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Introduction

In this thesis, we focus on one aspect of the problem of representing a continuous shape by a finite
number of parameters. This issue finds applications in many areas of Science and engineering, where
the goal is to perform computations and simulations on objects from the real world. Due to the finite
amount of memory available on a computer, only discretized versions of these objects can be represented
informatically.

It turns out that the choice of a specific representation depends highly on the application considered.
Let us illustrate this claim with an example from the medical world. Recent technology allows to repre-
sent the surface of any organ in a human body through a series of parallel slices, each slice containing
the image of the contours of the organ in a certain plane. This kind of model is provided for instance
by an MRI scanner. The problem with such a representation is that it is difficult to exploit, in contexts
such as tumor or lesion tracking. Consequently, there is a real need for new kinds of representations.
A whole area of research in image processing is devoted to this issue. Some solutions consist in con-
verting the slice-to-slice model into a whole 3-dimensional image. Although this new representation is
well-adapted to the tracking problem, it remains unsuitable for further processing. Moreover, the size of
the data is a problem, since images are usually large, with a high definition.

Some representations are generically more effective than others. It is the case for simplicial meshes.
Roughly speaking, a simplicial mesh is a collection of simplices of pairwise disjoint relative interiors,
such that two simplices of the mesh either do not intersect, or intersect along a simplex of lower di-
mension. We recall that a simplex of dimension d (or d-simplex, for short) is the affine hull of (d + 1)

points. For instance, a 0-simplex is a point, a 1-simplex is a segment, a 2-simplex a triangle, a 3-simplex
a tetrahedron, and so on. In this thesis, we focus mainly on simplicial meshes that approximate surfaces,
a case in which all simplices have dimension at most 2. The mesh is then called a triangular mesh.
Similarly, if all simplices have dimension at most 3, then the mesh is said to be a tetrahedral mesh.

Simplicial meshes are one of the most popular representations for surfaces, volumes, scalar fields
and vector fields. Their success finds its origin in the fact that simplicial meshes are very well suited for
many applications, such as visualization or numerical simulation. However, constructing a simplicial
mesh that approximates a continuous object can be time-consuming, especially when the geometry of
the object is complex. In this case, mesh generation becomes the pacing phase in the computational
simulation cycle. Roughly speaking, the more the user is involved in the mesh generation process, the
longer the latter is. An appealing example is given in [88], where the mesh generation time is shown
to be 45 times that required to compute the solution. This motivates the search for fully-automated
mesh-generation techniques.

i



ii INTRODUCTION

This thesis addresses mainly the problem of constructing a triangular mesh to approximate a given
surface. This problem is stated below in an informal manner. Some precisions will be given thereafter:

Surface mesh generation Given a surface S without boundary, construct a triangular mesh Ŝ of
optimal size, that is both topologically equivalent to S and geometrically close to S.

The main concern here is that Ŝ be of same topological type as the input surface S. Since the surface
S is assumed to have no boundary, this means that Ŝ and S must have the same number of connected
components and the same number of handles.

The surface mesh generation paradigm states also that Ŝ must be geometrically close to the input
surface S. This requires to define an accuracy measure. The Hausdorff distance is a good candidate and
is therefore usually chosen. Recall that the Hausdorff distance between Ŝ and S is ε if every point of Ŝ
is at distance at most ε from S, and every point of S is closer than ε to Ŝ.

Concerning the size of the mesh, Agarwal and Suri [1] proved that, given a surface S, a threshold ε
and a positive number k, it is NP-hard to decide whether there exists a mesh of size at most k that lies at
Hausdorff distance at most ε from S. This means that it is hopeless to find effective methods to construct
size-optimal meshes to approximate surfaces. Therefore, instead of constructing meshes of optimal size,
our goal is rather to construct meshes that are as small as possible, typically of size within a constant
factor of the optimal.

It is a well-known fact that, once the topology of Ŝ is fixed, the numbers of faces of each dimension
in the triangular mesh are fully determined by the number of its vertices. Therefore, bounding the size
of Ŝ comes down to bounding the number of its vertices. The mesh generation process reduces then to
two steps:

S1 Construct a finite set of points E sampled from the surface S.

S2 Connect the points of E with triangles, so that the underlying triangulation Ŝ has the same topo-
logical type as S.

The quality of a surface meshing algorithm is clearly measured by the quality of its output. The
better the approximation, the better the algorithm. But another criterion has to be taken into account: the
amount of information on the input surface S needed by the algorithm. Meshing strategies that use few
geometric predicates will be easier to implement, and their algorithmic complexity will be less dependent
on the topological and geometric complexity of the surface S. Moreover, the nature of the information
available on S varies with the context. Geometric queries are more or less difficult, depending on the
way the surface S is defined. For instance, computing the principal curvatures of S at a given point is
easy when S is defined as a level-set of some function f whose closed formula is known. However,
this task becomes very difficult when no closed formula of f is known, as it is the case for instance
when S is defined as a level of grey in a 3-dimensional image or as the result of a PDE. In this respect,
algorithms that use fewer predicates are not only easier to implement, but they turn out to be also more
generic since their predicates can be implemented in a wider range of applications.

We distinguish between three variants of the surface meshing problem, depending on the way the
surface S is defined and on the amount (and nature) of information available as input. In fact, there are
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many more variants, but to our knowledge, each of them can be reduced to one of the following: surface
reconstruction, surface sampling, and surface probing.

I.1 Surface reconstruction: working out sampling conditions

In surface reconstruction, the surface S is known only through a finite set of points E sampled from S.
This point set can come from various sources, such as for instance from range scanning data. The point
sample E is given as input, and the goal is simply to build a connectivity between the points of E, so
that the resulting mesh Ŝ approximates S topologically and geometrically. This reduces the problem to
the step S2 described above.

Several provably good methods have been proposed to solve the smooth surface reconstruction prob-
lem. We refer the reader to [30, 31] for a comprehensive survey. The proofs of correctness of these
methods rely on sampling conditions that control the local density of the input point set E.

Closed Ball Property The first sampling condition was introduced by Edelsbrunner and Shah [63]
and is called the Closed Ball Property. It states that every d-face of the Voronoi diagram of E has
an intersection with S that is either empty or topologically equivalent to a d-ball. Edelsbrunner and
Shah proved that, under this condition, some subcomplex of the Delaunay triangulation of E, called
Del|S(E), has the same topological type as S. Del|S(E) will be described more in detail in the next
chapter. Unfortunately, the Closed Ball Property guarantees only the topology of the reconstruction, not
its geometry.

µ-samples Amenta and Bern [6] proposed then the µ-sampling condition. Roughly speaking, a finite
subset E of a surface S is a µ-sample of S if every point p of S is closer to E than µ dM(p), where
dM : R

3 → R denotes the distance to the so-called medial axis M of S, defined in Chapter 1. This
condition requires that the surface S be smooth.

Amenta and Bern proved that, if E is a µ-sample of S, for a sufficiently small µ, then the Closed
Ball Property of Edelbrunner and Shah is satisfied. Hence, Del|S(E) has the same topological type as
S. They also proved that Del|S(E) lies at Hausdorff distance c(S) µ2 from S, where the constant c(S)

depends only on S. In addition, Del|S(E) provides good approximations of the normals of S [6], of
its area [92], and of its curvatures [49]. Therefore, if the input point set E is a µ-sample of S, then the
problem of reconstructing S from E comes down to finding which faces of the Delaunay triangulation
of E belong to Del|S(E). A number of provably good reconstruction algorithms are based on this
approach [6, 7, 8, 19, 53, 54, 55].

Several variants of the concept of µ-sample appeared since [6], in particular the so-called uniform
ε-samples [10], whose density is specified by a uniform sizing field equal to a constant ε. In order to use
a single concept, we introduce the following

Definition I.1 Given a surface S and a positive function σ : S → R, a finite point set E ⊂ S is a
σ-sample of S if ∀p ∈ S, E ∩B(p, σ(p)) 6= ∅.



iv INTRODUCTION

From now on, a µ-sample in the sense of [6] will be called a µdM-sample, whereas a uniform ε-
sample in the sense of [10] will be referred to as an ε-sample, according to Definition I.1. Note that
both concepts are closely related. Indeed, any ε-sample of S is a µdM-sample for some µ depending
on ε, and reciprocally, any µdM-sample of S is an ε-sample for some ε depending on µ. Therefore,
the theoretical guarantees offered by µdM-samples hold for ε-samples as well, provided that ε is small
enough. Specifically, ε must be less than a fraction of the reach of S, which is the infimum of dM over
S. This infimum is positive when dM is positive. The surface S is then said to have a positive reach.

The noisy case The ε-sampling condition, as defined above, assumes that the points of E belong to S.
In practice, due to the fact that scanners can only measure points within a given precision, the points of
E usually do not lie exactly on the surface S.

Dey and Goswami [56] proposed an extension of the cocone algorithm [55] that solves this variant
of the reconstruction problem, provided that the input point set E is a so-called noisy µdM-sample of
S, which is equivalent to an ε-sample, with the difference that the points may not lie on S but must be
closer to S than a fraction of their distance to the medial axis of S.

The nonsmooth case The µ-sampling condition assumes also that the surface is smooth. The distance
to the medial axis of a nonsmooth surface S vanishes at the points where S is not differentiable. As
a consequence, the reach of S is zero, and no finite subset of S is a µdM-sample of S. This makes
µ-samples useless in this context. Nevertheless, ε-samples are still well-defined if ε is positive, but the
theoretical guarantees of [6] no longer apply since ε > 0 is not smaller than a fraction of the reach of S.

Chazal and Lieutier [35] introduced the so-called weak feature size, or wfs for short. Let dS : R
3 →

R
+ map each point of R

3 to its distance to S. The weak feature size is simply the smallest critical value
of dS , in the sense of Riemannian geometry [69, 74].

The advantage of the weak feature size, over the distance to the medial axis, is that the class of
objects with positive wfs is much larger than the class of objects with positive reach. This allows to
construct ε-samples, with ε ≤ wfs, on a wide variety of smooth and nonsmooth shapes.

Chazal and Lieutier did not exhibit any subcomplex of Del|S(E) with the same topological type
as S. However, they showed that the homology groups of the 3-dimensional object O bounded by S
can be retrieved from any noisy wfs-sample1 E of S. The approach consists in applying persistence
techniques [62] on a specific filtration of Del(E), to compute the homology groups of O. Furthermore,
an approximation of the medial axis of the object O can be computed from the Voronoi diagram of E.

The approach of Chazal and Lieutier is very generic and works in the nonsmooth and noisy setting.
However, it provides information exclusively on the topology of the object, not on its geometry.

Other approaches To complete our overview of previous work on surface reconstruction, let us em-
phasize that many other methods have been proposed to solve the reconstruction problem. Some of them
interpolate the point set E, others define surfaces that approximate E. However, almost all these meth-
ods come with no theoretical guarantees regarding the topology of the approximation. Two noticeable
exceptions are the approach of [79], based on Moving Least Squares techniques [83], and the method

1In the same sense as Dey and Goswami, except that dM is replaced by wfs.
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of [19], based on natural neighbor coordinates [18]. Both methods can guarantee the topology of their
approximating surface, under ε-sampling conditions.

I.2 Surface sampling: satisfying the sampling conditions

Here, the surface S is given in a form that allows to sample new points from S. For instance, S can be
defined implicitely, as a level set of some real-valued function defined over R

3.
This issue is somehow dual to the surface reconstruction problem. Indeed, in surface reconstruction,

the point set E is given as input, and the goal is to find sampling conditions that guarantee a correct
reconstruction. In surface sampling, the goal is to build a point set E that satisfies some sampling
condition, so that correct reconstruction is then ensured. In other words, surface sampling focusses on
step S1 of the mesh generation process, whereas surface reconstruction focusses on step S2.

The main drawback of the ε-sampling condition is that, given a surface S and a positive value ε, it is
difficult to check whether a sample is an ε-sample of S, and even more difficult to construct an ε-sample
of S. This is due to the fact that a direct application of the definition of an ε-sample leads to complicated
operations like cutting the surface S with balls. This is why previous work on surface sampling does not
rely on this condition.

It is only recently that provably good sampling and meshing techniques appeared in the literature.
Some of these techniques handle only restricted types of shapes, such as piecewise parametric CAD
models [104, 112], Van der Waals and solvent-excluded molecular surfaces [81], or skin surfaces [38,
39, 80]. We do not consider them in the sequel.

The other provably good algorithms can only handle smooth surfaces. Moreover, to our knowledge,
all these algorithms require that the surface S be defined implicitely, as a level-set of some function
f of known closed formula. Although it is well-known that every surface S without boundary is the
zero-set of some real-valued function defined over R

3 (take for instance the signed distance to S), the
assumption that a closed formula of f is known is very restrictive in practice, since in many applications
(for instance sampling an isosurface in a 3-dimensional image) no closed formula of f is known a priori.
We classify the existing algorithms with respect to the amount of information on S they require:

1. The implicit surface mesher of Plantinga and Vegter [96] generates an adaptive grid and then ap-
plies the Marching Cubes algorithm [87]. Using interval arithmetics, Plantinga and Vegter can
certify the topology of Ŝ. Moreover, by refining the grid sufficiently, they can achieve any given
bound on the Hausdorff distance between Ŝ and S. This is a significant step since the Marching
Cubes algorithm and its variants [44] usually come without any topological or geometric guaran-
tees. However, the use of interval arithmetics requires to now the gradient of f .

2. Algorithms based on the Closed Ball Property of Edelsbrunner and Shah [63], like the implicit
surface mesher of Cheng et al. [42], require to be able to compute the critical points of height
functions on the restrictions of S to some hyperplanes. The topology of the output mesh is ensured
thanks to the Closed Ball Property.

3. Methods based on critical points theory [20, 76] require to compute the critical points of f , as well
as their indices, which is an even more involved computation, although it can be performed using
interval arithmetics.
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The above techniques work only in the smooth setting. Recently, Dey et al. adapted the method of [42] to
the case where S is a polyhedron that approximates a smooth surface [57]. This assumption on S allows
the authors to use the same mathematical tools as in the smooth setting, but it is quite restrictive for
practical applications. To our knowledge, no provably good sampling algorithm has ever been proposed
for the nonsmooth non-polyhedral case.

I.3 Surface probing: reducing the required knowledge of the surface

Surface probing, also known as blind surface approximation or interactive surface reconstruction, con-
sists of discovering the shape of an unknown objectO through an adaptive process of probing its surface
S from the exterior. A probe is issued along a ray whose origin lies outside O and returns the first
point of O hit by the ray. Successive probes may require the probing device to be moved through the
free space outside O. The goal is to find a strategy for the sequence of probes that guarantees a precise
approximation of S after a minimal number of probes.

This problem belongs to the class of geometric probing problems, pioneered by Cole and Yap [50].
Geometric probing is motivated mainly by applications in robotics. In this context, our probe model
described above is called a tactile or finger probe. Geometric probing also finds applications in other
areas and gave rise to several variants. In particular, other probe models have been studied in the liter-
ature, e.g. line probes (a line moving perpendicular to a direction), X-ray probes (measuring the length
of intersection between a line and the object), as well as their counterparts in higher dimensions.

The existing probing algorithms can be classified into two main categories, exact or approximate,
depending on whether they return the exact shape of the probed object or an approximation. An exact
probing algorithm can only be applied to shapes that can be described by a finite number of parameters
like polygons and polyhedra. Therefore, exact probing is too restrictive for most practical applications.
Approximate probing algorithms overcome this deficiency by considering the accuracy of the desired
reconstruction as a parameter. The goal is to find a strategy that can discover a guaranteed approximation
of the object using a minimal number of probes. This issue is closely related to surface sampling.
However, it differs in an essential way: here, the surface S is known through an oracle, the probing
device, which can answer only very specific geometric questions.

Most of the work on exact geometric probing is for convex polygons and polyhedra – see [106]
for a survey of the computational literature on the subject. Nevertheless, it has been shown that, using
enhanced finger probes, a large class of non convex polyhedra can be exactly determined [2, 24]. Con-
cerning approximate probing, an important class is the class of convex shapes. Probing strategies have
been proposed for planar convex objects using line probes [86, 97] and some other probe models are
analyzed in [98]. However, as far as we know, designing provably good techniques to probe non convex
non polyhedral objects has not been considered prior to this thesis.

I.4 Overview of the thesis and contributions

In this thesis, the surface S can be smooth or nonsmooth, but the devices used for taking measures on S
provide exact information. As a consequence, the points of E belong to S.
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Sampling conditions In Part A, we introduce the concept of loose ε-sample, which can be viewed as
a weak version of the notion of ε-sample. The main advantage of loose ε-samples over ε-samples is that
they are easier to check and to construct. Indeed, checking that a sample is a loose ε-sample reduces to
checking whether a finite number of spheres have radii at most ε.

When the surface S has a positive reach, we prove that, for sufficiently small ε, ε-samples are
loose ε-samples, and reciprocally. As a consequence, loose ε-samples offer the same topological and
geometric guarantees as ε-samples.

We also focus on the case where S is nonsmooth. In order to make geometric claims, we restrict
our study to a subclass of the objects with positive weak feature size: the so-called k-Lipschitz surfaces,
defined in Chapter 2. This subclass contains all objects with positive reach, but also all sufficiently
smooth polyhedra (see Definition 2.7), as well as a number of other nonsmooth shapes with non-trivial
topology. We prove that, if S is a k-Lipschitz surface and E is a (loose) ε-sample of S, for sufficiently
small k and ε, then Del|S(E) has the same topological type as S and is close to S for the Hausdorff
distance. Our theoretical results hold provided that the inner angles of the facets of the Delaunay trian-
gulation of E are not too small, which is ensured by assuming that the points of E are farther than a
fraction of ε from one another. This sparseness condition is known to be a bit restrictive in the context
of surface reconstruction. However, it can be easily satisfied in the contexts of surface sampling and
surface probing.

A simple surface sampling algorithm In Part B, we show how our sampling condition can be turned
into a simple and efficient surface mesh generator. The latter is based on a Delaunay refinement tech-
nique, which consists in constructing an initial mesh and then refining iteratively the elements of the
mesh that do not meet some user-defined size or shape criteria. This greedy tehnique was pioneered by
Ruppert [99] in the plane, and then extended by Chew to surfaces in 3-space [45]. Our mesher derives
from Chew’s algorithm. It takes as input a user-defined parameter ε and an initial point set EI ⊂ S, and
it outputs a loose ε-sample EF of S, together with Del|S(EF ).

Chew did not provide his algorithm with any topological guarantees. Here, taking advantage of the
theoretical results of Part A, we can prove that the output mesh is a manifold without boundary, with
the same topological type as S and close to S for the Hausdorff distance, provided that ε is chosen
sufficiently small. Specifically, ε must be less than a fraction of the reach of S when the latter is smooth,
and less than a fraction of the so-called k-Lipschitz radius of S (defined in Chapter 2) when S is k-
Lipschitz, for sufficiently small k. It follows that the algorithm generates provably good meshes on a
wide class of smooth and nonsmooth shapes. Moreover, we show that the number of points sampled
from S by the algorithm lies within a constant factor of the optimal.

Let us emphasize that our mesh generator maintains the 3-dimensional Delaunay triangulation of
the point sample throughout the process. This is mandatory for guaranteeing the topology of the output
mesh. Maintaining a whole 3-dimensional triangulation can be time-consuming in general. However,
we prove in our case that the size of the data structure remains bounded, which implies that the space
and time complexities of the algorithm are quite reasonable. Further detail is provided in Chapter 4.
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A unified solution to the meshing problem A noticeable feature of the algorithm is that it needs
only to know the surface S through an oracle that can compute the intersection of any given segment
with S. Therefore, our mesh generator is generic enough to be applied in a wide variety of contexts.
This genericity is illustrated in Part C, where we show that the algorithm can be used to mesh implicit
surfaces, remesh polyhedra, or reconstruct surfaces from scattered data points. Our approach to surface
reconstruction is similar to that of [19]. It consists of defining an implicit function f ′ from the input
point set, and then to mesh the zero-set S ′ of f ′ using our mesh generator. Combining our theoretical
results with those of [19], we can certify the topology and geometry of the output mesh. Note that no
closed formula of f ′ is available, hence none of the implicit surface sampling techniques presented in
Section I.2 can be applied in this context.

We also show that the algorithm can be easily adapted to probe unknown objects. The approach
consists of using the probing device as an oracle for our mesh generator. This oracle is weaker than the
one used above, since it can detect only the first intersection point of a given segment with the surface
S. Moreover, before checking the intersection of a given segment s with S, the probing device must first
be moved to an endpoint of s. Therefore, we cannot check the intersections of all the segments with S.
We prove however that this version of the algorithm comes with the same theoretical guarantees as the
original version, regarding the quality and the size of the output.

Finally, we show that our meshing technique can be extended to construct tetrahedral meshes ap-
proximating 3-dimensional objects with curved boundaries, such that the mesh elements (tetrahedra and
triangles) conform to some user-defined size and shape criteria. The idea is to exploit the fact that the
algorithm maintains a whole 3-dimensional Delaunay triangulation. Whenever a tetrahedron does not
meet the size or shape requirements, it is refined by inserting its circumcenter. The output point set is no
longer a subset of S. Moreover, the output mesh contains all Delaunay tetrahedra whose circumcenters
lie in the objectO to mesh. Using our theoretical results on the approximation of the boundary ofO, we
can certify the output of the algorithm.

Our contributions at a glance We list our main contributions below:

• A new sampling condition, called loose ε-sampling, which offers the same topological and geo-
metric guarantees as the classical ε-sampling condition in the smooth setting, but which is much
easier to check and to construct.

• A theoretical analysis in the nonsmooth Lipschitz setting, which proves that (loose) ε-samples
offer the same guarantees in this context as in the smooth setting, provided that an additional
sparseness condition is satisfied. As a consequence, ε-sampling and loose ε-sampling are the
first sampling conditions to provide both topological and geometric guarantees in the nonsmooth
setting.

• A simple meshing algorithm that can provably well approximate smooth or Lipschitz surfaces,
with a number of points that lies within a constant factor of the optimal. This algorithm is one of
the few certified methods for the smooth and the polyhedral cases, and the first certified method
for the nonsmooth non-polyhedral case. We have implemented it in a number of practical sit-
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uations: isosurface extraction from 3D medical images, polygonal surface remeshing, etc. Our
experimental results provide evidence that the approach is very effective in practice.

• An easy (yet certified) adaptation of our algorithm that solves the surface probing problem in the
case of a convex or non-convex object with curved boundaries. No certified solution was known
for this problem prior to this work.

• A natural extension of our algorithm that constructs provably good tetrahedral meshes to approxi-
mate 3-dimensional objects with curved boundaries. It is the first certified solution ever proposed
for this problem. Moreover, our preliminary experimental results are quite promising, regarding
the practicality of the approach.





Preliminaries

This chapter introduces most of the mathematical concepts that will be used in the thesis.

Basic notations

Throughout the thesis, R
3 is the ambient affine space. Points are written in italic font, e.g. p, q, and

vectors in bold font, e.g. n,n′.
R

3 is endowed with a canonical frame (o, ex, ey, ez). For any point p, we call p the vector that goes
from the origin o of the frame to p. The usual inner product of two vectors n,n′ is denoted n · n′, and
defined by

n · n′ = nxn′
x + nyn′

y + nzn′
z,

where nx,ny,nz and n′
x,n′

y,n′
z are the coordinates of n and n′ in the canonical basis (ex, ey, ez). We

abuse notations and write n2 the inner product of n with itself. In addition, we denote n × n′ the outer
product of n,n′, defined by
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Finally, we denote by (n,n′) the modulus of the angle (measured in [−π, π]) between vectors u and v.

Distances and topology

We call ‖.‖ the Euclidean norm:

∀n ∈ R
3, ‖n‖ =

√
n2 =

√
n · n

For any points p, q, d(p, q) denotes the Euclidean distance from p to q, defined by

d(p, q) = ‖p− q‖

Given a point c and a positive constant r, B(c, r) denotes the ball of center c and radius r. Unless
otherwise specified, the ball B(c, r) is closed.

The affine space R
3 is canonically endowed with the topology generated by the set of open balls.

Given a subset X of R
3, int(X), X̄ , and ∂X denote respectively the interior, the closure, and the

boundary of X . Moreover, we call diam(X) the Euclidean diameter of X:

diam(X) = sup{d(p, q), p ∈ X, q ∈ X}

xi
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We now introduce two topological concepts that will be widely used in the thesis. We refer the
reader to [14] for further detail.

Definition P.2 Two topological spaces X,Y are homeomorphic if there exists a continuous and bijec-
tive map h : X → Y such that h−1 is continuous. The map h is called a homeomorphism from X

to Y .

If X,Y are subsets of R
3, and if h is a homeomorphism from R

3 to R
3, such that h(X) = Y , then

h is said to be an ambient homeomorphism from X to Y .

Definition P.3 Two topological spaces X,Y embedded in R
3 are isotopic if there exists a continuous

map i : [0, 1] × X → R
3 such that i(0, .) is the identity over X , i(1, X) = Y , and for any t ∈ [0, 1],

i(t, .) is a homeomorphism from X onto its image. The map i is called an isotopy from X to Y .

If i is an isotopy from R
3 to R

3 such that i(1, X) = Y , then i is said to be an ambient isotopy from
X to Y .

We need also to define distances between subsets of R
3. Given a point p and a subset X of R

3, the
distance from p to X is denoted d(p,X) and defined as follows:

d(p,X) = inf{d(p, q), q ∈ X}

IfX = ∅, then d(p,X) is infinite. Otherwise, d(p,X) is finite and non-negative. Moreover, d(p,X) = 0

iff (if and only if) p belongs to the closure X̄ of X .

Definition P.4 Given two subsets X and Y of R
3, the Hausdorff distance between X and Y is

dH(X,Y ) = max{sup
p∈X

d(p, Y ), sup
q∈Y

d(q,X)}

Note that dH(X,Y ) = 0 iff X̄ = Ȳ .

Definition P.5 Given two homeomorphic subsets X and Y of R
3, the Fréchet distance between X and

Y is
dF (X,Y ) = inf

h
sup
p∈X

d(p, h(p))

where h ranges over all homeomorphisms from X to Y .

Observe that, for any homeomorphism h : X → Y and any point p ∈ X , we have

d(p, h(p)) ≥ max{d(p, Y ), d(h(p), X)},

thus dF (X,Y ) ≥ dH(X,Y ). It follows that any upper bound on the Fréchet distance of X,Y is also an
upper bound on their Hausdorff distance.
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Geometric measures

We will use two geometric measures: the Lebesgue measure L2 on R
2, and the 2-dimensional Hausdorff

measureH2 on R
2 and R

3. We borrow their definitions from [91].

Definition P.6 There is a unique Borel-regular, translation-invariant measure on R
2, such that the mea-

sure of the unit cube [0, 1]2 is 1. This measure is called the Lebesgue measure and noted L2.

Note that L2 is defined only on R
2. Hence, it tells nothing about the area of a surface of R

3, a notion
that will be extensively used in this thesis, especially in Chapter 3.

Definition P.7 Given X ⊂ R
n (n ≥ 2), the 2-dimensional Hausdorff measure of X , or H2(X) for

short, is defined as follows:

H2(X) = lim
δ→0+

inf
X ⊂

S

i Xi

diam(Xi) ≤ δ

+∞
∑

i=0

π

(

diam(Xi)

2

)2

(1)

The infimum in (1) is taken over all countable coverings {Xi} of X whose members have Euclidean
diameter at most δ. It is proved in [91, §2.3] that the limit always exists, and that H2 is a Borel-regular
measure over R

n, for any n ≥ 2. A more comprehensive proof can be found in [67, §2.10].
The 2-dimensional Hausdorff measure coincides with L2 on R

2. Moreover, it generalizes the notion
of area of a surface. Specifically, H2(S) coincides with the usual area of S, for any C1-continuous
2-dimensional submanifold of R

n, n ≥ 2.

Surfaces

Throughout the thesis, S is a C0-continuous 2-dimensional submanifold of R
3. Informally, this means

that, for any point p ∈ S, there exists an open neighborhoodN of p in R
3 that can be mapped to the unit

open ball B by some homeomorphism h, such that h(p) is the origin o and h(N ∩ S) = B ∩ R
2. See

Figure 1 for an illustration. We refer the reader to [14, §2.1.1] for a formal definition.
For simplicity, we say that S is a surface without boundary. We call M its medial axis, defined in

Section 1.1.1. If S is differentiable at p, then T (p) and n(p) denote respectively the tangent plane and
the unit normal vector (pointing outwards) of S at p.

Complexity

Given two positive functions f, g defined over R
+, we use the notation f = O(g) to indicate that there

exists a non-negative constant ν such that ∀x ≥ 0, f(x) ≤ ν g(x). Moreover, f = Ω(g) stands for
g = O(f), and f = Θ(g) means that we have both f = O(g) and f = Ω(g).

Unless explicitely mentioned, the constant ν in the above statements is absolute. Some of our results
use these notations in a context where the constant ν depends on the surface S. In such a case, we write
f = OS(g), f = ΩS(g), f = ΘS(g), instead of f = O(g), f = Ω(g), f = Θ(g).
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Figure 1: A surface without boundary.

Figure 2: Example of a Delaunay triangulation (in blue) restricted to a curve (in black).
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Figure 3: A case where Del|S(E) is empty: the four points of E are placed on a torus, such that the
Voronoi edges pass through the hole.

Voronoi diagrams and Delaunay triangulations

We now present several objects of the Computational Geometry that will be used throughout the thesis.
Let E be a finite set of points of R

3.

• The Voronoi cell of p ∈ E is the set of all points of R
3 that are closer to p than to any other point

of E. The Voronoi diagram of E, Vor(E), is the cellular complex formed by the Voronoi cells of
the points of E.

• The dual complex of Vor(E) is a tetrahedrization of the convex hull of E, called the Delaunay
triangulation of E and noted Del(E). For any face f (vertex, edge, facet or cell) of Del(E), V(f)

denotes the face of Vor(E) dual to f .

• By VG(E) we denote the 1-skeleton graph of Vor(E), also called Voronoi graph of E.

The mesh generator introduced in Part B of this thesis relies on a subcomplex of Del(E), defined below:

• We call Delaunay triangulation of E restricted to S, and we note Del|S(E), the subcomplex of
Del(E) that consists of the facets of Del(E) whose dual Voronoi edges intersect S. An example is
given in Figure 2. An edge or vertex of Del(E) belongs to Del|S(E) if it is incident to at least one
facet of Del|S(E). Notice that we depart from the usual definition [45, 63] and do not consider
vertices and edges with no incident facet of Del|S(E). See Figure 3 for an illustration.

• A facet (resp. edge, vertex) of Del|S(E) is called a restricted Delaunay facet (resp. restricted
Delaunay edge, restricted Delaunay vertex). For a restricted Delaunay facet f , we call surface
Delaunay ball of f any ball circumscribing f centered at some point of S ∩V(f). Notice that the
centers of the surface Delaunay balls are precisely the intersection points of S with VG(E).
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• Given a vertex v of Del|S(E), we call star of v the union of all the facets of Del|S(E) incident
to v.

• Given a facet f of Del|S(E), we call neighborhood of f , of N(f) for short, the union of all the
facets of Del|S(E) that are non-disjoint with f (including f itself).

In the sequel, u, v, w denote vertices of Del|S(E), whereas p, q denote points of R
3.

Quality measures for mesh elements

In this thesis, our aim is to generate triangular and tetrahedral meshes with well-sized and well-shaped
elements:

• Given a positive sizing field σ, a simplex of circumcenter c is said to be well-sized if its circum-
radius is at most σ(c).

• Following [103], we say that a simplex is well-shaped if its aspect ratio is less than a given thresh-
old. The aspect ratio of a simplex is the ratio between its circumradius and the radius of its
inscribed sphere.

Another shape quality measure will be used in the thesis: the so-called radius-edge ratio. The radius-
edge ratio of a simplex is the ratio between its circumradius and the length of its shortest edge. Any
triangle with a small radius-edge ratio has a small aspect ratio. This property does not hold however
for tetrahedra: the so-called slivers have small radius-edge ratios but a large aspect ratios. Roughly
speaking, a sliver is a tetrahedron whose vertices are close to a great circle of its circumsphere and
equally spaced along this circle. See [41] for additional information on this topic.



Part A

Sampling Conditions

1





3

Introduction

In this part of the thesis, we introduce the concept of loose σ-sample and we study its various prop-
erties on smooth and on Lipschitz surfaces. Our theoretical results will be instrumental in proving the
correctness of our sampling algorithm, in Part B.

The concept of loose σ-sample can be viewed as a weak version of the notion of σ-sample. The main
advantage of loose σ-samples over σ-samples is that they are easier to check and to construct. Indeed,
checking that a sample is a loose σ-sample reduces to checking whether a finite number of spheres are
small enough with respect to the value of the sizing field σ at their centers.

Definition A.1 Given a surface S and a positive function σ : S → R, a finite point set E ⊂ S is a loose
σ-sample of S if the following conditions are satisfied:

1. ∀p ∈ S ∩VG(E), E ∩B(p, σ(p)) 6= ∅,
2. Del|S(E) has vertices on all the connected components of S.

Since the centers of the surface Delaunay balls are precisely the intersection points of S with the
Voronoi edges, Condition 1 of Definition A.1 is verified iff every surface Delaunay ball B(c, r) has a
radius r ≤ σ(c).

Observe that Condition 1 alone is not sufficient to control the density of E. Indeed, according to our
definition of the restricted Delaunay triangulation, a point of E is a vertex of Del|S(E) only if at least
one edge of the boundary of its Voronoi cell intersects S. It follows that some of the points of E may
not be vertices of Del|S(E). In some situations (see Figure 3 for an example), Del|S(E) may even be
empty, in which case Condition 1 is trivially verified for any positive function σ, but not Condition 2.

Note to the reader: In the sequel, σ is assumed to be bounded from above by some constant ε. As a
consequence, any (loose) σ-sample is a (loose) ε-sample. This assumption allows us to use a single
concept throughout the thesis, namely the concept of (loose) ε-sample. Moreover, it simplifies the proofs
in the smooth setting.

In Chapter 1, we focus on the case where the surface S is smooth. In this context, we show that loose
ε-samples of S enjoy the same topological and geometric properties as ε-samples of S, provided that
ε is small enough. These properties trivially hold for (loose) σ-samples as well, provided that σ ≤ ε.
In addition, we prove that loose ε-samples and ε-samples are equivalent asymptotically, when ε goes to
zero.

Chapter 2 deals with the more general case where S is a k-Lipschitz surface, smooth or nonsmooth.
We show that, for sufficiently small k and ε, (loose) ε-samples offer the same guarantees in this context
as in the smooth setting, provided that an additional sparseness condition is satisfied – see Section 2.2.
These properties trivially hold for (loose) σ-samples as well, provided that σ is at most ε and satisfies
the sparseness condition of Section 2.2. In addition, like in the smooth setting, we prove that loose
ε-samples and ε-samples are equivalent asymptotically, when ε goes to zero.

In Chapter 3, we work out a lower bound on the size of (loose) ε-samples. This bound holds both in
the smooth and in the Lipschitz settings. Moreover, we show that, under a mild sparseness condition2

introduced in Definition 3.2, the size of any (loose) ε-sample is also bounded from above.
2This sparseness condition is different from that of Section 2.2, but it is satisfied when the latter is.





Chapter 1

The Smooth Case

In this chaper, we focus on the case where the surface S is smooth. By smooth, we mean that S is
C1,1-continuous, i.e. it is continuously differentiable and its normal satisfies a Lipschitz condition. We
assume without loss of generality that the normal of S is oriented consistently, say it always points
outwards.

In Section 1.1, we recall a few known facts about smooth surfaces and their medial axis, defined
below. We also prove several local properties of loose ε-samples. In Section 1.2, we review the main
global properties of loose ε-samples. Specifically, we prove that their restricted Delaunay triangulation
is a manifold without boundary (1.2.1), isotopic to S (1.2.2) and at Fréchet distance OS(ε2) from S

(1.2.3). In Section 1.3, we show that loose ε-samples and ε-samples are closely related. To complete our
study, we give additional properties in Section 1.4, that will not be used in this thesis but which can be
useful in some applications. Finally, in Section 1.5, we recall analogous results that were proved in [23]
for (loose) µdM-samples.

1.1 Preliminaries

1.1.1 Positive reach

The medial axis of S, noted M, is the topological closure of the set of points of R
3 that have more than

one nearest neighbor on S. For a point p ∈ R
3, we call distance to the medial axis at p, and write

dM(p), the Euclidean distance from p to the medial axis of S. As noticed by Amenta and Bern [6], dM

is 1-Lipschitz, i.e.
∀p, q ∈ R

3, |dM(p)− dM(q)| ≤ d(p, q)

The reach of S is the infimum over S of the distance to M:

rch(S) = inf {dM(p), p ∈ S}

As proved in [66], rch(S) is positive when S is C1,1-continuous.

On surfaces with positive reach, ε-samples enjoy many beautiful properties, for sufficiently small
values of ε. The following result, due to Amenta and Bern [6, Th. 2], is of particular interest in our
context:

5
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Figure 1.1: For the proof of Lemma 1.2.

Theorem 1.1 If E is an ε-sample of S, with ε < 0.1 rch(S), then Del|S(E) is homeomorphic to S.

Note that Del|S(E) in the above statement refers to the classical notion of restricted Delaunay triangu-
lation. However, it is proved in [6] that both notions coincide under the hypothesis of the theorem. We
list below the main other properties of ε-samples, for sufficiently small ε:

– Normals: the angle between the normal to a facet f of Del|S(E) and the normal to S at the vertices
of f is O(ε) [6].

– Area: the area of Del|S(E) approximates the area of S [92].
– Curvatures: the curvature tensor of S can be estimated from Del|S(E) [49].
– Hausdorff distance: the Hausdorff distance between S and Del|S(E) is O(ε2) [23].
– Reconstruction: several algorithms can reconstruct from E a surface that is homeomorphic [6, 7,

19, 55] or even ambient isotopic [9] to S.
We will prove in this Chapter that the above properties hold for loose ε-samples as well.

1.1.2 Local properties

We will now review several local properties that will be instrumental in the next sections. The first result
is an adaptation of Lemma 3 of [6]. We recall its proof, for completeness.

Lemma 1.2 (Normal Variation)
Let p and q be two points of S with d(p, q) ≤ µ rch(S), µ < 1. The angle (n(p),n(q)) between the
normals n(p) and n(q) is at most µ

1−µ .

Proof. We parameterize the line segment [p, q] by arc length. Let p(s) denote the point on [p, q] with
parameter value s. We have p(0) = p and p(d(p, q)) = q. Let f(s) denote the point of S closest to
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p(s). Point f(s) is unique, because otherwise p(s) would be a point of the medial axis, contradicting
d(p, q) ≤ µ rch(S) with µ < 1.

Let n(s) denote the unit normal to S at f(s), and let ‖n′(s)‖ denote the magnitude of the derivative
of n(s) with respect to s. The change in normal between p and q is at most

∫

[p,q] ‖n′(s)‖ ds, which is at
most d(p, q) sups ‖n′(s)‖.

The surface S passes between two empty balls B1 and B2 centered on the medial axis and tangent
to S at f(s). Let c1 and c2 be the centers of these tangent balls. We have d(f(s), ci) ≥ dM(f(s)) ≥
rch(S), for i = 1, 2. Moreover, since f(s) is the only nearest neighbor of p(s) on S, p(s) lies either
on [c1, f(s)] or on [c2, f(s)], as depicted in Figure 1.1. We assume without loss of generality that
p(s) ∈ [c1, f(s)].

Since B1 is an empty ball tangent to S at f(s), the greater of the two principal curvatures of S at
f(s) is bounded by the curvature of B1. Moreover, the rate at which the normal of S changes with f(s)

is at most the greater principal curvature, hence ‖n′(s)‖ is at most the rate at which the normal turns (as
a function of s) on B1. Referring to Fig. 1.1, we have:

ds ≥ (rch(S)− d(p(s), f(s))) sin dθ

Now, sin dθ approaches dθ as the latter goes to zero. Since n(s) is a unit vector, we get:

‖n′(s)‖ =
dθ

ds
≤ 1/(rch(S)− d(p(s), f(s)))

Moreover, we have:
d(p(s), f(s)) ≤ d(p(s), p) ≤ µ rch(S)

Altogether, we obtain: sups ‖n′(s)‖ ≤ 1
(1−µ) rch(S) , which yields the lemma. ¤

Lemma 1.3 (Line)
Let n be a vector and Ω be a convex such that ∀p ∈ S ∩ Ω, the angle (n(p),n) is less than π

2 . Then any
line l aligned with n intersects S ∩ Ω at most once.

Proof. Let us assume for a contradiction that there exists a line l aligned with n and such that |l ∩ S ∩
Ω| ≥ 2. Let p and q be two points of intersection that are consecutive along l. Since Ω is convex, Ω∩ l is
a segment of l, hence p and q are consecutive among the points of S∩ l. It follows that the open segment
]p, q[ is included in one component of R

3 \ S, and that n(p) or n(q) has a negative or zero inner product
with n, which contradicts the hypothesis of the lemma. ¤

Let p be a point of S and µ a positive constant. We call Bp the closed ball centered at p of radius
µ rch(S), and we set Dp = S ∩Bp.

Lemma 1.4 (Cocone)
If µ < π

2+π , then, for any q ∈ Dp, Dp lies outside the double cone K(q) of apex q, of axis aligned with
n(p) and of half-angle π

2 −
µ

1−µ .
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Figure 1.2: For the proof of Lemma 1.5.

Proof. Let l be a line included in K(q), and l be a vector aligned with l such that n(p) · l ≥ 0. By
definition of K(q), we have (n(p), l) < π

2 −
µ

1−µ . Moreover, by the normal variation lemma 1.2, we
have (n(p),n(q′)) ≤ µ

1−µ , for any q′ ∈ Dp. Thus, (n(q′), l) < π
2 −

µ
1−µ + µ

1−µ = π
2 . Since this is true

for any point q′ ∈ Dp, l intersects Dp at most once, by the line lemma 1.3. Hence, l ∩Dp = {q}. ¤

Let now f = (u, v, w) be a triangle whose vertices u, v and w belong to S. Let n(f) denote the unit
vector orthogonal to f such that n(f) · n(u) ≥ 0. The next result is an adaptation of Lemma 7(a) of [6].
We recall its proof, for completeness.

Lemma 1.5 (Triangle Normal)
If the circumradius of f is at most µ rch(S), with µ < 1, and if the inner angle û = ∠vuw is at least π

3 ,
then (n(f),n(u)) ≤ µ

√
3.

Proof. Let B and B′ denote the two balls of radius rch(S) tangent to S at u, D = B ∩ aff(f) and
D′ = B′ ∩ aff(f). We call cB and cD the centers of B and D respectively. Moreover, rf ≤ µ rch(S)

denotes the circumradius of f , and rD ≤ rch(S) denotes the radius of D and D′ (which have same
radius, by a symmetry argument).

Let rf be fixed. Since the interiors of D and D′ do not intersect S, they contain no vertex of f .
Therefore, rD is maximized with respect to rf when v andw are farthest from u and lie on the boundaries
ofD andD′. Since we assumed that û ≥ π

3 , v and w are farthest from u when f is equilateral. It follows
that rD ≤ rf

√
3.

In addition, according to the hypothesis, rf ≤ µ rch(S). We then have:

sin(n(f),n(u)) = sin(∠ucBcD) ≤ d(u, cD)

d(u, cB)
=

rD
rch(S)

≤ µ
√

3 (1.1)

¤
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1.2 Global properties

In this section, we review the main global properties of Del|S(E) in the case whereE is a loose ε-sample
of S with sufficiently small ε. Let µ0 = 0.16 and ν = 0.52. These two constants are set up so that the
bounds in the following statements are as tight as possible. Throughout the section, E denotes a loose
ε-sample of S. Let µ = ε/rch(S).

For any facet f of Del|S(E), we call Bf the surface Delaunay ball of smallest radius that circum-
scribes f . Let cf and rf denote respectively the center and radius of Bf . We set Df = S ∩Bf .

Orientation convention 1.6 For any facet f ∈ Del(E) of circumradius less than (1 + ν)ε, we orient f
such that n(f) · n(uf ) > 0, where uf is the vertex of f with largest inner angle (if it is not unique, we
choose any such vertex).

Notice that it is not necessary to orient all the facets of Del(E), because only those of circumradius
less than (1 + ν)ε will be considered in the sequel. Among these are the facets of Del|S(E), which are
included in surface Delaunay balls of radius at most ε.

