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PEDRA FILOSOFAL

Eles não sabem que o sonho
é uma constante da vida
tão concreta e definida
como outra coisa qualquer,
como esta pedra cinzenta
em que me sento e descanso,
como este ribeiro manso
em serenos sobressaltos,
como estes pinheiros altos
que em verde e oiro se agitam,
como estas aves que gritam
em bebedeiras de azul.

Eles não sabem que o sonho
é vinho, é espuma, é fermento,
bichinho álacre e sedento,
de focinho pontiagudo,
que fossa através de tudo
num perpétuo movimento.

Eles não sabem que o sonho
é tela, é cor, é pincel,
base, fuste, capitel,
arco em ogiva, vitral,
pináculo de catedral,
contraponto, sinfonia,
máscara grega, magia,
que é retorta de alquimista,
mapa do mundo distante,
rosa-dos-ventos, Infante,
caravela quinhentista,
que é Cabo da Boa Esperança,
ouro, canela, marfim,
florete de espadachim,
bastidor, passo de dança,
Colombina e Arlequim,
passarela voadora,
pára-raios, locomotiva,
barco de proa festiva,
alto-forno, geradora,
cisão do átomo, radar,
ultra-som, televisão,
desembarque em foguetão
na superfície lunar.

Eles não sabem, nem sonham,
que o sonho comanda a vida.
Que sempre que um homem sonha
o mundo pula e avança
como bola colorida
entre as mãos de uma criança.

António Gedeão, 26 de Abril de 1955,
Publicado em Movimento Perpétuo no ano de 1956.

PORTO SENTIDO

Quem vem e atravessa o rio
Junto à Serra do Pilar
Vê um velho casario
Que se estende até ao mar

Quem te vê ao vir da ponte
És cascata são-joanina
Erigida sobre um monte
No meio da neblina

Por ruelas e calçadas
Da Ribeira até à Foz
Por pedras sujas e gastas
E lampiões tristes e sós

Esse teu ar grave e sério
Num rosto de cantaria
Que nos oculta o mistério
Dessa luz bela e sombria

Ver-te assim abandonado
Nesse timbre pardacento
Nesse teu jeito fechado
De quem mói um sentimento

E é sempre a primeira vez
Em cada regresso a casa
Rever-te nessa altivez
De milhafre ferido na asa

Carlos Tê, 1986.
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OVERVIEW OF THE THESIS

Overview of the Thesis

The present manuscript summarizes the work that was made throughout the development of my Ph.D.
thesis. It partially fulfills the requirements for obtaining the doctoral degree of the École Nationale
Supérieure des Mines de Paris.

The work was carried out in the context of restructured power systems in which several independent
actors interact with an electricity market for placing their energy production/consumption bids. Si-
multaneously, the EU targets for massively increasing the integration of endogenous resources like, for
instance, renewable energies were kept in mind. The role of micro-generation and the active integration
of such type of generation into power systems was analyzed. In addition, the possibility of coupling
micro-generation with manageable loads and energy storage devices was also considered.

Throughout the work, the combined operation of a set of micro-generators, loads and energy storage
devices was accounted for. The combined operation of the set was considered to behave as a controlled
entity that forms an individual cell of the main power system. The general objective of the present
work was to develop a scheduling methodology for operating such types of power system cells under
electricity market conditions.

The approach developed here for addressing the management of power system cells operating under
market conditions performs the optimal scheduling of the various elements that may take part on the
defined power system cells. The scheduling is computed through a dynamic programming algorithm
that was specifically tailored for the purpose of this work. Such algorithm is fully described within this
document.

The power system cells considered here may comprise relatively high amounts of non-dispatchable
elements, namely: photovoltaic panels, wind turbines, and loads. The incorporation of such elements
in the scheduling procedure is made through the use of forecasts of their energy contributions to the
power system cell operation. As such forecasts are not perfect, they lead to some amount of error.
Consequently, they comprise a quantity of forecast uncertainty, which associates a level of trust to
the corresponding point forecasts. Therefore, the proposed power system cell scheduling method was
tailored for integrating such uncertainty into the scheduling procedure through the use of stochastic
programming principles and decision under uncertainty models.

Results giving insight on the possible contributions of the proposed scheduling method are included
in this manuscript. The document proceeds by drawing the main conclusions of the work, which
comprehend a critical analysis of its main achievements. The document ends with the description of
some perspectives for further research.
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Abbreviations

CPU: Central Processing Unit (the core of any modern computer).

DSM: Demand Side Management

GENCO: Generating Company.

ISO: Independent System Operator.

IEEE: Institute of Electrical and Electronics Engineers

PBUC: Price-based Unit Commitment.

PV: Photovoltaic

SCUC: Security-Constrained Unit Commitment.

TSO: Transmission System Operator.
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MAIN DEFINITIONS

Main Definitions

Dispatch: Decision process in which one determines the specific setpoints of any given generating
unit in use at any point in time.

Economic Dispatch: Decision process in which one determines the specific setpoints of any given
generating unit in use at any point in time with the objective of either minimizing the global
operation cost of the power system, or maximizing the operation benefit yield.

Risk: a state of uncertainty where some of the possibilities involve a loss, a catastrophe, or other
undesirable outcome.

Risk Perception: subjective evaluation of the risk associated to an uncertain future.

Setpoint: Target value that a generating unit will aim to reach.

Time-horizon: The period of time for which a set of sequential decisions is defined.

Time-step: The base amount of time used for discretizing the time-horizon into a number of time-
stages.

Time-stage: A point in time whose position is defined relatively to the starting position of the time-
horizon under analysis.

Unit Commitment: Decision process in which one determines which generating units are to be in use
at each point in time of a future period.
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CHAPTER 1

Introduction

CHAPTER OVERVIEW

THIS chapter introduces the present research work starting with a short description of the driving forces that
motivated it. Then, the chapter proceeds with the definition of the main objectives and contributions of the

thesis. At the end, an outline of the structure of the present document is provided.
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Scheduling of Power System Cells Integrating Stochastic Power Generation

1.1 Main Driving Forces of the Work

Three main driving forces are at the core of this research work. The first one is related to the polit-

ical willingness for achieving a large-scale integration of renewable energy technologies into power

systems with the objective of taking advantage of endogenous resources, thus reducing the pollution

associated to electricity production and utilization while increasing both the energy mix and indepen-

dence of countries worldwide. The second one is linked with the recent advances in both distributed

generation and information technologies. The third one is related to the fact that, as opposed to the

recent past, power systems are nowadays operated under electricity markets conditions, which implies

some changes in the way they are planned and operated. A short discussion on each of such axes will

thus be made for setting the basis and objectives of this work.

1.1.1 Large-Scale Integration of Renewable Energy Technologies into Power Systems

Increasing environmental concerns and the generally high dependency on fossil fuels for producing

energy lead many countries to develop policies that aim to overcome such problems. The establishment

of green certificate quotas for penalizing carbon emissions [4]: and the enforcement of more restrictive

laws on energy efficiency in buildings [6] constitute two examples of such policies.

Renewable energy technologies have the potential to directly contribute to the reduction of pollutant

gas emissions. At the same time, being endogenous resources, they represent an opportunity for coun-

tries to increase their energy independence while simultaneously improving the energy mix of their

economies. Consequently, countries worldwide are increasingly investing in the large-scale integration

of renewable energy technologies into power systems. As an example, in 2004, only 6 % of the Eu-

ropean Union (EU) overall gross inland energy consumption was fed from renewable energy sources

despite their abundance throughout the territory [7]. However, this value is expected to increase in the

next years. The target fixed by the European Union for the amount of gross renewable energy reaches

the value of 12 % by 2010 [8]. The target for electricity power generation is even more ambitious. In

2004, only 14 % of the produced electricity came from renewable energy sources [9]. However, the
:In Wallonie (Belgium), each green certificate corresponds to the carbon emissions produced by a reference combined-

cycle gas plant for producing 1 MWh of electricity [5] and companies have to have a number of certificates corresponding
to their annual energy production. If they do not have enough certificates at the end of the year, then they are bound to pay a
penalty for each green certificate missing worth 100 e. However, they have the option of either producing green certificates
by using efficient energy production technologies, either by buying them on the green certificate market from third-party
companies.
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European Union target projects the value of 22.1 % by 2010 [8].

Because power systems were not originally designed for integrating large quantities of renewable en-

ergy technologies, new problems emerge for their operators and planners for mainly two reasons:

1. many of the renewable energy technologies are distributed throughout the power grid and may

thus contribute to aggravate grid congestion and protection coordination problems;

2. many of such renewable energy technologies are based on stochastic, highly fluctuating re-

sources such as the wind or the solar irradiation, which adds significant uncertainty to power

system management.

Considerable research is carried out today to provide answers to these problems. This thesis aims at

contributing to the optimization of power system management by developing power system scheduling

tools suitable for distributed generation and taking into account the presence of stochastic generation

and loads.

1.1.2 The Contribution of Distributed Generation and Information Technologies

Current power systems face many challenges like, for instance: the difficulty of installing new power

transmission lines or reinforcing existing ones at the same time that the power system demand migrates

and grows, the aging of power system transmission components and the need to re-invest in new ones,

and the aging of conventional centralized power generation infrastructures. At the same time, new and

increasingly improved types of distributed generation technologies appear in the electricity industry

scene. These include microturbines, wind power generators, fuel cells, Stirling engines and others.

A state of the art on distributed generation technologies can be found in [10]. In parallel, advances

in information and communication technologies add novel capabilities to power system components

making possible to rethink the way power systems are planned and operated.

In contrast to the large power plants that are usually integrated by large centralized generation systems,

distributed generation technologies need less time to be installed. This fact, allied to their modularity,

can make them a more efficient investment when compared to centralized generation technologies.

Furthermore, if done properly, the adoption of distributed generation may allow to postpone or even
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to avoid investments on new large power generation facilities which, according to [11], are capital-

consuming, less efficient and difficult to license. However, distributed generation units may influence

the development and operation of current power systems. In some countries, the penetration of dis-

tributed generation has to be limited to a maximum of 20 % [12] in order to limit the harm these may

cause to the system. In fact, utilities fear [13] large-scale penetration of distributed generation in their

grids as it could compromise their costs as well as the security and reliability of the power system. That

is why, in the present, several studies are performed on how much penetration of distributed generation

can be tolerated by the system before their collective impact begins to create problems. These may be,

for example, excessive current flows following faults or voltage fluctuations [2].

At the light of the previous paragraphs, one of the main questions is then if one shall keep the classical

centralized power system philosophy or adopt a decentralized one in which numerous new components

are added to the power system. In a certain sense the previous question could even be if one should

keep the power system more or less passive, or render it more and more active:. Both of the previous

choices have advantages and drawbacks [11, 14] and the best choice is probably somewhere in-between

the two. Either way, the power system industry has nowadays very mature methods and techniques for

managing passive power systems, which is not the case for distributed generation technologies integrat-

ing advanced communication and control capabilities. Therefore, new methods, techniques, and tools

are needed for an efficient management of large-scale shares of distributed power generators integrated

into power systems. The scientific community and the power systems industry are already working

in that direction [15, 16] and discussions like that in [17] are becoming more and more often. This

research work aims to contribute to the field of large-scale distributed energy technology integration

into power systems.

1.1.3 Electricity Markets and Power Systems

The restructuring of power systems in several countries led to the unbundling of vertically integrated

power system structures and to the establishment of electricity markets. Electricity markets both fa-

cilitate and increase the transparency of commercial energy transactions between independent power

producers and electricity consumers. This is achieved by establishing the electrical energy commodi-

ties that should be exchanged, the prices to be paid by such commodities, and the rules that should be

:Here, the word active means that the various components have some degree of intelligence (advanced communication —
amongst themselves and/or with the main system — and control capabilities) which permits them to take some action (taken
from a predefined set of actions) according to the communication signals they receive.
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respected by electricity market participants [18, 19].

The establishment of electricity markets affects the way power systems are operated [19, 20]. The

global goal of the power system is still that of supplying electrical loads with secure and reliable elec-

trical power (technical constraints) at the least possible cost (economical constraints). However, under

an electricity market framework, the enforcement of technical constraints is usually left to independent

system operators, while market mechanisms are entrusted the task of minimizing the costs of electrical

energy.

Independent system operators are one of the major electricity market participants and are responsible

for ensuring that the technical constraints described above are respected at all times. Consequently,

such market participants are held responsible for maintaining power system security and reliability

levels as high as possible by verifying that:

• the energy bids placed and accepted in the market lead to technically acceptable power flows and

voltages in every line/node of the transmission grid [18];

• the N � 1 (and, in some cases N � 2) security levels (from a contingency analysis standpoint)

are respected.

As was previously stated, the minimization of the costs of electrical energy is entrusted to electricity

market mechanisms. Such mechanisms generate price signals that are then interpreted by market par-

ticipants like, for instance, the independent power producers. Indeed, independent power producers use

market price signals for placing energy production bids according to their individual objectives. Such

objectives often correspond to individual profit maximization. However, independent power producers

no longer rely on the centralized day-ahead scheduling of their generators for attaining their individual

objectives, but rather have to perform a complex series of new tasks. These tasks can be resumed to,

basically, three main phases [20]:

1. performing the scheduling (day-ahead, week-ahead,...) of individual generating units;

2. strategic bidding of commodities in the electricity market for establishing the most profitable

contracts for such commodities;

3. operation of their individual generators for respecting as closely as possible the previously es-

tablished established contracts for commodities, thus avoiding possible penalties.
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This research work is mainly focused on the day-ahead scheduling of independent power producers.

1.2 Objectives and Contribution of the Thesis

The general objective of this research work is to contribute to the large-scale integration of distributed

generation technologies into power systems. Two main options for integrating distributed generation

exist [21]. The first one (classical) consists in connecting distributed generators in a passive way and

then withstand any possible consequences that such situation might cause. The second one consists in

integrating such generators in an active way. Under such principle, the distributed generators possess

some level of intelligence (from a power systems management perspective):, which allows them to

cooperate with intelligent technologies for following some predefined operation strategy that seeks to

actively reduce the harm that distributed generators may cause to the main system or even to contribute

to the health of the main system.

The active integration of distributed generation into power systems poses challenges at many levels

[22], such as:

• the increase of complexity of power system management due to the presence of many more

actors than in the past, which increases the market competition between market participants,

thus reducing individual profit margins;

• the need for bidirectional communications between the various actors, which allows them to

receive signals (e.g.: market price signals received by generators) and to inform the remaining

participants of their individual states and decisions (e.g.: a generator can place a bid directly to

the market, inform a master controller of its intents to produce or not energy on a given hour,

inform its environment of a malfunction, etc.);

• in the case of penetration of non-dispatchable generation (i.e.: certain renewables), the controlla-

bility of the power system is reduced (at least locally), which demands innovative methodologies

for performing power system management;

:Such intelligence may be given by the capacity to communicate with other elements that operate at the same level
of communication (e.g.: other generators) or that serve as interfaces between levels of communication (e.g.: aggregator).
Another level of intelligence could be at the level of autonomy given to distributed generators for allowing them to respond
autonomously to the occurrence of some predefined system events (e.g.: appearance of local under- or over-voltages).
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• the integration of distributed elements comprising some level of intelligence leads to an increase

of power system management and control possibilities, which potentially enables more advanced

distributed power system management structures.

This thesis is devoted to the active integration of distributed generation into power systems. It investi-

gates some potential management possibilities that may be associated to distributed generators. Such

possibilities comprise:

• the coordination between the various distributed elements of the power system for pursuing a

common goal;

• the use of energy storage devices for increasing the global controllability of the system as well

as the benefits (e.g.: profits) of their respective operators;

• the integration of demand-side management techniques directly into energy managers.

Due to the specificities of electrical power, power system management is very complex and comprises

many different time-frames and resolutions. This work focuses mainly on the day-ahead scheduling of

cooperative distributed resources under day-ahead market conditions.

In this thesis, novel scheduling methods are proposed for performing the day-ahead scheduling of

available distributed resources under market conditions. When operated in cooperation, such resources

form power system cells:. This work considers the day-ahead scheduling of such cells, which may

comprise different combinations of several elements, namely: non-dispatchable generators and loads,

dispatchable generators and loads, and energy storage devices.

The power system cells considered in this work participate in the electricity market and include stochas-

tic power generation such as wind power generators and PV arrays. Therefore, the management of

such cells has to rely on forecasts of the electricity market prices as well as on forecasts of the non-

dispatchable generation and load. All these forecasts are sources of uncertainty and, as a consequence,

make the management problem more challenging than that of conventional power systems where the

load is highly predictable whereas the penetration of non-dispatchable generation is usually very low.

:A posteriori, these cells could by named intelligent power system cells as a result of the various options they integrate at
the communication, control, and management levels.
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In this work, two types of power system cell scheduling methods are proposed: a deterministic one

and a stochastic one comprising several variants. The deterministic one disregards the uncertainties

associated to the forecasts of the various non-dispatchable elements. The different stochastic variants

consider these uncertainties as a basis to estimate operation risks. Moreover, the integration of esti-

mated energy-related risks into the scheduling process is made through the consideration of both the

risk perception and the risk attitude of the cell operator. In other words, the operator is placed at the

center of the scheduling process by taking into account his risk preferences. In both the deterministic

and the stochastic approaches developed herewith, the energy storage device is a central element of the

scheduling problem.

The proposed scheduling methods are evaluated on two case-studies comprising a microgrid and a

wind/pumped-hydro system.

1.3 Outline of the Thesis

The present chapter provides a synthetic description of the framework of this work as well as its main

objectives and contributions. Chapter 2 presents in detail the framework under which this work is

developed. It starts with by developing a more complete description of the general context in which

the present work is carried out. Then, it presents the description of the main hypotheses that are

followed/used throughout the work.

Many aspects had to be studied and combined for accomplishing this work, like, for instance:

• electricity market concepts;

• power system day-ahead scheduling principles;

• optimization principles, methods and techniques;

• understanding and utilization principles of forecasts;

• uncertainty models and risk concepts;

• techniques for performing decision under uncertainty;

• etc.
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Among these aspects, two stand out: the problem of power system scheduling and the areas related to

decision under uncertainty. This is because the thesis elaborates on their respective fields. Hence, they

are herewith analyzed in greater detail.

The power system scheduling problem is presented and analyzed in chapter 3. In the same chapter, the

main approaches that can be followed for tackling power system scheduling problems are discussed

and a generalized power system scheduling formulation proposed based on the literature review made

on the topic. This formulation concerns the general case of multi-area scheduling. It is then is adapted

to the single-area and market-player cases. This develoment provides the necessary understanding and

tools that are used later to develop the power system cell scheduling model proposed in chapter 5.

The areas of interest here related to decision under uncertainty comprise mainly the ways to model

uncertainty and the models that permit to make decisions under uncertainty. Both of these points are

analyzed in chapter 4. A discussion on methods and principles for performing decision under uncer-

tainty is provided including a short description of the ways in which such uncertainty can be modeled

as well as the main models that can be used for performing decision-making under uncertainty. The

uncertainty modeling principles and the decision under uncertainty models presented in this chapter

are used as a basis for incorporating the uncertainties associated to the power system cell scheduling

problem considered in this work. Namely, they are included in the stochastic versions of the power

system scheduling model proposed in chapter 5.

In chapter 5 a scheduling approach dedicated to the power system cells considered here is proposed. A

first deterministic approach is proposed and used as reference. Then, a stochastic scheduling approach

comprising several variants taking into account the above-mentioned uncertainties associated to the

power system cell scheduling problem is proposed. In chapter 6, two case-studies illustrating some of

the possible applications of the proposed scheduling methods as well as the results that can be obtained

via the methodology developed in this work are presented and discussed. Finally, chapter 7 contains the

general conclusions of the work as well as some of the main perspectives for further research resulting

from this thesis.
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CHAPTER 2

Context and Main Hypotheses of the Work

CHAPTER OVERVIEW

THIS chapter can be seen as the departing point of the present work. In the beginning, the chapter provides a
somewhat chronological overview of the main happenings related to the power systems area. This permits

to better understand the context and the motivations behind this research work. Namely, the role of distributed
generation as well as some forms to integrate it into power systems operating under electricity markets is dis-
cussed. A discussion on the main hypotheses that were established for developing this work is also included for
clarifying the framework of the present work.
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2.1 Vertically Integrated Power Systems

The activities of power generation, transmission and distribution have begun near the end of the 19th

century with the formulation by Thomas Edison [23] of the concept of a centrally located power station

with distributed lighting serving a surrounding area. In its early days, the electric power sector was

composed by small autonomous local grids. Such grids supported small amounts of power due to the

low demand for electricity, to the high geographic dispersion of loads and to the existing generation

technology. Gradually, load demand started to increase while, at the same time, technological advances

were taking place. Both reasons led to the increase of the geographical extension and power capacity

of existing local grids.

Back then, the technological advances that were taking place on the generation technologies, allowed to

build hydroelectric dams that were usually located away from load centers. This led to the installation

of transmission networks of growing lengths, power transmission capacities and voltage levels. In such

way, the original small local power grids gradually gave place to large power systems usually covering

whole countries.

In many European countries [18], the nationalization of power systems was carried out mainly after the

2nd World War according to the public service obligations that existed back then. The main objective

was to finish the electrification of such countries. However, some countries like, for instance, Spain

and Germany [18], opted not to nationalize their respective power systems. In such cases, instead of

national companies, several private companies (utilities) were created in the fields of power generation,

transmission and distribution. In countries having more than one utility, independent areas of operation

for each one of them were established. Whatever was the case, in the process, single companies were

created for managing the functions of electricity production, transmission and distribution as well as

the relationship with end-users. Such single companies are usually called vertically integrated utilities

and form the main part of the so-called vertically integrated power systems.

An example of a vertically integrated structure is depicted in Figure 2.1. In the figure, the blue color

boxes represent the functions attributed to the a single vertically integrated power utility. In such a

scheme, the vertically integrated utility holds a privileged position in the power sector. Under such

type of structure normal low-voltage consumers do not have the possibility to choose their service

provider, although independent generation and self-generation were allowed (green boxes in the fig-
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FIGURE 2.1: Schematic presentation of a power system operated under a vertically integrated structure.

ure). Moreover, on such vertically integrated structures, electricity prices were established through reg-

ulated tariffs, which were sometimes obtained through unclear processes due to the undefined boundary

between the regulator and the entity being regulated (i.e.: the vertically integrated utility).

2.2 The 70’s Oil Crisis and the Investment in Endogenous Resources

In the beginning, power systems planning was relatively simple for two main reasons: the vertically

integrated power sector and the easy predictable economic environment:. The oil crisis that took place

in the early 70’s led to an increase of both inflation and interest rates making economy more volatile.

As a consequence, power started to be consumed in a more erratic way. Therefore, the need to perform

risk analysis studies when planning power systems gained importance. That crisis also led several

countries to adopt policies favoring the exploitation of endogenous resources.

In the 80’s, several economic activities related to services of social nature (some of them similar to

the electric power distribution services) started to be deregulated or liberalized. The objective was

to reduce the prices payed by customers and to increase the quality of the services proposed. Ex-

amples of such economic activities are found in [18] and include the air transportation industry, the

:Due to the low inflation and interest rates that were being practiced back then and to the constant and strong yearly
increases of electric demand (7 % – 10 %) [24].
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fixed telecommunication networks, the mobile telecommunication networks, and the gas distribution

networks.

This deregulation and liberalization process introduced competition between the new actors that ap-

peared in the market. At the same time, it gave consumers a more active role as they were now able to

chose who their service provider would be. This has been used later on as guidelines for deregulating

the electric sector.

The technological advances that have been achieved during the 80’s and the 90’s acted as a driving

force for the deregulation of the electric sector. These advances took place in the information and

telecommunication technologies and allowed the automation, supervision and real-time controlling of

electric power grids.

2.3 The Present Situation

The conjuncture mentioned in section 2.2 created an interest on restructuring existing power systems by

unbundling (i.e.: separating) the different sectors that constituted vertically integrated utilities. In order

to accomplish this task, mainly three requirements are usually put forward as conditioning elements of

the success power system restructuring processes [18]. The first one consists in unbundling the power

system sector by creating several new electric power utilities working in the electric power distribution

although, in a first step, still operating in regional monopolies. The second one consists in creating

independent mechanisms which ensured the coordination between the various actors taking part in

such an unbundled sector as well as the regulation of their activities. The third one is related to the

way that the expansion of unbundled power system structures is planned. In several countries, such

planning was left to the interest of investors.

This unbundling process allowed the creation of electricity markets, which are driven by the joint action

of four forces [25]:

1. Customer choice;

2. Utility restructuring;
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3. Technology innovation;

4. Societal issues and trends.

In such markets, business is separated into [18]:

• Production, which includes the production of energy in both normal and special regimes as well

as the supply of ancillary services to the power system;

• Grid, which divides in:

– Transmission Grid including the expansion, maintenance, construction and operation plan-

ning;

– Distribution Grid including the expansion, maintenance, construction and operation plan-

ning;

– Transactions which allow the relationship between producers, eligible consumers and com-

mercial agents. It can be performed by centralized markets, by bilateral contracts or by

financial contracts;

• Technical Coordination and Regulation, which is performed by the Independent System Opera-

tor.

The grid continues to be operated in a natural monopoly due to its specificity. In fact, it is not eco-

nomically and environmentally viable to double the power grid existing in a given region. Hence,

these natural monopolies are compensated through adequate regulatory rules (e.g.: service quality

constraints).

Current power systems are well suited to supply multiple dispersed loads with electricity produced by

large generators. These are in majority connected to the transmission system, which is responsible for

conducting electricity to its consumers. Nowadays, however, power system planners have to respond to

several challenges such as load growth, changes on the geographical distribution of loads, new policies

and the pressures of the market. One solution could be to keep operating power systems in a centralized

way. That would imply the need to perform improvements on the infrastructure in order to compensate

changes such as new geographical distribution of loads or load growth. The problem of this option
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would be that it is severely constrained by the policies in vigor and by market and profitability rules

[26].

In the past, power systems relied on a centralized generation structure, which was sized for covering

peak loads [27]. Large amounts of costly power reserves were scheduled for covering unexpected load

variations or the occurrence of contingencies in the power system. Furthermore, centralized structures

only considered unidirectional power flows and time-invariant electricity prices. Whenever the sys-

tem was under stress, the customer loads could simply be curtailed. The customers did not have any

information on the power grid status and, thus, were not generally aware of the energy saving or the

peak-shaving needs of the system. This often led to over-sizing power systems in order for them to

be able to cover peak loads. As a result, investment costs turned out to be larger and the installed

capacities usage rates to be smaller. This increased the needed amount of time for obtaining the return

of the investment.

Large power facilities imply, in a deregulated environment, investments with higher financial risks

[11]. In fact, these larger investments will not be made under a monopoly, but under electricity market

conditions, which partly explains why the risks involved are becoming higher. On the other hand, space

for building new large power facilities is beginning to lac while public resistance to the realization of

such investments tends to increase. This, in turn, tends to increase the capital one needs to invest. The

arrival of new players to the power production sector is, therefore, limited.

Finally, nowadays, the environmental constraints are of growing importance [11]. Populations are

becoming increasingly aware of existing environmental problems. Consequently, there are political

pressures for maximizing energy efficiency without disregarding the prices to be paid for electricity

services. The reason is that populations demand services that are simultaneously better in quality,

cheaper and environmentally friendly. As a conclusion, both the expansion and the optimization of

the power system infrastructure through the construction of new lines and of new power generation

facilities turns out to be quite difficult.
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2.4 Decentralized Power Generation

As power systems face expansion challenges, new options for generating power emerge. One of the

solutions consists in changing the production sector paradigm from a centralized type to a distributed

one in which power is produced in a geographically distributed way. This concept has been defined

[13] as the integrated or stand-alone use of small, modular electric generation close to the point of

consumption. In this new concept, the generation units are of smaller capacity when compared to the

units of conventional power stations. Yet, the number of power sources connected to the power network

increases considerably and each installation is placed closer to the loads it intends to feed.

One of the contributions of the distributed generation concept is that it allows to reduce the transmission

and distribution losses of the system. Avoiding losses may contribute to avoiding part of the CO2

emissions that usually correspond to the surplus of generation that would be needed to cover such

losses. This fact is of great importance for reducing green house gas emissions especially if the Kyoto

targets for 2010 are kept in mind. As an example, the European Community has to reduce its emissions

by 8 % in the period between 1990 and 2010 [28]. Finally, distributed generation technology also helps

to cut pollution by increasing the usage of clean renewable energy sources and by providing new fossil

burning technologies which use fuels in a more efficient way (e.g.: co-generation).

Another contribution of the distributed generation concept, in relation to their participation in electric-

ity markets, is that it favors the increase of competition between different power generation options,

thus allowing, in principle, to lower electricity prices. Smaller electricity prices tend to favor an in-

crease of industrial competitiveness on countries who adopt distributed generation technologies [25].

Moreover, the influence of the various individual power generating actors is also reduced with the adop-

tion of distributed generation. The main reason for this is that the adoption of distributed generation

allows to increase the number of players that can participate in the market.

Distributed generation technologies may use many different forms of energy for producing heat, cold,

and electrical power. Thus, such technologies may contribute to the diversity of the energy mix of

power systems. That could both limit the market power of individual fossil sources of energy and

maximize the usage of renewable energy sources. As an example, in 2004, only 6 % of the European

Union (EU) overall gross inland energy consumption was fed from renewable energy sources despite

their abundance throughout the territory [7]. However, that value is predicted to increase because the
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target fixed by the European Union for the amount of consumed renewable energy reaches the value of

12 % by 2010. The target for electricity power generation is even more ambitious. In 2004, only 14 %

of the produced electricity power comes from renewable energy sources but the European Union target

reaches the value of 26 % by 2010 [9].

As opposed to centralized systems, distributed generation systems usually need less time to be installed

and commissioned. This fact, allied to their modularity can make them a more efficient investment

when compared to centralized generation technologies. Furthermore, if done properly, the adoption of

distributed generation technologies may allow to postpone or even to avoid investments on new large

power generation facilities[11] which, still according to [11], are capital consuming, less efficient and

difficult to license.

Distributed generation technologies may influence the development and operation of current power

systems. In some countries, the distributed generation penetration rate has to be limited to a maximum

of 20 % [12] in order to limit the harm these may cause to the system. In fact, utilities fear [13]

large-scale penetration of distributed generation in their grids as it could compromise their costs as

well as the security and reliability of the power system. That is why, in the present, several studies

are performed on how much penetration of distributed generation technologies can be tolerated by the

system before their collective impact begins to create problems. These may be, for example, excessive

current flows following faults or voltage fluctuations [2].

Several distributed generation technologies are nowadays mature enough and can therefore be used in

practice [29]:

• Gas turbines;

• Biomass-based generators;

• Concentrating solar power;

• Photovoltaic systems;

• Fuel cells;

• Wind turbines;

• Micro turbines;
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• Reciprocating engines;

• Micro-hydro.

In order to improve both quality and reliability and to reduce the effects caused by the fluctuating

nature of both renewable energy sources (such as the solar and the wind resources) and loads, energy

storage devices may also be used. These can be based on several technologies such as:

• Flywheel storage;

• Batteries;

• Pumped-hydro;

• Superconducting magnetic energy storage;

• Super-capacitors.

A deep analysis on the details of such technologies is out of the scope of this thesis. Instead, a generic

energy storage model is considered in this work. Such model may be extended and specialized in the

future should such improvements be needed.

2.5 Power System Cells

Distributed generators may be integrated into power systems by following either a passive or an active

philosophy. In the passive case, such generators are installed and operated in a rather independent

way from each other. In the active case, distributed generators may be installed and operated as a

whole for attaining some common goal (i.g.: maximization of global profits while maintaining power

quality for coping with predefined operation requirements). Furthermore, they may be coupled with

energy storage devices (e.g.: combined wind/pumped-hydro) and even with local loads on low-voltage

distribution grids (e.g.: microgrids). In such cases, one can say that such combinations of distributed

generators with energy storage devices and/or distributed loads form independent societies or power

system cells.
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In this work, the main focus is put on the management of such power system cells and, more specifi-

cally, on how to perform the day-ahead schedule of such power cells under day-ahead market condi-

tions.

As said previously, such cells comprise distributed generators. Such generators may be controllable

or schedulable like, for instance, microturbines and diesel generators, and non-controllable or non-

schedulable like, for instance, wind power generators and photovoltaic arrays. In the first case, the

controllability of generators allows the operator of the power system cell to determine the operation

plan (i.e.: the schedule) that best fits the predefined set of operational objectives. In the second case,

the non-controllability of the generators implies that no setpoints can be attributed to them because

no control is associated to their inputs (i.e.: wind speed and solar radiation). Consequently, non-

dispatchable generators cannot contribute directly to the establishment of an operation plan. In such

cases, the operator must rely on energy production forecasts for establishing operation plans. However,

such forecasts comprise some amount of error, which adds some uncertainty to the scheduling process.

Therefore, scheduling methods able to take into account such uncertainty need to be designed. One of

the main objectives of this work is develop a scheduling methodology suited for power system cells

comprising large amounts of non-dispatchable renewable energy sources while taking into account the

uncertainties associated to their corresponding forecasts.

Apart from dispatchable and non-dispatchable generators, the power system cells considered here com-

prise energy storage devices. Such storage is used for helping the operator to cope with the uncertainties

associated to the scheduling process and, whenever possible, to generate additional profit by defining

the best moments to store energy and to use stored energy according to electricity market prices. Two

main types of power system cells are considered here:

1. combined wind/pumped-hydro systems;

2. microgrids.

Some insight on the fundamental aspects of such types of cells is given in the following sections.
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2.5.1 Combined Wind/Pumped-Hydro Systems

As described in section 2.4, the goals for the large-scale integration of renewable energies are very

ambitious. For reaching such goals in such a short amount of time one has, at least in the short term,

to make use of power facilities based on renewable energy resources and disposing of a considerable

power capacity. Two natural candidates fitting such criteria arise: large wind farms and large hydro

stations comprising water reservoirs. Both have somewhat complementary characteristics and can thus

be combined for obtaining an as good as possible behavior of the whole.

Large wind power generators are now a mature technology. However, one basic problem still subsists,

one cannot control the input of such technology, which is the wind and the speed at which wind blows.

Therefore, operators have to rely on forecasts of the power output of wind farms for managing their

respective systems:. Such forecasts are however imperfect in the sense that they comprise an amount

of forecast error, which adds uncertainty to such management problems.

Pumped-hydro systems consist of hydro power stations comprising a water reservoir as well as the

possibility to pump water upstream. When operated in conjunction with wind farms, pumped-hydro

systems may help to cope with the operational difficulties caused by the fluctuating nature of the wind

resource. Indeed, such type of hydro facilities can store energy, in the form of potential energy, by

simply storing water at a higher height upstream than downstream. When there is a lack of energy due,

for instance, to lower than expected winds, the hydro facility can compensate that event up to a certain

extent provided it has enough water stored. Conversely, such pumped-hydro power facility can com-

pensate higher than expected winds by using excess wind energy for pumping water, provided it has

enough reservoir slack for doing as such. Hence, pumped-hydro stations can be seen as complementary

to wind farms in the sense that they also rely on renewable resources and that, contrary to wind farms,

hydro stations can potentially compensate wind power fluctuations as well as the errors associated to

wind power forecasts. In this work a contribution to the analysis of such potential is provided.

In the literature, cases in which the wind farm is coupled with some kind of energy storage have also

been considered in an attempt to minimize the imbalance costs incurred by the wind farm owner when

participating in an electricity market.

:As an example, TSOs have to manage the power system as a whole while, at the same time, that wind farm operators
have to manage their respective wind farms according to some predefined operation strategy
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In [30] a method for scheduling and operating an energy storage system coupled with a wind power

plant under market conditions is proposed. However, the results obtained via such method used con-

stant wind power forecasts throughout the scheduling period. In addition, the forecasts for the day-

ahead market prices were assumed to be perfect (i.e.: implying that one has a precise knowledge of

the future market prices when proposing a schedule) and equal for all days, which does not reflect a

realistic situation.

In [31] an algorithm is proposed for calculating the optimal short-term dispatch of an energy storage

facility coupled with a wind farm with the objective of minimizing the expected imbalance penalties

incurred by the wind farm owner. However, such algorithm neglects the possibility of the wind farm

owner to participate in the day-ahead market. This implies that the energy storage cannot be used for

making additional profit (e.g.: by considering day-ahead market prices while performing its optimal

day-ahead schedule) but rather as an mean to improve the technical behavior of the wind farm (by

reducing the differences between the scheduled power output of the wind farm and its actual produc-

tion).

In [32, 33] an optimization approach was proposed for determining the most probable range of the

output production of a wind farm coupled with a hydro power plant containing a water pump system

and a small reservoir.

In [34] some technological aspects of energy storage devices are discussed and the storage is used

to filter the erratic power output of a stochastic power source (e.g.: wind power generator). In other

words, the work developed in [34] aims at increasing the controllability of the wind power source.

Finally, in [35] two methods are proposed for minimizing the penalties due to imbalances of the wind

farm power output. The first one considers the wind farm to bid alone in the day-ahead market trying

to minimize the risk of the bid based on a statistical analysis of the expected production probability.

