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Résumeé étendu

Contexte

La propagation des ondes sismiques peut étre simulée a l'aide de différentes méthodes numériques :
méthode des éléments nis, méthode des différences nies, méthode des éléments spectraux, méth-
ode des éléments de frontiere (BEM, pour Boundary Element Method), ... Cette derniere présente
I'avantage de ne nécessiter que la discrétisation de la frontiere du domaine de calcul considéré. De
plus, elle permet de simuler des milieux étendus en évitant la forte dispersion numérique associée
a d'autres schémas. La BEM est donc bien adaptée pour le calcul de la propagation d'ondes sis-
miques. Le principal inconvénient de la formulation intégrale de frontiére est qu'elle conduit a un
systeme linéaire dont la matrice est pleine et non symétrique. Les solveurs adaptés a ce type de
problémes sont de deux types. D'une part, les solveurs directs, qui factorisent la matrice du sys-
téme, ont une complexité de I'ordre @&N 3) en temps e©(N 2) en mémoirell étant le nombre

de degrés de liberté). lls sont donc inutilisables désNjwevient grand. D'autre part, les solveurs
itératifs construisent une suite convergeant vers la solution. La complexité est alors de I'ordre de
O(nier N?) en temps et en mémoire. La contrainte de stockage en mémoire les rend dif ciles a
appliquer aux systémes BEM de taille supérieu@(4#0%) inconnues. La résolution de problémes
réalistes en termes de géométrie, hétérogénéité, longueur d'onde ... est donc limitée par le nombre
de degrés de liberté que peut traiter le solveur sur une machine donnée. De plus, comme l'analyse
est menée dans le domaine fréquentiel, la taille des maillages est liée a la fréquence du probléme.
Le spectre des fréquences étudiées est donc aussi restreint par ces considérations.

L'idée est alors d'appliquer une méthode d'accélération de I'évaluation des opérateurs inté-
graux, étape essentielle du calcul d'un produit matrice-vecteur utilisé par le solveur itératif (GMRES
dans notre cas) a n de diminuer le temps CPU d'une itération mais aussi les besoins en stockage.
Cette réorganisation du calcul est rendue possible par la méthode multipdle riagetélti-
pole Methodou FMM en anglais). Initialement développée pour les problemis éorps par
Rokhlin et Greengard [102] dans les ann86sla méthode a ensuite été adaptée aux équations de
I'électromagnétisme par Rokhlin [175] et Chew [198] . Actuellement, la FMM est appliquée dans
de nombreux domaines [159] : astrophysique, mécanique des uides, acoustique [158], ... Dans
le domaine de I'élastodynamique, trés peu de travaux ont été réalisés. On peut citer les travaux de
Takahashi et al. [201, 202] dans le domaine temporel. Dans le domaine fréquentiel, la premiére
étude en 2-D est due a Chen et al. [44]. En 3-D, on peut citer les travaux de Yoshida [213] ou la
méthode est appliquée a I'étude de la propagation de ssures et ceux de Fujiwara [90] ou quelques
applications sismiques basses fréquences sont présentées. Le but de cette thése est de développer
un solveur numérique ef cace pour résoudre des problemes de propagation d'ondes sismiques de
grande taille. Dans ce but, une méthode BEM accélérée par la FMM est développée. Ce mémoire
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est découpé en deux parties précédées d'un chapitre introductif. La premiére partie est consacrée a
la formulation et la mise en oeuvre de la FMM pour les équations de I'élastodynamique 3-D. Dans

la deuxiéme partie, ces méthodes sont appliquées a des problémes sismiques, a n de montrer leurs
capacités.

PARTIE | : FORMULATION ET MISE EN OEUVRE DE LA FMM POUR LES EQUATIONS
DE LELASTODYNAMIQUE 3-D

Méthode multipdle rapide pour les équations de I'élastodynamique 3-D. Dans le Chapitre 2,

la formulation de la FMM pour les équations de I'élastodynamique 3-D, ainsi que sa mise en oeuvre
et validation sont présentées. La présence du téﬁ%'{lf@ (fonction de Green pour I'égquation de
Helmholtz, pour I'espace in ni) dans les tenseurs de Green de l'espace in ni élastique (2.2a,b) (ou

k est le nombre d'onde €ix;y) un couple de points sur la frontiére), permet de les reformuler

en termes de développements en séries multipdles (2.13a,b, 2.14a,b), analogues a ceux connus en
électromagnétisme [198]. Ainsi, les variablesty de l'intégrale sont séparées. Il n'est plus
nécessaire de recalculer les solutions élémentaires pour chaque couple de points sur la frontiére
de l'objet et, dans l'intégrale, il est possible de réutiliser les intégrations précédentes séles
contributions mutuelles entre tous les poixsty sont ainsi réduites a quelques contributions entre
paquets de pointg et paquets lointains de poinys(Figure 2.4). De plus, a n de diminuer le

colt mémoire et le temps de calcul du produit matrice-vecteur, la matrice du systéme n'est jamais
explicitement assemblée (contrairement a la méthode BEM classique). La FMM existe sous deux
formes : simpli ée et compléte. La premiére, mono-niveau, s'appuie sur un découpage en boites
cubiques de la région de l'espace contenant la frontiére du domaine, et permet de calculer le produit
matrice-vecteur e®(N 372) opérations. Dans la seconde, multi-niveaux, le découpage en boites
cubiques est récursif, ce qui permet d'obtenir une complexité inférieure du calcul produit matrice-
vecteur, de I'ordre d©(N log, N).

La méthode utilise plusieurs paramétres dont dépendent la rapidité et la précision du calcul
(taille des cellules, nombre de niveaux de grilles, troncature de la série du développement multi-
pole, ...). Dans le cas de I'élastodynamique, les valeurs optimales pour obtenir un bon compromis
entre ef cacité et précision sont déterminées pour les approches mono et multi-niveaux dans la
Section 2.4. Les complexités théoriques sont véri ées numériquement dans la Section 2.5 (voir
la Figure 2.18). Dans la Section 2.6, des tests sur des cas simples, dont la solution analytique est
connue, valident la méthode et montrent sa précision. Ces calculs montrent encore que l'erreur
introduite par la FMM par rapport a la BEM classique n'a pas d'incidence pratique sur la qualité
du résultat. Pour terminer, cette approche permet, par exemple dans le cadre de la sismologie, de
résoudre des problémes plus réalistes et pour un spectre de fréquences plus large. Un des exem-
ples proposés montre ainsi qu'il est possible d'étudier la propagation des ondes sismiques dans
un canyon, sans restriction forte sur la taille du domaine discrétisé (y compris surface libre), pour
des fréquences supérieures a celles habituellement utilisées pour ce type de calcul et ce avec une
discrétisation ne sur tout le domaine.

FM-BEM pour les problémes multi-domaines. La méthode présentée dans le Chapitre 2 est
limitée aux milieux homogenes car les solutions fondamentales utilisées sont celles de I'espace
élastique in ni. Or, pour étudier des con gurations réalistes, cette limitation est trop restrictive. Le
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but du Chapitre 3 est d'étendre la formulation présentée au Chapitre 2 a des con gurations multi-
domaines, grace au développement d'une stratégie de couplage élément de frontiére-élément de
frontiére. Tout d'abord, la formulation BEM continue, adaptée a I'étude de la propagation d'ondes
sismiques dans des structures géologiques complexes (irrégularités topographiques, bassins sédi-
mentaires; ::) est présentée dans la Section 3.2. Ensuite, la stratégie de couplage est présentée
dans la Section 3.3. Cette méthode repose sur I'utilisation, de maniére indépendante dans chaque
sous-domaine homogene, de la méthode FMM présentée au Chapitre 2. La stratégie de couplage
ne se réduit pas a la concaténation des équations intégrales de frontiere dans chaque sous-domaine
en un systéme global d'équations: l'interpolation des inconnues en déplacement étant linéaire et
celle des inconnues en tractions constante, le systeme global ainsi obtenu serait sur-determiné. On
propose alors d'effectuer des combinaisons linéaires judicieuses des équations intégrales de fron-
tiere. Différents détails sur la mise en oeuvre ef cace de cette méthode (choix des coef cients de
pondération dé nissant les combinaisons linéaires, mise a I'échelle des équations, ordre des incon-
nues et orientation des normales) sont présentés dans la Section 3.4. Dans la Section 3.5, cette
stratégie de couplage est validée sur un probléme de propagation d'ondes planes dans un bassin
sédimentaire, pour lequel une solution de référence est disponible dans la littérature. Des calculs a
plus hautes fréquences ont pu étre effectués grace a ce nouveau solveur. De plus, il est montré dans
la Section 3.6 que la méthode peut aussi étre utilisée pour traiter des problemes dans le domaine
temporel, via l'utilisation d'une transformée de Fourier.

Préconditionnement et autres améliorations de la formulation. Le solveur FM-BEM pour

les équations de I'élastodynamique 3-D présenté dans les Chapitres 2 et 3 a déja permis d'améliorer
les performances de la BEM standard. Toutefois, la méthode peut encore étre ameliorée. Dans le
Chapitre 4, différents points qui peuvent augmenter les performances de la FM-BEM developpée
dans cette thése, sont présentés. Tout d'abord, une méthode de préconditionnement est introduite
a n de réduire le nombre d'itérations du solveur itératif et ainsi accélérer le temps de résolution.
La méthode proposée (voir I'Algorithme 4.3) est basée sur l'utilisation de deux solveurs itératifs
emboités. Le solveur extérieur est un GMRES exible et le solveur intérieur, qui permet de calculer
I'inverse du préconditionneuv , est un GMRES classique. La dé nition d'un préconditionneur

ef cace est une question cruciale mais délicate dans le cadre de la FMM car la matrice du systéme
n'est jamais explicitement formée. On propose ici d'utiliser comme préconditionneur la seule ma-
trice a notre disposition, la matrice des interactions probhes K "¢ On montre que I'utilisation

de ce préconditionneur réduit de maniere signi cative le nombre d'itérations pour des problemes
de propagation d'ondes planes dans des canyons ou bassins sédimentaires.

Ensuite, une méthode pour réduire le nombre nécessaire de moments multipbles est présentée
dans la Section 4.2. Au lieu d'utiliser les coordonnées cartésiennes, l'idée est de reformuler les mo-
ments multipdles sur une base appropriée. Ainsi le nombre de moments multipbles requis est réduit
de8 a6 et on espére que les colts mémoire et temps CPU seront également réduits. Cette méthode
n'est pas mise en oeuvre au moment de la rédaction de cette thése mais le sera prochainement.

Pour terminer, dans la Section 4.3, une méthode pour formuler le développement multipble
de la solution fondamentale du demi-espace élastique est proposée. Le principal avantage de
l'utilisation de la solution fondamentale du demi-espace élastique est que la condition de surface
libre y est déja incluse. Il n'est donc pas nécessaire de discrétiser la surface libre et on réduit ainsi
le nombre de degrés de liberté. Toutefois, il n'existe pas actuellement de développement multipdle
adapté a ces solutions fondamentales. Pour trouver un tel développement, on propose d'adapter une
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méthode utilisée par ailleurs [61, 100] pour la dé nition des méthodes multipbles basses fréquences,
reposant sur une transformée de Fourier par rapport aux deux variables spatiales paralleles au plan
de la surface libre. La transformée de Fourier de la solution fondamentale est ainsi formulée comme
I'intégrale du produit d'une fonction de et d'une fonction de/. La dif culté réside dans le calcul
numérique de la transformée de Fourier inverse. On propose d'utiliser une méthode basée sur la
décomposition en valeurs singulieres, non encore mise en oeuvre au moment de la rédaction de ce
mémoire. Cette formulation devrait permettre d'améliorer de maniére signi cative les capacités de

la BEM accélérée par FMM appliquée aux milieux semi-in nis.

PARTIE Il : APPLICATION A LA PROPAGATION D'ONDES SISMIQUES

La deuxiéme partie de ce mémoire est consacrée a l'application de cette nouvelle méthode pour
I'étude de problémes sismiques.

Problémes sismiques canoniques. Tout d'abord, dans le Chapitre 5, la méthode est appliquée

a I'étude de la propagation et I'ampli cation d'ondes planes P et SV, d'incidence oblique, dans
des canyons et bassins canoniques. Les exemples traités sont issus de notre contribution au pro-
jet de recherche ANR “Quantitative Seismic Hazard Assessment” (QSHA, http://gsha.unice.fr/)
sous la forme d'une participation au développement d'outils numeériques pour la simulation de la
propagation des ondes sismiques. Plusieurs partenaires, possédant une expertise sur différentes
méthodes numériques (méthode des éléments nis, méthode des différences nies, méthode des
volumes nis, méthode des éléments spectrales, méthode des éléments discrets et méthode des élé-
ments de frontiere) étant impliqués dans le projet QSHA, une série de problémes canoniques a été
proposée a tous les participants an de comparer la précision et les performances de toutes ces
méthodes numériques. Au moment de la rédaction de cette thése, les comparaisons ne sont pas en-
core disponibles. On a toutefois choisi de présenter nos résultats pour permettre des comparaisons.
De plus, ce chapitre a permis de tester I'ef cacité du préconditionneur présenté au Chapitre 4, en
termes de réduction du nombre d'itérations pour les problémes de propagation dans un canyon ou
un bassin. Il est ainsi remarqué que méme si le nombre d'itérations augmente toujours avec la
fréquence, cette augmentation est beaucoup moins rapide si le préconditionneur proposé est utilisé
(voir Figure 5.12 par exemple).

Application sismique réaliste : étude d'une vallée Alpine. Tous les résultats présentés dans

les chapitres précédents concernent des problémes pour des géométries canoniques. Le but du
Chapitre 6 est d'utiliser I'ef cacité de la méthode pour traiter un probléme plus réaliste. La propa-
gation d'ondes planes dans une vallée alpine (Grenoble) est ainsi étudiée. Ce probléme permet de
mettre en avant le gain d'ef cacité apporté par cette nouvelle formulation par rapport a la méth-
ode BEM standard utilisée dans [64] pour traiter la méme géométrie. Cet exemple a aussi permis
de pointer une autre nécessité d'amélioration de la méthode pour traiter des problémes réalistes.
Ainsi, si il existe un fort contraste de vitesse entre deux couches en regard, le nombre de points par
longueur d'onde est adapté au matériau le plus mou. Par conséquent, comme le maillage est con-
forme, l'interface est maillée beaucoup trop nement pour la couche la plus dure. Or, la FMM perd
de son ef cacité quand le maillage présente de fortes hétérogénéités de densité. Pour pouvoir traiter
de maniére ef cace de grands problémes sismiques réalistes, on pourrait par exemple développer
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une méthode stable a toutes fréquences [117, 164] (associant une FMM basses fréquences a la FMM
hautes fréquences employée dans ce travail). Ceci permettrait d'utiliser des cellules plus petites et
donc de conserver un nombre d'inconnues par cellule a peu prés constant sans nuire a la précision.
Une autre méthode peut consister en l'utilisation d'un maillage non-conforme, via le développe-
ment d'un couplage faible, pour les problemes multi-régions a forts contrastes de propriétés.

Conclusion et perspectives

Conclusion. Dans ce mémoire la méthode multipdle rapide a été étendue avec succeés aux équa-
tions de I'élastodynamique 3-D. Dans un premier temps, une méthode mono-domaine a été présen-
tée. Pour pouvoir traiter des problémes sismiques dans des milieux homogénes par couches, une
méthode de couplage élément de frontiere-élément de frontiére a été développée. Une méthode de
préconditionnement a également été mise en place pour augmenter les capacités de la méthode. La
méthode présentée peut toutefois encore étre améliorée. On a proposé dans ce but deux formula-
tions a mettre en oeuvre. Dans une deuxiéme partie, la méthode a été appliquée pour traiter des
modeles canoniques et plus réalistes. On a ainsi montré qu'il est possible de traiter des problémes
comportant jusqu'd = O(10°) degrés de liberté pour des modéles canoniques mais qu'il reste
nécessaire d'apporter quelques améliorations pour traiter des problémes réalistes a haute fréquence.

Perspectives. Cette premiére étude sur la méthode multipble rapide pour les équations de
I'élastodynamique 3-D, menée au LMS et au LCPC, a ouvert de nombreuses perspectives. On
propose, par exemple, pour améliorer les capacités de la méthode d'essayer de la paralléliser ou
d'étudier plus en détails les méthodes de préconditionnement. De plus, dans cette étude, seules les
équations de I'élasticité sont traitées. On montre qu'il est possible d'étendre la méthode a I'étude
des équations de la viscoélasticité. Une autre perspective est de coupler la méthode avec d'autres
méthodes numériques ou bien de l'utiliser comme solveur direct pour résoudre des problémes in-
verses.

Annexes

Le mémoire se termine avec cing annexes qui donnent des détails sur : la mise en oeuvre de la BEM
standard, les champs d'ondes incidents, les fonctionnalités et I'utilisation du code développé, les

fonctions spéciales. Pour terminer, la derniére annexe reprend un travail publié [42], effectué en

paralléle de la these.

Principales publications associées a ce travail
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2 Introduction

1.1 GENERAL OVERVIEW

The present work is concerned with the numerical modelling of 3-D elastic wave propagation. The
Boundary Element Method (BEM) is known to be well suited to deal with unbounded domains, but
in its traditional form leads to high CPU costs and memory requirements. The main goal of this
thesis is to develop a fast BEM to increase the capabilities of the standard method in the context of
3-D elastic wave propagation. To this end, the Fast Multipole Boundary Element Method, already
developed in other areas such as electromagnetism, is extended to 3-D multi-domain elastodynam-
ics. This Fast Multipole accelerated BEM is then applied to study seismic wave propagation and
ampli cation in sedimentary basins. The methodology presented in the following is applied to seis-
mic waves but it is not limited to this kind of waves. Itis a rst step at the LCPC and LMS toward
the development of fast solvers for elastic waves and in the future, other applications of the present
work will be performed: soil-structure interaction, inverse problems, vibration induced waves, ...

1.2 SEISMIC WAVE PROPAGATION AND AMPLIFICATION

Figure 1.1: Seismic wave propagation at various scales (from Semblat and Pecker [193]).

Nowadays, earthquake engineering and seismology are very active research elds because of
the huge human and economical issues underlying the challenging scienti ¢ topics. For example,
the seismic events in Mexico (1985), Kobé (1995) or Bam (2003) caused many casualties and
extensive damage. The seismic ground motion is not only in uenced by the source features but also
by the path from the source to the site and by local ampli cation in sur cial alluvial deposits (site
effects, Fig. 1.1). For this reason, various studies deal with seismic wave propagation in complex
media. In this work, only seismic wave propagation and ampli cation in sur cial alluvial deposits
is considered. The phenomenon was rst considered during the Michoacan 1985 earthquake in
Mexico. It was observed that, in the center of Mexico, located 400 kilometers away from the
epicenter, the maximum acceleration was very large. A likely explanation is the geological structure
under Mexico city, characterized by thick clay deposits. In France, where seismicity is moderate,
site effects are nevertheless studied. For example, in Alpine valleys, the deep and narrow alluvial
deposits may lead to complex propagation phenomena. Due to multiple re ections and diffractions
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Figure 1.2: Seismic wave ampli cation in deep alluvial deposits (Grenoble, France): velocities (N-
S component) recorded at various locations during the 1999 Laffrey earthquake (data: French
accelerometric network, www-rap.obs.ujf-grenoble.fr), from Semblat and Pecker [193].

at the basin edges, the seismic motion may be strongly ampli ed (see for example the Grenoble
basin in Fig. 1.2, where the reference bedrock site is called OGMU). Site effects are caused by the
velocity contrast between the various soil layers, and their geometry. They can be decomposed into
three phenomena that we now brie y review.

Topographical site effects. The rstimportant cause of site effects is the site topography: crests,
hills, canyons, edges;: The incident wave eld is modi ed by the surface topographical irregular-
ities and the effect of the scattering is an important factor in the ampli cation of the surface ground
motion (Fig. 1.3). The wave type, the geometry or the presence of heterogeneities may modify this
process. Experimental and numerical studies have been performed to understand this site ampli -
cation effect (Bard [11], Paolucci [166]). On one hand, it is known that convex geometries as hills

interferences

e

Figure 1.3: Constructive interferences due to a simple topographic irregularity (from Semblat and
Pecker [193]).
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and mountains may lead to a signi cant ampli cation of the seismic motion. On the other hand,
concave geometries generally reduces the motion. For example, during the 1909 Lambesc (France)
earthquake, the area of the village of Rognes, located on a hill, was severely damaged. Another
example of such phenomenon took place in Bam, Iran (2003).

Stratigraphic site effects. The surface ground motion is due to the propagation of seismic waves
through the various layers and consequently depends upon the layer properties (vertical hetero-
geneities). In other words, due to the velocity contrast between alluvial deposits and the bedrock,
the transmitted wave elds are ampli ed and trapped in the uppermost layers as surface waves
(Fig. 1.4). This leads to surface motion ampli cation and longer signal records. Ground motion
ampli cation occurs when a seismic ray travels through an interface from a stiffer medium to a
softer one. The governing parameters for such phenomena are:

- the thicknesses of, and the wave velocities in, the sedimentary layers;
- the frequency range, polarization and incidence angle of the waves.

/NEEEE

Figure 1.4: Principle of 1-D stratigraphic site effect (from Semblat and Pecker [193]).

Basin effects. Finally, the in uence of the “horizontal heterogeneities” (e.g. alluvial basins)
should also be taken into account. The basin shape may cause some focusing of the wave eld in
the basin (Fig. 1.5). Moreover, the basin edges effect generally leads to trapping surface waves.
These effects lead to some (possibly strong) motion ampli cation and increase the duration of the
signal as well (Bard and Bouchon [12, 13]).

1.3 MODELLING SEISMIC WAVE PROPAGATION

To analyze site effects, it is possible to consider modal approaches (Semblat et al. [192]) or di-
rectly investigate wave propagation phenomena. Modelling seismic wave propagation has become
an important eld of research. For simple geometries, the solution can be obtained by analytical
means. For example, thki-Larner method4], in which the scattered wave eld is represented

as a superposition of plane waves propagating in various directions, is used to deal with simple
geometries (e.g. in Bouchon et al. [36]). We also mentiorstrées expansions of wave functipns
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Figure 1.5: Principle of 2-D site effect in alluvial basins (from Semblat and Pecker [193]).

introduced by Sanchez-Sesma [183], where scattered elds are expressed as linear combinations
of chosen wave functions (which are solutions of Navier's equation) whose coef cients are deter-
mined (for simple geometries) so as to satisfy the boundary conditions in a least-squares sense.
For complex geological structures, numerical methods are needed. With the continuing increase
of computational resources, realistic simulations of waveforms in the presence of highly heteroge-
neous structures and source models become feasible. Numerical methods most prominently applied
to wave propagation problems are the nite difference method, the nite element method, the spec-
tral element method, the discontinuous Galerkin method, the nite volume method, the discrete
element method and the boundary element method. We now brie y review the main characteristics
of these methods in the framework of seismic wave propagation.

Finite-difference method. The nite-difference (FD) method has been widely used since the
90s (e.g. Frankel and Leith [83], Frankel and Vidale [84], Frankel [82], Graves [98] and Olsen
et al. [163]). One reason of the widespread use is the simplicity of the method and its imple-
mentation. Another reason is that viscoelasticity, or nite sources, can be treated in a relatively
straightforward way. Finally, the local nature of nite-difference operators makes the method
suitable for parallelization. In seismic applications, the velocity-stress formulation proposed by
Madariaga [140] and Virieux [207] is used. Recently, some improvements have been proposed by
Saenger et al. [181] with the use ohaw rotated straggered gritb simulate media with hetero-
geneities (cracks, pores or free surface) without using boundary conditions. Zingg et al. [215, 216]
have proposed a maximum-order scheme and an optimized scheme for modelling long-range linear
wave propagation. In spite of these recent improvements, the main limitations are the extensive
consumption of computational resources in terms of both core memory and CPU time, the limita-
tion to simple geometries and the poor accuracy for the computation of surface waves. A review by
Moczo et al. on the use of FD methods can be found in [153].

Finite element method. The nite element (FE) method is more ef cient for dealing with com-

plex geometries and heterogeneous media. FE is applied to seismology since 1972 (e.g. Lysmer and
Drake [139]). This method is also applicable with inelastic constitutive models (e.g. Bonilla [30]).
Recently, Bielak et al. [27] have developed an ef cient FE-based computational platform for large-
scale ground motions. Nevertheless, low approximation orders may lead to large numerical disper-
sion, as explained in Marfurt [147]. As a result, mesh re nement is required to reduce numerical
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dispersion but may lead to a large numerical cost even if parallelization is possible. Some high
order FEM computations, even if not often considered for wave propagation simulations, were also
shown to be more accurate (e.g. Semblat et Brioist [190]). Recently, Hughes et al. [115] have shown
that the interpolation errors of standard nite elements diverge with respect to the order of approxi-
mation. But, the behavior of non-uniform rational B-splines (NURBS) is better: they converge with
respect to the order of approximation.

Spectral element method. The spectral element (SE) method combines the exibility of the

FE to handle complex geometries with the accuracy and exponential convergence rate afforded
by spectral approximations (e.g. Kosloff et al. [125], Carcione et al. [39]). This time-domain
method is based on high order approximations of elastodynamic variational formulations, and hence
takes naturally into account interface conditions and free surfaces. The rst uses of SE methods
in 3-D elastodynamics were proposed by Faccioli et al. [74] and Komatitsch and Vilotte [124].
These articles show the very high accuracy and low numerical dispersion of the SE. Then, parallel
implementations of SE for wave propagation have been proposed in Komatitsch and Vilotte [124],
Komatitsch et al. [121] and Chaljub et al. [43]. The SEM is generally applied to linear media (see
however e.g. Di Prisco et al. [66] for a use to non-linear media) and hexahedral meshes. The lack
of meshing exibility is a major limitation, as explained by Delavaud [63].

Discontinuous Galerkin method. The discontinuous galerkin (DG) method is an extension of

SE or FE in which the condition of continuity between elements is relaxed, the solution being
approximated using piecewise continuous polynomials basis functions. The main advantage of this
method is the development of high-order accurate solutions using unstructured and non-conforming
meshes. The DG method is also well suited for parallel implementation. As a particular case of the
DG method, the nite volume (FV) method uses approximations of order zero. Recent interesting
results on DG and FV methods can be found in Benjemaa [21], Dormy and Tarantola [68] and
Dumbser and Kaser [69]. The main limitation of these methods is related to the following basic
concept: the unknowns are element-based, in contrast to most other general volume methods which
are vertex-based.

Discrete element method. In the discrete element (DE) method, the medium is modelled by
particles which interact with their neighbours (attractive and repulsive interactions) according to
local/discrete mechanical laws. This method was rst developed to model granular materials, rocks
and discontinuities at grain scale. This method is well suited to deal with non-linear materials
and rupture of brittle materials (e.g. Ibrahimbegovic and Delaplace [116]). The main limitations
of this method are the high CPU costs which make it dif cult to deal with fully 3-D domains,
the characterization of the mechanical characteristics of the links at the interfaces, and the use of
spherical particles.

Boundary element method. The Boundary element method (BEM) is based on boundary inte-
gral equations. The main advantage of such method is that only the domain boundary and interfaces
are meshed. As a result, it is well suited to deal with unbounded domains that arise in seismology.
The other advantage is that it does not need the introduction of absorbing conditions and does not
suffer from numerical dispersion (in terms of cumulative errors). On the other hand, the method is
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largely limited to piecewise homogeneous and linear media. The former limitation can sometimes
be overcome using appropriate Green tensors (e.g. for the half-space, for layered media), which
are however more complicated to implement and computationally more demanding than the usual
free-space Green tensor. The main computational limitation of the BEM in its standard form is that
the in uence matrix is fully-populated. The numerical solution is thus expensive in terms of CPU
time and memory requirements. As a result, standard BEM is limited in terms of frequency-range,
geometrical complexity and heterogeneities, especially for 3-D con gurations.

Comprehensive presentations of integral equation methods can be found in the books by Bon-
net [31], Dominguez [67] and Manolis and Beskos [144]. A general review of the use of elas-
todynamic BEM is found in the articles by Beskos [24, 25]. In seismology, the BEM is used to
study the effect of irregular topography on earthquake ground motion, in 2-D (e.g. in Mogi and
Kawakami [154], Reinoso et al. [170], Sanchez-Sesma and Campillo [184]). Some works deal with
3-D problems, for example Reinoso et al. [169] and Niu and Dravinski [161] for homogeneous
anisotropic canyons. In many publications, BEM are also applied to the seismic response of sed-
imentary basins and alluvial valleys, see e.g. Reinoso et al. [170] or Semblat et al. [191] for 2-D
cases and Dangla et al. [56], Mossessian and Dravinski [156] or Reinoso et al. [169] for 3-D cases.
A comprehensive review by Bouchon and Sanchez-Sesma on the use of BEM for seismic problems
is found in [37].

Wave propagation in unbounded media: methodology survey. In seismology, the domain

is generally treated as unbounded. On one hand, the volume methods (FE,SE, ...) need to trun-
cate the domain. Absorbing boundaries are usually prescribed in order to reduce re ections of
outgoing waves at the boundaries of the discrete model. The rst type of absorbing conditions,
ef cient at almost normal incident, is based on rst-order expansions (paraxial approximation pro-
posed by Clayton and Engquist [48]). The method has been then improved by Higdon [113] to
deal with surface waves and higher orders, but is more complex to implement. Since surface waves
are essential and frequently encountered in various applications, Bérenger [22, 23] rst introduced
Perfectly Matched Layers (PMLs) for electromagnetism. The major idea is to de ne a selective
attenuation of the elds propagating in one prescribed direction (thanks to the introduction of a
system with stretched coordinates). PMLs were developed for elastic wave propagation by Basu
and Chopra [15, 16], Festa and Vilotte [77] and Komatitsch and Tromp [123]. The velocity-stress
formulation of PMLs for elastic wave equations has been introduced by Collino and Tsogka [52].
PMLs are used in FD methods (e.g. Festa et al. [76], Marcinkovich and Olsen [146]), in FE or SE
methods (e.g. Komatitsch and Tromp [123]) and are very ef cient for both body and surface waves
(except shallow depth and low-frequency) but the ef ciency decreases for grazing incidences (the
horizontal/normal wavenumber being very small). Festa and Vilotte [77] and Komatitsch and Mar-
tin [122] have reduced this problem by introducing a numerical ltering. Festa et al. [75] have devel-
oped new absorbing conditions for 2-D problems to reduce the interference between low-frequency
Rayleigh waves and the absorbing layer. Bécache et al. [20] have shown that exponentially growing
solutions could appear in some models for anisotropic media. Recently, Meza-Fajardo and Pa-
pageorgiou [151] have proposed multi-dimensional PMLs for grazing incidences and anisotropic
media (2-D problems). On the other hand, surface methods do not need such treatment since they
are naturally formulated for unbounded domains.
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Ongoing comparative study. All these numerical methods are currently the subject of a com-
parative study in the framework of a French research project named “Quantitative Seismic Hazard
Assessment” (QSHA,; http://gsha.unice.fr) and funded by the French National Agency for Research.
The project aims at (a) obtaining a better description of crustal structures, (b) improving the source
characterization and the determination of earthquake scenarios, (c) developping more precise mod-
elling of seismic waves, (d) improving empirical and semi-empirical techniques based on observed
data and (e) obtaining a quantitative estimation of ground motion based on previous information.
Each method is more or less well adapted to seismic problems depending on the scale, the basin
shape, the soil behavior (linear/non-linear, ...), among other parameters. These methods should be
considered as complementary rather that competitive. For example, in seismology, FE methods are
used to model some non-linear or heterogeneous subregions (near eld), whereas BE methods are
used to model the complementary, linear and homogeneous domain (far eld). Examples of such
FE-BE coupling have been done by Clouteau et al. [50], Fu [86], Liu et al. [132] or Mossessian and
Dravinski [155]. There also exists works on the coupling of DE with SE (e.g. Gavoille et al. [93]).

Overall goals of this thesis. The BEM is an extremely useful tool to deal with unbounded
media even though it is limited to simple linear properties. The subject of this thesis is to develop an
alternative to the classical BEM formulation, namely a fast-BEM approach to improve the ef ciency
of standard BEM. This thesis is limited to BE methods for linear elastodynamic equations, in the
frequency domain. It lays, however, the ground work for many useful extensions, such as a fast-
BEM treatment of wave propagation in viscoelastic media or the coupling of fast BEM with FEM,
that will be adressed in a subsequent thesis (Eva Grasso, 2008-2011).

1.4 ELASTIC WAVES: PRELIMINARIES

Before introducing the elastodynamic boundary integral equations in Section 1.5, some basic back-
ground on elastic waves is recalled in this section.

Elastodynamic equation. Let denote the region of space occupied by an elastic solid with
isotropic constitutive properties de ned by mass densijtghear modulus, Poisson's ratio (or,
equivalently, the Lamé paramete=2 = (1 2 )). The displacement is notedand the Cauchy
stress tensor is denoted The equations of elasticity consist of the conservation of momentum,
the linear-elastic constitutive relation, and the compatibility equation. The differential form of the
conservation of momentum, i.e. the Cauchy's rst law of motion, is:

r:- + F= w® (1.2)
whereF (x;t) is a given body-force distribution areddenotes the second-order time derivative of
u. The deformation of the medium is described by the strain tehs®he relation between strain
and displacement, for linear elasticity under small strains, is:

n 1

i = Ui+ ugi) 1.2)
whereu; denotes the i-th component of the displacementuands the derivative ofi; with respect
to xj . The linear constitutive relation between the stress tensamd the strain tensdris

i = Cik "k (1.3)
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where, in the case of isotropic elasticity:
h 5 [
T 3 i kT okt gk (1.4)

Substituting (1.2), (1.3), (1.4) into (1.1) yields the displacement-based Navier equation of motion:

Ci =

r(ru+ r?u+ F= w

1 2

which, using theidentity ?u = r (r :u) r ~r ~u,where* denotes the vector cross-product,
can be recast into the equivalent form:

wr(r:u) r*r "u+ F= u: (1.5)
1 2
Well-posed wave problems. To ensure the well-posedness of a wave problem, conditions at the
domain boundary have to be prescribed. Neumann boundary conditions consist in prescribing the
tractiont = :n (wheren denotes the outward normal to the domain). For instance, traction-
free surfacest(= 0; free-surface condition) are often considered. Dirichlet boundary conditions
consist in prescribing given displacement values. Whengiven over a part o@ andu over a
complementary part, the boundary conditions are said to be mixed.

Initial conditions att = 0 are also required:

u(x;0) = uop(x); u(x;0)= vo(x)

with inital rest(ug = vo = 0) frequently assumed in practice. Finally, when dealing with an
unbounded domain, conditions at in nity have to be prescribed. In the context of elastodynamic
boundary integral equations, decay and radiation conditions, which ensure that the energy ux at
in nity is outgoing, are customarily used (Eringen and Suhubi [72]).

Body waves. In (1.5), we see that elastic waves have both dilatational and rotationat " u
motions. The displacementcan be expressed as the sum of a scakand a vector potential :

u=r +r ™~ ; withr: =0 (1.6)

This is a convenient approach since the two potentials satisfy uncoupled wave equations. Substitut-
ing (1.6) into (1.5) (assuming no body forces for simplicity), it follows:

210 )
2 _ e 2 - _
r 71 > ) r

L]

As a result, two types of body waves may propagate in elastic solids: pressure, or primary
(P), waves, and shear, or secondary (S), waves (Fig. 1.6). In seismic wave propagation, two shear
waves are distinguished: horizontally-polarized (SH) and vertically-polarized (SV) shear waves.
The velocities of P— and S—waves are given in terms of the materials parameters by:
r s
201 ) Cs 1 2
cp= ——F— —, GCsg= —; == =
P 1 2 s Cp 21 )

r— r—
(1.7)

and P—waves propagate thus faster than S—waves.
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Figure 1.6: Pressure (top) and shear (bottom) waves.

Surface and interfacial waves. Unlike in the acoustic case, elastic waves may be generated and
propagated along medium boundaries and interfaces. Surface waves consist of Rayleigh and Love
waves. Surface waves travel more slowly than body waves. Because of their frequency lower than
that of body waves, long duration and large amplitude, they can cause major damage. The Rayleigh
waves are generated by the interaction of P— and S—waves at the free surface. The Love waves only
occur in non-homogeneous media.

Frequency-domain elastodynamic equation. This work is based on solving frequency-domain
elastodynamic wave propagation problems. Using the Fourier transform, a transient signal is de-
composed into the continuous superposition of time-harmonic, or frequency, components. The
Fourier transform is de ned by:
YA _
t(x;!) = u(x;t)e " dt=F u(x;t) (1.8)
1

For time-domain problems, the use of an inverse Fourier transform enables to solve, in the Fourier
domain, a transient dynamic problem since:
z +1 )
upGt) = o t(x;!)et dl = F 1 ow(x;!) (1.9)
1

In frequency-domain elastodynamics, the body forces and boundary conditions are harmonic in
time with a given circular frequendy, so that the solution is sought in the form:
u(x;t) = Refu(x)e " g

whereu is a complex-valued function. The implicit facter"t will be systematically omitted in
the following, and the notation used instead afi. Finally, the Cauchy's rst law of motion (1.1)
becomes, for time-harmonic problems:

r( )+ !'2u+ F=0 in : (1.10)
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We recall some other useful quantities in elastodynamics @; S):
I I
k = C— (wavenumber) = i— (wavelength) f = 2— (frequency). (1.11)

The reader may nd more details on wave propagation in the books by Achenbach [2], Graff [97],
Harris [111] and Semblat and Pecker [193].

Another approach, not considered in this thesis and mentioned here for completeness, consists
in using a Laplace transform instead of a Fourier transform. The BEM is solved in the Laplace
domain [3]. The Laplace transform is de ned by:

Z,
fi(s) = L)) = f (t)e Stdt
0

and the fundamental solutions (see Section 1.5) in the Laplace domain are obtained from the funda-
mental solutions in the Fourier domain, using= is. The dif culty is the subsequent numerical
inverse transform to obtain the response in time domain. Other numerical methods to avoid the dif-
cultinverse Laplace transform have been developed. For example, Schanz and Antes [189] use the
convolution quadrature method proposed by Lubich [136] to numerically evaluate the convolution
integrals of time-domain elastodynamic fundamental solutions, the quadrature weights being based
on the Laplace transformed fundamental solutions.

Viscoelasticity. The ideal model of a linear elastic soil is not well adapted to many seismic prob-
lems. To take into account wave attenuation into soils, viscoelastic constitutive models may be
used. The constitutive relation for linear viscoelastic media has the general form (see e.g. the book
by Christensen for details on the general theory of viscoelastic materials [46]):

Z t noo .
i (x;t) = Cije (t )dkd(x't)d
1

whereCj is the relaxation tensor. It can be shown (see e..g the book by Dominguez [67]), that
in the frequency domain, this equation is equivalent to the constitutive relation for linear elastic-
ity (1.3) with the only difference thatand are complex-valued constant or frequency-dependent-
parameters. The complex-valued Lamé constants are thus frequently written as:

= Re( )A+2i ) =Re()1+2i ): (1.12)

In Schanz [188] and Schanz and Antes [189], the convolution quadrature method is proposed to
solve viscoelastic problems. Various rheological models having different frequency dependent com-
plex moduli may be considered (Aki and Richards [5], Semblat and Pecker [193]).

1.5 BOUNDARY INTEGRAL EQUATIONS AND REPRESENTATIONS

Starting from the elastodynamic equations, we recall in this section the boundary integral equa-
tions (BIE) and representations. Boundary integral equations were rst introduced more than one
century ago. The Somigliana identity [196] for elastostatics for example, was formulated in 1886.
The integral formulation of the elastodynamic problem was rst developed by Wheeler and Stern-
berg [209] for time-domain and by Cruse and Rizzo [55, 53] for frequency-domain. In the present
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work, we only consider the frequency-domain formulation. Boundary integral equation formula-
tions can be split into two broad categories, namely (i) direct formulations, which relate the values
taken on the boundary by primary physical variables (displacement and traction), and (ii) indirect
formulations (such as those used in the potential theory, e.g. Kupradze [127]), which employ sec-
ondary unknowns (real or ctitious source distributions). An example of the latter for seismic waves
can be found in Sanchez-Sesma and Campillo [184]. In this work, only the direct formulation for
frequency-domain elastodynamics is considered. The boundary integral equations and representa-
tions are now recalled.

Reciprocity theorem. The well-known boundary integral formulation for frequency-domain elas-
todynamics is now established. We rst recall the well-known reciprocity theorem that relates a pair
of solutions throughout an elastic body Given two distinct elastodynamic stateg? ; ) :F @)
and(u®@; @:F@)on ,they satisfy the time-harmonic equation of motion (1.10):

J(.lj) +12yM 4+ F® =0 (1.13a)
J(IZJ) +124@ 4+ F@ =90 (1.13b)

The combination (1.13hp®  (1.13a):u@ gives:

@, @,,@y = @ @ @ @
(R u; Fou™) = w7 i + 0 gy
Noting that j(il)ui(;? = j(iz)ui(;}) because of the symmetry properties of the elastic constitutive
equation, it follows:
2),.(1 1)@ 1) .2 2),, 1
FP® FOu®y=( Pu® By, (1.14)
After integration of (1.14) over , the reciprocity theorem thus reads:
Z Z n [
M"w®)u® 1u@)u®ids= F@Ou® FOy@ gy (1.15)

whereu ! T"[u] [u]:n is the traction vector associated with a given displacement eld. When
unbounded domains are considered, (1.15) holds provided both statasd2 satisfy decay and
radiation conditions at in nity.