In Section 1.2.1 (Th. 1.7) we will show that, if µ ≤ µ0, then Del|S(E) is an oriented manifold
without boundary. The proof does not rely on the fact that the surface S is smooth, therefore Theorem
1.7 will be used in Chapter 2 as well, for the nonsmooth case. However, we have to work under slightly
more general hypotheses. Specifically, we prove that, if E is a loose ε-sample of S (for some ε which
can be greater than µ0 rch(S)) satisfying the following assumption:
For any vertex v of Del|S(E), there is a point pv ∈ S where S is differentiable, such that:

M1 For any q ∈ S ∩ B(v, ε), S ∩ B(v, ε) lies outside the double cone of apex q, of axis aligned
with n(pv) and of half-angle π

2 − θ1.
M2 For any restricted Delaunay facet f incident to v, (n(f),n(pv)) ≤ θ2.
M3 For any Delaunay facet f incident to v, of circumradius less than (1+ν)ε, (n(f),n(pv)) ≤ θ3.

where θ1, θ2 and θ3 depend only on ε and verify:

M4 2θ1 + θ2 <
π
2 .

M5 2 sin θ1 < ν cos θ2.
M6 sin θ1 < cos θ3.

then Del|S(E) is an oriented manifold without boundary.
When S is smooth and µ ≤ µ0, for any vertex v of Del|S(E) we take pv = v, and we set θ1 = µ

1−µ ,
θ2 = µ

√
3 + 2µ

1−2µ and θ3 = (1 + ν) µ
√

3 + 2(1+ν) µ
1−2(1+ν) µ . By the cocone lemma 1.4, M1 is satisfied.

Moreover, by the triangle normal lemma 1.5 and the normal variation lemma 1.2, M2 and M3 are
satisfied as well. Finally, since µ ≤ µ0, M4, M5 and M6 are also satisfied. Therefore, Del|S(E) is an
oriented manifold without boundary.

In Sections 1.2.2 and 1.2.3, we will prove that Del|S(E) is isotopic to S and at Fréchet distance
O(ε2) from S, provided that µ ≤ µ0. The proofs use the fact that Del|S(E) is a manifold, as guaranteed
above. Moreover, they hold in a slightly more general setting. Specifically, we will show that, for any
finite point set E ⊂ S and any subcomplex Ŝ of Del|S(E) verifying:
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I1 Ŝ is a compact surface without boundary, consistently oriented by the orientation conven-
tion 1.6,

I2 Ŝ has vertices on all the connected components of S,
I3 For any facet f of Ŝ, Bf has a radius at most ε ≤ µ0 rch(S),

Ŝ is isotopic to S and at Fréchet distance O(ε2) from S. Our arguments rely heavily on the fact that the
surface S is smooth, hence the results cannot be used in Chapter 2, for the nonsmooth case. Nevertheless,
the proofs of Chapter 2 will keep the same spirit.

The fact that Ŝ is a subcomplex of Del|S(E) (and not Del|S(E) itself) will be instrumental in prov-
ing the correctness of certain Delaunay refinement algorithms in several meshing applications. See
Section 5.1 and Chapter 8.

1.2.1 Manifold

This section is dedicated to the proof of the following result:

Theorem 1.7 If E is a loose ε-sample of S, such that M1–M6 are satisfied, then Del|S(E) is a compact
oriented surface without boundary.

In Section 1.2.1.1, we show that every edge of Del|S(E) is incident to exactly two facets of Del|S(E).
In Section 1.2.1.2, we show that every vertex of Del|S(E) is incident to exactly one cycle of facets of
Del|S(E). Such a cycle will be called an umbrella. These two properties imply that Del|S(E) is a 2-
manifold without boundary, because the relative interiors of the faces of Del|S(E) are pairwise disjoint
due to the fact that Del|S(E) is a simplicial complex. Finally, in Section 1.2.1.3, we prove that the
orientation convention 1.6 induces a valid orientation of Del|S(E).

1.2.1.1 Edges

We need an intermediate result:

Lemma 1.8 (Projection)
Under M1, M2 and M4, for any facets f, f ′ of Del|S(E) with a common edge e, for any vertex v of e,
the orthogonal projections of f and f ′ onto T (pv) do not overlap, i.e. their interiors are disjoint.

Proof. Let u be the second vertex of e. For convenience, we note B = Bf , r = rf the radius of Bf ,
and c = cf the center of Bf . Similarly, we call B′ = Bf ′ , r′ = rf ′ , c′ = cf ′ .

Since u and v are vertices of f and f ′, ∂B and ∂B′ have a non-empty intersection. Let P be the
radical plane of B,B′. P contains ∂B ∩ ∂B′, and therefore also u and v. Let w be the third vertex of f ,
and w′ be the third vertex of f ′. P is perpendicular to the line (c, c′). On one side of P , B is included
in the interior of B′, whereas on the other side of P , B ′ is included in the interior of B. Since B and B ′

are Delaunay balls, B cannot contain w′ and B′ cannot contain w. Hence, w and w′ cannot lie on the
same side of P .

Let Π be the plane that contains u, v and n(pv). Since Π is orthogonal to T (pv), its orthogonal
projection onto T (pv) is a line containing the projection of e. Hence, to prove that the projections of f
and f ′ onto T (pv) do not overlap, it suffices to show that w and w′ lie on different sides of Π.
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P and Π intersect each other along the line (u, v). We define an oriented frame in R
3 such that P is

the horizontal plane and that w lies above P . The line (u, v) = P ∩ Π is then horizontal. We will show
that w lies above Π while w′ lies below, which will conclude the proof of the lemma.

Since r ≤ ε and r′ ≤ ε, c and c′ belong to S ∩B(v, ε). Thus, by M1 (applied with q = c), the angle
between n(pv) and the line (c, c′) is at least π

2 − θ1. This implies that the angle between n(pv) and P is
at most θ1, since P is orthogonal to the line (c, c′). Hence, the angle ∠ΠP between planes Π and P is
bounded by θ1. In addition, by M2 we have (n(f),n(pv)) ≤ θ2. It follows that the angle between n(f)

and P is at most θ1 + θ2, or equivalently, that the angle ∠PfP between the supporting plane of f and P
is at least π

2 − θ1 − θ2. By M4, this quantity is greater than θ1, which means that ∠PfP is greater than
∠ΠP . Hence, w lies above Π – see Fig. 1.3. By the same arguments, w ′ lies below Π, which concludes
the proof of the lemma. ¤

Remark 1.9 Observe that the proof of the projection lemma still holds if B and B ′ are two surface
Delaunay balls circumscribing the same facet f = f ′. Hence, Bf is the only surface Delaunay ball that
circumscribes f . Equivalently, the Voronoi edge V(f) dual to f intersects S only once. Moreover, the
vertices of V(f) belong to distinct connected components of R

3 \S since otherwise a small perturbation
of V(f) would intersect S ∩Bf twice, hereby contradicting the projection lemma 1.8 (with f = f ′).

From the projection lemma 1.8, we deduce the following result:

Lemma 1.10 Under M1, M2 and M4, every edge of Del|S(E) is incident to exactly two facets of
Del|S(E).

Proof. Let e be an edge of Del|S(E). By definition, e is incident to a Delaunay facet f whose dual
Voronoi edge V(f) intersects S. V(f) is an edge of ∂V(e), the boundary of the Voronoi facet dual to
e. By Remark 1.9, the vertices of V(f) lie in distinct connected components of R

3 \ S. Hence, ∂V(e)
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intersects S at least twice, since it is a topological circle that intersects two distinct connected coponents
of R

3 \ S. As a consequence, e is incident to at least two facets of Del|S(E).
In addition, e cannot be incident to more than two facets of Del|S(E). Indeed, by the projection

lemma 1.8, the projections onto T (pv) (where v is any vertex of e and pv is defined as in M1, M2, M4)
of the restricted Delaunay facets incident to e pairwise do not overlap, thus they must lie on different
sides of the line supporting the projection of e.

In conclusion, the number of facets of Del|S(E) incident to e is two. ¤

1.2.1.2 Umbrellas

Consider a vertex v of Del|S(E). Since every edge of Del|S(E) incident to v has two incident facets
of Del|S(E), the star of v in Del|S(E) consists of one or more cycles of facets, called umbrellas. Each
umbrella is a triangulated topological disk. All umbrellas of v have v in common, but two distinct
umbrellas have distinct edges and facets. We call v̄ the orthogonal projection of v onto T (pv).

Lemma 1.11 Under M1, M2, M3, M5 and M6, v has exactly one umbrella.

Proof. Let U be an umbrella incident to v. We call Ū its orthogonal projection onto T (pv).

Claim 1.11.1 v̄ belongs to the interior of Ū .

Proof. Let us assume the contrary. Then U has a silhouette edge [v, u] whose projection onto T (pv)

belongs to the boundary of Ū . Since, by lemma 1.10, [v, u] is incident to two facets of U , these two
facets project onto the same side of the line supporting the projection of [u, v], therefore they operlap,
which contradicts the projection lemma 1.8. This proves the claim. ¤

Assume now, for a contradiction, that v has several umbrellas. Let U and U ′ be two consecutive
umbrellas (recall that two umbrellas of v intersect only in v). Let T be the set of tetrahedra of Del(E)

incident to v that lie between U and U ′.
Let l be a line parallel to n(pv) and passing through a point of Del|S(E) very close to v. We orient l

as n(pv). Let T = (t1, . . . , ts) be the sequence of tetrahedra of T that are intersected by the oriented line
l, and let F = (f0, . . . , fs) be the facets of T pierced by l. We assume without loss of generality that l
does not pass through an edge of one of the ti. By definition, f0 ∈ U and fs ⊂ U ′ are facets of Del|S(E).
We rename them f and f ′ respectively, and call c and c′ the centers of their surface Delaunay balls. Let
c1, . . . , cs be the centers of the Delaunay balls circumscribing t1, . . . , ts, and γ be the polygonal chain
γ = c, c1, . . . , cs, c

′. For convenience, we write c = c0 and c′ = cs+1. Clearly, γ is a path in the
1-skeleton graph of Vor(E).

Claim 1.11.2 γ is monotone with respect to the oriented line l.

Proof. l intersects ti before ti+1, for i = 1, . . . , s− 1. Thus, n(pv) ·ni > 0, where ni is the unit normal
vector of fi, oriented from ti to ti+1. Since ti and ti+1 are Delaunay tetrahedra, we have ni = ci+1−ci

‖ci+1−ci‖ .
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Hence, (ci+1 − ci) · n(pv) > 0, for i = 1, . . . , s − 1. By the same argument, (c1 − c) · n(pv) > 0 and
(c′ − cs) · n(pv) > 0, which ends the proof of the claim. ¤

By the monotonicity property above, γ lies in the slab W defined by the two planes Π and Π′

orthogonal to n(pv) and passing respectively through c and c′. Since c is the center of the surface
Delaunay ball of a facet of Del|S(E) incident to v, we have d(c, v) ≤ ε and c belongs to S ∩B(v, ε). It
follows, by M1 (applied with q = v), that the angle between n(pv) and the line (c, v) is at least π

2 − θ1.
Hence, the distance from v to Π is at most h = ε sin θ1. Similarly, the distance from v to Π′ is at most
h.

We now bound the circumradii of the tetrahedra ti. Let V(U) be the set of Voronoi facets dual to the
edges of U that are incident to v, and let V(U)+

v be the intersection of the halfspaces that are bounded
by the affine hulls of those facets and contain v. The circumcenters ci of the tetrahedra ti are vertices of
the Voronoi cell of v, which is convex. Hence, they belong to V(U)+

v . Moreover, since γ is monotone
w.r.t. the oriented line l (Claim 1.11.2), the ci also belong to W . The intersections of V(U)+

v with Π and
Π′ respectively are convex polygons whose vertices are the intersection points between Π or Π′ and the
affine hulls of the dual Voronoi edges of the facets of U . Any such Voronoi edge e contains the center
ce of a surface Delaunay ball, such that d(ce, v) ≤ ε. By M2, the angle between e and n(pv) is at most
θ2. It follows that e ∩ Π and e ∩ Π′ are not farther than 2h/ cos θ2 from ce. Hence, the distance from v

to any vertex of V(U)+v ∩Π or V(U)+v ∩Π′ is bounded by:

η = ε+
2h

cos θ2
= ε

(

1 +
2 sin θ1
cos θ2

)

Since the circumcenters ci lie inside V(U)+v ∩ W , their distance to v is at most η, which less than
(1 + ν)ε, by M5. Hence, for all i, the circumradius of fi is less than (1 + ν)ε, which implies that fi is
oriented by the orientation convention 1.6. Moreover, by M3, (n(fi),n(pv)) ≤ θ3, which is less than π

2 ,
by M6. According to Claim 1.11.2, the unit vector ni = ci+1−ci

‖ci+1−ci‖ orthogonal to fi and oriented from ti

to ti+1 has a positive inner product with n(pv). Therefore, ni = n(fi), which yields:

(ci+1 − ci) · n(pv) ≥ cos θ3 ‖ci+1 − ci‖, (1.2)

and, by summing over all edges of γ,

‖c′ − c‖ cos θ3 ≤
s
∑

i=0

‖ci+1 − ci‖ cos θ3

(1.2)

≤
s
∑

i=0

(ci+1 − ci) · n(pv)

= (c′ − c) · n(pv)

In addition, since d(c, v) ≤ ε and d(c′, v) ≤ ε, c and c′ belong to S ∩ B(v, ε). Hence, by M1
(applied with q = c), the angle (n(pv), (c′ − c)) is at least π

2 − θ1, which implies that (c′ − c) · n(pv) ≤
‖c′− c‖ sin θ1. This raises a contradiction with ‖c− c′‖ cos θ3 ≤ (c′− c) ·n(pv), by M6. Lemma 1.11
is proved. ¤

We deduce from Lemmas 1.10 and 1.11 that Del|S(E) is a 2-manifold without boundary. Moreover,
it is compact since it is included in the convex hull of E, which is bounded. In addition, by Lemmas 1.8
and 1.11, the facets of Del|S(E) that share a vertex v do not overlap in projection onto T (pv).
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1.2.1.3 Orientation

The next result concludes the proof of Theorem 1.7:

Lemma 1.12 The orientation convention induces a valid orientation of the closed 2-manifold Del|S(E).

Proof. Let f and f ′ be two facets of Del|S(E) with a common edge. These facets are oriented according
to the orientation convention. Let v be a common vertex of f and f ′. We call fp and f ′p the respective
orthogonal projections of f and f ′ onto the tangent plane T (pv). Inside T (pv), we endow triangles fp

and f ′p with the same orientations as f and f ′ respectively. By M2, n(f) · n(pv) and n(f ′) · n(pv) are
both positive. So are n(fp) · n(pv) and n(f ′p) · n(pv). Moreover, triangles fp and f ′p share an edge e,
and their interiors are disjoint, by the projection lemma 1.8. Thus, their orientations are consistent with
e, i.e. they induce opposite orientations of e. Hence, the orientations of f and f ′ are consistent with the
common edge of f and f ′. ¤

1.2.2 Isotopy

Let E ⊂ S be a finite set of points. In this section we show that every subcomplex Ŝ of Del|S(E) that
verifies I1–I3 is isotopic to S. The proof relies on a classical result of differential geometry, stated as
Theorem 1.13, which exploits the topological properties of the so-called tubular neighborhood of S. We
introduce this notion in Section 1.2.2.1, then we present our proof in Section 1.2.2.2.

1.2.2.1 Tubular neighborhood

The tubular neighborhood of width ε around S, or Tε for short, is defined as follows:

Tε =
⋃

p∈S

B(p, ε) =
{

q ∈ R
3 | d(q, S) < ε

}

(1.3)

Let πS : R
3 → S map each point to its nearest neighbor on S. Since ε < rch(S), Tε does not

intersect the medial axis of S, hence the restriction of πS to Tε is a well-defined continuous function.
Let p be a point of Tε and p̃ be its image by πS . Since S is smooth, the line (p, p̃) is aligned

with the normal of S at p̃. Moreover, the segment [p, p̃] is included in Tε since, for any p′ ∈ [p, p̃],
d(p′, S) = d(p′, p̃) ≤ d(p, p̃) < ε. It follows that Tε ∩ π−1

S (p̃) is an open line segment. We call
this segment the fiber of p̃, or simply Fib(p̃). Since Tε ∩M = ∅, the fibers are pairwise disjoint [66,
Th. 4.8(13)].

Theorem 1.13 If Ŝ satisfies the following two conditions, where ε < rch(S):
1. Ŝ ⊂ Tε,
2. ∀p ∈ S, |Ŝ ∩ Fib(p)| = 1,

then the restriction of πS to Ŝ induces an isotopy that maps Ŝ to S. The isotopy does not move the points
by more than ε.
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This is a well-known result, based on classical arguments of differential geometry [77, Chapter 5]. We
recall its proof briefly, for completeness:

Sketch of proof. The idea is to push Ŝ onto S, along the fibers, in a continuous and one-to-one fashion.
To this end, we introduce the following map:

φ : [0, 1]× Tε → Tε
(t, p) 7→ t p̃+ (1− t) p

(1.4)

where p̃ is the image of p by πS . Since πS is well-defined and continuous over Tε, φ defines a continuous
flow towards φ(1, Tε) = S.

Since Ŝ ⊂ Tε (Hyp. 1), we can consider the restriction φŜ of φ to Ŝ. φŜ(0, .) is the identity on Ŝ.
Moreover, φŜ(1, Ŝ) = S, by Hyp. 2. Let t ∈ [0, 1]. According to Hyp. 2, the points of Ŝ belong to
different fibers. It follows that φŜ(t, .) is injective, since the fibers are pairwise disjoint. Hence, φŜ(t, .)

is a homeomorphism from Ŝ onto its image φŜ(t, Ŝ), because φ is continuous and Ŝ is compact. As a
conclusion, φŜ is an isotopy from Ŝ to S.

The fact that φŜ does not move the points of Ŝ by more than ε comes from the fact that every point
p ∈ Ŝ is mapped to its nearest neighbor on S, which is closer than ε since p ∈ Tε. ¤

1.2.2.2 Our result

Theorem 1.14 For any finite point set E ⊂ S and any subcomplex Ŝ of Del|S(E) that satisfies I1–I3,
the restriction of πS to Ŝ induces an isotopy that maps Ŝ to S. The isotopy does not move the points by
more than ε.

Specifically, we will prove successively that, under I1–I3, Ŝ verifies Hyp. 1 and Hyp. 2 of Theo-
rem 1.13, which will yield the result.

Lemma 1.15 Ŝ is included in Tε. As a consequence, Hyp. 1 of Theorem 1.13 is satisfied.

Proof. Let p ∈ Ŝ. Let f be a facet of Ŝ that contains p, and Bf = B(cf , rf ) be the surface Delaunay
ball of f . If p is a vertex of Ŝ, then p belongs to S, which is included in Tε because ε > 0. Otherwise,
p belongs to the interior of Bf , which means that d(p, cf ) < rf . Since cf ∈ S and rf ≤ ε by I3, p
belongs to Tε. ¤

Let S1 be the subset of S made of the points whose fibers intersect Ŝ exactly once. These points are
images by πS of exactly one point of Ŝ. Note that S is endowed with the topology induced by R

3.

Lemma 1.16 The vertices of Ŝ belong to int(S1).

Proof. Let v be a vertex of Ŝ. We first show that v ∈ S1. Since v ∈ Ŝ ∩ S, |Fib(v) ∩ Ŝ| ≥ 1. Let
mv ∈ M be the center of any medial ball Bv tangent to S at v. Assume that ]v,mv[ intersects a facet f
of Ŝ. ∂Bv and ∂Bf necessarily intersect since the vertices of f do not belong to the interior of Bv. Let
Π be the plane containing ∂Bv ∩∂Bf , Π+ be the halfspace limited by Π and containing f . Since v does
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not belong to the interior of Bf and is on the boundary of Bv, v must belong to Π− (possibly in Π). On
the other hand, by I3, the radius rf of Bf is less than rch(S), hence mv ∈ M does not belong to Bf . It
follows that mv is located in the open half space Π−. Hence, the open segment ]v,mv[ is contained in
the open half space Π−, and therefore cannot intersect f which is contained in Π+. As a consequence,
]v,mv[∩Ŝ = ∅, which means that |Fib(v) ∩ Ŝ| = 1.

We now show that v ∈ int(S1). By Lemmas 1.8 and 1.11 (with pv = v), the facets of the umbrella
U of v do not overlap in projection onto T (v). Therefore, the projection from U to T (v) is one-to-one,
and there exists a small neighborhood N of v on S such that every line crossing N and parallel to n(v)

intersects U once. Moreover, the planes supporting the facets of U cannot be perpendicular to T (v),
since otherwise the projection onto T (v) could not be one-to-one. Hence, there exists a β > 0 such
that any line crossing N and making an angle less than β with n(v) intersects U once. Since S is C 1-
continuous, its Gauss map p 7→ n(p) is continuous. Thus, N can be chosen sufficiently small, so that
the fibers of the points of N make angles less than β with n(v). As a consequence, for any p ∈ N ,
|Fib(p) ∩ U | = 1. In addition, since |Fib(v) ∩ Ŝ| = 1, the fiber of v intersects Ŝ only at v. Hence, its
distance to Ŝ \ U is positive. It follows that N can be chosen sufficently small, so that the fibers of the
points of N do not intersect Ŝ \ U . As a consequence, N ⊆ S1 and v ∈ int(S1). ¤

It follows from Lemma 1.16 that S1 6= ∅. Moreover, by I2, S1 intersects all the connected compo-
nents of S. If we can show that S1 has an empty boundary, then we will have S1 = S, which implies
that Hyp. 2 of Theorem 1.13 is satisfied, hereby concluding the proof of Theorem 1.14.

Lemma 1.17 ∂S1 = ∅.

Proof. We assume that ∂S1 6= ∅ and look for a contradiction. Let p ∈ ∂S1. Let f1, · · · , fk be the
facets of Ŝ intersected by Fib(p). For any q ∈ fi ∩ Fib(p), the nearest neighbor of q on S is p, thus
d(p, q) ≤ ε. Hence, the distance from p to the center ci of the surface Delaunay ball of fi is at most 2ε,
by I3. From I1, from the triangle normal lemma 1.5 and the normal variation lemma 1.2, and from the
fact that µ ≤ µ0, we deduce:

(n(fi),n(p)) ≤ 2µ
√

3 +
4µ

1− 4µ
<
π

2
(1.5)

Therefore, every fi is intersected transversally by Fib(p). Let pi = fi ∩ Fib(p).
- If pi belongs to the relative interior of fi, then in a small neighborhood of p on S the fibers intersect fi

transversally, since the Gauss map of S is continuous. Therefore, the number of intersections of a fiber
with fi does not change at p.
- If pi is a vertex of Ŝ, then pi belongs to S, which implies that pi = p. Hence, by Lemma 1.16,
p ∈ int(S1), which contradicts the assumption that p ∈ ∂S1.

It follows from the two above observations that at least one of the pi (say p1) belongs to the relative
interior of an edge e of Ŝ, such that the number of intersections of a fiber with f1 and its neighbor
(through e) f ′1 changes at p. This means that n(f1) · n(p) and n(f ′1) · n(p) have different signs, since the
Gauss map of S is continuous. This raises a contradiction with Eq. (1.5) and hereby concludes the proof
of Lemma 1.17. ¤
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1.2.3 Fréchet distance

The next result bounds the Fréchet distance (and hence also the Hausdorff distance) between S and any
subcomplex Ŝ of Del|S(E) that verifies I1–I3:

Theorem 1.18 For any finite point set E ⊂ S and any subcomplex Ŝ of Del|S(E) that verifies I1–I3,
the Fréchet distance between S and Ŝ is at most ε2

rch(S) .

According to Theorem 1.14, the projection onto S, πS , induces an isotopy between Ŝ and S. In
particular, the restriction of πS to Ŝ is a homeomorphism between Ŝ and its image S. Hence, in view
of Definition P.5, to control the Fréchet distance between Ŝ and S it suffices to bound d(p, πS(p)) =

d(p, S) for any p ∈ Ŝ.

Lemma 1.19 Let p ∈ S. For any q ∈ S, the distance from q to T (p) is at most d2(p,q)
2 rch(S) .

Proof. Let B1 and B2 be the two balls of radius rch(S) tangent to S at p. Their interiors cannot
intersect S and therefore do not contain q. Let q′ be the intersection point other than p of the boundary
of B1∪B2 with segment [p, q]. Let h be the distance of q to T (p) and θ the angle between the line (p, q)

and the plane T (p). Referring to Figure 1.4, we have: 2 sin θ rch(S) = d(p, q ′) ≤ d(p, q). Therefore,
sin θ ≤ d(p,q)

2 rch(S) and h = d(p, q) sin θ ≤ d2(p,q)
2 rch(S) . ¤

Lemma 1.20 Let p ∈ S. For any q ∈ T (p), the distance of q to S is at most d2(p,q)
2 rch(S) .

Proof. Let B1 and B2 be the two balls of radius rch(S) tangent to S at p. Their interiors cannot
intersect S and therefore do not contain q. Moreover, since S has no boundary, it separates the tangent
balls B1 and B2, in the sense that they belong to different connected components of R

3 \ S.
In the plane conatining p, q and the centers ofB1 andB2, let q1 and q2 be the points of intersection of

the sphere ∂B(p, d(p, q)) with ∂B1 and ∂B2 respectively. Let q′1 and q′2 be the orthogonal projections
of q onto the lines (p, q1) and (p, q2) respectively. Note that q′1 belongs to the segment [p, q1] and q′2
belongs to [p, q2]. Thus, the segments [q, q′1] and [q, q′2] intersect ∂B1 and ∂B2 respectively. Since S
separates B1 and B2, one of these segments (say [q, q′2]) intersects S. Hence, d(q, S) ≤ d(q, q′2).
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Referring to Figure 1.5, we have: d(q, q′2) = d(p, q) sin θ. Moreover, 2 sin θ rch(S) = d(p, q2) =

d(p, q). Therefore, d(q, q′2) = d2(p,q)
2 rch(S) . The result follows. ¤

Using Lemmas 1.19 and 1.20, we can bound d(p, S) = d(p, πS(p)) for any p ∈ Ŝ, which concludes
the proof of Theorem 1.18:

Lemma 1.21 ∀p ∈ Ŝ, d(p, S) is at most ε2

rch(S) .

Proof. Let p ∈ Ŝ. Let f be a facet of Ŝ that contains p. We call B(c, r) the surface Delaunay ball of
f . Let p′ be the orthogonal projection of p onto T (c). By Lemma 1.19, for any vertex v of f , we have
d(v, T (c)) ≤ ε2

2rch(S) . Since p is a convex combination of the vertices of f , d(p, p′) is also bounded by
ε2

2rch(S) . In addition, we have: d(p′, c) ≤ d(p, c) ≤ ε. Thus, by Lemma 1.20, the distance from p′ to S is
at most ε2

2rch(S) . It follows that the distance from p to S is bounded by ε2

rch(S) . ¤

1.3 Loose ε-samples and ε-samples

As emphasized in the introduction of Part A, loose ε-samples and ε-samples are closely related. We will
first prove that ε-samples are loose ε-samples, for sufficiently small ε. Then, we will prove that loose
ε-samples are ε-samples asymptotically.

Trivially, an ε-sample satisfies Condition 1 of Definition A.1. Therefore, all we have to do is to
prove that, for sufficiently small ε, Condition 2 is satisfied as well:

Lemma 1.22 If E is an ε-sample of S, with ε < π
6+π rch(S) ≈ 0.34 rch(S), then every point of E is a

vertex of Del|S(E). As a consequence, E is a loose ε-sample of S.

Proof. Let v ∈ E. We consider the cell V(v) in the Voronoi diagram of E. We will prove that at least
one edge of the boundary of V(v) intersects S, which means that v is incident to at least one facet of
Del|S(E).
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Since E is an ε-sample of S, no point of S ∩ V(v) is farther than ε from v. Thus, S ∩ V(v) is
included in B(v, ε). Since ε < rch(S), the connected component of S on which v lies is not contained
in B(v, ε). Hence, this component intersects ∂B(p, ε) and therefore ∂V(v). Let f be a facet of ∂V(v)

that intersects S. We will show that f ∩ S contains no cycle, which implies that S ∩ ∂f 6= ∅, hereby
proving the lemma.

Let us assume for a contradiction that f ∩ S contains a cycle C. We call w the point of E such that
f = V(v) ∩ V(w), and we consider a point p of f ∩ S. Since E is an ε-sample, we have d(p, v) =

d(p, w) ≤ ε. Hence, v and w belong to S ∩ B(p, ε). According to the cocone lemma 1.4, the angle
between n(p) and the line (v, w) is at least π

2 −
µ

1−µ , where µ = ε
rch(S) . Equivalently, the angle between

n(p) and the plane aff(f) is at most µ
1−µ . Moreover, by the normal variation lemma 1.2, (n(p),n(v)) is

at most µ
1−µ . Thus, the angle between n(v) and aff(f) is at most 2µ

1−µ .
Let l be the unit vector of aff(f) whose angle with n(v) is minimal. We have (n(v), l) ≤ 2µ

1−µ . Let l
be a line parallel to l that intersects C at least twice. Such a line exists because C is a cycle. Let q and q ′

be two points of intersection. We assume without loss of generality that l · (q′− q) > 0. Then, we have:

(n(v), q′ − q) ≤ 2µ

1− µ (1.6)

Now, q and q′ both belong to V(v), and hence to B(v, ε). Thus, by the cocone lemma 1.4, the angle
between n(v) and the line (q, q′) is at least π

2 −
µ

1−µ . This contradicts (1.6) because 3µ
1−µ < π

2 , by
hypothesis. Therefore, the lemma is proved. ¤

Conversely, Theorem 1.18 allows us to prove that loose ε-samples are asymptotically ε-samples.

Lemma 1.23 If E is a loose ε-sample of S, with ε ≤ µ0 rch(S), then E is an ε
√

1 + ε2

rch(S)2
-sample

of S.

Proof. Let p be a point of S and p′ a nearest neighbor of p on Del|S(E). By Theorem 1.18, d(p, p′) is
at most ε2

rch(S) . If p′ is a vertex of Del|S(E), then p′ ∈ E and the result is proved. Else, let f be a facet
of Del|S(E) that contains p′, and v 6= p′ a vertex of f closest to p′. By hypothesis, the circumradius of
f is at most ε. Thus, d(p′, v) ≤ ε, since p′ ∈ f . If p′ belongs to an edge e of f , then the lines aff(e) and
(p, p′) are perpendicular. Thus,

d(p,E) ≤ d(p, v) =
√

d2(p, p′) + d2(p′, v) ≤
√

ε4

rch(S)2
+ ε2

and the lemma is proved. Else, p′ belongs to the relative interior of f , thus the plane aff(f) is perpen-
dicular to (p, p′). By the same computation as above, we get d(p,E) ≤

√

ε4

rch(S)2
+ ε2, which proves

the lemma. ¤

1.4 Covering

Note to the reader: This section is not crucial for the coherence of the thesis, since its results will not
be used in the sequel. Therefore, it can be skipped in a first reading.
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We assume in this section that the surface S is C2-continuous, i.e. it is twice differentiable and its
second derivative is continuous. Let µ1 = π

16+2π ≈ 0.14. We will prove the following structural result:

Theorem 1.24 (Covering) If E is a loose ε-sample of S, with ε < µ1 rch(S), then the surface Delau-
nay balls cover S.

Let E be a loose ε-sample of S, with ε < µ1 rch(S). Let µ = ε/rch(S) < µ1. Before proving the
theorem, we will study the geometric properties of the surface patches defined as the intersections of the
surface Delaunay balls with S.

1.4.1 Pseudo-disks

Let f be a facet of Del|S(E), Bf = B(cf , rf ) its surface Delaunay ball, Df = S ∩Bf its surface patch.
Since E is a loose ε-sample of S, we have rf ≤ ε = µ rch(S).

Lemma 1.25 (Terrain)
Since µ < π

2+π , S∩B(cf , µ rch(S)) is a terrain over T (cf ). Therefore,Df is also a terrain over T (cf ).

Proof. By the normal variation lemma 1.2, for any point p ∈ B(cf , µ rch(S)), we have (n(cf ),n(p)) ≤
µ

1−µ < π
2 . Thus, by the line lemma 1.3, any line aligned with n(cf ) intersects S ∩ B(cf , µ rch(S)) at

most once. Hence, S ∩B(cf , µ rch(S)) is a terrain over the plane T (cf ). ¤

Combining the cocone lemma 1.4 and the terrain lemma 1.25, we can show that Df is a topological
disk as soon as µ < π

2+π . However, in the smooth case, a better bound on µ has been achieved by
Boissonnat and Cazals [18], thus we simply recall their result here:

Lemma 1.26 (Topological Disk)
Since µ < 1, Df is a topological disk.

Definition 1.27 Topological disks are pseudo-disks if they pairwise intersect along topological disks
(that may be empty or reduced to a point) and if their boundaries pairwise intersect in at most two
points.

Observe that the boundaries of two pseudo-disks either do not intersect, or intersect in one point
tangentially, or intersect in two points transversally. The main result of this section is the following one:

Proposition 1.28 The surface patches of the facets of Del|S(E) are pseudo-disks.

Note to the reader: The proof is organized in a hierarchical way, with several lemmas and claims with
independent proofs. These proofs can be skipped in a first reading.

Proof of Proposition 1.28. Let B = B(c, r) and B ′ = B(c′, r′) be two surface Delaunay balls. By the
topological disk lemma 1.26, D = B ∩ S and D′ = B′ ∩ S are topological disks. Their boundaries C
and C ′ are topological circles. Let us assume that balls B and B ′ intersect, the other case being trivial.
Notice that none of them can be contained in the other one, since they are Delaunay balls. Thus, their
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bounding spheres ∂B and ∂B ′ also intersect. Let Γ be the circle ∂B∩∂B ′, λ its radius (λ < min {r, r′})
and P its supporting plane. We define ∆ = B ∩P and notice that Γ = ∂∆. Since S is a closed surface,
we have C ⊂ ∂B and C ′ ⊂ ∂B′, which implies that:

C ∩ C ′ ⊆ S ∩ Γ (1.7)

Inside the plane containing n(c) and line (c, c′), let n be the unit vector orthogonal to (c, c′) that has
a positive inner product with n(c). Since d(c, c′) ≤ r + r′ ≤ 2µ rch(S), the angle between n(c) and
(c, c′) is at least π

2 −
2µ

1−2µ , by the cocone lemma 1.4. Hence (n(c),n) ≤ 2µ
1−2µ .

Let B+ = B(c, 2r). Applying the normal variation lemma 1.2, we get:

∀p ∈ S ∩B+, (n(p),n) ≤ (n(p),n(c)) + (n(c),n) ≤ 4µ

1− 2µ
<
π

4
(1.8)

We endow R
3 with an oriented orthonormal frame of origin c, of y-axis directed along c’ − c, and

of z-axis directed along n. We call Ll and Lr the two lines of P , parallel to the z-axis, that are tangent
to Γ. The region of P bounded by Ll and Lr is called G – see Figure 1.6. In the sequel, ξ denotes
S ∩B+ ∩G.

Lemma 1.29 ξ is a connected x-monotone arc.

Proof. According to (1.8), we have ∀p ∈ S ∩B+, (n(p),n) < π
4 . Thus, by the line lemma 1.3, S ∩B+

is xy-monotone, i.e. it is a terrain over the xy-plane in our frame. Hence, ξ is x-monotone. Moreover,
again by the line lemma 1.3, S ∩ B+ lies outside the double cone of apex c, of vertical axis and of
half-angle π

4 . The equation of the double cone in our frame is z2 = x2 + y2. It intersects P along two
hyperbolic arcs of equations z = ±

√
x2 + d2, where d ≤ r is the distance from c to P . Consider the

subregion G′ of G that is bounded vertically by the two hyperbolic arcs – see Figure 1.6. Since S ∩B+

lies outside the double cone, ξ is included in G′.
The points of G′ that are farthest from c are the points (±λ,−d,±

√
λ2 + d2). Their distance to c is

√

2(λ2 + d2) < 2r
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As a consequence, G′ is included in the interior of B+. It follows that ξ is also included in the
interior of B+ and therefore it cannot intersect ∂B+. Its endpoints must then lie on the vertical lines
Lr and Ll. But there can be only one endpoint per vertical line, since ξ is x-monotone. Hence, ξ has at
most two endpoints and is thus connected. ¤

Lemma 1.30 |S ∩ Γ| ≤ 2.

Proof. Let us assume for a contradiction that |S∩Γ| > 2. First, we show that there exists a point where
the curvature of ξ is high and hence the distance to the medial axis of S is small. Then we work out a
contradiction with the fact that E is a loose ε-sample, with ε < µ1 rch(S).

Claim 1.30.1 There exists a point q at which the curvature of ξ is at least 1
λ .

Proof. We made the assumption that |S ∩ Γ| > 2. Since Γ ⊂ G and Γ ⊂ B+, ξ also intersects Γ

more than twice. And since ξ is connected by Lemma 1.29, there is a subarc ab of ξ that lies outside ∆

and whose endpoints a and b lie on Γ. This subarc may be reduced to a point (a = b), since ξ may be
tangent to Γ. But in this case, in the vicinity of a, ξ is locally included in ∆ and tangent to Γ at a. Thus,
its curvature at a is at least 1

λ , which proves the claim with q = a. So now we assume that arc ab of ξ is
not reduced to a point. Since ξ is x-monotone by Lemma 1.29, a and b lie on the same half of Γ, upper
half or lower half (say upper half). Thus, the smaller arc of Γ that joins a and b is also x-monotone, and
it lies below the arc ab of ξ. Therefore, there is a point q of the arc ab of ξ at which the curvature of ξ is
at least the curvature of Γ, i.e. at least 1

λ , which proves the claim. ¤

Claim 1.30.2 dM(q) ≤ λ
√

2.

Proof. Let nξ(q) denote the normal to the planar curve ξ at point q. By (1.8), n(q) is not orthogonal to
P , thus nξ(q) is oriented along the projection of n(q) onto P . Hence, we have (n(q),nξ(q)) ≤ (n(q),n),
which is less than π

4 , by (1.8). According to Meusnier’s Theorem [29, §3.2, Prop. 2], we then have at q:

II(ξ′, ξ′) ≥ cos
π

4
‖ξ′′‖

where II is the second fundamental form of S at q, ξ ′ is the unit tangent vector of ξ (parameterized by
arclength) at q, and ‖ξ′′‖ is the curvature of ξ at q, which is more than 1

λ according to Claim 1.30.1.
Thus, at q we have:

II(ξ′, ξ′) ≥ 1

λ
√

2
(1.9)

Recall that II is a symmetric bilinear form, thus it can be diagonalized in an orthonormal frame, and
its eigenvalues are the minimum and maximum curvatures of S at q. Let us call these values κmin(q)

and κmax(q) respectively. Since ξ′ is a unit vector, we have II(ξ′, ξ′) ≤ max {|κmin(q)|, |κmax(q)|}. It
follows, according to (1.9), that max {|κmin(q)|, |κmax(q)|} ≥ 1

λ
√

2
, or, equivalently, that the minimal

radius of curvature of S at q is at most λ
√

2. The claim follows. ¤
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The end of the proof of Lemma 1.30 is now immediate. The radius r of ball B is greater than λ,
which is at least 1√

2
dM(q) ≥ 1√

2
rch(S). This contradicts the assumption that B is a surface Delaunay

ball of radius r < µ1 rch(S), and hereby concludes the proof of Lemma 1.30. ¤

From Eq. (1.7) and Lemma 1.30, it follows immediately that |C ∩ C ′| ≤ 2.

Lemma 1.31 S ∩∆ is not reduced to two points.

Proof. Let us assume that S intersects ∆ in two points exactly, say a and b. Then, the subarc of ξ that
joins points a and b lies outside ∆. It follows, by the same argument as in the proof of Claim 1.30.1,
that there exists some point q of ξ at which the curvature of ξ is at least 1

λ . Then, by Claim 1.30.2,
dM(q) ≤ λ

√
2, which leads to a contradiction, as in the end of the proof of Lemma 1.30. ¤

We can now complete the proof of Proposition 1.28, by showing that D and D ′ intersect each other
either along a single point or along a topological disk. The result is clear if D ⊆ D ′ or if D′ ⊆ D.
Otherwise, by Lemma 1.30, we have |C ∩ C ′| ≤ 2. If |C ∩ C ′| = 0, then D ∩ D′ is empty. If
|C ∩ C ′| = 1, then D ∩D′ is a single point. If |C ∩ C ′| = 2, then D ∩D′ is either a topological disk
or equal to C ∩ C ′. But if D ∩D′ = C ∩ C ′, then S ∩∆ = C ∩ C ′ since C ∩ C ′ ⊆ S ∩∆ ⊆ D ∩D′.
This implies that |S ∩∆| = 2, which contradicts Lemma 1.31. Hence, D ∩D ′ is not equal to C ∩ C ′

and is therefore a topological disk. This ends the proof of Proposition 1.28. ¤

1.4.2 Proof of the theorem

We can now prove the covering theorem 1.24. Let
⋃

f∈Del|S(E)Bf (or
⋃

f Bf , for short) denote the
union of the surface Delaunay balls.

Let f0 be a facet of Del|S(E). Our goal is to prove that the boundary Cf0 of the surface patch Df0

of f0 is included in the interior of
⋃

f Bf . In fact, we will prove a slightly more precise result, stated as
Lemma 1.32.

We consider the neighborhood N(f0) of f0 in Del|S(E). By Theorem 1.7, Del|S(E) is a manifold
without boundary. Thus, N(f0) \ {f0} contains one facet of Del|S(E) adjacent to f0 through each edge
of f0. We callR(f0) the union of the surface patches associated with the facets of N(f0). Let int(R(f0))

denote the relative interior of R(f0).

Lemma 1.32 Cf0 ⊆ int(R(f0)).

Proof. Let u, v and w be the vertices of f0. We call fuv, fvw and fwu the three facets of N(f0) that
are incident to f0 through edges uv, vw and wu respectively. By Proposition 1.28, arcs uv, vw and wu
of Cf0 are included in Dfuv , Dfvw and Dfwu respectively, and only their endpoints may possibly lie on
Cfuv , Cfvw or Cfwu . Thus, the three arcs are included in the interior of R(f0), except for their endpoints
which may possibly lie on the boundary of R(f0).

We claim that u, v and w also belong to int(R(f0)). Let U be the umbrella of facets of Del|S(E)

incident to u, and R(u) be the union of surface patches of the facets of U . Notice that R(u) ⊆ R(f0),
since U ⊆ N(f0). Let B(c, r) be the ball of largest radius, among the surface Delaunay balls of the
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facets of U . For any point p ∈ R(u), we have d(p, u) ≤ 2r, hence R(u) is included in S ∩ B(u, 2r).
Since 2r ≤ 2ε < 2µ1 rch(S), S ∩ B(u, 2r) is a terrain over T (u), by the terrain lemma 1.25. It
follows that the surface patches of the facets of U , which are pseudo-disks in R

3, are also pseudo-disks
in projection onto T (u). Then, u lies inside the projection of int(R(u)), since by Claim 1.11.1 u lies
inside the projection of int(U). It follows that u ∈ int(R(u)), since R(u) is a terrain over T (u). Thus,
u ∈ int(R(f0)). The argument holds for v and w as well, which completes the proof of the lemma. ¤

Let
⋃

f Df denote the union of the surface patches of the facets of Del|S(E). A consequence of
Lemma 1.32 is that the boundary of

⋃

f Df is empty. Thus,
⋃

f Df is topologically open and closed
at the same time (for the topology of S induced by R

3), which implies that
⋃

f Df is the union of
one or more connected components of S. Moreover, since Del|S(E) has vertices on all the connected
components of S,

⋃

f Df intersects all the connected components of S. It follows that
⋃

f Df = S,
which concludes the proof of the covering theorem 1.24.

1.5 Non-uniform samples

The previous sections deal exclusively with point samples whose density is driven by a uniform sizing
field ε. Specifically, ε is an upper bound on the Hausdorff distance between the surface S and the point
sample E. Therefore, the local density of E may be non-uniform, but it is everywhere lower-bounded
by the same constant, which does not take into account the fact that some regions of S can be flat while
others can be highly curved.

In [23], we focus on loose µdM-samples and prove several properties similar to the ones stated in
this chapter for loose ε-samples. We summarize our results in the next theorem:

Theorem 1.33 If E is a loose µdM-sample of S, with µ ≤ 0.09, then:
– Del|S(E) is isotopic to S;
– the Hausdorff distance between Del|S(E) and S is at most 4.5 µ2 sup{dM(p), p ∈ S};
– Del|S(E) approximates S, in terms of normals and area, within an error of O(µ);
– S is covered by the surface Delaunay balls;
– E is a µ(1 + 8.5µ)dM-sample of S.