The second couples a hydro power plant containing a water reservoir to the wind farm for minimizing

the imbalance costs incurred by the wind farm owner. However, in contrast to our work, in this method

the energy bids are placed in an intraday market, which means that wind power forecasts are by far

more accurate thus implying a lesser degree of error to be dealt with.

Summarizing, the main motivation of the above referred works was to provide methods for using hydro

storage facilities for increasing the controllability of wind farms and maximize the profits generated
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by the wind farm. This is also analyzed here. However, in the present work, focus is put on the

impact of performing the day-ahead schedule of the energy storage based on the available information

(wind power forecasts, day-ahead market price forecasts, and the uncertainty associated to both types

of forecasts). In addition, here the objective is that of maximizing the profit of the whole power system

cell (wind farm plus pumped-hydro station).

2.5.2 Microgrids

Different microgrid definitions exist as a function of the followed approaches [2, 26]. In general, it can

be defined as a part of the low-voltage grid integrating a combination of generation units, loads and

energy storage devices interfaced through fast acting power electronics and interconnected with the

main grid through a single interconnection point. The microgrid appears to the bulk power provider as

a single dispatchable unit [26]. To the power utility, it may regarded as an independent yet controlled

system cell [36]. Amongst others, microgrids have the possibility:

• To operate in islanded mode, which allows sections of a distribution system to continue operating

when a faulted section is isolated;

• To increase the reliability of the system because microgrid customers can be fed not only by the

distribution grid, but also by the distributed generators that take part in such microgrid;

• to accommodate the load that eventually exceeds the power rating of the microgrid interconnec-

tion to thew distribution system;

• To perform voltage regulation by utilizing distributed generation voltage control;

• To enhance the stability of the system by providing reactive power support to loads within the

distribution system.

A recent IEEE (Institute of Electrical and Electronics Engineers) standard, the P1547™, makes a first

approach to the interface of distributed resources with electric power systems [37]. It does not actually

mention the word microgrid to describe an active low-voltage cell but instead it mentions the term

LEPS (Local Electric Power System) to describe a concept very similar to the microgrid one.
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Large scale integration of distributed generation technologies can be interesting because it may imply

an increase of the utilization of endogenous energy resources. To make this possible, further research

on new solutions for interfacing distributed generation technologies with the grid is needed. Micro-

grids appear as a possible solution because they can respect the power system restrictions (e.g.: the

system cell ensures electrical isolation to the connection between itself and the distribution system

on the occurrence of fault [38]) and, in addition, provide all of the above mentioned benefits. For

society, microgrids can help in reducing pollution, increasing the efficiency of the electricity mar-

ket (i.e.: microgrids allow to increase the number of market participants) and improving global grid

reliability and consumers’ satisfaction. They would also contribute to the increase of consumers’ pro-

activeness regarding the efficiency of their energy consumption pattern. As a conclusion, microgrids

allow distributed generation technologies to be regarded by utilities either as good citizens, either as

ideal (model) citizens.

If following a good citizen policy approach, microgrids behave as elements the main grid impact of

which complies with rules and does no harm beyond what would be acceptable from a normal customer.

The ideal citizen policy approach is an extension of the good citizen policy that presents the same

functioning principles but also serves the main grid with ancillary services [39].

The implementation of microgrids is expected to occur mainly on low-voltage distribution networks.

That way, microgrids are expected to form small power supply networks. As a consequence, they are

expected to feed small communities and thus not to contain large amounts of installed power [24].

According to [36, 40], research efforts are required at different levels, in order to make possible the

implementation and correct use of microgrids allowing these kinds of systems to become a good option

for the future. These are related to:

• microsource electrical modeling;

• power system operational impact analysis;

• monitoring control;

• power quality and grid reliability;

• protection coordination;
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• personnel safety;

• communications;

• economical and electrical market driven procedures;

• definition of new interconnection standards especially plug and play ones (e.g.: review the IEEE

1547™ Standard);

• address the issue of having multiple customers and interests to manage;

• handling unbalanced and/or non-linear load content.

This work focuses on the development of a day-ahead scheduling method suited for microgrids.

The European View

The former MICROGRIDS project: was the main research project in the European Union (EU) and

developed a European view of the microgrid concept as opposed to the research activities that take place

in the USA and in Japan. It supported the ability of the microgrid to act as a semi-autonomous system

(i.e.: when the bulk power provider is not available the microgrid can still operate independently) as a

feature of major importance [26].

The MICROGRIDS project investigated the concept of a hierarchical control structure for the micro-

grid that comprises the existence of a microgrid central controller (MGCC) (normally placed at the

point of common coupling (PCC) - which is unique), microsource controllers and load controllers.

Figure 2.2 depicts a possible microgrid configuration as was proposed in [1].

The project suggests a possible typical structure for the microgrid in which the power sources would

be controlled locally but their setpoints would be given to them centrally by the MGCC. This last com-

ponent has the role of optimizing the system by coordinating the power electronic interfaces present

on the microgrid. It consists of a slow acting outer control loop having as main function to determine

the balance of steady-state real and reactive power flows between the microgrid components and the

bulk power provider. Some key functions of the MGCC are [1]:

:This project is entitled — Large Scale Integration of Micro-Generation to Low Voltage Grids — and was funded in part
by the European Commission (EC) under contract No: ENK-CT-2002-00610
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FIGURE 2.2: Schematic presentation of a possible microgrid configuration as proposed in [1].

• Providing the individual power and voltage setpoints for each microsource controller;

• Ensuring that heat and electrical loads are met;

• Ensuring that the microgrid satisfies operational requirements of the bulk power provider;

• Minimizing the produced emissions and the power transmission losses;

• Maximizing the operational efficiency of the microsources;

• Providing logic and control for seamlessly islanding and reconnecting the microgrid respectively

during and after events occurred on the main grid.

In order to perform the various management tasks, the MGCC integrates the following functionalities

[1]:

• Short-term forecasting of the electricity consumption, heat consumption and power generation

capabilities;

• Economic scheduling that also integrates the ability to aggregate small amounts of power gener-

ation into quantities which are large enough to allow bidding in the market;
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• On-line security assessment for evaluating the security level of the operating solution given by

the scheduling functions;

• DSM, which is integrated in the optimization of the microgrid operation;

• Interface Network Monitoring to make possible the determination of the interconnection status.

When the microgrid is connected to the main grid, the MGCC interacts with the signals supplied by

the bulk power provider (power flow needs at the PCC), the heat and electricity needs, the status of

the microsources (provided by each microsource controller) and the possibilities of load controlling

(provided by each load controller).

When operating in islanded mode, the MGCC changes from an active/reactive power control mode to

a frequency/voltage control mode to ensure that the balance between the microgrid load and generation

is kept. The idea is to keep the frequency and voltage values of the microgrid as stable and as near as

possible to their nominal values.

The CERTS View

The concept of microgrid developed by CERTS (Consortium for Electric Reliability Technology So-

lutions) in the USA, presents the microgrid as a component which is indistinguishable from other

currently legitimate customer sites. To make such behavior possible the microgrid is supposed to rely

on the capabilities of power electronics [2]. From the perspective of the main grid, the advantage of

the CERTS microgrid is that it can be seen as a controlled entity within the power system that can be

operated as a single aggregated load.

For CERTS, the microgrid structure assumes an aggregation of loads and microsources operating as a

single system providing both power and heat, where the majority of the microsources must be power

electronic based as this provides them with the required flexibility in order to ensure controlled opera-

tion as a single aggregated system [2]. The structure proposed by CERTS for establishing a microgrid

is similar to the one proposed by the MICROGRIDS project. It has the same microsource controllers

and load controllers that are taken into account in the EU MICROGRIDS concept that was previously

described. The energy management is performed by a management system that corresponds to the

microgrid central controller considered in the EU MICROGRIDS project. In Figure 2.3 the microgrid

architecture proposed by CERTS in [2] is shown.
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FIGURE 2.3: Schematic presentation of the microgrid architecture proposed by CERTS in [2].
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According to CERTS, the key-distinguishing feature of the microgrid is that the microsources are con-

trolled by microsource controllers which maintain the microgrid energy balance and power quality

through passive plug and play power electronic inverter features. These features allow operation with-

out tight central active control or fast communication (on time scales less than minutes) and connection

or disconnection of devices without need for any reconfiguration of equipment, pre-existing or new [2].

The microgrid topology may be dictated by current design practices for secondary distribution systems.

Such practices may be based on two different approaches: radial systems and meshed systems, each of

these options having different protection and operational requirements.

Networked secondary systems are uncommon because they consist of low-voltage circuits that are

supplied through network transformers. These transformers are installed along with network protectors

which only allow the power to flow from the high side of the network transformer to its low side.

The microsources can be connected anywhere on the low-voltage network. The microgrid may have

three-, two- or single-phase connections to the utility distribution system. CERTS considers that its

energy manager may potentially use the following parameters to provide control of the microgrid:

• active power control;

• reactive power control;

• voltage control;

• frequency control;

• turbine speed (when applicable);

• power factor.

The parameters chosen as inputs for the energy manager are active power and voltage. The energy

manager dispatches power level based on an economic assessment of fuel costs, electric power cost,

weather conditions and anticipated process operation. Voltage is normally dispatched within a set band

[39].
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When operating in grid-connected mode, the only control signals of the energy manager will be the

real power output of each microsource and local voltage. Any power delivered by the microgrid to

the bulk power system should be at unity power factor [39]. The dispatched power may be either a

setpoint, either a command to perform load following using a power sensor on the microgrid feeder to

which the microturbine(s) is(are) connected to. The voltage is maintained within a set band and only

on the buses within the microgrid where one or more microturbines are connected [39].

According to the CERTS philosophy, the control signals to be supplied by the energy manager would

still be the real power output of each generation device and local voltage control [39] even if the

microgrid is operating in islanded mode. Moreover, it is up to the microsource controllers to perform

the control of the frequency and voltage values present on the microgrid. The microsource controllers

accomplish such task through the use of fast control signals (droop controls) in order to ensure that the

load and the generation are always balanced.

2.6 Short Discussion on Electricity Markets

This research work does not focus on electricity markets themselves, but rather develops a scheduling

methodology adapted to the management of power system cells operating under day-ahead electricity

market conditions. Since no advanced market modeling is made here, the present discussion will be

kept very short and will only approach from a bird’s eye perspective the main electricity market objec-

tives, types, and principles. The interested reader may refer to [18, 19] for getting further information

on the matter.

Electricity markets were created due to the restructuring of the electricity sector [18]. Such restruc-

tured design originated from the passage from a vertically integrated electricity sector to a horizontal

electricity sector in which many agents participate. Some examples of such agents can be indepen-

dent power producers, market aggregators, independent system operators (ISOs), transmission system

operators (TSOs), distribution network operators (DNOs).

According to [19], there are two main objectives for electricity market operation: ensuring a secure

operation and facilitating an economical operation. The first of these objectives is the most important

as, independently from the presence or absence of a restructured electricity market, power system
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operation security should be maintained at all times. The second objective is for the for electricity

market to lead to the minimization of electricity costs.

Three main types of electricity market models exist:

1. Pool markets;

2. Bilateral contract markets;

3. Hybrid markets.

Pool markets are centralized marketplaces gathering producers and buyers of electrical energy. These

markets usually operate in relatively short time-horizons following the basic principle of meeting the

demand and the production sides. The equalization of demand and production offers is usually done for

each time-step of operation by sorting production offers in a price-ascendant way and demand offers

in a price-descendant way. In general, the point in which demand meets production fixes the amount

of traded energy and the price at which it is traded.

Bilateral contract markets consist in direct energy transactions between energy producers and buyers.

Under such market models, the contracts are settled independently from the ISO and the role of the

ISO is to verify that such financial agreements are physically feasible (e.g.: leading to acceptable power

flows and voltage levels in every lines).

Hybrid markets are a mix of the previously described pool markets with bilateral contract agreements.

Under hybrid electricity markets, producers and buyers are not obliged to utilize the pool market and

can rather choose to sign directly energy transaction contracts between themselves. Under hybrid

markets, the pool market would thus only used by market participants that do not wish to participate in

direct negotiations between energy buyers and sellers.

Although many subtypes of electricity markets exist [18, 19], here only the day-ahead energy exchange

markets are considered in the development of the day-ahead power system cell scheduling model that

is proposed in chapter 5.

Day-ahead electricity markets rules usually impose independent power producers and buyers to place
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their energy production/consumption bids on day d till hour hGTC , the day-ahead market clearance,

which is usually referred to as gate closure time. Usually, each producer/buyer places 24 energy

production/consumption bids, where each bid corresponds to a given hour of the next day d � 1.

These considerations form the simple day-ahead electricity market model that is used in the remainder

of the present document.

2.7 Main Hypotheses of the Work

• The electricity market is considered to be competitive and composed of a relatively high number

of market participants.

• The power system cell is considered to be able to participate in the day-ahead electricity market

both as a seller and as a buyer (but never both simultaneously).

• The total capacity of the power system cell (defined here as its interconnection capacity with the

main grid) is considered to be small enough so that its owner does not possess sufficient market

power. In such case, in the electricity market context, the power system cell is considered to be

a price taker.

• The power system cell scheduling model considers the cell load as an aggregated one.

• The power system cell scheduling model considers aggregated non-dispatchable renewable gen-

erator outputs per type (e.g.: aggregated wind power production separated from aggregated pho-

tovoltaic production).

• No market bidding model is used. The energy bids of the power system cell are assumed to be

always accepted.

• The power system cell is considered to pay the day-ahead market price when buying energy.

Therefore, power transmission tariffs are neglected. While this seems not to correspond to the

general case [41], the evaluation of the impact of such tariffs is out of the scope of this work.

However, such costs may be easily integrated in the future as the scheduling model proposed in

chapter 5 was designed bearing that purpose in mind.
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2.8 Conclusions of the Chapter

This chapter provided the general context in which this Ph.D. work was developed. Such context

comprised a short historical description of the most outstanding events that happened in the power

systems area from the early days and up to the present situation. Such description hopefully allows to

better understand the present state of things especially in what regards the role of distributed generation

in the present power system context and the restructuring of the electricity sector. Indeed, these two

aspects are the main driving forces of the present work and other works of the kind as they introduce

novel dimensions, problems, and opportunities to the power system operation field.

The chapter also discusses some decentralized power generation integration aspects and options for-

mulating the generic concept of power system cells, which is in part dealt with in this research work.

Focusing on the case-studies presented in chapter 6, two examples (combined wind/pumped-hydro and

microgrids) of such power system cells are given and discussed. A short discussion on electricity mar-

kets is made for giving the reader some insight on this field as well as for describing the day-ahead

market model used in the remainder of this document. Finally, the main hypotheses established for

performing this work are described.

The development of a day-ahead scheduling methodology suited to power system cells operating under

electricity market conditions (problem addressed in the present work) and the characteristics of the

physical systems involved (microgrids and wind/pumped-hydro) require knowledge contributions from

two main fields: power system scheduling and decision under uncertainty. Both of these aspects are

addressed in the following chapters. This provides a solid basis that allows to better understand the

problem addressed and to develop suitable solutions for tackling it.
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CHAPTER 3

Power System Scheduling

CHAPTER OVERVIEW

THIS chapter addresses one of the main fields of knowledge dealt with in this work: power system scheduling.
The main idea is to provide the necessary background for the formulation of the specific power system cell

scheduling problem, which is done in chapter 5.

Many power system scheduling formulations are available in the literature. However, in their majority they are
either problem-specific or oriented mostly to the solution-techniques rather than to the actual formulation of the
scheduling problem. Such characteristics render such formulations unsuitable for the purpose of this chapter,
which has the main goal of providing a sufficiently high-level description and formulation of power system
scheduling problems and not to analyze a given specificity of such problems nor the precise solution-techniques
that are available. For this purpose, a general analysis of the characteristics of such type of problems is provided.
In addition, a unified formulation of a generalized power system scheduling problem is proposed based on the
literature review that was made.

Three main possibilities are identified for formulating power system scheduling problems, which are hereby
referred to as: classical multi-area scheduling, classical single-area scheduling and the market-player scheduling.
This chapter formulates a power system scheduling problem under the one that is considered to be the most
general, which corresponds to the multi-area case. Afterwards, adaptations of such formulation to the remaining
possibilities that were identified are suggested.

35



Scheduling of Power System Cells Integrating Stochastic Power Generation

3.1 The Power System Scheduling Problem

Power systems have the fundamental purpose of generating, transporting and supplying their customers

with the electrical power they need in a reliable and economical way. Electrical power is produced by

a set of generators connected to the electrical grid of the power system. The customers connected to

such grid are then fed with the electrical power they require. The number of generators is generally

very small when compared with the number of loads of the power system. Moreover, those generators

are commonly placed way from load centers. Hence, a more or less complex power grid is used for

transporting generated electrical power from the generating units to the loads.

The general idea of what a power system is and of what is its purpose is a quite simple one. However,

the process of feeding the loads of a power system can become quite complex when analyzed in detail.

Such complexity may come from different factors like, to name a few, the inherent variability of the

power system loads, the security of supply requirements imposed to the power system operator, and the

climate (for instance, in power systems containing hydro generators it is important to take into account

the future availability of the water resource for optimizing its utilization).

The power system operator may have to comply with many different operation objectives. A general

high-level operation objective is for the power system to supply its load requirements at the lowest

possible cost. Such objective would imply that a set of setpoints be provided to the generating units in

use (i.e.: online) at different moments in time (i.e.: due to the variability characteristics of the power

system load) for minimizing operation costs while meeting load requirements. Assuming that it is

possible to attain such goal not only implies that such set of setpoints to exist, but also implies that one

is actually capable of determining it.

The previous example consists of an Economic Dispatch problem in its simplest form. Such problem

may be stated in a more formal manner as the process of determining the setpoints of the generators in

use for supplying the power system demand at the lowest cost. However, economic dispatch problems

are generally more complex than what is suggested by the previous example. For instance, while

solving an economic dispatch problem one might neglect power system losses or consider them, which

can dramatically change the complexity of the problem, and, obviously, the complexity of the economic

dispatch algorithms that are used for solving it.
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Two main types of economic dispatch algorithms exist: the online ones and the offline ones. Online

economic dispatch algorithms are designed for online operation of the power system. Their goal is

to economically distribute the actual load of the power system through the various generators in use

[42]. Offline economic dispatch algorithms have the purpose of economically planning the sharing of

the predicted or forecasted load of the power system through the various generators in use. In other

words, online economic dispatch algorithms are run in parallel (i.e.: on-the-fly) with load variations,

while offline economic dispatch algorithms are run in advance (i.e.: before the actual load is known).

One should note that both types of algorithms need to dispose of the set of generators in use at the time

period for which they are performing their calculations. Consequently, the set of generators in use at

different time periods has to be determined by a procedure external to the economic dispatch one.

The determination of the best set of generators in use at a given point in time (i.e.: at a given time-stage)

is named Unit Commitment and is usually a difficult and burden task. In classical power systems, for

economical reasons, such task is performed mainly due to the variability of the power system load:.

Indeed, the power system load varies throughout the day. Moreover, the load profiles of a given power

system usually differ from day to day. A given set of generators might then be the best one for supplying

a given amount of load at a specific moment in time of a given day, but might be unsuitable for different

moments in time (and even for equivalent moments in time of different days). Consequently, the best

generator schedule throughout a given day may be unsuitable for any other day. Hence, generally

speaking, unit commitment models serve the purpose of optimally deciding which generators are to be

in use at different moments in time [42] within a given time frame (i.e.: a day) in an as automatized

as possible fashion for reducing the effort that the power system operator needs to put into the power

system scheduling task. In other words, unit commitment models have the objective of selecting the

set of generators that best suits the expected load profile within a given time-horizon, according to the

operator’s predefined objective (or set of objectives).

Unit commitment problems have been a research topic for the last few decades [43, 44]. Two main

types of unit commitment models exist for different applications. Namely, there are unit commitment

models for scheduling power system resources over relatively long periods [45] as well as for the next

few hours or days [46, 47].

The idea behind the unit commitment concept is rather simple. Nonetheless, solving a unit commitment

:Other reasons may exist like, for instance, maintenance schedules, outages of one or several grid elements (i.e.: lines,
transformers), or generator outages.
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Generator S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
2 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

TABLE 3.1: Example of possible system states (S1, . . . , S15) for meeting load level Lt at time stage t for a power system
comprising 4 dispatchable generators. Each generator may be set to one of 2 states: ON (1), or OFF (0). In this example the
load is considered to always be greater than zero.

problem is generally very hard due to its inherent complexity, which may come from several factors.

The most well-known one is related to the combinatorial nature of the problem. For illustrating this

factor, let us consider a power system comprising NGen dispatchable generators where each generator

may be set to nu different states contained in state vector u. Then, on such a power system, a total

of nuNGen possible combinations of generators exists for meeting a given level of load (Lt) at time

stage t, where each combination is usually called a system state. Considering the load of the power

system to be always greater than 0 (which is quite reasonable), the number of possible combinations is

reduced to nuNGen�1. As an example, a power system comprising 4 generators, where each generator

may be set to 2 states (e.g.: it may be disconnected from the main grid – set to an OFF state – or

it may be connected to the main grid – set to an ON state) has 24 � 1 � 15 possible system states

(S1, S2, . . . , S15) for feeding load Lt at time stage t. Table 3.1 contains the different possibilities given

to the operator of such a power system for meeting Lt. One should note that the no-load case has been

neglected in the present example, which explains why the all-zero combination was not included in

Table 3.1.

Unit commitment problems may or not comprise time-coupling constraints. The simplest case is the

one where no time-coupling constraints exist. In such a case, for a comprising T time stages and

neglecting the no-load case, brute force methods will have to evaluate T �
�
nu

NGen � 1
�

solutions

for determining the best one. This result represents the worst-case scenario for solving a unit com-

mitment problem that does not comprise (or that neglects) time-coupling constraints. In such a case,

finding the best solution to the whole unit commitment problem is equivalent to finding the series of

individual solutions of the T separate unit commitment problems, where each of the separate problems

corresponds to one of the time stages of the original complete problem. However, if time-coupling

constraints apply, the problem becomes more complex to solve. Indeed, in such a case, it can be shown

that the worst-case scenario for brute-force methods applied to a problem comprising T time stages

and neglecting the no-load case becomes
�
nu

NGen � 1
�T . In this case, the individual problems per
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time stage cannot be uncoupled (unless some applicable uncoupling/simplifying technique is used).

Table 3.2 contains examples that illustrate the evolution of the complexity of unit commitment prob-

lems with their increase in size. For producing Table 3.2, only two possible dispatchable generator

states were assumed to exist: the ON and the OFF states.

Time Coupling NGen T No. Problems NGen T No. Problems NGen T No. Problems

No
2 6 1, 80� 1001 6 6 3, 78� 1002 18 6 1, 57� 1006

2 12 3, 60� 1001 6 12 7, 56� 1002 18 12 3, 15� 1006

2 24 7, 20� 1001 6 24 1, 51� 1003 18 24 6, 29� 1006

Yes
2 6 7, 29� 1002 6 6 6, 25� 1010 18 6 3, 25� 1032

2 12 5, 31� 1005 6 12 3, 91� 1021 18 12 1, 05� 1065

2 24 2, 82� 1011 6 24 1, 53� 1043 18 24 1, 11� 10130

TABLE 3.2: Influence of the presence of time-coupling constraints in the complexity of the unit commitment problem. Three
main cases were considered by varying the number (NGen) of dispatchable generators. Then, for each case, three subcases
were created by varying the number (T ) of time-stages. Finally, in every case, each of the generators is restricted to reside
in only one of two possible states: ON, or OFF. The power system load was considered to always be greater than zero.

By simple inspection of Table 3.2, one can easily verify that the number of candidate solutions of a

given unit commitment problem can be huge. Therefore, power system generation possibilities are

often described by an appropriate state-space, which has the role of facilitating the development of

computer-based methods for tackling power system scheduling problems by describing all the possi-

ble states to which the power system may be set in an as efficient as possible manner. Defining an

appropriate power system operation state-space description implies encoding all the possible operating

points of the power system in a systematic way. This procedure represents an extremely important part

of any unit commitment solution method based on a system state-space description.

Although being important, state-space descriptions do not suffice for solving power system scheduling

problems. This is due to the fact that such descriptions do not comprise information on the structure

of the scheduling problem. For instance, the transition from a given system state to another given

system state: in a given amount of time may be infeasible. However, the state-space description does

not necessarily contain such information as it usually describes the possible states but not the possible

links between them. Hence, state-space scheduling tools disregarding this aspect will often supply

infeasible solutions as they will often lead to infeasible state transitions. For overcoming this problem,

an adequate search-space based on the power system operation state-space description needs to be built.

Such search-space contains information enabling or not a given region to be “visited” (i.e.: tested or

considered) departing from some other region. As a conclusion, one can say that search-spaces serve

the purpose of linking system state-space descriptions sequentially in time.

:Usually referred to as state transition.
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Time System states
1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

2 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

. . . . . .
T � 1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

T S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

TABLE 3.3: Example of a unit commitment search-space description for the example presented in Table 3.1 for T time
stages. For each time-step, the state-space description of the system is repeated because, at the beginning of the algorithm,
the system may be potentially set into any given state specified in its state-space description. Later on, a given state at
time-step t, may be subject to additional state transition rules/constraints that determine the states to which it may be linked
at time-step t� 1.

Designing appropriate search-spaces may become a rather difficult task depending on the nature of the

unit commitment problem being considered. One of the main requirements that have to be ensured

by a search-space is for it to describe all feasible state transitions throughout the time-horizon of the

problem. Indeed, during the state-space design phase, all possible systems states are encoded and

tagged as feasible. However, a subset of infeasible state transitions usually exists. For example, a given

generator may be set to online or offline status, but after being set online, it might be impossible to set

it back to offline status before its minimum up time requirements are fulfilled. Whatever is the reason

that implies a state transition to be infeasible, avoiding the consideration of such transitions usually

speeds up calculations while granting optimality or, at least, acceptability of the obtained solutions (in

case a some meta-heuristics or approximations are used implying the possibility that a global optimum

will not actually be found) rendering the search-space description of the power system more efficient.

For illustrating the composition of a typical unit commitment search-space, a choice to model a power

system comprising a set S of possible system states was made where S �
!
S1, S2, ..., SnNGen

u �1

)
.

The power system is to be scheduled for a set of T time-stages, where each time-stage is represented

by t P t1, 2, . . . , T u.

Such problem may be described by the two-dimensional space contained in Table 3.3. For building

Table 3.3, a hypothetical power system comprising 5 dispatchable generators as the ones represented

by Table 3.1 was considered.

The description of a unit commitment problem through a search-space like the one represented by

Table 3.3 is suitable for unit commitment computer-based algorithms. Indeed, while describing a

given unit commitment by a search-space, one is actually structuring the unit commitment problem in
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a logical and systematic way. Such structure may then be treated by a computer program in an efficient

manner. Depending on the structure obtained, and on the objective sought by the system operator,

commercial or specifically tailored tools based on some unit commitment algorithm may be used for

solving the problem.

After having processed the unit commitment search-space, the algorithm returns the best feasible path

that was found:. Such path is hereby represented by the series of system states xt yielding the best unit

commitment result, where t P t1, 2, . . . , T u. The complexity of different unit commitment algorithms

may vary significantly depending on the solution quality requirements, on the size of the power system,

and on the presence or not of uncertain inputs.

Unit commitment algorithms are usually executed prior to the operation of the power system (i.e.: of-

fline), and may or not integrate offline economic dispatch algorithms. Indeed, performing the unit com-

mitment of large power systems is in itself a very hard and time consuming task and, for that reason, the

economic dispatch step may not be included. Instead, some kind of rule-of-thumb may be preferred for

estimating the operation costs of generators and then some method (i.e.: for instance, a priority list) is

applied for committing the subset of generators that best satisfies the problem requirements. A possible

(and well-known) rule-of-thumb is to represent the operation costs of the dispatchable generators by

their respective average incremental cost. However, if the power system in consideration is sufficiently

small, it might prove worthy to use the actual cost curves of the generators while performing the unit

commitment. Therefore, in such case, one can say that the unit commitment integrates an internal

dispatch algorithm. Such types of unit commitment algorithms are sometimes named Power System

Scheduling algorithms or, simply, Scheduling algorithms [43, 47]. Here, this name was adopted for

distinguishing standard unit commitment problems/algorithms; from those that not only supply the

operator with the best sets of generators in use at different points in time, but that also affect such

generators with the best set of setpoints, according to some objective or set of objectives.

Many power system scheduling approaches exit in the literature [20, 43, 44, 48]. Some of them seek to

schedule the power system in an optimal manner, others in a near-optimal manner and, finally, others

in a simple and efficient but not necessarily optimal manner. For the sake of clarity, these different

approaches may be divided into three main types:

:Alternatively, the Unit Commitment algorithm may supply the operator with the best set of paths found, where the
amount of paths may or not be predefined.

;Standard unit commitment problems/algorithms are defined here as those having the single goal of determining the best
set of ON/OFF states of the power system dispatchable generators according to some objective.
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Rule-based: These types of methods use more or less complex rule-based systems to solve the power

system scheduling problem. These rules may be static (i.e.: predefined and fixed through time)

or they may evolve in time whenever machine learning techniques are employed. In addition,

these rules may be simple rule-of-thumb ones (e.g.: successively commit generators having the

lowest average incremental cost until the requirements of the problem are met) or they may be

composed of more or less complex inference systems. These systems try to mimic the actions

of an expert [49] based on actual human expert inputs (in which case they are commonly called

expert systems) or they may be created from historical data. In this last case, inference systems

based on artificial neural networks are widely used in the literature [50]. These inference systems

may be static or they may evolve in time “learning” from experience [51]. Finally, the rules

incorporated by these rule-based systems may take the form of single values (i.e.: crisp values)

or by fuzzy numbers. In the first case, the single values may define, for instance, thresholds to

respect. It the second case it is more or less the same with the difference that these thresholds

are no longer represented by crisp values, but by fuzzy numbers. These fuzzy numbers may

model the uncertainty around a given numeric value (e.g.: the system load will be between 200

MW and 250 MW), or they may translate some qualitative measure (e.g.: the system load will be

average). Consequently, when fuzzy numbers are used, the scheduling process has to incorporate

fuzzy logic (provided by fuzzy set theory) for scheduling the power system [52].

Optimization-based: In general terms, these methods approach power system scheduling problems

through the search of the best possible solution within a given solution-space. In this case, the

scheduling problem is formally written as a mathematical optimization problem, which is then

solved through the use of some optimization technique [53] or combinations of optimization

techniques as, for instance, in [54–57] where the power system scheduling problem is seen as

a mixed-integer programming one. In the latter case, the original scheduling problem can be

separated into an integer programming problem and a continuous optimization one. Then, some

optimization technique (e.g.: branch-and-bound, dynamic programming) is used for solving the

integer programming problem of deciding the ON/OFF states of generators, and another opti-

mization technique (e.g.: sequential quadratic programming, linear programming, etc.) is used

for determining the optimal setpoints of the selected generators to be in use at each moment

in time. These two optimization techniques are then coupled through an algorithm specifically

designed for the purpose such as the one proposed in [58]. The choice of the technique or set

of techniques used depends mainly on the specific characteristics of the problem that is being

formulated, on the available data, on the available tools for implementing the technique, on cal-

42



Power System Scheduling

culation time requirements, and on memory requirements. For instance, global optimization

techniques may be employed for solving small-enough optimization problems [59].

Hybrid: These types of approaches combine two or more rule-based and optimization-based methods

into a single power system scheduling algorithm. It should be stressed that such algorithm does

not necessarily have the objective of attaining a global optimum (although it may eventually

reach such an optimum), but rather to reach a “sufficiently good” solution (sometimes referred

to as a suboptimal solution [60, 61]). The objective of hybrid method approaches is to simplify

the solution method required for solving a given scheduling problem by dividing the problem into

different sub-problems. Each of these sub-problems has specific characteristics distinguishing

it from the remaining ones. Then, each one of the solution techniques previously chosen is

employed for tackling a given type of sub-problem. Each sub-problem is solved separately (but

not isolatedly) from the rest. The techniques are chosen so that their “strengths” are well-adapted

to the characteristics of their respective sub-problems. At the end, a “sufficiently good” solution

is obtained.

The development of Hybrid-based approaches may become necessary or, at least, interesting if

the problem becomes too large [59, 62, 63] or if it presents some specificities suggesting that a

hybrid approach is more suitable than a “classical” one (e.g.: problems having constraints that

are difficult to respect using conventional approaches — ramp-rate limits [64, 65]). Examples of

hybrid power system scheduling approaches may be found in [47, 60, 62, 63, 66, 67].

3.2 A Unified Formulation of the Power System Scheduling Problem

Many power system scheduling models exist in the literature. Indeed, power system scheduling prob-

lems have been a research topic for about four decades [44]. In this section, an effort is made for

providing the reader with a generalized mathematical model of power system scheduling problems

based on the models that can be found in the literature. Such model attempts to unify the three iden-

tified possibilities for power system scheduling models by starting with the formulation of the most

general one (i.e.: classical multi-area scheduling) and then detailing the differences between that one

and the remaining two (i.e.: classical single-area scheduling and the market-player scheduling).

Obviously, different power systems have different characteristics (i.e.: different load requirements,
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different grid infrastructures, different generator mixes, etc.). In addition, the operators of such power

systems may have different objectives (or sets of objectives) in mind while deciding the scheduling

of their respective systems. Therefore, the formulation presented in this chapter does not aim to be

exhaustive for every possible power system scheduling problem. It rather aims to provide a good

insight and starting point on the “translation” of a power system scheduling problem into mathematical

terms.

There are mainly two visions for power system scheduling problems: the classical vision and the

market-player one. It is important to take this aspect into account prior to the development of a mathe-

matical formulation of the problem as such formulation is strongly dependent on the vision adopted.

The classical vision addresses the problem of scheduling the power system system as a whole. The

power system is operated as a monopoly in a vertically integrated structure. The optimal selection of

the generators to be in use at each moment in time, and the determination of their setpoints is obtained

while considering all of the available resources of the power system as well as all of the pertinent grid

elements of the power system (e.g.: transmission power lines). Such optimization is usually carried

out with the objective of minimizing the global operation and, eventually, the maintenance costs of

the power system. This vision subdivides into two main approaches. In the first, all the elements

constituting the power system are considered to belong to a single-area. In the second, the power

system elements are divided into different areas, thus constituting smaller power systems aggregated

together through inter-area interconnection power lines. In this case, the commitment of the generators

is typically made per area while enforcing inter-area transmission interconnection constraints to be

respected [63, 68]. The enforcement of transmission interconnection constraints can be ensured by

running a global economic dispatch.

Nowadays, many power systems operate under horizontal structures [69] often under liberalized power

market structures [70, 71]. Under such market structures, the power system scheduling is implicitly

obtained by market clearing and settlement mechanisms. Therefore, no global optimization of the

power system scheduling is made. However, in such structures, there is an important entity that is

responsible for ensuring technical feasibility of the schedules obtained after market clearance takes

place. Such entity is the independent system operator (ISO): [18, 19]. It must be stressed that, in this

case, the global power system scheduling no longer has the objective of scheduling the power system

operation for attaining the least cost. It rather aims to the detect infeasibility situations and to correct

:It may be the transmission system operator (TSO) depending on the power market structure [18].
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them. Such a unit commitment is usually referred to as security-constrained unit commitment (SCUC)

[19].

Under an electricity market, such as the one that was previously described, a market-player vision has

to be adopted by market players (i.e.: market participants having the role of placing bids onto the mar-

ket for buying or selling power). Some of such players consist of generating companies (GENCOs)

that operate and maintain their own plants with the objective of maximizing their individual profits:

[72]. This constitutes a first difference between this view and the classical one. However, other differ-

ences exist. Indeed, load supply constraints are no longer strict (i.e.: the GENCO available generation

capacity does not have to match the total system demand — it can be inferior to that demand value)

and both reserve and transmission losses are predefined by contracts [44]. Finally, transmission net-

work constraints may be simplified to a large extent, or even be neglected, as the enforcement of such

constraints is ensured by the ISO;.

From the two main types of power system scheduling problems that were previously described, the

classical vision applied to the multi-area case seems to be the most general one because it can straight-

forwardly lead to the remaining ones through some simplifications as shall be seen later on. This

section deals with the development of a generalized mathematical model designed for tackling such

problem. The proposed mathematical model is mainly based on the conjunction of the works devel-

oped by Lee and Feng in [68] with that developed by Ouyang and Shahidehpour in [63], which were

focused on the multi-area unit-commitment problem. The conjunction of such works seeks to provide

a more general model combining the characteristics of the previous two. At the end of this section,

some considerations and modifications to the developed multi-area power system scheduling model are

drawn for obtaining the simpler single-area version. Finally, an extension to the obtained single-area

power system scheduling model is proposed for obtaining the market-player power system scheduling

model.

