tr F . 12
in (P0+2tr ){ S0, q#n, 3.12)
On X~
| =0, g=n_
inf(p] + =tr F . 1
in (p0+2tr ){ >0, q#n. (3.13)

Definition 3.2. Given g, 0 < g < n — 1, the Levi form is said to satisfy condition
Y(g)atpeXifforany|J|=q, ] =i 2. jg)h 1S 1 <jo<--<js<n-1,we

have
n—1
PIIEDIED W
=1

j¢] j€] J
where A;, j = 1,...,(n — 1), are the eigenvalues of L,. If the Levi form is non-
degenerate at p, then the condition is equivalent to q # n., n_, where (n_, n,),
n_+ny=n-—1,isthe signature of L.

From now on, we assume that the Levi form

is non-degenerate at each point of X. (3.14)

From (3.11), (3.12), (3.13) and Definition 3.2, we have the following
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Proposition 3.3. Let(n_,n,), n-+n, = n—1, be the signature of the Levi form
L. p§+ %‘[NrF is positive semi-definite and we have that (3.12), (3.13) hold and
po+ %tNrF is positive definite when Y(q) holds, precisely when q ¢ {n.,n_}.

Let Q2 be an open set in RY. Let P be a classical pseudodifferential operator
on 2 of order m > 1. P is said to be hypoelliptic with loss of one derivative if
u € &'(Q) and Pu € H; () implies u € Hg:gp‘l(ﬂ).

We recall classical works by Boutet de Monvel [7] and Sj6strand [21].

Proposition 3.4. Let Q be an open set inRY. Let P be a classical pseudodifferential
operator on ) of order m > 1. The symbol of P takes the form

o p(x,8)~ pm(x,E)+ Pm-1(X,E) + P—(x,E) +---,

where p; is positively homogeneous of degree j. We assume that¥. = p,1(0) is a
symplectic submanifold of codimension 2d, p,, > 0 and p,, vanishes to precisely
second order onX.. Let F be the fundamental matrix of p,,. Let p3, be the subprin-
cipal symbol of P. Then P is hypoelliptic with loss of one derivative if and only

if
d
Pio)+ Y G+ | £0
=1

at every point p € X forall(a;,az,...,aq) € N4, where £iu; are the eigenvalues of
Fatp.

Proposition 3.4 also holds if P is a matrix-valued classical pseudodifferential
operator on 2 of order m > 1 with scalar principal symbol.
From Proposition 3.4, we have the following

Proposition 3.5. We recall that we work with the assumption that the Levi form L
is non-degenerate at each point of X. D(bq) is hypoelliptic with loss of one derivative

ifand only if Y(q) holds at each point of X.

Remark 3.6. Kohn’s L? estimates give the hypoellipicity with loss of one dervative
for the solutions Dgf) u = f under condition Y(q). (See Folland-Kohn [11].) Kohn’s
method works as well when the Levi form L is degenerate.

4 The characteristic equation

In this section, we consider the characteristic equation for J; + Elsgq) .

Let po(x, &) be the principal symbol of Dgf). We work with some real local co-
ordinates x = (x,X,...,X2,—1) defined on an open set 2 C X. We identify 2 with
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an open set in R?"~1, Let Q€ be an almost complexification of Q. That is, Q€ is an
open set in C2*~! with Q€[ |R?"~! = Q. We identify 7%(2) with Qx[R?"~!. Similarly,
let T*(2)c be an open set in C?~1 x C2"~1 with T*(Q)c[ J(R?"~! xR?"~1) = T*(f). In
this section, for any function f, we also write f to denote an almost analytic ex-
tension. (See Definition B.1.) We look for solutions (¢, x,1n) € C*(R,. x T*(€2)\0)
of the problem

0
3—1’5 — ipo(x,y)=0(|my|"), YN >0,

¢|t:0: <x rn>

(4.1)

with Imv(¢, x,1) > 0. More precisely, we look for solutions y(t,x,n) € C°(R, x
T%(2)\ 0) with Im (¢, x,1) > 0 such that y|,—o = {(x ,n) and for every compact
set K C T*(Q2)\ 0, N >0, there exists ckx,y > 0, such that
o _
|a—7’f —ipo(x,Y)| < cx v |Im¢|N onR,; x K.

Let f(x,&), g(x,&) € C®(T*(2)c). We write
f=gmod |Im(x, &)™

if, given any compact subset K of T*(2)c and any integer N > 0, there is a con-
stant ¢ > 0 such that

|(f — 8)(x, &)| < cltm(x, &), ¥(x, &) e K.
Let U and V be C* complex vector fields on T*(Q2)c. We write
U=Vmod [Im(x,&)*™
if
U(f)=V(f)mod |Im(x, )™

and
U(f)=V(f) mod |Im(x,&),

for all almost analytic functions f on T*(2)c. In Appendix B, we discuss the no-
tions of almost analytic vector fields and equivalence of almost analytic vector
fields.
In the complex domain, the Hamiltonian field H), is given by
dpo @ Opoy 0

=57 3%~ ox ot
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We notice that H,,, depends on the choice of almost analytic extension of p, but
we can give an invariant meaning of the exponential map exp(—itH,,), ¢ > 0.
Note that H,,, vanishes on .. We consider the real vector field

—iHy, +—iH,,.

Let ®(¢, p) be the —i H,, + —i H,, flow. We notice that for every T > 0 there is an
open neighborhood U of ¥ in T*(Q)¢c such that forall 0 <t < T, ®(¢, p) is well-
defined if p € U. Since we only need to consider Taylor expansions at %, for the
convenience, we assume that (¢, p) is well-defined for all £ > 0 and p € T*(Q)c.
We have the following

Proposition 4.1. Let ®(t,p) be as above. Let U be a real vector field on T*(Q)c
such that
U=—iHp,+—iH,, mod |Im(x,&)>.

Let ®(t,p) be the U flow. Then, for every compact set K C T*(Q)c, N > 0, there is
cnx(t)>0, such that

|(£,p) - ®(2, p)| < e x(2)dist(p,2)", p € K.

Proof. This follows from Proposition B.13. O

Fort >0, let
G:={(p,o(t,p)); p € T* ()}, (4.2)

where ®(¢, p)is as in Proposistion 4.1. We call G, the graph of exp (—it H),). Since
H,, vanishes on ¥, we have

O(t,p)=p ifpe.

G, depends on the choice of almost analytic extension of p,. Let py be another
almost analytic extension of py. Let G, be the graph of exp (—it Hj,). From Propo-
sition 4.1, it follows that G, coincides to infinite order with G, on diag(X x X), for
all £ >0.

In Menikoff-Sjostrand [20], it was shown that there exist g(¢,x,n), h(t,x,n) <€
C®(R, x T*(Q)c) such that

Gt = {(x’ g(t!x» T])’ h(t,x,n),n); (X,T])E T*(Q)(C}

Moreover, there exists /(, x,1) € C*(R, x T*(Q)c) such that

g(t»xrn)_l/);(trx’n)
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and
h(t)x) n) - lp:f](t’x’ T))

vanish to infinite order on X, for all £+ > 0. Furthermore, when (¢,x,n) is real,
Y(t,x,n)solves (4.1) and we have,

t
Imp(r,%,1) = T~ (dist((x, N, ), >0, |n|=1. 4.3)

For the precise meaning of <, see the discussion after Proposition 1.8. Moreover,
we have the following

Proposition 4.2. There exists (t,x,n) € C*(R; x T*()\ 0) such that Im >0
with equality precisely on ({0} x T*(2) \ O)U(R+ x X)) and such that (4.1) holds
where the error term is uniform on every set of the form [0, T] x K with T > 0 and
K c T#(£2)\0 compact. Furthermore, ) is unique up to a term which is O(|Imlp~N)
locally uniformly for every N and

Y(t,x,n)=(x,n) on¥, d, (¢ —(x,n))=00nx.
Moreover, we have

au
1+t|n|

dist((x, —-), D), 120, [n[=1. @4

u

Iml,/)(t,x,n)x|n~

Proposition 4.3. There exists a functiony(oo, x,n) € C*(T*()\0) with a uniquely
determined Taylor expansion at each point of X such that

For every compact set K C T*(Q2)\ 0 there is a constant cx > 0 such that

Imy(00,x,n) > cx |n~ (dist((x, ﬁ), )2,
dx,n(¢(oo;X, n)— <X, T])) =0on .

If A€ C(T*(2)\0), A >0 and Alyx < min |A]- , Where i |7Lj| are the non-vanishing
eigenvalues of the fundamental matrix of D(bq), then the solution Y (t,x,n) of (4.1)

can be chosen so that for every compact set K C T*(Q2)\ 0 and all indices a, f3, 7,

there is a constant c, g,y x such that
8x°‘8nﬁ o/ (Y(t,x,n)— (00, x, n))’ <cgppre M onRy x K. (4.5)
For the proofs of Proposition 4.2 and Proposition 4.3, we refer the reader to

Menikoff-Sjostrand [20]. From the positively homogeneity of py, it follows that
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we can choose (¢, x,n) in Proposition 4.2 to be quasi-homogeneous of degree 1
in the sense that
Y(t,x,An)=AyY(At,x,n), A>0.

(See Definition 5.1.) This makes (oo, x, ) positively homogeneous of degree 1.
We recall that

Po=qq, + -+ qnq, ;.
We can take an almost analytic extension of p, so that

po(x, &) =P,(x, &). (4.6)

From (4.6), we have

oy —
—a—i’f(t,x, —n)—ipo(x,y (£,x,—n))= O(|Imt/J|N), t >0,
forall N >0, (x,n) real. Since po(x, —&) = po(x, &), we have
oY —
—%(t,x, —n)—ipo(x,—y (t,x,—n))= O(~Im1p|N), t>0, (4.7)

for all N >0, (x,n) real. From Proposition 4.2, we can take y(¢, x,1n) so that

Y(t,x,n)=—yY(t,x,—n), (x,n)isreal. (4.8)

Hence,

Y(00,x,1n)=—y(00,x,—n), (x,n)isreal. (4.9
Put
Gt = {(J_/)ﬁyf) g); (x) gyy) n) € Gt} )
where G; is defined by (4.2). From (4.6), it follows that
Q(t)f_)) :6(_t’p);

where (¢, p) is as in Proposition 4.1. Thus, for all £ >0,

G,=G,. (4.10)

Put
Co = { et m) (6,3, m), ) (xm) € @)} (@.10)

and
¢, ={7.0.%.2); (x5 y.neC}. (4.12)

Since C; coincides to infinite order with G, on diag(X x %), for all £ > 0, from
(4.10), it follows that C, coincides to infinite order with C, on diag(X x ), for all
t > 0. Letting t — oo, we get the following
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Proposition 4.4. Let

Co={lr g (o0 Mo x i (e T@)}  @13)

and
Coo={7,71,%,8); (x,€,y,m) € Cuo} - (4.14)
Then C,, coincides to infinite order with C, on diag(Z x X).

From Proposition 4.4 and the global theory of Fourier integral operators (see
Proposition B.21), we have the following

Proposition 4.5. The two phases
P(00,x,n)— (y,n) € CQx A xR¥"1), —(00,y,1n) + (x,n) € CP(Q x 2 x R?"7)
are equivalent in the sense of Definition B.20.

We recall that

2= {(x,O e TN q(x,8) == gu1(x,8)=7,(x,8)-- =7, (x,£) =0}.

For any function f € C®(T*(£2)), we use f to denote an almost analytic extension
with respect to the weight function dist((x, &), ). (See Definition B.1.) Set

S={x, e T e N0 G, ="=Gur(x,O) =,(x, &) =7, (x,5)=0}.
(4.15)
We say that ¥ is an almost analytic extension with respect to the weight function
dist((x,&),X) of . Let f(x, &), g(x, &) € C®°(W), where W is an open set in T*(2)c.
We write
f=gmod dy¥

if, given any compact subset K of W and any integer N > 0, there is a constant
¢ > 0 such that

|(f — &)(x, &)| < edist ((x, £), 2)Y, V(x, &) e K.

From the global theory of Fourier integral operators (see Proposition B.21), we
only need to consider Taylor expansions at >. We may work with the following
coordinates

Proposition 4.6. Let p € .. Then in some open neighborhood I" of p in T*(Q)c,
there are C* functions

X eCc®), & ec™M), j=1,....2n—1,

such that
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(@) Xj, 5,-, j =1,...,2n — 1, are almost analytic functions with respect to the
weight function dist((x, &), X).

(b)

d(x,&
det(a(f, g)) £0 on (D,

where(De =T TXQ) and X = (%1, ..., %an-1), E = (&1, .., Eanr)-
(© X, gj,j =1,...,2n—1, form local coordinates of T.
@) (%,%) is symplectic to infinite order on ¥. That is,
{%;, %} =0mod d¥, {£;, £} =0mod d,
{€;, X} =6 mod dY,

wherej, k=1,...,2n—1. Here{f,g}:%f;—f—g—ﬁg—g,f, g € C>(I).

(e) We write %', ", &' and " to denote (%y,...,%n), Fnit,- ) Xon-1)s (E1,en)En)
and(gnﬂ, ety Ezn_l) respectively. Then, iﬂl" coincides to infinite order with
{® &% =0,& =0}
onY( g and

Zﬂ(F)R = {(J?, E;%'=0,&" =0 % and & arereal}.

Furthermore, there is a(n — 1) x (n — 1) matrix of almost analytic functions A(X, 5)
such that for every compact set K C1" and N > 0, there is a cx,y > 0, such that

N
on kK,

po(%, &) —i (A%, )X, &)

< cxn \(f gy

and when X’ and E "arereal, A(X’,0, E ’,0) has only positive eigenvalues
|)L1|,...,|)Ln,1|,

wherexil,,...,xiA,_, are the non-vanishing eigenvalues of F(x’,0, E', 0), the fun-

damental matrix of DEJ"). In particular,

1 = 1. ., =
EU'A(%/, 0, 51, 0) = Etr F(x/, 0, 5 y 0)
Formally, we write
1" Fn N
(x", &%)

po(X, &) =i (A%, )%, &") +O( ) (4.16)
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Proof. See Menikoff-Sjostrand [20]. O

Remark 4.7. Set

E={(t,x,&,y,m€R, x T"Q)c x T"Q)c; (x,€,y,m) € C: },

where C, is defined by (4.11). Let (¥, E ) be the coordinates of Proposition 4.6. In
the work of Menikoff-Sjéstrand [20], it was shown that there exists {/(¢,%,]) €
C*(R, xI'), where I" is as in Proposition 4.6, such that

o ~
a—’f — ipo(E, L) =0( &, 7")|") forall N >0,

{/;|t:0 = <f ’ﬁ>

and (¢, %, ) is of the form

&(t)fy ﬁ) = <5CJ/) ﬁ/> + <e_tA(Z/yo’ﬁ/’0)55”r ﬁ”> + &2(1:) 55; ﬁ) + 1/73(1:)57 ﬁ)+ ) (417)

where A is as in Proposition 4.6 and 1) j(£,X,1)is a C* homogeneous polynomial
of degree j in (x”,17”). If A € C(T*()\0), A > 0 and Ay < minA; with A; >
0, where +iA; are the non-vanishing eigenvalues of the fundamental matrix of
E]Ef), then for every compact set K C Zﬂ(l")R and all indices a, 3, 7, j, thereis a

constant ¢4, 4,j,x such that

8287 87 (;(t,%,M)| < capyre ™ onR, x K. (4.18)

Put

~ oy oYy

E= {(t,x, a—é)(t,x,n), a—zg(t,x,m,n); teRy, x,neC (F)}.
We notice that E coincides to infinite order with E on R, x diag((Z NID)r) x
(ZD)w))- (See [20].)

5 The heat equation, formal construction

We work with some real local coordinates x = (x, ..., X2,-1) defined on an open
set 2 C X. We identify T#(2) with Q x R2#~1,

Definition 5.1. We will say that a € C*(R, x T*(Q)) is quasi-homogeneous of
degree j if a(t,x,An)= Ala(At,x,n) for all A > 0.
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It is easy to see that if a is quasi-homogeneous of degree j, then axaa,,ﬁ dlais
quasi-homogeneous of degree j — | /5\ +7.
In this section, we consider the problem

(5.1)

@ +0)u(r,x)=0 inR, xQ
u(0,x)=v(x) ’

We shall start by making only a formal construction. We look for an approximate
solution of (5.1) of the form

u(t,x)=A(t)v(x)

Alt)v(x)= (27‘[)%[ f ei(w(t.x,n)—@rn))a(t’x, mMv(y)dydn (5.2)

where formally

a(t,x,n) ~Zaj(t,x,n), a;j(t,x,m) € C®(Ry x TH(); L (A% TH(), A% T*())),
j=0

aj(t,x,n)is a quasi-homogeneous function of degree —j.
We let the full symbol of 1\ be:

2
full symbol of O = Z pi(x,&),
=0

where p;(x, &) is positively homogeneous of order 2 — j. We apply J; + I:lgf)

mally under the integral in (5.2) and then introduce the asymptotic expansion
of EIE;’) (ae?). (See Proposition B.16.) Setting (J; + Dgf’))(a e’¥) ~ 0 and regrouping
the terms according to the degree of quasi-homogeneity. We obtain the transport

equations

for-

T(t,%,1,8,8,)a0=0(|Imy|"), YN 53)
T(t,x,10,8,8.)a;+1(t,x,1,ao,...,a;-1) = O(|Imy|"), YN. '
Here
.2n—1 apo ) a
T(t,%,0,8,8) =0~ ) £ )Gl
j=1
where

1S 9%polx, ) 82t x, 1)
q(t’x’”)—m(""”x”z_ij;l 05,08,  x;0xx
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and [; is a linear differential operator acting on a,a;,...,a;—-;. We note that
q(t,x,n) — q(oo, x,n) exponentially fast in the sense of (4.5) and that the same
is true for the coefficients of ;.

Let C;, E be asin (4.11) and Remark 4.7. We recall that for ¢ >0,

0 0
C = {(x, EY,MET( Qe x T (Nc; €= %(t,x,n),y = %(l‘,x,n)},
={(t,%,&,y,n) Ry x T*(Q)c x T(Q)c; (x,&,y,m € Ci }

and for ¢t >0,
(Cr=diag(XxX)={(x,&,x,8)e T x T*(Q); (x,&)eX}.

If we consider ay,as,... as functions on E, then the equations (5.3) involve
differentiations along the vector field

J
V:E_ZHPO'

We can consider only Taylor expansions at . Until further notice, our computa-
tions will only be valid to infinite order on ..
Consider v as a vector field on E. In the coordinates (¢, x,1) we can express

2n—-1

Za””( w)—

We can compute

. _1 2n—1 32p0(x’¢;) 2n—1 azpo l/)
le(V)—; ;W+];135135 ( l/J ) (t X, T]) . (5.4)

For a smooth function a(¢, x,n) we introduce the % density on E

a=a(t,x,n)y/dtdxdn

which is well-defined up to some factor i#. (See Hormander [14].) The Lie deriva-
tive of ¢ along v is

L.(a)=(v(a)+ %div(v)a)\/ dtdxdn.

We see from the expression for T that

(Ta)y/ dtdxdn=(L,+ py(x, Ip;(t, x,n))av dtdxdn), (5.5)
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where

2n la2
py(x,&)=pi(x, &)+ = Z apogf)
J

is the subprincipal symbol (invariantly defined on ). Now let (X, E ) be the coor-
dinates of Proposition 4.6, in which p, takes the form (4.16). In these coordinates

we have
H,,(%, E’):i<A(J7, Hx”, a;> —i<tA(J? e, 9 >

o8
+|a| %" &)E") Bap(E,E, % a%) (5.6)
and
o= 2 (i
+|a| %ﬁ]l &) “WP) Cap(& %, aN) (5.7)

Here y)(¢, %, ) is as in Remark 4.7.
Let f(t,x,1n) € C°(R, x T*Q)c), f(00,x,1n) € C°(T*)c). We say that f(z,x,n)
converges exponentially fast to f(oo,x,n) if

f(trxrn)_f(oo’x’n)

satisfies the same kind of estimates as (4.5). Recalling the form of ¢/ we obtain

v=v= 9 + ( A(X',0,7,0)X”, g
- ot ’ ox"
d
=Ina("M\p ~ o~ Y
+ D @Y Dap(t, 5 52) (5.8)
|a+ﬁ| 2,070

where D, converges exponentially fast to some limit as ¢ — +00. We have on %,
1. 1
Edw(v) = EtrA(x ,0,17,0)= —trF(x 0,7,0) (5.9)

where F(x’,0,1)’,0) is the fundamental matrix of D(q) We define a(t,x, 1) by

a(t,x,ny/dtdxdn=a(t,x,n)y/dtdxdn. (5.10)

Note that the last equation only defines a@ up to i#. We have

(Ta)\/dtdxdn=(Ta)y/dtdxdi
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where

T 9 + ( A(X",0,77,0)x” 9
= 3. x,U, yU)X) ==
T’ ax//

ot
1. ~/ ~/ s>’ ~/ ~ o~ o
+ztrF(x,O,n,0)+p0(x,0,n,0)+Q(t,x,n,ﬁ). (5.11)
Here
0 0
t7~y~)_~ = N//aN///jDa t)N)Nr_N
QUi =)= D, @)V Duplt %7, 52)
|a+/3’|:2,a7$0
+ D @)Y Eaplt, %, 7).
|a+ﬁ|=1

It is easy to see that E,s and D,p converge exponentially fast to some limits
E,p(00,X,1) and D,p(00, X, 1) respectively. We need the following

Lemma5.2. Let A be ad x d matrix having only positive eigenvalues and consider
the map

du
xl ﬁxl
g:u—{A : , :
u
Xd dxg4

on the space P"(R?) of homogeneous polynomials of degree m. Then
exp(r.o/)(u) = u o(exp(rA))
and the map .</ is a bijection except for m =0.

Proof. We notice that U(t): u — u oexp(tA) form a group of operators and that

3U(t)) —

( Jt t=0

This shows that U(t) = exp(¢.</). To prove the second statement, suppose that
uePm m>1and .o(u)=0. Then exp(t.</)(u) = u for all ¢, in other words
u(exp(tA)(x)) = u(x), t € R, x € R?. Since exp(tA)(x) — 0 when t — —o0, we
obtain u(x)= u(0)= 0, which proves the lemma. O

Proposition 5.3. Let
cj(x,m) € C(T*(Q); LA™ T(Q), A% T*()), j=0,1,...,
be positively homogeneous functions of degree —j. Then, we can find solutions

aj(t,x,n) € C*Ry x TH(); LA TH(Q), A T (), j=0,1,...,
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of the system (5.3) with
a;(0,x,n)=c(x,n), j=0,1,...,

wherea(t,x,n) is a quasi-homogeneous function of degree—j such thata;(t,x,n)
has unique Taylor expansions on %, for all j. Furthermore, let A(x,n) € C(T*(£2))
and Al < mint;, where T; are the eigenvalues Of%ffF + py on 2. Then for all
indices a, 3,7, and every compact set K C ¥ there exists a constant ¢ > 0 such
that

ﬁfﬁxaﬁnﬂaj(t,x,n) <ce ™M*MonR, x K. (5.12)

Proof. We only need to study Taylor expansions on X.. Let (X, £) be the coordi-
nates of Proposition 4.6. We define a,(t, X, 1)) from a;(t,x,n) as in (5.10). In or-
der to prove (5.12), it is sufficient to prove the corresponding statement for ;.
(See section 1 of Menikoff-Sjostrand[20].) We introduce the Taylor expansion of
do with respect to (x”,17").

where &‘{; is a homogeneous polynomial of degree j in (x”,7)”). Let

colE, )= Y _ &%, )

Jj=0

where E{) is a homogeneous polynomial of degree j in (¥”,7”). From Td, =0, we
get
~1 ~ —t(AE F+ps ~ A~
ase,x',if)=e "ZTEPIENF, 7).

It is easy to see that for all indices «, 3, ¥ and every compact set K C X there
exists a constant ¢ > 0 such that

<ce ™MD onR, x K,

ol 2ol ay

where A(X, 1) € C(T*(2)), Alx <min7;. Here 7; are the eigenvalues of %ﬁrF + Py
on .
Again, from Td, =0, we get

0 1. N o
(5?hd+EUF+pp%HUJjﬂ=%“UJJﬂ

where %{;“(r,k’, 1) satisfies the same kind of estimate as a~8. By Lemma 5.2, we
see that exp(—r.</) is bounded for ¢t > 0. We deduce a similar estimate for the
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function ﬁé“(t, X,1). Continuing in this way we get all the desired estimates for

do. The next transport equation takes the form Ta, = b where D satisfies the
estimates (5.12). We can repeat the procedure above and conclude that @, satis-
fies the estimates (5.12). From above, we see that a,, a; have the unique Taylor
expansions on Y. Continuing in this way we get the proposition. O

From Proposition 5.3, we have the following

Proposition 5.4. Suppose condition Y(q) holds. Let
cj(x,m) € C®(TH(Q); L(A* T*), A T(2)), j=0,1,...,
be positively homogeneous functions of degree —j. Then, we can find solutions
aj(t,x,n)€ C(Ry x TH); LA T*(Q),A* T*))), j=0,1,...,
of the system (5.3) with
a;j(0,x,n)=cj(x,n), j=0,1,...,

where a;(t,x,n) is a quasi-homogeneous function of degree —j and &, > 0 such
that for all indices a, 3,7, ] and every compact set K C () there exists a constant
¢ > 0 such that

5t76x“3nﬁaj(t,x,n) <ce®tlnl(1 + |n|)‘f‘|ﬁ|” onR, x K. (5.13)

Proposition 5.5. Suppose condition Y(q) fails. Let(n_,n.), n_-+n,=n-—1, be
the signature of the Levi form. Let

cj(x,n) € C®(TH(Q); L(A* T*(Q),A* T*()), j=0,1,...,
be positively homogeneous functions of degree —j. Then, we can find solutions
ai(t,x,n)€ C(Ry x THQ); LA T*(Q),A* T*Q))), j=0,1,...,
of the system (5.3) with
a;(0,x,n)=cj(x,n), j=0,1,...,

where a;(t,x,n) is a quasi-homogeneous function of degree —j and such that for
allindicesa, B,v, j, every e > 0 and compact set K C X there exists a constant ¢ >0
such that

8ty8x“8nﬁaj(t,x,n)‘ < ce”|’7|(1 + |T)|)‘j_|ﬁ|+7 onR, x K. (5.14)
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Furthermore, there exists €y > 0 such that for all indices a, 8,7, j and every com-
pact set K C X, there exists a constant ¢ > 0 such that

ﬁfﬁxaﬁnﬁaj(t,x,n)‘ <ce ®lnl(1 + |n|)—j—|ﬁ|+r
OHR+X(KHZ+) lfq:n_’n_;én+ (515)

and

a[axaanﬁa,-(t,x,n)‘ < cembl(1 4 [y lel
onR, x (KﬂZ_) ifg=ny,n_#ny. (5.16)
We need the following formula

Proposition 5.6. Let Q be a C* differential operator on ) of order k > 0 with full
symbol q(x,&) € C*°(T*2)). For0<qg,q1<n—1,q,q, €N, let

a(t,x,n) € C®(R; x T*(Q); L(A*" T*(Q), A% T*(Q2))).

Then,

QU D alt,xm) = eV ST = g, g 0, MR, D),

lal<k "

where
D, =-i0,

Ry, D)a=Di fe!*3a(t,y,m}|
y yex

@a(t,x,y,m)=(x =y W' (t,x,n)— (L, x,n)— (L, y,n)).

For0<q,q1<n-—1,q,q.€N,let
a;(t,x,n)€ CR; x THQ); LA T*Q),A* T*(Q))), j=0,1,..., (5.17)
be quasi-homogeneous functions of degree m — j, m € Z. We assume that
aj(t,x,n), j=0,1,...,

are the solutions of the system (5.3). From the proof of Proposition 5.3, it follows
that for all indices «, 8,7, j, every € > 0 and compact set K C ¥ there exists a
constant ¢ > 0 such that

c’/’[é’xaé’nﬂaj(t,x,n)‘ < ce”|’7|(1 + |n|)m_j_|ﬁ|+7’ onR, x K. (5.18)
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Let
a(t,x,n) € C®(R,; x TH); LA T*(Q), A% T*(2))) (5.19)

be the asymptotic sum of a;(¢,x,n). (See Definition 6.1 and Remark 6.2 for a
precise meaning.) We formally write

a(t,x,n)~2aj(t,x,n).
j=0

Let
@ +0) e Ma(t,x,n))= eV Db(t, x,7),

where

b(t,x,1)~ Y _bj(t,x,1),

j=0
bi(t,x,m) € C*(Ry x TH(Q); LA TQ), A THQ), j=0,1,...,

b;(t,x,n)is a quasi-homogeneous function of degree m +2— j.
From Proposition 5.6, we see that for all IV, every compact set K C %, € > 0,
there exists ¢ > 0 such that

\b(t,x,n)| < ce”|’7|(|n~7N+ |T]|27N(Iml/J(t,x,T])N) (5.20)

onR, x K, |n| > 1.
Conversely, if

@ +0 )™ Ma(t,x,n)) = e Db(t, x,1)

and b satisfies the same kind of estimates as (5.20), then a;(t,x,n), j =0,1,...,
solve the system (5.3) to infinite order at . From this and the particular structure
of the problem, we will next show

Proposition 5.7. Let(n_,n.), n_+ny = n—1, be the signature of the Levi form.
Suppose condition Y(q) fails. Thatis,q=n_ orn.. Let

ai(t,x,n)€ C(R; x THQ); LA T*(Q),A* T*Q))), j=0,1,...,
be the solutions of the system (5.3) with
ao(0,x,m)=1, a;(0,x,n)=0 when j >0,
where a(t,x,n) is a quasi-homogeneous function of degree —j. Then we can find
a;(oo,x,m) € CO(TH(); LA THQ), A T*(2))), j=0,1,...,
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where a (0o, x,n) is a positively homogeneous function of degree —j, £ > 0 such
that for all indices a, 3, v, j, every compact set K C ¥, there exists ¢ > 0, such that

0/ 089 (a;(t,x,n)—ajo0,x,n)| < ce e Inl(1+ |n|)_j_|ﬁ|+” (5.21)

onR; x K, n| >1.
Furthermore, forall j =0,1,...,

all derivatives of a (0o, x,n) vanish at >*, if g=n_, n_#n, (5.22)
all derivatives of a (oo, x,n) vanish at >X-, if g=n,, n_#n,. '
Proof. We assume that g =n_. Put
a(t,x,n)~zaj(t,x,n).
J
Since a(t,x,n), j =0,1,..., solve the system (5.3), we have
(@ +0 e Pa(t, x,m)) = V" (1, x,n),
where b(t,x,n) satisfies (5.20). Note that we have the interwing properties
2,09 =gltVg
—b* ?q) l(q—l)—b* : (5.23)
6), Db == Db 3b

Now, .
O (eVa)=eVa
dp(eVa)=eiva,
an~ Z;i_l a(t,x,n),an~ Zj.i_l a;(t,x,n), where
aj € C*(Ry x THQ); LAY T* (), A% T*(Q))), j=0,1,...,
a; € C®(Ry x TH(Q); LA T*Q), A% T()), j=0,1,...,
and d;, a; are quasi-homogeneous of degree 1 — j. From (5.23), we have
(@ +0y e D) =",
@ +0 e a)= eV by,

where b,, b, satisfy (5.20). Since b, b, satisfy (5.20), a;, a;, j =0,1,..., solve the
system (5.3) to infinite order at . We notice that

q—1#n_,q+1#n_.
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In view of the proof of Proposition 5.3, we can find &, > 0, such that for all indices
a, B,7, j, every compact set K C X7, there exists ¢ > 0 such that

5't75‘x“5‘nﬁc7j(t,x,n) < ce ®!nl(1+ |n|)1—j—|ﬁ|+r

p . (5.24)
8702a] a;(t,x,n)| < ce ®tIl(1+ [n|)i=7-1ekr

onﬁ+ X K, |n| >1.

Now E]Ef’) = 5b8_b* +3_b*5b, SO Dg’)(e“"’a) = e'¥¢, where c satisfies the same
kind of estimates as (5.24). From this we see that J,(e’¥a) = eV d, where d has
the same properties as c. Since d = i(J;y)a + d:a and ;¢ satisfy the same kind
of estimates as (5.24), J; a satisfies the same kind of estimates as (5.24). From this
we conclude that we can find a(oo,x,n) ~ Z;'.';O a;j(oo,x,n), where a;(oo,x,n) is
a matrix-valued C* positively homogeneous function of degree —j, £y > 0, such
that for all indices «, 3, 7, j and every compact set K C X7, there exists ¢ > 0 such

that

81020 (a;(t,x,n)— aj(0,x,n)| < ce~ !l (1 + n|yI-IPkr

onR, x K, |n| > 1.
If n_=n,, then
q_l#n-l-’q-i_l;én-l-

We can repeat the method above to conclude that we can find

a(oo)x)n)’\'zaj(oorxyn))

j=0

where a (00, x,n) is a matrix-valued C* positively homogeneous function of de-
gree —j, & > 0, such that for all indices a, 8, 7, j and every compact set K C ¥,
there exists ¢ > 0 such that

atyaxaanﬁ(aj(t»x) T]) - dj(oo,x, T’))‘ < Ce—€05|7’]|(1 + |T]D_]_|ﬁ|+y

onR, x K, |n| > 1.
Now, we assume that n_ # n,. From (5.15), we can find &, > 0, such that for
all indices a, 8, 7, j and every compact set K C X%, there exists ¢ > 0 such that

a;axaanﬁaj(t,x,n)‘ < cemarbl(1 1 [y 1Al

onR, x K, |n| > 1.
The proposition follows. O
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6 Some symbol classes

In this section we continue to work with some real local coordinates

X = (xlr . '-)x2n—1)
defined on an open set 2 C X. We identify T*(Q2) with Q x R?"~1,

Definition 6.1. Let r(x,n) be a non-negative real continuous function on 7*(€2).
We assume that r(x,n) is positively homogeneous of degree 1, that is, r(x, An) =
Ar(x,n), forA>1, n| >1.For0<q;,q.<n—1, q,q. €N and k €R, we say that

a € SF(Ry x TH(Q); LA™ TH(), A= T*(0)))

if
a € C®(Ry x THQ); LAY T*(Q), A%% T*(2)))

and for all indices @, 8, v, every compact set K C {2 and every € > 0, there exists a
constant ¢ > 0 such that

ol orof a(t,x,n)| < ce' el 4 |n|y+r Pl x e K, |n| > 1.

Remark 6.2. It is easy to see that we have the following properties:
(@ IfaeSk, beS! thenabeSk!  a+beSnakl
n 103 r+r min(ry,r2)

Sk raapB , o EIBlr

(b) If a €Sy then o/ 0%0, a €S, .

(© Ifa; €3, j=0,1,2,...and k; \, —00 as j — oo, then there exists a € $k
such that a — Zg_l a; € S’;V, forall v =1,2,.... Moreover, if 5;00 denotes
(Nier ¥ then a is unique modulo §7.

If a and a; have the properties of (c), we write

an~ Z a; in the symbol space S’lr“’.
0

From Proposition 5.4, Proposition 5.5 and the standard Borel construction,
we get the following

Proposition 6.3. Let

cj(x,m) € C®(TH(Q); LA™ T*(), A>T (2))), j=0,1,...
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be positively homogeneous functions of degree —j. Then, we can find solutions
a;(t,x,n) € CR; x THQ); LA T*(Q),A* T*))), j=0,1,...
of the system (5.3) with
a;j(0,x,n)=cj(x,n), j=0,1,...,
where a(t,x,n) is a quasi-homogeneous function of degree —j such that
a; € ST(Ry x TH); LA THQ), A T(9)), j=0,1,...,

for somer withr >0 if Y(q) holds and r =0 if Y(q) fails.
If the Levi form has signature(n_,n. ), n_+n4 = n—1, then we can taker > 0,

near Xt, ifg=n_,n_#n,,
near X, ifg=n,,n_#n,.

Again, from Proposition 5.7 and the standard Borel construction, we get the
following

Proposition 6.4. Suppose condition Y(q) fails. We assume that the Levi form has
signature(n_,n.), n-+n, =n—1. We can find solutions

a;(t,x,n)€ C™R; x THQ); LA T*Q), A% T*Q))), j=0,1,...
of the system (5.3) with
ao(0,x,n)=1, a;(0,x,n)=0 when j >0,

where a(t,x,n) is a quasi-homogeneous function of degree—j, such that for some
r >0 as in Definition 6.1,

aj(trx) T’) - aj(oo)x! n) € S;J(R-‘r X T*(Q)? g(AO,q T*(Q))Ao’q T*(Q)))’ ] = 0) 1) ooy
where
a (00, x,n) € CX(T*(); LA TH(Q), A% T* (), j=0,1,...,

and a (0o, x,n) is a positively homogeneous function of degree —j .
Furthermore, forall j =0,1,...,

aj(oo,x,n)=0 ina conicneighborhoodof ¥*, ifq=n_,n_#n,,
aj(0o,x,n)=0 ina conic neighborhoodof ¥~, ifq=ny,n_#n,.
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Let b(t,x,n) e S’;, r > 0. Our next goal is to define the operator

anw=memmﬂmquWMn

as an oscillatory integral. We have the following
Proposition 6.5. Let

b(t,x,n) € S8R, x TH(); L (A" T*(), A>* T*(2)))
with r > 0. Then we can define

B(1): C*(2; A>T TH()) — CX(Ry; CX(; A T*(92))

with distribution kernel
anw=JammmﬂmquWMn

and B(t) has a unique continuous extension
B(1): &' (4 A% T*(Q)) — C¥(Ry; 2'(4 A% T*(Q2))).
We have
B(t,x,y)€ C®(Ry; C*(Qx 2\ diag(Q x Q); L (A" T*(Q), A>% T*(Q)))),

and
B(£,%,¥)lr>0 € C¥(Ry X Q x ; LA T*(Q), A% T*(K2))).