We refer the reader to [23] for comprehensive proofs of the above statements. In fact, the proofs
of [23] are quite similar to the ones presented in this chapter, with the additional subtelty that the vari-
ation of dM must be taken into account. Therefore, the bounds on µ in the above theorem are slightly
deteriorated, compared to the bounds achieved in the previous sections of this chapter. Moreover, as
we will see in Chapter 3, µdM-samples and ε-samples with ε = µ rch(S) have the same size, up to a
constant factor that depends only on S.



Chapter 2

The Nonsmooth Case

In this chapter, we focus on the case where the surface S is nonsmooth. In order to make topological
and geometric claims, we restrict our study to the class of Lipchitz surfaces, defined in Section 2.1. In
Section 2.2, we review the main global properties of loose ε-samples. Specifically, we prove that their
restricted Delaunay triangulation is a manifold without boundary (2.2.1), at Hausdorff distance OS(ε)

from S (2.2.2) and isotopic to S (2.2.3). In Section 2.3, we show that loose ε-samples and ε-samples are
closely related on Lipschitz surfaces.

2.1 Preliminaries

2.1.1 Lipschitz surfaces

Following [94, §1.3], we define Lipschitz surfaces as follows:

Definition 2.1 Given a positive constant k, S ⊂ R
3 is a k-Lipschitz surface if there exists some bounded

open set Ω ⊂ R
3 such that S = ∂Ω and that Ω is locally the epigraph of a k-Lipschitz function, that

is: there exist two positive constants η and ε, a finite number m of orthonormal systems of coordinates
(xi, yi, zi) of R

3, andm k-Lipschitz maps gi : (xi, yi)→ R defined over the open square ∆ =]−η, η[2,
such that

∀(xi, yi) ∈ ∆,

{

]

(xi, yi, gi(xi, yi), (xi, yi, gi(xi, yi) + ε)
[

⊂ Ω
]

(xi, yi, gi(xi, yi)− ε), (xi, yi, gi(xi, yi))
[

⊂ R
3 \ Ω̄

and that any point p ∈ S can be written in at least one of the coordinate systems under the form
p = (xi

p, y
i
p, g

i(xi
p, y

i
p)).

Since the gi are defined over open subsets of R
2, around each point p ∈ S there is a small neigh-

borhood N (p) ⊂ R
3 such that Ω ∩ N (p) is the intersection of N (p) with the epigraph of some gi

. This property, illustrated in Figure 2.1, implies that our definition is equivalent to the one given by
Clarke [47, §7.3], which states that S = ∂Ω is a k-Lipschitz surface if around each point p ∈ S there
is a neighborhood N (p) ⊂ R

3 such that Ω ∩ N (p) is the intersection of N (p) with the epigraph of a
k-Lipschitz bivariate function.

25
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Figure 2.1: Being locally the epigraph of a Lipschitz function gi (from [94, Fig. 2]).

Lipschitz surfaces are sometimes called strongly Lipschitz surfaces [13] in the literature, as opposed
to weakly Lipschitz surfaces, which are not locally graphs of Lipschitz functions but whose local coor-
dinate charts are Lipschitz homeomorphisms. As reported in [13, 93], both notions are identical when
k ≥ 2 but distinct when k ≤ 1.

Let S be a k-Lipschitz surface, for some positive constant k to be specified later on. It follows from
Definition 2.1 that S is an embedded compact C0-continuous surface without boundary. In the sequel,
we call O− the open set Ω introduced in Definition 2.1, and O+ the open set R

3 \ Ω̄. Moreover, we set
O = R

3 \ S, which is equal to O− ∪ O+.
By Rademacher’s theorem [67, §3.1.6], each k-Lipschitz function gi : (xi, yi) → R of Definition

2.1 is differentiable L2-almost everywhere in ∆, i.e. the set Σi of singular points of gi has zero Lebesgue
measure in ∆. Since L2 coincides with the 2-dimensional Hausdorff measure H2 in R

2 [67, §2.10.35],
we have H2(Σi) = 0. And since gi is Lipschitz, the map (xi, yi) 7→ (xi, yi, gi(xi, yi)) is also
Lipschitz, hence it maps Σi onto a subset of R

3 of zero H2 measure [67, §2.10.11]. Therefore, S is
differentiable H2-almost everywhere. In particular, we have the following corollary, where S̃ denotes
the set of points where S is differentiable:

Corollary 2.2 S̃ is dense in S, that is: ∀p ∈ S, ∀η > 0, S̃ ∩B(p, η) 6= ∅.

Note that S \ S̃ may as well be dense in S, despite the fact that it has zeroH2 measure.
Given p ∈ S̃, we call T (p) the tangent plane of S at p, and n(p) the unit vector orthogonal to T (p)

that points towards O+. This vector is called the normal of S at p.

2.1.2 Lipschitz radius

Let S be a k-Lipschitz surface.
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Definition 2.3 Given a point p ∈ S, the k-Lipschitz radius of S at p, or lrk(p) for short, is the maximum
radius r such thatO−∩B(p, r) is the intersection ofB(p, r) with the epigraph of a k-Lipschitz bivariate
function.

It is clear that lrk(p) is positive for any p ∈ S, by Definition 2.1. Moreover, since S is compact
without boundary, S is not the graph of a bivariate function. Therefore, lrk(p) is finite, for any p ∈ S.

Lemma 2.4 lrk is 1-Lipschitz.

Proof. Let p, q be two points of S. By definition of lrk(p), for any η > 0, O− ∩ B(p, lrk(p) + η)

is not the intersection of B(p, lrk(p) + η) with the epigraph of a k-Lipschitz bivariate function. Now,
B(p, lrk(p)+ η) is contained in the ball B(q, d(p, q)+ lrk(p)+ η). Thus, lrk(q) ≤ d(p, q)+ lrk(p)+ η.
Since this is true for any η > 0, lrk(q) is at most d(p, q) + lrk(p). ¤

It follows from Lemma 2.4 that lrk is continuous over S. Since S is compact, lrk reaches its mini-
mum at some point p0 ∈ S, with lrk(p0) > 0. Hence,

Theorem 2.5 The infimum of lrk over S is positive.

We call k-Lipschitz radius of S this infimum, noted lrk(S). According to the above theorem, k-
Lipschitz surfaces belong to the class of compact objects with positive k-Lipschitz radius. Conversely,
every such object is a k-Lipschitz surface, by Clarke’s definition. Like the distance to the medial axis in
the smooth case, lrk allows to predict the local behaviour of any k-Lipschitz surface, as we will see in
Section 2.1.5.

2.1.3 The smooth case

Let S be a surface with positive reach. In this particular case, lrk(S) is closely related to rch(S), for any
positive value of k.

Theorem 2.6 If S is a surface with positive reach, then S is k-Lipschitz for any k > 0, and we have
lrk(S) ≥ arctan k

1+arctan k rch(S).

Proof. Let µ = arctan k
1+arctan k . Given a point p of S, we call Bp the ball of center p and radius µ rch(S).

Let Dp = S ∩ Bp. By the smooth cocone lemma 1.4, for any two points q, q ′ ∈ Dp, with q 6= q′, the
line (q, q′) lies outside the double cone of apex q, of axis aligned with n(p) and of half-angle π

2 −
µ

1−µ .
Hence, the angle between (q, q′) and the plane T (p) is at most µ

1−µ = arctan k. Since this is true for
any pair of points of Dp, the surface patch Dp is the graph of a k-Lipschitz map from T (p) to R. Hence,
lrk(p) ≥ arctan k

1+arctan k rch(S). The theorem follows. ¤

Theorem 2.6 is illustrated in Figure 1.1: since S passes between two tangent balls of radius rch(S)

at point f(s), any Lipschitz coefficient can be achieved in a sufficiently small neighborhood of f(s).
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Figure 2.2: Bounded dihedral angles do not ensure to be Lipschitz.

2.1.4 The polyhedral case

As we have just seen, the class of k-Lipschitz surfaces includes all surfaces with positive reach. But it is
in fact much broader than that. Another interesting subclass is the set of sufficiently smooth polyhedra,
as defined below:

Definition 2.7 Let θ < π
2 . An oriented polyhedron S is θ-smooth if, for any two non-disjoint facets f

and f ′ of S, we have (n(f),n(f ′)) ≤ θ.

Note that bounding the dihedral angles between adjacent facets of S is not sufficient to guarantee
that S is Lipschitz. In Figure 2.2 for instance, by moving the apex of the cone away, on can make the
cone as narrow as needed, while the dihedral angles between adjacent facets remain lower-bounded.
This is why the bound in Definition 2.7 applies to all pairs of facets sharing at least one vertex.

We will prove that θ-smooth polyhedra are O(θ)-Lipschitz surfaces. Let us start with a technical
result:

Lemma 2.8 Let θ < π
2 . Let S be an oriented polyhedron without boundary, p a point of S, B a ball

centered at p, and n a unit vector such that, for any facet f of S intersecting B, (n(f),n) ≤ θ. Then,
S ∩ B is the graph of a tan θ-Lipschitz function defined over the orthogonal projection of S ∩ B onto
the plane orthogonal to n.

Proof. Let l be a line intersecting S ∩ B at least twice, and such that the angle between n and l is less
than π

2 − θ. We call l the unit vector aligned with l such that l · n ≥ 0. We have

(l,n) <
π

2
− θ (2.1)

For any facet f of S intersectingB, (n(f),n) is at most θ, hence the angle between n and the supporting
plane of f is at least π

2−θ. As a consequence, l intersects aff(f) transversally. Up to a small perturbation
of l, we can assume without loss of generality that two consecutive points of intersection, say p1 and p2,
of l with S ∩ B belong to the relative interiors of two facets, say f1 and f2, of S. Since B is convex,
p1 and p2 are also consecutive points of intersection of l with S. Therefore, n(f1) · l and n(f2) · l have
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Figure 2.3: For the proof of Theorem 2.9.

different signs, say n(f1) · l ≤ 0. It follows by Eq. (2.1) that (n(f1),n) > θ, which contradicts the
assumption of the lemma. Hence, every line that intersects S ∩ B more than once makes an angle of at
least π

2 − θ with n. As a consequence, for any point q ∈ S ∩ B, S ∩ B lies outside the double cone of
apex q, of axis aligned with n, and of half-angle π

2 − θ. The result follows. ¤

From Lemma 2.8 we deduce the following

Theorem 2.9 Any θ-smooth polyhedron is a k-Lipschitz surface, with k = 2 sin θ/2√
3−4 sin2 θ/2

.

Notice that, as θ goes to zero, 2 sin θ/2√
3−4 sin2 θ/2

is equivalent to θ√
3
, which means that θ-smooth polyhedra

are asymptotically θ√
3
-Lipschitz surfaces.

Proof of the theorem. Let S be a θ-smooth polyhedron. Let p ∈ S. We call f1, · · · , fn the facets of S
that contain p. Let r(p) = d(p, S \⋃i fi) > 0. We call Bp the open ball B(p, r(p)). By Definition 2.7,
we have ∀i, (n(f1),n(fi)) ≤ θ. Hence, by Lemma 2.8, we know that S is a tan θ-Lipschitz surface.
However, by a more thorough analysis we can improve on the constant.

We represent the unit normal vectors n(fi) as points on the unit sphere Σ. LetD be the smallest disk
of Σ that encloses the set {n(fi)}. We call n its center on Σ, and γ its spherical radius, i.e. the angle such
that ∀n′ ∈ D, (n,n′) ≤ γ – see Figure 2.3 (left). We will bound γ with respect to θ. By hypothesis, the
set {n(fi)} is included in the disk of center n(f1) and spherical radius θ. As a consequence, we have
γ ≤ θ < π

2 , which implies that D is included in the disk of center n and spherical radius π
2 , which is a

hemisphere of Σ, called Σ+ – see Figure 2.3 (right).
The bounding circle C of D is the intersection of Σ+ with some Euclidean plane Π. Let c and r

denote respectively the center and radius of C in Π. Referring to Figure 2.3 (left), we have:

r = sin γ (2.2)

Since D is the smallest disk of Σ+ enclosing {n(fi)}, C contains at least two elements of {n(fi)}, and
the radial projection of n onto Π (namely, c) belongs to the convex hull of C ∩ {n(fi)} – see Figure 2.3
(right).

– If C contains exactly two elements of {n(fi)}, then these elements are diametrally placed on C. It
follows that the diameter of C ∩ {n(fi)} is 2r.
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– Else, C contains three or more elements of {n(fi)}. Let us triangulate C ∩ {n(fi)} in Π. At least
one triangle t contains c. Since c ∈ t is the circumcenter of t, the longest edge of t is longer than
r
√

3. Hence, the diameter of C ∩ {n(fi)} is at least r
√

3.
In both cases, the diameter d of C ∩ {n(fi)} verifies:

d ≥ r
√

3 (2.3)

Let n(fj) and n(fk) be two elements of C ∩ {n(fi)} whose distance in Π is d. From (2.2) and (2.3) we
deduce:

sin γ
√

3 = r
√

3 ≤ d = 2 sin
(n(fj),n(fk))

2
≤ 2 sin

θ

2

Hence, for any facet fi, (n(fi),n) is bounded by γ ≤ arcsin
(

2√
3

sin θ
2

)

. It follows by Lemma 2.8 that

S ∩ Bp is the graph of a tan γ-Lipschitz function, with tan γ ≤ 2 sin θ/2√
3−4 sin2 θ/2

. This concludes the proof
of Theorem 2.9. ¤

2.1.5 The general case

From now on, and for the rest of the chapter, S is a general k-Lipschitz surface, for some fixed k. S
may not necessarily be smooth or polyhedral. For convenience, we define θ = 2 arctan k ∈ [0, π[. In
addition to being positive and 1-Lipschitz, lrk allows to predict the local behaviour of S.

Let p ∈ S, Dp = S ∩ B(p, lrk(p)) and D̃p = S̃ ∩ B(p, lrk(p)), where S̃ is the set of regular points
of S. Note that D̃p is not empty because S̃ is dense in S, by Corollary 2.2. By definition of lrk(p), Dp

is the intersection of B(p, lrk(p)) with the graph of a k-Lipschitz bivariate function fp. We choose a
frame (x, y, z) such that fp is defined over the xy-plane, and we orient z such that at every point of D̃p

the normal of S has a non-negative inner product with z. This is possible because Dp is the graph of a
bivariate function.

Lemma 2.10 For any q ∈ Dp, Dp lies outside the double cone of apex q, of axis aligned with the z-axis
and of half-angle π

2 − θ
2 . Moreover, if q ∈ D̃p, then the angle (n(q), z) is at most θ

2 .

Proof. Let q ∈ Dp and q′ ∈ Dp \ {q}. We call q̄ and q̄′ their orthogonal projections onto the xy-plane.
The angle α between the line (q, q′) and the xy-plane is given by:

tanα =
|fp(q̄)− fp(q̄

′)|
d(q̄, q̄′)

≤ k = tan
θ

2
(2.4)

Hence, we have α ≤ θ
2 , which means that q′ lies outside the double cone of apex q, of axis aligned with

z and of half-angle π
2 − θ

2 .
Let us now assume that q ∈ D̃p. Eq. (2.4) holds for any q′ ∈ Dp\{q}. In particular, as q′ approaches

q, the angle between line (q, q′) and the xy-plane remains bounded by θ
2 . As a consequence, the angle

between the tangent plane T (q) and the xy-plane is at most θ
2 . Since z is oriented such that z · n(q) ≥ 0,

we get: (n(q), z) ≤ θ
2 , which concludes the proof of the lemma. ¤

The above result has two straightforward corollaries:
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Lemma 2.11 (Normal Variation)
For any two points q, q′ of D̃p, the angle between n(q) and n(q′) is at most θ.

Lemma 2.12 (Cocone)
For any q ∈ D̃p and any q′ ∈ Dp, Dp lies outside the double cone of apex q′, of axis aligned with n(q)

and of half-angle π
2 − θ.

Note that Lemma 2.12 makes sense only for θ ≤ π
2 , i.e. for k ≤ 1. Let now f = (u, v, w) be a

triangle whose vertices u, v and w belong to Dp. Assume that the radius-edge ratio of f is at most %, for
some constant % ≥ 1. By an easy computation, every inner angle of f is at least β = arcsin 1

2% .

Lemma 2.13 (Triangle Normal)
With the above notations, for any point q ∈ D̃p, the angle α between n(q) and the line orthogonal to the
plane aff(u, v, w) verifies sinα ≤ 2% sin θ. Therefore, if % ≤ 1

2 sin θ , then α ≤ arcsin (2% sin θ).

Proof. We assume without loss of generality that u is a vertex of f with largest inner angle. By the
cocone lemma 2.12, v and w lie outside the double cone K(u) of apex u, of axis aligned with n(q) and
of half-angle π

2 − θ. Since aff(u, v, w) passes through the apex of K(u), it intersects K(u) either along
a single point, or along a single line, or along a double wedge. If K(u)∩ aff(u, v, w) is a single point or
a single line, then α ≤ θ, which implies that sinα < 2% sin θ, since % ≥ 1.

If K(u)∩ aff(u, v, w) is a double wedge K ′(u), then the half-angle θ′ of this double wedge depends
on α and θ. We endow R

3 with an oriented orthonormal frame (u, x, y, z), such that the z-axis is aligned
with n(q) and that the line of intersection between aff(u, v, w) and the xy-plane is aligned with the y-
axis. In this frame, the equation of the boundary of K(u) is z2 = tan2 θ (x2 + y2), and the equation of
aff(u, v, w) is z = x tanα. Thus, inside aff(u, v, w) (which we endow with an oriented orthonormal
frame (u,X, y)), the equation of the boundary of K ′(u) is y = ± 1

sin θ

√

sin2 α− sin2 θ X . Hence, the
half-angle of K ′(u) is

θ′ = arctan

(

1

sin θ

√

sin2 α− sin2 θ

)

. (2.5)

Since v and w lie outside K(u), inside aff(u, v, w) they do not belong to K ′(u). Now, aff(u, v, w) \
K ′(u) is a double wedge delimited by the lines of the boundary of K ′(u).
- If v and w lie inside the same wedge, then û is at most π − 2θ′. Since u is the vertex of f with largest
inner angle, we have û ≥ π

3 , which implies that θ′ ≤ π
3 . Since % ≥ 1, we have β ≤ π

6 , hence π
2 − β is at

least π
3 .

- If v and w do not lie in the same wedge, then û is at least 2θ′. Since all the angles of the triangle are at
least β, we have û ≤ π − 2β, which implies that θ′ ≤ π

2 − β.
- In both cases, θ′ is at most π

2 −β, which implies that sinα ≤ sin θ
sin β , by (2.5). The lemma follows, since

β = arcsin 1
2% . ¤

2.1.6 Weak feature size

Chazal and Lieutier [35] have introduced the notion of weak feature size, which specifies how well the
topology of the surface can be captured from a Hausdorff approximation. We will show that, when
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the surface S is k-Lipschitz, lrk is closely related to the weak feature size. Let dS denote the function
distance to S:

∀p ∈ O, dS(p) = min{d(p, q) | q ∈ S}

In [85, §3.1], the author derives from dS a vector field ∇ : O → R
3 defined as follows:

∀p ∈ O, ∇(p) =
1

dS(p)
(p− c(p)) (2.6)

where c(p) is the center of the smallest ballB(c(p), r(p)) that contains all the points of S that are closest
to p. The definition of ∇(p) is illustrated in Figure 2.4. The following result, introduced in [85, §5.1],
will be useful:

∀p ∈ O, ‖∇(p)‖2 = 1− r(p)2

dS(p)2
(2.7)

In particular, if p does not belong to the medial axis of S, then c(p) is the only nearest neighbor of p on
S. In this case, we have r(p) = 0 and the norm of ∇(p) is 1.

A point p ∈ O is a critical point of ∇ if ‖∇(p)‖ = 0. As emphasized in [35], p is critical iff it
belongs to the convex hull of its nearest neighbors on S. We call weak feature size of O, or simply
wfs(O), the minimal distance from S to the set Φ of critical points of ∇:

wfs(O) = min{d(p, q) | p ∈ S, q ∈ Φ}

The main topological properties of the weak feature size are reviewed in [36]. In the sequel, we
assume that k < 1, i.e. θ < π

2 . We will show that, if S is k-Lipschitz, then the weak feature size of
O is positive. We start with two technical results, stated as Lemmas 2.14 and 2.15, which control the
orientation and norm of the vector field ∇ in the vicinity of S.

Let p ∈ S, B1
p = B(p, lrk(p)) and B1/2

p = B(p, 1
2 lrk(p)). Let also q ∈ O∩B1/2

p and p′ ∈ S̃ ∩B1/2
p .

Such a point exists since S̃ is dense in S, by Corollary 2.2. We call q1, · · · , qk the nearest neighbors of
q on S.
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Lemma 2.14 With the above notations, we have:
If q ∈ O+, then ∀i, (q− qi, n(p′)) ≤ θ
If q ∈ O−, then ∀i, (q− qi, −n(p′)) ≤ θ

Proof. We deal with the case q ∈ O+, the case q ∈ O− being symmetric. Since p ∈ S, we have ∀i,
d(p, q) ≥ d(qi, q). It follows that the distance from p to the qi is at most 2 d(p, q) < lrk(p). Hence, the
qi lie in B1

p .
If qi belongs to S̃, then we have (q − qi, n(p′)) = (n(qi),n(p′)), since the normals of S point

towards O+. Moreover, the fact that qi belongs to B1
p implies that (n(qi),n(p′)) ≤ θ, by the normal

variation lemma 2.11. Hence, (q− qi, n(p′)) ≤ θ.
Consider now the case where qi does not belong to S̃. By the cocone lemma 2.12, S∩B1

p lies outside
the double cone K(qi) of apex qi, of axis aligned with n(p′) and of half-angle π

2 − θ. Let K+(qi) be
the cone of K(qi) such that K+(qi) ∩B1

p lies on the same side of S as q. Let K−(qi) be the other cone
of K(qi), and let q′ be a point of K−(qi) closest to q. We claim that q′ = qi. Indeed, by assumption,
q lies in O+ whereas K−(qi) \ {qi} is included in O−. Thus, if q′ 6= qi, the open line segment ]q, q′[

intersects S. For any q′′ ∈ S∩]q, q′[, we then have d(q, q′′) < d(q, q′) ≤ d(q, qi), which contradicts the
fact that qi is a nearest neighbor of q on S. Hence, q′ = qi, which means that qi is the point of K−(qi)

closest to q. It follows that q lies in the cone of apex qi, of axis aligned with n(p′), and of half-angle θ.
Hence, (q− qi, n(p′)) ≤ θ, which proves the lemma. ¤

The next result is an immediate consequence of Lemma 2.14 and of the fact that ∇(q) is a convex
combination of the (q− qi).

Lemma 2.15 With the same notations as above, we have ‖∇(q)‖ ≥ cos θ > 0. Moreover,
If q ∈ O+, then (∇(q),n(p′)) ≤ θ
If q ∈ O−, then (∇(q),−n(p′)) ≤ θ

Proof. We assume without loss of generality that q ∈ O+, the case q ∈ O− being symmetric. By
Lemma 2.14, we have

∀i, (q− qi) · n(p′) ≥ ‖q− qi‖ cos θ = dS(q) cos θ

Since c(q) is the center of the smallest ball containing the qi, c(q) lies in the convex hull of the qi. Hence,
(q − c(q)) · n(p′) is a convex combination of the (q − qi) · n(p′), which are all at least dS(q) cos θ.
Using Eq. (2.6), we get

‖∇(q)‖ =
‖q− c(q)‖

dS(q)
≥ (q− c(q)) · n(p′)

dS(q)
≥ cos θ

In addition, by Lemma 2.14 the qi lie in the cone of apex q, of axis aligned with −n(p) and of half-
angle θ. Since this cone is convex, it contains c(q), which is a convex combination of the qi. Hence,
(∇(q),n(p′)) ≤ θ, which ends the proof of the lemma. ¤

Our main result is an easy corollary of Lemma 2.15.
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Theorem 2.16 If S is a k-Lipschitz surface, for some k < 1, then O = R
3 \ S has a positive weak

feature size. More precisely,
∀p ∈ S, lrk(p) ≤ 2 d(p,Φ) (2.8)

which implies that wfs(O) ≥ 1
2 lrk(S).

Proof. Let p ∈ S and p ∈ S̃ ∩ B(p, 1
2 lrk(p)). By Lemma 2.15, for any q ∈ O ∩ B(p, 1

2 lrk(p)), we
have ‖∇(q)‖ 6= 0. Hence, B(p, 1

2 lrk(p)) ∩ Φ = ∅, which implies that d(p,Φ) ≥ 1
2 lrk(p). ¤

Before proceeding to the next section, we would like to emphasize on an elementary but useful
result:

Lemma 2.17 The weak feature size ofO is at most half the minimal distance between any two connected
components of S.

Proof. Consider the smallest segment [p, p′] whose vertices lie on different connected components of S.
The interior of the diametral ball of [p, p′] cannot intersect S, since otherwise there would be a smaller
segment satisfying the hypothesis. As a consequence, the midpoint q of [p, p′] is the center of the smallest
ball containing its nearest neighbors on S (including p and p′). Therefore, c(q) = q, which implies by
Eq. (2.6) that ‖∇(q)‖ = 0, or equivalently, that q ∈ Φ. As a consequence, wfs(O) ≤ d(p, q) = d(p,p′)

2 .
¤

This lemma, combined with Theorem 2.16, yields the following corollary, which will be useful in
the next section:

Corollary 2.18 A triangle of circumradius less than 1
2 lrk(S) has its three vertices on the same con-

nected component of S.

2.2 Global properties

Throughout the section, S is a k-Lipschitz surface. For convenience, we define θ = 2 arctan k. Since
S is fixed, k and θ are fixed constants. Moreover, we set ν = 0.52, as in Section 1.2. In the sequel, we
consider point samples E of S that verify the following conditions:

H1 E is a loose ε-sample of S, with ε < cos2 θ
4+3 cos2 θ

lrk(S).
H2 The points of E are farther than ε

% from one another, where % ≥ 1 verifies:

H2.0 % <
sin
(

π
3 − θ

)

2 sin θ

H2.1 % <
cos 3θ

2 sin θ

H2.2 % <
sin
(

arccos
(

2 sin θ
ν

)

− θ
)

2 sin θ

H2.3 % <
cos 2θ

2(1 + ν) sin θ
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0.70.60.50.40.30.20.10

H2.1                    

H2.2                    

Figure 2.5: Conditions on %: H2.0 (red), H2.1 (magenta), H2.2 (blue), H2.3 (cyan).
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Let us give a few explanations about the meaning of the above conditions. H1 imposes that E be
dense with respect to lrk(S). H2 imposes that E be sparse with respect to ε. Once the surface S (and
hence the angle θ) is fixed, H2.0–H2.3 give upper bounds on %. As will be shown in Section 2.2.1,
H2.1–H2.3 imply that Conditions M4–M6 of Section 1.2 are satisfied. Specifically, H2.1 yields M4,
H2.2 yields M5 and H2.3 yields M6. As for H2.0, it will be used in Section 2.2.2 to bound the Hausdorff
distance between S and Del|S(E).

If the surface S has a positive reach, then it is k-Lipschitz for any k > 0 (Theorem 2.6). Therefore,
H2.0–H2.3 become simply % < +∞, which means that E is not required to be sparse. In this respect,
H1 and H2 extend the sampling conditions introduced in Chapter 1 for the smooth case.

Notice that H2.1 is fulfilled as soon as H2.2 and H2.3 are satisfied – see Figure 2.5. For this reason,
H2.1 could as well be removed from the list of conditions. However, in the sequel we will consider two
types of point sets: those that verify H1 and H2 (which means that H2.0–H2.3 are all verified), and those
that verify only H1 and H2.0–H2.1. This is why we keep H2.1 here. In the sequel, we will prove that,
if E satisfies H1 and H2, then Del|S(E) is a manifold without boundary, isotopic to S and at Hausdorff
distance O(ε) from S. If E satisfies H1 and H2.0–H2.1, then there is a subset of Del|S(E) that has the
above properties.

Our theoretical results hold only for small enough θ (and hence small enough k). This can be
inferred from the hypotheses. Indeed, we must assume in H2 that % ≥ 1 because our proofs use the
triangle normal lemma 2.13. Therefore, θ must be less than 12◦ for H2.0–H2.4 to be satisfiable, and less
than 17.6◦ for H2.0–H2.1 to be satisfiable. Note that these bounds on θ are pessimistic: our experimental
results show that loose ε-samples of S yield good topological and geometric approximations of S for
values of θ ranging from 0 to π

2 – see Chapters 6 and 7.

Let us now review the guarantees we obtain under our sampling conditions. Let E be a point sample
of S. For any facet f of Del|S(E), we call Bf the surface Delaunay ball of smallest radius that circum-
scribes f . Let cf and rf denote respectively the center and radius of Bf . We set Df = S ∩ Bf , and
D̃f = S̃ ∩Bf .

Given a point v of E, we consider the set F of facets of Del(E) incident to v whose circumradius
is less than (1 + ν)ε. We call r < (1 + ν)ε the maximum circumradius of a facet of F . Let pv be a
point of S̃ ∩ B(v, (1 + ν)ε − r). Such a point exists since S̃ is dense in S, by Corollary 2.2. We have
d(v, pv) < (1 + ν)ε. Moreover, for any facet f ∈ F , pv belongs to the ball of radius (1 + ν)ε centered
at the circumcenter of f .

Orientation convention 2.19 For any facet f ∈ Del(E) of radius less than (1 + ν)ε, we choose arbi-
trarily a vertex v of f and we orient f such that n(f) · n(pv) > 0.

Like in the smooth case – see Section 1.2, it is not necessary to orient all the facets of Del(E), since
only those of circumradius less than (1+ν)εwill be considered in the sequel. Among these are the facets
of Del|S(E), which are included in surface Delaunay balls of radius at most ε, by H1. In Section 2.2.1
(Th. 2.21), we will prove that, under H1 and H2.1, every edge of Del|S(E) is incident to two facets of
Del|S(E). Moreover, under H1 and H2, Del|S(E) is a compact surface without boundary, consistently
oriented by the orientation convention 2.19. The proof relies on Theorem 1.7.
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In Sections 2.2.2 and 2.2.3, we will show that, under H1 and H2, Del|S(E) is isotopic to S and at
Hausdorff distance O(ε) from S. Like in the smooth case, our proofs use the fact that Del|S(E) is a
manifold, and they hold in a slightly more general setting. Specifically, we will show that, for any finite
point set E ⊂ S and any subcomplex Ŝ of Del|S(E) verifying:

Î1 Ŝ is a compact surface without boundary, consistently oriented by the orientation conven-
tion 2.19,

Î2 Ŝ has vertices on all the connected components of S,
Î3 For any facet of Ŝ, Bf has a radius at most ε < cos2 θ

4+3 cos2 θ
lrk(S),

Î4 The radius-edge ratios of the facets of Ŝ are at most %, where % ≥ 1 verifies H2.0 and H2.1,

Ŝ is isotopic to S and at Hausdorff distance OS(ε) from S. Referring to the smooth case, we observe
that Î1–Î3 are quite similar to Hyp. I1–I3 of Section 1.2. In the nonsmooth case however, we need to
assume further that the radius-edge ratios of the facets of Ŝ are bounded by some constant % ≥ 1 (Î4),
in order to control the normals of Ŝ by the triangle normal lemma 2.13.

Observe that, if in some application Del|S(E) is known to be a manifold without boundary, then, to
guarantee that Del|S(E) approximates S topologically and geometrically, it suffices to check that Î2–Î4
are satisfied with Ŝ = Del|S(E). Î2 and Î3 are guaranteed if E verifies H1. As for Î4, it is less restrictive
than H2 since it does not assume that E is sparse. It follows that, when Del|S(E) is a manifold without
boundary, only H1 and Î4 are needed, and the point set E does not have to be sparse. As we will see in
Section 2.2.1, the sparseness condition on E is only mandatory to prove that Hyp. M3 of Theorem 1.7
is satisfied. Therefore,

Open question 2.20 Can the proof of Theorem 1.7 be rewritten, so that Hyp. M3 is no longer needed?
In the affirmative, a loose ε-sample E of a k-Lipschitz surface S does not need to be sparse w.r.t. ε, for
Del|S(E) to be isotopic to S and at Hausdorff distance OS(ε) from S.

To conclude our remarks, we recall that considering a subcomplex Ŝ of Del|S(E) (and not Del|S(E)

itself) in our theoretical results will be instrumental in proving the correctness of certain Delaunay re-
finement algorithms in several meshing applications. See Section 5.1 and Chapter 8.

2.2.1 Manifold and layers

Theorem 2.21 Let S be a k-Lipschitz surface and E ⊂ S be a finite point set. If E verifies H1 and
H2.1, then every edge of Del|S(E) is incident to two facets of Del|S(E). If E verifies H1 and H2,
then Del|S(E) is a compact surface without boundary, consistently oriented by the orientation conven-
tion 2.19.

As explained in Section 1.2.1.2, if every edge of Del|S(E) is incident to two facets of Del|S(E),
then the star of each vertex v consists of one or several umbrellas touching only at v. Consider the dual
graph G of Del|S(E), where each node represents a facet and two nodes are linked if their facets share
an edge. Every connected component of G represents a subcomplex Ŝ of Del|S(E) whose edges have
two incident facets and whose vertices have one umbrella. Hence, Ŝ is a manifold without boundary,
consistently oriented by the orientation convention 2.19. Moreover, two such complexes are disjoint
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except possibly at some common vertices. Therefore, we call them layers. The next result follows
immediately:

Corollary 2.22 Let S be a k-Lipschitz surface and E ⊂ S be a finite point set. If E verifies H1 and
H2.0–H2.1, then every layer of Del|S(E) satisfies Î1, Î3 and Î4.

Notice that H2.0 is here only to ensure that Î4 is satisfied. Indeed, Î3 is an direct consequence of H1,
and only H1 and H2.1 are necessary to ensure that every layer of Del|S(E) verifies Î1, as stated in
Theorem 2.21.

Proof of the theorem. We will show that Hyp. M1–M6 of Section 1.2 are satisfied. Then, by
Theorem 1.7 (whose proof does not rely on the fact that the surface S is smooth), we will get the result.

Let v be a vertex of Del|S(E). By H1, we have ε < cos2 θ
4+3 cos2 θ

lrk(S) < 1
4 lrk(S), thus (1 +

ν)ε < lrk(S). Hence, the point pv defined in the orientation convention 2.19 lies in B(v, lrk(S)),
since it belongs to S̃ ∩ B(v, (1 + ν)ε). By the cocone lemma 2.12, for any q ∈ S ∩ B(v, (1 + ν)ε),
S ∩ B(v, (1 + ν)ε) lies outside the double cone of apex q, of axis aligned with n(pv) and of half-angle
π
2 − θ. Therefore, M1 is satisfied with θ1 = θ.

Let f be a facet of Del|S(E) incident to v. By H1, the circumradius of f is at most ε, hence its
radius-edge ratio is bounded by %, by H2. Let u be the vertex of f that was used to orient f . If u = v,
then, since f and pv are both included in B(v, 2ε) ⊂ B(v, lrk(S)), the triangle normal lemma 2.13
states that the angle between n(f) and n(pv) verifies:

sin(n(f),n(pv)) ≤ 2% sin θ (2.9)

Moreover, according to H2.1, we have 2% sin θ < 1, hence (n(f),n(pv)) ≤ arcsin (2% sin θ). If u 6= v,
then Eq. (2.9) holds with pv replaced by pu. Moreover, since d(v, u) ≤ 2ε and d(pv, v) ≤ (1 + ν)ε, pv

belongs to B(u, (3 + ν)ε) which is included in B(u, lrk(S)) since ε < 1
4 lrk(S), by H1. Therefore, by

the normal variation lemma 2.13, we have (n(pu),n(pv)) ≤ θ. It follows that (n(f),n(pv)) is bounded
by θ + arcsin (2% sin θ). Hence, M2 is satisfied with θ2 = θ + arcsin (2% sin θ).

It follows from the above observations that 2θ1 + θ2 ≤ 3θ + arcsin (2% sin θ), which is less than π
2 ,

by H2.1. Therefore, under H1 and H2.1, M1, M2 and M4 are fulfilled, which implies that every edge of
Del|S(E) is incident to exactly two facets of Del|S(E), by Lemma 1.10.

Note to the reader: Observe that the above arguments still hold if H2 is replaced by Î4, with Ŝ =

Del|S(E). As a consequence, the sparseness condition on E is only mandatory to prove M3.

Let now f be a facet of Del(E) incident to v, of circumradius less than (1 + ν)ε. The radius-edge
ratio of f is bounded by (1 + ν)%, by H2. Let u be the vertex of f that was used to orient f . If u = v,
then, since f and pv are both included in B(v, 2(1 + ν)ε) ⊂ B(v, lrk(S)), the triangle normal lemma
2.13 states that:

sin(n(f),n(pv)) ≤ 2(1 + ν)% sin θ (2.10)

Moreover, by H2.3, we have 2(1 + ν)% sin θ < 1, hence (n(f),n(pv)) ≤ arcsin (2(1 + ν)% sin θ).
If u 6= v, then Eq. (2.10) holds with pv replaced by pu. Moreover, u and pv both belong to the
ball of radius (1 + ν)ε centered at the circumcenter of f . Hence, pv belongs to B(u, 2(1 + ν)ε) ⊆
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B(u, lrk(S)). Therefore, by the normal variation lemma 2.13, we have (n(pu),n(pv)) ≤ θ. It follows
that (n(f),n(pv)) is bounded by θ + arcsin (2(1 + ν)% sin θ). Hence, M3 is satisfied with θ3 = θ +

arcsin (2(1 + ν)% sin θ).
From the above observations we deduce that 2 sin θ1−ν cos θ2 ≤ 2 sin θ−ν cos (θ + arcsin (2% sin θ)),

which by H2.2 is negative. Moreover, sin θ1−cos θ3 ≤ sin θ−cos (θ + arcsin (2(1 + ν)% sin θ)), which
is also negative, by H2.3. Therefore, M5 and M6 are fulfilled. It follows that Del|S(E) is a compact
oriented manifold without boundary, by Theorem 1.7. This concludes the proof of Theorem 2.21. ¤

If H1 and H2.1 are satisfied, then, by Remark 1.9, for any facet f ∈ Del|S(E),Bf is the only surface
Delaunay ball circumscribing f . Equivalently, the Voronoi edge dual to f intersects S only once.

2.2.2 Hausdorff distance

The goal of this section is to prove the following

Theorem 2.23 Let S be a k-Lipschitz surface, and θ = 2 arctan k. For any finite point set E ⊂ S and
any subcomplex Ŝ of Del|S(E) that verifies Î1–Î4, the Hausdorff distance between Ŝ and S is bounded
by ε

cos2 θ
.

Theorem 2.23, combined with Corollaries 2.18 and 2.22, yields the following

Corollary 2.24 Let S be a k-Lipschitz surface and E ⊂ S be a finite point set. If E verifies H1 and
H2.0–H2.1, then every layer of Del|S(E) is at Hausdorff distance at most ε

cos2 θ
from the connected

component of S on which its vertices lie. As a consequence, Del|S(E) is at Hausdorff distance at most
ε

cos2 θ
from S.

Proof of Corollary 2.24.. Under H1, the vertices of a facet of Del|S(E) cannot lie on distinct connected
components of S, by Corollary 2.18. Therefore, the vertices of a layer of Del|S(E) lie on the same
connected component of S. The result follows, by Corollary 2.22 and Theorem 2.23. ¤

To prove Theorem 2.23, we will first bound the distance from Ŝ to S (Proposition 2.25), and then
the distance from S to Ŝ (Proposition 2.26). Let Tε be the tubular neighborhood of S of width ε, defined
as in Eq. (1.3).

Proposition 2.25 Ŝ is included in Tε. Therefore, the semi-Hausdorff distance from Ŝ to S is less than ε.

Proof. This result is already known as Lemma 1.15. The proof is identical. ¤

Proposition 2.26 The semi-Hausdorff distance from S to Ŝ is at most ε
cos2 θ

.

Propositions 2.25 and 2.26 prove Theorem 2.23. Our strategy for proving Proposition 2.26 is similar
in spirit to the one adopted for the smooth case – see Section 1.2.2, Theorem 1.13. The approach consists
in pushing the points of Ŝ along some continuous flow towards S, and showing that every point of S
is eventually reached by some point of Ŝ. The drawback of the flow of Section 1.2.2.1 is that it is not
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defined on the medial axis of S, which, in the present case, may intersect Tε for any positive value of ε,
since S is not smooth. Therefore, this flow is not well defined over Tε and cannot be used in our context.

In Section 2.2.2.1, we define a new flow φ that was first introduced by Lieutier [85]. This flow has
the advantage of being well-defined and continuous over Tε \ S. However, φ is not defined over S.
Consequently, we cannot adopt the strategy used in the smooth setting, which consisted in showing that
the set of points of S whose flow lines intersect Ŝ is S itself. Here, we will proceed in three steps:

– First, in Section 2.2.2.2, we consider the set I of points of O whose flow lines intersect Ŝ. We
prove that I is a union of connected components of R

3 \ (S ∪ Ŝ).
– Then, in Section 2.2.2.3, we consider the sets S ∩ ∂I and S ∩ Ŝ, and we prove that their union

covers S. As a consequence, every point p ∈ S belongs either to Ŝ or to ∂I. In the latter case,
arbitrarily close to p, one can find points whose flow lines intersect Ŝ.

– Using this last observation, we can conclude the proof of Proposition 2.26 in Section 2.2.2.4, by
bounding the distance travelled along a flow line before reaching Ŝ.

2.2.2.1 The flow

In the sequel, O denotes the open set R
3 \ S. For any d > 0, we define Od as the set of points of O that

are farther than d from S. We have: Od = O \ T̄d, where Td is the tubular neighborhood of S of width
d, as defined in Section 1.2.2.1.

It is proved in [85] that Euler schemes, using the vector field ∇ defined in Section 2.1.6, converges
uniformly towards a continuous flow φ : R

+ ×O → O that verifies:

∀t ∈ R
+, ∀p ∈ O, φ(t, p) = p+

∫ t

t′=0
∇(φ(t′, p)) dt′ (2.11)

Intuitively, the real variable t stands for the time, while the other variable is the position in space. It
follows from Eq. (2.11) that the stationary points of φ (i.e. the points p ∈ O such that φ(t, p) = p

∀t ∈ R
+) are the critical points of ∇, i.e. the points of Φ.

For any p ∈ O, we call flow line of p and note Λ(p), the trajectory of p along φ:

Λ(p) = φ(R+, p) = {φ(t, p) | t ≥ 0}

The flow φ enjoys several properties, including:

F1 [85, Lemma 4.12]
For any p ∈ O \ Φ, the distance to S increases strictly along Λ(p), that is, the map t 7→ dS(φ(t, p)) is
strictly increasing. Moreover,

∀p ∈ O, ∀t ∈ R
+, dS(φ(t, p)) = dS(p) +

∫ t

t′=0
‖∇(φ(t′, p))‖2 dt′ (2.12)

F2 [85, Lemma 4.13]
For any p ∈ O, the map t 7→ φ(t, p) is 1-Lipschitz. Moreover,

∀d > 0, ∀t ≥ 0, ∀p, q ∈ Od, d(φ(t, p), φ(t, q)) ≤ et/d d(p, q) (2.13)
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Figure 2.6: I is a union of connected components of O \ Ŝ.