:This type of scheduling problems are usually referred to as price-based unit commitment (PBUC) [19].
;However, it might be important for the GENCO to know if there will possibly be any transmission grid bottlenecks. In

fact, the existence of bottlenecks may force the ISO to select more expensive generators for granting technical feasibility of
the schedule. Therefore, from a strategic viewpoint, the GENCO may be interested in knowing in advance whether and where
such bottlenecks are expected to appear (inside the area of influence of the GENCO or not). Such knowledge may eventually
be used for developing market strategies aiming to take advantage of existing power grid inefficiencies for increasing the
profits of the GENCO.
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3.2.1 Formulation of the Classical Multi-Area Power System Scheduling Model

The classical multi-area power system scheduling model can be described as the following optimization

problem,

min
x

fpxq

subject to : gpxq � G

hpxq ¤ H

(3.1)

where x represents the vector of control variables of the scheduling problem and fpxq represents the

function to minimize. The set of equations gpxq � G represents the equality constraints of the problem

(e.g.: energy balance constraints), and the set hpxq ¤ H represents the set of inequality constraints

of the problem (e.g.: generator setpoint boundaries). This general formulation represents the base

structure of any power system scheduling optimization problem. Below, an example objective function

is formulated for the multi-area power system scheduling problem. Afterwards, the section proceeds

with the detailed formulation of the constraints of such problem.

3.2.1.1 The Objective Function of the Problem

The objective of the problem is, usually, to determine the set of control variables that minimizes the

operation and maintenance costs of the power system throughout a given operation horizon. Let S be

the unit commitment state-space, where S �
!
S1, S2, ..., SnNGen

u �1

)
and:

• Sk represents the kth system state (i.e.: the kth combination of generators of the system);

• nu is the number of possible single generator states;

• NGen is the number of generators of the system.
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If the operation and maintenance costs are given by fpxtq, where xt is the vector of control variables

of the problem at any point in time t, the objective function of the problem may by expressed by

Equation 3.2, where T represents the optimization horizon of the scheduling problem.

min
x

Ţ

t�1

fpxtq , x � tx1, x2, . . . , xT u (3.2)

Although simple to understand, the previous equation does not allow an applicable formulation of a

power system scheduling problem to be easily made as the vector of control variables x lacks some

detail. Hence, for incorporating such additional detail into Equation 3.2, vector x (the system state)

shall be detailed the individual control variable vectors:

• uiptq ÝÑ state of dispatchable generator i at time t (a component of the system state St);

• Piptq ÝÑ power output of dispatchable generator i at time t;

• SRiptq ÝÑ spinning reserve: made available by dispatchable generator i at time t;

• NSRiptq ÝÑ non-spinning reserve; supplied by dispatchable generator i at time t.

Moreover, for taking into account the existence of multiple areas, let us defineM as the set containing

all areas of the power system. In addition, let us define Gm as the set of all dispatchable generators

comprised by area m PM. Under these definitions, the total per time-step operation and maintenance

costs associated to the power system scheduling problem are given by ft in Equation 3.3, where Ci
represents the generating cost function of generator i comprising its operation and maintenance costs

associated to uiptq, Piptq, SRiptq, NSRiptq. In the same equation, SDi represents the shutdown cost

associated to shutting down the ith generator if it was previously in use, and SUi represents the startup

cost associated to starting up the ith generator if it was not previously in use.

:Defined further ahead.
;Defined further ahead.
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ft �
¸
mPM

¸
iPGm

�
Ci

�
uiptq, Piptq, SRiptq,NSRiptq

	

� SUi

�
uiptq, uipt � 1q

	
� SDi

�
uiptq, uipt � 1q

	�
(3.3)

It should be noted that, in the present formulation, the fixed costs for starting up, or shutting down the

ith generator are being implicitly associated. This is due to the use of the operating states of the ith

generator at times t and t � 1 disregarding the amount of time in which the generator had remained

on its previous state. This is one possible and quite simple approach for dealing with the particular

startup and shutdown costs of any given generator. Of course, other approaches exist in the literature

for dealing with these particular costs [20, 54–56, 73]. However, as it was previously stressed, our

formulation is intended to be as general as possible. Therefore, it cannot aim to suit every possible

multi-area power scheduling problem, but rather to supply a base structure of such problems facilitating

the development of a problem-specific formulation. Moreover, the assumptions made for defining the

startup and shutdown costs associated to the ith generator allow to formulate the multi-area power

system scheduling problem without any loss of generality as other cost structures may be included in

a straightforward way. In other words, the present formulation remains generic from the startup and

shutdown costs viewpoint because its structure remains the same even if the adopted structure of these

costs differs from the one adopted here.

Equation 3.3 represents the total operation and maintenance cost associated to the tth time-step of a

given multi-area power system scheduling problem. In other words, this equation represents the single-

stage operation and maintenance costs associated to any given time-step of the considered horizon. By

adding the costs associated to each time-step of the scheduling problem one obtains the total costs

associated to the scheduling horizon T (i.e.: global scheduling costs). The objective of the classical

scheduling problem is to minimize these global scheduling costs, which is described by Equation 3.4.

min
u,P,SR,NSR

Ţ

t�1

ft (3.4)
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3.2.1.2 Constraints of the Problem

The classical multi-area power system scheduling problem is subject to a wide variety of constraints.

Such constraints may be generally classified as soft or hard. Soft constraints, are generally all the

constraints that may be violated to some extent at the expense of paying some penalty. Such penalty is

usually proportional the extent of the violation of the given constraint. Hard constraints are those that

must be respected at all times. As opposed to their soft counterparts, no penalty costs due to violations

of hard constraints are considered because no violation of such constraints whatsoever is permitted.

For further information on the definitions of hard and soft constraints and for some applications of

these concepts please refer to [74–76].

Power system scheduling optimization problems comprise both equality and inequality constraints.

The equality constraints refer to those that are represented be an equation. In such case, as the type of

the constraint suggests, an equality must be reached between the outcome of a prespecified function

(usually placed in the left member of the equation) and a predefined quantity (usually placed in the

right member of the equation). The prespecified function takes as inputs the set of variables of the

optimization problem (or some subset of such variables). The inequality constraints are, as the name

suggests, described by an inequality. Such inequalities are usually used for for bounding the variables

of the optimization problem to feasible or otherwise acceptable values:.

System-Level Constraints

The most common equality constraint associated to power system scheduling problems is related to

power balance. Such constraint enforces the total power generation to equal the system load plus the

system losses at every moment in time. This is a hard constraint (in the sense defined in subsub-

section 3.2.1.2) because it is imposed by the laws of physics [42]. This constraint may be described

:Some optimization problems may have design values having physical limits (i.e.: translated by feasible values) that are
wider than those defined by the problem designer (i.e.: which are hereby referred to as acceptable values). As an example of
such case, one can mention, for instance, the problem of building a hydro dam containing a reservoir where the amount of
hydro storage of such dam is usually not limited by nature, but by design options aiming to limit the hydro dam impacts on,
for instance, wildlife.
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through Equation 3.5,

NGen¸
i�1

�
Piptq

	
� Lptq � PLptq (3.5)

where, at every time-step t:

• Piptq ÝÑ power output of the ith generator;

• Lptq ÝÑ total system load;

• PLptq ÝÑ total system losses;

• NGen ÝÑ total number of generators of the power system.

The previous equation is valid for single-area scheduling problems. However, it can be extended

to multi-area ones. The main difference between both is due to interconnection limits between the

different areas belonging to the set of areas M. Let Nm � M be the subset of areas interconnected

with area m, where m represents a given area of the multi-area scheduling problem. In addition, let

PTm,nptq represent the power interchange between areas m and n P Nm at time t, where a power flow

interchange going from aream to area n is considered to be greater than zero. In such a case, the power

balance equation for multi-area scheduling problems may be expressed through Equation 3.6, where

Lmptq and PLmptq represent, respectively, the total load to be fed in and the total losses associated to

area m at time t. Of course, n � m (interconnections between adjacent areas are considered), and

N � m (otherwise the problem becomes a single-area scheduling one).

¸
iPGm

�
Piptq

	
�

¸
nPNm

�
PTm,nptq

	
� Lmptq � PLmptq ,@m PM (3.6)

Capacity constraints are also often incorporated into scheduling models. These constraints are used

for ensuring that the system always has an amount of surplus capacity allowing it to withstand the

50



Power System Scheduling

consequences of unforeseen events. Such unforeseen events can consist in system contingencies (e.g.:

loss of an important power line, generator outages, . . . ), or in forecasting errors (e.g.: the predicted

system load differs from the actual value it takes). These unforeseen events usually have to be dealt

with within different time frames. In the first time frame, the system responds immediately to the

contingency via an automatic local control. For achieving this, the system relies on the availability

of fast acting reserves, which are capable of either absorbing momentary excess power, or generating

momentary lacking power for maintaining the power balance of the system:. In the second time frame,

the power system responds to the contingency in some tenths of seconds [77]. This type of reserves

are usually coordinated in a central and automatic way by the TSO with the aim of bringing the system

frequency back to its specified value (i.e.: the frequency is automatically deviated from this value on

the occurrence of a momentary power unbalance). Finally, in the third time frame the power system

is manually readjusted. Such readjustment consists in a manual redispatch and recommitment of the

power system generators. This readjustment is made for re-establishing the levels of secondary control

reserve. It can also be made for managing eventual congestions, and for bringing back frequency and

the interchange programs to their target values whenever the amount of secondary control reserve is

not sufficient [77].

Two main types of power reserves exist for enabling the power system to respond to unforeseen events:

the so-called spinning and non-spinning reserve. In the present, no consensual definition of spinning

reserve exists. A possible generic definition (inspired in the work developed by Rebours and Kirschen

in [78]) could be: the spinning reserve is the unused capacity of the system which can be activated upon

need due to some unforeseen event and which is provided by devices that were already synchronized

with the power system prior to the occurrence of such event. However, other definitions exist as, for

instance, in [19] where the authors state that “spinning reserve should be online and operate at less

than the maximum output, and be ready to immediately serve load”. The non-spinning reserve could

be defined as the unused capacity of the system that can be activated by the system operator in case

of some unforeseen event and which is provided by power generators that were not synchronized with

the power system prior to the occurrence of such event. In [19], the authors state that “non-spinning

reserve should generate capacity for emergency conditions but not be available immediately” and that

“non-spinning reserve capacity should be started up very quickly (usually in less than 10 minutes)”.

Here, as previously defined, the spinning reserve requirements are represented by SR and their non-

spinning counterparts are represented by NSR. For more information on other available definitions

and types of power system reserves the reader may refer to [18, 77–80].

:Otherwise the power system could enter a "blackout" situation, or, in other words, it may shutdown.
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For considering reserve requirements, in the multi-area scheduling framework, the set of capacity

constraints may be defined by Equation 3.7, where SRmptq stands for the spinning reserve requirements

associated to area m, NSRmptq represents the non-spinning reserve requirements associated to area

m, and PMax
i ptq is the maximum possible power output of the ith generator at time t.

¸
iPGm

�
PMax
i ptq

	
�

¸
nPNm

�
PTm,nptq

	
¥ Lmptq � PLmptq � SRmptq �NSRmptq

,@ m PM (3.7)

where,

¸
iPGm

SRiptq ¥ SRmptq ,@ m PM (3.8)

and,

¸
iPGm

NSRiptq ¥ NSRmptq ,@ m PM (3.9)

In many cases, the values of SRmptq and NSRmptq are associated to the peak load LMax
m ptq occurring

in area m within a given time-step t [77]. In such cases, Equation 3.7 may be simplified to Equa-

tion 3.10.

¸
iPGm

�
PMax
i ptq

	
�

¸
nPNm

�
PTm,nptq

	
¥ L

1

mptq � PLmptq ,@m PM (3.10)
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where:

L
1

mptq � Lmptq � L
�
LMax
m ptq

�
(3.11)

In Equation 3.11, L
�
LMax
m ptq

�
translates the impact of SRmptq and NSRmptq on the capacity con-

straint given by Equation 3.10. In practice, the values of SRmptq and NSRmptq will have the effect

of increasing the predicted load by a given amount. Consequently, some security slack is added to the

problem. In some cases, such slack is given by a constant value, whilst in others it is (as mentioned

above) a function of the peak load that is expected to occur within a given amount of time [77, 78].

For illustrating this last case, let us admit the security slack for covering the occurrence of unforeseen

events to be given by a constant percentage value of the predicted load:. For achieving this, let us de-

fine increment factors kSR and kNSR for representing, respectively, the percentage impacts of SRmptq

and NSRmptq on the capacity constraint given by Equation 3.10. Then, the function L
�
LMax
m ptq

�
may be given by Equation 3.12.

L
�
LMax
m ptq

�
� pkSR � kNSRq .L

Max
m ptq (3.12)

If the security slack can be calculated as a whole for both the spinning reserve and the non-spinning

reserve requirements, Equation 3.12 may be simplified to Equation 3.13, where kR represents such

global reserve factor.

L
�
LMax
m ptq

�
� kR.L

Max
m ptq (3.13)

Equations 3.6 and 3.7 represent some of the most common restrictions to power system scheduling

formulations, and can be called system-level constraints. However, many other restrictions may be

:If this is not the case, it will suffice to use the actual function that permits to calculate such load increment.
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important to consider. For instance, one might be interested in limiting the amount of gas emissions

associated to the scheduling decisions, or to limit the conventional fuel utilization. The inclusion of

such types of constraints in the present model is quite straightforward. For more information on such

emission and fuel constraints the reader may refer to [81].

Boundary Constraints

The system-level constraints are to be respected while setting the control variables of this optimization

problem to appropriate values. These control variables are, however, often bounded. The enforcement

of such boundaries to control variables is made by the employment of additional constraints that are

usually referred to as boundary constraints.

Many boundary constraints may be associated to a given power system scheduling problem. Here,

those related to inter-area transmission and to the generators of the system will be of particular interest.

Inter-Area Transmission Constraints

The inter-area transmission constraints serve the purpose of keeping inter-area power flows within an

acceptable (feasible) range. Let PMax
Tm,n

be the maximum power flowing from area m to area n. In such

case, the inter-area constraints may be defined through Equation 3.14.

PTm,nptq ¤ PMax
Tm,n

,@m PM , @n P Nm , n R m , Nm � m (3.14)

Generator Constraints

The literature reveals several types of constraints applied to power system generators. Some examples

of such constraints may be found in [43, 44, 56, 65, 81, 82]. Here, in the context of the present

formulation, the following types will be addressed:

• generation capacity limits;
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• ramp-rate power output limits;

• warm-up and cool-down power output limits;

• minimum up and minimum down time requirements;

• allowed up and down times throughout the optimization horizon;

• must-run and must-off units.

The power output of any physical generator is bounded by its physical characteristics. Two main types

of power output limitations exist. The first one is usually called generator technical limit constraint and

refers to the minimum Pi and maximum Pi power output that the ith generator may produce whenever

it is in use or committed at any moment in time. The second one is the so-called ramp-rate limits of

dispatchable generators.

The generation capacity limit constraint may be formally expressed through Equation 3.15, where

PCAP
i ptq represents the momentary constrained capacity of the ith generator. This quantity is needed

to account for the pre-warming and the cool-down phases of large thermal-based generators [73].

uiptq � Pi ¤ Piptq ¤ PCAP
i ptq

,@ i P Gm , m PM (3.15)

In Equation 3.15, the value of PCAP
i ptq represents a function that models the maximum output of the

ith generator at a given time-step. For simplicity, such function may be described by Equation 3.16.

However, other functions may also be utilized [73]. In Equation 3.16, uWU
i ptq P t0, 1u and uCDi ptq P

t0, 1u represent, respectively, the warm-up and cool-down states of the ith generator. In the same

equation, nWU
i represents a counter of the number of time-steps that have passed from the moment the

unit started the warm-up phase and nCDi represents a counter of the number of time-steps that have

passed from the moment the unit started the cool-down phase. The function pWU
i

�
nWU
i

�
represents

the constrained maximum generating capacity of the ith generator during its warm-up phase. Similarly,

the function pCDi
�
nCDi

�
represents the constrained maximum generating capacity of the ith generator

during its cool-down phase.
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PCAP
i ptq �

$'''''''&
'''''''%

0 ð uiptq � 0,

pWU
i

�
nWU
i

�
ð uWU

i ptq � 1,

pCDi
�
nCDi

�
ð uCDi ptq � 1,

Pi ð uiptq � 1^ uWU
i ptq � uCDi ptq � 0.

,@ i P Gm , m PM (3.16)

Of course, a warm-up of the ith generator (i.e.: uWU
i ptq � 1) implies it being online. This is translated

through Equation 3.17.

uWU
i ptq � 1 ñ uiptq � 1

,@ i P Gm , m PM (3.17)

Similarly to the warm-up phase, a cool-down phase of the ith generator (i.e.: uCDi ptq � 1) also implies

it being online, which is translated by Equation 3.18.

uCDi ptq � 1 ñ uiptq � 1

,@ i P Gm , m PM (3.18)

The ramp-rate constraints translate the physical impossibility of a generator to instantaneously change

its power output within its feasible range (i.e.: respecting Equation 3.15) due, for instance, to the time-

lag associated to its control equipment and to its mechanical inertia. This physical constraint implies

the power output variation of the ith generator at time t to be dependent of the power output of the same

generator at time t� 1. Furthermore, such maximum variation may take different values depending on

whether one is increasing or decreasing the power output of the generator. Let us define the maximum
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allowed variation of power output of the ith generator as ∆Pi, for cases in which one is reducing the

power output of the generator, and as ∆Pi to be, for cases in which one is increasing the power output

of the generator. In such a case, the generator ramp-rate restrictions may be intuitively expressed by

Equation 3.19.

Pipt� 1q �∆Pi ¤ Piptq ¤ Pipt� 1q �∆Pi

,@ i P Gm , m PM , ∆Pi ¡ 0 and ∆Pi ¡ 0 (3.19)

Alternatively, Equation 3.20 may also be described by Equation 3.19, which is somewhat simpler.

�∆Pi ¤ Piptq � Pipt� 1q ¤ ∆Pi

,@ i P Gm , m PM , ∆Pi ¡ 0 and ∆Pi ¡ 0 (3.20)

Another type of generator constraints is linked to the operating status of the generators. Some examples

of this type of restrictions may be found in [65, 81, 82].

The first one that is formulated here regards the minimum up time requirements that may be associ-

ated to the various generators. This constraint ensures that, whenever the ith generator is set to an

up status it remains up for at least MUTi time-steps. This restriction essentially comes from some

physical considerations related to steam units [53] in which a minimum up time helps to prevent high

maintenance/repair costs due to excessive unit cycling. Such constraint may be enforced through Equa-

tion 3.21, where Xon
i ptq stands for the number of time-steps that the unit has remained online since the

last time it was set into that state.
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�
Xon
i pt� 1q �MUTi

	�
uipt� 1q � uiptq

	
¥ 0

,@ i P Gm , m PM , uiptq P t0, 1u (3.21)

Similarly to the minimum up time constraints, power generators may also be submitted to minimum

down time constraints. These constraints are usually employed to avoid thermal stresses (e.g.: in case

the electric generator is primarily moved by a steam turbine) and due to economic considerations [53].

In general terms, this constraint ensures that each time the ith generator is set offline, it remains in

that state for at least MDTi time-steps. Such constraint may be applied through Equation 3.22, where

Xoff
i ptq stands for the number of time-steps that the unit has remained offline since the last time it was

set into that state.

�
Xoff
i pt� 1q �MDTi

	�
uiptq � uipt� 1q

	
¥ 0

,@ i P Gm , m PM , uiptq P t0, 1u (3.22)

Another generator constraint that is used for preventing the ith generator from being put online for

more than MAUTi time-steps of the time horizon T is usually referred to as: maximum allowed up

time constraint. This constraint avoids to overuse a generator that is not intended to supply the base

load of the power system. Such constraint is described by Equation 3.23.

Ţ

t�1

�
uiptq

	
¤ MAUTi

,@ i P Gm , m PM , uiptq P t0, 1u , MAUTi ¥ 0 (3.23)

Conversely, the allowed down time constraint associated to the ith generator prevents it from being put

offline for more than MADTi time-steps of the time horizon T . This constraint avoids to underuse a
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generator that is intended to supply the base load of the power system. Such constraint is described by

Equation 3.24.

T �
Ţ

t�1

�
uiptq

	
¤ MADTi

,@ i P Gm , m PM , uiptq P t0, 1u , MADTi ¥ 0 (3.24)

For placing the control variables and their bounding limits in separate members, Equation 3.24 may be

re-written as Equation 3.25.

Ţ

t�1

�
uiptq

	
¥ T �MADTi

,@ i P Gm , m PM , uiptq P t0, 1u , MADTi ¥ 0 (3.25)

Some of the generators may be bound to remain online all the time either due to technical and/or eco-

nomical reasons (e.g.: nuclear power plants that may take up to several days for starting-up/shutting-

down and hydro generators that may have to run for avoiding spillage, which is considered to lower

the global power generation costs). These are the so-called must-run units [61, 68]. Let GMRU
m � Gm

be the subset of must-run units contained in area m P M. Then, the must-run constraints may be

described by Equation 3.26.

uiptq � 1

,@t P T @ i P GMRU
m , m PM (3.26)

Finally, some of the generators should remain offline throughout the scheduling horizon. These are

the so-called must-off units [68]. These units can correspond, for instance, to units scheduled for
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maintenance or being repaired. Let GMOU
m � Gm be the subset of must-off units contained in area

m PM. In this case, the must-off constraints may be described by Equation 3.27.

uiptq � 0

,@t P T @ i P GMOU
m , m PM (3.27)

3.2.2 Derivation of a Single-Area Power System Scheduling Model

Up to now, a multi-area power system scheduling model was developed. However, as it was stated

prior to the development of this multi-area formulation, a simple inspection of the obtained equations

reveals that this model can easily deal with single-area power system scheduling problems through

incorporation of some modifications. The needed modifications mainly consist in:

• eliminating the inter-area capacity constraints given by Equation 3.14;

• suppressing all m indexes;

• disregarding all n indexes;

• changing Gm to G, where G is the set of all generators of the power system;

• neglecting the sets M and Nm as well as every consideration that was made on them;

• eliminating the term �
°
nPNm

�
PTm,nptq

	
from Equations 3.6 and 3.7.

3.2.3 A Market-Player Power System Scheduling Model

The classical single-area power system scheduling model can also be extended to take into account

the presence of the market. The main modifications that need to be done are linked to the objective

function of the problem and, eventually to the power balance equation (i.e.: in case one wishes to

consider a single power producer or buyer).
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3.2.3.1 Objective of the Problem

In the context of a market-player, the objective of the GENCO while solving the power system schedul-

ing problem is no longer to supply the system load at the least cost, but to maximize its profit while sup-

plying the system load (or a part of it). Therefore, Equation 3.4 no longer holds, even when adapted to

the single-area case, because it only considers generation costs neglecting associated revenues. Hence,

Equation 3.4 has to be re-written for incorporating the revenues r associated to the scheduling. Equa-

tion 3.28 describes this new objective, where, for every time-step t, ρP ptq represents the price payed by

the power market for produced energy, ρSRptq represents the price payed by the power market for spin-

ning reserve services, and ρNSRptq represents the price payed by the power market for non-spinning

reserve services.

max
u,P,SR,NSR

#
Ţ

t�1

�
r
�
uptq, P ptq, SRptq,NSRptq, ρP ptq, ρSRptq, ρNSRptq

	

� f
�
uptq, P ptq,SRptq,NSRptq

	
+
(3.28)

In Equation 3.28, the time-stage cost function f is given by Equation 3.29.

f
�
uptq, P ptq,SRptq,NSRptq

	
�

NGen¸
i�1

�
Ci

�
uiptq, Piptq,SRiptq,NSRiptq

	

� SUi

�
uiptq, uipt � 1q

	
� SDi

�
uiptq, uipt � 1q

	�
(3.29)

The time-stage revenue r contained in Equation 3.28 is given by Equation 3.30.
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r
�
uptq, P ptq, SRptq,NSRptq, ρP ptq, ρSRptq, ρNSRptq

	
�

NGen¸
i�1

�
ρP ptq � Piptq � ρSRptq � SRiptq � ρNSRptq � NSRiptq



(3.30)

Finally, under a market logic, a single GENCO no longer needs to feed the whole load of the power

system, but only the part of it that maximizes the GENCO’s profit. This implies a modification of the

power balance equation that was defined through Equation 3.5. In fact, the GENCO no longer tries

to supply the system load plus the system losses:, but rather provides a part of the system load. This

is translated through equation Equation 3.31, where Gj is the set of dispatchable generators of the jth

GENCO.

¸
iPGj

�
Piptq

	
¤ Lptq (3.31)

To conclude this section, it should be said that the present formulation of the market-player power

system scheduling model is not generic as it neglects many options (e.g.: the eventual existence of bi-

lateral contracts). However, the inclusion of such details is quite straightforward. For further reference

on the subject the interested reader should refer to [81].

3.3 Conclusions of the Chapter

In chapter 2, the two main fields of knowledge related to this work were identified: power system

scheduling and decision under uncertainty. The present chapter supplied the necessary background in

what regards power system scheduling. This permits to better understand the concepts, complexity,

and characteristics associated to power system scheduling problems. This is an important basis for

the development of a day-ahead scheduling methodology suited to power system cells operating under

:In a market context, the system losses are dealt with by the ISO or TSO, whichever is applicable.
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electricity market conditions.

The chapter started with a conceptual discussion on power system scheduling problems identifying

their main characteristics as well as their complexity. A short insight on the main approaches that are

usually followed for tackling problems of the kind was given. Then, a model suited for multi-area

power system scheduling problems was developed. This model resulted from the unification of several

models proposed in the literature, the most relevant of which are those developed by Lee and Feng in

[68] and by Ouyang and Shahidehpour in [63]. The resulting model is therefore quite generic in the

sense that it treats the most common restrictions that are usually associated to problems of the kind.

Furthermore, the model is not a solution-oriented one in the sense that it does not focus on the solution-

technique used to solve it but rather on the mathematical model that is behind multi-area power system

scheduling problems. Therefore, the model can be applied on several types of multi-area power system

scheduling problems while allowing the easy consideration of additional restrictions whenever needed

as well as the modification and/or subtraction of the included restrictions.

Guidelines were then supplied so that the proposed multi-area power system scheduling model may be

easily adapted to single-area power system scheduling cases. At the end, the case of an independent

power producer who aims at participating in an optimal way on a day-ahead electricity market was

also discussed. For covering this case, the necessary modifications to the single-area power system

scheduling model were supplied. This last model is the one that best fits the requirements of the present

work, thus serving as a basis for the power system cell scheduling model proposed in chapter 5.

So far, the analysis focused on deterministic scheduling problems. However, an important aspect of the

particular power system cell scheduling problem is that the cell is subject to several uncertainties. These

uncertainties are associated to the forecasts of both their non-dispatchable renewable energy production

and to their local energy consumption. They may also come from the uncertainties associated to market

price forecasts. The next chapter supplies the necessary background on the concepts and models that

allow to incorporate such uncertainties into the scheduling process.
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CHAPTER 4

Decision Under Uncertainty

CHAPTER OVERVIEW

TRADITIONALLY, power system scheduling decisions are made prior to the actual power system operation.
Such scheduling decisions, as seen in the previous chapter, essentially prepare the power system for re-

sponding to its operational requirements according to some predefined operation objective or set of objectives.
Consequently, such requirements must be estimated prior to their actual occurrence.

This research work addresses the problem of scheduling the operation of a power system cell subject to con-
siderable uncertainties. This may represent the case of a microgrid or of a wind/pumped-hydro power plant in
which the uncertainties are linked with the imperfect knowledge of the future conditions under which the power
system cell will be operating, thus playing a important role in the scheduling decisions that are to be made.

This chapter discusses decision under uncertainty, which was identified in chapter 2 as being one of the the two
main fields of knowledge related to this work (the other is that of power system scheduling, which was addressed
in chapter 3). Therefore, in this chapter, a review of different ways to model uncertainty and to integrate such
uncertainty in decision processes is given. This serves to establish the basis for modeling and taking into account
the different uncertainties that are usually associated to the power system scheduling problems like the one
addressed in this work.
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4.1 Why Decision Under Uncertainty?

The main objective of this research work is to develop a methodology for scheduling the operation of

a power system cell composed of an aggregation of several energy converters often having different

characteristics. For instance, some of those energy converters may be controllable or dispatchable in

the sense that one has the possibility to control their energy input and, consequently, their energy out-

put at all times (e.g.: coal-fired power plant, hydro power plant containing a sufficient amount of water

reservoir capacity). Conversely, some of those energy converters may be partially dispatchable or

non-dispatchable, meaning that one has little or no control over their energy inputs, and, consequently,

little or no control over their energy outputs. As an example, pitch controlled wind turbines and maxi-

mum power point tracking photovoltaic generators may be considered as partially dispatchable energy

converters, while small wind turbines may be regarded as non-dispatchable generators.

While scheduling the operation of the power system cell, one is actually making several types of

decisions according to some set of objectives. Some examples of possible decisions to make can be:

which energy converter to use, when to use it, and (at least in the case of dispatchable ones) at which

setpoint to place it.

Obviously, the previous examples of decisions are directly applicable to the conventional power sys-

tem scheduling problem. However, in the case of a power system cell, making such types of decisions

is usually more complex than in the conventional case. This may be due to several factors. To give

an example, in large power systems, the penetration rate of non-dispatchable energy converters can be

sufficiently small for their inherent collective variability to be absorbed by the power system. However,

in the case of a power system cell, such penetration rate may be very high. Consequently, the control-

lability of the power system cell output is lower than that of the conventional power system. In other

words, the uncertainty associated to the power system cell actual power output is higher than that of a

conventional power system. This increases the probability of obtaining higher deviations between its

expected and the measured power outputs, which are usually referred to as imbalances. In the present

context, it is highly probable for such power system cell to operate under electricity market rules. These

rules usually imply some amount of penalty to be paid for power imbalances. Hence, it is desirable to

consider the power system cell output uncertainty in the scheduling procedure for managing the power

imbalances it generates.
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The focus in this chapter is on how to integrate the uncertainty associated to the power system cell

output in the scheduling process, which may be seen as a decision problem. To do this, the development

of a tailored decision under uncertainty scheduling model is required. However, such models usually

consider some predefined way to model the uncertainties associated to the inherent decision problem.

Therefore, the chapter proceeds with a short review of uncertainty modeling possibilities. Afterwards,

some of the main models that exist for integrating uncertainty in decision processes are presented and

discussed.

4.2 Modeling Uncertainty

Whenever the future outcomes associated to a given random (i.e.: stochastic) variable are not known

with precision, some amount of uncertainty is associated to such variable. In other words, the imperfect

knowledge of the future outcomes associated to any given random variable introduces some amount

of uncertainty associated to how the future will be. Practical problems may comprise many sources

of uncertainty. In power system related problems, some examples include: the possibility of a given

generator to malfunction at a given moment in time, the evolution of the system load through time, and

the future output of a wind farm.

Decision problems might consider or disregard (if this is considered as an acceptable choice) the un-

certainty information associated to the forecasts of the future states of the world. Here one is looking at

decision models integrating available uncertainty information on the future states of the world. How-

ever, firstly a short discussion on the main ways to model such uncertainty is made.

In [83], a unified view of the main ways to model uncertainty is proposed for a single-criterion de-

cision problem under uncertainty. Under such unified view, the author proposes the following basic

framework for describing each alternative of the single-criterion decision problem under uncertainty:

• a finite list of real numbers;

• a finite list of pairs (attribute value, probability);

• a probability distribution;
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• a possibility distribution.

The preceding unified view of the main ways to model uncertainty may be straightforwardly extended

to multi-criteria problems by performing some minor modifications to the basic framework described

in the previous list. Thus, for describing each alternative of the multi-criterion decision problem under

uncertainty one can use one of the following alternatives:

• a finite n by m matrix of real numbers, where n may represent the number of scenarios and m

may represent the number of criterions;

• a finite n by m matrix of real numbers, where n may represent the number of scenarios and

m may represent the number of criterions, plus a vector containing the n probability values

associated to each of the n scenarios;

• a set of m a probability distributions, each corresponding to the probable outcomes of the mth

attribute;

• a set of m a possibility distributions, each corresponding to the possible outcomes of the mth

attribute.

According to [83], two natural ways exist for modeling uncertainty. The first one consists in the dis-

crete points to which probability/possibility values may or not be associated. The second one consists

in the use of intervals.

In a scenario approach, each possible future state of the world is identified, discretized and described

by a real number. Such scenarios may be independent of each other (e.g.: n-point estimates of a given

random variable) or not. The latter situation corresponds to the case where the scenario is built based

on multiple dependent stochastic variables.

In an interval approach, the possible future states of the world are identified, discretized and described

by ranges of real number values (e.g.: the internal rate of return associated to a given investment option

will lie between 2 % and 3 %). In their basic formulation, intervals are not linked to probabilistic or

possibilistic distributions [83]. However, in more advanced formulations, additional information may

exist on the probability/possibility distribution of the values contained in interval.
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FIGURE 4.1: Schematic description of the main approaches to model uncertainty information.

The previous description suggests that the main approaches to model uncertainty may be schematically

represented by Figure 4.1 in which one can find the two base approaches for modeling uncertainty.

These approaches consist in modeling the uncertainty associated to a set of either discrete or continuous

stochastic variables.

In the discrete case, the possible outcomes of the different feasible combinations of the stochastic

variables (i.e.: scenarios) can be completely described by discrete points. Three sub-approaches exist.

The first one (point scenarios) corresponds to uncertainty modeling situations in which scenarios are

indistinguishable of each other, from a probabilistic/possibilistic viewpoint. The remaining approaches

address the cases in which some amount of probability/possibility is associated to each of the identified

scenarios.

In the continuous case, scenarios may be simply described by intervals of values as described previ-

ously. However, in many cases, some distinction is usually made between the values lying in such

intervals. Such distinction may be given by the probability density function associated to the values

contained in those intervals. In this case, one is actually defining continuous probabilistic scenarios.

In cases where such distribution of values is given by a possibility distribution, one is actually defining

continuous possibilistic scenarios.

Many other approaches may be found in the literature. However, such approaches either belong to one

of the classes of approaches defined in Figure 4.1, or consist of some combination of those classes.
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4.3 Decision Problems

In many situations, one needs to deal with the problem of choosing among a set of optimal or good

enough concurrent alternatives. The entity that performs such choice if usually called Decision Maker

[83, 84], but can also be called agent or controller [85]. In short, the Decision Maker’s role is to

choose a single alternative (i.e.: make a decision) among the identified alternatives set (i.e.: set of

possible decisions). The problem of making such choices is usually called Decision-Making Problem

[3].

For making decisions, especially in complex decision-making problems, the Decision Maker first needs

to model the decision problem, which implies a good understanding of its characteristics. In a second

step, the Decision Maker needs to follow some decision process for determining the decision to make

[3]. Such decision corresponds to the decision that best fulfills the decision criteria defined by the

Decision Maker.

The term decision criteria represents the “measures, rules, and standards that guide decision making”

[3] and is composed of the attribute(s), the objective(s), and the goal(s) of the decision-making problem

at stake. According to [3] the:

• attributes represent the descriptors of objective reality. For instance, the expected return and

the risk associated to a given decision may be regarded as attributes of the decision, but the

importance of such return and the impact of such risk may not.

• objectives represent the attributes to maximize/minimize. In the previous example, maximizing

the expected return associated to the decision to make is an objective. However, it is surely

not the only objective as the Decision Maker may prefer to minimize the risk associated to the

decision that is made, or to maximize/minimize some combination of both attributes.

• goals may be seen as the higher level needs and desires of the Decision Maker. For instance,

repaying an investment within n years may be seen as a goal. Goals are usually expressed in

term of either the objectives, or the attributes of the decision problem.

Two main sub-types of decision problems may be defined, depending on the complexity and charac-

teristics of the decision-making problem being dealt with by the Decision Maker. The first sub-type
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Description of Alternatives Criteria of Choice
Single Multiple

Certain Computation Compromise
Uncertain Judgment Inspiration

TABLE 4.1: Schematic presentation of the four basic modes of deciding as proposed by Zeleny [3].

consists in supplying the set of optimal or good enough alternatives of the decision problem. These al-

ternatives are the ones that respond at best to the set of decision criteria defined by the Decision Maker.

Furthermore, such solutions said to be non-dominated either because they are Pareto-Optimal (i.e.: for

each of the solutions, one cannot improve any single criterion without worsening another one [3]), ei-

ther indistinguishable from each other. This type of decision problems are usually called Decision-Aid

Problems in the sense that the subset containing the best alternatives is sought, rather than a single

best alternative. In the end, it is up to the Decision-Maker to choose an alternative from the best al-

ternatives according to additional criteria. The second sub-type of decision problems is usually called

Decision-Making Problem. As opposed to Decision-Aid Problems, under Decision-Making Problems,

a single best alternative corresponding to the criteria defined by the Decision Maker is sought. The

choice between Decision-Aid or Decision-Making approaches is closely linked to the specificities and

complexity of the decision problem, as well as to the nature of the decisions to make (i.e.: the fre-

quency, similarity and number of decisions to be made). An interesting discussion on the subject may

be found in [86].

According to Zeleny [3], there are four basic modes of deciding, which seem to be independent of

whether one is developing a Decision-Aid or a Decision-Making approach for any given decision

problem. These modes depend on two parameters. The first of such parameters is linked to the de-

scription of the decision alternatives, which can be certain or uncertain. In the first case (i.e.: certain

alternatives), the decision alternatives are clearly described and their consequences can be measured.

