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Résumé

Cette thèse s’intéresse au problème de commande optimale (déterministe) d’une équation
différentielle ordinaire soumise à une ou plusieurs contraintes sur l’état, d’ordres quelconques,
dans le cas où la condition forte de Legendre-Clebsch est satisfaite. Le principe du minimum
de Pontryaguine fournit une condition d’optimalité nécessaire bien connue. Dans cette thèse,
on obtient premièrement une condition d’optimalité suffisante du second ordre la plus faible
possible, c’est-à-dire qu’elle est aussi proche que possible de la condition nécessaire du second
ordre et caractérise la croissance quadratique. Cette condition nous permet d’obtenir une
caractérisation du caractère bien posé de l’algorithme de tir en présence de contraintes sur
l’état. Ensuite on effectue une analyse de stabilité et de sensibilité des solutions lorsque l’on
perturbe les données du problème. Pour des contraintes d’ordre supérieur ou égal à deux, on
obtient pour la première fois un résultat de stabilité des solutions ne faisant aucune hypothèse
sur la structure de la trajectoire. Par ailleurs, des résultats sur la stabilité structurelle des
extrémales de Pontryaguine sont donnés. Enfin, ces résultats d’une part sur l’algorithme de
tir et d’autre part sur l’analyse de stabilité nous permettent de proposer, pour des contraintes
sur l’état d’ordre un et deux, un algorithme d’homotopie dont la nouveauté est de déterminer
automatiquement la structure de la trajectoire et d’initialiser les paramètres de tir associés.

Mots clés Commande optimale, contrainte sur l’état, condition d’optimalité du second
ordre nécessaire ou suffisante, algorithme de tir, analyse de stabilité et sensibilité, méthode
d’homotopie.

Abstract

This thesis deals with (deterministic) optimal control problems of an ordinary differential
equation subject to one or several state constraints, of arbitrary orders, in the case when
the strengthened Legendre-Clebsch condition is satisfied. Pontryagin’s minimum principle
provides us with a well-known first-order optimality condition. In this thesis we first obtain
a second-order sufficient optimality condition which is the weakest possible, i.e. which is as
close as possible to the second-order necessary condition and characterizes quadratic growth.
This condition allows us to obtain a characterization of the well-posedness of the shooting
algorithm in presence of state constraints. Then stability and sensitivity analysis of solutions
under perturbation of the data is investigated. We obtain for the first time stability results
for state constraints of order greater than or equal to two that make no assumption on the
structure of the trajectory. Moreover, results on structural stability of Pontryagin’s extremals
are given. Finally, the above results on the well-posedness of the shooting algorithm and on
stability analysis allow us to design a new continuation method, for state constraints of first-
and second-order, whose novelty is to automatically detect the structure of the trajectory and
initialize the associated shooting parameters.

Keywords Optimal control, state constraint, necessary or sufficient second-order optimality
condition, shooting algorithm, stability and sensitivity analysis, continuation method.
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7.1.4 Cas de contraintes linéairement dépendantes . . . . . . . . . . . . . . . 231

7.2 Annexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
7.2.1 Preuve de la proposition 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . 237
7.2.2 Rappel de l’exemple de Robbins [118] . . . . . . . . . . . . . . . . . . . 240
7.2.3 Preuve de (7.17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Bibliographie 251



viii TABLE DES MATIÈRES



Introduction

0.1 Présentation du sujet

0.1.1 Introduction générale à la commande optimale

Dans cette thèse, on s’intéresse au problème de commande optimale déterministe d’une
équation différentielle ordinaire, pouvant s’écrire sous la forme suivante :

min
(u,y)

∫ T

0
`(u(t), y(t))dt + φ(y(T )) (0.1)

sous contrainte ẏ(t) = f(u(t), y(t)) p.p. sur [0, T ], y(0) = y0. (0.2)

L’état, c’est-à-dire le système physique que l’on souhaite commander, est représenté par la va-
riable y, appartenant à l’espace Y := W 1,∞(0, T ; Rn). On peut agir sur cet état indirectement,
via la commande (ou contrôle), représentée par la variable u, que l’on peut choisir dans un
ensemble de commandes admissibles

u ∈ Uad := {u ∈ L∞(0, T ; Rm) : u(t) ∈ U pour p.p. t ∈ [0, T ]} (0.3)

avec U un convexe fermé (éventuellement compact) de R
m. L’action de la commande sur l’état

est modélisée, ici, par une équation différentielle ordinaire (0.2). Parmi toutes les trajectoires
(u, y) admissibles (c’est-à-dire qui satisfont l’équation d’état (0.2) avec u ∈ Uad), on en cherche
une qui minimise une certaine fonction de coût (0.1).

Le problème peut de plus être soumis à un certain nombre de contraintes, par exemple :
des contraintes sur l’état initial et/ou final, sous la forme Ψ(y(0), y(T )) ≤ 0, des contraintes
mixtes sur la commande et sur l’état, du type c(u(t), y(t)) ≤ 0 p.p. sur [0, T ], ou encore des
contraintes (dites pures) sur l’état g(y(t)) ≤ 0 pour tout t ∈ [0, T ]. Ces dernières font l’objet
de cette thèse.

Les problèmes de commande optimale ont des applications dans de nombreux domaines,
par exemple optimisation de trajectoire, robotique, chimie, biologie, économie... Pour résoudre
ces problèmes, deux grandes théories ont émergées indépendamment depuis une cinquantaine
d’années : le principe du minimum de Pontryaguine et le principe de la programmation dy-
namique de Bellman. Avant de présenter brièvement ces théories, introduisons le Hamiltonien
H : R

m × R
n × R

n∗ → R,

H(u, y, p) := `(u, y) + pf(u, y). (0.4)

Principe du Minimum de Pontryaguine

La première théorie, basée sur le Principe du minimum de Pontryaguine (PMP) [116] à
la fin des années 50, donne une condition nécessaire d’optimalité. Si (u, y) ∈ Uad × Y est une
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solution optimale du problème (0.1)-(0.2), alors il existe p ∈ W 1,∞(0, T ; Rn∗), appelé état
adjoint, tel que, p.p. sur [0, T ],

ẏ(t) = f(u(t), y(t)), y(0) = y0, (0.5)

−ṗ(t) = Hy(u(t), y(t), p(t)), p(T ) = φy(y(T )) (0.6)

u(t) ∈ argmin
w∈U

H(w, y(t), p(t)). (0.7)

Des versions du principe du minimum existent bien sûr en présence des diverses contraintes
mentionnées plus haut, et aussi lorsque les données ne sont pas différentiables, voir à ce sujet
Clarke [40], Vinter [126].

Principe de programmation dynamique de Bellman

La deuxième théorie est basée sur le principe de la programmation dynamique de Bellman
[8] dans les années 60. La fonction valeur ϑ du problème, définie par

ϑ(x, t) := inf
(u,y)

{
∫ T

t
`(u(s), y(s))ds+ φ(y(T )) :

ẏ(s) = f(u(s), y(s)) p.p. s ∈ [t, T ], y(t) = x, u(s) ∈ U}
(0.8)

est solution d’une équation aux dérivées partielles non linéaire, dite équation de Hamilton-
Jacobi-Bellman (HJB)







∂ϑ

∂t
(x, t) + inf

w∈U
H(w, x,

∂ϑ

∂x
(x, t)) = 0 (x, t) ∈ R

n × (0, T ),

ϑ(x, T ) = φ(x).

(0.9)

Cette condition d’optimalité est nécessaire et suffisante. L’équation HJB est bien posée au
sens de viscosité (Crandall-Lions [43]). Cette thèse n’aborde pas du tout cette approche, mais
des références classiques sur le sujet sont Barles [7] et Bardi et Capuzzo-Dolcetta [6].

0.1.2 Méthodes numériques de résolution

Il existe différentes méthodes pour résoudre les problèmes de commande optimale, chacune
avec ses avantages et inconvénients. Le choix de la méthode dépend du problème considéré.

Méthodes directes

La méthode la plus couramment employée consiste à discrétiser les équations du problème,
et ainsi on se ramène à un problème de programmation non linéaire (NLP), c’est-à-dire un
problème d’optimisation non linéaire en dimension finie. Le problème discrétisé peut ensuite
être résolu par n’importe quel algorithme d’optimisation en dimension finie, par exemple
par programmation quadratique séquentielle (SQP), voir par exemple Betts [12], Bonnans et
Launay [22], ou par une méthode de points intérieurs, voir Laurent-Varin et al. [84].

L’avantage des méthodes directes est qu’elles sont très faciles à appliquer, et relativement
robustes à l’initialisation. On peut traiter un système avec un grand nombre de variables
d’état. Leur précision est limitée par la précision de la discrétisation, donc le nombre de
variables utilisées, et peut s’avérer insuffisante pour certains problèmes, par exemple pour
calculer des trajectoires aérospatiales, fortement instables et requérant une grande précision.
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Les méthodes directes fournissent une trajectoire et une commande en boucle ouverte (u
en fonction du temps). Des algorithmes récents basés sur les méthodes directes permettent un
calcul temps réel de type feedback et robuste aux perturbations et sont efficaces en pratique,
voir par exemple [46, 47] (Nonlinear Model Predictive Control), [33, 32] (algorithme basé
sur le calcul ‘offline’ des dérivées directionnelles des solutions par rapport au paramètre de
perturbation).

Méthodes de tir

Les méthodes de tir exploitent la forme particulière des conditions d’optimalité données
par le PMP. Sous certaines hypothèses (Hamiltonien fortement convexe par rapport à la com-
mande), le principe du minimum (0.7) permet d’exprimer la commande comme une fonction
de l’état et de l’état adjoint

u(t) = Υ(y(t), p(t)) t ∈ [0, T ]. (0.10)

La condition nécessaire d’optimalité se réduit alors aux équations d’état et d’état adjoint (0.5)-
(0.6), desquelles u est éliminé par (0.10). On obtient alors un système au deux bouts, puisqu’on
a une condition initiale en y et une condition finale en p. L’idée de l’algorithme de tir (voir par
exemple Stoer et Bulirsch [125]) est d’introduire une inconnue, la valeur initiale de l’adjoint
p0, et de considérer la fonction de tir qui à p0 associe la condition finale p(T ) − φy(y(T )), où
(y, p) est solution du problème de Cauchy sur [0, T ] :

{
ẏ = f(Υ(y, p), y), y(0) = y0

−ṗ = Hy(Υ(y, p), y, p), p(0) = p0.

On se ramène donc par cette méthode à chercher un zéro d’une fonction de R
n dans R

n, en
utilisant par exemple un algorithme de Newton.

La méthode de tir a l’avantage d’être très précise, et son coût numérique est faible. Ce-
pendant la convergence nécessite un bon point initial p0, qui est parfois difficile à obtenir
dans la pratique. De plus, pour un problème avec contraintes, une connaissance a priori de la
structure de la trajectoire optimale est requise, comme on le verra dans la suite. La méthode
de tir fournit une trajectoire boucle ouverte et donc non robuste aux perturbations ; dans la
pratique cette trajectoire peut être suivie en utilisant les techniques de suivi de trajectoire de
l’automatique.

Dans cette thèse on s’intéresse tout particulièrement aux méthodes de tir avec contraintes.

Résolution de l’équation HJB

Cette méthode consiste à résoudre numériquement l’équation HJB (0.9) (voir par exemple
[44, 124] et aussi [34]). Une fois la fonction valeur ϑ calculée, il faut ensuite reconstruire les
trajectoires optimales.

Alors que les deux méthodes précédentes (méthodes directes et méthodes de tir) sont des
méthodes locales, c’est-à-dire qu’elles peuvent converger vers un minimum local, la résolution
de l’équation HJB possède l’avantage de fournir un minimum global. De plus, cette dernière
méthode permet de calculer la trajectoire optimale en boucle fermée, c’est-à-dire d’obtenir la
commande u en fonction de l’état y, et elle est donc robuste. Cependant son coût numérique
très élevé la rend difficile à appliquer lorsque la dimension de l’espace d’état est élevée (typi-
quement supérieure à six). De plus, comme pour les méthodes directes, la précision obtenue
est limitée.
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0.1.3 Contraintes sur l’état

Dans cette thèse, on considère le problème de commande optimale (0.1)-(0.2) soumis à une
contrainte distribuée sur l’état du type

g(y(t)) ≤ 0 pour tout t ∈ [0, T ], (0.11)

où g : R
n → R est une fonction régulière. On note (P) ce problème

(P) Minimiser (0.1) sous contraintes (0.2) et (0.11). (0.12)

Sur le plan numérique, la prise en compte de contraintes sur l’état n’introduit pas de difficulté
supplémentaire lorsque l’on utilise une méthode directe. Ces contraintes peuvent également
être prises en compte lors de la résolution de l’équation HJB. La fonction valeur vaut alors
+∞ à l’extérieur du domaine admissible.

Pour appliquer des méthodes de tir, les contraintes sur l’état posent des difficultés théo-
riques. L’algorithme de tir est basé sur le PMP dont l’énoncé en présence de contrainte sur
l’état du type (0.11) est le suivant. Le multiplicateur associé à la contrainte sur l’état (vue
comme une contrainte dans l’espace des fonctions continues) est une mesure de Radon, et
l’état adjoint une fonction à variation bornée.

Théorème 0.1 (Principe du minimum avec contraintes sur l’état). Soit (u, y) une
solution optimale de (P), qui satisfait la condition de qualification 1. Alors il existe (p,dη) ∈
BV (0, T ; Rn∗) ×M[0, T ] tels que, p.p. sur [0, T ],

ẏ(t) = f(u(t), y(t)), y(0) = y0, (0.13)

−dp(t) = Hy(u(t), y(t), p(t))dt + dη(t)gy(y(t)), p(T+) = φy(y(T )) (0.14)

u(t) ∈ argmin
w∈U

Hu(w, y(t), p(t)) (0.15)

g(y(t)) ≤ 0, dη ≥ 0,

∫

[0,T ]
g(y(t))dη(t) = 0. (0.16)

Si (u, y) vérifie le PMP (0.13)-(0.16), on dit que c’est une extrémale de Pontryaguine. On
parle de point stationnaire lorsque (u, y) vérifie (0.13), (0.14), (0.16) et la condition ci-dessous,
plus faible que (0.15) (lorsque U = R

m)

0 = Hu(u(t), y(t), p(t)) p.p. t ∈ [0, T ]. (0.17)

Ce principe du minimum ne permet pas d’appliquer directement un algorithme de tir (voir
ci-après la section 0.2.3). Une reformulation du principe du miminum est pour cela nécessaire,
voir [28, 68, 98]. Deux notions sont utilisées dans cette reformulation : la structure de la
trajectoire, supposée connue a priori, et l’ordre de la contrainte sur l’état.

Structure de la trajectoire

Par structure de la trajectoire, on entend la structure de l’ensemble de contact de la
contrainte

I(g(y)) := {t ∈ [0, T ] : g(y(t)) = 0}, (0.18)

1 Il existe v ∈ Uad tel que gy(y(t))zv−u(t) < 0 pour tout t tel que g(y(t)) = 0, où zv−u est solution de
l’équation d’état linéarisée żv−u = fu(u, y)(v − u) + fy(u, y)zv−u sur [0, T ], zv−u(0) = 0.
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i.e. l’ensemble des temps pour lesquels la contrainte est saturée. On appelle arc frontière (resp.
arc intérieur) un intervalle de temps maximal (de mesure non nulle) sur lequel g(y(t)) = 0
(resp. g(y(t)) < 0). Les extrémités d’un arc frontière [τen, τex] sont appelées point d’entrée et
point de sortie. Si la contrainte est active en un point localement isolé, on parle de point de
contact isolé. Ceci est représenté sur la figure 0.1. On appelle les points d’entrée, de sortie et
de contact isolé des instants de jonction entre arcs.

gi(y(t))

t

(a) Arc frontière

gi(y(t))

t

(b) Point de contact isolé

Fig. 0.1 – Structure d’une trajectoire

Ordre de la contrainte sur l’état

L’ordre de la contrainte sur l’état (voir par exemple Bryson et al. [29]) est le plus petit
nombre de dérivations de t 7→ g(y(t)), lorsque y satisfait la dynamique (0.2), permettant de
faire apparâıtre une dépendance explicite en la variable de commande u. Dans toute la thèse,
on notera q ∈ N

∗ l’ordre de la contrainte sur l’état.
Par exemple, si la dynamique et la contrainte se mettent sur la forme canonique suivante :







ẏ1(t) = y2(t)
...

ẏq−1(t) = yq(t)
ẏq(t) = u1(t)
ẏj(t) = fj(u(t), y(t)), j = q + 1, . . . , n

, g(y(t)) = y1(t) ≤ 0 (0.19)

alors la contrainte est d’ordre q. On voit que dj

dtj
g(y(t)) = y1+j(t) ne dépend pas de u pour

tout j < q et dq

dtq g(y(t)) = y
(q)
1 = u1(t). Plus généralement, pour une contrainte d’ordre q on

peut écrire que

dj

dtj
g(y(t)) =: g(j)(y(t)), 1 ≤ j < q,

dq

dtq
g(y(t)) =: g(q)(u(t), y(t)) (0.20)

pour des certaines fonctions g(j) : R
n → R et g(q) : R × R

n → R.

Relation entre structure de la trajectoire et ordre de la contrainte

Il est connu que la structure d’une trajectoire dépend fortement de l’ordre de la contrainte.
Considérons par exemple les problèmes

min

∫ 1

0

(
u(t)2

2
− y(t)

)

dt, y(q)(t) = u(t), y(t) ≤ h (0.21)
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pour des conditions initiales et finales données, et h > 0 un paramètre. Des exemples voisins
ont été résolus (analytiquement) dans Bryson et al. [29] et Jacobson et al. [75]. Pour q = 1, 2, 3,
nous avons tracé sur la figure 0.2 la famille de solutions lorsque h diminue (la trajectoire est de
plus en plus contrainte). Les solutions ont été obtenues par une méthode de tir. On constate
que l’évolution de la structure des trajectoires diffère selon l’ordre de la contrainte.

Pour q = 1 (figure 0.2(a)), la contrainte devient active pour h = 1/8 en un point de contact
isolé en t = 1/2 qui se transforme immédiatement en un arc frontière pour h < 1/8.

Pour q = 2 (figure 0.2(b)), la contrainte est active d’abord en un point de contact isolé en
t = 1/2 pour 0.167535 ≤ h ≤ 0.252604, puis en un arc frontière pour h < 0.167535.

Pour q = 3 (figure 0.2(c)), la contrainte est active d’abord en un point de contact isolé
en t = 1/2 pour 0.1750022 ≤ h ≤ 0.2500217, puis en deux points de contact isolés pour
h < 0.1750022.

0.2 Résumés des résultats de la thèse

0.2.1 Cadre de travail et hypothèses

Dans toute cette thèse, on étudie le problème de commande optimale avec contrainte sur
l’état (P) défini en (0.12). On s’intéresse à l’approche basée sur le principe du minimum de
Pontryaguine et à la résolution par des méthodes de tir. On suppose de plus dans un premier
temps que Uad = L∞(0, T ) =: U , i.e. la commande est non contrainte et à valeur scalaire.
Dans le chapitre 4 on considérera le cas d’une commande et d’une contrainte g à valeurs
vectorielles, et de contraintes mixtes sur la commande et sur l’état. Noter qu’en considérant le
temps t comme variable d’état (toujours possible en introduisant une nouvelle variable d’état
yn+1 vérifiant ẏn+1 = 1, yn+1(0) = 0 et donc yn+1(t) = t) les problèmes non autonomes (avec
données dépendant du temps) sont pris en compte.

Comme le principe de Pontryaguine ne fournit qu’une condition nécessaire d’optimalité
(du premier ordre), on est amené naturellement à travailler sur des conditions suffisantes
d’optimalité, et en particulier des conditions du second ordre. Ces dernières, comme nous le
verrons dans cette thèse, sont au coeur de nombreux autres résultats, comme l’analyse de
stabilité et sensibilité des solutions (i.e. comment se comportent les solutions si l’on perturbe
les données du problème), à laquelle une grande partie de la thèse est consacrée, ainsi que
l’analyse de convergence des algorithmes (par exemple, l’algorithme de tir, mais également la
convergence des schémas de discrétisation, voir par exemple [54]).

On fera les hypothèses suivantes.
(A0) Les données ` : R × R

n → R, φ : R
n → R, f : R × R

n → R
n, g : R

n → R sont
différentiables autant de fois que nécessaire (typiquement, de classe C 2q où q est l’ordre
de la contrainte sur l’état, à dérivées secondes localement lipchitziennes si q = 2) et la
dynamique f est lipschitzienne.

(A1) La condition initiale (fixée) y0 ∈ R
n satisfait g(y0) < 0.

(A2) Le Hamiltonien est uniformément fortement convexe par rapport à la commande le
long de la trajectoire, i.e.

∃ α > 0, Huu(û, y(t), p(t)) ≥ α pour tout û ∈ R
m et tout t ∈ [0, T ].

(A3) La contrainte sur l’état est d’ordre fini q ∈ N
∗ et régulière sur un voisinage de

l’ensemble de contact I(g(y)), i.e.

∃ γ, ε > 0, |g(q)
u (u(t), y(t))| ≥ γ, pour tout t : dist{t, I(g(y))} < ε.
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(c) q = 3

Fig. 0.2 – Évolution de la structure de la trajectoire optimale du problème (0.21) en fonction
de l’ordre q de la contrainte.
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(A4) La trajectoire est composée d’un nombre fini d’arcs frontière et de points de contact
isolés, et la contrainte est inactive au temps final, i.e. g(y(T )) < 0.

Sous les hypothèses ci-dessus, on a le résultat de régularité suivant, dû à Jacobson et al.
[75] et Maurer [98].

Proposition 0.2. Soit (u, y) une extrémale de Pontryaguine satisfaisant (A0)-(A4). Alors :
(i) La commande u est continue sur [0, T ], et sur l’intérieur des arcs de la trajectoire

(frontière ou intérieur), u est C q et η est continûement différentiable.
(ii) A un point de jonction τ :

(a) Si τ est un point d’entrée-sortie, alors u et ses dérivées jusqu’à l’ordre q − 2 sont
continues en τ , et si q est impair, alors la dérivée d’ordre q−1 de u est aussi continue
et [η(τ)] = 0.

(b) Si τ est un point de contact isolé, u et ses dérivées jusqu’à l’ordre q−2 sont continues
en τ . De plus, si q = 1, alors [η(τ)] = 0 et u et u̇ sont continus en τ .

Par cette proposition, à l’entrée et à la sortie d’un arc frontière, la fonction (du temps)
g(y(t)) et ses dérivées jusqu’à un certain ordre q̂ sont continues, où q̂ := 2q− 2 si q est pair et
q̂ := 2q − 1 si q est impair. On dit qu’un point de contact isolé τto est essentiel, si

[η(τto)] > 0. (0.22)

On fera également les hypothèses suivantes :
(A5) (i) (Conditions de tangentialité) En tout point d’entrée τen ou de sortie τex,

dq̂+1

dtq̂+1
g(y(t))|t=τ−en ,τ

+
en

6= 0. (0.23)

(ii) Les points de contact isolés essentiels τto sont réductibles, i.e.

d2

dt2
g(y(t))|t=τto < 0. (0.24)

(A6) Complémentarité stricte sur les arcs frontière :

int I(g(y)) ⊂ supp(dη).

Discussion des hypothèses Terminons cette section par quelques commentaires sur les
hypothèses. Les problèmes avec données non régulières sont exclus de l’analyse par l’hypothèse
(A0). Les hypothèses (A1) et (A3) de régularité de la contrainte et son analogue (hypothèse
d’indépendance linéaire (4.30)) dans le cas de plusieurs contraintes sont classiques (voir dans
la conclusion la section 7.1.4 pour un affaiblissement de cette dernière hypothèse).

L’hypothèse (A2), sans doute la plus restrictive, exclut un certain nombre de problèmes,
fréquemment rencontrés dans les applications, pour lesquels la commande entre linéairement
dans le coût et dans la dynamique. Cette classe de problèmes inclut les cas du contrôle bang-
bang et des arcs singuliers. On peut affaiblir (A2) en supposant la commande u continue sur
[0,T] et la condition forte de Legendre-Clebsch satisfaite

∃ α > 0, Huu(u(t), y(t), p(t)) ≥ α pour tout t ∈ [0, T ]. (0.25)

En revanche, cette dernière hypothèse est absolument essentielle pour les résultats de cette
thèse. Si elle n’est plus satisfaite, les méthodes utilisées ne s’appliquent plus. Pour les conditions
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du second ordre dans le cas de contrôle bang-bang et/où arcs singuliers, voir par exemple
Dmitruk [49, 51], Osmolovskii et al. [109, 106, 110], Maurer et Osmolovskii [100].

L’hypothèse (A4) stipulant que la structure de la trajectoire est composée d’un nombre
fini d’arcs frontières et points de contact isolés peut parâıtre, à juste titre, restrictive. Pour
q = 1, 2, cela semble être une hypothèse raisonnable, dans le sens où elle est vérifiée en
général sur les applications. De plus, dans [56] pour une contrainte d’ordre un et dans [48,
chap. 2] pour une contrainte d’ordre deux, il a été montré que pour un problème de commande
optimale linéaire quadratique autonome (i.e. le coût est quadratique, l’équation d’état est
linéaire et la contrainte sur l’état linéaire, les données ne dépendant pas du temps), la solution
est analytique par morceaux (et donc a effectivement un nombre fini d’arcs frontière et de
points de contact isolés). Par contre, pour une contrainte d’ordre q ≥ 3, on peut avoir une
infinité de points de contact isolés, même pour un problème linéaire quadratique autonome,
voir [118]. L’hypothèse (A4) parâıt donc restrictive surtout pour des contraintes sur l’état
d’ordre élevé (voir la conclusion section 7.1.3 où le cas d’un nombre infini de points de contact
isolés est discuté).

Les hypothèses (A5) et (A6) sont ‘génériquement’ satisfaites, où ‘génériquement’ s’entend
ici dans le sens où l’on peut toujours perturber légèrement les données pour que ces hypothèses
soient satisfaites. Comme ces hypothèses (A5)-(A6) sont liées à la stabilité de la structure des
solutions, elles deviennent restrictives dès lors que l’on s’intéresse justement aux cas où la
structure des trajectoires n’est pas stable, cas qui se rencontrent inévitablement au cours des
méthodes d’homotopie (voir la section 0.2.5 ci-après).

Enfin, l’extension des résultats dans le cas de contraintes sur l’état initial et/ou final est
discutée dans la section 4.8.

0.2.2 Conditions d’optimalité du second ordre

Introduction

Comme cela a déjà été dit, le principe du minimum de Pontryaguine ne fournit qu’une
condition nécessaire d’optimalité. Il est donc important de savoir si une extrémale de Pon-
tryaguine est un optimum local ou non. C’est l’objet des conditions suffisantes d’optimalité
du second ordre. Une théorie générale sur les conditions du second ordre est présentée dans
Bonnans et Shapiro [24]. Par rapport à la théorie classique, les problèmes de commande op-
timale non linéaire font apparâıtre une difficulté bien connue, la divergence des deux-normes
(two-norms discrepancy), voir [99]. Ceci est illustré sur l’exemple suivant [88, p.126].

Exemple 0.3. Soit

J(u) :=

∫ T

0
(u2(t) − 1)2dt.

Alors J est deux fois différentiable sur L∞(0, T ) (mais pas sur L2(0, T )), et sa dérivée seconde

D2
uuJ(u)(v, v) = 4

∫ T

0
(3u2(t) − 1)v2(t)dt

est une forme quadratique qui s’étend continûment à v ∈ L2(0, T ). Tout minimiseur ū de J
sur L∞(0, T ) est tel que |ū(t)| = 1 pour p.p. t ∈ [0, 1]. En un quelconque de ces minimiseurs,
on a

D2
uuJ(ū)(v, v) = 8

∫ T

0
v2(t)dt = 8‖v‖2

2. (0.26)
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On constate que

il n’existe pas α > 0 tel que D2
uuJ(ū)(v, v) ≥ α‖v‖2

∞ pour tout v ∈ L∞(0, T ).

En revanche, par (0.26), la condition ci-dessus est naturellement satisfaite si on remplace la
norme de L∞ par celle de L2, i.e.

il existe α > 0 tel que D2
uuJ(ū)(v, v) ≥ α‖v‖2

2 pour tout v ∈ L2(0, T ). (0.27)

On peut alors montrer que la condition suffisante du second ordre (0.27) implique que

∃ c, ρ > 0, J(u) ≥ J(ū) + c‖u− ū‖2
2, ∀u, ‖u− ū‖∞ < ρ,

i.e. ū est un minimiseur strict de J sur un petit voisinage de L∞ et satisfait la condition
de croissance quadratique pour la norme L2 (mais ū n’est pas un minimum strict dans un
voisinage L2).

On voit sur cet exemple que l’on est amené à utiliser les deux espaces et les deux normes
pour formuler des conditions du second ordre : L∞, espace dans lequel les applications sont
différentiables, et L2, norme intervenant naturellement dans les conditions du second ordre et
dans la croissance quadratique.

Les conditions suffisantes du second ordre servent à vérifier l’optimalité locale d’une tra-
jectoire extrémale de Pontryaguine ou d’un point stationnaire, et elles jouent aussi un rôle
important dans l’analyse des algorithmes (preuve de convergence et estimations d’erreurs)
et dans l’analyse de stabilité et sensibilité des solutions. Il est donc intéressant d’avoir une
condition suffisante la plus faible possible, et cela peut être réalisé en se rapprochant autant
que possible de la condition nécessaire du second ordre. On parle en particulier de conditions
“no-gap”, lorsque les conditions nécessaire et suffisante du second ordre sont le plus proche
possible, c’est-à-dire qu’elles ne diffèrent qu’entre une inégalité large et une inégalité stricte.

Pour les problèmes de commande optimale, des conditions du second ordre “no-gap” étaient
connues pour les contraintes mixtes sur la commande et sur l’état [108, 105], mais pas pour
les contraintes pures sur l’état. Pour ces dernières, des conditions suffisantes ont été obtenues
dans [99, 89, 94, 95], et, indépendamment, des conditions nécessaires dans [80, 112, 113].

La difficulté propre aux contraintes sur l’état est la présence d’un terme supplémentaire
apparaissant dans la condition nécessaire, appelé terme de courbure. Ce terme, découvert
par Kawasaki [77] (voir aussi [114]), est dû à la présence d’un nombre infini de contraintes
d’inégalités. Pour les contraintes sur la commande ou les contraintes mixtes, on peut montrer
que ce terme de courbure est nul (c’est la théorie de la polyédricité, voir [24, section 3.2.3] et
dans cette thèse la section 4.6). Pour les contraintes sur l’état, ce terme est a priori non nul. Par
contre, seules des conditions suffisantes sans ce terme supplémentaire étaient connues. Dans
cette thèse nous obtenons, pour la première fois, des conditions “no-gap” pour les contraintes
sur l’état.

Résultat

Il est utile de réécrire le problème de commande optimale (P) en fonction de la variable
de commande uniquement, c’est-à-dire que l’état est vu comme une fonction de la commande,
plus précisément y = yu où yu désigne la solution (unique) de l’équation d’état (0.2). On
obtient alors la forme abstraite suivante :

min
u∈U

J(u), G(u) ∈ K (0.28)
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où le coût J(u) est donné par (0.1) avec y = yu, et la contrainte sur l’état (0.11) se réécrit
G(u) ∈ K avec G(u) := g(yu) et K le cône convexe fermé des fonctions continues à valeurs
négatives sur [0, T ]. On dit que u est une solution locale de (P) satisfaisant la condition de
croissance quadratique, si

∃ α, ρ > 0, J(ũ) ≥ J(u) + α‖ũ− u‖2
2, ∀ ũ ∈ U ; ‖ũ− u‖∞ ≤ ρ, G(ũ) ∈ K. (0.29)

La dérivée (Fréchet) au point u de U → Y, u 7→ yu est l’application U → Y, v 7→ zv où zv est
solution de l’équation d’état linéarisée

żv = fu(u, yu)v + fy(u, yu)zv p.p. sur [0, T ], zv(0) = 0. (0.30)

La forme quadratique, définie sur L2(0, T ), impliquée dans les conditions du second ordre est
la suivante. Ici p et η sont les multiplicateurs du Principe du minimum (0.13)-(0.16), et on note
T ess
to l’ensemble (supposé fini) des points de contact isolés essentiels (i.e. satisfaisant (0.22))

supposés réductibles (i.e. satisfaisant (0.24)) de la trajectoire (u, y) :

Q(v) :=

∫ T

0
[Huu(u, yu, p)(v, v) + 2Huy(u, yu, p)(v, zv) +Hyy(u, yu, p)(zv , zv)]dt

+ φyy(yu(T ))(zv(T ), zv(T )) +

∫ T

0
gyy(yu)(zv , zv)dη (0.31)

−
∑

τ∈T ess
to

[η(τ)]
(g

(1)
y (yu(τ))zv(τ))

2

d2

dt2
g(yu(t))|t=τ

.

Le terme apparaissant sur la dernière ligne de l’équation ci-dessus est le terme de courbure. On
voit que ce terme ne fait intervenir que les points de contact isolés essentiels. Les arcs frontière
n’ont pas de contribution. Par la proposition 0.2(ii)(b), ce terme de courbure est toujours nul
pour les contraintes du premier ordre (n’ayant pas de points de contact isolés essentiels).

Enfin, le cône critique CL2(u) dans L2 utilisé dans les conditions du second ordre est défini
comme l’ensemble des v ∈ L2(0, T ) vérifiant les deux conditions ci-dessous :

gy(yu(t))zv(t) = 0, t ∈ supp(dη) (0.32)

gy(yu(t))zv(t) ≤ 0, t ∈ I(g(y)) \ supp(dη). (0.33)

Le résultat principal est le suivant (voir les théorème 1.12, corollaire 1.15, théorèmes 1.18 et
1.27 ainsi que [18, Th. 2.2]).

Théorème 0.4. (i) Soit (u, y) une solution locale de (P), satisfaisant (A0)-(A6). Alors :

Q(v) ≥ 0 ∀ v ∈ CL2(u). (0.34)

(ii) Soit (u, y) une extremale de Pontryaguine satisfaisant (A0)-(A6). Alors (u, y) est une
solution locale de (P) satisfaisant la condition de croissance quadratique (0.29) si et seulement
si

Q(v) > 0 ∀ v ∈ CL2(u) \ {0}. (0.35)

Pour la preuve de la condition nécessaire, on utilise la condition nécessaire du second ordre
obtenue par Kawasaki [77]. On explicite le terme de courbure, dont une première expression
avait été obtenue par Kawasaki [79] pour les contraintes de positivité dans l’espace des fonc-
tions continues. Ce calcul est basé sur des développements de Taylor des fonctions (du temps)
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g(yu(t)) et gy(yu(t))zv(t). Les hypothèses (A4)-(A6) et les résultats cruciaux de la proposi-
tion 0.2(ii) permettent alors de calculer explicitement ce terme de courbure. Ainsi on obtient
(0.34).

Pour obtenir la condition suffisante la plus proche possible de la condition nécessaire, on
doit prendre en compte le terme de courbure, qui peut être non nul lorsque la contrainte est
d’ordre q ≥ 2 et qu’il y a des points de contact isolés essentiels. Pour cela, on utilise une
méthode de réduction, connue en programmation semi-infinie [72] dans un cadre C2. Cette
approche est étendue à l’espace W 2,∞(0, T ). Ceci consiste à dire que pour ε, δ > 0 suffisamment
petits, l’application

B∞(u, δ) → R, ũ 7→ g(yũ(τũ))

où B∞(u, δ) désigne la boule ouverte de centre u et rayon δ dans L∞ et où τũ est l’unique point
de maximum de g(yũ) sur (τ−ε, τ+ε) (τ étant un point de contact isolé de (u, yu) satisfaisant
(0.24)), est bien définie, de classe C1, deux fois Fréchet différentiable en u. Reformulant ainsi
la contrainte sur l’état au voisinage des points de contact isolés essentiels, on obtient dans la
condition suffisante un terme supplémentaire, correspondant exactement au terme de courbure.
Ceci nous permet d’obtenir la condition suffisante (0.35).

0.2.3 Étude de l’algorithme de tir

Introduction

L’algorithme de tir a été appliqué avec succès dans la littérature aux problèmes avec
contraintes sur l’état, voir par exemple [115, 11, 27], mais des difficultés d’ordre théorique
subsistent néanmoins. Pour appliquer l’algorithme de tir, une reformulation du PMP avec
contraintes sur l’état est nécessaire. En effet, le principe de l’algorithme de tir est d’exprimer les
variables algébriques (en l’occurence, u et η̇ — noter que η est bien differentiable sur l’intérieur
de chaque arc en vertu de la proposition 0.2(i)) en fonction des variables différentielles y et p.
Sur un arc intérieur, η̇ = 0 et u s’obtient comme fonction de (y, p) par application du théorème
des fonctions implicites à la relation (0.15) sous l’hypothèse (A2). Sur un arc frontière [τen, τex],
on peut exprimer u comme fonction de y en appliquant sous l’hypothèse (A3) le théorème des
fonctions implicites à la relation

g(q)(u(t), y(t)) = 0, t ∈ [τen, τex], (0.36)

mais l’équation algébrique restante (0.15) ne permet pas d’exprimer η̇ en fonction de (y, p),
puisque η̇ n’apparâıt pas dans cette équation. C’est pourquoi on est amené à reformuler la
condition d’optimalité, en considérant la relation (0.36) comme une contrainte mixte sur les
arcs frontières [τen, τex], avec les q contraintes aux points d’entrée

g(j)(y(τen)) = 0, j = 0, . . . , q − 1 (0.37)

pour avoir l’équivalence avec la condition g(y(t)) = 0 sur [τen, τex]. De même, à un point de
contact isolé τto, on écrit que

g(y(τto)) = 0. (0.38)

Ainsi, si l’on connâıt a priori la structure de la trajectoire (nombre et ordre des arcs frontières
et des points de contact isolés), on se ramène à un problème avec contraintes d’égalité, les
inégalités g(y(t)) < 0 sur les arcs intérieurs, signe du multiplicateur) devant être vérifiées a
posteriori. Le système d’optimalité de ce problème avec contraintes d’égalités (0.36)-(0.38)
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fournit alors une formulation alternative, qui elle peut être résolue à l’aide d’un algorithme de
tir. L’idée originale de cette reformulation est dûe à Bryson et al. [29, 28].

Le problème de cette reformulation est qu’elle ne prend en compte qu’une partie des condi-
tions nécessaires d’optimalité. Ceci provient du fait que dans la formulation alternative, les
instants de jonction sont considérés comme étant fixés, alors qu’ils sont en fait inconnus et
doivent donc satisfaire certaines conditions d’optimalité. De plus, des conditions comme la
continuité des dérivées de u aux points d’entrée/sortie, qui sont des conditions nécessaires
d’optimalité par la proposition 0.2, ne sont pas prises en compte dans la formulation alter-
native. Ainsi, une partie des conditions d’optimalité est perdue, comme cela été montré par
Jacobson et al. [75]. Des conditions supplémentaires, conditions nécessaires d’optimalité, non
prises en compte dans la formulation alternative, et donc pas non plus dans l’algorithme de
tir, doivent être vérifiées a posteriori. Si ce n’est pas le cas, on peut d’ores et déjà éliminer
la solution trouvée qui n’est pas solution de la condition nécessaire d’optimalité, et donc a
fortiori n’est pas une solution locale du problème.

La description précise de l’algorithme de tir est donnée dans la section 2.2. Disons seulement
que pour chaque arc frontière et chaque point de contact isolé, des paramètres supplémentaires
(dont les instants de jonction —inconnus— et des “paramètres de saut” de l’adjoint aux points
d’entrée et de contact isolés, ces derniers pouvant être vu comme des multiplicateurs associés
aux contraintes ponctuelles (0.37)-(0.38)) sont ajoutés comme inconnus de la fonction de tir,
en plus de la valeur initiale de l’adjoint p0.

Résultat

Les questions que nous nous sommes posées sont alors les suivantes : sous quelles conditions
supplémentaires a-t-on précisément l’équivalence entre le PMP avec contraintes sur l’état et
la formulation alternative (il en existe de nombreuses versions différentes dans la littérature,
voir le tour d’horizon [68]) ? Certaines de ces conditions supplémentaires sont-elles automa-
tiquement satisfaites ? Et enfin, cet algorithme de tir ne prenant en compte qu’une partie
des conditions d’optimalité est-il bien posé (au sens où le jacobien de la fonction de tir est
inversible) ?

On établit dans la proposition 2.10 l’équivalence entre la formulation alternative et les
conditions supplémentaires d’une part, et le principe du minimum d’autre part. On montre
de plus dans la proposition 2.15 que certaines des conditions supplémentaires sont automati-
quement vérifiées. Enfin, nous obtenons le résultat principal suivant.

Théorème 0.5 (Th. 2.23). Soit (u, y) une solution locale de (P) satisfaisant (A0)-(A5) et
la condition de complémentarité stricte I(g(y)) = supp(dη). Alors l’algorithme de tir est bien
posé (Jacobien de la fonction de tir inversible) au voisinage de (u, y) si et seulement si

(i) Si q ≥ 3, il n’y a pas d’arcs frontière ;
(ii) La condition suffisante du second ordre (0.35) est satisfaite.

Pour la preuve, on exprime la forme quadratique (0.31) en fonction des multiplicateurs
utilisés dans la formulation alternative, et non plus des multiplicateurs du PMP p et η. On
obtient une expression équivalente de (0.31) notée Qq(v). On calcule ensuite le Jacobien de
la fonction de tir, et on montre qu’un élément dans le noyau est associé à une solution du
système d’optimalité du problème linéaire-quadratique

min
v∈L2(0,T )

Qq(v), s.t. v ∈ CL2(u) (0.39)
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(noter que l’on a supposé la complémentarité stricte, et donc le cône critique CL2(u) se réduit
aux v ∈ L2 qui satisfont (0.32)). Ensuite on utilise les conditions de jonction de la proposi-
tion 0.2 pour montrer que (i) est nécessaire, puis les conditions du second ordre nécessaire et
suffisante du théorème 0.4 pour conclure.

Le fait que l’algorithme de tir soit mal posé s’il y a des arcs frontière pour des contraintes
d’ordre ≥ 3 semble venir du fait que pour les contraintes d’ordre élevé, les arcs frontières se-
raient en général précédés et suivis d’une infinité de points de contact isolés. Ceci est conjecturé
d’après un exemple de Robbins [118] (cet exemple est rappelé dans l’annexe de la conclusion,
section 7.2.2). Ainsi, les arcs frontière avec points d’entrée/sortie réguliers comme considérés
dans cette thèse semblent être pour une contrainte d’ordre q ≥ 3 un cas “pathologique”, pour
lequel l’algorithme de tir est mal posé.

0.2.4 Analyse de stabilité et de sensibilité

Introduction

Pour un problème d’optimisation avec contraintes d’égalités et données régulières (de classe
C2), lorsque les dérivées des contraintes sont “surjectives”, un outil fondamental pour l’analyse
de stabilité et sensibilité est le théorème des fonctions implicites, appliqué à la condition
d’optimalité du premier ordre, sous une hypothèse de condition suffisante du second ordre
[61, 60]. Ainsi, on peut montrer que les solutions sont C 1 par rapport au paramètre. Pour un
problème avec contraintes d’inégalités, lorsqu’une hypothèse de “complémentarité stricte” est
satisfaite, on peut parfois se ramener à un problème avec contraintes d’égalité et donc au cas
précédent.

Pour des problèmes plus généraux dans des espaces de Banach du type (0.28), avec
contrainte dans un cône convexe fermé K, un outil pour l’analyse de stabilité des systèmes
d’optimalité est la théorie de la régularité forte de Robinson [121]. Cette théorie permet en
particulier de s’affranchir de l’hypothèse de complémentarité stricte pour les problèmes avec
contraintes d’inégalités. Lorsque l’hypothèse de complémentarité stricte n’est pas vérifiée, on
sait en général que les solutions sont au mieux directionnellement différentiables. Le prin-
cipe de la régularité forte de Robinson est le suivant. Si l’on peut montrer qu’un problème
linéaire-quadratique, obtenu en linéarisant le problème non linéaire de départ, et perturbé
d’une certaine manière, admet une unique solution qui est localement lipschitzienne par rap-
port au paramètre, alors on peut en déduire que localement, le problème non linéaire admet
lui aussi une solution, localement unique, lipschitzienne par rapport au paramètre. Ainsi dans
l’analyse on se ramène à étudier la stabilité des problèmes linéaire-quadratique (i.e. le coût
est quadratique et la contrainte linéaire).

Pour les problèmes de commande optimale, le phénomène de “divergence des deux normes”
(two-norm discrepancy, voir l’exemple 0.3) ne permet pas de pouvoir appliquer directement
le résultat de régularité forte de Robinson [121]. On doit donc en utiliser des variantes. Une
adaptation de ce résultat prenant en compte le problème des deux normes a été proposée par
Malanowski [87]. Il faut encore travailler pour pouvoir prendre en compte les contraintes sur
l’état, en raison de la faible régularité des multiplicateurs (à variation bornée). Ceci a été
fait dans Malanowski [88] et dans Dontchev et Hager [53], pour les contraintes du premier
ordre uniquement (pour lesquelles les multiplicateurs sont lipschitziens). Bien que les cadres
théoriques utilisés dans ces deux articles diffèrent, les arguments qui permettent d’obtenir le
résultat sont les mêmes. Les idées principales sont d’exploiter la régularité supplémentaire des
solutions et des multiplicateurs du problème de départ (lipschitziens), et de considérer des
perturbations du problème quadratique qui sont elles aussi plus régulières.
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Pour l’analyse de stabilité et sensibilité des problèmes de commande optimale, une autre
approche, plus simple au premier abord, peut être utilisée. Il s’agit de paramétriser le problème
par un nombre fini de paramètres de tir et d’appliquer le théorème des fonctions implicites
classique à la fonction de tir. Cette méthode a été appliquée par Malanowski et Maurer aux
problèmes avec contraintes sur l’état du premier ordre dans [93] et d’ordre supérieur dans [94].
L’inconvénient de cette méthode, au contraire de l’approche ’régularité forte’ présentée dans
le paragraphe précédent, est qu’elle nécessite des hypothèses sur la structure de la trajectoire
(A4) ainsi que des hypothèses de complémentarité stricte uniforme pour assurer la stabilité
de la structure des solutions du problème perturbé.

Résultats

Nous avons considéré une classe de perturbations (Pµ) de (P) régulières (ici, µ désigne
le paramètre de perturbation, et on suppose que (P) ≡ (P µ̄) pour une certaine valeur µ̄ du
paramètre). Plus précisément, les données dépendent de façon régulière (C 2q) du paramètre,
et sont telles que l’ordre de la contrainte du problème perturbé reste le même que celui du
problème de départ. Pour une analyse lorsque l’ordre de la contrainte varie, voir [81, 82].

Nous avons tout d’abord utilisé l’approche par le tir dans l’analyse de stabilité et sensibilité,
en affaiblissant l’hypothèse de complémentarité stricte aux points de contact isolés. Dans ce
cas la structure des solutions n’est pas stable, à la différence de [93, 94]. Cependant, nous
avons montré que sous les hypothèses précédentes, si l’hypothèse de complémentarité stricte
uniforme sur les arcs frontières est satisfaite, i.e.

∃ β > 0,
dη

dt
≥ β sur l’intérieur des arcs frontières (0.40)

alors les arcs frontières sont stables pour des contraintes d’ordre un et deux. Sous l’hypothèse
supplémentaire suivante

Tous les points de contact isolés τto sont réductibles, i.e. satisfont (0.24), (0.41)

nous obtenons le résultat suivant, le premier de ce type sur la stabilité structurelle des points
stationnaires. Ce résultat est basé sur les théorèmes 3.4 et 6.8 pour la stabilité des arcs frontière
pour les contraintes respectivement du premier ordre et du second ordre.

Théorème 0.6. Soit (ū, ȳ) un point stationnaire de (P) satisfaisant (A0)-(A4), (0.40)-(0.41)
et si la contrainte sur l’état est d’ordre q ≥ 3 sans arc frontière. Alors il existe des voisinages
V∞ de ū dans L∞ et W de µ̄ tels que tout point stationnaire (u, y) de (Pµ) avec u ∈ V∞ et
µ ∈ W vérifie les propriétés suivantes :

(i) La contrainte sur l’état n’est pas active en dehors d’un voisinage de l’ensemble de
contact I(g(ȳ)).

(ii) Au voisinage d’un arc frontière de (ū, ȳ) (q = 1, 2), (u, y) a un unique arc frontière.
(iii) Au voisinage d’un point de contact isolé essentiel de (ū, ȳ) (q ≥ 2), (u, y) a un unique

point de contact isolé (essentiel).
(iv) Au voisinage d’un point de contact isolé non essentiel de (ū, ȳ),

(a) si q = 1, ou bien la contrainte sur l’état n’est pas active, ou bien (u, y) a un unique
point de contact isolé (non essentiel) ou un unique arc frontière,

(b) si q ≥ 2, ou bien la contrainte sur l’état n’est pas active, ou bien (u, y) a un unique
point de contact isolé (essentiel ou non).
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Sous les hypothèses du théorème ci-dessus, il existe donc un nombre fini de structures
possibles pour les solutions du problème perturbé. Des différences de structure peuvent se
produire seulement là où la complémentarité stricte n’est pas satisfaite, i.e. aux points de
contact isolés non essentiels. Avec le théorème 0.6, on peut alors conduire l’analyse de stabilité
et de sensibilité par une méthode de tir, car il est possible, dans ce cas, de construire une même
fonction de tir englobant les différentes structures possibles. Le cas le plus simple est celui des
contraintes d’ordre ≥ 2 pour lesquelles un point de contact isolé peut seulement disparâıtre.
Pour les contraintes d’ordre 1, la situation est plus compliquée car un point de contact isolé
peut aussi se transformer en arc frontière. L’idée est alors de considérer dans la fonction de tir
un point de contact isolé comme un arc frontière de longueur nulle. Nous appliquons ensuite
la théorie de la régularité forte de Robinson [121] à la formulation de tir en résultant (sous
forme d’une équation généralisée en dimension finie avec contraintes de complémentarité).
Nous obtenons ainsi le résultat suivant, basé sur le théorème 0.6 et les théorèmes 3.11 et 2.34
pour les contraintes respectivement du premier ordre et d’ordre supérieur ou égal à deux.

Théorème 0.7. Soit (ū, ȳ) un point stationnaire de (P) satisfaisant (A0)-(A4), (0.40)-(0.41)
et si la contrainte est d’ordre q ≥ 3 sans arc frontière. Alors les propositions suivantes sont
équivalentes.

(i) Pour toute perturbation suffisamment régulière (Pµ) de (P), il existe α, ρ > 0 et un
voisinage W de µ̄ tels que pour tout µ ∈ W, il existe un unique point stationnaire (uµ, yµ)
de (Pµ) avec ‖uµ − ū‖∞ < ρ (et d’unique multiplicateurs associés (pµ, ηµ)), et ce point
stationnaire vérifie la condition de croissance quadratique uniforme

Jµ(u) ≥ Jµ(uµ) + α‖u− uµ‖2
2, ∀ u ∈ U ; ‖ũ− u‖∞ ≤ ρ, Gµ(u) ∈ K. (0.42)

(ii) La condition suffisante du second ordre forte ci-dessous est vérifiée :

Q(v) > 0, ∀ v ∈ L2(0, T ) \ {0} satisfaisant (0.32). (0.43)

De plus, si (i) ou (ii) est satisfait, alors l’application W → U × Y, µ → (uµ, yµ) est lipschit-
zienne, et directionnellement différentiable dans l’espace Lr(0, T ) ×W 1,r(0, T ; Rn) pour tout
r ∈ [1,+∞[.

Les dérivées directionnelles des solutions sont obtenues comme solution d’un problème
linéaire quadratique avec contraintes d’égalité et d’inégalité. L’équivalence du Th. 0.7 montre
que la condition du second ordre (0.43) est la plus faible possible pour avoir la stabilité des
solutions. La stabilité des multiplicateurs est un peu plus délicate à énoncer, car à l’exception
des contraintes du premier ordre, les multiplicateurs p et η ne sont pas stables pour la norme
L∞ (en raison de la présence de sauts dont l’instant varie).

Pour les contraintes d’ordre deux (ou d’ordre supérieur à deux), les résultats précédents
ne s’appliquent plus si un point de contact isolé non réductible τto apparâıt, c’est-à-dire que
g(2)(u(τto), y(τto)) = 0. Or ce cas peut se produire au cours des méthodes d’homotopie (voir
section suivante). Dans ce cas, un analogue du Th. 0.6 est obtenu (théorème 6.13) pour les
contraintes du second ordre, qui explicite les différents changements de structure possibles
lorsqu’il y a un point de contact isolé non réductible. Parmi ces différentes possibilités, un arc
frontière ou un second point de contact isolé peuvent apparâıtre. Ces différents changements
de structure ne permettent plus d’utiliser une approche tir pour l’analyse de stabilité.

Pour cette raison, dans le chapitre 5 de la thèse, nous étendons la théorie de la régularité
forte de Robinson et les résultats de stabilité obtenus pour les contraintes du premier ordre
[88, 53] à des contraintes du second ordre. Seules les hypothèses (A0)-(A3) et une condition
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du second ordre sont utilisées dans l’analyse. Ce résultat ne fait donc aucune hypothèse sur la
structure de la trajectoire. Sous une condition du second ordre du type (0.43) (à la différence
que la forme quadratique Q utilisée (0.31) ne fait plus intervenir le terme de courbure), on
montre que localement, le problème perturbé a une solution locale, localement unique, vérifiant
(0.42), qui est lipschitzienne par rapport au paramètre pour la norme L2 et höldérienne pour
la norme L∞ (théorème 5.12).

On obtient donc un résultat plus faible que le Th. 0.7 (dans la mesure où on ne montre pas
la stabilité (lipschitz) L∞, ni que les solutions sont directionnellement différentiables, et on
perd l’implication (i) ⇒ (ii) du Th. 0.7), mais c’est le premier résultat de stabilité (L2) obtenu
pour les contraintes d’ordre 2 sans hypothèse sur la structure de la trajectoire. La preuve est
basée sur la définition de multiplicateurs alternatifs, obtenus par intégration du multiplicateur
η et donc plus réguliers, et l’application du théorème des fonctions implicites généralisé dans
les espaces métriques de Dontchev et Hager [53] à la condition d’optimalité en résultant dans
un cadre fonctionnel convenable. Ce résultat se généralise aisément à une contrainte d’ordre
q ≥ 3.

0.2.5 Méthodes d’homotopie

Introduction

Une difficulté pour appliquer l’algorithme de tir en présence de contraintes est la nécessité
de connâıtre a priori la structure de la trajectoire optimale, qui en général n’est pas connue. De
plus, l’algorithme de tir ayant un domaine de convergence restreint, même lorsque la structure
est connue, initialiser tous les paramètres de tir (instants de jonction et sauts de l’adjoint) de
façon à se trouver dans la zone de convergence de l’algorithme est souvent difficile. Une pos-
sibilité pour pallier cette difficulté est d’utiliser une méthode d’homotopie (ou continuation),
voir [1] et [45, Chap. 5]. La méthode d’homotopie consiste a résoudre une suite de problèmes
dépendant continûement d’un paramètre, telle que le premier problème est “facile” à résoudre,
et le dernier problème est notre problème d’origine. Ainsi, partant par exemple du problème
sans contrainte sur l’état, il devient possible de déterminer de proche en proche la structure
de la trajectoire. C’est ce qui a été fait sur la figure 0.2 pour arriver à la solution du problème
le plus contraint.

Cette méthode, bien connue, a été appliquée avec succès sur un problème non trivial issu de
l’aéronautique avec contrainte sur l’état d’ordre 3 dans [11]. Dans cet article, les changements
de structure étaient gérés “à la main”. Récemment, des méthodes d’homotopie qui réalisent
automatiquement le suivi du chemin ont été appliquées à des problèmes avec contraintes sur la
commande [63, 97]. Plus précisément, pour trouver la structure d’une commande discontinue
(bang-bang ou avec arc singulier), un terme de perturbation quadratique (1 − µ)|u(t)|2 est
ajouté au coût distribué. La commande solution du problème pour µ < 1 est alors continue
et converge (faiblement-* dans L∞) vers la solution discontinue du problème de départ pour
µ = 1. Ce type d’homotopie est différent de celui que nous décrivons dans la suite car le
problème de changement de la structure au cours de l’homotopie ne se pose pas.

Résultats

Grâce aux résultats de stabilité présentés dans la section précédente, nous pouvons proposer
une méthode d’homotopie qui, sous certaines hypothèses (en particulier la complémentarité
stricte uniforme sur les arcs frontière (0.40)), détermine automatiquement la structure de la
trajectoire pour une contrainte d’ordre 1 ou 2. Partant du problème sans la contrainte sur l’état,
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on introduit progressivement celle-ci. La structure des trajectoires va donc changer au cours des
itérations, de même que la dimension des paramètres de tir. La méthode d’homotopie détecte
automatiquement l’apparition ou la disparition d’un arc frontière ou d’un point de contact isolé
pour une contrainte du second ordre, et, en cas d’apparition d’un arc frontière ou d’un point
de contact isolé, initialise les paramètres de tir associés (saut de l’adjoint et instants d’entrée
et de sortie ou de contact isolé). Ainsi, l’utilisateur n’a plus besoin de connâıtre à l’avance la
structure de la trajectoire et doit seulement initialiser l’adjoint initial p0 pour le problème sans
contrainte sur l’état. Une méthode de type prédicteur-correcteur est utilisée le long du chemin
d’homotopie lorsque la structure est constante, ce qui améliore la convergence de l’algorithme.
C’est la première fois qu’une méthode d’homotopie prend en compte automatiquement des
changements de structure avec changement de la dimension des paramètres de tir.

La convergence théorique de l’algorithme d’homotopie a été montrée, sous certaines hy-
pothèses, dans la proposition 3.44 pour les contraintes du premier ordre et dans la proposition
6.28 pour les contraintes du second ordre. L’algorithme a été appliqué numériquement à un
exemple académique avec contrainte du premier ordre dans la section 3.9.4. Pour les contraintes
du second ordre, l’analyse est plus complexe en raison du nombre plus élevé de changements
de structure pouvant se produire (points de contact isolés essentiels et arcs frontière sont tous
deux possibles, alors que seuls des arcs frontière peuvent se produire pour les contraintes du
premier ordre). Une difficulté théorique (non résolue) pour les contraintes du second ordre est
liée à la possible transformation d’un point de contact isolé non réductible en deux points de
contact isolés (car la fonction de tir devient singulière), alors que l’apparition d’un arc frontière
au voisinage d’un point de contact isolé non réductible se traite comme pour une contrainte
du premier ordre.

Les deux points clés dans l’analyse de l’algorithme d’homotopie sont les théorèmes 0.7 et
5.12, qui donnent l’existence et l’unicité locale d’une solution locale au problème perturbé, ce
qui permet d’assurer localement l’existence du chemin d’homotopie, et les théorèmes 0.6 et
6.13, qui donnent l’évolution qualitative de la structure des solutions du problème perturbé
(nombre fini de possibilités), et permettent ainsi à la méthode d’homotopie de déterminer
automatiquement les changements de structure de la trajectoire.

0.2.6 Cas de plusieurs contraintes sur l’état et de contraintes mixtes

Introduction

Les résultats énoncés précédemment s’appliquent au cas d’une commande scalaire et d’une
contrainte sur l’état scalaire. Qu’en est-il lorsqu’on a une commande et une contrainte g à
valeurs vectorielles ? Alors que de nombreux articles se sont intéressés au cas de plusieurs
contraintes du premier ordre et de contraintes mixtes, par exemple [65, 88, 53, 54] (en parti-
culier des résultats de régularité sont connus), la seule référence que nous connaissons traitant
le cas de plusieurs contraintes d’ordre supérieur est un article non publié de Maurer [98]. Dans
[75, 68, 94], seule une contrainte scalaire d’ordre élevée est considérée.

L’extension des résultats précédents dans le cas de plusieurs contraintes sur l’état d’ordre
arbitraire n’est pas triviale. Le cas d’une contrainte et d’une commande scalaires est particulier,
car la commande s’obtient comme fonction implicite de l’état sur un arc frontière par (0.36), et
on peut ensuite en déduire la régularité du multiplicateur sur les arcs frontières en différentiant
autant de fois que nécessaire la relation (0.15). Cet argument ne s’étend pas au cas où la
dimension de la commande est différente du nombre de contraintes actives. Par ailleurs, la
proposition 0.2 sur les conditions de jonctions, qui joue un rôle important dans la preuve des
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théorèmes 0.4 et 0.5, ne s’étend pas non plus trivialement au cas vectoriel. Ainsi la première
question qui se pose est celle de la régularité des solutions et multiplicateurs.

Résultats

Ce sont ces questions qui sont traitées dans le chapitre 4 où l’on s’intéresse au cas de
plusieurs contraintes sur l’état, d’ordres arbitraires, et d’une commande à valeurs dans R

m,
m > 1. Ce chapitre inclut aussi des contraintes mixtes sur la commande et sur l’état, qui dans
l’analyse peuvent être vues comme des contraintes sur l’état d’ordre zéro.

Le premier résultat que nous obtenons est un résultat de régularité de la commande et des
multiplicateurs (section 4.3) analogue à celui connu dans le cas scalaire. Dans la proposition
4.8 nous donnons une condition suffisante assurant la continuité de la commande, puis dans
la proposition 4.13 nous montrons que la commande et les multiplicateurs sont réguliers sur
l’intérieur d’un arc ayant un ensemble de contraintes actives constant. Ensuite nous étendons la
proposition 0.2 au cas vectoriel dans la proposition 4.22. La preuve utilise la mise du système
sous forme normale (section 4.4), c’est-à-dire que la dynamique de chaque composante de
la contrainte peut, après un changement de variables, être mise localement sous la forme
canonique (0.19) (lemme 4.19).

Une fois ces premiers résultats de régularité obtenus, nous sommes en mesure d’étendre au
cas de plusieurs contraintes sur l’état et de contraintes mixtes sur la commande et sur l’état les
conditions du second ordre no-gap du théorème 0.4 dans les théorème 4.24 et corollaire 4.25
et l’analyse de l’algorithme de tir ainsi que le théorème 0.5 dans la section 4.7 et le théorème
4.33.

0.3 Plan de la thèse

Le chapitre 1 correspond à l’article [21]

J.F. Bonnans et A. Hermant. No-gap second-order optimality conditions for op-
timal control problems with a single state constraint and control. Mathematical
Programming, Ser. B., 117 :21–50, 2009.

Les résultats sur les conditions d’optimalité du second ordre y sont présentés, dans le cas d’une
commande et d’une contrainte sur l’état scalaires.

Le chapitre 2 correspond à l’article [19]

J.F. Bonnans et A. Hermant. Well-Posedness of the shooting algorithm for state
constrained optimal control problems with a single constraint and control. SIAM
Journal on Control and Optimization, 46(4) :1398–1430, 2007.

Les résultats sur l’algorithme de tir y sont présentés, toujours pour une commande et une
contrainte sur l’état scalaires, ainsi que l’analyse de stabilité et de sensibilité par l’approche
tir en présence de points de contact isolés non essentiels pour une contrainte d’ordre supérieur
ou égal à deux.

Le chapitre 3 correspond à l’article [20]

J.F. Bonnans et A. Hermant. Stability and sensitivity analysis for optimal control
problems with a first-order state constraint and application to continuation me-
thods. ESAIM Control, Optimization and Calculus of Variations, 14(4) :825–863,
2008.
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L’analyse de stabilité et de sensibilité en présence de points de contact isolés non essentiels
pour une contrainte du premier ordre y est présentée, ainsi que la méthode d’homotopie.

Le chapitre 4 correspond à l’article [17]

J.F. Bonnans et A. Hermant. Second-order analysis for optimal control problems
with pure state constraints and mixed control-state constraints. Annales de l’Ins-
titut Henri Poincaré (C) Analyse Non Linéaire. À parâıtre.

Les résultats sur les conditions de jonction (proposition 0.2), sur les conditions du second ordre
et sur l’algorithme de tir des chapitres 1 et 2 y sont étendus pour une commande à valeurs
vectorielles, plusieurs contraintes sur l’état et des contraintes mixtes sur la commande et sur
l’état.

Le chapitre 5 correspond à l’article [71]

A. Hermant. Stability analysis of optimal control problems with a second-order
state constraint. SIAM Journal on Optimization. A parâıtre.

On y présente les résultats de stabilité pour les contraintes d’ordre deux utilisant une variante
de la théorie de la régularité forte sans hypothèse sur la structure de la trajectoire.

Le chapitre 6 correspond à l’article [69]

A. Hermant. Homotopy algorithm for optimal control problems with a second-order
state constraint. Rapport de recherche INRIA RR-6626 (2008). Soumis.

Ce chapitre est également consacré aux contraintes sur l’état d’ordre deux. On y présente des
résultats étendant partiellement ceux du chapitre 3 aux contraintes d’ordre deux, résultats
portant sur la stabilité structurelle des points stationnaires (stabilité des arcs frontières ; le
cas des points de contact isolés non réductibles est également traité) et sur la méthode d’ho-
motopie.

Enfin, dans le chapitre 7 (conclusion) quelques problèmes ouverts dans la continuité des
travaux de cette thèse sont présentés (vérification de la condition suffisante du second ordre,
extension des conditions du second ordre aux équations aux dérivées partielles, cas d’un nombre
infini de points de contact isolés et cas de contraintes linéairement dépendantes).

Les six premiers chapitres, rédigés sous forme d’article, et présentés dans l’ordre chro-
nologique, peuvent être lu indépendamment les uns des autres. Les notations, hypothèses,
définitions et résultats utilisés y sont rappelés à chaque fois. Le chapitre 1 contient les condi-
tions du second ordre, clé de voûte des autres résultats de la thèse. Le chapitre 2 utilise les
résultats du chapitre 1. Les chapitres 3 et 4 utilisent indépendamment les résultats des cha-
pitres 1 et 2. Le chapitre 5 utilise quelques résultats du chapitre 4. Le chapitre 6 utilise les
chapitres 2, 3 et 5. Le chapitre 7 utilise les chapitres 1 et 4.



Chapitre 1

Conditions d’optimalité du second
ordre∗

Abstract The paper deals with optimal control problems with only one control variable
and one state constraint, of arbitrary order. We consider the case of finitely many boundary
arcs and touch times. We obtain a no-gap theory of second-order conditions, allowing to
characterize second-order quadratic growth.

Résumé Dans cet article, nous étudions un problème de commande optimale avec une com-
mande scalaire et une contrainte sur l’état scalaire d’ordre quelconque. Les instants de jonc-
tion sont supposés en nombre fini. Nous obtenons des conditions d’optimalité du second ordre
nécessaires ou suffisantes, qui permettent de caractériser la croissance quadratique.

1.1 Introduction

Considerable efforts have been done in the past for reducing the gap between second-order
necessary and sufficient optimality conditions for optimization problems in Banach spaces,
with so-called cone constraint (i.e. the constraint mapping must be in a convex cone, or more
generally in a convex set). This framework includes many optimal control problems. The
theory of second-order necessary optimality conditions involves a term taking into account
the curvature of the convex set, see Kawasaki [77], Cominetti [41]. By contrast, second-order
sufficient optimality conditions typically involve no such term; see e.g. Maurer and Zowe [102].
We say that a no-gap condition holds, when the only change between necessary or sufficient
second-order optimality conditions is between a strict and non strict inequality. In that case
it is usually possible to obtain a characterization of the second-order growth condition. There
are essentially two cases when no-gap conditions were obtained: (i) the polyhedric framework,
in the case when the Hessian of Lagrangian is a Legendre form, originating in the work by
Haraux [67] and Mignot [103], applied to optimal control problems in e.g. Sokolowski [123] and
Bonnans [14], and the extended polyhedricity framework in [24, Section 3.2.3]; this framework
essentially covers the case of control constraints (and finitely many final state constraints);
and (ii) the second-order regularity framework, introduced in [16] and [15], with applications
to semi definite optimization. We refer to [24] for an overview of these theories.

∗Joint work with J.F. Bonnans. Published in Mathematical Programming Ser. B, 117 :21–50 (2009), under
the title No-gap second-order optimality conditions for optimal control problems with a single state constraint

and control.
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Our paper deals with state-constrained optimal control problems. This occurs in many ap-
plications, see e.g. [11, 12, 5, 27, 9]. In optimal control theory, no-gap second-order optimality
conditions were known for mixed control-state constraints, see e.g. Milutyin-Osmolovskii [105,
Part. 2], Osmolovskii [108, 109], and Zeidan [127], whose results use conjugate point theory
and Riccati equations.

Generally speaking, problems with non positivity constraints in spaces of continuous func-
tions do not fit into these frameworks, where no-gap second-order conditions were obtained.
The expression of the curvature term in this case was obtained by Kawasaki [79, 78] in the one
dimensional case, and generalized in Cominetti and Penot [42]. Necessary conditions for vari-
ational problems with state constraints taking into account the curvature term can be found
in Kawasaki and Zeidan [80]. However, only sufficient conditions without curvature terms
were known. Two exceptions are a quite specific situation studied in [16] (with applications
to some eigenvalue problems), and the case of finitely many contact points, when the problem
can be reduced locally to finitely many inequality constraints in semi-infinite programming,
see e.g. Hettich and Jongen [72].

Our main result is the following. By a localization argument, we split the curvature term
into a finite number of contributions of boundary arcs and touch points. Using the theory of
junction conditions in Jacobson et al. [75] and Maurer [98], we are able to prove that, under
quite weak assumptions, the contribution of boundary arcs to the curvature term is zero. For
touch points, we use a reduction argument for those that are essential (i.e. that belong to
the support of the multiplier) and we make no hypotheses for the non essential ones. The
only delicate point is to compute the expansion of the minimum value of a function in W 2,∞.
Since it is not difficult to state sufficient conditions taking into account essential reducible
touch points, we obtain in this way no-gap conditions, that in addition characterize quadratic
growth in a convenient two-norms setting.

The paper is organized as follows. In section 1.2, we recall the material needed, in both
points of view of abstract optimization and junction conditions analysis. The main contribu-
tions of the paper are in sections 1.3-1.5 where the no-gap second-order condition is established.
Section 1.3 states the second-order necessary condition (computation of the curvature term).
Section 1.4 handles the second-order sufficient condition. In section 1.5, a reduction approach
is presented in order to deal with the non-zero part of the curvature term.

1.2 Framework

We consider the following optimal control problem with a scalar state constraint and a scalar
control:

(P) min
u,y

∫ T

0
`(u(t), y(t))dt+ φ(y(T )) (1.1)

s.t. ẏ(t) = f(u(t), y(t)) a.e. t ∈ [0, T ] ; y(0) = y0 (1.2)

g(y(t)) ≤ 0 ∀t ∈ [0, T ]. (1.3)

The data of the problem are the distributed cost ` : R × R
n → R, the final cost φ : R

n → R,
the dynamics f : R × R

n → R
n, the state constraint g : R

n → R, the final time T > 0, and
the initial condition y0 ∈ R

n. We make the following assumptions on the data:
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(A0) The mappings `, φ, f and g are k-times continuously differentiable (C k) with k ≥ 2
and have locally Lipschitz continuous second-order derivatives, and the dynamics f is
Lipschitz continuous.

(A1) The initial condition satisfies g(y0) < 0.

Throughout the paper, it is assumed that assumption (A0) holds.

1.2.1 Abstract Optimization

For 1 ≤ p ≤ ∞, Lp(0, T ) denotes the Banach space of measurable functions such that

‖u‖p :=

(∫ T

0
|u(t)|pdt

)1/p

<∞ for p <∞; ‖u‖∞ := supess |u(t)| <∞,

and W 1,p(0, T ) denotes the Sobolev space of functions having a weak derivative in Lp. The
space of continuous functions over [0, T ] is denoted by C[0, T ], with the norm ‖x‖∞ =
sup |x(t)|.

Denote by U := L∞(0, T ; R) (resp. Y := W 1,∞(0, T ; Rn)) the control (resp. state) space.
A trajectory is an element (u, y) ∈ U × Y satisfying the state equation (1.2). Given u ∈ U ,
denote by yu ∈ Y the (unique) solution of (1.2). Under assumption (A0), by the Cauchy-
Lipschitz Theorem, this mapping is well-defined and of class C k. We may write problem (P)
as:

min
u∈U

J(u) ; G(u) ∈ K (1.4)

where J : U → R and G : U → C[0, T ] are defined, respectively, by J(u) =
∫ T
0 `(u(t), yu(t))dt+

φ(yu(T )) and G(u) = g(yu). These mappings are Ck. Here K = C−[0, T ] is the set of
continuous functions over [0, T ], with values in R−.

We say that u ∈ U is a (weak) local solution of (1.4) that satisfies the quadratic growth
condition, if there exist α > 0 and ρ > 0 such that:

J(ũ) ≥ J(u) + α ‖ũ− u‖2
2 for all ũ ∈ B∞(u, ρ), G(ũ) ∈ K (1.5)

where B∞(u, ρ) denotes the open ball in L∞(0, T ) with center u and radius ρ. This condition
involves two norms, L∞(0, T ) for the neighborhood, and L2(0, T ) for the growth condition.

The space of row vectors is denoted by R
n∗. The space of Radon measures, the dual space to

C[0, T ], is denoted by M[0, T ] and identified with functions of bounded variation vanishing at
zero. The cone of nonnegative measures is denoted by M+[0, T ] and is equal to K−, the polar

cone of K. The duality product over M[0, T ] × C[0, T ] is denoted by 〈η, x〉 =
∫ T
0 x(t)dη(t).

Adjoint operators (and transpose in R
n) are denoted by a star ∗. Fréchet derivatives of f , etc.

w.r.t. arguments u ∈ R, y ∈ R
n, are denoted by a subscript, for instance fu(u, y) = Duf(u, y),

fuu(u, y) = D2
uuf(u, y), etc.

Define the classical Hamiltonian and Lagrangian functions of problem (P), respectively
H : R × R

n × R
n∗ → R and L : U ×M[0, T ] → R by:

H(u, y, p) := `(u, y) + pf(u, y) ; L(u, η) := J(u) + 〈η,G(u)〉 . (1.6)

Denote by BV [0, T ] the space of functions of bounded variation. Given u ∈ U and η ∈
M+[0, T ], let the costate pu,η be the unique solution in BV ([0, T ]; Rn∗) of:

−dpu,η = (`y(u, yu) + pu,ηfy(u, yu))dt+ gy(yu)dη ; pu,η(T ) = φy(yu(T )). (1.7)
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Given v ∈ U , let the linearized state zu,v ∈ Y be solution of:

żu,v = fy(u, yu)zu,v + fu(u, yu)v ; zu,v(0) = 0. (1.8)

The mapping U → Y, v 7→ zu,v is the Fréchet derivative of the mapping u 7→ yu at point u.

The next lemma gives the expressions of derivatives of Lagrangian, with respect to the
control. For simplicity of notation, we write in the sequel D2H(u,y)2(u, y, p)(v, z)

2 instead of
D2

(u,y),(u,y)H(u, y, p)((v, z), (v, z)).

Lemma 1.1. Let η ∈ M+[0, T ]. Then u 7→ L(u, η) is of class C2 over U , with first and second
derivatives given by, for all v ∈ U (omitting time argument):

DuL(u, η)v =

∫ T

0
Hu(u, yu, pu,η)vdt, (1.9)

D2
uuL(u, η)(v, v) =

∫ T

0
D2H(u,y)2(u, yu, pu,η)(v, zu,v)

2dt

+ zu,v(T )∗φyy(yu(T ))zu,v(T ) +

∫ T

0
z∗u,vgyy(yu)zu,vdη,

(1.10)

where H is given by (1.6), zu,v and pu,η are the solutions, respectively, to (1.8) and (1.7).

Proof. Since u 7→ yu is C2, the Cauchy-Lipschitz Theorem ensures the existence of the second-
order expansion of the state

yu+v = yu + zu,v +
1

2
zu,vv + o

(

‖v‖2
∞

)

. (1.11)

It is easily seen, substituting (1.11) into the state equation and keeping the terms of second-
order, that zu,vv is solution of:

żu,vv = fy(u, yu)zu,vv +D2f(u,y)2(u, yu)(v, zu,v)
2 ; zu,vv(0) = 0. (1.12)

Using costate equation (1.7) and linearized state equations (1.8) and (1.12), we get easily
(omitting arguments):

DuL(u, η)v = −
∫ T

0
(dpu,ηzu,v + pu,ηżu,vdt) + φy(yu(T ))zu,v(T )

+

∫ T

0
Huvdt;

D2
uuL(u, η)(v, v) =

∫ T

0
D2H(u,y)2(v, zu,v)

2dt+ zu,v(T )∗φyy(yu(T ))zu,v(T )

+

∫ T

0
z∗u,vgyy(yu)zu,vdη

−
∫ T

0
(dpu,ηzu,vv + pu,ηżu,vvdt) + φy(yu(T ))zu,vv(T ).

To obtain (1.9) and (1.10) it suffices, in view of Lemma 1.33 in the Appendix, to integrate by
parts in the above expressions pu,η with zu,v and with zu,vv , respectively.



1.2. FRAMEWORK 25

First Order Necessary Condition. For x ∈ K = C−(0, T ), define the first order contact
set I(x) := {t ∈ [0, T ] ; x(t) = 0}. The expression of the tangent and normal cones (in the
sense of convex analysis) to K at point x, respectively TK(x) and NK(x), are well-known (see
e.g. [24]) and given, for x ∈ K (these sets being empty if x /∈ K), by:

TK(x) = {h ∈ C[0, T ] ; h(t) ≤ 0 on I(x)},
NK(x) = {η ∈ M+[0, T ] ; supp(dη) ⊂ I(x)}.

Here by supp(dη) we denote the support of the measure η ∈ M[0, T ], i.e. the complement

in [0, T ] of the largest open set W ⊂ [0, T ] that satisfies:
∫ T
0 x(t)dη(t) = 0, for all functions

x ∈ C[0, T ] vanishing on [0, T ] \W .
Let u ∈ U . We say that η ∈ M+[0, T ] is a Lagrange multiplier associated with u if the

following first order necessary optimality condition holds:

DuL(u, η) = DJ(u) +DG(u)∗η = 0 ; η ∈ NK(G(u)). (1.13)

The set of Lagrange multipliers associated with u is denoted by Λ(u).
Robinson’s constraint qualification (see [119, 120]) for problem (1.4) is as follows:

∃ ε > 0, εBC ⊂ G(u) +DG(u)U −K. (1.14)

Here BC denotes the unit (open) ball of C[0, T ].
The next theorem is well-known (see e.g. [24], Lemma 2.99 and Theorem 3.9). Note that

for v ∈ U , we have DG(u)v = gy(yu)zu,v, i.e., (DG(u)v)(t) = gy(yu(t))zu,v(t), for all t ∈ [0, T ].

Theorem 1.2. (i) A characterization of (1.14) is:

There exists v ∈ U ; gy(yu(t))zu,v(t) < 0, for all t ∈ I(g(yu)). (1.15)

(ii) Let u be a local solution of (1.4), satisfying (1.15). Then with u is associated a non empty
and bounded set of Lagrange multipliers.

Second Order Analysis. Let the critical cone be defined by:

C(u) = {v ∈ U ; DG(u)v ∈ TK(G(u)) ; DJ(u)v ≤ 0}. (1.16)

For h ∈ TK(x), the second-order contact set is defined by:

I2(x, h) = {t ∈ I(x) ; h(t) = 0}. (1.17)

If (1.13) holds, then DJ(u)v ≥ 0 for all v such that DG(u)v ∈ TK(G(u)) and DJ(u)v = 0 iff
η ⊥ DG(u)v. Since η is a nonnegative measure with support in I(G(u)), and DG(u)v ≤ 0 on
I(G(u)), we obtain the following (classical) statement:

Lemma 1.3. Let (u, η) satisfy the first order necessary condition (1.13). Then:

C(u) = {v ∈ U ; DG(u)v ∈ TK(G(u)); supp(dη) ⊂ I2(G(u), DG(u)v)}. (1.18)

The inner and outer second-order tangent sets, respectively T 2,i
K (x, h) and T 2

K(x, h), are
defined by:

T 2,i
K (x, h) := {w ∈ C[0, T ]; dist(x+ εh+ 1

2ε
2w,K) = o(ε2), ε ≥ 0},

T 2
K(x, h) := {w ∈ C[0, T ]; ∃εn ↓ 0,dist(x+ εnh+ 1

2ε
2
nw,K) = o(ε2n)}.
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We recall the characterization of the inner second-order tangent set T 2,i
K (x, h) due to Kawasaki

[79, 78] (see also Cominetti [42]): if x ∈ K and h ∈ TK(x), then

T 2,i
K (x, h) = {w ∈ C[0, T ] ; w(t) ≤ ςx,h(t) on [0, T ]}, (1.19)

where ςx,h : [0, T ] → R is given by:

ςx,h(t) =







0 if t ∈ (int I(x)) ∩ I2(x, h)

liminf
t′→t ;x(t′)<0

(h(t′)+)2

2x(t′)
if t ∈ ∂I(x) ∩ I2(x, h)

+∞ otherwise.

(1.20)

Here h(t)+ := max{h(t), 0}, and intS and ∂S denote respectively the interior and boundary
of set S. Set T (x, h) := ∂I(x) ∩ I2(x, h). We have ςx,h(τ) ≤ 0 for τ ∈ T (x, h) and it is

not difficult to check that t 7→ ςx,h(t) is lower semi-continuous. Consequently, T 2,i
K (x, h) 6= ∅

iff ςx,h(t) > −∞ for all t. In that case, ςx,h is the upper limit of a increasing sequence of
continuous functions (ςn). Given η ∈ M+[0, T ], we may define (see e.g. [79]):

∫ T

0
ςx,h(t)dη(t) := sup

{∫ T

0
ς(t)dη(t); ς ≤ ςx,h

}

∈ R ∪ {+∞}.

Then:

σ(η, T 2,i
K (x, h)) =

∫ T

0
ςx,h(t)dη(t), (1.21)

where σ(η, S) = supw∈S 〈η, w〉 denotes the support function of the set S. If the support of η
satisfies supp(dη) ⊂ I2(x, h), then

σ(η, T 2,i
K (x, h)) ≤ 0. (1.22)

A second-order necessary condition due to Kawasaki [77] is:

Theorem 1.4. Let u be a local solution of (1.4) satisfying (1.14). Then, for all v ∈ C(u),
the following holds:

sup
η∈Λ(u)

{

D2
uuL(u, η)(v, v) − σ(η, T 2,i

K (G(u), DG(u)v))
}

≥ 0. (1.23)

Remark 1.5. The above second-order necessary condition was improved by Cominetti in [41],
by stating that for all convex set Su,v ⊂ T 2

K(G(u), DG(u)v),

sup
η∈Λ(u)

{
D2
uuL(u, η)(v, v) − σ(η,Su,v)

}
≥ 0. (1.24)

Th. 1.4 is obtained for the particular choice of Su,v = T 2,i
K (G(u), DG(u)v). For the problem

considered in the present paper, we gain sufficient information from (1.23) (see Proposition
1.14).
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1.2.2 Junction Condition Analysis

We first recall some classical definitions. A boundary (resp. interior) arc is a maximal interval
of positive measure I ⊂ [0, T ] such that g(y(t)) = 0 (resp. g(y(t)) < 0) for all t ∈ I. If [τen, τex]
is a boundary arc, τen and τex are called entry and exit point, respectively. Entry and exit
points are said to be regular if they are endpoints of an interior arc. A touch point τ in (0, T )
is an isolated contact point (endpoint of two interior arcs). Entry, exit and touch points are
called junction points (or times). We say that the junctions are regular, when the entry and
exit points are regular. In this paper, only the case of finitely many regular junctions is dealt
with.

The first-order time derivative of the state constraint when y satisfies the state equation
(1.2), i.e., g(1)(u, y) = d

dtg(y(t)) = gy(y)f(u, y), is denoted by g(1)(y) if the function R×R
n →

R; (u, y) 7→ gy(y)f(u, y) does not depend on u (that is, the function (u, y) 7→ g
(1)
u (u, y) is

identically zero). We may define similarly g(2), . . . , g(q) if g, f are Cq and if g
(j)
u ≡ 0, for all

j = 1, . . . , q − 1, and we have g(j)(u, y) = g
(j−1)
y (y)f(u, y), for j = 1, . . . , q.

Let q ≥ 1 be the smallest number of time derivations of the state constraint, so that a

dependence w.r.t. u appears, i.e. g
(q)
u 6≡ 0. If q is finite, we say that q is the order of the state

constraint (see e.g. Bryson et al. [29]).
Let u ∈ U be a solution of the first order necessary condition (1.13), with Lagrange

multiplier η and costate pu,η solution of (1.7). Since η and pu,η are of bounded variation, they
have at most countably many discontinuity times, and are everywhere on [0, T ] left and right
continuous. We denote by [η(τ)] = η(τ+) − η(τ−) where η(τ±) = limt→τ± η(t) the jump of η
at time τ ∈ [0, T ]. We make the following assumptions:

(A2) The Hamiltonian is strongly convex w.r.t. the control variable, uniformly w.r.t. t ∈
[0, T ]:

∃ γ > 0, Huu(û, yu(t), pu,η(t
±)) ≥ γ ∀û ∈ R, ∀t ∈ [0, T ]. (1.25)

(A3) (Constraint regularity) The data of the problem are C 2q, i.e. k ≥ 2q in (A0), the state
constraint is of order q and the condition below holds:

∃ β > 0, |g(q)
u (u(t), yu(t))| ≥ β, ∀t ∈ [0, T ]. (1.26)

(A4) The trajectory (u, yu) has a finite set of junction times, that will be denoted by T =:
Ten ∪ Tex ∪ Tto, with Ten, Tex and Tto the disjoint (and possibly empty) subsets of
respectively regular entry, exit and touch points, and we assume that g(yu(T )) < 0.

The above hypotheses imply the continuity of the control variable and of some of its
derivatives at junction points (see Proposition 1.7 below).

Remark 1.6. 1) An assumption weaker than (A2), that is enough for the sufficient conditions
in section 1.4 and 1.5, is

(A2’) (Strengthened Legendre-Clebsch condition)

∃ γ > 0, Huu(u(t), yu(t), pu,η(t)) ≥ γ a.e. t ∈ [0, T ]. (1.27)

Condition (1.27) does not imply the continuity of the control.
2) In assumption (A3), it is in fact sufficient to assume that (1.26) holds for t in the neigh-
borhood of the contact set I(g(yu)). In the definition of the order of the constraint q, it is
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sufficient as well to restrict the variable y to a neighborhood in R
n of {yu(t) ; t ∈ I(g(yu))}.

3) The various results of this paper (Theorems 1.12, 1.18, 1.27 and Corollaries 1.13 and 1.15)
as well as Prop. 1.7 below, are still true, replacing the assumption (A2) by the weaker as-
sumptions that the control is continuous on [0, T ] and (1.27) holds.

A touch point τ ∈ Tto is said to be essential, if the Lagrange multiplier η satisfies [η(τ)] > 0.
The set of essential touch points of the trajectory (u, yu) will be denoted by T ess

to .
The next proposition is due to Jacobson et al. [75]. Its proof was later clarified in Maurer

[98], see also the survey by Hartl et al. [68].

Proposition 1.7. Let u ∈ U satisfying (1.13) with Lagrange multiplier η and assume that
(A2)-(A4) hold. Then:

(i) The control u is continuous over [0, T ] (in particular at junction points τ ∈ T ) and C q on
[0, T ] \ T . The multiplier η is continuously differentiable on [0, T ] \ T .

(ii) If τ ∈ Ten ∪Tex is a regular entry or exit point, then: (a) if q is odd, η and the q− 1 first
time derivatives of u are continuous at τ ; (b) if q is even, the q−2 first time derivatives
of u are continuous at τ .

(iii) If τ ∈ Tto is a touch point, then: (a) the q − 2 first derivatives of u are continuous at τ ;
(b) if q = 1, then η and u̇ are also continuous at τ (that is, if q = 1, then (u, yu) does
not have essential touch point).

Remark 1.8. Under the assumptions of Prop. 1.7, we have the following decomposition:
dη(t) = η0(t)dt +

∑

τ∈T ντ δτ (t) where δτ denotes the Dirac measure at time τ , the density

η0 ∈ L1(0, T ) is equal to dη
dt on [0, T ] \ T and ντ := [η(τ)] ≥ 0. We have ντ = 0 if q is odd and

τ is a regular entry/exit point, and if q = 1 and τ is a touch point.

We end this section by a result on constraint qualification and uniqueness of the multiplier.
For this we need the expression of the time derivatives of DG(u)v.

Lemma 1.9. Assume that f, g are Cq and that g
(j)
u ≡ 0, for j = 1, . . . , q − 1. Then: (i) For

all v ∈ U , the following relations hold:

dj

dtj
gy(yu)zu,v = g(j)

y (yu)zu,v, j = 1, . . . , q − 1, (1.28)

dq

dtq
gy(yu)zu,v = g(q)

y (u, yu)zu,v + g(q)
u (u, yu)v. (1.29)

(ii) If in addition, (1.26) is satisfied, then DG(u) is an isomorphism between L∞(0, T ) and
the space W defined by:

W := {ϕ ∈W q,∞(0, T ) ; ϕ(j)(0) = 0 ; j = 0, . . . , q − 1}. (1.30)

Proof. (i) By (1.8), we have:

d

dt
gy(yu)zu,v = gyy(yu)f(u, yu)zu,v + gy(yu)fy(u, yu)zu,v + gy(yu)fu(u, yu)v

= g
(1)
y (u, yu)zu,v + g

(1)
u (u, yu)v.

Since g
(j)
u ≡ 0 for j = 1 to q − 1, we obtain by induction that dj

dtj
gy(yu)zu,v = g

(j)
y (yu)zu,v is

independent of v, and that the derivative of order q has the expression in (1.29).
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(ii) If in addition (1.26) is satisfied, it is easily seen by (1.29) that for all ϕ ∈ W, there exists
a unique v ∈ U such that gy(yu)zu,v = ϕ. The conclusion follows from the open mapping
theorem.

Proposition 1.10. Assume that (A1) holds, and let u ∈ U satisfy (A3). Then: (i) Robinson’s
constraint qualification (1.14) holds; (ii) if Λ(u) 6= ∅, the Lagrange multiplier η associated with
u is unique.

Proof. It is obvious by Lemma 1.9(ii) and Th. 1.2(i) that (1.14) holds iff (A1) does. This
proves (i). Assume that η1, η2 ∈ Λ(u) and set µ := η2 − η1 ∈ M[0, T ]. Since DG(u)∗µ = 0,

it follows that
∫ T
0 ϕ(t)dµ(t) = 0, for all ϕ ∈ W, with W defined by (1.30). Since g(y0) < 0,

we have supp(dµ) ⊂ [2ε, T ] for some ε > 0. Taking the restriction to [ε, T ] of functions in
DG(u)U , we obtain the whole space W q,∞(ε, T ). By density of the latter in C[ε, T ] we deduce

that for all ϕ ∈ C[0, T ],
∫ T
0 ϕ(t)dµ(t) =

∫ T
ε ϕ(t)dµ(t) = 0. Hence dµ ≡ 0, which achieves the

proof of (ii).

1.3 Second-order Necessary Conditions

1.3.1 Basic Second-order Necessary Conditions

Let u ∈ U satisfy assumptions (A2)-(A4) and η ∈ Λ(u). We make the following assumptions.
Let q̂ := 2q − 1 if q is odd and q̂ := 2q − 2 if q is even.

(A5) (Non Tangentiality Condition)

(i) For all entry times τen ∈ Ten and all exit times τex ∈ Tex:

(−1)q̂+1 dq̂+1

dtq̂+1
g(yu(t))|t=τ−en

< 0 ;
dq̂+1

dtq̂+1
g(yu(t))|t=τ+

ex
< 0. (1.31)

(ii) For all essential touch points τto ∈ T ess
to :

d2

dt2
g(yu(t))|t=τto < 0. (1.32)

(A6) (Strict Complementarity on boundary arcs): int I(G(u)) ⊂ supp(dη).

Remark 1.11. 1) By Proposition 1.7, the expressions appearing in assumption (A5)(i)-(ii)
are well-defined, and q̂ + 1 is the smallest possible order for which the corresponding time
derivative of g(yu) may be discontinuous at an entry or exit point. Therefore assumption (A5)
does not contradict the junction conditions in Prop. 1.7. Note that q̂ = q for q = 1, 2.
2) Only the assumption (A6’) below, weaker than (A6), is used in necessary condition of
Theorem 1.12, in order to ensure that the second-order tangent set T 2,i

K (G(u), DG(u)v) is not
empty, for all v ∈ C(u):

(A6’) (Strict Complementarity near entry/exit of boundary arcs): For all entry points τen ∈
Ten and exit points τex ∈ Tex, there exists ε > 0 such that:

(τen, τen + ε) ⊂ supp(dη) ; (τex − ε, τex) ⊂ supp(dη). (1.33)
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Actually assumption (A6’) is needed only when q is even, since it follows from (A2)-(A4) and
(A5)(i) whenever q is odd, see e.g. [19, Lemma A.2]1.

Note that we do not assume strict complementarity at touch points.

Theorem 1.12. Assume that (A1) holds. Let u ∈ U be a local solution of (1.4), with its
Lagrange multiplier η, satisfying (A2)-(A5) and (A6’). Let T ess

to denote the (finite) set of
essential touch points of the trajectory (u, yu) and ντ = [η(τ)] > 0, for τ ∈ T ess

to . Then, for all
v ∈ C(u):

D2
uuL(u, η)(v, v) −

∑

τ∈T ess
to

ντ
(g

(1)
y (yu(τ))zu,v(τ))

2

d2

dt2 g(yu(t))|t=τ
≥ 0. (1.34)

Corollary 1.13. Under the assumptions of Theorem 1.12, if the trajectory (u, yu) has no
essential touch point (in particular, if the state constraint is of first order q = 1), then
D2
uuL(u, η)(v, v) ≥ 0, for all v ∈ C(u).

In the sequel, we denote I2(G(u), DG(u)v) by I2
u,v. For all v ∈ C(u), by (1.18), we have

T ess
to ⊂ (Tto ∩ I2

u,v). Let us denote the subset of critical directions that “avoid” non essential
touch point (i.e., such that g(yu(τ))zu,v(τ) < 0, for all τ ∈ Tto \ T ess

to ) by:

C0(u) := {v ∈ C(u) ; Tto ∩ I2
u,v = T ess

to }.

The first step of the proof of Theorem 1.12 consists in computing the sigma-term for the
critical directions in C0(u).

Proposition 1.14. Let v ∈ C0(u). Under the assumptions of Theorem 1.12, we have that

σ(η, T 2,i
K (G(u), DG(u)v)) =

∑

τ∈T ess
to

ντ
(g

(1)
y (yu(τ))zu,v(τ))

2

d2

dt2
g(yu(t))|t=τ

. (1.35)

Proof. The proof is divided into 3 steps. We first analyse the contribution of entry/exit points,
then the one of touch points, and finally conclude.

Remind that by (1.20), only the points in ∂I(G(u))∩ I2
u,v have a contribution to the sigma

term. Note that ∂I(G(u)) = T . Set ςu,v := ςg(yu),gy(yu)zu,v
= ςG(u),DG(u)v and let τ ∈ T ∩ I2

u,v.
By (1.20), we have:

ςu,v(τ) = liminf
t→τ ; g(yu(t))<0

({gy(yu(t))zu,v(t)}+)2

2g(yu(t))
. (1.36)

1) (Entry/exit point). Assume that τ ∈ Ten∪Tex. According to Prop. 1.7(ii), time deriva-
tives of the control at regular entry/exit points are continuous until order q − 2 if q is even,
and q − 1 if q is odd. Consequently, by definition of the order of the state constraint, the
time derivatives of g(yu) are continuous at τ until order 2q − 2 if q is even, and 2q − 1 if q is
odd. Hence they all vanish at entry/exit time τ of a boundary arc. It follows that for t in a
neighborhood of τ on the interior arc side, a Taylor expansion gives, by definition of q̂:

g(yu(t)) =
dq̂+1

dtq̂+1
g(yu)|t=τ±

(t− τ)q̂+1

(q̂ + 1)!
+ o((t− τ)q̂+1), (1.37)

where, for the sake of simplicity, we denote by τ± either τ− if τ ∈ Ten or τ+ if τ ∈ Tex.
1Lemma 2.44 of this thesis.
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Combining Lemma 1.3 and (A6’), we see that for all v ∈ C(u), the function (of time)
gy(yu)zu,v vanishes just after entering or before leaving a boundary arc on a small interval
[τ, τ ± ε], and so do its first q − 1 time derivatives since the latter are continuous by Lemma
1.9(i). The derivative of order q of gy(yu)zu,v being a bounded function by (1.29), we have,
on the interior arc side:

|gy(yu(t))zu,v(t)| ≤ C|t− τ |q. (1.38)

If q is odd, combining (1.37) with q̂ = 2q − 1 and (1.38) and by tangentiality assumption
(A5)(i), we deduce from (1.36) that:

ςu,v(τ) ≥ lim
t→τ±

C2(t− τ)2q

d2q

dt2q g(yu)|t=τ± (t−τ)2q

(2q)! + o((t− τ)2q)
> −∞.

If q is even, (1.37) with q̂ = 2q − 2, (1.38) and (A5)(i) in (1.36) give:

ςu,v(τ) ≥ lim
t→τ±

C2(t− τ)2q

d2q−1

dt2q−1 g(yu)|t=τ± (t−τ)2q−1

(2q−1)! + o((t− τ)2q−1)
= 0.

Since ςu,v(τ) ≤ 0 by (1.20) at an entry or exit point, it follows that (when q is even) ςu,v(τ) = 0.
2) (Touch point). Assume now that τ ∈ Tto ∩ I2

u,v. If that case happens, since v ∈ C0(u),
our hypotheses imply that τ is an essential touch point satisfying (1.32), and hence, that
q ≥ 2. Since g(yu) has an isolated local maximum at τ , g(yu) and g(1)(yu) vanish at τ while
d
dtg

(1)(yu) = g(2)(u, yu) is nonpositive and continuous at τ since u is continuous by Prop.
1.7(i). We thus have:

g(yu(t)) =
d

dt
g(1)(yu)|t=τ

(t− τ)2

2
+ o((t− τ)2). (1.39)

Since τ ∈ I2
u,v, we also have gy(yu(τ))zu,v(τ) = 0. The function gy(yu)zu,v being C1 (since

q ≥ 2) with almost everywhere a bounded second derivative, we get by (1.28), taking the
nonnegative part:

(gy(yu(t))zu,v(t))+ = (g(1)
y (yu(τ))zu,v(τ)(t− τ))+ + o(t− τ). (1.40)

From (1.39), (1.40) and (A5)(ii), (gy(yu)zu,v)
2
+/g(yu) is left-and right continuous when t→ τ .

Therefore, taking the lim inf when t → τ comes to take the min of both limits when t → τ+

and t→ τ−, thus we obtain:

ςu,v(τ) = min

{

(g
(1)
y (yu(τ))zu,v(τ))

2

g(2)(u(τ), yu(τ))
; 0

}

=
(g

(1)
y (yu(τ))zu,v(τ))

2

g(2)(u(τ), yu(τ))
> −∞. (1.41)

3) (Conclusion). For all τ ∈ T ∩ I2
u,v, we showed that ςu,v(τ) > −∞. Therefore we may

apply (1.21). Set I0 := int I(G(u)). By (1.18), we have supp(dη) ⊂ I2
u,v and in view of remark

1.8 we may write that:

σ(η, T 2,i
K (G(u), DG(u)v)) =

∫

I0

ςu,v(t)η0(t)dt+
∑

τ∈T ∩I2u,v

ντ ςu,v(τ) (1.42)

where η0 ∈ L1(I0) and ντ = [η(τ)]. By (1.20), ςu,v vanishes on I0∩I2
u,v and thus on I0∩supp(η0).

Hence,
∫

I0
ςu,v(t)η0(t)dt = 0. If τ ∈ Ten ∪ Tex, we have, if q is odd, ντ = 0 by Prop. 1.7(ii)(a)
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and we showed that ςu,v(τ) > −∞. If q is even, we showed in point 1) that ςu,v(τ) = 0 (and
we have ντ < +∞). In both cases, we deduce that ντ ςu,v(τ) = 0.

It remains only in (1.42), when q ≥ 2, the contribution of finitely many touch points τ in
Tto ∩ I2

u,v = T ess
to with ςu,v(τ) given by (1.41). Hence (1.35) follows.

Proof of Theorem 1.12. Combining Theorem 1.4 and Propositions 1.10 and 1.14, we obtain
that (1.34) holds, for all v ∈ C0(u). Since the left-hand-side of (1.34) is a continuous quadratic
form, it remains nonnegative on the closure of C0(u). We end the proof by checking that the
latter is equal to C(u), the cone of critical directions.

Since C(u) is closed and contains C0(u), we have of course C0(u) ⊂ C(u). We prove the
converse relation. Let v0 ∈ C(u). We remind that v ∈ C(u) iff gy(yu)zu,v ≤ 0 on I(g(yu)) and
gy(yu)zu,v = 0 on the support of the Lagrange multiplier η. Let ρ : R → R be a function of class
C∞ having support on [−1, 1] which is positive on (−1, 1). For ε > 0, set ρε(t) := εq+1ρ(t/ε),
thus we have ρε → 0 in W q,∞. By Lemma 1.9(ii), for ε > 0 small enough, there exists a
unique vε ∈ L∞(0, T ) such that g(yu)zu,vε = g(yu)zu,v0 −

∑

t∈Tto\T ess
to

ρε(t − τ) ∈ W q,∞(0, T ).

Then we have gy(yu)zu,vε = gy(yu)zu,v0 outside (τ − ε, τ + ε), for all non essential touch point
τ , gy(yu(τ))zu,vε(τ) < 0 for such τ , and hence, the touch points being isolated, for ε > 0 small
enough, vε ∈ C0(u). Since DG(u)vε → DG(u)v0 in W, where W was defined in (1.30), and
DG(u) has a bounded inverse by Lemma 1.9(ii), we have vε → v0 in L∞(0, T ) when ε ↓ 0.
The conclusion follows.