Proof. Let
SO = {(x,n) eQ xR L )77| = 1},

and let
VCcR, xS*Q

be a neighborhood of
(R x (Z( S0 J({0} x 50

such that
Vi ={(x,n); (t,x,n) €V}

is independent of ¢ for large ¢. Set

W= {(t,x,n)e@r x Q x R?" 1, (|r)

t,x,i)e V}.
u
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Let yy € C*(R, x $*(Q)) have its support in V, be equal to 1 in a neighborhood of
(Ry x §*X) U({O} x §*(2), and be independent of ¢, for large ¢. Set

XW(t)x;n):XV(|n| t,x, \i)eCO@(R_}_ XQXRzn—l)'

)
We have yw(t,x,An)= yw(At,x,n), A >0. We can choose V sufficiently small so

that
|lp;(trxrn)_7’]|f|z_|in w. (6.1)

We formally set
B(t’x’y) = J ei(lp(t%n)_(y’n”(l - ZW(t’x’ T]))b(t, X, n)dn

+J e =)y (£, x, mb(t, X, m)dn)

= Bl(t,x,y)—l- Bz(l‘,x,J/)

where in B;(t,x,y) and B;(f,x,y) we have introduced the cut-off functions (1 —
xw) and yw respectively. Choose y € C°(R**~!) so that y(n) =1 when |n| <1
and y(n) = 0 when |n| > 2. Since Imy > 0 outside (R, x )| J({0} x R2"-1), we
have

Imy(t,x,n)>c )n| outside W,

where ¢ > 0. The kernel
Bi(t,x,y) =f e s =(D(1 — 3y (£, x,m)b(t, x,n)x (en)dn

converges in C®(R, x Q x ; Z(A%% T*(Q), A% T*(Q2))) as £ — 0. This means that
Bi(t,x,y)= lglirol B1.(t,x,y) € C(R, x Q x Q; L(A>" T*(2), A% T*(K2))).
To study B(t,x,y) take a u(y) € CF(K; A% T*(€2)), K CC Q and set
xv(m= 27— x(2"7"'n), v >0, xo(n)= x(n).

Then we have

Z;{V =land2"'< |77| <2"*'whenn €supp y,, v #0.

v=0

We assume that b(t,x,n) =0 if |n| <1.If x € K, we obtain for all indices «, # and
every ¢ > 0, there exists ¢, 4,k > 0, such that

D;’Dﬁ(xv(n))(w(t,x,n)b(t,x,n))’ < Ceapuice’ ML 4 | yIPL (6.2)
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Note that |D“ )(V(n)| <co(1+ }T)|)‘|a| with a constant independent of v. We have

Bz,m=ffe"“’W""”)‘(y'””;(m(n)xw(t,x,n)b(t,x,n)u(y)dydn

= p@n-1y f e MW ALE=(n)) o (1) (£, x, ANB(E, X, An)u(y)d y dn,

where A =2". Since (6.2) holds, we have

‘DZ(%w(t,x,Z”'n)b(t,x,2"n))‘ <c2t,

ifxek, 1< |n| <4, where ¢ > 0. Since d,(y(At,x,n)—(y ,n)) #0, if n # 0, we
can integrate by parts and obtain

|Bz,v+l{ < c2v@n—l+k—m) Z supID"‘uI )

la|l<m

Since m can be chosen arbitrary large, we conclude that ) |B,,| : converges

and that B(t) defines an operator
B(1): C(Qy; A" TH(Q)) = CP(Ry X Qy; A% T*(2)).

Let B*(t) be the formal adjoint of B(¢) with respectto (| ). From (6.1), we see that
Y’ (t,x,1m)#0on W. We can repeat the procedure above and conclude that B*(¢)
defines an operator

CX(Q; A% TH(€) = CP(Ry X Q5 A%7 TH()).
Hence, we can extend B(t) to
&'(Q A" TH(Q)) — C¥(Ry; 2'(9 A% T(Q2))
by the following formula
(B(t)u(y) | v(x) = (u(y)| B (t)v(x)), u € &' A*" TH(Q)), v € C(; A= T*(Q)).

When x # y and (x,y) € £ x X, we have d,(y(t,x,n)— (y ,n)) # 0, we can
repeat the procedure above and conclude that

B(t,x,y)€ C*(Ry; C*(Qx 2\ diag(Q x Q); L(A*" T*(Q), A>% T*(Q)))).

Finally, in view of the exponential decrease as t — oo of the symbol b(¢, x,n),
we see that the kernel B(t)|;~( is smoothing. O
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Let b(t,x,n)e S’; with r > 0. Our next step is to show that we can also define
the operator

B(x,y)=f(f e ex=p(t, x, n)d ) dn
0

as an oscillatory integral. We have the following

Proposition 6.6. Let
b(t,x,m) € KRy x THRQ); L (A" TH(), A" T*(0)))
with r > 0. We assume that b(t,x,n)=0 when |n| <1. Then we can define
B: C(; A" TH(§2)) — C(; A>* T*(2))

with distribution kernel

1 *
g | ([ oo oo )an
0

and B has a unique continuous extension

B(x,y)=

B: &'( A% T*(Q) — 2/(Q; A% T*(Q)).
Moreover, we have
B(x,y) € C®(Q x QN diag (22 x Q); L(A*" T*(Q), A% T*(£2))).

Proof. Let W and yw(t,x,n) be as in Proposition 6.5. We formally set

1 >
B(x,y)= @ fJ e WExm=0N(1 — yy(r, x,))b(t,x,n)d tdn
0

1
(27-[)2n—1

= Bi(x,y)+ Bx(x,y)

+ JJ e W=D y (1 x, mb(t, x,n)d tdn
0

where in B;(x,y) and B,(x,y) we have introduced the cut-off functions (1 — yw)
and yw respectively. Since

Imy(t,x,n)>c’ |r)| outside W,
where ¢’ > 0, we have

e W=D (1 — (£, x,m)b(2,x, n)‘ < ce~Ile=lnl(1+ ), & >0
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and similar estimates for the derivatives. From this, we see that B;(x, y) € C®(2x
Q; L(AON T*(Q), A%9: T*(£2))).

Choose y € CF(R**1) so that y(n) = 1 when |77| < 1 and y(n) = 0 when
|n| > 2. To study B (x,y) take a u(y) € C*(K; A% T*(£2)), K CC Q and set

1 * .
B (x)= WJ (ff ez(w(r,x,n)—(y'n))b(t,x,r))XW(t,x,n)x(%)u(y)dydn)dt.
0

(2r
We have

2n—1

By (x) — Ba s (x) = 2t

f (Jf e M=)y (2, x, A)b(, x, An)
0

()((g)—)((n))u(y)dydn)dt.

Since d, (y(At,x,1n)— (y,n))#0, n #0, we obtain
ff eik(lﬁ(/lt.x,n)—(yvﬂbxw(t,x,ln)b(l‘,x,ln)(x(g)—%(r’))u(y)dydn
<cAN Z sup

la|l<N
<A Ne—=tlnl(1 4|4,

D (0,6, 2b(, 5, )2 ()= 2ty

where c, ¢/, £y > 0. Hence B(x) =lim,_,, By 1(x) exists. Thus, B(x,y) defines an
operator
ColQy; A" (1) = C(Q; A% TH(€D)).

Let B* be the formal adjoint of B with respect to ( | ). Since Y’ (¢, x,17)#0 on W,
we can repeat the procedure above and conclude that B* defines an operator

C(Q; A% TH2)) — C(8y; A% TH(€V).
We can extend B to
&' (Q; A" T*()) — 2/ (9 A® T*(K2))

by the following formula

(Bu(y)| v(x))=(u(y)| B'v(x)), u €& (% A" T (), v € CP (€4 A*% T*(€)).

Finally, when x # y and (x,y) € X x %, we have

dy((t,x,n) = (y ,n))#0,

we can repeat the procedure above and conclude that

B(x,y) € C®(Q x QN diag (22 x Q); L(A>" T*(Q), A>% T*(£2))).
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Remark 6.7. Let
a(t,x,n) € S§(Ry x THQ); LA T*(Q), A% T*())).
We assume a(t,x,n)=0, if |n| <1land
a(t,x,n)—a(oo,x,n) € ¥Ry x THQ); LA T*(Q), A>* T*()))
with r > 0, where
a(oo, x,n) € C™°(T*(Q); LA™ T*(Q), A% T*(Q))).

Then we can also define
Alx,y)= J (J (ei(w(r,x,n)—(y,n))a(t,x, ) — e Weexn=(rn) g0, x, m) dt) dn
0

as an oscillatory integral by the following formula:

A(x,y)zf(f ei(w(t’x'”)_<y’”))(—t)(it/)’t(t,x,n)a(t,x,n)+a’t(t,x,n))dt)d
0

We notice that
(—0)iy'(t, x,na(t,x,n)+a(t,x,n) €S, r>o0.

Let B be as in the proposition 6.6. We can show that B is a matrix of pseu-
dodifferential operators of order k type ( %, %). We review some facts about pseu-
dodifferential operators of type (%, %

Definition 6.8. Let kcRandlet0<g<n-—-1,g&€N.

(T"(Q); LA™ T*(), A% T*(2))

k
1
2’

1
2

is the space of all
a € C®(T*Q); ZL(A*T*Q), A% T*(Q)))

such that for every compact sets K € 2 and all a € N1, f € N?"~1  there is a
constant ¢, g x > 0 such that

B (o) e THQ) x e K.

03 a(x, g). < Capx(1+IE])

Sk | is called the space of symbols of order k type ( ). We write

1
’2

I\)\>—'

S—OO ﬂmeRSqnl’ SEO :UmeRSTl

11 1
272 2
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Let a(x,&) € SY | (T*(Q); L(A% T*(£2), A% T*(£2))). We can also define

Alx,y)=

(27)2n-1 f e!bri) a(x,&)dg

as an oscillatory integral and we can show that A is continuous
A: CR(Q; A1 THS)) — C(; A% TH(€2))
and has unique continuous extension
A:E'(Q; A THQ) — 2/(Q; A% T*(Q)).

Definition 6.9. Let k €c Rand let 0 < g < n—1, g € N. A pseudodifferential
operator of order k type (%, %) from sections of A% T%(2) to sections of A% T%(2)
is a continuous linear map

A CR(; A THR) — /(9 A% T(92)

such that the distribution kernel of A is

KA :A(x,y): Jei<X—y,§)a(x,€)d§

(271-)2n—1

with a € S% | (T*(Q); £ (A% T*(Q2), A% T*(R2))). We call a(x, &) the symbol of A. We
shall Write2 ’
LY (9 A% TH(Q), A T*())

to denote the space of pseudodifferential operators of order k type (%, %) from
sections of A% T#(Q) to sections of A% T*(2). We write

:mmeR Lm :UmeR Lm

11 11+
272 22

8
3

I-

1
E)

L

1
’2

D=
D

We recall the following classical proposition of Calderon-Vaillancourt.

Proposition 6.10. IfA € L% | (Q; A% T*(Q), A% T*(Q2)). Then, for everys € R, A is
continuous o
A:HS (Q; A% THQ) — HSF(; A% TH(Q))

comp loc

and
A:HS (9 A THQ)— HS () A% T(9)

if A is properly supported. (For the precise meaning of properly supported opera-
tors, see the discussion before Definition A.6.)
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Proof. See Hérmander [15]. O

We need the following properties of the phase y(t, x,n).

Lemma 6.11. Forevery compact set K C Q and alla e N?"~1, B e N2~ ||+ |/5| >
1, there exists a constant ¢, g,k > 0, such that
jal-|6]

2908 (p(t,x,m) — (6, )| < cap 0+ 2 AHImy (e, x, ) 2, if lal+]B] =1
n

and

820P (y(t,x,m)— <x,n>)\ < cupx(1+|n)PL, if lal+]B|>2,

wherex€ K, t €R,, n| >1.

Proof. For |n| = 1, we consider Taylor expansions of J,,(y(¢,x,n) — (x,n)), j =
1,...,2n—1, at(xy,ng) €,

17
an(¢(t’x’ T))— <x’ 77>)=
;8)6

21/1 (k)
kaxj(t,xo,no)(xk — Xy )

2

0%y
+> e AU Ul

k J

k
)

+0(I(x = x) +|(n = n0)| )

where x, = (x(()l),...,xézn_l)), No = (n(ol),...,ngzn_l)). Thus, for every compact set

K c Q there exists a constant ¢ > 0, such that
t
0, t,x,n)—(x, <c
(2, = (x| < e

where x €K, t €R,, ~n| =1. From (4.4), we have

dist((x, 1), %)),

Imw(r,x,n)x(?"t)dist((x,n), ),

n|=1.

Hence, ;
(3757 dist(Cx ), )= (I (e, x,m))z, [ =1.

Thus, for every compact set K C (2 there exists a constant ¢ > 0, such that
t
o(p(t,%,m) = (x,m))| < el

1+1¢
From above, we get for |77| >1,

2,y (t || x, 7o)~ <x,i>)|
) ]

T | IS PO
o] '

<1+ |n\)5(1 +Imy(t,x,n))?,

)%(Imw(t,x,n))%, |n| =1,xeK.

o(p(t,x,m)— (x,n))| = n|

SC|17
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where ¢, ¢/ > 0, x € K, t € R,. Here K is as above. Similarly, for every compact
set K c ) there exists a constant ¢ > 0, such that

|2, (2, x,m) — (x,n))| < c(1+ [n)~2 Ay (2, x,m))z,

wherex €K, t €R, and~n| >1.
F0r|a|+|[3’| > 2, we have

0100 (. x,m)= {x.n))| < el1+ [y P,

where ¢, x €K, t €R, and |r]| > 1. Here K is as above.
The lemma follows. O

We also need the following

Lemma 6.12. For every compact set K C Q and all o e N>"~1, f e N?"~1 | there exist
a constant cq p,x >0 and € > 0, such that

\+Iﬂ|

2890 (1) (1,x, n))\
if lal+|B|<1

and

< Cap 1+ 0| Plerelnl, if jal+]B]| = 2,

wherex €K, t eR.,

n|21.

Proof. The proof of this lemma is essentially the same as the proof of Lemma 6.11.
O

We need the following

Lemma 6.13. For every compact set K C Q) and alla e N?"~1, f e N?"~1 | there exist
a constant cq,p,x >0 and € > 0, such that

)Ial;lf}\

3x“8nﬂ(e’W("X’”)‘(’“"’))

< Ca,ﬁ,K(l + |n

and

80 e W=l ey 1, x, 1)

\Ilﬁl

—ts|n|e

<capx(l+|n) 2 (6.4)

wherex € K, t €Ry,

n|21.
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Proof. First, we prove (6.3). We proceed by induction over |a|+ | B | For |a|+ | ﬁ| <
1, from Lemma 6.11, we get (6.3). Let |a|+ |[3’| > 2. Then

c 5nﬁ(el(w(t,xyn)f(x,n))

= Z 3x"‘/3nﬂ/(e’W("’“’”)_(x"’>)3x“”3nﬁ”(itp(t,x,T))— i(x,n))|.

a'+a"=a,p'+B"=B,(a",f")#0

By the induction assumption, we have for every compact set K C (2, there exists
a constant ¢ > 0, such that

|o’|-|8"] |o/|+]8"]
Sc(1+~n|) - e VM1 4+ Im(t, x,7)) 2, (6.5)

! ! ( (tv ’ )7 ’
axa anﬁ (el Y(t,x,n (x r]))

where x €K, t €R,, )n| > 1. From Lemma 6.11, we have

16 a1

3x“”8nﬁ"(i1p(t,x,n)—i(x,n))‘Sc(1+|n|) P+, x ) 2, (6.6)

where x €K, t €R,, )77| > 1. Combining (6.5) with (6.6), we get (6.3).
From Leibniz’s formula, Lemma 6.12 and (6.3), we get (6.4). O

Lemma6.14. Let
b(t,x,n) € SKRy x TH(); L (A TH(2), A% T*(2))

with r > 0. We assume that b(t,x,n)=0 when |n| <1. Then

9(x,n) =f e W=D (1, x, n)d ¢ € S5 (T LA TH(), A T ().
0 2

Proof. From Leibniz’s formula, we have
c’?x“c’inﬁ(ei(w(t'x’”)‘(x'”>)b(t, x,1))
— Z (axa/ anﬂ/ e i(w(r,x,n)—(x,n) )(axa// 3nn”b(t, x, 7’]))

a+a"=a,p'+p"=p

From (6.3) and the definition of S’r‘, we have for every compact set K C £, there
exist a constant ¢ > 0 and ¢ > 0, such that

axaanﬁq(x’ T’)

o0
lal-|B] lal+|B]
Scf e mYE(L 4 |y (L Imy(e,x0,m) 2 e Plar
0
/ k—H—M
<c(L+ e,
where ¢’ > 0, x € K. The lemma follows. O
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We will next show

Proposition 6.15. Let
b(t,x,1) € SKRy x T*(2); L (A T*(2), A% T*(Q2)))
with r > 0. We assume that b(t,x,n)=0 when |n| <1. Let

B: C(Q; AYTTH(2)) — C( A% T*(€V)),
&' (4 A1TH(Q) — 2'(; A1 TH).

be as in Proposition 6.6. Then
B e LA 1 (9; A% (), A% T*(Q))

with symbol

qx,n)= f e Wt p(t, x, m)d t
0

S s’jj;(T*(Q); LAY T*Q), A% T*(K0)).

Proof. Choose y € C°(R*"~1) so that y(n) =1 when ~n| < 1land y(n) =0 when
|n| > 2. Take a u(y) € C(; A%1T*(£2)), then

, | (Rara
=ty ([ oo 0t mutzeman)a

: 1 roo i(x— i(yp(t,x,n)—(x
:lslir()l(Zﬂ')mJo ei{x—ym) (J o it xm—( '””b(t,x,T))u(y))((sn))dndt

[ .
:18133(27T)%J &' g(x, mu(y)y (en)dn.

From Lemma 6.14, we know that g(x,n) € S’j‘f. Thus

1 .
ey f et e, muy)y(en)dn € L (95 A T7(Q), A% T"(€2).
£-0 (271)7"~ 22
]
We need the following

Lemma 6.16. Let
a(0o, x,n) € C®(T*(Q); L(A*T*(€2), A> T*(£2)))
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be a classical symbol of order k, that is

a(oo,x,n)Nzaj(OO,x,n)

=0
in the symbol space S (T*(2); £ (A T*(€), A% T*(2))),

where
a;(oo,x,m) € C(TH(); LA THQ), A T*))), j=0,1,...,

aj(oo,x,lr])=7Lk_jaj(oo,x,n), A’Z ]-) |n| Z 1) ]:0) ].,---,

and S’fyo is the Hormander symbol space. We assume that a(co,x,n) = 0 when
|T)| <1. Then

p(x,n) =J (eiwtem=(xn)) _ pitloxn—{enD)g 00, x, n)d t
0
€ SN TH(Q); L(A™T*(), A T*(2))).

Proof. We have

p(x,n)= f ei(w(t'x'”)‘<x"7>)(—t)ii,b’t(t,x, n)a(oo, x,n)dt. (6.7)
0

From (6.4), we can repeat the procedure in the proof of Lemma 6.14 to get the
lemma. O

Remark 6.17. Let
a(t,x,n) € SRy x TH(Q); L (A T*(), A% T*(2)).
We assume a(t,x,n)=0, if |n| <1land
a(t,x,n)— a(oo,x,n) € SK(Ry x T*(Q); L(A™T*(Q), A% T*(2)))

with r > 0, where a(oo, x,n7)is asin Lemma 6.16. By Lemma 6.14 and Lemma 6.16,
we have

f (ei(w(t,x,n)—(x,n))a(t, x, 1) — e Weexm=(rm) g (oo x, T))) dt
0
= f et = a(t, x,n) - aloo, x,n))d

0

00
+f (ei(lp([vx!n)_(xvn)) — el(w(oovx!n)_(xvn>))a(m, x’ T’))d t
0

€ SV (T(); LA T(2), A9 T())).
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Let

1 Fr
A(x’y):Wf(L (e’“"(f'x'”)—@'”))a(t,x,n)—

ei(w(oo'x'm_@'”))a(oo,x, 77)) d t) dn
be as in the Remark 6.7. Then as in Proposition 6.15, we can show that
Ae LA 19 A% TH(Q), A% T*(Q))

with symbol

q(x,n)= f (e"“/’”’x”?)—(m))a(t, x,n) — e Weexn—{n)g(00, x, n)) dt
€ s;—;( T*((;Z); LAY T*(Q), A% T*()).
We have the following
Proposition 6.18. Let
a(oo, x,m) € C*(TH(); L(A” T*(2), A> T*(Q)))
be a classical symbol of order k. Then

a(x,n) = e s n=(=) g (00, x, 1)

€St (TH(0); L (AT T*(K2), A% T*(2))).
Proof. In view of Lemma 6.13, we have for every compact set K C 2 and all a €
N2n-1 B e N2"~1 there exists a constant ¢, g x > 0, such that

la-|] lal+]B]
< cCapi(l+n) 2 e ™V D1+ Imy(o0,x,m)) 2

523 P (eiWoxm—(xn))
xn

where x € K, |17| > 1. From this and Leibniz’s formula, we get the proposition. [J

7 The heat equation
Until further notice, we work with some real local coordinates
X =(x1,...,X20-1)
defined on an open set Q2 C X. Let
b(t,x,m) € SRy x THRQ); LA™ T*(), A T*(2))
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with r > 0. We assume that b(t,x,n)=0 when |n| < 1. From now on, we write

1 i
- iWexm=nDp(t,x,m)dt ) dn
(2;[)2’1 1J(J; ‘ ( o ) )

to denote the kernel of pseudodifferential operator of order k —1 type (%, %) from
sections of A%9 T*(Q) to sections of A% T*(Q2) with symbol

1
’2

f e W=D (r x m)dr € S THQ); LA THQ), A% TH(2))).
0 2

(See Proposition 6.15.)
Let
a(t,x,n) € SRy x THQ); L (A T*(Q), A% T*(2)).

We assume that a(t,x,n)=0 when }n| <1 and that
a(t,x,n)—a(oo,x,n) € SKR, x T*(Q); L (A T*(2), A% T*(£2))) with r >0,

where
a(oo,x,n) € C®(T*(2); LAY T*(Q), A% T*(K))

is a classical symbol of order k. From now on, we write

1

G J(J (e"“/’“'x’”)_(y'””“(t'x»77)—ei(w(w'x’”)_<y'”>)a(oo,x,n))d[)dn
0

to denote the kernel of pseudodifferential operator of order k —1 type (%, %) from
sections of A%9 T*(Q) to sections of A% T*(Q2) with symbol

o0
f (ei(w(r,x,n)—(x,n))a(t, x,1) — el Weexm={rm) g (oo x, 77)) dt
0

in S’l‘_f(( T%(9); L(A%T*(2), A% T*(2))). (See Lemma 6.14 and Lemma 6.16.) From
Prof)ésition 5.6, we have the following

Proposition 7.1. Let Q be a C* differential operator on (2 of order m. Let
b(r,x,1) € SRy x THRQ); LA™ T*(2), A T*(2))
with r > 0. We assume that b(t,x,n)=0 when |n| <1. Set
Q(ei(“’(t'x'”)_<y’”>)b(t,x, n)= ei(w(t'x.n)—(y'n))c(t, x,n),

c(t,x,n) € SFM(Ry x TH(); L (A% TH(), A% T(2))), r > 0.
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Put

1 <
B(x,y)= Wf (J eiWxm=(yNp (¢ ¥ T))dt)dn,
0

1 =
C(x,y)= T f (J e W txn=rme(s x n)d t) dn.
0

We have
QoB=C.

Proposition 7.2. Let Q be a C* differential operator on (2 of order m. Let
b(t,x,1) € SRy x THK); L(A* T(K), A T*(2))).
We assume that b(t,x,n)=0 when |n~ <1 and that
b(t,x,1n)—b(oo,x,1) € S¥ (R x TH(Q); L (A T*(), A% T*()))
with r >0, where
b(oo, x,1) € C®(T*(2); L (A T*(2), A> T*(Q)))

is a classical symbol of order k. Set

0 ( e Wxn=(rp(¢, x, 1) — e WoxD~(11) p o0, x, ,7))

_ ei(w(t,x,n)—(yvn))c(t, x,n)— ei(w(oo,x,n)—(yvn))c(oo’ x,n),

where
c(t,x,m) € SE (R x TH(Q); L (A% T*(9), A% T*())),

(00, x,m) € C®(T*(2); L(A” T*2), A* T*(Q)))
is a classical symbol of order k + m. Then
c(t,x,m) = c(00,x,1n) € SRy x TH(); L(AY TH(Q), A% T*(Q2)))

with r > 0. Put

1 [ ” i(y(t,x,n)—
B(x,y)Z(M)Zn_lJ (J[ (e (ieem={Dp(r, x,n)—

! ee - (oo0, x, ) d ) d,

1 [ ” i(y(t,x,n)—
C(x’y):WJ (J[ (e wiexn=CrDe(t, x, )~

e eren=(re(o0, x,m))d1t ) d.
We have
QoB=C.
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We return to our problem. From now on, we assume that our operators are
properly supported. We assume that Y(qg) holds. Let

aj(t,x,n) €SI (R x THQ); LAY THQ),A*T*(Q))), j=0,1,..., r>0,
be as in Proposition 6.3 with a¢(0,x,n)=1, a;(0,x,1n)=0 when j > 0. Let

aUJJﬂ~§:aﬂa&n)

=0
in the symbol space SR, x T*(€); L(A* T*(Q2), A% T*(12))),

where r > 0. Let
@+ (e a(e, x, )= VOO (e x, ), (2)

From Proposition 5.6, we see that for every compact set K C 2, € > 0 and all
indices a, f and N €N, there exists ¢, g,n,,x > 0 such that

2830 (1, x, n)\ < capexeTEN ) g T amy (6, m)Y), 7.2)

where t €R,, x €K, |n| > 1. Choose y € C°(R**1) so that y(n)=1 when |n| <1
and y(n)=0when |n| > 2. Set

A(x,y)=(2ﬂ)%fq el Wxn=(rD g (¢, x,n)(1— ;((n))dt)dn. (7.3)
0

We have the following proposition

Proposition 7.3. Suppose Y(q) holds. Let A= A(x,y) be as in (7.3). We have
O7A=1.

Proof. We have

1 ‘
Dg)q) (Wez(w(tyx,n)—(%’ma(t,x, m1— ){(ﬁ)))

1 .
= Wew(t'x’m*(ym)b(t,x, n(1— x ()

1 0

~ g ar (¢ at, x ) - 2 )

where b(t,x,n)is asin (7.1), (7.2). From Proposition 7.1, we have

1

@ 4 — i((t,x,m—(yn)) _
O, oA_(Zﬂ)anf(f0 e b(t,x,n)(1 x(n))dt)dn

1 0 [ e
_(zn)zn_lj(J;) E(@l(lp( ,X,1) (%n))a(t,xyn))(l_Z(n))dt)dn
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From (7.2), it follows that

1 *
(2m)en1 J (J; el(w(t’x'n)_@'n))b(t»x’ m(1—xn)d l‘) dn

is smoothing. Choose a cut-off function y:(n) € C°(R*"~!) so that y,(n) =1 when
|n| < 1and y;(n)=0when |n| > 2. Take a

u(y)e C(; A% T*Q)),

then
00 3 .

h:n# f J (f = (e temmbae,x,m) (1= zmM)za(enu(y)dt ) dndy
0

-1 .
=lim o JJ eI (1 — g (m)a(eu(y)dndy.

Hence

1 ” a i(y(t,x,n)—(y, _
WJ(L E(e W(t,x,n) (yn))a(t,x,r)))(l—)((n))dt)dn:_],

Thus
O 0A=1.

O

Remark 7.4. We assume that Y(q) holds. From Proposition 7.3, we know that, for
every local coordinate patch Xj, there exists a properly supported operator

Aj . @/(Xj; Ao'q T*(X])) - @/(Xj; AO,q T*(X]))

such that
Aj . HS

loc

(X3 A%TT*(X))) — Hit! (X5 A T*(X;)
and
OV oA —I: H

loc

(X;; A% TH(X;)) — H™(X;; A% T(X;))

loc
for all s € R and m > 0. We assume that X = U;.Czl X;. Let {)(j} be a C* partition
of unity subordinate to {X j} and set

Au=Y_Ai(y;u), u€7'(X; A1 T*(X)).
]

A is well-defined as a continuous operator
A HY(X; A% T*(X)) — HP(X; A% T(X)
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for all s € R. We notice that A is properly supported. We have
O 0 A — I': H*(X; A% T*(X)) — H** " (X; A% T*(X))

forall seR and m >0.

Now we assume that Y(q) fails. Let
a;(t,x,m) €8y Ry x TH(Q); LA T(Q), A% T(Q)), j=0,1,...,

and
a;(co,x,n) € C(THQ); LAY TH(Q), A>T (), j=0,1,...,

be as in Proposition 6.4. We recall that for some r >0,
aj(t,x,m)—a;(co0,x,n) €SI (Ry x T*(Q); LA T*(Q), A" T*()), j=0,1,....

Let

a(oo,x,n)~zaj(oo,x,n)
j=0

in the symbol space S ((T*(2); £(A*7 T*(0), A7 T*(12)). (7.4)

Here S} , is the Hsrmander symbol space. Let

a(t)xvn) Nzaj(trxyn)
=0
in the symbol space S)(R;. x T*(2); L (A% T*(€), A% T*(2))). (7.5)

We take a(t,x,n) so that for every compact set K C 2 and all indices a, £, 7, k,
there exists ¢ > 0, c is independent of ¢, such that

k
878280 (a(t,x,n)— Y _a;(t,x,n)| < c(1+[n))*-1771Pl, (7.6)

j=0
where t eR,, x €K, )T]| >1, and
a(t,x,n)—a(oo,x,n) € AR, x THQ); L (A1 T*(Q), A% T*()))
with r > 0. Let
0, + Dgﬂ)( e Wxm=(vm) g (s x, 77))= el Wtxm=(raDp(¢ x ). (7.7)

Then
b(t,x,n) € SRy x TH(); L (A% TH(), A% T*(2)))

69



and
b(t,x,1)—b(oo,x,1) € (R x T*(2); L (A T*(2), A% T*(Q2))) (7.8)

with r > 0, where b(oo, x, 1) is a classical symbol of order 2. Moreover, we have

@ m(q))((z = (eMvtmm-trDa(e,x, n)— e Weorn-0ma(oo, x,m)) )
1 )
= o (el(lﬂ(t,xﬂ)—(%n))b(t’x’T’) _ et(‘#(oo,x,n)—()’vn))b(oo’x,n))_ (7.9)
)=

From Proposition 5.6, we see that for every compact set K C 2 and all indices
a, f and N €N, there exists ¢, g n,x > 0 such that

810 blt, x| < capaln| ™+ [nf N myte e ), @10

where t eR,, x €K, ~n| > 1. Thus,

0.9/ b(00, x, n)‘ <capnxln| "+ 0] my(oo,x, mM). (7.11)

From (7.8), (7.10) and (7.11), it follows that for every compact set K C Q, € > 0
and all indices a, f and N €N, there exists ¢4, v, > 0 such that

3x“3nﬁ (b(t,x, n)— b(oo,x,n))’

< capmenc (e CEMHD ™ 4 I Amy e, ) L )

where t eR,, x €K, )n >1,r>0.
Choose y € CP(R?"!) so that y(n) = 1 when |77| < 1 and y(n) = 0 when
|n|>2 Set

1 *r
G(x’y): WJ (J (el(lp(t'x,n)—(yyn))a(t,x}n)_
0

ei(lﬂ(oo,x,n)—(%f]))a(oo, X, 77)) (1—x(n)d t) an. (7.13)

Put

S(x,y)= f e W exm=(r) g (00, x, n)dn. (7.14)

(27-[)2n—1
We have the following

Proposition 7.5. We assume that Y(q) fails. Let G and S be as in (7.13) and (7.14)
respectively. Then
S+0eG=1

and
0" 0S=0.
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Proof. We have

Dgn(;eitw(nxvn)f(m)a(t,x,n))

(27-[)2;1—1
1 . oy da
_ i (tx,m—(y.n)) vy Y%
(2m)2n-1 ¢ (b(t’x’n) FTRAY: )

where b(t,x,n)is asin (7.7). Letting t — 0o, we get

1 )
o (G e atoo, x,m)

1

_ W et(w(ooyx,n)—(yvn))b(oo, x,n),
where b(oo, x,n)is asin (7.8) and (7.11). From (7.11), we have

1
(Zﬂ)Zn—l

f e Wexm=rm)p (0o, x,n)dn

is smoothing. Thus

I:lgf) 0S=0.

In view of (7.9), we have

(q)

0y (W(
_ ei(w(oo,x,n)—(ym)a(oo,x, n)(1— }((T))))

(ei(w(t,x'n)—@’?))b(t,x, n)

e Wm0 a(r,x,m)(1 - 7 ()

_ 1
- (2m)2n-1
— e!Weern-{riDp oo, x, 7)) (1 - ()
1 0

NTSIEYT: (eMvt=m-tmbage, x, 7)1 - (7).

From Proposition 7.2, we have

1 X
(@) _ @ i@ (t,xn)—(y.n))
0, oG=0, ( ST J(J (e a(t,x,n)
(2m) 0

— e (a(oo, x,m)) (1~ £ (m))dt ) dn)

(27z)12"—1 (J (Lw(ei(w’x'm_@’””b(t X,1)

— el Weox={riDp oo, x, 7)) (1 - y ()t )dn
_ ooi i(y(r,x, )—( , )) _ .
J(JO at(e Y(tx,m)—(yn a(t,x,n))(l )((n))dt)dn)
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In view of (7.11) and (7.12), we see that

0

_ eieoxm=(r)p(g, x, 77))(1 —x(n)d t) dn

J (J (ei(w(tyx,n)*(yvn)) _ ei(w(ooyx,n)f(yvn)))b(oo,x’ (1 — y(m)d t) dn
0

_ 1
- (27.[)2;1—1
1

+ G f ( f ei(wu.x,n)—@,n))(b(t,x,n)—b(oo,x,n))(l— %(n))dt)dn
0

is smoothing.
Choose a cut-off function y,(n) € C°(R?"!) so that y,(n) = 1 when |17| <1
and y;(n)=0when |n| > 2. Take a u € C(; A%1T*(£2)), then

1 o .
hifg(zﬂ)Tf (fo E(e’w“""”)‘@"’”a(nx,n))(l — 1) (enuly)d t)dndy

. 1
=lim

i f e W=y g (00, x, 7)1 — y (M) y1(en)u(y)dndy

—lgig(}f e I (1 — () (en)u(y)dndy.

Hence

—1 " 9 i(yY(t,x,n)—{y, .
(zﬂ)Zn—lf(J() E(e @(txm) <yn))a(t’xrn))(1_X(T)))dt)dn:S—I,

Thus
S+vaqOGEI.

O]

In the remainder of this section, we recall some facts about Hilbert space the-
ory that will be useful later. We recall that C*(X; A% T*(X)) carries an inner prod-
uct

(ulv) :J (u(z) | v(z))(dm), u € C®(X; A% T*(X)), v € C*(X; A® T*(X)).
X

(See (2.8).) The completion will be denoted L?(X; A%7 T*(X)). Let A be as in Re-
mark 7.4. A has a formal adjoint

A*: (X A% TH(X)) — 9/(X; A T*(X))

(A*u | v)=(u | Av), u € C®(X; A*1 T*(X)), v € C®(X; A% T*(X)).
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Lemma 7.6. A* is well-defined as a continuous operator
A" H(X; A TH(X)) — H*Y(X; A% T(X))

for all s € R. Moreover, we have
A=A

Proof. The first statement is a consequence of the theorem of Calderon and Vail-
lancourt. (See Proposition 6.10.) In view of Remark 7.4, we see that D(bq) cA=1.
Thus

Ao =1.
We have
A — A=A (O 0A)-A
=(A%o Dg’)) cA—A
=A-A
=0.
The lemma follows. O

From this, we get a two-sided parametrix for I:l(bq).
Proposition 7.7. We assume that Y(q) holds. Let A be as in Remark 7.4. Then
OV oA=Aor =1.
Proof. Inview of Lemma 7.6, we have A*= A. Thus
1=0%0A=A" 0" = A0,
O

Remark 7.8. The existence of a two-sided parametrix for D(b'” under condition

Y(q) is a classical result. See Beals-Greiner [1].

Definition 7.9. Suppose Q is a closed densely defined operator
Q:H>DomQ—RanQ CH,

where H is a Hilbert space. Suppose that Q has closed range. By the partial in-
verse of Q, we mean the bounded operator N : H — H such that

QoN=1m,, NoQ=m; on DomQ@Q,

73



where 7, 7, are the orthogonal projections in H such that
Ranm; = (KerQ)*, Ranm, =RanQ.
In other words, for u € H, let
mou =Qu, v e (KerQ)* ﬂDomQ.