In the second case (i.e.: uncertain alternatives), the decision problem criteria characterizes decision al-

ternatives in an imprecise way. In addition, in this latter case, the outcomes of each decision alternative

are uncertain. The other parameter is linked to the number of choice criteria, which can be single or

multiple. In the first case (i.e.: single criterion), the preferences of the Decision Maker are expressed as

a single dominant criterion. In the second case (i.e.: multiple criteria), the preferences of the Decision

Maker are expressed by a set of criteria containing more than one criterion.

In Table 4.1, the four basic modes of deciding are named: Computation, Judgment, Compromise, and
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Inspiration. Based on what was proposed by Zeleny and for the sake of clarity, a brief description of

each of these modes of deciding shall be provided. For further information the interested reader may

refer to [3].

In the Computation deciding mode, a single clearly-defined and measurable criterion is used to assign

each alternative a single number. Then, the alternative having the best value is determined.

In the Judgment deciding mode, the objective is usually single-dimensional and clearly stated, but

poorly measurable. In this case, one is typically uncertain of which alternative will actually give the

best outcome, and some direct human judgment of the causal relationships between alternatives and

outcomes is required.

In the Compromise deciding mode, multiple competing objectives are defined and, contrary to the

Judgment deciding mode, the causation may be quite clear. In this mode, each alternative is char-

acterized by a multidimensional vector of numbers. Firstly, the subset of good enough alternatives

corresponding to the criteria defined by the Decision Maker is determined. Then, it is usually up to the

Decision Maker to make the final choice.

Finally, the Inspiration mode of deciding typically involves a mixture of quantitative and qualitative

multiple criteria as well as uncertain causal relationships between each alternative and its possible

outcome. Often, this mode requires some creativity from the Decision Maker who may need, for

instance, to invent a new alternative, or create a new vision of the decision problem.

4.4 Some Particularities of the Problem Addressed in This Work

This work deals with the problem of scheduling a power system cell under electricity market condi-

tions. Under such a problem, decisions about the setpoints and/or commitment of the dispatchable

elements of such cell have to be taken for multiple points in time. Furthermore, in many cases, such

decisions are taken sequentially in time in the sense that decisions taken now are influenced by the

decisions taken previously and, in turn, influence decisions to be taken subsequently. One is therefore

in the presence of a sequential decision problem.
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Apart from the sequential structure of the decisions to be taken, such decisions are to be taken everyday

during the whole lifetime of the power system cell. Therefore, this decision process will be run repeat-

edly for a large time span. This means that there will be a high number of rather similar scheduling

decisions that will be made through the lifetime of the power system cell.

Once the scheduling problem criteria are well specified, the decision problem becomes somewhat (but

not perfectly) a technical one [3] in the sense that the final decision can be determined based on an

adequate optimization method taken from operations research theory. However, it should be said that

the scheduling problem specifications may imply many optimal or suboptimal decisions to exist. In

this case, the final decision will have to be taken by the Decision Maker. Nevertheless, the Decision

Maker may be responsible for managing multiple power system cells each comprising a large amount

of dispatchable elements (e.g.: a utility responsible for managing multiple microgrids). In such a case,

it will be difficult for the Decision Maker to make decisions on the setpoints and/or commitment of

each dispatchable element of every cell he/she owns and for each point in time (e.g.: each hour of the

day).

The Decision Maker may follow either a decision-aid or decision-making approach. The first one

implies identifying the subset of good enough decisions on the setpoints and/or commitment of each

dispatchable element of every considered power system cell at each point in time. Although this

approach permits to obtain a reduced set of good enough decisions, it implies the Decision Maker to be

continuously involved in the decision process. In many cases, this may not be the best choice, because

it implies the Decision Maker to spend a lot of time making similar decisions, when he/she often has

other important and rather different decisions to make (e.g.: which investments to make; how, where

and when to perform maintenance actions; quality assurance, etc.). Consequently, there seems to exist

a need for automatic decision processes. We have therefore opted to tackle the power system cell

scheduling problem through a decision-making approach, which seems more convenient for automatic

decision processes as it reduces the need for the Decision Maker to manually make decisions. Under

such approach, the scheduling problem characteristics and objectives (i.e.: criteria) are supposed to be

fully specified by the Decision Maker. Furthermore, the outcomes of the decisions are also assumed

to be sufficiently well-known. In such a case one falls into the Computational basic deciding mode

introduced in section 4.3 and that usually resorts to some kind of mathematical-based approach for

making decisions.

In the context of this work, the main mathematical approaches for solving power system scheduling
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problems have been discussed in chapter 3. However, such approaches are meant to address sufficiently

deterministic scheduling problems in the sense that the uncertainties associated to such problems do

not have (or are judged not to have) a major importance in the scheduling decisions. This is usually

not the case of the power system cell scheduling problem in which uncertainties may play an important

role.

Many types of uncertainties may have an important impact on the outcome of the power system cell

scheduling decisions. A first example may be the uncertainty associated to electricity market price

forecast, which may imply the power system cell bids obtained through scheduling decisions to be

accepted or not. This type of uncertainties may also imply reductions on the profit of the power sys-

tem cell operator due to the selection of sub-optimal (or not optimal at all) schedules [87]. Another

type of uncertainties that may be associated to the scheduling of the power system cell are linked with

the variability of the outputs of the non-dispatchable elements (e.g.: wind turbine generators, solar-

based electricity generators) of the cell, if such exist. It is impossible to know in advance which will

be the exact amount of power output associated to these types of sources. Therefore, for performing

the scheduling of the power system cell, one must rely on available power output forecasts associated

to such non-dispatchable generators. However, such forecasts contain some amount of error, which

implies some amount of uncertainty to be associated to them [88]. These are not the only types of

uncertainties that may be associated to the power system cell scheduling problem. For instance, power

system cells may be composed of an aggregation of elements that do not have a direct physical con-

nection between them [21, 89]. In that case, the uncertainty associated to the possibility of network

congestion may gain importance. However, such types of uncertainties are not considered in the present

work.

4.5 Main Approaches for Making Decisions Under Risk

In the literature [90], one often finds the term Decision-Making Under Uncertainty for referring to the

class of decision-making problems in which the imperfect knowledge of the future is incorporated in

the decision process. However, the presence of uncertainties in a given decision problem does not nec-

essarily imply the Decision Maker to incur negative impacts. As an example, in photovoltaic-hybrid

isolated systems, the fact that tomorrow there might be no sunshine (which constitutes an uncertainty

on the future solar radiation conditions) does not necessarily mean the isolated grid will shutdown if
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it contains enough energy storage. This simple example clearly illustrates that there is a difference

between the presence of uncertainties and the possibility of obtaining negative impacts due to the pres-

ence of such uncertainties. Such negative impacts are often named risks [91]. In this work, the focus

was put on the negative impacts that may be caused by the uncertainties associated to the power system

cell scheduling problem. Therefore, the term Decision-Making Under Uncertainty has been replaced

by the term Decision-Making Under Risk in the remainder of the discussion. It should however be

stressed that this term is not new and was also used in [3, 83].

Decision-making problems under risk can be seen as problems of betting in (i.e.: choosing) a given

preferred decision alternative taken from a set containing all feasible best alternatives [90]. Intuitively,

due to fact that the Decision Maker only holds an imperfect knowledge of the future, each of such best

alternatives comprises some amount of risk (or else, uncertainties do not play an important role from

a negative consequence viewpoint). Therefore, a natural way to integrate the uncertainty associated to

any given alternative into a decision model is to define, evaluate and consider its associated amount of

risk. Due to the particularities of the scheduling problem addressed in this work, which were described

in section 4.4, such model should be simple enough for enabling its implementation and operation on

a standard computer.

Numerous risk-based models may be designed and used for making decisions under risk (or for guiding

the Decision Maker in the process of making such decisions). However, for making such decisions one

must first define and follow some principle on the way to evaluate and compare decision alternatives

as objectively as possible. Many principles for making decisions under risk exist in the literature

[3, 90, 92–94] and a state of the art is presented in [83]. Here, the main principles are briefly described

based on information taken essentially from [3, 83, 93].

4.5.1 Expected Value

Under the Expected Value decision principle, the best decision is taken as the one that maximizes the

expected value of the decision attribute. As an example, let A, B and C be three different investments

with expected returns EpAq, EpBq and EpCq, respectively. Let the decision attribute be single and

equal to the expected return of the investment. If EpCq ¡ EpBq ¡ EpAq, the expected value decision

principle indicates that investment C has the greatest priority. This situation is illustrated in Figure 4.2.
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FIGURE 4.2: Example of a decision-making problem comprising three alternative investments: A, B and C.

In spite that investment C presents the highest expected return, it also comprises the highest variance,

which implies it to present the highest variability of return to the Decision Maker [95, 96]. In this

particular example, this does not pose a problem as investment option C stochastically dominates all

others:. However, in many investment problems, this may pose a problem if the Decision Maker is

averse to such variability, in the sense that he/she desires to avoid as much as possible the variability

associated to the investment return.

It is clear that, however simple, this decision principle does not integrate a risk measure or variability

measure associated to the possible outcomes of each possible decision. For instance, if one considers

a distribution density dispersion measure as the variance to be a measure of risk and if the Decision

Maker behaves as risk averse, then the investment choice may be different. In fact, depending on how

much the Decision Maker is risk averse, investment option C may become uninteresting due to its

larger variance. Of course, in this example, such behavior would not be rational, because the Decision

Maker never incurs any losses, no matter the investment option that is made;.

Finally, the Expected Value decision principle is rather prescriptive disregarding any subjectivity or

judgment that the Decision Maker might have [97]. This is due to the fact that this decision principle

does not seek to integrate the Decision Maker’s needs and desires in the decision-making process. In-

stead, it focuses on measuring the expected outcome of each decision (e.g.: expected profit) regardless

of the Decision Maker’s specific preferences. Hence, in situations in which preferences of the Deci-

sion Maker other than the expected return of an alternative are to be integrated, some other decision

principle has to be used.

:The concept of Stochastic Dominance will be described in a later section.
;For affirming this it is supposed that no minimum and maximum revenues are fixed by the Decision Maker
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4.5.2 Utility Theory

Utility Theory was first proposed by Bernoulli in 1738 at the Imperial Academy of Sciences in Pe-

tersburg [97]. In such proposal, Bernoulli criticized the Expected Value decision principle for not

incorporating the preferences of the Decision Maker in the decision process. Utility Theory responds

to that weakness by putting the individual preferences of the Decision Maker at the center of the de-

cision process. Under this principle, the best decision is taken as the one that maximizes the expected

utility of the Decision Maker [3, 90].

The first version of Utility Theory, as presented by Bernoulli, suffered from one weakness [90]:

“Why should all rational individuals in making their choice abide by this theory?”

For overcoming such weakness, John von Neumann and Oskar Morgenstern [98] have provided a set of

axioms. These axioms seemed to be reasonable enough [90] and, whenever satisfied, make it possible

to construct a cardinal utility function on the outcome space. A description of such axioms may be

found in [90].

An interesting characteristic of Utility Theory is that it does not integrate risk explicitly, but implicitly

[83]. This is because measures of risk are not integrated directly in the utility function of the Decision

Maker. However, once this function is determined, it intrinsically expresses the risk attitude profile of

the Decision Maker. Three main types of risk attitudes exist: risk proneness, risk neutrality and risk

aversion as described in Figure 4.3.

A Decision Maker is said to be risk prone if the corresponding utility function translates a willingness

to give a premium to higher risk situations. This is translated by curve RP in Figure 4.3, where one

can see that the utility function has a lower “velocity” in presence of lower returns, which are often

linked to lower risk situations, and “accelerates” in presence of higher returns, which are often linked

to higher risks.

A Decision Maker is said to be risk neutral if the corresponding utility function does not present a risk

premium or penalty associated to any possible outcome. This is the translated by the constant slope of

curve RN in Figure 4.3. If the Decision Maker is risk neutral, and if the single attribute of the decision
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FIGURE 4.3: Illustration of the three possible risk attitudes that may characterize a Decision Maker: Risk Aversion (RA),
Risk Neutrality (RN) and Risk Proneness (RP).

problem is the expected value of each decision, then the decision alternative selected by an approach

based on Utility Theory is the same than that determined via an approach based on the Expected Value

decision principle.

Finally, a Decision Maker is said to be risk averse if the corresponding utility function translates a

willingness to penalize higher risk situations whilst favoring lower risk ones. This is translated by

curve RA in Figure 4.3 where one can see that the utility function has a higher “velocity” in presence

of lower returns, which are often linked to lower risk situations, and “decelerates” in presence of higher

returns, which are often linked to higher risks.

The Utility Theory decision principle supplies a somewhat normative procedure for making decisions

[83] making them appealing from an operational viewpoint. Indeed, once the risk attitude of the

Decision Maker is defined by the corresponding utility function, alternatives can be chosen without

further contribution from the Decision Maker.

Determining the utility function of a given Decision Maker is usually a hard task. In [3], five basic

steps for performing utility assessment are proposed and described.

In spite of its intuitive appeal, Utility Theory has been criticized by several authors:. Indeed, in some

cases, Utility Theory failed to explain the choice of individuals under uncertainty (e.g.: the so-called

Allais Paradox in which individual choices violate Expected Utility Theory) [90, 100, 101]. This led to

:An example of such criticisms can be found in [99].
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the development of several sub-approaches based on Utility Theory, but incorporating several types of

problem-dependent corrections to such theory. These approaches are commonly named Non-Expected

Utility Theory approaches [90, 101].

Non-Expected Utility Theories differ from Expected Utility ones mainly in the way their functionals are

created. In [101], different Non-Expected Utility Theory functionals are presented (e.g.: a functional

dedicated to “Prospect Theory”). It is out of the scope of this work to run a detailed analysis on these

different functionals. For further reference on the subject, the interested reader may refer to [90, 101].

4.5.3 Stochastic Dominance

Stochastic Dominance is a term referring to a technique of comparison of different stochastic alterna-

tives described by probability distributions [102]. The Stochastic Dominance concept may be used in

many applications (e.g.: analysis of income distributions and financial economics). In simple terms,

Stochastic Dominance techniques may be used for comparing different random variables and rank

them according to their size. Hence, Stochastic Dominance represents an alternative way for ranking

the Decision Maker’s preferences. However, it should be stressed that Stochastic Dominance is not in

itself a decision principle as, for instance, Utility Theory.

As mentioned previously, the utility function of the Decision Maker is usually hard to determine. One

of the main advantages of using Stochastic Dominance is that it does not need such function to be

determined. Furthermore, under some conditions [3, 90], it guarantees that the resulting decisions are

in line with those that would have been made by the Decision Maker. It is out of the scope of this work

to run a deep analysis and discussion of such principles. Here, only the basic concepts behind the use

of Stochastic Dominance for making decisions under risk will be presented. For further reference on

the subject please refer to [3, 90, 102].

A short description of the Stochastic Dominance concept shall be hereby provided based on [3, 90,

102]. The Stochastic Dominance between random variables is determined in increasing orders. The

first order is the so-called First-order Stochastic Dominance or, FSD. We shall begin by defining the

FSD conditions, as subsequent Stochastic Dominance conditions are recursively defined by the FSD

ones. Let fpxq and gpxq represent the probability density functions of the outcome x P R associated

to alternatives F and G, respectively. In such a case, alternative F is said to stochastically dominate
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alternative G in the first order if and only if:

» x
�8

fpz1q dz1 ¤

» x
�8

gpz1q dz1, @x P < (4.1)

Equation 4.1 defines the FSD conditions for stochastic dominance. In many practical cases, when

verifying the FSD conditions associated to outcome distributions of a set of alternatives, one or more

conflict situations may exist. This indicates that there is no alternative that stochastically dominates all

others at the first-order. In other words, whenever such conflicts exist, FSD conditions are not granted.

In such cases, for determining the dominant alternative, under the Stochastic Dominance principle, one

needs to resort to the evaluation of higher-level stochastic dominance conditions.

Higher-level stochastic dominance conditions are determined in basically the same way than that of

FSD conditions. For instance, Second-order Stochastic Dominance (SSD) conditions can be deter-

mined by performing a second integration of both members of the inequality described by Equation 4.1.

Equation 4.2 defines the way to determine SSD conditions.
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Analogously, the nth-order conditions may be determined by Equation 4.3.

» x
�8

� � �

» z2
�8loooooomoooooon

n

fpz1q dz1 . . . dzn ¤

» x
�8

� � �

» z2
�8loooooomoooooon

n

gpz1q dz1 . . . dzn, @x P < (4.3)

Equations 4.1, 4.2, and 4.3 make it clear that the verification of nth-order conditions implies higher

order Stochastic Dominance conditions to be also verified (i.e.: the verification of FSD conditions im-

plies SSD conditions to be verified and the verification of SSD conditions implies Third-order Stochas-
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FIGURE 4.4: Verification of FSD conditions for the the three alternatives cases described in Figure 4.2.

tic Dominance conditions and so forth). However, higher-order conditions represent an ever weaker

stochastic dominance of one random variable over another because the need to verify higher order

Stochastic Dominance conditions comes from the increasing similarity between the random variables

under consideration. We shall now proceed by incorporating some practical examples that better de-

scribe this idea.

In subsection 4.5.1, it was stated that alternative C depicted in Figure 4.2 stochastically dominates

all others. If such statement is true, then some order of Stochastic Dominance must confirm it. In

Figure 4.4, the results of the application of the FSD conditions described by Equation 4.1 to the three

alternatives depicted in Figure 4.2 are described.

In Figure 4.4, one clearly sees that alternative C verifies FSD conditions relatively to both alternatives

A and B, because the corresponding curve always takes values less than or equal to those correspond-

ing to the other curves:. Because FSD conditions are verified, no higher-order conditions need to be

checked and one can say that alternative C has a strong Stochastic Dominance (i.e.: the highest pos-

sible) in comparison to alternatives A and B, which confirms the statement made in subsection 4.5.1

regarding Figure 4.2.

We will now illustrate a somewhat extreme case, in which alternatives A, B, and C have equal ex-

pected values (i.e.: EpAq � EpBq � EpCq), but different variances. Figure 4.5, illustrates a case

corresponding to such predefined conditions.

:The easiest way to see this graphically is to realize that, for any given order of Stochastic Dominance, if Stochastic
Dominance conditions are checked for any given alternative, than its plot will either coincide with, either be placed to the
right of the remaining alternatives but will never contain any part placed to the left of any other alternative.
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FIGURE 4.5: Example of a decision-making problem comprising three alternative example investments: A, B and C. In
this case, the three options have equal expectancy but different variances, which distinguishes this case and the one presented
in Figure 4.2.

In Figure 4.5, one can see that the sole utilization of the expectation value of the different alternatives

is insufficient for distinguishing them. Hence, one has to resort to some additional information. In

this case, such additional information may be given by the different variances that are associated to

each of the revenue distributions. The consideration of variances may lead to the selection of different

alternatives depending on the risk attitude of the Decision Maker. As previously discussed, three main

options exist for characterizing the risk attitude of the Decision maker: risk neutrality, risk proneness

and risk aversion. In case the Decision maker is risk neutral, an indifference between the distributions

of return of the three alternatives exists (EpAq � EpBq � EpCq) and one can pick one of them

at random. In case the Decision maker is risk prone, alternative C may be the preferred one as it

allows to reach higher values of return. However, alternative C also implies a higher probability of

obtaining revenue losses as well as higher absolute value of revenue losses (i.e.: it contains a higher

amount of financial risk). Finally, in case the Decision Maker is risk averse, alternative A may be the

preferred one because it has practically no probability of losses and a lower dispersion (i.e.: higher

certainty associated to its outcome) for the same amount of expected value (i.e.: its the alternative that

comprises the least amount of risk if the expected value is assumed as the target value of outcome).

In the frame of Stochastic Dominance, the distinction between the alternatives may be made by testing

Stochastic Dominance Conditions sequentially starting from the first level ones (i.e.: FSD conditions).

Figure 4.6 depicts the curves corresponding to the verification of FSD conditions on the three cases

shown in Figure 4.5.

In Figure 4.6, one can see that all alternatives are perfectly indistinguishable under FSD conditions as
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FIGURE 4.6: Verification of FSD conditions for the three alternative case described in Figure 4.5.

FIGURE 4.7: Verification of SSD conditions for the three alternative case described in Figure 4.5.

they cross each other at a single point. Furthermore, due to their normality, all three distributions are

symmetric and cross at the point in which the investment revenue is equal to the expectancy of the

distributions and where P pRevenue ¤ Expectancyq � 0.5.

Figure 4.6 indicates that FSD conditions are not verified for the case depicted by Figure 4.5. Conse-

quently, higher-order conditions must be checked in order to distinguish alternatives A, B, and C. The

results obtained regarding the SSD conditions for this case are depicted in Figure 4.7.

It is clear that SSD conditions are verified (vide Figure 4.7), which enables to distinguish among

alternativesA,B, andC. According to the SSD conditions definition given by Equation 4.2, alternative

A stochastically dominates the remaining ones. This is in line with the choice that would have been
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made by a risk averse Decision Maker:. However, SSD conditions are weaker; than FSD ones which

renders the distinction among the alternatives depicted in Figure 4.5 somewhat controversial. Indeed,

if the Decision Maker is risk prone, then alternative C would likely be chosen, as was previously

described, if Stochastic Dominance conditions were not checked. This simple example shows that the

Stochastic Dominance principle should be used with some caution as the conclusions that one may

draw under this principle can differ from those that would have been made by a Decision Maker.

The problem stated in the previous paragraph demonstrates also the main motivation for using Stochas-

tic Dominance: the desire to avoid the often difficult process of determining the utility function of the

Decision Maker. However, under this decision principle, some assumptions on the form of such utility

function are implicitly made. One of them is that the Decision Maker is a rational one [90] and, as

such, is averse to risk.

In spite of its inherent limitations, the Stochastic Dominance principle seems to be a good principle

for decision-making problems under uncertainty. One of its main advantages is that it only imposes

knowledge on the outcome probability density functions of the set of alternatives under analysis and

no subjectivity whatsoever may condition the results. This advantage is also the main drawback of the

method as it neglects the preferences of Decision Maker in the decision process. This is the same basic

problem that was highlighted by Bernoulli in his proposal for using Utility Theory in decision-making

processes [97].

Another limitation of Stochastic Dominance is that it needs to have knowledge of the complete proba-

bility density function of the outcome of each alternative. In many cases, it is hard (if not impossible)

to determine such set of functions due, for instance, to lack of data. Furthermore, in multi-attribute

decision processes Stochastic Dominance techniques become hard to use.

Due to the fact that they use complete probability density functions as inputs, Stochastic Dominance

techniques often imply complex calculations which may be a limiting factor if one has to compare a

large set of alternative prospects. However, Stochastic Dominance techniques may likely be used for
:Such Decision Maker is sometimes characterized as being a rational one [103, 104]. Nevertheless, in some cases, the

so-called rational Decision Maker does not necessarily follow such a conservative pattern as stated by Allais in [100]: “Pour
celui qui désire à tout prix une forte somme, le jeu peut être le seul moyen rationnel de se le procurer.”, which may well
mean that in some situations, the risk-prone Decision Maker may be characterized as being rational, whilst following a
non-conventional pattern in the decisions he/she makes.

;This is always true in the sense that one only needs to check higher-order Stochastic Dominance conditions if lower-
order ones are not enough for distinguishing the decision alternatives. In other words, the nth-order Stochastic Dominance
conditions are always weaker than any pn� kqth ones, where n, k P Z� and n ¡ k.
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reducing such set of alternatives by only calculating some orders of Stochastic Dominance and then

storing the best similar alternatives.

Finally, the previous example seems to indicate that decisions that are at least similar to those that

would have been made by Stochastic Dominance techniques are achievable by the use of somewhat

simpler methods based on the moments of the probability density functions.

4.5.4 Mean-Variance

As was seen in previous sections, the Expected Value, the Utility Theory, and the Stochastic Domi-

nance decision principles present several limitations. In short, the Expected Value principle is not well

adapted to the incorporation of the eventual risk that might be associated to the decision alternatives.

Although elegant and intuitive, the Utility Theory principle imposes the determination of the Decision

Maker utility function, which can be time-consuming and hard to do. Finally, under the Stochastic

Dominance principle, there is a natural tendency not to keep the Decision Maker close to the decision

process, which may be unacceptable in some situations and lead to undesired alternative selection in

others.

Due to the difficulties in accurately estimating the utility function of the Decision Maker:, for keeping

the Decision Maker closer to the decision-making problem (by using a risk attitude factor β corre-

sponding to the risk attitude of the Decision Maker) and to incorporate the risks eventually associated

to each alternative, decision problems may be resolved or, at least, simplified by following a Mean-

Variance decision principle based on a mean-variance model [83, 94]. These types of models have first

been used by Markowitz in [105, 106] for approximating the expected utility of the Decision Maker

and are often used in portfolio management and optimization problems [94, 107–111]. Mean-variance

models may be described by Equation 4.4;,

EpUpaqq � Epaq � β � V arpaq (4.4)

:In fact, in some cases many decision makers or Decision Agents may be involved in the decision process, which means
that, at least in a first step, several utility functions need to be determined.

;Equation 4.4 in fact approximates the expected utility of the Decision Maker EpUpaqq by a mean-variance model as
discussed in the following paragraphs.
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where:

• a represents the alternative under analysis;

• Upaq represents the utility of the Decision Maker associated to alternative a;

• EpUpaqq represents the expected utility of the Decision Maker associated to alternative a;

• Epaq represents the expected return associated to alternative a;

• β represents the risk attitude of the Decision Maker;

• V arpaq represents the variance of the return associated to alternative a.

Let us consider a simple example of application of the mean-variance model for illustrating how the

risk attitude of the Decision Maker is captured. For instance, let us consider the example depicted in

Figure 4.8 included below.

FIGURE 4.8: Representation of three arbitrary options (A, B, and C) on the E-V plane.

In Figure 4.8, three arbitrary options (A, B, and C) are described by their respective values of mean

and variance on the E-V plane. In such example, the alternatives expectations follow the relation

EpCq ¡ EpBq ¡ EpAq with V arpCq ¡ V arpBq ¡ V arpAq. The goal is to choose the best

alternative under the Mean-Variance decision principle from a set of Pareto-Optimal alternatives:.

In Equation 4.4, one can see that, under the mean-variance decision principle, regarding a given al-

ternative a, the Expected Utility EpUpaqq of the Decision Maker is approximated as a function of the
:Here, Pareto-Optimal alternatives are defined as those that are non-dominated in the sense that one cannot lower the

Variance by changing from a given alternative to another without reducing the Expected Return and vice versa.
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Alternative a Epaq V arpaq β EpUpaqq Chosen Alternative

Decision Maker 1
A 9 3 0.12 8.64
B 10 7 0.12 9.16 C
C 11 12 0.12 9.56

Decision Maker 2
A 9 3 0.24 8.28
B 10 7 0.24 8.32 B
C 11 12 0.24 8.12

Decision Maker 3
A 9 3 0.48 7.56
B 10 7 0.48 6.64 A
C 11 12 0.48 5.24

TABLE 4.2: Example of application of the mean-variance decision principle for determining which of the alternatives
a P tA,B,Cu described in Figure 4.8 can be considered as being the best one for three different arbitrary values of risk
averse attitude β P t0.12; 0.24; 0.48u, where each value corresponds to one of three hypothetical decision makers.

expected outcome Epaq, of the variance of such outcome V arpaq, and of the Decision Maker risk atti-

tude β. Hence, the decision on the best alternative can be determined once these three parameters are

known. Furthermore, under these conditions and at the light of the mean-variance principle such alter-

native can be taken as being the optimal one. Consequently, prior to quantifying the risk attitude of the

Decision Maker, every alternative described in Figure 4.8 can be considered as a potentially optimal

one. This is illustrated in Table 4.2, where a fixed set of Pareto-Optimal alternatives is represented. In

the same example, three different decision makers are modeled with respect to their risk attitudes and

one can see that, under the mean-variance decision principle, the best alternative (the one that would

be chosen) changes with each Decision Maker.

The use of mean-variance models for approximating the Expected utility of Decision Markers is quite

simple as illustrated by the previous example. However, the literature contains many criticisms relative

to the approximation of the Decision Maker utility function by mean-variance models [112–115]. It is

not the objective of this work to run a thorough analysis of such criticisms. Here, only the criticisms

that seem to be the most important for the present work are mentioned.

One of the criticisms made to the use of mean-variance models for approximating the utility function of

the Decision Maker is related to the fact that such models use the variance as a risk measure [113, 114].

This is criticized in part because the variance penalizes the possibility of obtaining negative outcomes

as well as the possibility of obtaining higher than expected gains. Furthermore, in many cases, the

distributions of outcome are asymmetrical and the variance of the return becomes rather insufficient

for measuring the risk associated to the outcome of a given alternative. As a conclusion, using the
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variance as a risk measure is not recommended in general.

Another important criticism to using mean-variance Markowitz models for approximating utility func-

tions is that such approximations imply the utility function of the Decision Maker to be quadratic. A

consequence of such type of functions is that the absolute risk aversion of the Decision Maker increases

with the outcome (e.g.: wealth), which does not seem to be plausible [115].

4.5.4.1 The Mean-Variance Model as a Spot-Risk Model

Some of the problems of mean-variance models may be solved or, at least, alleviated if variance is not

imposed as a risk measure. Furthermore, in cases in which the distribution of the outcome of a given

alternative is asymmetric, it may be preferable to use median point predictions at the place of mean

point predictions for reducing the error between the prediction of the outcome of a given alternative and

the actual realization of such outcome [88]. Hence, we suggest to replace the mean-variance model by

a more generic one, which we name hereafter as spot-risk model. Similar to the mean-variance model,

in the spot-risk model, the spot value SV may take the form of the expected outcome of the alternative,

of the median outcome of the alternative or any other type of point prediction of the outcome of a given

alternative a. At the same time, the risk measureR used in such spot-risk model is generic in the sense

that it may be adapted to the needs and desires of the Decision Maker. For instance, R may take

the form of a VaR (Valua at Risk), of a CVaR (conditional Value at Risk), and of a function of the

different moments (e.g.: variance, skewness, kurtosis, . . . ) associated to the distribution of outcomes

associated to every alternative a. Analogously to Equation 4.4, the spot-risk model may be expressed

by Equation 4.5, where β represents the risk attitude of the Decision Maker.

EpUpaqq � SV paq � β �R paq (4.5)

4.5.5 Compromise Programming

Compromise Programming can be seen as a multi-criteria transparent [116] decision principle that

performs a direct ranking through strong ordering of available alternatives. In [3], compromise is
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defined as an effort to approach or emulate the ideal solution as closely as possible. This decision

principle is based on the theory of the Displaced Ideal according to which alternatives that are closer

to a given infeasible ideal are preferred to those that are farther away [117]. One can therefore consider

that, under the Compromise Programming decision principle, the closeness of the different alternatives

to a given ideal (yet unattainable) alternative is evaluated. Consequently, some measure of the distance

between each alternative and the best feasible alternative, considered here to be the central point, needs

to be used. Some of the most frequently used distance measures are the so-called Minkowski distances

(also commonly named Lp-norms, Lp-metrics and Lp-distances) [3, 93, 116, 118–123].

4.5.5.1 Short Description of Minkowski Distances

Minkowski distances can be seen as composing a family of Lp distance measures with respect to

parameter p between any two points E
ô
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Rn. Equation 4.6 defines such family of distances similarly to the definition found in [121].
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The most well-known Minkowski distances are the so-called Manhattan Distance [124]:, the Eu-

clidean Distance and the hereby named Infinite Distance. The Manhattan distance is obtained from

Equation 4.6 with p � 1, which gives Equation 4.7.

L1 pE,F q �
��xE1 � xF1

��� ��xE2 � xF2
��� . . .�

��xEn � xFn
�� , n P Z� (4.7)

:This distance is also commonly named taxi-cab distance [125].
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The Euclidean distance is obtained from Equation 4.6 with p � 2, which gives Equation 4.8.

L2 pE,F q �

b�
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�2
�
�
xE2 � xF2

�2
� . . .� pxEn � xFn q

2, n P Z� (4.8)

Finally, the Infinite distance is from Equation 4.6 when pÑ8, which gives Equation 4.9.

L8 pE,F q � max
 ��xE1 � xF1

�� , ��xE2 � xF2
�� , . . . , ��xEn � xFn

��( , n P Z� (4.9)

This last distance, the Infinite distance, is commonly used in Robust Programming [83], as it allows to

select the alternative that better behaves in worst-case situations or scenarios as shown in [93, 119] and

is especially well-suited for single-shot decision situations in which eventual bad outcomes of present

decisions cannot be overcome by good outcomes of future decisions.

In Figure 4.9, different Minkowski distance isolines between points E
ô
p0, 0q and F

ô
px1, x2q are

represented for different values of p, where x1 P r0; 1s. For producing such isolines, a fixed value of

Minkowski distance was used (Lp � 1), and the coordinate x1 was taken as the independent variable.

When p � 1, the behavior of the isoline is perfectly linear. For p ¡ 1, the isolines become non-

linear. Such non-linear behavior intensifies with the magnitude of p in the sense that the corresponding

become increasingly farther away from the linear one with the increase of p. When x1 increases, for

obtaining points F at an exact distance of 1 from point E, the coordinate x2 progressively decreases

from 0.0 to �1.0. Furthermore, the speed of such decrease strongly increases with the increase of p.

Consequently, the distance between a given point F
ô
px1, x2q to the origin will take highly different

values for slightly different values of p, which means that, as p increases, smaller differences in one of

the coordinates are increasingly valued.
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FIGURE 4.9: Representation of different Minkowski distance isolines.

4.5.5.2 Ranking of Alternatives Through the Use of Minkowski Distances

Methods for ranking alternatives through the use of Minkowski distances are not necessarily used for

performing Decision-Making. In fact, such methods may also be used for selecting amongst alterna-

tives or, at least, for reducing the alternative selection possibilities [3, 93, 116, 119] and examples of

application may be found in [93, 116, 118–120, 122, 123].

From a decision-making viewpoint, one can consider a plausible set of future scenarios S and of

alternatives I, where one can determine which of the available alternatives xi,s, where i P I and s P S ,

best fits each of the identified scenarios. Details on this process may be found in [93, 119]. The a

priori alternative that best fits the sth scenario, xBests , is hereby referred to as the ideal alternative if

scenario s with probability of occurrence λs actually realizes. Under such formulation, the decision-

making problem may be formulated as: “find and select the decision alternative that minimizes a

given predefined Minkowski distance to a given unfeasible ideal alternative”. This constitutes the

Compromise Programming decision-making principle and may be defined by Equation 4.10 for some

value of p.
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,.
- , p P Z�, i P I, s P S (4.10)

In the case of the Infinite Minkowski distance (i.e.: p Ñ 8), the Compromise Programming (Ro-
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bust Programming) decision-making problem can be formulated in a simpler way, when compared to

the general formulation given by Equation 4.10. In this case, such formulation may be replaced by

Equation 4.11 [3, 83, 93, 119].

min
i

!
max
s

�
λs

��xi,s � xBests

���) , i P I, s P S (4.11)

Figure 4.10 depicts different isoline surfaces for different values of p. The distances between the origin

point E
ô
p0, 0q and a generic point F

ô
px1, x2q, with x1, x2 P r0; 1s, are represented for different

values of p P t1, 2, 5,8u. As p is increased from 1 to 8, the coordinate bearing the higher value gains

importance, which renders the different surfaces increasingly non-linear with p. This has obvious

implications when Minkowski distances are used for solving decision-making problems in which each

of the coordinates represents the outcome under a given scenario:. In such a case, when p is low

(e.g.: p � 1), alternatives having average good performance under every scenario are preferred to

those having good performances under some scenarios and bad performances under other scenarios. In

case p is high (e.g.: p Ñ 8), the alternative minimizing the worst possible case outcome considering

every possible scenario is preferred. At the light of equations 4.10 and 4.11, this means that lower

values of p favor alternatives having good overall performance. In contrast, high values of p may

sacrifice alternatives with good overall performance for more conservative ones that minimize the

worst possible outcome. In general terms, low values of p aim at identifying central alternatives and

high values of p aim at avoiding alternatives comprising the possibility of high penalties.

4.5.5.3 Discussion on the Use of Minkowski Distances for Decision-Making

Below are given some remarks on the use of Minkowski distances for performing decision-making.

Remark 1: Figure 4.10 shows that for p ¡ 1 but still rather small (i.e.: p � 5), the corresponding

colored region starts to behave in approximately the same way than that of pÑ 8. At the light

of Equation 4.10, this indicates that for small values of p (but with p ¡ 1) one may potentially

:For facilitating the present discussion, only two future scenarios are supposed to exist. However, the argumentation
herewith presented may be extended to any number of future scenarios.
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FIGURE 4.10: Representation of different Minkowski distance isoline surfaces.

obtain decisions that remain unchanged when p is pushed towards higher values.

Remark 2: It should be stressed that an alternative considered ideal under scenario s, can be far from

being ideal under any scenario k � s. If this is not true, then there must be an alternative that

dominates all others. In such cases, no actual decision problem exists, but one is rather faced

with a technical problem of determining the dominant alternative [3].