Fundamental solutions. The de nition of anelementary (or fundamental) soluti@now nec-
essary. Itis de ned as the displacement solution of the elastodynamic equation (1.10) with a time-
harmonic force of unit magnitude applied at a speci ed xed poinfor a given domain geometry
and set of homogeneous boundary conditions. For some simple geometries, for example for the free
(i.e. in nite) space or half-space, closed-form expressions are available (see e.g. Kupradze [127]).
Noting UX(x;y ;! ) the displacement vector andj‘ (x;y ;!1), the elastic stress tensor at a pagint
due to the application of a unit point force along théirection at poinix. Such solution is also
known as an elastodynamic Green's tensor.

We will see in the following that the fundamental solution most amenable to a Fast Multi-
pole (FM) treatment is the free-space fundamental solution (known as the Helmholtz fundamental
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solution), given by:

N

UKOGY 1) = A i+ Brrd;
(1.16)
K(Gy;!) = m[zcr;ir;kr;j +( ikrj + jkri)D+ jrkE]
where j; stands for the Kronecker symbol= jy xjand A, B, C, D, E are de ned by:
A= 1+ — izeixs 2 1 izeiXP;
Xs. Xg Xp XI?
B = 32 ﬂ 1 eiXS 2 % i 1 eiXp;
Xg Xs Xp Xp
1 15i . i 1 15 . -
C = TS+ j+6 iX s eXs 2 TS+ j+6 iX p eIXp;
X§ Xs X5 Xp
D=(ixs 1)e*s+2B; E =(1 2 ?(ixp 1)e*? +2B;

with xp = kpr, xs = ksr and = cs=0@ given by (1.7).

Anticipating that this thesis is concerned with the extension of the Fast Multipole Method
(FMM) to elastodynamics, we note that expressions (1.16) of the fundamental solution are not
convenient for this purpose. The following reformulation of (1.16), proposed by Yoshida [213], is
better suited to a FMM treatment, as it is expressed in terms of the scalar Ke(ned3, for which
multipole expansions are available:

1 @ @, . @ @ ., :
Ul y;t) = P (gsik gk is)@@G(Jy Xj; Ks) + @(@—VG(W Xj;kp) ;
@
TX(X;y;!) = Cin @Ur'f(x;y;! ;i (y);
(1.17)
inwhichG(jy xj;k )( = S;P),denedby
. . exp(ik jy X))
G k)= _ SALIA 1.18
dy xj;k) 20y X (1.18)

is the free-space Green's function for the Helmholtz equation with wavenuknbesrresponding
to eitherP or S elastic wave velocityn (y) is a unit normal, an€;,- are the components of the
fourth-order elasticity tensor (1.4).

A review by Kausel of useful fundamental solutions in elastodynamics can be found in [119].
Fundamental solutions for more complicated geometries are adressed in e.g. articles by Guzina
and Pak for the analytical formulation for a smoothly heterogeneous elastic half-space [107] and a
multi-layered viscoelastic half-space [108]; see also Kennett [120] on horizontally-layered media.

Integral representation. Using the reciprocity identity (1.15) with statésand 2 respectively
chosen as the unknown state irand the fundamental solution, the boundary integral representation
can be formglated (X 2@ ):

U k(x) = @[ti(Y)Uik(X;y;!) ui(y) TGy 51)ldS, +

Z
Fi(y)Uk(Gy ;! )dVy; (1.19)
=0if x 2z

where =1ifx 2 and

de ned on

andUX and T stand for any fundamental solution
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Boundary integral equation. Whenx 2 @ , a singularity occurs iy = x. With the help of a
well-documented limiting process (e.g. Guiggiani and Gigante [104]), the singular elastodynamic
integral equation reads:

Z Z

cik (X)ui(x) = . ti(y)Uf(x;y;1)ds,  (P.V) . ui(y)TE(x;y;!)dS, (x 2 @) (1.20)

where (P.V.) indicates a Cauchy principal value (CPV) singular integral anfteegermci (x)

is equal tol=2 j in the usual case wher@ is smooth atx. The integral operator in (1.20)

may be recast into alternative, equivalent regularized forms which are free of CPV integrals (see
for example Bui et al. [38], Krishnasamy et al. [126], Pak and Guzina [165], Dangla et al. [56]
and Appendix A for implementation details). Equations (1.19) and (1.20) are applicable to either
interior or exterior elastodynamic problems.

1.6 BOUNDARY ELEMENT METHOD: STANDARD FORM

Boundary element methods were rst numerically implemented during the sixties with Shaw [195],
Rizzo [171] and Cruse [54]. They exploit a transposition of eld variable interpolation and geome-
try representation techniques initially created and developed for the nite element method (see e.g.
Bathe [17], Hughes [114]).

1.6.1 Standard Boundary Element Method (BEM)

In the frequency domain, only a spatial discretization is needed. The discretization of the domain
boundary and of the unknown elds leads to a linear system (Appendix A). The main advantage of
the boundary element method is that only the domain boundary is meshed. As a result, this method
is suitable to deal with unbounded media. To discretize the boundary integral equation, two main
approaches are available. The rst one is the collocation method, which consists of enforcing the
boundary integral equation (1.20) at a nite number of collocation poinfsee e.g. Bonnet [31]).
The second one is the Galerkin method, a variational approach based on a weak form of (1.20), see
e.g. Bielak and Maccamy [28], Bonnet et al. [34], Kallivokas et al. [118]. Its main advantage is
that, in contrast with the collocation method, it may lead to a symmetric system of equations, albeit
at the cost of evaluatingoublesurface integrals. In fact, the collocation method is a particular case
of the non-symmetric Galerkin BEM for which the test function is a Dirac distribution at

In this work, the collocation method is applied. The numerical solution of boundary integral
equation (1.20) is based on a boundary element (BE) discretization of the s@rfaoel boundary
traceq(u;t), leading to the system:

[Hlfug+[G]ftg=0; (1.21)

where[H] and[G] are fully populated, nonsymmetric, matrices and vectag, ftg gather the
displacement and traction degrees of freedom (DOFs). Upon introduction of boundary conditions,
the matrix equation (1.21) is recast in the form:

[K]fvg= ffg;

where theN -vectorf vg collects the unknown degrees of freedom (DOFs), whileNhe N ma-
trix of in uence coef cients[K ] contains the columns ¢H ] and[G] associated with the unknown
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components. The in uence matr[K ] is fully-populated and non-symmetric. Storifi§] is thus
limited, on ordinary computers, to BEM models of size not exceehlirg O(10%). Direct solvers

such as the LU factorization requi@(N 3) arithmetic operations (i.e. they haveO¢N 3) com-
plexity), and are thus also limited to moderately-sized BEM models. BEM problems of larger size
are preferably solved by means of iterative algorithms (GMRES, initially proposed by Saad and
Schultz [180], being the usual choice), which build sequences of solution candidates until conver-
gence within a prede ned tolerance is reached. Each GMRES iteration requires one evaluation of
[K If vg for a given vectoff vg, a task requiring a computing time of ord@(N ?) if either [K ] is

stored oK ]f vg is evaluated by means of standard BEM numerical integration procedures. In the
latter case, th@©(N 2) complexity stems from the fact that all element integrals must be recom-
puted for each collocation point. Applications of the BEM to large models (typidally O(10°))

require evaluation procedures fi¢ ]f vg that are fast (i.e. of complexity belo®@(N 2)) and that

avoid explicit formation and storage fi{ ]. This has motivated the formulation and implementa-
tion of accelerated BEMs. Their appearance, allowing complexities lower than those of traditional
BEMSs, has dramatically improved the capabilities of BEMs for many areas of application, largely
owing to the development of the Fast Multipole Method (FMM) over the last 10-15 years (see the
review article by Nishimura [159]). Such approaches have resulted in considerable solution speed
up, memory requirement reduction, and model size increase. The FMM is now known in many
other elds as a very ef cient, exible and mature fast BEM approach. It is therefore chosen as the
basis for the formulation and implementation of a fast elastodynamic BEM in 3-D proposed in this
thesis.

1.6.2 Fast Multipole-accelerated BEM (FM-BEM)

Overview of fast BEMs. Fast BEMs, i.e. BEMs of complexity lower than that of traditional
BEMSs, appeared around 1985 in Rokhlin [173] with an iterative integral-equation approach for
solving 2-D Laplace problems withi@(N) CPU time per iteration. The goal of fast BEMs is to
speed up the matrix-vector product computation required for each iteration of the iterative solver
applied to the BEM-discretized equations and to reduce memory requirements. They intrinsically
rely upon an iterative solution approach for the linear system of discretized BEM equations, with
solution times typically of orde®(N ) per iteration for kernel of the typ@(1=r) andO(N logN)
per iteration for frequency-domain wave propagation problems (inste@(Nf) per iteration
with traditional forms of the BEM). There are two main fast-BEM approaches. The rst approach
is purely algebraic. Low rank approximations of the system matrix are de ned to reduce the CPU
time and memory requirements. The second one, the fast multipole method (FMM), exploits a
reformulation of the fundamental solutions in terms of products of functiomsasfd ofy, so that
(unlike in the traditional BEM) integrations with respectytacan be reused when the collocation
pointx is changed. The FMM concept was introduced by Greengard and Rokhlin in [99, 102], in
the context of many-particle simulations. The FMM then naturally led to fast multipole boundary
element methods (FM-BEMSs), whose scope and capabilities have rapidly progressed in various
areas. The FMM approach is used in the present work and will be presented in detail in Chapters 2
and 3. Here, we brie y review the other existing types of fast BEMs.

Kernel-independent fast BEMs are acceleration approaches which do not rely on known an-
alytical expansions of fundamental solutions (also known as kernel functions). Ying et al. [211]
have developed a new fast BEM for particle simulations, which does not require evaluation of mul-
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tipole expansions. This method uses the same structure as the original adaptive FMM but, instead
of using analytic expansions of the kernel to represent the potential generated by sources inside
a cell, a continuous distribution of an equivalent density on a surface enclosing the cell is used.
These representations are computed by solving local exterior or interior problems using integral
equation formulations. The method is originally valid only for second-order non-oscillatory el-
liptic PDEs, but was extended by Engquist and Ying [70] to highly oscillatory kernels. Another
type of kernel-independent fast BEM approach is the Adaptive Cross-Approximation technique
(ACA). This method is purely algebraic and reduces time consuming and memory requirements to
O(N logN) by splitting the system matrix into several block matrices of various sizes and then
adaptively approximates these matrices by low rank submatrices (Bebendorf [18], Bebendorf and
Rjasanow [19]). In the ACA method, the matrices are hierarchically partitioned into blocks us-
ing the H-matrix concept proposed by Hackbusch [109]. The method was introduced by Kurz
in [128] for electromagnetic and electromechanical problems. The extension to elastodynamics of
this method is under progress (e.g. Messner and Schanz [150]). An ongoing investigation done by
Darve and Fong [59] concerns the development of a black box FMM based on Chebyshev polyno-
mial interpolation and singular value decomposition of kernels. But this method is, for the moment,
only developed and ef cient for kernels of the ty@€1=r) appropriate for static problems.

The wavelet-based method (e.g. Beylkin et al. [26], Tausch [204]) is another type of fast BEM
approach which compresses the system matrix. The boundary integral equations are discretized
using wavelet basis and so the system matrix is approximated by a sparse matrix containing only
nearby wavelet interactions.

Still another fast BEM is the panel clustering developed by Hackbusch and Nowak [110]. This
algorithm has a complexity of ord€¥(N log N) where 2 [4;7]. The main idea of such meth-
ods is to approximate by polynomials the kernel function of the integral operator using products
of polynomial functions ok andy. The approximation is done using the concept of DOFs clus-
tering. Sauter [185] introduced the variable order method where the approximation is based on a
block partioning of the surface and the idea is to approximate the small blocks using low-order
approximation and larger blocks with increasing orders.

Various elds of application of the FMM. The method is now applied in various elds in science

and engineering such as astrophysics (e.g. Warren and Salmon [208]) and molecular dynamics
(e.g. Board et al. [29]). In uid dynamics, we mention works by Fu and Rodin [87], GOmez
and Power [94, 95], Mammoli and Ingber [142, 143]. The FMM is especially well developed for
electromagnetic problems (e.g. Gumerov and Duraiswami [105], Lu and Chew [134, 135], Song
and Chew [197], Sylvand [200]), for which unbounded domains are often considered. The method
is also adopted for industrial applications like MEMS (Frangi and Di Gioia [80, 81]) involving
media with simple properties (air, Stokes ows) but extremely complex geometries with moving
parts. FMMs for computational mechanics have been proposed more recently. For example, in
acoustics we can cite the works by Fischer and Gaul [78], Nemitz and Bonnet [158], Sakuma
and Yasuda [182]. In 2-D elastostatics we can cite Peirce and Napier [167] and Greengard et
al. [101]. In 3-D elastostatics, the rst work is due to Hayami and Sauter [112]. In [88], Fu et
al. have developed a formulation based on the observation that the Green's function for linear
elasticity can be formulated as derivatives@(fl=r) kernels. Nishimura et al. [160] and Yoshida

et al. [214], for example, have worked on the application of the FMM in elastostatics for crack
problems. Margonari and Bonnet have worked on BEM-FEM coupling in elastostatics [148]. Liu
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et al. [133] have developed the method for three-dimensional analysis of ber reinforced composites
based on a rigid-inclusion model. Many of these investigations are summarized in a review article
by Nishimura [159].

FMM in elastodynamics. For equations of Helmholtz type (e.g. linear acoustics, electromag-
netism or elastodynamics in the frequency domain), two types of FMM are available. The rst
one is the low frequency FMM. As for static cases, the complexity of this algorithdgNs). But

this complexity is due to the fact that the wavelength is much longer than the domain size. On
the other hand, if the wavelength is shorter than the geometrical feature, the complexity of low
frequency FMM increases t0(N ?) and so this method is not anymore ef cient. For this rea-
son, computational ef ciency of fast BEMs in the mid-frequency regime is enhanced by using the
so-called diagonal form for the Helmholtz Green's function, proposed by Rokhlin [174, 175, 176]
with a complexity ofO(N logN). Empton and Dembart also proposed a similar technique [71].
The upper limit stems from the fact that the siMebecomes intractable at high frequencies, but

the diagonal form also breaks down at very low frequencies and must be replaced with other types
of expansions (Cheng et al. [45], Darve and Havé [61], Jiang and Chew [117]). Greengard et
al. [100, 103] have developed technigues based on the integral representation of a fundamental so-
lution. Only a few references address the application of FMM to elastodynamics. Time-domain
problems are addressed by Takahashi et al. [201, 202]. In 2-D frequency-domain elastodynamics,
the rst work is due to Chen et al. [44]. Then, the method for low frequencies was developed by
Fujiwara [89] and Fukui and Inoue [91] (in Japanese). The rst 3-D implementation was proposed
by Fujiwara [90] using a multi-level and diagonal form. In this article, some low frequency seismic
oriented examples are presented. Yoshida [213] proposed a low frequency FMM for crack prob-
lems in 3-D. Since 2001, to the author knowledge, no article on the improvement of the method in
frequency-domain elastodynamics has been presented.

Recent developments of FMM. Recently, several techniques to enhance the ef ciency of the
FMM have been proposed by several authors. We have seen that the low frequency FMM is not
ef cient at high frequency and that the diagonal form is not accurate at low frequencies. But, the
de nition of high or low frequency is in fact relative to the cell level. Some works, dealing with the
combination of these two techniques have been developed for Helmholtz equation (e.g. Jiang and
Chew [117], Otani and Nishimura [164]). So far, the combination of low frequency and diagonal
form FMM has not been applied to elastodynamics.

1.7 AIMS AND OUTLINE OF THIS THESIS

With a view toward future applications in seismology and dynamic soil-structure interaction, the
principal aim of this work is to develop an ef cient numerical solver to deal with large scale
seismic wave propagation problems. Because the seismic problems are usually unbounded, the
numerical method chosen is the BEM. We have seen that standard BEM is usually restricted to
moderate numbers of DOFs, and is thus limited in terms of frequency range, heterogeneities and
geometric complexity when dealing with 3-D problems. To overcome these major limitations, the
FM-accelerated BEM is developed in this work to investigate seismic wave propagation in complex
geological structures.
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This thesis is organized as follows. Its main contents, following this introductory Chapter 1,
are divided into two parts.

The rst part deals with the formulation and implementation of an elastodynamic FMM aimed
at the study of seismic wave propagation in homogeneous or piecewise homogeneous elastic media.
In Chapter 2, the formulation and implementation of a multi-level FM-BEM for 3-D elastodynamics
in the frequency domain is presented. As the free-space fundamental solution used in elastodynamic
boundary integral formulations is expressed in terms of the full-space Green's function for the scalar
Helmholtz equation and its derivatives, many of the existing developments towards fast integral
solvers for equations of the Helmholtz type (including in particular the Maxwell equations) could be
transposed into the proposed elastodynamic BEMs. A complete presentation of such elastodynamic
FM-BEM formulation based on such transposition is the main purpose of this chapter. In particular,
computational ef ciency of fast elastodynamic BEMs in the mid-frequency regime is enhanced by
using the so-called diagonal form for the Helmholtz Green's function. A rst set of seismology
oriented examples, dealing with diffraction of a plane wave by a canyon, are presented at the end
of this chapter. Then, in Chapter 3, the formulation is extended to multi-domain situations, with
emphasis on alluvial-basin con gurations, by developing a FMM-based BE-BE coupling approach
suitable for 3-D piecewise-homogeneous media. The coupling strategy is validated on problems
with exact or previously-published solutions. Finally, Chapter 4, of a more preliminary nature,
is concerned with improvements of the present FM-BEM: preconditioning strategy, reduction of
the number of moments, and formulation of a multipole expansion for the half space fundamental
solutions.

The second part deals with some seismological applications of the method. First, in Chapter 5,
the FM-BEM is applied to various canonical problems, namely the diffraction of oblique incident
P— and SV-waves by semi-ellipsoidal canyons and basins, used as benchmark problems. This set
of results contributes to comparative studies under way, in the context of the project Quantitative
Seismic Hazard Assessment (QSHA, 2006-2009) funded by the French National Research Agency.
In Chapter 6, the capabilities of the present FM-BEM are nally applied to a more realistic seis-
mological study, namely the diffraction of a vertically incident plane P—wave by an Alpine basin
(Grenoble).

Finally, some directions for future work opened by this thesis are given in a concluding chap-
ter: parallelization, other preconditioning strategies, viscoelasticity, coupling with other numerical
methods, forward solver for inverse problems.

This dissertation ends with ve appendices. In Appendix A, the standard BEM implementation
details used in the present work are presented. In Appendix B, the analytical expressions of the free-
eld displacement vectors are given for the two types of incident plane waves used in this work (P
and SV). Appendix C describes the capabilities of the code developed during this thesis and explains
how to prepare data and use the code. The main properties of special functions used in this work
are reviewed in Appendix D. Finally, Appendix E presents a published work with Professor H.D.
Bui on boundary integral equations for viscoelasticity.
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2.1 INTRODUCTION

In the introductory Chapter 1, the standard BEM has been shown to be well suited to deal with
unbounded-domain idealizations commonly used in e.g. acoustics, electromagnetics or seismology
since only the domain boundaries and possible interfaces are discretized. However, it has also
be shown that in traditional boundary element (BE) implementations, the dimensional advantage
with respect to domain discretization methods is offset by the fully-populated nature of the BEM
coef cient matrix, with set-up and solution times rapidly increasing with the problemiéizH is

thus essential to develop alternative, faster strategies (as FMM) that allow to still exploit the known
advantages of BEMs when larfje prohibit the use of traditional implementations.

This chapter is concerned with the formulation and implementation of a multi-level FM-BEM
for 3-D elastodynamics in the frequency-domain. As the free-space fundamental solution used in
elastodynamic boundary integral formulations is expressed in terms of the full-space Green's func-
tion for the scalar Helmholtz equation and its derivatives, many of the existing developments to-
wards fast integral solvers for equations of the Helmholtz type (including in particular the Maxwell
equations) are transposable to elastodynamic BEMs. A complete presentation of an elastodynamic
FM-BEM formulation based on such transposition is the main purpose of this chapter. In particu-
lar, computational ef ciency of fast elastodynamic BEMs in the mid-frequency regime is enhanced
by using the so-called diagonal form for the Helmholtz Green's function. Both the single-level and
multi-level forms of the FM-BEM are considered, with emphasis on the latter. A substantial fraction
of the chapter is then devoted to the discussion, backed with the results of numerical experiments,
of crucial implementation details (many of which transposing methods previously proposed for
electromagnetic FM-BEMs [58, 200] to the present 3-D elastodynamic context) and a complexity
analysis for both the single-level and multi-level versions.

The chapter is organized as follows. Classical concepts pertaining to elastodynamic BEMs are
recalled in Section 2.2. Then, Section 2.3 presents underlying motivations and fundamental con-
cepts for the elastodynamic FMM. Next, several crucial computational and implementation issues
are addressed in Section 2.4. Section 2.5 is devoted to the analysis and numerical veri cation of
the algorithmic complexity of single-level and multi-level versions. Finally, the correctness and
computational performances of the proposed FM-BEM are assessed in Section 2.6 on numerical
examples involving up t&l = O(10°) nodal unknowns.

2.2 BOUNDARY ELEMENT METHOD

Boundary integral representation. Let R2 denote the region of space occupied by a three-
dimensional elastic solid with isotropic constitutive properties de ned bishear modulus),
(Poisson’'s ratio) and (mass density). Time-harmonic motions, with circular frequehgcyn-

duced by a prescribed traction distributit™h on the boundary@ and in the absence of body
forces are considered for de niteness in this chapter. This type of boundary conditions corre-
sponds to often-encountered situations where scattering of waves by cavities or free surfaces is
considered. The accomodation of other boundary conditions needs only minor modi cations to
the treatment proposed therein (and is implemented). Moreover, transmission conditions between
dissimilar perfectly-bonded media will be considered in Chapter 3. As presented in Chapter 1, the
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displacementi is given at an interior point 2 by the representation formula:
z z

U(x) = @ui(y)Tik(x;y;!)olsy+ @tP(y)uik(x;y;!)dsy x2); (21

whereUik(x;y; 1) andTik(x;y; I') denote the-th components of the elastodynamic fundamental
solution, given by:

1 @ @.,. . @ @, :
Uik(X§YJ! )= @ (gs ik gk is)@@G(Jy Xj; Ks) + @@G(Jy Xjikp) ;
(2.2a)

TEYi1) = i VNGV ) (2.20)
y

in which ks andkp are the respective wavenumbers of S and P elastic waves de ned by equa-
tions (1.7) and (1.11)G( ; k) is the free-space Green's function for the Helmholtz equation with
wavenumbek, given by
exp(ikr)

4r
n(y) is the unit normal ta@ directed outwards of , andCj,» are the components of the fourth-
order elasticity tensor (1.4).

G(r;k) = (2.3)

Boundary integral equation. As presented in Section 1.5, wher2 @ , a singularity occurs in
y = x and the integral representation (2.1) yields the integral equation:

(Ku(x)=fx) (x2@ :; (2.4)
with the linear integral operatét and the right-hand side de ned by
Z
(Ku)(x) = cik (x)ui(x) + (P.V.) o ui () TEOGY; ! )dSy (2.5)
Z
fx)=  tPy)UreGy;!)ds,; (2.6)
@

Boundary Element Method. The numerical solution of boundary integral equation (2.4) is based
on a discretization of the surfa@ into Ng isoparametric boundary elements. Piecewise-linear
interpolation of displacements, based on three-noded triangular boundary elements, is used in this
chapter. TheN, displacement interpolation nodes thus de ned also serve as collocation points.
This discretization process transforms (2.4) into a square complex-valued matrix equation of size
N = 3N, of the form

[KJfug= ffg; (2.7)

where theN -vectorf ug collects the sought degrees of freedom (DOFs), namely the nodal displace-
ment components, while tié¢ N matrix of in uence coef cientgK ] and theN -vectorf f g arise

from (2.5) and (2.6), respectively. Setting up the mgti® classically requires the computation of

all element integrals for each collocation point, thus needing a computational time ofaiN&).

More details on the numerical implementation of standard BEM are given in Appendix A.
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Solution strategy for the BEM equations. As presented in Section 1.6.1, the in uence matrix
[K] is fully-populated. StorindK ] is thus limited, on ordinary computers, to BEM models of
size not exceedingl = O(10%). BEM problems of larger size are preferably solved by means
of iterative algorithms (as GMRES). With reference to (2.7), each GMRES iteration requires one
evaluation of[K ]Jf ug for givenfug, a task requiring a computing time of ord®(N ) if either

[K]is stored ofK ]f ug is evaluated by means of standard BEM numerical integration procedures.
In the latter case, th@(N 2) complexity stems from the fact that, again, all element integrals must
be recomputed for each collocation point. Applications of the BEM to large models (typically
N = 0O(10°)) require evaluation procedures ffi ]f ug that are fast (i.e. of complexity below
O(N ?)) and that avoid explicit formation and storaggkf]. The fast multipole method (FMM) is
known in many other elds as a very ef cient approach for achieving these objectives. Itis therefore
chosen as the basis for the present formulation and implementation of a fast elastodynamic BEM.

2.3 FAST MULTIPOLE METHOD: PRINCIPLE

2.3.1 Multipole expansions of the elastodynamic fundamental solutions

\ S~ 1o
0 = Yo

Figure 2.1: Decomposition of the position vector: notation.

The FMM is based on a reformulation of the fundamental solutions in terms of products of
functions ofx and ofy. This allows to re-use integrations with respecytavhen the collocation
point x is changed, thereby lowering th@(N 2) complexity per iteration entailed by standard
BEMSs. The elastodynamic fundamental solutions (2.2a,b) are linear combinations of derivatives of
the Green's function (2.3) for the Helmholtz equation. On recasting the position veetor  x
inthe formr = ro+(y Yyg) (X Xo), wherexg andy, are two poles andg = y, Xo
(Fig. 2.1), the Helmholtz Green's function is shown [71, 57] to admit the decomposition
Z
G(jrj;k) = lim kSl Yol G (8;rg;k)e S (x xo) gs; (2.8)
LI +1  aog

whereS is the unit sphere oR3, & a quadrature point and theansfer functionG_($;r o; k) is
de ned in terms of the Legendre polynomidP and the spherical Hankel functions of the rst

kind h{? by:

ik . o

67 (2p+ 1)i Ph{ (kjr oj)Pp cOSE; T o) (2.9)
0OplL

G (&rok)=

The decomposition (2.8)—(2.9) is seen to achieve the desired separation of vatiabids. Then,
to recast the elastodynamic fundamental solutions in a form similar to (2.8)-(2.9), one simply notes
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that (2.8) implies:
QF(er’;kF ik&iF (jrj; k); QF(jrj;kFikéiF(jrj;k); (2.10)
@x @y
whereF (jrj; k) = ek$V Yo)G (8;r¢;k)e k& xo) andg; is thei-th component of the vector
8. Then, on substituting (2.10) into (2.2a,b) and invoking decomposition (2.8)-(2.9), the following
multipole decomposition of the elastodynamic fundamental solutions is obtained:
Z

Ukey;t) = lim ke Sy Yol UiiP(8;rg) e TkeSix X0) gg
L +1 gzsz !
+ lim ksSV Yol UiS(8;r o) e TKsSix x0) g (2.11)

L! +1 42s
4

TGy;!) = lim ke Sily Vo) TP(8;7 ) @ e six x0) dg
L +1 gzsz !
+ lim gks$: (v ¥o) TKiS(g:1 ) e TksSix Xo) ga: (2.12)
L! +1 42s L ’ ’

with the elastodynamic transfer functions given in terms of the acoustic transfer fuGgction

2
USP(8r0) = —&8GL(8T0;kp); (2.13a)
) ike 3
THP(&10) = S5 Cin $88GL(&i T oike)N; (y); (2.13b)
KSra.p \_ L, _ TR
Ui;l_ (§1r0) - 7( ik S|(§|)G‘_(slr'01ks)1 (214a‘)
K:S;a.. \_ IKs i e IOy
T 7(8r0)= —(nk  S8h)Cin $G(8510;ks)Nj(Y): (2.14b)

Truncation error and clustering. In practice, the limiting proceds ! +1 in (2.8) or (2.11),
(2.12) cannot be performed exactly and is replaced with an evaluation for a suitably chosen nite
value ofL. A key error analysis result [57] states that there exist four constants,; Cs; C4 such

that

L = C1+ Cokjr  roj+ CsIn(kjr  rgj)+ Caln 1!
-) exp(ikjr j)
4 jrj 825

for any chosen error levek 1, whenever

glks:(y VO)GL(S;rO;k)e iks:(x xo) g8 < (2.15)

. L o P
ir rojFEira = j(y yo) (x Xxo)jgroj 2= S (2.16)

The error bound (2.15), (2.16) implies that expansions (2.11), (2.12) must be used for well-separated
sets of collocation and integration points clustered around pajesdy,. Moreover, (2.15) also
indicates that the value of the truncation paramketatlowing to achieve a given level of accuracy

increases with the size of these clusters. Other studies on error control in multipole expansions
for Helmholtz equations can be found in e.g. [162, 105].
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2.3.2 Single-level fast multipole formulation

Figure 2.2: 3-D cubic grid embedding the boundagy .

In the single-level FMM, a 3-D cubic grid of linear spacidggembedding the boundai@
is introduced (Fig. 2.2). The centers of the cubic cells thus de ned are taken asxpatey q in
decompositions (2.11), (2.12). Two cells are deeradgcentif they have at least one common
point, e.g. a vertex (Fig. 2.3). Wheneverandy belong to cellsG; G that are not adjﬁcgnt,
condition (2.16) is automatically ful lled (as one then always ffas r oj5r oj 3=2< 2= 5)
and expansions (2.11), (2.12) can be safely used. Conversely,xvhedy lie in adjacent cells,
condition (2.16) is not assured and the classical expressions (2.2a,b) of the fundamental solutions

are used instead.
boundary gf the domain
d| LN
//
/ /
/ ( cel G

~ ~
Far cellsé_» SN |
G 2A(CX)\§\ %’F”> Adjacent cdls G, 2 A(G)
\ /
N/

Figure 2.3: De nition of the adjacent cells.

These considerations lead to reformulate expressions (2.5) and (2.6), for any collocation point
x lying in a given cellG, as
(Ku)(x) = (Ku)™8(x) + ( Ku)™(x);

f(x) = fea(x)+ f M(x) (x 2 @ \Cy); (2.17)

where, lettingA (C) denote the set of cells which are adjacent to a given cubicélig. 2.3), the
“near” parts are de ned for each collocation pointas the net contributions from the portion of
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boundary situated in cells adjacent to that contaixinge. by

X Z
(Ku)™3(x) = ci (x)ui(x) + (P.V) ui(y)TE(x;y; ! )dSy; (2.18a)
7  G2A(%) @1Cy
X
fe(x) = tP(yY)UF(xy;!)dSy: (2.18b)

G2A(G) @'\Cy

The “FM” parts then collect all contributions from cells that are not adjace6f to
Z

X
(Ku)™(x) = ui(y)TH(x;y; ! )dSy; (2.19a)
G 624G @\
X
fFAM(x) = tP(y)UK(x;y; ! )dSy: (2.19D)

G624G) @ 'Cv

The “near” contributions (2.18a,b) are evaluated by means of standard BE techniques. The
treatment of the “FM” contributions (2.19a,b) exploits expansions (2.11), (2.12) truncated at a nite
L and in a manner suggested by their multiplicative form, i.e. (i) evaluate integrals over eagh cell
and associate obtained values to the cell cepgeii) apply transfer functions to obtain quantities
associated to the centeg of cell G, and (iii) evaluate contribution at each collocation poirit Cy.
Accordingly,multipole momentsie ned by

z
RIV&G)= iks k§ + k& 29§ ui(y)n; (y)eksst Yods,  (2.20a)
Z @\Cy

. h > ' .

RPU(4;G) = ks 3 i +25§ ui(y)n; (y)eke st volds, (2.20b)

1 2 @\c,

L Z

RISG)= = a &% ta(y) sl Yolds, (2:21a)

@\Cy

2 Z )
RPY(&:G)= — Sata(y)er stV Yolds, (2.21b)
@ \Cy

are computed for each célj (step (i)). The notationR E?“(g; G);::: are also meant to re ect the
fact that step (iii) will feature an integration over the unit sphere. Thaogl expansiongor the
cell G, are evaluated by applying the transfer functions to the multipole moments according to

. X ,
LU (8:G) = G (8:r o ks)RIV(8:G): (2.22a)
G/§2AC)
LPY(8;G) = G (&0 ke)RPU(8:G) (2.22b)
G 624G)
Stra. _ X e . St/a. .
Lk (S, (:X) - G_(sv ro; kS)Rk (gv C:y), (223&)
G/62AC)
LPY($:G) = G (80, ke)RPY(S:G)); (2.23b)

G/624G)
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whererg = yo X joins the centers of cell§, andG, (step (ii)). Upon multiplying (2.22a,b),
(2.23a,b) by the local factoexp ik 8:(x Xg) (step (iii)) and replacing the integration over the
unit sphere in (2.11), (2.12) by a numerical quadrature rule based on a@ajuddrature points
8q 2 S and weightsvg (see Section 2.4.3), the “FM” contributions nally take the form

X ho _ . i
(KU)EM(X) Wq e iks8q:(x Xo)LE,U (éq; C:X) + e ikp $q:(x XO)(éq)kLP;u(sq; Q() (224)
g=1
X ho _ . i
fll(:M(X) Wq e iks$q:(x XO)LE,t (qu G() + e ikp8q:(X Xo) (Sq)kLP;t (éqv G() (225)
1

Expression (2.24) de nes the “FM” contribution to the matrix-vector prodiclf ug, and hence

is evaluated once per GMRES iteration, while (2.25) provides the “FM” contribution to the right-
hand sidd f g and is computed once, prior to calling the GMRES solver. Figure 2.4 schematically
depicts the acceleration mechanism achieved by the previously described steps.

Y1 X 3
5 1
Y g=—] X
\Z X 4 2
G G
\ X3
o“yz X>%0/
y3” {
‘\’4 X/Xz

Figure 2.4: Matrix-vector product without FMM (top) and with FMM (bottom).

As remarked in Section 2.3.1, the truncation parameteand hence the maximum degree
of Legendre polynomials featured in the transfer functi@$s;ro; k ), increases with the cell
sized. Consequently, the numbé€) of quadrature points necessary for achieving a given accu-
racy in (2.24), (2.25) is also an increasing functionLgfi.e. ofd (see Section 2.4.1 for further
elaboration).

The single-level elastodynamic FMM is more ef cient than the classical BEM, with a complex-
ity of O(N 372) per GMRES iteration (as shown in Section 2.5.1). Further acceleration is achievable
by adopting a multi-level approach, as described next for the present context of 3-D elastodynamics.

2.3.3 Multi-level fast multipole formulation

To have maximal ef ciency, FM-BEM algorithms must con ne non-FM calculations to the smallest

possible portion of the boundary while clustering whenever possible the computation of in uence
terms into the largest possible non-adjacent groups. This is achieved by the multi-level FMM [58,
198, 133, 159, 200], which is based on using large cells and hierarchically subdividing each cell
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into2 2 2 =8 children cubic cells. This cell-subdivision approach is systematized by means of
an oct-tree structure of cells. The levet 0, composed of only one cubic cell containing the whole
surface@ , is the tree root. The levdl-cell is divided into2 2 2 = 8 children cubic cells, which
constitute the level = 1. All level-1 cells being adjacent, the FMM cannot be applied to them.
The level’ =2 is then de ned by dividing each level-cell into 8 children cells, and so contaié4

cells. The subdivision process is further repeated until the nest lewel, implicitly de ned by

a preset subdivision-stopping criterion, is reached. LévadHs are usually termelgaf cells The

FMM is applied from level =2 to level” = , i.e. features 1 *“active” levels.

The multi-level approach basically consists in rst applying the FMM to all in uence com-
putations between disjoint lev@lcells (so as to use the largest clusters whenever possible), and
then recursively tracing the tree downwards, applying the FMM to all interaction between disjoint
level- cells that are children of adjacent levél- 1) cells (Fig. 2.5). Finally, interactions between
adjacent leaf cells are treated using traditional (i.e. non FM-based) BE techniques. This approach
thus minimizes the overall proportion of in uence computations requiring the traditional treatment.

[ e e I

| | | | }dy‘+1)2|(d<‘+1))
: : : =

Figure 2.5: Multi-level fast multipole algorithm. Only multipole moments from non-adjacent (light-
grey) cells dﬂ 62 A(Cﬁ‘)) may provide (through transfer) FM-computed contributions to
(Ku)P™(x) at collocation pointsx lying in cell Cﬁ‘). Upon cell subdivision (right), new FM-
computed contributions to collocation points in cell™ originate from cellsd,‘ﬂ) in the
interaction listl (G ™) of & ™ , while the adjacent regioa (¢ ™ ) reduces in size.

The computation of the discretized linear operator (2.5), i.e. of the matrix-vector product
[K If ug, by the multi-level elastodynamic FMM hence consists of the following main steps:

1. Initialization: compute multipole moments (2.20a,b) for all lowest-level ogjls q,

2. Upward pass recursively aggregate multipole moments by moving upward in the tree until
level 2 is reached. Denoting [8(C) the set of children of a given cdll, the transition from
alevel{" +1) cell to its parent level-cell is based on identities

e X \ N su o
R (&G)) = exp iks&:(y§™ vy RPUEG)  (2.269)
- g¥gs) ‘ ‘ \
RPU(&; ) = exp ikes:(ys™  y§) RPUSGE™):  (2.26b)
o™ 2s(c))



30

FMM in elastodynamics

It is essential at this point to emphasize a crucial feature of the elastodynamic multi-level
FMM, namely that the number and location of the quadrature poin&ame level-dependent

(81) denoting a generic levélguadrature point, see Section 2.4.3 for details), a consequence
of the previously-mentioned dependencé othe truncation parameter in expansions (2.11),
(2.12), on the cell size. Hence, application of identities (2.26a,b) requires an extrapolation
procedure furnishing the values BE"; RPY at the level: quadrature points from those at

the level{" +1) quadrature points (Section 2.4.4).

. Transfer initialize local expansions for each levetell CQ) and ateachlevddl ° " using
LSO q)) = G (8 roike)R(8: G)) (2.272)
o 9’x%@)H o
LPus(): )y = G (89 roike)RPU(80); ) (2.27b)
CRPIN(eR)

wherel (C), theinteraction listof a given cellC (Fig. 2.5), is the set ofame-levekells
which are not adjacent ©@while having a parent cell adjacent to that®fFor a level-2 cell,
(2.27a,b) coincides with (2.22a,b), BEC?) collects all level-2 cells not adjacent @.

. Downward passfor all levels3 ~ 7, the local expansion for each levekell & is

updated with the contribution from the parent legel- 1) cell, by means of the identity
LU(& ) = L& G ) +exp  iks(8(xs P x§) LPMe V) (2.28a)
LU Q) = LR s ) vexp  ike(8i(xG P x() LR D) (2.28D)
Similarly to step 2, application of identity (2.28a,b) requires an inverse extrapolation pro-

cedure furnishing the values af¥; LPY at the level guadrature points from those at the
level{" 1) quadrature points (Section 2.4.4).

. When the leaf level = " is reached, all local expansions have been computed. The contribu-

tion (Ku)™(x) is evaluated using (2.24) with the levetjuadrature points, and the near- eld
contribution is evaluated according to (2.18a,b) for all levéeaf) cellsG;.

The computation of the right-hand side (2.6) follows the same steps, with the multipole moments
RY; RPY and local expansioris;; L P replaced with their counterpai®"; R Pt andL J*; L Pt

The above steps are shown in Section 2.5.2 to have a complexity of aOldsbgN ), with the
exception of the direct and inverse extrapolations in steps 2 and 4, whose compléxity 35°).

2.3.4 Computation of near- eld contributions

The near- eld contributions (2.18a,b) involve (i) CPV-singular, (ii) weakly-singular and (iii) non-
singular element integrals. CPV-singular integrals are split according to

Z

(PV.)  ui(y)THE(xy ;! )dSy

@ Z z
= U TGy ) THGY) dS/+ BV) ui)THeGY ),
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whereTi"(x; y ) are the traction components of the (singular) static fundamental solution and the
differenceTX(x;y ;1)  TX(x;y ) is non-singular [31]. The remaining CPV integral is then eval-
uated analytically, taking advantage of the fact that three-noded triangular elements, which have
constant unit normal and Jacobian, are used. Weakly-singular integrals (which feature the kernel
Ui"(x;y ;1)) and non-singular integrals are computed using numerical Gaussian quadrature (the
weak singularity being rst cancelled by means of a suitable change of coordinates). Finally, when
@ presents an edge or cornenatthe free-ternt;j (x) is evaluated using the method of [145].
Details on the numerical evaluation of integrals are given in Appendix A.

2.4 FAST MULTIPOLE METHOD: COMPUTATIONAL ASPECTS

Both the single-level and multi-level elastodynamic FMM have been implemented, for three-noded
triangular boundary elements, using a public domain version of the GMRES solver [221] with a
convergence criterion setkdK u  f gk=kff gk 10 3. All examples, presented in this chapter,
have been run on the same single-processor PC (RAM: 3GB, CPU frequency: 3.40 GHz). Except
where indicated otherwise, the multi-level FMM is used.