Then,
Nu=wv.

Set
DomO\” = {u € [2(X; A T*(X)); O u € L2(X; A T*(X))}.
Lemma 7.10. We consider I:lb as an operator
O\ : I2(X; A% T*(X)) > DomO,” — L2(X; A% T*(X)).
If Y(q) holds, then I:l(q) has closed range.
Proof. Suppose u; € DomD(Q) and
0" u; = v; — vin L¥(X; A% T*(X)).
We have to show that there exists # € Dom El(q) such that
El(bq)u =v.
From Proposition 7.7, we have
OVA=1-FR, A0\ =1-E,
where F;, j =1, 2, are smoothing operators. Now,
AP u; = (I — B)u; — Av in LA(X; A% T*(X)).
Since F is compact, there exists a subsequence
uj, — uin L*(X; A% TX)), k — oo.
We have (I — E)u = Av and
07w, — 0w in H2(X; A7 T*(X)), k — oo.

Thus D(bq)u =v. Now v € L2(X; A% T*X)), so u € Dom I:lf). We have proved the
lemma. O
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It follows that Ran I:Ig,q) = (Ker Dg’))l. Notice also that I:l(bq) is self-adjoint. Now,
we can prove the following classical proposition of Beals and Greiner. (See [1].)

Proposition 7.11. Suppose Y(q) holds. Then dimKerEI(bq) < 00. Let 7 be the or-

thogonal projection onto Ker ngq) and N be the partial inverse. Then 1 is a smooth-

ing operator and N = A+ F where A is as in Proposition 7.7 and F is a smoothing
operator. Let N* be the formal adjoint of N,

(N*u | v)=(u | Nv), u € C*(X; A% T*(X)), v € C®(X; A% T*(X)).

Then,
N*=N on L*(X; A®T*(X)).

Proof. From Proposition 7.7, we have

A0 =1-F,0"A=1-F,

where F, F are smoothing operators. Thus Ker I:I(bq) cKer(I—F). Since F is com-

pact, Ker(I — F) is finite dimensional and contained in C*(X; A% T%(X)). Thus
dimKerDEf) < oo and Kerl:l;q) C C®(X; A% T*(X)).
Let {¢1, ¢2,..., ¢} be an orthonormal basis for Ker E]Ef). The projection 7 is
given by
m
mu=>Y (ul¢;);.
j=1

Thus 7 is a smoothing operator. Notice that I — 7 is the orthogonal projection

onto Ran1\ since 0\ is formally self-adjoint with closed range.

For u € C®(X; A% T*(X)), we have
(N—Au= (AD(bq) +F)Nu—Au
=A(l-mMu+FNu—Au
= —Anu+ENO"A+E)u
=—Anu+ FK(I—n)Au+ FENEu.
Here
— A7, F(1—m)A : H (X; A% T*(X)) — H*P™(X; A% T(X))

forall seR and m >0, so —Am, F(1 — m)A are smoothing operators. Since

ENE: &(X; A% T*X)) — C®(X; A% T(X))
— L*(X; AT (X)) — C¥(X; A% T*(X)),
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F NE is a smoothing operator. Thus

N = A+ F, Fis asmoothing operator.

Since
Nn=nN=0=N'r=nN*=0,
we have
*=(NOW + 1)N* = NOWN* = N.
The proposition follows. O

Now, we assume that Y(q) fails but that Y(g — 1), Y(g + 1) hold. In view of
Lemma 7.10, we see that D;‘H) and ng’“) have closed range. We write 557) to
denote the map

1 : C¥(X; A% T*(X)) — C®(X; A%+ T*(X)).

Let 5(;)'* denote the formal adjoint of 3. We have

3" C(X; A TH(X)) — C(X; A% T(X)).

Let N\""" and N\’ be the partial inverses of (1" "

Proposition 7.11, we have

and I:lb Y respectively. From

+1 +1 -1 -1
(N}(yq ))*:Nl()ﬁl ), (Nl()q ))*:Nz(;q )’

where (N\"*")* and (N}’ are the formal adjoints of N\**" and N\""" respec-

tively. Let T, @+ and 7'55b “Ube the orthogonal projections onto the kernels of |:|(‘7Jrl
and Elgf respectively. Put
@) —(q) =g-1) —1)y2 7 g—1*
N=3, (N y¢a," +3, (NY VYo, (7.15)
and =) =@  =lg-1) (g-1),
1 1
n=1-@, N5 +3, NIV (7.16)

In view of Proposition 7.11, we see that N is well-defined as a continuous opera-
tor
N : H5(X; A% T*(X)) — H*(X; A% T*(X)) (7.17)

and 7 is well-defined as a continuous operator
7 HY(X; A% TH(X)) — HY(X; A% T*(X)), (7.18)

forall s eR.
Let 7* and N* be the formal adjoints of w and N respectively. We have the
following
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Lemma 7.12. If we consider © and N as operators
T, N : 2'(X; A% T*(X)) — 2'(X; A T*(X)),
then

n*=m, N*=N,

0V =0=n0",

r+09N=1=n+NO?,
nTN=0=Nr,

T =TI.

Proof. From (7.15) and (7.16), we get (7.19).
For u € C®(X; A%+1T*(X)), we have

0= (D(q+1) (g+1) |7r(q+1)u)

+1) —lg+1) —(q)* —(q),
_(a —={q (q+1)u |3 q ﬂgﬁ_l) )+(a q (q+1)u | abq *ﬂ(q+1)

b b

ThUS,
—(g+1) —(q)*
81 (E 1 =0, 6 gj % =0.

Hence, by taking the formal adjoints

ﬂ;qﬂ)g(bﬂlﬂ)*_ 0, (q+1)5(bq) 0.
Similarly,
Il =, gla0z I~ g,
Note that
3. g =gz ", G g =gz Y
Now,

—(q)* =@  =@-1) —1)=G@-1)x*
Dg’)(ﬁb Nl(f’ l)ﬁb +6b N(q l)a )
—(), — —(g-1 _ _1—=(g-1),
=70 q)*D(q ”N(‘“”a(‘”w 7! (q I)N,(,q l)abq .
—(07) +1 (CI) —1)\5{g—1)*
(I—- (q ))8 b (I — ngf ))3b

—Elgf).
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(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)



Here we used (7.24), (7.26) and (7.27). Hence,
(q)% 0.

We have

(q)

m (9)

=3, m) =0,

where (I:l(q) nt)* is the formal adjoint of D(q) 7. We get (7.20).
Now,

1 1
DE:”N (5&7) D(q+1 (N£q+1))2a(q)+a(q ) (q I(N(q 1))2 (q- )*)

b
524)*(1 (q+1))N(q+1a(q)+5(q 1)(1_ (g— 1))N(q 1) ;}q 1)
a(q) N(q+1)a(q)+a(q I)Nl()q—15(bq D
=I1—-m. (7.28)
Here we used (7.24), (7.26) and (7.27). Thus,
0PN +r=1.

We have
T+ NI:l(q) = (I:l(bq)N—F n)y =1,

where (Db DN + ) is the formal adjoint of D(q)N + . We get (7.21).
Now,

—(q)*N(q+l)§(Q) =(q-1) (g—1)*
b

N(I-7m)=N(@, +2, NIVo,
_ a(q) (N(q+1))25(bq)a(bc/) *N£q+1)a(q)

)

SG-1)  (g-1)\27@-Dr3{g-1) (g— 1)*
(N, )9,

+0, 2, NYVa;

From (7.24), (7.25) and (7.27), we have
?bq)giq),*ngqﬂ):(I_ (q+1))—(q) (9)* N(q+1)
N(q+1)D(q+1)5(bq)5(q) N(q+1)
= N*D a(q)gﬂl) * (1) pyla+D)
N(q+1)a(q)—(q) (I- (q+1))
qu+1) a(q)g(q) *.

Similarly, we have

Slg-Dx=(g-1) - 1x—=(q-1)
gV g Nl 2 ylamuglamheglanh),
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Hence,

N(I-m)= 5(4),*(N(q+1))zN(q+1)5(4)5(Q):*5(Q)

( 1) q q q 1) (

1 1
+§(q )(N(”’ ”)ZN(" ”D(" 1)3(q )%

(q) (N(q+1))2(I q+1))aW)

(N(q—l))z(l_ (q- 1))5
_a(q) (N(q+1))2—(q)+a(q 1)(N(q 1))2 (g—1)%

D—{g-1),
q- abq *

(g—1)%

=N.

Here we used (7.25) and (7.26). Thus,

Nm=0.
We have
nN=(Nn)"=0,

where (N7)* is the formal adjoint of N7t. We get (7.22).

Finally,

n=0OYN+mn=n

We get (7.23).

The lemma follows. O

Lemma 7.13. If we restrict 1 to L?>(X; A%9 T*(X)), then 7 is the orthogonal projec-
tion onto Kerl:l(q) Thus, 1 is well-defined as a continuous operator

7 1 L2(X; A% T*(X)) — L2(X; A% T*(X)).

Proof. From (7.20), we get Ran(7) C Kerl:l(q) in the space of distributions. From
(7.21), we get tu = u, when u € Kerl:lb ,so Ran(m)= Kerl:lg” and

P =n=n*r=m"
For ¢, ¢ € C*(X; A% T*(X)), we get
(1-m¢ |mp)=0

so Ran(I — ) L Ran(7r) and ¢ = (I — )y + my is the orthogonal decomposition.
It follows that 7 restricted to L?(X; A% T*(X)) is the orthogonal projection onto
Ker ngq)_ ]
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Lemma 7.14. If we consider I:lg” as an unbounded operator

07 L2(X; A% T(X)) > DomO — LA(X; A% T*(X)),

then Elgf’) has closed range and

N : LA(X; A7 T*(X)) - Dom O, ={u € L*(X; A*1 T*(X))
09w € I2(X; A% T*(X))}
is the partial inverse.

Proof. From (7.21) and Lemma 7.13, we see that
N : L¥(X; A% T*(X)) — Dom.,"”
and Ran0\”’ > Ran(I — 7). If
O0Pu=v, u,vel?X;\TX)),

then(I—-mv=(I— n)l:lg”u = v since m:‘g]q) = Elgjq)n =0. Hence

Ran Dg)q) CcRan(I — )

so 00 has closed range.

From (7.22), we know that Nm=nN =0. Thus, N is the partial inverse. O

From Lemma 7.13 and Lemma 7.14 we get the following classical result. (See
also Beals-Greiner [1].)

Proposition 7.15. We assume that Y(q) fails but that Y(q — 1) and Y(q + 1) hold.

Then IZI(bq) has closed range. Let N and 1 be asin (7.15) and (7.16) respectively. Then

N is the partial inverse of ngq) and T is the orthogonal projection onto Ker ng”.

8 The Szego Projection

In this section, we assume that Y(q) fails. From Proposition 7.5, we know that,
for every local coordinate patch X;, there exist

Gj € L_lll (X, A% T*(X] ), A% T*(X]))
22

and
Sj (S Lol l(X'; AO,q T*(Xj),AO’q T*(X] ))
2'2
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such that

@D —
{ S;+0G; =1 o)

O0"s; =0
in the space 2'(X; x X;; £(A% T*(X;), A% T*(X;))). Furthermore, the distribution
kernel Ks; of §; is of the form

Ks,(x,y)= f el eem=(r)) g (00, x,n)dn, 8.2)

(27-[)211—1
where (00, x,n) € C*(T*(X;)) and
a(oo,x,n) € C®(TH(X;); LAY T*(X;), A* T*(X;)))

are as in Proposition 4.3 and (7.4). From now on, we assume that S; and G; are
properly supported operators.

We assume that X = U;.Czl X;. Let y; be a C* partition of unity subordinate to
{X;}. From (8.1), we have

Sj)(j'i'l:‘;q)GijE%j (8.3)
(9) — .
in the space 2'(X; x X;; £(A% T*(X;), A% T*(X;))). Thus,
(@)~ —
S+0,G=1
@ (8.4)
O0s=0
in the space 2'(X x X; £Z(A% T#(X), A% T*(X))), where
S, G:2'(X; A" T* X)) — 2'(X; A» T(X)),
k
Su=Y Si(y;u),u€?(X; I T (X))
= 8.5)

k
Gu= ZGj()(j u),u €2'(X; A% T4X))
j=1
Let
S*,G*: 9'(X; A" T*(X)) — 2'(X; A% T*(X))

be the formal adjoints of S and G respectively. As in Lemma 7.6, we see that S*
and G* are well-defined as continuous operators

' H(X; A T*(X)) — HY(X; A™ T*(X)) 86)
G*: HY(X; A% T*(X)) — H*'(X; A% T*(X))’ '

for all s € R. We have the following
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Lemma8.1. LetS beas in (8.4), (8.5). We have

S=S*S.
It follows that
S=Ss*
and
$?=S
Proof. From (8.4), it follows that
s+6o?=1.
We have
S=(8*+G'0)oS
=5's+G'O"s
=9'S.
The lemma follows. O
Let
H=(I-S)oG. (8.7)

H is well-defined as a continuous operator
H: H(X; > T4(X)) — H*"(X; A T*(X))
for all s € R. The formal adjoint H* is well-defined as a continuous operator
H*: HS(X; A®7 T*(X)) — HTY(X; A% T*(X)),
forall s eR.
Lemma 8.2. LetS and H be as in (8.4), (8.5) and (8.7). Then
SH=0, (8.8)
S+O0PH=1. (8.9)

Proof. We have
SH=S(I-S)G=(S-S)G=0

since S2 =S, where G is as in (8.4). From (8.4), it follows that
S+O0PH=5+0"(1-9)G
=1-0SG
=1.

The lemma follows. 0
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Lemma 8.3. Let H be as in (8.7). Then
H=H".
Proof. Taking the adjoint in (8.9), we get
S+HO =1.

Hence
H=(S"+HO")H=S"H+H'O"H.

From Lemma 8.1 and Lemma 8.2, we have
S*H=SH=0.

Hence
H=HO"H=H"

Summing up, we get the following
Proposition 8.4. We assume that Y(q) fails. Let

S: 2 (X; A TH(X)) — 2'(X; A* T*(X))
H:2'(X; A" TH(X)) — 2'(X; A* T*(X))

be as in (8.5) and (8.7). Then, S and H are well-defined as continuous operators

S:HY(X; A% T*(X)) — H*(X; A% T*(X)), (8.10)
H: H(X; A% T*(X)) — H"T(X; A% TH(X)), (8.11)

for all s e R. Moreover, we have

HOW +s=s+0H=1, (8.12)
Os=s0” =0, (8.13)
S=5"=8?%, (8.14)
SH=HS=0, (8.15)
H=H". (8.16)

Remark 8.5. If
S H : 9'(X; A% TX)) - 2'(X; A% T*(X))
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satisfy (8.10)-(8.16), then
S'=(HOY +8)8' =88 =8O H' +S)=S
and
H'=HOY +S)H =(HOY +8)H = HOV H = HO H' + 8') = H.
Thus, (8.10)-(8.16) determine S and H uniquely up to smoothing operators.

Remark 8.6. Proposition 8.4 is motivated by the work of Boutet de Monvel and
Sjostrand [9]. See also Beals-Greiner [1].
Now we can prove the following

Proposition 8.7. We assume that Y(q) fails. Suppose D(bq) has closed range. Let N

be the partial inverse of I:Igf) and let 7t be the orthogonal projection onto Ker I:IE?).

Then
N=H+F,

n=S4+K,
where H, S are as in Proposition 8.4, F, K are smoothing operators.

Proof. We may replace S by I — 0\’ H and we have

OV H+S=1=H0O"+5"

Now,
r=n0PH+S)=nS, (8.17)
hence
Tr=S"t"=n=85"n. (8.18)
Similarly,
S=(NOY 4+ 7)S=nS+NF, (8.19)

where F is a smoothing operator. From (8.17) and (8.19), we have
S—n=S—nS=NE. (8.20)

Hence
(§*—m)(S—m)=F'N*F.
On the other hand,
(S*—n)S—m)=S*S—S*t—nS+n*
=8S—n
=S—n+ k5,
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where F is a smoothing operator. Here we used (8.17) and (8.18). Now,

Fl*NzFl c 9'(X; AYTHX)) — C®(X; A% T*(X))
— L2(X; A¥ T*(X)) — C®(X; A% T*(X)).
Hence F'N 2F, is smoothing. Thus S — 7t is smoothing.
We have,

N-H=NOYH+S)—H
=(I-n)H+NS—H
=NS—mH
=NS—n)+E
=NFE+F

where F, and F; are smoothing operators. Now,

N—-H'=N"—H"

=FN+F
=F(NFE+E+H)+E.
Note that
E'NF;: 7'(X; A" TH(X)) — C™(X; A% T(X))
— L2(X; A% T*(X)) — C®(X; A% T*(X)).
and

F'H: H'(X; A" T5X)) — H*"™ (X ; A* TH(X))

for all s € R and m > 0. Hence N — H* is smoothing and so is (N — H*)* = N —
H. L]

From Proposition 8.4 and Proposition 8.7, we obtain the following

Theorem 8.8. We assume that Y(q) fails. Let (n_,n.), n-+n, = n—1, be the
signature of the Levi form L. Suppose Dgf) has closed range and recall this is the
case when Y(q—1) and Y(q+1) hold. Let 7t be the Szego projection, that is, 7t is the

orthogonal projection onto Ker D(bq). Then for every local coordinate patch U C X,

the distribution kernel of m on U x U is of the form

K:(x,y)= f e W exm~{r1) g (00, x,n)dn mod C*, (8.21)
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a(oo,x,n) €S (T*(U); LAY T*(U), A>T T*(U))),

a(oo,x,n) NZaj(oo,x,n)
0
in the symbol space S| ((T*(U); £(A*7T*(U), A% T*(U))),
where
a;(00,x,n) € C(T*U); LA T*(U),A* T*(U))), j=0,1,...,

aj(oo)x)ln) = A_jaj(OO,x, T]),A > 1)

n|>1, j=01,...,

and 87\, m € R, is the Hormander symbol space. Here (00, x,n) is as in Proposi-
tion 4.3 and (4.9). We recall that

Y(o00,x,m) € CP(TH(U)),
Y (00, x,An) = AY(o0,x,1),A >0,
Im (o0, x,1) = |n|(dist((x,ﬁ), SR,

Y(00,x,n)=—1p(00,x,—n). 8.22)

Moreover, forall j =0,1,...,

{ aj(oo,x,n)=0 in a conic neighborhood of >*, if g=n_, n_# ny, 8.23)

a;j(oo,x,n)=0 in aconic neighborhood of -, if g=n,, n_#n,.

In the rest of this section, we will study the singularities of the distribution
kernel of the Szegd projection. We need

Definition 8.9. Let M be a real paracompact C* manifold and let A be a C*®
closed submanifold of M. Let U be an open set in M. We let C{°(U) denote the
set of equivalence classes of f € C*(U) under the equivalence relation

f =g inthe space C{°(U)
if for every zg € Aﬂ U, there exists a neighborhood W c U of z, such that
f=g+honW,

where h € C*(W) and h vanishes to infinite order on Aﬂ w.
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In view of Proposition 4.3, we see that (00, x, 1) has a uniquely determined
Taylor expansion at each point of . Thus, we can define )(00, x, ) as an element
in CX(T*(X)). We also write v (oo, x, ) for the equivalence class of y(oo, x,7n) in
the space C°(T*(X)).

Let M be a real paracompact C* manifold and let A be a C* closed subman-
ifold of M. If x, € A, we let A(A, n, xy) be the set

A(A, n,x0)=1{(U, f1,..., fn); U is an open neighborhood of xy, f1,..., f» € C°(U),
ijAﬂU =0, j=1,...,n,and dfi,...,df, are linearly independent
over C at each point of U}. (8.24)

Definition 8.10. If xo € A, we let A, (A, n, xo) denote the set of equivalence classes
of A(A, n, xo) under the equivalence relation

rl:(Urfl)--')fn)NFZ:(‘/’gl)-'-rgn)’ FI,FZEA(A,H,XO),

if there exists an open set W c U[| V of x, such that

n

g EZaj,kfk in the space C°(W), j=1,...,n,
k=1
where a; € C(W), j, k=1,...,n,and (“j,k);lkzl is invertible.
If(U, fi,..., fn) € AN, n,x0), we write (U, fi,..., [n)x, for the equivalence class
of (U, fi,..., fn)in Ay, (A, n, xo), which is called the germ of (U, f3, ..., f») at x,.

Definition 8.11. Let M be a real paracompact C* manifold and let A be a C*®
closed submanifold of M. A formal manifold 2 of codimensin k at A associated
to M is given by:
For each point of x € A, we assign a germ I',, € A, (A, k, x) in such a way that
for every point x, € A has an open neighborhood U such that there exist
fi-o fr e CR(U), fleﬂUzo,j =1,....,k,dfi,...,df are linearly
independent over C at each point of U, having the following property:
whatever x € U, the germ (U, f3,..., fr)x isequal to T'.
Formally, we write
Q=iI'y; x€A}.

If the codimension of Q is 1, we call €2 a formal hypersurface at A.
LetQ=4{I'y;x€A}and Q; = {fx; X e A} be two formal manifolds at A. If ', =
I',, for all x € A, we write
Q=0Q; atA.
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Definition 8.12. Let Q = {I",; x € A} be a formal manifold of codimensin k at A
associated to M, where A and M are as above. The tangent space of Q2 at xo € A is
given by:

the tangent space of Q at xo = {u eCT,,(M); <dfj(xo), u> =0,j= 1,...,k},

where CT,,(M) is the complexified tangent space of M at x, and (U, f3,..., f) is
arepresentative of I',,,. We write T,(£2) to denote the tangent space of {2 at x,.

Let (x,y) be some coordinates of X x X. From now on, we use the notations &
and n) for the dual variables of x and y respectively.

Remark 8.13. For each point (xg, 1o, X0, 10) € diag (X x X), we assign a germ

Lixonorxone) = (T(X) X TH(X), & — lP;(oo,x, n,y— %(oo,x, Mxonoxome)-  (8.25)

Let C,, be the formal manifold at diag (> x X):

Csx= {r(x,n,x,n)? (x,n,x,n)ediag(X x Z)}.

Cw is strictly positive in the sense that
1 —
-o(v,v)>0
i

for all v € T,(Cx) \ CT,(diag(X x X)), where p € diag(X x ¥). Here o is the sym-
plectic two form on CT;(X) X (CT;(X).

We have the following

Proposition 8.14. There exists a formal manifold ], = { Joeny (x,m) € Z} aty as-
sociated to T*(X) such that
codim/,=n-1 (8.26)

and for all (xo,no) €%, if (U, f1,..., fn-1) is a representative of Jx, r,), then

{fj,fk}EO in the space C3'(U), j,k=1,...,n—1, (8.27)
n—1
pOEZgjfj in the space CJ’(U), (8.28)

j=1
where g; € CY¥(U), j=1,...,n—1, and

1
;O‘(Hfj,H?j) >0 at (xo,n0)€, j=1,...,n—1. (8.29)
We also write f; to denote an almost analytic extension of f;. Then,
filx, l/J;(OO,x, n)) vanishes to infinite orderon %, j =1,...,n—1. (8.30)
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Moreover, we have

n—1 n—1
Ty(Coo) =1+ D t; Hy,(x0,m0), v+ D 8 Hy, (X0, 10));

Jj=1 j=1
ve ]Exo,f)o)(z)) tj;Sj EC,j = 1,...,I’l — 1},

where p = (xy, 1o, X0, No) € diag (X x X) and Cy, is as in Remark 8.13.
Proof. See [20].
We return to our problem. We need the following

Lemma 8.15. We have
Y7,(00, p, wo(p)wo(p) =0

and

Rank (w’n’n(oo, P, a)o(p))) =2n-2,

forallp € X.

(8.31)

(8.32)

(8.33)

Proof. Since l/J;](oo, x,n) is positively homogeneous of degree 0, it follows that

Y (00, p, wo(p)we(p) =0,

Thus,
Rank (w’n’n(oo, P, wo(p))) <2n-2.
From n
Im1)(00, x,1) =< |n|dist((x, W); x)?
it follows that

Iml//rgn(oo, p,wo(p))V#0, if V¢ {Awe(p); A€C}.

Thus, for all V ¢ {Awy(p); A € C}, we have

(4, (00, p,o(p)V, V) = (Rey!, (00, p, wo(p)V, V)

+i(Imy; (00, p, 00(p)V, V) #0.

We get (8.33).
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Until further notice, we assume that g = n.. For p € X, we take local coordi-
nates
X = (xlrxb --'yxZn—l)

defined on some neighborhood €2 of p € X such that

wo(p)=dxz,-1, x(p)=0 (8.34)
and
2n—2 a
AT (X) @AY T, (X)=4 Y aj5—a;€C, j=1,...,2n~2
j=1 J

We take 2 so that if xo € Q2 then 1¢2,-1 > 0 where wo(x0) =(10,1,---,N02n-1)-

Until further notice, we work in © and we work with the local coordinates
x. Choose y(x,n) € C*(T*(X)) so that y(x,n) =1 in a conic neighborhood of
(p, wo(p)), x(x,n) =0 outside T*(f2), y(x,n) = 0 in a conic neighborhood of >~
and y(x,An) = y(x,n) when A > 0. We introduce the cut-off functions y(x,n)
and (1 — y(x,n)) in the integral (8.21):

K:(x,y)= Kp+(x,y)+ K- (x,y),

Ke+(x,y) = f eitveoxm={rn)) y (x, n)a(oo, x,n)dn,

(27-[)2n—1

K- (x,y)=

S f ei(#’(oo,x.ﬁ)‘()’:ﬂ))ﬂ _ Z(x’ n))a(oo,x, n)dn (8.35)

Now, we study K,+. We write ¢ to denote 1)3,_1. Put p’ =(n1,...,12,—2). We have

Kr+(x,y)=
1
(271-)211—1
1
e

f e W eI D= 0Dy (x, (1, 1))a(00, x, (', £))dn/ d t

J (J e 1o (wD=(y(w ) g2n=2 5 (x (t 1, t))a(o0o, x, (tw, t))d w)d ¢
0
(8.36)

where n’ = tw, w € R?"~2, The stationary phase method of Melin and Sjostrand
(see Proposition B.15) then permits us to carry out the w integration in (8.36), to
get

Kﬂ+(x,y)zf etV (x,y,t)dt (8.37)
0
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with

o0

s(X,y, 1)~ Z shlx,y)en

j=0

in the symbol space S} (22 x 2x]0, 00[; £(A*? T;‘(X),Ao'q TH(X)), (8.38)

where si(x,y) € C®(Q x Q; L (AN Ty*(X),AOv”f Tx(X)), j =0,1,..., and ¢, (x,y) €
C>(2 x Q) is the corresponding critical value. (See Proposition B.14 for a review.)
For x €, let o(x) € R?"~2 be the vector:

(x,(0(x),1) ex*. (8.39)

Since
d (oo, x,(w,1))— (y,(w,1)))=0 atx =y, w=0(x),

it follows that when x = y, the corresponding critical point is w = o(x) and con-
sequently

P+(x,x)=0, (8.40)
(@), (x,x) =1 (00,x,(0(x), 1)) =(0(x),1), (¢+), (x,x)=—(o(x),1).  (8.41)

The following is well-known (see Proposition B.14)
Proposition 8.16. In some open neighborhood Q of p in 2, we have
Im g, (x,y) > ¢ inf (1m(o0,x, (w, 1))+|du (o0, x, (w, 1) = (y,(w, D)),
(x,y)€QxQ, (8.42)
where c is a positive constant and W is some open set of the origin in R?"~2,
We have the following

Proposition 8.17. In some open neighborhood Q of p in X}, there is a constant
¢ >0 such that
Im¢. (x,y)>c x’—y/z, (x,y)€QxQ, (8.43)

where x’ =(Xx1,...,X2n-2), V' =(1,..., Yon—2) and

/

x'=y "=(x, — )P+ (Xon—a — Yano)

Proof. From
Y(oo,x,(w, 1)) = (y,(w,1)) = {x —y,(w, 1)) + O(|lw — o(x)*)
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we can check that
dw(lp(oo)x’(w’ 1)) - <J/»(w» 1)>) = <x/ _y/»dw> +O(|w - O'(X)l),

where o(x) is as in (8.39) and x’ = (x1,...,X2,-2), ¥’ = (J1,- -+, Y2n—2). Thus, there
are constants ¢, ¢, > 0 such that

|d (00, x, (w, 1) = (v, (W, DY| = e1|[x = y'| = colw — o ()

for (x, w) in some compact set of Q x R27-2, If % (x’ —y’)\2 > ¢, |w — o (x)]?, then

c
|dw(¢(oo,x,w)—<y,w))|22 31|(x’—y’) 2 (8.44)
Now, we assume that |(x’ —y)| < 26—012 |lw — o (x)]*. We have
2 C1C3 ’ NG
Imp (o0, x, (w, 1) 2 es|w — o () = S| =y, (8.45)
2

for (x, w) in some compact set of Q2 x R27-2 where c;3 is a positive constant. From
(8.44), (8.45) and Proposition 8.16, we have

2

Im ¢ (x,y) = c|(x'— ")

for x, y in some neighborhood of p, where c is a positive constant. We get the
proposition. O

Remark 8.18. For each point (x, xo) € diag(2 x €2), we assign a germ
Hy (x0,50) = (2%, (X, ¥ ) x0,x0)-
Let H, be the formal hypersurface at diag(f2 x Q):
Hy={H ) (x,x) ediag(Q x Q)}. (8.46)
The formal conic conormal bundle Ay, ; of H, is given by: For each point
(X0, 70, X0, 10) € diag ((=* ) T°() x (= T*()),
we assign a germ

A(XOJ’Ivao,T]o) :(T*(U) X T*(U),gj —(Qb.,_);jt, ] =1,...,2n—1,
n] _(¢+);/] t! j = ]-) ...,2” - 2) ¢+(x’y))(x0,n0,x0,no);

92



N2n-1

where ¢ = m

and U C Q2 is an open set of x, such that

/
(¢+)y2n4 #0 on U x U.

Then,
Npor = { A (80,2, ) € diag (S T @) x (SO T@D} . 847)

Ay, is a formal manifold at diag((X+( ) T*(2)) x (ZF(T*(2)). In fact, Ay,, is
the positive Lagrangean manifold associated to ¢t in the sense of Melin and
Sjostrand. (See [18] and Appendix B.)

Let(W, fi(x,&,y,n), ..., fan—(x,&,y,n)) be arepresentative of I' v, ), x,,n,)» Where
I (xo,n0,x0,0) 1S @8 in (8.25). Put

/

r(xoyrlony:T)O) = (Wr fl(x! g;y; _n)) ) f4n—2(x’ 5) yr _n))(xO,T)o,)Co,T]o)'

Let C’_ be the formal manifold at diag(>:+ x X*):

o {y et =) e

We notice that y(c0,x,1) — (y,n) and ¢,(x,y)t are equivalent at each point of
diag (=) T*(2) x (X+() T*(£2))) in the sense of Definition B.20. From the global
theory of Fourier integral operators (see Proposition B.21), we get

Ag,r = Cl atdiag((Z"( ) TH(Q) x (ZH( ) T*(Q)). (8.49)
See Proposition B.7 and Proposition B.21, for the details. Formally,

Coo= {(xf,y,n); (x,i,J/»—U)EAmt}-
Put B
(ﬁ+(x’J/): —¢+(y,X).

We claim that

Mg =Ny, atdiag((ZH( ) TH) x () T (), (8.50)

where A;_, is defined as in (8.47). From Proposition 4.5, it follows that ¢, (x, y)¢
and —¢  (y,x)t are equivalent at each point of diag((X* () T*(2)) x (X+( ) T*(2)))
in the sense of Definition B.20. Again from the global theory of Fourier integral
operators we get (8.50).

From (8.50), we get the following
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Proposition 8.19. There is a function f € C*(Q x Q), f(x,x)#0, such that

¢+(x, 1)+ f(x,9)9 (1, )
vanishes to infinite orderonx =y.

From (8.51), we can replace ¢ (x,y) by

29-(67) = 6.0, )

Thus, we have
P+(x,y)=—=¢ (y,x).

From (8.41), we see that

(xr dx¢+(xrx)) € Z+’ dy¢+(x’x) = _dx¢+(xrx)'

We can replace ¢.(x,y) by

2¢+(X,J/) )
| e, 00| +[| e (v,
Thus,
A1 (x,x)= wo(x), dyP(x,x)=—wo(x).
Similarly,

Ke(x,y)= f e!9-)is (x,y,t)dt,
0

(8.51)

(8.52)

(8.53)

where K.-(x,y)is as in (8.35). From (8.22), it follows that when g = n_ = n,, we

can take ¢_(x,y) so that B
¢+(x’y) = _¢_(x!y)-

Our method above only works locally. From above, we know that there exist

opensets X;, j=1,2,...,k, X= U;.LIX]-, such that

o0
KMJ@J/)EJ e Pt Vls, i(x,y, r)dt
0

on X; X X;, where ¢, ; satisfies (8.40), (8.42), (8.43), (8.49), (8.52), (8.53) and
s+j(x,y,t), j=0,1,..., are as in (8.38). From the global theory of Fourier inte-

gral operators, we have

A ji=Clo= Ny, atdiag(SH) 770G () X)) x (HO) TG () X)),
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forall j, k, where Ay, 0r Mg, are defined as in (8.47) and C’_is as in (8.48). Thus,
there is a function f; ; € C*((X; () Xk) % (X; () Xx)), such that

O+, ¥)= fie(x,y)p1i(x,y) (8.54)

vanishes to infinite order on x =y, for all j, k. Let y;(x,y) be a C* partition of
unity subordinate to {X ixX j} with

2 y)=xiy, x)

and set
(X, 3)= D 1i(x,¥)p+(x,¥).

From (8.54) and the global theory of Fourier integral operators, it follows that
¢+,j(x,y)t and ¢ (x,y)t are equivalent at each point of

diag (= () (X)) x (=) T°(X,)

in the sense of Definition B.20, for all j. Again, from the global theory of Fourier
integral operators, we get the main result of this work

Theorem 8.20. Let (X,A'°T(X)) be a compact orientable connected CR manifold

of dimension2n — 1, n > 2. We assume that the Levi form has signature (n_, n.),

n_+n,=n-—1. Letq=n_ or ny. Suppose Déq) has closed range. Then, we have

K=Ky if n,=q#n_,
KT[:KTL'_ lf n_=6]75n+,
K.=K++K, if n,=q=n_,

where K+(x,y) satisfies

o0

K+ (x,9)= f e!9+Vig (x,y,t)dt mod C®
0

with
54,1, 1) €875 (X x Xx]0,00[; L(AY T (X), A% T7(X))),

s(x,y, )~ ZSi(x,y)t”‘l‘f

=0
in the symbol space Sy '(X x Xx]0,00[; L (A*? Ty*(X),AO’q TY(X)),  (8.55)
where
s1(x,y) € C¥(X x X; LA TY(X), A T/(X)), j=0,1,...,
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P+(x,y) € C(X x X),
¢+(x,x)=0,
P+(x,y)#0 if x#y,
Im@.(x,y)=0,
dx¢p+#0, dy¢p,#0 where Im¢p, =0,
AxP+(X, ¥ )x=y = wo(x), (8.56)
dyP+(%,Y)lx=y = —wo(x), (8.57)

P+(x,y)=—9,(y,x)
Moreover, ¢ (x,y) satisfies (8.43) and (8.49). Similarly,

Kq.-(x,y)= f e!9-is (x,y,t)dt mod C®
0

with

5 (2,7, 1) € 875X x Xx]0,00f; L(A% T*(X), A% T*(X)))

s_(6,y,0)~ Y st (x,p)en

j=0
in the symbol space Sy ;'(X x Xx]0,00[; £ (A% Ty*(X),Ao'q T (X)),
where
s (x,y) € C®(X x X; L (A% TH(X), AT (X)), j =0,1,...,

and wheng=n_=n,,

¢—(x’y) = _$+(x!y)-

9 Theleading term of the Szego Projection

To compute the leading term of the Szegd projection, we have to know the tan-
gential Hessian of ¢, (x,y) at each point of diag(X x X) (see (9.1)), where ¢..(x,y)
is as in Theorem 8.20. We work with local coordinates x = (x1,...,%»,_;) defined
on an open set 2 C X. The tangential Hessian of ¢.(x,y) at (p, p) € diag(X x X)
is the bilinear map:

TippH X Tip,pyHy = C,
(w,v) = (@), P)u,v), u,v €Ty ,H,, 9.1)
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where H, is as in (8.46) and

L [ 0.
#e)'= l @), (@), ]

From (8.56) and (8.57), we have

<(dx¢+(l9’ p)! dy ¢+(P» P)): (u) l/)> = 0’ u,ve ALO TP(X) GBAOJ Tp(X)
and
((dx¢+(p,p),dy¢+(p, ), (Y(p), Y(p)) =0.
Thus, T(,,, Hy at (p, p) is spanned by

(u,v), (Y(p),Y(p)), u,ve A’ T,(X)® A" T,(X). 9.2)

Now, we compute the the tangential Hessian of ¢, (x,y) at (p, p) € diag(X x
X). We need to understand the tangent space of the formal manifold

Ji= {](x,n); (x) 77) € Z}

at p =(p, Awo(p)) € X+, A >0, where J, is as in Proposition 8.14.