Remark 3: As seen in the previous section, the particular formulation given by Equation 4.11 (Ro-

bust Programming) can be seen as rather conservative one. This is in line with what is stated

in [83, 93, 119]. In fact, Robust Programming is especially well suited for one-shot decision

situations in which the decision is only made once. Consequently, bad outcomes due to bad

present decisions cannot be compensated by eventual future good outcomes. Therefore, such

formulation is not in agreement with the Law of Large Numbers. Evaluation criteria based on

frequency (e.g.: average outcome of decisions, standard-deviation analysis) are therefore not

the most appropriate for evaluating the performance of decisions made under such formulation.

Consequently, alternative criteria must be analyzed (e.g.: number of starts/stops of generating

units, number of decisions having large bad outcomes, form of the outcome distributions).
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4.6 Conclusions of the Chapter

In chapter 2, the two main fields of knowledge related to this work were identified: power system

scheduling and decision under uncertainty. While chapter 3 discussed the scheduling problem (provid-

ing a generic scheduling model inspired by the literature review), this chapter supplied the necessary

background in what regards decision under uncertainty. This permits to better understand the main con-

cepts and decision principles enabling the consideration of uncertainties in decision processes, such as

the one addressed in this work. Hence, this chapter provides an important basis for the integration

of uncertainties associated to the various forecast inputs taken into account in the day-ahead power

system cell scheduling methodology developed in this work, which is done in chapter 5.

Starting with a short discussion on the reasons that may justify the employment of methodologies

based on decision under uncertainty, the chapter then proceeds with a discussion on the ways to model

uncertainty. These first two points establish the necessary basis for the remainder of the chapter (and

of the present work), which essentially deals with the decision principles that may be followed for

integrating the uncertainties associated to decision-making problems in the decision process.
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CHAPTER 5

Proposed Scheduling Model

CHAPTER OVERVIEW

IN this chapter, a model for performing the scheduling of a power system cell, which participates on an elec-
tricity market is proposed. The model is based on the problem characteristics described in chapter 2 and

utilizes the power system scheduling concepts discussed in chapter 3.

In a first step, the proposed scheduling model is developed on a deterministic framework. As such, the model
does not integrate any model of the uncertainties associated to non-dispatchable renewable energy sources fore-
casts, to demand forecasts, and to point price forecasts. Such deterministic scheduling model takes however
into account some economical aspects of the scheduling problem (e.g.: generation costs, load remuneration, dis-
patchable load costs, market price forecasts, . . . ) for maximizing the benefits of the power system cell operator,
which in the present case correspond to the generated profits.

In a second step, the proposed deterministic model is extended for incorporating the stochastic component of
the scheduling problem. For that purpose, various plug-in models for performing decision under uncertainty are
proposed for accounting with the two main uncertainties of the scheduling problem, which are related to the
day-ahead market prices and to the non-dispatchable energy sources and loads. Such decision under uncertainty
models are based on the decision principles that were described and analyzed in chapter 4. The main goal of
the models that are proposed for taking into account the uncertainties of the scheduling problem is to minimize
energy deviations due to forecasts errors while taking advantage of the most interesting moments for using local
energy resources in a cost-efficient way.
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5.1 Introduction

As described in previous chapters, this research work is mainly focused on the management of power

system cells (e.g.: microgrids, combined wind-hydro-storage facilities). Such cells may be composed

of an association of various elements, such as: generators, loads, and energy storage devices. These

different elements have different properties and must therefore be managed accordingly.

At the generation level, power system cells may include dispatchable generators (e.g.: microturbines)

and non-dispatchable ones (e.g.: wind power generators and PV units).

Dispatchable and non-dispatchable generation can be seen as being complementary in some sense.

Indeed, dispatchable generators may, for instance, serve for compensating the lack of controllability

of their non-dispatchable counterparts. At the same time, non-dispatchable generators are often as-

sociated to the production of green electricity, which complements the pollution that may result from

electricity production via dispatchable generators. Hence, some effort for combining the properties

of dispatchable and non-dispatchable generators should be made. This is in line with the objective of

better integrating non-dispatchable generation into power systems and could be achieved (or, at least,

facilitated) by considering the production forecasts of non-dispatchable generators and associated un-

certainty while scheduling their dispatchable counterparts.

The management of dispatchable generation has been extensively studied in the past decades and sev-

eral approaches for managing such type of generators have been proposed [43, 44]. Regarding power

system cells with controllable generators (e.g.: microgrid), approaches can be found in the literature

[1]. On the other hand, the management of non-dispatchable generation and, more specifically, of

power systems cells integrating such type of generation is more recent and challenging. Consequently,

strategies and methods able to effectively integrate non-dispatchable generation are scarce, which in-

dicates that efforts for better integrating such generation into power systems are needed.

At the demand (i.e.: consumers) level, innovative management methods : are also needed [1, 36, 39,

126] and start to be requested by the industry [127]. Power system cells are most likely expected to

integrate metering systems [24] enabling the development and application of innovative demand-side

management methods. In general, such methods should allow to increase the demand supply efficiency

:Such methods are often named load management methods or demand-side management methods [59].
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by leveling the global power system demand throughout the day through either reducing the consump-

tion, either transferring moments of consumption in time. In either case, such methods contribute to

avoid or, at least, postpone investments on power system infrastructure: by modifying load profiles

through the employment of peak-shaving and load-shifting techniques based on load metering data.

Peak-shaving may be achieved by curtailing non-priority peak loads or by proposing consumers with

electricity supply contracts that penalize electricity during expected peak-consumption periods. Load-

shifting may be achieved by offering consumers incentives to move some of their peak consumption

to low-consumption periods. However, it may also be achieved by enforcing electrical appliances to

incorporate some load-shifting algorithm or some possibility of automatic remote control. Whichever

is the case, in the context of power system cell management, the development of a scheduling algo-

rithm that either complies, either is compatible with these advanced demand management requirements

seems to be of significant importance.

Finally, novel management methods seem to be of utmost importance when considering for systems

integrating energy storage devices. Classical power systems integrate very few (or even negligible)

amounts of energy storage relatively to the total system capacity [59]. In addition, such power sys-

tems are managed on a least-cost basis (generally in the absence of an electricity market), which does

not seek the maximization of the financial value generated by any particular component of the power

system (e.g.: value of energy storage). The power system cells considered here are capable, in princi-

ple, to participate in electricity markets, which may well lead to changing their management objective

from least-cost operation to, for instance, profit maximization based on market prices. Furthermore,

they may integrate considerable amounts of non-dispatchable energy sources and non-dispatchable

loads. In such a scenario, energy storage devices can be seen as elements with the potential to interpret

market price signals for selecting, to some extent, the best energy generation and storage moments,

thus smoothing out non-dispatchable energy production/consumption. This property may increase the

controllability of the power system cell. Such increase in controllability may take two forms:

• the first one is related to the scheduling of the power system cell participating in the day-ahead

electricity market as the energy storage potentially allows to:

– store non-dispatchable energy production at lower-price periods for selling at higher-price

periods thus:
:Examples of such investment may be building new power lines, reinforcement existing power lines, renewal or paral-

lelization of power transformers, installation of FACTS (Flexible Alternating Current Transmission System [128]) devices
and commissioning of large centralized power facilities.
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* reducing the costs associated to supplying the demand;

* contributing to the profit maximization of the power system cell operator;

– set the energy storage to states that prepare the cell for risky moments (e.g.: moments

when the forecasts of non-dispatchable energy production/consumption present a higher

volatility).

• the second one is related to the intraday operation of the power system cell as the energy storage

adds some slack to the cell allowing to:

– serve as an energy filter for overcoming up to some extent the forecast errors associated to

demand and non-dispatchable renewable production;

– serve as an energy buffer for storing up to some extent any available excess energy for later

use.

An analysis on whether these energy storage management possibilities can be advantageous to the

management of a power system cell seems to be of paramount importance.

The objectives for developing the scheduling model proposed in this chapter were fixed following the

discussion made previously. More specifically, the proposed model aims to:

1. explicitly integrate the energy storage in the scheduling process;

2. make it possible to manage any dispatchable loads that may integrate the power system cell;

3. integrate the non-dispatchable generators in the scheduling process.

The proposed model accounts for the existence of dispatchable generators. However, in this work,

such consideration is quite limited in the sense that many possible operational constraints of dispatch-

able generators (as those described in chapter 3) have been disregarded in this work. However, the

proposed scheduling model may be used in problems in which such constraints (e.g.: dispatchable

generation ramp-rate limits, minimum up-time requirements...) can be disregarded (e.g.: microgrids

management). Finally, the model can be extended later on for incorporating additional constraints.
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5.1.1 Some Possible Applications of the Proposed Model

The proposed scheduling model is especially suited for an operator responsible for managing a power

system cell. In such a case, the operator would use the model for producing schedules that maximize

a given predefined objective function (e.g.: profit). The resulting schedules could then directly serve

for placing bids to the day-ahead market or as an input to some post-treatment tool (e.g.: portfolio

management tool of a power system cell aggregator).

As is, the proposed scheduling model is especially suited for problems comprising energy storage,

small dispatchable and non-dispatchable generators, and dispatchable and non-dispatchable loads. In

the proposed model, scheduling decisions are made according (amongst others) to electricity market

prices. However, it can also be straightforwardly used in the absence of an electricity market (by

considering market prices which are equal to zero at all times).

The previous specifications help to identify the main types of possible applications of the proposed

scheduling model. Following those specifications, the model can be used, for instance, to perform the

day-ahead market schedule of:

• microgrids;

• wind-hydro plants comprising energy storage (e.g.: pumped-hydro);

• wind/PV/wave plants combined with fuel cells and hydrogen storage systems;

• electrical vehicles comprising energy storage.

In this work we have applied the proposed model for scheduling the operation of two possible types

of power system cells under day-ahead electricity market prices. The first of such options consists

of a microgrid and the second consists of a wind-hydro plants comprising energy storage. The tested

case-studies and the results obtained are presented and discussed in chapter 6.
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5.2 Scheduling Scheme

In this work, the general case of a power system cell comprising dispatchable and non-dispatchable

loads and generators, energy storage facilities and an interconnection with the main grid is considered.

Based on the HL1-equivalent generic grid (i.e.: single node grid) proposed in [129], an model of such

the power system cell considered in this work was built. Such model is depicted in Figure 5.1.

FIGURE 5.1: Schematic representation of the HL1 model of the power system cell.

In Figure 5.1 one can identify all the local elements that may form the power system cell. Such elements

may be divided into three categories:

1. Non-dispatchable elements: non-dispatchable generation (e.g.: local PV/wind power produc-

tion) and non-dispatchable (i.e.: conventional) loads;

2. dispatchable elements: dispatchable generation (e.g.: micro-turbines, diesel gensets), dispatch-

able loads (e.g.: contracted shedable loads) and energy storage devices (e.g.: batteries, hydro-

storage);

3. Interconnection with the main grid: point of common coupling (PCC).

The objective of the present work is to develop a dispatch system capable of providing a day-ahead

operation schedule for the various elements that compose the power system cell. The necessary input
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information comprises static technical data on the various cell components (e.g.: dispatchable genera-

tion data, interconnection capacity) and forecasts of the non-dispatchable local energy production and

consumption. This is schematically represented in Figure 5.2.

FIGURE 5.2: General functional input/output schema of the scheduling procedure.

5.3 Objective Function Description

Here, a power system cell owned by an independent producer participating in the day-ahead electricity

market was considered. This is in line with the the single-area market-player power system scheduling

model developed in subsection 3.2.3. The definition of the power system cell objective function (i.e.:

dispatch function) was thus defined similarly to equations Equation 3.28 through Equation 3.30, which

means that the scheduling model proposed here will seek to maximize the operational profit associated

to day-ahead schedule of the power system cell. However, for fitting the specific needs of the power

system cell some simplifications of such function were made (e.g.: no reserve requirements or start-up

costs are considered).

The aim of the dispatch function is defined here as that of finding the operation set-points of the various

dispatchable elements that maximize the total profit Π of the cell operator throughout horizon T , while

taking into account the possibility of exporting power to the main grid:. Whenever the cell exports

power to the main grid, the cell operator is paid an amount money corresponding to the exported

power and to the contracted prices for energy. Thus, in such a case, the cell operator receives an

income for exporting power to the main grid. However, in other moments, the cell imports power from

the main grid. In such a case, the operator pays an amount of money for the imported power according

to contracted market prices. We use the term negative income for describing such cases. The total

:Different objective functions may be straightforwardly integrated in the model.
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profit is made up of the sum of the profits πt obtained at every time-step t. The profit obtained on a

single time-step is given by the following equation:

πtloomoon
Profit

� pIPCCt � ILtqlooooooomooooooon
Income

�

�
Nģ

i�1

pCi,tq � CLCont � CLCurt � CStot �
NRES¸
j�1

�
CRESj,t

��
looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

Costs

(5.1)

where, for every time-step t:

• IPCCt represents the income due to exporting/importing power to/from the main grid at level

PPCCt ;

• ILt represents the income due to supplying load Lt;

• Ci,t represents the cost of operating the dispatchable generator i at output power level Pi,t:;

• CLCont represents the value paid for not supplying LCont amount of dispatchable load;

• CLCurt represents the penalty paid for curtailing LCurt amount of load (used only on

emergency situations);

• CStot represents the cost of operating the energy storage at power output level PStot
;;

• NRES represents the number of non-dispatchable renewable energy sources;

• CRESj,t represents the cost of generating energy from the jth non-dispatchable renewable

energy source.

IPCCt �

$&
%pexpt � PPCCt �∆ ptq ð PPCCt ¤ 0

pimpt � PPCCt �∆ ptq ð PPCCt ¡ 0
(5.2)

:Here, a quadratic operating cost function was considered for representing the cost of generating power from dispatchable
generators. Such function is defined in Equation 5.4.

;A single energy storage device is considered here. Its operation cost is considered to vary according to a quadratic cost
function. Such function is defined in Equation 5.7.
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ILt � clt � Lt �∆ ptq (5.3)

Ci,t � ai � pPi,tq
2 �∆ ptq � bi � Pi,t �∆ ptq � ci (5.4)

CCont � ccont � LCont �∆ ptq (5.5)

CCurt � ccurt � LCurt �∆ ptq (5.6)

CStot � aSto � pPStotq
2 �∆ ptq � bSto � |PStot | �∆ ptq � cSto (5.7)

with::

• ∆ ptq represents the duration of the time-step in h;

• ccont and ccurt , represent, respectively, the costs for dispatching and curtailing of 1 kWh of

dispatchable/curtailable load BC. kWh�1;

• clt is the remuneration paid by the load for being fed per kWh of electricity;

• pimpt and pexpt represent, respectively, the prices to buying and selling energy from/to the

market in BC. kWh�1;
:Assuming Euro currency.
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• ai, bi, and ci are the generating cost coefficients of the ith dispatchable generator, in

BC. kW�2 . h�1, BC. kW�1 .h�1, and BC, respectively;

• aSto, bSto, and cSto are the cost coefficients of the energy storage device, in BC. kW�2 .h�1,

BC. kW�1 . h�1, and BC, respectively;

• PStot is the power output of the energy storage at time t. Positive values of PStot mean that the

energy storage device is working as a power generator. Negative values of PStot mean that the

energy storage device is working as a load;

• PPCCt is the power interchange between the power system cell and the main grid at the point of

common coupling. Positive values of PPCCt mean that the power system cell is importing

power from the main grid. Negative values of PPCCt mean that the power system cell is

exporting power to the main grid.

5.4 Formulation of the Power System Cell Optimization Problem

The power system cell optimization problem is that of finding the best values (i.e.: setpoints) of the

various decision variables according to the defined objective function for each time-step t of the opti-

mization horizon T . The decision variables associated to such problem are:

• the on/off state of the ith dispatchable generator ui,t;

• the power output setpoint of the ith dispatchable generator Pi,t;

• the state-of-charge setpoint of the energy storage SOCt;

• the power setpoint of controllable load LCont ;

• the power setpoint of curtailable load LCurt .
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Keeping the above defined decision variables in mind, the power system cell scheduling problem can

be formulated through equations 5.8 through 5.15, as follows:

max
t

#
Ţ

t�1

πt

+
(5.8)

subject to

Nģ

i�1

pPi,tq � PPCCt � LNett � 0 (5.9)

where LNett represents the net load, which can be seen as the effective load of the power system cell. It

is defined further ahead by Equation 5.17. Positive values of LNett indicate that the power system cell

has a positive effective load that needs to be fed either through the local dispatchable generation, either

through the interconnection between the power system cell and the main grid. Negative values of LNett
indicate that the local non-dispatchable RES production plus the energy storage output surpass the local

load forecasts. In such case, the power system cell either exports energy through its interconnection

with the main grid, or dumps it in case the interconnection is not available. It can also only partially

dump excess energy in case the local production exceeds the interconnection power capacity, which is

expressed through Equation 5.19 and is further explained ahead.

�µpcct � PCCcap ¤ PPCCt ¤ µpcct � PCCcap (5.10)

ui,t � PGimin
¤ Pi,t ¤ ui,t � PGimax

(5.11)
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SOCmin ¤ SOCt ¤ SOCmax (5.12)

0 ¤ LCont ¤ µcont � L̂t (5.13)

0 ¤ LCurt ¤ p1� µcontq � L̂t (5.14)

∆SOCmin ¤ ∆SOCt,t�1 ¤ ∆SOCmax (5.15)

where :

µpcct , µcont P r0; 1s

Ng, T P N
ui,t P t0; 1u

PGmin , PGmax , PCCCAP , ∆SOCmin , L̂t, ∆SOCmax P R

Equation 5.8 represents the objective function of the operator and equations 5.9 through 5.15 represent

the constraints of the optimization problem. Such constraints may be described as follows:

• Equation 5.9 enforces the balance between production and consumption to be kept, where Ng

represents the number of dispatchable microsources and LNett represents the net load. It is

similar to Equation 3.31, however, here the objective is not only to supply a part of the main grid

load, but to also grant that the local load is satisfied. Therefore, an inequality type constraint
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such as the one defined in Equation 3.31 does not seem to be adequate in the present case.

Hence, here, the classical single-area version of such constraint was used. Such constraint can

be obtained from Equation 3.5 by performing the adaptations described in subsection 3.2.2 and

neglecting losses;

• Equations 5.10 to 5.14 force decision variables pui,t, Pi,t, SOCt, LCont , LCurtq to be kept

within feasible boundaries, where PCCcap represents the interconnection capacity, and PGimin

and PGimax
represent the technical minimum and maximum capacity of the ith dispatchable

generator (when it is on):

– The value of µpcct present on equation 5.10 permits to ensure that an amount of prespecified

slack is kept at the PCC:;

– Equation 5.11 forces the dispatchable generator set-points Pi,t to remain within technical

boundaries PGimin
and PGimax

, where the variable ui,t indicates whether that generator is

to be set on at time-step t (ui,t � 1), or off (ui,t � 0);

– Equation 5.12 keeps the state-of-charge SOCt within the feasible boundaries given by

SOCmin and SOCmax;

– Equation 5.13 ensures that the value of dispatched controllable load at time-step t (LCont)

does not exceed a predefined maximum. In the proposed formulation, such maximum has

been defined relatively to the load forecast (L̂t) through the indexing parameter µcont ;

– Equation 5.14 imposes no more than the forecasted load (L̂t) is curtailed at all times. Such

value of curtailment is given by LCurt and represents the amount of load that will have

to be unserved due to an emergency situation (e.g.: loss of the interconnection with the

main grid combined with insufficient local production). In practice, its value is always

zero because, as load curtailment is not desirable, a sufficiently high penalty is fixed as

a compensation for curtailing load. Such penalty is always lower than the price paid for

dispatching controllable load. Therefore, it supplies a way to check that the algorithm

works as expected -i.e.: load can only be curtailed if the option to control load was used to

its maximum possible extent. Also, the presence of LCurt in the preceding formula serves

to grant that the formula is always verified even if there is insufficient generation or energy

importation capacity for whatever reason. Consequently, LCurt grants feasibility of the

optimization problem at all times, at least from an energy balance perspective;

:This variable may also allow the simulation of cases where the power system cell is operating at reduced or even nil
interconnection capacity with the main grid.
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– Equation 5.15 ensures that state-of-charge (SOC) variations of the energy storage device

between time-steps t and t� 1 (∆SOCt,t�1) are kept within the feasible boundaries defined

by ∆SOCmin and ∆SOCmax . Such variations are given by equation 5.16.

∆SOCt,t�1 � SOCt�1 � SOCt (5.16)

The value of LNett present in Equation 5.9 considers the power output of the jth non-dispatchable

generator as a negative load and is calculated through Equation 5.17 as follows:

LNett � L̂t � LCont � LCurt �
NRES¸
j�1

�
P̂RESj,t

	
� PStot (5.17)

As seen in Equation 5.17, the value of LNett also comprises the values of energy storage power output

PStot and dump load LDumpt . These values are calculated through equations 5.18 and 5.19, respec-

tively.

PStot �

$'&
'%

∆SOCt,t�1

ηch�∆ptq ð ∆SOCt,t�1   0

ηdis�∆SOCt,t�1

∆ptq ð ∆SOCt,t�1 ¥ 0
(5.18)

LDumpt �

$&
%0 ð PCCcap ¥ �LNett

PCCcap � LNett ð PCCcap   �LNett

(5.19)

In equation 5.18, ηch and ηdis represent the energy storage charging and discharging efficiencies, re-

spectively.

108



Proposed Scheduling Model

The variable LDumpt defined in Equation 5.19 is a part of LNett and serves the purpose of dealing

with cases where excessive local non-dispatchable production at a given time-step t exists. In such

cases, the local load of the power system cell plus the capacity of the cell to store and export energy is

inferior to the minimum local production, which may lead to infeasibility of the optimization problem.

In the real world, such infeasibilities may be the result of situations in which the power system cell

operates under reduced or nil energy transfer capacity conditions (e.g.: due to contingencies on one or

more power lines interconnecting the cell with the main grid). This may also happen in cases where,

for some reason, the local generation is oversized relatively to the local energy consumption needs and

to the energy transfer capabilities of the cell, or when the local consumption is highly reduced. From

a technical viewpoint, LDumpt grants that the optimization problem defined by equations 5.8 through

5.15 is always feasible. Consequently, any solution technique employed to solve such problem will

always be able carry on with the necessary calculations throughout T and propose the best possible

solution if finds. This grants that the cell operator always obtains an as good as possible solution. At

the same time, situations in which LDumpt � 0 help the operator to identify whenever and up to which

extent problematic situations might happen. Such information may ultimately help to decide which

additional measures should be taken for overcoming such situations. As an example of such additional

measures, the operator may choose to preventively shut-down some of the non-dispatchable generators

of the power system cell thus avoiding excessive non-dispatchable generation situations.

5.4.1 Solution Method

An observation of the optimization problem defined by equations 5.8 through 5.15 indicates that the

main difficulties to solve it come from equations 5.9 (due to the parameter LNett that is influenced

by equation 5.18) and 5.15. In fact, these equations couple the scheduling decisions taken at a given

time-step of the optimization horizon T with those taken later on. Consequently, the optimization

problem defined by equations 5.8 through 5.15 belongs to the class of sequential decision problems

or multistage decision problems [130]. Several methods can be found in the literature for tackling

problems of the kind. A vast state of the art can be found in [43, 44].

Many optimization methods can be employed for solving the optimization problem defined by equa-

tions 5.8 through 5.15 such as:
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• meta-heuristics (e.g.: ant-colony search, genetic algorithms, particle swarms, simulated anneal-

ing);

• classical optimization methods based on duality principles used for simplifying difficult-to-

implement constraints as the time-coupling constraints defined by equations 5.18 and 5.15 (e.g.:

Lagrangean relaxation);

• global search methods (e.g.: branch-and-bound, exhaustive search, dynamic programming).

The inconvenient of the first two approaches included in the previous list is that they do not guarantee

the solution of the optimization problem to represent a global optimum. However, meta-heuristics-

based methods have the advantage of being problem independent. Such property could be of impor-

tance in case one desires to add future extensions to the base scheduling problem defined by equations

5.8 through 5.15 for dealing, for instance, with problems of higher complexity than those addressed in

this work. The general disadvantage of methods based on global search is that the CPU-time needed

by such methods for computing solutions increases very fast with the complexity of the scheduling

problem due its inherent combinatorial characteristics.

The main aim of this work was to provide a scheduling methodology that guarantees the optimality

of the scheduling solutions. For this purpose, global-search-based approaches were analyzed. From

the available global search approaches found in the literature, a dynamic programming approach was

preferred mainly because:

1. it is well suited for solving sequential decision problems [130, 131] like the one considered here;

2. it ensures that the scheduling problem can be formulated and tackled in a quite straightforward

way as was illustrated by Grainger in [42];

3. it has been widely employed in the power systems scheduling literature as described in the liter-

ature reviews produced by Sheblé [43] and Padhy [44];

4. it guarantees that at least one optimal solution: is found;;

:Whenever such optimal solution exists.
;Although this may not be the case when simplifications of the search-space based on heuristics (or meta-heuristics) are

employed. This is the case, for instance, in [61] where DP-SC, DP-TC, and DP-STC methods led to sub-optimal schedules
and in [64] where an enhanced dynamic programming method is proposed for solving the suboptimalities/infeasibilities
originated by the truncations made while solving each time-stage of the scheduling problem.
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5. it allows to straightforwardly extend the base deterministic problem to the stochastic framework

as will be seen in subsequent sections.

In general, dynamic programming permits to effectively solve a wide variety of problems each bearing

a wide variety of sizes and characteristics [132, 133]. Methods based on dynamic programming solve

the corresponding optimization problems in their primal version [134]. Optimization constraints that

only affect a single stage of the multi-stage problem being addressed through dynamic programing can

be easily modified, removed, and added.

However, methods based on dynamic programming require a strict state description of the system being

optimized. Therefore, these methods are problem-dependent. Such methods make it quite hard to add

or remove stage-coupling constraints to/from the optimization problem. It can also be hard to modify

existing stage-coupling constraints. Finally, methods based on dynamic programming are subject to

the curse of dimensionality [56, 131], which means that the complexity associated to finding optimal

scheduling solutions increases dramatically up to prohibitive values with the increase of complexity of

the optimization problem [135].

Dynamic programming is based on the principle of suboptimization and the principle of optimality:.

The principle of suboptimization consists in breaking the whole multi-stage optimization problem in

optimization subproblems that are easier to solve. Such principle is in itself general and applicable

independently from whether one is developing a dynamic programming approach or any other as is the

case, for instance, of Benders decomposition approaches [136, 137], of distributed optimization ap-

proaches [138], and of Lagrangian relaxation methods [60]. The principle of optimality first proposed

by Bellman in [131] is actually the core principle of dynamic programming optimization methods.

Such principle (of optimality) was plainly stated by Grainger in [42] as follows:

“If the best possible path from A to C passes through intermediate point B, then the

best possible path from B to C must be the corresponding part of the best path from A to

C.”

:In reality, in [130], Rao implicitly states that both of these principles are closely related in the sense that the suboptimiza-
tion principle leads to the separation of the multi-stage optimization problem into a number of subproblems. The process
used for solving such subproblems is based on backward programming and is named by Rao as suboptimization process.
Such suboptimization process thus constitutes a practical application of the Bellman’s principle of optimality [131].
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Based on the two principles described in the previous paragraph, dynamic programming problems may

be solved by in two ways: the first one is based on calculus and the second one is based on tables. The

calculus-based version analytically converts the multi-stage problem into a single stage problem that

is solvable by classical optimizations approaches. However, this type of solutions quickly leads to

extremely complex objective functions of multiple variables and the solution process thus becomes too

hard or even practically impossible to solve for reasonable sized multi-stage problems. The tabular

method helps to overcome this difficulty and, at the same time, is well adapted for computer-based

solutions. In simple terms, this method consists in storing intermediate results in tables that are stored

in the memory of the computer. Such tables are updated according to the dynamic programming prin-

ciples discussed in the previous paragraph. and the end, the optimal solution (if it exists) is rebuilt

from the information that was stored in those table throughout the dynamic programming search pro-

cedure. Both of these methods are discussed in detail in [130]. Here, the tabular version of the dynamic

programming solution method was used as it permits easier computer implementation.

The tabular dynamic programming solution method may be implemented in two ways. The first one

consists in performing a forward search of the state space (from the first stage of the multi-stage prob-

lem till the last one) and then perform a backward sweep (from the last stage of the multi-stage problem

till the first one) to build the optimal multi-stage path. This first form of solving dynamic program-

ming problems is often called Forward Dynamic Programming [139, 140]. The second one consists in

performing a backward search of the state space (from the last stage till the first one) and then perform

a forward sweep (from the first stage of the multi-stage problem till the last one) to build the optimal

multi-stage path. This second form of solving dynamic programming problems is often called Back-

ward Dynamic Programming [141, 142]. This approach seems to be more commonly used in power

system scheduling problems [42] and is the one used in this work.

For applying dynamic programming to any given multi-stage sequential decision-making problem one

has to define::

• a set of states S describing the different possibilities of the system at each stage t of the the

horizon of sequential stages T of the multi-stage decision-making problem;

• a transition cost function T between the current state st and the state to which it connects kt�1,

:The specific conditions presented herewith are meant for backward dynamic programming formulations. However, based
on these conditions, the formulation of forward dynamic programming conditions can be straightforwardly made.
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where st, kt�1 P S;

• a recursive cost-to-go function: F that provides the cumulated costs associated with a given state

st. Such cumulated costs are calculated from three components:

– the cost associated to st, given by C pstq;

– the cost-to-go from state st to state kt�1, given by T pst, kt�1q;

– the cumulated cost associated to state kt�1, given by F pkt�1q.

The recursive function (Bellman equation) then takes the form given by Equation 5.20.

F pstq � C pstq � T pst, kt�1q � F pkt�1q (5.20)

5.4.2 Proposed Dynamic-Programming-Based Solution Method

In this work, the power system cell scheduling problem defined by equations 5.8 through 5.15 is seen

as a multi-stage sequential decision problem in which the scheduling decisions are taken sequentially

in time while being time-coupled;. According to Rao [130], there are three subtypes of multi-stage

decision Problems:

1. Initial Value Problems: prescribe the initial value of the state variable of the problem;

2. Final Value Problems: prescribe the final value of the state variable of the problem;

3. Boundary Value Problems: prescribe both the initial and final values of the state variable of the

problem;

In the present work, the considered scheduling problem is seen as a boundary value multi-stage se-

quential decision problem. This implies that the initial and final states of the power system cell are
:The word cost stands for a dimensionless quantity measuring a distance. The objective of the multi-stage decision

problem is taken as that of finding the set of single stage decisions that minimize the overall distance of the problem.
;As explained in subsection 5.4.1, this is mainly due to the presence of the energy storage.
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defined prior to performing its scheduling. Of course, other formulations would be possible (e.g.:

initial value problem in which only the initial state of the cell is predefined). However, the following

reasons justify, at least up to some extent, the modeling choice made in this work:

1. Boundary value problems may be seen as particular cases of initial and final value problems. For

instance, an initial value problem having s possible final systems states/values can be calculated

by formulating and solving s boundary value problems departing from the predefined initial

state/value of the system and each arriving to one of the s possible final states/values of the sys-

tem. The s best candidate solutions found in such a way may then be compared for selecting the

global best one. Consequently, the consideration of the power system cell scheduling problem as

a boundary value multi-stage decision-making problem is flexible because it potentially enables

to solve the scheduling problem even in cases where the initial and/or final states/values of the

power system cell are unknown a priori. This may not be as simple the other way around.

2. The consideration of the power system cell scheduling as a boundary value problem permits to

avoid inter-day influences in the schedules by allowing to set equal initial (i.e.: beginning of the

day) and final (i.e.: end of the day) power system cell states. This allows, in principle, to test

various cell component combinations for determining the ones that lead to a well-balanced (e.g.:

avoiding energy spillages and/or shortages) daily operation of the cell and may thus be applied

to problems of optimal power system cell design and sizing.

3. The consideration of the power system cell scheduling as a boundary value problem leads to

faster execution times of the optimization procedure because the search-space is reduced com-

paratively with initial and final value decision problems. Whenever possible, the decrease of

execution times is mandatory for multi-stage decision problems solved through dynamic pro-

gramming, which suffers from curse of dimensionality as was previously explained in section

5.4.1.

5.4.2.1 Definition of Control and State Variables

As previously stated, dynamic programming approaches use the principle of optimality for separating

multi-stage problems into several dependent subproblems (one per each stage) that are easier to solve.

The question therefore is on how to properly and efficaciously separate the complete scheduling prob-
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Variable Short Description Interdependence Time-coupled?
ui,t On/Off state of the ith dispatchable generator — No
Pi,t Power output of the ith dispatchable generator ui,t No

PPCCt Power exchange at the PCC — No
PStot Power output of the energy storage SOCt, ∆SOCt,t�1 Yes
SOCt Amount of stored energy PStot , ∆SOCt,t�1 Yes

∆SOCt,t�1 Variation of stored energy PStot , SOCt Yes
LCont Amount of controlled (i.e.: reduced) load — No
LCurt Amount of curtailed (due to emergency) load — No
LDumpt Amount of dumped energy — No

TABLE 5.1: Control and state variable candidates of the power system scheduling problem defined by equations 5.8
through 5.15. The table includes the interdependence between the various variable as well as their time-coupling character-
istics.

lem into such subproblems for keeping the optimality of the produced schedules while determining

such schedules in the simplest possible way.

For separating the scheduling problem into subproblems some selection needs to be made regarding

which control variables should be kept as dynamic programming (master problem) control and state

variables and which should be kept as control variables of the several subproblems. For doing this,

a good criterion is to separate the variables according to their multi-stage influence. Then, the multi-

stage (i.e.: time-coupled) variables are associated to the dynamic programming method and the single-

stage (i.e.: time-decoupled) variables are affected to the single-stage subproblems. Such a procedure

increases the computational efficiency of the dynamic programming algorithm without compromising

the optimality of the produced schedules.

The main variables of the problem defined by equations 5.8 through 5.15 are summarized in Table 5.1

where t and t� 1 represent time-stages. In the table, a short description of the meaning of each of the

variables is given:. In addition, the table resumes the existing interdependence between the variables

as well as their respective stage influence (i.e.: their time-coupling) in the scheduling problem. All the

variables described in Table 5.1 are possible candidates for being used as control variables of the power

system scheduling model. However, not all of those variables can be used simultaneously as control

variables of the optimization problem because some are correlated. So, some choice needs to be made

in agreement with the developed solution-technique for efficaciously and optimally solving the power

system cell scheduling problem.

:For a more detailed description please refer to sections 5.2, 5.3 ,and 5.4.
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A first selection of a part of the subproblem control variables can be straightforwardly made based on

the characteristics of the variables contained in Table 5.1. Indeed, all the variables that are decoupled

in time and that are independent other variables can be directly affected to the subset of subproblem

control variables. Such variables include: ui,t, PPCCt , LCont , LCurt , and LDumpt . The remaining

variables need a deeper look in order to determine whether they should constitute control or state

variables and which subset (master problem or subproblem) they should integrate.

The first variable under analysis is Pi,t. This variable is decoupled in time, but depends from ui,t

through the constraint defined by Equation 5.11. The variable ui,t is binary being able to take either 0

or 1 values. If it is set to 0, then the generator is set to an OFF state implying Pi,t to be also 0. In this

case, Pi,t cannot be seen as control variable of the scheduling problem because it has no influence on

the objective function (Pi,t is a stiff variable that cannot be modified in this case). However, if ui,t is set

to 1, then the generator is set to an ON state and Pi,t looses its stiffness, thus gaining influence of the

objective function of the scheduling problem. Consequently, in this case Pi,t can be seen as a control

variable because it represents the power output of the ith dispatchable generator that can be set within

the range defined by Equation 5.11. As a conclusion, the consideration of Pi,t as a control variable that

is subject to the setting of ui,t does not imply the possibility of creating optimization infeasibilities, or

convergence problems. Therefore, one can include Pi,t in the subset of single-stage control variables.

Finally, three scheduling variables, all referring to the energy storage device, remain to be analyzed:

PStot , SOCt, and ∆SOCt,t�1 . All of these variables are related to the time-coupling characteristics of

the power system cell scheduling problem and are interdependent. Consequently, a selection based on

some strategy/criteria needs to be made. It is interesting to note the variables PStot , and SOCt are

not by themselves coupling variables. However, such variables depend from the ∆SOCt,t�1 variable,

which, by itself, couples scheduling decisions in time. Hence, from a time-coupling viewpoint, the

main variable is ∆SOCt,t�1 . For that reason, it is selected as the control variable of the multi-stage

master problem. This variable (∆SOCt,t�1) has however a direct effect on the values of PStot , and

SOCt. The variable PStot concerns directly the single-stage subproblem through equations 5.9 and

5.17. Hence, PStot can be used as the interface variable between the master multi-stage optimization

problem and the various subproblems. This leaves the variable SOCt as a choice for describing the

system state. In fact, this variable does not have a direct influence on the optimization subproblems,

but is a direct consequence of the ∆SOCt,t�1 control actions through Equation 5.16.

Following the explanations given in the previous paragraph, the different variables defined in Table 5.1,
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Variable Subset of variables Role
ui,t Subproblem Control variable
Pi,t Subproblem Control variable

PPCCt Subproblem Control variable
PStot Subproblem Interface variable
SOCt Master problem State variable

∆SOCt,t�1 Master problem Control variable
LCont Subproblem Control variable
LCurt Subproblem Control variable
LDumpt Subproblem Control variable

TABLE 5.2: Classification of the scheduling variables of the power system cell scheduling problem that were defined in
Table 5.1. The classification was made according to respective roles of the variables in the optimization process as well as
to their individual inclusion in the master problem or the subproblem subsets of variables.

their affectations to the master problem or to the subproblem subsets of variables, and their respective

roles in the optimization process are summarized in Table 5.2.