The fact that φ is continuous implies that Λ(p) is a connected arc, for any p ∈ O. If p ∈ Φ, then
Λ(p) is reduced to a point. Otherwise, by F1, the distance to S increases strictly along Λ(p), thus Λ(p)

does not self-intersect. It follows also from F1 that Λ(p) cannot leave and then re-enter Tε. Therefore,
for p ∈ Tε, Λ(p) ∩ Tε is a simple arc, and for p /∈ Tε, Λ(p) ∩ Tε is empty. The next result bounds the
time spent before a point moving along a flow line leaves Tε:

Lemma 2.27
∀p ∈ Tε \ S, ∀t ≥ ε−dS(p)

cos2 θ
, φ(t, p) /∈ Tε

∀p ∈ O \ Tε, ∀t ≥ 0, φ(t, p) /∈ Tε

Proof. Given p ∈ Tε \ S and t ∈ R
+ such that φ(t, p) ∈ Tε, we know by F1 that φ(t′, p) belongs to

Tε for any t′ ∈ [0, t]. By Lemma 2.15 and Eq. (2.12), we then have: dS(φ(t, p)) ≥ dS(p) + t cos2 θ.
Hence, the time tε at which dS(φ(tε, p)) = ε is at most ε−dS(p)

cos2 θ
. This means that φ(t, p) /∈ Tε for all

t ≥ ε−dS(p)
cos2 θ

, hereby proving the lemma for p ∈ Tε.
Given p ∈ O \ Tε, F1 states that ∀t ∈ R

+, dS(φ(t, p)) ≥ dS(p) ≥ ε. Hence, φ(t, p) /∈ Tε, which
proves the lemma for p ∈ O \ Tε. ¤

2.2.2.2 Flow lines intersecting Ŝ

We define I as the set of points of O whose flow lines intersect Ŝ. For convenience, we exclude the
points of Ŝ from I:

I = {p ∈ O \ Ŝ | Λ(p) ∩ Ŝ 6= ∅}
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Our aim is to prove that I is a union of connected components of O \ Ŝ, as illustrated in Figure 2.6.
Since I ⊆ O\ Ŝ, this comes down to proving that the boundary of I is included in S ∪ Ŝ. We first show
that the boundary of I lies in S ∪ Ŝ ∪ ∂Tε:

Lemma 2.28 For any p ∈ I, there exists a positive value r(p), vanishing only as p approaches S or Ŝ
or ∂Tε, such that B(p, r(p)) ⊆ I. As a consequence, ∂I ⊆ S ∪ Ŝ ∪ ∂Tε.

Proof. Three major steps of the proof are stated as Claims 2.28.1, 2.28.2 and 2.28.3. To ease the
reading, their proofs are deferred to the end of Section 2.2.2.

Let p ∈ I. Since p /∈ S, dS(p) is positive. By F2, the restriction of φ to
[

0, ε−dS(p)/2
cos2 θ

]

× OdS(p)/2

is 1-Lipschitz as a function of time, and exp
(

2ε−dS(p)
dS(p) cos2 θ

)

-Lipschitz as a function of space. Let κ =

exp
(

2ε−dS(p)
dS(p) cos2 θ

)

. Since Ŝ ⊂ Tε, p belongs to Tε, by Lemma 2.27. Hence, dS(p) < ε, which implies
that κ > 1.

The function q 7→ d(q, ∂Tε) is continuous over Ŝ, thus it reaches its minimum δ since Ŝ is compact.
This minimum is positive because Ŝ ⊂ Tε. In addition, for any facet f of Ŝ, the function u 7→ d(u, Ŝ \
N(f)) (where N(f) is the neighborhood of f on Ŝ) is positive and continuous over f , hence its minimum
m(f) over f is positive. Let m = min{m(f), f ∈ Ŝ}. For any point w ∈ Ŝ and any facet f containing
w, the distance of w to Ŝ \N(f) is at least m.

We set r(p) as follows:

r(p) = min

{

dS(p)

2κ
, ε− dS(p),

1

3κ
d(p, Ŝ),

δ

2κ
,
m

2κ

}

(2.14)

Notice that r(p) vanishes only if dS(p) → 0 (p approaches S), or if (ε − dS(p)) → 0 (p approaches
∂Tε), or if d(p, Ŝ)→ 0 (p approaches Ŝ). We will prove that B(p, r(p)) ⊆ I.

Let q lie in the open ball B(p, r(p)). Since r(p) ≤ ε − dS(p), q belongs to Tε. Moreover, r(p) is
less than min{dS(p), d(p, Ŝ)}, since κ > 1. Thus, q /∈ S ∪ Ŝ. Let us prove that Λ(q) intersects Ŝ.

Since p ∈ I, Λ(p) intersects Ŝ. Let p′ ∈ Λ(p) ∩ Ŝ. We have p′ 6= p since p /∈ Ŝ. Let d′ be defined
by

d′ = min

{

dS(p)

2
,

d(p, Ŝ)

3
,
δ

2
,
m

2

}

We call B1
p′ and B2

p′ the open balls centered at p′, of radii d′ and 2d′ respectively. Observe that 2d′ ≤
2
3 d(p, Ŝ) ≤ 2

3 d(p, p′). Moreover, since κ > 1, r(p) is less than 1
3 d(p, Ŝ) ≤ 1

3 d(p, p′). Hence,

B(p, r(p)) ∩B2
p′ = ∅ (2.15)

Claim 2.28.1 Λ(q) pierces B1
p′ , i.e. it enters and then leaves B1

p′ . Similarly, Λ(q) pierces B2
p′ .

Let f be a facet of Ŝ that contains p′. Let B(cf , rf ) be the surface Delaunay ball of f . By Î3, we
have rf ≤ ε. Moreover, 2d′ is at most dS(p), which by F1 is less than dS(p′) ≤ d(p′, cf ) ≤ rf ≤ ε.
Therefore, B2

p′ is included in B(cf , 2ε). Let pf be a point of S̃ ∩B(cf , 2ε). Such a point exists because
S̃ is dense in S, by Corollary 2.2.

By Claim 2.28.1, Λ(q) ∩ B1
p′ is not empty. Let q′ ∈ Λ(q) ∩ B1

p′ . We call K(q′) the double cone of
apex q′, of axis aligned with n(pf ) and of half-angle θ. Since q′ ∈ B1

p′ ⊂ B2
p′ , K(q′) intersects ∂B2

p′
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Figure 2.7: For the proof of Lemma 2.28.

along two spherical patches C1(q
′) and C2(q

′), such that every connected curve included in K(q ′) and
joining C1(q

′) to C2(q
′) passes through q′. One arc of Λ(q)∩B2

p′ has this property, as stated in the next
claim and illustrated in Figure 2.7:

Claim 2.28.2 Let Λ′(q) be the arc of Λ(q) ∩ B2
p′ that contains q′. Λ′(q) lies in K(q′) and joins C1(q

′)

to C2(q
′), with one endpoint in C1(q

′) and the other endpoint in C2(q
′).

The next step is to show that such an arc intersects N(f):

Claim 2.28.3 InsideB2
p′ , C1(q

′) and C2(q
′) are separated by N(f), i.e. every connected curve included

in B2
p′ and joining C1(q

′) to C2(q
′) intersects N(f).

It follows from Claims 2.28.2 and 2.28.3 that Λ(q) intersects N(f). Hence, Λ(q) ∩ Ŝ 6= ∅, which
means that q ∈ I. This ends the proof of Lemma 2.28. ¤

By Lemma 2.28, the boundary of I is included in S ∪ Ŝ ∪ ∂Tε. We now prove that, in fact, ∂I does
not touch ∂Tε:

Lemma 2.29 ∂I ∩ ∂Tε = ∅.

Proof. Since Ŝ is compact and dS is continuous, the restriction of dS to Ŝ reaches its maximum. Let
p ∈ Ŝ be such that ∀p′ ∈ Ŝ, dS(p′) ≤ dS(p). By Proposition 2.25, Ŝ is included in Tε, thus dS(p) is
less than ε. It follows that Ŝ is in fact included in Tδ′ , for any δ′ such that dS(p) < δ′ < ε. By Lemma
2.27, for any q /∈ Tδ′ , Λ(q) ∩ Tδ′ = ∅, hence I is included in Tδ′ . As a consequence, ∂I is included in
the topological closure of Tδ′ , which does not intersect ∂Tε since δ′ < ε. ¤

Lemmas 2.28 and 2.29 imply that the boundary of I is included in S∪ Ŝ, which concludes the proof
of the main result of Section 2.2.2.2:
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Lemma 2.30 I is a union of connected components of O \ Ŝ.

We end Section 2.2.2.2 by proving the three claims stated in the proof of Lemma 2.28. The notations
are the same.

Proof of Claim 2.28.1. Since B1
p′ ⊂ B2

p′ , it suffices to show that Λ(q) intersects B1
p′ and pierces B2

p′ .
Let t′ be the time at which Λ(p) reaches p′. We have t′ > 0, since p′ 6= p. Moreover, p′ ∈ Ŝ ⊂ Tε,

thus t′ < ε−dS(p)
cos2 θ

, by Lemma 2.27. Since κ > 1, we have d(p, q) < r(p) < dS(p)/2. Hence, p and q
belong to OdS(p)/2. Therefore,

d(φ(t′, p), φ(t′, q)) ≤ κ d(p, q) < κ r(p) ≤ d′,

since φ is κ-Lipschitz as a function of space over
[

0, ε−dS(p)/2
cos2 θ

]

×OdS(p)/2. It follows that φ(t′, q) ∈ B1
p′ ,

which means that Λ(q) intersects B1
p′ and hence B2

p′ .
Since q ∈ B(p, r(p)), q does not belong to B2

p′ , by Eq. (2.15). Moreover, since p′ ∈ Ŝ and 2d′ ≤ δ,
B2

p′ is included in Tε. Hence, for sufficiently large t, φ(t, q) /∈ B2
p′ , by Lemma 2.27. It follows that Λ(q)

enters and then leaves B2
p′ , which concludes the proof of the claim. ¤

Proof of Claim 2.28.2. We assume without loss of generality that p ∈ O+, the case p ∈ O− being
symmetric. This assumption implies that B2

p′ ⊆ O+. Since, by Î3, we have ε ≤ 1
4 lrk(S), B2

p′ is
included in B(cf ,

1
2 lrk(S)). Thus, for any t > 0 such that φ(t, q) ∈ B2

p′ , ∇(φ(t, q)) makes an angle of
at most θ with n(pf ), by Lemma 2.15. Hence, by Eq. (2.11), Λ′(q) lies in K(q′). The fact that Λ′(q)

joins the two connected components of K(q′)∩ ∂B2
p′ is an immediate consequence of the fact that Λ(q)

pierces B2
p′ , by Claim 2.28.1. ¤

Proof of Claim 2.28.3. Let α be the maximum angle between n(pf ) and the normals of the facets of
N(f). According to Î4, the radius-edge ratios of the facets of N(f) are at most %. Therefore, by the
triangle normal lemma 2.13 and the orientation convention 2.19, we have sinα ≤ 2% sin θ. By Î4, %
verifies H2.1, hence 2% sin θ < 1. It follows that α ≤ arcsin (2% sin θ).

Moreover, the radius 2d′ of B2
p′ is at most m, thus Ŝ ∩ B2

p′ ⊂ N(f). Since, by Î1, Ŝ is a polyhe-
dron without boundary, we have ∂(Ŝ ∩ B2

p′) = Ŝ ∩ ∂B2
p′ . Moreover, by Lemma 2.8, Ŝ ∩ B2

p′ is the
graph of a (tanα)-Lipschitz bivariate function defined over the plane orthogonal to n(pf ). Hence, by
Lemma1 2.10, Ŝ ∩B2

p′ lies outside the double cone K(p′) of apex p′, of axis aligned with n(pf ) and of
half-angle π

2 −α. Therefore, insideB2
p′ , N(f) separates the two cones ofK(p′), that is, every connected

curve included in B2
p′ and joining the two cones of K(p′) intersects N(f) – see Figure 2.8. To prove the

claim, it suffices then to show that C1(q
′) is included in one cone of K(p′) whereas C2(q

′) is included
in the other cone.

Since K(p′) and K(q′) have parallel axes, K(q′) intersects the two cones of K(p′). Let K1 and K2

be the intersections of K(q′) with the two cones of K(p′). According to Î4, % verifies H2.1, hence we
have

θ + α ≤ θ + arcsin (2% sin θ) ≤ π

2
− 2θ <

π

2

1Notice that we could use the cocone Lemma 2.12 as well, but it would give an angle of π
2
− 2α.
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Thus, the half-angle π
2 − α of K(p′) is larger than the half-angle θ of K(q′). Therefore, K(q′) \K(p′)

is bounded. Moreover, the boundaries of K1 and K2 touch K(q′) \K(p′).
Let q′′ be the point of K(q′) \K(p′) that is farthest from p′. By a symmetry argument, q′′ lies in the

plane defined by p′, q′ and n(pf ). Moreover, q′′ lies on ∂K(q′)∩∂K(p′). The intersection ofK(q′) with
the plane aff(p′, q′,n(pf )) is a double wedge of apex q′, of axis n(pf ) and of half-angle θ. By definition,
q′ lies in the ball B1

p′ . For any position of q′ in this ball, we consider the two lines of aff(p′, q′,n(pf ))

that pass through q′ and that make angles of θ with n(pf ). Among the set of such lines, the ones that lie
farthest from p′ are tangent to ∂B1

p′ . Hence, the distance between q′′ and p′ is maximal when q′ lies on
∂B1

p′ , with (q′, q′′) tangent ∂B1
p′ . The angle between n(pf ) and (p′, q′) is then π

2 − θ, which implies that
the distance between q′′ and p′ is d(p′,q′)

cos(θ+α) = d′

cos(θ+α) .
By Î4, % verifies H2.0, hence d′

cos(θ+α) is less than 2d′. This means that K(q′) \K(p′) is included in
B2

p′ . As a consequence, K(q′) ∩ ∂B2
p′ belongs to K(p′) ∩ ∂B2

p′ , as illustrated in Figure 2.8. Moreover,
K1 and K2 intersect B2

p′ because their boundaries touch K(q′) \K(p′), which is included in B2
p′ . Since

K1 and K2 are unbounded, they intersect ∂B2
p′ as well. Therefore, one component of K(q′)∩∂B2

p′ (say
C1(q

′)) belongs to K1, whereas the other component (namely, C2(q
′)) belongs to K2. This concludes

the proof of the claim. ¤

2.2.2.3 Ŝ ∪ ∂I covers S

Let SD = S ∩ Ŝ and SI = S ∩ ∂I. Our aim is to prove the following lemma:

Lemma 2.31 S = SD ∪ SI .

The sets SD and SI can be visualized in Figure 2.6: the arc p1p2 of S belongs to SD, while the arc
p2p3 of S belongs to SI . We will show that SD ∪ SI has no boundary, for the topology of S induced by
R

3. This will imply that SD ∪ SI is a union of connected components of S. Since, by Î2, SD intersects
every connected component of S, we will then have SD ∪ SI = S, which proves Lemma 2.31.
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The boundary of SD ∪ SI is included in ∂SD ∪ ∂SI . According to Lemma 2.30, I is a union of
connected components of R

3 \ (S ∪ Ŝ). Thus, ∂SI is included in ∂SD. Therefore, to prove that the
boundary of SD ∪ SI is empty, we need only to show that ∂SD is included in the interior of SD ∪ SI :

Lemma 2.32 For any point p ∈ ∂SD, there exists a small neighborhood N of p on S such that N ⊆
SD ∪ SI .

Proof. Let δ > 0 and m > 0 be defined as in the proof of Lemma 2.28. Recall that δ is the minimum
distance from a point of Ŝ to ∂Tε, and that m is a lower bound on d(v, Ŝ \ N(f)) for any point v ∈ Ŝ
and any facet of Ŝ containing v.

Let p ∈ ∂SD, and let f be a facet of Ŝ that contains p. We set d′ = 1
2 min{δ, m, rf}, and we call

B1
p and B2

p the balls of center p and radii d′ and 2d′ respectively. Let pf be a point of S̃ lying in the
surface Delaunay ball of f . Such a point exists since S̃ is dense in S, by Corollary 2.2.

Let q be a point of S∩B1
p that does not belong to SD. We will show that q belongs to SI , which will

prove the lemma. Let K(q) be the double cone of apex q, of axis aligned with n(pf ) and of half-angle
θ. Since q ∈ B2

p , K(q) intersects ∂B2
p along two spherical patches C1(q) and C2(q), such that every

connected curve included in K(q) and joining C1(q) to C2(q) passes through q.
Like in the proof of Lemma 2.28, we would like to show that q lies on a flow line included in

K(q) and joining C1(q) to C2(q). However, no flow line passes through q, because the latter lies on S.
Therefore, we will build a curve L(q) that will serve as flow line.

Since q /∈ SD, d(q, Ŝ) is positive. Let η be any positive value less than min{d′ − d(p, q), d(q, Ŝ)}.
We pick up two points q+ and q− from (K(q)∩B(q, η)) \S, one on either side of S (say q+ ∈ O+ and
q− ∈ O−). Note that two such points exist. Indeed, we have

B(q, η) ⊆ B1
p ⊆ B(cf ,

3

2
rf )

which by Î3 is included in S ∩ B(cf , lrk(cf )). As a consequence, S ∩ B(q, η) lies outside the double
cone K ′(q) of apex q, of axis n(pf ) and of half-angle π

2 − θ, by the cocone lemma 2.12. Therefore,
S ∩B(q, η) lies outside K(q) ∩K ′(q), and q+ and q− are well defined.

Let L(q) be the union of Λ(q+), Λ(q−), and of the line segments [q, q+] and [q, q−]:

L(q) = Λ(q+) ∪ [q+, q] ∪ [q, q−] ∪ Λ(q−)

We call L′(q) the connected component of L(q) ∩ B2
p that contains q. A straightforward adaptation of

the proof of Claim 2.28.2, with q′ = q and Λ′(q) replaced by L′(q), shows that L′(q) lies in K(q) and
joins C1(q) to C2(q). Moreover, Claim 2.28.3, applied here with q ′ = q, shows that every connected
curve included in B2

p and joining C1(q) with C2(q) intersects the neighborhood N(f) of f in Ŝ. This is
the case in particular for L′(q), thus L(q) ∩ Ŝ 6= ∅. It follows that Λ(q+) or Λ(q−) intersects Ŝ, since
[q+, q] and [q−, q] do not because they are included in B(q, d(q, Ŝ)). Therefore, q+ ∈ I or q− ∈ I,
which means thatB(q, η)∩I 6= ∅. Since this is true for any sufficiently small positive value η, q belongs
to the topological closure of I. Notice that, since S ∩ I = ∅, SI is also the intersection of S with the
topological closure of I. Therefore, q ∈ SI , which concludes the proof of Lemma 2.32. ¤
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2.2.2.4 End of the proof of Theorem 2.23

According to Lemma 2.31, for any point p ∈ S:

• either p belongs to Ŝ, which means that d(p, Ŝ) = 0;

• or p belongs to ∂I, which means that for any η > 0 there exists some point pη ∈ B(p, η) such
that Λ(pη)∩ Ŝ 6= ∅. Let p′η ∈ Λ(pη)∩ Ŝ and let tη ≥ 0 be the time at which Λ(pη) reaches p′η. By
Propositon 2.25 and Lemma 2.27, we have tη ≤ ε−dS(pη)

cos2 θ
< ε

cos2 θ
. Since by F2 φ is 1-Lipschitz

as a function of time, we deduce that d(pη, p
′
η) <

ε
cos2 θ

, which implies that d(p, Ŝ) < η + ε
cos2 θ

.
Since this is true for any η > 0, d(p, Ŝ) is at most ε

cos2 θ
.

Therefore, no point of S is farther than ε
cos2 θ

from Ŝ, which concludes the proofs of Proposition 2.26
and Theorem 2.23.

2.2.3 Isotopy

Theorem 2.33 Let S be a k-Lipschitz surface. For any finite point set E ⊂ S and any subcomplex Ŝ of
Del|S(E) that verifies Î1–Î4, Ŝ is isotopic to S.

This theorem, combined with Corollary 2.22, yields the following

Corollary 2.34 Let S be a k-Lipschitz surface and E ⊂ S be a finite point set. If E verifies H1 and
H2.0–H2.1, then every layer of Del|S(E) is isotopic to the connected component of S on which its
vertices lie. As a consequence, any subset of Del|S(E) made of one layer per connected component of
S is isotopic to S.

This result is of high practical interest. Indeed, if an algorithm can generate a point sample satisfying
H1 and H2.1, then, after a simple manifold extraction procedure, the result is isotopic to the surface S
(and still at Hausdorff distance at most ε

cos2 θ
from S, by Corollary 2.24). See Part B for more detail.

Let us now prove Theorem 2.33. By Theorem 2.23, the Hausdorff distance between Ŝ and S is
bounded by ε

cos2 θ
. To show that Ŝ is isotopic to S, we will use the following result, proved by Chazal

and Lieutier2:

Theorem 2.35 [34, Th. 6.2]
Let O and Ô be two open subsets of R

3 of positive weak feature size, whose boundaries ∂O and ∂Ô
are compact embedded surfaces. If dH(∂O, ∂Ô) < 1

2 min{wfs(O), wfs(Ô)}, then ∂O and ∂Ô are
isotopic.

In our context, all we have to do is to show that the Hausdorff distance between Ŝ and S is less than
half the weak feature size of O = R

3 \ S and less than half the weak feature size of Ô = R
3 \ Ŝ, and

then to apply Theorem 2.35. Using Theorem 2.23, it suffices to prove the two following lemmas:
2Note that the original theorem [34, Th. 6.2] requires that the open sets O and Ô be bounded. However, since ∂O and ∂Ô

are compact, it is possible to bound O and Ô with a sufficiently large sphere Σ while keeping wfs(O) and wfs(Ô) unchanged,
according to Lemma 2.17. Then, by [34, Th. 6.2], Σ ∪ ∂O and Σ ∪ ∂Ô are isotopic, which means that ∂O and ∂Ô are also
isotopic.
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Lemma 2.36 ε
cos2 θ

is less than half the weak feature size of O.

Proof. Since by Î3 we have ε < cos2 θ
4+3 cos2 θ

lrk(S), ε
cos2 θ

is less than 1
4 lrk(S). Moreover, by Theorem

2.16, lrk(S) is at most 2 wfs(O). Thus, ε
cos2 θ

< 1
2 wfs(O). ¤

Lemma 2.37 ε
cos2 θ

is less than half the weak feature size of Ô.

Proof. Let p be a point of Ŝ and let f be a facet of Ŝ that contains p. By Î3, the surface Delaunay ball
B(cf , rf ) of f has a radius rf ≤ ε. Let pf be a point of S̃ ∩B(cf , rf ). Such a point exists since cf ∈ S
and S̃ is dense in S, by Corollary 2.2.

For any point q ∈ Ŝ ∩ B(p, lrk(S) − 3ε) and any facet f ′ ∈ Ŝ containing q, f ′ is included in
a surface Delaunay ball of radius at most ε (by Î3), hence f ′ ⊂ B(p, lrk(S) − ε) ⊂ B(cf , lrk(S)).
Moreover, the radius-edge ratio of f is bounded by %, by Î4. Therefore, by the triangle normal lemma
2.13 and the orientation convention 2.19, we have (n(f ′),n(pf )) < arcsin(2% sin θ). Since this is true
for any q ∈ Ŝ ∩ B(p, lrk(S) − 3ε), and since by Î1 Ŝ is a polyhedron without boundary, Lemma 2.8
states that Ŝ ∩B(p, lrk(S)− 3ε) is the graph of a k′-Lipschitz function, for some constant k′. It follows
that Ŝ is a k′-Lipschitz surface, with lrk′(Ŝ) ≥ lrk(S) − 3ε. By Theorem 2.16, wfs(Ô) is then at least
1
2 lrk′(Ŝ) ≥ 1

2 (lrk(S)− 3ε), which is greater than 2 ε
cos2 θ

since ε < cos2 θ
4+3 cos2 θ

lrk(S). ¤

Observe that, to bound the weak feature size of Ô from below, it is necessary to control the normals
of the facets of Ŝ (Lemma 2.37). This requires that the radius-edge ratios of the facets of Ŝ be bounded
(Lemma 2.13). As a consequence, Hyp. Î4 is mandatory for our approach to work.

2.3 Loose ε-samples and ε-samples

We showed in the smooth case (Lemmas 1.22 and 1.23) that, for sufficiently small ε, any ε-sample is a
loose ε-sample and any loose ε-sample is an ε(1 +O(ε))-sample, where the constant hidden behind the
O depends on the surface S. We will prove analogous results for the nonsmooth case. The proofs are
quite similar to those of Section 1.3. Nevertheless, we recall them for completeness.

First, we show that any ε-sample is a loose ε-sample. Trivially, an ε-sample satisfies Condition 1 of
Definition A.1. Therefore, we need only to show that Condition 2 is also satisfied:

Lemma 2.38 Let E be an ε-sample of a k-Lipschitz surface S. If k < tan π
8 and ε ≤ 1

2 lrk(S), then
every point of E is a vertex of Del|S(E). As a consequence, E is a loose ε-sample of S.

Proof. Let v ∈ E. We consider the cell V(v) in the Voronoi diagram of E. We will prove that at least
one edge of the boundary of V(v) intersects S, which means that v is incident to at least one facet of
Del|S(E).

Since E is an ε-sample of S, no point of S ∩ V(v) is farther than ε from v. Thus, S ∩ V(v) is
included in B(v, ε), which is a subset of B(v, lrk(S)) since ε < lrk(S), by hypothesis. This implies
that S ∩ V(v) is the graph of a bivariate function. Since it is compact, it has a non-empty boundary.
Moreover, its boundary is included in ∂V(v) because S has no boundary. Therefore, S ∩ ∂V(v) 6= ∅.
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Let f be a facet of ∂V(v) that intersects S. We will show that f ∩ S contains no cycle, which implies
that S ∩ ∂f 6= ∅, hereby proving the lemma.

Let us assume for a contradiction that f ∩ S contains a cycle C. We call w the point of E such that
f = V(v) ∩ V(w), and we consider a point p of f ∩ S. Since E is an ε-sample, we have d(p, v) =

d(p, w) ≤ ε. Hence, d(v, w) ≤ 2ε ≤ lrk(S). Let pv ∈ S̃ ∩ B(v, lrk(S)). Such a point exists since S̃
is dense in S, by Corollary 2.2. According to the cocone lemma 2.12, the angle between n(pv) and the
line (v, w) is at least π

2 − θ. Equivalently, the angle between n(pv) and the plane aff(f) is at most θ.
Let l be the unit vector of aff(f) whose angle with n(pv) is minimal. We have (n(pv), l) ≤ θ. Let l

be a line parallel to l that intersects C at least twice. Such a line exists because C is a cycle. Let q and q ′

be two points of intersection. We assume without loss of generality that l · (q′− q) > 0. Then, we have:

(n(pv), q′ − q) ≤ θ (2.16)

Now, by the cocone lemma 2.12, the angle between n(pv) and the line (q, q′) is at least π
2 − θ. This

contradicts (2.16) because 2θ = 4 arctan k < π
2 . Therefore, the lemma is proved. ¤

Conversely, Corollary 2.24 allows us to prove that loose ε-samples are O(ε)-samples.

Lemma 2.39 Let E be a finite subset of a k-Lipschitz surface S. If E verifies H1 and H2.0–H2.1, then
E is an ε

√

1 + 1
cos4 θ

-sample of S.

Proof. Let p be a point of S and p′ a nearest neighbor of p on Del|S(E). By Corollary 2.24, d(p, p′) is
at most ε

cos2 θ
. If p′ is a vertex of Del|S(E), then p′ ∈ E and the result is proved. Else, let f be a facet

of Del|S(E) that contains p′, and v 6= p′ a vertex of f closest to p′. By hypothesis, the circumradius of
f is at most ε. Thus, d(p′, v) ≤ ε, since p′ ∈ f . If p′ belongs to an edge e of f , then the lines aff(e) and
(p, p′) are perpendicular. Thus,

d(p,E) ≤ d(p, v) =
√

d2(p, p′) + d2(p′, v) ≤
√

ε2

cos4 θ
+ ε2

and the lemma is proved. Else, p′ belongs to the relative interior of f , thus the plane aff(f) is perpen-
dicular to (p, p′). By the same computation as above, we get d(p,E) ≤

√

ε2

cos4 θ
+ ε2, which proves the

lemma. ¤

Open question 2.40 In the above lemmas, and more generally in the results of Chapter 2, the point set
E is assumed to be a (loose) ε-sample of S. Can similar results be proved for (loose) µlrk-samples of
S, whose densities depend on the 1-Lipschitz function lrk?





Chapter 3

Size of (Loose) ε-Samples

Erickson [65] has shown that Ω
(

1
µ2

∫∫

S
dS
d2
M

)

is a lower bound on the number of points of any µdM-
sample of a smooth surface S, with µ < 1

5 . In this chapter, we extend Erickson’s result to the more
general case where S is a Lipschitz surface. Instead of restricting ourselves to a specific sizing field, we
consider a generic κ-Lipschitz sizing field σ : S → R

+, with κ < 1. Our bound holds for sizing fields
that are sufficiently small with respect to lrk.

We also introduce the notion of sparse sample (Definition 3.2), and we work out an upper bound on
the size of such samples. In the specific case where σ is uniform and equal to a constant ε, the upper and
lower bounds coincide, up to a constant factor. Thus, sparse (loose) ε-samples have an optimal size.

3.1 Surface integral

In the sequel, S is a k-Lipschitz surface. Let ∆, m and gi : (xi, yi) → R, 1 ≤ i ≤ m, be as in Defi-
nition 2.1. We say that a function f : S → R is integrable if ∀i,

∫∫

∆ |f(xi, yi, gi(xi, yi))| dxidyi <

+∞. Let us explain what we mean by the surface integral of f .
Since gi is differentiable almost everywhere in ∆, it has partial derivatives ∂gi

∂xi and ∂gi

∂yi almost
everywhere in ∆. So does the map ψi : (xi, yi) 7→ (xi, yi, gi(xi, yi)). Therefore, at almost every
point of ∆ we can define a surface element dS:

dS =

∥

∥

∥

∥

∂ψi

∂xi
× ∂ψi

∂yi

∥

∥

∥

∥

dxidyi =

√

1 +

(

∂gi

∂xi

)2

+

(

∂gi

∂yi

)2

dxidyi (3.1)

Note that dS depends on the choice of the coordinate systems {(xi, yi, zi)} and their associated Lipschitz
functions gi in Definition 2.1. However, it is proved in [94, §3.1] that, given any partition of unity {φi}
on S subordinate to the covering1 {gi(∆)}, the following quantity:

m
∑

i=1

∫∫

∆
f(xi, yi, gi(xi, yi)) φi(xi, yi, gi(xi, yi)) dS

does not depend on the partition of unity {φi} nor on the coordinate systems {(xi, yi, zi)}. We call this
quantity the surface integral of f over S, noted

∫∫

S f dS, and we notice that it is well-defined since f is
integrable.

1See [14, §3.2] for a definition of a partition of unity subordinate to a given covering.
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This definition coincides with the usual definition of surface integral in the smooth case [14, §6.6].
Moreover, by the area formula [67, §3.2.3],

∫∫

S 1 dS equals H2(S), the 2-dimensional Hausdorff mea-
sure of S. As mentioned in the introduction of the thesis,H2 generalizes the notion of area of a surface,
hence in the sequelH2(S) will be denoted Area(S), by analogy with the smooth case.

3.2 Lower bound

Theorem 3.1 If E is a σ-sample of S, with σ ≤ (1− κ) lrk, then

|E| ≥ 1

π

(

1− κ
1 + κ

)2 1

1 + k2

∫∫

S

dS

σ2

Proof. For any v ∈ E, we call VS(v) the intersection of S with the cell of v in Vor(E). VS(v) is the
set of all points of S that have v as nearest neighbor among the points of E. Since S =

⋃

v∈E VS(v),
we have:

∫∫

S

dS

σ2
=
∑

v∈E

∫∫

VS(v)

dS

σ2
(3.2)

Since E is a σ-sample, for any v ∈ E and any p ∈ VS(v), d(p, v) is bounded by σ(p). Hence, σ(p) is
at least σ(v)

1+κ and at most σ(v)
1−κ , because σ is κ-Lipschitz. Therefore,

∀v ∈ E,
∫∫

VS(v)

dS

σ2
≤ (1 + κ)2

Area(VS(v))

σ2(v)
(3.3)

Moreover, VS(v) is included in B
(

v, σ(v)
1−κ

)

⊆ B (v, lrk(v)). By definition of lrk(v), VS(v) is
the graph of a k-Lipschitz function fv defined over the orthogonal projection V′

S(v) of VS(v) onto
some plane Πv. Since fv is k-Lipschitz, the function that maps every point (x, y) ∈ V′

S(v) onto
(x, y, fv(x, y)) ∈ VS(v) is

√
1 + k2-Lipschitz. Thus, by [67, §2.10.11] we have:

Area(VS(v)) ≤ (1 + k2) Area(V′
S(v))

In addition, V′
S(v) is included in a disk of radius σ(v)

1−κ , hence

Area(VS(v)) ≤ π σ2(v) (1 + k2)

(1− κ)2 (3.4)

It follows from (3.2), (3.3) and (3.4) that
∫∫

S

dS

σ2(x)
≤
∑

v∈E

π
(1 + κ)2

(1− κ)2 (1 + k2) = π
(1 + κ)2

(1− κ)2 (1 + k2) |E|

¤

In the specific case where S is C1,1, S is k-Lipschitz for any k > 0 (Theorem 2.6). Therefore,
without loss of generality we take k = 1. If σ = µ dM, then κ = µ and σ verifies the hypothesis
of Theorem 3.1 for all µ ≤ π

4+2π , by Theorem 2.6. Moreover, we have
(

1−µ
1+µ

)2
≥
(

4+π
4+3π

)2
and

1
1+k2 = 1

2 . Hence, by Theorem 3.1, any µdM-sample of S contains Ω
(

1
µ2

∫∫

S
dS
d2
M

)

points, where the
constant hidden in the Ω does not depend on S nor on µ. This bound coincides with Erickson’s bound.
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In the other specific case where σ is uniform and equal to a constant ε, we have κ = 0, hence
Theorem 3.1 yields |E| ≥ 1

π
1

1+k2
Area(S)

ε2 . If k is bounded by some constant k0 (which is the case when
one wants to have guarantees on the topology and geometry of Del|S(E), as observed in Chapter 2),
then |E| = Ω

(

Area(S)
ε2

)

, where the constant hidden in the Ω does not depend on S nor on ε. This bound
holds for loose ε-samples as well, since loose ε-samples are O(ε)-samples, by Lemma 2.39.

3.3 Upper bound

Since adding points to an ε-sample results in another ε-sample, we cannot hope for an upper bound on
ε-samples without making some additional assumptions.

Definition 3.2 A point set E ⊂ S is said to be σ-sparse if there exists some positive constant h, inde-
pendent from S and from σ, such that:

∀p ∈ S, |E ∩B(p, σ(p))| ≤ h.

If in addition E is a σ-sample of S, then we say that E is a sparse σ-sample of S.

It is clear that every σ-sparse sample is a fortiori a σ′-sparse sample, for any σ′ ≤ σ. Moreover,

Lemma 3.3 If E ⊂ S is σ-sparse, then E is also νσ-sparse, for any constant ν < 1
2κ independent from

S and from σ.

Proof. Let p ∈ S. We will bound the number of points of E that lie in B(p, νσ(p)). Let σm > 0 be
the infimum of σ over S ∩ B(p, νσ(p)). Since σ is κ-Lipschitz, for any q ∈ S ∩ B(p, νσ(p)) we have
σ(q) ≥ σ(p)− κ d(p, q) ≥ (1− κν) σ(p) > σ(p)

2 . Therefore, σm ≥ σ(p)
2 .

Let q1 ∈ S ∩B(p, σ(p)), and for any i ≥ 1 let qi+1 ∈ S \
⋃i

i′=0B(qi′ ,
σm
2 ) (if such a point exists).

By construction, the balls B(qi,
σm
2 ) cover S ∩B(p, νσ(p)). Moreover, the qi are farther than σm

2 from
one another, hence they are centers of pairwise disjoint balls of radius σm

4 . Therefore, their number is at
most:

Vol (B (p, νσ(p)))

Vol
(

B
(

p, σm
4

)) = 64 ν3 σ
3(p)

σ3
m

≤ 512 ν3

In addition, for any qi, if B(qi,
σm
2 ) does not intersect S, then |E ∩ B(qi,

σm
2 )| = 0. Otherwise, let

q′i ∈ S ∩ B(qi,
σm
2 ). B(qi,

σm
2 ) is included in B(q′i, σm) ⊆ B(q′i, σ(q′i)), thus |E ∩ B(qi,

σm
2 )| ≤ n,

because E is σ-sparse. Since this is true for any qi, and since the ballsB(qi,
σm
2 ) cover S∩B(p, νσ(p)),

we get |S ∩B(p, νσ(p))| ≤ 512 ν3 n. ¤

The above result will be useful for proving that our sampling algorithm generates sparse samples –
see Section 4.2.

Theorem 3.4 If E ⊂ S is σ-sparse, with σ ≤ 2 lrk and k < 1, then there exists some positive constant2

h, independent from S and from σ, such that

|E| ≤ h

π

(

1 + k2

1− k2

)2

(2 + κ)2
∫∫

S

dS

σ2

2This constant is the same as in Definition 3.2.
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Proof. Let E be a σ-sparse point set included in S. Since S is compact, Definition 3.2 implies that E
is finite. For any point p ∈ E, we define B ′(p) as the ball centered at p of radius σ(p). We construct a
subset E′ ⊂ E iteratively as follows: let p1 ∈ E, and for any i > 1, let pi ∈ E \

⋃

1≤j<iB
′(pj). This

process terminates since E is finite. Upon termination, every point of E belongs to B ′(pi), for some
pi ∈ E′. Since E is σ-sparse, there exists a constant h such that every B ′(pi) contains at most h points
of E (including pi itself). Therefore, the size of E ′ is at least |E|/h.

Hence, bounding the size of E comes down to bounding the size of E ′. To do so, we proceed as
in the case of planar meshes [60, 99] and lower-bound the integral over S of 1/σ2. For any pi ∈ E′,
we consider the open ball B1/2(pi) of center pi and radius σ(pi)/2. Let D(pi) = S ∩ B1/2(pi). Since
D(pi) ⊆ S for any pi ∈ E′, we have

∫∫

S

dS

σ2
≥
∫∫

⋃

pi∈E′

D(pi)

dS

σ2

Given pi 6= pj , pi does not belong to B′(pj) and pj does not belong to B′(pi). Therefore, d(pi, pj) is
greater than max{σ(pi), σ(pj)}, which is at least 1

2 (σ(pi) + σ(pj)). It follows thatD(pi)∩D(pj) = ∅.
Since this is true for any pi 6= pj , we have

∫∫

⋃

pi∈E′

D(pi)

dS

σ2
=
∑

pi∈E′

∫∫

D(pi)

dS

σ2

In addition, since σ is κ-Lipschitz, ∀q ∈ D(pi), σ(q) ≤ σ(pi)+κ d(q, pi)≤ (1+κ/2) σ(pi). It follows
that

∑

pi∈E′

∫∫

D(pi)

dS

σ2
≥
∑

pi∈E′

Area(D(pi))

(1 + κ/2)2 σ2(pi)

Let pi ∈ E′. Let qi be a point of S̃ ∩B1/2(pi). Such a point exists because S̃ is dense in S, by Corollary
2.2. Since the radius of B1/2(pi) is σ(pi)

2 ≤ lrk(pi), the cocone lemma 2.12 states that D(pi) lies
outside the double cone K(pi) of apex pi, of axis aligned with n(qi) and of half-angle π

2 − 2 arctan k.
Let K+(pi) and K−(pi) be the two cones of K(pi). Since S passes through the apex pi and has no
boundary, it encloses K+(pi) ∩ B1/2(pi) or K−(pi) ∩ B1/2(pi). Therefore, the orthogonal projection
of D(pi) onto T (qi) contains the orthogonal projection of K(pi) ∩ B1/2(pi), which is a disk of radius
σ(pi)

2 cos (2 arctan k) = σ(pi)
2

1−k2

1+k2 . Hence,

∑

pi∈E′

Area(D(pi))

(1 + κ/2)2 σ2(pi)
≥ π

(

1− k2

1 + k2

)2
1

(2 + κ)2
|E′|

which yields the theorem, since |E ′| ≥ |E|/h. ¤

In the specific case where S is C1,1, S is k-Lipschitz for any k > 0 (Theorem 2.6). Therefore,
without loss of generality we take k = 1√

3
. If σ = µ dM, then κ = µ and σ verifies the hypothesis

of Theorem 3.1 for all µ ≤ π
18+3π , by Theorem 2.6. Moreover, we have (2 + µ)2 ≤

(

36+7π
18+3π

)2
and

(

1+k2

1−k2

)2
= 4. Hence, by Theorem 3.4, any µdM-sparse sample of S contains O

(

1
µ2

∫∫

S
dS
d2
M

)

points,
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where the constant hidden in the O does not depend on S nor on µ. This bound is optimal in view of
Theorem 3.1.

In the other specific case where σ is uniform and equal to a constant ε, and k is bounded by some
constant k0, Theorem 3.4 yields |E| = O

(

Area(S)
ε2

)

, where the constant hidden in theO does not depend
on S nor on ε. This bound is also optimal in view of Theorem 3.1. Therefore, sparse (loose) ε-samples
have an optimal size.





Part B

Sampling and Meshing Algorithm
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Introduction

In this part of the thesis, we show how our sampling condition can be turned into a simple and efficient
surface mesh generator. The latter is based on a Delaunay refinement technique, which consists in
constructing an initial mesh and then refining iteratively the elements of the mesh that do not meet some
user-defined size or shape criteria. This greedy tehnique was pioneered by Ruppert [99] in the plane,
and then extended (without proof of correctness) by Chew to the case of surfaces in 3-space [45]. Our
mesher derives from Chew’s algorithm3. It takes as input a user-defined parameter ε and an initial point
set EI ⊂ S, and it outputs a loose ε-sample EF of S, together with Del|S(EF ).

Chew did not provide any theoretical guarantees with his algorithm. Here, taking advantage of the
theoretical results of Part A, we can prove that the output mesh is a manifold without boundary, with
the same topological type as S and close to S for the Hausdorff distance, provided that ε is chosen
sufficiently small. Specifically, ε must be less than a fraction of rch(S) (introduced in Section 1.1.1)
when S is smooth, and less than a fraction of lrk(S) (see Section 2.1.1) when S is a more general k-
Lipschitz surface, for sufficiently small k. It follows that the algorithm generates provably good meshes
on a wide class of shapes. Moreover, we show that the number of points sampled from S by the algorithm
lies within a constant factor of the optimal.

Let us emphasize that our mesh generator maintains the 3-dimensional Delaunay triangulation of
the point sample throughout the process. This is mandatory for guaranteeing the topology of the output
mesh. Maintaining a whole 3-dimensional triangulation can be time-consuming in general. However,
we prove in our case that the size of the data structure remains bounded throughout the process, which
implies that the space and time complexities of the algorithm are quite reasonable.

A noticeable feature of the algorithm is that it needs only to know the surface S through an oracle ω
that can compute the intersection of any given segment with S. Therefore, our mesh generator is generic
enough to be applied in a wide variety of contexts. This claim will be illustrated in Part C.

In Chapter 4, we present our mesher, provide theoretical guarantees on its output, and analyze its
space and time complexities. We also describe how to construct an initial point set EI ⊂ S to be used
as input by the algorithm.

In Chapter 5, we introduce several modifications that can be brought to the algorithm, to enhance
the quality of its output or to improve its time complexity in important special cases. In particular, we
present an oracle that does not compute all the intersection points of a given segment with the surface
S. This oracle can be efficiently implemented for implicit surfaces, and we prove that the algorithm has
the same theoretical guarantees with this oracle as it does with the exhaustive oracle.

3In the sequel, we identify our mesher with Chew’s algorithm, for simplicity.





Chapter 4

Chew’s Algorithm

Chew’s surface mesh generator [45] is a greedy incremental algorithm that inserts sample points on S
and maintains the Delaunay triangulation of the sample E restricted to S, Del|S(E). In this chapter, we
describe a modified version of Chew’s algorithm and use our previous results to analyze its complexity
and to give guarantees on its output.

4.1 The algorithm

4.1.1 Input

Chew’s algorithm takes as input:
– a surface S,
– a point set EI ⊂ S,
– a positive parameter ε.

The surface is known only through an oracle ω that, given a line segment s, can compute a (possibly
empty) subset of the intersection points of s with S: ∀s ∈ Seg(R3), ω(s) ⊆ s ∩ S.

4.1.2 Data structure

Recall that, given a point set E ⊂ S, the Delaunay triangulation of E restricted to S, Del|S(E), is
the subcomplex of the 3-dimensional Delaunay triangulation Del(E) made of the facets whose dual
Voronoi edges intersect S. Every point of intersection of a Voronoi edge with S is the center of a surface
Delaunay ball, also called ball of Del|S(E) in the sequel.

By querying the oracle ω on every Voronoi edge, the algorithm can compute a subset of Del|S(E),
called Delω|S(E). Notice that Delω|S(E) may be different from Del|S(E), since ω is not assumed to
be able to detect all the intersection points of S with the edges of the Voronoi diagram. The balls of
Del|S(E) whose centers are detected by ω are called balls of Delω|S(E).

