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Résumé

Cette these s’intéresse au probleme de commande optimale (déterministe) d’une équation
différentielle ordinaire soumise & une ou plusieurs contraintes sur 1’état, d’ordres quelconques,
dans le cas ou la condition forte de Legendre-Clebsch est satisfaite. Le principe du minimum
de Pontryaguine fournit une condition d’optimalité nécessaire bien connue. Dans cette these,
on obtient premierement une condition d’optimalité suffisante du second ordre la plus faible
possible, c’est-a-dire qu’elle est aussi proche que possible de la condition nécessaire du second
ordre et caractérise la croissance quadratique. Cette condition nous permet d’obtenir une
caractérisation du caractére bien posé de l'algorithme de tir en présence de contraintes sur
I’état. Ensuite on effectue une analyse de stabilité et de sensibilité des solutions lorsque 'on
perturbe les données du probleme. Pour des contraintes d’ordre supérieur ou égal a deux, on
obtient pour la premiere fois un résultat de stabilité des solutions ne faisant aucune hypothese
sur la structure de la trajectoire. Par ailleurs, des résultats sur la stabilité structurelle des
extrémales de Pontryaguine sont donnés. Enfin, ces résultats d’une part sur 'algorithme de
tir et d’autre part sur ’analyse de stabilité nous permettent de proposer, pour des contraintes
sur I’état d’ordre un et deux, un algorithme d’homotopie dont la nouveauté est de déterminer
automatiquement la structure de la trajectoire et d’initialiser les parametres de tir associés.

Mots clés Commande optimale, contrainte sur 1’état, condition d’optimalité du second
ordre nécessaire ou suffisante, algorithme de tir, analyse de stabilité et sensibilité, méthode
d’homotopie.

Abstract

This thesis deals with (deterministic) optimal control problems of an ordinary differential
equation subject to one or several state constraints, of arbitrary orders, in the case when
the strengthened Legendre-Clebsch condition is satisfied. Pontryagin’s minimum principle
provides us with a well-known first-order optimality condition. In this thesis we first obtain
a second-order sufficient optimality condition which is the weakest possible, i.e. which is as
close as possible to the second-order necessary condition and characterizes quadratic growth.
This condition allows us to obtain a characterization of the well-posedness of the shooting
algorithm in presence of state constraints. Then stability and sensitivity analysis of solutions
under perturbation of the data is investigated. We obtain for the first time stability results
for state constraints of order greater than or equal to two that make no assumption on the
structure of the trajectory. Moreover, results on structural stability of Pontryagin’s extremals
are given. Finally, the above results on the well-posedness of the shooting algorithm and on
stability analysis allow us to design a new continuation method, for state constraints of first-
and second-order, whose novelty is to automatically detect the structure of the trajectory and
initialize the associated shooting parameters.

Keywords Optimal control, state constraint, necessary or sufficient second-order optimality
condition, shooting algorithm, stability and sensitivity analysis, continuation method.
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Introduction

0.1 Présentation du sujet

0.1.1 Introduction générale a la commande optimale

Dans cette theése, on s’intéresse au probléeme de commande optimale déterministe d’une
équation différentielle ordinaire, pouvant s’écrire sous la forme suivante :

T
min [ 6(u(0)y(0)dt + o(y(T) (01)
(u,y) 0
sous contrainte  y(t) = f(u(t),y(t)) p.p.sur[0,7], y(0)=yo. (0.2)

L’état, c’est-a-dire le systeme physique que 1’on souhaite commander, est représenté par la va-
riable g, appartenant & 'espace ) := W1°(0, T;R™). On peut agir sur cet état indirectement,
via la commande (ou controle), représentée par la variable u, que 'on peut choisir dans un
ensemble de commandes admissibles

u € Upg :={u € L=(0,T;R™) : u(t) € U pour p.p. t € [0,T]} (0.3)

avec U un convexe fermé (éventuellement compact) de R™. L’action de la commande sur ’état
est modélisée, ici, par une équation différentielle ordinaire ([L2). Parmi toutes les trajectoires
(u,y) admissibles (c’est-a-dire qui satisfont ’équation d’état ([L2) avec u € U,q), on en cherche
une qui minimise une certaine fonction de cout ([IL).

Le probleme peut de plus étre soumis a un certain nombre de contraintes, par exemple :
des contraintes sur ’état initial et/ou final, sous la forme ¥(y(0),y(7T")) < 0, des contraintes
mixtes sur la commande et sur I’état, du type c(u(t),y(t)) < 0 p.p. sur [0,7], ou encore des
contraintes (dites pures) sur 'état g(y(t)) < 0 pour tout ¢ € [0,T]. Ces dernieres font 'objet
de cette these.

Les problemes de commande optimale ont des applications dans de nombreux domaines,
par exemple optimisation de trajectoire, robotique, chimie, biologie, économie... Pour résoudre
ces problemes, deux grandes théories ont émergées indépendamment depuis une cinquantaine
d’années : le principe du minimum de Pontryaguine et le principe de la programmation dy-
namique de Bellman. Avant de présenter brievement ces théories, introduisons le Hamiltonien
H:R™ x R" x R"™ — R,

H(u,y,p) = L(u,y) +pf(u,y). (0.4)

Principe du Minimum de Pontryaguine

La premiere théorie, basée sur le Principe du minimum de Pontryaguine (PMP) [[I16] a
la fin des années 50, donne une condition nécessaire d’optimalité. Si (u,y) € Uyq X YV est une
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solution optimale du probleme ([ILI))-({IZ), alors il existe p € Wh°(0,T;R™), appelé état
adjoint, tel que, p.p. sur [0,77],

y(t) = flu@),y®),  y(0)=yo, (0.5)
—p(t) = Hy(u(t),y(t),pt),  p(T)=dyy(T)) (0.6)
u(t) € arfénUin H(w,y(t),p(t)). (0.7)

Des versions du principe du minimum existent bien str en présence des diverses contraintes
mentionnées plus haut, et aussi lorsque les données ne sont pas différentiables, voir a ce sujet
Clarke [40], Vinter [T26].

Principe de programmation dynamique de Bellman

La deuxieme théorie est basée sur le principe de la programmation dynamique de Bellman
[¥] dans les années 60. La fonction valeur ¢ du probléme, définie par

(.uyy) ¢ (0.8)
y(s) = f(u(s),y(s)) p-p- s € [t,T], y(t) =z, u(s) € U}

est solution d’une équation aux dérivées partielles non linéaire, dite équation de Hamilton-
Jacobi-Bellman (HJB)

By, , v B .
5 (@1 + inf H(w,z, = (2,¢)) =0 (z,t) € R" x (0,T), 09)

W, T) = ¢(x).

Cette condition d’optimalité est nécessaire et suffisante. L’équation HJB est bien posée au
sens de viscosité (Crandall-Lions [43]). Cette thése n’aborde pas du tout cette approche, mais
des références classiques sur le sujet sont Barles [7] et Bardi et Capuzzo-Dolcetta [6].

0.1.2 Meéthodes numériques de résolution

Il existe différentes méthodes pour résoudre les problemes de commande optimale, chacune
avec ses avantages et inconvénients. Le choix de la méthode dépend du probleme considéré.

Méthodes directes

La méthode la plus couramment employée consiste a discrétiser les équations du probleme,
et ainsi on se rameéne a un probléme de programmation non linéaire (NLP), c’est-a-dire un
probleme d’optimisation non linéaire en dimension finie. Le probleme discrétisé peut ensuite
étre résolu par n’importe quel algorithme d’optimisation en dimension finie, par exemple
par programmation quadratique séquentielle (SQP), voir par exemple Betts [[12], Bonnans et
Launay [22], ou par une méthode de points intérieurs, voir Laurent-Varin et al. [84].

L’avantage des méthodes directes est qu’elles sont tres faciles a appliquer, et relativement
robustes a l'initialisation. On peut traiter un systéme avec un grand nombre de variables
d’état. Leur précision est limitée par la précision de la discrétisation, donc le nombre de
variables utilisées, et peut s’avérer insuffisante pour certains problemes, par exemple pour
calculer des trajectoires aérospatiales, fortement instables et requérant une grande précision.
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Les méthodes directes fournissent une trajectoire et une commande en boucle ouverte (u
en fonction du temps). Des algorithmes récents basés sur les méthodes directes permettent un
calcul temps réel de type feedback et robuste aux perturbations et sont efficaces en pratique,
voir par exemple [A6, A7) (Nonlinear Model Predictive Control), [33, B2] (algorithme basé
sur le calcul ‘offline’ des dérivées directionnelles des solutions par rapport au parametre de
perturbation).

Méthodes de tir

Les méthodes de tir exploitent la forme particuliere des conditions d’optimalité données
par le PMP. Sous certaines hypothéses (Hamiltonien fortement convexe par rapport a la com-
mande), le principe du minimum ([I77)) permet d’exprimer la commande comme une fonction
de I’état et de I’état adjoint

u(t) = Y(y(t),p(t))  te[0,T] (0.10)

La condition nécessaire d’optimalité se réduit alors aux équations d’état et d’état adjoint ([LI0])-
(@8, desquelles u est éliminé par ((LIM). On obtient alors un systéme au deux bouts, puisqu’on
a une condition initiale en y et une condition finale en p. L’idée de I’algorithme de tir (voir par
exemple Stoer et Bulirsch [I25]) est d’introduire une inconnue, la valeur initiale de 1’adjoint
Po, et de considérer la fonction de tir qui a pg associe la condition finale p(T') — ¢, (y(7")), ou
(y,p) est solution du probleme de Cauchy sur [0,7] :

{ Y f(X(y,p),y), y(0) = yo
-p = Hy(Y(y,p),y,p), p(0) = po.

On se rameéne donc par cette méthode a chercher un zéro d’une fonction de R™ dans R"”, en
utilisant par exemple un algorithme de Newton.

La méthode de tir a 'avantage d’étre tres précise, et son colt numérique est faible. Ce-
pendant la convergence nécessite un bon point initial pg, qui est parfois difficile a obtenir
dans la pratique. De plus, pour un probléme avec contraintes, une connaissance a priori de la
structure de la trajectoire optimale est requise, comme on le verra dans la suite. La méthode
de tir fournit une trajectoire boucle ouverte et donc non robuste aux perturbations; dans la
pratique cette trajectoire peut étre suivie en utilisant les techniques de suivi de trajectoire de
I’automatique.

Dans cette theése on s’intéresse tout particulierement aux méthodes de tir avec contraintes.

Résolution de I’équation HJB

Cette méthode consiste a résoudre numériquement ’équation HJB ([L9) (voir par exemple
[44, [124] et aussi [34]). Une fois la fonction valeur ¥ calculée, il faut ensuite reconstruire les
trajectoires optimales.

Alors que les deux méthodes précédentes (méthodes directes et méthodes de tir) sont des
méthodes locales, c’est-a-dire qu’elles peuvent converger vers un minimum local, la résolution
de 'équation HJB possede I'avantage de fournir un minimum global. De plus, cette derniere
méthode permet de calculer la trajectoire optimale en boucle fermée, c’est-a-dire d’obtenir la
commande v en fonction de I’état y, et elle est donc robuste. Cependant son cotit numérique
tres élevé la rend difficile & appliquer lorsque la dimension de 'espace d’état est élevée (typi-
quement supérieure a six). De plus, comme pour les méthodes directes, la précision obtenue
est limitée.
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0.1.3 Contraintes sur 1’état

Dans cette theése, on considere le probleme de commande optimale ([L1))-([I2]) soumis & une
contrainte distribuée sur I’état du type

g(y(t)) <0 pour tout ¢ € [0, 7], (0.11)

ou g : R” — R est une fonction réguliere. On note (P) ce probleme

(P) Minimiser ([I1]) sous contraintes ((L2) et ({ILIT). (0.12)

Sur le plan numérique, la prise en compte de contraintes sur ’état n’introduit pas de difficulté
supplémentaire lorsque 'on utilise une méthode directe. Ces contraintes peuvent également
étre prises en compte lors de la résolution de ’équation HJB. La fonction valeur vaut alors
400 a 'extérieur du domaine admissible.

Pour appliquer des méthodes de tir, les contraintes sur ’état posent des difficultés théo-
riques. L’algorithme de tir est basé sur le PMP dont 1’énoncé en présence de contrainte sur
I'état du type (LIT) est le suivant. Le multiplicateur associé a la contrainte sur 1'état (vue
comme une contrainte dans ’espace des fonctions continues) est une mesure de Radon, et
I’état adjoint une fonction a variation bornée.

Théoréme 0.1 (Principe du minimum avec contraintes sur 1’état). Soit (u,y) une
solution optimale de (P), qui satisfait la condition de qualification . Ators il existe (p,dn) €
BV (0, T;R™) x M[0,T] tels que, p.p. sur [0,T],

yt) = flu(t),y(@),  y(0) = yo, (0.13)
—dp(t) = Hy(u(t),y(t),p(t))dt +dn(t)gy(y(t), p(T") = ¢y (y(T)) (0.14)
u(t) € argénUinHu(w,y(t),p(t)) (0.15)
g(y@) < 0, dnp = 0, [OT]g(y(t))dﬁ(t) = 0. (0.16)

Si (u,y) vérifie le PMP (LI3)-[{TI6), on dit que c¢’est une extrémale de Pontryaguine. On
parle de point stationnaire lorsque (u,y) vérifie ((LI3)), (@I, (LIE]) et la condition ci-dessous,
plus faible que ((LTA) (lorsque U = R™)

0 = Hy(u(t),y(t),p(t))  pp-t€0,T] (0.17)

Ce principe du minimum ne permet pas d’appliquer directement un algorithme de tir (voir
ci-apres la section [ZZ3]). Une reformulation du principe du miminum est pour cela nécessaire,
voir [28, 68, @8]. Deux notions sont utilisées dans cette reformulation : la structure de la
trajectoire, supposée connue a priori, et I'ordre de la contrainte sur 1’état.

Structure de la trajectoire

Par structure de la trajectoire, on entend la structure de 1’ensemble de contact de la
contrainte

I(g(y)) == {t € 0,17 : g(y(t)) = 0}, (0.18)

111 existe v € Uaq tel que gy (y(t))zo—u(t) < 0 pour tout ¢ tel que g(y(t)) = 0, olt zy—y est solution de
léquation d’état linéarisée Zy—vw = fu(u,y)(v — u) + fy(u,y)2v—u sur [0,T], zo—u(0) = 0.
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i.e. 'ensemble des temps pour lesquels la contrainte est saturée. On appelle arc frontiére (resp.
arc intérieur) un intervalle de temps maximal (de mesure non nulle) sur lequel g(y(¢)) = 0
(resp. g(y(t)) < 0). Les extrémités d’un arc frontieére [Tep, Tez] sont appelées point d’entrée et
point de sortie. Si la contrainte est active en un point localement isolé, on parle de point de
contact isolé. Ceci est représenté sur la figure [LIl On appelle les points d’entrée, de sortie et
de contact isolé des instants de jonction entre arcs.

gi(y(t)) gily(1))

(a) Arc frontiere (b) Point de contact isolé

Fi1G. 0.1 — Structure d’une trajectoire

Ordre de la contrainte sur ’état

L’ordre de la contrainte sur 1'état (voir par exemple Bryson et al. [29]) est le plus petit
nombre de dérivations de t — g(y(t)), lorsque y satisfait la dynamique ([IZ), permettant de
faire apparaitre une dépendance explicite en la variable de commande u. Dans toute la these,
on notera ¢ € N* l'ordre de la contrainte sur ’état.

Par exemple, si la dynamique et la contrainte se mettent sur la forme canonique suivante :

n(t) = y2(t)

Jeo1(t) = yg(t) ; 9(y(t) =y (t) <0 (0.19)
Yg(t) = wi(?)
alors la contrainte est d’ordre ¢. On voit que %g(y(t)) = y1+;(t) ne dépend pas de u pour
tout j < q et %g(y(t)) = y§q) = wuq(t). Plus généralement, pour une contrainte d’ordre ¢ on
peut écrire que
@ ) : d’ 0
@) =9V (M), 1<j<a  F29u#) =g ) y) (0.20)

pour des certaines fonctions g(j ):R™ - R et g(q) :RxR" — R.

Relation entre structure de la trajectoire et ordre de la contrainte

Il est connu que la structure d’une trajectoire dépend fortement de ’ordre de la contrainte.
Considérons par exemple les problemes

1 U 2
min /O < (;) —y(t)> dt, D@ =ult),  ylt) <h (0.21)
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pour des conditions initiales et finales données, et h > 0 un parametre. Des exemples voisins
ont été résolus (analytiquement) dans Bryson et al. [29] et Jacobson et al. [75]. Pour ¢ = 1,2, 3,
nous avons tracé sur la figure la famille de solutions lorsque h diminue (la trajectoire est de
plus en plus contrainte). Les solutions ont été obtenues par une méthode de tir. On constate
que I'évolution de la structure des trajectoires différe selon I'ordre de la contrainte.

Pour ¢ = 1 (figure , la contrainte devient active pour h = 1/8 en un point de contact
isolé en t = 1/2 qui se transforme immédiatement en un arc frontiere pour A < 1/8.

Pour ¢ = 2 (figure , la contrainte est active d’abord en un point de contact isolé en
t =1/2 pour 0.167535 < h < 0.252604, puis en un arc frontiere pour A < 0.167535.

Pour ¢ = 3 (figure , la contrainte est active d’abord en un point de contact isolé
en t = 1/2 pour 0.1750022 < h < 0.2500217, puis en deux points de contact isolés pour
h < 0.1750022.

0.2 Résumés des résultats de la these

0.2.1 Cadre de travail et hypothéses

Dans toute cette these, on étudie le probleme de commande optimale avec contrainte sur
I'état (P) défini en (LIZ). On s’intéresse a I'approche basée sur le principe du minimum de
Pontryaguine et a la résolution par des méthodes de tir. On suppose de plus dans un premier
temps que Uyg = L>*(0,T) =: U, i.e. la commande est non contrainte et & valeur scalaire.
Dans le chapitre 4 on considérera le cas d'une commande et d’une contrainte g a valeurs
vectorielles, et de contraintes mixtes sur la commande et sur I’état. Noter qu’en considérant le
temps ¢ comme variable d’état (toujours possible en introduisant une nouvelle variable d’état
Yn+1 vérifiant g,11 = 1, yp+1(0) = 0 et donc y,,11(t) = t) les probléemes non autonomes (avec
données dépendant du temps) sont pris en compte.

Comme le principe de Pontryaguine ne fournit qu’une condition nécessaire d’optimalité
(du premier ordre), on est amené naturellement a travailler sur des conditions suffisantes
d’optimalité, et en particulier des conditions du second ordre. Ces derniéres, comme nous le
verrons dans cette these, sont au coeur de nombreux autres résultats, comme 'analyse de
stabilité et sensibilité des solutions (i.e. comment se comportent les solutions si ’on perturbe
les données du probleme), a laquelle une grande partie de la these est consacrée, ainsi que
lanalyse de convergence des algorithmes (par exemple, 'algorithme de tir, mais également la
convergence des schémas de discrétisation, voir par exemple [54]).

On fera les hypotheses suivantes.

(AO) Les données £ : RxR"” - R, ¢ : R®" - R, f: RxR" - R" g:R"” — R sont
différentiables autant de fois que nécessaire (typiquement, de classe C'?? ou q est I'ordre
de la contrainte sur ’état, a dérivées secondes localement lipchitziennes si ¢ = 2) et la
dynamique f est lipschitzienne.

(A1) La condition initiale (fixée) yo € R™ satisfait g(yo) < 0.

(A2) Le Hamiltonien est uniformément fortement convexe par rapport & la commande le
long de la trajectoire, i.e.

Jda >0, Hyu(t,y(t),p(t)) >« pour tout u € R™ et tout t € [0,77].

(A3) La contrainte sur I’état est d’ordre fini ¢ € N* et réguliere sur un voisinage de
I’ensemble de contact I(g(y)), i.e.

37,6>0,  [g{Pu(t),y(t))| >, pour tout ¢ : dist{t,I(g(y))} < e.
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Fia. 0.2 — Evolution de la structure de la trajectoire optimale du probléeme ([LZI]) en fonction
de l'ordre ¢ de la contrainte.
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(A4) La trajectoire est composée d’un nombre fini d’arcs frontiére et de points de contact
isolés, et la contrainte est inactive au temps final, i.e. g(y(7T")) < 0.
Sous les hypotheses ci-dessus, on a le résultat de régularité suivant, da a Jacobson et al.
[75] et Maurer [98].

Proposition 0.2. Soit (u,y) une extrémale de Pontryaguine satisfaisant (A0)-(A4). Alors :
(i) La commande w est continue sur [0,T], et sur Uintérieur des arcs de la trajectoire
(frontiére ou intérieur), u est C'1 et n est contintiement différentiable.
(ii) A un point de jonction T :
(a) Si T est un point d’entrée-sortie, alors u et ses dérivées jusqu’a l'ordre ¢ — 2 sont
continues en T, et si q est impair, alors la dérivée d’ordre q—1 de u est ausst continue
et [n(7)] = 0.
(b) SiT est un point de contact isolé, u et ses dérivées jusqu’a ’ordre q—2 sont continues
en 7. De plus, si ¢ =1, alors [n(1)] =0 et u et & sont continus en T.

Par cette proposition, & lentrée et a la sortie d’un arc frontiere, la fonction (du temps)
g(y(t)) et ses dérivées jusqu’a un certain ordre ¢ sont continues, ou § := 2q — 2 si ¢ est pair et
q :=2q — 1 si q est impair. On dit qu’un point de contact isolé 74, est essentiel, si

(Te0)] > 0. (0.22)

On fera également les hypotheses suivantes :
(A5) (i) (Conditions de tangentialité) En tout point d’entrée 7., ou de sortie 7ey,

dé+1
a1 9O i=r o, 7 0. (0.23)

(ii) Les points de contact isolés essentiels T4, sont réductibles, i.e.

d2
0=, <0 (024

(A6) Complémentarité stricte sur les arcs frontiere :
int I(g(y)) C supp(dn).

Discussion des hypothéses Terminons cette section par quelques commentaires sur les
hypotheéses. Les problémes avec données non réguliéres sont exclus de ’analyse par I’hypothese
(A0). Les hypotheses (A1) et (A3) de régularité de la contrainte et son analogue (hypothese
d’indépendance linéaire (E30)) dans le cas de plusieurs contraintes sont classiques (voir dans
la conclusion la section [LTA pour un affaiblissement de cette derniere hypothese).

L’hypothese (A2), sans doute la plus restrictive, exclut un certain nombre de problemes,
fréquemment rencontrés dans les applications, pour lesquels la commande entre linéairement
dans le cout et dans la dynamique. Cette classe de problemes inclut les cas du controle bang-
bang et des arcs singuliers. On peut affaiblir (A2) en supposant la commande u continue sur
[0,T] et la condition forte de Legendre-Clebsch satisfaite

Jda >0, Hy,(u(t),y(t),p(t)) >« pour tout t € [0,T]. (0.25)

En revanche, cette derniere hypothese est absolument essentielle pour les résultats de cette
these. Si elle n’est plus satisfaite, les méthodes utilisées ne s’appliquent plus. Pour les conditions
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du second ordre dans le cas de controle bang-bang et/ou arcs singuliers, voir par exemple
Dmitruk [49, 51, Osmolovskii et al. [I09, 106, 1T0], Maurer et Osmolovskii [T00].

L’hypothese (A4) stipulant que la structure de la trajectoire est composée d'un nombre
fini d’arcs frontieres et points de contact isolés peut parailtre, a juste titre, restrictive. Pour
q = 1,2, cela semble étre une hypothese raisonnable, dans le sens ou elle est vérifiée en
général sur les applications. De plus, dans [b6] pour une contrainte d’ordre un et dans [48]
chap. 2] pour une contrainte d’ordre deux, il a été montré que pour un probléme de commande
optimale linéaire quadratique autonome (i.e. le cott est quadratique, I’équation d’état est
linéaire et la contrainte sur I’état linéaire, les données ne dépendant pas du temps), la solution
est analytique par morceaux (et donc a effectivement un nombre fini d’arcs frontiere et de
points de contact isolés). Par contre, pour une contrainte d’ordre ¢ > 3, on peut avoir une
infinité de points de contact isolés, méme pour un probléme linéaire quadratique autonome,
voir [II8]. L’hypothése (A4) parait donc restrictive surtout pour des contraintes sur I’état
d’ordre élevé (voir la conclusion section ou le cas d’'un nombre infini de points de contact
isolés est discuté).

Les hypotheses (A5) et (A6) sont ‘génériquement’ satisfaites, ot ‘génériquement’ s’entend
ici dans le sens ou I'on peut toujours perturber légerement les données pour que ces hypotheses
soient satisfaites. Comme ces hypotheses (A5)-(A6) sont liées a la stabilité de la structure des
solutions, elles deviennent restrictives des lors que l'on s’intéresse justement aux cas ou la
structure des trajectoires n’est pas stable, cas qui se rencontrent inévitablement au cours des
méthodes d’homotopie (voir la section ci-apres).

Enfin, lextension des résultats dans le cas de contraintes sur I’état initial et/ou final est
discutée dans la section

0.2.2 Conditions d’optimalité du second ordre
Introduction

Comme cela a déja été dit, le principe du minimum de Pontryaguine ne fournit qu’une
condition nécessaire d’optimalité. Il est donc important de savoir si une extrémale de Pon-
tryaguine est un optimum local ou non. C’est 'objet des conditions suffisantes d’optimalité
du second ordre. Une théorie générale sur les conditions du second ordre est présentée dans
Bonnans et Shapiro [24]. Par rapport a la théorie classique, les problemes de commande op-
timale non linéaire font apparaitre une difficulté bien connue, la divergence des deux-normes
(two-norms discrepancy), voir [99). Ceci est illustré sur 'exemple suivant [88, p.126].

Exemple 0.3. Soit
T
J(u) = / (W2() — 1)2dL.
0

Alors J est deux fois différentiable sur L°°(0,7") (mais pas sur L?(0,T)), et sa dérivée seconde

T
D2, J(u)(v,v) = 4 /0 (3u2(t) — 1)v2(t)dt

est une forme quadratique qui s’étend continiiment & v € L2(0,T). Tout minimiseur @ de .J
sur L>°(0,T) est tel que |u(t)| = 1 pour p.p. ¢t € [0, 1]. En un quelconque de ces minimiseurs,
on a

T
D2 (@) (v,v) = 8/0 ()t = 8|o]2. (0.26)
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On constate que
il n’existe pas a > 0 tel que D2 J(u)(v,v) > a|jv||%, pour tout v € L>(0,T).

En revanche, par ([Z0), la condition ci-dessus est naturellement satisfaite si on remplace la
norme de L™ par celle de L2, i.e.

il existe a > 0 tel que D2,.J(u)(v,v) > a|jv|| pour tout v € L?(0,T). (0.27)
On peut alors montrer que la condition suffisante du second ordre (IL27)) implique que
Je,p>0, Jw) > J@)+cllu—al3 Yu, [|u—ile <p,

i.e. u est un minimiseur strict de J sur un petit voisinage de L™ et satisfait la condition
de croissance quadratique pour la norme L? (mais % n’est pas un minimum strict dans un
voisinage L?).

On voit sur cet exemple que 'on est amené a utiliser les deux espaces et les deux normes
pour formuler des conditions du second ordre : L°°, espace dans lequel les applications sont
différentiables, et L?, norme intervenant naturellement dans les conditions du second ordre et
dans la croissance quadratique.

Les conditions suffisantes du second ordre servent a vérifier I'optimalité locale d’une tra-
jectoire extrémale de Pontryaguine ou d’un point stationnaire, et elles jouent aussi un role
important dans lanalyse des algorithmes (preuve de convergence et estimations d’erreurs)
et dans 'analyse de stabilité et sensibilité des solutions. Il est donc intéressant d’avoir une
condition suffisante la plus faible possible, et cela peut étre réalisé en se rapprochant autant
que possible de la condition nécessaire du second ordre. On parle en particulier de conditions
“no-gap”, lorsque les conditions nécessaire et suffisante du second ordre sont le plus proche
possible, c’est-a-dire qu’elles ne different qu’entre une inégalité large et une inégalité stricte.

Pour les problemes de commande optimale, des conditions du second ordre “no-gap” étaient
connues pour les contraintes mixtes sur la commande et sur I'état [[L08, [05], mais pas pour
les contraintes pures sur ’état. Pour ces dernieres, des conditions suffisantes ont été obtenues
dans [99, 89, 94, O5], et, indépendamment, des conditions nécessaires dans [80), 112, 113].

La difficulté propre aux contraintes sur ’état est la présence d’un terme supplémentaire
apparaissant dans la condition nécessaire, appelé terme de courbure. Ce terme, découvert
par Kawasaki [77] (voir aussi [114]), est d & la présence d’un nombre infini de contraintes
d’inégalités. Pour les contraintes sur la commande ou les contraintes mixtes, on peut montrer
que ce terme de courbure est nul (c’est la théorie de la polyédricité, voir [24) section 3.2.3] et
dans cette these la section L)) Pour les contraintes sur I’état, ce terme est a priori non nul. Par
contre, seules des conditions suffisantes sans ce terme supplémentaire étaient connues. Dans
cette these nous obtenons, pour la premiere fois, des conditions “no-gap” pour les contraintes
sur I'état.

Résultat

Il est utile de réécrire le probleme de commande optimale (P) en fonction de la variable
de commande uniquement, c’est-a-dire que 1’état est vu comme une fonction de la commande,
plus précisément y = y, ou y, désigne la solution (unique) de ’équation d’état (IZ). On
obtient alors la forme abstraite suivante :

151611141 J(u), G(u) e K (0.28)
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ou le cout J(u) est donné par ([I1)) avec y = y,, et la contrainte sur I'état (LII) se réécrit
G(u) € K avec G(u) := g(y,) et K le come convexe fermé des fonctions continues & valeurs
négatives sur [0,7]. On dit que u est une solution locale de (P) satisfaisant la condition de
croissance quadratique, si

Ja,p>0, J@)>Jw) +alla—ul3, Yael; |[i—ulew<p, G@)eK.  (0.29)

La dérivée (Fréchet) au point u de Y — Y, u — y,, est application U — Y, v +— z, oU 2, est
solution de I’équation d’état linéarisée

2"11 = fu(uvyu)v + fy(uayu)zv p-p. sur [O,T], Zv(o) =0. (030)

La forme quadratique, définie sur L?(0,T), impliquée dans les conditions du second ordre est
la suivante. Ici p et i sont les multiplicateurs du Principe du minimum ([L13))- ((T6), et on note

7,5%° 'ensemble (supposé fini) des points de contact isolés essentiels (i.e. satisfaisant ([L2ZZ))

supposés réductibles (i.e. satisfaisant ((L24])) de la trajectoire (u,y) :
T
Q(U) = / [Huu(uvymp)(v7v) +2Huy(u7yu>p)(vazv) +Hyy(u7yu)p)(zv¢zv)]dt
0

T
+ Gyy (Yu(T)) (20(T), 20(T)) +/0 Iy (Yu) (20, 20)dn) (0.31)

S i) (95 (wu(r)20(1))?

2
TE'Z;‘ZSS %g(yu(t)”t:T

Le terme apparaissant sur la derniere ligne de I’équation ci-dessus est le terme de courbure. On
voit que ce terme ne fait intervenir que les points de contact isolés essentiels. Les arcs frontiere
n’ont pas de contribution. Par la proposition [L2(ii)(b), ce terme de courbure est toujours nul
pour les contraintes du premier ordre (n’ayant pas de points de contact isolés essentiels).

Enfin, le cone critique C2(u) dans L? utilisé dans les conditions du second ordre est défini
comme I’ensemble des v € L?(0,T) vérifiant les deux conditions ci-dessous :

9y(Yu(t))zu(t) = 0, t€supp(dn) (0.32)
9y(yu(t))zo(t) < 0, te€l(g(y)) \supp(dn). (0.33)

Le résultat principal est le suivant (voir les théoréme [LTZ corollaire [CTH, théoréemes et
[C27 ainsi que [I8, Th. 2.2]).

Théoréme 0.4. (i) Soit (u,y) une solution locale de (P), satisfaisant (A0)-(A6). Alors :
Q) >0 Vove Crz(u). (0.34)

(ii) Soit (u,y) une extremale de Pontryaguine satisfaisant (A0)-(A6). Alors (u,y) est une
solution locale de (P) satisfaisant la condition de croissance quadratique (IL29) si et seulement
st

Q) >0 Vv e Crz(u)\ {0}. (0.35)

Pour la preuve de la condition nécessaire, on utilise la condition nécessaire du second ordre
obtenue par Kawasaki [(7]. On explicite le terme de courbure, dont une premiére expression
avait été obtenue par Kawasaki [79] pour les contraintes de positivité dans 'espace des fonc-
tions continues. Ce calcul est basé sur des développements de Taylor des fonctions (du temps)
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9(yu(t)) et gy(yu(t))zy(t). Les hypotheses (A4)-(A6) et les résultats cruciaux de la proposi-
tion [L2)(ii) permettent alors de calculer explicitement ce terme de courbure. Ainsi on obtient
(=),

Pour obtenir la condition suffisante la plus proche possible de la condition nécessaire, on
doit prendre en compte le terme de courbure, qui peut étre non nul lorsque la contrainte est
d’ordre ¢ > 2 et qu’il y a des points de contact isolés essentiels. Pour cela, on utilise une
méthode de réduction, connue en programmation semi-infinie [[72] dans un cadre C?. Cette
approche est étendue a I’espace W2°°(0,T'). Ceci consiste & dire que pour €, > 0 suffisamment
petits, I'application

Boo(u7 5) - R, U g(yﬁ(Tﬂ))

ou By (u, d) désigne la boule ouverte de centre u et rayon § dans L et ou 74 est I'unique point
de maximum de g(ygz) sur (1 —e,7+¢) (7 étant un point de contact isolé de (u, y,,) satisfaisant
([Z)), est bien définie, de classe C!, deux fois Fréchet différentiable en u. Reformulant ainsi
la contrainte sur ’état au voisinage des points de contact isolés essentiels, on obtient dans la
condition suffisante un terme supplémentaire, correspondant exactement au terme de courbure.
Ceci nous permet d’obtenir la condition suffisante ([I35]).

0.2.3 Etude de P’algorithme de tir
Introduction

L’algorithme de tir a été appliqué avec succes dans la littérature aux problemes avec
contraintes sur I’état, voir par exemple [I15, [T}, 27], mais des difficultés d’ordre théorique
subsistent néanmoins. Pour appliquer 'algorithme de tir, une reformulation du PMP avec
contraintes sur I’état est nécessaire. En effet, le principe de ’algorithme de tir est d’exprimer les
variables algébriques (en l'occurence, u et 7 — noter que 7 est bien differentiable sur I'intérieur
de chaque arc en vertu de la proposition [L2(i)) en fonction des variables différentielles y et p.
Sur un arc intérieur, 77 = 0 et u s’obtient comme fonction de (y, p) par application du théoreme
des fonctions implicites a la relation (LT3 sous I’hypotheése (A2). Sur un arc frontiere [Tep, Tez),
on peut exprimer v comme fonction de y en appliquant sous 'hypothese (A3) le théoreme des
fonctions implicites a la relation

gD (u(t), y(t) =0, t € [Ten: Tea) (0.36)

mais I'équation algébrique restante ((LTH) ne permet pas d’exprimer 7 en fonction de (y,p),
puisque 7 n’apparait pas dans cette équation. C’est pourquoi on est amené a reformuler la
condition d’optimalité, en considérant la relation ((L36) comme une contrainte mixte sur les
arcs frontiéres [Ten, Tez], avec les ¢ contraintes aux points d’entrée

g(]) (y(Ten)) = 07 .7 = 07 <o q = ]- (037)

pour avoir 1’équivalence avec la condition g(y(t)) = 0 sur [Tepn, Tez]- De méme, & un point de
contact isolé 7y, on écrit que

9(y(110)) = 0. (0.38)

Ainsi, si 'on connait a priori la structure de la trajectoire (nombre et ordre des arcs frontieres
et des points de contact isolés), on se rameéne a un probléeme avec contraintes d’égalité, les
inégalités g(y(t)) < 0 sur les arcs intérieurs, signe du multiplicateur) devant étre vérifiées a
posteriori. Le systéme d’optimalité de ce probléme avec contraintes d’égalités ([L30])-({138)
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fournit alors une formulation alternative, qui elle peut étre résolue a I'aide d’un algorithme de
tir. L’idée originale de cette reformulation est die & Bryson et al. [29, 2§].

Le probleme de cette reformulation est qu’elle ne prend en compte qu’une partie des condi-
tions nécessaires d’optimalité. Ceci provient du fait que dans la formulation alternative, les
instants de jonction sont considérés comme étant fixés, alors qu’ils sont en fait inconnus et
doivent donc satisfaire certaines conditions d’optimalité. De plus, des conditions comme la
continuité des dérivées de u aux points d’entrée/sortie, qui sont des conditions nécessaires
d’optimalité par la proposition 2], ne sont pas prises en compte dans la formulation alter-
native. Ainsi, une partie des conditions d’optimalité est perdue, comme cela été montré par
Jacobson et al. [7H]. Des conditions supplémentaires, conditions nécessaires d’optimalité, non
prises en compte dans la formulation alternative, et donc pas non plus dans l'algorithme de
tir, doivent étre vérifiées a posteriori. Si ce n’est pas le cas, on peut d’ores et déja éliminer
la solution trouvée qui n’est pas solution de la condition nécessaire d’optimalité, et donc a
fortiori n’est pas une solution locale du probleme.

La description précise de I’algorithme de tir est donnée dans la section Disons seulement
que pour chaque arc frontiere et chaque point de contact isolé, des parametres supplémentaires
(dont les instants de jonction —inconnus— et des “parametres de saut” de ’adjoint aux points
d’entrée et de contact isolés, ces derniers pouvant étre vu comme des multiplicateurs associés
aux contraintes ponctuelles ([L37)-([{I38])) sont ajoutés comme inconnus de la fonction de tir,
en plus de la valeur initiale de I'adjoint py.

Résultat

Les questions que nous nous sommes posées sont alors les suivantes : sous quelles conditions
supplémentaires a-t-on précisément 1’équivalence entre le PMP avec contraintes sur 1’état et
la formulation alternative (il en existe de nombreuses versions différentes dans la littérature,
voir le tour d’horizon [68]) ? Certaines de ces conditions supplémentaires sont-elles automa-
tiquement satisfaites 7 Et enfin, cet algorithme de tir ne prenant en compte qu'une partie
des conditions d’optimalité est-il bien posé (au sens ou le jacobien de la fonction de tir est
inversible) 7

On établit dans la proposition I’équivalence entre la formulation alternative et les
conditions supplémentaires d’une part, et le principe du minimum d’autre part. On montre
de plus dans la proposition que certaines des conditions supplémentaires sont automati-
quement vérifiées. Enfin, nous obtenons le résultat principal suivant.

Théoréme 0.5 (Th. Z23l). Soit (u,y) une solution locale de (P) satisfaisant (A0)-(A5) et
la condition de complémentarité stricte I(g(y)) = supp(dn). Alors Ualgorithme de tir est bien
posé (Jacobien de la fonction de tir inversible) au voisinage de (u,y) si et seulement si

(i) Siq >3, il n’y a pas d’arcs frontiére ;

(ii) La condition suffisante du second ordre ((L3H)) est satisfaite.

Pour la preuve, on exprime la forme quadratique ((L3T]) en fonction des multiplicateurs
utilisés dans la formulation alternative, et non plus des multiplicateurs du PMP p et 1. On
obtient une expression équivalente de ((L3]) notée Q4(v). On calcule ensuite le Jacobien de
la fonction de tir, et on montre qu'un élément dans le noyau est associé a une solution du
systeme d’optimalité du probleme linéaire-quadratique

; q
vengl(gT)Q (v), st.veCprz(u) (0.39)
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(noter que l'on a supposé la complémentarité stricte, et donc le cone critique Cr2(u) se réduit
aux v € L? qui satisfont ((I32)). Ensuite on utilise les conditions de jonction de la proposi-
tion pour montrer que (i) est nécessaire, puis les conditions du second ordre nécessaire et
suffisante du théoreme pour conclure.

Le fait que 'algorithme de tir soit mal posé s’il y a des arcs frontiere pour des contraintes
d’ordre > 3 semble venir du fait que pour les contraintes d’ordre élevé, les arcs frontieres se-
raient en général précédés et suivis d’une infinité de points de contact isolés. Ceci est conjecturé
d’apres un exemple de Robbins [TT8] (cet exemple est rappelé dans 'annexe de la conclusion,
section [L22)). Ainsi, les arcs frontiere avec points d’entrée/sortie réguliers comme considérés
dans cette thése semblent étre pour une contrainte d’ordre ¢ > 3 un cas “pathologique”, pour
lequel I’algorithme de tir est mal posé.

0.2.4 Analyse de stabilité et de sensibilité
Introduction

Pour un probléme d’optimisation avec contraintes d’égalités et données régulieres (de classe
C?), lorsque les dérivées des contraintes sont “surjectives”, un outil fondamental pour I’analyse
de stabilité et sensibilité est le théoreme des fonctions implicites, appliqué a la condition
d’optimalité du premier ordre, sous une hypothése de condition suffisante du second ordre
[61], 60]. Ainsi, on peut montrer que les solutions sont C'! par rapport au parametre. Pour un
probléeme avec contraintes d’inégalités, lorsqu’une hypothese de “complémentarité stricte” est
satisfaite, on peut parfois se ramener & un probleme avec contraintes d’égalité et donc au cas
précédent.

Pour des problemes plus généraux dans des espaces de Banach du type ([L28]), avec
contrainte dans un cone convexe fermé K, un outil pour l'analyse de stabilité des systemes
d’optimalité est la théorie de la régularité forte de Robinson [I21]]. Cette théorie permet en
particulier de s’affranchir de I’hypothese de complémentarité stricte pour les problemes avec
contraintes d’inégalités. Lorsque I’hypothese de complémentarité stricte n’est pas vérifiée, on
sait en général que les solutions sont au mieux directionnellement différentiables. Le prin-
cipe de la régularité forte de Robinson est le suivant. Si 'on peut montrer qu'un probléme
linéaire-quadratique, obtenu en linéarisant le probleme non linéaire de départ, et perturbé
d’une certaine maniere, admet une unique solution qui est localement lipschitzienne par rap-
port au parametre, alors on peut en déduire que localement, le probleme non linéaire admet
lui aussi une solution, localement unique, lipschitzienne par rapport au parametre. Ainsi dans
l’analyse on se rameéne a étudier la stabilité des problémes linéaire-quadratique (i.e. le cotut
est quadratique et la contrainte linéaire).

Pour les problemes de commande optimale, le phénomeéne de “divergence des deux normes”
(two-norm discrepancy, voir 'exemple [I3)) ne permet pas de pouvoir appliquer directement
le résultat de régularité forte de Robinson [I21]. On doit donc en utiliser des variantes. Une
adaptation de ce résultat prenant en compte le probleme des deux normes a été proposée par
Malanowski [R7]. Il faut encore travailler pour pouvoir prendre en compte les contraintes sur
Pétat, en raison de la faible régularité des multiplicateurs (& variation bornée). Ceci a été
fait dans Malanowski [88] et dans Dontchev et Hager [B3], pour les contraintes du premier
ordre uniquement (pour lesquelles les multiplicateurs sont lipschitziens). Bien que les cadres
théoriques utilisés dans ces deux articles different, les arguments qui permettent d’obtenir le
résultat sont les mémes. Les idées principales sont d’exploiter la régularité supplémentaire des
solutions et des multiplicateurs du probleme de départ (lipschitziens), et de considérer des
perturbations du probleme quadratique qui sont elles aussi plus régulieres.
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Pour I'analyse de stabilité et sensibilité des problemes de commande optimale, une autre
approche, plus simple au premier abord, peut étre utilisée. Il s’agit de paramétriser le probleme
par un nombre fini de parametres de tir et d’appliquer le théoréeme des fonctions implicites
classique a la fonction de tir. Cette méthode a été appliquée par Malanowski et Maurer aux
problémes avec contraintes sur 1’état du premier ordre dans [93] et d’ordre supérieur dans [94].
L’inconvénient de cette méthode, au contraire de ’approche 'régularité forte’ présentée dans
le paragraphe précédent, est qu’elle nécessite des hypotheses sur la structure de la trajectoire
(A4) ainsi que des hypotheses de complémentarité stricte uniforme pour assurer la stabilité
de la structure des solutions du probleme perturbé.

Résultats

Nous avons considéré une classe de perturbations (P#) de (P) régulieres (ici, p désigne
le parametre de perturbation, et on suppose que (P) = (P#) pour une certaine valeur ji du
parameétre). Plus précisément, les données dépendent de facon réguliere (C'29) du parametre,
et sont telles que 'ordre de la contrainte du probléme perturbé reste le méme que celui du
probléme de départ. Pour une analyse lorsque l'ordre de la contrainte varie, voir [81], [82].

Nous avons tout d’abord utilisé 'approche par le tir dans ’analyse de stabilité et sensibilité,
en affaiblissant 'hypothése de complémentarité stricte aux points de contact isolés. Dans ce
cas la structure des solutions n’est pas stable, a la différence de [93| 94]. Cependant, nous
avons montré que sous les hypotheses précédentes, si I’hypotheése de complémentarité stricte
uniforme sur les arcs frontieres est satisfaite, i.e.

d
35 >0, d_7t7 > (3 sur lintérieur des arcs frontieres (0.40)

alors les arcs frontieres sont stables pour des contraintes d’ordre un et deux. Sous '’hypothése
supplémentaire suivante

Tous les points de contact isolés 7, sont réductibles, i.e. satisfont ((L24]), (0.41)

nous obtenons le résultat suivant, le premier de ce type sur la stabilité structurelle des points
stationnaires. Ce résultat est basé sur les théoremes Bl et B8 pour la stabilité des arcs frontiere
pour les contraintes respectivement du premier ordre et du second ordre.

Théoréme 0.6. Soit (u,y) un point stationnaire de (P) satisfaisant (A0)-(A4), (A1) - LZT)
et si la contrainte sur ’état est d’ordre ¢ > 3 sans arc frontiére. Alors il existe des voisinages
Voo de u dans L™ et W de i tels que tout point stationnaire (u,y) de (PH) avec u € Voo et
1 € W wvérifie les propriétés suivantes :
(i) La contrainte sur l’état n’est pas active en dehors d’un voisinage de [’ensemble de
contact I1(g(y)).
(ii) Aw voisinage d’un arc frontiére de (u,y) (¢ =1,2), (u,y) a un unique arc frontiére.
(iii) Aw voisinage d’un point de contact isolé essentiel de (u,y) (q > 2), (u,y) a un unique
point de contact isolé (essentiel).
(iv) Au voisinage d’un point de contact isolé non essentiel de (u,y),
(a) si g =1, ou bien la contrainte sur l’état n'est pas active, ou bien (u,y) a un unique
point de contact isolé (non essentiel) ou un unique arc frontiere,
(b) siq > 2, ou bien la contrainte sur ’état n’est pas active, ou bien (u,y) a un unique
point de contact isolé (essentiel ou non).
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Sous les hypotheses du théoreme ci-dessus, il existe donc un nombre fini de structures
possibles pour les solutions du probleme perturbé. Des différences de structure peuvent se
produire seulement la ou la complémentarité stricte n’est pas satisfaite, i.e. aux points de
contact isolés non essentiels. Avec le théoreme [L6, on peut alors conduire ’analyse de stabilité
et de sensibilité par une méthode de tir, car il est possible, dans ce cas, de construire une méme
fonction de tir englobant les différentes structures possibles. Le cas le plus simple est celui des
contraintes d’ordre > 2 pour lesquelles un point de contact isolé peut seulement disparaitre.
Pour les contraintes d’ordre 1, la situation est plus compliquée car un point de contact isolé
peut aussi se transformer en arc frontiere. L’idée est alors de considérer dans la fonction de tir
un point de contact isolé comme un arc frontiere de longueur nulle. Nous appliquons ensuite
la théorie de la régularité forte de Robinson [T21] & la formulation de tir en résultant (sous
forme d’une équation généralisée en dimension finie avec contraintes de complémentarité).
Nous obtenons ainsi le résultat suivant, basé sur le théoreme et les théoremes B.IT] et 22341
pour les contraintes respectivement du premier ordre et d’ordre supérieur ou égal a deux.

Théoréme 0.7. Soit (@, ) un point stationnaire de (P) satisfaisant (A0)-(A4), (ILZ0)-({L21)
et si la contrainte est d’ordre q > 3 sans arc frontiere. Alors les propositions suivantes sont
équivalentes.

(i) Pour toute perturbation suffisamment réguliére (P*) de (P), il existe a,p > 0 et un
voisinage W de [ tels que pour tout u € W, il existe un unique point stationnaire (u*, y*)
de (PH*) avec ||ut — illoc < p (et d’unique multiplicateurs associés (p*,n*)), et ce point
stationnaire vérifie la condition de croissance quadratique uniforme

JH () > JMuP) + allu — w3, Yu el ; ||i—ullew <p, GH(u) € K. (0.42)
(ii) La condition suffisante du second ordre forte ci-dessous est vérifiée :
Q(v) >0, VYoveL*0,7)\{0} satisfaisant ([(32). (0.43)

De plus, si (i) ou (i) est satisfait, alors Uapplication W — U x Y, p — (u*, y*) est lipschit-
zienne, et directionnellement différentiable dans ’espace L™(0,T) x WHT(0, T;R™) pour tout
r € [1,4o00].

Les dérivées directionnelles des solutions sont obtenues comme solution d’un probléme
linéaire quadratique avec contraintes d’égalité et d’inégalité. L’équivalence du Th. L7 montre
que la condition du second ordre ([IZ3]) est la plus faible possible pour avoir la stabilité des
solutions. La stabilité des multiplicateurs est un peu plus délicate & énoncer, car a I’exception
des contraintes du premier ordre, les multiplicateurs p et 1 ne sont pas stables pour la norme
L°° (en raison de la présence de sauts dont l'instant varie).

Pour les contraintes d’ordre deux (ou d’ordre supérieur a deux), les résultats précédents
ne s’appliquent plus si un point de contact isolé non réductible 74, apparait, c’est-a-dire que
9@ (u(140),y(T40)) = 0. Or ce cas peut se produire au cours des méthodes d’homotopie (voir
section suivante). Dans ce cas, un analogue du Th. est obtenu (théoreme BT3) pour les
contraintes du second ordre, qui explicite les différents changements de structure possibles
lorsqu’il y a un point de contact isolé non réductible. Parmi ces différentes possibilités, un arc
frontiére ou un second point de contact isolé peuvent apparaitre. Ces différents changements
de structure ne permettent plus d’utiliser une approche tir pour ’analyse de stabilité.

Pour cette raison, dans le chapitre 5 de la these, nous étendons la théorie de la régularité
forte de Robinson et les résultats de stabilité obtenus pour les contraintes du premier ordre
[88, 53] & des contraintes du second ordre. Seules les hypotheses (A0)-(A3) et une condition
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du second ordre sont utilisées dans I'analyse. Ce résultat ne fait donc aucune hypothése sur la
structure de la trajectoire. Sous une condition du second ordre du type ([LZ3]) (4 la différence
que la forme quadratique @ utilisée ([L3T) ne fait plus intervenir le terme de courbure), on
montre que localement, le probléme perturbé a une solution locale, localement unique, vérifiant
([@Z2), qui est lipschitzienne par rapport au parameétre pour la norme L? et holdérienne pour
la norme L (théoreme BIZ)).

On obtient donc un résultat plus faible que le Th. (dans la mesure ou on ne montre pas
la stabilité (lipschitz) L°, ni que les solutions sont directionnellement différentiables, et on
perd I'implication (i) = (ii) du Th. [I7)), mais c’est le premier résultat de stabilité (L?) obtenu
pour les contraintes d’ordre 2 sans hypothese sur la structure de la trajectoire. La preuve est
basée sur la définition de multiplicateurs alternatifs, obtenus par intégration du multiplicateur
1 et donc plus réguliers, et ’application du théoreme des fonctions implicites généralisé dans
les espaces métriques de Dontchev et Hager [53] & la condition d’optimalité en résultant dans
un cadre fonctionnel convenable. Ce résultat se généralise aisément a une contrainte d’ordre
q=>3.

0.2.5 Meéthodes d’homotopie
Introduction

Une difficulté pour appliquer I’algorithme de tir en présence de contraintes est la nécessité
de connaitre a priorila structure de la trajectoire optimale, qui en général n’est pas connue. De
plus, I’algorithme de tir ayant un domaine de convergence restreint, méme lorsque la structure
est connue, initialiser tous les parametres de tir (instants de jonction et sauts de ’adjoint) de
fagon a se trouver dans la zone de convergence de 'algorithme est souvent difficile. Une pos-
sibilité pour pallier cette difficulté est d’utiliser une méthode d’homotopie (ou continuation),
voir [T] et @5, Chap. 5]. La méthode d’homotopie consiste a résoudre une suite de problemes
dépendant contintiement d’un parametre, telle que le premier probleme est “facile” a résoudre,
et le dernier probléme est notre probléme d’origine. Ainsi, partant par exemple du probléme
sans contrainte sur 1’état, il devient possible de déterminer de proche en proche la structure
de la trajectoire. C’est ce qui a été fait sur la figure pour arriver a la solution du probléeme
le plus contraint.

Cette méthode, bien connue, a été appliquée avec succes sur un probléme non trivial issu de
I'aéronautique avec contrainte sur I’état d’ordre 3 dans [[I1]. Dans cet article, les changements
de structure étaient gérés “a la main”. Récemment, des méthodes d’homotopie qui réalisent
automatiquement le suivi du chemin ont été appliquées a des problémes avec contraintes sur la
commande [63, 97]. Plus précisément, pour trouver la structure d’'une commande discontinue
(bang-bang ou avec arc singulier), un terme de perturbation quadratique (1 — p)|u(t)|? est
ajouté au cout distribué. La commande solution du probléme pour p < 1 est alors continue
et converge (faiblement-* dans L°°) vers la solution discontinue du probleme de départ pour
i = 1. Ce type d’homotopie est différent de celui que nous décrivons dans la suite car le
probleme de changement de la structure au cours de 'homotopie ne se pose pas.

Résultats

Grace aux résultats de stabilité présentés dans la section précédente, nous pouvons proposer
une méthode d’homotopie qui, sous certaines hypotheses (en particulier la complémentarité
stricte uniforme sur les arcs frontiere ([L40)), détermine automatiquement la structure de la
trajectoire pour une contrainte d’ordre 1 ou 2. Partant du probléme sans la contrainte sur I’état,
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on introduit progressivement celle-ci. La structure des trajectoires va donc changer au cours des
itérations, de méme que la dimension des parametres de tir. La méthode d’homotopie détecte
automatiquement ’apparition ou la disparition d’un arc frontiére ou d’un point de contact isolé
pour une contrainte du second ordre, et, en cas d’apparition d’un arc frontiere ou d’un point
de contact isolé, initialise les parametres de tir associés (saut de ’adjoint et instants d’entrée
et de sortie ou de contact isolé). Ainsi, l'utilisateur n’a plus besoin de connaitre & l’avance la
structure de la trajectoire et doit seulement initialiser ’adjoint initial py pour le probleme sans
contrainte sur I’état. Une méthode de type prédicteur-correcteur est utilisée le long du chemin
d’homotopie lorsque la structure est constante, ce qui améliore la convergence de ’algorithme.
C’est la premiere fois qu'une méthode d’homotopie prend en compte automatiquement des
changements de structure avec changement de la dimension des parametres de tir.

La convergence théorique de I’algorithme d’homotopie a été montrée, sous certaines hy-
potheses, dans la proposition B-44] pour les contraintes du premier ordre et dans la proposition
pour les contraintes du second ordre. L’algorithme a été appliqué numériquement & un
exemple académique avec contrainte du premier ordre dans la section B34l Pour les contraintes
du second ordre, 'analyse est plus complexe en raison du nombre plus élevé de changements
de structure pouvant se produire (points de contact isolés essentiels et arcs frontiére sont tous
deux possibles, alors que seuls des arcs frontiere peuvent se produire pour les contraintes du
premier ordre). Une difficulté théorique (non résolue) pour les contraintes du second ordre est
liée & la possible transformation d’un point de contact isolé non réductible en deux points de
contact isolés (car la fonction de tir devient singuliere), alors que I'apparition d’un arc frontiere
au voisinage d’un point de contact isolé non réductible se traite comme pour une contrainte
du premier ordre.

Les deux points clés dans I'analyse de 'algorithme d’homotopie sont les théoremes et
BET2 qui donnent l’existence et I'unicité locale d’une solution locale au probléeme perturbé, ce
qui permet d’assurer localement 'existence du chemin d’homotopie, et les théoremes et
ET3 qui donnent ’évolution qualitative de la structure des solutions du probléeme perturbé
(nombre fini de possibilités), et permettent ainsi a la méthode d’homotopie de déterminer
automatiquement les changements de structure de la trajectoire.

0.2.6 Cas de plusieurs contraintes sur I’état et de contraintes mixtes
Introduction

Les résultats énoncés précédemment s’appliquent au cas d’une commande scalaire et d’une
contrainte sur ’état scalaire. Qu’en est-il lorsqu’on a une commande et une contrainte g a
valeurs vectorielles 7 Alors que de nombreux articles se sont intéressés au cas de plusieurs
contraintes du premier ordre et de contraintes mixtes, par exemple [65, B8 B3, 54| (en parti-
culier des résultats de régularité sont connus), la seule référence que nous connaissons traitant
le cas de plusieurs contraintes d’ordre supérieur est un article non publié de Maurer [98]. Dans
[75, 68, 94], seule une contrainte scalaire d’ordre élevée est considérée.

L’extension des résultats précédents dans le cas de plusieurs contraintes sur ’état d’ordre
arbitraire n’est pas triviale. Le cas d’une contrainte et d’une commande scalaires est particulier,
car la commande s’obtient comme fonction implicite de I’état sur un arc frontiere par ([I30l), et
on peut ensuite en déduire la régularité du multiplicateur sur les arcs frontieres en différentiant
autant de fois que nécessaire la relation ([LIH)). Cet argument ne s’étend pas au cas ou la
dimension de la commande est différente du nombre de contraintes actives. Par ailleurs, la
proposition sur les conditions de jonctions, qui joue un role important dans la preuve des



0.3. PLAN DE LA THESE 19

théoréemes [0l et LA ne s’étend pas non plus trivialement au cas vectoriel. Ainsi la premiere
question qui se pose est celle de la régularité des solutions et multiplicateurs.

Résultats

Ce sont ces questions qui sont traitées dans le chapitre 4 ou 'on s’intéresse au cas de
plusieurs contraintes sur 1’état, d’ordres arbitraires, et d’'une commande a valeurs dans R,
m > 1. Ce chapitre inclut aussi des contraintes mixtes sur la commande et sur 1’état, qui dans
I’analyse peuvent étre vues comme des contraintes sur ’état d’ordre zéro.

Le premier résultat que nous obtenons est un résultat de régularité de la commande et des
multiplicateurs (section E3]) analogue a celui connu dans le cas scalaire. Dans la proposition
nous donnons une condition suffisante assurant la continuité de la commande, puis dans
la, proposition nous montrons que la commande et les multiplicateurs sont réguliers sur
Iintérieur d’un arc ayant un ensemble de contraintes actives constant. Ensuite nous étendons la
proposition au cas vectoriel dans la proposition La preuve utilise la mise du systeme
sous forme normale (section EA), c’est-a-dire que la dynamique de chaque composante de
la contrainte peut, aprés un changement de variables, étre mise localement sous la forme
canonique ([I19) (lemme ETT).

Une fois ces premiers résultats de régularité obtenus, nous sommes en mesure d’étendre au
cas de plusieurs contraintes sur 1’état et de contraintes mixtes sur la commande et sur I’état les
conditions du second ordre no-gap du théoréme dans les théoréme et corollaire
et analyse de ’algorithme de tir ainsi que le théoreme dans la section B et le théoreme
4 o0

0.3 Plan de la these

Le chapitre 1 correspond a larticle [21]

J.F. Bonnans et A. Hermant. No-gap second-order optimality conditions for op-
timal control problems with a single state constraint and control. Mathematical
Programming, Ser. B., 117 :21-50, 2009.

Les résultats sur les conditions d’optimalité du second ordre y sont présentés, dans le cas d’une
commande et d’une contrainte sur ’état scalaires.
Le chapitre 2 correspond & larticle [19]

J.F. Bonnans et A. Hermant. Well-Posedness of the shooting algorithm for state
constrained optimal control problems with a single constraint and control. SIAM
Journal on Control and Optimization, 46(4) :1398-1430, 2007.

Les résultats sur 'algorithme de tir y sont présentés, toujours pour une commande et une
contrainte sur 1’état scalaires, ainsi que ’analyse de stabilité et de sensibilité par ’approche
tir en présence de points de contact isolés non essentiels pour une contrainte d’ordre supérieur
ou égal a deux.

Le chapitre 3 correspond & article [20]

J.F. Bonnans et A. Hermant. Stability and sensitivity analysis for optimal control
problems with a first-order state constraint and application to continuation me-
thods. ESAIM Control, Optimization and Calculus of Variations, 14(4) :825-863,
2008.
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L’analyse de stabilité et de sensibilité en présence de points de contact isolés non essentiels
pour une contrainte du premier ordre y est présentée, ainsi que la méthode d’homotopie.
Le chapitre 4 correspond & larticle [I7]

J.F. Bonnans et A. Hermant. Second-order analysis for optimal control problems
with pure state constraints and mixed control-state constraints. Annales de [’Ins-
titut Henri Poincaré (C) Analyse Non Linéaire. A paraitre.

Les résultats sur les conditions de jonction (proposition [I.2), sur les conditions du second ordre
et sur 'algorithme de tir des chapitres 1 et 2 y sont étendus pour une commande a valeurs
vectorielles, plusieurs contraintes sur 1’état et des contraintes mixtes sur la commande et sur
I’état.
Le chapitre 5 correspond & article [[Z1]
A. Hermant. Stability analysis of optimal control problems with a second-order
state constraint. SIAM Journal on Optimization. A paraltre.

On y présente les résultats de stabilité pour les contraintes d’ordre deux utilisant une variante
de la théorie de la régularité forte sans hypothese sur la structure de la trajectoire.
Le chapitre 6 correspond a larticle [69]

A. Hermant. Homotopy algorithm for optimal control problems with a second-order
state constraint. Rapport de recherche INRIA RR-6626 (2008). Soumis.

Ce chapitre est également consacré aux contraintes sur I’état d’ordre deux. On y présente des
résultats étendant partiellement ceux du chapitre 3 aux contraintes d’ordre deux, résultats
portant sur la stabilité structurelle des points stationnaires (stabilité des arcs frontieres; le
cas des points de contact isolés non réductibles est également traité) et sur la méthode d’ho-
motopie.

Enfin, dans le chapitre 7 (conclusion) quelques probléemes ouverts dans la continuité des
travaux de cette theése sont présentés (vérification de la condition suffisante du second ordre,
extension des conditions du second ordre aux équations aux dérivées partielles, cas d’un nombre
infini de points de contact isolés et cas de contraintes linéairement dépendantes).

Les six premiers chapitres, rédigés sous forme d’article, et présentés dans l'ordre chro-
nologique, peuvent étre lu indépendamment les uns des autres. Les notations, hypotheéses,
définitions et résultats utilisés y sont rappelés a chaque fois. Le chapitre 1 contient les condi-
tions du second ordre, clé de votte des autres résultats de la these. Le chapitre 2 utilise les
résultats du chapitre 1. Les chapitres 3 et 4 utilisent indépendamment les résultats des cha-
pitres 1 et 2. Le chapitre 5 utilise quelques résultats du chapitre 4. Le chapitre 6 utilise les
chapitres 2, 3 et 5. Le chapitre 7 utilise les chapitres 1 et 4.



Chapitre 1

Conditions d’optimalité du second
ordr

Abstract The paper deals with optimal control problems with only one control variable
and one state constraint, of arbitrary order. We consider the case of finitely many boundary
arcs and touch times. We obtain a no-gap theory of second-order conditions, allowing to
characterize second-order quadratic growth.

Résumé Dans cet article, nous étudions un probleme de commande optimale avec une com-
mande scalaire et une contrainte sur I’état scalaire d’ordre quelconque. Les instants de jonc-
tion sont supposés en nombre fini. Nous obtenons des conditions d’optimalité du second ordre
nécessaires ou suffisantes, qui permettent de caractériser la croissance quadratique.

1.1 Introduction

Considerable efforts have been done in the past for reducing the gap between second-order
necessary and sufficient optimality conditions for optimization problems in Banach spaces,
with so-called cone constraint (i.e. the constraint mapping must be in a convex cone, or more
generally in a convex set). This framework includes many optimal control problems. The
theory of second-order necessary optimality conditions involves a term taking into account
the curvature of the convex set, see Kawasaki [77], Cominetti [41]. By contrast, second-order
sufficient optimality conditions typically involve no such term; see e.g. Maurer and Zowe [[102].
We say that a no-gap condition holds, when the only change between necessary or sufficient
second-order optimality conditions is between a strict and non strict inequality. In that case
it is usually possible to obtain a characterization of the second-order growth condition. There
are essentially two cases when no-gap conditions were obtained: (i) the polyhedric framework,
in the case when the Hessian of Lagrangian is a Legendre form, originating in the work by
Haraux [67] and Mignot [I03], applied to optimal control problems in e.g. Sokolowski [123] and
Bonnans [14], and the extended polyhedricity framework in [24, Section 3.2.3|; this framework
essentially covers the case of control constraints (and finitely many final state constraints);
and (ii) the second-order regularity framework, introduced in [I6] and [I5], with applications
to semi definite optimization. We refer to [24] for an overview of these theories.

*Joint work with J.F. Bonnans. Published in Mathematical Programming Ser. B, 117 :21-50 (2009), under
the title No-gap second-order optimality conditions for optimal control problems with a single state constraint
and control.
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Our paper deals with state-constrained optimal control problems. This occurs in many ap-
plications, see e.g. [I1l, 12, 5, 27, @]. In optimal control theory, no-gap second-order optimality
conditions were known for mized control-state constraints, see e.g. Milutyin-Osmolovskii [[T05)],
Part. 2], Osmolovskii [I08, 109], and Zeidan [127], whose results use conjugate point theory
and Riccati equations.

Generally speaking, problems with non positivity constraints in spaces of continuous func-
tions do not fit into these frameworks, where no-gap second-order conditions were obtained.
The expression of the curvature term in this case was obtained by Kawasaki [[{9, [(8] in the one
dimensional case, and generalized in Cominetti and Penot [42]. Necessary conditions for vari-
ational problems with state constraints taking into account the curvature term can be found
in Kawasaki and Zeidan [80]. However, only sufficient conditions without curvature terms
were known. Two exceptions are a quite specific situation studied in [[16] (with applications
to some eigenvalue problems), and the case of finitely many contact points, when the problem
can be reduced locally to finitely many inequality constraints in semi-infinite programming,
see e.g. Hettich and Jongen [72].

Our main result is the following. By a localization argument, we split the curvature term
into a finite number of contributions of boundary arcs and touch points. Using the theory of
junction conditions in Jacobson et al. [[5] and Maurer [98], we are able to prove that, under
quite weak assumptions, the contribution of boundary arcs to the curvature term is zero. For
touch points, we use a reduction argument for those that are essential (i.e. that belong to
the support of the multiplier) and we make no hypotheses for the non essential ones. The
only delicate point is to compute the expansion of the minimum value of a function in W2,
Since it is not difficult to state sufficient conditions taking into account essential reducible
touch points, we obtain in this way no-gap conditions, that in addition characterize quadratic
growth in a convenient two-norms setting.

The paper is organized as follows. In section [L2], we recall the material needed, in both
points of view of abstract optimization and junction conditions analysis. The main contribu-
tions of the paper are in sections [L3HLH where the no-gap second-order condition is established.
Section states the second-order necessary condition (computation of the curvature term).
Section [C4] handles the second-order sufficient condition. In section [CH, a reduction approach
is presented in order to deal with the non-zero part of the curvature term.

1.2 Framework

We consider the following optimal control problem with a scalar state constraint and a scalar
control:

T
) min [ (o) () + 0(6(T)) (1.1)
st B0 = J(®). () ae te0.T] 5 y(0) = o (1.2
g(y(t)) <0  Vtel0,T]. (1.3)

The data of the problem are the distributed cost £ : R x R™ — R, the final cost ¢ : R — R,
the dynamics f : R x R™ — R", the state constraint g : R” — R, the final time 7" > 0, and
the initial condition yg € R™. We make the following assumptions on the data:
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(A0) The mappings ¢, ¢, f and g are k-times continuously differentiable (C*) with k > 2
and have locally Lipschitz continuous second-order derivatives, and the dynamics f is
Lipschitz continuous.

(A1) The initial condition satisfies g(yo) < 0.

Throughout the paper, it is assumed that assumption (A0) holds.

1.2.1 Abstract Optimization

For 1 < p < oo, LP(0,T) denotes the Banach space of measurable functions such that

T 1/p
|lullp == </ |u(t)]pdt> < oo forp<oo; |lulle = supess|u(t)| < oo,
0

and W1P(0,T) denotes the Sobolev space of functions having a weak derivative in LP. The
space of continuous functions over [0,7] is denoted by C[0,T], with the norm |z|. =
sup |z(t)].

Denote by U := L*>(0,T;R) (resp. J := W1>(0,T;R")) the control (resp. state) space.
A trajectory is an element (u,y) € U x Y satisfying the state equation ([CZ). Given u € U,
denote by y, € Y the (unique) solution of ([L2). Under assumption (A0), by the Cauchy-
Lipschitz Theorem, this mapping is well-defined and of class C*. We may write problem (P)

as:

min Juw) ; Gu)eK (1.4)

where J : U — Rand G : U — C[0,T) are defined, respectively, by J(u) = fOT C(u(t), y(t))dt+

#(yu(T)) and G(u) = g(y,). These mappings are C¥. Here K = C_[0,T] is the set of
continuous functions over [0, 7], with values in R_.

We say that u € U is a (weak) local solution of (L] that satisfies the quadratic growth
condition, if there exist o > 0 and p > 0 such that:

J(@) > J(u) +a i —ul3 for all @ € Boo(u,p), G() € K (1.5)

where By (u, p) denotes the open ball in L>°(0,7T") with center u and radius p. This condition
involves two norms, L°(0,T') for the neighborhood, and L?(0,T) for the growth condition.

The space of row vectors is denoted by R™*. The space of Radon measures, the dual space to
C10,T1], is denoted by M][0,T] and identified with functions of bounded variation vanishing at
zero. The cone of nonnegative measures is denoted by M [0, 7] and is equal to K, the polar
cone of K. The duality product over M[0,T] x C[0,T] is denoted by (n,z) = fOTm(t)dn(t).
Adjoint operators (and transpose in R™) are denoted by a star *. Fréchet derivatives of f, etc.
w.r.t. arguments u € R, y € R", are denoted by a subscript, for instance f,(u,y) = D, f(u,y),
fuu(u, y) = Diuf(uv y)’ etc.

Define the classical Hamiltonian and Lagrangian functions of problem (P), respectively
H:RxR"xR™ —Rand L:U x M[0,T] — R by:

H(u,y,p) = L(u,y) +pf(u,y) 5 L(u,n):=J(u)+ (n,G(u)). (1.6)

Denote by BV|[0,T] the space of functions of bounded variation. Given v € U and 7 €
M[0,T7], let the costate p, 5 be the unique solution in BV ([0, T]; R™) of:

—dpuy = (by(w, yu) + Pup fy(us yu))dt + gy (Yu)dn 5 Pun(T) = dy(yu(T)). (1.7)
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Given v € U, let the linearized state z,, € ) be solution of:

Zu,v = fy(ua yu)zu,v + fu(U7 yu)v ; Zu,v(o) =0. (18)

The mapping U — YV, v — 2, is the Fréchet derivative of the mapping u — y, at point w.
The next lemma gives the expressions of derivatives of Lagrangian, with respect to the
control. For simplicity of notation, we write in the sequel D?H, (u,y)2 (4, Y, D) (v, 2)? instead of

D(2u7y)7(u7y)H(u7 y7p)((v7 Z)? (UJ Z))

Lemma 1.1. Letn € M [0,T]. Thenu +— L(u,n) is of class C* over U, with first and second
derivatives given by, for all v € U (omitting time argument):

T
DuL(u,m)v = / Ho(tty s puy)odt, (1.9)
0

T
DiuL(uv 77) (U, ’U) = /(; IDQI—I(u,y)2 (u7 ywpuﬂ)(v? Zu,v)2dt

T
2 (T) 6y (0(T)) 20 (T) + /0 2 oy (W) i,

where H is given by (LA), 2y, and pyy are the solutions, respectively, to (L8) and (I7).

Proof. Since u — y, is C?, the Cauchy-Lipschitz Theorem ensures the existence of the second-
order expansion of the state

1 2
Yutv = Yu + Zup + izu,vv +o (HUHOO) . (111)

It is easily seen, substituting ([CTI]) into the state equation and keeping the terms of second-
order, that z, ,, is solution of:

Zupv = fy(%yu)zu,zw + sz(u,y)2 (u, yu) (v, Zu,v)2 ; Zu,vv(o) =0. (1.12)

Using costate equation (L)) and linearized state equations (X)) and ([CIZ), we get easily
(omitting arguments):

T
D.Liwm = - / (unzas + Pasundt) + 6y (a(T)) 200 (T)
0 T
—I—/ H,vdt;
T 0
DZUL(u,n)(v,v) = /0DzH(u,y)Q(vvzu,v)zdt‘i‘Zu,v(T)*¢yy(yu(T))Zu,v(T)

T
+ /0 Zy w9y (Yu) Zuwdn)

T
- /0 (dpu,nzu,vv + pu,nzuﬂwdt) + d)y (yu (T))ZU,UU (T)

To obtain (L) and (CI0) it suffices, in view of Lemma in the Appendix, to integrate by
parts in the above expressions p,,, with z,, and with z, .., respectively. U
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First Order Necessary Condition. For z € K = C_(0,T), define the first order contact
set I(x) :={t € [0,T] ; z(t) = 0}. The expression of the tangent and normal cones (in the
sense of convex analysis) to K at point z, respectively Tk (z) and N (x), are well-known (see
e.g. [24]) and given, for z € K (these sets being empty if x ¢ K), by:

Ti(z) = {heC[0,T]; h(t)<0on I(x)},
Ni(z) = {ne My[0,T]; supp(dn) C I(z)}.

Here by supp(dn) we denote the support of the measure n € M[0,T], i.e. the complement
in [0,77] of the largest open set W C [0,T] that satisfies: fOT x(t)dn(t) = 0, for all functions
x € C0,T] vanishing on [0,T] \ W.

Let uw € U. We say that n € M[0,T] is a Lagrange multiplier associated with w if the
following first order necessary optimality condition holds:

D, L(u,n) =DJ(u) + DG(u)*n=0 ; né€ Ng(G(u)). (1.13)

The set of Lagrange multipliers associated with wu is denoted by A(u).
Robinson’s constraint qualification (see [T19, [T20]) for problem (L) is as follows:

de >0, eBc C G(u) + DG(uw)U — K. (1.14)

Here B¢ denotes the unit (open) ball of C[0,T7.
The next theorem is well-known (see e.g. [24], Lemma 2.99 and Theorem 3.9). Note that
for v € U, we have DG(u)v = gy(yu)Zuw, 1€, (DG(w)v)(t) = gy(yu(t))zu(t), for all t € [0,T].

Theorem 1.2. (i) A characterization of (I.14) is:
There ezists v € U;  gy(yu(t))zuw(t) <0, for allt e I(g(yy)). (1.15)

(i) Let u be a local solution of (I4), satisfying (LL3). Then with u is associated a non empty
and bounded set of Lagrange multipliers.

Second Order Analysis. Let the critical cone be defined by:
Cu) ={veld; DGu)v € Tx(G(u)) ; DJ(u)v < 0}. (1.16)
For h € Tk (z), the second-order contact set is defined by:
I*(z,h) = {t € I(x) ; h(t) = 0}. (1.17)

If (CI3)) holds, then DJ(u)v > 0 for all v such that DG(u)v € Tk (G(u)) and DJ(u)v = 0 iff
n L DG(u)v. Since n is a nonnegative measure with support in I(G(u)), and DG(u)v < 0 on
I(G(u)), we obtain the following (classical) statement:

Lemma 1.3. Let (u,n) satisfy the first order necessary condition (LI3). Then:
C(u) = {v e U; DG(u)v € Tx(G(u)); supp(dn) C I*(G(u), DG(u)v)}. (1.18)

The inner and outer second-order tangent sets, respectively Tf{’i(x,h) and T%(z,h), are
defined by:

Tf(”'(x,h) = {w € C[0,T); dist(z + ch + 3&’w, K) = o(e?), € > 0},
Ti(z,h) = {weC[0,T]; Je, | 0,dist(z + e,h + 362w, K) = 0(e2)}.
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We recall the characterization of the inner second-order tangent set Tf(’i(x, h) due to Kawasaki
[79, 78] (see also Cominetti [42]): if z € K and h € Tk (x), then

Ti'(z,h) = {w € Cl0,T] ; w(t) < cuu(t) on 0,77}, (1.19)

where ¢, 5, : [0,T] — R is given by:

0 if t € (int I(x)) N I%(x,h)
Gen(t) = liminf M if t € I(x) N I%(z,h) (1.20)
’ t—t;zt)<0  2z(t) ’
+00 otherwise.

Here h(t); := max{h(t),0}, and int S and JS denote respectively the interior and boundary
of set S. Set 7 (x,h) := dI(x) N I*(z,h). We have ¢, (1) < 0 for 7 € T(x,h) and it is
not difficult to check that ¢ — ¢, ,(t) is lower semi-continuous. Consequently, T’ éz(x, h) # 0
iff ¢;n(t) > —oo for all ¢t. In that case, ¢;p is the upper limit of a increasing sequence of
continuous functions (g,). Given n € M[0,T], we may define (see e.g. [79)]):

/OT Se,n(t)dn(t) = sup {/OTq(t)dn(t); ¢ < gm} € RU{+o0}.

Then:

) T
o(n, Te' (x,h)) = /0 sen(t)dn(t), (1.21)

where o (), S) = sup,,cg (7, w) denotes the support function of the set S. If the support of n
satisfies supp(dn) C I%(z, h), then

o(n, T2 (x,h)) <O0. (1.22)
A second-order necessary condition due to Kawasaki [77] is:

Theorem 1.4. Let u be a local solution of (I.4) satisfying (I.14). Then, for all v € C(u),
the following holds:

sif()){DguL(u,n)(v,v) — o(1, TR (G(w), DG(w)v)) } = 0. (1.23)
nei(u

Remark 1.5. The above second-order necessary condition was improved by Cominetti in [41],
by stating that for all convex set Sy, C T%(G(u), DG(u)v),

sup { Dy, L(u,n)(v,v) —o(n,Sun) } > 0. (1.24)
neA(u)

Th. [ is obtained for the particular choice of S, , = le{’i(G(u), DG(u)v). For the problem
considered in the present paper, we gain sufficient information from ([C2Z3]) (see Proposition

[CT4).
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1.2.2 Junction Condition Analysis

We first recall some classical definitions. A boundary (resp. interior) arc is a maximal interval
of positive measure Z C [0, 7] such that g(y(t)) = 0 (resp. g(y(t)) < 0) for all t € Z. If [Ten, Tex)
is a boundary arc, 7., and 7., are called entry and exit point, respectively. Entry and exit
points are said to be regular if they are endpoints of an interior arc. A touch point 7 in (0,7)
is an isolated contact point (endpoint of two interior arcs). Entry, exit and touch points are
called junction points (or times). We say that the junctions are regular, when the entry and
exit points are regular. In this paper, only the case of finitely many regular junctions is dealt
with.

The first-order time derivative of the state constraint when y satisfies the state equation
@), ie., ¢ (u,y) = %g(y(t)) = g,(y) f(u,y), is denoted by ¢! (y) if the function R x R™ —

R; (u,y) — gy(y)f(u,y) does not depend on w (that is, the function (u,y) — gq(tl)(u,y) is

identically zero). We may define similarly g@ . ... gD if g, f are C7 and if gz(f ) = 0, for all
j=1,...,q—1, and we have g\ (u,y) = gggj_l)(y)f(u,y), forj=1,...,q.

Let ¢ > 1 be the smallest number of time derivations of the state constraint, so that a
dependence w.r.t. u appears, i.e. g&q) % 0. If ¢ is finite, we say that g is the order of the state
constraint (see e.g. Bryson et al. [29]).

Let u € U be a solution of the first order necessary condition ([[I3]), with Lagrange
multiplier 7 and costate p,, , solution of (7). Since n and p,,, are of bounded variation, they
have at most countably many discontinuity times, and are everywhere on [0, 7] left and right
continuous. We denote by [1(7)] = n(7+) — n(7~) where n(7%) = lim,_, = n(t) the jump of 7,
at time 7 € [0,7]. We make the following assumptions:

(A2) The Hamiltonian is strongly convex w.r.t. the control variable, uniformly w.r.t. ¢ €
[0, T7]:
Iy >0,  Hyuu(,yult),puy () >~y VaeR, vt €[0,T). (1.25)

(A3) (Constraint regularity) The data of the problem are C%4, i.e. k > 2q in (A0), the state
constraint is of order ¢ and the condition below holds:

38>0,  |¢P ),y ()| =8,  vte[0,T]. (1.26)

(A4) The trajectory (u,y,) has a finite set of junction times, that will be denoted by 7 =:
Ten U Ty U Ty, with Ty, 7o, and Ty, the disjoint (and possibly empty) subsets of
respectively regular entry, exit and touch points, and we assume that g(y,(7")) < 0.

The above hypotheses imply the continuity of the control variable and of some of its
derivatives at junction points (see Proposition [[7] below).

Remark 1.6. 1) An assumption weaker than (A2), that is enough for the sufficient conditions
in section [C4] and [[C3) is

(A2’) (Strengthened Legendre-Clebsch condition)

3~ >0, Hoy (u(t), yu(t), pun(t)) > a.e. t € [0,T]. (1.27)

Condition (CZ27) does not imply the continuity of the control.
2) In assumption (A3), it is in fact sufficient to assume that ([C26) holds for ¢ in the neigh-
borhood of the contact set I(g(y,)). In the definition of the order of the constraint g, it is
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sufficient as well to restrict the variable y to a neighborhood in R™ of {y,(t) ; t € I(g(yu.))}-
3) The various results of this paper (Theorems [ T2, [[TS], and Corollaries and [[T3)
as well as Prop. [ below, are still true, replacing the assumption (A2) by the weaker as-
sumptions that the control is continuous on [0, 7] and ([CZ7) holds.

A touch point 7 € Ty, is said to be essential, if the Lagrange multiplier n satisfies [n(7)] > 0.
The set of essential touch points of the trajectory (u,y,) will be denoted by 7,5°%.

The next proposition is due to Jacobson et al. [75]. Its proof was later clarified in Maurer
[98], see also the survey by Hartl et al. [68].

Proposition 1.7. Let v € U satisfying (LI3) with Lagrange multiplier n and assume that
(A2)-(A4) hold. Then:

(i) The control u is continuous over [0,T] (in particular at junction points T € T ) and C'? on
[0,T]\ T. The multiplier n is continuously differentiable on [0,T]\ T.

(il) If 7 € Tep U Tey is a reqular entry or exit point, then: (a) if ¢ is odd, n and the ¢ — 1 first
time derivatives of u are continuous at 7; (b) if q is even, the q—2 first time derivatives
of u are continuous at T.

(iii) If 7 € Tz is a touch point, then: (a) the ¢ — 2 first derivatives of u are continuous at T;
(b) if ¢ = 1, then n and @ are also continuous at T (that is, if ¢ = 1, then (u,y,) does
not have essential touch point).

Remark 1.8. Under the assumptions of Prop. [[7, we have the following decomposition:
dn(t) = no(t)dt + > c7v-6-(t) where &, denotes the Dirac measure at time 7, the density

no € L1(0,T) is equal to % on [0,77\ 7 and v, := [n(7)] > 0. We have v, = 0 if ¢ is odd and
T is a regular entry/exit point, and if ¢ = 1 and 7 is a touch point.

We end this section by a result on constraint qualification and uniqueness of the multiplier.
For this we need the expression of the time derivatives of DG(u)v.

Lemma 1.9. Assume that f,qg are C? and that ggj) =0, forj=1,...,q—1. Then: (i) For
all v e U, the following relations hold:

dJ

@gy(yu)zu,v = gg(/j)(yu)zu,va j=1...,q—1, (1'28)
d (a) (@)
a9 Wa)zue = 057 (W y) 20 + 97 (0, yu)v- (1.29)

(ii) If in addition, (C26)) is satisfied, then DG(u) is an isomorphism between L*°(0,T) and
the space W defined by:

W = {p e W9(0,T) ; ¢ (0)=0; j=0,...,q—1}. (1.30)

Proof. (i) By (LH), we have:

d
0 Wa)zue = Gy (W) F(u Yu) zuw + 9y W) Fy (0 Yu) 2uw + 9y (Yu) fut, yu)v
= 95" () 2w + 98 (1, 5 0.
Since ggj) =0 for j =1 to g— 1, we obtain by induction that ;—;gy(yu)zu,v = gggj)(yu)zuw is
independent of v, and that the derivative of order ¢ has the expression in ([L29).
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(ii) If in addition ([C2H) is satisfied, it is easily seen by ([LZH) that for all ¢ € W, there exists
a unique v € U such that gy(yu)zun = . The conclusion follows from the open mapping

theorem.
O

Proposition 1.10. Assume that (A1) holds, and let uw € U satisfy (A3). Then: (i) Robinson’s
constraint qualification (ILIA) holds; (i) if A(u) # 0, the Lagrange multiplier n associated with
U 1S UNIqUe.

Proof. 1t is obvious by Lemma [CA(ii) and Th. (i) that (CI]) holds iff (A1) does. This
proves (i). Assume that 71,72 € A(u) and set p = ny —m € MJ0,T]. Since DG(u)*u = 0,
it follows that fOT e(t)du(t) = 0, for all ¢ € W, with W defined by ([L30). Since g(yo) < 0,
we have supp(du) C [2g,T] for some € > 0. Taking the restriction to [¢,T] of functions in
DG (u)U, we obtain the whole space W%*°(e,T'). By density of the latter in Cle, T| we deduce
that for all p € C0,T], fOT e(t)du(t) = faT o(t)du(t) = 0. Hence dp = 0, which achieves the
proof of (ii). O

1.3 Second-order Necessary Conditions

1.3.1 Basic Second-order Necessary Conditions
Let u € U satisfy assumptions (A2)-(A4) and n € A(u). We make the following assumptions.
Let ¢ :=2q — 1 if ¢ is odd and ¢ := 2q — 2 if q is even.

(A5) (Non Tangentiality Condition)

(i) For all entry times 7¢, € 7¢,, and all exit times Te, € Tey:

) e <0: A ®)s <0 (131)
dea+1 9\Yu t=Tcn, ) Qa1 I\Yu t=rt . :

(i) For all essential touch points 4, € T,5%:

d2
390t li=r, < 0. (1:32)

(A6) (Strict Complementarity on boundary arcs): int I(G(u)) C supp(dn).

Remark 1.11. 1) By Proposition [[1 the expressions appearing in assumption (A5)(i)-(ii)
are well-defined, and ¢ + 1 is the smallest possible order for which the corresponding time
derivative of g(y,) may be discontinuous at an entry or exit point. Therefore assumption (A5)
does not contradict the junction conditions in Prop. [l Note that ¢ = g for ¢ = 1, 2.