5.4.2.2 Solution Procedure

A backward dynamic programming technique was developed for resolving the power system cell

scheduling problem defined by equations 5.8 through 5.15. Such technique is schematically presented

in Figure 5.3.

From a scheduling viewpoint and according to the control and state variables of the problem discussed

in subsection 5.4.2.1 and resumed in Table 5.2, the cell state is defined by the amount stored energy

at each scheduling time-step t. In this work the power system scheduling problem is defined as a

boundary value one as was discussed in subsection 5.4.2. This is done by fixing the initial and final cell

states that correspond to the power system cell states at t0 and tT , which are, respectively, SOCt0 and

SOCtT . In the example depicted by Figure 5.3, such states are considered to be the same, which may

correspond to a daily cycle analysis for using/storing energy. The backward dynamic programming

procedure works in two phases as described in subsection 5.4.1. The first phase is commonly called

the backwards step and the second is called the forward step [42]. These phases are represented in

Figure 5.3 by the outer-linked blue arrows. In the backwards step, the scheduling subproblem πst

associated to each feasible system state s on stage t is solved for each feasible transition T pst, kt�1q

and considering the future cumulated benefit F pkt�1q associated to state k on stage t�1. This is done
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FIGURE 5.3: Example of the application of dynamic programming to the solution of the power system cell scheduling
problem.

through Equation 5.21 defined below, where the transition cost function T is given by Equation 5.7

associated with Equation 5.18.

F pstq � πst � T pst, kt�1q � F pkt�1q (5.21)

Following Bellman’s principle of optimality, the best subproblem-transition-cumulated benefit that was

found is associated to the current state (i.e.: s) and the procedure moves on to the next state (i.e.: s�1)

until no more feasible states exist for the present time-stage. Then, t is decremented and the procedure

repeats until the first time-stage is solved (i.e.: t   t0). Then, the optimal path is rebuilt according to

the state-transition linkage information associated to every state while proceeding with the backwards

step phase. This last step is quite straightforward and corresponds to the forward step phase of the

backward dynamic programming routine. Figure 5.3 roughly illustrates this procedure. Initially:, for

time-stage tT�1, every feasible state (i.e.: state able to link to the final state SOCT ) is evaluated. At

:Disregarding initializing needs of the procedure.
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this point, every solution is potentially optimal and is therefore kept (this is illustrated by the black

colored arrows depicted in Figure 5.3). This procedure is followed recursively for every feasible path.

Such feasible paths are represented in the same figure by the gray dashed lines (comprising the omitted

time-stages) and the gray arrows. Along the way and according to the principle of optimality, only the

feasible paths that lead to potential optimal solutions are kept. On the final stage (from the algorithm

viewpoint), the path that is kept automatically leads to the optimal path by the previously stored linkage

(i.e.: given by the successive black arrows). This path is then easily rebuilt in the forward step.

5.4.2.3 The main algorithms

Two main phases were developed and implemented for solving the power system scheduling problem

defined by equations 5.8 through 5.15. The first one consists on a main procedure that preprocesses the

input data preparing it to be used by the dynamic programming recursion, calls the dynamic program-

ming routine and stores the obtained schedule. At the end, the procedure stores the identified optimal

schedule. The main parts of such preprocessing phase are described in algorithm 1.

Algorithm 1: Main procedure.
Data: Day-ahead price forecasts
Data: Non-dispatchable renewable energy sources forecasts
Data: Load forecasts
Data: Availability and characteristics of local dispatchable generators
Data: Static variables µpcct and µcont

Data: SOCt0 and SOCtT
begin1

Initialize subproblem schedule while respecting equations 5.10, 5.11, 5.13, and 5.142

Build feasible search space according to SOCt0 , to SOCtT , and to equations 5.12 and 5.153

Read price, load and non-dispatchable renewable generation forecasts4

Call backward dynamic programming scheduling routine described in algorithm 25

Store optimal schedule6

end7

The main procedure described in Algorithm 1, contains a call to the backward dynamic programming

scheduling function (i.e.: the second phase). Such function is described in detail in algorithm 2. The

description contains the main requirements of the function and the detailed description of the backward

and forward steps.
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Algorithm 2: Backwards dynamic programming scheduling algorithm.
Data: Day-ahead price, load, and non-dispatchable renewable energy sources forecasts
Data: Availability and characteristics of local dispatchable generators
Data: Values of µpcct , µcont , ∆ ptq, SOCt0 , and SOCtT plus Initialized subproblem schedule
Result: Optimal power system cell schedule
begin1

Initialize s, k, t, smax, kmax, and tmax2

// Start backward step
for t = tmax down to 1 do // For every time-stage t3

for s = 1 to smax do // Departing state s4

Determine xst5

if xst is feasible then // Last time-stage initialization6

if t equal to tmax then7

k � s // Implies ∆SOCt,t�1 � 0 and, therefore, PStot � 08

forall the ON/OFF combinations of dispatchable generators do9

Successively solve the subproblems given by equations 5.9 to 5.1910

keeping the best intrahour schedule πst

endfall11

F pstq � πst12

else // Normal procedure13

for k = 1 to kmax do // Arrival state k14

Determine xkt�115

if Transition from state xst to state xkt�1 is feasible then16

∆SOCt,t�1 � xkt�1 � xst17

Determine PStot according to equation 5.1818

CStot � aSto � pPStotq
2 �∆ ptq � bSto � PStot �∆ ptq � cSto19

T ps, kq � CStot20

forall the ON/OFF combinations of dispatchable generators do21

Successively solve the subproblems given by equations 5.9 to22

5.19 keeping the best intrahour schedule πs,t
endfall23

FTemp pstq � πst � T ps, kq � F pkt�1q24

if FTemp pstq better than FBest pstq then25

FBest pstq � FTemp pstq26

endif27

endif28

endfor29

endif30

endif31

endfor32

endfor33

Build optimal schedule from linkage information // Forward step34

end35
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The sub-optimization problems solved in line 21 of algorithm 2 were solved through the application

of the generic Sequential Quadratic Programming function supplied by the Optimization Toolbox that

complements Matlab® R2007b. In fact, the objective function of the each sub-problem is given in the

present case by a sum of convex quadratic functions with, eventually, linear functions (e.g.: for each

uncommitted dispatchable generator and for the load supply/control costs). This way, the resulting ob-

jective function is convex and, thus, the Sequential Quadratic Programming method becomes suitable

for performing the optimization of each sub-problem.

5.4.3 Discussion

The dynamic programming based formulation proposed in the former sections has advantages and

drawbacks. The solution method proposed here guarantees that the best possible schedule is found:

among the available feasible schedules because the dynamic programming approach hereby proposed

performs an exhaustive search of the solution-space is performed. However, in reality, such solutions

are suboptimal because of the discretization imposed by the algorithm. Indeed, in the proposed solu-

tion method, the state-of-charge (SOC) of the energy storage is discretized, but, in reality, SOC is a

continuous variable. Therefore, the proposed solution method will deliver schedules that approach the

optimal schedule when the resolution of the SOC discretization tends to infinity. However, if one equals

the SOC resolution to the maximum resolution allowed by a computer, the time needed to complete

calculations would be prohibitive due to the well-known curse of dimensionality associated to dynamic

programming algorithms [130]. Therefore, the solution method proposed in this work will deliver op-

timal schedules under some compromise between state resolution requirements and calculation time

constraints.

As previously described, optimization approaches based on dynamic programming require a rather

strict formulation of the optimization problem. Namely, such formulations require causality between

solutions to exist [131] as well as a systematic description of the states-of-the-world, which comprises

a state description of the system being optimized and state transition rules. This renders dynamic

programming approaches problem-dependent, at least in what regards multi-stage control and state

variables. In the long run, this work aims at dealing with problems of higher complexity than the one

dealt with here. As an example, it is desirable to integrate generator ramp-rate constraints, minimum

:The formulation of the power system cell scheduling problem guarantees that at least one feasible solution to problem is
always found as was discussed in section 5.4.
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up/down requirements of dispatchable generators and limit the number start-stops of dispatchable gen-

erators, for enabling to realistically deal with higher capacity generators in a multi-stage framework

(e.g.: generators rating the tenths of MW). If an approach based on dynamic programming is used for

such problems, either some simplifications (e.g.: greedy methods, heuristic methods as - for instance

- DP-SC/DP-TC/DP-STC [61, 67, 82]) are used, or it will simply be infeasible to apply such an ap-

proach in practical cases. Moreover, such approach will be very hard to design and implement if many

multi-stage control and state variables exist. Hence, it would be advisable to use some type of problem-

independent optimization technique for dealing with very complex optimization problems. Such ap-

proach could be based, for instance, on meta-heuristics allowing to reduce the searched solution-space,

thus accelerating convergence while guaranteeing that at least good-enough schedules are determined.

The application of genetic algorithms represents one valid candidate to such alternative scheduling

approach.

The proposed power system cell scheduling model can be used for estimating the value of energy stor-

age. A first analysis is provided in chapter 6. It could also be used for establishing good-enough rules

for operating energy storage devices. For instance, simplifying energy storage operation rules could be

found empirically by using the proposed model guaranteeing good-enough scheduling solutions may

be found empirically by analyzing the energy storage schedules obtained for various cases and devel-

oping such rules accordingly. Such rules can then yield schedules comparable with the ones given by

the proposed model and may ultimately be applied without having to perform a discretization of the

SOC of the energy storage.

One type of dispatchable loads are the so-called shiftable loads. The main characteristic of such type

of loads is that they can be displaced in time. For instance, shiftable loads can be displaced from peri-

ods where prices for energy are high to periods where such prices are low, or from high consumption

periods to low consumption ones. Therefore, the optimal dispatch of such types of loads can be seen as

an optimal multi-stage decision-making problem. Power system cells comprising advanced load con-

trolling possibilities may integrate shiftable loads. Consequently, it is important to develop scheduling

techniques bearing such purpose in mind, which could be achieved in basically three ways, as depicted

in Figure 5.4:

1. The all-in-one approach consists in directly considering the optimal dispatch of dispatchable

loads in the power system cell scheduling model;
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2. The modular approach consists in completely separating load control from the power system

cell scheduling. This allows to greatly reduce the complexity of the power system cell scheduler

while permitting to perform both the optimal load control and the optimal scheduling in a sepa-

rate way. However, such modular approach does not consider eventual interactions between the

load control and power system cell scheduling. Therefore, it does not allow to guarantee that a

global optimal schedule is found;

3. The hybrid approach can be seen as a merging of the previous two.

Under the hybrid approach depicted in Figure 5.4, the multi-stage load control (load shifting) is carried

out independently from the power system cell scheduling and a modified load forecast integrating

load shifts is supplied to the power system scheduler. This reduces the complexity of the scheduler,

but renders the schedules sub-optimal. However, the inputs to the scheduling problem comprise an

important component of uncertainty: rendering the problem an optimization under uncertainty one.

Under such type of problems, one can no longer find an optimal solution but rather an optimal policy

because the future is not known with precision a priori. This may therefore reduce the advantages

of utilizing complex and time-consuming global optimization methods. Consequently, one can say

that hybrid dispatchable load management approaches enable to obtain good-enough solutions in an

efficient manner. In general terms, hybrid approaches can be seen as compromise approaches that

allow to optimize a part of the dispatchable load and to deal with specialized load shifting algorithms

at the possible cost of loosing global optimality. This approach is the one adopted in this work.

As explained in the previous paragraph, hybrid dispatchable load management approaches permit to

straightforwardly consider a part of the dispatchable load in the scheduling process. Such types of dis-

patchable loads may consist of intrahour load reduction services paid to customers. In such cases, the

effects of reducing loads at a given moment in time are independent of the intra-hour load reductions

that are made at adjacent time-stages. Hence, the optimization of such dispatchable loads is indepen-

dent (i.e.: decoupled) in time. Consequently, such optimized load control can be easily integrated in

an multi-stage optimization approach as the one proposed in this work.

For integrating the intrahour optimized load control that was discussed in previous paragraph, the

scheduler needs to be informed of whether any intrahour load control possibilities exist within a specific

:Such uncertainty is associated to the various forecasts that are used as input for performing the power system cell
scheduling.
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FIGURE 5.4: Three basic approaches for integrating demand side management (DSM) in the scheduling of the power
system cell. The All-In-One Approach completely integrates DSM in the scheduling procedure. The Modular Approach
completely separates DSM from the scheduling procedure. The Hybrid Approach is a mix of the previous ones separating
the multi-stage DSM tasks (e.g.: definition load shifting actions) from the scheduling procedure. Such approach supplies
the scheduler with data concerning intrahour load control possibilities, which enables the scheduler to perform optimal
intrahour load control.

hour through intrahour dispatchable load data. Such data can comprise, for instance, the quantity of

load that can be reduced within a given time-stage as well as the cost function giving the price to be

paid to customers providing such service:.

Finally, the scheduling approach proposed in this work allows to straightforwardly take into account

forecast uncertainty into the scheduling process. This may be important, because such uncertainties

may play an important role in the operation of power system cells. Indeed, such cells may integrate con-

siderable amounts of renewable energy sources with variable production. Furthermore, such cells may

be contained in relatively small geographical areas (e.g.: microgrids), which can reduce the smoothing

effects between renewable energy generators and customers, thus rendering the corresponding load

and renewable energy sources forecasts more volatile. On another angle, day-ahead market prices

also fluctuate randomly. Such fluctuations may have important impacts on the management of power

system cells. Hence, taking into account the uncertainty associated to the different forecasts used for

performing the management of power system cells becomes increasingly important. The objective of

:Here, a linear cost function was considered for this purpose. However, other cost functions may be easily considered in
the future.
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the next section is to extend the proposed method in that direction.

5.5 Stochastic Extensions Applied to the Base Deterministic Scheduling

Model

The power system cell scheduling model proposed in subsection 5.4.2 is well-adapted to a deterministic

framework in which schedules are determined regardless of the consequences that may result from

the uncertainty associated to the process inputs. In conventional power systems without significant

non-dispatchable renewable energy penetration, such uncertainty is not of much importance mainly

because:

• load uncertainties are small when compared to the total amount of load (1 % - 2 % [143]);

• uncertainties in power generation output are negligible: because most of the power system gen-

erators are dispatchable (e.g.: nuclear power plants, coal-fired power plants, hydro power plants

comprising water reservoirs, gas-fired plants,...);

• the transmission system is usually considered as perfectly reliable in the unit commitment phase

(sometimes it may be even neglected);

• the system is scheduled under a vertically integrated philosophy in which no electricity mar-

ket exists and thus no price uncertainty exists as constant fuel costs are classically considered

through the use of constant generator cost coefficients [43, 144];.

Regarding day-ahead power system scheduling, the situation of conventional differs from that of power

systems integrating high shares of non-dispatchable renewable energy sources. Indeed, in the latter

case, the day-ahead power output forecasts of such sources may add a significant component of uncer-

tainty to the day-ahead scheduling problem. This is also the case of power system cells. For instance,

power system cells such as microgrids, may comprise a relatively small number of energy consumers
:In the present analysis generator outages are disregarded. These can be dealt with either by enforcing enough reserve

generation in the unit commitment phase, either by modifying the obtained unit commitment according to the result of a
subsequent contingency analysis phase.

;However, varying generator efficiencies are considered — usually through the employment of quadratic generation cost
functions in which the function parameters include such information.
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(i.e.: small number of loads). This reduces the load smoothing factor, which leads to a more erratic be-

havior of the global load of the microgrid in comparison to the load behavior of large power systems.

This makes it harder to perform day-ahead forecasting of the microgrid load, and usually results in

higher forecast errors. In addition, when the power system cell operates under electricity market con-

ditions, as is the case considered in this work, electricity market price forecasts have to be considered

as input in the scheduling process. Such forecasts involve errors that may have significant impacts on

the quality of the scheduling process outputs, which may imply profit losses to their operators. There-

fore, it appears necessary to consider all these types of uncertainty in the power system cell scheduling

procedure. In such a case, the multi-stage scheduling problem can be seen as a multi-stage decision-

making under uncertainty problem. Furthermore, the previously considered deterministic optimization

problem becomes now a stochastic optimization one.

The main difference between stochastic optimization problems and deterministic ones concerns the

way one defines the optimal solution. In the deterministic framework, the optimal solution is seen as

the one that minimizes/maximizes a given objective function taking into account inputs that are sup-

posed to be exact in the sense that they always verify. Therefore, the solutions to such optimization

problems only comprise an evaluation of the current state-of-the-world disregarding possible evolu-

tions of such states or non-verifications of the inputs of the problem. In other words, deterministic

optimization formulations consider the input variables as they are and disregard the possible conse-

quences that may come if such inputs are inaccurate or if the conditions of the optimization problem

change (e.g.: if the expected future scenario does not happen). On the contrary, stochastic optimiza-

tion approaches take into account the possible future consequences that might be associated to a given

alternative directly in the objective function of the problem. In the majority of cases, under this frame-

work, some risk is associated to each decision alternative and a compromise between the degree of

satisfaction of each alternative and its associated risk is kept. For instance, deterministic approaches

maximizing the here-and-now profit disregard the possible negative effects that might be caused by the

here-and-now actions. On the other hand, stochastic approaches tend to select the here-and-now ac-

tions that maximize the here-and-now profits while trying to minimize the expected negative outcomes

associated to such actions.

126



Proposed Scheduling Model

5.5.1 Integrating Energy-Related Uncertainties into the Proposed Scheduling Model

In this work, a spot-risk model similar to the mean-variance model that was presented and analyzed in

chapter 4 is used for incorporating the uncertainties associated to the forecasts of the non-dispatchable

renewable energy production and load for every hour of the scheduling horizon. Such uncertainties may

lead to errors, which are given by the differences between forecasted energy production/consumption

and measured values of such quantities. Such errors, may lead, for instance, to energy imbalances in

the absence of further control actions (e.g.: dispatchable generation/consumption compensation, use

of energy storage devices, . . . ), which are highly undesirable. Depending on their importance, energy

imbalances may cause important frequency deviations that may lead to triggering frequency protections

and even to cascaded triggering effects and should thus be avoided at all costs at the expense of having

to bear with reduced grid stability and power quality. On the other hand, energy imbalances may

lead to power flows that are substantially different from the forecasted power flows. This can lead

to line overflows and to violations of voltage limits. Each of these phenomena may activate a subset

of power system protections (e.g.: overcurrent and maximum/minimum voltage protections) and may

thus also lead to problems of reduced grid stability and power quality. Finally, for avoiding such

events, the system operator has to use power reserves of different types:, which usually increases the

operational costs of the power system. Under electricity markets, such additional costs often translate

to reduced profits for market participants (e.g.: power system cell operator), which are often held

as balance responsible actors. For all of these reasons, energy imbalances should be avoided. Such

imbalances cannot be precisely known in advance. However, the power system cell operator can use

the uncertainty information associated to the available power production/consumption forecasts of the

non-dispatchable elements taking part in the cell as an input for estimating the amount of imbalance

risk (i.e.: the possibility of incurring negative impacts due to forecast uncertainty) at every time-step

of the scheduling horizon. Then, such risk can be taken into account in the scheduling process through

the use of a spot-risk model. This corresponds to the principle followed in this work.

5.5.1.1 The Spot-Risk Model

A spot-risk model was developed for integrating the uncertainties associated to the inputs of the power

system cell scheduling problem. The main advantage of such model is that it permits to consider

:Such types of reserves are discussed in [77, 78].
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the return associated to a given alternative as well as the eventual risk associated to such alternative

in a simple and straightforward manner. The return of the alternative is the objective to be attained

(e.g.: a benefit, a stability level, . . . ). The risk is the quantification of the possible negative outcomes

associated to such alternative. In [145], risk is defined as being a state of uncertainty where some of

the possibilities involve a loss, catastrophe, or other undesirable outcome. In [91], risk is defined as

the hazard to which a utility is exposed because of uncertainty. Both references consider risk to be a

bi-dimensional characteristic of decisions having the following dimensions:

• the likelihood (probability, possibility, . . . ) of making a regrettable decision;

• the amount by which the decision can be regrettable.

Spot-risk models follow the same principles of the mean-variance models that were discussed in chap-

ter 4. The adoption of the spot-risk term instead of the mean-variance one is due to the following

reasons:

• In the literature, models using forecast values other than the mean have been used and have

proven to give good results [146]. Hence, the term mean was replaced by the more general term

spot in the designation of the mean-variance model, where the term spot should be understood

as single-value;

• In the general case, the variance of the estimated outcome of a given decision possibility should

not be used per se as a measure of the risk associated to such decision [3, 147]:. Instead, an

appropriate measure of the consequences that may be associated to any given decision alterna-

tive should be considered. Here, we consider such consequences to be either null or negative.

Therefore they can be seen as a risk and expressed by an appropriate risk measure.

Spot-risk-based models have been widely used in decision-making processes [147–149]. One of the

main reasons for this is that these models permit the decision-maker to integrate the uncertainty asso-

ciated to a given random variable x using a function f of only two criteria and one parameter. These

criteria are:
:This was discussed in more detail in chapter 4.
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• a spot prediction of the random variable outcome x̂ (e.g.: its expected return E px q);

• the amount of risk associated to the selection of such prediction, which is hereby given byR px̂ q;

and the parameter is:

• parameter β representing the risk attitude of the decision-maker:.

Equation 5.22 defines the spot-risk model.

f
�

x̂ ,R px̂ q
�
� x̂ � β �R px̂ q (5.22)

5.5.1.2 Integrating the Spot-Risk Model into Multi-Stage Decision-Making Processes

In chapter 4, several approaches for integrating uncertainties into decision-making problems were dis-

cussed. In the case of stochastic multi-stage decision-making, the integration of such uncertainties can

be made in mainly two approaches. The first can be named as master problem approach and the second

as subproblem approach.

The master problem approach consists in considering the multi-stage decisions and respective con-

sequences as a whole. More precisely, the several single-stage decisions corresponding to a single

multi-stage scenario are aggregated and their aggregated return evaluated as well as their aggregated

estimated risks. In the case of the multi-stage power system cell scheduling problem, this could be

translated to:

1. establishing a set of future scenarios for the hourly production/consumption based on the avail-

able forecasts and on the estimation of their uncertainty;

2. perform the deterministic cell scheduling and estimate the energy imbalance risks for each of the

established scenarios;

:A discussion on the various risk attitudes was provided in section 4.5.
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3. use the spot-risk approach to select the schedule that maximizes the expected revenue while

minimizing the estimated risks.

This approach is particularly well-suited to multi-stage decision problems in which several possible

future scenarios are available. However, it can lead to several quite different and competing multi-

stage alternatives. This can lead to difficulties in selecting one of such alternatives as the best one and

often implies the development of additional criteria for making the final choice. Hence, this approach

seems to be better suited for decision-aid problems in which several good-enough options are presented

to the decision-maker.

The subproblem approach consists in considering the multi-stage decisions and their respective conse-

quences directly on each single-stage subproblem on a step-by-step basis. Hence, under this approach,

the partial consequences of each subproblem decision are considered dynamically in a sequential man-

ner. In one single step, this approach allows to obtain only one multi-stage solution to the multi-

stage decision-making problem under uncertainty considered. At the same time it considers the whole

search-space of alternatives considered. This is important in the frame of this work because it facilitates

the development of automatized algorithms for obtaining a unique solution of the problem considered

while taking full advantage of the dynamic programming global search method that is used: in the

sense that the whole search-space is considered. Finally, due to the above advantages, the subproblem

approach was selected for integrating the single-stage spot-risk model defined by Equation 5.22 in the

power system cell scheduling model herewith proposed. This is further developed in the following

section.

5.5.1.3 Single-Stage Integration of the Spot-Risk Model

The integration of the spot-risk model defined by Equation 5.22 into the power system cell scheduling

problem was made following a subproblem approach as was described in the previous section. This

is done by simply modifying the Bellman function defined by Equation 5.21. It is reminded that this

function comprises three elements: πst , T pst, kt�1q, and F pkt�1q. The first one, πst , corresponds to

the objective function of each subproblem of the multi-stage objective functional. Therefore, πst is

the element that should be modified for taking into account the risks that may be associated to each

:This is described in subsection 5.4.2.
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subproblem alternative of the master problem.

The value of πst may be seen as the expected profit associated to state s at time-step t subject to the

transition to state k at time-step t � 1 under analysis as defined by Equation 5.21. Therefore, x̂ in

Equation 5.22 can be replaced by πst thus yielding:

f pπst ,Rq � πst � β �R (5.23)

The integration of the spot-risk model into each scheduling subproblem is completed by replacing πst

in Equation 5.21 by f pπst ,Rq given by Equation 5.23 as shown below:

F pstq � f pπst ,Rq � T pst, kt�1q � F pkt�1q (5.24)

Equation 5.24 can be seen as a generalization of Equation 5.21 in the sense that one can obtain the

latter from the former by considering a risk neutral attitude (by setting β � 0) but not the other way

around. This is consistent with the general case of stochastic programming algorithms, which can be

seen as generalizations of their deterministic counterparts [150].

5.5.1.4 The Risk Measure

Contrarily to Equation 5.22, the risk measure herewith proposed —R— and included in Equation 5.23

is not a function of the subproblem return. Indeed, R is a function of the next time-step t � 1, of the

future system state under analysis k, and of some measure of the consequences that might result in the

next time-step due to energy-related: uncertainties Ut�1. The risk measure proposed here is detached

from the objective of the problem (at least in an explicit manner). At the same time, it is strongly linked

to the reality of the power system cell operation because it takes into account the operator’s preferences,

:The energy-related refers to the forecast inputs of the power system cell scheduling problem that are related to both the
non-dispatchable renewable energy production and the local load consumption.
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which may be based on operational rules learnt from past operation situations. Therefore, the basic idea

of such risk measure is to place the cell operator at the center of the scheduling procedure through the

integration of the operational specificities of the cell in the decision-making under uncertainty process.

This section discusses the components that are used for building R. The integration of the operational

specificities of the cell in the decision-making under uncertainty process will be illustrated in section

5.5.1.5 and follows a risk perception philosophy.

The value of Ut�1 may be more or less complex to calculate. For instance, it can be the result of classi-

cal VaR (Value at Risk) [151, 152] analysis, or CVaR (Conditional Value at Risk) analysis [153, 154]. It

can also take the form of other risk measures. Here, the moments of the energy-related probability den-

sity function forecasts have been considered. More specifically, in this work, the second-order moment

(i.e.: the variance): of such distributions is assumed. Following this principle, the risk measure used

in this work is composed by a multiplication of two factors as shown in Equation 5.25. These factors

are the operator’s perceived future risks P pkt�1q that is an element of the risk perception surface P;

and the variance associated to the forecasted future non-dispatchable energy production/consumption

V art�1.

R pkt�1q � P pkt�1q � V art�1 (5.25)

Replacing R in Equation 5.23 with the risk measure define by Equation 5.25 yields Equation 5.26.

f
�
πst ,R pkt�1q

�
� πst � β �R pkt�1q (5.26)

Finally, the updated Bellman function is obtained from Equation 5.26 by replacing f pπst ,Rq present

:The integration of the third-order moment can be straightforwardly made in the future. Some insight on this subject will
be supplied as perspectives for further work.

;The risk perception surface concept is discussed in subsection 5.5.1.5 together with the description of the specific
algorithm that was used here for building it.
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in Equation 5.24 by its updated version f
�
πst ,R pkt�1q

�
, thus obtaining Equation 5.27.

F pstq � f
�
πst ,R pkt�1q

�
� T pst, kt�1q � F pkt�1q (5.27)

It is clear from Equation 5.27 that each subproblem optimization takes into account the present condi-

tion of the system when making a decision now while, at the same time, taking into account the possible

future consequences that such decision might have. This is consistent with one of the chief characteris-

tics of any model based on stochastic programming [155] as the presence ofR pkt�1q in Equation 5.27

potentially permits to consider the eventual consequences of each alternative in the decision-making

process. Hence, provided that the risk measure is well-designed, Equation 5.27 is able to consider the a

posteriori impact (e.g.: costs) associated to recourse actions (e.g.: paying energy imbalance penalties)

due to the consequences (e.g.: energy imbalances) of having taken bad decisions a priori. At the same

time, Equation 5.27 aims at enhancing the decision that is made now despite what might happen in

the future. Hence, focus is put on the here-and-know, which is another of the chief characteristics of

any model based on stochastic programming. Moreover, the probability distributions associated to the

energy-related forecasts (the ones under analysis here) are independent of the scheduling decisions,

which is another important characteristic of models based on stochastic programming. We can there-

fore conclude that Equation 5.27 is coherent with the stochastic programming philosophy. However,

some additional considerations must be made at this point regarding the remaining chief characteristics

of stochastic programming approaches described in [155]. Two of them (i.e.: Optimization technology

and Convexity) should be seen more as observations related to existing stochastic programming formu-

lations than to mandatory characteristics defining whether a given model can or not be considered as a

stochastic programming one. The remaining one (i.e.: Information Through Observations) is analyzed

in the following paragraph.

According to the principle of information through observations mentioned in [155], decisions should

correspond to information that has become available since the initial decision through the observation

of random variables. This is not done here because of the structure of the considered day-ahead elec-

tricity market. Such structure imposes that a set of bids is placed to the market up to the gate closure

time (vide section 2.6). Therefore, in practice, one cannot wait for the uncertainties associated to each

hour of the scheduling horizon to reveal thus constituting observations of the random events realiza-
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tions reducing the uncertainty associated to the scheduling problem. Consequently, in the scope of this

work (day-ahead scheduling), such observations are disregarded. However, the proposed model is not

incompatible with the principle of making decisions based on the latest available observations. For

instance, the proposed model can be used with some adaptations for the case of intra-day operation

of the power system cell under a rolling scheme that always considers the latest observations in the

decision-making process for reducing the uncertainty associated to the operation problem.

In fact, such forecasts are made, at maximum, for each element of the system, but independently of

the herewith defined multi-stage system state descriptor (i.e.: energy storage state-of-charge). There-

fore, the uncertainty information associated to the various non-dispatchable energy-related forecasts

remains constant for each time-stage of the multi-stage scheduling problem. In addition, the uncer-

tainty information associated to the tth time-step is independent from the state upon which the power

system cell resides on the preceding time-step (st). A direct consequence of this is that, while evalu-

ating the transitions between st and every feasible future state kt�1, the uncertainty taken into account

is the same for each of such transitions, which makes such uncertainty information useless from both

a decisional and an optimization viewpoint unless some additional system information is added. This

is exactly one of the things that are achieved by the system dimension of the risk perception surface

defined by the power system cell operator as will be seen in section 5.5.1.5.

5.5.1.5 The Risk Perception Surface

The risk measure discussed in the preceding subsection is composed of two main factors. One of

such factors is some objective measure of the consequences that might be associated to any given

alternative:. The other factor composing the proposed risk measure is given by the risk perception of

the power system cell operator, which, as the name states is based on the operator’s perception of risks.

Human perception of risks can be seen as an indicator of how human preferences behave in the presence

of risk. In [156], risk perception is defined as an intuitive risk judgment. In other words, risk perception

can be viewed as the sensitivity of the decision-maker to estimated risks.

The contributions of Tversky [157] and Slovic [156] have clearly shown the important role the way

people understand risks can have on their preference ranking. This is also confirmed in [145] where
:In this work, the variance associated to non-dispatchable energy production/consumption forecasts was selected
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the author defends that the way people perceive risks has an important role on how risks should be

managed.

Here, the uncertainty information associated to non-dispatchable energy-related forecasts was com-

plemented with a preference indicator depending on the state-of-charge of the energy storage device.

Such preference indicator consists of a single-value reflecting the operator’s perception of risks. The

idea to use risk perception concepts for placing the operator’s desires and past experience at the center

of the scheduling process.

The set of risk perception values (or preference indicators) P pkt�1q constitutes a risk perception sur-

face P in the space of coordinates k (representing the system state) and t (representing the time-stage).

An interesting property that comes from using the risk perception values P pkt�1q in the the risk mea-

sureR pkt�1q comprised in Equation 5.25 is that it contributes to the differentiation between the state-

transitions evaluated by the dynamic programming recursion described in Equation 5.27. Such differ-

entiation is made according to the preferences under risk defined by the power system cell operator.

The differentiation between the state-transitions evaluated by the dynamic programming recursion de-

scribed in Equation 5.27 is very important. Indeed, for each time-step, several energy storage levels

(i.e.: states of charge) may be chosen and such choices do not affect the uncertainty associated to the in-

put forecasts of the considered power system cell scheduling problem. The reason is that, such forecasts

are made independently of the herewith defined multi-stage system state descriptor (i.e.: energy stor-

age state-of-charge). Therefore, the uncertainty information associated to the various non-dispatchable

energy-related forecasts remains constant for each time-stage of the multi-stage scheduling problem.

At the same time, the uncertainty information associated to time-step t � 1 is independent from the

state upon which the power system cell resides on the preceding time-step (st). A direct consequence

of this is that, while evaluating the transitions between st and every feasible future state kt�1, the in-

put forecast uncertainty taken into account is the same for each of such transitions, which makes such

uncertainty information useless if used as is from both a decisional and an optimization viewpoint.

Therefore, from an uncertainty standpoint, all the state-of-charge transitions are equivalent mainly be-

cause such uncertainty is not calculated as a function of the system state or of the operating actions

taken. Consequently, considering input forecast per se renders the problem equivalent to its determin-

istic version from a decisional perspective. However, the risk associated to each energy storage state

transition (e.g.: the risk of obtaining energy imbalances) is not necessarily the same because the same
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amount of uncertainty can be considered as riskier or safer depending, for instance, on the system

state or on the preferences of the power system cell operator, which can be based, for instance, on

past experience. Such conversion from risk to uncertainty can be achieved by an appropriate transfer

function converting the measured forecast uncertainty to an amount of risk based on the preferences

of the operator and on the system state. Here, we have used concepts of risk perception for building

such function. Such risk perception aims to translate the level of risk felt by the power system operator

under a given system state: in the presence of uncertainty.

As previously said, the risk perception surfaceP is composed of an interaction between the preferences

of the power system cell operator (translated by some set of rules) and the system state kt�1 at time-

step t � 1. Here, both the time-steps and the system states are discrete variables. Hence, only some

particular discrete points P pkt�1q of P will be used. Each of such points constitutes a single-value

aiming to represent the preferences of the power system cell operator, thus constituting a preference

indicator. Such indicator therefore defines the perception of risk of the cell operator in a straightforward

way, which is easy to integrate through equations 5.25 through 5.27 in the scheduling under uncertainty

process.

A Method for Calculating the Risk Perception Surface

Here, an attempt was made for building the risk perception surface from the operational preferences of

the power system cell operator by converting the latter into the former.

The operational preferences of the power system cell operator may be defined by a set of rules built

from past operation experience. This can be done in a subjective way, in an objective way, or in some

combination of both. As an example, in case the operator is responsible for the management of several

cells, then, for instance, one strategic option might be to prefer to have stored energy in some spe-

cific moments in time on some of those cells for preventing energy shortages that usually happened

on such specific cells at such moments in time (subjective determination of the operational prefer-

ences). Another option could be to use statistics for finding out which moments are riskier and which

are safer regarding, for instance, the global energy imbalances of the set of cells, the global energy

shortages/surpluses of the same set, the moments that translate to the highest imbalance penalties that

were paid, and so on (objective determination of the operational preferences). It is straightforward to

imagine a combination of the previous.

:Here, such state consists on the state-of-charge of the energy storage device.
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From the previous examples it is obvious that the number of available options for defining the set of

operational preference rules of the power system cell operator can be very large. Here, an approach

was developed for converting such rules into risk perception rules. The proposed approach is used

for illustrating how the the risk perception of the cell operators may be integrated in the scheduling

process herewith proposed. It should therefore be kept in mind that the focus is not on the specific risk

perception surface that is used for demonstrating the concept, but on the approach itself.

In general, one can say that formulations based on risk perception like the one proposed here allow

to detect situations that tend to be more risky and those in which risks are expected to be lower,

according to the risk definition of the operator. In the frame of this work, the operator defines a

given risk perception associated to each possible future situation based on past experience, where the

word situation can be translated as a combination between the present operation state of the system, the

moment in time in which the system is operating under such state, and the future operation state of the

system. Such risk perception penalizes proportionally the considered measure of uncertainty associated

to non-dispatchable energy-related forecast inputs of the power system cell scheduling problem as

shown in Equation 5.25: according to the operator’s operational rule specifications. In other words, the

same amounts of estimated uncertainty translate to different amounts of perceived risk depending on

the actual situation of the system and on the risk perception definition of the operator.

Following the description that was made in the preceding paragraphs, for each time-step t of the

scheduling horizon T and for each state st in which the power system cell may reside, a given pref-

erence value P pstq is calculated based on the risk perception of the cell operator;. The whole set

of preference indicators P pstq for every time-step t P t1, . . . , T u and for every state s P S there-

fore defines a three-dimensional risk perception surface P having as dimensions the energy storage

state-of-charge st, the time axis, and the preference value associated to each st.