1.3.2 Extended Second-order Necessary Conditions

The solution zu,v of the linearized state equation (1.8) when v ∈ L2(0, T ), is well-defined and
belongs to H1(0, T ) ⊂ C[0, T ]. Thus we may extend continuously DJ(u) and DG(u) over
L2(0, T ) (we keep the same notations for the extensions). Since DG(u) : L2(0, T ) → C[0, T ],
it makes sense to extend the critical cone C(u) defined in (1.16) to critical directions in L2,
as follows:

CL2(u) = {v ∈ L2(0, T ) ; DG(u)v ∈ TK(G(u)) ; DJ(u)v ≤ 0}. (1.43)

Note that when (u, η) satisfies (1.13), relation (1.18) remains true with CL2(u) and L2(0, T )
instead of respectively C(u) and U .

The necessary and sufficient second-order conditions involve respectively C(u) and CL2(u)
(see sections 1.4 and 1.5). Therefore, to obtain the no-gap second-order conditions, we need
the following variant of Theorem 1.12.

Corollary 1.15. The statements of Theorem 1.12 and Corollary 1.13 still hold replacing
assumption (A6’) and C(u) respectively by (A6) and CL2(u).

Corollary 1.15 is obtained as a consequence of Th. 1.12, the continuity of the left-hand
side of (1.34) w.r.t. v ∈ L2, and the density of C(u) in CL2(u) (Lemma 1.17). To prove the
latter, we first need a general result.

Lemma 1.16. Let q ≥ 1 and a < b ∈ R. Then for all x̂ ∈ H q(a, b) = W q,2(a, b), there exists a

sequence (xn) of W q,∞(a, b) such that x
(j)
n (a) = x̂(j)(a), x

(j)
n (b) = x̂(j)(b) for all j = 0, . . . , q−1,

n ∈ N and ‖xn − x̂‖q,2 → 0.

Proof. Set x̂a := (x̂(a), . . . , x̂(q−1)(a))∗, x̂b := (x̂(b), . . . , x̂(q−1)(b))∗ ∈ R
q and û := x̂(q) ∈

L2(a, b). For u ∈ L2(a, b), let xu ∈ Hq(a, b) be the solution of:

x(q)
u (t) = u(t) a.e. on [a, b] ; (xu(a), . . . , x

(q−1)
u (a)) = x̂∗a. (1.44)
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For n ∈ N, consider the following problem:

(Pn) min 1
2‖u− û‖2

2 ; Au = x̂b ; u ∈ Un, (1.45)

where Un := {u ∈ L2(0, T ) ; |u(t)| ≤ n a.e.} and A : L2 → R
q ; u 7→ (xu(b), . . . , x

(q−1)
u (b))∗.

By construction, Aû = x̂b. It is readily seen that the mapping L2(a, b) → Hq(a, b); u 7→ xu
solution of (1.44) is continuous. Since Hq(a, b) has a continuous inclusion into C q−1[a, b], it
follows that the linear mapping A is also continuous.

Let us first show that for n large enough, the problems (Pn) are feasible and uniformly
qualified, that is there exist n0 ∈ N and δ0 > 0 such that

x̂b + δ0BRq ⊂ AUn0 ⊂ AUn ∀n ≥ n0, (1.46)

with BRq the unit ball in R
q. Indeed, consider e.g. for δ ∈ R

q the (unique) polynomial
function xδ of degree 2q− 1 that takes with its q− 1 first derivatives the values x̂a and x̂b + δ
at a and b. It is easily seen that its coefficients are solution of a full-rank linear system with
x̂b − x̂a + δ as right-hand side, hence, taking the sup over (t, δ) ∈ [a, b] × BRq (0, δ0) of the

functions uδ(t) = x
(q)
δ (t) that are C∞ w.r.t. t and δ provides an uniform bound n0 such that

(1.46) holds.
Since Robinson’s constraint qualification holds for n large enough, there exists a (unique)

optimal solution un of (Pn) and a normal Lagrange multiplier λn ∈ R
q∗, such that (throughout

the proof, 〈·, ·〉 denotes the scalar product over L2):

0 ≤ 〈un − û+ A∗λn, v − un〉 ∀v ∈ Un. (1.47)

Since the feasible set of problem (Pn) is increasing for inclusion when n → +∞, the cost
function is decreasing, thus ‖un − û‖2 is bounded. Hence the sequence (un) converges weakly
to some ū ∈ L2. We may rewrite (1.47) as:

‖un − û‖2
2 + λn(x̂b −Av) ≤ 〈un − û, v − û〉 ∀v ∈ Un. (1.48)

Qualification property (1.46) implies that δ0|λn| ≤ supv∈Un0
λn(x̂b − Av), hence, taking the

sup for v ∈ Un0 successively in the right and left hand side of (1.48), we deduce that for some
constant K(n0) > 0 that depends on n0, we have δ0|λn| ≤ K(n0), for all n ≥ n0. Therefore the
sequence (λn) is uniformly bounded. Define now vn ∈ Un as vn(t) = max{−n;min{n, û(t)}}
a.e. By the Lebesgue dominated convergence Theorem, vn → û in L2 and by (1.48):

‖un − û‖2
2 ≤ 〈un − û, vn − û〉 + λn(Avn − x̂b) −→ 0,

since un−û ⇀ ū−û weakly in L2, vn−û→ 0 strongly in L2, λn is bounded and Avn → Aû = x̂b
by continuity of A. It follows that ‖un − û‖2 → 0 and the sequence xn := xun satisfies all the
required properties, so the proof is completed.

Lemma 1.17. Let u ∈ U and η ∈ Λ(u) such that (A3), (A4) and (A6) are satisfied. Then
C(u) is a dense subset of CL2(u).

Proof. Since (A4) holds, denote by 0 < τ1 < . . . < τN < T the junction times of the trajectory
(u, yu), and set τ0 := 0, τN+1 := T . Let v ∈ CL2(u) and set x := DG(u)v. By Lemma
1.16 applied on intervals [τk, τk+1] that are not boundary arcs, there exists a sequence xn ∈
W q,∞(0, T ) such that xn = 0 = x by (A6) on boundary arcs, x

(j)
n (τk) = x(j)(τk) for all

j = 0, . . . , q − 1 and k = 0, . . . , N + 1, and xn → x in Hq. By (A3) and Lemma 1.9(ii), we
may define vn ∈ L∞(0, T ) such that DG(u)vn = xn for all n. It is readily seen that vn ∈ C(u)
for all n and vn → v in L2, which achieves the proof.
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1.4 Second-order Sufficient Conditions

The second-order sufficient conditions theory classically involves two norms, namely L2 and
L∞, see Ioffe [73, Part III] and Maurer [99].

Assume that X, Z are Banach spaces endowed with the norms ‖·‖X and ‖·‖Z , respectively,
such that Z ⊂ X with continuous embedding. Let k ∈ N. We say that r(x) = OZ(‖x‖kX ) if
|r(x)| ≤ C‖x‖kX for some C > 0 when ‖x‖Z is small enough. We say that r(x) = oZ(‖x‖kX) if
|r(v)|/‖x‖kX goes to zero when ‖x‖Z goes to zero. In the sequel, ‖ · ‖p (resp. ‖ · ‖r,p) denotes
the norm of the space Lp(0, T ) (resp. the Sobolev space W r,p(0, T )), for 1 ≤ p ≤ ∞ and
r = 1, . . . < +∞. We write Op and Or,p for respectively O‖·‖Lp and O‖·‖Wr,p , and we use the
same convention for op and or,p. Similarly, Bp and Br,p denote open balls in Lp and W r,p,
respectively.

We remind that a quadratic form Q(v) on a Hilbert space is a Legendre form (Ioffe and
Tihomirov [74]), if it is weakly lower semi-continuous (w.l.s.c.) and if vn ⇀ v weakly and
Q(vn) → Q(v) imply that vn → v strongly.

The next theorem gives the second-order sufficient condition in its well-known form (i.e.
without the curvature term).

Theorem 1.18. Let u ∈ U satisfy (1.13) with Lagrange multiplier η and assume that (A2’)
holds. If the following second-order sufficient condition is satisfied:

D2
uuL(u, η)(v, v) > 0 ∀ v ∈ CL2(u) \ {0} (1.49)

then u is a local solution of (1.4) satisfying the quadratic growth condition (1.5).
Conversely, if (A1)-(A6) hold and if (u, yu) has no essential touch point (in particular, if

the state constraint is of first order q = 1), then the second-order sufficient condition (1.49)
is satisfied iff the quadratic growth condition (1.5) is satisfied.

The proof of Theorem 1.18 will be given after a sequence of short lemmas.

Lemma 1.19. Let (u, η) ∈ U ×M+[0, T ] and v ∈ U . The following holds, for all σ ∈ [0, 1]:

‖yu+σv − yu‖∞ = O∞(‖v‖1) (1.50)

‖pu+σv,η − pu,η‖∞ = O∞(‖v‖1) (1.51)

‖zu+σv,v‖∞ = O∞(‖v‖1) (1.52)

‖zu+σv,v − zu,v‖∞ = O∞(‖v‖2
2). (1.53)

Proof. Set uσ := u+σv, and let C denote a positive constant. Since f is Lipschitz continuous
by (A0), (1.50) is an easy consequence of Lemma 1.32. Thus, u and v being essentially
bounded, uσ and yuσ take values a.e. in a compact set of type

Vδ = {(û, ŷ) ∈ R × R
n ; |û| + |ŷ| ≤ δ}, (1.54)

for some δ > 0. The mappings f , ` and g as well as their first order derivatives are C 1,
and hence Lipschitz continuous over the compact set Vδ. Lemma 1.32, applied to the costate
equation (1.7), ensures that puσ,η also remains uniformly bounded. The derivation of (1.51)
and (1.52) being similar to the one of (1.53), we detail only the latter. We have (omitting
time argument):

|żuσ ,v(t) − żu,v(t)| ≤ ‖fy‖∞|zuσ ,v − zu,v|
+(|Df(uσ, yuσ) −Df(u, yu)|) (|zu,v| + |v(t)|) .
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Since Df is Lipschitz on Vδ, we have by (1.50) |Df(uσ, yuσ) − Df(u, yu)| ≤ C(‖v‖1 + |v|).
Combining with (1.52) and the inequality ab ≤ 1

2 (a2 + b2), we deduce from the above display
that

|żuσ ,v(t) − żu,v(t)| ≤ ‖fy‖∞|zuσ ,v − zu,v| + C
(
‖v‖2

1 + |v(t)|2
)
.

We conclude with Lemma 1.32 and the inequality ‖v‖1 ≤
√
T‖v‖2.

Lemma 1.20. Let (u, η) ∈ U ×M+[0, T ] and v ∈ U . Then:

L(u+ v, η) = L(u, η) +DuL(u, η)v +
1

2
D2
uuL(u, η)(v, v) + r(v) (1.55)

with r(v) = O∞(‖v‖3
3). In particular, r(v) = o∞(‖v‖2

2).

Proof. For σ ∈ [0, 1], set again uσ := u+ σv and puσ := puσ,η. By Lemma 1.1:

r(v) =

[∫ 1

0
(1 − σ)

(
D2
uuL(u+ σv, η) −D2

uuL(u, η)
)
dσ

]

(v, v) (1.56)

=

∫ 1

0

∫ T

0
∆1(t)dtdσ +

∫ 1

0

∫ T

0
∆2(t)dη(t)dσ +

∫ 1

0
∆3dσ,

with (omitting time argument)

∆1(t) = D2H(u,y)2(uσ, yuσ , puσ)(v, zuσ ,v)
2 − D2H(u,y)2(u, yu, pu)(v, zu,v)

2

∆2(t) = z∗uσ ,vgyy(yuσ)zuσ ,v − z∗u,vgyy(yu)zu,v

∆3 = zuσ ,v(T )∗φyy(yuσ(T ))zuσ ,v(T ) − zu,v(T )∗φyy(yu(T ))zu,v(T ).

Under assumption (A0), second-order derivatives gyy, etc. are Lipschitz continuous over a
compact set Vδ defined in (1.54) for some δ > 0. By Lemma 1.19 we get, for some constant
C > 0:

∆2(t) ≤ C
(
|yuσ − yu||zuσ ,v|2 + (|zuσ ,v| + |zu,v|)|zuσ ,v − zu,v|

)

≤ O∞(‖v‖3
1 + ‖v‖1 ‖v‖2

2) ≤ O∞(‖v‖3
3),

since by the Cauchy-Schwarz and Hölder inequalities, that give respectively ‖·‖2
2 ≤ ‖·‖3/2

3 ‖·‖1/2
1

and ‖·‖1 ≤ T 2/3 ‖·‖3, we have ‖·‖2
2 ‖·‖1 ≤ T ‖·‖3

3. Since the measure dη is bounded and the

O∞ are uniform w.r.t. time, we obtain
∫ T
0 ∆2(t)dη(t) = O∞(‖v‖3

3). The same upper bound
holds for ∆3(T ). As for ∆1(t), we have in the same way, by Lemma 1.19:

∆1(t) ≤ C(|yuσ − yu| + |puσ − pu| + σ|v|)(|zuσ ,v|2 + |v|2)
+ C(|zuσ ,v| + |zu,v| + |v|)|zuσ ,v − zu,v|

≤ C(‖v‖3
1 + ‖v‖2

1 |v(t)| + ‖v‖1 |v(t)|2 + |v(t)|3 + ‖v‖1‖v‖2
2 + ‖v‖2

2|v(t)|).

Hence,
∫ T
0 ∆1(t)dt = O∞(‖v‖3

3). Finally, since the O∞ do not depend on σ ∈ [0, 1], we obtain

after integration over [0, 1] that r(v) = O∞(‖v‖3
3). Since ‖·‖3

3 ≤ ‖·‖2
2 ‖·‖∞, it follows that

r(v) = o∞(‖v‖2
2).

Lemma 1.21. Let (u, η) ∈ U × M+[0, T ] satisfy (A2’). Then the quadratic form U → R,
v 7→ D2

uuL(u, η)(v, v) has a unique extension to a continuous quadratic form over L2(0, T ),
and the latter is a Legendre form.
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Proof. Since L∞ is a dense subset of L2 and v 7→ D2
uuL(u, η)(v, v) is continuous for the norm

of L2, it has a unique continuous extension Q over L2. Set p := pu,η. By (1.10), we can write
Q(v) = Q0(v) +Q1(v) +Q2(v) with:

Q2(v) =
∫ T
0 Hyy(u, yu, p)(zu,v , zu,v)dt

+ zu,v(T )∗φyy(yu(T ))zu,v(T ) +
∫ T
0 z∗u,vgyy(yu)zu,vdη

Q1(v) = 2
∫ T
0 Hyu(u, yu, p)(zu,v, v)dt

Q0(v) =
∫ T
0 Huu(u, yu, p)(v, v)dt.

Let vn ⇀ v̄ ∈ L2(0, T ). The mapping L2(0, T ) → H1(0, T ) ; v 7→ zu,v being linear continuous,
zn := zu,vn converges weakly to z̄ := zu,v̄. Since (zn) is bounded in H1(0, T ) and the inclusion
of the latter in C[0, T ] is compact, (zn) is strongly convergent to z̄, and thus Q2(vn) converges
strongly to Q2(v̄). The term Q1(vn), bilinear in (zn, vn), also converges strongly to Q1(v̄)
when zn converges strongly and vn weakly. Therefore, Q is a Legendre form iff Q0 is one.

Since Huu(u(t), yu(t), p(t)) is essentially bounded and, by (1.27), is uniformly invertible for
almost all t ∈ [0, T ], v 7→

√

Q0(v) is a norm equivalent to the one of L2(0, T ). Hence by [24,
Prop. 3.76(i)], Q0 is a Legendre form, and therefore so is Q.

Proof of Theorem 1.18. Assume that (1.49) holds but that the quadratic growth condition
(1.5) is not satisfied. Then there exist a sequence un → u in L∞, un 6= u, such that G(un) ∈ K
for all n and

J(un) ≤ J(u) + o(‖un − u‖2
2). (1.57)

Since G(un) ∈ K and η ∈ NK(G(u)), we have:

J(un) − J(u) = L(un, η) − L(u, η) − 〈η,G(un) −G(u)〉 ≥ L(un, η) − L(u, η).

Since un − u→ 0 in L∞, Lemma 1.20 yields r(un − u) = o(‖un − u‖2
2). As DuL(u, η) = 0, we

have:

o(‖un − u‖2
2) ≥ J(un) − J(u) ≥ 1

2
D2
uuL(u, η)(un − u, un − u) + o(‖un − u‖2

2).

Let (vn, εn) be such that un − u = εnvn with ‖vn‖2 = 1 and εn = ‖un − u‖2 → 0. Dividing by
ε2n > 0 the above inequality, we get:

D2
uuL(u, η)(vn, vn) + o(1) ≤ o(1). (1.58)

The sequence (vn) being bounded in L2(0, T ), taking if necessary a subsequence, we may
assume that (vn) converges weakly to some v̄ ∈ L2(0, T ). Since D2

uuL(u, η) is weakly l.s.c., we
get passing to the limit:

D2
uuL(u, η)(v̄, v̄) ≤ 0. (1.59)

From (1.57), we derive that J(u+ εnvn)− J(u) = εnDJ(u)vn + rn ≤ o(ε2n), where rn = O(ε2n)
(by the same arguments as in the proof of Lemma 1.20). Thus DJ(u)vn + O(εn) ≤ o(εn),

and passing to the limit, since the mapping v 7→ DJ(u)v =
∫ T
0 (`y(u, yu)zu,v + `u(u, yu)v)dt+

φy(yu(T ))zu,v(T ) is weakly continuous, we obtain:

DJ(u)v̄ ≤ 0. (1.60)

Since K 3 G(un) = G(u) + εnDG(u)vn + εnrn, where rn is a continuous function satisfying
‖rn‖∞ = O(εn), we deduce that

DG(u)vn + rn ∈ TK(G(u)). (1.61)
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Since the mapping DG(u) : L2 → C[0, T ] is linear and continuous for the strong topologies, it
is also continuous for the weak topologies, which implies that DG(u)vn ⇀ DG(u)v̄. The set
K being closed and convex, so is TK(G(u)), and hence the latter is weakly closed. Therefore,
passing to the weak limit in (1.61), and using (1.60), we obtain that v̄ ∈ CL2(u). Thus (1.49)
and (1.59) imply that v̄ = 0. On the other hand, (1.58) gives (with Q := D2

uuL(u, η)):

0 = Q(v̄) ≤ liminf Q(vn) ≤ limsupQ(vn) ≤ 0

therefore Q(vn) → Q(v). But Q is a Legendre form by Lemma 1.21 and vn ⇀ v̄, which
implies that vn → v̄ in L2(0, T ), hence ‖vn‖2 → ‖v̄‖2. The expected contradiction arises since
‖vn‖2 = 1 for all n whereas ‖v̄‖2 = 0.

The converse, that holds under stronger assumptions, is a consequence of Corollaries 1.13
and 1.15. For convenience, we prove it later with Theorem 1.27.

1.5 Reduction Approach

There is still a gap between statements of Corollary 1.15 of Theorem 1.12 and Theorem 1.18,
whenever essential touch points occur. We show in this section how to deal with this case,
using a reduction approach in order to reformulate the constraint.

The idea of reduction methods (see e.g. [72] and [24, section 3.4.4]) is, when the constraint
has finitely many contact points, to replace it by finitely many inequality constraints. The
Hessian of Lagrangian of the corresponding reduced problem has an additional term that
matches the curvature term. We obtain thus a no-gap second-order condition.

1.5.1 General results on reduction

It is known that the Sobolev spaces W 1,∞(0, T ) and W 2,∞(0, T ), endowed with the norms
‖x‖1,∞ = ‖x‖∞ + ‖ẋ‖∞ and ‖x‖2,∞ = ‖x‖1,∞ + ‖ẍ‖∞, coincide with the spaces of Lips-
chitz continuous functions and the one of functions having a Lipschitz continuous derivative,
respectively. For all t, t0 ∈ [0, T ], h ∈W 1,∞(0, T ) and x ∈W 2,∞(0, T ), we have:

|h(t) − h(t0)| ≤ |t− t0|‖ḣ‖∞, (1.62)

|x(t) − x(t0) − ẋ(t0)(t− t0)| ≤ 1
2 |t− t0|2‖ẍ‖∞. (1.63)

We now give some general results about zeros of functions of W 1,∞(0, T ), and local min-
ima/maxima of functions of W 2,∞(0, T ).

Lemma 1.22. Let h0 ∈ W 1,∞(0, T ) and τ0 ∈ (0, T ) satisfy the three following conditions:
h0(τ0) = 0 ; ḣ0 is continuous at τ0 ; ḣ0(τ0) 6= 0. Then for some δ, ε > 0, the mapping:

Ξ : B1,∞(h0, δ) → (τ0 − ε, τ0 + ε) ; h 7→ τh such that h(τh) = 0, (1.64)

is well-defined and Lipschitz continuous on B1,∞(h0, δ), and Fréchet differentiable at h0, with
derivative given by:

DΞ(h0)d = −d(τ0)/ḣ0(τ0), for all d ∈W 1,∞. (1.65)

More precisely, we have for all h, hi ∈ B1,∞(h0, δ), i = 1, 2 and τi = τhi
:

τ2 − τ1 = O1,∞(‖h2 − h1‖∞), (1.66)

ḣ0(τ0)(τh − τ0) + h(τ0) = o1,∞ (‖h− h0‖∞) . (1.67)
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Proof. Assume w.l.o.g that β := ḣ0(τ0) > 0, and denote by c(·) the modulus of continuity of
ḣ0 at τ0. Fix ε > 0 such that c(ε) < 1

4β. Thus, ḣ0 ≥ 3
4β on (τ0 − ε, τ0 + ε) and it follows that

h0(τ0−ε) < −3
4βε and h0(τ0+ε) >

3
4βε. Set δ := min{ 1

4βε;
1
4β} and let h ∈ B1,∞(h0, δ). Thus,

h(τ0 − ε) < 0 < h(τ0 + ε) and h is continuous, so h has at least one zero τh in (τ0 − ε, τ0 + ε).
Let (h1, h2) ∈ B1,∞(h0, δ) and τi such that hi(τi) = 0, i = 1, 2. By the definition of δ, we have
ḣ1 ≥ 1

2β a.e. on (τ0 − ε, τ0 + ε), and, in consequence,

β

2
|τ2 − τ1| ≤ |h1(τ2)| = |h1(τ2) − h2(τ2)| ≤ ‖h2 − h1‖∞. (1.68)

Hence |τ2 − τ1| ≤ 2
β‖h2 − h1‖∞, which shows the uniqueness of the zero (take h1 = h2),

Lipschitz continuity and (1.66).
By continuity of Ξ and h0, and (1.62) applied to h− h0, we have:

h0(τh) − ḣ0(τ0)(τh − τ0) = o(|τh − τ0|)
(h− h0)(τh) − (h− h0)(τ0) = −h0(τh) − h(τ0) = O(‖ḣ− ḣ0‖∞|τh − τ0|).

Since τh− τ0 = O1,∞(‖h−h0‖∞) by (1.68), summing the above expansions yields (1.67), from
which (1.65) follows.

Lemma 1.23. Let x0 ∈W 2,∞(0, T ) and τ0 ∈ (0, T ) be such that ẋ0(τ0) = 0, ẍ0 is continuous
at τ0 and ẍ0(τ0) < 0. Thus x0 has a local maximum at τ0, and for ε > 0 and δ > 0 small
enough, x ∈ B2,∞(x0, δ) attains its maximum over (τ0 − ε, τ0 + ε) at a unique point τx. The
mapping Θ : B2,∞(x0, δ) → (τ0 − ε, τ0 + ε) ; x 7→ τx is Lipschitz continuous over B2,∞(x0, δ),
Fréchet differentiable at x0, with derivative given by:

DΘ(x0)w = −ẇ(τ0)/ẍ0(τ0) ∀ w ∈W 2,∞. (1.69)

Furthermore, the mapping

Φ : B2,∞(x0, δ) → R ; x 7→ x(τx), (1.70)

that associates with x the value of its maximum on (τ0 − ε, τ0 + ε), is C1 over B2,∞(x0, δ)
and twice Fréchet differentiable at x0 with first and second derivatives given by, for all x ∈
B2,∞(x0, δ) and d ∈W 2,∞:

DΦ(x)d = d(τx) ; D2Φ(x0)(d, d) = − ḋ(τ0)
2

ẍ0(τ0)
. (1.71)

More precisely, for all x, xi ∈ B2,∞(x0, δ), i = 1, 2 and τi = τxi
, we have:

x2(τ2) = x2(τ1) + O2,∞(‖x2 − x1‖2
1,∞), (1.72)

x(τx) = x(τ0) −
ẋ(τ0)

2

2ẍ0(τ0)
+ o2,∞(‖x− x0‖2

1,∞). (1.73)

Proof. Define δ as in the proof of Lemma 1.22, with h0 replaced by −ẋ0. It follows that for all
x ∈ B2,∞(x0, δ), there exists a unique τx satisfying ẋ(τx) = 0, and we have ẍ(t) ≤ ẍ0(τ0)/2 < 0
a.e. on (τ0 − ε, τ0 + ε). Hence ẋ is decreasing on (τ0 − ε, τ0 + ε), and x has unique maximum
over [τ0 − ε, τ0 + ε] attained at time τx. By composition of the mapping Ξ of Lemma 1.22 by
the mapping x 7→ h = ẋ ∈ W 1,∞, Θ is well-defined, continuous over B2,∞(x0, δ) and Fréchet
differentiable at x0, and (1.69) follows from (1.65).
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By (1.63) applied to x2, introducing the term ẋ1(τ1) equal to zero and since τ2 − τ1 =
O2,∞(‖x2 − x1‖1,∞) by (1.66), we get:

x2(τ2) = x2(τ1) + (ẋ2(τ1) − ẋ1(τ1))(τ2 − τ1) + O(|τ2 − τ1|2)
= x2(τ1) + O2,∞(‖x2 − x1‖2

1,∞)

which shows (1.72) and proves that Φ is C1 with first order derivative given by (1.71). By
continuity of ẍ0 and (1.63) applied to x− x0, we have, as ẋ0(τ0) = 0:

x0(τx) = x0(τ0) + ẍ0(τ0)
(τx−τ0)2

2 + o(|τx − τ0|2),
(x− x0)(τx) = (x− x0)(τ0) + ẋ(τ0)(τx − τ0) + O(‖ẍ− ẍ0‖∞|τx − τ0|2).

Summing the above expansions, and since by (1.67),

τx − τ0 = − ẋ(τ0)

ẍ0(τ0)
+ o2,∞ (‖x− x0‖1,∞) ,

we obtain (1.73). Hence Φ is twice Fréchet differentiable at x0 with second-order derivative
given by (1.71).

1.5.2 Application to optimal control problems.

If the state constraint is of first order q = 1, then Theorem 1.18 gives a no-gap second-order
condition, that characterizes the quadratic growth. We show in this section how to extend
this no-gap condition to the case when the trajectory has essential touch points (see Theorem
1.27).

Therefore, we assume in this section that the state constraint is not of first order, that

is, the function g(1)(u, y) = gy(y)f(u, y) does not depend on u (which means g
(1)
u (u, y) ≡ 0).

Note that this implies that G(u) = g(yu) ∈W 2,∞, for all u ∈ U .

Definition 1.24. Assume that g
(1)
u ≡ 0 (the state constraint is not of order one). Let u ∈

G−1(K). We say that a touch point τ of the trajectory (u, yu) is reducible, if the following
conditions are satisfied: (i) the function t 7→ g(2)(u(t), yu(t)) is continuous at τ ; (ii) non-
tangentiality condition (1.32) is satisfied at τ .

Remark 1.25. 1) Point (i) in the above definition is always satisfied if the state constraint is
of order q > 2, since in that case g(2)(u, yu) = g(2)(yu).
2) If q = 2 and η ∈ Λ(u) 6= ∅, sufficient conditions for point (i) are assumptions (A2)-(A4),
since by Prop. 1.7(i) they imply the continuity of u.

Let u ∈ G−1(K), and let Tred be a finite subset of reducible touch points of the trajectory
(u, yu). By definition of touch points, there exists ε > 0 such that (τ − 2ε, τ + 2ε) ⊂ (0, T )
and (τ − 2ε, τ + 2ε) ∩ I(g(yu)) = {τ}, for all τ ∈ Tred. Set Ia = ∪τ∈Tred

(τ − ε, τ + ε) and
Ib = [0, T ] \ Ia. Note that Ib is closed. Let N be the cardinal of Tred and denote by τ 1

u , . . . , τ
N
u

the elements of Tred. By definition of reducible touch points and continuity of the mapping
U → W 2,∞, u 7→ g(yu), we may apply Lemma 1.23. Reducing ε if necessary, there exists
δ > 0, such that for all i = 1, . . . , N , the mappings

Ri : B∞(u, δ) → R ; ũ 7→ g(yũ(τ
i
ũ)),

such that g(yũ) attains its (unique) maximum over [τ iu− ε, τ iu+ ε] at time τ iũ, are well-defined.
It follows that for all ũ ∈ B∞(u, δ),

G(ũ) ∈ K iff g(yũ(t)) ≤ 0 ∀t ∈ Ib and Ri(ũ) ≤ 0 ∀i = 1, . . . , N. (1.74)
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Denote by g(yũ)|b the restriction of g(yũ) to Ib and R : ũ 7→ (Ri(ũ))1≤i≤N . The reduced
problem is defined as follows:

min
ũ∈B∞(u,δ)

J(ũ) ; G(ũ) =

(
g(yũ)|b
R(ũ)

)

∈ K := C−[Ib] × R
N
− . (1.75)

From (1.74), it follows that (1.75) is locally equivalent to problem (1.4) in a L∞ neighborhood
of u. The Lagrangian L of the reduced problem (1.75) is given, for ũ ∈ B∞(u, δ) and λ =
(ηb, ν) ∈ M+[Ib] × R

N
+ , by:

L(ũ, λ) = J(ũ) +

∫

Ib

g(yũ(t))dηb(t) +

N∑

i=1

νiRi(ũ). (1.76)

The next lemma shows how the Lagrangian, multipliers and critical cone of the reduced
problem (1.75) are related to the ones of problem (1.4).

Lemma 1.26. Assume that g
(1)
u ≡ 0, and let u ∈ G−1(K) and Tred, Ia, Ib, R, G and L be

defined as above. Let λ = (ηb, ν) ∈ M+[Ib] × R
N
+ . For δ > 0 small enough, the function

ũ 7→ L(ũ, λ) is C1 on B∞(u, δ) and twice Fréchet differentiable at u. Define η ∈ M+[0, T ] by:

dη(t) = dηb(t) on Ib ; dη(t) =

N∑

i=1

νiδτ i
u
(t) on Ia. (1.77)

Then we have: L(u, λ) = L(u, η), DuL(u, λ) = DuL(u, η),

DG(u)−1TK(G(u)) = DG(u)−1TK(G(u)),

λ ∈ NK(G(u)) iff η ∈ NK(G(u)),
(1.78)

D2
uuL(u, λ)(v, v) = D2

uuL(u, η)(v, v) −
N∑

i=1

νi
(g

(1)
y (yu(τ

i
u))zu,v(τ

i
u))

2

g(2)(u(τ iu), yu(τ
i
u))

. (1.79)

Proof. Note that Ri = Φi ◦ G, i = 1, . . . , N , where the mappings Φi are defined by (1.70) in
Lemma 1.23 applied to (x0, τ0) = (g(yu), τ

i
u). It follows from Lemma 1.23 that R is C1 over

a small ball B∞(u, δ). By (1.71), the second-order expansion of the state (1.11) and (1.28)

(since g
(1)
u ≡ 0), that gives d

dtDG(u)v = g
(1)
y (yu)zu,v, we see that, for all v ∈ U :

DRi(u)v = DΦi(G(u))DG(u)v = gy(yu(τ
i
u))zu,v(τ

i
u), (1.80)

D2Ri(u)(v, v) = DΦi(G(u))D2G(u)(v, v) +D2Φi(G(u))(DG(u)v,DG(u)v)

= zu,v(τ
i
u)

∗gyy(yu(τ
i
u))zu,v(τ

i
u) + gy(yu(τ

i
u))zu,vv(τ

i
u)

− (g
(1)
y (yu(τ

i
u))zu,v(τ

i
u))

2

g(2)(u(τ iu), yu(τ
i
u))

.

The conclusion follows easily from the above expressions (see the proof of Lemma 1.1), (1.78)
is obtained as a consequence of (1.80).

It follows that if u ∈ U and Λ(u) 6= ∅, the Lagrange multipliers λ and η associated with u
in problems (1.75) and (1.4) respectively, are related by (1.77). By (1.78), it follows also that
the critical cone C(u) for problem (1.75) is equal to C(u). We shall show that the statement of
Th. 1.18 remains true by replacing L(u, η) by L(u, λ). That is, the main result of this paper,
with Th. 1.12 (and Th. 1.18 for first-order state constraint), is the next theorem.
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Theorem 1.27. Assume that g
(1)
u ≡ 0 (the state constraint is not of first order). Let u ∈ U

satisfy (1.13) with Lagrange multiplier η, and assume that (A2’) holds. Let Tred be a finite
set of reducible touch points of u, and ντ := [η(τ)]. If the following second-order sufficient
condition is satisfied:

D2
uuL(u, η)(v, v) −

∑

τ∈Tred

ντ
(g

(1)
y (yu(τ))zu,v(τ))

2

d2

dt2
g(yu(t))|t=τ

> 0 ∀v ∈ CL2(u) \ {0} (1.81)

then u is a local solution of (1.4) satisfying the quadratic growth condition (1.5).
Conversely, if (A1)-(A6) hold, then the finitely many essential touch points of the trajectory

(u, yu) are all reducible, and the second-order sufficient condition (1.81) is satisfied with Tred =
T ess
to iff the quadratic growth condition (1.5) is satisfied.

Remark 1.28. Note that if Tred = ∅, (1.81) coincides with (1.49). If Tred contains essential
touch points, then by (1.32) the contribution in (1.81) of points in Tred is such that the sum
is nonpositive, and therefore the sufficient condition (1.81) is in general weaker than (1.49).

We first need to extend Lemma 1.20 to the Lagrangian L. Note that L is not C2 in a L∞

neighborhood of u, thus (1.56) does not hold with L.

Lemma 1.29. Assume that g
(1)
u ≡ 0. For δ > 0 small enough and all v ∈ B∞(0, δ),

L(u+ v, λ) = L(u, λ) +DuL(u, λ)v +
1

2
D2
uuL(u, λ)(v, v) + r̃(v), (1.82)

with r̃(v) = o∞(‖v‖2
2).

Proof. It is easily seen from (1.76) and (1.77) that

L(u+ v, λ) = L(u+ v, η) +
N∑

i=1

νi(g(yu+v(τ
i
u+v)) − g(yu+v(τ

i
u))).

We may write r̃(v) = r(v) + r̂(v), where r(v) is given by (1.55) and satisfies r(v) = O(‖v‖3
3)

by Lemma 1.20, and by (1.79) we have r̂(v) =
∑N

i=1 νir̂i(v) with, for i = 1, . . . , N :

r̂i(v) := g(yu+v(τ
i
u+v)) − g(yu+v(τ

i
u)) +

(g
(1)
y (yu(τ

i
u))zu,v(τ

i
u))

2

2g(2)(u(τ iu), yu(τ
i
u))

. (1.83)

Fix i = 1, . . . , N , and set x0 := g(yu) and τ0 := τ iu. By definition of reducible touch points,
(x0, τ0) satisfies the assumptions of Lemma 1.23. Set x := g(yu+v) ∈ W 2,∞, then τx = τ iu+v,
and since the state constraint is not of first order, we have ẋ = g(1)(yu+v), ẍ = g(2)(u+v, yu+v)
and hence, by (1.50):

‖x− x0‖1,∞ = O∞(‖v‖1) ; ‖ẍ− ẍ0‖∞ = O∞(‖v‖∞). (1.84)

Since

g(1)(yu+v) − g(1)(yu) − g(1)
y (yu)zu,v =

∫ 1

0
(g(1)
y (yu+σv)zu+σv,v − g(1)

y (yu)zu,v)dσ,

we also have by (1.50) and (1.52)-(1.53), setting h := g
(1)
y (yu)zu,v, that

‖ẋ− ẋ0 − h‖∞ = O∞(‖v‖2
2). (1.85)
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We may now write r̂i(v) = r̂i,1(v) + r̂i,2(v) with:

r̂i,1(v) = x(τx) − x(τ0) +
ẋ(τ0)

2

2ẍ0(τ0)
; r̂i,2(v) =

h(τ0)
2 − ẋ(τ0)

2

2ẍ0(τ0)
.

By (1.73) and (1.84), we have r̂i,1(v) = o∞(‖v‖2
1). From |a2 − b2| ≤ (2|a| + |a − b|)|a − b|,

‖h‖∞ = O∞(‖v‖1) by (1.52), (1.85) with ẋ0(τ0) = 0, and ‖·‖2
2 ≤ ‖·‖1 ‖·‖∞, we see that

r̂i,2(v) = O∞(‖v‖1‖v‖2
2) ≤ O∞(‖v‖2

1‖v‖∞). It follows that r̂i(v) = o∞(‖v‖2
1) for all i and

finally that r̃(v) = o∞(‖v‖2
2), which achieves the proof.

Proof of Theorem 1.27. Since the sum of a Legendre form and of a weakly continuous qua-
dratic form remains a Legendre form, we deduce easily from (1.79) and Lemma 1.21, since the
additional terms

v 7→ zu,v(τ
i
u)

∗ g
(1)
y (yu(τ

i
u))

∗g
(1)
y (yu(τ

i
u))

g(2)(u(τ iu), yu(τ
i
u))

zu,v(τ
i
u)

are weakly continuous quadratic forms, that the unique continuous extension of DuuL(u, λ)
over L2 is a Legendre form. In addition, since r̃(v) = o∞(‖v‖2

2) by Lemma 1.29, the proof
of Theorem 1.18 still applies, replacing L(u, η) by L(u, λ). It follows that (1.81) implies the
quadratic growth condition (1.5).

Conversely, if (A1)-(A6) hold, there are finitely many essential touch points of (u, yu), all
being reducible. Assume that (1.5) holds. Then for sufficiently small ε > 0, u is solution of
the following problem:

(Pε) min
ũ∈U

{ Jε(ũ) := J(ũ) − 1
2ε‖ũ− u‖2

2 } ; G(ũ) ∈ K, (1.86)

with the same (unique) Lagrange multiplier η, sinceDuJ
ε(u) = DuJ(u). Since in addition (Pε)

and (1.4) have the same constraints, they have the same critical cone. Denote the Lagrangian
of (Pε) by Lε(u, η). Note that since only the cost function has been perturbed, Theorem
1.12 and Corollary 1.15 have an immediate extension to the non-autonomous problem (Pε).
Therefore, noticing that D2

uuL
ε(u, η)(v, v) = D2

uuL(u, η)(v, v) − ε‖v‖2
2, we obtain:

D2
uuL(u, η)(v, v) −

∑

τ∈T ess
to

ντ
(g

(1)
y (yu(τ))zu,v(τ))

2

d2

dt2
g(yu(t))|t=τ

≥ ε‖v‖2
2, ∀v ∈ CL2(u). (1.87)

Hence (1.81) is satisfied with Tred = T ess
to .

Note that taking Tred = ∅ = T ess
to proves the converse in Th. 1.18, when (u, yu) has no

essential touch point (including the case q = 1).

Remark 1.30. The second-order sufficient condition in (1.81) remains in quite an abstract
form, of little help to check the optimality of a trajectory in application to real life problems.
Some verifiable second-order sufficient conditions exist in the literature that are based on
Riccati equations, see e.g. Maurer [99]. They may be too strong, however, since they ensure
in general the coercivity of the Hessian of the Lagrangian over a space that is larger than the
critical cone CL2(u). See also Malanowski et al. [89, 95] for first order state constraints.

Remark 1.31. Handling an infinite number of junction points remains an open problem. It
was shown indeed by Robbins in [118], on an example involving a third order state constraint,
and though satisfying all regularity assumptions (A0)-(A3), that the optimal trajectory has a
boundary arc, but except for a nowhere dense subset of initial conditions y0, the entry point
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of the boundary arc is not regular, being the cluster point of an infinite sequence of touch
points.

It happens that boundary arcs with regular entry and exit points may occur for any order
of the state constraint q, see for instance the example given in [19, Rem. 4.11]2. However,
when q is greater than or equal to three, it seems that boundary arcs with regular entry
and exit points occur only in degenerate (i.e., non generic) situations, and that generically,
as Robbins’ example suggests, the junctions at boundary arcs are irregular with an infinite
sequence of touch points.

1.6 Conclusion

Our main result is a no-gap condition for an optimal control problem with a single state
constraint of any order and only one control. The main hypotheses are that there are finitely
many junction points, the essential touch points being reducible, the entry/exit points being
regular, and strict complementarity on boundary arcs. The extension of the result to the case
when g(yu(T )) = 0 should present no difficulty.

In our recent work [19], we relate these second-order conditions to the study of the well-
posedness of the shooting algorithm, and to the characterization of strong regularity in the
sense of Robinson [121] (see also related results [24, Section 5.1] and Malanowski [86]).

We hope in the future to extend some of the results of these papers to the case of several
state constraints and control variables.

Acknowlegments The authors thank two anonymous referees for their useful suggestions.

1.7 Appendix

Lemma 1.32 (Extension of Gronwall Lemma). Let p ∈ BV ([0, T ]; Rn) be such that:

|dp(t)| ≤ κ|p(t)|dt+ dµ(t), ∀t ∈ [0, T ], (1.88)

for some positive constant κ, and a nonnegative bounded measure µ. Then:

‖p‖∞ ≤ eκT |p(0)| +
∫ T

0
eκ(T−t)dµ(t).

Proof. Set ρ(t) = |p(t)|. Then ρ is a nonnegative bounded measure, and for all t ∈ [0, T ) and
s→ 0+, we have:

∫ t+s

t
dρ(σ) = ρ(t+ s) − ρ(t) = |p(t+ s)| − |p(t)|

≤ |p(t+ s) − p(t)| = |
∫ t+s

t
dp(σ)| ≤

∫ t+s

t
|dp(σ)|.

From (1.88) it follows that ρ(t) ≤ ϕ(t) for all t ∈ [0, T ], where ϕ is solution of

ϕ(t) = |p(0)| + κ

∫ t

0
ϕ(s)ds+

∫ t

0
dµ(s), for all t ∈ [0, T ].

2Remark 2.42 of this thesis
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Then
d(e−κtϕ(t)) = e−κtdϕ(t) − κe−κtϕ(t)dt = e−κtdµ(t).

Therefore, e−κtρ(t) ≤ |p(0)| +
∫ t
0 e

−κsdµ(s). The result follows.

Lemma 1.33 (Integration by parts). The following relation holds, for any p ∈ BV ([0, T ],Rn∗)
and z ∈ BV (0, T ; Rn) ∩ C([0, T ]; Rn):

∫ T

0
dp(t)z(t) = −

∫ T

0
p(t)dz(t) + p(T )z(T ) − p(0)z(0). (1.89)

Proof. See e.g. [58, p.154].



Chapitre 2

Application à l’étude de
l’algorithme de tir∗

Abstract This paper deals with the shooting algorithm for optimal control problems with a
scalar control and a regular scalar state constraint. Additional conditions are displayed, under
which the so-called alternative formulation is equivalent to Pontryagin’s minimum principle.
The shooting algorithm appears to be well-posed (invertible Jacobian), iff (i) the no-gap second
order sufficient optimality condition holds, and (ii) when the constraint is of order q ≥ 3,
there is no boundary arc. Stability and sensitivity results without strict complementarity at
touch points are derived using Robinson’s strong regularity theory, under a minimal second-
order sufficient condition. The directional derivatives of the control and state are obtained as
solutions of a linear quadratic problem.

Résumé Dans cet article, on étudie l’algorithme de tir pour les problèmes de commande
optimale avec contraintes sur l’état. On donne les conditions supplémentaires nécessaires, sous
lesquelles la formulation alternative est équivalente au Principe de Pontryaguine. On montre
que l’algorithme de tir est bien posé, ssi (i) une condition suffisante minimale du second ordre
est satisfaite, et (ii) lorsque la contrainte est d’ordre q ≥ 3, il n’y a pas d’arc frontière. Enfin,
une analyse de stabilité et de sensibilité est effectuée, sans hypothèse de complémentarité
stricte aux points de contacts isolés. On utilise pour ceci la théorie de la forte régularité de
Robinson, dont on donne une caractérisation par une condition suffisante du second ordre. Les
dérivées directionnelles sont obtenues comme solution d’un problème linéaire quadratique.

2.1 Introduction

For optimal control problems satisfying the strengthened Legendre-Clebsch condition, Pon-
tryagin’s principle allows us to express the control as a function of the state and the costate.
For unconstrained problems, the resulting two-points boundary value problem reduces to a
finite-dimensional “shooting” equation whose unknown is the initial costate (see e.g. [125]).
The extension to control constrained problems is relatively easy, assuming nontangentiality
conditions when a constraint becomes active or inactive. This approach allows us to compute
accurate solutions at low cost, once the structure of active constraints is known, and reasonable

∗Joint work with J.F. Bonnans. Published in SIAM Journal on Control and Optimization, 46(4) :1398–1430
(2007), under the title Well-posedness of the shooting algorithm for state constrained optimal control problems

with a single constraint and control.
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initial values of unknowns can be guessed. For state constrained optimal control problems, a
reformulation of the optimality conditions is needed, and the shooting equations take into ac-
count only some of the optimality conditions. Therefore, checking that the shooting equations
are well-posed under minimal hypotheses becomes challenging.

An alternative formulation, suitable for the shooting algorithm in the presence of state
constraints, was first introduced by Bryson, Denham and Dreyfus [29], (see also [28]), in
an heuristic manner. Some additional conditions (necessary for optimality) were missing,
as shown in Jacobson, Lele and Speyer [75], where the first results on the regularity of the
multiplier and on junction conditions are stated. A significant clarification of their work can
be found in the unpublished paper by Maurer [98], where the link between the results of
[75] and the alternative formulation of [29, 28] is established. Numerous different versions of
Pontryagin’s principle with state constraints were given in the literature; see the survey by
Hartl, Sethi and Vickson [68].

Stability results for first-order state constraints and directional differentiability of solutions
in L2 were first obtained by Malanowski [88] using an infinite-dimensional implicit function
theorem and differentiation of the projection on a convex set [67]. The (strong) second-order
sufficient condition used in the analysis was later weakened by Malanowski [89], taking into
account the strictly active constraints. These results require no assumptions on the structure
of the trajectory. However, no extensions of this method for higher-order state constraints are
known. Dontchev and Hager [53] derived, still for first-order constraints, L∞ stability results
under an additional assumption on the structure of the contact set. Malanowski and Maurer
obtain sensitivity results in [93] (first-order) and [94] (higher order), when there are finitely
many nontangential junction points and strict complementarity holds, by application of the
implicit function theorem to the shooting mapping. They obtain derivatives as the solution
of an equality constrained linear quadratic problem, but when the order of the constraint is
q ≥ 2, the data of the latter depend on the (precomputed) variation of entry times. Numerical
applications of the shooting algorithm to state constrained problems in the aerospace field are
presented e.g. in [30, 11] and in [115], where the role of additional conditions appears crucial
to eliminate nonoptimal solutions; numerical examples of sensitivity analysis are given in [4].
Discretization errors are studied in e.g. [54].

This paper handles the case of a scalar control and a regular scalar state constraint, for
which regularity and junction conditions results are known. We assume that the Hamilto-
nian is uniformly strongly convex w.r.t. the control variable, that there are finitely many
nontangential junction times, and that strict complementarity on boundary arcs holds.

We express the additional conditions under which the alternative formulation is equivalent
to Pontryagin’s principle. When strict complementarity holds at touch points as well, we prove
that the shooting algorithm is well-posed (invertible Jacobian) iff (i) the no-gap second-order
sufficient condition in [21] holds, and (ii) when the constraint is of order q ≥ 3, there is no
boundary arc. Then stability and sensitivity results, removing the strict complementarity
hypothesis at touch points, are derived, applying Robinson’s strong regularity theory [121] to
the shooting mapping. We give a necessary and sufficient second-order condition character-
izing the strong regularity property. The directional derivatives of the control and state are
obtained as solutions of an inequality constrained linear quadratic problem, independent of
the variations of junction times.

The paper is organized as follow. In section 2.2, we give the characterization of Pontryagin
extremals as solutions of the shooting equations under some minimal additional conditions.
Then, in section 2.3, we give the characterization of the well-posedness of the shooting algo-
rithm and its relation to the no-gap second-order optimality conditions obtained in [21, 18].
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Finally, in section 2.4, we give stability and sensitivity analysis results.
The results of sections 2.2 and 2.3 of this paper are extended to the case of vector-valued

state constraints and control in the report [17]. The main difficulty is the extension of the
junction conditions result of Jacobson, Lele and Speyer [75] (Prop. 2.5 below). The latter
plays a crucial role in the proof of the necessity of the condition claimed in this paper as
necessary and sufficient for the well-posedness of the shooting algorithm (see Th. 2.23).

2.2 Junction Conditions

The section is organized as follows. After introducing notation, definitions, assumptions, and
basic results needed in the paper, we recall in subsection 2.2.1 an alternative formulation for
optimality conditions (Def. 2.7), which is useful for the shooting algorithm. This is one of
the various formulations existing in the literature (see e.g. the survey [68]). Therefore, one
of the main concerns of this paper is to investigate, in subsection 2.2.2, the equivalence with
Pontryagin’s minimum principle (Prop. 2.10). Finally, in subsection 2.2.3 we formulate the
shooting algorithm and show that some of the additional conditions are automatically satisfied
by a solution of the shooting equations (Prop. 2.15).

Denote by L∞(0, T ) the Banach space of measurable and essentially bounded functions
and by W 1,∞(0, T ) the Sobolev space of functions having a weak derivative in L∞(0, T ). Let
the control and state spaces be respectively U := L∞(0, T ) and Y := W 1,∞(0, T ; Rn). We
consider the following optimal control problem with a scalar state constraint and a scalar
control:

(P) min
(u,y)∈U×Y

∫ T

0
`(u(t), y(t))dt + φ(y(T )) (2.1)

subject to ẏ(t) = f(u(t), y(t)) a.e. t ∈ [0, T ] ; y(0) = y0 (2.2)

g(y(t)) ≤ 0 ∀ t ∈ [0, T ]. (2.3)

The data of the problem are the distributed cost ` : R × R
n → R, final cost φ : R

n → R,
dynamics f : R×R

n → R
n, state constraint g : R

n → R, final time T > 0, and initial condition
y0 ∈ R

n.
We assume throughout the paper that the following hold:

(A0) The mappings `, φ, f and g are k-times continuously differentiable (C k) with k ≥ 2, and
have locally Lipschitz continuous second-order derivatives when k = 2. The dynamics f
is Lipschitz continuous.

(A1) The initial condition satisfies g(y0) < 0.

The space of row vectors is denoted by R
n∗. The space of continuous functions over [0, T ] is

denoted by C[0, T ]. The dual space of Radon measures, denoted by M[0, T ], is identified with
the space of functions of bounded variation BV (0, T ) vanishing at zero. The transposition
operator in R

n is denoted by a star ∗. Fréchet derivatives of f , `, etc., w.r.t. arguments u ∈ R,
y ∈ R

n, are denoted by a subscript, for instance fu(u, y) = Duf(u, y), fuu(u, y) = D2
uuf(u, y).

One exception to this rule, which should not be a source of confusion, is that we denote by
yu the (unique) solution in W of the state equation (2.2) associated with the control u ∈ U .

Total derivation w.r.t. time is denoted by a dot, i.e. ẏ(t) = dy(t)
dt .

A trajectory is an element (u, y) of U ×Y satisfying the state equation (2.2). A trajectory
(u, y) is said to be feasible if it satisfies the state constraint (2.3). Define the classical (resp.
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generalized) Hamiltonian functions of (P), H : R×R
n×R

n∗ → R (resp. H : R×R×R
n×R

n∗ →
R) by

H(u, y, p) := `(u, y) + pf(u, y) ; H(p0, u, y, p) := p0`(u, y) + pf(u, y). (2.4)

First-order necessary optimality conditions for (P) are given by Pontryagin’s minimum prin-
ciple.

Definition 2.1. A trajectory (u, y) is a Pontryagin extremal if there exists p0 ∈ R
+, p ∈

BV ([0, T ]; Rn∗), and η ∈ M[0, T ], with (p0,dη) 6= 0, such that

ẏ(t) = Hp(p0, u(t), y(t), p(t)) a.e. t ∈ [0, T ] ; y(0) = y0 (2.5)

−dp(t) = Hy(p0, u(t), y(t), p(t))dt + gy(y(t))dη(t) in M([0, T ]; Rn∗) (2.6)

p(T ) = p0φy(y(T )) (2.7)

u(t) ∈ argminw∈RH(p0, w, y(t), p(t)) a.e. t ∈ [0, T ] (2.8)

g(y(t)) ≤ 0, ∀t ∈ [0, T ] ; dη ≥ 0 ;

∫ T

0
g(y(t))dη(t) = 0. (2.9)

By dη ≥ 0, we mean that
∫ T
0 ϕ(t)dη(t) ≥ 0 for all nonnegative continuous functions

ϕ ∈ C[0, T ], or equivalently, that η is nondecreasing. The costate equation (2.6) with final
condition (2.7) are equivalent to

p(t) =

∫ T

t
Hy(p0, u(s), y(s), p(s))ds +

∫ T

t
gy(y(s))dη(s) + p0φy(y(T )).

The next theorem is well known (see [39, 62] for nondifferentiable versions).

Theorem 2.2. A trajectory (u, y) solution of (P) is a Pontryagin extremal.

A trajectory (ū, ȳ) is a local solution of (P) if it minimizes (2.1) subject to (2.2)-(2.3) and
‖u − ū‖∞ ≤ ρ for some ρ > 0. We say that (u, y) ∈ U × Y is a stationary point of (P) if
there exists a nonzero (p0, p, η) ∈ R

+ × BV (0, T ; Rn∗) ×M(0, T ) such that (2.5)-(2.7), (2.9)
are satisfied and

Hu(p0, u(t), y(t), p(t)) = 0 for a.a. t ∈ [0, T ].

It is well known that a local solution of (P) is a stationary point. Obviously a Pontryagin
extremal is a stationary point, but the converse is in general false. An exception is when the
(generalized) Hamiltonian is convex with respect to the control variable along the trajectory
(see also our assumption (A2) below). Whenever this holds, definitions of both Pontryagin
extremals and stationary points are equivalent.

Definitions A boundary (resp. interior) arc is a maximal interval of positive measure
I ⊂ [0, T ] such that g(y(t)) = 0 (resp. g(y(t)) < 0) for all t ∈ I. If [τen, τex] is a boundary
arc, τen and τex are called an entry and an exit point, respectively. Entry and exit points
are said to be regular if they are endpoint of an interior arc. A touch point τ in (0, T ) is an
isolated contact point (endpoint of two interior arcs). Entry, exit and touch points are called
junction points (or times). We say that the junctions are regular when the entry/exit points
are regular.

The first-order time derivative of the state constraint along a trajectory (u, y), defined by
g(1)(u, y) = d

dtg(y(t)) = gy(y)f(u, y), is denoted by g(1)(y) if the function R×R
n → R, (u, y) 7→
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gy(y)f(u, y) does not depend on u (that is, the function (u, y) 7→ g
(1)
u (u, y) is identically zero).

If f and g are Cq, we may define similarly g(2), . . . , g(q) if g
(j)
u ≡ 0, for all j = 1, . . . , q− 1, and

we have g(j)(u, y) = g
(j−1)
y (y)f(u, y), for j = 1, . . . , q.

Let q ≥ 1 be the smallest number of time derivations of the state constraint, so that a

dependence w.r.t. u appears, i.e. g
(q)
u 6≡ 0. If q is finite, we say that q is the order of the

state constraint (see e.g. [29]). A state constraint of order q is said to be regular along the
trajectory (u, y) if the condition below holds:

∃ γ > 0, |g(q)
u (û, y(t))| ≥ γ for all t ∈ [0, T ] and all û ∈ R. (2.10)

Note that the set of generalized multipliers (p0, p, η) is a cone. When p0 = 0, we say that
the multiplier is singular; otherwise it is regular. Dividing then (p, η) by p0, we obtain the
qualified version of Pontryagin’s principle, substituting the generalized Hamiltonian with the
classical Hamiltonian. It is easily seen that a Pontryagin extremal satisfying (2.10) (and (A1))
has no singular multiplier, and that the multiplier (p, η) in the qualified version of Pontryagin’s
principle (p0 = 1) is unique. The same is true for a stationary solution.

Being of bounded variation, p has at most countably many discontinuity times and has
everywhere on [0, T ] left and right limits, denoted by p(t±) = limt′→t± p(t

′). The jump at
τ ∈ (0, T ) is denoted by [p(τ)] = p(τ+) − p(τ−). Similar observations hold for η.

Assumptions We say that (u, y) is a regular Pontryagin extremal if it satisfies Def. 2.1
with p0 = 1, with costate p and multiplier η, and if assumptions (A2)-(A4) below are satisfied.

(A2) The Hamiltonian is strongly convex w.r.t. the control variable, uniformly w.r.t. t ∈
[0, T ]:

∃ α > 0, Huu(û, y(t), p(t
±)) ≥ α for all t ∈ [0, T ] and all û ∈ R. (2.11)

(A3) The data of the problem are C2q, i.e. k ≥ 2q in (A0), and the state constraint is of
order q and regular, i.e. (2.10) holds.

(A4) The trajectory (u, y) has a finite set of junction times, that will be denoted by T =:
Ten ∪ Tex ∪ Tto, with Ten, Tex, and Tto the disjoint (and possibly empty) subsets of
respectively entry, exit and touch points, and we assume that g(y(T )) < 0.

Hypothesis (A4) implies that all entry and exit points are regular. In what follows, we denote
by Ib the union of boundary arcs, i.e. Ib := ∪Nb

i=1[τ
i
en, τ

i
ex] for Ten := {τ1

en < · · · < τNb
en } and

Tex := {τ1
ex < · · · < τNb

ex }.
Remark 2.3. Troughout the paper, (A3) can be weakened, replacing (2.10) by

∃ γ, ε > 0, |g(q)
u (û, y(t))| ≥ γ for all t, dist(t, Ib ∪ Tto) < ε, and all û ∈ R. (2.12)

Notation Given a finite subset S of (0, T ), we denote by PC k
S [0, T ] the set of functions over

[0, T ] that are of class Ck outside S (PC stands for piecewise continuous), and have, as well
as their first k derivatives, a left and right limit over S and a right (resp. left) limit at 0 (resp.
T ).

Let ϕ be a real-valued function over [0, T ]. Assuming w.l.o.g. the elements of S in increas-
ing order, we may define ϕ(S) := (ϕ(τ))τ∈S ∈ R

CardS . We adopt a similar convention for
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vectors, νS := (ντ )τ∈S ∈ R
CardS , and will also use the following notation:

ν1:q
S :=






ν1
S
...
νqS




 ∈ R

qCardS ; g(0:q−1)(y(S)) :=






g(y(S))
...

g(q−1)(y(S))




 ∈ R

qCardS .

2.2.1 Alternative Formulation of Optimality Conditions

Under assumption (A4) we have a finite number of arcs and we can show, with regularity
assumptions (A2)-(A3), that the multiplier η is differentiable on the interior of each arc [75, 98].
An analysis of the optimality system on interiors of arcs shows then that a regular Pontryagin
extremal satisfies the conditions stated in Prop. 2.4 below. An analysis at junction times
leads afterwards to the junction conditions given in Prop. 2.5.

Proposition 2.4. Let (u, y) be a regular Pontryagin extremal, satisfying (A2)-(A4). Then
we have u ∈ PCq

T [0, T ], y ∈ PCq+1
T ([0, T ]; Rn) and there exists p ∈ PC1

T ([0, T ]; Rn∗), η0 ∈
PC0

T [0, T ], and jump parameters νT , such that the following optimality system is satisfied:

ẏ(t) = Hp(u(t), y(t), p(t)) = f(u(t), y(t)) on [0, T ] ; y(0) = y0 (2.13)

−ṗ(t) = Hy(u(t), y(t), p(t)) + gy(y(t))η0(t) on [0, T ] \ T (2.14)

p(T ) = φy(y(T )) (2.15)

0 = Hu(u(t), y(t), p(t)) on [0, T ] \ T (2.16)

g(y(t)) = 0 on Ib ; η0(t) = 0 on [0, T ] \ Ib (2.17)

g(y(t)) < 0 on [0, T ] \ (Ib ∪ Tto) ; η0(t) ≥ 0 on int Ib (2.18)

g(y(τ)) = 0 ∀τ ∈ Tto (2.19)

[p(τ)] = −ντgy(y(τ)) ; ντ ≥ 0 ∀τ ∈ T . (2.20)

We denote by int Ib the interior of Ib. A touch point τ ∈ Tto is said to be essential if
ντ > 0 in (2.20); otherwise it is nonessential. We denote by T ess

to the set of essential touch
points. Hypotheses (A2)-(A4) also imply the continuity of the control variable and of some of
its time derivatives at junction points. The next proposition is due to Jacobson et al. [75].

Proposition 2.5. Let (u, y) be a regular Pontryagin extremal, satisfying (A2)-(A4). Then:
(i) For all entry or exit point τ ∈ Ten ∪ Tex: (a) if q is odd, u and its q − 1 first derivatives
are continuous at τ , ντ = 0 and p is continuous at τ ; (b) if q is even, u and its q − 2 first
derivatives are continuous at τ .
(ii) For all touch points τ ∈ Tto: (a) u and its q − 2 first derivatives are continuous at τ ; (b)
if τ is nonessential (i.e. ντ = 0), u and its q first derivatives and p are continuous at τ ; (c)
if q = 1, then τ is a nonessential touch point.

Remark 2.6. If (u, y) satisfies (A2)-(A4) and (2.13)-(2.20), the multiplier η ∈ M[0, T ] such
that (u, y) satisfies Definition 2.1 is given by:

dη(t) =
∑

τ∈T

ντ δτ (t) + η0(t)dt, (2.21)

where δτ denotes the Dirac measure at time τ , ντ = [η(τ)] is the nonnegative jump at τ ∈ T ,
and the density η0 ∈ PC0

T [0, T ] equals dη
dt on [0, T ] \ T .
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We now present the alternative formulation that will be used in the shooting algorithm.
First introduced heuristically in [29], it is based on the use of the mixed explicit constraint
g(q)(u(t), y(t)) = 0 on boundary arcs. Let the augmented Hamiltonian H̃ : R×R

n×R
n∗×R →

R be defined by

H̃(u, y, pq, ηq) = H(u, y, pq) + ηqg
(q)(u, y), (2.22)

where q denotes the order of the state constraint and H is the classical Hamiltonian (2.4).

Definition 2.7. We say that a trajectory (u, y) in PC q
T [0, T ] × PCq+1

T ([0, T ]; Rn) satisfying

(A3)-(A4) is solution of the alternative formulation, if there exist pq ∈ PCq+1
T ([0, T ]; Rn∗),

ηq ∈ PCq
T [0, T ], alternative jump parameters ν jTen

, j = 1, . . . , q, and νTto such that the following
relations are satisfied (we omit dependence in time):

ẏ = H̃p(u, y, pq, ηq) = f(u, y) on [0, T ] ; y(0) = y0 (2.23)

−ṗq = H̃y(u, y, pq, ηq) = Hy(u, y, pq) + ηqg
(q)
y (u, y) on [0, T ] \ T (2.24)

pq(T ) = φy(y(T )) (2.25)

0 = H̃u(u, y, pq, ηq) = Hu(u, y, pq) + ηqg
(q)
u (u, y) on [0, T ] \ T (2.26)

g(j)(y(τ)) = 0 for j = 0, 1, . . . , q − 1 ; τ ∈ Ten (2.27)

g(q)(u, y) = 0 on Ib (2.28)

g(y(τ)) = 0 for all τ ∈ Tto (2.29)

ηq(t) = 0 on [0, T ] \ Ib (2.30)

[pq(τ)] = −
q
∑

j=1

νjτg
(j−1)
y (y(τ)) for all τ ∈ Ten (2.31)

[pq(τ)] = 0 for all τ ∈ Tex (2.32)

[pq(τ)] = −ντgy(y(τ)) for all τ ∈ Tto. (2.33)

In the heuristic formulation of [29], (2.23)-(2.33) are interpreted as necessary optimality
conditions for the problem of minimizing (2.1) subject to (2.2) and equality constraints (2.27)-
(2.29) for a fixed set of junction times T . Alternative jump parameters ν 1:q

τen appearing in (2.31)
are seen as multipliers associated with the q interior point constraints in (2.27) at a regular
entry time τen.

The assumption equivalent to (A2) for the alternative formulation, is the following, see
Remark 2.11(ii):

(A2q) ∃ α > 0, H̃uu(û, y(t), pq(t
±), ηq(t

±)) ≥ α for all t ∈ [0, T ] and all û ∈ R.

We will write in what follows (A2)-(A4) (resp. (A2q)-(A4)) to denote the assumptions (A2)
(resp. (A2q)), (A3) and (A4).

2.2.2 Additional Conditions

Relations (2.23)-(2.33) due to [29] are necessary, but not sufficient, conditions for regular
Pontryagin extremals. This was underlined in [75], where some additional necessary conditions
were provided, that allowed the authors to show that a trajectory (with a fourth-order state
constraint) was not a Pontryagin extremal. We state in Prop. 2.10 the characterization of
regular Pontryagin extremals based on the alternative formulation. We need some preliminary
lemmas.
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Lemma 2.8. Let (u, y) be a trajectory, and let (pq, ηq) ∈ PC1
T ([0, T ]; Rn∗) × PC0

T [0, T ] sat-
isfying (A2q)-(A4) and (2.23)-(2.24), (2.26), (2.28). Then (u, y, pq, ηq) belongs to the set

PCqT [0, T ] × PCq+1
T ([0, T ]; Rn) × PCq+1

T ([0, T ]; Rn∗) × PCq
T [0, T ].

Proof. By the implicit function theorem, applied to (2.26) on interior arcs, and to (2.26) and
(2.28) on boundary arcs, the algebraic variables (u, ηq) can be expressed, on the interior of
each arc, as Cq functions of (y, pq). The result follows.

Lemma 2.9. If constraint regularity (A3) holds along a trajectory (u, y), and if u ∈ PC q
T [0, T ],

then, for all t ∈ [0, T ], vectors (gy(y(t)), . . . , g
(q−1)
y (y(t))) are linearly independent (and hence,

q ≤ n).

Proof. Since u ∈ PCq
T [0, T ], the mappings (Al)0≤l≤q : [0, T ] \ T → R

n defined inductively by

{
A0(t) := fu(u(t), y(t)),

Al(t) := fy(u(t), y(t))Al−1(t) − Ȧl−1(t), l = 1, . . . , q,
(2.34)

are well-defined, and Al ∈ PCq−l
T ([0, T ]; Rn) for l = 0, . . . , q. It has been shown in [98] that

the following relations hold for all t ∈ [0, T ]:

{

g
(j)
y (y(t))Al(t

±) = 0 for j = 0, . . . , q − 2, l = 0, . . . , q − 2 − j,

g
(q)
u (u(t±), y(t)) = g

(q−l−1)
y (y(t))Al(t

±) for l = 0, . . . , q − 1,
(2.35)

where t± denotes, on both sides of the equality, either t− or t+. Denote by C the n ×
q matrix (gy(y(t))

∗, . . . , g
(q−1)
y (y(t))∗). The above relations imply that the q × q matrix

D := C>(Aq−1(t
±), . . . , A0(t

±)) is lower triangular with nonzero diagonal elements equal to

g
(q)
u (u(t±), y(t)), hence has rank q. Therefore C has rank at least q. The conclusion follows.

Proposition 2.10. Let (u, y) be a trajectory satisfying (A2q)-(A4) and the alternative for-
mulation (2.23)-(2.33). Define the functions ηj, 0 ≤ j ≤ q − 1, the costate p and the jump
parameters νTen and νTex by

ηj(t) = (−1)q−j
dq−j

dtq−j
ηq(t) for j = 0, . . . , q − 1, t ∈ [0, T ] \ T , (2.36)

p(t) = pq(t) +

q
∑

j=1

ηj(t)g
(j−1)
y (y(t)) t ∈ [0, T ] \ T , (2.37)

ντen = ν1
τen

− η1(τ
+
en), ∀ τen ∈ Ten; ντex = η1(τ

−
ex), ∀ τex ∈ Tex. (2.38)

Then (u, y) is a regular Pontryagin extremal that satisfies (2.13)-(2.20) iff all the following
additional conditions are satisfied:

g(y(t)) < 0 on [0, T ] \ (Ib ∪ Tto) (2.39)

η0(t) = (−1)q
dq

dtq
ηq(t) ≥ 0 on int Ib (2.40)

At all entry time τen:

{
ν1
τen

= η1(τ
+
en) if q is odd;

ν1
τen

≥ η1(τ
+
en) if q is even;

νjτen
= ηj(τ

+
en); j = 2, . . . , q (2.41)
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At all exit time τex:

{
η1(τ

−
ex) = 0 if q is odd;

η1(τ
−
ex) ≥ 0 if q is even;

ηj(τ
−
ex) = 0; j = 2, . . . , q. (2.42)

At all touch times τto:

ντto ≥ 0. (2.43)

Remark 2.11. (i) If (u, y) is a regular Pontryagin extremal solution of (2.13)-(2.20), the func-
tions ηj, 1 ≤ j ≤ q, costate pq and alternative jump parameters ν1:q

Ten
such that (u, y) satisfies

the alternative formulation (2.23)-(2.33) and additional conditions (2.39)-(2.43), can be re-
covered from p, η0 and νT as follows. The functions ηj are given by (2.36) by successive
integrations of η0 over boundary arcs, with integration constants determined by the exit time
conditions (2.38) for j = 1 and (2.42) for j = 2, . . . , q. Costate pq follows then from (2.37), and

jump parameters at entry times νjτen are given by (2.38) for j = 1 and (2.41) for j = 2, . . . , q.
Jump parameters νTto associated with touch points are the same in both formulations.
(ii) Assumptions (A2) and (A2q) are equivalent, when (2.36)-(2.37) hold, since the constraint
are of order q, and hence we have

H̃uu(u, y, pq, ηq) = Huu(u, y, p) −
∑q

j=1 ηj(t)g
(j−1)
y (y)fuu(u, y) + ηqg

(q)
uu (u, y)

= Huu(u, y, p) −
∑q−1

j=1 ηj(t)g
(j)
uu (y)(u, y) = Huu(u, y, p).

Proof of Proposition 2.10. Since ηq is piecewise Cq by Lemma 2.8, the functions ηj, 0 ≤
j ≤ q − 1 are well-defined. We show the equivalence between (2.13)-(2.20) and (2.23)-(2.33)
augmented with (2.39)-(2.43).

Equivalence between state equations (2.13) and (2.23); final costate conditions (2.15) and
(2.25); state constraint equations (2.17) and (2.27), (2.28), (2.30) on boundary arcs, and
(2.19) and (2.29) at touch points, is obvious. Equivalence between costate equations (2.14)
and (2.24), and between control equations (2.16) and (2.26), follows from calculation, using
the relations between the functions ηj, p, and pq and the fact that the state constraint is of
order q (see e.g. [98]).

Additional conditions are necessary to ensure equivalence between complementarity and
junction conditions. Obviously, (2.39)-(2.40) are equivalent to (2.18); as well, (2.33) and (2.43)
are equivalent to to (2.20) for touch points. It remains to check that (2.20) is also equivalent
to (2.31)-(2.32) and (2.41)-(2.42) at entry/exit points. Let τen ∈ Ten. Expressing [pq(τen)],
using on the one hand the relationship (2.37) between p and pq, as well as (2.20), and using
on the other hand jump condition (2.31), we obtain

[pq(τen)] = −ντengy(y(τen)) −
q
∑

j=1

ηj(τ
+
en)g

(j−1)
y (y(τen)), (2.44)

[pq(τen)] = −
q
∑

j=1

νjτen
g(j−1)
y (y(τen)). (2.45)

By Lemma 2.9 at t = τen, the right-hand sides of (2.44) and (2.45) are equal iff the coefficients

of g
(j−1)
y (y(τen)) for j = 1, . . . , q are equal. Eliminating ντen , which must be nonnegative (and

equals zero for odd-order state constraints by Prop. 2.5(i)), we deduce (2.41). Proceeding
similarly at exit points, (2.42) follows.
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Remark 2.12. Proposition 2.10 slightly improves section 5 of [98], in the sense that we give
the complete set of additional conditions for which equivalence between regular Pontryagin
extremals and the alternative formulation holds.

Remark 2.13. The sign condition of η
(q)
q on boundary arcs (2.40) and exit point conditions

(2.42) implies that the necessary condition

(−1)q−j
dq−j

dtq−j
ηq(t) = ηj(t) ≥ 0 on Ib for j = 1, . . . , q (2.46)

holds as a consequence of (2.40) and (2.42). It is easily seen by induction, since η̇j = −ηj−1 ≤ 0

on Ib and ηj(τ
−
ex) ≥ 0 for all τex ∈ Tex. By (2.41), we deduce also that νjτen ≥ 0 for all τ ∈ Ten

and j = 1, . . . , q.

2.2.3 The shooting algorithm

The shooting algorithm extracts from the necessary optimality conditions a finite-dimensional
set of equations (the shooting equations). If its Jacobian is invertible, we obtain a locally
convergent algorithm by solving the shooting equations using, say, Newton’s method.

In the unconstrained case, the initial value of the costate p0 is mapped into the final
condition (2.25). To handle alternative formulation of Def. 2.7, jump parameters and junction
times are introduced as shooting parameters. A given set of shooting parameters determines
a unique trajectory and multipliers (u, y, pq, ηq) solution of the coupled state-costate system
(2.23)-(2.24) with initial condition pq(0) = p0; algebraic equations (2.26), (2.28) and (2.30)
that give u and ηq as implicit functions of (y, pq) by (A2)-(A3); and jump conditions (2.31)-
(2.33).

We use the shooting formulation of Malanowski and Maurer [93, 94]. Jump parameters
ν1:q
τen at an entry time τen are associated with the q interior points conditions (2.27). Necessary

optimality conditions for entry and exit points τen and τex and touch points τto (when q ≥ 2)
are as follows:

g(q)(u(τ−en), y(τen)) = 0; g(q)(u(τ+
ex), y(τex)) = 0, (2.47)

g(1)(y(τto)) = 0. (2.48)

By Proposition 2.5, the control is continuous along a regular Pontryagin extremal, so that
(2.47) is a necessary optimality condition for entry/exit times. For a first order state constraint,
we assume in what follows that Tto = ∅ (see remark 2.19 below). Since a touch point τto is
a local maximum of g(y), when q ≥ 2 (2.48) is a necessary optimality condition. Therefore,
(2.48) together with the interior point constraint (2.29) provide two conditions associated with
τto and its jump parameter ντto, for each τto ∈ Tto.
Definition 2.14. A trajectory (u, y) is a shooting extremal if it satisfies both the alternative
formulation (Def. 2.7) and conditions (2.47)-(2.48).

Let us show how (2.47) relates to the additional conditions of Prop. 2.10.

Proposition 2.15. Let (u, y) be a trajectory solution of the alternative formulation (2.23)-
(2.33) and satisfying (A2q)-(A4). Then the two following conditions are equivalent:
(i) The control u is continuous at entry/exit times τen, τex (i.e., (2.47) holds);
(ii) Those additional conditions in (2.41)-(2.42) involving ηq are satisfied, i.e.

ηq(τ
+
en) − νqτen

= 0; ηq(τ
−
ex) = 0. (2.49)
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Proof. Let τen ∈ Ten. By assumption (A3), the function û 7→ g(q)(û, y(τen)) is one-to-one.
Since g(q)(u(τ+

en), y(τen)) = 0, we have that g(q)(u(τ−en), y(τen)) = 0 iff the control is continuous
at time τen; the same type of arguments holds for exit points. It follows that (2.47) is equivalent
to the continuity of the control at entry/exit points.

By (2.26), we have

H̃u(u(τ
−
en), y(τen), pq(τ

−
en), 0) = 0 = H̃u(u(τ

+
en), y(τen), pq(τ

+
en), ηq(τ

+
en)).

We abbreviate u(τ−en) to u− and so on. Using the jump condition of the costate (2.31), it
follows that

H̃u(u
+, y, p+

q , η
+
q ) = Hu(u

+, y, p−q ) −
q
∑

j=1

νjτen
g(j−1)
y (y)fu(u

+, y) + η+
q g

(q)
u (u+, y).

The state constraint being of order q, we have g
(j−1)
y (y)fu(u, y) = g

(j)
u (y) = 0 for j = 1, . . . , q−

1, and hence, we obtain

0 = Hu(u
+, y, p−q ) + (η+

q − νqτen
)g(q)
u (u+, y).

Since g
(q)
u (u+, y) 6= 0 by (A3), it follows that Hu(u

+, y, p−q ) = 0 iff η+
q = νqτen . Since by (A2q),

Hu(u
+, y, p−q ) = 0 iff u+ = u−, we deduce that u is continuous at time τen iff η+

q = νqτen .
Similar arguments hold for exit points. The conclusion follows.

Remark 2.16. We can also check that if (u, y) is a shooting extremal satisfying (A2q)-(A4),
then u is continuous at touch points τ ∈ Tto, if q ≥ 2. Indeed, (2.26), (2.30), and (2.33) lead
to

Hu(u
−, y, p−q ) = 0 = Hu(u

+, y, p+
q ) = Hu(u

+, y, p−q ) − ντgy(y)fu(y, u
+).

Since gyfu = g
(1)
u ≡ 0 and Hu(·, y, p−q ) is one-to-one by (A2q), we obtain u+ = u−.

It follows that if (u, y) is a shooting extremal satisfying (A2q)-(A4), then u is continuous
on [0, T ], provided that we still assume that Tto = ∅ if q = 1 (see Remark 2.19).

The structure of a feasible trajectory is defined as the (finite) number of boundary arcs
and touch points of the trajectory, and the order in which they occur w.r.t. time. Assuming
the structure of the optimal trajectory is known, we define the shooting mapping as follows.
Denote by Nb and Nto the number of boundary arcs and touch points of the trajectory,
respectively. The space of shooting parameters is

Θ := R
n × R

qNb × R
Nto × R

Nb × R
Nb × R

Nto.

With the above notations, and for a given order of boundary arcs and touch points, the
shooting mapping F is defined over a neighborhood in Θ of shooting parameters associated
with a regular Pontryagin extremal, into Θ, by

θ =














p∗0

ν1:q
Ten

νTto

Ten
Tex
Tto














7→














pq(T )∗ − φy(y(T ))∗

g(0:q−1)(y(Ten))
g(y(Tto))

g(q)(u(T −
en), y(Ten))

g(q)(u(T +
ex), y(Tex))

g(1)(y(Tto))














. (2.50)

By construction, a zero of the shooting mapping F provides a trajectory (u, y) that is a
shooting extremal. In view of Propositions 2.10 and 2.15, the following holds.
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Corollary 2.17. A shooting extremal satisfying (A2q)-(A4) is a regular Pontryagin extremal
iff it satisfies the following minimal additional conditions: (2.39) on interior arcs, (2.40)
on boundary arcs, (2.43) at touch points, and for all entry points τen ∈ Ten and exit points
τex ∈ Tex:

if q ≥ 2 is even: ν1
τen

− (−1)q−1η(q−1)
q (τ+

en) ≥ 0 ; (−1)q−1η(q−1)
q (τ−ex) ≥ 0; (2.51)

{

if q ≥ 3 is odd, j = 1, . . . , q − 1, and if q ≥ 4 is even, j = 2, . . . , q − 1:

νjτen − (−1)q−jη
(q−j)
q (τ+

en) = 0 ; (−1)q−jη
(q−j)
q (τ−ex) = 0.

(2.52)

Note that (2.51)-(2.52) is only a reformulation of (2.41)-(2.42), from which we removed
the condition corresponding to j = q, namely (2.49), since the latter is automatically satisfied
by Prop. 2.15. Consequently, when q = 1, there remain no additional conditions at entry/exit
points for shooting extremals.

Remark 2.18. It follows that for first- and second-order state constraints, and for constraints
of order q > 2 having no boundary arcs (see Remark 2.42 concerning existence of boundary
arcs for state constraints of order q ≥ 3), the additional conditions reduce to the inequalities
(2.39), (2.40), (2.43), and also (2.51) when q = 2 at entry/exit points.

Remark 2.19. For a first-order state constraint, jump parameters νTto associated with touch
points are equal to zero along a regular Pontryagin extremal by Prop. 2.5. For this reason,
we assume in this paper that Tto = ∅ if q = 1.

Remark 2.20. The nonlocal hypotheses (A2) (or (A2q)) as well as (2.10) (or (2.12)) are es-
sential in order to prove that the control is continuous. Some of our results remain valid,
substituting everywhere stationary point for (regular) Pontryagin extremal, when the assump-
tions (A2) and (2.10) in (A3) are replaced by the weaker assumptions that u is continuous
over [0, T ] and that there exists α, γ > 0 such that

Huu(u(t), y(t), p(t)) ≥ α and |g(q)
u (u(t), y(t))| ≥ γ for all t ∈ [0, T ]. (2.53)

This holds in particular for Propositions 2.4, 2.5, 2.10, 2.15, Remark 2.16, and Corollary 2.17.
The same remark applies for the other results of this paper, i.e. Theorems 2.22, 2.23, 2.34;
Corollary 2.41, and Lemmas 2.43 and 2.44 in the appendix.

2.3 Well-Posedness of the Shooting Algorithm

We say that the shooting algorithm is locally well-posed if the Jacobian of the shooting map-
ping (2.50) is invertible at some local solution of (P). This allows us to apply locally a Newton
method in order to find a shooting extremal; the additional conditions for a Pontryagin ex-
tremal have to be checked afterwards.

Let us first give some definitions. Given u ∈ U , recall that we denote by yu the (unique)
solution in Y of the state equation (2.2). This well-defined mapping is of class Ck under
assumption (A0). Let the cost function be

J(u) =

∫ T

0
`(u(t), yu(t))dt+ φ(yu(T )). (2.54)

We say that a feasible trajectory (u, y = yu) is a local solution of (P) satisfying the quadratic
growth condition if there exists c, r > 0 such that

J(ũ) ≥ J(u) + c ‖ũ− u‖2
2 ∀ ũ ∈ B∞(u, r); g(yũ(t)) ≤ 0 on [0, T ], (2.55)
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where B∞ denotes the open ball in L∞(0, T ) with center u and radius r. This condition
involves two norms, L∞(0, T ) for the neighborhood and L2(0, T ) for the growth condition.

Let (u, y) be a regular Pontryagin extremal. We make the following strict complementarity
assumption (compare to (2.40), (2.51), and (2.43), where large inequalities are replaced by
strict inequalities):

(A5) (i) For all boundary arcs [τen, τex]:

(−1)q
dq

dtq
ηq(t) > 0 a.e. on (τen, τex), (2.56)

If q is odd :
dq

dtq
ηq(τ

+
en) < 0;

dq

dtq
ηq(τ

−
ex) < 0, (2.57)

If q is even: ν1
τen

+
dq−1

dtq−1
ηq(τ

+
en) > 0;

dq−1

dtq−1
ηq(τ

−
ex) < 0. (2.58)

(ii) For all touch points τto ∈ Tto:
ντto > 0. (2.59)

Recall that (−1)q dq

dtq ηq(t) equals η0, the density of η (see Prop. 2.10). Let q̂ := 2q − 1 if q is
odd and q̂ := 2q−2 if q is even. By Prop. 2.5, q̂+1 is the smallest possible order for which the
corresponding time derivative of g(y(t)) may be discontinuous at an entry/exit point. Note
that q̂ = q for q = 1, 2.

Lemma 2.21. Let (u, y) be a regular Pontryagin extremal satisfying (A2)-(A4). For odd (resp.
even) q, assumption (2.57) (resp. (2.58)) holds iff the following non-tangentiality condition at
order q̂ + 1 holds: for all entry times τen ∈ Ten and all exit times τex ∈ Tex,

(−1)q̂+1 dq̂+1

dtq̂+1
g(y(t))|t=τ−en

< 0;
dq̂+1

dtq̂+1
g(y(t))|t=τ+

ex
< 0. (2.60)

Proof. By Prop. 2.10 (see (2.38)), (2.58) is equivalent, when q is even, to the strict positivity
of ντ at entry/exit points τ ∈ Ten ∪ Tex. The conclusion is then a consequence of Prop. 2.10
and of Lemma 2.44 whose (technical) proof is given in the appendix.

Assumption (A5)(ii) implies that if q = 1, then Tto = ∅ by Prop. 2.5(ii). When q ≥ 2, we
assume that all touch points of (u, y) are reducible, in the following sense:

(A6) For all touch points τto ∈ Tto:

d2

dt2
g(y(t))|t=τto < 0. (2.61)

This makes sense, since when q ≥ 2, we have d2

dt2
g(y(t)) = g(2)(u, y) and u is continuous by

Prop. 2.5.
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2.3.1 Statement of main results

Define the quadratic cost function:

Jq(v, z) :=

∫ T

0
H̃(u,y),(u,y)(u, y, pq, ηq)((v, z), (v, z))dt

+ z(T )∗φyy(y(T ))z(T ) +
∑

τ∈Ten

q
∑

j=1

νjτz(τ)
∗g(j−1)
yy (y(τ))z(τ)

+
∑

τ∈Tto

ντ

(

z(τ)∗gyy(y(τ))z(τ) − (g
(1)
y (y(τ))z(τ))2

d
dtg

(1)(y(t))|t=τ

)

(2.62)

where H̃ is the augmented Hamiltonian (2.22), and the set of constraints:

ż = fy(u, y)z + fu(u, y)v on [0, T ]; z(0) = 0 (2.63)

g(j)
y (y(τ))z(τ) = 0 for j = 0, . . . , q − 1; τ ∈ Ten (2.64)

g
(q)
(u,y)(u(t), y(t))(v(t), z(t)) = 0 t ∈ Ib (2.65)

gy(y(τ))z(τ) = 0 τ ∈ Tto. (2.66)

Since the state equation and constraints are linear, the cost function is quadratic, and all have
bounded coefficients, we may take as linearized control and state spaces V := L2(0, T ) and
Z := H1(0, T ; Rn), where H1(0, T ) is the Sobolev space of functions in L2(0, T ) with a weak
derivative in L2(0, T ). Let the linear quadratic problem (PQq) be defined by

(PQq) min
(v,z)∈V×Z

1

2
Jq(v, z) subject to (2.63)-(2.66). (2.67)

Consider the following second-order conditions:

(v, z) = 0 is a solution of (PQq). (2.68)

(v, z) = 0 is the unique solution of (PQq). (2.69)

Theorem 2.22 (No-gap second-order optimality conditions). (i) Let (u, y) be a local
solution of (P) satisfying (A2)-(A6). Then its associated multipliers in the alternative formu-
lation are such that the second-order necessary condition (2.68) holds.
(ii) Let (u, y) be a Pontryagin extremal satisfying (A2)-(A6). Then the second-order suffi-
cient condition (2.69) holds iff (u, y) is a local solution of (P) satisfying the quadratic growth
condition (2.55).

Theorem 2.23 (Well-posedness of the shooting algorithm). Let (u, y) be a local solution
of (P) satisfying (A2)-(A6). Then the shooting algorithm is locally well-posed (invertible
Jacobian), iff the following two conditions hold: (i) If q ≥ 3, the trajectory (u, y) does not
have boundary arcs; (ii) The second-order sufficient condition (2.69) holds.

In general, even for unconstrained problems, the invertibility of the Jacobian of the shoot-
ing mapping at a Pontryagin extremal does not imply that the second-order sufficient condition
(2.69) holds. We comment on the ill-posedness of the shooting algorithm along boundary arcs
of order q ≥ 3 in Remark 2.42.

Combining Theorems 2.22(ii) and 2.23, we obtain that if (u, y) is a local solution of (P)
satisfying (A2)-(A6) and condition (i) of Th. 2.23, then the shooting algorithm is well-posed
iff (u, y) satisfies the quadratic growth condition.
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2.3.2 Proof of the no-gap Second-order Optimality Conditions (Theorem
2.22)

We use the no-gap second-order optimality conditions established in [18, 21]. Let (u, y) be a
regular Pontryagin extremal, with the multiplier η ∈ M[0, T ] given by (2.21). Consider the
quadratic cost function:

J (v, z) :=

∫ T

0
H(u,y),(u,y)(u, y, p)((v, z), (v, z))dt + z(T )∗φyy(y(T ))z(T )

+

∫ T

0
(z∗gyy(y)z) dη −

∑

τ∈Tto

ντ
(g

(1)
y (y(τ))z(τ))2

d
dtg

(1)(y(t))|t=τ
,

(2.70)

where H is the classical Hamiltonian (2.4), and consider the constraint

gy(y(t))z(t) = 0 on Ib ∪ Tto. (2.71)

The quadratic problem used in the formulation of the second-order optimality conditions in
[21] is the following:

(PQ) min
(v,z)∈V×Z

1

2
J (v, z) subject to (2.63) and (2.71). (2.72)

Theorem 2.24. (i) If (u, y) is a local solution of (P) such that (A2)-(A6) hold, then (v, z) = 0
is a solution of problem (2.72).
(ii) If (u, y) is a Pontryagin extremal such that (A2)-(A6) hold, it is a local solution of (P)
satisfying the quadratic growth condition (2.55) iff problem (2.72) has zero for unique solution.

Proof. See Corollary 15 and Theorems 18 and 27 in [21]1, or Theorem 0.1 in [18]. For the
sake of completeness, let us recall the main ideas. The proof of the second-order necessary
condition is based on the computation of the curvature term obtained by Kawasaki [77, 79]
in abstract optimization framework. With the junction conditions results of Prop. 2.5 and
(A5)(i), we can show that boundary arcs have a zero contribution to the curvature term. For
the second-order sufficient condition, a reduction method is used around the finitely many
reducible touch points. In fact, the proof of the sufficient condition is very similar to the proof
of Lemma 2.40 in the stability analysis below.

We establish the link between Th. 2.24 and the second-order conditions (2.68)-(2.69)
derived from the alternative formulation. In the end of this section we often omit the time
argument when there is no ambiguity. The proof of the next lemma is easy and therefore
omitted.

Lemma 2.25. Assume that the state constraint is of order q. Then for every trajectory (u, y)
and every linearized trajectory (v, z) ∈ V × Z satisfying (2.63), the following holds:

dj

dtj
gy(y(t))z(t) = g(j)

y (y)z, j = 1, . . . , q − 1, (2.73)

dq

dtq
gy(y(t))z(t) = g(q)

y (u, y)z + g(q)
u (u, y)v. (2.74)

1Corollary 1.15 and Theorems 1.18 and 1.27 of this thesis.
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Lemma 2.26. Let (u, y) be a regular Pontryagin extremal satisfying (A2)-(A4), with classical
and alternative multipliers (p, η) and (pq, ηq, ν

1:q
Ten
, νTto), respectively, related to each other by

(2.36)-(2.38), (2.41), and (2.21). Then the quadratic cost functions J and Jq, defined respec-
tively in (2.70) and (2.62), are equal to each other over the space of linearized trajectories
(v, z) ∈ V × Z satisfying (2.63).

Proof. Let (v, z) ∈ V × Z satisfy (2.63) and set ∆PQ := J (v, z) −Jq(v, z). Using (2.21), it is
easily seen that the terms corresponding to the touch points and to the final time vanish, and
hence we get

∆PQ =

∫ T

0
(p− pq)D

2f(u, y)((v, z), (v, z))dt +

∫ T

0
gyy(y)(z, z)η0(t)dt

−
∫ T

0
D2g(q)(u, y)((v, z), (v, z))ηq (t)dt+

∑

τ∈Tex

ντgyy(y)(z, z)(τ)

+
∑

τ∈Ten



ντgyy(y)(z, z)(τ) −
q
∑

j=1

νjτg
(j−1)
yy (y)(z, z)(τ)



 .

In what follows we abbreviate the notation ((v, z), (v, z)) by ((v, z))2. Relations (2.36)-(2.37)
between p and pq lead to

∆PQ =

q
∑

j=1

∫ T

0
g(j−1)
y (y)D2f(u, y)((v, z))2ηj(t)dt+

∫ T

0
gyy(y)(z, z)η0(t)dt

−
∫ T

0
D2g(q)(u, y)((v, z))2ηq(t)dt+

∑

τ∈Tex

ντgyy(y)(z, z)(τ) (2.75)

+
∑

τ∈Ten



ντgyy(y)(z, z)(τ) −
q
∑

j=1

νjτg
(j−1)
yy (y)(z, z)(τ)



 .

The constraint being of order q, we have g(j)(u, y) = g
(j−1)
y (y)f(u, y) for j = 0 to q − 1. It

follows that

D2g(j)(u, y)((v, z))2 = g
(j−1)
yyy (y)(f(u, y), z, z) + 2g

(j−1)
yy (y)(z,Df(u, y)(v, z))

+ g
(j−1)
y (y)D2f(u, y)((v, z))2.

(2.76)

In addition, by the linearized state equation (2.63), we have, for all j = 1, . . . , q

d

dt

[

g(j−1)
yy (y(t))(z(t), z(t))

]

=g(j−1)
yyy (y)(f(u, y), z, z) + 2g(j−1)

yy (y)(z,Df(u, y)(v, z)),

which gives by (2.76), for j = 1, . . . , q

d

dt

[

g(j−1)
yy (y(t))(z(t), z(t))

]

= D2g(j)(u, y)((v, z))2 − g(j−1)
y (y)D2f(u, y)((v, z))2 . (2.77)

Since g
(j−1)
u (u, y) ≡ 0 for j = 1, . . . , q, we have g

(j−1)
yy (y)(z, z) = D2g(j−1)(u, y)((v, z))2 for

j = 1, . . . , q. Multiplying (2.77) by ηj, integrating over [0, T ], and integrating by parts the
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left-hand side (recall that η̇j = −ηj−1), we obtain, for j = 1, . . . , q

∫ T

0
D2g(j−1)(u, y)((v, z))2ηj−1(t)dt+

∑

τ∈τex

g(j−1)
yy (y)(z, z)ηj(τ

−)

−
∑

τ∈τen

g(j−1)
yy (y)(z, z)ηj(τ

+)

=

∫ T

0
D2g(j)(u, y)((v, z))2ηj(t)dt−

∫ T

0
g(j−1)
y (y)D2f(u, y)((v, z))2ηj(t)dt.

Adding the above equalities for j = 1, . . . , q, we get after simplification by
∫ T
0 D2g(j)(u, y)((v, z))2ηj

for j = 1, . . . , q − 1 that

∫ T

0
gyy(y)(z, z)η0(t)dt+

q
∑

j=1

∑

τ∈τex

g(j−1)
yy (y)(z, z)ηj(τ

−)

−
q
∑

j=1

∑

τ∈τen

g(j−1)
yy (y)(z, z)ηj(τ

+)

=

∫ T

0
D2g(q)(u, y)((v, z))2ηq(t)dt−

q
∑

j=1

∫ T

0
g(j−1)
y (y)D2f(u, y)((v, z))2ηj(t)dt.

Substituting into (2.75) gives

∆PQ =
∑

τ∈τex



ντgyy(y)(z, z)(τ) −
q
∑

j=1

g(j−1)
yy (y)(z, z)ηj(τ

−)





+
∑

τ∈τen



ντgyy(y)(z, z)(τ) +

q
∑

j=1

(
ηj(τ

+) − νjτ
)
g(j−1)
yy (y)(z, z)(τ)



 .

Using (2.38) and additional conditions at entry and exit points (2.41)-(2.42), we obtain that
∆PQ = 0. Thus, the cost functions of the two quadratic problems coincide on the feasible
set.

Proof of Theorem 2.22. The state constraint being of order q, it follows from (2.73)-(2.74)
that (2.64)-(2.66) and (2.71) are equivalent. By Lemma 2.26, problems (PQq) and (2.72) have
the same feasible set and the same cost function on that feasible set, and hence they also
have the same value and the same set of optimal solutions. The conclusion follows then from
Theorem 2.24.

2.3.3 Proof of the Well-posedness (Theorem 2.23)

We give a sequence of lemmas; some of them will also be used in section 2.4.

We denote e.g. by g
(j)
y (y(Ten))z(Ten), g(q)

(u,y)(u(Ten), y(Ten))(v(T −
en), z(Ten)), the vectors in

R
Nb of components g

(j)
y (y(τ))z(τ), g

(q)
(u,y)(u(τ), y(τ))(v(τ

−), z(τ)), respectively, for τ ∈ Ten. By

g
(0:q−1)
y (y(Ten))z(Ten) we denote the vector in R

qNb of component g
(j)
y (y(τ))z(τ), 0 ≤ j ≤ q−1,

τ ∈ Ten.
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Lemma 2.27. Let (u, y) be a shooting extremal satisfying (A2q)-(A4), with the set of shoot-

ing parameters θ0 = (p∗0, ν
1:q
Ten
, νTto , Ten, Tex, Tto) ∈ Θ, such that F(θ0) = 0 with the shooting

mapping F defined in (2.50). Then F is of class C1 on a neighborhood Θ0 of θ0, and at the
direction

ω := (π∗0 , γ
1:q
Ten
, γTto, σTen , σTex , σTto) ∈ Θ, (2.78)

the vector M := DF(θ0)ω can be split into M = (M∗
Q,M∗

T )∗ given by

MQ :=






π(T )∗ − φyy(y(T ))z(T )

g
(0:q−1)
y (y(Ten))z(Ten)
gy(y(Tto))z(Tto)




 , (2.79)

MT :=










g
(q)
(u,y)(u(Ten), y(Ten))(v(T

−
en), z(Ten)) + σTen

d

dt
g(q)(u, y)|t=T −

en

g
(q)
(u,y)(u(Tex), y(Tex))(v(T

+
ex), z(Tex)) + σTex

d

dt
g(q)(u, y)|t=T +

ex

g(1)
y (y(Tto))z(Tto) + σTto

d

dt
g(1)(y)|t=Tto










, (2.80)

where (v, z, π, ζ), the linearized control, state, costate and state constraint multiplier, are the
solutions of (omitting arguments (u, y, pq, ηq) and t)

ż = fyz + fuv on [0, T ] ; z(0) = 0 (2.81)

−π̇ = H̃yyz + H̃yuv + πfy + ζg(q)
y on [0, T ] \ T (2.82)

0 = H̃uyz + H̃uuv + πfu + ζg(q)
u a.e. on [0, T ] (2.83)

0 = g(q)
y z + g(q)

u v a.e. on Ib (2.84)

0 = ζ on [0, T ] \ Ib (2.85)

with initial condition of π given by π(0) = π0 and and jump conditions of π given by

[π(τ)] = −
q
∑

j=1

νjτz(τ)
∗g(j−1)
yy (y(τ)) −

q
∑

j=1

γjτg
(j−1)
y (y(τ))

− στ

q−1
∑

j=1

νjτg
(j)
y (y(τ)); τ ∈ Ten

(2.86)

[π(τ)] = 0; τ ∈ Tex (2.87)

[π(τ)] = −ντz(τ)∗gyy(y(τ)) − γτgy(y(τ)) − στντg
(1)
y (y(τ)); τ ∈ Tto. (2.88)

Proof. We detail only how we obtain the jump conditions of the linearized costate π at entry
times; the other equations are obvious. In view of (2.31), it is easy to check that the jump of
π at τ ∈ Ten is given by

[π(τ)] = −
q
∑

j=1

νjτ z(τ)
∗g(j−1)
yy (y(τ)) −

q
∑

j=1

γjτg
(j−1)
y (y(τ)) + στ∆τ ,

where the vector of sensitivity coefficients ∆τ on junction time is given by

∆τ = −
q
∑

j=1

νjτg
(j−1)
yy (y(τ))f(u(τ−), y(τ)) + [H̃y(u(τ), y(τ), pq(τ), ηq(τ))].
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By continuity of u at junction times (Prop. 2.15) and by (2.31), we have (omitting argument
τ and setting η+

q = ηq(τ
+))

∆τ = −
q
∑

j=1

νjτg
(j−1)
yy (y)f(u, y) −

q
∑

j=1

νjτg
(j−1)
y (y)fy(u, y) + η+

q g
(q)
y (u, y).

Since g
(j)
y (u, y) = g

(j−1)
yy (y)f(u, y)+ g

(j−1)
y (y)fy(u, y) for j = 1, . . . , q, and since by Prop. 2.15,

we have ηq(τ
+) = νqτ , we obtain (2.86).

We recall that a continuous quadratic form defined over a Hilbert space is a Legendre form
(see e.g. [74, 24]) if it is weakly lower semicontinuous and satisfies the following property:
For all weakly convergent sequence (vn) ⊂ L2(0, T ), vn ⇀ v, we have that vn → v strongly if
Q(vn) → Q(v).

Lemma 2.28. Let (u, y) be a shooting extremal satisfying (A2q)-(A4). For all v ∈ V, define
zv as the (unique) solution in Z of the linearized state equation (2.63), and define the operator
A : V →W := L2(Ib) × R

qNb × R
Nto by

Av =






(g
(q)
y (u(·), y(·))zv(·) + g

(q)
u (u(·), y(·))v(·))|Ib

g
(0:q−1)
y (y(Ten))zv(Ten)
gy(y(Tto))zv(Tto)




 . (2.89)

Then (i) the continuous linear operator A is onto, and (ii) if in addition the second-order
sufficient condition (2.69) holds, then there exists α > 0, such that

Q(v) := Jq(v, zv) ≥ α‖v‖2
2, ∀v ∈ KerA. (2.90)

By ϕ|Ib
, we denote the restriction to Ib of function ϕ defined over [0, T ].

Proof. The continuity of A follows from that of V → Z, v 7→ zv. By (2.10) and Lemma 2.25,
the range of the mapping V → Z, v 7→ gy(y(·))zv(·) is the subspace denoted by Hq

0 of functions
ϕ ∈ Hq(0, T ) = W q,2(0, T ) satisfying ϕ(j)(0) = 0 for all j = 0, . . . , q − 1. Points (i) follows,
since by (A4), for all (ψ(·), b1:qTen

, bTto) ∈ W , there exists ϕ ∈ Hq
0 such that ϕ(q)(t) = ψ(t) a.e.

on Ib, ϕ(j−1)(Ten) = bjTen
, j = 1, . . . , q, and ϕ(Tto) = bTto .

By (A2q), we can show that Q(v) is a Legendre form over L2(0, T ) (the proof is similar
to that of Lemma 21 in [21]2). By (2.69), we have Q(v) > 0 for all v ∈ KerA \ {0}, which
implies (2.90) by Lemma 2.45.