2) Only the assumption (A6’) below, weaker than (A6), is used in necessary condition of
Theorem [LT2 in order to ensure that the second-order tangent set T’ I%Z(G(u), DG(u)v) is not
empty, for all v € C(u):

(A6’) (Strict Complementarity near entry/exit of boundary arcs): For all entry points 7., €
Ter, and exit points 7., € 7Ze,, there exists € > 0 such that:

(Ten’ Ten + 5) - Supp(dn) ; (Ter - &, Ter) C Supp(dﬁ)- (133)
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Actually assumption (A6’) is needed only when g is even, since it follows from (A2)-(A4) and
(A5)(i) whenever ¢ is odd, see e.g. [19, Lemma A.Z]ﬂ.

Note that we do not assume strict complementarity at touch points.

Theorem 1.12. Assume that (A1) holds. Let uw € U be a local solution of ([IF)), with its
Lagrange multiplier n, satisfying (A2)-(A5) and (A6°). Let T,5%° denote the (finite) set of
essential touch points of the trajectory (u,y,) and vy = [n(7)] > 0, for 7 € 7. Then, for all
ve Cu):

(95" (Wu (7)) 2u,0(7))?
D2, L(u,n)(v,v) — v~ ’ > 0. 1.34
o) = 2 v e 130

Corollary 1.13. Under the assumptions of Theorem [LI3, if the trajectory (u,y,) has no
essential touch point (in particular, if the state constraint is of first order ¢ = 1), then
D2, L(u,n)(v,v) >0, for all v € C(u).

In the sequel, we denote I?(G(u), DG(u)v) by I7 . For all v € C(u), by (CIH), we have
75° C (Teo N Igm). Let us denote the subset of critical directions that “avoid” non essential
touch point (i.e., such that g(y,(7))zun(7) <0, for all 7 € Ty, \ T,5%%) by:

Co(u) :=={velCu); TpoN Iiv =T.5°°}.

The first step of the proof of Theorem [[LTJ consists in computing the sigma-term for the
critical directions in Cp(u).

Proposition 1.14. Let v € Co(u). Under the assumptions of Theorem [L14, we have that

(1) 2
o(n, T (G(u), DG (u)v)) = y, G (WelT)oun (1))
(77 K ( ( ) ( ) )) T%}ss %g(yu(t)”t:T

(1.35)

Proof. The proof is divided into 3 steps. We first analyse the contribution of entry /exit points,
then the one of touch points, and finally conclude.

Remind that by ([C20), only the points in 9I(G(u)) N Iiv have a contribution to the sigma
term. Note that OI(G(u)) = 7. Set Gy := Sy = SG(u), DGy and let T € T N7 .

By (C20), we have:

yu),gy(yu)zu,v

(1.36)

L U 0)z (),
wol™) = i T )

1) (Entry/exit point). Assume that 7 € 7c,U7c,. According to Prop. [LZ(ii), time deriva-
tives of the control at regular entry/exit points are continuous until order ¢ — 2 if ¢ is even,
and ¢ — 1 if ¢ is odd. Consequently, by definition of the order of the state constraint, the
time derivatives of ¢(y,) are continuous at 7 until order 2¢ — 2 if ¢ is even, and 2¢ — 1 if ¢ is
odd. Hence they all vanish at entry/exit time 7 of a boundary arc. It follows that for ¢ in a
neighborhood of 7 on the interior arc side, a Taylor expansion gives, by definition of §:

di+1 (t _ T)dﬂ

9u(®)) = T 9Wul=rs NCESI +o((t — 7)), (1.37)

where, for the sake of simplicity, we denote by 7% either 7~ if 7 € T, or 77 if T € T,

'Lemma EZZ4 of this thesis.
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Combining Lemma and (A6’), we see that for all v € C(u), the function (of time)
9y(Yu)zu, vanishes just after entering or before leaving a boundary arc on a small interval
[7,7 £+ €], and so do its first ¢ — 1 time derivatives since the latter are continuous by Lemma
[CI(i). The derivative of order g of gy(yu)2un being a bounded function by ([C2J), we have,
on the interior arc side:

|9y (yu(t)) 20,0 ()] < Clt — 7% (1.38)

If ¢ is odd, combining (L37) with ¢ = 2¢ — 1 and (L38]) and by tangentiality assumption
(A5)(i), we deduce from ([C30) that:

. 02(t _ 7_)2(1
gu,v(T) > lITli 4 = 2 o
t—7 (R—qu(yu)‘t:T:t eI + o((t — 7)%)
If ¢ is even, (L3D) with ¢ = 2¢ — 2, ([3]) and (A5)(i) in ([L36) give:
C%(t — )%
gu,v(T) > ( 7') o

im — —
tor c?t;q—l g(yu)|t:7'i ((gq)_f)! + 0((t — 7—)2(1—1)

Since ¢y,(7) < 0 by ([C20) at an entry or exit point, it follows that (when ¢ is even) ¢, ,(7) = 0.

2) (Touch point). Assume now that 7 € Ty, N I7 . If that case happens, since v € Co(u),
our hypotheses imply that 7 is an essential touch point satisfying ([L32)), and hence, that
q > 2. Since g(y,) has an isolated local maximum at 7, g(y,) and g(*)(y,) vanish at 7 while
%g(l)(yu) = ¢ (u,y,) is nonpositive and continuous at 7 since u is continuous by Prop.
[C7(i). We thus have:

d t—7)2
o(®) = g0 )l LT (-2, (1.39)
Since 7 € I3, we also have g,(yu(7))zu,(7) = 0. The function g,(y.)zu,s being C*' (since
q > 2) with almost everywhere a bounded second derivative, we get by ([L28]), taking the

nonnegative part:
(9y (W) 200 (8)+ = (95" (W (7)) 200 (T) (E = 7)) + 0(t = 7). (1.40)

From (C39), ([CZ0) and (A5)(ii), (9y(Yu)zu,0)%/9(yy) is left-and right continuous when ¢ — 7.
Therefore, taking the liminf when t — 7 comes to take the min of both limits when t — 71

and t — 7, thus we obtain:

BN 771G ) 0 o) N WO 21 ) 0 o)
Sup(T) = 1{ 7O (7). 3 (7)) ,0}_ o (). 3 (7)) > —0o0. (1.41)

3) (Conclusion). For all 7 € T N Iiv, we showed that ¢, ,(7) > —oo. Therefore we may
apply ([CZI). Set Iy := int [(G(u)). By (I8, we have supp(dn) C I, and in view of remark

we may write that:

o(n, T2 (G(u), DG(u)v)) = /I G ®m®dt+ S vrcu(r) (1.42)

0 TeTNIZ,

where g € L'(Iy) and v, = [n(7)]. By (CZ0), 6, vanishes on Ioﬂliv and thus on IyNsupp(no).
Hence, [} Suw(t)no(t)dt = 0. If 7 € Tep U Teg, we have, if ¢ is odd, v; = 0 by Prop. [LT(ii)(a)
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and we showed that ¢, ,(7) > —oo. If ¢ is even, we showed in point 1) that ¢, ,(7) = 0 (and
we have v, < 4+00). In both cases, we deduce that v,¢,,(7) = 0.

It remains only in (CZ2)), when g > 2, the contribution of finitely many touch points 7 in
Tio N Iiv = 7,5%° with ¢, ,(7) given by (([CZI)). Hence (L3H) follows. O

Proof of Theorem [L13. Combining Theorem [[4] and Propositions and [LT4, we obtain
that (L34) holds, for all v € Cp(u). Since the left-hand-side of ([L34) is a continuous quadratic
form, it remains nonnegative on the closure of Cy(u). We end the proof by checking that the
latter is equal to C'(u), the cone of critical directions.

Since C(u) is closed and contains C(u), we have of course Co(u) C C(u). We prove the
converse relation. Let vy € C(u). We remind that v € C(u) iff gy(yu)2zu < 0 on I(g(y,)) and
9y(Yu)Zu,» = 0 on the support of the Lagrange multiplier . Let p : R — R be a function of class
C* having support on [—1, 1] which is positive on (—1,1). For € > 0, set p.(t) := 4" p(t/e),
thus we have p. — 0 in W%, By Lemma [[(ii), for £ > 0 small enough, there exists a
unique v, € L*(0,T") such that g(yu)zuv. = 9(Yu)Zuwe — ZteTw\TﬁS pe(t — 1) € Wo(0,T).
Then we have g, (yu)2zuv. = 9y(Yu)2uw, outside (7 —e, 7+ ¢), for all non essential touch point
T, Gy(Yu(T))Zuv. () < 0 for such 7, and hence, the touch points being isolated, for € > 0 small
enough, v, € Cy(u). Since DG(u)ve — DG(u)vg in W, where W was defined in ([C30), and
DG(u) has a bounded inverse by Lemma [[L(ii), we have v. — vy in L>°(0,7) when € | 0.
The conclusion follows. O

1.3.2 Extended Second-order Necessary Conditions

The solution z,, of the linearized state equation (L) when v € L?(0,T), is well-defined and
belongs to H'(0,7) C C[0,T]. Thus we may extend continuously DJ(u) and DG(u) over
L?(0,T) (we keep the same notations for the extensions). Since DG(u) : L%(0,T) — C0,T],
it makes sense to extend the critical cone C(u) defined in (ICIH) to critical directions in L2,
as follows:

Cra(u) = {v e L*0,T) ; DG(u)v € Tx(G(u)) ; DJ(u)v < 0}. (1.43)

Note that when (u,n) satisfies (CT3), relation (CIN) remains true with Cp2(u) and L2(0,7)
instead of respectively C'(u) and U.

The necessary and sufficient second-order conditions involve respectively C'(u) and Cz2(u)
(see sections [[Al and [CH]). Therefore, to obtain the no-gap second-order conditions, we need
the following variant of Theorem

Corollary 1.15. The statements of Theorem [LIZA and Corollary LT3 still hold replacing
assumption (A6°) and C(u) respectively by (A6) and Crz(u).

Corollary is obtained as a consequence of Th. [[TZ the continuity of the left-hand
side of (C34) w.r.t. v € L?, and the density of C(u) in Cp2(u) (Lemma [CI7). To prove the
latter, we first need a general result.

Lemma 1.16. Let ¢ > 1 and a < b € R. Then for all & € H9(a,b) = W%2(a,b), there exists a
sequence (xp,) of W% (a,b) such that a:q(f)(a) = :0)(a), xm(b) = 20)(b) forallj =0,...,q—1,
n €N and ||z, — |42 — 0.

Proof. Set &, := (Z(a),..., 29 D(a))*, & = (&(b),...,2@D(b)* € R? and @ := & €
L?(a,b). For u € L?(a,b), let z,, € H(a,b) be the solution of:

x(q)(t) =u(t) ae. onla,b ; (xu(a),... ,x&q_l)(a)) =3

u

(1.44)

*
a*
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For n € N, consider the following problem:
(Pn) min$flu—al3 ; Au=2, ; u€lUy, (1.45)

where U, := {u € L?(0,T) ; |u(t)] <na.e}and A: L? — R ; u — (x,(b),... ,x&q_l)(b))*.
By construction, A@ = 3. It is readily seen that the mapping L?(a,b) — H9(a,b); u > x,
solution of ([CZ4) is continuous. Since HY(a,b) has a continuous inclusion into C47[a, b], it
follows that the linear mapping A is also continuous.

Let us first show that for n large enough, the problems (P,) are feasible and uniformly
qualified, that is there exist ng € N and dy > 0 such that

Ty + 0pBra C .AZ/{nO c AU, vn > ng, (1.46)

with Bge the unit ball in R?. Indeed, consider e.g. for 6 € R? the (unique) polynomial
function zs of degree 2q — 1 that takes with its ¢ — 1 first derivatives the values &, and & + §
at a and b. It is easily seen that its coefficients are solution of a full-rank linear system with
Iy — &4 + 0 as right-hand side, hence, taking the sup over (¢,0) € [a,b] X Bra(0,00) of the

functions us(t) = x((;q) (t) that are C* w.r.t. t and 0 provides an uniform bound ng such that

(CZ8) holds.

Since Robinson’s constraint qualification holds for n large enough, there exists a (unique)
optimal solution w,, of (P,,) and a normal Lagrange multiplier \,, € R?*, such that (throughout
the proof, (-,-) denotes the scalar product over L?):

0 < (up—0+ A" A, v — up) Yo € Uy,. (1.47)

Since the feasible set of problem (P,) is increasing for inclusion when n — +o00, the cost
function is decreasing, thus ||u, — /|2 is bounded. Hence the sequence (u,) converges weakly
to some @ € L?. We may rewrite ([CA7) as:

tn — @||3 4+ A — Av) < (U, — 4,0 — @) Yo € Uy,. (1.48)

Qualification property ([CZ6]) implies that dg|\,| < SUDy et An(Zp — Av), hence, taking the
sup for v € Uy, successively in the right and left hand side of ([LZ])), we deduce that for some
constant K (ng) > 0 that depends on ng, we have do|\,| < K(ng), for all n > ng. Therefore the
sequence (A,) is uniformly bounded. Define now v,, € U, as v,(t) = max{—n;min{n, u(t)}}
a.e. By the Lebesgue dominated convergence Theorem, v,, — 4 in L? and by ([CZ8)):

ltun — @) < (tp — G0, —4) + A\p(Av, —3) — 0,

since u,—0 — u—u0 weakly in L2, v,—@ — 0 strongly in L2, \,, is bounded and Av,, — Al = &}
by continuity of A. It follows that ||u, — u||2 — 0 and the sequence x,, := x,,, satisfies all the
required properties, so the proof is completed. ]

Lemma 1.17. Let u € U and n € A(u) such that (A3), (A4) and (A6) are satisfied. Then
C(u) is a dense subset of Cr2(u).

Proof. Since (A4) holds, denote by 0 < 71 < ... < 7y < T the junction times of the trajectory
(u,yu), and set 79 := 0, 7y41 = T. Let v € Cp2(u) and set x := DG(u)v. By Lemma
applied on intervals [1j, 7x+1] that are not boundary arcs, there exists a sequence x,, €
We°°(0,T) such that z, = 0 = = by (A6) on boundary arcs, xg)(m) = zU)(7,) for all
j=0,...,¢g—1land k =0,...,N +1, and =, — 2z in H?. By (A3) and Lemma [[9ii), we
may define v,, € L*°(0,T) such that DG(u)v,, = z,, for all n. It is readily seen that v, € C(u)
for all n and v, — v in L?, which achieves the proof. O
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1.4 Second-order Sufficient Conditions

The second-order sufficient conditions theory classically involves two norms, namely L? and
L, see Ioffe [(3, Part III] and Maurer [99].

Assume that X, Z are Banach spaces endowed with the norms ||-|| y and ||-|| ;, respectively,
such that Z C X with continuous embedding. Let k € N. We say that r(z) = Oz(||z|%) if
Ir(x)| < C||lz|/% for some C > 0 when ||z||z is small enough. We say that r(z) = oz(||z|/%) if
Ir(v)|/l|z||% goes to zero when ||z||z goes to zero. In the sequel, || - ||, (vesp. || - ||»;,) denotes
the norm of the space LP(0,T) (resp. the Sobolev space W™P(0,T)), for 1 < p < oo and
r=1,... < +oo. We write O, and O, for respectively Oy, and O|.,.,, and we use the
same convention for o, and o;.,. Similarly, B, and B, , denote open balls in LP and WP,
respectively.

We remind that a quadratic form @Q(v) on a Hilbert space is a Legendre form (Ioffe and
Tihomirov [74]), if it is weakly lower semi-continuous (w.ls.c.) and if v, — v weakly and
Q(v,) — Q(v) imply that v, — v strongly.

The next theorem gives the second-order sufficient condition in its well-known form (i.e.
without the curvature term).

Theorem 1.18. Let u € U satisfy (LI13) with Lagrange multiplier n and assume that (A2’)
holds. If the following second-order sufficient condition is satisfied:

D2, L(u,n)(v,v) > 0 Vo e Cra2(u) \ {0} (1.49)

then w is a local solution of ([IF)) satisfying the quadratic growth condition (L2).

Conversely, if (A1)-(A6) hold and if (u,y,) has no essential touch point (in particular, if
the state constraint is of first order ¢ = 1), then the second-order sufficient condition ([I79)
is satisfied iff the quadratic growth condition (LX) is satisfied.

The proof of Theorem will be given after a sequence of short lemmas.

Lemma 1.19. Let (u,n) €U x M4[0,T] and v € U. The following holds, for all o € [0,1]:

”yu—i-av - yu”oo

“Zu+0'v7v|’oo =

Oco(llv]ly)

IPutovn = Punlle = Osolllvll1)
Oco(llv]ly)
Oco

||ZU+UU,U - Z“y””oo =

Proof. Set u, := u+ov, and let C' denote a positive constant. Since f is Lipschitz continuous
by (A0), (LX) is an easy consequence of Lemma [[32 Thus, v and v being essentially
bounded, u, and y,, take values a.e. in a compact set of type

Vs ={(4,9) e RxR"; |a| + |9] < 6}, (1.54)

for some 6 > 0. The mappings f, £ and g as well as their first order derivatives are C'!,
and hence Lipschitz continuous over the compact set Vs. Lemma [L32, applied to the costate
equation ([C7), ensures that p,, , also remains uniformly bounded. The derivation of ([CAI)
and (L22) being similar to the one of (CA3)), we detail only the latter. We have (omitting
time argument):

|Zug 0 (t) — Zup(t)| < nyHOO|Zua,v — Zuwl
+ (1D f(uo yu,) — Df(u,yu)]) (|zu,0] + [0(F)]) -



1.4. SECOND-ORDER SUFFICIENT CONDITIONS 35

Since Df is Lipschitz on Vs, we have by (LX) |Df(us,Yu,) — Df(u,yu)| < C(||v]l1 + |v])-
Combining with (C5Z) and the inequality ab < $(a® + b?), we deduce from the above display
that

ua o (®) = Zup O < I fylloclzuno = 2uwl +C (0l + [0(B)) -
We conclude with Lemma and the inequality ||v][; < VT ||v][. O

Lemma 1.20. Let (u,n) €U x M[0,T] and v € U. Then:

Lu+v,m) = L(u, ) + DuL(u,n)v + %waL(u, (v, ) + 7(v) (1.55)

with r(v) = O (|v]3). In particular, r(v) = o0 (||v]3).

Proof. For o € [0, 1], set again uy := u+ ov and py, := py, - By Lemma [[CTk

1
r(v) = [/ (1— o) (D2, L(u + ov,n) — D2, L(u, ))da]( 0) (1.56)

// Aq( dtda—i—// Ao (t)dn(t da+/ Asdo,

with (omitting time argument)

Al(t) = D2H(u,y)2 (ucf’yua’pug)(v7’zuo,v)2 - D2H(u,y)2(u7yu’pu)(v7'zu,v)2
Ao(t) = Zzg,vgyy (yua)zua,v - Zz,ugyy (yu)zu,v
Az = Zug,v(T)*¢yy (Yu, (T))Zua,v (T) - Zu,v (T)*¢yy(yu (T))Zu,v (7).

Under assumption (AO), second-order derivatives g,,, etc. are Lipschitz continuous over a
compact set Vs defined in ([LR4]) for some § > 0. By Lemma [[T9 we get, for some constant
C>0:

Aa(t)

C (Iyuo = yullzug of* + (2ug 0l + [0 [2ug 0 = Zu0])

3 2 3
so([l0ll7 + [[olly [[0][2) < Oco(llv]l5),

since by the Cauchy-Schwarz and Holder mequahtles that give respectively ||- H 5 < Hg/ 2 IE Hl/ 2
and ||-[|; < T?%/3|||5, we have |- H2 I, < T || Since the measure dn is bounded and the
Oo are uniform w.r.t. time, we obtain fOT Aq(t)dn(t) = (’)oo(Hng) The same upper bound
holds for As(7T). As for Aq(t), we have in the same way, by Lemma

<
<

Ai(t) < Clyu, = Yul + [Pug = pul + o 10]) (205 0 + [0])
+ Cllzug | + [2upl + 0])]2ug 0 = 2u0l
3 2
C(lvlly + [vlf @] + ol @) + @)1 + ol ol + loli3lo).

IN

Hence, fo Aq(t)dt = OO(||v||§) Finally, since the O, do not depend on o € [0, 1], we obtain
after integration over [0,1] that r(v) = Oux(||v]|3). Since [|-|3 < [I/|3 [||loo, it follows that
r(v) = oso(|[v][3). O

Lemma 1.21. Let (u,n) € U x M4[0,T] satisfy (A2’). Then the quadratic form U — R,
v+ D2, L(u,n)(v,v) has a unique extension to a continuous quadratic form over L2(0,T),
and the latter is a Legendre form.
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Proof. Since L™ is a dense subset of L? and v — D2, L(u,n)(v,v) is continuous for the norm
of L?, it has a unique continuous extension Q over L2. Set p := Pup- By ([CI), we can write

Q(v) = Qo(v) + Q1(v) + Q2(v) with:

Qa(v) = g Hyut s D)o 2u0)dt
+ 2y v( )*¢yy(yU(T))Zum(T) + fo Zz,vgyy(yU)Zumdn
QI(U) = 2f0 yu u yuap)(zu,vav)dt

QO(U) = fo uw U yu7p)(U,U)dt.

Let v, — ¥ € L?(0,T). The mapping L%(0,T) — H(0,T) ; v — z,, being linear continuous,
Zn 1= Zyw, converges weakly to Z := z, 5. Since (z,) is bounded in H 1(0,T) and the inclusion
of the latter in C[0, T is compact, (z,) is strongly convergent to z, and thus Q2(v,,) converges
strongly to Q2(v). The term Qi(v,), bilinear in (z,,v,), also converges strongly to @Q1(v)
when z,, converges strongly and v,, weakly. Therefore, ) is a Legendre form iff Q) is one.
Since Hyq,(u(t), yu(t), p(t)) is essentially bounded and, by (L2ZD), is uniformly invertible for
almost all t € [0,T], v — 1/Qo(v) is a norm equivalent to the one of L2(0,T). Hence by [24
Prop. 3.76(i)], Qo is a Legendre form, and therefore so is Q. O

Proof of Theorem [[I8. Assume that (CZ9) holds but that the quadratic growth condition
(1) is not satisfied. Then there exist a sequence u,, — w in L>, u,, # u, such that G(u,) € K

for all n and
J(un) < J(w) + o||un — ulf3). (1.57)

Since G(uy,) € K and n € Ng(G(u)), we have:

S (un) = J(u) = L(un,n) = L(u,n) = (0, G(un) = G(w)) = L{un,n) = L(u,n).
Since u, —u — 0 in L*°, Lemma [20 yields r(u, —u) = o(||u, — qu) As Dy, L(u,n) =0, we
have:

1
o(l[un —ul3) > J(un) = J(w) > 5 D3, Loty 1) (un =t 1 = w) + 0| — u[3).

Let (vp, €,) be such that u, —u = e,v, with ||v,||, =1 and €, = ||u, — u||, — 0. Dividing by
e% > 0 the above inequality, we get:

D2, L(u,n)(vy,vy) + 0(1) < o(1). (1.58)

The sequence (v,) being bounded in L?(0,T), taking if necessary a subsequence, we may
assume that (v,) converges weakly to some v € L2(0,T). Since D2, L(u,n) is weakly Ls.c., we
get passing to the limit:

D2, L(u,n)(v,7) <O0. (1.59)
From (C51), we derive that J(u + e,vy,) — J(u) = €, DJ(w)vy, + 7, < 0(€2), where 7, = O(€2)
(by the same arguments as in the proof of Lemma I]:ZO]) Thus DJ( Jon, + O(en) < o(en),
and passing to the limit, since the mapping v — DJ(u)v = fo (u, yu)Zu0 + Lu(u, yu )v)dt +
&y (Yu(T')) 2un(T) is weakly continuous, we obtain:

DJ(u)v < 0. (1.60)

Since K 3 G(u,) = G(u) + €, DG(u)v, + €7y, where r, is a continuous function satisfying
I7n]lcc = O(ey), we deduce that

DG(w)vn + 1y € Tk (G(u)). (1.61)
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Since the mapping DG(u) : L? — C[0, T] is linear and continuous for the strong topologies, it
is also continuous for the weak topologies, which implies that DG(u)v,, — DG(u)v. The set
K being closed and convex, so is Tk (G(u)), and hence the latter is weakly closed. Therefore,
passing to the weak limit in ([LE1l), and using (C60), we obtain that v € Cr2(u). Thus (CZ9)
and (CE) imply that ¥ = 0. On the other hand, (CEX) gives (with Q := D2, L(u,7)):

0= Q(v) < liminf Q(vy,) < limsup Q(v,) <0

therefore Q(v,) — Q(v). But @ is a Legendre form by Lemma [2I] and v,, — 0, which
implies that v, — v in L?(0,T), hence |[v,]l, — ||9]l5- The expected contradiction arises since
lon|l, = 1 for all n whereas |||, = 0.

The converse, that holds under stronger assumptions, is a consequence of Corollaries
and For convenience, we prove it later with Theorem d

1.5 Reduction Approach

There is still a gap between statements of Corollary of Theorem and Theorem [[T8],
whenever essential touch points occur. We show in this section how to deal with this case,
using a reduction approach in order to reformulate the constraint.

The idea of reduction methods (see e.g. [72] and [24] section 3.4.4]) is, when the constraint
has finitely many contact points, to replace it by finitely many inequality constraints. The
Hessian of Lagrangian of the corresponding reduced problem has an additional term that
matches the curvature term. We obtain thus a no-gap second-order condition.

1.5.1 General results on reduction

It is known that the Sobolev spaces W1°°(0,7) and W?2>(0,T), endowed with the norms
[zll1,00 = [[Zlloc + Z]lec and [|z][2.00 = [|Z[l1,00 + [[#]lcc, coincide with the spaces of Lips-
chitz continuous functions and the one of functions having a Lipschitz continuous derivative,
respectively. For all t,tg € [0,T], h € W1°(0,T) and x € W2°°(0,T), we have:

() = hito)] < 1t — tolllAllocs (L.62)
[2(t) - 2(to) — d(to)(t — to)| < 31t — to[ . (1.63)

We now give some general results about zeros of functions of W1°(0,T), and local min-
ima/maxima of functions of W?2>°(0,T).

Lemma 1.22. Let hg € WH*(0, T) and 0 € (0,T) satisfy the three following conditions:
ho(m) =0 ; ho is continuous at Ty ; ho(TO) % 0. Then for some d, £ > 0, the mapping:

E : Bioso(ho,0) = (o —e,70+¢€) ; hw 71 such that h(m,) =0, (1.64)

is well-defined and Lipschitz continuous on By (ho,0), and Fréchet differentiable at hg, with
derivative given by:

DZ(ho)d = —d(70)/ho(10), for alld € Whee, (1.65)
More precisely, we have for all h,h; € By so(ho,9), i = 1,2 and 7, = 73, :

T —T1 = 01700(”}12—}11“00), (166)
iL()(To)(Th—To)—Fh(To) = 017oo(||h—h0||oo). (1.67)
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Proof. Assume w.l.o.g that § := ho(ro) > 0, and denote by ¢(-) the modulus of continuity of
ho at 79. Fix € > 0 such that cle) < %ﬁ. Thus, ho > %ﬁ on (19 —&,79 + ¢) and it follows that
ho(ro—e) < —3Be and ho(ro+€) > 38e. Set § := min{1e; 13} and let h € By oo(ho, ). Thus,
h(to —e) < 0 < h(1o + €) and h is continuous, so h has at least one zero 73 in (79 — &, 79 + €).
Let (hi,h2) € By oo(ho,6) and 7; such that h;(r;) =0, i = 1,2. By the definition of §, we have
hy > %ﬁ a.e. on (19 — &,70 + €), and, in consequence,

§|T2 — 71| < [h(m2)] = [h1(72) = ha(72)] < [[h2 — hilloo- (1.68)
Hence |7 — 11| < %th — h1|loo, which shows the uniqueness of the zero (take h; = hg),

Lipschitz continuity and ([CGG).
By continuity of = and hg, and (LE2)) applied to h — hg, we have:

ho(th) = ho(70)(Th —70) = ol|Th — 7o)
(h = ho)(7h) = (h = ho)(0) = —ho(rh) — h(r0) = Ol — hollo|Tn — T0l)-
Since 1, — 70 = O1,00(||h — ho|oo) by ([LE), summing the above expansions yields ([LE7), from
which (L6 follows. O

Lemma 1.23. Let 19 € W23°°(0,T) and 79 € (0,T) be such that i0(79) = 0, &¢ is continuous
at 79 and Zo(19) < 0. Thus xo has a local mazimum at 19, and for ¢ > 0 and § > 0 small
enough, x € B o(x0,0) attains its maximum over (1o — €, 79 + €) at a unique point 7. The
mapping © : B o(x0,0) — (T —€,70+¢€) ; @+ Ty is Lipschitz continuous over By o (z,0),
Fréchet differentiable at xo, with derivative given by:

DO(zo)w = —i(7)/Zo(m0)  Vw € Wi, (1.69)
Furthermore, the mapping
O : By oo(20,0) = R ; z+— x(7y), (1.70)

that associates with x the value of its mazimum on (to — €,70 + €), is C over By (20, 9)
and twice Fréchet differentiable at xo with first and second derivatives given by, for aoll x €
B oo(0,0) and d € W

2 d(70)2
D®(x)d = d(1y) ; D*®(xp)(d,d) = —— . (1.71)

.730(7'0)

More precisely, for all x,x; € B o(20,0), i = 1,2 and 17; = 7,,, we have:
a(12) = wa(m1) + Oaeo(llwz — 21[[7 o0, (1.72)
i (10)” 2

) = — 0o — . 1.73
o) = alro) = geons + oroellle 20l ) (1.73)

Proof. Define ¢ as in the proof of Lemma [[22], with hg replaced by —¢. It follows that for all
x € By (20, 6), there exists a unique 7, satisfying @(7,) = 0, and we have &(t) < Z(79)/2 <0
a.e. on (19 — &,70 + €). Hence & is decreasing on (19 — &,79 + €), and x has unique maximum
over [19 — €, 7o + €] attained at time 7,. By composition of the mapping Z of Lemma by
the mapping = — h = & € W1 © is well-defined, continuous over By o (7¢,d) and Fréchet
differentiable at xo, and ([CEY) follows from (C&A).
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By (CE3) applied to xg, introducing the term z1(71) equal to zero and since 79 — 71 =
O2.00(||z2 — z1]/1,00) by (LEL), we get:
zo(r) = xo(n)+ (d2(m) — &1(11)) (12 — 71) + O(|72 — 71 ?)
= a5(m1) + Opou(llaz — 21)

which shows ([CZ2) and proves that ® is C! with first order derivative given by (CZI)). By
continuity of #o and (LE3) applied to x — xg, we have, as 2o(m) = O:

To—T70)2
zo(t2) = wo(m0) + io(m)% + (|2 — 10]?),

(x = x0)(7) = (2 —20)(70) + #(70)(72 — 70) + O([|& — Zollo| Tz — T0[?)
Summing the above expansions, and since by ([CE7),

(7o
%—mz—“()+@mﬂu—%mm%
Zo(70)

we obtain (CZ3). Hence ® is twice Fréchet differentiable at z( with second-order derivative

given by (CI)). O

1.5.2 Application to optimal control problems.

If the state constraint is of first order ¢ = 1, then Theorem gives a no-gap second-order
condition, that characterizes the quadratic growth. We show in this section how to extend
this no-gap condition to the case when the trajectory has essential touch points (see Theorem
27).

Therefore, we assume in this section that the state constraint is not of first order, that
is, the function g(!(u,y) = 9y(y) f(u,y) does not depend on u (which means g&l)(u,y) =0).
Note that this implies that G(u) = g(y,) € W, for all u € U.

Definition 1.24. Assume that g&l) = 0 (the state constraint is not of order one). Let u €
G~1(K). We say that a touch point 7 of the trajectory (u,y,) is reducible, if the following
conditions are satisfied: (i) the function t — ¢ (u(t),y,(t)) is continuous at 7; (ii) non-
tangentiality condition ([L32)) is satisfied at 7.

Remark 1.25. 1) Point (i) in the above definition is always satisfied if the state constraint is
of order ¢ > 2, since in that case ¢ (u, y,) = ¢ (yu).

2) If ¢ = 2 and n € A(u) # 0, sufficient conditions for point (i) are assumptions (A2)-(A4),
since by Prop. [L7(i) they imply the continuity of w.

Let v € G7Y(K), and let 7,.4 be a finite subset of reducible touch points of the trajectory
(u,yy). By definition of touch points, there exists ¢ > 0 such that (7 — 2¢,7 4+ 2¢) C (0,7)
and (7 — 2,7+ 2¢) N I(g(yyn)) = {7}, for all 7 € T;eq. Set I, = Urer (T —e,7 + ¢€) and
I, = [0,T]\ I,. Note that I is closed. Let N be the cardinal of 7.4 and denote by 7,},..., 7V
the elements of 7,.4. By definition of reducible touch points and continuity of the mapping
U — WAy g(y,), we may apply Lemma Reducing ¢ if necessary, there exists
6 > 0, such that for all ¢ = 1,..., N, the mappings

R': Boo(u,0) =R 5 i+ glya(rh)),

such that g(yz) attains its (unique) maximum over [1} — e, 78 + €] at time 7L, are well-defined.
It follows that for all @ € Boo(u, 6),

Gu) e K iff g(ya(t) <0Vtel, and R'(a)<0Vi=1,...,N. (1.74)
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Denote by g(ya)|p the restriction of g(yz) to Iy and R : @ — (R(@))1<i<n. The reduced
problem is defined as follows:

Lmin (@) g(a)_< 7(?%“’ > €K = C_[1] x RY. (1.75)

From (CZ4), it follows that (LZ3) is locally equivalent to problem ([C4)) in a L> neighborhood
of u. The Lagrangian £ of the reduced problem ([L7H) is given, for @ € Byo(u,d) and \ =
(7](,, I/) S M+[Ib] X ]R]-i\-/’ by:

L(a,\) = J(@) + / g(ya (t))dm(t) ZVZR’ (1.76)
Iy
The next lemma shows how the Lagrangian, multipliers and critical cone of the reduced
problem (L0 are related to the ones of problem ().

Lemma 1.26. Assume that gq(Ll) =0, and let u € G~YK) and Treq, 1o, I, R, G and L be

defined as above. Let A = (np,v) € Mi[L] x RY. For § > 0 small enough, the function

@ L(@,N) is C1 on By (u, ) and twice Fréchet differentiable at u. Define n € M [0,T] by:
N

dn(t) = dnp(t) on I ; dn(t) = ZUZ-(L& (t) on I,. (1.77)

Then we have: L(u,\) = L(u,n), DyL(u,\) = Dy L(u,n),
DG(u)"'Tic(G(u)) = DG(u)™'Tk(G(u)),

(1.78)
A€ Ni(G(u)) iff n € Ng(G(u)),
) )2
2 i v.v) = D2 U u( ))Zuv(T )
Dy L(u, \)(v,0) = Dy, L(u Z; i 9(2 ) o) (1.79)

Proof. Note that R = ®* oG, i = 1,..., N, where the mappings ®’ are defined by ([CT0) in
Lemma applied to (xg,79) = (g(yu), 78). Tt follows from Lemma [[Z3 that R is C! over

a small ball By (u,d). By (LZI), the second-order expansion of the state (CII) and (C2F))

(since g&l) = 0), that gives %DG(U)U = gggl)(yu)zum, we see that, for all v € U:

DRi(u)v = DCDi(G(u))DG(u)v = gy (yu(T, ))zuv( ), (1.80)
D*Ri(u)(v,v) = D@i(G( ))D2G (u )(v,v)—i—D2<I>Z G(u))( G(u)v, DG (u)v)
= Zuo(T )gyy(yu( ))Zu,( )+9y Yu(T ))Zuvv(TZ)

(
(0 () (i)
9@ (u(r)), yu(7h))
The conclusion follows easily from the above expressions (see the proof of Lemma [1]), (LT
is obtained as a consequence of ([LE0). O

(
(

It follows that if uw € U and A(u) # 0, the Lagrange multipliers A and n associated with u
in problems ([C7H) and (L)) respectively, are related by (IC77). By (1), it follows also that
the critical cone C(u) for problem ([CZH) is equal to C'(u). We shall show that the statement of
Th. remains true by replacing L(u,n) by £L(u,A). That is, the main result of this paper,
with Th. (and Th. for first-order state constraint), is the next theorem.
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Theorem 1.27. Assume that gq(Ll) = 0 (the state constraint is not of first order). Let u € U
satisfy (LI3) with Lagrange multiplier n, and assume that (A2’) holds. Let T,.q be a finite
set of reducible touch points of w, and v, := [n(7)]. If the following second-order sufficient
condition is satisfied:

(1) 2
D? L(u,n)(v,v) — I/T(gy (7)) 2.0(7)) 0 Vve Cr2(u 0 1.81
L () (0, 0) T;T;ed = al)ler > € Cr2(u) \ {0} (1.81)

then w is a local solution of (I.4) satisfying the quadratic growth condition (LJ).

Conversely, if (A1)-(A6) hold, then the finitely many essential touch points of the trajectory
(u,yy) are all reducible, and the second-order sufficient condition (L) is satisfied with T,cq =
7558 iff the quadratic growth condition (LA) is satisfied.

Remark 1.28. Note that if 7,.q = 0, (LX) coincides with ([CZJ). If 7,4 contains essential
touch points, then by ([L32) the contribution in (LX) of points in 7,4 is such that the sum
is nonpositive, and therefore the sufficient condition ([CETJ) is in general weaker than ([CZ).

We first need to extend Lemma to the Lagrangian £. Note that £ is not C? in a L™®
neighborhood of u, thus ([CA6) does not hold with L.

Lemma 1.29. Assume that g&l) = 0. For § > 0 small enough and all v € By(0,0),
L(u+v,\) = L(u,\) + Dy L(u, \)v + %Diuﬁ(u, A)(v,v) + 7(v), (1.82)

with #(v) = oso([[v]3).

Proof. Tt is easily seen from ([L76]) and (C77) that

N
Llu+0,0) = Llut0,10) + Y vil9Wuro(Togo)) = 9Wuro(T))))-
i=1
We may write 7(v) = r(v) + #(v), where r(v) is given by ([C5H) and satisfies r(v) = O(||v]|3)
by Lemma [[20, and by (LZ9) we have 7(v) = Zfil v;7i(v) with, for i =1,..., N:

o ; i 1 (95 ()20 (10)?
T (U) = g(yu+v (Tu—l-v)) - g(yu+v (Tu)) + 2yg(2) (U(Té), Y (Té))

Fix i = 1,...,N, and set 29 := g(y,) and 79 := 7.. By definition of reducible touch points,
(o, 7o) satisfies the assumptions of Lemma Set 2 := g(Yutv) € W™, then 7, = 72,
and since the state constraint is not of first order, we have & = ¢ (yu10), # = ¢ (U4, Yuto)

and hence, by (LCI0):
[ = Zoll1.00 = Oco(llvll1) 5 & = Folloo = Ooo(l[v]lo0)- (1.84)

(1.83)

Since

1
9(1)(yu+v) - 9(1)(yU) - gél)(yU)Zum = /0 (gél)(yu-l-av)zu—i—av,u - 93(/1)(yu)zum)d0'7

we also have by (CE0) and (CEA)-(CH3), setting h := gl(/l)(yu)zum, that
1 = &0 = hlloo = Ouo([[V]]3)- (1.85)
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We may now write 7;(v) = #;1(v) + 7 2(v) with:

i:(70)?
2Z0(70)

h(10)? — @(m0)?

2Z0(710)

ri1(v) = x(15) — z(10) + ;o Tio(v) =
By (CT3) and (LX), we have #;1(v) = ono(||v]|?). From |a? — b2| < (2|a| + |a — b])|a — b],
1hlloe = Oso([[v]lr) by [CEZ), [CEH) with do(r0) = 0, and [||5 < ||y -]l we see that
fi2(0) = Oxo(v[l1]v]3) < Oxc(llvl3|v]ls0). It follows that 7;(v) = ouo(||v]|3) for all i and
finally that #(v) = 0 (||v]|3), which achieves the proof. O

Proof of Theorem [I-Z7. Since the sum of a Legendre form and of a weakly continuous qua-
dratic form remains a Legendre form, we deduce easily from ([C79) and Lemma [LZ]] since the
additional terms a ' a '
i -9 Wu(m0)) 9y " (Yu(Ta)) | ()
9@ () yu(r))
are weakly continuous quadratic forms, that the unique continuous extension of D, L(u, \)
over L? is a Legendre form. In addition, since 7#(v) = 0uo(|[v]|3) by Lemma [CZ9, the proof
of Theorem still applies, replacing L(u,n) by L(u,A). It follows that ([LE]) implies the
quadratic growth condition ([CH).

Conversely, if (A1)-(A6) hold, there are finitely many essential touch points of (u,y,), all
being reducible. Assume that ([CH) holds. Then for sufficiently small ¢ > 0, u is solution of
the following problem:

v o= 2y (T

(Po)  min{J%(a):=J(@) - gella —ul3} ; G(@)€K, (1.86)
with the same (unique) Lagrange multiplier 7, since D,,J¢(u) = D, J(u). Since in addition (P:)
and (L) have the same constraints, they have the same critical cone. Denote the Lagrangian
of (Pz) by L®(u,n). Note that since only the cost function has been perturbed, Theorem
and Corollary have an immediate extension to the non-autonomous problem (P.).
Therefore, noticing that D2, L% (u,n)(v,v) = D2, L(u,n)(v,v) — ¢|[v||3, we obtain:

(1) 2
D? L(u,n)(v,v) — Vs (95 (5u(7))20.0(7)) v||2, Vv e Crz(u). 1.87
uu ( 77)( ) TEZZ%)SS %g(yu(t))h:T > 5” H2 c Cp, ( ) ( )

Hence (CXT)) is satisfied with 7,..q = 7,5%%.

o

Note that taking 7,.q = 0 = 7,5°° proves the converse in Th. [[I8, when (u,y,) has no

0]
essential touch point (including the case ¢ = 1). ]

Remark 1.30. The second-order sufficient condition in ([CE]) remains in quite an abstract
form, of little help to check the optimality of a trajectory in application to real life problems.
Some wverifiable second-order sufficient conditions exist in the literature that are based on
Riccati equations, see e.g. Maurer [99]. They may be too strong, however, since they ensure
in general the coercivity of the Hessian of the Lagrangian over a space that is larger than the
critical cone Cpz2(u). See also Malanowski et al. [89, [05] for first order state constraints.

Remark 1.31. Handling an infinite number of junction points remains an open problem. It
was shown indeed by Robbins in [I18], on an example involving a third order state constraint,
and though satisfying all regularity assumptions (A0)-(A3), that the optimal trajectory has a
boundary arc, but except for a nowhere dense subset of initial conditions yg, the entry point
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of the boundary arc is not regular, being the cluster point of an infinite sequence of touch
points.

It happens that boundary arcs with regular entry and exit points may occur for any order
of the state constraint ¢, see for instance the example given in [T9, Rem. 4.11]@. However,
when ¢ is greater than or equal to three, it seems that boundary arcs with regular entry
and exit points occur only in degenerate (i.e., non generic) situations, and that generically,
as Robbins’ example suggests, the junctions at boundary arcs are irregular with an infinite
sequence of touch points.

1.6 Conclusion

Our main result is a no-gap condition for an optimal control problem with a single state
constraint of any order and only one control. The main hypotheses are that there are finitely
many junction points, the essential touch points being reducible, the entry/exit points being
regular, and strict complementarity on boundary arcs. The extension of the result to the case
when ¢(y,(T)) = 0 should present no difficulty.

In our recent work [I9], we relate these second-order conditions to the study of the well-
posedness of the shooting algorithm, and to the characterization of strong regularity in the
sense of Robinson [I21] (see also related results [24, Section 5.1] and Malanowski [86]).

We hope in the future to extend some of the results of these papers to the case of several
state constraints and control variables.

Acknowlegments The authors thank two anonymous referees for their useful suggestions.

1.7 Appendix
Lemma 1.32 (Extension of Gronwall Lemma). Let p € BV([0,T];R"™) be such that:
|dp(t)] < &lp(#)|dt +dp(t), Ve[0T, (1.88)

for some positive constant k, and a nonnegative bounded measure . Then:

T
bl < " 1p(0)] + /0 Ty (t).

Proof. Set p(t) = |p(t)|]. Then p is a nonnegative bounded measure, and for all ¢ € [0,7) and
s — 07, we have:

t+s
/t dp(o) = plt+5)— plt) = |p(t + )| — |p(t)

IN

t+s t+s
p(t+5) — p(t)] = | / ap(o)| < / dp(o)].

From (CXY) it follows that p(t) < ¢(t) for all ¢t € [0,T], where ¢ is solution of

o(t) = [p(0)| + H/o ©(s)ds —I—/O du(s), for all ¢t e [0,T).

2Remark of this thesis
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Then
A(e (1)) = e (1) — re Mp(t)de = e ().

Therefore, e *p(t) < |p(0)| + fot e "*du(s). The result follows. O

Lemma 1.33 (Integration by parts). The following relation holds, for any p € BV ([0,T], R™)
and z € BV (0, T;R")nC([0,T]; R™):

T T
/0 Ap(t)=(t) = — /0 p(H)dz(t) + p(T)A(T) — p(0)2(0). (1.89)

Proof. See e.g. [68, p.154]. O
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Application a ’étude de
I’algorithme de ti

Abstract This paper deals with the shooting algorithm for optimal control problems with a
scalar control and a regular scalar state constraint. Additional conditions are displayed, under
which the so-called alternative formulation is equivalent to Pontryagin’s minimum principle.
The shooting algorithm appears to be well-posed (invertible Jacobian), iff (i) the no-gap second
order sufficient optimality condition holds, and (ii) when the constraint is of order ¢ > 3,
there is no boundary arc. Stability and sensitivity results without strict complementarity at
touch points are derived using Robinson’s strong regularity theory, under a minimal second-
order sufficient condition. The directional derivatives of the control and state are obtained as
solutions of a linear quadratic problem.

Résumé Dans cet article, on étudie ’algorithme de tir pour les problemes de commande
optimale avec contraintes sur I’état. On donne les conditions supplémentaires nécessaires, sous
lesquelles la formulation alternative est équivalente au Principe de Pontryaguine. On montre
que l'algorithme de tir est bien posé, ssi (i) une condition suffisante minimale du second ordre
est satisfaite, et (ii) lorsque la contrainte est d’ordre g > 3, il n’y a pas d’arc frontiére. Enfin,
une analyse de stabilité et de sensibilité est effectuée, sans hypothese de complémentarité
stricte aux points de contacts isolés. On utilise pour ceci la théorie de la forte régularité de
Robinson, dont on donne une caractérisation par une condition suffisante du second ordre. Les
dérivées directionnelles sont obtenues comme solution d’un probléme linéaire quadratique.

2.1 Introduction

For optimal control problems satisfying the strengthened Legendre-Clebsch condition, Pon-
tryagin’s principle allows us to express the control as a function of the state and the costate.
For unconstrained problems, the resulting two-points boundary value problem reduces to a
finite-dimensional “shooting” equation whose unknown is the initial costate (see e.g. [120]).
The extension to control constrained problems is relatively easy, assuming nontangentiality
conditions when a constraint becomes active or inactive. This approach allows us to compute
accurate solutions at low cost, once the structure of active constraints is known, and reasonable

*Joint work with J.F. Bonnans. Published in SIAM Journal on Control and Optimization, 46(4) :1398-1430
(2007), under the title Well-posedness of the shooting algorithm for state constrained optimal control problems
with a single constraint and control.
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initial values of unknowns can be guessed. For state constrained optimal control problems, a
reformulation of the optimality conditions is needed, and the shooting equations take into ac-
count only some of the optimality conditions. Therefore, checking that the shooting equations
are well-posed under minimal hypotheses becomes challenging.

An alternative formulation, suitable for the shooting algorithm in the presence of state
constraints, was first introduced by Bryson, Denham and Dreyfus [29], (see also [28§]), in
an heuristic manner. Some additional conditions (necessary for optimality) were missing,
as shown in Jacobson, Lele and Speyer [75], where the first results on the regularity of the
multiplier and on junction conditions are stated. A significant clarification of their work can
be found in the unpublished paper by Maurer [08], where the link between the results of
[75] and the alternative formulation of [29 28] is established. Numerous different versions of
Pontryagin’s principle with state constraints were given in the literature; see the survey by
Hartl, Sethi and Vickson [68].

Stability results for first-order state constraints and directional differentiability of solutions
in L? were first obtained by Malanowski [88] using an infinite-dimensional implicit function
theorem and differentiation of the projection on a convex set [67]. The (strong) second-order
sufficient condition used in the analysis was later weakened by Malanowski [89], taking into
account the strictly active constraints. These results require no assumptions on the structure
of the trajectory. However, no extensions of this method for higher-order state constraints are
known. Dontchev and Hager [53] derived, still for first-order constraints, L™ stability results
under an additional assumption on the structure of the contact set. Malanowski and Maurer
obtain sensitivity results in [03] (first-order) and [94] (higher order), when there are finitely
many nontangential junction points and strict complementarity holds, by application of the
implicit function theorem to the shooting mapping. They obtain derivatives as the solution
of an equality constrained linear quadratic problem, but when the order of the constraint is
q > 2, the data of the latter depend on the (precomputed) variation of entry times. Numerical
applications of the shooting algorithm to state constrained problems in the aerospace field are
presented e.g. in [30, 1] and in [I15], where the role of additional conditions appears crucial
to eliminate nonoptimal solutions; numerical examples of sensitivity analysis are given in [4].
Discretization errors are studied in e.g. [54].

This paper handles the case of a scalar control and a regular scalar state constraint, for
which regularity and junction conditions results are known. We assume that the Hamilto-
nian is uniformly strongly convex w.r.t. the control variable, that there are finitely many
nontangential junction times, and that strict complementarity on boundary arcs holds.

We express the additional conditions under which the alternative formulation is equivalent
to Pontryagin’s principle. When strict complementarity holds at touch points as well, we prove
that the shooting algorithm is well-posed (invertible Jacobian) iff (i) the no-gap second-order
sufficient condition in [21I] holds, and (ii) when the constraint is of order ¢ > 3, there is no
boundary arc. Then stability and sensitivity results, removing the strict complementarity
hypothesis at touch points, are derived, applying Robinson’s strong regularity theory [121] to
the shooting mapping. We give a necessary and sufficient second-order condition character-
izing the strong regularity property. The directional derivatives of the control and state are
obtained as solutions of an inequality constrained linear quadratic problem, independent of
the variations of junction times.

The paper is organized as follow. In section 22, we give the characterization of Pontryagin
extremals as solutions of the shooting equations under some minimal additional conditions.
Then, in section 3 we give the characterization of the well-posedness of the shooting algo-
rithm and its relation to the no-gap second-order optimality conditions obtained in [2T], [I8].
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Finally, in section B4l we give stability and sensitivity analysis results.

The results of sections and of this paper are extended to the case of vector-valued
state constraints and control in the report [I7]. The main difficulty is the extension of the
junction conditions result of Jacobson, Lele and Speyer [75] (Prop. below). The latter
plays a crucial role in the proof of the necessity of the condition claimed in this paper as
necessary and sufficient for the well-posedness of the shooting algorithm (see Th. Z23]).

2.2 Junction Conditions

The section is organized as follows. After introducing notation, definitions, assumptions, and
basic results needed in the paper, we recall in subsection L2l an alternative formulation for
optimality conditions (Def. E), which is useful for the shooting algorithm. This is one of
the various formulations existing in the literature (see e.g. the survey [68]). Therefore, one
of the main concerns of this paper is to investigate, in subsection EZZ2 the equivalence with
Pontryagin’s minimum principle (Prop. EZI0). Finally, in subsection we formulate the
shooting algorithm and show that some of the additional conditions are automatically satisfied
by a solution of the shooting equations (Prop. ETH).

Denote by L*°(0,7) the Banach space of measurable and essentially bounded functions
and by W1%°(0,T) the Sobolev space of functions having a weak derivative in L>(0,T). Let
the control and state spaces be respectively U := L>(0,T) and Y := W10, T;R"). We
consider the following optimal control problem with a scalar state constraint and a scalar
control:

T
P) Lmin [ ) p0)+ o((7) @)
subfect to () = f(u(®)y(t) ac te0.T) i yO) = (22

g9(y()) <0 Viel0,T]

The data of the problem are the distributed cost ¢ : R x R™ — R, final cost ¢ : R" — R,
dynamics f : RxR"™ — R”, state constraint g : R” — R, final time T" > 0, and initial condition
Yo € R™

We assume throughout the paper that the following hold:

(A0) The mappings ¢, ¢, f and g are k-times continuously differentiable (C*) with k > 2, and
have locally Lipschitz continuous second-order derivatives when k& = 2. The dynamics f
is Lipschitz continuous.

(A1) The initial condition satisfies g(yo) < 0.

The space of row vectors is denoted by R™*. The space of continuous functions over [0, 7] is
denoted by C[0,T]. The dual space of Radon measures, denoted by M|0, T}, is identified with
the space of functions of bounded variation BV (0,7T') vanishing at zero. The transposition
operator in R™ is denoted by a star *. Fréchet derivatives of f, ¢, etc., w.r.t. arguments u € R,
y € R", are denoted by a subscript, for instance f,(u,y) = Duf(u,y), fuu(u,y) = D2, f(u,y).
One exception to this rule, which should not be a source of confusion, is that we denote by
Yy the (unique) solution in W of the state equation (Z2) associated with the control u € U.
Total derivation w.r.t. time is denoted by a dot, i.e. §(t) = d%—g).

A trajectory is an element (u,y) of U x Y satisfying the state equation (22)). A trajectory
(u,y) is said to be feasible if it satisfies the state constraint (E3]). Define the classical (resp.
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generalized) Hamiltonian functions of (P), H : RxR"xR™ — R (resp. H : RxRxR"xR™ —
R) by

H(u,y,p) == lu,y) +pf(w,y) ;5 H(po,u,y,p) = pol(u,y) +pf(u,y). (2.4)
First-order necessary optimality conditions for (P) are given by Pontryagin’s minimum prin-
ciple.

Definition 2.1. A trajectory (u,y) is a Pontryagin extremal if there exists pg € RT, p €
BV([0,T];R™), and n € M[0,T], with (po,dn) # 0, such that

J(t) = Hylpoul®),y(®),p(H) ae te[0,T] 5 y(0)=yo (2.5)

—dp(t) = Hy(po,u(®),y(),p(O)dt + g, (y())dn(t) i M(0,TER™)  (26)

o(T) = pody(T)) (2.7)

u(t) € argmin, pH(po,w,y(t),p(t)) ae. te0,T] (2.8)
T

gy(t) < 0, vte[0,T]; dnp>0; /0 a(y(£))dn(t) = 0. (2.9)

By dn > 0, we mean that fOT @(t)dn(t) > 0 for all nonnegative continuous functions
¢ € C[0,T], or equivalently, that 7 is nondecreasing. The costate equation (6] with final
condition (1) are equivalent to

T T
p(t)Z/t Hy(po,U(S),y(S)m(S))dS+/t 9y(y(s))dn(s) + pody (y(T))-

The next theorem is well known (see [39, 62] for nondifferentiable versions).
Theorem 2.2. A trajectory (u,y) solution of (P) is a Pontryagin extremal.

A trajectory (u,y) is a local solution of (P) if it minimizes (2]) subject to (Z2)-([Z3]) and
lu — @ljoo < p for some p > 0. We say that (u,y) € U x Y is a stationary point of (P) if
there exists a nonzero (pg,p,n) € RT x BV(0,T;R™) x M(0,T) such that (Z3)-E7), E3)
are satisfied and

Hu(po, u(t),y(t),p(t)) =0 for a.a. t € [0,T].

It is well known that a local solution of (P) is a stationary point. Obviously a Pontryagin
extremal is a stationary point, but the converse is in general false. An exception is when the
(generalized) Hamiltonian is convex with respect to the control variable along the trajectory
(see also our assumption (A2) below). Whenever this holds, definitions of both Pontryagin
extremals and stationary points are equivalent.

Definitions A boundary (resp. interior) arc is a maximal interval of positive measure
Z C [0,T] such that g(y(t)) = 0 (resp. g(y(t)) < 0) for all ¢ € Z. If [Tep, Tex] is @ boundary
arc, Tep, and 7., are called an entry and an exit point, respectively. Entry and exit points
are said to be regular if they are endpoint of an interior arc. A touch point 7 in (0,7 is an
isolated contact point (endpoint of two interior arcs). Entry, exit and touch points are called
Junction points (or times). We say that the junctions are regular when the entry/exit points
are regular.

The first-order time derivative of the state constraint along a trajectory (u,y), defined by
g (u,y) = L9(y(®)) = g4(y) f(u,y), is denoted by g (y) if the function RxR™ — R, (u,y) —
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9y(y) f(u,y) does not depend on u (that is, the function (u,y) — gq(tl)(u, y) is identically zero).

)EO,foralljzl,...,q—l, and

If f and g are C'%, we may define similarly ¢, ..., ¢(@ if gq(Lj
; j—1 .
we have g (u,y) = gy~ () f(u,y), for j =1,....q.
Let ¢ > 1 be the smallest number of time derivations of the state constraint, so that a
dependence w.r.t. w appears, i.e. g&q) % 0. If ¢ is finite, we say that ¢ is the order of the
state constraint (see e.g. [29]). A state constraint of order ¢ is said to be regular along the

trajectory (u,y) if the condition below holds:
Iv>0, [¢9D,yt)| >~ foralltel0,T]andall e R. (2.10)

Note that the set of generalized multipliers (pg,p,n) is a cone. When py = 0, we say that
the multiplier is singular; otherwise it is regular. Dividing then (p,n) by pg, we obtain the
qualified version of Pontryagin’s principle, substituting the generalized Hamiltonian with the
classical Hamiltonian. It is easily seen that a Pontryagin extremal satisfying (22I0) (and (A1))
has no singular multiplier, and that the multiplier (p,n) in the qualified version of Pontryagin’s
principle (pg = 1) is unique. The same is true for a stationary solution.

Being of bounded variation, p has at most countably many discontinuity times and has
everywhere on [0,7] left and right limits, denoted by p(t*) = limy_,+ p(#). The jump at
7 € (0,7T) is denoted by [p(7)] = p(7+) — p(77). Similar observations hold for 7.

Assumptions We say that (u,y) is a regular Pontryagin extremal if it satisfies Def. Bl
with pg = 1, with costate p and multiplier n, and if assumptions (A2)-(A4) below are satisfied.

(A2) The Hamiltonian is strongly convex w.r.t. the control variable, uniformly w.r.t. ¢ €
[0,T]:

Fa >0, Hu(i,yt),ptt)) >a forallte[0,T] and all & € R. (2.11)

(A3) The data of the problem are C?¢, i.e. k > 2q in (A0), and the state constraint is of
order ¢ and regular, i.e. (ZZI0) holds.

(A4) The trajectory (u,y) has a finite set of junction times, that will be denoted by 7 =:
Ten U Tex U Ty, with Tgp, Tep, and Ty, the disjoint (and possibly empty) subsets of
respectively entry, exit and touch points, and we assume that g(y(7")) < 0.

Hypothesis (A4) implies that all entry and exit points are regular. In what follows, we denote
by I the union of boundary arcs, i.e. Zj := uﬁﬁ’l (78, 78] for To, = {1k, < --- < 70} and
Tow = {7 < - < 7N}

Remark 2.3. Troughout the paper, (A3) can be weakened, replacing (2I0) by

Jy,e >0, [¢\D(a,y(t)] >~ forallt, dist(t,Z, UTs) < ¢, and all 4 € R. (2.12)

Notation Given a finite subset S of (0,7)), we denote by PCE[0,T] the set of functions over
[0, 7] that are of class C* outside S (PC stands for piecewise continuous), and have, as well
as their first k& derivatives, a left and right limit over S and a right (resp. left) limit at O (resp.
T).

Let ¢ be a real-valued function over [0,7]. Assuming w.l.o.g. the elements of S in increas-
ing order, we may define ¢(S) = (¢(7))res € R4S We adopt a similar convention for



50 CHAPITRE 2. APPLICATION A L’ETUDE DE L’ALGORITHME DE TIR

vectors, vs := (Vr)res € RO4S and will also use the following notation:
Vs 9(y(S))
Vé‘:q — c RqCardS : g(O:q—l)(y(S)) — c RqCardS.
L gD (y(S))

2.2.1 Alternative Formulation of Optimality Conditions

Under assumption (A4) we have a finite number of arcs and we can show, with regularity
assumptions (A2)-(A3), that the multiplier 7 is differentiable on the interior of each arc [[75), 08)].
An analysis of the optimality system on interiors of arcs shows then that a regular Pontryagin
extremal satisfies the conditions stated in Prop. B below. An analysis at junction times
leads afterwards to the junction conditions given in Prop.

Proposition 2.4. Let (u,y) be a regular Pontryagin extremal, satisfying (A2)-(A4). Then
we have uw € PCH0,T), y € PC%H([O,T];R”) and there exists p € PCH([0,T];R™), ny €
PC%—[O,T], and jump parameters v, such that the following optimality system is satisfied:

y(t) = Hp(u(®),y@),p(t) = fu(t),y(t)) on[0,T];  y(0)=yo  (2.13)
p) = Hy(u(t), y(), p(t) + gy (y()mo(t) on [0,T]\ T (2.14)
PT) = 6y(y(T)) (2.15)
0 = Hy(u(®)y(t),p(t) on[0,T]\T (2.16)
g®) = 0 onT, () =0 on[0,T\T, (2.17)
() < 0 on[0LT)\(TUTW) : mo()>0 on i, (2.18)
g(y(r)) = 0  VreT, (2.19)
p(r)] = —vrgy(y(r)); vr >0 VreT. (2.20)

We denote by int Z, the interior of Z;. A touch point 7 € 73, is said to be essential if
vy > 0 in (Z20); otherwise it is nonessential. We denote by 7,5%° the set of essential touch
points. Hypotheses (A2)-(A4) also imply the continuity of the control variable and of some of
its time derivatives at junction points. The next proposition is due to Jacobson et al. [[75].

Proposition 2.5. Let (u,y) be a reqular Pontryagin extremal, satisfying (A2)-(A4). Then:
(i) For all entry or exit point T € Tep U Tey: (a) if q is odd, u and its ¢ — 1 first derivatives
are continuous at 7, v, = 0 and p is continuous at 7; (b) if q is even, u and its ¢ — 2 first
derivatives are continuous at T.

(i) For all touch points T € Tpp: (a) u and its ¢ — 2 first derivatives are continuous at 7; (b)
if T is nonessential (i.e. v, =0), u and its q first derivatives and p are continuous at T; (c)
if g =1, then 7 is a nonessential touch point.

Remark 2.6. If (u,y) satisfies (A2)-(A4) and (EZT3)-(Z20), the multiplier n € M][0,T] such
that (u,y) satisfies Definition 2l is given by:

Z VT T + 770 )d (221)

T€T

where 0, denotes the Dirac measure at time 7, v, = [n(7)] is the nonnegative jump at 7 € 7,
and the density ny € PCY[0,T] equals § d—" on [O TI\T.
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We now present the alternative formulation that will be used in the shooting algorithm.
First introduced heuristically in [29], it is based on the use of the mixed explicit constraint
gD (u(t),y(t)) = 0 on boundary arcs. Let the augmented Hamiltonian H : R x R x R x R —
R be defined by

H(u,y,pg:1q) = H(u,y,pg) + 199" (u, y), (2.22)
where g denotes the order of the state constraint and H is the classical Hamiltonian (EZ4).

Definition 2.7. We say that a trajectory (u,y) in PC¥[0,T] x PC%H([O,T];R”) satisfying
(A3)-(A4) is solution of the alternative formulation, if there exist p, € PC’%H([O,T];R"*),
Ng € PC% [0, T], alternative jump parameters l/%—e »J=1,...,q, and vy, such that the following
relations are satisfied (we omit dependence in time):

g = Hy(u,y,pgng) = f(u,y)  on [0,T] 5 y(0) =yo (2.23)
—pg = Hy(w,y,p4,mg) = Hy(u,y,pg) + ngg{® (w,y) on [0, T\ T (2.24)
pe(T) = ¢y(y(T)) (2.25)
0 Ho(u,y,pg,7) = Hu(w,y,pg) + 19957 (w,y) on [0, T\ T  (2.26)
gD y(r) = 0 forj=0,1,....q—1; 7€T, (2.27)
¢ D(u,y) = 0 on 7 (2.28)
gly(r)) = 0 for all 7 € Ty, (2.29)
ng(t) = 0 on [0,T)\ Zy (2.30)
q

po(r)] = = vig{ V(y(r)) foralTeT, (2.31)

j=1
pg(T)] = 0 for all 7 € T, (2.32)
pg(T)] = —vrgy(y(7)) for all 7 € Tyy. (2.33)

In the heuristic formulation of [29], ([223)-(233]) are interpreted as necessary optimality
conditions for the problem of minimizing (1) subject to (22)) and equality constraints (Z21)-
(E29) for a fized set of junction times 7. Alternative jump parameters v7-4 appearing in (E231)
are seen as multipliers associated with the ¢ interior point constraints in (ZZ7) at a regular
entry time 7.,.

The assumption equivalent to (A2) for the alternative formulation, is the following, see

Remark ZZTTI(ii):
(A2)) Fa >0, Hyu(i,yt),py(t),n,(t5)) > a for all t € [0,T] and all 4 € R.

We will write in what follows (A2)-(A4) (resp. (A24)-(A4)) to denote the assumptions (A2)
(resp. (A24)), (A3) and (A4).

2.2.2 Additional Conditions

Relations (Z23))-(Z33) due to [29] are necessary, but not sufficient, conditions for regular
Pontryagin extremals. This was underlined in [[75], where some additional necessary conditions
were provided, that allowed the authors to show that a trajectory (with a fourth-order state
constraint) was not a Pontryagin extremal. We state in Prop. EZI0 the characterization of
regular Pontryagin extremals based on the alternative formulation. We need some preliminary
lemmas.
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Lemma 2.8. Let (u,y) be a trajectory, and let (pg,n,) € PCA([0,T];R™) x PCY[0,T] sat-

isfying (A2q)-(A4) and (ZZ3)-(ZZ4), (ZZ8), (ZZ8). Then (u,y,pq,n4) belongs to the set
PCL[0,T) x PCE ([0, T);R™) x PCE([0,T]; R™) x PCL[0,T].

Proof. By the implicit function theorem, applied to (2226]) on interior arcs, and to (26l and
(Z28) on boundary arcs, the algebraic variables (u,n4) can be expressed, on the interior of
each arc, as C functions of (y,p,). The result follows. O

Lemma 2.9. If constraint reqularity (A3) holds along a trajectory (u,y), and if u € PCL[0,T],
then, for allt € [0,T], vectors (g,(y(t)),. .. ,gg(/q 1)(y(t))) are linearly independent (and hence,
q<mn).

Proof. Since u € PCL[0, T}, the mappings (A;)o<i<q : [0,T]\ 7 — R" defined inductively by

Ao(t) == fu(u(t),y(t)),
{ Al(t) = y(u(t)v y(t))Al—l(t) - Al—l(t), l=1,...,q, (234)

are well-defined, and A; € PCE l([O,T],R”) for [ = 0,...,q. It has been shown in [98] that
the following relations hold for all te[0,T]:

0 forj=0,....,¢—2, I=0,...,q—2—7,

o (w(t5), y(1) = oD WO) A for =0, g1, (2

——
N
=%
—~~
<
—~
~
~—
S~—
2
—~
~
H_
S~—
I

where t* denotes, on both sides of the equality, either t~ or t*. Denote by C the n x
q matrix (gy(y(t))* ,...,gz(,q 1)(y(t))*). The above relations imply that the g x ¢ matrix

D = CT(Ap_1(t),..., Ag(tF)) is lower triangular with nonzero diagonal elements equal to
(9)

g (u(tF),y(t)), hence has rank q. Therefore C has rank at least g. The conclusion follows. [
Proposition 2.10. Let (u,y) be a trajectory satisfying (A2,)-(A4) and the alternative for-
mulation (ZZ3)-(Z33). Define the functions n;, 0 < j < q — 1, the costate p and the jump
parameters vr,, and v, by

_.deI _
ni(t) = (=1)¢ ]%nq(t) forj=0,...,q—1, t€[0,T|\ T, (2.36)
p(t) = )+ Z n; ()95 D (y(1)) te 0,71\ 7, (2.37)
Vien = V-}en - nl(Ten)a V Ten € Ten; Vrew = M(Tez)y  VTex € Tew- (2.38)

Then (u,y) is a reqular Pontryagin extremal that satisfies (Z13)-(Z20) iff all the following
additional conditions are satisfied:

gy@) < 0 on[0,T]\ (ZpUT) (2.39)
no(t) = (—1)¢ (;itqq (t) > 0 on intZ, (2.40)
At all entry time Tep:
vp. =m(rs,) if q is odd; P (Y. 5
{ V;m > m(rt) if g is even: vl = ni(ton); J=2,...,q (2.41)
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At all exit time Teg:

M(7ez) =0 if q is odd, P
{ M (7o) >0 if q is even; nJ(Tez) =0; 7=2,...,q. (2.42)

At all touch times Ty,:
Vrio Z 0. (243)

Remark 2.11. (i) If (u,y) is a regular Pontryagin extremal solution of (ZI3))-(20), the func-
tions n;, 1 < j < g, costate p, and alternative jump parameters 1/71—:51 such that (u,y) satisfies
the alternative formulation (Z23))-(Z33]) and additional conditions (Z39)-(243]), can be re-
covered from p, ny and vz as follows. The functions 7; are given by (Z36) by successive
integrations of 1y over boundary arcs, with integration constants determined by the exit time
conditions (Z38) for j = 1 and ZZ2) for j = 2,...,q. Costate p, follows then from (31), and

jump parameters at entry times Vien are given by (Z3])) for j =1 and ZZ1)) for j = 2,...,q
Jump parameters vz, associated with touch points are the same in both formulations.

(ii) Assumptions (A2) and (A2,) are equivalent, when (2238)-(31) hold, since the constraint
are of order ¢, and hence we have

Hou(u,y,0g,mg) = Huulu, y,p) — m;(t)g(' (Y) fuu(u, y)+nqg£‘{f(u )

Ho(u,y,p) — zj 1 0i(Dg% (W) (1w y) = Huu(u,y.p).

Proof of Proposition [ZI0. Since 1, is piecewise C¢ by Lemma EL§, the functions 7;, 0 <
j < q—1 are well-defined. We show the equivalence between (ZT3)-(Z20) and Z23)-[Z33)

augmented with (Z39)-(ZZ3).
Equivalence between state equations (2I3]) and [Z23)); final costate conditions (215l and

@20)); state constraint equations (ZI7) and Z27), Z28), 30) on boundary arcs, and
E&T9) and EZ9) at touch points, is obvious. Equivalence between costate equations (ET4)
and (Z224]), and between control equations (EI6]) and 20), follows from calculation, using
the relations between the functions 7;, p, and p, and the fact that the state constraint is of
order ¢ (see e.g. [98]).

Additional conditions are necessary to ensure equivalence between complementarity and

junction conditions. Obviously, (Z39)-E40) are equivalent to (ZI8]); as well, (Z33]) and 23]

are equivalent to to (22Z0) for touch points. It remains to check that (220) is also equivalent

o (Z30)-EZ32) and ZZI)-EZA) at entry/exit points. Let 7, € Zen. Expressing [pg(7en)],
using on the one hand the relationship (237) between p and py, as well as (Z20), and using

on the other hand jump condition (Z3T), we obtain

[pg(Ten)] = —Vrn 9y (Y(Ten)) Z Ten) 9(] b (y(Ten))a (2.44)
[pg(Ten)] = — %mg;(ﬂ 1)(11(7'en))‘ (2.45)
j=1

By LemmaZ3 at t = 7., the right-hand sides of (2244]) and (ZZ5]) are equal iff the coefficients
of g(] 1)(y(Ten)) for j =1,...,q are equal. Eliminating v,_, , which must be nonnegative (and
equals zero for odd-order state constraints by Prop. EI(i)), we deduce (ZZ1]). Proceeding

similarly at exit points, (2242)) follows. O
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Remark 2.12. Proposition EZI0 slightly improves section 5 of [98], in the sense that we give
the complete set of additional conditions for which equivalence between regular Pontryagin
extremals and the alternative formulation holds.

Remark 2.13. The sign condition of néq) on boundary arcs (Z40) and exit point conditions

ZZ2) implies that the necessary condition

_.deI )
(—1)¢ ]%nq(t) =n;(t) >0 on I, forj=1,...,q (2.46)

holds as a consequence of (Z40) and (ZZ2)). It is easily seen by induction, since 1; = —n;_1 <0
on 7, and n;(7;,) > 0 for all 7, € Te,. By A1), we deduce also that vZ,, > 0 for all 7 € Tq,,
and j=1,...,q.

2.2.3 The shooting algorithm

The shooting algorithm extracts from the necessary optimality conditions a finite-dimensional
set of equations (the shooting equations). If its Jacobian is invertible, we obtain a locally
convergent algorithm by solving the shooting equations using, say, Newton’s method.

In the unconstrained case, the initial value of the costate pg is mapped into the final
condition (Z2H]). To handle alternative formulation of Def. X7 jump parameters and junction
times are introduced as shooting parameters. A given set of shooting parameters determines
a unique trajectory and multipliers (u,y, pg,7q) solution of the coupled state-costate system
(Z23)-([Z24)) with initial condition pg(0) = po; algebraic equations (Z26), [Z28) and (E30)
that give u and 7, as implicit functions of (y,p,) by (A2)-(A3); and jump conditions (E3T)-
(EZ33).

We use the shooting formulation of Malanowski and Maurer [93, 94]. Jump parameters
1/&;3 at an entry time 7., are associated with the ¢ interior points conditions (227]). Necessary
optimality conditions for entry and exit points 7., and 7., and touch points 74, (when g > 2)
are as follows:

99V wu(rs) y(en)) = 0; 99 (), y(7ea)) = 0, (2.47)
g(l)(y(Tto)) = 0 (2-48)

By Proposition EZH the control is continuous along a regular Pontryagin extremal, so that
(Z27) is a necessary optimality condition for entry/exit times. For a first order state constraint,
we assume in what follows that 73, = () (see remark below). Since a touch point 74, is
a local maximum of g(y), when ¢ > 2 (E48)) is a necessary optimality condition. Therefore,
([227]) together with the interior point constraint (2229l provide two conditions associated with
Tto and its jump parameter v, , for each 7, € Typ.

Definition 2.14. A trajectory (u,y) is a shooting extremal if it satisfies both the alternative

formulation (Def. EZ7)) and conditions (2247)-(Z2).
Let us show how (Z47) relates to the additional conditions of Prop.

Proposition 2.15. Let (u,y) be a trajectory solution of the alternative formulation (ZZ3)-
(Z33) and satisfying (A24)-(A4). Then the two following conditions are equivalent:

(i) The control u is continuous at entry/exit times Ten, Tex (i.€., EZD) holds);

(i) Those additional conditions in ([2-41))-(Z-43) involving 1, are satisfied, i.e.

nq(TeJ;L) —vi =0 Ng(Tez) = 0. (2.49)
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Proof. Let Ten € Ton. By assumption (A3), the function @ — g9 (i, y(7e,)) is one-to-one.
Since g9 (u(1), y(Ten)) = 0, we have that ¢ (u(.,), y(Ten)) = 0 iff the control is continuous
at time 7¢p,; the same type of arguments holds for exit points. It follows that (Z47) is equivalent
to the continuity of the control at entry/exit points.

By &2d), we have
f{u(u(Te_n)ay(Ten)apq(Te_n):O) =0 = ﬁu(u(Te—Z)yy(Ten) Pq(Te )7711( ))

We abbreviate u(7;,,) to u~ and so on. Using the jump condition of the costate (Z3TI), it
follows that
q

Hy(uty,pfn) = Hu(u®,y,p;) Z fulu™,y) + 0@ (ut,y).

The state constraint being of order ¢, we have gz(,]_ (y) fulu,y) = ggj)(y) =0forj=1,...,q—
1, and hence, we obtain

0 = Hu(u+ay7pq_) + (77q - I/gm)ggq) (u+7y)'

Since g(q) (ut,y) # 0 by (A3), it follows that H.,(u",y,p,) = 0 iff n} = v, . Since by (A2,),
Hy(u",y,p;) = 0 iff ut = u~, we deduce that u is continuous at time 7, iff n/ = 7.

Similar arguments hold for exit points. The conclusion follows. U

Remark 2.16. We can also check that if (u,y) is a shooting extremal satisfying (A2,)-(A4),
then w is continuous at touch points 7 € Ty, if ¢ > 2. Indeed, (220, Z30), and Z33)) lead
to

Hy(u™,y,p;) = 0= Hy(u",y,p5) = Ho(u",y,p;) — vrgy () fuly, u™).

Since gy fu = g&l) =0 and Hu(-,y,pq_) is one-to-one by (A2,), we obtain u* =u".

It follows that if (u,y) is a shooting extremal satisfying (A2,)-(A4), then u is continuous
on [0, 7], provided that we still assume that Ty, = 0 if ¢ = 1 (see Remark EZT9).

The structure of a feasible trajectory is defined as the (finite) number of boundary arcs
and touch points of the trajectory, and the order in which they occur w.r.t. time. Assuming
the structure of the optimal trajectory is known, we define the shooting mapping as follows.
Denote by Ny and Ny the number of boundary arcs and touch points of the trajectory,
respectively. The space of shooting parameters is

© := R™ x RN 5 RNto x RNe 5 RNo 5 RAVe,
With the above notations, and for a given order of boundary arcs and touch points, the

shooting mapping F is defined over a neighborhood in © of shooting parameters associated
with a regular Pontryagin extremal, into ©, by

pEk) pq(T)* - ¢y(y(T))*
Lo gDy (T,,)
s 9(0(Ti))
= g<q (W(T) y(Ton)) (250)
T. @ (T ), y(Tow))
7 0D (y(Ti))

By construction, a zero of the shooting mapping F provides a trajectory (u,y) that is a
shooting extremal. In view of Propositions and T8 the following holds.
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Corollary 2.17. A shooting extremal satisfying (A2,)-(A4) is a regular Pontryagin extremal
iff it satisfies the following minimal additional conditions: ([Z234) on interior arcs, (240)
on boundary arcs, ([243) at touch points, and for all entry points Ten, € Ten, and exit points
Tew € Teg:

if g >2is even: vt — (=1)4 (s 1)y > 0 (—1) gl () > 05 (2.51)

Ten

{ ifg>3isodd, j=1,...,q—1, and ifg>4 iseven, j=2,...,q— 1:

v, — ()it =0 5 (—)Tig () =0,

en

(2.52)

Note that (Z2I)-(E352) is only a reformulation of (Z41))-E242), from which we removed
the condition corresponding to j = ¢, namely (2249]), since the latter is automatically satisfied
by Prop. Consequently, when ¢ = 1, there remain no additional conditions at entry/exit
points for shooting extremals.

Remark 2.18. It follows that for first- and second-order state constraints, and for constraints
of order ¢ > 2 having no boundary arcs (see Remark concerning existence of boundary
arcs for state constraints of order ¢ > 3), the additional conditions reduce to the inequalities

&39), ZZ0), 243), and also (ZE]]) when g = 2 at entry/exit points.

Remark 2.19. For a first-order state constraint, jump parameters v, associated with touch
points are equal to zero along a regular Pontryagin extremal by Prop. For this reason,
we assume in this paper that 7;, = () if ¢ = 1.

Remark 2.20. The nonlocal hypotheses (A2) (or (A2,)) as well as (ZI0) (or ZI2)) are es-
sential in order to prove that the control is continuous. Some of our results remain valid,
substituting everywhere stationary point for (reqular) Pontryagin extremal, when the assump-
tions (A2) and (I0) in (A3) are replaced by the weaker assumptions that u is continuous
over [0,7] and that there exists o,y > 0 such that

Houu(u(t),y(t),p(t)) >« and |g9(u(t), y(t))| >~ for all t € [0,T]. (2.53)

This holds in particular for Propositions 41, 20, EZT0, ZTHl Remark 216l and Corollary 2171
The same remark applies for the other results of this paper, i.e. Theorems 222 2231 P34t
Corollary 24Tl and Lemmas and 2441 in the appendix.

2.3 Well-Posedness of the Shooting Algorithm

We say that the shooting algorithm is locally well-posed if the Jacobian of the shooting map-
ping (Z50) is invertible at some local solution of (P). This allows us to apply locally a Newton
method in order to find a shooting extremal; the additional conditions for a Pontryagin ex-
tremal have to be checked afterwards.

Let us first give some definitions. Given u € U, recall that we denote by y,, the (unique)
solution in Y of the state equation (Z2). This well-defined mapping is of class C'* under
assumption (A0). Let the cost function be

T
J(u) = /0 Cut), yu ()t + S(u(T)). (2.54)

We say that a feasible trajectory (u,y = y,) is a local solution of (P) satisfying the quadratic
growth condition if there exists ¢, > 0 such that

J() > J(u) +c|lu— u||§ V@ € Boo(u,r);  g(ya(t)) <0on [0,T], (2.55)
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where By, denotes the open ball in L*°(0,7") with center uw and radius r. This condition
involves two norms, L>(0,T) for the neighborhood and L?(0,T) for the growth condition.

Let (u,y) be a regular Pontryagin extremal. We make the following strict complementarity
assumption (compare to (Z40), (Z5]), and (Z43]), where large inequalities are replaced by
strict inequalities):

(A5) (i) For all boundary arcs [Ten, Tex):

d4?

(—1)‘1@77(]&) >0 a.e. on (Ten, Tex ), (2.56)
, SN i
If ¢ is odd: @nq(Ten) < 0; @Uq(Te ) <0, (2.57)
. 1 det n qe-1 _
If g is even: v+ dtq_lnq(Ten) > 0; mnq(Tw) < 0. (2.58)

(ii) For all touch points 74, € To:
Vr,, > 0. (2.59)

Recall that (—1)7457,(¢) equals 7o, the density of n (see Prop. EZIM). Let ¢ :=2¢ —1if ¢ is
odd and § := 2q— 2 if ¢ is even. By Prop. 8 ¢+ 1 is the smallest possible order for which the
corresponding time derivative of g(y(t)) may be discontinuous at an entry/exit point. Note

that § = ¢q for ¢ =1, 2.

Lemma 2.21. Let (u,y) be a reqular Pontryagin extremal satisfying (A2)-(A4). For odd (resp.
even) q, assumption [ZRD) (resp. [ER)) holds iff the following non-tangentiality condition at
order ¢ + 1 holds: for all entry times Ten € Ten, and all exit times Tey € Tey,

1 G+1 da+t N da+1! . -
(-1 dt‘i+1g(y(t))|t=7'e_n < U —dtq+1g(y(t))|t:7—$ < U (2.60)

Proof. By Prop. B0 (see (23])), [Z5]]) is equivalent, when g is even, to the strict positivity
of v; at entry/exit points 7 € 7, U Z¢,. The conclusion is then a consequence of Prop. EI0
and of Lemma 44 whose (technical) proof is given in the appendix. O

Assumption (A5)(ii) implies that if ¢ = 1, then 73, = () by Prop. EH(ii). When ¢ > 2, we
assume that all touch points of (u,y) are reducible, in the following sense:

(A6) For all touch points 74, € Tt

d2

IO, < 0. (261)

This makes sense, since when g > 2, we have %g(y(t)) = ¢®(u,y) and u is continuous by
Prop.
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2.3.1 Statement of main results

Define the quadratic cost function:

T ~
Tyv,z) = /0 ) (o) (0 Pgs 1) (0, 2), (0, 2))dt
+ 2(T)" pyy (y(T Z ZV gyy y(T))Z(T) (2.62)
TG’Z—ETL] 1

e et <g§”<y<¢>>z<r>>2>
+ > T< (7)" gyy (y(7))2(7) 40 () e

where H is the augmented Hamiltonian (2222)), and the set of constraints:

2= fylu,y)z+ fulu,y)v on [0,T7; 2(0) =0 (2.63)
gz(/j)(y(T))z(T) =0 for j=0,...,q—1; T € Tep (2.64)

o0 b)) =0 ted, (2.65)
gy(y(7))z(T) =0 7 € Tio- (2.66)

Since the state equation and constraints are linear, the cost function is quadratic, and all have
bounded coefficients, we may take as linearized control and state spaces V := L2(0,7) and
Z = HY0,T;R"), where H'(0,T) is the Sobolev space of functions in L?(0,T) with a weak
derivative in L2(0,T). Let the linear quadratic problem (PQ,) be defined by

1
PQ,) (u,zr)%i\rzlxz ijq(v,z) subject to (ZG3)-(E6a). (2.67)
Consider the following second-order conditions:
(v,2) = 0 is a solution of (PQ,). (2.68)
(v,2) = 0 is the unigue solution of (PQ,). (2.69)

Theorem 2.22 (No-gap second-order optimality conditions). (i) Let (u,y) be a local
solution of (P) satisfying (A2)-(A6). Then its associated multipliers in the alternative formu-
lation are such that the second-order necessary condition (Z68]) holds.

(ii) Let (u,y) be a Pontryagin extremal satisfying (A2)-(A6). Then the second-order suffi-
cient condition ([Z8Y) holds iff (u,y) is a local solution of (P) satisfying the quadratic growth

condition (Z5H).

Theorem 2.23 (Well-posedness of the shooting algorithm). Let (u,y) be a local solution
of (P) satisfying (A2)-(A6). Then the shooting algorithm is locally well-posed (invertible
Jacobian), iff the following two conditions hold: (i) If ¢ > 3, the trajectory (u,y) does not
have boundary arcs; (ii) The second-order sufficient condition (Z89) holds.

In general, even for unconstrained problems, the invertibility of the Jacobian of the shoot-
ing mapping at a Pontryagin extremal does not imply that the second-order sufficient condition
(Z59) holds. We comment on the ill-posedness of the shooting algorithm along boundary arcs
of order ¢ > 3 in Remark

Combining Theorems EZ22(ii) and EZZ3], we obtain that if (u,y) is a local solution of (P)
satisfying (A2)-(A6) and condition (i) of Th. ZZ3] then the shooting algorithm is well-posed
iff (u,y) satisfies the quadratic growth condition.
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2.3.2 Proof of the no-gap Second-order Optimality Conditions (Theorem

2.22)

We use the no-gap second-order optimality conditions established in [I8, 21]. Let (u,y) be a
regular Pontryagin extremal, with the multiplier n € M][0,T] given by (EZZI). Consider the
quadratic cost function:

T W () 2(7))2 (2.70)
[ ot 3 B

where H is the classical Hamiltonian (24]), and consider the constraint
gy(y(t))z(t) =0 on I U Ty, (2.71)

The quadratic problem used in the formulation of the second-order optimality conditions in
[21] is the following:

(PQ) min 1J(v,z) subject to (Z63]) and (Z7TI). (2.72)
(v,2)EVXZ 2

Theorem 2.24. (i) If (u,y) is a local solution of (P) such that (A2)-(A6) hold, then (v, z) =0

is a solution of problem (Z12).

(ii) If (u,y) is a Pontryagin extremal such that (A2)-(A6) hold, it is a local solution of (P)

satisfying the quadratic growth condition (ZBA) iff problem Z12) has zero for unique solution.

Proof. See Corollary 15 and Theorems 18 and 27 in [21][1 or Theorem 0.1 in [I8]. For the
sake of completeness, let us recall the main ideas. The proof of the second-order necessary
condition is based on the computation of the curvature term obtained by Kawasaki [, [[9]
in abstract optimization framework. With the junction conditions results of Prop. and
(A5)(i), we can show that boundary arcs have a zero contribution to the curvature term. For
the second-order sufficient condition, a reduction method is used around the finitely many
reducible touch points. In fact, the proof of the sufficient condition is very similar to the proof
of Lemma in the stability analysis below. O

We establish the link between Th. and the second-order conditions (E5S])-(Z59)
derived from the alternative formulation. In the end of this section we often omit the time
argument when there is no ambiguity. The proof of the next lemma is easy and therefore
omitted.