The numerical ef ciency and accuracy of the FMM is strongly affected by several factors,
such as the truncation of the transfer function, the quadrature over the unit sphere and the number of
levels, and great care must be taken in the implementation. This section is devoted to a discussion of
these issues, and of various algorithmic choices and improvements. The latter are largely based on
a transposition to the present elastodynamic context of ideas and methods proposed in [58, 200] for
the FMM applied to the 3-D frequency-domain Maxwell equations. At several places, illustrative
numerical results for the test problem of a spherical cavity of radigsnbedded in an elastic
isotropic in nite medium (with = 0:25), subjected to an internal time-harmonic uniform pressure
P (Fig. 2.6) are given. This problem has a simple, spherically-symmetric, exact solution [72], with
the radial displacement and stress given in terms of the normalized radial coorfdinatea by:

_aP 1 21 ikpar) .
ul’(f\)_ - ﬁ 4 2(1 ikpa) (kpﬁ)z exp(|kPa(f‘ 1)) (2 29)
M= P 1 (kpa)?f® 4 2(1 ikpaf) explikpal® 1))

421 ikpa) (kpa)2

with the wave velocity ratio and the wavenumbésp de ned in (1.7,1.11).

Figure 2.6: Pressurized spherical cavity: notation.
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2.4.1 Truncation of the transfer function

As already mentioned in Section 2.3.1, the decomposition (2.8) is shown in [57] to be convergent
in the limitL ! +1 , which immediately implies convergence for the corresponding expres-
sions (2.11), (2.12) of the elastodynamic kernels. However, the spherical Hankel furirr&i)c(m
behave likg(p=2)P for largep [1] and their evaluation must therefore be avoided for orgesig-

ni cantly larger thankjr oj. Hence, the truncation levél used in (2.9) has to be large enough to
guarantee suf cient accuracy in (2.8) while avoiding divergence of the Hankel functions appearing
in (2.9). Appropriate values fdr achieving the "numerical convergence" of the transfer function

G _(s;ro; k) are selected using formulae empirically established from numerical experiments. One
such formula, known from previous studies on FMMs for Maxwell equations [58], reads:

L(d) = P 3kd+ C |og10(IO 3kd+ ): (2.30)

In this work, distinct truncation levelsp andL s are de ned according to (2.30) witk = kp

andk = kg, respectively. The transfer functions (2.13a,b) and (2.14a,b) are then evaluated using
L = LsandL = Lp, respectively. The truncation parameter value de ned by (2.30) is level-
dependent through the cell sideandL is (roughly) doubled for each upwards transition to a new
level.

102 T T T T T T 70
—— RMS solution error
e ——- CPU per iteration 2

|
ol [o2]
o o
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CPU /iter. (s)

RMS truncation error

|
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o

Figure 2.7: Truncation error and CPU time per iteration as a function of adjustable param@ter

Formula (2.30) features a constaht which has to be adjusted from numerical experiments.
For that purpose, the test problem is now considereifer 30; 726 DOFs, with a leaf level =5
and a leaf-cell sizell) = 0:6 s (where s = 2 =k s denotes the S—wavelength). A subset of 10
columns of the in uence matrif ] are computed using both the present FM-BEM (by performing
matrix-vector product$K Jf ug with all entries off ug set to zero except that corresponding to
the selected column dK ], set to unity) and standard BEM techniques. The relative root mean
square (RMS) difference between these two sets of matrix columns measures the truncation error
introduced by the FMM with nite truncation levdl. This truncation error (solid line), and the
CPU time (dashed line) for one FMM iteration, are plotted agathsin Fig. 2.7. Error levels
below10 2 are achieved fob C 12:5, which corroborates the previously-discussed notion
of a numerically optimal truncation levél. Values ofC outside the above range lead to values
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of L that are either too small (insuf cient convergence in (2.8)) or too large (divergence of Hankel
functions in (2.9)). Figure 2.7 also shows that the CPU time for one FMM iteration increases with

C , which was to be expected sinkegiven by (2.30) also increases with. The valueC =7:5

is found to achieve to keep a good compromise between accuracy and computational cost, and is
retained in the present implementation. This observation is consistent with that made in [200] for
3-D electromagnetics.

2.4.2 Number of levels

The choice of the leaf levél is crucial, as it affects both the overall computational time and the
accuracy of the elastodynamic FM-BEM algorithm. A too-small number of levels increases the
proportion of near interactions, thus pushing the complexity of the computation cloS¢nté),

while a too-large number of levels increases the number of transfers between levels (see Table 2.1
where several values ofare considered, witkpa =6 andN = 122; 886DOFs).

Table 2.1: Error and CPU time against the number of levels.

> (leaf level) | ksd()=2  error/BEM CPU time / iter (s
3 1:32 1110 ° 367
4 0:66 4710 4 134
5 0:33 37103 104
6 0:17 5110 2 200
7 0:083 17101 380

The truncation parametér at any level depends on the leaf-cell s@e. This is now il-
lustrated with the help of the comparison method and test problem of Section 2.4.1: relative RMS
differences between matrices generated by FM-BEM (Wwittetermined at all levels by (2.30)) and
standard BEM produced by this comparison are plotted in Fig. 2.8 adairfst several choices
of d*). For small values oksd(), the FM-BEM algorithm is seen to be insuf ciently accurate.
This stems from the fact that the distangeg between leaf cells scale with and the spherical
Hankel functions in (2.9) are known to diverge in the small-argument limit. Estimate (2.15) ac-
cordingly predicts thalt has aO(In kd) divergence in the small cell size limit, and formula (2.30)
does not provide adequate valued.oin this case, even upon increasing the constantas evi-
denced by the results of Fig. 2.8. This suggests that the leaf celdsizeust be chosen larger
to a minimum value™" to avoid divergence; for instance, results obtained uding= 0:075 ¢
have very poor accuracy. A minimum leaf cell sid®" = =10is adopted in [58]. Accuracy
and computational ef ciency considerations make higher valuet"®f preferable. In this work,
the subdivision-stopping criterion de ning the leaf levels set to: d(*)  d™"  d0), with
d"n=0:3 .

Con gurations for which cells of size signi cantly smaller thalf"™™  0:3 s are desirable
(e.g. geometries with complex details at sub-wavelength scales) require an adaptation to elastody-
namics of approaches combining the diagonal form (2.8) with other types of expansions valid for
low wavenumbers, see [61, 45, 117].
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Figure 2.8: Truncation error as a function of adjustable parame@rfor several values of leaf-cell
sized()
2.4.3 Quadrature over the unit sphere

Another practical issue is the numerical computation of integrals over the unit spher@.11),
(2.12). The quadrature method of [58], based on a product rule in the angular spherical coordinates

; , employs quadrature points and weights of the fégn= ( i; j) andwg = w; Wi, where
(isw;)(@ i L) correspond to & +1 -point Gaussian rule of®); ] while ( LW ), given by
2 . 2

o j 2 (2.31)

L+t Wit v

correspond to a uniformrule ¢@; 2 ]. This approach, which employ=(L+1)(2L+1) quadra-

ture points overall, is designed so as to integrate exactly#§8)-orthonormal set of spherical
harmonics Ypm(; ) _ of order L, a requirement which, together with (2.30),
o ’ pL pmp : . :

implies that the number of quadrature points must be level-dependent. It is adopted here, in a form
slightly modi ed as explained next.

j =

Reduction of the nup;mber of quadrature points. The transfer functio_ given by (2.9) has the
form G (ro;$;k) = r%=0 Hp(ro)Pp cos@;ro) . The factorH y(r o) does not depend oy and

is computed once for eachy. Then, for each paifr o; 8), the Legendre polynomials are computed
by induction:

Po(x)=(2 1=pxPp 1(xX)+(1=p 1)Pp 2(x); (= 08 (2.32)
Po(x)=1; Py(X)= X Irol)8)
The Legendre polynomials are known to satisfy the idemjgy x) = ( 1)PPp(x). This can be
exploited to reduce the number of quadrature podnta grid that is invariant under the transfor-
mation$ ! $§ allows to perform the numerical integration 8rwith half the original quadrature
points. The rule de ned by (2.31) ful Is this invariance provided the uniform rule[@r2 ] is
de ned in terms of2L + 2, rather thar2L + 1, points. This modi ed version of (2.31) features
2(L + 1) 2 points, but only(L + 1) ? points are actually computed, stored and used. As a result, the
computing time and memory required by the quadrature are roughly divid2d by
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2.4.4 Extrapolation (direct/inverse)

The upward translations (2.26a,b) require evaluating multipole moments at lguatirature points
from their values at leve(- +1) quadrature points. This important step of the algorithm has a sig-
ni cant impact on the overall CPU time required by the FM-BEM, and hence has to be formulated
carefully. A fast method, which takes advantage of the uniform distribution (2.31) of quadrature
points along and exploitsL 2(S)-orthogonality and nite-bandwidth properties of the spherical
harmonics, has been proposed in [58, 200] and is used here.

With the quadrature points at levéland™ +1 of the form

Sgu) = ( i(‘+1); _(‘+1)) o i L™ o i 2L () -
8§ =( & {) o i® LO o j° a0;

the valuesFigqo = F( i((;); j(;)) at the level- quadrature points of a generic functién(8) =

F(; ) are extrapolated from thosg; = F ( i(\ﬂ) ; -(\ﬂ)) at the levelf” +1) quadrature points
by means of the following three steps:

29{41) .
N . ( +]_) N R
FL) = e M F”( ) jmj LOD forward Fast Fourier Transform
j=0
Lo \
FY) = S dense matrix-vector product (2.33)
i=0
. L™ G B
F o= em v ) backward Fast Fourier Transform
m= LCD
with
LD ) S o+l (p )
. . ‘ |
B = Qp' (cos |( ))Qg‘(cos i(o)); Qp'(u) = i (p+ m)!Pén(U)

p=imj

(see Appendix D.2 for more details on the numerical computation of this matrix). Likewise, the
downward translations (2.28a,b) require inverse extrapolations from leye&drature points to
level{" +1) points, which are based on a transposed version of the extrapolation:

)

N . ) N N
FY) = e 'm0 Fi(oj)0 jimj LY forward Fast Fourier Transform
j%=0
L
) = B F) dense matrix-vector prodyct (2.34)
i0=0
"
(+) _ X im (N (+1) .
Figo™ = e 1 F, backward Fast Fourier Transform

m= LC#)
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Other extrapolation methods have been proposed [58], some of which being of lower computational
complexity but at the cost of further approximation. The above extrapolation method is exact, and
will be shown in numerical experiments (Section 2.5) to account for only a modest fraction of the
overall CPU time of an elastodynamic FM-BEM analysis, and hence to be satisfactory.

2.4.5 Ordering of the transfer operations

In operations (2.27a,b), the transfer functiéisneed to be evaluated only for vectarg linking

the centers of two same-level cells andG,. Such vectors are integer multiples of the cell size

ro = (nyxnynz)d. Moreover, at any given level, the transfers are only computed for Cglls

in the interaction list of a given celly, i.e. the integersy; ny; n, necessarily belong to the set

f 3  nyiny;ng 3gnf 1 ny;ny;n; 1g. The maximum number of distinct vectarg
required for performing all operations (2.27a,b) for a given level is ther&fre 3% = 316. Each
transfer matrix can thus be reused many times, especially at the lowest levels. In order to take
advantage of this remark, the transfer operations are rst sorted according to thergctdren,

for eachr g, the transfer matrix is computed using the method of Section 2.4.3. Moreover, the same
transfer matrices are used for each GMRES iteration. It is therefore possible to precompute and
store on hard drive each transfer matrix, prior to performing any GMRES iteration.

2.4.6 Matrix of near interactions

The only BEM matrix in the FMM for which storage may be considered is the near-interaction

in uence matrix[K "], such thafK "¢#]f ug = fK ug"¢®'with reference to (2.18a), becalge"*?|

is sparse. The most common storage strategy for sparse matrices is the Compressed Sparse Row
(CSR) approach [179], based on three linear arrays: the nonzero matrix entries (stored row-wise),
the column indices, and integer pointers to the beginning of each matrix row in the rst two arrays.
Products of CSR-stored sparse matrices with vectors are then computed row by row, which prevents
one to take advantage of optimized matrix-vector product routines, e.g. those of the BLAS library.

A modi cation of this storage strategy takes advantage of the structure of the computation of
the near interactions, where a cell can interact only with its neighbour cells. The idea is to store
blocks representing the interaction of a cell on its neighbour cells (Fig. 2.9) and then to evaluate
matrix-vector products blockwise (instead of termwise). Each block is stored in full-matrix format.
For example, the largest model used in the numerical study of complexity of Section 2.5.3, for
whichN =1; 215 291, featuresl8; 351 non-empty leaf cells. The corresponding blockwise-sparse
matrix of near interactions is made 280 203 blocks (i.e. a given leaf cell has on average about
14 non-empty adjacent cells, including itself, for this example).

This storage strategy has two advantages. First, it uses local lists of unknown DOFs for a given
cell and its neighbours, instead of the global list. Second, optimized BLAS routines can be used
to compute the product of each block[#f"¢?] with the corresponding part of the solution vector.
Moreover, to reduce the number of blockwise matrix-vector products, only one block is created for
each leaf celG, with lines and columns corresponding to collocation nodé€s; iand interpolation
nodes in all cells5, 2 A (G,), respectively. The matrix entries for each such block are computed by
treating the set of elements belonging to@lI2 A (G) as a single (small) BEM mesh and using
traditional BEM matrix set-up methods.
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column index of cdl G

T[T CdisG 2 A(G)

row index of cdl G

Figure 2.9: Near interactions matrix (blockwise-sparse storage).

2.4.7 Memory management

In the multi-level elastodynamic FM-BEM, multipole moments (2.20a,b) and (2.21a,b) and local
expansions (2.22a,b) and (2.23a,b) are computed for each cell, each level and each quadrature point,
and thus arise in large numbers. It is esssential to keep the storage of such quantities to a minimum.
The memory needed for a given FM-BEM analysis is affected by the order in which certain tasks
are performed. To compute the local expansib@isL at level’, R¥; R are needed at leveél

andL; LP atlevel(C 1). One may therefore discard the valuesRgf; R” at level(" +1) (and
reallocate the corresponding memory) orR:%; RP are computed at levél As schematized in

Fig. 2.10, performing the transfer at levelmmediately after the upward pass from leget 1) to

level " allows to restrict the storage to the multipole moments at levalsd (" + 1), and the local
expansions at all levels. This ordering hence reduces by about half the memory required for storing
multipole moments and local expansions.

st [Eds—{I] F ]

4] 9] 71

9

-3 [R F—7—[L ] [R_J—6—[L ]
| |

? 3? 10 | 5? 10 |

[ [ v [ v

T Eef {1
o

Figure 2.10: Non-optimal (left) and optimal (right) orderings of the various steps of the multi-level
FMM (the numbered arrows indicate the sequential ordering of passes for each case).

Moreover, virtual memory is optimized for large problem sizes, as follows. Multipole moments
and local expansions are written on hard drive (out-of-core). Then, for each step of the multi-
level FMM, the needed information is read in the appropriate le and stored back in that le after
updating. The maximum virtual memory cost is therefore incurred by the transfer pass at level
for which all level- multipole moments and local expansions must be saved in virtual memory.

For even larger problem sizes, an improved version of this strategy, wherdee cells are
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splitintoNg, groups, has been implemented. The transfer pass is then effected as two nested loops
over theNg, groups, with operations (including the reordering according to veciplisking the

centers of two same-level cells, see Section 2.4.5) done only for cells belonging to the two currently
active groups. As a result, the virtual memory required by a transfer pass is divideégl byrhis
multi-group out-of-core process is applied separately to each pass of the multi-level FMM. In order
to de ne groups of similar size at each level, the number of groups is level- and problem-dependent.

2.4.8 Post-processing: evaluation of the integral representation

Once the values af (x) on the boundary{ 2 @ ) computed by solving system (2.4), the boundary
integral representation (2.1) is used to obta{x) at interior (or exterior points)x( 2 ). This
operation only requires a single matrix-vector product which can be performed using standard BEM.
However, if the number of interior points is large the use of the FMM for this step is recommended.
System (2.4) is square since the DOFs are identical for lines and columns. But for the integral
representation (2.1), the interpolation points (points on the boungia®, @ ) differ from the
evaluation ones (interior points,2 ) (see Fig. 2.11).

X
><>< X X % % X
x XXX X x X
X X X
X X X X X X X
X X boundary unknown
% % X X X o XXy ° y
X X
X x X . . .
X
« xx X « X x interior point
X 5 X X X X %
X X ><>< X X
X X
XX X X x ><><
X  x X X x
X
x « X X
X X X X
X X X X
X X X
x X X X X X X
X X x X X
X ><><>< X X X
X x x x x X

Figure 2.11: De nition of the evaluation and interpolation points for the computation of the bound-
ary integral representation.

To handle such con gurations, two octrees are de ned. One is based on the boundary mesh of
@ , the second on the chosen set of interior points irNote that the latter set is just a collection
of evaluation points, for which no mesh is necessary.

Concerning the FMM algorithm presented in Section 2.3, the computation of the multipole
moments (2.20a,b; 2.21a,b) is performed for the interpolation pginks@ ) and the computation
of the local expansions (2.22a,b; 2.23a,b) is performed for the evaluation pwirls (). As
a result, the initialization pass (2.20a,b; 2.21a,b) and upward pass (2.26a,b) are performed in the
column octree which corresponds to the DOFs on the domain bound&y@ ). On the other
hand, the downward pass (2.28a,b) and computation of the local expansions (2.22a,b; 2.23a,b) are
performed in the line octree which corresponds to the desired DOFs in the domain ).

As a result, the correspondence from the column octree to the line octree is done during the
transfer pass (2.27a,b). So, the two octrees cannot be independent to enable the transfer pass. The
new notions of adjacent cell and interaction list need to be de ned. The simple solution imple-
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mented in the present work is to build the two octrees starting from the same level-0 cell, enclosing
the complete domain (see Fig. 2.12). As a result, at each level, the cells in the two octrees have the
same linear size and it is easy to know if a cell in the line octree is adjacent to a cell in the column
octree.
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X | % X ! X X X
X x| x x| x X X X X X X X X X
X X X I X X
% X % X o o XX« PTx X x X X x x X x
X X X
N M X | % x
< | |2 < y | o [ lo® el « «
X X X | ;X X X
I
X oo [x % X X % | X XX X X %
X X
XX X X PXX x X
x><>< N X | % | XX « Xy X
X
X | x % X x* T x xox X oy X
X I I X
| | X
! R re 4
><>< X ><>< X x w><>< X X X X
| X
x X| X x X x X :XX X X X X X
x| X X X X x X X
! X XXX Ik X ‘ X Xx x . X o x X
] x| x x X x X ! X x x X x %
Octreefor , at level 2 Octreefor @ , at level 2

Figure 2.12: De nition of the two octrees for the computation of the boundary integral representa-
tion.

2.4.9 Implementation of the elastodynamic FM-BEM: summary

The elastodynamic multi-level FM-BEM solver implemented in the course of this work, whose
features are discussed in Sections 2.3 and 2.4, is summarized for convenience in Figs. 2.13, 2.14
and 2.15.
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(a) Octreegeneration: hierarchicaly subdvide eat cel into 8childrencells, until | e level
“de nedbyd*? d""=0:3 5 d isreaded
Retain ony nonrempty children cdls

(b) Near contributions:
Compute and store matrix [K "@] of nea interadions (Sec 2.4.6)
Compute “nea” contributionf f &g, Eq. (2.18h); storeintoff g

(c) Initial FMM step: preparatory step

Sortvedorsro=Yy, Xo (Sec 2.4.5)

Compute and store on hard drive the transfer matrices

Uses svee for computing the “far” contributionf f Mg, Eq. (2.19b); storeinto ff g

(d) GMRES:initiali zation:
Set restart parameter to 50, initialize solution vedor to f ug= f Og

(e) Generic GMRES iteration; invokes generic FMM step (seeFig. 2.14)
Invoke (computed and stored in Step (€)) vedorsrg and transfer matrices

Use sweep for computingthe “far” contributionf Kug™, Eq. (2.194)

Evaluatef Kug= fKug™ + f Kug"®?, Egs. (2.17), (2.183); passresult to GMRES

(f) Convergence diek for GMRES: kf Ku f gk=kffgk 10 3? NO

YES

(g) Post-processng of solution:
Evaluate integral representations (seeFig. 2.15), crede graphics...

Figure 2.13: Elastodynamic multi-level FM-BEM: schematic description of overall algorithm.



2.4 Fast Multipole Method: computational aspects 41

(a) forallled cdlsG
initialization : computago_n o multi pdemﬁrgen'gs, Egs. (2.20a,b)
transferusingL(d )= 3kd + 7:5log,,(" 3kd + ) termsin expansion,
Egs. (2.27a,b)
endfor

(b) foralllevels™ =~ 1;2(in this order)
for all cels G’
foral calscl "V 2 S(G )
upward pass Egs. (2.26a,b)
endfor
extrapolation, Eq. (2.33)
endfor .
foral celsC) ‘
foral celsG’ 2 1 (&) b
transferusingL(d )= 3kd + 7:5log,o(" 3kd + ) terms
in expansion, Egs. (2.27a,b)
endfor
endfor
endfor

(c) foralllevels™ = 3;" (in this order)
for all cdls G’
downwar d pass Eqg. (2.28a,b)
inverse extrapolation, Eq. (2.34)
endfor
endfor

(d) foralled celsc,’
for all collocation pdntsx 2 Q)
local expansions Eq. (2.24)
add "near" part Eg. (2.189)
endfor
endfor

Figure 2.14: Elastodynamic multi-level FM-BEM: schematic description of generic FMM step.
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(a) foralled cellsq(, ) in the column octree
initiali zation : computation of multi pole moments, Egs. (2.20a,b)
transfer Egs. (2.27a,b)
endfor

(b) foralllevels™ =~ 1;2(in this order)
for all ceIIsCf, ) inthe column octree
for all cells(:f,‘”) 2 S(C;(,‘)) in the column octree
upward pass Egs. (2.26a,b)
endfor
extrapolation, Eq. (2.33)
endfor .
for all celsC,’ in the line octree
for all cellsd, )2 (C§ )) in the clumn octree
transfer Egs. (2.27a,b)
endfor
endfor
endfor

(c) fordllevels™ = 3;" (inthisorder)
for al cels G intheline octree
downwar d pass Eq. (2.28a,b)
inverse extrapolation, Eq. (2.34)
endfor
endfor

(d) foralled cdlsG ) intheline octree
for al collocation pantsx 2 a’
local expansions Eq. (2.24)
add "near" part Eq. (2.183)
endfor
endfor

Figure 2.15: Elastodynamic multi-level FM-BEM: schematic description of the computation of the
integral representation using the FMM.

2.5 COMPLEXITY OF THE ELASTODYNAMIC FMM

In this section, the theoretical complexity of the elastodynamic FMM, i.e. the CPU time spent for
each GMRES iteration as a function Mf, is studied for both the single- and multi-level versions
(Sections 2.5.1 and 2.5.2) and then compared to results from numerical experiments (Section 2.5.3).

2.5.1 Theoretical evaluation, single-level FMM

Notingd d™"the linear cell size, the number of non-empty cells and the number of average DOFs
per non-empty cell ar®(N=d?) andO(d?) respectively; these estimates stem from the fact that
the geometrical support of the unknown BE DOFs is two-dimensional. The truncation parameter
L (d) given by (2.30) is such that there is a positive conskarftvhich depends od™") for which
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L(d) Hdforanyd d™n. Therefore, one may conservatively consider th@f) = O(d) and,
by virtue of (2.31), that the numb€) of quadrature points oved is Q = O(d?). The main steps
of the single-level FMM entail the following computational complexities:

(a) Evaluation of multipole moments (2.20a,b) and local expansions (2.24), for each quadrature
point and each cellO(Nd?);

(b) Transfers (2.22a,b), for each quadrature point and each pair of non-adjacent cells:
O(d?> N=d?> N=d?) = O(N?=cP);

(c) Near interactions (2.18a), for each cell, by means of the product@ffdd) O(d?) matrix
with aO(d?) vector:O(N=d? d* = O(Nd?).

Settingd = O(N ) the optimal complexity is obtained by minimizing the largest exponent in
Nd? = N2 andN?=cd® = N2 2 . Hence the optimal cell size in the single-level FMM is
d = O(N¥). As a result, the optimal complexity in the single-level FMM in elastodynamics is of
orderO(N 372), and is achieved by usir@(N 3%) cells.

2.5.2 Theoretical evaluation, multi-level FMM

The leaf cell sized() is as small as possible, under the constrdirit)  d™" d() (d™in being
a xed fraction of S—wavelength), as discussed in Section 2.4.2. Assuming a constant number of
DOFs per wavelength() may be considered as independenioin the complexity analysis. The
sized® of the largest cells is related 9 by 2 d() = d(® . Moreover, the fact that the BEM nodes
are located on a surface of characteristic diam@i@(® ) implies thatd® = 2 d() = O(N¥2).
Hence, the total number of levels is:

"= O(logN) (2.35)

and the number of leaf cells B(N). Moreover, since the DOFs are supported on a surface, each
non-empty level- cell has on average 4 non-empty children cells, and therefore holds an average
of N() = O(4 N) DOFs. The numbers of non-empty cells and of children at each level for
the example of a spherical cavity withh = 1;215 291 DOFs, shown in Table 2.2, corroborate
this estimate. Lastly, one notes that the levétuncation parameter and the number of level-
quadrature points afe() = O(d))= O(d@ 2 )= O(N¥™2 2 )andQ) =0 (d))?2 =
O(N 4 ).

Based on the foregoing remarks, the computational complexities associated with the main steps
of the multi-level FMM are obtained as:

(i) Multipole moments (2.20a,b) and local expansions (2.24), evaluated only at1&YéN ).

(i) Transfers (2.27a,b), performed for each level, eacl*(é@lland each celd/\) 21 (C@):
o4 QO) = O(N) per level, i.e.O(N logN) overall.

(iii) Upward and downward passes (2.26a,b), (2.28a,b), for each |eagth cell and each quadra-
ture pointd(): O(N) per level, i.e O(N logN ) overall.

(iv) Direct and inverse extrapolations, for each levahd each cellO(N 72).
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Table 2.2: Average number of non-empty cells and children at each level.

level number of number of children
non-empty cells
2 56 4.86
3 272 4.26
4 1;160 4.07
5 4;720 3.89
6 18;351 —

Estimate (ii) relies on the fact that the interaction list of a given cell contains at dos8® =
189 cells, irrespective of the level and the total number of cells. Estimate (iv) stems from the
observation that each extrapolation (2.33) from levet 1) to level * (whose total number is
O(4)) requiresL() + 1 dense matrix-vector products, each of sjgé) +1) (L( +1), i.e.
04 2 N¥2 (2 N2 2 (M)NI2) = O N3¥22 (*1) operations. Summing these
extrapolations from level= " to * = 3, the obtained cumulative complexity of all extrapolations is
O(N 32) as stated. A similar analysis holds for the cumulative effect of the inverse extrapolation
steps (2.34).

This analysis therefore predicts a theoretical complexi®©N logN+ N 372) per iteration
for the multi-level FMM.

2.5.3 Numerical study of complexity

The theoretical complexities just formulated are now compared against recorded CPU times, on the
pressurized spherical cavity problem (Section 2.4). This comparison aims in particular at evalu-
ating the respective importances of B¢ N logN) andO( N 372) contributions to the overall
complexity of the multi-level FMM. Several frequencies are considered, with the size of the BEM
models adjusted so as to maintain a mesh density of about 10 nodes per S-wavelength (Table 2.3).
This complexity study involves problem sizes of upNo  1:2 1P, while the examples of [90]

usedN 2510

Table 2.3: Numerical study of complexity: BEM model si2ésand non-dimensional frequencies
used.

N 30,726 122,769 217,983 389,232 449,835 530,709 635,349 771,912 955,608 1,215,291
kra= | 3.05 6.14 8.31 109 1166 12.68 1391 152 17.4 19.24

Multi-level FMM: complexity of the main steps. With reference to items (i) to (iv) of Sec-

tion 2.5.2, the cumulative CPU times recorded for the main steps of the multi-level FMM are com-
pared to the corresponding theoretical complexities for the evaluation of (i) the multipole moments
(Fig. 2.16a) and local expansions (Fig. 2.16b), (ii) the transfers (Fig. 2.16c¢), and (iii-iv) the upward
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and downward passes including the (direct/inverse) extrapolations (Fig. 2.16d). For the latter case,
coefcients(; ) allowing a best t of theoretical complexities of the for@( N logN + N 3%)

to the CPU data are obtained via regressiofias ) = (1:310 7;9:810 °) for the upward pass
and(; )=(1:810 5;8:210 8) for the downward pass. These values, which are of course code-
and computer-dependent, suggest that the importance @@Neé2) contribution to the upward

and downward passes becomes signi cantNoaboveO(10°).
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Figure 2.16: Theoretical complexity and recorded CPU times for the main steps of the multi-level
elastodynamic FMM.

In Fig. 2.17 the computation time required by the upward and downward passes and its estima-
tion N 32 are compared to the other steps of the algorithm. The results indicate ti¢NhE?)
contributions arising from the extrapolations are small compared t®¢{helogN ) contributions
for BEM model sizedN = O(10°) or less, for which the extrapolation method of Section 2.4.4 is
therefore satisfactory. Using improved algorithms for extrapolation such as those proposed in [58],
of computational complexity lower tha®(N 3=2), would reduce the elastodynamic FMM complex-
ity to O(N logN ). They may prove essential for BEM models involving several millions DOFs and
more.
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Figure 2.17: Comparison of the cost of the upward and downward passes to the other steps of the
algorithm.

Overall complexity of the single-level and multi-level FMM. Numerical experiments, in the

form of full BEM solutions obtained using the standard BEM, single-level FM-BEM and multi-
level FM-BEM on BEM models of respective sizes upa@l0*), O(10°) andO(10°), corroborate

the previously discussed theoretical complexities estimates for each approach, as seen in Fig. 2.18,
where theO(N 372) contribution to the multi-level FMM has been disregarded in accordance with
the previous discussion on its effect.
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Figure 2.18: Complexity of the standard BEM, single-level FMM and multi-level FMM (left: CPU

time, right: memory).

2.5.4 Discussion

The results of Sections 2.5.2 and 2.5.3 are consistent with corresponding studies in [200, 58] for
electromagnetics, where particular tBeN 3=2) complexity of the direct and inverse extrapolations

is also pointed out. Th®(N logN) overall complexity is also obtained for the method stable

at all frequencies proposed in [61]. In contrast, the elastodynamic FM-BEM of [90] uses a level-
independent value for the truncation paraméterhis variant avoids the need for direct and inverse
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extrapolation but requirels = O(ksd©) = O(N ¥72) by virtue of (2.30). Revisiting steps (i), (i)
and (iii) of Section 2.5.2 with xed values fdr = O(N ¥*?) andQ = O(L?) = O(N), one nds a

O(N 2) complexity for that approach, as remarked also in [159]. In comparison, static FM-BEMs
for static problems are known to ha@N ) complexity [159, 133] since the truncation parameter
in the multipole expansion in that case depends neither on the level nor on the problem size.

2.6 NUMERICAL EXAMPLES

First, additional numerical results for the example of a pressurized spherical cavity, introduced in
Section 2.4, are presented. Then, the more complex example of the diffraction of an incident plane
P—wave by a spherical cavity, for which an exact solution is also available, further demonstrates
the good accuracy of the present FMM. The usefulness of the proposed FMM formulation is also
illustrated on the scattering of seismic plane P— or SV-waves by an irregular half-space model.
Finally, the ef ciency of the method for time-domain responses is presented on the example of the
scattering of a seismic plane P—wave by a semi-spherical canyon.

For all results presented therein, the following computational parameters were used:
C = 7:5, d"" = 0:3 g (unless indicated otherwise), and a convergence threshold de ned by
kff K ugk=kffgk 10 3 (using the notations of equation (2.7)) for GMRES. All the examples
presented in this section are obtained without the use of a preconditioning strategy.

2.6.1 Pressurized spherical cavity

The example con guration de ned in Section 2.4 is again used. First, numerically-computed solu-
tions are compared for four non-dimensional frequencies to the corresponding exact solution (2.29).
The stopping criterion relative to cell subdivision proposed in Section 2.4.2 led to four lev-
els for the highest frequency considerégd= = 2). Four levels were also used for the other
three results in order to ensure that a suf cient proportion of the computations utilize multipole
expansions (the subdivision-stopping criterion being hence disregarded for these cases). For each
frequency, relative RMS errors for the radial displacement on the cavity wall and over the radial
intervala<r 3aare presented in Table 2.4. The present FM-BEM is seen to be quite accurate,
even in the low-frequency caskpl@a= = 0:1) for which the accuracy of FMM expansions of the
form (2.8) is known to deteriorate [58], whereas the standard BEM does not [56].

Table 2.4: Pressurized spherical cavity: RMS solution error on the cavity and in the domain.

kpa= 0.1 050 1.00 2.0Q

# nodes s 80 16 8 4
RMS errorr = a(cavity wall) | 0.025 0.006 0.006 0.02
RMS error,a<r 3a(domain)| 0.011 0.006 0.008 0.03

(R =

Next, the effect of the number of nodes per S—wavelength on solution accuracy is examined.
For that purpose, the cavity radiasand angular frequendy are kept constant (withpa = 3 )
while four BEM meshes with increasing mesh densities are used. The corresponding numbers
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Table 2.5: Pressurized spherical cavity: in uence of the number of nodes per S—wavelength on the
RMS solution error and the CPU time per iteration.

# nodes per N RMS solution CPU time
S—wavelength error on cavity per iter. (S
2:5 1,926 2010 2 1.5
5 7,686 4610 3 37
10 30,726 1310 3 14:2
20 122 886 4010 4 851

of nodes per S—wavelength are given in Table 2.5 ( rst column). The relative solution errors ob-
served for these meshes (Table 2.5, second column) indicate that a good solution accuracy requires
a minimum of 5 nodes per S—wavelength. The corresponding observed CPU times per iteration
(Table 2.5, third column) increase due to the combined effect of mesh re nement and truncation pa-
rameter (2.30). The numerical results presented in the remainder of this chapter have been obtained
using meshes featuring a minimum of 10 nodes per S—wavelength.

2.6.2 Diffraction of an incident plane P—wave by a spherical cavity

The geometrical con guration and material parameters are as in the previous example, but the cavity
surface is now traction-free. An incident plane P—wave propagates along the popsiinestion

(Fig. 2.19). Two frequencies are considered, de nedkps= =1 andkpa= =4, with respective
problem sizedN =7;686andN =122;886. The numerical results are compared to the analytical
solution given in [72] (which, incidentally, features a typographical error corrected in [56]).

The numerical results are computed along radial straight lines emanating from the cavity cen-
ter in directions ( = 0; =4; =2; 3=4)in thex-z plane. Figure 2.20 shows the real part of the
radial displacement against the normalized radial coordirrge The subdivision-stopping crite-
rion employed for casdera= =1 andkpa= =4 corresponds td™"=0:2 gandd™"=0:3 g
respectively. The numerical results obtained using the present FM-BEM are seen to agree very
well with the exact solution for the two frequencies considered, even alongthe= 2 direction
corresponding to grazing incidence. For the clase= = 4, a solution CPU time ofi4 s per
iteration 144 GMRES iterations, no preconditioning) is recorded. In Table 2.6, the in uence of the
choice of the leaf cell size (see Section 2.4.2) is further examined. Results obtained by choosing

Figure 2.19: Diffraction of an incident plane P—wave by a spherical cavity: notation.
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dmn  0:1 gare satisfactorily accurate. On the other hand, solution errors are seen to deteriorate
markedly whenever valugd™" < 0:1 s are used. These results corroborate the validity of the
recommended valud™"  0:3 s proposed in Section 2.4.2 on the basis of an essentially one-
dimensional test problem. Some of the valuesiBf smaller tharD:3 s also lead to acceptable
solution errors for this example. This however cannot be expected to be always true, as the test of

Section 2.4.2 indicates.
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Figure 2.20: Diffraction of an incident plane P—wave by a spherical cavity: comparison of the nu-
merical FMM and analytical solutions for normalized frequendiga= = 1;4 and azimuths
=0; =4, =2,3=4.

2.6.3 Diffraction of an incident plane wave by a semi-ellipsoidal canyon

This example considers the diffraction by a semi-ellipsoidal canyon of a plane P— or SV-wave of
unit amplitude travelling in an elastic homogeneous irregular half-space. The canyon surface is
ellipsoidal, with semiaxeb; a; arespectively aligned along the coordinate directigng;, z. The
semi-ellipsoidal surface of the canyon and the surrounding portion of free surface lying inside a disk
of radiusD > a; b are discretized using boundary elements. Such a con guration is representative
of a “topographic site effect” in seismology and has been the subject of numerous studies, see [130,
131, 212, 73] and [56, 124, 152, 183, 169] where diffraction of waves by surface irregularities is
considered. Three situations are considered: the diffraction of a vertical incident plane P—wave by
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Table 2.6: Diffraction of an incident plane P—wave by a spherical cavity: in uence of leaf cell size
on solution error.

dmn| =0 = =4 ==z2 =3=4

kpa= =1 (N =7,686 0:2 s/9.210 3 2.610 ® 2.210 ? 8.610 4
0:1 5|9.610 3 8.610 2 9.210 3 4.910 3

0:05 5| 1.110 2 2.310 2 4.810 2 2.110 ?

0:02 5| 4.210 2 3.110 ¢ 3.110 ! 8.510 2

kra= =4 (N=122;886 | 0:3 5|1.410 2 4.410 % 2.310 2 5.610 3
0:2 5|1.410 2 4210 3 2.010 2 5.210 3

0:1 s/1.710 2 1510 2 4610 2 6.810 3

0:05 5|1.410 * 6.810 2 2610 ! 4.610 ?

002 55810 * 35101 6.0101 21101

a semi-spherical canyon, the scattering of an oblique incident plane P—wave by a semi-ellipsoidal
canyon and the diffraction of an oblique incident plane SV-wave by a semi-spherical canyon. The
rst case is essentially 2-D (axisymmetry), whereas the last two are fully 3-D.

Semi-spherical canyon and vertically incident P—wave. First, the diffraction of a vertically
incident plane P—wave by a semi-spherical canyon is considered@ea, see Fig. 2.21), with

xY

/ y
plane P{wave | r

Figure 2.21: Diffraction of an oblique incident plane P—wave by a semi-ellipsoidal canyon: nota-
tion (top left and bottom); sample BEM mesh, with= 25; 788 (top right).
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Figure 2.22: Diffraction of an incident plane P-wave by a semi-spherical canyon: horizontal and
vertical computed displacement on line CDE (with points C, D, E de ned on Fig. 2.21) plotted
against normalized arc-length coordinasea along CDE (normalized frequendgpa= =
0:25). Comparison of present FMM solution to results from Sanchez-Sesma [183] and Reinoso
et al. [169].

=0:25. Aright-handed Cartesian franfe; y; z) is de ned so that the elastic half-space occupies
the regionf (x;y;z)jz 0g. The plane wave travels along directisim oey CcO0S oe,. Results
obtained by the present FM-BEM for the (low) normalized frequekes= = 0:25, by means
of a BE mesh featuringl = 23;382 DOFs, are compared to corresponding results from [183]
(based on a semi-analytical approach) and [169] (obtained using a standard elastodynamic BEM).
In this case, the subdivision-stopping threshold usel'#s= 0:15 s, resulting in a leaf level = 3.
Figure 2.22 shows that the horizontal and vertical displacements along line CDE (with points C,
D, E de ned in Fig. 2.21) produced by the three approaches are in good agreement. Note that the
corresponding results in [183, 169] are plotted against the horizontal coorglinalereas the arc-
length coordinats along ABC is used in Fig. 2.22. The same vallue 3 a of the truncation radius
has been used for all three sets of results. The present computation required 7 GMRES iterations
and24 s of CPU time per iteration.

Moreover, the FM-BEM allows to deal with non-dimensional frequencies signi cantly higher
than those considered in previous studies. Figure 2.23 shows the displacements along line ABC
computed for a nondimensional frequerigya= = 5 using the present method. This time, the
problem sizeN = 287;946is well beyond the capabilities of standard BEM. This computation,
performed with a leaf level = 6, required86 GMRES iterations (without preconditioning) and
162s CPU time per iteration. The displacement near the canyon edgg fi.a.ands= a=2, see
Fig. 2.21) has strong variations, as expected.

The size of the problems that can be solved is now limited by the number of iterations of the
iterative solver. The number of iterations required for convergence of the GMRES solver, reported
in Table 2.7 for various problem sizék and (non-dimensional) frequenciesa= , clearly depend
on bothN andkpa= . Reducing the iteration count requires a preconditioning strategy. This
critical component of the development of ef cient FM-BEM algorithms is addressed in Section 4.1.
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Figure 2.23: Diffraction of an incident plane P-wave by a semi-spherical canyon: horizontal and
vertical computed displacement on line CDE (with points C, D, E de ned on Fig. 2.21) plotted
against normalized arc-length coordinageaalong CDE (normalized frequenépa= =5).