Proposition 2.29. Let (u, y) be a shooting extremal satisfying (A2q)-(A4) and denote by
θ0 ∈ Θ its set of shooting parameters. Assume that (i) the second-order sufficient condition
(2.69) is satisfied; and (ii) the following holds at junction times:

d

dt
g(q)(u, y)|t=τ− 6= 0 ∀τ ∈ Ten ;

d

dt
g(q)(u, y)|t=τ+ 6= 0 ∀τ ∈ Tex (2.91)

d

dt
g(1)(y)|t=τ 6= 0 ∀τ ∈ Tto. (2.92)

Then the Jacobian DF(θ0) of the shooting mapping is invertible, and for all

δ = (aT , b
1:q
Ten
, bTto , cTen , cTex , cTto) ∈ Θ,

2Lemma 1.21 of this thesis.
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the (unique) solution ω ∈ Θ of DF(θ0)ω = δ, with ω given by (2.78), is as follows. With the
notation of Lemma 2.28, denote by (vδ, wδ) with wδ = (ζδ, λ

1:q
δ,Ten

, λδ,Tto) the unique solution in

L2(0, T ) ×W of the first-order optimality system of the problem

(Pδ) min
v∈V

1

2
Jq(v, zv) + a∗T zv(T ) +

∑

τ∈Tto

cτντ
g
(1)
y (y(τ))zv(τ)
d
dtg

(1)(y)|t=τ
,

subject to Av = (0L2(Ib), b
1:q
Ten
, bTto)

∗.

(2.93)

Then π0 = πδ(0), where πδ is the solution on [0, T ] \ T of (2.82) with (vδ, ζδ, zδ := zvδ
), with

final and jump conditions of πδ being given by

πδ(T ) = zδ(T )∗φyy(y(T )) + a∗T , (2.94)

− [πδ(τ)] =

q
∑

j=1

νjτzδ(τ)
∗g(j−1)
yy (y(τ)) +

q
∑

j=1

λjδ,τg
(j−1)
y (y(τ)), τ ∈ Ten, (2.95)

− [πδ(τ)] = 0, τ ∈ Tex, (2.96)

− [πδ(τ)] = ντzδ(τ)
∗gyy(y(τ)) + λδ,τgy(y(τ))

− ντzδ(τ)
∗ g

(1)
y (y(τ))∗g

(1)
y (y(τ))

d
dtg

(1)(y)|t=τ
+ cτντ

g
(1)
y (y(τ))

d
dtg

(1)(y)|t=τ
, τ ∈ Tto; (2.97)

and we have γTto = λδ,Tto,

στ =
cτ − g

(1)
y (y(τ))zδ(τ)

d
dtg

(1)(y)|t=τ
, τ ∈ Tto, (2.98)

στ =
cτ − g

(q)
(u,y)(u(τ), y(τ))(vδ(τ

+), zδ(τ))

d
dtg

(q)(u, y)|t=τ+

, τ ∈ Tex, (2.99)

στ =
cτ − g

(q)
(u,y)(u(τ), y(τ))(vδ(τ

−), zδ(τ))

d
dtg

(q)(u, y)|t=τ−
, τ ∈ Ten, (2.100)

γ1
τ = λ1

δ,τ , γjτ = λjδ,τ − νj−1
τ στ , j = 2, . . . , q, τ ∈ Ten. (2.101)

Note that (vδ , ζδ, zδ, πδ) satisfies (2.81)-(2.85). It follows by (A2q) and (2.10) that vδ, ζδ ∈
PCqT [0, T ], and hence vδ has limits when t → τ− and t → τ+ for τ in respectively Ten and
Tex, so (2.99)-(2.100) make sense.

Remark 2.30. Note that (2.91) is equivalent to the discontinuity of u̇ at entry/exit points and
that, when q = 1, 2, (2.60) implies (2.91), since q̂ = q.

Remark 2.31. The above proposition is an explicit elimination property, valid for any order q ≥
1, that enables us to express the solution ω ofDF(θ0)ω = δ as a function of the optimal solution
and multipliers of the quadratic problem (P δ), independent of the variations of junction times.
In the case q = 1, the term in the factor of the variation of entry time στ in (2.86) is zero
so that Lemma 2.29 is nothing but the block decoupling property of the Jacobian already
established in [93]. In the case q ≥ 2, our result differs from the one in [94], since its authors
use a quadratic problem depending on the variation of the entry point, leading to an additional
assumption, (A.11).
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Proof. Let δ ∈ Θ. By (i) and Lemma 2.28, Lemma 2.46 (with r = 0) implies that the first-
order optimality system of (Pδ) has a unique solution and multipliers. One can easily check
that (2.81)-(2.85) and (2.95)-(2.97), together with (2.94) and

g(0:q−1)
y (y(Ten))zδ(Ten) = b1:qTen

, gy(y(Tto))zδ(Tto) = bTto, (2.102)

constitute the first-order optimality system of (Pδ), with λ1:q
δ,Ten

and λδ,Tto the multipliers

associated with (2.102), and thus have a unique solution (vδ , zδ, πδ, ζδ, λ
1:q
δ,Ten

, λδ,Tto).

By (ii), define now σT by (2.98)-(2.100), and let γ1:q
Ten

and γTto be related to λ1:q
δ,Ten

and λδ,Tto

by the invertible relations (2.101) and γTto = λδ,Tto. Using (2.98) and (2.101) in respectively
(2.97) and (2.95), it follows that the system of equations (2.81)-(2.85), (2.86)-(2.88), (2.94),
(2.102), and (2.98)-(2.100) has a unique solution (vδ, zδ , πδ, ζδ, γ

1:q
Ten
, γTto , σT ). With Lemma

2.27, this implies that DF(θ0)ω = δ iff π0 = πδ(0), and the remaining variables of ω are deter-
mined by (2.98)-(2.101). Lipschitz continuity of ω w.r.t. δ is obtained as an easy consequence
of Lemma 2.46 and the above relations.

Proof of Theorem 2.23. The proof is organized as follows. We first show the sufficiency of
the conditions (i) and (ii) for the well-posedness of the shooting algorithm, which is an easy
consequence of the above lemmas. After that we show that (i), and then (ii), are also necessary.

Since (A5)(i) implies, by Lemma 2.21, that (2.60) holds, (2.91) is satisfied when q = 1, 2
(see Rem. 2.30) or trivially when the trajectory (u, y) has no boundary arc, i.e. Ten = Tex = ∅.
With (A6) and the second-order sufficient condition (2.69), the invertibility of the Jacobian
of the shooting mapping follows from Prop. 2.29.

Let us now show the converse. Assume first that (i) does not hold, i.e. q ≥ 3 and (u, y) has
a boundary arc. By Prop. 2.5(i), u̇ is continuous at junction times τen and τex. Therefore, the
function d

dtg
(q)(u(t), y(t)) depending on (y, u, u̇) is also continuous at entry and exit times and

vanishes on the boundary arc, so that (2.91) does not hold, at any of the regular entry/exit
times. Then it is easily seen by Lemma 2.27 that we can find some nonzero ω̃ ∈ Θ such that
DF(θ0)ω̃ = 0. Indeed, take e.g. σ̃τ 6= 0 for τ ∈ Tex, and all other components of ω̃ equal to
zero. It follows that the Jacobian of the shooting mapping is singular.

Assume now that (i) is satisfied but (ii) is not. Since (u, y) is a local solution of (P), by
Th. 2.22 the second-order necessary condition (2.68) is satisfied. This says that (v, z) = 0 is
a solution of problem (PQq), therefore the value of (PQq) is zero, the infimum is attained,
and solutions of this problem do exist. If (v, z) = 0 is not the unique solution, that is, if the
second-order sufficient condition (2.69) does not hold, this means that there exists another
optimal solution (ṽ0, z̃0) 6= 0 of (PQq), and hence a nonzero solution of its first-order optimality
conditions (2.63)-(2.66), (2.81)-(2.85), with final and jump conditions of the associated costate
π̃0 given by (2.94)-(2.97) with aT = 0 and cTto = 0, and multipliers (λ̃1:q

Ten
, λ̃Tto) associated

respectively with (2.64) and (2.66).
Setting π̃0 := π̃0(0), we claim that (π̃0, λ̃

1:q
Ten
, λ̃Tto) 6= 0. Indeed, suppose that all of

them were zero. Eliminating v by (2.83) as a linear function of (z, π), and integrating from
(z(0), π(0)) = 0 over the first arc the linear differential equations (2.81)-(2.82), we would have
(z, π, v, ζ) = 0, until the first junction time. If all the jump parameters λ̃jTen

and λ̃Tto are equal

to zero, and (v, ζ) is given by (2.83)-(2.84) on boundary arcs, we obtain (z̃0, π̃0, ṽ0, ζ̃0) = 0
over [0, T ], which leads to a contradiction.

Now let γ̃Tto = λ̃Tto and (σ̃T , γ̃
1:q
Ten

) be solution of (2.98)-(2.101) with cT = 0. We have

ω̃ := (π̃0, γ̃
1:q
Ten
, γ̃Tto , σ̃Ten , σ̃Tex , σ̃Tto) 6= 0, and by Lemma 2.27, DF(θ0)ω̃ = 0. Therefore, the

Jacobian of the shooting mapping is singular, which achieves the proof.
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2.4 Sensitivity analysis without strict complementarity at touch

points

In this section, we show how to conduct a sensitivity analysis, removing the strict complemen-
tarity hypothesis for touch points.

Let us first note that our framework allows us to deal with nonautonomous problems
(i.e. when the data f , `, g depend on t) as well, by introducing an additional state variable
equal to the time, provided that the data are sufficiently smooth with respect to t. When
the original problem (2.1)-(2.3) is autonomous, we still can add the time as a state variable.
This transformation affects neither the assumptions nor the first- and second-order optimality
conditions in sections 2.2 and 2.3 and the condition (ii) in Th. 2.34. Therefore, we will assume
w.l.o.g. throughout this section that the problem (P) is written such that the last component
of the state variable yn satisfies

ẏn(t) = 1 for all t ∈ [0, T ]; yn(0) = 0

(i.e. yn(t) = t, for all t). The reason for doing so is to consider in our stability analysis a
wide class of perturbations, including nonautonomous perturbations (and possibly a nonau-
tonomous original problem). Allowing nonautonomous perturbations is indeed needed to
obtain the equivalence in Th. 2.34, even when the original problem is autonomous. We shall
not repeat in this section this assumption, which intervenes only in the proof of (i) ⇒ (ii) in
Th. 2.34.

Let M0 be an open subset of a Banach space M (the perturbation space). Consider, for
µ ∈M0, the family of perturbed optimal control problems

(Pµ) min
(u,y)∈U×Y

∫ T

0

˜̀(u(t), y(t), µ)dt + φ̃(y(T ), µ) subject to

ẏ = f̃(u(t), y(t), µ), a.e. t ∈ [0, T ]; y(0) = ỹ0(µ),

g̃(y(t), µ) ≤ 0 for all t ∈ [0, T ],

where ˜̀ : R×R
n×M0 → R, φ̃ : R

n×M0 → R, f̃ : R×R
n×M0 → R

n, g̃ : R
n×M0 → R, and

ỹ0 : M0 → R
n are at least C2 mappings. We denote yµ0 := ỹ0(µ), `µ(u, y) := ˜̀(u, y, µ), etc.,

and identify (`µ, φµ, fµ, gµ, yµ0 ) with problem (Pµ).

We say that (Pµ) is a q-stable extension of (P) if (i) there exists µ0 ∈ M0 such that
(Pµ0) = (P) (i.e. `µ0 ≡ `, etc.); (ii) the mappings ˜̀, φ̃, f̃ , g̃ are C2q, where q is the order of the
state constraint of problem (P); (iii) the state constraints are of order q for all µ ∈ M0; and
(iv) the mappings fµ are Lipschitz continuous over R × R

n, uniformly over µ ∈M0.

For each µ ∈M0, problem (Pµ) satisfies (A0); taking if necessary a smaller neighborhood
of µ0, we may assume that (A1) holds as well. Given (µ, u, v) ∈ M0 × U × V, denote by
(yµu , z

µ
u,v) ∈ Y × Z the state and linearized state solution of

ẏµu = fµ(u, yµu); yµu(0) = yµ0 , (2.103)

żµu,v = fµy (u, yµu)zµu,v + fµu (u, yµu)v; zµu,v(0) = 0, (2.104)

and let Jµ(u) :=
∫ T
0 `µ(u(t), yµu(t))dt+ φµ(yµu(T )).

In what follows, (ū, ȳ) denotes a Pontryagin extremal of (P) ≡ (Pµ0), with associated
multipliers (p̄, η̄). We denote by θ0 ∈ Θ the vector of shooting parameters associated with
(ū, ȳ).
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We say that a feasible trajectory (u, y) for (Pµ) has a neighboring structure to that of (ū, ȳ)
if the structure of (u, y) (number and order of boundary arcs and touch points) differs from
that of (ū, ȳ) only by possibly removing some nonessential touch points. With a trajectory
(u, y) having a neighboring structure to that of (ū, ȳ) is naturally associated a set of shooting
parameters θ̂, but the latter may have a lower dimension than θ0 if (u, y) has (strictly) less
touch points than (ū, ȳ). We can show (and this is precisely the idea of reduction methods,
see further) that when ‖u − ū‖∞ and ‖µ − µ0‖ are small enough and q ≥ 2, for every touch
point τto of (ū, ȳ) satisfying (2.61), the function gµ(y(·)) reaches its maximum over a small
neighborhood of τto at a unique time denoted τ ′to. Then adding to θ̂ this time τ ′to and a zero
jump parameter, and doing so for each touch point of (ū, ȳ) that is inactive for (u, y), we obtain
an augmented vector of shooting parameters θ having the same dimension as θ0. Therefore
the following definition makes sense.

Definition 2.32. We say that the uniform second-order quadratic growth condition holds if
for every q-stable extension (Pµ), there exists c > 0 and open neighborhoods Vµ × Vu × Vθ
of (µ0, ū, θ0) in M0 × U × Θ, such that for all µ ∈ Vµ, there exists a unique stationary point
(uµ, yµ := yµuµ) ∈ Vu × Y of (Pµ) having a neighboring structure to that of (ū, ȳ) with its
augmented shooting parameters in Vθ, and that point satisfies

Jµ(u) ≥ Jµ(uµ) + c‖u− uµ‖2
2, ∀ u ∈ Vu, gµ(yµu) ≤ 0 on [0, T ]. (2.105)

As a consequence of the definition of the uniform growth condition, we have ū = uµ0 and
ȳ = yµ0 .

Note that in the uniform growth condition (2.105), the neighborhood (in L∞) on which
uµ satisfies the quadratic growth condition is independent on µ. Our definition of uniform
quadratic growth is different from the one in [24, section 5.1], since the latter implies the local
uniqueness of solutions of the first-order optimality system (stationary points). Here, since
our stability analysis is based on the shooting formulation, we can argue only the uniqueness
of the stationary point among the feasible trajectories that have their structure and shooting
parameters “in the neighborhood” of those of (ū, ȳ). The uniqueness of the stationary point,
in a certain sense, is needed to prove the implication (i) ⇒ (ii) in Th. 2.34 below.

We will use the assumption below, which is a modification of (A5)

(A5’) (i) If q ≤ 2, the following strengthening of (2.56)-(2.57) holds:

∃β > 0 (−1)q
dq

dtq
η̄q(t) ≥ β for all t ∈ int Ib; (2.106)

if q = 2, (2.58) holds; if q > 2, the trajectory (ū, ȳ) has no boundary arc;
(ii) If q = 1, (ū, ȳ) has no (nonessential) touch points.

Assumption (A5’)(i) is a strengthening of (A5)(i). It requires, in addition to (A5)(i), uniform
strict complementarity on boundary arcs, which is stronger than (2.56) (and implies (2.57)),
and that (ū, ȳ) have no boundary arc if q ≥ 3. Assumption (A5’)(ii) is weaker than (A5)(ii)
since it allows nonessential touch points for constraints of order q ≥ 2 only.

Define the set of increasing times in (0, T ) of cardinal N as

ITN := {τ ∈ R
N ; 0 < τ1 < · · · < τN < T}. (2.107)

Set τ0 := 0 and τN+1 := T . Given S ⊂ ITN , we have a natural isomorphism between PCk
S [0, T ]

and Ck([0, 1]; RN+1), defined by
{
ϕ̂i(s) = ϕ(τi + (τi+1 − τi)s) for all s ∈ (0, 1),
ϕ̂i(0) = ϕ(τ+

i ), ϕ̂i(1) = ϕ(τ−i+1)
i = 0, . . . , N. (2.108)
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We may therefore identify the set PCk
N [0, T ] := ∪{PCk

S [0, T ];S ∈ ITN} of all possible N -
piecewise k times continuously differentiable functions, with C k([0, 1]; RN+1) × ITN . The
corresponding notion of convergence follows: A sequence ϕn ∈ PCk

Sn [0, T ] converges to ϕ ∈
PCkS [0, T ] if Sn → S in R

N and ϕ̂n → ϕ̂ in Ck([0, 1]; RN+1). Similarly, a mapping defined
over an open subset W of a Banach space, W → PCk

N , w 7→ ϕw ∈ PCk
Sw is of class Ck if

the mapping W → Ck([0, 1]; RN+1) × R
N , w 7→ (ϕ̂w,Sw) is Ck. We denote by PCk,r

N [0, T ] =
PCkN [0, T ] ∩ Cr[0, T ] the subset of PCk

N [0, T ] of functions having continuous derivatives on
[0, T ] until order r ≥ 0. The next lemma is elementary and will be used at the end of this
section.

Lemma 2.33. Let W be an open subset of a Banach space, and W → PC 1,0
N , w 7→ ϕw ∈ PC1,0

Sw

a C1 mapping. Then the mapping w 7→ ϕw is C1 in Lr(0, T ) for all 1 ≤ r <∞. More precisely,
for w ∈ W , let Sw := {τw1 < · · · < τwN} and denote by (ξ̂w, σw) the directional derivative in
C1([0, 1]; RN+1) × ITN of the mapping w 7→ (ϕ̂w, τw) at point w in direction δw ∈ W . Then
the directional derivative ξ̃w in Lr(0, T ) is given by

ξ̃w(t) = ξ̂wi

(
t− τwi

τwi+1 − τwi

)

− ϕ̇w(t)

(

σwi +
t− τwi

τwi+1 − τwi
(σwi+1 − σwi )

)

on (τwi , τ
w
i+1).

By Prop. 2.5, a regular Pontryagin extremal and its multipliers (uµ, yµ, pµ, ηµ) satisfying
(A2)-(A4) belong to the product space

XS := PCq,0
S [0, T ] × PCq+1,1

S ([0, T ]; Rn) × PC1
S([0, T ]; Rn∗) × PC1

S [0, T ], (2.109)

with here S = T , which is the finite set of its junction times assumed to be of cardinal N . So
let us define the union XN of all such spaces, and define as well some other sets needed later:

XN := ∪{XS ; S ∈ ITN},
X q
S := PCq

S [0, T ] × PCq+1,0
S ([0, T ]; Rn) × PCq+1

S ([0, T ]; Rn∗) × PCq
S [0, T ],

X 1
S := PCq

S [0, T ] × PCq+1,0
S ([0, T ]; Rn) × PC1

S([0, T ]; Rn∗) × PC1
S [0, T ],

X q
N := ∪{X q

S ; S ∈ ITN}, X 1
N := ∪{X 1

S ; S ∈ ITN}.

The main result of this section is the next theorem, which gives stability results for the
optimal control problem (P) without assuming strict complementarity at touch points. There-
fore we cannot directly apply the implicit function theorem as it was done in [93, 94] and in
our section 2.3.

Theorem 2.34. Let (ū, ȳ) be a Pontryagin extremal of (P) satisfying (A2)-(A4), (A5’), and
(A6). Then the following statements are equivalent:
(i) The uniform second-order quadratic growth condition (Def. 2.32) holds. Denote by uµ ∈ Vu
the solution of (2.105) for µ ∈ Vµ, and set yµ := yµuµ. With (uµ, yµ) are associated a unique
costate pµ and state constraint multiplier ηµ, and the mapping µ 7→ (uµ, yµ, pµ, ηµ) ∈ XN is
Lipschitz continuous over Vµ.
(ii) The following strong second-order sufficient condition holds:

J (v, z) > 0, for all (v, z) ∈ V × Z \ {0} satisfying (2.63) and

gy(ȳ(t))z(t) = 0 for all t ∈ Ib ∪ T ess
to . (2.110)
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Remark 2.35. Note that condition (ii) is stronger than the following second-order character-
ization of quadratic growth (2.55) (see [21]):

J (v, z) > 0, for all (v, z) ∈ V × Z \ {0} satisfying (2.63), (2.110) and

gy(ȳ(τ))z(τ) ≤ 0 for all τ ∈ Tto \ T ess
to .

We need the following notation. Denote by T nes
to := Tto \ T ess

to the subset of nonessential
touch points of the trajectory (ū, ȳ). For µ close to µ0, let F(·, µ) be the shooting mapping
(2.50) for problem (Pµ), with the same structure as the trajectory (ū, ȳ), i.e. the same number
of boundary arcs and touch points and the same order of their occurrence w.r.t. time. Thus
nonessential touch points are present in the shooting mapping and may be active or inactive
for the perturbed problem. Let N̄ := n + (q + 2)Nb + 2Nto denote the dimension of the
shooting mapping, with Nb = CardTen = CardTex and Nto = CardTto, and denote by N0 the
cardinal of T nes

to , the set of nonessential touch points. Split F into two components such that
F(·, µ) = (Φ(·, µ)∗,Ψ(·, µ)∗)∗ and Ψ corresponds to the component gµ(y(T nes

to )) ∈ R
N0 . We

consider the following problem for µ close to µ0: Find

θ = (pµ∗0 , νµ,1:qTen
, νµT ess

to
, νµT nes

to
, T µ
en, T µ

ex, T µ,ess
to , T µ,nes

to ) ∈ Θ (2.111)

such that
Φ(θ, µ) = 0; Ψ(θ, µ) ∈ R

N0
− ∩ (νµT nes

to
)⊥; νµT nes

to
∈ R

N0
+ . (2.112)

In (2.112), we express the complementarity condition for nonessential touch points only. The
complementarity condition at essential touch points and boundary arcs, where strict comple-
mentarity is satisfied, will hold by continuity, since we perform a local analysis (see further
Lemmas 2.37-2.38).

The point θ0, solution of (2.112) for µ = µ0, is said to be strongly regular (see Robinson
[121]), if there exists a neighborhood V ′

θ × Vδ in R
N̄ × R

N̄ of (θ0, 0) such that for all δ ∈ Vδ,

δ = (δ1, δ2) ∈ R
N̄−N0 × R

N0 , there exists a unique solution θ in V ′
θ of:

DθΦ(θ0, µ0)(θ − θ0) − δ1 = 0

DθΨ(θ0, µ0)(θ − θ0) − δ2 ∈ R
N0
− ∩ ν⊥T nes

to
; νT nes

to
∈ R

N0
+ ,

(2.113)

and the mapping Ξ : δ 7→ θ(δ) is Lipschitz continuous over Vδ. If θ0 is strongly regular, then
by [121], there exists a neighborhood Vθ × Vµ of (θ0, µ0), such that for each µ ∈ Vµ, (2.112)
has in Vθ a unique solution θµ and there exists κ > 0 such that for all µ, µ′ ∈ Vµ,

|θµ − θµ
′ | ≤ κ‖µ− µ′‖. (2.114)

In addition, the following expansion of θµ holds (see [24, p.413] eq. (5.41)):

θµ = Ξ(−DµF(θ0, µ0)(µ− µ0)) + o(‖µ− µ0‖). (2.115)

2.4.1 Stability Analysis (Proof of Th. 2.34)

The first step in the proof of (ii) ⇒ (i) in Th. 2.34 is to show that (ii) implies the strong
regularity property (Lemma 2.36). The existence of a (locally unique) shooting extremal
(uµ, yµ) for problem (Pµ) having its shooting parameters in the neighborhood of those of
(ū, ȳ) follows (Lemma 2.37). The next step is to check the additional conditions of Cor. 2.17,
implying that (uµ, yµ) is a stationary point (Lemma 2.38). We end the proof by checking that
uµ satisfies the uniform quadratic growth condition (2.105) (Lemmas 2.39-2.40).
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Lemma 2.36. Under the assumptions of Th. 2.34, condition (ii) of Th. 2.34 implies that θ0
is a strongly regular solution of (2.112) for µ = µ0.

Proof. The proof is somewhat similar to that of Proposition 2.29. Let δ = (δ1, δ2) ∈ R
N̄−N0 ×

R
N0 with

δ1 = (aT , b
1:q
Ten
, bT ess

to
, cTen , cTex , cT ess

to
, cT nes

to
); δ2 = bT nes

to
.

Let us show that there exists a unique ω ∈ Θ,

ω = (π∗0 , γ
1:q
Ten
, γT ess

to
, γT nes

to
, σTen , σTex , σT ess

to
, σT nes

to
),

solution of the following relation, equivalent to (2.113) with ω = θ − θ0:

DθΦ(θ0, µ0)ω − δ1 = 0,

DθΨ(θ0, µ0)ω − δ2 ∈ R
N0
− ∩ γ⊥T nes

to
; γT nes

to
∈ R

N0
+ .

(2.116)

Consider the following linear quadratic optimal control problem:

(Pδ) min
v∈V

1

2
Jq(v, zv) + a∗T zv(T ) +

∑

τ∈Tto

cτντ
g
(1)
y (y(τ))zv(τ)
d
dtg

(1)(y)|t=τ
subject to Av = (0L2(Ib), b

1:q
Ten
, bT ess

to
)∗; Bv ≤ bT nes

to
,

(2.117)

where Jq(v, zv) is defined by (2.62) and the linear operators A, B are defined by

Av :=






(g
(q)
y (u(·), y(·))zv(·) + g

(q)
u (u(·), y(·))v(·))|Ib

g
(0:q−1)
y (y(Ten))zv(Ten)
gy(y(T ess

to ))zv(T ess
to )






Bv := gy(y(T nes
to ))zv(T nes

to ).

(2.118)

Being equal to A defined in (2.89), the operator (A,B) is onto by Lemma 2.28. By Lemma 2.45,
the Legendre form Q̄(v) := Jq(v, zv) is coercive over KerA. It follows from Lemma 2.46 that
the first-order optimality system of problem (P δ) has a unique solution vδ ∈ V, with a unique
associated Lagrange multiplier (ζδ, λ

1:q
δ,Ten

, λδ,T ess
to
, λδ,T nes

to
) in L2(Ib) × R

qNb × R
Nto−N0 × R

N0 ,

and the mapping δ 7→ (vδ, ζδ, λ
1:q
δ,Ten

, λδ,T ess
to
, λδ,T nes

to
) is Lipschitz continuous. Now, defining as

in Prop. 2.29 σT by (2.98)-(2.100) and defining γ1:q
Ten

, γT ess
to

, γT nes
to

by the invertible relations
(2.101), γT ess

to
= λδ,T ess

to
and γT nes

to
= λδ,T nes

to
, this implies that the system of equations (2.81)-

(2.85), (2.86)-(2.88), (2.94), (2.98)-(2.100), together with the constraints and complementarity
conditions of (Pδ)

g
(0:q−1)
y (y(Ten))zδ(Ten) = b1:qTen

, gy(y(T ess
to ))zδ(T ess

to ) = bT ess
to
,

gy(y(T nes
to ))zδ(T nes

to ) ≤ bT nes
to

, γT nes
to

≥ 0, (gy(y(T nes
to ))zδ(T nes

to ) − bT nes
to

) ⊥ γT nes
to

,

has a unique solution (vδ, zδ , πδ, ζδ, γ
1:q
Ten
, γT ess

to
, γT nes

to
, σT ). Thus by Lemma 2.27, we obtain that

ω is a solution of (2.116) iff π0 = πδ(0) and the other variables of ω are given as above. The
existence and uniqueness of ω follows, and it is not difficult to check the Lipschitz continuity
of ω w.r.t. δ.
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By strong regularity, there exist neighborhoods Vµ and Vθ of µ0 and θ0 such that, for all
µ ∈ Vµ, there exists in Vθ a unique solution θµ of (2.112):

θµ = (pµ∗0 , νµ,1:qTen
, νµT ess

to
, νµT nes

to
, T µ
en, T µ

ex, T µ,ess
to , T µ,nes

to ) ∈ Vθ ⊂ R
N̄ .

Denote the associated trajectory and multipliers by (uµ, yµ, pµq , η
µ
q ) ∈ X q

N . Recall that Ψ(θµ, µ) =
gµ(yµ(T µ,nes

to )) and set

T µ
to := T µ,ess

to ∪ {τ ∈ T µ,nes
to ; gµ(yµ(τ)) = 0}.

By the definition of (2.112), we have that gµ(yµ(τ)) < 0 and νµτ = 0 if τ /∈ T µ
to . Hence

(uµ, yµ, pµq , η
µ
q ) is a shooting extremal for (Pµ), with jump parameters (νµ,1:qTen

, νµ
T µ

to
) and junction

times (T µ
en, T µ

ex, T µ
to).

In order to show now that the mapping µ 7→ (uµ, yµ, pµ, ηµ) is Lipschitz continous, where
(pµ, ηµ) is given by (2.36)-(2.38) and (2.21), consider the mapping

Vµ × Vθ → X q
N , (µ, θ) 7→ (uµ,θ, yµ,θ, pµ,θq , ηµ,θq ), (2.119)

where (uµ,θ, yµ,θ, pµ,θq , ηµ,θq ) is the solution of (2.23)-(2.24), (2.26), (2.28), (2.30), and (2.31)-
(2.33) for (Pµ), with initial value of the costate, jump parameters and junction times given
by argument θ. By the Cauchy-Lipschitz theorem, this mapping is well-defined and of class
Cq on neighborhoods Vµ × Vθ of (µ0, θ0). Therefore the mapping

Vµ × Vθ → X 1
N , (µ, θ) 7→ (uµ,θ, yµ,θ, pµ,θ, ηµ,θ), (2.120)

where ηµ,θj , 0 ≤ j ≤ q− 1, pµ,θ, and ηµ,θ are defined by (2.36)-(2.38) and (2.21), is of class C1.

Lemma 2.37. Under assumptions and condition (ii) of Th. 2.34, there exists a neighborhood
Vµ of µ0 such that the mapping Vµ → XN , µ 7→ (uµ, yµ, pµ, ηµ) is well-defined and Lipschitz
continuous on Vµ.

Proof. Since strong regularity holds by Lemma 2.36, the mapping µ 7→ θµ solution of (2.112)
is well-defined on a neighborhood of µ and Lipschitz continuous by (2.114). By continuity of
the mappings (2.120) and µ 7→ θµ, the mapping µ 7→ (uµ, yµ, pµ, ηµ) is continuous Vµ → X 1

N .
Let us show now that uµ is continuous. By (A2)-(A3), reducing Vµ if necessary, we have

Hµ
uu(û, yµ(t), pµ(t±)) ≥ α/2 and |(gµ)(q)u (û, yµ(t))| ≥ γ/2 for all t and all û in the segment

[uµ(t−), uµ(t+)] := {σuµ(t+) + (1 − σ)u(t−), σ ∈ [0, 1]}. By arguments similar to those used
in the proof of Prop. 2.15(i) and in Rem. 2.16, this is enough to show that uµ is continuous, and
hence, (uµ, yµ) ∈ PCq,0

T µ [0, T ]×PCq+1,1
T µ ([0, T ]; Rn). Reducing V µ if necessary, by composition

of µ 7→ θµ with the C1-mapping (2.120), we deduce that the mapping µ 7→ (uµ, yµ, pµ, ηµ) ∈
XN is Lipschitz continuous on a neighborhood of µ.

Lemma 2.38. Under assumptions and condition (ii) of Th. 2.34, the shooting extremal
(uµ, yµ) is a stationary point for problem (Pµ).

Proof. By Corollary 2.17 and Rem. 2.20, we need to check (2.39), (2.40), (2.43), and also,
when q = 2, (2.51). By (A5’) and Lemma 2.37, (2.40) follows from (2.106). If q = 2, (2.51)
follows from (2.58). By continuity of jumps at essential touch points and the definition of
(2.112), we obtain (2.43). It remains to prove (2.39). Near an entry/exit point τµ (when
q = 1 or 2) this is a consequence of hypothesis (2.60) and continuity w.r.t. µ of u(τµ±).
Similarly, near touch points, this follows from the reducibility hypothesis (2.61). Finally,
outside a small neighborhood of contact points, we obtain that gµ(yµ) < 0 by a standard
compactness argument.
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The next two lemmas extend those in [21, section 4]3 to the setting of perturbed optimal
control problems. In what follows we denote by supp(dη) the support of the measure η in
M[0, T ].

Lemma 2.39. Assume that the assumptions and condition (ii) of Th. 2.34 hold. Let (Pµ) be
a q-stable extension, and µn → µ0 with its associated shooting extremal (un, yn) and multipliers
(pn, ηn). For v ∈ V, define Qn(v) := J µn(v, zµn

un ,v), where J µn(·, ·) is given by (2.70) for (Pµn)
and zµn

un,v is defined by (2.104). Define similarly Q̄(v) := J µ0(v, zµ0
ū,v). Let vn ⇀ v̄ ∈ L2. Then

it holds that

Q̄(v̄) ≤ liminf Qn(vn) and vn → v̄ strongly if Qn(vn) → Q̄(v̄). (2.121)

Set zn := zµn
un,vn , and assume in addition that gµn

y (yn(t))zn(t) ≤ rn, where ‖rn‖∞ → 0, for all
t ∈ supp(dηn) and all n. Let z̄ := zµ0

ū,v̄. Then

gy(ȳ(t))z̄(t) ≤ 0 on supp(dη̄). (2.122)

Proof. Since by Lemma 2.37, (un, yn) converges uniformly to (ū, ȳ), and vn ⇀ v, we have
that (zn) converges weakly in H1 to z̄, and hence uniformly. Relation (2.122) follows from
the convergence of ηn in PC1

N , strict complementarity (2.106), and uniform convergence of
gµn
y (yn)zn. Let us now show (2.121).

Set Q0
n(vn) :=

∫ T
0 v∗nH

µn
uu (un, yn, pn)vndt. By Lemma 2.37, uniform convergence of zn, and

convergence in XN of Hµn
uy (un, yn, pn) and Hµn

yy (un, yn, pn), it follows easily that Qn(vn) −
Q0
n(vn) → Q̄(v̄) − Q̄0(v̄). Writing Q0

n(vn) = Q̄0(vn) + εn with εn =
∫ T
0 v∗n(H

µn
uu (un, yn, pn) −

Huu(ū, ȳ, p̄))vndt, by continuity of Hµn
uu at junction times (Lemma 2.43 and Rem. 2.20),

Lemma 2.37 implies that Hµn
uu (un, yn, pn) → Huu(ū, ȳ, p̄) uniformly, and hence, εn → 0. Since

by (A2), Q̄0 : v 7→
∫ T
0 v∗Huu(ū, ȳ, p̄)v is a Legendre form, (2.121) follows.

We recall the reduction approach of [21, section 5.2]4. When q ≥ 2, with all touch points
of the trajectory (ū, ȳ) being reducible by (A6), let ε, δ > 0 and Vµ be small enough so that,
for all ‖u − ū‖∞ ≤ δ, all µ ∈ Vµ and all τto ∈ Tto, the function gµ(yµu) attains its maximum
over [τto− ε, τto + ε] at a unique point τµu ∈ (τto− ε, τto + ε). Set Īto := ∪τto∈Tto(τto− ε, τto + ε)
and Īb := [0, T ] \ Īto. When q = 1, set Īb := [0, T ] and Īto := ∅. Then the following reduced
problem is well-defined and locally equivalent to (Pµ):

(Pµ
red) min

u∈B∞(ū,δ)
Jµ(u) subject to

Gµ(u) :=








g(yu)|Īb
gµ(yµu(τµ,1u ))

...

gµ(yµu(τ
µ,Nto
u ))








∈ K := C−[Īb] × R
Nto
− .

(2.123)

The Lagrangian Lµ of the reduced problem (2.123) is given, for u ∈ B∞(ū, δ) and a multiplier
λ = (ηb, ν) ∈ M+[Īb] × R

Nto
+ , by

Lµ(u, λ) = Jµ(u) +

∫

Īb

gµ(yµu(t))dηb(t) +

Nto∑

i=1

νig
µ(yµu(τµ,iu )). (2.124)

3Section 1.4 of this thesis.
4Section 1.5.2 of this thesis.
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Multipliers ηµ and λµ = (ηµb , ν
µ) associated with uµ in respectively problem (Pµ) and its

reduced form (Pµ
red), are related by

dηµ(t) = dηµb (t) on Īb; dηµ(t) =

Nto∑

i=1

νµτiδτµ,i
u

(t) on Īto. (2.125)

In addition, we can show that the reduced Lagrangian (2.124) is twice Fréchet differentiable
at uµ, and its second-order derivative satisfies, for v ∈ V,

D2
uuLµ(uµ, λµ)(v, v) = J µ(v, zµu,v), (2.126)

with J µ given by (2.70), and that the remainder r(v) in the second-order expansion

Lµ(uµ + v, λµ) = Lµ(uµ, λµ) +DuLµ(uµ, λµ)v + 1
2D

2
uuLµ(uµ, λµ)(v, v) + r(v)

satisfies
r(v)/‖v‖2

2 → 0 when ‖v‖∞ → 0. (2.127)

In what follows, TK(x) and NK(x) denote respectively the tangent and normal cones to K
at point x ∈ K (in the sense of convex analysis).

Lemma 2.40. Under assumptions and condition (ii) of Th. 2.34, there exists an open neigh-
borhood Vµ of µ0 such that the shooting extremal (uµ, yµ) associated with (Pµ) for µ ∈ Vµ
satisfies the uniform quadratic growth condition, and hence, is a local solution of (P µ).

Proof. If the conclusion does not hold, then there exists a q-stable extension (P µ), a sequence
µn → µ0, with associated shooting extremal and multipliers (un, yn, pn, ηn) converging to
(ū, ȳ, p̄, η̄) in XN by Lemma 2.37 (which implies in particular un → ū in L∞), and a point
ũn ∈ U feasible for (P µn), ũn 6= un, ũn → ū in L∞, satisfying for all n,

Jµn(ũn) ≤ Jµn(un) + o(‖ũn − un‖2
2). (2.128)

Since λn ∈ NK(Gµn(un)), we have (for the appropriate duality products)

〈λn,Gµn(ũn) − Gµn(un)〉 ≤ 0,

and thus
Lµn(ũn, λn) −Lµn(un, λn) ≤ o(‖ũn − un‖2

2). (2.129)

Let 0 < εn := ‖ũn − un‖2 → 0 and vn := ε−1
n (ũn − un). Since ‖vn‖2 = 1 for all n, taking a

subsequence if necessary, we may assume that vn ⇀ v̄ ∈ V. With the notation of Lemma 2.39,
we deduce from this lemma that (2.121) holds. Combining DuLµn(un, λn) = 0 and (2.126)
with (2.129) and (2.127), we get

Qn(vn) = DuuLµn(un, λn)(vn, vn) ≤ o(1), (2.130)

and thus Q̄(v̄) ≤ 0 by (2.121). Now

K 3 Gµn(ũn) = Gµn(un) + εnDGµn(un)vn + εnrn,

where ‖rn‖∞ = o(1), and thereforeDGµn(un)vn+rn ∈ TK(Gµn(un)), implying gµn
y (yn)zn+rn ≤

0 on supp(dηn). Thus (2.122) is satisfied by Lemma 2.39. Also, by (2.128), DJµn(un)vn ≤ o(1),
and hence,

〈ηn, gµn
y (yn)zn〉 = 〈λn, DGµn(un)vn〉 ≥ o(1).
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Passing to the limit, we obtain 〈η̄, gy(ȳ)z̄〉 ≥ 0. By (2.122) and dη̄ ≥ 0, we deduce that
gy(ȳ)z̄ ∈ supp(dη̄)⊥; thus v̄ and its associated linearized state z̄ satisfy (2.63) and (2.110).
Therefore condition (ii) and Q̄(v̄) ≤ 0 imply v̄ = 0. Since by (2.130), limsupQn(vn) ≤ 0, it
follows from (2.121) that Qn(vn) → 0 = Q̄(v̄), and hence, vn → v̄ = 0, contradicting ‖vn‖2 = 1
for all n.

Proof of Theorem 2.34. (ii) ⇒ (i) is a consequence of Lemmas 2.36 to 2.40. Let us show
(i) ⇒ (ii). Let ρ be a C∞ function over R such that supp(ρ) ⊂ [−1, 1] and ρ is positive

over (−1, 1). The function ψµ defined by ψµ(s) :=
∑

τ∈T nes
to

µ4q+2ρ
(
s−τ
µ

)

for µ 6= 0 and

ψ0(s) = 0, for all s ∈ [0, T ], is of class C2q with respect to its arguments s and µ and has
support in ∪τ∈T nes

to
[τ − |µ|, τ + |µ|] for µ 6= 0. Consider the perturbed constraint mapping

gµ(y) := g(y) − ψµ(yn) (recall that we assume that (P) is written such that yn(t) = t).
Observe that g0 = g and gµ is of order q for all µ; therefore (Pµ) ≡ (`, φ, f, gµ, y0) is a q-stable
extension of (P0) = (P) with µ0 = 0. In addition, gµ(y) = g(y) for all y such that yn /∈
∪τ∈T nes

to
(τ−|µ|, τ+ |µ|), and gµ(ȳ(t)) < 0 on (τ−|µ|, τ+ |µ|), for all τ ∈ T nes

to . Since the touch
points are isolated, we have for |µ| > 0 small enough gµ(ȳ) = g(ȳ) on Ib∪T ess

to = supp(dη̄), and
it is easy to see that (ū, ȳ) is a stationary point for (Pµ), with the same Lagrange multiplier
η̄ and the same costate p̄. In addition, the stationary point (ū, ȳ) for (P µ) has a neighboring
structure to that of (ū, ȳ) for (P0) (all nonessential touch points are removed). Therefore, by
(i) and Def. 2.32, for |µ| small enough, (ū, ȳ) satisfies the uniform quadratic growth condition
(2.105) for (Pµ). Since assumptions (A2)-(A6) are satisfied for (Pµ), it follows from Th.
2.24(ii) that the sufficient condition (ii) holds, which achieves the proof.

2.4.2 Sensitivity Analysis

If strong regularity holds, the mapping Ξ : Vδ → Vθ, δ 7→ θ(δ) is given by Ξ(δ) = θ0 + ω(δ),
where ω(δ) is the solution of (2.116). It follows then from (2.115) that

θµ = θ0 + ω(−DµF(θ0, µ0)(µ− µ0)) + o(‖µ− µ0‖).

Since the mapping R
N̄ → Θ, δ 7→ ω(δ) is positively homogeneous of degree one, the mapping

µ 7→ θµ is Fréchet directionally differentiable. The directional derivatives in direction d are
obtained by substituting −DµF(θ0, µ0)d for δ in (2.116). Therefore,

θµ0+d = θ0 + ωd + o(‖d‖), (2.131)

where

ωd = (π∗d,0, γ
1:q
d,Ten

, γd,Tto , σd,Ten , σd,Tex , σd,Tto)
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is as follows. Denote by (vd, zd) and (ζd, πd, λ
1:q
d,Ten

, λd,Tto) the (unique) optimal solution and
multipliers of the quadratic problem below:

(Pd) min
(v,z)∈V×Z

1

2

∫ T

0
D2

(u,y,µ),(u,y,µ)H̃(ū, ȳ, p̄q, η̄q, µ0)((v, z, d), (v, z, d))dt

+
1

2
D2φ̃(ȳ(T ), µ0)((z(T ), d), (z(T ), d))

+
1

2

∑

τ∈Ten

q
∑

j=1

νjτD
2g̃(j−1)(ȳ(τ), µ0)((z(τ), d), (z(τ), d))

+
1

2

∑

τ∈Tto

ντ

(

D2g̃(ȳ(τ), µ0)((z(τ), d), (z(τ), d)) −
(Dg̃(1)(ȳ(τ), µ0)(z(τ), d))

2

d
dt g̃

(1)(ȳ(t), µ0)|t=τ

)

subject to:







ż(t) = Df̃(ū, ȳ, µ0)(v, z, d) on [0, T ], z(0) = Dỹ0(µ0)d,

Dg̃(0:q−1)(ȳ(τ), µ0)(z(τ), d) = 0, τ ∈ Ten,
Dg̃(ȳ(τ), µ0)(z(τ), d) = 0, τ ∈ T ess

to ,
Dg̃(ȳ(τ), µ0)(z(τ), d) ≤ 0, τ ∈ T nes

to ,

Dg̃(q)(ū, ȳ, µ0)(v, z, d) = 0 on Ib.
Then ωd is given by πd,0 = πq(0), γd,Tto = λd,Tto,

σd,τ = −Dg̃
(1)(ȳ(τ), µ0)(zd(τ), d)

d
dt g̃

(1)(ȳ, µ0)|t=τ
, τ ∈ Tto, (2.132)

σd,τ = −Dg̃
(q)(ū(τ), ȳ(τ), µ0)(vd(τ

+), zd(τ), d)
d
dt g̃

(q)(ū, ȳ, µ0)|t=τ+

, τ ∈ Tex, (2.133)

σd,τ = −Dg̃
(q)(ū(τ), ȳ(τ), µ0)(vd(τ

−), zd(τ), d)
d
dt g̃

(q)(ū, ȳ, µ0)|t=τ−
, τ ∈ Ten, (2.134)

γ1
d,τ = λ1

d,τ , γjd,τ = λjd,τ − νj−1
τ σd,τ , j = 2, . . . , q, τ ∈ Ten. (2.135)

Once we have the expressions for the directional derivatives of the shooting parameters, by
composition with the Fréchet derivatives of the C 1 mapping (2.120) in direction (d, ωd), we ob-
tain the expressions of the directional derivatives, in XN , of the mapping µ 7→ (uµ, yµ, pµ, ηµ).
By Lemma 2.33, we then easily obtain the expression of the directional derivatives of the
control and state in Lr(0, T ) ×W 1,r(0, T ; Rn) for all 1 ≤ r <∞.

Corollary 2.41. If either point (i) or (ii) of Theorem 2.34 is satisfied, then there exists
a neighborhood Vµ of µ such that the mapping Vµ → XN , µ 7→ (uµ, yµ, pµ, ηµ) is Fréchet-
directionally differentiable on Vµ. In addition, the directional derivative in the space Lr(0, T )×
W 1,r(0, T ; Rn), 1 ≤ r < ∞, of the mapping µ 7→ (uµ, yµ) at point µ0 in direction d, is the
optimal solution (vd, zd) of problem (Pd).

We end the paper with a remark related to the ill-posedness of the shooting algorithm for
a state constraint of order q ≥ 3 when boundary arcs are present (see Th. 2.23).

Remark 2.42. (Existence of regular boundary arcs for constraints of order q ≥ 3.) Contrary
to some conjectures in the literature, regular boundary arcs can occur for state constraints of
all orders. Take, for example, the problem:

(Pq) min
(u,y)∈L∞(0,T )×W q,∞(0,T )

∫ T

0

(

y(t) +
u2(t)

2

)

dt

subject to y(q)(t) = u(t) ; y(0) = y0
1 ; ẏ(0) = y0

2; ...; y(q−1)(0) = y0
q ;

y(t) ≥ 0, t ∈ [0, T ].
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It is easy to check that, for τ ∈ (0, T ), y defined by y(t) = 0 on [τ, T ] and

y(t) =







(t− τ)2q

(2q)!
if q is odd

−(t− τ)2q

(2q)!
− ν

(t− τ)2q−1

(2q − 1)!
if q is even

on [0, τ ],

is, for ν > τ/2q if q is even and for appropriate initial conditions when q ≥ 3, a solution
that satisfies all necessary optimality conditions, and hence, by convexity of the problem, an
optimal solution with a regular entry point τ . Moreover, strict complementarity holds since
η0(t) = 1 on (τ, T ].

Robbins in [118] studies this example when q = 3 for generic initial conditions and shows
that the optimal trajectory has a boundary arc, whose entry point is not regular, being the
limit of an infinite number of touch points, with a geometric decreasing of the length of
the interior arcs. Regular boundary arcs correspond to the case when the multiplier of the
geometric sequence is equal to zero for a specific subset of initial conditions. Therefore, we see
in that example, though satisfying all regularity assumptions (A0)-(A3), that the structure
of boundary arcs is not stable under perturbations of the initial condition when q ≥ 3, which
illustrates why the shooting algorithm should be ill-posed in that case.

2.5 Appendix

The next two lemmas follow immediately from the junction conditions established in [75, 98].

Lemma 2.43. Let (u, y) be a regular Pontryagin extremal satisfying (A2)-(A4). Then the
function t 7→ Huu(u(t), y(t), p(t)) is continuous on [0, T ].

Proof. Let τ ∈ T . Since u is continuous by Prop. 2.5, we have:

[Huu(u(τ), y(τ), p(τ))] = [p(τ)]fuu(u(τ), y(τ)) = −ντg(1)
uu (u(τ), y(τ)) = 0,

since either ντ = 0 when q = 1 by Prop. 2.5, or g
(1)
u ≡ 0 when q > 1.

Lemma 2.44. Let (u, y) be a regular Pontryagin extremal, satisfying (A2)-(A4), and let
τ ∈ Ten ∪ Tex be an entry/exit time. The following conditions are equivalent:
(i) (2.60) holds at τ ; (ii) if q is odd, limt→τ ; t∈Ib

η0(t) > 0; if q is even, ντ > 0.

Proof. Define the mappings (Al)0≤l≤q : [0, T ]\T → R
n by (2.34) and (al)0≤l≤q : [0, T ]\T → R

by
a0(t) = `u(u(t), y(t)); al(t) = `y(u(t), y(t))Al−1(t) − ȧl−1(t) l = 1, . . . , q.

Then it can be seen by (2.35) (see [98]) that for all t ∈ [0, T ] \ T , we have

0 =
dj

dtj
Hu(u(t), y(t), p(t)) = (−1)j(aj(t) + p(t)Aj(t)); j = 0, . . . , q − 1, (2.136)

0 =
dq

dtq
Hu(u(t), y(t), p(t)) = (−1)q

(

aq(t) + p(t)Aq(t) +
dη

dt
g(q)
u (u(t), y(t))

)

. (2.137)

Since the derivatives of the control are continuous until order q − 2, the functions aj and Aj
are continuous for j = 0, . . . , q − 2, and it is then easily seen, since u is continuous, that the
jumps of Aq−1 and aq−1 at τ ∈ T , when q is even, are given respectively by

[Aq−1(τ)] = (−1)q−1fuu(u(τ), y(τ))[u
(q−1)(τ)],

[aq−1(τ)] = (−1)q−1`uu(u(τ), y(τ))[u
(q−1)(τ)].
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Taking the jump in (2.136) at τ for j = q − 1 then yields:

0 = (−1)q−1Huu(u(τ), y(τ), p(τ
+))[u(q−1)(τ)] − ντgy(y(τ))Aq−1(τ

−).

By (2.35), we have gy(y(τ))Aq−1(τ
±) = g

(q)
u (u(τ), y(τ)), so we obtain, when q is even:

ντ = (−1)q−1Huu(u(τ), y(τ), p(τ
+))[u(q−1)(τ)]

g
(q)
u (u(τ), y(τ))

. (2.138)

It follows that ντ > 0 iff u(q−1) is discontinuous at τ , which is equivalent to saying that (2.60)
holds (when q is even). When q is odd, u(q−1), aq−1, and Aq−1 are continuous (and ντ = 0).
Taking the jump in (2.137), we obtain

0 = (−1)qHuu(u(τ), y(τ), p(τ))[u
(q)(τ)] + [η0(τ)] g

(q)
u (u(τ), y(τ)).

Consequently, we have η0(τ
±) > 0 at an entry/exit point, where τ± stands for τ+ if τ ∈ Ten

and τ− if τ ∈ Tex iff u(q) is discontinuous at τ , and hence iff (2.60) holds.

The next two lemmas recall classical results. For the second one see related results by
Aubin [3].

Lemma 2.45. Let X be a Hilbert space and Q a Legendre form over X. Let A be a continuous
linear operator over X. The following assertions are equivalent:
(i) Q(v) > 0 for all v ∈ KerA \ {0};
(ii) There exists α > 0 such that Q(v) ≥ α‖v‖2

2, for all v ∈ KerA.

Lemma 2.46. Let X be a Hilbert space and Y a Banach space, H : X → X ∗ ≡ X a self-
adjoint continuous linear operator, and A : X → Y and B : X → R

r, r ∈ N, continuous linear
operators. Assume that

(i) ∃α > 0 〈Hx, x〉 ≥ α‖x‖2, for all x ∈ KerA,

(ii) The operator (A,B) : X → Y × R
r is onto.

Then, for all (x∗, y, δ) ∈ X∗×Y ×R
r, there exists a unique (x, y∗, ν) ∈ X×Y ∗×R

r∗, solution
of







Hx+A∗y∗ +B∗ν = x∗

Ax = y
Bx ≤ δ, ν ≥ 0, ν(Bx− δ) = 0,

(2.139)

and the mapping (x∗, y, δ) 7→ (x, y∗, ν), where (x, y∗, ν) is solution of (2.139), is Lipschitz
continuous.

Acknowledgments The authors thank the anonymous referees for their useful remarks.
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Chapitre 3

Stabilité et sensibilité pour des
contraintes d’ordre 1 et méthodes
d’homotopie∗

Abstract The paper deals with an optimal control problem with a scalar first-order state
constraint and a scalar control. In presence of (nonessential) touch points, the arc structure of
the trajectory is not stable. Under some reasonable assumptions, we show that boundary arcs
are structurally stable, and that touch point can either remain so, vanish or be transformed
into a single boundary arc. Assuming a weak second-order optimality condition (equivalent
to uniform quadratic growth), stability and sensitivity results are given. The main tools are
the study of a quadratic tangent problem and the notion of strong regularity. Those results
enables us to design a new continuation algorithm, presented at the end of the paper, that
handles automatically changes in the structure of the trajectory.

Résumé Dans cet article, on s’intéresse aux problèmes de commande optimale avec une
contrainte sur l’état du premier ordre. En présence de points de contact isolés (non essentiels),
la structure en arcs de la solution n’est pas stable. Sous des hypothèses raisonnables, on
montre que les arcs frontières sont stables et qu’un point de contact isolé devient inactif, reste
point de contact, ou bien se transforme en arc frontière. Sous une condition du second ordre
faible (équivalente à la croissance quadratique uniforme), une analyse de stabilité et sensibilité
des solutions est présentée. Le résultat s’appuie sur l’étude du problème linéaire-quadratique
tangent et sur la notion de régularité forte. Ces résultats nous permettent de concevoir un
nouvel algorithme d’homotopie qui prend en compte automatiquement des changements de
structure de la trajectoire.

3.1 Introduction

This paper deals with an optimal control problem (of an ordinary differential equation) with
a scalar first-order state constraint and a scalar control, with a free final state and no control
constraints. It is well-known that for first-order state constraints, when the strengthened
Legendre-Clebsch condition holds and the state constraint is regular, touch points (locally

∗Joint work with J.F. Bonnans. Published in ESAIM Control, Optimization and Calculus of Variations,
14(4) :825–863 (2008), under the title Stability and sensitivity analysis for optimal control problems with a

first-order state constraint and application to continuation methods.
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unique times where the constraint is active) are nonessential (the associated jump of the
multiplier is null) (see e.g. [75, 68]). Situations where touch points are present may be
encountered, for instance, when solving the optimal control problem by indirect approaches
using an homotopy method in order to guess the arc structure of the trajectory, see e.g. the
example in [11]. Therefore it is of interest to study sensitivity of solutions around touch
points, when the constraint becomes active. Under a small perturbation, several events may
occur. Among them, the constraint may locally become inactive, the touch point may remain
a touch point, or it may give rise to a boundary arc. Our main result is that, under natural
hypotheses, these are the only three possibilities, and that the boundary arcs have a length of
the order of the perturbation, and satisfy a “strict complementarity” hypothesis. In addition,
we show how to compute a first-order expansion of the solution. The analysis uses in a critical
way a certain tangent quadratic problem, and at the same time is in the spirit of the shooting
approach, in the sense that touch points are converted into boundary arcs of zero length,
and we compute the first-order expansion of all entry and exit points. Fréchet directional
derivatives are obtained as the solution of an inequality-constrained linear quadratic problem.
The proof applies the notion of “strong regularity” in the sense of Robinson [121] to a system
that happens to be equivalent to the optimality conditions of the tangent quadratic problem.
Our formulation of the corresponding shooting formulation (of which all entry and exit times
are variables, in addition to the initial costate and jumps of the alternative multiplier at entry
times) allows exit times to be lower than entry times; however, we check that the solution of
the shooting formulation is such that entry times are lower than or equal to corresponding
exit times.

Optimal control problems with first-order state constraints were first studied in the book by
Pontryagin et al. [116]. Numerous results have been obtained since for stability and sensitivity
analysis of those problems. Two different approaches have been used. The first one is the
use of implicit function theorems in infinite dimensional spaces (see [123, 87, 67, 103]), and
the second one is to reduce the problem to a finite-dimensional one (a two- or multi points
boundary value problem) using the so-called shooting formulation (see [125, 101]). With
first-order state constraints, L2-stability of solutions was first obtained by Malanowski [88],
under strong second-order sufficient conditions, using an infinite-dimensional implicit function
theorem based on two-norms approach, and later by Dontchev and Hager [53], using an implicit
function theorem in metric spaces. In Malanowski [88], directional differentiability of solutions
in L2 was established, using the results on differentiability of projection onto a closed convex
cone in Hilbert spaces [67]. The second-order sufficient condition used in the analysis was
weakened by Malanowski [89]. All those results require no assumptions on the structure of
the trajectory. In order to obtain L∞-stability of solutions, Dontchev and Hager [53] needed an
additional assumption on the structure of the contact set (“contact separation”). Using a finite
dimensional approach, Malanowski and Maurer obtained in [93] differentiability of solutions in
L∞ by application of the implicit function theorem to the shooting mapping, under stronger
assumptions (finitely many nontangential junction points, and strict complementarity) needed
to ensure the stability of the structure of solutions.

The approach presented in this paper is different from the ones in [88, 89, 53] where
the stability and sensitivity analysis was done in infinite dimensional spaces without any
assumptions on the structure of the trajectory. On the contrary, our aim is to describe changes
in the structure of the trajectory, both qualitatively and quantitatively. Thus the first step is
to consider nonessential touch points. Indeed, as mentioned before, changes in the structure
are likely to occur when performing continuation methods, therefore the more information
we have on the continuity and/or differentiability of the homotopy path, the easier will be
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the latter to follow. Our stability and sensitivity results generalize those of [93] to the case
when (nonessential) touch points are present. However, in that case strict complementarity
does not hold anymore, so we cannot apply the classical implicit function Theorem as done in
[93]. This paper is related to our previous work: the study of no-gap second-order optimality
conditions in [21], and the shooting formulation, allowing nonessential touch points for state
constraints of order greater than one, and for which we also use the notion of strong regularity
[19]. In both papers we assume also the state constraint and the control to be scalar-valued.
Some of these results are extended to the case of vector-valued state constraints and control
in [17]. We follow here the analysis in [19] where sensitivity results with nonessential touch
points for state constraints of order greater than one were obtained. The contributions of this
paper are the following:

• A stability result of the structure of stationary points (and not only the stability of
the structure of locally optimal solutions) is proved. That is, if the nominal trajectory
satisfies several assumptions, among which uniform strict complementarity on boundary
arcs, then any stationary point in the neighborhood has a “neighboring structure”, in a
sense made precise in section 2.

• In the stability and sensitivity analysis we cover the case of the possible transformation
of touch points into boundary arcs. This possibility was excluded from the analysis
in [19] and in [93], and leads to technical complications. In particular we show that
for first-order state constraints, the shooting algorithm remain well-posed when touch
points are converted in boundary arcs, which is false for control constraints (see Remark
3.32).

• At the end of the paper, we present an application of those results to a preliminary homo-
topy algorithm whose novelty is to handle changes in the structure (appearance/disap-
pearance of a boundary arc) automatically. Numerical application on a simple academic
problem is presented.

The paper is organized at follows. The framework is presented in section 3.2. In section
3.3, the stability results of the structure of stationary points are given. In section 3.4, the
main result is stated. In section 3.5, the problem is reduced to a generalized finite-dimensional
equation, with a complementarity constraint. Robinson’s strong regularity theory is applied
to the latter in section 3.6, where the main result is proved. Section 3.7 deals with directional
differentiability of solutions. In section 3.8, a basic illustrative example is presented. The
homotopy method is described in section 3.9. Section 3.10 contains the proofs of the results
of section 3.3.

3.2 Preliminaries

Let U := L∞(0, T ) (resp. Y := W 1,∞(0, T ; Rn)) denote the control (resp. state) space. Let M
be a Banach space (the space of perturbations parameter) and, for µ ∈ M , the cost function
`µ : R × R

n → R, final cost function φµ : R
n → R, dynamics fµ : R × R

n → R
n, state

constraint gµ : R
n → R, initial condition yµ0 ∈ R

n, and (fixed) final time T > 0. We consider
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the following optimal control problem:

(Pµ) min
(u,y)∈U×Y

∫ T

0
`µ(u(t), y(t))dt + φµ(y(T )) (3.1)

subject to ẏ(t) = fµ(u(t), y(t)) for a.a. t ∈ [0, T ], y(0) = yµ0 , (3.2)

gµ(y(t)) ≤ 0, for all t ∈ [0, T ]. (3.3)

This notation allow us to deal with non autonomous problems (i.e. when the data `µ, fµ, gµ

depend on time t) as well, by assuming w.l.o.g. that the last component of the state variable
yn satisfies in (3.2)

ẏn(t) = 1 on [0, T ], yn(0) = 0 (i.e. yn(t) = t). (3.4)

We shall assume in all the paper that (Pµ) is written such that (3.4) holds. In this way
our analysis will include non autonomous perturbations, even when the starting problem is
autonomous. This assumption is only used in Th. 3.11 to obtain the implication (i) ⇒ (ii).

We study perturbations of problem (Pµ) around a given value of parameter µ0 ∈M , and
we often omit the superscript µ when we refer to the problem and data associated with µ0,
i.e. (P) := (Pµ0) and (`, φ, f, g, y0) := (`µ0 , φµ0 , fµ0 , gµ0 , yµ0

0 ).

We assume throughout the paper that the assumptions below hold:

(A0) The mappings `, φ, f and g are of class C2, with locally Lipschitz continuous second-
order derivatives, and the dynamics f is Lipschitz continuous;

(A1) the initial condition satisfies g(y0) < 0.

These assumptions will not be repeated in the various results of the paper.

A parametrization (`µ, φµ, fµ, gµ, yµ0 ), identified with problem (Pµ), is a stable extension
of (P), if there exists an open neighborhood M0 of µ0, such that (i) there exist C2 mappings
ˆ̀ : R × R

n ×M0 → R; φ̂ : R
n ×M0 → R; f̂ : R × R

n ×M0 → R
n; ĝ : R

n ×M0 → R and
ŷ0 : M0 → R

n, such that `µ(u, y) = ˆ̀(u, y, µ) for all (u, y) ∈ R × R
n and all µ ∈ M0 (and

similarly for φµ, fµ, gµ, and yµ0 ); (ii) the mappings `µ, fµ, φµ, gµ have Lipschitz continuous
second-order derivatives and fµ is Lipschitz continuous, uniformly over µ ∈M0.

In this paper, we always consider stable extensions (Pµ), that satisfy (3.4) as said before.

Definitions and Notations

The space of row vectors is denoted by R
n∗, and the adjoint and transposition operator in R

n

are denoted by a star ∗. Fréchet derivatives of f , `, etc. w.r.t. arguments u ∈ R, y ∈ R
n,

are denoted by a subscript, for instance fu(u, y) = Duf(u, y). The space Lr(0, T ), r ∈ [1,∞],

is the Lebesgue space of measurable functions such that ‖u‖r := (
∫ T
0 |u(t)|r)1/r < ∞ for

1 ≤ r < ∞ and ‖u‖∞ := supesst∈[0,T ] |u(t)| < ∞, and W 1,r(0, T ) is the Sobolev space of
functions in Lr(0, T ) with a weak derivative in Lr(0, T ). The space of continuous functions
and its dual space, the space of bounded Borel measures, are denoted respectively by C 0[0, T ]
and M[0, T ]. The cone of nonnegative measures is denoted by M+[0, T ], and BV ([0, T ]; Rn)
denotes the space of vector-valued functions of bounded variation over [0, T ]. The elements
of M[0, T ] are identified with the derivative of functions of bounded variation vanishing at T .
We denote by ϕ(t−) and ϕ(t+) the respectively left- and right limits of a function of bounded
variation ϕ at a time t ∈ [0, T ]. Jumps are denoted by [ϕ(t)] := ϕ(t+) − ϕ(t−).
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Given µ ∈M0, a trajectory of (Pµ) is an element (u, y) ∈ U×Y satisfying the state equation
(3.2). A feasible trajectory is one satisfying the state constraint (3.3). The first-order time
derivative of the state constraint is the function defined by (gµ)(1) : R × R

n → R, (u, y) 7→
gµy (y)fµ(u, y). In this paper, we consider state constraints of first order, that is, the function
(gµ)(1)(u, y) depends explicitly on the control variable u in the neighborhood of the contact
set of the constraint, see assumption (A3). It will be convenient to introduce the second-order
time derivative of the state constraint by:

(gµ)(2) : R × R × R
n → R, (υ, u, y) 7→ (gµ)(1)u (u, y)υ + (gµ)(1)y (u, y)fµ(u, y). (3.5)

Wherever u is differentiable, we have that

d2

dt2
gµ(y(t)) = (gµ)(2)(u̇(t), u(t), y(t)). (3.6)

The classical (resp. augmented) Hamiltonian functions Hµ : R × R
n × R

n∗ → R (resp.
H̃µ : R × R

n × R
n∗ × R → R) are defined by:

Hµ(u, y, p) := `µ(u, y) + pfµ(u, y) (3.7)

H̃µ(u, y, p1, η1) := Hµ(u, y, p1) + η1(gµ)(1)(u, y). (3.8)

For (u, y) a feasible trajectory of (Pµ), define the contact set by:

I(gµ(y)) := {t ∈ [0, T ] ; gµ(y(t)) = 0}. (3.9)

We say that the constraint is active at time t, if t ∈ I(gµ(y)); otherwise it is said inactive at
time t. A boundary arc (resp. interior arc) is a maximal interval of positive measure I such
that gµ(y(t)) = 0 (resp. gµ(y(t)) < 0), for all t ∈ I. Left and right endpoints of a boundary
arc [τen, τex] are called entry and exit point, respectively. A touch point τto is an isolated
contact point, satisfying gµ(y(τto)) = 0 and gµ(y(t)) < 0, for t 6= τto in the neighborhood of
τto. The endpoints of interior arcs belonging to (0, T ) are called junction points (or times).

If the set of junction points of a trajectory is finite, then it is of the form

T =: Ten ∪ Tex ∪ Tto,

with Ten, Tex and Tto the disjoint (and possibly empty) subsets of respectively regular entry,
exit and touch points. We denote by Ib the union of boundary arcs, i.e. Ib := ∪Nb

i=1[τ
en
i , τ exi ]

for Ten := {τ en1 < · · · < τ enNb
} and similar definition of Tex, and we have I(gµ(y)) = Tto ∪ Ib.

The arc structure (or simply structure) of a trajectory is the (finite) number of boundary arcs
and touch points, and the order in which they occur.

Given a finite subset S of (0, T ), we denote by PCk
S [0, T ] the set of functions over [0, T ]

that are of class Ck outside S, and have, as well as their first k derivatives, a left and right
limit over S and a left (resp. right) limit at T (resp. 0). The subset of functions in PC k

S [0, T ]

having continuous derivatives on [0, T ] until order r, 0 ≤ r ≤ k, is denoted by PC k,r
S [0, T ] :=

PCkS [0, T ] ∩Cr[0, T ]. We also use the notation νS := (ντ )τ∈S ∈ R
CardS .

Given (µ, u) ∈M0 × U , we denote by yµu the (unique) state solution in Y of:

ẏµu(t) = fµ(u(t), yµu(t)) a.e. on [0, T ], yµu(0) = yµ0 . (3.10)

By definition of a stable extension, the mapping U ×M0 → Y, (u, µ) 7→ yµu is C2. A useful
equivalent abstract formulation of (Pµ) is

min
u∈U

Jµ(u), Gµ(u) ∈ K, (3.11)
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with the cost function Jµ : U → R, u 7→
∫ T
0 `µ(u(t), yµu(t))dt + φµ(yµu(T )), K := C0

−[0, T ] the
cone of continuous functions taking nonpositive values, and Gµ the mapping U → C0[0, T ],
u 7→ gµ(yµu). We write J and G for Jµ0 and Gµ0 , respectively.

Optimality Conditions

Let us first recall the definition of Pontryagin extremals.

Definition 3.1. A trajectory (u, y) is a Pontryagin extremal of (Pµ), if there exist α ∈ R+,
dη ∈ M[0, T ] and p ∈ BV ([0, T ]; Rn∗), (dη, p, α) 6= 0, such that:

ẏ(t) = fµ(u(t), y(t)) a.e. on [0, T ], y(0) = yµ0 (3.12)

dp(t) = {α`µy (u(t), y(t)) + p(t)fµy (u(t), y(t))}dt + gµy (y(t))dη(t) on [0, T ] (3.13)

p(T+) = αφµy (y(T )) (3.14)

u(t) ∈ argminû∈R{α`µ(û, y(t)) + p(t)fµ(û, y(t))} a.e. on [0, T ] (3.15)

0 ≥ gµ(y(t)), dη ≥ 0,

∫ T

0
gµ(y(t))dη(t) = 0. (3.16)

When α > 0, dividing p and η by α, we can take α = 1 in the above equations, and in that
case we say that (u, y) is a regular Pontryagin extremal.

It is well known that optimal solutions of (Pµ) are Pontryagin extremals. A sufficient
condition to ensure that α = 1, i.e. that an optimal solution (u, y) of (Pµ) is a regular
Pontryagin extremal, is that Robinson’s constraint qualification [119, 120] below is satisfied
(recall (3.11)):

∃γ > 0, γBC0[0,T ] ⊂ Gµ(u) +DGµ(u)U −K, (3.17)

with BC0[0,T ] the unit (open) ball of the space of continuous functions.

A trajectory (u, y) is a stationary point of (Pµ), if there exist dη ∈ M[0, T ] and p ∈
BV ([0, T ]; Rn∗) such that (3.12)-(3.14) and (3.16) hold (with α = 1), as well as

0 = `µu(u(t), y(t)) + p(t)fµu (u(t), y(t)) for a.a. t ∈ [0, T ]. (3.18)

The above condition is in general weaker than (3.15). However, when the Hamiltonian Hµ

is convex w.r.t. the control variable along the trajectory (and in particular when assumption
(3.22) below holds), then the definitions of regular Pontryagin extremals and stationary points
are equivalent.

We say that (u, y) is a local solution (weak minimum) of (Pµ), if it minimizes (3.1) over
the set of feasible trajectories (ũ, ỹ) satisfying ‖ũ − u‖∞ ≤ δ for some δ > 0. Local solutions
of (Pµ) satisfying (3.17) are stationary points.

Note that the complementarity conditions (3.16) can be equivalently rewritten as:

gµ(y) ∈ K, dη ∈ M+[0, T ], supp(dη) ⊂ I(gµ(y)), (3.19)

where supp(dη) denotes the support of the measure dη. Another condition equivalent to
(3.16) is dη ∈ NK(Gµ(u)), where NK(Gµ(u)) denotes the normal cone (in the sense of convex
analysis) to K at point Gµ(u).
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Assumptions

We assume that problem (P) has a local solution, denoted in the sequel by (ū, ȳ), and that
the latter satisfies, with p̄ and η̄ its associated multipliers, the following assumptions:

(A2) The control ū is continuous over [0, T ], and there exists α > 0 such that

Huu(ū(t), ȳ(t), p̄(t±)) ≥ α, for all t ∈ [0, T ]. (3.20)

(A3) Uniform regularity of the state constraint near the contact set, i.e., there exists β, ε > 0
such that

|g(1)
u (ū(t), ȳ(t))| ≥ β, for a.a. t, dist{t; I(g(ȳ))} ≤ ε. (3.21)

A condition stronger than (A2) which implies the continuity of the control is the uniform
strong convexity of the Hamiltonian w.r.t. the control variable, i.e. there exists α > 0, such
that

Huu(û, ȳ(t), p̄(t
±)) ≥ α, for all û ∈ R and all t ∈ [0, T ]. (3.22)

It is well-know (see e.g. [65, 68]) that when (A2)-(A3) hold, then ū and the multiplier η̄
are Lipschitz continuous. In particular this implies that all touch points τto are nonessential,
i.e. [η̄(τto)] = 0. Furthermore, (A3) implies that (3.17) holds, and that the multipliers (p̄, η̄)
associated with (ū, ȳ) are unique. This is a consequence of the lemma below. For δ > 0, let
Ωδ := {t ∈ [0, T ], dist{t; I(g(ȳ))} < δ}.

Lemma 3.2. Assumption (A3) implies that for all 0 < δ < ε, with the ε of (3.21), assumed
to be so small that Ωε ⊂ [a, T ] for some a > 0, the linear mapping

U →W 1,∞(Ωδ), v 7→ (DG(ū)v)|Ωδ , (3.23)

where |Ωδ denotes the restriction to the set Ωδ, is onto.

Proof. Let us recall the proof of [21, Lemma 9]1. For v ∈ U , we have that DG(ū)v = gy(ȳ)zv ,
where zv is the (unique) solution in Y of the linearized state equation:

żv = fu(ū, ȳ)v + fy(ū, ȳ)zv , a.e. on [0, T ], zv(0) = 0. (3.24)

It is easy to see that

d

dt
gy(ȳ(t))zv(t) = g(1)

u (ū, ȳ)v + g(1)
y (ū, ȳ)zv ,

and since by (3.21) and (A1), g
(1)
u (ū, ȳ) is uniformly invertible on a neighborhood of Ωδ for

small δ > 0, the result follows as a consequence of Gronwall’s Lemma.

We will also make in addition to (A2)-(A3) the following assumptions:

(A4) The trajectory (ū, ȳ) has a finite set of junction times T̄ , and we assume that g(ȳ(T )) <
0.

(A5) Uniform strict complementarity on boundary arcs:

∃β > 0
dη̄

dt
(t) ≥ β for all t in the interior of boundary arcs; (3.25)

1Lemma 1.9 of this thesis.
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(A6) Non tangentiality at second-order at (nonessential) touch points: for all touch point τ̄to,

d2

dt2
g(ȳ(t))|t=τ̄to < 0. (3.26)

Note that (3.26) makes sense, since d2

dt2 g(ȳ(t)) is by (3.6) a continuous function of (ȳ, ū, ˙̄u),
and ū and ˙̄u are continuous at a touch point τ̄to (indeed, τ̄to being a nonessential touch point,
(τ̄to − ε, τ̄to + ε) ∩ supp(dη̄) = ∅ for some small ε > 0, so the continuity of ˙̄u follows from the
implicit function theorem applied to the relation Hu(ū, ȳ, p̄) = 0). This condition is similar
to the reducibility hypothesis when the state constraint is of order q ≥ 2 (see [19]). The
lemma below will be proved later (see Lemma 3.22), the proof being based on the alternative
formulation (Def. 3.14).

Lemma 3.3. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)-(A4). Then assumption
(A5) implies that the following non-tangentiality condition at second-order holds at entry and
exit points:

d2

dt2
g(ȳ(t))|t=τ̄−en

< 0, τ̄en ∈ T̄en ;
d2

dt2
g(ȳ(t))|t=τ̄+

ex
< 0, τ̄ex ∈ T̄ex. (3.27)

3.3 Structural stability of stationary points

Let (ū, ȳ) be a stationary point of (P) satisfying (A2)-(A6). Assume that (ū, ȳ) has Nba

boundary arcs and Nto touch points, and let N := Nba + Nto. Number the boundary arcs
and touch points of (ū, ȳ) by i = 1, . . . , N , and denote by Iba and Ito the (disjoint) sets of
index in {1, . . . , N} corresponding respectively to boundary arcs and touch points. Denote
the junction times of (ū, ȳ) by T̄en = {τ̄ ien}i∈Iba

, T̄ex = {τ̄ iex}i∈Iba
, and T̄to = {τ̄ ito}i∈Ito . For

δ > 0, define

Ωδ
i := (τ̄ ien − δ, τ̄ iex + δ), i ∈ Iba, Ωδ

i := (τ̄ ito − δ, τ̄ ito + δ), i ∈ Ito. (3.28)

In view of (A4), (A6) and (3.27), we may fix κ, δ̄ > 0 satisfying the conditions below:

δ̄ ≤ ε with the ε of (3.21), (3.29)

d2

dt2
g(ȳ(t)) ≤ −κ < 0 on Ωδ̄

i \ [τ̄ ien, τ̄
i
ex] for all i ∈ Iba and on Ωδ̄

i for all i ∈ Ito, (3.30)

the sets (Ωδ̄
i )1≤i≤N are pairwise disjoint and contained in [a, T ] for some a > 0. (3.31)

The next theorem gives a direct result (i.e. without using a shooting formulation) of the
stability of structure of stationary points, when assumptions (A2)-(A6) are satisfied.

Theorem 3.4. Let (ū, ȳ) be a stationary point of (Pµ0) satisfying (A2)-(A6), and let δ̄ satisfy
(3.29)-(3.31). Then for all 0 < δ < δ̄ and all stable extensions (Pµ) of (Pµ0 ), there exists a
neighborhood Vu × Vµ of (ū, µ0) in U ×M , such that all stationary points (u, y) of (Pµ) with
(u, µ) ∈ Vu×Vµ satisfy the following properties, with the contact set I(gµ(y)) defined by (3.9):

(S1) I(gµ(y)) ⊂ ∪Ni=1Ω
δ
i ,

(S2) for all i ∈ Iba, I(g
µ(y)) ∩ Ωδ

i is an interval of positive measure;

(S3) for all i ∈ Ito, I(g
µ(y)) ∩ Ωδ

i is either empty, or a singleton, or an interval of positive
measure.
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When (S1)-(S3) are satisfied, we say that a stationary point (u, y) of (Pµ) has a neighboring
structure to that of (ū, ȳ).

Remark 3.5. We can actually state a “local” version of Th. 3.4. More precisely, if a stationary
point (ū, ȳ) of (Pµ0) satisfying (A3) has a boundary arc [τ̄en, τ̄ex] (resp. a touch point τ̄to) and
if assumptions (A2) and (A4)-(A6) hold locally over (τ̄en−δ, τ̄ex+δ) (resp. over (τ̄to−δ, τ̄to+δ))
for some δ > 0, then all stationary points (u, y) of (Pµ) with (u, µ) in the neighborhood of
(ū, µ0) have exactly one boundary arc on (τ̄en−δ, τ̄ex+δ) (resp. have at most either one touch
point or one boundary arc on (τ̄to − δ, τ̄to + δ)).

The proof of Theorem 3.4 is given in section 3.10 and will use two lemmas below. Note
that by continuity of the mapping (u, µ) 7→ gµ(yµu), it is immediate that all stationary points
of a stable extension (Pµ) with (u, µ) in the neighborhood of (ū, µ0) satisfy (S1). Let us first
define alternative multipliers needed in lemma 3.6 (see also [93, 88, 68, 53, 65] where these
multipliers are used)

η1(t) :=

∫ T

t
dη(s) = − η(t+) (3.32)

p1(t) := p(t) − η1(t)gµy (y(t)). (3.33)

With this definition, and without any assumptions on the arc structure of the trajectory
(i.e. without assuming a finite number of junction points), we have that

−dp1 = (Hµ
y (u, y, p1) + (gµ)(1)y (u, y)η1)dt,

and hence, the new alternative costate p1 is absolutely continuous. Consequently, an equivalent
form of (3.13)-(3.14) (when α = 1) and (3.18) is, a.e. on [0, T ]:

− ṗ1(t) = Hµ
y (u(t), y(t), p1(t)) + (gµ)(1)y (u(t), y(t))η1(t), p1(T ) = φµy (y(T )) (3.34)

0 = Hµ
u (u(t), y(t), p1(t)) + (gµ)(1)u (u(t), y(t))η1(t). (3.35)

In addition, (3.16) implies the following (weaker) relations, since η1 is constant on interior
arcs:

0 = (gµ)(1)(u(t), y(t)) on boundary arcs, 0 = η̇1(t) on interior arcs. (3.36)

Note that given a trajectory (u, y) of a stable extension (Pµ), if (u, µ) is close enough to
(ū, µ0), Robinson’s constraint qualification (3.17) still holds. This implies the uniqueness of
the multipliers associated with a stationary point (u, y) of (Pµ) with (u, µ) in the neighborhood
of (ū, µ0). The two lemmas below, used in the proof of Th. 3.4, are proved in section 3.10.

Lemma 3.6. Let (ū, ȳ) be a stationary point of (Pµ0) satisfying (A2)-(A3) with multipliers
(p̄, η̄), and let the associated alternative multipliers (p̄1, η̄1) be given by (3.32)-(3.33). Consider
a stable extension (Pµ), and let (un, yn = yµn

un ) be a stationary point of (Pµn), such that un → ū
in L∞ and µn → µ0. Denote by pn, ηn the (unique) multipliers associated with (un, yn), and
let p1

n, η
1
n be given by (3.32)-(3.33). Then:

1. The sequence (dηn) is bounded in M[0, T ];

2. ‖dηn− dη̄‖1,∞∗ → 0, where ‖ · ‖1,∞∗ denote the norm of the dual of W 1,∞ for the strong
topology;
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3. p1
n → p̄1 uniformly over [0, T ];

4. η1
n → η̄1 uniformly over [0, T ].

Remark 3.7. Note that under the assumptions of Lemma 3.6, by (3.33) and (3.32), we deduce
the uniform convergence of (pn, ηn) towards (p̄, η̄).

The key tool for deriving the structural stability result of Th. 3.4 is the following lemma.

Lemma 3.8. Let (ū, ȳ) be a stationary point of (Pµ0) satisfying (A2)-(A6), and let δ̄ be
defined as in Th. 3.4. Then for all 0 < δ < δ̄ and all stable extensions (Pµ) of (Pµ0), there
exists a neighborhood Vu × Vµ of (ū, µ0) in U ×M , such that if (u, y) is a stationary point of
(Pµ) with (u, µ) ∈ Vu×Vµ, then (u, y) has no interior arc contained in Ωδ

i , for all i = 1, . . . , N .

3.4 Statement of the main result

Let us first recall the second-order conditions of [18, 21]. Let the linearized control and state
spaces be respectively V := L2(0, T ) and Z := H1(0, T ; Rn), where H1(0, T ) = W 1,2(0, T ).
The quadratic function over V × Z involved in the second-order conditions is:

J (v, z) :=

∫ T

0
H(u,y),(u,y)(ū, ȳ, p̄)((v, z), (v, z))dt + z(T )∗φyy(ȳ(T ))z(T )

+

∫ T

0
z(t)∗gyy(ȳ(t))z(t)dη̄(t)

(3.37)

and the set of constraints (defining the critical cone):

ż = fu(ū, ȳ)v + fy(ū, ȳ)z on [0, T ], z(0) = 0 (3.38)

gy(ȳ(t))z(t) = 0 t ∈ Īb (3.39)

gy(ȳ(τ))z(τ) ≤ 0 τ ∈ T̄to, (3.40)

where Īb and T̄to denote respectively the union of boundary arcs and the set of touch points
of (ū, ȳ).

Theorem 3.9 ([18, 21]). (i) Let (ū, ȳ) be a local solution of (P) satisfying (A2)-(A5). Then

J (v, z) ≥ 0, for all (v, z) ∈ V × Z satisfying (3.38)-(3.40). (3.41)

(ii) Let (ū, ȳ) be a stationary point of (P) satisfying (A2)-(A5). Then

J (v, z) > 0, for all (v, z) ∈ V × Z, (v, z) 6= 0, satisfying (3.38)-(3.40), (3.42)

iff (ū, ȳ) is a local solution of (P) satisfying the quadratic growth condition:

∃ c, ρ > 0, J(u) ≥ J(ū) + c‖u− ū‖2
2, ∀ u ∈ U ; G(u) ∈ K, ‖u− ū‖∞ ≤ ρ. (3.43)

Let us recall that a quadratic form Q on an Hilbert space H is a Legendre form, if Q
is weakly lower semicontinuous and if for all weakly convergent subsequence (vn) ∈ HN, say
vn ⇀ v, we have that vn → v strongly if Q(vn) → Q(v). Using (A2) we can show that the
quadratic form J is a Legendre form (see [74, 24]). This plays a role to obtain the no-gap
second-order conditions of Th. 3.9.

In the stability and sensitivity analysis, we will use the condition below, stronger than
(3.42):

J (v, z) > 0, for all (v, z) ∈ V ×Z, (v, z) 6= 0, satisfying (3.38)-(3.39). (3.44)
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Definition 3.10. Let (ū, ȳ) = (uµ0 , yµ0) be a stationary point of (Pµ0). We say that (ū, ȳ)
satisfies the uniform quadratic growth condition, if for all stable extensions (P µ) of (Pµ0 )
satisfying (3.4), there exist c, ρ > 0 and an open neighborhood V0 of µ0, such that for all
µ ∈ V0, there exists a unique stationary point (uµ, yµ) of (Pµ) with ‖uµ − ū‖∞ ≤ ρ, and this
point satisfies

Jµ(u) ≥ Jµ(uµ) + c‖u− uµ‖2
2, ∀ u ∈ U ; Gµ(u) ∈ K, ‖u− ū‖∞ ≤ ρ, ∀ µ ∈ V0. (3.45)

Of course (3.45) implies that (uµ, yµ) is a local solution of (Pµ). Note that the constants
c and ρ in the uniform growth condition (3.45) does not depend on µ.

The arc structure of the trajectory (in the sense of number and order of boundary arcs
and touch points) is not necessarily stable under a small perturbation. However, by (A5),
boundary arcs are locally preserved, and by (A6), the only three possibilities for a touch point
is to become a boundary arc, remain a touch point or become inactive at a local solution
of the perturbed problem, i.e. the solutions of the perturbed problems have a neighboring
arc structure of active constraints to that of (ū, ȳ) (see Th. 3.4). Below is our main result
(together with Theorems 3.4 and 3.30), that will be proved later in section 3.6.

Theorem 3.11. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)-(A6). Then assertions
(i) and (ii) below are equivalent:
(i) The uniform quadratic growth (Def. 3.10) holds.
(ii) The strong second-order sufficient condition (3.44) holds.

If either point (i) or (ii) is satisfied, for µ ∈ V0 denote by (uµ, yµ) the unique local solution
of (Pµ) with ‖uµ − ū‖ ≤ ρ, and by (pµ, ηµ) the (unique) associated multipliers. Then (uµ, yµ)
has a neighboring structure to that of (ū, ȳ), and the mapping µ 7→ (uµ, yµ, pµ, ηµ) ∈ C0[0, T ]×
C1([0, T ]; Rn) ×C0([0, T ]; Rn∗) × C0[0, T ] is Lipschitz continuous on V0.

The above result implies that the solutions of the perturbed problems satisfy the quadratic
growth condition (3.45), and hence the no-gap sufficient condition (3.42) by Th. 3.9(ii). The
lemma below (proved at the end of section 3.6) shows that the strong second-order sufficient
condition (3.44) remains satisfied as well for the perturbed problems (this will be useful for
the analysis of the homotopy algorithm in section 3.9).

Lemma 3.12. Under assumptions (A2)-(A6), if either point (i) or (ii) of Th. 3.11 is satis-
fied, then the locally unique stationary point (uµ, yµ) of (Pµ) satisfies the strong second-order
sufficient condition (3.44), for µ close enough to µ0.

Remark 3.13. We show more precisely (see Lemma 3.26) that under assumptions (A2)-(A6)
and point (i) or (ii) of Th. 3.11, then the shooting parameters associated with (uµ, yµ) (initial
costate, jump parameters at entry times and all junction times, see the next section) are
Lipschitz continuous functions of µ.

Related results to Theorem 3.11, based on a shooting approach (see the next section) too,
are [93, Th. 8.3], where the existence of a locally unique local solution of (Pµ) having the
same structure as (ū, ȳ) was shown (but the uniqueness of the stationary point or the converse
implication “(i) ⇒ (ii)” are not discussed), and [19, Th. 4.3]2, where only the uniqueness of
stationary points satisfying some restrictions on the arc structure is argued. In addition, both
results assume the absence of touch points for state constraints of first-order. Here we are
able to show that (uµ, yµ) is locally the unique stationary point of (Pµ) (see Lemma 3.29)

2Theorem 2.34 of this thesis.
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thanks to the analysis done in section 3.3. As mentioned in the Introduction, this is difficult
to compare to [88, 89, 53] where an infinite dimensional approach was used, which required
weaker assumptions, e.g. (A4)-(A6) are not needed, so their results are more general than Th.
3.11, but the conclusions obtained are also weaker than those of Th. 3.11.

In section 3.7, we will provide the first-order expansion of the local optimal solution and
associated multipliers of the perturbed problem (see Theorem 3.30).

3.5 Alternative and Shooting Formulations

3.5.1 Alternative formulation of optimality conditions

In presence of pure state constraints, a reformulation of the optimality conditions is needed
to apply shooting methods. Our results are based on the following alternative formulation
of optimality conditions, see e.g. [29, 75, 68, 98, 19]. We use in this alternative formulation
another set of alternative multipliers, that we denote by (p1, η1), different from the alternative
multipliers (p1, η1) used in section 3.3. Whereas the latter are continuous, (p1, η1) have jumps
at entry points. The jumps of p1 at entry times τen, denoted by ν1

τen
, are part of the shooting

parameters used in the shooting algorithm.

Definition 3.14. A trajectory (u, y) is solution of the alternative formulation, if it has finitely
many junction times T and gµ(y(T )) < 0, if (u, y) ∈ PC0

T [0, T ]×PC1,0
T ([0, T ]; Rn) and if there

exist p1 ∈ PC1
T ([0, T ]; Rn∗), η1 ∈ PC1

T [0, T ], and alternative jump parameters ν1
Ten

and νTto ,
such that the following relations are satisfied, with the augmented Hamiltonian (3.8) (time
dependence is omitted):

ẏ = fµ(u, y) on [0, T ], y(0) = yµ0 (3.46)

−ṗ1 = H̃µ
y (u, y, p1, η1) on [0, T ] \ T (3.47)

0 = H̃µ
u (u, y, p1, η1) on [0, T ] \ T (3.48)

(gµ)(1)(u, y) = 0 on Ib (3.49)

η1(t) = 0 on [0, T ] \ Ib (3.50)

p1(T ) = φµy (y(T )) (3.51)

gµ(y(τen)) = 0, τen ∈ Ten (3.52)

gµ(y(τto)) = 0, τto ∈ Tto (3.53)

[p1(τen)] = −ν1
τen
gµy (y(τen)), τen ∈ Ten (3.54)

[p1(τex)] = 0, τex ∈ Tex (3.55)

[p1(τto)] = −ντtogµy (y(τto)), τto ∈ Tto. (3.56)

A solution of the alternative formulation satisfies the additional conditions, if the conditions
below hold:

gµ(y(t)) < 0 on [0, T ] \ (Ib ∪ Tto) (3.57)

η̇1(t) ≤ 0 on int Ib (3.58)

ν1
τen

= η1(τ
+
en), τen ∈ Ten ; η1(τ

−
ex) = 0, τex ∈ Tex (3.59)

ντto = 0 τ ∈ Tto. (3.60)

Proposition 3.15 (See e.g. [116, 75, 68]). Let (ū, ȳ) be a local solution of (P), satisfy-
ing (A2)-(A4). Then (ū, ȳ) is solution of alternative formulation (3.46)-(3.56), and satisfies
additional conditions (3.57)-(3.60).
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The following remarks comment on those optimality conditions and on the relations exist-
ing between the different sets of multipliers.

Remark 3.16. It can be shown (see [19, Prop. 2.10]3) that under assumptions (3.22) (resp.
(A2)) and (A3)-(A4), relations (3.46)-(3.60) characterize regular (α = 1) Pontryagin extremals
(resp. stationary points), and the (unique) classical multipliers dη ∈ M+[0, T ] and p ∈
BV ([0, T ]; Rn∗) of Def. 3.1 are given by (recall that we adopted the convention η(T +) = 0):

η(t) = −
∑

τ∈Ten

ν1
τ1[0,τ)(t) − η1(t

+), p(t) = p1(t) + η1(t)g
µ
y (y(t)), (3.61)

with 1[0,τ)(t) = 1 if 0 ≤ t < τ and zero otherwise. Equivalently, η is given by dη(t) = −η̇1(t)dt.
The classical multipliers (p, η) and alternative ones (p1, η1) can be recovered from each

other by (3.61) and (3.59). By (3.54)-(3.56) and additional conditions (3.59)-(3.60), we
have (p, η) ∈ PC1,0

T ([0, T ]; Rn∗) × PC1,0
T [0, T ]. It is also easy to see that, when (3.61) holds,

H̃µ(·, y, p1, η1) = Hµ(·, y, p), and hence, (3.20) is equivalent (with p̄1 and η̄1 the alternative
multipliers associated with ū) to:

H̃uu(ū(t), ȳ(t), p̄1(t
±), η̄1(t

±)) ≥ α, for all t ∈ [0, T ]. (3.62)

Remark 3.17. On [0, T ] \ T , the multipliers η1 and p1 in section 3.3 are related to p1 and η1

by the following relations:

η1(t) =
∑

τ∈Ten

ν1
τ1[0,τ)(t) + η1(t), p1(t) = p1(t) −

∑

τ∈Ten

ν1
τ1[0,τ)(t)g

µ
y (y(t)). (3.63)

Remark 3.18. By (3.58)-(3.59), the following necessary condition holds:

ν1
τen

≥ 0, τen ∈ Ten. (3.64)

Lemma 3.19. Let (u, y) be a trajectory of (Pµ) satisfying the alternative formulation. As-
sume that there exist α, β, ε > 0 such that (we denote here [u(t−), u(t+)] := {(1 − σ)u(t−) +
σu(t+) ; σ ∈ [0, 1]})

α ≤ H̃µ
uu(û, y(t), p1(t

±), η1(t
±)) for all û ∈ [u(t−), u(t+)] and all t ∈ [0, T ] (3.65)

β ≤ |(gµ)(1)u (û, y(t))| for all û ∈ [u(t−), u(t+)] and all t : dist{t; I(gµ(y))} ≤ ε. (3.66)

Then (3.59) is equivalent to the condition below

(gµ)(1)(u(τ−en), y(τen)) = 0, τen ∈ Ten ; (gµ)(1)(u(τ+
ex), y(τex)) = 0, τex ∈ Tex. (3.67)

Also (3.59) or (3.67) is equivalent to the continuity of the control at entry/exit points.

Proof. We recall here the proof (see [93] and [19, Prop. 2.15]4.) since the arguments will be
used later in Lemma 3.27. Since (gµ)(1)(u(τ+

en), y(τen)) = 0 = (gµ)(1)(u(τ−ex), y(τex)), by (3.66),
(3.67) is equivalent to the continuity of the control at entry and exit times. Now let τ ∈ Ten.
By (3.48) and (3.54),

H̃µ
u (u(τ−), y(τ), p1(τ

−), η1(τ
−)) = H̃µ

u (u(τ+), y(τ), p1(τ
+), η1(τ

+))

= H̃µ
u (u(τ+), y(τ), p1(τ

−), η1(τ
+) − ν1

τ ).

3Proposition 2.10 of this thesis.
4Proposition 2.15 of this thesis.
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If (3.59) holds, then we obtain (since η1(τ
−) = 0)

H̃µ
u (u(τ−), y(τ), p1(τ

−), η1(τ
−)) = H̃µ

u (u(τ+), y(τ), p1(τ
−), η1(τ

−)),

which implies by (3.65) that u(τ−) = u(τ+). Conversely, if (3.67) holds, i.e. if u is continuous
at τ , then we obtain

(η1(τ
+) − ν1

τ )(g
µ)(1)u (u(τ), y(τ)) = 0.

Since by (3.66), (gµ)
(1)
u (u, y) 6= 0, we obtain the result. Similar arguments hold at exit points.

Remark 3.20. By (3.56) and (3.60), (3.48) and hypothesis (3.65), we can show similarly that
a solution (u, y) of the alternative formulation and additional conditions satisfying (3.65)-
(3.66) is such that u is also continuous at touch points, and hence (u, y) ∈ PC 1,0

T [0, T ] ×
PC2,1

T ([0, T ]; Rn).

Remark 3.21. At a touch point τto, the function t 7→ gµ(y(t)) has a local isolated maximum,
and a continuous derivative at τto (due to the continuity of u), hence the condition below is
satisfied (compare to (3.67)):

(gµ)(1)(u(τto), y(τto)) = 0, τ ∈ Tto. (3.68)

The next lemma provides in particular a proof for Lemma 3.3.

Lemma 3.22. Let (u, y) be a trajectory of (Pµ) solution of the alternative formulation and
additional conditions. Assume that there exist α, β, ε > 0 such that (3.65) and (3.66) holds.
Then, for all τen ∈ Ten and τex ∈ Tex,

d2

dt2
gµ(y(t))|t=τ−en

< 0 iff η̇1(τ
+
en) < 0 ;

d2

dt2
gµ(y(t))|t=τ+

ex
< 0 iff η̇1(τ

−
ex) < 0. (3.69)

Proof. Let τen ∈ Ten. We omit in the proof the superscript µ on H̃, g and f . Derivation
w.r.t. time of the relation (3.48) on the left and right neighborhood of τen yields (omitting
the dependence in t and arguments (u, y, p1, η1) of H̃):

H̃uuu̇+ H̃uyf(u, y) − H̃yfu(u, y) + g(1)
u (u, y)η̇1 = 0. (3.70)

Recall that g(1)(u, y) = gy(y)f(u, y). By Lemma 3.19 and (3.59), u is continuous, so it follows
that, taking the jumps at time τen (omitting again arguments and setting ν1 := ν1

τen
):

[H̃uu] = [p1]fuu + [η1]g
(1)
uu = −ν1gyfuu + ν1g(1)

uu = 0,

[H̃uy]f − [H̃y]fu = ([p1]fuy + [η1]g
(1)
uy )f − ([p1]fy + [η1]g

(1)
y )fu

= (−ν1gyfuy + ν1g(1)
uy )f − (−ν1gyfy + ν1g(1)

y )fu = 0.

Taking then the jump in (3.70) at time τen, the above relations imply that

H̃uu[u̇] + g(1)
u [η̇1] = 0. (3.71)

Since u, y, p1 and η1 are all continuous at exit times by Lemma 3.19, (3.71) holds as well at

exit times. Since the function d2

dt2
g(y(t)) = g(2)(u̇, u, y), with g(2) given by (3.5), vanishes on

(τen, τex), and (u, y) is continuous, we have by (3.66) that g(2)(u̇, u, y) is discontinuous at τ iff
u̇ is, and hence by (3.71) and (3.65)-(3.66) iff η̇1 is. Since η̇1 = 0 locally outside (τen, τex), and
η̇1 ≤ 0 on (τen, τex) by (3.58), the result follows.
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Remark 3.23. We know by [19, Lemma 3.6]5 that we can express the quadratic cost J ,
using (p̄1, η̄1) defined by (3.61) instead of (p̄, η̄), over the space of linearized trajectories (v, z)
satisfying (3.38), by J (v, z) = J1(v, z), with

J1(v, z) :=

∫ T

0
H̃(u,y),(u,y)(ū, ȳ, p̄1, η̄1)((v, z), (v, z))dt

+ z(T )∗φyy(ȳ(T ))z(T ) +
∑

τ∈T̄en

ν̄1
τ z(τ)

∗gyy(ȳ(τ))z(τ),
(3.72)

where H̃ is the augmented Hamiltonian (3.8), and the constraint (3.39) is equivalent to

gy(ȳ(τ))z(τ) = 0 τ ∈ T̄en (3.73)

g
(1)
(u,y)(ū(t), ȳ(t))(v(t), z(t)) = 0 t ∈ Īb. (3.74)

Remark 3.24. The second-order sufficient condition (3.44) used in the stability and sensitivity
analysis, is equivalent by Rem. 3.23 to

J1(v, z) > 0, for all (v, z) ∈ V × Z, (v, z) 6= 0, satisfying (3.38) and (3.73)-(3.74). (3.75)

This condition is weaker than the one in [93], where the entry-point constraint (3.73) is omitted.
The authors present a numerical method, based on Riccati equations, allowing to check the
coercivity of the quadratic form J1 over the subspace defined by (3.38) and (3.74), which is
of interest in applications, while the verification of (3.44) or (3.75) in practice remains open.

3.5.2 Shooting formulation with nonessential touch points

By (A2)-(A4), applying the implicit function theorem to (3.48)-(3.50), we may express the
algebraic variables (u, η1) on each arc as C1 functions of the differential variables (y, p1).
Denote by Fµ

b and Fµ
i the flows on (y, p1) obtained respectively on boundary and interior

arcs, by eliminating the algebraic variables, and write (y, p1)(t) = (y(t), p1(t)). On each arc
(t1, t2), we have that

(y, p1)(t
−
2 ) = Fµ

a ((y, p1)(t
+
1 ), t2 − t1) (3.76)

where Fµ
a equals Fµ

b for a boundary arc, and Fµ
i for an interior arc. So we can (and this is

precisely the idea of shooting methods) describe the alternative optimality system (3.46)-(3.56)
as a sequence of applications of mappings Fµ

b and Fµ
i , combined with junction conditions. Note

that the mappings (x, t1, t2) → Fµ
a (x, t2 − t1), a = i, b, are (locally) C1 w.r.t. all arguments,

and allow in particular t2 − t1 to be nonpositive.

Now let us view a touch point as a boundary arc of zero length. This makes sense since,
as we will see later, under a small perturbation, a touch point may switch into a boundary
arc. So we have an entry point and an exit point, τen and τex, whose common value is the one
of the touch point. The jump ν1

τen
at entry point τen equals ντto (i.e., zero). There is a zero

jump of p1 at the entry (and exit) time τen.