Delω|S(E) is stored as a subcomplex of Del(E). Each time a point is added to E, the part of the
Voronoi diagram that has changed after the insertion of the point has to be investigated, by querying the
oracle ω on every Voronoi edge that has appeared or has been shortened.
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4.1.3 Course of the algorithm

The algorithm constructs iteratively a point set E and maintains its Delaunay triangulation restricted to
S.

Initially, the algorithm takes E = EI and computes Delω|S(E) by querying the oracle on every edge
of the Voronoi diagram of E. A ball of Delω|S(E) is said to be bad if its radius is greater than ε. A facet
of Delω|S(E) is called bad if it is circumscribed by a bad ball of Delω|S(E). The bad balls of Delω|S(E)

are stored in a priority queue Q where they are sorted by decreasing radii.

Then, at each iteration, the algorithm inserts a new point in E and updates Delω|S(E). Each point
inserted in E is the center of a bad ball of Delω|S(E) of largest radius, stored at the top of the priority
queue Q. The process is described in the following loop:

while Q is not empty {
take the largest element of Q;
insert its center into E and update Del(E);
update Delω|S(E) by querying ω on all the Voronoi edges that have changed or appeared:

delete from Delω|S(E) the former Delaunay facets that no longer belong to Delω|S(E);
add to Delω|S(E) the new Delaunay facets that belong to Delω|S(E);

update Q by:
deleting all the elements of Q which are no longer balls of Delω|S(E);
adding all the new balls of Delω|S(E) whose radius is greater than ε;

}
The algorithm stops at the end of the loop, when there are no more bad balls of Delω|S(E). Upon

termination, the point set E is renamed EF , and it is returned as well as Ŝ = Delω|S(EF ).

Notice that the number of intersection points of a Voronoi edge with the surface S may be arbitrarily
large. To prevent Q from growing too much, we store at most one ball of Delω|S(E) (namely, the one of
largest radius) per Voronoi edge. This way, the size of Q is bounded by the number of Voronoi edges.

4.2 Guarantees on the output

In this section, we assume that the algorithm terminates, and we show how the structural results of Part
A give theoretical guarantees on its output. One crucial condition is that Delω|S(EF ) have vertices on all
the connected components of S. This condition is called I2 in Chapter 1 and Î2 in Chapter 2. In Section
4.2.1 we will introduce the so-called persistent facets, which will help to fulfill I2 and Î2.

Another condition is that the oracle be able to compute all the intersection points of S with any
segment: ∀s ∈ Seg(R3), ω(s) = s∩S. Such an oracle is said to be exhaustive. Non-exhaustive oracles
will be introduced later, in Section 5.1 and Chapter 8. From now on, and until the end of Chapter 4, we
assume that the oracle is exhaustive, which means that Delω|S(E) = Del|S(E) for any point set E.

To review the properties of the output of the algorithm, we will distinguish between the case where
the surface S has a positive reach (Section 4.2.2) and the more general case where S is k-Lipschitz
(Section 4.2.3). Our theoretical results hold for ε less than a fraction of rch(S) when S has a positive
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reach, and ε less than a fraction of lrk(S) when S is k-Lipschitz. Therefore, it is necessary in practice
to have at our disposal a positive lower bound εS on rch(S) or lrk(S). We will see in Part C how such a
bound can be computed in several applications.

Before going more into detail, let us first notice that the set of points inserted by the algorithm
satisfies a sparseness condition, stated below:

Lemma 4.1 The points of EF \ EI are farther than ε from one another and from the points of EI .

Proof. Let p belong to EF \EI . When p is inserted in E by the algorithm, it is the center of a Delaunay
ball of radius greater than ε, hence its distance to EI and to the points of EF \ EI inserted before is
greater than ε. The result follows. ¤

Lemma 4.1 will be instrumental in proving that the algorithm generates sparse samples.

4.2.1 Persistent facets

Since the algorithm is greedy, its behaviour depends highly on the initial point sample EI . Figure
3 shows an example where Del|S(EI) is empty. In this case, the priority queue Q is empty at the
beginning of the process, and the algorithm stops immediately. As a consequence, the output point
sample EF is equal to EI . To prevent Del|S(E) from vanishing during the process, we introduce the
notion of persistent facet.

Definition 4.2 Given a positive constant λ, a λ-persistent facet is a facet of Del|S(EI) circumscribed
by a ball of Del|S(EI) of radius at most λ

2 .

Persistent facets are interesting in our context because they share a nice persistence property, illus-
trated in Figure 4.1 and stated in the following lemma:

Lemma 4.3 During the course of the algorithm, all λ-persistent facets remain in Del|S(E) as long as
the radius of the largest ball of Del|S(E) remains greater than λ.

Proof. Let f be a λ-persistent facet and B = B(c, r) be a ball of Del|S(EI) circumscribing f such that
r ≤ λ

2 . Assume that, at some stage, the algorithm inserts in E a point c′ that belongs to the interior ofB.
We know that c′ is the center of a surface Delaunay ball B ′ circumscribing some facet f ′ of Del|S(E).
Notice that we may possibly have B ′ = B and f ′ = f , but it is not necessarily the case. Since B ′ is a
Delaunay ball, its interior does not contain the vertices of f . Hence, the radius r ′ of B′ must be at most
2r ≤ λ. Moreover, B′ is the ball of Del|S(E) of largest radius, since its center is being inserted in E.
Therefore, all the balls of Del|S(E) have radii at most λ. ¤

We will see that assuming that EI contains λ-persistent facets, for sufficiently small λ, ensures that
Del|S(E) remains non-empty throughout the process.
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Figure 4.1: Meshing of a torus: the persistent facet (upper-left corner) remains in the restricted Delaunay
triangulation throughout the process.

4.2.2 Surfaces with positive reach

Let S have a positive reach and let µ0 = 0.16 and µ1 = π
16+2π ≈ 0.14 be the constants defined in

Chapter 1, Sections 1.2 and 1.4. Recall that the oracle ω is assumed to be exhaustive, hence Delω|S(E) =

Del|S(E) for any point set E.

Theorem 4.4 If EI and ε verify:
(α) Del|S(EI) has λ-persistent facets on all the connected components of S, with λ ≤ µ0 rch(S),
(β) ε ≤ µ0 rch(S),

then EF is a loose ε-sample of S. As a consequence,
(a) Del|S(EF ) is isotopic to S,
(b) the Fréchet distance between Del|S(EF ) and S is at most ε2

rch(S) ,

(c) EF is an ε
√

1 + ε2

rch(S)2
-sample of S, hence |EF | = Ω

(

Area2(S)
ε2

)

.
(d) Del|S(EF ) approximates S in terms of normals and area within an error O(ε).
(e) if ε < µ1 rch(S), then S is covered by the balls of Del|S(EF ),

Moreover, if EI is ε-sparse, then EF is ε
√

1 + ε2

rch(S)2
-sparse, hence |EF | = O

(

Area(S)
ε2

)

.

Proof. Since the oracle ω is exhaustive, every ball of Del|S(EF ) has a radius bounded by ε, which
means that E verifies Condition 1 of Definition A.1.
- If all the λ-persistent facets remain in Del|S(E) until the end of the process, then Del|S(EF ) has
vertices on all the connected components of S, hence Condition 2 of Definition A.1 is satisfied and EF

is a loose ε-sample of S.
- Otherwise, let p be the first center of a surface Delaunay ball of radius at most λ that is inserted in
E. By Lemma 4.3, before p is inserted in E, all λ-persistent facets remain in Del|S(E). We consider
the point set E right before the insertion of p. At that stage, p is the center of a ball of Del|S(E)

of largest radius, hence all the balls of Del|S(E) have radii at most λ. Moreover, all the λ-persistent
facets are still in Del|S(E). Therefore, E is a loose λ-sample of S. Since λ ≤ µ0 rch(S), E is a
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λ
√

1 + λ2

rch(S)2
-sample, by Lemma 1.23. It follows that EF ⊇ E is also a λ

√

1 + λ2

rch(S)2
-sample.

Since λ
√

1 + λ2

rch(S)2
≤ µ0

√

1 + µ2
0 rch(S) < π

6+π rch(S), EF is a loose ε-sample, by Lemma 1.22.
This property, combined with Theorems 1.14, 1.18 and Lemma 1.23, proves (a), (b) and (c). The

lower bound on |EF | in (c) comes from Theorem 3.1. Moreover, (d) follows from the triangle normal
lemma 1.5 and from a theorem by Morvan and Thibert [92]. Finally, Theorem 1.24 proves (e).

Let us now assume that EI is ε-sparse and prove that EF is ε′-sparse, with ε′ = ε
√

1 + ε2

rch(S)2
.

To show that EF is ε′-sparse, we will bound the number of points of EF that lie in B(p, ε′), for any
p ∈ S. By (β), we have ε′ ≤ ε

√

1 + µ2
0. Thus, by Lemma 3.3, EI is ε′-sparse1, which implies that there

exists a positive constant h, independent from S and ε, such that |EI ∩ B(p, ε′)| ≤ h. Moreover, by
Lemma 4.1, the points of EF \EI are farther than ε from one another, hence they are centers of pairwise
disjoint open balls of radius ε

2 . For any q ∈ B(p, ε′) ∩ EF \ EI , the open ball B(q, ε
2) is included in

B(p, ε′ + ε
2). Therefore, the number of points of EF \ EI that lie in B(p, ε′) is bounded by:

Vol
(

B
(

p, ε′ + ε
2

))

Vol
(

B
(

q, ε
2

)) ≤
(

1 + 2
√

1 + µ2
0

)3

Hence, |EF ∩B(p, ε′)| ≤ h+
(

1 + 2
√

1 + µ2
0

)3
, which means that EF is ε′-sparse. The upper bound

on its size follows then from Theorem 3.4. ¤

According to Theorem 4.4, to construct a PL approximation of S within a Fréchet distance δ > 0, it
suffices to compute a positive constant εS ≤ rch(S), and then to apply the algorithm with ε =

√
δ εS .

The size of the output point set is then ΘS

(

ε−2
)

= ΘS

(

δ−1
)

. This bound is optimal (up to a constant
factor depending on S) when the object bounded by S is convex, since in this case any PL approximation
of S within Hausdorff distance δ has ΩS

(

δ−1
)

vertices [75].
Remark that λ is not lower-bounded in Condition (α) of Theorem 4.4. As a consequence, it may be

(far) smaller than ε. In such a case, the facets of the output mesh are smaller in the vicinity of persistent
facets. An illustration is given in Figure 4.1, where we took λ = ε

7 to emphasize the phenomenon.
However, once the input point sample EI is fixed, ε can be chosen arbitrarily small. In particular, if the
user chooses an ε less than λ

2 , then the λ-persistent facets are not visible in the output mesh. This is
the case for the models presented in Part C, e.g. in Figure 6.1. In Section 4.4, we will explain how to
construct persistent facets that are not too small compared to µ0 rch(S).

4.2.3 Lipschitz surfaces

Let S be a k-Lipschitz surface. We define θ = 2 arctan k, for convenience. Using the theoretical results
of Chapter 2, we can guarantee the quality of the output of Chew’s algorithm for θ ≤ arctan 1

3
√

3
≈

10.9◦, i.e. for k ≤ tan
(

1
2 arctan 1

3
√

3

)

≈ 0.1. Recall that the oracle ω is assumed to be exhaustive,
hence Delω|S(E) = Del|S(E) for any point set E.

Theorem 4.5 If EI and ε verify:
(α̂) Del|S(EI) has λ-persistent facets on all the connected components of S, with λ < cos2 θ

4+3 cos2 θ
lrk(S),

1The sizing field p 7→ ε is κ-Lipschitz for any κ > 0, hence the hypothesis of Lemma 3.3 is satisfied in our context.
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(β̂) ε ≤ λ
2 ,

(γ̂) the points of EI are farther than λ
2% from one another, where % ≥ 1 verifies H2.2 and H2.3, and

2% ≥ 2 verifies H2.0 and H2.1.
then EF verifies H1 and H2. As a consequence,

(â) Del|S(EF ) is isotopic to S,
(b̂) the Hausdorff distance between Del|S(EF ) and S is at most ε

cos2 θ
,

(ĉ) EF is an ε
√

1 + 1
cos4 θ

-sample of S, hence |EF | = Ω
(

Area(S)
ε2

)

,

(d̂) EF is ε
% -sparse, hence |EF | = O

(

%2 Area(S)
ε2

)

.
(ê) the facets of Del|S(E) have inner angles greater than arcsin 1

2% .

Before proving the theorem, let us explain where the bound on θ comes from. In Section 4.4, we
will explain how to construct λ-persistent facets whose vertices are farther than λ

2 from one another.
However, we are currently unable to guarantee that the vertices are farther than λ

2 (1 + η) from one
another, for any η > 0. Therefore, we have to assume that % ≥ 1 in (γ̂). Consequently, (γ̂) implies that θ
verifies H2.2–H2.3 with % replaced by 1, and H2.0–H2.1 with % replaced by 2. Among these conditions,
H2.0 is the most restrictive one and it yields θ ≤ arctan 1

3
√

3
≈ 10.9◦.

So, when θ ≤ arctan 1
3
√

3
, we can set up EI and ε so that they satisfy (α̂), (β̂), (γ̂). Then, Theo-

rem 4.5 guarantees the quality of the output mesh. Note that the bound on θ is overly pessimistic since
in practice the algorithm produces meshes of good quality for values of θ ranging from 0 to π

2 – see
Chapters 6 and 7. From now on, and until the end of the section, θ is assumed to be at most arctan 1

3
√

3
.

Let us now prove Theorem 4.5. The proof is very similar to the one of Theorem 4.4, although with
a few additional subtelties.

Proof of the theorem. Since the oracle ω is exhaustive, all the balls of Del|S(EF ) have radii bounded
by ε. Therefore, if the λ-persistent facets remain in Del|S(EF ), then EF is a loose ε-sample of S.
Otherwise, if p denotes the first center of surface Delaunay ball of radius at most λ that is inserted in E,
then, as in the proof of Theorem 4.4, right before the insertion of p, E is a loose λ-sample. By (α̂), λ
is less than cos2 θ

4+3 cos2 θ
lrk(S). Moreover, all the points inserted before p were centers of Delaunay balls

of radius greater than λ. These points are farther than λ from one another and from EI , by Lemma 4.1
(applied with ε replaced by λ). It follows from (γ̂) that the points of E are farther than λ

2% from one
another. Hence, E verifies H1 and H2.0–H2.1, with ε replaced by λ, and % replaced by 2%. Therefore,
according to Lemma 2.39, E is a λ

√

1 + 1
cos4 θ

-sample, where λ
√

1 + 1
cos4 θ

is less than 1
2 lrk(S), by

(α̂). As a consequence, EF ⊇ E is a 1
2 lrk(S)-sample of S. Moreover, as mentioned above, (γ̂) implies

that θ is at most arctan 1
3
√

3
< π

4 , which means that k < tan π
8 . Thus, every point of EF is a vertex

of Del|S(EF ), by Lemma 2.38. It follows that EF is a loose ε-sample, since the radii of the balls of
Del|S(EF ) are all bounded by ε. By (α̂) and (β̂), EF verifies H1. Moreover, by (β̂) and (γ̂), the points
of EI are farther than ε

% from one another, where % verifies H2.0–H2.3. Since by Lemma 4.1 the points
of EF \ EI are farther than ε ≥ ε

% from one another and from EI , we deduce that EF verifies H2.
Then, assertion (â) follows from Theorem 2.33, (b̂) from Theorem 2.23 and (ĉ) from Lemma 2.39 and
Theorem 3.1. In addition, since EF verifies H2, it is ε

% -sparse, by the same argument as in the proof of

Theorem 4.4. Therefore, by Theorem 3.4, we have |EF | = O
(

%2 Area(S)
ε2

)

. Finally, since EF verifies
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H1 and H2, the radius-edge ratios of the facets of Del|S(EF ) are less than %, which implies that their
inner angles are greater than arcsin 1

2% . ¤

Remark that there is an additional subtelty in Condition (β̂), compared to (β): here, ε is supposed to
be at most λ

2 , and not simply at most a fraction of lrk(S). The reason is that, to ensure that Del|S(EF )

has vertices on all the connected components of S,EF has to verify H2, which is impossible if the points
of EI are too close to one another, compared to ε. In compensation, the output point set EF is ε-sparse,
and the inner angles of the facets of Del|S(EF ) are bounded from below.

Notice also that, since our theoretical results hold only for θ ≤ arctan 1
3
√

3
and % ≥ 1, we can

replace θ by arctan 1
3
√

3
and % by 1 in (α̂), (β̂) and (γ̂), which gives the following (more restrictive)

conditions:
(α̂′) Del|S(EI) has λ-persistent facets on all the connected components of S, with λ < 27

193 lrk(S) ≈
0.14 lrk(S),

(β̂′) ε ≤ λ
2 ,

(γ̂′) the points of EI are farther than λ
2 from one another.

If θ ≤ arctan 1
3
√

3
, then (α̂′), (β̂′), (γ̂′) yield (α̂), (β̂), (γ̂), hence Theorem 4.5 applies and the quality

of the output of the algorithm is guaranteed. If θ > arctan 1
3
√

3
, then (γ̂) cannot be fulfilled anyway.

Therefore, (α̂), (β̂), (γ̂) and (α̂′), (β̂′), (γ̂′) offer the same theoretical guarantees, but (α̂′), (β̂′), (γ̂′) have
simpler expressions. In particular, they do not involve θ, which means that it is not necessary to know
k in practice to check whether they are satisfied. This is why in the sequel we use them instead of (α̂),
(β̂), (γ̂).

Open question 4.6 The theoretical limit imposed on θ for our guarantees to hold is far below the prac-
tical limit, which seems to lie around π

2 . This gap between theory and practice comes from the proofs
of Part A, in which the bounds are not always tight. An appealing example is the proof of Theorem 1.7,
which has been written in such a way that it holds both in the smooth and in the nonsmooth settings.
Moreover, at several stages of the proofs, we have given priority to simplicity versus optimality, for ped-
agogical purpose. Therefore, it would be profitable to rewrite the proofs of Part A in a more optimized
manner, to improve on the theoretical bound on θ.

4.3 Termination and complexity

Lemma 4.7 The algorithm terminates with any input compact surface S, any input point sample EI

and any input parameter ε > 0.

Proof. At each iteration, the center of some bad surface Delaunay ball B(c, r) is inserted. At this
time, the distance from c to E is r, which is greater than ε since B(c, r) is bad. Therefore, the distance
between any two points inserted during the main loop is at least ε, and, as a consequence, the open
balls of radius ε

2 , centered at the points inserted during the main loop, are pairwise disjoint. Since S is
compact, there can be only a finite number of such balls. Thus, a finite number of points are inserted
during the main loop of the algorithm, which terminates since it inserts one point at each iteration. ¤
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We will now analyze the space and time complexities of the algorithm. We assume that the surface S
and the input point set EI are fixed. Then, the size of EI and the minimum distance dI between any two
of its points are fixed constants. The analysis assumes further that the input parameter ε is sufficiently
small and that the oracle is exhaustive.

4.3.1 Space complexity

Recall that we store the restricted Delaunay triangulation as a subcomplex of the 3-dimensional Delau-
nay triangulation. Moreover, by storing in the priority queue Q only one ball of Del|S(E) per Voronoi
edge dual to a bad facet, we enforce the size of Q to be at most the number of Voronoi edges. Thus, the
space complexity of the algorithm is bounded by the size of the 3-dimensional Delaunay triangulation,
which is known to be at most quadratic w.r.t. the size of the output point sample. However, in our case
the vertices of Del(E) lie on the surface S, thus we can work out better bounds.

To achieve these bounds, we will use the three lemmas stated below. The first one deals with the
smooth case and assumes that S verifies a genericity condition. Let Z be the subset of the ridge of
S made of all the points of S that admit an osculating ball whose interior does not intersect S. We
assume that Z is a set of curves of finite total length. As mentioned in [12], this property of Z is
verified generically. In particular, S cannot contain patches of spheres or cylinders with empty osculating
spheres.

Lemma 4.8 [12, Th. 22]
If S has a positive reach and verifies the above genericity condition, then there exists a constant ε0,
depending only on S, such that, for any sparse ε-sample E of S, with ε ≤ ε0, the number of edges of
Del(E) is OS(|E| log |E|).

The second lemma deals with the polyhedral case.

Lemma 4.9 [10, Th. 11]
If S is a polyhedron and E is a sparse ε-sample of S, then the number of edges of Del(E) is OS(|E|).

The third lemma deals with the general case, smooth or nonsmooth. It makes a stronger assumption
on the sparseness of E. Specifically, it assumes that E is a so-called ambient ε-sample, as defined by
Erickson [64]. This means that there exists a constant ν ∈]0, 1[ such that the distance from any point of
S to its second nearest neighbor in E lies between νε and ε.

Lemma 4.10 [64, Th. 3.2]
For any surface S and any ambient ε-sample of S, the number of edges of Del(E) is OS(|E|

√

|E|).

Let N = OS(ε−2) be the size of the output point set EF . We will prove the following

Theorem 4.11 If the surface S has a positive reach and verifies the genericity condition of Lemma 4.8,
then the space complexity of the algorithm is OS(N logN) = OS(ε−2 log 1

ε ). If S is a polyhedron, then
the space complexity is OS(N) = OS(ε−2). In the more general case where S is Lipschitz, the space
complexity is OS(N

√
N) = OS(ε−3).
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We give a proof only in the case of a generic smooth surface S, the polyhedral and general Lipschitz
cases being similar. For any iteration i > 0 of the algorithm, we call E(i) the point set E at the end of
iteration i. Similarly, we set E(0) = EI . E(i) \E(i− 1) contains precisely the point p(i) inserted in E
at iteration i, and E(i− 1) \EI is the set of all points inserted before iteration i. We call r(i) the radius
of the largest ball of Del|S(E(i)). Since the algorithm always inserts the center of the ball of Del|S(E)

of largest radius, p(i) is at a distance r(i− 1) from E(i− 1).
We define ε0 as the minimum of µ0 rch(S), of dI

2 , and of the (unknown) constant of Lemma 4.8.
The assumption that ε0 is at most dI

2 is not necessary here, but it will be used in Section 4.3.2 to bound
the time complexity of the algorithm.

Let i0 be the first iteration of the algorithm at the end of which all the balls of Del|S(E) have radii less
than ε0

4 . In other words, i0 is the first iteration such that r(i0) < ε0
4 . Since ε0 ≤ µ0 rch(S) ≤ µ0 rch(S),

E(i0) is an ε0
4

√

1 +
µ2

0
16 -sample of S, by Theorem 4.4 (applied with ε replaced by ε0

4 ). Since it is not

our aim here to work out tight constants, for simplicity we replace
√

1 +
µ2

0
16 by 2 in the sequel. Hence,

E(i0) is an ε0
2 -sample of S.

Lemma 4.12 For any two iterations i and j such that j ≥ i ≥ i0, we have r(j) ≤ 2r(i).

Proof. Let B(j) be a ball of Del|S(E(j)) of largest radius. Its center c(j) lies on S. Since i ≥ i0, we
have E(i0) ⊆ E(i). Thus, E(i) is an ε0

2 -sample of S, which implies that the balls of Del|S(E(i)) have
radii at most ε0

2 . Therefore, r(i) ≤ ε0
2 . It follows that E(i) is a 2r(i)-sample, by Theorem 4.4 (applied

with ε replaced by r(i)). Hence, d(c(j), E(i)) ≤ 2r(i). Moreover, since i ≤ j, E(i) is included in
E(j). It follows that r(j) = d(c(j), E(j)) ≤ d(c(j), E(i)) ≤ 2r(i), which concludes the proof of the
lemma. ¤

Lemma 4.13 For any iteration i > i0, E(i) is a 2r(i)-sample of S, with 2r(i) ≤ ε0, and the points of
E(i) \ EI are farther than r(i−1)

2 from one another and from EI .

Proof. Let i be any iteration of the algorithm such that i > i0. As mentioned in the proof of Lemma
4.12, E(i) is a 2r(i)-sample, with 2r(i) ≤ ε0. In addition, by definition of i0, every point of E(i0)\EI ,
when inserted in E, is the center of a Delaunay ball of radius greater than ε0

4 ≥ r(i0), which is at least
1
2 r(i− 1), by Lemma 4.12. Moreover, at any iteration k such that i0 < k ≤ i, the point inserted in E is
the center of a Delaunay ball of radius r(k−1), which is at least 1

2 r(i−1), by Lemma 4.12. Therefore,
the points of E(i) \ EI are at least 1

2 r(i− 1) away from one another and from EI . ¤

It follows from Lemmas 4.12 and 4.13 that the points of E(i) \ EI are farther than r(i)
4 from one

another. Since EI is fixed, by the same argument as in the proof of Theorem 4.4 we get that the number
of points of E(i) that lie in B(p, 2r(i)) is bounded by a constant, for any p ∈ S. Hence,

Corollary 4.14 For any i > i0, E(i) is a sparse 2r(i)-sample of S.

As a consequence, the size of Del(E(i)) is OS(|E(i)| log |E(i)|) = OS(N logN), by Lemma 4.8.
Therefore, the space complexity of the algorithm is OS(N logN). Moreover, by Theorem 4.4, we have
OS(N logN) = OS(ε−2 log 1

ε ), which concludes the proof of Theorem 4.11 in the smooth case.
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In the polyhedral case, the proof is identical. In the Lipschitz case however, the proof differs slightly
since Lemma 4.10 requires that E(i) be an ambient 2r(i)-sample, which is stronger than being a sparse
2r(i)-sample.

4.3.2 Time complexity

Let T be the overall number of Delaunay tetrahedra created during the course of the algorithm.

Lemma 4.15 The time complexity of the algorithm is O(T log T ).

Proof. - At each iteration, the algorithm inserts inE a point p that lies on a Voronoi edge. The algorithm
knows on which edge e the point p lies, since it queried the oracle on e to find p. Therefore, no point
location is needed to insert p in Del(E). It follows that updating Del(E) can be done in linear time
with respect to the number of Delaunay tetrahedra created and deleted during the insertion of p. Since
a Delaunay tetrahedron is created and deleted at most once, the overall cost of maintaining Del(E) is
O(T ).

- The cost of updating Del|S(E) is also O(T ) since the oracle is queried at most once on each
Voronoi edge.

- Since we store only one ball of Del|S(E) per Voronoi edge in the priority queueQ, the total number
of balls of Del|S(E) inserted in Q (and then retrieved from it) is at most the total number of Voronoi
edges created during the process. Hence, the cost of maintaining Q is O(T log T ). ¤

To bound the time complexity of the algorithm, it is then sufficient to control the total number T of
tetrahedra created during the process. By Theorem 4.11, the size of Del(E) is controlled throughout the
process. However, this fact alone does not prevent T from being quadratic w.r.t. the size of the output
point set. Consider for instance the case of a set of N points sampled from a parabola P in R

2. The size
of the Delaunay triangulation is O(N), but if the vertices are inserted in their order along P (see Figure
4.2, left), then at each iteration a linear number of Delaunay edges is created, which makes T quadratic
w.r.t. N . However, this kind of situation cannot occur with our algorithm because it inserts the points in
an order defined by the largest empty ball criterion (see Figure 4.2, right).
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Figure 4.2: Two orders of insertion on a parabola.

We assume here that the surface S has a positive reach. We will say a few words about the polyhedral
case and the more general Lipschitz case at the end of the section. Let Z, ε0 and i0 be defined as in
Section 4.3.1. We assume that S verifies the genericity condition of Lemma 4.8. We will show that
T = OS(N logN), where N is the size of the output point set. To this end, we introduce the following
result, stated as Lemma 17 in [12]:
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Lemma 4.16 There exist three constants c0, k1 and k2, depending only on S, such that, for any sparse
ε-sample E of S, with ε ≤ ε0, the number of Delaunay edges incident to a vertex p of Del(E) is at most
k1 ε

−1/2 if d(p, Z) ≤ c0
√
ε and at most k2 / d(p, Z) otherwise.

Assuming as in Section 4.3.1 that the initial point set EI is fixed, we deduce from Lemma 4.12,
Corollary 4.14 and Lemma 4.16, that the algorithm creates OS

(

r(i)−1/2
)

= OS

(

ε−1/2
)

new Delaunay
edges at each iteration i > i0. As a consequence, the overall number of Delaunay edges created after
iteration i0 (which depends only on S) is OS

(

N ε−1/2
)

= OS

(

N5/4
)

. However, by summing more
carefully the contributions of the points inserted after iteration i0, we can work out a OS (N logN)

bound.
Let i be an iteration of the algorithm, such that i ≥ i0. Let j > i be the first iteration such that

r(j) < r(i)
8 . Our goal is to bound the number of Delaunay edges created between iterations i and j. By

Corollary 4.14, E(j) is a 2r(j)-sample of S, with 2r(j) < r(i)
4 . Moreover, by Lemma 4.12, we have

2r(j) ≤ 4r(i0) < ε0. We call E(i, j) the set of the points inserted by the algorithm between iterations i
(excluded) and j (included). We have E(i, j)= E(j) \ E(i).

Lemma 4.17 For any k such that i < k ≤ j, E(k) is a sparse 4r(i)-sample of S.

Proof. By Corollary 4.14, E(k) is a 2r(k)-sample of S. Since 2r(k) ≤ 4r(i) (Lemma 4.12), E(k) is a
4r(i)-sample. To prove that E(k) is sparse, we count the points of E(k) that lie in B(p, 4r(i)), for any
p ∈ S.
- Since EI is fixed, |EI ∩B(p, 4r(i))| is a constant independent from S and ε.
- By Lemma 4.13, the points of E(k) \ EI are farther than r(k−1)

2 from one another. Now, r(k−1)
2

is at least r(i)
16 , since i < k ≤ j. It follows that the points of E(k) \ EI are centers of pairwise-

disjoint balls of radius 1
32 r(i). For every such ball B whose center lies in B(p, 4r(i)), B is included in

B(p, (4 + 1
32) r(i)). It follows that the number of points of E(k) \EI that lie in B(p, 4r(i)) is bounded

by a constant, which shows that E(k) is sparse and hereby concludes the proof of Lemma 4.17. ¤

Lemma 4.18 E(i, j) is a sparse 4r(i)-sample of S.

Proof. We first show that E(i, j) is a 3
4r(i)-sample, which implies a fortiori that it is a 4r(i)-sample.

Let p ∈ S and let u be the nearest neighbor of p among the points of E(j). We know that E(j) is a
2r(j)-sample, thus d(p, u) ≤ 2r(j) < r(i)

4 . If u belongs to E(i, j), then d(p,E(i, j)) = d(p, u) < r(i)
4 .

If u does not belong to E(i, j), then we must show that there is some point of E(i, j) nearby.
Since 2r(j) < ε0 ≤ µ0 rch(S), by Lemma 1.22 u is a vertex of Del|S(E(j)). Let v be one of

its neighbors in Del|S(E(j)). For any point q ∈ S lying in the Voronoi face V(u) ∩ V(v), we have
d(u, q) ≥ d(u,v)

2 . Since u is a nearest neighbor of q in E(j), d(u, q) ≤ 2r(j) < min{ε0,
r(i)
4 }. Thus,

d(u, v) < 2ε0 ≤ dI , and d(u, v) < r(i)
2 , which is less than the minimal distance between any two points

of E(i+ 1) \EI , by Lemma 4.13. Therefore, v cannot belong to E(i+ 1), which contains both EI and
E(i). This implies that

d(p,E(i, j)) ≤ d(p, v) ≤ d(p, u) + d(u, v) ≤ 6r(j) ≤ 3

4
r(i)
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It follows that E(i, j) is a 3
4r(i)-sample, and hence a 4r(i)-sample.

We now show that E(i, j) is 4r(i)-sparse. By definition of j, every point of E(i, j), right before its
insertion in E, is the center of a Delaunay ball of radius at least r(i)

8 . It follows that the points of E(i, j)

are farther than r(i)
8 from one another. Hence, by the same argument as in the proof of Lemma 4.17,

E(i, j) is sparse. ¤

We can now combine Lemma 4.16 with Lemmas 4.17 and 4.18, to bound the number of Delaunay
edges created between iterations i and j:

Lemma 4.19 The overall number of Delaunay edges created during the insertion of the points ofE(i, j)

is OS (|E(i, j)| log |E(i, j)|).

Proof. Let εi = 4r(i). The reasoning is similar in spirit to that of Lemma 18 of [12], although with an
additional subtelty. We decompose S into strips parallel to Z, of width c0

√
εi, where c0 is defined as in

Lemma 4.16. Recall that c0 depends on S but not on εi. Let Zk denote the kth strip (k ≥ 0). The points
of Zk lie at a distance of Z ranging from k c0

√
εi to (k + 1) c0

√
εi.

As stated in Lemma 18 of [12], since E(i, j) is a sparse εi-sample of S (Lemma 4.18), there exists
some constant c(S) depending only on S, such that the number of points of E(i, j) that lie in a given
strip Zk is at most c(S) ε

−3/2
i . Moreover, for any i′ such that i < i′ ≤ j, E(i′) is a sparse εi-sample of S

(Lemma 4.17), thus Lemma 4.16 applies to the point inserted at iteration i′. Summing the contributions
of all the points of E(i, j), we find that the number n of Delaunay edges created by the insertion of the
points of E(i, j) is at most:

c(S) ε
−3/2
i

k1√
εi

+
∑

k≥1

c(S) ε
−3/2
i

k2

k c0
√
εi

= k1 c(S) ε−2
i +

k2 c(S) ε−2
i

c0

∑

k≥1

1

k

The number of strips Zk is c′(S) / c0
√
εi, where c′(S) depends only on S. Moreover, by Theorem

3.1, the size of E(i, j) is at least c′′(S) ε−2
i , for some constant c′′(S) depending only on S. It follows

that n is bounded by:

k1
c(S)

c′′(S)
|E(i, j)|+ k2

c0

c(S)

c′′(S)
|E(i, j)|

∑

1≤k≤ c′(S)

c0 c′′(S)1/4
|E(i,j)|1/4

1

k

i.e. OS (|E(i, j)|) +OS (|E(i, j)|) OS (log |E(i, j)|). ¤

Finally, by subdividing the output point set into subsets of type E(i, j), we can bound the overall
number of Delaunay edges created after iteration i0:

Theorem 4.20 If S has a positive reach and verifies the genericity condition of Lemma 4.8, then the
overall number T of Delaunay tetrahedra created during the course of the algorithm is OS (N logN).
As a consequence, by Lemma 4.15, the time complexity of the algorithm isOS(N log2N) = OS

(

ε−2 log2 1
ε

)

.

Proof. Let i0 be defined as above, and for any k ≥ 1, let ik > ik−1 be the first iteration such that
r(ik) <

r(ik−1)
8 . We assume without loss of generality that the last iteration of the algorithm is iK , for
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some K. We have EF = E(i0) ∪
⋃

0≤k<K E(ik, ik+1). By Lemma 4.19, every E(ik, ik+1) generates
c∗(S) |E(ik, ik+1)| log |E(ik, ik+1)| Delaunay edges, where c∗(S) is a constant that depends only on S.
It follows that the overall number of Delaunay edges created is at most:

|E(i0)|2 +
∑

0≤k<K c∗(S) |E(ik, ik+1)| log |E(ik, ik+1)|
≤ |E(i0)|2 +

∑

0≤k<K c∗(S) |E(ik, ik+1)| log |EF |
≤ |E(i0)|2 + c∗(S) |EF | log |EF |

Since EI is fixed and since the points of E(i0) \ EI are at least ε0
4 away from one another, E(i0)

is ε0-sparse, by the same argument as in the proof of Theorem 4.4. Thus, by Theorem 3.4, we have
|E(i0)| = O

(

Area(S) / ε20
)

, which depends only on S. This concludes the proof of Theorem 4.20,
since the number of Delaunay tetrahedra is linear w.r.t. the number of Delaunay edges. ¤

To our knowledge, there is no result analogous to Lemma 4.16 in the polyhedral or Lipschitz case.
Indeed, in [10] and [64], the size of the Delaunay triangulation is bounded without bounding explicitely
the number of neighbors of each vertex. Therefore, in the polyhedral or Lipschitz case, our bound on
the time complexity of the algorithm is still O(N 2 logN) at the moment.

Open question 4.21 Given a polyhedral or Lischitz surface S and a point sample E of S, is it possible
to work out non-trivial bounds on the number of neighbors of each vertex in Del(E), under some mild
assumption on E?

4.4 Pre-conditioning the input point set

As emphasized in Section 4.2, our theoretical guarantees require that Del|S(EI) has λ-persistent facets
on every connected component of S, for some λ ≤ µ0 rch(S) ≈ 0.16 rch(S) in the smooth case and
λ < 27

193 lrk(S) ≈ 0.14 lrk(S) in the k-Lipschitz case (Conditions (α) and (α̂′)). Another requirement in
the Lipschitz case is that the points ofEI be farther than λ

2 from one another (Condition (γ̂ ′)). Once these
requirements are fulfilled, plus the additional condition that 2 arctan k ≤ arctan 1

3
√

3
in the k-Lipschitz

case, it suffices to choose ε ≤ λ
2 to have guarantees on the output of the algorithm.

Assume that we are given a positive constant εS , less than rch(S) if S has positive reach, and less
than lrk(S) if S is k-Lipschitz. In Part C, we will explain how to compute such a constant εS in several
applications. Assume further that we are given a set E ′

I containing at least one point per connected
component of S. As explained in Part C, to construct E ′

I in practice, we compute the critical points of
the height function along some direction n. Hence, we can assume without loss of generality that n is
given here. A point p ∈ S is called n-extremal if S lies locally on one side of the plane P perpendicular
to n that passes through p. Note that not all the points of E ′

I are n-extremal. However, E ′
I contains at

least two n-extremal points per connected component of S, since S is compact.
We will now describe briefly how we can construct a superset of EI that satisfies (α), (α̂′) and (γ̂′),

by using εS , E′
I , n, and the exhaustive oracle. We are mainly interested in the construction itself, not

on its proof of correctness, which is technically easy but quite tedious. Therefore, we will only give the
intuition, without going too much into detail. Moreover, we assume for simplicity that the surface S is
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k-Lipschitz, for some k such that θ = 2 arctan k is at most arctan 1
3
√

3
. Since by Theorem 2.6 every

smooth surface is k-Lipschitz, our construction will work on smooth surfaces as well.

Our construction proceeds as follows. We first set λ = min{ d′I
2 ,

27
193 εS}, where d′I is the minimum

distance between any two points of EI ∪ E′
I . Then, for each point p ∈ E ′

I , we construct a λ-persistent
facet incident to p. Specifically, inside the plane P perpendicular to n that passes through p, we consider
the circle of center p and radius λ

2 , and we choose two points p1 and p2 on this circle, such that the
triangle (p, p1, p2) is equilateral. Then, we use the exhaustive oracle to detect the intersection points of
S with the lines l1, l2 orthogonal to T (p) that pass through p1 and p2 respectively. Let p′1 be the point of
S ∩ l1 that is closest to p, and p′2 its analogous on l2. If p′1 and p′2 exist and are not farther than λ from
p, then we insert them in EI , together with p.

It can be proved that this procedure builds at least one λ-persistent facet per connected component
of S. Here, we give the flavor of the proof. Since λ is smaller than lrk(S), by the cocone lemma 2.12
S ∩ B(p, λ) lies outside the double cone K1(p) of apex p, of axis aligned with n(p′) and of half-angle
π
2 − θ, where p′ is any point of S̃ ∩ B(p, λ). Let K1

1 and K1
2 be the two cones of K1(p). Since S

has no boundary and passes through p, K1
1 ∩ B(p, λ) and K1

2 ∩ B(p, λ) belong to distinct connected
components (say Ω1 and Ω2) of R

3 \ S.
Assume now that p is n-extremal, which implies that S lies locally on one side of P . Then, so does

Ω1 or Ω2 (say Ω1). Notice that Ω1 may still intersect the two half-spaces bounded by P , even inside
B(p, λ). However, sufficiently close to p, Ω1 is included in one half-space only. This is sufficient to
ensure that P does not intersect K1

1 ∩ B(p, λ), which is included in Ω1. It follows, by a symmetry
argument, that P does not intersect the double cone K1(p), which means that the angle between P and
n(p′) is at least π

2 − θ. Equivalently, we have (n(p′),n) ≤ θ, which implies that S ∩B(p, λ) lies outside
the double cone K2(p) of apex p, of axis aligned with n and of half-angle π

2 − 2θ. Using this cone, with
the same machinery as in Chapter 2, we can show that l1 and l2 intersect S in the vicinity of p, which
implies that p′1 and p′2 exist and are sufficiently close to p to form a λ-persistent facet with p. The proof
is long and does not present any particular technical difficulty; we skip it here, for simplicity.

It follows that our construction creates at least one λ-persistent facet per n-extremal point of E ′
I .

Note that E′
I may not necessarily contain only n-extremal points. However, E ′

I contains at least two
such points per connected component of S. Therefore, the output of our procedure contains at least
one λ-persistent facet per connected component of S. Moreover, the fact that the points are farther
than λ

2 from one another comes from two things: first, we chose λ such that the points of EI ∪ E′
I

are farther than 2λ from one another; second, for any p ∈ E ′
I , we have d(p, p′1) ≥ d(p, p1) = λ

2 and
d(p, p′2) ≥ d(p, p2) = λ

2 .



Chapter 5

Improvements

In this chapter, we introduce several modifications that can be brought to the algorithm to enhance the
quality of its output or to avoid some geometric computations.

In Section 5.1, we introduce a non-exhaustive oracle, called bipolar oracle, that performs simpler
operations than the exhaustive oracle, while still guaranteeing the topological and geometric quality of
the output mesh. The guarantees hold for smooth surfaces as well as Lipschitz surfaces.

In Section 5.2 we present a way to avoid the pre-conditioning of the input point set. This modification
comes with no guarantee regarding the time complexity of the algorithm. However, termination is still
ensured, together with the size of the output mesh and its topological and geometric properties.

In Section 5.3, we describe how the algorithm can be modified to increase the minimum inner angle
of the facets of the output mesh.

Finally, in Section 5.4, we explain how to generate non-uniform samples.

5.1 Non-exhaustive oracle

The results of Part A, as used in Chapter 4, rely on the assumption that the algorithm uses an exhaustive
oracle able to compute all the intersection points of any line segment with the surface. In practice,
e.g. for implicit surfaces, computing all the intersection points can be time-consuming. In this section,
we introduce a new oracle that offers the same guarantees as the exhaustive oracle, while performing
simpler operations. Specifically, the new oracle is able:

– to compute the parity of the number of transversal intersections between s and S;
– to find one point of s ∩ S when s intersects S transversally an odd number of times.

We will use this oracle only in Chew’s algorithm, not in the pre-conditioning phase of Section 4.4.
Indeed, for technical reasons explained below, this phase requires the use of an exhaustive oracle. How-
ever, since it is only a precomputation, we can afford to keep the exhaustive oracle.

Let Ω be the compact object bounded by S. A Voronoi edge that intersects S transversally an odd
number of times is called bipolar, because one of its endpoints lies in Ω while the other endpoint lies in
R

3 \ Ω̄. On the contrary, a Voronoi edge intersecting S transversally an even number of times has both
vertices in Ω or in R

3 \ Ω̄.

75
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The Delaunay facet dual to a bipolar Voronoi edge is called a bipolar restricted Delaunay facet. The
subcomplex of Del|S(E) made of the bipolar Delaunay facets is called the bipolar restricted Delaunay
triangulation and denoted by Delb|S(E). The new oracle, which detects only the bipolar Voronoi edges
and, for each bipolar edge e, computes only one point of e ∩ S, is called bipolar oracle, as opposed
to the exhaustive oracle which can detect all the intersection points between the Voronoi edges and the
surface. A Delaunay ball centered at some point computed by the bipolar oracle is called a bipolar
surface Delaunay ball.

Persistent facets To pre-condition EI , we use the exhaustive oracle and proceed in two steps:
1. We perform the construction described in Section 4.4, which provides us with one λ-persistent

facet per connected component of S. However, some of the λ-persistent facets may not be
bipolar at this stage.

2. For any λ-persistent facet f , we insert in EI the centers of all the surface Delaunay balls of f
whose radii are greater than λ

2 . This requires to know all the points of intersection of S with
V(f). Therefore, the exhaustive oracle is needed here. We do this for all the λ-persistent facets
and take the result as the new input point sample EI .

Termination Since Delb|S(E) is a subcomplex of Del|S(E), the proof of Lemma 4.7 holds when the
algorithm is run with the bipolar oracle instead of the exhaustive oracle. Hence, the algorithm terminates.