For determining the surface P one needs to define a set of operating rules, as was described in previous

paragraphs. But which set of rules? The answer depends on the type of system and on the preferences

of the operator. In our case, two main principles were defined. The first of them is based on the the

existence of a preferred level of energy storage state-of-charge. Such preferred level of energy storage

can be the same throughout the several time-stages of the multi-stage power system cell scheduling

:As previously said, here, the variance associated to non-dispatchable energy-related forecasts was used. However, other
moments may be integrated in the future or even complete probability density function forecasts.

;On a more general case, one could design a risk perception value P pst, kt�1q that is dependent of the present system
state st as well as of the future system state kt�1.
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problem. This principle is directly related to the state variable of the scheduling problem, which was

defined in Table 5.2. The second principle is based on the existence of a global time-dependent rule:.

This rule is built from historical data. For instance, for avoiding energy imbalances historical data per

time-stage on such imbalances may be used (e.g.: average hourly energy imbalance on the lasD days).

The Preferred Energy Storage State-of-Charge Principle

The preferred energy storage state-of-charge is taken here as the parameter that permits to define the

operator’s technology-related preferences. Indeed, the energy storage can directly compensate any en-

ergy imbalances that might result from non-dispatchable energy-related forecast errors. For instance,

if the cell is producing too much energy at any given moment in time, the energy storage has the poten-

tial to absorb (at least in part) such excess and, thus, suppress up to some extent such energy surplus.

However, in the same scenario, if the energy storage is already charged to its maximum energy ca-

pacity, then no compensation can be made, which may translate, for instance, to frequency deviations,

to over-voltages, to over-currents and to the payment of imbalance energy penalties. If such type of

events are seen as operation risks, then the energy storage capacity can be seen as a risk-hedging option

whenever it is not fully charged/discharged depending on whether there is a local surplus or a lack of

energy. However, the energy storage device has physical energy capacity limitations;. Depending on

such limitations, a given amount of estimated uncertainty may be more or less risky depending on the

operating state of the power system cell. Whichever is the case, if no information on the probabilities

of energy shortage and energy surplus associated to a given time-step exists, then the energy storage

state that minimizes the risk is that in which the storage device may absorb as much energy as it can

release. Such state is verified at 50 % for energy storage round-trip efficiencies of 100 %. Thus, if the

operator wants to minimize energy imbalance risks, then the preferred energy storage state-of-charge

may, for instance, be set to that value. Depending on the situation and on the preferences and ob-

jectives of the operator, other energy storage setpoints may be preferred. Therefore, in a more general

case, the operator may specify a preferred energy state-of-charge state SOCSpect per time-stage t of the

multi-stage power system cell scheduling problem. This enables the operator to deal with the particu-

lar conditions of each time-step of the scheduling problem. For instance, in cases where no additional

information exists on the most probable direction of the energy forecast error (e.g.: energy storage is

:Which can also be the result of a combination of time-dependent rules.
;In some cases, like that of hydro storage, the energy storage may be seen as large-enough from a purely energy storage

capacity perspective. Nevertheless, the actual energy storage capacity that can be used for performing energy imbalance
corrective actions can be set to a small part of the base energy storage capacity due to many reasons like, for instance, the
obligation to respect minimum water flows and the need to have enough water for allowing upstream/downstream and vice
versa communication for ships.
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more probable), the operator may define the same value of SOCSpec for every time-stage. Conversely,

the operator may define a different SOCSpect per single time-stage if some information on the most

probable direction of the error exists or if historical data on imbalance energy suggests it.

Here, a penalty function qt pstq was designed for penalizing states st that differ from the pre-specified

(i.e.: preferred) ones sSpect . This function is defined by Equation 5.28.

qt pstq � dt �
ht pstq

max
st

tht pstqu
� p1� dtq @s P S,@t P T , dt P r0; 1s (5.28)

where,

ht pstq �
�
st � sSpect

	2
(5.29)

The penalty function defined by Equation 5.28 is quadratic thus defining a convex parabola (from a

minimization viewpoint). This permits to penalize states different that the specified ones in an manner

that penalizes more intensely higher deviations than smaller ones. The speed of increase of qt pstq from

its vertex (in which st � sSpect ) and its translation relatively to 1: is controlled per time-step by the

depth factor dt. Values of dt � 0 imply that the risk perception of the operator does not change the

objective estimation of volatility associated to the non-dispatchable energy-related forecasts. Conse-

quently, if d1 � d2 � ... � dT � 0, then the scheduling method becomes purely deterministic because

no differentiation is made between alternatives. In other words, as was explained in previously, ev-

ery alternative is penalized of the same amount per time-step. High values of dt increase the depth

of the risk perception surface as can be seen in Equation 5.28. This increases the importance of the

volatility associated to non-dispatchable energy-related forecasts forcing the optimization algorithm to

maintain the energy storage state-of-charge equal to or as close as possible from sSpec. In other words,

:Cases in which P pstq � 1 can be seen as those in which by choice or due to past experience, the operator’s perception
of risks does not change the objective prediction of volatility associated to the non-dispatchable energy-related forecasts, or,
in other words, as cases in which the risk measure yields the same value that the predicted forecast volatility does. This is
due to Equation 5.25.
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high values of dt tend to over-value volatility. In such cases, the optimization algorithm may cease to

work properly in the sense that it will tend to overreact to forecast volatility neglecting the estimations

of the profits associated to the scheduling decisions. Hence, it is advisable to find some satisfactory

compromise between these two extreme situations.

The Global Time-Dependent Rule Principle

The global time-dependent rule g rule ptq is taken here as a series of T values (i.e.: one value per time-

step) reflecting the riskier and the safer time-steps. The utilization of this rule is not mandatory for

differentiating the future state-transition alternatives because such differentiation can also be achieved

by using variable preferred energy storage states per time-step as was discussed in the previous para-

graph. Therefore, global time-dependent rules can be seen as complementary information given by the

system operator whenever such information is judged as being important in the decision-making pro-

cess. Such global time-dependent rules can be either inexistent, or the result of a single time-dependent

rule or, finally, the result of the combined action of various single time-dependent rules. Examples of

single time dependent rules can be:

• The per time-step forecasted levels of local non-dispatchable load, where higher levels of load

may be seen as riskier situations that potentially increase the LOLP (loss of load probability)

in the presence of energy imbalances. Alternatively, higher load levels can be often associated

to market price peaks in which case energy imbalances may potentially lead to more severe

imbalance penalties in comparison to low load periods;

• Forecasted per time-step day-ahead market price forecasts. Higher market prices may be, for

instance, linked to power system congestions. In such cases, there is increased risk that the

possible loss of certain transmission lines obliges to re-dispatch generation by using peakers.

This may increase the regulation costs imposed to imbalance-responsible actors, which translates

to increased financial risks;

• Past per time-step regulation costs of the system, for instance, in the form of weekly, monthly

and yearly averages. Such averaged values may be seen as indicators of the financial risks to

which the power system cell may be subjected in the presence of energy imbalances. In case

some information on the skewness associated to the non-dispatchable energy-related forecasts is

used, data on past per-time step shortage/surplus regulation costs of the system may be preferred;
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• Some per time-step index or measure of the quality of day-ahead market price forecasts, which

can give an information on the level of trust that can be associated to such forecasts. Higher

levels of trust may be linked to less conservative attitudes of the power system operator aim-

ing to maximize operational profits. Conversely, lower levels of trust may be linked to high

conservative attitudes of the same operator.

Of course, many other single time-dependent rules or combinations of them can be selected/proposed

by the operator and, subsequently, integrated in the construction of the risk perception surface.

Algorithm Used in This Work for Building the Risk Perception Surface

The algorithm proposed for constructing the risk perception surface according to the principles defined

in the preceding paragraphs is described in Algorithm 3.

Algorithm 3: General description of the procedure followed for constructing the risk perception
surfaces throughout this work.

Data: Number of time-steps T
Data: Maximum number of normalized energy storage states of charge S to consider
Data: Vector containing values of sSpect normalized by the maximum energy storage available

capacity SOCmax where t P T
Data: Vector containing per time-step values of global rule g rule ptq
Data: Vector containing per time-step depth values dt
Data: g rule ptq damping factor Kg
Data: Constant global proportional gain K (adjusted on a case by case basis)
Result: Risk perception surface P pstq
begin1

Obtain g norm ptq by normalizing g rule ptq according to the following equation:2

g norm ptq �
g ruleptq

pmaxpg ruleptqq�minpg ruleptqqq
Calculate g damp ptq, the damped version of g norm ptq as g damp ptq � Kg � g norm ptq3

for t = 1 up to tmax do // For every time-stage t4

for s = 1 up to smax do // For every possible system state st5

PTemp pstq � qt pstq � g damp ptq where qt pstq is calculated from Equation 5.28 and6

Equation 5.29
endfor7

endfor8

P pstq � K � PTemppstq
maxpPTemppstqq9

end10

The essence of Algorithm 3 follows a Boolean logic approach in which both the global time-dependent
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FIGURE 5.5: Representation of the Boolean logic followed for building the Risk Perception surface P through the use of
an AND logic gate. The represented logic schematically illustrates the functioning of Algorithm 3.

FIGURE 5.6: Representation of a possible global time-dependent rule g rule ptq that could be used for building the risk
perception surface P of the power system cell operator. Such rule corresponds to a series of load forecasts (point forecasts)
obtained from data corresponding to conventional residential consumers, where higher levels of load translate to higher
levels of risk perception of the operator and, conversely, lower levels of the load translate to lower levels of risk perception
of the operator.

rule and the preferred energy storage state-of-charge principles are followed at all times. This may be

schematically represented through the use of an AND logic gate as depicted in Figure 5.5.

Some examples are now supplied for visualizing the type of risk perception surfaces that can be ob-

tained through Algorithm 3. For obtaining such examples, a load forecast of a hypothetical power

system cell non-dispatchable load is used as the global time-dependent risk perception rule g rule ptq.

Such load forecast is represented in Figure 5.6. The choice of the load as an global time-dependent

rule is in line with one of the examples of single time-dependent rule possibilities that were presented

in the bulleted list above.

Four state-of-charge preference rules were considered. Three of them consider constant preferences of

0.2, 0.5, and 0.8 states of charge relatively to the nominal state-of-charge capacity of the storage device,

which is given by SOCmax. Such preferences are respectively represented by figures 5.7, 5.8, and 5.9.

The fourth state-of-charge preference rule consists of a variable state-of-charge preference, which was
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FIGURE 5.7: Representation of a state-of-charge preference rule in which the preferred state-of-charge is set to the
constant value of 0.2 relatively to the maximum available energy storage capacity SOCmax.

FIGURE 5.8: Representation of a state-of-charge preference rule in which the preferred state-of-charge is set to the
constant value of 0.5 relatively to the maximum available energy storage capacity SOCmax.

defined based on Figure 5.6. This time-varying rule considers three discrete values of preferred state-

of-charge: 0.2, 0.5, and 0.8. The lower value (0.2) is associated to low load periods. Accordingly,

medium (0.5) and high (0.8) values are associated to medium and high load periods, respectively. The

reasoning behind is simple and consists in considering that it is riskier to manage energy imbalances

in the event of local peak loads because, under such events, one risks not being able to serve a higher

amount of clients (and, possibly, more important/priority loads) than during valley hours. The resulting

rule is depicted in Figure 5.10.

Finally, some additional parameters had also to be defined as these are inputs to the algorithm used for

constructing the risk perception surface P through the employment of Algorithm 3. These parameters

are, the number of time-steps T , the maximum number of normalized energy storage states of charge

S, the global rule damping factor Kg , the constant global proportional gain K, and the depth risk

perception sensitivity parameter d . The selected values for these various parameters are summarized
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FIGURE 5.9: Representation of a state-of-charge preference rule in which the preferred state-of-charge is set to the
constant value of 0.8 relatively to the maximum available energy storage capacity SOCmax.

FIGURE 5.10: Representation of a state-of-charge preference rule in which the preferred state-of-charge is set to one of
three predefined values (0.2, of 0.5, and of 0.8) while closely following the global time-dependent rule depicted in Figure 5.6.
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T S Kg d K
24 11 0.90 0.05 1.00

TABLE 5.3: Parameters used for building the risk perception examples shown in Figure 5.11.

in Table 5.3. It should be stressed that a constant rather than a variable value of depth d was used for

building the present risk perception surface examples. Finally, on the present examples, the energy

storage states of charge were discretized in 10 % steps relatively to the maximum energy storage

capacity SOCmax.

The four risk perception surface examples obtained with the previously described inputs are depicted

in Figure 5.11, which is composed of four subplots. These were obtained from the four different

state-of-charge preference rules depicted in figures 5.7 through 5.10.

The top-left subplot (Subplot 1) corresponds to the case where the constant state-of-charge preference

rule represented in Figure 5.7 was used. Such rule defines that the operator prefers to always keep

the energy storage close to 20 % of its maximum capacity because this is the value that comprises the

less amount of risk perception. One can see that the corresponding risk perception surface will always

undervalue measured uncertainty in cases where the state-of-charge is close to 20 % comparatively to

the cases where the same state-of-charge gets far from that value.

The inverse case is verified regarding the low-left subplot (Subplot 3) in which a constant state-of-

charge preference was also used. However, in this case, a value of preference rule of 80 % energy

storage capacity was used, which corresponds to the rule depicted in Figure 5.9. This value is symmet-

rical to the one used for obtaining Subplot 1, relatively to the middle-value of energy storage capacity

(50 %). This is why the behavior of the corresponding risk perception surface is exactly opposite to

the one that was obtained in Subplot 1.

The symmetrical property of Algorithm 3 mentioned in the previous paragraph is clearly verified in

the top-right subplot where the constant state-of-charge preference rule of 50 % was used. Such rule

is depicted in Figure 5.8. The risk perception surface of the corresponding subplot (Subplot 2) clearly

shows that measured uncertainty will always be undervalued in cases where the state-of-charge is close

to 50 % comparatively to cases where the same state-of-charge gets far from that value.

Finally, in the lower-right subplot (Subplot 4), the variable state-of-charge preference depicted in
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Figure 5.10 was used. The risk perception surface obtained in this case can be seen as a mix of the

previous ones, which was expected. The obtained surface therefore presents discontinuities in the

points where the algorithm leaped from one state-of-charge preference to another. In the present work,

this does not pose a problem because only one next stage is evaluated at a time. However, this may

possibly cause problems if one wishes to increase the stage-ahead visibility for preparing the system

to the uncertainties that are predicted more ahead in time.

To conclude the analysis of Figure 5.11, it should be noted that the global time-dependent rule that was

considered for obtaining the different risk perception surfaces is clearly visible in the four plots if one

keeps in mind the form of such rule, which is depicted in Figure 5.6.

As an ending note on the present matter, it should be said that in some cases the operators might prefer

to supply their own risk perception surface instead of some design rules or principles. In such cases no

algorithm for constructing such risk perception surface would be needed. However, no incompatibility

issues should arise between such approach and the one proposed herewith if the state and time resolu-

tions of the risk perception surface are compatible with those used by the power system cell scheduling

algorithm.

5.5.2 Integration of Day-Ahead Market Price Uncertainty

An inspection of the power system scheduling problem defined in section 5.4 combined with the

scheduling objective used in this work and described in section 5.3 reveals that the scheduling is per-

formed for single valued prices issued from point price forecast methods. However, such point fore-

casts comprise a given amount of uncertainty due to the stochasticity of market prices. In a stochastic

context, some uncertainty model needs to be considered so that a method for integrating market price

uncertainties in the scheduling process can be designed.

Different ways to model uncertainty were discussed in section 4.2. From these, the probabilistic dis-

crete scenarios: approach (vide Figure 4.1) was selected for modeling market price uncertainty. The

scheduling model proposed here incorporates discrete market price values. Consequently, it is already

suited for the utilization of discrete day-ahead electricity market price scenarios.

:In this section, for facilitating the discussion only probabilistic discrete scenarios are mentioned. However, the discussion
and the approach followed in this work are also compatible with the case where possibilistic discrete scenarios are available.
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FIGURE 5.11: Examples of risk perception surfaces obtainable through algorithm 3.

147



Scheduling of Power System Cells Integrating Stochastic Power Generation

In the scope of the problem dealt with in this work, single-stage market price scenarios were con-

sidered, where each market price realization at a given hour t represents a single-stage market price

scenario p̂n,t, where n P t1; 2; . . . ; Ntu and Nt represents the number of price scenarios available at

hour t. Then, the estimated outcome obtained for each scenario p̂n,t is weighted by the probability of

occurrence of the corresponding scenario p pp̂n,tq, where
°Nt
n�1

�
p pp̂n,tq

�
� 1. This is the option that

was selected in the frame of this work, which corresponds to modeling day-ahead market price uncer-

tainty through a probabilistic discrete scenario approach belonging to the Discrete Points uncertainty

modeling class depicted in Figure 4.1.

Single-stage discrete market price forecasts can be obtained through the use of probabilistic price

forecasting models capable to supply complete probability density function forecasts per time-stage.

This can be achieved, for instance, through the use of probabilistic density function forecasting models

based on kernel density estimators like the one proposed and used in [158]. However, such models

supply continuous probability density functions, which therefore need to be discretized following some

principle. In general, such distributions may be discretized according to three parameters:

1. the number discrete classes or bins per time-stage Nt covering the complete domain of the orig-

inal continuous probability density function;

2. the ordered cumulated probabilities of occurrence of each bin p pp̂n,tq, where n P t1; 2; . . . ; Ntu;

3. the principle to follow for associating a single discrete scenario p̂n,t to each bin (e.g.: the point

corresponding to the center of mass of each bin, the middle point,. . . ).

After having defined the parameter described in the previous list, the integral of each continuous proba-

bility density function is then computed in Nt steps, where each integral computation phase stops when

the value of the integral equals p pp̂n,tq. Then, Nt single-values (one per bin) are determined according

to the principle selected for associating a single discrete scenario p̂n,t to each bin. It should be noted

that the time needed for computing the power system cell schedule tends to increase in a rather linear

way with the number of single-stage price scenarios used.

If different day-ahead price scenarios per time-stage are available, then some principle needs to be

followed for deciding which actions should be taken. Indeed, each price scenario will lead to a different

set of optimal dispatchable generation and load levels and, consequently, to different scheduled power
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interchanges at the PCC. The most basic way that was used for defining the optimal single-stage actions

to take consisted in computing Nt single-stage scheduling problems per state st and per future state

kt�1. Then, the schedule yielding the best weighted return was selected and such weighted return

used as the spot input of the spot-risk model that was previously defined. However, some additional

extensions to the proposed power system cell scheduling model were also developed. Such extensions

were designed as options for deciding which single-stage scheduling actions should be taken. Such

extensions are inspired in the works of Miranda in [93, 119] and are based on the Minkowski Distances

that were presented in section 4.5.5.1 and on the alternative ranking methods based on such distances,

which were described in section 4.5.5.2.

5.5.2.1 Single-Stage Integration of Market Price Uncertainties Through the Use of Minkowski

Distances

The use of Minkowski Distances for performing the ranking of available alternatives was described in

subsubsection 4.5.5.2. The application this type of approaches into the power system cell scheduling

model for determining and selecting the optimal single-stage actions to take is quite straightforward.

It consists in applying the generic equations 4.10 and 4.11 to the specific case of determining and

selecting the optimal single-stage actions to take. However, for applying the concepts that are behind

such equations one needs to determine the Ideal Point [3], as was explained in 4.5.5.2 and then the set

of alternative actions.

In this work, the so-called ideal point is considered as the one which yields the best possible result when

no uncertainty exists. Following this consideration, one ideal reference point is determined per future

day-ahead market price scenario. Such point therefore yields the optimal solution if its corresponding

scenario actually occurs. The scenario is defined by each specific discrete realization possibility of the

day-ahead market price p̂n,t.

The set of alternative actions is herewith considered as the set of energy storage state-of-charge transi-

tion options at each time-stage t of the scheduling horizon T leading to feasible future states of charge,

where a given possible future state-of-charge is given by kt�1. Therefore, the adapted formulations for

determining the optimal transition ν�st,kt�1
between state st at time-stage t and state kt�1 at time-stage

t� 1 are included below. For simplifying the speech, a transition to state kt�1 will be simply referred

to as alternative k.
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The integration into the power system cell scheduling model of a method based on Minkowski Dis-

tances for ranking and selecting amongst available alternatives may be achieved by modifying Equa-

tion 4.10 to Equation 5.30:.

min
k

$&
%
�

Nţ

n�1

�
p pp̂n,tq

α
����πk,t|n � πBestt|n

	α���
��1{α

,.
- α P Z� (5.30)

where,

• k represents the energy storage state transition alternative;

• n represents nth day-ahead price scenario at time-stage t, where n P Nt;

• α is defines the order of the Lp-distance to be employed;

• p pp̂n,tq represents the probability of occurrence of the nth day-ahead market price scenario at

time-stage t;

• πk,t|n represents the profit associated to alternative k at time-stage t under the event of scenario

n;

• πBestt|n represents the best possible profit that could be achieved at time-stage t under scenario n.

In Equation 5.30, different values of α define different types of distances to be used, as was described

in subsection 4.5.5.1. If α � 1, the resulting distance is the so-called Manhattan Distance. The

corresponding alternative ranking has been named Probabilistic Choice in [93, 119];. If α � 2, then

one is using the well-known Euclidian Distance. The corresponding alternative ranking has been

:In Equation 5.30, the α symbol was preferred to the p symbol present in Equation 4.10 for avoiding confusion between
this value and p̂n,t

;This designation can be misleading because the remaining choice methods of the same family (obtainable through
different selections of α) also use of probabilities. Moreover, all the choice methods can be used under a possibilistic
framework. Hence, this method (Probabilistic Choice) is renamed Expectancy Choice because, in any case, its employment
is equivalent to using the expected value decision-making paradigm that was described in subsection 4.5.1.
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named Euclidian Distance in [93, 119]:. If α Ñ 8, then one is using the Infinite Distance. The

corresponding alternative ranking has been named Risk Analysis in [93, 119];. Here, we described the

most commonly used values for α. Of course, other values of α can also be used.

In the case of the infinite distance (α Ñ 8), the Robust Choice decision-making problem can be

formulated in a simpler way, as defined through Equation 5.31 [3, 83, 93, 119], which is an adaptation

of Equation 4.11 to the specific problem addressed here.

min
k

"
max
n

!
p pp̂n,tq

���πk,t|n � πBestt|n

���)* α P Z� n P Nt (5.31)

5.6 Conclusions of the Chapter

This chapter proposed a complete model for performing the scheduling of a power system cell. Firstly,

a modeling background was provided comprising a discussion on the many modeling possibilities

and the description of the main objective of the model as well as some of its possible applications.

Then, the power system cell scheduling problem formulated. Subsequently, a deterministic solution

method for addressing such problem based on a deterministic Dynamic Programming approach was

proposed. Such deterministic solution method was then extended for incorporating the energy- and

day-ahead market-related uncertainties associated to the scheduling problem. For that specific purpose,

a discussion on the uncertainty models that are used is given. Finally, several models for addressing

such uncertainties were proposed, formulated and discussed. Such discussion was completed with

illustrative examples.

In the next chapter, some case-studies are analyzed for giving some insight on the results that can

:This terminology can be confused with the well-known distance that is at its basis. Here, it is renamed Euclidian Choice.
This contributes to eliminate the possibility of confusion by directly bearing the word Choice that intuitively indicates that
it is a model for making choices. Moreover, this terminology is closer to the proposed Expectancy Choice one, which may
facilitate the association of the two as belonging to the same family.

;This term may lead to a confusion because many different things are named in the same way. Here, it is renamed Robust
Choice because this decision paradigm corresponds to choosing the alternative leading to the least estimated future regret.
In other words, alternatives selected through this last paradigm can be seen as those that are more robust for every possible
scenario in the sense that they always lead to the minimum a priori estimations of absolute regret. Moreover, this terminology
is closer to the Expectancy Choice and to the Euclidian Choice ones.
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be obtained through the proposed power system scheduling model. Such case-studies comprise a

microgrid and a combined wind-hydro power plant participating on the NordPool Elspot day-ahead

market.
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CHAPTER 6

Case-Studies

CHAPTER OVERVIEW

IN chapter 5, a methodology was developed for performing the day-ahead scheduling of power system cells
operating under day-ahead electricity market conditions. Such methodology comprises several stochastic

scheduling alternatives, which were elaborated and described. In this chapter, this methodology is tested on two
case studies. The first case-study considers a microgrid while the second considers a combined wind/pumped-
hydro system.

The chapter starts with a high-level description of the individual objectives of each case-study. Then, it proceeds
with the description of the forecasting methods used for producing the necessary inputs. Finally, the considered
case-studies and corresponding results are presented and analyzed.
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6.1 Objectives

This chapter evaluates the the power system cell scheduling methodology proposed in chapter 5. The

evaluation was made aims at illustrating the results that can be obtained through the use of the deter-

ministic scheduling method as well as through the different stochastic extensions that were added to

that base method. Its main objective is to analyze and compare such results.

The analyzes of the results are mainly based on two aspects. The first aspect concerns the revenue of

the power system cell operator while the second concerns on the generated energy imbalances. Both

aspects are analyzed for the different stochastic and deterministic approaches.

Two main case-studies are considered. One of them consists of a microgrid and is presented in sec-

tion 6.2. The other one consists of a combined wind/pumped-hydro and is presented in section 6.3.

The objectives of both case-studies are somewhat different.

The microgrid case-study is quite complete in the sense that it utilizes all the features of the proposed

methodology. It aims at illustrating the type of results that can be obtained while scheduling a system

comprising local dispatchable generation and loads. However, the available data used to build this case-

study was scarce. Furthermore, the models used for producing the necessary forecasts: are quite basic.

Therefore, only limited conclusions could be drawn. Still, this case-study allowed to have an insight

of the merits of each decision-making method proposed in chapter 5 regarding the energy imbalances

they generate.

The combined wind/pumped-hydro case-study considers not only the energy imbalances generated by

the considered decision-making methods but also the actual revenue these yield. This was possible

because relevant and enough real-world data was available and because forecasts produced through

a state-of-the-art wind power forecasting model could be used as input to the scheduling tool. This

allowed to perform a trade-off analysis between revenue and generated energy imbalance. However,

the decision-making models based on Minkowski distances could not be employed here. This is due to

the lack of a sufficiently accurate market price forecasting model permitting to build sufficiently good

hourly market price scenarios.

:These models are described further ahead.
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The proposed risk perception approach was used in both case studies.

The forecasting methods used for producing the various forecast inputs for both case-studies are

quickly described in the next section.

6.1.1 Forecasting Tools Used for Producing the Required Data

Two forecasting tools were used for producing the various load and non-dispatchable renewable energy

production forecasts needed as input for the two cases-studies considered in this chapter. The first

one consists of an advanced wind power forecasting model developed at the Center for Energy and

Processes based on kernel density estimators (KDE). This model was only used for forecasting wind

power production delivering complete probability density function forecasts as output. For the purpose

of the present case-studies, only the first two moments of such probability density function forecasts

(i.e.: mean and variance) were used. For details on the KDE wind power forecasting model please refer

to [158]. The second forecasting tool consists in a basic persistence-like method that was specifically

developed for the purpose of the present case-studies. This method is detailed below and produces

point and variance forecasts associated to the future values of the stochastic variable considered as

output based on past data.

Details on the Persistence-Like Forecasting Method

The persistence-like method predicts the future value of a given stochastic variable x̂sv according to

Equation 6.1.

x̂svd�1,t � xsvd�dlag ,t, dlag P Z�
0 , t P T (6.1)

where,

• d is the present day (in which one is performing the day-ahead scheduling);

155



Scheduling of Power System Cells Integrating Stochastic Power Generation

• t is the tth time-step of the scheduling horizon T ;

• dlag is the time-lag (in days) used for selecting the past occurrence of xsv.

The forecast error εsvd,t associated to the forecasted value x̂svd,t is given by:

εsvd,t � xsvd,t � x̂svd,t, dlag P Z�
0 , t P T (6.2)

where, xsvd,t is the actual occurrence of the the stochastic variable x̂sv at time-step t of day d.

The variance of the forecast error V ar
�
εsvd�1,t

	
relatively to time-step t of day d � 1 is calculated as

the square of the standard-deviation of the past series of errors as follows:

V ar
�
εsvd�1,t

�
�

1
nsv � 1

�
nsv¸
n�1

�
εsvd�n�1,t

�2
, nsv P Z�

0 , t P T (6.3)

where, nsv is the sample of past errors on which the variance is estimated.

For the present case nsv was set to 50, which means that the last 50 measures were used for estimating

V ar
�
εsvd�1,t

	
. This value results from a series of tests in which a compromise was sought between

the number of samples used and the stability of the results obtained. The value of dlag was set to: 7

in the case of load forecasts, 1 in the case of PV forecasts, and 1 in the case of price forecasts. These

values were the ones that maximized the performance of the forecasting tool for the corresponding

data time-series. Such performances were measured in terms of bias, mean absolute error (MAE), root

mean square error (RMSE), and mean absolute percentage error (MAPE):.

In the microgrids case-study, the local non-dispatchable loads and the local non-dispatchable renewable

energy productions were taken as independent random variables and, thus, the variance of their sum

:When applicable.
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taken as equal to the sum of their variances [159]. This hypothesis may well be criticized. However,

it is out of the scope of this work to consider the dependencies between forecasted variables. Instead,

it is considered that either such forecasts are produced taking into account such dependencies, either a

single forecast of the combined local non-dispatchable renewable energy production is made. In either

case, the proposed power system cell scheduling model is only responsible for the processing of the

forecast inputs.

6.1.2 Electricity Market Description

In the case-studies presented in sections 6.2 and 6.3, the operator of the power system cell is consid-

ered to participate on two subtypes of electricity markets:: the day-ahead market, and the regulating

market;. In the first case, the operator is considered to bid directly the obtained day-ahead schedule

to the electricity market. In the the second case, the operator is considered to pay any applicable reg-

ulation penalties established by the regulating market. The day-ahead market was considered on both

case-studies (i.e.: microgrid and wind/pumped-hydro). The regulating market was only considered in

the wind/pumped-hydro case-study because only this case evaluates the actual revenue obtained by the

cell operator as was explained in section 6.1.

Each electricity market has its own rules, defining the way electricity is to be sold or purchased, how

the prices are settled, and the obligations to which the participants are committed to. They are usually

complex due the amount of energy trading possibilities they offer, to their rules, and to the way they

operate, which is usually market-specific. An overview of different European electricity markets is

given in [161].

The NordPool electricity market was considered in both case-studies presented in this chapter. In

this electricity market, the prices and volumes are determined for the whole market area by matching

purchasing and selling curves§.

:Of course, the benefits of the power system cell could be increased by participating in additional markets (e.g.: intraday
markets), but, in this case-study, only a participation in the first two is considered.

;This terminology is in agreement with the one used, for instance, in [160]. Other designations for this type of markets
exist as in [19] were they are called Real-Time Markets. It should be also said that there is controversy on whether they can
actually be designated as being markets.

§For markets including different regions, regional day-ahead market prices are derived from system prices taking into
account transmission bottlenecks.
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The transmission system operator (TSO) is responsible for maintaining the physical balance between

production and consumption. Independent power producers are taken as balance responsible actors

that pay a given market imbalance price for any contribution to the global system imbalance when

participating directly to the market. Consequently, under the NordPool electricity market, positive or

negative imbalances may lead to regulation costs for independent power producers, which generally

decrease their income. The determination of the regulation prices is the result of the regulating market,

where actors with power reserves place bids for fast production increase or decrease. The upward

regulation price is then determined as the most expensive production increase measure proposed on

the market that was taken by the TSO. Inversely, the downward regulation price is determined as the

cheapest production decrease measure taken by the TSO. It should be said that, in NordPool, the market

participants are only penalized for their imbalances if these are opposite to the regulation measure taken

by the TSO. The interested reader may refer to [70] for obtaining further information on NordPool

market rules.

6.1.2.1 Day-Ahead Market

NordPool day-ahead electricity market rules (in the present case — Elspot) impose independent power

producers to place their production bids on day d till noon, the day-ahead market clearance, which is

usually referred to as gate closure time. However, the producers only start generating the corresponding

energy on the first hour of day d � 1. This results on a time-lag of 12 h with respect to the forecasts

that have to be used for preparing the bids. This time-lag corresponds to the best-case as, in fact,

independent power producers will continue to generate energy till the end of day d � 1, which gives

a total worst-case time-lag of 36 h. Any predictions the producers need to use for performing the

day-ahead schedule of their respective systems will thus have to respect such time-lag constraints.

6.1.2.2 Regulating Market

The market model used in this work for representing the regulating market is similar to the ones used

in [146, 160]. In general terms, for a given time-step t, the income It of a market participant bidding an

amount of energy Et but actually generating E�
t can be formulated as the combination of the income
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from the energy bid Et traded at price pt, minus the costs for regulation CREGt :

It � pt � Et � CREGt (6.4)

where the regulation cost CREGt relative to the imbalance energy dt is given by an a appropriate

function fpdtq described below:

CREGt � fpdtq �

#
p�t � dt, dt ¥ 0

�p�t � dt, dt   0
(6.5)

dt � E�
t � Et (6.6)

with p�t , p
�
t ¥ 0 being the upward and downward regulation prices for positive and negative energy

imbalances, respectively.

6.2 Microgrid Case-Study Description and Input Data

The model proposed in section 5.4 was tested on a single-node microgrid comprising one microturbine

rating 30 kW, a local load rating 200 kW, an interconnection capacity of 400 kW and energy storage

facilities with a capacity of 500 kWh. The local load is composed of residential loads bearing an ag-

gregated average value of 101 kW. The main parameters used for running the evaluation are described

in table 6.1. The values of ∆SOCmin and ∆SOCmax were considered to be equal to ∆SOC . The values

of ηdis (discharging efficiency of the energy storage) and of ηch (charging efficiency of the energy stor-

age) were considered to be in the order of 95 %, which yields an overall round-trip efficiency of about

η � 90 %. For creating the inputs, we have used:
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µpcct µcont ∆SOC PGmin PGmax η ∆ ptq

10 % 20 % 10 % 9 kW 30 kW 90 % 1 h

TABLE 6.1: Main parameters used for running the tests.

• residential load profiles corresponding to residential consumers in France;

• NordPool historical data;

• historical production data of a wind farm located in Central Europe. These were normalized by

the installed capacity of the wind farm;

• historical production data of a photovoltaic installation operating in Central Europe. These were

normalized by the installed peak capacity of the set of photovoltaic arrays.

For building the risk perception surface, two main principles were followed. The first one consists in

considering that the microgrid operator always prefers to operate the energy storage as close as possible

to its middle charging point (i.e.: SOCSpect � 50 %, @t P T ). The second one consists in adopting

the load forecast as an indicator of the riskier moments of the day, where higher load forecasts translate

to higher risk perceptions than lower ones.

The data represented in Figure 6.1 was used as load input. One can see that the quality of the forecast

is very high in the present case, however, this does not often happen in the real world. Here, the effect

is due to the use of customer profile data built from the aggregation of many residential consumers

distributed over a very large geographical area. On a microgrid, such aggregation can be much smaller

(depending on the microgrid size), which can increase uncertainties. At the same time, customers are

distributed over a relatively small geographical area. This may lead to an increased similarity of their

respective load profiles, which may decrease the amount of uncertainty associated to load forecasts.

Finally, microgrid customers may have access to smart metering systems and load managers, which

could further increase the similarity between the profiles of the various microgrid customers.

The data represented in Figure 6.2 were used as wind power (WP) production input. Comparatively to

the load case, the forecasts presented in Figure 6.2 comprise a higher amount of error despite the fact

that an advanced forecasting model was used. This is because the uncertainty associated to the wind

resource is much higher than the uncertainty associated to the load profiles that were used. The main

reasons for this were explained in the previous paragraph. The average production of the wind farm
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FIGURE 6.1: Forecasted and measured microgrid load.

FIGURE 6.2: Normalized forecasted and measured microgrid wind power (WP) production. The normalization was made
relatively to the installed capacity of the wind farm.

throughout the period represented in Figure 6.2 is of about 17 % of its nominal capacity.

The data represented in Figure 6.3 were used to represent photovoltaic (PV) units production in the

microgrid. One can see that there are important differences between forecasted and measured PV

production. This is most probably due to the uncertainty associated to the clearness of the sky and to

the ambient temperature. The average production of the PV arrays throughout the period represented

in Figure 6.3 is of about 3.6 %.

The data represented in Figure 6.4 were used as day-ahead market price input. It should be noted that

the price curves have a quite similar shape in the sense that the position of their respective peak values

and minimum values somewhat agree. This remains true even for the local peaks, at least for the most

part of the considered time period.
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FIGURE 6.3: Normalized forecasted and measured microgrid photovoltaic (PV) power production. The normalization
was made relatively to the installed peak capacity of the set of photovoltaic arrays.

FIGURE 6.4: Forecasted and obtained day-ahead market prices.