Lemma 2.25. Assume that the state constraint is of order q. Then for every trajectory (u,y)
and every linearized trajectory (v, z) € V x Z satisfying (Z63), the following holds:

dJ )
p vw(®)=(t) = 9 Wz i=1..,q-1, (2.73)

d (@)

e W®)=(t) = g (u.y)z + 9P (u,y)o. (2.74)

LCorollary and Theorems [LTY and [C27 of this thesis.
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Lemma 2.26. Let (u,y) be a regular Pontryagin extremal satisfying (A2)-(A4), with classical
and alternative multipliers (p,n) and (pq,nq,ué-i,uq—m), respectively, related to each other by

30)-Z38), Z400), and Z1). Then the quadratic cost functions J and J,, defined respec-
twely in ZX0) and ZB62), are equal to each other over the space of linearized trajectories

(v,2) €V X Z satisfying ([ZG3).

Proof. Let (v,z) € V x Z satisty (63) and set Apg := J (v, 2) — T4(v,2). Using ZZI), it is
easily seen that the terms corresponding to the touch points and to the final time vanish, and
hence we get

T

T
Apg = /0 (0 — ) D2 £ () (v, 2), (v, 2))dt + /0 0y () (22 2o (1)t
T
- / D24 (u, ) (v, 2), (0, 21 ()t + S gy (9)(2,2)(7)

0 TEIZ—ez

TE'ZEn

+ Z (VTgyy Z g?(fy 1) (z, z)(T))

In what follows we abbreviate the notation ((v, 2), (v,2)) by ((v,2))?. Relations ([236)-(E31)
between p and p, lead to

T
Z / § 0D ) (2P0 + [ a0 (0

/ D¢\ (u,y) (v, 2))*ng(8)dt + Y vrgyy(y)(z, 2)(7) (2.75)

TE'Z::z

+ ) (Vfgyy Z 199D (y) (2 z)(r)).

TE’Z—ETL

The constraint being of order ¢, we have ¢U)(u,y) = g(] 1)(y)f(u, y)for j =0toqg—1. It
follows that

DD (u, ) (1,2))2 = 950" W) (F (1), 2, 2) + 295, () (2, Df (u, ) (v, 2))
(j-1) 2 2 (2'76)
+ gy (y)D?f(u,y)((v, 2))*.

In addition, by the linearized state equation (EZ63]), we have, for all j =1,...,q

d 3 3

@[5 WO, 20)] =y ) (Fn.0). .2) + 207wz D (,9) 0, 2),
which gives by X0, for j =1,...,q

d ; -

Lo o)) 2(0)] = D269 (0, ) (0. )2 — 0§ WD )((w. ). (277)

Since gg_l)(u y) =0 for j = 1,...,q, we have g( ( )(z,2) = D?*¢U=V(u,y)((v, 2))? for
Jj =1,...,q. Multiplying Z7) by n;, integrating over [0,T], and integrating by parts the
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left-hand side (recall that 1; = —n;_1), we obtain, for j =1,...,q

/ DglY (u,y)((v, 2))? nj—1(t)dt + Z gyy (2, 2)n;(77)

TETex

= > gz 2 ()

TETen

T , T
2/0 DQQ(”(%y)((v,Z))an(t)dt—/0 99V () D* f (u, y)((v, 2))*n; (t)dt.

Adding the above equalities for j = 1,..., g, we get after simplification by fOT D2%g) (u, y)((v, 2))2n;
for j=1,...,g—1 that

T
AMmemZZ% )z 2y ()

J]= 1 TETex
- Z Y 9 W)z
] 1 TETen
4q T
/m uywzmdFZA D2, y)((0, 2)) 5 (£)d.
Substituting into (Z7H) gives
q
Apg = Z Vr Gyy (Y Zg (z,2)n;(17)
TETex
q
+ Y g W) (2 2)() + D (0 (7)) =) gl () (2, 2)(7)
TETen 7=1

Using (Z37)) and additional conditions at entry and exit points (2Z1)-([ZZ2), we obtain that
Apg = 0. Thus, the cost functions of the two quadratic problems coincide on the feasible
set. ]

Proof of Theorem [ZZ4. The state constraint being of order g, it follows from (E73)- (74
that (264)- 66 and (ZTI) are equivalent. By Lemma 226, problems (PQ,) and (Z72) have

the same feasible set and the same cost function on that feasible set, and hence they also
have the same value and the same set of optimal solutions. The conclusion follows then from
Theorem O

2.3.3 Proof of the Well-posedness (Theorem [Z23])

We give a sequence of lemmas; some of them will also be used in section 24l

We denote e.g. by g5 (4(Ten))2(Ten), 912 ) (u(Ten), y(Ten)) (0(Zi7), #(Ten)), the vectors in
RNe of components g(])( (1))z(1), ggz)y) (u(7),y(7))(v(r7), 2(7)), respectively, for T € T,,,. By
(0:9—-1)

9y (y(Zen))2(Ten ) we denote the vector in RV of component gg(,j)(y(T))z(T), 0<j<q—1,
T € Top.
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Lemma 2.27. Let (u,y) be a shooting extremal satisfying (A2,)-(A4), with the set of shoot-
ing parameters Oy = (pf‘),yii,yq-w,’fm,’fm,’ﬁo) € O, such that F(0y) = 0 with the shooting
mapping F defined in (Z50). Then F is of class C' on a neighborhood O of 0y, and at the
direction

W= (71-07’7']' ’7720’0-7'@71’0-7@170-720) (278)
the vector M := DF(0p)w can be split into M = ( MZE)* given by
m(T)* ¢yy(y(T))Z(T)
Mo = | g (YT A(Ten) |- (2.79)

gy( (7:50)) (7;0)

90 Ten) YT (T ), 2(Te)) + 0729 D ()

endt
Mr = | gl (l(Ter), y(Tee)) ((T5), 2(Tea)) + 07— 0D (w,0) s |+ (2.80)

d
exr dt
W (W (T V\2(T d
9y (Y(Tr0))2( to)+0’det9 'W)le=1s,

where (v, z,m,(), the linearized control, state, costate and state constraint multiplier, are the
solutions of (omitting arguments (u,y,pq,nq) and t)

o= fyr+ fuv on[0,T]:  2(0)=0 (2.81)
-7 = ﬁyyz + ﬁyuv +7fy+ ng(/q) on [0, T\ T (2.82)
= ﬁuyz + Hyv + 7 fu + ngq) a.e. on [0,T] (2.83)
= gl(f)z + g\ a.e. on Ty (2.84)
= ( on [0,T]\ Zy (2.85)
with initial condition of m given by w(0) = my and and jump conditions of ™ given by
q q

=Y vl gV y(r) = Y Alad P (u(r)

= 7=t (2.86)
— o, Z vigd (y(7)); 7€ Ton
i=1

[w(T)] = 0; ;6 Tex (2.87)
(7)) = —vr2(1) 9y (7)) = 49y (U(7)) = orvrg P (y(r); 7€ Toor (2.88)

Proof. We detail only how we obtain the jump conditions of the linearized costate m at entry
times; the other equations are obvious. In view of (E3T]), it is easy to check that the jump of
mat 7 € T, is given by

q
== S 00 - 3 A0

Jj=1

where the vector of sensitivity coefficients A, on junction time is given by

Z L5, () f(u(r)y(m) + [Hy (u(r), y(r), pg (1), 1 (7)))-
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By continuity of u at junction times (Prop. EZI0) and by (31), we have (omitting argument
7 and setting 1 = ny(7))

q
Ar ==Y vigh=1( Z W) £y (w, ) + 0 gi2 (u, y).
j=1
Since gg(,j)(u,y) = g?(fy )(y)f(u Y) +gg(f (y) fy(u,y) for j =1,...,¢, and since by Prop. EZT5],
we have 1,(77) = v, we obtain (3. O

We recall that a continuous quadratic form defined over a Hilbert space is a Legendre form
(see e.g. [74, 24]) if it is weakly lower semicontinuous and satisfies the following property:
For all weakly convergent sequence (v,) C L?(0,T), v, — v, we have that v, — v strongly if

Q(vn) — Q(v).

Lemma 2.28. Let (u,y) be a shooting extremal satisfying (A2,)-(A4). For allv € V, define
zy as the (unique) solution in Z of the linearized state equation (263)), and define the operator
AV — W = LY(T,) x RINo x RNt py

(05 (), y(-) 20 () + 02 (u(-), y())o()),
Av = A (Y(Ton)) 2 (Ton) : (2.89)
9y W(Ti0))20(Tio)

Then (i) the continuous linear operator A is onto, and (ii) if in addition the second-order
sufficient condition (Z69) holds, then there exists o > 0, such that

Q) = Ty(v,2,) > a|v|3, Vo€ Ker A (2.90)
By ¢|z,, we denote the restriction to Z; of function ¢ defined over [0, T.

Proof. The continuity of A follows from that of V — Z, v +— z,. By ([ZI0) and Lemma 20,
the range of the mapping V — Z, v — g, (y(+))zy(+) is the subspace denoted by H{ of functions
© € H1(0,T) = W22(0,T) satisfying ¢?)(0) = 0 for all j = 0,...,q — 1. Points (i) follows,
since by (A4), for all (w('),b;:]n,b'];o) € W, there exists ¢ € H{ such that ¢(@(t) = (t) a.e.
on Z,, pU0(Ten) = by, j=1,...,q, and ¢(Ts,) = by,

By (A2,), we can show that Q(v) is a Legendre form over L%(0,T) (the proof is similar
to that of Lemma 21 in [21]@) By (Z89), we have Q(v) > 0 for all v € Ker A4\ {0}, which
implies (200) by Lemma O

Proposition 2.29. Let (u,y) be a shooting extremal satisfying (A2q)-(A4) and denote by
0y € © its set of shooting parameters. Assume that (i) the second-order sufficient condition
&359)) is satisfied; and (ii) the following holds at junction times:

(q(uy)|t T 7&0 VTG,Ten;

d
at’

DUyt 0 Y7 € Ty (2.91)

dt dt

V@)l=r #0  Vr €T (2.92)
Then the Jacobian DF(0y) of the shooting mapping is invertible, and for all

1:
5 = (a’T)b’Z'g,L’btz—to7c’2—en’C7—ez7c’z—to) 6 67

2Lemma [ZI of this thesis.
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the (unique) solution w € © of DF(0y)w = 0, with w given by LX), is as follows. With the
notation of Lemma[ZZ8, denote by (vs, ws) with ws = ((s, A;%n, s, Th,) the unique solution in
L2(0,T) x W of the first-order optimality system of the problem

, 1 S 9y (y(7))2(7)
(P°)  min ~J,(v,2,) + ahz(T) + CrUr )
w3 g 2 e (299
subject to Av = (OLQ(Ib), b;i, bt )"

Then my = 75(0), where w5 is the solution on [0,T)\ T of ZIA) with (vs, (s, 25 = 2v;), with
final and jump conditions of ws being given by

ms(T) = ( ) by (y(T)) + ar, (2.94)
~[ms(m)] = ZV]ZJ "oy W)+ DN (), T E T, (295)
—[ms(7)] = 0, 7 € Tea, (2.96)
—[ms(m)] = vrzs(T) 9y (7)) + Asrgy(y(7))

(1) « (1) (1)
<9y (W) gy (y(7)) gy (y(7)) ,
- VTZ5(T) ! %g(l) (y?;’t:T +cr TW? T € Tio; (297)

and we have vz, = A5,

. - — gy (y(r)z5(7) reT. (2.98)

dtg(l (y)|t T

Cr (U(T) y(7))(vs (77), 25(7))
o %g(q)(%y)!t:ﬁ . TeTn (299

Lo 90, (u(r), y(7) (v5(77), 25(7)) reT. (2.100)
L0, )
1

o= N =N, v, j=2...,q 71T (2.101)

Note that (vs, (5, 25, 75) satisfies (ZZ1)-EZa). It follows by (A2,) and I) that vs, (5 €
PC%[O,T |, and hence vs has limits when ¢ — 7~ and t — 71 for 7 in respectively 7, and

Tex, so (Z09)-(ZTI00) make sense.

Remark 2.30. Note that (Z91) is equivalent to the discontinuity of @ at entry/exit points and
that, when ¢ = 1,2, (Z80) implies (1), since ¢ = q.

Remark 2.31. The above proposition is an explicit elimination property, valid for any order g >
1, that enables us to express the solution w of DF(0y)w = ¢ as a function of the optimal solution
and multipliers of the quadratic problem (735), independent of the variations of junction times.
In the case ¢ = 1, the term in the factor of the variation of entry time o, in (Z80]) is zero
so that Lemma is nothing but the block decoupling property of the Jacobian already
established in [93]. In the case ¢ > 2, our result differs from the one in [94], since its authors
use a quadratic problem depending on the variation of the entry point, leading to an additional
assumption, (A.11).
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Proof. Let § € ©. By (i) and Lemma 228 Lemma (with » = 0) implies that the first-
order optimality system of (P?) has a unique solution and multipliers. One can easily check

that (Z8T)-(EZR0) and (Z93)-(EL97), together with (234]) and
9"V (y(Ten))26(Ten) = bz 9y(W(Tro))25(Too) = b (2.102)

constitute the first-order optimality system of (Ps), with A;:g-en and As 7, the multipliers
associated with (2I02]), and thus have a unique solution (vs, zs, 75, s, )\éjg-e A6 Tio )

By (ii), define now o7 by (Z38])-(ZI00), and let fy;—:i and 77,, be related to )\é;g-m and \s 7;,
by the invertible relations (ZI0I]) and 7, = As7;,. Using (Z38)) and ZIOI) in respectively
@397) and Z30), it follows that the system of equations (EZ81])-(280]), (Z20)-2=8), 294,

&102), and ((ZI9R)-ZI00) has a unique solution (vg,25,7T5,C5,'y£i,77—m,07—). With Lemma
27 this implies that DF(0p)w = ¢ iff mop = 75(0), and the remaining variables of w are deter-

mined by (Z298))-(I0T). Lipschitz continuity of w w.r.t. J is obtained as an easy consequence
of Lemma and the above relations. O

Proof of Theorem [ZZ3. The proof is organized as follows. We first show the sufficiency of
the conditions (i) and (ii) for the well-posedness of the shooting algorithm, which is an easy
consequence of the above lemmas. After that we show that (i), and then (ii), are also necessary.

Since (A5)(i) implies, by Lemma 211 that (Z60) holds, X)) is satisfied when ¢ = 1,2
(see Rem. EZ30) or trivially when the trajectory (u,y) has no boundary arc, i.e. Tg,, = Top = 0.
With (A6) and the second-order sufficient condition (EZE9), the invertibility of the Jacobian
of the shooting mapping follows from Prop.

Let us now show the converse. Assume first that (i) does not hold, i.e. ¢ > 3 and (u, y) has
a boundary arc. By Prop. [ZI(i), @ is continuous at junction times 7, and 7.,. Therefore, the
function & gD (u(t),y(t)) depending on (y,u, ) is also continuous at entry and exit times and
vanishes on the boundary arc, so that (Z01I) does not hold, at any of the regular entry/exit
times. Then it is easily seen by Lemma that we can find some nonzero © € © such that
DF(0y)w = 0. Indeed, take e.g. 6, # 0 for 7 € 7,, and all other components of & equal to
zero. It follows that the Jacobian of the shooting mapping is singular.

Assume now that (i) is satisfied but (ii) is not. Since (u,y) is a local solution of (P), by
Th. the second-order necessary condition (268 is satisfied. This says that (v,z) = 0 is
a solution of problem (PQy), therefore the value of (PQ,) is zero, the infimum is attained,
and solutions of this problem do exist. If (v,z) = 0 is not the unique solution, that is, if the
second-order sufficient condition (ZE89)) does not hold, this means that there exists another
optimal solution (g, Zy) # 0 of (PQq), and hence a nonzero solution of its first-order optimality
conditions (Z63))- (66, EX1)-(Z80), with final and jump conditions of the associated costate
7o given by (Z94)-@397) with ap = 0 and c¢z;, = 0, and multipliers (5\%‘2,5\7}0) associated
respectively with (264]) and (266l).

Setting 79 := 7(0), we claim that (7?0,5\%1,5\7;0) # 0. Indeed, suppose that all of
them were zero. Eliminating v by (Z83)) as a linear function of (z,7), and integrating from
(2(0),7(0)) = 0 over the first arc the linear differential equations (EL8T)-(Z82)), we would have
(z,7,v,¢) = 0, until the first junction time. If all the jump parameters S\JTE , and 5\710 are equal
to zero, and (v,() is given by (ZE3)-EX4) on boundary arcs, we obtain (Zg, 7o, 9o, (o) = 0
over [0,T], which leads to a contradiction.

Now let 47, = Az, and (6’7—,%-;1) be solution of (Z9])-(ZI0I) with ¢z = 0. We have
W= (7?0,’?;-;1,'77;0,57;”,57;1,5730) # 0, and by Lemma 227 DF(0y)w = 0. Therefore, the
Jacobian of the shooting mapping is singular, which achieves the proof. O
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2.4 Sensitivity analysis without strict complementarity at touch
points

In this section, we show how to conduct a sensitivity analysis, removing the strict complemen-
tarity hypothesis for touch points.

Let us first note that our framework allows us to deal with nonautonomous problems
(i.e. when the data f, ¢, g depend on t) as well, by introducing an additional state variable
equal to the time, provided that the data are sufficiently smooth with respect to t. When
the original problem (T))-E3]) is autonomous, we still can add the time as a state variable.
This transformation affects neither the assumptions nor the first- and second-order optimality
conditions in sections ZZ2 and 3 and the condition (ii) in Th. X34l Therefore, we will assume
w.l.o.g. throughout this section that the problem (P) is written such that the last component
of the state variable y,, satisfies

Un(t) =1 for all ¢t € [0,T7; yn(0) =0

(i.e. yn(t) = t, for all t). The reason for doing so is to consider in our stability analysis a
wide class of perturbations, including nonautonomous perturbations (and possibly a nonau-
tonomous original problem). Allowing nonautonomous perturbations is indeed needed to
obtain the equivalence in Th. EZ34], even when the original problem is autonomous. We shall
not repeat in this section this assumption, which intervenes only in the proof of (i) = (ii) in
Th. Z34

Let My be an open subset of a Banach space M (the perturbation space). Consider, for
w € My, the family of perturbed optimal control problems

(P*) min / U(u )dt 4+ (y(T), ) subject to

(u,y)eUxy
= flult),y(t),p), ae te[0,Th  y(0) = go(w),
g(y(t), pu) <0 foralltel0,T],

where / : RxR" x My — R, ¢ : R*x My —» R, f : RxR" x My — R”, §: R" x My — R, and
o : My — R™ are at least C? mappings. We denote y = Go(p), £*(u,y) := g(u,y,,u), etc.,
and identify (€#, ¢*, f*, g, yf) with problem (PH).

We say that (P*) is a g¢-stable extension of (P) if (i) there exists pg € My such that
(Pro) = (P) (i.e. £" = (, etc.); (i) the mappings £, ¢, f,§ are C%4, where q is the order of the
state constraint of problem (P); (iii) the state constraints are of order ¢ for all u € My; and
(iv) the mappings f* are Lipschitz continuous over R x R™, uniformly over pu € M.

For each p € My, problem (P*) satisfies (A0); taking if necessary a smaller neighborhood
of po, we may assume that (Al) holds as well. Given (u,u,v) € My x U x V, denote by
(yti, 2ti0) €Y x Z the state and linearized state solution of

= ) Y4 (0) = g, (2.103)
2y = fyuyl)zh, + il (u,yn)v; 2 ,(0) =0, (2.104)
and let J*(u fo CF (u(t), yi (t)dt + ¢*(yh (T)).

In What follows (u,y) denotes a Pontryagin extremal of (P) = (P*0), with associated
multipliers (p,77). We denote by 6y € © the vector of shooting parameters associated with

(@, 9)-
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We say that a feasible trajectory (u,y) for (P*) has a neighboring structure to that of (u,y)
if the structure of (u,y) (number and order of boundary arcs and touch points) differs from
that of (u,y) only by possibly removing some nonessential touch points. With a trajectory
(u,y) having a neighboring structure to that of (@, ) is naturally associated a set of shooting
parameters 0, but the latter may have a lower dimension than 0 if (u,y) has (strictly) less
touch points than (u#,y). We can show (and this is precisely the idea of reduction methods,
see further) that when |[u — @l and || — po|| are small enough and ¢ > 2, for every touch
point 7y, of (u,y) satisfying (Z61]), the function g#(y(-)) reaches its maximum over a small
neighborhood of 74, at a unique time denoted 7/,. Then adding to 0 this time 7/, and a zero
jump parameter, and doing so for each touch point of (@, i) that is inactive for (u,y), we obtain
an augmented vector of shooting parameters 6 having the same dimension as 6y. Therefore
the following definition makes sense.

Definition 2.32. We say that the uniform second-order quadratic growth condition holds if
for every g-stable extension (P*), there exists ¢ > 0 and open neighborhoods V), x V,, x Vjp
of (uo, @, 0y) in My x U x ©, such that for all u € V), there exists a unique stationary point
(ut,yt = yh.) € V, x Y of (P*) having a neighboring structure to that of (u,y) with its
augmented shooting parameters in Vy, and that point satisfies

JH(u) > JH(uP) + ¢|lu — ut||3, VueVy, ¢*yh)<0 onl0,T]. (2.105)

As a consequence of the definition of the uniform growth condition, we have @ = u*® and
y =y

Note that in the uniform growth condition (EZI0AI), the neighborhood (in L*°) on which
ut satisfies the quadratic growth condition is independent on p. Our definition of uniform
quadratic growth is different from the one in [24] section 5.1], since the latter implies the local
uniqueness of solutions of the first-order optimality system (stationary points). Here, since
our stability analysis is based on the shooting formulation, we can argue only the uniqueness
of the stationary point among the feasible trajectories that have their structure and shooting
parameters “in the neighborhood” of those of (u,y). The uniqueness of the stationary point,
in a certain sense, is needed to prove the implication (i) = (ii) in Th. 2234 below.

We will use the assumption below, which is a modification of (A5)

(A5%) (i) If ¢ < 2, the following strengthening of (EZ56)-(Z357) holds:
Q4
36 >0 (—1)‘1@77(1(25) >0 for all ¢ € int Zy; (2.106)
if ¢ = 2, (Z58) holds; if ¢ > 2, the trajectory (u,y) has no boundary arc;
(ii) If ¢ = 1, (@, y) has no (nonessential) touch points.

Assumption (A5’)(i) is a strengthening of (A5)(i). It requires, in addition to (A5)(i), uniform
strict complementarity on boundary arcs, which is stronger than (250 (and implies (ZX57)),
and that (@, y) have no boundary arc if ¢ > 3. Assumption (A5’)(ii) is weaker than (A5)(ii)
since it allows nonessential touch points for constraints of order ¢ > 2 only.

Define the set of increasing times in (0,7") of cardinal N as

ITy ={reRY; 0<m<--- <7y < T} (2.107)

Set 79 :=0and 741 :=T. Given § C I'T, we have a natural isomorphism between PC § [0,T]
and C*([0, 1]; RN*1), defined by

oi(s) = (1 + (Tix1 — 7)S) for all s € (0,1), o
{ ¢i(0) = (1), ¢i(1) = o(114) i=0,...,N. (2.108)
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We may therefore identify the set PC¥[0,T] := U{PC.[0,T];S € ITn} of all possible N-
piecewise k times continuously differentiable functions, with C*([0,1];RN¥*1) x ITy. The
corresponding notion of convergence follows: A sequence " € PC";TL [0,T] converges to ¢ €
PCE[0,T] if S* — S in RY and ¢" — ¢ in CF([0,1; RYT1). Similarly, a mapping defined
over an open subset W of a Banach space, W — PC]’%, w— ¥ e PC!;M is of class C* if
the mapping W — C*([0, 1]; R¥+1) x RN, w — (¢¥,S,,) is CF. We denote by PC’]Ii;T[O,T] =
PC%[0,T] N CT[0,T) the subset of PCX[0,T] of functions having continuous derivatives on
[0,7] until order 7 > 0. The next lemma is elementary and will be used at the end of this
section.

Lemma 2.33. Let W be an open subset of a Banach space, and W — PC}\;O, w— ¥ € PC;’S
a CY mapping. Then the mapping w — ©* is C* in L™(0,T) for all1 < r < co. More precisely,
forwe W, let S¥ = {7} < --- < 7§} and denote by (f“’,a“’) the directional derivative in
CH([0,1); RN*YY x ITy of the mapping w — ($¥,7%) at point w in direction sw € W. Then
the directional derivative € in L"(0,T) is given by

cW Fw t— Tiw - w w t— Tiw w w w oW
é‘ (t) = 52 w _ w | ¥ (t) g; + w o w (Ui+1 —0; ) on (Ti 7Ti+1)'
Tiv1 — T Tit1 — T

By Prop. Z0 a regular Pontryagin extremal and its multipliers (u”,y*, p*, n*) satisfying
(A2)-(A4) belong to the product space

Xs := PCL°0,T] x PCL([0,T;R™) x PCL([0,T);R™) x PCL[0,T], (2.109)

with here & = 7', which is the finite set of its junction times assumed to be of cardinal N. So
let us define the union Xy of all such spaces, and define as well some other sets needed later:

Xy = U{Xs; Selly},

XL = PCL0,T] x PCL0([0,T];R™) x PCET([0,T]; R™) x PCL[0, T,
X4 = PCL0,T] x PCLO((0,T); R™) x PCL([0,T);R™) x PCL[0,T],
XL = U{xd; S eIy}, Xy = U{Xs; S e ITy).

The main result of this section is the next theorem, which gives stability results for the
optimal control problem (P) without assuming strict complementarity at touch points. There-
fore we cannot directly apply the implicit function theorem as it was done in [93], 94] and in
our section

Theorem 2.34. Let (u,y) be a Pontryagin extremal of (P) satisfying (A2)-(A4), (A5’), and
(A6). Then the following statements are equivalent:

(i) The uniform second-order quadratic growth condition (Def. [Z233) holds. Denote by u* € V,
the solution of [I0H) for p € V,,, and set y* := yh,.. With (u*,y*) are associated a unique
costate p* and state constraint multiplier n*, and the mapping p — (ut, y*, p*,n*) € Xy is
Lipschitz continuous over V.

(ii) The following strong second-order sufficient condition holds:

J(,z) >0, forall (v,z) €V x Z\ {0} satisfying ([ZL3) and
gy(y(t)z(t) =0 for allt € T, U T,5%. (2.110)
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Remark 2.35. Note that condition (ii) is stronger than the following second-order character-
ization of quadratic growth (ZBHH) (see [21]):

J(v,z) >0, forall (v,z) €V x Z\ {0} satisfying (ZG3)), [ZII0) and
gy(G(7))z(1) <0 forall 7 € Ty \ 7,57,

We need the following notation. Denote by 7,2 := T;, \ 7,5°° the subset of nonessential
touch points of the trajectory (u,y). For u close to pg, let F(-, u) be the shooting mapping
E20) for problem (P*), with the same structure as the trajectory (u,y), i.e. the same number
of boundary arcs and touch points and the same order of their occurrence w.r.t. time. Thus
nonessential touch points are present in the shooting mapping and may be active or inactive
for the perturbed problem. Let N := n + (¢ + 2)N; + 2Ny, denote the dimension of the
shooting mapping, with N, = Card 7Z,,, = Card 7., and Ny, = Card 7;,, and denote by Ny the
cardinal of 7,2, the set of nonessential touch points. Split F into two components such that
F(ypm) = (®(, 1)*, ¥(-, 1)*)* and ¥ corresponds to the component g”(y(7;2¢%)) € RN, We
consider the following problem for u close to pg: Find

0= (h" Vi, Vipeos Vipmes, Ty T8, T ™ T %) € © (2.111)
such that
®(0,u) =0; U0, 1) e RN n (V%’Zes)J_; 1/%7;55 e RE". (2.112)

In (ZIT2), we express the complementarity condition for nonessential touch points only. The
complementarity condition at essential touch points and boundary arcs, where strict comple-
mentarity is satisfied, will hold by continuity, since we perform a local analysis (see further

Lemmas ZZ3HZ3Y).

The point 6, solution of ZIT2) for p = pyo, is said to be strongly regular (see Robinson
[T21]), if there exists a neighborhood Vj x V; in RN x RN of (6g,0) such that for all § € Vj,
§ = (61,02) € RN=No x RN there exists a unique solution ¢ in Vj of:

Dy®(0o, 110)(0 — ) — 61 =0

2.113
DG\I/(OO, /Lo)(e - 00) — g € RJEO N I/%‘;nes; Upnes € Rfo, ( )

and the mapping = : § — 6(0) is Lipschitz continuous over V. If 0y is strongly regular, then
by [T21], there exists a neighborhood Vp x V), of (6o, io), such that for each p € V,,, ZIT2)
has in Vp a unique solution 0 and there exists x > 0 such that for all u, pu’ € V,,

0" — 0| < kel — 4] (2.114)
In addition, the following expansion of #* holds (see [24), p.413] eq. (5.41)):

0" = E(=DyF (6o, o) (1 — ko)) + o[l — poll)- (2.115)

2.4.1 Stability Analysis (Proof of Th. 234

The first step in the proof of (ii) = (i) in Th. 34l is to show that (ii) implies the strong
regularity property (Lemma EZ30). The existence of a (locally unique) shooting extremal
(ut, y*) for problem (P*) having its shooting parameters in the neighborhood of those of
(u,y) follows (Lemma Z3T). The next step is to check the additional conditions of Cor. 11,
implying that (u*,y*) is a stationary point (Lemma Z38). We end the proof by checking that
u* satisfies the uniform quadratic growth condition (EZ100]) (Lemmas EZ30H2A0I).
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Lemma 2.36. Under the assumptions of Th. condition (ii) of Th. implies that 6
is a strongly regular solution of ([ZII2) for u = po.

Proof. The proof is somewhat similar to that of Proposition Let 0 = (1,62) € RV-No
RN with

01 = (a7, byl BT, T OTeu CTgpo C1es); 02 = brpes.
Let us show that there exists a unique w € O,
W = (T Y VT VI O Tons Oy 057, 07300,
solution of the following relation, equivalent to (ZI13]) with w = 6 — ;:

Dg® (0o, po)w — 01 = 0,

2.116
DQ\I’(Q(), /Lo)w — (52 € R]_VO N ’Y%’tnes; YTes € Ri\_fo' ( )
Consider the following linear quadratic optimal control problem:
(
. 1 7))z (7)
(P%)  min T, (v,2y) + apze(T CTI/Ty—
ey 5Ja TGZTEO LoD ()]s (2.117)
subject to Av = (OLQ(Ib)ab%iabZ?S)*% Bv < brypes,
where J;(v, 2,) is defined by (Z62) and the linear operators A, B are defined by
<g§q><u<‘>,y§(-)>> W)+ () y(No()la,
Av = -
Ay T T -
9y (W(T15°%)) 20 (T15°)
Bv = 9y (W(T5°%)) 20 (T5°°)-

Being equal to A defined in (Z89), the operator (A, B) is onto by Lemma 28 By Lemma 245,
the Legendre form Q(v) := J,(v, 2y) is coercive over Ker A. It follows from Lemma that
the first-order optimality system of problem (735) has a unique solution vs € V), with a unique
associated Lagrange multiplier (g, )\é:g—e s A§ Tess, A gmes) in L?(Ty) x RIVo x RNto=No 5 RNo,
and the mapping 6 — (vs, (s, )\(1;:% g )\577—;;5,)\5,7;2%) is Lipschitz continuous. Now, defining as
in Prop. or by (Z3])-(ZI00) and defining 'y;-:i, YTess, Yrnes by the invertible relations
IO, y7ess = A6 7ess and yrnes = Agrnes, this implies that the system of equations (EZSI])-
ZX9), (Z30)-(Z8]), (Z94), (Z9])-(ZI00), together with the constraints and complementarity

conditions of (P?)

0:g—1 oss ss
0T (y(Ton))26(Ton) = D51, gy (9(T5®))26(TE>®) = bress,
9y (Y(Ti5°%)) 2 (Ti6°*) < brnes, e 20, (gy(y(Ti5%%)) 26 (Ti6°") — brnes) L yznes,

has a unique solution (vs, 25, 75, Cs, 'y;-:i s VIess VIies s o). Thus by LemmaZ27 we obtain that
w is a solution of (ZITH) iff mp = 7m5(0) and the other variables of w are given as above. The
existence and uniqueness of w follows, and it is not difficult to check the Lipschitz continuity
of w w.r.t. 4. O
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By strong regularity, there exist neighborhoods V), and Vj of po and 6 such that, for all
p € V,, there exists in Vj a unique solution 6# of ([ZIT2):

_ (obx ol w €8S A-pi,nes N
9#_(p0 ’V']'en )V']'tfiossvy']?;es),]’e%),]’eljmzo 7,]:50 )E‘/YGCR .

Denote the associated trajectory and multipliers by (u#, y*, py,ny) € X3 Recall that U(0*, 1) =
g"(y" (T, ")) and set

Th =TE u{r e TL" ; ¢"(y"(1)) = 0}.

By the definition of (ZI1Z), we have that g*(y*(7)) < 0 and v} = 0if 7 ¢ 7. Hence
(ut, y*, ply,my ) is a shooting extremal for (P#), with jump parameters (Vg—’l'q, Vi) and junction
en to
times (7, 7z, T1h).
In order to show now that the mapping pu — (u”, y*, p*,n*) is Lipschitz continous, where

(p*,nt) is given by (Z36)-([Z3) and (ZZI), consider the mapping
Vix Vo — X%, (1,0) — (u? y? pi? ph?), (2.119)

where (u?, yf ph? pif) is the solution of (EZZ3)-E24), E2H), (Z2K), ©30), and E30)-

&33) for (P*), with initial value of the costate, jump parameters and junction times given
by argument 6. By the Cauchy-Lipschitz theorem, this mapping is well-defined and of class
C? on neighborhoods V,, x Vy of (g, 00). Therefore the mapping

Vu X Vb — XJ{/‘? (M70) = (u,u,@’y,u,@’pu,@’n,uﬂ)’ (2120)

where n;."a, 0<j<qg—1,p*° and n*? are defined by (Z30)-(Z38) and ZZT), is of class CL.

Lemma 2.37. Under assumptions and condition (ii) of Th. there exists a neighborhood
Vi of po such that the mapping V,, — Xn, p— (ut,y*,p*,nt) is well-defined and Lipschitz
continuous on V.

Proof. Since strong regularity holds by Lemma Z30] the mapping u — 6* solution of (ZT12)
is well-defined on a neighborhood of p and Lipschitz continuous by (EI14]). By continuity of
the mappings (ZT20) and p — 0#, the mapping p — (ut,y*,pH,n*) is continuous V,, — X]{,.
Let us show now that u/ is continuous. By (A2)-(A3), reducing V,, if necessary, we have
HEu(a, g (), p*(tF)) > a/2 and \(g“)(f)(ﬂ,y“(t))] > ~/2 for all ¢t and all @ in the segment
[ut (t7), u(tT)] == {ou(tt) + (1 — o)u(t™), o € [0,1]}. By arguments similar to those used
in the proof of Prop. ZI0(i) and in Rem. EZT6 this is enough to show that u* is continuous, and
hence, (ut,y*) € PCg—’B [0,T] x PC’g—J,Sl’l([O,T l;R™). Reducing V* if necessary, by composition
of p + 0" with the C''-mapping ([ZI20), we deduce that the mapping p +— (uh,y*, p*, ") €
Xy is Lipschitz continuous on a neighborhood of pu. O

Lemma 2.38. Under assumptions and condition (ii) of Th. the shooting extremal
(ut, y*) is a stationary point for problem (PH).

Proof. By Corollary 217 and Rem. 220l we need to check (239), Z40), Z43), and also,
when ¢ = 2, (Z21). By (A5’) and Lemma E37 A0) follows from EI00). If ¢ = 2, &2
follows from (Z58). By continuity of jumps at essential touch points and the definition of
ZTI1Z), we obtain (ZZ3). It remains to prove (Z3J). Near an entry/exit point 7/ (when
g = 1 or 2) this is a consequence of hypothesis (260) and continuity w.r.t. pu of u(r#¥).
Similarly, near touch points, this follows from the reducibility hypothesis (Z&1l). Finally,
outside a small neighborhood of contact points, we obtain that g#(y*) < 0 by a standard
compactness argument. ]
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The next two lemmas extend those in [21, section 4]@ to the setting of perturbed optimal
control problems. In what follows we denote by supp(dn) the support of the measure n in

M[0,T].

Lemma 2.39. Assume that the assumptions and condition (ii) of Th. hold. Let (P*) be
a q-stable extension, and p, — po with its associated shooting extremal (U, yn) and multipliers
(Pnynn)- Forv €V, define Q" (v) := JF (v, 24" v), where JF(-,-) is given by @I0) for (PHn)

and 247 is defined by I0A). Define similarly Q(v) := J*0 (v, 245,). Let v, — v € L?. Then
it holds that

Q) < liminf Q"(v,) and v, — v strongly if Q" (v,) — Q(v). (2.121)

Set zp, = 24" v, and assume in addition that gy (yn(t))zn(t) < rn, where ||1y|leo — 0, for all
t € supp(dn,) and all n. Let z := z3;%. Then

gy(H(t)z(t) < 0 on supp(dn). (2.122)

Proof. Since by Lemma 37 (uy,y,) converges uniformly to (@,y), and v, — v, we have
that (z,) converges weakly in H' to z, and hence uniformly. Relation (ZI122) follows from
the convergence of 7, in PCJ, strict complementarity (2I00), and uniform convergence of
95" (Yn)zn. Let us now show (ZIZI).

Set Q¥ (vy,) := fOT v} Hs (Un, Yn, P )Undt. By Lemma EZ37, uniform convergence of z,,, and

convergence in Xy of Hby (Un,Yn,pn) and Hy (tn, Yn, pr), it follows easily that Q,(v,) —

Q%(’Un) - Q(@) - QO(T))- Writing Q%(vn) = Qo(vn) + €n with €En = JUZ(Hgg(unaynapn) -

Hy (6,9, p))vpdt, by continuity of Hln at junction times (Lemma and Rem. [Z210),
Lemma 2237 implies that HYy (tn, Yn, Pn) — Hyu(@, ¥, p) uniformly, and hence, €, — 0. Since
by (A2), Q°: v — fOT v*Hyy (4,7, p)v is a Legendre form, (2ZI21]) follows. O

We recall the reduction approach of [21l section 5.2]@. When ¢ > 2, with all touch points
of the trajectory (@, y) being reducible by (A6), let €,6 > 0 and V), be small enough so that,
for all [|u — @ljoc < 6, all p € V,, and all 74, € T4y, the function g#(yl) attains its maximum
over [T, — €, Ty + €] at a unique point 74 € (14 — &, 7o +€). Set Iyp := U, 7y, (Tto — €, Too + €)
and I := [0,T]\ I;,. When ¢ = 1, set I, := [0,T] and I, := (). Then the following reduced
problem is well-defined and locally equivalent to (P*):

(Pea) uegigm) JH(u) subject to
g(yu)\f,,l
Hyu (Tl _ 2.123
gﬂ(u) — g (y ( )) c ’C — C_[Ib] % R]Ym- ( )

AUAGAED)
The Lagrangian £ of the reduced problem (2123)) is given, for u € By (u,0) and a multiplier
A= (my,v) € My[D] x RY* by

Nto

£ (u,A) = T*(u) + /I P W )dn () + 3 vigh (wh (rh)). (2.124)
b =1

3Section [ of this thesis.
4Section of this thesis.
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Multipliers n* and M = (1}, v") associated with u” in respectively problem (P*) and its
reduced form (P~ ), are related by

red
Nto

dnt(t) = dn}'(t) on I; dnt(t) = Z VEGS i (t) on Iy, (2.125)
i=1

In addition, we can show that the reduced Lagrangian (2124)) is twice Fréchet differentiable
at u*, and its second-order derivative satisfies, for v € V,

D2, LM (ul, A (v,0) = T*(v, 2 ), (2.126)

) Au,v
with J# given by (Z70), and that the remainder r(v) in the second-order expansion
LAU! + 0, W) = LH(ul, W) 4+ Dy LF(ul, MW)o + %Diuﬁu(uu7 A (v, v) + ()
satisfies
r(@)/[[vll3 — 0 when [foflec — 0. (2.127)

In what follows, Ti(z) and Ni(z) denote respectively the tangent and normal cones to K
at point = € IC (in the sense of convex analysis).

Lemma 2.40. Under assumptions and condition (ii) of Th. there exists an open neigh-
borhood V), of po such that the shooting extremal (u,y*) associated with (P*) for p € V,
satisfies the uniform quadratic growth condition, and hence, is a local solution of (PH).

Proof. If the conclusion does not hold, then there exists a g-stable extension (P*), a sequence
tn — Mo, with associated shooting extremal and multipliers (uy, Yn,pn,nn) converging to
(u,9,p,7) in Xn by Lemma 37 (which implies in particular w,, — @ in L°°), and a point
U, € U feasible for (PH*), U, # Uy, U, — @ in L, satisfying for all n,

JH (i) < T (un) + 0([|Tn — un3)- (2.128)
Since A, € Nx(G"*(uy)), we have (for the appropriate duality products)
<>\n,g#n (an) - ghn (Un)> <0,

and thus
LF (T An) — LH (g, A) < 0(|| Ty — un)3)- (2.129)
Let 0 < & := |[liy — unll2 — 0 and v, := ;! (@, — uy). Since ||v,|]2 = 1 for all n, taking a

subsequence if necessary, we may assume that v, — v € V. With the notation of Lemma 239,
we deduce from this lemma that (ZI2I]) holds. Combining D, LF" (uy, A\,) = 0 and (ZI20])

with (Z129) and ZI27), we get
Q" (vn) = Dy L (U, Ap) (Un, v0) < 0(1), (2.130)
and thus Q(v) < 0 by (ZI21). Now
K 2 G (i) = GH (upn) + en DG (uy )vp, + €n,

where |7, ||oo = 0(1), and therefore DGH™ (uy, )vp+7y € Tic(GH (uy,)), implying gy™ (Yn) 2n+rn <
0 on supp(dny,). Thus [(ZT22) is satisfied by LemmaZ39 Also, by ZI28), DJ** (un)vn, < o(1),
and hence,

(77117 95” (yn)zn> = <)\n7 Dg#» (Un)vn> > 0(1)‘
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Passing to the limit, we obtain (7, g,(y)z) > 0. By (ZIZZ) and dij > 0, we deduce that
gy(y)z € supp(di)t; thus ¥ and its associated linearized state z satisfy (Z63) and (ZIIO).
Therefore condition (ii) and Q(v) < 0 imply ¥ = 0. Since by (EZI3), limsup Q" (v,) < 0, it
follows from (ZTZ1)) that Q™ (v,) — 0 = Q(¥), and hence, v,, — ¥ = 0, contradicting ||v,|[2 = 1
for all n. O

Proof of Theorem [2.34}. (ii) = (i) is a consequence of Lemmas to Z401 Let us show
(i) = (ii). Let p be a C*° function over R such that supp(p) C [—1,1] and p is positive

over (=1,1). The function ¥* defined by ¢*(s) := 3  cqnes plat2p (%) for p # 0 and

YP(s) = 0, for all s € [0,T], is of class C?? with respect to its arguments s and y and has
support in Ureznes [T — |, 7 + [p[] for g # 0. Consider the perturbed constraint mapping
9" (y) = g(y) — Y*(yn) (recall that we assume that (P) is written such that y,(t) = t).
Observe that g° = g and g* is of order ¢ for all y; therefore (P*) = (¢, ¢, f, g",v0) is a g-stable
extension of (P%) = (P) with o = 0. In addition, ¢g*(y) = g(y) for all y such that y, ¢
Uregnes (7 — ||, 7+ |p]), and g#(5(t)) < 0 on (7 — ||, 7+ [u|), for all T € 7,3°°. Since the touch
points are isolated, we have for |u| > 0 small enough ¢g*(7) = g(y) on Z,UT,5*5 = supp(d7q), and
it is easy to see that (u,y) is a stationary point for (P*), with the same Lagrange multiplier
7 and the same costate p. In addition, the stationary point (u,y) for (P*) has a neighboring
structure to that of (@, %) for (P?) (all nonessential touch points are removed). Therefore, by
(i) and Def. EZ32, for |u| small enough, (u,y) satisfies the uniform quadratic growth condition
@&I09) for (P*). Since assumptions (A2)-(A6) are satisfied for (PH), it follows from Th.
E24)(ii) that the sufficient condition (ii) holds, which achieves the proof. O

2.4.2 Sensitivity Analysis

If strong regularity holds, the mapping = : V5 — Vp, 0 — 0(9) is given by Z(d) = 0y + w(9),
where w(0) is the solution of (ZIT8]). It follows then from (ZIT3)) that

0" = 6o + w(=DuF (0o, po) (1 — o)) + ol — poll)-

Since the mapping RY 0, 0 — w(9) is positively homogeneous of degree one, the mapping
u — 0% is Fréchet directionally differentiable. The directional derivatives in direction d are
obtained by substituting —D,F (0o, p0)d for § in (ZII6). Therefore,

04+ = 0y + wa + o([|d])), (2.131)

where

_ * 1:q
Wq = (Trd,OJ ’Yd,’]'en ) 711,7,507 OdTens9d, Tews Ud,?’m)
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is as follows. Denote by (vg4,z4) and (Cd,ﬂd,)\il:%-en,)\dg—m) the (unique) optimal solution and
multipliers of the quadratic problem below:

1t o
(Pd) (v zr)rg\r}lxz 5/0 D?@y,ﬂ),(u,y,#)H(u?yapqanq’p@)((vvZad)a(U7Z7d))dt

+ %D%E(Q(T), 10)((2(T),d), (2(T),d))

1 N
+§ Z ZyiDQg(j U(y(T),,LL())((Z(T),d),(Z(T),d))
T€Ten j=1
1 . DG (5(1), po) (2(7), d))?
2 3 v (D% p0)((=(7)d). (2(7), ) — LI 0] D). )
r€T0 a9 (y(t)a NO) |t:T
Z(t) = Df(a7g7 MO)(U7zvd) on [07T]7 Z(O) = DgO(:u'O)dv
DGO (5(7), po)(2(7),d) = 0, 7 € Ten,
subject to: Dg(@j(T),,Uzo)(Z(T),d) =0, = 7;2337
Dg(y(7), po)(2(7),d) <0, T € Tp5*,
Dg(q)(a,gj,,uo)(v,z,d) =0 on Ib
Then wy is given by 740 = m4(0), Va7, = Ad, 70>
.,(1) _
oiy = 2L WD) g, (2132)
SN (7, po) =~
5\ ( M +
' 4 &(g)
a9 (u7y7l"60)‘t:T+
o@D (7 T -
04, = _Dg (u(T)aNy(T)7MO)(Ud(T )7zd(7—)7d)’ re 7;”’ (2134)
' daa)(g. g
a9 (U7y7H0)|t:7——
Yir = Mo Y, = N -viTo4r, §=2,...,¢, 7€ T (2.135)

Once we have the expressions for the directional derivatives of the shooting parameters, by
composition with the Fréchet derivatives of the C'* mapping ([ZI20) in direction (d,wq), we ob-
tain the expressions of the directional derivatives, in Xy, of the mapping p — (u*, y*, p*, n*).
By Lemma B33l we then easily obtain the expression of the directional derivatives of the
control and state in L7(0,T) x Wb (0, T;R") for all 1 < r < oo.

Corollary 2.41. If either point (i) or (ii) of Theorem is satisfied, then there exists
a neighborhood V,, of p such that the mapping V,, — Xy, p — (u,y*, pH, n") is Fréchet-
directionally differentiable on V),. In addition, the directional derivative in the space L"(0,T) x
WT(0,T;R™), 1 < r < 00, of the mapping u — (u*,y*) at point g in direction d, is the
optimal solution (vq, zq) of problem (Pg).

We end the paper with a remark related to the ill-posedness of the shooting algorithm for
a state constraint of order ¢ > 3 when boundary arcs are present (see Th. EZ2Z3)).

Remark 2.42. (Existence of regular boundary arcs for constraints of order ¢ > 3.) Contrary
to some conjectures in the literature, regular boundary arcs can occur for state constraints of
all orders. Take, for example, the problem:

(P,) min /T () + w(t) dt
a (u,y)eL=(0,T)x W2 (0,T) Jo J 2

subject to ¥ (t) = u(t) ; y(0) =y #(0) =19 .5 ¥y I(0) = y;
y(t) >0, tel0,T).
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It is easy to check that, for 7 € (0,7), y defined by y(t) = 0 on [r,T] and
— )%
u if ¢ is odd
1) = (29)! 0
y(t) = \2q o \2¢—1 on [0, 7],
— (t—7) —v (t—7) ifgi n
EIRC7ES

is, for v > 7/2q if q is even and for appropriate initial conditions when ¢ > 3, a solution
that satisfies all necessary optimality conditions, and hence, by convexity of the problem, an
optimal solution with a regular entry point 7. Moreover, strict complementarity holds since
no(t) =1 on (,7T].

Robbins in [IT8] studies this example when ¢ = 3 for generic initial conditions and shows
that the optimal trajectory has a boundary arc, whose entry point is not regular, being the
limit of an infinite number of touch points, with a geometric decreasing of the length of
the interior arcs. Regular boundary arcs correspond to the case when the multiplier of the
geometric sequence is equal to zero for a specific subset of initial conditions. Therefore, we see
in that example, though satisfying all regularity assumptions (A0)-(A3), that the structure
of boundary arcs is not stable under perturbations of the initial condition when ¢ > 3, which
illustrates why the shooting algorithm should be ill-posed in that case.

2.5 Appendix

The next two lemmas follow immediately from the junction conditions established in [[75), 08].

Lemma 2.43. Let (u,y) be a reqular Pontryagin extremal satisfying (A2)-(A4). Then the
function t — Hy,(u(t),y(t),p(t)) is continuous on [0,T].

Proof. Let 7 € T. Since u is continuous by Prop. [Z0, we have:

[Ho(u(7),y(7), ()] = [p(7)] fu(u(r), y(7)) = =295} (u(7), (7)) = 0,

)

since either v, = 0 when ¢ = 1 by Prop. Z8 or g&l = 0 when ¢ > 1. O

Lemma 2.44. Let (u,y) be a regqular Pontryagin extremal, satisfying (A2)-(A4), and let
T € Ton U ey be an entry/exit time. The following conditions are equivalent:
(i) @8) holds at 7; (ii) if ¢ is odd, imy_.r, +e7, n0(t) > 0; if ¢ is even, v, > 0.
Proof. Define the mappings (A4;)o<i<q : [0, 71\ 7 — R™ by 34)) and (a;)o<i<q : [0,T]\7 — R
by
ap(t) = Ly (u(t), y(t)); ar(t) = Ly(u(t),y(t)Ai_1(t) — a1 (t) 1=1,...,q.
Then it can be seen by (Z3H) (see [98]) that for all ¢t € [0,7]\ 7, we have
dJ ; .
0 = 5 Hu(ut),y(t),p(t) = (=1)"(a;(t) + p(t)4;(t)); j=0,...,q -1, (2.136)
e dn
0 = G0 5(0.00) = (1) (a4(0) +0)4,00) + TP w(0).5(0) ) - (2130

Since the derivatives of the control are continuous until order ¢ — 2, the functions a; and A;

are continuous for j = 0,...,q — 2, and it is then easily seen, since u is continuous, that the
jumps of A;_1 and a,—1 at 7 € 7, when ¢ is even, are given respectively by
[Ag (™)) = (=D fuu(u(), y(m) Ll (7)),

[ag-1(M] = (=) L (u(r), y(1)) 'V (7)].
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Taking the jump in (ZI36]) at 7 for j = ¢ — 1 then yields:
0 = (=) " Hyu(u(r), y(7), p(r N[l (7)] = vrgy (y(7) Ag-1(77).
By ([Z3H), we have g, (y(7))Ag-1(7%) = g&q) (u(1),y(7)), so we obtain, when ¢ is even:

v, = (_1)q_1 Huu(U(T%(?é)(T),p(TJF))[u(q_l)(7-)] ‘

(2.138)

It follows that v, > 0 iff u(?~1 is discontinuous at 7, which is equivalent to saying that (EZ60)
holds (when ¢ is even). When ¢ is odd, u(?=1, ag—1, and A, are continuous (and v; = 0).
Taking the jump in (ZI37), we obtain

0 = (=) Huu(u(r),y(r),p(m)[w'? ()] + [no(7)] 42 (u(r), y (7).

Consequently, we have 7o(7F) > 0 at an entry/exit point, where 7+ stands for 7+ if 7 € T,
and 7~ if 7 € T, iff u(@ is discontinuous at 7, and hence iff (ZZ60) holds. O

The next two lemmas recall classical results. For the second one see related results by
Aubin [3.

Lemma 2.45. Let X be a Hilbert space and (Q a Legendre form over X. Let A be a continuous
linear operator over X. The following assertions are equivalent:

(i) Q(v) > 0 for all v € Ker A\ {0};

(ii) There exists o > 0 such that Q(v) > a|v||3, for all v € Ker A.

Lemma 2.46. Let X be a Hilbert space and Y a Banach space, H : X — X* = X a self-
adjoint continuous linear operator, and A: X — Y and B: X — R", r € N, continuous linear
operators. Assume that

(i) Ja>0 (Hz,z) > afz||?, for all 2 € Ker A,
(i) ~ The operator (A,B) : X — Y x R" is onto.

Then, for all (z*,y,6) € X* xY xR", there exists a unique (z,y*,v) € X xY* xR"™ solution
of

Hx+ A*y*+ B*v = z*
Az =y (2.139)
Bx < 4, v>0, v(Bx—9)=0,

and the mapping (z*,y,8) — (x,y*,v), where (z,y*,v) is solution of ([ZI39), is Lipschitz
continuous.

Acknowledgments The authors thank the anonymous referees for their useful remarks.
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Chapitre 3

Stabilité et sensibilité pour des
contraintes d’ordre 1 et méthodes

d’homotopi

Abstract The paper deals with an optimal control problem with a scalar first-order state
constraint and a scalar control. In presence of (nonessential) touch points, the arc structure of
the trajectory is not stable. Under some reasonable assumptions, we show that boundary arcs
are structurally stable, and that touch point can either remain so, vanish or be transformed
into a single boundary arc. Assuming a weak second-order optimality condition (equivalent
to uniform quadratic growth), stability and sensitivity results are given. The main tools are
the study of a quadratic tangent problem and the notion of strong regularity. Those results
enables us to design a new continuation algorithm, presented at the end of the paper, that
handles automatically changes in the structure of the trajectory.

Résumé Dans cet article, on s’intéresse aux probléemes de commande optimale avec une
contrainte sur 1’état du premier ordre. En présence de points de contact isolés (non essentiels),
la structure en arcs de la solution n’est pas stable. Sous des hypotheses raisonnables, on
montre que les arcs frontieres sont stables et qu’un point de contact isolé devient inactif, reste
point de contact, ou bien se transforme en arc frontiére. Sous une condition du second ordre
faible (équivalente a la croissance quadratique uniforme), une analyse de stabilité et sensibilité
des solutions est présentée. Le résultat s’appuie sur I’étude du probleme linéaire-quadratique
tangent et sur la notion de régularité forte. Ces résultats nous permettent de concevoir un
nouvel algorithme d’homotopie qui prend en compte automatiquement des changements de
structure de la trajectoire.

3.1 Introduction

This paper deals with an optimal control problem (of an ordinary differential equation) with
a scalar first-order state constraint and a scalar control, with a free final state and no control
constraints. It is well-known that for first-order state constraints, when the strengthened
Legendre-Clebsch condition holds and the state constraint is regular, touch points (locally

*Joint work with J.F. Bonnans. Published in ESAIM Control, Optimization and Calculus of Variations,
14(4) :825-863 (2008), under the title Stability and sensitivity analysis for optimal control problems with a
first-order state constraint and application to continuation methods.
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unique times where the constraint is active) are nonessential (the associated jump of the
multiplier is null) (see e.g. [0, 68]). Situations where touch points are present may be
encountered, for instance, when solving the optimal control problem by indirect approaches
using an homotopy method in order to guess the arc structure of the trajectory, see e.g. the
example in [IT]. Therefore it is of interest to study sensitivity of solutions around touch
points, when the constraint becomes active. Under a small perturbation, several events may
occur. Among them, the constraint may locally become inactive, the touch point may remain
a touch point, or it may give rise to a boundary arc. Our main result is that, under natural
hypotheses, these are the only three possibilities, and that the boundary arcs have a length of
the order of the perturbation, and satisfy a “strict complementarity” hypothesis. In addition,
we show how to compute a first-order expansion of the solution. The analysis uses in a critical
way a certain tangent quadratic problem, and at the same time is in the spirit of the shooting
approach, in the sense that touch points are converted into boundary arcs of zero length,
and we compute the first-order expansion of all entry and exit points. Fréchet directional
derivatives are obtained as the solution of an inequality-constrained linear quadratic problem.
The proof applies the notion of “strong regularity” in the sense of Robinson [I21] to a system
that happens to be equivalent to the optimality conditions of the tangent quadratic problem.
Our formulation of the corresponding shooting formulation (of which all entry and exit times
are variables, in addition to the initial costate and jumps of the alternative multiplier at entry
times) allows exit times to be lower than entry times; however, we check that the solution of
the shooting formulation is such that entry times are lower than or equal to corresponding
exit times.

Optimal control problems with first-order state constraints were first studied in the book by
Pontryagin et al. [T16]. Numerous results have been obtained since for stability and sensitivity
analysis of those problems. Two different approaches have been used. The first one is the
use of implicit function theorems in infinite dimensional spaces (see [123, K7, 67, T03]), and
the second one is to reduce the problem to a finite-dimensional one (a two- or multi points
boundary value problem) using the so-called shooting formulation (see [125, M0I]). With
first-order state constraints, L2-stability of solutions was first obtained by Malanowski [88],
under strong second-order sufficient conditions, using an infinite-dimensional implicit function
theorem based on two-norms approach, and later by Dontchev and Hager [53], using an implicit
function theorem in metric spaces. In Malanowski [88], directional differentiability of solutions
in L? was established, using the results on differentiability of projection onto a closed convex
cone in Hilbert spaces [67]. The second-order sufficient condition used in the analysis was
weakened by Malanowski [89]. All those results require no assumptions on the structure of
the trajectory. In order to obtain L*°-stability of solutions, Dontchev and Hager [53] needed an
additional assumption on the structure of the contact set (“contact separation”). Using a finite
dimensional approach, Malanowski and Maurer obtained in [93] differentiability of solutions in
L by application of the implicit function theorem to the shooting mapping, under stronger
assumptions (finitely many nontangential junction points, and strict complementarity) needed
to ensure the stability of the structure of solutions.

The approach presented in this paper is different from the ones in [88, 89, B3] where
the stability and sensitivity analysis was done in infinite dimensional spaces without any
assumptions on the structure of the trajectory. On the contrary, our aim is to describe changes
in the structure of the trajectory, both qualitatively and quantitatively. Thus the first step is
to consider nonessential touch points. Indeed, as mentioned before, changes in the structure
are likely to occur when performing continuation methods, therefore the more information
we have on the continuity and/or differentiability of the homotopy path, the easier will be



3.2. PRELIMINARIES 81

the latter to follow. Our stability and sensitivity results generalize those of [93] to the case
when (nonessential) touch points are present. However, in that case strict complementarity
does not hold anymore, so we cannot apply the classical implicit function Theorem as done in
[93]. This paper is related to our previous work: the study of no-gap second-order optimality
conditions in [21], and the shooting formulation, allowing nonessential touch points for state
constraints of order greater than one, and for which we also use the notion of strong regularity
[T9]. In both papers we assume also the state constraint and the control to be scalar-valued.
Some of these results are extended to the case of vector-valued state constraints and control
n [I7]. We follow here the analysis in [T9] where sensitivity results with nonessential touch
points for state constraints of order greater than one were obtained. The contributions of this
paper are the following:

e A stability result of the structure of stationary points (and not only the stability of
the structure of locally optimal solutions) is proved. That is, if the nominal trajectory
satisfies several assumptions, among which uniform strict complementarity on boundary
arcs, then any stationary point in the neighborhood has a “neighboring structure”, in a
sense made precise in section 2.

e In the stability and sensitivity analysis we cover the case of the possible transformation
of touch points into boundary arcs. This possibility was excluded from the analysis
in [T9] and in [93], and leads to technical complications. In particular we show that
for first-order state constraints, the shooting algorithm remain well-posed when touch
points are converted in boundary arcs, which is false for control constraints (see Remark

£3).

e At the end of the paper, we present an application of those results to a preliminary homo-
topy algorithm whose novelty is to handle changes in the structure (appearance/disap-
pearance of a boundary arc) automatically. Numerical application on a simple academic
problem is presented.

The paper is organized at follows. The framework is presented in section In section
B3, the stability results of the structure of stationary points are given. In section Bl the
main result is stated. In section BH the problem is reduced to a generalized finite-dimensional
equation, with a complementarity constraint. Robinson’s strong regularity theory is applied
to the latter in section B.6l where the main result is proved. Section B deals with directional
differentiability of solutions. In section BX, a basic illustrative example is presented. The
homotopy method is described in section Section contains the proofs of the results
of section

3.2 Preliminaries

Let U := L*(0,T) (resp. YV := W1>(0,T;R")) denote the control (resp. state) space. Let M
be a Banach space (the space of perturbations parameter) and, for p € M, the cost function
/. R x R® — R, final cost function ¢* : R® — R, dynamics f* : R x R — R", state
constraint g : R" — R, initial condition y/ € R", and (fixed) final time 7' > 0. We consider
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the following optimal control problem:

T
P min [0+ o) (3.1)
subject to () = fH(u(t),y(t)) for a.a. t € [0,T], y(0) =y}, (3.2)

g (y(t)) <0, for all ¢t € [0,T].

This notation allow us to deal with non autonomous problems (i.e. when the data ¢#, f*, gt
depend on time t) as well, by assuming w.l.o.g. that the last component of the state variable

yn satisfies in (B2)
Un(t)=1 on [0,T], yn(0)=0 (i.e. yn(t) =1). (3.4)

We shall assume in all the paper that (P#) is written such that (BZ]) holds. In this way
our analysis will include non autonomous perturbations, even when the starting problem is
autonomous. This assumption is only used in Th. Bl to obtain the implication (i) = (ii).
We study perturbations of problem (P#) around a given value of parameter uy € M, and
we often omit the superscript g when we refer to the problem and data associated with pug,
e, (P) == (PH) and (£,6, f,g,y0) = (040, o#0, fHo, gho yo).
We assume throughout the paper that the assumptions below hold:

(A0) The mappings ¢, ¢, f and g are of class C2, with locally Lipschitz continuous second-
order derivatives, and the dynamics f is Lipschitz continuous;

(A1) the initial condition satisfies g(yo) < 0.

These assumptions will not be repeated in the various results of the paper.

A parametrization (¢#,¢*, f*, g", yh), identified with problem (PH), is a stable extension
of (P), if there exists an open neighborhood My of pg, such that (i) there exist C? mappings
I RxR'x My - R; ¢:R'x My — R, f:RxR"x My — R% §:R"x My — R and
Jo : My — R", such that *(u,y) = (u,y,u) for all (u,y) € R x R and all . € My (and
similarly for ¢*, f*, g", and yf); (ii) the mappings ¢, f*, ¢*, g* have Lipschitz continuous
second-order derivatives and f* is Lipschitz continuous, uniformly over p € Mj.

In this paper, we always consider stable extensions (P*), that satisfy (B4]) as said before.

Definitions and Notations

The space of row vectors is denoted by R™*, and the adjoint and transposition operator in R"
are denoted by a star *. Fréchet derivatives of f, ¢, etc. w.r.t. arguments u € R, y € R",
are denoted by a subscript, for instance f,(u,y) = D, f(u,y). The space L"(0,T), r € [1, 0],
is the Lebesgue space of measurable functions such that ||ul|, := (fOT lu(t)|")V/7 < oo for
1 <7 < oo and ||lullo = supessycp ) [u(t)| < oo, and WLr(0,T) is the Sobolev space of
functions in L"(0,7") with a weak derivative in L"(0,7"). The space of continuous functions
and its dual space, the space of bounded Borel measures, are denoted respectively by C°[0, T']
and M|[0,T]. The cone of nonnegative measures is denoted by M [0,T], and BV ([0, T]; R™)
denotes the space of vector-valued functions of bounded variation over [0,7]. The elements
of M[0, T are identified with the derivative of functions of bounded variation vanishing at 7T'.
We denote by ¢(t7) and ¢(t1) the respectively left- and right limits of a function of bounded
variation ¢ at a time ¢ € [0,7]. Jumps are denoted by [¢(¢)] := @(t1) — p(t7).
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Given p € My, a trajectory of (P*) is an element (u,y) € U x Y satisfying the state equation
B2). A feasible trajectory is one satisfying the state constraint (B3]). The first-order time
derivative of the state constraint is the function defined by (¢#*)®) : R x R* — R, (u,y) —
gy (y) f*(u,y). In this paper, we consider state constraints of first order, that is, the function
(") (u,y) depends explicitly on the control variable u in the neighborhood of the contact
set of the constraint, see assumption (A3). It will be convenient to introduce the second-order
time derivative of the state constraint by:

(@)@ RxRxR" = R, (vuy) = (¢ wy)o+(¢")§) (wy) f(uy). (3.5
Wherever u is differentiable, we have that

2
%g”(y(t)) = (") (a(t), u(t), y(t). (3.6)

_ The classical (resp. augmented) Hamiltonian functions H* : R x R™ x R™ — R (resp.
H": R x R" x R™ x R — R) are defined by:

H(u,y,p) = 0w, y) + pff(u,y) (3.7)
H'(u,y,p'sn') == H"(u,y,p") +n'(g")" (). (38)

For (u,y) a feasible trajectory of (P*), define the contact set by:
I(g"(y)) = {t€0,T]; g"(y(t)) = 0}. (3.9)

We say that the constraint is active at time t, if ¢t € I(g"(y)); otherwise it is said inactive at
time t. A boundary arc (resp. interior arc) is a maximal interval of positive measure Z such
that g"(y(t)) = 0 (resp. g*(y(t)) < 0), for all t € Z. Left and right endpoints of a boundary
arc [Ten, Tez] are called entry and exit point, respectively. A touch point T4, is an isolated
contact point, satisfying ¢g*(y(7,)) = 0 and g*(y(t)) < 0, for t # T4, in the neighborhood of
Tto- The endpoints of interior arcs belonging to (0,7 are called junction points (or times).

If the set of junction points of a trajectory is finite, then it is of the form

T =70, UTer U T,

with Zep, Zep and 7y, the disjoint (and possibly empty) subsets of respectively regular entry,
exit and touch points. We denote by Z; the union of boundary arcs, i.e. 7 := UZN:bl [T7, TE7]
for Tep, = {r{" < --- < T]e\,’;} and similar definition of 7¢,, and we have I(g*(y)) = T4o U Zy.
The arc structure (or simply structure) of a trajectory is the (finite) number of boundary arcs
and touch points, and the order in which they occur.

Given a finite subset S of (0,7), we denote by PCE[0,T] the set of functions over [0, 7]
that are of class C* outside S, and have, as well as their first k derivatives, a left and right
limit over S and a left (resp. right) limit at T (resp. 0). The subset of functions in PCE[0, T
having continuous derivatives on [0,7] until order r, 0 < r < k, is denoted by PC?T[O,T | =
PCE[0,T] N CT[0,T]. We also use the notation vs = (v;);es € R4S,

Given (u,u) € My x U, we denote by yl, the (unique) state solution in Y of:

gut) = fu)yi®)  ae on[0,T],  yy(0) =y (3.10)

By definition of a stable extension, the mapping U x My — Y, (u,pu) — yk is C2. A useful
equivalent abstract formulation of (PH) is

mig{l JH (u), G"(u) € K, (3.11)
ue
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with the cost function J* : U — R, u — fOT P (u(t), vt (t)dt + ¢* (v (T)), K := C°[0,T] the
cone of continuous functions taking nonpositive values, and G* the mapping U — C°[0, T,
u — gh(yk). We write J and G for J# and G0, respectively.

Optimality Conditions
Let us first recall the definition of Pontryagin extremals.

Definition 3.1. A trajectory (u,y) is a Pontryagin extremal of (P*), if there exist a € Ry,
dn € M[0,T] and p € BV ([0, T];R™), (dn,p, ) # 0, such that:

) = fMu),y®) ae on0,T],  y(0)=yp (3.12)
) = Aaly(u(t), y(t) +p@)fy (ut), y() }dt + gy (y(t))dn(t) on [0,T] (3.13)
p(T7) = agyy(T)) (3.14)
) € argmingeg{al”(i,y(t)) +p(t) " (@, y(t))} ae. on[0,T] (3.15)

T
0 > ¢'(y(t), dy >0, /0 g (y()dn(t) = 0. (3.16)

<

When a > 0, dividing p and 1 by «, we can take o = 1 in the above equations, and in that
case we say that (u,y) is a regular Pontryagin extremal.

It is well known that optimal solutions of (P#) are Pontryagin extremals. A sufficient
condition to ensure that o = 1, i.e. that an optimal solution (u,y) of (P*) is a regular
Pontryagin extremal, is that Robinson’s constraint qualification [TT9, T20] below is satisfied

(recall BI)):
dy >0, YBeojo,m C G*(u) + DG (uw)U — K, (3.17)

with Beogo 7] the unit (open) ball of the space of continuous functions.
A trajectory (u,y) is a stationary point of (P*), if there exist dn € M][0,T] and p €
BV([0,T];R™) such that (B12)-(BIdl) and (BI6) hold (with aw = 1), as well as

0 = 2h(u(t),y(t)) +p)fE(u(t),y(t)) for a.a. t € [0, 7). (3.18)

The above condition is in general weaker than (BJH). However, when the Hamiltonian H*
is convex w.r.t. the control variable along the trajectory (and in particular when assumption
[B22)) below holds), then the definitions of regular Pontryagin extremals and stationary points
are equivalent.

We say that (u,y) is a local solution (weak minimum) of (P*), if it minimizes (BI) over
the set of feasible trajectories (@, ) satisfying ||& — ul|oc < 0 for some § > 0. Local solutions
of (P*) satisfying ([BIT7) are stationary points.

Note that the complementarity conditions (BI6) can be equivalently rewritten as:

g"(y) € K,  dneMy[0,T],  supp(dn) C I(g"(y)), (3.19)
where supp(dn) denotes the support of the measure dn. Another condition equivalent to

BI9) is dn € Ng(GH(u)), where Ng(G*(u)) denotes the normal cone (in the sense of convex
analysis) to K at point G*(u).
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Assumptions

We assume that problem (P) has a local solution, denoted in the sequel by (@,%), and that
the latter satisfies, with p and 7 its associated multipliers, the following assumptions:

(A2) The control @ is continuous over [0, 7], and there exists & > 0 such that

Hyo(u(t), 5(t), p(tT)) >, for all t € [0,T7]. (3.20)

(A3) Uniform regularity of the state constraint near the contact set, i.e., there exists 3, > 0
such that

gV (@), g(t)| > B, for aa. t, dist{t; I(g(7))} <e. (3.21)

A condition stronger than (A2) which implies the continuity of the control is the uniform
strong convexity of the Hamiltonian w.r.t. the control variable, i.e. there exists o > 0, such
that

Hy (0, 5(t), p(tT)) > o, for all & € R and all ¢ € [0, 7). (3.22)

It is well-know (see e.g. [69), 68]) that when (A2)-(A3) hold, then u and the multiplier 7
are Lipschitz continuous. In particular this implies that all touch points 74, are nonessential,
i.e. [7(T)] = 0. Furthermore, (A3) implies that (BI7) holds, and that the multipliers (p,7)
associated with (@, y) are unique. This is a consequence of the lemma below. For § > 0, let
Q0= {t €[0,T), dist{t; I(9(y))} < I}.

Lemma 3.2. Assumption (A3) implies that for all 0 < § < e, with the € of (BZI), assumed
to be so small that Q° C [a,T] for some a > 0, the linear mapping

U—-WwheQd), v (DG(5)v)|gs, (3.23)
where |os denotes the restriction to the set Q9, is onto.

Proof. Let us recall the proof of [21, Lemma 9}@ For v € U, we have that DG (u)v = gy()zy,
where z, is the (unique) solution in ) of the linearized state equation:

2 = fult, 9)v + fy(0,9)20, a.e. on [0,7], 2,(0) = 0. (3.24)
It is easy to see that
d _ o
Tw)z(t) = ¢ (@ g)v+ gV (@ 5)2,
and since by (BZI) and (A1), g&l)(ﬂ,g) is uniformly invertible on a neighborhood of Q° for
small § > 0, the result follows as a consequence of Gronwall’s Lemma. O

We will also make in addition to (A2)-(A3) the following assumptions:

(A4) The trajectory (u, %) has a finite set of junction times T, and we assume that g(y(7T)) <
0.

(A5) Uniform strict complementarity on boundary arcs:

4F
36 >0 d_Z(t) > for all ¢ in the interior of boundary arcs; (3.25)

'Lemma [ of this thesis.
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(A6) Non tangentiality at second-order at (nonessential) touch points: for all touch point 74,

2
0 G(0)i=r, <0 (3.26)
Note that (B:ZE]) makes sense, since %g(gj(t)) is by (B8] a continuous function of (¥, u, u),
and u and u are continuous at a touch point 7, (indeed, 74, being a nonessential touch point,
(Tto — €, T4o + €) Nsupp(dn) = @ for some small € > 0, so the continuity of u follows from the
implicit function theorem applied to the relation H,(u,y,p) = 0). This condition is similar
to the reducibility hypothesis when the state constraint is of order ¢ > 2 (see [19]). The
lemma below will be proved later (see Lemma B27)), the proof being based on the alternative
formulation (Def. BI4).

Lemma 3.3. Let (u,y) be a stationary point of (P) satisfying (A2)-(A4). Then assumption
(A5) implies that the following non-tangentiality condition at second-order holds at entry and
exit points:

2 . a2 L
IT D e, <00 Ten € Tons 2590y, <O Fer € Tea (3.27)

e

3.3 Structural stability of stationary points

Let (u,y) be a stationary point of (P) satisfying (A2)-(A6). Assume that (@,y) has Ny,
boundary arcs and Ny, touch points, and let N := Ny, + Ny. Number the boundary arcs
and touch points of (@,y) by ¢ = 1,..., N, and denote by I, and I, the (disjoint) sets of
index in {1,..., N} corresponding respectively to boundary arcs and touch points. Denote
the junction times of (@, y) by Zen = {7%, bien,s Zex = {Toy bicn,,» and Tpo = {7 Yicr,,- For
6 > 0, define

Q= (7! — 6,7 +0), i€ Iy, 00 = (78 — 6,70 4+6), i€l (3.28)

In view of (A4), (A6) and (BZ1), we may fix x,0 > 0 satisfying the conditions below:

§ < e with the ¢ of (B21), (3.29)
2 - _
%g(gj(t)) <—k<0 on Q\[F,,7,] forallie I, andon Q) forallie Ij,, (3.30)

the sets (2)1<i<xn are pairwise disjoint and contained in [a,T] for some a > 0.  (3.31)

The next theorem gives a direct result (i.e. without using a shooting formulation) of the
stability of structure of stationary points, when assumptions (A2)-(A6) are satisfied.

Theorem 3.4. Let (4,9) be a stationary point of (PH0) satisfying (A2)-(A6), and let § satisfy
B29)-@30). Then for all 0 < § < 6 and all stable extensions (P*) of (PH0), there exists a
neighborhood Vi, x V,, of (u, o) in U x M, such that all stationary points (u,y) of (P*) with
(u, ) € Vi x V), satisfy the following properties, with the contact set I(g*(y)) defined by [BI):

(S1) I(g"(y)) € UK,
(S2) for all i € I, I(g*(y)) N QY is an interval of positive measure;

(S3) for alli € Iy, I(g"(y)) N is either empty, or a singleton, or an interval of positive
measure.
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When (S1)-(S3) are satisfied, we say that a stationary point (u,y) of (P#) has a neighboring
structure to that of (u,y).

Remark 3.5. We can actually state a “local” version of Th. B4l More precisely, if a stationary
point (u,y) of (PH0) satisfying (A3) has a boundary arc [Tep, Tez] (resp. a touch point 74,) and
if assumptions (A2) and (A4)-(A6) hold locally over (Tey, —0, Tez+6) (resp. over (Tio—9, Teo+0))
for some § > 0, then all stationary points (u,y) of (P*) with (u, ) in the neighborhood of
(u, po) have exactly one boundary arc on (e, — 0, Ter +9) (resp. have at most either one touch
point or one boundary arc on (7, — 0, Tto + 9)).

The proof of Theorem B4l is given in section B0 and will use two lemmas below. Note
that by continuity of the mapping (u, 1) — g*(y4), it is immediate that all stationary points
of a stable extension (P*) with (u, ut) in the neighborhood of (u, po) satisfy (S1). Let us first
define alternative multipliers needed in lemma (see also [03, 88, 68, B3, 65] where these
multipliers are used)

T
) = / dn(s) = —n(t*) (3.32)
Pt = p(t) — (g (D). (3.33)

With this definition, and without any assumptions on the arc structure of the trajectory
(i.e. without assuming a finite number of junction points), we have that

—dp" = (H!(u,y,p") + (9" (u, y)n")dt,

and hence, the new alternative costate p! is absolutely continuous. Consequently, an equivalent

form of (BI3)-BI4) (when a = 1) and (BIF]) is, a.e. on [0,7:

=) = Hj(u(t),y(6),p' (8) + (¢")§) (W@ yO)n' (1), pN(T) = (y(T)) (3.34)
0 = Hiult),y(t),p" (1) + (¢ (u(®), y(O)n' (). (3.35)

In addition, ([BI6) implies the following (weaker) relations, since n! is constant on interior
arcs:

0 = (¢")P(u(t),y(t)) on boundary arcs, 0 = 7#'(t) on interior arcs.  (3.36)

Note that given a trajectory (u,y) of a stable extension (P*), if (u,u) is close enough to
(@, po), Robinson’s constraint qualification (BIT) still holds. This implies the uniqueness of
the multipliers associated with a stationary point (u,y) of (P#) with (u, u) in the neighborhood
of (u, o). The two lemmas below, used in the proof of Th. B4, are proved in section

Lemma 3.6. Let (u,y) be a stationary point of (PH0) satisfying (A2)-(A3) with multipliers
(p,1), and let the associated alternative multipliers (p',n') be given by (B32)-B33). Consider
a stable extension (P*), and let (up, yn = yi") be a stationary point of (P#"), such that u, — @
in L and p, — po. Denote by py,ny, the (unique) multipliers associated with (un,yn), and

let pL 0k be given by B32)-B33). Then:

1. The sequence (dny,) is bounded in M[0,T];

2. ||dnn — dij||1.00s — 0, where || - ||1,00¢ denote the norm of the dual of W1 for the strong
topology;
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3. pL — pb uniformly over [0,T);

4. nt — 7' uniformly over [0,T).
Remark 3.7. Note that under the assumptions of Lemma B0 by ([B33]) and [B32)), we deduce
the uniform convergence of (py,,n,) towards (p, 7).

The key tool for deriving the structural stability result of Th. Bl is the following lemma.
Lemma 3.8. Let (u,y) be a stationary point of (PH°) satisfying (A2)-(A6), and let 5 be
defined as in Th. [34) Then for all 0 < § < § and all stable extensions (P*) of (PH°), there

ezists a neighborhood Vi, x 'V, of (@, po) in U x M, such that if (u,y) is a stationary point of
(PH) with (u, p) € Vi x V,,, then (u,y) has no interior arc contained in Q2, for alli=1,...,N.

3.4 Statement of the main result
Let us first recall the second-order conditions of [I8, 2T]. Let the linearized control and state

spaces be respectively V := L?(0,T) and Z := H'(0,T;R"), where H'(0,T) = W2(0,T).
The quadratic function over V x Z involved in the second-order conditions is:

= [ B @920 )+ 20 0 FT)AT)

(3.37)
/0 0" g ((6)=(2) (1)
and the set of constraints (defining the critical cone):
2= fult, g)v+ fy(u,5)z on [0,T], 2(0) =0 (3.38)
9y(H(8))z(t) =0 tel, (3.39)
9y(y(7))z(T) <0 7 € T, (3.40)

where 7, and 7;, denote respectively the union of boundary arcs and the set of touch points
of (7).
Theorem 3.9 ([A8], 21])). (i) Let (a,y) be a local solution of (P) satisfying (A2)-(A5). Then

J(w,2z) >0, forall (v,2z) €V x Z satisfying (B35)-(B20). (3.41)
(ii) Let (u,y) be a stationary point of (P) satisfying (A2)-(A5). Then
J(v,z) >0, forall (v,z) €V xZ, (v,2) #0, satisfying (B3)-EBZ0), (3.42)

iff (w,y) is a local solution of (P) satisfying the quadratic growth condition:
de,p >0, Ju) > J@) +cu—al3, Yuel; Gu)eK, |[u—ile <p.  (3.43)

Let us recall that a quadratic form @ on an Hilbert space H is a Legendre form, if Q
is weakly lower semicontinuous and if for all weakly convergent subsequence (v,) € HY, say
v, — v, we have that v, — v strongly if Q(v,) — Q(v). Using (A2) we can show that the
quadratic form J is a Legendre form (see [74, 24]). This plays a role to obtain the no-gap
second-order conditions of Th.

In the stability and sensitivity analysis, we will use the condition below, stronger than

E22):
J(v,z) >0, forall (v,2) €V x Z, (v,2) # 0, satisfying (B3S)-B39). (3.44)
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Definition 3.10. Let (u,y) = (u"°,y"°) be a stationary point of (P#0). We say that (u,y)
satisfies the uniform quadratic growth condition, if for all stable extensions (P#) of (PH0)
satisfying (B4, there exist ¢,p > 0 and an open neighborhood V{ of 1, such that for all
u € Vp, there exists a unique stationary point (ut,y*) of (P*) with ||u* — 4|l < p, and this
point satisfies

JH(u) > JHuP) +cllu —ut)|3, Yu €U ; GHu) € K, |lu— s < p, VeV (3.45)

Of course ([BZA) implies that (u#,y") is a local solution of (P*). Note that the constants
c and p in the uniform growth condition (B3] does not depend on p.

The arc structure of the trajectory (in the sense of number and order of boundary arcs
and touch points) is not necessarily stable under a small perturbation. However, by (A5),
boundary arcs are locally preserved, and by (A6), the only three possibilities for a touch point
is to become a boundary arc, remain a touch point or become inactive at a local solution
of the perturbed problem, i.e. the solutions of the perturbed problems have a neighboring
arc structure of active constraints to that of (u,y) (see Th. BZ). Below is our main result
(together with Theorems [E4] and B330), that will be proved later in section

Theorem 3.11. Let (u,y) be a stationary point of (P) satisfying (A2)-(A6). Then assertions
(i) and (ii) below are equivalent:

(i) The uniform quadratic growth (Def. [BI0) holds.

(ii) The strong second-order sufficient condition (BZ4) holds.

If either point (i) or (ii) is satisfied, for p € Vy denote by (u*,y*) the unique local solution
of (P*) with ||u* —al| < p, and by (p*,n*) the (unique) associated multipliers. Then (ut,y*)
has a neighboring structure to that of (, %), and the mapping pu— (u”,y*, p*,n*) € C°[0,T] x
C([0,T);R™) x C°([0, T); R™) x C°[0,T) is Lipschitz continuous on Vj.

The above result implies that the solutions of the perturbed problems satisfy the quadratic
growth condition (BZ3l), and hence the no-gap sufficient condition (BZ2)) by Th. BY(ii). The
lemma below (proved at the end of section Bf) shows that the strong second-order sufficient
condition (BZ4]) remains satisfied as well for the perturbed problems (this will be useful for
the analysis of the homotopy algorithm in section B]).

Lemma 3.12. Under assumptions (A2)-(A6), if either point (i) or (ii) of Th. [Z11l is satis-
fied, then the locally unique stationary point (ut,y*) of (P*) satisfies the strong second-order
sufficient condition (B, for u close enough to .

Remark 3.13. We show more precisely (see Lemma B26)) that under assumptions (A2)-(A6)
and point (i) or (ii) of Th. BTl then the shooting parameters associated with (u#,y*) (initial
costate, jump parameters at entry times and all junction times, see the next section) are
Lipschitz continuous functions of .

Related results to Theorem BIT] based on a shooting approach (see the next section) too,
are [93, Th. 8.3], where the existence of a locally unique local solution of (P*) having the
same structure as (@, ) was shown (but the uniqueness of the stationary point or the converse
implication “(i) = (ii)” are not discussed), and [I9, Th. 4.3}@, where only the uniqueness of
stationary points satisfying some restrictions on the arc structure is argued. In addition, both
results assume the absence of touch points for state constraints of first-order. Here we are
able to show that (u”,y") is locally the unique stationary point of (P*) (see Lemma B29)

2Theorem B34 of this thesis.
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thanks to the analysis done in section As mentioned in the Introduction, this is difficult
to compare to [88, B9, B3] where an infinite dimensional approach was used, which required
weaker assumptions, e.g. (A4)-(A6) are not needed, so their results are more general than Th.
BI1, but the conclusions obtained are also weaker than those of Th. BI1l

In section B we will provide the first-order expansion of the local optimal solution and
associated multipliers of the perturbed problem (see Theorem B30I).

3.5 Alternative and Shooting Formulations

3.5.1 Alternative formulation of optimality conditions

In presence of pure state constraints, a reformulation of the optimality conditions is needed
to apply shooting methods. Our results are based on the following alternative formulation
of optimality conditions, see e.g. [29, [75], 68, U8, 19]. We use in this alternative formulation
another set of alternative multipliers, that we denote by (p1,71), different from the alternative
multipliers (p!,n') used in section Whereas the latter are continuous, (p1,71) have jumps
at entry points. The jumps of p; at entry times 7.,, denoted by 1/71_en, are part of the shooting
parameters used in the shooting algorithm.

Definition 3.14. A trajectory (u,y) is solution of the alternative formulation, if it has finitely
many junction times 7 and g#(y(T)) < 0, if (u,y) € PCY[0,T] x PC%—’O([O, T);R™) and if there
exist py € PCL([0,T};R™), n1 € PCF[0,T], and alternative jump parameters vy and vg,,,
such that the following relations are satisfied, with the augmented Hamiltonian (BX]) (time
dependence is omitted):

g = fMuy)  onl[0,T],  y(0)=yy (3.46)

-p1 = ﬁﬁ(%yypl,m) on [0, 7]\ T (3.47)

0 = Hf(u,y,p1,m) on [0, T]\ T (3.48)

(@) My = 0 onZ, (3.49)
m() = 0 on [0,T]\ Z, (3.50)
pi(T) = ¢y(1)) (3.51)
§*W(ren)) = 0,  Ten € Tey (3.52)
9" ((m0) = 0, 7o € Tho (3.53)
P1(7en)] = —vp, i (W(Ten)),  Ten € Ten (3.54)
[p1(7ez)] = O, Tex € Teg (3.55)
[P1(T0)] = —Vn, 0 (Y(T20)), Tto € Tto- (3.56)

A solution of the alternative formulation satisfies the additional conditions, if the conditions
below hold:

gy®) < 0 on[0,T]\ (ZpUT) (3.57)
m) < 0 on intZ (3.58)
v, = mh), Ten€Tns  m(n) = 0, Ter €Tey (3.59)
Vo = 0 1€T,. (3.60)

Proposition 3.15 (See e.g. [116} 75, 68]). Let (u,y) be a local solution of (P), satisfy-
ing (A2)-(A4). Then (u,y) is solution of alternative formulation (BZG)-@BhE), and satisfies

additional conditions (BED)-B60).
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The following remarks comment on those optimality conditions and on the relations exist-
ing between the different sets of multipliers.