Output guarantees At any stage of the course of the algorithm, Delb|S(E) is a subcomplex of Del|S(E).
Hence, a natural way to have guarantees on the output of the algorithm, when used with the bipolar or-
acle, would be to show that the output mesh coincides with the restricted Delaunay triangulation of
the output point set, that is, Delb|S(EF ) = Del|S(EF ). The theoretical results of Part A could then be
applied, as in Section 4.2. Unfortunately, we could not prove this. Instead, we proved the following

Lemma 5.1 Theorems 4.4 and 4.5 hold with “Del|S” replaced by “Delb|S”.

For simplicity, we focus on the smooth case, the Lipschitz case being quite similar. From now on,
we assume that the surface S has a positive reach. Let µ0 = 0.16 be defined as in Section 4.2.2.

Proof of the lemma. We will show that, under Hyp. (α) and (β) (with Del|S(EI) replaced by
Delb|S(EI)), Delb|S(EF ) verifies assertions I1–I3 of Section 1.2. The lemma will then follow.

Proof of I1. Assertions M1 and M3 of Section 1.2 still hold in our context, since they do not involve
restricted Delaunay facets. Moreover, since bipolar surface Delaunay balls are surface Delaunay balls
and since they have small radii upon termination of the algorithm, assertion M2 holds with Del|S(EF )

replaced by Delb|S(EF ). As a consequence, the projection lemma 1.8 holds for the facets of Delb|S(EF ).
It follows that every edge of Delb|S(EF ) is incident to at most two facets of Delb|S(EF ).

Note however that Remark 1.9 does not hold since the bipolar oracle does not allow to control the
radii of all the surface Delaunay balls. Nevertheless, it remains true that the dual Voronoi edge of any
facet of Delb|S(EF ) intersects at least two distinct connected components of R

3 \ S, since otherwise
a small perturbation of this Voronoi edge would intersect S twice near EF , which would contradict
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the projection Lemma 1.8. Hence, the proof of Lemma 1.10 holds for Delb|S(EF ), and every edge of
Delb|S(EF ) is incident to exactly two facets of Delb|S(EF ).

In addition, the proof of Lemma 1.11 relies only on M1, M3, M5, M6, and on the properties of the
umbrellas made of small restricted Delaunay facets, without any additional argument, thus it holds when
we replace Del|S(EF ) by Delb|S(EF ). It follows that every vertex of Delb|S(EF ) has one umbrella.

As a conclusion, Delb|S(EF ) is a compact surface without boundary. The fact that it is consistently
oriented comes from Lemma 1.12, whose proof uses only the projection lemma 1.8. ¤

Proof of I2. Notice first that, independently from any oracle, Remark 1.9 states that a Delaunay facet
cannot be circumscribed by two surface Delaunay balls of radii less than µ0 rch(S). Since by (α) we
have λ ≤ µ0 rch(S), any λ-persistent facet f is circumscribed by exactly one ball Bf = B(cf , rf )

of radius rf ≤ λ
2 , while the other balls circumscribing f have radii greater than λ. Hence, after the

pre-processing phase, f is circumscribed by at most one surface Delaunay ball. Moreover, every point
inserted in EI during the second step of the pre-processing phase is farther than λ from EI . Thus, by
Lemma 4.3, Bf remains a surface Delaunay ball throughout the pre-processing phase.

During the course of Chew’s algorithm, as long as every point inserted in E is farther than λ from
E, Bf remains a surface Delaunay ball, by Lemma 4.3. Hence, f remains bipolar since Bf is the only
surface Delaunay ball of f . Therefore, by the same argument as in the proof of Theorem 4.4, I2 is
verified by Delb|S(EF ). ¤

Proof of I3. Upon termination of the algorithm, the radius of every bipolar surface Delaunay ball is at
most ε, which is bounded by µ0 rch(S), by (β). Hence, I3 is verified by Delb|S(EF ). ¤

So, under (α) and (β), Delb|S(EF ) verifies I1–I3. Thus, we can apply the various results of Chapter 1
to Delb|S(E), which proves that Theorem 4.4 holds with “Del|S” replaced by “Delb|S”. This concludes
the proof of Lemma 5.1. ¤

In the smooth case, if ε ≤ 0.98 µ0 rch(S), then, by Theorem 4.4, the output point set EF is
a ε
√

1 + ε2

rch(S)2
-sample of S, with ε

√

1 + ε2

rch(S)2
≤ µ0 rch(S). By Lemma 1.22, EF is a loose

ε
√

1 + ε2

rch(S)2
-sample. Thus, Del|S(EF ) is isotopic to S, by Theorem 1.14. This implies that Delb|S(EF ) =

Del|S(EF ), since Delb|S(EF ) and Del|S(EF ) are isotopic and since Delb|S(EF ) is a subcomplex of
Del|S(EF ). The same argument holds in the Lipschitz case, with Theorem 4.4 replaced by Theorem 4.5,
Lemma 1.22 by Lemma 2.38, and Theorem 1.14 by Theorem 2.33.

In conclusion, replacing the exhaustive oracle by the bipolar oracle implies that the algorithm works
with Delb|S(E) instead of Del|S(E). Note that the exhaustive oracle is still used for the preprocessing
phase. For small enough ε, Delb|S(EF ) verifies all the properties stated in Theorems 4.4 and 4.5 for
Del|S(EF ). Moreover, for slightly smaller ε, Del|S(EF ) and Delb|S(EF ) are equal. As explained in
Chapter 6 and illustrated in Table 6.1, the bipolar oracle is much more efficient than the exhaustive
oracle when run on implicit surfaces.
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5.2 Getting rid of persistent facets

In this section, S is assumed to have no nested connected components, which means that the compact
object bounded by S has no void. We are given a positive constant εS less than rch(S) if S has a positive
reach, and less than lrk(S) if S is k-Lipschitz. Moreover, the oracle is assumed to be exhaustive. With
these restrictions, we can avoid the construction of persistent facets during the pre-processing phase.

Recall that persistent facets are used only to ensure that Del|S(EF ) verifies Hyp. I2 of Section 1.2,
that is, that Del|S(EF ) has vertices on every connected component of S. The idea here is to use the set
E′

I of Section 4.4 as a set of watch points that will allow us to check whether I2 is verified.
Specifically, the pre-conditioning phase consists now simply in inserting the points of E ′

I in EI

without constructing any persistent facet. Then, throughout the course of Chew’s algorithm, we check
whether the points of E ′

I are vertices of Del|S(E). If so, then we know that I2 is satisfied since E ′
I has

vertices on each connected component of S. Otherwise, we cannot decide whether I2 is satisfied or not
because we do not know on which connected components of S the vertices of Del|S(E) lie. Hence, we
insert additional points of S inE and go on running the main loop of the algorithm until no more surface
Delaunay balls are bad and all points of E ′

I have become vertices of Del|S(E).
The additional points of S are computed by casting rays in some specific directions from the points

of E′
I that are not yet vertices of Del|S(E). New directions are determined by sampling iteratively the

sphere of directions, using for instance Chew’s algorithm. More precisely, let (vi)i be the sequence of
points of the sphere of directions sampled by Chew’s algorithm, with a sizing field equal to zero. For
any point p ∈ E ′

I , we maintain a counter ip. Each time the algorithm has to probe new points of S
from p, it increments the counter ip and then chooses the unit vector vip as the new direction in which to
probe. The point that is inserted in E is the first intersection point of the ray (p, vip) with S. Detecting
this point can be done with the exhaustive oracle, but not with the bipolar oracle. Remark that, in order
to prevent the points of E from getting too close to one another, the new point is inserted in E only if it
is farther than λ

2 from E, where λ is defined as in Section 4.4.
The following loop summarizes this version of the algorithm:

while Q is not empty or some point p of E ′
I is not a vertex of Del|S(E) {

if Q 6= ∅ { // proceed as before
take the largest element of Q;
insert its center into E and update Del(E);
update Del|S(E);
update Q;

}
else { // p ∈ E′

I is not a vertex of Del|S(E)

choose vector vip as the new direction in which to probe;
insert in E the first point of intersection of S with the ray (p, vip) (if it exists);
update Del|S(E);
update Q;

}
}
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Lemma 5.2 shows that this version of the algorithm terminates and has the same output guarantees
as the one that uses persistent facets. The proof relies on the fact that, in the “worst-case” scenario,
the algorithm creates persistent facets on all the connected components of S, which implies that I2 is
eventually verified.

Lemma 5.2 The modified algorithm terminates and the quality of its output is guaranteed, provided
that the input parameter ε is at most λ

2 .

We give the proof in the k-Lipschitz case. It holds in the smooth case as well, since smooth surfaces
are k-Lipschitz, by Theorem 2.6.

Proof. Let Ec ⊂ EF \EI be the set of centers of bad surface Delaunay balls inserted by the algorithm.
Since ε is positive, Ec is finite, by the same packing argument as in the proof of Lemma 4.7.

Let p ∈ E′
I . We call Sp the connected component of S on which p lies. Let p′ ∈ S̃ ∩ B(p, lrk(p)).

By the cocone lemma 2.12, S∩B(p, lrk(p)) lies outside the double coneK(p) of apex p, of axis aligned
with n(p′) and of half-angle θ = 2 arctan k. It follows that, inside one of the cones ofK(p) (sayK1(p)),
all vectors point towards the interior of the compact object bounded by S. Therefore, any ray r cast in
K1(p) from p is such that its first intersection point with S lies on Sp, since Ω has no void.

As a consequence, if at some stage the algorithm detects that p is not a vertex of Del|S(E), then
it inserts a new point of Sp in E, provided that the direction vip lies in K1(p). Since the density of
the set {vi} of directions sampled by Chew’s algorithm increases uniformly with i, the algorithm will
eventually pick up a direction vip that belongs to K1(p). Therefore, after a finite number of iterations of
the main loop, either p has become and will remain a vertex of Del|S(E), or there are enough points of
Sp in E to ensure that E ∩ Sp is locally a λ

2 -sample on some part S ′
p of Sp that is visible from p.

At this stage, Del|S′
p
(E) has at least one facet, by the same argument as in the proof of Lemma 2.38.

This facet is circumscribed by a ball of radius at most λ
2 , since E ∩ S ′

p is a λ
2 -sample of S ′

p. Therefore,
Del|S(E) contains at least one λ-persistent facet on Sp. Since this is true for every p ∈ E ′

I , and since E ′
I

intersects all the connected components of S, Del|S(E) has λ-persistent facets on every connected com-
ponent of S. Moreover, every surface Delaunay ball has a radius of at most ε, since the algorithm refines
surface Delaunay balls before casting rays from the points of E ′

I . Therefore, by the same arguments as
in the proof of Theorem 4.5, we know thatE is a ε

√

1 + 1
cos4 θ

-sample of S. Since ε ≤ λ
2 <

1
2 lrk(S),E

is a fortiori a 1
2 lrk(S)-sample of S. Hence, by Lemma 2.38, all the points of E (and in particular those

of E′
I ) are vertices of Del|S(E), which makes the algorithm terminate. The guarantees on its output

come from the fact that E is a ε
√

1 + 1
cos4 θ

-sample of S upon termination. ¤

Although the size ofEF is bounded from above, we have no upper bound on the number of iterations
of the algorithm, because not all the points of S probed from the points of E ′

I are inserted in E. But
still, we know that the algorithm terminates. We could reduce the number of probes by using the vector
n introduced in section 4.4 as an approximate of the normal of S in the vicinity of the points of E ′

I .
In the case where no input point set EI is specified, we can replace the pre-processing step by just

computing a few random points on S by shooting along random lines of R
3. As reported in Table

5.1, with this simple procedure, Del|S(EF ) has vertices on all the connected components of S with a
1These surfaces are shown in Chapter 6, Figures 6.1 and 6.2.
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P
P

P
P

P
P

P
P

P
P

Surface
|EI | 5 7 10 12 15 20 50 100

Torus 16 32 75 80 100 100 100 100
Chair 6 12 63 92 100 100 100 100
Tanglecube 2 6 16 52 92 100 100 100
Trefoil knot 2 36 89

Table 5.1: Success rates (in %) of the algorithm with random initial point samples, on various surfaces1.

probability that increases dramatically with the number of initial random points. The probability depends
also on how well S fills space, as shown by the example of the trefoil knot, which fills space very little
and therefore requires a large number of initial random points to be intersected by VG(EF ).

5.3 Removing the skinny facets

Once an ε-sample EI of S has been built or is given, one can remove the skinny facets from the mesh,
by simply running the algorithm with EI as the initial point sample and by using a new definition of a
bad surface Delaunay facet. In this section, a surface Delaunay facet is called bad if it is skinny, i.e. if
at least one of its inner angles is less than a user-defined parameter τ ≥ 0. The output point sample EF

contains EI and hence is an ε-sample of S. Moreover, all the facets of Del|S(EF ) are well-shaped, i.e.
no angle is less than τ .

This variant of the algorithm is due to Ruppert [99]. Although it can be applied indifferently on
smooth and nonsmooth surfaces, with the same guarantees, it is only interesting in the smooth setting.
Indeed, as observed in Section 4.2.3 (Theorem 4.5), our theoretical guarantees in the nonsmooth setting
require that the density of the output point sample be uniform, which ensures automatically that the inner
angles of the facets of the output mesh are lower-bounded.

Recall that any point p inserted by the algorithm is the center of some surface Delaunay ball B(p).
We call r(p) the radius of B(p), which equals the distance from p to the point sample E maintained by
the algorithm, right before the insertion of p in E. Moreover, we call r2(p) the distance from p to its
second nearest neighbor in EI . We extend the definition to the points p of EI by setting r(p) = r2(p) =

d(p,EI \ {p}). The (positive) map r2 was introduced by Ruppert [99] and proved to be 1-Lipschitz.
From now on, we assume that τ < π

6 and we define %τ = 1
2 sin τ > 1. Note that %τ is closely related

to the % of Theorem 4.5. However, both quantities differ in the sense that % yields a lower bound on the
distance between any two points of EF , whereas %τ yields a bound on the distance between any two
neighbors in Del|S(EF ).

Lemma 5.3 ∀p ∈ EF , r(p) ≥ %τ−1
%τ

r2(p).

Proof. We reason by induction. We first prove that the result holds for the points of EI , then we show
that it holds also for every point inserted by the algorithm.
- Let p ∈ EI . By definition, we have r(p) = r2(p) >

%τ−1
%τ

r2(p).
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- Let p ∈ EF \ EI . Right before the insertion of p in E, p is the center of a ball of Del|S(E) that
circumscribes a facet f whose smallest inner angle τf is less than τ . Let r be the circumradius of f .
We have r ≤ r(p). Let e be the smallest edge of f , and v be the vertex of e that was inserted last (if
both points belong to EI , then we choose v to be any of them). Let w be the other vertex of e. We have
d(v, w) ≥ r(v). Moreover, a quick computation shows that the sine of the angle τf (which is opposite
to e) is equal to half the ratio between d(v, w) and the circumradius of f . Hence,

sin τ = sin τf ≥
d(v, w)

2r
≥ r(v)

2r(p)

It follows that r(p) ≥ %τ r(v). Now, according to the induction hypothesis, we have r(v) ≥ %τ−1
%τ

r2(v),
which is at least %τ−1

%τ
(r2(p)− d(p, v)) since r2 is 1-Lipschitz. Thus, r(p) ≥ %τ

%τ−1
%τ

(r2(p)− r(p)),
i.e. r(p) ≥ %τ−1

%τ
r2(p). ¤

Let rinf
2 > 0 be the infimum of r2 over S. It follows from Lemma 5.3 that the distance between any

two points of EF is at least rinf
2 . Then, by the same packing argument as in the proof of Lemma 4.7, the

algorithm terminates.

Corollary 5.4 EF is %τ−1
2%τ−1r2-sparse. Hence, by Theorem 3.4,

|EF | = O

(

(

2 +
1

%τ − 1

)2 ∫∫

S

dS

r22

)

Proof. Let p ∈ S. We will bound the number of points of EF ∩ Bp, where Bp is the ball of center p
and radius %τ−1

2%τ−1 r2(p). Let q, q′ be any two points of EF ∩ Bp. We assume without loss of generality
that q and q′ both belong to EI , or that q has been inserted after q′ by the algorithm. Then, we have
d(q, q′) ≥ r(q), which is at least %τ−1

%τ
r2(q), by Lemma 5.3. Since r2 is 1-Lipschitz and q lies in Bp,

we have
%τ − 1

%τ
r2(q) ≥

%τ − 1

%τ
(r2(p)− d(p, q)) ≥ %τ − 1

2%τ − 1
r2(p)

Hence, the points of EF ∩ Bp are centers of pairwise disjoint balls of radius %τ−1
2(2%τ−1) r2(p). Moreover,

for any q ∈ EF ∩ Bp, the ball B
(

q, %τ−1
2(2%τ−1) r2(p)

)

is included in B
(

p, 3(%τ−1)
2(2%τ−1) r2(p)

)

. It follows
that the number of points q ∈ EF that lie in Bp is at most

Vol
(

B
(

p, 3(%τ−1)
2(2%τ−1) r2(p)

))

Vol
(

B
(

q, %τ−1
2(2%τ−1) r2(p)

)) = 27

¤

The constant hidden in the O in the bound of Corollary 5.4 is absolute, i.e. it depends neither on S,
nor on EI , nor on %τ . As %τ tends to 1 (i.e. τ approaches π

6 from below), the bound goes to infinity. This
means that, the better the angle criterion, the more points the algorithm has to insert. On the contrary,
as %τ tends to infinity (i.e. τ goes down to zero), the bound becomes O

(

∫∫

S
dS
r2
2

)

= O(|EI |), which
is coherent with the fact that the algorithm does not have to insert any point since EI already meets the
angle criteron.
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5.4 Non-uniform sizing fields

In some situations, it may be interesting to generate point sets with a local density prescribed by a user-
defined sizing field σ. Recall that a point set E ⊂ S is a σ-sample of S if no point p of S is farther than
σ(p) from E.

Assuming the infimum σinf of σ over S is positive and smaller than µ0 rch(S) ≈ 0.16 rch(S) in the
smooth case and 27

193 lrk(S) ≈ 0.14 lrk(S) in the k-Lipschitz case, we can run Chew’s algorithm with
ε = 1

2 σ
inf . By Theorems 4.4 and 4.5, the output point set EF is a σinf -sample of S, which a fortiori is

a σ-sample of S. However, EF is uniform, i.e. its local density does not vary with σ. As a consequence,

its size is Θ

(

∫∫

S
dS

(σinf)
2

)

, whereas in the case where σ is Lipschitz the optimal size is Θ
(∫∫

S
dS
σ2

)

, by
Theorems 3.1 and 3.4.

In this section we show how to generate sparse σ-samples, for a given positive Lipschitz sizing field
σ. Let κ < 1 denote the Lipschitz constant of σ. Since σ is not uniform, the theoretical results of
Chapter 2 no longer apply. Therefore, in the sequel, we assume that S has a positive reach.

To generate sparse σ-samples of S, we run Chew’s algorithm with ε replaced by σ
2+κ . A sur-

face Delaunay ball B(c, r) is then bad if r > σ(c)
2+κ . During the pre-processing phase we generate

0.09dM-persistent facets, that is, facets circumscribed by surface Delaunay balls B(c, r) such that
r ≤ 0.09 dM(c)

3 = 0.03 dM(c). The construction is identical to the one described in Section 4.4. No-
tice that we now have a factor of 1

3 in the definition of a persistent facet, instead of a factor of 1
2 in

Section 4.2.1. This is because dM is 1-Lipschitz, and not constant as ε.
If σ ≤ 0.09 (2 + κ) dM, then the output point set EF is a σ-sample of S. Indeed, upon termination

of the algorithm, for every surface Delaunay ball B(c, r) we have r ≤ σ(c)
2+κ ≤ 0.09 dM. Moreover, a

straightforward adaptation of Lemma 4.3 shows that our 0.09dM-persistent facets remain in Del|S(E)

until E becomes a loose 0.09dM-sample of S. At that stage, by Theorem 1.33, E is a 0.1dM-sample,
and it remains such until the end of the process. As a consequence, Del|S(EF ) has vertices on every
connected component of S, by Lemma 1.22. It follows that EF is a loose σ

2+κ -sample of S, which, by
Theorem 1.33, implies that the balls of Del|S(EF ) cover S. Then, for any point p ∈ S, there exists some
surface Delaunay ball B(c, r) containing p. Since σ is κ-Lipschitz, we have

σ(p) ≥ σ(c)− κ d(c, p) ≥
(

1− κ

2 + κ

)

σ(c) =
2

2 + κ
σ(c)

Thus, the distance from p to EF is bounded by

2d(p, c) ≤ 2

2 + κ
σ(c) ≤ σ(p)

which means that EF is a σ-sample of S.
In addition, once the input point set EI is fixed, EF is σ-sparse. Indeed, every point p ∈ EF \EI is

farther than σ(p)
2+κ from E at the time of its insertion. Therefore, for any two points p, q ∈ EF \ EI (with

q inserted after p, without loss of generality) we have

d(p, q) ≥ σ(q)

2 + κ
≥ σ(p)

2 + κ
− κ

2 + κ
d(p, q)

which yields

d(p, q) ≥ σ(p)

2(1 + κ)
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Hence, the points p ∈ EF \ EI are centers of pairwise disjoint balls of radii σ(p)
4(1+κ) . It follows, by the

same argument as the in the proof of Theorem 4.4, that EF \ EI is σ-sparse, which implies that EF is
also σ-sparse since EI is fixed.

As a conclusion, for sufficiently small σ, the output point set is a sparse σ-sample of S, hence its
size is Θ

(∫∫

S
dS
σ2

)

, by Theorems 3.1 and 3.4.

Since our results hold only for σ less than a fraction of dM, it is mandatory to have an estimate of
dM, to know whether the theoretical guarantees apply or not. One can also take min{σ, dM} as input
sizing field of the algorithm, in order to both certify the quality of the output mesh and make the density
of its vertices depend on the user’s sizing field σ.

In some particular situations, e.g. when the surface S is an isosurface in a 3D greyscaled image, dM

can be computed exactly or at least approximated well from the input – see Section 6 for more detail.
However, in most cases computing dM is a formidable task. Even computing the radius of the maximal
empty ball B tangent to S at a given point p can be difficult, since it involves non-local operations such
as finding another tangency point of B and S, which may lie far away from p.

Instead, we remark that computing a positive constant εS less than rch(S) is easier than estimating
dM at a given set of points. Moreover, the computation can be done once for all, in a pre-processing
phase. Hence, one can use Chew’s algorithm with ε = µ0rch(S) to generate a uniform point sample,
from which an approximation of dM can be computed. The problem of this approach is that, although
it produces good results in practice, it is not theoretically certified since none of the current results on
medial axis approximation from finite sets of points guarantees a full Hausdorff approximation [8, 11,
35, 59].

Open question 5.5 Given a smooth surface S and an ε-sample E of S, is it possible to bound the
Hausdorff distance between S and some subcomplex of Vor(E) by a function of ε?
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Introduction

In this part of the thesis, we illustrate the universality of our mesh generator through several practicle
applications. Our implementations are done in C++, using the geometric library CGAL [33], which
provided us with a robust and efficient implementation of the 3-dimensional Delaunay triangulation.

In Chapter 6, we apply our algorithm to mesh implicit surfaces. Our experimental results pro-
vide evidence that our mesher has several advantages over the highly celebrated Marching Cubes al-
gorithm [44, 87]: topological guarantees, approximation of normals, facets with bounded aspect ratio,
optimal size. We also argue that, as an implicit surface mesher, our algorithm can be used for surface
reconstruction. The approach is similar to that of [19]. It consists of defining an implicit function f ′

from the input point set, and then to mesh the zero-set S ′ of f ′ using our algorithm. Combining our
theoretical results with those of [19], we can certify the topology and geometry of the output mesh.

In Chapter 7, we use our algorithm to remesh polygonal surfaces. Compared to many existing meth-
ods (see [4, 5]), our mesher does not require to perform complicated operations on the input polyhedron
S, such as cutting S into patches homeomorphic to a disk. Moreover, it comes with topological and ge-
ometric guarantees, together with a bound on the aspect ratios of the triangles. Finally, differently from
the polyhedron remesher of Dey et al. [57], we do not assume that S approximates a smooth surface.

In Chapter 8, we adapt our algorithm to the probing problem. The approach consists of using the
probing device as an oracle to be used by our mesher. This oracle is weaker than the exhaustive oracle,
since it can detect only the first intersection point of a given segment with the boundary S of the object
to discover. Moreover, before checking the intersection of a given segment s with S, the probing device
must first be moved to an endpoint of s. Therefore, we cannot check the intersections of all the segments
with S. We prove however that this version of the algorithm comes with the same theoretical guarantees
as the original version, regarding the quality and size of the output. We also provide a thorough analysis
of its complexity.

In Chapter 9, we present an extension of the algorithm that can construct tetrahedral meshes ap-
proximating 3-dimensional objects with curved boundaries, such that the mesh elements (tetrahedra and
triangles) conform to some user-defined size and shape criteria. The idea is to exploit the fact that the
algorithm maintains a whole 3-dimensional Delaunay triangulation. Whenever a tetrahedron does not
meet the size or shape requirements, it is refined by inserting its circumcenter. The output point set is no
longer a subset of S. Moreover, the output mesh contains all Delaunay tetrahedra whose circumcenters
lie in the objectO to mesh. Using our theoretical results on the approximation of the boundary ofO, we
can certify the output of the algorithm.





Chapter 6

Implicit Surface Meshing

6.1 Introduction

Implicit surfaces are widely used to model geometric objects like molecules in biomolecular modeling,
smooth surfaces reconstructed from MRI data in image-guided surgery, or car parts in CAD/CAM-
systems. The representation of a geometric object as an implicit surface may be very convenient for
such physical or technical applications – see for instance [17, 114]. However, for further geometry
processing, like rendering the object on a computer screen or performing numerical simulations, it may
be more convenient to have a PL approximation of the object. Therefore, fast and reliable meshing
algorithms have immediate applications in these practical situations.

The goal of an implicit surface mesher is to generate a PL approximation that is close to the original
surface, both in a geometric and in a topological sense. Although many meshing techniques produce
good geometric approximations [16, 113], very few algorithms are guaranteed to construct topologically
correct meshes. Some polygonization schemes achieve topological consistency, that is, they ensure that
the result is a manifold, by taking more or less arbitrary decisions when a topologically ambiguous
configuration is encountered. Nevertheless, topology is still not guaranteed, since the algorithm may
miss some sonnected components or handles of the original object. Several adaptations of the Marching
Cubes algorithm [87], such as the one proposed in [44], belong to this category.

The first topology-preserving implicit surface mesher was designed by Hart and Stander [76]. Un-
fortunately, they gave no proof of correctness and, although their method has an intuitive justification
and seems to work well on simple cases, it is not clear that it is robust on complex shapes. A more recent
algorithm, proposed by Boissonnat et al. [20], is based on the same mathematical tools and comes with
a proof of correctness. Plantinga and Vegter [96] introduced a variant of the Marching Cubes algorithm
with topological guarantees, based on interval arithmetics. Finally, Cheng et al. [42] proposed an algo-
rithm that guarantees the homeomorphism between the implicit surface and its PL approximation. All
these algorithms work only in the smooth setting.

6.1.1 Statement of the problem

The input surface S is described as a level-set (say the zero-set) of some function f : R
3 → R, that is:

S = f−1({0}). We assume in first place that f is C2-continuous and that its gradient does not vanish on

89
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S, which implies, by the implicit function theorem, that S is a C2-continuous surface without boundary
– see for instance [14, §2.1.2]. The nonsmooth case is deferred to Section 6.4.

Given a positive constant δ, the purpose is to construct a PL approximation Ŝ of S with the same
topology type as S and at Hausdorff distance δ from S. Moreover, the number of vertices of Ŝ is required
to be as small as possible.

6.1.2 Our approach

We use our implementation of Chew’s algorithm. Following Section 4.2.2, we set the input parameter ε
of the algorithm to

√
δ εS where εS is less than rch(S). Moreover, using the construction of Section 4.4,

we build an initial point set EI such that Del|S(EI) has at least one λ-persistent facet per connected
component of S, where1 λ = µ0 εS .

If δ ≤ µ2
0 rch(S), then we have ε ≤ µ0 rch(S), and by Theorem 4.4 the output of the algorithm is

a PL approximation of S, isotopic to S and at Fréchet distance at most δ from S. Moreover, the size of
the output point set is ΘS

(

ε−2
)

= ΘS

(

δ−1
)

, which is optimal when the object bounded by S is convex,
as detailed in Section 4.2.2. Notice that the same guarantees apply if the exhaustive oracle is replaced
by the bipolar oracle, according to Section 5.1.

If the density of the vertices of Ŝ is prescribed by a user-defined positive and κ-Lipschitz sizing field
σu, with κ < 1, then we adopt the strategy of Section 5.4 and run Chew’s algorithm with σ = σu

2+κ as
input sizing field and with an initial point set composed of the vertices of at least one 0.03dM-persistent
facet per connected component of S.

As reported in Section 5.4, if σu is sufficiently small (specifically, if σu ≤ 0.09 (2 + κ) dM), then
the output point set EF is guaranteed to be a sparse σu-sample of S. As a consequence, the Hausdorff
distance between Del|S(EF ) and S is at most dH(EF , S) ≤ sup{σu(p), p ∈ S}. Moreover, by
Theorem2 1.33, Del|S(EF ) has the same topology type as S. Here again, the same guarantees apply if
we replace the exhaustive oracle by the bipolar oracle (Del|S(EF ) becomes then Delb|S(EF )).

For both strategies, the prerequisites on the knowledge of the surface are the following ones:

P1 we can pick up at least one point from each connected component of S (to construct EI ),
P2 we know or we can compute a positive constant εS less than or equal to rch(S),
P3 we can implement the exhaustive oracle, and optionally the bipolar oracle.

6.1.3 Overview

In Section 6.2, we describe some implementations that fulfill P1, P2 and P3. Notice that P3 is used
throughout the algorithm, whereas P1 is involved only in the initialization phase and P2 is a simple
precalculation. Therefore, algorithmic issues arise mainly from P3.

Experimental results on smooth surfaces are presented in Section 6.3. The nonsmooth case is ad-
dressed in Section 6.4. Finally, Section 6.5 presents an application of implicit surface meshing in the
context of surface reconstruction.

1µ0 = 0.16, as in Section 4.2.2.
2The bound on the Hausdorff distance in this theorem holds only for σu = dM, hence we cannot use it here.
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6.2 Satisfying the prerequisites

The bipolar oracle is quite easy to implement for implicit surfaces. Indeed, the parity of the number of
transversal intersections between S and a line segment [p, q] is given by the signs of f at p and q: if the
signs are equal, then the number of transversal intersections is even, otherwise it is odd. In the latter
case, we can find a transversal intersection point by binary search. The computation time is O(1) for
the bipolarity test, and O

(

log d(p,q)
η

)

for finding an intersection point within a precision of η > 0. The
constant in the O depends on the time spent to compute the sign of f at a given point. When f is a
polynomial, we use Descartes’ rule instead of evaluating the signs of f at p and q, which reduces the
computation time.

The exhaustive oracle can be implemented using a divide-and-conquer strategy. However, comput-
ing all the intersection points of S with a segment [p, q] within a precision of η > 0 takes Θ

(

d(p,q)
η

)

time. Hence, for implicit surfaces, the exhaustive oracle is far less efficient than the bipolar oracle.
Timings are reported in Table 6.1.

We will now focus on P1 and P2. In Section 6.2.2, we discuss the case where a closed formula of f
is known. In Section 6.2.2, we analyze the other case through a specific application.

6.2.1 When a closed formula of f is known

P1 We compute the points of S that have a horizontal tangent plane. Each connected component of S
has at least two such points, since S has no boundary. These points are the critical points of the height
function, which means that they are solutions of the following system:















f(x, y, z) = 0

∂f
∂x (x, y, z) = 0

∂f
∂y (x, y, z) = 0

which is generically zero-dimensional. If f is a polynomial, then the system is algebraic and can be
solved by various means. Our approach consists in computing the generalized normal form modulo the
ideal generated by the three polynomials of the system, and then finding the roots from eigencomputation
– this method was developed in [111] and implemented in C++ as part of the SYNAPS library [107],
which we use in our implementation. If f is not a polynomial but still continuous, then we compute the
solutions of the system using interval arithmetics. Notice that this computation may be quite complicated
but is invoked only once, during the initialization phase of the algorithm.

P2 Since S is compact, there exists a point p ∈ S such that dM(p) = rch(S). Let c be a nearest
neighbor of p on M. We have d(c, S) = d(c, p), since d(c, p) = rch(S). Hence, p is a nearest neighbor
of c on S. If c belongs to the boundary of M, then d(c, p) equals the minimum radius of curvature of S
at p. Otherwise, c has another nearest neighbor on S, say q. Since d(c, q) = d(c, p) = rch(S), c is a
nearest neighbor of q on M. Therefore, the balls B(p, d(c, p)) and B(q, d(c, q)) are both tangent to M

in c. It follows that p, c and q are collinear, since c belongs to the relative interior of M. This implies
that c is the midpoint of the line segment [p, q], since p 6= q. So, the ball B(c, rch(S)) is tangent to S in
two diametral points. Therefore, rch(S) can be computed by finding:



92 CHAPTER 6. IMPLICIT SURFACE MESHING

1. the point of S at which the smallest radius of curvature is minimal, which reduces to solving
some low-dimensional optimization problem over S;

2. the smallest sphere bitangent to S with diametral contact points, which reduces to finding the
smallest real positive root of the following system:































f(p) = 0

f(q) = 0

(p− q)×∇f(p) = 0
(p− q)×∇f(q) = 0
λ d2(p, q) = 1

This system has seven unknowns (the coordinates of p, those of q, and λ) and seven independent
equations generically, therefore it is zero-dimensional. If f is a polynomial of degree d (d ≥ 2

since S is compact), then the system is algebraic, of degree d. Note that λ and the last equation
of the system have been introduced only to ensure that p 6= q.

The two above issues can be solved using the same tools as for P1.

6.2.2 When no closed formula of f is known

The computations involved in the previous section require to know a closed formula of f . However, in
many applications no such formula is available or even exists. In this case, P1 and P2 may still possibly
be fulfilled but the strategy depends highly on the context.

We will illustrate this through a specific application related to medical imaging, in which the surface
S is defined as a level-set in a 3D greyscaled image. Let f be the function that maps every point of
space to its grey value. Due to the nature of the image, the values of f are known only at the centers
of the pixels, i.e. at a discrete but regular set of points. We can then retrieve the value of f(p) for any
p ∈ R

3 by interpolation.

P1 We compute the points of S that have a horizontal tangent plane, by sweeping a horizontal plane
vertically across the image. Since S has no boundary, this gives us at least two points per connected
component of S.

P2 We use a thinning algorithm [37] to compute a discrete approximation M̃ of the medial axis of S.
An estimate of rch(S) can be easily computed from M̃. Moreover, using the strategy of Section 5.4, we
can generate point sets whose densities depend on dM, since a good estimate of dM can be computed
from M̃.

6.3 Experimental results

Results on smooth closed algebraic surfaces are reported in Figure 6.1. The top row shows the inputs,
the bottom row shows the outputs. From left to right, we have a torus, a genus-three surface of degree
4 called “chair”, and a genus-five surface of degree 4 called “tanglecube”. These surfaces have been



6.3. EXPERIMENTAL RESULTS 93

Figure 6.1: Results on smooth closed algebraic surfaces, with ε = µ0 εS .
meshed with ε = µ0 εS as input parameter. As predicted by Theorem 4.4, we obtained good topological
and geometric approximations of the surfaces.

Figures 6.2 and 6.3 show the results of the algorithm respectively on the standard left trefoil knot
and on a more intricate knot with high self-entanglement. In both cases, the result of the algorithm is
isotopic to the original algebraic model, as predicted by the theory. Notice that every knot is represented
in “sausage” format, i.e. as the boundary of a thickening of some knotted curve. Figure 6.2 (left) shows
that such a curve can be defined as the intersection of two algebraic surfaces, f1 = 0 and f2 = 0, which
are the images through a stereographic projection of two 2-manifolds embedded in the unit sphere of
R

4, as explained in [28]. One possible thickening of the curve f1 = f2 = 0 is f2
1 + f2

2 < ν, whose
boundary f2

1 + f2
2 = ν is a smooth closed surface, for a sufficiently small constant ν. Notice that this

thickening does not have a constant radius, as can be observed in Figure 6.2 (right).

Timings for the above algebraic models are reported in Table 6.1, normalized with respect to the
3D incremental Delaunay triangulation algorithm implemented in CGAL [33]. The precalculations
associated with P1 and P2 are not taken into account here. We tried two versions of the oracle: exhaustive
and bipolar. For each version, we separated the time spent in the oracle from the time spent in the rest
of the program (the engine).

The first observation is that the ratio between the timings of the two versions of the oracle is quite
large. In the table, it ranges from several units for small models (e.g. 5.8 for the sphere), to hundreds
for bigger models (e.g. 187 for the chair). As explained previously, this phenomenon is due to our
implementation, which makes the running time of the exhaustive oracle linear w.r.t. 1/η, where η
is a user-defined precision threshold (10−6 here), while the time complexity of the bipolar oracle is
logarithmic w.r.t. 1/η.
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Figure 6.2: The standard left trefoil knot, in “sausage” format, meshed with ε = µ0 εS .

Figure 6.3: An intricate knot, in “sausage” format, meshed with ε = µ0 εS .
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Exhaustive oracle (uses Del|S(E)) Bipolar oracle (uses Delb|S(E))

Surface Engine Oracle Total
time

Output
size

Engine Oracle Total
time

Output
size

Time/Del. % # calls Time/Del. % / Del. (# pts) Time/Del. % # calls Time/Del. % / Del. (# pts)
Sphere 1.92 14.6 8, 929 11.4 85.4 13.3 445 1.98 86.8 3, 226 0.3 13.2 2.28 445

Ellipsoid 7.5 6.3 7, 410 111 93.7 118 380 8.25 91.7 8, 170 0.75 8.3 9 380

Torus 0.87 0.2 58K 474 99.8 475 1, 268 9.18 88.7 63K 1.17 11.3 10.35 1, 307

Chair 8.01 0.5 260K 1, 686 99.5 1, 694 6, 619 8.1 89.4 255K 0.96 10.6 9.06 6, 461

Tanglecube 8.31 2.9 168K 354 97.1 362 4, 225 7.71 90.5 165K 0.81 9.5 8.52 4, 242

Trefoil
knot

12.54 1.6 545K 783 98.4 796 8, 329 12.54 93 592K 0.93 7 13.47 8, 317

Intricate
knot

7.68 2.3 5.2M 330 97.7 338 133K 6.93 89.9 7M 0.78 10.1 7.71 148K

Barth’s
octic

6.93 1.7 547K 396 98.3 403 13, 928 7.05 83.9 603K 1.35 16.1 8.4 14, 168

Heart 6.72 7 252K 89 93 96 8, 445 6.45 91.8 263K 0.57 8.2 7.02 8, 539

Klein’s
bottle

0.45 3.5 101K 123 96.5 123 3, 424 4.74 91.9 102K 0.42 8.1 5.16 3, 445

Table 6.1: Timings (normalized w.r.t. 3D incremental Delaunay triangulation algorithm) and output size for various algebraic surfaces.
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The second observation is that the timings of the engine are comparable to the timings of the incre-
mental Delaunay triangulation algorithm (the ratio is almost always less than 10). This observation is
not surprising since both algorithms are similar. The difference between the performances comes mainly
from the oracle. With the bipolar oracle, the difference is small and the performances of both algorithms
are comparable. To give an idea, on a Pentium IV at 3.6 GHz, the mesher with the bipolar oracle takes
5.14 seconds to sample 8, 317 points from the trefoil knot, while the incremental Delaunay triangulation
algorithm of CGAL takes 0.41 seconds to triangulate the 8, 317 points.

Figure 6.4 shows some results of the algorithm on 3D greyscaled images. The input images are
courtesy of the Epidaure and Odyssee teams, at INRIA. The first one has size 2563 ≈ 16.7M voxels,
the second one 50 × 60 × 60 = 180K voxels. We used the strategy of Section 5.4, with an input
sizing field σ equal to 0.09 dM̃, where dM̃ is the distance to the approximation M̃ of M computed by
the thinning algorithm, as described in Section 6.2.2. According to the theory, the output point set is a
0.27dM̃-sample, since dM̃ is 1-Lipschitz.

The first mesh has about 25K vertices, which is far less than the size of the output of the Marching
Cubes algorithm (several millions of vertices). The advantage of our mesher over the Marching Cubes
algorithm is that the user can specify, through the input sizing field σ, at which level of detail he wants to
work. The second mesh has approximately 100K vertices, which is comparable to the number of voxels
of the input image. The reason for this is that rch(S) is small and S is very space-filling, which means
that generating a 0.27dM-sample of S requires a lot of points.

6.4 The nonsmooth case

Let us now assume that f : R
3 → R is k-Lipschitz. If the so-called generalized gradient of f (as defined

in [46]) does not vanish on S, then S is a k-Lipschitz surface, by Clarke’s implicit function theorem [47,
§7.1]. This case includes in particular the case where f is smooth and its gradient vanishes on S but not
its generalized gradient.

The strategy used for smooth f can still be applied when f is Lipschitz, with the same theoretical
guarantees. The only difference is that the input of Chew’s algorithm must satisfy Conditions (α̂′),
(β̂′), (γ̂′) of Theorem 4.5 instead of Conditions (α), (β) of Theorem 4.4, an issue that has already been
addressed in Section 4.4. The prerequisites on the knowledge of the surface are P1, P3, and the following
variant of P2:

P̂2 we know or we can compute a positive constant εS less than or equal to lrk(S).

Compared to the smooth case, the implementations of the exhaustive and bipolar oracles remain the
same. This fulfills P3. Moreover, when a closed formula of f is given, we can fulfill P1 by performing
the same computations as in Section 6.2.1, using the generalized gradient of f instead of the usual
gradient. When no closed formula is given, the solution depends on the context. In the case where S is
a level-set in a 3D greyscaled image, the plane-sweep procedure described in Section 6.2.2 still works.

Concerning P̂2, we note that estimating lrk(S) is a formidable task. Therefore, in practice we
replace this calculation by a simple iterative process: we make a first guess of lrk(S) and set up εS

accordingly. If no initial guess can be made, we set εS to 1 by default. Then, we run Chew’s algorithm
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Figure 6.4: Results on 3D greyscaled images, with σ = 0.09 dM̃.
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Figure 6.5: Result on a 1-Lipschitz surface, with ε = 0.07 εS .

with ε = 0.07 εS (as prescribed by (α̂′) and (β̂′)) and look at the output. If the mesh is a manifold
without boundary, isotopic to the original surface3, then we stop. Otherwise, we divide εS by 2 and
restart the process. Since S is Lipschitz, there exists a k such that lrk(S) is positive. Therefore, after
a finite number of iterations, εS is small enough to guarantee that the topology of the output mesh if
correct, thanks to Theorem 4.5. In practice, only a few iterations are necessary after a good first guess.

Figure 6.5 presents the result of the algorithm on a semi-algebraic surface called “spinning top”.
This surface is 1-Lipschitz and its 1-Lipschitz radius is

√
2/2 (while its diameter is 2). The left column

contains the input model and the right column the output mesh. On this example, we took εS = 1
2 and

ε = 0.07 εS = 0.035. Although the Lipschitz constant (k = 1) is far beyond our theoretical bound, we
obtained a good topological and geometric approximation of the original surface.

Figure 6.6 presents the result of the algorithm on a mechanical part. The CAD data is shown in the
upper row, the output of the algorithm is shown in the bottom row. This surface is

√
2-Lipschitz, and

its
√

2-Lipschitz radius is very small compared to its diameter, due to the presence of thin parts. Here
again, we obtained a good topological and geometric result, although the Lipschitz constant (k =

√
2)

is far beyond our theoretical bound.
Other results are presented in Figure 6.7. The left column contains the input models, the center

column the output meshes, and the right column some close-ups of both objects. From top to bottom,
we have:

– a degree-six algebraic surface called “heart”, with two pinch points, one at the top and the other
at the bottom. Because of these pinch points, the surface is not Lipschitz. However, in practice
the result of the algorithm is topologically correct, provided that ε is small enough: here, we took
ε = 0.05, while the diameter of the surface is 4.

– Barth’s octic surface, of degree 8 (according to its name), made of eight pillows placed at the
vertices of a cube and connected along the edges of the cube by means of two singular points.
Because of these singular points, the surface is not an embedded 2-manifold. We took ε = 0.03,
while the diameter of the surface is 4.