Assume that we have Nba boundary arcs and Nto touch points. Let N := Nba +Nto. We
have now N entry and N exit points. Denote by ten (resp. tex) the N dimensional vector of
entry (resp. exit) points, taken in the chronological order, and ν 1

i := ν1
ten
i

. We use the notation

5Lemma 2.26 of this thesis.
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tex0 := 0 and tenN+1 := T . We may rewrite the alternative formulation as follows, taking into
account the continuity of state and of costate at exit points:

(y, p1)(0) = (yµ0 , p0) (3.77)

(y, p1)(t
en−
i ) = Fµ

i ((y, p1)(t
ex
i−1), t

en
i − texi−1), i = 1, . . . , N + 1, (3.78)

(y, p1)(t
ex
i ) = Fµ

b ((y, p1)(t
en+
i ), texi − teni ), i = 1, . . . , N, (3.79)

[p1(t
en
i )] = −ν1

i g
µ
y (y(teni )), i = 1, . . . , N, (3.80)

p1(T ) = φµy (y(T )) (3.81)

gµ(y(teni )) = 0, i = 1, . . . , N, (3.82)

where p0 ∈ R
n∗ denotes the initial value of the costate.

We come now to the definition of the shooting mapping. Let Θ := R
n×R

N ×R
N ×R

N be
the space of shooting parameters, of dimension N̄ := n+3N . A vector of shooting parameters
is denoted by

θ = (p∗0, ν
1, ten, tex) ∈ Θ. (3.83)

The shooting mapping F is defined over a neighborhood Vθ × Vµ of (θ0, µ0) in R
N̄ ×M0 into

R
N̄ , by

F (θ, µ) =









p1(T ) − φµy (y(T ))

gµ(y(ten))

(gµ)(1)(u(ten−), y(ten))

(gµ)(1)(u(tex+), y(tex))









, (3.84)

where the values of (y, p1, u) at times ten±i , tex±i , T are given by (3.77)-(3.80), and where we
used e.g. the notation

(gµ)(1)(u(ten−), y(ten)) :=
(

(gµ)(1)(u(ten−i ), y(teni ))
)

1≤i≤N
∈ R

N .

Being a composition of C1 mappings, the shooting mapping is itself locally of class C 1.

Let (ū, ȳ) be a stationary point of (P), satisfying (A2)-(A4), with finite set of junction times
T̄ . Let Iba and Ito denote the (disjoint) sets of index in {1, . . . , N} corresponding respectively
to boundary arcs and touch points of the trajectory (ū, ȳ). Split F into two components:

F (θ, µ) = (Φ(θ, µ)∗,Ψ(θ, µ)∗)∗,

where Ψ corresponds to the components gµ(y(teni )) for i ∈ Ito, denoted by the vector gµ(y(tento )) ∈
R
Nto. Denote similarly by ν1

to the vector of components ν1
i , for i ∈ Ito. Consider the following

nonlinear complementarity problem, for µ close to µ0:

Find θ ∈ Θ such that Φ(θ, µ) = 0 and Ψ(θ, µ) ∈ N(θ), (3.85)

where

N(θ) :=

{
R
Nto
− ∩ (ν1

to)
⊥ if ν1

to ∈ R
Nto
+ ,

∅ otherwise.
(3.86)

Note that by (3.81)-(3.82) and (3.67)-(3.68), θ0 := (p̄1(0)
∗, ν̄1, t̄en, t̄ex) is solution of (3.85)

for µ = µ0, with t̄en and t̄ex the vectors of times in T̄en ∪ T̄to and T̄ex ∪ T̄to respectively, in
increasing order, ν̄1

i = ν̄1
t̄en
i

if i ∈ Iba, and ν̄1
i = 0 if i ∈ Ito.
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It should be underlined that we allow, in formulation of problem (3.85), entry times to
be greater than exit times. However, we will check in the next section, after having shown
that (3.85) has a locally unique solution, that the constraint ν1

to ≥ 0 in (3.85) (compare with
(3.64)) is sufficient, with assumption (A6), to ensure locally for µ in the neighborhood of µ0

that the solution of (3.85) is such that teni ≤ texi for all i ∈ Ito. In addition, we will show
that by (3.26), strict complementarity η̇1 < 0 holds on the boundary arc (teni , t

ex
i ) whenever

teni < texi .
As we will see, the formulation (3.85) is strongly related with the associated linear-

quadratic tangent problem min(v,z)∈V×Z J1(v, z) subject to the equality constraints (3.38)
and (3.73)-(3.74), and the inequality constraint (3.40).

Remark 3.25. When the state constraint is of higher order, under small perturbations, a
nonessential touch point satisfying (3.26) cannot switch into a boundary arc, i.e. it either
becomes inactive, remains nonessential, or becomes an essential touch point (with a nonzero
jump of the costate), see [19].

3.6 Stability Analysis

In problem (3.85), there are inequality constraints that cannot be reduced to equality ones
since strict complementarity does not hold at touch points, and those inequality constraints
introduce nonsmoothness. Therefore we cannot apply the classical implicit function Theorem
as it is done in [93]. Our stability analysis uses the notion of strong regularity, introduced by
Robinson in [121], applied to the complementarity problem (3.85).

The point θ0 solution of (3.85) for µ = µ0 is strongly regular, if there exist neighborhoods
(V ′
θ , Vδ) in R

N̄ × R
N̄ of (θ0, 0), such that, for all δ ∈ Vδ, δ = (δ1, δ2) ∈ R

N̄−Nto × R
Nto, there

exists in V ′
θ a unique solution θ of:

{

DθΦ(θ0, µ0)(θ − θ0) − δ1 = 0

DθΨ(θ0, µ0)(θ − θ0) − δ2 ∈ N(θ)
(3.87)

and the mapping Ξ : δ → θ(δ) is Lipschitz continuous over Vδ.
If θ0 is strongly regular, then by [121], there exist neighborhoods (Vθ, Vµ) of (θ0, µ0), such

that for each µ ∈ Vµ, (3.85) has in Vθ a unique solution θµ,

θµ = (pµ∗0 , νµ,1, tµ,en, tµ,ex), (3.88)

and there exists κ > 0 such that for all µ, µ′ ∈ Vµ,

|θµ − θµ
′ | ≤ κ‖µ− µ′‖. (3.89)

In addition, the following expansion of θµ holds (see e.g. [24], p.413 equation (5.41)):

θµ = Ξ(−DµF (θ0, µ0)(µ− µ0)) + o(‖µ− µ0‖). (3.90)

Lemma 3.26. Under assumptions (A2)-(A6), (3.44) implies that θ0 is a strongly regular
solution of (3.85) for µ = µ0. More precisely, given δ = (δ1, δ2) ∈ R

N̄−Nto × R
Nto, δ1 =

(aT , bba, c
en, cex) ∈ R

n × R
Nba × R

N × R
N , δ2 = bto, there exists a unique ω ∈ Θ, ω =

(π∗0, γ
1, σen, σex), solution of the following relation, equivalent to (3.87) with ω = θ − θ0:

{

DθΦ(θ0, µ0)ω − δ1 = 0

DθΨ(θ0, µ0)ω − δ2 ∈ N(ω),
(3.91)
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and ω is given as follows. Let (vδ, zδ, πδ, ζδ , λ
1
δ) be the unique solution and associated multi-

pliers of the following linear-quadratic problem (recall that J1 is given by (3.72))

(Pδ) min
(v,z)∈V×Z

1
2J1(v, z) + a∗T z(T ) (3.92)

subject to (3.38), (3.74),

gy(ȳ(t̄
en
i ))z(t̄eni ) = bi, i ∈ Iba (3.93)

gy(ȳ(t̄
en
i ))z(t̄eni ) ≤ bi, i ∈ Ito, (3.94)

where the multipliers πδ, ζδ and λ1
δ are associated, respectively, with constraint (3.38), (3.74)

and (3.93)-(3.94). Then ω is given by: π0 = πδ(0), γ
1 = λ1

δ , and

σeni =
ceni − g

(1)
(u,y)

(ū(t̄eni ), ȳ(t̄eni ))(vδ(t̄
en−
i ), zδ(t̄

en
i ))

d
dtg

(1)(ū, ȳ)|t=t̄en−

i

, i = 1, . . . , N, (3.95)

σexi =
cexi − g

(1)
(u,y)(ū(t̄exi ), ȳ(t̄exi ))(vδ(t̄

ex+
i ), zδ(t̄

ex
i ))

d
dtg

(1)(ū, ȳ)|t=t̄ex+
i

, i = 1, . . . , N. (3.96)

Proof. The proof uses the block-decoupling property of the Jacobian of the shooting mapping
w.r.t. junction times for first-order state constraints established in [93, Lemma 4.2]. See also
[19, Lemma 4.5]6. Let us first explicit the relation (3.91). Let (v, z, π, ζ) be the linearized con-
trol, state, costate and state constraint multiplier solution of the linearized shooting equations
(3.77)-(3.80):

(z, π1)(0) = (0, π0) (3.97)

(z, π1)(t̄
en−
i ) = DFµ0

i ((ȳ, p̄1)(t̄
ex
i−1), t̄

en
i − t̄exi−1)(z, π1)(t̄

ex
i−1), i = 1, . . . , N + 1, (3.98)

(z, π1)(t̄
ex
i ) = DFµ0

b ((ȳ, p̄1)(t̄
en+
i ), t̄exi − t̄eni )(z, π1)(t̄

en+
i ), i = 1, . . . , N, (3.99)

[π1(t̄
en
i )] = −ν̄1

i gyy(ȳ(t̄
en
i ))z(t̄eni ) − γ1

i gy(ȳ(t̄
en
i )), i = 1, . . . , N. (3.100)

Then (3.91) writes

π1(T ) = φyy(ȳ(T ))z(T ) + aT (3.101)

gy(ȳ(t̄
en
i ))z(t̄eni ) = bi, i ∈ Iba (3.102)

gy(ȳ(t̄
en
i ))z(t̄eni ) ≤ bi, γ1

i ≥ 0, (gy(ȳ(t̄
en
i ))z(t̄eni ) − bi)γ

1
i = 0, i ∈ Ito (3.103)

Dg(1)(ū(t̄eni ), ȳ(t̄eni ))(v(t̄en−i ), z(t̄eni )) + σeni
d

dt
g(1)(ū, ȳ)|t=t̄en−

i
= 0, i = 1, . . . , N (3.104)

Dg(1)(ū(t̄exi ), ȳ(t̄exi ))(v(t̄ex+i ), z(t̄exi )) + σexi
d

dt
g(1)(ū, ȳ)|t=t̄ex+

i
= 0, i = 1, . . . , N. (3.105)

We recognize that (3.97)-(3.103) is the first-order optimality condition of problem (Pδ), with
γ1
i the multipliers associated with the constraints (3.93) and (3.94) for i in respectively Iba

and Ito. By (A2), we can show that the quadratic form J1 is a Legendre form over the space of
linearized trajectories (v, z) satisfying (3.38). Therefore, (3.44), equivalent to (3.75) by Rem.
3.24, implies that J1 is uniformly positive over the linear space of (v, z) ∈ V × Z satisfying
(3.38) and (3.73)-(3.74) (i.e. there exists α > 0 such that J1(v, z) ≥ α(‖v‖2

V + ‖z‖2
Z ) for all

(v, z) ∈ V × Z satisfying (3.38) and (3.73)-(3.74)). It follows then that problem (P δ) has, for
all δ ∈ R

N̄ , a unique solution and multipliers (vδ, zδ , πδ, ζδ, λ
1
δ) that are Lipschitz continuous

w.r.t. δ. Thus (3.91) has a unique solution, and by (3.104)-(3.105) and (A6) and (3.27), the
variations of junction times σeni and σexi are given by (3.95)-(3.96).

6Lemma 2.36 of this thesis.
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Lemma 3.27. Under assumptions (A2)-(A6) and (3.44), there exists a neighborhood Vµ of
µ0, such that the locally unique solution θµ of (3.85) given by (3.88) satisfies:

tµ,exi ≥ tµ,eni , for all i ∈ Ito (3.106)

and
tµ,exi = tµ,eni ⇔ νµ,1i = 0, i ∈ Ito. (3.107)

In particular, the solution (uµ, yµ, pµ1 , η
µ
1 ) of (3.77)-(3.80) with θ = θµ is well-defined over

[0, T ], and there exists a constant γ > 0, such that for all i ∈ Ito and all µ ∈ Vµ:

η̇µ1 (t) < −γ on [tµ,eni , tµ,exi ] whenever tµ,exi > tµ,eni . (3.108)

Proof. Let i ∈ Ito. By strong regularity (Lemma 3.26), we have that

tµ,exi − tµ,eni = O(‖µ− µ0‖), νµ,1i = O(‖µ− µ0‖). (3.109)

Denote by (u, y, p1, η1) the solution of (3.77)-(3.80) for θ = θµ. Note that this is well-defined
on each arc, but not a priori as function of time, since it may take several values for t ∈
((tµ,eni , tµ,exi )) if tµ,eni > tµ,exi (where ((a, b)) stands for (a, b) if a ≤ b and (b, a) otherwise). We
will see that this last case cannot occur, i.e. (3.106) holds (and clearly also holds by continuity
with a strict inequality for i ∈ Iba), and is satisfied with equality iff νµ,1i = 0.

Note first that by (A2)-(A3) and the strong regularity property, for ‖µ−µ0‖ small enough,
(3.65)-(3.66) are satisfied on each arc. Suppose first that tµ,exi = tµ,eni . Then (u, y, η1, p1)
is defined as function of time without ambiguity in the neighborhood of tµ,eni (the algebraic
variables are given by the dynamics on interior arcs). By (3.77)-(3.80), there is a jump of p1 at
entry time and no jump at exit time, and thus (y, p1)(t

µ,en+
i ) = (y, p1)(t

µ,ex−
i ) = (y, p1)(t

µ,ex+
i ).

By definition of the problem (3.85), we have

(gµ)(1)(u(tµ,en−i ), y(tµ,eni )) = (gµ)(1)(u(tµ,ex+i ), y(tµ,exi )) = 0,

and hence, since tµ,exi = tµ,eni , (3.66) implies that u is continuous at time tµ,eni . We deduce
that:

0 = [Hµ
u (u(tµ,eni ), y(tµ,eni ), p1(t

µ,en
i ))] = −νµ,1i (gµ)(1)u (u(tµ,eni ), y(tµ,eni )).

Since (gµ)
(1)
u (u(tµ,eni ), y(tµ,eni )) 6= 0 by (3.66), it follows that νµ,1i = 0. This proves the “⇒”

implication in (3.107).
Suppose now that tµ,exi 6= tµ,eni . In order to avoid any confusion, denote the solution

of (3.77)-(3.80) for θ = θµ by (u−, y−, p−1 , η
−
1 ) on the boundary arc ((tµ,eni , tµ,exi )), and by

(u+, y+, p+
1 , η

+
1 ) on the succeeding interior arc (tµ,exi , tµ,eni+1 ). Note that the limits of these

functions and of their time derivative at endpoints of the interval where they are defined do
exist, and are continuous w.r.t. µ (this follows from the implicit function Theorem applied by
(3.65)-(3.66) on each arc of the trajectory). This holds in particular for u̇µ. Here the jump
has the following signification, for instance [u(tµ,exi )] := u+(tµ,exi ) − u−(tµ,exi ).

Since (3.65)-(3.66) are satisfied, we can show using the same local arguments as in Lemma
3.19 that

(u+, y+, p+
1 , η

+
1 )(tµ,exi ) = (u−, y−, p−1 , η

−
1 )(tµ,exi ), (3.110)

and we denote this common value by (u(tµ,exi ), y(tµ,exi ), p1(t
µ,ex
i ), η1(t

µ,ex
i )). By (A6), there

exists by continuity a constant c > 0 such that, for µ close enough to µ0,

lim
t→tµ,ex+

i

d

dt
(gµ)(1)(u+(t), y+(t)) < −c. (3.111)
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On the other hand, we have on the boundary arc ((tµ,eni , tµ,exi )):

lim
t→tµ,ex

i

d

dt
(gµ)(1)(u−(t), y−(t)) = 0. (3.112)

Since d
dt (g

µ)(1)(u±(t), y±(t)) = (gµ)(2)(u̇±, u±, y±) with (gµ)(2) given by (3.5), the jump of u̇
at tµ,exi satisfies

(gµ)(1)u (u(tµ,exi ), y(tµ,exi ))[u̇(tµ,exi )] = [
d

dt
(gµ)(1)(u(t), y(t))|t=tµ,ex

i
] < −c, (3.113)

and hence, u̇−(tµ,exi ) 6= u̇+(tµ,exi ). By time-derivation of (3.48) on the boundary arc ((tµ,eni , tµ,exi ))
of nonzero length and on the interior arc (tµ,exi , tµ,eni+1 ), we obtain (omitting the arguments
(u±(t), y±(t), p±1 (t), η±1 (t))):

H̃µ
uuu̇

± + H̃µ
yuf

µ − H̃µ
y f

µ
u + (gµ)(1)u η̇±1 = 0. (3.114)

Hence, taking the jump at time tµ,exi gives, since (u, y, p1, η1) is continuous at tµ,exi by (3.110):

H̃µ
uu(u, y, p1, η1)(t

µ,ex
i )[u̇(tµ,exi )] + (gµ)(1)u (u, y)(tµ,exi )[η̇1(t

µ,ex
i )] = 0.

Since η̇+
1 (tµ,exi ) = 0, by (3.113) and (3.65)-(3.66) there exists by continuity a constant C > 0

such that, for ‖µ− µ0‖ small enough,

η̇−1 (tµ,exi ) = −[η̇1(t
µ,ex
i )] =

H̃µ
uu(u, y, p1, η1)(t

µ,ex
i )

((gµ)
(1)
u (u, y)(tµ,exi ))2

(gµ)(1)u (u, y)(tµ,exi )[u̇(tµ,exi )] < −C. (3.115)

By (3.114) and time derivation of (3.49), we see that η̇−1 (t) is given by a Lipschitz continuous
function of time on ((tµ,eni , tµ,exi )), uniformly w.r.t. µ, so there exists m > 0 independent of µ,
such that

η̇−1 (t) ≤ −C +m|tµ,exi − tµ,eni |, t ∈ ((tµ,eni , tµ,exi )). (3.116)

In view of (3.109), this implies that η̇−1 is negative on ((tµ,eni , tµ,exi )) for sufficiently small
‖µ − µ0‖, and consequently, η−1 (tµ,eni ) = η−1 (tµ,eni ) − η−1 (tµ,exi ) is nonzero and has the sign of

tµ,exi − tµ,eni . By similar arguments to Lemma 3.19, we can show that η−1 (tµ,eni ) = νµ,1i , and

since νµ,1i ≥ 0 by definition of the problem (3.85), it follows that tµ,exi > tµ,eni necessarily

holds whenever tµ,eni 6= tµ,exi , which proves (3.106). In addition, (3.116) implies that νµ,1i =
η1(t

µ,en+
i ) > 0 for µ close enough to µ0, which show by contraposition the “⇐” implication

in (3.107). Finally, relation (3.108) follows from (3.115) and (3.109), which completes the
proof.

Lemma 3.28. Under assumptions (A2)-(A6) and (3.44), the solution (uµ, yµ, pµ1 , η
µ
1 ) of (3.77)-

(3.80) for θ = θµ, where θµ is solution of (3.85), is, for ‖µ − µ0‖ small enough, such that
(uµ, yµ) is a stationary point of (Pµ), with classical multipliers (pµ, ηµ) given by (3.61), and
the mapping µ 7→ (uµ, yµ, pµ, ηµ) ∈ C0[0, T ] × C1([0, T ]; Rn) × C0([0, T ]; Rn∗) × C0[0, T ] is
Lipschitz continuous on a neighborhood of µ0.

Proof. By Lemma 3.27, we see that (uµ, yµ, pµ1 , η
µ
1 ) is well-defined over [0, T ], and by definition

of the problem (3.85), satisfies the alternative formulation (3.46)-(3.56). By (A2)-(A3), (3.65)-
(3.66) hold for ‖µ − µ0‖ small enough, so Lemma 3.19 implies that the additional condition
(3.59) is satisfied, and that uµ is continuous on [0, T ], as well as ηµ and pµ given by (3.61). In
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view of Rem. 3.16, in order to show that (uµ, yµ) is a stationary point of (Pµ) it remains to
show that the additional conditions (3.57), (3.58) and (3.60) are satisfied. By (3.65)-(3.66),
the implicit function Theorem applied on each arc shows that u̇µ(tµ,en−i ) and u̇µ(tµ,ex+i ) are
continuous w.r.t. µ, for all i = 1, . . . , N , as well as η̇µ1 (tµ,en+

i ) and η̇µ1 (tµ,ex−i ) for i ∈ Iba. So
let ‖µ− µ0‖ be so small that, by (3.25)-(3.27) and (3.6),

(i)
d2

dt2
gµ(yµ(t))|t=tµ,en−

i ,tµ,ex+
i

< 0, i = 1, . . . , N, (ii) η̇µ1 (t) ≥ β

2
on (tµ,eni , tµ,exi ), i ∈ Iba.

(3.117)

Let i ∈ Nto. If νµ,1i = 0, then by Lemma 3.27, tµ,eni = tµ,exi , uµ and its time derivative
are continuous at tµ,eni , and (gµ)(1)(uµ(tµ,eni ), yµ(tµ,eni )) = 0. By (A6) and standard continuity
arguments, there exists ε > 0 such that gµ(yµ(·)) attains its maximum over (t̄eni − ε, t̄eni + ε)
at the unique point tµ,eni . Therefore if gµ(yµ(tµ,eni )) < 0, the state constraint is locally not
active. If gµ(yµ(tµ,eni )) = 0, then tµ,eni is a touch point of the perturbed problem, and (3.60)

holds by (3.107). If νµ,1i > 0, then by Lemma 3.27, tµ,eni < tµ,exi and we have a boundary
arc. By (3.108), additional condition (3.58) holds on this boundary arc. If i ∈ Iba, then
(3.58) holds on the boundary arc (tµ,eni , tµ,exi ) by (3.117)(ii). Finally, (3.57) holds near the
junction points by (3.117)(i), and outside a small neighborhood of contact points, we obtain
gµ(yµ) < 0 by a standard compactness argument. Hence (uµ, yµ) is a stationary point, with
classical multipliers (pµ, ηµ) given by (3.61).

Lipschitz continuity of the mapping µ 7→ (uµ, yµ, pµ, ηµ) follows from Lipschitz continuity
of the mapping µ 7→ θµ by strong regularity (Lemma 3.26), Lipschitz continuity of (θ, µ) 7→
(u, y, p, η)|k, where (u, y, p, η)|k denotes the restriction of the solution of (3.77)-(3.80) and
(3.61) to “arc” k (possibly a singleton), for all k = 1, . . . , 2N + 1, and continuity of uµ, ẏµ, pµ

and ηµ on [0, T ].

Thanks to Th. 3.4, we can show that (uµ, yµ) is the locally unique stationary point of (Pµ).

Lemma 3.29. Under assumptions (A2)-(A6) and (3.44), there exist a L∞ neighborhood Vu
of ū and a neighborhood Vµ of µ0, such that for all µ ∈ Vµ, (uµ, yµ) is the locally unique
stationary point of (Pµ) with u ∈ Vu.

Proof. Let (u, y) be a stationary point of (Pµ) with (u, µ) in the neighborhood of (ū, µ0). By
Th. 3.4, (u, y) satisfies (S1)-(S3), and therefore has finitely many junction times, so it makes
sense to speak of the finite-dimensional vector of “shooting parameters” θ (initial costate, jump
parameters at entry times, and junction times) such that (u, y) is solution of the alternative
formulation (Def. 3.14). Now construct its augmented set of shooting parameters θ̂ as follows.
For all i ∈ Ito, if the state constraint is not active on Ωδ

i , add to the set of shooting parameters
θ the (unique by (A6)) time in Ωδ

i where gµ(y) attains its maximum over Ωδ
i , duplicate all

such times as well as touch points, add a zero jump parameter for each of them, and obtain
then a θ̂ ∈ Θ such that θ̂ is solution of (3.85), and (u, y) is the trajectory associated with θ̂.

Let us show that this augmented set of shooting parameters θ̂ is arbitrarily close to θ0 when
‖µ− µ0‖ and ‖u − ū‖∞ are small enough. Indeed, the convergence of the initial costate is a
consequence of Rem. 3.7. For i ∈ Iba, since we know by Th. 3.4 that Ωδ

i∩I(gµ(y)) is an interval
[τµen,i, τ

µ
ex,i], letting δ → 0, we obtain that t̄eni ≤ lim infµ→µ0 τ

µ
en,i and t̄exi ≥ lim supµ→µ0

τµex,i.
The converse inequalities t̄eni ≥ lim supµ→µ0

τµen,i and t̄exi ≤ lim infµ→µ0 τ
µ
ex,i are obtained as

follows. Assume e.g. by contradiction that t̄eni < lim supµ→µ0
τµen,i. Then there exist δ > 0,

a stable extension (Pµ), a sequence µn → µ0, and a stationary point (un, yn) of (Pµn), with
multipliers (pn, ηn), such that un → ū in L∞ and τµn

en,i ≥ t̄eni + δ for all n. Let ϕ be a C∞
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function with support in [t̄eni , t̄
en
i + δ] and positive on (t̄eni , t̄

en
i + δ). Then

∫ T
0 ϕ(t)dηn(t) = 0,

for all n. But by (A5),
∫ T
0 ϕ(t)dη̄(t) > 0, which contradicts the second assertion in Lemma

3.6. This achieves to show the convergence of entry/exit points for i ∈ Iba. Letting δ → 0 in
(S3), we obtain similarly the convergence of touch points and entry/exit points of boundary
arcs to the common value t̄eni , for all i ∈ Ito. The convergence of nonactive local isolated
maxima of gµ(y) in Ωδ

i when i ∈ Ito, is obtained by classical arguments, since (3.26) holds and
locally on Ωδ

i , the second-order derivative (3.6) is continuous on interior arcs since u and u̇
are (indeed, for ‖u − ū‖∞ and ‖µ − µ0‖ small enough, Hµ

uu(u, y, p) ≥ α/2 > 0 by (A2) and
Rem. 3.7), so that gµ(y) belongs to a C2 neighborhood of gµ0(ȳ). Finally, the convergence of
jump parameters at entry times follows from assertion (4) in Lemma 3.6, since η1 and η1 are
related by (3.63), and η1 satisfies (3.50) and (3.59).

Hence if (µ, u) is close enough to (µ0, ū), the augmented set of shooting parameters θ̂
belongs to the neighborhood Vθ of θ0, on which (3.85) has a unique solution θµ by Lemma
3.26, and (u, y) is the (unique) trajectory associated with θ̂. Consequently, θ̂ = θµ and
(u, y) = (uµ, yµ) is the unique stationary point of (Pµ) with (u, µ) in the neighborhood of
(ū, µ0).

Now we can prove the main result. Under assumptions (A2)-(A6) and point (ii) of Th.
3.11, for µ in the neighborhood of µ0 and v ∈ L2, denote by zµv the unique solution in Z of
the linearized state equation

żµv = fµu (uµ, yµ)v + fµy (uµ, yµ)zµv a.e. on [0, T ], zµv (0) = 0 (3.118)

and by Qµ the quadratic form over L2 defined by

Qµ(v) = J µ(v, zµv ) (3.119)

where J µ is defined by (3.37) for (Pµ) and its stationary point and multipliers (uµ, yµ, pµ, ηµ).

Proof of Theorem 3.11. By Lemmas 3.26-3.29, to achieve the proof of (ii) ⇒ (i), it remains
to show that uµ satisfies the uniform quadratic growth condition. The arguments used are
similar to those in the proof of [19, Th. 4.3]7. We argue by contradiction. Assume that the
uniform quadratic growth does not hold. Then there exist a sequence µn converging to µ0 and
a sequence un → ū in L∞ such that for all n, Gµn(un) ∈ K and

Jµn(un) ≤ Jµn(uµn) + o(‖un − uµn‖2
2). (3.120)

Introducing the Lagrangian of (3.11) defined by Lµ(u, η) := Jµ(u) + 〈η,Gµ(u)〉, with 〈·, ·〉 the

duality product in M[0, T ] × C0[0, T ] defined by 〈η, x〉 =
∫ T
0 x(t)dη(t), we obtain that

Lµn(un, η
µn) ≤ Lµn(uµn , ηµn) + o(‖un − uµn‖2

2).

Set εn := ‖un − uµn‖2 → 0 and vn := (un − uµn)/εn. A second-order expansion of the
Lagrangian shows that

Lµn(un, η
µn) = Lµn(uµn , ηµn) + ε2nQ

µn(vn) + o(ε2n),

where Qµn is defined by (3.119). It follows then that Qµn(vn) ≤ o(1). Since (vn) is bounded
in V = L2, we may assume that it converges weakly to some v̄ ∈ L2. In view of the compact

7Theorem 2.34 of this thesis.
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inclusion of H1(0, T ) in C0[0, T ], the associated linearized state zn := zµn
vn defined by (3.118)

converges uniformly to z̄ := zµ0
v̄ . We may write that

Qµn(vn) = Qµ0(vn) +Qµn(vn) −Qµ0(vn),

and using that ‖vn‖2 is bounded it is not difficult to check that Qµn(vn) − Qµ0(vn) → 0.
Therefore by weak lower-semicontinuity of the Legendre form Q = Qµ0 by (3.20), we obtain
that

J (v̄, z̄) = Q(v̄) ≤ lim inf
n→+∞

Q(vn) ≤ lim sup
n→+∞

Q(vn) ≤ 0. (3.121)

Moreover, v̄ and z̄ satisfy (3.39). Indeed, since Gµn(un) ∈ K, we have that gµn
y (yµn)zn +

rn ≤ 0 on I(gµn(yµn)), where rn satisfies ‖rn‖∞ = O(εn). Since d
dtg

µn
y (yµn(t))zn(t) =

(gµn
u )(1)(uµn , yµn)vn + (gµn

y )(1)(uµn , yµn)zn, it follows from Cauchy-Schwarz inequality that
the functions (of time) gµn

y (yµn)zn are uniformly Hölder continuous. Therefore, there exists a
constant C > 0 such that, for all large enough n, using Lemma 3.26,

sup
t∈∪N

i=1[t̄en
i ,t̄ex

i ]

gµn
y (yµn(t))zn(t) ≤ O(εn) + C

√

max
i=1,...,N

{|tµn ,en
i − t̄eni |, |tµn ,ex

i − t̄exi |} = o(1).

(3.122)
Since gµn

y (yµn)zn → gy(ȳ)z̄ uniformly, it follows that gy(ȳ)z̄ ≤ 0 on ∪Ni=1[t̄
en
i , t̄

ex
i ]. In ad-

dition, by (3.120), we have that 〈ηµn , gµn
y (yµn)zn〉 = −DJµn(uµn)vn ≥ O(εn). Therefore,

〈η̄, gy(ȳ)z̄〉 ≥ 0, which implies finally by (A5) that gy(ȳ)z̄ = 0 on ∪Ni=1[t̄
en
i , t̄

ex
i ], i.e. (3.39)

holds. Thus (3.44) and (3.121) imply that v̄ = 0. But then Q(vn) → Q(v̄), and hence, by the
property of Legendre forms, vn → v̄ strongly, contradicting that ‖vn‖2 = 1 for all n.

To prove the converse implication, we construct a perturbation of the constraint gµ, so
that (nonessential) touch points becomes inactive on the perturbed problem (P µ), and (ū, ȳ)
is a stationary point of (Pµ). This is where we need nonautonomous perturbations. Let ϕ
be a C∞ function with support in [−1, 1] and positive on (−1, 1). Set µ0 = 0 and gµ(y) :=
g(y) −∑τ∈T̄to

µ5ϕ((yn − τ)/µ) for µ 6= 0 (recall that we assume (3.4)). Then (`, φ, f, gµ, y0)
is a stable extension of (P), (ū, ȳ) is a stationary point of (Pµ) for all |µ| small enough, and
gµ(ȳ(τ)) < 0 for all nonessential touch point τ . By the definition of the uniform growth
condition, (ū, ȳ) is a local solution of (Pµ) satisfying (3.45), so it follows from Th. 3.9(ii) that
the strong second-order sufficient condition (3.44) holds.

We end this section by the proof of Lemma 3.12.

Proof of Lemma 3.12. Denote by Qµ the quadratic form (3.119) and C̃µ the set of v ∈ V
satisfying the constraints (3.38)-(3.39) for (Pµ) and its stationary point (uµ, yµ), i.e. such
that

gµy (yµ)zµv = 0 on [tµ,eni , tµ,exi ], for all i = 1, . . . , N. (3.123)

Let us show that there exists α′ > 0 such that for all µ close enough to µ0 and all v ∈ C̃µ(uµ),
we have Qµ(v) ≥ α′‖v‖2

2, which will give the result.
We argue by contradiction, as in the proof of the uniform growth condition in Th. 3.11.

Assume this is not the case. Then there exist sequences (µn)n∈N∗ and (vn)n∈N∗ , such that
µn → µ0, vn ∈ C̃µn for all n, and

Qµn(vn) ≤ o(1)‖vn‖2
2. (3.124)

Since C̃µn is a cone (in fact, here, a linear subspace of V), and Qµn is a quadratic form,
assume w.l.o.g. that ‖vn‖2 = 1, and taking a subsequence if necessary, that the sequence
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(vn) converges weakly to some v̄ ∈ V. Then the associated state zn := zµn
vn given by

(3.118) is weakly convergent to z̄ := zµ0
v̄ in H1, and hence zn → z̄ uniformly. By the

same argument as in the proof of Th. 3.11 (see (3.122)), since vn ∈ C̃µn , we deduce that
supt∈∪N

i=1[t̄en
i ,t̄ex

i ] |gµn
y (yµn(t))zn(t)| ≤ C

√

maxi=1,...,N{|tµn ,en
i − t̄eni |, |tµn ,ex

i − t̄exi |} = o(1). It

follows then that v̄ ∈ C̃µ0 . But (3.124) implies that Qµ0(v̄) ≤ 0, therefore v̄ = 0 by (3.44),
and then Qµ0(vn) → Qµ0(v̄). Since Qµ0 is a Legendre form, it follows that vn → v̄ strongly,
contradicting that ‖vn‖2 = 1 for all n. This achieves the proof.

3.7 Sensitivity Analysis

Under assumptions (A2)-(A6) and point (i) or (ii) of Th. 3.11, we investigate in this section
directional differentiability of solutions. Given a stable extension (P µ), by Lemma 3.26, strong
regularity holds, and the mapping Ξ : Vδ → V ′

θ , δ 7→ θ(δ) solution of (3.87) is given by
Ξ(δ) = θ0 + ω(δ), where ω(δ) is the solution of (3.91). It is easy to see that the mapping
δ 7→ ω(δ) is positively homogeneous of degree one, and it follows then from (3.90) that the
mapping µ 7→ θµ is Fréchet directionally differentiable. The directional derivatives in direction
d ∈M are obtained by substituting into (3.91) δ by −DµF (θ0, µ0)d. Therefore,

θµ0+d = θ0 + ωd + o(‖d‖), (3.125)

where
ωd = (π∗d,0, γ

1
d , σ

en
d , σ

ex
d ) ∈ R

n × R
N × R

N × R
N (3.126)

is as follows. Denote by
(vd, zd, π1,d, ζ1,d, λ

1
d) (3.127)

the (unique) optimal solution, costate and multipliers of the linear-quadratic problem below:

(Pd) min
(v,z)∈V×Z

1
2

∫ T

0
D2

(u,y,µ),(u,y,µ)H̃(ū, ȳ, p̄1, η̄1, µ0)((v, z, d), (v, z, d))dt

+ 1
2D

2φ̂(ȳ(T ), µ0)((z(T ), d), (z(T ), d))

+ 1
2

∑

i∈Iba

ν̄1
iD

2ĝ(ȳ(t̄eni ), µ0)((z(t̄
en
i ), d), (z(t̄eni ), d))

subject to: ż = Df̂(ū, ȳ, µ0)(v, z, d) on [0, T ], z(0) = Dŷ0(µ0)d (3.128)

Dĝ(1)(ū, ȳ, µ0)(v, z, d) = 0 on Īb (3.129)

Dĝ(ȳ(t̄eni ), µ0)(z(t̄
en
i ), d) = 0, i ∈ Iba (3.130)

Dĝ(ȳ(t̄eni ), µ0)(z(t̄
en
i ), d) ≤ 0, i ∈ Ito, (3.131)

with π1,d associated with the constraint (3.128), ζ1,d with (3.129), and λ1
d with (3.130)-(3.131).

Then we have

πd,0 = π1,d(0) (3.132)

γ1
d = λ1

d (3.133)

σend,i = −Dĝ
(1)(ū(t̄eni ), ȳ(t̄eni ), µ0)(vd(t̄

en−
i ), zd(t̄

en
i ), d)

d
dtg

(1)(ū, ȳ)|t=t̄en−

i

, i = 1, . . . , N, (3.134)

σexd,i = −Dĝ
(1)(ū(t̄exi ), ȳ(t̄exi ), µ0)(vd(t̄

ex+
i ), zd(t̄

ex
i ), d)

d
dtg

(1)(ū, ȳ)|t=t̄ex+
i

, i = 1, . . . , N. (3.135)
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Since the mapping µ 7→ θµ is Fréchet directionally differentiable and the solution (uµ, yµ, pµ1 , η
µ
1 )

of (3.77)-(3.81) is, on each arc, a C1 function of (θµ, µ), combining with the continuity of uµ

and of the classical multipliers pµ and ηµ given by (3.61) (which follows from Lemma 3.28),
we obtain the following result.

Theorem 3.30. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)-(A6). If either point
(i) or (ii) of Th. 3.11 is satisfied, then there exists a neighborhood Vµ of µ, such that the
mapping µ 7→ (uµ, yµ, pµ, ηµ) is Fréchet directionally differentiable in the space

Lr(0, T ) ×W 1,r(0, T ; Rn) × Lr(0, T ; Rn∗) × Lr(0, T ), for all 1 ≤ r < +∞,

and the derivatives of the state and control in direction d are the optimal solution (vd, zd) of
linear-quadratic problem (Pd), while those of the costate pµ and state constraint multiplier ηµ

are obtained, respectively, a.e. by

πd(t) = π1,d(t) + ζ1,d(t)g
µ0
y (ȳ(t)) + η̄1(t)Dĝy(ȳ(t), µ0)(zd(t), d) (3.136)

ζd(t) = −
N∑

i=1

γ1
d,i1[0,t̄en

i )(t) − ζ1,d(t). (3.137)

In addition, all shooting parameters (initial costate, jump parameters and junction times) are
Fréchet directionally differentiable w.r.t. µ, and their directional derivative in direction d are
given by (3.132)-(3.135).

Remark 3.31. We can show that an equivalent formulation of (Pd) is (see Rem. 3.23) to
minimize
∫ T

0
D2

(u,y,µ),(u,y,µ)H(ū, ȳ, p̄, µ0)((v, z, d), (v, z, d))dt + D2φ̂(ȳ(T ), µ0)((z(T ), d), (z(T ), d))

+

∫ T

0
D2ĝ(ȳ(t), µ0)((z(t), d), (z(t), d))dη̄(t)

(3.138)
for (v, z) ∈ V × Z subject to the constraints (3.128), (3.131) and

Dĝ(ȳ, µ0)(z, d) = 0 on Īb. (3.139)

This last constraint is equivalent to (3.129)-(3.130) since we have that Dĝ(1)(ū, ȳ, µ0)(v, z, d) =
d
dtDĝ(ȳ(t), µ0)(z(t), d). Then, using the relation (3.136), we can show that πd, the directional
derivative of pµ w.r.t. µ, is the multiplier associated with (3.128) in formulation (3.138)-(3.139)
of (Pd), and that the directional derivative of dηµ

dt w.r.t. µ, equal by (3.137) to ζ̇d = −ζ̇1,d, is
equal to the multiplier associated with the constraint (3.139).

Let us conclude this section by the following observation. For i ∈ Ito, since t̄eni = t̄exi , the
optimality system of (Pd), easily obtained, yields that Huuvd + Huyzd + π1,dfu = 0 at t̄en±i ,
and that the jump of π1,d is given by [π1,d(t̄

en
i )] = −γ1

d,igy(ȳ(t̄
en
i )). Hence, the jump of vd is

given by

[vd(t̄
en
i )] = γ1

d,iH
−1
uu (ū, ȳ, p̄)(t̄eni )gy(ȳ(t̄

en
i ))fu(ū, ȳ)(t̄

en
i ) = γ1

d,iH
−1
uu (ū, ȳ, p̄)(t̄eni )g(1)

u (ū, ȳ)(t̄eni ),

and we obtain from (3.134)-(3.135)

σexd,i − σend,i = −g
(1)
u (ū, ȳ)(t̄eni )[vd(t̄

en
i )]

d
dtg

(1)(ū, ȳ)|t=t̄en
i

= Ciγ
1
d,i (3.140)
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with

Ci :=
H−1
uu (ū, ȳ, p̄)(t̄eni )(g

(1)
u (ū, ȳ)(t̄eni ))2

− d
dtg

(1)(ū, ȳ)|t=t̄en
i

> 0.

Since γ1
d,i ≥ 0 for i ∈ Ito, we see that σexd,i − σend,i ≥ 0, with equality iff γ1

d,i = 0. It follows that,
for µ − µ0 = d, the length of the boundary arc and the jump parameter are related, at first
order, by

tµ,exi − tµ,eni = Ciν
µ,1
i + o(‖µ− µ0‖). (3.141)

Remark 3.32. It was quite expected that nonessential touch points generally turn into bound-
ary arcs for constraints of first order (see e.g. [29]). However it was surprising to be able to
describe this transition between touch points and boundary arcs by a shooting approach when
the structure is not stable, and obtain the differentiability of the shooting mapping, and in
particular of the entry and exit times of the appearing boundary arcs.

Note that those results are false for control constraints. Consider for example the problem
below:

min
u∈U

∫ 2

0
(u(t) − (t− 1)2)2dt.

Here we have no state, or more precisely, the state is equal to the time. Obviously the solution
is u(t) = (t − 1)2. Add now a constraint u(t) ≥ ε for ε > 0. Then the optimal solution is
u(t) = ε on [τ ε−, τ

ε
+] with τ ε± = 1 ±√

ε, and u(t) = (t− 1)2 on [0, τ ε−) ∪ (τ ε+, 2]. So for ε > 0 a
boundary arc appear, whose end points τ ε− and τ ε+ are not differentiable at the point ε = 0, and
whose length is of order

√
ε and not ε. A fortiori the shooting mapping is not differentiable

at the point ε = 0, and the algorithm described in section 3.9 has no obvious extension to
control constraints (or more generally to mixed control-state constraints).

3.8 Example of sensitivity analysis

We illustrate the results of this paper on a very basic example. We consider the problem of an
elastic line of positive mass, fixed at its endpoints and submitted to a vertical uniform force
(g). The problem is to find the equilibrium position, i.e. minimize the energy. Assuming the
elastic potential to be quadratic with unit constant, this can be written as the optimal control
problem (with t replaced by x ∈ [0, 1]):

min

∫ 1

0

(
u(x)2

2
+ gy(x)

)

dx, ẏ(x) = u(x), y(0) = 0 = y(1). (3.142)

We add a first-order state constraint, e.g. the level of the floor

y(x) ≥ −h. (3.143)

Here g and h denotes positive constants.

Remark 3.33. Our results can be extended with only slight adaptations to the case when there
are also finitely many equality and inequality constraints on the final state, if we assume in
addition a controllability condition. In the case of a fixed final state, y(T ) = yT given in R

n,
this controllability condition is assumption (A1’) below. Recall that given δ > 0, we denote
by Ωδ := {t ∈ [0, T ], dist{t; I(g(ȳ))} < δ}.
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(A1’) (i) The initial and final conditions satisfy g(y0) < 0 and g(yT ) < 0;
(ii) There exists δ > 0 such that the linear mapping U → W 1,∞(Ωδ) × R

n; v 7→
(gy(ȳ(·))zv(·)|Ωδ , zv(T )), where zv is the solution of (3.24) and |Ωδ denotes the restriction
to the set Ωδ, is onto (and therefore has a bounded right inverse by the open mapping
Theorem).

This assumption (A1’) plays the role of Lemma 3.2 in the proofs. Note that when the dynamics
f is linear, i.e. f(u, y) = Ay +Bu, then (A1’)(ii) is satisfied if the pair (A,B) is controllable,
and if (A1’)(i) and (A3) hold.

For the example considered here, (A1’) is obviously satisfied so all the previous results are
valid. The unconstrained optimal trajectory when h/g ≥ 1/8 is given by:

y(x) = 1
2gx

2 − 1
2gx, u(x) = gx− 1

2g. (3.144)

The resolution of the constrained problem when h/g ≤ 1/8 is as follows. The trajectory is:

u(x) =







g(x− xen) on [0, xen]
0 on [xen, xex]
g((x− 1) − (xex − 1)) on [xex, 1]

y(x) =







g(x2/2 − xenx) on [0, xen]
−h on [xen, xex]
g((x− 1)2/2 − (xex − 1)(x − 1)) on [xex, 1].

Entry and exit positions xen and xex are given by:

xen =
√

2h/g, xex = 1 −
√

2h/g. (3.145)

The alternative state constraint multiplier on [xen, xex] is given by:

η1(x) = p1(x) = −g(x− xex) ≥ 0, η̇1(x) = −g < 0,

and hence, the jump parameter at entry time is:

ν1
en = η1(xen) = g(xex − xen) = g

(

1 − 2
√

2h/g
)

≥ 0. (3.146)

We consider perturbations w.r.t. nominal values of parameters g = g0 = 1 and h = h0 =
1/8, for which there is a touch point at x = 1/2. The strong sufficient second-order condition
(3.44) clearly holds, since the linear-quadratic problem:

min

∫ 1

0

v2(x)

2
dx, ż(x) = v(x), z(0) = 0 = z(1)

having a strongly convex cost function, has (v, z) = 0 for unique solution. Let us then study
the perturbed quadratic problem at (g0, h0) in direction d := (γ, η):

min

∫ 1

0

(
v(x)2

2
− γz(x)

)

dx, ż(x) = v(x), z(0) = 0 = z(1),

subject to the interior point inequality constraint:

z(1/2) ≥ −η. (3.147)



106CHAPITRE 3. STABILITÉ & HOMOTOPIE POUR LES CONTRAINTES D’ORDRE 1

The unconstrained trajectory is:

zd(x) = γ

(
x2

2
− x

2

)

, vd(x) = γ

(

x− 1

2

)

. (3.148)

Therefore, the constraint is active, iff η ≤ γ/8. If η > γ/8, (3.148) corresponds to the
directional derivative of the unconstrained trajectory (3.144). When η ≤ γ/8, the constraint
(3.147) is active, i.e. zd(1/2) = −η, and therefore, the solution of the linear-quadratic problem
is as follows:

vd(x) =

{
γx− (2η + γ/4) on [0, 1/2]
γ(x− 1) + (2η + γ/4) on [1/2, 1].

zd(x) =

{
γx2/2 − (2η + γ/4)x on [0, 1/2]
γ(x− 1)2/2 + (2η + γ/4)(x − 1) on [1/2, 1].

The multiplier λd associated with the constraint (3.147) is, by (3.140):

λd = [πd(1/2)] = −[vd(1/2)] = −2(2η − γ/4) ≥ 0, (3.149)

and, by (3.134)-(3.135), the variations of entry and exit points σd,en and σd,ex are given by:

σd,en = −v(1/2
−)

g0
= −γ/4 + 2η, σd,ex = −v(1/2

+)

g0
= γ/4 − 2η. (3.150)

By (3.146) and (3.145), we check that the above formula corresponds to the first-order varia-
tions, with g = g0 + γ and h = h0 + η, |γ|, |η| small, of:

ν1
en = (1 + γ)

(

1 − 2

√

1/4 + 2η

1 + γ

)

, xen =

√

1/4 + 2η

1 + γ
, xex = 1 −

√

1/4 + 2η

1 + γ
.

We consider perturbations in three directions d = (γ, η):

Case (a) (γ, η) = (0,−0.02)

Case (b) (γ, η) = (1, 0)

Case (c) (γ, η) = (1,−0.02).

Case (a) corresponds to an elevation of the ground level, case (b) corresponds to an increasing
of the “gravitational” force g, both of them leading to the emergence of a boundary arc, and
case (c) combines elevation of the ground and increasing of g. The perturbed trajectories
and directional derivatives of the state in W 1,r, 1 ≤ r < +∞, are presented for each case
in Fig. 3.1. The unconstrained trajectory for (g0, h0) is a parabola. In Fig. 3.2, we focus
on the appearance of the boundary arc in case (c), check that its length is of the order of
the perturbation and compare with the directional derivatives of variation of junction times
(3.150).

3.9 Homotopy method

We present in this section an algorithm that combines shooting and continuation (or homo-
topy) methods for solving optimal control problems with a scalar first-order state constraint,
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Figure 3.1: Perturbation of the state (left) and directional derivatives (right) in case (a) to
(c) (from top to bottom)

0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.62 0.66
-0.130

-0.128

-0.126

-0.124

-0.122

-0.120

-0.118

-0.116

-0.114

-0.112

-0.110

Figure 3.2: Variation of the length of the boundary arc in case (c).
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when the structure of the trajectory is unknown. It keeps the advantages of shooting meth-
ods regarding to the (high) precision and the (low) complexity, and enables to get rid of the
(sometimes) hard task to guess a priori the structure of the trajectory, and of the initialization
of some of the shooting parameters (only the initialization of the initial costate is left to the
user). The idea is to handle automatically the appearance (and disappearance) of boundary
arcs, so that the algorithm finds itself the structure of the trajectory. The results of the
previous sections are used.

General results on homotopy methods can be found in e.g. [1], [45, Chap. 5], and appli-
cations of homotopy methods to optimal control problems in e.g. [31, 63, 97].

3.9.1 Description of the algorithm

The problem to be solved is the following:

(P) min
(u,y)∈U×Y

∫ T

0
`(u(t), y(t))dt+ φ(y(T )) (3.151)

subject to ẏ(t) = f(u(t), y(t)) a.e. on [0, T ], y(0) = y0, (3.152)

g(y(t)) ≤ 0 on [0, T ]. (3.153)

We assume that (P) satisfies (A0)-(A1). In view of remark 3.33, we can more generally consider
a fixed final state y(T ) = yT and φ = 0 if we assume in addition that the controllability
condition (A1’) holds.

We consider the natural homotopy on the state constraint (Pµ), for µ ∈ [0, 1], defined by
(`µ, φµ, fµ, yµ0 ) := (`, φ, f, y0) and

gµ(y) := g(y) − (1 − µ)K, (3.154)

where the constant K > 0 is large enough, so that the state constraint of problem (P 0) is not
active, except maybe at finitely many (isolated) touch points in (0, T ). We explain later how
we choose K in the algorithm. We thus have (P1) ≡ (P).

The shooting mapping (3.84) for (Pµ) is denoted by F (θ, µ), where θ is the vector of
shooting parameters, of variable dimension depending on the structure of the trajectory, and
µ is the (scalar) homotopy parameter. Since we only have here one state constraint of first
order, note that the structure of the trajectory, and hence F , is entirely determined by the
dimension of θ. More precisely, the number of boundary arcs of the trajectory Nba is given by
(assuming the state constraint inactive at initial and final times)

Nba =
dim(θ) − n

3
∈ N. (3.155)

The structure of the trajectory follows then from the alternation between interior and bound-
ary arcs. We denote by yθ,µ the state solution of the alternative formulation for the shooting
parameter θ and the value of the homotopy parameter µ. The algorithm is as follows (see
Algorithm 3.34).

The algorithm is initialized by solving the unconstrained problem (without the state con-
straint) (3.151)-(3.152). We thus obtain a vector of shooting parameters θ0 (reduced to the
initial costate), associated with a stationary point of (3.151)-(3.152), which is a local solution
of (3.151)-(3.152) if the second-order sufficient condition (3.42) holds. The constant K in
(3.154) is taken equal to K := maxt∈[0,T ] g(y

θ0,0(t)). If K ≤ 0, then θ0 is a vector of shooting
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parameters associated with a local solution of (P). If K > 0, we start the homotopy from
µ = µ0 := 0 in (3.154) to µ = 1.

The variable mk denotes the maximum of gµk (yθk,µk), attained at time τk. Ifmk is positive,
this means that the state constraint is violated so the structure is not correct and we have to
add a boundary arc (step A). The variable ik equals zero iff all entry and exit times of boundary
arcs are such that entry times are lower than or equal to the corresponding exit times, and
equals i > 0 if the entry time of the i-th boundary arc is greater than the corresponding exit
time. If ik = i > 0, the structure is not correct again so we have to delete the i-th boundary
arc (step A). All this will be justified later in subsection 3.9.3 under some assumptions. If
both mk ≤ 0 and ik = 0, this means that the structure is correct, i.e. the current iterate θk
is a vector of shooting parameters associated with a stationary point (uµk , yµk) of (Pµk ). We
thus increase the value of µ and do a simple predictor-corrector iteration (steps B-C), keeping
the same structure for the shooting mapping. Then in step D we calculate the new values of
mk+1 and ik+1 that say whether the structure is still correct or has to be updated in the next
iteration. We do so until reaching the value µ = 1.

If the Newton algorithm in step C fails, then we decrease the value of the step ∆µk, and
go back to the last value (µk−1, θk−1) satisfying F (µk−1, θk−1) = 0 and max(mk−1, ik−1) = 0.

Algorithm 3.34 (Homotopy Algorithm).

Initialization

Input p0 ∈ R
n∗ and δ ∈ (0, 1].

- Solve by the shooting algorithm (initialized by the value p0) the unconstrained problem
(3.151)-(3.152), and obtain a vector of shooting parameters θ0.

- Set K := max g(yθ0 ,0(t)). If K ≤ 0 set µ0 := 1, else set µ0 := 0. Set m0 := 0, i0 := 0,
k := 0, ∆µ1 := δ.

While µk < 1 or max(mk, ik) > 0

If max(mk, ik) > 0 then Step A (Update the structure)

If mk > 0 then (Addition of a boundary arc)
Initialize the new shooting parameters (ν1, τen, τex) associated with this boundary
arc by:

ν1 = 0 and τen = τex = τk. (3.156)

Take the remaining shooting parameters equal to the previous value θk, and obtain
a vector of shooting parameters θ̄k of dimension dim(θk) + 3.

End if

If ik > 0 (Suppression of a boundary arc)
Remove the shooting parameters (ν1, τen, τex) corresponding to the ik-th boundary
arc from the vector of shooting parameters θk, and obtain a new vector of shooting
parameters θ̄k of dimension dim(θk) − 3.

End if

Set µ̄k := µk (the value of µ is unchanged by this step).

Else Step B (Prediction)
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Set k := k + 1
µ̄k := min{µk−1 + ∆µk; 1}
θ̄k := θk−1 −DθF(θk−1, µk−1)

−1DµF(θk−1, µk−1)(µ̄k − µk−1).

End if

Step C (Correction) Try to solve, by a Newton method, F(θ, µ̄k) = 0. The Newton
algorithm is initialized by the value θ̄k.

If the Newton algorithm fails then (go back to old values of µ and θ and decrease
the step) Set µk := µk−1, θk := θk−1, mk := mk−1, ik := ik−1, τk := τk−1,
∆µk := ∆µk/2 and k := k − 1.

Else (success) obtain a solution θk such that F (θk, µ̄k) = 0. Set µk := µ̄k.

Step D (Verify if the structure is correct)

– Set mk := max gµk(yθk,µk(t)) and τk ∈ argmax gµk(yθk ,µk(t)).

– Set ik := 0. For all i = 1, . . . , N k
ba (Nk

ba given by (3.155)), if θk is such that
the entry time corresponding to the i-th boundary arc is greater than the exit time
corresponding to the i-th boundary arc, then ik := i.

– If max(mk, ik) = 0 then set ∆µk+1 := δ.

End if

End while

Remark 3.35. Note that the Newton algorithm converges quadratically, provided that the
initial point is good enough. Therefore, we can see rapidly in step C whether the Newton
algorithm converges or not and if we need to decrease the step ∆µk.

Remark 3.36. Clearly, the present algorithm does not take into account all possible events,
since it principally assumes the stability of boundary arcs (which holds when uniform strict
complementarity is satisfied, see assumption (H2) below). If uniform strict complementarity
does not hold along the homotopy path, then it may happen for example that a boundary arc
splits into two boundary arcs, or on the contrary that two boundary arcs melt into one.

3.9.2 Existence of the homotopy path

Assume that the following holds:

(H0) For µ0 = 0, the unconstrained problem (P0) has a local solution (ū, ȳ) that satisfies (A0)-
(A3), the contact set I(g0(ȳ)) is composed of finitely many (nonessential) touch points
in (0, T ), all of them satisfying (3.26), and the strong second-order sufficient condition
(3.44) is satisfied.

By Th. 3.11, (H0) implies that there exists µ̃ > 0 such that for all µ ∈ [0, µ̃), (Pµ) has a locally
unique local solution (uµ, yµ) with multipliers (pµ, ηµ), that satisfies assumptions (A1)-(A3)
for (Pµ). In addition, this local solution (uµ, yµ) of (Pµ) has a neighboring structure to that of
(ū, ȳ), implying that if (ū, ȳ) has N touch points, then (uµ, yµ) has at most N boundary arcs
or touch points, i.e. satisfies (A4). Further, strict complementarity holds on the boundary
arcs of (uµ, yµ), and the touch points satisfy (3.26) by continuity, i.e. (A5)-(A6) are satisfied.
Finally, (uµ, yµ) satisfies the strong second-order condition (3.44) for (Pµ) by Lemma 3.12.
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Consequently, assumption (H0) ensures that the homotopy path is well-defined on an
interval [0, µ̃) ⊂ [0, 1], and that assumptions (A1)-(A6) as well as the strong second-order
sufficient condition (3.44) remain satisfied on this neighborhood. Let

µmax := sup { µ̃ ∈ [0, 1] : for all µ ∈ [0, µ̃], the locally unique local solution (uµ, yµ)
of (Pµ) satisfies (A1)-(A6) and (3.44). }.

The preceding discussion shows that assumption (H0) implies that µmax > 0.

Lemma 3.37 (Existence of the homotopy path). Assume that (H0) holds, that there
exists L > 0 such that for all µ ∈ [0, µmax),

‖u̇µ‖1 + ‖uµ‖∞ ≤ L, (3.157)

and that (A1) and (A3) are uniformly satisfied, i.e. there exist β, ε, ζ > 0 such that for all
µ ∈ [0, µmax),

gµ(yµ0 ) < −ζ and |(gµ)(1)u (uµ(t), yµ(t))| ≥ β, for all t, dist{t; I(gµ(yµ))} ≤ ε. (3.158)

Then there exists a sequence (µn)n∈N∗ such that µn ↑ µmax, (uµn , yµn) → (ũ, ỹ) uniformly,
(pµn ,dηµn) weakly-* converges to (p̃,dη̃) in L∞(0, T ; Rn∗) ×M[0, T ], and (ũ, ỹ, p̃, η̃) is a sta-
tionary point and its multipliers of (Pµmax).

Moreover, if (ũ, ỹ, p̃, η̃) satisfies assumptions (A1)-(A6) and the strong second-order suf-
ficient condition (3.44), then (uµ, yµ, pµ, ηµ) converges when µ ↑ µmax to a locally unique
local solution of (Pµmax) and its multipliers (ũ, ỹ, p̃, η̃) =: (uµmax , yµmax , pµmax , ηµmax), and
µmax = 1, i.e. the homotopy path is locally well-defined over µ ∈ [0, 1].

Proof. Consider a sequence (µn)n∈N∗ ⊂ [0, µmax) such that µn → µmax when n→ +∞. Since
W 1,1(0, T ) is compactly embedded in C0[0, T ], (3.157) implies that there exists a subsequence,
still denoted by (µn), such that the sequence (uµn) converges uniformly to some ũ ∈ U . By
(3.157), we may pass to the limit in the state equation (3.2) and obtain that yµn converges in
Y to the state ỹ := yµmax

ũ solution of (3.10).
By (3.158), Robinson’s constraint qualification (3.17) is uniformly satisfied for all µ ∈

[0, µmax), i.e. the positive constant γ in (3.17) does not depend on µ. It follows then from
[24, Prop. 4.43] and (3.157) that ‖dηµn‖M[0,T ] is uniformly bounded. Therefore there exists

a weakly-* convergent subsequence dηµn
∗
⇀ dη̃ in M[0, T ]. Since dηµ ∈ NK(gµ(yµ)) for all

µ ∈ [0, µmax), and gµn(yµn) → gµmax(ỹ) strongly (i.e. uniformly), we deduce easily from
the definition of the normal cone that dη̃ ∈ NK(gµmax(ỹ)). By the costate equation (3.13)
(with α = 1), dpµ is uniformly bounded in M([0, T ]; Rn∗). Therefore, there exists a weakly-*

convergent subsequence dpµn
∗
⇀ dp̃ ∈ M([0, T ]; Rn∗). Due to the convergence of the final

condition (3.14), we deduce easily from the integration by parts formula [58, p.154]

∫ T

0
p(t)ϕ(t)dt = −

∫ T

0
dp(t)Φ(t)+p(T )Φ(T ) for all (p, ϕ) ∈ BV ×L1 with Φ(t) :=

∫ t

0
ϕ(s)ds

that pµn weakly-* converges in L∞(0, T ; Rn∗) to a limit p̃ given by p̃(t) :=
∫ t
T dp̃(s)+φµmax

y (ỹ(T )).
Since (3.18) and (3.13) are linear in p and η, we may pass to the weak-* limit and obtain that
(ũ, ỹ) is a stationary point of (Pµmax) with multipliers (p̃, η̃).

Now assume that this stationary point (ũ, ỹ) of (Pµmax) satisfies assumptions (A1)-(A6)
and the strong second-order sufficient condition (3.44). These assumptions imply by Th. 3.11
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that (ũ, ỹ) is an isolated stationary point of (Pµmax), which shows the local uniqueness of the
stationary point (ũ, ỹ) of (Pµmax) constructed above and of its multipliers. In addition (ũ, ỹ)
is a local solution of (Pµmax), and by Th. 3.11, we obtain the existence of the homotopy path
on the interval [µmax, µmax + ε), for some ε > 0, and assumptions (A1)-(A6) hold on this
interval by Th. 3.11, as well as the strong second-order condition (3.44) by Lemma 3.12. This
implies that µmax = 1, otherwise this would contradict the definition of µmax. Therefore the
homotopy path is locally well-defined over [0, 1].

We thus make the assumptions below:

(H1) For all µ ∈ [0, 1], (uµ, yµ) satisfies (A2), there exist L > 0 and β, ε, ζ > 0 such that
(3.157) and (3.158) hold, and gµ(yµ(T )) < 0.

(H2) For all µ ∈ [0, 1], (uµ, yµ) has finitely many boundary arcs, and there exists β > 0 such
that for all µ ∈ [0, 1], η̇µ1 < −β on the boundary arcs of (uµ, yµ) (with ηµ1 the alternative
state constraint multiplier associated with (uµ, yµ)).

(H3) For all µ ∈ [0, 1], (uµ, yµ) has finitely many (nonessential) touch points, all of them
satisfying (3.26).

(H4) For all µ ∈ [0, 1], (uµ, yµ) satisfies the strong second-order sufficient condition (3.44) for
(Pµ).

Actually the algorithm 3.34 is correct only if we replace assumption (H3) by:

(H′
3) For all µ ∈ [0, 1], (uµ, yµ) has at most one (nonessential) touch point, and the latter

satisfies (3.26).

But the algorithm can be generalized to the more general case case when (H3) holds (see Rem.
3.47).

Remark 3.38. Assumptions (H0)-(H4) needed to ensure the existence (and local uniqueness)
of the homotopy path, and the convergence of the algorithm, are rather strong, but they also
give some indications on why the algorithm fails, if it fails (for other reasons than numerical
ones, see Rem. 3.46). Either (3.157) is not satisfied (i.e. uµ is not uniformly Lipschitz
continuous), or the problem becomes singular (i.e. (3.158) fails), or a solution with infinitely
many boundary arcs or touch points is met during the homotopy, or strict complementarity
on boundary arcs fails, or finally the strong second-order sufficient condition (3.44) fails.

3.9.3 Correctness of the algorithm

The existence of a locally unique local solution (uµ, yµ) of (Pµ), for all µ ∈ [0, 1], is guaranteed
by assumptions (H1)-(H4). In addition, for all µ ∈ [0, 1], the locally unique local solution
(uµ, yµ) of (Pµ) has finitely many boundary arcs and touch points. So to prove the correctness
of the algorithm, it suffices to show that the algorithm does find, in finitely many steps, these
local solutions (uµ, yµ) for a finite increasing sequence of values of µ, until µ = 1 (in fact, the
algorithm gives the vector of shooting parameters θµ, of appropriate dimensions, associated
with the trajectory (uµ, yµ)). For this Lemmas 3.39 to 3.43 given below will be useful.

Lemma 3.39. Assume that (H0)-(H4) hold. Then the trajectories (uµ, yµ)µ∈[0,1] have finitely
many different structures, and the mapping µ 7→ θµ is globally Lipschitz continuous over [0, 1].
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Here, since the dimension of θµ may vary, by “globally Lipschitz continuous” we mean
that on any subinterval of [0, 1] where the trajectories (uµ, yµ) have “neighboring structures”,
then the mapping µ 7→ θµ is Lipschitz continuous with a Lipschitz constant uniform on [0, 1].

Proof. By assumptions (H1)-(H4) and Th. 3.11, for all µ ∈ [0, 1], there exists an open neigh-
borhood Vµ of µ such that for all µ′ ∈ Vµ, the locally unique local solution (uµ

′

, yµ
′

) of (Pµ′)
has a neighboring structure to that of (uµ, yµ), and the mapping µ′ 7→ θµ

′

is Lipschitz continu-
ous over Vµ. We can thus extract from (Vµ)µ∈[0,1] a finite covering (Vµ̂k

)k=0,...,M of [0, 1]. Since

for each µ̂k, there exist finitely many possible neighboring structures to that of (uµ̂k , yµ̂k), and
µ 7→ θµ is Lipschitz continuous on each Vµ̂k

, the result follows.

Although by Lemma 3.39 the trajectories (uµ, yµ)µ∈[0,1] have finitely many different struc-
tures, assumptions (H0)-(H4) do not imply that there are finitely many changes in the struc-
ture of the trajectory along the homotopy path (see Rem. 3.40 below). More precisely, we
say that the structure of the trajectory changes at µ̄ ∈ [0, 1), if (uµ̄, yµ̄) has a touch point that
either disappears or turns into a boundary arc (of positive length) when µ → µ̄+. We will
therefore make the following assumption in the proof of correctness of the algorithm (Prop.
3.44), in addition to (H0)-(H4) that ensure the existence of the homotopy path.

(H5) There exist finitely many values of µ ∈ (0, 1) for which the structure of the trajectory
(uµ, yµ) changes.

Remark 3.40. Consider the problem (3.142), with g = 1, subject to the state constraint
(3.143) where h depends on µ ∈ [0, 1], i.e. y ≥ hµ with hµ = −1/8 + µ5 sin(1/µ). For
µ = 0, there is a nonessential touch point at τ = 1/2. When µ5 sin(1/µ) > 0, i.e. µ ∈
∪n∈N∗( 1

(2n+1)π ,
1

2nπ )∪( 1
π , 1], then the latter turns into a boundary arc, and when µ5 sin(1/µ) <

0, i.e. µ ∈ ∪n∈N∗( 1
2nπ ,

1
(2n−1)π ), the boundary arc disappear (the state constraint is not active).

Therefore, for any ε > 0 arbitrarily small, the structure changes for infinitely many values of
µ in the interval [0, ε]. By Th. 3.30, the computation of the directional derivatives in direction
d = 1 at point µ = 0 shows that problem (Pd) has zero for unique solution, and therefore
the directional derivatives of the entry/exit points and jump parameters at entry times are all
zero in that case.

After this general description of the homotopy path, we will focus now on the changes in
the structure, i.e. when there are nonessential touch points. So consider a value µ̄ ∈ [0, 1] for
which (uµ̄, yµ̄) has Nto ≥ 1 (nonessential) touch points τ̄i, i = 1, . . . , Nto. Denote by Fj , for
j = 1, . . . , 2Nto , the shooting mappings corresponding to all possible neighboring structures
to that of (uµ̄, yµ̄), i.e. each touch point τ̄i is or not converted into a boundary arc like in
subsection 3.5.2. Denote by θ̄j the appropriate vector of shooting parameters of (uµ̄, yµ̄) for
Fj . Thus we have

Fj(θ̄j , µ̄) = 0, for all j = 1, . . . , 2Nto .

For µ in the neighborhood of µ̄, and all j = 1, . . . , 2Nto , we consider the problem:

Find θ of appropriate dimensions solution of: Fj(θ, µ) = 0. (3.159)

Lemma 3.41. Assume that (H0)-(H4) hold. Let µ̄ ∈ [0, 1] be such that (uµ̄, yµ̄) has Nto ≥ 1
(nonessential) touch points τ̄i, i = 1, . . . , Nto. Then there exist an open neighborhood V̄µ of
µ̄ and open neighborhoods Vj of θ̄j, j = 1, . . . , 2Nto, such that for all j = 1, . . . , 2Nto and for
all µ ∈ V̄µ, the problem (3.159) has in Vj a unique solution θµj , and the mappings V̄µ → Vj,

µ 7→ θµj , are of class C1.
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Proof. By (H3), the touch points τ̄i all satisfy (3.26). By (H4) the strong second-order suf-
ficient condition (3.44) is satisfied, and hence the Jacobians DθFj(θ̄j, µ̄) are nonsingular, for
all j = 1, . . . , 2Nto (by the same arguments as in the proof of Lemma 3.26). So it follows from
the classical implicit function Theorem that (3.159) has a locally a unique solution θµj , which

is C1 w.r.t. µ.

Under the assumptions of Lemma 3.41, for µ ∈ V̄µ and j = 1, . . . , 2Nto , denote by yµj
the state associated with θµj , i.e. solution of (3.77)-(3.80) for the arc structure of Fj . Note
that yµj is well-defined on each arc of the trajectory only (not on [0, T ]), since some entry

times in θµj may be greater than the corresponding exit times. Let θ̂µj denote the augmented
vector of shooting parameters obtained from θµj by adding, for each touch point τ̄i that was
not converted into a boundary arc in Fj , a zero jump parameter for the costate and an entry
and exit time both equal to the unique local maximum of gµ(yµj (t)) in the neighborhood of

τ̄i. Thus the augmented vectors of shooting parameters θ̂µj have the same dimension for all j,
which is also the dimension of the shooting mapping F in (3.84) for which all the Nto touch
points are converted into boundary arcs. For µ = µ̄, we denote the augmented vector of
shooting parameters by θ̄ = θ̂µ̄j , for all j.

Lemma 3.42. Under the assumptions of Lemma 3.41, there exists an open neighborhood ¯̄Vµ
of µ̄ such that for all j = 1, . . . , 2Nto , the mapping µ 7→ θ̂µj is C1 over ¯̄Vµ, and for all µ ∈ ¯̄Vµ,

the augmented vector of shooting parameters θ̂µj is solution of (3.85), iff the two conditions
below are satisfied:

gµ(yµj (t)) ≤ 0, on each arc, (3.160)

τµen,j ≤ τµex,j, for all boundary arcs, (3.161)

where for each boundary arc of Fj, τ
µ
en,j and τµex,j denote the components of θµj corresponding

respectively to the entry and exit point of the boundary arc.

Proof. In the neighborhood of a touch point τ̄i that was not converted into a boundary arc
in Fj, for all µ ∈ V̄µ, the function gµ(yµj (·)) is locally well-defined and C2. Therefore, since
d2

dt2
gµ̄(yµ̄)|t=τ̄i < 0, the function that with gµ(yµj ) associates its (unique) local maximum time

in the neighborhood of τ̄i is C1, and hence, by Lemma 3.41, µ 7→ θ̂µj is C1. Now denote by

tien and ν1
i respectively the entry time and jump parameter of the boundary arc associated

with the touch point τ̄i in θ̂µj , j = 1, . . . , 2Nto . By the arguments of the proof of Lemma 3.27,

we have that (3.161) is equivalent to ν1
i ≥ 0 for all i = 1, . . . , Nto, and for each i we have

either gµ(yµj (tien)) = 0 or ν1
i = 0. Therefore (3.160)-(3.161) are equivalent to the condition

Ψ(θ̂µj , µ) ∈ N(θ̂µj ). The conclusion follows.

Let j1, j2 ∈ {1, . . . , 2Nto}, j1 6= j2, and µ ∈ ¯̄Vµ. Given a solution θµj1 of (3.159) for j = j1,
let us explain now how to initialize the Newton algorithm in order to find a solution of (3.159)
for j = j2. The initial point θ̃µj1,j2 is obtained from θµj1 as follows:

• For every touch point τ̄i that was converted into a boundary arc in Fj1 but not in Fj2 ,
remove from θµj1 the shooting parameters associated with this boundary arc;

• For every touch point τ̄i that was converted into a boundary arc in Fj2 but not in Fj1 ,
add to θµj1 the three shooting parameters associated with this boundary arc (ν 1,i, τ ien, τ

i
ex)

as follows: ν1,i = 0, and τ ien and τ iex are both equal to the unique point of local maximum
of gµ(yµj1) in the neighborhood of τ̄i.
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Lemma 3.43. Under the assumptions of Lemma 3.41, for all j1, j2 ∈ {1, . . . , 2Nto}, j1 6= j2,
there exists δ̄j1,j2 > 0, such that for all µ, |µ − µ̄| ≤ δ̄j1,j2, the Newton method to solve the
equation (3.159) for j = j2 is convergent to θµj2, whenever the initial point θ̃µj1,j2 is obtained
from the solution θµj1 of (3.159) for j = j1 as explained above.

Proof. By Lemma 3.41, there exists ρµj2 > 0 such that the Newton algorithm to solve (3.159)
for j = j2 converges to θµj2 for all initial point θ0 satisfying |θ0 − θµj2 | < ρµj2 , and this constant

is uniformly positive, i.e. ρµj2 ≥ ρ > 0 for all µ in a compact neighborhood of µ̄ 8. Let

|µ − µ̄| ≤ δ̄j1,j2 := min(κ−1
j1
, κ−1

j2
)ρ/3, with κj the Lipschitz constant of the mapping µ 7→ θ̂µj

(Lemma 3.42). Let θ̄ := θ̂µ̄j1 = θ̂µ̄j2 and note that we obviously have θ̃µ̄j1,j2 = θ̄j2 . It follows then

that |θ̃µj1,j2 − θ
µ
j2
| ≤ |θ̃µj1,j2 − θ̃

µ̄
j1,j2

|+ |θ̄j2 − θµj2| ≤ |θ̂µj1 − θ̄|+ |θ̄− θ̂µj2 | ≤
2
3ρ, from which the result

follows.

We give now a theoretical proof of correctness of the algorithm.

Proposition 3.44. Assume that (H0)-(H2), (H′
3) and (H4)-(H5) hold. Then there exists

δ0 > 0 such that, whenever p0 is close enough to p̄(0), for all 0 < δ < δ0 the algorithm 3.34
follows the homotopy path previously described, and ends with a vector of shooting parameters
θ1 of adapted dimension associated with a local solution (u1, y1) of (P1) ≡ (P). In addition,
if 0 < δ < δ0, the steps ∆µk are not reduced by the algorithm (i.e. Newton’s algorithm in step
C do not fail).

Proof. By (H5), there exist finitely many values of µ ∈ (0, 1), 0 < µ̄1 < . . . < µ̄m < 1,
for which the structure of the trajectory (uµ, yµ) changes. By (H′

3), this implies that for all
j = 1, . . . ,m, the trajectory associated with µ̄j has exactly one touch point τ̄ jto. Set µ̄0 := 0
and µ̄m+1 := 1. For all j = 0, . . . ,m, denote by Fj the shooting mapping corresponding to
the structure of (uµ, yµ) for µ ∈ (µ̄j , µ̄j+1). We have Fj 6= Fj+1, for all j = 0, . . . ,m.

Let j = 0, . . . ,m. For all µ ∈ [µ̄j, µ̄j+1], by (3.44) and Lemma 3.41, there exists a constant
ρj > 0 (uniform w.r.t. µ, see 8) such that the shooting algorithm (i.e. Newton’s algorithm
to solve Fj(θ, µ) = 0) converges to θµ for all initial point θ0 satisfying |θ0 − θµ| < ρj. For all
µ, µ′ ∈ [µ̄j, µ̄j+1], with θ′ the solution of the prediction step obtained from θµ by

DθFj(θ
µ, µ)(θ′ − θµ) +DµFj(θ

µ, µ)(µ′ − µ) = 0,

it is easy to see that there exists a constant Cj
9 such that |θ′− θµ

′| ≤ Cj|µ−µ′|2. Therefore
the convergence of the Newton algorithm to θµ

′

with the initial point θ′ is guaranteed if
|µ− µ′| < δ̂ := minmj=0(ρj/Cj)

1/2. Now let δ0 > 0 be the minimum of δ̂ defined above, of all
the finitely many constants δ̄j1,j2 > 0 of Lemma 3.43 involved at the changes of structure of
the trajectory, and finally of µ̄j+1 − µ̄j > 0, for j = 0, . . . ,m.

Let δ ∈ (0, δ0). The proof of the the algorithm is by finite induction on the property below,
for k ≥ 0:

(Ak) At each passage in the prediction step (step B), before k is increased, we have µk =
min(kδ, 1), mk = 0, ik = 0 and

8 From the proof of the Newton algorithm, it can be seen that this constant ρ
µ
j depends continuously on

the Lipschitz constant of DθFj(·, µ), on ‖DθFj(θ
µ
j , µ)−1‖−1 and on the modulus of continuity of DθFj(·, µ)−1,

and is therefore a continuous function of µ.
9 This constant Cj depends on ‖DθFj(θ

µ, µ)−1‖, on the Lipschitz constant of DFj and on the Lipschitz
constant of the mapping µ 7→ θµ on [µ̄j , µ̄j+1] (Lemma 3.39).
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– if µk /∈ {µ̄j}j=0,...,m, θk = θµk is the (unique) vector of shooting parameters associ-
ated with (uµk , yµk),

– if µk = µ̄j for some j = 0, . . . ,m,

∗ if either k = 0 or the touch point of µ̄j is either inactive or a (nonessential) touch
point when µ → µ̄−j , then θk is the vector of shooting parameters associated
with (uµk , yµk) that does not contain the touch point of µ̄j as a boundary arc
of zero length;

∗ if the touch point of µ̄j is a boundary arc for µ→ µ̄−
j , then θk is the vector of

shooting parameters associated with (uµk , yµk) that contains the touch point
of µ̄j as a boundary arc of zero length.

For p0 sufficiently close to p̄(0), the initialization step of the algorithm succeeds in obtaining
the initial vector of shooting parameters (reduced to the initial costate) θ0 = θµ0 associated
with the local solution (ū, ȳ) of (P0). So (A0) holds. Assume now that (Ak−1) holds, and let
j ∈ {0, . . . ,m+ 1} be such that

µ̄j < µk−1 ≤ µ̄j+1.

We thus go through the prediction step B and then to step C. By (Ak−1), we try to solve, by
the Newton algorithm, the equation

Fj(θ, µk) = 0. (3.162)

By construction of δ0, the Newton algorithm succeeds and obtain a solution θ ′k of (3.162). So
we go to step D. There are two cases to consider. Either (a) µk ≤ µ̄j+1 or (b) µk > µ̄j+1.

In case (a), the structure of the trajectory does not change, so we obtain the vector of
shooting parameters θk := θ′k = θµk associated with (uµk , yµk). Therefore mk ≤ 0 and ik = 0,
which shows (Ak).

In case (b), by construction of δ0, we have µk ∈ (µ̄j+1, µ̄j+2). Therefore θµk is the (locally
unique) solution of

Fj+1(θ, µk) = 0. (3.163)

By Lemma 3.42, among all the “augmented vectors of shooting parameters” associated with
one of the (two) possible neighboring structures to (uµ̄j+1 , yµ̄j+1), only θµk satisfies (3.160)-
(3.161). Therefore we deduce that necessarily, the augmented vector of shooting parameters
θ̂k obtained from θ′k solution of (3.162) does not satisfy either (3.160) or (3.161), i.e. either
mk > 0 or ik > 0.

Assume e.g. that mk > 0, i.e. gµk(yθ
′
k ,µk) has positive values. Using (H2) and Lemma 3.22,

this can only happen in the neighborhood of the touch point τ̄ j+1
to of µ̄j+1, i.e. τk is close to

τ̄ j+1
to . Note that this is possible only if τ̄ j+1

to was not converted in a boundary arc in Fj . So we
go to step A and add a boundary arc. Here, µ̄j having a single touch point, there are only two
possible neighboring structures to that of (uµ̄j , yµ̄j ). Having eliminated Fj , it remains only one

possible structure, i.e. with τ̄ j+1
to as a boundary arc, which corresponds necessarily to Fj+1.

The shooting parameters associated with this new boundary arc are initialized by (3.156), and
hence we obtain an augmented vector of shooting parameters θ̃k, that by Lemma 3.43 belongs,
by construction of δ0, to the neighborhood of θµ̄j+1 for which the Newton algorithm solving
(3.163) is convergent to θµk . We thus obtain θk = θµk , which satisfies mk = 0 and ik = 0, and
therefore (Ak) holds.
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The case ik > 0 is dealt with similarly, i.e. if it happens that for a boundary arc, the entry
time is greater than the exit time, this can only happen in the neighborhood of the touch
point τ̄ j+1

to of µ̄j+1, and this implies that this touch point is converted in a boundary arc in
Fj . So we remove in step A this boundary arc, and conclude with the same arguments that
(Ak) holds again. The result follows by finite induction on k, since the algorithms ends for
the smaller integer k ≥ 1

δ .

Remark 3.45. The process of reduction of ∆µk is not active if δ is small enough, as appears
from Prop. 8.8. However, in practice we do not know what a correct value of ∆µk is so that
this reduction process is useful.

Of course when initialized with δ > δ0 it may happen that Newton’s method converges to
a point that does not belong to the continuous path (uµ, yµ), i.e., it computes another critical
point, say (ûµ, ŷµ). If the latter satisfies conditions of Th. 3.11, then the algorithm continues
despite the jump to another branch of solutions.

Remark 3.46. We could theoretically give an explicit expression for the constant δ0 that ensures
the convergence in Prop. 3.44, but the latter depends on constants involving, among other,
bounds on the hessian of the shooting mapping that are almost impossible to calculate. In
case of ill-conditioning (δ0 is very small), the convergence may be difficult, if not impossible,
to achieve in practice, due to numerical errors.

Remark 3.47. Algorithm 3.34 and Prop. 3.44 can be extended to the case when (H3) holds
instead of (H′

3). If (H′
3) does not hold, but (H3) do, this means that there exists µ̄ ∈ (0, 1)

such that (uµ̄, yµ̄) has Nto touch points, Nto ≥ 2. If the structure of the shooting mapping
changes at this point, there are a priori 2Nto possibilities for the new structure when µ→ µ̂+.
It is possible to enumerate all of them, i.e. solve (3.159), for all j = 1, . . . , 2Nto , for µ > µ̄
close to µ̄. Lemma 3.42 ensures that if (3.160)-(3.161) are satisfied for some j, then we have
found the new structure, and Lemma 3.26 ensures that (3.160)-(3.161) will be satisfied for at
least one j.

A possibility that may reduces the enumeration is to use the directional differentiability
of solutions in Th. 3.30. One can e.g. solve the problem (Pd), and whenever the variation
σexd,i − σend,i given by (3.132) is positive (resp. negative), this tells us that the touch point τ ito
have to be converted into boundary arc (resp. removed from the shooting mapping). For
touch points such that σexd,i − σend,i = 0, this gives no information on τ ito so it possibly remains
different possibilities to enumerate.

3.9.4 Numerical Implementation

The convergence of the algorithm presented in the previous subsections is illustrated on the
academic problem below:

(P) min

∫ 1

0

(
u2(t)

2
+ g(t)y(t)

)

dt

s.t. ẏ(t) = u(t), y(0) = y(1) = 0, y(t) ≥ h

with

g(t) := g0(c− sin(αt)), c, α > 0.

The time is introduced as a state variable, and let µ = (h − h0)/(h1 − h0) be the homotopy
parameter, with h0 = min ȳ(t), for ȳ the solution of the problem without the state constraint,
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and h1 = h the desired value of the state constraint. Numerical values of constants are taken
equal to

g0 := 10, α = 10π, c = 0.1, h1 = −0.001.

The algorithm is initialized with the value p0 = 0, and δ = 1/5 to initialize the steps ∆µk.
Let us comment Figure 3.3 where the results of the algorithm are presented. The algorithm
reduces the step ∆µk once, in the next to last iteration, since the Newton algorithm was not
converging, meaning here that it was not converging quadratically. Thus the solution was
computed for the values µ0 = 0, µk = kδ = k/5 for k = 1, . . . , 4, µ5 = 9/10 and µ6 = 1.
We plotted in dark blue the state yk solution of (Pµk ) obtained at the exit of the while loop
when mk = ik = 0, for k = 0, . . . , 6. In light blue we plotted the previous iterations, including
the states obtained when mk > 0 at the exit of the while loop (so we can see the algorithm
add a boundary arc at the following iteration when this happens).

For k = 0, we just have the solution of the unconstrained problem. For k = 1, the algorithm
adds a single boundary arc around time t = 0.55. At each iteration k = 2, 3, 4, the algorithm
detects that the state constraint is violated so it adds a boundary arc. So for k = 4 we have
µk = 0.8 and four boundary arcs. Then the algorithm tries to pursue the homotopy with
µ = 1. It detects that it has to add a boundary arc but Newton algorithm fails. Therefore it
decreases the step and obtained the solution for µ5 (see the figure for k = 5) that has a fifth
boundary arc. It then increases µ to µ6 = 1 and obtain the solution of (P) which exhibits five
boundary arcs.

At each passage in the Newton algorithm (step C), the latter converges very rapidly in 2
or 3 iterations (for the tolerance |F (θk, µk)|∞ ≤ 10−10) excepted of course the time it failed
because ∆µk was too large, and at the very last passage (which requires 5 iterations).

Finally, let us check that the uniform strict complementarity hypothesis (H2) is satisfied.
On a boundary arc, (3.48) gives

ub + p1 − η1 = 0 with ub = 0,

i.e. p1 = η1. Hence, η̇1 ≤ β < 0 on boundary arcs iff p1 is (uniformly) decreasing. This is the
case, see the figure bottom right in Fig. 3.3 on which we plotted p1 for the final solution for
µ6 = 1 (the portions corresponding to boundary arcs are plotted in red). We can also check
similarly that this uniform strict complementarity assumption is satisfied as well for all other
values of µk, k = 1, . . . , 5.

3.10 Proof of Theorem 3.4

We start by the proof of Lemma 3.6, then give that of Lemma 3.8, and finally that of Th. 3.4.

Proof of Lemma 3.6. Let δ > 0. By continuity of the mapping (u, µ) 7→ gµ(yµu), there exists
δ > 0, such that for n large enough (this is precisely assertion (S1)),

I(gµn(yn)) ⊂ Ωδ := ∪Ni=1Ω
δ
i . (3.164)

The first assertion of the lemma is a classical consequence of Robinson’s constraint qualification
(3.17) (see e.g. [24, Prop. 4.43]). By Lemma 3.2, reducing δ if necessary, the mapping (3.23)
is onto. Since supp(dηn) ⊂ I(gµn(yn)) ⊂ Ωδ by (3.164), the second assertion follows from [24,
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Figure 3.3: Iterations of the homotopy algorithm and costate p1 (for k = 6)
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Prop. 4.44 and Rem. 4.45(i)], meaning that

sup
Φ∈W 1,∞(0,T ), Φ6≡0

∣
∣
∣

∫ T
0 Φ(t)(dηn − dη)(t)dt

∣
∣
∣

‖Φ‖1,∞
−→

n→+∞
0. (3.165)

Let p1
n and η1

n be the multipliers associated with the stationary point (un, yn) of (Pµn) by
(3.32)-(3.33). By (3.34),

d

dt
(p1
n − p̄1) = (p1

n − p̄1)fy(ū, ȳ) + g(1)
y (ū, ȳ)(η1

n − η̄1) + rn(t) a.e. on [0, T ],

with ‖rn‖∞ → 0 when n → +∞. By Gronwall’s Lemma, there exists a constant C > 0 such
that

|p1
n(t) − p̄1(t)| ≤ C|φµn

y (yn(T )) − φµ0
y (ȳ(T ))| + C

∫ T

t
|η1
n(s) − η̄1(s)|ds+ o∞(1)

≤ C‖η1
n − η̄1‖1 + o∞(1),

(3.166)

where o∞(1) denotes a function that goes to zero in L∞ when n → +∞. Let us show that
η1
n → η̄1 in L1. The sequence (dηn)n∈N∗ being bounded in M[0, T ] by the first assertion (1),

it follows that (η1
n)n∈N∗ is bounded in BV , for the norm ‖η‖BV = ‖η‖1 + ‖dη‖M. By the

compactness Theorem in BV [2, Th. 3.23], there exists a subsequence (η1
ψ(n))n∈N∗ converging

in L1 to some η̃ ∈ BV (0, T ), and such that dηψ(n)
∗
⇀ −dη̃ in M[0, T ]. It suffices then to

show that necessarily, −dη̃ = dη̄ and η̃ = η̄1 in order to obtain the convergence of the whole
sequence (η1

n)n∈N∗ to η̄1 in L1. So let us do that. The space W 1,∞(0, T ) being dense in

C0[0, T ], it follows easily from (3.165) that dηn
∗
⇀ dη̄, and hence −dη̃ = dη̄. Thus η̃ equals η̄

up to a constant. Using Fubini’s Theorem and (3.165), we obtain

∫ T

0
η1
n(t)dt =

∫ T

0
sdηn(s) −→

n→+∞

∫ T

0
sdη̄(s) =

∫ T

0
η̄1(t)dt,

implying finally that η̃ = η̄, and consequently, that η1
n → η̄1 in L1. By (3.166), we deduce

then that p1
n → p̄1 uniformly over [0, T ].

Finally, for ‖un − ū‖∞ small enough, |(gµn )
(1)
u (un, yn)| ≥ β/2 > 0 on Ωδ, so by (3.35) we

have on Ωδ:

η1
n = −H

µn
u (un, yn, p

1
n)

(gµn)
(1)
u (un, yn)

→ −H
µ0
u (ū, ȳ, p̄1)

(gµ0)
(1)
u (ū, ȳ)

= η̄1 uniformly on Ωδ,

and η1
n is piecewise constant on [0, T ] \ Ωδ, which shows the last assertion.

Proof of Lemma 3.8. Let (u, y) be a stationary point of (Pµ) with multipliers (p1, η1) given
by (3.32)-(3.33). By time derivation of (3.35), we have, using the augmented Hamiltonian
(3.8),

H̃µ
uu(u, y, p

1, η1)u̇+ H̃µ
uy(u, y, p

1, η1)fµ(u, y) − H̃µ
y (u, y, p1, η1)fµu (u, y) + (gµ)(1)u (u, y)η̇1 = 0.

(3.167)
For ‖µ−µ0‖ and ‖u−ū‖∞ small enough, then ‖y−ȳ‖∞ is arbitrarily small, as well as ‖p1−p̄1‖∞
and ‖η1 − η̄1‖∞ by Lemma 3.6. Consequently, for (u, µ) close enough to (ū, µ0), we have by
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(3.20) that H̃µ
uu(u, y, p1, η1) ≥ α/2 on [0, T ]. Multiplying (3.167) by (gµ)

(1)
u (u, y)/H̃µ

uu(u, y, p1, η1),
we obtain that

(gµ)(1)u (u, y)u̇+
(gµ)

(1)
u (u, y)2

H̃µ
uu(u, y, p1, η1)

η̇1 → g(1)
u (ū, ȳ) ˙̄u+

g
(1)
u (ū, ȳ)2

H̃uu(ū, ȳ, p̄1, η̄1)
˙̄η1 (3.168)

uniformly over [0, T ]. In view of (3.5)-(3.6), it follows that

(gµ)(2)(u̇, u, y) +
(gµ)

(1)
u (u, y)2

H̃µ
uu(u, y, p1, η1)

η̇1 → g(2)( ˙̄u, ū, ȳ) +
g
(1)
u (ū, ȳ)2

H̃uu(ū, ȳ, p̄1, η̄1)
˙̄η1 (3.169)

again, uniformly over [0, T ].
Now on every Ωδ

i , for small enough δ > 0, we have by (A5)-(A6), (3.27) and (3.21)
the existence of a constant κ1 > 0 such that either g(2)( ˙̄u, ū, ȳ) < −κ1 and ˙̄η1 = 0, or

g(2)( ˙̄u, ū, ȳ) = 0, |g(1)
u (ū, ȳ)| ≥ κ1 and ˙̄η1 ≤ −κ1. It follows that, for some κ2 > 0, δ small

enough and (µ, u) close to (µ0, ū),

(gµ)(2)(u̇, u, y) +
(gµ)

(1)
u (u, y)2

H̃µ
uu(u, y, p1, η1)

η̇1 ≤ −κ2 on Ωδ
i . (3.170)

If gµ(y(t)) < 0, then η̇1(t) = 0, and hence, (gµ)(2)(u̇, u, y)(t) < −κ2/2. But on an interior arc
included in Ωδ

i , g
µ(y) would attain its minimum at some point t where (gµ)(2)(u̇, u, y)(t) ≥ 0,

which gives the desired contradiction.

Remark 3.48. It follows from (3.170) that the property of uniform strict complementarity is
stable, in the sense that if the state constraint is active, then η̇1 remains uniformly far from
zero (uniformly over [0, T ]).

Now we are ready to give the proof of Th. 3.4.

Proof of Th. 3.4. Assertion (S1) is immediate, and (S3) follows directly from Lemma 3.8 since
there is no interior arc of (u, y) in Ωδ

i . In view of Lemma 3.8, to complete the proof of (S2),
it remains to show that Ωδ

i ∩ I(gµ(y)) is an interval of positive measure, i.e. a boundary arc.
Assume that this is false. Then there exist a stable extension (Pµ), sequences un → ū in L∞,
µn → µ0, and (un, yn) a stationary point of (Pµn ), such that for all n, Ωδ

i ∩I(gµn(yn)) is either
empty or a singleton by Lemma 3.8. Taking if necessary a subsequence, this implies that there
exists an interval of positive measure (t1, t2) ⊂ [t̄eni , t̄

ex
i ], such that (t1, t2) ∩ I(gµn(yn)) = ∅

for all n, and hence, (t1, t2) ∩ supp(dηn) = ∅. Let ϕ be a C∞ function with support in [t1, t2]

which is positive on (t1, t2). Then we have
∫ T
0 ϕ(t)dηn(t) = 0, for all n. But by (A5), η̄ has

a positive density over (t1, t2), and hence,
∫ T
0 ϕ(t)dη̄(t) > 0, which contradicts the second

assertion in Lemma 3.6. This achieves the proof of assertion (S2).

Acknowledgement The authors thank an anonymous referee for his remarks that helped
to improve the paper.
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Chapitre 4

Le cas de plusieurs contraintes∗

Abstract This paper deals with the optimal control problem of an ordinary differential
equation with several pure state constraints, of arbitrary orders, as well as mixed control-
state constraints. We assume (i) the control to be continuous and the strengthened Legendre-
Clebsch condition to hold, and (ii) a linear independence condition of the active constraints
at their respective order to hold. We give a complete analysis of the smoothness and junc-
tion conditions of the control and of the constraints multipliers. This allows us to obtain,
when there are finitely many nontangential junction points, a theory of no-gap second-order
optimality conditions and a characterization of the well-posedness of the shooting algorithm.
These results generalize those obtained in the case of a scalar-valued state constraint and a
scalar-valued control.

Résumé Dans cet article on s’intéresse au problème de commande optimale d’une équation
différentielle ordinaire avec plusieurs contraintes pures sur l’état, d’ordres quelconques, et
des contraintes mixtes sur la commande et sur l’état. On suppose que (i) la commande est
continue et la condition forte de Legendre-Clebsch satisfaite, et (ii) une condition d’indépen-
dance linéaire des contraintes actives est satisfaite. Des résultats de régularité des solutions
et multiplicateurs et des conditions de jonction sont donnés. Lorsqu’il y a un nombre fini
de points de jonction, on obtient des conditions d’optimalité du second ordre nécessaires ou
suffisantes, ainsi qu’une caractérisation du caractère bien posé de l’algorithme de tir. Ces
résultats généralisent les résultats obtenus dans le cas d’une contrainte sur l’état et d’une
commande scalaires.

4.1 Introduction

This paper deals with optimal control problems with a vector-valued state constraint. Mixed
control-state constraints (state constraints of order zero) are included in the analysis. It
is assumed that the control is continuous and the strengthened Legendre-Clebsch condition
holds, and that each component of the state constraint is of arbitrary (but finite) order qi.

Second-order optimality conditions for state-constrained optimal control problems were
recently studied in [80, 112, 113, 20]. The presence of pure state constraints introduces an
additional curvature term in the second-order necessary condition, in contrast with mixed

∗Joint work with J.F. Bonnans. Accepted for publication in Annales de l’Institut Henri Poincaré (C) Analyse
Non Linéaire, under the title Second-order analysis for optimal control problems with pure state constraints and

mixed control-state constraints.
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control-state constraints, see [108, 105]. An analysis of the junction conditions may help
to narrow the gap with the second-order sufficient condition. There are, to our knowledge,
relatively few papers dealing with optimal control problems with several state constraints
of order greater than one. One of them is an unpublished paper by Maurer [98]. In e.g.
[65, 88, 53, 54, 93, 95], several constraints of first-order were considered, but when dealing
with constraints of higher order, then often only one constraint (and sometimes also a scalar
control) is considered, see e.g. [75, 68, 94]. When there are several constraints of different
orders, and more control variables than active constraints, then even the regularity of the
control and of the state constraint multipliers on the interior of the arcs of the trajectory is
not an obvious question. In [98, Lemma 4.1], it is shown that the control u is C qmax (where
qmax is the bigger order of the active constraints), under the assumption that there are as
many active state constraints as control variables. In [98, Th. 4.2], it is shown that the state
constraints multipliers are smooth on the interior of arcs, but with the extra assumption that
the control u is Cqmax.

The motivation of this paper is to extend the no-gap second-order optimality conditions
and the characterization of the well-posedness of the shooting algorithm, obtained in [18, 21]
and [19], respectively, for an optimal control problem with a scalar-valued state constraint
and control, to the case of a vector-valued state constraint and control. The critical step is
the extension of the junctions conditions obtained in the scalar case (i.e., with a scalar-valued
state constraint and control) by Jacobson, Lele and Speyer [75]. This result says that some
of the time derivatives of the control are continuous at a junction point until an order that
depend on the order of the (scalar) state constraint, and on the nature of the junction point
(entry/exit of boundary arcs versus touch points). This result has an important role when
deriving the second-order necessary condition, since, with this regularity result and under
suitable assumptions, it can be shown that boundary arcs have typically no contribution to
the curvature term. This enables to derive a second-order sufficient condition as close as
possible to the necessary one (no-gap), and to obtain a characterization of the well-posedness
of the shooting algorithm. We show in particular that the shooting algorithm is ill-posed if a
component of the state constraint of order qi ≥ 3 has a boundary arc.

In this paper, the focus is on the proofs that are not directly obtained from the scalar
case, and in particular the (nontrivial) extension of the junction condition result of [75]. Our
main assumption is the simplest one that the gradients w.r.t. the control variable of the time
derivatives of the active constraints at their respective order are linearly independent. This
enables to write locally the system under a “normal form”, where the dynamics corresponding
to the state constraints is linearized, and the different components of the constraints are
decoupled.

The paper is organized as follows. In section 4.2, we present the problem, notation,
basic definitions and assumptions. In section 4.3, we give sufficient conditions implying the
continuity of the control, and we show local higher regularity of the control and constraints
multipliers on the interior of arcs. In section 4.4, we give some technical lemmas needed to
put the system under a “normal form”. This will be used in section 4.5, where we give the
junction conditions results. In section 4.6, the no-gap second-order optimality conditions is
stated. In section 4.7, we recall the shooting formulation and state a characterization of the
well-posedness of the shooting algorithm, under the additional assumption that the junction
times of the different components of the state constraint do not coincide.
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4.2 Framework

Let n,m, r, s be positive integers. If r and/or s is equal to zero, then the statements of this
paper remain correct if the corresponding terms are removed. Denote by U := L∞(0, T ; Rm)
(resp. Y := W 1,∞(0, T ; Rn)) the control (resp. state) space. We consider the following optimal
control problem:

(P) min
(u,y)∈U×Y

∫ T

0
`(u(t), y(t))dt+ φ(y(T )) (4.1)

subject to ẏ(t) = f(u(t), y(t)) for a.a. t ∈ [0, T ]; y(0) = y0 (4.2)

gi(y(t)) ≤ 0 for all t ∈ [0, T ], i = 1, . . . , r (4.3)

ci(u(t), y(t)) ≤ 0 for a.a. t ∈ [0, T ], i = r + 1, . . . , r + s. (4.4)

The data of the problem are the distributed cost ` : R
m × R

n → R, final cost φ : R
n → R,

dynamics f : R
m×R

n → R
n, pure state constraint g : R

n → R
r, mixed control-state constraint

c : R
m × R

n → R
s, (fixed) final time T > 0, and (fixed) initial condition y0 ∈ R

n. We make
the following assumptions on the data:

(A0) The mappings `, φ, f , g and c are (at least) of class C 2 with locally Lipschitz continuous
second-order derivatives, and the dynamics f is Lipschitz continuous.

(A1) The initial condition satisfies gi(y0) < 0 for all i = 1, . . . , r.

Throughout the paper it is assumed that assumption (A0) holds.

Notations The space of row vectors is denoted by R
n∗. We denote by A> the adjoint

operator of a linear operator A or the transpose operator in R
n×m. Given a measurable

set I ⊂ (0, T ), we denote by Ls(I) the Lebesgue space of measurable functions such that
‖u‖s := (

∫

I |u(t)|sdt)1/s (resp. ‖u‖∞ := supesst∈I |u(t)|) for 1 ≤ s < +∞ (resp. s = +∞) is
finite. Given an open set I ⊂ (0, T ), k ∈ N

∗ and 1 ≤ s ≤ +∞, the space W k,s(I) denotes the
Sobolev space of functions having their weak derivatives until order k in Ls(I). The standard
norm of W k,s is denoted by ‖ · ‖k,s. We say that a function is nonpositive, if it takes values in
R−.

The Banach space of vector-valued continuous functions is denoted by C([0, T ]; Rr) and
supplied with the product norm ‖x‖∞ :=

∑r
i=1 ‖xi‖∞. The space of vector-valued Radon

measures, dual space to C([0, T ]; Rr), is denoted by M([0, T ]; Rr∗) and identified with vector-
valued functions of bounded variation (BV ) vanishing at T . The duality product between

C([0, T ]; Rr) and M([0, T ]; Rr∗) is denoted by 〈η, x〉 =
∑r

i=1

∫ T
0 xidηi. The cones of nonposi-

tive continuous functions and nonnegative Radon measures over [0, T ] are denoted respectively
by K := C−([0, T ]; Rr) and M+([0, T ]; Rr∗).