Let A;, j = 1,...,n — 1, be the eigenvalues of the Levi form L,. We recall
that 2i ‘)Lj| |al~y(p)|, j=1,...,n—1and —-2i |)Lj| |U'iy(p)|, j=1,...,n—1, are the
non-vanishing eigenvalues of the fundamental matrix F,. (See (3.9).) Let A C
CT,(T*(X)) be the span of the eigenspaces of F, corresponding to 2i |/lj | |0iy(p)|,
j=1,...,n—1. Itiswell known (see [21], [20] and Boutet de Monvel-Guillemin [8])
that

Tp(]+) = CTp(Z) @ A:;; A; = Tp(]+)l)
where T,(J;)* is the orthogonal to T,(J;) in CT,(T*(X)) with respect to the sym-
pletic two form o. We need the following

Lemma9.1. Letp =(p, Awo(p))€X, A>0. Let
Zy(x),.. . Zna(x)

be an orthonormal frame of A'° T,(X) varying smoothly with x in a neighborhood
of p, for which the Levi form is diagonalized at p. Let q;(x,&), j=1,...,n—1, be
the principal symbols of Zi(x), j =1,...,n—1. Then, A;; is spanned by

{ Hy (p), if %{{qﬁji(pbo

. i . (9.3)
Hg (p), if 114;,q;}(p)<0

We recall that (see (3.5))

. _
197,}0)=-221,2;,2))
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Proof. In view of (3.8), we see that Hy,(p) and Hg (p) are the eigenvectors of the
fundamental matrix F, corresponding to {qj,ﬁj} (p) and {ﬁj, qj} (p), for all j.
Since A7 is the span of the eigenspaces of the fundamental matrix F), correspond-
ingto2iA |Aj|, j=1,...,n—1,where 4;, j =1,...,n—1, are the eigenvalues of the
Levi form L. Thus, A; is spanned by

|—

s

{Hq,-(p), if +{q,,q,}(p)>0
Hg (p), if 145,4;;(p)<0

O]

We assume that (U, f,..., f,—1) is a representative of J,. We also write f; to
denote an almost analytic extension of f;, for all j. It is well known that (see [20]
and (8.30)) there exist hj(x,y)€ C®(X x X), j =1,...,n—1, such that

fj(x’(¢+);)_ hj(x»J’)¢+(x,J/)

vanishes to infinite orderonx =y,j=1,...,n — 1. (9.4)

From Lemma 9.1, we may assume that

{ Hy,(p)= Hy(p), it %iq,-ﬁ,;(pbo

. _ . 9.5
Hy (p)=Hy (p), if +{q,,d,}(p) <0 95

Hereq;, j=1,...,n—1, are as in Lemma 9.1.
We take local coordinates

X=(X1,...,X2n-1), Z2j=Xpj_1+iXp, j=1,...,n—1,
defined on some neighborhood of p such that

wO(p) = ‘/EdXZn—l) x(P) = Or

o 0
_ _— :25 y ',k=1,...,2 _].
(3xj(p)| 3xk(l9)) ik J n
and _
_ 0 1 Foj = J
Zj:a_zj_ﬁaj(x) +;Cj,s(x)a_xs» j=L..,n-1,

where Z;, j=1,...,n—1, are as in Lemma 9.1,

0Xopn—

o 1 o o
8zj_2 6x2j_1 aij’]_ T ’
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aj€C*a;j(0)=0,j=1,...,n—1and
cjs(x)eC*, ¢c;s(0)=0, j=1,...,n—1, s=1,...,2n—2. (9.6)

since ([Z;,Z¢](p), wo(p)) = 0 and ([Z}, Zi](p), wo(p)) = 2i2;5 x, we can check
that

0 0
ﬂm)— a—“’“m) fk=1,...,n-1,

da
—(0)—6—(0)_211 Sik, Jok=1,...,n-1, 9.7)

where 4, j =1,...,n—1, are the eigenvalues of L,. Let £ =(&,,...,&,,-1) denote
the dual variables of x. We have

2n—2

qi(x, &)= (52]1+z§2,)— a](x)§2n1+z2c“(x)5s,1—1 -1,

7

where g;, j =1,...,n—1, are as in Lemma 9.1. We may assume that
Aj>0, jzl,...,q, )Lj<0, ]:q+1,,n—1

From (9.5), we can check that

2n—-2

0 )=~ a1 = i)+ ) () ~ PITECS

\/_
j:1,...,6], glz(gl’---’€2n—2)

2n—2

i _ & 2
A i 2 ¢5(0)Es+0(|(x, €] ),

j:q+1)---)n_1r glz(gl)---y€2n—2)- (98)

Filx, &)= %(@H i) -

We write
Y= Yona1) Wj=ysjatiy, j=1,...,n—1,

o 1 e ,o 0 1@ o
5Wj 2 3y2j,1 6y2j ' 8@1 2 8y2j,1 5_}/21' 0 J Y

and
0 1. 0 b 0 ) i=1 )
- == 1 , J]=1,...,n—1.
321' 2 5x2]-_1 aij ]

From (9.4) and (9.8), we have
004 09y _ _
aZ]+ f o h(xy)¢+(xy)+0(|(xy)|) ji=1...,q,
205 Lo 6¢+

3Z] \/_ axZn 1

yeeyn—1. (9.9)
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From (9.9), it is straight forward to see that

aiﬁzgamza:gm,aagi(om—g_(m 1<j<gq, 1<k<n-1,
aazj?;k(o,m: 32’(0), aaz]?i (0,0)= Z: ©0), g+1<j<n—-1, 1<k<n-1,
ajjg;k((),o)_ 32 Z;bi (0,00=0, 1<j<gq, 1<k<n-1,
ag?;gam—azgi(om 0, g+1<j<n—-1, 1<k<n-1,
%(0 0)+%(0 0)= > o 1(0) 1<j<gq,
aj;in 1(0 0)+%(o 0)= ax;’_l(O), g+1<j<n-1. (9.10)
Since dy ¢ |-, = wo(x), we have
Fi(x (@) (x,x)=0, j=1,...,n—1.
Thus
ii";]f(x x) - [a,( )a o 1(x x)=0(xP), j=1,...,q,
"thxﬂ+;;%()ai;}LﬂZOWWLj:q+L””n—L (9.11)

From (9.11), it is straight forward to see that

22,
0z;0z
Py
0z;0zZ
*¢+
0z;j0z
2.,
8zj32k

0%¢

3z]3x2n 1

2294

ﬁzjaxgn 1

(0)

(0,

(0,0

(0?

0)+

0)+

)+a

0
e

(0,0)+

(0,0)+

229,
2z

%9
oz
%94

,-a
jOWk

ow

: da
agi(om ——4@ g+1<j<n-1,

226,

0z 9yzn 1

%9+
ﬁzjaygn_l

(0,0)=

—=—>—(0,0)=

(0 0)=

(0) 1<

j<q, 1<k<n-1,

m)1<]<q 1<k<n-1,

—(0) g+1<j<n-1, 1<k<n-1,

0,0)=
( )82111

0,0)= ——
( ) a2nl
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1<k<n-1,
(0), 1<j=<gq,

—(0), g+1<j<n-1. (9.12)



Since ¢, (x,y)= —$+(y, x), from (9.10), we have

2°¢, _ %9,
az,-awk(o’o)__awja L (0.0)
__ 9. —=(0,0)0=0, g+1<k<n-1.
w0z
Combining this with (9.12), we get
0?2 Jda
9+ (0,0)= —(0) 1<j<q, g+1<k<n-1. 9.13)
3zj3 k
Similarly,
22¢, 0a; ,
O;OZTO; 1<j<gq, 1<k<q,
o7, 8_( ) EE: (0) J1=q q
02¢. a
0,0)= (0) g+1<j<n-1, g+1<k<n-1. (9.14)
ﬁzjﬁ

From (9.10) and (9.12), we have

2%¢, da;j o%¢.
0,0 0)— 0,0
750 00 5,0~ 575,00
Jda 3ak
:_(O)_&’_(O)__ZM Ojr, 1=5j,k=<q. (9.15)
Zj
Similarly,
o*¢p.
=2 , 1< <n-1. 1
8z]8wk(0 ,00=2iA;0jk, q+1=<j,k<n (9.16)
Since ¢4 (x,x)=0, we have
029, 229, 029
—(0,0)42—(0,0)+ —————(0,0)=0. 9.17)
3x2n—15x2n—1( ) 5x2n—1aJ/2n—1( ) 5J’2n—133/2n—1( )

Combining (9.10), (9.12), (9.13), (9.14), (9.15), (9.16) and (9.17), we completely
determine the tangential Hessian of ¢, (x,y) at (p, p).

Theorem 9.2. Forp € X, let

21()(,'),. ..,Zn_l(X)

be an orthonormal frame of A*° T,,(X) varying smoothly with x in a neighborhood
of p, for which the Levi form is diagonalized at p. We take local coordinates

X=(X1,...,X2n1), Zj=Xpj_1+iXyj, j=1,...,n—1,
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defined on some neighborhood of p such that

wO(p) = ﬁden—l; x(p) = 0’

0 0
= ()| —(p)=264, jk=1,....2n—1
(axj ()| 3xk(p)) 6k J Kk n

and -
— d 1 1% — 17
Zi=— ——ai(x)—— (x)=—, j=1,...,n—1,
P P SL T P
where
1%} 1 0 .0 ) i=1 .
— == —1 , j=1,...,n—1,
6zj 2 aij_l aij ]
9a;

a;€C a;(0)=0 (0):56—‘;;?(0),j,k:1,...,n—1and

? Oz

cjs(x)eC*, ¢c;s(0)=0, j=1,...,n—1, s=1,...,2n—2.
We also write

Y= 0 Yon1), Wi=ysj1+iysj, j=1,...,n—1.

Then,

n—1 n-l1 oa;
¢+(x,y)=\/E(xz,l_l—yz,,_l)+i;|/xj||zj—wj{2+%j;1(a—:]fc(0)(zjzk—ijk)

a; _ o aa] _ _ a; _ —
+3_Ek(0)(zjzk —wiwi)+ a—Zk(O)(zjzk —Wjwi)+ 3_zk(0)(zjzk - w; wk))

n—1
) _ da;
+Zl(l7(.j(Zjo—Zjo)+ax ! (0)(ij2n—1_wjy2n—1)
]:

2n—1

Jda:
+ 3 O o =Ty yen)) + V2 = yane) )+ O,
fecx, f(0,00=0, f(x,y)=f(yx), 9.18)

where A;, j =1,...,n—1, are the eigenvalues of L,.

We have the classical formulas

JOO 7[xl_mdt m!x_m_ly if m EZ,m >0 (9 19)
e == (-1)m o -m-11 . . .
0 (—m—l)!x " l(logx+c_zl ;), ifmeZ,m<0

Here x # 0, Rex > 0 and c is the Euler constant, i.e.
1
c= nlllirc}o(zl:; —logm).
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Note that

oY) 00
f el P+(xy)t Zsi(x,y)t”_l_fdt
0

j=0

o0 o0
=lim | e CionN" ol (x y)enIT
E_’O+J; Zo 1 (x,y)
]:

We have the following corollary of Theorem 8.20

Corollary 9.3. There exist smooth functions
F.,G.,F.,G_€C®X x X; ZL(A> T(X), A¥TH(X))
such that
Kn+ = F+(_i(¢+(x’y) + lo))_n + G+ 10%(—i(¢+(x»J/) + iO))»
Ky = E-(—i(@—(x, ) +i0))" + G_log(~i(¢_(x,y) + i0)).
Moreover, we have
n—1
Fo=) (n—1—k)iske,y) =i () + f1 (6, y)ep (x,y))",
0
n—1
Eo=) (n=1—k)isk(x,y)—i¢-(x, ) + £-(6, y)p-(x,y))",
0

o -1 k+1
G =Y T e i),

0
X (_1)k+1
G.=Y T i (),
S

where sf, k=0,1,..., areasin (8.55) and

F106, ) f-(x,y) € C¥(X x X; LA T(X), A T*(X)).

(9.20)

In the rest of this section, we assume that g = n,. We will compute the lead-

ing term of K+. For a given point p € X, we can take local coordinates
x=(x1,%x2,...,X2n-1)
defined on some neighborhood €2 of p € X such that
wo(p)=dxzp-1, x(p)=0,
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2n—-2

2
AT (X)SANT,(X) =14 Y aj5—aj€C
j J

and

17 0 .
(a_acj(p) | 5_xk(l9))—5,-,k.],k_1,,,,,2,1_1_

In the local coordinates x, we represent the Hermitian inner product ( | ) on
CT(X) by
(u|v)=(Hu,v),

where u,v € CT(X), H is a positive definite Hermitian matrix. Let h(x) denote
the determinant of H. The induced volume form on X is given by 4/ h(x)d x. We
have

h(p)=1.

Now,
(Kt o Kt )(x,y) =

f J (f eltowwitisowylg (x, w, t)s,(w,y,s) h(w)dw)dtds.
0 0

Lets=t0, we get

(Kn+ol<n+)(x,y)zf f (Jeit¢(x'y’w'”)s+(x,w,t)s+(w,y,ta)t h(w)dw)dadt,
0 0

where
px,y,w,0)=¢.(x,w)+oo(w,y).

It is easy to see that Im ¢ (x,y, w,0) >0,

dw¢(x’y! w)a-)|x:y:w = (O' - 1)0)0(.76)

Thus,
x=y=w, 0=1, xisreal,

are real critical points.

Now, we will compute the Hessian of ¢p atx=y =w =p, p isreal, o0 =1. We
write Hy(p) to denote the Hessianof ¢ atx =y =w =p, pisreal, o0 = 1. Hy(p)
has the following form

0 (@+),

Hy(p)= (P4); (@), +(94)y,
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Since
(@) (p)=wo(p)=dxop-1,

we have
0, 0O,...,0, 1
1 * *

where A is the linear map

A: AP T,(X) @AY T,(X) — AY T,(X) ® A T,(X),
(Au,v) = (9, +(p: ) )u,v), ¥ u, v AT, (X)@ A T, (X).

From (9.18), it follows that A has the eigenvalues:

2i[(p)], 21 [(p)],-... 21 [Aa-a(p)] 20 [2ua(p)], 9.:21)

on AMT,(X)® A% T,(X) with respect to ( | ), where
)L](p)»] =1, r(n - 1)
are the eigenvalues of the Levi form L. Since
v—4m| m» §ik-jok=1,....2n -1,

we have,

q)(P)

det(—==) =222 [ 24(p)| | Ana(p)] - 9.22)

From the stationary phase formula (see Proposition B.15), we get

(Kt 0 Kt )(X,y) = f e q(x,y,t)dt,
0
where

a(x,y, t)NZaj(x,y)t”‘l‘j
=0
in the symbol space S} (2 x 2 x [0, 00[; £(A* T(X), AYTH(X))),

aj(x,y)€ C(Qx 2 LA THX), A" T (X)), j=0,1,
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and ¢,(x,y) is the corresponding critical value. Moreover, we have

H 3
flo(P’P):(det 2"’;’;)) s3(p,p)osi(p,p)y/ h(p)

=2| ()] A (p)] 750 (p, )0 s (p, p), 9.23)
where s is as in (8.55). We notice that
P1(x,x)=0, (¢1),(x,x)=(9+) (%, %), (¢1),(x,x)= (4], (x,x). (9.24)

From (9.19), it follows that

(K0 Kot )(x,7) = Bi(=i(1(x, )+ 10)) " + Gy log(—i(@h1(x, y) + i0))
= F(—i(9+(x,y)+ i0)) " + Gy log(—i(¢+(x,y) +i0)),  (9.25)

where

n—1

R =2(n —1=k)a;(~i¢))" + fig7, fi e C¥Qx D LA T(X), A T; (X)),
0

G, € C®(2x Q; L(A% Ty*(X),A‘W T¥(X))), Fy and G, are as in Corollary 9.3. From
(9.24) and (9.25), we see that

s9(x,x) = ao(x, x).
From this and (9.23), we get

2| M(p)|

Aua(p)| 752, p)o s (p, p) =P, p). (9.26)

Let

1. 1.
Nlpy + 5T F)= {u € AITI(X); (P + 5 F)ox, o)) = o},

where p; is the subprincipal symbol of Df) and F is the fundamental matrix of

Dg”. From the asymptotic expansion of I:Ig’)(e“f’+ sy ), we see that

1.
s%(p, p)u € Ny(py+ )

for all u € A% T;(X). (See section 5.) Let

1
L= (5 |Al|"'|7Ln—1|)_17TnS$(P»P)-
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From (9.26), we see that

2=1. 9.27)
Since
I((n+)* = Krc*

and

P (x,y)=—9¢ (y,x),
we have

() (p,p)=52(p,p)
and hence

r=n, 9.28)

where (717)* is the adjoint of o+, s3(p, p) and I} are the adjoints of sy(p, p) and I,
in the space
LA T(X), A T(X)))

with respect to ( | ) respectively. Note that
. 1.
dim A, (p; + EtrF) =1.
(See section 3.) Combining this with (9.27), (9.28) and s%(p, p) # 0, it follows that
I : A% T (X)— A% T (X)

is the orthogonal projection onto A,(pg + %tNr F).
For a given point p € X, let

Zl(X),. ..,Zn_l(x)

be an orthonormal frame of A'° T, (X), for which the Levi form is diagonalized at
p. Lete;(x), j =1,...,n — 1 denote the basis of A% T*(X), which is dual to Z;(x),
j=1,...,n—1 LetAj(x), j=1,...,n—1 be the eigenvalues of the Levi form L,.
We assume that

Ai(p)>0if 1<j<n,.

Then

j=n+
L=]]e®) e ) atp.
j=1

(See section 3.) Summing up, we have proved
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Proposition 9.4. For a given point x, € X, Let
Zy(x),.. . Zna(x)

be an orthonormal frame of A'° T, (X), for which the Levi form is diagonalized at
Xo. Letej(x), j =1,...,n—1 denote the basis of A T*(X), which is dual to Z;(x),
j=1...,n=1. LetAj(x), j=1,...,n—1 be the eigenvalues of the Levi form L. We
assume that g = n,. and that

Ai(x0)>0 if 1<j<ny.

Then

J=n+

F(x0,%0)=(n— 1)!% |A1(x0)] -+ | A1 (x)| " l_[ ej(xo)/\ej(xo)/\'*-
j=1

10 The Szego projection on non-orientable CR man-
ifolds

In this section, (X,A"°T(X)) is a compact connected not necessarily orientable
CR manifold of dimension 2n—1, n > 2. We will use the same notations as before.
The definition of the Levi form (see 2.6) depends on the choices of w,. However,
the number of non-zero eigenvalues is independent of the choices of wy. Thus,
it makes sense to say that the Levi-form is non-degenerate. As before, we assume
that the Levi form L is non-degenerate at each point of X. We have the following

Lemma 10.1. Let(n_,n,), n_-+ n, = n — 1, be the signature of the Levi-form L.
(The signature of the Levi-form L depends on the choices of wy.) If n_ # n, ata
point of X, then X is orientable.

Proof. Since X is connected, n_ # n, at a point of X implies n_ # n, at each
point of X. Let X = U U;, where U; is a local coordinate patch of X. On U;, we
can choose an orthonormal frame

wl,j(x)r---»wn—l,j(x)

for AY°T*(U;), then

1,j(x),...,0p1,j(x)

is an orthonormal frame for A®! T*(U;). The (2n — 2)-form
w;= i”_la)l,j /\51,]- A A Wp-1,j /\Bn_lvj
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is real and is independent of the choice of the orthonormal frame. There is a real
1-form w,j(x) of length one which is orthogonal to A T*U;) ® A% T*(U;). We
take w,; so that n_ < n, on U;. Since w,,; is unique up to sign and n_ < n, on
U;, for all j, we have

@0,(x) = wo,k(x) on Uj (| Uk,

SO wy is globally defined. The lemma follows. O

We only need to consider the case n_ = n,. Werecall thatif n_ = n, then ng’)
has closed range. In view of the proof of Theorem 8.20, we have the following

Theorem 10.2. Let (n_,n) be the signature of the Levi form. We assume that
q=n_=n.. Put

S={(x,&) e TH(X)\0; & = Awo(x), A # 0},
where w is the locally unique real 1 form determined up to sign by
llwoll =1, woL(A* T*(X) @AM T*(X)).
Then 1 is a well defined operator

w: H

loc

(X; A" T*(X))— H?

loc

(X; A T(X)),

foralls eR, and
WF'(K,;) = diag (X x %),

where
WF'(K,)={(x,&,y,n) e T (X) x T(X); (x,&,y,—n) € WE(K,)} .

Here WE(K}) is the wave front set of K, in the sense of Hormander [14].
For every local coordinate patch U, we fix a w, on U. We define

¥ ={(x,8) e T(U)\0; & = Awy(x), A >0},
> ={(x,&) € TH(U)\ 0; & = Aw(x), A < 0}

We have
K,=K,++ K- on UxU,

where K.+(x,y) satisfies

o0
Kn+(x,y)EJ el9+is (x,y,t)dt onUx U
0
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with

5:(x,y, 1) €875 (U x Ux]0,00[; L(A™ T7(X), A% T(X))),

s+(x,y,t)~ Z s, y)en "

=0
in the symbol space Sy ;'(U x Ux]0,00[; L (A Ty*(X),AO'q T(X))),

where '
s1(x,y)€C®(U x U; L(A™ T/(X), AT} (X)), j =0,1,...,
¢+(x,y) € C*(U x U),
¢+(x,x)=0,
P+(x,y)#0 if x#y,
Im@.(x,y)=0,
dx¢+#0, dy¢,#0 where In¢p, =0,
A (X, ¥)|x=y = wo(x),
dy @+ (x,)lx=y = —wo(x),

¢+(x, 7)==, (y,x).
Moreover, ¢ (x,y) satisfies (9.18). Similarly,

Ke-(x,y)= J el9-Vis (x,y,t)dt mod C®
0

with
5 (2,7, 1) €851 (U x Ux]0,00[; L(A™ T'(X), A% T/ (X)),

s_(x,y,t)~ Z st (x,y)e 1

=0
in the symbol space Sy ;'(U x Ux]0,00[; L(A* Ty*(X),AO'q T (X)),

where
s/ (x,y)€ C®(U x U; L(A* T;‘(X),Ao"f T(X)), j=0,1,...,

¢—(xry) = _$+(x’y)-
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A Appendix: Microlocal analysis, a review

We will give a brief discussion of microlocal analysis in a setting appropriate
for our purpose. For more details on the subject, see Hormander [15], Grigis-
Sjostrand [12] and Melin-Sjostrand [18]. Our presentation is essentially taken
from Grigis-Sjostrand [12] and Hérmander [15].

Let Q c R” be an open set. From now on, we write x¢ = x\" s Xn, c’)x“ =
8;1‘1 -~-é’x‘fln, D¢ = Djll---D;‘: and |a| = a1 + -+ ay, where x = (xy,...,X,), Dy, =
—i0y,. We have the following

Definition A.1. Let 2 C R” be an open set. Let m € R. 8”(Q2 x RY) is the space of
all a € C*(Q x RY) such that for all compact sets K € Q and all « € N, § € NV,
there is a constant ¢ > 0 such that

0000 a(x,&)| < el +IE)" W, (x, ) e K xR,

S™ is called the space of symbols of order m. We write S~ = ﬂS’”, §® = US’".
We next study asymptotic sums of symbols.

Proposition A.2. Let 2 C R" be an open set. Let a; € S™i(2xRN), j =0,1,2,...
with m; \, —00, j — 00. Then there exists a € S™(Q2 x RN) unique modulo (i.e. up
to some element in) S~°(Q x RN), such that a — 20§j<k a; € S" (X RN), for every
k eN.

Proof. See Grigis-Sjostrand [12] or Hormander [14]. O
If a and a; have the properties of Proposition A.2, we write

ClNEdj

0

and we call a the asymptotic sum of a;.

DefinitionA.3. Let 2 C R” be an open set. The set S’/ (2xRN) of all a € S"(2xRN)
such that

a(x,£)~ Y _a;(x,%),
0

where a; € C*(Q2 x RV) is positively homogeneous of degree m — j when |£] > 1,
will be called the space of classical symbols of order m.

The positively homogeneity in the definition means that

aj(x,A8)=A""a;(x,&),1&]>1, A>1.
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Definition A.4. Let Q C R” be an open set. A function ¢(x,&) € C®(Q x RN) is
called a phase function if for all (x,£) € Q2 x RV:

(@ Imep(x,&)>0,
(b) p(x,A)=Ap(x,&)forall A >0,
(©) dyp #0.

Let 2 C R” be an open set. Let 2’(2) be the space of Schwartz distributions
on ). Let
&'(Q)={u € 2'(Q2); supp u is compact}.

Let o(x, &) be a phase function on Q x RN and let a(x, &) € S”(Q x RM). Choose a
cut-off function y(&) € C*(R") so that y(&)=1 when || <1 and y(£) =0 when
|l > 2. For all u € C°(9), set

I(a,p)u= lelg(}J e a(x,E)u(x)y(e&)dxdE. (A.1)

Then I(a, p) € 2’(2). More precisely, we have the following

Proposition A.5. Let Q2 C R" be an open set. Let ¢(x,&) be a phase function on
Q xRN, Then there is a unique way of defining1(a, ¢) € 2(Q) for a € S® such that
I(a, p) is defined by

I(a, ) =f e'?*a(x,&)de
when a € S"(Q2 x RN), m < —N and such that for every m € R, the map
S"QxRY)sa—1(a,yp)
is continuous.
Proof. See Grigis-Sjostrand [12] or Hormander [14]. O

Let Y C R™, Z C R™ be open sets. We recall that the Schwartz kernel theo-
rem(see Hormander [17]) states that there is a bijection between the set of distri-
butions K € 2’(Y x Z) and the set of continuous linear operators

A:CP(Z2)—=2'(Y).
The correspondence is given by

(Au,v)y =(K,v®U)yyz, u € CS(Z), veCS(Y),
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where (,)y and (, )y, denote the duality brackes for 2’(Y) x C;*(Y) and 2’(Y x
Z)x C(Y x Z) respectively and (v ® u)(y,z) = v(y)u(z). We call K the distribu-
tion kernel of A, and write K = K4. Moreover, the following two conditions are
equivalent:

(i) KyeCx(Y x2Z),
(ii) A is continuous &’(Z) — C®(Y).

If A satisfies (i) or (ii), we say that A is smoothing. Let B be a continuous linear
operator
B:CX(Z)— 2'(Y).

We write A= B if A— B is a smoothing operator.

In order to simplify the discussion of composition of some operators, it is
convenient to introduce the notion of properly supported operators. Let C be a
closed subset of Y x Z. We say that C is proper if the two projections

I, :(y,z)eC—y€eY
I,:(y,z)eC—zeZ

are proper, that is the inverse image of every compact subset of Y and Z respec-
tively is compact.
A continuous linear operator

A:CX(Z)— 7(Y)

is said to be properly supported if supp K, C Y x Z is proper. If A is properly
supported, then A is continuous

Cy(2)—&'(Y)
and A has a unique continuous extension
C*®(Z)—- 72'(Y).

Definition A.6. Let Y C R™, Z C R™ be open sets. Let ¢ be a phase function on
Y xZ xRN, Let a € S™(Y x Z x RN). Then a Fourier integral operator of order m
is a continuous linear map

A:CX(Z)— 7(Y)

such that K, =1(a, ¢). Formally we write

Au(y)sz eV 9a(y,z,8)u(z)dzdE, u € CX(2).
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Definition A.7. Let Q C RY be an open set. Let m € R. A pseudodifferential
operator of order m is a continuous linear map:

A:CPQ)— 7' (Q)

such that

KA I(a’ (;0)

~ oY
with a € S*(Q x Q@ xRN), p(x,y,£)=(x — y)&. Formally,

1
@2

Au(x)= W ff e Ma(x,y, Ou(y)dyd&, u € CP(Q).
We shall write L™(£2) to denote the space of pseudodifferential operators of order
m.

We collect some facts about pseudodifferential operators. For the proofs, see
Grigis-Sjostrand [12] or Hormander [15].
Let Q c RN be an open set. Let

1
2n

Au(x)= W ff eV a(x,y, Huly)dydE (A.2)

be a pseudodifferential operator of order m, where a € S”*(Q2 x Q x RV). Then we

have the following properties:

(a) Ais continuous
CSO(Q) — C*(Q)

and has unique continuous extension

&'(Q)— 7'().

(b) If a € S(22 x Q2 x RN), then K, € C*(Q2 x ) and A is continuous &’(2) —
C>(Q2), conversely if K4, € C®, then there is a € S™(Q2 x Q x RV) such that
(A.2) holds.

We write L=>°(2) to denote the space of operators with a € S~°(Q x Qx RN).

(c) We recall that the singular support of K, is the smallest closed subset L of
Q2 x Q such that K4 € C®((Q2 x Q) \ L). We write singsupp K, to denote the
singular support of K,. Then

singsupp K4 C diag(Q2 x Q) ={(x,x) € Q2 x Q}.
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(d)

(e)

()

(g

A has decomposition A = A’ + A”, where A’ € L™((2) is properly supported
and A” € L~>°(Q).
Let A=A’+ A” be the decomposition in (d). Set

1
2mN

Au(x)= Jf e a(x,y, Ouly)dyd&, u e CP().

Then
a(x,£):=e A (e*)e S (QxRY)

and has the asymptotic expansion
1 a a5
alx, )~ D, o (@Dalx,y )| _ - (A3)
aeNN

We call a(x, &) the symbol of A. a(x, &) is up to some element in S~(Q x
RN). We write a(x, &)= o (x, &). Moreover,

Au(x)= ; Je""ga(x,é)ﬁ(i)dé

e
- (2m)N

f e Da(x, u(y)dyds,

where (&) is the Fourier transform of u € C3(£2).
Let
(ulv)= J u(y)v(y)dy
be the inner product on L?(2). We define the adjoint
A CP () —2'(Q)
by (Au | v)=(u | A*v), u, v € CP(£2). The distribution kernel of A* is
Ky (x,y)=Ka(y, %)

and A* € L™(Q2). Moreover, 04+ € S™ and o 4+ has the following asymptotic
formula

1 -
T, &)~ Y — 0D, ) (A4)

aeNN

Let A € L™(2), B € L™ (2), with at least one of A, B properly supported.
Then Ao B L™t (Q)) and

agaa'A(x) g)DzUB(xr g)
a! '

O'AOB(x’ g) ~ Z

aeNN

(A.5)
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(h) We write . (R") to denote the set of all ¢ € C*(R") such that
sup |xﬁ8“¢(x)| <0

for all multi-indices @ and . Let .#/(R") be the dual space of & (RY), i.e.
Z'(RN)is the space of all continuous linear forms on . (R"). We recall that
the Sobolev space H*(R"), s € R, is the space of all u € .%/(RV) such that
i1(&) is locally square integrable and

lull? =

= Gr )Nf\ (EP|(1+IEF) dE < oo,

where #1(&) is the Fourier transform of u. Define the Fréchet space
Hy () ={u€2'(Q); pac H'R"), Vo € CX()}

and
comp(Q) = loc(Q) ﬂ g/(Q)

If Ae L™(Q2), then A is continuous

(Q2)— H;_ ().

comp loc

If A L™(2) is properly supported, then A is continuous

Hy, (£2) — Hy ™(€).

loc

Our next aim is to define pseudodifferential operators on a manifold. First
we must discuss changes of variables and the notions of principal symbol and
subprincipal sympol. Let k : 2 — Q, be a diffeomorphism map, where (2, 2, are
open sets in RY. If A € L™(Q2), we want to study

A=(K"") 0AoK": C() — CP(),
ueCr(Q)—Aluox)or™" € C®().

We have the following

Proposition A.8. Let (2, Q, CRY be open sets. Let
K:Q— 0,
be a diffeomorphism. If A€ L™(Q)). Then
A=(x")0Aox € L™ ().
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Moreover, we have the asymptotic expansion

0%a(x, k' (x)E)DeeiPs0)E)
ag(x(x),g)NZ - _ y

aeNN y=x

) (A.6)

where p;(y) = k(y) — x(x) — x’(x)(y — x) vanishes of second order at x. The terms
in the series are in S’”‘|%|(Q x RN).

Proof. See Hérmander [14]. O

Definition A.9. Let 2 C RY be an open set. Let A € L™(£2). We define the principal
symbol of A as the image of o4 in

(8™/S™ 1 x RM).
We then have a surjective map
L™ —8™/S"HQ x RY)
which gives rise to a bijection
L™/L™mt — 8™ /S (Q x RY).

Let Q c RN be an open set. Let L7}(2) € L™(Q) be the space of pseudodif-
ferential operators A with o, € SJ. For such an operator we can identify the
principal symbol in 7' /S% " with the positively homogenous function a,(x, &)
in the asymptotic expansion

Tar D Amj(x,E), A7)
0

where a,,_;(x, &) is positively homogenous function of degree m — j.
Returning to the changes of variables for A € L™(9,), we see from (A.6) that

o 5(Kk(x), &) —oalx, &' (x)E) €SI (2 X RY). (A.8)
If a, @ denote the principal symbols of A, A, we get the relation
a(x(x),&)=a(x,"x'(x)&). (A.9)

Definition A.10. Let Q C RN be an open set. Let A € L7(2) with symbol o 4(x, &)
as in (A.7). The subprincipal symbol of A is defined by

(6,8)=apal )+£i—32am(x,§) (A.10)
a’(x,8)=a,_1(x,& 2j:1 3%,0%, . .
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Definition A.11. Let Q C RY be an open set. Let A € L7(2) with symbol o 4(x, £)
as in (A.7). We say that (x, &) is a doubly characteristic point of A if

(@) am(xo,&0)=0,

(b) (52)(x0,E0)=0,j=1,...,N,

© (5)(x0,£0)=0, j=1,...,N.
We need the following (see Sjostrand [21])

LemmaA.12. LetQ C RN be an open set. Suppose that P = AQ,Q»+ B, where A €
L"), Q1, Q2 € L%(), B € L7}1(Q) are properly supported classical pseudodiffer-
ential operators with principal symbols a, ¢, q., b respectively. Let p € T*(2)\ 0
be a point where q, = q, = 0. If we write the symbol of P as

p(x,&)=pm(x,&)+ pm-_1(x,&) mod S™ 2

where p,, and p,,-, are positively homogeneous of degree m and m — 1, then the
subprincipal symbol of P at p is given by the formula

p(p)=b(p)+a(p)2i) " {q, .} (p).

In particular, if E € LY(Q) is an elliptic operator with principal symbol e(x, &), that
ise(x,&)#0, forall(x,&) €9, then the subprincipal symbols of Eo P and Po E at
p aree(p)p*(p).

Let ©, 2, be open sets in RY. Let
K:Q— 0,
be a diffeomorphism. Let A € L7} (Q2) with symbol o 4(x, &) as in (A.7). Let
A=(k""YoAok* € L"(Q)
with symbol

o0
gg~ E Zim—jr
j=0

where a@,,_; is positively homogeneous of degree m — j. Let p = (xo, 'k’(x)&) be
a doubly characteristic point of A. From Taylor’s formula, we have

2N
an(x, &)=Y ajlx,£)q;(x,£)qi(x,£) near p,

j k=1

118



where a;, j, kK =1,...,2N, are positively homogeneous C* functions of degree
m and q;, j = 1,...,2N, are positively homogeneous C* functions of degree 0
with g;(p) =0, j =1,...,2N. If Q; € L%(Q) and A, ; € L"}(f) are properly sup-
ported classical pseudodifferential operators with principal symbols g; and a;
respectively, then

A=) A;:QQ+B

Ik

near p, where B € L”7'(2). We denote the principal symbol of B by b. We have
A\l: ngvkéjék + §
ik

near § = (k(xo), ), where A; ;. = (k1) 0 A o k* € L (), Q; = (k1) 0 Qjok* €
L’C’f(%), B=(x"1)*o Box* € L"(Qy). We denote the principal symbols by @; x, §;
and b. From Lemma A.12, we have

a‘(p)=b(p)+ 2> a;x(p){a;ak} ()
J.k

and
aP)=b(@E)+@)" Y @) {da}p),
Jik
where a* and @* are the subprincipal symbols of A and A respectively. In view of
(A.9), we have a*(p)= a*(p). Summing up, we have proved

Proposition A.13. Let(, Q. be open sets in RN, Let
K:Q—Q,
be a diffeomorphism. Let A € L (Q)) with symbol o 4(x,&) as in (A.7). Then
A=(x"")oAor* € LM()

with symbol

o0

gz~ Z Zim—jr

=0

where a,_; is positively homogeneous of degree m — j. We have
Am(K(x), &)= am(x, &' (x)E).

Moreover, if (xo,'k’'(x0)E0) is a doubly characteristic point of A, then (x(x,),&o) is
also a doubly characteristic point of A and

a*(k(xo), Eo) = a*(xo, "k'(x0)&0),

where a, @ denote the subprincipal symbols of A and A respectively.
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Definition A.14. Let m € R. A pseudodifferential operator of order m on a para-
compact C* manifold €2 is a continuous linear map

A:C(Q)— C™(Q)
such that for every local coordinate patch Q, € Q with coordinates
Qe 2x - Kk(x)=(x1,...,x5) €0 CRY,

we have
(k) oAok* e L™().