3Checking this last condition requires to know the topology of the original surface, which is the case in most applications.
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Figure 6.6: Result on a
√

2-Lipschitz CAD model.
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Figure 6.7: Results on non-Lipschitz or non-manifold algebraic surfaces.
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– Klein’s bottle, which cannot be embedded in R
3 either. Here, we took ε = 0.1, while the diameter

of the surface is 8.
Figure 6.7 illustrates two things. First, the algorithm terminates on all kinds of compact objects, as
reported in Lemma 4.7. Second, the algorithm usually does a good job far from the non-Lipschitz or non-
manifold parts of the surface, and sometimes also in their vicinity. We have added to our implementation
a patch that checks whether Del|S(E) is a manifold and that goes on refining the mesh in the negative.
This patch can be toggled by the user, which allows him to force the algorithm to generate a manifold.
This option has been activated for Barth’s octic, and the output mesh is indeed manifold. However, the
singular points of the original surface are missing in our triangulated version.

6.5 Application to surface reconstruction

Sampling and meshing implicit surfaces with guaranteed topology and geometry can be useful for re-
constructing surfaces from point clouds. The issue is the following one: given an input point cloud
EI sampled from an unknown surface S, construct a PL surface that approximates S topologically and
geometrically.
The literature on this topic is vast, and we refer the reader to [30, 31] for a comprehensive survey.
Roughly speaking, previous work on surface reconstruction reduces to two main approaches:

- The first approach is combinatorial: it consists in constructing some specific data structure from
EI , such as its Delaunay triangulation, and then in extracting from this data structure a PL approximation
of S. A number of provably good algorithms based on this approach have been proposed [6, 7, 8, 19,
53, 54, 55, 56].

- The second approach consists in using the input point cloud EI to define an implicit function f ′,
whose zero-set S ′ is then approximated using some implicit surface mesher. The first algorithm of this
kind was designed by Hoppe et al. [78], who define f ′ as the signed distance function to a local estimate
of the tangent plane of S, and mesh the zero-set of f ′ using the Marching Cubes algorithm. Other
algorithms have been proposed ever since, based on natural neighbors [18, 19, 105], Moving Least
Squares [58, 79, 83], Radial Basis Functions [100], or similar techniques.

The success of the second approach relies heavily on the choice of the implicit mesher. To this
extend, our mesher is interesting since it comes with topological and geometric guarantees (even on
nonsmooth Lipschitz surfaces), together with a tight bound on the number of points that will be inserted
to achieve a given Hausdorff approximation. The remaining issues are the following ones:

1. Define a function f ′ whose zero-set S ′ is a smooth or Lipschitz surface without boundary. This
issue is carefully addressed in the literature, especially for the Moving Least Squares surface,
which is proved to be homeomorphic to S and close to S for the Hausdorff distance, under mild
sampling assumptions.

2. Estimate rch(S ′) if S′ is smooth, or lrk(S
′) if S′ is k-Lipschitz. To our knowledge, this remains

an open theoretical question. However, as shown by our experiments, this is not a real issue in
practice.

Figures 6.8 through 6.10 present some results of the reconstruction based on natural neighbor inter-
polation. Images are courtesy of F. Cazals and J.-D. Boissonnat [19]. In Figure 6.8, no input parameter
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Figure 6.8: Result of natural neighbor interpolation on the papaine model.

Figure 6.9: Results of natural neighbor interpolation on the Stanford bunny (250 pts).

Figure 6.10: Results of natural neighbor interpolation on the triceratops model.
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ε has been specified to our mesher, hence the output mesh is Del|S′(EI). Since S is smooth and EI is a
µdM-sample of S, for some sufficiently small µ, the theoretical results of [19] ensure that Del|S′(EI) is
a 2-manifold homeomorphic to S ′ and close to S ′ for the Hausdorff distance. Moreover, it is observed
that S′ is a good topological and geometric approximation of S.

In Figures 6.9 (left) and 6.10 (left), the input point sample EI is not dense enough to ensure that
Del|S′(EI) is a good approximation of S ′. Nevertheless, S ′ is guaranteed to be a smooth surface without
boundary. Therefore, when a sufficiently small parameter ε is specified, the outcome of our mesher is a
2-manifold that approximates S ′ correctly – see Figures 6.9 (right) and 6.10 (right). In the present case,
the topology became correct after adding a few points to EI . Moreover, it is observed that S ′ is not too
far from S and has the same topology type.

Figure 6.11 presents the result of the reconstruction based on MLS approximation. The input point
cloud EI has 42K points and is shown in the upper-left corner. The output mesh is in the bottom-right
corner, and the (smooth) MLS surface is in the bottom-left corner. For comparison, we have added in the
upper-right corner the output of the reconstruction based on nearest neighbor interpolation. Both outputs
have the right topology type. However, the interpolation strategy leads to a wrong approximation of the
normals of the original surface4, due to the presence of noise in the input point cloud EI . This is not the
case with the approximation strategy.

4Ondulations are clearly visible in the upper-right corner of Figure 6.11.
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Figure 6.11: Comparison between natural neighbor interpolation and MLS approximation.



Chapter 7

Polygonal Surface Remeshing

7.1 Introduction

Polygonal meshes are used in a wide variety of applications of science and engineering. They can be
the result of careful design using CAD software, or they may come as an output of a scanning device,
associated with reconstruction or computer vision algorithms. Such meshes usually lack properties that
are useful for subsequent numerical processing [95]. In particular, the application may need a grading
of the mesh elements, with respect to some specific sizing field, together with a certified quality on their
shape. In the case of a simplicial surface mesh, the quality is measured by the radius-edge ratios of the
triangles, or equivalently by their smallest inner angle.

The problem of remeshing polygonal surfaces has received a lot of attention in the recent years,
especially among the numerical analysis community, where the application needs are highest. Previous
work on the topic can be divided into two categories: techniques that use a parameter space [51, 112]
and techniques that perform iterative refinements on an explicit mesh [26, 27, 68].

The problem has also been extensively studied by the Computer Graphics community. We refer the
reader to [4, 5] and the references therein for a complete survey. Although the methods proposed by the
Graphics Community come with no theoretical guarantee concerning the topology of the output mesh
or the quality of its elements, they are usually very effective in practice.

Recently, a provably good polyhedron remeshing algorithm has been proposed by Dey et al. [57].
Their work assumes that the vertices of the polyhedron have been sampled from a smooth surface and
form a µdM-sample of this surface, with µ sufficiently small. Their algorithm is an extension of previous
work on smooth surface meshing [42], and the proof of its correctness is based on the same ideas.

7.1.1 Statement of the problem

The input surface S is an oriented polyhedron without boundary. We assume that the normals of any
two non-disjoint facets of S form an angle less than π

2 . In the context of volume meshing, a polyhedron
verifying this condition is said to have no small angle [102].

Given two constants δ > 0 and β < π
6 , the goal is to construct a PL approximation Ŝ that is isotopic

to S and at Hausdorff distance at most δ of S. Moreover, the facets of Ŝ are required to have inner angles
greater than β. Unless otherwise specified, the density of the vertices of Ŝ is required to be uniform.
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Figure 7.1: Lower bound on k′.

7.1.2 Our approach

Contrary to the implicit case, it is quite feasible to estimate k such that S is k-Lipschitz and to compute
a positive lower bound εS on lrk(S) when S is a polyhedron. This step is described in Section 7.2.2.

We can then follow the same strategy as for implicit surfaces: we use our implementation of
Chew’s algorithm, setting the input parameter ε to

(

1−k2

1+k2

)2
δ. If k ≤ tan

(

1
2 arctan 1

3
√

3

)

≈ 0.1

and δ ≤ 0.07
(

1+k2

1−k2

)2
εS , then ε ≤ 0.07 εS and, by Theorem 4.5, the output of the algorithm is a PL

approximation Ŝ of S, isotopic to S and at Hausdorff distance at most ε
cos2(2 arctan k)

= ε
(

1+k2

1−k2

)2
= δ

of S. Moreover, since we use the construction of Section 4.4 to build the initial point set EI , the facets
of Del|S(EF ) have inner angles of at least π

6 ≥ β.
The prerequisites on the knowledge of the surface are P1, P̂2 and P3.

7.2 Satisfying the prerequisites

7.2.1 Computing one point per connected component of S

Consider the 1-skeleton graph G of S, where each node represents a vertex of S and two nodes are
linked iff they are vertices of the same edge of S. Fulfilling P1 comes down to computing one point per
connected component of G, which can be easily done by traversing G.

7.2.2 Estimating k and lrk(S)

For every couple (f, f ′) of non-disjoint facets of S, we compute the angle (n(f),n(f ′)). Let θ be the
largest angle computed. Since S is assumed to have no small angle, θ is less than π

2 . By Theorem 2.9,
we know that S is 2 sin θ

2
q

3−4 sin2 θ
2

-Lipschitz, with 2 sin θ
2

q

3−4 sin2 θ
2

≤ tan 3θ
5 since θ ≤ π

2 . Moreover, since at
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Figure 7.2: A case where εS is a bad estimate of lrk(S).

least two non-disjoint facets f, f ′ of S have normals that make an angle of θ, k cannot be less than tan θ
2

– see Figure 7.1 for an illustration in the plane. Hence, we have tan θ
2 ≤ k ≤ tan 3θ

5 .
We must also compute a lower bound εS of lrk(S). Let f be a facet of S. The normals of the facets

of N(f) make angles at most θ with n(f). Thus, by Lemma 2.8,

∀p ∈ f, lrk(p) ≥ d(p, S \N(f)) (7.1)

Computing the smallest distance from a point of f to S \ N(f) is easy: it suffices to compute d(f, f ′)

for every facet f ′ ∈ S \N(f) and to take the minimum. We do this for every facet f of S and we set εS

to the minimum. By construction, εS is bounded by d(p, S \ N(f)), for any facet f of S and any point
p ∈ f . Hence, εS ≤ lrk(S), by (7.1). Moreover, εS > 0 since the smallest distance from a point of a
facet f to S \N(f) is positive.

Notice that in some cases εS may be a bad estimate of lrk(S), since it depends highly on the size of
the facets. An illustration is given in Figure 7.2. Other strategies for computing εS could be considered as
well, to make εS depend more on the discrete curvature of S and less on the size of the facets. However,
such approaches usually involve more complex calculations. As an extreme, in the case where S is a
PL approximation of a C2-continuous surface W , one could use a curvature tensor estimator [32, 49] to
make εS depend directly on W and as little as possible on S.

7.3 Implementing the oracle

The exhaustive oracle can be easily implemented by means of a naive procedure which, given a line
segment s, checks the intersection of s with every facet of S. The segment-surface-intersection test is
then performed in linear time with respect to the number of facets of S. Our implementation of the
oracle uses some code developped by M. Samozino, from an original idea by P. Bhattacharya [15]. This
code uses an octree to speed-up the segment-surface-intersection test.
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Input

Output

Figure 7.3: Removing the skinny facets.
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Figure 7.4: Results on various polyhedra.
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7.4 Experimental results

Figure 7.3 illustrates the fact that the inner angles of the output mesh are guaranteed to be larger than π
3 .

Figure 7.4 shows some results on various polyhedra. As predicted by the theory, when the poly-
hedron S is sufficiently smooth, the quality of the output of the algorithm is guaranteed. It is the case
for the ring model (shown in the upper-left corner), from which the algorithm generated a manifold (in
the upper-right corner) with the right topology type and close to the original surface for the Hausdorff
distance.

The algorithm still works well in practice when the Lipschitz constant of the surface lies above the
bound of Theorem 4.5 and below 1 (which corresponds to a dihedral angle of π

2 ). On the horse model for
instance, the topology of the surface was well captured by the algorithm, whereas the minimum dihedral
angle lies around π

2 , as shown by the closeups of the hoofs1. This gives evidence that our theoretical
bound on k is pessimistic.

When the input polyhedron has sharp edges, i.e. edges where the dihedral angle is smaller than π
2 ,

the algorithm usually fails to capture its topology. It may not even produce a manifold. An illustration
is given in the close-up of the octopus, in which the mesh is shown with Gouraud shading. The con-
sequence of the non-orientability of the mesh is that dark stains appear in places where the normal is
oriented in the wrong direction. In such places, the surface is not locally a manifold.

1The original model is above, the output of the algorithm is below.



Chapter 8

Surface Probing

8.1 Introduction

In this chapter we consider the problem of discovering the shape of an unknown objectO of R
3 through

an adaptive process of probing its surface from the exterior. A probe is issued along a ray whose origin
lies outside O and returns the first point of O hit by the ray. Successive probes may require the probing
device to be moved through the free space outside O. The goal is to find a strategy for the sequence
of probes that guarantees a precise approximation of O after a minimal number of probes. Note that
this problem involves an interesting bootstrapping issue, as the underlying surface is only known to
the probing algorithm through the samples already taken. Thus, differently from most existing work
in surface reconstruction, the data are not given all at once prior to the reconstruction phase but must
instead be computed iteratively, each new probe depending on the outcomes of the previous probes.
Furthermore, collision avoidance between the probing device and O must be observed at all times.

8.1.1 Previous work

The above problem belongs to the class of geometric probing problems, pioneered by Cole and Yap
[50]. Geometric probing, also known as blind approximation or interactive reconstruction, is motivated
by applications in robotics. In this context, our probe model described above is called a tactile or finger
probe. Geometric probing finds applications in other areas and gave rise to several variants. In particular,
other probe models have been studied in the literature, e.g. line probes (a line moving perpendicular to
a direction), X-ray probes (measuring the length of intersection between a line and the object), as well
as their counterparts in higher dimensions.

We classify the probing algorithms into two main categories, exact or approximate, depending on
whether they return the exact shape of the probed object or an approximation. An exact probing algo-
rithm can only be applied to shapes that can be described by a finite number of parameters like polygons
and polyhedra. In fact, most of the work on exact geometric probing is for convex polygons and poly-
hedra. See [106] for a survey of the computational literature on the subject. Although it has been shown
that, using enhanced finger probes, a large class of non convex polyhedra can be exactly determined
[2, 24], exact probing is too restrictive for most practical applications.

Approximate probing algorithms overcome this deficiency by considering the accuracy of the desired
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reconstruction as a parameter. The goal is to find a strategy that can discover a guaranteed approximation
of the object using a minimal number of probes. The general problem is ill-posed, since we cannot
conclude anything about the shape of the object if we have only local information about the shape. Some
global information or prior knowledge is required to restrict the class of shapes being approximated. An
important class is the class of convex shapes. Probing strategies have been proposed for planar convex
objects using line probes [86, 97] and some other probe models are analyzed by Rote [98]. Observe that
approximating a convex object using hyperplane probes is nothing else than approximating its supporting
function.

As far as we know, probing non convex (non polyhedral) objects has not been studied. The problem
has some similarity with surface approximation. In particular, the Marching Cubes algorithm [87] and
Chew’s algorithm provide blind approximations of a surface since the surface needs to be known only
through an oracle that typically decides whether a line segment intersects the surface or not. However,
the probing problem differs from surface approximation in an essential way: we cannot place the probing
device at will anywhere but need to plan the motion of the probing device to its next probing location.
Differently from the convex case, we cannot simply probe from infinity and need to determine finite po-
sitions outside the object where to place the probing device. Moreover, in order to reach such positions,
we need to determine paths along which the probing device can be safely moved without colliding with
the object.

8.1.2 Statement of the problem

Let O be a bounded open set of R
3 and S its boundary. The goal is to approximate S by a probing tool

that can locate points on S. The following assumption allows us to localize O within R
3, preventing

indefinite searches.

A1 For every connected component Oi of O, we know a point oi that belongs to Oi.

For simplicity, we assume in this chapter that the surface S is connected. A1 tells then that we know
a point o ∈ O. The case of a surface with more than one connected component is analyzed in [21].
Assumption A2 bounds the area of interest and allows us to obtain initial locations and paths for the
probing device without bumping into O.

A2 We know a convex and compact subset Ω of R
3 that contains S (and hence also O). We denote by

∂Ω the boundary of Ω.

We have at our disposal a probing device, which is an oracle that, once placed at some point p of
R

3 \ O, can be oriented towards any direction v and then tasked to return the first point of transverse
intersection between S and the ray defined by (p, v). The probing device can move freely in R

3 \ O but
cannot penetrate O. Such a device can be constructed in practice, using for instance a laser with three
DOFs of displacement and two DOFs of rotation, that can cast a ray in any direction and measure its
distance to the point where the ray hits the object.
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We assume that the probing device provides exact information. The outcome of a probe is a point
on the boundary of the object.

We need also to define the accuracy measure for our reconstruction. The accuracy will be measured
by the Hausdorff distance. Since the measured points are on the boundary S of the object, the accuracy
of the reconstruction will be ε iff any point of S is at distance at most ε from a measured point. In such
a case, the set of measured points is an ε-sample of S.

As mentioned above, to be able to make any reconstruction claims, we need to restrict the class of
shapes we probe. We consider here those with positive reach or positive k-Lipschitz radius.

A3 We know a positive constant εS less than rch(S) if S has a positive reach, and less than lrk(S) if
S is k-Lipschitz.

Finally, we need a model of computation to analyze the complexity of our algorithm. Following
the perception-action-cognition paradigm, we distinguish between the information or probing cost, the
displacement cost, and the combinatorial cost. This distinction is also reminiscent of the difference made
between combinatorial and informational complexity in the work on information-based computation
[109, 110]. The probing cost measures the number of probes and indicates the amount of information
that becomes available to our algorithm. The displacement cost accounts for the motion of the probing
device. The combinatorial cost measures the arithmetic operations and comparisons required, as well as
the maintenance cost of the data structures. As discussed later, it is not possible in general to optimize
all costs simultaneously.

8.1.3 Overview of the chapter

Under assumptions A1-A3, we show that S can be approximated by a triangulated surface Ŝ within any
desired accuracy. Moreover, Ŝ recovers the exact topology of S and the error on the normal deviation of
the facets of Ŝ is also bounded.

The chapter is organized as follows. In Section 8.2 we describe the probing algorithm, present its
main properties in Section 8.3, and analyze its complexity in Section 8.4.

8.2 The probing algorithm

If we except the moves of the probing device, our algorithm is quite similar to Chew’s algorithm. The
main difference concerns the oracle that is used to discover the surface S. In our case, to check whether
a Voronoi edge e intersects S or not, we must first move our probing device to one of its endpoints. This
requires two things: first, that at least one endpoint v of e be located in R

3 \ O; second, that we know a
free path from R

3 \Ω (where the probing device can move freely) to v, i.e. a continuous curve included
in R

3 \ O that goes from R
3 \ Ω to v.

Recall that, given a point set E, the Voronoi graph of E, or VG(E) for short, is the 1-skeleton graph
of the Voronoi diagram Vor(E). Our basic intuition is to constrain the probing device to move along the
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edges of VG(E) \O, which are called the free edges1. A difficulty arises from the fact that, when a new
point p is inserted in E, some of the current Voronoi vertices and edges may disappear. It follows that
portions of VG(E) \ O that could be reached by the probing device from R

3 \Ω before the insertion of
p may no longer be reachable afterwards. See Figure 8.1 for an illustration.

Figure 8.1: The insertion of a point splits VG(E) \ O into two connected components, one of which is
then no longer reachable from R

3 \ Ω.

To overcome this difficulty, once a free path π(v) from R
3 \ Ω to some Voronoi vertex v has been

found, we store π(v) in memory so that v will remain reachable by the probing device permanently.
Hence our paths are made of two types of edges: edges that belong to the current Voronoi graph, and
edges that do not but were edges in some former Voronoi diagram.

By moving the probing device along our free paths, and by probing from each visited Voronoi
vertex towards its neighbor vertices in Vor(E), we can detect a subset of the points of VG(E) ∩ S
and construct a subcomplex of Del|S(E) called the visible restricted Delaunay triangulation of E, or
simply Delv|S(E). Every point of S that has been probed is the center of a Delaunay ball, called ball of
Delv|S(E), that circumscribes a facet of Delv|S(E).

8.2.1 Data structure

We proceed as in Chew’s algorithm, by storing Delv|S(E) as a subcomplex of Del(E). Inside every
Delaunay tetrahedron, we mark each of the four facets as being or not being part of Delv|S(E). This way,
every Delaunay facet is marked twice since it belongs to two Delaunay tetrahedra.

In order to store the paths for the probing device, every Voronoi vertex2 v is given a pointer prev to
the previous vertex on a path from R

3 \Ω to v. By convention, v.prev = NULL means that we know no
free path from R

3 \ Ω to v. In such a case, v is said to be inactive. Otherwise, v is called active.

1More generally, any object (point, segment, curve etc.) that lies outside O is said to be free.
2In practice, it is its dual Delaunay tetrahedron that we consider. However, for simplicity, we will identify Delaunay

tetrahedra with Voronoi vertices in the sequel.
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If a newly created Voronoi vertex v belongs to R
3 \ Ω, then we set v.prev ← v since v can be

reached by the probing device. In particular, an infinite Voronoi vertex (i.e. the endpoint at infinity of
an unbounded Voronoi edge) always lies outside Ω, which is compact. Thus, the prev field of an infinite
vertex is never NULL. If v belongs to Ω, then we initialize v.prev← NULL.

To construct and then update Delv|S(E), we use a routine named DETECT_ACCESS, introduced in
Figure 8.2. Starting from an active vertex vstart, DETECT_ACCESS performs a depth-first traversal of
VG(E) \ O to see which previously inactive vertices can be reached by the probing device from vstart

through free edges of the Voronoi graph.

DETECT_ACCESS (vstart):
// Precondition: vstart is active
foreach neighbor v of vstart do

PROBE edge [vstart, v];
if ([vstart, v] ∩ S 6= ∅) then

add the dual of [vstart, v] to Delv|S(E);
else if (v.prev = NULL) then
// v becomes active

if (v ∈ Ω) then
v.prev← vstart;

end if
MOVE the probing device from vstart to v;
DETECT_ACCESS (v);
MOVE the probing device from v to vstart;

end if
end foreach

Figure 8.2: Routine DETECT_ACCESS

Initial construction Given an initial point set E ⊂ S, we compute Delv|S(E) by moving the prob-
ing device successively to all the vertices of VG(E) that lie outside Ω (including the infinite vertices3).
For every such vertex v, we set v.prev← v and then we call DETECT_ACCESS on v.

After the initialization phase, every Voronoi vertex that can be reached from R
3\Ω by walking along

edges of VG(E) \ O is active. Moreover, every active vertex is given a free path to R
3 \ Ω.

Update Each time a new point p is to be inserted in E, we update Delv|S(E) as follows:
• before the insertion, we look at the active vertices of Vor(E) that no longer exist in Vor(E ∪{p}). By
definition, they lie in V(p), the cell of p in Vor(E ∪ {p}). We keep these vertices in memory and we

3Processing the infinite vertices in the same manner as the other ones simplifies the presentation but is not quite satisfactory
since it involves moving the probing device to infinity. However, this can be avoided easily by clipping VG(E) by ∂Ω and
calling DETECT_ACCESS on all the intersection points of ∂Ω ∩ VG(E).
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leave their prev pointers unchanged. This way, every active vertex will remain active in the sequel and
will keep its path to R

3 \ Ω.
• after the insertion, we look at the new vertices of the Voronoi diagram (including the infinite ones),
which by definition are the vertices of V(p). For any such vertex v, we need to determine whether v can
be reached from R

3 \ Ω through edges of VG(E) \ O:
– if v ∈ R

3 \ Ω, we set v.prev← v and move the probing device to v. Such a move is called a
positioning displacement. Then, we call DETECT_ACCESS on v.

– otherwise, we look at the only neighbor v′ of v that is not a vertex of V(p). If v′ is active and
if edge [v, v′] is free (which we can easily determine since [v, v′] is included in a former Voronoi
edge that has been probed from v′), we perform a positioning displacement by moving the probing
device to v′. Then, we call DETECT_ACCESS on v′.

8.2.2 The algorithm

The algorithm takes as input a user-defined value ε such that 0 < ε < 0.07 εS , which by A3 is less than
0.07 rch(S) if S has a positive reach and less than 0.07 lrk(S) if S is k-Lipschitz. As will be shown in
Section 8.3.3, controlling ε allows to bound the Hausdorff distance between S and the PL approximation
built by the algorithm.

The algorithm starts by computing an initial point set EI made of the three vertices of a λ-persistent
facet, with λ = 0.14 εS . To do so, it cannot use the method of Section 4.4 directly, since that method
requires to compute the critical points of some height function. Instead, the algorithm places the probing
device at a point p of ∂Ω and probes from p towards point o. Since o ∈ O and p ∈ R

3 \ O, the probing
device finds a point u ∈ S, such that the segment [p, u] is free. The algorithm then chooses two other
directions, very close to direction [p, u), so that the probing device will find two other points of S,
namely v and w, such that the triangle (u, v, w) is circumscribed by a sphere centered on S of radius at
most λ/2. According to Lemmas4 1.5 and 2.13, the normal of S in the vicinity of u is well approximated
by the unit vector nuvw orthogonal to aff(u, v, w) that has a non-negative inner product with (p − u).
Then, the same construction as in Section 4.4 can be performed using nuvw instead of n, with the same
theoretical guarantees.

After the construction of the initial point set EI , the algorithm works as Chew’s algorithm (see
Section 4.1.3), using the probing device to answer the oracle. Specifically, the data structure is Delv|S(E),
and the balls of Delv|S(E) whose radii are greater than ε are stored in a priority queue Q. These balls
are called the bad balls of Delv|S(E). While Q is not empty, the algorithm retrieves from Q a bad ball
B(c, r) of largest radius and inserts its center c in E. The algorithm then updates Delv|S(E) as described
in Section 8.2.1, and updates Q as follows:

– the former bad balls that disappear because of the insertion of c are removed from Q;
– the new bad balls that are created by the insertion of c are inserted in Q.

The algorithm stops when Q is empty, that is, when no ball of Delv|S(E) is bad. The point set E is then
renamed EF and returned as well as Delv|S(EF ).

4In the nonsmooth case, the triangle (u, v, w) must not have too small inner angles, which can easily be ensured.
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8.3 Correctness of the algorithm and quality of the approximation

In this section, we analyze the probing algorithm. We prove that it terminates in Section 8.3.1. In Section
8.3.2, we exhibit two invariants that are instrumental in proving the geometric properties of the output
surface in Section 8.3.3. The analysis of the complexity of the algorithm is deferred to Section 8.4.

8.3.1 Termination

Since Delv|S(E) is a subcomplex of Del|S(E), the proof of Lemma 4.7 holds when the algorithm is run
with the probing device instead of the exhaustive oracle. Hence, the algorithm inserts finitely many
points. This implies that the number of Voronoi edges created is finite. Since a Voronoi edge is probed
only from its vertices, it is probed at most twice. Hence, the probing device performs finitely many
probes. As a consequence, the algorithm terminates.

8.3.2 Invariants of the algorithm

Proposition 8.1 The following assertions hold throughout the course of the algorithm:
P1 All active Voronoi vertices can be reached from R

3\Ω by moving the probing device along current
or former Voronoi edges.
P2 Any two Voronoi vertices that lie in the same connected component of VG(E) \ O have the same
status, active or inactive.

Proof. We proceed by induction. Clearly, (P1) and (P2) are verified after the initialization phase. Let
us now consider a step of the algorithm during which a new point (say p) is inserted in E and Delv|S(E)

is updated. Our induction hypothesis is the following:

IH Assertions (P1) and (P2) hold in set E before the insertion of p.

We will prove successively that (P1) and (P2) are still verified after the insertion of p. In the sequel, E
denotes the point sample before the insertion of p.

(P1) Let v be a vertex that is active after the insertion of p.
P1.1 If v existed and was already active before the insertion of p, then its path π(v) to R

3 \Ω remains
unchanged since all the vertices of π(v) are kept in memory and DETECT_ACCESS does not change the
status of active vertices. It follows that v is reachable by the probing device from R

3 \ Ω after the
insertion of p, since it was so before by (IH).
P1.2 If v did not exist or was not active before the insertion of p, then v is visited by DETECT_ACCESS

during the update of Delv|S(E). Since we run DETECT_ACCESS only on new vertices lying in R
3 \ Ω and

on former active vertices, v is given a free path either to a new vertex lying in R
3 \ Ω, or to a former

active vertex which, as explained in P1.1, remains reachable by the probing device after the insertion of
p. In both cases, v is reachable by the probing device from R

3 \ Ω.
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(P2) Let us prove that the vertices v and w of any free edge e of VG(E ∪ {p}) have the same status
after the update of Delv|S(E). It will then follow, by transitivity, that (P2) still holds after the insertion of
p.
P2.1 If a vertex of e (say v) is visited by DETECT_ACCESS during the update of Delv|S(E), then it
becomes active if not so before, and DETECT_ACCESS visits also w if the latter is not active. Thus, v and
w are both active afterwards.
P2.2 If neither v nor w is visited by DETECT_ACCESS, then they keep their status during the update
of Delv|S(E). Hence, it suffices to prove that they have the same status right before. If neither v nor w
is a vertex of V(p), then they are both old Voronoi vertices, and e is an old edge, which implies that
v and w have the same status, by (IH). If one of them belongs to V(p), then none can be active, since
otherwise, during the update of Delv|S(E), the algorithm would run DETECT_ACCESS on the one(s) that
is (are) active, hereby contradicting the hypothesis of P2.2. ¤

8.3.3 Geometric properties of the output

In this section, we prove that Delv|S(EF ) approximates S topologically and gemetrically. Specifically,
Delv|S(EF ) is isotopic to S and close to S for the Hausdorff distance. Moreover, EF is a OS(ε)-sample
of S.

Theorem 8.2 If S has a positive reach, then EF and Delv|S(EF ) verify assertions (a)–(e) of Theo-
rem 4.4. If S is k-Lipschitz, with k ≤ tan

(

1
2 arctan 1

3
√

3

)

≈ 0.1, then EF and Delv|S(EF ) verify
assertions (â)–(ê) of Theorem 4.5, with % = 1.

For simplicity, we focus on the smooth case, the Lipschitz case being quite similar. From now on,
we assume that the surface S has a positive reach.

Proof of the theorem. All we have to do is to show that Delv|S(EF ) verifies assertions I1–I3 of
Section 1.2. The theorem will then follow.

Proof of I3. By definition, every facet of Delv|S(E) is circumscribed by a ball of Delv|S(E). Since
the algorithm eliminates the balls of Delv|S(E) that have radii greater than ε, all the balls of Delv|S(EF )

have radii at most ε < 0.07 εS , which is less than µ0 rch(S), by hyp. A3 of Section 8.1.2. ¤

To prove I1, we need a technical result, which is a direct consequence of assertion (P2):

Claim 8.2.1 Let ζ be a connected component of VG(E) \O. Either all the points of ∂ζ ∩S are centers
of balls of Delv|S(E), or none of them is.

Proof. Let p and q be two points of ∂ζ ∩ S. By definition, p and q are centers of balls of Del|S(E).
If ζ contains no (finite or infinite) Voronoi vertex, then it is made of one piece of a Voronoi edge only.
Therefore, p and q cannot be detected by the probing device, and none of them can be the center of a
ball of Delv|S(E). If ζ contains some Voronoi vertices, then, by (P2), all the Voronoi vertices in ζ have
the same status, active or inactive. In the first case, p and q are both centers of balls of Delv|S(E). In the
second case, none of them is, which ends the proof of the claim. ¤
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Using the above claim, we can now prove I1.

Proof of I1. Assertions M1 and M3 of Section 1.2 still hold in our context, since they do not involve
restricted Delaunay facets. Moreover, since the balls of Delv|S(E) are surface Delaunay balls and since
they have small radii upon termination of the algorithm, assertion M2 holds with Del|S(EF ) replaced by
Delv|S(EF ). As a consequence, the projection lemma 1.8 holds for the facets of Delv|S(EF ). It follows
that every edge of Delv|S(EF ) is incident to at most two facets of Delv|S(EF ), by the same proof as in
Lemma 1.10.

Let e be an edge of Delv|S(EF ) and V(e) be the dual Voronoi facet of e. Notice that ∂V(e) ∩ S 6= ∅,
since e belongs to Del|S(EF ). It follows that any connected component ξ of ∂V(e) \ O is a simple
polygonal arc, whose endpoints lie on S and are centers of balls of Del|S(EF ). Moreover, ξ is included
in a connected component of VG(EF )\O. Thus, by Claim 8.2.1, either both endpoints of ξ are centers of
balls of Delv|S(EF ), or none of them is. It follows that the total number of centers of balls of Delv|S(EF )

that lie on ∂V(e) is even. In addition, by Remark 1.9, every edge of ∂V(e) contains at most one center
of ball of Delv|S(EF ). Thus, the number of edges of ∂V(e) that contain centers of balls of Delv|S(EF ) is
even. Equivalently, the number of facets of Delv|S(EF ) that are incident to e is even.

Hence, every edge of Delv|S(EF ) is incident to exactly two facets of Delv|S(EF ). In addition, the
proof of Lemma 1.11 relies only on M1, M3, M5, M6, and on the properties of the umbrellas made
of small restricted Delaunay facets, without any additional argument, thus it holds when we replace
Del|S(EF ) by Delv|S(EF ). It follows that every vertex of Delv|S(EF ) has one umbrella.

As a conclusion, Delv|S(EF ) is a compact surface without boundary. The fact that it is consistently
oriented comes from Lemma 1.12, whose proof uses only the projection lemma 1.8. ¤

Proof of I2. Recall that EI is made of the vertices of a λ-persistent facet f , with λ = 0.014 εS . If
f remains in Del|S(E) until the end of the process, then VG(EF ) ∩ S is not empty. Since VG(EF ) is
connected, at least one point p of VG(EF )∩S belongs to the same connected component of VG(EF )\O
as some infinite Voronoi vertex. By (P2), p can be “seen” from an active Voronoi vertex. Hence,
Delv|S(EF ) is not empty, which proves I2.

If f disappears from Delv|S(E) during the process, then, before f vanishes, I2 is verified by Delv|S(E),
by the same argument as above. Therefore, by the same reasoning as in the proof of Theorem 4.4,
VG(EF ) ∩ S is not empty. Hence, Delv|S(EF ) verifies I2. ¤

Since Delv|S(EF ) verifies I1–I3, the various results of Chapter 1, applied with Ŝ = Delv|S(EF ), show
that assertions (a)–(e) of Theorem 4.4 hold with Del|S(EF ) replaced by Delv|S(EF ). This concludes the
proof of Theorem 8.2. ¤

In the smooth case, since ε < 0.07 εS < 0.07 rch(S), EF is a µ0rch(S)-sample, according to
assertion (c) of Theorem 4.4. By Lemma 1.22, EF is a loose µ0rch(S)-sample. Thus, Del|S(EF ) is
isotopic to S, by Theorem 1.14. It follows that Delv|S(EF ) and Del|S(EF ) are equal, since they are
isotopic and since Delv|S(EF ) is a subcomplex of Del|S(EF ). The same argument holds in the Lipschitz
case, with Theorem 4.4 replaced by Theorem 4.5, Lemma 1.22 by Lemma 2.38, and Theorem 1.14 by
Theorem 2.33.
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8.4 Complexity of the algorithm

As mentioned in the introduction, the complexity of the algorithm has three components: the combi-
natorial cost that measures the memory space and time needed to store, construct and update the data
structures; the probing cost that counts the number of probes performed by the probing device; the dis-
placement cost that measures the effort spent in moving the probing device. Depending on the context,
one can give emphasis to one type of cost or the other.

Notice that it is not possible in general to optimize all costs simultaneously. Take for instance the
parabola P of Figure 4.2. Any Delaunay-based algorithm that optimizes the displacements of the prob-
ing device will somehow follow the curve P , inserting the points of E more or less in their order along
P (see Figure 4.2, left). This makes the overall complexity of the incremental Delaunay triangulation
quadratic. Differently, our algorithm will insert the points in an order defined by the largest empty ball
criterion (see Figure 4.2, right), which does not optimize the displacement cost but makes the combina-
torial cost linear.

Open question 8.3 What are the exact trade-offs between optimizing the combinatorial cost and the
displacement cost?

In the sequel, we analyze the combinatorial cost, probing cost and displacement cost separately.
Since our algorithm enforces the probing device to move along the Voronoi edges, the size of the Voronoi
diagram has a direct impact on all three costs. Let N be the size of the output point set EF , and T be
the overall number of Delaunay tetrahedra created during the course of the algorithm. By Theorem 8.2,
we know that N = OS(ε−2).

8.4.1 Combinatorial cost

Lemma 8.4 The space complexity of the algorithm is OS (N logN) = OS

(

ε−2 log 1
ε

)

if S is a smooth
surface that satisfies the genericity condition of Lemma 4.8. Otherwise, the space complexity isOS(N2) =

OS

(

ε−4
)

.

Proof. The data structure stores the current Delaunay triangulation as well as some of the former
Voronoi vertices. Since every vertex is stored at most once, the size of the data structure is at most
the total number of Voronoi vertices created during the course of the algorithm, which is equal to T .
Moreover, since a Voronoi edge is probed only from its vertices, at most two centers of balls of Delv|S(E)

are stored in the priority queue Q per Voronoi edge. As a consequence, the space complexity of the
algorithm is O(T ).

If S is a smooth surface that satisfies the genericity condition of Lemma 4.8, then T = OS(N logN),
by Theorem 4.20. Hence, the space complexity is OS(N logN). Otherwise, T = O(N 2), since each
point insertion creates at most a linear number of Delaunay tetrahedra. Hence, the space complexity is
O(N2). ¤
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Lemma 8.5 The time complexity of the algorithm is OS

(

N log2N
)

= OS

(

ε−2 log2 1
ε

)

if S is a
smooth surface that satisfies the genericity condition of Lemma 4.8. Otherwise, the time complexity
is OS(N2 logN) = OS

(

ε−4 log 1
ε

)

.

Note that the constants in theO notations depend on the time spent by the probing device to perform
a move or a probe. This amount of time is considered as a constant once the probing device is given.
The proof of the lemma is very similar to that of Lemma 4.15, with an additional subtelty. We recall it
here, for completeness.

Proof. - The cost of maintaining Del(E) is O(T ) since no point location is performed in our case.
- The cost of updating Delv|S(E) is also O(T ) since DETECT_ACCESS stops each time it reaches an

active vertex and any vertex that becomes active remains so. Hence, the number of times a vertex is
visited is at most the total number of incident Voronoi edges created by the algorithm.

- Since a Voronoi edge is probed from its vertices, it contains at most two centers of balls of
Delv|S(E). Hence, the cost of maintaining the priority queue Q of bad balls of Delv|S(E) is O(T log T )

since the total number of centers of balls of Delv|S(E) inserted in Q (and then retrieved from it) is at
most twice the total number of Voronoi edges created during the process.

As a conclusion, the time complexity is O(T log T ). If S is smooth and satisfies the generic-
ity condition of Lemma 4.8, then T = OS(N logN) by Theorem 4.20, and the time complexity is
OS(N log2N). Otherwise, T = O(N 2) and the time complexity is O(N 2 logN). ¤

8.4.2 Probing cost

The algorithm probes only along the Voronoi edges and from their vertices. Since every Voronoi edge
has two vertices, it is probed at most twice. Hence, the total number of probes is at most twice the
total number of Voronoi edges created during the process, which is linear w.r.t. T . It follows that the
probing cost is OS(N logN) = OS

(

ε−2 log 1
ε

)

if S is smooth and satisfies the genericity condition of
Lemma 4.8, and O(N 2) = OS

(

ε−4
)

otherwise.

8.4.3 Displacement cost

We bound the total number of Voronoi edges travelled by the probing device. During the update of
Delv|S(E), two types of displacements are performed (see Section 8.2.1): detection displacements are
performed inside the routine DETECT_ACCESS to locate the intersection points with the surface S; posi-
tioning displacements are performed during the update of Delv|S(E), when the probing device is moved
from one place of VG(E) to another, before issuing a new sequence of probes.

Lemma 8.6 The displacement cost of the algorithm isOS

(

N2 logN
)

= OS

(

ε−4 log 1
ε

)

if S is a smooth
surface that satisfies the genericity condition of Lemma 4.8, and O(N 4) = OS

(

ε−8
)

otherwise.

Proof. The overall cost of the detection displacements has been analyzed in the proof of Lemma 8.5
and shown to be OS (N logN) if S is smooth and satisfies the genericity condition of Lemma 4.8, and
O(N2) otherwise.
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At each iteration, the point that is being inserted hasO(N) neighbors in Del(E). Hence, the probing
device follows O(N) paths from or to R

3 \ Ω during the positioning displacements. The length of each
path is at most the total number of Voronoi edges created, which is O(N 2). Hence, the cost of the
positioning displacements is O(N 3) per iteration. This yields an overall cost of O(N 4).

If S is smooth and verifies the genericity condition of Lemma 4.8, then we can achieve a better
bound. According to Lemma 4.13, for every iteration i > i0, E(i) is a 2r(i)-sample of S, with 2r(i) ≤
ε0. Hence, by Theorem5 1.1, every cell of Vor(E(i)) intersects S along a topological disk that divides
the cell into two components: one lies in O, the other lies in R

3 \ O. Therefore, if p(i) is the point
inserted in E at iteration i, then, right after its insertion, all the vertices of its Voronoi cell V(p(i)) that
can be reached by the probing device will be marked active during the first call to DETECT_ACCESS.
As a consequence, the algorithm has to call DETECT_ACCESS on only one vertex of V(p(i)) (or on its
neighbor). Hence, at iteration i, two paths only are followed by the probing device during the positioning
displacements. The lengths of these two paths are bounded by the overall number of Voronoi vertices
created before iteration i. This number is OS (N logN), by Theorem 4.20. Hence, the overall cost of
the positioning displacements after iteration i0 is OS

(

N2 logN
)

. ¤

The bound for the generic smooth case is almost tight, since on some input objects with generic
smooth boundaries the displacement cost of the algorithm is Ω

(

N2
)

. Figure 8.3 presents an example
in the plane. The top image shows the object O and the initial point sample EI , both symmetric with
respect to the origin (marked by a point at the center of the object). The bottom image shows the point
sample E and the balls of Delv|S(E) at some stage of the course of the algorithm. Since at each iteration
the algorithm inserts the center of the largest ball of Del|S(E), it is easily seen thatE remains symmetric
(or almost symmetric) with respect to the origin throughout the process. Hence, each time a point p lying
inside a cavity is inserted in E, the iteration before or after the algorithm inserts in E the symmetric of
p, which lies in the other cavity. Since the density of the output point sample is uniform, the number of
points inserted inside the cavities is linear with respect to N . Therefore, the overall number of Voronoi
edges travelled by the probing device is Ω

(

N2
)

.

8.5 Implementation and results

We have implemented the probing algorithm using the C++ library CGAL [33], which provided us with
robust and flexible implementations of the Delaunay triangulation in 2D and in 3D. A video [22] is
available online, which describes the algorithm and demonstrates its practicality. Results on a planar
curve and on a surface are reported in Figures 8.4 and 8.5. The active part of the Voronoi graph is
printed in blue, the inactive part in black. Moreover, the faces of Delv|S(E) are shown in green or in red,
depending on whether they are circumscribed by a bad ball of Delv|S(E) or not. In the 2D example, the
inactive part of the Voronoi graph is shown only in the first image, for clarity.

Open question 8.7 In practice a physical scaffold has to be present around the object being sampled to
support the probing device. Can we extend our theoretical results to the case of a probing device whose

5In fact we refer to the proof of this theorem (see [6]), which shows that every d-face of Del|S(E) intersects S along a
topological d-ball, if ever it intersects S.
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Figure 8.3: A quadratic example.

motions obey realistic constraints?



Figure 8.4: Course of the algorithm on a curve in R
2

Figure 8.5: Course of the algorithm on a surface in R
3



Chapter 9

Meshing Volumes with Curved Boundaries

9.1 Introduction

In this chapter, we focus on the problem of constructing tetrahedral meshes to approximate 3-dimensional
objects with curved boundaries. Recall that a tetrahedral mesh is a simplicial mesh whose simplices have
dimension at most 3.

Delaunay refinement, introduced in the plane by Ruppert [99] and then extended to 3-dimensional
space by Shewchuk [102], has proven to be a powerful technique for generating provably good meshes. It
allows the user to get an easy control on the sizes of the mesh elements, for instance through a (possibly
non-uniform) sizing field. Moreover, it constructs meshes with a good grading, able to conform to
quickly varying sizing fields.