The dual space to L∞(0, T ), denoted by (L∞)∗(0, T ), is the space of finitely additive
set functions (see [58, p.258]) letting invariant the sets of zero Lebesgue’s measure. The
duality product over (L∞)∗ and L∞ is denoted by 〈λ, x〉, and when λ ∈ L1, we have 〈λ, x〉 =
∫ T
0 λ(t)x(t)dt. The set of vector-valued essentially bounded functions L∞(0, T ; Rs) is supplied

with the product topology. The set of essentially bounded functions with value in R
s
− almost

everywhere is denoted by K := L∞
− (0, T ; Rs), and the set of elements λ in (L∞)∗(0, T ; Rs) such

that 〈λ, x〉 is nonpositive for all x ∈ L∞
− (0, T ; Rs) is denoted by (L∞)∗+(0, T ; Rs).

We denote by BX the unit (open) ball of the Banach space X. By clS, intS and ∂S we
denote respectively the closure, interior and boundary of the set S. The cardinal of a finite
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set J is denoted by |J |. The restriction of a function ϕ defined over [0, T ] to a set A ⊂ [0, T ]
is denoted by ϕ|A. The indicator function of a set A is denoted by 1A. Given a Banach space
X and A ⊂ X∗ the dual space to X, we denote by A⊥ the space of x ∈ X such that 〈ξ, x〉 = 0
for all ξ ∈ A. If A is a singleton, then ξ⊥ := {ξ}⊥. The left and right limits of a function of
bounded variation ϕ over [0, T ] are denoted by ϕ(τ±) := limt→τ± ϕ(t) and jumps are denoted
by [ϕ(τ)] := ϕ(τ+) − ϕ(τ−). Fréchet derivatives of f , gi, etc. w.r.t. arguments u ∈ R

m,
y ∈ R

n, etc. are denoted by a subscript, for instance fu(u, y) = Duf(u, y), gi,y(y) = Dygi(y).
An exception to this rule is that given u ∈ U , we denote by yu the (unique) solution in Y of
the state equation (4.2).

Abstract formulation We denote by J : U → R, G : U → C([0, T ]; Rr) and G : U →
L∞(0, T ; Rs) the cost function J(u) :=

∫ T
0 `(u(t), yu(t))dt + φ(yu(T )) and the constraints

mappings defined by G(u) := g(yu) and G(u) := c(u, yu). Recall that the constraints cones are
defined by K = C−([0, T ]; Rr) and K = L∞

− (0, T ; Rs). The abstract formulation of (P) (used
in section 4.6 and in the Appendix) is the following:

(P) min
u∈U

J(u), subject to G(u) ∈ K, G(u) ∈ K. (4.5)

The choice of the functional space for the pure state constraints (here, the space of continuous
functions) is discussed later in Remark 4.4.

A trajectory (u, y) is an element of U × Y satisfying the state equation (4.2). A feasible
trajectory is one that satisfies the constraints (4.3) and (4.4). We say that a feasible trajectory
(u, y) = (u, yu) is a local solution (weak minimum) of (P), if it minimizes (4.1) over the set of
feasible trajectories (ũ, ỹ) satisfying ‖ũ− u‖∞ ≤ δ, for some δ > 0.

4.2.1 Constraint qualification condition

Given a measurable (nonpositive) function x, we denote the contact set by

∆(x) := {t ∈ [0, T ] : x(t) = 0} (4.6)

and, for n ∈ N
∗,

∆n(x) := {t ∈ [0, T ] : x(t) ≥ − 1

n
}. (4.7)

Given a feasible trajectory (u, y), define the sets of active state constraints and active mixed
constraints at a.a. time t ∈ [0, T ] respectively by:

Ig(t) := {i ∈ {1, . . . , r} : gi(y(t)) = 0} (4.8)

Ic(t) := {i ∈ {r + 1, . . . , r + s} : t ∈ ∆(ci(u, y))}, (4.9)

and let
I(t) := Ig(t) ∪ Ic(t). (4.10)

An arc of the trajectory (u, y) is a maximal open interval of positive measure I = (τ1, τ2), such
that I(t) is constant, for all t ∈ (τ1, τ2).

For ε > 0, n ∈ N
∗ and a.a. t ∈ [0, T ], define the set of nearly active state constraints and

nearly active mixed constraints respectively by:

Igε (t) := ∪{ I(σ) ; σ ∈ (t− ε, t+ ε) ∩ [0, T ]} (4.11)

Icn(t) := {i ∈ {r + 1, . . . , r + s} : t ∈ ∆n(ci(u, y))} (4.12)
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and the set of nearly active constraints by

Iε,n(t) := Igε (t) ∪ Icn(t). (4.13)

The contact sets of the constraints are denoted by

∆i := ∆(gi(y)) for i = 1, . . . , r, (4.14)

∆i := ∆(ci(u, y)) for i = r + 1, . . . , r + s (4.15)

and, for δ > 0 and n ∈ N
∗,

∆δ
i := {t ∈ (0, T ) : dist{t,∆(gi(y))} < δ}, i = 1, . . . , r (4.16)

∆n
i := ∆n(ci(u, y)), i = r + 1, . . . , r + s. (4.17)

Orders of the state constraints Let i = 1, . . . , r. If f and gi are Cqi mappings, we may

define inductively the functions R
m × R

n → R, g
(j)
i (u, y) := g

(j−1)
i,y (y)f(u, y) for j = 1, . . . , qi,

with g
(0)
i := gi, if we have g

(j)
i,u ≡ 0 for all j = 0, . . . , qi − 1, i.e. g

(j)
i,u(u, y) = 0 for all

(u, y) ∈ R
m × R

n. Then dj

dtj
gi(y(t)) = g

(j)
i (u(t), y(t)), and for all j < qi, we have that

g
(j)
i (u, y) = g

(j)
i (y). Let qi be the smallest number of derivations, so that a dependence w.r.t.

u appears, i.e. such that g
(qi)
i,u is not identically zero over R

m × R
n (this intrinsic definition of

the order does not depend on a given trajectory (u, y) ∈ U ×Y nor on the time). If qi is finite,
we say that qi is the order of the component gi. If qi is finite, for all i, we define the highest
order qmax := maxri=1 qi, and the orders vector q := (q1, . . . , qr) ∈ N

r is the vector of orders of
the constraint g = (g1, . . . , gr). In all the paper, it is assumed in addition to (A0) that

(A0q) Each component of the state constraint gi, i = 1, . . . , r, is of finite order qi, and f and
g are (at least) Cqmax+1.

Remark 4.1. When performing the analysis in the L∞-vicinity of a given trajectory (u, y) ∈
U × Y, it is sufficient, for the results of this paper, to restrict the variable y ∈ R

n in the

above definition of the mappings g
(j)
i and of the order qi to an open neighborhood in R

n of
{y(t) ; t ∈ ∆i} for each i = 1, . . . , r. Likewise, the order of the constraint qi needs only to
be defined in the neighborhood of each connected component of the contact set ∆i and may
differ over two distinct connected components.

Note that when the state constraint gi is of order qi, relations such as

g
(j)
i,y (u, y) = g

(j−1)
i,yy (y)f(u, y) + g

(j−1)
i,y (y)fy(u, y), (4.18)

are satisfied, for all j = 1, . . . , qi. This will be useful in some of the proofs.
We assume w.l.o.g. in this paper that u → ci,u(u, y) is not identically zero, for all i =

r + 1, . . . , r + s, since otherwise ci(u, y) is a pure state constraint. We may interpret mixed
control-state constraints as state constraint of order zero, setting

qi := 0 and g
(0)
i (u, y) := ci(u, y), for all i = r + 1, . . . , r + s. (4.19)

Given a subset J ⊂ {1, . . . , r + s}, say J = {i1 < · · · < ik}, define the mapping G
(q)
J :

R
m × R

n → R
|J | by:

G
(q)
J (u, y) :=







g
(qi1 )
i1

(u, y)
...

g
(qik )

ik
(u, y)






, for all (u, y) ∈ R

m × R
n. (4.20)
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By (4.19), mixed control-state constraints are taken into account in this definition. When
J = {1, . . . , r + s}, we denote just (4.20) by G(q)(u, y).

The controllability lemma For κ ∈ [1,+∞], let

Vκ := Lκ(0, T ; Rm), Zκ := W 1,κ(0, T ; Rn). (4.21)

Given a trajectory (u, y) and v ∈ Vκ, we denote by zv the (unique) solution in Zκ of the
linearized state equation

ż(t) = fu(u(t), y(t))v(t) + fy(u(t), y(t))z(t) a.e. on [0, T ], z(0) = 0. (4.22)

Lemma 4.2. Let (u, y) be a trajectory, and let κ ∈ [1,+∞]. For all v ∈ Vκ and all i = 1, . . . , r,
we have that gi,y(y(·))zv(·) ∈W qi,κ(0, T ) and:

dj

dtj
(gi,y(y(t))zv(t)) = g

(j)
i,y (y(t))zv(t), for all j = 1, . . . , qi − 1, (4.23)

dqi

dtqi
(gi,y(y(t))zv(t)) = g

(qi)
i,u (u(t), y(t))v(t) + g

(qi)
i,y (u(t), y(t))zv(t). (4.24)

Proof. It suffices to use the linearized state equation (4.22), the relation (4.18), and that

g
(j−1)
i,y fu = g

(j)
i,u ≡ 0 for all j = 1, . . . , qi − 1 to obtain (4.23)-(4.24) by induction on j.

Consider the following constraint qualification condition:

there exist γ, ε > 0 and n ∈ N
∗ such that

γ |ξ| ≤
∣
∣
∣G

(q)
Iε,n(t),u(u(t), y(t))

>ξ
∣
∣
∣ , for all ξ ∈ R

|Iε,n(t)| and a.a. t ∈ [0, T ].
(4.25)

Lemma 4.3. Let (u, y) be a trajectory satisfying (A1) and (4.25). Then for all κ ∈ [1,+∞]
and all δ ∈ (0, ε), where ε is given in (4.25), the linear mapping

Vκ → ∏r
i=1W

qi,κ(∆δ
i ) ×

∏r+s
i=r+1 L

κ(∆n
i )

v 7→





(

(gi,y(y(·))zv(·))|∆δ
i

)

1≤i≤r
(
(ci,u(u(·), y(·))v(·) + ci,y(u(·), y(·))zv(·))|∆n

i

)

r+1≤i≤r+s




(4.26)

where zv is the unique solution in Zk of the linearized state equation (4.22), is onto, and hence
has a bounded right inverse by the open mapping Theorem.

Recall that ϕ|I denotes the restriction of the function ϕ to the set I ⊂ [0, T ].

Proof. Let ψ = (ψi)1≤i≤r+s ∈ ∏r
i=1W

qi,κ(∆δ
i ) ×

∏r+s
i=r+1 L

κ(∆n
i ). In order to have ψi =

gi,y(y)zv on ∆δ
i for all i = 1, . . . , r, it is necessary and sufficient by Lemma 4.2 that, a.e. on

∆δ
i ,

g
(qi)
i,u (u, y)v + g

(qi)
i,y (u, y)zv = ψ

(qi)
i (4.27)

and that, for every point τ in the left boundary of ∆δ
i (note that there exist finitely many

such points),

g
(j)
i,y (y(τ))zv(τ) = ψ

(j)
i (τ), for all j = 0, . . . , qi − 1. (4.28)
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The relation (4.27) with qi = 0, g
(0)
i = ci and ψ

(0)
i := ψi must be satisfied as well a.e. on ∆n

i

for all i = r+1, . . . , r+ s. Set M(t) := G
(q)
Iε,n(t),u(u(t), y(t)). By (4.25), the matrix M(t)M(t)>

is invertible at a.a. t, so we may take a.e., if Iε,n(t) 6= ∅ (take v(t) = 0 if Iε,n(t) = ∅):

v(t) = M(t)>(M(t)M(t)>)−1{ϕ(t) −G
(q)
Iε,n(t),y(u(t), y(t))zv(t)}, (4.29)

where zv is the solution of (4.22) with v given by (4.29), and the right-hand side ϕ =
(ϕi)i∈Iε,n(t) is as follows. We have ϕi(t) = ψi(t) if i = r + 1, . . . , r + s and t ∈ ∆n

i , and

ϕi(t) = ψ
(qi)
i (t) if i = 1, . . . , r and t ∈ ∆δ

i . On ∆ε
i \ ∆δ

i , ϕi can be chosen equal e.g. to a
polynomial function of order 2qi− 1, in order to match, in arbitrary small time ε− δ > 0, the
first qi − 1 time derivatives of gi,y(y)zv with those of ψi, i.e. so that (4.28) holds for all left
endpoints τ of ∆δ

i .

If the control u is continuous (see Prop. 4.8 and assumption (A2)), (4.25) is always satisfied
if the linear independence condition below holds:

there exists γ > 0 such that

γ |ξ| ≤
∣
∣
∣G

(q)
I(t),u(u(t), y(t))

>ξ
∣
∣
∣ , for all ξ ∈ R

|I(t)| and a.a. t ∈ [0, T ],
(4.30)

i.e. G
(q)
I(t),u(u(t), y(t)) is uniformly onto, for all t ∈ [0, T ]. This assumption (without the mixed

control-state constraints) was already used in [98].
For J = {i1 < · · · < ik} ⊂ {r + 1, . . . , r + s}, let us denote

cJ(u, y) := (ci1(u, y), . . . , cik(u, y))>.

We will also use in Proposition 4.8 the constraint qualification (4.31) below, weaker than
(4.25), involving only the mixed control-state constraints:

there exist n ∈ N
∗ and γ > 0 such that

γ|ξ| ≤ |cIc
n(t),u(u(t), y(t))

>ξ| for all ξ ∈ R
|Ic

n(t)| and a.a. t ∈ [0, T ].
(4.31)

Remark 4.4. There are two possible natural choices for the functional space of the pure state
constraints: either the space of continuous functions C 0 := C([0, T ]; Rr), or the space W q,∞ :=
∏r
i=1W

qi,∞(0, T ), where qi denotes the order of the i-th component of the constraint, in which
the constraint is “onto” by Lemma 4.3. Considering the state constraints in C0 instead of
W q,∞, we have multipliers in M([0, T ]; Rr∗) rather than in the dual space of W q,∞. Existence
of multipliers in M([0, T ]; Rr∗) is ensured under natural hypotheses (see below). Moreover,
since the inclusion of W q,∞ in C0 is dense and continuous, by surjectivity of the constraint in
W q,∞ we obtain that the multipliers associated in both formulations are one to one, and we
inherit nice properties such as uniqueness of the multiplier in M([0, T ]; Rr∗).

4.2.2 First-order Optimality Condition

Define the classical Hamiltonian and Lagrangian functions of (P), H : R
m × R

n × R
n∗ → R

and L : U ×M([0, T ]; Rr∗) × (L∞)∗(0, T ; Rs∗) → R by:

H(u, y, p) := `(u, y) + pf(u, y) (4.32)

L(u; η, λ) := J(u) + 〈η,G(u)〉 + 〈λ,G(u)〉, (4.33)
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for the duality products in the appropriate spaces.

Robinson’s constraint qualification for the abstract problem (4.5) is as follows:

∃ ε > 0, εBC×L∞ ⊂ (G(u),G(u)) + (DG(u), DG(u))U −K ×K. (4.34)

It is easy to see that under the assumptions of Lemma 4.3, (4.34) holds. Some elements of
proof of the next theorem are recalled in the Appendix (subsection 4.9.2). The existence and
uniqueness of the multipliers are a consequence of Lemma 4.3.

Theorem 4.5. Let (u, y) ∈ U × Y be a a local solution of (P), satisfying (A1), (4.34) and
(4.31). Then there exist p ∈ BV ([0, T ]; Rn∗), η ∈ M([0, T ]; Rr∗) and λ ∈ L∞(0, T ; Rs∗) such
that

ẏ(t) = f(u(t), y(t)) for a.a. t ∈ [0, T ]; y(0) = y0 (4.35)

−dp(t) = {Hy(u(t), y(t), p(t)) + λ(t)cy(u(t), y(t))}dt + dη(t)gy(y(t)) (4.36)

p(T+) = φy(y(T )) (4.37)

0 = Hu(u(t), y(t), p(t)) + λ(t)cu(u(t), y(t)) for a.a. t ∈ [0, T ] (4.38)

0 ≥ gi(y(t)), dηi ≥ 0,

∫ T

0
gi(y(t))dηi(t) = 0, i = 1, . . . , r (4.39)

0 ≥ ci(u(t), y(t)), λi(t) ≥ 0 a.e.,

∫ T

0
ci(u(t), y(t))λi(t)dt = 0, (4.40)

i = r + 1, . . . , r + s.

We say that (u, y) is a stationary point of (P), if there exist p ∈ BV ([0, T ]; Rn∗), η ∈
M([0, T ]; Rr∗) and λ ∈ L∞(0, T ; Rs∗) such that (4.35)-(4.40) hold.

When the Hamiltonian and the mixed control-state constraints are convex w.r.t. the
control variable (and in particular when assumption (4.44) below holds), then (4.38) and
(4.40) are equivalent to

u(t) ∈ argmin
w∈Rm, c(w,y(t))≤0

H(w, y(t), p(t)) for a.a. t ∈ [0, T ]. (4.41)

Here λ(t) is the multiplier associated with the constraint (in R
m) c(w, y(t)) ≤ 0. We thus

recover in this particular case Pontryagin’s Minimum Principle, see [57, 50, 104].

Assumptions Let the augmented Hamiltonian of order zero H 0 : R
m×R

n×R
n∗×R

s∗ → R

be defined by

H0(u, y, p, λ) := H(u, y, p) + λc(u, y). (4.42)

Given (u, y) a stationary point of (P), we will make the assumptions below:

(A2) The control u is continuous on [0,T], and (strengthened Legendre-Clebsch condition)

there exists α > 0 such that for all t ∈ [0, T ],

α|υ|2 ≤ H0
uu(u(t), y(t), p(t), λ(t))(υ, υ) for all υ ∈ R

m.
(4.43)

(A3) The data of the problem are (at least) C2qmax , and the linear independence condition
(4.30) is satisfied.
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Remark 4.6. The only condition (4.43) is not enough to ensure the continuity of the control,
as shows the following example:

min
u∈L∞(0,T )

∫ 2

0
{u(t)4 − 2u(t)2 + (y(t) − 1)u(t)}dt, ẏ(t) = 1, y(0) = 0,

where the minimizer u jumps from the minimum close to 1 for t = y(t) < 1 to the minimum
close to −1 for t = y(t) > 1, although (4.43) holds.

We will see in Prop. 4.8 that if (u, y) is a stationary point such that the Hamiltonian
H(·, y(t), p(t)) is uniformly strongly convex and the mixed control-state constraints are convex
w.r.t. the control along the trajectory, which is equivalent to the condition below (stronger
than (4.43))

there exists α > 0 such that for all t ∈ [0, T ] and all (û, λ̂) ∈ R
m × R

s∗
+ ,

α|υ|2 ≤ H0
uu(û, y(t), p(t), λ̂)(υ, υ) for all υ ∈ Rm,

(4.44)

and if (4.31) holds, then u is continuous on [0, T ]. Therefore (4.44) and (4.31) imply that (A2)
holds.

Remark 4.7. In some of the results of section 4.3 and 4.5, assumption (4.43) in (A2) can be
weakened by assuming the uniform positivity of H 0

uu only on a subspace of R
m depending on

the active constraints, namely

there exists α > 0 such that for a.a. t ∈ [0, T ],

α|υ|2 ≤ H0
uu(u(t), y(t), p(t), λ(t))(υ, υ) for all υ ∈ R

m satisfying

g
(qi)
i,u (u(t), y(t))υ = 0 for all i = 1, . . . , r + s such that t ∈ int ∆i.

(4.45)

4.3 First regularity results

In the scalar case (when both the state constraint g(y) and the control are scalar-valued, i.e.
m = r = 1), and when there is no constraint on the control, the regularity of the control on
the interior of arcs follows from the implicit function Theorem, applied by (A2) to the relation
Hu(u(t), y(t), p(t)) = 0 on the interior of unconstrained arcs (when g(y(t)) < 0), and by (A3)
to g(q)(u(t), y(t)) = 0 on the interior of boundary arcs (when g(y(t)) = 0). Knowing that
u (and y) are smooth on boundary arcs, we can then differentiate w.r.t. t (in the measure
sense) the relation Hu(u(t), y(t), p(t)) on boundary arcs, as many times as necessary, until we
express, using (A3), the measure dη as η0(t)dt, with η0(t) a smooth function of (u(t), y(t), p(t)).
Therefore we obtain that the state constraint multiplier η is continuously differentiable on the
interior of boundary arcs.

Maurer in [98] extended this approach to the particular case when r = m (and s = 0) (as
many control as active state constraints), but this proof has no direct extension to the case
1 ≤ r < m.

In subsection 4.3.1, we show that assumptions (4.44) and (4.31) imply the continuity of
the control over [0, T ] (Prop. 4.8), and therefore also (A2) (no constraint regularity for the
state constraint is needed). Moreover, (A2)-(A3) imply that the multipliers associated with
mixed control-state constraints and with state constraints of first-order are continuous. In
subsection 4.3.2 we show higher regularity of the control and of the constraints multipliers
on the interior of the arcs of the trajectory (Prop. 4.13). Our proof is based on the use of
alternative multipliers (Def. 4.10).



132 CHAPITRE 4. LE CAS DE PLUSIEURS CONTRAINTES

4.3.1 Continuity of the control

Proposition 4.8. Let (u, y) be a stationary point of (P).
(i) Assume that (4.44) and (4.31) hold. Then the control u is continuous on [0, T ].
(ii) Assume that (A2) and (4.30) hold. Then the multiplier λ associated with the mixed control-
state constraints and the multipliers ηi associated with components gi of the state constraint
of first order (qi = 1) are continuous on [0, T ].

In the absence of constraints of order greater than one, point (ii) is well-known, see e.g.
[65, 68].

Proof of Prop. 4.8. Assumption (4.44) implies that for each t ∈ [0, T ], the problem (4.41) has
a strongly convex cost function and convex constraints, therefore the control u(t) is the unique
solution of (4.41). In view of (4.31), λ(t) is the unique associated multiplier. By (4.31) and
(4.44), classical results on stability analysis in nonlinear programming (e.g. an easy application
of Robinson’s strong regularity theory [121], see also [76]) show that there exists a Lipschitz
continuous function Υ : R

n × R
n∗ → R

m × R
s∗ such that (u(t), λ(t)) = Υ(y(t), p(t)), for a.a.

t ∈ [0, T ]. Since the composition of a Lipschitz continuous function with a function of bounded
variation is a function of bounded variation, it follows that u and λ are of bounded variation,
and hence have a right- and a left limit everywhere.

Fix t ∈ [0, T ]. We sometimes omit the time argument t. Denote respectively by u+

and u− the right- and left limits of u at time t. Set [u] := u+ − u− and for σ ∈ [0, 1],
uσ := σu+ +(1− σ)u−. We use similar notations for λ and p. By the costate equation (4.36),
p has at most countably many jumps, of type

[p] = p+ − p− = −
r∑

i=1

νigi,y(y(t)), with νi := [ηi(t)] ≥ 0. (4.46)

Recall that H0 denotes the augmented Hamiltonian of order zero (4.42). It follows from (4.38)
that

0 = H0
u(u

+, y, p+, λ+) −H0
u(u

−, y, p−, λ−)

=

∫ 1

0
{H0

uu(u
σ , y, pσ, λσ)[u] + [p]fu(u

σ, y) + [λ]cu(u
σ, y)}dσ.

Using (4.46) and observing that, by definition of the order of the state constraint, gi,yfu = g
(1)
i,u

equals zero if qi > 1, we obtain that

∫ 1

0
H0
uu(u

σ , y, pσ, λσ)[u]dσ =

∫ 1

0

∑

i:qi=1

νig
(1)
i,u (uσ, y)dσ −

∫ 1

0
[λ]cu(u

σ, y)dσ. (4.47)

Noticing that H0
uu(u

σ, y, pσ, λσ) = σH0
uu(u

σ, y, p+, λ+) + (1− σ)H0
uu(u

σ, y, p−, λ−) and taking
the scalar product of both sides of (4.47) by [u], we get using hypothesis (4.44) that

α|[u]|2 ≤
∑

i:qi=1

νi[g
(1)
i (u, y)] − [λ][c(u, y)]. (4.48)

If νi > 0, then gi(y(t)) = 0, and hence [g
(1)
i (u, y)] ≤ 0 since t is a local maximum of gi(y).

By (4.40), λ±(t) belongs to the normal cone to R
s
− at point c(u±(t), y(t)). By monotonicity
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of the normal cone, we obtain that [λ][c(u, y)] ≥ 0. Therefore, the right-hand side in (4.48) is
nonpositive, implying that [u] = 0, i.e. u is continuous at t. This shows (i).

Since [u] = 0, the right-hand side of (4.47) equals zero. By (4.30), the vectors (g
(1)
i,u (u, y))

for i ∈ Ig(t)∩{i : qi = 1} and ci,u(u, y) for i ∈ Ic(t) are jointly linearly independent. It follows
that [λ] = 0 and νi = 0, for all i corresponding to first-order state-constraint components.
This achieves the proof of (ii).

Remark 4.9. For point (ii) in Prop. 4.8, it is sufficient to have the linear independence
condition (4.30) for mixed control-state constraints and first-order components of the state
constraint only.

4.3.2 Higher Regularity on interior of arcs

We recall that an arc of the trajectory (u, y) is a maximal open interval of positive measure
with a constant set of active constraints (4.10), and that mixed control-state constraints are
considered as state constraint of order zero by (4.19).

Definition 4.10. Let (u, y) be a stationary point of (P), and (τ1, τ2) an arc of the trajectory,
with constant set of active constraints I(t) = J ⊂ {1, . . . , r + s}, for all t ∈ (τ1, τ2). The
alternative multipliers on (τ1, τ2) are as follows. Define the functions ηji for i = 1, . . . , r + s
and j = 1, . . . , qi if i ≤ r, j = 0 if i > r, by

η1
i (t) := −

∫

dηi(σ) = Cst− ηi(t), i ∈ J, i ≤ r,

ηji (t) := −
∫

ηj−1
i (σ)dσ j = 2, . . . , qi, i ∈ J, i ≤ r

ηji (t) := 0, j = 1, . . . , qi, i ∈ {1, . . . , r} \ J
η0
i (t) := λi(t), i ∈ J, i > r.

(4.49)

We denote here by Cst an arbitrary integration constant. The alternative multipliers (pq, ηq)
are defined by ηq := (ηq11 , . . . , η

qr+s

r+s ) and

pq(t) := p(t) −
r∑

i=1

qi∑

j=1

ηji (t)g
(j−1)
i,y (y(t)). (4.50)

The alternative Hamiltonian of order q H q : R
m×R

n×R
n∗ ×R

(r+s)∗ → R is defined by:

Hq(u, y, pq, ηq) := H(u, y, pq) + ηqG(q)(u, y) = H(u, y, pq) +
r+s∑

i=1

ηqii g
(qi)
i (u, y), (4.51)

with H the classical Hamiltonian (4.32).

Lemma 4.11. Let (u, y) be a stationary point of (P), with multipliers (p, η, λ). Then on
the interior of each arc (τ1, τ2) of the trajectory, with a constant set of active constraints
I(t) = J ⊂ {1, . . . , r + s} on (τ1, τ2), the following holds, with the alternative multipliers of
Def. 4.10, for all t ∈ (τ1, τ2): pq is absolutely continuous on (τ1, τ2) and

−ṗq(t) = Hq
y(u(t), y(t), p

q(t), ηq(t)), (4.52)

Hq(·, y(t), pq(t), ηq(t)) = H0(·, y(t), p(t), λ(t)), (4.53)
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and for all i = 1, . . . , r + s:

g
(qi)
i (u(t), y(t)) = 0, i ∈ J (4.54)

ηqii (t) = 0, i /∈ J. (4.55)

Remark 4.12. An obvious consequence of (4.53) is that u minimizes H0(·, y(t), p(t), λ(t)) iff it
minimizes Hq(·, y(t), pq(t), ηq(t)), and in particular, by (4.38), a stationary point satisfies

0 = Hq
u(u(t), y(t), p

q(t), ηq(t)). (4.56)

Proof. For the sake of completeness of the paper, let us recall the proof, due to Maurer in [98]
when there are no mixed control-state constraints. Relation (4.54) follows from differentiation
w.r.t. t ∈ (τ1, τ2) of the relation gi(y(t)) = 0, for i ∈ J , i ≤ r and (4.55) follows from definition

(4.49). By definition of the constraint order qi, the function g
(j)
i (u, y) does not depend on u,

for all j = 1, . . . , qi − 1 and i = 1, . . . , r, and hence, for all û ∈ R
m, we have:

H0(û, y, p, λ) = H0(û, y, pq, λ) + (p− pq)f(û, y)

= H0(û, y, pq, λ) +
∑r

i=1

∑qi
j=1 η

j
i g

(j)
i (û, y)

= Hq(û, y, pq, ηq) + F (t),

where

F (t) :=

r∑

i=1

qi−1
∑

j=1

ηji (t)g
(j)
i (y(t))

does not depend on û. For all i = 1, . . . , r, if i ∈ J , then g
(j)
i (y(t)) = 0, and if i /∈ J , then

ηji (t) = 0 by (4.49). Consequently, F (t) = 0, which proves (4.53).

We show now (4.52). Using (4.50) and that η̇ji = −ηj−1
i , for j = 2, . . . , qi, i ≤ r, we have:

−dpq = −dp+
r∑

i=1

{
qi∑

j=1

ηji g
(j−1)
i,yy (y)f(u, y)dt−

qi∑

j=2

ηj−1
i g

(j−1)
i,y (y)dt− dηigi,y(y)}. (4.57)

Since

−dp = Hy(u, y, p
q)dt+ (p− pq)fy(u, y)dt+

r∑

i=1

dηigi,y(y) +
r+s∑

i=r+1

λici,y(u, y)dt,

substituting p− pq into (4.57) using (4.50), we obtain:

−dpq = Hy(u, y, p
q)dt +

r+s∑

i=r+1

η0
i g

(0)
i,y (u, y)dt

+
r∑

i=1

{
qi∑

j=1

ηji (g
(j−1)
i,y (y)fy(u, y) + g

(j−1)
i,yy (y)f(u, y)) −

qi∑

j=2

ηj−1
i g

(j−1)
i,y (y)}dt.

Using (4.18), it follows that

−dpq = Hy(u, y, p
q)dt+

r+s∑

i=1

ηqii g
(qi)
i,y (u, y)dt,

which shows (4.52) and achieves the proof.
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Proposition 4.13. Assume that the data are (at least) C 2qmax. Let (u, y) be a stationary
point of (P), with multipliers (p, η, λ), and let (τ1, τ2) ⊂ [0, T ] be such that I(t) is constant on
(τ1, τ2), u is continuous on (τ1, τ2), and (4.45) and (4.30) are satisfied on (τ1, τ2). Then on
(τ1, τ2), u is Cqmax, y is Cqmax+1, p is C1, λ is Cqmax and the state constraint multiplier ηi is
Cqmax−qi+1, for all i = 1, . . . , r.

Proof. Denote by J ⊂ {1, . . . , r+ s} the constant set of active constraints I(t) for t ∈ (τ1, τ2).
The Jacobian w.r.t. u and (ηqii )i∈J of the equations (4.56) and (4.54), the latter being rewritten

as G
(q)
J (u(t), y(t)) = 0, is given by

(

Huu(u, y, p
q) +

∑

i∈J η
qi
i g

(qi)
i,uu(u, y) G

(q)
J,u(u, y)

>

G
(q)
J,u(u, y) 0

)

. (4.58)

By (4.53),

Huu(u, y, p
q) +

∑

i∈J

ηqii g
(qi)
i,uu(u, y) = Hq

uu(u, y, p
q, ηq) = H0

uu(u, y, p, λ)

is positive definite on KerG
(q)
J,u(u, y) by (4.45), and by (4.30), G

(q)
J,u(u, y) is onto. Since by

assumption u is continuous, by (4.30) and (4.56), we deduce that (ηqii )i∈J is also continuous.
Thus we can apply the implicit function Theorem to express u and (ηqii )i∈J as Cqmax implicit
functions of (y, pq). Since (y, pq) is solution of a Cqmax−1 differential equation system (4.2) and
(4.52), we deduce that (y, pq, u, ηqii ), i ∈ J , are Cqmax on (τ1, τ2). By (4.55), the components
ηqii for i /∈ J being equal to zero on (τ1, τ2) are also trivially Cqmax on (τ1, τ2). Finally,
recall that the classical multipliers ηi and p are related to the alternative ones by (4.49), i.e.

ηi(t) = (−1)qi dqi−1

dtqi−1 η
qi
i (t), and (4.50). It follows that each component ηi is Cqmax−qi+1 for

i ≤ r, λi = η0
i is Cqmax, for all i = r + 1, . . . , r + s, and p is C1, locally on (τ1, τ2).

4.4 Local exact linearization of the “constraint dynamics”

We first give in subsection 4.4.1 a result of “local invariance” of stationary points by a local
change of coordinates and nonlinear feedback (Lemma 4.15). We use this result in subsection
4.4.3 to show that, assuming (A3) and the continuity of u, we can locally “linearize the
constraints dynamics” (Lemma 4.19), and we will use this “normal form” of the system in the
proof of the junctions conditions results in Prop. 4.22. For that, a technical lemma (Lemma
4.17) given in subsection 4.4.2 is needed, which will also be used in the proofs of Prop. 4.29
and Th. 4.33.

4.4.1 Local invariance of stationary points by change of coordinates

Definition 4.14. Let (u, y) be a trajectory, and t0 ∈ (0, T ). A couple of mappings (φ, ψ) is a
Ck local change of state variables and nonlinear feedback at time t0, k ≥ 1, if there exist δ > 0
and an open neighborhood Vu × Vy in R

m × R
n of {(u(t), y(t)) ; t ∈ (t0 − δ, t0 + δ)}, such

that φ : Vy → φ(Vy) =: Vz, ψ : Vu × Vy → ψ(Vu × Vy) =: Vv and there exist φ̄ : Vz → Vy and
ψ̄ : Vv × Vz → Vu such that for all (u, y, v, z) ∈ Vu × Vy × Vv × Vz, we have

z = φ(y) ⇔ y = φ̄(z); v = ψ(u, y) ⇔ u = ψ̄(v, z)

and the inverse mappings φ̄ and ψ̄ are Ck over Vz and Vv × Vz, respectively.
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Lemma 4.15 (Invariance of stationarity equations). Let (u, y) be a trajectory, and
t0 ∈ (0, T ). Let (φ, ψ) be a local change of state variable and nonlinear feedback at time t0,
with δ > 0 as in Def. 4.14. Then (u, y) satisfies with multipliers (p, η, λ) the stationarity
equations (4.35)-(4.36) and (4.38)-(4.40) locally on (t0 − δ, t0 + δ), iff (v, z, π) defined on
(t0 − δ, t0 + δ) by

z(t) := φ(y(t)); v(t) := ψ(u(t), y(t)); π(t) := p(t)φ−1
y (y(t)) (4.59)

satisfies on (t0 − δ, t0 + δ):

ż(t) = f̂(v(t), z(t)) (4.60)

−dπ(t) = Ĥz(v(t), z(t), π(t))dt + dη(t)ĝz(z(t)) + λ(t)ĉz(v(t), z(t))dt (4.61)

0 = Ĥv(v(t), z(t), π(t)) + λ(t)ĉv(v(t), z(t)) a.e. (4.62)

ĝ(z(t)) ≤ 0; dη ≥ 0;
∫ to+δ
t0−δ

dη(t)ĝ(z(t)) = 0; (4.63)

ĉ(v(t), z(t)) ≤ 0; λ(t) ≥ 0 a.e.;
∫ to+δ
t0−δ

λ(t)ĉ(v(t), z(t))dt = 0; (4.64)

with the new dynamics, integral cost function, Hamiltonian, and state and mixed constraints
given by

f̂(v, z) := φy(φ̄(z))f(ψ̄(v, z), φ̄(z)) (4.65)

ˆ̀(v, z) := `(ψ̄(v, z), φ̄(z)) (4.66)

Ĥ(v, z, π) := ˆ̀(v, z) + πf̂(v, z) (4.67)

ĝ(z) := g(φ̄(z)) (4.68)

ĉ(v, z) := c(ψ̄(v, z), φ̄(z)). (4.69)

In addition, the augmented Hamiltonian of order 0 and the time derivatives of the state con-
straint (all components supposed to be of finite order qi, i = 1, . . . , r), are invariant, i.e., on
Vz × Vv:

Ĥ0(v, z, π, λ) := Ĥ(v, z, π) + λĉ(v, z) = H0(ψ̄(v, z), φ̄(z), πφy(φ̄(z)), λ); (4.70)

ĝ
(j)
i (z) = g

(j)
i (φ̄(z)), for all j = 1, . . . , qi − 1, i = 1, . . . , r; (4.71)

ĝ
(qi)
i (v, z) = g

(qi)
i (ψ̄(v, z), φ̄(z)), i = 1, . . . , r. (4.72)

Proof. Assume that (u, y, p, η, λ) satisfies (4.35)-(4.36) and (4.38)-(4.40) for t ∈ (t0− δ, t0 + δ),
and let us show that (v, z, π, η, λ) satisfies (4.60)-(4.64) on (t0 − δ, t0 + δ). The converse is
proved similarly by symmetry. By (4.59), (4.65) and (4.68)-(4.69), it is obvious that (4.60),
(4.63) and (4.64) follow from (4.35) and (4.39)-(4.40). Moreover, we have

Ĥ0
v (v, z, π, λ) = Dv{`(ψ̄(v, z), φ̄(z)) + πφy(φ̄(z))f(ψ̄(v, z), φ̄(z)) + λc(ψ̄(v, z), φ̄(z))}

= H0
u(ψ̄(v, z), φ̄(z), p, λ) ψ̄v(v, z).

Since ψ̄v is invertible, this gives (4.62). It remains to check the costate equation. We have

Ĥ0
z (v, z, π, λ) = H0

u(ψ̄(v, z), φ̄(z), p, λ)ψ̄z(v, z) +H0
y (ψ̄(v, z), φ̄(z), p, λ)φ̄z(z)

+ πφyy(φ̄(z))(φ̄z(z), f(ψ̄(v, z), φ̄(z))).
(4.73)

By definition of π in (4.59), we have

dp(t) = d{π(t)φy(φ̄(z(t)))}
= dπ(t)φy(φ̄(z(t))) + π(t)φyy(φ̄(z))f(ψ̄(v, z), φ̄(z))dt.
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Since φy(φ̄(z))φ̄z(z) ≡ Id, using (4.36), (4.73) and (4.38) on (t0 − δ, t0 + δ), we obtain

−dπ(t) = −dp(t)φ̄z(z) + π(t)φyy(φ̄(z))(f(ψ̄(v, z), φ̄(z)), φ̄z(z))dt

= Ĥ0
z (v, z, π, λ)dt + dηgy(φ̄(z))φ̄z(z) = Ĥ0

z (v, z, π, λ)dt + dηĝz(z),

which gives (4.61). From (4.65) and (4.68), by induction for j = 1, . . . , qi, we obtain

ĝ
(j)
i (v, z) = ĝ

(j−1)
i,z (z)f̂(v, z)

= g
(j−1)
i,y (φ̄(z))φ̄z(z)φy(φ̄(z))f(ψ̄(v, z), φ̄(z))

= g
(j−1)
i,y (φ̄(z))f(ψ̄(v, z), φ̄(z)) = g

(j)
i (ψ̄(v, z), φ̄(z)),

which shows (4.71)-(4.72) and achieves the proof.

Remark 4.16. With the notations and assumptions of Lemma 4.15, we have

Ĥ0
vv(v, z, π, λ) = H0

uu(u, y, p, λ)(ψ̄v(v, z), ψ̄v(v, z)) +H0
u(u, y, p, λ) ψ̄vv(v, z) (4.74)

and, for J ⊂ {1, . . . , r + s}, defining Ĝ
(q)
J (v, z) :=

(

ĝ
(qi)
i (v, z)

)

i∈J
, with still qi := 0 and

ĝ
(0)
i := ĉi for i = r + 1, . . . , r + s, we obtain by (4.72) and (4.69):

Ĝ
(q)
J,v(v(t), z(t)) = G

(qi)
J,u (u(t), y(t))ψ̄v(v(t), z(t)).

Since H0
u(u, y, p, λ) = 0 at a stationary point, and ψ̄v(v, z) is invertible over Vv×Vz, we obtain

that if (u, y) is a stationary point, then assumptions (4.43) (or (4.45)) and (4.30) are locally
invariant by local change of coordinate and nonlinear feedback (but of course, with possibly
different positive constants α and γ).

4.4.2 The Linear Independence Lemma

Given J ⊂ {1, . . . , r}, we denote by |qJ | :=
∑

i∈J qi and |q| :=
∑r

i=1 qi. Define the mapping

ΓJ : R
n → R

|qJ | that with y associates the “J” state constraints and their time derivatives
depending on y only, by:

ΓJ(y) :=

















gi1(y)
...

g
(qi1−1)
i1

(y)
...

gis(y)
...

g
(qis−1)
is

(y)

















, J = {i1, . . . , is}, i1 < · · · < is. (4.75)

Lemma 4.17. Let ŷ ∈ R
n and J ⊂ {1, . . . , r}. Assume that there exists ŵ ∈ R

m such that

G
(q)
J,u(ŵ, ŷ) has full rank |J |. Then the matrix ΓJ,y(ŷ) has full rank, equals to |qJ |.

The above result is well-known in the case when the dynamics and the constraints are
linear, but since we were not able to find a reference for it in the general nonlinear case, we
give a proof below, which uses the relations (4.77) established in [98].
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Proof. For τ ∈ (0, T ) and small δ > 0, consider the solution y of the state equation ẏ(t) =
f(u(t), y(t)) over (τ − δ, τ + δ), with y(τ) = ŷ and u : (τ − δ, τ + δ) → R

m is here any Cqmax

function such that u(τ) = ŵ. For k = 1, . . . , qmax−1, define the mappings Ak : (τ−δ, τ+δ) →
R
n×m by:

{
A0(t) := fu(u(t), y(t))

Ak(t) := fy(u(t), y(t))Ak−1(t) − Ȧk−1(t) 1 ≤ k ≤ qmax − 1.
(4.76)

The proof of the lemma is based on the following relations, due to [98]. For all t ∈ (τ−δ, τ+δ)
and i = 1, . . . , r, we have:







g
(j)
i,y (y(t))Ak(t) = 0 for k, j ≥ 0, k + j ≤ qi − 2,

g
(j)
i,y (y(t))Aqi−j−1(t) = g

(qi)
i,u (u(t), y(t)) for 0 ≤ j ≤ qi − 1.

(4.77)

For the sake of completeness of the paper, let us recall how to prove (4.77). We first show
that for all j = 0, . . . , qi − 1, the following assertion

g
(j)
i,y (y(t))Ak(t) = 0 ∀ t ∈ (τ − δ, τ + δ) (4.78)

implies that

g
(j+1)
i,y (u(t), y(t))Ak(t) = g

(j)
i,y (y(t))Ak+1(t) ∀ t ∈ (τ − δ, τ + δ). (4.79)

Indeed, by derivation of (4.78) w.r.t. time, we get using (4.18)

0 = g
(j)
i,yy(y)f(u, y)Ak + g

(j)
i,y (y)Ȧk

= g
(j)
i,yy(y)f(u, y)Ak + g

(j)
i,y (fy(u, y)Ak −Ak+1)

= g
(j+1)
i,y (u, y)Ak − g

(j)
i,y (y)Ak+1.

This gives (4.79). We also have that g
(j)
i,u(u, y) = g

(j−1)
i,y (y)fu(u, y) = g

(j−1)
i,y (y)A0 for j =

1, . . . , qi. Since g
(j)
i,u = 0 for j ≤ qi − 1, it follows that g

(j)
i,yA0 = 0 for j = 0, . . . , qi − 2. By

(4.79), we deduce that g
(j)
i,yA1 = 0 for j = 0, . . . , qi − 3. By induction, this proves the first

equation in (4.77). Since g
(qi−2)
i,y A0 = 0 = g

(qi−3)
i,y A1 = · · · = gi,yAqi−2, by (4.79) we obtain

g
(qi)
i,u = g

(qi−1)
i,y A0 = g

(qi−2)
i,y A1 = · · · = gi,yAqi−1, which proves the second equation in (4.77).

Assume w.l.o.g. that J = {1, . . . , r′}, with r′ ≤ r, and that q1 ≥ q2 ≥ · · · ≥ qr′ ≥ 1.
Consider the matrix

K(t) :=
(
Aq1−1(t) . . . A1(t) A0(t)

)
∈ R

n×mq1 , (4.80)

and form the product matrix

P (t) := ΓJ,y(y(t))K(t) ∈ R
|qJ |×mq1 . (4.81)

Let q̃i :=
∑i

l=1 ql, and for i = 1, . . . , r′, denote by Pi(t) ∈ R
qi×mq1 the submatrix formed by

the rows q̃i−1 + 1 to q̃i of P (t). By (4.77), we have

Pi(t) =









∗ g
(qi)
i,u (u(t), y(t)) . . . 0

∗ ...
. . .

...

∗
︸︷︷︸

m(q1−qi)

∗ · · · g
(qi)
i,u (u(t), y(t))









. (4.82)
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Let us show that P (τ) has full rank |qJ |. For that consider a linear combination of the

rows `j of P (τ),
∑|qJ |

j=1 βj`j = 0. By (4.82), only the rows of P (τ) for j = q̃i, i = 1, . . . , r′,

have a contribution to the last m components of
∑|qJ |

j=1 βj`j. It is easily seen that these last

m components are a linear combination of the rows of G
(q)
J,u(u(τ), y(τ)), with coefficients βq̃i .

Since u(τ) = ŵ and G
(q)
J,u(ŵ, y(τ)) has full rank by hypothesis, it follows that βq̃i = 0 for all

i = 1, . . . , r′. Repeating the same argument, we obtain that βj = 0 for all j = 1, . . . , |qJ |, i.e.
the product matrix P (t) has rank |qJ |. Therefore, the matrix ΓJ,y(y(τ)) has rank |qJ |.

Corollary 4.18. Let a trajectory (u, y) satisfy (4.30). Then the matrix ΓIg(t),y(y(t)) has full
rank, equals to |qIg(t)|, for all t ∈ [0, T ] (and consequently,

∑

i∈Ig(t) qi ≤ n).

4.4.3 Locally Normal form of the state equation

Lemma 4.19. Let (u, y) be a trajectory and t0 ∈ (0, T ) such that u is continuous at t0.
Assume that f, g are (at least) C2qmax, that (4.30) holds at t = t0, and w.l.o.g. that I(t0) =
{1, . . . , r′} ∪ {r + 1, . . . , r + s′} =: J . Then there exists a Cqmax local change of variable and
nonlinear feedback (φ, ψ), defined over a neighborhood of (u(t0), y(t0)), such that, with the
notations of Lemma 4.15, the new dynamics f̂ writes on (t0 − δ, t0 + δ), with q̃i :=

∑i
l=1 ql

(and q̃0 = 0):






żq̃i−1+1(t) = zq̃i−1+2(t)
...

żq̃i−1(t) = zq̃i(t)
żq̃i(t) = vi(t)

i = 1, . . . , r′

żN (t) = f̂N (v(t), z(t)),

(4.83)

where zN and f̂N denote components |qJ | + 1, . . . , n of z and f̂ , and the state and mixed
constraints ĝ and ĉ are given by:

ĝi(z(t)) = zq̃i−1+1(t) ≤ 0, i = 1, . . . , r′ (4.84)

ĉi(v(t), z(t)) = vi−r+r′(t) ≤ 0, i = r + 1, . . . , r + s′. (4.85)

Under this change of coordinates, the active state constraints ĝi and their time derivatives
until order qi are linear, and the active mixed control-state constraints ĉi are linear as well,
and depend only on the control.

Proof. By Coro. 4.18, the Jacobian ΓJ,y(y(t0)) has full-rank, equal to |qJ |, and since y is
continuous at t0, there exist δ > 0 and a diffeomorphism φ defined over an open neighborhood
Vy in R

n of {y(t) ; t ∈ (t0 − δ, t0 + δ)}, such that φk(y) = ΓJ(y)|k, for all k = 1, . . . , |qJ |.
By (4.30), there exists then an open neighborhood Vu of u(t0) in R

m, such that all u ∈ Vu

can be partitioned in u = (uG, uN ) ∈ R
r′+s′ × R

m−r′−s′ , and G
(q)
J,uG

(u(t0), y(t0)) is invertible
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(note that |J | = r′ + s′). Consequently, reducing Vu and Vy if necessary, the mapping

ψ(·, y) : u 7→
















g
(q1)
1 (u, y)

...

g
(qr′ )
r′ (u, y)
cr+1(u, y)

...
cr+s′(u, y)

uN
















(4.86)

has an invertible Jacobian ψu(u, y), for all (u, y) ∈ Vu × Vy. Since by assumption, u is
continuous at t0, reducing δ if necessary, Vu is a neighborhood of {u(t); t ∈ (t0 − δ, t0 + δ)}.

Therefore, (φ, ψ) is a Cqmax local change of state variables and nonlinear feedback, so
Lemma 4.15 applies, and formulae (4.65) and (4.68)-(4.69) give the expressions (4.83) and
(4.84)-(4.85).

4.5 Junctions Conditions Analysis

In Prop. 4.13, it was shown that when assumptions (A2) and (A3) hold, the control and
multipliers are smooth on the interior of the arcs of the trajectory. In this section we study
the regularity of the control and multipliers at the junction between two arcs. The main
result of this section is Prop. 4.22 which generalizes the result obtained by Jacobson, Lele,
and Speyer [75] in the particular case of a scalar control and scalar state constraint.

4.5.1 Junction points

The set of junction points (or junction times) of constraint i = 1, . . . , r + s, is defined as the
endpoints in (0, T ) of the contact set ∆i and is denoted by T i := ∂∆i.

A boundary (resp. interior) arc of component gi is a maximal open interval of positive
measure Ii ⊂ [0, T ], such that gi(y(t)) = 0 (resp. gi(y(t)) < 0) for all t ∈ Ii. If (τ ien, τ

i
ex) is

a boundary arc of gi, then τ ien and τ iex are called respectively entry and exit point (or time)
of the constraint gi. A touch point τ ito in (0, T ) is an isolated contact point for constraint gi
(endpoint of two interior arcs). Similar definitions of boundary and interior arcs, entry, exit
and touch points for the mixed control-state constraints ci, i = r + 1, . . . , r + s, hold. Thus
entry, exit and touch points are by definition junction points.

Definition 4.20. We say that a junction point τ is regular, if it is endpoint of two arcs.

By the above definition, a cluster point of junction times is not a regular junction time.
The (disjoint and possibly empty) sets of regular entry, exit and touch points of constraint
gi and ci will be respectively denoted by T i

en, T i
ex, and T i

to. Thus T i ⊃ T i
en ∪ T i

ex ∪ T i
to with

equality for all i = 1, . . . , r + s iff all the junction points are regular (equivalently, iff T i is
finite for all i = 1, . . . , r + s). The set of all junctions times of the trajectory (u, y) will be
denoted by T , with

T :=

r+s⋃

i=1

T i. (4.87)

Definition 4.21. A touch point τ ito ∈ T i
to of the state constraint gi, for i = 1, . . . , r, is said to

be essential, if it belongs to the support of the multiplier ηi, that is if [ηi(τ
i
to)] > 0.
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In other words, a touch point is essential, if strict complementarity locally holds at that
touch point. Otherwise, it is said nonessential. The set of essential (resp. nonessential)
touch points for constraint i will be denoted by T i,ess

to (resp. T i,nes
to ). For mixed control-state

constraints, since λ ∈ L∞, we will say by extension that touch points of mixed control-state
constraints are always nonessential. The regularity of u, η, λ given in Prop. 4.13 is not affected
by the presence of nonessential touch points.

Recall now the alternative multipliers in subsection 4.3.2. Let τ be a regular junction time,
i.e. τ is the right and left endpoint of two arcs, (τ1, τ) and (τ, τ2), with constant set of active
constraints J1 and J2, respectively. Note that J1 ∪ J2 ⊂ I(τ), the inclusion being strict iff τ
is a touch point for at least one of the constraint. The multipliers ηji for j = 1, . . . , qi and
i = 1, . . . , r being defined in (4.49) up to a polynomial function of order j − 1 on each arc
(τ1, τ) and (τ, τ2), their jump at τ are well-defined. According to (4.50) and (4.36), it holds,
with νiτ := [ηi(τ)] ≥ 0:

[pq(τ)] = [p(τ)] −
∑

i∈I(τ)

qi∑

j=1

[ηji (τ)]g
(j−1)
i,y (y(τ))

= −
∑

i∈I(τ)

{(νiτ + [η1
i (τ)])gi,y(y(τ)) +

qi∑

j=2

[ηji (τ)]g
(j−1)
i,y (y(τ))}.

(4.88)

4.5.2 Junction conditions

We say that a function u ∈ L∞(0, T ; Rm) is continuous until order k ≥ 0 at point τ ∈ (0, T ),
if u and its time derivatives u̇, . . . , u(k) are continuous at τ . We say that u is discontinuous
at order k′ ≥ 1 at point τ , if u is continuous until order k ′ − 1 and if the time derivative u(k′)

of order k′ is discontinuous at τ . This integer k ′ will be called the order of discontinuity of
the control. If u is not continuous at τ (resp. if u is C∞ at τ), we say that u has order of
discontinuity 0 (resp. ∞).

The next theorem is an extension of the junction conditions results of Jacobson, Lele and
Speyer [75] to the case of a vector-valued state constraint and control. Let us recall their
result. Given an optimal control problem with a scalar control u(t) ∈ R and a scalar state
constraint g(y(t)) ≤ 0, if (u, y) is a stationary point satisfying assumptions (A2)-(A3), then
the time derivatives of u are continuous at a regular junction point until an order that depends
on the order q of the (scalar) state constraint, and on the nature of the junction point (regular
entry/exit points versus essential touch points). More precisely, for constraints of first order, u
is continuous at entry/exit points, and essential touch points cannot occur (see Prop. 4.8(ii)).
For constraints of even order q ≥ 2, u is continuous until order q−2 at regular entry/exit points
and essential touch points. For constraints of odd order q ≥ 3, u is continuous until order q−1
at regular entry/exit points and until order q − 2 at essential touch points. The result is
illustrated in figure 4.1 below. The junction condition results for mixed control-constraints
(q = 0) were added.

When studying the second-order necessary condition (see section 4.6), we have to compute
the expression (4.120) at junction points τ . To this end, we use Taylor expansions of the
nominator and denominator in the neighborhood of τ , and for this we need to know the order
of discontinuity of the function gi(y(t)) at regular entry/exit points. Since dqi

dtqi
gi(y(t)) =

g
(qi)
i (u(t), y(t)), we see that the order of discontinuity of gi(y(t)) is at least qi plus the order

of discontinuity of the control.
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entry/exit points ess. touch points
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Figure 4.1: Order of continuity of the control at a regular junction point, in function of the
order of the constraint q and the nature of the junction point (in the scalar case).

Proposition 4.22. Assume that the data are (at least) C 2qmax. Let (u, y) be a stationary
point of (P), and let τ ∈ (0, T ) be a regular junction point. Assume that u is continuous at τ
and that (4.45) and (4.30) are satisfied at t = τ . Let

qτ := min{ qi ; τ ∈ T i
en ∪ T i

ex ∪ T i,ess
to , i ∈ I(τ)}. (4.89)

(i) If qτ ≥ 3, then the control is continuous at τ until order qτ − 2.
(ii) If in addition, the following holds:

qτ is odd, and for all i such that qi = qτ and τ ∈ T i \ T i,nes
to

τ is an entry or exit point, i.e. τ ∈ T i
en ∪ T i

ex,
(4.90)

then the control is continuous at τ until order qτ − 1.
The alternative multipliers ηqii for all i = 1, . . . , r + s such that τ ∈ int∆i are continuous

at τ until the same order as the control. In particular,

(i′) If qτ ≥ 3, νiτ = [ηi(τ)] = 0 for all i ∈ I(τ) such that qi < qτ , (4.91)

(ii′) If (4.90) holds, νiτ = [ηi(τ)] = 0 for all i ∈ I(τ) such that qi ≤ qτ . (4.92)

Remark 4.23. If qτ = 1, then (4.90) always holds since components of first order of the state
constraint have no essential touch points by Prop. 4.8(ii). It follows then from Prop. 4.8 that
point (i’) (resp. (ii’)) of Prop. 4.22 holds true when qτ = 2 (resp. qτ = 1).

Proof. Let τ ∈ T be such that qτ > 2. Assume w.l.o.g. that

I(τ) = {1, . . . , r′} ∪ {r + 1, . . . , r + s′} =: J, 1 ≤ q1 ≤ . . . ≤ qr′ . (4.93)

We will use the local invariance of stationary points of Lemma 4.15 for the particular choice
of (φ, ψ) given in Lemma 4.19, and write the optimality conditions in these variables (v, z).
Since u(t) = ψ̄(v(t), z(t)), ψ̄ is Cqmax, and ψ̄v(v(t), z(t)) is invertible in the neighborhood of τ ,
the continuity of u, . . . , u(j) for j ≤ qmax is equivalent to the continuity of v, . . . , v(j). Assume
w.l.o.g. that δ > 0 is so small that T ∩ (τ − δ, τ + δ) = {τ}. Define

rk := Card{i ∈ I(τ) ; 1 ≤ qi ≤ k}, 0 ≤ k ≤ qmax, r0 := 0.

Then rqmax = r′, and the useful relation below holds, for all 1 ≤ i ≤ r ′ and 1 ≤ k ≤ qmax:

rk−1 < i ≤ rk iff qi = k. (4.94)
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Denote the nonlinear part of the Hamiltonian by:

L̂(v, z, πN ) := ˆ̀(v, z) +
n∑

k=|qJ |+1

πkf̂k(v, z) = ˆ̀(v, z) + πN f̂N (v, z),

where, similarly to yN and f̂N , we denote by πN the last n− |qJ | components of π, and still
denote q̃i :=

∑i
l=1 ql for i = 0, . . . , r′. Then (v, z) is solution on (τ − δ, τ + δ) of the state

equation (4.83), and, since

Ĝ
(q)
J (v, z) = (v1, . . . , vr′ , vr′+1, . . . , vr′+s′)

>,

the alternative costate and control equations (recall Lemma 4.11 and Rem. 4.12) satisfied on
(τ − δ, τ) ∪ (τ, τ + δ) are respectively given by:







−π̇qq̃i−1+1(t) = L̂zq̃i−1+1
(v(t), z(t), πqN (t))

−π̇qq̃i−1+2(t) = L̂zq̃i−1+2
(v(t), z(t), πqN (t)) + πqq̃i−1+1(t)

...

−π̇qq̃i(t) = L̂zq̃i
(v(t), z(t), πqN (t)) + πqq̃i−1(t)

i = 1, . . . , r′ (4.95)

−π̇qN (t) = L̂zN
(v(t), z(t), πqN (t)); (4.96)

0 = L̂vi
(v(t), z(t), πqN (t)) + πqq̃i(t) + ηqii (t), i = 1, . . . , r′ (4.97)

0 = L̂vi
(v(t), z(t), πqN (t)) + η0

i−r′+r(t), i = r′ + 1, . . . , r′ + s′ (4.98)

0 = L̂vN
(v(t), z(t), πqN (t)), (4.99)

where vN denotes the remaining m− r′ − s′ components of the control. Since ĝ
(j−1)
i,y (z) is the

(q̃i−1 + j)-th basis vector, by (4.88), the jump of each component of πq satisfies, using that
q̃i−1 + 1 = i if i ≤ r1 (recall that here, ν iτ = [ηi(τ)] ≥ 0 and by Prop. 4.8(ii), νiτ = 0 if qi = 1,
i.e. if i ≤ r1 by (4.94)):

[πqi (τ)] + [η1
i (τ)] = −νiτ = 0 i = 1, . . . , r1

[πqq̃i−1+1(τ)] + [η1
i (τ)] = −νiτ ≤ 0 i = r1 + 1, . . . , r′

[πqq̃i−1+j
(τ)] + [ηji (τ)] = 0, j = 2, . . . , qi, i = r1 + 1, . . . , r′

[πqN (τ)] = 0.

(4.100)

For future reference, we rewrite the above relations as

[πqq̃i(τ)] + [ηqii (τ)] = −νiτ = 0 i = 1, . . . , r1

[πqq̃i−qi+1(τ)] + [η1
i (τ)] = −νiτ ≤ 0 i = r1 + 1, . . . , r′

[πqq̃i−j(τ)] + [ηqi−ji (τ)] = 0, j = 0, . . . , qi − 2, i = r1 + 1, . . . , r′

[πqN (τ)] = 0.

(4.101)

By Prop. 4.13, the control and state constraint alternative multiplier ηq are Cqmax on
interiors of arcs, therefore we may define over (τ − δ, τ) ∪ (τ, τ + δ) the functions aji for
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i = 1, . . . , r′ + s′ and j = 0, . . . , qmax by:

a0
i (t) := L̂vi

(v(t), z(t), πqN (t)),
{
aj+1
i (t) := − d

dta
j
i (t) + L̂zq̃i−j

(v(t), z(t), πqN (t)), 0 ≤ j ≤ qi − 1

aj+1
i (t) := − d

dta
j
i (t), qi ≤ j ≤ qmax.

After j derivations of row i of (4.97) and (4.98), 1 ≤ j ≤ qmax, we obtain using (4.95) that
the following holds, on (τ − δ, τ) ∪ (τ, τ + δ):

0 = aji (t) + πqq̃i−j(t) + ηqi−ji (t), 1 ≤ j ≤ qi − 1, i = 1, . . . , r′, (4.102)

0 = aji (t) + (−1)qi−jηqi−ji (t), qi ≤ j ≤ qmax, i = 1, . . . , r′, (4.103)

0 = aji (t) + (−1)−jη−ji−r′+r(t), 1 ≤ j ≤ qmax, i = r′ + 1, . . . , r′ + s′. (4.104)

Here, for all i ∈ J , we define for qi− j ≤ 0, ηqi−ji := (−1)qi dj

dtj
ηqii (t). We have, by definition of

the functions aji , for all 1 ≤ j ≤ qmax and i = 1, . . . , r′ + s′, with (4.95)-(4.96),

aji (t) = (−1)jL̂viv(v(t), z(t), π
q
N (t))v(j)(t)

+ a continuous function of (v(j−1)(t), . . . , v(t), z(t), πqN (t)).
(4.105)

This implies in particular that if v, . . . , v(j−1) are continuous at τ , then the jump of aji at time
τ is given by

[aji (τ)] = (−1)jL̂viv(v(t), z(t), π
q
N (τ))[v(j)(τ)].

Similarly, by derivations of (4.99), we obtain, for all 1 ≤ j ≤ qmax:

0 = (−1)jL̂vNv(v(t), z(t), π
q
N (t))v(j)(t)

+ a continuous function of (v(j−1)(t), . . . , v(t), z(t), πqN (t)).
(4.106)

Let us show now that the time derivatives of the control v are continuous until order qτ−2.
By assumption, v is continuous at τ . By induction, assume that v, . . . , v (j−1) are continuous
at τ , for j < qτ − 2. Taking the jump at τ in (4.102)-(4.103) and (4.106), we obtain, for
i = 1, . . . , r′ + s′ (recall that by (4.94), i ≤ rj iff 1 ≤ qi ≤ j):

0 = (−1)jL̂viv(v(τ), z(τ), π
q
N (τ))[v(j)(τ)] + (−1)qi−j[ηqi−ji (τ)], i ≤ rj

0 = (−1)jL̂viv(v(τ), z(τ), π
q
N (τ))[v(j)(τ)] + [πqq̃i−j(τ)] + [ηqi−ji (τ)], rj < i ≤ r′

0 = (−1)jL̂viv(v(τ), z(τ), π
q
N (τ))[v(j)(τ)] + (−1)−j [η−ji−r′+r(τ)], i > r′

0 = (−1)jL̂vNv(v(τ), z(τ), π
q
N (τ))[v(j)(τ)].

(4.107)

We denote in the sequel by vk+1:l the subvector of components k + 1, . . . , l of v. Similarly,
νk+1:l
τ denotes the column vector of components ν iτ for i = k + 1, . . . , l. Recall that by (4.94),
qi − j = 1 iff rj < i ≤ rj+1, and qi − j > 1 iff i > rj+1. Since Ĥ0

vv = L̂vv depends only on
(v, z, πqN = πN ), we write in what follows Ĥ0

vv(v, z, π
q
N ) instead of Ĥ0

vv(v, z, π, λ), and using
(4.101), equations (4.107) become:

Ĥ0
vv(v(τ), z(τ), π

q
N (τ))














[

v
(j)
1:rj

(τ)
]

[

v
(j)
rj+1:rj+1

(τ)
]

[

v
(j)
rj+1+1:r′(τ)

]

[

v
(j)
r′+1:r′+s′(τ)

]

[

v
(j)
r′+s′+1:m(τ)

]














=












(−1)qi+1[ηqi−ji (τ)]

(−1)jν
rj+1:rj+1
τ

0

− [η−ji−r′+r(τ)]

0












. (4.108)
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By remark 4.16, Ĥ0
vv(v(τ), z(τ), π

q
N (τ)) satisfies (4.45) for some positive constant α′. Since

[v(j)(τ)] is such that ĝ
(qi)
i,v (v(τ), z(τ))[v(j)(τ)] = [v

(j)
i (τ)] = 0 for all i = 1, . . . , r′ such that

τ ∈ int∆i, and ĝ
(qi)
i,v (v(τ), z(τ))[v(j)(τ)] = [v

(j)
i+r′−r(τ)] = 0 for all i = r+1, . . . , r+ s′ such that

τ ∈ int∆i, it follows that

α′|[v(j)(τ)]|2 ≤ [v(j)(τ)]>Ĥ0
vv(v(τ), z(τ), π

q
N (τ))[v(j)(τ)]. (4.109)

For all j ≤ qτ − 1, by definition of qτ , we have τ ∈ int ∆i, for all i = 1, . . . , rj and hence,

[v
(j)
i (τ)] = 0 for all i = 1, . . . , rj . Since qτ > 0, we have for the same reason [v

(j)
i (τ)] = 0 for

all i = r′ + 1, . . . , r′ + s′. Therefore, (4.108) writes

Ĥ0
vv(v(τ), z(τ), π

q
N (τ))












0
[

v
(j)
rj+1:rj+1

(τ)
]

[

v
(j)
rj+1+1:r′(τ)

]

0
[

v
(j)
r′+s′+1:m(τ)

]












=












(−1)qi+1[ηqi−ji (τ)]

(−1)jν
rj+1:rj+1
τ

0

− [η−ji−r′+r(τ)]

0












. (4.110)

For j ≤ qτ − 2, we also have τ ∈ int ∆i, for all i ≤ rj+1, and hence [v
(j)
rj+1:rj+1

(τ)] = 0.

Multiplying on the left (4.110) by [v(j)(τ)]>, we obtain that the product with the right-hand
side is zero, and therefore [v(j)(τ)]>Ĥ0

vv(v(τ), z(τ), π
q
N (τ))[v(j)(τ)] = 0. From (4.109) it follows

that v(j) is continuous at τ , and the right-hand side in (4.110) is equal to zero. This implies
that the alternative multipliers ηqii are Cj at τ , and the second row of (4.100) is satisfied with
equality, that is ν iτ = 0, for all i = 1, . . . , rj+1, i.e. such that qi ≤ j+1 ≤ qτ −1 and τ ∈ int ∆i.
By induction, we proved that v, . . . , v(qτ−2) are continuous. This shows (i) and (i’).

Let now j = qτ − 1. Assume that (4.90) holds, i.e. qτ is odd, and attained at entry/exit

points. Then we have, near the boundary arc, due to the continuity of vi, . . . , v
(qτ−2)
i vanishing

at entry/exit of boundary arc, for all i = rqτ−1 + 1, . . . , rqτ (and hence qi = qτ ):

zq̃i−1+1(t) =
(t− τ)(2qτ−1)

(2qτ − 1)!
v
(qτ−1)
i (τ±) + O((t− τ)2qτ ) ≤ 0,

from which we deduce that [v
(qτ−1)
i (τ)] ≤ 0 at both entry and exit times. We still have

[v
(qτ−1)
i (τ)] = 0 for i ≤ rqτ−1 and for i = r′+1, . . . , r′ +s′, since qi ≤ qτ −1 implies that we are

on the interior of a boundary arc for constraint i. Since v, . . . , v(qτ−2) are continuous, (4.110)

holds for j = qτ − 1, hence we obtain by (4.109) and (4.100), since ν
rqτ−1+1:rqτ
τ ≥ 0:

α′|[v(qτ−1)(τ)]|2 ≤ [v(qτ−1)(τ)]>Ĥ0
vv(v(τ), z(τ), π

q
N (τ))[v(qτ−1)(τ)]

= (−1)qτ−1[v
(qτ−1)
rqτ−1+1:rqτ

(τ)]>ν
rqτ−1+1:rqτ
τ ≤ 0,

which implies that v(qτ−1) is also continuous, and ν iτ = 0 for all i ∈ I(τ) such that qi = qτ .
This shows (ii) and (ii’) and achieves the proof.

4.6 No-Gap Second-order Optimality Conditions

In this section, we extend the no-gap second-order optimality conditions of [21] given in the
scalar case, to several state constraints, and include mixed control-state constraints. The main
results of the section are Theorem 4.24 and Corollary 4.25.
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4.6.1 Abstract Optimization Framework and Main result

We consider here the abstract formulation (4.5) of (P). We say that a local solution u of (4.5)
satisfies the quadratic growth condition, if there exist c, ρ > 0 such that

J(u′) ≥ J(u) + c‖u′ − u‖2
2, for all u′ :

∥
∥u′ − u

∥
∥
∞
< ρ, G(u′) ∈ K, G(u′) ∈ K. (4.111)

Recall that the Lagrangian is given by (4.33). Let (u, y = yu) be a local solution of (P)
satisfying the assumptions of Th. 4.5, with (unique) multipliers p, η and λ. A second-order
necessary condition for (4.5) due to Kawasaki [77] is as follows:

D2
uuL(u; η, λ)(v, v) − σ(η, T 2,i

K (G(u), DG(u)v)) − σ(λ, T 2,i
K (G(u), DG(u)v)) ≥ 0, (4.112)

for all directions v in the critical cone C(u) defined by

C(u) := {v ∈ U : DJ(u)v ≤ 0, DG(u)v ∈ TK(G(u)), DG(u)v ∈ TK(G(u))}. (4.113)

Here TP (x) (for P = K or K) denotes the tangent cone (in the sense of convex analysis) to
the set P at point x ∈ P , T 2,i

P (x, h) is the inner second-order tangent set to P at x ∈ P in
direction h,

T 2,i
P (x, h) := {w : dist(x+ εh+

ε2

2
w,P ) = o(ε2), ∀ ε > 0},

and σ(·, S) denotes the support function of the set S, defined for ξ ∈ X ∗ by σ(ξ, S) =
supx∈S〈ξ, x〉. The critical cone can be characterized as follows:

C(u) = {v ∈ U : DG(u)v ∈ TK(G(u)) ∩ η⊥, DG(u)v ∈ TK(G(u)) ∩ λ⊥}. (4.114)

The term
Σ(u, v) := σ(η, T 2,i

K (G(u), DG(u)v)) + σ(λ, T 2,i
K (G(u), DG(u)v)) (4.115)

in (4.112) is called the curvature term. It is nonpositive, for all v ∈ C(u). Note that the
component i ofDG(u)v (resp. DG(u)v) is the function gi,y(y(·))zv(·) (resp. ci,u(u(·), y(·))v(·)+
ci,y(u(·), y(·))zv(·)), where zv is the solution of the linearized state equation (4.22).

When there are only mixed control-state constraints, it is known that the latter have no
contribution in the curvature term (4.115). This follows from the extended polyhedricity
framework, see [24, Propositions 3.53 and 3.54] (the cone K is a polyhedric subset of L∞ and
DG(u) is “onto” by (4.31)). On the contrary, pure state constraints may have a non zero
contribution in the curvature term (4.115).

Since K has a product form, K ≡ (K0)
r with K0 := C−[0, T ], the inner second-order

tangent set is also given under a product expression. This would be false, however, for the
outer second-order tangent-set, see e.g. [24, p.168]. Therefore we have, for x = (xi)1≤i≤r ∈ K
and h = (hi)1≤i≤r ∈ TK(x):

T 2,i
K (x, h) =

r∏

i=1

T 2,i
K0

(xi, hi). (4.116)

Since the support function of a cartesian product of sets is the sum of the support function
for each set, the expression of pure state constraints in the curvature term can be deduced
from the result by Kawasaki [79] for K0 = C−[0, T ]. Recall that ∆i is given by (4.14), and the
second-order contact set is defined, for v ∈ V, by

∆2
i := {t ∈ ∆i ; gi,y(y(t))zv(t) = 0}, i = 1, . . . , r. (4.117)
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Then, by [79], we have

σ(η, T 2,i
K (G(u), DG(u)v)) =

r∑

i=1

σ(ηi, T
2,i
K0

(gi(y), gi,y(y)zv)) =
r∑

i=1

∫ T

0
ςi(t)dηi(t),

where, for all i = 1, . . . , r:

ςi(t) =







0 if t ∈ (int ∆i) ∩ ∆2
i

liminf
t′→t; gi(y(t′))<0

({gi,y(y(t′))zv(t′)}+)2

2gi(y(t′))
if t ∈ (∂∆i) ∩ ∆2

i

+∞ otherwise

(4.118)

where h+(t) := max(0, h(t)). We denote in the sequel by supp(dηi) the support of the measure
ηi. We make the following assumption:

(A4) (i) Each component of the state constraint gi, i = 1, . . . , r, has finitely many junctions
times, and the state constraint is not active at final time, gi(y(T )) < 0, i = 1, . . . , r.

This assumption implies that all entry and exit times of state constraints are regular. Using
(4.118), and the fact that supp(dηi) ⊂ ∆2

i for all critical directions v, the curvature term has
the expression below, for v ∈ C(u) (see [79]), with νiτ = [ηi(τ)]

σ(η, T 2,i
K (G(u), DG(u)v)) =

r∑

i=1

∑

τ∈Ti∩∆2
i

νiτ ςi(τ). (4.119)

We thus need to compute, for junction times τ ∈ Ti ∩ ∆2
i ,

ςi(τ) = liminf
t→τ ; gi(y(t))<0

({gi,y(y(t))zv(t)}+)2

2gi(y(t))
. (4.120)

The tangentiality conditions (see assumption (A5)(i) below), under which boundary arcs
with regular entry/exit points of state constraints have no contribution to the curvature term,
are more delicate to state than in the scalar case, due to the possibility of having coinciding
junction times of different components of the state constraints. Let i = 1, . . . , r and τ ∈ T i

en∪
T i
ex. Denote by kτi the order of discontinuity at point τ of the function (of time) g

(qi)
i (u(t), y(t)).

By Prop. 4.22, we necessarily have kτi ≥ qτ − 1. A Taylor expansion of the denominator in
(4.120) gives then, in the neighborhood of τ on the interior arc-side

gi(y(t)) = g
(qi+kτ

i )
i (τ±)

(t− τ)qi+k
τ
i

(qi + kτi )!
+ o((t− τ)qi+k

τ
i ), (4.121)

with τ± = τ− (resp. τ+) if τ ∈ T i
en (resp. τ ∈ T i

ex), and g
(qi+kτ

i )
i (τ±) := dqi+kτ

i

dtqi+kτ
i
gi(y(t))|t=τ± is

nonzero by definition of kτi .
Assume now that strict complementarity holds near τ on the boundary arc, in the sense

that there exists ε > 0 small such that

[τ, τ + ε] ⊂ supp(dηi) if τ ∈ T i
en (resp. [τ − ε, τ ] ⊂ supp(dηi) if τ ∈ T i

ex). (4.122)

Since gi,y(y)zv ∈W qi,∞(0, T ) by Lemma 4.2, for all critical directions v ∈ C(u), the first qi−1
time derivatives of gi,y(y)zv being continuous vanish at entry/exit of boundary arcs, and hence
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the following expansion holds, for t in the neighborhood of τ on the side of the interior arc of
gi:

gi,y(y(t))zv(t) = O((t− τ)qi). (4.123)

We thus obtain with (4.121) and (4.123) that there exists a constant C > 0 such that

|ςi(τ)| ≤ lim
t→τ

C|t− τ |qi−kτ
i . (4.124)

It follows that

ςi(τ) > −∞ if kτi ≤ qi and ςi(τ) = 0 if kτi < qi. (4.125)

Since kτi ≥ qτ − 1 by Prop. 4.22, and qi ≥ qτ whenever τ is an entry or exit point of
constraint gi, it makes sense to assume that qτ − 1 ≤ kτi ≤ qi. In addition, the continuity of u
implies that kτi ≥ 1. By (4.125), we see that whenever

max(1, qτ − 1) ≤ kτi < qi (4.126)

then ςi(τ) = 0, and hence ν iτ ςi(τ) = 0.
Clearly, (4.126) requires that qi > 1. In addition, when (4.90) holds and qi = qτ , then it is

necessary by Prop. 4.22(ii) that kτi ≥ qτ = qi, which is incompatible with (4.126). Therefore,
we cannot assume that (4.126) holds when either qi = 1 or (4.90) holds and qi = qτ , and will
rather assume in that case that

kτi = qi. (4.127)

By (4.125), assumption (4.127) ensures that ςi(τ) is finite. Moreover, if qi = 1, then νiτ = 0 by
Prop. 4.8(ii), implying that ν iτ ςi(τ) = 0. If (4.90) holds and qi = qτ , then by Prop. 4.22(ii’),
we have νiτ = 0, i.e. νiτ ςi(τ) = 0 again. This shows that boundary arcs have no contribution
to the curvature term (4.119) when assumptions (4.122) and (A5)(i) below hold:

(A5) (i) For all junction point τ ∈ Ti, i = 1, . . . , r, if τ is an entry or exit time of constraint
gi, the function of time gi(y(t)) has order of discontinuity qi + kτi , and kτi satisfies

{
(4.127) if qi = 1 or if (4.90) holds and qi = qτ ,
(4.126) otherwise.

In the case when the junction times of the different components of the state constraints do
not coincide (see assumption (A7) in section 4.7), then assumption (A5)(i) has the simpler
form (4.202) (see Remark 4.32).

The contribution of touch points to the curvature term (4.119) is classical, when the touch
points are reducible, in the following sense. A touch point τ of a component gi of the state
constraint of order qi ≥ 2 is said to be reducible, if t 7→ d2

dt2
gi(y(t)) is continuous at τ , and if

d2

dt2
gi(y(t))|t=τ < 0. (4.128)

We will make the assumption that

(A5) (ii) All essential touch points of constraint gi, for all i = 1, . . . , r, are reducible, i.e.
satisfy (4.128).

Finally, we will also need the following assumption, implying (4.122):
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(A6) (i) (Strict complementarity on interior of boundary arcs)

dηi
dt

(t) > 0, for a.a. t ∈ int∆i, for all i = 1, . . . , r. (4.129)

Let V := V2 = L2(0, T ; Rm) and Z := Z2 = H1(0, T ; Rn). Let

T̂K(G(u)) := {ω ∈ L2(0, T ; Rs) : ωi ≤ 0 a.e. on ∆i, i = r + 1, . . . , r + s}. (4.130)

This is the extension of the tangent cone TK(G(u)) over L2. Since λ ∈ L∞(0, T ; Rr∗), λ can be
extended to a continuous linear form over L2(0, T ; Rr). We may then consider the extension
of the critical cone over L2 as follows:

ĈL2(u) := {v ∈ V : DG(u)v ∈ TK(G(u)) ∩ η⊥, DG(u)v ∈ T̂K(G(u)) ∩ λ⊥}. (4.131)

We can now state the no-gap second-order conditions, that do not assume strict complemen-
tarity at touch points for the state constraints, and make no additional assumptions for the
mixed control-state constraints.

Theorem 4.24. (i) (Necessary condition) Let (u, y) be a local solution of (P) and (p, η, λ) its
(unique) associated multipliers, satisfying (A1)-(A3), (A4)(i), (A5)(i)(ii) and (A6)(i), and
νiτ = [ηi(τ)]. Then

D2
uuL(u; η, λ)(v, v) −

r∑

i=1

∑

τ∈T i,ess
to

νiτ
(g

(1)
i,y (y(t))zv(t))

2

d2

dt2
gi(y(t))|t=τ

≥ 0 ∀v ∈ ĈL2(u). (4.132)

(ii) (Sufficient condition) Let (u, y) be a stationary point of (P) with multipliers (p, η, λ),
satisfying (4.43), and νiτ = [ηi(τ)]. For i = 1, . . . , r such that qi ≥ 2, let T i

red denote a finite
set (possibly empty) of reducible touch points of constraint gi. If

D2
uuL(u; η, λ)(v, v) −

∑

i : qi≥2

∑

τ∈T i
red

νiτ
(g

(1)
i,y (y(t))zv(t))

2

d2

dt2
gi(y(t))|t=τ

> 0 ∀v ∈ ĈL2(u) \ {0}, (4.133)

then (u, y) is a local solution of (P) satisfying the quadratic growth condition (4.111).

Note that under (A2)-(A3), T i,ess
to = ∅ if qi ≤ 1. It is easy to obtain from the above

theorem a characterization of the quadratic growth.

Corollary 4.25. Let (u, y) be a stationary point of (P) with multipliers (p, η, λ), satisfying
(A1)-(A3), (A4)(i), (A5)(i)(ii) and (A6)(i), and ν iτ = [ηi(τ)]. Then (u, y) is a local solution
of (P) satisfying the quadratic growth condition (4.111) iff

D2
uuL(u; η, λ)(v, v) −

r∑

i=1

∑

τ∈T i,ess
to

νiτ
(g

(1)
i,y (y(t))zv(t))

2

d2

dt2 gi(y(t))|t=τ
> 0 ∀v ∈ ĈL2(u) \ {0}. (4.134)

Denote by Q(v) the left-hand side of (4.132) and (4.134). An explicit computation of the
Hessian of the Lagrangian D2

uuL(u; η, λ)(v, v) shows that

Q(v) =

∫ T

0
H0

(u,y),(u,y)(u, y, p, λ)((v, zv), (v, zv))dt+ φyy(y(T ))(zv(T ), zv(T ))

+
r∑

i=1






∫ T

0
gi,yy(y(t))(zv(t), zv(t))dηi(t) −

∑

τ∈T i,ess
to

νiτ
(g

(1)
i,y (y(t))zv(t))

2

d2

dt2
gi(y(t))|t=τ




 .

(4.135)
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Let us recall that a Legendre form Q (see [74]) is a weakly lower semi-continuous quadratic form
defined over an Hilbert space, that satisfies the following property: for all weakly convergent
sequences (vn), (vn) ⇀ v̄, we have that vn → v̄ strongly if Q(vn) → Q(v̄). An example of a
Legendre form is v 7→ ‖v‖2, with ‖ ·‖ the norm of the Hilbert space. Under assumption (4.43),
it is not difficult to show that (4.135) is a Legendre form (see e.g. [21, Lemma 21]1). This is
no more true if (4.43) is replaced by the weaker hypothesis (4.45).

4.6.2 Proof of Th. 4.24

Denote the radial cone to K at point x ∈ K by:

RK(x) = {h ∈ L∞ ;∃ ε0 > 0, x+ εh ∈ K, for all 0 < ε < ε0}. (4.136)

Since K is a closed convex set, TK(x) = cl(RK(x)). Let

C0(u) := {v ∈ C(u), DG(u)v|i(τ) < 0, for all τ ∈ T nes,i
to , i = 1, . . . , r,

DG(u)v ∈ RK(G(u))}. (4.137)

This subset of the critical cone contains the critical directions that “avoid” nonessential touch
points of the state constraint, and such that the derivatives of the mixed constraints belong
to the radial cone RK(G(u)).

Lemma 4.26. Under the assumptions of Th. 4.24(i), for all v ∈ C0(u), the term (4.115) has
the expression

Σ(u, v) =

r∑

i=1

∑

τ∈T i,ess
to

νiτ
(g

(1)
i,y (y(t))zv(t))

2

d2

dt2
gi(y(t))|t=τ

. (4.138)

Proof. It is easy to see that if DG(u)v ∈ RK(G(u)), then 0 ∈ T 2,i
K (G(u), DG(u)v). Hence

σ(λ, T 2,i
K (G(u), DG(u)v)) = 0. It remains then in (4.115) the contribution of state constraints.

As shown in the previous subsection, when assumptions (A5)(i) and (A6)(i) hold, entry and
exit points of boundary arcs of the state constraints have a zero contribution to the curvature
term. The term (4.120) for the contribution of essential touch points satisfying (4.128) is
computed explicitly, in the same manner as in the scalar case (see [21, Prop. 14]2.). Finally,
nonessential touch points do not belong to ∆2

i for v ∈ C0(u), and hence have no contribution
in the sum (4.119). The results follows.

Lemma 4.27. Under the assumptions of Th. 4.24(i):
(i) The set C0(u) is dense in C(u).
(ii) The set C(u) is dense in the set ĈL2(u).

The key point in the proof below is the controllability Lemma 4.3, that enables to handle
separately the arguments for the state constraints and for the mixed control-state constraints,
in the following way. Under the assumptions of Lemma 4.3, with n0 the n of (4.25), for all
κ ∈ [1,+∞], there exists a constant C = C(κ) > 0 such that for all (w,ω) ∈ Wκ×Lκ(0, T ; Rs),
with

Wκ :=

r∏

i=1

W qi,κ(0, T ), (4.139)

1Lemma 1.21 of this thesis.
2Proposition 1.14 of this thesis
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there exists v ∈ Vκ such that

gi,y(y)zv = wi on ∆i, ∀ i = 1, . . . , r, (4.140)

ci,u(u, y)v + ci,y(u, y)zv = ωi a.e. on ∆n0
i , ∀ i = r + 1, . . . , r + s, (4.141)

‖v‖κ ≤ C(‖w‖Wκ + ‖ω‖κ). (4.142)

Proof. (i) Let v ∈ C(u), and set w := DG(u)v and ω := DG(u)v. Let ϕ be a C∞ function with
support in [−1, 1] and which is positive on (−1, 1). Set wn,i := wi−

∑

τ∈T i,nes
to

1
nqi+1ϕ(n(·− τ))

for i = 1, . . . , r. Then, for n large enough, wn,i(τ) < 0 for all τ ∈ T i,nes
to , wn,i = wi outside a

neighborhood of T i,nes
to , and ‖wn,i−wi‖qi,∞ → 0 when n→ +∞. Further, since RK(G(u))∩λ⊥

in dense in TK(G(u)) ∩ λ⊥ (see Lemma 4.36 in the Appendix), there exists a sequence (ωn) ⊂
RK(G(u))∩λ⊥ such that ‖ωn−ω‖∞ → 0. By the controllability lemma 4.3, there exists vn ∈ U
that satisfies (4.140)-(4.141) with (wn, ωn), and ‖vn − v‖∞ ≤ C(‖wn − w‖W∞

+ ‖ωn − ω‖∞).
By construction it follows that vn ∈ C0(u), and vn → v in L∞.
(ii) Let v ∈ ĈL2(u), and again let w := DG(u)v and ω := DG(u)v. By Lemmas 16-17
in [21]3 (this is where assumption (A6)(i) is used), we can construct a sequence (wn) ⊂
∏r
i=1W

qi,∞(0, T ) such that wn,i = 0 = wi on each boundary arc of gi, i = 1, . . . , r, wn,i(τ) =
wi(τ) at each touch point τ ∈ Ti, and ‖wn,i − wi‖qi,2 → 0. So wn ∈ TK(G(u)) ∩ η⊥. Now
by Lemma 4.37 in the Appendix, there exists a sequence (ωn) ⊂ TK(G(u)) ∩ λ⊥ such that
‖ωn − ω‖2 → 0. By Lemma 4.3 again, there exists vn ∈ U that satisfies (4.140)-(4.141) with
(wn, ωn) and ‖vn − v‖2 ≤ C(‖wn − w‖W2 + ‖ωn − ω‖2). By construction we have vn ∈ C(u),
and vn → v in L2.

Proof of Th. 4.24. For the necessary condition, we use the abstract condition (4.112) and
compute the curvature term (4.115). By Lemma 4.26, we have the expression of the curvature
term for all v ∈ C0(u). Since the right-hand side of (4.138) is continuous for the norm of L2,
we obtain the result by a density argument in view of Lemma 4.27.

For the sufficient condition, we follow [21, Th. 18 and 27]4. The idea is to use a reduction
approach, i.e. to reformulate the state constraint around finitely many reducible touch points
of the components gi of the state constraint of order qi ≥ 2. More precisely, for T i

red :=

{τ i1, . . . , τ iNi
}, ε, δ > 0 small enough, and Ωi := [0, T ] \ ∪Ni

k=1(τ
i
k − ε, τ ik + ε), the constraint

G(u′) ∈ K in (4.5) can be equivalently replaced, for all ‖u′ − u‖∞ ≤ δ, by

gi(yu′(t)) ≤ 0 for all t ∈ Ωi and gi(yu′(t
i
k(u

′))) ≤ 0, k = 1, . . . , Ni, ∀i : qi ≥ 2 (4.143)

where tik(u
′) is the unique point of maximum of the function gi(yu′(·)) over the set (τ ik−ε, τ ik+ε).

The Hessian of the Lagrangian of the reduced problem is equal to the quadratic form Q(v),
i.e. has an additional term that matches the curvature term. Now assume that (4.111) does
not hold. Then there exists a sequence (un), un → u in L∞, satisfying the constraints (4.143)
and G(un) ∈ K, and such that

J(un) ≤ J(u) + o(‖un − u‖2
2). (4.144)

Set εn := ‖un−u‖2 and vn := ε−1
n (un−u). Being bounded in L2, assume that vn ⇀ v weakly

in L2. By (4.144), a second-order expansion of the Lagrangian of the reduced problem shows
that

Q(vn) ≤ o(1). (4.145)

3Lemmas 1.16 and 1.17 of this thesis.
4Theorems 1.18 and 1.27 of this thesis.
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Moreover, since

K 3 G(un) = G(u) + εnDG(u)vn + εnrn

with ‖rn‖2 → 0, we deduce that DG(u)vn + rn ∈ T̂K(G(u)). Taking the weak limit in L2, we
obtain that DG(u)v ∈ T̂K(G(u)). Proceeding similarly for the state constraints, and since as
a consequence of (4.144), we have DJ(u)v ≤ 0, we deduce that v ∈ ĈL2(u). It follows then
from (4.133) and (4.145), since Q is weakly lower semi-continuous, that Q(v) = 0, and hence,
Q(vn) → Q(v). Since Q is a Legendre form by hypothesis (4.43), this implies that vn → v
strongly, contradicting that ‖vn‖2 = 1 for all n. This completes the proof.

4.7 The shooting algorithm

In presence of state constraints, a reformulation of the optimality conditions is needed to
apply so-called shooting methods. For an overview of the different formulations of optimality
conditions existing in the literature, see the survey by Hartl et al. [68]. The shooting algorithm
takes only into account a part of the optimality conditions, and the remainder conditions,
referred as “additional conditions”, have to be checked afterwards. In this section, we first
recall the alternative formulation used in the shooting algorithm (Def. 4.28). Additional
conditions are given, under which the alternative formulation is equivalent to the first-order
optimality condition of (P) (Prop. 4.29). It is shown that some of those additional conditions
are automatically satisfied (Lemma 4.30). Finally we give a characterization of the well-
posedness of the shooting algorithm (Th. 4.33), which is the main result of this section.

Given a finite subset S of (0, T ), we denote by PCk
S [0, T ] the set of functions over [0, T ]

that are of class Ck outside S and have, as well as their first k derivatives, a left and a right
limit over S and a left (resp. right) limit at T (resp. 0).

4.7.1 Shooting Formulation

The formulation for the shooting algorithm presented in this section was introduced by Bryson
et al. [29]. The presence of additional conditions was first underlined by Jacobson, Lele and
Speyer [75], see also Kreindler [83]. See an example of implementation in e.g. [107] and
numerical applications in e.g. [30, 26].

Recall that Hq denotes the alternative Hamiltonian (4.51). We assume in the sequel
that assumptions (A2)-(A4)(i) hold, and that first-order components of the state constraint
do not have touch points (which is typically satisfied in view of Prop. 4.8(ii), since first-
order components of the state constraint only have nonessential touch points). We assume in
addition that

(A4) (ii) Each component of the mixed control-state constraint ci(u, y), i = r + 1, . . . , r + s,
has finitely many boundary arcs, and no touch points.

Under (A4) (which stands for (A4)(i)(ii)), we denote by I ib the closure of the union of boundary

arcs of each constraint i = 1, . . . , r+ s, i.e. I ib := ∪N
i
b

k=1[τ
i,k
en , τ

i,k
ex ] for T i

en := {τ i,1en < · · · < τ
i,N i

b
en }

and a similar definition of T i
ex.

In the alternative formulation presented in Def. 4.10, the integration constants in (4.49) on
a boundary arc of gi are arbitrary. In the sequel, we will choose like in [98] these constants, on
each boundary arc (τ ien, τ

i
ex) of gi, such that the functions ηji for i = 1, . . . , r and j = 1, . . . , qi
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satisfy, for t ∈ (τ ien, τ
i
ex),

η1
i (t) := ηi(τ

i+
ex ) − ηi(t), ηji (t) :=

∫ τ i
ex

t
ηj−1
i (σ)dσ, j = 2, . . . , qi,

and we still have ηji = 0 outside boundary arcs of gi and η0
i = λi for i = r+1, . . . , r+ s. With

this formulation, the alternative costate pq is continuous at exit points and discontinuous at

entry and touch points, which allows to take the jump parameters ν i,jτ and νiτ involved in the
jump condition (4.154) as shooting parameters in the shooting algorithm.

Definition 4.28. A trajectory (u, y) having a finite set of junction times T = ∪r+si=1Ti satisfies the
alternative formulation, if there exist pq ∈ PCqmax

T ([0, T ]; Rn∗), ηq ∈ PCqmax

T ([0, T ]; R(r+s)∗),

and, for each i = 1, . . . , r, for each entry time τ of gi, there exist qi jump parameters (ν i,jτ )1≤j≤qi
and for each touch point τ of gi with qi ≥ 2, there exists a jump parameter ν iτ , such that the
following relations are satisfied (dependence in time is omitted):

ẏ = f(u, y) on [0, T ]; y(0) = y0 (4.146)

−ṗq = Hq
y(u, y, p

q, ηq) on [0, T ] \ T (4.147)

0 = Hq
u(u, y, p

q, ηq) on [0, T ] \ T (4.148)

g
(qi)
i (u(t), y(t)) = 0 on I ib, i = 1, . . . , r + s (4.149)

ηqii (t) = 0 on [0, T ] \ I ib, i = 1, . . . , r + s (4.150)

pq(T ) = φy(y(T )), (4.151)

and, for all i = 1, . . . , r and each junction point τ ∈ T i of gi:

g
(j)
i (y(τ)) = 0 if τ ∈ T i

en, j = 0, . . . , qi − 1, (4.152)

gi(y(τ)) = 0 if τ ∈ T i
to, (4.153)

and for each junction time τ ∈ T :

[pq(τ)] = −
∑

i≤r : τ∈T i
en

qi∑

j=1

νi,jτ g
(j−1)
i,y (y(τ)) −

∑

i≤r : τ∈T i
to

νiτgi,y(y(τ)). (4.154)

The shooting algorithm consists in finding a zero of a finite-dimensional shooting mapping,
using e.g. a Newton method. The structure of active constraints of the optimal trajectory, i.e.
the number and order of boundary arcs and touch points of each component of the constraint,
is assumed to be known (or guessed). The arguments of the shooting mapping are called the
shooting parameters, and are composed of the initial value of costate p0 ∈ R

n∗, all the junction
times (with the exception of nonessential touch points) of the pure state constraints and mixed
control-state constraints, and all the jump parameters ν i,jτ at entry times τ of gi, i = 1, . . . , r,
j = 1, . . . , qi and νiτ at touch points τ of gi, i = 1, . . . , r, qi ≥ 2, that are involved in the jump
condition of the costate (4.154).

By assumptions (A2)-(A3), the algebraic variable (u(t), ηq(t)) ∈ R
m × R

(r+s)∗ satisfying
(4.148)-(4.150) can be expressed as implicit function of the differential variables (y(t), pq(t)) ∈
R
n × R

n∗ on the interior of each arc of the trajectory (see the proof of Prop. 4.13). With a
given set of shooting parameters is therefore associated at most a unique solution (u, y, pq, ηq)
of the Cauchy problem (4.146)-(4.147) with initial condition of the costate pq(0) = p0, the
algebraic variable (u, ηq) satisfying (4.148)-(4.150) and the jump of pq at junction times of
pure state constraints being given by (4.154).



154 CHAPITRE 4. LE CAS DE PLUSIEURS CONTRAINTES

The shooting mapping is then defined as follows. With a given set of shooting parameters
are associated the following conditions: the final condition (4.151), the interior point conditions
(4.152)-(4.153), and the optimality conditions for junction times below, for all τ ∈ T and all
i = 1, . . . , r + s:

g
(qi)
i (u(τ−), y(τ)) = 0, if τ ∈ T i

en (4.155)

g
(qi)
i (u(τ+), y(τ)) = 0, if τ ∈ T i

ex (4.156)

g
(1)
i (y(τ)) = 0, if τ ∈ T i

to and if qi ≥ 2. (4.157)

This is a mapping defined on a subset of R
N̄ to R

N̄ , where N̄ the dimension of the shooting
mapping is as follows. Let N i

ba be the total number of boundary arcs of constraints gi for
i = 1, . . . , r and ci for i = r + 1, . . . , r + s, and Nto the total number of touch points of state
constraints of order qi ≥ 2. Then

N̄ = n+

r+s∑

i=1

(qi + 2)N i
ba + 2Nto. (4.158)

4.7.2 Additional Conditions

It is of importance to check whether solutions of the shooting algorithm (i.e. trajectory
associated with a zero of the shooting function) are stationary points of (P). For this, we
need to make explicit the relation between the multipliers in the alternative formulation (Def.
4.28) and in Th. 4.5.

Given alternative multipliers (pq, ηq) and jump parameters (ν i,jτ ) at entry times and (ν iτ )
at touch times, the related multipliers (p, η, λ) in Th. 4.5 are given by the following relations.
Define first

ηji (t) = (−1)qi−j
dqi−j

dtqi−j
ηqii (t), j = 0, . . . , qi − 1, i = 1, . . . , r, t /∈ T , (4.159)

then

λi(t) = η0
i (t), i = r + 1, . . . , r + s, t /∈ T (4.160)

p(t) = pq(t) +
r∑

i=1

qi∑

j=1

ηji (t)g
(j−1)
i,y (y(t)), t /∈ T . (4.161)

Finally, let

dηi(t) = η0
i (t)dt+

∑

τ∈T

νiτ δτ (t), i = 1, . . . , r, (4.162)

where δτ (t) denotes the Dirac measure at time τ , and the jumps parameters ν iτ at junction
points τ ∈ T , for all i = 1, . . . , r, are the ones in the alternative formulation if τ ∈ T i

to, ν
i
τ = 0

if i /∈ I(τ), and, if τ ∈ I ib, they are given by, in view of (4.88) and (4.154),

νiτ = νi,1τ − η1
i (τ

+) if τ ∈ T i
en, (4.163)

νiτ = η1
i (τ

−) if τ ∈ T i
ex, (4.164)

νiτ = −[η1
i (τ)] if τ ∈ int I ib. (4.165)

Conversely, Prop. 4.13 ensures, whenever assumptions (A2)-(A4) are satisfied, that each
component ηi of η admits a (unique) decomposition under the form (4.162). Therefore, classical
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multipliers (p, η, λ) of Th. 4.5 uniquely determine the alternative multipliers and alternative
jump parameters so that (4.159)-(4.165) as well as (4.170), (4.172), (4.174) below hold, these
three last conditions being needed in order to fix the integration constants in (4.49) and the
jumps parameters at entry times (ν i,jτ ) for j ≥ 2.

The additional conditions needed to obtain the equivalence between the alternative formu-
lation (4.146)-(4.154) and the first-order optimality condition (4.35)-(4.40) are the following:

gi(y(t)) < 0 on [0, T ] \ (I ib ∪ T i
to), for all i = 1, . . . , r, (4.166)

ci(u(t), y(t)) < 0 a.e. on [0, T ] \ I ib, for all i = r + 1, . . . , r + s, (4.167)

(−1)qi
dqi

dtqi
ηqii (t) ≥ 0 on int I ib, for all i = 1, . . . , r + s, (4.168)

and, for all τ ∈ T and all i = 1, . . . , r:

νi,1τ − η1
i (τ

+) ≥ 0, if τ ∈ T i
en (4.169)

νi,jτ − ηji (τ
+) = 0, if τ ∈ T i

en, j = 2, . . . , qi (4.170)

η1
i (τ

−) ≥ 0, if τ ∈ T i
ex (4.171)

ηji (τ
−) = 0, if τ ∈ T i

ex, j = 2, . . . , qi (4.172)

[η1
i (τ)] ≤ 0, if τ ∈ int I ib, (4.173)

[ηji (τ)] = 0, if τ ∈ int I ib, j = 2, . . . , qi (4.174)

νiτ ≥ 0, if τ ∈ T i
to, (4.175)

For all i such that qi = 1, the inequalities (4.169), (4.171), (4.173)
and (4.175) are equalities.

(4.176)

Proposition 4.29. Let (u, y) be a trajectory satisfying (A2)-(A4). Then (u, y) is a stationary
point, with multipliers (p, η, λ), iff (u, y) satisfies both the alternative formulation (Def. 4.28)
and the additional conditions (4.166)-(4.176). Relations (4.159)-(4.165) and (4.170), (4.172),
(4.174) are a one to one mapping between the multipliers (p, η, λ) involved in the first-order
optimality condition of Th. 4.5, and the alternative multipliers (pq, ηq) and alternative jumps
parameters (νi,jτ ) and (νiτ ) at respectively entry and touch points in the alternative formulation
and additional conditions.