We shall write A € L™(2) and extend A to a map
&' () — 2'().

Definition A.15. Let Q2 be a paracompact C* manifold of dimension N. Let m €
R. 8™(T*(2)) is the set of all a € C*(T*(f2)) such that pullback to () = Qe xRN
is in $™ (£}, x RN) for every coordinate patch £, with coordinates €.

Definition A.16. Let{2be a paracompact C* manifold of dimension N. S} (T%(€2))
is the set of all a € S™(T*(2)) such that pullback to T+() = Qe x RN is in N (Q %
RN) for every coordinate patch 2, with coordinates Q.. We call S, (T%(€2)) the
space of classical symbols of order m.

LemmaA.17. LetQ; andQ, be open sets in RN and let
¢ : Ql — Qz

and
®: Q) — GL(N,R)(the group of invertible N x N matrices)

be C* maps. Then
a(x, &)= ax(¢p(x), ®(x)&)
is in S™(Q; X RN) for every a, € S™(Q, x RYN).
Proof. See Hormander [14]. O

From Lemma A.17, we see that to check that a € S™(T*(2)) it is enough to
check the requirement of Definition A.15 for an atlas and the definition agrees
with our earlier one if Q C RV
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Definition A.18. Let 2 be a paracompact C* manifold of dimension N. If A €
L™(Q) then the restriction of A to Q, identified with Q.. defines a symbol in

S /S, x RY),
where (2, is a local coordinate patch with coordinates Q.. If
ax € S™(T" (%))
is the pullback of a representative then
Ay — A €S (T Q[ | )

by Proposition A.8 for every pair of coordinate patches. With a locally finite par-
tition of unity {l/) j} subordinate to a covering by coordinate patches (), we set

a=>) yja €S"(T(S)
and obtain
a—a,eS" (T Q)

for every k. This determines a modulo S™~!(T*(Q2)) so we define the principal
symbol of A as the image of a in

§™/S™H(THR)).

Let 2 be a paracompact C* manifold. Let A € L7}(€Q2) with symbol o 4(x, &) as
in (A.7). We identify the principal symbol of A with a,,.

Definition A.19. Let Q2 be a paracompact C* manifold. Let A € L™(2). If a €
S™(T*(€2)) is the principal symbol of A then A is said to be non-characteristic at
(x0,E0) € TH) N0 if

ab—-1€S(T*Q))

in a conic neighborhood of (xy, £,) for some b € S~™(T*(£2)). We say that (x,£) €
T+#(£2)\ 0 is a characteristic point of A if (x, &) is not a non-characteristic point of
A. Let X be the set of characteristic points of A. We call > the characteristic set of
A. Y is a closed conic subset of T#(£2)\ 0.

Let 2 be a paracompact C* manifold. Let A € L7}(Q2) with symbol o 4(x, &) as
in (A.7). The condition of the definition A.19 is equivalent to a ,,(xo, o) # 0 and

Y={(x,&) € T(Q); am(x,&)=0}.
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Definition A.20. Let 2 be a paracompact C* manifold. Let A € L7}(©2) and let
Y. be the characteristic set of A. We say that (x,&) € X is a doubly characteristic
point of A if for every local coordinate patch €, (x, &) € €, with local coordinates
SNZK, (x,&)is a doubly characteristic point of A, where A is the pull back of A to SNZK.
If every (x, &) € X is a doubly characteristic point, we call > doubly characteristic
set.

Definition A.21. Let 2 be a paracompact C* manifold and let A € L7[(€Q). Let
P = (xo,&0) be a doubly characteristic point of A. Let 2, p € Q, be alocal coor-
dinate patch with local coordinates Q, and let A be the pull back of A to Q... The
subprincipal symbol of A at p is the value a*(p), where a* is the subprincipal
symbol of A.

In view of Proposition A.13, we see that the definition above makes sense. We
must review some facts about pseudodifferential operators between sections of
vector bundles. This will be important in this work.

Definition A.22. Let E and F be complex C* vector bundles over a C* manifold
Q2. Let m € R. Then a pseudodifferential operator of order m from sections of E
to sections of F is a continuous linear map

A:C(Q; E)— C*(S); F)
such that for every open set Y C {2 where E and F are trivialized by
¢ Ey—YxC® ¢pp: F—YxC/,
there is a f X e matrix of pseudodifferential operators A; , € L™(2) such that

(Pr(AWly); = D_Aji(pruli, u € CE(Y; E).
k

We shall then write A € L™(Q); E, F).

For every coordinate patch Q, C (), let

e

1 2
/AR T U

and
1 2
wK,wk,...,w,{

be local frames of E and F respectively. Then, for every a € C®(£); E) and a €
C>®(Q; F), we have

a= Z al(x)vi(x), a= Z al (x)wi(x),
J j
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where a{;(x), a{;(x) € C®(Q). If Qs ﬂQK # ¢, we write
a =Za{;v,{ =Za£,v,{,,
J j
= Z af wf Z a w i

We have
[ al(x) ) ([ al(x)
: = ey x(X) : :
\ au(x) ) \ ax(x) )
(au(x) ) () )
: = fix(x) : :
\ al(x) ) \ al(x) )

where e, «(x), fi x(x) are the transition matrices of E and F respectively.
Let Z(E, F) be the vector bundle over T#(£2) \ 0 with fiber at (x, £) consisting
of the linear maps from E, to F;. Every a € C®(T*(2); Z(E, F)) is represented by
a(x,&)=(al, (x,8)),
a(x,&): E; — F,

Zsj v!(x) —>Z fwi(x), ¢ :Za{;fwh_(x, E)si, X € Q. (A.11)

J J k
If Oy [\ # ¢, we have
(al (0. 0)) = freal)o (alt,, (2,0) 0 enplx). (A.12)
We have the following

Definition A.23. Let E and F be complex C* vector bundles over a C* manifold
Q. Let m eR. S™(T*(Q); £(E, F)) is the set of all

aeC®(T*(Q); £4(E,F))
such that if we write a = (a}*, (x,&)) asin (A.11), then
a{;;fwK(x, £)e S™(T*(%)) for every j, k.

Definition A.24. Let E and F be complex C* vector bundles over a C* manifold
Qandleta(x,&)e Sm(T*(Q) Z(E, F)). We say that a(x &) is a classical symbol, if
we write a(x, &) = (a vew (X, & )) asin (A.11), then a,,K w, 18 a classical symbol, for
every j, k. We shall write S} (T*(£2); £Z(E, F)) to denote the space of all classical
symbols.
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Let E and F be complex C* vector bundles over a C*® manifold 2 and let
A€ L™($; E, F). For every coordinate patch €2, we write

A:(Af;rk’fwK), ALk e 1m(Q),

A: C(Q; E)— C™(Q; F),
Zsj(x)v,{(x)Hth(x)w{:(x), t;= A{f:wwsk- (A.13)
j j

k

We define the symbol of A as
4, 8)= (0, (x,8).

If Q[ # ¢, we have

(A’;;'f,wk,) = fun(x)o (ATE ) o ey w(x). (A.14)

From (A.14), we have

(4,09 = finl) (05, (60 D)) exl) € 8™ (T (0 Y2 LB, P,
s (A.15)
We define the principal symbol of A at (x, &) € T*()) as the image of g 4(x, £) in

(S™/S"™ (T (Q); ZL(E, F)).

From (A.15), we see that the principal symbol of A is well-defined as an element
in
(8™ /S"(T*(2); £(E, F)).

We write L7 (€; E, F) to denote the space of pseudodifferential operators of
order m from sections of E to sections of F with o, € S/ (T*(Q); £(E, F)).

Definition A.25. Let E and F be complex C* vector bundles over a C* manifold
QN andlet Ae L7 (Q; E, F). For every coordinate 2, we write A = (A{;;]fwk), A{;’K’fwx €
L™(€),), as in (A.13). We say that (xo,&o) € T*(£2,) \ 0 is a doubly characteristic
point of A if (xo, &) is a doubly characteristic point of A];'Kk,wh, foreveryj, k.
Definition A.26. Let E and F be complex C* vector bundles over a C* manifold
Qandlet A€ LY () E, F). Let (xo,&o) be a doubly characteristic point of A. For
every coordinate Qy, (xo,E0) € T*(2:) \ 0, we write A = (A];',fwh,), A{;;.k,w,( e L™(8),
asin (A.13). Let af,’f_’f,h_(xo, &o) be the subprincipal of A; ; at (xo, &), for every j, k.
From (A.14) and Lemma A.12 , we have

(@57, (0, E0)) = Frwlo) (@5 (0, E0)) ex(ito) (A.16)
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on T*(S ﬂQK/), where e, (x), fi «(x) are the transition matrices of E and F re-
spectively. We define the subprincipal symbol of A at (xo, &) as

(“i’jﬁk(xo’ 50)) € L (Exy F,).

From (A.16), we see that the subprincipal of A is invariantly defined at every dou-
bly characteristic point of A.

We must make some comments on symplectic geometry. This will also be
important in this work. Our presentation is essentially taken from Duistermaat
[10], Hormander [15] and Sjostrand [21].

First, we review some facts about symplectic vector spaces.

Definition A.27. An antisymmetric nondegenerate bilinear form on a finite di-
mensional vector space E is called a symplectic form on E. A symplectic vector
space is a pair (E, o) consisting of a finite dimensional vector space E and a sym-
plectic form o on E.

o is nondegenerate means that
o(v,v)=0,YVv' e E=v=0.
Definition A.28. If (E;,0,), (E», 0,) are symplectic vector spaces and
T:E —E,
is a linear bijection with T*0, = 0, that is
o(v,w)=0o(Tv, Tw), v,w € E;,
then T is called a symplectic isomorphism.

In the vector space T*(R") = {(x, &); x, £ € R"} the symplectic form

o= diAdx
is the bilinear form
o((x,8),(x,&N=(x",&) = (x,&").

If e; and ¢; are the unit vectors along the x; and &; axes respectively, then we
have for j,k=1,...,n

o(ej,ex)=0(¢j,€)=0,

o(gj,er)=—0(er,€)=0k
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where 6 =1when j =k and 6 =0 when j # k.
Let (E,o0) be a symplectic vector space. Note that the linear bijection map-
ping
A:E — T*(R")

sending the vectors (ey,..., ey, f1,..., fr) into the standard basis of T#(R") is a
symplectic isomorphism if and only ifforall j,k =1,...,n

O.(ej) ek) =0,
o(f, fr)=0, (A.17)
o(fj,ex)=0;-

(e1,-.-,en, f1,..., fn) is called symplectic coordinates of (E, o)

Lemma A.29. Every symplectic vector space (E,o0) admits a linear symplectic iso-
morphism
T:E—- T*R").

Proof. See Duistermaat [10] or Hormander [15]. O

If L is a linear subspace of E then we define its orthocomplement L? in E
with respect to o by

L° ={e€E;o(e,l)=0foralll €L}.
We have the following rules

LcM=M°cClL®,

(L) =1,

(L(\M)7 = L7+ M?, (L+M)* = L7 (M7,
dim L =dim E — dim L.

Definition A.30. A linear subspace L of E is called isotropic, Lagrangian resp.
involutive, if L C L9, L= L% and L D L respectively.

Definition A.31. A symplectic form on a manifold 2 is a 2-form o on €2 such that
do=0

and o, is a symplectic form on T,(£2), for each p € Q. A symplectic manifold is a
pair (£2, 0) consisting of a manifold Q2 and a symplectic form o on Q.
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Definition A.32. A submanifold V of a symplectic manifold is called symplectic,
isotropic, Lagrangian, involutive respectively, if at every point of V the tangent
space of V has this property.

Suppose (M, o), (N, T) are symplectic manifolds. Let
d:M—-N
be a C*®-map. Let D® be the differential map, that is,
D®, : T,(M)— T,(N)
v— dit(q)o a(t)) -
where a(t)is a C!-curve with a(0)=p and &’(0) =v.
Definition A.33. If (M, o), (IV, 7) are symplectic manifolds and
d:M—-N

is a diffeomorphism with ®*7 = g, that is, D®,, is a symplectic isomorphism from
(T,(M),0,) to (Ty(p)(N), Ta(p)) for all p € M, then @ is called a canonical transfor-
mation.

Definition A.34. Let (M, o) be a symplectic manifold. For any f € C*(M) the
Hamilton field H is the unique C* vector field on M such that Hy .o =—d f. We
notice that Hy.o is a 1-form defined by

(Hpao),(ep)=0,(Hp(p), ep),
where e, € T,(M).

Definition A.35. Let (M, o) be a symplectic manifold. If f, g € C*(M) then the
Poisson brackets { f, g} € C*(M) are defined by

{frg}:Hfg:U(Hf»Hg)-

Remark A.36. In symplectic coordinates (x, &), we have

of @ of o
HFZ( f / ).
J

0E;0x; 0x;0¢;
Let 2 be a C* manifold. Let
m:T5(Q)—
be the natural projection map.
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Definition A.37. The canonical 1-form on T*(f2) is the 1-form « given by
a(x,&)=&oDm ) forall (x,&) € T ().
Definition A.38. 0 = d o is called the canonical 2-form on T#(£2).

Remark A.39. (a) In canonical coordinates (x, &) we have

azZijdxj

o= di;ndx;.

(b) T*(Q2) with canonical 2-form o is a symplectic manifold.

and hence

Let (M, o) be a symplectic manifold. If
®: M — THR")

is a canonical transformation, then @ is called a canonical coordinatization. It
is well-known that the functions xi,...,x,,&,..., &, form local canonical coordi-
nates of (M, o) ifand onlyifforall j,k=1,...,n:

{x]',Xk} :0) {gj)gk} :0) {gj;xk} :5]k
We call {x1,...,x,,&1,...,&,} the symplectic coordinates of (M, o).

Proposition A.40. Suppose (M, ) is a symplectic manifold. Then dim M is even,
say2n, and for each my € M there is a canonical coordinates of a neighborhood U

of my.
Proof. See Duistermaat [10] or Hormander [15]. O

Let (S,0) be a symplectic vector space. Let Q(x,¢&) be a real positive semi-
definite quadratic form in S. Let

QX Y)=(X,Q"Y)

be the corresponding symmetric form. Here Q” is the Hessian of Q(x, £). We have
the following definition

Definition A.41. The linear map F in S is defined by
o(Y,FX)=Q(Y,X), X,Y €S

will be called the fundamental matrix of Q.
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The symmetry of Q means that
o(FX,Y)=—-0(X, FY),

that is, F is skew symmetric with respect to o. We notice that the preceding
definition is still applicable if Q is complex valued provied we replace S by its
complexification

Sc={X+iY; X,YeS}

with the obvious complex symplectic structure.

Proposition A.42. Let Q(x, &) be a real positive semi-definite quadratic form in S.
Let

QX,Y)=(X,Q"Y)
be the corresponding symmetric form. Here Q" is the Hessian of Q(x,&). Then one
can choose symplectic coordinates x, £ such that

k k+l
1
Q. &)= ubf +EN+) x7
j=1 k+1
where u; > 0.
Proof. See Hérmander [15]. O

From Proposition A.42, we see that iy, are the non-vanishing eigenvalues
of the fundamental matrix F of Q. We write tr F = Z;CZI |-

Let Q2 be a C* manifold of dimension n. Let p € Q and let f € C?(Q2) with
d f(p)=0. In local coordinates (x;,...,x,), we define

. ( o*f "
f,= (8xj3xk(p))j,k_l'

Since d f(p)=0, [, is well-defined as a linear map

@ -C,
t,s—><t,f;]’s>,

where 1, s € T,(£2).

If (S, o) is a symplectic manifold and f € C?(S) isreal valued, d f =0 at p €8S.
Let F, be the fundamental matrix of f. We also call F, the fundamental matrix
of f. In symplectic coordinates (x, &) the matrix F becomes

o%f o%f
0x0¢& 0EBE
_ aZf _ aZf .

dxdx dEdx

From this we see that the fundamental matrix F is the linearization of Hy.
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Remark A.43. The symplectic reduction of quadratic forms is an old topic in me-
chanics. It is also important for the study of hypoelliptic operators. See Boutet
de Monvel [7] and Sjostrand [21].

B Appendix: Almost analytic manifolds, functions and
vector fields

We will give a brief discussion of almost analytic manifolds, functions and vector
fields in a setting appropriate for our purpose. For more details on the subject,
see Melin-Sjostrand [18].

Let W c C" be an open set and let f € C>*°(W). In this section, we will use the
following notations:

and

Definition B.1. Let W C C" be an open set and let ¢»(z) be a positive continuous
function on W. If f € C*(W), we say that f is almost analytic with respect to the
weight function ¢ if, given any compact subset K of W and any integer N > 0,
there is a constant ¢ > 0 such that

‘5f(z) <c¢(z)V,VzeK.

When ¢(z) = |Im z| we simply say that f is almost analytic.

Definition B.2. Let fi, f, € C*°(W) with W, ¢ as above. We say that f; and f, are
equivalent with respect to the weight function ¢ if, given any compact subset K
of W and any integer N > 0, there is a constant ¢ > 0 such that

I(fi = f)(2)| < co(2)", Yz e K.
When ¢(z) = |Im z| we simply say that they are equivalent and we write

fi~ fo.

The following proposition is due to Hormander. For a proof, see [18].

Proposition B.3. Let W C C" be an open set and let Wg = W \R". If f € C*(Wk)
then [ has an almost analytic extension, uniquely determined up to equivalence.
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Definition B.4. Let U be an open subset of C" and let A be a C* submanifold of
codimension 2k of U. We say that A is an almost analytic manifold if for every
point z, of A[ |R” there exist an open neighborhood V of z, in U and k complex
C*> almost analytic functions f3, ..., fr defined on V such that

A(V is defined by the equations f,(z)=---= fi(z) =0,

2 f1,...,0 fi are linearly independent over C at every point of V.

Definition B.5. Let A; and A, be two C* closed submanifolds of an open set
U c C". We say that A; and A, are equivalent (and we write A; ~ A,) if they have
the same intersection with R” and the same dimension and if for every open set
V cc U and N € N we have

diSt(Z,Az) <cnv |Imz|N, VAS VﬂAl, Cny > 0.

It is trivial that ~ is an equivalence relation and that A; and A, are tangen-
tial to infinite order in the real points when A; ~ A,. We recall the Malgrange
preparation theorem (see Theorem 7.57 in Hormander [17])

TheoremB.6. Let f;(t,x),j =1,...,n, becomplex valued C* functions in a neigh-
borhood of (0,0) in R"*™ with f;(0,0)=0, j=1,...,n, and

det (M) £0.

5 tk j.k=1
If g € C*® in a neighborhood of (0,0) we can then find q;(t, x) € C* in a neighbor-
hood of (0,0), j =1,...,n, and r(x) € C* in a neighborhood of 0 so that

g(t,x)=>_q;(t,x)f;(t,x)+r(x)

j=1
in a neighborhood of (0,0).
In section 8, we need the following

Proposition B.7. Let W be an open neighborhood of the origin in C"*™. Let
filz,w), gj(z,w), j =1,..., n, bealmost analytic functions on W with f;(0,0)=0,

g](O,O):O,]ZI,,n,
2f:(0,0\"
det (M) 40
E/’zk jik=1

anddg,,...,0 g, are linearly independent over C at the origin. Let
AM={z,w)eW; filz,w)=...= fu(z, w)=0}
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and
N={(z,w)eW; gi(z,w)=...= gu(z,w)=0}.

If A, coincides to infinite order with A, at(0,0) we can then find a; (z,w) € C* in
a neighborhood 0f(0,0), j, k=1,...,n, with det (aj,k(O, 0))Jr_lk:1 #0 so that

gilz,w)= Y _a; iz, w)filz, w)

k=1
vanishes to infinite order at(0,0), for all j.

Proof. We write z = x +iy, w = u +iv, where x, y € R?, u, v € R™. From
Theorem B.6, it follows that

gi(x, u):Zaj_k(x, wfelx,u)+r(u), j=1,...,n,
k=1

in a real neighborhood of (0,0), where a; ((x, u) € C* in a real neighborhood of
(0,0), j,k=1,...,n. Since A, coincides to infinite order with A, at (0, 0), it follows
that r(u) vanishes to infinite order at 0. Since f;(0,0)=0, k =1,..., n, we have

dg;(0,0)=Y_a;x(0,0)d f(0,0), j=1,...,n.

k=1

Hence
n
det (a; (0, 0))],yk:1 £0.

Let a; «(z, w) be an almost analytic extension of a; «(x, ) to a complex neigh-
borhood of (0,0), where j, k =1,...,n. Then

gilz,w)= Y _a; iz, w)filz, w)

k=1
also vanishes to infinite order at (0, 0), for all j. O
We need the following
Lemma B.8. Let Q, Q) be open sets in R". Let
K:Q— 0

be a diffeomorphism. Let Q€ and Q¢ be open sets in C" with

Q°(R" =0, Q5[ R" =0,
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Let
K:Q° -0t

be an almost analytic extension of k. We take Q° and Q¢ so that ¥ is a diffeomor-
phism. If A is an almost analytic manifold of QF, then K(A) is an almost analytic
manifold of Q<. Moreover, if

£:Q°-Q°

is another almost analytic extension of k and k is a diffeomorphism, then
R(A)~K(A).

Furthermore, if Ay ~ A, then
%(Al) ~ 75(/\2),

where Ay and A, are almost analytic manifolds of Q.

We shall now generalize the notion of almost analytic manifolds. We have the
following

Definition B.9. Let X be a n dimensional real paracompact C* manifold. An
almost analytic manifold A associated to X is given by

(@) Alocally closed set Ag. (Locally closed means that every point of A has an
neighborhood w in X such that A [ |w is closed in w.)

(b) A covering of Ar by open coordinate patches
Ke: XD X, —Q,CR", ae]

and almost analytic manifolds A, € QF with

Aq ﬂRn =Agr= Ka(Xa mAR)

Here QS c C” is some open set with QF (R" =, and the A, shall satisfy
the following compatibility conditions: If

Kpa=Kpgok, ' Ka(XaﬂX/;) — Kﬁ(XaﬂXﬁ)

and if ¥, is an almost analytic extension of kg, then ¥g.(A,) and Ag are
equivalent near all points of k 5(X, [ )Xo [ ) Ar)-

The A, are called local representatives of A and we shall say that two almost
analytic manifolds A, A’ associated to X are equivalent (and we write A ~ A’) if
Ar = A; and if the corresponding local representatives are equivalent as in (b).
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Similarly we extend the notion of almost analytic functions and equivalence
of almost analytic functions.

Definition B.10. Let W be an open subset of C" and let V be a complex C*®
vector field on W. We say that V is almost analytic if V(f) is almost analytic and
V(f) ~ 0 for all almost analytic functions f on W.

We identify C" with R?”. We shall denote the real coordinates by x;, y;, j =
1,...,n, and the complex coordinates by z; = x; +iy;, j =1,...,n.

Definition B.11. Let W be an open subset of C" and let
N 0 . 0
U:Zaj(Z)a_Zj +ij(Z)a—Zj,
j=1 j=1
- 0 - 0
vzzcj(z)a—zj+2dj(z)a—zj,
Jj=1 Jj=1
be complex C* vector fields on W, where
aj(z),bj(z),cj(z),dj(z)e C*(W), j=1,...,n.
We say that U and V are equivalent if
aj(z) — Cj(Z) ~0, bj(Z) — dj(Z) ~0
forall j. If U and V are equivalent, we write
U~V.

Clearly U is almost analytic if and only if

N 0
U~ Z a; (Z)a—zj y
Jj=1
where a;, j =1,..., n, are almost analytic. We have the following easy lemma

Lemma B.12. Let W be an open subset of C" and let V be an almost analytic
vector field on W. Then

V(f)~(V+V)(f) forall almost analytic functions f. (B.1)
If U is a real vector field on W and
U(f)~ V(f) forall almost analytic functions f,

then
U~V+V.
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We have the following

Proposition B.13. Let W be an open subset of C" and let > be a C* closed sub-
manifold of R". Let V be an almost analytic vector field on W. We assume that

V=0 on.
Let ®(t, p) be the V+V flow. Let U be a real vector field on W such that
U~V+V.

Let ®(t,p) be the U flow. Then, for every compact set K C W, N > 0, there is a
cnx(t)>0, such that

(£, p) - (£, p)| < e x(2)dist(p,2)", p € K.

Proof. We have the following well-known fact: If Z is a smooth vector field on an
open set 2 C R” with Z(x,) =0 and ¥(¢,x) = exp(tZ)(x), then ¥(¢, xy) = x, and
02U(t, x)|x=x,, @ € N", only depend on (5xﬁZ)(x0), B € N”. In our situation, we
therefore have that ®(z, p), ®(t, p) have the same Taylor expansion at every point
of 2. O

The following proposition is useful (see section 2 of Melin-Sjostrand [18])

Proposition B.14. Assume that f(x, w) is a C*® complex function in a neighbor-
hood of (0,0) in R"*™ and that

Im f >0, Im £(0,0)=0, f.(0,0)=0, detf”.(0,0)70. (B.2)

Let f(z,w), z = x + iy, w € C™, denote an almost analytic extension of f to a
complex neighborhood of (0,0) and let z(w) denote the solution of

of B
ﬁ(z(w), w)=0

in a neighborhood of 0 in C™. Then,

~ o -~ _
%(f(z(w), w))— %f(Z, W)|z=z(w), W is real
vanishes to infinite order at 0 € R™. (B.3)

Moreover, there is a constant ¢ > 0 such that near the origin we have
Im f(z(w), w)> ¢|Imz(w)?, w eR™ (B.4)

and
Imf(z(w), w)> c}icrelg(lmf(x, w)+

d&ﬂwaF)lueRm, (B.5)

where() is some open set of the origin in R".
We call f (z(w), w) the corresponding critical value.
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Proof. For a proof of (B.4), see [18]. We only prove (B.5). In view of the proof of
(B.4) (see p.147 of [18]), we see that

Imf(z(w),w)Zc( inf Imf(Rez(w)—t|Imz(w)|,w)+|Imz(w)|2) (B.6)

teR”,|t|<1

for w small, where w is real and c is a positive constant. Using the almost ana-
lyticity, we get by Taylor’s formula:

filx,w)= 7 (2(w), w)(x — 2(w))+ O(|1x — z(w)* +[Im z(w)|*) (B.7)

for x, w small, where w is real. Since f” is invertible near the origin, we have
that when w € R™ is close to the origin,

fi(Rez(w)— t Imz(w)|, w)|

Imz(w)*>c

for all t e R”, |¢t] <1, where c is a positive constant. From this and (B.6), we get
(B.5). O

In the following, we let z = z(w) be the point defined as above. We recall the
stationary phase formula of Melin and Sjostrand

Proposition B.15. Let f(x, w) be as in Proposition B.14. Then there are neighbor-
hoods U and V of the origin in R" and R™ respectively and differential operators
Cy,j inx of order < 2j which are C*® functions of w € V such that

| (P2 2W), W)\ Ao -
U e tIwy (x, w)dx—(det (#)) o TED N (Cyp )2 (w), w)t
0

Tl

<cnt™N72, t2>1, (B.8)

where u € C(U X V). Here f and U are almost analytic extensions of f and u
respectively. The function
tf7 (z(w), w) \\-1
(det ( Fi () )))
21

is the branch of the square root of

(det (tﬁ'z(jfff)’ w)))—l

which is continuously deformed into 1 under the homotopy

s€10,1]—i'(1—9)f" (z2(w), w)+sI €GL(n,C).
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We need the following asymptotic formula (see Melin-Sjostrand [18])

Proposition B.16. Let P € L™(R") and let p(x) € C*(R") satisfy Imp > 0 and
dy #0 wherelm ¢ =0. Let u(x) € CP(R"). If p(x, &) is the full symbol of P, then

. ) 1 1 -
P(e!"*Wy(x)) ~ e”w)z aﬁ(a)(x, W;(x))aD;l(”(y)enp(x’ymy:x (B.9)

with asymptotic convergence in Sg',(R" X R ), where p is an almost analytic exten-
sion of p and

p(x,y) =)o) - (y —x,¢,(x)).
Definition B.17. The C* function ¢(x, 8) defined in an open conic set V C R” x
RN\ 0 is called a non-degenerate complex phase function if

(@ dy #0.
(b) ¢(x,0)is positively homogeneous of degree 1.
(c) Put
C={(x,0)€ V; g(x,0)=0}.
The differentials d (%), j=1,...,N,arelinearly independent over the com-
J

plex numbers on C.

(d) Imy>0.

Let ¢(x, 8) be anon-degenerate complex phase function in a conic open sub-

setI of R” x RN, Let
Cp={(x,0)€T; ¢)(x,0)=0}.

By Euler’s homogeneity relation, we have ¢(x,8) = 0.¢,(x,0) = 0 on C; and
therefore Im ¢ vanishes on C,. So does d(Im ¢), for otherwise there would be a
change of sign of Im ¢.

Let gg be an almost analytic extension of ¢ in a conic open set T ¢ C" x CV,
fﬂ(R” x RN)=T. We can choose 5 such that 5 is homogeneous of degree 1. Set

05=(05,9,...,05,0)

and
P.=(%9,...,%,0).
Let
C{ﬁ:{(ig)eﬁ 5;;(55,5)20}, (B.10)
Ag={(% @4(E 00 (%,8)e G} (B.11)
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A is an almost analytic manifold and
(Ape =Ag[ \R" xR")={(x,¢(x,0)); (x,0) € Cy}.
Let 5 | be another almost analytic extension of ¢ in T". We have
Ag~Aj.
(See [18].) Moreover, we have the following

Proposition B.18. For every point (xo,&0) € (Aj)r and after suitable change of
local x coordinates, A is equivalent to a manifold

in some open neighborhood of (x,, &), where h is an almost analytic function and
Im h >0 on RN with equality at £,.

Definition B.19. An almost analytic manifold satisfying the conditions of Propo-
sition B.18 at every real point for some real symplectic coordinate (x, £) is called
a positive Lagrangean manifold.

Let ¢ and Y be non-degenerate phase functions defined in small conic neigh-
borhoods of (xy, 6)) € R” xRN and (x, wy) € R” xRM respectively. We assume that
@p(x0,600)=0, Y’ (xo, wy) =0 and that

‘P;(xo» 0,) = ¢;(x0y wo) =&y,

where the last equation is a definition. Put Ay = (x¢,&,). We have the following
definition

Definition B.20. We say that ¢ and i) are equivalent at A, for classical symbols
if there is a conic neighborhood A of (x, 6y) such that for every distribution

A= f e!?9q(x,0)do,
where a(x, 8) € S/ (R" x RY) with support in A, there exists
m+ =M
b(x,w)eS, * (R"xRM)
with support in a conic neighborhood of (xy, w,) such that
A— BeC®™,

where B = f e wp(x, w)d w and vise versa.
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The global theory of Fourier integral operators with complex phase is the fol-
lowing

Proposition B.21. Let ¢ and ) be non-degenerate phase functions defined in
small conic neighborhoods of (x,,0y) € R" x RN and (x,, wy) € R" x RM respec-

tively. We assume that pp(xo, 6p) =0, v’ (xo, wo) =0 and that

@’ (x0, 00) = Y’ (0, wo) = &o.

Then ¢ andy are equivalent at(xy, &) for classical symbols if and only if Ay and
Ay are equivalent in some neighborhood of (xo, o), where ¢ and Y are almost
analytic extensions of ¢ and y respectively and Az, Aj; are as in (B.11).
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On the singularities of the Bergman
projection for (0, g) forms

Chin-Yu Hsiao

Abstract

We obtain the full asymptotic expansion of the Bergman projec-
tion for (0, g) forms when the Levi form is non-degenerate. This gen-
eralizes a result of Boutet de Monvel and Sjéstrand for (0,0) forms.
We introduce a new operator analogous to the Kohn Laplacian de-
fined on the boundary of a domain and we apply the heat equation
method of Menikoff and Sjostrand to this operator. We obtain a de-
scription of a new Szego projection up to smoothing operators. Fi-
nally, by using the Poisson operator, we get our main result.

Résumé

Nous obtenons un développement asymptotique de la singular-
ité du noyau de Bergman pour les (0,q) formes quand la forme de
Levi est non-dégénérée. Cela généralise un résultat de Boutet de
Monvel et Sjostrand pour les (0,0) formes. Nous introduisons un
nouvel opérateur analogue au laplacien de Kohn, défini sur le bord
du domaine et nous y appliquons la méthode de Menikoff-Sjostrand.
Cela donne une description modulo des opéreateurs régularisants
d’'un nouvel projecteur de Szego. Finalement, en utilisant'opérateur
de Poisson, nous obtenons notre résultat principal.
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1 Introduction and statement of the main results

In this paper, we assume that all manifolds are paracompact. (For the precise
definition, see page 156 of Kelley [19].) Let M be a relatively compact open sub-
set with C* boundary I" of a complex manifold M’ of dimension n with a smooth
Hermitian metric (| ) on its holomorphic tangent bundle. (See (1.1).) The Hermi-
tian metric induces a Hermitian metric on the bundle of (0, g) forms of M’ (see
the discussion after (1.1) and section 2) and a positive density (d M’)(see (1.3)).
Let O be the d-Neumann Laplacian on M (see Folland and Kohn [9] or (1.6))
and let 0@ denote the restriction to (0,q) forms. For p €T, let L, be the Levi
form of I" at p (see (1.12) or Definition 2.2). Given g, 0 < g < n — 1, the Levi
form is said to satisfy condition Z(q) at p €T if it has at least n — g positive or
at least g + 1 negative eigenvalues. When condition Z(q) holds at each point of
I', Kohn's L? estimates give the hypoellipicity with loss of one dervative for the
solutions of O@Wu = f. (See [9] or Theorem 3.6.) The Bergman projection is the
orthogonal projection onto the kernel of 0@ in the L? space. When condition
Z(q) fails at some point of I', one is interested in the Bergman projection on the
level of (0,q) forms. When g = 0 and the Levi form is positive definite, the exis-
tence of the complete asymptotic expansion of the singularities of the Bergman
projection was obtained by Fefferman [8] on the diagonal and subsequently by
Boutet de Monvel and Sjostrand (see [7]) in complete generality. If g =n —1 and
the Levi form is negative definite, Hormander [17] obtained the corresponding
asymptotics for the Bergman projection in the distribution sense. We have been
influenced by these works.

We now start to formulate the main results. First, we introduce some nota-
tions. Let Q2 be a C* manifold. We let T(2) and T*(2) denote the tangent bundle



of (2 and the cotangent bundle of (2 respectively. The complexified tangent bun-
dle of ©2 and the complexified cotangent bundle of Q2 will be denoted by CT(2)
and CT*(2) respectively. Let E be a C* vector bundle over Q2. The fiber of E at
x € Q will be denoted by E,. Let Y CC Q2 be an open set. The spaces of smooth
sections of E over Y and distribution sections of E over Y will be denoted by
C>(Y; E) and 2'(Y; E) respectively. Let &(Y; E) be the subspace of 2/(Y; E)
of sections with compact support in Y. For s € R, we let H’(Y; E) denote the
Sobolev space of order s of sections of E over Y. Put

HS

loc

(Y; E)={u e Z'(Y; E); pu € H'(Y; E), Vo € CF(V)}

and
H: (V; E)=H; (V; E)()&'(Y; E).

comp

Let F be a C* vector bundle over M’. Let C*(M; F), 9’(M; F), H*(M; F) denote
the spaces of restrictions to M of elements in C*(M’; F), 2'(M’; F) and H(M’; F)
respectively. Let C°(M; F) be the subspace of C>(M; F) of sections with com-
pact supportin M.

Let A°T(M’) and A% T(M’) be the holomorphic tangent bundle of M’ and
the anti-holomorphic tangent boundle of M’ respectively. (See (2.4).) In local
coordinates z =(zy,...,2,), we represent the Hermitian metric on A T(M’) by

(ulv)=g(u,v), u,veA*T(M),

g§= Z gix(z)dz;®dzy, (1.1)

jik=1

where g;(2) =8, ;(2)€C®, j,k=1,...,n,and (gj,k(z)):kzl is positive definite
at each point. We extend the Hermitian metric ( | ) to CT(M’) in a natural way by
requiring AY°T(M’) to be orthogonal to A% T(M’) and satisfy

(ulv)=[@|v), u,v e A" T(M").

The Hermitian metric ( | ) on CT(M) induces, by duality, a Hermitian metric
on CT*(M) that we shall also denote by ( | ). (See (2.9).) For g €N, let A% T*(M’)
be the bundle of (0,q) forms of M’. (See (2.6).) The Hermitian metric ( | ) on
CT*(M’) induces a Hermitian metric on A%7T*(M’) also denoted by ( | ). (See
(2.11).)

Let r € C*(M’) be a defining function of I" such that r isreal, r=0onT, r <0
on M and dr # 0 near I'. From now on, we take a defining function r so that

l[dr||=1 on T.