However, existing Delaunay refinement algorithms deal exclusively with domains bounded by piece-
wise linear boundaries. In applications where the object to mesh has a curved boundary S, time is spent
discretizing S into a polyhedron P , before the interior of the object can be sampled. Then, the origi-
nal boundary S is dropped away and replaced by its discretized version P . As a result, the quality of
the output mesh and the accuracy of the boundary approximation depend highly on the initial surface
mesh P .

Several methods have been proposed for meshing two-dimensional or three-dimensional domains
with curved boundaries. Most of them deal only with specific types of boundaries (parametric, implicit
etc.) [101], or they simply come with no guarantee regarding the topology of the ouput mesh, or the
quality of its elements, or even the termination of the process [3, 52, 82]. One noticeable exception
is [25], where the algorithm is able to handle any two-dimensional domain bounded by piecewise smooth
curves, of any type, provided that a small number of geometric quantities can be estimated, such as the
curvature of a given curve at a given point or the total variation of the unit tangent vector between two
points on a given curve. The problem with this method is that it is designed exclusively for the two-
dimensional case. Moreover, estimating the required geometric quantities can be time-consuming on
certain types of curves.

125
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9.1.1 Statement of the problem

Given a compact object O whose boundary S is a smooth or Lipschitz surface, our aim is to construct
a 3-dimensional simplicial mesh whose boundary is an accurate approximation of S. The accuracy is
measured by the Hausdorff distance. Moreover, the elements of the mesh (facets and tetrahedra) must
have good aspect ratios and their circumradii are to be prescribed by a user-defined sizing field. Recall
that the aspect ratio of a simplex is the ratio between its circumradius and the radius of its inscribed
sphere.

9.1.2 Our approach

Recall that our surface mesher constructs iteratively a point set E ⊂ S and maintains its 3-dimensional
Delaunay triangulation Del(E). As shown in Chapter 4, upon termination, Del|S(E) approximates S
both topologically and geometrically. It can then be proved that the so-called Delaunay triangulation of
E restricted to O is a good approximation of O – see Section 9.3.

Definition 9.1 Given a finite point set E, the Delaunay triangulation of E restricted toO, or Del|O(E)

for short, is the subcomplex of Del(E) formed by the tetrahedra whose dual Voronoi vertices lie in O.

It suffices then to refine the tetrahedra of Del|O(E) by inserting their circumcenters in E, until they
eventually satisfy some user-defined shape and size criteria. Note however that refining a tetrahedron of
Del|O(E) means inserting a point in O, which implies that E is no longer included in S afterwards. In
order to apply the theoretical results of Part A, we have to make sure that the Delaunay triangluation of
E ∩ S restricted to S is preserved. We will do this by inserting additional points of S whenever it is
necessary.

9.1.3 Overview

We introduce our algorithm in Section 9.2. Section 9.3 deals with the accuracy of the approximation of
the object by the output mesh. In Section 9.4, we prove that the algorithm terminates, and we bound the
number of vertices of the output mesh. Section 9.5 addresses the practicality of the algorithm: it gives
some details about the choice of the sizing field and it explains how to remove the so-called slivers.
Finally, Section 9.6 provides a few examples and experimental results.

Note to the reader: For clarity, the rest of the chapter is written entirely for the case where S is smooth.
Our proofs can be easily extended to the Lipschitz setting, provided that the open question 2.20 is solved.

9.2 Main algorithm

The algorithm takes as input the domain O to mesh, a sizing field σ, and two parameter values α and
%τ . The domain is known through an exhaustive oracle that can tell whether a given segment intersects
S and, in the affirmative, return all the points of intersection (which are finitely many, generically).
Implementations of exhaustive oracles are given in Chapters 6 and 7, for specific applications. We
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assume further that the oracle can tell whether a given point lies inside O or outside. The sizing field is
a positive function σ : Ō → R

+ defined over Ō and assumed to be 1-Lipschitz.
The algorithm first uses Chew’s algorithm to construct an initial point set EI ⊂ S that verifies the

following conditions:
– ∀p ∈ S, d(p,EI) ≤ 0.09 dM(p);
– ∀p ∈ EI , d(p,EI \ {p}) ≥ 0.03 dM(p).

Once EI is built, the algorithm constructs E iteratively, starting with E = EI and inserting one point
in E per iteration. In the meantime, the restricted Delaunay triangulations Del|O(E) and Del|S(E) are
maintained, using the oracle.

At each iteration, one element of the mesh (a facet of Del|S(E) or a tetrahedron of Del|O(E)) is
refined. To refine a tetrahedron, the algorithm inserts its circumcenter in E. A facet f of Del|S(E) may
be circumscribed by several surface Delaunay balls. Thus, to refine f , the algorithm inserts in E the
center of the surface Delaunay ball B(c, r) circumscribing f with largest ratio r/σ(c). The choice of
the next element to refine is driven by the following rules, considered in this order:

R1 if a facet f of Del|S(E) does not have its three vertices on S, then refine f ;
R2 if a facet f of Del|S(E) has a surface Delaunay ball B(c, r) with ratio r/σ(c) > α, then refine

f ;
R3 if a tetrahedron t of Del|O(E) has a circumradius greater than σ(c), where c is the circumcenter

of t, or if t has a radius-edge ratio greater than %τ , then consider the circumcenter c of t:
R3.1 if c is not included in any surface Delaunay ball, then insert c in E;
R3.2 else, insert in E the center of a surface Delaunay ball containing c.

The algorithm terminates when the triggering conditions of Rules R1, R2 and R3 are no longer met. The
point set E is then renamed EF and returned as well as Del|O(EF ).

Every facet of Del|S(EF ) has its three vertices on S (Rule R1) and every surface Delaunay ball
B(c, r) has a radius r ≤ α σ(c) (Rule R2). Moreover (Rule R3), every tetrahedron t of Del|O(EF ) has
a circumradius r ≤ min{σ(c), %τ lmin}, where c is the circumcenter of t and lmin is the length of the
shortest edge of t.

9.3 Approximation accuracy

In this section, we assume that the algorithm terminates. Termination is discussed in Section 9.4, which
uses several results stated here. Let EF |S = EF ∩ S.

Since EI is a 0.09dM-sample of S, EF |S is also a 0.09dM-sample of S, since no point is deleted
during the course of the algorithm. Hence, Del|S(EF |S) is a closed 2-manifold isotopic to S, by Theo-
rem 1.33. Therefore, to have topological guarantees on the output of the algorithm, it suffices to prove
that the boundary of Del|O(EF ) is equal to Del|S(EF |S).

There exists a strong relationship between the boundary of Del|O(EF ) and Del|S(EF ):

Lemma 9.2 The boundary of Del|O(EF ) is a subcomplex of Del|S(EF ). Moreover, if every edge of the
Voronoi diagram Vor(EF ) intersects S at most once, and transversally, then the boundary of Del|O(EF )

is equal to Del|S(EF ).
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Proof. Since Del|O(EF ) is a union of Delaunay tetrahedra, its boundary is a union of Delaunay facets.
Let f be a facet of the boundary of Del|O(EF ). By definition, it belongs to two Delaunay tetrahedra,
one of which has its dual Voronoi vertex inside O, whereas the other one has its dual Voronoi vertex
outside O. It follows that the Voronoi edge dual to f intersects S, which means that f ∈ Del|S(EF ).

Let us now assume that every edge of Vor(EF ) intersects S at most once. Let f be a facet of
Del|S(EF ). By definition, the Voronoi edge dual to f intersects S. Since this edge intersects S only
once, one of its vertices lies inside O whereas the other one (which may be at infinity) lies outside O.
It follows, by definition of Del|O(EF ), that one of the Delaunay tetrahedra incident to f belongs to
Del|O(EF ), while the other one does not. Hence, f belongs to the boundary of Del|O(EF ). ¤

In our case, Del|S(EF ) is precisely the boundary of Del|O(EF ), due to the following result:

Lemma 9.3 Every edge of Vor(EF ) intersects S at most once, and transversally.

Proof. Among the edges of Vor(EF ), only those whose dual Delaunay facets have their three vertices
on S can intersect S, thanks to Rule R1. Let e be such an edge. It is included in an edge e′ of Vor(EF |S).
SinceEF |S is a 0.09dM-sample of S, Remark 1.9 tells that e′ intersects S at most once, and transversally,
which yields the lemma. ¤

Corollary 9.4 The boundary of Del|O(EF ) is Del|S(EF ).

It follows from Corollary 9.4 that, if we can prove that Del|S(EF ) = Del|S(EF |S), then the bound-
ary of Del|O(EF ) will be equal to Del|S(EF |S), which is isotopic to S. We need an intermediate result.

Lemma 9.5 Del|S(EF ) has vertices on all the connected components of S.

Proof. By Rule R1, every edge e of Vor(EF ) that intersects S has a dual Delaunay facet f whose three
vertices are in EF |S . Since EF |S is a 0.09dM-sample of S, the point c = e ∩ S lies at distance at most
0.09 dM(c) from the vertices of f . It follows that the Delaunay ball centered at c intersects S along a
topological disk, by Lemma 1.26. Hence, c and the vertices of f lie on the same connected component
of S. As a consequence, to prove the lemma, it suffices to show that every connected component of S is
intersected by at least one Voronoi edge.

Notice that every connected component Si of S is the fronteer between two connected components
Ω1 and Ω2 of R

3 \S, so that every connected path from Ω1 to Ω2 crosses Si. Therefore, to prove that Si

is intersected by a Voronoi edge, it suffices to prove that Ω1 and Ω2 both contain Voronoi vertices, since
the Voronoi graph of EF is connected.

Let us assume for a contradiction that some component Ω of R
3 \ S contains no Voronoi vertex.

Since the Delaunay balls centered at the Voronoi vertices (including the ones at infinity) cover R
3, at

least one such ball (say B(c, r)) contains a point p of M ∩ Ω, where M is the medial axis of S. Since c
lies outside Ω while p lies inside, the line segment [c, p] intersects the boundary of Ω (which is part of
S). Let q be a point of intersection. The ball centered at q, of radius d(p, q), is contained in the interior
ofB(c, r). Therefore, it contains no point of EF . Now, its radius is d(p, q), which is at least the distance
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from q to M since p ∈ M ∩ Ω. Hence, q is farther from EF than dM(q), which contradicts the fact that
EF |S is a 0.09dM-sample of S. It follows that Ω contains at least one Voronoi vertex, which ends the
proof of Lemma 9.5. ¤

We can now prove that Del|S(EF ) = Del|S(EF |S), by using the fact that Del|S(EF ) is the boundary
of a three-dimensional object, namely Del|O(EF ) (Corollary 9.4).

Lemma 9.6 Del|S(EF ) = Del|S(EF |S).

Proof. Thanks to Rule R1, all the facets of Del|S(EF ) have their three vertices in EF |S , hence their
dual Voronoi edges are included in edges of Vor(EF |S). It follows that Del|S(EF ) is a subcomplex of
Del|S(EF |S).

To prove the lemma, it suffices then to show that every facet of Del|S(EF |S) is also a facet of
Del|S(EF ). Let us assume for a contradiction that there exists a facet f of Del|S(EF |S) that is not
a facet of Del|S(EF ). Let C be the connected component of Del|S(EF |S) to which f belongs. By
Lemma 1.26, the vertices of C belong to a single component Si of S. By Lemma 9.5, at least one vertex
v of Del|S(EF ) lies on Si. Let C ′ be the connected component of Del|S(EF ) that contains v. Since
Del|S(EF ) is a subset of Del|S(EF |S), C ′ is included in C (which is a connected 2-manifold without
boundary). Moreover, since f is not included in C ′ while v is, C ′ has a boundary. Now, by Corollary
9.4, C ′ is a connected component of the boundary of Del|O(EF ). Thus, C ′ cannot have a boundary,
which raises a contradiction. ¤

It follows from the above results that the boundary of Del|O(EF ) is equal to Del|S(EF |S), which
is ambient isotopic to S, by Theorem 1.33. In addition to this topological result, we would like to give
a bound on the Hausdorff distance between S and the boundary of Del|O(EF ), depending on the input
sizing field σ. Let µ = min{0.09, supp∈S

α σ(p)
dM(p) }. Our bound will depend on µ. So far, we know that

EF |S is a 0.09dM-sample of S.

Lemma 9.7 The surface Delaunay balls of EF and those of EF |S are the same.

Proof. Since every edge of Vor(EF ) that intersects S is included in an edge of Vor(EF |S), the surface
Delaunay balls of EF are also surface Delaunay balls of EF |S . Let us show that the converse is true.
Let e be an edge of Vor(EF |S). If e∩S 6= ∅, then |e∩S| = 1, by Remark 1.9. Moreover, the Delaunay
facet dual to e belongs to Del|S(EF ), by Lemma 9.6. This means that e contains an edge e′ of Vor(EF ),
such that |e′ ∩ S| ≥ 1. Hence e ∩ S = e′ ∩ S. ¤

Thanks to Lemma 9.7, Rule R2 controls the radii of all the surface Delaunay balls of Del|S(EF |S),
which implies that, upon termination of the algorithm, EF |S is a loose µdM-sample of S. From this
observation we deduce the following

Theorem 9.8 Del|O(EF ) is a 3-manifold ambient isotopic to Ō, at Hausdorff distance OS(µ2) from Ō,
where µ = min{0.09, supp∈S

α σ(p)
dM(p) }. Moreover, the surface Delaunay balls of EF cover S.
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Proof. By Corollary 9.4 and Lemma 9.6, the boundary of Del|O(EF ) is equal to Del|S(EF |S). Since
EF |S is a loose µdM-sample of S, we know by Theorem 1.33 that there exists an ambient isotopy
φ : [0, 1]× R

3 → R
3 that maps S to Del|S(EF |S). The map φ(1, .) : R

3 → R
3 is an ambient home-

omorphism that maps the compact 3-manifold Ō to a compact 3-manifold bounded by Del|S(EF |S).
Now, the only compact 3-manifold bounded by Del|S(EF |S) is Del|O(EF ) itself1. Thus, we have
φ(1, Ō) = Del|O(EF ), which means that Del|O(EF ) is ambient isotopic to Ō.

Since Del|O(EF ) and Ō are both compact, their Hausdorff distance is achieved by a pair of points
lying on their boundaries. Hence, we have dH(Del|O(EF ), Ō) = dH(Del|S(EF |S), S), which by
Theorem 1.33 is OS(µ2).

Finally, by Theorem 1.33 and Lemma 9.7, the surface Delaunay balls of EF cover S. ¤

Observe that the results of this section do not rely on Rule R3. Hence, they hold not only upon
termination, but also during the course of the algorithm, each time neither Rule R1 nor Rule R2 can
be applied. In particular, Theorem 9.8 holds every time Rule R3 is triggered. This observation will be
instrumental in proving Lemma 9.10 of Section 9.4.

9.4 Termination and size of the output

In this section, we provide conditions on parameters α and %τ to ensure that the algorithm terminates.
We assume that the sizing field σ is 1-Lipschitz over Ō.

Our strategy is to prove an upper bound on the size of the point sample constructed by the algorithm.
The termination of the algorithm results from this bound.

Definition 9.9 Given a point p inserted in E by the algorithm, the insertion radius of p, or r(p) for
short, is the Euclidean distance from p to E right before its insertion2. The insertion radius of a point p
of the initial point set EI is the Euclidean distance from p to EI \ {p}.

Our first task is to provide a lower bound on the insertion radius of every point inserted by the
algorithm. In fact, we will prove a stronger result, stated as Lemma 9.10. We define a sizing field σ0

which can be considered as an extension of dM over Ō:

∀p ∈ Ō, σ0(p) = inf {d(p, q) + dM(q) | q ∈ S} (9.1)

It follows immediately from (9.1) that σ0 is a positive 1-Lipschitz function, equal to dM on S. As
proved in [3, 90, 108], σ0 is the pointwise maximal 1-Lipschitz function which is at most dM on S.
Let σ′(p) = min{α σ(p), 0.03 σ0(p)}, ∀p ∈ Ō. Notice that, since σ and σ0 are 1-Lipschitz, σ′ is
γ-Lipschitz, where γ = max{α, 0.03}.

Lemma 9.10 If α < 1
5 and %τ ≥ 4

1−5γ , then, at any iteration of the algorithm, we have:
C1 ∀p ∈ E, r(p) ≥ σ′(p)
C2 ∀p ∈ E \ E|S , d(p, S) ≥ 1

1−γ σ
′(p)

1Del|O(EF ) is compact because it is a finite union of tetrahedra.
2Notice that it is also the length of the smallest Delaunay edge that is created when inserting p.
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Proof. We prove the lemma by induction. Initially, we have E = EI , and every point p of EI verifies
C1, since p is father than 0.03dM(p) from EI \ {p}. Moreover, the points of EI belong to S, thus C2
is also verified. Let us now assume that C1 and C2 are verified by every point of E, up to a certain step
where point c is inserted in E. We will prove that c also verifies C1 and C2.

• If Rule R1 is being applied, then c is the center of a surface Delaunay ball ofE whose bounding sphere
passes through a point p ∈ E \ E|S . The insertion radius of c is the radius of the surface Delaunay ball,
i.e. r(c) = d(c, p). Moreover, d(c, p) ≥ d(p, S), which is at is at least 1

1−γ σ′(p) by C2. Since σ′ is
γ-Lipschitz, we have σ′(p) ≥ (σ′(c)− γ d(c, p)), hence:

d(c, p) ≥ 1

1− γ
(

σ′(c)− γ d(c, p)
)

⇒ r(c) = d(c, p) ≥ σ′(c)

It follows that C1 is verified for c. Moreover, C2 is also verified, since c belongs to S.

• If Rule R2 is applied, then c is the center of a surface Delaunay ball of radius greater than α σ(c) ≥
σ′(c), thus the insertion radius of c is at least σ′(c), which satisfies C1. Moreover, C2 is satisfied since c
belongs to S.

• If Rule R3.1 is applied, then c is the center of a tetrahedron t, and the insertion radius r(c) is the
circumradius r of t. According to Rule R3.1, r is either greater than σ(c) or greater than %τ lmin, where
lmin is the length of the shortest edge of t. In the first case, we have r > σ(c) > α σ(c) ≥ σ ′(c), since
α < 1. In the second case, we have r > %τ lmin. Among the vertices of the shortest edge of t, let p be
the one inserted last. We have r(p) ≤ lmin, thus r > %τ r(p). Moreover, by C1, we have r(p) ≥ σ′(p).
Hence, r ≥ %τ σ

′(p). Since σ′ is γ-Lipschitz, %τ σ
′(p) is at least %τ (σ′(c)−γ d(c, p))≥ %τ (σ′(c)−γr).

It follows that r ≥ %τ

1+%τ γ σ
′(c), which means that C1 is verified for c if %τ satisfies:

%τ ≥
1

1− γ (9.2)

To check C2, we notice that, in both cases (r > σ(c) and r > %τ lmin), r(c) is bounded from below
by %τ

1+%τ γ σ′(c). Let q be a nearest neighbor of c on S. We have d(c, S) = d(c, q) ≥ d(c, E|S) −
d(q, E|S), where d(c, E|S) ≥ r(c) ≥ %τ

1+%τ γ σ
′(c).

Since Rule R3 is applied only when R1 and R2 are fulfilled, Theorem 9.8 holds right before c is
inserted. Hence, the surface Delaunay balls of E cover S, and q belongs to a surface Delaunay ball B ′′,
of center c′′ and radius r′′. Let p ∈ E be a vertex of the facet of Del|S(E) circumscribed by B′′. d(q, p)
is at most 2r′′ because p and q both belong to B ′′. Due to Rule R2, r′′ is at most α σ(c′′), which is at
most α(σ(q) + r′′) since σ is 1-Lipschitz. It follows that d(q, E|S) ≤ d(q, p) ≤ 2α

1−α σ(q), which is less
than 3α σ(q) because α < 1

3 . Moreover, since EI ⊆ E|S is a 0.09dM-sample of S, d(q, E|S) is also
bounded by 0.09 dM(q)= 3 (0.03 σ0(q)). Thus, d(q, E|S) ≤ 3 σ′(q).

Hence, d(c, S) = d(c, q) ≥ %τ

1+%τ γ σ′(c) − 3 σ′(q). Since σ′ is γ-Lipschitz, we have σ′(q) ≤
σ′(c) + γ d(c, q), thus d(c, S) = d(c, q) ≥ 1

1+3γ

(

%τ

1+%τ γ − 3
)

σ′(c). It follows that C2 is verified for c
if %τ satisfies:

1

1 + 3γ

(

%τ

1 + %τγ
− 3

)

≥ 1

1− γ , i.e. %τ ≥
4

1− 5γ
(9.3)
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• If Rule R3.2 is applied, then c is the center of a surface Delaunay ballB, of radius r = r(c), containing
the circumcenter c′ of a tetrahedron t′ of circumradius r′ ≥ %τ

1+%τ γ σ
′(c′) (see case R3.1). Since σ′ is γ-

Lipschitz, we have σ′(c′) ≥ σ′(c)−γ r(c). Moreover, the circumsphere of t′ is empty, thus r′ ≤ d(c′, p),
for any point p of E lying on the bounding sphere of B. Since B contains both p and c′, d(c′, p) is at
most 2r(c). Hence,

2r(c) ≥ d(c′, p) ≥ r′ ≥ %τ

1 + %τγ

(

σ′(c)− γ r(c)
)

, i.e. r(c) ≥ %τ

2 + 3%τγ
σ′(c)

Therefore, C1 is verified for c if %τ satisfies:

%τ ≥
2

1− 3γ
(9.4)

Moreover, C2 is verified because c ∈ S.

To conclude, Conditions C1 and C2 are verified if %τ and γ satisfy Eqs. (9.2), (9.3) and (9.4), which
is granted if we choose γ < 1

5 (and hence α < 1
5 ) and %τ ≥ 4

1−5γ . ¤

From now on, we assume that α < 1
5 and that %τ ≥ 4

1−5γ , where γ = max{α, 0.03}. Given a point
p included in EI or inserted by the algorithm, we define B(p) as the open ball centered at p, of radius
ρ(p) = 1

2(1+γ) σ
′(p).

Lemma 9.11 The balls {B(p)} are pairwise disjoint.

Proof. Given two points p and q inserted by the algorithm, we assume without loss of generality
that q was inserted in E before p. The distance from p to q is then at least r(p). By Lemma 9.10
(Condition C1), we have r(p) ≥ σ′(p), which is at least 1

1+γ σ′(q) since σ′ is γ-Lipschitz. Thus,
d(p, q) ≥ 1

1+γ max{σ′(p), σ′(q)}. It follows that 1
2(1+γ) σ

′(p) + 1
2(1+γ) σ

′(q) ≤ d(p, q), which means
that B(p) and B(q) are disjoint. The same argument holds if p or q belongs to EI . ¤

Let ρinf > 0 be the infimum of ρ over S. It follows from Lemma 9.11 that the distance between
any two points inserted by the algorithm is at least 2ρinf . Then, by the same packing argument as in the
proof of Lemma 4.7, the algorithm terminates.

To compute an upper bound on the size of EF , we need another result which states that every ball
B(p) lies partly inside O, and that the volume of the part included in O can be lower-bounded.

Lemma 9.12 For any p ∈ EF , B(p) ∩ O contains a ball of radius 1
2 ρ(p).

Proof. We distinguish between two cases:
• If p lies inside O, then, according to Lemma 9.10 (Condition C2), the distance from p to S is at least

1
1−γ σ′(p), which is greater than 1

2 ρ(p). Hence, the ball centered at p, of radius 1
2 ρ(p), is included

in O.
• Otherwise, p lies on S. There are two medial balls B+ and B− tangent to S at p. One of them (say
B+) is included in O, whereas the other one is included in R

3 \ O. Since B+ is a medial ball, its radius
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is at least dM(p) > σ′(p). Moreover, the radius of B(p) is ρ(p) < σ′(p). It follows that the intersection
of B(p) with B+ contains a ball of radius 1

2 ρ(p). ¤

Theorem 9.13 If α < 1
5 and %τ ≥ 4

1−5γ (where γ = min{α, 0.03}), then

|EF | = O

(
∫∫∫

O

dO
σ3

0

+
1

α3

∫∫∫

O

dO
σ3

)

where σ0 depends only on O (not on σ).

Proof. We use the same scheme as in Chapter 3. We will bound the integral of 1/σ ′3 over O, where σ′

is the minimum of α σ and of 0.03 σ0. Since B(p) ∩ O ⊆ O for any p ∈ EF , we have
∫∫∫

O

dO
σ′3
≥
∫∫∫

S

p∈EF
(B(p)∩O)

dO
σ′3

Moreover, the balls B(p) are pairwise disjoint, by Lemma 9.11, thus
∫∫∫

S

p∈EF
(B(p)∩O)

dO
σ′3

=
∑

p∈EF

∫∫∫

(B(p)∩O)

dO
σ′3

In addition, since σ′ is γ-Lipschitz, we have:

∀q ∈ B(p), σ′(q) ≤ σ′(p) + γ d(q, p) ≤ σ′(p) + γ ρ(p) =

(

1 +
γ

2(1 + γ)

)

σ′(p)

It follows that
∑

p∈EF

∫∫∫

(B(p)∩O)

dO
σ′3
≥
∑

p∈EF

Vol (B(p) ∩ O)
(

1 + γ
2(1+γ)

)3
σ′3(p)

Now, by Lemma 9.12, the volume of B(p) ∩ O is at least 4
3π

1
64(1+γ)3

σ′3(p), which yields:

∑

p∈EF

Vol (B(p) ∩ O)
(

1 + γ
2(1+γ)

)3
σ′3(p)

≥
∑

p∈EF

π
48(1+γ)3

σ′3(p)
(

1 + γ
2(1+γ)

)3
σ′3(p)

=
π

6 (2 + 3γ)3
|EF |

which is at least 1
34 |EF | since γ < 1

5 . Hence, |EF | is at most 34
∫∫∫

O
dO
σ′3 . Now, σ′(q) is defined as the

minimum of α σ(p) and of 0.03 σ0(p), which are positive functions. It follows that
∫∫∫

O
dO
σ′3 is at most

∫∫∫

O
dO

α3 σ3 +
∫∫∫

O
dO

0.033 σ3
0

, which ends the proof of the theorem. ¤

9.5 Practicality of the algorithm

9.5.1 Sizing field

The meshing algorithm presented in the previous sections takes as input a sizing field σ : Ō → R
+

which, for the purpose of the analysis in Section 9.4, is assumed to be 1-Lipschitz. This section explains
how to deal with user-defined sizing fields that are not Lipschitz or not defined everywhere in Ō.
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Let us assume that the user wants a mesh whose grading conforms to a sizing field σu that is not
1-Lipschitz. Then we can use the technique of Miller, Talmor and Teng [90] to derive from σu a new
sizing field σ′u that is 1-Lipschitz:

∀p ∈ Ō, σ′u(p) = inf {d(p, q) + σu(q) | q ∈ Ō}

Notice that σ′u(p) ≤ σu(p), ∀p ∈ Ō. The field σ′u is the best 1-Lipschitz approximation of σu [3],
because any 1-Lipschitz function that is pointwise at most σu is also pointwise at most σ′u.

The meshing algorithm can be run using the sizing field σ ′
u, however it is not necessary to compute

σ′u inside O. Indeed, the algorithm requires an evaluation of the sizing field at internal points only in
Rule R3, when refining a tetrahedron. A tetrahedron t is refined either when its circumradius is greater
than the value of σ at its circumcenter, or when its radius-edge ratio is greater than %τ . A careful
look at the proof of termination shows that a positive 1-Lipschitz lower bound on the circumradii of
tetrahedra is sufficient for the proof. Then, since σ′

u(p) ≤ σu(p) for any p ∈ E, the proofs still hold
if rule R3 is applied when r ≥ σu(p). Besides saving some sizing field evaluations, this variant of the
algorithm constructs sparser meshes whose densities conform to the user-defined sizing field, with a
grading bounded only by the bound %τ on the radius-edge ratio.

In the case where the user has no particular sizing requirements, the 1-Lipschitz sizing field used in
the analysis is the field σ0 defined in Eq. (9.1), at the beginning of Section 9.4. Here again, the algorithm
does not need to evaluate3 σ0 inside O. It may simply skip the size test for tetrahedra and consider for
refinement only the tetrahedra with a radius-edge ratio greater than %τ . Since the occasions of refining
tetrahedra are fewer in this variant than in the original version of the algorithm, it is clear that this variant
also terminates. Its output is a mesh whose sizing is a fraction of dM on S and grows as fast as possible
(regarding the bound on the radius-edge ratio) when moving towards the medial axis.

In any case, the algorithm needs to compute dM at some points on S in order to test whether the
precondition of Rule R2 is met. This issue has already been addressed in Section 5.4.

9.5.2 Sliver removal

Optimizing radius-edge ratios prevents our output mesh from containing any bad tetrahedra, except
possibly slivers. Recall that a sliver is a tetrahedron whose vertices are close to a great circle of its
circumsphere and equally spaced along this circle.

Cheng et al. [41], and later on Cheng and Dey [40], proposed to exude slivers from the mesh by
assigning carefully chosen weights to the vertices, so that their weighted Delaunay triangulation contains
as few slivers as possible. Li and Teng [84] proposed to avoid slivers by relaxing the choice of refinement
vertices inside small areas around the circumcenters of the elements to be refined.

In our context, we use the sliver exudation algorithm of Cheng et al. [41] as a post-process. The
output mesh is no longer a Delaunay triangulation, but a weighted Delaunay triangulation. Although
the theoretically guaranteed bound on aspect ratios is known to be miserably low [41], the method is
efficient in practice and generates almost sliver-free meshes [61].

3Note however that computing dM on S is still necessary, in order to check the sizes of the facets of Del|S(E).
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Figure 9.1: Skull model: 89, 245 vertices (among which 35, 483 lie on S) and 442, 542 tetrahedra.

9.6 Implementation and results

The algorithm has been implemented in C++, using the geometric library CGAL [33] which provided
us with an efficient and flexible implementation of the three-dimensional Delaunay triangulation.

Figures 9.1 and 9.2 show two meshes generated by our algorithm coupled with the post-processing
step described in Section 9.5.2. Each figure is composed of two views of the output mesh: one shows
the boundary (top left), the other shows a zoom on the interior, cut by a plane4 (right). The bottom-left
corner of each figure shows the distribution of the inversed aspect ratios of the tetrahedra, represented
on a linear scale ranging from 0 to 1

3 (which corresponds to the inverse of the aspect ratio of a regular
tetrahedron). The histograms are normalized with respect to area, so that we can make fair comparisons
between meshes of different sizes.

In Figure 9.1, the boundary of the domain is a level set in a 3D grey-scaled image. Its diameter
is about 280 millimeters, and its reach approximately 1 millimeter. Although our theoretical results
require strict conditions on σ, α and %τ , in practice the algorithm works well under weaker conditions.
For instance, in this example we used a uniform sizing field of 2 millimeters, with α = 1 and %τ = 2,
which is far beyond the theoretical limits. Note that the topology of the domain has been captured, and
that the boundary has been accurately approximated.

The inversed aspect ratios distribution of our algorithm (in medium grey) has been superimposed
with those obtained by two other algorithms: the unit edge mesher of [70, 71] (in dark grey), and
the variational mesher of [3] (in light grey). These two programs, run with our initial surface mesh

4The screenshots were obtained using Medit [89].
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Figure 9.2: Tanglecube model: 57, 293 vertices and 226, 010 tetrahedra.

Del|S(EI) (33, 012 vertices) as input, generated approximately the same number of vertices as our
mesher. Their running times, on a Pentium IV at 1.7 GHz, are respectively 10 seconds and 10 minuts.
The running time of our algorithm on this example is 20 seconds to insert the 53, 762 vertices lying
insideO and the 2, 471 remaining vertices on S, and 1 minut to exude slivers from the mesh. Compared
to the other meshers, our algorithm carries out a good compromise between running time and quality of
the output.

In Figure 9.2, the boundary of the domain is the tanglecube surface, introduced in Chapter 6. We
used no sizing field inside the domain and σ0 = 0.09 dM on its boundary, as described in Section
9.5.1. The bound %τ on the radius-edge ratios was set to 2, which enforced the grading of the output
mesh. Although the overall appearance of the inversed aspect ratios distribution is deteriorated due to
the non-uniformity of the sizing field, the quality of the output mesh remains quite acceptable.
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We have presented a simple meshing algorithm and provided evidence that it is generic enough to be
of use in a wide variety of practical situations. To apply the algorithm to a new context, it suffices to
implement an oracle capable of answering a few basic geometric questions. As an illustration, we have
presented various implementations of the algorithm for sampling algebraic surfaces, extracting isosur-
faces from 3D medical images, remeshing polyhedra, reconstructing smooth shapes, probing surfaces,
and meshing 3-dimensional objects with curved boundaries. Our experiments illustrate the universal-
ity of the method and its practical efficiency. In particular, comparing our results and timings to those
obtained by the Marching Cubes algorithm, we could emphasize on the advantages of our approach:
topological guarantees, approximation of normals, facets with bounded aspect ratio, optimal size.

To prove the correctness of the algorithm, we have used the concept of Delaunay triangulation re-
stricted to a surface or to a volume, and studied its properties under some sampling conditions. We
have introduced the notion of loose ε-sample, which turned out to be as powerful as the classical notion
of ε-sample, but which is easier to check and to construct. Maybe the most important contribution of
this thesis is the concept of k-Lipschitz radius, defined on k-Lipschitz surfaces, which allowed us to
prove that (loose) ε-samples provide theoretical guarantees in a more general setting than the traditional
smooth case. As a result, the output of our mesher is certified both in the smooth and in the Lipschitz
cases.

Prospects

Surface reconstruction We have proved that the restricted Delaunay triangulation of a (loose) ε-
sample E of a Lipschitz surface S approximates S both topologically and geometrically. As mentioned
in the introduction of the thesis, reconstructing S from E reduces then to finding which facets of the
Delaunay triangulation belong to Del|S(E). In the case where S is unknown, this question is not trivial.
It has been elegantly solved in the smooth setting, as reported in [30, 31]. Can any of these methods
be extended to the Lipschitz setting? This would lead to the first provably good surface reconstruction
algorithm for nonsmooth surfaces.

Noisy data Our work uses a noise-free model, where every point sampled from a surface S lies pre-
cisely on S. Such a model is not always pertinent in practice, due to the imperfection of measuring
devices. Dey and Goswami [56] introduced a more realistic noise model and proved that a variant of
the reconstruction algorithm of [55] can reconstruct S with guarantees. As mentioned in Section 6.5,
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the presence of noise leads to a wrong approximation of the normals of S by the Voronoi edges that
intersect S. The idea of Dey and Goswami is to approximate the normals of S by Voronoi edges that
lie farther from S, in areas where the noise in the input point set E has less impact on the structure of
the Voronoi diagram of E. This idea has been carried further by Chazal and Lieutier [35], who proved
that, under a more general noise model, a subset of the Voronoi diagram of E remains stable under
Hausdorff perturbation. A nice extension of our work would be to combine these ideas with ours, to
produce a theory of approximation that holds both in the smooth and Lipschitz settings, and both in the
noise-free and noisy cases. Chazal and Lieutier [36] made a step in this direction, by showing that the
homology groups of any object O with positive weak feature size can be retrieved from a sufficiently
close Hausdorff approximation of O.

Higher dimensions Our sampling condition can be used for curves in any dimension: extending the
proofs is not difficult, and in fact the proofs are simpler. Further research is needed to extend this work
to manifolds of dimension more than one embedded in spaces of higher dimensions. Note that most
of our arguments extend to higher dimensions in a more or less straightforward manner. However, a
problem remains: checking that a simplicial complex Ŝ is a manifold requires to check its faces of all
dimensions. In 3D, this reduces to checking only the edges and vertices of Ŝ. It is no longer the case in
higher dimensions, and many pathological cases can occur. This is a serious bottleneck. There is also
another issue: when S is a submanifold of R

d of codimension greater than one, it is a waste of time
and space to construct the full-dimensional Delaunay triangulation of a given point sample of S. As
a consequence, our meshing algorithm is no longer effective, and therefore other strategies should be
considered [72].

Boundaries Our surfaces are assumed to have no boundary. The case of a surface with boundaries
as some similarity with the case of a volume bounded by a smooth surface. The approach presented in
Chapter 9 can be easily adapted to mesh surfaces with smooth boundaries. The proofs are more technical,
due to the fact that the codimension is one and not zero, but they keep the same spirit. The major defect
is the smoothness assumption. However, our work on Lipschitz curves/surfaces can probably be used to
prove the correctness of the approach on nonsmooth surfaces with nonsmooth boundaries. This would
yield a sampling theory for surfaces with boundaries, which would be simpler than existing theories in
the smooth case [73], and which would also be relevant in the nonsmooth setting.

Singularities Our theoretical results in the nonsmooth setting assume that the surface S is k-Lipschitz,
for some sufficiently small k. Our experiments show that the theoretical bound on k is far below the
practicle bound, which seems to lie somewhere around

√
2. When k lies beyond this limit, patholog-

ical cases may occur since our sampling method is blind and does not detect singularities. The same
observation has been made before in the context of conforming Delaunay meshes [43, 48], where the
goal is to conform a Delaunay triangulation to a polyhedron with possibly small angles. The solution
proposed then consisted in detecting and then protecting the sharp edges and corners. The same kind
of approach could perhaps be used for meshing k-Lipschitz surfaces with large k, or at least piecewise
smooth surfaces.
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Non-Lipschitz case To conclude, let us emphasize that the non-Lipschitz case is also to be addressed
in a near future. The sampling condition of Chazal and Lieutier holds for a larger class of shapes than
our sampling condition does, but it provides weaker guarantees. As a consequence, what are the exact
trade-offs between providing strong guarantees and providing guarantees for a large class of shapes?
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Abstract In the last decade, a great deal of work has been devoted to the elaboration of a sampling
theory for smooth surfaces. The goal was to work out sampling conditions that ensure a good recon-
struction of a given smooth surface S from a finite subset E of S. Among these conditions, a prominent
one is the ε-sampling condition of Amenta and Bern, which states that every point p of S is closer to
E than ε times dM(p), where dM(p) is the distance from p to the medial axis of S. Amenta and Bern
proved that it is possible to extract from the Delaunay triangulation of E a PL surface that approximates
S both topologically and geometrically.

Nevertheless, the important issues of checking whether a given point set is an ε-sample, and con-
structing ε-samples of a given smooth surface, have never been addressed. Moreover, the sampling
conditions proposed so far offer guarantees only in the smooth setting, since dM vanishes at points
where the surface is not differentiable.

In this thesis, we introduce the concept of loose ε-sample, which can be viewed as a weak version
of the notion of ε-sample. The main advantage of loose ε-samples over ε-samples is that they are easier
to check and to construct. Indeed, checking that a finite set of points is a loose ε-sample reduces to
checking whether a finite number of spheres have small enough radii. When the surface S is smooth,
we prove that, for sufficiently small ε, ε-samples are loose ε-samples and vice-versa. As a consequence,
loose ε-samples offer the same topological and geometric guarantees as ε-samples.

We further extend our results to the nonsmooth case by introducing a new measurable quantity, called
the Lipschitz radius, which plays a role similar to that of dM in the smooth setting, but which turns out
to be well-defined and positive on a much larger class of shapes. Specifically, it characterizes the class
of Lipschitz surfaces, which includes in particular all piecewise smooth surfaces such that the normal
variation around singular points is not too large. Our main result is that, if S is a Lipschitz surface and E
is a sample of S such that any point p of S is at distance less than a fraction of the Lipschitz radius of S,
then we obtain similar guarantees as in the smooth setting. More precisely, we show that the Delaunay
triangulation of E restricted to S is a 2-manifold isotopic to S lying at Hausdorff distance O(ε) from
S, provided that its facets are not too skinny. We also extend our previous results on loose samples.
Furthermore, we are able to give tight bounds on the size of such samples.

To show the practicality of the concept of loose ε-sample, we present a simple algorithm that con-
structs provably good surface meshes. Given a compact Lipschitz surface S without boundary and a
positive parameter ε, the algorithm generates a sparse loose ε-sample E and at the same time a triangu-
lar mesh extracted from the Delaunay triangulation of E. Taking advantage of our theoretical results on
loose ε-samples, we can guarantee that this triangular mesh is a good topological and geometric approx-
imation of S, under mild assumptions on the input parameter ε. A noticeable feature of the algorithm
is that the input surface S needs only to be known through an oracle that, given a line segment, detects
whether the segment intersects the surface and, in the affirmative, returns the intersection points. This
makes the algorithm useful in a wide variety of contexts and for a large class of shapes. We illustrate the
genericity of the approach through a series of applications: implicit surface meshing, polygonal surface
remeshing, unknown surface probing, and volume meshing.



Résumé Cette dernière décennie a vu apparaître et se développer toute une théorie sur l’échantillon-
nage des surfaces lisses. L’objectif était de trouver des conditions d’échantillonnage qui assurent une
bonne reconstruction d’une surface lisse S à partir d’un sous-ensemble fini E de points de S. Parmi
ces conditions, l’une des plus importantes est sans conteste la condition d’ε-échantillonnage, introduite
par Amenta et Bern, qui stipule que tout point p de S doit être à distance de E au plus ε fois dM(p),
où dM(p) désigne la distance de p à l’axe médian de S. Amenta et Bern ont montré qu’il est possible
d’extraire de la triangulation de Delaunay d’un ε-échantillon E une surface affine par morceaux qui
approxime S du point de vue topologique (isotopie) et géométrique (distance de Hausdorff).

Néanmoins restaient ouvertes les questions cruciales de vérifier si un ensemble de points donné est
un ε-échantillon d’une part, et de construire des ε-échantillons d’une surface lisse donnée d’autre part.
De plus, les conditions d’échantillonnage proposées jusque là n’offraient des garanties que dans le cas
lisse, puisque dM s’annule aux points où la surface n’est pas différentiable.

Dans cette thèse, nous introduisons le concept d’ε-échantillon lâche, qui peut être vu comme une
version faible de la notion d’ε-échantillon. L’avantage majeur des ε-échantillons lâches sur les ε-
échantillons classiques est qu’ils sont plus faciles a vérifier et à construire. Plus précisément, vérifier si
un ensemble fini de points est un ε-échantillon lâche revient à regarder si les rayons d’un nombre fini de
boules sont suffisamment petits. Quand la surface S est lisse, nous montrons que les ε-échantillons sont
des ε-échantillons lâches et réciproquement, à condition que ε soit suffisamment petit. Il s’ensuit que les
ε-échantillons lâches offrent les mêmes garanties topologiques et géométriques que les ε-échantillons.

Nous étendons ensuite nos résultats au cas où la surface échantillonnée est non lisse en introduisant
une nouvelle grandeur, appelée rayon Lipschitzien, qui joue un rôle similaire à dM dans le cas lisse, mais
qui s’avère être bien défini et positif sur une plus large classe d’objets. Plus précisément, il caractérise la
classe des surfaces Lipschitziennes, qui inclut entre autres toutes les surfaces lisses par morceaux pour
lesquelles la variation des normales aux abords des points singuliers n’est pas trop forte. Notre résultat
principal est que, si S est une surface Lipschitzienne et E un ensemble fini de points de S tel que tout
point de S est à distance de E au plus une fraction du rayon Lipschitzien de S, alors nous obtenons le
même type de garanties que dans le cas lisse, à savoir : la triangulation de Delaunay de E restreinte à S
est une variété isotope à S et à distance de Hausdorff O(ε) de S, à condition que ses facettes ne soient
pas trop aplaties. Nous étendons également ce résultat aux échantillons lâches. Enfin, nous donnons des
bornes optimales sur la taille de ces échantillons.

Afin de montrer l’intérêt pratique des échantillons lâches, nous présentons ensuite un algorithme très
simple capable de construire des maillages certifiés de surfaces. Étant donné une surface S compacte,
Lipschitzienne et sans bord, et un paramètre positif ε, l’algorithme génère un ε-échantillon lâche E de S
de taille optimale, ainsi qu’un maillage triangulaire extrait de la triangulation de Delaunay de E. Grâce
à nos résultats théoriques, nous pouvons garantir que ce maillage triangulaire est une bonne approxima-
tion de S, tant sur le plan topologique que géométrique, et ce sous des hypothèses raisonnables sur le
paramètre d’entrée ε. Un aspect remarquable de l’algorithme est que S n’a besoin d’être connue qu’à
travers un oracle capable de détecter les points d’intersection de n’importe quel segment avec la surface.
Ceci rend l’algorithme assez générique pour être utilisé dans de nombreux contextes pratiques et sur une
large gamme de surfaces. Nous illustrons cette généricité à travers une série d’applications : maillage
de surfaces implicites, remaillage de polyèdres, sondage de surfaces inconnues, maillage de volumes.