Table 2.7: Diffraction of a plane P—wave by a semi-spherical canyon: number of GMRES iterations
for various truncation radiD and nondimensional frequenciksa= with, in parentheses, the
corresponding problem sizés.

kpa= =0:25 kpa= =0:5 kpa= =0:75 kpa= =1:5 kpa= =5 kpa= =10
D=3a 7(23,382) 10(23,382) 12(23,382) 19(23,382) 86 (287,946) > 280 (1, 145, 700)
D=5a 7 (61, 875) 10(61,875) 15(61,875) 28 (61, 875)159 (774, 180)
D=7a 8 (77,565) 13(77,565) 17 (77,565) 43 (77, 565)

D =20al 14 (98, 844) 39(98,844) 43(98, 844)

Semi-ellipsoidal canyon and oblique incident P-wave. A fully three-dimensional con gura-
tion is considered, namely the scattering of an oblique incident P—wave by a semi-ellipsoidal canyon
(withb=3aand o = =6, see Fig. 2.21), with =1=3. A right-handed Cartesian franfg; y; z)
is de ned so that the elastic half-space occupies the reffigyy; z)jz 0g. The plane wave trav-
els along directiorsin gey cos oe;. This problem has been previously studied in [73] by means
of a wave function expansion and, for low frequencies, in [169] using a standard BEM. Results ob-
tained by the present FM-BEM for the (low) normalized frequekgg= = 0:5, by means of a BE
mesh featurind = 25; 788 DOFs shown in Fig. 2.21, are compared to corresponding numerical
results from [169]. Figure 2.24 shows that the horizontal and vertical displacements produced by
both approaches, plotted against the normalized arc-length coordireaddong line ABCDE (with
points A, B, C, D, E de ned on Fig. 2.21), are in good agreement. The present computation (fea-
turing a truncation radiuB = 6a and a leaf level = 3) required11 GMRES iterations (without
preconditioning) an® s of CPU time per iteration.

Finally, results obtained using the present FM-BEM for a higher frequency de ned by
ksa= = 2 are presented in terms of tgeandz components of the displacement eld (Fig. 2.25).
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Figure 2.24: Diffraction of an oblique incident plane P-wave by a semi-ellipsoidal canyon: hori-
zontal and vertical computed displacement on line ABCDE (with points A, B, C D, E de ned
on Fig. 2.21) plotted against normalized arc-length coordirstaalong ABCDE (normalized

frequencyksa= = 0:5). Comparison of present FMM solution to results from Reinoso et
al. [169].
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Figure 2.25: Diffraction of an oblique incident plane P-wave by a semi-ellipsoidal canyon: hor-
izontal (left) and vertical (right) computed displacement on the canyon surface and meshed
part of free surface (normalized frequenkya= = 2). The white ellipse depicts the canyon
edge.

The problem size il =353;232 The computation, performed with a leaf level 5, required32
GMRES iterations (without preconditioning) aftd3s of CPU time per iteration.

Semi-spherical canyon and oblique incident SV—wave Finally, the diffraction of an oblique
incident plane SV—wave by a semi-spherical canyon (Fig. 2.26) is now considered. A right-handed
Cartesian framéx; y; z) is de ned so that the elastic half-space occupies the refgigry; z) j z

0Og. The plane wave travels along directisin gey+cos oe;. This example has been treated, for a
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Figure 2.26: Diffraction of an oblique incident plane SV-wave by a semi-spherical canyon: nota-
tions.

normalized frequency &sa= = 0:75and with = 1=3, by Eshraghi and Dravinski[73] (=0 )

and Reinoso et al. [169] (= 0 ;30 ). The semi-spherical surface of the canyon (of radijuand

the surrounding portion of free surface lying inside a disk of rafllus a are discretized using
boundary elements. Table 2.8 reports the number of DOFs, the size of the leaf cells and the leaf
level " used for this problem, along with the CPU time per iteration and iteration counts recorded.

Table 2.8: Diffraction of an incident plane SV—wave by a semi-spherical canyon: data and compu-
tational results.

D N dMN=g | CPUtime(s) nbite nbiter30
2:5a | 7,602 Q23 3 15 8 11

For the case = 0 , the horizontal and vertical computed displacements along line ABC (with
points A, B, C de ned in Fig. 2.26), plotted against normalized arc-length coordg¥aeare seen
in Fig. 2.27 to agree well with the results of Eshraghi et al. [73]. In this case, the truncation radius
D is set to2:5a. For the case = 30 , the results obtained using FMM are compared to those of
Eshraghi et al. [73] and of Reinoso et al. [169] (Fig.2.28). The three sets of results are seen to be in
good agreement. A possible explanation for the slight discrepancy between our results and those of
Reinoso et al. [169] is the relatively poor graphical quality of the latter source.

2.6.4 Diffraction of an incident plane P—wave by a semi-ellipsoidal canyon: time-
domain results

The present elastodynamic FM-BEM can also be used to deal with time-domain (i.e. transient)

problems, via Fourier synthesis, taking advantage of the accelerated BEM at each sampling fre-
guency. The time-domain response of the diffraction of a plane P—wave by a semi-ellipsoidal

canyon is now considered to illustrate this procedure.

Problem de nition

This example is concerned with the diffraction by a semi-ellipsoidal canyer?(a) of a vertically
incident plane P—wave of unit amplitude travelling in an elastic half space (see Fig. 2.21). The
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Figure 2.27: Diffraction of an incident ( = 0 ) plane SV-wave by a semi-spherical canyon: Com-
parison of horizontal and vertical computed displacement®for 2 :5a, against normalized
arc-length coordinates=a along ABC (normalized frequend&ga= = 0:75) with results of
Eshraghi and Dravinski [73].
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Figure 2.28: Diffraction of an oblique ( = 30 ) incident plane SV—wave by a semi-spherical
canyon: Comparison of horizontal and vertical computed displacemenis foR :5a, against
normalized arc-length coordinate=aalong ABC (normalized frequen&ga= = 0:75) with
results of Eshraghi and Dravinski [73] and Reinoso et al. [169].

truncation radius i® = 8a. This con guration, has been studied in the time domain in [49] using
a standard BEM. The mechanical parameters are de ned as folaws1 m.s 1, Co=2ms 1
=1 Paand =1=3.
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Synthesis of the time-domain solution
The time-domain response is computed using an inverse Fourier transform:
u(x;t)= F 1 oer(x;!)s(!)

wherew(x;! ) is the frequency-domain solution asl ) is the source spectrum. In practice, a
Fast Fourier Transform is used to synthetize the time-domain results. In the following, the source
spectrum is a rst order Ricker wavelet:

,ot ) M 97

PacP—  h Pi h 2 (2.36)
) s(l) = Zipsexp it s exp sz :

wherets is the time related to the maximum amplitude of the wave‘gtﬁt@rid the predominant
period of the signal. The predominant frequency of such sigrfal is1="2t,.

Scattering of a vertically incident plane P-wave by a semi-ellipsoidal canyon

To allow comparisons, the predominant frequency of the source is set to a relatively low value:
fo=0:2Hz (tp = ts =5 s). In this example, the mesh featuds= 73; 320DOFs.

Frequency parametrization.Results are computed for frequencies ranging betwiand
2 Hz (81 sample frequencies). Figure 2.29 (resp. Figure 2.30) displays the z-component of the
FMM- (resp. standard BEM-, from [49]) computed spectral displacement along the Ox (left) and
Oy (right) axes for the sample frequencies. The maximum ampli cation along the Ox axis for the z-
component is seen to be abdth9 (free-surface effect being removed) and located at0 :425Hz
at the canyon center. The maximum ampli cation (abbi) for the z-component against the Oy
axis is obtained at the canyon edgesq = 1) for a lower frequencyf( = 0:35Hz).

Displacements against time.The time-domain results obtained from spectral responses are
now presented. The z-component of the FMM and standard BEM [49] computed displacements
along the Ox (resp. Qy) direction for2 [0; 16] are plotted in Fig. 2.31 (resp. Fig. 2.32). These
results, visually compared with those previously published by [49], validate our implementation.
We note on these gures that the time-domain ampli cation is lower than the spectral ampli cation.
This is due to the fact that in the time domain, the propagation process also in uences the signal

ration. To investigate this parameter, we use the de nition proposed in [205]. Because the integral

u?dt increases rapidly and then tends asymptotically to its nal amplithdehe interval of time
betweerb%A and95‘f{2A results from “strong motion” and is used to de ne the signal duration. In
Fig. 2.33, the integral u2dt is displayed against time. The duration of displacement at the canyon
center is estimated on that basis as aldod s.

2.7 CONCLUSIONS

In this chapter, the Fast Multipole Method has been succesfully extended to 3-D elastodynamics in
the frequency-domain. Combined with the BEM formulation, it permits to reduce the computational
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Figure 2.29: Diffraction of a vertically incident plane P—wave by a semi-ellipsoidal canyon: z-
component of the FMM computed displacement against the Ox (left) and Oy (right) axes for
the sample frequencies.

6 x=a 6 3 y=a 3

Figure 2.30: Diffraction of a vertically incident plane P—wave by a semi-ellipsoidal canyon: z-
component of the BEM computed displacement against the Ox (left) and Oy (right) axes for
OHz f  1Hz (results from [49]).

burden, in both CPU time and memory requirements, for the analysis of wave propagation (e. g.
seismic), and allows to run BEM models of side= O(10°) on an ordinary PC. Comparisons with
analytical or previously published numerical results show the ef ciency and accuracy of the present
elastodynamic FM-BEM. Theoretical complexity estimates for both the single-level and multi-level
formulations were derived and corroborated by numerical experiments. The formulation presented
in this chapter is limited to the propagation in homogeneous semi-in nite elastic domains. Its
extension to multi-region problems, based on a strong coupling of FM-BEM formulations for each
region, is adressed next in Chapter 3.
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Figure 2.31: Diffraction of a vertically incident plane P—wave by a semi-ellipsoidal canyon: z-

component of FMM (top) and BEM (bottom, results from [49]) computed displacements on the

Ox axis against time.
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Figure 2.32: Diffraction of a vertically incident plane P—wave by a semi-ellipsoidal canyon: z-
component of FMM (top) and BEM (bottom, results from [49]) computed displacements on the
Oy axis against time.

Figure 2.33: Estimation of the signal duration for the z-component of displacement at the canyon
center.
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Chapter 3

Multi-domain FM-BEM to model
seismic wave propagation and
ampli cation in 3-D geological
structures
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3.1 INTRODUCTION

In Chapter 2, the FM-BEM has been extended to elastodynamics in homogeneous semi-in nite
domains and recent advances of FMM implementations for Maxwell equations [58] have been
incorporated, allowing to run BEM models of size upho= O(10°) on a single-processor PC. This
chapter aims at extending the formulation of Chapter 2 to multi-domain situations, with emphasis
on alluvial-basin con gurations, by developing a FMM-based BE-BE coupling approach suitable
for 3-D piecewise-homogeneous media.

This chapter is organized as follows. Section 3.2 presents the BEM formulation for seismic
wave propagation in semi-in nite, piecewise-homogeneous media. Next, the FM-based BE-BE
coupling strategy is presented in Section 3.3. In Section 3.4, a detailed discussion of several crucial
implementation issues is given. Several examples representative of seismic wave propagation in
3-D alluvial basins are then presented in Section 3.5, including comparisons with available (low-
frequency) results for various types of incident wave elds. In Section 3.6, time-domain results
obtained by means of Fourier synthesis are also presented.

Single-region boundary element method. We begin by brie y summarizing existing concepts
required for the multi-region FM-BEM. Let denote a region of space occupied by an isotropic
elastic solid characterized by(shear modulus), (Poisson's ratio) and (mass density). A time-
harmonic motion with circular frequendyis assumed, and the implicit facter™ will be system-

atically omitted. Typically, is here one of the homogeneous subregions involved in the coupled
BE-BE analysis to be developed. Assuming the absence of body forces, the displacement and trac-
tion over@ are related by the integral representation (2.1) yields the integral equation:

Z Z
cik (X)Ui(x) + (P.V.) . i (y)TR(x; ;! )dS, . ti(y)Uk(x;y;!)ds, =0;

x2@ (3.1

A subsequent boundary element discretization of the su@cand boundary tracgsl; t) leads
to the system:
[Hlfug+[G]ftg=0; (3.2)

where[H] and[G] are fully populated, nonsymmetric, matrices and vectag, ftg gather the
displacement and traction degrees of freedom (DOFs). In this work, linear three-noded triangular
boundary elements are used, together with a piecewise-linear continuous (i.e. isoparametric) in-
terpolation for the displacements and a piecewise-constant interpolation of tractions. The coupling
BE-BE formulation will essentially be based on a suitable combination of equations of type (3.2).
Before going into the details of this formulation, it is necessary to investigate further equation (3.1)
when applied to the semi-in nite con gurations considered for basin problems.

3.2 CONTINUOUS BEM FORMULATIONS FOR SEISMIC WAVE PROPAGATION

In this section, the continuous BIE formulations for the propagation of seismic waves in complex
geological structures (topographic irregularities, alluvial basing,are presented. Such formu-
lations, and their present implementation based on the multi-domain FM-accelerated BEM (Sec-
tion 3.3), are geared towards geometrical con gurations involving a semi-in nite homogeneous
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reference medium with topographic irregularities and alluvial deposits (henceforth generically re-
ferred to as irregularities, Figs. 3.1 and 3.2). Although integral equation formulations for elastic-
wave scattering in such con gurations are not novel in their principle, they are rarely expounded
in detail, hence our choice to devote this section to their comprehensive presentation for general
geological con gurations.

Figure 3.1: Propagation of seismic waves through topographic irregularities (canyons, hillk,
various geometries and related notations.

Figure 3.2: Propagation of seismic waves in complex geological structures (alluvial deposits,
basins): various geometries and related notations.

In the following, r denotes the free half-spate = (x1;X2;X3) j X3 < 0g bounded by the
in nite traction-free surface = fx j x3 = 0g (Fig. 3.3). Con gurations treated in this chapter
are perturbations of the free half-space, where irregularities occur only in a region of nite size.
For such con gurations, the displacement veatas split into:

u=uf +uS (3.3)
whereu™ characterizes the free- eld, a known seismic wave in the reference free half-space
composed of the incident waves and those re ected from the planar free sugfase that™ = 0

on . The scattered displacemant then arises due to the presence of irregularities (Fig. 3.3).
On any non-planar part of the free surface, onetfas t™ = 0.

+

Figure 3.3: Decomposition of the displacement and traction elds in the case of seismic waves.



64 Multi-domain FM-BEM

In the following, shorthand notationg* andTX are used instead &ff(x;y;! ) andTX(x;y;!)
for expository convenience.

3.2.1 Diffraction of incident waves by a topographic irregularity

The diffraction of an incident wave by topographic irregularities (e.g. a canyon), de ned as de-

viations of the free surface from the in nite plang, is rst considered. Such con gurations

consist of a homogeneous semi-in nite medium occupying the domaisituated below the in -

nite traction-free surfac@ 1 = [ 1, where the bounded (and possibly non-connected) surface
1 de nes the topographic irregularities and @ 1\ ¢ is the (unbounded) planar component

of the free surface (Fig. 3.1). Because andt®S satisfy the radiation condition at in nity [72, 141],

it follows from (3.1) that the scattered eld satis es:

Z
Gk (X)uS (x)+ uS(y)TE t3(y)UK dS,=0;8x 2 @ 1: (3.4)

@1

Incorporating the free-surface conditions= 0 (on ) andtS + tF = 0 (on 1), equation (3.4)
becomes:
z z
Gk UE(x)+  uP(y)TdS,= tr (Y)UfdSy; 8x 2 @ 1 (35)

1 1

The problem may thus be solved in terms of scattered wave eld only. To recover the total dis-
placement, one may simply invoke the decomposition (3.3) in a post-processing step. However,
for dealing next with the multi-domain problems arising when irregularities include deposits, the
transmission conditions at the subdomain interfaces are best formulated in terms of total; elds
Anticipating this need, it is therefore useful to establish the counterpart of integral equation (3.5)
formulated in terms of total elds.

To obtain the equation satis ed in; by the total eld, we consider the (bounded) comple-
mentary domain . = ¢ [ . of jrelative to the half-spacer, where . = gn( [ @)
and [ = n( g[ ) arethe parts of . situated below and above-, respectively (Fig. 3.4).
In }, the displacements® (x) and tractiong" (x) associated with the free- eld satisfy the fol-
lowing equation:

Z Z
Ui+ ufy)Tids,  tf(y)ukds =0;8x2@1  (3.6)

cl c cl

Wherecﬁ: denotes the free-term relative t§ , havingset ; = @\ fand J=@ 5\ o,
and in which the free-surface condition is incorporated. Using similar notation, the corresponding
integral equation associated with the free eld ip reads:

z z

ci Ouf (x)+ uf (y)Tds, th(y)Ufds, =0;8x 2 @ (3.7)

cl[ c cl

wherec; denotes the free-term relative tq .



3.2 Continuous BEM formulations for seismic wave propagation 65

. for the determination of the

Figure 3.4: De nition of the complementary domain. = [ [

total eldin 1.

Onsetting 1 = 1.[ ¢ in(3.4), performing the combination (3.4) + (3.6) - (3.7) and noting
that pairs ;, ;cand ¢, .de neidentical surfaces with opposite normals, one obtains:

Z
G OOUP() ¢ COUl )+ e ooul e uPy)+ uf (y) TS,
Z Z Zc[ 1c
+ U|S(y)T|dey U|F (y)ledSy t|S(Y) + tIF (y) U|dey - 0,
g[ ¢ Ic[ 1lc
8x2 @1 (3.8)

which is reformulated in terms of the total eld by invoking decomposition (3.3):
Z Z

ui(y)TFdS, +  uf(y)THdS, ti(y)Ufds,
Z

1c 1c

Z
Cik (X)ui(x) +

= ci (x)uf (x)+

(3.9)
uf (y)T¥dS,; 8x 2 @ 1

cl ¢

¢’ (X)+ cik (x). To evaluate, (x), six cases need to be considered

having set, (x) = ¢ (x)
for the location oix on @ 1, as indicated on Fig. 3.5:

Figure 3.5: Diffraction of a seismic wave by a canyon: various cases for the location 2f@ 1
considered for the computation of the free term.
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casel: Cy(x)= % i, i (x)= ¢ (x)=0,
case2 ¢ (X)+ Gk(X)= 3 ik, G (x)=0,
case3: ¢ (x)+ ck(x)=0, ¢, (x)=0,
cased: ¢ (x) i (X)+ Ck(X)= 3 i,

cases: ¢ (X)+ ck(X)= ik, ¢ (x)=0,
caseb: C (X)+ Ck(X)= 3 i, Ci (x)=0.

It follows that the combinatiow!, (x) has just three possible values, depending on the position of
X relative to g:

0=00x3> 0 ()= 5w (xs=0); ()= w(<0;  (310)

i.e. ci':k (x) is identical to the usual free-term relative to the half-spagewithout irregularity. Fi-
nally, it is necessary for practical implementation purposes to introduce a truncated vemdipn

of the free surface, here bounded by a circle of radils, which will support the BE discretiza-
tion. The integral in the left-hand side of eq. (3.11) below is known to be convergent in the limit

(D)! ,hencesois the right-hand side:
Z Z Z
up(y) Tidsy = ui (y) TdS, up (y)THdsy: (3.11)
(D) (D) (D)
Incorporing (3.11) into (3.9), it follows:
z z
Gk () Ui (x) + u()TEdS,  ti(y)Ufdsy = cf (x)uf (x)
1[ (D) 1 7
+ uf (y)TdS,;8x 2 @ 1 (3.12)
F(D)

wherec, (x) is de ned by eq. (3.10), (D) is the truncated version ofg, and strict equality
occurs only in the limiting casb ! +1 .

We emphasize that reformulation (3.12) of integral equation (3.5) is not necessary for adressing
con gurations featuring only topographical irregularities (e.g. the canyon problem of Chapter 2). It
will, however, be very useful for the present BE-BE coupling approach, as transmission condition
are written in terms of total elds.

3.2.2 Propagation of incident waves in alluvial basins

Of primary interest in this chapter is the propagation of an incident wave in an alluvial basin, leading
to a multi-domain BEM formulation. Accordingly, let; denote a semi-in nite homogeneous
medium possibly featuring a topographic irregularity of nite spatial extension. Other materials
(e.g. sediments) occupn (1) bounded regions; (2 i n)suchthat 1\ ;= (Fig. 3.2).

In the following, = @ 1\ ¢ denotes the (unbounded) portion of planar free surface
intercepted by 1, ; (i = 1;:::;n) denotes the (bounded) portion @ ; situated on the free
surface but notincluded in (so that the disjointunion[ 1] :::[ n constitutes the free surface)
and j denotes the interface betweenand j sothatoneha® = [ 1[ 12 ::i[ 1n
and@i = [ i1[ :::[ in (i 2. Forsubregionsi; ; thatdo not share interfaces, one
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has of coursejj = ;. ti denotes the traction vec_tpr on) ,_ponventionally de ned in terms of the
normalnj oriented from jto ; (Fig.3.6); henc¢” = t!' with this convention. The governing
equation for the total eldin 1 is (3.12) where ; isreplaced with 1 [  12[ :::[ 1n,l.€.
z o Z z
k(1 k(1 k(L
G (X)ui (x) + ut(y) T ds, + ulm ()T ds, tHy) U@ ds,
Z 1[ (D) m=2 m 1
X

tmyUas, = dooufeor TS ex2 @,

m=2 im F (D)
(3.13)
whereU;"” andT;"" are the fundamental solutions de ned in terms of the material parameters of
1. In the free-term of (3.13);(x) stands for eitheul(x) or ul™(x), according to whether the
collocation pointx lieson 1 0r 1m.

k(1) k(1)

Figure 3.6: Normals for the de nition of the traction unknowns.

The total eld in subdomain - (" > 1) is governed by the integral equation:
Z Z
. . X . S .
G O)uix) +  uy)T s, + um T 4T yuC ds, = o;

8x2@-(2 ° n) (3.14)

WhereUik( ) andTik( ) denote the fundamental solutions de ned in terms of the constitutive param-
eters of -, the free surface condition on has been taken into account, anéix) stands for either
u; (x) or u;™(x) according to whethex 2 - orx 2 . In addition, invoking transmission
conditions

uMm=uym: M= t™; (3.15)
which express perfect bonding at interfaces, allows to elimindte t™ and retainu ™; t ™
(" <m) as the interfacial unknowns. Equations (3.14) thus become:

G OOU()+ U ()T Ods,+ u™ NTFO + ™ (y)uf O ds,
z m=2 " (3.16)
X : KO) o k() .
+ U™ (Y)T; " (y)Y; dSy=0;8x2@-; (2 n):

m="+1 = m
The coupled BE-BE formulation to be presented next will then be based on combining discrete
versions of equation (3.13) and equations (3.16) written for each subregipn 2). It is similar
to the one used for two subdomains in [90], but more general as (i) it is applicable to an arbitrary

number of subdomains and (ii) it accomodates irregularities galmyeor throughthe free surface
(Fig. 3.5).
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3.3 FM-ACCELERATED BE-BE COUPLING STRATEGY

The present discrete coupled BE-BE formulation is based on three-noded triangular boundary el-
ements, piecewise-linear interpolation of displacements, and piecewise-constant interpolation of
tractions. Since only Neumann or transmission boundary conditions are considered here, the dis-
placement is unknown at all mesh nodes, while the traction is unknown on each interfacial element.
The proposed BE-BE coupling formulation is designed so as to invoke single-region FM-BEM com-
putations in “black-box” fashion (here using the elastodynamic FM-BEM formulation presented in
Chapter 2). To this end, a boundary integral equation is formulated for each subregfatth

material properties assumed homogeneous in egacfollowing Sec. 3.2.2, and discrete BE equa-
tions are generated by using (i) all displacement nodes and (ii) all interfacial element centers as
collocation points ((i) and (ii) will subsequently be referred to as “nodal collocation” and “ele-
ment collocation”, respectively). Each subregion is treated separately, using a separate octree for
FMM computations. The matrix-vector products arising in each of these integral equations can thus
be evaluated using the FM-BEM procedure for homogeneous media presented in Chapter 2. The
resulting algorithm is schematically described in Fig. 3.8.

The BE-BE coupling does not, however, just consist of concatenating all single-region BE
equations into one global system of equations, as the latter would be overdetermined as a result.
One way to ensure that the present BE-BE coupling de nes a square global system of equations
consists in judiciously de ning linear combinations of BE equations generated at the subregion
level, a treatment that can be done externally to the FM-BEM computations. Speci cally, linear
combinations of BE equations arising from collocation at (a) interfacial element centers relative
to either subregion adjacent to that element, and (b) displacement nodes shared by more than one
subregion, are de ned. This approach ensures that the number of nal global BE equations matches
the number of unknown BE DOFs, i.e. is square. In particular, using this method, multiple dis-
placement nodes are easily handled (see Fig. 3.7 for an example of triple points in the case of a
two-layered basin).

Figure 3.7: Two-layered basin: de nition of triple points.
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Figure 3.8: Elastodynamic multi-domain multi-level FM-BEM: schematic description of overall al-
gorithm.
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For the sake of de niteness, the above-outlined procedure is now going to be detailed for
a representative con guration, namely the case of a two-layered basin (Fig. 3.7). First, integral
equation (3.13) for the subdomain gives rise to the following set of equations:

Hiul+ HLu?+ HLuB®+ HLut? gLt Gl fl=o0; (3.17a)

Hi2ul+ HBu2+ HBu®®+ HZu'B Glt2 GIi® f12=0;  (3.17b)

HEul+ HEu2+ HEu+ HEU'® GBi2 Gl® 8=0;  (3.170)

Hjl-.23ul + H%223U 12+ Hjl_'323u 13+ H%2233u 123 G%%:ﬁtlz 6%53.[13 f123 — 0’ (317d)

Hi2Zul+ H2u2+ Hi2uB + H1Z,u12 Gl Gl f12=0; (3.17€)

HBUL+ HEBU2+ HEBuB+ HIBU1B GR? G 18=0:  (3.17f)

In equations (3.17a-d), notatios (for generic single or multiple indices , e.g. = 12,
= 123) refer to the submatrices arising from BE discretization of the integral operator

Z

c(x):u(x) + T (x;y;1)u(y)dSy;
@

m

upon performing nodal collocation on and retaining only the columns correspondinguta
Following the same idea, submatridés are de ned in terms of element collocation on instead

of nodal collocation, and submatric€s, G similarly arise from the integral operator

Z
UM(x;y;1):t(y)dsy:
@m
Note that the subregion numbmris encoded as the rstindex in. Forinstance, = 123 refers to
collocation at triple points and relative to subregion and = 23 refers to DOFs shared @ »
and@ 3. Finally, the right-hand sidds ; f are obtained via (hodal or element) collocation of
z

c(x):uf (x) + TM(x;y;1):uf (y)dS,:
F(D)

Equations (3.17a,b,c,d) stem from nodal collocation @n 12, 12 and 123, respectively, while
equations (3.17e,f) stem from element collocation @pand 13. Then, integral equation (3.16)
for the subdomain » gives rise to the block matrix equations:

H félu 12 + Hf%gu 123 + G%%tlz + sz?%u 23 G%%tZS — 0; (3.188.)
Hf%SU 12 + H%%gu 123 + G%%&[ 12 + H22§3u 23 G%SI 23 — 0; (3.18b)
HZul2+ HZul®+ G3t12+ HZu®  G3tE=0; (3.18¢)
H2lul2+ HZLul2+ G232+ HZu® Galt® =0; (3.18d)
HZu2+ HZ,ul2+ G35t12+ HBu® GHBiB =0; (3.18e)

with (3.18a,b,c) produced by nodal collocation on, 213and 23, respectively, and (3.18d,e) by
element collocation on,; and 3. In the subdomain 3, sets of linear matrix equations may be
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de ned as:
H3MuB+ HLuZ+ Gt B+ H3uZB + G3Lt2 + H3WB = 0; (3.19a)
Hf321u 13 4 Hf%%u 123 G§§1t13+ H23§1u23+ G§§1t23+ H§’21u3 =0: (3.19b)
H32uB+ H32,u'2+ Gt + H2uZB + G212 + H32u® = 0; (3.19¢)
H3uB+ Houl+ Gt + HLuB + G5t + H3uB = 0; (3.19d)
HEUY + HZu'® + Gt + HZu® + G35t» + Hi'u® =0; (3.19)
H2uB+ H3%,ul2+ G318+ H2u2 + G35t2 + H32u® =0; (3.19f)

where equations (3.19a,b,c,d) stem from nodal collocationsan 321, 32 and 3, respectively,

while equations (3.19e,f) stem from element collocation @nand 3. As previously pointed

out, the set of equations (3.17a-f), (3.18a-e), (3.19a-f) is overdetermined. A square linear system

of equations is obtained by setting up linear combinations of equations associated with the same

collocation points and arising from different subdomains. For the present example, the square

coupled BE-BE system consists of the following (combinations of) equations: (3.17a), (3.19d),
12(3.17by 21(3.18a), 13(3.17¢) + 3(3.19a), 23(3.18cy 3%(3.19c), 1?3(3.17d)

+ 213(3.18b) + 32%(3.19b), 1?(3.17ey ?1(3.18d), #3(3.17f+ £1(3.19e) and #3(3.18e)

+ $32(3.19f), where | and | are the weighting coef cients of the equations related to nodal

collocations and element collocations respectively. This example thus involves weighted combina-

tions of two equations and also, due to the presence of triple points, of three equations.

3.4 IMPLEMENTATION ISSUES

This section aims at studying the choice of weighting coef cients, and other implementation issues
such as scaling and unknowns ordering which also strongly affect the numerical ef ciency and
accuracy of the multi-domain FMM, with the help of a test problem having a known exact solution.
All examples have been run on the same single-processor PC (RAM: 3GB, CPU frequency: 3.40
GHz).

3.4.1 De nition of the test problem

The test problem con guration is a spherical cavity subjected to an internal time-harmonic uniform
pressure P, surrounded by two spherical shells embedded in an unbounded elastic medium (Fig. 3.9).
The cavity surface and the two surrounding interfaces are concentric spheres with respective radii
a;, a» = 2a; andag = 3a;. Four sets (labelled a, b, ¢, d) of material properties, de ned in
Table 3.1, are used. Variations on this testing sdtupill then be referred to using the following
convention. NotatiorT (a; b; ¢ refers to the "standard" two-shell, three-region con guration with
materials a, b, ¢ arranged in order of increasing radii. Testing con gurdt{enb; b then consists

of three regions with the outermost two made of the same material, Wdlgh) refers to just two
regions de ned by spheres of radii, a, (i.e. T(a;b; andT(a;b) are physically identical but
numerically treated as three-region and two-region con gurations, respectively). This test problem
has a closed-form analytical solution which can be easily computed. The poteptidésned such

thatu; = @ j=@/rcan be written:

- A @, Big @ = A2 k@

1
r r r
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Figure 3.9: De nition of the test problem: spherical cavity under uniform pressure.

wherekg) denote the P-wavenumber in the subdomaind the coef cient#A\ 1, B1 andA» are the
solutions of the linear system:

n # 11} # n #
el 1+ e 1+ ez A 0
6(1111) e ! ;:&+4f)+ 1)) €2 22 Bi = 0,
e 13 e 3% 1( 3= 1+41+ 3 0 Ao paj
with 1= kPay, 2= ikPay, 3= kPajand ;= 2= 2+41 ).

Table 3.1: De nition of the mechanical properties for the test problem.

a b c d

3 6 2 2
4 5 1 1
0:25 025 1=3 025

3.4.2 Determination of optimal weightings
To determine suitable values for weighting coef cient{&; and {j , Some numerical experiments
on two-region test con guration3 (d; d) (homogeneous) witlk(sl) a; = 7:64andT(a; b with

k(sl) a; = 4:68 have been performed. In this case, the following set of equations are obtained using
the linear combination procedure of Section 3.3:

1,1 1,12 1412 141 — (-
12 12,1 12,12 12412 1241 21 121,12 21412 - (-

12 1412;,1 12,12 12412 12¢1 21 y21,12 21412 _ (-
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wheretl = Pe, is the traction applied on the inner sphere a;. The mesh size il = 122; 892

(1 =4, 2 =4,d"" = 0:30 5). After having tried all16 possible combinations where each
weighting coef cient has value 1=2, six of these combinations (de ned in Table 3.2) were chosen

to illustrate the effect of this choice on accuracy and convergence rate, the other ten being discarded
as they all produced unsatisfactory results in terms of accuracy or convergence.

Table 3.2: De nition of the various set of coef cients used to determine the optimal one.

1 2 3 4 5 6

12105 0.5 05 -05 -05 -05
2105 -05 -05 05 -05 -05
211 05 0.5 05 -05 05 -05
211-05 05 -05 -05 0.5 0.5

Table 3.3 shows the relative root mean square (RMS) eE¢ts"), E (u'?) andE (t1?) be-
tween the respective solutions; u'?;t12 computed with the FMM and the corresponding analyt-
ical solution. On noting thati 2 = H2, G = G233, HZ = HZ andG13 = G2} when
subdomaind and2 have the same material properties, S#nd5 are seen to yield for (d; d) a
singular and almost-singular matrix system, respectively. The poor results (in terms of either accu-
racy or convergence) achieved by sg@nd5 are not surprising in this light. Sefs 2, 4, 6 yield
matrix systems that are made of rows of blocks that are identical except for their signs. The latter
feature clearly has an effect on convergence properties, with esdtibiting the best convergence
rate. Hence, in the remainder of this chapter, integral equations collocated on all interfaas
be weighted accordingto}, = 1§ =+0:5and { = ! = 0:5(i<]j ), as suggested by this

Table 3.3: Solution error for the test problenis(d; d) and T (a; b), for the sets of coef cients listed
in Table 3.2.

test problem coefcientset E(ul) E(u'? E(t'®) nbiter.
T(d; d) 1 / / / >300

32102 25103 1:610 2 64
8810 ! 88101 1610 90
/ / / >300
/ / / >300
/ / / >300

24102 17102 35102 94
2410 2 1:810°2 35102 22
63101 47101 89101 2
24102 1:7102 35102 122

/ / / >300
24102 17102 35102 182

T(a;b

O O A WDN PO O WNDN
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test. Linear combinations @f > 2 block equations, which arise from collocation at nodes shared
by p subregions (e.g. the triple points of the two-layered basin example of Section 3.3), are handled
by assigning equal weighit=p to each contributing block equation, an approach which has been
successfully subjected to the test problem in its three-region Tqrmb; 9.

This approach, insofar as it exploits (combinations of) an initially overdetermined set of BEM
matrix equations, may appear as computationally expensive. But, in fact, within a FMM framework,
the additional number of collocation points only occurs on the interfacial surfacesoreover,
only the CPU time of the last step of the FMM, namely the local expansion step which has been
shown in Chapter 2 to be @(N) complexity, is increased.

3.4.3 Equation scaling

Another simple but important detail of the present BE-BE coupling formulation is that convergence
rates are improved by scaling equations. For multi-domain problems, the system matrix is popu-
lated with various blocks whose magnitude depends on the material properties. Disparities in these
magnitudes may lead to bad convergence rates. The introduction of scaling factors alleviates such
problems. The following scaling factors are de ned:

_1X 450 ), h:}Xn 4©
. ! |
Mo @ 23 Nio
where (i, i) are the elastic properties of anddi(o) is the level-0 cell size in the octree introduced

for i. We note that, due to the fact that is always the in nite medium, the domain size of is
not taken into account if. This scaling, a modi ed version of that used in [10] which includes the

effect of the domain size, is equivalent to introducing new, non-dimensional, unkm:d'\Neuadtjj :
ul = pel: ti =gt

and replacing the block matricés andG with H = h H andG = g G. Using this scaling, all co-

ef cients of the resulting coupled system have similar magnitudes. Some results on the ef ciency of
the introduction of this scaling are presented in Section 3.5.1 on seismological problems involving
an in nite medium .

3.4.4 Other implementation issues

In keeping with the modular approach previously outlined, where FMM is applied separately for
each subregion, separate BE meshes are de ned for each subdomain, with meshes for two adjacent
subdomains being compatible over the shared interface. Each adjacent mesh is oriented relative to
its subdomain (Fig. 3.10). This method ensures that normals to all elements of a given subdomain
have a consistent (outward) orientation.

Another important issue is the iterative solver convergence rate. For multi-domain problems,
both displacements and tractions are unknown at the interfaces. Optimal ordering of the matrix
blocks for a multi-zone boundary element analysis is very important when using an iterative solver
(GMRES for example). Here, one may order the unknown DOF subvectors (i.e. block columns)
arbitrarily, but should then use the same order for the sets of collocation points (i.e. block rows),
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Figure 3.10: Convention for the normal orientations.

S0 as to de ne the global matrix closest to a symmetric matrix. For example, for the test problem
T(a;b (N =122;892 k(sl) a1 = 4:68), a suitably ordered governing matrix is
2 3
Hi Hi, G,
§ 0:5H}2  0B5H2+0:5H2Z  0:5G13+0:5G%3 é (3.20)
0:5H{?  0:5H12+0:5HZ 0:5G}3 +0:5G23

so that collocation points (lines) and unknowns (columns) are ordered similarly (displacements on
external surfaces, then displacements on interfaces, then tractions on interfaces). With this ordering,
GMRES converges (with relative tolerant@ °) after only22iterations. Swapping the second and

rst lines in (3.20) results in a failure of GMRES to converge witHin00O iterations, whereas
swapping also the second and third columns in (3.20) restores convergenceRiiieirations.

3.4.5 FMM computation of the integral over the free surface

In the special case of the propagation of an elastic wave in an alluvial basin, the continuous formula-
tion presented in Section 3.2, expressed in terms of total elds, is used. A numerical dif culty arises
from this formulation. The integral at the right hand side of eq. (3.12) (repeated for convenience
in (3.21)) is not of the general type (3.22).

z

uf () TE(x;y;1)dSy; x 2 @ 1 (3.21)

z
ui(Y)TE(XGY:1)dSy: x 2 @ 1 (3.22)
1
In integral (3.21), the collocation poinis 2 @ ; differ from the interpolation pointg 2 (. It
has however been shown in Section 2.4.8 how to handle such type of integrals with the FMM. The
same method as for the post-processing pass is implemented, i.e. the de nition of two octrees.
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3.4.6 Accuracy and computational ef ciency of multi-domain FM-BEM

Our implementation of elastodynamic FMM was validated for single-region problems in Chapter 2,
in terms of accuracy and computational ef ciency on the simple test case of a pressurized spherical
cavity, with observed computing times consistent with the theoretical comp@xilylogN ) and
accuracy similar to that of the standard (i.e. non-FMM) BEM.
To validate the present BE-BE coupling, the test problem of Section 3.4.1 is again considered.
The frequency is adjusted so that the mesh features atlleasints per S—wavelength in all cases.
Considering rst homogeneous castéd; d) andT(d; d; d), Table 3.4 shows the number of
degrees of freedom, the leaf-cell size paramd®ét, the normalized frequency of the problem, the
leaf level” and iteration counts (without preconditioning). Table 3.5 shows the relative root mean
square (RMS) errdE (ul), E(ut?), E(t1?), E(u?®) andE (t2%). In this example, we observe that
the precision of the FM-accelerated BEM is acceptableft  0:30 s, consistently with earlier
ndings in Chapter 2. The bad conditioning of the matrix, and the fact that the number of iterations
rapidly increases with the problem size, are also manifest, which emphasizes the desirability of a
good preconditioning strategy. The same data is next given in Tables 3.6 and 3.7 for heterogeneous
test problemd (a; b andT (a; b; 9, which exhibit much better convergence properties.

Table 3.4: Homogeneous test problems: computational data.

Test pb. N d:T)” k(sl) a; i nbiter
S
T(d;d) 30,732 0:30 354 3:3 6

T(d;d) |122,892 0:30 764 44 64
T(d;d;d) | 57,778 0:21 354 3;3;3 31
T(d;d;d) | 215,058 030 764 3;4;4 864

Table 3.5: Homogeneous test problems: relative RMS error.

Testpb. | E(ul) E@u') E(t?® E@?®) E(t®»)
T(d;d) |1:3102 47103 17102 / /
T(d;d) |3:010°2 2:510 2% 1:610 ? / /
T(d;d;d) [8:310° 9:410° 45102 1:210 2 3410 2
T(d;d;d) [6:110 % 7:710 % 2:2102 6610 % 2:010 2

3.5 PROPAGATION AND AMPLIFICATION OF SEISMIC WAVES IN ALLUVIAL BASINS

In Chapter 2, the single-domain elastodynamic FMM has been compared to the results of [183]
for the scattering by an irregular homogeneous half-space of a plane vertical P-wave at normal-
ized frequenckpa= = 0:25(with = 0:25), and then applied to the same con guration at a
higher frequencylp a= =5). In this section, the present multi-domain implementation is applied

to the propagation of seismic waves in alluvial basins. Unless indicated otherwise, all examples
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Table 3.6: Heterogeneous test problems: computational data.

Test pb. N d;T)n kg) a;, i nbiter
S

T(a;b) 30,732 0:17 217 3:3 21

T(ajb) | 122,892 0:30 493 34 22

T(a;b;9 | 57,778 0:13 217 3;3;3 59
T(a;b;9 | 215,058 0:30 493 3;3;4 43

Table 3.7: Heterogeneous test problems: relative RMS error.

Testpb.| E(uY) E@W® E(@¥? EWU®) E@(t%»®
T(a;b) |5010° 51103 1.610 ? / /
T(a;b) | 214102 1:8102 35102 / /
T(a;b;9 [3:0102 1:4102 221072 1:3102 2:810°2
T(a;b;9 [1:010 2 1:3102 1.0102 1:410 2 1:410°2

have been run on the same single-processor PC (RAM: 3GB, CPU frequency: 3.40 GHz) and no
preconditioning strategy is applied.

3.5.1 Seismic wave propagation in a canonical basin

This rst example is concerned with the propagation in a semi-spherical alluvial basin (i.e. soft
elastic inclusion) of a plane P—wave of unit amplitude traveling vertically in an elastic homogeneous
irregular half-space (Fig. 3.11). Such a con guration may lead to a strong ampli cation of the
seismic motion in soft alluvial deposits.

Figure 3.11: Propagation of an incident plane P—wave in a semi-spherical alluvial basin (3-D con-
guration): notations.