Remark 3.16. It can be shown (see [19, Prop. 2.1()]@) that under assumptions ([B22) (resp.
(A2)) and (A3)-(A4), relations (B40)-([BE0) characterize regular (o = 1) Pontryagin extremals

(resp. stationary points), and the (unique) classical multipliers dnp € M[0,T] and p €
BV ([0, T]; R™) of Def. Bl are given by (recall that we adopted the convention n(7'") = 0):

n(t) =~ > vl () —mh), p(t) = pi(t) +m(t)gy (y(t)), (3.61)
T€Ten

with 1 ) (t) = 1if 0 <t < 7 and zero otherwise. Equivalently, n is given by dn(t) = —n1(t)dt.
The classical multipliers (p,7n) and alternative ones (p1,7;) can be recovered from each

other by (BEI) and B2Y). By B324)-B3h0) and additional conditions (BRJ)-(EB60), we
have (p,7) € PC;JO([O,T];R”*) X PC;JO[O,T]. It is also easy to see that, when (BEI) holds,

H"(-,y,p1,m) = H*(-,y,p), and hence, (B20) is equivalent (with p; and 7; the alternative
multipliers associated with u) to:

Hyo(a(t), 5(t), pr(tF), (1)) > a, for all ¢ € [0,T]. (3.62)

Remark 3.17. On [0,T] \ 7, the multipliers ' and p' in section are related to p; and m
by the following relations:

n'(t) = > vilpnE) +m(t), P =pi(t) = D v (Bgh(y().  (3.63)

TE€ETen TE€Ten

Remark 3.18. By ([BES)-(B19), the following necessary condition holds:

vl >0, Ten € Ton. (3.64)

Ten —

Lemma 3.19. Let (u,y) be a trajectory of (PH) satisfying the alternative formulation. As-
sume that there exist o, 3,¢ > 0 such that (we denote here [u(t™),u(t™)] == {(1 — o)u(t™) +
ou(t*) ; o €10,1]})

o < HE(G,y(t),pr(tF), nm(tF)) for all @ € [u(t™),u(t")] and all t € [0, T] (3.65)

B< (gMP (i, y ()l for all @ € [u(t™),u(th)] and all t : dist{t; I(g"(y))} < e. (3.66)
Then BX9) is equivalent to the condition below

(@)D (o), y(en)) =0, Ten € Ten s (0") V(7)) y(7e0)) =0, Tew € Tee (3.67)

Also BD9) or [BED) is equivalent to the continuity of the control at entry/exit points.

Proof. We recall here the proof (see [93] and [I9, Prop. 2.15]@.) since the arguments will be
used later in Lemma BZ7 Since (¢*) W (u(7), y(7en)) = 0 = (¢*) D (u(72,), y(Tex)), by BFH),
[BX57) is equivalent to the continuity of the control at entry and exit times. Now let 7 € T,,.

By (B28) and (B24),

Hi(u(r™),y(0)pr () m (7)) = Hi(u(m™),y(m),p1 (), m (7))

3Proposition BT of this thesis.
4Proposition of this thesis.
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If (BR23) holds, then we obtain (since n;(77) = 0)

HY (u(r™),y(7),p1(r7)m(r7)) = Hi(ulr™),y(r),pi(r7)om (7)),

which implies by ([B63) that u(77) = u(r1). Conversely, if ([B81) holds, i.e. if u is continuous
at 7, then we obtain

(m (%) = v)(g") (ulr), y(7)) = 0.

Since by (B66]), (g“)q(})(u, y) # 0, we obtain the result. Similar arguments hold at exit points.
O

Remark 3.20. By (B350 and (B60), B4])) and hypothesis (B:63]), we can show similarly that
a solution (u,y) of the alternative formulation and additional conditions satisfying (B:G3])-

B56]) is such that u is also continuous at touch points, and hence (u,y) € PC’}’O[O,T] X
PCZ'([0,T];R™).
Remark 3.21. At a touch point 7y, the function ¢ — ¢*(y(t)) has a local isolated maximum,

and a continuous derivative at 74, (due to the continuity of u), hence the condition below is
satisfied (compare to (BE1)):

(") (w(r10), y(110)) =0, 7 € Tro. (3.68)
The next lemma provides in particular a proof for Lemma,

Lemma 3.22. Let (u,y) be a trajectory of (P") solution of the alternative formulation and
additional conditions. Assume that there exist «, 3,& > 0 such that (BE0) and BBO) holds.
Then, for all Tep, € Tepn and Tez € Tey,

d? e d? e

39 WOier, <O i () <05 5" W(O)impy, <O il n(7e;) < 0. (3.69)
Proof. Let 7ep € Ton. We omit in the proof the superscript # on H, g and f. Derivation
w.r.t. time of the relation (B48)) on the left and right neighborhood of 7., yields (omitting
the dependence in ¢ and arguments (u,y,p1,m1) of H):

Hyto + Hyy f (u,y) — Hy fu(u,y) + ¢ (u, )i = 0. (3.70)

Recall that g™ (u,y) = g,(y) f(u,y). By Lemma BTId and ), u is continuous, so it follows
that, taking the jumps at time 7., (omitting again arguments and setting v! := v ):

Ten

UU] = [pl]fuu‘i‘[??l]g&) = _Vlgyfuu+V191(Llu) = 0,

g
(Hulf = [Hylfa = (pilfu + Ilgi))f = (pilfy + Imlgy)
= (—v'gyfuy + Vlggly))f — (—v'gyfy + Vlgl(/l))fu = 0.
Taking then the jump in (BZ0) at time 7., the above relations imply that
Hy[i] + g0 [in] = 0. (3.71)

Since u, y, p1 and n; are all continuous at exit times by Lemma B9, (B71]) holds as well at
exit times. Since the function E—;g(y(t)) = ¢@ (0, u,y), with g given by ([B3), vanishes on

(Ten, Tex), and (u,y) is continuous, we have by (BBH) that g (1, u,y) is discontinuous at 7 iff
@ is, and hence by [BX) and B60)-(B.60]) iff 77 is. Since 11 = 0 locally outside (7en, Ter ), and
7 < 0 on (Ten, Tex) by BES), the result follows. O
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Remark 3.23. We know by [19, Lemma 3.6]ﬁ that we can express the quadratic cost 7,
using (p1,71) defined by (BE1l) instead of (p,77), over the space of linearized trajectories (v, z)
satisfying (B38), by J (v, z) = Ji1(v, 2), with

/ Hu 0 555170 (0:2), 0, )l
o) S P o ) =(7),

7'67:571

(3.72)

where H is the augmented Hamiltonian (BX), and the constraint (B39) is equivalent to

9y(y(7))2(1) =0 7€ Ton (3.73)

gie) ) @), 50) (1), 2(1)) =0 teT, (3.74)
Remark 3.24. The second-order sufficient condition (B:44]) used in the stability and sensitivity
analysis, is equivalent by Rem. to

Ji(v,z) >0, forall (v,2) €V x Z, (v,2) # 0, satisfying (B38) and B73)-@74). (3.75)

This condition is weaker than the one in [93], where the entry-point constraint (BZZ3]) is omitted.
The authors present a numerical method, based on Riccati equations, allowing to check the
coercivity of the quadratic form J; over the subspace defined by (B38) and BXE), which is
of interest in applications, while the verification of (BZ4]) or (BXZH) in practice remains open.

3.5.2 Shooting formulation with nonessential touch points

By (A2)-(A4), applying the implicit function theorem to (BZS)-([B350), we may express the
algebraic variables (u,71) on each arc as C! functions of the differential variables (y,p1).
Denote by .7:;‘ and .7-';‘ the flows on (y,p1) obtained respectively on boundary and interior
arcs, by eliminating the algebraic variables, and write (y,p1)(t) = (y(t),p1(t)). On each arc
(t1,t2), we have that

(v, 21)(t5) = F&((y, p1)(t]), t2 — 1) (3.76)

where F}' equals ]:lf for a boundary arc, and Ff for an interior arc. So we can (and this is
precisely the idea of shooting methods) describe the alternative optimality system (B:26])- (B50)
as a sequence of applications of mappings F; éL and .7-}“ , combined with junction conditions. Note
that the mappings (z,t1,t2) — Fi (x,t2 —t1), a = i,b, are (locally) C! w.r.t. all arguments,
and allow in particular ¢o — ¢; to be nonpositive.

Now let us view a touch point as a boundary arc of zero length. This makes sense since,
as we will see later, under a small perturbation, a touch point may switch into a boundary
arc. So we have an entry point and an exit point, 7., and 7., whose common value is the one
of the touch point. The jump Vien at entry point 7, equals v, (i.e., zero). There is a zero
jump of py at the entry (and exit) time 7.

Assume that we have Np, boundary arcs and Ny, touch points. Let N := Ny, + Nio. We
have now N entry and N exit points. Denote by t¢* (resp. t* ) the N dimensional vector of
entry (resp. exit) points, taken in the chronological order, and I/i = Vtm We use the notation

5Lemma of this thesis.
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* =0 and t§ ; := T. We may rewrite the alternative formulation as follows, taking into
account the continuity of state and of costate at exit points:

(y,p1)(0) = (yg5,p0) (3.77)
(y,p0) (") = F((y,p)(t2y), 6" —t52y), i=1,...,N+1, (3.78)
(,p) (&) = F'((y,p) ("), 657 —t5"), i=1,...,N, (3.79)
(™)) = —vighy(t™), i=1,....N, (3.80)
p(T) = ¢4, y(T)) (3.81)

g y™) = 0, i=1,...,N, (3.82)

where pg € R™ denotes the initial value of the costate.

We come now to the definition of the shooting mapping. Let © := R” x RN x RY x R be
the space of shooting parameters, of dimension N :=n+3N. A vector of shooting parameters
is denoted by

0= (pg, ", t",t°%) € ©. (3.83)
The shooting mapping [ is defined over a neighborhood Vj x V), of (6o, po) in RY x M, into
RY, by
pi(T) — &y (y(T))
g (y("))
(9)D u(te),y(tem)) |
(g") D (ulte™), y(t="))

where the values of (y,p1,u) at times t"* t%"% T are given by B70)-@XR), and where we
used e.g. the notation

F0,p) = (3.84)

(YD (u(t), y (£)) = ((g“)(”(u(tf”‘%y(tf")))lgiSN eRY.

Being a composition of C'' mappings, the shooting mapping is itself locally of class C''.

Let (@, y) be a stationary point of (P), satisfying (A2)-(A4), with finite set of junction times
T. Let Iy, and I, denote the (disjoint) sets of index in {1,..., N} corresponding respectively
to boundary arcs and touch points of the trajectory (u,y). Split F' into two components:

B, 1) = (200, 1) 9 (0, 1)")",

where U corresponds to the components gH(y(ts™)) fori € Ito, denoted by the vector g (y(t5))) €
RNto, Denote similarly by v}, the vector of components v}, for i € Iy,. Consider the following
nonlinear complementarity problem, for u close to puo:

Find 6 € © such that ®O,pn) =0 and W(O,u) € N(0), (3.85)

where N . N
RN (b))t if v e R
N = to to + .
©) { 0 otherwise. (3.86)

Note that by EXI)-(EX2) and @87)-BER), 0o := (p1(0)*, 1, 7, £°%) is solution of ([EXH)

for p = po, with ¢ and t** the vectors of times in 7., U Ty, and 7. U T;, respectively, in

increasing order, v} = vk, if i € Iy,, and v} =0 if i € I,
3
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It should be underlined that we allow, in formulation of problem (BRI, entry times to
be greater than exit times. However, we will check in the next section, after having shown
that (BXH) has a locally unique solution, that the constraint v} > 0 in ([EXH) (compare with
BE4)) is sufficient, with assumption (A6), to ensure locally for p in the neighborhood of pg
that the solution of (BAl) is such that ¢ < t¢* for all i € I;,. In addition, we will show
that by ([B20]), strict complementarity 7; < 0 holds on the boundary arc (¢, t¢*) whenever
R A

As we will see, the formulation (BRH) is strongly related with the associated linear-
quadratic tangent problem min, .cyxz J1(v,2) subject to the equality constraints (B35

and B73)-B14), and the inequality constraint (BA0).

Remark 3.25. When the state constraint is of higher order, under small perturbations, a
nonessential touch point satisfying (B26]) cannot switch into a boundary arc, i.e. it either
becomes inactive, remains nonessential, or becomes an essential touch point (with a nonzero
jump of the costate), see [19].

3.6 Stability Analysis

In problem (BRH), there are inequality constraints that cannot be reduced to equality ones
since strict complementarity does not hold at touch points, and those inequality constraints
introduce nonsmoothness. Therefore we cannot apply the classical implicit function Theorem
as it is done in [93]. Our stability analysis uses the notion of strong regularity, introduced by
Robinson in [T21]], applied to the complementarity problem (B8H).

The point 6y solution of (B0 for pu = pg is strongly regular, if there exist neighborhoods
(Vy,Vs) in RN x RN of (Ay,0), such that, for all § € Vs, § = (61,62) € RVN=Neo x RNo there
exists in Vj a unique solution 6 of:

{ Dg@(eo,uo)(e - 90) - (51 =0

Dy W (6o, p10)(0 — o) — 52 € N(0) (3.87)

and the mapping = : 6 — 60(6) is Lipschitz continuous over V.
If 6 is strongly regular, then by [I21], there exist neighborhoods (Vj,V),) of (6o, 110), such
that for each p € V,, (B2H) has in Vj a unique solution 6#,

0 = (py", vt ), (3.88)
and there exists x > 0 such that for all p, p’ € V,,
0" — 0| < kil — 4] (3.89)
In addition, the following expansion of #* holds (see e.g. [24], p.413 equation (5.41)):
0" = E(=DpF (0o, po) (1 — o)) + o(lle — pol])- (3.90)

Lemma 3.26. Under assumptions (A2)-(A6), [BZ4) implies that 6y is a strongly regular
solution of ([BRH) for u = po. More precisely, given § = (61,09) € RN"Nwo x RNwo 5, =
(ar, bpa, ¢, c) € R™ x RVea x RN x RN, 6y = by, there erists a unique w € O, w =
(mg, Y, 0, o), solution of the following relation, equivalent to (BRT) with w = 6 — Oy:

{ Dy® (6o, pro)w — 61 =0

3.91
DgV (0o, po)w — 62 € N(w), (3:91)
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and w s given as follows. Let (1)5,25,71’5,(5,)\%) be the unique solution and associated multi-
pliers of the following linear-quadratic problem (recall that J1 is given by (B22))

(P%) . zI)neiXI}le s T (v, 2) + ap(T) (3.92)
subject to (B3R, B74),

Gy(Y(t7")2(t5") = biy, i € Iyq (3.93)

gy(GE)2(t5") < by, i € L, (3.94)

where the multipliers ws, (5 and N} are associated, respectively, with constraint (B35), B4
and B33)-B3). Then w is given by: m9 = 75(0), v* = A}, and
1 S (+EN\ (fEM ren— ren
L g @), GE) (s (), 2 ()
o = T . i=1,...,N, (3.95)
a9 (uvy)|t:t_‘;"_
exr 1 7 (FET 57(+E€T Jex rex
— Gy ED), GED) (s (E), 25 (7))
(

%g(l)

ET

, i=1,...,N. (3.96)

u, Z?)|t:{§w+
Proof. The proof uses the block-decoupling property of the Jacobian of the shooting mapping
w.r.t. junction times for first-order state constraints established in [93, Lemma 4.2]. See also

[T9, Lemma 4. 5ﬁ Let us first explicit the relation (B9I]). Let (v, z, 7, ¢) be the linearized con-
trol, state, costate and state constraint multiplier solution of the linearized shooting equations

B770)-E30):

(z,m)(0) = (0,7) (3.97)
(z,m)(&"7) = DFO((F,00)EE), 6" — 621 (2, m) (L), i=1,...,N+1, (3.98)
(z,m) (") = DF(Gp)E" ) 6 = 6")(z,m)(E™), i=1,....N,  (3.99)
@) = v @E)E") =gy @E),  i=1,...,N. (3.100)

Then (B31]) writes
m(T) = ¢yy(y(T))2(T) + ar (3.101)
gy(YE")2(E") = biy i€ Iy (3.102)
gy@E)2E") < b, A =0, (gy@E")2(E") —bi)yi = 0, i€l (3.103)
DgW(@(#sm™), g(te™)) (v(F" ), 2(")) —i—af“ig(l)(ﬂ,ﬂ)\t:{?f =0, i=1,...,N (3.104)
Dg(l)(ﬂ(ffx),ﬂ(ff””))(v(ff“),z(ffx))+af$§tg(1)(a,g)|t:£§z+ — 0, i=1,....N. (3.105)

We recognize that ([B37)-(BI03) is the first-order optimality condition of problem (Ps), with
4} the multipliers associated with the constraints (03] and 34 for i in respectively Ip,
and I;,. By (A2), we can show that the quadratic form 77 is a Legendre form over the space of
linearized trajectories (v, z) satisfying (B238]). Therefore, (B:44), equivalent to (BZZD]) by Rem.
B24 implies that J1 is uniformly positive over the linear space of (v,z) € V x Z satisfying
B38) and BZ3)-ETA) (i.e. there exists a > 0 such that Ji(v,z) > a(|[v]|{ + ||2]|%) for all
(v,2) € V x Z satisfying ([B38) and F7Z3)-(@4)). It follows then that problem (P°) has, for
all § € RV, a unique solution and multipliers (vs, zs, 75, s, )\%) that are Lipschitz continuous

w.r.t. 4. Thus (BHI) has a unique solution, and by (BI04)-(BI00) and (A6) and ([B2Z0), the
variations of junction times o{" and of* are given by (B0])-(B30]). O

5Lemma of this thesis.
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Lemma 3.27. Under assumptions (A2)-(A6) and (B34, there exists a neighborhood V), of
o, such that the locally unique solution 6 of ([BH) given by ([BR) satisfies:

O > e for gl € Iy, (3.106)

and
o =" o =0, Q€T (3.107)

In particular, the solution (u*,y*,p{,ny) of BID0)-BRQW) with 0 = 6* is well-defined over
[0,T], and there exists a constant v > 0, such that for all i € Iy, and all pn € V),:

mt) < —y on [ t""]  whenever t:"“" > i (3.108)
Proof. Let i € I,. By strong regularity (Lemma [B.20), we have that
9 b 71
B Ol — ol)), v = Ol — ol (3.109)

Denote by (u,y,p1,n1) the solution of ([BID)-(BR) for § = 6*. Note that this is well-defined
on each arc, but not a priori as function of time, since it may take several values for ¢ €
((eEe™ ) o ¢ > 89" (where ((a, b)) stands for (a,b) if a < b and (b, a) otherwise). We
will see that this last case cannot occur, i.e. (BI06]) holds (and clearly also holds by continuity
with a strict inequality for ¢ € Ij,), and is satisfied with equality iff v 1= o.

Note first that by (A2)-(A3) and the strong regularity property, for ||u— po|| small enough,
(B50)-[BE0) are satisfied on each arc. Suppose first that ¢ = ¢*". Then (u,y,n1,p1)
is defined as function of time without ambiguity in the neighborhood of ¢{"“" (the algebraic
variables are given by the dynamics on interior arcs). By (BZ)-(B80), there is a jump of p; at
entry time and no jump at exit time, and thus (y, p1) (2" ") = (y,p1)(#"7) = (y,p1)(E7).
By definition of the problem (BRH), we have

(") (") y(t™) = (¢) D ("), y(#7)) = 0,

and hence, since /" = ¢/"“" ([B50) implies that u is continuous at time ¢/"“". We deduce
that:

0 = [Hi(u(t!" ™), y(t" "), pa (8] = =1/ (g")5) (w(t ™), y(£ ™).
1

Since (g“)(u )(u(tf’e"),y(tf’m)) # 0 by (B&8l), it follows that Vi“’l = 0. This proves the “="
implication in (BI07).

Suppose now that tf L tf " In order to avoid any confusion, denote the solution
of BZD)-EX0) for § = 6* by (u",y ,p;,n;) on the boundary arc (¢£"",¢£"“")), and by
(ut,y™,pT,n{) on the succeeding interior arc (¢! ’ex,téﬁ’f{l ). Note that the limits of these
functions and of their time derivative at endpoints of the interval where they are defined do
exist, and are continuous w.r.t. p (this follows from the implicit function Theorem applied by
(B50)-BE0) on each arc of the trajectory). This holds in particular for @#. Here the jump
has the following signification, for instance [u(¢{"“")] := uw™ (#8"“") — u™ (¢1"").

Since (B.60))- ([B60]) are satisfied, we can show using the same local arguments as in Lemma
that

(ot ) = (5™, pp ) (), (3.110)

and we denote this common value by (u(t""), y(t"“"), p1 (¢£°"), m (£"°")). By (A6), there
exists by continuity a constant ¢ > 0 such that, for p close enough to pg,

d
im —(g") Dt (1), (1) < —c (3.111)
tproeat dt
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On the other hand, we have on the boundary arc ((¢£"", t£"")):

i, S (0,97 (1) = 0. (3.112)

Since £ (g") D (ut (1), y* (1) = (¢") P (aF, v, y*) with (¢")? given by (BI), the jump of 4
at t1"“" satisfies

exr exr . exr d
(g‘u')q(})(u(t:f’ )7y(t::t7 ))[u(tfj7 )] = [a(gy‘)(l)(u(l‘:)’y(t))|t:t:¢,ez] < —C’ (3113)
and hence, 4~ (/") # at (¢/"“"). By time-derivation of (B48) on the boundary arc ((¢{*“", "))

of nonzero length and on the interior arc (¢/"*,#/2%"), we obtain (omitting the arguments

(uE (), y= (1), p1 (), 17 (1)):
ST & J N TR & J T (1) nE
Huuu +Hyuf - Hy fu + (g )u m = 0. (3114)
Hence, taking the jump at time ¢£"“* gives, since (u,y,p1,71) is continuous at t{"“* by ([BII0):
A, (u,y, p1,mn) (85O (8] + ()50 (u, ) (8 [ (17°7)] = 0.

Since 7 (") = 0, by (BI13)) and (E6H)-EH6A) there exists by continuity a constant C > 0

such that, for || — uo|| small enough,

gﬁu(uv Y,P1, nl)(téll’ez)
1 ’

(o) () (117))?

By [BI14) and time derivation of (B49), we see that 7, (¢) is given by a Lipschitz continuous

function of time on (¢, #"“")), uniformly w.r.t. p, so there exists m > 0 independent of ,
such that

iy (877) = = (&) = (") (w, ) () [t )) < =C. (3.115)

ny (t) < —C+ mth"™" — ¢h", te (" k). (3.116)

In view of (BI), this implies that 7 is negative on ((¢8"“",/"“")) for sufficiently small

lt — poll, and consequently, ny (¢°") = ny (") — ny (¢°°") is nonzero and has the sign of
) ) 1 3 - ) 71

" — ¢#" By similar arguments to Lemma B9, we can show that ny (¢£°“") = v/*", and

since /"' > 0 by definition of the problem (BFH), it follows that t** > t*°" necessarily

holds whenever " 2 t#°* which proves [BI8). In addition, (BIIH) implies that v/' =

m (th ’e"+) > 0 for u close enough to pg, which show by contraposition the “<” implication

in (BI07). Finally, relation (BI08) follows from (BITH) and (BI0), which completes the
proof. O

Lemma 3.28. Under assumptions (A2)-(A6) and (BZ4), the solution (u*,y*,pi,n}) of BZD)-
BX) for 6 = 6+, where 6* is solution of (B3I, is, for ||u — pol| small enough, such that
(ut, y*) is a stationary point of (P*), with classical multipliers (p*,n*) given by BEI), and
the mapping p — (u*,y*, p*,n*) € C°0,T] x C([0,T);R™) x CO([0,T];R™) x C°[0,T] is
Lipschitz continuous on a neighborhood of .

Proof. By LemmaBZ1, we see that (u”,y*,pY,n{') is well-defined over [0, T, and by definition
of the problem (B8H), satisfies the alternative formulation (BZ0)-(BX1H). By (A2)-(A3), (BE0)-
B56]) hold for ||p — uo|| small enough, so Lemma implies that the additional condition
B33 is satisfied, and that u* is continuous on [0, 7], as well as n* and p* given by B&I). In
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view of Rem. B0l in order to show that (u*,y*) is a stationary point of (P#) it remains to

show that the additional conditions (Bh7), BES) and BE0) are satisfied. By (B:63)-(BE4),

the implicit function Theorem applied on each arc shows that w*(t"“" ") and a#(t!*"") are
continuous w.r.t. u, for all i = 1,..., N, as well as ﬁf(tf’emr) and 7} (t/"“"") for i € Ip,. So

let || — pol| be so small that, by (B20)-B27) and BH),

. d? . oy
(1) @gu(yu(t)”t:té‘ven_7%‘*”“’ < 07 = 1a s 7N7 (11) nijl(t) >

@

on (" tHY), i € I,
(3.117)

Let i € Ny, If 1/2-“’1 = 0, then by Lemma BZT ¢*“" = ¢t#"“"  u# and its time derivative
are continuous at /", and (g")™® (ut (t5°"), y*(t1"")) = 0. By (A6) and standard continuity
arguments, there exists ¢ > 0 such that g(y*(-)) attains its maximum over (" —e," + ¢)
at the unique point t/"“". Therefore if g"(y*(t"“")) < 0, the state constraint is locally not
active. If gh(y*(t:"“")) = 0, then ¢£"“" is a touch point of the perturbed problem, and (BG0)
holds by @I0Z). If v/ 1> 0, then by Lemma B2, " < %" and we have a boundary
arc. By ([BI0R]), additional condition (B:8) holds on this boundary arc. If i € I4,, then
[B5]) holds on the boundary arc (¢£"“",¢#“") by [BIIZ)(ii). Finally, (D) holds near the
junction points by (BIID)(i), and outside a small neighborhood of contact points, we obtain
g"(y*) < 0 by a standard compactness argument. Hence (u”,y*) is a stationary point, with
classical multipliers (p*,n*) given by (BX).

Lipschitz continuity of the mapping u +— (u*, y*, p*, n#*) follows from Lipschitz continuity
of the mapping p — 6* by strong regularity (Lemma B20), Lipschitz continuity of (0, u) —
(u,y,p,n)|k, where (u,y,p,n)|r denotes the restriction of the solution of (BZM)-EBR0) and
BXT) to “arc” k (possibly a singleton), for all K =1,...,2N + 1, and continuity of u*, y*, p*
and n* on [0, T1. O

Thanks to Th. B4 we can show that (u”, y*) is the locally unique stationary point of (PH).

Lemma 3.29. Under assumptions (A2)-(A6) and (BZA), there exist a L> neighborhood V,,
of u and a neighborhood V,, of g, such that for all p € V,, (u*,y*) is the locally unique
stationary point of (P*) with u € V.

Proof. Let (u,y) be a stationary point of (P#*) with (u, u) in the neighborhood of (@, o). By
Th. B4l (u,y) satisfies (S1)-(S3), and therefore has finitely many junction times, so it makes
sense to speak of the finite-dimensional vector of “shooting parameters” 6 (initial costate, jump
parameters at entry times, and junction times) such that (u,y) is solution of the alternative
formulation (Def. BI4l). Now construct its augmented set of shooting parameters 6 as follows.
For all i € I,, if the state constraint is not active on Qf, add to the set of shooting parameters
0 the (unique by (A6)) time in Q¢ where g#(y) attains its maximum over ¢, duplicate all
such times as well as touch points, add a zero jump parameter for each of them, and obtain
then a 6 € © such that 6 is solution of ([BRH), and (u,y) is the trajectory associated with 6.
Let us show that this augmented set of shooting parameters 0 is arbitrarily close to 8y when
llx — poll and ||u — @||oo are small enough. Indeed, the convergence of the initial costate is a
consequence of Rem. {7l For i € I, since we know by Th. Bl that Q2N1(g"(y)) is an interval
(754 The i, letting & — 0, we obtain that " < liminf, ., 7/, ; and &* > limsup,,_, 77 ;.
The converse inequalities ff” > lim SUP -0 Tﬁm and ffx < liminf, ., Té‘m are obtained as
follows. Assume e.g. by contradiction that £ < lim SUP s 10 Tﬁm Then there exist § > 0,
a stable extension (P*), a sequence i, — po, and a stationary point (uy,y,) of (P#"), with
multipliers (py, 7, ), such that u, — @ in L>® and 7", > " + § for all n. Let ¢ be a C™

en,i
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function with support in [tf”, tf” —|— 5] and positive on (t§",1¢" 4 0). Then fo e(t)dn,(t) =0,
for all n. But by (A5), fo o(t ) > 0, which contradicts the second assertion in Lemma
This achieves to show the convergence of entry/exit points for i € Ij,. Letting 6 — 0 in
(S3), we obtain similarly the convergence of touch points and entry/exit points of boundary
arcs to the common value ff", for all ¢ € I;,. The convergence of nonactive local isolated
maxima of g"(y) in Qf when i € I,, is obtained by classical arguments, since (E28) holds and
locally on Qf, the second-order derivative (B is continuous on interior arcs since u and %
are (indeed, for ||u — @l and ||u — ol small enough, Hiy(u,y,p) > /2 > 0 by (A2) and
Rem. B7), so that g#(y) belongs to a C? neighborhood of g#° (7). Finally, the convergence of
jump parameters at entry times follows from assertion (4) in Lemma B8, since ' and 7; are
related by (B63]), and n; satisfies (BR0) and B2J]).

Hence if (u,u) is close enough to (ug,u), the augmented set of shooting parameters 0
belongs to the neighborhood Vjy of 6y, on which (BXH) has a unique solution 6 by Lemma
B268 and (u,y) is the (unique) trajectory associated with 6. Consequently, § = 6* and
(u,y) = (u*,y*) is the unique stationary point of (P*) with (u, ) in the neighborhood of

(EHUJO)' [

Now we can prove the main result. Under assumptions (A2)-(A6) and point (ii) of Th.
BT, for x in the neighborhood of po and v € L?, denote by 2z the unique solution in Z of
the linearized state equation

#o= flt Yyt + flut yt) a.e. on [0,7], 2H(0) =0 (3.118)

v

and by Q* the quadratic form over L? defined by
Q'(v) = J"(v,2)) (3.119)
where J*# is defined by ([B31) for (PH*) and its stationary point and multipliers (u*, y*, p*, n*).

Proof of Theorem [Z11. By Lemmas B26H329l to achieve the proof of (ii) = (i), it remains
to show that u* satisfies the uniform quadratic growth condition. The arguments used are
similar to those in the proof of [19, Th. 4.3]@. We argue by contradiction. Assume that the
uniform quadratic growth does not hold. Then there exist a sequence pu,, converging to ug and
a sequence u, — 4 in L* such that for all n, G**(u,) € K and

Jhn(un) < T4 (k) + o [lun — wtn |3). (3.120)

Introducing the Lagrangian of (BI1)) defined by L*(u, 7]) = J“( ) <77, G*(u)), with (-,-) the
duality product in M0, 7] x C°[0,T] defined by (n, z fo , we obtain that

LE (g, ) < LR (™) + o [[un —u“”H%).

Set e, = |Jup, — u'*||]2 — 0 and v, = (u, — ut*)/e,. A second-order expansion of the
Lagrangian shows that

LA (g, ) = LHm (b ) + en QM (v) + o(e7),

where Q" is defined by (BITd)). It follows then that Q*"(v,) < o(1). Since (v,) is bounded
in V = L?, we may assume that it converges weakly to some o € L2. In view of the compact

"Theorem B34 of this thesis.



3.6. STABILITY ANALYSIS 101

inclusion of H'(0,T) in C°[0, 7], the associated linearized state z, := 24" defined by EIIX)
converges uniformly to z := 2£°. We may write that

Q' (vn) = Q" (vn) + Q" (vy) — Q" (vn),

and using that ||v,]|2 is bounded it is not difficult to check that Q" (v,) — Q" (v,) — 0.
Therefore by weak lower-semicontinuity of the Legendre form @ = Q#° by ([B20), we obtain
that

J(0,2) =Q(v) < limJiran(vn) < limsup Q(v,) < 0. (3.121)
n—T00 n—-+00
Moreover, v and Zz satisfy (B39). Indeed, since G*"(u,) € K, we have that g, (y"")z, +

rn < 0 on I(g"(y~)), where r, satisfies ||7,]lcc = O(g,). Since %gﬁ”(y“"(t))zn(t) =

(ghm YD) (utn yln Yo, 4 (gh™) D (uhn  ykn)z,, it follows from Cauchy-Schwarz inequality that
the functions (of time) gj™ (y*)z, are uniformly Holder continuous. Therefore, there exists a
constant C' > 0 such that, for all large enough n, using Lemma B206]

sup gy (y' () en(t) < Ofen) +C ) max {[t™ — 7], [t — 7|} = o(1).
tGUg\Ll[{f",t_fI] i=1,...,N

(3.122)
Since gy (y"")z, — g,(¥)Z uniformly, it follows that g,(y)z < 0 on UX, [t ¢%]. In ad-
dition, by @IZW), we have that (n* g™ (y#")z,) = —DJH"(u)v, > O(e,). Therefore,
(11, 94(9)z) > 0, which implies finally by (A5) that g,(y)z = 0 on UN,[t",5%], ie. (B3D)
holds. Thus (BZ44)) and (BIZI) imply that v = 0. But then Q(v,) — Q(?), and hence, by the
property of Legendre forms, v,, — ¥ strongly, contradicting that ||v,||2 = 1 for all n.

To prove the converse implication, we construct a perturbation of the constraint g*, so
that (nonessential) touch points becomes inactive on the perturbed problem (P*), and (u, )
is a stationary point of (P*). This is where we need nonautonomous perturbations. Let ¢
be a C* function with support in [—1,1] and positive on (—1,1). Set po = 0 and gH(y) :=
9) — Srer, 150((4n — 7)/1) for i # 0 (recall that we assume @)). Then (¢, 6, f, 6", yo)
is a stable extension of (P), (u,y) is a stationary point of (P#) for all |u| small enough, and
g"(y(r)) < 0 for all nonessential touch point 7. By the definition of the uniform growth
condition, (u,y) is a local solution of (P*) satisfying ([B:4H), so it follows from Th. BI(ii) that
the strong second-order sufficient condition (B:Z4l) holds. O

We end this section by the proof of Lemma

Proof of Lemma[ZI3. Denote by Q* the quadratic form (EITd) and C* the set of v € V
satisfying the constraints (B38)-B3d) for (P*) and its stationary point (ut,y*), i.e. such
that

gzl = 0 on [t 0 forall i =1,...,N. (3.123)

Let us show that there exists o/ > 0 such that for all x close enough to po and all v € C* (ut),
we have Q" (v) > o/||v||3, which will give the result.

We argue by contradiction, as in the proof of the uniform growth condition in Th. BI1l
Assume this is not the case. Then there exist sequences (i, )nen+ and (vy)nen+, such that
W — UQ, Up € CHn for all n, and

Q' (vn) < o(1)]vnll3. (3.124)

Since CHn is a cone (in fact, here, a linear subspace of V), and Q" is a quadratic form,
assume w.l.o.g. that ||v,|l2 = 1, and taking a subsequence if necessary, that the sequence
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(vn) converges weakly to some o € V. Then the associated state z, := 2" given by

BI1R) is weakly convergent to z := z£° in H', and hence z, — Z uniformly. By the
same argument as in the proof of Th. BT (see ([BIZJ)), since v, € C*», we deduce that
Dy fen gy 1987 (07 ()20 (8)] < O/imasimy AT — 0, [ — 9]} = o(1). It
follows then that o € C*0. But [FIZ) implies that Q“0(v) < 0, therefore o = 0 by (BZ4),
and then Q"°(v,) — Q°(v). Since Q"° is a Legendre form, it follows that v, — v strongly,
contradicting that ||v,||2 = 1 for all n. This achieves the proof. O

3.7 Sensitivity Analysis

Under assumptions (A2)-(A6) and point (i) or (ii) of Th. BTl we investigate in this section
directional differentiability of solutions. Given a stable extension (P*), by Lemma B26] strong
regularity holds, and the mapping = : V5 — V], 6 +— 6(5) solution of (BETD) is given by
Z(9) = 0p + w(0), where w(d) is the solution of (BHI). It is easy to see that the mapping
0 — w(0) is positively homogeneous of degree one, and it follows then from (BX0) that the
mapping p — 6* is Fréchet directionally differentiable. The directional derivatives in direction
d € M are obtained by substituting into (BE91]) 6 by —D,F (6o, ji0)d. Therefore,

oot = 0o + wq + o(|d]]), (3.125)
where

wg = (ﬂfho,fycll,asn,aff) e R* x RY x RY x R¥ (3.126)

is as follows. Denote by
(Udvzd77rl,d7<.1,d7)‘gl) (3127)
the (unique) optimal solution, costate and multipliers of the linear-quadratic problem below:

1 g 2 3
(Pd) (mZI)nel\I)lxz 5 /(; D(u’%“)’(u,y’H)H(u?yaplanlmuO)((vvZ7d)7 (U7Z7d))dt

+ 5D*$(H(T), 10) ((2(T), d), (=(T), d))
+5 > i DPGGE), po)((=(5"), d), (=(F"), d))

i€l
subject to: s = Df(u,7,po) v,z d) on [0,7], =2(0) = Dgo(po)d (3.128)
DgM (@, po)(v,2,d) =0 on T, (3.129)
Dg(y(Ei"), po)(2(&5"),d) = 0, i € Ia (3.130)
Dg(y(t:"), no)(2(£5"),d) <0, i € L, (3.131)

with 7 4 associated with the constraint (BI28), ¢; 4 with (BIZ9), and A} with ET30)- EI30).

Then we have

ma0 = 7m1,4(0) (3.132)
i = Ad (3.133)
DA(I) a(Ien) . G(fen Fen— e d
O_ZZ _ g (U( )7331( 7(,1))7/1’0)( ( )7zd( i )7 )’ i = ].,...,N, (3134)
Eg (u y)‘t tE”—
DA(l) —(Fer\ (fex rex+ ex
0.2:7; - 9 (U(t ) g(t )7#0)( (t ) Zd(t )7 d)’ i = 1’ o ,N. (3135)
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Since the mapping p — 6* is Fréchet directionally differentiable and the solution (u*, y*, pY', n{)
of B71)-([ X)) is, on each arc, a C'! function of (6#, 1), combining with the continuity of u#
and of the classical multipliers p* and n* given by (B&1l) (which follows from Lemma BZ2¥]),
we obtain the following result.

Theorem 3.30. Let (u,y) be a stationary point of (P) satisfying (A2)-(A6). If either point
(1) or (i) of Th. [ZI1 is satisfied, then there exists a neighborhood V,, of u, such that the
mapping p — (ut, y*, pt*,n*) is Fréchet directionally differentiable in the space

L7(0,T) x Wh(0, T;R™) x L™(0, T; R™) x L"(0,T),  for all1 < r < +o0,

and the derivatives of the state and control in direction d are the optimal solution (vg,zq) of
linear-quadratic problem (Pg), while those of the costate p* and state constraint multiplier n*
are obtained, respectively, a.e. by

ma(t) = m d( )+ Cra(t)gy® (F(1)) + m() Dgy (y(t), po)(za(t), d) (3.136)

Calt) = —Zmlmten — Cralt). (3.137)

In addition, all shooting parameters (initial costate, jump parameters and junction times) are
Fréchet directionally differentiable w.r.t. w, and their directional derivative in direction d are

given by (BT32)-(EI34).

Remark 3.31. We can show that an equivalent formulation of (Py) is (see Rem. BZ3J) to
minimize

T
/0 Dy gy H (@ 9.5, 10) (0, 2,d), (v, 2, d))dt + D*G(H(T). o) ((=(T), d), ((T), d))

/ D*§(g(t), po)((2(1), d), (=(t), d))d7 (¢)
(3.138)
for (v,2z) € V x Z subject to the constraints (B12]), (BI31) and

Dg(y, po)(z,d) =0 on Iy, (3.139)

This last constraint is equivalent to (B129)-BI30) since we have that DM (@, 7, po) (v, z,d) =
L D§(y(t), po)(2(t),d). Then, using the relation (BI3E), we can show that 74, the directional
derlvatlve of p* w.r.t. u,is the multiplier assocnated with (BI28]) in formulation (BI38)-(EI59)
of (Py), and that the directional derivative of ¥ wr.t. u, equal by BI3D) to (g = —(Ld, is
equal to the multiplier associated with the constralnt (B139).

Let us conclude this section by the following observation. For i € Iy, since " = 5%, the
optimality system of (Py), easily obtained, yields that Hy,vg + Hyyzq + m1,4fu = 0 at t_f”i,
and that the jump of 71 g is given by [m14(t")] = —vy !9y (J(t¢")). Hence, the jump of v, is
given by

[0a(t§™)) = i Hod (@, 9, D) (E™ )9y ((F™) fu (0, 9)(F") = i ol (@, 9, D) (F) g (w1, 9) (F),

and we obtain from (B134)-(BI35)
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with
)(#em) (98" (a, ) (F7))>2

> 0.
9V (@, ) |i=gen

P
d
dt

Since Wé,i > 0 for i € Iy, we see that ogq; — 0q; = 0, with equality iff yéﬂ. = 0. It follows that,
for y — po = d, the length of the boundary arc and the jump parameter are related, at first
order, by

B =t = Gl ol = woll). (3:141)

Remark 3.32. It was quite expected that nonessential touch points generally turn into bound-
ary arcs for constraints of first order (see e.g. [29]). However it was surprising to be able to
describe this transition between touch points and boundary arcs by a shooting approach when
the structure is not stable, and obtain the differentiability of the shooting mapping, and in
particular of the entry and exit times of the appearing boundary arcs.

Note that those results are false for control constraints. Consider for example the problem
below:

uel

min /Q(u(t) — (t —1)%)2dt.
0

Here we have no state, or more precisely, the state is equal to the time. Obviously the solution
is u(t) = (t —1)2. Add now a constraint u(t) > ¢ for ¢ > 0. Then the optimal solution is
u(t) =eon [r¢,75] with 7§ = 1+ /&, and u(t) = (t — 1)? on [0,78) U (75,2]. So fore >0 a
boundary arc appear, whose end points 7 and 75 are not differentiable at the point € = 0, and
whose length is of order /¢ and not . A fortiori the shooting mapping is not differentiable
at the point ¢ = 0, and the algorithm described in section has no obvious extension to
control constraints (or more generally to mixed control-state constraints).

3.8 Example of sensitivity analysis

We illustrate the results of this paper on a very basic example. We consider the problem of an
elastic line of positive mass, fixed at its endpoints and submitted to a vertical uniform force
(9). The problem is to find the equilibrium position, i.e. minimize the energy. Assuming the
elastic potential to be quadratic with unit constant, this can be written as the optimal control
problem (with ¢ replaced by z € [0,1]):

U /()2
min/o <% + gy(x)> dz, y(z) = u(x), y(0) =0 =y(1). (3.142)

We add a first-order state constraint, e.g. the level of the floor
y(x) > —h. (3.143)

Here g and h denotes positive constants.

Remark 3.33. Our results can be extended with only slight adaptations to the case when there
are also finitely many equality and inequality constraints on the final state, if we assume in
addition a controllability condition. In the case of a fixed final state, y(T') = yr given in R,
this controllability condition is assumption (A1’) below. Recall that given § > 0, we denote
by Q0 := {t € [0,T], dist{t; I(g(5))} < 0}
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(A1) (i) The initial and final conditions satisfy g(yo) < 0 and g(yr) < 0;

(

(ii) There exists § > 0 such that the linear mapping U — WhH>®(Q%) x R*; v
(9y(U(-)zv(-)| s, 20(T)), where z, is the solution of (B2 and |os denotes the restriction
to the set Q°, is onto (and therefore has a bounded right inverse by the open mapping
Theorem).

This assumption (A1’) plays the role of Lemma BZin the proofs. Note that when the dynamics
f is linear, i.e. f(u,y) = Ay + Bu, then (A1’)(ii) is satisfied if the pair (A, B) is controllable,
and if (A1%)(i) and (A3) hold.

For the example considered here, (A1’) is obviously satisfied so all the previous results are
valid. The unconstrained optimal trajectory when h/g > 1/8 is given by:

y(z) = 392° — 39z, u(z) = gz — ig. (3.144)
The resolution of the constrained problem when h/g < 1/8 is as follows. The trajectory is:

g(x — Tep) on [0, Tey)
u(z) =< 0 on [Ten, Tex)
g((x = 1) = (Tex — 1)) on [Tea, 1]

g(2%/2 — zen) on [0, Zep)
y(r) =< —h ON [Ten, Tex)
9((x = 1)?/2 = (zex — 1)(z = 1)) on [zeg, 1].

Entry and exit positions z., and x., are given by:
ZTen = \/2h/g, Tep = 1 — \/m (3.145)
The alternative state constraint multiplier on [Z ¢y, Ze,| is given by:
n(@) = pi(e) = —g(a —2e) 20, in(a) = —g <0,
and hence, the jump parameter at entry time is:
Yy =M (@en) = 9(ex = Ten) = g (1= 2/20]g) 2 0. (3.146)

We consider perturbations w.r.t. nominal values of parameters g = go = 1 and h = hy =
1/8, for which there is a touch point at x = 1/2. The strong sufficient second-order condition
B4 clearly holds, since the linear-quadratic problem:

min/]L de, Z(x) = v(x), 2(0) =0=2(1)
, 2

having a strongly convex cost function, has (v, z) = 0 for unique solution. Let us then study
the perturbed quadratic problem at (gg, ko) in direction d := (v, n):

1 U(:E)2
min/ <T - ’yz(a:)) dz, Z(x) = v(x), 2(0) =0 = 2(1),
0
subject to the interior point inequality constraint:

2(1/2) > —n. (3.147)



106CHAPITRE 3. STABILITE & HOMOTOPIE POUR LES CONTRAINTES D’ORDRE 1

The unconstrained trajectory is:

cal) = 4 <‘%2 _ g) , va(z) = <:13 _ %) . (3.148)

Therefore, the constraint is active, iff n < ~/8. If n > ~/8, (BI48) corresponds to the
directional derivative of the unconstrained trajectory (BI44l). When n < +/8, the constraint
(BIZD) is active, i.e. z4(1/2) = —n, and therefore, the solution of the linear-quadratic problem
is as follows:

va(x) = { 7z = (20 +7/4) on [0,1/2]

(@ —1)+2n+7/4) on[1/2,1].
calz) = { vx2/2 — (20 + v/4)x on [0,1/2]
' y(@—12/2+ 2n+v/4)(x—1) on[1/2,1].

The multiplier Ay associated with the constraint (BI47) is, by BI40):
Ad = [ma(1/2)] = —[va(1/2)] = —2(2n — ~v/4) > 0, (3.149)
and, by (BI34)-(BI3H), the variations of entry and exit points 04, and o4, are given by:

v(1/2~ v(1/2%
Jd,en = - ( / ) - —'7/4+277, Ud,e:c = — ( / ) :’7/4—217 (3150)

g0 90

By BI46]) and (BI4H), we check that the above formula corresponds to the first-order varia-
tions, with ¢ = go + v and h = hg + 1, ||, |n| small, of:

1/4 42 1/4 42 1/4 42
— (4 (1oAY Vatz oo g AR
1+~ 1+~ I+~

We consider perturbations in three directions d = (v, 7n):
Case (a)  (v,n) = (0,-0.02)

Case (b)  (v,m) = (1,0)
Case (¢) (v,m) = (1,-0.02).

Case (a) corresponds to an elevation of the ground level, case (b) corresponds to an increasing
of the “gravitational” force g, both of them leading to the emergence of a boundary arc, and
case (c) combines elevation of the ground and increasing of g. The perturbed trajectories
and directional derivatives of the state in W1" 1 < r < 400, are presented for each case
in Fig. Bl The unconstrained trajectory for (go,ho) is a parabola. In Fig. B2 we focus
on the appearance of the boundary arc in case (c), check that its length is of the order of
the perturbation and compare with the directional derivatives of variation of junction times

(E.150).
3.9 Homotopy method

We present in this section an algorithm that combines shooting and continuation (or homo-
topy) methods for solving optimal control problems with a scalar first-order state constraint,
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Figure 3.1: Perturbation of the state (left) and directional derivatives (right) in case (a) to
(¢) (from top to bottom)
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Figure 3.2: Variation of the length of the boundary arc in case (c).
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when the structure of the trajectory is unknown. It keeps the advantages of shooting meth-
ods regarding to the (high) precision and the (low) complexity, and enables to get rid of the
(sometimes) hard task to guess a priori the structure of the trajectory, and of the initialization
of some of the shooting parameters (only the initialization of the initial costate is left to the
user). The idea is to handle automatically the appearance (and disappearance) of boundary
arcs, so that the algorithm finds itself the structure of the trajectory. The results of the
previous sections are used.

General results on homotopy methods can be found in e.g. [1], [45, Chap. 5|, and appli-
cations of homotopy methods to optimal control problems in e.g. [31, 63l 97].

3.9.1 Description of the algorithm

The problem to be solved is the following:

@ min / Cult), y(t)dt + o(y(T)) (3.151)
subJect to  y(t) = f(u(t),y(t)) ae. on[0,T], y(0)=yo, (3.152)
g(y(t)) <0 on [0,T]. (3.153)

We assume that (P) satisfies (A0)-(A1l). In view of remark BZ33] we can more generally consider
a fixed final state y(T') = yr and ¢ = 0 if we assume in addition that the controllability
condition (A1’) holds.

We consider the natural homotopy on the state constraint (P*), for p € [0,1], defined by

(e, 9, f1yp) »= (4, &, f,90) and
g'(y) = g9(y) — (1 - Pk, (3.154)

where the constant K > 0 is large enough, so that the state constraint of problem (P?) is not
active, except maybe at finitely many (isolated) touch points in (0,7"). We explain later how
we choose K in the algorithm. We thus have (P!) = (P).

The shooting mapping (B8d) for (P*) is denoted by F(60,u), where 6 is the vector of
shooting parameters, of variable dimension depending on the structure of the trajectory, and
w is the (scalar) homotopy parameter. Since we only have here one state constraint of first
order, note that the structure of the trajectory, and hence F, is entirely determined by the
dimension of 6. More precisely, the number of boundary arcs of the trajectory Ny, is given by
(assuming the state constraint inactive at initial and final times)

Nyo = % € N. (3.155)
The structure of the trajectory follows then from the alternation between interior and bound-
ary arcs. We denote by y?* the state solution of the alternative formulation for the shooting
parameter 6 and the value of the homotopy parameter . The algorithm is as follows (see
Algorithm B34)).

The algorithm is initialized by solving the unconstrained problem (without the state con-
straint) (BI51)-(BI52). We thus obtain a vector of shooting parameters 6y (reduced to the
initial costate), associated with a stationary point of (BIRIl)-(BI52), which is a local solution
of (BIRI)-BIR2) if the second-order sufficient condition (BZ2) holds. The constant K in
(BI54) is taken equal to K := maxejo ) 9(y%°(t)). If K <0, then 6 is a vector of shooting
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parameters associated with a local solution of (P). If K > 0, we start the homotopy from
= po:=0in IR to u = 1.

The variable m; denotes the maximum of g#* (y(”f’“k), attained at time 7y,. If my, is positive,
this means that the state constraint is violated so the structure is not correct and we have to
add a boundary arc (step A). The variable i; equals zero iff all entry and exit times of boundary
arcs are such that entry times are lower than or equal to the corresponding exit times, and
equals ¢ > 0 if the entry time of the i-th boundary arc is greater than the corresponding exit
time. If 4, = ¢ > 0, the structure is not correct again so we have to delete the i-th boundary
arc (step A). All this will be justified later in subsection under some assumptions. If
both mj; < 0 and i, = 0, this means that the structure is correct, i.e. the current iterate 6y
is a vector of shooting parameters associated with a stationary point (ut*k, y#*) of (PH*). We
thus increase the value of p and do a simple predictor-corrector iteration (steps B-C), keeping
the same structure for the shooting mapping. Then in step D we calculate the new values of
myy1 and i1 that say whether the structure is still correct or has to be updated in the next
iteration. We do so until reaching the value p = 1.

If the Newton algorithm in step C fails, then we decrease the value of the step Au, and
go back to the last value (ug_1,0r_1) satisfying F'(ug_1,0;—1) = 0 and max(mg_1,i,_1) = 0.

Algorithm 3.34 (Homotopy Algorithm).

INITIALIZATION
Input py € R™ and § € (0,1].

- Solve by the shooting algorithm (initialized by the value pg) the unconstrained problem
BI5D)-BI52), and obtain a vector of shooting parameters 6.

- Set K := max g(y%0(t)). If K <0 set ug := 1, else set pg := 0. Set mg := 0, ig := 0,

While ui < 1 or max(mg,ix) > 0

If max(my,ix) > 0 then STEP A (Update the structure)

IF my > 0 THEN (Addition of a boundary arc)
Initialize the new shooting parameters (v, Ten, Tew) associated with this boundary
arc by:
v =0 and Ten = Tex = Th- (3.156)
Take the remaining shooting parameters equal to the previous value 0y, and obtain
a vector of shooting parameters 0, of dimension dim(0y) + 3.

END IF

IF i > 0 (Suppression of a boundary arc)
Remove the shooting parameters (Vl,Ten,Tex) corresponding to the ip-th boundary
arc from the vector of shooting parameters 0y, and obtain a new vector of shooting
parameters 0, of dimension dim(fy,) — 3.

END 1F
Set iy := p (the value of p is unchanged by this step).
Else STEP B (Prediction)
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Setk:=k+1

ik = min{pg—1 + Apg; 1}
Or = Op—1 — Do F (Op—1, pte—1) "' DpF (Op—1, pr—1) (fir — fir—1)-
End if

Step C (Correction) Try to solve, by a Newton method, F(0,jix) = 0. The Newton
algorithm is initialized by the value 0.

If the Newton algorithm fails then (go back to old values of p and 6 and decrease
the step) Set py = pr—1, Op = Op_1, mp 1= mp_1, i = ig_1, Tk = Th—1,
Apg = Apg/2 and k =k — 1.

Else (success) obtain a solution 0y such that F (0, i) = 0. Set uy := fig.
STEP D (Verify if the structure is correct)
— Set my, := max gH (y? Hk (t)) and T3, € argmax g (yok (t)).

— Set iy, == 0. For all i = 1,...,Nf (N[ given by @I5H)), if Ok is such that
the entry time corresponding to the i-th boundary arc is greater than the exit time
corresponding to the i-th boundary arc, then i3 = 1.

— IF max(my,ir) = 0 THEN set Augy1 :=9.
End if

End while

Remark 3.35. Note that the Newton algorithm converges quadratically, provided that the
initial point is good enough. Therefore, we can see rapidly in step C whether the Newton
algorithm converges or not and if we need to decrease the step Apg.

Remark 3.36. Clearly, the present algorithm does not take into account all possible events,
since it principally assumes the stability of boundary arcs (which holds when uniform strict
complementarity is satisfied, see assumption (Hsg) below). If uniform strict complementarity
does not hold along the homotopy path, then it may happen for example that a boundary arc
splits into two boundary arcs, or on the contrary that two boundary arcs melt into one.

3.9.2 Existence of the homotopy path

Assume that the following holds:

(Ho) For po = 0, the unconstrained problem (P°) has a local solution (i, y) that satisfies (A0)-
(A3), the contact set I(g°(%)) is composed of finitely many (nonessential) touch points
in (0,7), all of them satisfying (B220]), and the strong second-order sufficient condition

BZ4) is satisfied.

By Th. BTl (Ho) implies that there exists i > 0 such that for all © € [0, 1), (P*) has a locally
unique local solution (u#,y*) with multipliers (p*,n*), that satisfies assumptions (A1)-(A3)
for (P*). In addition, this local solution (u*,y*) of (P*) has a neighboring structure to that of
(u,y), implying that if (u,y) has N touch points, then (u*,y*) has at most N boundary arcs
or touch points, i.e. satisfies (A4). Further, strict complementarity holds on the boundary
arcs of (u*,y*), and the touch points satisfy ([B20]) by continuity, i.e. (A5)-(A6) are satisfied.
Finally, (u*,y*) satisfies the strong second-order condition (BZ4l) for (P*) by Lemma
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Consequently, assumption (Hg) ensures that the homotopy path is well-defined on an
interval [0,1) C [0,1], and that assumptions (A1l)-(A6) as well as the strong second-order
sufficient condition (B:44]) remain satisfied on this neighborhood. Let

tmaz = sup{ 1 € [0,1] : for all p € [0, i], the locally unique local solution (u*,y*)
of (PH) satisfies (A1)-(A6) and (BZ4). }.

The preceding discussion shows that assumption (Hg) implies that fi,q. > 0.

Lemma 3.37 (Existence of the homotopy path). Assume that (Ho) holds, that there
exists L > 0 such that for all p € [0, timaz ),
[y + [[v']e < L, (3.157)

and that (A1) and (A3) are uniformly satisfied, i.e. there exist 3,e,( > 0 such that for all
,LL 6 [07 ,Ufma:c);

g'(yh) < —C and |(g")P(Wh(t),y" (1) = B, forallt, dist{t; I(¢"(y"))} <e. (3.158)

Then there exists a sequence (fin)nen+ Such that pn, 1 pmaz, (Ui, y#m) — (4,7) uniformly,
(ptm, dnPr) weakly-* converges to (p,dn) in L*°(0,T;R™) x M[0,T], and (u,y,p,n) is a sta-
tionary point and its multipliers of (PHma=).

Moreover, if (4,y,p,n) satisfies assumptions (A1)-(A6) and the strong second-order suf-
ficient condition (BZ4l), then (ut,y*,p",n*) converges when p T pmaz to a locally unique
local solution of (PFmer) and its multipliers (,y,p,n) =: (ubmer, yktmas phmaez phmaz) = qnd
Hmaz = 1, i.e. the homotopy path is locally well-defined over p € [0,1].

Proof. Consider a sequence (fin)nen+ C [0, hmaz) such that g, — fmae Wwhen n — 4o00. Since
WhL(0,T) is compactly embedded in C°[0,T], (BI51) implies that there exists a subsequence,
still denoted by (), such that the sequence (u#") converges uniformly to some 4 € U. By
(BIX10), we may pass to the limit in the state equation (B2)) and obtain that y#» converges in
Y to the state § := y;"** solution of (BI0).

By (BI58), Robinson’s constraint qualification (BI7) is uniformly satisfied for all p €
[0, ttmaz ), i-e. the positive constant v in ([BIZ) does not depend on u. It follows then from
[24, Prop. 4.43] and IXD) that ||dn*" || s(0,7] is uniformly bounded. Therefore there exists

a weakly-* convergent subsequence dp#n =~ dfj in M[0,T]. Since dn# € Ng(g*(y*)) for all
€ [0, tmaz), and gt (yHn) — ghmes(g) strongly (i.e. uniformly), we deduce easily from
the definition of the normal cone that di7 € Ng(g#*™**(g)). By the costate equation (BI3)
(with @« = 1), dp* is uniformly bounded in M([0, T]; R™). Therefore, there exists a weakly-*
convergent subsequence dp*” Aodp e M([0,T];R™). Due to the convergence of the final
condition (BIl), we deduce easily from the integration by parts formula [BS, p.154]

T T t
/ p(t)p(t)dt = —/ dp(t)®(t) +p(T)®(T) for all (p,p) € BV x L' with ®(t) := / (s)ds
0 0 0

that p~ weakly-* converges in L*°(0,T; R™) to a limit p given by p(t) := f:ﬁ dp(s)+ey™ (g(T)).
Since (BI8)) and ([BI3) are linear in p and 7, we may pass to the weak-* limit and obtain that
(@, y) is a stationary point of (P#mer) with multipliers (p, 7).

Now assume that this stationary point (@, ) of (P#mer) satisfies assumptions (A1)-(A6)
and the strong second-order sufficient condition (BZ4]). These assumptions imply by Th. BTl
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that (u,9) is an isolated stationary point of (P#me+) which shows the local uniqueness of the
stationary point (@, ) of (P*me=) constructed above and of its multipliers. In addition (@, )
is a local solution of (P#me+), and by Th. BIIl we obtain the existence of the homotopy path
on the interval [fimaz, tmaz + €), for some € > 0, and assumptions (A1)-(A6) hold on this
interval by Th. BIT], as well as the strong second-order condition (BZ4l) by Lemma B2 This
implies that e = 1, otherwise this would contradict the definition of fiy,q,. Therefore the
homotopy path is locally well-defined over [0, 1]. O

We thus make the assumptions below:

(H1) For all u € [0,1], (u*,y*) satisfies (A2), there exist L > 0 and (,e,{ > 0 such that
BIxD) and BI5S) hold, and ¢g*(y*(T")) < 0.

(Hz2) For all p € [0,1], (u,y*") has finitely many boundary arcs, and there exists 5 > 0 such
that for all u € [0,1], 7} < —3 on the boundary arcs of (u*,y*) (with n}’ the alternative
state constraint multiplier associated with (u#,y*)).

(Hs) For all p € [0,1], (ut,y*) has finitely many (nonessential) touch points, all of them

satisfying (B20]).

(H4) For all p € [0, 1], (u,y*) satisfies the strong second-order sufficient condition (B:Z4l) for
(PH).

Actually the algorithm B34l is correct only if we replace assumption (H3) by:

(H5) For all p € [0,1], (u*,y*) has at most one (nonessential) touch point, and the latter

satisfies (B220)).

But the algorithm can be generalized to the more general case case when (H3) holds (see Rem.
B47).

Remark 3.38. Assumptions (Hp)-(H4) needed to ensure the existence (and local uniqueness)
of the homotopy path, and the convergence of the algorithm, are rather strong, but they also
give some indications on why the algorithm fails, if it fails (for other reasons than numerical
ones, see Rem. BA0). Either (BIGT) is not satisfied (i.e. u* is not uniformly Lipschitz
continuous), or the problem becomes singular (i.e. (BIGS]) fails), or a solution with infinitely
many boundary arcs or touch points is met during the homotopy, or strict complementarity
on boundary arcs fails, or finally the strong second-order sufficient condition (B:44]) fails.

3.9.3 Correctness of the algorithm

The existence of a locally unique local solution (u*,y*) of (PH), for all € [0, 1], is guaranteed
by assumptions (Hi)-(H4). In addition, for all p € [0,1], the locally unique local solution
(ut, y*) of (P*) has finitely many boundary arcs and touch points. So to prove the correctness
of the algorithm, it suffices to show that the algorithm does find, in finitely many steps, these
local solutions (u*,y*) for a finite increasing sequence of values of p, until 4 =1 (in fact, the
algorithm gives the vector of shooting parameters 6#, of appropriate dimensions, associated
with the trajectory (u#,y*)). For this Lemmas to given below will be useful.

Lemma 3.39. Assume that (Ho)-(Ha) hold. Then the trajectories (ut,y"),cp0,1] have finitely
many different structures, and the mapping u — 0% is globally Lipschitz continuous over [0, 1].



3.9. HOMOTOPY METHOD 113

Here, since the dimension of 8% may vary, by “globally Lipschitz continuous” we mean
that on any subinterval of [0, 1] where the trajectories (u*,y*) have “neighboring structures”,
then the mapping p +— 0# is Lipschitz continuous with a Lipschitz constant uniform on [0, 1].

Proof. By assumptions (H1)-(H4) and Th. BT for all 4 € [0, 1], there exists an open neigh-
borhood V,, of p1 such that for all 1/ € V},, the locally unique local solution (u*’,y*') of (PH)
has a neighboring structure to that of (u*,y"), and the mapping p’ — o is Lipschitz continu-
ous over V,,. We can thus extract from (V},),c[0,1] a finite covering (V, Jx=o,....ar of [0, 1]. Since
for each fij,, there exist finitely many possible neighboring structures to that of (u/, y), and

p — 0 is Lipschitz continuous on each Vj;, , the result follows. ]

Although by Lemma the trajectories (u*,y"),c(0,1] have finitely many different struc-
tures, assumptions (Ho)-(H4) do not imply that there are finitely many changes in the struc-
ture of the trajectory along the homotopy path (see Rem. below). More precisely, we
say that the structure of the trajectory changes at i € [0,1), if (u”,y") has a touch point that
either disappears or turns into a boundary arc (of positive length) when u — g+. We will
therefore make the following assumption in the proof of correctness of the algorithm (Prop.
B4, in addition to (Ho)-(H4) that ensure the existence of the homotopy path.

(Hs5) There exist finitely many values of p € (0,1) for which the structure of the trajectory
(ut, y*) changes.

Remark 3.40. Consider the problem (BI4Z), with g = 1, subject to the state constraint
BIZ3) where h depends on p € [0,1], i.e. y > h* with h* = —1/8 + p’sin(1/p). For
= 0, there is a nonessential touch point at 7 = 1/2. When pSsin(1/p) > 0, ie. u €

Unens (m, ﬁ) u(d, 1] then the latter turns into a boundary arc, and when p°sin(1/u) <

0,1.e. € Upen«( 2n7r’ @n=T)r ), the boundary arc disappear (the state constraint is not active).

Therefore, for any ¢ > 0 arfoltrarlly small, the structure changes for infinitely many values of
 in the interval [0,e]. By Th. B30 the computation of the directional derivatives in direction
d = 1 at point u = 0 shows that problem (P;) has zero for unique solution, and therefore
the directional derivatives of the entry/exit points and jump parameters at entry times are all
zero in that case.

After this general description of the homotopy path, we will focus now on the changes in
the structure, i.e. when there are nonessential touch points. So consider a value i € [0, 1] for
which (u#,y*) has Ny, > 1 (nonessential) touch points 7, i = 1,..., Ny,. Denote by F}, for
j =1,...,2Nt the shooting mappings corresponding to all possible neighboring structures
to that of (u#,y"), i.e. each touch point 7; is or not converted into a boundary arc like in
subsection Denote by 9]- the appropriate vector of shooting parameters of (u”,y”) for
F;. Thus we have

F;(0;,p) = 0, forall j =1,...,2N0,

For y in the neighborhood of fi, and all j = 1,...,2"%  we consider the problem:
Find 6 of appropriate dimensions solution of: Fi0,n) = 0. (3.159)

Lemma 3.41. Assume that (Ho)-(H4) hold. Let ji € [0,1] be such that (u”,y") has Ny > 1
(nonessential) touch points 7;, i = 1,..., Ny,. Then there exist an open neighborhood Vu of
fi and open neighborhoods V; of 9], j=1,...,2N0  such that for all j = 1,...,2N° and for
all p € V;u the problem (B:EQ) has in V; a unique solution 9 , and the mappings Vu — Vj,

w— 0, are of class C*.

,] 2
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Proof. By (Hs), the touch points 7; all satisfy (B26]). By (H4) the strong second-order suf-
ficient condition (B4 is satisfied, and hence the Jacobians DyF};(6;, i) are nonsingular, for
all j =1,...,2N%° (by the same arguments as in the proof of Lemma B26). So it follows from
the classical implicit function Theorem that (BI59]) has a locally a unique solution 95 , which
is C! w.r.t. p. O

Under the assumptions of Lemma BZT for y € V, and j = 1,. ., 2Nt denote by y
the state associated with 9“ , i.e. solution of (BX1)- (B:SD]) for the arc structure of Fj. Note
that yj is well-defined on each arc of the trajectory only (not on [0,7]), since some entry

times in 9” may be greater than the corresponding exit times. Let 0” denote the augmented
vector of shootmg parameters obtained from 9“ by adding, for each touch point 7; that was
not converted into a boundary arc in F}, a zero jump parameter for the costate and an entry
and exit time both equal to the unique local maximum of g“(y;-‘ (t)) in the neighborhood of
7;. Thus the augmented vectors of shooting parameters éf have the same dimension for all 7,
which is also the dimension of the shooting mapping F' in (B4 for which all the Ny, touch
points are converted into boundary arcs. For yu = [, we denote the augmented vector of
shooting parameters by 6 = éf , for all 7.

Lemma 3.42. Under the assumptions of Lemma [J.41), there exists an open neighborhood ‘:/u
of [i such that for all j = 1,...,2N  the mapping p — 95 is C over 1:/“, and for all p € 1:/“,
the augmented vector of shooting parameters éf is solution of (BH), iff the two conditions
below are satisfied:

g"yit) < 0, on each arc, (3.160)
Tﬁnyj < Th T for all boundary arcs, (3.161)

where for each boundary arc of Fj, Tenj and szj denote the components of 9;‘ corresponding

respectively to the entry and exit point of the boundary arc.
Proof. In the neighborhood of a touch point 7; that was not converted into a boundary arc
in F}, for all u € V,, the function g“(y;»‘ (1)) is locally well-defined and C2. Therefore, since

51—; g*(y")|t=7, < 0, the function that with 9" (y; 1) associates its (unique) local maximum time
in the nelghborhood of 7; is C', and hence, by Lemma BTl p — é“ is C'. Now denote by
t!, and 1/ respectively the entry time and jump parameter of the boundary arc associated
with the touch point 7; in 0 ,j=1,...,2N. By the arguments of the proof of Lemma .27,
we have that BIGT) is equivalent to yl >0 for all i = 1,..., Ny, and for each i we have
either g“(y (t8,)) = 0 or v} = 0. Therefore (BI60)- (B:IEI]) are equivalent to the condition

p 1
(Hj ) €N (Bj ). The conclusion follows. O

Let ji,j2 € {1,...,2N00} §1 £ jo, and p € ‘:/u' Given a solution 9#1 of BIXT) for j = j1,
let us explain now how to initialize the Newton algorithm in order to find a solution of (EI59)
for j = js. The initial point «951 o 18 obtained from 0;‘1 as follows:

e For every touch point 7; that was converted into a boundary arc in F;; but not in F},,
remove from 9’-11 the shooting parameters associated with this boundary arc;

e For every touch point 7; that was converted into a boundary arc in Fj, but not in Fj,,
add to 9” the three shootlng parameters associated with this boundary arc (v1%, 7%, 7¢,)
as follows v =0, and 77, and 7, are both equal to the unique point of local maximum

of g“(yfl) in the neighborhood of 7;.
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Lemma 3.43. Under the assumptions of Lemma [341}, for all j1,j2 € {1,...,2N0} j1 # jo,
there exists 8j, j, > 0, such that for all p, |u — ji| < 0j, j,, the Newton method to solve the
equation (BIRD) for j = jo is convergent to 6” , whenever the initial point «9” o U8 obtained
from the solution 0“ of BIRI) for j = j1 as e:zplamed above.

Proof. By Lemma BZT] there exists p > 0 such that the Newton algorlthm to solve (BIR9)
for j = jo converges to 0“ for all 1n1t1a1 point 0y satisfying |6y — | < p] ,» and this constant

is uniformly positive, i.e. p > p > 0 for all p in a compact nelghborhood of i B I Let

|\ — fi] < 6j, 4, == min(k ]11, ja Y)p/3, with k; the Lipschitz constant of the mapping u — 0”

(Lemma BA2). Let 0 := 0’“‘ = 9;7”2 and note that we obviously have 9]-17 ip = 0j,. Tt follows then

that |¢9§Ll —0“| < |¢9J1 s —951 ]2|+|§j2 —0;‘2| < |49§L1 —§|+|§—0§-‘2| < %p, from which the result

follows. O

We give now a theoretical proof of correctness of the algorithm.

Proposition 3.44. Assume that (Ho)-(Hz2), (H5) and (H4)-(Hs) hold. Then there exists
0o > 0 such that, whenever pg is close enough to p(0), for all 0 < § < &g the algorithm
follows the homotopy path previously described, and ends with a vector of shooting parameters
0% of adapted dimension associated with a local solution (u',y') of (P') = (P). In addition,

if 0 < 3§ < dg, the steps Auy, are not reduced by the algomthm (z.e. Newton’s algorithm in step
C do not fail).

Proof. By (Hs), there exist finitely many values of p € (0,1), 0 < g1 < ... < [y < 1,
for which the structure of the trajectory (u*,y*) changes. By (H4%), this implies that for all
Jj = 1,...,m, the trajectory associated with fi; has exactly one touch point ftjo Set fig := 0
and fi;,11 := 1. For all j = 0,...,m, denote by F}; the shooting mapping corresponding to
the structure of (ut,y*) for p € (fij, fij+1). We have F; # Fj4q, for all j =0,...,m

Let 7 =0,...,m. For all u € [fi;, fij+1], by (B44]) and Lemma BZT] there exists a constant
pj > 0 (uniform w.r.t. pu, see ®) such that the shooting algorithm (i.e. Newton’s algorithm
to solve F}j(6, 1) = 0) converges to * for all initial point 0y satisfying |6y — 6#| < p;. For all
w1 € [, fij+1], with 6" the solution of the prediction step obtained from 6# by

DyFj (6", p)(0" = 0") + Dy Fy(0%, p) (0" — p) = 0,

it is easy to see that there exists a constant C; H such that 0" — 0| < Cj|p— p')?. Therefore
the convergence of the Newton algorithm to 6* with the initial point 6’ is guaranteed if
w— | < 6= min?’zo(pj/Cj)l/Q. Now let 6 > 0 be the minimum of § defined above, of all
the finitely many constants d;, j, > 0 of Lemma involved at the changes of structure of
the trajectory, and finally of fi;11 — p; > 0, for 7 =0,...,m

Let § € (0,0¢). The proof of the the algorithm is by finite induction on the property below,
for k£ > 0:

(Ar) At each passage in the prediction step (step B), before k is increased, we have pj =
min(kd, 1), mg =0, i = 0 and

8 From the proof of the Newton algorithm, it can be seen that this constant pg‘ depends continuously on
the Lipschitz constant of DgFj(-, 11), on || Do F;(0}, )77 and on the modulus of continuity of DgF;(-, )™ ",
and is therefore a continuous function of p.

% This constant C; depends on ||DgF;(6*, ) 7*||, on the Lipschitz constant of DF; and on the Lipschitz
constant of the mapping u — 6* on [fi;, fi;+1] (Lemma B39).
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— if g € {1 }j=0,...m, O = 0" is the (unique) vector of shooting parameters associ-
ated with (utk, yt*),

— if uy = p; for some j =0,...,m,

* if either & = 0 or the touch point of fi; is either inactive or a (nonessential) touch
point when pu — By s then 6 is the vector of shooting parameters associated
with (u#*, y#*) that does not contain the touch point of fi; as a boundary arc
of zero length;

* if the touch point of fi; is a boundary arc for y — By s then 6y is the vector of
shooting parameters associated with (u#* y#*) that contains the touch point
of fi; as a boundary arc of zero length.

For pg sufficiently close to p(0), the initialization step of the algorithm succeeds in obtaining
the initial vector of shooting parameters (reduced to the initial costate) §° = 60 associated
with the local solution (@, %) of (PY). So (Ag) holds. Assume now that (Ay_;) holds, and let
j €{0,...,m+ 1} be such that

i < Hk—1 < [j41-

We thus go through the prediction step B and then to step C. By (Ak—_1), we try to solve, by
the Newton algorithm, the equation

Fj(0, ux) = 0. (3.162)

By construction of dp, the Newton algorithm succeeds and obtain a solution 6}, of (BI62). So
we go to step D. There are two cases to consider. Either (a) pup < fij41 or (b) pg > fijy1-

In case (a), the structure of the trajectory does not change, so we obtain the vector of
shooting parameters 0}, := 0, = 6/* associated with (u#*,y#*). Therefore mj <0 and iy, = 0,
which shows (Ag).

In case (b), by construction of dg, we have y, € (fij41,fij+2). Therefore 0 is the (locally
unique) solution of

Fjp1(6, ) = 0. (3.163)

By Lemma B2, among all the “augmented vectors of shooting parameters” associated with
one of the (two) possible neighboring structures to (ufs+1 yfi+1) only 0#* satisfies (BI60)-
(BI6T). Therefore we deduce that necessarily, the augmented vector of shooting parameters
f). obtained from 6}, solution of ([BI6Z) does not satisfy either (BI60) or (BIBI), i.e. either
my > 0 or ¢, > 0.

Assume e.g. that my, > 0, i.e. gi (y%#*) has positive values. Using (H2) and Lemma 22,

this can only happen in the neighborhood of the touch point ?goﬂ of fij41,i.e. 7 is close to

7_'5:1. Note that this is possible only if 7_'tj0+1 was not converted in a boundary arc in F. So we
go to step A and add a boundary arc. Here, ji; having a single touch point, there are only two
possible neighboring structures to that of (u#i,y#). Having eliminated F}, it remains only one
possible structure, i.e. with 7_'tj s a boundary arc, which corresponds necessarily to Fjj1.
The shooting parameters associated with this new boundary arc are initialized by (BI28l), and
hence we obtain an augmented vector of shooting parameters ék, that by Lemma B.23] belongs,
by construction of &g, to the neighborhood of ##i+! for which the Newton algorithm solving
[BI63) is convergent to §#k. We thus obtain 0 = 6## which satisfies mj = 0 and i, = 0, and

therefore (Aj) holds.
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The case i, > 0 is dealt with similarly, i.e. if it happens that for a boundary arc, the entry
time is greater than the exit time, this can only happen in the neighborhood of the touch
point 77_50+1 of fij4+1, and this implies that this touch point is converted in a boundary arc in
F;. So we remove in step A this boundary arc, and conclude with the same arguments that
(Ag) holds again. The result follows by finite induction on k, since the algorithms ends for
the smaller integer k& > %. O

Remark 3.45. The process of reduction of Auy is not active if § is small enough, as appears
from Prop. 8.8. However, in practice we do not know what a correct value of Ay is so that
this reduction process is useful.

Of course when initialized with § > Jy it may happen that Newton’s method converges to
a point that does not belong to the continuous path (u*,y*), i.e., it computes another critical
point, say (a#,g*"). If the latter satisfies conditions of Th. BI1l then the algorithm continues
despite the jump to another branch of solutions.

Remark 3.46. We could theoretically give an explicit expression for the constant d¢ that ensures
the convergence in Prop. BZ44l but the latter depends on constants involving, among other,
bounds on the hessian of the shooting mapping that are almost impossible to calculate. In
case of ill-conditioning (Jp is very small), the convergence may be difficult, if not impossible,
to achieve in practice, due to numerical errors.

Remark 3.47. Algorithm B34l and Prop. B4l can be extended to the case when (H3) holds
instead of (H%). If (H%) does not hold, but (H3) do, this means that there exists g € (0,1)
such that (u,y") has Ny, touch points, Ny, > 2. If the structure of the shooting mapping
changes at this point, there are a priori 2™Vt possibilities for the new structure when p — ™.
It is possible to enumerate all of them, i.e. solve (BIRd), for all j = 1,... 2N for > [
close to fi. Lemma ensures that if (BI60)-(BI6T) are satisfied for some j, then we have
found the new structure, and Lemma ensures that (BI60)-(EI6T) will be satisfied for at
least one j.

A possibility that may reduces the enumeration is to use the directional differentiability
of solutions in Th. One can e.g. solve the problem (P;), and whenever the variation
Oqi — 0gi given by ([ET32) is positive (resp. negative), this tells us that the touch point 7/,
have to be converted into boundary arc (resp. removed from the shooting mapping). For
touch points such that o§% — o5 = 0, this gives no information on 7/ so it possibly remains
different possibilities to enumerate.

3.9.4 Numerical Implementation

The convergence of the algorithm presented in the previous subsections is illustrated on the
academic problem below:

1 'LL2
(P) min /0 (# - g(t)y(t)> dt
s.t. yt)=u@), y0)=y@)=0, yit)=h

with
g(t) := go(c — sin(at)), c,a > 0.

The time is introduced as a state variable, and let u = (h — hg)/(h1 — hg) be the homotopy
parameter, with hg = miny(t), for y the solution of the problem without the state constraint,
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and hy = h the desired value of the state constraint. Numerical values of constants are taken
equal to
go := 10, a = 10m, c=0.1, h1 = —0.001.

The algorithm is initialized with the value py = 0, and § = 1/5 to initialize the steps Apuy.
Let us comment Figure where the results of the algorithm are presented. The algorithm
reduces the step Apuy once, in the next to last iteration, since the Newton algorithm was not
converging, meaning here that it was not converging quadratically. Thus the solution was
computed for the values pg = 0, uxp = kd = k/5 for k = 1,...,4, us = 9/10 and ug = 1.
We plotted in dark blue the state y; solution of (P#*) obtained at the exit of the WHILE loop
when my =i =0, for kK =0,...,6. In light blue we plotted the previous iterations, including
the states obtained when mj > 0 at the exit of the WHILE loop (so we can see the algorithm
add a boundary arc at the following iteration when this happens).

For k = 0, we just have the solution of the unconstrained problem. For k = 1, the algorithm
adds a single boundary arc around time ¢ = 0.55. At each iteration k = 2, 3,4, the algorithm
detects that the state constraint is violated so it adds a boundary arc. So for k = 4 we have
ur = 0.8 and four boundary arcs. Then the algorithm tries to pursue the homotopy with
w = 1. It detects that it has to add a boundary arc but Newton algorithm fails. Therefore it
decreases the step and obtained the solution for s (see the figure for k£ = 5) that has a fifth
boundary arc. It then increases p to ug = 1 and obtain the solution of (P) which exhibits five
boundary arcs.

At each passage in the Newton algorithm (step C), the latter converges very rapidly in 2
or 3 iterations (for the tolerance |F (0, ix)|oo < 10719) excepted of course the time it failed
because Apuy was too large, and at the very last passage (which requires 5 iterations).

Finally, let us check that the uniform strict complementarity hypothesis (Hs) is satisfied.
On a boundary arc, [BZ8) gives

up+p1—1n =0 with up = 0,

i.e. p1 = m. Hence, 11 < 3 < 0 on boundary arcs iff p; is (uniformly) decreasing. This is the
case, see the figure bottom right in Fig. on which we plotted p; for the final solution for
ue = 1 (the portions corresponding to boundary arcs are plotted in red). We can also check
similarly that this uniform strict complementarity assumption is satisfied as well for all other
values of ug, k=1,...,5.

3.10 Proof of Theorem [3.4]

We start by the proof of Lemma B, then give that of Lemma B8, and finally that of Th. B4l

Proof of Lemma[ZA. Let 6 > 0. By continuity of the mapping (u, 1) — g*(yi), there exists
0 > 0, such that for n large enough (this is precisely assertion (S1)),

I(g"" (yn)) C Q0 := UYL, . (3.164)

The first assertion of the lemma is a classical consequence of Robinson’s constraint qualification
BID) (see e.g. 24, Prop. 4.43]). By Lemma B2 reducing 4 if necessary, the mapping (B2Z3))
is onto. Since supp(dn,) C I(g" (y,)) C Q° by ([BI64), the second assertion follows from [24]
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Prop. 4.44 and Rem. 4.45(i)], meaning that

(fo t)(dn,, — dn)(t)dt
sup — 0. (3.165)
PEWL.0(0,T), D£0 [®]]1,00 n—+o0

Let p. and n} be the multipliers associated with the stationary point (u,y,) of (P#*) by

B.32)-B.33). By @B.34),

d

G Pn =) = (n =P 9) + 957 @ 9) 0y = 7" + () ae on [0, 7],

with ||7n|lcc — 0 when n — +o00. By Gronwall’s Lemma, there exists a constant C' > 0 such
that

pr(t) = ()] < Cloy (ya(T)) — ¢4 (5 |+C/ 1 (5) = 71" (5)|ds + 00 (1)
< Cllng = 7'l + 000(1),

(3.166)

where 0 (1) denotes a function that goes to zero in L* when n — +oo. Let us show that
nt — it in L. The sequence (dn,)nen+ being bounded in M0, T] by the first assertion (1),
it follows that (n!),en« is bounded in BV, for the norm ||n||gy = |[n|l1 + ||[dn|lm. By the
compactness Theorem in BV [2, Th. 3.23], there exists a subsequence (mlp(n))neN* converging
in L' to some 77 € BV(0,T), and such that dny ) 5 —dij in M[0,T). Tt suffices then to
show that necessarily, —dfj = d7j and 77 = 7' in order to obtain the convergence of the whole
sequence (n))nen+ to 7t in L. So let us do that. The space W1>°(0,T) being dense in
C°[0, T, it follows easily from (BIBH) that dn, — d7, and hence —d7j = d7j. Thus 7 equals 7
up to a constant. Using Fubini’s Theorem and (BI6Hl), we obtain

T

T T T
! = sdny(s) — san(s) = 7 R
/0 nh(t)dt = /0 da(s) an(s) /0 7 (t)dt

n—+oo  Jq
implying finally that 7 = 7, and consequently, that n} — 7! in L'. By (BI66), we deduce

then that p., — p! uniformly over [0, 7).

Finally, for [ju, — ]/« small enough, |(g“”)1(})(un,yn)\ > (/2 >0 on Q°, so by [F3H) we
have on Q°:

H#n 1 H#O = ol
nrlL — (ELT)Lvynvpn) _ ( 17)y » D ) — 771 uniformly on QJ’
(g9 )u” (tns Yn) (g#0)u’ (@, 9)
and n} is piecewise constant on [0, 7]\ ©°, which shows the last assertion. O

Proof of Lemma[Z38. Let (u,y) be a stationary point of (P*) with multipliers (p',n!) given
by B32)-B33). By time derivation of (B35l), we have, using the augmented Hamiltonian

(m?

HY(uyy,ptnt i+ HE, (u,y, pton) £4(uy) — HE (u,y, " 0" £ (u, ) + () (uw,y)nt = 0.

(3.167)
For ||p— o] and ||u—ii||oc small enough, then ||y—7 o is arbitrarily small, as well as ||p! —p' || oo
and ||n' — 7'|s by Lemma Consequently, for (u,u) close enough to (u, pp), we have by
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@20) that ALy (u,y, p',n') > /2 on [0, T). Multiplying @IGD) by (9")% (u, y)/ Hlku(u, y, p', nb),
we obtain that

@ ww? oy gl @y)?
(g") (u, y)it + — — g (W, 9+ =————=—i) (3.168)
Hiu(u,y, pt,nt) Hy(@, g, 1, 171)
uniformly over [0,7]. In view of (BX)-(BH), it follows that
(1) 2 (1)~ 9
(") (0, ) + AT I 1 o) g gy 4 9 BY (3.169)
Hiu(u,y,p* ") Hyu (4, 9,9, 7")

again, uniformly over [0, 7.

Now on every 9, for small enough & > 0, we have by (A5)-(A6), (B27) and E2T)
the existence of a constant k1 > 0 such that either g(z)(ﬁ,ﬂ,gj) < —kp and 7' = 0, or
g?(u,u,7) = 0, |g£1)(ﬂ,gj)| > k1 and ' < —k;. It follows that, for some ko > 0, § small
enough and (u,u) close to (po, @),

1y (1) 2

MY (4, u,y) + —=
(g ) ( 7 7y) ng(%y»Pla??l)

If g"(y(t)) < 0, then 7' (t) = 0, and hence, (g*)® (1, u,y)(t) < —k2/2. But on an interior arc
included in 2, g#(y) would attain its minimum at some point ¢ where (g*)? (a,u,y)(t) > 0,
which gives the desired contradiction. O

Remark 3.48. Tt follows from (BIZ0) that the property of uniform strict complementarity is
stable, in the sense that if the state constraint is active, then 7' remains uniformly far from
zero (uniformly over [0, 7).

Now we are ready to give the proof of Th. B4l

Proof of Th. [3-4 Assertion (S1) is immediate, and (S3) follows directly from Lemma B8 since
there is no interior arc of (u,y) in Q¢. In view of Lemma I8 to complete the proof of (S2),
it remains to show that Q2 N I(g*(y)) is an interval of positive measure, i.e. a boundary arc.
Assume that this is false. Then there exist a stable extension (P*), sequences u,, — @ in L,
fin — 1o, and (up, yp) a stationary point of (P#n), such that for all n, Q2 N1 (g"" (y,)) is either
empty or a singleton by Lemma Taking if necessary a subsequence, this implies that there
exists an interval of positive measure (t1,t2) C [t5",t57], such that (¢1,t2) N I(g"" (y,)) = 0
for all n, and hence, (¢1,t2) Nsupp(dn,) = 0. Let ¢ be a C* function with support in [¢1, t2]
which is positive on (t1,t2). Then we have fOT o(t)dn,(t) = 0, for all n. But by (A5), 7 has

a positive density over (¢1,%2), and hence, fOT (t)dn(t) > 0, which contradicts the second
assertion in Lemma This achieves the proof of assertion (S2). O

Acknowledgement The authors thank an anonymous referee for his remarks that helped
to improve the paper.
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Chapitre 4

Le cas de plusieurs contraintes

Abstract This paper deals with the optimal control problem of an ordinary differential
equation with several pure state constraints, of arbitrary orders, as well as mixed control-
state constraints. We assume (i) the control to be continuous and the strengthened Legendre-
Clebsch condition to hold, and (ii) a linear independence condition of the active constraints
at their respective order to hold. We give a complete analysis of the smoothness and junc-
tion conditions of the control and of the constraints multipliers. This allows us to obtain,
when there are finitely many nontangential junction points, a theory of no-gap second-order
optimality conditions and a characterization of the well-posedness of the shooting algorithm.
These results generalize those obtained in the case of a scalar-valued state constraint and a
scalar-valued control.