The higher the order qi of the constraint is, the more additional conditions have to be
checked at regular entry/exit points of boundary arcs. Those conditions are analogous to the
known conditions in the scalar case, with in addition the conditions (4.173)-(4.174), that were
not apparent in the scalar case, and to our knowledge not known in the literature. Thus,
when assumptions (A2)-(A3) hold, we are led to think that, like in the scalar case, boundary
arcs with regular entry/exit times for components of the state constraint of order qi ≥ 3 may
occur only in degenerate situations. We underline that this was not, however, an immediate
result, since now we allow more control variables (more than one) and hence, more degrees of
freedom.

Proof of Prop. 4.29. Let us show the equivalence between, on the one hand, the first-order
optimality system of (P) (4.35)-(4.40), and on the other hand, the alternative formulation
(4.146)-(4.154) and the additional conditions (4.166)-(4.176).

First, gi(y(t)) ≤ 0 in (4.39) is equivalent to gi(y(t)) = 0 on I ib, (4.153) at touch points
and (4.166) outside the contact set, and then gi(y(t)) = 0 on I ib is equivalent to (4.149) for
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i = 1, . . . , r with the qi entry-point conditions (4.152). By Prop. 4.13, the state constraint
multipliers ηi, i = 1, . . . , r are regular on interiors of arcs, therefore, each component ηi can
be put into the form (4.162), where jumps can occur only at junctions points, and the density
of each component η0

i is continuous on the interior of arcs. It follows that ηi is a nonnegative
measure (dηi ≥ 0 in (4.39)), iff its density dηi

dt (t) = η0
i (t) = (−1)qi dqi

dtqi
ηqii (t) is nonnegative, i.e.

iff (4.168) holds for i = 1, . . . , r, and the jumps at junction times are nonnegative, i.e.

νiτ = [ηi(τ)] ≥ 0, for all i = 1, . . . , r and all τ ∈ T = ∪r+si=1T i. (4.177)

The complementarity condition
∫ T
0 gi(y(t))dηi(t) = 0 in (4.39) is then equivalent to (4.150)

for i = 1, . . . , r (the measure dηi has support on the contact set of gi(y)). Similarly, for
mixed control-state constraints, since λ ∈ L∞, (4.40) is equivalent to (4.149)-(4.150) and
(4.167)-(4.168) for i = r + 1, . . . , r + s.

The state equations (4.35) and (4.146) are of course identical, and so are the final conditions
of the costate (4.37) and (4.151) in view of (A4)(i). By Lemma 4.11, the costate and control
equations (4.147) and (4.148) are equivalent, respectively, to the costate and control equations
(4.36) and (4.38) on the interior of arcs. Now let us show the equivalence, at junction times,
between on the one hand the costate equation (4.36) and (4.177), and on the other hand the
jump condition (4.154) and the additional conditions (4.169)-(4.175). By (4.88) (recall that
[p(τ)] = −∑i∈I(τ) ν

i
τgi,y(y(τ)) with νiτ = [ηi(τ)]) and by (4.154), it holds respectively

[pq(τ)] = −
∑

i∈I(τ)

{(νiτ + [η1
i (τ)])gi,y(y(τ)) +

qi∑

j=2

[ηji (τ)]g
(j−1)
i,y (y(τ))} (4.178)

[pq(τ)] = −
∑

i≤r : τ∈T i
en

qi∑

j=1

νi,jτ g
(j−1)
i,y (y(τ)) −

∑

i≤r : τ∈T i
to

νiτgi,y(y(τ)). (4.179)

By Corollary 4.18, the vectors g
(j−1)
i,y (y(τ)) are linearly independent, for all i ∈ I(τ) and

j = 1, . . . , qi, hence the relations (4.178)-(4.179) are equal, iff the coefficients of g
(j−1)
i,y (y(τ))

are equal. We thus obtain, for all τ ∈ T and i ∈ I(τ), if τ ∈ T i
en:

νiτ + [η1
i (τ)] = νi,1τ and [ηji (τ)] = νi,jτ , j = 2, . . . , qi

which, with (4.177), is equivalent to (4.169)-(4.170), using that ηji (τ
−) = 0 at entry point. If

now τ ∈ T i
to, we obtain, since the multipliers ηji are equal to zero in the neighborhood of τ :

[ηi(τ)] = νiτ ,

which, with (4.177), is equivalent to (4.175). Finally, if τ ∈ int I ib or if τ ∈ T i
ex, then we have

[ηi(τ)] + [η1
i (τ)] = 0 and [ηji (τ)] = 0, j = 2, . . . , qi

which, with (4.177) again, is equivalent to (4.173)-(4.174) on interior of boundary arcs and to
(4.171)-(4.172) at exit points, since ηji (τ

+) = 0. Finally, whenever qi = 1, then we know by
Prop. 4.8 that ηi is continuous, i.e. [ηi(τ)] = 0, and therefore all inequalities in (4.169)-(4.175)
are in fact equalities.

Like in the scalar case, the conditions (4.155)-(4.156) imposed in the shooting algorithm,
related to the continuity of u, imply that some of the additional conditions are automatically
satisfied by a solution of the shooting algorithm.
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Lemma 4.30. Let (u, y) satisfy the alternative formulation (4.146)-(4.154), the strong as-
sumption (4.44) and (A3)-(A4), and assume that T i

to = ∅, for all i such that qi = 1. Then the
following assertions are equivalent:
(i) For all i = 1, . . . , r and all junction point τ ∈ T , if qi = 1 the additional conditions
(4.169), (4.171) and (4.173) are satisfied with equality and if qi ≥ 2, the additional conditions
in (4.170), (4.172) and (4.174) are satisfied for j = qi, i.e.

νi,qiτ = ηqii (τ+), if τ ∈ T i
en, (4.180)

ηqii (τ−) = 0, if τ ∈ T i
ex, (4.181)

[ηqii (τ)] = 0, if τ ∈ int I ib, (4.182)

and for all i = r + 1, . . . , r + s, ηqii = λi is continuous over [0, T ].
(ii) The conditions (4.155)-(4.156) are satisfied, for all τ ∈ T and all i = 1, . . . , r + s.
(iii) The control u is continuous over [0, T ].

Proof. Let τ ∈ T , and let J := I(τ)\{i = 1, . . . , r; τ ∈ T i
to}. Set u± := u(τ±), [u] := u+−u−,

and, for σ ∈ [0, 1], uσ := u− + σ(u+ − u−). Similar notations for pq, ηq are used. Denote by
ν̃q = (ν̃qii )i∈J the augmented (row) vector of jump parameters, satisfying ν̃ qii = νi,qiτ for all
i ∈ J such that τ ∈ T i

en and qi ≥ 1, and ν̃qii = 0 for all i ∈ J such that τ ∈ int I ib ∪ T i
ex or

qi = 0. By (4.148),

Hq
u(u

+, y(τ), pq+, ηq+) = 0 = Hq
u(u

−, y(τ), pq−, ηq−).

The alternative Hamiltonian Hq being affine in the variables pq and ηq, we have

0 =

∫ 1

0
{σHq

uu(u
σ, y(τ), pq+, ηq+) + (1 − σ)Hq

uu(u
σ, y(τ), pq−, ηq−)}[u]dσ

+

∫ 1

0
{[pq]fu(uσ , y(τ)) + [ηq]G

(q)
J,u(u

σ, y(τ))}dσ.
(4.183)

Using the jump of pq given by (4.154), and the fact that by hypothesis, first-order components
of the state constraint do not have touch points, we easily get that

[pq]fu(u
σ, y(τ)) + [ηq]G

(q)
J,u(u

σ, y(τ)) = ([ηq] − ν̃q)G
(q)
J,u(u

σ , y(τ)). (4.184)

In addition, (4.44) and (4.53) imply that Hq
uu(uσ, y, pq±, ηq±) is uniformly positive definite, for

all σ ∈ [0, 1], therefore, multiplying on the right (4.183) by [u], and using (4.184), we obtain
that

α|[u]|2 ≤ (ν̃q − [ηq])

∫ 1

0
G

(q)
J,u(u

σ, y(τ))[u]dσ. (4.185)

Note that point (i) is equivalent to the condition [ηqii ]−ν̃qii = 0 for all i = 1, . . . , r+s. Therefore,
the implication (i) ⇒ (iii) follows from (4.185). Conversely, if (iii) holds, i.e. [u] = 0, then
(4.183)-(4.184) yields

([ηq] − ν̃q)G
(q)
J,u(u(τ), y(τ)) = 0,

implying (i) by (4.30). This shows the equivalence (iii) ⇔ (i). Let us show now (iii) ⇔ (ii).
The implication (iii) ⇒ (ii) is trivial. If (ii) holds, then

0 = G
(q)
J (u+, y(τ)) −G

(q)
J (u−, y(τ)) =

∫ 1

0
G

(q)
J,u(u

σ , y(τ))[u]dσ. (4.186)

By (4.185), it follows that [u] = 0, i.e. (iii) holds, which completes the proof.
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4.7.3 Well-posedness of the shooting algorithm

We say that the shooting algorithm is (locally) well-posed in the neighborhood of a local
solution, if the Jacobian of the shooting mapping is invertible. This allows us to apply locally
a Newton method in order to find a zero of the shooting mapping with a very high precision,
and low cost. If the additional conditions (4.166)-(4.176) are satisfied, we obtain a stationary
point of (P), and if the second-order sufficient condition (4.134) holds, we obtain a local
solution of (P).

The first step to study the well-posedness of the shooting algorithm is to compute the
Jacobian of the shooting mapping. We denote by π0 the variation of p0, σiτ the variation of τ
for each τ ∈ T i, i = 1, . . . , r + s, γi,jτ the variations of alternative jump parameters at entry
times νi,jτ for τ ∈ T i

en, i = 1, . . . , r, j = 1, . . . , qi, and γiτ the variations of jump parameters at
touch times νiτ for τ ∈ T to

i , i = 1, . . . , r and qi ≥ 2. All of them will be called variations of
shooting parameters.

Given a vector ζ ∈ R
(r+s)∗ and J := {i1 < · · · < is} ⊂ {1, . . . , r+ s}, the vector ζJ denotes

the row vector of component (ζi1 , . . . , ζis). We denote by Ī(t) the complement of I(t) in
{1, . . . , r+ s}. With a set of variation of shooting parameters is associated a (unique by (A2)-
(A3)) linearized trajectory and multipliers (z, v, πq , ζq) solution of (arguments (u, y, pq, ηq) and
time are omitted):

ż = fyz + fuv on [0, T ] a.e.; z(0) = 0 (4.187)

π̇q = −(Hq
yyz +Hq

yuv + πqfy + ζqG(q)
y ) on [0, T ] \ T a.e. (4.188)

πq(0) = π0 (4.189)

0 = Hq
uyz +Hq

uuv + πqfu + ζqG(q)
u on [0, T ] \ T a.e. (4.190)

0 = G
(q)
I(t),uv +G

(q)
I(t),yz on [0, T ] \ T a.e. (4.191)

0 = ζq
Ī(t)

on [0, T ] \ T a.e. (4.192)

and, for all τ ∈ ∪ri=1T i, setting νi,0τ := 0 for τ ∈ T i
en:

[πq(τ)] = −
∑

i≤r : τ∈T i
en

qi∑

j=1

{νi,jτ g
(j−1)
i,yy (y(τ))z(τ) + (γi,jτ + σiτν

i,j−1
τ )g

(j−1)
i,y (y(τ))}

−
∑

i≤r : τ∈T i
to

{νiτ gi,yy(y(τ))z(τ) + γiτgi,y(y(τ)) + σiτν
i
τg

(1)
i,y (y(τ))}.

(4.193)

Lemma 4.31. Let (u, y, pq, ηq) be the trajectory associated with a zero of the shooting mapping,
and assume that (A2)-(A4) hold and that T i

to = ∅ for all i such that qi = 1. Let π0, (σiτ ),
(γi,jτ ), and (γiτ ) be a set of variations of shooting parameters and denote by (z, v, πq , ζq) the
linearized trajectory and multipliers solution of (4.187)-(4.193). Then this set of variations of
shooting parameters belongs to the kernel of the Jacobian of the shooting mapping, iff:

πq(T ) = φyy(y(T ))z(T ), (4.194)
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and, for all junction time τ ∈ T and all i = 1, . . . , r + s:

0 = g
(j)
i,y (y(τ))z(τ) if τ ∈ T i

en and qi ≥ 1, j = 0, . . . , qi − 1 (4.195)

0 = gi,y(y(τ))z(τ) if τ ∈ T i
to and qi ≥ 2 (4.196)

0 = g
(qi)
i,(u,y)(u(τ), y(τ))(v(τ

−), z(τ)) + σiτ
d

dt
g
(qi)
i (u, y)|t=τ− if τ ∈ T i

en (4.197)

0 = g
(qi)
i,(u,y)(u(τ), y(τ))(v(τ

+), z(τ)) + σiτ
d

dt
g
(qi)
i (u, y)|t=τ+ if τ ∈ T i

ex (4.198)

0 = g
(1)
i,y (y(τ))z(τ) + σiτg

(2)
i (u(τ), y(τ)) if τ ∈ T i

to and qi ≥ 2. (4.199)

The proof of this result follows from the linearization of the shooting equations (for the
jump of πq at entry times, see [19, Lemma 3.7]5).

In addition to the tangentiality conditions (A5)(i), reducibility condition (A5)(ii) and
strict complementarity assumption on boundary arcs (A6)(i) made for pure state constraints in
section 4.6, we will need the following assumptions, also for the mixed control-state constraints:

(A5) (iii) (Nontangentiality conditions for mixed control-state constraints)
For all i = r + 1, . . . , r + s and all τ ien ∈ T i

en and τ iex ∈ T i
ex,

d

dt
ci(u(t), y(t))|t=τ i−

en
> 0,

d

dt
ci(u(t), y(t))|t=τ i+

ex
< 0. (4.200)

(A6) (ii) (Strict complementarity at touch points)

T i,nes
to = ∅, for all i = 1, . . . , r + s.

(iii) (Strict complementarity for mixed constraints)

λi(t) > 0, for a.a. t ∈ int ∆i, for all i = r + 1, . . . , r + s. (4.201)

Assumption (A6)(ii) implies that constraints of order qi = 0, 1 have no touch points.
We will finally make the assumption below:

(A7) The junctions times of different components of the constraint do not coincide (i.e. i, j ∈
{1, . . . , r + s} and i 6= j implies that T i ∩ T j = ∅).

Remark 4.32. When (A7) holds, for all entry and exit points of state constraints τ ∈ T i
en∪T i

ex,
i = 1, . . . , r, we have that qτ = qi, and assumption (A5)(i) simply says that

dqi

dtqi
g
(qi)
i (u, y)|t=τ± 6= 0 if qi is odd,

dqi−1

dtqi−1
g
(qi)
i (u, y)|t=τ± 6= 0 if qi is even,

(4.202)

where τ± denotes τ− (resp. τ+) if τ is an entry point (resp. exit point).

Under (A4) and the strict complementarity assumption (A6), using Lemma 4.2, the critical
cone ĈL2(u) defined by (4.131) is the set of v ∈ V satisfying (recall that zv ∈ Z is the solution
of the linearized state equation (4.22))

0 = g
(qi)
i,u (u, y)v + g

(qi)
i,y (u, y)zv a.e. on I ib, i = 1, . . . , r + s, (4.203)

0 = g
(j)
i,y (y(τ))zv(τ), τ ∈ T i

en, i = 1, . . . , r, j = 0, . . . , qi − 1, (4.204)

0 = gi,y(y(τ))zv(τ), τ ∈ T i
to, i = 1, . . . , r. (4.205)

5Lemma 2.27 of this thesis.
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Theorem 4.33 (Well-posedness of the shooting algorithm). Let (u, y) be a local solution
of (P) satisfying (A1)-(A7). Then the shooting algorithm is well-posed in the neighborhood of
the trajectory (u, y), iff the two conditions below are satisfied:
(i) components of the state constraint of order qi ≥ 3 have no boundary arc;
(ii) the no-gap sufficient condition (4.134) holds, i.e. Q(v) > 0 for all v ∈ V satisfying
(4.203)-(4.205) with the associated linearized state zv ∈ Z solution of (4.22) and Q(v) defined
by (4.135).

Once the junction conditions and the no-gap second-order optimality conditions have been
established, and with assumption (A7), Th. 4.33 is an easy extension of [19, Th. 3.3]6 obtained
in the scalar case. The next lemma relates the second-order conditions established in section
4.6 and the alternative multipliers used in the shooting algorithm.

Lemma 4.34. Let (u, y) be a stationary point of (P), satisfying (A2)-(A4) and (A5)(ii). Then
an equivalent expression using the alternative Hamiltonian and multipliers for the quadratic
form Q(v) defined in (4.135) over V is:

Q(v) =

∫ T

0
Hq

(u,y),(u,y)(u, y, p
q, ηq)((v, zv), (v, zv))dt+ φyy(y(T ))(zv(T ), zv(T ))

+

r∑

i=1

∑

τ∈T i
en

qi∑

j=1

νi,jτ g
(j−1)
i,yy (y(τ))(zv(τ), zv(τ))

+

r∑

i=1

∑

τ∈T i,ess
to

νiτ

(

gi,yy(y(τ))(zv(τ), zv(τ)) −
(g

(1)
i,y (y(t))zv(t))

2

d2

dt2
gi(y(t))|t=τ

)

.

(4.206)

Proof. The contribution of mixed control-state constraints in both (4.135) and (4.206) is equal

to
∫ T
0 λc(u,y),(u,y)(u, y)((v, zv), (v, zv))dt, therefore, summing over the finitely many state con-

straints gi, the proof is identical to [19, Lemma 3.6]7.

Proof of Th. 4.33. We first prove that if (i) does not hold, the Jacobian of the shooting map-
ping is singular. So assume that a constraint gi of order qi ≥ 3 has a boundary arc (τ ien, τ

i
ex).

By assumption (A7) and (4.89), we have that qτ i
en

= qτ i
ex

= qi, and hence, by Prop. 4.22, u is

continuous until order qi − 2 ≥ 1. Therefore u̇ is continuous at τ ien and τ iex, and consequently,
d
dtg

(qi)(u(t), y(t)) is also continuous, and vanishes at τ i−en and τ i+ex . Taking all variations of
jump parameters equal to zero, except σi

τ i
ex

6= 0, we find by Lemma 4.31 a nonzero element

in the kernel of the Jacobian of the shooting mapping. Therefore the shooting algorithm is
ill-posed.

We assume now that (i) holds. We will prove that the Jacobian of the shooting map-
ping is invertible iff (ii) holds. The Jacobian of the shooting mapping is invertible, iff it
is one-to-one, i.e. iff the only solution of equations (4.194)-(4.199), where (z, v, πq, ζq) is
the solution of (4.187)-(4.193), is π0 = 0, (σiτ ) = 0, (γi,jτ ) = 0, (γiτ ) = 0. We recognize
that (4.187)-(4.193) and (4.194)-(4.196) and (4.199) (which enables, by (A5)(ii), to substi-

tute −g(1)
i,y (y(τ))z(τ)/g

(2)
i (u(τ), y(τ)) for σiτ in (4.193) for all touch point τ), constitutes the

first-order optimality condition for the problem

(PQ) min
v∈V

1

2
Q(v), v ∈ ĈL2(u)

6Theorem 2.23 of this thesis.
7Lemma 2.26 of this thesis.
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with Q(v) given by (4.206) and ĈL2(u) by (4.203)-(4.205). Here (γiτ ) are the multipliers
associated with the constraints (4.205), and those associated with the constraints (4.204) are
equal to γi,jτ if j = 1 and γi,jτ + σiτν

i,j−1
τ if j > 1.

If (ii) holds, i.e. if the second-order sufficient condition (4.134) holds, then by Lemma 4.34
the unique solution of (PQ) is zero. By (A2), the cost function of (PQ) is a Legendre form
over V, and hence, the strict positivity of Q(v) over the closed linear space ĈL2(u) implies its
uniform positivity (i.e. there exists α > 0 such that Q(v) ≥ α‖v‖2

2 for all v ∈ ĈL2(u)). In
addition, the set ĈL2(u) is convex and the linear constraints (4.203)-(4.205) defining ĈL2(u)
are onto by Lemma 4.3. Therefore the first-order optimality condition of (PQ) is necessary
and sufficient for optimality, so (ii) implies that zero is the unique solution of the first-order
optimality condition of (PQ). Therefore we have (z, v, πq , ζq) = 0, and all of π0, (γiτ ), (γi,jτ )
for j = 1 also equal zero by Corollary 4.18 since [πq(τ)] = 0, and we have as well

γi,jτ + σiτν
i,j−1
τ = 0, for all j = 2, . . . , qi, i = 1, . . . , r, τ ∈ T i

en. (4.207)

Now whenever (i) holds, it holds for all entry/exit times that qτ ≤ qi ≤ 2, and from assump-

tions (A5)(i) and (A5)(iii), it follows that d
dtg

(qi)
i (u, y)|t=τ− is nonzero for all entry points

τ ∈ T i
en, for all i = 1, . . . , r+ s. Therefore, equations (4.197) with (v, z) = 0 and (4.207) imply

that σiτ = 0, for all entry points τ ∈ T i
en, i = 1, . . . , r+s, and that γi,jτ = 0 for all j = 2, . . . , qi,

i = 1, . . . , r, τ ∈ T i
en. Similarly, we obtain that (4.198) and (4.199) imply that σiτ = 0 for

all exit and touch points. Therefore, whenever (i)-(ii) holds, the Jacobian of the shooting
mapping is one-to-one, hence invertible, and thus the shooting algorithm is well-posed locally
around the local solution (u, y).

Assume now that (ii) does not hold. By Th. 4.24(i), the second-order necessary condition
(4.132) holds at the local solution (u, y), implying that Q(v) is nonnegative over ĈL2(u).
Therefore, if (4.134) is not satisfied, this implies that there exists a nonzero optimal solution
of (PQ), and hence there exists a nonzero solution of its first-order optimality condition. It
is then easy to see that the variations of shooting parameters associated as above with this
nonzero solution of (PQ) are not all zero, and belong to the kernel of the Jacobian of the
shooting mapping. This proves that the shooting algorithm is ill-posed.

4.8 Final remark: Extension to constraints on the initial and
final state

Let us comment on the extension of the results when there are additional equality and/or
inequality constraints on the initial and final state:

Ψi(y(0), y(T )) = 0, i = 1, . . . , %′, Ψi(y(0), y(T )) ≤ 0, i = %′ + 1, . . . , % (4.208)

with Ψ : R
2n → R

% a C2 mapping (0 ≤ %′ ≤ % ≤ n). The results of this paper can easily
be generalized, under an additional (strong) controllability assumption (A1’) below, having
the role of Lemma 4.3 in the proofs, and, for the second-order optimality conditions and
the well-posedness of the shooting algorithm, also under an additional assumption that strict
complementarity holds for the inequality constraints in (4.208). Denote by Ψ̂ the mapping
composed of the equality and active inequality constraints in (4.208), of dimension %̂. Given
κ ∈ [1,+∞] and (v, x) ∈ Vκ × R

n, let zv,x denote the (unique) solution in Zκ of:

żv,x = fu(u, y)v + fy(u, y)zv,x, zv,x(0) = x.
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(A1’) For κ = 2,∞, there exists δ > 0 and n ∈ N
∗ such that the linear mapping Vκ × R

n →
∏r
i=1W

qi,κ(∆δ
i ) ×

∏r+s
i=r+1 L

κ(∆n
i ) × R

%̂,

(v, x) →







(

gi,y(y(·))zv,x(·)|∆δ
i

)

1≤i≤r(
(ci,y(u(·), y(·))zv,x(·) + ci,u(u(·), y(·))v(·))|∆n

i

)

r+1≤i≤r+s

Dy0Ψ̂(y(0), y(T ))x +DyT
Ψ̂(y(0), y(T ))zv,x(T )







is onto, and therefore has a bounded right inverse by the open mapping Theorem.

Note that in the absence of mixed control-state constraints, this assumption (A1’) is satis-
fied e.g. in the case of a linear system, i.e. f(u, y) = Ay+Bu, if the pair (A,B) is controllable,
the initial and final conditions are fixed y(0) = y0 and y(T ) = yT and satisfy gi(y0) < 0 and
gi(yT ) < 0 for all i = 1, . . . , r, and (4.25) holds.

4.9 Appendix

4.9.1 Tangent and Normal cones in L
∞

Let us recall the characterization of the tangent and normal cones (in the sense of convex
analysis) to K := L∞

− (0, T ) at point x ∈ K. The characterization of the tangent cone was
obtained by Cominetti and Penot [42]:

TK(x) = {h ∈ L∞ : ‖1∆n(x)h+‖∞ → 0 when n→ +∞}, (4.209)

with 1∆n(x) the indicator function of the set ∆n(x) defined by (4.7), and h+ := max(h; 0) a.e.
Since K is a cone, the normal cone satisfies NK(x) = {λ ∈ (L∞)∗+, 〈λ, x〉 = 0}. Define

Nn(x) := {y ∈ L∞(0, T ) ; y(t) = 0 for a.a. t ∈ ∆n(x)}, n ∈ N
∗.

Then we have the following characterization of NK(x).

Lemma 4.35. Let x ∈ K. Then

NK(x) = {λ ∈ (L∞)∗+ ; 〈λ, y〉 = 0, ∀ y ∈ ∪n∈N∗Nn(x)}. (4.210)

Proof. “⊂” Let λ ∈ NK(x), n ∈ N
∗ and y ∈ Nn(x). Then the function x± 1

n‖y‖∞
y is nonpositive

a.e. on [0, T ], and hence, since λ ≥ 0,

〈λ, x± 1

n‖y‖∞
y〉 ≤ 0.

Using then that 〈λ, x〉 = 0, we obtain that ±〈λ, y〉 ≤ 0, i.e. 〈λ, y〉 = 0.
“⊃” Assume that λ ∈ (L∞)∗+ and λ ∈ ∩n∈N∗(Nn(x))

⊥. Then we have, for all n ∈ N
∗,

〈λ, x〉 = 〈λ,1∆n(x)x〉

and hence, since 0 ≥ x(t) ≥ − 1
n a.e. on ∆n(x),

|〈λ, x〉| ≤ ‖λ‖∞∗‖1∆n(x)x‖∞ ≤ ‖λ‖∞∗
1

n
,

Letting n→ +∞, we thus obtain that 〈λ, x〉 = 0, which achieves the proof.
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We end this section by recalling two results used in the proof of the second-order necessary
condition.

Lemma 4.36. The cone K is polyhedric, i.e. for all x ∈ K and all λ ∈ NK(x),

TK(x) ∩ λ⊥ = cl(RK(x) ∩ λ⊥), (4.211)

where RK(x) is the radial cone (4.136).

Proof. Let h ∈ TK(x) ∩ λ⊥. For n ∈ N
∗, define for a.a. t ∈ (0, T )

hn(t) =

{
h(t) a.e. on [0, T ] \ ∆n(x)
h(t)− a.e. on ∆n(x)

where h(t)− = min(0, h(t)). For all 0 < ε < 1
n‖h‖∞

, it is easily seen that x + εhn ≤ 0 a.e.

on [0, T ], and hence hn ∈ RK(x), for all n ∈ N
∗. Moreover, in view of (4.210), we have that

〈λ, hn〉 = 〈λ, h−〉. Since 〈λ, h〉 = 〈λ, h+〉 + 〈λ, h−〉 = 0, it follows that

|〈λ, h−〉| = |〈λ, h+〉| = |〈λ,1∆n(x)h+〉| ≤ ‖λ‖∞∗‖1∆n(x)h+‖∞ → 0

when n → +∞ by (4.209). Hence 〈λ, hn〉 = 0. Finally, ‖h − hn‖∞ = ‖1∆n(x)h+‖∞ → 0 by

(4.209) again. So hn is a sequence in RK(x) ∩ λ⊥ that converges to h in L∞.

Lemma 4.37. Let x ∈ K. For any λ ∈ NK(x) ∩ L2(0, T ), the set TK(x) ∩ λ⊥ is dense in the
set T̂ (x) ∩ λ⊥, with

T̂ (x) := {w ∈ L2(0, T ) ; w ≤ 0 a.e. on ∆(x)}. (4.212)

Proof. Let ŵ ∈ T̂ (x) ∩ λ⊥. Let wn be defined a.e. on [0, T ] by:

wn(t) =

{
max(min(ŵ(t), n),−n) if t ∈ [0, T ] \ ∆n(x)
max(min(ŵ(t), 0),−n) if t ∈ ∆n(x).

Then wn ∈ L∞, and for all k ≥ n, 1∆k(x)wn ≤ 0 a.e., and hence by (4.209) wn ∈ TK(x).

Since λ ∈ NK(x) ∩ L2(0, T ),
∫ T
0 λ(t)x(t)dt = 0 implies that λ(t) = 0 for a.a. t ∈ [0, T ] \ ∆(x).

And then
∫ T
0 λ(t)ŵ(t)dt = 0 implies, since ŵ(t) ≤ 0 on ∆(x), that ŵ(t) = 0 for a.a. t such

that λ(t) 6= 0. Consequently, we also have that wn(t) = 0 for a.a. t such that λ(t) 6= 0, and

hence, 〈λ,wn〉 =
∫ T
0 λ(t)wn(t)dt = 0, i.e. wn ∈ TK(x) ∩ λ⊥. It remains to show that wn → ŵ

for the norm of L2. If t /∈ ∆(x), for n large enough, wn(t) = max(min(ŵ(t), n),−n) → ŵ(t)
when n → ∞, and if t ∈ ∆(x), since ŵ(t) ≤ 0 a.e. on ∆(x), for all n we have wn(t) =
max(ŵ(t),−n) → ŵ(t). Hence, wn(t) → ŵ(t) a.e., and |wn(t)| ≤ |ŵ(t)| for all t ∈ [0, T ], with
ŵ ∈ L2. It follows then from the Lebesgue’s dominated convergence Theorem that wn → ŵ
in L2, which achieves the proof.

4.9.2 First-order optimality condition

If u is a local solution of (4.5) satisfying (4.34), then it is well-known that there exist η ∈
M([0, T ]; Rr∗) and λ ∈ (L∞)∗(0, T ; Rs∗) such that

DJ(u)v + 〈η,DG(u)v〉 + 〈λ,DG(u)v〉 = 0, ∀ v ∈ U , (4.213)

η ∈ NK(G(u)), λ ∈ NK(G(u)). (4.214)
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Lemma 4.38. Assume that u is a local solution of (4.5) satisfying (4.34), and that assumption
(4.31) holds. Then the multiplier λ belongs to L∞(0, T ; Rs∗).

Proof. Let p̃ be the unique solution in BV (0, T ; Rn∗) of:

−dp̃ = Hy(u, yu, p̃)dt+ dηgy(yu); p(T ) = φy(yu(T )).

Then it is not difficult to show that (4.213) writes, with zv the solution of (4.22):

∫ T

0
Hu(u, yu, p̃)vdt+ 〈λ, cy(u, yu)zv + cu(u, yu)v〉 = 0, ∀ v ∈ U . (4.215)

Since u, y and p̃ belong to L∞, so do the functions Hu(u(·), yu(·), p̃(·)), cu(u(·), yu(·)) and
cy(u(·), yu(·)). It follows then from (4.215) that for all v ∈ U ,

|〈λ, cu(u, yu)v〉| ≤ ‖λ‖∞∗‖cy(u, yu)‖∞‖zv‖∞ + ‖Hu(u, yu, p̃)‖∞‖v‖1.

By Gronwall’s Lemma, there exists a constant κ > 0 such that ‖zv‖∞ ≤ κ‖v‖1, for all v ∈ U ,
and hence we obtain that for all v ∈ U ,

|〈λ, cu(u, yu)v〉| ≤ (‖λ‖∞∗‖cy(u, yu)‖∞κ+ ‖Hu(u, yu, p̃)‖∞)‖v‖1 ≤ κ′‖v‖1. (4.216)

By assumption (4.31), for all w ∈ L∞(0, T ; Rs), there exists v ∈ U such that wi(t) =
ci,u(u(t), yu(t))v(t) for a.a. t ∈ ∆n(ci(u, yu)), for all i = r + 1, . . . , r + s, and ‖v‖1 ≤ M‖w‖1

for some constant M > 0. Indeed, take e.g. v(t) = C(t)>(C(t)C(t)>)−1w(t) with C(t) :=
cIc

n(t),u(u(t), yu(t)) if Icn(t) 6= ∅, and v(t) = 0 otherwise, and M := ‖C>(CC>)−1‖∞. Since
λ ∈ NK(G(u)), the characterization of the critical cone (4.210) implies that 〈λ, cu(u, yu)v〉 =
〈λ,w〉. Then (4.216) yields

|〈λ,w〉| ≤ κ′′‖w‖1, ∀w ∈ L∞(0, T ; Rs). (4.217)

Since L∞ is dense in L1 and λ is continuous for the norm of L1, λ can be extended to a
continuous linear form over L1(0, T ; Rs). Therefore λ belong to the dual space L∞(0, T ; Rs∗).

It is not difficult to derive from this result the first-order optimality condition given in Th.
4.5. See related results in [111, 88].



Chapitre 5

Analyse de stabilité pour les
contraintes d’ordre 2∗

Abstract This paper gives stability results for nonlinear optimal control problems subject
to a regular state constraint of second-order. The strengthened Legendre-Clebsch condition
is assumed to hold, and no assumption on the structure of the contact set is made. Under a
weak second-order sufficient condition (taking into account the active constraints), we show
that the solutions are Lipschitz continuous w.r.t. the perturbation parameter in the L2 norm,
and Hölder continuous in the L∞ norm. We use a generalized implicit function theorem in
metric spaces by Dontchev and Hager [SIAM J. Control Optim., 1998]. The difficulty is that
multipliers associated with second-order state constraints have a low regularity (they are only
bounded measures). We obtain Lipschitz stability of a “primitive” of the state constraint
multiplier.

Résumé Dans cet article on donne un résultat de stabilité pour les problèmes de com-
mande optimale avec une contrainte sur l’état du second ordre régulière. La condition forte de
Legendre-Clebsch est supposée satisfaite. Sous une condition suffisante du second ordre faible
(prenant en compte les contraintes actives) on montre que les solutions sont lipschitziennes
par rapport au paramètre pour la norme L2, et höldériennes pour la norme L∞. On utilise
un théorème des fonctions implicites généralisé dans des espaces métriques de Dontchev et
Hager [SIAM J. Control Optim., 1998]. La difficulté vient du fait que les multiplicateurs as-
sociés aux contraintes sur l’état du second ordre sont peu réguliers (ce sont seulement des
mesures bornées). On obtient la stabilité lipschitz d’une primitive du multiplicateur associé à
la contrainte sur l’état.

5.1 Introduction

This paper deals with stability analysis of nonlinear optimal control problems of an ordinary
differential equation with a second-order state constraint. State constraints of second-order
occur naturally in applications: For example, in the problem of the atmospheric reentry of
a space shuttle, with the back angle as control, the constraints on the thermal flux, normal
acceleration and dynamic pressure are second-order state constraints, see [27]. Stability and
sensitivity analysis of solutions of optimal control problems is of high interest for the study

∗Accepted for publication in SIAM Journal on Optimization, under the title Stability analysis of optimal

control problems with a second-order state constraint.
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of numerical methods, such as e.g. continuation algorithms, see [20], and to analyze the
convergence of discretization schemes and obtain errors estimates, see e.g. [54].

For a class of general constrained optimization problems in Banach spaces, when the
derivative of the constraint is “onto” and a second-order sufficient condition holds, Lipschitz
stability of solutions and multipliers can be obtained by application of Robinson’s strong
regularity theory [121] to the first-order optimality system. For optimal control problems, this
theory does not apply because of the well-known two-norm discrepancy (see [99]). Stability
results for optimal control problems using variants of Robinson’s strong regularity in order to
deal with the two-norm approach have been obtained in [52], [87], [55] for control constraints,
and [90] for mixed control-state constraints.

Lipschitz stability results for state constraints of first-order have been obtained by Malanowski
[88] and Dontchev and Hager [53]. The difficulty of pure state constraints is the low regularity
of multipliers, which are bounded Borel measures. These multipliers can be identified with
functions of bounded variation, and for first-order state constraints, it is known that under
standard hypothesis, they are more regular (they are Lipschitz continuous functions, see Hager
[65]). This additional regularity of solutions and multipliers is strongly used in the analysis in
[88] and [53]. In those two papers, strong second-order sufficient conditions were used (that do
not take into account the active constraints). The sufficient condition was recently weakened
by Malanowski [92, 91].

For higher-order state constraints, the multipliers associated with the state constraints
are only measures, and are not continuous w.r.t. the perturbation parameter (for the total
variation norm). For this reason, the frameworks of [88] or [53] are not directly applicable.
The only stability and sensitivity results known for state constraints of higher-order are based
on the shooting approach, see Malanowski and Maurer [94] and [19]. Such results require
strong assumptions on the structure of the contact set.

The main result of this paper is a stability result for regular second-order state constraints,
with no assumption on the structure of the contact set. The control is assumed to be contin-
uous and the strengthened Legendre-Clebsch condition to hold. We use a generalized implicit
function theorem in metric spaces by Dontchev and Hager [53], applied to a system equiv-
alent to the first-order optimality condition (the alternative formulation). This formulation
involves alternative multipliers that are “integrals” of the original state constraint multipliers,
and therefore are more regular. We obtain Lipschitz continuity of solutions and alternative
multipliers in the L2 norm, and Hölder continuity in the L∞ norm, under a weak second-order
sufficient condition taking into account the active constraints.

The paper is organized as follows. In section 5.2, the problem, optimality conditions,
assumptions, and the admissible class of perturbations are introduced. In section 5.3, the
second-order sufficient optimality condition is presented. In section 5.4, the main stability
results for the nonlinear optimal control problem are given. Section 5.5 is devoted to stability
analysis of linear-quadratic problems, that is used to prove the main theorem in section 5.6.
Finally, conclusion and comments are given in section 5.7.
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5.2 Preliminaries

We consider the following optimal control problem

(P) min
(u,y)∈U×Y

∫ T

0
`(u(t), y(t))dt + φ(y(T )) (5.1)

subject to ẏ(t) = f(u(t), y(t)) for a.a. t ∈ [0, T ], y(0) = y0 (5.2)

g(y(t)) ≤ 0 for all t ∈ [0, T ] (5.3)

with the control and state spaces U := L∞(0, T ; Rm) and Y := W 1,∞(0, T ; Rn). The following
assumptions are assumed to hold throughout the paper and will not be repeated in the various
results of the paper.

(A0) The data ` : R
m × R

n → R, φ : R
n → R (resp. f : R

m × R
n → R

n, g : R
n → R)

are C2 (resp. C3, C4) mappings, with locally Lipschitz continuous second-order (resp.
third-order, fourth order) derivatives, and f is Lipschitz continuous.

(A1) The initial condition y0 ∈ R
n satisfies g(y0) < 0.

We consider in this paper state constraints of second-order. This means that the first-order
time derivative g(1) : R

m × R
n → R of the constraint, defined by

g(1)(u, y) := gy(y)f(u, y)

does not depend on the control variable u, i.e. g
(1)
u ≡ 0 (and hence, we write g(1)(y) =

g(1)(u, y)), and the second-order time derivative g(2) : R
m × R

n → R, defined by

g(2)(u, y) := g(1)
y (y)f(u, y)

depends explicitly on the control, i.e. g
(2)
u 6≡ 0.

Remark 5.1. For linear-quadratic control problems of type (5.62)–(5.65) (see section 5.5),
with dynamics given by ż(t) = A(t)z(t) + B(t)v(t) and state constraint by C(t)z(t) + d(t) ≤
0, the state constraint is of second-order means that C(t)B(t) ≡ 0 on [0, T ] and (Ċ(t) +
C(t)A(t))B(t) 6≡ 0.

Remark 5.2. In this paper the state constraint is assumed to be scalar-valued for simplicity.
The results are directly generalizable to several state constraints g1, . . . , gr of second-order
(and even of higher-order [98, 68] qi ≥ 2 for i = 1, . . . , r, see Remark 5.3 further) under the

assumption (see [98, 17]) that the gradients of the nearly active constraints ∇ug
(qi)
i (u, y) are

uniformly linearly independent along the trajectory.

Notation We denote by subscripts Fréchet derivatives w.r.t. the variables u, y, i.e. fy(u, y) =
Dyf(u, y), fyy(u, y) = D2

yyf(u, y), etc. The derivative with respect to the time is denoted

by a dot, i.e. ẏ = dy
dt = y(1). The set of row vectors of dimension n is denoted by R

n∗.
Adjoint or transpose operators are denoted by the symbol >. The euclidean norm is de-
noted by | · |. By Lr(0, T ) we denote the Lebesgue space of measurable functions such that

‖u‖r := (
∫ T
0 |u(t)|rdt)1/r < ∞ for 1 ≤ r < ∞, ‖u‖∞ := supess[0,T ] |u(t)| < ∞. The space

W s,r(0, T ) denotes the Sobolev space of functions having their s first weak derivatives in
Lr(0, T ), with the norm ‖u‖s,r :=

∑s
j=0 ‖u(j)‖r. We denote by Hs the space W s,2. The space

of continuous functions over [0, T ] and its dual space, the space of bounded Borel measures,



168 CHAPITRE 5. ANALYSE DE STABILITÉ POUR LES CONTRAINTES D’ORDRE 2

are denoted respectively by C[0, T ] and M[0, T ]. The set of nonnegative measures is denoted
by M+[0, T ]. The space of functions of bounded variation over [0, T ] is denoted by BV [0, T ],
and the set of normalized BV functions vanishing at T is denoted by BVT [0, T ]. Functions of
bounded variation are w.l.o.g. assumed to be right-continuous. We identify the elements of
M[0, T ] with the distributional derivatives dη of functions η in BVT [0, T ]. The support and
the total variation of the measure dη ∈ M[0, T ] are denoted respectively by supp(dη) and

|dη|M. The duality product over M[0, T ] × C[0, T ] is denoted by 〈dη, x〉 =
∫ T
0 x(t)dη(t). We

denote by BX(x, ρ) (resp. BX) the open ball of the space X with center x and radius ρ (resp.
the open unit ball of the space X). We write Br for BLr , r = 2,∞.

We call a trajectory an element (u, y) ∈ U × Y satisfying the state equation (5.2). A
trajectory satisfying the state constraint (5.3) is said to be feasible. The contact set of a
feasible trajectory is defined by

I(g(y)) := {t ∈ [0, T ] : g(y(t)) = 0}. (5.4)

Under assumption (A0), the mapping U → Y, u 7→ yu where yu is the unique solution of the
state equation (5.2), is well-defined. This leads us to the following abstract formulation of
(P):

min
u∈U

J(u), G(u) ∈ K, (5.5)

with the cost function J(u) :=
∫ T
0 `(u, yu)dt+φ(yu(T )), the constraint mapping G(u) := g(yu),

and the constraint cone K := C−[0, T ] is the cone of continuous functions taking nonpositive
values over [0, T ]. The polar cone to K, denoted by K−, is the set of nonnegative measures
M+[0, T ].

Finally, in all the paper the time argument t ∈ [0, T ] is often omitted when there is no
ambiguity.

5.2.1 Optimality conditions and Assumptions

Let us first recall the well-known first-order necessary optimality condition of problem (P).
The Hamiltonian H : R

m × R
n × R

n∗ → R is defined by

H(u, y, p) := `(u, y) + pf(u, y). (5.6)

We say that a feasible trajectory (u, y) is a stationary point of (P), if there exists (p, η) ∈
BV ([0, T ]; Rn∗) ×BVT [0, T ] such that

− dp = Hy(u, y, p)dt+ gy(y)dη, p(T ) = φy(y(T )) (5.7)

0 = Hu(u(t), y(t), p(t)) a.e. on [0, T ] (5.8)

dη ∈ NK(g(y)). (5.9)

Here NK(g(y)) denotes the normal cone to K at point g(y) (in the sense of convex analysis). If
g(y) ∈ K, then NK(g(y)) is the set of nonnegative measures in M+[0, T ] having their support
included in the contact set (5.4), otherwise NK(g(y)) is empty.

The Lagrangian L : U ×M[0, T ] → R of problem (5.5) is defined by

L(u, η) := J(u) + 〈dη,G(u)〉 = J(u) +

∫ T

0
g(yu(t))dη(t). (5.10)
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We may write the first-order optimality condition as follows: (u, y = yu) is a stationary point
of (P) iff there exists η ∈ BVT [0, T ] such that

DuL(u, η) = 0, dη ∈ NK(G(u)). (5.11)

The costate p is then obtained in function of u, y = yu and η as the unique solution in
BV ([0, T ]; Rn∗) of the costate equation (5.7).

Robinson’s constraint qualification [119, 120] for problem (P) in abstract form (5.5) is as
follows:

∃ ε > 0, εBC[0,T ] ⊂ G(u) +DG(u)U −K. (5.12)

This condition is equivalent to the existence of some v ∈ U such that

DG(u)v < 0 on I(g(y)).

It is well-known that a local solution (weak minimum) of (P) satisfying (5.12) is a stationary
point of (P).

Alternative formulation For the stability analysis, it will be convenient to write the op-
timality condition using alternative multipliers η2 and p2, uniquely related to (p, η) in the
following way:

η1(t) :=

∫

(t,T ]
dη(s) = −η(t), η2(t) :=

∫ T

t
η1(s)ds, (5.13)

p2(t) := p(t) − η1(t)gy(y(t)) − η2(t)g(1)
y (y(t)), t ∈ [0, T ]. (5.14)

We see that η2 belongs to the set BV 2
T [0, T ], defined by

BV 2
T [0, T ] := {ξ ∈W 1,∞(0, T ) : ξ(T ) = 0, ξ̇ ∈ BVT [0, T ]}. (5.15)

Define the alternative Hamiltonian H̃ : R
m × R

n × R
n∗ × R → R by

H̃(u, y, p2, η2) := H(u, y, p2) + η2g(2)(u, y), (5.16)

whereH is the classical Hamiltonian (5.6). Using these alternative multipliers, it is not difficult
to see by a direct calculation (see [98] or [17, Lemma 3.4]1) that a feasible trajectory (u, y) is
a stationary point of (P) iff there exists (p2, η2) ∈W 1,∞(0, T ; Rn∗) ×BV 2

T [0, T ] such that

− ṗ2 = H̃y(u, y, p
2, η2), p2(T ) = φy(y(T )) (5.17)

0 = H̃u(u, y, p
2, η2) a.e. on [0, T ] (5.18)

dη̇2 ∈ NK(g(y)). (5.19)

The definition of these multipliers p2, η2 is inspired by the ones used in the alternative formu-
lation for the shooting algorithm, see [98, 68, 94, 19], though p2, η2 are continuous over [0, T ]
while the ones in the shooting algorithm have jumps.

Remark 5.3. The results of this paper have a natural generalization to a state constraint
of higher-order q > 2, considering in the analysis alternative multipliers (ηq, pq) of order q

1Lemma 4.11 of this thesis.
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defined below and the resulting alternative formulation of optimality condition of order q.
These alternative multipliers of order q, ηq ∈ BV q

T [0, T ] with

BV q
T [0, T ] := {ξ ∈W q−1,∞(0, T ) : ξ(j)(T ) = 0 ∀j = 0, . . . , q − 2, ξ(q−1) ∈ BVT [0, T ]}

and pq ∈W 1,∞(0, T ; Rn∗), are defined by

η1(t) :=

∫

(t,T ]
dη(s), ηj(t) :=

∫ T

t
ηj−1(s)ds, j = 2, . . . , q,

pq(t) := p(t) −
q
∑

j=1

ηj(t)g(j−1)
y (y(t)).

Assumptions Let (ū, ȳ) be a local solution of (P). We denote by Ω := I(g(ȳ)) the contact
set of the trajectory (ū, ȳ), and for a small σ > 0, let Ωσ denote a neighborhood of the contact
set

Ωσ := {t ∈ [0, T ] : dist{t,Ω} < σ}. (5.20)

We assume that (ū, ȳ) satisfies the assumption below:

(A2) The state constraint is a regular second-order state constraint, i.e. g
(1)
u ≡ 0 and

∃ β, σ > 0, |g(2)
u (ū(t), ȳ(t))| ≥ β, for a.a. t ∈ Ωσ. (5.21)

Given v ∈ Lr(0, T ; Rm), 1 ≤ r ≤ ∞, we denote by zv the unique solution in W 1,r(0, T ; Rn)
of the linearized state equation

żv(t) = fy(ū(t), ȳ(t))zv(t) + fu(ū(t), ȳ(t))v(t) a.e. on [0, T ], zv(0) = 0. (5.22)

Note that the derivative of the constraint mapping is given by DG(ū)v = gy(ȳ)zv.

Lemma 5.4. Let (ū, ȳ) be a feasible trajectory of (P) satisfying (A2). Then for all r ∈ [1,+∞]
and all ε ∈ (0, σ), with the σ of (5.21), so small that

Ωε ⊂ [a, T ], for some a > 0, (5.23)

the linear mapping

Lr(0, T ; Rm) → W 2,r(Ωε), v 7→ (gy(ȳ(·))zv(·))|Ωε , (5.24)

where |Ωε denotes the restriction to the set Ωε, is onto, and therefore has a bounded right
inverse by the open mapping theorem.

If u is continuous over [0, T ], then Lemma 5.4 is satisfied with ε = σ, assuming w.l.o.g. in
view of (A1) that σ in (5.21) satisfies (5.23).

Proof. We only recall the main ideas of the proof, given in [17, Lemma 2.2]2. We have that

d

dt
{gy(ȳ(t))zv(t)} = g(1)

y (ȳ(t))zv(t),

d2

dt2
{gy(ȳ(t))zv(t)} = g(2)

y (ū(t), ȳ(t))zv(t) + g(2)
u (ū(t), ȳ(t))v(t).

Since by hypothesis (5.21) and (A1), g
(2)
u (ū(t), ȳ(t)) is non singular on a left neighborhood of

Ωε, the result follows from Gronwall’s Lemma.

2Lemma 4.3 of this thesis.



5.2. PRELIMINARIES 171

By the above lemma, assumption (A2) (together with (A1)) implies that (ū, ȳ) satisfies
Robinson’s constraint qualification (5.12), and hence (ū, ȳ) is a stationary point of (P), with
multipliers (p̄, η̄). Moreover, Lemma 5.4 implies that the multipliers (p̄, η̄) associated with
(ū, ȳ) are unique. We assume in addition that

(A3) ū is continuous on [0, T ] and the strengthened Legendre-Clebsch condition holds:

∃ α > 0, v>Huu(ū(t), ȳ(t), p̄(t))v ≥ α|v|2, for all t ∈ [0, T ] and all v ∈ R
m. (5.25)

Remark 5.5. A stronger assumption than (5.25), which implies the continuity of ū (see [17,
Prop. 3.1]3), is the uniform strong convexity of the Hamiltonian:

∃ α > 0, v>Huu(û, ȳ(t), p̄(t))v ≥ α|v|2, for all t ∈ [0, T ] and all û, v ∈ R
m.

Denote by p̄2 and η̄2 the alternative multipliers related to p̄ and η̄ by (5.13)–(5.14). Assumption
(5.25) can be rewritten, using the alternative multipliers p̄2 and η̄2 instead of p̄ and η̄ and the
alternative Hamiltonian (5.16), by:

∃ α > 0, v>H̃uu(ū(t), ȳ(t), p̄
2(t), η̄2(t))v ≥ α|v|2, for all t ∈ [0, T ] and all v ∈ R

m. (5.26)

Lemma 5.6. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A3). Then ū belongs to
the space W 1,∞(0, T ; Rm).

Proof. By (A3), implying (5.26), and the implicit function theorem applied to relation (5.18),
there exists a C1 function Υ such that ū(t) = Υ(ȳ(t), p̄2(t), η̄2(t)). Since ȳ, p̄2, η̄2 ∈ W 1,∞, it
follows from the chain rule that ū ∈W 1,∞.

Remark 5.7. More precisely, under the assumptions of Lemma 5.6, ū ∈ BV 2([0, T ]; Rm), where
BV 2[0, T ] := {u ∈ W 1,∞(0, T ) : u̇ ∈ BV [0, T ]}. Indeed, differentiation of (5.18) w.r.t. time
shows that (omitting arguments (ū, ȳ, p̄2, η̄2))

0 = H̃uu ˙̄u+ H̃uyf − H̃yfu + ˙̄η2g(2)
u .

Since ˙̄η2 = η̄ ∈ BVT [0, T ] and H̃uu is uniformly invertible by (5.26), we obtain the result.

5.2.2 Perturbed optimal control problem

We consider perturbed problems in the following form:

(Pµ) min
(u,y)∈U×Y

∫ T

0
`µ(u(t), y(t))dt + φµ(y(T )) (5.27)

subject to ẏ(t) = fµ(u(t), y(t)) a.e. on [0, T ], y(0) = yµ0 (5.28)

gµ(y(t)) ≤ 0 for all t ∈ [0, T ]. (5.29)

Here µ is the perturbation parameter, belonging to an open subset M0 of a Banach space M .

Definition 5.8. We say that (Pµ) is a stable extension of (P), if:
(i) There exists µ̄ ∈M0 such that (P µ̄) ≡ (P);
(ii) The mappings R

m × R
n ×M0 → R, (u, y, µ) 7→ `µ(u, y); R

n ×M0 → R, (y, µ) 7→ φµ(y);
M0 → R

n, µ 7→ yµ0 (resp. R
m × R

n × M0 → R
n, (u, y, µ) 7→ fµ(u, y); R

n × M0 → R,

3Proposition 4.8 of this thesis.
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(y, µ) 7→ gµ(y)) are of class C2 (resp. C3, C4), with locally Lipschitz continuous second-order
(resp. third-order, fourth order) derivatives, uniformly w.r.t. µ ∈M0;
(iii) The dynamics fµ is uniformly Lipschitz continuous over R

m × R
n for all µ ∈M0;

(iv) The state constraint is not of first-order, i.e. (gµ)
(1)
u (u, y) ≡ 0 for all (u, y, µ) ∈ R

m×R
n×

M0.

Given a stable extension (Pµ) and (u, µ) ∈ U ×M0, we denote by yµu the unique solution
in Y of the state equation (5.28), and we have the abstract formulation of (Pµ)

min
u∈U

Jµ(u), Gµ(u) ∈ K, (5.30)

with Jµ(u) :=
∫ T
0 `µ(u, yµu)dt+φµ(yµu(T )) and Gµ(u) := gµ(yµu). When we refer to the data of

the reference problem (P), we often omit the superscript µ̄.

5.3 Second-order sufficient optimality condition

Let (ū, ȳ) be a stationary point of (P), with multipliers (p̄, η̄). Let V := L2(0, T ; Rm). The
quadratic form involved in the second-order optimality conditions, defined over V, is as follows:

Q(v) :=

∫ T

0
D2

(u,y)2H(ū, ȳ, p̄)(v, zv)
2dt + φyy(ȳ(T ))(zv(T ), zv(T ))

+

∫ T

0
gyy(ȳ)(zv , zv)dη̄.

(5.31)

Recall that zv is the solution of the linearized state equation (5.22). Here the notation
D2

(u,y)2H(ū, ȳ, p̄)(v, zv)
2 stands for D2

(u,y)(u,y)H(ū, ȳ, p̄)((v, zv), (v, zv)). The critical cone C(ū)
is the set of v ∈ V satisfying

gy(ȳ(t))zv(t) = 0 on supp(dη̄), (5.32)

gy(ȳ(t))zv(t) ≤ 0 on I(g(ȳ)) \ supp(dη̄). (5.33)

A sufficient second-order optimality condition for (P) is, see [21, Th. 18]4 for scalar-valued
control and constraint and [17, Th. 6.1]5 for vector-valued ones:

Q(v) > 0, for all v ∈ C(ū) \ {0}. (5.34)

When the strengthened Legendre-Clebsch condition (5.25) holds, (5.34) implies that (ū, ȳ) is
a local solution of (P) satisfying the second-order growth condition:

∃ c, ρ > 0, J(u) ≥ J(ū) + c‖u− ū‖2
2, for all u ∈ U : G(u) ∈ K, ‖u− ū‖∞ < ρ. (5.35)

This condition involves two norms, L2 for the growth condition and L∞ for the neighborhood.
We will use, in the stability analysis, a natural strengthening of the sufficient condition

(5.34), omitting the inequality constraint (5.33) in the critical cone. So let the extended
critical cone Ĉ(ū) be defined as the set of v ∈ V satisfying (5.32) (and hence, C(ū) ⊂ Ĉ(ū)).
The strong second-order sufficient condition used in the stability analysis is as follows:

Q(v) > 0, for all v ∈ Ĉ(ū) \ {0}. (5.36)

4Theorem 1.18 of this thesis.
5Theorem 4.24 of this thesis.
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Although we call the above condition the strong second-order sufficient condition (in com-
parison with (5.34)), it takes into account the active constraints so it is weaker than the
second-order sufficient condition used in [53] that assumes the strict positivity of Q over the
whole space V \ {0}.

The strengthened Legendre-Clebsch condition (5.25) implies (see [24, Prop. 3.76(i)]) that
the quadratic form Q is a Legendre form (see [74]), i.e. a weakly lower semi-continuous (weakly
l.s.c.) quadratic form with the property that if a sequence vn weakly converges to v in L2

(vn ⇀ v) and if Q(vn) → Q(v), then vn → v strongly.

Lemma 5.9. Let (ū, ȳ) be a stationary point of (P). An equivalent expression for the quadratic
form Q defined by (5.31), using the alternative multipliers (p̄2, η̄2) given by (5.13)–(5.14)
instead of (p̄, η̄) and the alternative Hamiltonian (5.16), is:

Q(v) =

∫ T

0
D2

(u,y)2H̃(ū, ȳ, p̄2, η̄2)(v, zv)
2dt + φyy(ȳ(T ))(zv(T ), zv(T )). (5.37)

Proof. Let v ∈ V. Denote by Q̃(v) the right-hand side of (5.37) and set ∆ := Q̃(v) − Q(v).
In view of the relations (5.13)–(5.14) between (p̄2, η̄2) and (p̄, η̄), we have

∆ =

∫ T

0
(p̄2 − p̄)D2f(ū, ȳ)(v, zv)

2dt+

∫ T

0
D2g(2)(ū, ȳ)(v, zv)

2η̄2dt

−
∫ T

0
gyy(ȳ)(zv, zv)dη̄

= −
∫ T

0
η̄1gy(ȳ)D

2f(ū, ȳ)(v, zv)
2dt−

∫ T

0
η̄2g(1)

y (ȳ)D2f(ū, ȳ)(v, zv)
2dt

+

∫ T

0
D2g(2)(ū, ȳ)(v, zv)

2η̄2dt−
∫ T

0
gyy(ȳ)(zv , zv)dη̄.

The integration by parts formula in BV [58, p.154] shows that (the calculus is analogous to
Lemma 3.6 in [19]6)

∫ T

0
gyy(ȳ)(zv , zv)dη̄ =

∫ T

0

d

dt
{gyy(ȳ)(zv , zv)}η̄1dt+ [gyy(ȳ)(zv , zv)η̄

1]T0

=

∫ T

0
{gyyy(ȳ)(f, zv , zv) + 2gyy(ȳ)(Df(ū, ȳ)(v, zv), zv)}η̄1dt

=

∫ T

0
g(1)
yy (ȳ)(zv , zv)η̄

1dt−
∫ T

0
gy(ȳ)D

2f(ū, ȳ)(v, zv)
2η̄1dt.

Similarly, we obtain that

∫ T

0
g(1)
yy (ȳ)(zv , zv)η̄

1dt =

∫ T

0
D2g(2)(ū, ȳ)(v, zv)

2η̄2dt−
∫ T

0
g(1)
y (ȳ)D2f(ū, ȳ)(v, zv)

2η̄2dt.

Summing the two above equalities, we obtain that ∆ = 0, which completes the proof.

6Lemma 2.26 of this thesis.
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5.4 Stability analysis for the nonlinear problem

According to Def. 5.16 in [24], adapted to our optimal control framework, we consider the
following definition of uniform second-order growth condition.

Definition 5.10. Let (ū, ȳ) be a stationary point of (P). We say that the uniform second-order
(or quadratic) growth condition holds, if for all stable extensions (Pµ) of (P), there exists
c, ρ > 0 and a neighborhood N of µ̄, such that for any stationary point (uµ, yµ) of (Pµ) with
µ ∈ N and ‖uµ − ū‖∞ < ρ,

Jµ(u) ≥ Jµ(uµ) + c‖u− uµ‖2
2, for all u ∈ U : Gµ(u) ∈ K, ‖u− ū‖∞ < ρ. (5.38)

The next proposition (proved in subsection 5.4.2) shows that the strong second-order
sufficient condition (5.36) implies the uniform second-order growth condition. Therefore, if a
stationary point for the perturbed problem (Pµ) exists, then the latter is locally unique in a
L∞-neighborhood of ū, and is a local solution of (Pµ).

Proposition 5.11. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A3) and the strong
second-order sufficient condition (5.36). Then the uniform second-order growth condition
holds.

The difficult part in the stability analysis here is to prove the existence of a stationary point
for the perturbed problem. For some general optimization problems, Robinson’s constraint
qualification (5.12) and the uniform quadratic growth condition imply, for a certain class of
perturbations, the existence of a stationary point for the perturbed problem, see Bonnans
and Shapiro [24, Th. 5.17]. The proof uses Ekeland’s variational principle [59]. However,
this result does not apply to our nonlinear optimal control problem, due to the two-norms
discrepancy, but it does apply to linear-quadratic problems (see the proof of Th. 5.23). For
the general nonlinear problem, in order to obtain the existence of a stationary point for the
perturbed problem, we need to use a variant of Robinson’s strong regularity theory [121].

The main result of the paper is the next theorem (proved in section 5.6).

Theorem 5.12. Let (ū, ȳ) be a local solution of (P), satisfying (A2)–(A3) and the strong
second-order sufficient condition (5.36). Then for all stable extensions (Pµ) of (P), there
exist c, ρ, κ, κ̃ > 0 and a neighborhood N of µ̄, such that for all µ ∈ N , (Pµ) has a unique
stationary point (uµ, yµ) with ‖uµ − ū‖∞ < ρ and unique associated alternative multipliers
(p2,µ, η2,µ), and for all µ, µ′ ∈ N ,

‖uµ − uµ
′‖2, ‖yµ − yµ

′‖1,2, ‖p2,µ − p2,µ′‖1,2, ‖η2,µ − η2,µ′‖2 ≤ κ‖µ− µ′‖, (5.39)

‖uµ − uµ
′‖∞, ‖yµ − yµ

′‖1,∞, ‖p2,µ − p2,µ′‖1,∞, ‖η2,µ − η2,µ′‖∞ ≤ κ̃‖µ− µ′‖2/3. (5.40)

Moreover, (uµ, yµ) is a local solution of (Pµ) satisfying the uniform quadratic growth condition
(5.38).

The above theorem is obtained by application of a generalized implicit function theorem by
Dontchev and Hager [53] (Th. 5.17 of this paper) to the alternative formulation (5.17)–(5.19)
in suitable functional spaces described in subsection 5.4.3. In order to show that the main
assumption of this theorem is satisfied (assumption (iv)), we have to show that a perturbed
linear-quadratic optimal control problem has a unique solution which is Lipschitz continuous
w.r.t. the parameter. For this, we will use Prop. 5.11 (or more precisely, its analogous
statement adapted to linear-quadratic problems.) Before giving the proof of Prop. 5.11, we
first need to study the stability of multipliers (Prop. 5.13).
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5.4.1 Stability of multipliers

The next result shows that under the constraint qualification (A2), the stability of multipliers
could be deduced from the stability of solutions. Given r ∈ [1,+∞], we denote by ‖ · ‖2,r∗ the
norm of the dual space to W 2,r(0, T ), i.e., for dη ∈ M[0, T ] we have

‖dη‖2,r∗ := sup{ |
∫ T
0 Φ(t)dη(t)|
‖Φ‖2,r

, Φ ∈W 2,r(0, T ),Φ 6≡ 0 }.

Proposition 5.13. Let (ū, ȳ) be a stationary point of (P) satisfying (A2). Then for every
stable extension (Pµ) of (P), there exists ν > 0 such that for every stationary point (u, y) of
(Pµ), with (unique) associated multipliers (p, η) and alternative multipliers (p2, η2) given by
(5.13)–(5.14), the following hold:
(i) If ‖µ− µ̄‖, ‖u− ū‖∞ < ν, then dη is uniformly bounded in M[0, T ];
(ii) There exists κ > 0 such that, for all ‖µ− µ̄‖, ‖u − ū‖∞ < ν, we have

‖dη − dη̄‖2,1∗, ‖η2 − η̄2‖∞ ≤ κ(‖u− ū‖∞ + ‖µ− µ̄‖).

Moreover, when ‖µ− µ̄‖, ‖u− ū‖∞ → 0:

(iii) dη weakly-* converges to dη̄ (dη
∗
⇀ dη̄) in M[0, T ];

(iv) η1 → η̄1 in L1;
(v) p2 and η2 converge uniformly to p̄2 and η̄2, respectively.

The proof of the above proposition uses the lemma below.

Lemma 5.14. For all 1 ≤ r < ∞, with r′ := r/(r − 1) (1′ = ∞), there exists a positive
constant C such that

‖ξ‖r′ ≤ C‖dξ̇‖2,r∗ for all ξ ∈ BV 2
T [0, T ]. (5.41)

Proof. Let ϕ ∈ Lr(0, T ). Set Φ1(t) :=
∫ t
0 ϕ(s)ds and Φ(t) :=

∫ t
0 Φ1(s)ds. Then Φ ∈W 2,r(0, T ),

and ‖Φ‖2,r ≤ C‖ϕ‖r, with C = 1 + T/ r
√
r + (T/ r

√
r)2. Since ξ(T ) = ξ̇(T ) = 0, the integration

by parts formula in BV [58, p.154] implies that, for all ξ ∈ BV 2
T [0, T ],

∫ T

0
ϕ(t)ξ(t)dt = −

∫ T

0
Φ1(t)ξ̇(t)dt =

∫ T

0
Φ(t)dξ̇(t).

Therefore,

‖ξ‖r′ = sup
ϕ∈Lr,ϕ6≡0

|
∫ T
0 ϕ(t)ξ(t)dt|

‖ϕ‖r
≤ C sup

Φ∈W 2,r ,Φ6≡0

|
∫ T
0 Φ(t)dξ̇(t)|
‖Φ‖2,r

,

which gives the result.

Proof of Prop. 5.13. Let (Pµ) be a stable extension of (P). Note first that for ‖µ − µ̄‖ and
‖u−ū‖∞ small enough, assumptions (A1) and (A2) hold for (Pµ). This implies the uniqueness
of the multipliers (p, η) associated with a stationary point (u, y) of (Pµ). Since (ū, ȳ) satisfies
Robinson’s constraint qualification (5.12), point (i) follows from [24, Prop. 4.43].

Let us show (ii). Since (u, y = yµu) is a stationary point of (Pµ), we have that

DJµ(u) +DGµ(u)>dη = 0, dη ∈ NK(Gµ(u)).
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It follows that DG(ū)>(dη̄−dη) = DJµ(u)−DJ(ū)+ (DGµ(u)−DG(ū))>dη, and hence, for
all v ∈ L1(0, T ),

〈dη̄ − dη,DG(ū)v〉 = (DJµ(u) −DJ(ū))v + 〈dη, (DGµ(u) −DG(ū))v〉. (5.42)

Fix ε ∈ (0, σ) with the σ of (5.21) satisfying (5.23). By Lemma 5.4, the linear mapping defined
in (5.24) for r = 1 is onto. Since DG(ū)v = gy(ȳ)zv , by the open mapping theorem, there
exists a constant C1 > 0 such that for all Φ ∈ W 2,1(0, T ), there exists v ∈ L1(0, T ) such that
DG(ū)v = Φ on Ωε and ‖v‖1 ≤ C1‖Φ‖2,1. For ‖µ − µ̄‖, ‖u − ū‖∞ small enough, the contact
set I(gµ(y)), and hence the support of the measure dη, are included in the set Ωε. Therefore,
〈dη − dη̄, DG(ū)v〉 = 〈dη − dη̄,Φ〉. Consequently, by (5.42),

|〈dη − dη̄,Φ〉| ≤ |(DJµ(u) −DJ(ū))v| + |dη|M‖(DGµ(u) −DG(ū))v‖∞.

By point (i), |dη|M is uniformly bounded, and it is not difficult to check that

|(DJµ(u) −DJ(ū))v|, ‖(DGµ(u) −DG(ū))v‖∞ ≤ C(‖u− ū‖∞ + ‖µ− µ̄‖)‖v‖1,

where C denotes (possibly different) positive constants. Therefore, we obtain that

|〈dη − dη̄,Φ〉| ≤ C(‖u− ū‖∞ + ‖µ− µ̄‖)‖v‖1

≤ CC1(‖u− ū‖∞ + ‖µ− µ̄‖)‖Φ‖2,1.

Consequently, ‖dη−dη̄‖2,1∗ ≤ CC1(‖u−ū‖∞+‖µ−µ̄‖), and since by Lemma 5.14, ‖η2−η̄2‖∞ ≤
C‖dη − dη̄‖2,1∗, this proves (ii).

Now consider a sequence µn → µ̄, and let (un, yn) be a stationary point of (Pµn) such that
un → ū in L∞, with (unique) multipliers (pn, ηn) and alternative multipliers (p2

n, η
2
n). Since

W 2,1(0, T ) is dense in C[0, T ], we deduce easily from point (ii) that dηn
∗
⇀ dη̄ in M[0, T ],

which shows (iii). By the compactness Theorem in BV [2, Th. 3.23], it follows that η1
n → η̄1 in

L1, which shows (iv). Finally, since η2 is given by (5.13), (iv) implies that η2
n → η̄2 uniformly.

By (5.17) and by Gronwall’s Lemma, we conclude that p2
n → p̄2 in W 1,∞, which achieves the

proof of (v).

5.4.2 The uniform second-order growth condition (proof of Prop. 5.11)

The proof of Prop. 5.11 uses the auxiliary result below. Given A,B ⊂ [0, T ], denote by
exc{A,B} the Hausdorff excess of A over B, defined by

exc{A,B} := sup
t∈A

inf
s∈B

|t− s|, (5.43)

with the convention exc{∅, B} = 0.

Lemma 5.15. Let dη̄ ∈ M[0, T ], and a sequence (dηn) ⊂ M[0, T ] be such that dηn weakly-*
converges to dη̄ in M[0, T ]. Then en := exc{supp(dη̄), supp(dηn)} converges to zero when
n→ +∞.

Proof. The result follows from classical compactness arguments. By contradiction, assume
that the result is false. Then there exist ε0 > 0 and a subsequence, still denoted by dηn, such
that for all n ∈ N

∗, en > ε0, i.e. there exists tn ∈ supp(dη̄) such that for all s ∈ supp(dηn),
|tn − s| > ε0. The sequence (tn)n∈N∗ ⊂ [0, T ] being bounded, assume w.l.o.g. that tn → t̄ ∈
[0, T ]. Since supp(dη̄) is closed, t̄ ∈ supp(dη̄). For n large enough, |tn − t̄| < ε0/2, and hence,



5.4. STABILITY ANALYSIS FOR THE NONLINEAR PROBLEM 177

for all s ∈ supp(dηn), |t̄− s| ≥ |tn − s| − |tn − t̄| > ε0/2. Let ϕ be a continuous function, with

support in [t̄− ε0/2, t̄+ ε0/2], and such that
∫ T
0 ϕdη̄ 6= 0. Since dist{t̄, supp(dηn)} > ε0/2 for

all large enough n,
∫ T
0 ϕdηn = 0. But dηn

∗
⇀ dη̄, implying that

∫ T
0 ϕdηn →

∫ T
0 ϕdη̄, which

gives the desired contradiction.

Remark 5.16. We may equivalently reformulate Lemma 5.15 as follows: if dηn weakly-* con-
verges to dη̄ in M[0, T ], then

supp(dη̄) ⊂ lim sup
n→+∞

supp(dηn),

where the lim sup is in the sense of Painlevé-Kuratowski.

Proof of Prop. 5.11. We argue by contradiction. If the uniform second-order growth condition
does not hold, there exist a stable extension (Pµ), a sequence µn → µ̄, a stationary point
(un, yn) of (Pµn ) such that un → ū in L∞, with multipliers (pn, ηn) and alternative multipliers
(p2
n, η

2
n), and a feasible point (ûn, ŷn) of (Pµn) such that

Jµn(ûn) < Jµn(un) + o(‖ûn − un‖2
2). (5.44)

Introducing the Lagrangian of (Pµ), Lµ(u, η) = Jµ(u) + 〈dη,Gµ(u)〉, and using that dηn ∈
NK(Gµn(un)), (5.44) implies that

Lµn(ûn, ηn) − Lµn(un, ηn) ≤ Jµn(ûn) − Jµn(un) < o(‖ûn − un‖2
2).

Set εn := ‖ûn−un‖2 → 0 and vn := ε−1
n (ûn−un). A second-order expansion of the Lagrangian

shows that Lµn(ûn, ηn) − Lµn(un, ηn) = ε2nQµn(vn) + o(ε2n), where the quadratic form Qµn is
defined like (5.31) for the stationary point (un, yn) of (Pµn). Therefore, dividing the above
inequality by ε2n, we obtain that

Qµn(vn) ≤ o(1). (5.45)

Since ‖vn‖2 = 1 for all n, taking a subsequence if necessary, we may assume w.l.o.g. that
vn ⇀ v̄ weakly in L2 for some v̄ ∈ V when n → +∞. Since by Lemma 5.9, Qµn can also
be expressed by (5.37), and (un, yn, p

2
n, η

2
n) → (ū, ȳ, p̄2, η̄2) uniformly by Prop. 5.13(v), and

since vn is bounded in L2, it follows that Qµn(vn) − Q(vn) → 0. Therefore, writing that
Qµn(vn) = Q(vn)+(Qµn (vn)−Q(vn)), and using that Q is a Legendre form and hence weakly
l.s.c., we obtain by (5.45) that

Q(v̄) ≤ 0. (5.46)

Moreover, since vn ⇀ v̄ weakly in L2, and (un, yn) → (ū, ȳ) uniformly, the linearized state
zn, solution of

żn = fµn
y (un, yn)zn + fµn

u (un, yn)vn a.e. on [0, T ], zn(0) = 0

converges weakly to z̄ := zv̄ in H1, and hence uniformly. Since Gµn(ûn) ∈ K, we have that
0 ≥ Gµn(ûn) −Gµn(un) = εnDG

µn(un)vn + εnrn on supp(dηn), with ‖rn‖∞ = O(εn). Since
DGµn(un)vn = gµn

y (yn)zn, it follows that

gµn
y (yn)zn + rn ≤ 0 on supp(dηn). (5.47)
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Since d
dtg

µn
y (yn(t))zn(t) = (gµn)

(1)
y (yn)zn is uniformly bounded over [0, T ], the functions (of

time) gµn
y (yn)zn are uniformly Lipschitz continuous over [0, T ]. Therefore,

sup
supp(dη̄)

gy(ȳ)z̄ ≤ ‖gy(ȳ)z̄ − gµn
y (yn)zn‖∞ + ‖(gµn )(1)y (yn)zn‖∞en + sup

supp(dηn)
gµn
y (yn)zn

≤ o(1) + O(en) + O(εn),

where en := exc{supp(dη̄), supp(dηn)} is defined by (5.43). Since dηn
∗
⇀ dη̄ by Prop. 5.13(iii),

it follows from Lemma 5.15 that en → 0. Therefore, we obtain that

gy(ȳ)z̄ ≤ 0 on supp(dη̄). (5.48)

In addition, by (5.44), DJµn(un)vn ≤ O(εn). Since DJµn(un) + DGµn(un)
>dηn = 0,

it follows that 〈dηn, DGµn(un)vn〉 =
∫ T
0 gµn

y (yn)zndηn ≥ O(εn). Since dηn
∗
⇀ dη̄ and

gµn
y (yn)zn → gy(ȳ)z̄ uniformly, we obtain that

∫ T
0 gy(ȳ)z̄dη̄ ≥ 0. Using that dη̄ ≥ 0, (5.48)

implies that
gy(ȳ)z̄ = 0 on supp(dη̄),

i.e. v̄ ∈ Ĉ(ū). The strong second-order sufficient condition (5.36) and (5.46) imply then that
v̄ = 0. But then Q(v̄) = 0, and Q(vn) → Q(v̄). Since Q is a Legendre form, we deduce that
vn → v̄ = 0 strongly in L2, contradicting that ‖vn‖2 = 1 for all n.

5.4.3 The strong regularity framework

We use the following generalized implicit function theorem in metric spaces by Dontchev and
Hager [53], which is a variant of Robinson’s strong regularity [121].

Theorem 5.17 ([53], Th. 2.2). Let X be a complete metric space, X̃ a closed subset of X,
W a linear metric space, ∆ a subset of W , P a metric space, F : X ×P →W , N : X → 2W ,
L : X →W . Assume that L is continuous and that there exists (x̄, µ̄) ∈ X̃ × P such that:
(i) F(x̄, µ̄) ∈ N (x̄);
(ii) F(x̄, ·) is continuous at µ̄;
(iii) Ψµ := F(·, µ) − L(·) is strictly stationary at x = x̄, uniformly in µ near µ̄, i.e. for all
ε > 0, there exists ν > 0 such that if ‖xi − x̄‖X , ‖µ− µ̄‖ ≤ ν, i = 1, 2,

‖Ψµ(x1) − Ψµ(x2)‖W ≤ ε‖x1 − x2‖X . (5.49)

(iv) For all δ ∈ ∆, there exists a unique solution x ∈ X̃ of

δ ∈ L(x) −N (x), (5.50)

and there exists λ > 0 such that, with xδ the unique solution associated with δ,

‖xδ − xδ′‖X ≤ λ‖δ − δ′‖W , ∀ δ, δ′ ∈ ∆.

(v) F − L maps a neighborhood of (x̄, µ̄) into ∆.
Then for all λ+ > λ, there exist neighborhoods X of x̄ in X̃ and W of µ̄, such that for each
µ ∈ W, there exists a unique x ∈ X satisfying F(x, µ) ∈ N (x); moreover, for each µi ∈ W,
i = 1, 2, if xi denotes the x ∈ X associated with µi, then

‖x2 − x1‖X ≤ λ+‖F(x1, µ1) −F(x1, µ2)‖W . (5.51)
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In [53], the theorem is stated with X̃ = X, but remains true if we replace the complete
metric space X by any closed subset X̃ of X, equipped with the metric of X, since X̃ remains
a complete metric space.

This theorem was used for stability analysis of optimal control problems subject to first-
order state constraints in [53]. In what follows, we describe a suitable framework to apply
Th. 5.17 for second-order state constraints.

Remark 5.18. Our choice of functional spaces to apply Th. 5.17 differs from that of [53] or
[88] in the spaces for the state constraint and state constraint multiplier. Whereas in [53, 88]
the state constraint is seen in W 1,∞, we consider here rather the state constraint in the space
of continuous functions C[0, T ]. Another natural choice for the space of second-order state
constraints would be W 2,∞ since the constraint is “onto” in this space (Lemma 5.4). The
reason for considering here the constraint in C[0, T ] is to have multipliers in M[0, T ] instead
of in the dual space of W 1,∞ or W 2,∞. For first-order state constraints it can be shown (see
[65]) that the state constraint multiplier η lies in W 1,∞ (and therefore a suitable choice for
the state constraint multiplier space is the space Lipk defined below), but this is no more true
for higher-order state constraints. Note that since W 2,∞ ⊂ W 1,∞ ⊂ C[0, T ] with continuous
and dense embeddings, and the constraint is “onto” in W 2,∞ by Lemma 5.4, the multipliers
in the three possible formulations are one-to-one.

Notation In order to apply Th. 5.17 to prove Th. 5.12 in sections 5.5 and 5.6, we use the
following notation. Given k, l, r, %, k ′ > 0, define the spaces

Lipk(0, T ) := {u ∈W 1,∞(0, T ) : ‖u̇‖∞ ≤ k},
BV 2

T,l[0, T ] := {ξ ∈ BV 2
T [0, T ] : |dξ̇|M ≤ l},

X := Lipk(0, T ; Rm) ×BV 2
T,l[0, T ], (5.52)

X̃ := {x = (u, ξ) ∈ X : ‖u− ū‖2 ≤ r}, (5.53)

W := L2(0, T ; Rm∗) ×H2(0, T ) (5.54)

equipped with its standard norm ‖δ‖W := ‖γ‖2 + ‖ζ‖2,2 for δ = (γ, ζ) ∈W ,

∆ := {δ ∈ Lipk′(0, T ; Rm∗) ×H2(0, T ), ‖δ‖W ≤ %}, (5.55)

P : closed neighborhood of µ̄, contained in M0,

and mappings

• F : X × P →W ,

F(x, µ) :=

(

H̃µ
u (u, yµu , p

2,µ
u,η2

, η2)

gµ(yµu)

)

,

where H̃µ is the alternative Hamiltonian (5.16) of (Pµ), yµu is the solution of the state
equation (5.28) and p2,µ

u,η2
is the solution of the alternative costate equation (5.17) for

(Pµ), i.e.:

−ṗ2,µ
u,η2

= H̃µ
y (u, yµu , p

2,µ
u,η2

, η2) a.e. on [0, T ], p2,µ
u,η2

(T ) = φµy (y
µ
u(T )). (5.56)

• N : X → 2W , N (x) = {0} × (NK−(dη̇2) ∩H2(0, T )), where

NK−(dη̇2) =

{
{ϕ ∈ C−[0, T ] : 〈dη̇2, ϕ〉 = 0} if dη̇2 ≥ 0,
∅ otherwise.
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• L : X →W ,
L(x) := F(x̄, µ̄) −DxF(x̄, µ̄)(x− x̄). (5.57)

By Lemma 5.6, we have that (ū, η̄2) ∈ X for sufficiently large k, l.

Lemma 5.19. Equipped with the norm

‖(u, ξ)‖X := ‖u‖2 + ‖ξ‖2, (5.58)

X is a complete metric space, and

‖u‖∞ ≤ max{
√

3/T ‖u‖2,
3
√

3k‖u‖2/3
2 }, for all u ∈ Lipk(0, T ). (5.59)

Proof. It was shown in [53, Lemma 3.2] that the space (Lipk(0, T ), ‖ · ‖2) is a complete metric
space, and the estimate (5.59) follows from [53, Lemma 3.1]. We show now that (BV 2

T,l[0, T ], ‖·
‖2) is complete as well. Let (ξn) be a Cauchy sequence in BV 2

T,l[0, T ] (for the norm ‖ · ‖2).

Since L2(0, T ) is complete, there exists ξ̃ ∈ L2(0, T ) such that ξn → ξ̃ in L2. Let us show that
the limit point ξ̃ lies in BV 2

T,l[0, T ]. We have that |dξ̇n|M ≤ l for all n, and since ξ̇n(T ) = 0,

the sequence (ξ̇n) is bounded in BV for the norm ‖η‖BV := ‖η‖1 + |dη|M. Therefore, by the
compactness theorem in BV [2, Th. 3.23], there exists a subsequence ξψ(n) and ζ ∈ BV [0, T ]

such that dξ̇ψ(n)
∗
⇀ dζ weakly-* in M[0, T ] and ξ̇ψ(n) → ζ in L1. Moreover, using the

integration by parts formula in BV [58, p.154], we obtain that

Tζ(T ) =

∫ T

0
(ζ(t) − ξ̇ψ(n)(t))dt+

∫ T

0
s(dζ(s) − dξ̇ψ(n)(s)) → 0,

and hence ζ(T ) = 0. Setting ξ̂(t) := −
∫ T
t ζ(s)ds, we have that ξ̂ ∈ BV 2

T [0, T ], and ξψ(n) → ξ̂

in L∞ and a fortiori in L2. We deduce that necessarily, ξ̂ = ξ̃ ∈ BV 2
T [0, T ], the whole sequence

(dξ̇n) weakly-* converges to d
˙̃
ξ in M[0, T ], and then

|d ˙̃
ξ|M ≤ lim inf |dξ̇n|M ≤ l.

This shows that ξ̃ ∈ BV 2
T,l[0, T ], and hence, (BV 2

T,l[0, T ], ‖ · ‖2) is a complete metric space.
This achieves the proof.

Note that for all ξ ∈ BV 2
T,l[0, T ], we have that |dξ̇|M ≤ l, and since ξ̇(T ) = 0, it follows

that ‖ξ̇‖∞ ≤ l, and hence, BV 2
T,l[0, T ] ⊂ Lipl(0, T ). Therefore, we deduce from (5.59) that

‖ξ‖∞ ≤ max{
√

3/T‖ξ‖2,
3
√

3l‖ξ‖2/3
2 }, for all ξ ∈ BV 2

T,l[0, T ]. (5.60)

The space X̃ defined by (5.53) is a closed subset of X, and hence, by Lemma 5.19, X̃
equipped with the norm of X (5.58) is a complete metric space. We need to work with X̃
instead of X in order to obtain the uniqueness of a solution of (5.50) in X̃, for small enough
r > 0. The space of sufficiently smooth variations ∆ ⊂W , in assumptions (iv) and (v) of Th.
5.17, is defined by (5.55).

Given a stable extension (Pµ) of (P), our formulation is the following: For µ in the
neighborhood of µ̄, find x = (u, η2) ∈ X̃ solution of

F(x, µ) ∈ N (x), (5.61)

where F and N are defined as above. Then (u, yµu) is a stationary point of (Pµ) with alternative
multipliers (p2,µ

u,η2
, η2) iff x = (u, η2) is solution of (5.61).
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5.5 Stability analysis of linear-quadratic problems

The verification of assumption (iv) of Th. 5.17 is strongly related to stability analysis of
linear-quadratic optimal control problems with a second-order state constraint, that we study
in this section. Since these results have their own interest, they are stated independently of
the rest of the paper. The problem under consideration is of the form:

(Pδ) min
(v,z)∈V×Z

1
2

∫ T

0
(v(t)>S(t)v(t) + 2v(t)>R(t)z(t) + z(t)>Q(t)z(t))dt (5.62)

+

∫ T

0
(a(t)z(t) + (b(t) − γ(t))v(t))dt + 1

2z(T )>Φz(T ) (5.63)

s.t. ż(t) = A(t)z(t) +B(t)v(t) a.e. on [0, T ], z(0) = 0 (5.64)

C(t)z(t) + d(t) − ζ(t) ≤ 0 on [0, T ]. (5.65)

The perturbation parameter is here δ = (γ, ζ) ∈ W = L2(0, T ; Rm∗) × H2(0, T ), with the
norm ‖δ‖W = ‖γ‖2 + ‖ζ‖2,2. The control and state spaces for the linearized problem are
V := L2(0, T ; Rm) and Z := H1(0, T ; Rn). The state constraint (5.65) is scalar-valued. The
matrix and vectors S(·), R(·), Q(·), a(·), b(·), A(·), B(·), C(·), d(·), of appropriate dimensions,
are Lipschitz continuous functions of time. In addition, C(·) and d(·) lie in the space W 3,∞

and A(·) in W 2,∞. The matrix S and Q are symmetric. We assume in addition in all this
section that (recall (A1))

d(0) < 0. (5.66)

Given v ∈ V, we denote by zv the unique solution in Z of the linearized state equation (5.64).
Then we may write (Pδ) as follows:

(Pδ) min
v∈V

J δ(v), Γδ(v) ∈ K,

with J δ(v) :=
∫ T
0 {1

2(v>Sv+2v>Rzv + z>v Qzv) + az+(b− γ)v}dt+ 1
2zv(T )>Φzv(T ), Γδ(v) :=

Czv + d− ζ and K = C−[0, T ].
Assume that C(t)B(t) ≡ 0 on [0, T ] (state constraint of second-order), and define the

matrix:

C1(t) := Ċ(t) + C(t)A(t), C2(t) := Ċ1(t) +C1(t)A(t), N2(t) := C1(t)B(t).

Then for all v ∈ V, we have that

d

dt
{C(t)zv(t)} = C1(t)zv(t),

d2

dt2
{C(t)zv(t)} = C2(t)zv(t) +N2(t)v(t).

The alternative multipliers (π2, η2) ∈ W 1,∞(0, T ; Rn∗) × BV 2
T [0, T ] for the linear-quadratic

problem are defined by

η1(t) :=

∫

(t,T ]
dη(s), η2(t) :=

∫ T

t
η1(s)ds (5.67)

π2(t) := π(t) − η1(t)C(t) − η2(t)C1(t), t ∈ [0, T ]. (5.68)

Let (v̄, z̄ = zv̄) be a stationary point of (P0), with multipliers (π̄, η̄) and alternative mul-
tipliers (π̄2, η̄2). Denote the contact set by Ω := {t ∈ [0, T ] : C(t)z̄(t) + d(t) = 0}, and
a neighborhood of the contact set by Ωσ := {t ∈ [0, T ] : dist{t,Ω} < σ} for σ > 0. For
linear-quadratic problems, assumptions (A2)–(A3) may be rewritten as follows:
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(Ã2) The state constraint is a regular second-order state constraint, i.e. C(t)B(t) ≡ 0 on
[0, T ], and there exists β, σ > 0 (σ satisfying (5.23)) such that

|N2(t)| ≥ β on Ωσ.

(Ã3) The matrix S(t) is uniformly positive definite over [0, T ], i.e.,

∃ α > 0, υ>S(t)υ ≥ α|υ|2, for all t ∈ [0, T ] and all υ ∈ R
m.

Note that by Rem. 5.5, (Ã3) is equivalent to (A3). Assumption (Ã2) (together with (5.66))
imply the following (cf Lemma 5.4):

Lemma 5.20. Assume that (Ã2) holds. Then there exists a positive constant c such that for
all ϕ ∈ H2(0, T ), there exists v ∈ V satisfying

C(t)zv(t) = ϕ(t) on Ωσ and ‖v‖2 ≤ c‖ϕ‖2,2. (5.69)

Therefore (Ã2) (and (5.66)) imply that Robinson’s constraint qualification holds, and that
the multipliers associated with (v̄, z̄) are unique.

Propositions 5.21 and 5.22 below hold for a larger set of perturbations, more precisely for
δ = (γ, ζ) ∈ Ŵ , where

Ŵ := L2(0, T ; Rm) × C[0, T ],

equipped with its standard norm ‖δ‖Ŵ := ‖γ‖2 + ‖ζ‖∞. We have of course W ⊂ Ŵ with
continuous embedding. Identical to Prop. 5.13, we obtain the stability of multipliers for
linear-quadratic problems (with a slightly modified statement).

Proposition 5.21. Let (v̄, z̄) be a stationary point of (P0) satisfying (Ã2). Then there exists
ν > 0 such that for every stationary point (v, z) of (Pδ), with (unique) multipliers (π, η) and
alternative multipliers (π2, η2) defined by (5.68)–(5.67), the following hold:
(i) If ‖δ‖Ŵ , ‖v − v̄‖2 < ν, then dη is uniformly bounded in M[0, T ];
(ii) There exists κ > 0 such that, for all ‖δ‖Ŵ , ‖v − v̄‖2 < ν, we have

‖dη − dη̄‖2,2∗, ‖η2 − η̄2‖2 ≤ κ(‖v − v̄‖2 + ‖δ‖Ŵ ).

Moreover, when ‖δ‖Ŵ , ‖v − v̄‖2 → 0:
(iii) dη weakly-* converges to dη̄ in M[0, T ];
(iv) η1 → η̄1 in L1;
(v) π2 and η2 converges uniformly to π̄2 and η̄2, respectively.

Second-order optimality conditions

Let Q̃ denote the quadratic part of the cost J δ (independent of δ):

Q̃(v) = 1
2

∫ T

0
(v(t)>S(t)v(t) + 2v(t)>R(t)zv(t) + zv(t)

>Q(t)zv(t))dt

+ 1
2zv(T )>Φzv(T ).

(5.70)

The strong second-order sufficient condition is:

Q̃(v) > 0, for all v ∈ V \ {0} such that C(t)zv(t) = 0 on supp(dη̄). (5.71)

Identical to Prop. 5.11, we obtain that the second-order sufficient condition (5.71) implies
the uniform second-order growth condition for the perturbed problems (Pδ) (here again the
statement is slightly modified).



5.5. STABILITY ANALYSIS OF LINEAR-QUADRATIC PROBLEMS 183

Proposition 5.22. Let (v̄, z̄) be a stationary point of (P0) satisfying (Ã2)-(Ã3) and the strong
second-order sufficient condition (5.71). Then there exist c, ρ > 0 and a neighborhood W of 0
in Ŵ , such that for all δ ∈ W and any stationary point (vδ , zδ) of (Pδ) with ‖vδ − v̄‖2 < ρ,

J δ(v) ≥ J δ(vδ) + c‖v − vδ‖2
2, ∀ v ∈ V : Γδ(v) ∈ K, ‖v − v̄‖2 < ρ. (5.72)

Stability Analysis

The main result of this section is the theorem below. The key point to show the existence
of a stationary point for the perturbed linear-quadratic problem under the weak second-order
sufficient condition (5.71), where the active constraints are taken into account. To this end,
the uniform growth condition (Prop. 5.22), together with an abstract theorem from Bonnans
and Shapiro [24, Th. 5.17 and Rem. 5.19] is used.

Theorem 5.23. Let (v̄, z̄) be a stationary point of (P0) satisfying (Ã2)-(Ã3) and the strong
second-order sufficient condition (5.71). Then there exist c, ρ, λ > 0 and a neighborhood W of
0 in W , such that for all δ ∈ W, (Pδ) has a unique stationary point (vδ, zvδ

) with ‖vδ− v̄‖2 < ρ
and unique associated alternative multipliers (π2

δ , η
2
δ ), and

‖vδ − vδ′‖2 + ‖η2
δ − η2

δ′‖2 ≤ λ‖δ − δ′‖W , ∀ δ, δ′ ∈ W. (5.73)

Moreover, (vδ , zvδ
) is a local solution of (Pδ) satisfying the uniform quadratic growth condition

(5.72).

Proof. Let us show the existence of a stationary point of problem (Pδ). We may write (Pδ) as

(Pδ) min
v∈V

1
2 〈v,Av〉 + 〈b, v〉 − 〈γ, v〉 s.t. Cv + d− ζ ∈ K,

where A is the continuous, self-adjoint bilinear operator over V associated with the quadratic
form (5.70), b is an element in V∗ ≡ V, C : v 7→ Czv is a linear continuous operator V → C[0, T ],
and d ∈ H2(0, T ). Here, without ambiguity, we also denote by 〈·, ·〉 the scalar product over V.

Step 1: Reduction to a fixed feasible set. Let us first consider perturbations of the cost
function only, i.e. consider the problem (Pγ) defined by

(Pγ) min
v∈V

1
2 〈v,Av〉 + 〈b, v〉 − 〈γ, v〉 s.t. Cv + d ∈ K.

By Prop. 5.22, the uniform second-order growth condition holds for (Pγ), so does Robinson’s
constraint qualification by (Ã2), and the perturbed problem (Pγ) includes the so-called tilt
perturbation (see [24, p.416]), i.e. additive perturbations of the cost function of type −〈γ, v〉
with γ ∈ V∗. Therefore, it follows from [24, Th. 5.17 and Rem. 5.19], since the feasible
set of (Pγ) is constant, that there exist ρ1, ρ2 > 0 and a constant λ > 0, such that for all
γ ∈ B2(0, ρ2), (Pγ) has a unique stationary point vγ in B2(v̄, ρ1), and

‖vγ − vγ′‖2 ≤ λ‖γ − γ′‖2, ∀ γ, γ′ ∈ B2(0, ρ2). (5.74)

We have of course that v̄ = v0.

Step 2: Existence of a stationary point of (Pδ). Let now δ = (γ, ζ) ∈W . By Lemma 5.20,
there exists vζ ∈ V such that

(Cvζ)(t) = ζ(t) on Ωσ and ‖vζ‖2 ≤ c‖ζ‖2,2.
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Set γ̃ := γ − Avζ . We have that ‖γ̃‖2 ≤ ‖γ‖2 + c‖A‖‖ζ‖2,2 < ρ2 if ‖δ‖W is small enough.
Therefore, there exists a (unique) stationary point vγ̃ ∈ B2(v̄, ρ1) of (Pγ̃), with multiplier
dηγ̃ ∈ M[0, T ], satisfying the first-order optimality condition

{

Avγ̃ + b− γ̃ + C>dηγ̃ = 0,

Cvγ̃ + d ≤ 0 on [0, T ], dηγ̃ ≥ 0, 〈dηγ̃ , Cvγ̃ + d〉 = 0.
(5.75)

Since ‖Cvγ̃ − Cv̄‖∞ ≤ ‖C‖‖vγ̃ − v̄‖2 ≤ λ‖C‖‖γ̃‖2 by (5.74), if ‖δ‖W is small enough then the
contact set of Cvγ̃ + d is included in Ωσ, and hence

supp(dηγ̃) ⊂ Ωσ. (5.76)

Let vδ := vγ̃ + vζ and dηδ := dηγ̃ . Note that there exists a constant a > 0 such that
(Cv̄)(t) + d(t) < −a on [0, T ] \ Ωσ. Therefore, on [0, T ] \ Ωσ, we obtain that (we denote in
what follows by C different positive constants)

Cvδ + d− ζ = Cv̄ + d− ζ + Cvζ + C(vγ̃ − v̄)

≤ −a+ ‖ζ‖∞ + ‖Cvζ‖∞ + ‖C(vγ̃ − v̄)‖∞
≤ −a+ C‖ζ‖2,2 + ‖C‖‖vζ‖2 + ‖C‖‖vγ̃ − v̄‖2

≤ −a+ (C + c‖C‖)‖ζ‖2,2 + λ‖C‖‖γ̃‖2 ≤ −a+ C‖δ‖W ,

and hence, if ‖δ‖W is small enough, then Cvδ + d− ζ < 0 on [0, T ] \Ωσ. Since on Ωσ, we have
that Cvδ + d− ζ = Cvγ̃ + d ≤ 0, using (5.75) and (5.76), vδ obviously satisfies

{

Avδ + b− γ + C>dηδ = 0,

Cvδ + d− ζ ≤ 0 on [0, T ], dηδ ≥ 0, 〈dηδ, Cvδ + d− ζ〉 = 0,

i.e. vδ is a stationary point of (Pδ), with multiplier dηδ. Consequently, for ρ3 > 0 small
enough, reducing ρ1 if necessary, (Pδ) has, for all δ ∈ BW (0, ρ3), a (necessarily unique by
Prop. 5.22) stationary point vδ ∈ B2(v̄, ρ1), with (unique) multiplier dηδ. That (vδ, zvδ

) is a
local solution of (Pδ) satisfying the uniform growth condition (5.72) follows then from Prop.
5.22.

Step 3: Lipschitz continuity of the stationary point. Let δi = (γi, ζi) ∈ BW (0, ρ3), i = 1, 2,
and vζi be such that

Cvζi = ζi on Ωσ, i = 1, 2, and ‖vζ1‖2 ≤ c‖ζ1‖2,2, ‖vζ1 − vζ2‖2 ≤ c‖ζ1 − ζ2‖2,2.

It follows that ‖vζ2‖2 ≤ c(2‖ζ1‖2,2 + ‖ζ2‖2,2) < 3cρ3. Setting γ̃i := γi − Avζi , we obtain as
before that if ρ3 is small enough, then the unique stationary point vi of (Pδi) is given by
vi = vζi + vγ̃i

. Therefore, using (5.74),

‖v1 − v2‖2 ≤ ‖vζ1 − vζ2‖2 + λ‖γ̃1 − γ̃2‖2

≤ c(1 + λ‖A‖)‖ζ1 − ζ2‖2,2 + λ‖γ1 − γ2‖2

≤ C‖δ1 − δ2‖W . (5.77)

Step 4: Lipschitz continuity of the alternative multiplier η2
δ given by (5.67). Using the

above notation, denote by dηi the (unique) multiplier associated with vi and by η2
i the asso-

ciated alternative multiplier. Since −C>(dη2 − dη1) = A(v2 − v1) + γ2 − γ1, we have, for all
v ∈ V,

|〈dη2 − dη1, Cv〉| ≤ (‖A‖‖v2 − v1‖2 + ‖γ2 − γ1‖2)‖v‖2. (5.78)
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By Lemma 5.20, for all ϕ ∈ H2(0, T ), there exists v ∈ V such that Cv = ϕ on Ωσ and ‖v‖2 ≤
c‖ϕ‖2,2. It follows from (5.76) that

∫ T
0 ϕ(t)(dη2(t) − dη1(t)) = 〈dη2 − dη1, Cv〉. Therefore, we

obtain in view of (5.78) that

‖dη2 − dη1‖2,2∗ = sup
ϕ∈H2,ϕ6≡0

|
∫ T
0 ϕ(t)(dη2(t) − dη1(t))|

‖ϕ‖2,2
≤ c(‖A‖‖v2 − v1‖2 + ‖γ2 − γ1‖2).

Since ‖η2
2 −η2

1‖2 ≤ C‖dη2−dη1‖2,2∗ by Lemma 5.14, the above estimate, together with (5.77),
shows the existence of a constant λ > 0 such that (5.73) holds and achieves the proof of the
theorem.

5.6 Proof of Theorem 5.12

In order to prove Th. 5.12, we have to show that assumptions (iii), (iv) and (v) of Th. 5.17 are
satisfied, which is done respectively in lemmas 5.24 to 5.26 below. Throughout this section,
the assumptions of Th. 5.12 are assumed to hold. We consider a stable extension (Pµ) of (P),
and we use the notations defined in subsection 5.4.3. Moreover, throughout the section, we
use the following notations (time dependence is omitted):

S := H̃uu(ū, ȳ, p̄
2, η̄2), R := H̃uy(ū, ȳ, p̄

2, η̄2), Q := H̃yy(ū, ȳ, p̄
2, η̄2),

A := fy(ū, ȳ), B := fu(ū, ȳ), Φ := φyy(ȳ(T )),

C := gy(ȳ), d := g(ȳ), C1 = g(1)
y (ȳ),

C2 := g(2)
y (ū, ȳ), N2 := g(2)

u (ū, ȳ), a := −C2η̄
2, b := −N2η̄

2.

All the above quantities are bounded and Lipschitz continuous over [0, T ].
Let us first make explicit the expression of the derivative DxF(x̄, µ̄)(x− x̄) involved in the

definition (5.57) of L(x), with x = (u, η2) and x̄ = (ū, η̄2). Note that the Fréchet derivative of
the mapping (u, µ) 7→ yµu w.r.t. u in direction v is the solution zµu,v of

żµu,v = fµy (u, yµu)zµu,v + fµu (u, yµu)v, zµu,v(0) = 0

and that of the mapping (x, µ) 7→ p2,µ
x (recall that p2,µ

x is the solution of (5.56)) w.r.t. x =
(u, η2) in direction h = (v, ξ) is the solution π2,µ

x,h of (omitting the arguments (u, yµu , p
2,µ
x , η2)):

−π̇2,µ
x,h = H̃µ

yuv + H̃µ
yyz

µ
u,v + π2,µ

x,hf
µ
y + ξ(gµ)(2)y ,

π2,µ
x,h(T ) = φµyy(y

µ
u(T ))zµu,v(T ).