The Hermitian metric ( | ) on CT(M’) induces a Hermitian metric ( | ) on
CT(I). For z €T, we identify CT*(I') with the space

fueCT(M"); (u|dr)=0}. (1.2)

We associate to the Hermitian metric Z;l o1 8ik(2)dz;®dzy areal (1,1) form
( see page 144 of Kodaira [20])

n
w=1i Z gj.kdzj /\de.
Jk=1

Let
a)l’l

dM' = (1.3)

n!
be the volume element (see also (2.12)) and let ( | )5, be the inner product on
C>®(M; A% T*(M")) defined by

(f1 h)M:J (f1 h)(dM’)=f (flh)%?, [ReC®(M; AT (M) (1.4)
M M :

Similarly, we take (dT') as the induced volume form on I (see (2.18)) and let (| )r
be the inner product on C®(T"; A% T*(M")) defined by

(flg)r=f(f|g)dr, f,8€ C(I; A TH(M)). (1.5)
r

Let Ar be the real Laplacian on I" and denote by o »,. the principal symbol of Ar..
Let
5 . COO(M/; A4 T*(M/)) _ COO(M/; A0+ T*(M/))

be the part of the exterior differential operator which maps forms of type (0, g) to
forms of type (0, g + 1) and we denote by

3 CX(M'; AT TH (M) — CX(M'; A T*(M))
the formal adjoint of 3. That is
@f | R =(f |3 W, £ € CEM'5 AT (M), b C¥(M'; A1 T*(M)),

where ( | )y is defined by

(glkw=] (glk)NdM"), g ke Cr(M; AT (M)

M/



We shall also use the notation & for the closure in L2 of the & operator, initially
defined on C*(M; A% T*(M’)) and 2" for the Hilbert space adjoint of @. The do-
main of & consists of all f € L2(M; A%+ T*(M’)) such that for some constant
c>0,

’( fl 5g)M‘ <c||g|, forall g e C(M; A7 (M),

For such an f,
g—(f198um

extends to a bounded anti-linear functional on L*(M; A% T*(M")) so

(fFlogu=(Flgu

for some f € L2(M; A®I T*(M")). We have 7" f = f. The 8-Neumann Laplacian on
(0,g) forms is then the self-adjoint operator in the space L?>(M; A% T*(M’)) (see
chapter I of [9])

O09=20 40 2. (1.6)

We notice that
DomOY ={u € L2(M; A T*(M')); u € Domg*ﬂDomg,
due Domd, du e Domg*} (1.7)

and C®(M; A% T*(M"))(\DomO@ is dense in Dom. (See also page 14 of [9].)
Let

O =30 +8; 2: C¥(M; A1 T(M) - C¥(M; AT (M) (1.8)

denote the complex Laplace-Beltrami operator on (0,q) forms and denote by
0« the principal symbol of D(]f”. Let y denote the operator of restriction to the
I

boundaryI'. Let us consider the map:

F@ - H2(M; A% T*(M")) — HO(M; A®9 T*(M")) @ H(T; A% T*(M")),
u—>(|:l§f')u,yu). (1.9)
Given g, 0 < g < n —1, we assume that

Assumption 1.1. F®¥) jsinjective,q —1 <k <q+1.

Thus, the Poisson operator for Dgck), g—1<k <q+1,is well-defined. (See
section 4.) If M’ is K&hler, then F(@ is injective for any ¢, 0 < g < n. (See section
9 for the definition and details.)



We write (, ) to denote the duality between T, (M’) and T(M’). We extend ()
bilinearly to CT,(M’) x CT*(M’). Let % be the dual vector of d r. That is

(u | i)=<u,dr), (1.10)
or

forall u e CT(M’). Put
wo=J'(dr), (1.11)

where /! is the complex structure map for the cotangent bundle. (See (2.2).)

Let AY°T(T") and A®'T(T") be the holomorphic tangent bundle of I and the
anti-holomorphic tangent bundle of I" respectively. (See (2.22).) The Levi form
L,(Z,W), p€eT, Z, W € AY0T,(I'), is the Hermitian quadratic form on A T,(I")
defined as follows:

For any Z, W € AT, (I'), pick Z, W € C>(I'; AL T(I)) that satisfy

~ —_ — 1 ~ =
Z(p)=2, W(p)=W. Then L,(Z, W)= <[Z , Wi(p) ,a)o(p)> .

(1.12)

The eigenvalues of the Levi form at p €I are the eigenvalues of the Hermitian
form L, with respect to the inner product ( | ) on AYT,(T). If the Levi form is
non-degenerate at p €I, let(n_,n,), n_-+n, = n—1, be the signature and notice
that Z(g) holds at p ifand only if g # n_.

We recall the Hormander symbol spaces

Definition 1.2. Let m €R. Let U be an open setin M’ x M’.
STo(UX]0,00[; L (A T; (M), A* T;(M")))

is the space of all a(x,y,t) € C*(Ux]0,00[; L (A% Ty*(M’),AOv‘i T*(M"))) such that
for all compact sets K C U and all a € N?#, f € N2, y € N, there is a constant
¢ > 0 such that

0009 alx,y,0)| < c(1+t)" 7, (x,, 1) € Kx]0,00].

87", is called the space of symbols of order m type (1,0). We write S73° =(")S/%.
Let S7(U((M x M)x]0,00[; £ (A% T*(M’), A% T*(M’))) denote the space of
restrictions to U[ (M x M)x]0,00[ of elements in

S (UX]0,00[; LA™ T(M"), A T (M"))).
Let
a; €83 (U(\M x M)x]0,00[; LA™ T;(M'), A" T(M"))), j =0,1,2,...,
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with m; \, —00, j — 0o. Then there exists
a e Syo(U[ (M x M)x]0,00[; LA T (M), A T;(M)))
such that
a— Y a;eSys(U[ M x M)x]0,00[; LA T (M), A% TH(M"),
0<j<k

for every k € N. (See Proposition 1.8 of Grigis-Sjostrand [11] or Hormander [13].)
If a and a; have the properties above, we write

a4~ Z a; in the space S}s(U( J(M x M) x [0,00[; £ (A% T (M), A9 T (M)).
j=0

Let
19 : L2(M; A% T*(M")) — KerO?

be the Bergman projection, i.e. the orthogonal projection onto the kernel of 0@,
Let
Kno(z, w)€ 2'(M x M; L(A* T (M), A>T*(M")))

be the distribution kernel of IT?). Formally,

(H(‘”u)(z)zj Ky (z, w)u(w)d M'(w), u(w)e C(M; A1 TH(M)).
M

Let X and Y be C*® vector bundles over M’. Let
C,D:Cy(M; X)— 2'(M; Y)
with distribution kernels
Kc(z, w), Kp(z, w) € 2'(M x M; £(X,, Y2)).
We write
C=D mod C*(U[ \(M x M))
if
Kc(z, w)=Kp(z, w)+ F(z, w),
where F(z, w)€ C*(U( (M x M); £(X,, ¥;)) and U is an open set in M’ x M.
Giveng,0<g<n-—1.Put
I'y={z€Tl;Z(q)fails at z}. (1.13)

If the Levi form is non-degenerate at each point of I', then I';, is a union of con-
nected components of I'.
The main result of this work is the following



Theorem 1.3. Let M be a relatively compact open subset with C* boundaryl of
a complex analytic manifold M’ of dimension n. We assume that the Levi form is
non-degenerate at each point of I'. Let q, 0 < q < n — 1. Suppose that Z(q) fails at
some pointof I and that Z(q — 1) and Z(q + 1) hold at each point of I'. Then

Ko (z, w) € C®(M x M \ diag(L'y x Tp); LAY T*(M"), A>9 T*(M"))).
Moreover, in a neighborhood U of diag(I'; xI'y), Knw(z, w) satisfies
Kpa(z, w)= f e Wiz w, t)dt mod C”(Uﬂ(ﬂ x M)) (1.14)
0
(for the precise meaning of the oscillatory integral fooo ei?@Wip(z, w,t)dt, see Re-
mark 1.4 below) with

b(z, w, 1) €S} (U[ (M x M)x]0,00[; L (A T:(M"), A*I T}(M"),

b(z,w,t)~ Y bj(z,w)t"

j=0

in the space S} (U ((M x M)x]0,00[; £ (A% T*(M’), A% T*(M"))),
bo(Z, Z) ;é 0, z€e Fq;
where

bi(z,w)e C“(Uﬂ(ﬁ x M); LA T (M), A T(M"), j=0,1,...,

and
¢ (z, w)€ C*(U( (M x M), (1.15)
¢(z,2)=0, z€ly, (1.16)
@(z,w)#0 if (z,w) ¢ diag(I'y xI'y), (1.17)
Im¢ >0, (1.18)
Im¢(z,w)>0 if (z,w)¢T xT, (1.19)
(p(z,w):—a(w,z). (1.20)

Forp €Ty, we have

O'D(fq)(Z, d.¢(z,w)) vanishes to infinite order at z=p,

(z,w) is in some neighborhood of (p, p) in M’. (1.21)



Forz=w, z€l'y, we have
d,p =—wo—idr,
dyp =wy—idr.
Moreover, we have
pz,w)=¢_(z,w) if z,wely,

where ¢_(z, w) € C*(I';xI'y) is the phase appearing in the description of the Szegd
projection in [18]. See Theorem 1.5 and Theorem 7.15 below.

Remark 1.4. Let ¢(z,w)and b(z, w, t) be asin Theorem 1.3. Let y =(y1,...,V2n-1)
be local coordinates on I' and extend y;,...,)2,-1 to real smooth functions in
some neighborhood of I'. We work with local local coordinates

W= Yon-1,T)

defined on some small neighborhood U of p € I';. Let u € C°(U; A% T*(M")).
Choose a cut-off function y(t) € C*(R) so that y(t)=1when |t|<1and y(t)=0
when |f| > 2. Set

(Bsu)(z)= J J e @iz, w, t)y(et)u(w)dtdw.
0

Since d, ¢ # 0 where Im¢ = 0 (see (7.31)), we can integrate by parts in y and ¢
and obtain
1in3(B£ u)(z) e C®(M; A% T*(M")).

This means that
B= lin(} B, : C®(M; A% T*(M")) — C*(M; A% T*(M"))
£l
is continuous. We write B(z, w) to denote the distribution kernel of B. Formally,

o0
B(z,w)= f e Wiz w, t)dt.
0

From (1.21) and Remark 1.5 of [18] it follows that

Theorem 1.5. Under the assumptions of Theorem 1.3, let p €1I',. We choose local
complex analytic coordinates

z2=(21,...,2n), Zj=Xoj1+ixX;, j=1,...,m,

9



vanishing at p such that the metric on AV T(M’) is

Zdz,-@dfj at p

=1
and .
r(z)=v2Imz,+ Y _A|z;| +0(zP),
j=1
where Aj, j =1,...,n — 1, are the eigenvalues of L,,. (This is always possible. See
Lemma 3.2 of [17].) We also write

w=(wi,...,Wy,), Wj=Yj1+iys, j=1,...,n.

Then, we can take ¢ (z, w) so that

2n—1

. 1
¢(z, w)=—V2x_1+V2y,_1 — zr(z)(l + Z a;x;+ _QanZn)
= 2

2n—1 1 n—1 )
_ir(W)(1+ZEjyj+§52nygn)+i ‘Aj||Zj—Wj|

j=1 j=1
n—1
+ iy (Ew; =20, +0( Iz, w)P ) (1.2
j=1
in some neighborhood of (p, p) in M’ x M’, where
1900

f
a;: = —
/ 2 ﬁxy

(p,—wo(p)—idr(p)), j=1,...,2n.

We have the following corollary of Theorem 1.3

Corollary 1.6. Under the assumptions of Theorem 1.3 and let U be a small neigh-
borhood of diag(I'; xI';). Then there exist smooth functions

EG € C¥(U[ (M x M)); LA T;,(M"), A T; (M)
such that
Ko = F(=i(¢(z, w)+i0)"~" + G log(~i(¢ (2, w) + i0)).

Moreover, we have

F=Z(n —bj(z, w)=ig(z, w)Y + fz, w)¢(z, w))",

j=0
G= (_?'j“ buijn(z,w)—ig(z,w)y mod C(U[|(MxM))  (1.23)
j=0

10



where
flz,w)e C®(U( (M x M); LA™ T;(M'), A T} (M")).

If w e A1 TH(M'), let
w"* AT (M) — A% THM) (1.24)
be the adjoint of left exterior multiplication
w’ : AT THM) — A TH(M).
That is,
(w'u | v)=(u | w"*v), (1.25)

forall u € A®1T*M’), v € A>7+ T*(M’). Notice that w”"* depends anti-linearly on
w.
Let A% T%(T') be the bundle of boundary (0, 1) forms. (See (2.23) and (2.29).)

Proposition 1.7. Under the assumptions of Theorem 1.3, letp €1'y, g =n_. Let
Zl(z)x e :Zn—l(z)

be an orthonormal frame of A T,(T), z €T, for which the Levi form is diagonal-
ized at p. Letej(z), j =1,...,n —1 denote the basis of \>' T*(I'), z € I, which is
dualtoZj(z), j =1,...,n—1. Let Aj(z), j = 1,...,n — 1 be the eigenvalues of the
Leviform L,, z €". We assume that

Ai(p)<0if 1<j<n_.

Then
j=n_

F(p,p)=n!|2a(p)] -+ Ans(p)| n2( [ | estp) e} (p)) o @r(p))*@r(p)),
j=1

(1.26)
where F is as in Corollary 1.6.

In the rest of this section, we outline the proof of Theorem 1.3. We assume
that the Levi form is non-degenerate at each point of I'. We pause and recall a
general fact of distribution theory. (See Hormander [16].) Let E, F be C* vector
bundles over C* manifolds G and H respectively. We take smooth densities of
integration on G and H respectively. Let

A:CP(G; E)— 2'(H; F)
with distribution kernel
Ka(x,y)€ 2'(H x G; £4(Ey, ).

Then the following two statements are equivalent

11



(a) Aiscontinuous: §(G; E)— C*(H; F),
(b) Ky€C>®(HxG; %(E,, F,)).
If A satisfies (a) or (b), we say that A is smoothing. Let
B:CX(G; E)— Z'(H; F).

From now on, we write Kp(x,y) or B(x,y) to denote the distribution kernel of B
and we write
A=B

if A— B is a smoothing operator.
Let
P:C®(T; A% T*(M’)) — C*(M; A* T*(M")) (1.27)

be the Poisson operator for I:l(fq) which is well-defined since we assumed (1.9) to
be injective. It is well-known that P extends continuously

P HS(T; A% T*(M)) — H 2(M; A% T*(M')), V s €R.
(See page 29 of Boutet de Monvel [5].) Let
P &' (M; A% T*(M') — 9'(T; A% T*(M))
be the operator defined by
(Pu|v)r=(u|Pv)y, uec&(M; AT (M), veC®T; A% T (M)).
It is well-known (see page 30 of [5]) that P* is continuous:
P*: [A(M; A9 T*(M")) — H(T; A% T*(M"))
and
P*: C(M; A T*(M')) — C(T; A T*(M")).
We use the inner product [ |] on H ‘%(F; A%4T+(M")) defined as follows:
[u | v]=(Pu | Pv)um,
where u, v e H‘%(F; A% T*(M’)). We consider (8 r)"* as an operator
(@r)* s H2([; A>T T*(M")) — H™2(T; A%~ T*(M")).
Note that (8 r)* is the pointwise adjoint of 2 r with respect to (| ). Let

T : H 2(T; A% T*(M")) — Ker (2 r)™* (1.28)
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be the orthogonal projection onto Ker (0 r)™* with respect to [ | ]. Thatis, if u €
H%(T; A% T*(M")), then
(@r)"*Tu=0

and
[(I-T)u|g]l=0, V geKer(dr)".

In section 4, we will show that T is a classical pseudodifferential operator of order
0 with principal symbol
200r™M (@)
For g € N, let A% T*T') be the bundle of boundary (0, g) forms. (See (2.29).) If
u € C®(T'; A% T*(M")), then u € Ker (2 r)"* if and only if u € C®(I'; A% T*(I)). Put
0p = Tyd P: C*(T; A% T*(I")) — C(T; A>*1 T(I)). (1.29)

% is a classical pseudodifferential operator of order one from boundary (0, g)
forms to boundary (0, g + 1) forms. It is easy to see that

% = 3_17 + lower order terms, (1.30)

where J, is the tangential Cauchy-Riemann operator. (See [9] or section 6.) In
section 6, we will show that
() =0.
Let .
I : C(L; AYTT1 D)) — C(T; A% TH(I)),

be the formal adjoint of % with respectto [ |]. %T is a classical pseudodifferential
operator of order one from boundary (0, g + 1) forms to boundary (0, ) forms. In
section 6, we will show that
ﬁﬁT =Y 6f*P.
Put .
05 =35 3 +3p G : (I3 A T*(1) — CX(I'; A% T*(D)).

For simplicity, we assume thatI' =1y, I'; #I',_,_,. We can repeat the method
of [18] (see section 7) to construct

AL, (G A T(D), A THID)), BE L, (5 A T(I), A T(I)
such that
AOY +B=B+0O)A=1,
B=0,3 B=0,

B=B'=B?,

13



where L', is the space of pseudodifferential operators of order m type (%, %) (see

Definition 7.11) and BT is the formal adjoint of B with respect to [ | ]. Moreover,
Kp(x,y) satisfies

o

KB(ny/)Ef e - p(x,y, 1)dt,
0

where ¢_(x,y) and b(x,y, t) are as in Theorem 7.15. In section 8, we will show
that
9= PBT(P*P)"'P* mod C®*(M x M)

and
o0

PBT(P*P)'P¥(z,w)= f e PEWip(z w, t)dt mod C®(M x M),
0

where ¢(z, w) and b(z,w, t) are as in Theorem 1.3.

Acknowledgements. The author would like to thank his advisor Johannes Sjos-
trand for his patience, guidance and inspiration.

2 Terminology and notations, a review

In this section, we will review some standard terminology in complex geometry.
For more details on the subject, see Kodaira [20].

Let E be a finite dimensional vector space with a complex structure J. By
definition, a complex structure J is a R-linear map

J:E—E

that satisfies
J?=—1I.

Let CE be the complexification of E. That is,
CE={u+iv;u,v € E}.
Any vector in CE can be written
f=u+iv

where u, v € E and any R-linear map between real vector spaces can be extended
to a C-linear map between the complexifications, simply by putting

Tf=Tu+iTv.
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In particular, we can extend J to a C-linear map
J:CE—-CE.

Clearly, it still holds that J> = —I. This implies that we have a decomposition as
a direct sum
CE=A"YE®A"'E

where
Ju=iu if ueA"E

and
Ju=—iu if ueA”'E.

Let us now return to our original situation where E = T,(M’), p € M’. Given
holomorphic coordinates

zj=xj+iy;, j=1,...,n

we get a basis for T,(M’)

J 0 J 17
ox,' oy’ " 0x, Oy,

The complex structure J on T,(M’) is defined by

ax]' _ay]y]_ yeor ity
2 2 (2.1)
—)=——,j=1,...,n.

J does not depend on the choice of holomorphic coordinates.
The complex structure map

I’ T(M) - T3,

for the cotangent space is defined as the adjoint of J, thatis (Ju ,v)=(u,J'v),
ueT,(M),ve T;(M’). We have

t L) = — ] =
{ J'(dx;) dy;, j=1,...,n, 2.2)

Jidy;)=dx;, j=1,...,n.

We can now apply our previous discussion of complex structures on real vector
spaces to T,(M’) and T;(M ’). We then get decompositions

CT,(M)=A"T,(M") & A T,(M"),
CTy(M')= A0 T(M)e A% T (M"). (2.3)
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For u € AT, (M), v € A%} T;‘(M’),
—i(u,v)={(u,J'v)=Ju,v)=i(u,v).

Thus,
(u,v)=0.

In terms of local coordinates z =(z,,...,2,), z; =x; +1iy;, j =1,...,n, we have

n

AYT,(M') = Zajﬁ;ajec,jzl,...,n :
j=1 J
0,1 / C a . :
A Tp(M): Zdjﬁ,djec,jzl,...,n (2.4)
j= J
and
ALOT;(M’): Zajdzj;aje(c,jzl,...,n},
j=1
AL TH (M) = Zajdzj;a,-ec,jzl,...,n} (2.5)
j=1
Here
17 1(3 _8)8 15’+,6),1
== —1 ) — = l ) =1, , 1,
5zj 2 3xj 3y] 82]- 2 5xj 3y] J
and
dzj=dxj+idy;, dz;=dx;—idy;, j=1,...,n.
For p, g €N, the bundle of (p, q) forms of M’ is given by
APITH(M )= AP(AY° T*(M') A NI (A T*(M)). (2.6)

That is, the fiber of AP9T*(M’) at z € M’ is the vector space AP(AM T M) A
A9(A* T*(M")) of all finite sums of

[/Vl/\.../\[/vp/\vl/\.../\vq,

where
We e AVTHM), k=1,...,p, e A" T (M), j=1,...,q.
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Here A denotes the wedge product.
We recall that if ( g j,k) 1<j.k<n is a positive definite Hermitian matrix then the

(1,1) tensor form g = szzl gjxdzj®dz; can be viewed as a Hermitian metric
(1)on CT(M’) in the following way:

1 -

58w +gww)=(ulv)=gu,) uv e AV T(M"),

(u|w)=0, ueA'®*T(M), we A" T(M),

(u|v)=1|v), u,ve A" T(M).

We can check that
JulJv)=(ulv), u,veCT(M).

For t, s € T(M’), we write
1 - 1 - 1,0 ,
t=5(u+u), S=§(v+v), u,ve A T(M).
Then,
(t15)=~(u | )+~ [0) = ~Re(u | v)
s)=—(u|v)+=(u|v)==Re(u|v
4 4 2

is real. Thus, the Hermitian metric g induces a J-invariant Riemannian metric
(|)on T(M").

The Hermitian metric ( | ) on CT(M) induces, by duality, a Hermitian metric
on CT*(M) that we shall also denote by (| ) in the following way. For a given point
z € M’, let A be the anti-linear map

A:CT,(M")— CT(M’)

defined by
(u|v)={(u,Av), u,veCT,(M). 2.7)

Since (|) and (,) are real, A maps T.(M’) to T(M’). A simple computation shows
that
J'AJ=A, JAT'J'=A"L

In particular (since A is anti-linear),
ANCT, (M) =AY T (M), AN T,(M') = A" T (M). (2.8)
For w, u € CT}(M'), we put
(w|w)=A"u|A w). (2.9)

We have
(w|w)=0 if e A" TH(M'), ue A>T (M). (2.10)
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The Hermitian metric (| ) on A”9T*(M’) is defined by

(WA AW, ANULA - ANUg | LA Ny AV A=A Vy)
=det ((wj | tk))lsj,kSP det ((u]- | vk))
up v €AY (M), j,k=1,...,q, w;, ty eA"’ T (M), j,k=1,...,p, (2.11)

1<j,k<q’

and we extend the definition to arbitrary (p, g) forms by sesqui-linearity.
We associate to the Hermitian metric Z;l,k:1 gix(z)dz;®dzia(1,1)form (see
page 144 of Kodaira [20])

w=1I Z gixdz;NdZzy.

jik=1

w is areal (1,1) form. Put G(z) = det (gj,k(z));lkzl. Then by an elementary cal-
culation (see page 146 of Kodaira [20]),

w"=i"n'G(z)dz,Ndz1N---Ndz,NdzZ,. (2.12)
Since ( gj,k(z))y el is positive definite, G(z) > 0. Therefore using

w”

as the volume element, we define the integral of a continuous function f(z) on
M by

Jf(z)(dM')zf f(z)w—Tzf f(2)i"G(z)dzy NdzZ\N---Ndz, NdZ,. (2.14)
M M : M

We work with local coordinates
Zj :xzj_1+ix2j, j= 1,...,n.

Put p p
F; =(z—I15—) j,k=1,...,2
j.k(2) (3xj IR n
and
F(z)=det (F;(2))

1<jk<2n’

Lemma 2.1. We have

n

VE@)dxi Adxs A Adxay = % 2.15)

18



Proof. For a given point p € M’, we may assume that
w(p)=iY dz;NdZ;.
j=1
Thus,
(- p) | S (p) =26}, Jk=1,....2
A A = i, k> yK=1,...,2n,
8xj p 6‘xk P ikr

and
VE(p)dxiNdxy N Ndxo, =2"dxy Ndxy N+ Nd Xap,.

By an elementary calculation,
wn
—'(p): i"dz,NdzZyN---Ndz,NdzZ,
n!
=2"dx, Ndxs N~ ANdxs,.

The lemma follows. O

Let (| )y be the inner product on C*(M; AP T*(M")) defined by
(f 1 h)v = J (f | ) dM"), f,heC®M;A"IT*(M)). (2.16)
M

The Hermitian metric ( | ) on CT(M’) induces a Hermitian metric ( | ) on
CT(I). For p €T', we have

0
T,,(F):{ueT,,(M’); (u,dry=(u | E):o},

where
9 Ald
—= r.
ar
Here A is as in (2.7). We take (dI') as the induced volume form on I". Let x =

(x1,...,X2,-1) be a system of local coordinates on I". Put

1% 0
h; =(=—1|=) j,k=1,...,2n—1.
de) (anlan) J n

Put
2n—1
H(x)=det (hjx(x) - 2.17)
Then,
dl'=v H(x)dx,N---NdX2p,_,. (2.18)
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We identify C T;(l") with the space

{u G(CT;(M’);<u,i>:(u|dr):0}. (2.19)
or
Put
6y =T,(D) T T,(),
Gy =T, ) T,
and
wo=J'(dr), (2.20)
o}
Y:](E)' (2.21)
We have
6y = {u € T,(1); (u, wo(p)) = 0}, ‘5; = {u € T;‘(F); (u,Y(p)) :0}.
Note that

dimg 6, = dimR%’;“ =2n-—2.

As before, we have
C6, =A"T,(IN®A>' T,(I)

and
* A L0k 0,1
(C‘gp—A Tp(F)GBA Tp(l"),
where
Ju=iu if ueA"T,I),
Ju=—iu if ueA” T,) (2.22)
and

Ju=iu if u eAl’OT;(F),
J'u=—iy if pe A TI). (2.23)

We have the orthogonal decompositions with respect to ( | )
CT,(N)=A"T,M)e A T,(I & {AY(p); A€ C},

CTHI)=ANT() & A T*(I) & {Aa(p); A€C}.
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We notice that
0 0 0 0
va S (i L) = —itiv+ 4,
JGY+ 5= (i34 52 ) ==iliY + )
Thus, iY + % e A®1T(M’). Near I', put
T ={u e A T (M); (u | 9r(2)) =0}

and P
L= {” A TL(M; (u |(iY+5)(Z”:°}'

We have the orthogonal decompositions with respect to ( | )

AT (M) =T @ {A@r)(z); AeCl,

N'T(M)=T" {A(iYJr %)(z); Le c}.

Note that
*%,0,1 __ A 0,1 0,1 _ A0,1
T =A T (I), T =A (I, zeT.

For g €N, the bundle of boundary (0, g) forms is given by
A TT) = A1(A> T(I)).

Note that

ATHD) = {u e AT (M'); (u | 9r(2) A g)=0, Vg € A%~ T (M)}

Let (| )r be the inner product on C*(I'; A% T*(M’)) defined by

(flg)rZJ(flg)dF» f,8€C(T; A TH(M)),
T

where dI is as in (2.18).
We recall the following

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

Definition 2.2. For p €T, the Levi form L,(Z, W), Z, W € A}° T,(I), is the Hermi-

tian quadratic form on A T,(T") defined as follows:

For any Z, W € AL T,(T), pick Z, W € C>(I'; AY*T(I')) that satisfy

1

Z(p)=2, W(p)=W. Then L,(2, W)=~ (IZ, Wi(p),wo(p))

21
Here L o
Z W=ZW-WZ

denotes the commutator of Z and W.
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It is easy to see that the definition of the Levi form L, is independent of the
choices of Z and W. We give it in detail for the convenience of the reader

Lemma2.3. LetZ, W € C®(I'; AL T(')). We have

1/~ = 1/~ =
57 (2. WIp), 0op) = —5- (Z)AW(p)den(p)) . 232)
Proof. See Lemma 2.7 of [18]. O

Definition 2.4. The eigenvalues of the Levi form at p €I are the eigenvalues of
the Hermitian form L, with respect to the inner product (| ) on A T,(I').

Now, we work with local coordinates z =(z;,...,z,) defined on some neigh-
borhood U € M’ of p €I'. We have

or
dr—zazjdz] 57, ——dz;

and
= Or or
7t — 7 _ L— 7 — Ad7.
wo=] (dr)—zzazjdz] zzazjdz].
j=1 j=1
Then by an elementary calculation,

2

: o°r _
dwo = _lez 5207, dzi NdZ;.

From this and Lemma 2.3, we get the following

Proposition 2.5. Let U= ui5—, V=" 1; aizj € AT, (T). Then,

— = 92r _
L,(U, V)= ;1 T (P)urv;. (2.33)
Jj k=

3 The d-Neumann problem, a review

The -Neumann problem is a generalization to several complex variables of the
Laplace operator of one complex variable and the Cauchy-Riemann operator
0/07%. In this section, we will give a brief discussion of the d-Neumann prob-
lem in a setting appropriate for our purpose. General references for this section
are the books by Hormander [15], Folland-Kohn [9] and Chen-Shaw [3].

As in section 1, let M be a relatively compact open subset with C* boundary
I' of a complex analytic manifold M’ of dimension n with a Hermitian metric
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g = Z;kzl gjxdz; ® dz; on its holomorphic tangent bundle. We will use the
same notations as before. Let x = (x3,...,X2,-1) be a system of local coordinates
on I" and extend x;,...,x,-1 to real smooth functions in some neighborhood of
I'. We recall that (see (2.18)) the induced volume form on I' is given by

dl'=y H(x)dx,N---Nd X2,

where

2n—1
jk=1’

o o .
H(x)=det (h;k(x)) () =(5— | 8_xk)’ jk=1,...,2n—1.
J

We assume that
dM' =|F(x,r)ldxi A---Ndxsp Ad,

where d M’ is as in (2.13) and F(x,r) € C®. From (2.15), we see that
dl =|F(x,0)|dxi A---ANdXop_1. (3.1
We have the following
Lemma 3.1. For all f € C®(M; A> T*(M")), g € C®(M; N>+ T*(M")),
@F18u=f 13 @u+fr@ry g, 6.2)

where (3 r)"* is defined by (1.24). We recall thaté’_fk is the formal adjoint of @ and
y is the operator of restriction to the boundary! .

Proof. By using a partition of unity we may assume that f and g are supported in
a coordinate patch U € M’. Let x =(x3,...,X2,—1) be a system of local coordinates
onI'. We work with local coordinates z = (x1,...,X2,-1, 7). Put

dM’ =|F(x,r)|dx, - dxs,_,dr.

Let H be the Heaviside function. Then

n

@flgu= J H(-r)@f| &) |F(x,r)dxdr
=J (O(H(=r)f)| g)|F(x,r)|dxdr
o

+f S(=r)(@r)"f| gIF(x,r)|dxdr
cn

=(f19; @+ fly@rgr.

The lemma follows. O
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As in section 1, We also use the notation 0 for the closure in L2 of the & oper-
ator, initially defined on C®(M; A9 T*(M’)). We notice that

Domd = {u € L*(M; A% T*(M")); there exist u; € C*(M; A*1T*(M")), j =1,2,...,
and v € L*(M; A% T*(M")), such that u; — u in L*(M; A> T*(M")),
j—o00, and du; — v in LA(M; A*TH T*(M")), j — oo}. (3.3)
We write du = v.

The Hilbert space adjoint 2" of 7 is defined on the domain of & consisting of
all f € L2(M; A%+ T*(M’)) such that for some constant ¢ > 0,

’( 7l Eg)M‘ <c||g|, forall g € C(M; A7 T (M),

For sucha f,
g—(f198u

extends to a bounded anti-linear functional on L*(M; A% T*(M")) so

(F12gm=(f|&m

for some fe L2(M; A% T*(M’)). We have 5*f = f
From Lemma 3.1, it follows that

Domd (| CX(M; A T*(M")) = {u € C*(M; A7 T"(M")); y(r)"*u =0}
(3.4)
and
7 = 6’_f* onDomd ﬂ C®(M; A*7H1 T*(M)). (3.5)

The &-Neumann Laplacian on (0,q) forms is then the operator in the space
L2(M; A9 T*(M"))
O09=28 +0 0.

We notice that (0@ is self-adjoint. (See chapter I of Folland-Kohn [9].) We have
DomOY ={u € LA(M; A> T*(M")); u € Domg*ﬁDomg,
due Domd,0u e Domg*}.

Put
D' =DomO () C®(M ; A% T*(M").

From (3.4), we have
D) = {u € C°(M; A» 1 T*(M')); y(@rY™*u =0, y(@r)" " ou = 0}. (3.6)
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In view of (2.29), we see that u € D@ if and only if
yu € C*(T; A®1T*I)) (3.7)

and
ydu € CO(T; A% T*(I)). (3.8)

We have the following

Lemma 3.2. Letq > 1. For everyu € Domd N C®(M; A%+ T*(M")), we have
3 ueDomd [ |C*(M; A% T*(M")).

Proof. Letu € Domg*ﬂCOO(M; A1 T*(M)). For g € C°(M; A®1-1T*(M")), we
have

0=, 0 ulu=0 uldgu—r@re ulrgh
=208 —((@r)" T ul|re)r
=—((@r)0 ulrg)r-

Here we used (3.2). Thus,
y(?r)"’*g*u =0.

The lemma follows. O

Definition 3.3. The boundary conditions
y@ru=0, y(@ry"*0u=0, ucC®M,A" T*(M"))
are called 2-Neumann boundary conditions.

Definition 3.4. The d-Neumann problem in M is the problem of finding, given
aform f € C*(M; A% T*(M")), another form u € D% verifying

09 = f.

Definition 3.5. Given q, 0 < g < n — 1. The Levi form is said to satisfy condition
Z(q) at p €T if it has at least n — g positive or at least g + 1 negative eigenvalues.
If the Levi form is non-degenerate at p €T, let (n_,n.), n_-+n, = n—1, be the
signature. Then Z(q) holds at p ifand onlyif g #n_.

We have the following classical results (see Folland-Kohn [9])
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Theorem 3.6. (Kohn) We assume that Z(q) is satisfied at each point of I'. Then
Ker@ is a finite dimensional subspace of C*°(M; A% T*(M")), 0@ has closed
range and I1'9 is a smoothing operator. That is, the distribution kernel

Ka(z, w) € C®(M x M; LA™ T* (M), A% T*(M"))).
Moreover, there exists an operator
N9 : [(M; A T*(M")) » DomO?
such that

NPHD L 119 =T onDom D(ﬂi)’
OYND +TID =1 on L*(M; A® T*(M")).

Furthermore, N@ (COO(M; A4 T*(M’))) C C®(M; A% T*(M")) and for each s € R
and all f € C*(M; A% T*(M")), there is a constant ¢ > 0, such that

||N(q)f

s+1 S ¢ Hf”s
where|| ||, denotes any of the equivalent norms defining H*(M; A% T*(M")).

Theorem 3.7. (Kohn) Suppose that Z(q) fails at some point of I and that Z(q — 1)
and Z(q + 1) hold at each point of I'. Then,

NPy =(1-3N7 -3 NU™I3)u, ueDomd [ |CX(M; A T*(M")),
where NV and N~V are as in Theorem 3.6. In particular,

19 : Domd (| C¥(M; A% T*(M")) — D,

4 The operator T
By Assumption 1.1, the map

F9D 1 H2(M; A% T*(M')) — HO(M; A% T*(M')) @ H?(T; A% T*(M")),

u—>(|:|(]f’)u,yu),

is injective. The Poisson operator

P: Co(I; A TH(M")) = C™(M; A% T*(M"))
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of Elgf’) is well-defined. That is, if

u € C®(T; A T*(M")),

then
Pu € C*(M; A T(M)), O Pu=0
and
YyPu=u.
Moreover, if v € C*°(M; A% T*(M’)) and I:I(fq)v =0, then
v=Prv.

It is well-known (see page 29 of [5]) that P extends continuously
P: HS(T; A1 T*(M)) — HS 2 (M; A% T*(M")), Vs €R.
Let
P*: &' (M; A TH (M) — 9'(T; A% T(M"))
be the operator defined by
(P'u | v)r=(u | Pv)y, u€&'M; A\ T*(M), ve C(T; A% T*(M)).
It is well-known (see page 30 of [5]) that P* is continuous:
P*: L(M; A T*(M)) — Hz(T; A% T*(M"))
and
P*: C®(M; A* T*(M")) = C=(I; A T*(M")).
Let L be a classical pseudodifferential operator on a C* manifold. From now
on, we let o, denote the principal symbol of L. The operator

PP C®(I; A1 T*(M')) — C¥(L; A% T*(M"))

is a classical elliptic pseudodifferential operator of order —1 and invertible (since
P is injective). (See Boutet de Monvel [4].) Let 1/ —Ar be the square root of —Ar.
It is well-known (see [4]) that

O'p*pza'(2 AL (41)

Let
(P*P)™": Co(I; AT (M) — C=(I; A*TT*(M"))

be the inverse of P*P. (P*P)~! is a classical elliptic pseudodifferential operator of
order 1 with scalar principal symbol. We have

O (pp)-! :0'2 Y 4.2)
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Definition 4.1. The Neumann operator .44 is the operator on C®(I'; A% T*(M"))
defined as follows:

0
NDf = 5Pl feCHT; A*THM)).
The following is well-known (see page 95 of [10])

Lemma 4.2.
ND: CO(T; AT TH(M')) — C(I; A THM))

is a classical elliptic pseudodifferential operator of order 1 with scalar principal
symbol and we have

Oy0=0 /=5 (4.3)
We use the inner product [ |] on H ‘%(1"; A%9T+(M’)) defined as follows:
[u|v]=(Pu | Pv)y=(P*Pu|v), (4.4)
where u, ve H ‘%(F; A% T*(M’)). We consider (8 )"* as an operator
(@1 : H™2([; A>T T*(M")) — H™2(T; A%~ T*(M")).
Let
T: H 2(T; A% T*(M’)) — Ker (2 r)Y™* = H™2(I'; A% T*(T)) (4.5)

be the orthogonal projection onto Ker (0 r)™* with respect to [ | ]. Thatis, if u €
H~2(T; A T(M")), then
@r)*Tu=0

and
[(I-T)u|g]l=0, V geKer(dr)".