Résumé Dans cet article on s’intéresse au probleme de commande optimale d’une équation
différentielle ordinaire avec plusieurs contraintes pures sur ’état, d’ordres quelconques, et
des contraintes mixtes sur la commande et sur I’état. On suppose que (i) la commande est
continue et la condition forte de Legendre-Clebsch satisfaite, et (ii) une condition d’indépen-
dance linéaire des contraintes actives est satisfaite. Des résultats de régularité des solutions
et multiplicateurs et des conditions de jonction sont donnés. Lorsqu’il y a un nombre fini
de points de jonction, on obtient des conditions d’optimalité du second ordre nécessaires ou
suffisantes, ainsi qu’une caractérisation du caractére bien posé de l'algorithme de tir. Ces
résultats généralisent les résultats obtenus dans le cas d’une contrainte sur I’état et d’une
commande scalaires.

4.1 Introduction

This paper deals with optimal control problems with a vector-valued state constraint. Mixed
control-state constraints (state constraints of order zero) are included in the analysis. It
is assumed that the control is continuous and the strengthened Legendre-Clebsch condition
holds, and that each component of the state constraint is of arbitrary (but finite) order g;.
Second-order optimality conditions for state-constrained optimal control problems were
recently studied in [80, 112, IT3), 20]. The presence of pure state constraints introduces an
additional curvature term in the second-order necessary condition, in contrast with mixed

*Joint work with J.F. Bonnans. Accepted for publication in Annales de I'Institut Henri Poincaré (C) Analyse
Non Linéaire, under the title Second-order analysis for optimal control problems with pure state constraints and
mized control-state constraints.
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control-state constraints, see [I08, [[05]. An analysis of the junction conditions may help
to narrow the gap with the second-order sufficient condition. There are, to our knowledge,
relatively few papers dealing with optimal control problems with several state constraints
of order greater than one. One of them is an unpublished paper by Maurer [98]. In e.g.
[65, 88, B3, B4, 03, O5], several constraints of first-order were considered, but when dealing
with constraints of higher order, then often only one constraint (and sometimes also a scalar
control) is considered, see e.g. [0l 68, 94]. When there are several constraints of different
orders, and more control variables than active constraints, then even the regularity of the
control and of the state constraint multipliers on the interior of the arcs of the trajectory is
not an obvious question. In [08, Lemma 4.1], it is shown that the control u is C'%™e* (where
Gmaz 18 the bigger order of the active constraints), under the assumption that there are as
many active state constraints as control variables. In [98, Th. 4.2], it is shown that the state
constraints multipliers are smooth on the interior of arcs, but with the extra assumption that
the control u is C'9mex,

The motivation of this paper is to extend the no-gap second-order optimality conditions
and the characterization of the well-posedness of the shooting algorithm, obtained in [I8], 2]
and [I9], respectively, for an optimal control problem with a scalar-valued state constraint
and control, to the case of a vector-valued state constraint and control. The critical step is
the extension of the junctions conditions obtained in the scalar case (i.e., with a scalar-valued
state constraint and control) by Jacobson, Lele and Speyer [[75]. This result says that some
of the time derivatives of the control are continuous at a junction point until an order that
depend on the order of the (scalar) state constraint, and on the nature of the junction point
(entry/exit of boundary arcs versus touch points). This result has an important role when
deriving the second-order necessary condition, since, with this regularity result and under
suitable assumptions, it can be shown that boundary arcs have typically no contribution to
the curvature term. This enables to derive a second-order sufficient condition as close as
possible to the necessary one (no-gap), and to obtain a characterization of the well-posedness
of the shooting algorithm. We show in particular that the shooting algorithm is ill-posed if a
component of the state constraint of order ¢; > 3 has a boundary arc.

In this paper, the focus is on the proofs that are not directly obtained from the scalar
case, and in particular the (nontrivial) extension of the junction condition result of [[75]. Our
main assumption is the simplest one that the gradients w.r.t. the control variable of the time
derivatives of the active constraints at their respective order are linearly independent. This
enables to write locally the system under a “normal form”, where the dynamics corresponding
to the state constraints is linearized, and the different components of the constraints are
decoupled.

The paper is organized as follows. In section B2, we present the problem, notation,
basic definitions and assumptions. In section B3, we give sufficient conditions implying the
continuity of the control, and we show local higher regularity of the control and constraints
multipliers on the interior of arcs. In section B4, we give some technical lemmas needed to
put the system under a “normal form”. This will be used in section EEQ, where we give the
junction conditions results. In section EEGl, the no-gap second-order optimality conditions is
stated. In section 7, we recall the shooting formulation and state a characterization of the
well-posedness of the shooting algorithm, under the additional assumption that the junction
times of the different components of the state constraint do not coincide.
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4.2 Framework

Let n,m,r, s be positive integers. If » and/or s is equal to zero, then the statements of this
paper remain correct if the corresponding terms are removed. Denote by U := L>°(0,T;R™)
(resp. YV := W1H*(0,T;R™)) the control (resp. state) space. We consider the following optimal
control problem:

T
@ min [ )0+ o) (a.1)
subject to y(t) = f(u(t),y(t)) fora.a. te[0,T]; y(0)=yo (4.2)
gi(y(t)) <0 forallte[0,T], i=1,...,r (4.3)
ci(u(t),y(t)) <0 fora.a.te[0,T], i=r+1,...,r+s. (4.4)

The data of the problem are the distributed cost £ : R™ x R™ — R, final cost ¢ : R" — R,
dynamics f : R™ xR"” — R"”, pure state constraint g : R — R", mixed control-state constraint
c: R™ xR" — R* (fixed) final time 7" > 0, and (fixed) initial condition yo € R™. We make
the following assumptions on the data:

(A0) The mappings ¢, ¢, f, g and c are (at least) of class C'? with locally Lipschitz continuous
second-order derivatives, and the dynamics f is Lipschitz continuous.

(A1) The initial condition satisfies g;(yp) < 0 for all i =1,...,r.

Throughout the paper it is assumed that assumption (A0) holds.

Notations The space of row vectors is denoted by R™. We denote by AT the adjoint
operator of a linear operator A or the transpose operator in R™*™. Given a measurable
set Z C (0,T), we denote by L*(Z) the Lebesgue space of measurable functions such that
lulls == (fI|u(t)|5dt)1/s (resp. ||ulloo = supess;ez |u(t)]) for 1 < s < +oo (resp. s = 400) is
finite. Given an open set Z C (0,T), k € N* and 1 < s < 400, the space W**(Z) denotes the
Sobolev space of functions having their weak derivatives until order k in L*(Z). The standard
norm of W** is denoted by || - ||x.s. We say that a function is nonpositive, if it takes values in
R_.

The Banach space of vector-valued continuous functions is denoted by C([0,7];R") and
supplied with the product norm ||z := >7;_; [|Zillcc. The space of vector-valued Radon
measures, dual space to C([0,T]; R"), is denoted by M([0,T]; R"™*) and identified with vector-
valued functions of bounded variation (BV') vanishing at 7. The duality product between
C([0,T];R") and M([0,T];R"™) is denoted by (n,z) => fOT x;dn;. The cones of nonposi-
tive continuous functions and nonnegative Radon measures over [0, 7] are denoted respectively
by K := C_([0,T];R") and M ([0,T];R"™).

The dual space to L>°(0,7), denoted by (L>°)*(0,T'), is the space of finitely additive
set functions (see [B8, p.258]) letting invariant the sets of zero Lebesgue’s measure. The
duality product over (L°°)* and L* is denoted by (A, x), and when A € L, we have (\,z) =
fOT A(t)z(t)dt. The set of vector-valued essentially bounded functions L*°(0,T; R?) is supplied
with the product topology. The set of essentially bounded functions with value in R® almost
everywhere is denoted by K := L>°(0,T;R®), and the set of elements A in (L*°)*(0, T;R*) such
that (X, ) is nonpositive for all x € L>(0,T;R?) is denoted by (L>)% (0,T;R?).

We denote by By the unit (open) ball of the Banach space X. By cl.S, int S and 95 we
denote respectively the closure, interior and boundary of the set S. The cardinal of a finite
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set J is denoted by |J|. The restriction of a function ¢ defined over [0,7] to a set A C [0, T]
is denoted by ¢|4. The indicator function of a set A is denoted by 1 4. Given a Banach space
X and A C X* the dual space to X, we denote by A+ the space of € X such that (& x)=0
for all £ € A. If A is a singleton, then ¢+ := {¢}+. The left and right limits of a function of
bounded variation ¢ over [0, 7] are denoted by ¢(7%) := lim,_,,+ () and jumps are denoted
by [p(7)] := @(7F) — p(77). Fréchet derivatives of f, g;, etc. w.r.t. arguments u € R™,
y € R", etc. are denoted by a subscript, for instance f,(u,y) = Dy f(u,y), 9iy(y) = Dygi(y).
An exception to this rule is that given u € U, we denote by y, the (unique) solution in ) of
the state equation (E2).

Abstract formulation We denote by J : U — R, G : U — C([0,T;R") and G : U —
L*>°(0,7;R®) the cost function J(u) := fOT O(u(t), yy(t))dt + ¢(yu(T)) and the constraints
mappings defined by G(u) := ¢g(y,) and G(u) := ¢(u, y,). Recall that the constraints cones are
defined by K = C_([0,T];R") and K = L*°(0,T;R?®). The abstract formulation of (P) (used
in section and in the Appendix) is the following:

(P) II1€1151 J(u), subject to G(u) € K, G(u) € K. (4.5)

The choice of the functional space for the pure state constraints (here, the space of continuous
functions) is discussed later in Remark EZ1

A trajectory (u,y) is an element of U x ) satisfying the state equation (E2)). A feasible
trajectory is one that satisfies the constraints (E3]) and ([4]). We say that a feasible trajectory
(u,y) = (u,yy) is a local solution (weak minimum) of (P), if it minimizes (EJI) over the set of
feasible trajectories (a,y) satisfying ||@ — ul|oo < 6, for some 6 > 0.

4.2.1 Constraint qualification condition
Given a measurable (nonpositive) function x, we denote the contact set by
A(z) = {t€]0,T] : z(t) =0} (4.6)
and, for n € N*,
An(z) = {te[0,T] : a(t) > _%}. (4.7)

Given a feasible trajectory (u,y), define the sets of active state constraints and active mized
constraints at a.a. time t € [0, 7] respectively by:

i) = {ie{l,...,r} : gi(y(t)) =0} (4.8)
Ity = {ie{r+1,...;r+s} : teAlc(u,y))}, (4.9)

and let
I(t) = I9(t) U I(t). (4.10)

An arc of the trajectory (u,y) is a maximal open interval of positive measure I = (71, 72), such
that I(t) is constant, for all t € (11, 72).

For ¢ > 0, n € N* and a.a. t € [0,T], define the set of nearly active state constraints and
nearly active mized constraints respectively by:

19(t) = U{I(0); 0€(t—et+e)n[0,T]} (4.11)
I() = {ie{r+1,....r+s} 1 teAn(ciluy)} (4.12)
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and the set of nearly active constraints by

I, (t) == I2(t) UI(1). (4.13)

The contact sets of the constraints are denoted by
A = Agi(y)) fori=1,...,n (4.14)
A = Aci(u,y)) fori=r+1,...,7+s (4.15)

and, for 6 > 0 and n € N*,

A = {te(0,T) : dist{t, A(g:(y))} < 0}, i=1,...,r (4.16)
AT = Ay(ei(u,y)), i=r+1,...,r+s. (4.17)
Orders of the state constraints Leti=1,.. T If f and g; are C'% mappings, we may

define inductively the functions R™ x R™ — R, ggj)(u,y) = gz-(f;l)(y)f(u,y) for j=1,...,q,

©)
(u7y) e R™ x R"™. Then (?Tjjgi(y(t)) = gz-(j)(u(t),y(t)), and for all j < ¢;, we have that
ggj )(u, y) = gi(] )(y) Let ¢; be the smallest number of derivations, so that a dependence w.r.t.

u appears, i.e. such that g,(‘Yi)

;v is not identically zero over R™ x R™ (this intrinsic definition of
the order does not depend on a given trajectory (u,y) € U x Y nor on the time). If ¢; is finite,
we say that ¢; is the order of the component g;. If ¢; is finite, for all i, we define the highest
order gmaq = max,_, g;, and the orders vector q :== (q1,...,qr) € N" is the vector of orders of

the constraint g = (g1,...,¢9,). In all the paper, it is assumed in addition to (A0) that

with g/ := g¢;, if we have 92(]12 =0foral j=0,...,¢—1,Iie. gz(iz(u,y) = 0 for all

(A0,) Each component of the state constraint g;, ¢ = 1,...,r, is of finite order ¢;, and f and
g are (at least) C'9maz+t1,

Remark 4.1. When performing the analysis in the L*-vicinity of a given trajectory (u,y) €
U x Y, it is sufficient, for the results of this paper, to restrict the variable y € R™ in the
above definition of the mappings gi(] ) and of the order q; to an open neighborhood in R" of
{y(t) ; t € A;} for each i = 1,...,r. Likewise, the order of the constraint ¢; needs only to
be defined in the neighborhood of each connected component of the contact set A; and may

differ over two distinct connected components.

Note that when the state constraint g; is of order ¢;, relations such as
. - -
9 uy) = g0, W) (uy) + 97 W) fy (), (4.18)
are satisfied, for all j = 1,...,q;. This will be useful in some of the proofs.
We assume w.l.o.g. in this paper that u — ¢;,(u,y) is not identically zero, for all i =
r+1,...,7+ s, since otherwise ¢;(u,y) is a pure state constraint. We may interpret mixed
control-state constraints as state constraint of order zero, setting

¢i == 0 and ggo)(u,y) = ¢(u,y), foralli=r+1,...,7r+s. (4.19)
Given a subset J C {1,...,r + s}, say J = {i1 < -+ < iy}, define the mapping GS,Q) :
R™ x R" — RI/I by:

0" (u, y)

Gf]q) (u,y) :== : , for all (u,y) € R™ x R™. (4.20)

ggfi’“ (1, y)
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By (EI), mixed control-state constraints are taken into account in this definition. When
J={1,...,r + s}, we denote just (E20) by G (u,y).

The controllability lemma For € [1,+00], let
V. = L0, T;R™), Z,. = WbH(0,T;R"). (4.21)

Given a trajectory (u,y) and v € V,, we denote by z, the (unique) solution in Z, of the
linearized state equation

2(t) = fulu(t),y(t))o(t) + fy(ut), y(t)z(t) ae. on[0,T], 2(0)=0. (4.22)

Lemma 4.2. Let (u,y) be a trajectory, and let k € [1,400]|. Forallv € V, and alli =1,...,r,
we have that g; (y(-))zy(-) € W35 (0,T) and:

%(gi,y(y(t))zv(t)) = gg)(y(t))zv(t), forallj=1,...,q;—1, (4.23)
%@w@(t))%('fﬂ = g% (u(t), y(©)o(t) + g% (u(t), y ()20 (2). (4.24)

Proof. Tt suffices to use the linearized state equation (E22), the relation (IH]), and that
ggy_l)fu = 92(]12 =0forall j=1,...,¢; — 1 to obtain ([E23))-([@24]) by induction on j. O

Consider the following constraint qualification condition:

there exist v, > 0 and n € N* such that

(4.25)

vlg] < |Gl

Ign(t),u(u(t)vy(t))T£ , for all & € RIen®l and a.a. t € [0, 7).

Lemma 4.3. Let (u,y) be a trajectory satisfying (A1) and ([E2H). Then for all k € [1,+o0]
and all § € (0,¢), where € is given in (E20), the linear mapping

Vi = [lim Won(A?) x H::fﬂ LF(AY)
(GaD=Olag), (4.26)

T\ (@) ()00 + iy OO 2O a0), i

where z, is the unique solution in Zy, of the linearized state equation ([E22), is onto, and hence
has a bounded right inverse by the open mapping Theorem.

Recall that ¢|7 denotes the restriction of the function ¢ to the set Z C [0, 7.

Proof. Let ¥ = (¥i)1<i<rts € [[1—g WEF(A?) x H:ifﬂ L%(A?). In order to have v¢; =
Giy(y)zy on Af for all = 1,...,r, it is necessary and sufficient by Lemma that, a.e. on
A?

77

98 (wy)o + g% (w )z, = (4.27)

and that, for every point 7 in the left boundary of Af (note that there exist finitely many
such points),

0 y()z(r) = vP(r),  forall j=0,...,¢ L. (4.28)
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The relation (EZ17) with ¢; = 0, gi(o) = ¢; and wi(o) := 1); must be satisfied as well a.e. on A?
foralli=r+1,...,7+s. Set M(t) := ng)n(t) L(u(t),y(t)). By @ZH), the matrix M (t)M(t)"

is invertible at a.a. t, so we may take a.e., if I ,,(t) # 0 (take v(t) = 0 if I ,,(t) = 0):

o) = M) T (MOMGT) Het) = G (ut), y(5)z0(8)}, (4.29)

where z, is the solution of (H22) with v given by (E29l), and the right-hand side ¢ =
(¢iier. .(t) 18 as follows. We have ¢;(t) = ¢;(t) if i = r+1,...,7 + s and t € A}, and
wi(t) = w§Qi)(t) if i =1,...,r and t € AJ. On A%\ A, ¢; can be chosen equal e.g. to a
polynomial function of order 2¢; — 1, in order to match, in arbitrary small time € — § > 0, the
first ¢; — 1 time derivatives of g;,(y)z, with those of v, i.e. so that ([E28) holds for all left
endpoints 7 of Af. O

If the control u is continuous (see Prop. EL8 and assumption (A2)), (21 is always satisfied
if the linear independence condition below holds:

there exists v > 0 such that

4.30
vI€] < Ggq(z)u(u(t),y(t))Tf , forall ¢ e RO and a.a. t € (0,77, (4.30)

ie. Ggq(i)ﬁu (u(t),y(t)) is uniformly onto, for all ¢ € [0, 7. This assumption (without the mixed
control-state constraints) was already used in [98].
For J ={i1 <---<ixg} C{r+1,...,r+ s}, let us denote
CJ(U, y) = (Cil ('LL, y)7 vy cik (U, y))T
We will also use in Proposition the constraint qualification (EE3I) below, weaker than
(EZ3), involving only the mixed control-state constraints:

there exist n € N* and ~ > 0 such that

4.31
€] < ]clrcl(tm(u(t),y(t))Tﬂ for all £ € RO and a.a. t € [0,T]. (4.31)

Remark 4.4. There are two possible natural choices for the functional space of the pure state
constraints: either the space of continuous functions C° := C([0, T]; R"™), or the space W% :=
[T;_; W%>°(0,T), where ¢; denotes the order of the i-th component of the constraint, in which
the constraint is “onto” by Lemma Considering the state constraints in C° instead of
W we have multipliers in M([0, T]; R™) rather than in the dual space of W%>°. Existence
of multipliers in M([0,T];R™) is ensured under natural hypotheses (see below). Moreover,
since the inclusion of W% in C? is dense and continuous, by surjectivity of the constraint in
W% we obtain that the multipliers associated in both formulations are one to one, and we
inherit nice properties such as uniqueness of the multiplier in M ([0, T]; R"™).

4.2.2 First-order Optimality Condition

Define the classical Hamiltonian and Lagrangian functions of (P), H : R™ x R" x R™ — R
and L : U x M([0,T];R™) x (L*=)*(0,T;R**) — R by:

H(u,y,p) = £u,y)+pf(uy) (4.32)
L(u;n, A) = J(u) + (n,G(u)) + (A, G(u)), (4.33)
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for the duality products in the appropriate spaces.
Robinson’s constraint qualification for the abstract problem (EH) is as follows:

de >0, eBoxre C (G(u),G(u)) + (DG(u), DG(u))U — K x K. (4.34)

It is easy to see that under the assumptions of Lemma B3, (B34 holds. Some elements of
proof of the next theorem are recalled in the Appendix (subsection FE92)). The existence and
uniqueness of the multipliers are a consequence of Lemma,

Theorem 4.5. Let (u,y) € U x Y be a a local solution of (P), satisfying (A1), (E3d) and
&31). Then there exist p € BV ([0,T];R™), n € M([0,T];R™) and X\ € L*>(0,T;R**) such
that

yt) = f(u),yt)) foraa t€[0,T];  y(0)=yo (4.35)
—dp(t) = {Hy(u(t),y(t),p(t)) + A(t)ey(u(t),y(t))dt + dn(t)gy(y(t)) (4.36)
p(TF) = ¢,(y(T)) (4.37)

0 = Hy(u(t),y(t),p(t)) + (u(t),y(t)) for a.a. t €[0,T] (4.38)

o
v

At)ey(u
T
gi(y(t)), dm; >0, /0 gi(y(t))dn;(t) = 0, i=1,...,r (4.39)
T
0 > ci(u(t),yt), XN({)>0 ae., / ci(u(t),y(t))\(t)dt = 0, (4.40)
0
t=r4+1,...,7+ s.
We say that (u,y) is a stationary point of (P), if there exist p € BV([0,T];R™), n €
M([0,T];R™) and A € L*°(0,T;R**) such that (E33)-EZ) hold.
When the Hamiltonian and the mixed control-state constraints are convex w.r.t. the

control variable (and in particular when assumption (EZ4]) below holds), then (E38) and
Q) are equivalent to

u(t) € argmin H(w,y(t),p(t)) for a.a. t € [0, 7). (4.41)
weR™, c(w,y(t))<0

Here A(t) is the multiplier associated with the constraint (in R™) c(w,y(t)) < 0. We thus

recover in this particular case Pontryagin’s Minimum Principle, see [B57, B0, T04].

Assumptions Let the augmented Hamiltonian of order zero H? : R™ x R™ x R™ x R** — R
be defined by
H'(u,y,p,\) = H(u,y,p) +Ac(u,y). (4.42)

Given (u,y) a stationary point of (P), we will make the assumptions below:
(A2) The control u is continuous on [0,T], and (strengthened Legendre-Clebsch condition)

there exists @ > 0 such that for all ¢ € [0, 7],

alv* < HY,(u(t),y(t), p(t), A1) (v, v) for all v € R™. (4.43)

(A3) The data of the problem are (at least) C'?¢maz and the linear independence condition

([E30) is satisfied.
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Remark 4.6. The only condition (EZ3]) is not enough to ensure the continuity of the control,
as shows the following example:

2
min / {u®)’ = 2u(t)* + (y(t) — Du()}dt, §) =1, y(0) =0,
ueL>(0,T) Jo

where the minimizer v jumps from the minimum close to 1 for t = y(¢) < 1 to the minimum
close to —1 for ¢t = y(¢) > 1, although (E43]) holds.

We will see in Prop. that if (u,y) is a stationary point such that the Hamiltonian
H(-,y(t),p(t)) is uniformly strongly convex and the mixed control-state constraints are convex
w.r.t. the control along the trajectory, which is equivalent to the condition below (stronger

than (EZ3))

there exists a > 0 such that for all ¢ € [0,7] and all (u, 5\) € R™ x R¥,

A (4.44)
alol? < H, (i, y(0),p(t), D(v,v)  for all v € R™,

and if (EE3T) holds, then w is continuous on [0, T]. Therefore (E44]) and (E31)) imply that (A2)
holds.

Remark 4.7. In some of the results of section and L0, assumption [@Z3) in (A2) can be
weakened by assuming the uniform positivity of HY, only on a subspace of R™ depending on
the active constraints, namely

there exists a > 0 such that for a.a. t € [0, 77,
alv]? < HY,(u(t),y(t), p(t), \(t))(v,v) for all v € R™ satisfying (4.45)
gi(zj)(u(t),y(t))v =0 foralli=1,...,r+ s such that t € int A;.

4.3 First regularity results

In the scalar case (when both the state constraint g(y) and the control are scalar-valued, i.e.
m = r = 1), and when there is no constraint on the control, the regularity of the control on
the interior of arcs follows from the implicit function Theorem, applied by (A2) to the relation
H,(u(t),y(t),p(t)) = 0 on the interior of unconstrained arcs (when g(y(t)) < 0), and by (A3)
to ¢'@ (u(t),y(t)) = 0 on the interior of boundary arcs (when g(y(t)) = 0). Knowing that
u (and y) are smooth on boundary arcs, we can then differentiate w.r.t. ¢ (in the measure
sense) the relation H,,(u(t),y(t),p(t)) on boundary arcs, as many times as necessary, until we
express, using (A3), the measure dn as ng(t)dt, with 7o (t) a smooth function of (u(t), y(t), p(t)).
Therefore we obtain that the state constraint multiplier 7 is continuously differentiable on the
interior of boundary arcs.

Maurer in [98] extended this approach to the particular case when » =m (and s = 0) (as
many control as active state constraints), but this proof has no direct extension to the case
1<r<m.

In subsection EE3], we show that assumptions (EE44]) and (B3T) imply the continuity of
the control over [0,7] (Prop. EX), and therefore also (A2) (no constraint regularity for the
state constraint is needed). Moreover, (A2)-(A3) imply that the multipliers associated with
mixed control-state constraints and with state constraints of first-order are continuous. In
subsection we show higher regularity of the control and of the constraints multipliers
on the interior of the arcs of the trajectory (Prop. EEI3)). Our proof is based on the use of
alternative multipliers (Def. EEI0).



132 CHAPITRE 4. LE CAS DE PLUSIEURS CONTRAINTES

4.3.1 Continuity of the control

Proposition 4.8. Let (u,y) be a stationary point of (P).

(i) Assume that ([EZD) and E3T) hold. Then the control u is continuous on [0,T].

(i1) Assume that (A2) and [E3Q) hold. Then the multiplier A associated with the mized control-
state constraints and the multipliers n; associated with components g; of the state constraint
of first order (¢; = 1) are continuous on [0,T].

In the absence of constraints of order greater than one, point (ii) is well-known, see e.g.
[65], 6F].

Proof of Prop. [f.8 Assumption (E24)) implies that for each ¢ € [0, T, the problem (EZTl) has
a strongly convex cost function and convex constraints, therefore the control u(t) is the unique
solution of ([EZ]). In view of (E3T), A(t) is the unique associated multiplier. By (E31]) and
([EZ41), classical results on stability analysis in nonlinear programming (e.g. an easy application
of Robinson’s strong regularity theory [121], see also [{6]) show that there exists a Lipschitz
continuous function Y : R™ x R™ — R™ x R** such that (u(t), A(t)) = Y(y(t),p(t)), for a.a.
t € [0, T]. Since the composition of a Lipschitz continuous function with a function of bounded
variation is a function of bounded variation, it follows that w and A are of bounded variation,
and hence have a right- and a left limit everywhere.

Fix t € [0,7]. We sometimes omit the time argument t. Denote respectively by u™
and u~ the right- and left limits of u at time ¢. Set [u] := ut — v~ and for o € [0,1],
u’ :=ou’ + (1 —o)u~. We use similar notations for A and p. By the costate equation (EE30l),
p has at most countably many jumps, of type

pl=p"—p~ =— Z vigiy(y(t)),  with v; := [n;(t)] > 0. (4.46)

Recall that HY denotes the augmented Hamiltonian of order zero (BEZ2)). It follows from (EZ3R)
that

0 - Hg(u+7y7p+7)‘+)_HS(U_7y7p_7)‘_)
1
- /0 (HO, (4 5,07, )l + ) fa (0 1) + Wew(u®, ) }do

Using (B46]) and observing that, by definition of the order of the state constraint, g; , fi, = ggl)

R
equals zero if ¢; > 1, we obtain that

1 1
/OHS u,y,p7, A7)[u] / S gl y da—/o[/\]cu(ug,y)da (4.47)

1:q;=1

Noticing that HO, (u%,y,p°,\?) = ¢ HY, (v, y,pt, A*) + (1 — o)HY,(u”,y,p~, A7) and taking
the scalar product of both sides of (EZZT) by [u], we get using hypothesis (E44]) that

All> < vilg! (u, )] — Nle(u, y)l. (4.48)
1:q;=1

If v; > 0, then g;(y(t)) = 0, and hence [g(l)(u,y)] < 0 since t is a local maximum of g;(y).

7

By [@A0), A\*(t) belongs to the normal cone to R® at point c(u®(t),y(t)). By monotonicity
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of the normal cone, we obtain that [A][c(u,y)] > 0. Therefore, the right-hand side in (E4F]) is
nonpositive, implying that [u] = 0, i.e. u is continuous at ¢. This shows (i).

Since [u] = 0, the right-hand side of (EZD) equals zero. By (E3M), the vectors (gz(lu) (u,y))
fori e 19(t)N{i: ¢; = 1} and ¢; (u,y) for i € I¢(t) are jointly linearly independent. It follows
that [A\] = 0 and v; = 0, for all i corresponding to first-order state-constraint components.
This achieves the proof of (ii). O

Remark 4.9. For point (i) in Prop. KSR it is sufficient to have the linear independence
condition (E30) for mixed control-state constraints and first-order components of the state
constraint only.

4.3.2 Higher Regularity on interior of arcs

We recall that an arc of the trajectory (u,y) is a maximal open interval of positive measure
with a constant set of active constraints (EEI0), and that mixed control-state constraints are
considered as state constraint of order zero by (EE19).

Definition 4.10. Let (u,y) be a stationary point of (P), and (71,72) an arc of the trajectory,
with constant set of active constraints I(t) = J C {l,...,r + s}, for all t € (71,72). The
alternative multipliers on (71, 72) are as follows. Define the functions ! for i = 1,...,r +s
and j=1,...,q; ifi<r,j=0if i > r, by

W) =~ [dno)=Cst—m(o), i€t i<

ng(t) = _/Wg_l(a)dg j:27"’7Qi7 (&S J7 t<r (449)
ng(t) = 0, j=1,....q;, i€{l,....,r}\ J

W) = \t), ved, i>r

We denote here by C'st an arbitrary integration constant. The alternative multipliers (p?,n?)
are defined by n? := (77(1]1, 77731?;5) and

TG
. -
ORI OES S SUAGY I TO) (4.50)
i=1 j=1
The alternative Hamiltonian of order ¢ H? : R™ x R x R™ x R'T$)* _ R is defined by:

r+s

H(u,y,p%,0%) = H(u,y,p?) + 107G (u,y) = H(u,y,p") + >0\ (w,y),  (451)
i=1

with H the classical Hamiltonian (E32)).

Lemma 4.11. Let (u,y) be a stationary point of (P), with multipliers (p,n,\). Then on
the interior of each arc (11,72) of the trajectory, with a constant set of active constraints
Ity =J Cc {1,...,7 + s} on (11,72), the following holds, with the alternative multipliers of
Def. 10, for allt € (11,72): pq is absolutely continuous on (11, T2) and

—p1(t) = Hyj(u(t),y(t),p? (), n’ (1)), (4.52)

HO(,y(t),p(t),17(t)) = H°(,y(t),p(t), A1), (4.53)
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and for alli=1,...,7r+s:

a (), y(t) = 0, ieJ (4.54)
ngi(t) = 0, i¢J. (4.55)

Remark 4.12. An obvious consequence of (EER3) is that u minimizes HO(-, y(t), p(t), A()) iff it
minimizes H9(-,y(t),p?(t),n%(t)), and in particular, by (E38]), a stationary point satisfies

0 = Hj(u®),y(t),p?(t),n°(t)). (4.56)

Proof. For the sake of completeness of the paper, let us recall the proof, due to Maurer in [9§]
when there are no mixed control-state constraints. Relation (EEB4)) follows from differentiation
w.r.t. t € (11, 72) of the relation g;(y(t)) =0, for i € J, i < r and (EhA) follows from definition

(EZ9)). By definition of the constraint order g;, the function g(] )(u, y) does not depend on u,
forall j=1,...,¢; —1and i =1,...,r, and hence, for all & € R, we have:

H(i,y,p,A) = Ho(ﬂvy,pq,A)+(p—pq)f(ﬂ7y') |
= Ho(ﬂv yqu7 )‘) + Z:;:l 32:1 7739@(])(@7 y)
= HI(a,y,p?,n?) + F(t),

where
r qi—1

_ Z Z mj(t)g(J)
i=1 j=1
does not depend on @. For all ¢ = 1,...,r, if i € J, then g(j)(y(t)) =0, and if i ¢ J, then

7

77{ (t) =0 by [EZJ). Consequently, F(t) = 0, which proves (EEhH3]).
We show now [5Z). Using (LE0) and that 7] = —772]-_1, for j =2,...,q, ¢ <r, we have:

= e Y = S dngat) 0

=1 j=1
Since
T r+s
—dp = Hy(u,y,p")dt + (p — p?) f,(w,p)dt + > dnigiyy(y) + > Niciy(u, y)dt
i=1 i=r+1
substituting p — p? into (EER1) using (L), we obtain:
r+s
0
—dp? = Hy(u,y,p)dt + > 10gl) (u,y)dt
i=r+1
+ Z{Z 772 gz,y fy(u v) +g§?yy 277 gzy y)ydt.
=1 j=1
Using ([EI8), it follows that
r+s
—dp? = Hy(u,y,p")dt + > 1 gl (u,y)dt,
=1

which shows (202 and achieves the proof. O



4.4. LOCAL EXACT LINEARIZATION OF THE “CONSTRAINT DYNAMICS” 135

Proposition 4.13. Assume that the data are (at least) C?Imae=. Let (u,y) be a stationary
point of (P), with multipliers (p,n,\), and let (11,72) C [0,T] be such that I1(t) is constant on
(11,72), u is continuous on (11,72), and EZD) and E3Q) are satisfied on (11,72). Then on
(11, 72), u is CImaz g js C9mactl 5y js C1 X\ is CImaz qnd the state constraint multiplier 1; is
Clmac=@Gi+l for all i =1,...,r.

Proof. Denote by J C {1,...,7+ s} the constant set of active constraints I(t) for ¢t € (71, 72).
The Jacobian w.r.t. uwand (7)), of the equations (EE58]) and (EER4)), the latter being rewritten

as G((]q) (u(t),y(t)) =0, is given by

Huu(uv Y,p ) + Zzé] 772 gz uu(u y) Gfﬁi(u, y)T . (458)
G (u, ) 0

By @33),

Hoo(u,y,0%) + 0 g% (w,y) = HE, (u,y,p%,0%) = HO,(u,y,p, \)
e

is positive definite on Ker Gfﬁi(u,y) by (Z3), and by (E30), foi(u,y) is onto. Since by
assumption u is continuous, by (E30) and (ERH), we deduce that (n");c is also continuous.
Thus we can apply the implicit function Theorem to express u and (n]*);c; as C%me= implicit
functions of (y, p?). Since (y, p?) is solution of a C%me=~1 differential equation system (BZ2)) and
[ERZ), we deduce that (y,p?,u,nl), i € J, are C%e= on (11,72). By (EBH), the components
ni for i ¢ J being equal to zero on (71,72) are also trivially C%me= on (71,72). Finally,
recall that the classical multipliers 7; and p are related to the alternative ones by (EZd), i.e.
ni(t) = (— 1)‘71 ;:;:1 n¥(t), and @H0). It follows that each component 7; is Cmez—4¢t1 for
i <7, A =nis Clmee foralli=r+1,...,7+s, and p is C'!, locally on (71, 72). O

4.4 Local exact linearization of the “constraint dynamics”

We first give in subsection EEZ] a result of “local invariance” of stationary points by a local
change of coordinates and nonlinear feedback (Lemma EZTH). We use this result in subsection
to show that, assuming (A3) and the continuity of w, we can locally “linearize the
constraints dynamics” (Lemma EZT9), and we will use this “normal form” of the system in the
proof of the junctions conditions results in Prop. For that, a technical lemma (Lemma
ELTT) given in subsection is needed, which will also be used in the proofs of Prop.
and Th.

4.4.1 Local invariance of stationary points by change of coordinates

Definition 4.14. Let (u,y) be a trajectory, and to € (0,7). A couple of mappings (¢,1)) is a
C* local change of state variables and nonlinear feedback at time to, k > 1, if there exist § > 0
and an open neighborhood V,, x V;, in R™ x R™ of {(u(t),y(t)) ; t € (to — 0,tg + 0)}, such
that ¢ : V, — o(Vy) = V., ¢ : V, x V, = ¢(V,, x V})) =: V, and there exist 6V, — V, and
YV, x V, — V, such that for all (u,y,v,z) € V, x Vy x V,, x V,, we have

2=¢y) & y=0(2); v=1(uy) & u=1(v,2)

and the inverse mappings ¢ and v are C* over V, and V, x V., respectively.
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Lemma 4.15 (Invariance of stationarity equations). Let (u,y) be a trajectory, and
to € (0,T). Let (¢,7) be a local change of state variable and nonlinear feedback at time t,
with 6 > 0 as in Def. .1 Then (u,y) satisfies with multipliers (p,n, \) the stationarity

equations ([E3D)-E3M) and E3R)-EZD) locally on (to — §,to + ), iff (v,z,7) defined on
(to — d,to +9) by

A1) = o(y(t); o) =wut).y®t);  w(t) = pt)d, (y(1)) (4.59)
satisfies on (to — d,tg 4+ 9):

i(t) = fi(v(t), 2(t)) (4.60)
~dm(t) = Ha(u(t), 2(0), w(t))dt + dn(t)ga (=(6)) + M) (v(t), 2(8))dt (4.61)

0 = Hy(v(t), 2(t), 7(t)) + A(t)eo(v(t), 2(t)  a.e. (4.62)

g=(0) <05 dp >0, [P ant)a=(1) = 0; (4.63)
e(o(t),2(t) < 0; A1) > 0 ae; [ AOe(w(t), 2(t))dt = 0; (4.64)

with the new dynamics, integral cost function, Hamiltonian, and state and mized constraints
given by

flo,2) == ¢y ((2))f(D(v,2),6(2)) (4.65)

iv,2) = U(v,2),0() (4.66)

H(w,z,m) = {(v,2)+nf(v,z) (4.67)

9(2) = 9(6(2)) (4.68)

é(v,z) = c(Y(v,2),0(2)). (4.69)

In addition, the augmented Hamiltonian of order 0 and the time derivatives of the state con-

straint (all components supposed to be of finite order q;, i = 1,...,r), are invariant, i.e., on
V, x Vy:

H(v,z,m,\) == H(v,z,7) + Ae(v,2) = HO((v,2), d(2), Ty (6(2)), N); (4.70)

A(j)(z) = ggj)(qg(z)), forall j=1,...,¢;, =1, i=1,...,1; (4.71)

0 (w,2) = g9 (P, 2),8(2), i=1,...,r (4.72)

Proof. Assume that (u,y,p,n,\) satisfies (E30])-(E36) and E3S)-[E4T) for ¢ € (to —0,t0+6),
and let us show that (v, z,m,n,\) satisfies (EE6U)-EE4) on (tg — d,tg + 6). The converse is

proved similarly by symmetry. By (EER9), ([EGD) and [ELR)-EEd), it is obvious that (EG),
(EB3) and EBA) follow from (E3D) and E39)-EZ0). Moreover, we have

H)(v,2,mA) = Do{l(y(v,2), $(2)) + 7y ($(2)).f (v, 2), (2)) + Ac(h (v, 2), §(2))}
= H,({(v,2),6(2),p, ) $u(v, 2).
Since 1), is invertible, this gives (EE62). It remains to check the costate equation. We have
HY(0,2,m,0) = H) (v, 2), $(2), p, Nz (v, 2) + Hy(9(0,2), 6(2), p, \) - (2)
+ Ty (D(2 ))( 2(2), f($(v, 2), §(2)))-
By definition of 7 in (EERJ]), we have

ap(t) = A{r(t)6,(3((1)) -
= dn()6,(H(=(1))) + 7(6)yy (5())F (90, 2), B(2))dt.

(4.73)
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Since ¢y (¢(2))d.(2) = Iy, using [E30), @) and @3R) on (tg — J,tp + §), we obtain
—dr(t) = —dp(t)$:(2) + m(t)yy ((2)(f (¥ (v, 2), 6(2)), ¢ (2))dt

A~ —

= H2(v,z,m,N)dt + dng,(6(2))¢.(2) = H2(v,z,m N)dt + dng.(z),

which gives (E8T]). From (B63) and (GS), by induction for j =1,...,¢;, we obtain

iz = 5@ fw
= g5, (=)
= g, V(6(2)
which shows (EETI)-(ET2) and achieves the proof. O

Remark 4.16. With the notations and assumptions of Lemma ETHl, we have

A~

HSU(Uv Z,T, )‘) = ng(u7y7pa )‘)(,(Z}”U(Uv z),q,[_)v(v, Z)) + Hg(uvyvpa >\) ,(Z}”UU(U7 Z) (474)

and, for J C {1,...,r + s}, defining é((]q)(v,z) = (ngi)(v,z)) J, with still ¢; := 0 and
1€
QZ(O) i=¢ fori=r+1,...,r + s, we obtain by ([EZ12) and [EGJ):

G, 2(0) = G (u(t). y(0)du(v(t), 2(1)).

Since H2(u,y,p, A) = 0 at a stationary point, and 1, (v, z) is invertible over V;, x V,, we obtain
that if (u,y) is a stationary point, then assumptions (EZ3)) (or (EZH)) and (E30) are locally
invariant by local change of coordinate and nonlinear feedback (but of course, with possibly
different positive constants « and 7).

4.4.2 The Linear Independence Lemma

Given J C {1,...,7}, we denote by |qs| :== > ,c;¢; and |q| :== >_i_; ¢;. Define the mapping
I';: R" — Rl that with y associates the “J” state constraints and their time derivatives
depending on y only, by:

9iq (y)

i —'1
g V(y)

Ly(y) = : , J={i1, . is), i <o <. (4.75)
9i5(y)

9" V()
Lemma 4.17. Let § € R™ and J C {1,...,r}. Assume that there exists w € R™ such that
GL(]?) (w,9) has full rank |J|. Then the matriz I 1, (y) has full rank, equals to |q|.

u

The above result is well-known in the case when the dynamics and the constraints are
linear, but since we were not able to find a reference for it in the general nonlinear case, we
give a proof below, which uses the relations (EL77) established in [98].
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Proof. For 7 € (0,T) and small § > 0, consider the solution y of the state equation y(t) =
flu(t),y(t)) over (1 — 0,7 4+ 9), with y(7) =g and u : (1 — 0,7 + J) — R™ is here any C'%mox
function such that u(r) = w. For k = 1,..., ¢mas — 1, define the mappings Ay : (1—9,7+6) —
R™>™ by:

{ Ag(t) := fulu(t), y(t)) , (4.76)
Ag(t) = fy(u(t),y()Ap—1(t) — Ag—1(t) 1<k < gmas — 1. '

The proof of the lemma is based on the following relations, due to [98]. For all t € (7 —4,7+9)
and i =1,...,r, we have:

dDGENA =0 fork,j >0, k+j<g—2
92 (Y1) Ag—j1(8) = 0% (ult), y(1)  for 0<j<gi—1.

For the sake of completeness of the paper, let us recall how to prove (EEZZ). We first show
that for all 7 =0,...,q; — 1, the following assertion

(4.77)

g (Y(E)A(t) =0 Vie (r—87+0) (4.78)
implies that

g (u(t), y(£) Ar(t) = g2 (y(£) Apa(t) V€ (r— 8,7 +3). (4.79)

Indeed, by derivation of ([ER) w.r.t. time, we get using (EI)

0 = g9 () f(uy) A+ g) (y) Ay
— g9 ) f(wy) Ak + g9 (f,(u, 9) Ax — Ary)
9 (u,y) Ag — 990) () Ar1-

This gives ([ETJ). We also have that gz({z(u,y) = ggy_l)(y)fu(u,y) = g%_l)(y)Ao for j =
1,...,q;. Since gi(j) =0 for 5 < ¢; — 1, it follows that gi(QAO =0forj=0,...,q;, — 2. By

U

ETT), we deduce that gi(QAl =0 for j =0,...,¢; — 3. By induction, this proves the first

equation in (7). Since gz(?z;_2)A0 =0= glgf]yi_g)Al = = giyAg—2, by EID) we obtain
ggj) = gE?i_l)Ao = gi(gj_mAl = ... = g;yAg—1, which proves the second equation in (D).

Assume w.lo.g. that J = {1,...,7'}, with ' < r, and that ¢ > g3 > -+ > ¢ > 1.
Consider the matrix

K(t) == ((Ag-1(t) ... Ai(t) Ao(t) ) e RV™a, (4.80)
and form the product matrix
P(t) = Ty,(y(t)K(t) € Rlasxmar, (4.81)

Let ¢; := Zle qi, and for i = 1,...,r', denote by P;(t) € R%*™% the submatrix formed by
the rows ¢;—1 + 1 to ¢; of P(t). By ([X1), we have

ORI 0
B(t) = : E (a:) 3 : (4.82)
\*/ * e gz’,u (U(t), y(t))

m(q1—q:)
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Let us show that P(7) has full rank |gs|. For that consider a linear combination of the

rows ¢; of P(7), Z‘qu‘l i¢; = 0. By (ER2), only the rows of P(7) for j = ¢;, 1 = 1,...,r/,

have a contribution to the last m components of Z';Zl i0;. It is easily seen that these last

m components are a linear combination of the rows of Gfﬁi(u(ﬂ, y(7)), with coefficients ;.

Since u(7) = w and Gfﬁi(l[),y(ﬂ) has full rank by hypothesis, it follows that 5 = 0 for all

i=1,...,7". Repeating the same argument, we obtain that §; =0 for all j =1,...,|qs|, i.e.
the product matrix P(t) has rank |g;|. Therefore, the matrix I' s, (y(7)) has rank |gz|. O

Corollary 4.18. Let a trajectory (u,y) satisfy (E30). Then the matriz T 1o, (y(t)) has full
rank, equals to |qre(y |, for allt € [0,T] (and consequently, ziag(t) g <n).

4.4.3 Locally Normal form of the state equation

Lemma 4.19. Let (u,y) be a trajectory and to € (0,T) such that u is continuous at tg.
Assume that f,g are (at least) C*Imes | that @30) holds at t = to, and w.l.o.g. that I(ty) =
{1,...;7"YyU{r+1,...,r+ '} = J. Then there exists a CI* local change of variable and
nonlinear feedback (¢,1)), defined over a neighborhood of (u(to),y(to)), such that, with the
notations of Lemma [f.13, the new dynamics f writes on (to — d,tg + 0), with q; := Z;zl q
(and Go =0):

2§i71+1(t) = zQi71+2(t)
_ : 1=1,...,1
Zg—1(t) = zg(t) (4.83)
Zg, (t) = Ui(t)
in(t) = fn((t), =(t)),
where zy and fN denote components |qj| + 1,...,n of z and f, and the state and mized
constraints g and ¢ are given by:
f]z(z(t)) = Zqi_1+1(t) S 0, 1= 1, e ,7“/ (4.84)
¢i(v(t),z(t) = vipm(t) <0, i=r+1,...,r+5s. (4.85)

Under this change of coordinates, the active state constraints §; and their time derivatives
until order g; are linear, and the active mixed control-state constraints ¢; are linear as well,
and depend only on the control.

Proof. By Coro. EI8 the Jacobian I'j,(y(to)) has full-rank, equal to |¢;|, and since y is
continuous at tg, there exist § > 0 and a diffeomorphism ¢ defined over an open neighborhood
Vy in R™ of {y(t); t € (to — 0,to + 0)}, such that ¢(y) =T s (y)|x, for all k =1,...,|qs|.

By ([E30), there exists then an open neighborhood V,, of u(tg) in R™, such that all u € V,,

can be partitioned in u = (ug,uy) € R+ x R "= and G((]q)uG (u(to),y(to)) is invertible
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(note that |J| = r’ + s’). Consequently, reducing V,, and V}, if necessary, the mapping
A" (u,y)

949" (u,y)

Vi) s ue | g (uy) (4.86)

Crys! (u7 y)
un

has an invertible Jacobian v (u,y), for all (u,y) € V, x V. Since by assumption, u is
continuous at tg, reducing ¢ if necessary, V,, is a neighborhood of {u(t); ¢t € (to — d,tg +0)}.

Therefore, (¢,1) is a C%e= local change of state variables and nonlinear feedback, so
Lemma applies, and formulae (E60) and (EG6R)-[ESY) give the expressions (R3] and
(- (). 0

4.5 Junctions Conditions Analysis

In Prop. ET3l it was shown that when assumptions (A2) and (A3) hold, the control and
multipliers are smooth on the interior of the arcs of the trajectory. In this section we study
the regularity of the control and multipliers at the junction between two arcs. The main
result of this section is Prop. which generalizes the result obtained by Jacobson, Lele,
and Speyer [75] in the particular case of a scalar control and scalar state constraint.

4.5.1 Junction points

The set of junction points (or junction times) of constraint i = 1,...,r + s, is defined as the
endpoints in (0,7) of the contact set A; and is denoted by 7° := dA;.

A boundary (resp. interior) arc of component g; is a maximal open interval of positive
measure Z; C [0,T], such that g;(y(t)) = 0 (vesp. gi(y(t)) < 0) for all t € Z;. If (7i,,7%,) is
a boundary arc of g;, then 7/, and 7/, are called respectively entry and ezit point (or time)
of the constraint g;. A touch point 7/, in (0,T) is an isolated contact point for constraint g;
(endpoint of two interior arcs). Similar definitions of boundary and interior arcs, entry, exit
and touch points for the mixed control-state constraints ¢;, ¢ = r+ 1,...,r + s, hold. Thus
entry, exit and touch points are by definition junction points.

Definition 4.20. We say that a junction point 7 is regular, if it is endpoint of two arcs.

By the above definition, a cluster point of junction times is not a regular junction time.
The (disjoint and possibly empty) sets of regular entry, exit and touch points of constraint
gi and ¢; will be respectively denoted by 72, 7%, and 7,2. Thus 7% D 7} UT! UT\ with
equality for all i = 1,...,r + s iff all the junction points are regular (equivalently, iff 77 is
finite for all i = 1,...,7 + s). The set of all junctions times of the trajectory (u,y) will be

denoted by 7, with
r+s

T:gﬂ (4.87)

Definition 4.21. A touch point 7/, € 7;° of the state constraint g;, for i = 1,... 7, is said to
be essential, if it belongs to the support of the multiplier n;, that is if [n;(7/,)] > 0.
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In other words, a touch point is essential, if strict complementarity locally holds at that
touch point. Otherwise, it is said nonessential. The set of essential (resp. nonessential)
touch points for constraint ¢ will be denoted by 7,2°** (resp. 7,2"°*). For mixed control-state
constraints, since A € L*°, we will say by extension that touch points of mixed control-state
constraints are always nonessential. The regularity of u,n, A given in Prop. is not affected
by the presence of nonessential touch points.

Recall now the alternative multipliers in subsection Let 7 be a regular junction time,
i.e. 7 is the right and left endpoint of two arcs, (71, 7) and (7, 72), with constant set of active
constraints J; and Jo, respectively. Note that J; U Jy C I(7), the inclusion being strict iff 7
is a touch point for at least one of the constraint. The multipliers 77@]" for j =1,...,q; and
i = 1,...,r being defined in (Z9)) up to a polynomial function of order j — 1 on each arc
(11,7) and (7,72), their jump at 7 are well-defined. According to (EER0) and (36, it holds,
with v2 := [n;(7)] > 0:

qi

()] = ] = > S el ()

iel(r) j=1

— = Y {0+ I iy +Zm Not, " w(m)}.

i€l(r)

(4.88)

4.5.2 Junction conditions

We say that a function u € L*°(0,T;R™) is continuous until order k > 0 at point 7 € (0,7T),
if u and its time derivatives 4, ...,u® are continuous at 7. We say that u is discontinuous
at order k' > 1 at point 7, if u is continuous until order ¥ — 1 and if the time derivative u®)
of order k' is discontinuous at 7. This integer k' will be called the order of discontinuity of
the control. If u is not continuous at 7 (resp. if u is C™ at 7), we say that u has order of
discontinuity 0 (resp. 00).

The next theorem is an extension of the junction conditions results of Jacobson, Lele and
Speyer [75] to the case of a vector-valued state constraint and control. Let us recall their
result. Given an optimal control problem with a scalar control u(t) € R and a scalar state
constraint g(y(t)) < 0, if (u,y) is a stationary point satisfying assumptions (A2)-(A3), then
the time derivatives of u are continuous at a regular junction point until an order that depends
on the order q of the (scalar) state constraint, and on the nature of the junction point (regular
entry /exit points versus essential touch points). More precisely, for constraints of first order, u
is continuous at entry/exit points, and essential touch points cannot occur (see Prop. EE8(ii)).
For constraints of even order ¢ > 2, u is continuous until order g—2 at regular entry/exit points
and essential touch points. For constraints of odd order ¢ > 3, u is continuous until order g —1
at regular entry/exit points and until order ¢ — 2 at essential touch points. The result is
illustrated in figure EJ] below. The junction condition results for mixed control-constraints
(¢ = 0) were added.

When studying the second-order necessary condition (see section ELH), we have to compute
the expression (EI20)) at junction points 7. To this end, we use Taylor expansions of the
nominator and denominator in the neighborhood of 7, and for this we need to know the order
of discontinuity of the function g;(y(t)) at regular entry/exit points. Since Srg;(y(t)) =
ggqi)(u(t),y(t)), we see that the order of discontinuity of g;(y(t)) is at least g; plus the order
of discontinuity of the control.
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entry/exit points | ess. touch points

ol |hlw [N |k |O|=
N
‘H

Figure 4.1: Order of continuity of the control at a regular junction point, in function of the
order of the constraint ¢ and the nature of the junction point (in the scalar case).

Proposition 4.22. Assume that the data are (at least) C%4ma=.  Let (u,y) be a stationary
point of (P), and let T € (0,T) be a reqular junction point. Assume that u is continuous at T
and that ([EZH) and E30) are satisfied at t = 7. Let

qr =min{ g ; 7€ T, UT,UT™, i€ I(r)}. (4.89)

(i) If ¢ > 3, then the control is continuous at T until order q. — 2.
(i) If in addition, the following holds:

gr is odd, and for all i such that ¢; = g, and T € T\ T,

T 15 an entry or exit point, i.e. T € T} UT},,

(4.90)

then the control is continuous at T until order q, — 1.
The alternative multipliers 772“ foralli=1,...,7 4+ s such that 7 € int A; are continuous
at 7 until the same order as the control. In particular,

(i) If ¢ > 3, vi=[ni(r)] =0 forallie€ I(T) such that ¢; < qr, (4.91)
(ii") If @EID) holds, vi=[n;(7)]=0 for alli€ I(T) such that ¢; < q,. (4.92)

Remark 4.23. If ¢, = 1, then (90 always holds since components of first order of the state
constraint have no essential touch points by Prop. EE8(ii). It follows then from Prop. that
point (i’) (resp. (ii’)) of Prop. holds true when ¢, = 2 (resp. ¢, = 1).

Proof. Let 7 € T be such that ¢, > 2. Assume w.l.o.g. that
I(r)={1,....,7"Yu{r+1,....,r+s'} = J, 1<q1 <...<qm. (4.93)

We will use the local invariance of stationary points of Lemma for the particular choice
of (¢,%) given in Lemma B9, and write the optimality conditions in these variables (v, z).
Since u(t) = ¥ (v(t), z(t)), ¥ is C9me= and 1, (v(t), 2(t)) is invertible in the neighborhood of 7,
the continuity of u, ..., u%) for j < gmas is equivalent to the continuity of v,...,v"). Assume
w.l.o.g. that § > 0 is so small that 7 N (7 — §,7 + ) = {7}. Define

r:=Card{i € I(7) ; 1 <q; <k}, 0 <k < gmaz, ro := 0.
Then ry,, .. = r’, and the useful relation below holds, for all 1 <7 <7’ and 1 < k < @naz:

re_1 <i1<r, if ¢ =k. (4.94)
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Denote the nonlinear part of the Hamiltonian by:

n

jJ(U,Z,FN) = g(v,z) + Z ﬂkfk(vwz) = f(v,z) +7TNfAN(U7z)7
k=|qs|+1

where, similarly to yn and fN, we denote by mx the last n — |gs| components of 7, and still
denote ¢; := Y ;_;q for i = 0,...,7". Then (v,z) is solution on (7 — 6,7 + §) of the state
equation (EE8J), and, since

GAE;])(U,Z) = (Ul)- sy Upry Uprg 1y e e 7UT’+S’)T7

the alternative costate and control equations (recall Lemma EETT and Rem. EET2)) satisfied on
(t—06,7)U (7,7 + ) are respectively given by:

3

—_1(8) = Leg o (u(t), 2(8), 7 (1)
L N

—7l () va 2 (V) 2(0), T (1) +7E () =1 (4.95)

() = Lay (00), 2(0), 7% (1)) (4.96)

0 = Ly(w(t),2(t), 74 (1) + 72(t) + nf(t), i=1,...0 (4.97)
0 = Ly (wt),2(t), 7% () + 0 (t), i=1"+1,....0 +5 (4.98)
0 = Loy (v(t), 2(t), 7% (1)), (4.99)

where vy denotes the remaining m — r’ — s’ components of the control. Since @2-(];1)(2) is the

(Gi—1 + j)-th basis vector, by (S8, the jump of each component of 7¢ satisfies, using that
Gi—1 +1=1iif i <7 (recall that here, vi = [1;(7)] > 0 and by Prop. ER(ii), vl = 0 if ¢; = 1,
ie. if i <ry by @EI)):

=0 izl,...,Tl

IN
o

)l
)] i:7“1—|—1,...,7“/

4.100
)] = 0, j=2,...,q;, i=r1+1,...,7 ( )
)l

=0 izl,...,rl

IN
o

)l
)] = i=ri+1,...,7 ( )

4.101
)] = 0, j=0,...,q;—2, i=r1+1,...,7
)] = 0.

By Prop. ET3l the control and state constraint alternative multiplier n? are C'%me= on
interiors of arcs, therefore we may define over (7 — 6,7) U (7,7 + §) the functions a] for
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t=1,....,7” +s and 7 =0,...,¢naz by:

A

ad(t) = Ly,(u(t), 2(t), 7% (1)),
{az'*l(t) = —Sal(t)+ L., (v(t),2(t), 7% (), 0<j<gq—1
a "'ty = —Zal(t), ¢ <3 < Gmas-

After j derivations of row i of ([EEUZ) and EIY), 1 < j < ¢maw, We obtain using (B3] that
the following holds, on (7 — 4, 7) U (7,7 + 9):

0 =al(t)+7l () +nf (), 1<j<q-1i=1..r (4.102)
0 = ag(t) =+ (_1)qi_j773i_](t)a qi < ] < dmazx, 1= 1, . ,7’/, (4103)
0 = ag (t) + (_1)_%7@'__]7«/4_7«(1;)7 1 < ] < dmazx 1= 7‘/ + 1, . ,’l“/ + S/. (4104)

Here, for all i € J, we define for ¢; —j <0, nqrj = (- 1)%51;771 (t). We have, by definition of

the functions a}, for all 1 < j < gyar and i = 1,..., ' + s, with (E35)-EIH),
) = (19 Bunlol8) =0, )

, (4.105)

+ a continuous function of (vU=V(¢t),...,v(t), 2(t), 7% (t)).
This implies in particular that if v, ...,vU~Y are continuous at 7, then the jump of a{ at time
T is given by ' ' '

@] (1)) = (=1)! Lo (v(t), 2(t), 7 (7)) [0 (7).
Similarly, by derivations of (EZ99), we obtain, for all 1 < j < ¢nas:
0 = (=17 Ly, o(v(t), 2(t), 7% ()09 (¢
(=1 Lo (0(0),2(8), 74, () (1) 106

+ a continuous function of (WU (¢),...,v(t), 2(t), 7% (t)).

Let us show now that the time derivatives of the control v are continuous until order ¢, — 2.
By assumption, v is continuous at 7. By induction, assume that v, ... ,vU~1 are continuous

at 7, for j < gr — 2. Taking the jump at 7 in (EI02)-EI03) and (EI06]), we obtain, for
i=1,...,7" + 5 (recall that by 3, i <r; iff 1 < ¢; <j):
= (- )]va( (7), 2(r), 7% (D) D ()] + (D)= I T (7)), i <
= (1) Luw(o(r), 2(7), 7% (P) 0 ()] + [, (7)) + [ (7)), vy < i <o
= (=1)7 Lo (v(7), 2(7), 7% (1)) D ()] + (= ) I (1)), P>
0 = (=1 Ly (v(7), 2(7), 7% (7)) ) (7)].
We denote in the sequel by vii1 the subvector of components k& + 1,...,1 of v. Similarly,
vF+1 denotes the column vector of components v for i = k4 1,...,1. Recall that by (E34),

g—j=1ifr; <i<rjpq,and ¢ —j > 1iff i > r; 1. Since I;TO = Ly, depends only on
(v, z,m% = 7n), we write in what follows HO (v, 2 ,m%) instead of HO (v, z 7, \), and using

(ET0I), equations (EIOZ) become:

) (1) i )
0 i () (—Lppttrn
a1, (o(r), 2(0), 7% () | o) (D] | = 0 . (4.108)
o () — 174 ()
ngrs’ﬂzm(T) 0
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By remark BB, HO, (v(7), 2(7), 7% (7)) satisfies ([BAH) for some positive constant o/. Since
[v0)(7)] is such that §§?J)(U(T),z(7))[v(j)(7)] = [UZ(])(T)] = 0 for all i = 1,...,7" such that
T € int A;, and gg?;)(v(T),z(T))[v(j)(T | = [Ugi)T,_T(T)] =0foralli=r+1,...,r+ " such that
T € int A;, it follows that

D ()P < V()] H, (0(7), 2(7), 7 (1) [P (7)]. (4.109)

For all j < ¢, — 1, by definition of ¢,, we have 7 € intA;, for all « = 1,...,7; and hence,

[’UZ(])(T)] =0foralli=1,...,r;. Since ¢; > 0, we have for the same reason [UZ(])(T)] = 0 for

alli=7r"+1,...,17" + s'. Therefore, (EI0R]) writes

0 (D)% [ (7)]
O iy (7) (—1)dwpr
a1, (0(r), 2(0), 7% () | [0 (D] | = 0 . (4.110)
5o — [y (7)]
Uy g1 (T) 0
For j < ¢r — 2, we also have 7 € intA;, for all i < 71, and hence [vgll:rﬁl(ﬂ] = 0.

Multiplying on the left (ETTI0) by [v)(7)]", we obtain that the product with the right-hand
side is zero, and therefore [v\) (1)) T HY, (v(7), 2(7), 7% (7)) [v9) ()] = 0. From @IM) it follows
that v\) is continuous at 7, and the right-hand side in (EETI0) is equal to zero. This implies
that the alternative multipliers n{" are CV at 7, and the second row of (EIN0) is satisfied with
equality, that is v2 = 0, foralli = 1,... ,Tj4+1, i.e. such that ¢; < j+1< ¢, —1and 7 € int A;.
By induction, we proved that v, ...,v(® =2 are continuous. This shows (i) and (i’).

Let now j = ¢; — 1. Assume that ([90) holds, i.e. ¢, is odd, and attained at entry/exit

points. Then we have, near the boundary arc, due to the continuity of v;;, . .. ,vi([“_m

at entry/exit of boundary arc, for all i =rq _1 +1,...,74 (and hence ¢; = ¢-):

vanishing

(=)@ ()

2¢ — 1)
from which we deduce that [vi(qT_l)(T)] < 0 at both entry and exit times. We still have
[vqu_l)(T)] =0fori<rg_jandfori=r'4+1,...,7" 4+, since ¢; < ¢ — 1 implies that we are
on the interior of a boundary arc for constraint 7. Since v, ... ,v(@~2) are continuous, (ETT)
holds for j = ¢, — 1, hence we obtain by (EEI0J) and EI00), since prar 1T >,

o[ V@IP < @)Y, (0(7), 2(7), 7 (1) [0l (7))
07

21 41() = (T5) +O((t —7)*") < 0,

— T T 1: T
= ()T ()T <

which implies that v(¢ 1) is also continuous, and v? = 0 for all i € I(7) such that ¢; = ¢,.
This shows (ii) and (ii’) and achieves the proof. O

4.6 No-Gap Second-order Optimality Conditions

In this section, we extend the no-gap second-order optimality conditions of [21] given in the
scalar case, to several state constraints, and include mixed control-state constraints. The main
results of the section are Theorem and Corollary
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4.6.1 Abstract Optimization Framework and Main result

We consider here the abstract formulation (EZH) of (P). We say that a local solution u of (EH)
satisfies the quadratic growth condition, if there exist ¢, p > 0 such that

J@W') > J(u) + c|u’ — w3, for all u: v — uHoo <p, GW)e K, Gu)ek. (4.111)

Recall that the Lagrangian is given by (E33l). Let (u,y = y.) be a local solution of (P)
satisfying the assumptions of Th. Bl with (unique) multipliers p, 7 and A. A second-order
necessary condition for (EX) due to Kawasaki [(7] is as follows:

D2, L(u;n, N)(v,0) — o(n, T (G(u), DG(u)v)) — o(A, T (G(u), DG(w)v)) > 0,  (4.112)
for all directions v in the critical cone C'(u) defined by
C(u):={vel:DJu)v <0, DG(u)v € Tk(G(u)), DG(u)v € Tx(G(u))}. (4.113)

Here Tp(z) (for P = K or K) denotes the tangent cone (in the sense of convex analysis) to
the set P at point x € P, T;’Z(w,h) is the inner second-order tangent set to P at x € P in

direction h,
2

T2 (x,h) = {w : dist(z 4 <h + EEw,P) = o(e?), Ve > 0},

and o(-,S) denotes the support function of the set S, defined for £ € X* by o(&,S) =
sup,eg(§, x). The critical cone can be characterized as follows:

C(u)={veU : DGu)v € Tx(G(u)) Nnt, DGu)v € Tc(G(u)) N AL} (4.114)

The term
S(u,v) := o(n, TR (G(u), DG(u)v)) + o(A\, Te" (G(u), DG(u)v)) (4.115)

in (EIT2) is called the curvature term. It is nonpositive, for all v € C(u). Note that the
component i of DG(u)v (resp. DG(u)v) is the function g; ,(y())zu(-) (resp. ciu(u(-),y(-))v(-)+
Ciy(u(-),y(-))2zv(-)), where z, is the solution of the linearized state equation (E22I).

When there are only mixed control-state constraints, it is known that the latter have no
contribution in the curvature term (EEITH)). This follows from the extended polyhedricity
framework, see [24, Propositions 3.53 and 3.54] (the cone K is a polyhedric subset of L> and
DG(u) is “onto” by (EE3I)). On the contrary, pure state constraints may have a non zero
contribution in the curvature term (EITH).

Since K has a product form, K = (Kj)" with Ky := C_[0,T], the inner second-order
tangent set is also given under a product expression. This would be false, however, for the
outer second-order tangent-set, see e.g. [24) p.168]. Therefore we have, for x = (z;)1<i<, € K
and h = (hi)lgigr S TK(:L’):

T2 (x, h) HT (2, hy) (4.116)
Since the support function of a cartesian product of sets is the sum of the support function
for each set, the expression of pure state constraints in the curvature term can be deduced

from the result by Kawasaki [79] for Ky = C_[0,T]. Recall that A, is given by (EI4), and the
second-order contact set is defined, for v € V, by

A = {te A giy(yt)z(t) =0}, i=1,...,r (4.117)



4.6. NO-GAP SECOND-ORDER OPTIMALITY CONDITIONS 147

Then, by [(9], we have

T

(77,T2Z(G(u) ZO' ni, T Ko gz )gz,y Z/ Gi(t)dmi(2)
i=1

where, for all i =1,...,r:
0 if t € (int A;) N A2
o {giy ()2 (t)}+)? 2
Gi(t) = liminf : if t € (0A;) NA; 4.118
) t'—t; gi(y(t')<0 2gi(y(t')) (04:) ( )
400 otherwise

where hy (t) := max(0, h(t)). We denote in the sequel by supp(dn;) the support of the measure
n;. We make the following assumption:

(A4) (i) Each component of the state constraint g;, i« = 1,...,r, has finitely many junctions
times, and the state constraint is not active at final time, g;(y(7)) <0,i=1,...,r

This assumption implies that all entry and exit times of state constraints are regular. Using
TIH), and the fact that supp(dn;) C A? for all critical directions v, the curvature term has
the expression below, for v € C(u) (see [79]), with v = [n;(7)]

T
o, TR (G(u), DG(uy)) = > > vig(r). (4.119)
i=1 reTiNA?
We thus need to compute, for junction times 7 € 7; N A%,

(P = limin {giy(w(t)z(1)}1)?
sil )_m;l gi<y<tf>><o 29:(y(t)) '

(4.120)

The tangentiality conditions (see assumption (A5)(i) below), under which boundary arcs
with regular entry/exit points of state constraints have no contribution to the curvature term,
are more delicate to state than in the scalar case, due to the possibility of having coinciding
junction times of different components of the state constraints. Let i = 1,...,7 and 7 € T}, U

7... Denote by k7 the order of discontinuity at point 7 of the function (of time) ggqi) (u(t),y(t)).

By Prop. EEZ2 we necessarily have k] > ¢, — 1. A Taylor expansion of the denominator in
(I20) gives then, in the neighborhood of 7 on the interior arc-side

(t _ T)Qi—i-k[

@i o=t (4.121)

aily(®) = g (r%)

. — . , , 7 z+k .
with 7% = 7= (resp. 77) if 7 € T, (resp. 7 € 7T/,), and g(q )(Ti) = j;ﬁk 9i(y(t))|s=r= is
nonzero by definition of k7.

Assume now that strict complementarity holds near 7 on the boundary arc, in the sense

that there exists € > 0 small such that
[7,7 4+ €] C supp(dn;) if 7 € T, (resp. [r —&,7] C supp(dn;) if 7 € TZ,). (4.122)

Since g; 4 (y)zy € W4°(0,T') by Lemma B2 for all critical directions v € C(u), the first ¢; —1
time derivatives of g; ()2, being continuous vanish at entry/exit of boundary arcs, and hence
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the following expansion holds, for ¢ in the neighborhood of 7 on the side of the interior arc of
gi:

iy (Y1) zo(t) = O((t — 7)%). (4.123)
We thus obtain with [IZ1) and [IZ3) that there exists a constant C' > 0 such that
(@) < Ol — 7[5 (1.121)
It follows that
Gi(t) > —o00 if kKl <¢  and (1) =0 if k] <g:. (4.125)

Since k] > gr — 1 by Prop. BEZJ and ¢; > ¢, whenever 7 is an entry or exit point of
constraint g;, it makes sense to assume that ¢ —1 < k] < ¢;. In addition, the continuity of u
implies that k7 > 1. By ([ETZH), we see that whenever

max(l,q; —1) < k] < g (4.126)

then ¢;(7) = 0, and hence vig(7) = 0.

Clearly, (EI26l) requires that ¢; > 1. In addition, when (EE90) holds and ¢; = ¢, then it is
necessary by Prop. B22/(ii) that k] > ¢, = ¢;, which is incompatible with (EE126]). Therefore,
we cannot assume that (EE1260]) holds when either ¢; = 1 or (E90) holds and ¢; = ¢,, and will
rather assume in that case that
K = g (4.127)

1

By (ETZH)), assumption ([EIZT) ensures that ¢;(7) is finite. Moreover, if ¢; = 1, then 2 = 0 by
Prop. EER(ii), implying that vig;(r) = 0. If @3 holds and ¢; = g,, then by Prop. BEZX(ii’),
we have vl = 0, i.e. vig(7) = 0 again. This shows that boundary arcs have no contribution
to the curvature term (EEIT9) when assumptions (EI122) and (A5)(i) below hold:

(A5) (i) For all junction point 7 € 7;, i = 1,...,r, if 7 is an entry or exit time of constraint
gi, the function of time g;(y(t)) has order of discontinuity ¢; + k7, and k] satisfies

ET27) if ¢; =1 or if (@YD) holds and ¢; = ¢,
ET120) otherwise.

In the case when the junction times of the different components of the state constraints do
not coincide (see assumption (A7) in section ET)), then assumption (A5)(i) has the simpler
form ([E202) (see Remark E32).

The contribution of touch points to the curvature term (EEIT9) is classical, when the touch
points are reducible, in the following sense. A touch point 7 of a component g; of the state
constraint of order ¢; > 2 is said to be reducible, if ¢ — 51—; gi(y(t)) is continuous at 7, and if

d2
We will make the assumption that
(A5) (ii) All essential touch points of constraint g;, for all i = 1,...,r, are reducible, i.e.

satisfy ([EI12]]).

Finally, we will also need the following assumption, implying (ET22):
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(A6) (i) (Strict complementarity on interior of boundary arcs)

dni

& (t) > 0, for a.a. t € int Ay, foralli=1,...,r. (4.129)

Let V:=V, = L?(0,T;R™) and Z := Z, = H'(0,T;R"). Let
Tic(G(u)) :={w € L*(0,T;R®*) : w; <0ae. onA; i=r-+1,...,7r+s} (4.130)

This is the extension of the tangent cone Tx(G(u)) over L?. Since A € L>(0,T;R"), A can be
extended to a continuous linear form over L?(0,T;R"). We may then consider the extension
of the critical cone over L? as follows:

Crz2(u) :={v eV : DG(u)v € T(G(u)) Nnt, DGu)v € Tic(G(u)) N ALY} (4.131)

We can now state the no-gap second-order conditions, that do not assume strict complemen-
tarity at touch points for the state constraints, and make no additional assumptions for the
mixed control-state constraints.

Theorem 4.24. (i) (Necessary condition) Let (u,y) be a local solution of (P) and (p,n, \) its

(unique) associated multipliers, satisfying (A1)-(A3), (A4)(i), (A5)(i)(ii) and (A6)(i), and
vt = [ni(1)]. Then

D2, L(u;n, A Z Z gz’y y(E)z(t)7 >0 VYoe Cp(u). (4.132)

T =
=1 ETzoess dt2gl( ())|t=7’

(ii) (Sufficient condition) Let (u,y) be a stationary point of (P) with multipliers (p,n, \),
satisfying EZD), and vi = [n;(1)]. Fori=1,...,r such that ¢; > 2, let T' , denote a finite
set (possibly empty) of reducible touch points of constraint g;. If

) z
D2 L(u;n, A - > v i iy W)= () >0 VYoeCp(u))\ {0}, (4.133)

i:q;>27€Ti dtzgl( ())’t =T

then (u,y) is a local solution of (P) satisfying the quadratic growth condition (EEIII).

Note that under (A2)-(A3), 7,2°* = @ if ¢; < 1. It is easy to obtain from the above
theorem a characterization of the quadratic growth.

Corollary 4.25. Let (u,y) be a stationary point of( ) with multipliers (p,n, \), satisfying
(A1)-(A3), (A4)(i), (A5)(i)(ii) and (A6)(i), and v = [n;(T)]. Then (u,y) is a local solution
of (P) satisfying the quadratic growth condition (E.IE[]) iff

1) > 2
D2 L(u;n, A Z Y v g’y( (#)z() >0 YoeCrw)\{0}. (4.134)

1= lTeTzOess t2gl( (t))|t=7’

Denote by Q(v) the left-hand side of (ELI32)) and (EI34]). An explicit computation of the
Hessian of the Lagrangian D2, L(u;n, \)(v,v) shows that

T
Q(U) = / H?%y)’(u,y)(u,y,p,)\)((U,ZU),(U,Zv))dt+ ¢yy(y(T))(zv(T)7zv(T))

| 0 ()2 (1) (4.135)
+Z / Gy >><Zv<t>aZv<t>>dm<t>_Te%,esf G uOh= |
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Let us recall that a Legendre form Q (see [[(4]) is a weakly lower semi-continuous quadratic form
defined over an Hilbert space, that satisfies the following property: for all weakly convergent
sequences (vy), (v,) — v, we have that v, — v strongly if Q(v,) — Q(v). An example of a
Legendre form is v — ||v||?, with ||- || the norm of the Hilbert space. Under assumption (EZ3),
it is not difficult to show that (EEI30)) is a Legendre form (see e.g. [21, Lemma 21]@). This is
no more true if ([EZ3)) is replaced by the weaker hypothesis (EZ5]).

4.6.2 Proof of Th.
Denote the radial cone to IC at point z € K by:

Ric(z) ={h € L™ ;3¢9 >0, z+ch e K, forall 0 <e < e} (4.136)
Since K is a closed convex set, Ti(z) = cl(Rx(z)). Let

Co(u) = {veCu), DG(u)v|i(t) <0, forall 7 € T,"" i=1,...,r,

DG(u)v € R (G(u))}. (4.137)

This subset of the critical cone contains the critical directions that “avoid” nonessential touch
points of the state constraint, and such that the derivatives of the mixed constraints belong
to the radial cone Ri(G(u)).

Lemma 4.26. Under the assumptions of Th. -24(i), for all v € Cy(u), the term [EIID) has
the expression

(92 (y()) 20 (2))?
B (y(O)imr

-y Y

i=1 e

(4.138)

Proof. Tt is easy to see that if DG(u)v € Ri(G(u)), then 0 € Té’i(g(u),Dg(u)v). Hence
a(A, T,%’i(g(u), DG (u)v)) = 0. It remains then in (EEITAI) the contribution of state constraints.
As shown in the previous subsection, when assumptions (A5)(i) and (A6)(i) hold, entry and
exit points of boundary arcs of the state constraints have a zero contribution to the curvature
term. The term (EI20) for the contribution of essential touch points satisfying (EI28]) is
computed explicitly, in the same manner as in the scalar case (see [21, Prop. 14]@.). Finally,

nonessential touch points do not belong to A? for v € Cy(u), and hence have no contribution
in the sum (EI19). The results follows. O

Lemma 4.27. Under the assumptions of Th. [.Z9)(i):
(i) The set Co(u) is dense in C(u).
(ii) The set C(u) is dense in the set Cr2(u).

The key point in the proof below is the controllability Lemma B3], that enables to handle
separately the arguments for the state constraints and for the mixed control-state constraints,
in the following way. Under the assumptions of Lemma B3 with ny the n of ([ZH), for all

€ [1, +00], there exists a constant C' = C (k) > 0 such that for all (w,w) € W,, x L"(0,T;R?),
with

W, = [[wW*"0,T), (4.139)

=1

'Lemma [C2ZT] of this thesis.
2Proposition [CI of this thesis
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there exists v € V, such that

Giy(Wz = wi on A Vi=1,...,r (4.140)
(U, v+ ciy(u,y)zy, = w; ae on A, Vi=r+1,...,r+s, (4.141)
[olls < Cllwlw. + llwll)- (4.142)

Proof. (i) Let v € C(u), and set w := DG(u)v and w := DG(u)v. Let ¢ be a C* function with
support in [—1,1] and which is positive on (—1,1). Set wy,; := w; — ZTGTtio,nes #gp(n( —7))
for i = 1,...,r. Then, for n large enough, w, ;(7) < 0 for all 7 € T, Wy,; = w; outside a
neighborhood of 75", and ||wp.; — wi|4; 0o — 0 when n — 4o00. Further, since R (G(u))NAL
in dense in Tc(G(u)) N AL (see Lemma in the Appendix), there exists a sequence (w,) C
Ric(G(u))NAL such that |Jw, —wl||e — 0. By the controllability lemma B3] there exists v, € U
that satisfies ([EET0)-[EI) with (wy,wy), and ||v, — v]|eo < C(||lwn — wlwy, + lwn — W|so)-
By construction it follows that v, € Cy(u), and v, — v in L.

(ii) Let v € Cra2(u), and again let w := DG(u)v and w := DG(u)v. By Lemmas 16-17
in [21]E (this is where assumption (A6)(i) is used), we can construct a sequence (w,) C
[I;_, W%>°(0,T) such that w,; = 0 = w; on each boundary arc of g;, i = 1,...,7, wy(T) =
w;(7) at each touch point 7 € 7;, and ||wn; — willg2 — 0. So wy, € Tk (G(w)) Nnt. Now
by Lemma B30 in the Appendix, there exists a sequence (wy) C Tic(G(u)) N At such that
lwn, — w|l2 — 0. By Lemma again, there exists v, € U that satisfies (EI40)-ETAI]) with
(wWn,wy) and ||v, — 0|2 < C(Jlwn, — w|lw, + ||wn — wl|2). By construction we have v,, € C(u),
and v, — v in L2. O

Proof of Th. [[.ZJ For the necessary condition, we use the abstract condition (EIT2)) and
compute the curvature term (EEI15)). By Lemma L20] we have the expression of the curvature
term for all v € Cy(u). Since the right-hand side of (EEI38) is continuous for the norm of L2,
we obtain the result by a density argument in view of Lemma

For the sufficient condition, we follow [21, Th. 18 and 27]@. The idea is to use a reduction
approach, i.e. to reformulate the state constraint around finitely many reducible touch points
of the components g; of the state constraint of order g; > 2. More precisely, for 7', =
{4 ... ,7‘}%}, £,0 > 0 small enough, and Q; := [0,7] \ Uﬁ;l(Té — &,7! +¢), the constraint
G(v') € K in (EH) can be equivalently replaced, for all ||u’ — u||s < 8, by

gi(yw () <0 forallt € Q; and g;(yw (th(u)) <0, k=1,...,N;, Vi:q; >2 (4.143)

where ¢ (u') is the unique point of maximum of the function g;(y,(-)) over the set (1 —¢, Ti+<).
The Hessian of the Lagrangian of the reduced problem is equal to the quadratic form Q(v),
i.e. has an additional term that matches the curvature term. Now assume that (EITT]) does
not hold. Then there exists a sequence (uy,), u, — u in L, satisfying the constraints (EI43])
and G(uy,) € K, and such that

J(un) < J(u) + o(|Jun — ull3). (4.144)

Set €, := ||un — ul|2 and v, := &, (u,, — u). Being bounded in L?, assume that v,, — v weakly
in L. By (EIZ4), a second-order expansion of the Lagrangian of the reduced problem shows
that

Qvy) < o(1). (4.145)

3Lemmas and [CT4 of this thesis.
4Theorems and of this thesis.
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Moreover, since
K 3 G(uy) = G(u) + e, DG(u)vy, + enrp

with [|rpl2 — 0, we deduce that DG(w)v, + r € Tic(G(u)). Taking the weak limit in L2, we
obtain that DG(u)v € Ti(G(u)). Proceeding similarly for the state constraints, and since as
a consequence of I, we have D.J(u)v < 0, we deduce that v € Cp2(u). It follows then
from ([EI33)) and ([EIZ5), since @ is weakly lower semi-continuous, that Q(v) = 0, and hence,
Q(v,) — Q(v). Since @ is a Legendre form by hypothesis (EZ3]), this implies that v, — v
strongly, contradicting that ||v,||2 = 1 for all n. This completes the proof. O

4.7 The shooting algorithm

In presence of state constraints, a reformulation of the optimality conditions is needed to
apply so-called shooting methods. For an overview of the different formulations of optimality
conditions existing in the literature, see the survey by Hartl et al. [[68]. The shooting algorithm
takes only into account a part of the optimality conditions, and the remainder conditions,
referred as “additional conditions”, have to be checked afterwards. In this section, we first
recall the alternative formulation used in the shooting algorithm (Def. HE28]). Additional
conditions are given, under which the alternative formulation is equivalent to the first-order
optimality condition of (P) (Prop. EE29)). It is shown that some of those additional conditions
are automatically satisfied (Lemma E30). Finally we give a characterization of the well-
posedness of the shooting algorithm (Th. E33]), which is the main result of this section.

Given a finite subset S of (0,T), we denote by PCE[0,T] the set of functions over [0, 7]
that are of class C* outside S and have, as well as their first k derivatives, a left and a right
limit over S and a left (resp. right) limit at T (resp. 0).

4.7.1 Shooting Formulation

The formulation for the shooting algorithm presented in this section was introduced by Bryson
et al. [29]. The presence of additional conditions was first underlined by Jacobson, Lele and
Speyer [75], see also Kreindler [83]. See an example of implementation in e.g. [107] and
numerical applications in e.g. [30} 26].

Recall that HY denotes the alternative Hamiltonian (EELIl). We assume in the sequel
that assumptions (A2)-(A4)(i) hold, and that first-order components of the state constraint
do not have touch points (which is typically satisfied in view of Prop. ES|(ii), since first-
order components of the state constraint only have nonessential touch points). We assume in
addition that

(A4) (ii) Each component of the mixed control-state constraint c;(u,y), i =r+1,...,r + s,
has finitely many boundary arcs, and no touch points.

Under (A4) (which stands for (A4)(i)(ii)), we denote by Z} the closure of the union of boundary

arcs of each constraint i =1,...,r +s, ie. Ig = Uk 1[’7'en ,Tex] for T = {Ten < TéhNg}
and a similar definition of ’Z;Zr

In the alternative formulation presented in Def. ELT0] the integration constants in (EZ49) on
a boundary arc of g; are arbitrary. In the sequel, we will choose like in [98] these constants, on
each boundary arc (77,,7%,) of g;, such that the functions ! fori =1,...,rand j=1,...,¢
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satisfy, for t € (12, 7%,),

en’ ‘exr

)
. . exr _1 .
) = ) (), ) = / W o)do, G=2.. . q
t

and we still have 77@]" = 0 outside boundary arcs of g; and Y = \; for i =r+1,...,7r+s. With
this formulation, the alternative costate p, is continuous at exit points and discontinuous at
entry and touch points, which allows to take the jump parameters v and v involved in the
jump condition (EIR4) as shooting parameters in the shooting algorithm.

Definition 4.28. A trajectory (u,y) having a finite set of junction times 7 = U1} 7; satisfies the
alternative formulation, if there exist p? € PCI™*([0,T]);R™), n? € PC’%"L“([O,T];R(’”*S)*),
and, foreach ¢ =1, ..., r, for each entry time 7 of g;, there exist ¢; jump parameters (vr! )1<j<q;
and for each touch point 7 of g; with ¢; > 2, there exists a jump parameter v, such that the
following relations are satisfied (dependence in time is omitted):

y = flu,y) on[0,T];  y(0)=yo (4.146)
-p? = Hl(u,y,p?,n") on [0,T]\ T (4.147)
0 = Hl(u,y,p%n?) on[0,T]\T (4.148)
g @), yt)) = 0 onTj i=1,....r+s (4.149)
nli(ty = 0  on[0,TI\Z{, i=1,....,r+s (4.150)
pI(T) = ¢y(y(1)), (4.151)
and, for all i = 1,...,r and each junction point 7 € 7¢ of g¢;:
W) = 0 ireTi, j=0,...,q-1 (4.152)
gi(y(r)) = 0 if 7 € T, (4.153)

and for each junction time 7 € 7

qi ) 4
i) = = > S wig ) - N vigy(y(n). (4.154)

i<r:7eT}, j=1 i<r:TeT}

The shooting algorithm consists in finding a zero of a finite-dimensional shooting mapping,
using e.g. a Newton method. The structure of active constraints of the optimal trajectory, i.e.
the number and order of boundary arcs and touch points of each component of the constraint,
is assumed to be known (or guessed). The arguments of the shooting mapping are called the
shooting parameters, and are composed of the initial value of costate p® € R™*, all the junction
times (with the exception of nonessential touch points) of the pure state constraints and mixed
control-state constraints, and all the jump parameters v;” at entry times 7 of g;, i = 1,...,7,
j=1,...,¢; and v at touch points 7 of g;, i = 1,...,7, g¢; > 2, that are involved in the jump
condition of the costate (EEI54).