As in [183], we investigate the motion at the surface of the alluvial basjror the following
values of the material parameteré? =0:3 @, @ =0:6 O @ =0:25and @ =0:3. The
normalized frequency is de ned Hy,(pl) a= in terms of the properties of the elastic semi-in nite
medium ;. The radius of the discretized free surface is s@ to 5a.
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Validation with existing low-frequency results. The surface displacements computed with the
present multi-domain FMM are presented, along with corresponding results from [183] (using series
expansion method) and [63] (using spectral element methodk,gf)cnz = 0:5 (Fig. 3.12a) and

kél) a= = 0:7 (Fig. 3.12b). All results are seen to be in good agreement. For these examples, a
leaf-cell sized™" lower than the threshold™” = 0:30 s recommended in Chapter 2 has to be

used as a consequence of the chosen truncation Adi$ a, allowing to compare our results to
the previously-published ones.

(@)

(b)
Figure 3.12: Propagation of an incident plane P—wave in a semi-spherical alluvial basin: surface
displacement at (d}(é,l) a= =0:5, (b) k,(al) a= = 0:7 and comparisons with [183] and [63].

Results for higher frequencies. Additionally, the FMM allowed to perform computations at
higher frequenciek,(gl) a= = 1 (Fig. 3.13a) and<,(31) a= = 2 (Fig. 3.13b), for which no pub-
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lished results are available for comparison purposes. For such higher frequencies, the maximum
ampli cation level is seen to range froito 3 (free surface effects being removed).

(@)

(b)

Figure 3.13: Propagation of an incident plane P-wave in a semi-spherical alluvial basin: surface
displacement at (d}(é,l) a= =1 and (b)ké,l) a= =2.

Computational considerations. In Table 3.8, the number of DOFs, the size of the leaf cells and
the leaf level'; in each subdomain; are given for the meshes used, together with the CPU time
per iteration recorded. These examples are also used to illustrate the ef ciency of the scaling factors
introduced in Section 3.4.3. Iteration counts using three different scalings are given in Table 3.8:
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(a) using the scaling factor introduced in Section 3.4.3; (b) using a modi ed version of (a):

11X 0
h = = df
i=1

and (c) without any scaling. Scaling (a) is seen to perform best. It can be easily understood that scal-
ing (b) is less ef cient since it incorporates a characteristic size for the (truncated) in nite medium

1. The equation scaling (a) is very ef cient and drastically reduces (by @9%) the iteration
counts. However, the last example also indicates that the iteration count signi cantly impacts the
computational ef ciency for problem sizes for which the CPU time per iteration and the memory
requirements are still moderate. An ef cient preconditioning strategy is clearly needed. A simple
such approach is proposed in Chapter 4, and is shown therein to bring signi cant improvement. It
was however not implemented at the time when the present set of results was generated.

Table 3.8: Propagation of an incident plane P-wave in a semi-spherical alluvial basin: data and
computational results.

various scalings
kY a= N d™n= ¢ 15:1, CPU(s) nbiter. nbiter.  nbiter.
periter.| (a) (b) (©
0:5 17,502 0:15  3;3 8 28 44 86
0.7 17,502 0:21 4;3 10 34 60 111
1 90,057 0:30 4;3 49 52 192 519
2 190,299 0:30 5;4 79 | 325 3006 > 5;000

In uence of the truncation radius D. In [183], the size of the discretized free surface is set
to D = 5a. A natural issue concerns the selection of the best value of the truncation Eadius
for the model, i.e. the smallest value bf for which the solution is practically insensitive to the
free-surface truncation. Taking advantage of the larger problem sizes allowed by the present FMM,
this issue is now investigated by means of a parametric study. The chdr®b¥iously depends
on the size of the region for which a truncation-insensitive numerical solution is sought. Here, the
latter is chosen such theta 3. A similar study, restricted t®  5a, has been done in [161] in
the case of the diffraction of a plane P—wave by a semi-spherical canyon.

Figure 3.14 shows the relative difference between the solution computed at the center of the
basin for several truncation radd and a reference solution obtained for= 20a, at normalized
frequencwg) a= = 0:5. These results suggest that the convergence is achievéd fol3a (=

13 ,(31)=4 > 3 f})) and that, foD < 13a, the error with respect to the reference solution oscillates
within a range 4%. Here, it can be seen that the valDe= 5a used in [183] yields reasonably,

but not optimally, accurate results at the basin center. This parametric study is conducted for the
displacement at the center of the basin because errors caused by truncation are observed to be largest
there. In fact, for=a  0:5, the sensitivity of the results to the choice®fwas found to be low

(see Table 3.9).
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Figure 3.14: Propagation of an incident plane P—wave in a semi-spherical basin: discrepancy be-
tween the reference solutioB (= 20a) and solutions obtained for various truncation radii
at the basin center.

Table 3.9: Propagation of an incident plane P—wave in a semi-spherical basin: discrepancy be-
tween the reference solutio® (= 20a) and solutions obtained for various truncation radii,

at three surface points (i#6 of the reference solution).

D/a 2 4 6 8 10 12 14 16 18
r=0 297 (093 335 205 409 @74 130 037 019
r=a=2 1:85 031 233 002 246 (038 1:30 020 035
r=3a=2| 068 019 023 022 059 027 024 001 041

3.5.2 Scattering of an incident plane P—wave by a two-layered semi-spherical basin

The results of Section 3.5.1 are limited to a single-layered basin, whereas the present implemen-
tation is applicable to more general con gurations featuring piecewise-homogeneous basins. To
demonstrate this capability, the propagation of an incident plane P-wave in a heterogeneous semi-
spherical basin is now considered for an alluvial deposit composed of two layers (Fig. 3.15).

Two layers involving identical materials. First, to check our implementation in the multi-
domain case, identical mechanical properties are assumed famd  3:

@= ©®=030: @= @O=060: W=0:256 @@= O =0:3

The study is performed at normalized frequek&}az =1, using a truncation radiu® = 5a.
The mesh featured = 91;893DOFs. The results of this computation, which tdikiterations
and48s per iteration (; =4; 2 = 3; "3 = 3), are seen in Figure 3.16 to coincide (as they should)
with those computed with a single-layered basin (Fig. 3.13).
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Figure 3.15: Propagation of an incident plane P—wave in a two-layered semi-spherical basin (3-D
con guration): notation.

Figure 3.16: Propagation of an incident plane P—wave in a two-layered semi-spherical basin (with

the same material in , and 3 and kél) a= = 1): comparison with the result for a one-
layered semi-spherical basin (Fig. 3.13).

Two-layered heterogeneous basin. Now, the two layers , and 3 are made of different ma-

terials. Symbols ,(3” ) and gj ) will be used to denote the P-wave and S—wave velocity contrasts
between j and ;:

(i) — A(G)_A0). (i) — G)_A0D)
p = Cp ‘C;(D ; s = GC’'=

Two examples are considered. In example (a), mechanical properties are de ned é:(f)zfﬁatthe
same as in Section 3.5.1 and as in [183], and t@'ﬁ = (523):

2 (3) @) (3)

= _ =06 = =07 1 =n- . 2 = B =pn-
- m-06 —m= m-03 0:25; 0:30  (3.23)
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In example (b), the velocity contrasts between ,and »; 3 arethe same for P—and S—-waves,
(2 - 03 ang 12 = 29,

®) (3) @) (3)

- T _aa - _na @ =-o&- @ =0-20- ®) =n-
@ @ 0:6; ) 3 0:3; 0:25; 0:30; 0:34
(3.24)
The thicknessh® andh® of the layers , and 3 are adjusted to the wavelengths:
- @ - p@= O 2 _ P50 P ..
h@= ¥ =h®=9 ) h@ =" 2h® = (2 2)a:
The mesh and normalized frequenkﬂaz = 1) are the same as in the previous homogeneous

case. The computations requird85and272iterations for example (a) and (b), respectively, and
48s periteration(; = 4; ", =3; 3= 3).

In Figures 3.17 and 3.18, the results of the computations (a) and (b) for the two-layered semi-
spherical basin are compared to those for a single-layered basin (Fig. 3.13). The introduction of the
layer 3 leads to stronger ampli cation (up té for (a) or 6:5 for (b) instead of3 for the single-
layered basin, the free-surface effects being removed), with shorter wavelengths in the basin. We
also see on this example the effect of the value @¥: a higher value of @ leads to a smaller
increase of the maximum ampli cation.

Figure 3.17: Propagation of an incident plane P—wave in a two-layered (example (a)) semi-
spherical basin (with mechanical properties (3.21&‘91,) a= =1).

3.5.3 SV-wave ampli cation in a semi-spherical basin

All examples presented so far in this section involve incident P—-waves. However, a fully 3-D
validation requires considering other types of incident elds such as plane SV—waves with oblique
incidence. Such con gurations have been studied by [156] using standard indirect BEM (with the
half-space Green's functions).
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Figure 3.18: Propagation of an incident plane P—-wave in a two-layered (example (b)) semi-
spherical basin (with mechanical properties (3.2491,) a= =1).

Problem de nition.  This example is concerned with the propagation in a semi-spherical basin
of an oblique incident plane SV—wave of unit amplitude traveling in an elastic half space (see
Fig. 3.19). A right-handed Cartesian frarfee y; z) is de ned so that the elastic half-space oc-
cupies the regiofi(x;y;z)jz 0g. The truncation radius i® = 5a. The mechanical parameters
are de ned as followscy) =1 ms 1’ =2ms?, @=® =16 @@= =2=3and

M = @ = 1=3. In[156], a weakly inelastic formulation (with P-wave and S—wave quality
factors equal td.00) is used whereas our FMM implementation is purely elastic.

Figure 3.19: Propagation of an oblique incident plane SV—wave in a semi-spherical basin (3D-
con guration): notation.

Validation. The example depicted in Fig. 3.19 has been treated, for a normalized frequency
k(sl) a= =0:5andfor =0 ;30. The mesh featured = 17;502 DOFs. The computations
take5 s per iteration 32 iterations for the case = 0 and 34 iterations for the case = 30
(1=3,2=3,d"n=0:25 g).

For the case = 0 (resp. = 30 ), the x-components (resp. x-, y- and z-components) of
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the computed displacements on the surface are displayed in Fig. 3.20 (resp. Fig. 3.21). They are
in good agreement with the results of [156] even though, in our implementation, no attenuation is
considered.

Figure 3.20: Propagation of a vertical (= 0 ) incident plane SV—wave in a semi-spherical basin:
Comparison of the FMM computed displacements (x-component) with the results of [156].

Figure 3.21: Propagation of an obliqgue (= 30 ) incident plane SV—wave in a semi-spherical
basin: Comparison of the FMM computed displacements (x-, y- and z-components) with the
results of [156].
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3.6 SV-WAVE AMPLIFICATION IN A SEMI-SPHERICAL BASIN: TIME-DOMAIN RE-
SULTS

All examples presented so far in this Section 3.5 are in the frequency domain. However, frequency-
domain computations also allow to obtain time-domain responses via Fourier synthesis. In [157],
the con guration presented in Section 3.5.3 is studied in the time domain using standard indirect
BEM.
Synthesis of the time-domain solution
The time-domain responsgx ;t) can be computed using an inverse Fourier transform:

u(x;t)= F 1 oer(x;!)s(!) ;

wheret(x;! ) is the frequency-domain solution as(! ) is the source spectrum. In practice, a
Fast Fourier Transform is used to synthetize the time domain results. In the following, the source
spectrum is a second-order Ricker wavelet:

2 h 2i
S(t) = 2 Z(t tZtS) 1 exp Z(t tZtS) :
" Pr2s h 2% h i (3.25)
) s(l) = >3 P exp ﬁté exp ilts:

wherets is the time related to the maximum amplitude of the wavelettand the predominant
period of the signal. The predominant frequency of such a wavelgt+sl =tj,.

An important numerical issue in the present approach lies with the meshes used. Usually, the
mesh size is adjusted so that, for the frequehcy 2f(, the mesh contains about ten points per
S—wavelength. However, when using the FMM, this approach is not the most ef cient as if the same
mesh is used for all computations, the mesh density for low frequency computations is high relative
to wavelength, increasing the computational burden for the near contributions, multipole moments
and local expansions. Moreover, memory requirements are also increased. On the other hand, to
perform the synthesis, the solutions for each frequency need to be eventually de ned on the same
mesh. A simple improvement, used here, exploits a hierarchical sequence of tieshds,; :::
where the coarser mesH ¢ is adjusted (using th&0-points-per-S-wavelength criterion) to the
lowest frequency ant¥l (.1 is obtained by splitting each triangle bdf ¢ into four subtriangles.

Then, the solutions obtained on coarser med¥igs:::;M , 1 are linearly interpolated on the
nest meshM .

Time-domain response

The con guration presented in the previous Section 3.5.3 is again considered. As the Fourier syn-
thesis of the time-domain solution requires many FMM analyses at various frequencies, the results
presented in this section have been obtained on a 8-processor PC (RAM: 32GB, CPU frequency:
2.33 GHz), each FMM analysis being performed independently on a single processor. Once the
implementation validated in the frequency domain, the time-domain response is considered for
= 30 . To allow comparisons with [157], the predominant frequency of the source is set to a

relatively low value:fg = 0:25Hz (t, = 4 s andts = 5 s). In this example, only one mesh is used,
featuringN = 36; 033DOFs.
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Frequency parametrization.Results are computed for frequencies ranging betwkand
0:85 Hz (32 sample frequencies). Figure 3.22 displays the x- and z-components of spectral dis-
placement along the Ox and Oy axes for the sample frequencies. The fundamental frequency is
found abouD:30Hz (kéz) a= = 0:60)in all four shown cases. The maximum ampli cation against
the Ox axis and for the x-component is seen to be abduis (free-surface effect being removed)
and located at a higher frequency @fZ35Hz) at the left of the basin centexfa = 0:4) while
for the z-component, this maximum is also located at the left of the basin ceater( 0:2) but
with about half ampli cation (abou6:15). A uniqgue maximum is obtained for the x-component
while for the z-component, several local maxima of ampli cation are obtained. The maximum am-
pli cation (about13:3) for the x-component of the displacement against the Oy axis is obtained at
the basin center for a high frequency @fZ4 Hz) while for the z-component this maximum (about
5:2) is obtained for a frequency of abo0t685Hz. Once again, the maximum ampli cation for
the x-component is about twice the maximum ampli cation for the z-component. If we consider
a 1-D layer (having the same properties) on a half-space, the fundamental frequency is reduced to
fo= c(82)=4a = 0:125Hz (i.e. ké,z) a= = 0:25) and the maximum ampli cation is also reduced
to @ c(sl) = @ cfsz) = 3. This simple example illustrates the usefulness of 3-D models to study
seismic wave ampli cation in alluvial basins.

Figure 3.22: Propagation of an oblique (= 30 ) incident plane SV—wave in a semi-spherical
alluvial basin: x- (top) and z-component (bottom) of the FMM computed displacement against
the x (left) and y (right) coordinate for the sample frequencies.
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Displacements against time.The time-domain results obtained from spectral responses are
now presented. The x- (resp. z-) component of the FMM- and standard BEM- (results from [157])
computed displacements foR [0; 30] are plotted against the Ox axis in Fig. 3.23 (resp. 3.24). The
x- and z-components of the FMM-computed displacement £{0; 30] are plotted against the Oy
axis in Fig. 3.25.

Figure 3.23: Propagation of an oblique (= 30 ) incident plane SV—wave in a semi-spherical
alluvial basin,fo = 0:25Hz: x-component of FMM (top) and standard BEM [157] (bottom)
computed displacement along the Ox axis against time.

Figure 3.24: Propagation of an oblique (= 30 ) incident plane SV—wave in a semi-spherical
alluvial basin,fo = 0:25Hz: z-component of FMM (top) and standard BEM [157] (bottom)
computed displacement along the Ox axis against time.
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Figure 3.25: Propagation of an oblique (= 30 ) incident plane SV-wave in a semi-spherical allu-
vial basin,f o = 0:25Hz: x- (top) and z-components (bottom) of FMM computed displacement
along the Oy axis against time.

These results, visually compared with those previously published by [156], validate our im-
plementation. We note in these gures that the time domain ampli cation is lower than the spectral
ampli cation. It is due to the fact that in time domain, the propagation process also in uences the
signal duratigm To inveﬁigate this parameter, we use the de nition proposed in [205]. In Fig. 3.26,
the integrals u2dt and u2dt are displayed against time. The duration of displacement at the
basin center is estimated on that basis as ab®us (for the x-component) angt4 s (for the z-
component) while the duration of the input signal is estimated as &bost

Higher fundamental frequency

The use of the FM-BEM allows us to consider higher fundamental frequency, for which no pub-
lished results are available for comparison purposes. The following results are concerned with the
same problem of an oblique incident plane SV—wave propagating in a semi-spherical basin but for
a fundamental frequency twice highég = 0:50Hz (tp = 2 s andts = 5 s). In this example, two
meshes are usedl o, featuringN = 36; 033 DOFs and\ ; (created using a subdivision proce-
dure), featurindN = 143;451DOFs. For this computatio4 sample frequencies have been used,

for frequencies ranging betwe@mand1:70 Hz. The x- and z-components of the displacement for

t 2 [0; 30] are plotted against the Ox and Oy axes in Figs. 3.27 and 3.28, respectively.
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Figure 3.26: Estimation of the signal duration for the x- and z-components of displacement at the
basin centerf o = 0:25Hz.

Figure 3.27: Propagation of an obliqgue (= 30 ) incident plane SV—wave in a semi-spherical
alluvial basin,fo = 0:5 Hz: x- (top) and z-components (bottom) of the FMM computed dis-
placement on the Ox axis against time.
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Figure 3.28: Propagation of an oblique (= 30 ) incident plane SV—wave in a semi-spherical
alluvial basin,fo = 0:5 Hz: x- (top) and z-components (bottom) of the FMM computed dis-
placement on the Oy axis against time.

We note in these gures that doubling the fundamental frequency led to an increase of the
maximum ampli cation for all the components (see scales in Figs. 327 and 3.38). Once again,
the duration of the displacement is estimated. In Figure 3.29, the integtgldt and u2dt are
respectively displayed against time, leading to estimated values oflthdus (x-component) and
10 s (z-component) for the duration of displacement. Doubling the fundamental frequency thus
induces a double duration of the x-component but only a small increase of the duration of the z-
component.

Conclusions on the use of the present FMM for time-domain problems

Using standard BEM, the estimation of time-domain responses was limited in terms of sampling
frequency range. Introducing the FMM enlarges the capabilities of the BEM in this respect, and
time-domain responses with higher fundamental frequencies are now possible. In Section 3.6, a
computation for a fundamental frequency twice higher that in [157] was run, even though our FM-
BEM formulation is based on the full-space fundamental solutions whereas [157] use the half-space
fundamental solutions. The mesh sizes used in Section 3.6 remain relatively modest for the FMM,
the main computational limitation being currently caused by large GMRES iteration counts at the
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Figure 3.29: Estimation of the signal duration for the x- and z-components of displacement at the
basin centerf g = 0:50Hz.

higher sampling frequencies (up@(10%) for this example). The current lack of a preconditioning
strategy in the present formulation is addressed in Chapter 4.

3.7 CONCLUSIONS

In this chapter, a multi-level multi-domain fast multipole formulation has been proposed, based
on works on single-region FMM presented in Chapter 2. A BE-BE coupling strategy has been
presented. Comparisons with the analytical or previously published numerical results show the
ef ciency and accuracy of the present implementation.

The analysis of seismic wave propagation in canonical basins, for higher frequencies than in
previously published results, show the numerical ef ciency of the method and suggest that it is
suitable to deal with realistic seismological applications. The transient response of 3-D basins has
also been investigated to illustrate the large domain of application of the method.

We have seen that the method is now limited by the iteration counts and so that a precondi-
tioning strategy needs to be introduced. This issue is discussed in Section 4.1 and in Chapter 5.
Moreover, for time-domain response, the code is already competitive with time-domain methods
but could be more ef cient if the half-space fundamental solutions is used. This issue is discussed
in Section 4.3.
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The ef ciency of the elastodynamic FM-BEM presented in Chapters 2 (single-region) and 3
(multi-region) can still be improved in several ways. This chapter discusses in some details three
avenues for enhancing the computational performances. The rst one is preconditioning. A simple
strategy is presented, and its ef ciency demonstrated on some seismological examples (diffrac-
tion of plane waves by canyons and basins). The second one consists in reducing the number of
necessary multipole moments. The third one is based on seeking a multipole expansion for the
elastodynamic half-space fundamental solutions. The last two sections are of a preliminary nature,
as these ideas are not implemented at the time of this writing.

4.1 PRECONDITIONING STRATEGY

In Chapters 2 and 3, it has been shown that the major limitation of the present FM-BEM iterative
solver is the large number of iterations required to achieve convergence. The main limiting factor
for the size of the studied examples was the very high iteration counts reached, rather than the CPU
time per iteration or the memory requirement. The iteration count has been observed to increase
whenevem is increased (with xed ) or! is increased (with xed\ ). Moreover, it seems that

basin problems are more badly conditioned that canyon problems. For example for the case of the
diffraction of a vertically incident plane P—wave by a semi-spherical canyon of Section 2.6.3, a
problem withN = 774; 180 DOFs requiresl59 iterations. For the basin problems presented in
Section 3.5, in the case of the diffraction of a vertically incident plane P-wave by a semi-spherical
alluvial basin,325 iterations are required for a problem featuring oNly= 190; 299 DOFs. A
preconditioning strategy is clearly needed to improve convergence properties for the larger models.

4.1.1 General considerations on preconditioning

Preconditioning strategies for Krylov methods. The convergence of Krylov methods (as GM-
RES) depends on the eigenvalue distribution of the system matrix [179]. Consider the linear system:

AX = b; 4.1)

whereA is the coef cient matrixbis the right-hand side vector ands the vector of unknowns. A
left preconditioning strategy consists of solving the system

M 1Aax =M 1b;

instead of (4.1), wher® is the preconditioning matrix or preconditioner.right preconditioning
strategy consists of considering the system

AM 1y = b; withMx = y:
Split preconditioners can also be de ned:
M, AM gty = M| 'b; with Mgx = y:
The goal of a preconditioning strategy is to lower the condition number of the original matrix, i.e.:

M Ay (A)yor (AM 1 (A) or (M AMRY)  (A)
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where the condition number of a matr¥ is de ned as (X) = jjX 1jjjjXjj in terms of a
matrix normjj:jj. Moreover, a key requirement is that the computation of the preconditioning
matrix M 1 has to be low CPU-consuming and that the application of the opdvhtdrhas to be

ef cient because it is applied at each iteration. The theoretical best left- or right- preconditioner is
M = A but it requires to invert the original matriX, and hence does not bring any computational
advantage.

Preconditioning strategies in the context of the FMM. When using the FMM, the design

of robust preconditioners is an issue because the complete system matrix is not explicitly assem-
blied. The only explicitly available matrix is the matrik"¢@" into which the near contributions

are assembled (see eq. (2.17) and Section 2.4.6). The determination of an optimal preconditioner
in elastodynamics is, to the author's view, a largely open issue. In [90], a block-diagonal precon-
ditioner is used, but problem sizes of at mdst= O(10%) is considered. In electromagnetism
where the FMM is more developed, this is a very active research issue. The simplest preconditioner
is the one wheréM collects only the diagonal entries &f. The introduction of this simple pre-
conditioner essentially amounts to scaling the equations. As scaling factors are already de ned in
Section 3.4.3, no signi cant improvement was expected, and none materialized upon testing this
approach. A second possibility consists in using an incomplete LU factorization with threshold.
In [194], this method has been successfully applied to various electromagnetic scattering problems,
in conjunction with the FMM. A third preconditioner previously implemented for electromagnetic
FMM is based on a Sparse Approximate Inverse (SPAR ofie ned as the matrid minimizing

jil " MAjjg subject to sparsity constrains [7]. Fourth, an embedded iterative scheme that com-
bines nested GMRES solvers with different fast multipole computations is presented in [40]. In that
work, the exible GMRES (FGMRES [178]) and an inner-outer scheme are used: the matrix-vector
product in the outer solver is done with an accurate FMM whereas in the inner solver it is done with
a low-accuracy FMM preconditioned with SPAI. This method is shown to be ef cient for problems
featuring up toN = O(10°) DOFs.

4.1.2 Preconditioning strategy: use of the near contributions matrix

Since the de nition of an ef cient preconditioning is a big task, and due to time constrains, we have
tried to develop a simple but ef cient preconditioner. Itis just a rst step towards the development

of an ef cient preconditioning strategy and for the author, an exhaustive study needs to be done on
this subject. The idea used in the present work is based on nested GMRES solvers in an inner-outer
scheme where the inner GMRES solves preconditioning linear systems bakktd-oK "*@ used

as right preconditioner.

Flexible GMRES. For the de nition of our inner-outer scheme, the exible variant of GMRES is
used [178]. Before presenting the Flexible GMRES (FGMRES), we recall the GMRES algorithm
with right preconditioning, in Algorithm 4.1 (with the stopping criteria of GMRE$n) the dimen-

sion of the Krylov subspaces used for the restarted GMRESVgntthe orthonormal basis of the
Krylov subspace). In this algorithm, the same preconditioner is used at each step and so the vectors
z; = M 1ly; are not stored.
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ro=Db Axo, =jirojjz2,v1= ro=
while jjrojj " (ijAjjij Xolj * jjbj) do
forj =1:::m do
z=M 1y
w= Az
fori=1:::) do
hij =(w;vi)
W= W hi;j Vi
end for
hj+1j = Jiwjj2, Vi+1 = w=hjiq
Vm =[vy;ii5Vm b Hm = fhijor i j+1:1 ) m
end for
ym = argminjj €1 HmYji2, Xm = Xo+ M Viym
X0 = Xm
ro=b AXo, =jjrojjz2,vi=ro=
end while

Algorithm 4.1: GMRES(m) with right preconditioning.

The exible GMRES is based on the same principle than the right preconditioned GMRES but
additionally allows to vary the preconditioner at each step. The only difference is that the vectors
z; = M 1vj are now stored (see Algorithm 4.2).

ro=b AXxo, = jjrojj2,V1= ro=
while jjrofj " (i Alili Xolj + jjbj) do
forj =1:::m do
Zj = Mj 1Vj
w = Az;
fori=1:::j do
hij =(w;vi)
w=w hi;j Vi
end for
hj+1 = Jjwjj2, Vi+1 = W=hjig

end for
Ym = argminjj €1 HmYijj2, Xm = Xo+ ZmYm
ro=Db AXxo, =jjrojj2,Vv1= ro=

end while

Algorithm 4.2: FGMRES(m) with right preconditioning.

Neither GMRES with right preconditioning nor FGMRES require explicit formation of the
preconditioned matrif 1A. As a result, preconditioning systefily z; = v; may themselves be
solved using an iterative solver such as GMRES. But, for GMRES with right preconditioning the
matrixM 1 needs to be explicitly formed to compuie Vi ym.
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Preconditioning strategy. The preconditioning strategy implemented to speed up the conver-
gence of the present FM-BEM is based on using two nested GMRES solvers, with the inner solver
applied for the choice of preconditioning matfix = K "¢@" (see Algorithm 4.3). In practice,

the FGMRES routingPackfgmres.f (see Appendix C and [220]) implementing Algorithm 4.2 is
used, withM; = K"®®"and all system#/1;z = v; solved using GMRES with relative tolerance
“nner = 10 1. The advantage of this preconditioning strategy is that the computation of the pre-
conditioner is not CPU-consuming since the sparse m#tfi®"is already computed and stored.

The matrix-vector product needed for the inner GMRES solver takes advantage of the structure
of the computation of the near contributions and is accelerated using the BLAS library [218] (see
Section 2.4.6).

Outer solver (FGMRES)
fork=1;::: do
Matrix-vector product: FMM
Preconditioninginner solver (GMRES)
fori=1;::: do
Matrix-vector product: multiply by the sparse matAXea
No preconditioning
end for
end for

Algorithm 4.3: Inner-outer scheme used as preconditioning strategy.

4.1.3 Ef ciency of this preconditioning strategy on seismology-oriented examples

The ef ciency of this preconditioning strategy is checked on various seismology-oriented problems:
diffraction of plane waves in canyons or alluvial basins. In particular, all results of Chapter 5 have
been obtained after having implemented the FGMRES-based preconditioner, and are thus presented
with and without preconditioning. This illustrates the improvement brought by preconditioning on

a large set of examples with various geometries, problem sizes and incident plane waves. In this
section, a selection of these results is presented and discussed to demonstrate the ef ciency of our
preconditioning strategy.

Problem de nition. Two examples are considered. The rst one concerns the scattering of an
oblique ( = 30 ) incident plane P—wave by a semi-spherical canyon of raai(f5g. 4.1) with
(1) = 0:25. The free surface lies inside a disk of radiDs= 5a and the mesh featurdé =
111; 237DOFs.
The second one concerns the scattering of an oblique 30 ) incident plane P-wave by a
semi-spherical basin of radias(Fig. 4.2). The mechanical parameters are:

@ =0:25 @=03W: @=0:60,; @ =0:3

The free surface lies inside a disk of radiDs= 5a and the mesh featuré$é = 190; 299 DOFs.
The non-dimensional frequency is sek@)) a= =2 for both examples.
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Figure 4.1: Diffraction of an oblique incident plane P—wave by a semi-spherical canyon: notation.

Figure 4.2: Diffraction of an oblique incident plane P—wave by a semi-spherical basin: notation.

Ef ciency of the preconditioning strategy. In Table 4.1, the number of iterations and total
CPU time without preconditioning are given for the two examples. The cumulative number of
inner iterations, the number of outer iterations and the CPU time required for the complete solution
procedure are also given, for the two preconditioned problems. The tolerance is'ggi at

10 1 for the inner solver and is stillouer = 10 2 for the outer solver. No restart is used for

the inner solver, while the outer solver is restarted evaryg 50 iterations. The rst remark is

that for the two cases, the number of outer iterations is greatly reduced. Because of the use of an
inner-outer scheme, the ef ciency of the preconditioner should however not be evaluated solely by
comparing the number of iterations without preconditioning to the number of outer iterations with
preconditioning. Our preconditioning strategy involves inner iterations, which need to be taken into
account for evaluating its overall ef ciency. For the canyon problem, the total number of inner
iterations is larger than the iteration count without preconditioning but, because the matrix-vector
product in the inner solver is faster than that in the outer solver, the cumulative CPU time is reduced.
For the basin problem, the total number of inner iterations is smaller than the number of iterations
without preconditioning, resulting in a more substantial reduction of the total CPU time.

In uence of the tolerance used for the convergence of the inner solver.  An important pa-
rameter in our inner-outer scheme is the tolerdhgR: used for the convergence of the inner GM-
RES. To study the in uence of this parametgfine, is varied from5 10 2to510 1. The (inner and
outer) iteration counts and total CPU time are given in Table 4.2. If the precigipis decreased,

the total number of inner iterations is reduced while the number of outer iterations is increased.



4.1 Preconditioning strategy 99

Table 4.1: Diffraction of an incident plane wave by a semi-spherical canyon and basin: itera-
tion counts and CPU time (with and without preconditioning).

without prec. with prec.
nbiter. CPUtime | nbiter. (inner) nbiter. (outer) CPU time
canyon problem 43 3P0 70 17 2536%0
basin problem) 388 592700 231 26 h30%B4%0

Since outer iterations are more CPU-consuming than inner iterations, a good compromise between
the number of outer iterations and the number of inner iterations need to be achieved to have an
ef cient preconditioning strategy. The optimal value for this problemijiger = 10 1. But, this

value depends on the problem size (and so the ratio between the CPU time per inner iteration and
the CPU time per outer iteration), the recommended value, which will be used in the following, is
"=10 1.

Table 4.2: Diffraction of an incident plane wave by a semi-spherical basin: in uence of the toler-
ance"inner Used for the convergence of the inner solver.

"inner | Nb iter. (inner) nbiter. (outer) CPU time
510 2 338 25 3112%34%0
810 2 248 25 h35%43%0
110 1 231 26 h30%B4%0
3101 164 41 h50%4%0
510 1 171 58 $H31%3°

4.1.4 Conclusions on the preconditioning strategy

A simple and ef cient preconditioning strategy has proposed and implemented in this section. This
strategy is shown to be ef cient on canyon problems and more on basin problems (which are more
ill-conditioned). A more exhaustive study on the ef ciency of this preconditioning strategy accord-
ing to the geometry, non-dimensional frequency, incident plane waves is given in Chapter 5. The
examples presented in Chapter 5 show that for canyon and basin problems featuring more than
N = O(10°) DOFs, this preconditioning strategy is ef cient. Moreover, if the non-dimensional
frequency increases, the iteration count increases (and also the total CPU time) but lower if the pre-
conditioning strategy is used. The de nition of an optimal preconditioning strategy is a key point
to increase the ef ciency of the elastodynamic FM-BEM. We think that further study is still needed
on this subject. Due to time constrains, some features of the present preconditioning strategy could
not be investigated. For example, the restart parameter for both inner and outer solvers is expected
to have an in uence on the ef ciency of our preconditioning strategy. Another promising avenue
consists in introducing a threshold on the entrie& 8f" so as to retain only the largest ones and
makeM sparser than the current choige = K "¢2" Moreover, a comparative study with the other
usual preconditioning approaches used in electromagnetic FMM (incomplete LU, SPAI, inner-outer
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GMRES with two embedded FMM using various level of accuracy) is expected to bring worthwhile
insight on this issue.

4.2 IMPROVED MULTIPOLE FORMULATION

After having de ned a preconditioning strategy to reduce the total CPU time, the aim of this section
is to give some directions to improve the elastodynamic multipole formulation presented in Chap-
ters 2 and 3. The idea is to reduce the number of components stored for egs. (2.20a, 2.21a) from
three (using the Cartesian coordinates) to two (using an appropriate system of coordinates).

4.2.1 Formulation with two components for RSt

The multipole momenR S is de ned by
Z
. 1 e
RINSG)= ~ a &% o ta(y)eksSly Yolds, (4.2)
y

The only part which is dependent of the three Cartesian coordinates in eq. (4.2) is the fgctor
ka Sk8a. Theideato reduce the number of multipole moments is to use the spherical orthonormal
frame(8(; );e ;e ) (Fig.4.3) instead of the Cartesian system. With this notation, one has

I 8§ 8§=e e +e e
Because is a vector on the unit sphere, it is written:
8§=sin cos e;+sin sSin e;+cos e3

where and are the angular spherical coordinates de ned in Section 2.4.3. As a result, eq. (4.2)
can be reformulated with only two components:

RSUSG) =T [uy)e JeksHO vods, (432
S@1\Cy

RSY(8,G) = 1 [t(y):e JeksS 0 Yods,: (4.3b)
@\Cy

Figure 4.3: Spherical coordinates on the unit sphere.
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The Cartesian components@f, e being given by

D

=COS COS e;+cos sin e, sSin ez (4.4)

(0]

= sin e;+cos ey

one has:

t(y):e ty(y)cos cos + ty(y)cos sin tz(y)sin ;
t(y).e = ty(y)sin + ty(y)cos:

This formulation with two moments is similar to the one proposed in electromagnetism by Collino
and Millot [51] and used by Sylvand [200].

4.2.2 Formulation with two components for RS

The same type of reformulation can be written for the multipole moment
z

RM(SG)= ks w§ + k& 2884 o, Wi (y)eksl Yods,  (4.5)
Cy
Writting the terms under the integral using the spherical coordin@tes );e ;e ), it appears
that:
h i
(§nju +(suidn  25ui§n; 8= (§nj)(u:e )+(’Siuig(n:e ) e _
i
+ (§nj)(ue )+ (siui)(ne ) e

So, the multipole moment eq. (4.5) can be reformulated:
z h i
RS(8G) = iks §ni(y) u(y)+ sui(y) n(y) e €<s¥V Yolds,  (4.6a)
z%'%y, i
RSY(8,G)= iks §Ni(y) u(y)+ Sui(y) n(y) e ¥s*0V Yolds, (4.6
@ \C

y

4.2.3 Modi ed FMM algorithm with minimal number of moments

Using this new formulation, the computation of the multipole moments is done using eq. (4.3a,b)
(resp. eq. (4.6a,b)) instead of eq. (2.21a) (resp. eg. (2.20a)). The transfer pass is unchanged except
that the operation is performed separately on the two components (4.3a,b) (resp. (4.6a,b)) and
so two local expansions are computed instead of three. For the nal computation of the “FM”
contributions, eq. (2.25), the local expansions are written in Cartesian coordinates:

LS (8;G)= L™ (8;G)e +L> (8;G)e with = ut:

The dif culty when using this formulation is the de nition of the direct (resp. inverse) extrapola-
tions. In [200], in the case of electromagnetism, some simple ideas are given to easily adapt the
extrapolation procedure of Section 2.4.4 to such con gurations. Numerical experiments have to be
performed to de ne an adequate extrapolation procedure. The dif culty is due to the fact that, with
the formulation with two multipole moments(y):e andt(y):e depend ors. So, to be able to

reuse the extrapolation procedure de ned in Section 2.4.4, the terms dependiramdn need to

be of nite bandwidth.
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4.2.4 Conclusions on the improved multipole formulation

With these simple changes of coordinates, the total number of multipole moments (and hence of
local expansions) is reduced fra8rto 6. As a result, the memory requirements and CPU time per
iteration are expected to be reduced in the same proportion. Due to time constraints, this improve-
ment is not currently implemented, but it will be in the future.

4.3 FORMULATION OF MULTIPOLE EXPANSIONS OF THE HALF-SPACE FUNDA-
MENTAL SOLUTIONS

The last topic discussed in this chapter is concerned with improving the ef ciency of the elastody-
namic FM-BEM applied to semi-in nite media. Instead of using the elastic full-space fundamental
solutions, the idea is to use the elastic half-space fundamental solutions that satisfy a traction-free
boundary condition, thus avoiding any BEM discretization on the free surface. But, unlike the full-
space fundamental solutions, the elastic half-space fundamental solutions are neither derivatives of
the Helmholtz fundamental solution norbfr. As a result, multipole expansions of the elastic half-
space fundamental solutions cannot be obtained in a simple way, and are not currently known. In
this section, the formulation of multipole expansions of the elastic half-space fundamental solutions
are presented and some ideas for the numerical implementation are given.

4.3.1 Computation of single-layer potential

Considering the evaluation of single-layer elastodynamic potentials of the form
z

v(x) = ) UT(x;y)p(y) dBy; 4.7)

whereB is a surface or a volume embedded in the lower half-space0 (Fig. 4.4), the densitp
denotes a traction distribution (over a surface) or a body force distributiokd @r¢ly) denotes the
half-space elastodynamic fundamental solution, which satis es a traction-free condition on the free
surface, i.e.:

T(x;y)=e3C:ryu(x;y)=0 (y3=0):

The starting point is to decompobx ;y) as
U(x;y)= Ua (x;y)+ Uz (X;y) + Uc(X;y);

whereU ; is the elastic full-space fundamental solutith, is the image full-space fundamental
solution, corresponding to a point source applied at the mirror image source poird, aiscthe
complementary fundamental solution. The single-layer potential (4.7) can accordingly be set, using
obvious notation, in the form

V(X) = vi (X)+ v (X)+ ve(X):

The contributions/; (x) andv; (x) can be evaluated using the “standard” FMM associated with
the diagonal form-based decomposition of the full-space fundamental solution. Attention is there-
fore directed towards the contributiar(x) involving the complementary fundamental solution.
The rst step is to formulaté) ¢ in a form which enables a “fast” computation.
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Figure 4.4: Multipole expansions of the half-space fundamental solutions: notations.