(5.79)

Applications of Gronwall’s Lemma shows that, for µ in a neighborhood of µ̄, x = (u, η2) in a
L∞-neighborhood of x̄ = (ū, η̄2) and a direction h = (v, ξ) ∈ X,

‖zµu,v‖∞ = O(‖v‖2), ‖π2,µ
x,h‖∞ = O(‖h‖X ), (5.80)

‖zµu,v − zµ̄ū,v‖∞ = O(‖u− ū‖2 + ‖µ− µ̄‖)‖v‖2, (5.81)

‖π2,µ
x,h − π2,µ̄

x̄,h‖∞ = O(‖x− x̄‖X + ‖µ− µ̄‖)‖h‖X . (5.82)

By the chain rule, we obtain that

DxF(x̄, µ̄)(x− x̄) =

(
S(u− ū) +Rzu−ū + π2

u−ū,η2−η̄2B + (η2 − η̄2)N2

Czu−ū

)

,
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where zu−ū := zµ̄ū,u−ū is the solution of (5.64) for v = u− ū, and π2
u−ū,η2−η̄2 := π2,µ̄

x̄,(x−x̄) is the

solution of (5.79), for (v, ξ) = (u− ū, η2 − η̄2):

−π̇2
v,ξ = R>v +Qzv + π2

v,ξA+ ξC2, π2
v,ξ(T ) = Φzv(T ).

Set v := u− ū, and let δ = (γ, ζ) ∈ ∆. Then (5.50) has a unique solution x = (u, η2) ∈ X̃ iff
the system of equations below has a unique solution (v, z, π2, η2) with (ū+ v, η2) ∈ X̃:

ż = Az +Bv, z(0) = 0,

−π̇2 = R>v +Qz + π2A+ η2C2 − η̄2C2, π2(T ) = Φz(T )

0 = Sv +Rz + π2B + η2N2 − η̄2N2 − γ,

0 ≥ d+ Cz − ζ, dη̇2 ≥ 0, 〈dη̇2, d+ Cz − ζ〉 = 0.

We recognize the first-order necessary optimality condition of linear-quadratic problem (Pδ)
in its alternative form. That is, setting dη = dη̇2 and π = π2 − Cη̇2 + C1η

2, we recover the
“classical” optimality conditions of (Pδ) (note that C1 = Ċ +CA, C2 = Ċ1 +C1A, N2 = C1B

and CB = g
(1)
u (ū, ȳ) ≡ 0):

ż = Az +Bv, z(0) = 0,

−dπ̇ = (R>v +Qz + πA− η̄2C2)dt+ Cdη, π(T ) = Φz(T )

0 = Sv +Rz + πB − η̄2N2 − γ,

0 ≥ d+ Cz − ζ, dη ≥ 0, 〈dη, d+ Cz − ζ〉 = 0.

We see then that (v̄, z̄) := 0 is a stationary point of (P0), with alternative multipliers π̄2 := 0
and η̄2, and classical multipliers π̄ := −C ˙̄η2 + C1η̄

2 and η̄ = ˙̄η2. The second-order optimality
condition (5.36), with the quadratic cost expressed by (5.37), is precisely the condition (5.71)
and implies that (v̄, z̄) = 0 is a local solution of (P0).

The verifications of assumptions (iii) and (v) in Lemmas 5.24 and 5.26 are only technical,
and for assumption (iv) in Lemma 5.25, we use Th. 5.23.

Lemma 5.24. The mapping Ψµ = F(·, µ) −L(·) is strictly stationary at x = x̄, uniformly in
µ near µ̄.

Proof. Let x1, x2 ∈ X and µ ∈ P . We have that

Ψµ(x1) − Ψµ(x2) = F(x1, µ) −F(x2, µ) −DxF(x̄, µ̄)(x1 − x2)

=

∫ 1

0
(DxF(θx1 + (1 − θ)x2, µ) −DxF(x̄, µ̄))dθ(x1 − x2).

Let x = (u, η2) ∈ X̃. Then by (5.59)–(5.60), if x is close to x̄ = (ū, η̄2) for the norm of X, this
implies that (u, η2) belongs to a L∞-neighborhood of (ū, η̄2). Hence, yµu and p2,µ

u,η2
remain also

uniformly bounded for µ in a neighborhood of µ̄. Let xi = (ui, η
2
i ) ∈ X, i = 1, 2, and given

θ ∈ [0, 1], write xθ := θx1 + (1 − θ)x2 and similarly for the other variables. Set
(
r1
r2

)

:= (DxF(xθ, µ) −DxF(x̄, µ̄))(x1 − x2).

Let us express the first row r1. Denoting by (·) the arguments (uθ, y
µ
uθ , p

2,µ
xθ , η

2
θ), we obtain

that

r1 = (H̃µ
uu(·) − S)(u1 − u2) + (H̃µ

uy(·)zµuθ ,u1−u2
−Rzµ̄ū,u1−u2

)

+ (π2,µ
xθ ,x1−x2

fµu (·) − π2,µ̄
x̄,x1−x2

B) + (η2
1 − η2

2)((g
µ)(2)u (·) −N2).
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For (ui, η
2
i ) in a L∞-neighborhood of (ū, η̄2) and µ in the neighborhood of µ̄, we have that

H̃µ
uu(·)−S = H̃µ

uu(uθ, y
µ
uθ
, p2,µ
xθ
, η2
θ)− H̃ µ̄

uu(ū, ȳ, p̄2, η̄2) is arbitrarily small in the L∞ norm, and

similarly for the terms involving the other derivatives, H̃µ
uy, f

µ
u , and (gµ)

(2)
u . Therefore, given

any ε > 0, for ‖xi − x̄‖X , ‖µ− µ̄‖ small enough,

‖r1‖2 ≤ ε(‖u1 − u2‖2 + ‖zµuθ ,u1−u2
‖2 + ‖π2,µ

xθ ,x1−x2
‖2 + ‖η2

1 − η2
2‖2)

+ ‖R‖∞‖zµuθ ,u1−u2
− zµ̄ū,u1−u2

‖2 + ‖B‖∞‖π2,µ
xθ ,x1−x2

− π2,µ̄
x̄,x1−x2

‖2.

Using (5.80)–(5.82) with x = xθ and h = x1 − x2, we obtain that ‖r1‖2 ≤ ε‖x1 − x2‖X ,
whenever x1, x2 are close enough to x̄ in X and µ is close enough to µ̄. For the second row
r2, we have that

r2 = gµy (yµuθ
)zµuθ ,u1−u2

− gµ̄y (ȳ)zµ̄ū,u1−u2
,

ṙ2 = (gµ)(1)y (yµuθ
)zµuθ ,u1−u2

− (gµ̄)(1)y (ȳ)zµ̄ū,u1−u2
,

r̈2 = ((gµ)(2)u (uθ, y
µ
uθ

) − (gµ̄)(2)u (ū, ȳ))(u1 − u2)

+ (gµ)(2)y (uθ, y
µ
uθ

)zµuθ ,u1−u2
− (gµ̄)(2)y (ū, ȳ)zµ̄ū,u1−u2

.

Therefore, we conclude with the same arguments that ‖r2‖2,2 ≤ ε‖u1 − u2‖2, whenever ‖xi −
x̄‖X , i = 1, 2 and ‖µ− µ̄‖ are small enough. This shows the desired property.

Lemma 5.25. For k sufficiently large w.r.t. l in definition (5.52) of the space X, r small
enough in definition (5.53) of the space X̃, and small enough positive constants % and k ′ in
definition (5.55) of the set ∆, (5.50) has a unique solution xδ = (uδ, η

2
δ ) in X̃, for all δ ∈ ∆,

and this solution is Lipschitz continuous w.r.t. δ.

Proof. We have that x = (u, η2) is solution of (5.50) iff (v := u − ū, zv) is solution of the
first-order optimality condition of (Pδ) with alternative multipliers π2

v,η2−η̄2 and η2. By the

hypotheses of Th. 5.12, (v̄, z̄) = 0 is a stationary point of (P0) satisfying the assumptions of
Th. 5.23. Choose % small enough, so that BW (0, %) is included in the neighborhood W of Th.
5.23. By this theorem, for all δ ∈ BW (0, %), (Pδ) has a unique stationary point (vδ, zvδ

) with
‖vδ‖2 < ρ and unique associated alternative multipliers (π2

vδ ,η
2
δ−η̄

2 , η
2
δ ). Therefore, (5.50) has

a unique solution (uδ := ū+vδ, η
2
δ ) with ‖uδ− ū‖2 < ρ. We have to show that (uδ , η

2
δ ) belongs

to the space X̃ . Throughout the proof, we denote by C different positive constants.
By Prop. 5.21(i), shrinking % if necessary, we immediately obtain that η2

δ belongs to the
space BV 2

T,l[0, T ], for large enough l. Therefore, by (5.60) and (5.73), for all δ ∈ BW (0, %),

‖η2
δ − η̄2‖∞ ≤ 3

√
6l‖η2

δ − η̄2‖2/3
2 ≤ 3

√
6lλ2/3‖δ‖2/3

W .

For δ = (γ, ζ) ∈ ∆ (then γ ∈ Lipk′), let us show now that uδ = ū + vδ ∈ Lipk. From the
first-order alternative optimality condition of (Pδ), we have that

Svδ +Rzvδ
+ π2

vδ ,η
2
δ
−η̄2B +N2(η

2
δ − η̄2) − γ = 0. (5.83)

Since S is uniformly invertible by (A3), using (5.80), (5.73), and (5.59), we deduce that

‖vδ‖∞ ≤ C(‖zvδ
‖∞ + ‖π2

vδ ,η
2
δ
−η̄2‖∞ + ‖η2

δ − η̄2‖∞) + ‖γ‖∞
≤ C(2λ‖δ‖W +

3
√

6lλ2/3‖δ‖2/3
W ) +

3
√

3k′‖γ‖2/3
2

≤ (C(l) +
3
√

3k′)‖δ‖2/3
W .
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We denote here and in what follows by C(l) different positive constants that depend on l
(but not on k). Since γ ∈ Lipk′ , η

2
δ , η̄

2 ∈ BV 2
T,l ⊂ Lipl, zvδ

, π2
vδ ,η

2
δ
−η̄2

∈ W 1,∞, S,R,B,N2 are

Lipschitz continuous, and S is uniformly invertible, we can differentiate (5.83) in time and we
get

Sv̇δ + Ṡvδ +Rżvδ
+ Ṙzvδ

+ π̇2
vδ ,η

2
δ−η̄

2B + π2
vδ ,η

2
δ−η̄

2Ḃ +N2(η̇
2 − ˙̄η2) + Ṅ2(η

2 − η̄2) − γ̇ = 0.

Since ‖zvδ
‖∞, ‖π2

vδ ,η
2
δ−η̄

2‖∞, ‖żvδ
‖∞, ‖π̇2

vδ ,η
2
δ−η̄

2‖∞ ≤ C(‖vδ‖∞ + ‖η2
δ − η̄2‖∞), and S has the

inverse uniformly bounded over [0, T ], whereas ‖η̇2
δ‖∞, ‖ ˙̄η2‖∞ ≤ l, we obtain that

‖v̇δ‖∞ ≤ C(‖vδ‖∞ + ‖η2
δ − η̄2‖∞ + ‖η̇2

δ − ˙̄η2‖∞) + ‖γ̇‖∞
≤ (C(l) + C

3
√

3k′)‖δ‖2/3
W + 2Cl + k′.

Therefore, we have that ‖v̇δ‖∞ ≤ k/2 if, fixing a suitable l, we take k so large that k >
max{4Cl; 2‖ ˙̄u‖∞}, and choose % and k′ in (5.55) small enough. It follows that the solution
xδ = (uδ = ū+ vδ, η

2
δ ) of (5.50) belongs to the space X. In addition, if we choose r = ρ, with

the ρ of Th. 5.23, then xδ ∈ X̃ for ‖δ‖W small enough, and is the unique solution of (5.50) in
X̃. Moreover, by Th. 5.23,

‖uδ − uδ′‖2 + ‖η2
δ − η2

δ′‖2 ≤ λ‖δ − δ′‖W , ∀ δ, δ′ ∈ ∆.

This achieves the proof of assumption (iv) of Th. 5.17.

Lemma 5.26. There exists a neighborhood of (x̄, µ̄), such that F(x, µ) −L(x) belongs to ∆,
for all (x, µ) in this neighborhood.

Proof. We have to show that for ‖x− x̄‖X , ‖µ− µ̄‖ small enough, F(x, µ) −L(x) ∈ ∆, where
∆ is our set of smooth variations defined by (5.55). Throughout the proof, we denote by C
different positive constants. For θ ∈ [0, 1], set xθ := θx+ (1− θ)x̄ and similarly define µθ. We
have that

F(x, µ) −L(x) = F(x, µ) −F(x̄, µ̄) −DxF(x̄, µ̄)(x− x̄)

=

∫ 1

0
(DxF(xθ, µθ) −DxF(x̄, µ̄))dθ(x− x̄)

+

∫ 1

0
DµF(xθ, µθ)dθ(µ− µ̄) =:

(
r1
r2

)

.

Let us show that ‖r1‖2 + ‖r2‖2,2 ≤ % and ‖ṙ1‖∞ ≤ k′, for ‖x− x̄‖X and ‖µ− µ̄‖ small enough.
By the arguments of Lemma 5.24, given any ε > 0, for ‖x− x̄‖X and ‖µ− µ̄‖ small enough, we
have that ‖

∫ 1
0 (DxF(xθ, µθ)−DxF(x̄, µ̄))dθ(x−x̄)‖W ≤ ε‖x−x̄‖X . Moreover, since DµF(x, µ)

is uniformly bounded for (x, µ) in a neighborhood of (x̄, µ̄) by definition of a stable extension,
we deduce that

‖r1‖2 + ‖r2‖2,2 ≤ ε‖x− x̄‖X + C‖µ− µ̄‖ ≤ %, (5.84)

for ‖x− x̄‖X and ‖µ− µ̄‖ small enough. Making now explicit the expression of r1, we obtain

that (recall the notations S = H̃ µ̄
uu, R = H̃ µ̄

uy, B = f µ̄u , N2 = (gµ̄)
(2)
u ):

r1 = H̃µ
u (u, yµu , p

2,µ
u,η2

, η2) − H̃ µ̄
u (ū, ȳ, p̄2, η̄2) − S(u− ū) −Rzu−ū

− π2
u−ū,η2−η̄2B −N2(η

2 − η̄2).
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Time derivation yields (omitting arguments and reorganizing the terms)

ṙ1 = (H̃µ
uu − H̃ µ̄

uu)u̇+ (H̃µ
uyf

µ − H̃ µ̄
uyf

µ̄) − (H̃µ
y f

µ
u − H̃ µ̄

y f
µ̄
u ) + ((gµ)(2)u − (gµ̄)(2)u )η̇2

− Rżu−ū − π̇2
u−ū,η2−η̄2B − Ṡ(u− ū) − Ṙzu−ū − π2

u−ū,η2−η̄2Ḃ − Ṅ2(η
2 − η̄2).

For (u, η2) close to (ū, η̄2) in X, and µ in a neighborhood of µ̄, we have by (5.59)–(5.60) that
‖(u, yµu , p2,µ

u,η2
, η2) − (ū, ȳ, p̄2, η̄2)‖∞ is arbitrarily small, and hence, by continuity of H̃µ

uu, etc,
given any ε > 0, we obtain that

‖ṙ1‖∞ ≤ ε(‖u̇‖∞ + ‖η̇2‖∞ + 1) + C(‖żu−ū‖∞ + ‖π̇2
u−ū,η2−η̄2‖∞)

+ C(‖u− ū‖∞ + ‖zu−ū‖∞ + ‖π2
u−ū,η2−η̄2‖∞ + ‖η2 − η̄2‖∞)

≤ ε(k + l + 1) + C(‖u− ū‖∞ + ‖η2 − η̄2‖∞)

≤ ε(k + l + 1) + C(
3
√

6k +
3
√

6l)‖x− x̄‖2/3
X ≤ k′,

if ‖x − x̄‖X and ‖µ − µ̄‖ are small enough. It follows that r1 ∈ Lipk′(0, T ; Rm), and with
(5.84), this achieves the proof.

Proof of Th. 5.12. We apply Th. 5.17 with the spaces X, X̃ , W , ∆, P and mappings F ,
N , L defined in subsection 5.4.3. We set x̄ := (ū, η̄2). The assumptions (i) and (ii) of Th.
5.17 are obviously fulfilled by our hypotheses and the definition of a stable extension. For an
appropriate choice of the constants k, l, r, k ′, % involved in the definition of the spaces X, X̃ and
∆, assumptions (iii), (iv) and (v) hold by Lemmas 5.24, 5.25 and 5.26, respectively. It follows
that for all µ in a neighborhood of µ̄, there exists a unique stationary point (uµ, yµ) of (Pµ)
and unique associated alternative multipliers (p2,µ, η2,µ) with (uµ, η2,µ) in a X-neighborhood
of x̄, and (5.51) is satisfied. Since by definition of a stable extension, F is Lipschitz continuous
w.r.t. µ, uniformly w.r.t. x, this implies that (5.39) holds, while (5.40) follows from (5.59)–
(5.60). Finally, by (5.40), taking if necessary a smaller neighborhood of µ̄, uµ belongs to the
L∞-neighborhood of ū on which the uniform quadratic growth condition holds (Prop. 5.11).
Therefore, (uµ, yµ) is the unique stationary point of (Pµ) with uµ in a L∞-neighborhood of ū
and is a local solution of (Pµ) satisfying (5.38).

5.7 Conclusion and Remarks

In this paper, we obtain for the first time stability results for optimal control problems with
a state constraint of order greater than one without any assumption on the structure of the
contact set. For this we use a generalized implicit function theorem in metric spaces [53]
applied to a system equivalent to the first-order optimality condition, involving alternative
multipliers obtained by integrating the original state constraint multiplier. In the stability
analysis of linear-quadratic problems, we use [24, Th. 5.17] to obtain the existence of a
stationary point for the perturbed problem under a weak second-order sufficient condition
taking into account the active constraints. In this way the method for weakening the second-
order sufficient condition is different from the method used in [92, 91].

Due to the low regularity of state constraint multipliers, we use a framework that differs
from the ones used for first-order state constraints in [88] or in [53] in the choice of the
spaces for the state constraint and state constraint multiplier. We keep the idea of [53] to use
as control space the space of Lipschitz continuous functions with a bound on the Lipschitz
constant.
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Though the analysis is restricted to a scalar state constraint of second-order, the framework
and results presented in this paper have a natural extension to several state constraints of
orders ≥ 2 (see Remarks 5.2 and 5.3). Taking into account both components of first-order and
higher-order is more delicate since then the arguments used in [88, 53, 91] and in the present
paper would have to be combined.

Making additional assumptions on the structure of the contact set, L∞ Lipschitz stability
of solutions can be obtained, see [94, 19], improving (5.40), as it is the case for first-order
state constraints (see [53, Section 4]). In [94, 19] it was also shown using a shooting approach
that the solutions are directionally differentiable w.r.t. the parameter. It would be interesting
as well to obtain sensitivity results without assumption on the structure of the contact set,
extending to higher-order state constraints the sensivity results obtained by Malanowski [88]
for state constraints of first-order.

Finally, let us note that the second-order sufficient condition (5.36) used in the stability
analysis might be weakened by taking into account the curvature term of the constraint (see
[21, Th. 27], [17, Th. 6.1] and [19, Th. 4.3]7).

Acknowledgments The author thanks J.F. Bonnans for his comments on the manuscript
and the anonymous referees for their useful remarks.

7Theorems 1.27, 4.24, and 2.34 of this thesis.



Chapitre 6

Méthode d’homotopie pour les
contraintes d’ordre 2∗

Abstract This chapter is devoted to optimal control problems with a regular second-order
state constraint and a scalar control, when the strengthened Legendre-Clebsch condition holds.
It is shown that under a uniform strict complementarity assumption, boundary arcs are stable
under sufficiently smooth perturbations of the data. On the contrary, nonreducible touch
points are not stable under perturbations. We show that under some reasonable conditions,
either a boundary arc or a second touch point may appear. Those results, combined with the
stability analysis of Chapter 5, allow us to design an homotopy algorithm that automatically
detects the structure of the trajectory and initializes the shooting parameters associated with
boundary arcs and touch points, extending the continuation method of Chapter 3 to second-
order state constraints.

Résumé Ce chapitre est consacré aux problèmes de commande optimale avec une contrainte
sur l’état scalaire du second ordre régulière et une commande scalaire, lorsque la condition forte
de Legendre-Clebsch est satisfaite. On montre que sous une hypothèse de complémentarité
stricte uniforme, les arcs frontières sont stables sous des perturbations suffisamment régulières
des données. Au contraire, les points de contact isolés non réductibles ne sont pas stables. Sous
des conditions raisonables, on montre que soit un arc frontière soit un second point de contact
isolé peut apparâıtre. Ces résultats, combinés avec l’analyse de stabilité du chapitre 5, nous
permettent de concevoir un algorithme d’homotopie qui détecte automatiquement la structure
de la trajectoire et initialise les paramètres de tir associés aux arcs frontière et points de contact
isolés, étendant la méthode de continuation du chapitre 3 aux contraintes du second ordre.

6.1 Introduction

This paper deals with optimal control problems with a state constraint of second-order (see
[29, 98]). Many papers devoted to optimal control problems with state constraints deal with
state constraints of first-order (see e.g. [65, 88, 92, 53, 93, 54, 20]), i.e. when the control appears
explicitly after one time derivation of the state constraint along the dynamics. This assumption
may not be satisfied in applications. For example, in the problem of the atmospheric reentry
of a space shuttle, if the control is the bank angle (the angle of attack being fixed), the

∗Rapport de Recherche INRIA RR-6626 (2008). Submitted for publication under the title Homotopy algo-

rithm for optimal control problems with a second-order state constraint.



192CHAPITRE 6. MÉTHODE D’HOMOTOPIE POUR LES CONTRAINTES D’ORDRE 2

constraints on the thermal flux, normal acceleration and dynamic pressure are second-order
state constraints, see [27].

When the strengthened Legendre-Clebsch condition holds, the shooting algorithm enables
to solve optimal control problems with a very high accuracy at low cost. This algorithm
(see [125]) is based on the parametrization of the trajectory by a finite-dimensional vector of
shooting parameters and the resolution of the resulting multi-point boundary value problem
by a Newton’s method. Shooting methods are very sensitive to the initial conditions, and
require a careful initialization of all parameters. Moreover, in presence of constraints, the
structure of constraints (the number and order of boundary arcs and touch points) has to be
known a priori. This makes the shooting algorithm generally hard to apply. However, when
the precision is a strong requirement, such as e.g. to compute aerospace trajectories, shooting
algorithms may be preferred to others methods, less accurate.

In order to determine the structure of the trajectory, which is generally unknown, and
facilitate the initialization of parameters, homotopy (or continuation) methods can be used.
Their well-known principle (see [1]) is to solve a sequence of problems depending continuously
on a parameter, such that the first problem is “easy” to solve (e.g. the problem without
the state constraint) and the last problem is the original problem. Doing so the structure
of solutions may vary in the course of iterations. Homotopy methods have been applied to
control problems with control constraints in e.g. [63, 97] and with state constraints in e.g.
[11, 31]. The difficulty to apply classical continuation methods is connected with the changes
of structure of the trajectory. Moreover, when the structure of the trajectory changes, the
dimension of the vector of shooting parameters changes as well. In [20], an homotopy algorithm
has been proposed for first-order state constraints, whose novelty is to automatically detect the
changes in the structure of the trajectory and initialize the associated shooting parameters. It
is well-known that the structure of a trajectory highly depends on the order of the constraint
(see [29]). In this paper, we aim to extend the homotopy algorithm of [20] to second-order
state constraints.

They are two main tools in the analysis of the homotopy method. Firstly, stability results
which guarantee the existence and local uniqueness of a solution for the perturbed problem,
and insure that the homotopy path is locally well-defined. Secondly, an analysis of the struc-
ture of solutions of the perturbed problem. New results concerning the first point (stability
analysis) have been obtained recently in [71]. Contrary to previous stability results known
for second- (and higher-)order state constraints ([94, 19]), no assumptions on the structure of
the trajectory are made. This allows us precisely to deal with situations encountered in the
homotopy method, when the structure of solution is not stable and hence, where the stability
and sensitivity results of [94, 19] do not apply.

In this paper, results are obtained on the second point, i.e. we study the evolution of
structure of solutions under small perturbations of the data. We show that when a strict
complementarity hypothesis is satisfied on boundary arcs, then the latter are stable for a class
of sufficiently smooth perturbations. Then we study the case of nonreducible touch points,
which are excluded from the analysis based on shooting methods in [94] and [19]. In that
case the structure of the trajectory is not stable. We show that under some rather general
conditions, either a boundary arc or a second touch point may appear. Finally, we follows [20]
in order to describe an homotopy method for second-order state constraints. The analysis is
more involved than for first-order state constraints, since the structure of second-order state
constraints is more complex (both essential touch points and boundary arcs are possible, while
first-order state constraints typically do not have essential touch points).

The paper is organized as follows. Preliminaries (optimality conditions, assumptions) are
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recalled in section 6.2. In section 6.3, the stability of boundary arcs is studied. In section 6.4,
the case of nonreducible touch points is dealt with. In section 6.5, the stability result of [71]
is recalled. In section 6.6, lemmas used in the analysis of the homotopy method are given. In
section 6.7, the homotopy algorithm is presented and analyzed. Finally, in section 6.8, some
comments are given. The contributions of the paper are the structural analysis of stationary
points in sections 6.3 and 6.4 and the analysis of the homotopy algorithm. The application of
this homotopy algorithm to the atmospheric reentry of a space shuttle is presented in [70].

6.2 Preliminaries

We consider the following optimal control problem with a scalar control and scalar state
constraint:

(P) min
(u,y)∈U×Y

∫ T

0
`(u(t), y(t))dt + φ(y(T )) (6.1)

subject to ẏ(t) = f(u(t), y(t)) for a.a. t ∈ [0, T ], y(0) = y0 (6.2)

g(y(t)) ≤ 0 for all t ∈ [0, T ] (6.3)

with the control and state spaces U := L∞(0, T ; R) and Y := W 1,∞(0, T ; Rn). Throughout
the paper, it is assumed that assumptions (A0) and (A1) below hold:

(A0) The data ` : R × R
n → R, φ : R

n → R (resp. f : R × R
n → R

n, g : R
n → R) are C3

(resp. C4) mappings, with locally Lipschitz continuous third-order (resp. fourth-order)
derivatives, and f is Lipschitz continuous.

(A1) The initial condition y0 ∈ R
n satisfies g(y0) < 0.

The state constraint is assumed to be of second-order. This means that the first-order time
derivative g(1) : R × R

n → R of the constraint, defined by

g(1)(u, y) := gy(y)f(u, y)

does not depend on the control variable u, i.e. g
(1)
u ≡ 0 (and hence, we may write g(1)(y) =

g(1)(u, y)), and the second-order time derivative g(2) : R × R
n → R, defined by

g(2)(u, y) := g(1)
y (y)f(u, y)

depends explicitly on the control, i.e. g
(2)
u 6≡ 0.

Notation We denote by subscripts Fréchet derivatives w.r.t. the variables u, y, i.e. fy(u, y) =
Dyf(u, y), fyy(u, y) = D2

yyf(u, y), etc. The derivative with respect to the time is denoted

by a dot, i.e. ẏ = dy
dt = y(1). The set of row vectors of dimension n is denoted by R

n∗.
Adjoint or transpose operators are denoted by the symbol >. The euclidean norm is de-
noted by | · |. By Lr(0, T ) we denote the Lebesgue space of measurable functions such that

‖u‖r := (
∫ T
0 |u(t)|rdt)1/r < ∞ for 1 ≤ r < ∞, ‖u‖∞ := supess[0,T ] |u(t)| < ∞. The space

W s,r(0, T ) denotes the Sobolev space of functions in Lr(0, T ) having their s first weak deriva-
tives in Lr(0, T ), with the norm ‖u‖s,r :=

∑s
j=0 ‖u(j)‖r. We denote by Hs the space W s,2.

The space of continuous functions over [0, T ] and its dual space, the space of bounded Borel
measures, are denoted respectively by C[0, T ] and M[0, T ]. The cone of continuous func-
tions with nonpositive values over [0, T ] is denoted by K := C−[0, T ] and its dual space, the
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set of nonnegative measures, is denoted by M+[0, T ]. The space of functions of bounded
variation over [0, T ] is denoted by BV [0, T ], and the set of normalized BV functions vanish-
ing at T is denoted by BVT [0, T ]. Functions of bounded variation are w.l.o.g. assumed to be
right-continuous. We identify the elements of M[0, T ] with the distributional derivatives dη of
functions η in BVT [0, T ]. The support and the total variation of the measure dη ∈ M[0, T ] are
denoted respectively by supp(dη) and |dη|M. Left- and right limits of a function of bounded
variation ϕ will be denoted by ϕ(τ±) := limt→τ± ϕ(t), and jumps by [ϕ(τ)] := ϕ(τ+)−ϕ(τ−).
The cardinal of a finite set T is denoted by |T |.

We call a trajectory an element (u, y) ∈ U × Y satisfying the state equation (6.2). A
trajectory satisfying the state constraint (6.3) is said to be feasible. The contact set of a
feasible trajectory is defined by

I(g(y)) := {t ∈ [0, T ] : g(y(t)) = 0} (6.4)

and for a small ε > 0, a neighborhood of the contact set is denoted by

Iε(g(y)) := {t ∈ [0, T ] : dist{t, I(g(y))} < ε}. (6.5)

A boundary arc (resp. interior arc) of a feasible trajectory (u, y) is a maximal (open) interval
of positive measure (τ1, τ2) such that g(y(t)) = 0 (resp. g(y(t)) < 0) for all t ∈ (τ1, τ2).
The left- and right endpoints of a boundary arc (τen, τex) are called respectively entry and
exit point. A touch point τto is an isolated contact point, i.e. such that g(y(τto)) = 0 and
g(y(t)) < 0 for t 6= τto in a neighborhood of τto. An entry (resp. exit) point is said to be
regular, if it belongs to (0, T ) and if there exists δ > 0 such that g(y(t)) < 0 on (τen − δ, τen)
(resp. on (τex, τex + δ)). A boundary arc is regular, if its entry and exit points are regular.
The structure of a trajectory is the number and order of its boundary arcs and touch points.

Optimality conditions Let us first recall the well-known first-order necessary optimality
condition of problem (P). The Hamiltonian H : R × R

n × R
n∗ → R is defined by

H(u, y, p) := `(u, y) + pf(u, y). (6.6)

We say that a feasible trajectory (u, y) is a stationary point of (P), if there exists (p, η) ∈
BV ([0, T ]; Rn∗) ×BVT [0, T ] such that

ẏ = f(u, y), y(0) = y0, (6.7)

−dp = Hy(u, y, p)dt+ gy(y)dη, p(T ) = φy(y(T )) (6.8)

0 = Hu(u(t), y(t), p(t)) a.e. on [0, T ] (6.9)

0 ≥ g(y(t)) for all t ∈ [0, T ], dη ∈ M+[0, T ], supp(dη) ⊂ I(g(y)). (6.10)

Alternative formulation For the stability analysis, it is convenient to write the optimality
condition using alternative multipliers η2 and p2, uniquely related to (p, η) in the following
way:

η1(t) :=

∫

(t,T ]
dη(s) = −η(t), η2(t) :=

∫ T

t
η1(s)ds, (6.11)

p2(t) := p(t) − η1(t)gy(y(t)) − η2(t)g(1)
y (y(t)), t ∈ [0, T ]. (6.12)

We see that η2 belongs to the set BV 2
T [0, T ], defined by

BV 2
T [0, T ] := {ξ ∈W 1,∞(0, T ) : ξ(T ) = 0, ξ̇ ∈ BVT [0, T ]}. (6.13)
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Define the alternative Hamiltonian H̃ : R × R
n × R

n∗ × R → R by

H̃(u, y, p2, η2) := H(u, y, p2) + η2g(2)(u, y), (6.14)

where H is the classical Hamiltonian (6.6). Using these alternative multipliers, we obtain
easily by a direct calculation (see e.g. [98] or [17, Lemma 3.4]1) that a feasible trajectory
(u, y) ∈ U×Y is a stationary point of (P) iff there exists (p2, η2) ∈W 1,∞(0, T ; Rn∗)×BV 2

T [0, T ]
such that

ẏ(t) = f(u(t), y(t)) a.e. on [0, T ], y(0) = y0, (6.15)

−ṗ2(t) = H̃y(u(t), y(t), p
2(t), η2(t)) a.e. on [0, T ], p2(T ) = φy(y(T )) (6.16)

0 = H̃u(u(t), y(t), p
2(t), η2(t)) a.e. on [0, T ] (6.17)

0 ≥ g(y(t)) for all t ∈ [0, T ], dη̇2 ∈ M+[0, T ], supp(dη̇2) ⊂ I(g(y)). (6.18)

Assumptions Let (ū, ȳ) be a stationary point of (P), with alternative multipliers (p̄2, η̄2).
We make the following assumptions:

(A2) The state constraint is a regular second-order state constraint, i.e. g
(1)
u ≡ 0 and

∃ β, σ > 0, |g(2)
u (ū(t), ȳ(t))| ≥ β for a.a. t ∈ Iσ(g(ȳ)). (6.19)

(A3) ū is continuous on [0, T ] and the strengthened Legendre-Clebsch condition holds:

∃ α > 0, H̃uu(ū(t), ȳ(t), p̄
2(t), η̄2(t)) ≥ α for all t ∈ [0, T ]. (6.20)

Lemma 6.1. Let (ū, ȳ) be a stationary point of (P) with alternative multipliers (p̄2, η̄2) satis-
fying (A2)–(A3). Then ū and η̄2 are of class C2 on the interior of the (interior and boundary)
arcs of the trajectory, with Lipschitz continuous second-order time derivatives.

Proof. By the implicit function theorem applied to (6.17) on interior arcs, using that η̇2 is
constant, and to g(2)(u(t), y(t)) = 0 and (6.17) on boundary arcs, the control and alternative
state constraint multipliers can be expressed, on the interior of arcs, as C 2 functions of the
state and alternative costate (y, p2). The result follows.

Assume now that (ū, ȳ) has a (regular) boundary arc (τ̄en, τ̄ex). We consider the uniform
strict complementarity assumption on boundary arcs below:

∃ β > 0, ¨̄η2(t) ≥ β on (τ̄en, τ̄ex). (6.21)

Remark 6.2. Using the classical multipliers (p̄, η̄) associated with (ū, ȳ) in (6.7)–(6.10), as-
sumption (6.21) can equivalently be rewritten as (recall that η̄ = ˙̄η2):

∃ β > 0,
dη̄

dt
(t) ≥ β on (τ̄en, τ̄ex). (6.22)

Lemma 6.3. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A3) and having a regular
boundary arc (τ̄en, τ̄ex). Then the uniform strict complementarity assumption (6.21) implies
that

d3

dt3
g(ȳ(t))|t=τ̄−en

> 0,
d3

dt3
g(ȳ(t))|t=τ̄+

ex
< 0. (6.23)

For convenience, Lemma 6.3 will be proved in section 6.3, after the suitable notation has
been introduced.

1Lemma 4.11 of this thesis.



196CHAPITRE 6. MÉTHODE D’HOMOTOPIE POUR LES CONTRAINTES D’ORDRE 2

Perturbed optimal control problem We consider perturbed problems in the following
form:

(Pµ) min
(u,y)∈U×Y

∫ T

0
`µ(u(t), y(t))dt + φµ(y(T )) (6.24)

subject to ẏ(t) = fµ(u(t), y(t)) a.e. on [0, T ], y(0) = yµ0 (6.25)

gµ(y(t)) ≤ 0 for all t ∈ [0, T ]. (6.26)

Here µ is the perturbation parameter, living in an open subset M0 of a Banach space M . In
what follows, we consider stable extensions (Pµ) of problem (P) in the following sense.

Definition 6.4. We say that (Pµ) is a stable extension of (P) if:
(i) There exists µ̄ ∈M0 such that (P µ̄) ≡ (P);
(ii) The mappings R×R

n×M0 → R, (u, y, µ) 7→ `µ(u, y); R
n×M0 → R, (y, µ) 7→ φµ(y); M0 →

R
n, µ 7→ yµ0 (resp. R × R

n ×M0 → R
n, (u, y, µ) 7→ fµ(u, y); R

n ×M0 → R, (y, µ) 7→ gµ(y))
are of class C3 (resp. C4), with locally Lipschitz continuous third-order (resp. fourth-order)
derivatives, uniformly w.r.t. µ ∈M0;
(iii) The dynamics fµ is uniformly Lipschitz continuous over R × R

n for all µ ∈M0;

(iv) The state constraint is not of first-order, i.e. (gµ)
(1)
u (u, y) ≡ 0 for all (u, y, µ) ∈ R×R

n×M0.

Abstract formulation Given a stable extension (Pµ), the mapping U ×M0 → Y, (u, µ) 7→
yµu , where yµu is the unique solution in Y of the state equation (6.25), is well-defined, and we
may write the following abstract formulation of (Pµ)

min
u∈U

Jµ(u), Gµ(u) ∈ K, (6.27)

with the cost function Jµ(u) :=
∫ T
0 `µ(u, yµu)dt+φµ(yµu(T )), the constraint mapping Gµ(u) :=

gµ(yµu), and the constraint cone K = C−[0, T ].
Given a stationary point (ū, ȳ) of (P), we say that the uniform quadratic growth condition

holds, if for all stable extensions (Pµ) of (P), there exists c, ρ > 0 and a neighborhood N of
µ̄, such that for any stationary point (uµ, yµ) of (Pµ) with µ ∈ N and ‖uµ − ū‖∞ < ρ,

Jµ(u) ≥ Jµ(uµ) + c‖u− uµ‖2
2, for all u ∈ U : Gµ(u) ∈ K, ‖u− ū‖∞ < ρ. (6.28)

Qualification condition and stability of multipliers Robinson’s constraint qualification
for problem (P) in abstract form (6.27) is as follows (omitting the perturbation parameter at
the reference point µ = µ̄):

∃ ε > 0, εBC[0,T ] ⊂ G(ū) +DG(ū)U −K, (6.29)

where BC[0,T ] denotes the open unit ball of the space C[0, T ]. It is well-known that a local
solution (weak minimum) of (P) satisfying (6.29) is a stationary point of (P). Given v ∈
Lr(0, T ), 1 ≤ r ≤ ∞, denote by zv the unique solution in W 1,r(0, T ; Rn) of the linearized state
equation

żv(t) = fy(ū(t), ȳ(t))zv(t) + fu(ū(t), ȳ(t))v(t) a.e. on [0, T ], zv(0) = 0. (6.30)

Assumption (A2) implies that Robinson’s constraint qualification (6.29) holds, and that the
multipliers associated with a stationary point are unique. This is a consequence of the lemma
below.
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Lemma 6.5 ([21, Prop. 10]). Let (ū, ȳ) be a feasible trajectory of (P) satisfying (A2).
Then for all r ∈ [1,+∞] and all ε ∈ (0, σ), with the σ of (6.19), so small that Ωε ⊂ [a, T ] for
some a > 0, the linear mapping

Lr(0, T ) →W 2,r(Ωε), v 7→ (gy(ȳ(·))zv(·))|Ωε , (6.31)

where |Ωε denotes the restriction to the set Ωε, is onto, and therefore has a bounded right
inverse by the open mapping theorem.

Let us end this section by recalling two results that will be used in the paper.

Proposition 6.6 ([71, Prop. 4.4]). Let (ū, ȳ) be a stationary point of (P) satisfying (A2).
Then for every stable extension (Pµ) of (P) and for every stationary point (u, y) of (Pµ),
with (unique) associated multipliers (p, η) and alternative multipliers (p2, η2) given by (6.11)–
(6.12), we have:
(i) If ‖µ− µ̄‖, ‖u− ū‖∞ ,are small enough, then dη is uniformly bounded in M[0, T ];
Moreover, when ‖µ− µ̄‖, ‖u− ū‖∞ → 0:
(ii) dη weakly-* converges to dη̄ in M[0, T ];
(iii) p2 and η2 converge uniformly to p̄2 and η̄2, respectively.

Given A,B ⊂ [0, T ], we denote by exc{A,B} the Hausdorff excess of A over B, defined by

exc{A,B} := sup
t∈A

inf
s∈B

|t− s|, (6.32)

with the convention exc{∅, B} = 0.

Lemma 6.7 ([71, Lemma 4.6]). Let dη̄ ∈ M[0, T ], and a sequence (dηn) ⊂ M[0, T ] be
such that dηn weakly-* converges to dη̄ in M[0, T ]. Then en := exc{supp(dη̄), supp(dηn)}
converges to zero when n→ +∞.

6.3 Stability of boundary arcs

The aim of this section is to show that boundary arcs are “stable” under perturbations, for
sufficiently smooth perturbations (the stable extensions satisfying Def. 6.4). Here is the main
result of this section.

Theorem 6.8. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A3). Assume that (ū, ȳ)
has a regular boundary arc (τ̄en, τ̄ex) and that (6.21) holds. Then, for every stable extension
(Pµ) of (P) and for all small enough δ > 0, there exist ρ, % > 0 such that if (u, y) is a stationary
point of (Pµ) with ‖µ− µ̄‖ < % and ‖u− ū‖∞ < ρ, then (u, y) has on (τ̄en− δ, τ̄ex+ δ) a unique
boundary arc (τen, τex) (and no touch point). Moreover, we have that |τen− τ̄en|, |τex− τ̄ex| < δ
and (u, y) satisfies the uniform strict complementarity assumption (6.21) on (τen, τex).

We derive next some useful relations for the proof of Th. 6.8 and Lemma 6.3, and for other
results of the paper. Let (ū, ȳ) be a stationary point of (P) ≡ (P µ̄) satisfying (A2)–(A3) with
alternative multipliers (p̄2, η̄2), and let (u, y) be a stationary point of (Pµ) with alternative
multipliers (p2, η2). If ‖µ − µ̄‖ and ‖u − ū‖∞ are small enough, then by (6.19), (6.20), and
Prop. 6.6(iii), we have that

|(gµ)(2)u (u, y)| ≥ β/2 > 0, a.e. on Iσ(g(ȳ)) ⊃ I(gµ(y)), (6.33)

H̃µ
uu(u, y, p

2, η2) ≥ α/2 > 0 on [0, T ], (6.34)
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with H̃µ the alternative Hamiltonian (6.14) for (Pµ). Moreover, by the implicit function theo-
rem applied locally to (6.17) under hypothesis (A3), we may write that u(t) = Υ(y(t), p2(t), η2(t))
for some C2 function Υ, and hence u is continuous over [0, T ]. It follows from Lemma 6.1
that u and η2 are C2 on the interior of arcs of the trajectory (u, y). So we may consider the
time derivatives of the state constraint of order 3 and 4, defined on the interior of (interior
and boundary) arcs by:

(gµ)(3)(u̇, u, y) := (gµ)(2)u (u, y)u̇ + (gµ)(2)y (u, y)fµ(u, y) (6.35)

(gµ)(4)(ü, u̇, u, y) := (gµ)(2)u (u, y)ü + (gµ)(3)u (u̇, u, y)u̇+ (gµ)(3)y (u̇, u, y)fµ(u, y). (6.36)

Time derivations of (6.17) shows that, on the interior of arcs, where u and η2 are C2 (arguments
(u, y, p2, η2) and time are omitted as well as the superscript µ to simplify the notation)

0 = H̃uuu̇+ H̃uyf − H̃yfu + η̇2g(2)
u (6.37)

0 = H̃uuü+ η̈2g(2)
u + Φ1(u̇, η̇

2, u, y, p2, η2, µ), (6.38)

where Φ1 is a locally Lipschitz continuous function w.r.t. its arguments. By (6.34), multiplying

(6.38) by g
(2)
u /H̃uu and using (6.36) we may write that for all t ∈ (0, T ) in the interior of arcs,

0 = g(4) +
(g

(2)
u )2

H̃uu

η̈2 + Φ2(u̇, η̇
2, u, y, p2, η2, µ), (6.39)

where Φ2 is a locally Lipschitz continuous function w.r.t. its arguments. Moreover, by (6.33),
it follows from (6.35) and (6.37) that we may express u̇ and η̇2 as locally Lipschitz continuous
functions of (g(3), u, y, p2, η2, µ), i.e. more precisely

u̇ = (g(2)
u )−1(g(3) − g(2)

y f),

η̇2 = −(g(2)
u )−1(H̃uu(g

(2)
u )−1(g(3) − g(2)

y f) + H̃uyf − H̃yfu).

Therefore, (6.39) yields, on the interior of arcs,

g(4) +
(g

(2)
u )2

H̃uu

η̈2 + Λ(g(3), u, y, p2, η2, µ) = 0 (6.40)

where Λ is a locally Lipschitz continuous function w.r.t. its arguments.
In the sequel, we abbreviate the notation as follows:

g(3)(t) := (gµ)(3)(u̇(t), u(t), y(t)), g(4)(t) := (gµ)(4)(ü(t), u̇(t), u(t), y(t)) (6.41)

ḡ(3)(t) := (gµ̄)(3)( ˙̄u(t), ū(t), ȳ(t)), ḡ(4)(t) := (gµ̄)(4)(¨̄u(t), ˙̄u(t), ū(t), ȳ(t)), (6.42)

H̃uu(t) := H̃µ
uu(u(t), y(t), p

2(t), η2(t)), H̄uu(t) := H̃ µ̄
uu(ū(t), ȳ(t), p̄2(t), η̄2(t)), (6.43)

Λ(t) := Λ(g(3)(t), u(t), y(t), p2(t), η2(t), µ),

Λ̄(t) := Λ(ḡ(3)(t), ū(t), ȳ(t), p̄2(t), η̄2(t), µ̄).

We start by the proof of Lemma 6.3 and then give that of Th. 6.8.

Proof of Lemma 6.3. Assume that (6.21) holds. Assume by contradiction that (6.23) does not
hold, i.e. ḡ(3) is continuous at entry or exit point τ . Then by continuity of (ū, ȳ, p̄2, η̄2), (6.40)
implies that

[ḡ(4)(τ)] +
(ḡ

(2)
u )2

H̄uu
[¨̄η2(τ)] = 0. (6.44)
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In the neighborhood of τ , on the side of the interior arc, we have

g(ȳ(t)) = ḡ(4)(τ±)
(t− τ)4

24
+ o((t− τ)4) ≤ 0,

where τ± denotes τ− if τ = τ̄en and τ+ if τ = τ̄ex. Since ḡ(4) = 0 on the interior of the
boundary arc, it follows that

[ḡ(4)(τ̄en)] ≥ 0 and [ḡ(4)(τ̄ex)] ≤ 0. (6.45)

Moreover, (6.21) implies that

[¨̄η2(τ̄en)] ≥ β > 0 and [¨̄η2(τ̄ex)] ≤ −β < 0. (6.46)

Since (ḡ
(2)
u )2

H̄uu
> 0 by (A2)–(A3), the above display and (6.44) yield

[ḡ(4)(τ̄en)] < 0 and [ḡ(4)(τ̄ex)] > 0,

contradicting (6.45). Therefore (6.23) holds, which completes the proof.

Proof of Th. 6.8. Let (u, y) be a stationary point of (Pµ) with u in a L∞-neighborhood of
ū and µ in a neighborhood of µ̄. Assume by contradiction that (u, y) has an interior arc
(τ1, τ2) ⊂ (τ̄en − δ, τ̄ex + δ). On the interior arc (τ1, τ2), u and η2 are C2, and g(t) := gµ(y(t))
attains its minimum on (τ1, τ2) at a point where the second-order derivative g(2) is nonnegative.
Since g(2)(τi) ≤ 0, i = 1, 2, the continuous function g(2) attains its maximum over [τ1, τ2] at
some point tm ∈ (τ1, τ2), and we have at this point of maximum of g(2)

g(3)(tm) = 0 and g(4)(tm) ≤ 0. (6.47)

Assume first that tm ∈ (τ̄en, τ̄ex). By Prop. 6.6(iii), (y, p2, η2) → (ȳ, p̄2, η̄2) uniformly over
[0, T ] when ‖µ− µ̄‖ → 0 and ‖u− ū‖∞ → 0, and g(3)(tm) = 0 = ḡ(3)(tm) since tm ∈ (τ̄en, τ̄ex).
Therefore, Λ(tm)−Λ̄(tm) → 0, and hence (6.40) implies that when ‖µ−µ̄‖ → 0 and ‖u−ū‖∞ →
0,

g(4)(tm) +
(g

(2)
u )2

H̃uu

η̈2(tm) − (ḡ(4)(tm) +
(ḡ

(2)
u )2

H̄uu

¨̄η2(tm)) → 0.

But η̈2(tm) = 0 since we are on an interior arc for (u, y), and ḡ(4)(tm) = 0 since we are on a
boundary arc for (ū, ȳ). It follows that when ‖µ− µ̄‖ → 0 and ‖u− ū‖∞ → 0,

g(4)(tm) − (ḡ
(2)
u )2

H̄uu

¨̄η2(tm) → 0.

Since (ḡ
(2)
u )2

H̄uu
≥ C > 0 by (6.19) and (6.20), we obtain by (6.21) that (ḡ

(2)
u )2

H̄uu

¨̄η2(tm) ≥ Cβ > 0.

Therefore, for ‖µ− µ̄‖ and ‖u− ū‖∞ small enough, g(4)(tm) ≥ Cβ/2 > 0, contradicting (6.47).
Assume now that tm ∈ (τ̄en − δ, τ̄en] (the case when tm ∈ [τ̄ex, τ̄ex + δ) is analogous). For

all 0 < ε < δ, if ‖µ − µ̄‖ and ‖u − ū‖∞ are small enough, then gµ(y(t)) < 0 on the interval
[τ̄en− δ, τ̄en− ε]. This implies that tm ↑ τ̄en when ‖µ− µ̄‖ → 0 and ‖u− ū‖∞ → 0. Therefore,
since g(3)(tm) = 0 = ḡ(3)(τ̄+

en) and (ū, ȳ, p̄2, η̄2) is continuous over [0, T ], we obtain by Prop.
6.6(iii) that Λ(tm) → Λ̄(τ̄+

en). It follows then from (6.40) that

g(4)(tm) +
(g

(2)
u )2

H̃uu

η̈2(tm) → ḡ(4)(τ̄+
en) +

(ḡ
(2)
u )2

H̄uu

¨̄η2(τ̄+
en) ≥ 0 + Cβ > 0,
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contradicting (6.47) again since g(4)(tm) ≤ 0 and η̈2(tm) = 0. This shows that for all small
δ > 0, if ‖u− ū‖∞ and ‖µ− µ̄‖ are small enough, then (u, y) has no interior arc contained in
(τ̄en − δ, τ̄ex + δ).

It follows that I(gµ(y))∩ (τ̄en− δ, τ̄ex + δ) is either empty, or a touch point, or a boundary
arc. Let us refute the two first possibilities. For all small ε > 0, if ‖u− ū‖∞ and ‖µ− µ̄‖ are
small enough, then I(gµ(y)) ⊂ Iε(g(ȳ)), and by hypothesis (6.21), Prop. 6.6(ii) and Lemma 6.7
(recall that dη̇2 = dη), for all t ∈ [τ̄en, τ̄ex], there exists s ∈ supp(dη̇2) ⊂ I(gµ(y)) such that
|t− s| < ε. Therefore, we deduce that I(gµ(y)) ∩ (τ̄en − δ, τ̄ex + δ) is necessarily a boundary
arc (τen, τex), and that |τen − τ̄en|, |τex − τ̄ex| < ε.

It remains to show that uniform strict complementarity holds on that boundary arc. By
(6.40), it holds for all t in boundary arc (τen, τex) that

η̈2(t) = − H̃uu(t)

(g
(2)
u (t))2

Λ(0, u(t), y(t), p2(t), η2(t), µ). (6.48)

The same relation applied to (ū, ȳ), the uniform strict complementarity assumption (6.21)
and (A2)–(A3) imply that Λ(0, ū(t), ȳ(t), p̄2(t), η̄2(t), µ̄) ≤ −C for some positive constant C,
for all t ∈ [τ̄en, τ̄ex]. Therefore, by continuity Λ(0, ū(t), ȳ(t), p̄2(t), η̄2(t), µ̄) ≤ −C/2 for all
t ∈ (τ̄en − δ, τ̄ex + δ) ⊃ (τen, τex) for δ > 0, ‖u − ū‖∞ and ‖µ − µ̄‖ small enough. By Prop.
6.6(iii), for small enough ‖u− ū‖∞ and ‖µ− µ̄‖, (u, y, p2, η2) is arbitrarily close to (ū, ȳ, p̄2, η̄2)
in L∞ and hence Λ(0, u(t), y(t), p2(t), η2(t), µ) ≤ −C/4 on (τen, τex). It follows then from
(6.33)–(6.34) and (6.48) that η̈2 is uniformly positive over (τen, τex). This achieves the proof
of the theorem.

Remark 6.9. The regularity of the class of perturbations considered (here, satisfying Def. 6.4)
is crucial to show the stability of boundary arcs, as it is the case for first-order state constraints
(see [20, Th. 2.1]2). If the perturbation is not sufficiently smooth, then boundary arcs are not
stable, even if the uniform strict complementarity assumption (6.21) holds, as it is shown in
[92, section 2] for a first-order state constraint and a perturbation that goes to zero in the L2

norm but not in the W 1,∞ norm.

6.4 Instability of nonreducible touch points

Definition 6.10. Let τ̄to ∈ (0, T ) be a touch point of a stationary point (ū, ȳ) of (P), with
alternative multipliers (p̄2, η̄2).
(a) We say that τ̄to is reducible, if (i) t 7→ g(2)(ū(t), ȳ(t)) is continuous at point τ̄to (which
always holds under assumption (A3)) and (ii)

g(2)(ū(τ̄to), ȳ(τ̄to)) < 0. (6.49)

(b) We say that τ̄to is essential, if
[ ˙̄η2(τ̄to)] > 0. (6.50)

Remark 6.11. Using the classical multipliers (p̄, η̄) associated with (ū, ȳ) in (6.7)–(6.10) (recall
that η̄ = ˙̄η2), (6.50) is equivalent to

[η̄(τ̄to)] > 0, (6.51)

which is in accordance with the classical definition of essential touch points.

2Theorem 3.4 of this thesis.
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Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A3). Assume that (ū, ȳ) has a
reducible touch point τ̄to. Then given a stationary point (u, y) of (Pµ) such that ‖µ− µ̄‖ and
‖u − ū‖∞ are small enough, it is easy to see (see e.g. [21, section 5.1]3) that the mapping
t 7→ gµ(y(t)) attains its maximum over a neighborhood (τ̄to−δ, τ̄to+δ) of τ̄to, δ > 0, at a unique
point τto. Therefore, if gµ(y(τto)) = 0, (u, y) has a unique touch point in (τ̄to − δ, τ̄to + δ),
and if gµ(y(τto)) < 0, the state constraint is locally not active in a neighborhood of τ̄to.
Moreover, by Prop. 6.6(ii) and relation (6.11), dη̇2 weakly-* converges in M[0, T ] to d ˙̄η2

when ‖µ − µ̄‖, ‖u − ū‖∞ → 0. Therefore, if strict complementarity holds at τ̄to, i.e. if τ̄to is
an essential touch point, this implies that for δ > 0, ‖µ − µ̄‖ and ‖u − ū‖∞ small enough,
(τ̄to − δ, τ̄to + δ) ∩ supp(dη̇2) 6= ∅. Hence by (6.18) we necessarily have gµ(y(τto)) = 0, i.e. τto
is a (essential) touch point of (u, y).

The above discussion shows that touch points that are both reducible and essential are
stable. When strict complementarity does not hold, there are two possibilities for nonessential
reducible touch points: either the state constraint of the perturbed problem is not active on a
neighborhood of τ̄to, or it is active in a neighborhood of τ̄to at a unique touch point, the latter
being essential or not.

We see that the reducibility hypothesis (6.49) excludes other structural changes. In what
follows, we release this reducibility hypothesis and and show that two possible changes in the
structure of perturbed stationary points may happen in the neighborhood of a nonreducible
touch point: The apparition of a boundary arc or the apparition of a second touch point.

Let now τ̄to be a nonreducible touch point of (ū, ȳ), i.e. such that

g(2)(ū(τ̄to), ȳ(τ̄to)) = 0. (6.52)

We consider the following assumption (compare to (6.23))

d3

dt3
g(ȳ(t))|t=τ̄−to = g(3)( ˙̄u(τ̄−to ), ū(τ̄to), ȳ(τ̄to)) > 0,

d3

dt3
g(ȳ(t))|t=τ̄+

to
= g(3)( ˙̄u(τ̄+

to ), ū(τ̄to), ȳ(τ̄to)) < 0.

(6.53)

By (6.35) and (6.37), the jumps of g(3) and η̇2 at a touch point τto are related by

[g(3)(u̇, u, y)(τto)] = g(2)
u (u, y)[u̇(τto)] = − (g

(2)
u (u, y))2

H̃uu(u, y, p2, η2)
[η̇2(τto)] ≤ 0, (6.54)

where we have [η̇2(τto)] = [η(τto)] by (6.11). Therefore, if (6.53) holds, this implies by (A2)–
(A3) that [ ˙̄η2(τ̄to)] > 0. We obtain then the following result.

Lemma 6.12. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A3) and having a
nonreducible touch point τ̄to ∈ (0, T ) satisfying (6.53). Then τ̄to is an essential touch point,
i.e. satisfies (6.50).

Let (u, y) be a stationary point of (Pµ), with ‖µ − µ̄‖ and ‖u − ū‖∞ arbitrarily small.
We use the notations (6.41)–(6.43). At a nonreducible touch point τ̄to of (ū, ȳ), we cannot
ensure that the state constraint of the perturbed problem g(t) := gµ(y(t)) will have a unique
maximum point in a neighborhood (τ̄to − δ, τ̄to + δ) of τ̄to, for small δ > 0.

3Section 1.5.2 of this thesis.
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So let us assume that g(t) has either a boundary arc or an interior arc included in (τ̄to −
δ, τ̄to + δ). We deduce in both cases the existence of a time tm ∈ (τ̄to − δ, τ̄to + δ) where g(2) is
maximum (similar to the proof of Th. 6.8) such that

g(3)(tm) = 0.

For all δ > 0, if ‖µ − µ̄‖ and ‖u − ū‖∞ are small enough, then I(gµ(y)) ⊂ Iδ(g(ȳ)). Letting
δ ↓ 0, we obtain that tm → τ̄to when ‖µ − µ̄‖ → 0 and ‖u − ū‖∞ → 0. Hence, (6.40) implies
that when ‖µ− µ̄‖ → 0 and ‖u− ū‖∞ → 0, using Prop. 6.6(iii),

g(4)(tm) +
(g

(2)
u (tm))2

H̃uu(tm)
η̈2(tm) = −Λ(0, u(tm), y(tm), p2(tm), η2(tm), µ)

→ −Λ(0, ū(τ̄to), ȳ(τ̄to), p̄
2(τ̄to), η̄

2(τ̄to), µ̄). (6.55)

Therefore, if (u, y) has a boundary arc in (τ̄to − δ, τ̄to + δ), we have that g(4)(tm) = 0 and
η̈2(tm) ≥ 0, which implies that

Λ(0, ū(τ̄to), ȳ(τ̄to), p̄
2(τ̄to), η̄

2(τ̄to), µ̄) ≤ 0. (6.56)

If (u, y) has an interior arc in (τ̄to − δ, τ̄to + δ), then g(4)(tm) ≤ 0 (this was shown in the proof
of Th. 6.8, recall (6.47)) and η̈2(tm) = 0. This implies that

Λ(0, ū(τ̄to), ȳ(τ̄to), p̄
2(τ̄to), η̄

2(τ̄to), µ̄) ≥ 0. (6.57)

Conversely, if (6.56) holds with a strict inequality, then for ‖µ−µ̄‖ and ‖u−ū‖∞ small enough,

g(4)(tm)+ (g
(2)
u (tm))2

H̃uu(tm)
η̈2(tm) > 0, excluding the possibility of an interior arc. Similarly, if (6.57)

holds with a strict inequality, this excludes the possibility of a boundary arc. Using the above
arguments, we are able to obtain the following result.

Theorem 6.13. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A3). Assume that
(ū, ȳ) has a nonreducible and essential touch point τ̄to ∈ (0, T ). Set

λ̄(τ̄to) := Λ(0, ū(τ̄to), ȳ(τ̄to), p̄
2(τ̄to), η̄

2(τ̄to), µ̄). (6.58)

Then, for every stable extension (Pµ) and for all δ > 0 small enough, there exist ρ, % > 0 such
that:
(i) If λ̄(τ̄to) < 0 holds, then all stationary points (u, y) of the perturbed problem (Pµ) with
‖µ− µ̄‖ < % and ‖u − ū‖∞ < ρ have either a single touch point τto or a single boundary arc
(τen, τex) in (τ̄to− δ, τ̄to+ δ). Moreover, in case of a boundary arc (τen, τex), (u, y) satisfies the
uniform strict complementarity assumption (6.21) on (τen, τex).
(ii) If λ̄(τ̄to) > 0 holds, then all stationary points (u, y) of the perturbed problem (Pµ) with
‖µ− µ̄‖ < % and ‖u− ū‖∞ < ρ have either one or two touch points in (τ̄to− δ, τ̄to + δ) and no
boundary arc.

Remark 6.14. Under the assumptions of the above theorem, if λ̄(τ̄to) = 0 holds, then we cannot
conclude and any structure in the neighborhood of τ̄to is a priori possible for a stationary
point (u, y) of the perturbed problem (Pµ), however small ‖u − ū‖∞ and ‖µ − µ̄‖ are (see
Example 6.15 below).
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Proof of Th. 6.13. Note first that since τ̄to is essential, it follows from Prop. 6.6(ii) and Lemma
6.7 that for δ > 0 and ‖u− ū‖∞ and ‖µ− µ̄‖ small enough, I(gµ(y)) ∩ (τ̄to − δ, τ̄to + δ) is not
empty. In view of what precedes, it remains to show in the case (ii) when λ̄(τ̄to) > 0 that
(u, y) cannot have more than one interior arc included in (τ̄to − δ, τ̄to + δ). Since boundary
arcs are not possible either, this will show that the only two possibilities for (u, y) is to have
one or two touch points in (τ̄to − δ, τ̄to + δ).

If λ̄(τ̄to) > 0, then we see by (6.55) that on an interior arc included in (τ̄to − δ, τ̄to + δ),
for ‖u − ū‖∞ and ‖µ − µ̄‖ small enough, for t in the interior arc, the functions (of time)
(gµ)(4)(ü, u̇, u, y) being Lipschitz continuous on interior arcs by Lemma 6.1, uniformly w.r.t. µ
by Definition 6.4 of a stable extension,

g(4)(t) ≤ −1
2 λ̄(τ̄to) < 0,

and hence g(3) is strictly decreasing along an interior arc. In addition, g(3) vanishes at some
point tm on the interior of an interior arc where g(2) is maximum and satisfying (6.47). Now
assume that (u, y) has two interior arcs in (τ̄to − δ, τ̄to + δ), say (τ1, τ2) and (τ2, τ3). Since g(3)

is strictly decreasing on the interior arcs and vanishes at an interior point of these arcs, this
implies that g(3)(τ−2 ) < 0 and g(3)(τ+

2 ) > 0, and hence, [g(3)(τ2)] > 0. But at the touch point
τ2, [g(3)(τ2)] ≤ 0 by (6.54), which gives the desired contradiction and shows that (u, y) can
only have a single interior arc in (τ̄to− δ, τ̄to + δ), for small enough ‖u− ū‖∞ and ‖µ− µ̄‖ and
δ > 0.

We end the proof by checking that in the case (i), uniform strict complementarity holds
on the boundary arc (τen, τex). By (6.40) and (6.33), for all t in boundary arc (τen, τex) we
have that

η̈2(t) = − H̃uu(t)

(g
(2)
u (t))2

Λ(0, u(t), y(t), p2(t), η2(t), µ). (6.59)

Since c := λ̄(τ̄to) < 0, it follows that for δ > 0 small enough, Λ(0, ū(t), ȳ(t), p̄2(t), η̄2(t)) <
c/2 < 0 on (τ̄to− δ, τ̄to+ δ). For ‖u− ū‖∞ and ‖µ− µ̄‖ small enough, (u, y, p2, η2) is arbitrarily
close to (ū, ȳ, p̄2, η̄2) in L∞ by Prop. 6.6(iii), so if (u, y) has a boundary arc (τen, τex) ⊂
(τ̄to − δ, τ̄to + δ), we deduce that Λ(0, u(t), y(t), p2(t), η2(t), µ) ≤ c/4 < 0 on (τen, τex). With
(6.34)–(6.33) and (6.59) this shows that η̈2 is uniformly positive on (τen, τex). This achieves
the proof of the theorem.

Example 6.15. Consider the problem below:

min
(u,y)∈U×Y

∫ 1

0

(
u(t)2

2
+ µ1y1(t)

)

dt

subject to the dynamics and boundary conditions4

ẏ1(t) = y2(t), ẏ2(t) = u(t), (6.60)

y1(0) = y1(1) = 0, ẏ1(0) = 1 = −ẏ2(1) (6.61)

and second-order state constraint

y1(t) ≤ µ2.

4Extension of the results of this paper when there are constraints on the final and/or the initial state is
possible if a strong controllability condition is assumed, see [17, Section 8]5.
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The perturbation parameter is (µ1, µ2) ∈ R × R
∗
+. The above problem was studied in [29] for

µ1 = 0 and in [4] for µ1 6= 0. By convexity, the first-order optimality condition is necessary
and sufficient and the problem has a unique optimal solution.

For the unconstrained problem, the optimality condition reduces to y
(4)
1 ≡ −µ1, together

with the boundary conditions (6.61). Therefore the unconstrained optimal trajectory is given
by

yuncons1 (t) = −µ1

24
t4 +

µ1

12
t3 −

(

1 +
µ1

24

)

t2 + t.

Its derivatives being given by ẏuncons1 (t) =
(
t− 1

2

) (
−µ1

6 t
2 + µ1

6 t− 2
)

and ÿuncons1 (t) = µ1

2 t(1−
t) − 2 − µ1

12 , this fourth-order polynomial has on [0, 1] a maximum at t = 1
2 for µ1 ≤ 48, and

one local minimum at t = 1
2 and two maxima, one in (0, 1

2 ) and the other in ( 1
2 , 1), for µ > 48.

For µ1 ≤ 48 and µ2 = yuncons1 (1
2) = 1

4 − µ1

384 , we have therefore a nonessential touch point at
τto = 1

2 , which is reducible for µ1 < 48.
In the sequel we shall consider the case when µ1 < 48. When µ2 decreases beyond the

value 1
4 − µ1

384 , the optimal trajectory has one touch point at τto = 1
2 and is given by

yonetouch1 (t) =

{
−µ1

24 t
4 + a

6 t
3 + b

2 t
2 + t on [0, 1

2 ]

−µ1

24 (t− 1)4 − a
6 (t− 1)3 + b

2(t− 1)2 − (t− 1) on [ 12 , 1]

with a = 24 + µ1

4 − 96µ2 and b = −8 − µ1

48 + 24µ2. This touch point becomes nonreducible
when ÿonetouch1 (τto) = 0 i.e. when µ2 = 1

6 − µ1

1152 , and satisfies (6.53).
So let us compute the term (6.58) at the optimal trajectory for a given value of µ̄1 ∈

(−∞, 48) and µ̄2 := 1
6 − µ̄1

1152 . We have that

g(y) = y1 − µ2, g(1)(y) = y2, g(2)(u, y) = u, g(3)(u̇, u, y) = u̇, g(4)(ü, u̇, u, y) = ü.

The alternative Hamiltonian (6.14) is given by

H̃µ(u, y, p2, η2) =
u2

2
+ µ1y1 + p2

1y2 + p2
2u+ η2u

and the costate and control equations (6.16) and (6.17) are given by

−ṗ2
1 = µ1, −ṗ2

2 = p2
1,

0 = u+ p2
2 + η2.

Differentiating twice the last above relation, we obtain

0 = ü+ µ1 + η̈2 = g(4) + µ1 + η̈2.

Identifying with (6.40), we simply have that Λ(g(3), u, y, p2, η2, µ) = µ1, and hence, at the
nonreducible touch point τ̄to = 1

2 ,
λ̄(τ̄to) = µ̄1.

Conditions (i) and (ii) of Th. 6.13 are satisfied respectively for µ̄1 < 0 and for µ̄1 > 0 (see
figure 6.1 below). Therefore, for µ2 <

1
6 − µ1

1152 , the touch point turns into two touch points
if µ1 > 0 and turns into a boundary arc if µ1 < 0, and strict complementarity holds on that
boundary arc since η̈2 ≡ −µ1 > 0.

If µ̄1 = 0, then λ̄(τ̄to) = 0 and we cannot conclude for the structure of the solutions of the
perturbed problem. For µ2 <

1
6 , a boundary arc appears but strict complementarity does not

hold on that boundary arc since η̈2 ≡ −µ1 = 0. If we take e.g. µ2 = 1
6 − µ1

1152 − εµ2
1, with

ε > 0 a fixed parameter, we have in the neighborhood of the nonreducible touch point τ̄to a
boundary arc for µ1 < 0 and two touch points for µ1 > 0.
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(a) State constraint for µ̄1 = −36 and
varying µ2.
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(b) State constraint for µ̄1 = 36 and vary-
ing µ2.

Figure 6.1: Transformation of a nonreducible touch point into a boundary arc or into two
touch points for µ̄1 6= 0 when µ2 decreases.

6.5 Stability analysis

Let (ū, ȳ) be a stationary point of (P) with alternative multipliers (p̄2, η̄2). Let V := L2(0, T ).
For v ∈ V, recall that we denote by zv the unique solution in H1(0, T ; Rn) of the linearized
state equation (6.30). The quadratic form involved in the second-order optimality conditions
in [71] is as follows: For v ∈ V = L2(0, T ),

Q(v) :=

∫ T

0
D2

(u,y)(u,y)H̃(ū, ȳ, p̄2, η̄2)((v, zv), (v, zv))dt + φyy(ȳ(T ))(zv(T ), zv(T )). (6.62)

The extended critical cone used in the stability analysis is defined as the set of v ∈ V such
that

gy(ȳ(t))zv(t) = 0 for all t ∈ supp(d ˙̄η2). (6.63)

This set is obtained from the classical critical cone, defined as the set of v ∈ V satisfying (6.63)
and

gy(ȳ(t))zv(t) ≤ 0 for all t ∈ I(g(ȳ)) \ supp(d ˙̄η2), (6.64)

by omission of the inequality constraint (6.64). The strong second-order sufficient condition
used in the stability analysis is:

Q(v) > 0, for all v ∈ V, v 6= 0, satisfying (6.63). (6.65)

This condition is a natural strengthening of the second-order sufficient condition of [21,
Th. 18]6

Q(v) > 0, for all v ∈ V, v 6= 0, satisfying (6.63)-(6.64). (6.66)

The strengthened Legendre-Clebsch condition (6.20) implies that the quadratic form Q is a
Legendre form, i.e. a weakly lower semi-continuous quadratic form with the property that if a
sequence vn weakly converges to v in L2 and if Q(vn) → Q(v), then vn converges to v strongly
in L2. Consequently, (6.65) (resp. (6.66)) is equivalent to the existence of some c > 0 such
that Q(v) ≥ c‖v‖2

2 for all v ∈ V satisfying (6.63) (resp. satisfying (6.63)-(6.64)).

6Theorem 1.18 of this thesis.
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For first-order state constraints, the stability analysis for the homotopy algorithm in [20]
was conducted using a shooting approach. For second-order state constraints, a shooting
approach can be used for the stability analysis if all the touch points are reducible, see [94, 19],
but not in presence of nonreducible touch points, since in that case the structure is not stable
by Th. 6.13. For this reason, a stability result has been obtained in [71] (Th. 6.16 below)
that makes no assumptions on the structure of the trajectory, and hence applies when the
structure of the trajectory is not stable. This result is based on a variant of Robinson’s strong
regularity theory [121] and extends the stability results known for first-order state constraints,
see [53, 88].

Theorem 6.16 ([71, Th. 4.3]). Let (ū, ȳ) be a local solution of (P), satisfying (A2)–(A3)
and the strong second-order sufficient condition (6.65), and let (Pµ) be a stable extension of
(P). Then there exist c, ρ, κ, κ̃ > 0 and a neighborhood N of µ̄, such that for all µ ∈ N , (P µ)
has a unique stationary point (uµ, yµ) with ‖uµ − ū‖∞ < ρ and unique associated alternative
multipliers (p2,µ, η2,µ), and for all µ, µ′ ∈ N ,

‖uµ − uµ
′‖2, ‖yµ − yµ

′‖1,2, ‖p2,µ − p2,µ′‖1,2, ‖η2,µ − η2,µ′‖2 ≤ κ‖µ− µ′‖, (6.67)

‖uµ − uµ
′‖∞, ‖yµ − yµ

′‖1,∞, ‖p2,µ − p2,µ′‖1,∞, ‖η2,µ − η2,µ′‖∞ ≤ κ̃‖µ− µ′‖2/3. (6.68)

Moreover, (uµ, yµ) is a local solution of (Pµ) satisfying the uniform quadratic growth condition
(6.28) and the strong second-order sufficient condition (6.65).

Proof. The theorem follows from [71, Th. 4.3]7, excepted for the fact that (uµ, yµ) satisfies
the strong second-order sufficient condition (6.65). The latter can be proved by contradiction,
by a slight modification of the proof of [71, Prop. 4.2]8, using Prop. 6.6, Lemma 6.7, and the
fact that Q is a Legendre form.

6.6 The shooting algorithm

By Th. 6.16, the perturbed problem (Pµ) has a locally unique local solution. The objective of
this section is to see, under additional assumptions, how we could use the shooting algorithm
and the results of Theorems 6.8 and 6.13 to obtain in practice in the homotopy algorithm the
solution of the perturbed problem.

Let us first recall the shooting algorithm for a second-order scalar state constraint (see
[29, 115, 94, 19]). The alternative multipliers used in the shooting algorithm are denoted by
(p2, η2), with the ‘2’ as subscript, not to be confused with the multipliers (p2, η2) (with the
‘2’ as superscript) used in the stability analysis. Let us recall that the multipliers used in the
shooting algorithm (p2, η2) are defined, on each boundary arc (τen, τex) of the trajectory, by

η1(t) :=

∫

(t,τex]
dη(s) = η(τ+

ex) − η(t+), η2(t) :=

∫ τex

t
η1(s)ds, (6.69)

p2(t) := p(t) − η1(t)gy(y(t)) − η2g
(1)
y (y(t)) (6.70)

and η1(t), η2(t), p2(t) = 0 outside boundary arcs. Here p and η denote the multipliers associ-
ated with a stationary point (u, y) in the classical optimality condition (6.7)–(6.10).

Why do we use so many different multipliers? The multipliers η2, p2 are very useful in the
stability analysis because they are continuous and converge uniformly. The multipliers (p2, η2)

7Theorem 5.12 of this thesis.
8Proposition 5.11 of this thesis.
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used in the shooting algorithm have jumps, and these jumps are used as additional degrees
of freedom in the shooting algorithm, in order to have as many free parameters as conditions
to satisfy. An explicit relation between these multipliers (p2, η2) and (p2, η2) is made precise
later, see (6.113)–(6.115).

Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A3) and the assumption below:

(A4) (ū, ȳ) has finitely many boundary arcs and finitely many touch points and the state
constraint is not active at final time, i.e. g(ȳ(T )) < 0.

Denote by T̄en, T̄ex and T̄to the (finite and possibly empty) sets of respectively entry, exit and
touch times of the trajectory (ū, ȳ), and its set of junction points by T̄ := T̄en ∪ T̄ex ∪ Tto.
Let Nba := |T̄en| = |T̄ex| and Nto := |T̄to|. Moreover let us introduce the following notation.
Given a real-valued function ϕ over [0, T ] and a finite subset S of (0, T ), assuming w.l.o.g. the
elements of S in increasing order, we may define ϕ(S) := (ϕ(τ))τ∈S ∈ R

CardS . We adopt a
similar convention for vectors and define νS := (ντ )τ∈S ∈ R

CardS .

The shooting algorithm is as follows. The unknown are the initial value of the costate p0,
the (finite) sets of entry, exit and touch points of the trajectory, respectively Ten, Tex and Tto,
and the jump parameters of the costate. More precisely, there are two jump parameters ν 1

τen

and ν2
τen

for each entry point τen ∈ Ten and one jump parameter ντto for each touch point
τto ∈ Tto. The shooting mapping F in a neighborhood of (ū, ȳ) is defined by

F : R
n × (RNba)4 × (RNto)2 → R

n × (RNba)4 × (RNto)2,














p0

ν1
Ten

ν2
Ten

Ten
Tex
νTto

Tto















7→















p2(T ) − φy(y(T ))

g(y(Ten))
g(1)(y(Ten))

g(2)(u(T −
en), y(Ten))

g(2)(u(T +
ex), y(Tex))

g(y(Tto))
g(1)(y(Tto))















where (u, y, p2, η2) are the solution of:

ẏ = f(u, y) on [0, T ], y(0) = y0 (6.71)

−ṗ2 = H̃y(u, y, p2, η2) on [0, T ] \ T , p2(0) = p0, (6.72)

0 = H̃u(u, y, p2, η2) on [0, T ] \ T , (6.73)

0 = g(2)(u, y) on boundary arcs (6.74)

0 = η2 on interior arcs (6.75)

[p2(τen)] = −ν1
τen
gy(y(τen)) − ν2

τen
g(1)
y (y(τen)) at entry times τen ∈ Ten (6.76)

[p2(τto)] = −ντtogy(y(τto)) at touch points τto ∈ Tto. (6.77)

A vector of shooting parameters will be denoted by θ. With a stationary point of (P) satisfying
(A2)–(A4) is associated a unique set of shooting parameters, which is a zero of the shooting
mapping. The vector of shooting parameters of (ū, ȳ) will be denoted by θ̄. More generally the
‘bar’ will refer in what follows to shooting parameters associated with the reference trajectory
(ū, ȳ). Let us recall (see [19, Rem. 2.11(ii)]9) that using the multipliers (p̄2, η̄2) uniquely

9Remark 2.11 of this thesis.
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associated with (ū, ȳ) in the shooting algorithm, assumption (A3) is equivalent to

ū is continuous over [0, T ] and

∃ α > 0, H̃uu(ū(t), ȳ(t), p̄2(t
±), η̄2(t

±)) ≥ α for all t ∈ [0, T ].
(6.78)

If (u, y) is a trajectory associated with a zero of the shooting mapping, with alternative
shooting multipliers (p2, η2), then u, p2 and η2 are piecewise continuous on [0, T ] and have their
set of discontinuity times included in the set of junction times T := Ten∪Tex∪Tto. Let us recall
the additional conditions that are automatically satisfied by a zero of the shooting mapping
and the additional conditions, under which a zero of the shooting mapping is associated with a
stationary point of the optimal control problem. Given a, b ∈ R, set [a, b] := {(1−λ)a+λb ; λ ∈
[0, 1]}.
Lemma 6.17 ([19, Prop. 2.15 and Rem. 2.16]). Let (u, y) be the trajectory associated
with a zero of the shooting mapping, with alternative shooting multipliers (p2, η2). Assume
that there exists β, α > 0 such that

β ≤ |g(2)
u (û, y(t))| for all û ∈ [u(t−), u(t+)] and all t ∈ I(g(y)); (6.79)

α ≤ H̃uu(û, y(t), p2(t
±), η2(t

±)) for all û ∈ [u(t−), u(t+)] and all t ∈ [0, T ]. (6.80)

Then: (i) u is continuous over [0, T ].
(ii) For each boundary arc (τen, τex) of (u, y), the following holds:

η2(τ
+
en) = ν2

τen
and η2(τ

−
ex) = 0. (6.81)

Proposition 6.18 ([19, Corollary 2.17]). A zero of the shooting mapping is associated with
a stationary point (u, y) of (P) satisfying (A2), (6.78), and (A4), with alternative shooting
multipliers (p2, η2), iff:

g(y(t)) ≤ 0 on interior arcs, (6.82)

0 ≤ η̈2(t) on boundary arcs, (6.83)

0 ≤ ν1
τen

+ η̇2(τ
+
en) for each entry point τen, (6.84)

η̇2(τ
−
ex) ≤ 0 for each exit point τex (6.85)

0 ≤ ντto for each touch point τto. (6.86)

Lemma 6.19. Let (u, y) be the trajectory associated with a zero of the shooting mapping satis-
fying (A2), (6.78), and (A4). Then the additional conditions (6.84) and (6.85) are equivalent,
respectively, to

g(3)(u̇(τ−en), u(τen), y(τen)) ≥ 0 and g(3)(u̇(τ+
ex), u(τex), y(τex)) ≤ 0 (6.87)

where the function g(3) is defined by (6.35).

Proof. By time differentiation of (6.73) on the interior of arcs, we have (omitting the arguments
(u, y, p2, η2))

0 = H̃uuu̇+ H̃uyf − H̃yfu + η̇2g
(2)
u . (6.88)

Taking the jumps at entry time τen, we have by (6.76) and (6.81) (omitting arguments)

[H̃uu] = [p2]fuu + [η2]g
(2)
uu = −ν1

τen
gyfuu − ν2

τen
g(1)
y fuu + ν2

τen
g(2)
uu

= −ν1
τen
g(1)
uu − ν2

τen
g(2)
uu + ν2

τen
g(2)
uu

= 0,

[H̃uy]f − [H̃y]fu = [p2]fuyf + [η2]g
(2)
uy f − [p2]fyfu − [η2]g

(2)
y fu

= −ν1
τen

(gyfuyf − gyfyfu) − ν2
τen

(g(1)
y fuyf − g(2)

uy f − g(1)
y fyfu + g(2)

y fu).
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Using that g
(j)
uy = g

(j−1)
yy fu + g

(j−1)
y fuy, j = 1, 2, that g

(2)
u = g

(1)
y fu = gyyffu+ gyfyfu and that

g
(1)
uy ≡ 0, we obtain

[H̃uy]f − [H̃y]fu = −ν1
τen

(g(1)
uy f − gyyfuf − g(2)

u + gyyffu) − ν2
τen

(−g(1)
yy fuf + g(1)

yy ffu)

= ν1
τen
g(2)
u .

Therefore, taking the jump of (6.88) at τen, we obtain

0 = H̃uu[u̇(τen)] + (ν1
τen

+ [η̇2(τen)])g
(2)
u .

By (6.35), we have that [g(3)(u̇(τen), u(τen), y(τen))] = g
(2)
u [u̇(τen)] and hence, since g(3) van-

ishes on the interior of the boundary arc,

ν1
τen

+ η̇2(τ
+
en) =

H̃uu

(g
(2)
u )2

g(3)(u̇(τ−en), u(τen), y(τen)). (6.89)

Since H̃uu/(g
(2)
u )2 is positive by (6.78) and (A2), the additional condition (6.84) is equivalent

to the first condition of (6.87). Using similar arguments at exit points, the result follows.

Remark 6.20. It follows from the above lemma that (6.82) together with the continuity of u
imply that (6.84)–(6.85) are satisfied, since a Taylor expansion of the state constraint near
entry/exit of boundary arcs yields

0 ≥ g(y(t)) = g(3)(u̇(τ±), u(τ), y(τ))
(t − τ)3

6
+ o(|t− τ |3),

where τ± stands for τ−en or τ+
ex, implying (6.87), and in turn (6.84)–(6.85).

In what follows, (Pµ) denotes a stable extension of (P), and to indicate the dependence on
µ of the data g, f, `, φ and H̃, we will denote in what follows the shooting mapping by F(·, µ).

6.6.1 Well-posedness with nonreducible touch points

We assume in addition to (A2)–(A4) that

(A5) The strict complementarity assumption (6.21) holds on each (regular) boundary arc
(τ̄en, τ̄ex) of (ū, ȳ);

(A6) (i) Each nonreducible touch point τ̄to of (ū, ȳ) satisfies (6.53);

(ii) Each nonreducible touch point τ̄to of (ū, ȳ) satisfies λ̄(τ̄to) < 0, where λ̄(τ̄to) is
defined by (6.58).

Assumption (A6)(i) implies by Lemma 6.12 that all nonreducible touch points of (ū, ȳ) are
essential. Therefore, by (A6)(i) all nonessential touch points of (ū, ȳ) are reducible, i.e. satisfy
(6.49).

We exclude in (A6)(ii) the case when λ̄(τ̄to) = 0, since in that case, by Remark 6.14, we
have no information on the structure of solutions of the perturbed problem, which is not very
useful for the homotopy algorithm. We also exclude the case when λ̄(τ̄to) > 0, though we know
by Th. 6.13 that in that case the solutions of the perturbed problem have either one or two
touch points in the neighborhood of τ̄to. The reason to leave aside this case in the following
analysis is that singularities happen in the shooting algorithm when a touch point turns into
two touch points (this is discussed more precisely in Remark 6.33 at the end of the paper).
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Definition 6.21. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A6) and let (P µ) be
a stable extension of (P). We say that a stationary point (u, y) of (Pµ) has a neighboring
structure to that of (ū, ȳ) if there exists a small δ > 0, δ < minτ,τ ′∈T̄ ,τ 6=τ ′ |τ − τ ′|, such that
(a)–(e) below hold:

(a) The contact set I(gµ(y)) is included in Iδ(g(ȳ)) = {t ∈ [0, T ] : dist{t, I(g(ȳ))} < δ};

(b) For each boundary arc (τ̄en, τ̄ex) of (ū, ȳ), (u, y) has on (τ̄en−δ, τ̄ex+δ) a unique boundary
arc (τen, τex);

(c) For each essential and reducible touch point τ̄to of (ū, ȳ), (u, y) has on (τ̄to − δ, τ̄to + δ) a
unique touch point τto;

(d) For each nonessential touch point τ̄to of (ū, ȳ), either the state constraint gµ(y) is not
active on (τ̄to − δ, τ̄to + δ) or (u, y) has on (τ̄to − δ, τ̄to + δ) a unique touch point τto;

(e) For each nonreducible touch point τ̄to of (ū, ȳ), (u, y) has on (τ̄to − δ, τ̄to + δ) either a
unique touch point τto or a unique boundary arc (τen, τex).

We denote by T̄ ess
red , T̄ nes, and T̄nrd the sets of respectively essential and reducible, nonessen-

tial, and nonreducible touch points of the trajectory (ū, ȳ). Set Nnes := |T̄ nes| and Nnrd :=
|T̄nrd|. By the above definition, there are Ns := 2Nnes+Nnrd different neighboring structures
to that of (ū, ȳ). For j = 1, . . . , Ns, denote by Fj the shooting mappings corresponding to
each of those different neighboring structures. For each nonessential touch point τ̄to of (ū, ȳ),
the latter is introduced or not in the shooting mapping Fj (with a zero jump parameter ν̄τto),
and for each nonreducible touch point τ̄to of (ū, ȳ), the latter is introduced as a touch point or
as a boundary arc (of zero length) in the shooting mapping Fj . More precisely, similarly to
first-order state constraints (see [20, section 4.2]10) since g(2)(ū(τ̄±to), ȳ(τ̄to)) = 0 a nonreducible
touch point τ̄to can be seen as a boundary arc of zero length, by taking

τ̄en := τ̄to =: τ̄ex (6.90)

and, in view of the jump conditions (6.76)–(6.77),

ν̄1
τen

:= ν̄τto and ν̄2
τen

:= 0. (6.91)

For j = 1, . . . , Ns, denote by θ̄j the vector of shooting parameters, of appropriate dimension,
associated with (ū, ȳ) in the shooting mapping Fj .

For v ∈ V in the extended critical cone (i.e. satisfying (6.63)), we consider the additional
constraint below:

g(1)
y (y(τ̄to))zv(τ̄to) = 0 for all τ̄to ∈ T̄nrd. (6.92)

Recall that zv is the solution of (6.30). A sufficient condition ensuring the well-posedness of
the shooting algorithm, as we will see, is

Q(v) −
∑

τ∈T̄ ess
red

ν̄τ
(g

(1)
y (ȳ(τ))zv(τ))

2

g(2)(ū(τ), ȳ(τ))
> 0, for all v ∈ V, v 6= 0, satisfying (6.63) and (6.92),

(6.93)
where Q is given by (6.62). Note that the sum in (6.93) is nonpositive. Therefore, the strong
second-order sufficient condition (6.65) used in the stability analysis implies that the weaker
condition (6.93) is satisfied.

10Section 3.5.2 of this thesis.
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Lemma 6.22. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A6) and (6.93). Then
there exists a neighborhood W of µ̄ and, for each j = 1, . . . , Ns, a neighborhood Vj of θ̄j such
that for each µ ∈W , the equation

Fj(θ, µ) = 0 (6.94)

has a unique solution θµj in Vj, which is C1 w.r.t. µ.

Of course, if nonreducible touch points are converted into boundary arcs in the shooting
mapping Fj , it may happen that for µ in the neighborhood of µ̄, the solution θµj of (6.94) is
such that some entry times are greater than the corresponding exit times. In that case the
trajectory associated with θµj by (6.71)–(6.77) has no physical meaning since not single-valued.
In Lemma 6.25 we will give necessary and sufficient conditions so that a solution θµj of (6.94)
is associated with a stationary point of (Pµ).

Proof of Lemma 6.22. We follows the ideas of the proof of [19, Th. 3.3]11 and include the
presence of nonreducible touch points. Let us show that the Jacobian DθFj(θ̄j, µ̄) is invertible,
for all j = 1, . . . , Ns. It will then follow from the implicit function theorem that (6.94) has a
locally unique solution for µ in a neighborhood of µ̄ which is C 1 w.r.t. µ.

Let Fj be one of these shooting mappings. Let ω :=
(
π0, γ

1
Ten
, γ2

Tex
, σTen , σTex , γTto , σTto

)>

be such that DθFj(θ̄j , µ̄)ω = 0. Then, by differentiation of the shooting mapping, we have

0 = π2(T ) − φyy(y(T ))z(T ), (6.95)

0 = gy(ȳ(τ̄en))z(τ̄en) for all entry points τ̄en, (6.96)

0 = g(1)
y (ȳ(τ̄en))z(τ̄en) for all entry points τ̄en, (6.97)

0 = Dg(2)(ū(τ̄en), ȳ(τ̄en))(v(τ̄
−
en), z(τ̄en)) + στ̄en

d

dt
g(2)(ū(t), ȳ(t))|t=τ̄−en

for all entry points τ̄en, (6.98)

0 = Dg(2)(ū(τ̄ex), ȳ(τ̄ex))(v(τ̄
+
ex), z(τ̄ex)) + στ̄ex

d

dt
g(2)(ū(t), ȳ(t))|t=τ̄+

ex

for all exit points τ̄ex, (6.99)

0 = gy(ȳ(τ̄to))z(τ̄to) for all touch points τ̄to, (6.100)

0 = g(1)
y (ȳ(τ̄to))z(τ̄to) + στ̄tog

(2)(ū(τ̄to), ȳ(τ̄to)) for all touch points τ̄to, (6.101)

where (v, z, π2, ζ2) are the solutions of the variational system below (the arguments (ū, ȳ, p̄2, η̄2)
are omitted)

ż = fuv + fyz on [0, T ], z(0) = 0, (6.102)

−π̇2 = H̃yuv + H̃yyz + π2fy + ζ2g
(2)
y on [0, T ] \ T , π2(0) = π0, (6.103)

0 = H̃uuv + H̃uyz + π2fu + ζ2g
(2)
u on [0, T ] \ T , (6.104)

0 = g(2)
u v + g(2)

y z on boundary arcs, (6.105)

0 = ζ2 on interior arcs, (6.106)

[π2(τ̄en)] = −ν̄1
τ̄en
gyy(ȳ(τ̄en))z(τ̄en) − ν̄2

τ̄en
g(1)
yy (ȳ(τ̄en))z(τ̄en) − γ1

τ̄en
gy(ȳ(τ̄en))

− (γ2
τ̄en

+ στ̄en ν̄
1
τ̄en

)g(1)
y (ȳ(τ̄en)) for all entry points τ̄en, (6.107)

[π2(τ̄to)] = −ν̄τ̄togyy(ȳ(τ̄to))z(τ̄to) − γτ̄togy(ȳ(τ̄to)) − στ̄to ν̄τ̄tog
(1)
y (ȳ(τ̄to))

for all touch points τ̄to. (6.108)

11Theorem 2.23 of this thesis.
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The jump condition of the costate (6.107) follows from [19, Lemma 3.7]12. Recall that for
nonreducible touch points τ̄to = τ̄en converted into a boundary arc in Fj, we have ν̄2

τ̄en
= 0

in (6.107) by (6.91). For a nonreducible touch point τ̄to introduced as a touch point in Fj ,
(6.101) becomes

0 = g(1)
y (ȳ(τ̄to))z(τ̄to). (6.109)

The above constraint holds as well for nonreducible touch points converted into boundary
arcs by (6.97). Moreover, we substitute στ̄to using (6.101) into the jump condition (6.108)
for reducible touch points, and we consider for nonreducible touch points introduced as touch
points the constraint (6.109) with associated multiplier στ̄to ν̄τ̄to in (6.108). In this way we
obtain that (6.95)–(6.97) and (6.100)–(6.108) constitute the first-order optimality condition
of the linear-quadratic problem (PQ) of minimizing

Q2(v) :=

∫ T

0
D2

(u,y)(u,y)H̃(ū, ȳ, p̄2, η̄2)((v, zv), (v, zv))dt+ φyy(ȳ(T ))(zv(T ), zv(T ))

+
∑

τ̄en∈T̄en

(

ν1
τ̄en
gyy(ȳ(τ̄en))(zv(τ̄en), zv(τ̄en)) + ν2

τ̄en
g(1)
yy (ȳ(τ̄en))(zv(τ̄en), zv(τ̄en))

)

+
∑

τ̄to∈T̄to

ν̄τ̄togyy(ȳ(τ̄to))(zv(τ̄to), zv(τ̄to)) −
∑

τ̄to∈T̄ ess
red

ν̄τ̄to
(g

(1)
y (ȳ(τ̄to))zv(τ̄to))

2

g(2)(ū(τ̄to), ȳ(τ̄to))
,

subject to the constraints (6.96), (6.97), (6.100), (6.105), and (6.109) at nonreducible touch

points. Since d
dtgy(ȳ(t))zv(t) = g

(1)
y (ȳ)zv and d2

dt2 gy(ȳ(t))zv(t) = g
(2)
y (ū, ȳ)zv + g

(2)
u (ū, ȳ)v, the

constraints (6.96), (6.97), and (6.105) are equivalent to gy(ȳ(t))z(t) = 0 on boundary arcs (of
positive length) [τ̄en, τ̄ex]. Consequently, the constraints (6.96), (6.97), (6.100), (6.105), and
(6.109) of (PQ) are equivalent to (6.63), (6.92), and gy(ȳ(τ̄to))z(τ̄to) = 0 for all nonessential
touch point τ̄to introduced in the shooting mapping Fj.

By straightforward calculation (see [19, Lemma 3.6] and [71, Lemma 3.1]13), we can show
that the quadratic form Q2(v) is equal to the left-hand side of (6.93). Since the latter is
a Legendre form by assumption (6.20), (6.93) implies that (PQ) has a weakly lower semi-
continuous and strongly convex cost function on its closed and convex feasible set. Moreover,
the constraints of (PQ) are onto by assumption (A2) (see Lemma 6.5) and hence the unique
solution and associated multipliers of the first-order optimality condition of (PQ) are zero.
This implies that (v, z, π2, ζ2) ≡ 0. Therefore, π0 = 0 and the multipliers associated with
the constraints (6.96)–(6.97), (6.100), and (6.109) for nonreducible touch points introduced as
touch points are equal to zero, implying that

γ1
τ̄en

= 0, γ2
τ̄en

+ στ̄en ν̄
1
τ̄en

= 0, γτ̄to = 0, (6.110)

and, for nonreducible touch points τ̄to introduced as touch points,

στ̄to ν̄τ̄to = 0. (6.111)

By (6.98)–(6.99), since d
dtg

(2)(ū(t), ȳ(t))|t=τ̄−en ,τ̄
+
ex

6= 0 both for entry/exit points of boundary
arcs by Lemma 6.3, and for nonreducible touch points converted into boundary arcs by hy-
pothesis (A6)(i), we have that στ̄en = 0 = στ̄ex , and by (6.101), στ̄to = 0 for reducible touch
points τ̄to. Finally, with (6.110)–(6.111), since ν̄τ̄to 6= 0 at nonreducible touch points τ̄to by
(A6)(i) and Lemma 6.12, it follows that ω = 0, i.e. the Jacobian of the shooting mapping Fj

is one-to-one, and hence invertible.

12Lemma 2.27 of this thesis.
13Lemmas 2.26 and 5.9 of this thesis.
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6.6.2 Stability of shooting parameters

Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A6) and the strong second-order
sufficient condition (6.65) and let (Pµ) be a stable extension of (P). For µ in a neighborhood
of µ̄, the perturbed problem (Pµ) has by Th. 6.16 a locally unique stationary point (uµ, yµ),
which has by Theorems 6.8 and 6.13 a neighboring structure to that of (ū, ȳ), in the sense of
Def. 6.21. Therefore it makes sense to speak about the shooting parameters associated with
(uµ, yµ). Note that its set of shooting parameters may not necessarily be unique if (uµ, yµ)
has nonessential or nonreducible touch points, since a nonessential touch point may or not be
introduced in the set of shooting parameters, with an associated zero jump parameter, and a
nonreducible touch point may be considered either as a boundary arc (of zero length) or as a
touch point. The next lemma shows that the stationary point (uµ, yµ) of (Pµ) has its shooting
parameters in the neighborhood of the shooting parameters of (ū, ȳ).

For this it will be useful to make explicit the relation between the multipliers η2 and η2 used
respectively in the shooting algorithm and in the stability analysis. Recall that the multipliers
used in the shooting algorithm are defined by (6.69)–(6.70) while those used in the stability
analysis are defined by (6.11)–(6.12). Moreover, by [19, Prop. 2.10]14, for all boundary arcs
(τen, τex) (including the case τen = τex), we have that

ν1
τen

=

∫

[τen,τex]
dη = [η(τen)] + η1(τ

+
en), (6.112)

and the condition (6.81) holds a fortiori for a stationary point. Combining the above relations,
we obtain that

η1(t) = η1(t) +
∑

τen∈Ten

ν1
τen

1[0,τen](t) +
∑

τto∈Tto

ντto1[0,τto](t), (6.113)

η2(t) =

∫ T

t
η1(s)ds

= η2(t) +
∑

τen∈Ten

1[0,τen](t)(ν
2
τen

+ ν1
τen

(τen − t)) +
∑

τto∈Tto

ντto1[0,τto](t)(τto − t).(6.114)

Here 1[a,b](·) denotes the indicator function of the interval [a, b] ⊂ [0, T ] equal to 1 on [a, b]
and zero outside. Then p2 and p2 defined respectively by (6.12) and (6.70) are related by

p2 = p2 − (η1 − η1)gy(y) − (η2 − η2)g
(1)
y (y). (6.115)

Lemma 6.23. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A6) and the strong
second-order sufficient condition (6.65) and let (Pµ) be a stable extension of (P). Then for
each ε > 0, there exist neighborhoods W of µ̄ and V∞ of ū (in L∞) such that for each µ ∈W ,
the locally unique stationary point (uµ, yµ) of (Pµ) with uµ ∈ V∞ has a neighboring structure
to that of (ū, ȳ). Moreover, any vector of shooting parameters θµ associated with (uµ, yµ), of
appropriate dimension, satisfy

|θµ − θ̄j | < ε

where θ̄j is the vector of shooting parameters associated with (ū, ȳ) matching the structure of
θµ.

14Proposition 2.10 of this thesis.
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It follows from the above lemma and Lemma 6.22 that for a given neighboring structure
Fj of (ū, ȳ), the vector of shooting parameters θµ associated with the stationary point (uµ, yµ)
is locally unique.

Proof. It follows from Theorems 6.8 and 6.13 that the locally unique (by Th. 6.16) stationary
point (uµ, yµ) of (Pµ) has a neighboring structure to that of (ū, ȳ). The convergence of
junction times was proved in Theorems 6.8 and 6.13. So let us show the convergence of jump
parameters. For this we use the formula (6.114) that links the multiplier η2 used in the
stability analysis to the shootings parameters and the uniform convergence of η2,µ towards η̄2

by Prop. 6.6(iii). The proof is by finite induction.

Let N denote the total number of boundary arcs and touch points of the trajectory (ū, ȳ).
We may write that {1, . . . , N} = Nba ∪ Nto, where Nba ∩ Nto = ∅ and Nba and Nto denote
the sets of index corresponding respectively to boundary arcs (possibly of zero length) and
to touch points (possibly nonreducible or nonessential). This partition is not unique since a
nonreducible touch point can be considered either as a boundary arc of zero length or as a
touch point. We have then that I(g(ȳ)) = ∪Ni=1Īi, where Īi := [τ̄en,i, τ̄ex,i] for i ∈ Nba (with
possibly τ̄en,i = τ̄ex,i), Īi := {τ̄to,i} for i ∈ Nto, Īi ∩ Īj = ∅ for i 6= j, and Īi < Īi+1 for all
i < N (in the sense that t < t′ for all (t, t′) ∈ Īi × Īi+1). The jump parameters associated
with a boundary arc [τ̄en,i, τ̄ex,i] are denoted by ν̄1

i and ν̄2
i and that associated with a touch

point τ̄to,i by ν̄i. Since (uµ, yµ) has a neighboring structure to that of (ū, ȳ), we can choose
the partition (Nba,Nto) such that I(gµ(yµ)) = ∪Ni=1I

µ
i for a sequence µn →n→∞ µ̄, where

Iµi = [τµen,i, τ
µ
ex,i] for i ∈ Nba, with associated jump parameters ν1,µ

i and ν2,µ
i , and Iµi = {τµto,i}

with jump parameter νµi or possibly Iµi = ∅ (if τ̄to,i is a nonessential touch point) for i ∈ Nto.