By assumptions (A2)-(A3), the algebraic variable (u(t),n9(t)) € R™ x RU+8)* satisfying
(ET2R)-(ET50) can be expressed as implicit function of the differential variables (y(t), p%(t)) €
R™ x R™ on the interior of each arc of the trajectory (see the proof of Prop. EEI3). With a
given set of shooting parameters is therefore associated at most a unique solution (u,y, p%,n?)
of the Cauchy problem (EET46)-(ET417) with initial condition of the costate p?(0) = p°, the
algebraic variable (u,n?) satisfying (EI4R])-(I50) and the jump of p? at junction times of
pure state constraints being given by (EIR4).
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The shooting mapping is then defined as follows. With a given set of shooting parameters
are associated the following conditions: the final condition (EEIR]), the interior point conditions
ET52)- (EI153), and the optimality conditions for junction times below, for all 7 € 7 and all
1=1,...,r+s:

g ) ym) = 0, ireT, (4.155)
I RTCOIE U S o (4.156)
gi(l)(y(T)) = 0, if 7€ 7! andif ¢; > 2. (4.157)

This is a mapping defined on a subset of RY to RY, where N the dimension of the shooting
mapping is as follows. Let N}, be the total number of boundary arcs of constraints g; for
i1=1,...,rand ¢; fort =r+1,...,r + s, and Ny, the total number of touch points of state
constraints of order ¢; > 2. Then

r+s
N = n+ ) (g +2)Nj, + 2N (4.158)

i=1

4.7.2 Additional Conditions

It is of importance to check whether solutions of the shooting algorithm (i.e. trajectory
associated with a zero of the shooting function) are stationary points of (P). For this, we
need to make explicit the relation between the multipliers in the alternative formulation (Def.
E2Y) and in Th.

Given alternative multipliers (p?,79) and jump parameters (V?—’j ) at entry times and (v%)
at touch times, the related multipliers (p,n, A) in Th. are given by the following relations.
Define first

nl(t) = (—1)%9 ;:;:;.ngi(t), §=0,...,¢;—1,i=1,...,r t¢T, (4.159)
then
N(t) = nd@t), i=r+l,...,r+s,  t¢T (4.160)
p(t) = pU(t)+ Zqznz 09, V),  tET. (4.161)
i=1 j=1

Finally, let

dpi(t) = nd(O)dt+ > vis(t), i=1,...,r, (4.162)
T€T

where §,(t) denotes the Dirac measure at time 7, and the jumps parameters vi at junction
points 7 € 7, for all i = 1,...,r, are the ones in the alternative formulation if 7 € 7,0, vi = 0
if i ¢ I(7), and, if 7 € Z}, they are given by, in view of (B8R and (IR,

vio= i —gl(et)  ifreTd, (4.163)
vio= ni(r) if 7€ T, (4.164)
Vi —[ni ()] if 7 € int 7. (4.165)

Conversely, Prop. ensures, whenever assumptions (A2)-(A4) are satisfied, that each
component 7; of n admits a (unique) decomposition under the form (EEI62)). Therefore, classical
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multipliers (p,n, A) of Th. uniquely determine the alternative multipliers and alternative
jump parameters so that (EIR)-([EI6H) as well as (EIT), T, ETITE) below hold, these
three last conditions being needed in order to fix the integration constants in (EZ9) and the
jumps parameters at entry times (v7”) for j > 2.

The additional conditions needed to obtain the equivalence between the alternative formu-
lation (EETZ0)-(EI54]) and the first-order optimality condition (EE3H)-(EA0) are the following:

gi(y®) < 0 on[0,T)\(Z;UT), foralli=1,...,r (4.166)

ci(u(t),y(t)) < 0 ae on[0,T)\Zi, foralli=r+1,...,7+s, (4.167)
49 ,

(—1)%’@7731(15) >0 onintZy, forali=1,...,r+s, (4.168)

and, forall7 € 7 and alli=1,...,r:

vl —plrt) = 0, ifreT (4.169)
v —pl(rh) = 0, freTi, j=2.. . q (4.170)
() > 0, ifreT] (4.171)
m(T) = 0, ifreTl, j=2,..,q (4.172)
mi(r)] < 0,  ifreintT], (4.173)

i (r)] = o, ifreintZi, j=2,...,q¢ (4.174)
vio> 0, if 7€ T2, (4.175)

For all i such that ¢; = 1, the inequalities (E169)), [EI7T), EIT3) (4.176)
and (EET7H) are equalities. '

Proposition 4.29. Let (u,y) be a trajectory satisfying (A2)-(A4). Then (u,y) is a stationary
point, with multipliers (p,n, \), iff (u,y) satisfies both the alternative formulation (Def. [{-28)
and the additional conditions (EIGH])-EITE). Relations (EIR9)-ETI6H) and ET), ET),
ETITA) are a one to one mapping between the multipliers (p,n, \) involved in the first-order
optimality condition of Th. [{-3, and the alternative multipliers (p?,n?) and alternative jumps
parameters (vy”’) and (1/;) at respectively entry and touch points in the alternative formulation
and additional conditions.

The higher the order ¢; of the constraint is, the more additional conditions have to be
checked at regular entry/exit points of boundary arcs. Those conditions are analogous to the
known conditions in the scalar case, with in addition the conditions (EEI73)-([ETITd), that were
not apparent in the scalar case, and to our knowledge not known in the literature. Thus,
when assumptions (A2)-(A3) hold, we are led to think that, like in the scalar case, boundary
arcs with regular entry/exit times for components of the state constraint of order ¢; > 3 may
occur only in degenerate situations. We underline that this was not, however, an immediate
result, since now we allow more control variables (more than one) and hence, more degrees of
freedom.

Proof of Prop. [[.2Z9 Let us show the equivalence between, on the one hand, the first-order
optimality system of (P) (E30)-E40), and on the other hand, the alternative formulation
(ET20)-[ETR4) and the additional conditions (EEIG6)- (ETZH).

First, g;(y(t)) < 0 in (E39) is equivalent to g;(y(t)) = 0 on Z}, [EIGJ) at touch points
and [I6H) outside the contact set, and then g;(y(t)) = 0 on Z} is equivalent to (EIZQ) for
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i = 1,...,r with the ¢; entry-point conditions (EEI5Z). By Prop. EI3l the state constraint
multipliers n;, ¢ = 1,...,r are regular on interiors of arcs, therefore, each component 7; can
be put into the form (BEI6Z), where jumps can occur only at junctions points, and the density
of each component 77? is continuous on the interior of arcs. It follows that n; is a nonnegative
measure (dn; > 0 in ([E39)), iff its density G1’71( t) =nd(t) = (—1)% Ly (t) is nonnegative, i.e.
iff (LI6]) holds for ¢ = 1,...,r, and the jumps at junction times are nonnegative, i.e.

vi = [pi(7)] > 0, foralli=1,...,r andall 7€7 =U/5 7" (4.177)

The complementarity condition fOT gi(y(t))dn;(t) = 0 in ([E3T) is then equivalent to (EIL0)
for i = 1,...,r (the measure dn; has support on the contact set of g;(y)). Similarly, for
mixed control-state constraints, since A € L, ([EZ0) is equivalent to (EIZJ)-EIR0) and
EIEN)-ETI6R) for i =r+1,...,7 +s.

The state equations (E30]) and (EETZ8) are of course identical, and so are the final conditions
of the costate (E31) and [IRT) in view of (A4)(i). By Lemma ETT] the costate and control
equations (EI47) and (EEIZR]) are equivalent, respectively, to the costate and control equations
E36]) and E3R) on the interior of arcs. Now let us show the equivalence, at junction times,
between on the one hand the costate equation (E30) and (EIZD), and on the other hand the
jump condition ([EI54) and the additional conditions (EEI6Y)-EI7H). By [EXS) (recall that
[p(T)] = = X ici(r) V+9iy(y(7)) with v2 = [n;(7)]) and by IR, it holds respectively

()] = = > AW+ [} (1)) gig(y +Z 0l (Mg, (y(r)} (4.178)

1€I(r)
P = - > ZV JgI V) — Y vigiy(y(r). (4.179)
i<r:7eTt, j=1 ZST:TE'T{L;)

By Corollary EET8 the vectors gg/_

j =1,...,q, hence the relations (EEITS])-[IT) are equal, iff the coefficients of g(
are equal. We thus obtain, for all 7 € T and i € I(7), if 7 € T :

1)(y(T)) are linearly independent, for all i € I(7) and
1)

(y(1))

vik (M) = vzt and (0] = 0, =2
which, with @ITT), is equivalent to (EI6J)-(ETTM), using that 7/ (7~) = 0 at entry point. If

now 7 € 7,1, we obtain, since the multipliers 172? are equal to zero in the neighborhood of 7:

[Th (T)] = V7Z"7
which, with @IT7), is equivalent to (@IZ3). Finally, if 7 € int Z} or if 7 € 7/

o, then we have

()] + i (M) =0 and (] =0, j=2...q4

which, with (EIT1) again, is equivalent to (EETZ3)-(I7T) on interior of boundary arcs and to
(LI7I)-@T7A) at exit points, since n! (1) = 0. Finally, whenever ¢; = 1, then we know by
Prop. Y that »; is continuous, i.e. [1;(7)] = 0, and therefore all inequalities in (EET69)- (ET7ZH)
are in fact equalities. O

Like in the scalar case, the conditions (EET23l)-(ETA6]) imposed in the shooting algorithm,
related to the continuity of u, imply that some of the additional conditions are automatically
satisfied by a solution of the shooting algorithm.
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Lemma 4.30. Let (u,y) satisfy the alternative formulation (EIZ0)-ETIR4), the strong as-
sumption ([EAA) and (A3)-(A4), and assume that T,) = 0, for all i such that q; = 1. Then the
following assertions are equivalent:

(i) For all i = 1,...,r and all junction point T € T, if q¢; = 1 the additional conditions
EI69), ETITD) and @EIZ) are satisfied with equality and if q; > 2, the additional conditions

n (EIT0), @I and @A) are satisfied for j = gq;, i.e.

Vit = (), ifreT, (4150)
nli(rT) = 0, ifreTh, (4.181)
nf(r)] = 0, if T € int 7, (4.182)
and for alli=r+1,...,r+s, n/" = \; is continuous over [0,T].

(ii) The conditions (EI0D)-EIRG) are satisfied, for allT € T and alli=1,...,7+ s.
(iii) The control u is continuous over [0,T].

Proof. Let 7 € T,and let J := I(7)\{i = 1,...,7; 7 € T2}. Set u® := u(r%), [u] :=ut—u~,
and, for o € [0,1], v’ := v~ + o(u™ —w~). Similar notations for p?, n? are used Denote by
71 = (7}");e; the augmented (row) vector of jump parameters, satisfying vl = = 5% for all

i € J such that 7 € 7}, and ¢; > 1, and 7" = 0 for all i € J such that 7 € intZ} U7, or

¢; = 0. By [EI4S),
Hi(u", y(r),p"",n%") = 0 = Hi(u",y(r),p?",n7").

The alternative Hamiltonian H? being affine in the variables p? and n?, we have

0 = [ {oHL W, y(r),p™ ") + (1 — o) He,y(u®, y (), p*" 0% ) Huldo
o (4.183)
+ Owenwamewwwm%wsme»w.

Using the jump of p? given by (EEI54]), and the fact that by hypothesis, first-order components
of the state constraint do not have touch points, we easily get that

) fu(u® (7)) + G (0 y(r)) = ([09] — 29)GY) (u”  y(r)). (4.184)

In addition, (24 and ([ERS) imply that Hl,(u®,y, p?™, n?*) is uniformly positive definite, for
all o € [0,1], therefore, multiplying on the right (EEIS3) by [u], and using ([EIS), we obtain
that

allul?> < /(%u () fuldo. (4.185)

Note that point (i) is equivalent to the condition [nf']—rf" = 0 for allé = 1,...,7r+s. Therefore,
the implication (i) = (iii) follows from (EISH). Conversely, if (iii) holds ie. [u] =0, then

(ETIR3)-(ETISA) yields

([n%) = #9)GY), (u(r),y(r)) =0,
implying (i) by (E30). This shows the equivalence (iii) < (i). Let us show now (iii) < (ii).
The implication (iii) = (ii) is trivial. If (ii) holds, then

0 = G9(ut,y(r) - G (u / G0 (u?, y(r)) [l dor (4.186)

By (EIZH), it follows that [u] = 0, i.e. (iii) holds, which completes the proof. O
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4.7.3 Well-posedness of the shooting algorithm

We say that the shooting algorithm is (locally) well-posed in the neighborhood of a local
solution, if the Jacobian of the shooting mapping is invertible. This allows us to apply locally
a Newton method in order to find a zero of the shooting mapping with a very high precision,
and low cost. If the additional conditions (EI60)-(EI70]) are satisfied, we obtain a stationary
point of (P), and if the second-order sufficient condition (EI34]) holds, we obtain a local
solution of (P).

The first step to study the well-posedness of the shooting algorithm is to compute the
Jacobian of the shooting mapping. We denote by 70 the variation of pY, ol the variation of 7

for each 7 € T%, i = 1,...,7 + s, v¢’ the variations of alternative jump parameters at entry
times 27 for TE Ti. i 1, sy j=1,...,qi, and 4L the variations of jump parameters at
touch times v% for 7 € T, i=1,...,r and ¢; > 2. All of them will be called variations of

shooting parameters.

Given a vector ¢ € RUT)* and J := {i; < --- <is} C {1,...,r+ s}, the vector ¢; denotes
the row vector of component ((;,,...,¢.). We denote by I(t) the complement of I(t) in
{1,...,r+s}. With a set of variation of shooting parameters is associated a (unique by (A2)-
(A3)) linearized trajectory and multipliers (z, v, 7%, (?) solution of (arguments (u, y, p?,n?) and
time are omitted):

Z2 = fyz+ fuv on[0,7T] a.e; z(0) =0 ( )

il = —(Hz+ Hiv+7f, +G{W)  on [0,T]\ T ae. (4.188)
71(0) = 7° (4.189)
0 = Hlz+ Hlv+nfy,+ CIGD  on [0,T]\ T a.e. ( )
0= Gy w+Gl = on[0,T]\T ae. (4.191)

0 = C}Z(t) on [0,T)\ 7 ae. ( )

and, for all 7 € Ul_,; 7", setting v .=0for 7 € T

OIS Z{u I3 D (y(r)=(r) + (v + olvid =) gl "D (y ()}

i<r:TeT}, j=1

— Y g W) + iy (y()) + oivigl) (7))}

i<r:7eT}

(4.193)

Lemma 4.31. Let (u,y,p?,n) be the tmjectory associated with a zero of the shooting mappmg,
and assume that (A2)-(A4) hold and that T, = 0 for all i such that q; = 1. Let n°, (ob),
('yT ), and (V2) be a set of variations of shootmg parameters and denote by (z,v,m? ,Cq) the
linearized trajectory and multipliers solution of (BEIRN)-EI93)). Then this set of variations of

shooting parameters belongs to the kernel of the Jacobian of the shooting mapping, iff:

T T) = byy(y(T))2(T), (4.194)
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and, for all junction time T € T and alli=1,...,7r +s:
0 = gD yr)a(r)  ifreTi and ¢;>1, j=0,...,q 1 (4.195)
0 = gig()z(r)  freT) and g >?2 (4.196)
0 = g% (u(r), y(r)(v(r™), <>>+07%g§%’<u7y>rt:f ifreTi,  (4197)
0 = gfu, () y(m)(w(r"), <>>+aT§tg§ql’<u7y>rt:T+ freTl  (4198)
0 = g W(r)2(r) + ot (u(r),y(r)) i T €T and g > 2. (4.199)

The proof of this result follows from the linearization of the shooting equations (for the
jump of w7 at entry times, see [I9, Lemma 3.7]@).

In addition to the tangentiality conditions (A5)(i), reducibility condition (A5)(ii) and
strict complementarity assumption on boundary arcs (A6)(i) made for pure state constraints in
section L8, we will need the following assumptions, also for the mixed control-state constraints:

(A5) (iii) (Nontangentiality conditions for mixed control-state constraints)
Foralli=r+1,...,7r+sand all 7%, € 7} and 7%, € T2,

d d

Eci(u(t), Y(E)|epi- > 0, aci(u(t), y()|—rir < 0. (4.200)
(A6) (ii) (Strict complementarity at touch points)
’Z;f)’nes:@, foralli=1,...,r +s.

(iii) (Strict complementarity for mixed constraints)
Ai(t) > 0, foraa. teintA;, foralli=r+1,...,7+s. (4.201)
Assumption (A6)(ii) implies that constraints of order ¢; = 0,1 have no touch points.
We will finally make the assumption below:

(A7) The junctions times of different components of the constraint do not coincide (i.e. i,j €
{1,...,7 + s} and i # j implies that 7° N7’ = ().

Remark 4.32. When (A7) holds, for all entry and exit points of state constraints 7 € 7.2, UT2,,
i=1,...,r, we have that ¢, = ¢;, and assumption (A5)(i) simply says that

d% (Q'L) . .
dta (U, Y)p=r= # 0 if ¢; is odd,

A%t () e
qpai—19i (, Y)|j=gt # 0 if g; is even,

where 7% denotes 7~ (resp. 71) if 7 is an entry point (resp. exit point).

(4.202)

Under (A4) and the strict complementarity assumption (A6), using Lemma FE2] the critical
cone C',(u) defined by [I3T) is the set of v € V satisfying (recall that z, € Z is the solution
of the linearized state equation (EE22))

0 = gz(q;)(u, y)v + gz(y)(u y)z, ae.onZi i=1,...,7+s, (4.203)
0 = gz,y(y(T)) ( ) TE 721’1,’ . 17 T ] = 07---an‘ - 17 (4204)
0 = gz,y(y(T)) ( )7 7;7;)7 ) 7 sy T (4205)

5Lemma of this thesis.
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Theorem 4.33 (Well-posedness of the shooting algorithm). Let (u,y) be a local solution
of (P) satisfying (A1)-(A7). Then the shooting algorithm is well-posed in the neighborhood of
the trajectory (u,y), iff the two conditions below are satisfied:

(i) components of the state constraint of order q; > 3 have no boundary arc;

(ii) the no-gap sufficient condition (EI3) holds, i.e. Q(v) > 0 for all v € V satisfying
E203)) - [(@208) with the associated linearized state z, € Z solution of B22) and Q(v) defined
by EI30).

Once the junction conditions and the no-gap second-order optimality conditions have been
established, and with assumption (A7), Th. EE33is an easy extension of [19, Th. 3.3]ﬁ obtained
in the scalar case. The next lemma relates the second-order conditions established in section
and the alternative multipliers used in the shooting algorithm.

Lemma 4.34. Let (u,y) be a stationary point of (P), satisfying (A2)-(A4) and (A5)(ii). Then
an equivalent expression using the alternative Hamiltonian and multipliers for the quadratic

form Q(v) defined in ([EEI3A) over V is:
T
) = [ H,,. 0 (020 (W i T2 5T

+ Z 3 Zu”gl,yy (T))(20(7), 20(7)) (4.206)

=1 re72, j=1
<gf§)<y<t>>zv<t>>2>
+Z Yoo (gz,yy 7)) (20 (1), 20 (7)) — )

=1 TE,Z—tzoess

Proof. The contribution of mixed control-state constraints in both (EEI35]) and (E204]) is equal
to f(;f AC(u,y),(uy) (U ¥) (v, 20), (v, 2,))dt, therefore, summing over the finitely many state con-
straints g;, the proof is identical to [I9, Lemma 3.6]@. O

Proof of Th. .33 We first prove that if (i) does not hold, the Jacobian of the shooting map-
ping is singular. So assume that a constraint g; of order ¢; > 3 has a boundary arc (72,,7%,).
By assumption (A7) and ([EEJ), we have that ¢.; = ¢.; = ¢;, and hence, by Prop. E22 u is
continuous until order g; — 2 > 1. Therefore 7 is continuous at 77, and 7¢,, and consequently,
T 4 (@) (yu(t),y(t)) is also continuous, and ~vanishes at T~ and 7'Z+. Taking all variations of
jump parameters equal to zero, except 0!, # 0, we find by Lemma B3] a nonzero element
in the kernel of the Jacobian of the shootlng mapping. Therefore the shooting algorithm is
ill-posed.

We assume now that (i) holds. We will prove that the Jacobian of the shooting map-
ping is invertible iff (ii) holds. The Jacobian of the shooting mapping is invertible, iff it
is one-to-one, i.e. iff the only solutlon of equations (m (EID9), where (z,v,79,(9) is
the solution of [EIRD)-ETX), is 7° = 0, (ol) = 0, (177) = 0, (&) = 0. We recognize
that (EI87)-(EI93) and (ET94)-(ETA6) and (ETTI) (which enables, by (A5)(ii), to substi-
tute —g\" )( (1))z(T )/gZ (u(7),y(7)) for ot in ([EI) for all touch point 7), constitutes the

iy
first-order optimality condition for the problem

(PQ)  min 1@( ) weCuu)

veV

STheorem of this thesis.
"Lemma of this thesis.
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with Q(v) given by EZM) and Cr,(u) by EZME)-EZ@E). Here (i) are the multipliers
associated with the constraints (EL205]), and those associated with the constraints (EL204]) are
equal to fyi’j if j =1 and fyi’j + O'f.l/j—’j “Lif j> 1

If (ii) holds, i.e. if the second-order sufficient condition (EEI34]) holds, then by Lemma E37]
the unique solution of (PQ) is zero. By (A2), the cost function of (PQ) is a Legendre form
over V, and hence, the strict positivity of Q(v) over the closed linear space C’L2 (u) implies its
uniform positivity (i.e. there exists o > 0 such that Q(v) > a||v||3 for all v € Cp,(u)). In
addition, the set Cr,(u) is convex and the linear constraints (EE203)-(E20) defining Cr, (u)
are onto by Lemma Therefore the first-order optimality condition of (PQ) is necessary
and sufficient for optimality, so (ii) implies that zero is the unique solution of the first-order
optimality condition of (PQ). Therefore we have (z,v,7%,¢%) = 0, and all of 70, (v2), (v&7)
for j = 1 also equal zero by Corollary since [14(7)] = 0, and we have as well

Ao glyiTh =, forall j=2,...,q;, i=1,...,r, T€T.. (4.207)

Now whenever (i) holds, it holds for all entry/exit times that ¢, < ¢; < 2, and from assump-
tions (A5)(i) and (A5)(iii), it follows that %g(qi)(u,yﬂt:r is nonzero for all entry points

(2
Te€ T}, foralli=1,...,r+s. Therefore, equations ([III7) with (v,z) = 0 and [E207) imply
that o = 0, for all entry points 7 € 7.}, i = 1,...,r+s, and that v/ =0forall j = 2,...,q;,
i=1,...,m, 7 € T%,. Similarly, we obtain that ([LI98) and @IIJ) imply that ol = 0 for
all exit and touch points. Therefore, whenever (i)-(ii) holds, the Jacobian of the shooting
mapping is one-to-one, hence invertible, and thus the shooting algorithm is well-posed locally
around the local solution (u,y).

Assume now that (ii) does not hold. By Th. EE24Li), the second-order necessary condition
[@I32) holds at the local solution (u,y), implying that Q(v) is nonnegative over Cpz(u).
Therefore, if ([{I34]) is not satisfied, this implies that there exists a nonzero optimal solution
of (PQ), and hence there exists a nonzero solution of its first-order optimality condition. It
is then easy to see that the variations of shooting parameters associated as above with this
nonzero solution of (PQ) are not all zero, and belong to the kernel of the Jacobian of the

shooting mapping. This proves that the shooting algorithm is ill-posed. ]

4.8 Final remark: Extension to constraints on the initial and
final state

Let us comment on the extension of the results when there are additional equality and/or
inequality constraints on the initial and final state:

U, (y(0),y(T)) =0, i=1,...,0, U;(y(0),y(T)) <0, i=0+1,...,0 (4.208)

with ¥ : R?" — R¢ a G2 mapping (0 < ¢’ < ¢ < n). The results of this paper can easily
be generalized, under an additional (strong) controllability assumption (A1’) below, having
the role of Lemma in the proofs, and, for the second-order optimality conditions and
the well-posedness of the shooting algorithm, also under an additional assumption that strict
complementarity holds for the inequality constraints in (EE208]). Denote by U the mapping
composed of the equality and active inequality constraints in (EL208]), of dimension ¢. Given
k € [1,+00] and (v,z) € V,, x R", let z,, denote the (unique) solution in Z, of:

Zv,x = fu(u7 y)v + fy(ua y)zv,m’ ZU@(O) = Z.
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(A1’) For k = 2,00, there exists 6 > 0 and n € N* such that the linear mapping V,, x R" —

[Ti— W (A) x T2, L (A}) x RE,

(D200 Olag)
(0,2) = | (i (). ¥( D200 () + i@ yOROAL) 41y
Dy ¥(y(0), y(T))a + Dy ¥(y(0), y(T))200(T)

<r

is onto, and therefore has a bounded right inverse by the open mapping Theorem.

Note that in the absence of mixed control-state constraints, this assumption (A1’) is satis-
fied e.g. in the case of a linear system, i.e. f(u,y) = Ay+ Bu, if the pair (A, B) is controllable,
the initial and final conditions are fixed y(0) = yo and y(T') = yr and satisfy g;(yp) < 0 and
gilyr) <Oforalli=1,...,r, and (EZ0) holds.

4.9 Appendix

4.9.1 Tangent and Normal cones in L*>

Let us recall the characterization of the tangent and normal cones (in the sense of convex
analysis) to K := L>°(0,T") at point x € K. The characterization of the tangent cone was
obtained by Cominetti and Penot [42]:

Tic(z) ={h € L™ : ||1a,@)h+]lc — 0 when n — 400}, (4.209)

with 14, () the indicator function of the set A, (x) defined by [T, and hy := max(h;0) a.e.
Since K is a cone, the normal cone satisfies Ni(z) = {A € (L)%, (A, z) = 0}. Define

Np(z) :={y € L=(0,T) ; y(t) =0 for a.a. t € A,(2)}, n € N*.
Then we have the following characterization of N (x).
Lemma 4.35. Let x € K. Then
Ne@) = {Ne (I2)5 5 (vg) =0, ¥y € Uner-Na(a)}: (4210)

Proof. “C” Let A € Ni(z),n € N*and y € N,,(z). Then the function x+ ———
a.e. on [0,7T], and hence, since A > 0,

is nonpositive
A=Y p

Azt —y) <0.

nllylloo

Using then that (A, z) = 0, we obtain that +(\,y) <0, i.e. (\,y) =0.

“>” Assume that A € (L)% and A € Npens (N, (2))*. Then we have, for all n € N*,
ANr) = (N1a,@T)

and hence, since 0 > z(t) > —1 ae. on A, (z),

1
(A 2) < Mool an@zlloe < Ao,

Letting n — 400, we thus obtain that (\, z) = 0, which achieves the proof. ]
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We end this section by recalling two results used in the proof of the second-order necessary
condition.

Lemma 4.36. The cone K is polyhedric, i.e. for all x € K and all A € Nx(x),

Tic(z) N AT = cl(Rc(x) N A1), (4.211)
where Ry (x) is the radial cone (EEI30).
Proof. Let h € Tic(x) N A+, For n € N*, define for a.a. ¢t € (0,T)

[ h(t) ae on[0,T]\ A,(x)
hn(t) - { h(t)_ a.e. on An(:p)

where h(t)— = min(0,h(t)). For all 0 < ¢ < m, it is easily seen that = + ¢h,, < 0 a.e.
on [0,7], and hence h,, € Ri(x), for all n € N*. Moreover, in view of ([EZIM), we have that
(A, hy) = (A h_). Since (\,h) = (A\,hy) + (\,h_) =0, it follows that

(A B = [ bl = [ 18, @h)] < M [ooxl 1A, @)htlloe — 0

when n — +oo by [EZI). Hence (A, hy,) = 0. Finally, [|h — hpllco = [[1a, @)+ ]lc — 0 by
[E2M) again. So hy, is a sequence in Ry (z) N AL that converges to h in L. O

Lemma 4.37. Let v € K. For any A € Ni(z)N L2(0,T), the set Tic(x) N A\ is dense in the
set T(z) N AL, with

T(z) :={w e L*0,T) ; w <0 ae. on Alz)}. (4.212)
Proof. Let @ € T'(z) N AL, Let w, be defined a.e. on [0,T] by:

wy (t) = { max(min(w(t),n),—n) ift e [0,T]\ Ay(x)
" max(min(w(t),0),—n) if t € A,(z).

Then w, € L, and for all k > n, lAk(x)wn < 0 a.e., and hence by ([E209) w, € Tk (x).
Since A € NK;( ) N L2(0,T) fo x(t)dt = 0 implies that A(¢) = 0 for a.a. t € [0,T] \ A(x).

And then fo )w(t)dt = 0 1mphes, since w(t) < 0 on A(x), that w(t) = 0 for a.a. t such
that A(t) # 0. Consequently, we also have that w,(t) = 0 for a.a. ¢ such that A\(¢) # 0, and
hence, (A, wy) fo t)dt = 0, i.e. w, € Tic(x) N AL, It remains to show that w, — 0
for the norm of L?. If t §Z A( ), for n large enough, w,(t) = max(min(w(t),n), —n) — w(t)
when n — oo, and if ¢ € A(x), since w(t) < 0 a.e. on A(x), for all n we have w,(t) =
max(w(t), —n) — w(t). Hence, wy(t) — w(t) a.e., and |wy(t)| < |w(t)| for all ¢ € [0,T], with
w € L%. Tt follows then from the Lebesgue’s dominated convergence Theorem that w, — @
in L2, which achieves the proof. O

4.9.2 First-order optimality condition
If u is a local solution of (ER) satisfying (BEZ34), then it is well-known that there exist 7 €
M([0,T);R™) and X € (L*°)*(0,T; R**) such that
DJ(u)v + (n, DG(u)v) + (A, DG(u)v) = 0, Voel, (4.213)
n € Nig(G(u)), X€ Nk(G(u)). (4.214)
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Lemma 4.38. Assume that u is a local solution of (X)) satisfying [E3A), and that assumption
E3T) holds. Then the multiplier X belongs to L™ (0,T; R%*).

Proof. Let p be the unique solution in BV (0, T;R™) of:

—dp = Hy(u, yu, p)dt + dngy(yu);  p(T) = ¢y (yu(T)).

Then it is not difficult to show that (E2I3]) writes, with z, the solution of ([E22):

T
/ Ho (s g, D)0dt + (s ey (s ya) 20 + caltsya)v) =0, Vo €U, (4.215)
0

Since u, y and p belong to L, so do the functions Hy(u(-), yu(-),p(*)), cu(u(:),yu(-)) and
cy(u(-), yu(+)). It follows then from (EZ2TH) that for all v € U,

[(A culu, yu)v)] < [ Mlooxlley (s yu) llo l20lloo + 1H u(t, Y, B) oo [v]]1-

By Gronwall’s Lemma, there exists a constant £ > 0 such that ||z, ||cc < &jv]1, for all v € U,
and hence we obtain that for all v € U,

(A cu (g V)] < ([ Alloorlley (s yud ook + 1 Huts yus P)lloo) 0]l < #'fJvlli. - (4.216)

By assumption 3), for all w € L*(0,T;R?®), there exists v € U such that w;(t) =
Ciu(u(t), yu(t)v(t) for a.a. t € Ap(ci(u,yy)), for all i =r+1,...,r+ s, and ||v||; < M|w];
for some constant M > 0. Indeed, take e.g. v(t) = C(t) T (C(H)C(t)T) w(t) with C(t) :=
cre ) (u(t), yu(t)) if I5(t) # 0, and v(t) = 0 otherwise, and M := ||[CT(CCT)™||. Since
A € Nk (G(u)), the characterization of the critical cone (E2ZI0) implies that (A, ¢y (u,yy)v) =
(A, w). Then [EZIH) yields

0w < K'fwlh,  Yw e L0, T;R). (4.217)

Since L™ is dense in L! and X is continuous for the norm of L', X\ can be extended to a
continuous linear form over L' (0,T;R®). Therefore A belong to the dual space L°(0,T;R**).
O

It is not difficult to derive from this result the first-order optimality condition given in Th.
See related results in [IT1) RS].



Chapitre 5

Analyse de stabilité our les
contraintes d’ordre 2

Abstract This paper gives stability results for nonlinear optimal control problems subject
to a regular state constraint of second-order. The strengthened Legendre-Clebsch condition
is assumed to hold, and no assumption on the structure of the contact set is made. Under a
weak second-order sufficient condition (taking into account the active constraints), we show
that the solutions are Lipschitz continuous w.r.t. the perturbation parameter in the L2 norm,
and Holder continuous in the L norm. We use a generalized implicit function theorem in
metric spaces by Dontchev and Hager [STAM J. Control Optim., 1998]. The difficulty is that
multipliers associated with second-order state constraints have a low regularity (they are only
bounded measures). We obtain Lipschitz stability of a “primitive” of the state constraint
multiplier.

Résumé Dans cet article on donne un résultat de stabilité pour les problemes de com-
mande optimale avec une contrainte sur I’état du second ordre réguliere. La condition forte de
Legendre-Clebsch est supposée satisfaite. Sous une condition suffisante du second ordre faible
(prenant en compte les contraintes actives) on montre que les solutions sont lipschitziennes
par rapport au parametre pour la norme L2, et holdériennes pour la norme L*. On utilise
un théoreme des fonctions implicites généralisé dans des espaces métriques de Dontchev et
Hager [SIAM J. Control Optim., 1998]. La difficulté vient du fait que les multiplicateurs as-
sociés aux contraintes sur I’état du second ordre sont peu réguliers (ce sont seulement des
mesures bornées). On obtient la stabilité lipschitz d’une primitive du multiplicateur associé a
la contrainte sur 1’état.

5.1 Introduction

This paper deals with stability analysis of nonlinear optimal control problems of an ordinary
differential equation with a second-order state constraint. State constraints of second-order
occur naturally in applications: For example, in the problem of the atmospheric reentry of
a space shuttle, with the back angle as control, the constraints on the thermal flux, normal
acceleration and dynamic pressure are second-order state constraints, see [27]. Stability and
sensitivity analysis of solutions of optimal control problems is of high interest for the study

*Accepted for publication in STAM Journal on Optimization, under the title Stability analysis of optimal
control problems with a second-order state constraint.
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of numerical methods, such as e.g. continuation algorithms, see [20], and to analyze the
convergence of discretization schemes and obtain errors estimates, see e.g. [b4].

For a class of general constrained optimization problems in Banach spaces, when the
derivative of the constraint is “onto” and a second-order sufficient condition holds, Lipschitz
stability of solutions and multipliers can be obtained by application of Robinson’s strong
regularity theory [1I21] to the first-order optimality system. For optimal control problems, this
theory does not apply because of the well-known two-norm discrepancy (see [99]). Stability
results for optimal control problems using variants of Robinson’s strong regularity in order to
deal with the two-norm approach have been obtained in [62], [87], [55] for control constraints,
and [90] for mixed control-state constraints.

Lipschitz stability results for state constraints of first-order have been obtained by Malanowski
[88] and Dontchev and Hager [53]. The difficulty of pure state constraints is the low regularity
of multipliers, which are bounded Borel measures. These multipliers can be identified with
functions of bounded variation, and for first-order state constraints, it is known that under
standard hypothesis, they are more regular (they are Lipschitz continuous functions, see Hager
[65]). This additional regularity of solutions and multipliers is strongly used in the analysis in
[88] and [B63]. In those two papers, strong second-order sufficient conditions were used (that do
not take into account the active constraints). The sufficient condition was recently weakened
by Malanowski [92, 9T].

For higher-order state constraints, the multipliers associated with the state constraints
are only measures, and are not continuous w.r.t. the perturbation parameter (for the total
variation norm). For this reason, the frameworks of [88] or [53] are not directly applicable.
The only stability and sensitivity results known for state constraints of higher-order are based
on the shooting approach, see Malanowski and Maurer [94] and [T9]. Such results require
strong assumptions on the structure of the contact set.

The main result of this paper is a stability result for regular second-order state constraints,
with no assumption on the structure of the contact set. The control is assumed to be contin-
uous and the strengthened Legendre-Clebsch condition to hold. We use a generalized implicit
function theorem in metric spaces by Dontchev and Hager [53], applied to a system equiv-
alent to the first-order optimality condition (the alternative formulation). This formulation
involves alternative multipliers that are “integrals” of the original state constraint multipliers,
and therefore are more regular. We obtain Lipschitz continuity of solutions and alternative
multipliers in the L? norm, and Holder continuity in the L> norm, under a weak second-order
sufficient condition taking into account the active constraints.

The paper is organized as follows. In section B2l the problem, optimality conditions,
assumptions, and the admissible class of perturbations are introduced. In section B3l the
second-order sufficient optimality condition is presented. In section 4], the main stability
results for the nonlinear optimal control problem are given. Section is devoted to stability
analysis of linear-quadratic problems, that is used to prove the main theorem in section
Finally, conclusion and comments are given in section B.71
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5.2 Preliminaries

We consider the following optimal control problem

T
) min [ o,y + o) (5.1)
subject to y(t) = f(u(t),y(t)) foraa. te[0,T], y(0)=uyo (5.2)

g(y(t)) < 0 forallte[0,T]

with the control and state spaces I := L>(0,T;R™) and Y := W1°°(0,T;R"). The following
assumptions are assumed to hold throughout the paper and will not be repeated in the various
results of the paper.

(AO) The data £ : R x R" - R, ¢ : R® — R (resp. f: R™ xR" - R", g : R" —» R)
are C? (resp. C3, C*) mappings, with locally Lipschitz continuous second-order (resp.
third-order, fourth order) derivatives, and f is Lipschitz continuous.

(A1) The initial condition yo € R™ satisfies g(yo) < 0.

We consider in this paper state constraints of second-order. This means that the first-order
time derivative g() : R™ x R"™ — R of the constraint, defined by

g (w,y) = gy(y) f(u,y)

(1)

does not depend on the control variable u, i.e. gy’ = 0 (and hence, we write g™ (y) =
g (u,y)), and the second-order time derivative g(® : R™ x R” — R, defined by

9P (u,y) = g (y) f(u, y)

depends explicitly on the control, i.e. g ;é 0.

Remark 5.1. For linear-quadratic control problems of type (BG2)—([E60]) (see section BH),
with dynamics given by 2(t) = A(t)z(t) + B(t)v(t) and state constraint by C(t)z(t) + d(t) <
0, the state constraint is of second-order means that C(t)B(t) = 0 on [0,7] and (C(t) +
C(t)A(t))B(t) # 0.

Remark 5.2. In this paper the state constraint is assumed to be scalar-valued for simplicity.
The results are directly generalizable to several state constraints g1,..., g, of second-order
(and even of higher-order [98, 68] ¢; > 2 for ¢ = 1,...,r, see Remark further) under the
assumption (see [98 [I7]) that the gradients of the nearly active constraints Vugz((h)(u,y) are

uniformly linearly independent along the trajectory.

Notation We denote by subscripts Fréchet derivatives w.r.t. the variables u, y, i.e. fy,(u,y) =
Dyf(u,y), fyy(u,y) = Dzyf(u,y), etc. The derivative with respect to the time is denoted
by a dot, i.e. y = % — y(U. The set of row vectors of dimension n is denoted by R™*.
Adjoint or transpose operators are denoted by the symbol . The euclidean norm is de-
noted by | - | By L"(0,T) we denote the Lebesgue space of measurable functions such that
lu|l, = fo lu(t)|"dt)/" < oo for 1 < 7 < o0, ||uf|se = supess|o 71 |u(t)| < co. The space
wer(0,T) denotes the Sobolev space of functions having their s first weak derivatives in
L7(0,T), with the norm [Jul[s, := > 7_, [u@)]|.. We denote by H* the space W*2. The space
of continuous functions over [0,7] and its dual space, the space of bounded Borel measures,
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are denoted respectively by C[0,T] and M[0,T]. The set of nonnegative measures is denoted
by M_]0,T]. The space of functions of bounded variation over [0,7] is denoted by BV[0, T,
and the set of normalized BV functions vanishing at T" is denoted by BVr[0,T]. Functions of
bounded variation are w.l.o.g. assumed to be right-continuous. We identify the elements of
M0, T] with the distributional derivatives dn of functions n in BV7[0,T]. The support and
the total variation of the measure dn € M][0,T] are denoted respectively by supp(dn) and
|dn|aq. The duality product over M[0,T] x C[0,T] is denoted by (dn, ) fo . We
denote by Bx(x, p) (resp. Bx) the open ball of the space X with center x and radlus p (resp.
the open unit ball of the space X). We write B, for Brr, r = 2, cc.

We call a trajectory an element (u,y) € U x ) satisfying the state equation (B2). A
trajectory satisfying the state constraint (B3]) is said to be feasible. The contact set of a
feasible trajectory is defined by

I(g(y)) == {t € [0,T] : g(y(t)) = 0} (5.4)

Under assumption (A0), the mapping 4 — Y, u — y,, where y,, is the unique solution of the
state equation (B2), is well-defined. This leads us to the following abstract formulation of
(P):

K .
min J(u),  G(u) € K, (5.5)
with the cost function J(u fo u, Yy )dt+d(yu (7)), the constraint mapping G(u) := g(yu),

and the constraint cone K C_[0,T7] is the cone of continuous functions taking nonpositive
values over [0,7]. The polar cone to K, denoted by K, is the set of nonnegative measures
M4 [0,T].

Finally, in all the paper the time argument ¢ € [0,7] is often omitted when there is no
ambiguity.

5.2.1 Optimality conditions and Assumptions

Let us first recall the well-known first-order necessary optimality condition of problem (P).
The Hamiltonian H : R™ x R™ x R™ — R is defined by

H(u,y,p) = L(u,y) + pf(u,y). (5.6)

We say that a feasible trajectory (u,y) is a stationary point of (P), if there exists (p,n) €
BV([0,T];R™) x BVp[0,T] such that

—dp = Hy(u,y,p)dt +gy(y)dn,  p(T) = ¢y(y(T)) (5.7)
0 = Hy(u(t),y(t),p(t)) a.e. on [0, 7
dn € Ng(g(y)).

Here Nk (g(y)) denotes the normal cone to K at point g(y) (in the sense of convex analysis). If
g(y) € K, then Nk (g(y)) is the set of nonnegative measures in M [0, 7] having their support
included in the contact set (B4]), otherwise Nk (g(y)) is empty.

The Lagrangian L : U x M[0,T] — R of problem (X)) is defined by

T
L(u,n) := J(u) + (dn, G(u)) = J(u) +/O 9(yu(t))dn(t). (5.10)
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We may write the first-order optimality condition as follows: (u,y = y,,) is a stationary point
of (P) iff there exists n € BV[0,T] such that

D, L(u,n) =0, dn € Ng(G(u)). (5.11)

The costate p is then obtained in function of u, y = y, and n as the unique solution in
BV([0,T];R™) of the costate equation (E1).
Robinson’s constraint qualification [IT9, 120] for problem (P) in abstract form (EI) is as
follows:
Je >0, eBcjor) C G(u) + DG(u)U — K. (5.12)

This condition is equivalent to the existence of some v € U such that
DG(u)v <0 on I(g(y)).

It is well-known that a local solution (weak minimum) of (P) satisfying (B.12)) is a stationary
point of (P).

Alternative formulation For the stability analysis, it will be convenient to write the op-
timality condition using alternative multipliers n? and p?, uniquely related to (p,n) in the
following way:

10 = [ a0 [ e (5.3
pP(t) = p(t) —n' (Mg (y(®) =gV (y(t),  te0,T]. (5.14)
We see that 7% belongs to the set BV2[0, T, defined by
BV20,T] := {£ e W>°(0,T) : £&(T) = 0, € € BV¢[0,T]}. (5.15)
Define the alternative Hamiltonian H : R™ x R™ x R™ x R — R by
H(u,y,p*n%) = H(u,y,p*) +1°9® (u,y), (5.16)

where H is the classical Hamiltonian (B8]). Using these alternative multipliers, it is not difficult
to see by a direct calculation (see [98] or [I7, Lemma 3.4]@) that a feasible trajectory (u,y) is
a stationary point of (P) iff there exists (p2,7%) € W1H°(0, T;R™) x BV2[0,T] such that

—-p* = f?y(u7y7p2,772)7 P*(T) = ¢y (y(T)) (5.17)
= Hy(u,y,p* 1% a.e. on [0,7] (5.18)
di* € Nk(g(y)). (5.19)

The definition of these multipliers p?,n? is inspired by the ones used in the alternative formu-
lation for the shooting algorithm, see [98, [68, 94} [19], though p?,m? are continuous over [0,T]
while the ones in the shooting algorithm have jumps.

Remark 5.3. The results of this paper have a natural generalization to a state constraint
of higher-order ¢ > 2, considering in the analysis alternative multipliers (n?,p?) of order ¢

'Lemma BT of this thesis.
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defined below and the resulting alternative formulation of optimality condition of order gq.
These alternative multipliers of order ¢, n? € BV:,? [0, T] with

BVA[0,T) := {£ € WI1°(0,T) : €U(T) =0V =0,...,q — 2, €97V € BVy[0,T]}
and p? € WH>(0,T;R™), are defined by

T
1 = S ] = —1(s)ds ) =2, ...
) = /md”( 10 /tn] (s)ds, j=2....q.

Pt = () = Y (e Y (y(1)).

J=1

Assumptions Let (@, ) be a local solution of (P). We denote by Q := I(g(y)) the contact

set of the trajectory (u,y), and for a small o > 0, let 2, denote a neighborhood of the contact
set

O, :={t€[0,T] :dist{t,Q} <o} (5.20)
We assume that (u,y) satisfies the assumption below:

(A2) The state constraint is a regular second-order state constraint, i.e. g&l) =0 and

36,0 >0, 9P (@®),y@)| >4, foraa. teQ,. (5.21)

Given v € L"(0,T;R™), 1 < r < oo, we denote by z, the unique solution in W7 (0, T; R™)
of the linearized state equation

Zo(t) = fy(a(t), y(t))zy(t) + fula(t),g(t))v(t) ae. on[0,T], 2,(0)=0. (5.22)
Note that the derivative of the constraint mapping is given by DG(u)v = g4(¥)2y

Lemma 5.4. Let (u,q) be a feasible trajectory of (P) satisfying (A2). Then for allr € [1,400]
and all € € (0,0), with the o of (EZI)), so small that

Q. Cla,TY, for some a > 0, (5.23)
the linear mapping
L7(0,T;R™) = W2 (), v (g5(F())7())le., (5.24)

where |, denotes the restriction to the set Q, is onto, and therefore has a bounded right
inverse by the open mapping theorem.

If w is continuous over [0, 7], then Lemma B4l is satisfied with € = o, assuming w.l.o.g. in

view of (A1) that o in (B2])) satisfies (B223]).

Proof. We only recall the main ideas of the proof, given in [I7, Lemma 2.2]@. We have that
Sz} = o @)z,
2
§t2 {gs@)zo(t)} = 9§ (@t), 5(t)zo(t) + 92 (u(t), 5(t))v(t).

Since by hypothesis (BZ1l) and (A1), g&z) (u(t),y(t)) is non singular on a left neighborhood of
Q., the result follows from Gronwall’s Lemma. O

2Lemma of this thesis.
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By the above lemma, assumption (A2) (together with (Al)) implies that (u,y) satisfies
Robinson’s constraint qualification (BI2)), and hence (@, ) is a stationary point of (P), with
multipliers (p,7). Moreover, Lemma B4 implies that the multipliers (p,7) associated with
(u,y) are unique. We assume in addition that

(A3) u is continuous on [0,7] and the strengthened Legendre-Clebsch condition holds:

Fa >0, v Hu(a(t), 5(t), p(t))v > alv|?, for allt € [0,T] and all v € R™.  (5.25)

Remark 5.5. A stronger assumption than (B220l), which implies the continuity of @ (see [17,
Prop. 3.1]@), is the uniform strong convexity of the Hamiltonian:

Ja >0, v Hyu(a,5t),5(t)v > alv|?, forall t € [0,T] and all 4,v € R™.

Denote by p? and 7 the alternative multipliers related to p and 7 by (EI3))(5-14). Assumption
(EZ3) can be rewritten, using the alternative multipliers p? and 7? instead of p and 77 and the
alternative Hamiltonian (BI6]), by:

Ja >0, v Hy(at), g(t), 52 (t), 7(t))v > alv|?, forall t € [0,7] and all v € R™.  (5.26)

Lemma 5.6. Let (u,y) be a stationary point of (P) satisfying (A2)-(A3). Then u belongs to
the space W1H>°(0, T; R™).

Proof. By (A3), implying (B228]), and the implicit function theorem applied to relation (BIS),
there exists a C'! function Y such that @(t) = Y(5(t), p>(t),7(t)). Since g,p%, 7> € Wh it
follows from the chain rule that @ € W1, ]

Remark 5.7. More precisely, under the assumptions of Lemma B8, @ € BV?2([0, T]; R™), where
BV?20,T] := {u € WH°(0,T) : w € BV[0,T]}. Indeed, differentiation of (EIX) w.r.t. time
shows that (omitting arguments (@, 4, 5%, %))

0 = Huii+ Hyyf — Hyfu +i7gP.
Since 77> = 7j € BV7[0,T] and H,, is uniformly invertible by (2], we obtain the result.

5.2.2 Perturbed optimal control problem

We consider perturbed problems in the following form:

(P*) min / 4 (u(t), (1))t + ¢ (y(T)) (5.27)
subject to y(t) = fH(u(t),y(t)) ae. on[0,T], y(0)=yk (5.28)
g"(y(t)) 0 foralltel0,T]. (5.29)

Here p is the perturbation parameter, belonging to an open subset M| of a Banach space M.

Definition 5.8. We say that (PH) is a stable extension of (P), if:

(i) There exists 1 € My such that (P*) = (P);

(ii) The mappings R™ x R™ x My — R, (u,y, 1) — €*(u,y); R" x My — R, (y, ) — ¢ (y);
My — R", u— yb (resp. R™ x R" x My — R™, (u,y,pn) — fF(u,y); R™ x My — R,

3Proposition of this thesis.
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(y, 1) — g*(y)) are of class C? (resp. C3, C*), with locally Lipschitz continuous second-order
(resp. third-order, fourth order) derivatives, uniformly w.r.t. p € My;
(iii) The dynamics f* is uniformly Lipschitz continuous over R x R"™ for all u € Moy;

(iv) The state constraint is not of first-order, i.e. (g“)q(})(u, y) =0 for all (u,y,u) € R™ xR™x
M.

Given a stable extension (P*) and (u, ) € U x My, we denote by yt the unique solution
in ) of the state equation (B28]), and we have the abstract formulation of (P*)

minJ(u),  G(u) € K, (5.30)

with JH(u) := fOT O (u, yh))dt + ¢ (vt (T)) and G*(u) := g*(yt). When we refer to the data of
the reference problem (P), we often omit the superscript ji.

5.3 Second-order sufficient optimality condition

Let (i,9) be a stationary point of (P), with multipliers (p,7). Let V := L2(0,7;R™). The
quadratic form involved in the second-order optimality conditions, defined over V, is as follows:

T
Q) = [ DR, H@ .02 + o5 (D). (D))
0 (5.31)
T

+/O gyy(g)(zvazv)dﬁ'

Recall that z, is the solution of the linearized state equation (B2Z). Here the notation

D?u y)QH(ﬂ,gj,p)(v, 2,)? stands for D(Qu ) (u y)H(ﬂ,gj,ﬁ)((v, Zy), (v, 2y)). The critical cone C(u)
is the set of v € V satisfying
9y(¥(t)z0(t) = 0 on supp(dr), (5.32)
9y(U(t)zo(t) < 0 on I(g(y)) \ supp(dr). (5.33)

A sufficient second-order optimality condition for (P) is, see [21}, Th. 18]H for scalar-valued
control and constraint and [I7, Th. 6.1 for vector-valued ones:

Q(v) >0, for all v € C(a) \ {0}. (5.34)

When the strengthened Legendre-Clebsch condition (B22A)) holds, (B34 implies that (@, y) is
a local solution of (P) satisfying the second-order growth condition:

Je,p>0, Ju) >J@) +cllu—a|3 forallucld:Gu) €K, |lu—1ile <p. (5.35)

This condition involves two norms, L? for the growth condition and L for the neighborhood.

We will use, in the stability analysis, a natural strengthening of the sufficient condition
(B34), omitting the inequality constraint (B33 in the critical cone. So let the extended
critical cone C(@) be defined as the set of v € V satisfying (532)) (and hence, C(@) C C(a)).
The strong second-order sufficient condition used in the stability analysis is as follows:

Q(v) >0,  forallvel(a)\{0}. (5.36)

4Theorem of this thesis.
5Theorem E-24] of this thesis.
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Although we call the above condition the strong second-order sufficient condition (in com-
parison with (34])), it takes into account the active constraints so it is weaker than the
second-order sufficient condition used in [53] that assumes the strict positivity of Q over the
whole space V \ {0}.

The strengthened Legendre-Clebsch condition (B225]) implies (see [24), Prop. 3.76(i)]) that
the quadratic form Q is a Legendre form (see [[4]), i.e. a weakly lower semi-continuous (weakly
l.s.c.) quadratic form with the property that if a sequence v, weakly converges to v in L?
(v, — v) and if Q(v,) — Q(v), then v, — v strongly.

Lemma 5.9. Let (u,y) be a stationary point of (P). An equivalent expression for the quadratic

form Q defined by [&3)), using the alternative multipliers (p2,7°) given by (EL3)-(BE14)
instead of (p,7) and the alternative Hamiltonian (BI6), is:

T
Q) = [ D2 (a5, 5% 7°) (v, 20)%dt + 6y (5(T)) (20 (T), 2 (T)). (5.37)
0

Proof. Let v € V. Denote by Q(v) the right-hand side of (37) and set A := Q(v) — Q(v).
In view of the relations (EI3)—(EId) between (p?,7?) and (p, 7)), we have

T T
A = / (p% — p)D%f (@, §) (v, 2, )2dt + / D?g@ (u, ) (v, z,) 72 dt
0 0

T
- /0 gyy(g)(zva Zv)dﬁ
T

T
= - /O 7' 9y(7)D* (4, 9) (v, z,)2dt — [ 729V (5)D? f (1, 9)(v, 2,) dt

S—

T T
+ / D29 (a,5) (v, 2Pt — / Gy (8) (20, 7)1
0 0

The integration by parts formula in BV [B8, p.154] shows that (the calculus is analogous to
Lemma 3.6 in [W]é)

/T (B2 20} = /Ti{ (5) (20 20) }T AL + [0y (3) (20, 20)7 ]
Ogyyy vy Zv )AN) Odtgyyy vy Rv) g1 Gyy\Y)(Zv, 20)1)" |0
T
- /0 (90000 200 70) + 2040 @) (D (8, 5)(0, 20), 2)}7' b

T T
- /0 o (@) (20, 20)7 it — /0 0y(@) D2 (0, 5) (v, 2) 27" dt.

Similarly, we obtain that
T T T
/0 95 (5) (20 27 dt = /0 D29 (@, 5) (v, ) idt — /0 oD (@) D2 F (1, §) (v, 20) i,

Summing the two above equalities, we obtain that A = 0, which completes the proof. ]

5Lemma of this thesis.
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5.4 Stability analysis for the nonlinear problem

According to Def. 5.16 in [24], adapted to our optimal control framework, we consider the
following definition of uniform second-order growth condition.

Definition 5.10. Let (u,y) be a stationary point of (P). We say that the uniform second-order
(or quadratic) growth condition holds, if for all stable extensions (P*) of (P), there exists
¢, p > 0 and a neighborhood N of fi, such that for any stationary point (u*,y*) of (P*) with
p €N and ||u* — 1o < p,

JH () > JMuP) + cllu — w3, forallu € U : G*(u) € K, ||u — 1|00 < p. (5.38)

The next proposition (proved in subsection BZ2) shows that the strong second-order
sufficient condition (B36]) implies the uniform second-order growth condition. Therefore, if a
stationary point for the perturbed problem (P*) exists, then the latter is locally unique in a
L*°-neighborhood of @, and is a local solution of (P#).

Proposition 5.11. Let (u,y) be a stationary point of (P) satisfying (A2)-(A3) and the strong
second-order sufficient condition (B30). Then the uniform second-order growth condition
holds.

The difficult part in the stability analysis here is to prove the existence of a stationary point
for the perturbed problem. For some general optimization problems, Robinson’s constraint
qualification (B212) and the uniform quadratic growth condition imply, for a certain class of
perturbations, the existence of a stationary point for the perturbed problem, see Bonnans
and Shapiro [24, Th. 5.17]. The proof uses Ekeland’s variational principle [b9]. However,
this result does not apply to our nonlinear optimal control problem, due to the two-norms
discrepancy, but it does apply to linear-quadratic problems (see the proof of Th. BE2Z3)). For
the general nonlinear problem, in order to obtain the existence of a stationary point for the
perturbed problem, we need to use a variant of Robinson’s strong regularity theory [121].

The main result of the paper is the next theorem (proved in section B.0l).

Theorem 5.12. Let (u,y) be a local solution of (P), satisfying (A2)-(A3) and the strong
second-order sufficient condition (B30). Then for all stable extensions (P") of (P), there
exist ¢, p,k,k > 0 and a neighborhood N of fi, such that for all p € N, (P") has a unique
stationary point (ut,y*) with |[u* — t|lec < p and unique associated alternative multipliers
(P>, n>H), and for all p, ' € N,

O NN e TP e PR PG N CE)
= oo, 197 = 9" 1,00, 1P = 2P 10, [02# =0 oo < Rl — w72, (5.40)

Moreover, (ut,y*) is a local solution of (P*) satisfying the uniform quadratic growth condition
E33).

The above theorem is obtained by application of a generalized implicit function theorem by
Dontchev and Hager [53] (Th. BEI1 of this paper) to the alternative formulation (B17)—(ET9])
in suitable functional spaces described in subsection In order to show that the main
assumption of this theorem is satisfied (assumption (iv)), we have to show that a perturbed
linear-quadratic optimal control problem has a unique solution which is Lipschitz continuous
w.r.t. the parameter. For this, we will use Prop. BTl (or more precisely, its analogous
statement adapted to linear-quadratic problems.) Before giving the proof of Prop. BTl we
first need to study the stability of multipliers (Prop. EI3]).
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5.4.1 Stability of multipliers

The next result shows that under the constraint qualification (A2), the stability of multipliers
could be deduced from the stability of solutions. Given r € [1,+00], we denote by || - ||2,+ the
norm of the dual space to W27 (0,7), i.e., for dn € M[0,T] we have

| Jo @(t)dn(t)]

, & e W2T(0,T),® £0}.
@]z,

[dnll2,re := sup{

Proposition 5.13. Let (u,y) be a stationary point of (P) satisfying (A2). Then for every
stable extension (PH) of (P), there exists v > 0 such that for every stationary point (u,y) of
(PH), with (unique) associated multipliers (p,n) and alternative multipliers (p%,m?) given by

ET3) -ETI4), the following hold:

() If | — B, ||w — @lloe < v, then dn is uniformly bounded in M]0,T);

(ii) There exists k > 0 such that, for all || — i, ||lu — || < v, we have
ldn = dijll2, 1 0% = PPlloe < w(llu = lloo + [l — fl)-

Moreover, when ||u — ], ||u — t|lec — O

(iil) dn weakly-* converges to dfj (dn = d7) in M[0,T);
(iv) nt — it in LY;

(v) p? and n? converge uniformly to p*> and 7, respectively.

The proof of the above proposition uses the lemma below.

Lemma 5.14. For all 1 < r < oo, with ' := r/(r — 1) (1! = o0), there exists a positive
constant C such that

€]l < Cl|dE] 2 for all € € BV2[0,T). (5.41)

Proof. Let o € L"(0,T). Set ®!(t) := fg p(s)ds and ®(t) := fg ®'(s)ds. Then ® € W?27(0,T),
and || @]z, < C@lly, with C =1+ T//r + (T//7)?. Since &(T) = £(T) = 0, the integration
by parts formula in BV [58, p.154] implies that, for all £ € BV2[0,T],

T T ) T )
| etewar = = [ owéwmar = [ e
Therefore,
T T :
t)e(t)de D(t)de(t
N - . L OO U A U1}
pELT 020 el BEW?2" 20 ®]l2,
which gives the result. O

Proof of Prop. I3 Let (PH) be a stable extension of (P). Note first that for |u — f|| and
||lu— @]/ small enough, assumptions (A1) and (A2) hold for (P#). This implies the uniqueness
of the multipliers (p,n) associated with a stationary point (u,y) of (P#). Since (u,y) satisfies
Robinson’s constraint qualification (EI2), point (i) follows from [24), Prop. 4.43].

Let us show (ii). Since (u,y = y4) is a stationary point of (P#), we have that

DJ*(u) + DG*(u)"dnp =0,  dn € Ng(G*(u)).
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It follows that DG(u) " (dfj — dn) = DJ*(u) — DJ (@) + (DG*(u) — DG(%)) " dn, and hence, for
all v € L1(0,T),

(dij — dng, DG(@)v) = (DJ"(u) — DJ(@))v + {dn, (DG (u) — DG(a))v). (5.42)

Fix ¢ € (0,0) with the o of (2Z]l) satisfying (B2Z3)). By Lemmabd, the linear mapping defined
in (B2 for r = 1 is onto. Since DG(u)v = ¢,(¥)zy, by the open mapping theorem, there
exists a constant C; > 0 such that for all ® € W21(0,T), there exists v € L1(0,T) such that
DG(u)v = ® on Q. and |[v||; < C1||®||2,1. For ||p — Al [[u — @]l small enough, the contact
set I(g"(y)), and hence the support of the measure dn, are included in the set 2.. Therefore,
(dn — dn, DG(u)v) = (dn — dn, ®). Consequently, by (522,

[(dn — dig, @) < [(DJ*(u) = DJ(@))o| + |[dn|m || (DG (u) — DG (u))v]|oo-
By point (i), |dn|a is uniformly bounded, and it is not difficult to check that
[(DJ*(u) = DJ(a))vl, [[(DGH(u) = DG(w))v]o < C(llu = tlloo + |l = alDllv]]1,
where C' denotes (possibly different) positive constants. Therefore, we obtain that
[(dn — dn, @)

< COllu = alloo + [l = alDllvlly
< CO(Ju = tlloe + [l = BIDI®]l2,1-

Consequently, ||dn—dij||2,1+ < CO1(||u—ii||co+]||—fl]), and since by Lemma B4, ||n? — 7| oo <
C||dn — d7n||2,1«, this proves (ii).

Now consider a sequence p, — i, and let (uy,y,) be a stationary point of (P#») such that
U, — 4 in L, with (unique) multipliers (p,,7,) and alternative multipliers (p2,n2). Since
W21(0,T) is dense in C[0,T], we deduce easily from point (i) that dn, — d7i in M[0,T],
which shows (iii). By the compactness Theorem in BV [2, Th. 3.23], it follows that . — 7' in
L', which shows (iv). Finally, since n? is given by (BI3), (iv) implies that n2 — 72 uniformly.
By (EI7) and by Gronwall’s Lemma, we conclude that p2 — p? in W%, which achieves the
proof of (v). O

5.4.2 The uniform second-order growth condition (proof of Prop. B.1T)

The proof of Prop. BTl uses the auxiliary result below. Given A, B C [0,7], denote by
exc{A, B} the Hausdorff excess of A over B, defined by

exc{A, B} := sup inf |t — s|, (5.43)
tcA s€B

with the convention exc{(), B} = 0.

Lemma 5.15. Let dij € M[0,T], and a sequence (dn,) C M[0,T] be such that dn, weakly-*
converges to dn in M[0,T]. Then e, = exc{supp(dn),supp(dn,)} converges to zero when
n — +00.

Proof. The result follows from classical compactness arguments. By contradiction, assume
that the result is false. Then there exist €9 > 0 and a subsequence, still denoted by dn,, such
that for all n € N*, e,, > ¢q, i.e. there exists ¢, € supp(dn) such that for all s € supp(dn,),
|tn, — s| > 9. The sequence (t,)nen+ C [0,7] being bounded, assume w.l.o.g. that ¢, — ¢ €
[0,T]. Since supp(dn) is closed, ¢ € supp(d7). For n large enough, |t,, — t| < £¢/2, and hence,
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for all s € supp(dny,), |t —s| > |tn — s| — [tn — t| > €0/2. Let ¢ be a continuous function, with
support in [t — £¢/2,t + £0/2], and such that fOT di # 0. Since dist{t, supp(dn,)} > o/2 for

all large enough n, fOT @dn, = 0. But dn, = d7, implying that fOT edn, — fOT d7, which
gives the desired contradiction. O

Remark 5.16. We may equivalently reformulate Lemma as follows: if dn, weakly-* con-
verges to dij in M0, 7], then

supp(d) C limsup supp(dn,),

n—-+00

where the lim sup is in the sense of Painlevé-Kuratowski.

Proof of Prop. 1l We argue by contradiction. If the uniform second-order growth condition
does not hold, there exist a stable extension (P*), a sequence u, — [, a stationary point
(tn, yn) of (P#) such that u,, — @ in L, with multipliers (p,,, n,) and alternative multipliers
(p2,m?), and a feasible point (i, §,) of (P#~) such that

JH(@n) < JH (un) + o([[@n — unll3)- (5.44)

Introducing the Lagrangian of (P*), L*(u,n) = J*(u) + (dn, G*(u)), and using that dn, €
Ny (G'(uy,)), (EZ4) implies that

LFE™ (U, M) — LH™ (g, ) <0 TP () — T (ug) < o( ||t — un”%)

Set £y, 1= ||l —Upll2 — 0 and v, := &, 1 (@i, —u,). A second-order expansion of the Lagrangian
shows that L (1, mn) — LM (U, ) = €2 OFn (vy,) + 0(g2), where the quadratic form QFn is
defined like (B31)) for the stationary point (un,yn) of (P#*). Therefore, dividing the above
inequality by €2, we obtain that

Q™ (vy) < o(1). (5.45)

Since [|v,|l2 = 1 for all n, taking a subsequence if necessary, we may assume w.l.o.g. that
v, — 0 weakly in L? for some o € V when n — +o00. Since by Lemma 9, Q*" can also
be expressed by (E317), and (un, Yn,p2,12) — (4,7, p?,7%) uniformly by Prop. BEL3Nv), and
since v, is bounded in L2, it follows that Q" (v,) — Q(v,) — 0. Therefore, writing that
QFn (vy,) = Q(vn) + (QHn (vy,) — Q(vy,)), and using that Q is a Legendre form and hence weakly
l.s.c., we obtain by (BZ0)) that

0(v) < 0. (5.46)

Moreover, since v, — © weakly in L?, and (un,yn) — (@, 7) uniformly, the linearized state
Zn, solution of

Zn = fﬁn(umyn)zn + [ (U, yn)vn  ae. on [0,T],  2,(0) =0
converges weakly to Z := z; in H', and hence uniformly. Since G*(4,,) € K, we have that
0> GH(Uy) — G** (uy,) = €, DGH* (up) vy, + €p1y on supp(dny,), with |7, ]|ec = O(ey). Since
DGH (up)vn, = g (Yn)2n, it follows that

9" (Yn)2n + 1 <0 on supp(dny). (5.47)
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Since Ll (yn()zn(t) = (g””)g(})(yn)zn is uniformly bounded over [0,77], the functions (of
time) g, (yn)2n are uniformly Lipschitz continuous over [0, T)]. Therefore,

sup gy(1Z < lgy(@Z — a4 (n)znlloo + 16"V () znllocen + sup  gE™ (yn)2n
supp(d7) supp(dnn)

< o(1) + O(eyn) + O(en),

where e,, := exc{supp(d7), supp(dn,)} is defined by (). Since dn, — dij by Prop. EIA(iii),
it follows from Lemma that e,, — 0. Therefore, we obtain that

9y(7)2 <0 on supp(d7). (5.48)

In addition, by &), DJ* (u,)v, < O(ey,). Since DJF(uy,) + DGHn (uy,) dn, = 0,
it follows that (dn,, DG (u,)v,) = fOng"(yn)zndnn > O(e,). Since dn, — d7ij and
94" (yn)zn — gy(y)Zz uniformly, we obtain that fOT gy(y)Zdn > 0. Using that dn > 0, (E243))
implies that

9y(#)z =10 on supp(dp),
i.e. o € C(u). The strong second-order sufficient condition (BE36) and (EZ6) imply then that
v = 0. But then Q(v) =0, and Q(v,,) — Q(v). Since Q is a Legendre form, we deduce that
v, — ¥ = 0 strongly in L2, contradicting that ||v,[|2 = 1 for all n. O

5.4.3 The strong regularity framework

We use the following generalized implicit function theorem in metric spaces by Dontchev and
Hager [B3], which is a variant of Robinson’s strong regularity [T21].

Theorem 5.17 ([563], Th. 2.2). Let X be a complete metric space, X a closed subset of X,
W a linear metric space, A a subset of W, P a metric space, F : X x P — W, N : X — 2W,
L:X —W. Assume that L is continuous and that there exists (Z,[i) € X x P such that:

() F(z. ) € N(@);

(il) F(&,-) is continuous at fi;

(iii) WH = F(-,u) — L(-) is strictly stationary at x = Z, uniformly in p near i, i.e. for all
e > 0, there exists v > 0 such that if ||x; — Z||x, |p—p| <v,i=1,2,

[UH(z1) — OH(z2)[[w < ellz1 — 22 x. (5.49)
(iv) For all 6 € A, there exists a unique solution x € X of
§ e L(z)—N(x), (5.50)
and there exists A > 0 such that, with x5 the unique solution associated with ¢,
lzs — 25|l x < A6 =0 |lw, V9,0 €A.

(v) F — L maps a neighborhood of (z, 1) into A.

Then for all Ay > A, there exist neighborhoods X of T in X and W of i, such that for each
w €W, there exists a unique © € X satisfying F(x, ) € N(x); moreover, for each p; € W,
1=1,2, if x; denotes the x € X associated with p;, then

2 — 21| x < Ap||F(21, 1) — Flo, po)|lw- (5.51)
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In [53], the theorem is stated with X = X, but remains true if we replace the _complete
metric space X by any closed subset X of X, equipped with the metric of X, since X remains
a complete metric space.

This theorem was used for stability analysis of optimal control problems subject to first-
order state constraints in [53]. In what follows, we describe a suitable framework to apply
Th. B.I7 for second-order state constraints.

Remark 5.18. Our choice of functional spaces to apply Th. BI7 differs from that of [53] or
[88] in the spaces for the state constraint and state constraint multiplier. Whereas in [©3), §S]
the state constraint is seen in W15, we consider here rather the state constraint in the space
of continuous functions C[0,T]. Another natural choice for the space of second-order state
constraints would be W2 since the constraint is “onto” in this space (Lemma [4). The
reason for considering here the constraint in C10,7] is to have multipliers in M0, 7] instead
of in the dual space of W% or W2, For first-order state constraints it can be shown (see
[65]) that the state constraint multiplier 1 lies in W1 (and therefore a suitable choice for
the state constraint multiplier space is the space Lip;, defined below), but this is no more true
for higher-order state constraints. Note that since W2 c Wb c C[0,T] with continuous
and dense embeddings, and the constraint is “onto” in W2 by Lemma 4], the multipliers
in the three possible formulations are one-to-one.

Notation In order to apply Th. BI1 to prove Th. in sections and B8], we use the
following notation. Given k,I,7, 0,k’ > 0, define the spaces

Lip,(0,7) = {u € Wh>(0,T) : ||ille < k},
BV [0,T] = {¢€BVZ(0,T]: |d¢|m <1},
X = Lip,(0,T;R™) x BVz,[0,T], (5.52)
X = {z=wé&eX:|lu-ily<r}, (5.53)
W = L*0,T;R™) x H*(0,T) (5.54)
equipped with its standard norm ]|y = ||v[|2 + [|{]|2,2 for 6 = (v,¢) € W,
A = {6 € Lipy(0,T;R™) x H*(0,T), [|6]lw < o}, (5.55)
P . closed neighborhood of [i, contained in My,

and mappings
e F: X xP—-W,

Uy Yu 29 2
Fla,p) = < & 5u(ypu)n " )7

where H* is the alternatlve Hamiltonian (EIH) of (P*), y4 is the solution of the state
equatlon (E:B) and pu , is the solution of the alternative costate equation (BIT) for

(P#), 1

p%;g = Hj(uyly, phen?) e on [0,T],  ppta(T) = ¢l (4l (1)) (5.56)

e NV: X —2W N(x) = {0} x (Ng—(dn?) N H%(0,T)), where

{p € C_[0,T] : (dn?, o) =0} if dn* >0,
0 otherwise.

Ny (dip?) = {
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o L. X W,
L(x) == F(x,p) — D F(z,i)(x — ). (5.57)

By Lemma 6, we have that (@,7%) € X for sufficiently large k, [.

Lemma 5.19. FEquipped with the norm

1(w, Ol x == lullz + [1€]]2; (5.58)

X is a complete metric space, and
lulloo < max{\/3/T|ulle, V3E|u|Y>},  for all u € Lipy(0,T). (5.59)

Proof. It was shown in [53 Lemma 3.2] that the space (Lip,(0,T),] - ||2) is a complete metric
space, and the estimate (E209) follows from [53, Lemma 3.1]. We show now that (BV%I 0,77,
ll2) is complete as well. Let (&,) be a Cauchy sequence in BVJ%Z[O,T] (for the norm || - ||2).
Since L2(0,T) is complete, there exists £ e L*0,7) such that &, — €in L2 Let us show that
the limit point & lies in BV:,%J[O,T]. We have that |dé,|ym < for all n, and since &,(T") =0,
the sequence (£,) is bounded in BV for the norm ||n||pv := ||n||1 + |dn|y. Therefore, by the
compactness theorem in BV [2, Th. 3.23], there exists a subsequence ,,,) and ¢ € BV[0,T]
such that déw(n) X d¢ weakly-* in M([0,T] and éw(n) — ¢ in L'. Moreover, using the
integration by parts formula in BV [B8, p.154], we obtain that

T . T .
T((T) = /0 (1) — &gy ()dE + /0 S(dC(s) — déym(s) — O,

and hence ¢(T) = 0. Setting £(t) := — ftT ((s)ds, we have that & € BV2[0,T], and Epn) — ¢
in > and a fortiori in L?. We deduce that necessarily, é = §~ € BV% [0, T7], the whole sequence
(d€,,) weakly-* converges to d€ in M|0,T], and then

|y < liminf |dén|ag < L.

This shows that & € BV%Z[O,T], and hence, (BV%’Z [0,T],]| - ||2) is a complete metric space.
This achieves the proof. ]

Note that for all £ € BV%Z[O,T], we have that |d€|a < I, and since £(T') = 0, it follows
that ||€]|oe < I, and hence, BV:,%J [0,T] C Lip;(0,T). Therefore, we deduce from (E53) that

Il < max{y/3/T|¢]lo, VBIlEI5*Y,  for all € € BVZ,[0,T). (5.60)

The space X defined by (B53)) is a closed subset of X, and hence, by Lemma BT9, X
equipped with the norm of X (B8] is a complete metric space. We need to work with X
instead of X in order to obtain the uniqueness of a solution of (GA0) in X, for small enough
r > 0. The space of sufficiently smooth variations A C W, in assumptions (iv) and (v) of Th.

BT7 is defined by (BR3).

Given a stable extension (PH) of (P), our formulation is the following: For p in the

neighborhood of fi, find = (u,n?) € X solution of
F(x,p) € N(z), (5.61)
where F and A are defined as above. Then (u, y4) is a stationary point of (P#) with alternative

multipliers (p>*,,n?) iff 2 = (u,7n?) is solution of (561

'U,,T]Q’
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5.5 Stability analysis of linear-quadratic problems

The verification of assumption (iv) of Th. EI7 is strongly related to stability analysis of
linear-quadratic optimal control problems with a second-order state constraint, that we study
in this section. Since these results have their own interest, they are stated independently of
the rest of the paper. The problem under consideration is of the form:

T
(Ps) (U’Zr)nei]l}xz . /0 ()T St)v(t) + 20(t) T R(t)z(t) + 2(t) T Q(¢)2(t))dt (5.62)
T
+ /0 (a(t)z(t) + (b(t) — y(t)v(t))dt + 22(T) T ®2(T) (5.63)
s.t. 2(t) = A(t)z(t) + B(t)v(t) a.e. on [0,T], =z(0)=0 (5.64)
C(t)z(t) +d(t) — ¢(t) <0 on [0,T]. (5.65)

The perturbation parameter is here § = (v,¢) € W = L?(0,T;R™) x H%(0,T), with the
norm ||0]lw = ||v]l2 + ||¢]l2,2. The control and state spaces for the linearized problem are
V= L?(0,T;R™) and Z := H'(0,T;R"). The state constraint (560 is scalar-valued. The
matrix and vectors S(-), R(-),Q(-),a(-),b(:),A(-), B(:),C(:),d(-), of appropriate dimensions,
are Lipschitz continuous functions of time. In addition, C(-) and d(-) lie in the space W 3>
and A(-) in W%, The matrix S and @ are symmetric. We assume in addition in all this
section that (recall (A1))

d(0) < 0. (5.66)

Given v € V, we denote by z, the unique solution in Z of the linearized state equation (EG4I).
Then we may write (Pj) as follows:

(Ps) meigj‘s(v)’ [(v) € K,
with J0(v) := fOT{%(vTSv +20" Rz, + 2, Q2y) +az + (b— ) v}dt + 1 2,(T) T @2,(T), T°(v) :=
Czy+d—Cand K =C_[0,T].
Assume that C(t)B(t) = 0 on [0,7] (state constraint of second-order), and define the
matrix:
Cr(t) = C(t) + CHA®),  Calt) == Cr(t) + CLD)A),  Na(t) := C1()B(t).
Then for all v € V, we have that

2
CAOM=) = ), (O} = Calt)t) + Nalt)o(t)

The alternative multipliers (72,7%) € W1°°(0,T;R™) x BV2[0,T) for the linear-quadratic
problem are defined by

T
! = s 2t) = L(s)ds :
n(e) = /(mdm P / 7 (s)d (5.67)
(1) = w(t) - g (OCW) — P OC(0).  te0.T]. (5.68)

Let (v,z = z3) be a stationary point of (Py), with multipliers (7,7) and alternative mul-
tipliers (72,7%). Denote the contact set by Q := {t € [0,7] : C(t)z(t) + d(t) = 0}, and
a neighborhood of the contact set by Q, := {t € [0,T] : dist{¢t,Q} < o} for ¢ > 0. For
linear-quadratic problems, assumptions (A2)-(A3) may be rewritten as follows:
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(A2) The state constraint is a regular second-order state constraint, i.e. C(t)B(t) = 0 on
[0,T7], and there exists 3,0 > 0 (o satisfying (B223))) such that

N2 ()] > 3 on Q.

(A3) The matrix S(t) is uniformly positive definite over [0, 7], i.e.,

Ja >0, v'S{t)w>alv? foralltel0,T]andall veR™

Note that by Rem. B3 (A3) is equivalent to (A3). Assumption (A2) (together with (FBH]))
imply the following (cf Lemma BA):

Lemma 5.20. Assume that (P:2) holds. Then there exists a positive constant ¢ such that for
all ¢ € H%(0,T), there exists v € V satisfying

C(t)zy(t) = @(t) on Q, and lvll2 < ¢llell2,2- (5.69)

Therefore (A2) (and (&B6)) imply that Robinson’s constraint qualification holds, and that
the multipliers associated with (v, Z) are unique.
Propositions B.2T] and below hold for a larger set of perturbations, more precisely for
6= (v,¢) € W, where
W = L*(0,T;R™) x C[0,T],
equipped with its standard norm [|§||y;; := [[7|l2 + [|{/lcc. We have of course W C W with

continuous embedding. Identical to Prop. BI3l, we obtain the stability of multipliers for
linear-quadratic problems (with a slightly modified statement).

Proposition 5.21. Let (3, 2) be a stationary point of (Po) satisfying (A2). Then there exists
v > 0 such that for every stationary point (v,z) of (Ps), with (unique) multipliers (mw,n) and
alternative multipliers (72, n?) defined by (E68)-([B6D), the following hold:

(1) If 6]l llv — vll2 < v, then dn is uniformly bounded in M0, T];

(ii) There exists k& > 0 such that, for all ||6]|;,, v —v[l2 < v, we have

ldn — d7ll2,2e, [17* = 72[l2 < w(llo = Bll2 + [[6]ly;,)-
Moreover, when ||0]|;, [|[v — 02 — 0:
(iii) dn weakly-* converges to dn in M[0,T];
(iv) n* — 7' in L';
v) 7 and n* converges uniformly to ™ and 7n°, respectively.
2 and n? iformly to 72 and 0> tivel

Second-order optimality conditions

Let Q denote the quadratic part of the cost J° (independent of §):

T
Qv) = %/0 (0(t)TSE)o(t) +20(t) "R(8)2 () + 2 (t) T Q1) 2o (1)) dt

(5.70)
+ 12(T) T @2, (T).
The strong second-order sufficient condition is:
Q(v) > 0, for all v € V' \ {0} such that C(t)z,(t) =0 on supp(d7). (5.71)

Identical to Prop. BIIl we obtain that the second-order sufficient condition (BZI]) implies
the uniform second-order growth condition for the perturbed problems (Ps) (here again the
statement is slightly modified).
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Proposition 5.22. Let (7, Z) be a stationary point of (Po) satisfying (A2)-(A3) and the strong
secoAnd-order sufficient condition (BI). Then there exist ¢, p > 0 and a neighborhood W of 0
in W, such that for all § € W and any stationary point (vs, zs) of (Ps) with ||vs — 0|2 < p,

T°(v) > T(vs) +cllv —vs]2, YoeV:T°Ww) ek, |[v—71|<p. (5.72)

Stability Analysis

The main result of this section is the theorem below. The key point to show the existence
of a stationary point for the perturbed linear-quadratic problem under the weak second-order
sufficient condition (B1]), where the active constraints are taken into account. To this end,
the uniform growth condition (Prop. B22), together with an abstract theorem from Bonnans
and Shapiro [24, Th. 5.17 and Rem. 5.19] is used.

Theorem 5.23. Let (7,%) be a stationary point of (Py) satisfying (A2)-(A3) and the strong
second-order sufficient condition (BZIl). Then there ezist ¢, p, A > 0 and a neighborhood W of
0 in W, such that for all 6 € W, (Ps) has a unique stationary point (vs, zy;) with ||vs—72|j2 < p
and unique associated alternative multipliers (ﬂg,ng), and

los = vslls + 03 — 2 llz < Al —&llw, V5,8 € W. (5.73)

Moreover, (vs, zv;) is a local solution of (Ps) satisfying the uniform quadratic growth condition

D).

Proof. Let us show the existence of a stationary point of problem (Pg). We may write (Ps) as

(Ps) IUI?él]I)l (v, Av) + (b,v) — (7, v) s.t. Cv+d—-C €K,
where A is the continuous, self-adjoint bilinear operator over V associated with the quadratic
form (BZ0), b is an element in V* =V, C : v — C'z, is a linear continuous operator V — C[0,T7,
and d € H%(0,T). Here, without ambiguity, we also denote by (-, -) the scalar product over V.

Step 1: Reduction to a fixed feasible set. Let us first consider perturbations of the cost
function only, i.e. consider the problem (P,) defined by

(P,) 15161]1;1 (v, Av) + (b,v) — (7, v) s.t. Cv+deK.
By Prop. B2 the uniform second-order growth condition holds for (P,), so does Robinson’s
constraint qualification by (A2), and the perturbed problem (P,) includes the so-called tilt
perturbation (see [24) p.416]), i.e. additive perturbations of the cost function of type —(v,v)
with v € V*. Therefore, it follows from [24, Th. 5.17 and Rem. 5.19], since the feasible
set of (Py) is constant, that there exist pi,p2 > 0 and a constant A > 0, such that for all
v € B(0, p2), (P,) has a unique stationary point v, in B(v, p1), and

oy —vylle < Ay —=A'll2, V.7 € Ba(0, p2). (5.74)

We have of course that v = vy.
Step 2: Existence of a stationary point of (Ps). Let now 6 = (v,() € W. By Lemma B2,
there exists v € V such that

(Cve)(t) = ¢(t) on Q, and [vell2 < ellC]l2,2-
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Set 4 := v — Av¢. We have that [|7]l2 < |72 + ¢l|Alll[¢]l2,2 < p2 if ||6]lw is small enough.

Therefore, there exists a (unique) stationary point vy € Ba(v,p1) of (Py), with multiplier
dns € M0, T], satisfying the first-order optimality condition

(5.75)

Avs +b—F+CTdny =0,
Cvy+d<0on[0,7], dns >0, (dny,Cvs+d)=0.

Since ||Cvy — C0llos < |C]|[Jvs — Dll2 < A|IC||||F]l2 by &), if ||d|lw is small enough then the
contact set of Cvy + d is included in €2, and hence

supp(dnz) C €. (5.76)

Let vs := vy +v; and dns := dn;. Note that there exists a constant a > 0 such that
(Co)(t) +d(t) < —a on [0,T] \ Q4. Therefore, on [0,T] \ ©,, we obtain that (we denote in
what follows by C different positive constants)

Cuos+d—¢ Cv+d—(+Cu+C(vy — D)
—a+[|Clloc + [ICu¢lloc + [IC(v5 = V)0
—a+ C|¢ll22 + [[Cllllocll2 + [ICll[[vy — o]l

—a+ (C+dCIDIClz2 + AlCHIFI2 < —a+Cljd]lw,

IAN A IA

and hence, if ||0]|w is small enough, then Cvs+d— ¢ < 0 on [0,7]\ . Since on Q,, we have
that Cvs +d — ( = Cvy +d < 0, using (B0 and (B7E), vs obviously satisfies

Avs +b—~+Cldns =0,
Cos+d—(<00n0,7], dns>0, (dns,Cvs+d—C)=0,

i.e. ws is a stationary point of (Ps), with multiplier dns. Consequently, for p3 > 0 small
enough, reducing p; if necessary, (Ps) has, for all § € By (0, p3), a (necessarily unique by
Prop. B27)) stationary point vs € Ba(T, p1), with (unique) multiplier dns. That (vs, zy;) is a
local solution of (Pjy) satisfying the uniform growth condition (B272) follows then from Prop.

Step 3: Lipschitz continuity of the stationary point. Let §; = (i, () € Bw (0, p3), i = 1,2,
and v¢, be such that

Cug, =G on Qy, i=1,2, and |lvgll2 <cllCill22, [Jve, —vell2 < cll¢r — CGall2,2-

It follows that |lve,|l2 < ¢(2]|Ci]l2,2 + [|C2ll2,2) < 3cps. Setting 7; := v; — Avg,, we obtain as
before that if p3 is small enough, then the unique stationary point v; of (Ps,) is given by
v; = v¢, + vy,. Therefore, using (E74)),

[vr —v2lla < lug — vyl + AllF1 — T2l
< (T4 AAIPNC = Call2,2 + Ay = 72ll2
< C|61 — dalw- (5.77)

Step 4: Lipschitz continuity of the alternative multiplier ng given by (B67). Using the
above notation, denote by dn; the (unique) multiplier associated with v; and by 771.2 the asso-
ciated alternative multiplier. Since —C T (dny — dn;) = A(vy — v1) + 2 — 71, we have, for all
v eV,

[(dn2 = dn, Co)| < ([Allllvz = vill2 + llv2 = yll2)[[v]]2- (5.78)
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By Lemma 20 for all ¢ € H?(0,T), there exists v € V such that Cv = ¢ on €, and ||v]s <
T

cllell2,2. Tt follows from (ETH) that [, o(t)(dnz(t) — dni(t)) = (dn2 — dny, Cv). Therefore, we

obtain in view of (B78) that

) (dna( dny(t
[dng — dmil[2,2« =  sup |f0 et t) —dm())|

Tl < c([[Al[llva = v1ll2 + [lrve — 7ll2)-
PEH?2,p#0 Pl2,2

Since |93 —n?|l2 < C|/dn2 — dn1||2.2« by Lemma T4l the above estimate, together with (E77),
shows the existence of a constant A > 0 such that (73] holds and achieves the proof of the
theorem. O

5.6 Proof of Theorem G.12

In order to prove Th. T2l we have to show that assumptions (iii), (iv) and (v) of Th. BT  are
satisfied, which is done respectively in lemmas to below. Throughout this section,
the assumptions of Th. are assumed to hold. We consider a stable extension (P*) of (P),
and we use the notations defined in subsection Moreover, throughout the section, we
use the following notations (time dependence is omitted):

S = Hu(@,3.0°7), Ri=Hy(@5.0%7), Q= Hy(a5,p%7)
A = fy(u,y), B := fu(u,7), D := ¢y (5(T)),

C = g, d=g@F, Ci=g"®),

Cy = gP(uy), No=gP@y), a=-Co’,  b=-—Noi’.