4.3.2 Derivation in the Fourier space

The method to formulate the complementary fundamental solution, similar to the method to de ne
low frequency FMMs [61, 100], is based on a Fourier transform with respect to the two spatial
coordinates parallel to the free-space, y£Yy» here. The spatial coordinatgg; y») are associated

to transformed coordinat€k; k») in the Fourier space. The Fourier transform is de ned by

1 .
Olkakaiys) = 7 @ kit y2ka) (s yo; ya) dys dys:

Full-space fundamental solution. Even though this formulation is not necessary in the FMM
computation ofvq , the full-space fundamental solutiofts in the Fourier space is needed for
nding the complementary fundamental solutidrz. The free-space fundamental solutién
associated with a point forde applied atx satis es the elastodynamic equation (1.10), which
becomes in the Fourier space

Al + B(}i + Coio + (y3 x3)F =0; (4.8)
where the prime symbol denotes differentiation with respegs tand having set
2 3
( k2+k3) k2 kiko 0
Az—g k2 ( K2+ k%) K2 0 g;
0 0 ( K2+ k2
2 3 2 3
0 0 iky 0O oO
B=-90 o0 kb c=-90 0 &;
ikg iky O 0 0 +1

withk? = k2 + k3and =1 2 . The characteristic polynomi&l(s) = det A + sB + sC

of the differential equation (4.8) has two roosg; = k? k2 (double) ands3 = k? k3 (simple).
As aresultft; has a priori the form

0, = U;e sp(ys X3) 4+ PeSP(y3 X3) 4 ( U*S" + y3V *S')e ss(ys X3)
+(U o+ y3V S)ess(Y3 X3) (4.9)
in both regiong/s > x 3 andys < X 3. The next step consists in settitg in the form

01 =07 H(ys Xs3)+ @3 H( ys+ X3); (4.10)
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valid for all y3, whereH is the Heaviside step function ai , &; each have the form (4.9).
Sincett; must in addition decay ag ! 1, it follows thatU , and(U g + y3V g) must be
set to zero i , and likewiseU 5 and(U § + y3V §) are zero imd, , i.e. one seek@; of the
form (4.10) with

07 = Uje P03 X £ (UL + yaV §)e SsOa X3, (4.11a)
01 — UPesp(y3 X3) +(US + ySVS)eSS(ys XS): (411b)

Ne>%t0, enforcing tha®] and®, thus de ned satisfy the homogeneous equatiah; + B Oi +
Ca,; =0, one nds that they must be of the form

01 = QTE(ys)E( Xx3)U7;

(4.12)
&, = Q E(ys)E( x3)Uy;

whereU] andU ; are 3-vectors of constants, and havingEét) = Diag €%!; e5!; ! and

2 3 2 3
i 0 iki=sp [ 0 iki=sp
QF = 9 0 i ikapg; Q = ? 0 i ik2:Spg:
ki=ss Kkz=Ss 1 ki=ss ko=ss 1

The six constants involved in expressions (4.120bf, @, are determined by enforcing (i) conti-
nuity of the displacement g = x3, i.e.:

01 (Y3 = X3) = 07 (¥3= X3) (4.13)
and (ii) satisfaction of equation (4.8) by (4.10), i.e.:
Al +BO) +CO7 +F (y3=x3)=0=) C(0;° 0,)(ya=x3)+ F =0: (4.14)

This leads, after some manipulation, to with

Ui =z,'F; U; =(Q) 'Q"U7; (4.15)
2 3
LG KD ikake ks
lez Tsk% ik1ko I(kg k%) kZSSg:

ik1Ss ikoss SpSs

Summing up, equations (4.12) and (4.15) de ne the free-space fundamental solution expressed in
coordinategks; ko; y3). The stress vector on free surfage= 0 associated witlit; is then given
by
pi =(DQ* +CQ" )E( x3)Z,'F
having set = Diag ss; Ss; sp and
2

ik
p= % o 0 kb
iki—2L ik,—L 0
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This corresponds to the following explicit expression, in Fourier space:
2 3
(Zk% k2) 2k1k2 ikl =Ssg
ik, (2k3 K2) ik =ssbFe 5%
2ik;|_SS 2ik2$3 2k2

1

+
P1 = 5

[(p1\N]

3
2Ik% 2ik1k2 2ik1$p

2
1

v 8 Dk,  2ik2  2ikpspb Fe X
2k 2

ik; =sp ik, =sp

with givenby =k3 2k?2= (si+ k?).

Image full-space fundamental solution. Now, the image full-space fundamental solution, cor-
responding to a point sour@&F applied at the mirror image source po8i , is formulated in the
Fourier space as:
01 =Q E( ya)E( x3)Uy;
whereS = Diag 1; 1; 1 isthe matrix associated with the symmetry with respect to plare
0,U; =Z,'SF,Z; = SZ; S. Finally, sinceQ = SQ*S,0; isgiven by
01 = SQ*E( ya)E( x3)Z,'F:
Note that, from the above formula, one has
Ui (x;y)= SU1 (Sx;y):
The stress vector on the half-space boundary associated witis found to be:
P, = spi:
Before formulating the complementary fundamental solutions, we note that the superposition of
full-space and image fundamental solutions leads to:

2 0=
1
p1 + P =(1 S)p1 =ﬁ>0> 2V$e SsX3 4 VEe spxs TE
S 1
with 8 9 g o
2 ikyssz > iki=sp2
- k2 ) . l y

Complementary fundamental solution. Finally, the complementary fundamental solution in
the Fourier space solves the homogeneous Navier equation in the yggiof, i.e.

AlQc+BlOc+ C0e=0; (y; O) (4.17)

and must hence have the form (4.9) for apy 0. Moreover,tc must decay in the limit
yz3 ! 1, implying that it is in fact of the form (4.11b). On enforcing next that sd¢hac-
tually solves (4.17), one obtains

Gc=Q E( y3)Uc
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where the 3-vectdd ¢ of constants is to be determined from the free-surface condition

p1 +P1 +Pc =0 (ys=0):

Enforcing this condition, the complementary fundamental solution takes the form

8 9
2 2ky8s= n 0

Uc= ZCE( X3)UI ; Zc= S 2k233> 2kisp  2KySp

with U] given by (4.15), and is thus found after some manipulation to have the explicit expression

Gc=Q E( Y3)ZcE( x3)Z,'F
= ipg 2Vte S¥s+ Ve Y3 2vQe SXs 4+ Ve SPXe

= (4.18)

with denedby = 2 4k2spss, V2V ? as given by (4.16), and

8 9 8 9
2 ikiss= 2 iki=sp=
VT:25p> ik283> ) V= Sp> ik2=Sp>
ToK2 B

Note that the unique (real, positive) valiig of k such that (kg) =0 is the Rayleigh wavenumber
(i.e. kg is, as expected, a pole 6t), and that one hds <k s <k r. Note also that (4.18) contains
products of functions ofz andxs, which is an essential feature for fast evaluation of (4.7).
Finally, the complementary Green&nsorQ ¢ (expressed in Fourier space) is such thaf =
G ¢, which implies
P

S
Oc= —"5 2Vte 53+ Vi e ¥ 2v0e SsXs 4+ v 0 spXa

T,
, :
kS

4.3.3 Half-space fundamental solution

Once the complementary fundamental solution obtained in the Fourier $pace;y) is given in
physical coordinates in terms of an inverse Fourier transform:

z
Uc(x;y)=  elalbn xarkelz XD o(ky; kz; ya; x3) dkadke:
R2

On introducing polar coordinates in the Fourier space, i.e. sefkindo) = k(cos; sin ), one
gets

Z +1 Z 2 )

Uc(x;y) = gkicos (yr xa)rsin vz x2)) ) (k cos;k sin ;y 3;x3)kd dk (4.19)
0 0

Importantly, the integrand of (4.19) involves the product of a functiox ahd a function of (see
remark after (4.18)).
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Standard (Hankel transform) form. The angular integrations in (4.19) and in similar formulae
available forU (x;y) can be performed analytically by means of integral representation formulae
for Bessel functions, e.g.: 7

172

Jo(2) = — €?%s d:

2
This leads to a previously proposed expressiad (X ; y) in Hankel transform form, see e.g. [108].
However, this operation yields formulae that no longer involve products of functiopsaofix,
making them unsuitable for the development of fast BEMs.

Multipole-expansion form. Letx? andy® denote local origins af -clusters ang -clusters. The
product form achieved by the Fourier-space representation (4.18) permits a decomposition reminis-
cent of the diagonal form:

1 X Z,12Z,

” 5 eik(COS (y1 YE)"'Sin (y2 y(z)))eisa(YS yg) Uab(k, : X01y0)
S

Uc(x;y) =
ab=L,T 0 0

glk(cos (x3 xq)+sin - (xJ x2)) @ isb(X3 x39) d dk

where the transfer (tensor) functiobgy(k; ; x°;y°) are de ned by

4aksp

Vr(k; )V?—T(k; )eik(cos (v x9+sin - (v9 xg))e ssyge SsX$

Urr(k; ; x%y% =

Uri(k; ; x%y0) = ks PV ik IV OT(k; yekleos (¥ xtsin (v3 x3) g ss¥§g spx$
Uir(k; ; x%y0) = ks PVL(k; )W T (k; )ekleos (2 xP+sin (v3 x3) g spy§g Ssx3
k 25p

U (k; 5 x%y% = Vi(k; )V T(k; yeklcos (1 xisin (3 G g seyie sexd

4.3.4 Numerical implementation

The evaluation of single-layer potentials of the form (4.7) typically involves three successive oper-
ations:

1. Computation of multipole moments
z

R a(k, 'yo) = eik(COS (y1 y?)+sin (y2 yg))e isa(ys yg) p(y) dBy (a: L ,T)
B

2. Transfer

X
Lu(k; ;x%) = Uan(ki 5 X%yORa(k; 1y%  (b=L;T)
aL ;T
3. Evaluation at observation points (numerical quadrature in Fourier space)
X 4142
VC(X): W(k, )eik(cos (X(l) X1)+sin (Xg Xz))e isp(x3 Xg) Lb(k, ;Xo)d dk
bL ;T 0 0
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A key numerical issue is concerned with the de nition of an ef cient numerical quadrature in
Fourier space to perform the integration involved in the third step (which plays the same role as the
integration over the unit sphere involved in multipole expansions of free-space fundamental solu-
tions). The method proposed to use is based on a singular value decomposition (SVD). This method
is used for example in [60] and details on this decomposition and its numerical implementation are
given in [210].

4.3.5 Conclusions on the formulation of multipole expansion of the half-space fun-
damental solutions

The use of the elastic half-space fundamental solutions in the FM-BEM is a very promising avenue
for enhancing the computational performances of 3-D elastodynamic BEM. However, the multipole
expansions of such fundamental solutions cannot be obtained in a simple way, and are not available
in the current literature. In this section, in an effort towards bridging this gap, a formulation of
the multipole expansions of the elastic half-space fundamental solutions was presented, in the form
of a Fourier 2-D integral whose density is the product of a functior ahd a function ofy, i.e.

has the desired structure for de ning fast BEMs. The derivation follows to a substantial extent that
of the half-space fundamental solution expressed in terms of Hankel transforms. It is important
to emphasize that exploitation of the proposed decomposition for fast BEM purposes still requires
careful investigation and implementation of numerical quadrature methods along the lines of [60]
and [210]. This essential step could not be done due to time limitations, but will be undertaken in
the near future.

4.4 CONCLUSIONS

The introduction of the FM-BEM presented in Chapters 2 and 3 has substantially expanded the
capabilities of 3-D elastodynamic BEM. This chapter has then presented, three possible ways to
further improve the method. First, an ef cient preconditioning strategy is presented and some pos-
sible improvements are given (Section 4.1). Then, the reduction of necessary moments is presented
in Section 4.2. While not currently operational, this modi cation is simple to implement. Numer-
ical experiments are additionally required to check the accuracy of the extrapolation pass in this
new formulation. Last, the elastodynamic half-space fundamental solution has been formulated in a
form suitable for FM-BEM. This is a promising avenue, but the numerical implementation requires
the development of an ef cient numerical quadrature for computing the inverse Fourier transform.
Moreover, the complete implementation of this new FM-BEM will imply various modi cations with
respect to the present FM-BEM based on the elastic full-space fundamental solutions. The rst step
is to check that the actual computation of the half-space fundamental solutiof ¢fmurce points

andN observation points) presented in Section 4.3 has a complexity loweD{iht).
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Part | of this dissertation was devoted to develop an ef cient solver for frequency-domain elas-
todynamics using FM-accelerated BEM. Taking advantage of published recent developments for
Helmholtz and Maxwell equations, the Fast Multipole Method has been successfully extended to
elastodynamics in the frequency domain in Chapter 2. Combined with the BEM formulation, it
permits to reduce the computational burden, in both CPU time and memory requirements, for the
simulation of (e.g. seismic) wave propagation and allows to run models oRsizeO(10°) on an
ordinary PC. The accuracy of the method has been tested against exact, and previously-published
numerical, solutions. In this rst stage the formulation was limited to homogeneous media.

In Chapter 3, the ability to deal with alluvial-basin con gurations has been introduced using
a FM-based BE-BE approach suitable for 3-D piecewise-homogeneous media. Towards this end,
the single-domain FMM has been applied independently in each homogeneous sub-domain. The
accuracy of this multi-domain FM-BEM has also been extensively tested against available exact and
numerical solutions. Additionally, the method has been successfully tested for higher frequencies
and time-domain responses have been computed using Fourier synthesis.

The ef ciency of the elastodynamic FM-BEM presented in Chapter 2 and 3 can still be im-
proved in several ways. Three avenues for enhancing the computational performances have been
proposed in Chapter 4: a simple preconditioning strategy, a method to reduce the number of nec-
essary multipole moments and the formulation of a multipole expansion for the elastodynamic
half-space fundamental solutions.
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The work presented in this chapter is part of the research project “Quantitative Seismic Haz-
ard Assessment” (QSHA, 2006-2009) funded by the French National Research Agency (ANR,
http://gsha.unice.fr/). The project aims at (a) obtaining a better description of crustal structures,
(b) improving the source characterization and the determination of earthquake scenarios, (c) de-
veloping more precise modelling of seismic waves, (d) improving empirical and semi-empirical
techniques based on observed data and (e) obtaining a quantitative estimation of ground motion
based on previous information. More speci cally we have participated to the work package entitled
“Developments of numerical tools for seismic wave propagation”. Various partners are involved in
this work package, each having expertise in a speci ¢ numerical method. Because various meth-
ods are available within this group of participants ( nite difference method, nite volume method,
nite element method, spectral element method, discrete element method and boundary element
method), each one having speci ¢ advantages and limitations, comparisons in terms of numerical
accuracy and ef ciency on canonical examples were proposed as a part of the QSHA project. Four
canonical problems have been de ned for the purpose of such comparisons. semi-spherical and
semi-ellipsoidal canyons, and corresponding basins. Various wave types were proposed as incident
wave elds, in the frequency domain or in the time domain. Because of the speci city of our solver,
we have treated examples involving incident plane P— and SV-waves, in the frequency domain.
The examples treated in this framework (with and without preconditioning strategy) are presented
in this chapter. Unfortunately, comparisons with other methods are not available at the time of this
writing. Several papers nevertheless deal with some of theses cases [63, 183, 169].

5.1 DEFINITION OF CANONICAL PROBLEMS

The examples proposed in this chapter are concerned with the diffraction, by a semi-ellipsoidal
canyon (Fig. 5.1) or a semi-ellipsoidal basin (Fig. 5.2), of an oblique incident plane P— or SV-wave
of unit amplitude travelling in an elastic half-space. A right-handed Cartesian ftargez) is

de ned so that the elastic half-space occupies the re§iony;z)jz  0g. The surface of the
canyon or basin is ellipsoidal, with semiates; arespectively aligned along the coordinate direc-
tionsx;y; z. The incident plane wave travels along directsim ey +cos e, ( being de ned on

Figs. 5.1 and 5.2). The semi-ellipsoidal surface of the canyon or basin and the surrounding portion
of the free surface lying inside a disk of radiDs> a; b are discretized using boundary elements.

For each geometry, four types of incident waves are always considered: vertic@l | or oblique

( = 30 ) incident plane P—waves and vertical or oblique incident plane SV—waves. For each in-
cident plane wave, various non-dimensional frequencies are considered to show the capabilities of
the FM-BEM in the “low” or “high” frequency range. For each con guration (combining given
geometry and incident wave), the modulus of the three components of surface displacement are
displayed as isovalue plots arranged in tabular fashion, where each line corresponds to the modulus
of a displacement component and each column to a non-dimensional frequency. All results in a
given tabular set are plotted using the same color scale to emphasize the predominant components
and facilitate visual comparisons. The numerical data (humber of DOFs, leaf levels, CPU time per
iteration and iteration counts) are also given for each con guration to show the effects of the geom-
etry, incident wave and frequency on the ef ciency. The ef ciency of the preconditioning strategy
de ned in Section 4.1 is also demonstrated on this set of examples, with iteration counts with and
without preconditioning systematically provided. For a good compromise between accuracy and
CPU time per iteration, all meshes used in this chapter have a density of about ten points per S—
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wavelength. All results presented in this chapter have been obtained on a 8-processor PC (RAM:
64GB, CPU frequency: 2.33 GHz), each FMM analysis being performed independently on a single
processor.

Figure 5.1: Diffraction of an oblique incident plane P— or SV—wave by a semi-ellipsoidal canyon:
notation (top left and bottom); sample BEM mesh, Wtk 9; 642 (top right).

5.2 SEMI-SPHERICAL CANYON

Problem de nition. The rst con guration deals with a special case of semi-ellipsoidal canyon:

a semi-spherical canyon of radiaswith = 0:25. The free surface lies inside a disk of radius

D =5a. This case is studied in [183] f&pa= = 0:25; 05; 0:75; L5and in [169] forkpa= =

0:25; O5. In Figure 2.22, our results using the FMM (with = 3a) for kpa= = 0:25are seen

to be in good agreement with the results of [183, 169]. In Table 5.1, the number of NOFs

the leaf level are given for three non-dimensional frequencigsac = 0:25; 0:5; 2), together

with the CPU time per iteration recorded (without preconditioning). These data are applicable
for all the types of incident plane waves considered. When the incident plane wave is changed,
only the right-hand side is modi ed, which in turn only in uences the iteration count. The latter
will be given in the following for each wave type. We note that the two rst non-dimensional
frequencies are low (i.e. the canyon spans a fraction of P—wavelength), with the octree featuring
only two active levels'(= 3 as a result). The last example, which features four active octree levels
(" =5), is characterized by a low CPU time per iteration given the problem 4ixs fer iteration,

N =111;237).
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Figure 5.2: Diffraction of an oblique incident plane P— or SV-wave by a semi-ellipsoidal basin:
notation (top left and bottom); sample BEM mesh, With= 27; 144 (top right).

Table 5.1: Diffraction of incident plane waves by a semi-spherical canyon: computational data.

kpa= N * CPU/iter (s)
0:25| 23903 3 6:5
05 | 27,903 3 14
2 111,237 5 40

Vertical incident plane P-wave. The rst con guration is concerned with the diffraction of a
vertical ( = 0 ) incident plane P-wave. In Figure 5.4, the modulus of the x-, y- and z-components
are displayed for the three non-dimensional frequencies. Because the canyon is semi-spherical and
the incident wave is vertical, the displacement solution must be axisymmetric. The numerical re-
sults are consistent with this symmetry. We note for example the symmetry with respect to the
x = 0 (resp.y = 0) plane for the x- (resp. y-) component, while the x-component can be ob-
tained from applying a= 2 rotation to the y-component, as expected. Also, the z-component is
axisymmetric. None of these expected symmetries is embedded in the computational procedure
although this might be done for many types of symmetry, adapting the approach of [32]. When
the frequency is increased, the reduction of the wavelengths is easily observed. For these three fre-
guencies, the predominant component is the z-component. Moreover, the maximum amplitude of
the z-component occurs away from the canyon for the lower considered frequency but at the canyon
center for the two higher frequencies.
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Obligue incident plane P—wave. The diffraction of an oblique (= 30 ) incident plane P-wave

by the same semi-spherical canyon is now considered. In Figure 5.5, the modulus of the x-, y- and
z-components are displayed for the three non-dimensional frequencies. Because the direction of
propagation lies in the Oyz plane, all the components are symmetric with respectxo=th@

plane. The z-component is still predominant but the y- component is also signi cant in this case.
The maximum amplitude increases with the non-dimensional frequency Zi@mo 2:98).

Vertical incident plane SV—wave. The diffraction of a vertical ( = 0 ) incident plane SV-

wave by the same semi-spherical canyon is displayed in Figure 5.6 (modulus of the x-, y- and z-
components for the three non-dimensional frequencies). In this case, contrary to the plane P—wave
case, the displacement response is symmetrical with respect to the plan@sandy = 0 rather

than axisymmetric, and hence is fully 3-D. The y-component is predominant, with a maximum
amplitude ranging betweeh55 and3:38. For the cas&pa= = 2, the z-component also reaches

a large value and the y-component contribution is smaller than for the two other frequencies.

Obligue incident plane SV—wave. The last case is concerned with the diffraction of an oblique

( =30 )incident plane SV—wave by the same semi-spherical canyon. In Figure 5.7, the modulus
of the x-, y- and z-components are displayed for the three non-dimensional frequencies. In this
case, the y-component is predominant but the contribution of the z-component is also signi cant.
The maximum amplitude ranges betwee®5 and3:69 and is larger than for the vertical incidence.
Because the direction of propagation lies in the plane Oyz, the displacement response is symmet-
ric with respect to thex = 0 plane. As the non-dimensional frequency increases, the maximum
amplitude becomes localized in a small region near the rearyartQ) of the canyon.

Iteration counts. In Table 5.2, the iteration counts recorded for the twelve con gurations are
given. When no preconditioning strategy is used the number of iterations and CPU time for the
complete solution are given. When the preconditioning strategy of Section 4.1 is used, the total
number of inner iterations, the number of outer iterations and the cumulative CPU time are given.

The rst remark is that the iteration counts are similar for the cases of P— and S\V—waves. For
both wave types, the oblique incidence requires more iterations than the vertical incidence if no
preconditioning strategy is used. This can be explained by the lower degree of symmetry for the
oblique incidence case. This effect seems to be reduced when the preconditioning strategy is used.

As already noticed in Section 2.6.3, if the frequency increases, the iteration count also in-
creases. But, even if no preconditioning strategy is used, the iteration counts are still moderate for
canyon problems featuring aboht = O(10°) DOFs. The preconditioning strategy is however
seen to drastically reduce the number of outer iterations for high frequency problems. To empha-
size the ef ciency of the preconditioning with respect to the non-dimensional frequency, the number
of iterations without preconditioning and the number of outer iterations with preconditioning are
represented against the non-dimensional frequency in Fig. 5.3a. The increase of the number of
outer iterations with the non-dimensional frequency is seen to be slower than without precondition-
ing. The same trend is observed in Figure 5.3b, where the number of iterations is replaced by the
cumulative CPU time.
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Table 5.2: Diffraction of incident plane waves by a semi-spherical canyon: iteration counts and
CPU time (with and without preconditioning).

without prec. with prec.
nb iter. CPU timg nbiter. (inner) nb iter. (outer) CPU time

vertical P—wave

kpa= =0:25 8 4%5100 17 5 539°0

kpa= =0:5 10 616%° 25 6 629%0

kpa= =2 31 250200 65 16 235400
oblique P—wave

kpa= =0:25 9 45200 19 6 55000

kra= =0:5 13 6440 24 6 643%0

kpa= =2 43 3P0 70 17 2536%0
vertical SV—wave

kpa= =0:25 8 43500 17 5 53100

kra= =0:5 11 604% 27 6 @390

kpa= =2 38 295400 68 16 2610
oblique SV—wave

kpa= =0:25 10 500%° 19 6 52490

kpa= =0:5 13 63200 31 7 726%

kpa= =2 45  3£19%° 73 18 2704°0

(a) (b)

Figure 5.3: Number of outer iterations (a) and total CPU time (b) with or without preconditioning,
against the non-dimensional frequency, for the problem of the diffraction of an oblique incident
plane P—wave by a semi-spherical canyon.
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kea= =0:25 kea= =0:5 kpa= =2
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Figure 5.4: Diffraction of a vertical incident plane P—wave by a semi-spherical canyon: modulus
of the x- (top), y- (middle) and z- (bottom) components of displacement for the normalized
frequenciekpa= = 0:25(left),kpa= =0:5(middle) andkpa= =2 (right).
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kea= =0:25 kea= =05 kpa= =2
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Figure 5.5: Diffraction of an oblique ( = 30 ) incident plane P—wave by a semi-spherical canyon:
X- (top), y- (middle) and z- (bottom) components of displacement for the normalized frequencies
kpa= =0:25(left),kpa= =0:5(middle) anckpa= =2 (right).



5.2 Semi-spherical canyon 121
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Figure 5.6: Diffraction of a vertical incident plane SV—wave by a semi-spherical canyon: x- (top), y-
(middle) and z- (bottom) components of displacement for the normalized frequienaes=
0:25(left),kpa= = 0:5(middle) anckpa= =2 (right).
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kea= =0:25 kea= =05 kpa= =2
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Figure 5.7: Diffraction of an oblique ( = 30 ) incident plane SV—wave by a semi-spherical
canyon: x- (top), y- (middle) and z- (bottom) components of displacement for the normalized
frequenciekpa= = 0:25(left),kpa= = 0:5(middle) andkpa= =2 (right).
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5.3 SEMI-ELLIPSOIDAL CANYON

The diffraction of plane waves by a semi-ellipsoidal canyon, with semi-axes de nédt8a and

= 1=3, is now considered. The free surface lies inside a disk of rddigs8 a. In Table 5.3, the
number of DOFSN and the leaf level are given for two non-dimensional frequencigsg= =
0:25andkpa= = 2), together with the CPU time per iteration recorded (without preconditioning).
For this con guration, the largest problem featu230, 715 DOFs and the solution of this large
scale problem only takeK)5s per iteration.

Table 5.3: Diffraction of incident plane waves by a semi-ellipsoidal canyon: computational data.

kpa= N * CPU/iter (s)
0:25| 9,642 3 35
2 290715 6 105

Vertical incident plane P—wave. In Figure 5.8, the modulus of the x-, y- and z-components are
displayed for the two non-dimensional frequencies. Because of the symmetry of the canyon with
respect to thx = 0 andy = 0 planes, the results are symmetric with respect toxthe 0 and

y = 0 planes. The z-component is predominant. At the highest frequency, the maximum amplitude
is not much higher than for the lowest frequency. This maximum occurs at several places, due to
the short wavelength, whereas it was more localized for the low frequency case.

Obligue incident plane P—wave. If an oblique ( = 30 ) incident plane P—wave is considered,
the z-component is still predominant but the y-component is signi cant (Fig. 5.9). As in the semi-
spherical case, the maximum amplitude is localized on the rearypart @) of the canyon. The
maximum amplitudes are higher than in the semi-spherical @66 §nd3:28 compared t®:07
and2:98in the semi-spherical case).

Vertical incident plane SV—wave. In the case of a vertical incident plane SV-wave, the y-
component is now predominant (see Fig. 5.10) but some signi cant displacements also appear on
the z-component. Because of the vertical incidence and symmetry of the geometry, the displace-
ment response is symmetric with respect toxtre0 andy = 0 planes. The maximum amplitude is
increased between the lower and the higher frequencies and when compared to the case of a vertical
incident plane P—wave.

Oblique incident plane SV—wave. The last case considered for this geometry is concerned with
the diffraction of an oblique (= 30 ) incident plane SV—wave. In Figure 5.11, the modulus of

the x-, y- and z-displacement components are displayed for the two non-dimensional frequencies.
In that case, the y-component is predominant and the contribution of the z-component is seen to
be lower than for the vertical incidence case. The maximum amplitude is similar between the two
non-dimensional frequencies but is twice higher than for the vertical incidence. This phenomenon
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is not observed in the semi-spherical case. A possible explanation is that, because of the non-
axisymmetric of the canyon, incident waves are more trapped in one side of the canyon than in the
semi-spherical case.

Iteration counts. In Table 5.4, the iteration counts recorded for the four kinds of incident plane
waves and the two non-dimensional frequencies are given, using the same convention as in Ta-
ble 5.2. Contrary to the semi-spherical case, the four types of incident plane waves lead to similar
iteration counts even if no preconditioning is used. This can be explained by the non-axisymmetry
of the geometry. Once again, both the iteration count and the total CPU time increase with the
frequency, but this increase is slower when the preconditioning strategy is used.

The last remark is that, if the iteration counts are similar for the lower fequency cases, the num-
ber of iterations is doubled compared to the semi-spherical case (even if a preconditioning strategy
is used). The geometry seems to in uence the iteration counts. A non-axisymmetric geometry leads
to higher iteration counts than an axisymmetric geometry.

Table 5.4: Diffraction of incident plane waves by a semi-ellipsoidal canyon: iteration counts and
CPU time (with and without preconditioning).

without prec. with prec.
nbiter. CPU timg nb iter. (inner) nb iter. (outer) CPU time

vertical P—wave

kpa= =0:25 10 1940 21 6 550

kpa= = 88 2n47%5% 108 32 024270
oblique P—wave

kpa= =0:25 11 199200 27 7 1o

kpa= = 90 2n5021% 120 32 h2509°°
vertical SV—wave

kpa= =0:25 11 106 27 7 1o

kpa= = 91 215307 106 31 h22%43%0
oblique SV-wave

kpa= =0:25 11 106 27 7 10200

kpa= = 96 3n05%55% 118 32 h3004%°
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kpa= =0:25 kpa= =
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Figure 5.8: Diffraction of a vertical incident plane P—wave by a semi-ellipsoidal canyon: x- (top), y-
(middle) and z- (bottom) components of displacement for the normalized frequikenaies=
0:25(left) andkpa= =2 (right).
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kpa= =0:25 kpa= =
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Figure 5.9: Diffraction of an oblique ( = 30 ) incident plane P—-wave by a semi-ellipsoidal

canyon: x- (top), y- (middle) and z- (bottom) components of displacement for the normalized
frequenciekpa= = 0:25(left) andkpa= =2 (right).
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Figure 5.10: Diffraction of a vertical incident plane SV-wave by a semi-ellipsoidal canyon: x-
(top), y- (middle) and z- (bottom) components of displacement for the normalized frequencies
kpa= =0:25(left) andkpa= =2 (right).
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kpa= =0:25 kpa= =
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Figure 5.11: Diffraction of an oblique ( = 30 ) incident plane SV—wave by a semi-ellipsoidal
canyon: x- (top), y- (middle) and z- (bottom) components of displacement for the normalized
frequenciekpa= = 0:25(left) andkpa= =2 (right).
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5.4 SEMI-SPHERICAL BASIN

After the study of the diffraction of plane waves by canonical canyons, the following two sections
are devoted to the diffraction of plane waves by sedimentary basins. In this section, a semi-spherical
basin of radiusa is considered. The free surface lies in a disk of radius 5a. The material
parameters are® = 0:25, @ =0:3 @, @ =0:6 W and @ = 0:3. In Table 5.5, the
number of DOFsN, the leaf levels'; and ", are given for three non-dimensional frequencies
(k,(jl) a= =0:5; 1; 2), together with the CPU time per iteration recorded (without preconditioning).
Forkl(al) a= =2, the mesh featurds = 190; 299DOFs and only requirek1:3 s per iteration. The
numerical ef ciency of the present implementation of the FM-BEM is once again illustrated. The
lower CPU time per iteration for the cakél) a= = 2 than for the caské,l) a= =1 is explained

by the change of number of levels.

Table 5.5: Diffraction of incident plane waves by a semi-spherical basin: computational data.

k,(al) a= N “1; 2 CPU/iter (s)
05 | 17,502 3;3 73
1 90,057 4;3 40
2 190,299 5;4 113

Vertical incident plane P—wave. First, the diffraction of a vertical incident plane P-wave is
considered. In Chapter 3, in Figure 3.12 our results using the FMM are shown to be in good
agreement with previously published ones [183, 63]k1§}a: = 0:5 (resp. kg) a= =0:5).In

Figure 5.13, the modulus of the x-, y- and z-components of the surface displacements are displayed
for the three non-dimensional frequencies. Due to the axisymmetry of the basin, the x- and y-
components are symmetric with respect to xhe 0 andy = 0 planes and the y-component is
obtained from applying a= 2 rotation to the x-component, as expected. The maximum amplitude
occurs inside the basin §) and increases with the frequency. Comparing with the amplitudes in
the canyon case in Section 5.2, kg') a= = 2, this maximum is more than doubleét{3 instead

of 2:79in the canyon case). Moreover, on the at surface, outside of the basin, the modulus of the
z-component is abolB0% (or less) of the maximum amplitude whereas in the canyon case, this
value is higher (at lea$i0%). As expected, the waves are trapped inside the sedimentary basin and
only a small faction propagates outwards.

Oblique incident plane P—wave. If we consider an oblique plane P—wave (Fig. 5.14), the z-
component is still predominant but the y-component contributes more than in the vertical incident
case and the maximum amplitudes are lower than in the vertical incident case (for eXaBiple
instead 0f6:13 for kél) a= = 2). As the frequency increases, so does the contribution of the y-
component and the maximum on the z-component becomes localized in a small region inside the
basin. But, comparing the results with those obtained in Section 5.2, the maximum amplitude is
about twice higher than in the canyon cas8linstead o2:98in the canyon case f(kt{;,l) a= =2).

The incident waves are trapped in the basin and the multiple re ections lead to higher amplitude.
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Vertical incident plane SV—wave. In the case of a vertical incident plane SV-wave (Fig. 5.15),

the y-component is predominant. The maximum amplitude increases with the frequency. Doing
some comparisons with the semi-spherical case (Section 5.2), it is seen that the maximum amplitude
is about twice higher than in the canyon cag8Qinstead of3:38in the canyon case fckr,(;l) a= =

2), and also that this maximum is localized inside the basis) nstead of occurring at several
places outside the cavity (on the planar surface surrounding it) in the canyon case.

Obligue incident plane SV—wave. In the case of an oblique incident plane SV—-wave (Fig. 5.16),
the y-component is predominant. Compared to the vertical incident case, the maximum amplitude

is increased&:65 instead o0f7:90 in the vertical case de,(jl) a= = 2) and this maximum is more
localized in the rear pary( 0) of the basin. The maximum amplitude ﬂog) a= =2 ismore

than twice higher than in the semi-spherical cany®6ginstead 0f3:63).

Iteration counts. In Table 5.6, the iteration counts recorded for the twelve studied con gurations
are given. A rst remark is that the number of iterations, if the incident wave is oblique, is larger
than if the incident wave is vertical. As in Section 5.2, this is presumably due to the lower degree
of symmetry for the oblique incidence case and possibly the in uence of wave conversions. This
effect seems to be reduced when the preconditioning strategy is used. A comparison with the
iteration counts obtained for the semi-spherical canyon shows that the iteration count is about ten
times higher in the basin case if no preconditioning strategy is used. Contrary to the canyon case, to
deal with basin problems at higher frequency, a preconditioning strategy is necessary to overcome
the bad conditioning. If such approach is used, the number of outer iterations for the basin problems
is only twice that for the canyon.

Once again, the iteration count increases with the frequency (even if the preconditioning strat-
egy is used). But, as in the canyon case, for problems featuring &{&0?) DOFs, the precon-
ditioning strategy is very ef cient. The total CPU is reduced by at@fi#for the problem of the

propagation of an oblique incident plane P—wa\/eéata: = 2. To emphasize the ef ciency of the
preconditioning strategy, the number of iterations without preconditioning and the number of outer
iterations with preconditioning are plotted against the non-dimensional frequency in Fig. 5.12a.
The increase of the number of outer iterations with the frequency is seen to be slower than without
preconditioning. The same trend is observed in Figure 5.12b, where the number of outer iterations
is replaced by the total CPU time.
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Table 5.6: Diffraction of incident plane waves by a semi-spherical basin: iteration counts and CPU
time (with and without preconditioning).

without prec. with prec.
nbiter. CPU timg nb iter. (inner) nb iter. (outer) CPU time

vertical P-wave

kMa= =0:5| 28 €070 65 10 1 200

kPa= =1 52 4501% 122 13 555100

kPa= =2 325 @n55%55%0 223 25  ;m25%25%
oblique P—wave

kMa= =055 31 U0 80 12 54500

kKPa= =1 78 1n01%25%° 157 16 h1055%°

kMa= =2 388 5927 231 26 h30%54%
vertical SV—-wave

kPa= =05 24 4530 73 11 9700

kMa= =1 50 42400 138 15 h07%20%

kPa= =2 307 @24%2%0 215 25 240500
oblique SV-wave

kMa= =05 34 6050 82 12 6040

kPa= =1 82 10182 153 16 h12%4%

kMa= =2 418  &h44240 252 29  306%57%°

(a) (b)

Figure 5.12: Number of outer iterations (a) and total CPU time (b) with or without preconditioning,
against the non-dimensional frequency, for the problem of the diffraction of an oblique incident
plane P—wave by a semi-spherical basin.
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kl(jl)a: =0:5 ké,l)a: = k,(jl)a: =

Ui

Uy

Uy

Figure 5.13: Diffaction of a vertical incident plane P—wave by a semi-spherical basin: x- (top), y-
(middle) and z- (bottom) components of surface displacement for the normalized frequencies
kpa= =0:5(left),kpa= =1 (middle) andkpa= =2 (right).
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kl(jl)a: =0:5 ké,l)a: = k,(jl)a: =

Ui

Uy

Uy

Figure 5.14: Diffraction of an oblique ( = 30 ) incident plane P—wave by a semi-spherical basin:
X- (top), y- (middle) and z- (bottom) components of surface displacement for the normalized
frequenciekpa= =0:5(left),kpa= =1 (middle) anckpa= =2 (right).
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kl(jl)a: =0:5 ké,l)a: = k,(jl)a: =

Ui

Uy

Uy

Figure 5.15: Diffraction of a vertical incident plane SV—wave by a semi-spherical basin: x- (top), y-
(middle) and z- (bottom) components of surface displacement for the normalized frequencies
kpa= =0:5(left),kpa= =1 (middle) andkpa= =2 (right).



5.4 Semi-spherical basin 135

kl(jl)a: =0:5 ké,l)a: = k,(jl)a: =

Ui

Uy

Uy

Figure 5.16: Diffraction of an oblique ( = 30 ) incident plane SV-wave by a semi-spherical basin;
X- (top), y- (middle) and z- (bottom) components of surface displacement for the normalized
frequenciekpa= =0:5(left),kpa= =1 (middle) anckpa= =2 (right).
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5.5 SEMI-ELLIPSOIDAL BASIN

The last geometry is a semi-ellipsoidal basin, with semi-axes de neldby a. The mechanical
parameters are® = 1=3 @ =1=4 B; @ = @) gnd @ = 1=3. The free surface lies
inside a disk of radiu® = 8a. In Table 5.7, the number of DOF$, leaf levels 1 and™;, are given
for four non-dimensional frequenciels,g() a= = 0:25; 1; 1.5; 2) together with the CPU time per
iteration recorded (without preconditioning).

Table 5.7: Diffraction of incident plane waves by a semi-ellipsoidal basin: computational data.

kM a= N “1:°5 CPU/iter (s)
025 27:144 3;3 124
1 278304 4:3 1114
15 | 685830 65 199
2 |1;117080 6;5 45%

Vertical incident plane P—wave. In Figure 5.17, the modulus of the x-, y- and z-components

of surface displacements are represented for the three non-dimensional frequleé;llb'aes (=

0:25; 1; 1.5). The z-component is predominant and if the frequency is increased, the x- and y-
components are also signi cant. Four regions, with very high amplitudes occur on the x-component
for ké,l) a= = 1. The maximum amplitude strongly increases with the frequency, and is twice
higher than in the canyon case.

Obligue incident plane P—wave. If an oblique ( = 30 ) incident plane P—wave is considered
(Fig. 5.18), the z-component is still predominant but the x- and y-components are also signi cant
(more if the frequency is increased). As expected, the displacement response is symmetric with
respect to thet = 0 plane because the direction of propagation lies in the Oyz plane. Compared to
the semi-ellipsoidal canyon, the maximum amplitude is doubled.

Vertical incident plane SV—wave. In the case of a vertical incident plane SV-wave, the y-
component is now predominant (Fig. 5.19) but the contributions of the x- and z-components in-
crease with the frequency. The maximum amplitude is largeriBdine. ampli cation higher than

5) for k,(jl) a= =1 andké,l) a= =1:5.

Obligue incident plane SV—wave. The last case is concerned with the diffraction of an oblique
(= 30 ) incident plane SV—wave. In Figure 5.20, the modulus of the x-, y- and z-surface dis-
placement components are displayed for the three non-dimensional frequencies. The y-component
is predominant but once again the contributions of the x- and z-components increase with the non-
dimensional frequency. The maximum amplitude react®82 for kg) a= = 1:5leading to a

strong spectral ampli cation.
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Iteration counts. In Table 5.8, the iteration counts recorded for the twelve con gurations are
given. Again, the iteration count is found to be in uenced not only be the frequency but also by
the symmetry of the geometry and the mesh size. The in uence of scattering phenomena and wave
conversion is probably signi cant depending on the velocity contrast between the basin and the
bedrock.

Once again, the iteration count increases with the frequency. Compared to the semi-ellipsoidal
canyon, the iteration counts are signi cantly higher, re ecting the fact that basin problems are more
badly conditioned than canyon problems. The use of the preconditioning strategy of Section 4.1
nonetheless drastically reduces the number of outer iterations and the total CPU time. As a result,
basin problems featurin = 685; 830 DOFs were solved in abo®&6h using preconditioning,
whereas they could not be solved without preconditioning.

A mesh featurindN = 1;117 080 DOFs is required to deal with tHé}) a= =2 case. For
this computation abolBGB of RAM and 70GB on the hard drive (for storing the matrig"¢2"
of near contributions) are required. Unfortunately, the preconditioning strategy was not ef cient
enough to solve the complete problem in this case. With our preconditioning strategy, the complete
matrixK "¢®is read at each inner and outer iteration. This operation is not CPU-consuming because
the time spent to read the matrix (80GB) is not taken into account, but requires a signi cant
amount of elapsed time thus slowing down the overall solution procedure. Moreover, the average
number of inner iterations at each outer iterations is large (sometime$0@yend the estimated
number of required outer iterations is higher tf200. This problem is thus still dif cult to solve
on a single-processor PC. A preconditioning strategy that does not need to read at each iteration,
the complete matriX "3 needs to be developed to solve, on a single-processor PC, problems with
N = O(10°) DOFs.