Lemma 4.3. T is a classical pseudodifferential operator of order 0 with principal
symbol
200r™@r).

Moreover,
I—-T=(P'P)Y(0r)'R, (4.6)

where
R:C®(I; A*1TH (M) — C=(I; A%~ T*(M"))

is a classical pseudodifferential operator of order —1.
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Proof. Let
E=2@r)"(@r)) +2(@ry)'@ry,
E:H :(I3; A T*(M")) — H™%(; A% T*(M")),
where ((Er)/\"“)T is the formal adjoint of (8 r)"* with respect to [ | ]. That s,

(@) u|vl=[ul(@r)") v],
u e H :([; A% T*(M’)), v € H2(T; A%~ T*(M")).

We can check that
(@r) =P Py (@r)\(P*P). (4.7)

Thus, the principal symbol of E is
2@ @) +2@ry@r).
Since ||dr||=1= (||3 r||2 +||0 rllz)% onI, we have
||5’r||2=||3r||2:% on . (4.8)
From this, we can check that
201 (@r)y +2(@r)\@r)™ =1 : H3([; A% T*(M) — H™:(I; A T*(M")),

where [ is the identity map. E is a classical elliptic pseudodifferential operator
with principal symbol I. Then dimKer E < 0o. Let G be the orthogonal projection
onto Ker E and N be the partial inverse. Then G is a smoothing operator and N
is a classical elliptic pseudodifferential operator of order 0 with principal symbol
I (up to some smoothing operator). We have

EN+G=2(@r" (@) +2(@r/) @™ )N+G=1  @49)
on H2(T; A% T*(M’)). Put
T=2@r(@r))'N+G.
Note that
Ker E = {u € H3(I; A T*(M)); @Y u =0, (@r)*)'u= 0} :
From this and (8 r)"* o (8 r)™* =0, we see that
TgeKer(r)"*, geH :(T; A% T*(M)).
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From (4.9), we have
[-T=2(@r")'@r)"N

and
[(1-T)g | ul=[2(@r)")'(@r)"Ng | u]

=[2(2r)"Ng | (@r)"*u]

=0, ucKer(@r)", geH (T; A% T(M")).
Thus,

g=Tg+(I-T)g
is the orthogonal decomposition with respect to [ | ]. Hence,
T=T.

The lemma follows. O

Now, we assume that Z(q) fails at some point of I and that Z(qg —1) and Z(qg +
1) hold at each point of I". We recall that

NPy =(1-3N™7 -3 NU™IF)u, ueDomd [ |CX(M; A T*(M")).
(See Theorem 3.7.)

Proposition 4.4. We assume that Z(q) fails at some point of I and that Z(q — 1)
and Z(q + 1) hold at each point of I'. Then,

9y =1PT(P*P) ' P*u
=(I—9NWIg -3 Na+V9)pT(P*P)" P*u,
u € C®(M; A1 T*(M")), (4.10)

where N+, N~V are as in Theorem 3.6 and T is as in (4.5). In particular,
19 : c*(M; A% T*(M’)) — D9,
Proof. Let u € C*(M; A% T*(M’)). We claim that
u —TPPT(P*P)" P'u € (Kerd ). 4.11)
Let v €Domd. Nc oo(M; A% T*(M’)). From Theorem 3.7, we know that

H(L?)U c D(bi).
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Since I1@yp is harmonic,
9y = pyll @y,

Note that
P(P*P)'P*: C(M; A9 T*(M')) — Ker™)”
is the orthogonal projection with respect to ( | )y;. That is,
(f—P(P*P)'P*f | Pyg)u=0, f,ge€C®(M;A"T*(M)).
We have
(M9PT(P*P) ' Pru | TTPv)y,

=(PT(P*P)"'Pru | IDv)y,

=(PT(P*P)"'P*u | PyTI'Pv)y,

=(P(P*P)"'P*u | PYI1v)y,

=(u | IVv)y. (4.12)
Thus,

(u—9PPT(P*P) ' Pu | I9v)y =0. (4.13)

Since Domg*ﬂCoo(M; A%4T*(M’)) is dense in L?>(M; A% T*(M’)), we get (4.11).
Thus,
N9y =119PT(P*P)"' P*u.

Since PT(P*P)"'P*u € Domg*ﬂ C>(M; A% T*(M")), we get the last identity in
(4.10). The proposition follows. O

5 The principal symbols of yJ P and ya_f*P

First, we compute the principal symbols of & and 8_f* For each point z, €T', we
can choose an orthonormal frame

1(2),..., tp-1(2) (5.1)

for T%! varying smoothly with z in a neighborhood of z, where T;%! is defined
by (2.24). Then (see (2.26))

or(z)
tl(z)’ ceey tn—l(z)! tn(z) = _
‘ or(z)
is an orthonormal frame for A®! T*(M"). Let
TI(Z))---y Tn—l(z)r Tn(z) (52)
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denote the basis of A>! T,(M’) which is dual to

tl(z)) (XS] tn(z)
We have (see (2.27))
iY+ =
IIlY+ ||
Note that

Ti(z), ..., T,—1(z) is an orthonormal frame for A*' T,(I"), z €T,

and

t1(2),..., ta-1(2) is an orthonormal frame for A*' T¥(I'), z €T..

We have .
:(Z t].Az;-) f, feC®(M).
j=1

(5.3)

(5.4)

(5.5)

If f(2)t;,(2)A---At;,(2) € Co(M; A%9T*(M’))is a typical term in a general (0, q)

form, we have

5f:Z(ij)t;\tjl ASRAAY T2

j=1
q
+D (D @)t A A @) A AT,
k=1

So for the given orthonormal frame we have

n
0= Z t]f‘ o T; +lower order terms

j—l
ar) i Y+ ==
Z tho ( ) + lower order terms
H v
and correspondingly
-1 . 2
a r Ak 1 Y A,
Z ( " 0 6’6r +lower order terms.
=1 a r 1Y+ ar

We consider

yOP: C®(I; A% TH(M")) — C¥(T; A%TH T (M)
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and
1y, P: C®(T; A4 T*(M')) — C(T; A% T*(M')).

yd P and ya_f*P are classical pseudodifferential operators of order 1. From (4.8),
we know that ‘

0
iY-I——“z«/E onT.
ar

1
or||=— onT.

V2

We can check that

Combining this with (5.6), (5.7) and (4.3), we get

n—1
y?P = Z z‘jA oT; + (@r) o(iY+ v/ —Ar)+lower order terms (5.8)

j=1

and

n—1
y(?_f*P = Z t].A’* oT+ (@1 o(iY — 4/ —Ar)+ lower order terms. (5.9)

j=1
From Lemma 3.2, it follows that

Y, P: C®(T; A4+ T*(T)) — C®(T; A% T*(T)). (5.10)
Put

= ={(x, Awp(x)) € TT)\ 0; A > 0},
> = {(x, Awp(x)) € T*T)\ 0; A < 0} (5.11)

We recall that wy = J(dr). In section 8, we need the following

Proposition 5.1. The map
y(@r)"*0P: C¥(I; A% TH(I) — C=(I'; A% T*(I)).

is a classical pseudodifferential operator of order one from boundary (0, q) forms
to boundary (0, q) forms and we have

— — 1
y(@r)""oP= 5(i Y+ +/ —Ar)+ lower order terms. (5.12)

In particular, it is elliptic outside .
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Proof. Note that
r(@r)*oP=y(0r)" 0P+ P(Or)"* (5.13)

on the space C*(I'; A% T%(T')). From (5.8), we have

1@ ap=3 (@1 e)) o T+(@r@rr ) o7 + =0
=1

+ lower order terms

and
n—1
yaP@r) =Y (£/@r)) o T+(@r)@r)) o (1Y +/~Ar)
j=1
+ lower order terms.
Thus,
y(@ryV*oP+yoP@r)" = Z(r;‘(ﬁ YV +(@r)M t]f\) oT;
j=1
+(@@ry+@ry @) o (iY + v/ =Ar)
+ lower order terms. (5.14)
Note that
t]f\(gr)’\'* +(5r)’\'*t](\ =0, j=1,...,n—1, (5.15)
and )
@rN@r™+@r)@r) = > (5.16)
Combining this with (5.14) and (5.13), we get (5.12).
Note that
Oy 8) == (Y, ) +El[ =]+ (wo [ £) 20
with equality precisely when & = —Aw,, A > 0. The proposition follows. O
Forz €T, put
19T (M) = {u eAIT (M u=(0r)'g, g’ TZ*(M’)} . (5.17)

1%9T*(M) is orthogonal to A% T*(I'). In section 7, we need the following

34



Proposition 5.2. The operator
y(?r)Aa_f*P(P*P)—l : CX(T; 1% T*(M')) — C=(T; I T*(M)).
is a classical pseudodifferential operator of order one,
7/(5r)A8_f*P(P>“P)_1 =({Y—- \/—_Ar) \/—_Ar + lower order terms.
It is elliptic outside X+
Proof. Note that
y(@r)'8; P(P*P)"' =y(2r)'d; P(P*P)"' +718; P(P*P) ' (@r)"

on the space C*®(I'; I%9T*(T")). From (5.9) and (4.2), we have

n—1

1@V 3 PPy =3 (@) )o( 17 02/ =Ar)

j=1
+ ((5r)’\(5r)’\'*) o ((i Y—+y/—Ar)o2y/ —Ar) + lower order terms

and

n—1

ro; PIPPY@ry =Y (6@ )o( 17 02y/=Ar)

=
+ ((5r)A’*(5r)’\) o ((i Y—+y/—Ar)o2y/ —Ar) +lower order terms.

Thus,
r(@r)\3; P(P*P)y" +7d; P(P*P)'(@r)"

=:’Z:(t;'*(m+(5rw,.~*)o(T;oz &)

(5.18)

(5.19)

(5.20)

(5.21)

+ ((5r)’\’*(5r)’\ + (Er)A(gr)’\’*) o ((i Y —y/—Ar)o24/ —Ar) +lower order terms.

(5.22)

Combining this with (5.19), (5.15) and (5.16), we get (5.18). The proposition fol-

lows.

6 The operator D(ﬁq)

Put
0p = Tyd P: C®(I'; A% T*(I")) — C™(I'; A T(I)).
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We recall that (see (4.5)) the orthogonal projection T onto Ker (8 r)™* with respect
to [ | ] is a classical pseudodifferential operator of order 0 with principal symbol

200 @r).

(See Lemma 4.3.) % is a classical pseudodifferential operator of order one from
boundary (0, g) forms to boundary (0, g + 1) forms.

Lemma 6.1. We have
(@) =0.

Proof. Let u, v e C®(I'; A% T%T)). We claim that
[TydP(I — T)ydPu | v]=0. (6.2)
We have

[Ty?P(I — T)ngu |v]= [ng(I — T)y?Pu | v] (since v € Ker (2 r)™)
=(PydP(I—-T)ydPu | Pv)y
=(@P(I—T)dPu|Pv)y (GPfeKerd[,V feC™)
=(P(I - T)ngu | a_f*Pv)M (since Pv € Domg*)
=[(I-T)y@Pu | yd; Pv).

From Lemma 3.2, we have
yﬁ_f*Pv eKer(dr)™.

Thus,
[(I—T)y@Pu|yd; Pv]=0.

We get (6.2), and hence
TydPydPu = TydPTydPu, u < C®(T;A% T*T)).

Now,
— — — - = —2
(0 =TyoPTyoP=TydPyoP=Tyd P=0.

The lemma follows. 0

We pause and recall the tangential Cauchy-Riemann operator. For z €T, let

707 : A% TH(M") — A% T(T)
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be the orthogonal projection map (with respect to (| )). We can check that
% =2(0r(2))" (0 r(2))".
For an open set U C I, the tangential Cauchy-Riemann operator:
Gy : C=(U; A1 T(I) — CX(U; A TH(I))

is now defined as follows: for any ¢p € C*(U; A%7T*(T)), let U bean opensetin M’
with UNT = U and pick ¢, € C®(U; A% T*(M")) that satisfies n%"(q)l(z)) =¢(z),
for all z € U. Then J, ¢ is defined to be a smooth section in C®(U; A%+ T*(I)):

z—%(yd ¢1(2)).

It is not difficult to check that the definition of J, is independent of the choice of
—2 —2
¢;. Since d =0, we have g, =0 and we have the following boundary complex

3y 1 — C¥(U ;A% THI)) — CO(U ;AT THD)) — --- .
Let 8_;,* be the formal adjoint of 9, with respect to (| )r, that is
@vf I W =(f13 ), fe Ce(U ;A THI)), h e C°(U ;A7 THI).

6’_b* is a differential operator of order one from boundary (0, g+1) forms to bound-
ary (0, g) forms and

a—b* e COO(U ;Ao’q T*(F)) — COO(U ;AO,qﬂ T*(F)) — e,

is a complex.
From the definition of J,, we know that

3, =2@r)""(@r)\yoP
Since the principal symbol of T is 20 (@r)", it follows that
0 = 0, +lower order terms. (6.3)

Let
3+ C¥(I5 A TH(I) - C¥(I5 A TH(D)) (6.4)

be the formal adjoint of % with respect to [ | ], that is
[%f | h]=[f| %Th], f€C™(; A*THI), h € C®(; A% T*I)).

%T is a classical pseudodifferential operator of order one from boundary (0,g+1)
forms to boundary (0, g) forms.

37



Lemma 6.2. We have
% =79 P
Proof. Let u € C*(IT'; A% T*(T)), v € C®(I'; A%+ T*(T")). We have

[Opu | v]=[TydPu | v]=[rdPu |v]
=(PydPu | Pv)y =(8Pu|Pv)y
=(Pu |3 Pv)y=Iul|yd; Pvl,

and the lemma follows.

Remark 6.3. We can check that on boundary (0, g) forms, we have
2?_/; = ya_f*P = 5_;,* +lower order terms.

Set
09 =38+ 38 : 9/ I T(0) — /(T3 A (7))

(6.5)

(6.6)

IZ](/;” is a classical pseudodifferential operator of order two from boundary (0, q)
forms to boundary (0, q) forms. We recall that the Kohn Laplacian on I' is given

by
O = 38,8, +8 8 : 7'(T; AT T(I)) — 2/(T; A T*(I)),

From (6.3) and (6.5), we see that
O'D(btl) - O.D(/;’)

and the characteristic manifold of D(ﬁf’) is

z:z+Uz—,

where X*, ¥~ are given in (5.11). (See section 3 of [18].) Moreover, O @ vanishes
s

to second order on ¥ and we have

(@) _ —@)
D/j - Db + Ll)
where L, is a classical pseudodifferential operator of order one with
o1, =0 ateach point of X.

The following is well-known (see Lemma 3.1 of [18])

(6.7)

(6.8)

Lemma 6.4. X is a symplectic submanifold of T*(') if and only if the Levi form is

non-degenerate at each point of T'.
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Let p denote the subprincipal symbol of I:lg” (invariantly defined on X)) and
let Fg(p) denote the fundamental matrix of UD%;) at p € ¥. We write tr F5(p) to

denote )’ |k]- , where £iA; are the non-vanishing eigenvalues of Fg(p). From
(6.7) and (6.8), we see that

1. 1.
p;'i‘ztI‘Fﬁ :plsa+§ter on X,

where p; is the subprincipal symbol of Dgf) and F, is the fundamental matrix of

0 . We have the following
b

Lemma 6.5. Letp =(p,&)€X. Then

1. n—1 n—1 _ n—1 N o
SEE TPy =D |l ol +( D L,(T), 1) - kZ 26040 Ly(Te, T))) oy at p,
j=1 j=1 Jk=1
(6.9)

where Aj, j =1,...,n—1, are the eigenvalues of L, and T}, t;, j = 1,...,n—1, are
asin (5.4) and (5.5).

Proof. See section 3 of [18]. O

It is not difficult to see that on X the action of %ﬁr Fg + pp on boundary (0,q)
forms has the eigenvalues

n—1
Z|Af| |0iY|+ZAj0.iY_ZAj0iY: [JI=q,
j=1 i) iel (6.10)

]:(jler;---yjq)) 15]1<]2<<]q5n_]—

(See section 3 of [18].) We assume that the Levi form is non-degenerate at p €T".

Let(n_,ny), n_+n,.=n—1, be the signature of L,. Since (Y, wo) = —1, we have
o;y>00nXt,o;y<0onXx-.
Let

1. 1.
inf(p;j + Etr Fs)(p)= inf{l; A :eigenvalue of(p; + EtrFﬁ)(p)} , PEX.

From (6.10), we see that at (p, wo(p)) € 7,

. 1. =0, =n
1nf(p/§+§trFﬂ){ o Z#ni . 6.11)
At(p)_wO(p))ez_r
1. =0, =n_
inf(p;+§trFﬁ){ o z’#n . 6.12)
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Definition 6.6. Given g, 0 < g < n — 1, the Levi form is said to satisfy condition
Y(g)atpeTlifforany|J|=q, ] =i jor--jg) 1 S 1 <jo < <j,<n-—1,we

have
n—1
PRI BN
j¢J jeJ j=1
where 4;, j = 1,...,(n — 1), are the eigenvalues of L,. If the Levi form is non-

degenerate at p, then the condition is equivalent to g # n, n_, where (n_, n,),
n_+n,=n-—1,is the signature of L,,.

From now on, we assume that the Levi form

is non-degenerate at each point of T'. (6.13)

By classical works of Boutet de Monvel [6] and Sjostrand [26], we get the fol-
lowing

Proposition 6.7. Els_g) is hypoelliptic with loss of one derivative if and only if Y(q)
holds at each point of T.

7 The heat equation for EI%’)

In this section, we will apply some results of Menikoff and Sjostrand [24] to con-
struct approximate orthogonal projection for D%”. Our presentation is essentially
taken from [18]. The reader who is familiar with [18] may go directly to Theo-
rem 7.15.

Until further notice, we work with real local coordinates x = (x1, X2,...,X2,-1)
defined on a connected open set 2 C I'. Thus, the Levi form has constant signa-
ture on Q. For any C® function f, we also write f to denote an almost analytic
extension. (For the precise meaning of almost analytic functions, we refer the

reader to Definition 1.10f [23].) We let the full symbol of D(fj) be:

full symbol of O’ ~ > _g;(x, &),
Jj=0

where q;(x, &) is positively homogeneous of order 2 — j.
First, we consider the characteristic equation for J; + Dg’)
tions (£, x,n) € C*(R, x T*)\ 0) of the problem

. We look for solu-

0
a—l/; — igo(x,y)=O([Imy|"), YN > 0,

Ylimo=(x,1)

(7.1)
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with Imy(¢,x,1n)>0.
Let U be an open set in R” and let f, g € C*(U). We write

f=g
if for every compact set K C U there is a constant cx > 0 such that
f<ckg g=<ckf onK.
We have the following

Proposition 7.1. There exists Y(t,x,n) € C®(R, x T*(2)\ 0) such that Imy >0
with equality precisely on ({0} x T*(2) \ O)U(R+ x X2) and such that (7.1) holds
where the error term is uniform on every set of the form [0, T] x K with T > 0 and
K c T*(Q)\ 0 compact. Furthermore,

Y(t,x,n)=(x,n) on%, d, (¢ —(x,n))=00n%,

Y(t,x,An)=AyY(At,x,n), A>0,

Imy(¢,x,n)= [n) %dist((x, ﬁ),z))z, >0, |n|>1. (7.2)

Proposition 7.2. There exists a function (0o, x,n) € C®(T*(Q)\0) with a uniquely
determined Taylor expansion at each point of 3 such that

For every compact set K C T*(2)\ 0 there is a constant cx > 0 such that

Im (o0, x,m) > cx || (dist((x, ﬁ), )

dy,(1p(00,x,n)— (x,n))=00n X.

If A€ C(T*(2)\0), A >0 and Alyx < min |7L]- , Where i |7Lj| are the non-vanishing
eigenvalues of the fundamental matrix of IZI(;), then the solution(t,x,n) of (7.1)
can be chosen so that for every compact set K C T*(Q2)\ 0 and all indices a, f3, 7,

there is a constant c, g, x such that
0100 3] (y(t,x,m— (o0, x, n))’ <copyxe M onRy x K.  (7.3)

For the proof of Proposition 7.1 and Proposition 7.2, we refer the reader to
Menikoff-Sjostrand [24].

Definition 7.3. We will say that a € C®(R, x T*(Q)) is quasi-homogeneous of
degree j if a(t,x,An)= Ala(At,x,n) for all A > 0.
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We consider the problem

() - i
{(@+D Ju(t,x)=0 inRyxQ (7.4)

u(0,x)=rv(x)

We shall start by making only a formal construction. We look for an approximate
solution of (7.4) of the form

u(t,x)=A(t)v(x)

A(t)v(x)= (27'5)% JJ ei(w(t,xyn)f(y:n))a(t,x’ Mv(y)dydn (7.5)

where formally

a(t,x,n~Y_a;t,x,n), a;(t,x,1) € C*R, x THS); LA™ T*(I), A% T*I)),
j=0
a;(t,x,n)is a quasi-homogeneous function of degree —j.

We apply J; + D%” formally under the integral in (7.5) and then introduce the
asymptotic expansion of D(fj)(ae“/’). Setting (J; + D(Q))(ae“ﬂ) ~ 0 and regrouping
the terms according to the degree of quasi-homogenelty We obtain the transport
equations

T(t,x,n, 0,0 )ao—O(|Iml/J| ), VN (7.6)
T(t,x,10,8,8.)a;+1(t,x,0,ao,...,a;-1) = O(|my|"), YN. '
Here
2n— 1
T(t,x,1,8,0,)= 3r—lza (x, 9" ) +q(t x,1)
where

/ 1 2n—1 52670(16,1/);)521,0(17»35’77)
t, y = ’ Py
q(t,x,n)=q(x sz)+2l];1 L0,  0x;0xi

and [;(¢,x,n) is a linear differential operator acting on a,a,,...,a;-,. We can
repeat the method of [18] (see Proposition 5.7 of [18]) to get the following

Proposition 7.4. Let(n_,ny), n-+ ny = n—1, be the signature of the Levi form
on ). We can find solutions

ai(t,x,n) € C®R; x THQ); LA THI),A* T*T))), j=0,1,..., (7.7)
of the system (7.6) with

ao(0,x,n)=1, a;(0,x,n)=0 when j >0, (7.8)
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where a(t,x,n) is a quasi-homogeneous function of degree —j, such that a; has
unique Taylor expansions on X.. Moreover, we can find

a;(00,x,m)€ CO(T*); LA THT),A* T*I))), j=0,1,...,

where a (0o, x,n) is a positively homogeneous function of degree —j, £y > 0 such
that for all indices a, 3, v, j, every compact set K C ¥, there exists ¢ > 0, such that

0/ 023 (aj(t,x,n)—aj(o0,x,m))| < ce~ ! ll(1 + [n|)-lEl (7.9)

onR; x K, n| >1.
Furthermore, forall j =0,1,...,

all derivatives of a (0o, x,n) vanish at >+ if g#n,
.. . . (7.10)
all derivatives of a (oo, x,n) vanish at X~ if g#n_
and
ao(oo,x,n)#0 at each point of X+ if g=n, 7.11)
ao(00,x,m)#0 at each pointof ¥~ if g=n_ '

Definition 7.5. Let r(x,n) be a non-negative real continuous function on T*(f2).
We assume that r(x,n) is positively homogeneous of degree 1, that is, r(x, An) =
Ar(x,n), forA>1, n| >1.For0<g<n-1and k €R, we say that

a € S¥(Ry x TH(Q); LA™ T*T), A% THI)))

if

a e C®(R, x T*Q); L(A* T*T), A% T*1)))
and for all indices @, 8, v, every compact set K C Q2 and every ¢ > 0, there exists a
constant ¢ > 0 such that

87020  a(t,x,n)| < ce'remrelb(1 4 |n|)+rlAl, x e K, [n] > 1.

Remark 7.6. It is easy to see that we have the following properties:

max(k,l)
min(ry,r2)"

(a) IfaeS’;l,begﬁz thenabeS’;ljl ,a+beS

r2

(b) If a € S* then @Tax“@nﬁa c S’:—lﬁlﬂ.

(c) Ifa; e Sy, j=0,1,2,...and k; \, —00 as j — 0o, then there exists a € Sk
such that a — 23—1 a; € S’;v, forall v = 1,2,.... Moreover, if S:C’O denotes
(Nier ¥ then a is unique modulo §7.
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If a and a; have the properties of (c), we write
o0
an~ Z a; in the symbol space 5’:0.
0
From Proposition 7.4 and the standard Borel construction, we get the follow-
ing

Proposition 7.7. Let(n_,ny), n-+ ny = n—1, be the signature of the Levi form
on ). We can find solutions

aj(t,x,n)e C®(R, x T*(Q); L(A* T*T), A% T*1))), j=0,1,...
of the system (7.6) with
ao(0,x,n)=1, a;(0,x,n)=0 when j >0,

where a;(t,x,n) is a quasi-homogeneous function of degree —j, such that for some
r >0 as in Definition 7.5,

aj(t) X, n) - aj(oorx’ n) € S;J(K+ X T*(Q)! g(Aqu T*(I‘)’AO,(] T*(r)))! J = Or ]-) veey
where
aj(0o,x,1m) € C®(T*(); LA T*(I), A% T*I))), j=0,1,...,

and a (0o, x,n) is a positively homogeneous function of degree —j .
Furthermore, forall j =0,1,...,

a;(oo,x,n)=0 inaconic neighborhood of ¥*, ifq#n,,
a;(oo,x,n)=0 in a conic neighborhood of >~, ifq#n_.

Remark 7.8. Let
b(t,x,n) € SK Ry x T*(); LA™ T*(I), A% T*(I)))

with r > 0. We assume that b(t,x,1) =0 when |n| <1. Let y € C*(R*"~!) be equal
to 1 near the origin. Put

B.(x,y)= f ( f e W m=0p ¢, x,1m)d t)x(sn)d n.
0

For u € C°(Q; A% T*(I')), we can show that
lin‘ol(f B.(x,y)u(y)dy)e C®(; A>T (I)
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and
B: Cl(&; AYT*I)) — C=( A% TH(I))

u— lslil(}(f Bs(x»y)u(y)dy)’

is continuous. Formally,
o0
B(x,y) — f (f ei(d’(t,xl})-()’ﬂ))b(l«, X, n)d t) d’?-
0
Moreover, B has a unique continuous extension

B:&'(Q; A% T*I)) — 2'(Q; A>T T(I))

and
B(x,y) € C®(Q x Q\ diag (2 x Q); Z(A* T*T), A% T*I))).

For the details, we refer the reader to Proposition 6.6 of [18].

Remark7.9. Let
a(t,x,n) € SERy x THQ); LA™ THT), A% THI))).
We assume a(t,x,n)=0, if |n| <1and
a(t,x,n)— a(oo,x,n) € SRy x TH(Q); LA™ T*I), A% THI)))
with r > 0, where
a(oo, x,n) € C™(T*(Q); L (A T*T), A% T*(I))).

Then we can also define

A(x'y):J(J (ei(w(t’x'”)_<y’”>)a(t,x,77)—ei(w(oo'x"’)_<y’”>)a(oo,x,n))dt)dn
0

(7.12)
as an oscillatory integral by the following formula:

A(x,y)zf(f ei(‘/’”’x"’)‘<y’”))(—t)(it//t(t,x,n)a(t,x,n)—i—a’t(t,x,n))dt)dn.
0

We notice that

(=)@ (¢, x,ma(t, x,n)+a(t,x,n) €S, r>o0.
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We recall the following

Definition 7.10. Let k € R. S¥ | (T*(Q); L(A> T(T'), A% T*(I"))) is the space of all
a € C*(T*(); L(A™1T*I), A" TH(I)))

such that for every compact sets K € Q and all @ € N?"~!, f € N2#~!  there is a
constant ¢, x > 0 such that

3xaagﬁa(x» 5)’ < cCapx(l+ |§|)k_|/%|+l%l, (x,8)e T*Q), x € K.

St | is called the space of symbols of order k type (3, 3).

1
2

N =

Definition 7.11. Let k € R. A pseudodifferential operator of order k type (%,%
from sections of A% T*(I') to sections of A%7 T*(T") is a continuous linear map

A:CX( A THI)) — 2'(2; ¥ THID))

such that the distribution kernel of A is

Kya=A(x,y)= J e a(x,£)as

with a € S | (T*(Q); ZL(A% T*(T), A% T*(T))). We call a(x, &) the symbol of A. We
shall Write2 ’
LY (5 A% T*(I), A% T*(I))

to denote the space of pseudodifferential operators of order k type (%, %) from
sections of A% T%(T") to sections of A% T(I').

We recall the following classical proposition of Calderon-Vaillancourt. (See
Hormander [14].)

Proposition 7.12. IfA € L% (€ A% TI),A% TT)). Then, for everys €R, A is
continuous o
A:HS (S A% THT)) — HSF(Q; A% T(ID)).

comp loc
We have the following
Proposition 7.13. Let
a(t,x,n) € SERy x THQ); LA™ T*T), A% THI))).
We assume a(t,x,n)=0, if |17| <1land

a(t,x,n)— a(oo,x,n) € SRy x T*(Q); LA™ T*I), A% THI)))
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with r >0, where
a(0o,x,m) € C®(T*(); L(A* THT), A> T*1))).

Let

1 <
A(x’y):(2n)2n_1j(f0 (el(w(t'x'n)%yyn))a(t’x’T’)_

eiWeexm=(rm) g (o0, x, r,)) d t) dn

beasin (7.12). Then
Ae LN (@ A THI), A% TH(I))

with symbol
q(x,n)= f (ei(lp(t,x,n)—<x,n))a(t, x,n)— ei(w(oo,x,n)—(x,n))a(oo’ X, 77)) dt
0
e SN (TH(Q); L(A>T(T), A% T*(I))).
Proof. See Lemma 6.16 and Remark 6.17 of [18]. O

From now on, we write

1

G f(f (ei(‘/’“""”)_(y'”>)“(t’x»77)—ei(w(c’o""”)_@'”))a(oo,x,n))d[)dn
0

to denote the kernel of pseudodifferential operator of order k —1 type (%, %) from
sections of A% T*(T") to sections of A% T*(I") with symbol

(e9]
f (ei(w(r,x.n)—(x,n))a(t, x,1) — e Weexm={rm) g (oo x, 77)) dr,
0

where a(t,x,n) and a(oo, x,n) are as in Proposition 7.13.
The following is essentially well-known (See page 72 of [24].)

Proposition 7.14. Let Q be a properly supported pseudodifferential operator on 2
of order k > 0 with classical symbol q(x,&) € C*(T*(2)). Let

b(t,x,n) €S8Ry x TH); L (A% THI), A% T*(I))).
We assume that b(t,x,n)=0 when |n~ <1 and that

b(t,x,1)—b(oo,x,m) € S" (R x THQ); L (A T*I'), A T*(T)))
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with r >0, where
b(0o, x,1) € C®(T*(2); L (A T*T), A> T*(I)))
is a classical symbol of order m. Then,
Q(ei(l/’(t’x'")_<y’”>)b(t,x, n)= ei(lp(t'x'”)_(y’”))c(t,x, n+d(t,x,n),
where
c(t,x,1m) €S Ry x TH(Q); LAY THI), A% THI))),

e, ~ 3~ Y 5 R, DD)

in the symbol space SK™™ (R x T*(Q); £L(A% T*(I), A% T*(I))),

c(t,x,1) = c(00,x,1) € S (R4 x TH(Q); L (A THI), A% T*(I)), r >0,
d(t,x,n) €Sy (Ry x TH(); LAY T*T), A% T*(I))),
d(t,x,m)—d(c0,x,1n) €S °(Ry x TH(€); L (A% THI), A% T*(I)), r > 0.

Here
c(00, x,1m) € C®(THQ); L(A* T*T), A% T*1)))

is a classical symbol of order k + m,
d (oo, x,1) €S 3 (TH(V); L(A*T*(M), A>T T*(M"))

(For the precise meaning of S|, see Definition 1.2.) and
Ra(lp; Dx)b — DA {ei¢2(l‘,x,y;n)b(t,y, T])} ’ )
y y=x

Ga(t,x,y,m)=(x =y W' (t,x,n) = (Y(t,x,n) = (L, y,n)).

Moreover, put

1 [ ” i(p(t,x,n)—
B(x,y):WJ (J[ (ez(w(, ) <y’”>)b(t,x,n)—

e~ (oo, x,m))d 1t ) iy,

1 [ ” i(y(t,x,n)—

e eren=(re(o0, x,m))d1t ) dn.
We have
QoB=C.
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As in section 1, we put
I'y={z€l;Z(q)fails at z}
and set
Y (q)={(x,§)eX; Z(g) failsat x}, X" (q)={(x,&)eX*; Z(q) fails at x}.

From Proposition 7.7 and Proposition 7.14, we can repeat the method of [18] to
get the following

Theorem 7.15. We recall that we work with the assumption that the Levi form is
non-degenerate at each point of I'. Given q,0<qg < n— 1. Suppose that Z(q) fails
at some point of I'. Then there exist

Ae L] (T; A% TI), A% 1)), B-, By € LY, (T; A% T*(I), A% T*(I"))
2’2 22

such that
WE'(Kp_)=diag(X"(q) x ¥7(q)),
WF'(Kp,)=diag(X"(n—1-gq)xX*(n—1-¢q)) (7.20)
and
ADY +B_+B,=B_+ B, +0)A=1, (7.21)
3 B_=0, 35 B_=0, (7.22)
3B, =0, 35 B, =0, (7.23)
B_=B'=B?, (7.24)
B,=B! =B, (7.25)

where B' and B! are the formal adjoints of B_ and B, with respect to [ | ] respec-
tively and

WF'(Kp )={(x,&,y,m) € T* ) x T*(I); (x,&,y, —1) € WF(K3 )}

Here WE(Kp_) is the wave front set of Kp_ in the sense of Hormander [13]. See
Definition A.4 for a review.
Moreover near diag(I'; x I'y), Kp_(x,y) satisfies

o0

KB(x,y)EJ e ip(x,y, t)dt
0
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with
b(x,y,t) €Sy (T x T'x]0,00[; L (A Ty*(F),AO"’ T:(I)),

b(x,y,t)~ Z bj(x,y)t" 7 in STTHI x Ix]0,00[; L(A* Ty (1), A>T TH(I),

=0
bo(x,x)#0 if x €Iy, (7.26)

(A formula for bo(x, x) will be given in Proposition 7.17.) where Sy, m €R, is the
Hérmander symbol space (see Definition 1.2),

bj(x,y)€ C¥(T x I3 LA T/(T), A% TH(D))), j=0,1,...,

and
¢-(x,y)€C*(I xD), (7.27)
¢_(x,x)=0, (7.28)
¢-(x,y)#0 if x#y, (7.29)
Im¢_(x,y)>0, (7.30)
d.¢_#0, d,¢_#0 where Im¢p_=0, (7.31)
dx (X, )=y = —wo(x), (7.32)
dy@—(x,¥)|x=y = wo(x), (7.33)
P-(x,y)=—¢_(y,x). (7.34)

Similarly, near diag(I'y,—1—¢ X I'—1-4),

Kg, (x,y)= f el 9+ e(x,y, t)dt
0

with
c(x,y,t) €S}, (I x I'x]0,00[; L (A Ty*(F),AO'“’ (1)),

c(x,y,1) ~ch(x,y)t"‘1‘f in S}3'(I'x I'x]0,00[; L (A T;(I), A% T(I))),

j=0

where
c(x,y) € CX(T x T; LN TA(T), A T(IT)), j=0,1,...,

and —$+(x,y) satifies (7.27)-(7.34).
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We only give the outline of the proof of Theorem 7.15. For all the details, we
refer the reader to section 7 and section 8 of [18]. Let

a;(t,x,m) eS8, Ry x THQ); LAY TI), A% T*I), j=0,1,...,

and
a;(00,x,m)€ CO(T*Q); LA THI),A* T*I))), j=0,1,...,

be as in Proposition 7.7. We recall that for some r >0
aj(t) X, n) - aj(ooyxr T]) € S:J(K+ X T*(Q)) g(Aqu T*(I‘)’Ao,l] T*(r)))) ] = 0) ]-) tees

Let

a(o0,x,m)~ Y _a;(00,x,7) in 8¢ (T*(Q); LNIT(I),ATI)).  (7.35)
j=0
Let
a(t,x,n)~ > a;(t,x,n) in SYR, x THQ); LA T D), AITD)).  (7.36)
j=0

We take a(t,x,n) so that for every compact set K C Q and all indices a, 3, 7, k,
there exists ¢ > 0, ¢ is independent of ¢, such that

k
&/82aP (a(t,x,m)— Y _a;(t,x,m)| < c(1+]|n|) <11l (7.37)

=0
where t eR,, x €K, )77| > 1, and
a(t,x,n)— a(oo,x,n) € ARy x TQ); LAY T*I), A T*I)))

with r > 0.
Choose y € CP(R**1) so that y(n) = 1 when |77| < 1 and y(n) = 0 when
|n| > 2. Set

1 o
Alx,y)= Wf (L (e’(w(t’x'”)_<y”7))a(t,x,n)—

ei(w(oo,x,n)—(y,n))a(oo, X, 77)) (1—yx(n))d t) an. (7.38)

Put

B(x,y)= J eitveoxm=(r) g (o0, x,n)dn. (7.39)

(27-5)211—1
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Since a(t,x,n), j =0,1,..., solve the transport equations (7.6), we can check that
B+O)A=1,

I:l%” B=0.
From the global theory of Fourier integral operators (see Melin-Sjostrand [23]),
we get
K&gE&Kﬁf*‘Kh+,

wher Kp_ and K, are as in Theorem 7.15. By using a partition of unity we get the
global result.