All the above quantities are bounded and Lipschitz continuous over [0, 7.

Let us first make explicit the expression of the derivative D,F(Z, ii)(x — z) involved in the
definition (E51) of £(z), with = (u,n?) and Z = (4,%?). Note that the Fréchet derivative of
the mapping (u, i) — yt w.r.t. u in direction v is the solution z4, of

wo = Jy (wy)zy, + fi(wyi)o,  2,(0) =0

and that of the mapping (z, p) — pa* (recall that p>* is the solution of (BBH)) w.r.t. z =
(u,n?) in direction h = (v, €) is the solution 77925% of (omitting the arguments (u, yﬁ,pi’”, n%)):

—i2t = Hv+ Hb 2+ g

WiiZ(T) = b, (h(T))zl (T). (5.79)

Applications of Gronwall’s Lemma shows that, for 4 in a neighborhood of fi, z = (u,n?) in a
L>®-neighborhood of Z = (i,%?) and a direction h = (v,£) € X,

27
124 ullee = O(lIv]l2), [k lle = OR]lx), (5.80)
1250 = 2zipllo = O(u—all2 + |l — @l vz, (5.81)
2, 2,fi _ _
17 = Tanllee = Ol — [l x + [lu = al)lIA]x. (5.82)

By the chain rule, we obtain that

)

S(u — ﬂ) + Rzy_q + ﬂ-i—ﬁ,nQ—ﬁQB + (772 - 772)N2 >

D, F(z,fi)(x — ) = ( Cua
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o o 2
where 2,z 1= 2y, _5 is the solution of (E):GZ]) for v =u —1u, and 7 _

solution of (B1), for (v,€) = (u — u,n* — 7?):

—ile = R0+ Qa +miA+EC),  m2e(T) = Dz (1),

2.11 .
o, =g is the

Set v :=u — u, and let § = (v,{) € A. Then (EX0) has a unique solution x = (
the system of equations below has a unique solution (v, z, 72, 7?) with (@ + v, n?

— Az+Bu,  2(0)=0,
2 pT 2 2 2 20 _
- = R v+Qz+1"A+n"Cy—1n7°Co, 7 (T) = ®2(T)
0 = Sv+Rz+7mB+n Ny —7°Na — 7,
0 > d+Cz—¢, dn? >0, (A, d+Cz—¢) =0.

We recognize the first-order necessary optimality condition of linear-quadratic problem (Ps)
in its alternative form. That is, setting dn = dn? and = = 72— COn? + C1n2, we recover the
“classical” optimality conditions of (Ps) (note that C; = C+CA, Co = C1+C1A, No = C1B
and CB = g&l)(ﬂ,g) =0):

Z = Az+ B, 2(0) =0,

—dr = (RTv+Qz+nA—72Cy)dt + Cdy, w(T) = ®2(T)
0 = Sv+Rz+7B—7*Ny—~,
0 > d+Cz—, dn >0, (dn,d+Cz—¢) =0.

We see then that (v, z) := 0 is a stationary point of (Py), Wlth alternative multipliers 72 := 0
and 72, and classical multipliers 7 := —Cn? 4+ C17? and i = 2. The second-order optlmahty
condition (B.30]), with the quadratic cost expressed by (BE31), is precisely the condition (BE7T])
and implies that (v, 2) = 0 is a local solution of (Pp).

The verifications of assumptions (iii) and (v) in Lemmas and are only technical,
and for assumption (iv) in Lemma 28 we use Th.

Lemma 5.24. The mapping V* = F(-,u) — L(-) is strictly stationary at x = T, uniformly in
n near [.

Proof. Let x1,22 € X and p € P. We have that
V(1) = W (22) = Flar,p) — Floe,n) — D F (2, 1) (1 — 22)
1
_ / (DoF (01 + (1 — 0)s, 1) — DoF (. ))d0(z1 — o).
0

Let 2 = (u,n?) € X. Then by (&5d)-G60), if « is close to & = (@, %) for the norm of X, this
implies that (u,n?) belongs to a L°-neighborhood of (u,%?). Hence, 34 and p 2 remain also

uniformly bounded for y in a neighborhood of ji. Let z; = (u;,n?) € X, i = 1 2, and given
0 € [0, 1], write zg := Ox1 + (1 — 0)z2 and similarly for the other variables. Set

T2

< " > = (DyF (w9, 1) — Do F(Z, 1)) (x1 — T2).

Let us express the first row r1. Denoting by (-) the arguments (ug, y,, pat' ,m3), we obtain
that

no= (Hf, (')—5)(U1—U2) (i, ()20, — B2y —uy)

ue ul—u2 U,u1 — U2

+ (Mot e PO () = 72,0, B) + (f = m3) (")) () = Na).
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For (u;,n?) in a Loo—nelghborhood of (u, n?) and ,u in the neighborhood of [i, we have that

ﬁ{fu( =98 = Huu(ug,yue,prg ,779) Huu(u 7, P2, 7l ) is arbitrarily small in the L norm, and
(2)

similarly for the terms involving the other derivatives, Huy, flt, and (g")y”. Therefore, given

any € > 0, for ||z; — Z||x, || — it]| small enough,

Irilla < e(llua — uallz + [|20, - uzll2 7o —aall2 + 7 = 3 1l2)
2,i1
+ ||R||OO||ZUQ,u1—u2 - Zu , U1 — u2||2 + ||B||OO||7Tx9,x1 —xo ﬂ-i,gl—aa”?‘
Using (B80)-(B82) with * = 29 and h = x; — x2, we obtain that [|ri]j2 < ¢|lx1 — 22 x,
whenever x1,xo are close enough to & in X and p is close enough to fi. For the second row
ro, we have that

ro = gy (yUg) Ug,u1 —uU2 gy (g) g uUL—u2?
ro = ( )(1)(yuQ) Rug,ul—us ( _) ( ) Zl,u1—usg?
iy = (") (uo, l,) — (02 (3, 9)) (w1 — u2)

+ (gu)éz)(u€7y53)ZZQ,U1—u2 - (g )(2)(u y) uu1 u*

Therefore, we conclude with the same arguments that ||72||22 < €|lu; — uz||2, whenever ||z; —
Z||x, i=1,2 and ||u — fi]| are small enough. This shows the desired property. O

Lemma 5.25. For k sufficiently large w.r.t. | in definition (EE2) of the space X, r small
enough in definition (3)) of the space )~(, and small enough positive constants o and k' in
definition ([BDH) of the set A, (BE) has a unique solution x5 = (u(g,ng) in X, for all 6 € A,
and this solution is Lipschitz continuous w.r.t. 6.

Proof. We have that z = (u,n?) is solution of (EBR0) iff (v := u — 4, 2,) is solution of the
first-order optimality condition of (Ps) with alternative multipliers 7T2 =i and n?. By the
hypotheses of Th. BI2 (v,z) = 0 is a stationary point of (Py) satisfying the assumptions of
Th. Choose p small enough, so that By (0, o) is included in the neighborhood W of Th.
By this theorem, for all § € By (0, 0), (Ps) has a unique stationary point (vs, z,;) with
llus|l2 < p and unique associated alternative multipliers (wié’ng_ﬁ%ng). Therefore, (00) has
a unique solution (us := @+ vs,n3) with ||us — @ll2 < p. We have to show that (us,n?) belongs
to the space X. Throughout the proof, we denote by C different positive constants.

By Prop. EZII(i), shrinking o if necessary, we immediately obtain that n? belongs to the
space BVQ%I [0,T7], for large enough I. Therefore, by (B60) and (B73), for all 6 € By (0, o),

I — Pllee < VoIn2 =213 < V6INY3|5)27.

For § = (7,{) € A (then v € Lip;/), let us show now that us = u + vs € Lip;,. From the
first-order alternative optimality condition of (Ps), we have that

Svs + Rzys + 7‘[‘12)6777?_17]23 + No(n? —7%) =y =0. (5.83)

Since S is uniformly invertible by (A3), using (E80), (273)), and (E5), we deduce that

vslloo < (szauoo + ”W% n2 _772Hoo + H776 =1 HOO) + [17llo
< CEA8|lw + VEIN/36]17%) + V3R ||y )13
< (C) + V3R]
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We denote here and in what follows by C(I) different positive constants that depend on [
(but not on k). Since 7 € Lipy/, 77(%,772 € BV%Z C Lipy, zvé,ﬂg&ng_ﬁQ € Wh® S R, B, Ny are
Lipschitz continuous, and S is uniformly invertible, we can differentiate (B.83]) in time and we

get

2
1)5,77?—

Svs + Svs + Réyy + Rz, + 7 2BAT 2 B+ No(i? —i1%) + No(n — ") =4 = 0.

CERUN

Since ||z loes 172, s galloe gl 172, 1a_polloe < Cuslloo + 12 = ), and S has the

inverse uniformly bounded over [0, 7], whereas ||/3]|co, |7%]|c0 < I, We obtain that

C(llvslloo + 17§ = 7Moo + 1115 = 7%ll0) + [¥loo

[0sllo0 <
< (C()+ CBEN 8|12 +2C1 + K.

Therefore, we have that ||v5||cc < k/2 if, fixing a suitable [, we take k so large that k& >
max{4Cl;2|/i|« }, and choose ¢ and k" in (E5H) small enough. It follows that the solution
x5 = (us = 4+ vs,n3) of (B50) belongs to the space X. In addition, if we choose r = p, with
the p of Th. BE23 then x5 € X for ||d||w small enough, and is the unique solution of (BE0) in
X. Moreover, by Th. 523,

lus — ugll2 + 173 = 03 ll2 < A6 = 'llw, V4,0 €A
This achieves the proof of assumption (iv) of Th. BI7 O

Lemma 5.26. There exists a neighborhood of (Z,f), such that F(x,p) — L(x) belongs to A,
for all (z, ) in this neighborhood.

Proof. We have to show that for ||z — Z|| x, ||u — &2]| small enough, F(x, u) — L(x) € A, where
A is our set of smooth variations defined by (B5H). Throughout the proof, we denote by C
different positive constants. For 6 € [0, 1], set zp := 0z + (1 — §)Z and similarly define pug. We
have that

f(xnu’) —,C((L’) = f(xnu’) _F(‘%?ﬂ) _D:cf(j:vﬂ)(x_j)

1
_ /0 (DaF (2, 119) — Dy F (%, ))d6(x — 7)

T2

Let us show that ||ri||2 + ||72]]2,2 < 0 and ||71]|ec < &/, for || — Z| x and ||x — ]| small enough.
By the arguments of Lemma [B.24] given any ¢ > 0, for || — Z|| x and ||u — jz|| small enough, we
have that || fol(Dm]:(:rg,ug)—Dw}'(i,ﬁ))dﬁ(m—:ﬁ)HW < ¢|lz—Z||x. Moreover, since D, F(x, )
is uniformly bounded for (z, 1) in a neighborhood of (z, 1) by definition of a stable extension,
we deduce that

[rillz + lIr2llzz < ellz —Zllx + Cllp — Al < o (5.84)

for ||z — Z||x and || — f|| small enough. Making now explicit the expression of 1, we obtain
that (recall the notations S = ﬁﬁu, R = ﬁﬁy, B=fl' Ny = (gﬁ)(f)):

~ 2, -, _
r = Hq’j(uvyzlj)puzan) - Hzlj(uvyap2’772) - S(u - U) - Rzu—ﬁ
— T _ap—pB = Na(® = 1%).
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Time derivation yields (omitting arguments and reorganizing the terms)

foo= (Hi, — B+ (HY, " = Hi 07 — (E £ = H D+ (9" = (68
- Rzu_g - 7:(’!214—17,,772—772'8 - S(’LL - 7]) - Rzu_g - Wi_amg_ﬁgB - NQ(T]Q - 772)

For (u,n?) close to (@,7?) in X, and p in a neighborhood of fi, we have by E5T)-(E60) that
Il (u, vt ,pi”; 2,m%) — (4,7, 9%, 7?)||o is arbitrarily small, and hence, by continuity of Hf, etc,

given any € > 0, we obtain that

. . .9 . .92
lF1lloo < e(lldlloo + 1177 lloo + 1) + CllZu-alloo + 75 _g p2—72llo0)

+ Clllu = lloo + llzu=alloo + 175 22 lloo + 7% = 7%loc)
e(k+1+1) + C(llu = alloo + l7° = 7lloo)

<
< elk+1+1)+ C(V6k + Vol ||z — z||/* < ¥,

if ||z — Z||x and ||x — f2]] are small enough. It follows that r; € Lip (0,7;R™), and with
(B84, this achieves the proof. O

Proof of Th. 1A, We apply Th. EI7 with the spaces X, X, W, A, P and mappings F,
N, L defined in subsection We set Z := (@,7?). The assumptions (i) and (ii) of Th.
BT are obviously fulfilled by our hypotheses and the definition of a stable extension. For an
appropriate choice of the constants k, I, r, k', o involved in the definition of the spaces X, X and
A, assumptions (iii), (iv) and (v) hold by Lemmas E24] and 520, respectively. It follows
that for all 4 in a neighborhood of fi, there exists a unique stationary point (u*,y*) of (PH)
and unique associated alternative multipliers (p?#,n>#) with (u#,n**) in a X-neighborhood
of z, and (BX]) is satisfied. Since by definition of a stable extension, F is Lipschitz continuous
w.r.t. p, uniformly w.r.t. x, this implies that (E39) holds, while (540) follows from (BE2d)—-
(E50). Finally, by (B20), taking if necessary a smaller neighborhood of i, u* belongs to the
L*°-neighborhood of @ on which the uniform quadratic growth condition holds (Prop. BEITI).
Therefore, (u*,y*) is the unique stationary point of (P*) with u* in a L>°-neighborhood of «
and is a local solution of (P*) satisfying (B38]). O

5.7 Conclusion and Remarks

In this paper, we obtain for the first time stability results for optimal control problems with
a state constraint of order greater than one without any assumption on the structure of the
contact set. For this we use a generalized implicit function theorem in metric spaces [B3]
applied to a system equivalent to the first-order optimality condition, involving alternative
multipliers obtained by integrating the original state constraint multiplier. In the stability
analysis of linear-quadratic problems, we use [24, Th. 5.17] to obtain the existence of a
stationary point for the perturbed problem under a weak second-order sufficient condition
taking into account the active constraints. In this way the method for weakening the second-
order sufficient condition is different from the method used in [92] OT].

Due to the low regularity of state constraint multipliers, we use a framework that differs
from the ones used for first-order state constraints in [88] or in [63] in the choice of the
spaces for the state constraint and state constraint multiplier. We keep the idea of [B3] to use
as control space the space of Lipschitz continuous functions with a bound on the Lipschitz
constant.
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Though the analysis is restricted to a scalar state constraint of second-order, the framework
and results presented in this paper have a natural extension to several state constraints of
orders > 2 (see Remarks and b3)). Taking into account both components of first-order and
higher-order is more delicate since then the arguments used in [88, b3, O1] and in the present
paper would have to be combined.

Making additional assumptions on the structure of the contact set, L Lipschitz stability
of solutions can be obtained, see [04, [T9], improving (E40), as it is the case for first-order
state constraints (see [53), Section 4]). In [94] [19] it was also shown using a shooting approach
that the solutions are directionally differentiable w.r.t. the parameter. It would be interesting
as well to obtain sensitivity results without assumption on the structure of the contact set,
extending to higher-order state constraints the sensivity results obtained by Malanowski [88]
for state constraints of first-order.

Finally, let us note that the second-order sufficient condition (B30 used in the stability
analysis might be weakened by taking into account the curvature term of the constraint (see
2T, Th. 27], [I7, Th. 6.1] and [19, Th. 4.3[).

Acknowledgments The author thanks J.F. Bonnans for his comments on the manuscript
and the anonymous referees for their useful remarks.

"Theorems [CZ7A 2241 and E234 of this thesis.



Chapitre 6

Méthode d’homotopie pour les
contraintes d’ordre 2

Abstract This chapter is devoted to optimal control problems with a regular second-order
state constraint and a scalar control, when the strengthened Legendre-Clebsch condition holds.
It is shown that under a uniform strict complementarity assumption, boundary arcs are stable
under sufficiently smooth perturbations of the data. On the contrary, nonreducible touch
points are not stable under perturbations. We show that under some reasonable conditions,
either a boundary arc or a second touch point may appear. Those results, combined with the
stability analysis of Chapter 5, allow us to design an homotopy algorithm that automatically
detects the structure of the trajectory and initializes the shooting parameters associated with
boundary arcs and touch points, extending the continuation method of Chapter 3 to second-
order state constraints.

Résumé Ce chapitre est consacré aux problemes de commande optimale avec une contrainte
sur I’état scalaire du second ordre réguliere et une commande scalaire, lorsque la condition forte
de Legendre-Clebsch est satisfaite. On montre que sous une hypothese de complémentarité
stricte uniforme, les arcs frontieres sont stables sous des perturbations suffisamment régulieres
des données. Au contraire, les points de contact isolés non réductibles ne sont pas stables. Sous
des conditions raisonables, on montre que soit un arc frontiere soit un second point de contact
isolé peut apparaitre. Ces résultats, combinés avec I'analyse de stabilité du chapitre 5, nous
permettent de concevoir un algorithme d’homotopie qui détecte automatiquement la structure
de la trajectoire et initialise les parametres de tir associés aux arcs frontiere et points de contact
isolés, étendant la méthode de continuation du chapitre 3 aux contraintes du second ordre.

6.1 Introduction

This paper deals with optimal control problems with a state constraint of second-order (see
[29, 08]). Many papers devoted to optimal control problems with state constraints deal with
state constraints of first-order (see e.g. [65, 88, 02, (3|, 93], 54, 20]), i.e. when the control appears
explicitly after one time derivation of the state constraint along the dynamics. This assumption
may not be satisfied in applications. For example, in the problem of the atmospheric reentry
of a space shuttle, if the control is the bank angle (the angle of attack being fixed), the

*Rapport de Recherche INRIA RR-6626 (2008). Submitted for publication under the title Homotopy algo-
rithm for optimal control problems with a second-order state constraint.
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constraints on the thermal flux, normal acceleration and dynamic pressure are second-order
state constraints, see [27].

When the strengthened Legendre-Clebsch condition holds, the shooting algorithm enables
to solve optimal control problems with a very high accuracy at low cost. This algorithm
(see [127]) is based on the parametrization of the trajectory by a finite-dimensional vector of
shooting parameters and the resolution of the resulting multi-point boundary value problem
by a Newton’s method. Shooting methods are very sensitive to the initial conditions, and
require a careful initialization of all parameters. Moreover, in presence of constraints, the
structure of constraints (the number and order of boundary arcs and touch points) has to be
known a priori. This makes the shooting algorithm generally hard to apply. However, when
the precision is a strong requirement, such as e.g. to compute aerospace trajectories, shooting
algorithms may be preferred to others methods, less accurate.

In order to determine the structure of the trajectory, which is generally unknown, and
facilitate the initialization of parameters, homotopy (or continuation) methods can be used.
Their well-known principle (see [I]) is to solve a sequence of problems depending continuously
on a parameter, such that the first problem is “easy” to solve (e.g. the problem without
the state constraint) and the last problem is the original problem. Doing so the structure
of solutions may vary in the course of iterations. Homotopy methods have been applied to
control problems with control constraints in e.g. [63, 7] and with state constraints in e.g.
[T, BT]. The difficulty to apply classical continuation methods is connected with the changes
of structure of the trajectory. Moreover, when the structure of the trajectory changes, the
dimension of the vector of shooting parameters changes as well. In [20], an homotopy algorithm
has been proposed for first-order state constraints, whose novelty is to automatically detect the
changes in the structure of the trajectory and initialize the associated shooting parameters. It
is well-known that the structure of a trajectory highly depends on the order of the constraint
(see [29]). In this paper, we aim to extend the homotopy algorithm of [20] to second-order
state constraints.

They are two main tools in the analysis of the homotopy method. Firstly, stability results
which guarantee the existence and local uniqueness of a solution for the perturbed problem,
and insure that the homotopy path is locally well-defined. Secondly, an analysis of the struc-
ture of solutions of the perturbed problem. New results concerning the first point (stability
analysis) have been obtained recently in [[71]. Contrary to previous stability results known
for second- (and higher-)order state constraints ([04 [T9]), no assumptions on the structure of
the trajectory are made. This allows us precisely to deal with situations encountered in the
homotopy method, when the structure of solution is not stable and hence, where the stability
and sensitivity results of [94, [[9] do not apply.

In this paper, results are obtained on the second point, i.e. we study the evolution of
structure of solutions under small perturbations of the data. We show that when a strict
complementarity hypothesis is satisfied on boundary arcs, then the latter are stable for a class
of sufficiently smooth perturbations. Then we study the case of nonreducible touch points,
which are excluded from the analysis based on shooting methods in [94] and [I9]. In that
case the structure of the trajectory is not stable. We show that under some rather general
conditions, either a boundary arc or a second touch point may appear. Finally, we follows [20]
in order to describe an homotopy method for second-order state constraints. The analysis is
more involved than for first-order state constraints, since the structure of second-order state
constraints is more complex (both essential touch points and boundary arcs are possible, while
first-order state constraints typically do not have essential touch points).

The paper is organized as follows. Preliminaries (optimality conditions, assumptions) are
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recalled in section In section B3], the stability of boundary arcs is studied. In section 4],
the case of nonreducible touch points is dealt with. In section [0 the stability result of [71]
is recalled. In section B8l lemmas used in the analysis of the homotopy method are given. In
section B.7, the homotopy algorithm is presented and analyzed. Finally, in section B8], some
comments are given. The contributions of the paper are the structural analysis of stationary
points in sections .3 and B4l and the analysis of the homotopy algorithm. The application of
this homotopy algorithm to the atmospheric reentry of a space shuttle is presented in [[70).

6.2 Preliminaries

We consider the following optimal control problem with a scalar control and scalar state
constraint:

T
() min [ ).y + o) (6.1)
subject to y(t) = f(u(t),y(t)) foraa. te[0,T], y(0)=uyo (6.2)
g(y(t)) < 0 foralltel0T] (6.3)

with the control and state spaces U := L>(0,T;R) and Y := W1*(0,T;R"). Throughout
the paper, it is assumed that assumptions (AO) and (A1) below hold:

(A0) The data /: R xR" - R, ¢ : R* — R (resp. f:RxR" — R"” g:R" — R) are C3
(resp. C*) mappings, with locally Lipschitz continuous third-order (resp. fourth-order)
derivatives, and f is Lipschitz continuous.

(A1) The initial condition yg € R™ satisfies g(yo) < 0.

The state constraint is assumed to be of second-order. This means that the first-order time
derivative ¢ : R x R” — R of the constraint, defined by

9 (w,y) = gy(y) f(u,y)

does not depend on the control variable u, i.e. gq(tl) = 0 (and hence, we may write g(" (y) =
g (u,y)), and the second-order time derivative g(® : R x R” — R, defined by

9P (u,y) = g{" () £ (u,y)

depends explicitly on the control, i.e. gu ;é 0.

Notation We denote by subscripts Fréchet derivatives w.r.t. the variables u, y, i.e. fy(u,y) =
Dyf(u,y), fyy(u,y) = Dyyf(u y), etc. The derivative with respect to the time is denoted
by a dot, i.e. y = dy — y(U. The set of row vectors of dimension n is denoted by R™*.
Adjoint or transpose operators are denoted by the symbol ". The euclidean norm is de-
noted by | - | By L"(0,T) we denote the Lebesgue space of measurable functions such that
lu|l, = fo lu(t)|"dt)/" < oo for 1 < 7 < o0, ||uf|se = supess|o 71 |u(t)| < co. The space
wer(0,T) denotes the Sobolev space of functions in L"(0,T") having their s first weak deriva-
tives in L7(0,T), with the norm [julls, = >2%_, [u@)]|,. We denote by H*® the space W52,
The space of continuous functions over [0, 7] and its dual space, the space of bounded Borel
measures, are denoted respectively by C[0,7] and M][0,T]. The cone of continuous func-
tions with nonpositive values over [0,7] is denoted by K := C_[0,7T] and its dual space, the
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set of nonnegative measures, is denoted by M_[0,T]. The space of functions of bounded
variation over [0,7] is denoted by BV|[0,T], and the set of normalized BV functions vanish-
ing at T is denoted by BVr[0,T]. Functions of bounded variation are w.l.o.g. assumed to be
right-continuous. We identify the elements of M0, T'| with the distributional derivatives dn of
functions n in BVr[0,T]. The support and the total variation of the measure dn € M0, T are
denoted respectively by supp(dn) and |dn|a. Left- and right limits of a function of bounded
variation ¢ will be denoted by ¢(7F) := lim,_,,+ ¢(t), and jumps by [p(7)] := @(7F) — p(77).
The cardinal of a finite set 7 is denoted by |7|.

We call a trajectory an element (u,y) € U x ) satisfying the state equation (B2). A
trajectory satisfying the state constraint (B3] is said to be feasible. The contact set of a
feasible trajectory is defined by

I(g(y)) :=={t € [0,T] : g(y(t)) = 0} (6.4)
and for a small € > 0, a neighborhood of the contact set is denoted by
I(g(y)) = A{t € [0,T] : dist{t, I(g(y))} <e}. (6.5)

A boundary arc (resp. interior arc) of a feasible trajectory (u,y) is a maximal (open) interval
of positive measure (71,72) such that g(y(t)) = 0 (resp. g(y(t)) < 0) for all t € (71, 72).
The left- and right endpoints of a boundary arc (7en,Te;) are called respectively entry and
exit point. A touch point T4, is an isolated contact point, i.e. such that g(y(7)) = 0 and
g(y(t)) < 0 for t # 74, in a neighborhood of 74,. An entry (resp. exit) point is said to be
regular, if it belongs to (0,7") and if there exists ¢ > 0 such that g(y(¢)) < 0 on (Ten, — 6, Ten)
(resp. on (Tez, Tex +0)). A boundary arc is regular, if its entry and exit points are regular.
The structure of a trajectory is the number and order of its boundary arcs and touch points.

Optimality conditions Let us first recall the well-known first-order necessary optimality
condition of problem (P). The Hamiltonian H : R x R™ x R™ — R is defined by

H(u,y,p) = L(u,y) +pf(u,y). (6.6)

We say that a feasible trajectory (u,y) is a stationary point of (P), if there exists (p,n) €
BV([0,T];R™) x BVp[0,T] such that

y = flwy),  y0)=yo, (6.7)
—dp = Hy(u,y,p)dt +g,(y)dn, — p(T) = &y(y(T)) (6.8)
0 = Hy(u(t),y(t),p(t)) a.e. on [0, 7] (6.9)
0 > g(y(t)) forallte[0,T], dne My[0,T], supp(dn) C I(g9(y))- (6.10)

Alternative formulation For the stability analysis, it is convenient to write the optimality
condition using alternative multipliers 72 and p?, uniquely related to (p,n) in the following
way:

T
1 o s) = — 2(t) = (s)ds :
nE) = /(mdnu o0, / 7' (s)ds, (6.11)

pP(t) = p(t) —n'(gy(y(®) —n* (Mg (),  te[0,T). (6.12)
We see that 72 belongs to the set BV2[0,T], defined by
BV20,T] := {£ e W0, T) : £&(T) = 0, € € BV¢[0,T]}. (6.13)
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Define the alternative Hamiltonian H : R x R" x R™ x R — R by

H(u,y,p* %) = H(u,y,p%) +n*9® (u,y), (6.14)

where H is the classical Hamiltonian (E6]). Using these alternative multipliers, we obtain
easily by a direct calculation (see e.g. [O8] or [I7, Lemma 3.4]@) that a feasible trajectory
(u,y) € UxY is a stationary point of (P) iff there exists (p%,7?) € WH(0, T; R™) x BV2[0, T
such that

y(t) = flu(t),y(t)) ae on[0,T], y(0)=yo, (6.15)
—p*(t) = Hy(u(®),y(t),p*(t),7°(t)) ae on[0,T], p*(T) = ¢y(y(T)) (6.16)
0 = Hy(ut),y(t),p*t),n*(t)) ae. on [0,T] (6.17)

0 > g(y(t) forallte0,T], dn*e M, [0,T], supp(di?®) C I(g(y)). (6.18)

Assumptions Let (@, 7) be a stationary point of (P), with alternative multipliers (p2,7?).
We make the following assumptions:

(A2) The state constraint is a regular second-order state constraint, i.e. gz(}) =0 and
38,0 >0, |¢P@ @), 5(t) >4 foraa. te I (g(y)). (6.19)
(A3) u is continuous on [0,7] and the strengthened Legendre-Clebsch condition holds:
Ja >0, Hy(at),5(t),p*(t),72(t)) > a forall t € [0,T]. (6.20)

Lemma 6.1. Let (@,7) be a stationary point of (P) with alternative multipliers (p2,7°%) satis-
fying (A2)-(A3). Then @ and n? are of class C? on the interior of the (interior and boundary)
arcs of the trajectory, with Lipschitz continuous second-order time derivatives.

Proof. By the implicit function theorem applied to (EI7) on interior arcs, using that 7 is
constant, and to g (u(t),y(t)) = 0 and EIT) on boundary arcs, the control and alternative
state constraint multipliers can be expressed, on the interior of arcs, as C'? functions of the
state and alternative costate (y,p?). The result follows. O

Assume now that (u,y) has a (regular) boundary arc (e, Tez). We consider the uniform
strict complementarity assumption on boundary arcs below:

33>0,  P@t)>F  on (Ten Tew)- (6.21)

Remark 6.2. Using the classical multipliers (p,7) associated with (@,y) in (67)—(@I0), as-
sumption ([EZI) can equivalently be rewritten as (recall that 7 = 7?):

35> 0, %(t) > B on (Tn, Tea)- (6.22)

Lemma 6.3. Let (u,y) be a stationary point of (P) satisfying (A2)-(A3) and having a regular
boundary arc (Ten,Tex). Then the uniform strict complementarity assumption (G2ZIN) implies

that
3 3

d° d
@g(y(t))‘t:;.;n >0, @g(y(t)ﬂt:?jm <0. (6.23)

For convenience, Lemma will be proved in section B3], after the suitable notation has
been introduced.

'Lemma BT of this thesis.
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Perturbed optimal control problem We consider perturbed problems in the following
form:

T
(P*) im0 0)de + 9 (r) (6:24)
subject to y(t) = fH(u(t),y(t)) a.e. on[0,T], y(0)= yé‘ (6.25)
g'(y(t)) < 0 foralltel0,T]. (6.26)

Here p is the perturbation parameter, living in an open subset Mg of a Banach space M. In
what follows, we consider stable extensions (P*) of problem (P) in the following sense.

Definition 6.4. We say that (P*) is a stable extension of (P) if:

(i) There exists 1 € My such that (P*) = (P);

(ii) The mappings RxR" x My — R, (u,y, p) — F(u,y); R"x My — R, (y, n) — ¢ (y); Mo —
R™, p+— yp (resp. R x R™ x My — R", (u,y,p) — fH(u,y); R" x My — R, (y,u) — g"(y))
are of class C® (resp. C*), with locally Llpschltz continuous third-order (resp. fourth-order)
derivatives, uniformly w.r.t. u € Mo;

(iii) The dynamics f* is uniformly Lipschitz continuous over R x R™ for all u € My;

(iv) The state constraint is not of first-order, i.e. (g“)q(})(u, y) = 0for all (u,y, n) € RxR™x M.

Abstract formulation Given a stable extension (P#), the mapping U x My — Y, (u, u) —
yi, where gy, is the unique solution in ) of the state equation (E2H), is well-defined, and we
may write the following abstract formulation of (P*)

melgll JH (u), G*(u) € K, (6.27)
with the cost function J*(u f OH (u, gt )dt + ¢H (yh (T)), the constraint mapping G*(u) :=

g"(yt), and the constralnt cone K = C_[0,T.

Given a stationary point (u,y) of (77) we say that the uniform quadratic growth condition
holds, if for all stable extensions (P*) of (P), there exists ¢, p > 0 and a neighborhood N of
fi, such that for any stationary point (u*,y*) of (P*) with u € N and [|u" — @/ < p,

JH () > JH(u!) + c|lu — ut|3, for all u e U : GH(u) € K, ||u— o < p. (6.28)

Qualification condition and stability of multipliers Robinson’s constraint qualification
for problem (P) in abstract form (E27) is as follows (omitting the perturbation parameter at
the reference point p = f1):

de > 0, 5BC[07T] C G( ) + DG( )Ll K, (629)

where Bgpor) denotes the open unit ball of the space C [0,7]. Tt is well-known that a local
solution (weak minimum) of (P) satisfying (E29) is a stationary point of (P). Given v €
L7(0,T), 1 <r < oo, denote by 2, the unique solution in W17 (0, T; R"™) of the linearized state
equation

2o(t) = fy(a(t),5(t) 20 (t) + fulu(t),y(t))v(t) ae on[0,T], 2z,(0)=0. (6.30)

Assumption (A2) implies that Robinson’s constraint qualification (E29) holds, and that the
multipliers associated with a stationary point are unique. This is a consequence of the lemma
below.
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Lemma 6.5 ([21, Prop. 10]). Let (4,y) be a feasible trajectory of (P) satisfying (A2).
Then for all r € [1,4+00] and all € € (0,0), with the o of (BIU), so small that Q. C [a,T] for
some a > 0, the linear mapping

L7(0,T) = W (Q:), v (gy(F())2())le., (6.31)

where |, denotes the restriction to the set Q., is onto, and therefore has a bounded right
inverse by the open mapping theorem.

Let us end this section by recalling two results that will be used in the paper.

Proposition 6.6 ([71, Prop. 4.4]). Let (a,y) be a stationary point of (P) satisfying (A2).
Then for every stable extension (PH) of (P) and for every stationary point (u,y) of (P*),
with (unique) associated multipliers (p,m) and alternative multipliers (p%,m*) given by (GIT)-
E12), we have:

(1) If || — il|s |lu — tl|loo ,are small enough, then dn is uniformly bounded in M[0,T];
Moreover, when || — fil], ||u — @||ec — O

(ii) dn weakly-* converges to dn in M0, T];

(iii) p? and n? converge uniformly to p* and 7, respectively.

Given A, B C [0,T], we denote by exc{A, B} the Hausdorff excess of A over B, defined by

exc{A, B} := sup inf |t — s|, (6.32)
tcA SEB

with the convention exc{(), B} = 0.

Lemma 6.7 ([71, Lemma 4.6]). Let dy € M[0,T], and a sequence (dn,) C MI[0,T] be
such that dn, weakly-* converges to dn in M[0,T]. Then e, = exc{supp(dn),supp(dn,)}
converges to zero when n — +00.

6.3 Stability of boundary arcs

The aim of this section is to show that boundary arcs are “stable” under perturbations, for
sufficiently smooth perturbations (the stable extensions satisfying Def. [£4]). Here is the main
result of this section.

Theorem 6.8. Let (u,y) be a stationary point of (P) satisfying (A2)-(A3). Assume that (u,y)
has a regular boundary arc (Ten,Terz) and that (@2 holds. Then, for every stable extension
(PH) of (P) and for all small enough § > 0, there exist p, 0 > 0 such that if (u,y) is a stationary
point of (P*) with ||u— | < o and ||u—1ul|c < p, then (u,y) has on (Ten — 0, Tex +0) a unique
boundary arc (Ten, Tex) (and no touch point). Moreover, we have that |Ten — Ten|, |Tex — Tex| < O
and (u,y) satisfies the uniform strict complementarity assumption (B2ZI) on (Ten, Tex)-

We derive next some useful relations for the proof of Th. and Lemma B3, and for other
results of the paper. Let (@,y) be a stationary point of (P) = (P#) satisfying (A2)—(A3) with
alternative multipliers (p2,7%?), and let (u,y) be a stationary point of (P#) with alternative
multipliers (p?,1?). If || — fi|| and ||u — || are small enough, then by ([EI), (620), and
Prop. E0(iii), we have that

()P )
a, (u,y, %, 1?)

B/2 > 0, a.e. on I,(g(y)) D I(g"(y)), (6.33)
a/2 >0 on [0,T7, (6.34)
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with H* the alternative Hamiltonian (BI4) for (P*). Moreover, by the implicit function theo-
rem applied locally to (6I7) under hypothesis (A3), we may write that u(t) = Y (y(t), p?(t),n%(t))
for some C? function Y, and hence u is continuous over [0,T]. It follows from Lemma Bl
that u and 12 are C? on the interior of arcs of the trajectory (u,%). So we may consider the
time derivatives of the state constraint of order 3 and 4, defined on the interior of (interior
and boundary) arcs by:

(")) (0, u,y) = (¢")P(w,y)i+ (9")P (w, y) f*(u, ) (6.35)
(g") (i, i, u,y) = (") (u,y)it + (9")P (i, u,y)i + (") (@, u, ) f(u, ). (6.36)

Time derivations of (EI7) shows that, on the interior of arcs, where u and n? are C? (arguments
(u,y,p?,n?) and time are omitted as well as the superscript x to simplify the notation)

0 = Hyyto+ Hyyf — Hyfu +17°g? (6.37)
= Hyii + 7P + 10, 9%, u, y, 0,0, 1), (6.38)

where @ is a locally Lipschitz continuous function w.r.t. its arguments. By (E34)), multiplying
E38)) by g&z) /H ., and using (B36) we may write that for all ¢ € (0,T) in the interior of arcs,
(2)

2
0= g%+ (g ) i + o (i, 12, u, y, 2 0P, ), (6.39)

uy

where @, is a locally Lipschitz continuous function w.r.t. its arguments. Moreover, by (G.33]),
it follows from (E35) and [E37) that we may express @ and 72 as locally Lipschitz continuous
functions of (g3, u,y,p?, 12, 1), i.e. more precisely

i = (¢ g® —g? ),
772 = _(9132))_1(Huu(g1a ))_1(9(3) - ggSZ)f) + Huyf - Hyfu)
Therefore, (E39) yields, on the interior of arcs,

(95)) 3) 2 2\ _
77 +A( 7u7y7p 777 7”) - 0 (640)

uu

where A is a locally Lipschitz continuous function w.r.t. its arguments.
In the sequel, we abbreviate the notation as follows:

gD(t) = (gD @) ult)y@), g ) = (¢ D), alt), u(t), y(t) (6.41)
gDt = ("D @) a) ), g @) = (")), ae),a),gt),  (6.42)
Hyu(t) = Hiy(u(),y(t),p* (), (1), Huu(t) = H, (a(t),5(t), 7 (1), 7 (1),  (6.43)
A = Al (), ut), y(0),p* (), 7 (1), ),
A) = AP (@), a(t), g0, 7 (), 7 (t), 7).

We start by the proof of Lemma [63] and then give that of Th. B8

Proof of Lemma [EZ3. Assume that (621]) holds. Assume by contradiction that (E223]) does not
hold, i.e. g is continuous at entry or exit point 7. Then by continuity of (a, 7,52, 7%), {6.40)
implies that

_(2)
GO + O 2~ (6.44)
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In the neighborhood of 7, on the side of the interior arc, we have

(t— T)4

o o= <o,

9(5(t) = g (%)

where 7+ denotes 7~ if 7 = 7., and 77 if 7 = 7.,. Since §(4) = 0 on the interior of the
boundary arc, it follows that

[ “ (Ten)] >0 and [ @) (Tez)] <0. (645)
Moreover, ([E2]]) implies that

[?(Fen)] 28>0 and [ (Tea)] < =B < 0. (6.46)

Since (%f[‘ 2 S0 by (A2)—(A3), the above display and (E44]) yield

[§(4) (Ten)] <0 and [§(4) (Tex)] > 0,
contradicting (E43)). Therefore (E23)) holds, which completes the proof. O

Proof of Th. [68. Let (u,y) be a stationary point of (P#) with u in a L*°-neighborhood of
uw and p in a neighborhood of fi. Assume by contradiction that (u,y) has an interior arc
(71, 72) C (Ten — 0, ez +6). On the interior arc (71, 7), v and 7% are C?, and g(t) := g"(y(t))
attains its minimum on (71, 72) at a point where the second-order derivative g(?) is nonnegative.
Since ¢ (7;) < 0, i = 1,2, the continuous function ¢ attains its maximum over [r1,7o] at
some point t,, € (71, 7), and we have at this point of maximum of ¢(®

¢ (tm) =0 and g (tn) < 0. (6.47)

Assume first that t,, € (en,7ez). By Prop. BEA(iii), (y,p% n?) — (¥,p%,7?) uniformly over
[0,T] when | — Al — 0 and |lu — 4o — 0, and 93 (t) = 0= g3 (t,,) since t, € (Tens Tex)-
Therefore, A(ty,)—A(ty,) — 0, and hence (E40) implies that when ||u—p|| — 0 and |[u—1||cc —
0,

(2)\2 (2)\2
99w+ L5 0,) — 60 0 + L ) —

But 7%(t,,) = 0 since we are on an interior arc for (u,y), and g (¢,,) = 0 since we are on a
boundary arc for (@,y). It follows that when || — fi]] — 0 and ||u — @/ — 0,

Since (g“ 2 > > 0by (ET) and (GZ0), we obtain by (GZI) that (g“ 72( m) > Cp > 0.

Therefore for ||px— fi|| and ||u — || small enough, g (t,,) > C5/2 > 0 contradicting (62m).

Assume now that ¢, € (Te, — 9, Ten] (the case when t,, € [Ty, Tex + d) is analogous). For
all 0 < e < 4, if |u — || and ||u — @|| are small enough, then g#(y(t)) < 0 on the interval
[Ten — 0, Ten, — €]. This implies that t,, T Ten, when ||u — || — 0 and ||u — u||oc — 0. Therefore,
since ¢ (t,,) = 0 = g® (7)) and (@, 7, %, 7?) is continuous over [0,7T], we obtain by Prop.
BEAl(iii) that A(t,) — A(71). Tt follows then from (EA0) that

(2)y2 22
(gu) iP(tn) — gD (Eh) + (9" 2L > 0+ 0B >0,

) (¢ u
g (m)+ .. Huu
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contradicting (B4T7) again since g (t,,) < 0 and #?(t,,) = 0. This shows that for all small
0 >0, if ||u— u||o and || — ]| are small enough, then (u,y) has no interior arc contained in
(Ten — 0, Tex + 0).

It follows that I(g"(y)) N (Ten, — 0, Tex + d) is either empty, or a touch point, or a boundary
arc. Let us refute the two first possibilities. For all small ¢ > 0, if ||u — 4| and ||x — fz]| are
small enough, then I(¢g*(y)) C I.(g(y)), and by hypothesis (EZ1]), Prop. E8l(ii) and Lemma .7
(recall that dn? = dn), for all t € [Tep, Tes], there exists s € supp(dn?) C I(g*(y)) such that
|t — s| < e. Therefore, we deduce that I(g"(y)) N (Ten — 0, Tex + 0) is necessarily a boundary
arc (Ten, Tex ), and that |Ten — Tenl, |Tex — Tex| < €.

It remains to show that uniform strict complementarity holds on that boundary arc. By
(B0, it holds for all ¢ in boundary arc (7ep, Ter) that

0=~ A0 (6.48)

®)
The same relation applied to (u,y), the uniform strict complementarity assumption (E2II)
and (A2)—(A3) imply that A(0,u(t),5(t),p>(t),7%(t), i) < —C for some positive constant C,
for all t € [Tn,Tex]. Therefore, by continuity A(0,u(t),y(t), p>(t),7%(t), 1) < —C/2 for all
t € (Ten — 0, Tex + 0) D (Tens Texr) for § > 0, |lu — ul|oc and ||u — f|| small enough. By Prop.
B8l(iii), for small enough ||u —@||s and || — fl|, (u,y,p?,1?) is arbitrarily close to (u, 7, p2, 7°)
in L and hence A(0,u(t),y(t),p?(t),n*(t),n) < —C/4 on (Ten,Tez). It follows then from
E33)-(634) and (64R) that 772 is uniformly positive over (7ep, Tez). This achieves the proof
of the theorem. O

Remark 6.9. The regularity of the class of perturbations considered (here, satisfying Def. [64])
is crucial to show the stability of boundary arcs, as it is the case for first-order state constraints
(see [20, Th. 2.1}@). If the perturbation is not sufficiently smooth, then boundary arcs are not
stable, even if the uniform strict complementarity assumption (EZZI) holds, as it is shown in
[92, section 2] for a first-order state constraint and a perturbation that goes to zero in the L?
norm but not in the W1> norm.

6.4 Instability of nonreducible touch points

Definition 6.10. Let 7, € (0,7") be a touch point of a stationary point (u,y) of (P), with
alternative multipliers (p?, 7?).

(a) We say that 7, is reducible, if (i) t — ¢®(a(t),7(t)) is continuous at point 7, (which
always holds under assumption (A3)) and (ii)

9P (@(F0), 5(710)) < 0. (6.49)

(b) We say that 73, is essential, if
[7%(7t0)] > 0. (6.50)

Remark 6.11. Using the classical multipliers (p, 77) associated with (@, y) in (E2)—(EI0) (recall
that 7 = 1?), (@50) is equivalent to

[1(7e0)] > 0, (6.51)

which is in accordance with the classical definition of essential touch points.

2Theorem BA of this thesis.
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Let (u,y) be a stationary point of (P) satisfying (A2)-(A3). Assume that (u,y) has a
reducible touch point 74,. Then given a stationary point (u,y) of (P*) such that ||u — ]| and
|lu — 4|l are small enough, it is easy to see (see e.g. [ZI section 5.1H) that the mapping
t — gH(y(t)) attains its maximum over a neighborhood (74, — 9, 740 +9) of T4, > 0, at a unique
point 7. Therefore, if g*(y(m)) = 0, (u,y) has a unique touch point in (7, — 6, T + 0),
and if g”(y(m)) < 0, the state constraint is locally not active in a neighborhood of 74,.
Moreover, by Prop. B6(ii) and relation (GI1), dn? weakly-* converges in MI0,T] to di?
when || — f|, ||u — @]|cc — 0. Therefore, if strict complementarity holds at 7, i.e. if T, is
an essential touch point, this implies that for § > 0, || — | and ||u — @]/ small enough,
(Tto — 0, Tto + 6) Nsupp(dn?) # (. Hence by ([EI8) we necessarily have g*(y(1y)) = 0, i.e. T,
is a (essential) touch point of (u,y).

The above discussion shows that touch points that are both reducible and essential are
stable. When strict complementarity does not hold, there are two possibilities for nonessential
reducible touch points: either the state constraint of the perturbed problem is not active on a
neighborhood of 7,, or it is active in a neighborhood of 7, at a unique touch point, the latter
being essential or not.

We see that the reducibility hypothesis (49) excludes other structural changes. In what
follows, we release this reducibility hypothesis and and show that two possible changes in the
structure of perturbed stationary points may happen in the neighborhood of a nonreducible
touch point: The apparition of a boundary arc or the apparition of a second touch point.

Let now 74, be a nonreducible touch point of (@, ), i.e. such that

9 (@(710), 5(T0)) = 0. (6.52)
We consider the following assumption (compare to (G23]))

3
ST r = 9P (7). 6(70), 5(7)) > 0,
3
S| rs = 9 @5, 8(70),5()) < O,

(6.53)

By (6378) and (B31), the jumps of g(® and 72 at a touch point 74, are related by

. . (9 (u,y)? .
(9 (a0, 9) (r10)] = 92 () [i(rio)] = — ﬁuj(%yj%%[n%%ﬂ =0 (654)

where we have [17%(74,)] = [1(7%)] by (EII). Therefore, if (G53) holds, this implies by (A2)-
(A3) that [1?(7)] > 0. We obtain then the following result.

Lemma 6.12. Let (u,y) be a stationary point of (P) satisfying (A2)-(A3) and having a
nonreducible touch point Ty, € (0,T) satisfying @5H3)). Then T4, is an essential touch point,

i.e. satisfies (G0).

Let (u,y) be a stationary point of (P#), with ||u — fi]| and ||u — @]|o arbitrarily small.
We use the notations (E41))-(6-43]). At a nonreducible touch point 74, of (@,y), we cannot
ensure that the state constraint of the perturbed problem g(t) := g#(y(t)) will have a unique
maximum point in a neighborhood (7, — 6, Tto + d) of T4, for small § > 0.

3Section of this thesis.
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So let us assume that g(¢) has either a boundary arc or an interior arc included in (74, —
0,Tto +0). We deduce in both cases the existence of a time ¢,, € (T3, — 0, T¢o + d) where g@ is
maximum (similar to the proof of Th. [EF]) such that

g (ty) = 0.

For all 0 > 0, if || — ;]| and ||u — @]/ are small enough, then I(g*(y)) C I5(g(y)). Letting
0 | 0, we obtain that ¢, — T3 when ||u — || — 0 and ||u — @||cc — 0. Hence, (E40) implies
that when ||u — ]| — 0 and ||ju — @]/ — 0, using Prop. B6(iii),

(2
g<4><tm>+%ﬁ2<tm> A, ultm), Yt), P2 (b)) 1)

- _A(Oa a(7_'150)7 g(%to)7ﬁ2 (7__150)7 772 (7__150)7 ,L_L) (6'55)

Therefore, if (u,y) has a boundary arc in (7, — d, 74 + 0), we have that g® (tm) = 0 and
i(tm) > 0, which implies that

A0, @(T10), §(Teo), D° (Tt0), 17 (Tt0), 1) < 0. (6.56)

If (u,) has an interior arc in (74, — 6, 7o + ), then g (¢,,) < 0 (this was shown in the proof
of Th. B8 recall (647)) and 7> (t,,) = 0. This implies that

A0, @(T10), §(Tto), D° (Tt0), 17 (Tt0), 1) > 0. (6.57)

Conversely, if (E20) holds with a strict inequality, then for ||pu— || and ||ju— || small enough,

(2)
g (t) + %ﬁz(t,ﬂ) > 0, excluding the possibility of an interior arc. Similarly, if (657)
holds with a strict inequality, this excludes the possibility of a boundary arc. Using the above

arguments, we are able to obtain the following result.

Theorem 6.13. Let (u,y) be a stationary point of (P) satisfying (A2)-(AS3). Assume that
(u,y) has a nonreducible and essential touch point 7y, € (0,T). Set

NTio) = MO0, 6(Tr0), §(Tto): D (Tro), 717 (Tto) ) (6.58)

Then, for every stable extension (P*") and for all 6 > 0 small enough, there exist p, 0 > 0 such
that:

(i) If M(To) < O holds, then all stationary points (u,y) of the perturbed problem (P*) with
Il — il] < o and ||ju — || < p have either a single touch point T, or a single boundary arc
(Ten, Tez) i (Tto — 0, Tto + ). Moreover, in case of a boundary arc (Ten, Tex), (u,y) satisfies the
uniform strict complementarity assumption (B2IN) on (Ten, Tex)-

(ii) If AM(Tso) > O holds, then all stationary points (u,y) of the perturbed problem (P*) with
Il — |l < o and ||u — tl|oo < p have either one or two touch points in (Tyo — 0, Tto + ) and no
boundary arc.

Remark 6.14. Under the assumptions of the above theorem, if A(7;,) = 0 holds, then we cannot
conclude and any structure in the neighborhood of 7, is a priori possible for a stationary
point (u,y) of the perturbed problem (P*), however small ||u — @]l and ||x — f|| are (see
Example below).
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Proof of Th. [ET3. Note first that since 7, is essential, it follows from Prop. B6l(ii) and Lemma
670 that for § > 0 and ||ju — @]|oo and ||u — f]| small enough, I(g*(y)) N (Tto — 0, Tto + 0) is not
empty. In view of what precedes, it remains to show in the case (ii) when A(7,) > 0 that
(u,y) cannot have more than one interior arc included in (74 — 9,74 + 0). Since boundary
arcs are not possible either, this will show that the only two possibilities for (u,y) is to have
one or two touch points in (7o — d, Tgo + 9).

If M(740) > 0, then we see by (E5H) that on an interior arc included in (74 — 6, 740 + 9),
for |[u — u|lec and || — f]| small enough, for ¢ in the interior arc, the functions (of time)
(g")® (i, 0, u, y) being Lipschitz continuous on interior arcs by Lemma BI] uniformly w.r.t. u
by Definition of a stable extension,

g (t) < —IX(F) <0,

and hence ¢ is strictly decreasing along an interior arc. In addition, ¢® vanishes at some
point ¢,,, on the interior of an interior arc where ¢(? is maximum and satisfying (E20). Now
assume that (u,y) has two interior arcs in (74, — 8, 7o + 0), say (11, 72) and (79, 73). Since g©®)
is strictly decreasing on the interior arcs and vanishes at an interior point of these arcs, this
implies that ¢(*) (7,) < 0 and g® (7;7) > 0, and hence, [¢©®)(12)] > 0. But at the touch point
79, [¢®) (19)] < 0 by (EF), which gives the desired contradiction and shows that (u,y) can
only have a single interior arc in (73, — 0, 7o +0), for small enough ||u — ||~ and ||p — || and
0> 0.

We end the proof by checking that in the case (i), uniform strict complementarity holds
on the boundary arc (7en, 7ez). By @40) and ([@33), for all ¢ in boundary arc (7en, Ter) We
have that R

ooy Huu(t) 2 2
i7(t) = = —a MO u(t), y(1), p°(1), n” (1), ). (6.59)
(gu”’ (1))

Since ¢ := A(7) < 0, it follows that for § > 0 small enough, A(0,u(t),5(t),p%(t), 7?(t)) <
¢/2 < 0on (Tip— 6, Tto+6). For ||u— 1o and ||pz— fi|| small enough, (u,y, p?,7n?) is arbitrarily
close to (u,7,p?,%%) in L™ by Prop. BEH(iii), so if (u,y) has a boundary arc (Ten,Tez) C
(Tto — 6,710 + 6), we deduce that A(0,u(t),y(t),p?(t),n*(t), n) < c/4 < 0 on (Ten, Tez). With
E34) - (633) and (E5Y) this shows that 72 is uniformly positive on (7ey, 7ez). This achieves
the proof of the theorem. O

Example 6.15. Consider the problem below:

1 u(t)2 >
min + t) ) dt
(u,y)eluxy/() ( 9 Mlyl( )

subject to the dynamics and boundary conditions]

n@t) = y(t), 920t) =ult), (6.60)
y1(0) = 3(1) =0, 7:1(0) =1=—9(1) (6.61)

and second-order state constraint
yi(t) < po.

4Extension of the results of this paper when there are constraints on the final and/or the initial state is
possible if a strong controllability condition is assumed, see [I7, Section B]H
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The perturbation parameter is (p1,u2) € R x R%. The above problem was studied in [29] for
p1 = 0 and in [H] for p; # 0. By convexity, the first-order optimality condition is necessary
and sufficient and the problem has a unique optimal solution.

For the unconstrained problem, the optimality condition reduces to y§4) = —pu1, together
with the boundary conditions (EG1]). Therefore the unconstrained optimal trajectory is given
by

ylunconS(t) _ lu’l t4 + 2 :ul (1 + 24) t2 +t.

24 12
Its derlvatlves being given by g1 (t) = (¢t — §) (—k&Lt? + Lt — 2) and jjunc‘ms(t) = Bt(1—
t) — 2 — &2, this fourth—order polynomial has on [0, 1] a maxnnum at t = for w1 <48, and

one local minimum at ¢ = 3 and two maxima, one in (0, ) and the other in ( 1), for p > 48.
For ,ul < 48 and po = yi"eomns (%) = i — ?%4, we have therefore a nonessentlal touch point at
Tto = 2, which is reducible for pu; < 48.

In the sequel we shall consider the case when p; < 48. When po decreases beyond the

Value 38 7> the optimal trajectory has one touch point at 74, = 2 and is given by

yclmetouch(t) :{ —%t4—|—%tj+%t2+t , , ) on [?7 %]
S -1) - S - 1P 512~ (1 -1) on [}, 1]

with a = 24 + 1 — 96uo and b = —8 — % + 24pu9. This touch point becomes nonreducible

when yonetOUCh(Tto) =0 i.e. when pp =} — $- and satisfies (E53).
So let us compute the term (BR8] at the optimal trajectory for a given value of iy €
(—00,48) and fis == # — 4. We have that

g(y) = Y1 — M2, g(l) (y) = Y2, 9(2) (’LL, y) = u, 9(3) (U, u, y) = ’[Lv 9(4) (U, ﬂ, u, y) =
The alternative Hamiltonian (G.I4]) is given by

2
= u
HY (u,y,p%,0) = =+ payn + plye + phu+ nu
and the costate and control equations (E16]) and (EI7) are given by
_p% = M1, _p% = p%)
= u+p3 -+

Differentiating twice the last above relation, we obtain
0 = i+ +i? = g+ +i’

Identifying with (E40), we simply have that A(g(3),u,y,p2,7]2,u) = u1, and hence, at the

nonreducible touch point 7, = %,

X(%to) = [i1-
Conditions (i) and (ii) of Th. are Satisﬁed respectively for ji; < 0 and for iy > 0 (see
figure below). Therefore, for w2 < g — m, the touch point turns into two touch points

if 41 > 0 and turns into a boundary arc if p1 < 0, and strict complementarity holds on that
boundary arc since 7j> = —pu; > 0.

If fiy = 0, then A(7,) = 0 and we cannot conclude for the structure of the solutions of the
perturbed problem. For po < %, a boundary arc appears but strict complementarity does not
hold on that boundary arc since 72> = —pu; = 0. If we take e.g. ps = % — 1’&1’2 eu?, with
g€ > 0 a fixed parameter, we have in the neighborhood of the nonreducible touch point 74, a

boundary arc for p; < 0 and two touch points for g > 0.
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(a) State constraint for g3 = —36 and (b) State constraint for fi1 = 36 and vary-
varying po. ing pa.

Figure 6.1: Transformation of a nonreducible touch point into a boundary arc or into two
touch points for i1 # 0 when ps decreases.

6.5 Stability analysis

Let (@, 7) be a stationary point of (P) with alternative multipliers (p2,7?). Let V := L2(0,T).
For v € V, recall that we denote by z, the unique solution in H'(0,T;R") of the linearized
state equation (B30). The quadratic form involved in the second-order optimality conditions
in [71] is as follows: For v € V = L2(0,T),

T
Q(v) ::/0 Dy a7 (@7, 5%, 1) (v, 20), (v, 20)) At + ¢y (F(T)) (20(T), 20(T)). (6.62)

The extended critical cone used in the stability analysis is defined as the set of v € V such
that
gy (5(1)2,(t) =0 for all t € supp(di?). (6.63)

This set is obtained from the classical critical cone, defined as the set of v € V satisfying (EG3])
and

9y(5(1)2(t) <0 for all t € I(g(y)) \ supp(di®), (6.64)

by omission of the inequality constraint (E64]). The strong second-order sufficient condition
used in the stability analysis is:

Q(v) >0, forallveV, v+#0, satisfying (EE3). (6.65)

This c%ndition is a natural strengthening of the second-order sufficient condition of [21],
Th. 18]

Qv) >0, forallveV, v+#0, satisfying (E.63)-(G.64). (6.66)
The strengthened Legendre-Clebsch condition (20)) implies that the quadratic form Q is a
Legendre form, i.e. a weakly lower semi-continuous quadratic form with the property that if a

sequence v, weakly converges to v in L? and if Q(v,) — Q(v), then v,, converges to v strongly
in L?. Consequently, (E6H) (resp. ([BB0)) is equivalent to the existence of some ¢ > 0 such

that Q(v) > c|[v||3 for all v € V satisfying (E63) (resp. satisfying (E53)-([E54)).
®Theorem [T of this thesis.
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For first-order state constraints, the stability analysis for the homotopy algorithm in [20]
was conducted using a shooting approach. For second-order state constraints, a shooting
approach can be used for the stability analysis if all the touch points are reducible, see [94, [19],
but not in presence of nonreducible touch points, since in that case the structure is not stable
by Th. For this reason, a stability result has been obtained in [[71] (Th. below)
that makes no assumptions on the structure of the trajectory, and hence applies when the
structure of the trajectory is not stable. This result is based on a variant of Robinson’s strong
regularity theory [I2I] and extends the stability results known for first-order state constraints,
see [B3, RY].

Theorem 6.16 ([71, Th. 4.3]). Let (u,y) be a local solution of (P), satisfying (A2)—(A3)
and the strong second-order sufficient condition (B8H), and let (P*) be a stable extension of
(P). Then there exist ¢, p, k,k > 0 and a neighborhood N of fi, such that for all p € N, (P*)
has a unique stationary point (ut,y*) with ||u* — i|lec < p and unique associated alternative
multipliers (p>*,n>*), and for all p, ' € N,

e =l g = 2o N2 = 0z, P =2 s < wll— ), (667
= o 1 = 5 .0, 1927 = PP 100 [ = 72 llow < Rl = |2, (6.68)

Moreover, (u*,y*) is a local solution of (P*) satisfying the uniform quadratic growth condition
B2R) and the strong second-order sufficient condition (G.63).

Proof. The theorem follows from [71), Th. 4.3}@, excepted for the fact that (u,y*) satisfies
the strong second-order sufficient condition (E60]). The latter can be proved by contradiction,
by a slight modification of the proof of [1], Prop. 4.2], using Prop. B8, Lemma B, and the
fact that Q is a Legendre form. O

6.6 The shooting algorithm

By Th. EI0, the perturbed problem (P#) has a locally unique local solution. The objective of
this section is to see, under additional assumptions, how we could use the shooting algorithm
and the results of Theorems and to obtain in practice in the homotopy algorithm the
solution of the perturbed problem.

Let us first recall the shooting algorithm for a second-order scalar state constraint (see
[29, [TT5, 941 [T9]). The alternative multipliers used in the shooting algorithm are denoted by
(p2,m2), with the ‘2’ as subscript, not to be confused with the multipliers (p2,7?) (with the
‘2’ as superscript) used in the stability analysis. Let us recall that the multipliers used in the
shooting algorithm (pg,72) are defined, on each boundary arc (7ep, 7e;) of the trajectory, by

mit) = /( () =) ), ) = /fms)ds, (6.69)

pa(t) = p(t) = m(t)gy(y(t)) — mag (y (1)) (6.70)

and 71 (t),n2(t), p2(t) = 0 outside boundary arcs. Here p and 7 denote the multipliers associ-
ated with a stationary point (u,y) in the classical optimality condition (E)—(EI0).

Why do we use so many different multipliers? The multipliers 2, p? are very useful in the
stability analysis because they are continuous and converge uniformly. The multipliers (p2,72)

"Theorem of this thesis.
8 Proposition B of this thesis.
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used in the shooting algorithm have jumps, and these jumps are used as additional degrees
of freedom in the shooting algorithm, in order to have as many free parameters as conditions
to satisfy. An explicit relation between these multipliers (pa,72) and (p?,7n?) is made precise

later, see (GI13)-(ETIH).

Let (u,y) be a stationary point of (P) satisfying (A2)—(A3) and the assumption below:

(A4) (u,y) has finitely many boundary arcs and finitely many touch points and the state
constraint is not active at final time, i.e. g(y(7)) < 0.

Denote by Zep, .. and 7Ty, the (finite and possibly empty) sets of respectively entry, exit and
touch times of the trajectory (i,%), and its set of junction points by 7 := T¢p, U Tez U Too.
Let Npo := |Zen| = |Zex| and Ny, := |7T;0|. Moreover let us introduce the following notation.
Given a real-valued function ¢ over [0,7] and a finite subset S of (0,7"), assuming w.l.o.g. the
elements of S in increasing order, we may define ©(S) := (p(7))res € R4S, We adopt a
similar convention for vectors and define vs := (v;);es € RC#4S,

The shooting algorithm is as follows. The unknown are the initial value of the costate pg,
the (finite) sets of entry, exit and touch points of the trajectory, respectively 7., 7c, and Ty,
and the jump parameters of the costate. More precisely, there are two jump parameters V}_en
and ng for each entry point 7., € 7, and one jump parameter v, for each touch point
Tto € To. The shooting mapping F in a neighborhood of (u,y) is defined by

F iR x (RMe)t x (RMe)? — R™ x (RMe)? x (RM9)?,

Po p2(T) — ¢, (y(T))
vk 9(Y(Ten))

Vi 9 (y(Ten))
T | = | 9PW(T), y(Ten))
Tea 9P ((Th), y(Tew))
iz 9(y(T1o))

Tio 9V (y(Tw))

where (u,y, p2,n2) are the solution of:

gy = [flwy) on[0,T], y(0)=yo (6.71)

—po = Hy(u,y,pa,m) on [0,TI\T, p2(0) = po, (6.72)

0 = Hy(u,y,p2,72) on[0,T]\7T, (6.73)

0 = ¢®(u,y) on boundary arcs (6.74)

0 = mn2 on interior arcs (6.75)
[p2(7en)] = _Viengy(y(Ten)) - Emgg(,l)(y(Ten)) at entry times 7, € Ten,  (6.76)
p2(Tt0)] = —Vro9y(y(Teo)) at touch points 14, € Ty (6.77)

A vector of shooting parameters will be denoted by §. With a stationary point of (P) satisfying
(A2)—(A4) is associated a unique set of shooting parameters, which is a zero of the shooting
mapping. The vector of shooting parameters of (#, %) will be denoted by 6. More generally the
‘bar’ will refer in what follows to shooting parameters associated with the reference trajectory
(@,y). Let us recall (see [T9, Rem. 2.11(ii)]ﬁ) that using the multipliers (p2,72) uniquely

9Remark Il of this thesis.
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associated with (@,y) in the shooting algorithm, assumption (A3) is equivalent to
@ is continuous over [0, 7] and

Ja> 07 ﬁuu(ﬂ(t)vg(t)7ﬁ2(ti)aﬁ2(ti)) >« for all t € [O,T] (678)

If (u,y) is a trajectory associated with a zero of the shooting mapping, with alternative
shooting multipliers (pa,72), then u, po and 7y are piecewise continuous on [0, 7' and have their
set of discontinuity times included in the set of junction times 7 := 7., U7 U7y, Let us recall
the additional conditions that are automatically satisfied by a zero of the shooting mapping
and the additional conditions, under which a zero of the shooting mapping is associated with a
stationary point of the optimal control problem. Given a,b € R, set [a,b] := {(1—=A)a+Ab; A €
0,1]}.

Lemma 6.17 ([19, Prop. 2.15 and Rem. 2.16]). Let (u,y) be the trajectory associated

with a zero of the shooting mapping, with alternative shooting multipliers (pa2,n2). Assume
that there exists B, > 0 such that

B < o (@ y®) for alld € [u(t™),u(t™)] and all t € 1(g(y)); (6.79)
o < Hu(t,y@),p2(t5),m(t))  for all t € [u(t™),u(t)] and all t € [0,T].  (6.80)
Then: (i) w is continuous over [0,T].
(ii) For each boundary arc (Ten,Tex) of (u,y), the following holds:

no(rh) = Vzm and N2(7o,) = 0. (6.81)

Proposition 6.18 ([19, Corollary 2.17]). A zero of the shooting mapping is associated with
a stationary point (u,y) of (P) satisfying (A2), EXF), and (A4), with alternative shooting
multipliers (p2,n2), iff:

g(y(t)) < 0 on interior arcs, (6.82)
0 < 7'7'2( ) on boundary arcs, (6.83)
0 < vb +ip(rl) for each entry point Ten, (6.84)
N2(Tey) < 0 for each exit point Tey (6.85)
0 < v, for each touch point . (6.86)

Lemma 6.19. Let (u,y) be the trajectory associated with a zero of the shooting mapping satis-
fying (A2), B1R), and (A4). Then the additional conditions (E3) and ([B35) are equivalent,
respectively, to

9(3) (W(Ten), u(Ten); y(Ten)) = 0 and 9(3) ((75), u(Tex), Y(Tex)) <O (6.87)
where the function g©® is defined by (E35).

Proof. By time differentiation of (E73]) on the interior of arcs, we have (omitting the arguments
(’LL, Y, P2, 772))

0 = Hyutt+ Huyf — Hyfu + 1292 (6.88)
Taking the jumps at entry time 7.,, we have by (G.70]) and (E:S:[]) (omitting arguments)
(Hud = [p2lfuu+ [Rl9G) = —vr, 95 fuu = V2, 95" fuu + V2, 940
= —vp, 90 — Vi, 9w TV 0
- 0,
(Hu)f = [H)fu = [plfugf + 12985 £ — Ip2)fyfu — [Uz]gy fa

= Ten(gyfuyf gyfyfu)_yren(gy fuyf 9 f gy fyfu+g fu)
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Using that g%) = gy " fu+ 95" fuy. 5 = 1,2, that gt? = g fu = gy, f fu + gy fy fu and that

g%) = 0, we obtain

[f{uy]f - [ﬁy]fu = —Vien(gwf = GyySul — 952) +gyyffu) - Vzm(—gy(,?fuf +gg(/é)ffu)
= v 9%

Therefore, taking the jump of (ERH) at 7.y, we obtain

0 = f{uu[u(Ten)] + (Vl + [7.72(7'671)])9182)'

Ten

By (@33]), we have that [9(3) (U(Ten), W(Ten ) Y(Ten))] = 9732) [t4(Ten)] and hence, since ¢®) van-

ishes on the interior of the boundary arc,

. Huu . —
V71—en +a(10,) = ( (2))29(3) (U(Ten)s w(Ten)s Y(Ten))- (6.89)
Gu

Since H,,/ (g&z))2 is positive by (G78) and (A2), the additional condition (E&4]) is equivalent
to the first condition of (EX1). Using similar arguments at exit points, the result follows. [

Remark 6.20. It follows from the above lemma that (E82) together with the continuity of u
imply that (684])-(GR0]) are satisfied, since a Taylor expansion of the state constraint near
entry/exit of boundary arcs yields

(3) (0 + (t—1)°
02> g(y(t) = g™ (@(r™), u(r),y(T)—¢
where 7F stands for 7, or 72, implying ([E87), and in turn (EX)-[ESH).

In what follows, (P*) denotes a stable extension of (P), and to indicate the dependence on
w of the data g, f, ¢, » and H, we will denote in what follows the shooting mapping by F (-, u).

+ 0(“ - 7‘3)7

6.6.1 Well-posedness with nonreducible touch points
We assume in addition to (A2)—(A4) that

(A5) The strict complementarity assumption (EZII) holds on each (regular) boundary arc
(7_—8”)7_—817) Of (ﬂ7g);

(A6) (i) Each nonreducible touch point 7y, of (@, ) satisfies (E23);
(ii) Each nonreducible touch point 7, of (u,%) satisfies A\(7y,) < 0, where A(7,) is

defined by (G5F]).

Assumption (A6)(i) implies by Lemma that all nonreducible touch points of (u,y) are
essential. Therefore, by (A6)(i) all nonessential touch points of (u, §) are reducible, i.e. satisfy
€23). )

We exclude in (A6)(ii) the case when A(7,) = 0, since in that case, by Remark B4l we
have no information on the structure of solutions of the perturbed problem, which is not very
useful for the homotopy algorithm. We also exclude the case when A(7;,) > 0, though we know
by Th. that in that case the solutions of the perturbed problem have either one or two
touch points in the neighborhood of 74,. The reason to leave aside this case in the following
analysis is that singularities happen in the shooting algorithm when a touch point turns into
two touch points (this is discussed more precisely in Remark at the end of the paper).
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Definition 6.21. Let (u,y) be a stationary point of (P) satisfying (A2)-(A6) and let (P*) be
a stable extension of (P). We say that a stationary point (u,y) of (PH) has a neighboring
structure to that of (u,y) if there exists a small § > 0, § < min, 17 ;.. |7 — 7’|, such that
(a)—(e) below hold:

(a) The contact set I(g*(y)) is included in Is(g(y)) = {t € [0,T] : dist{¢, I(g9(y))} < 0};

(b) For each boundary arc (Tepn, Tex) of (@, 7), (u,y) has on (Tep — 9, Tex +6) a unique boundary
arc (Tena Tew);

(¢) For each essential and reducible touch point 74, of (4, ), (u,y) has on (7, — 0, 4o +0) a
unique touch point 74,;

(d) For each nonessential touch point 7y, of (@,y), either the state constraint g*(y) is not
active on (T4 — 0, Tt + 0) or (u,y) has on (74, — d, Tyo + 0) a unique touch point 74,;

(e) For each nonreducible touch point 74, of (@,y), (u,y) has on (T, — 0, Tto + J) either a
unique touch point 7, or a unique boundary arc (Ten, Tex )-

We denote by 7.%°7, T and Ty,rq the sets of respectively essential and reducible, nonessen-
tial, and nonreducible touch points of the trajectory (i,7). Set Nyes := |77*| and N,,,q :=
|’Z_;Wd\. By the above definition, there are Ny := 9Nnes+Nnra different neighboring structures
to that of (u,y). For j = 1,..., Ny, denote by F; the shooting mappings corresponding to
each of those different neighboring structures. For each nonessential touch point 74, of (u,¥),
the latter is introduced or not in the shooting mapping F; (with a zero jump parameter v,,,),
and for each nonreducible touch point 74, of (u,y), the latter is introduced as a touch point or
as a boundary arc (of zero length) in the shooting mapping F;. More precisely, similarly to
first-order state constraints (see [20), section 4.2]) since ¢ (a(7E), 7(71)) = 0 a nonreducible

touch point 73, can be seen as a boundary arc of zero length, by taking
Ten = Tto = Tex (6.90)
and, in view of the jump conditions (G.70)—(@ ),
vl =, and 72 :=0. (6.91)

Ten Ten

For j =1,..., Ng, denote by éj the vector of shooting parameters, of appropriate dimension,
associated with (@, y) in the shooting mapping F;.
For v € V in the extended critical cone (i.e. satisfying (63])), we consider the additional
constraint below:
9 (Y(Fro))20(Fro) =0 for all T € Tppg. (6.92)

Recall that z, is the solution of (B30). A sufficient condition ensuring the well-posedness of
the shooting algorithm, as we will see, is

(1) (s 2
Qv) — Z Uy (95 (§(7))z(7)) >0, forallveV, v+#0, satisfying (E63) and (E32),
=
(6.93)
where Q is given by (E62). Note that the sum in (E33)) is nonpositive. Therefore, the strong
second-order sufficient condition (E60]) used in the stability analysis implies that the weaker

condition (B33 is satisfied.

10Gection of this thesis.
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Lemma 6.22. Let (u,y) be a stationary point of (P) satisfying (A2)-(A6) and (E93). Then
there exists a neighborhood W of ji and, for each j =1,..., Ny, a neighborhood V; of éj such
that for each p € W, the equation

Fi(@,pn) =0 (6.94)

has a unique solution 9;.‘ in Vj, which is Ct w.r.t. p.

Of course, if nonreducible touch points are converted into boundary arcs in the shooting
mapping Fj, it may happen that for ;1 in the neighborhood of fi, the solution 9;‘ of (B9 is
such that some entry times are greater than the corresponding exit times. In that case the
trajectory associated with 9;‘ by (E71)—(@E77) has no physical meaning since not single-valued.
In Lemma we will give necessary and sufficient conditions so that a solution 9;‘ of (£94)
is associated with a stationary point of (PH).

Proof of Lemma [62Z3. We follows the ideas of the proof of [I9, Th. 3.3} and include the

presence of nonreducible touch points. Let us show that the Jacobian Dgfj(éj, i) is invertible,
for all j =1,..., N,s. It will then follow from the implicit function theorem that (E94]) has a

locally unique solution for g in a neighborhood of fi which is C! w.r.t. p.
Let F; be one of these shooting mappings. Let w := (71'0,’Y%—en,’}/%—ez,()"];n,()"fez,’)/Tto,O'TtO)T

be such that DyF;(0;, i)w = 0. Then, by differentiation of the shooting mapping, we have

= m2(T) = dyy (y(1))2(T), (6.95)
= gy(U(Ten))2(Ten) for all entry points 7ep, (6.96)
0 = gz(/l)(g(%m))z(%m) for all entry points Tep, (6.97)
_ _ d PN
0 = Dg® (Ten), §(7en))(V(700), #(Ten)) + 02 720 (@(8), 5(D),—r,,
for all entry points Ty, (6.98)

N _ _ d o
0 = DgP(u(Tex), §(Tex)) V(7)) 2(Tea)) + Ufmag@) (@), 5(0)] s
for all exit points Tes, (6.99)
= gy(U(Te))2(To) for all touch points 7., (6.100)
95" (§(710))2(Ti0) + 7,9 (W(Tso), §(Tso))  for all touch points Ty, (6.101)
)

2 = fyw+ fyz on[0,T], =z(0)=0, (6.102)
—fty = Hyw+ Hyyz +maf, + ng?(f) on [0,T]\ 7, m2(0)=m, (6.103)
0 = Huv+ Hyyz + mofu+ Ggl? on [0,T]\ T, (6.104)
0 = 952)1) + gl(f)z on boundary arcs, (6.105)
0 = (2 on interior arcs, (6.106)
[mo(Fen)] = P, 9yy (§(Ten))2(Ten) — 72, 953 G (Fen))2(Fen) = 11, 9 (F(Ten))
- (Y2 +on, L) gz(ll)(gj(fm)) for all entry points Tep, (6.107)
T2(Tio)] = =0 9yy(U(T10))2(Tto) — Vreo 9y (F(Tr0)) — Uﬁoﬂﬁogg(,l)(g(fto))
for all touch points 7. (6.108)

U Theorem of this thesis.
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The jump condition of the costate (EI0D) follows from [T9, Lemma 3.7]. Recall that for
nonreducible touch points 74, = 7., converted into a boundary arc in F;, we have E%m =0

in (EI07) by (EXI). For a nonreducible touch point 74, introduced as a touch point in Fj,

(ET0T) becomes
0 = g (5(710)) (o). (6.109)
The above constraint holds as well for nonreducible touch points converted into boundary

arcs by (697). Moreover, we substitute oz, using (EI0I) into the jump condition (EI0X])
for reducible touch points, and we consider for nonreducible touch points introduced as touch

points the constraint (EI09) with associated multiplier oz, vz, in (EI08). In this way we

obtain that (E98)-E37) and (EI00)—-@EI0R) constitute the first-order optimality condition
of the linear-quadratic problem (PQ) of minimizing

T ~
Qv) = /0 D2,y F (5,52, 712) (0, 20, (v, 20))E + 6y (5(T) (20(T), 2 (7))

+ Z (V;mgyy (J(Ten)) (20(Ten), 20(Ten)) + V?'engg(/é) (Y(Ten)) (20(Ten), 20 (fen)))
Ten€Ten

t Y P ) (o) 2 (o)) — Y v,

7_—to€7_—to 7_—'5067_—655

subject to the constraints (696]), (@97), (EI100), (EI05), and EI0Y) at nonreducible touch
. . _ 1), - L 2) - _ 2), -
points. Since g, (5(t))2(t) = g5 (7)z0 and Lz g, (G(1)zu(t) = 95 (@ §)z0 + 9 (@, §)v, the
constraints (E36]), (E97), and (EI00]) are equivalent to g,(y(t))z(t) = 0 on boundary arcs (of
positive length) [Ten, Tez]. Consequently, the constraints (696), (E97), [EI00), (EI05), and

ET09) of (PQ) are equivalent to (E&63)), [E3A), and g, (7(Ts0))2(Teo) = 0 for all nonessential
touch point 74, introduced in the shooting mapping F;.

By straightforward calculation (see [19, Lemma 3.6] and [71, Lemma 3.1]), we can show
that the quadratic form Q2(v) is equal to the left-hand side of (G3). Since the latter is
a Legendre form by assumption (E20), ([E33) implies that (PQ) has a weakly lower semi-
continuous and strongly convex cost function on its closed and convex feasible set. Moreover,
the constraints of (PQ) are onto by assumption (A2) (see Lemma BEH) and hence the unique
solution and associated multipliers of the first-order optimality condition of (PQ) are zero.
This implies that (v, z,m2,(2) = 0. Therefore, myp = 0 and the multipliers associated with
the constraints (£390)-(@97), (EI00), and (EI09) for nonreducible touch points introduced as
touch points are equal to zero, implying that

V2o =0, V2, + 0r bz, =0, Vro = 0, (6.110)

7_—677,
and, for nonreducible touch points 74, introduced as touch points,
O';—toqu——m =0. (6111)

By (E33)-(E39), since %9(2) (@(t), 5(0)];=7-, -+ # 0 both for entry/exit points of boundary
arcs by Lemma B3 and for nonreducible touch points converted into boundary arcs by hy-
pothesis (A6)(i), we have that 07, = 0 = 0z, and by (EI01), 07, = 0 for reducible touch
points 74,. Finally, with (GII0)—@EI1I), since 77, # 0 at nonreducible touch points 74, by
(A6)(i) and Lemma B2, it follows that w = 0, i.e. the Jacobian of the shooting mapping F;
is one-to-one, and hence invertible. O

2T emma of this thesis.
BLemmas and 29 of this thesis.
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6.6.2 Stability of shooting parameters

Let (u,y) be a stationary point of (P) satisfying (A2)-(A6) and the strong second-order
sufficient condition (G0 and let (P*) be a stable extension of (P). For p in a neighborhood
of fi, the perturbed problem (P#) has by Th. a locally unique stationary point (u*,y*),
which has by Theorems and a neighboring structure to that of (@, %), in the sense of
Def. B2I1 Therefore it makes sense to speak about the shooting parameters associated with
(ut,y*). Note that its set of shooting parameters may not necessarily be unique if (u*,y")
has nonessential or nonreducible touch points, since a nonessential touch point may or not be
introduced in the set of shooting parameters, with an associated zero jump parameter, and a
nonreducible touch point may be considered either as a boundary arc (of zero length) or as a
touch point. The next lemma shows that the stationary point (u#, y*) of (P*) has its shooting
parameters in the neighborhood of the shooting parameters of (4, ).

For this it will be useful to make explicit the relation between the multipliers 1o and n? used
respectively in the shooting algorithm and in the stability analysis. Recall that the multipliers
used in the shooting algorithm are defined by (E69)—(EZ0) while those used in the stability
analysis are defined by (EII)-@&I2). Moreover, by [19, Prop. 2.10], for all boundary arcs
(Ten, Tez) (including the case 7¢;, = Tez), we have that

Vr, = /[ } dn = [(7en)] + m(72), (6.112)

and the condition (G.8Tl) holds a fortiori for a stationary point. Combining the above relations,
we obtain that

') = m®+ Y v longO+ D va Lo, ), (6.113)

Ten€Ten Tto€Tto

T
() = / n'(s)ds

= )+ Y Loy 02, 4 VA (e — )+ vny Lo (070 — 1).(6.114)

Ten€Ten Tto€Tto

Here 11,4 (-) denotes the indicator function of the interval [a,b] C [0,7] equal to 1 on [a, b]
and zero outside. Then py and p? defined respectively by (EI2) and (GZ0) are related by

P’ = p2— (' —m)gy(y) — (n* —m)g{" (v). (6.115)

Lemma 6.23. Let (u,y) be a stationary point of (P) satisfying (A2)-(A6) and the strong
second-order sufficient condition (E6H) and let (P*) be a stable extension of (P). Then for
each € > 0, there exist neighborhoods W of i and Vi of u (in L*°) such that for each p € W,
the locally unique stationary point (u*,y*) of (P*) with u* € Vi has a neighboring structure
to that of (u,y). Moreover, any vector of shooting parameters 0% associated with (u*,y"), of
appropriate dimension, satisfy

|0M—éj| <e€

where éj is the vector of shooting parameters associated with (u,y) matching the structure of
0.

MProposition of this thesis.
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It follows from the above lemma and Lemma that for a given neighboring structure
F; of (w,y), the vector of shooting parameters 0 associated with the stationary point (u*, y*)
is locally unique.

Proof. Tt follows from Theorems [6.8 and [E13 that the locally unique (by Th. EI6]) stationary
point (u*,y*) of (P*) has a neighboring structure to that of (u,y). The convergence of
junction times was proved in Theorems and So let us show the convergence of jump
parameters. For this we use the formula (BIT4) that links the multiplier n? used in the
stability analysis to the shootings parameters and the uniform convergence of n%* towards 7>
by Prop. B.6kiii). The proof is by finite induction.

Let N denote the total number of boundary arcs and touch points of the trajectory (u,y).
We may write that {1,..., N} = Ny, U Ny, where Ny N Ny = 0 and Ny, and Ny, denote
the sets of index corresponding respectively to boundary arcs (possibly of zero length) and
to touch points (possibly nonreducible or nonessential). This partition is not unique since a
nonreducible touch point can be considered either as a boundary arc of zero length or as a
touch point. We have then that I(g(y)) = UNIIZ, where I; = [Ten i, Tez ] for i € Ny, (with
possibly Ten i = Texi), Li = {Ttoi} for i € Ny, I; N I; = 0 for i # j, and I; < I;1; for all
i < N (in the sense that t < t' for all (t,t') € I; x Iz—i—l)- The jump parameters associated
with a boundary arc [Tep i, Tez,;] are denoted by Dl-l and DZ? and that associated with a touch
point 74,; by 7;. Since (u*,y*) has a neighboring structure to that of (u,y), we can choose
the partition (Npa; Nio) such that I(gH(y*)) = va IF for a sequence /rn n—oo M, where
IM = [ en X ez )

Wlth jump parameter v;

] for i € Ny, with associated jump parameters Vl’” and v 2 , and I“ = {Tt‘f)l}
# or possibly I H—=1Q (if 7404 is a nonessentlal touch pomt) for i€ /\/'tO

Given k € {1,..., N}, assume by induction that the jump parameters associated with I Z“ "
converge to those associated with [; for all i € {k+1,...,N}. (For k = N we assume nothing.)
Let us show that the jump parameters associated with I ,‘: " converges to those associated with
I.. There are two cases to consider.

Case 1: k € Njo. If I} = 0, there is nothing to prove, so assume that I} = {7/ }. Recall
that by definition, 7 and 7o vanish on interior arcs. Then for a fixed € > 0 small enough
(e <ming requq0),r£r 2T = 7)), for all t € [F4o — 2, ok — €], We have by (EIId) and Th.
for n large enough that

) = Y @Ryt - )+ Y v =) + v — 1)
1€ENpa,i>k i€Nto,i>k
nj(;o 772(’5) = Z (922 + ﬁil(fen,i —t)+ Z ﬁi(ftoyi —t) + Dk(%to,k —t).
1€ENpa,i>k 1€Nto,i>k

Since the junction times of (u#”, y#») converge to those of (@, y), as well as the jump parameters
associated with I Z“ " for ¢ > k by the induction hypothesis, we deduce immediately that v;™
converges to Ug.

Case 2: k € Ny,. Then I} = [r/", 7/"";] and reasoning similarly, for a fixed & > 0 small
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enough, for all ¢ € [Tep ) — 26, min{7en i, 75, }) and n large enough, we have that

27 n 17 n n n n
e (t) = Z (v vt (iﬁm‘ﬂ)‘*‘ Z vy (#),i_t)

1€ENpa,i>k 1€ENo,i>k
27 n 17 n n
+ v Hn 4 7 ” (Tﬁnk —t)
e 772(t) = Z (’712 + Dil(%en,i —t)+ Z Vi(Ttoi — 1)
i1€ENba,i>k 1€No, >k

+ U + U (Fen g — 1)

By letting t T Tepk, t < min{%m,k,Té‘gk}, and n — 400, using that the convergence of n%#n»
towards 72 is uniform and that V,i’“ " is bounded (since 1/,1’“ "= f[Tun pn 1 At by (B.IT2) and

en,k’Tez,k

dnt*» is uniformly bounded by Prop. E8l(i)), we deduce as previously that 1/,3”“” "

— ﬂ,%. Taking
then t € [Tep i — 26, Ten i — €], it follows that 1/]1’“ " — pl. This completes the induction step
and achieves to show the converge of jump parameters of (u*,y*) towards those of (u, 7).