Table 5.8: Diffraction of incident plane waves by a semi-ellipsoidal basin: iteration counts and
CPU time (with and without preconditioning).

without prec. with prec.
nbiter. CPU time| nbiter. (inner) nbiter. (outer) CPU time

vertical P-wave

kPa= =0:25| 27 1037 108 13 164200

kPa= =1 734 240705 616 44 1027490

kMa= =15 = = 1026 128 3h2650%
oblique P—wave

ka= =0:25| 30 1200 115 14 1890

kMa= =1 681 2h21%35% 645 45  1h54000

kMa= =15 = = 1130 143 3804%7%°
vertical SV-wave

kPa= =0:25| 24 0470 92 12 181490

kMa= =1 408 1351300 559 40 9340500

kMa= =15 = = 857 105  21H0F0gO
obliqgue SV-wave

ka= =0:25| 31 10500 115 14 1890

kMa= =1 608 1936257 653 46 1h5755%

kMa= =15 = = 1077 133 3522%1%
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kMa= =0:25 kMa= =1 kMa= =15

U]

iUy

U]

Figure 5.17: Diffraction of a vertical incident plane P-wave by a semi-ellipsoidal basin: x- (top), y-

(middle) and z- (bottom) components of surface displacement for the normalized frequencies
kpa= =0:25(left),kpa= =1 (middle) andkpa= = 1:5 (right).
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k}(:l)a: =0:25 klgl)a: = kél)a: =15

jUd

Uy

U]

Figure 5.18: Diffraction of an oblique ( = 30 ) incident plane P—wave by a semi-ellipsoidal basin:

X- (top), y- (middle) and z- (bottom) components of surface displacement for the normalized
frequenciekpa= = 0:25(left),kpa= =1 (middle) andkpa= = 1:5 (right).
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kMa= =0:25 kMa= =1 kMa= =15

jUd

iUy

U]

Figure 5.19: Diffraction of a vertical incident plane SV—wave by a semi-ellipsoidal basin: x- (top),

y- (middle) and z- (bottom) components of surface displacement for the normalized frequencies
kpa= =0:25(left),kpa= =1 (middle) andkpa= = 1:5 (right).
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kpa= =0:25 kpa= =1 kpa= =15

jUd

Uy

U]

Figure 5.20: Diffraction of an oblique ( = 30 ) incident plane SV—wave by a semi-ellipsoidal
basin: x- (top), y- (middle) and z- (bottom) components of surface displacement for the nor-
malized frequencidsra= = 0:25(left),kpa= =1 (middle) andkpa= = 1:5 (right).
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5.6 CONCLUSIONS

In this chapter, the capabilities of the FM-BEM formulation presented in the rst Part of this dis-
sertation has been used to study various canonical seismological examples. Namely, the diffraction
of oblique incident plane P— or SV—wave by a semi-ellipsoidal canyon or basin, have been stud-
ied. These results are our contribution to the QSHA research project. The results on the complete
surface have been shown even if some results are axisymmetric, to show the good “quality” of the
results obtained by our new 3-D elastodynamic solver. Moreover, this choice of representation en-
able quick comparisons between various kinds of incident waves or various kinds of geometries. In
particular, the ampli cation induced by the introduction of an alluvial deposit in a canyon is easily
seen. These examples also enable the presentation of the numerical performances of the present
method in terms of CPU time per iteration, BE model sizes and iteration counts. Problems of size
up toN = O(7 10°) have been solved on a single-processor PC. The necessity of the development
of a preconditioning strategy is also pointed out, to be able to solve higher frequency basin prob-
lems since the memory requirements and CPU time per iteration are no longer a limiting factor. The
e ciency of the preconditioning strategy de ned in Section 4.1 is also illustrated on these examples.
However, the necessity of an improvement of this preconditioning strategy is shown. Even if it is
possible to perform some iterations for problems featuhing O(10°%) DOFs, due to the need to

read the complete matrix of the near contributions, this problem cannot be solved completely. The
motivation of these canonical examples was not to perform an exhaustive study on the effect of the
geometry or type of incident wave. The motivation was to de ne some simple examples to do some
comparisons in terms of accuracy and numerical ef ciency between the various methods proposed
in the QSHA project. Unfortunately, such comparisons are not possible at the time of this writting.
But, we think that these results needed to be presented in this dissertation to give a set of simple
examples to validate a numerical method dealing with seismic wave propagation.
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In Chapter 5, the numerical ef ciency of the present FM-BEM has been shown on canonical
examples (diffraction of oblique incident plane P— and SV-waves by various canonical canyons
and basins). Now, the method is applied to a more realistic seismological application, namely the
diffraction of a vertical incident plane P—wave by an Alpine valley (Grenoble).

6.1 MODELLING OF AN ALPINE VALLEY: GRENOBLE

Choice of the Grenoble site

As explained in the introductory Chapter 1, the geological con guration, basin geometry and edges
can modify the incident wave eld and lead to large ampli cations and higher signal duration. In
Figure 6.1, the records for the Laffrey 1998 earthquake, at the bedrock and at the sedimentary
basin surface are compared. The signal amplitude is multipliedild®tween the bedrock (OGMU
station) and the sedimentary basin (OGDH station). Moreover, the signal duration is multiplied by

3. This earthquake illustrates the negative effects of a sedimentary basin on an earthquake, even a
moderate one (magnituceb in the case of the Laffrey earthquake).

Figure 6.1: Seismic wave ampli cation in deep alluvial deposits (Grenoble, France): velocities (N-
S component) recorded at various locations during the 1999 Laffrey earthquake (data: French
accelerometric network, www-rap.obs.ujf-grenoble.fr), from Semblat and Pecker [193] (repeats
Fig. 1.2 for convenience).

The Alpine valley case is considered in this chapter because it was proposed in the QSHA
project, and has also previously been the subject of a numerical benchmark during the Third Inter-
national Symposium on the Effects of Surface Geology on Seismic Motion (ESG 2006 [14]). As
a result, the mechanical parameters and topographical data are available. This case also allows to
show the improvement obtained by the present FM-BEM compared to standard BEM used in previ-
ous studies of this case (see thesis dissertation by N. Delépine [64] and [65]). While the main part
of Delépine's work was on a 2-D pro le (Fig. 6.2) of the Alpine valley proposed for the benchmark
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at the ESG, he also studied in 3-D conditions the diffraction of a vertical incident plane P—wave
by the 3-D pro le of this Alpine valley. Due to the limitations of standard BEM, Delépine's mesh
featuredB; 600vertices and a single homogeneous layer. Moroeover, the size of the discretized free
surface was set not much larger than the radius of the circle enclosing the basin (Fig. 6.3), although
this size has been shown in Section 3.5.1 to in uence the results. Numerical results are presented
in [64] for a frequencyf = 0:4 Hz, but to deal with such a "high" frequency using standard BEM,
only about5 points per S—wavelength were used, which is usually insuf cient for BEMs. Using the
capabilities of the present FM-BEM, ner meshes can be used.

depth (m)

distance along pro lerf)

Figure 6.2: 2-D ampli cation in the basin, for various frequencies, from Delépine [64].

Figure 6.3: Mesh of the Alpine valley used in [64].

Geometry de nition and mesh generation

Mesh generation is a signi cant issue when dealing with realistic seismological applications. For
this preliminary study of a realistic site, the topography of the valley outside the sedimentary basin
is not considered, for two reasons. The rst one is to keep the BEM model size within manageable
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limits. The second one is that the ESG numerical benchmark study showed that this topography
does not affect the seismic motion. The bedrock/sediment interface is given by the inversion of
gravimetric anamolies performed by Vallon [206]. A regular grid of points (e2&Q3n) de ning

the topographical coordinates of the bedrock/sediment interface is provided.

The horizontal geometry of the Alpine valley is depicted on Figure 6.4a. The valley, which is
Y-shaped when seen from above, is enclosed in a circle of radiud1:7 km. For this study, the
meshed surrounding portion of the free surface is circumscribed within a disk of Rdi30 km
(" 3a). No topographical data are available g and 9,. Consequently, the North ends of the
Y-shaped valley are closed arti cially (see Fig. 6.5), although the steep slopes thus introduced may
induce arti cial re ections at the basin edges. A study comparing various arti cial valley closures
should be done to evaluate their effects on the simulated seismic motion. However, for now we use
this simple closure method in this study.

(@) (b)
Figure 6.4: Geometry of the Alpine valley.

Figure 6.5: Close up of the mesh a€,.

The mesh was generated with the help of Adrien Loseille (GAMMA team, INRIA Rocquen-
court, www-c.inria.fr/[gamma/) and using software developed by this team. The notatipng
and 1, are de ned in Fig. 6.4b. The methodology used is to rst de ne the 2-D geometrieg of
and » from topographical data (Figs. 6.6a,b). Then, the 2-D mesh is generatedBis2if19]
(Figs. 6.6¢,d). 1 and , are then merged (Fig. 6.6e) usigpider (code provided by Adrien
Loseille). Using topographical datay, (Fig. 6.6f) is obtained from » (usingSpider). Finally,
1[ 2ismergedto 12 (Fig. 6.6g).Yamdg223] is used to optimize the mesh to the frequency.
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(@)

()

(€)

()

Figure 6.6: Alpine valley

(b)

(d)

(f)

: mesh generation.
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Mechanical parameters

The bedrock and sedimentary basin models are as proposed in [43]. In the bedrock, dgnoted
(Fig. 6.4a), the P— and S—velocities and mass density are set to constant values:

M =5;600ms ;) =3;200ms ! and @ =2;720kg.m

In the sedimentary basin, as proposed for the numerical benchmark (ESG 2006), the velocity pro le
increases with depth. The models proposed are:

Cp(z) =1450+1:2z; c5(z) =300+ 19 P z and (z)=2140+0:125z:

In this work, of a preliminary nature, only a single homogeneous layés used, with mechanical
parameters set to:

¢ =1;988ms % P =526ms?* and @ =2;206kgm *:

6.2 SURFACE DISPLACEMENTS FOR A VERTICAL INCIDENT PLANE P-WAVE

All examples presented in this chapter have been run on the same 8-processor PCORBR/:
CPU frequency2:33 GHz), with each FMM analysis performed independently on a single proces-
sor.

The diffraction of a vertical incident plane P—wave by an Alpine valley is considered for two
frequenciesf = 0:3Hz andf = 0:6Hz. In Table 6.1, the number of DORs and the leaf levels;
and’, are given for the two frequencies together with the CPU time per iteration (without precon-
ditioning), the number of iterations and the cumulative CPU time (with preconditioning strategy).
In Figure 6.7, the modulus of the x-, y-, z- surface displacement components are displayed for the
two frequencies. This realistic example shows the possibility of very high ampli cations inside the
alluvial basin (aboul5:5 for f = 0:6 Hz). As noted in [64], the major part of the ampli cation is
observed at the north of the basin, for the z-component.

Table 6.1: Propagation of an incident plane P—wave in an Alpine valley: computational data.

f N "1; 2 CPUtime(s) nbiter. total CPU
per iter. with prec. time
0:3Hz| 95,142 45 86:6 253 3%155%31%°
0:6Hz | 141,288 5;6 77 747 7545%400
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f =0:3Hz f =0:6Hz

JUy

Uy

1Uzj

Figure 6.7: Propagation of a vertical incident plane P—wave in the Alpine valley: modulus of the x-
(top), y- (middle) and z- (bottom) components of displacement for frequénei€s3 Hz (left)
andf = 0:6 Hz (right).
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6.3 LIMITATIONS OF PRESENT FM-BEM FOR REALISTIC SEISMIC APPLICATIONS

The meshes used in this chapter feature a relatively low number of degrees of freedom (and so
the frequencies studied are relatively low) compared to examples treated in the previous chapters.
This example highlights the limitations induced by a high velocity contrast between two layers
(in this example, the velocity contrast is ab@yt Usually, the mesh is generated to obtain about

10 points per S—wavelength. But for basin problems, mesh conformity requirements at interfaces
induce densities of abodiD points persmallestS—wavelength near the interfaces. As a result, on

the interface 12, the mesh is adapted to, but is abou6 times too dense for the domain. For
example, forf = 0:6 Hz, in Figures 6.8a,c, the mesh is seen adapted to about 8-10 points per
S—wavelength on1 and ». But, in Figure 6.9b, the mesh on» is seen to be too dense compared

to the wavelength.

This is sub-optimal for the present FM-BEM. The evaluation of memory and CPU time com-
plexities presented in Section 2.5.2 is based on the assumption that the number of DOFs per wave-
length is roughly uniform, resulting in roughly equal numbers of DOFs per leaf cell (due to the
stopping criteriad™™  0:30 ). Here, the combined effect of highly heterogeneous mesh densi-
ties and cell size threshold leads to leaf cells containing large numbers of DOFs in regions close to
the interface. This in turn leads to a large maki®®?. As a result, memory requirements are high
(compared to a uniform mesh) in terms of RAM and space on the hard drive. The other consequence
is that the CPU time and memory requirements are very sensitive to the number of levels. For the
two frequencies studied = 0:3 Hz andf = 0:6 Hz, the size of the matriK "®?"are respectively
of about20 GB and25 GB. The rst remark is that the size & "*?"is larger forf = 0:3 Hz than
for f = 0:6 Hz even though the number of DOFs is smaller. The explanation is that the number
of levels is larger in the second case. If the mesh featuxing 141; 288is used forf = 0:5 Hz
instead off = 0:6 Hz, the leaf levels arg; =4 and™, = 5. As a result, this problem is dif cult
to solve sinceK "' is very large:52 GB. This sensitivity to the number of levels also explained
why the CPU time per iteration is larger for= 0:3 Hz than forf = 0:6 Hz. The proportion of
near contributions is larger for the rst case than for the second one, leading to larger CPU time per
iteration.

Concerning the preconditioning strategy, becak$&¥ is very large, it is less ef cient. The
cost of the inner iterations is high since the makiX*?'needs to be inverted at each inner iteration.

For that reason, for the two examples presented in this chapter, the value of the stopping criteria is
sett0"inner = 510 1instead of the recommended valuyger = 10 1.

To enable the computatidn= 0:6 Hz, only abouB points per S—wavelength are used if
whereaslO points per S—wavelength are used fo= 0:3 Hz. This explains that the number of
DOFs is not twice higher for = 0:6 Hz than forf = 0:3 Hz.

6.4 CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

In this chapter, the FM-BEM is used to study a more realistic example: the diffraction of a vertical
incident plane P—wave by an Alpine valley (Grenoble). It has been shown that the FM-BEM allows
computations for higher frequencies and with a larger discretized free surface than using standard
BEM [64]. This example also underlines the current limitation of the present FM-BEM to deal
with basin problems featuring a high velocity contrast between two layers. Due to the non-uniform
mesh, the method loses ef ciency.
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(@) (b) (©)

Figure 6.8: Density of points per S—wavelength (b) and close-ups on cells of%]z(ea and c), for
N = 141;288andf =0:6 Hz.

(a) (b)
Figure 6.9: Density of points per S—wavelength if? (a) and close-up on the density of points per
(Sl) on the interface 1, (b), forN = 141;288andf = 0:6 Hz.

To overcome this limitation, a method stable at all frequencies (combining low and mid fre-
quency FMM) could be used [117, 164]. This method remove®1iB@ s lower bound for linear
cell size (the subdivision-stopping criterion used for the mid frequency FMM), allowing to adapt
the number of DOFs per cell to a constant value. Another possibility is to use non-conforming
meshes and develop a weak coupling formulation [177].

Moreover, in this example, only a single layer is used, whereas velocities of alluvial deposits
usually have vertical gradients. For example, for the 2-D pro le studied using standard BEM
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in [64], the velocity gradient proposed for the numerical benchmark is approximated by seven
layers (Fig. 6.10). As a result, more layers may be used in our simulation and the ef ciency of

the present FM-BEM may be increased if the contrasts are smaller. The dif culty is then to gener-
ate the mesh with various layers. Other possibilities include (i) resorting to fundamental solutions
for layered [108, 49] or vertically-heterogeneous [107] media, for which multipole expansions may

conceivably be set up along the lines of Section 4.3, and (ii) use FEM or other domain discretization
methods for modelling thin layers.

depth (m)

velocity (m:s 1)

Figure 6.10: Velocity pro le for P— and S—waves used in [64].

In this preliminary set of results, only plane waves are considered. The last point to deal
with realistic seismological problems is to implement more complex sources. The BEM needs to
be provided with the value of the incident wave eld, which may require preliminary FM-BEM
analyses on simpler domains.
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Conclusions and directions for future
work

CONCLUSIONS

The main aim of this work, to which Part | of this dissertation was devoted, was to develop an
ef cient solver for frequency-domain elastodynamics using FM-accelerated BEM. Taking advan-
tages of recent published developments for Helmholtz and Maxwell equations, the Fast Multipole
Method has been successfully extended to elastodynamics in the frequency domain in Chapter 2.
Combined with the BEM formulation, it permits to reduce the computational burden, in both CPU
time and memory requirements, for the simulation of (e.g. seismic) wave propagation and allows
to run models of siz&l = O(10°) on an ordinary PC. The theoretical complexity estimates of the
method were derived and corrobated by numerical experiments. The accuracy of the method has
been tested on exact, and previously-published numerical, solutions. In this rst stage the formula-
tion was limited to homogeneous media.

Next, as the other aim of this thesis was to develop a seismic wave-oriented solver, the ability
to deal with alluvial-basin con gurations has been introduced in Chapter 3 using a FM-based BE-
BE approach suitable for 3-D piecewise-homogeneous media. Towards this end, the single-domain
FMM was applied independently in each homogeneous sub-domain. Various implementation issues
raised by the BE-BE coupling have been adressed, and the accuracy of this multi-domain FM-BEM
has also been extensively tested on exact and previously published problems.

The ef ciency of the elastodynamic FM-BEM presented in Chapter 2 and 3 can still be im-
proved in several ways. Three avenues for enhancing computational performance have been pro-
posed in Chapter 4. First, a simple preconditioning strategy has been presented, and its ef ciency
demonstrated on canonical examples. Then, a method to reduce the number of necessary multipole
moments has been discussed. Finally, the formulation of a multipole expansion for the elastody-
namic half-space fundamental solutions has been presented.

Then, Part Il of this dissertation was devoted to some seismological examples. First, results
on the propagation of plane waves in various canonical canyons and basins have been presented in
Chapter 5. These examples, performed in the context of the QSHA project, will be compared to
results using other numerical methods. The ef ciency of the method has been used in Chapter 6
to deal with a more realistic application: the diffraction of an incident plane P-wave by an Alpine
valley (Grenoble).
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DIRECTIONS FOR FUTURE WORK

This work was the rst stage of the development of a fast solver for frequency-domain elastodynam-
ics, using FM-BEM, at the Ecole Polytechnique and LCPC. Before this thesis, no ef cient BEM
solver for large 3-D elastodynamic problems was available. In view of the encouraging results ob-
tained in this thesis, further work will be devoted to increase the capabilities and possibilities of this
elastodynamic solver. Some possible directions for future work are now brie y discussed.

Parallelization. The presentimplementation of the elastodynamic FMM has been done for single-
processor platforms. The introduction of the FMM has been shown in this thesis to greatly enhance
the capabilities of the standard BEM. Now, with the increasing performance of computers, the
parallelization of the code would further extend the capabilities of the method in terms of e.g. BEM
model size or frequency range. The parallelization of the FMM is a dif cult task. A natural idea is
to associate a cell to a single processor. However, various stages of the algorithm link at least two
cells:

near contributions,

upward and downward passes,
transfers.

As aresult, the distribution of the cells to the various processors is an important issue in order to
minimize communication time between processors. This issue has been studied, for the Maxwell's
equations, in [200].

When dealing with piecewise-homogeneous media, computation of the matrix-vector product
at each iteration is naturally decomposed into independent tasks (one per sub-domain). When deal-
ing with many sub-domains, an obvious approach is to associate each sub-domain to a processor.
Using this method, the communication between the processors will be reduced to the transfer of the
resulting vector after the matrix-vector product (before the GMRES step).

Preconditioning. In Chapters 4 and 5, a simple preconditioning strategy, based on the complete
matrix of near contributionk "*®'used as preconditioner and two nested GMRES solvers, has been
presented and its ef ciency demonstrated. However, for BEM models offéize O(10°) or

more, the iteration count was found to remain a major limiting factor. The de nition of an effective
preconditioner is crucial for developing an ef cient iterative solver. To improve on the admittedly
simple approach currently implemented, one possibility is to introduce a theshold on the entries
of K" Moreover, a comparative study with the other usual preconditioning strategy used in
electromagnetic FMM (SPAI, incomplete LU, :) is expected to bring worthwhile insight on this
issue.

All preconditioners discussed so far are purely algebraic. A completely different approach,
however less developed and more intrusive in the code, consists in taking into account the mathe-
matical properties of the continuous operator. In electromagnetism, some works are dealing with
the reformulation of the integral operator, at the continuous level, to obtain stable formulations
(e.q. [8]). Another approach consists in determining a good preconditioner using a regularization
at the continuous level of the boundary integral equations. Such formulations, based on Calderén
identities for integral operators, have produced good results in electromagnetics [47, 9].
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Other re nements related to time-domain response computation.  In Chapters 2 and 3, time-
domain results have been obtained via frequency-domain analyses at sampling frequencies and a
Fourier transform. For results presented in Sections 2.6.4 and 3.6, the FM-BEM solution for each
frequency has been computed independently, i.e. without using previously-obtained solutions at
lower frequencies. The iteration counts, and hence the cumulative CPU time, may be reduced when
performing time-domain computations, by using the result at the previous frequency as an initial
guess of the GMRES iterative solver. As, frequency steps are usually small, frequency-domain so-
lutions at two consecutive frequencies are expected to be similar. This trick should thus speed up
the overall convergence. This method can be used because, as explained in Section 3.6, a hierar-
chical sequence of meshes is used. Another possibility is to adapt the FM-BEM to the Convolution
Quadrature Method [136, 137], which has already been applied for elastodynamic [186] and vis-
coelastic [187] BEMs.

Viscoelasticity. In this work, only linear elastodynamics has been considered. But, in seismol-
ogy, the ideal model of an elastic soil is often insuf ciently realistic. The introduction of damping,
using a viscoelastic law is needed. From (1.12), we see that viscoelasticity can be easily derived
from elastodynamics. For standard BEM, the classical method consists in introducing complex-
valued elastic constants (see Section 1.4). But no convergence theorem is known, at this time, for
the multipole expansion of the Helmholtz fundamental solutions, eq. (2.8) for a complex value of
the wavenumbek. | have participated to the supervision of the master thesis of Régis Bost [35] on
this subject, in which numerical experiments have been performed to determine how to adapt the
truncation parameter of the transfer function (2.9) in the case of a complex value of k. It appears
that, as in the elastic case, the truncation parameter can be determined using a relation of the type:
L = O(jkdj). But, a limiting factor is concerned with the de nition of the adjacent cells. In elasto-
dynamics, as for Helmholtz equation, the criterion to achieve convergence in the transfer function
is to have non adjacent cells (that do not share a corner). But, in this numerical experiment, it
seems that for damping ratios larger tH##, convergence of the multipole expansion is not always
achievable for interaction between cells that are separated by only one same-level cell. Satisfactory
extension of the elastodynamic FMM to viscoelastic media requires deeper mathematical examina-
tion of expansions such as (2.15) to gain better understanding on how complex wavenumbers affect
convergenceds!1l . Suchissues will be addressed inthe PhD thesis of Eva Grasso (2008-2011)
and GFrFeewill be extended in the future to viscoelastic materials.

Coupling with other numerical methods. In this work, an ef cient solver for elastodynamic
problems has been developed. But, due to the BIE formulation with the fundamental solutions
of the in nite half-space, only piecewise-homogeneous medium can be studied. An interesting
perspective of this work is to implement a FE/BE coupling. The rst possible application of such
coupling is to deal with soil-structure interactions. With this new formulation, it could be possible,
for example, to study the in uence of the traf ¢ induced waves propagating into the soil on the
vibrations of structures and potential nuisances. The second possible application is to take into
account non-linear constitutive behaviour in a bounded region of the soil, modelled using the FEM,
while a complementary in nite region is modelled using the FM-BEM.
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Such coupling strategy would use the adequateness of the BEM to deal with unbounded media,
the numerical ef ciency of the FMM, and the exibility of FEM to deal with non-linear materials.
Moreover, such formulation avoids the major drawbacks of BEM (simple linear material properties)
and of FEM (arti cial truncation of the in nite domain and cost of the volume mesh).

Inverse problems. Another possible application of this work concerns the solution of inverse
problems. There exists various methods to solve inverse problems. An active research eld is con-
cerned with defect identi cation problems in geophysics or in medical imaging. Usually, iterative
gradient-based minimization methods are used to minimize a cost function used for formulating the
inversion problem, because global search algorithms are overly CPU consuming. Because these
methods are sensitive to the initial conditions, sampling or probe non-iterative methods have been
recently developed [168, 158]. For example, the topological sensitivity method evaluates the point-
wise sensitivity of the error functional to an in nitesimal obstacle [106, 33]. Such method requires
the values of displacements and stresses for a direct and adjoint problem at a large number of sam-
pling points, which makes the FM-BEM quite useful for such computations. In [158], the FM-BEM

is successfully applied to 3-D acoustic inverse scattering. The present implementation may simi-
larly be applied to 3-D elastodynamics inverse scattering.
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Appendix A

Standard Boundary Element Method:
Implementation detalls
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In Chapter 1, the formulation of the elastodynamic boundary integral equations and boundary
element method have been brie y recalled. In this appendix, we give more details on the imple-
mentation. Moreover, a large part of this appendix is devoted to the numerical integration of the
various integrals present in the formulation.

A.1 DISCRETIZATION OF THE INTEGRAL EQUATION

This rst section addresses the boundary element discretization method for the elastodynamic equa-
tion (1.5) on a domain of boundary@ . The displacemeni and tractiort are governed by the
boundary integral equation:

z z

cik (X)ui(x) + (P.V.) . ui(y)TE(x;y;!)dS, . ti(y)Uf(x;y;!)ds, =0 (A1)

A.1.1 De nition of the boundary elements

The numerical solution of boundary integral equation (A.1) is based on a discretization of the
boundary surfac@ into Ng non-intersecting boundary elemefis; E»; : :: Equation (A.1) then
takes the form of a sum of elementary integrals:

e z z
Cik (X)Ui (X) + (PV)  ui(y)TE(x;y;!)dSy Eti(y)uik(x:y:!)olsy =0

e=1 Ee

Actual evaluation of those element integrals requires that each el&géetanalytically described.
Usually a mapping of each physical elemé&ntonto a parent element, (triangle in the( 1; »)
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plane), in a parameter space, is introduced:

2 ¢! y()= NT™()y™ 2Ee (1 e Ng) (A.2)

m=1

where they™ are theN geometrical nodes arld™ are theN, shape functions.

A.1.2 Discretization of the unknowns

N, interpolation points are used to discretize the unknowns. The varialaledt are approximated
onEg by:
Ny (e) Ny (e)
wy)=  M{Ou wy)= MEOtC 2 . (A-3)
k=1 k=1
where(uk;t%) (1 k N, (e)) are the nodal values of the approximatiend of (u;t) on the
elementE andM X( ) (= u;t) are the interpolation functions.

A.1.3 Discretized form of the integral equation

In order to solve the integral equation (A.1), tlellocation methods applied.N. equations are
generated from eq. (A.1) by enforcing eq. (A.1)\atcollocation pointx®2 @ (1 ¢ N):

e h YA YA i
Cik (X )i (x©) + (PV)  i(Y)TE(XSy;!)dS, G(y)Uf(x%y;1)ds, =0 (A4)

e=1 Ee Ee

For more details about this classical procedure, the reader is referred to [31, 6]. The computation of
the near contributions (2.18a,b) involves the numerical evaluation of CPV-singular, weakly-singular
and non-singular element integrals. Details on the methods used in our implementation are given
later in Section A.2.

A.1.4 Implementation choices

In this work, only 3-noded triangular boundary elements have been used (Fig. A.1). This choice is
driven by the fact that the simplest interpolations are the most ef cient in a FM-BEM context, as
they allow to "streamline” the non-FMM part of the computations. An important technical issue in

Figure A.1: Triangular boundary elements (T3).
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BEMs is the normal orientation. The usual convention, adopted here, is that the normals are always
exterior to the domain. The normal orientation is, in practice, determined by the ordering of the
element nodes. For example, in Fig. A.1, the node orderings (1,2,3) and (2,1,3) yield normals with
opposite orientations.

The relevant linear shape functions are:

N1 2)=1 1 2= 3 N%1; 2= 15 N1 2= 2 (A.5)

Traction values are assumed to be constant over each elementt#)oteel M () = 1 in (A.3).
Finally, equation (A.4) becomes:

Xe h Ny () . Ny (e) Z .
k(xS uMCPINP( o)+ (PV)  NPO)TE(xSy;1)ds, umeP
et p=1 pZ Fe i (A.6)
UK(xSy;1)dSy t8 =0 (1 ¢ No)
Ee

where ¢ denotes the antecedentxf on element. under the mapping (A.2). As a result, to
obtain the required number of equations, the collocation is performed:
- at the nodes if the nodal value of the displacement is unknown at that node (“nodal colloca-
tion”);
- at the element center if the traction is unknown on this element (“element collocation”);
- at the nodesindthe center of interfacial elements (multi-domain problems).

A.1.5 Implementation of the near contributions: summary

In Chapters 2 and 3, the linear integral operdtdu) (resp. (Kt)) in equation (2.4) has been
reformulated intdKu) = ( Ku)"®+ ( Ku)™M (resp.(Kt) = ( Kt)"®a'+ ( Kt)™M), The algorithm
used to numerically compute the stored sparse mi¢r]%€a" corresponding to near contributions,
is summarized for convenience in Fig. A.2.

A.2 NUMERICAL PROCEDURE FOR THE EVALUATION OF THE VARIOUS INTE-
GRALS

A.2.1 General overview

It is now necessary to de ne numerical procedures to evaluate the element integrals encountered in
eg. (A.6). In elastodynamics, two such integrals arise:
Z
UK(x%y;!)dsy (A7)

z Ee

(PV.)  NPO)TH(xSy;!)ds, (A.8)

Ee

where, in this workNP( ) are linear shape functions (A.5). Two cases must be distinguished.
The simpliest case is when® 2 E.: the two integrals (A.7) and (A.8) are non-singular. The
standard method, recalled in Section A.2.2.1, is used. On the other haid? iE¢, a singularity
occurs in (A.7) and (A.8) due to the de nition of the fundamental solutions (1.17). The singularity
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Figure A.2: Elastodynamic multi-level FM-BEM: schematic description of the algorithm used to
compute the near contributions with standard BEM.

in (A.7) is of orderl=jjx© yjj. The integral is weakly singular and a simple method, presented
in Section A.2.2.2, is applied to eliminate this singularity. In contrast, integral (A.8) involve a
strong singularity of ordefi=jx¢ yijj?, so that the previous approach does not apply. Since
the singularities in the static and dynamic fundamental solutions are known [31] to be identical,
the integral (A.9) below (wher&X(x¢;y) denotes the static Kelvin fundamental solution) is non-
singular and its numerical integration is performed using the standard method (Section A.2.2.1).

z

NPOIMESyi) - TS, (A.9)

The remaining integral involving the static fundamental solution is strongly singular, but has a form
simpler than (A.8) which allows its exact analytical evaluation (Section A.2.3).

A.2.2 Numerical evaluation of integrals
A.2.2.1 Non-singular integrals

If x¢ 2 Eg, or for the computation of (A.9), a standard numerical quadrature rule is adopted, of
Gaussian type [62, 199]. Numerical evaluation of integrals over a tridagkre made according

to:
z

X
g(x;y)dxdy ' wig(Xi;Yi)
Ee i=1
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wherex;, yi andw; denote the abscissae and weights of the Gauss points. The va{xesypfw;)
have been designed for the triangle in [138], for several valuds. of

A.2.2.2 Weakly-singular integrals

Accurate evaluation of singular integrals is a crucial point to guarantee the accuracy of the result.
Gaussian quadrature will lead to signi cant errors in such cases. The integral (A.7) presents a
weak singularity whem ¢! y. A change of variables following a subdivisione§ into triangular
subregions (if required) enables to work around this problem. For a three-noded triangular boundary
element, if the singularity is at a node, no subdivision is needed, while three subtriangles are used if
the singularity is at the element center (Fig. A.3). Then, on every triangular subiegion 0,

2 0,1 1 2 0 thechange of variableg = 0:25(1 + u)(1 v), 2 =0:51+vV)
maps the triangl&¢ onto the unit squaréu;v) 2 [ 1;1] [ 1;1]. As aresult, the Jacobian of the
transformation, of ordgjx ¢ yjj, exactly cancels the singularity, of ordesjjx¢ yijj. A classical
Gaussian integration rule can thus be applieflirv) space.

Figure A.3: Numerical integration of weakly-singular integrals if singularity at the element center.

A.2.2.3 Freeterm

Another integral to evaluate is the free term. In the usual case where the surface is smooth, the free
termci (x©) is equal to% ik - The other cases are handled in this work using the method proposed
in [145].

A.2.3 Analytical computation of the integral of the (static) Kelvin traction vector

We have seen that, to isolate the singularity in (A.8) into a simpler contribution, the (strongly-
singular) Kelvin traction vector has been introduced. This section presents an analytical procedure
to compute: 7

(PV)  NP(O)T(x;y)dSy (A.10)
E

over a generic planar triangular elem&ntwhereTX(x¢; y), the static Kelvin fundamental solution

for the in nite body, is given by:
n o]

TH(xSy) = Airg+(1 2 ) w rn+@  2)nkri nirk)  (All)

8 (1 )2
with r = jjx® yjj. We note the presence of the strongly singular témr?, due to which the
method of Section A.2.2.2 is not applicable. There exist numerical methods to deal with such
integrals [104, 203]. In this work, integral (A.10) is evaluated analytically, taking advantage of
the fact that only three-noded planar triangular boundary elements (T3) are used. T3 elements
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have constant unit normal and Jacobian, and are such.that r;n; = 0, so the integral (A.11)

becomes:
Z

1
(PV)  NPOTE(XGY)ASy = £ (PV)  S(meri nirsdNP( )dS, (A.12)
E E
wheref = 3(%1 2 )) The integral (A.12) being evaluated as a Cauchy Principal Valud let
E ¢, wherec (x€) is a neighbourhood of€ (" > 0, small; see Fig. A.4).

Figure A.4: Analytical integration of Kelvin traction vector: con guration.

LettingDx denote the tangential differential operatbri g = nigx nkg., (A.12) becomes:
Z Z

lim  NP()TK(XSy)dS, = f lim  [Dy SN )ds, (A.13)
1o g, o g r

Denoting by the unit tangent t@@ E and performing integrations by parts via a variant of the
Stokes formula, (A.13) can be rewritten:
z
fim NPOTHxy)ds,
" h | z i
=f e lim “(y)NP( )d—Sy +1lim Dik N P( )d—Sy (A.14)
"0 @E r "o g, r

Now, two cases have to be considered: (i) singularity at a node (nodal collocation), and (ii) sin-
gularity at the element center (element collocation). In case (i), linear interpolation implies that
Dik NP( ) is a constant so equation (A.14) is reduced to:
Z
; K¢y C- p
fim, _ TEEYINC ), | ]
h [
. d _ d
=feaclim  ONPO2 e DN lim X (A
"0 gE r "o g, T

Since@EkE = ¢ +(@E c¢), the contour integral in (A.15) can be decomposed into two parts.
The rst part is the computation of:
| Z
. dsy _ . 2
lim NP() (y)—= =lim NP(y)( e )-d (A.16)
10 .. r "I'0 1
when" ! 0,NP( )= NP( ¢)+ O(jj"jj ),so (A.16) is equivalent to:
I z h
: d 2
Im  NPC) - ()=L=NP(e) (e)d =NP(e)

C 1

|
er(1) e(2 .  (Al7)
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Figure A.5: Analytical integration of Kelvin traction vector: de nition of theg vectors.

wheree, ( 1) ande;( 2) are de ned in Fig. A.5.

Clearly, the sum of contributions (A.17) for all the triangles that sher@ode cancels out
wheneverx € is interior to @ . Conversely, the sum is not zero in general wi@nis an open
surface and lies on its edge (this typically may occur when an unbounded free surface is truncated,
see Section 3.2). In the current state of implementation, such special situations are ignored, i.e. it
is always considered that the sum of contributions cancels out, so that:

x ! x |

(NPT = wNOE s

E2T (x¢) @F r EoT (x¢) (@E ©) r

whereT (x°) is the set of triangles that share the nade For the contour integral ove®@E ¢,

contributions from edges emanating frerh(i.e. shared by two adjacent triangleslofx ©)) cancel

out. Thus, only contributions for edges opposite foldenotedC for the generic triangl& ) need
to be considered (see Fig. A.6).

Figure A.6: Analytical integration of Kelvin traction vector: de nition of C.

ButNPis af ne and is a constant vector® onC, so:

| |
dsy _ ¢ dy
. p Y =
. (YINF() " C( py + p)pﬁ (A.19)

where the coef cients , and  are de ned by

_0 — 1 . — 1 .
17T 27 Dy + Dy’ * T jDyj+ Dy’
L =0: 1D . _ 1Dy

27 jDyj+ jDaj’  °7 jDaj+ jDyj’

with the nodes and algebraic distan€eg D, de ned in Fig. A.7.
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Figure A.7: Analytical integration of Kelvin traction vector: various nodes for the de nition of the
interpolation functions and de nition dfl ;,D; andD»,.

Itis %ossible to calculate exactly integral (A.19) usirig the fact that:

pP—— p
@ X oin(jx+ x2+1j) and () p=_-"1ixz  (A20)
x2+1 x2+1

Using (A.20a,b), we obtain:
I

h . P ooz hq i
dsy jy+ y2+ HZj'D2 D>

. p - cC 1 C 2 2
c (y)N () r p In JH]_J D1+ p Hl+y D

c c
pat 7 pd2

1

P
jD2+ D3+ HEj

whereH 1,D1 andD, are de ned in Fig. A.7a; = In anda, = HZ2+ D2
: 1,.D1 2 g A1 D1+ P Wj 2 1 2
HZ+ DZ .
. d .
The second term to compute,I,|'m0 TSY: Using the fact that, whethh! 0,E-! E and
. E”
the polar coordinates:
z z Z ., h i
2 Hi=cos |
im 9 - d dr=Hi Injtan(=+ ~)j
1o g, I h o0 4 27 (A.21)
= H; Injtan(= + =2)j Injtan(— + —3)]
1 Injtan(; + )i Injtan(, + )i .
.1 cos | . 1+sin; Di+ DZ+H?
But, it is k thatan — = ——— "' and satan(- + —) = e
ut, it is known a-an-2 sin . (4 2) cos | H,
So, (A.21) can be simpli ed to:
. d
lim — = Hia
"o g,
Finally, we obtain:
z n 0

TE(x%y)NP( )dS, f s(i;k) pas+ s(i;k) paz+ DikNP( e)Hiay

ZE

TH(xSy)NI( )dS, fD kN e)H1ay

e nosik) ) 0
T (X5 y)N<( )dSy iDyi + D3] jDijar+ a2 + DxN“( e)H1a1

s(i;k) . 3 0
jD2j+ JD]_] JDZJal a2 + DIkN ( E)Hlal

ZE
TH(x%y)N3( )ds,
=
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wheres(i;k) = e .

Finally, a procedure for the computation@f N P( ¢) is needed. Using the de nition @i ,
it is clear that:

DikNp = (n r NP r NP n)ik
1

pr(n dp dp n )ik
where the distancdd 1, H», H3 and unit vectorsl;, d», d3 are de ned on Fig. A.8.

The remaining task is to express the unit vectbrsd, andds in the global system of coor-
dinates. Itis easy to see that:

_ OM; OM
'" jjOM; OM jj

If the singularity lies at the center of the element, the triangle is subdivide® sub-domains
and the previously de ned method is applied in each sub-domain.

Figure A.8: Analytical integration of Kelvin traction vector: de nition of unit vectors and distances
used in the computation &fj, NP.

A.2.4 Schematic representation of the computation of the integrals.

The algorithm used to numerically computed the various integrals is summarized for convenience
in Fig. A.9.
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Figure A.9: Elastodynamic multi-level FM-BEM: schematic description of the algorithm used to
compute the integrals in the near part.
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Analytical expressions of the free- eld
displacement vectors for incident plane
P— and SV—-waves
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In the case of seismic problems, the value of the scattered freas'eldeeds to be prescribed
on the domain boundary. In the case of the diffraction of an oblique incident plane waves
a known analytical expression. In this Appendix, such expressions are recalled for plane P—waves
and plane SV-waves, which are involved in many of the numerical tests presented in this thesis.

B.1 REFLECTION OF PLANE WAVES BY HALF-SPACE

We consider an incoming plane wave propagating from in nity. In that case, the free- eld includes
the incident displacement vector and the resulting re ected plane P—and SV-wave at the free surface
(z = 0). The wave system and coordinates are represented in Fig. B.1. For clarity, we introduce the
new axiseyo, with eyo = Ccos o€y +sin ey .

We know that the general formulation of a plane wave propagating with a phase veliscity

u = Adekx:p (B.1)

whered andp are the unit vectors de ning the directions of motion and propagation respectively,
A is the wave amplitude (independentofindt), k is the wavenumber andis the position vector.
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Figure B.1: De nition of the new axisyo.

B.2 PLANE P-WAVE

Figure B.2: Diffraction of a plane P—wave by the free surface.

First, we consider the case of an oblique incident plane P—wave. This incident plane P—wave
(Py) isre ected into a P-waveR; ) and a SV—-wavexV;) (Fig. B.2). Because of the phase-matching

condition, we have, = ¢ andsin ; = (cs=¢)sin 2. The various unit vectors de ning the
directions of motion and propagation, are given by:
( g _
=a = SIn géyo COS g€
forp: P Y z _
= (sin gcos ey +sin gsin ey +COS oez)
( g ,
=dp = sin geyo+CoS ge
for P, Pe o z
= sin gCOS gex Sin gSin ey +CoS o€,
8
% Psy = Sin 1ey0+COS g€,
= sin 1CO0S pe sin 1Sin pey +Ccos ge
for S\, : X y z
sy = COS i1€yo Sin 1€

= COS 1COS g€x COS 1Sin gey Sin 1€,
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Using eq. (B.1), we obtain:
h i
ut = Ag d, expikp(x:p, cpt)+ pdpexpikp(X:pp Cpt)+ sydsyvexpiks(x:pgy Cst)

where the amplitude ratios = Ap=Ag and sy = Asy=Ao, deduced from the traction-free surface
condition atz = 0, are found to be given by

2sin(2 g)sin(2 1) cof(2 1) _ 2 sin(2 g)sin(2 1)
P™ "25in(2 o)sin2 1) +cos2(2 1)’ V7 "Zsin(2 o)sin(2 1) + cos?(2 1)
r
where 1= 2 ). Cp=Cs.