Remark7.16. For more properties of the phase ¢_(x, y), see section 8 and section
9 of [18].

We can repeat the computation of the leading term of the Szeg6 projection
(see section 9 of [18]), to get the following

Proposition 7.17. Letpel'y,q=n_. Let
Zl(x)v---;zn—l(x)

be an orthonormal frame of A T,(T), for which the Levi form is diagonalized at
p. Letej(x), j =1,...,n—1, denote the basis of A>' TX(I), which is dual to Z;(x),
j=1,...,n—1. Let Aj(x), j = 1,...,n — 1, be the eigenvalues of the Levi form L,.
We assume that

Ai(p)<0 if 1<j<n_.

Then

j=n_

bo(p,p)=5 )] [Aap)| 7 T T st espy,

=1
where by is as in (7.26).

In section 8, we need the following

Proposition 7.18. Suppose that Z(q) fails at some point of I'. Let B_ be as in
Theorem 7.15. Then,
ydPB_=0. (7.40)

Proof. Inview of Theorem 7.15, we know that

TydPB.=3;B_=0, yd; PB.=2J; B_=0.
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Combining this with (5_6f* + a_f*E)P =0, we have
y9; PYoPB_=—y0Pyd; PB_=0

and
vd; P(I-T)ydPB.=vd; PyoPB_—yd, PTydPB_=0. (7.41)

Combining this with (4.6), we get
v, P(P*P)"'(@r)'Ryd PB_=0.

Thus,
r(@r)'d; P(P*P)"(2r)'Ryd PB_=0. (7.42)

In view of Proposition 5.2, we know that
y(@r)'8; P(P*P)™" : C™(T; I% T*(M')) — C™(T; I% T*(M")
is elliptic near X-, where I*9T*(M’) is as in (5.17). Since
WEF'(Kp_) C diag(X™ x X7),

we get
(@r)"RydPB_=0.

(See Proposition A.6 and Proposition A.7.) Thus, by (4.6),
(I-T)ydPB_=0.

The proposition follows. O

8 The Bergman projection

Given g, 0 < g < n— 1. In this section, we assume that Z(q) fails at some point of
I'and that Z(g—1) and Z(g+1) hold at each point of I'. In view of Proposition 4.4,
we know that

9 : c*(M; A% T*(M’)) — D9,

Put
K=yO9p: C®(; A% T*I)) — C=(I'; A% T*(I)). (8.1)

Let KT be the formal adjoint of K with respect to [ |]. That is,

K':9/(T; A% T*1))— 2/'(T; A% T1))
[K'u |v]=[u|Kv], ue2'(T; A% T*I)), v e C®T; A% T*I)).
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Lemma 8.1. We have
K'v=Ku,

v e C®(; A% T+I)).

Proof. For u, v e C®(I'; A% T+T)), we have

[Ku | v]=[y'"Pu | v]

={1Pu | Pv)y
=(Pu |I9Pv)y
=[u | Kv].
Thus,
K'v=Kuv.
The lemma follows. O]

We can extend K to
9'(T; A®T*I) — 2'(I'; A% T*I))
by the following formula
[Ku|v]=[u|K'v], ue2'(L; A% T*I)),veC®T; A% THI)).
Lemma8.2. Letu € 2'(I'; A9 T*T)). We have
WF(Ku)cx™.
Proof. Let u € 2'(I'; A9 T*(I')). We have
(r(@r)Y"*@ P)(Ku)=0.

In view of Proposition 5.1, we know that y(gr)’\v*gp is elliptic outside >~. The
lemma follows. O

Lemma 8.3. Let B_ be as in Theorem 7.15. We have
B_K=KB_=K.
Proof. Let A, B_ and B, be as in Theorem 7.15. In view of Theorem 7.15, we have

B_+B,+A0) =1.
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We may replace B, by I — AD%” — B_ and get

B_+B,+AO) =1.

It is easy to see that
Oy K =o0.

Thus,
K =(B_+ B, +A0J)K =(B_+ B,)K.

Let u € 9'(I'; A% T%T')). From Lemma 8.2, we know that
WE(Ku)C X,
Note that
WF'(Kp, ) C diag(X* x X7).

Thus,
B.Ku e C®,

so B, K is smoothing and
(B_+ B,)K=B_K.

From this and (8.2), we get
K=B_K

and
K=K'=K'B'=KB._.

The lemma follows.

(8.2)

O

We pause and introduce some notations. Let X and Y be C*® vector bundles

over M’ and I respectively. Let
C,D:C*(T;Y)— 9'(M; X)
with distribution kernels
Kc(z,y),Kp(z,y) € 2'(M xT'; £(Y,, X,)).

We write
C=D mod C®(M xTI)
if
Kc(z,y)=Kp(z,y)+ F(z,y),
where F(z,y)€ C°(M xT; 2(Y,,X.)).
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Lemma 8.4. We have
O9pB_=1T9P mod C*(M xT).
Proof. From Lemma 8.3, we have
K=yIYP=KB_=y“PB_.

Thus,
9P =Pyl P = PyTI' PB_ mod C®(M xI).

We get (8.3).

Put
Q=PB_T(P*P)'P*: C®(M; A* T*(M’")) » C*(M; A* T*(M")),
where T is as in (4.5).
Proposition 8.5. We have
Q=0 mod C®(M x M).

Proof. We have

H(q)Q —119pRB_ T(p*p)—lp* = H(q)PT(P*P)‘lp* mod COO(M y M)

Here we used (8.3). From (8.5) and the first part of (4.10), we get
MY9Q =19 mod C*(M x M).
From Theorem 3.7, we have

M9Q = (I — 2 NW@thg — 5N(q_1)5*)Q,

(8.3)

(8.4)

(8.5)

(8.6)

where N+ and N@-V are as in Theorem 3.6. From (7.40), (7.22) and Lemma 6.2,

we see that
2Q=0, 2 Q=0 mod C®(M x M).

Thus,
M9Q =(I -3 N3 —aNUI3YQ=Q mod C®(M x M).

From this and (8.6), the proposition follows.
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Let x =(x,...,X2,-1) be a system of local coordinates on I" and extend
X1y X2p—1
to real smooth functions in some neighborhood of I'. We write

(51; ey §2n—1» 9)
to denote the dual variables of (x1,...,X2,_1, 7). We write
z2=(X1,...,X2n-1,7), X=(X1,...,X20-1,0)

and
gz(gl’---’§2n—l)’ g:(glr---’ghl—l’ 9)

Until further notice, we work with the local coordinates z = (x,r) defined on
some neighborhood of p €T
We represent the Riemannian metric on T(M’) by

2n
h= Z hjw(2)dx;®dxi, dx.,=dr,
jok=1

where hj i (z)=hj(z), j, k=1,...,n,and (hj,k(z))Kj <o is positive definite at
each point of M’. Put o

(hj,k(z)) Islj,kSZn = (hj,k(z))lsj,kSZn :

It is well-known (see page 99 of [25]) that

1 02 A L. 02
Dg?) =-3 (th,Zn(Z)ﬁ 42 ; hzw(z)a rox, + T(r)) +lower order terms, (8.7)
where
2n—1 2
T(r)= Ik . :
(r) Z e (8.8)
J,k=1
Note that
T(0) = Ar + lower order terms (8.9)
and
22" (x)=1, h*™/(x)=0, j=1,...,2n—1. (8.10)

We let the full symbol of D(fq) be:

2
full symbol of I:lgf) = Z qi(z,2)
=0

where ¢;(z,{) is a homogeneous polynomial of order 2 — j in {. We have the
following
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Proposition 8.6. Let ¢p_ € C*(I" xI') be as in Theorem 7.15. Then, in some neigh-
borhood U of diag(I';, xI'y) in M’ x M’, there exists a smooth function

¢(z,y) € C*(M xT)( V)

such that

P(x,y)=¢-(x,y),

Im¢ >0,

d.p #0, dy<,57é0 whereIm ¢ =0,

Im¢ >0 if r #0, (8.11)
and

qO(Zr ¢;)

vanishes to infinite order on r = 0. We write ﬁ(z) to denote % acting in the z
variables. We have

o - .

T @ =i V=0 (x,(¢-).) (8.12)

in some neighborhood of x =y, where

Re \/_O'Ar(x’ (¢—);) > 0.

Proof. From (8.7) and (8.8), we have

2n—1

Qolz )= 510+ Y M @0E +8(2,E),

j=1

1
glx, &)= —504m (8.13)

where g(z, &) is the principal symbol of —% T(r).
We consider the Taylor expansion of ¢y(z, {) with respect to r,

1 1 = & .
qo(z,0)= 592 — 50 +;g,~(x,§)rf +;sj(x,g)0 rl. (8.14)

We introduce the Taylor expansion of ¢7 (z,y) with respect to r,

P(2,y)=-(x,1)+ D _¢;(x, 7).
1

Let

P1(x,y)=—iy/ =0 (x,(P-).).
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Since (¢_), |x=y = —wo(x) is real, we choose the branch of \/—O'Ar(x,(qb_);) SO
that

Re/—oa (x,(¢-),)>0
in some neighborhood of x =y, r =0. Put
$1(2,y)=-(x,y)+ri(x,y).
We have
CIO(Z,((Pl)/Z) =0(r).
Similarly, we can find ¢,(x,y) so that
aolz,(92),) = O(r%),

where az(z,y) =¢_(x,y)+rpi(x,y)+r?¢.(x,y). Continuing in this way we get
the phase ¢(z, y) such that

o(x,y)=¢_(x,y)
and
a(z, ")

vanishes to infinite order on r = 0. The proposition follows. O
Remark 8.7. Let (E(z,y) be as in Proposition 8.6 and let
d(z,y, 1) € S}y (M x Tx]0,00[; LA™ T"(M"), A9 T (M")))

with support in some neighborhood of diag(I'; x I';). (For the meaning of the
space STO(M x I'x]0,00[; L (A% Ty*(M’),AOﬂ T*(M"))), see Definition 1.2.) Choose
a cut-off function y(t) € C*(R) so that y(¢#) =1 when |f| <1 and y(¢) =0 when
|t| > 2. For all u € C®(I'; A% T*(M")), set

(Dgu)(Z)sz N d(z,y, )y (e)u(y)dtdy.
0

Since Im 5 >0andd, 5 # 0 where Im (,5 =0, we can integrate by parts in y, ¢ and
obtain

lim(D; u)(z) € C*(M; N> T*(M")).

£—

This means that
D=limD, : C*(T; A% T*(M')) — C®(M; A% T*(M"))
£—

is continuous. Formally,

D(z,y)=f e d(z,y, ).
0
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Proposition 8.8. Let

B_(x,y)=J e!9-oNip(x,y, t)dt
0
be as in Theorem 7.15. We have
PB_(z,y)= f e 9= h(z,y, )dt mod C*(M xT)
0

with

b(z,y, 1) €73 (M xT'x]0,00[; L(AM T (M), A T (M),

b(z,y,1) ~Z5j(z,y)t”‘1‘f

j=0

in the space S}y (M x T'x]0,00[; £ (A% TH(M"), A>T T;(M"))), where
bjz,y) € C*(M xT; LA T (M), A T} (M), j =0,1,....
Proof. Put

b(x,y,t)~ Y _bj(x,y)t"
j=0

and formally set

blz,y, D)~ Y bjlz,y)e" .

j=0
We notice that

B_(x,y)€ C®( xTI'\ diag(l'; X I'y); L (A Ty*(l"),AO"’ T(I)).

For simplicity, we may assume that b(x,y, t) = 0 outside some small neighbor-
hood of diag(I'y x I';). Put

07 (b(z,y, 1)e'?") = &z, y, 1)e™?".

From (7.29) and (8.11), we know that near diag(I'; x I';), $(z,y) = 0 if and only
if x =y, r =0. From this observation, we see that if ¢(z, y, t) vanishes to infinite
order on diag (", x T';) x R, we can integrate by parts and obtain

lin&f e ¢(z,y, 1)y (et)dt =0 mod C*(M xT),
0
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where y(t) is as in Remark 8.7. Thus, we only need to consider the Taylor ex-
pansion of b(z, y,t)on x =y, r =0. We introduce the asymptotic expansion of
Dgﬁ)(FBe"‘ﬁf). Setting

O (be™)~0
and regrouping the terms according to the degree of homogeneity. We obtain the
transport equations

T(z,y,2:)bo(z,y)=0 - (8.15)
T(Z’y)az)bj(zyy)-i_lj(Z!yrbO(Z’y)""’bj_l(z’y)):()’ ‘] = 1’2’ .
Here
2n— 1
T(z,y,0.)= —zZa (2.9 )—j" Lz, ! )—
+R(z,y),
where

R(z,y)=q(z, ¢, )+ 52

Z aqu(Z ¢ ) 62¢ Xop =T, 5211:9»

3§J8§k 8x18xk’

and /; is a linear differential operator acting on %o(z, Y- ,15 i-1(z,¥).
We introduce the Taylor expansion of bo(z, y) with respect to r,

bo(z,y)=bo(x,y)+ Y _by(x,y)r'.
1

Since
5q0| _
39 r=0 —
and
O limo=—iy/—0n(x,(9-).),
we have

e CX A
in some neighborhood of x = y. Thus, we can find by(x,y)r such that
T(z,y,8:)(bo(x,y)+ by(x,y)r)=O(Ir])

in some neighborhood of r =0, x = y. We can repeat the procedure above to find
b3(x,y) such that

T(Z,y,32)(bo(x,y)+zb§(x,y)rk) =0(Ir")

k=1
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in some neighborhood of r =0, x = y. Continuing in this way we solve the first

transport equation to infinite order at r =0, x =y.

For the second transport equation, we can repeat the method above to solve
the second transport equation to infinite order at r =0, x = y. Continuing in this

way we solve (8.15) to infinite order at r =0, x =y.
Put

§(z,y)=fooei‘5(z'y”z(z,y,t)dt.
0
From the construction above, we see that
D(]?)E =0 modC*(M xT), yB=B_.
It is well-known (see chapter XX of [14]) that there exists
G : C®(M; AY T*(M")) — C*(M; A>1 T*(M"))

such that
GO/ +Py=1 on C*(M; A*T*(M")).

From this and (8.16), we have
B=(6O{"+ Py)B=PB_ mod C*(M xT).
The proposition follows.

From Proposition 8.8, we have

o0

(8.16)

(8.17)

C(z,y)::PB_T(P*P)_I(z,y)Ef ei‘g(z'y”c(z,y,t)dt mod C®(M xT)

0

with

c(z,y,1) €S} (M x T'x]0,00[; LA T (M"), A* T;(M"))),

c(z,y,t)Nch(z,y)t”_f

=0
in the space S} (M x I'x]0,00[; £ (A% TA(M"), A9 Tx(M"))). Let
C*: C®(M; A% T*(M")) — 2'(T; A% T*(M"))

be the operator defined by

(C*'u | v)r=(u|Cv)y, ucC®M;AT*(M)),veC®T;AT(M)).
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The distribution kernel of C* is
C'(y,z)= f e‘ig(z'y”c*(y, z,t)dt mod C®(I" x M) (8.18)
0

where
c*(y,2,1) €S} (' x Mx]0,00[; L (A T}(M"), A* T; (M),
(2, Dulv)=(lcy,z, 1)), pue A1 T(M'), v € AT (M),

c*(y,z,t)~ Z c;f(y, Z)t"I
=0

in 87, (" x M x]0,00[; L (A% THM’), A% Y;*(M 7))). The oscillatory integral (8.18) is
defined as follows: Let u € C*(M; A% T*(M")). Set

(Ciu)y)= J f e""g(z'y)‘c*(y,z, Hy(et)u(z)dtdz,
0

where y is as in Remark 8.7. Since dx(g # 0 where Imcﬁ =0, we can integrate by
parts in x and ¢ and obtain

hnol(c:u)(y) e C®(T; A% T*(M)).
This means that
C*= lin(} Cr: C®(M; A™ T*(M")) — C(T; A> T*(M"))

is continuous.
We can repeat the proof of Proposition 8.6 to find

¢(z,w)e C®(M x M)

such that
¢(z,y)=9(z.y),
Img¢ >0,
Im¢ >0 if (z,w)¢l xT’
and
LIO(w,—(,b w)
vanishes to infinite order on r = 0. Since ¢_(x,y) = —¢_(y,x), we can take

¢(z, w) so that B
¢(Zr LU) = —¢(LU,Z).
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As in the proof of Proposition 8.8, we can find
a*(w, z, 1) € 8} (M x M x [0,00[; LA T:(M"), A% T (M")),

o0
a‘(w,z,t)~ Z a}’f(w,z)t”‘j
=0

in S} (M x M x]0,00[; £(A% T*(M"), A% T*(M"))), such that
a'(y,z,t)=c(y,z,t)

and
O (a*(w,z, t)e " *Ew))

vanishes to infinite order on diag(I'y x I';) X R.. From (8.17), we have
PC*w,z)= f e 19EW g*(y 2 )dt mod C°(M x M).
0

Thus,

o0

CP*(z,w)=PB_T(P*P)"'P*(z,w) = f e Wl gz w, t)dt mod C*(M x M),
0

a(z,w, 1) €S} (M x M x [0,00[; L(A* T (M"), A T(M"))),

o0
a(z,w,t)NZaj(z,w)t"‘j

j=0

in the space S} (M x M x]0,00[; £ (A% T*(M"), A% T*(M"))). From this and Propo-
sition 8.5, we get the main result of this work

Theorem 8.9. Given q,0 < q < n—1. Suppose that Z(q) fails at some point of I
and that Z(q — 1) and Z(q + 1) hold at each point of I'. Then

Ky (z, w) € C®(M x M\ diag(T'y xTp); L(A®T*(M'), A> T(M"))).

Moreover, in a neighborhood U of diag(I'; xI'y), Knw(z, w) satisfies
Kya(z, w)= J e ?EWr gz w, t)dt mod COO(Uﬂ(M x M)) (8.19)
0
with

a(z, w, )€ S (U[|(M x M)x]0,00[; L (A T;,(M"), A% T;(M))),
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o0
a(z,w,t)NZaj(z, w)t"

j=0
in the space S ,(U( (M x M)x]0,00[; £ (A% T*(M"), A>9 T*(M"))),

ao(z,2)#0, z €Ty,
where

aj(z,w)€ C¥(U[ (M x M); LA™ T;,(M"), A"/ T;(M")), j =0,1,...,

and
Pz, w)e C“(Uﬂ(ﬁ x M)), (8.20)
¢(z,2)=0, ze€ly, (8.21)
¢(z,w)#0 if (z,w) ¢ diag(l'y, xI'y), (8.22)
Im¢ >0, (8.23)
Im¢(z,w)>0 if (z,w)¢T xT, (8.24)
Pz, w)=—p(w,2). (8.25)

Forp €Ty, we have
O'D(fq)(Z, d,.¢(z,w)) vanishes to infinite order at z=p,
(z,w) is in some neighborhood of (p, p) in M’. (8.26)
Forz=w, z €l'y, we have
d,p =—wo—idr,
dyp=wo—1idr.

As before, we put

B_(x,y)= J e!9-oVip(x,y,t)dt,
0

b(x,y, 1)~ D bj(x,y)t"

j=0

and

o0

Kpa(z, w)= f ePEWla(z, w,t)dt
0

o0
a(z,w,t) NZaj(z, w)t" .

Jj=0
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Since I19) = PB_T(P*P)"1 P,
(P*P)"! =24/—Ar+lower order terms

and
T =2(0r)"*(0r)" +lower order terms,

we have
ao(x,x)=20 ;—x-(x,(¢-, (x,x)bo(x, )2(0 r(x))**(9r(x))", x €T
Since (¢, (x,x) = wo(x) and [[wol| = 1 on T, it follows that
ao(x,x) = 4bo(x, )@ () (D r(x))". (8.27)

From this and Proposition 7.17, we get the following

Proposition 8.10. Under the assumptions of Theorem 8.9, letp €1'y, g =n_. Let
Z\(2),...,Zn1(2)

be an orthonormal frame of A\°T,(T), z €T, for which the Levi form is diagonal-
ized at p. Letej(z), j =1,...,n —1 denote the basis of \>' T*(I'), z € I, which is
dualtoZi(z), j=1,...,n—1. Let Aj(z), j = 1,...,n — 1 be the eigenvalues of the
Leviform L,, z €". We assume that

Ai(p)<0if 1<j<n_.

Then

j=n_

APl 2( [ T ey e} () o@r(p)*@r(p). 8.28)

j=1

ao(p, p)=|M(p)|-

9 Examples

The aim of this section is to illustrate the results in some simple examples. First,
we will show that when M’ is Kihler (see below), then F@ is injective for any g,
0 < g < n. We recall that F9 is defined by (1.9).
As before, let g = Z]n 1 &j.kdzj ® dz; be the Hermitian metric on A T(M’)
and let .
w=1I Z gj,kdzj/\dik

jik=1
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be the associated real (1,1)-form. We call g a Kdhler metric if dw = 0. w is
then called its Kdhler form. A complex manifold endowed with a Kdhler metric is
called a Kdhler manifold.
Let
0 : C®(M'; APIT*(M')) — C®(M'; APTHIT*(M))

be the part of the exterior differential operator which maps forms of type (p, q)
to forms of type (p + 1, g) and we denote by

0F 1 C®(M; APTHITH(M") — C™(M'; AP1T*(M"))

the formal adjoint of J. The following is well-known (see page 113 of Morrow
and Kodaira [25])

Proposition 9.1. If M’ is Kéihler, then
00;+0;0=00 +5r 0
on the space C*(M’; AP4T*(M’)),0< p,g < n.
Note that

Ofu=0, ueC*M; A T(M")), du=0, uecC®M;A""T(M"))

and
3_f*u =0, u € C®M’;AP°T*(M")), du=0, uecC®M;A"IT*M)).

Now, we assume that M’ is Kdhler. We claim that F¢ is injective, for any ¢,
0<g<n.Givengq,0<gq <n. Let u € Ker F9). Then, u € C®(M; A% T*(M")),
ou=0, ﬁ_f*u =0and yu =0. From Proposition 9.1, we can check that

Ju=0.

We work with local coordinates z =(z;,...,z,) defined on some neighborhood of
p €I'. We write

u=Zu]dZ], ]:(jl;---;jq)’ 1§j1<j2<“'<qun'
J

Since du =0, for any J,

% =0, j=1 n

2z, , N
uy is holomorphic and yu; = 0. Thus, u; =0 and consequently u = 0. We have
proved the claim.
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9.1 Complex projective space
For a point (£, &1,...,&,) € C"1\(0,0,...,0),
¢=1{(A80, AC1,...,A,); A€CY

is a complex line through 0 = (0,0,...,0). The collection of all complex lines
through 0 is called the n-dimensional complex projective space and denoted by
CP". A point & of CP" represents a complex line

¢ =1{(A&o,...,A&y); A€CL.

&o,...,&, are called the homogeneous coordinates of £ € CP” and denoted by
&=(&o,...,En)- The equality

&y &) =(80r---,En)
means that £{ = A&y, ..., &) = A&, for some A #0, A € C. Put
Uj={&=(80,...,Ea) €CP"; §; #0}. 9.1)

¢ € U; isrepresented as

S I R S B
5—(§j,..., 3 1, 3 ,...,gj).

The map

zf:5—>zf(g):(?,...,%,%,...,?
J J J J

:('Zl)---’zn) (92)

gives local coordinates on U; where %; = z/(U;)=C". If

2=(21,...22) €2 (U U, j>k,

then z; # 0. The coordinates transformations

Tk,j ZZj(UjﬂUk)—’ Zk(UjﬂUk),

z3 Zk-1 Zk+1 zji-1 1 zjn
(z1yeer2n)—(—>..., , Yoo y—>
Z Z Zk Zk Xk Zk

Zn
ey —) (9.3)
Zk

are biholomorphic. CP” is a complex manifold obtained by glueing the (n + 1)-
copies of C" via the isomorphisms (9.3).
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On U,, put

1
[k
Now, we work with local coordinates

gO &:v—l §v+1 gn

av(&)=—=0Ef +--+1Eal), E=(Eo,..., En)- (9.4)

z2=(z1,...,2,)=(=—,...,—, ey — 9.5)

: &L ETTE,

defined on U, . Then,
a,(z)= 1+Z|Zj~2.
j=1
We can check that .
0dloga,(z)= Y gjxdz; AdZy,
i k=1

where 1

gik= m(av(z)5j,k —Zjz). (9.6)

Here 6 =0if j #k, 6;x =1if j = k. The Hermitian metric Zﬁkil gixdz;®dzy
is easily seen to be positive definite. Note that

2 <
ew(z)| a,(z), ewzg—y on UVﬂUM.

ey, is a non-vanishing holomorphic function. Hence

a,(z)=

8510gav(z) = 85logaﬂ(z) on U, ﬂ Uy.

Thus, 27 v—1 8j.kdz; ®dzy gives a Hermitian metric on CP”. Its associated real
(1,1)-form is given by
w= i@?logav(z)
= idglogav(z) on U,,
since d = 8 +0. Therefore dw =0 and Z;l,k:1 gjxdzj®dzy is aKdhler metric on
CP~.
Now, we fix the Hermitian metric above on CP”. Let
1

I35
where £ =|Eo|* +--+|E, %, A; >0, j=0,1,...,n. Put

HE) = =5 (olEof = A [EL == Ay [Ex | + Aot [Erga [+ A €I,

Eko

[={SeCP%r(§)=0}, M={£cCP" r(£)<0}.

It is easy to see that dr # 0 at each point of I'.
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Lemma 9.2. I is connected.

Proof. Let&=(&o,...,&x), &' =(&,..., &) €. We have

DolEol* + A1 IEL +++ -4 Ak, | Ex,

NZ:ZAkMJ~§%+42+”'"+A%|€nﬁ

and
2

2 2 2 2
AO +)Ll +"'+)Lk0 :Ako+1 ++An

<o 3 &k,

Since C is connected, we can find continuous curves

<

/
gk()—‘rl

cj():[0,1] = C, j=0,1,...,n,

such that
cj(0)=¢&;, cj(l)zé’;., j=0,1,...,n.
Put , )
PIRILI0 a0
Ao [Chpa (O] 4 A len(0)?
Then,
d0)=d(1)=1.
Put
c(t):[0,1]-T
t = (co(t),..., (), d(t)Chys1(2), ..., d(t)cn(1)).
Then,
c(0)=¢, c(1)=¢".
The lemma follows. O]

Now, we work with local coordinates

51 52 gn
21y 2p)=(=,=—,...,=—
G 2=l e,
defined on Uj,. Then,
1

ao(z)

2 2
(=0 = Alz1l’ == Ak |2k |+ At |Zaoir| -+ Anlzal),

r(z)= Zky

2
where ay(z) = 1 +Z}1:1 |zj| CLetU=Y,_, uka%k, V= Z;lzl Uia%, € AVOT,(T),
p €I'. From (2.33), we have

k() n

— 1 _ —
Lp(U,V):W(—Z)L]‘uJ‘Wj-F Z Ajujwj). (97)

j=1 j=ko+1
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We notice that U = 27:1 U= € AYOT, (") if and only if
]

;or
ﬁz]

ZA z]u]+ZA zZjuj=0, p=(z1,...,2,). (9.8)

j=1 ko+1

Proposition 9.3. The Levi form is non-degenerate at each point of I and we have
I'=T,. That is, the number of negative eigenvalues of the Levi form is k.

Proof. Let p =(z1,...,2,) €l and let U = Z}ll Uy € NWT,(I). If L,(U,W)=0
J
for all W € AT, (T), from (9.7), (9.8), we see that

(ur,...,un)=c(z1,...,2,), ceC.

From (9.8), we have

—ZX z]u]-l-ZA izjuj=c(— ZA |z]| +ZA |z]|) Aoc =0.

ko+1 ko+1

Thus, ¢ =0 and consequently the Levi form is non-degenerate at p.
We compute the signature of the Levi form at

[
20=(0,...,0, A—Z)er.

From (9.8), we have
-1
AT, ()= Z ,uje(C j=1,...,n-1

For U = Zk 1ukazk V= Z eAlOTZO(F) we have

1
LU= C ST’ ZA e 3 )

j=ko+1

Thus, the number of negative eigenvalues of L,, is ky. The proposition follows.
O

From Theorem 1.3, we know that if g # k,, then

Kijo € C*(M x M; LA™ Ty (M), A>T T;(M)).
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If g = ko, then Z(q — 1) and Z(g + 1) hold at each point of I'. From Theorem 1.3,
we have

Ko = f e @iz w, t)dt mod C*(M x M)
0

with
b(z,w,t)€S] O(M><M><]0 0o[; Z(A‘”’T*(M’) Aho*(M’)))

b(z,w,1) ~ij(z, w)e"
j=0
in the space S} 0(M x M x]0,00[; L (A% T* (M), A>1T*(M"))),
bo(z,2)#0, z€I.
We continue to work with local coordinates
gl 52 gn

(Zl,...,Zn):(a,a,...,a)

defined on U,. We study the leading term of Ky« at

A
20=(0,...,0, A—:).

It is straight forward to see that

g(z0)= Z o der®dz O)Zdzn@)dzn,

ld r(z0)||2 =2A,A0

and )
or(zo)= mv AoAndZy,
where
At
ao(zo) = P
We can check that

7 0
\V ao(Zo)a_ yeeer Y/ 610(20)az )

is an orthonormal frame of A% T, (') and the eigenvalues of L, are

1 1 1 1

Ay, — Ako» Akytlrener ————An
ldr(zo)l”" ldr(zoll”* lldr(zo)ll " lld r(zo)|
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Put
1 1

—dEl,...,en_l =
vV ao(Zo) \V aO(ZO)

From Proposition 1.7, we have

e = dEn_l.

ko
bo(20,20) =212l 1Aualldr(zo)l "7 (] e o(@r(zo))@r(zo))"
j=1
9.2 Spherical shell in C”
Consider the spherical shell

M:{ZE(C”;R0<|Z|<R1})

where 0 < Ry < R;, n >3 and

2=V |21+ +|zal>

We take the Hermitian metric

g = zn: de®dzk

k=1

on A°T(C"). The Levi form of
I'={z€C";|z|=Ro}| iz €C"; |z|=Ri}

has n — 1 positive eigenvalues at the outer boundary but n — 1 negative eigenval-
ues at the inner one. We consider (0, # — 1) forms. Since n >3, Z(n —2) and Z(n)
hold at each point of I'. From Theorem 1.3, we know that

Kpo-n € C¥(M x M\ diag(T'y—1 X Ty ); LAY TH(C™), A% THT™))).

In a neighborhood U of diag(T";,—; X I';,—1), Ky-n(z, w) satisfies
Kyon-n(z, w)= f e ?EWip(z w, t)dt mod Cw(Uﬂ(M x M)) (9.9)
0
with

b(z, w, 1) €8] (U( (M x M)x]0,00[; LA T(C"), A" TH(C™)),

b(z,w,t)~ Y _bj(z,w)t"”

j=0
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in the space S} (U (M x M)x]0,00[; £L(A%"~1T*(C"),A%"~1 T*(C"))),
bo(z,2)#0, z€l',1.

Put
r(z)=v2(Ry—|z|) near I',_,.

We have dr =1 and

Fr=—

1
z21dz\+--+2,dz,).
\/Z|z|( 142, )

We consider
p :(0""’0’R0)€rn—1-

We can check that

0 0

0z, 0Zn

is an orthonormal frame of A%! T,,(T") and the eigenvalues of L, are

1 1

V2R, V2R,
From Proposition 1.7, we have
n—1

bo(p,p)=(V2R) "V ([ | dz)dz)") o(az)y az)).

j=1

A Appendix: The wave front set of a distribution, a
review

We will give a brief discussion of wave front set in a setting appropriate for our
purpose. For more details on the subject, see Hormander [14], Hormander [16]
and Grigis-Sjostrand [11]. Our presentation is essentially taken from [11]. For all
the proofs of this section, we refer the reader to chapter 7 of [11], chapter VIII
of [14] and chapter XV III of [16].

We will asume the reader is familiar with some basic notions and facts of mi-
crolocal analysis such as: Hormander symbol spaces, pseudodifferential opera-
tors. Nevertheless we recall briefly some of this notions.

Let 2 C R" be an open set. From now on, we write x% = xf“ X%, ax“ =
6‘;1‘1 ---3;:1”, D¢ = D?f"'D?,’[ and |a| = a1 + -+ a,, where x = (xy,...,X,), Dy, =
—i0y;. We have the following
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Definition A.1. Let m € R. S7 (2 x R") is the space of all a € C>(Q2 x R¥) such
that for all compact sets K ¢ Q and all « € N, § € NV, there is a constant ¢ > 0
such that

lﬁx“afa(x, 5). <c(1+1g)" P, (x,£) e K xRY.

S7", is called the space of symbols of order m. We write S75° =[S, S = USTs.

Let Y c R™, Z C R™ be open sets. We recall that the Schwartz kernel theo-
rem(see Hormander [16]) states that there is a bijection between the set of distri-
butions K € 2’(Y x Z) and the set of continuous linear operators

A:CX(Z)— 2'(Y).
The correspondence is given by
(Au,v)y=(K,v®u)y,,, ucCy(Z), ve C(Y),

where (,)y and (, )y, denote the duality brackes for 2’(Y) x C;°(Y) and 2’(Y x
Z) x Ce(Y x Z) respectively and (v ® u)(y, z) = v(y)u(z). We call K the distribu-
tion kernel of A, and write K = K4. Moreover, the following two conditions are
equivalent:

(i) K,eCx(Y x2Z),
(ii) A is continuous &§(Z)— C®(Y).

If A satisfies (i) or (ii), we say that A is smoothing. Let B be a continuous linear
operator
B:CX(Z)— 2'(Y).

We write A= B if A— B is a smoothing operator.

In order to simplify the discussion of composition of some operators, it is
convenient to introduce the notion of properly supported operators. Let C be a
closed subset of Y x Z. We say that C is proper if the two projections

I, :(y,z)eC—y€eY
I,:(y,z2)eC—2z€Z

are proper, that is the inverse image of every compact subset of Y and Z respec-
tively is compact.
A continuous linear operator

A:CX(Z)— 7(Y)
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is said to be properly supported if supp K, C Y x Z is proper. If A is properly
supported, then A is continuous

CyY(2)—&'(Y)
and A has a unique continuous extension
C*(2)—- 72'(Y).

Definition A.2. Let k € R. A pseudodifferential operator of order k type (1,0)is a
continuous linear map
A:CX()—2'()

such that the distribution kernel of A is

Ky=A(x,y)=

with a € S’f}O(T*(Q)). We shall write L’f'O(Q) to denote the space of pseudodifferen-
tial operators of order k type (1,0).

Definition A.3. Let

4]
~ (2n)"

J eV a(x,8)dE € L7\(Q), a €S}(T ().

Then A is said to be elliptic at (x, &) € T*(2) \ 0 if

ab—1¢€e S;})(T*(Q))
in a conic neighborhood of (xo, &o) for some b € S| *(T*(2)).

From now on, all pseudofifferential operators in this section will be assumed
properly supported.

Definition A.4. Let u € 2'(Q), (x0, o) € T*(2)\ 0. We say that u is C*™ near (xo, £o)
if there exists A € L‘{yO(Q) elliptic at (xo, &), such that Au € C*(2). We let WF(u)
be the set of points in 7*(€2) \ 0, where u is not C*.

LemmaA.5. Let u € 2'(2). Then u € C*(Q) if and only if WE(u) =0.

Let K€ 2'(Q2 x Q). Put

WF,(K): {(x,g»% n)’ (x!gry’_n)EWF(K)}'
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Proposition A.6. Let

4]
- (2n)

f eV a(x,8)dE € L7\(Q), a €S(T ().

Let A be the smallest closed cone in T*(Q2) \ 0 such that for any y € C>*(T*(2)),
x(x,A8) = y(x,&) and y =0 in some conic neighborhood of A, we have

xac SI,?)O( ().

Then
WF'(K,) =diag(A x A).

Moreover, let u € 2'(Q0). Then,
WF(Au) cAﬂWF(u).

Proposition A.7. Let
K CR()— 2'()

with distribution kernel K € 9'(Q2 x Q). We assume that
WEF'(K) c {(x,&,x,8); (x,€) € T*()\ 0}.
Then, there is a unique way of defining & u for every u € &§’'(2) so that the map
ues'(Q)—Aue2'9)
is continuous. Moreover, we have

WE (X u) c{(x, &); (x,€,x,&) € WF'(K)
for some (x,&) e WF (u)}.
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