It remains to show the convergence of the initial costate. For a small € > 0 and || — 1|
small enough, the state constraint g#(y*) is not active on [0,&]. Therefore, by (GIL3), n*
converges uniformly to 7' on [0,¢] and )’ = nh = 0 since we are on an interior arc. It follows

that for all ¢ € [0, ¢], using (E1TH),

py(t) = PPt + 0 (gl () + 0P () (gD (v (1)

— B0+ 00 50) + PO G0) = palt)
since p?*, n># and y* converges uniformly to p2, 7% and ¢, respectively. For ¢ = 0 this gives
the convergence of the initial costate p4(0) — p2(0). This achieves the proof of the lemma. [

6.6.3 Additional conditions for a stationary point

By Lemma 6231 we know that the locally unique stationary point (u#,y*) of the perturbed
problem (P*) has its shooting parameters in the neighborhood of those of the reference tra-
jectory (@,y). By Lemma [:22] the shooting algorithm is then well-posed to find a vector of
shooting parameters associated with (u#,y"). Lemma ensures that at least one of the
solutions 9;.‘ obtained in Lemma for the neighboring structures to that of (u,y) is asso-
ciated to this (locally unique) stationary point of (P#). Of course we do not know a priori
what the structure of (u*,y*) is. We only know that it is a neighboring structure to that of
(,y). In Lemma below we give necessary and sufficient conditions in order to recognize
a vector of shooting parameters associated with a stationary point of the perturbed problem,
among all the solutions of (G.94]). Let us first note the following.

Remark 6.24. The statement of Lemma B.T7 extends without difficulty to the case when there
are nonreducible touch points converted into boundary arcs of zero length (with 7¢, = Tey).
In that case n2(7.,) = 0 and (EXI) yields that v2 = 0 automatically holds at nonreducible
touch points converted into boundary arcs. The statement of Prop. extend as well. For
nonreducible touch points 7¢, converted into boundary arcs of zero length, since 7s(7;h) = 0,
([E3) amounts to the classical condition v, = v} > 0, while ([E8H) is automatically satisfied
(with equality).

Lemma 6.25. Let (@, y) be a stationary point of (P) satisfying (A2)-(A6) and (E33). For
Jj € {1,...,N,}, let F; denote one of the shooting mappings associated with a neighboring
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structure to (u,y). Then there exist a neighborhood W of [i and a neighborhood V; of éj, such
that a solution 0 in V; of @34) for p € W is associated with a stationary point of (P")
iff, denoting by (u,y,p2,m2) the trajectory and multipliers associated with 0, the following
conditions are satisfied:

0 > g¢"(y(t)) on [0,T], (6.116)
0 > ("D (u(ri0),y(110))  for each touch point 74, of 0, (6.117)
0 < v, foreach touch point T4, of 0, (6.118)
Ten < Tex for each boundary arc of 6. (6.119)

Proof. By Prop. BIR it is obvious that the conditions (EI16), [EIIX), and EITJ) are

necessary for a stationary point. The condition (BEII7) is necessary as well, since in the
neighborhood of a touch point 7, we have that

2

¢ (1) = (¢ () y(r)

Now we show that the conditions (GIT6)—(EIT9]) are sufficient to have a stationary point
of (P*). In order to show that the trajectory and multipliers (u,y,p2,n2) associated with 6
are a stationary point of (P*) and its associated multipliers in the shooting algorithm, we
have to show by Prop. and Remark that the additional conditions (G.82)—(E80) are
satisfied.

The conditions (E82) and (GR6]) at touch points follow immediately from (GIT6]) and
(ETT]). Let us show now (E.84))-(6-8h)). By (A2) and (A3), implying (EXF), for p in the vicinity
of i, (u,y,pa,n2) satisfies by continuity (E79)—(E80) and hence, it follows from Lemma
and Remark that u is continuous over [0,7]. Therefore the conditions (G.84)—(E.8H) at
entry and exit points of boundary arcs of nonzero length (7¢, 7e;) are satisfied by Rem.
as a consequence of (EIT6]). For possible boundary arcs of zero length 7, = 7ey, (E84) (G20
amounts to check that Z/}W > 0. By the same arguments than in the proof of Lemma [ET9),

+o(lt — 7% <o0.

this last condition is equivalent to [ (4(Ten), U(Ten), ¥(Ten))] < 0, which holds by continuity
for || — fi|| and |@ — ;| small enough by (A6)(i).

Let us end the proof by showing that (EX3) is satisfied on boundary arcs (7ey, Ter) With
Ten < Tez- Define the multipliers 2 and p? by respectively (EI14) and (EI1H). By (GX1), we

have that 7? is continuous over [0, 7). By (E113)-(EI1H) and @Z6)-BZID), we see directly
that p? is continuous over [0,7] as well. Moreover, (E72)-(GZ3) imply by straightforward

calculations that the following hold over [0, 7]
_p2 = g{j(u7y7p2)772)7 (6120)
0 = Hl(uy,p*n’). (6.121)

On the interior of each arc, (u,72) can be expressed as a C'! function of (y, p2) and p. Therefore,
for ||u — 1| and |@ — 0;] small enough, we have that |u(t) —u(t)|, [y(t) — 4(t)|, |n2(t) — M2(2)],
|pa(t) — p2(t)| are arbitrarily small, uniformly on an interior of each arc. Since u, y, n?, and p?
are continuous, uniformly over [0, T'], we deduce that ||u—1|| oo, [|[¥ =5 cos |7 —72]lc0s P2 —5?|| o
are arbitrarily small for g and 6 in the neighborhood of i and éj, respectively. Using the
relations (EI20)—(ET2T), we obtain like in section that the relation (E40) holds. From
now, the end of the proof is similar to the end of the proof of Th. or to show that
the uniform strict complementarity assumption holds on boundary arc, depending on whether
(Ten, Tex) is in the neighborhood of a boundary arc (Tep,7ez) or in the neighborhood of a
nonreducible touch point 7, of (u, 7). O
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6.7 Application to homotopy methods

In this section, we extend to second-order state constraints the homotopy algorithm of [20)]
that detects automatically the structure of the trajectory for first-order state constraints, in
the case when assumptions (A2)—(A6) and the strong second-order sufficient condition (E.61l)
are satisfied along the homotopy path.

6.7.1 Description of the algorithm

We consider the natural homotopy on the state constraint

gﬂ(y) = g(y) - (1 - N)M and (€M7¢uafu7yg) = (57 d)v fa y0)7 (6122)

where M > 0 is large enough, so that the state constraint of problem (P°) is not active, and
we have that (P!) = (P). More generally, the algorithm below can be extended to any stable
extension (P*) of (P) satisfying the assumption (HO) below, if a solution of (P?) can be easily
obtained:

(HO) (P*) is a stable extension of (P), defined for pu € [0,1], such that (P!) = (P) and
satisfying g*(yf) < 0 for all p € [0, 1].

The homotopy algorithm is as follows. We denote the current structure of the trajectory
by S, i.e. the variable § indicates the number and order of boundary arcs and touch points.
The shooting mapping associated with the structure S is denoted by Fs. Given a vector
of shooting parameters 6, of dimension appropriate with S, and a value p € [0, 1] of the
homotopy parameter, we will denote by (ugﬂ,ygﬂ) the trajectory associated with 6 in the
shooting algorithm for the structure S and the homotopy parameter pu.

Algorithm 6.26 (Homotopy Algorithm).
Input pg initial costate candidate for the unconstrained problem (P°) and § € (0,1).

INITIALIZATION Let S be the empty structure (with no boundary arc and no touch point).
Solve by the Newton algorithm (initialized by the value pg) Fs(0,0) = 0 and obtain a
vector of shooting parameters 0 associated with a solution of the unconstrained problem
(PY). Set M := maxXe[o,7] g(yé,e(t)). If M <0 then pu:=1 else p:=0. Set Ap:=9.

While ;<1 do

PREDICTION STEP Set i := min{pu + Apu; 1} and compute

0 := 0 — DpFs(0, )" DpFs(0, ) Ap. (6.123)

CORRECTION STEP Solve, with the Newton algorithm initialized by the value 0,
Fs(8,1) = 0. (6.124)

If the Newton algorithm fails, set Ap := Ap/2 and go to the PREDICTION STEP;
Else obtain a vector of shooting parameters 0 solution of (GI124).

UPDATE THE STRUCTURE
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[To—BA] If there exists a touch point 4, of 0 such that

()P (g 5(7i0), 45 4(00)) 2 0, (6.125)

let S be the structure obtained by replacing in S the touch point 74, by a boundary
arc, set S := 5', and let O be the vector of shooting parameters obtained from 6 by
replacing the touch point T, and its jump parameter v, by a boundary arc, with
shooting parameters

Ten = Tio, Tex = Tio, V. = Ug,, v: :=0. (6.126)

Ten Ten

Go to the CORRECTION STEP;

[ADD TO| Else if m := maxc(y 1 gﬂ(yg’é(t)) > 0, set Ty 1= argmaxyc(o 7 gﬁ(yg’é(t)),

let S be the structure obtained from S by adding the touch point Ti,, set S := S,
and let 0 be the vector of shooting parameters obtained from 0 by adding the touch
point Ty, with a zero jump parameter v;,, . Go to the CORRECTION STEP;

[REM TO] Else if there exists a touch point T, ofé such that its jump parameter v,
is negative, then let S be the structure obtained from S by deleting the touch point
Tio, S€L S 1= 3, and let 6 be the vector of shooting parameters obtained from 6 by
deleting the touch point T, and its jump parameter v, . Go to the CORRECTION
STEP;

[BA—T1O] Else if there exists a boundary arc (Ten, Tex) ofé such that Te, > Tes, then
let S be the structure obtained from S by replacing the boundary arc (Tep, Tez) by a
touch point, set S := 3, and let 0 be the vector of shooting parameters obtained from
0 by replacing the shooting parameters associated with the boundary arc (Ten, Tex)
by a touch point and its jump parameter,

Tto 1= Ten, Upy, = vl (6.127)

Ten*

Go to the CORRECTION STEP;

[0K] Else set 0 := 0, ju:= [i.

End While

6.7.2 Construction of the homotopy path

The analysis of the existence of the homotopy path is analogous to that of [20] for first-order
state constraints. Let (PH) satisfy (HO) and assume that

(H1) The problem (P°) has a local solution (u’,y") satisfying (A2)-(A6) and the strong
second-order sufficient condition (G.6H).

By Th. BETH, there exists 6 > 0 such that for all 4 € [0,6), (P*) has a stationary point
(ut, y*), locally unique in a L*-neighborhood of (u°,%°), which is Holder continuous w.r.t. p
in the L* norm and is a local solution of (P#). By assumptions (A4)-(A6) and Theorems
and BEI3) (u#,y*) has a neighboring structure to that of (u”,y°) (in the sense of Def. E21),
i.e. satisfies (A4). Moreover, reducing 0 if necessary, assumptions (A2)-(A3) are satisfied, as



6.7. APPLICATION TO HOMOTOPY METHODS 219

well as (A5) by Theorems B8 and and (A6) by continuity. Finally, by Th. GBI, (u*,y")
satisfies the strong second-order sufficient condition (E65]). So let

fimaz := sup{p € [0,1] : for all ' € [0, 4], the locally unique solution (u”,y*) of (P*')
satisfy (A2)—(A6) and the strong second-order sufficient condition (E6H).}

Under assumption (H1), we have that pi,,q,; > 0. We obtain the following result.

Lemma 6.27. Assume that (H0)-(H1) are satisfied, and that there exist L, 3,0 > 0 such that
for all pu € [0, pimaz),

L, (6.128)
B forallt e I,(g"(y")). (6.129)

w11
[(g") ) (u (), y* (t))]

Then for all sequences pin T fimaz, there exists a subsequence, still denoted by (uy,), such that
(ubn  yhn pPHn p2hn ) copverges uniformly to some (@, , p2,7%), and (4,7, p%,7°) is a station-
ary point and its alternative multipliers of (P*ma=). Moreover, if (i, §, %, %) satisfies assump-
tions (A2)-(A6) and the strong second-order sufficient condition (B63), then (ut, y*, p**, n>H)
converges uniformly when i T fimae to a locally unique local solution of (PFmaz) and its al-
ternative multipliers (a,q,p>,7°) =: (utmes ykmaes pihmae phimas) - gnd (1., = 1, i.e. the
homotopy path is well-defined over u € [0, 1].

<
>

Proof. The proof follows from that of [20, Lemma 8.4]. By the compactness Theorem in
BV [2, Th. 3.23], the weak-* convergence in M]0,T] of the multiplier dn*» associated with
(utn, y#) in the optimality conditions (B0)—(@EI0) implies the uniform convergence of the
alternative multiplier n?#» defined by (GI1). The uniform convergence of p?#» follows then

from (GI6I). O

Given a stable extension (P*) satisfying (HO) and (H1), we make the following assumptions
that guarantee the existence (and local uniqueness) of the homotopy path over p € [0, 1]:

(H2) There exists L, 3,0 > 0 such that for all p € [0, 1], (u#,y") satisfies (GIZR)—ET2);
(H3) For all u € [0,1], (u*, y*) satisfies the assumptions (A3)—(A6);

(H4) For all u € [0,1], (u*,y*) satisfies the strong second-order sufficient condition (E.6H]).

6.7.3 Proof of convergence

In addition to hypotheses (H0)-(H4), we make the assumptions below in the proof of cor-
rectness of Algorithm Note that a change in the structure of the trajectories (u*,y*),
p € [0,1], may occur only at some values i € [0,1) having either a nonessential or a nonre-
ducible touch point.

(H5) There exist finitely values of p, 0 < i3 < ... < iy < 1 for which the structure of the
trajectory changes.

(H6) For each fig, k= 1,..., N, (uf* y"*) has either one (single) nonessential touch point or
one (single) nonreducible touch point.

5Lemma BZ37 of this thesis.



220CHAPITRE 6. METHODE D’HOMOTOPIE POUR LES CONTRAINTES D’ORDRE 2

When (H6) holds, there are only two different neighboring structures to that of (u/*, y#*), for
each fix,. The algorithm could be generalized to the case when (H6) does not hold, but in
that case the UPDATE THE STRUCTURE step is more delicate. A possibility is to enumerate
all the possible neighboring structures until the conditions (EI16])—(@IT9) of Lemma are
satisfied.

Proposition 6.28. Let (P*) be given by [@I22) and assume that assumptions (H1)-(H6) are
satisfied. Then there exist a neighborhood Vy of pg(O), the initial costate of the unconstrained
problem (P°), and § > 0 such that for all pg € Vo and all § € (0,0), the homotopy algorithm
24 follows the homotopy path and ends with a vector of shooting parameters 0, of appropriate
dimension, associated with a local solution (ul,y') of (P') = (P). In addition, if & is small
enough, then the steps Ap are not reduced by the algorithm in the CORRECTION STEP, i.e.
Newton’s algorithm does not fail.

Remark 6.29. In practice, at the end of the instruction labelled [OK], when the homotopy step
has succeeded, it is possible to increase Apu, so that the algorithm adapts itself to the largest
possible value of the homotopy step Ap allowing the convergence in the CORRECTION step.

Proof. The proof follows the ideas of [20l, Prop. 8.11]. Note that the value of u is increased
only in the instruction labelled [0K] in the UPDATE THE STRUCTURE step. Therefore, if the
algorithm ends with p = 1, this means that all the conditions (EIT6)—(EIT9]) are satisfied,
and hence, by Lemma B2 6 is a vector of shooting parameters associated with a stationary
point (u!,yt) of (P!). Note that when there is no change in the structure of solutions, then
Algorithm is a classical predictor-corrector algorithm. We therefore have to show that
the algorithm ends with u =1, i.e.

e There is no failure in the Newton’s algorithm in the CORRECTION STEP if § is small
enough;

e The algorithm finishes off at the (finitely many by (H5)) changes in the structure of
the trajectories along the homotopy path, i.e. after finitely many iterations in the
UPDATE THE STRUCTURE step, succeeds in finding the new structure S and a vector
of shooting parameter § associated with (u”,y”) that satisfies the conditions (B_LIH)—
(E119) of Lemma

For the current value of p € (0,1), assume by induction that the current value 6 is a
vector of shooting parameters associated with the stationary point (u*,y*) of (P*), and that
S denotes the corresponding structure of (u*,y*). Assume that

6 and S are such that nonreducible touch points are introduced as boundary arcs. (6.130)

(We still do not have the uniqueness of # and S whenever nonessential touch points are present,
that can or not be introduced in the shooting mapping.) This holds for x = 0 if pg is chosen
sufficiently close to p3(0) by (H1).

Let 6 and ji be defined as in the PREDICTION STEP. Let 6 be the solution of (B124]). By
@I23), |6 — 0] < C|ji — p|? for some positive constant C. Since | — p| < Ap < 6, for § small
enough, 6 belongs to the domain of convergence of the Newton algorithm, which converges
to 6. Note that the constant C and the size of the domain of convergence of the Newton

6P roposition BZ4 of this thesis.
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algorithm are uniform along the homotopy path for u € [0, 1], see e.g. [20, Prop. 8.11], SO
that we do not have § — 0.

Let us show that if § is small enough, there is at most one passage in one of the instructions
[TO—BA], [ADD TO|, [REM TO], [BA—TO] before the value of y is increased. Assume by (H5)
that

0<d< in - fig41 — ik 6.131
| min fiksr = i (6.131)
If one of the tests [TO—BA], [ADD TO|, [REM TO]|, [BA—TO] is satisfied, this means by Lemma
and (EI30) that the current structure S is not correct, and hence by (H5) and (EI3T)
there exists k € {1,..., N} such that

with at least one of the two above inequalities being strict, and we have g < fipy1 if & < N
and p <1if k=N and g > jin-.
Let us start by the case [TO—BA| when (EIZ0) is satisfied. This can occur only in the

neighborhood of a nonreducible touch point 7, of (uf y#*). If (g#)(2) (uéé(no), ygé(no)) > 0,

a second-order Taylor expansion of gﬂ(yg é) at the touch point 74, shows that g* (yg g(t)) >0

for ¢t in the neighborhood of 74, t # T4. If (gﬁ)@) (ugé(no),ygé(no)) = 0, then 7, is a

nonreducible touch point. In view of (EI30), in both cases the structure S where 74, is
considered as a touch point is not correct. By (H6), there exist only two different neighboring
structures to that of (uf*,y”*), so having eliminated S, it remains only the other possible
structure S where Tto 18 introduced as a boundary arc. The associated new vector of shooting
parameters f is obtained from @ by (EIZB). Since we know that 0#, the vector of shooting
parameters associated with (u”,y”), is solution of

Fs(0", ) =0, (6.132)

it remains to show that the Newton algorithm initialized with the value 0 converges to 6*.
Denote by 0" and Hgk the vector of shooting parameters associated with fi; for the structures

2

, Uz the shooting parameters associated with the

S and S, respectively, and Tep, Tez, VX g

Ten

nonreducible touch point 7, introduced as a boundary arc in Hgk. Recall that the latter are

given by (G90)—(GAI). Therefore, in view of (E126),

< [0 ng| + [Ten = Ten| + [Tex — Tex| + |V7l'en - 177]:en| + |I/3€n oz |

Ten

< |9—9§k|+2|7_to_7_'t0|+|7/7'm_’77'm| § 4|H_0gk|

Since 6 is the solution of Fs(6, ) = 0, it follows from Lemma applied with (u,y) =
(u*,yfx) that there exists £ > 0 such that |6 — 65*| < k|p — fig] < k6. By Lemma
again, there exists a constant s’ such that |0F — Hgk| < K|p — x| < K'6. Tt follows that
10— 07| < |0 — Hgk| + |6F — Hgk| < (4k + K')6. Therefore, for § small enough, @ belong to

the domain of convergence of the Newton algorithm which converges to 6 = 0%, and all the

conditions (EIIH)—(@IT) are satisfied, as well as ([GI30), so we may set 0 := 0, p := fi, and
S = S and the induction step is completed. (Here again, the constants x,x’ can be chosen

uniform w.r.t. p along the homotopy path so that § 4 0.)

Proposition BZ4 of this thesis.
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For the other cases, the discussion is similar so will be less detailed. In the case [ADD TO],

the state constraint is violated. But then (g#)®) (ug é(no),yg g(Tto)) < 0 for all touch points

Tto, Since otherwise we would have been in the previous case [TO—BA]. Therefore, by a second-
order Taylor expansion of gﬁ(yg é), the state constraint is not violated in the neighborhood of

a touch point. Consequently, it may only be violated in the neighborhood of a nonessential
touch point 7, of (uf*,yf) which is not introduced in the shooting mapping. By (H6), the
only other possible structure S is when 7, is introduced as a touch point in the shooting
mapping.

In the case [REM TO], a jump parameter associated with a touch point is negative. This
cannot happen in the neighborhood of a nonreducible touch point of (u/*,y"*), since nonre-
ducible touch points are assumed to be essential by (A6)(i) and Lemma Therefore, this
can only happen in the neighborhood of a nonessential touch point 74, of (uf*,y"*). By (H6),
the only other possible structure S is to remove this touch point from the shooting mapping.
Finally, in the last case [BA—TO], we have a boundary arc whose entry point 7, is greater
than the corresponding exit point 7.,. This can only happen in the neighborhood of a nonre-
ducible touch point 7y, of (u/*,y"*) that was converted in a boundary arc, and therefore by
(H6) the only other possible structure S is to introduce this nonreducible touch point as a
touch point instead. We conclude with similar arguments as before that for § small enough,
the Newton algorithm initialized by @ converges to the solution of (EI32)), which is a vector
of shooting parameters associated with the stationary point (u”,y") of (P*). This completes
the induction step.

This shows that if § is small enough, the algorithm follows the homotopy path, the Newton
algorithm does not fail, and the algorithm ends with ¢ = 1. By (H4), the second-order
sufficient condition (G65]) holds and therefore (u!,y!) is a local solution of (P). O

6.8 Remarks

Remark 6.30. It would of course be interesting to test the homotopy algorithm on numerical
applications. This is the subject of the report [Z0]. The homotopy algorithm is based on the
strong assumptions (A5) and (A6)(ii), that would have to be checked in practice in order to
guarantee the validity of the algorithm, as well as the second-order sufficient condition (E6H).
Moreover, the same restrictions as for first-order state constraints hold, see [20), Remarks 8.12
and 8.13}@. In particular, a value of § that guarantee the convergence by Prop. is not
known in practice, and may be small if the problem is ill-conditioned.

Remark 6.31. It is expected that the homotopy algorithm can be extended to vector-valued
control and several state constraints of first- and second order if the constraints are linearly
independent (see [O08| [I7]). The difficulty in the theoretical justification of the algorithm is the
extension of Theorems 8 T3] and [20, Th. 2.1]. For control constraints, the extension of
this homotopy algorithm is not immediate (see [20, Remark 6.3]@) and is an interesting open
question. In contrast, it seems not to be possible to extend this algorithm to state constraints
of order greater than or equal to three, since in that case optimal trajectories typically exhibit
infinitely many touch points near entry/exit of boundary arcs, see [I1§].

Remark 6.32. The sufficient second-order condition (E65) used in Th. is not the weakest
possible since it does not take into account the curvature of the constraint. The curvature

8Remarks and of this thesis.
¥ Theorem B of this thesis.
20Remark of this thesis.
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term of the constraint (see [21]) is the term with the sum in (E33)). It would therefore be
interesting to see if Th. is still true under the weaker second-order sufficient condition

>0, forallveV, v+#0, satisfying (EG3). (6.133)

With additional assumptions (A4)—(A5) on the structure of the trajectory and in the ab-
sence of nonreducible touch points, it was shown in [T9, Th. 4.3]@ (see also [20]) that (GI33)
characterizes the uniform quadratic growth condition (E28), and implies L°°-Lipchitz conti-
nuity and directional differentiability of solutions in L", r < oo, (see [94, [19]), improving the
Holder continuity in L only obtained in Th. Directional differentiability of all shooting
parameters is also obtained. It would be interesting to extend those results in presence of
nonreducible touch points as well.

Remark 6.33. Let us discuss the case when the term \(7,) defined by (E58) at a nonreducible
touch point 73, is positive. In that case, by Th. BEI3l a second touch point may appear for
stationary points of the perturbed problem. The first idea is therefore to introduce a second
touch point in the shooting mapping, and at the reference trajectory (u,y), the values of both
touch points would be equal to the value of the nonreducible touch point 74,. The problem is
that doing so, it is easy to see that the Jacobian of the shooting mapping becomes singular
(two rows are equal). Moreover, the jump parameters associated with each touch point at
the reference trajectory are not well-defined, only the sum of the two jumps parameters must
be equal to vz,. There exist indeed several zeros of the perturbed shooting function in the
neighborhood of a nonreducible touch point splitting into two touch points, and one of them
is such that the values of both touch points remain equal to each other (as if we had a single
touch point). In that case of course the state constraint may be violated.

For this reason, it would be necessary to initialize the two touch points with distinct values
and it is an open question how to do so in order to insure to be into the domain of convergence
of the Newton algorithm for the new structure. To solve the academic problem in Fig.
the nonreducible touch point was first converted into a boundary arc. We thus obtained a zero
of the resulting shooting function with a boundary arc satisfying 7.,, < 7ez, but the condition
2 > 0 was of course violated. We used the obtained values of 7., and 7., to initialize the two
touch points, and the heuristic formula below (recall (G54]))

Hyy . - Hyy .
Vien = 2 9(3) (s Y)(Ten ), View *= _Tg(g)(uvuvy)(Te—gc)
(gz(L ))2 ( ))2

to initialize the associated jump parameters.

2 Theorem 23 of this thesis.
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Chapitre 7

Conclusion

Cette these a apporté des résultats théoriques nouveaux pour les problémes de commande
optimale avec contraintes sur I’état, dans le cas ou la condition forte de Legendre-Clebsch
est satisfaite. Ces résultats portent sur les conditions du second ordre (des conditions sans
saut entre conditions nécessaire et suffisante ont été obtenues), I'analyse de 1’algorithme de
tir et l'analyse de stabilité et sensibilité des solutions, en particulier pour des contraintes
d’ordre élevé (supérieur ou égal a deux), cas relativement peu traité dans la littérature. Une
méthode d’homotopie a également été proposée, dont la nouveauté est de déterminer auto-
matiquement, sous certaines hypotheses, la structure de la trajectoire. Cette méthode reste
encore a étre validée sur des applications numériques, et éventuellement généralisée a des cas
plus généraux (plusieurs contraintes sur 1’état et sur la commande). Une premiere application
au probleme de la rentrée atmosphérique d’une navette spatiale avec contrainte sur le flux
thermique (contrainte sur I’état du second ordre) a été réalisée dans [[70)].

Dans la suite de cette conclusion on présente quelques questions ouvertes qui se sont posées
au cours de la these et pourraient faire 'objet de futures recherches.

7.1 Questions non résolues

7.1.1 Vérification de la condition suffisante du second ordre

Un probléme important pour les applications est d’étre capable de vérifier numériquement
la condition suffisante du second ordre no-gap (EI33)) du théoreme Il s’agit d’un probleme
ouvert. On sait cependant vérifier une condition suffisante plus forte que (EEI33]), ce qui peut
parfois s’avérer suffisant pour les applications dans le cas ou cette condition plus forte est
satisfaite.

On utilise dans cette section les notations du chapitre 4. Utilisant les techniques basées
sur les équations de Riccati (voir Maurer [99]), il est possible de vérifier numériquement la
stricte positivité du membre de gauche de (ET33]) (noté Q(v) dans la suite et donné par (ET33)
avec 7,7°°* remplacé par 7 ;) sur I'ensemble — plus grand que le cone critique C 12(u) — des

red

v € L(0,T;R™) satisfaisant

gzsqui)(u,y)v + gz-(gj)(u,y)zv =0 p.p.surintd;, Vi=1,...,7r+s. (7.1)
On considere alors la condition du second ordre suivante, plus forte que (EEI33)),

Q(v) >0, Ywve L*0,T;R™)\ {0} satisfaisant (ZII). (7.2)



226 CHAPITRE 7. CONCLUSION

Lorsque I'hypotheése de complémentarité stricte (A6) est satisfaite, le cone critique C’Lz (u)
étant donné par (E203)—-(E205]), on omet donc dans ([Z2) les contraintes “pures sur ’état”
(E204) - (E200)). En effet les techniques connues basées sur les équations de Riccati permettent
seulement de prendre en compte les contraintes mixtes sur la commande et 1’état. Ainsi la
difficulté dans la vérification de la condition suffisante du second ordre par cette méthode ne
provient pas du terme de courbure, mais des contraintes (E204])—(E205]) liées aux contraintes
pures sur I’état, intrinsequement présentes dans le cone critique.

Soit T (t):={ie{l,...,7r+ s} :t €int A;}. Considérons ’équation de Riccati suivante
(fy, Hyy, etc. étant évalués le long de la trajectoire considérée)

()) g()

i (95
—dX(t) = (Xfy,+f) X +H),) dt—i—Zgzyydm Z PPRZE= ’ya()
i=1 i=1 TETrZed gz
0 T T HO (@ T
. Huy fJ uu (G;(t),u)
Gl X o)
1. ° 0

I1(t),u

T Hgy
* < O > X + G(Oq) dt7
I(t).y
(7.3)

ot &, désigne la mesure de Dirac en 7 et v2 = [1;(7)]. On a le résultat suivant, dont la preuve
est donnée dans I’annexe de ce chapitre (section [Z21]). Il serait intéressant de disposer d’une
caractérisation analogue de la condition (EEI33), mais la prise en compte des contraintes sur
Pétat (E204)—([205]) par les techniques utilisées dans ce résultat ne semble pas immédiate.

X(T) = ¢yy(y(T)),

Proposition 7.1. Soit (u,y) un point stationnaire de (P) satisfaisant les hypothéses (A1)
(A4) du chapitre 4, et pour chaque contrainte sur l’état g; d’ordre q; > 2, soit ’Z;fed un ensemble
fini de points de contact isolés essentiels réductibles de la contrainte g;. Si l’équation de Riccati
[Z3) a une solution bornée X sur [0,T], alors (IL2) (et donc a fortiori [EIZT)) est satisfaite.

De plus, la réciproque est vraie, i.e. si ([L2) est satisfaite, alors I’équation de Riccati ([L3)
admet une solution bornée X sur [0,T].

7.1.2 Extensions du résultat sur les conditions du second ordre aux équations
aux dérivées partielles

Lorsque la dynamique du probléme n’est plus décrite par une équation différentielle ordi-
naire ((I2), comme considéré dans cette thése, mais par une équation aux dérivées partielles,
la question d’obtenir des conditions du second ordre no-gap est largement ouverte. Des condi-
tions suffisantes du second ordre sont obtenues dans par exemple [64) B8, [17], mais des
conditions nécessaires ou suffisantes no-gap sont connues seulement dans le cas d’un nombre
fini de contraintes d’égalité ou d’inégalité sur ’état (théorie de la polyédricité) [25, B6, BT].
Lorsqu’il y a des contraintes distribuées sur 1’état, le probleme est ouvert. On peut alors se
demander si 'on peut étendre la méthode développée dans le chapitre 1 pour des EDP avec
contraintes distribuées sur 1’état. Le calcul du terme de courbure de Kawasaki s’avere dans ce
cas plus difficile, car I’état y,, et I’état linéarisé z, sont moins réguliers que pour une EDO. De
plus, les hypotheses (A4)-(A6) intervenant dans la preuve deviennent plus délicates & formuler
pour une EDP.
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Des hypotheses de type (A4) sur la structure de I'ensemble de contact pour les problemes
de commande optimale des EDP elliptiques ont été faites dans [I0]. Sous ces hypotheses les
auteurs montrent que le multiplicateur associé a la contrainte sur I’état p est composé d’une
partie distribuée dans L? sur lintérieur de I’ensemble de contact, et d’une partie mesure
concentrée sur la frontiere de ’ensemble de contact. Ce résultat est ’analogue de la proposi-
tion pour les EDO, qui dit que les sauts du multiplicateur 1 ne peuvent se produire qu’aux
points de jonction. Les hypotheéses et résultats de [I0] pourraient donc étre intéressants pour
étendre l'analyse du chapitre 1 aux EDP. Par ailleurs, dans [I6], un probleme de program-
mation semi-infinie (avec contraintes dans un espace de fonctions continues sur un espace
métrique compact) est considéré. Les auteurs font des hypotheéses sur I’ensemble de contact
et sur la croissance des solutions au voisinage de ’ensemble de contact qui leur permettent
de calculer le terme de courbure et d’obtenir des conditions du second ordre sans saut. Il
est peut-étre possible d’étendre ces résultats a certains problemes de commande optimale des
EDP.

Regardons ce que donne le calcul du terme de courbure et les difficultés qui se posent sur
un exemple simple. Pour cela on considere le probleme elliptique suivant

. 1 2 v 2
i g [ @)~ o) e+ ] [ e (7.4
s.C. —Ay, =u dans Q, 1y, =0 sur 09, (7.5)

yu(z) < 1 dans Q (7.6)

ot1 ) désigne un ouvert borné de R% avec d < 3, & bord 99 suffisamment régulier, v est une
constante strictement positive et yq € L?(£2). Pour d = 1, (Z3) est une EDO donc le calcul
du terme de courbure se raméne a celui effectué pour une contrainte sur ’état d’ordre 2. On
s'intéresse donc au cas ot d = 2 ou 3. On note dans la suite C""(Q) 'espace des fonctions de
classe C" sur Q et dont la dérivée d’ordre 7 est holdérienne d’exposant v.

La premiere étape est d’étudier la régularité des solutions. L’opérateur L*(Q) — W25(Q)N
VVO1 *(Q) qui & u associe I'unique solution y,, de (ZH) est bien défini et c’est un isomorphisme,
pour tout s € [2,+oco[. De plus on a les inclusions de Sobolev (voir par exemple [85, chap. 2,
Th. 6.2])

d ~ d

si 5 <8< d W25(Q) c C"(Q) avec vV =2 — "
si s=d W2s(Q) c C™(Q) pourtout0<v<1 (7.7)

si s>d wW2s(Q) < C(Q) avec v =1 — @

s

En particulier, pour u € L2(Q) et d = 2, 3, 'état y, est continu sur {2 et on peut considérer la
contrainte sur 1'état ([L0) dans I'espace des fonctions continues.

La condition d’optimalité du premier ordre est la suivante : en plus de ([ZH)-([ZH), il existe
p, 1 tels que

—Ap = (Yu —ya)+ p dans Q, Op = 0 sur 09, (7.8)
0 = p+yu (7.9)
po€ Mi(Q),  supp(p) C I(yu) = {z € Q:yu(z) = 1}. (7.10)

D’apres [B5)], 1’équation adjointe ([Z:SI)E a, pour tout g € M(Q), une unique solution p €
W, " (Q) avec 1 < 7* < d/(d — 1). Avec (), on en déduit que u € Wy () € LI(Q) avec

'L’équation (ZH) est & comprendre au sens des distributions, i.e. — [, pAp = [, (yu — ya)e + [, pdu pour
toute fonction ¢ C° a support compact dans 2.
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1/qg =1/r* —1/d, dou ¢ < +o0 sid =2 et ¢ < 3 si d= 3. Par cette analyse on améliore
la régularité de u, et donc aussi celle de y,. On en déduit que y, € W24(Q), d’ou avec (1),
Yy € CLV(Q) avec v < 1sid=2et y, € COV(Q) avec v < 1 si d = 3.

Passons maintenant au calcul du terme de courbure. Pour v € L2(f), soit z, I'unique
solution dans H2(Q) N H}(Q) de

—Az, = v dans €, zy = 0 sur 092
et soit I?(yy, z,) I'ensemble de contact du second ordre
I*(yu, 20) == {x € I(yy) : zo(z) = 0}.

Supposons pour simplifier I'hypothése de complémentarité stricte supp(u) = I(y,,) satisfaite.
Alors le cone critique est donné par

C(u) ={v e L*(Q) : z,(x) = 0 sur I(y,)}
Le terme de courbure est donné par (voir la section [LZT])
U(M7T]2(jz(yu - 1,Zv)) (711)

avec o(p, S) = sup,eq(p, w) la fonction support de 'ensemble S et T;Z(yu — 1, z,) 'ensemble

tangent intérieur du second ordre & K = C'_(2), caractérisé par (voir [42])

Tf(l(yu —1,2,) = {w € C(Q) : w(zx) <y, ., (x) VI €Q}

ou
0 six €int I(yy) N I (Yu, 20)
L (x) = lim inf M sixz € 0l(yy) NI (Yu, 20) (7.12)
s o=z, yu(@)<1 2(yu(z) — 1) ‘ o
+00 a Dextérieur de I%(yy, 2, ).

Le terme de courbure ([ZTT)) est > —oo ssi Tf(l(yu —1,2,) # 0, et donc ssi ¢y, 5, () > —00
pour tout z. Comme pour les EDO, la difficulté dans le calcul de ¢, ., provient du terme avec
la liminf pour = € AI(y,) N I?(yu, z,). Analysons par exemple la contribution d'un point de
contact isolé & € Q. Pour v € L?(Q), on a 2z, € C%?(Q) avec 0 € (0,1) sid=2et 0 = 1/2 si
d = 3. 1l vient qu’au voisinage de &, on a, pour v € C(u) et z au voisinage de &,

z(x) = O(lz — £]7).

Le terme au numérateur de (IZ) est donc un O(|x — £[*).
Pour assurer que la contribution de £ dans le terme de courbure est finie, il faudrait une
hypothese (analogue de (A5) du chapitre 1) du type

lyu(z) — 1| > alz — £|* (7.13)
au voisinage de &, avec a,a > 0 et, pour que la lim inf soit finie,
a<20<2sid=2 et a<20<1sid=3. (7.14)

Par ailleurs, liétude de la régularité de y,, implique que 3, € C1¥(Q) pour tout v < 1 si d = 2
et y, € C*(Q) pour tout v < 1sid =3, et donc |y, (z) — 1| = O(|z — &) pour tout v < 1
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si d = 2 (puisque qu’alors Vy,(§) = 0) et |yu(z) — 1] = O(Jz — £|¥) pour tout v < 1 si d = 3.
Cela implique qu’on a nécessairement, pour d = 2, a > 2, ce qui n’est pas compatible avec la
condition ([LI4)). Pour d = 3, on a nécessairement « > 1, et donc avec ([LT4), o = 1. Ainsi, sur
cet exemple dans le cas ou d = 2 on ne peut pas conclure que la contribution d’un point de
contact isolé dans le terme de courbure est finie. Et si le terme de courbure est égal & —oo, la
condition nécessaire du second ordre de Kawasaki n’apporte pas d’information. En revanche,
pour d = 3, la contribution du point de contact isolé £ dans le terme de courbure est finie sous
I'hypothese (CI3)) avec o = 1 (qui est bien satisfaite, voir la remarque [2). Il resterait encore
a évaluer précisément cette contribution en calculant la liminf dans (IZT2).

Remarque 7.2. Plus précisément, au voisinage d’un point de contact isolé £, u est une mesure
de Dirac concentrée en &, u = vde avec v > 0. Formellement, on a donc d’apres ([L3) et
[R)-[Z3) que y, se comporte, au voisinage de £, comme la solution ¢ de

v
A(Ap) = ——0¢.
N 3
Les solutions fondamentales du bilaplacien pour d = 2,3 donnent donc qu’au voisinage de &,
@) 1~ Zle—Phfe—g sid=2 () 1~ Cle g sid=3
x)—1l~——|z— nlr— sid= r)—1~———|z— sid=3.
Yu 87 ) Yu 87

L’hypothese (ZI3) est donc satisfaite avec a =2sid=2et a=1sid = 3.

Remarque 7.3. Modulons la conclusion apparemment négative a laquelle on arrive a la suite
de cet exemple pour d = 2. Pour des problemes non linéaires ou avec contraintes sur la
commande, on peut prendre pour espace de commande u € L*(Q2) avec s € (2,+0o0]. Ceci
permet d’augmenter la régularité de z, au numérateur du terme de courbure ([LI2), ce qui
pourrait permettre de faire des hypotheses au voisinage de l’ensemble de contact du type
([C13)) réalistes et assurant la finitude du terme de courbure. Pour obtenir des conditions du
second ordre sans saut, il faudrait ensuite jouer avec les deux normes (L® et L?) comme on I'a
fait pour les EDO (avec L™ et L?). En particulier on aurait besoin d’un résultat de densité
du cone critique dans L* dans le cone critique dans L2.

7.1.3 Cas d’un nombre infini de points de contact isolés

La condition nécessaire du second ordre du chapitre 1 suppose un nombre fini d’arcs
frontiere et points de contact isolés, hypothese restrictive pour des contraintes d’ordre élevé
(¢ > 3) qui peuvent typiquement exhiber un nombre infini de points de contact isolés. Une
question qui se pose alors est la suivante : peut-on généraliser le calcul du terme de courbure
effectué dans la section au cas ou l'on a un nombre infini de points de contact isolés ? En
particulier, est-ce que la somme qui intervient dans le terme de courbure dans ([C34]) est finie
lorsque 'on somme sur un nombre infini (mais dénombrable, puisque 1 a un nombre au plus
dénombrable de points de discontinuité) de points de contact isolés essentiels réductibles ?
Remarquons que si 'on a un nombre infini de points de contact isolés (7, )nen+, alors notant
vp = [n(m)] le saut associé, comme dn est une mesure finie sur [0,7], on en déduit que
nécessairement, v, — 0.

Regardons ce que donne le calcul du terme de courbure dans ’exemple de Robbins [[I185],
ou la solution est calculée explicitement pour une contrainte sur 1’état d’ordre trois ayant
une infinité de points de contact isolés réductibles suivie d’un arc frontiere. Les calculs sont
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rappelés dans 'annexe (section [[2Z2)). Dans cet exemple, 'auteur montre que la distance entre
deux points de contact isolés successifs est géométrique,

n
Tp+1 — Tp = ar -,

avec a > 0 une constante dépendant des conditions initiales et 0 < r < 1. On peut alors
montrer que v, est de 'ordre de r™, alors que le terme au dénominateur du terme de courbure
g (y(,)) est de Lordre de r*" (voir (ZB0) et la remarque [Z8). Ainsi, le terme de courbure
est de l'ordre de (& une constante multiplicative pres)

Z <r_13>n (gz(/l)(yu(Tn))Zv(Tn))2’ (7.15)

neN*

ou z, est solution de I’équation d’état linéarisée ([LH), avec pour tout v dans le cone critique
C(u) dans L™
gy(yu(Tn))Zv(Tn) =0 VneN-. (716)

Comme %gy(yu(t))zv(t) = gg(/l)(yu(t))zv(t), la fonction gg(/l)(yu)zv admet un zero s, dans I'in-

tervalle (7,,—1,7,) pour tout n > 2. Ainsi

gél)(yu(Tn))Zv(Tn) = /Tngg(,z)(yu(e))zv(e)de < |Tn — Tp—1| sup |gy (Yu)zo]

[Tn lyTn]
< ar™ sup 98P (yu)2ol.

[Tn 177'71]
Par le méme raisonnement, la fonction continue 952) (Yu)2o = & g;(/l)(yu(t))zv (t) admet un zéro
o, dans lintervalle (s,_1,s,) pour tout n > 2. Ainsi, comme o, € (T—1, Tnt1),

sup g7 (yu)zul < sup I/ 9 Yu(0))20(0) + 9 (u(6), yu(6))v(6)) 0|

[Tn 177—77,} Tn 177n+1]

|nwl—nhumy<w%»%+g§wawwu

< Car”_lﬂvﬂoo,

IN

ou C est une constante strictement positive. Ainsi, pour tout n > 2 on obtient que
(95 Wu(m)20(ma))* < CPafr) ' |v]%.

La série ([CIH) a un terme générique en r", et est donc convergente, pour tout v € C'(u).

Pour conclure le calcul du terme de courbure il resterait a calculer la contribution du point
d’accumulation T, = lim,_, 4 7, qui marque 'entrée sur un arc frontiere. Ceci s’avere plus
délicat car numérateur et dénominateur de ([L36]) s’annulent une infinité de fois dans tout
voisinage de T.. On ne peut donc pas utiliser de développement de Taylor. Sur ’exemple de
Robbins, on peut montrer que pour t € [71,7),

_ 6
(1)) = (1 — o) LD (1.17)

ot § est une fonction de classe C* sur [r1, T..), C*° sur chaque arc intérieur (7,,, 7,11), telle que
0(7,) = 1 pour tout n et 0 < O(t) < 1 pour tout t € (75, 7+1). Cette relation est démontrée
dans la section [L2.3] et une expression explicite de 8 est fournie.
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Etant donné v € C(u) — donc vérifiant ([ZI6) — on en déduit que la contribution de
T, dans le terme de courbure est finie si et seulement si il existe une constante C' > 0 et un
voisinage 9 de T, tels que pour tout ¢t € 9,

(95 (w()2(1)} < CL -0t~ T (7.18)

Si ceci est vérifié pour tout v € C'(u), alors comme [1(7.)] = 0, on obtiendrait que le terme de
courbure est donné par

2 ). D) — S g G5 W)z (7))
7 TG, DGlu)) = 3 = i 9

Il resterait encore a étendre le lemme [[LT7] (dont les arguments ne s’appliquent plus) de densité
du coéne critique dans L> dans le cone critique dans L? pour étendre la condition nécessaire
([C3) aux v dans L2. Ainsi on obtiendrait, avec la condition suffisante (I[CXT) qui fait intervenir
un nombre fini, mais arbitrairement grand, de points de contact isolés essentiels réductibles, des
conditions nécessaires ou suffisantes du second ordre “arbitrairement” proches sur cet exemple
particulier ayant un nombre infini de points de contact isolés. Dans le cas contraire (i.e. (ILIS)
n’est pas satisfait), le terme de courbure est égal & —oo et donc la condition nécessaire du
second ordre de Kawasaki n’apporte pas d’information.

7.1.4 Cas de contraintes linéairement dépendantes

On se place dans le cadre du chapitre 4. Considérons I’exemple suivant, ou la dynamique
est donnée par

Y1 = wui, y1(0) = o}
Y2 = Y1 — ug, y2(0) = 2 (7.19)
Yz = u, y3(0) = 3
et les contraintes sur ’état par
ai(y(t) = y2(t) =1 <0,
7.20
{ g2(y(t)) = ys(t) —1 < 0. (7.20)

Chaque contrainte est, séparément, d’ordre 1 et réguliere, mais I’hypothese d’indépendance
linéaire (E30)) n’est pas satisfaite si ces deux contraintes sont actives en méme temps car

G (u(t),y(t)) = < 8 _11 > n’est pas de rang plein (mais il est de rang constant égal a 1).

Or sur un arc ou les deux contraintes sont actives, on a (par exemple) us(t) = 0 fixé par
g2(y(t)) = 0, et alors ggl)(u(t),y(t)) = y1(t) —ua(t) = y1(t) et g1 se comporte comme une
contrainte du second ordre, réguliere car gﬁi(u(t), yt)=(1 0 )T, et le systeme est régulier,
2
dans le sens ou ( g%ﬁ(u(t),y(t)) > = Iy est de rang plein. La commande permettant de
92, (u(t), y(t))

réaliser g1(y(t)) = 0 et ga(y(t)) = 0 sur un arc est alors parfaitement déterminée, ici donnée
par u;(t) =0 et ua(t) = 0.

Les cas de contraintes mixtes linéairement dépendantes ou de contraintes sur 'état et
contraintes mixtes linéairement dépendantes peuvent aussi se rencontrer. Il semble alors res-
trictif de définir 'ordre des différentes contraintes indépendamment les unes des autres, puis-

qu’en “augmentant ’ordre”, on pourrait se ramener a un systeme régulier. On pourrait alors
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affaiblir ’hypothese d’indépendance linéaire, et la remplacer par une hypothése de type “rang
constant”, généralisant ’exemple ci-dessus.

Plus précisément, supposons que l'on ait deux contraintes sur I’état g; et go, chacune
d’entre elles étant d’ordre g1 = g2 = 1 et (séparément) réguliere, i.e.

Jv,e >0, |gz(1u) (u(t),y(t))] >~ pour tout ¢ : dist(¢,A;) <, Vi=1,2, (7.21)

avec A; := {t € [0,T] : gi(y(t)) = 0}, et satisfaisant I’hypothese de rang constant

(1)
de >0, rang < g%f)b(u(t)’y(t)) ) =1, pour tout ¢ : dist(¢, A1 N Ag) <e. (7.22)

9a,u(u(t),y (1))

Supposons de plus que u est continue. Alors, d’apres le théoreme des fonctions implicites, pour

tout ¢t € A; N Ay, il existe § > 0 tel que 'on peut localement sur (¢t — d,t+ §) partitionner u et
(1)
1u1
il existe une fonction réguliere ® : R™~! x R® 5 V — R telle que, localement sur (t — d,¢ -+ 4),

la relation ggl)(u(t),y(t)) = 0 est équivalente a ui(t) = ®(u(t),y(t)). Les décompositions

genu= (u,u) € RxR™ et g=(g1,92) de sorte que g;. soit (localement) inversible, et

g =(91,92) et u = (u1,u) ne sont pas uniques. D’apres ([L2Z), la fonction ggl)((q)(ﬂ, Y),0),y)
ne peut dépendre de 4, ainsi on peut poser

(1 1 -

35 ) = 0" (@(@y).a).9). (7.23)
On définit de méme sa dérivée temporelle §52) (u,y) = gg;(y)f(u,y). Si 'on suppose qu'il
existe v, > 0 tel que pour tout t € Ay N Ao,

o) !
( g%ﬂf(u(t),y(t)) ) &l >|¢| pour tout & € R? (7.24)

9a,u(u(t),y(1))

)

alors on peut étendre la formulation alternative et le résultat de la proposition EET3 en
considérant dans ’analyse go comme une contrainte du second ordre. Ces hypothéeses peuvent
étre étendues au cas général, voir par exemple [23], p.132-134].

Remarque 7.4. Noter que si les contraintes mixtes sont linéairement indépendantes et (EZ4])
satisfaite, la proposition est toujours valable, i.e. u est continue sur [0,7]. En particulier,
dans le cas de deux contraintes du premier ordre g; et go (et pas de contraintes mixtes)
vérifiant ([CZI)-([C2Z2), les multiplicateurs 1y et 1o associés aux contraintes du premier ordre
g1 et g2 ne sont plus continus sur [0, 7], mais la relation (EEZ7) montre que

gy (u, y)m + g5 (u, )2 (7.25)

est continu sur [0,77], et donc les sauts de 1; et 72 sont liés.

Pour étendre l'algorithme de tir au cas de contraintes linéairement dépendantes, une
difficulté est d’écrire soigneusement les conditions de jonction entre arcs et les conditions
supplémentaires, en particulier parce que les points de jonction de deux contraintes linéairement
dépendantes peuvent génériquement coincider, comme le montre I’exemple [ZHl ci-apres.

Ezemple 7.5. Pour un parameétre y réel au voisinage de zéro, on considere le probleme (P#)

T U 2 " 2
in [ (Mwyg(t)) dt 4 y(T) st (CID-@20 (7.26)

u,Y 2
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avec T =6, y) =5, y§ = y§ = 0.

Les solutions et multiplicateurs ont été tracés pour p = 0, g = 0.1 et p = —0.1 sur les
figures [T et [[3], respectivement. Ces solutions ont été obtenus par un algorithme de tir,
étendu & cet exemple particulier, basé sur la résolution de la condition nécessaire du premier
ordre. La structure des trajectoires a été déterminée par tatonnement de facon a satisfaire les
conditions supplémentaires non prises en compte dans ’algorithme de tir. Par convexité du
probleme ([L20]), la condition du premier ordre est aussi suffisante, et comme de plus le cout
est fortement convexe sur l’ensemble admissible, la solution est unique. La quantité ([Z2H),
égale sur cet exemple a 12 — 11, a été également tracée sur la figure et on vérifie que
cette quantité est bien continue.

Pour p = 0, la contrainte g; a un arc frontiére 71, 73] et la contrainte go a également un arc
frontiére 9, 73], dont le point d’entrée coincide avec le point de sortie de g;. Le multiplicateur
dne est une mesure de Dirac concentrée en 7.

Pour p > 0, g1 a toujours un arc frontiére [, 72], mais g a maintenant un point de contact
isolé essentiel 79 € (71,72). On constate que quand g; est active, la contrainte sur I’état du
premier ordre go se comporte bien comme une contrainte d’ordre 2.

Pour i1 < 0, g1 et go ont toutes les deux un arc frontiere, et comme dans le cas u = 0, I'ins-
tant de sortie de g; coincide avec l'instant d’entrée de g2, ce qui nous amene a penser que pour
des contraintes linéairement dépendantes, les instants de jonctions peuvent génériquement
coincider, dans le sens ou le fait que les instants de jonctions coincident est stable par petites
perturbations des données.

Précisons les conditions de jonctions que nous avons utilisées dans ’algorithme de tir pour
obtenir ces solutions. Les multiplicateurs alternatifs p?,n? sont définis comme dans la section
BTl Les équations (EETZ0)-([EIR0) sont résolues sur chaque arc, avec la condition de saut
de l'adjoint alternatif p? donnée par (EIh)). Pour déterminer 'instant d’entrée 7 de g; et
le parametre de saut associé de p?, on utilise les conditions classiques (152 (point d’entrée
d’une contrainte du premier ordre). Pour déterminer le point de contact isolé 7y de g2 sur l'arc
frontiere de g1 (dans le cas u > 0) et le parametre de saut associé de p?, par analogie avec un

point de contact isolé pour une contrainte d’ordre 2, on utilise les conditions (avec gél) définie

comme dans ([LZ3))
~(1)

92(y(70)) = y3(70) — 1 =10, g (y(70)) = y1(m0) = 0.

Enfin, pour déterminer le point d’entrée 7o de g2 qui est aussi le point de sortie de ¢g; (dans le
cas i1 < 0) et le parametre de saut associé de p?, on utilise les conditions

(1
e(y(m) =ys(r2) =1 =0, 35" (y(m)) = p1(m) = 0, (7.27)
Noter que cette derniere condition est bien équivalente a la continuité de u en 79, puisque ’on a
[u1(m2)] = —[p(m2)] = 0, ua(5") = 0 car on est sur un arc frontiere de gs et us(ry ) = y1(r2) = 0

puisque qu’on est sur un arc frontiere de g1 et y1(72) = 0 par ([CZ10).

Un raisonnement analogue a celui de la proposition montre que, sur cet exemple,
si les conditions supplémentaires (EI66), EI68), EI69), EI), EI) et EIZ) sont
satisfaites, alors on a un point stationnaire, qui correspond nécessairement a 1'unique solution
du probleme. Les multiplicateurs 71 et 179 du principe du minimum ont été reconstitués sur les
figures [CT], et (on a tracé —ny et —n3). A la différence de contraintes du premier ordre
linéairement indépendantes, les conditions supplémentaires (EEI69), [EET7I), (EEIZ3) peuvent
étre satisfaites avec une inégalité stricte pour des contraintes du premier ordre linéairement
dépendantes. C’est ce que 'on observe sur les figures [ZT], et car 11 et 7o présentent
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-0.1
0

(a) Etat, état adjoint alternatif et commande

-etal

(b) Multiplicateur —n1 associé a la contrainte g1

Fia. 7.1 — Solution et multiplicateurs pour p = 0.
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~o 3 a 5 6 20 1 2 3 4

(a) Etat, état adjoint alternatif et commande

-etal

(b) Multiplicateur —n1 associé a la contrainte g1

Fia. 7.2 — Solution et multiplicateurs pour g = 0.1.
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(a) Etat, état adjoint alternatif et commande

-etal

7
6]
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.
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2]
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1
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(b) Multiplicateurs —n1 et —n2 associés respectivement aux
contraintes g1 et g et différence m — n2.

F1G. 7.3 — Solution et multiplicateurs pour p = —0.1.
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des sauts aux instants ou les deux contraintes sont actives en méme temps. Enfin, on constate
que les contraintes g et go ne peuvent pas étre actives en méme temps (sur un intervalle de
temps de longueur non nulle) sur cet exemple pour p au voisinage de zéro car cela requerrait

(2)

g5 (u,y) =up = 0 or u; ne s’annule pas.

7.2 Annexe

7.2.1 Preuve de la proposition [Tl

Démonstration. On commence par montrer que si ([Z3)) a une solution bornée X sur [0, 7],
alors (IC2) est satisfaite. La preuve (calculatoire) de ce point est inspirée par [99, B9]. Comme
I'’équation de Riccati ([Z3]) est symétrique et la condition finale ¢, (y(T")) aussi, on en déduit
que X est symétrique. En effet, si X est solution de ([3]), alors X T aussi et donc par unicité
de la solution (théoréme de Cauchy-Lipschitz) on en déduit que X = X . Par la formule
d’intégration par parties dans BV, utilisant que 2,(0) = 0 et X (T") = ¢y, (y(T)), on a

T T
TXz T = 2! z .
2 [ el [ RIaX(z = 2 D)o u)zT)

Ajoutant le terme nul 2 fOT 2] X( fyzv + fuv — %) & la fonction quadratique Q(v) (on rappelle
que @ est donnée par [EI3H) ot 7,,°°% est remplacé par 7! ), on en déduit que

red/’
T
Q) = /0 (e ()T + X fuo + 0T (HY, + £ X)z + 0" B, 0)dt

T
+ / 2] ((HSy + X fy + £ X)dt +dX (1),
0
()) 1)

/ Zgzyydm 3y il I s (1)),

=1 7eT? Z

red

Introduisons la variable artificielle w(t) € RI®I et posons, pour simplifier Pécriture,

gf,ly))Tgfl)

dA(t) = (HS, + X f,+ f] X)dt +dX(t) + Zgz i (t) Z >k Y 5.(t),
=1 reT? | g
HY, + fl X Hy, (G% ol
C(t) = GS;]) 5 D(t) = G(q) 07
1)y ;(t),u
Alors on a
-

oo = [1((2y) (S ()
T

9 / =OTED 2+ 69 e
0 I(t).y I(t),u
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Pour tout v € L? satisfaisant (I]), on a que GS‘Z)) Zy + Gg‘?) v = 0 p.p., et donc, comme
I(t),y I(t),u
d’apres I'équation de Riccati ([Z3) d.A = CTD~'Cdt, on obtient finalement

QW) = /OT<D_1CZU+<;> >TD<D—1CZU+<;> >dt,

et ce, quelque soit v € L? satisfaisant () et quelque soit la variable w(t) € RI®I. Noter que
par les hypotheses (E30) et (EZ3)), la matrice D(t) est bien inversible. Choisissons w(t) égal

o o
A l'opposé des | T (t)| derniéres composantes du vecteur D~ 1(¢)C(t)z,(t) € R™TI®I et notons
(D7(t)C(t)2(t))|1.m les composantes 1 & m de ce vecteur. On a alors

T
o) :/0 (D 'C2)lm+v ) HY ((D7'C2)|tn +0v ) > 0,

pour tous les v € L? satisfaisant (1)) puisque HY, est uniformément définie positive par
([EZ3)). Pour obtenir 'uniforme positivité de @ (et donc la stricte positivité) sur 'espace défini
par (1), il suffit de remplacer dans les calculs précédents HC, par HY, — cl,,, avec I, la
matrice identité de taille m, qui reste définie positive uniformément sur [0,7] pour £ > 0
suffisamment petit. Pour e suffisamment petit, '’équation de Riccati obtenue en remplacant
HY, par HY, — eI, dans (Z3) admet aussi une solution bornée sur [0, 7] (résultat standard
de perturbation des équations différentielles, voir par exemple [99, p.176]). On obtient ainsi
de méme que Q(v) — ¢||v||3 > 0 pour tout v € L? satisfaisant ([T]), impliquant ().

Montrons maintenant la réciproque. Pour s € [0,T), soit Qs la forme quadratique définie
sur L2(s, T;R™) comme @ mais en intégrant sur [s,T], i.e.

T
Qs(v) = / (UTHSUU + 2UTH2yZv,s)dt + ZU,S(T)T¢yy(y(T))Zv,s(T)
( )) 1

T
[ e S - 5 Y O s

i=1 i=1 ;77 gz

red

ol z, s est la solution de 2, s = fyzys + fuv p.p. sur [s,T] avec condition initiale z, s(s) = 0,
et soit le probleme défini par

° i s .t. G(oq) Ggq) stO Dn.te ,T.
) UELQI(I;}%;R’")Q (0) s I(t),uv + I(t),yz ’ pout p-b 5,71

Alors ([CZ) implique que

Qs(v) >0, VYove L*(s,T;R™)\ {0} vérifiant G(;(Z) ’L)—FGEI)(Z) zys = 0 p.p. sur [s,T]. (7.28)
u Y

En effet, soit v € L%(s, T;R™) \ {0} vérifiant la contrainte ci-dessus. Comme z, s(s) = 0, on
peut prolonger v par zéro sur [0,s) et on obtient alors ¥ € L?(0,T;R™) tel que (v,2;) = 0
sur [0,s) et (0,25) = (v,2y5) sur [s,T]. Ainsi v vérifie (7)), v # 0 et Qs(v) = Q(v) > 0
d’apres ([L2). Ceci prouve ([[L28). De plus, comme @, est, comme @, une forme de Legendre,
(P?) a un cout fortement convexe semi-continu inférieurement sur son ensemble admissible
convexe fermé, et donc ([LZ8)) implique que (v, 2z, 5) = 0 est I'unique solution et I'unique point
stationnaire de (P?).
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Pour simplifier les notations, posons
g(l) )T g(l)
dM(t) == HJ,dt + Z Giyydni(1) Z P et (O}

=1 1= 17’671 g

Soit (v, z = 2,,5) un point stationnaire de (P?). Ce dernier vérifie, notant 7 et A les multipli-
cateurs associés respectivement a I’équation d’état et a la contrainte mixte de (P*),

—dr =AM+ (Hy) v+ fm+ (G )TN w(T) = oy (u(T)=AT),

)

0 = Hwv+ Hgyz + fuT7r + (Ggfi)) )T,
I(t),u

0 = @Y vG? =
I(t)u 1)y
Les deux dernieres équations permettent d’exprimer v et A en fonction de z et 7

HY  f)
(3) =20 (e 5 )(2)
I(t)y

avec la matrice D(t) définie plus haut, et on en déduit que la dynamique état-état adjoint est
donnée par

() = [( o)

< fu 0 ) HY, T N L)
— 0T @ T | D)t < (9) ) dt] ( > .
(Huy) (G?m,y) Gm) , ! m

Une solution (z,7) du systeme ci-dessus sur [s,T] avec condition initiale (z(s),7(s)) = (z,q)
est donc un point stationnaire de (P?) ssi (7(T) — ¢yy (y(T))2(T), z) = 0.

Soit F' I'application R” xR — R" xR", (z,q) — (7(T) — ¢yy (y(T))2(T), ) ot (z,m) est la
solution de ([ZZ9)) sur [s, T] avec la condition initiale (z(s),7(s)) = (=, q). Cette application est
linéaire, et, puisque (P*) admet un unique point stationnaire, elle est inversible. Ceci implique
que pour tout z € R", il existe un unique ¢ € R™ tel que 7(T") — ¢yy(y(T))2(T) =0, ot (2, )
est la solution de ([L29) sur [s,T] avec la condition initiale (z(s),7(s)) = (x,q), et g est une
fonction linéaire de z. Il existe donc une matrice X (s) telle que ¢ = X (s)x. Ce raisonnement
étant valide pour tout s, on a que pour tout z € R™ et tout s € [0, 7], 'unique solution (z, )
de (L) sur [s, T vérifiant z(s) = x et m(T) = ¢yy(y(T))2(T) est telle que

7(t) = X(0)2(t), Vitel[sT). (7.30)

En particulier, en t = T" on obtient que X (T") = ¢, (y(T")). Reportant (L30) dans la dynamique
de 7, on trouve

—dX(t)z = Xidt+dM(6)z + (HO) T+ £ Xz + (G0 )YTaae

I(t).y
_ T X ” HO T Gg‘]) T v
(X fydt + £ Xdt+ dM(8))z + ( fut ()T (G ) NI
0+ FIXT T H), + f,/ X
= [(Xfy+ f, X)dt +dM(t) — G(q) D(t)! G0 z.
1)y 1)y

Comme cette relation est vraie quelque soit z(t) = = € R™ et quelque soit t € [0,7], on en
déduit que X vérifie ([3)), ce qui achéve la preuve. O



240 CHAPITRE 7. CONCLUSION

7.2.2 Rappel de ’exemple de Robbins [T18]

L’exemple étudié par Robbins dans [T18] est le suivant :

T 2
(Prob) auyr; /0 <@ + yl(t)> dt, (7.31)
st 91(t) =y2(t), 920t) = ws(t), Us(t) =u(t) pp.te[0,T], (7.32)

yi(0) =yj, =123, (7.33)

() <0 telo,T). (7.34)

On suppose que la condition initiale y° = (y?, yg , yg) € R3 est telle que
Y > 0. (7.35)

Le coiit de (P,op) est continu et fortement convexe sur son ensemble admissible qui est convexe
fermé, ce qui garantit I'existence et l'unicité d’une solution (u,y) dans I'espace L2(0,7T) x
H'(0,T;R3), caractérisée par la condition d’optimalité du premier ordre donnée par le principe
du minimum. De plus, la contrainte sur ’état est réguliére d’ordre 3 et donc les multiplicateurs
associés (p,n) sont uniques.

Supposons que la trajectoire ait un arc frontiere avec point d’entrée régulier 7 € (0,7).
Alors il est facile de voir qu’il n’est pas optimal de quitter I’arc, et on a donc un arc frontiere du
type (7,T]. Le Hamiltonien est uniformément fortement convexe par rapport a la commande
et la contrainte sur I'état est réguliere d’ordre ¢ = 3. Les conditions de jonction au point
d’entrée 7 impliquent alors que les dérivées de y; sont continues jusqu’a l'ordre 2g — 1 = 5,
i.e. '

y(r)=0, j=0,...,5. (7.36)

Par aill térionr le principe du mini ioli ©) — | Ainsi
ar allleurs, sur un arc intérieur le principe du minimuin implique que yl = 1. 1msi1, sur

I’arc intérieur précédant 7, y; est donné par

t—1)8
(=L (7.3
On voit que y; ne peut pas s’annuler sur [0, 7) et donc la trajectoire optimale est donnée par
[Z3D) sur [0,7) et par y;(t) = 0 sur [r,T]. La condition initiale (IZ33]) implique alors que
6 5 4
T T
Y =

0 T
! 57 41

o (7.38)

Yy
On ne peut clairement pas trouver un instant 7 vérifiant ([Z38]) quelque soit la condition initiale
y? € R3 vérifiant ([Z35]), et donc sauf pour le cas particulier ot la condition initiale se met sous
la forme ([Z3]), la trajectoire optimale n’a pas d’arc frontiere avec point d’entrée régulier.
Robbins a étudié la forme générale des solutions pour une condition initiale y° € R? quel-
conque vérifiant ([Z3H). Pour ceci, on laisse le temps final tendre vers l'infini et on s’intéresse
au probleme de commande optimale en horizon infini

00 2
(Prev) &13 /0 (u(;) + yl(t)> dt, (7.39)
st (t) =y2(t), 92(t) =wys(t), ys(t) =u(t) p.p.te€[0,+00),(7.40)
yi(0) =92, j=1,2,3, (7.41)
—y () <0 te0,+oo). (7.42)
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Ce probléme a une valeur finie car le systeme ([L40) étant commandable, on peut construire
une trajectoire admissible s’annulant sur [A4, +o0c0) pour A > 0. De plus, le cott ([Z39) est
fortement convexe semi-continu inférieurement sur l’ensemble admissible ([Z40)-([ZZ2) et donc
(P29,) admet une unique solution (u,y) avec u € L2(0,00).

La condition d’optimalité du premier ordre pour les problemes de commande optimale en
horizon infini est analogue a celle connue en horizon fini, a 'exception de la condition finale
de 'état adjoint qui est plus délicate & énoncer (voir [66] et [68, Rem. 4.4]). En revanche,
si le Hamiltonien H(-,-,p(t)) est convexe et si la contrainte sur 'état g est convexe (ce qui
est satisfait pour notre probleme (Pr,)), alors le principe du minimum sur (0,00) avec la
condition limite suivante pour I’état adjoint

lTimJirnf p(T)(y(T) —y(T)) <0 pour toute trajectoire admissible (u,y) (7.43)

est une condition suffisante d’optimalité (voir [96l 122] et [68, Th. 8.4]) z

Dans le cas ou les conditions initiales ne se mettent pas sous la forme ([Z38]), la trajectoire
optimale ne présente pas d’arc frontiere avec point d’entrée régulier mais un nombre infini de
points de contact isolés. En effet, on ne peut pas avoir un nombre fini (éventuellement nul)
de points de contact isolés sans arc frontiére puisque sur un arc intérieur, y; est un polynéme
de degré 6 et de coefficient dominant égal a 1, donc si on avait un arc intérieur de longueur
infinie, on aurait y;(t) — 400 quand ¢ — 400, ce qui rendrait le critere infini et ne serait pas
optimal. L’étude précédente montre qu’un arc frontiere avec point d’entrée régulier, précédé
d’un nombre fini (éventuellement nul) de points de contact isolés, est exclu si les conditions
initiales ne se mettent pas sous la forme ([Z38]). Enfin, il n’est pas optimal de quitter un arc
frontiére. On a donc au plus un arc frontiére sur la trajectoire optimale, et pas de point de
sortie. La trajectoire optimale de (P5)) est donc composée d’un nombre infini de points de
contacts isolés, suivis on non d’un arc frontiere.

Un point de contact isolé essentiel correspondant a une discontinuité du multiplicateur n
qui est une fonction croissante, il en existe un nombre dénombrable. On les note (71, ..., 7, ...).
En point de contact isolé 7, on vérifie nécessairement :

Y1 (Tn) =0= ?)1 (Tn)a gl (Tn) > 0. (744)

On a en fait §1(7,) > 0 pour tout n (car si on avait §;(7,) = 0, alors il serait optimal de
prolonger pour ¢t > 7,, ’état et la commande par zéro).

L’étude qui suit est basée sur l'article de Robbins [I18]. Elle s’appuie sur deux éléments :
d’une part le Principe de la Programmation Dynamique qui dit que si (u,y) est une solution
optimale d’un probléme de commande optimale sur [0, 7] avec la condition initiale y(0) = 3°,
alors quelque soit 0 < 7 < T, (a(- — 7),y(- — 7)) restreinte & l'intervalle [7,T] est une solution
optimale du méme probleme sur [0,7 — 7] avec la condition initiale y(0) = y(7); d’autre part,
le paramétrage par la valeur de la dérivée seconde du probleme démarrant a l'instant 7,, avec
conditions initiales ([CZ4).

2Ce résultat est basé sur I'inégalité suivante, facile & démontrer. Notant £(u,y) le cotit dans 'intégrale de
([C39), on a pour toute trajectoire admissible (@, ) et tout T' € (0, +00)

/0 Ou(t), y(1))dt — / (ale), §(6)dt < p(TYGT) — y(T)).
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Etape 1 : Etude du probléeme paramétré (P,). On s’intéresse, pour a > 0, au probleme

. min /0 o (y(t) + u(;)2> dt -

y®(t) =u(t) p.p.te0,00), y0)=y0)=0, {0 =a
—y(t) <0 telo,00).

Par les mémes arguments que précédemment pour (Pr5; ), ce probleme admet, pour tout a > 0,
une unique solution y,. Pour ag > 0, supposons connue la solution y du probleme (P,,). On
cherche a relier la solution y, de (P,) pour a quelconque & g. Soit A > 0. On effectue le
changement en temps s = % et on pose z(s) := A" y(t) et v(s) := A"3u(t). Le probleme (Py)
se réécrit alors

" min \° /O - <

2O (s) =w(s) pp.se] 2(0) = 2(0) =0, 2(0) =\«
—2(s) <0 se€0,00).

Si I'on choisit A tel que A™%a = ag on reconnait le probleme (Pay)- On en déduit donc que

Ya(t) = A% G) avec A = <§O>i : (7.46)

Etape 2 : Relation avec le probleme ( ). Soit 1 la solution du probleme (P25,). Soit
71 le premier point de contact isolé de y; et 31 := §1(71). On a alors pour ¢t > 7y, d’apres le
principe de la programmation dynamique, y1(t) = yg, (t — 71) ol yg, est la solution de (Pg,).
D’apres ([ZZ0), on a y1(t) = A% (552) pour ¢t > 71 avec A = (81 /)%, Soit 75 le deuxiéme

point de contact isolé de y;. On choisit de poser
Qo = (7’2 — ’7’1)_4ﬁ1. (747)
La raison de ce choix est que I'on a alors avec (C4A) A\ = 15 — 71 et

t—Tl

y1(t) = (12 — 11)%% < > pour t > T, (7.48)

T2 —T1
ou on rappelle que y désigne la solution de (P,,) pour ag donné par ([LZM). D’apres (L),
les points de contact isolés de y; notés (7i,...,7,,...) sont reliés & ceux de y que l'on note
(00 =0,01,...,0n,...) par la relation

Tp+1 =T1 + (T2 — T1)0p. (7.49)

En particulier on a que o1 = 1. Il suffit donc d’étudier la suite des points de contact isolés de
y pour en déduire celle de y;.

Etape 3 : Etude de la suite des instants de contact (0,,) de y. Posons, pour n € N*,
ap = (o). Pour s > 0, on a §(s) = ya, (8 — 0n) OU ya, est la solution de (P,, ) (principe
de la programmation dynamique). D’apres ([ZZ8)), on en déduit, pour s > oy,

ao

y(s) = Ny <S ; Un) avec A= an. (7.50)
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Cette expression évaluée au premier instant de contact implique que

An
Avec ([LH0), cela donne
3(5) = (041 — 00)%5 <ﬂ> Vs> o (7.52)
Opn4+1 — On

De plus, par (L52), on a pour tout s > o,
_ _ S — O _ S —0Op—-1
oo (225 ) e (225
On+1 — On On — On-—1

On dérive deux fois cette expression par rapport a s et on prend la valeur en ¢,,. On obtient
alors que (0,41 — 0n)*ag = (0, — 0p_1)*a; et donc

1
_ 1
Intl — In _ <ﬂ> =C"=r>0 VneN~- (7.53)
Op — Op—1 (&%)

Montrons que r < 1 et donc que la longueur des arcs non contraints décroit géométriquement.

On a d’apres ([C52)
On+1 1
[ s = @ = )" [ a0)a0
on 0

d’ott, comme 0,41 — 0, = 1" et y est la solution de (P,,),

S ( /0 117(0>d0> < /0 T g(s)ds < /0 h <g(s>+ “(§>2> ds < 4o,

neN

avec @ := 7). Ceci implique que r < 1.

Etape 4 : Calcul de de 7 et §. Commencons par déterminer § sur [0,1]. Comme d’aprés
3R), 7(s) = (1o —71) Sy1 (71 +s(m2 — 1)) pour tout s > 0, d’apres les conditions d’optimalité
vérifiées par y; on a gj(ﬁ) = 1 sur (0,1), et y s’annule ainsi que sa dérivée premiere en 0 et 1.
Ainsi g est de la forme

y(s) = o’ (1—35)? (s> +as+D) se (0,1) (7.54)

avec a,b € R. De plus, d’apres (LH2), utilisant que 0,41 — 0, = 7" et faisant le changement
de temps 0 = (s — 0y,)/(0p+1 — 0n), On obtient que

glo, +1"0) = rg(0) VO <€[0,1], Vn>1. (7.55)

En dérivant (LB pour n = 1 j fois par rapport a 6 (j = 0,1,..,4) et en prenant les valeurs

en # = 0 on obtient ' o
g (1) = r5-750)(0) (7.56)
<

et comme [7®)(1)] = (1 — 1) [y1(72)] < 0, d’aprés le principe du minimum on doit aussi

avoir

gD 17) > g at) =rg®o"). (7.57)
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On développe ([ZR4) et on dérive 5 fois. On prend ensuite les valeurs de ces dérivées en 0 et 1
et (CHA) pour j = 2,3,4 implique que r vérifie

l+a+b = 7%
4+43a+2b = r3(a—2b) (7.58)
6+3a+b = r*(1—2a+b)
donc
1 1 1—rt 1
4 3—7r3 2(1+1?) a | =0. (7.59)
6—7r2 3+2r2 1172 b

Cela implique que le déterminant de la matrice est nulle car ( 1 a b )T # 0. On trouve
(numériquement) que les valeurs réelles de r annulant ce déterminant sont :

R={r7;rt; 1; =1} avec r~ =0.3194887 et r* = 3.130001.

La valeur r = r7, la seule dans 'intervalle (0, 1), convient, avec les valeurs associées de a et b
égales respectivement & a = —2.1728586 et b = 1.1852072. On vérifie de plus que s2+as+b est
bien strictement positif sur [0, 1] et que la condition ([L57) donnant la condition supplémentaire
44 a>r(a—2), est également satisfaite (avec inégalité stricte).

Etape 5 : Retour & la solution de (P%,). D’apres (Z4H), (CE2) et [Z49), la solution y;
de (Prs,) satisfait

T

t— T,
y1(t) = (Ta1 — )% <7"> Vit>T, (7.60)
Tn+1 — Tn
ou avec (Z03),
Tpn+1 — Tn = (7'2 - Tl)rn_l- (761)
Ceci implique que
nll)rfoo Tn = (T2 — 7'1)1 — +7 =: T, < +oo0. (7.62)

Connaissant la fonction y sur [0, 1] d’apres I'étape 4, par ([L60) on a y; sur intervalle (71, 7).
De plus, on a par ([L60) et ([[CE), pour ¢ € [T, Tnt1],

W ()] < (ry — )07 (@D (supy@) < MrO=Im i =0,.,5, (7.63)
[0,1]

Ainsi y1 et ses dérivées jusqu’a 'ordre 5 tendent vers 0 quand ¢ — T,.. On peut donc prolonger
y1 par zéro sur (T, +00).

Il reste a déterminer y; sur [0,71). Pour cela il faut vérifier les conditions de recollement
en 71 avec ([48), c’est-a-dire la continuité de y; et de ses dérivées jusqu’a l'ordre 4 en 71 ainsi

que la condition de saut v = _[ygg,) (11)] > 0, i.e., notant A := 19 — 79,

b 4 (3) o a—=2b 4
360 Y (M) =T A

-2
A2 y§5)(7'1_):—a6 A+

yi(m1) = 91(m) =0, gj1(m) =
1—2a+b

4) _
yp (1) = 30
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On a trois inconnues que sont 71 > 0, A = 5 — 7 > 0 et v > 0 & déterminer pour satisfaire
les trois conditions initiales ([ZZT]), i.e. dans la base de Taylor en 77 :

o o= (020 ) In2edben am2 g b T

720 6 120 30 247 120 © 3 ' 3607 2
5 4 3 2
0 T a—2 v 1—=2a+b o7 a—2b, 37] b 4
= - L Atp)b 220N L B2 DT 2 A

b2 120 ( 6 +”> 24 30 6 T 120 ° 2 3600V
4 3 2

0o _ T (a=2, o, 1-2a+4b o7 a—2b,3 b 4

Ty < 6 +”> 6 " 30 > " 10 © 360

(Lorsque A = 79 — 71 = 0 et v = 0, on retrouve les conditions initiales particulieres ([Z35])
correspondant a un arc frontiere.)

Enfin, comme y;(¢) = 0 sur [T, 00), on a aussi p(t) = 0 sur [T, 00), et donc ([LZ3]) est aussi
vérifié. Ainsi construite, y; vérifie le principe du minimum sur (0, 4+00) ainsi que la condition
aux limites ([ZZ3]), de plus le hamiltonien est convexe par rapport a (u,y) et la contrainte sur
létat est convexe, d’ou y; vérifie la condition d’optimalité suffisante de (P29 ). C’est donc bien

rob
I'unique solution de (Pr5)).

Remarque 7.6. Comme v, = —[y§5) (1n)], avec (ILE0)—(ZET) on a que

Va1 = =W (Fag)] = v — )t

Y= )] = %(4—1—&—7“(&—2)) > 0.

Etape 6 : Retour a la solution de (P,,). Repassant en temps 7' fini, pour un temps
final suffisamment grand 7' > T, la solution y; ainsi construite, restreinte a l'intervalle [0, 77,
vérifie le principe du minimum de Pontryaguine sur [0,7]. En particulier, comme on termine
sur un arc frontiere, la condition finale sur I’état adjoint p(T") = 0 est satisfaite. La condition
d’optimalité du premier ordre étant nécessaire et suffisante, on a bien trouvé 'unique solution
du probleme (P,.;) pour des conditions initiales ne se mettant pas sous la forme ([Z38]), et cette
solution a une infinité de points de contact isolés dont le point limite est un point d’entrée sur
un arc frontiere.

On a tracé sur la figure [[4] la solution optimale de (P,,) correspondant aux conditions
initiales

y? =1, yg =-1, yg =—2.
On trouve alors (numériquement) 73 = 1.4110209, A = 79 — 71 = 3.5497156 et v = 19.144858.
On a tracé les cinq premiers arcs intérieurs de y;. Par (63]) pour j = 0, on voit que
y1(t) = (9 — 71)%r5 ™D max (s)
t€(Tn, Tn+1] s€[0,1]

avec maxge(o1] §(s) de Pordre de 4.107° et 7% = 0.0010635. Ainsi y1(t) décroit trés rapidement
en pratique, ce que 1'on observe sur la figure [ (seul les deux premiers arcs intérieurs sont
visibles). Ainsi, résolvant le probléme en utilisant par exemple une méthode directe (pour
lesquelles la présence d’un nombre infini de points de contact isolés ne pose pas de difficulté), on
obtiendra numériquement une solution semblant présenter un arc frontiere avec point d’entrée
régulier, précédé ou non d’'un nombre fini de points de contact isolés, bien que cela semble
contredire la théorie. En cela on rejoint la conclusion de Betts et al. [3] sur la résolution
numérique des probléemes de commande optimale avec contrainte sur ’état d’ordre élevé.
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1.0
0.9
0.8+
0.7;
0.6
0.5
0.4+
0.3

0.2

F1G. 7.4 — Trajectoire optimale y; dans l’exemple de Robbins pour la condition initiale y° =
(1,-1,-2).

7.2.3 Preuve de (17

On utilise dans cette section les notations de ’exemple de Robbins de la section précédente.

(5)

On note par y; la trajectoire solution de (Prqp). Par le principe du minimum, on a que y;
est une fonction a variation bornée et satisfait

Ay (1) = dt — dn(t) = 1 pydt — Y vads, (1).
neN*

Comme toutes les dérivées de y; jusqu’a 'ordre 5 s’annulent en T, par ([Z63]), en intégrant sur
(t,T.) cinq fois on obtient que

_ (t — TC)6 (T — t)s
yi(t) = -0 gN: Vnlicr, T (7.64)

Nous allons chercher a expliciter le terme ) Vn1t<7n% D’apres (IZ&])), on a que

1—pnl

D’ou t < 7, si et seulement si

I (1- (-2

> 1 =: Y(1).
Utilisant I’expression de T, donnée par (Z62), on a que ¥(¢) = 1 +In(r)~'In (T;::l (T, — t))
d’ou )
v = (T, 7.66
: ——L (-0, (7.6
On a donc

Z I/n]_t<7—n Z I/n (t— Tn ) (7.67)

neN* n>W(t)



7.2. ANNEXE 247

De plus, d’apres (Z6H), (Z62) et ([ZGE), on a pour tout n

Tn—l
t—7, = t—T.+ (10 —71)
1—r
- t_Tc+Mrn—w(t) 1-r (T, — 1)
1—r TS —T1
= (t—=T)(1—r"¥®), (7.68)

Enfin, d’aprés la remarque on a que
Vp = (Tp — 1) 2 (7.69)

ol 7y est une constante strictement positive. D’apres ([L61), (LX) et ([LEY), on obtient donc
que

(Tﬂ — t)5 _ (t — TC)5 n—2 n—(t)\5
neN* n>U(t)

Cette expression évaluée en t = 7y (i.e. ¢(t) = N) donne

(Tn_TN)S T2 —T1 (TC—TN)S n—1 n—N\5
2 vilmen =g = Ty 2 )
neN* n>N
T2 —T1 (Tc—7'N)5 N-1 k k\5
= 1-— .
T o 2=
k>0
Posons
512 1073 10r* 515 70
A::Ekl—kSZT— - - .
r(1=r) 1—r 1—r2+1—r3 1—r4+1—r5 1—176

k>0
Utilisant ([Z6E]), on obtient que

(Th — 7N)° -1 (Te—71n)° 1—7
7S BN T, — 7n)A
ol Pnlrv<m 90 R 120 7 —7n (Te =)

1—r (T, —7n)°
r 120
Or on a aussi y1(7,,) = 0 pour tout n, donc par ([L64),

S ity o) (T
METNSTR 190 720

A.

= 7

neN*

On déduit des deux expressions ci-dessus que

A = A (7.71)

Repassons maintenant au calcul de ([LT0) pour t ¢ {7, }nen+. Soit N le plus grand entier
supérieur a ¢ (t), N := [¢(t)]. On a

(Tn —1)° T —1 (T, — t)° 1 B
]_ T = n 1 _nn w(t) 5
Z Unlt<m 120 v r 120 Z o r )
neN* n>(t)

5
N Bk (T, —t) -1 Z PRAN=U(0) (1 _ R EN—(0)y5.

T 120 >0
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Notons p(t) :== N —(t) = [¢(t)] —(t) € (0,1). Soit

(t) = Y rFre0 @ — pkrelt)s,
k>0

[1]

Développant (1 — rk+p(t))5 en utilisant la formule du bindme de Newton, on obtient que

=) = Z (rkrp(t) — Br2kp2e(t) 4 10p3k30(0) _ 10pkpe(t) o 50k, 500 _ rﬁkrﬁp(t))
k>0
rP®)  5p20t)  10p3e®)  10p4e(t)  gpEe(t) r60(t)
T 1= 1—92 1—p3  1—gt 145 146
Alors, utilisant (Z66) et ([[ZZ1),
(Tn—t)5 Ty — T1 (Tc—t)5 1—r _
1 — = T. —t)=(t
2, vnli<r g (T ——C Y
neN*
(T. —)° =(1)
La fonction @ : [0,1] — R,
rP 5r2p 10r3° 10r4r 510 rop ket
_ _ _ — P(1 — k+p\5
e S e R e Rl S s S v D DG Gt

k>0

est de classe C® sur [0,1], telle que ®)(0) = ®U)(1) pour tout j = 0,...,4 (s’obtient
facilement & partir de la formule sommatoire) et 0 < ®(p) < ®(1) pour tout p € (0,1) (voir la
figure [Z0]). Comme A = ¢(1), posant

oy = E0 _ #e)

on a que 0 est C* sur [11,T.), C™ sur chaque arc intérieur (7,,, 7,+1), telle que 6(7,) = 1 pour
tout n et 0 < 6(t) < 1 pour tout t € (74, 741). D’ou avec (C6A) et ([CT), cela acheve la
preuve de ([ZI7).

0.148

0.147-

0.146-

0.145-

0.144

Fi1G. 7.5 — Fonction .
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Remarque 7.7. Noter que par ([ZBH), avec N = [¢(t)],

rN-1 T.— TN

p(t) — pN=9(t) — —
" " rw(t)_l Tc —1

ou 7y est le plus petit instant de jonction supérieur strictement & ¢. Ainsi on peut réécrire 6

sur chaque arc (Ty_1,7N) par

00 = A 1 T,-7wv 5 (T.—w\*, 10 (T.—7v\’
B 1—r T,.—t 1-72\ T.—t 1—73

_ 10 (Toomy\', 5 (Lo 1 (T
1=t \ T, —t 1= \ T, —t 16 \ T, — ¢t

T2 —T1 _
277, N-1
1—7r

avec
T.—n =
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