Given k ∈ {1, . . . , N}, assume by induction that the jump parameters associated with I µn

i

converge to those associated with Īi for all i ∈ {k+1, . . . , N}. (For k = N we assume nothing.)
Let us show that the jump parameters associated with Iµn

k converges to those associated with
Īk. There are two cases to consider.

Case 1: k ∈ Nto. If Iµn

k = ∅, there is nothing to prove, so assume that Iµn

k = {τµn

to,k}. Recall
that by definition, η1 and η2 vanish on interior arcs. Then for a fixed ε > 0 small enough
(ε < minτ,τ ′∈T̄ ∪{0},τ 6=τ ′

1
2 |τ − τ ′|), for all t ∈ [τ̄to,k − 2ε, τ̄to,k − ε], we have by (6.114) and Th.

6.16 for n large enough that

η2,µn(t) =
∑

i∈Nba,i>k

(ν2,µn

i + ν1,µn

i (τµn

en,i − t)) +
∑

i∈Nto,i>k

νµn

i (τµn

to,i − t) + νµn

k (τµn

to,k − t)

−→
n→∞

η̄2(t) =
∑

i∈Nba,i>k

(ν̄2
i + ν̄1

i (τ̄en,i − t)) +
∑

i∈Nto,i>k

ν̄i(τ̄to,i − t) + ν̄k(τ̄to,k − t).

Since the junction times of (uµn , yµn) converge to those of (ū, ȳ), as well as the jump parameters
associated with Iµn

i for i > k by the induction hypothesis, we deduce immediately that νµn

k
converges to ν̄k.

Case 2: k ∈ Nba. Then Iµn

k = [τµn

en,k, τ
µn

ex,k] and reasoning similarly, for a fixed ε > 0 small
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enough, for all t ∈ [τ̄en,k − 2ε,min{τ̄en,k, τµn

en,k}) and n large enough, we have that

η2,µn(t) =
∑

i∈Nba,i>k

(ν2,µn

i + ν1,µn

i (τµn

en,i − t)) +
∑

i∈Nto,i>k

νµn

i (τµn

to,i − t)

+ ν2,µn

k + ν1,µn

k (τµn

en,k − t)

−→
n→∞

η̄2(t) =
∑

i∈Nba,i>k

(ν̄2
i + ν̄1

i (τ̄en,i − t)) +
∑

i∈Nto,i>k

ν̄i(τ̄to,i − t)

+ ν̄2
k + ν̄1

k(τ̄en,k − t).

By letting t ↑ τ̄en,k, t < min{τ̄en,k, τµn

en,k}, and n → +∞, using that the convergence of η2,µn

towards η̄2 is uniform and that ν1,µn

k is bounded (since ν1,µn

k =
∫

[τµn
en,k ,τ

µn
ex,k] dη

µn by (6.112) and

dηµn is uniformly bounded by Prop. 6.6(i)), we deduce as previously that ν2,µn

k → ν̄2
k . Taking

then t ∈ [τ̄en,k − 2ε, τ̄en,k − ε], it follows that ν1,µn

k → ν̄1
k . This completes the induction step

and achieves to show the converge of jump parameters of (uµ, yµ) towards those of (ū, ȳ).
It remains to show the convergence of the initial costate. For a small ε > 0 and ‖µ − µ̄‖

small enough, the state constraint gµ(yµ) is not active on [0, ε]. Therefore, by (6.113), η1,µ

converges uniformly to η̄1 on [0, ε] and ηµ1 = ηµ2 = 0 since we are on an interior arc. It follows
that for all t ∈ [0, ε], using (6.115),

pµ2 (t) = p2(t) + η1,µ(t)gµy (yµ(t)) + η2,µ(t)(gµ)(1)y (yµ(t))

−→
µ→µ̄

p̄2(t) + η̄1(t)gy(ȳ(t)) + η̄2(t)g(1)
y (ȳ(t)) = p̄2(t)

since p2,µ, η2,µ and yµ converges uniformly to p̄2, η̄2 and ȳ, respectively. For t = 0 this gives
the convergence of the initial costate pµ2 (0) → p̄2(0). This achieves the proof of the lemma.

6.6.3 Additional conditions for a stationary point

By Lemma 6.23, we know that the locally unique stationary point (uµ, yµ) of the perturbed
problem (Pµ) has its shooting parameters in the neighborhood of those of the reference tra-
jectory (ū, ȳ). By Lemma 6.22, the shooting algorithm is then well-posed to find a vector of
shooting parameters associated with (uµ, yµ). Lemma 6.23 ensures that at least one of the
solutions θµj obtained in Lemma 6.22 for the neighboring structures to that of (ū, ȳ) is asso-
ciated to this (locally unique) stationary point of (Pµ). Of course we do not know a priori
what the structure of (uµ, yµ) is. We only know that it is a neighboring structure to that of
(ū, ȳ). In Lemma 6.25 below we give necessary and sufficient conditions in order to recognize
a vector of shooting parameters associated with a stationary point of the perturbed problem,
among all the solutions of (6.94). Let us first note the following.

Remark 6.24. The statement of Lemma 6.17 extends without difficulty to the case when there
are nonreducible touch points converted into boundary arcs of zero length (with τen = τex).
In that case η2(τ

+
en) = 0 and (6.81) yields that ν2

τen
= 0 automatically holds at nonreducible

touch points converted into boundary arcs. The statement of Prop. 6.18 extend as well. For
nonreducible touch points τto converted into boundary arcs of zero length, since η̇2(τ

+
en) = 0,

(6.84) amounts to the classical condition ντto = ν1
τen

≥ 0, while (6.85) is automatically satisfied
(with equality).

Lemma 6.25. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A6) and (6.93). For
j ∈ {1, . . . , Ns}, let Fj denote one of the shooting mappings associated with a neighboring
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structure to (ū, ȳ). Then there exist a neighborhood W of µ̄ and a neighborhood Vj of θ̄j, such
that a solution θ in Vj of (6.94) for µ ∈ W is associated with a stationary point of (Pµ)
iff, denoting by (u, y, p2, η2) the trajectory and multipliers associated with θ, the following
conditions are satisfied:

0 ≥ gµ(y(t)) on [0, T ], (6.116)

0 ≥ (gµ)(2)(u(τto), y(τto)) for each touch point τto of θ, (6.117)

0 ≤ ντto for each touch point τto of θ, (6.118)

τen ≤ τex for each boundary arc of θ. (6.119)

Proof. By Prop. 6.18, it is obvious that the conditions (6.116), (6.118), and (6.119) are
necessary for a stationary point. The condition (6.117) is necessary as well, since in the
neighborhood of a touch point τ , we have that

gµ(y(t)) = (gµ)(2)(u(τ), y(τ))
(t − τ)2

2
+ o(|t− τ |2) ≤ 0.

Now we show that the conditions (6.116)–(6.119) are sufficient to have a stationary point
of (Pµ). In order to show that the trajectory and multipliers (u, y, p2, η2) associated with θ
are a stationary point of (Pµ) and its associated multipliers in the shooting algorithm, we
have to show by Prop. 6.18 and Remark 6.24 that the additional conditions (6.82)–(6.86) are
satisfied.

The conditions (6.82) and (6.86) at touch points follow immediately from (6.116) and
(6.118). Let us show now (6.84)–(6.85). By (A2) and (A3), implying (6.78), for µ in the vicinity
of µ̄, (u, y, p2, η2) satisfies by continuity (6.79)–(6.80) and hence, it follows from Lemma 6.17
and Remark 6.24 that u is continuous over [0, T ]. Therefore the conditions (6.84)–(6.85) at
entry and exit points of boundary arcs of nonzero length (τen, τex) are satisfied by Rem. 6.20
as a consequence of (6.116). For possible boundary arcs of zero length τen = τex, (6.84)–(6.85)
amounts to check that ν1

τen
≥ 0. By the same arguments than in the proof of Lemma 6.19,

this last condition is equivalent to [g(3)(u̇(τen), u(τen), y(τen))] < 0, which holds by continuity
for ‖µ− µ̄‖ and |θ − θ̄j| small enough by (A6)(i).

Let us end the proof by showing that (6.83) is satisfied on boundary arcs (τen, τex) with
τen < τex. Define the multipliers η2 and p2 by respectively (6.114) and (6.115). By (6.81), we
have that η2 is continuous over [0, T ]. By (6.113)–(6.115) and (6.76)–(6.77), we see directly
that p2 is continuous over [0, T ] as well. Moreover, (6.72)–(6.73) imply by straightforward
calculations that the following hold over [0, T ]

− ṗ2 = H̃µ
y (u, y, p2, η2), (6.120)

0 = H̃µ
u (u, y, p2, η2). (6.121)

On the interior of each arc, (u, η2) can be expressed as a C1 function of (y, p2) and µ. Therefore,
for ‖µ− µ̄‖ and |θ − θ̄j| small enough, we have that |u(t) − ū(t)|, |y(t) − ȳ(t)|, |η2(t) − η̄2(t)|,
|p2(t)− p̄2(t)| are arbitrarily small, uniformly on an interior of each arc. Since u, y, η2, and p2

are continuous, uniformly over [0, T ], we deduce that ‖u−ū‖∞, ‖y−ȳ‖∞, ‖η2−η̄2‖∞, ‖p2−p̄2‖∞
are arbitrarily small for µ and θ in the neighborhood of µ̄ and θ̄j, respectively. Using the
relations (6.120)–(6.121), we obtain like in section 6.3 that the relation (6.40) holds. From
now, the end of the proof is similar to the end of the proof of Th. 6.8 or 6.13 to show that
the uniform strict complementarity assumption holds on boundary arc, depending on whether
(τen, τex) is in the neighborhood of a boundary arc (τ̄en, τ̄ex) or in the neighborhood of a
nonreducible touch point τ̄to of (ū, ȳ).
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6.7 Application to homotopy methods

In this section, we extend to second-order state constraints the homotopy algorithm of [20]
that detects automatically the structure of the trajectory for first-order state constraints, in
the case when assumptions (A2)–(A6) and the strong second-order sufficient condition (6.65)
are satisfied along the homotopy path.

6.7.1 Description of the algorithm

We consider the natural homotopy on the state constraint

gµ(y) := g(y) − (1 − µ)M and (`µ, φµ, fµ, yµ0 ) ≡ (`, φ, f, y0), (6.122)

where M > 0 is large enough, so that the state constraint of problem (P 0) is not active, and
we have that (P1) ≡ (P). More generally, the algorithm below can be extended to any stable
extension (Pµ) of (P) satisfying the assumption (H0) below, if a solution of (P 0) can be easily
obtained:

(H0) (Pµ) is a stable extension of (P), defined for µ ∈ [0, 1], such that (P 1) ≡ (P) and
satisfying gµ(yµ0 ) < 0 for all µ ∈ [0, 1].

The homotopy algorithm is as follows. We denote the current structure of the trajectory
by S, i.e. the variable S indicates the number and order of boundary arcs and touch points.
The shooting mapping associated with the structure S is denoted by FS . Given a vector
of shooting parameters θ, of dimension appropriate with S, and a value µ ∈ [0, 1] of the
homotopy parameter, we will denote by (uµS,θ, y

µ
S,θ) the trajectory associated with θ in the

shooting algorithm for the structure S and the homotopy parameter µ.

Algorithm 6.26 (Homotopy Algorithm).

Input p0 initial costate candidate for the unconstrained problem (P 0) and δ ∈ (0, 1).

Initialization Let S be the empty structure (with no boundary arc and no touch point).
Solve by the Newton algorithm (initialized by the value p0) FS(θ, 0) = 0 and obtain a
vector of shooting parameters θ associated with a solution of the unconstrained problem
(P0). Set M := maxt∈[0,T ] g(y

1
S,θ(t)). If M ≤ 0 then µ := 1 else µ := 0. Set ∆µ := δ.

While µ < 1 do

Prediction Step Set µ̄ := min{µ+ ∆µ; 1} and compute

θ̄ := θ −DθFS(θ, µ)−1DµFS(θ, µ)∆µ. (6.123)

Correction Step Solve, with the Newton algorithm initialized by the value θ̄,

FS(θ̂, µ̄) = 0. (6.124)

If the Newton algorithm fails, set ∆µ := ∆µ/2 and go to the prediction step;
Else obtain a vector of shooting parameters θ̂ solution of (6.124).

Update the structure
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[to→ba] If there exists a touch point τto of θ̂ such that

(gµ̄)(2)(uµ̄
S,θ̂

(τto), y
µ̄

S,θ̂
(τto)) ≥ 0, (6.125)

let Ŝ be the structure obtained by replacing in S the touch point τto by a boundary
arc, set S := Ŝ, and let θ̄ be the vector of shooting parameters obtained from θ by
replacing the touch point τto and its jump parameter ντto by a boundary arc, with
shooting parameters

τen := τto, τex := τto, ν1
τen

:= ντto , ν2
τen

:= 0. (6.126)

Go to the correction step;

[add to] Else if m := maxt∈[0,T ] g
µ̄(yµ̄

S,θ̂
(t)) > 0, set τto := argmaxt∈[0,T ] g

µ̄(yµ̄
S,θ̂

(t)),

let Ŝ be the structure obtained from S by adding the touch point τto, set S := Ŝ,
and let θ̄ be the vector of shooting parameters obtained from θ by adding the touch
point τto with a zero jump parameter ντto. Go to the correction step;

[rem to] Else if there exists a touch point τto of θ̂ such that its jump parameter ντto
is negative, then let Ŝ be the structure obtained from S by deleting the touch point
τto, set S := Ŝ, and let θ̄ be the vector of shooting parameters obtained from θ by
deleting the touch point τto and its jump parameter ντto. Go to the correction
step;

[ba→to] Else if there exists a boundary arc (τen, τex) of θ̂ such that τen > τex, then
let Ŝ be the structure obtained from S by replacing the boundary arc (τen, τex) by a
touch point, set S := Ŝ, and let θ̄ be the vector of shooting parameters obtained from
θ by replacing the shooting parameters associated with the boundary arc (τen, τex)
by a touch point and its jump parameter,

τto := τen, ντto := ν1
τen
. (6.127)

Go to the correction step;

[ok] Else set θ := θ̂, µ := µ̄.

End While

6.7.2 Construction of the homotopy path

The analysis of the existence of the homotopy path is analogous to that of [20] for first-order
state constraints. Let (Pµ) satisfy (H0) and assume that

(H1) The problem (P0) has a local solution (u0, y0) satisfying (A2)–(A6) and the strong
second-order sufficient condition (6.65).

By Th. 6.16, there exists δ > 0 such that for all µ ∈ [0, δ), (Pµ) has a stationary point
(uµ, yµ), locally unique in a L∞-neighborhood of (u0, y0), which is Hölder continuous w.r.t. µ
in the L∞ norm and is a local solution of (Pµ). By assumptions (A4)–(A6) and Theorems 6.8
and 6.13, (uµ, yµ) has a neighboring structure to that of (u0, y0) (in the sense of Def. 6.21),
i.e. satisfies (A4). Moreover, reducing δ if necessary, assumptions (A2)–(A3) are satisfied, as
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well as (A5) by Theorems 6.8 and 6.13 and (A6) by continuity. Finally, by Th. 6.16, (uµ, yµ)
satisfies the strong second-order sufficient condition (6.65). So let

µmax := sup{µ ∈ [0, 1] : for all µ′ ∈ [0, µ], the locally unique solution (uµ
′

, yµ
′

) of (Pµ′)
satisfy (A2)–(A6) and the strong second-order sufficient condition (6.65).}

Under assumption (H1), we have that µmax > 0. We obtain the following result.

Lemma 6.27. Assume that (H0)–(H1) are satisfied, and that there exist L, β, σ > 0 such that
for all µ ∈ [0, µmax),

‖uµ‖1,1 ≤ L, (6.128)

|(gµ)(2)u (uµ(t), yµ(t))| ≥ β for all t ∈ Iσ(g
µ(yµ)). (6.129)

Then for all sequences µn ↑ µmax, there exists a subsequence, still denoted by (µn), such that
(uµn , yµn , p2,µn , η2,µn) converges uniformly to some (ũ, ỹ, p̃2, η̃2), and (ũ, ỹ, p̃2, η̃2) is a station-
ary point and its alternative multipliers of (Pµmax). Moreover, if (ũ, ỹ, p̃2, η̃2) satisfies assump-
tions (A2)–(A6) and the strong second-order sufficient condition (6.65), then (uµ, yµ, p2,µ, η2,µ)
converges uniformly when µ ↑ µmax to a locally unique local solution of (Pµmax) and its al-
ternative multipliers (ũ, ỹ, p̃2, η̃2) =: (uµmax , yµmax , p2,µmax , η2,µmax), and µmax = 1, i.e. the
homotopy path is well-defined over µ ∈ [0, 1].

Proof. The proof follows from that of [20, Lemma 8.4]15. By the compactness Theorem in
BV [2, Th. 3.23], the weak-* convergence in M[0, T ] of the multiplier dηµn associated with
(uµn , yµn) in the optimality conditions (6.7)–(6.10) implies the uniform convergence of the
alternative multiplier η2,µn defined by (6.11). The uniform convergence of p2,µn follows then
from (6.16).

Given a stable extension (Pµ) satisfying (H0) and (H1), we make the following assumptions
that guarantee the existence (and local uniqueness) of the homotopy path over µ ∈ [0, 1]:

(H2) There exists L, β, σ > 0 such that for all µ ∈ [0, 1], (uµ, yµ) satisfies (6.128)–(6.129);

(H3) For all µ ∈ [0, 1], (uµ, yµ) satisfies the assumptions (A3)–(A6);

(H4) For all µ ∈ [0, 1], (uµ, yµ) satisfies the strong second-order sufficient condition (6.65).

6.7.3 Proof of convergence

In addition to hypotheses (H0)–(H4), we make the assumptions below in the proof of cor-
rectness of Algorithm 6.26. Note that a change in the structure of the trajectories (uµ, yµ),
µ ∈ [0, 1], may occur only at some values µ̃ ∈ [0, 1) having either a nonessential or a nonre-
ducible touch point.

(H5) There exist finitely values of µ, 0 ≤ µ̃1 < . . . < µ̃N < 1 for which the structure of the
trajectory changes.

(H6) For each µ̃k, k = 1, . . . , N , (uµ̃k , yµ̃k) has either one (single) nonessential touch point or
one (single) nonreducible touch point.

15Lemma 3.37 of this thesis.



220CHAPITRE 6. MÉTHODE D’HOMOTOPIE POUR LES CONTRAINTES D’ORDRE 2

When (H6) holds, there are only two different neighboring structures to that of (uµ̃k , yµ̃k), for
each µ̃k. The algorithm 6.26 could be generalized to the case when (H6) does not hold, but in
that case the Update the structure step is more delicate. A possibility is to enumerate
all the possible neighboring structures until the conditions (6.116)–(6.119) of Lemma 6.25 are
satisfied.

Proposition 6.28. Let (Pµ) be given by (6.122) and assume that assumptions (H1)–(H6) are
satisfied. Then there exist a neighborhood V0 of p0

2(0), the initial costate of the unconstrained
problem (P0), and δ̄ > 0 such that for all p0 ∈ V0 and all δ ∈ (0, δ̄), the homotopy algorithm
6.26 follows the homotopy path and ends with a vector of shooting parameters θ, of appropriate
dimension, associated with a local solution (u1, y1) of (P1) ≡ (P). In addition, if δ is small
enough, then the steps ∆µ are not reduced by the algorithm in the Correction step, i.e.
Newton’s algorithm does not fail.

Remark 6.29. In practice, at the end of the instruction labelled [ok], when the homotopy step
has succeeded, it is possible to increase ∆µ, so that the algorithm adapts itself to the largest
possible value of the homotopy step ∆µ allowing the convergence in the Correction step.

Proof. The proof follows the ideas of [20, Prop. 8.11]16. Note that the value of µ is increased
only in the instruction labelled [ok] in the Update the structure step. Therefore, if the
algorithm ends with µ = 1, this means that all the conditions (6.116)–(6.119) are satisfied,
and hence, by Lemma 6.25, θ is a vector of shooting parameters associated with a stationary
point (u1, y1) of (P1). Note that when there is no change in the structure of solutions, then
Algorithm 6.26 is a classical predictor-corrector algorithm. We therefore have to show that
the algorithm ends with µ = 1, i.e.

• There is no failure in the Newton’s algorithm in the Correction step if δ is small
enough;

• The algorithm finishes off at the (finitely many by (H5)) changes in the structure of
the trajectories along the homotopy path, i.e. after finitely many iterations in the
Update the structure step, succeeds in finding the new structure S and a vector
of shooting parameter θ̂ associated with (uµ̄, yµ̄) that satisfies the conditions (6.116)–
(6.119) of Lemma 6.25.

For the current value of µ ∈ (0, 1), assume by induction that the current value θ is a
vector of shooting parameters associated with the stationary point (uµ, yµ) of (Pµ), and that
S denotes the corresponding structure of (uµ, yµ). Assume that

θ and S are such that nonreducible touch points are introduced as boundary arcs. (6.130)

(We still do not have the uniqueness of θ and S whenever nonessential touch points are present,
that can or not be introduced in the shooting mapping.) This holds for µ = 0 if p0 is chosen
sufficiently close to p0

2(0) by (H1).

Let θ̄ and µ̄ be defined as in the Prediction step. Let θ̂ be the solution of (6.124). By
(6.123), |θ̄− θ̂| ≤ C|µ̄− µ|2 for some positive constant C. Since |µ̄− µ| ≤ ∆µ ≤ δ, for δ small
enough, θ̄ belongs to the domain of convergence of the Newton algorithm, which converges
to θ̂. Note that the constant C and the size of the domain of convergence of the Newton

16Proposition 3.44 of this thesis.



6.7. APPLICATION TO HOMOTOPY METHODS 221

algorithm are uniform along the homotopy path for µ ∈ [0, 1], see e.g. [20, Prop. 8.11]17, so
that we do not have δ → 0.

Let us show that if δ is small enough, there is at most one passage in one of the instructions
[to→ba], [add to], [rem to], [ba→to] before the value of µ is increased. Assume by (H5)
that

0 < δ < min
1≤k≤N−1

µ̃k+1 − µ̃k. (6.131)

If one of the tests [to→ba], [add to], [rem to], [ba→to] is satisfied, this means by Lemma
6.25 and (6.130) that the current structure S is not correct, and hence by (H5) and (6.131)
there exists k ∈ {1, . . . , N} such that

µ ≤ µ̃k ≤ µ̄,

with at least one of the two above inequalities being strict, and we have µ̄ < µ̃k+1 if k < N
and µ̄ ≤ 1 if k = N and µ̄ > µ̃N .

Let us start by the case [to→ba] when (6.125) is satisfied. This can occur only in the
neighborhood of a nonreducible touch point τ̄to of (uµ̃k , yµ̃k). If (gµ̄)(2)(uµ̄

S,θ̂
(τto), y

µ̄

S,θ̂
(τto)) > 0,

a second-order Taylor expansion of gµ̄(yµ̄
S,θ̂

) at the touch point τto shows that gµ̄(yµ̄
S,θ̂

(t)) > 0

for t in the neighborhood of τto, t 6= τto. If (gµ̄)(2)(uµ̄
S,θ̂

(τto), y
µ̄

S,θ̂
(τto)) = 0, then τto is a

nonreducible touch point. In view of (6.130), in both cases the structure S where τto is
considered as a touch point is not correct. By (H6), there exist only two different neighboring
structures to that of (uµ̃k , yµ̃k), so having eliminated S, it remains only the other possible
structure Ŝ where τ̄to is introduced as a boundary arc. The associated new vector of shooting
parameters θ̄ is obtained from θ by (6.126). Since we know that θµ̄, the vector of shooting
parameters associated with (uµ̄, yµ̄), is solution of

FŜ(θµ̄, µ̄) = 0, (6.132)

it remains to show that the Newton algorithm initialized with the value θ̄ converges to θµ̄.
Denote by θµ̃k

S and θµ̃k

Ŝ
the vector of shooting parameters associated with µ̃k for the structures

S and Ŝ, respectively, and τ̄en, τ̄ex, ν̄
1
τen

, ν̄2
τen

the shooting parameters associated with the

nonreducible touch point τ̄to introduced as a boundary arc in θµ̃k

Ŝ
. Recall that the latter are

given by (6.90)–(6.91). Therefore, in view of (6.126),

|θ̄ − θµ̃k

Ŝ
| ≤ |θ − θµ̃k

S | + |τen − τ̄en| + |τex − τ̄ex| + |ν1
τen

− ν̄1
τen

| + |ν2
τen

− ν̄2
τen

|
≤ |θ − θµ̃k

S | + 2|τto − τ̄to| + |ντto − ν̄τto | ≤ 4|θ − θµ̃k

S |.

Since θ is the solution of FS(θ, µ) = 0, it follows from Lemma 6.22 applied with (ū, ȳ) =
(uµ̃k , yµ̃k) that there exists κ > 0 such that |θ − θµ̃k

S | ≤ κ|µ − µ̃k| ≤ κδ. By Lemma 6.22

again, there exists a constant κ′ such that |θµ̄ − θµ̃k

Ŝ
| ≤ κ′|µ̄ − µ̃k| ≤ κ′δ. It follows that

|θ̄ − θµ̄| ≤ |θ̄ − θµ̃k

Ŝ
| + |θµ̄ − θµ̃k

Ŝ
| ≤ (4κ + κ′)δ. Therefore, for δ small enough, θ̄ belong to

the domain of convergence of the Newton algorithm which converges to θ̂ := θµ̄, and all the
conditions (6.116)–(6.119) are satisfied, as well as (6.130), so we may set θ := θ̂, µ := µ̄, and
Ŝ = S and the induction step is completed. (Here again, the constants κ, κ′ can be chosen
uniform w.r.t. µ along the homotopy path so that δ 6→ 0.)

17Proposition 3.44 of this thesis.



222CHAPITRE 6. MÉTHODE D’HOMOTOPIE POUR LES CONTRAINTES D’ORDRE 2

For the other cases, the discussion is similar so will be less detailed. In the case [add to],
the state constraint is violated. But then (g µ̄)(2)(uµ̄

S,θ̂
(τto), y

µ̄

S,θ̂
(τto)) < 0 for all touch points

τto, since otherwise we would have been in the previous case [to→ba]. Therefore, by a second-
order Taylor expansion of gµ̄(yµ̄

S,θ̂
), the state constraint is not violated in the neighborhood of

a touch point. Consequently, it may only be violated in the neighborhood of a nonessential
touch point τ̄to of (uµ̃k , yµ̃k) which is not introduced in the shooting mapping. By (H6), the
only other possible structure Ŝ is when τ̄to is introduced as a touch point in the shooting
mapping.

In the case [rem to], a jump parameter associated with a touch point is negative. This
cannot happen in the neighborhood of a nonreducible touch point of (uµ̃k , yµ̃k), since nonre-
ducible touch points are assumed to be essential by (A6)(i) and Lemma 6.12. Therefore, this
can only happen in the neighborhood of a nonessential touch point τ̄to of (uµ̃k , yµ̃k). By (H6),
the only other possible structure Ŝ is to remove this touch point from the shooting mapping.
Finally, in the last case [ba→to], we have a boundary arc whose entry point τen is greater
than the corresponding exit point τex. This can only happen in the neighborhood of a nonre-
ducible touch point τ̄to of (uµ̃k , yµ̃k) that was converted in a boundary arc, and therefore by
(H6) the only other possible structure Ŝ is to introduce this nonreducible touch point as a
touch point instead. We conclude with similar arguments as before that for δ small enough,
the Newton algorithm initialized by θ̄ converges to the solution of (6.132), which is a vector
of shooting parameters associated with the stationary point (uµ̄, yµ̄) of (P µ̄). This completes
the induction step.

This shows that if δ is small enough, the algorithm follows the homotopy path, the Newton
algorithm does not fail, and the algorithm ends with µ = 1. By (H4), the second-order
sufficient condition (6.65) holds and therefore (u1, y1) is a local solution of (P).

6.8 Remarks

Remark 6.30. It would of course be interesting to test the homotopy algorithm on numerical
applications. This is the subject of the report [70]. The homotopy algorithm is based on the
strong assumptions (A5) and (A6)(ii), that would have to be checked in practice in order to
guarantee the validity of the algorithm, as well as the second-order sufficient condition (6.65).
Moreover, the same restrictions as for first-order state constraints hold, see [20, Remarks 8.12
and 8.13]18. In particular, a value of δ that guarantee the convergence by Prop. 6.28 is not
known in practice, and may be small if the problem is ill-conditioned.

Remark 6.31. It is expected that the homotopy algorithm can be extended to vector-valued
control and several state constraints of first- and second order if the constraints are linearly
independent (see [98, 17]). The difficulty in the theoretical justification of the algorithm is the
extension of Theorems 6.8, 6.13, and [20, Th. 2.1]19. For control constraints, the extension of
this homotopy algorithm is not immediate (see [20, Remark 6.3]20) and is an interesting open
question. In contrast, it seems not to be possible to extend this algorithm to state constraints
of order greater than or equal to three, since in that case optimal trajectories typically exhibit
infinitely many touch points near entry/exit of boundary arcs, see [118].

Remark 6.32. The sufficient second-order condition (6.65) used in Th. 6.16 is not the weakest
possible since it does not take into account the curvature of the constraint. The curvature

18Remarks 3.45 and 3.46 of this thesis.
19Theorem 3.4 of this thesis.
20Remark 3.32 of this thesis.
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term of the constraint (see [21]) is the term with the sum in (6.93). It would therefore be
interesting to see if Th. 6.16 is still true under the weaker second-order sufficient condition

Q(v) −
∑

τ∈T̄ ess
red

ν̄τ
(g

(1)
y (ȳ(τ))zv(τ))

2

g(2)(ū(τ), ȳ(τ))
> 0, for all v ∈ V, v 6= 0, satisfying (6.63). (6.133)

With additional assumptions (A4)–(A5) on the structure of the trajectory and in the ab-
sence of nonreducible touch points, it was shown in [19, Th. 4.3]21 (see also [20]) that (6.133)
characterizes the uniform quadratic growth condition (6.28), and implies L∞-Lipchitz conti-
nuity and directional differentiability of solutions in Lr, r < ∞, (see [94, 19]), improving the
Hölder continuity in L∞ only obtained in Th. 6.16. Directional differentiability of all shooting
parameters is also obtained. It would be interesting to extend those results in presence of
nonreducible touch points as well.

Remark 6.33. Let us discuss the case when the term λ̄(τ̄to) defined by (6.58) at a nonreducible
touch point τ̄to is positive. In that case, by Th. 6.13, a second touch point may appear for
stationary points of the perturbed problem. The first idea is therefore to introduce a second
touch point in the shooting mapping, and at the reference trajectory (ū, ȳ), the values of both
touch points would be equal to the value of the nonreducible touch point τ̄to. The problem is
that doing so, it is easy to see that the Jacobian of the shooting mapping becomes singular
(two rows are equal). Moreover, the jump parameters associated with each touch point at
the reference trajectory are not well-defined, only the sum of the two jumps parameters must
be equal to ν̄τ̄to . There exist indeed several zeros of the perturbed shooting function in the
neighborhood of a nonreducible touch point splitting into two touch points, and one of them
is such that the values of both touch points remain equal to each other (as if we had a single
touch point). In that case of course the state constraint may be violated.

For this reason, it would be necessary to initialize the two touch points with distinct values
and it is an open question how to do so in order to insure to be into the domain of convergence
of the Newton algorithm for the new structure. To solve the academic problem in Fig. 6.1(b),
the nonreducible touch point was first converted into a boundary arc. We thus obtained a zero
of the resulting shooting function with a boundary arc satisfying τen < τex, but the condition
η̈2 ≥ 0 was of course violated. We used the obtained values of τen and τex to initialize the two
touch points, and the heuristic formula below (recall (6.54))

ντen :=
H̃uu

(g
(2)
u )2

g(3)(u̇, u, y)(τ−en), ντex := − H̃uu

(g
(2)
u )2

g(3)(u̇, u, y)(τ+
ex)

to initialize the associated jump parameters.

21Theorem 2.34 of this thesis.
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Chapitre 7

Conclusion

Cette thèse a apporté des résultats théoriques nouveaux pour les problèmes de commande
optimale avec contraintes sur l’état, dans le cas où la condition forte de Legendre-Clebsch
est satisfaite. Ces résultats portent sur les conditions du second ordre (des conditions sans
saut entre conditions nécessaire et suffisante ont été obtenues), l’analyse de l’algorithme de
tir et l’analyse de stabilité et sensibilité des solutions, en particulier pour des contraintes
d’ordre élevé (supérieur ou égal à deux), cas relativement peu traité dans la littérature. Une
méthode d’homotopie a également été proposée, dont la nouveauté est de déterminer auto-
matiquement, sous certaines hypothèses, la structure de la trajectoire. Cette méthode reste
encore à être validée sur des applications numériques, et éventuellement généralisée à des cas
plus généraux (plusieurs contraintes sur l’état et sur la commande). Une première application
au problème de la rentrée atmosphérique d’une navette spatiale avec contrainte sur le flux
thermique (contrainte sur l’état du second ordre) a été réalisée dans [70].

Dans la suite de cette conclusion on présente quelques questions ouvertes qui se sont posées
au cours de la thèse et pourraient faire l’objet de futures recherches.

7.1 Questions non résolues

7.1.1 Vérification de la condition suffisante du second ordre

Un problème important pour les applications est d’être capable de vérifier numériquement
la condition suffisante du second ordre no-gap (4.133) du théorème 4.24. Il s’agit d’un problème
ouvert. On sait cependant vérifier une condition suffisante plus forte que (4.133), ce qui peut
parfois s’avérer suffisant pour les applications dans le cas où cette condition plus forte est
satisfaite.

On utilise dans cette section les notations du chapitre 4. Utilisant les techniques basées
sur les équations de Riccati (voir Maurer [99]), il est possible de vérifier numériquement la
stricte positivité du membre de gauche de (4.133) (noté Q(v) dans la suite et donné par (4.135)
avec T i,ess

to remplacé par T i
red) sur l’ensemble — plus grand que le cône critique ĈL2(u) — des

v ∈ L2(0, T ; Rm) satisfaisant

g
(qi)
i,u (u, y)v + g

(qi)
i,y (u, y)zv = 0 p.p. sur int ∆i, ∀ i = 1, . . . , r + s. (7.1)

On considère alors la condition du second ordre suivante, plus forte que (4.133),

Q(v) > 0, ∀ v ∈ L2(0, T ; Rm) \ {0} satisfaisant (7.1). (7.2)
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Lorsque l’hypothèse de complémentarité stricte (A6) est satisfaite, le cône critique ĈL2(u)
étant donné par (4.203)–(4.205), on omet donc dans (7.2) les contraintes “pures sur l’état”
(4.204)–(4.205). En effet les techniques connues basées sur les équations de Riccati permettent
seulement de prendre en compte les contraintes mixtes sur la commande et l’état. Ainsi la
difficulté dans la vérification de la condition suffisante du second ordre par cette méthode ne
provient pas du terme de courbure, mais des contraintes (4.204)–(4.205) liées aux contraintes
pures sur l’état, intrinsèquement présentes dans le cône critique.

Soit
o
I (t) := {i ∈ {1, . . . , r + s} : t ∈ int ∆i}. Considérons l’équation de Riccati suivante

(fy, Hyy, etc. étant évalués le long de la trajectoire considérée)

−dX(t) = (Xfy + f>y X +H0
yy)dt +

r∑

i=1

gi,yydηi(t) −
r∑

i=1

∑

τ∈T i
red

νiτ
(g

(1)
i,y )>g

(1)
i,y

g
(2)
i

δτ (t)

−





(
H0
uy

G
(q)
o

I(t),y

)>

+X

(
f>u
0

)>








H0
uu (G

(q)
o

I(t),u
)>

G
(q)
o

I(t),u
0





−1

∗
((

f>u
0

)

X +

(
H0
uy

G
(q)
o

I(t),y

))

dt,

X(T ) = φyy(y(T )),
(7.3)

où δτ désigne la mesure de Dirac en τ et ν iτ = [ηi(τ)]. On a le résultat suivant, dont la preuve
est donnée dans l’annexe de ce chapitre (section 7.2.1). Il serait intéressant de disposer d’une
caractérisation analogue de la condition (4.133), mais la prise en compte des contraintes sur
l’état (4.204)–(4.205) par les techniques utilisées dans ce résultat ne semble pas immédiate.

Proposition 7.1. Soit (u, y) un point stationnaire de (P) satisfaisant les hypothèses (A1)–
(A4) du chapitre 4, et pour chaque contrainte sur l’état gi d’ordre qi ≥ 2, soit T i

red un ensemble
fini de points de contact isolés essentiels réductibles de la contrainte gi. Si l’équation de Riccati
(7.3) a une solution bornée X sur [0, T ], alors (7.2) (et donc a fortiori (4.133)) est satisfaite.

De plus, la réciproque est vraie, i.e. si (7.2) est satisfaite, alors l’équation de Riccati (7.3)
admet une solution bornée X sur [0, T ].

7.1.2 Extensions du résultat sur les conditions du second ordre aux équations
aux dérivées partielles

Lorsque la dynamique du problème n’est plus décrite par une équation différentielle ordi-
naire (0.2), comme considéré dans cette thèse, mais par une équation aux dérivées partielles,
la question d’obtenir des conditions du second ordre no-gap est largement ouverte. Des condi-
tions suffisantes du second ordre sont obtenues dans par exemple [64, 38, 117], mais des
conditions nécessaires ou suffisantes no-gap sont connues seulement dans le cas d’un nombre
fini de contraintes d’égalité ou d’inégalité sur l’état (théorie de la polyédricité) [25, 36, 37].
Lorsqu’il y a des contraintes distribuées sur l’état, le problème est ouvert. On peut alors se
demander si l’on peut étendre la méthode développée dans le chapitre 1 pour des EDP avec
contraintes distribuées sur l’état. Le calcul du terme de courbure de Kawasaki s’avère dans ce
cas plus difficile, car l’état yu et l’état linéarisé zv sont moins réguliers que pour une EDO. De
plus, les hypothèses (A4)-(A6) intervenant dans la preuve deviennent plus délicates à formuler
pour une EDP.
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Des hypothèses de type (A4) sur la structure de l’ensemble de contact pour les problèmes
de commande optimale des EDP elliptiques ont été faites dans [10]. Sous ces hypothèses les
auteurs montrent que le multiplicateur associé à la contrainte sur l’état µ est composé d’une
partie distribuée dans L2 sur l’intérieur de l’ensemble de contact, et d’une partie mesure
concentrée sur la frontière de l’ensemble de contact. Ce résultat est l’analogue de la proposi-
tion 0.2 pour les EDO, qui dit que les sauts du multiplicateur η ne peuvent se produire qu’aux
points de jonction. Les hypothèses et résultats de [10] pourraient donc être intéressants pour
étendre l’analyse du chapitre 1 aux EDP. Par ailleurs, dans [16], un problème de program-
mation semi-infinie (avec contraintes dans un espace de fonctions continues sur un espace
métrique compact) est considéré. Les auteurs font des hypothèses sur l’ensemble de contact
et sur la croissance des solutions au voisinage de l’ensemble de contact qui leur permettent
de calculer le terme de courbure et d’obtenir des conditions du second ordre sans saut. Il
est peut-être possible d’étendre ces résultats à certains problèmes de commande optimale des
EDP.

Regardons ce que donne le calcul du terme de courbure et les difficultés qui se posent sur
un exemple simple. Pour cela on considère le problème elliptique suivant

min
u∈L2(Ω)

1

2

∫

Ω
(yu(x) − yd(x))

2dx+
γ

2

∫

Ω
u2(x)dx (7.4)

s.c. −∆yu = u dans Ω, yu = 0 sur ∂Ω, (7.5)

yu(x) ≤ 1 dans Ω (7.6)

où Ω désigne un ouvert borné de R
d avec d ≤ 3, à bord ∂Ω suffisamment régulier, γ est une

constante strictement positive et yd ∈ L2(Ω). Pour d = 1, (7.5) est une EDO donc le calcul
du terme de courbure se ramène à celui effectué pour une contrainte sur l’état d’ordre 2. On
s’intéresse donc au cas où d = 2 ou 3. On note dans la suite C r,ν(Ω̄) l’espace des fonctions de
classe Cr sur Ω̄ et dont la dérivée d’ordre r est höldérienne d’exposant ν.

La première étape est d’étudier la régularité des solutions. L’opérateur Ls(Ω) →W 2,s(Ω)∩
W 1,s

0 (Ω) qui à u associe l’unique solution yu de (7.5) est bien défini et c’est un isomorphisme,
pour tout s ∈ [2,+∞[. De plus on a les inclusions de Sobolev (voir par exemple [85, chap. 2,
Th. 6.2])

si
d

2
< s < d W 2,s(Ω) ⊂ C0,ν(Ω̄) avec ν = 2 − d

s
si s = d W 2,s(Ω) ⊂ C0,ν(Ω̄) pour tout 0 < ν < 1

si s > d W 2,s(Ω) ⊂ C1,ν(Ω̄) avec ν = 1 − d

s
.

(7.7)

En particulier, pour u ∈ L2(Ω) et d = 2, 3, l’état yu est continu sur Ω̄ et on peut considérer la
contrainte sur l’état (7.6) dans l’espace des fonctions continues.

La condition d’optimalité du premier ordre est la suivante : en plus de (7.5)-(7.6), il existe
p, µ tels que

− ∆p = (yu − yd) + µ dans Ω, ∂p = 0 sur ∂Ω, (7.8)

0 = p+ γu (7.9)

µ ∈ M+(Ω̄), supp(µ) ⊂ I(yu) := {x ∈ Ω : yu(x) = 1}. (7.10)

D’après [35], l’équation adjointe (7.8)1 a, pour tout µ ∈ M(Ω̄), une unique solution p ∈
W 1,r∗

0 (Ω) avec 1 ≤ r∗ < d/(d − 1). Avec (7.9), on en déduit que u ∈ W 1,r∗

0 (Ω) ⊂ Lq(Ω) avec

1L’équation (7.8) est à comprendre au sens des distributions, i.e. −
R

Ω
p∆ϕ =

R

Ω
(yu − yd)ϕ +

R

Ω
ϕdµ pour

toute fonction ϕ C∞ à support compact dans Ω.
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1/q = 1/r∗ − 1/d, d’où q < +∞ si d = 2 et q < 3 si d = 3. Par cette analyse on améliore
la régularité de u, et donc aussi celle de yu. On en déduit que yu ∈ W 2,q(Ω), d’où avec (7.7),
yu ∈ C1,ν(Ω̄) avec ν < 1 si d = 2 et yu ∈ C0,ν(Ω̄) avec ν < 1 si d = 3.

Passons maintenant au calcul du terme de courbure. Pour v ∈ L2(Ω), soit zv l’unique
solution dans H2(Ω) ∩H1

0 (Ω) de

−∆zv = v dans Ω, zv = 0 sur ∂Ω

et soit I2(yu, zv) l’ensemble de contact du second ordre

I2(yu, zv) := {x ∈ I(yu) : zv(x) = 0}.

Supposons pour simplifier l’hypothèse de complémentarité stricte supp(µ) = I(yu) satisfaite.
Alors le cône critique est donné par

C(u) = {v ∈ L2(Ω) : zv(x) = 0 sur I(yu)}.

Le terme de courbure est donné par (voir la section 1.2.1)

σ(µ, T 2,i
K (yu − 1, zv)) (7.11)

avec σ(µ, S) = supw∈S〈µ,w〉 la fonction support de l’ensemble S et T 2,i
K (yu− 1, zv) l’ensemble

tangent intérieur du second ordre à K = C−(Ω̄), caractérisé par (voir [42])

T 2,i
K (yu − 1, zv) = {w ∈ C(Ω̄) : w(x) ≤ ιyu,zv(x) ∀ x ∈ Ω̄}

où

ιyu,zv(x) =







0 si x ∈ int I(yu) ∩ I2(yu, zv)

lim inf
x′→x, yu(x′)<1

(zv(x
′)+)2

2(yu(x′) − 1)
si x ∈ ∂I(yu) ∩ I2(yu, zv)

+∞ à l’extérieur de I2(yu, zv).

(7.12)

Le terme de courbure (7.11) est > −∞ ssi T 2,i
K (yu − 1, zv) 6= ∅, et donc ssi ιyu,zv(x) > −∞

pour tout x. Comme pour les EDO, la difficulté dans le calcul de ιyu,zv provient du terme avec
la lim inf pour x ∈ ∂I(yu) ∩ I2(yu, zv). Analysons par exemple la contribution d’un point de
contact isolé ξ ∈ Ω. Pour v ∈ L2(Ω), on a zv ∈ C0,σ(Ω̄) avec σ ∈ (0, 1) si d = 2 et σ = 1/2 si
d = 3. Il vient qu’au voisinage de ξ, on a, pour v ∈ C(u) et x au voisinage de ξ,

zv(x) = O(|x− ξ|σ).

Le terme au numérateur de (7.12) est donc un O(|x− ξ|2σ).
Pour assurer que la contribution de ξ dans le terme de courbure est finie, il faudrait une

hypothèse (analogue de (A5) du chapitre 1) du type

|yu(x) − 1| ≥ a|x− ξ|α (7.13)

au voisinage de ξ, avec a, α > 0 et, pour que la lim inf soit finie,

α ≤ 2σ < 2 si d = 2 et α ≤ 2σ ≤ 1 si d = 3. (7.14)

Par ailleurs, l’étude de la régularité de yu implique que yu ∈ C1,ν(Ω̄) pour tout ν < 1 si d = 2
et yu ∈ C0,ν(Ω̄) pour tout ν < 1 si d = 3, et donc |yu(x)− 1| = O(|x− ξ|1+ν) pour tout ν < 1
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si d = 2 (puisque qu’alors ∇yu(ξ) = 0) et |yu(x) − 1| = O(|x − ξ|ν) pour tout ν < 1 si d = 3.
Cela implique qu’on a nécessairement, pour d = 2, α ≥ 2, ce qui n’est pas compatible avec la
condition (7.14). Pour d = 3, on a nécessairement α ≥ 1, et donc avec (7.14), α = 1. Ainsi, sur
cet exemple dans le cas où d = 2 on ne peut pas conclure que la contribution d’un point de
contact isolé dans le terme de courbure est finie. Et si le terme de courbure est égal à −∞, la
condition nécessaire du second ordre de Kawasaki n’apporte pas d’information. En revanche,
pour d = 3, la contribution du point de contact isolé ξ dans le terme de courbure est finie sous
l’hypothèse (7.13) avec α = 1 (qui est bien satisfaite, voir la remarque 7.2). Il resterait encore
à évaluer précisément cette contribution en calculant la lim inf dans (7.12).

Remarque 7.2. Plus précisément, au voisinage d’un point de contact isolé ξ, µ est une mesure
de Dirac concentrée en ξ, µ = νδξ avec ν > 0. Formellement, on a donc d’après (7.5) et
(7.8)-(7.9) que yu se comporte, au voisinage de ξ, comme la solution φ de

∆(∆φ) = −ν
γ
δξ.

Les solutions fondamentales du bilaplacien pour d = 2, 3 donnent donc qu’au voisinage de ξ,

yu(x) − 1 ∼ 1

8π

ν

γ
|x− ξ|2 ln |x− ξ| si d = 2, yu(x) − 1 ∼ − 1

8π

ν

γ
|x− ξ| si d = 3.

L’hypothèse (7.13) est donc satisfaite avec α = 2 si d = 2 et α = 1 si d = 3.

Remarque 7.3. Modulons la conclusion apparemment négative à laquelle on arrive à la suite
de cet exemple pour d = 2. Pour des problèmes non linéaires ou avec contraintes sur la
commande, on peut prendre pour espace de commande u ∈ Ls(Ω) avec s ∈ (2,+∞]. Ceci
permet d’augmenter la régularité de zv au numérateur du terme de courbure (7.12), ce qui
pourrait permettre de faire des hypothèses au voisinage de l’ensemble de contact du type
(7.13) réalistes et assurant la finitude du terme de courbure. Pour obtenir des conditions du
second ordre sans saut, il faudrait ensuite jouer avec les deux normes (Ls et L2) comme on l’a
fait pour les EDO (avec L∞ et L2). En particulier on aurait besoin d’un résultat de densité
du cône critique dans Ls dans le cône critique dans L2.

7.1.3 Cas d’un nombre infini de points de contact isolés

La condition nécessaire du second ordre du chapitre 1 suppose un nombre fini d’arcs
frontière et points de contact isolés, hypothèse restrictive pour des contraintes d’ordre élevé
(q ≥ 3) qui peuvent typiquement exhiber un nombre infini de points de contact isolés. Une
question qui se pose alors est la suivante : peut-on généraliser le calcul du terme de courbure
effectué dans la section 1.3 au cas où l’on a un nombre infini de points de contact isolés ? En
particulier, est-ce que la somme qui intervient dans le terme de courbure dans (1.34) est finie
lorsque l’on somme sur un nombre infini (mais dénombrable, puisque η a un nombre au plus
dénombrable de points de discontinuité) de points de contact isolés essentiels réductibles ?
Remarquons que si l’on a un nombre infini de points de contact isolés (τn)n∈N∗ , alors notant
νn := [η(τn)] le saut associé, comme dη est une mesure finie sur [0, T ], on en déduit que
nécessairement, νn → 0.

Regardons ce que donne le calcul du terme de courbure dans l’exemple de Robbins [118],
où la solution est calculée explicitement pour une contrainte sur l’état d’ordre trois ayant
une infinité de points de contact isolés réductibles suivie d’un arc frontière. Les calculs sont
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rappelés dans l’annexe (section 7.2.2). Dans cet exemple, l’auteur montre que la distance entre
deux points de contact isolés successifs est géométrique,

τn+1 − τn = arn,

avec a > 0 une constante dépendant des conditions initiales et 0 < r < 1. On peut alors
montrer que νn est de l’ordre de rn, alors que le terme au dénominateur du terme de courbure
g(2)(y(τn)) est de l’ordre de r4n (voir (7.60) et la remarque 7.6). Ainsi, le terme de courbure
est de l’ordre de (à une constante multiplicative près)

∑

n∈N∗

(
1

r3

)n

(g(1)
y (yu(τn))zv(τn))

2, (7.15)

où zv est solution de l’équation d’état linéarisée (1.8), avec pour tout v dans le cône critique
C(u) dans L∞

gy(yu(τn))zv(τn) = 0 ∀ n ∈ N
∗. (7.16)

Comme d
dtgy(yu(t))zv(t) = g

(1)
y (yu(t))zv(t), la fonction g

(1)
y (yu)zv admet un zero sn dans l’in-

tervalle (τn−1, τn) pour tout n ≥ 2. Ainsi

g(1)
y (yu(τn))zv(τn) =

∫ τn

sn

g(2)
y (yu(θ))zv(θ)dθ ≤ |τn − τn−1| sup

[τn−1,τn]
|g(2)
y (yu)zv |

≤ arn−1 sup
[τn−1,τn]

|g(2)
y (yu)zv|.

Par le même raisonnement, la fonction continue g
(2)
y (yu)zv = d

dtg
(1)
y (yu(t))zv(t) admet un zéro

σn dans l’intervalle (sn−1, sn) pour tout n ≥ 2. Ainsi, comme σn ∈ (τn−1, τn+1),

sup
[τn−1,τn]

|g(2)
y (yu)zv| ≤ sup

t∈[τn−1 ,τn+1]
|
∫ t

σn

(g(3)
y (u(θ), yu(θ))zv(θ) + g(3)

u (u(θ), yu(θ))v(θ))dθ|

≤ |τn+1 − τn−1|‖g(3)
y (u, yu)zv + g(3)

u (u, yu)v‖∞
≤ Carn−1‖v‖∞,

où C est une constante strictement positive. Ainsi, pour tout n ≥ 2 on obtient que

(g(1)
y (yu(τn))zv(τn))

2 ≤ C2(a/r)4r4n‖v‖2
∞.

La série (7.15) a un terme générique en rn, et est donc convergente, pour tout v ∈ C(u).
Pour conclure le calcul du terme de courbure il resterait à calculer la contribution du point

d’accumulation Tc = limn→+∞ τn qui marque l’entrée sur un arc frontière. Ceci s’avère plus
délicat car numérateur et dénominateur de (1.36) s’annulent une infinité de fois dans tout
voisinage de Tc. On ne peut donc pas utiliser de développement de Taylor. Sur l’exemple de
Robbins, on peut montrer que pour t ∈ [τ1, Tc),

g(y(t)) = −(1 − θ(t))
(t− Tc)

6

6!
(7.17)

où θ est une fonction de classe C4 sur [τ1, Tc), C
∞ sur chaque arc intérieur (τn, τn+1), telle que

θ(τn) = 1 pour tout n et 0 < θ(t) < 1 pour tout t ∈ (τn, τn+1). Cette relation est démontrée
dans la section 7.2.3 et une expression explicite de θ est fournie.



7.1. QUESTIONS NON RÉSOLUES 231

Étant donné v ∈ C(u) — donc vérifiant (7.16) — on en déduit que la contribution de
Tc dans le terme de courbure est finie si et seulement si il existe une constante C > 0 et un
voisinage ϑ de Tc tels que pour tout t ∈ ϑ,

(gy(y(t))zv(t))
2
+ ≤ C(1 − θ(t))|t− Tc|6. (7.18)

Si ceci est vérifié pour tout v ∈ C(u), alors comme [η(Tc)] = 0, on obtiendrait que le terme de
courbure est donné par

σ(η, T 2,i
K (G(u), DG(u)v)) =

∑

n∈N∗

νn
(g

(1)
y (y(τn))zv(τn))

2

g(2)(y(τn))
.

Il resterait encore à étendre le lemme 1.17 (dont les arguments ne s’appliquent plus) de densité
du cône critique dans L∞ dans le cône critique dans L2 pour étendre la condition nécessaire
(1.34) aux v dans L2. Ainsi on obtiendrait, avec la condition suffisante (1.81) qui fait intervenir
un nombre fini, mais arbitrairement grand, de points de contact isolés essentiels réductibles, des
conditions nécessaires ou suffisantes du second ordre “arbitrairement” proches sur cet exemple
particulier ayant un nombre infini de points de contact isolés. Dans le cas contraire (i.e. (7.18)
n’est pas satisfait), le terme de courbure est égal à −∞ et donc la condition nécessaire du
second ordre de Kawasaki n’apporte pas d’information.

7.1.4 Cas de contraintes linéairement dépendantes

On se place dans le cadre du chapitre 4. Considérons l’exemple suivant, où la dynamique
est donnée par







ẏ1 = u1, y1(0) = y0
1

ẏ2 = y1 − u2, y2(0) = y2
0

ẏ3 = u2, y3(0) = y0
3

(7.19)

et les contraintes sur l’état par

{
g1(y(t)) = y2(t) − 1 ≤ 0,
g2(y(t)) = y3(t) − 1 ≤ 0.

(7.20)

Chaque contrainte est, séparément, d’ordre 1 et régulière, mais l’hypothèse d’indépendance
linéaire (4.30) n’est pas satisfaite si ces deux contraintes sont actives en même temps car

G
(q)
u (u(t), y(t)) =

(
0 −1
0 1

)

n’est pas de rang plein (mais il est de rang constant égal à 1).

Or sur un arc où les deux contraintes sont actives, on a (par exemple) u2(t) = 0 fixé par

g2(y(t)) = 0, et alors g
(1)
1 (u(t), y(t)) = y1(t) − u2(t) = y1(t) et g1 se comporte comme une

contrainte du second ordre, régulière car g
(2)
1,u(u(t), y(t)) =

(
1 0

)>
, et le système est régulier,

dans le sens où

(

g
(2)
1,u(u(t), y(t))

g
(1)
2,u(u(t), y(t))

)

= I2 est de rang plein. La commande permettant de

réaliser g1(y(t)) = 0 et g2(y(t)) = 0 sur un arc est alors parfaitement déterminée, ici donnée
par u1(t) = 0 et u2(t) = 0.

Les cas de contraintes mixtes linéairement dépendantes ou de contraintes sur l’état et
contraintes mixtes linéairement dépendantes peuvent aussi se rencontrer. Il semble alors res-
trictif de définir l’ordre des différentes contraintes indépendamment les unes des autres, puis-
qu’en “augmentant l’ordre”, on pourrait se ramener à un système régulier. On pourrait alors
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affaiblir l’hypothèse d’indépendance linéaire, et la remplacer par une hypothèse de type “rang
constant”, généralisant l’exemple ci-dessus.

Plus précisément, supposons que l’on ait deux contraintes sur l’état g1 et g2, chacune
d’entre elles étant d’ordre q1 = q2 = 1 et (séparément) régulière, i.e.

∃ γ, ε > 0, |g(1)
i,u (u(t), y(t))| ≥ γ pour tout t : dist(t,∆i) < ε, ∀ i = 1, 2, (7.21)

avec ∆i := {t ∈ [0, T ] : gi(y(t)) = 0}, et satisfaisant l’hypothèse de rang constant

∃ ε > 0, rang

(

g
(1)
1,u(u(t), y(t))

g
(1)
2,u(u(t), y(t))

)

= 1, pour tout t : dist(t,∆1 ∩ ∆2) < ε. (7.22)

Supposons de plus que u est continue. Alors, d’après le théorème des fonctions implicites, pour
tout t ∈ ∆1 ∩∆2, il existe δ > 0 tel que l’on peut localement sur (t− δ, t+ δ) partitionner u et

g en u = (u1, ū) ∈ R × R
m−1 et g = (g1, g2) de sorte que g

(1)
1,u1

soit (localement) inversible, et

il existe une fonction régulière Φ : R
m−1 ×R

n ⊃ V → R telle que, localement sur (t− δ, t+ δ),

la relation g
(1)
1 (u(t), y(t)) = 0 est équivalente à u1(t) = Φ(ū(t), y(t)). Les décompositions

g = (g1, g2) et u = (u1, ū) ne sont pas uniques. D’après (7.22), la fonction g
(1)
2 ((Φ(ū, y), ū), y)

ne peut dépendre de ū, ainsi on peut poser

g̃
(1)
2 (y) := g

(1)
2 ((Φ(ū, y), ū), y). (7.23)

On définit de même sa dérivée temporelle g̃
(2)
2 (u, y) := g̃

(1)
2,y(y)f(u, y). Si l’on suppose qu’il

existe γ, ε > 0 tel que pour tout t ∈ ∆1 ∩ ∆2,
∣
∣
∣
∣
∣
∣

(

g
(1)
1,u(u(t), y(t))

g̃
(2)
2,u(u(t), y(t))

)>

ξ

∣
∣
∣
∣
∣
∣

≥ γ|ξ| pour tout ξ ∈ R
2 (7.24)

alors on peut étendre la formulation alternative et le résultat de la proposition 4.13, en
considérant dans l’analyse g2 comme une contrainte du second ordre. Ces hypothèses peuvent
être étendues au cas général, voir par exemple [23, p.132–134].

Remarque 7.4. Noter que si les contraintes mixtes sont linéairement indépendantes et (4.44)
satisfaite, la proposition 4.8 est toujours valable, i.e. u est continue sur [0, T ]. En particulier,
dans le cas de deux contraintes du premier ordre g1 et g2 (et pas de contraintes mixtes)
vérifiant (7.21)-(7.22), les multiplicateurs η1 et η2 associés aux contraintes du premier ordre
g1 et g2 ne sont plus continus sur [0, T ], mais la relation (4.47) montre que

g
(1)
1,u(u, y)η1 + g

(1)
2,u(u, y)η2 (7.25)

est continu sur [0, T ], et donc les sauts de η1 et η2 sont liés.

Pour étendre l’algorithme de tir au cas de contraintes linéairement dépendantes, une
difficulté est d’écrire soigneusement les conditions de jonction entre arcs et les conditions
supplémentaires, en particulier parce que les points de jonction de deux contraintes linéairement
dépendantes peuvent génériquement cöıncider, comme le montre l’exemple 7.5 ci-après.

Exemple 7.5. Pour un paramètre µ réel au voisinage de zéro, on considère le problème (P µ)

min
u,y

∫ T

0

(
u1(t)

2 + u2(t)
2

2
+ µy3(t)

)

dt+ y1(T ) s.t. (7.19)-(7.20) (7.26)



7.1. QUESTIONS NON RÉSOLUES 233

avec T = 6, y0
1 = 5, y0

2 = y0
3 = 0.

Les solutions et multiplicateurs ont été tracés pour µ = 0, µ = 0.1 et µ = −0.1 sur les
figures 7.1, 7.2 et 7.3, respectivement. Ces solutions ont été obtenus par un algorithme de tir,
étendu à cet exemple particulier, basé sur la résolution de la condition nécessaire du premier
ordre. La structure des trajectoires a été déterminée par tâtonnement de façon à satisfaire les
conditions supplémentaires non prises en compte dans l’algorithme de tir. Par convexité du
problème (7.26), la condition du premier ordre est aussi suffisante, et comme de plus le coût
est fortement convexe sur l’ensemble admissible, la solution est unique. La quantité (7.25),
égale sur cet exemple à η2 − η1, a été également tracée sur la figure 7.3(b) et on vérifie que
cette quantité est bien continue.

Pour µ = 0, la contrainte g1 a un arc frontière [τ1, τ2] et la contrainte g2 a également un arc
frontière [τ2, τ3], dont le point d’entrée cöıncide avec le point de sortie de g1. Le multiplicateur
dη2 est une mesure de Dirac concentrée en τ2.

Pour µ > 0, g1 a toujours un arc frontière [τ1, τ2], mais g2 a maintenant un point de contact
isolé essentiel τ0 ∈ (τ1, τ2). On constate que quand g1 est active, la contrainte sur l’état du
premier ordre g2 se comporte bien comme une contrainte d’ordre 2.

Pour µ < 0, g1 et g2 ont toutes les deux un arc frontière, et comme dans le cas µ = 0, l’ins-
tant de sortie de g1 cöıncide avec l’instant d’entrée de g2, ce qui nous amène à penser que pour
des contraintes linéairement dépendantes, les instants de jonctions peuvent génériquement
cöıncider, dans le sens où le fait que les instants de jonctions cöıncident est stable par petites
perturbations des données.

Précisons les conditions de jonctions que nous avons utilisées dans l’algorithme de tir pour
obtenir ces solutions. Les multiplicateurs alternatifs pq, ηq sont définis comme dans la section
4.7.1. Les équations (4.146)-(4.150) sont résolues sur chaque arc, avec la condition de saut
de l’adjoint alternatif pq donnée par (4.154). Pour déterminer l’instant d’entrée τ1 de g1 et
le paramètre de saut associé de pq, on utilise les conditions classiques (4.152) (point d’entrée
d’une contrainte du premier ordre). Pour déterminer le point de contact isolé τ0 de g2 sur l’arc
frontière de g1 (dans le cas µ ≥ 0) et le paramètre de saut associé de pq, par analogie avec un

point de contact isolé pour une contrainte d’ordre 2, on utilise les conditions (avec g̃
(1)
2 définie

comme dans (7.23))

g2(y(τ0)) = y3(τ0) − 1 = 0, g̃
(1)
2 (y(τ0)) = y1(τ0) = 0.

Enfin, pour déterminer le point d’entrée τ2 de g2 qui est aussi le point de sortie de g1 (dans le
cas µ ≤ 0) et le paramètre de saut associé de pq, on utilise les conditions

g2(y(τ2)) = y3(τ2) − 1 = 0, g̃
(1)
2 (y(τ2)) = y1(τ2) = 0. (7.27)

Noter que cette dernière condition est bien équivalente à la continuité de u en τ2, puisque l’on a
[u1(τ2)] = −[pq1(τ2)] = 0, u2(τ

+
2 ) = 0 car on est sur un arc frontière de g2 et u2(τ

−
2 ) = y1(τ2) = 0

puisque qu’on est sur un arc frontière de g1 et y1(τ2) = 0 par (7.27).
Un raisonnement analogue à celui de la proposition 4.29 montre que, sur cet exemple,

si les conditions supplémentaires (4.166), (4.168), (4.169), (4.171), (4.173) et (4.175) sont
satisfaites, alors on a un point stationnaire, qui correspond nécessairement à l’unique solution
du problème. Les multiplicateurs η1 et η2 du principe du minimum ont été reconstitués sur les
figures 7.1, 7.2 et 7.3 (on a tracé −η1 et −η2). À la différence de contraintes du premier ordre
linéairement indépendantes, les conditions supplémentaires (4.169), (4.171), (4.173) peuvent
être satisfaites avec une inégalité stricte pour des contraintes du premier ordre linéairement
dépendantes. C’est ce que l’on observe sur les figures 7.1, 7.2 et 7.3 car η1 et η2 présentent
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Fig. 7.1 – Solution et multiplicateurs pour µ = 0.
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Fig. 7.2 – Solution et multiplicateurs pour µ = 0.1.
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Fig. 7.3 – Solution et multiplicateurs pour µ = −0.1.
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des sauts aux instants où les deux contraintes sont actives en même temps. Enfin, on constate
que les contraintes g1 et g2 ne peuvent pas être actives en même temps (sur un intervalle de
temps de longueur non nulle) sur cet exemple pour µ au voisinage de zéro car cela requerrait

g̃
(2)
2 (u, y) = u1 = 0 or u1 ne s’annule pas.

7.2 Annexe

7.2.1 Preuve de la proposition 7.1

Démonstration. On commence par montrer que si (7.3) a une solution bornée X sur [0, T ],
alors (7.2) est satisfaite. La preuve (calculatoire) de ce point est inspirée par [99, 89]. Comme
l’équation de Riccati (7.3) est symétrique et la condition finale φyy(y(T )) aussi, on en déduit
que X est symétrique. En effet, si X est solution de (7.3), alors X> aussi et donc par unicité
de la solution (théorème de Cauchy-Lipschitz) on en déduit que X = X>. Par la formule
d’intégration par parties dans BV, utilisant que zv(0) = 0 et X(T ) = φyy(y(T )), on a

2

∫ T

0
z>v Xżvdt+

∫ T

0
z>v dX(t)zv = z>v (T )φyy(y(T ))zv(T ).

Ajoutant le terme nul 2
∫ T
0 z>v X(fyzv + fuv− żv) à la fonction quadratique Q(v) (on rappelle

que Q est donnée par (4.135) où T i,ess
to est remplacé par T i

red), on en déduit que

Q(v) =

∫ T

0
(z>v ((H0

uy)
> +Xfu)v + v>(H0

uy + f>u X)zv + v>H0
uuv)dt

+

∫ T

0
z>v ((H0

yy +Xfy + f>y X)dt+ dX(t))zv

+

∫ T

0
z>v (

r∑

i=1

gi,yydηi(t) −
r∑

i=1

∑

τ∈T i
red

νiτ
(g

(1)
i,y )>g

(1)
i,y

g
(2)
i

δτ (t))zv .

Introduisons la variable artificielle $(t) ∈ R
|
o

I(t)|, et posons, pour simplifier l’écriture,

dA(t) := (H0
yy +Xfy + f>y X)dt+ dX(t) +

r∑

i=1

gi,yydηi(t) −
r∑

i=1

∑

τ∈T i
red

νiτ
(g

(1)
i,y )>g

(1)
i,y

g
(2)
i

δτ (t),

C(t) :=

(
H0
uy + f>u X

G
(q)
o

I(t),y

)

, D(t) :=





H0
uu (G

(q)
o

I(t),u
)>

G
(q)
o

I(t),u
0



 .

Alors on a

Q(v) =

∫ T

0





zv(
v
$

)





>
(

dA(t) C>dt
Cdt Ddt

)




zv(
v
$

)





− 2

∫ T

0
$(t)>(G

(q)
o

I(t),y
zv +G

(q)
o

I(t),u
v)dt.
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Pour tout v ∈ L2 satisfaisant (7.1), on a que G
(q)
o

I(t),y
zv + G

(q)
o

I(t),u
v = 0 p.p., et donc, comme

d’après l’équation de Riccati (7.3) dA = C>D−1Cdt, on obtient finalement

Q(v) =

∫ T

0

(

D−1Czv +

(
v
$

) )>

D
(

D−1Czv +

(
v
$

) )

dt,

et ce, quelque soit v ∈ L2 satisfaisant (7.1) et quelque soit la variable $(t) ∈ R
|
o

I(t)|. Noter que
par les hypothèses (4.30) et (4.43), la matrice D(t) est bien inversible. Choisissons $(t) égal

à l’opposé des |
o
I (t)| dernières composantes du vecteur D−1(t)C(t)zv(t) ∈ R

m+|
o

I(t)|, et notons
(D−1(t)C(t)zv(t))|1:m les composantes 1 à m de ce vecteur. On a alors

Q(v) =

∫ T

0

(
(D−1Czv)|1:m + v

)>
H0
uu

(
(D−1Czv)|1:m + v

)
≥ 0,

pour tous les v ∈ L2 satisfaisant (7.1) puisque H0
uu est uniformément définie positive par

(4.43). Pour obtenir l’uniforme positivité de Q (et donc la stricte positivité) sur l’espace défini
par (7.1), il suffit de remplacer dans les calculs précédents H 0

uu par H0
uu − εIm, avec Im la

matrice identité de taille m, qui reste définie positive uniformément sur [0, T ] pour ε > 0
suffisamment petit. Pour ε suffisamment petit, l’équation de Riccati obtenue en remplaçant
H0
uu par H0

uu − εIm dans (7.3) admet aussi une solution bornée sur [0, T ] (résultat standard
de perturbation des équations différentielles, voir par exemple [99, p.176]). On obtient ainsi
de même que Q(v) − ε‖v‖2

2 ≥ 0 pour tout v ∈ L2 satisfaisant (7.1), impliquant (7.2).
Montrons maintenant la réciproque. Pour s ∈ [0, T ), soit Qs la forme quadratique définie

sur L2(s, T ; Rm) comme Q mais en intégrant sur [s, T ], i.e.

Qs(v) :=

∫ T

s
(v>H0

uuv + 2v>H0
uyzv,s)dt+ zv,s(T )>φyy(y(T ))zv,s(T )

+

∫ T

s
z>v,s(H

0
yydt+

r∑

i=1

gi,yydηi(t) −
r∑

i=1

∑

τ∈T i
red

νiτ
(g

(1)
i,y )>g

(1)
i,y

g
(2)
i

δτ (t))zv,s

où zv,s est la solution de żv,s = fyzv,s + fuv p.p. sur [s, T ] avec condition initiale zv,s(s) = 0,
et soit le problème défini par

(Ps) min
v∈L2(s,T ;Rm)

Qs(v) s.t. G
(q)
o

I(t),u
v +G

(q)
o

I(t),y
zv,s = 0 pour p.p. t ∈ [s, T ].

Alors (7.2) implique que

Qs(v) > 0, ∀v ∈ L2(s, T ; Rm)\{0} vérifiant G
(q)
o

I(t),u
v+G

(q)
o

I(t),y
zv,s = 0 p.p. sur [s, T ]. (7.28)

En effet, soit v ∈ L2(s, T ; Rm) \ {0} vérifiant la contrainte ci-dessus. Comme zv,s(s) = 0, on
peut prolonger v par zéro sur [0, s) et on obtient alors v̄ ∈ L2(0, T ; Rm) tel que (v̄, zv̄) = 0
sur [0, s) et (v̄, zv̄) = (v, zv,s) sur [s, T ]. Ainsi v̄ vérifie (7.1), v̄ 6= 0 et Qs(v) = Q(v̄) > 0
d’après (7.2). Ceci prouve (7.28). De plus, comme Qs est, comme Q, une forme de Legendre,
(Ps) a un coût fortement convexe semi-continu inférieurement sur son ensemble admissible
convexe fermé, et donc (7.28) implique que (v, zv,s) = 0 est l’unique solution et l’unique point
stationnaire de (Ps).
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Pour simplifier les notations, posons

dM(t) := H0
yydt+

r∑

i=1

gi,yydηi(t) −
r∑

i=1

∑

τ∈T i
red

νiτ
(g

(1)
i,y )>g

(1)
i,y

g
(2)
i

δτ (t).

Soit (v, z = zv,s) un point stationnaire de (Ps). Ce dernier vérifie, notant π et λ les multipli-
cateurs associés respectivement à l’équation d’état et à la contrainte mixte de (P s),

−dπ = dM(t)z + ((H0
uy)

>v + f>y π + (G
(q)
o

I(t),y
)>λ)dt, π(T ) = φyy(y(T ))z(T ),

0 = H0
uuv +H0

uyz + f>u π + (G
(q)
o

I(t),u
)>λ,

0 = G
(q)
o

I(t),u
v +G

(q)
o

I(t),y
z.

Les deux dernières équations permettent d’exprimer v et λ en fonction de z et π
(
v
λ

)

= −D(t)−1

(
H0
uy f>u

G
(q)
o

I(t),y
0

)(
z
π

)

,

avec la matrice D(t) définie plus haut, et on en déduit que la dynamique état-état adjoint est
donnée par
(

żdt
−dπ

)

=

[(
fydt 0

dM(t) f>y dt

)

−
(

fu 0

(H0
uy)

> (G
(q)
o

I(t),y
)>

)

D(t)−1

(
H0
uy f>u

G
(q)
o

I(t),y
0

)

dt

](
z
π

)

.

(7.29)

Une solution (z, π) du système ci-dessus sur [s, T ] avec condition initiale (z(s), π(s)) = (x, q)
est donc un point stationnaire de (Ps) ssi (π(T ) − φyy(y(T ))z(T ), x) = 0.

Soit F l’application R
n×R

n → R
n×R

n, (x, q) 7→ (π(T )−φyy(y(T ))z(T ), x) où (z, π) est la
solution de (7.29) sur [s, T ] avec la condition initiale (z(s), π(s)) = (x, q). Cette application est
linéaire, et, puisque (Ps) admet un unique point stationnaire, elle est inversible. Ceci implique
que pour tout x ∈ R

n, il existe un unique q ∈ R
n tel que π(T ) − φyy(y(T ))z(T ) = 0, où (z, π)

est la solution de (7.29) sur [s, T ] avec la condition initiale (z(s), π(s)) = (x, q), et q est une
fonction linéaire de x. Il existe donc une matrice X(s) telle que q = X(s)x. Ce raisonnement
étant valide pour tout s, on a que pour tout x ∈ R

n et tout s ∈ [0, T ], l’unique solution (z, π)
de (7.29) sur [s, T ] vérifiant z(s) = x et π(T ) = φyy(y(T ))z(T ) est telle que

π(t) = X(t)z(t), ∀ t ∈ [s, T ]. (7.30)

En particulier, en t = T on obtient queX(T ) = φyy(y(T )). Reportant (7.30) dans la dynamique
de π, on trouve

−dX(t)z = Xżdt+ dM(t)z + ((H0
uy)

>v + f>y Xz + (G
(q)
o

I(t),y
)>λ)dt

= (Xfydt+ f>y Xdt+ dM(t))z +
(

Xfu + (H0
uy)

> (G
(q)
o

I(t),y
)>
)( v

λ

)

=



(Xfy + f>y X)dt+ dM(t) −
(
H0
uy + f>u X

>

G
(q)
o

I(t),y

)>

D(t)−1

(
H0
uy + f>u X

G
(q)
o

I(t),y

)

 z.

Comme cette relation est vraie quelque soit z(t) = x ∈ R
n et quelque soit t ∈ [0, T ], on en

déduit que X vérifie (7.3), ce qui achève la preuve.
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7.2.2 Rappel de l’exemple de Robbins [118]

L’exemple étudié par Robbins dans [118] est le suivant :

(Prob) min
(u,y)

∫ T

0

(
u(t)2

2
+ y1(t)

)

dt, (7.31)

s.t. ẏ1(t) = y2(t), ẏ2(t) = y3(t), ẏ3(t) = u(t) p.p. t ∈ [0, T ], (7.32)

yj(0) = y0
j , j = 1, 2, 3, (7.33)

−y1(t) ≤ 0 t ∈ [0, T ]. (7.34)

On suppose que la condition initiale y0 = (y0
1, y

0
2 , y

0
3) ∈ R

3 est telle que

y0
1 > 0. (7.35)

Le coût de (Prob) est continu et fortement convexe sur son ensemble admissible qui est convexe
fermé, ce qui garantit l’existence et l’unicité d’une solution (u, y) dans l’espace L2(0, T ) ×
H1(0, T ; R3), caractérisée par la condition d’optimalité du premier ordre donnée par le principe
du minimum. De plus, la contrainte sur l’état est régulière d’ordre 3 et donc les multiplicateurs
associés (p, η) sont uniques.

Supposons que la trajectoire ait un arc frontière avec point d’entrée régulier τ ∈ (0, T ).
Alors il est facile de voir qu’il n’est pas optimal de quitter l’arc, et on a donc un arc frontière du
type (τ, T ]. Le Hamiltonien est uniformément fortement convexe par rapport à la commande
et la contrainte sur l’état est régulière d’ordre q = 3. Les conditions de jonction au point
d’entrée τ impliquent alors que les dérivées de y1 sont continues jusqu’à l’ordre 2q − 1 = 5,
i.e.

y
(j)
1 (τ) = 0, j = 0, . . . , 5. (7.36)

Par ailleurs, sur un arc intérieur le principe du minimum implique que y
(6)
1 ≡ 1. Ainsi, sur

l’arc intérieur précédant τ , y1 est donné par

y1(t) =
(t− τ)6

6!
. (7.37)

On voit que y1 ne peut pas s’annuler sur [0, τ) et donc la trajectoire optimale est donnée par
(7.37) sur [0, τ) et par y1(t) = 0 sur [τ, T ]. La condition initiale (7.33) implique alors que

y0
1 =

τ6

6!
, y0

2 = −τ
5

5!
, y0

3 =
τ4

4!
. (7.38)

On ne peut clairement pas trouver un instant τ vérifiant (7.38) quelque soit la condition initiale
y0 ∈ R

3 vérifiant (7.35), et donc sauf pour le cas particulier où la condition initiale se met sous
la forme (7.38), la trajectoire optimale n’a pas d’arc frontière avec point d’entrée régulier.

Robbins a étudié la forme générale des solutions pour une condition initiale y0 ∈ R
3 quel-

conque vérifiant (7.35). Pour ceci, on laisse le temps final tendre vers l’infini et on s’intéresse
au problème de commande optimale en horizon infini

(P∞
rob) min

(u,y)

∫ ∞

0

(
u(t)2

2
+ y1(t)

)

dt, (7.39)

s.t. ẏ1(t) = y2(t), ẏ2(t) = y3(t), ẏ3(t) = u(t) p.p. t ∈ [0,+∞), (7.40)

yj(0) = y0
j , j = 1, 2, 3, (7.41)

−y1(t) ≤ 0 t ∈ [0,+∞). (7.42)
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Ce problème a une valeur finie car le système (7.40) étant commandable, on peut construire
une trajectoire admissible s’annulant sur [A,+∞) pour A > 0. De plus, le coût (7.39) est
fortement convexe semi-continu inférieurement sur l’ensemble admissible (7.40)-(7.42) et donc
(P∞

rob) admet une unique solution (u, y) avec u ∈ L2(0,∞).

La condition d’optimalité du premier ordre pour les problèmes de commande optimale en
horizon infini est analogue à celle connue en horizon fini, à l’exception de la condition finale
de l’état adjoint qui est plus délicate à énoncer (voir [66] et [68, Rem. 4.4]). En revanche,
si le Hamiltonien H(·, ·, p(t)) est convexe et si la contrainte sur l’état g est convexe (ce qui
est satisfait pour notre problème (P∞

rob)), alors le principe du minimum sur (0,∞) avec la
condition limite suivante pour l’état adjoint

lim inf
T→+∞

p(T )(ỹ(T ) − y(T )) ≤ 0 pour toute trajectoire admissible (ũ, ỹ) (7.43)

est une condition suffisante d’optimalité (voir [96, 122] et [68, Th. 8.4]) 2.

Dans le cas où les conditions initiales ne se mettent pas sous la forme (7.38), la trajectoire
optimale ne présente pas d’arc frontière avec point d’entrée régulier mais un nombre infini de
points de contact isolés. En effet, on ne peut pas avoir un nombre fini (éventuellement nul)
de points de contact isolés sans arc frontière puisque sur un arc intérieur, y1 est un polynôme
de degré 6 et de coefficient dominant égal à 1, donc si on avait un arc intérieur de longueur
infinie, on aurait y1(t) → +∞ quand t→ +∞, ce qui rendrait le critère infini et ne serait pas
optimal. L’étude précédente montre qu’un arc frontière avec point d’entrée régulier, précédé
d’un nombre fini (éventuellement nul) de points de contact isolés, est exclu si les conditions
initiales ne se mettent pas sous la forme (7.38). Enfin, il n’est pas optimal de quitter un arc
frontière. On a donc au plus un arc frontière sur la trajectoire optimale, et pas de point de
sortie. La trajectoire optimale de (P∞

rob) est donc composée d’un nombre infini de points de
contacts isolés, suivis on non d’un arc frontière.

Un point de contact isolé essentiel correspondant à une discontinuité du multiplicateur η
qui est une fonction croissante, il en existe un nombre dénombrable. On les note (τ1, ..., τn, ...).
En point de contact isolé τn on vérifie nécessairement :

y1(τn) = 0 = ẏ1(τn), ÿ1(τn) ≥ 0. (7.44)

On a en fait ÿ1(τn) > 0 pour tout n (car si on avait ÿ1(τn) = 0, alors il serait optimal de
prolonger pour t ≥ τn l’état et la commande par zéro).

L’étude qui suit est basée sur l’article de Robbins [118]. Elle s’appuie sur deux éléments :
d’une part le Principe de la Programmation Dynamique qui dit que si (ū, ȳ) est une solution
optimale d’un problème de commande optimale sur [0, T ] avec la condition initiale y(0) = y0,
alors quelque soit 0 < τ < T , (ū(· − τ), ȳ(· − τ)) restreinte à l’intervalle [τ, T ] est une solution
optimale du même problème sur [0, T − τ ] avec la condition initiale y(0) = ȳ(τ) ; d’autre part,
le paramétrage par la valeur de la dérivée seconde du problème démarrant à l’instant τn avec
conditions initiales (7.44).

2Ce résultat est basé sur l’inégalité suivante, facile à démontrer. Notant `(u, y) le coût dans l’intégrale de
(7.39), on a pour toute trajectoire admissible (ũ, ỹ) et tout T ∈ (0, +∞)

Z T

0

`(u(t), y(t))dt −

Z T

0

`(ũ(t), ỹ(t))dt ≤ p(T )(ỹ(T ) − y(T )).

.



242 CHAPITRE 7. CONCLUSION

Étape 1 : Etude du problème paramétré (Pα). On s’intéresse, pour α > 0, au problème

(Pα)







min

∫ +∞

0

(

y(t) +
u(t)2

2

)

dt

y(3)(t) = u(t) p.p. t ∈ [0,∞), y(0) = ẏ(0) = 0, ÿ(0) = α
−y(t) ≤ 0 t ∈ [0,∞).

(7.45)

Par les mêmes arguments que précédemment pour (P∞
rob), ce problème admet, pour tout α > 0,

une unique solution yα. Pour α0 > 0, supposons connue la solution ȳ du problème (Pα0). On
cherche à relier la solution yα de (Pα) pour α quelconque à ȳ. Soit λ > 0. On effectue le
changement en temps s = t

λ et on pose z(s) := λ−6y(t) et v(s) := λ−3u(t). Le problème (Pα)
se réécrit alors

(Pα)







minλ5

∫ +∞

0

(

z(s) +
v(s)2

2

)

ds

z(3)(s) = v(s) p.p. s ∈ [0,∞), z(0) = ż(0) = 0, z̈(0) = λ−4α
−z(s) ≤ 0 s ∈ [0,∞).

Si l’on choisit λ tel que λ−4α = α0 on reconnait le problème (Pα0). On en déduit donc que

yα(t) = λ6ȳ

(
t

λ

)

avec λ =

(
α

α0

) 1
4

. (7.46)

Étape 2 : Relation avec le problème (P∞
rob). Soit y1 la solution du problème (P∞

rob). Soit
τ1 le premier point de contact isolé de y1 et β1 := ÿ1(τ1). On a alors pour t ≥ τ1, d’après le
principe de la programmation dynamique, y1(t) = yβ1(t− τ1) où yβ1 est la solution de (Pβ1).
D’après (7.46), on a y1(t) = λ6ȳ

(
t−τ1
λ

)
pour t ≥ τ1 avec λ = (β1/α0)

1/4. Soit τ2 le deuxième
point de contact isolé de y1. On choisit de poser

α0 := (τ2 − τ1)
−4β1. (7.47)

La raison de ce choix est que l’on a alors avec (7.46) λ = τ2 − τ1 et

y1(t) = (τ2 − τ1)
6ȳ

(
t− τ1
τ2 − τ1

)

pour t ≥ τ1, (7.48)

où on rappelle que ȳ désigne la solution de (Pα0) pour α0 donné par (7.47). D’après (7.48),
les points de contact isolés de y1 notés (τ1, ..., τn, ...) sont reliés à ceux de ȳ que l’on note
(σ0 = 0, σ1, ..., σn, ...) par la relation

τn+1 = τ1 + (τ2 − τ1)σn. (7.49)

En particulier on a que σ1 = 1. Il suffit donc d’étudier la suite des points de contact isolés de
ȳ pour en déduire celle de y1.

Étape 3 : Etude de la suite des instants de contact (σn) de ȳ. Posons, pour n ∈ N
∗,

αn := ¨̄y(σn). Pour s ≥ σn, on a ȳ(s) = yαn(s − σn) où yαn est la solution de (Pαn) (principe
de la programmation dynamique). D’après (7.46), on en déduit, pour s ≥ σn,

ȳ(s) = λ6
nȳ

(
s− σn
λn

)

avec λ4
n =

αn
α0
. (7.50)
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Cette expression évaluée au premier instant de contact implique que

σn+1 − σn
λn

= σ1 = 1. (7.51)

Avec (7.50), cela donne

ȳ(s) = (σn+1 − σn)
6ȳ

(
s− σn

σn+1 − σn

)

∀ s ≥ σn. (7.52)

De plus, par (7.52), on a pour tout s ≥ σn

ȳ(s) = (σn+1 − σn)
6ȳ

(
s− σn

σn+1 − σn

)

= (σn − σn−1)
6ȳ

(
s− σn−1

σn − σn−1

)

.

On dérive deux fois cette expression par rapport à s et on prend la valeur en σn. On obtient
alors que (σn+1 − σn)

4α0 = (σn − σn−1)
4α1 et donc

σn+1 − σn
σn − σn−1

=

(
α1

α0

) 1
4

= Cste =: r > 0 ∀ n ∈ N
∗. (7.53)

Montrons que r < 1 et donc que la longueur des arcs non contraints décrôıt géométriquement.
On a d’après (7.52)

∫ σn+1

σn

ȳ(s)ds = (σn+1 − σn)
7

∫ 1

0
ȳ(θ)dθ

d’où, comme σn+1 − σn = rn et ȳ est la solution de (Pα0),

∑

n∈N

r7n
(∫ 1

0
ȳ(θ)dθ

)

≤
∫ ∞

0
ȳ(s)ds ≤

∫ ∞

0

(

ȳ(s) +
ū(s)2

2

)

ds < +∞,

avec ū := ȳ(3). Ceci implique que r < 1.

Étape 4 : Calcul de de r et ȳ. Commençons par déterminer ȳ sur [0, 1]. Comme d’après
(7.48), ȳ(s) = (τ2−τ1)−6y1(τ1 +s(τ2−τ1)) pour tout s ≥ 0, d’après les conditions d’optimalité
vérifiées par y1 on a ȳ(6) ≡ 1 sur (0, 1), et ȳ s’annule ainsi que sa dérivée première en 0 et 1.
Ainsi ȳ est de la forme

ȳ(s) =
1

6!
s2(1 − s)2

(
s2 + as+ b

)
s ∈ (0, 1) (7.54)

avec a, b ∈ R. De plus, d’après (7.52), utilisant que σn+1 − σn = rn et faisant le changement
de temps θ = (s− σn)/(σn+1 − σn), on obtient que

ȳ(σn + rnθ) = r6nȳ(θ) ∀ θ ∈ [0, 1], ∀ n ≥ 1. (7.55)

En dérivant (7.55) pour n = 1 j fois par rapport à θ (j = 0, 1, .., 4) et en prenant les valeurs
en θ = 0 on obtient

ȳ(j)(1) = r6−j ȳ(j)(0) (7.56)

et comme [ȳ(5)(1)] = (τ2 − τ1)
−1[y1(τ2)] ≤ 0, d’après le principe du minimum on doit aussi

avoir
ȳ(5)(1−) ≥ ȳ(5)(1+) = rȳ(5)(0+). (7.57)
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On développe (7.54) et on dérive 5 fois. On prend ensuite les valeurs de ces dérivées en 0 et 1
et (7.56) pour j = 2, 3, 4 implique que r vérifie







1 + a+ b = r4b
4 + 3a+ 2b = r3(a− 2b)
6 + 3a+ b = r2(1 − 2a+ b)

(7.58)

donc 



1 1 1 − r4

4 3 − r3 2(1 + r3)
6 − r2 3 + 2r2 1 − r2









1
a
b



 = 0. (7.59)

Cela implique que le déterminant de la matrice est nulle car
(

1 a b
)> 6= 0. On trouve

(numériquement) que les valeurs réelles de r annulant ce déterminant sont :

R = {r−; r+; 1; −1 } avec r− = 0.3194887 et r+ = 3.130001.

La valeur r = r−, la seule dans l’intervalle (0, 1), convient, avec les valeurs associées de a et b
égales respectivement à a = −2.1728586 et b = 1.1852072. On vérifie de plus que s2+as+b est
bien strictement positif sur [0, 1] et que la condition (7.57) donnant la condition supplémentaire
4 + a ≥ r(a− 2), est également satisfaite (avec inégalité stricte).

Étape 5 : Retour à la solution de (P∞
rob). D’après (7.48), (7.52) et (7.49), la solution y1

de (P∞
rob) satisfait

y1(t) = (τn+1 − τn)
6ȳ

(
t− τn

τn+1 − τn

)

∀ t ≥ τn (7.60)

où avec (7.53),
τn+1 − τn = (τ2 − τ1)r

n−1. (7.61)

Ceci implique que

lim
n→+∞

τn = (τ2 − τ1)
1

1 − r
+ τ1 =: Tc < +∞. (7.62)

Connaissant la fonction ȳ sur [0, 1] d’après l’étape 4, par (7.60) on a y1 sur l’intervalle (τ1, Tc).
De plus, on a par (7.60) et (7.61), pour t ∈ [τn, τn+1],

|y(j)
1 (t)| ≤ (τ2 − τ1)

6−jr(6−j)(n−1)

(

sup
[0,1]

ȳ(j)

)

≤Mr(6−j)n j = 0, .., 5. (7.63)

Ainsi y1 et ses dérivées jusqu’à l’ordre 5 tendent vers 0 quand t→ Tc. On peut donc prolonger
y1 par zéro sur (Tc,+∞).

Il reste à déterminer y1 sur [0, τ1). Pour cela il faut vérifier les conditions de recollement
en τ1 avec (7.48), c’est-à-dire la continuité de y1 et de ses dérivées jusqu’à l’ordre 4 en τ1 ainsi

que la condition de saut ν = −[y
(5)
1 (τ1)] ≥ 0, i.e., notant ∆ := τ2 − τ1,

y1(τ1) = ẏ1(τ1) = 0, ÿ1(τ1) =
b

360
∆4, y

(3)
1 (τ1) =

a− 2b

120
∆3,

y
(4)
1 (τ1) =

1 − 2a+ b

30
∆2, y

(5)
1 (τ−1 ) =

a− 2

6
∆ + ν.
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On a trois inconnues que sont τ1 > 0, ∆ = τ2 − τ1 > 0 et ν ≥ 0 à déterminer pour satisfaire
les trois conditions initiales (7.41), i.e. dans la base de Taylor en τ1 :

y0
1 =

τ6
1

720
−
(
a− 2

6
∆ + ν

)
τ5
1

120
+

1 − 2a+ b

30
∆2 τ

4
1

24
− a− 2b

120
∆3 τ

6
1

3
+

b

360
∆4 τ

2
1

2
,

y0
2 = − τ5

1

120
+

(
a− 2

6
∆ + ν

)
τ4
1

24
− 1 − 2a+ b

30
∆2 τ

3
1

6
+
a− 2b

120
∆3 τ

2
1

2
− b

360
∆4τ1,

y0
3 =

τ4
1

24
−
(
a− 2

6
∆ + ν

)
τ3
1

6
+

1 − 2a+ b

30
∆2 τ

2
1

2
− a− 2b

120
∆3τ1 +

b

360
∆4.

(Lorsque ∆ = τ2 − τ1 = 0 et ν = 0, on retrouve les conditions initiales particulières (7.38)
correspondant à un arc frontière.)

Enfin, comme y1(t) = 0 sur [Tc,∞), on a aussi p(t) = 0 sur [Tc,∞), et donc (7.43) est aussi
vérifié. Ainsi construite, y1 vérifie le principe du minimum sur (0,+∞) ainsi que la condition
aux limites (7.43), de plus le hamiltonien est convexe par rapport à (u, y) et la contrainte sur
l’état est convexe, d’où y1 vérifie la condition d’optimalité suffisante de (P∞

rob). C’est donc bien
l’unique solution de (P∞

rob).

Remarque 7.6. Comme νn = −[y
(5)
1 (τn)], avec (7.60)–(7.61) on a que

νn+1 = −[y
(5)
1 (τn+1)] = γ(τ2 − τ1)r

n−1

avec

γ := −[ȳ(5)(1)] =
1

6
(4 + a− r(a− 2)) > 0.

Étape 6 : Retour à la solution de (Prob). Repassant en temps T fini, pour un temps
final suffisamment grand T > Tc, la solution y1 ainsi construite, restreinte à l’intervalle [0, T ],
vérifie le principe du minimum de Pontryaguine sur [0, T ]. En particulier, comme on termine
sur un arc frontière, la condition finale sur l’état adjoint p(T ) = 0 est satisfaite. La condition
d’optimalité du premier ordre étant nécessaire et suffisante, on a bien trouvé l’unique solution
du problème (Prob) pour des conditions initiales ne se mettant pas sous la forme (7.38), et cette
solution a une infinité de points de contact isolés dont le point limite est un point d’entrée sur
un arc frontière.

On a tracé sur la figure 7.4 la solution optimale de (Prob) correspondant aux conditions
initiales

y0
1 = 1, y0

2 = −1, y0
3 = −2.

On trouve alors (numériquement) τ1 = 1.4110209, ∆ = τ2 − τ1 = 3.5497156 et ν = 19.144858.
On a tracé les cinq premiers arcs intérieurs de y1. Par (7.63) pour j = 0, on voit que

max
t∈[τn,τn+1]

y1(t) = (τ2 − τ1)
6r6(n−1) max

s∈[0,1]
ȳ(s)

avec maxs∈[0,1] ȳ(s) de l’ordre de 4.10−5 et r6 = 0.0010635. Ainsi y1(t) décrôıt très rapidement
en pratique, ce que l’on observe sur la figure 7.4 (seul les deux premiers arcs intérieurs sont
visibles). Ainsi, résolvant le problème en utilisant par exemple une méthode directe (pour
lesquelles la présence d’un nombre infini de points de contact isolés ne pose pas de difficulté), on
obtiendra numériquement une solution semblant présenter un arc frontière avec point d’entrée
régulier, précédé ou non d’un nombre fini de points de contact isolés, bien que cela semble
contredire la théorie. En cela on rejoint la conclusion de Betts et al. [13] sur la résolution
numérique des problèmes de commande optimale avec contrainte sur l’état d’ordre élevé.
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Fig. 7.4 – Trajectoire optimale y1 dans l’exemple de Robbins pour la condition initiale y0 =
(1,−1,−2).

7.2.3 Preuve de (7.17)

On utilise dans cette section les notations de l’exemple de Robbins de la section précédente.

On note par y1 la trajectoire solution de (Prob). Par le principe du minimum, on a que y
(5)
1

est une fonction à variation bornée et satisfait

dy
(5)
1 (t) = dt− dη(t) = 1[0,Tc)dt−

∑

n∈N∗

νnδτn(t).

Comme toutes les dérivées de y1 jusqu’à l’ordre 5 s’annulent en Tc par (7.63), en intégrant sur
(t, Tc) cinq fois on obtient que

y1(t) =
(t− Tc)

6

720
−
∑

n∈N∗

νn1t<τn
(τn − t)5

120
. (7.64)

Nous allons chercher à expliciter le terme
∑

n νn1t<τn
(τn−t)5

120 . D’après (7.61), on a que

τn = (τ2 − τ1)

(
1 − rn−1

1 − r

)

+ τ1. (7.65)

D’où t < τn si et seulement si

n > 1 +
ln
(

1 − (1 − r) t−τ1
τ2−τ1

)

ln(r)
=: ψ(t).

Utilisant l’expression de Tc donnée par (7.62), on a que Ψ(t) = 1 + ln(r)−1 ln
(

1−r
τ2−τ1

(Tc − t)
)

d’où

rψ(t)−1 =
1 − r

τ2 − τ1
(Tc − t). (7.66)

On a donc
∑

n∈N∗

νn1t<τn
(τn − t)5

120
=

∑

n>Ψ(t)

νn
(t− τn)

5

120
. (7.67)
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De plus, d’après (7.65), (7.62) et (7.66), on a pour tout n

t− τn = t− Tc + (τ2 − τ1)
rn−1

1 − r

= t− Tc +
(τ2 − τ1)

1 − r
rn−ψ(t) 1 − r

τ2 − τ1
(Tc − t)

= (t− Tc)(1 − rn−ψ(t)). (7.68)

Enfin, d’après la remarque 7.6 on a que

νn = γ(τ2 − τ1)r
n−2 (7.69)

où γ est une constante strictement positive. D’après (7.67), (7.68) et (7.69), on obtient donc
que

∑

n∈N∗

νn1t<τn
(τn − t)5

120
= γ(τ2 − τ1)

(t− Tc)
5

120

∑

n>Ψ(t)

rn−2(1 − rn−ψ(t))5. (7.70)

Cette expression évaluée en t = τN (i.e. ψ(t) = N) donne

∑

n∈N∗

νn1τN<τn
(τn − τN )5

120
= γ

τ2 − τ1
r

(Tc − τN )5

120

∑

n>N

rn−1(1 − rn−N)5

= γ
τ2 − τ1
r

(Tc − τN )5

120
rN−1

∑

k>0

rk(1 − rk)5.

Posons

Λ :=
∑

k>0

rk(1 − rk)5 =
r

1 − r
− 5r2

1 − r2
+

10r3

1 − r3
− 10r4

1 − r4
+

5r5

1 − r5
− r6

1 − r6
.

Utilisant (7.66), on obtient que

∑

n∈N∗

νn1τN<τn
(τn − τN )5

120
= γ

τ2 − τ1
r

(Tc − τN )5

120

1 − r

τ2 − τ1
(Tc − τN )Λ

= γ
1 − r

r

(Tc − τN )6

120
Λ.

Or on a aussi y1(τn) = 0 pour tout n, donc par (7.64),

∑

n∈N∗

νn1τN<τn
(τn − τN )5

120
=

(Tc − τN )6

720
.

On déduit des deux expressions ci-dessus que

Λ =
r

6γ(1 − r)
. (7.71)

Repassons maintenant au calcul de (7.70) pour t /∈ {τn}n∈N∗ . Soit N le plus grand entier
supérieur à ψ(t), N := dψ(t)e. On a

∑

n∈N∗

νn1t<τn
(τn − t)5

120
= γ

τ2 − τ1
r

(Tc − t)5

120

∑

n>ψ(t)

rn−1(1 − rn−ψ(t))5

= γ
τ2 − τ1
r

(Tc − t)5

120
rψ(t)−1

∑

k≥0

rk+N−ψ(t)(1 − rk+N−ψ(t))5.
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Notons ρ(t) := N − ψ(t) = dψ(t)e − ψ(t) ∈ (0, 1). Soit

Ξ(t) :=
∑

k≥0

rk+ρ(t)(1 − rk+ρ(t))5.

Développant (1 − rk+ρ(t))5 en utilisant la formule du binôme de Newton, on obtient que

Ξ(t) =
∑

k≥0

(

rkrρ(t) − 5r2kr2ρ(t) + 10r3kr3ρ(t) − 10r4kr4ρ(t) + 5r5kr5ρ(t) − r6kr6ρ(t)
)

=
rρ(t)

1 − r
− 5r2ρ(t)

1 − r2
+

10r3ρ(t)

1 − r3
− 10r4ρ(t)

1 − r4
+

5r5ρ(t)

1 − r5
− r6ρ(t)

1 − r6
.

Alors, utilisant (7.66) et (7.71),

∑

n∈N∗

νn1t<τn
(τn − t)5

120
= γ

τ2 − τ1
r

(Tc − t)5

120

1 − r

τ2 − τ1
(Tc − t)Ξ(t)

=
(Tc − t)6

720

Ξ(t)

Λ
. (7.72)

La fonction Φ : [0, 1] → R,

ρ 7→ rρ

1 − r
− 5r2ρ

1 − r2
+

10r3ρ

1 − r3
− 10r4ρ

1 − r4
+

5r5ρ

1 − r5
− r6ρ

1 − r6
=
∑

k≥0

rk+ρ(1 − rk+ρ)5

est de classe C∞ sur [0, 1], telle que Φ(j)(0) = Φ(j)(1) pour tout j = 0, . . . , 4 (s’obtient
facilement à partir de la formule sommatoire) et 0 < Φ(ρ) < Φ(1) pour tout ρ ∈ (0, 1) (voir la
figure 7.5). Comme Λ = φ(1), posant

θ(t) :=
Ξ(t)

Λ
=

Φ(ρ(t))

Λ
,

on a que θ est C4 sur [τ1, Tc), C
∞ sur chaque arc intérieur (τn, τn+1), telle que θ(τn) = 1 pour

tout n et 0 < θ(t) < 1 pour tout t ∈ (τn, τn+1). D’où avec (7.64) et (7.72), cela achève la
preuve de (7.17).
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Fig. 7.5 – Fonction Φ.
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Remarque 7.7. Noter que par (7.66), avec N = dψ(t)e,

rρ(t) = rN−ψ(t) =
rN−1

rψ(t)−1
=
Tc − τN
Tc − t

où τN est le plus petit instant de jonction supérieur strictement à t. Ainsi on peut réécrire θ
sur chaque arc (τN−1, τN ) par

θ(t) = Λ−1

(

1

1 − r

Tc − τN
Tc − t

− 5

1 − r2

(
Tc − τN
Tc − t

)2

+
10

1 − r3

(
Tc − τN
Tc − t

)3

− 10

1 − r4

(
Tc − τN
Tc − t

)4

+
5

1 − r5

(
Tc − τN
Tc − t

)5

− 1

1 − r6

(
Tc − τN
Tc − t

)6
)

avec

Tc − τN =
τ2 − τ1
1 − r

rN−1.
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