1 2

B.3 PLANE SV-WAVE

Figure B.3: Diffraction of a plane SV—wave by the free surface.

Then, we consider the case of an oblique incident plane SV-wave. This incident plane SV-
wave SV) is re ected into a SV—wave§V;) and a P-waveR;) (Fig. B.3). The various unit

vectors de ning the directions of motion and propagation, are given by:
8
% P, = sin géyo COS o€;
= sin gCcos gex Sin gsin gey COS ge
for SViZ 0 0 .x 0 0Cy 0z
1 = cos oey0+SII’] 0€z

= COS oCOS p€x COS gSin ey +Ssin o€,

Psy = Sin géyo+COS g€,
= sin gCOS gex Sin gSin g€y +CO0S o€;

N 00

for SV;: .
sy = COS p€yo SIN o€y
= COS oCOS p€x COS gSin gey Sin o€,
=dp = sin i1ey0+cCOS 1€
for P, : Pr y z
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Using eq. (B.1), we obtain:

h
ut = A dyexpiks(x:p; cst)+ svdsyvexpiks(X:pgy Cst) _
i
+ pdpexpikp(Xpr cpt)

where the amplitude ratiogy = Asy=Ag and p = Ap=Ay, deduced from the traction-free surface
condition atz = 0, are found to be given by
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During this thesis, the multi-domain multi-level FM-BEM for frequency-domain elastody-
namics has been implemented into a computer code naroed&E The code includes more than
30; 000 Fortran 90 instructions, split into abo80 source les. This Appendix aims at describing
the capabilities offered by @FEEand explaining how to prepare data and use the code.

C.1 GENERAL OVERVIEW OF THE CODE

Assumptions and basic concepts. This program solves 3-D problems of linear elastodynamics
using the boundary element method, accelerated by the fast multipole method. The solution is per-
formed in the frequency domain. Time-domain solutions may be recovered using Fourier synthesis
(see for example Sections 2.6.4 or 3.6).

Orientation towards seismic wave problems. One of the main goals of this thesis is to develop

a fast solver for seismic wave propagation. Therefore, some routines have been specially developed
to deal with seismic wave propagation in canyons or alluvial basins. Moreover, because the BEM
formulation (1.19), upon which this work is based, is valid only for homogeneous media, the BE-
BE coupling strategy of Chapter 3 has been incorporateddrrEE for the purpose of dealing

with piecewise-homogeneous media. With such a formulation, problems with layers in an alluvial
basin can be solved. This code is nevertheless not just a seismic wave propagation solver, but rather
a general solver for linear elastodynamics. The type of problem to be solved is dictated by the
prescribed excitation and boundary conditions. For example, for seismic problems, the incident
free eld is not included in the code but computed from analytical formulae (see Appendix B for
some examples) in a pre-processing step, using eAy.LMs, and then prescribed on the domain
boundary as an input data of the solver. As a result, the solver is fully generic.
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Preliminaries for the installation. In addition to the GMRESzZPackgmres.f) and FGMRES
(zPackfgmres.f ) routines provided by the CERFACS [221, 220], some other libraries need to
be installed to be able to compilecBFEE The usual BLAS and LAPACK libraries [218] are
needed as they are involved in the computation of e.g. the eigenvalues of a vector (quadrature
over the unit sphere: Section 2.4.3) or small matrix-vector products (near part; Section 2.4.6). The
other important library is the Math Kernel Library (MKL) [217] for its implementation of the Fast
Fourier Transform, a key step in extrapolation (2.33) and inverse extrapolation (2.34) that allows to
keep aO(N logN) complexity. While a lot of FFT libraries are available for discrete sample sizes
that are a power of two (an assumption which is not acceptable in this work), the FFT provided
in MKL is not constrained by this restriction, and hence suitable. The author is aware about the
loss of portability implied by the use of those libraries, motivated by computing ef ciency. A
sensible alternative approach would consist in re-coding the small number of routines needed in
those libraries directly in GFFEE Such time-consuming recoding was not possible within the time
available for this work.

CoFrFeehas been compiled on Intel-based (Linux and Mac) 32 and 64 bits architectures. The
following set of compilation options of the Intel Fortran Compiler has been found to increase the
performance of the code:

-0O3 -fast -axW

C.2 INPUT AND OUTPUT FILES

In this section, the input and output les of the solver are described. Each le is divided into
sections, with the character # conventionally indicating the end of a section.

C.2.1 Input les

First, the input les which de ne the problem are described. Three separate input les are required,
respectively de ning the numerical parameters of the solver, the problem geometry, and nally the
problem de nition.

Numerical parameters. Some algorithmic parameters can be set by the user; they are listed in
the le Parameter.txt (see sample le in Fig. C.1). This le is composed of ve sections:

DIRECTORséction. The path of the directory where the temporary les (created by the
program) are stored, is given. The input and output les are always read and written in the
current directory but it is possible to de ne another directory where the large temporary les
(for example the stored matrix of the near contributions) are stored’(£.9).

INTEGRATIO8¢ction. This section is devoted to the de nition of the number of Gauss points
used for the various integrals. The four numbers correspond respectively to:
- the number of Gauss points for the computation of the CPV integrals in the near contri-
butions eq. (A.10) (recommended valis;

- the number of Gauss points for the computation of the weakly-singular integrals in the
near contributions (recommended valdg:
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- the number of Gauss points for the computation of the non-singular integrals in the
near contributions for triangular boundary elements (possible vaB&sor 13; recom-
mended value3);

- the number of Gauss points for the computation of the integrals in the FMM computa-
tions for triangular boundary elements (possible val@eg:.0r 13, recommended value:
3).

SOLVERection. This section sets all the parameters needed by the iterative solver. First it
is, in principle, possible to de ne another solver than GMRES, although only GMRES is
currently available in the code. Then, the tolerance used to stop GMRES is de ned in the
variablePRECISIONrecommended valuetO 2). In the variablePRECONDITIOMNe type

of preconditioner is de nedNQLEFTor RIGHT(no left preconditioner is currently imple-
mented). ORTHb the orthogonalization procedure used by the solver. The possible values
are: modi ed Gram-SchmidtMODIF_G;Secommended value), iterative modi ed Gram-
Schmidt (TER_MODIF_G)Sclassical Gram-SchmidiCLASS _G)Sand iterative classical
Gram-SchmidtITER_CLASS_G-SThen,MAX ITERATIONS nes the maximum number

of iterations allowed for GMRES (in the outer GMRES if FGMRES is used). A restarted
version of GMRES can be used with restart occuring eRIBEETART PARAMEBERIONS

(of the outer GMRES if FGMRES is used, recommended vah®: Finally, the method
used for the post-processing, evaluation of eld variables at interior or exterior points using
the boundary integral representation (Section 2.4.8), is de né&OST_PRQO&hose possi-

ble values areNQ(solution needed only on the boundarBEMpost-processing performed
using standard BEM) dFMNJpost-processing performed using FM-accelerated BEM).

OCTRESection. In this section, all the variables related to the FMM are given. First, pa-
rametel.OW FRE&Ys low-frequency problems, for which a little trick is used: the number

of terms in the transfer function (2.14a,b) is increased to the number of terms in the transfer
functions (2.13a,b). This option was developed to make some validations with previously
published results at low frequency. We suggest to always put the keylv@d FREQNO

and to avoid using GFFEEIn the low-frequency regime. Then, the value of the constant
needed in the truncation of the transfer function, eq. (2.30), is de nddNS_(Eecom-
mended valueZ:5). Next, the leaf cell size, which determines the number of levels in the
octree, is set i TOP_SIZE_PAR@dMommended valué:30).

The next two variables deal with the out-of-core part of the code (Section 2.4.7). They are
assigned according to the RAM available on the compW&xX_GROfpIescribes the max-
imum number of groups allowed in the out-of-core version of the program. The variable
MAX_MEM nes the maximum size available on the computer and is de ned on each com-
puter by doing some numerical experiments.

PROBLE3#ction. The rst variable in this section is a special ag for problems of seismic
wave propagation in an alluvial basin. WhBASIN PROBLEMqual toFMMr BEMa rou-

tine which computes an integral speci c to this type of problem (Section 3.4.5) is called.
Three key words are possible for this variabdO(no need to use the total eld basin for-
mulation), BEMcomputation of this integral using standard BEM)FiviIMcomputation of

this integral using FM-BEM). The last variabldERBOSg&a ag for helping debugging the
program, withERBOSE=TRItifgering runtime comments displayed on the screen.
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*DIRECTORY
TEMP_PATH="/'

#

*INTEGRATION
NBGAUSS=8,4,3,3

#

*SOLVER
SOLVER TYPE=GMRES
PRECISION=0.001000
PRECONDITION=NO
ORTH=MODIF_G-S
MAX ITERATIONS=1000
RESTART PARAMETER=50
POST_PROC=FMM

#

*OCTREE
LOW FREQ=NO
CONS_C=7.500000
STOP_SIZE_PARAM=0.30000
MAX_GROUP=100
MAX_MEM=2000000

#

*PROBLEM
BASIN PROBLEM=NO
VERBOSE=FALSE

#

Figure C.1: Example of the input leParameter.txt

Geometry de nition. The geometry of the problem is prescribed in the peblem.GEO(ex-
tensions in all input le names must be set using uppercase letters), see the sample le presented in
Fig. C.3. The structure of this le is inspired by thenesh format of the scienti ¢ visualization
software MEDIT [222]. Three sections are de ned in this le:

Zonessection. The number of sub-domains for the problem is set.

Vertices section. The total number of nodes in the problem is followed by a list of all
nodal coordinates (one line per node). For each node, the number of en®iesisnber of
sub-domains: the three node coordinates, then the references of the node (i.e. sub-domains
to which the node belongs), are listed. When a node belongs to less than the total number of
sub-domains, the remaining references are set to

Triangles section. This section is devoted to the de nition of the elements. The number of
triangles in each sub-domain are listed in a single line. The next line de nes the element type
with the only currently available value being 4 (meaning three-noded triangular boundary
elements). Then, the key wo#tbne following by a sub-domain number, is used to specify
that the elements given next de ne this sub-domain. For example, if we consider the geometry
represented in Fig. C.2, aftéone 1 all the elementsof® ; = 1[ 12 are de ned and,
afterZone 2 all the elementso® , = [ 21 are de ned. Elements are always simply

de ned by the list of their nodes (with implicit sequential element numbering assumed). The
reader's attention is drawn to the convention used for the de nition of the elements in the case
of multi-domain problems. To ensure that normals are always exterior to a given sub-domain,
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the interface elements (between and » for example) are listed for both sub-domaingy{
in 1and »1in ») to which they belong using opposite node orderings (Section 3.4.4).
The normal orientation is then determined by the node ordering, via the evaluation of a cross

product.

Figure C.2: lllustrative geometry to explain the input lgaroblem.GEQ

Zones

2

#

Vertices

324

0.850651 0.525731 -0.000000 1 O

-0.850650 0.525732 -0.000000 1 O
-0.850650 -0.525732 -0.000000 1 O

1.701300 1.051460 -0.000000 1 2
-1.701300 1.051460 -0.000000 1 2
-1.701300 -1.051460 -0.000000 1 2
#

Triangles

640 320

4
Zone
1

43 45 5
46 43 5
48 50 6
50 52 6
Zone

2

205 207 167
208 205 167
210 212 168
212 214 168

#

Figure C.3: Example of the input leproblem.GEQ
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Problem de nition. Once the geometry is de ned, it is necessary to assign the mechanical pa-
rameters, boundary conditions and unknown variables. This is done in tipeoldem.DAT (see

the sample le presented in Fig. C.4). Distinct le&EOand.DAT are used because the same
geometry can correspond to various problem de nitions (e.g. scattering of a plane SV-wave or of a
plane P—wave). Moreover, the generation of BB&EOle can be CPU-intensive for large meshes,
making its re-usability advantageous. Eight sections are de ned irDIAg le:

Problem section. The problem circular frequenikyis assigned.

Material properties  section. The mechanical parameters, for each sub-domain, are de-
ned. The three entries of thieth line correspond respectively td" (shear modulus),
(Poisson's ratio) and() (mass density).

DISP_UNKesp. TRAC_UNEKection. The displacement (resp. traction) unknowns are listed
(node (resp. element) numbeand direction):

DIR
i

This section allows maximum exibility in setting boundary conditions, and in particular per-
mits using the code in situations other than the typical seismological computations featuring
given incident elds. To generate this data, the user may need to develop separate pre- and
post-processing routines as explained in the following.

DISP_BandTRAC_Bections. The same convention as in (HEP_UNENdTRAC_UNiec-

tions is used to specify the nodes (resp. elements) at which the displacement (resp. traction)
is (partially or completely) prescribed. The value of this prescribed displacement (resp. trac-
tion) is also set:

DIR
i val

where val is the complex-valued prescribed displacement (resp. traction) and has to be writ-
ten: Re(val),l m(val)).

NODE_RH8Ad ELEM_RHs®ctions. It is also possible to directly add some values to the
right hand side NODE_RH& values at nodal collocation points aetlLEM_RH®Sr values

at element collocation points). This is useful for entering free- eld values appearing in the
right-hand side of scattering problems formulated in terms of total eld (Section 3.2.2). The
convention is the same that for tBéSP_BandTRAC_Bections.
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Problem
6.835000e-01
#
Material properties
4.000000e+00 2.500000e-01
1.000000e+00 3.333333e-01
#
DISP_UNK
DIR
1
1
DIR
1
2
DIR
1
3
#
TRAC_UNK
ZONE
1
DIR
2
321
DIR
2
322
DIR
2
323
ZONE
2
DIR
3
1
DIR
3
2
DIR
3
3
#
DISP_B
#
TRAC_B
ZONE
1
DIR
1 (0.416922,0.000000)
1
DIR
1 (0.416922,0.000000)
2
DIR
1 (0.416922,0.000000)
3
#
NODE_RHS
#
ELEM_RHS
#

3.000000e+00
2.000000e+00

Figure C.4: Example of the input leproblem.DAT.
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Optional les. Inthe special case of the propagation of an elastic wave in a basin, the contribution
of the free-surface to the right hand side is computed by means of a particular integral over the
truncated planar free surface (Section 3.4.5, eq. (3.21)). The mesh of the free-surface is prescribed in
the le problem.GEOZ2 The structure of this le is the same psoblem.GEO The only difference
is that the number in th&ones section now de nes the sub-domain for which this integral is
computed. Aproblem.DAT?2 le is also required in this case; it only contains tB¢SP_Bsection
of the le problem.DATsince this integral involves prescribed displacements only (Section 3.2.2).

If a post-processing step is needed, the number of observation points, sub-domains identi er,
and point coordinates for which this integral representation is to be computed are de ned in the le
problem.POSTGEGee example in Fig. C.5.

Vertices

100

Zone

1

0.000000 0.000000 1.100000
0.000000 0.000000 1.200000
0.000000 0.000000 1.300000

#

Figure C.5: Example of the input leproblem.POSTGEO

C.2.2 Output les

Upon completion of the execution,dGFEEgenerates several les with the results and information
about the computational process.

Results of the computation. Once the computation is performed, two output les are always cre-
ated. The rst oneproblem.DISP_NODES.txt contains, for each node on the domain boundary,
the three components of the displacement (real and imaginary parts) given following the convention:

node_numberRe(ux) Re(uy) Re(uz) I nfux) I m(uy) | m(uz)

The second le,problem.TRAC_ ELEM.txt gives the element traction values following the con-
vention:
element_number Re(ty) Re(ty) Re(ty) I nfty) I nfty) I nft;)

Information about the computation. In addition to those two result les, two other les con-
taining information about the computation are created.

ERROR.ermwhich contains some description and localization of errors encountered during
the computation, if any, that possibly caused the program to stop prematurely.

STATUS.logvhich contains details on the computational steps (see the sample le of Fig. C.6).
First, the names of the problem le and of the directory where the temporary les are stored
are recalled. Then, the number of octree levels in each sub-domain and the number of groups
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for the out-of-core version are written. The CPU time spent in each part of the program is
also recorded in this le. The remainder of the le is devoted to the convergence history of
GMRES.

Optional les. If post-processing (computation of the boundary integral representation) is re-
quired, a new le is createdproblem.INT_REG.txt. In this le, the three components of the
displacement at interior (or exterior) points are saved. The convention is the same as for the le
problem.DISP_NODES.txt

C.3 HOW TO PERFORM A COMPUTATION WITH COFFEE

After this description of the input and output les, we give some information on how to run a
seismology-oriented example. The complete resolution of an elastodynamic problem, osing C
FEE, is usually decomposed into three steps:

1. pre-processing: domain geometry and surface mesh generation, de nition of input les (Sec-
tion C.2.1);

2. solution of the problem using @-FEE, creation of output les (Section C.2.2);
3. post-processing: creation of graphics, synthesis in the time domain, ...

In the following, a generic example of the method adopted in these three steps is given, and all
softwares used for creating data and studying results are listed and credited.

Pre-processing. For all the geometries of canyons or multi-layered basins used in Chapters 2,
3, 4 and 5 of this thesis, a shell script has been written to generate the geometry and the mesh.
All meshes have been created with the help of Adrien Loseille from the GAMMA team, INRIA
Rocquencourt (www-c.inria.frlgamma/), and using softwares developed by this team. We now
illustrate with the case of a two-layer ellipsoidal basin the mesh generation method used. First, three
regions are de ned in the plane free-surface (Fig. C.7a). The boundaries of this plane geometry
(namely ellipses) are generated using\iMAB and this simple geometry is then meshed using
BAMG [224] (Fig. C.7b).

Then, with MATLAB, the nodes of the 2-D meglx;y) of » and 3 (Fig. C.7c) are trans-
formed into nodesx; y; z) of the 3-D mesh using the parametrization

for all verticesin 1 z =0 (free surface)
for all verticesin , z c 1 x2=2 vy2=1F (interface 1, with the in nite medium)
for all verticesin 3 z = z,r (interface ,3 between two layers)

z= ¢ 1 x2=22 y2=1 (interface 13with the in nite medium)

(C.1)
where(a; b; @ de ne the ellipsoid semi-axes (Fig. C.7d). Finally, the various parts of the mesh
(interface between the two layers, Fig. C.7e; interface with the in nite medium, Fig. C.7d, and free
surface, Fig. C.7f) are geometrically merged (Fig. C.7g) usindBR (code provided by Adrien
Loseille).
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bassin05_Ut /grosdisque/chaillat/fichiers_tmp/
BEGIN ANALYSIS time= 0.0
READING INPUT FILE time= 0.0
INPUT FILE READ time= 0.3 step= 0.3

GENERATING STRUCTURE FOR FMM (zone:1) time= 0.4
GENERATING STRUCTURE FOR FMM (zone:2) time= 0.4
NB LEVELS: 4 ; NB LEVELS: 4

NB GOUPF,NB GROUPG: 0 0

STRUCTURE GENERATED time= 3.3  step= 2.9
EVALUATION FAR CONTRIBUTIONS TO RHS time= 3.3

RHS CONTRIBUTIONS EVALUATED time= 6.5 step= 3.1
EVALUATION NEAR CONTRIBUTIONS time= 209.4

NEAR CONTRIBUTIONS EVALUATED time= 277.4 step= 68.1

WARNING GMRES :
For M= 17502 optimal value for LWORK = 612815029
CONVERGENCE HISTORY FOR GMRES
Errors are displayed in unit: 22
Warnings are displayed in unit: 21
Matrix size: 17502; Local matrix size: 17502
Restart: 17502
No preconditioning; Modified Gram-Schmidt
Default initial guess x_0 = 0; True residual computed at restart
Maximum number of iterations: 20000; Tolerance for convergence: 0.10E-02
Backward error on the unpreconditioned system Ax = b:
the residual is normalised by |[|b||
Backward error on the preconditioned system (P1)A(P2)y = (P1)b:
the preconditioned residual is normalised by ||(P1)b]|
Optimal size for the workspace:*****+x

Convergence history: b.e. on the preconditioned system

Iteration  Arnoldi b.e. True b.e.
EVALUATION FAR CONTRIBUTIONS ZONE 1 time= 279.5
-WRITTING step= 0.0
-INITIALIZATIONS step= 4.6
-TRANSFERS step= 0.0
-INTEGRATIONS step= 2.8
-UPWARD step= 0.0
-DOWNWARD step= 0.1
MATRIX-VECTOR PRODUCT EVALUATED time= 287.0 step= 7.5
EVALUATION FAR CONTRIBUTIONS ZONE 2 time= 287.0
-WRITTING step= 0.0
-INITIALIZATIONS step= 0.1
-TRANSFERS step= 0.0
-INTEGRATIONS step= 0.0
-UPWARD step= 0.0
-DOWNWARD step= 0.1
MATRIX-VECTOR PRODUCT EVALUATED time= 287.4 step= 0.3
1 0.4228E+00 -
39 0.8919E-03 0.8919E-03

Convergence achieved

B.E. on the preconditioned system: 0.89E-03

B.E. on the unpreconditioned system: 0.89E-03

info(1)= 0; Number of iterations (info(2)): 39 ; GMRES converged in 39 iterations
Backward error - preconditioned system:  8.9188620E-04

Backward error - unpreconditioned system: 8.9188620E-04

WRITE RESULTS time= 597.0
END WRITE RESULTS time= 597.1 step= 0.1

Figure C.6: Example of the output I6ETATUS.log
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(@) (b)

(© (d)

(e) ®
(9)

Figure C.7: Two-layer ellipsoidal basin: mesh generation.
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This mesh is then optimized to the domain geometry and problem frequency usig[X23].
Because ©OFFEEis an elastodynamic solver in the frequency domain, the mesh size is deter-
mined by the frequency of the computation. Usually, for BEMs, aldl@utodes per ¢ are used.
Once theproblem.mesh le is generated, two MTLAB functions create theroblem.GEOand
problem.DAT les.

Run CoFrFee. One must rst check whether all the required les are in the directory chosen for
the computationproblem.GEQproblem.DATandParameter.txt (in all cases)problem.GEO2
and problem.DAT?2 (for seismic wave propagation in a basin), gmblem.POSTPRO@ the
computation of integral representations is required).

Then, one simply types @-Fee <Enter> in the command line of a terminal, being in the
current directory, followed by problem name (without extension) upon promptingdsF€e

Post-processing. COFFEE only creates text les (Section C.2.2). A MLAB function has

been created to generate les in thbb format allowing visualization of the 3-D results with
MEDIT [222]. To generate time-domain results, a script has been created to perform the synthesis of
all the frequency-domain results. AMLAB function has been developed to perform the Fourier
synthesis (see Sections 2.6.4 and 3.6). As explained in Section 3.6, the sample frequencies are
treated for computational ef ciency reasons using a hierarchical sequence of mvsghes ;M |

(with M , the nest mesh). The meshes have been generated uging,\starting from the coars-

est meshM ( and then splitting each triangle into four sub-triangles. Then, an interpolation has
been performed from coarse meshksd :::;M , 1) to the nest mesh¥ ). Since we know

that new vertices are created at each edge mid-point (from Mesto meshM ., ), and because

the interpolation is linear, it is easy to do this interpolation. The dif culty comes from the need to
have all the interpolated solutions de ned on the same mesh, with displacement nodal values listed
in the same order for all frequencies, to apply the Fourier transform. It is not easy to sort the vertex
coordinates since they are real valued. The solution adopted here exploits the fact that when a new
vertex is created, it always has at most 2 neighbour points (connected by an edge) in the parent
meshM ; (Fig. C.8). Moreover, XMs sorts the vertices in the following way when the embedded
meshM .1 is created. First, all the vertices bf ; are copied in the same order and then all the
new vertices are appended. As a result, notihghe number of nodes iM i, it is easy to see

that the two nodes that de ne the edge to which a new node belongs are the two only neighbour
nodes with a number at most equalNg. This observation makes it easy to order all the results

this interpolation procedure. The algorithm used to determine the neighbour points can be found
in [85].

Figure C.8: A vertex oM ; has at most two neighbour vertices oh;,; .
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In this work, some special functions have been used. We recall in this Appendix some proper-
ties of these functions. The reader can nd more details in [1].

D.1 SPHERICAL HANKEL FUNCTION OF THE FIRST KIND
The spherical Hankel functions of the rst kind are used in the de nition of the transfer function,
eg. (2.9). The Hankel functions of the rst kind are written:

HOX) = J (x)+ iY (x)

whereJ (resp.Y ) are the standard Bessel functions of the rst (resp. second) kind and are real-
valued functions when their argumenis real, as is the case in this thesis. The Bessel functions
are the solutions of the Bessel equation:

2f =0 (f =J;Y;H)

The spherical Bessel functions are related to the standard Bessel functions by the following de ni-
tions:

r r r_
(0= 5300 (0= o Yauo()r P00 HE L0
where the index takes integer values. The rst values of the spherical Bessel functions are:

. sin(x cos

o = S0, vo = ),

. _sin(x) cos) _cosk) sin(x) .
1) = =3 S i) = —; v

J'z(x)z(xi3 %)sin(x) 3?(%; y2(x) = (x% %)Cos(x) 3‘;9(#
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As a result, the rst values of the spherical Hankel functions are:

W= & 0 Cae e WOz €3 3.

hg ()= == he)= =L+ )i hYe0=— -+ )
The spherical Bessel functions satisfy the following reccurence formula:

2n+1 .
Zp+1(X) = zh(X)  zn 1(X)  (zn = jn;Yn;hn) (D.1)
For small values ok (x  1;), the spherical Bessel functions follow the asymptotic forms:
FOI= oD 131" 22 +3) :
. (@ 1HE 331 x? 1

For large values ot (x ), their asymptotic behavior is:
. 1 . ) 1 1 ) 1
‘(X)= =sin(x —=)+ o(=); “(X)= —cos —)+ o(—=);
0= sinx )+ o(p) y()= ok )+ o)
o EX 1
M) =( Y2 + o(=):
(= )"+ o)
For the numerical computation §f,, the recursion formula (D.1), with starting valugsandy;
has been implemented. However, forward recursion (D.1) is numerically unstable when applied to
in. For example, fox = 0:5, the relative error betwegn computed using either the recurrence
formula (D.1) or the Matlab functiohesselj is seen in Table D.1 to rapidly increase with
The solution implemented in the present code is to use an inverse recursion (Algorithm D.1),

wheren is the largest order of the spherical Bessel function whose computation is required. Using
this recursion, the relative error is now very low (Table D.2).

Table D.1: Numerical error introduced for the computations pf, using the recursion for-
mula (D.1).

3 4 5 6 7 8 9 10
error{310 7 8108 3107 2104 2103 101! 1¢? 210

Table D.2: Numerical error introduced for the computationsjof using the inverse recursion with
larger ordern = 10.

3 4 5 6 7 8 9 10
error| 410 *® 210 % 10 101 10 0 510% 810!

D.2 LEGENDRE POLYNOMIALS

The following differential equation, with 2 N:
% @ XZ)%P + (C+1)P =0;

has for solution, an orderpolynomial, called Legendre polynomial. The rst few Legendre poly-
nomials are:

Po(x)=1; Pi(X)= X%  Pa(x)= %(3><2 1);
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jo=0

jl=1

fork=int(n+2x): 1:0do
jk =(2k+3)j1=x jO
if Kk nthen
Jvar(k) = jk

end if

j0=]j1

jl=jk

end for

j 0 = sin x=x

a=j0=jval(0)

jval(0:n) = ajva(0:n)

Algorithm D.1: Inverse recursion used for the computation of

1 1
P3(x) = g(5x3 3x);  Pa(x) = é(35x4 30x2 +3):
The Rodrigues' formula gives the explicit expression of polynonfalas:

1d ., -
2\\!5[@ 1)

The Legendre polynomials satisfy various recursion relations (the rst one being used in Sec-
tion 2.4.3):

P-(x) =

C+1)Pu (2 1xP-+ P 1=0;
P%, xP% (+1)P =0;
(x? 1)P® xP-+ P ;=0;
and also satisfy the identity: )
P( x)=( 1) P(x):

In [58], the following formula is used to de ne the optimal quadrature over the unit sphere (Sec-
tion 2.4.3):

P-(x:y) =

241 Y )Y (v) - (lixii = iiyii = 1)

An important property of the Legendre polynomials, which is used in this work (Section 2.4.4), is
that they are orthogonal with respect to thescalar product ofi 1; 1]:
z

1
2

P Pn(X)dX = —— mn:

 PmOOPRO)AX = 5

For the de nition of the direct and inverse extrapolation steps (Section 2.4.4), the associated Leg-
endre polynomials were used. They can be expressed in terms of derivatives of the Legendre poly-
nomials,for m Oand 2 N:

(m) — m 2ym=2 d" R .
PG =( DN XA (P(X):

The relation linkingP- ™ (x) form  0to P™(x) is:
¢ m)

P00 =( D"

PM(x):
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The associated Legendre polynomials are also orthogonal for amiven
Z,

PT(X)PM(x)dx =
1

~ o 0'
2°+1
A useful recursion formula is

¢ mPM™Mxy=@2° M) +C+m HPMx) © m ),
(2m)!

i P (0= @m+1)xPM(0: (D.2)

PEV)=( DM@ x*)m?

Then, 1etQ™ denote a renormalized version®f™ de ned by
s

Q'™ =

2‘+1(‘ m)! (m).
4 (C+m)

(D.3)

This de nition and recursion (D.2) imply the following recursion for t@ém):
53 P p " T
- +
2 mQM =" 42 QM+ (12 m2 QM) (O m )

(O™ @ 2’ EmeDy

Pp—
R mi Quh (0= " 2m+3xQ(x); (D.4)

Qi (x) =

which is used in the present implementation to com;ﬁl{ﬂé in eg. (2.33-2.34).

D.3 SPHERICAL HARMONICS

In spherical coordinates, the Laplace's equation is written:

1@ ,0f 1 1 @f 1 @
— —(rc=-)+ — + — =
I’Z@I( @ r2 sin? @2 sin @
The spherical harmonicsire the functions appearing in the general solution of (D.5) sought using

separation of variables in spherical coordinates, and are given by
S

(sin gf) =0: (D.5)

T e e LACE L

with 2 [0; Jand 2 [0;2 ]. Spherical harmonic¥ ., areL?-othonormal on the unit sphere. A
functiong( ; ) in L%(S?) can hence be written on a basis of spherical harmonics:

X1 X
a(; )= AmYm(s ) (D.6)

‘=0 m= °

where, using the orthonormality of spherical harmonics, we have:
Z
Am = Ym(: )l )

whereY-., is the complex conjugate &f., . These properties are used in Section 2.4.4.
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Solution of linear viscoelastic equations
In the frequency-domain using real
Helmholtz boundary integral equations
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Concurrently with the principal subject of the thesis, some work has been performed with
Professor H.B. Bui on boundary integral equation for viscoelasticity. This work has been published
in a short Note for C.R. Mecanique [42].

E.1 INTRODUCTION

The main advantage of boundary element method (BEM) is that only the domain boundary is dis-
cretized. As a result, the method is well suitable for the study of problems in unbounded domains.
So, the boundary integral formulation of linear elasticity is used to study seismic wave propaga-
tion [191].

But, the ideal model of a linear elastic soil is not adapted in a lot of cases. It is hecessary to
take into account the soil damping factor and so to use a formulation for dynamic viscoelasticity.

In time domain, various methods have been proposed for BEM formulation of viscoelastic-
ity [188]. They are sorted into three kinds. The rst formulation is developed by applying the
elastic-viscoelasticorrespondence principle An integral transform (according to time) is per-
formed on the boundary integral equation of elastodynamics. Generally, Laplace transform is con-
sidered, for example in the works of Rizzo [172] or Kusama [129]. Then, the viscoelastic fun-
damental solutions are obtained by applying the elastic-viscoelastic correspondence principle to
elastodynamic solutions. Various works deal with the reduction of the last step: the back transform
to time domain.

The second class of methods uses the fundamental solutions of elastodynamics in time do-
main. Once the convolution with time shape functions is integrated analytically, the equation is



192 BEM in viscoelasticity

transformed in Laplace domain where the correspondence principle is applied. Then, a numerical
inverse transformation is required [92] to lead to a time domain boundary element formulation.
Various works use the "convolution quadrature method" developed by Lubich [136] to evaluate the
convolution [189].

The last class of methods directly requires the knowledge of the viscoelastic fundamental solu-
tions in time domain. Using differential systems of Kelvin and Boltzmann models, Mesquita [149]
determines integral formulations adapted to each model. With those methods, only for the simplest
viscoelastic models, the fundamental solutions are available analytically and one does not consider
works in elastodynamics.

In frequency-domain, the usual method is to replace the Lamé's constants by complex val-
ues [67].

In this additional work, a simple method to formulate the boundary integral equations for vis-
coelasticity, with a Zener model (i.e. standard 3 parameters solid), is presented. This method, based
on the introduction of new intermediate variables, reuses the classical formulation of elastodynam-
ics and presents the advantage to keep real valued Lamé's constants. To the authors knowledge, a
formulation similar to ours does not exist in the literature.

E.2 RHEOLOGICAL MODEL

Various rheological models exist to model the viscoelastic behavior of a material [79]. The Kelvin-
Voigt model is well adapted to model solids. The Maxwell model is in general used to model uids.
The rheological model used herein is a Zener with a dashpot impedaand elastic constants

ko andk; (Fig E.1). In this model, if = 0, so the dashpot has not effect, it is called a "relaxed
modulus”. The model is equivalent to two springs connected in series. On the contrazy lif,

the dashpot does not have time to react, it is called an "instantaneous modulus".

Figure E.1: Zener model.

E.3 FORMULATION OF THE PROBLEM

In the following, usual typeface letters denote scalar quantities while boldface letters denote vectors,
matrices or tensors. The partial derivate is denoted using a co%{pa {.x)-

The study is made in the frequency-domain. The main idea is to avoid the de nition of the
displacement in the classical form(x;t) = u(x)e' (! denoting the circular frequency) but
under the restrictive condition:

u(x;t) = v(x)coslt (E.1)
wherev(x) is a real function. As a result, the variablesndt are uncoupled.

The three-dimensional generalization of the Zener constitutive law has been proposed by I.
Goriacheva in [96] and is used in the present Note, denotirthe stress tensor andthe strain
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tensor: 8
2 = + &
S = + %t (E.2)
Cuo= ur &
The coefcients and ( > ) are determined by:
T k' kot ki

The tensors and are linked by the constitutive equation of isotropic linear elasticity, with the
Lamé's coef cients and of the relaxed modulus, = L
With notation (E.1), we note that(x;t) andu(x;t) are phase shift by=2. Using nota-

tion (E.2), we obtairu (x;t) = v(x)[cos!t I sinlt ]. Noting the angle such thatan =
(0] < = 2/i.e.cos 60),itfollows:
v(x)
1) = —= it + ): E.3
u(xit) = ~cos(t + ) (E3)

Clearly, the variables andu are phase shift by but have the same circular frequericy

Then, noting (x;t) = w(x)cos(t + ), we obtain (x;t) = w(x)[cos(t + )
I sin(!t + )]. De ning in the same way that fon, the angle such thatan = ! (0
< = 2,i.e.cos 60),itfollows:

(x;t) = \évo(;()cos(!t + o+ ) (E.4)

But, the variables andu are known to satisfy the linear elasticity equations, as a result they have
to be in phase. Itfollows that = + . Finally, andu have to be phase shift by=

E.4 BOUNDARY INTEGRAL FORMULATION

The boundary integral equation method for this formulation of viscoelasticity is now de ned using
the well-known method for elastodynamics. In fact, the main advantage of this formulation is that
only a simple change of variables is introduced.

Boundary integral equation. The quantities andu which are linked by the elastic law, are
now shown to satisfy the dynamic equationandu can satisfy the dynamic equatidiv o=
Oifand only if andu are almost in phase, that is to say if and only if the angkesmall. The
difference introduced by the dephasing betweeandu, in the dynamic equation, is proportional

to ! 2 . Itcan be easily proved that= j jl . Asaresult,! ? isproportional to! 3j j
and we remark that we hawaiv o = 0to orderO(! 3). It follows that:
div ] (div M)+ (div_ U)+( ) U= ( ) u (E.5)
Using the de nition ofu (E.1), we obtain thadliv ® = Oand that the difference introduced
in this dynamic equation is equally proportional toSj j if and only if:
] j! 1 thatistosay jj L (E.6)
As a result, if! is much less than the limit frequendyy = 15 j, the notation (E.1) is
compatible with elastodynamics.
Sincej j is proportional to the viscosity coef cient(for a given set of elastic constaky

andky), the lower the coef cient , the higher the limit frequencly; (in soil mechanics is small
sothat ; is very large). Thus the hypothesis of "low" frequehcy ! 1 (including the quasi-static
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casé = 0), which we suppose in the following, is satis ed in soil mechanics, for a large frequency
range. This leads to the boundary integral formulation which is the same as for elastodynamics:

dv + ! %u =0; =L
This formulation is now recalled [31]. The stress vedidru on a plane of normai is de ned
by the operator (and representing the Lamé's constanf§)! =2 @, + n:div + n " rot.

Noting the region of space occupied by an elastic solid with isotropic constitutive properties,
the displacerr%eru at an interior poink 2 is given by:

uk(x) = o [(TPu(iUEeGY;) )T UReGy;t)ilds,  (x2 )5 (E7)

whereUK(x;y;! ) denotes thé-th component of the elastodynamic fundamental solution, in the
frequency-domain, for an in nite space. Whgn2 @ , a singularity occurs ity = x. With the
help of a well-documented limiting process, equation (E.7) yields the integral equation:

Cik (X)ui(x) = (P:V)) o (T u(y))iUfoGy:!)  wiy)(TUX(x;y;!))ilds,

x2@; (E8)

R
where(P:V:) indicates a Cauchy principal value (CPV) singular integral andréeetermciy (x)
is equal ta0:5 j in the usual case whe@ is smooth ax.

Boundary conditions. We consider a domain, of boundary@ o which mixed but indepen-
dent boundary conditions are imposé@ € @ 1+ @ and@ 1 @2 = ;). On@ 4, the
imposed displacement is noted as in (E.1):

ud(x;t) = ud(x)coslt;
on @ », the stress vector is written in the same manner:
td(x;t) = wd(x)cos! (t+ ):

Let's assume that the dateff on @ ; and %:n on @ 5, are compatible (it can be de ned in
form (E.1) so the variables are phase shift by ). For example, the following data are
compatible:

1. u9 6 0 (circular frequency )on@ ;and 9n =0 0on@ »

2.u9=00n@ 1 and %n 60 (circular frequency ) on @ »

As a result, the intermediate variables and , are necessarily in phase. The problemnuin
and is solved using the well-known boundary integral formulation of elastodynamics in the
frequency-domain. Having the solution (resp. ), u (resp. ) is easily computed. Indeed, the

solutions of the elastodynamic problam and  have respectively an amplitude equalc{@
w(x)

and -~ ((E.3) and (E.4)). So, to compute the amplitudeuofresp. ), one only has to multiply
the amplitude ofi (resp. )bycos (resp.cos )where =tan ! and =tan 11! .

E.5 CONCLUSION

A new and simple formulation of time harmonic viscoelasticity (including the quasi-static case)
have been presented. Hence, it has been shown that this problem reduces to a classical elastic
problem by a simple change of variables if the boundary conditions respect a restrictive condition.

It makes possible to reuse existing numerical tools of time harmonic elastodynamics. The speed up
of the computation can be done using the Fast multipole method [41].
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ABSTRACT

Simulating wave propagation in 3D con gurations is becoming a very active area of research. The
main advantage of the BEM is that only the domain boundaries are discretized. As a result, this
method is well suited to dealing with unbounded domains. However, the standard BEM leads
to fully-populated matrices, which results in high computational costs in CPU time and mem-
ory requirements. The Fast Multipole Method (FMM) has dramatically improved the capabilities
of BEMs for many areas of application. In this thesis, the FMM is extended to 3D frequency-
domain elastodynamics in homogeneous and piecewise-homogeneous media (using in the latter
case a FMM-based BE-BE coupling). Improvements of the present FM-BEM are also presented:
preconditioning, reduction of the number of moments, and formulation of a multipole expansion for
the half space fundamental solutions. Seismological applications are given for canonical problems
and the Grenoble valley case.

Key words: Fast multipole method; Boundary element method; Wave propagation; Seismic wave
ampli cation; Elastodynamics; Computational mechanics.

RESUME

La simulation de la propagation d'ondes pour des con gurations 3D est un domaine de recherche
trés actif. Le principal avantage de la BEM est de ne discrétiser que les frontiéres du domaine.
Elle est ainsi bien adaptée aux domaines in nis. Cependant, la BEM classique conduit a des ma-
trices pleines et donc a des codts de calcul et mémoire importants. La FMM a permis d'augmenter
de maniére signi cative les capacités de la BEM dans beaucoup de domaines d'application. Dans
ce travail, la FMM est étendue aux équations de I'élastodynamique 3D dans le domaine fréquen-
tiel, pour des domaines homogeénes puis, grace a une stratégie de couplage BE-BE, aux problémes
multi-domaines. D'autres améliorations de la méthode sont aussi présentées: préconditionnement,
réduction du nombre de moments, développement multipble pour les fonctions de Green du demi-
espace. Des applications en sismologie sont présentées pour des modéles canoniques ainsi qu'au
modele de la vallée de Grenoble.

Mots clés: Méthode multipdle rapide; Méthode des éléments de frontiére; Propagation d'ondes;
Ampli cation des ondes sismiques; Elastodynamique; Mécanique Numérique.