The formulation of the power system cell scheduling herewith proposed, uses price information for

taking single-stage decisions (level of dispatchable generation, level of controlled load,. . . ) and multi-

stage decisions (operation of the energy storage). Under a profit maximization operation objective

(the present case), it should be noted that the latter is mostly dependent on the global behavior of the

price curve. Indeed, if the quotient between the maximum and minimum values of the price series

compensate the energy losses due to energy-storage cycling, then it is financially interesting to use the

energy storage device [162]. Under such hypothesis, the only question is when to do what. Basically,

one should use stored energy when prices are high and store it when prices are low. In other words,

supposing that the use of the energy storage is compensated by price fluctuations, one only needs to

know the price behavior for optimizing the operation of the energy storage. Consequently, the point

forecasts used here are actually quite good for multi-stage scheduling purposes and not that good for

single-stage scheduling purposes.
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FIGURE 6.5: Illustration of the price forecast discretization process.

The present case-study utilizes the decision-making models based on Minkowski distances that were

developed in subsection 5.5.2.1. Weighted market price scenarios are needed for that purpose. These

were not available and so a simple method was developed to create them based on the available data,

which are point market price forecasts and associated predictive variances as was described in subsec-

tion 6.1.1.

The method assumes normality on each single-stage price forecast. Each forecasted distribution is

discretized in 5 different values as depicted in Figure 6.5. The central value corresponds to the point

forecast. The remaining ones are calculated by using the forecasted standard-deviation information

(square-root of the forecasted variance) as shown in the figure. Then qualitative probabilities were

associated to each possible discrete realization of the market price. In this way, each different discrete

market price forecast may be viewed as a single scenario. The resulting scenarios are represented in

Figure 6.6.

As can be seen in Figure 6.6, a number of five single-stage market price scenarios per time-stage were

built from the variance associated to the distribution of the past market price forecast errors comprising:

• A central scenario x̂ (black dots), corresponding to the mean forecast represented in Figure 6.6

and bearing a 0.50 probability of occurrence;
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FIGURE 6.6: Forecasted day-ahead single-stage market price scenarios. Black dots correspond to day-ahead market price
scenarios bearing a 0.50 probability of occurrence. Blue dots correspond to day-ahead market price scenarios bearing a
0.15 probability of occurrence. Green dots correspond to day-ahead market price scenarios bearing a 0.10 probability of
occurrence.

• Two scenarios x̂ � σx closer to the central one (blue dots), corresponding to deviations from

the mean determined as a function of the forecasted variance associated to day-ahead market

forecasts. Each of such scenarios bears a 0.15 probability of occurrence;

• Two scenarios x̂ � 2σx farther way from the central one (green dots), corresponding to devia-

tions from the mean determined as a function of the forecasted variance associated to day-ahead

market forecasts. Each of such scenarios bears a 0.10 probability of occurrence.

6.2.1 Results and Discussion

Several simulations were run for different renewable energy source (RES) production scenarios. To

build the scenarios, we considered different combinations of photovoltaic (PV) and wind turbine (WT)

capacities as described in table 6.2. For each of the scenarios, six simulations have been made, from

which two were deterministic and four were stochastic. The execution time was of about 11 s for

deterministic simulations and of about 48 s for the stochastic ones on a PIV Centrino 1.73 GHz with 1

Gb of RAM.

Here, as was described in section 6.1, the focus was put on the energy imbalances that the different

decision methods may imply on the operation of the main grid. In other words, the focus was put on the

behavior of the microgrid relatively to the main grid. More precisely, the energy imbalances generated

by the various decision-making methods at the point of common coupling (PCC) are evaluated. An
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ID PV (kWp) WT (kW) ID PV (kWp) WT (kW)
1 20 30 9 60 30
2 20 60 10 60 60
3 20 90 11 60 90
4 20 120 12 60 120
5 40 30 13 80 30
6 40 60 14 80 60
7 40 90 15 80 90
8 40 120 16 80 120

TABLE 6.2: Scenarios defined based on different PV and WT capacities.

indicator of such energy imbalances is the error between expected PCC power flows and measured

PCC flows. For the whole period this is evaluated with the NMAE (normalized mean absolute error)

criterion.

In Figure 6.7, one can verify that the deterministic method using perfect forecasts never leads to errors

at the PCC (black bars always bear the value of 0 % NMAE), which was expected. However, the

deterministic method using imperfect point forecasts led to NMAE values between 15 % and 18 %.

The NMAE performance of the stochastic methods was comparable to that of deterministic methods

improving it slightly in several scenarios with the exception of the Robust Choice method, which

consistently underperformed greatly the deterministic method based on the use of imperfect point

forecasts.

In Figure 6.7, it is clear that the main parameter affecting the NMAE performance of the various

methods is the amount of considered wind power capacity for each scenario. Scenarios considering

the same amounts of wind power capacity led to very similar results. This was expected because, as

was described in section 6.2, the average production of the wind power is higher than that of the PV

(17.5 % against 3.6 %), which makes the influence of wind power forecasts more important than the

PV ones. Therefore, for simplifying the analysis, the initial 16 scenarios described in Table 6.2 were

grouped according to their respective wind power capacities as described in Table 6.3.

The NMAE values corresponding to each decision method of each scenario group were taken as the

average of the NMAE results obtained per single pair method/scenario contained in the scenario group.

As an example, according to Table 6.3, the value of NMAE for the stochastic spot-risk method of

scenario group A corresponds to the average value of the NMAE results obtained for the stochastic
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FIGURE 6.7: Mean absolute error at the point of common coupling (PCC) normalized by the peak PCC power flow that
was obtained for the various decision-making options that were tested and for every scenario described in Table 6.2.

Group Scenario ID
A 1, 5, 9, 13
B 2, 6, 10, 14
C 3, 7, 11, 15
D 4, 8, 12, 16

TABLE 6.3: Scenario grouping according to wind penetration.
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FIGURE 6.8: Mean absolute error improvement with respect to persistence at the point of common coupling (PCC)
normalized by the peak PCC interchange that was obtained for the various decision-making options that were tested and for
every scenario described in Table 6.2. Such improvement was calculated taking as reference the NMAE results obtained for
the determinist decision-making method based on imperfect point forecasts that are depicted in Figure 6.7.

spot-risk method under scenarios 1, 5, 9, and 13.

The NMAE improvements obtained by the spot-risk, expectancy choice and euclidean choice methods

relatively to the NMAE results obtained by the deterministic method based on imperfect point forecasts

are depicted in Figure 6.8, which already considers the scenario grouping described in the previous

paragraphs.

Figure 6.8 shows that the euclidean choice stochastic method outperformed the reference determin-

istic decision-making method using imperfect point forecasts by around 2.3 % on the scenarios with

the highest wind penetration (i.e.: scenarios 4, 8, 12 and 16), which corresponds to scenario group

D. However, this method had the same performance as the reference method on the remaining sce-

nario groups. The spot-risk and the expectancy choice stochastic methods consistently outperformed

the reference method in every scenario group proportionally to the considered wind power capacity.

Moreover, both of these methods outperformed the euclidean choice stochastic method. However, the
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spot-risk method slightly outperformed the expectancy choice one on every scenario group. Indeed,

the improvements attained by the spot-risk method relatively to those obtained through the expectancy

choice one ranged from 0.5 % up to 1.3 %. Hence, given that the spot-risk method is the simplest of

the stochastic variants, then it seems to be the stochastic method of choice. Finally, due to their quite

low NMAE performance (vide Figure 6.7), the robust choice stochastic decision method never im-

proved the NMAE obtained through the deterministic decision-making method using imperfect point

forecasts, which is used as the reference method in Figure 6.8. Therefore, the NMAE improvement

results obtained through the robust choice method were not represented in Figure 6.8. In addition, it

not interesting to depict the NMAE improvement results obtained through the unrealistic deterministic

decision-making method using perfect point forecasts, as such results are unattainable in practice.

To conclude, the analysis of the results depicted in Figure 6.8 shows that the integration of the uncer-

tainties associated to the microgrid scheduling problem through stochastic decision-making methods

managed to improve the energy behavior of the microgrid relatively to their deterministic counterparts.

Considering the average of the errors between scheduled and measured power flows at the PCC, the

schedules obtained through deterministic method using imperfect point forecasts and those obtained

through the stochastic methods based on spot-risk, expectancy choice, and euclidean choice led to

average errors of about 1.5 % for all the individual scenarios described in Table 6.2. The only exception

was the robust choice stochastic method, that presented an average error of about 0.4 %. The energy

storage utilization was approximately the same for both the deterministic and the stochastic cases. The

only exception happened for the robust choice stochastic method, which used the storage on fewer

occasions and amounts.

6.3 Wind/Pumped-Hydro Case-Study Description and Input Data

In this case-study, a real 21 MW wind farm located in the North West of Denmark for which power

production data was available for the years 2000, 2001 and 2002 was considered. Numerical weather

predictions by the Hirlam model, including wind speeds and direction for different heights correspond-

ing to same time and area were also used as input for generating the wind power forecasts. The wind

farm was considered to be coupled with an energy storage (pumped-hydro) rating 40 MWh and bear-

ing 6 MWh/h up/down ramp-rates. The charge/discharge efficiencies of the storage device were set to
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FIGURE 6.9: Wind/Pumped-Hydro model.

86.6 %, which yields a global efficiency of around 75 %. The combined wind/pumped-hydro system

considered is depicted in Figure 6.9.

Historical data on NordPool electricity market [70] prices were used. Such market is divided in several

market areas. The selected historical price data correspond to the market area incorporating the location

of the wind farm used in this study (West Denmark).

In NordPool, the hourly contracts for each hour of the coming day are traded on the day-ahead market,

named Elspot. The Elspot gate closure time is at 12:00 pm (local time) of the preceding day. Hence,

the last available numerical weather predictions data (06:00 of the same day) were used as input to the

wind power forecasting tool and forecast horizons were selected in order to get the hourly forecasts

for the next day. The wind power forecasts were then used to calculate the bids to place to the market.

During the delivery day, the energy storage was operated as described in subsection 6.3.1. The learning

and testing of the wind power forecasting model were performed with the data corresponding to the

years 2000 and 2001, respectively. The simulations of the market participation were performed with

the data and forecasts corresponding to 2002.

In the present case-study, the optimization of the combined wind/pumped-hydro system under both

day-ahead and regulating market conditions is done in two phases. The first focuses on the production

of the day-ahead schedule of the wind/hydro system, based on its characteristics and on the available

day-ahead hourly price and wind farm output forecasts. The second phase focuses on the short-term

intraday operation of the wind/hydro system.

In the scheduling phase the optimal power output setpoints of the energy storage PStot are calculated at

each time-step t of the scheduling horizon T to maximize the income of the combined wind/pumped-
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hydro system operator, according to the methodology proposed in chapter 5. Forecasts of day-ahead

prices and wind power are used as input to the scheduling process according to the methods described

in subsection 6.1.1. In the operation phase, any existing energy imbalances between the scheduled

power exchange and the actual or real power exchange at the point of common coupling (PCC) are

compensated to the maximum possible extent through the operation model described below.

6.3.1 Intraday Operation of the Wind/Pumped-Hydro System

The approach that was followed for operating the energy storage device during the delivery day is based

on a model similar to those used in [30, 34]. The reader should note that every equation presented in this

section is time-independent and valid for every time-stage t. Hence, for simplifying the mathematical

notation, the time index t shall be neglected in all equations presented in this section. Positive values

of POpPCC , POpSto, and PWF mean that the corresponding elements are supplying power to the single

node system model represented in Figure 6.9. Conversely, negative values of POpPCC and POpSto
: mean

that the corresponding elements are extracting power from the single node system model represented

in Figure 6.9.

In the operation phase, the power balance equation relative to the single-node system bus represented

in Figure 6.9 is given by Equation 6.7, where POpPCC and POpSto are the exchanged power at the PCC and

the storage power contribution in the operation phase, respectively, and PWF is the actual wind farm

power production (i.e.: measured wind farm output).

POpPCC � POpSto � PWF � 0 (6.7)

In the operation phase, the storage device is operated taking into account the actual wind power gen-

eration which will be different than the forecasted one. Different strategies could be adopted for man-

aging the storage device. Here, the energy storage is used for reducing existing energy imbalances

between the scheduled power flow at the PCC (given by PPCC) and the actual power flow POpPCC .

Such imbalances are due to wind power forecast errors and are penalized by the market as explained

:It is considered thqt PWF ¥ 0 at all times.
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in subsection 6.1.2. Under the adopted operation strategy, the required storage power PReqSto is given by

Equation 6.8, which is simply a different representation of Equation 6.7.

PReqSto � �pPPCC � PWF q (6.8)

The ability of the storage to fulfill the required PReqSto depends both on its power rating and its actual

state-of-charge (SOC). Consequently, PReqSto is bounded by the storage charge and discharge power

rating Pch and Pdis and by the stored energyESto. The latter will determine whether the storage device

allows to deliver or absorb the required amount of power. In order to take into account the storage

charging and discharging efficiencies ηch and ηdis, the charge and discharge states are considered

separately.

Whenever charging, or if the energy storage is not being used (PReqSto ¤ 0), the minimum feasible value

of POpSto is given by the sequential application of equations 6.9 through 6.12, where Emax and Emin are

the maximum and minimum energy capacity of the storage. ∆t is the time step used for the operation

process.

PReqSto � Max
�
Pch, P

Req
Sto � ηch

	
(6.9)

Ech � Max
�
PReqSto �∆t, Emax � ESto

	
(6.10)

EOpSto � Ech � η
�1
ch (6.11)

POpSto � EOpSto �∆t
�1 (6.12)

Whenever discharging (PReqSto ¡ 0), the maximum feasible value of POpSto is given by the sequential

application of equations 6.13 through 6.16.
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PReqSto � Min
�
Pdis, P

Req
Sto � η

�1
dis

	
(6.13)

Edis � Min
�
PReqSto �∆t, ESto � Emin

	
(6.14)

EOpSto � Edis � ηdis (6.15)

POpSto � EOpSto �∆t
�1 (6.16)

The above equations permit to simulate the utilization of the energy for coping with any power imbal-

ances that may occur to the maximum possible extent.

The difference between POpSto and PReqSto gives the energy imbalance at every moment in time, which

takes negative values in case of power shortage and positive values in case of power surplus.

6.3.2 Overall Simulation Methodology

The methodology followed for estimating the annual profits generated by the wind/pumped-hydro

system combines the scheduling and the operation phases needed for managing the system. Figure 6.10

depicts the overall simulation methodology that was followed. It describes the main inputs that were

used, as well as the simulation structure that was followed for coordinating the scheduling phase with

the operation one (represented by the Decision Tool box in the figure).

The methodology proposed in chapter 5 was used for performing the day-ahead schedule of the wind-

pumped-hydro system. Namely, the scheduling problem was modeled as a dynamic programming

boundary value problem. This means that both the initial and the final stored energy contained in the

energy storage device of the dynamic programming recursion had to be specified prior to running the

scheduling tool. For coping with this, the following procedure was followed:

• The storage device was assumed to start the simulation at 50 % of its maximum storage capacity;
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FIGURE 6.10: Schematic representation of the overall wind/pumped-hydro simulation including both the scheduling and
the intra-day operation phases.
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• The storage device was assumed to always reach a final state of 50 % of its maximum storage

capacity;

• From the second day till the end of the simulations the energy storage device was initialized at

the final SOC that was obtained after the previous day operation takes place. As a result, the

dependency between the scheduling and the operation phases could be somewhat captured.

6.3.3 Deterministic Results and Discussion

Here, the deterministic version of the power system cell scheduling method proposed in chapter 5 is

tested. For evaluating the performance of such method, six different scenarios have been simulated.

In each of them different approaches were considered for evaluating the impact of the uncertainties

associated to wind power and day-ahead price forecasts. The storage is used in different ways so as

to be able to evaluate its contribution for reducing the imbalance penalties. Below, each scenario is

described in detail while a code is associated (indicated in bold characters) serving as reference in the

presentation of the results later on:

1. WPPI_SPPI: Perfect knowledge of the future values of both the wind farm output and the day-

ahead prices. The energy storage is taken into account in both the scheduling procedure and in

the operation phase. Therefore, this case supplies the upper bound of the potential profit when

both the schedule and the operation procedures are used.

2. WPPI: Perfect knowledge of the future values of the wind farm output. No advanced day-ahead

scheduling method is used for taking decisions regarding the energy storage. Thus, the day-ahead

scheduled power exchange at the PCC corresponds to the available wind power forecasts. Such

schedule is independent of day-ahead market prices because, as previously said in section 2.7,

the system operator is considered as a price taker. The storage device is used however during the

operation to smooth out imbalances that occur due to the wind power forecast errors. Therefore,

this case supplies the upper bound of the potential profit when the scheduling procedure is not

used.

3. WPPred_SPPred: Forecasts of wind power and day-ahead day-ahead prices are considered.

The energy storage is taken into account in both the scheduling procedure and in the operation
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phase. Therefore, this case supplies the potential profit when both the schedule and the operation

procedures are used in a realistic case.

4. WPPred: Forecasts of wind power output are considered. No advanced day-ahead scheduling

method is used for taking decisions regarding the energy storage. Therefore, as in case 2, this

scenario is independent of day-ahead market prices. Consequently, the day-ahead scheduled

power exchange at the PCC corresponds to the available wind power forecasts. The storage

device is used however during the operation to smooth out imbalances that occur due to the wind

power forecast errors. Hence, this case supplies the lower bound of the potential profit when the

scheduling procedure is not is not used.

5. WPPI_SPPred: Perfect knowledge of the future values of the wind power and forecasts of the

day-ahead day-ahead prices is considered. The energy storage is taken into account in both the

scheduling procedure and in the operation phase. This case supplies the potential profit loss due

to the errors contained in day-ahead price forecasts.

6. WPPred_SPPI: Perfect knowledge of the future values of both the day-ahead day-ahead prices

and forecasts of the wind power is considered. The energy storage is taken into account in both

the scheduling procedure and in the operation phase. This case supplies the potential profit loss

due to the errors contained in wind power forecasts.

Figure 6.11 summarizes the results obtained for the six previously described simulations. One can

see that, in the realistic case (WPPred_SPPred) the obtained profit is improved by using the proposed

scheduling tool relatively to the base realistic case case (WPPred), which did not use it. Such im-

provement is of about 4.63 %. This represents a considerable amount bearing in mind that the SP-

Pred_WPPred and the WPPred cases contain the same type of energy storage facilities. Hence, the

improvement is obtained by intelligently operating them. However, Figure 6.11 clearly shows that

the WPPred_SPPred results are still far from the maximum obtainable profit given by WPPI_SPPI.

More specifically, an extra 17.73 % income could be achieved by improving the forecast inputs of

the tool, which would reduce the penalties applied to the day-ahead market profit (also represented by

Figure 6.11 by the dashed bars for each simulation).

It should also be said that the expected revenue in the WPPred_SPPI case surpasses the maximum

attainable revenue that is given by the WPPI_SPPI case using only perfect forecasts as input. This is

because despite the fact that the day-ahead schedules are optimal from a profit generation viewpoint,
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FIGURE 6.11: Profits obtained for each of the six simulated scenarios. The dashed bars represent the day-ahead market
profits due to day-ahead market participation. The filled bars, represent the obtained operation profit, which is given by the
per-case day-ahead market profit minus the penalties associated to each case.

they are based on imperfect forecasts for wind that are biased forecasting on average more wind power

production than the one that is actually produced. As the price input is the same in the WPPred_SPPI

and in the WPPI_SPPI cases, then it is normal that the expected profits associated to the WPPred_SPPI

case be higher than those associated to the WPPI_SPPI case because the forecasted wind energy pro-

duction is also higher in the former case than in the latter one.

Uncertainty in wind power forecasts is behind most of the income losses. This is illustrated in Fig-

ure 6.11 by the gray filled bar associated to the WPPred_SPPI case, which says that, relatively to the

WPPI_SPPI case, 11.74 % of the profits are lost due to the uncertainty in such forecasts. At the same

time, the grey filled bar associated to the WPPI_SPPred case says that, relatively to the WPPI_SPPI

case, 5.37 % of the profits are lost due uncertainty in day-ahead price forecasts. However, the previous

income losses were not additive, as their sum (17.11 %) is smaller than the income loss obtained us-

ing both day-ahead price and wind power forecasts (14.55 %), which is given by the WPPred_SPPred

realistic case.

Finally, in Figure 6.11 one can see that the penalties in the regulating market are reduced by using the

proposed tool. This is further analyzed in Figure 6.12.

In Figure 6.12, the dark blue bars represent the amount of penalties relatively to the maximum possible

profit that is obtained by the ideal WPPI_SPPI case (perfect forecasts). It can be seen that the WPPred
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case is the one with the highest penalties level. It can also be seen that the level of penalties of the

WPPred_SPPred case is unexpectedly lower than that of the WPPred_SPPI case. Hence, the combined

use of wind power and day-ahead price forecasts (WPPred_SPPred) reduced in fact the amount of

imbalance probably due to some compensation existing between spot price and wind power forecast

errors. This may be due to the fact that wind production is not perfectly independent from market

prices, which may lead to some compensation between the errors associated to the forecasts of both

variables in the long run. Nevertheless, the use of day-ahead price forecasts renders the energy storage

scheduling sub-optimal. This results in loss of part of the income as is illustrated in Figure 6.11 where

the grey filled bar associated to the WPPI_SPPred case shows that, relatively to the WPPI_SPPI case,

5.37 % of the profits are lost due to the uncertainty associated to day-ahead price forecasts.

Figure 6.12 also contains for each simulated case the amount of penalties relative to the revenue in

the day-ahead market (light blue dashed bars) and the amount of penalties relative to the operational

revenue (light blue filled bars). These values are in general greater than those associated to the dark

blue bars (relative to the upper bound revenue). The only exception is the value associated to the dashed

bar corresponding to the WPPred_SPPI case, which is the only one using perfect information of the

day-ahead price as inputs and the only one in which the expected revenue surpasses the maximum

possible revenue.

The light blue filled bars in Figure 6.12 indicate that the penalties associated to the base case (SPPred),

in which the proposed tool is not used, are of approximately 20 % of the obtained operation revenue.

This value drops to approximately 13 % in the case where the proposed tool is used with realistic inputs

(WPPred_SPPred). Finally, no penalties are associated to the WPPI_SPPI, WPPI and WPPI_SPPred

results. This is expected because all of these cases used perfect information of wind power production

as inputs, and, therefore, never generate energy imbalances.

Lastly, it is interesting to note that the profit improvements achieved by the proposed method are not

due to imbalance reduction, but rather to reduction of imbalance bias. This is shown in Table 6.4

and Figure 6.13. Specifically, from Table 6.4 it is concluded that the total energy imbalance obtained

throughout the simulated year of operation remains practically the same in every case with a small

improvement (2.28 %) in the WPPred_SPPred (realistic) case relatively to the base realistic case (WP-

Pred). In Figure 6.13, one can see that through the use of the proposed tool (WPPred_SPPI and WP-

Pred_SPPred cases), the energy imbalance structure changes in the sense that the symmetry between

energy shortage and energy surplus increases relatively to the case in which the optimization tool is not
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FIGURE 6.12: Penalties associated to each of the six analyzed test cases.

WPPred_SPPI WPPred_SPPred WPPred
10.830 GWh 10.589 GWh 10.836 GWh

TABLE 6.4: Energy imbalance obtained throughout the simulated year of operation.

used (WPPred).

6.3.3.1 Insight on the Value of Energy Storage

In order to further assess the value of energy storage, the operation of the system was simulated with

and without energy storage. The main results are summarized in Table 6.5, where the case with energy

storage is compared to the case where the scheduling tool proposed in chapter 5 is not used and, thus,

the storage is only used for overcoming the energy imbalances generated by the wind farm.

Shortage Surplus Total
With Storage (WPPred) 6.697 GWh 4.139 GWh 10.836 GWh

No Energy Storage Available 10.886 GWh 9.723 GWh 20.601 GWh

TABLE 6.5: Comparison between the energy imbalance results obtained in the WPPred case and in its corresponding case
in which no energy storage was considered.

The energy imbalances generated by the wind farm in the absence of energy storage are much higher

than in the case where the storage is used in coordination with the wind farm.
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FIGURE 6.13: Relative distribution of the obtained energy imbalances.

The results included in Table 6.5 show some interesting findings. On the one hand, the utilization of the

storage for overcoming the energy imbalances generated by the wind farm led to a total of 48.62 % of

reductions of such imbalances, which is quite considerable. Looking into more detail, both the energy

shortages and surpluses generated by the wind farm were reduced considerably. However, on the other

hand, the imbalance structure worsens considerably when the energy storage is employed.

Without being perfect due to the bias of wind power forecasts, the symmetry of the energy imbalance

structure is very good when no energy storage is used. However, such symmetry is highly degraded

when using the energy storage for overcoming the energy imbalances generated by the wind farm.

Consequently, energy shortages become much more often than energy surpluses as 62 % of the total

energy imbalances represent energy shortages.

In the WPPred case with storage, the storage device is used on an hourly basis for reacting to system

stresses caused by wind power forecast errors. Hence, no vision on the future is available and, conse-

quently, no advanced operation strategy is employed, as opposed to the case where storage is scheduled

on a day-ahead basis or operated according to some advanced operation strategy. Therefore, in the ab-

sence of an adequate operation strategy, the small bias associated to wind power forecasts tends to

force the storage towards one of its extremes (in this case, to fully discharge) more often. In the long

run, this leads to increases of one type of energy imbalance over another (in this case, energy shortages

are considerably higher than energy surpluses). In order words, if no advanced operation strategy is

used, then the energy storage tends to amplify the effects of the bias associated to wind power forecasts
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WPPred WPPred_SPPred WPPI WPPI_SPPI
No Energy Storage Available 96.51 % 92.24 % 86.12 % 78.82 %

TABLE 6.6: Comparison between the revenue attained in the case where no energy storage is available and the realistic
(WPPred, WPPred_SPPred) and perfect (WPPI, WPPI_SPPI) cases in which an energy storage device is considered.

as shown in Table 6.5.

To further verify the effect mentioned in the previous paragraph, it can be said that, when the energy

storage was not used, the energy shortage rose up to about 53 % of the total energy imbalances gen-

erated by the wind farm (i.e.: about 3 % of wind power forecast bias). This value is close (but worse)

to the values obtained when the proposed scheduling tool is applied for performing the day-ahead

schedule of the energy storage, which were of about 51 % (vide Figure 6.13).

As a general conclusion, the utilization of energy storage contributed to the reduction of the total

imbalances generated by the wind farm. The day-ahead strategic scheduling of the storage device

contributed to the improvement (symmetry) of the energy imbalance structure and even to the reduction

of the impacts of the bias associated to wind power forecasts.

The results obtained regarding the revenue of the wind farm operator in the case where no energy

storage is used are summarized in Table 6.6. These results compare the revenue attained in the case

where no energy storage is available with the realistic (WPPred, WPPred_SPPred) and perfect (WPPI,

WPPI_SPPI) cases in which an energy storage device is considered. One can see that the revenue ob-

tained is always smaller when no energy storage is used. In all cases considered, the revenue losses due

to the absence of energy storage were higher for the cases where the methods proposed in chapter 5 are

used (i.e.: WPPred_SPPred and WPPI_SPPI cases) than for those in which no day-ahead scheduling

of the energy storage is performed (i.e.: WPPred and WPPI cases). This shows that it is possible to

increase the revenues of systems comprising energy storage devices by using the methods proposed in

this work. More specifically, the realistic WPPred_SPPred case in which both a day-ahead schedule

and an energy imbalance filtering as the one described in subsection 6.3.1 are performed presented a

revenue that is 8.41 % higher than the revenue attained in the absence of an energy storage device.

As a global conclusion, the previous results show that the combined use of the methods proposed in this

work with the application of energy imbalance filtering through the employment of energy storage can

increase the revenue of power system cells like the one considered here while considerably reducing
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the energy imbalances due to forecast errors.

6.3.4 Results From Stochastic Approaches and Discussion

This part of the case-study complements the deterministic analysis that was made by testing the pro-

posed stochastic approach based on the concepts proposed in subsection 5.5.1. These concepts take

into account both the risk attitude and the risk perception of the operator of the power system cell. The

single-stage spot-risk model is used for integrating the energy-related uncertainties associated to the

day-ahead scheduling problem. In addition, point forecasts of day-ahead electricity market prices are

used.

In this part of the case study a sensitivity analysis of the main parameters described in subsection 5.5.1

(i.e.: d and β) is made. This creates a large number of scenarios to analyze and to compare with a

base reference case. For reducing the complexity in the presentation of the results, only the realistic

scenario WPPred_SPPred described in subsection 6.3.3 is considered and used as reference scenario

for the sensitivity analysis.

The risk metric used here uses the risk perception concepts described in subsubsection 5.5.1.5 by con-

sidering a risk perception surface P . The risk of obtaining energy imbalances due to wind power

forecast errors was considered and the objective was to reduce energy imbalances at the point of com-

mon coupling (PCC) while maximizing the revenue of the power system cell.

For minimizing the risk of obtaining imbalances at the point of common coupling (PCC) between the

power system cell and the main grid, the risk perception surface P was calculated using Algorithm 3

(vide subsubsection 5.5.1.5). the next two main principles were followed:

1. Global time-dependent rule principle: the degree of risk perception of the operator was assumed

to be proportional to the average day-ahead price curve over a year. This is because the dispersion

of imbalance costs of the same year is higher than that of day-ahead market prices while it

was observed that a rather close association (a high correlation) existed between the average

imbalance cost curve and the average day-ahead price one;

2. Preferred energy storage state-of-charge principle: the plant operator was assumed to prefer
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maintaining the storage as close as possible to a given state sSpec. This means that the risk per-

ception of the operator is minimized when the next storage state kt�1 equals sSpec. In the scope

of this case-study, we have further assumed such state to take the constant value of 50 %, as this

state-of-charge assures equal slack exists for charging and discharging energy, thus facilitating,

in principle, the minimization of energy imbalances.

For facilitating the comprehension of the remainder of the analysis, it should be remembered: that

a value of d � 0 implies risk indifference, which is equivalent to say that the scheduling method

becomes purely deterministic. Higher values of d increase the depth of the risk perception surface. This

increases the importance of estimated risks forcing the optimization algorithm to maintain the energy

storage state-of-charge equal or as close as possible to sSpec. Under such behavior, the optimization

algorithm ceases to work properly in the sense that it tends to overreact to estimated risks neglecting

scheduling outcomes. Hence, it is advisable to find some satisfactory compromise between these two

extreme situations, as was described in subsubsection 5.5.1.5.

Regarding the simulation scenarios, a total of 30 were evaluated. Two of them are deterministic refer-

ence scenarios that only consider day-ahead price and wind power point forecasts produced with the

models described in subsection 6.1.1. The remaining 28 scenarios also take into account the uncertain-

ties associated to the considered point forecasts by using the proposed spot-risk model.

The two deterministic reference scenarios comprise a base scenario (D) that uses all of the available en-

ergy capacity of the energy storage. This scenario corresponds to scenario WPPred_SPPred described

in subsection 6.3.3. A modified version of this scenario, called bounded base scenario (DB), where

the energy storage capacity is considered smaller in the scheduling phase than its real value (i.e.: the

storage energy capacity (SOC) boundaries are narrowed) is also considered.

In the base deterministic simulation (D), the storage device is operated with its energy capacity limits

equal to those defined in its specifications. However, in the bounded deterministic simulation (DB),

the storage energy capacity limits are reduced artificially in the scheduling phase (but not in the op-

eration phase). This way, the DB simulation constitutes a rule-of-thumb approach for decreasing the

imbalances caused by the power system cell because a minimum amount of storage capacity slack is

always guaranteed to exist.

:This is defined by equations 5.28 and 5.29 and explained in section 5.5.1.5.
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TY PE D DB SR SRB di
Bounding No Yes No Yes i 1 2
Stochastic No No Yes Yes Value of di 0.05 0.01

βj
Attitude Prone Averse

j 1 2 3 4 5 6 7
Value of βj �0.2 �0.1 0.2 0.4 0.6 0.8 1.0

TABLE 6.7: Summary of the simulations performed in this work.

The remaining 28 simulations may be separated into two main approaches:

• the ones tagged as SR in which the proposed Spot-Risk model was used as is;

• the ones tagged as SRB in which the proposed Spot-Risk was used in parallel with the same

bounding strategy that was used in the DB base simulation described above.

Each of the two approaches (SR and SRB) comprises 14 different simulations. These simulations

were obtained by varying the d and the β parameters. The d parameter (referring to depth of the risk

perception surface) was allowed to take two values. The β parameter (referring to the risk attitude of

the power system cell operator) was allowed to take seven different values. Two of the β values are

negative, corresponding to risk-prone attitudes of the plant operator. The remaining five β values are

positive, representing risk-averse attitudes of the plant operator.

For facilitating the analysis of the results, the different types of stochastic simulations (where TY PE

� SR or SRB) are named as TY PEi , j , where i P t1, 2u and j P t1, 2, . . . , 7u. So, for instance, in the

case in which TYPE = SR, i � 2 and j � 4 (i.e.: SR2, 4) corresponds to a case using the simple spot-

risk model (i.e.: without bounding) with di equaling 0.01 and βj equaling 0.4. Table 6.7 summarizes

all the simulations that were performed containing the indexes that correspond to the different values

of the d and β parameters that were used in the simulations.

6.3.5 Results & Analysis

Figure 6.14 summarizes the total imbalance and revenue results obtained for the 30 simulations nor-

malized by the base deterministic case (D) that was described above. We can see that imbalance
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FIGURE 6.14: Total imbalance and revenue obtained for all the wind/pumped-hydro stochastic simulations. The reference
deterministic simulations are the ones denoted by D and DB.

energy improvements were attained in almost every simulation. The only exceptions to this rule were

the eight simulations corresponding to the risk prone attitudes (bounded in Figure 6.14 by the green-

dashed rectangles) because these reward risky situations. The base deterministic case corresponding

to the rule-of-thumb for reducing imbalances (DB) also achieved an imbalance reduction. All the risk

averse simulations reduced the imbalances in different amounts. As for the revenue, Figure 6.14 shows

that the reference revenue (D) was never surpassed (not even by the risk prone simulations). However,

such revenue was always quite close to the reference value.

The correlation results shown above indicate that there is a weak link between the imbalance reduction

and the obtained revenue. This is also the case for the correlations between the revenue and the sur-

plus energy and between the revenue and the improvement (i.e.: decrease) of energy imbalance. The

correlation between the obtained revenue and the shortage energy takes the highest value. Table 6.8

summarizes the correlation results obtained.

Correlation between: Value
Revenue & Imbalance 0.402
Revenue & Shortage 0.651
Revenue & Surplus 0.137
Revenue & Imbalance Improvement 0.493

TABLE 6.8: Summary of the different correlation results obtained.
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FIGURE 6.15: Imbalance improvement (in the sense of reduction) versus obtained revenue for every wind/pumped-hydro
stochastic simulation. The points in red represent the Pareto-Optimal solutions obtained.

These correlation results are clearly confirmed by the relatively high dispersion depicted in Figure 6.15.

The same figure also highlights the Pareto-optimal solutions that were obtained. One can see that some

improvement of the imbalance was obtained without significantly reducing the revenue. The cases in

which imbalances worsen with the use of the proposed method correspond to risk prone attitudes as

described above.

The general behavior of the results obtained through the stochastic approach will now be analyzed

in more detail. For this, the results shall be divided according to the d parameter, thus obtaining four

major groups of cases: SR1, SR2, SRB1 and SRB2. In these cases, the numerical index corresponds

to the defined value of d in Table 6.7.

The imbalance improvement results obtained with the proposed tool are detailed in Figure 6.16. In that

figure we can see that the imbalances between the simulations corresponding to the proposed Spot-

Risk method (SR) are approximately superposed with those obtained with the alternative Spot-Risk

method (SRB) for the same values of d . In the SRB method, aiming to further reduce imbalances,

the Spot-Risk model was submitted to narrower storage capacity boundaries. Such narrower bounds

seem to work well when wind power forecast uncertainties are disregarded. However, they do not

seem to influence the imbalance results in the presence of such uncertainties in the sense that they

do not generally lead to further reductions of energy imbalance in comparison to the respective SR
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simulations in which no reduced boundaries were imposed to the energy storage capacity limits in the

scheduling phase. Therefore, under a stochastic paradigm considering the uncertainties associated to

forecasts of wind power production, the SR model seems to outperform the SRB one in the sense that

it leads to the same amount of imbalance reductions while being simpler.

In Figure 6.16 we can also verify that using lower values of d (i.e.: di � 2) allows to obtain better en-

ergy imbalance results in the sense that the resulting imbalances are always lower than those resulting

from both deterministic simulations as well as those resulting from the stochastic simulations in which

higher values of d (i.e.: di � 1) were used. This is because, as was explained in subsubsection 5.5.1.5,

lower values of d imply the risk perception surface P to be less deep, which helps to reduce the dif-

ference between possible decisions in the scheduling phase because the dynamic programming routine

becomes less sensitive to the variance associated to wind power forecasts.

In Figure 6.16, under risk averse attitudes, one can also verify that the imbalance improvement obtained

with the proposed method was always slightly better than the one obtained via the DB reference

method. Finally, in the same figure it can be seen that risk averse attitudes always lead to energy

imbalance reductions while the opposite is true for the risk prone attitudes.

FIGURE 6.16: Energy imbalance improvement (in the sense of reduction) achieved in the wind/pumped-hydro case-study
for different risk attitudes (β).

Regarding the revenue, in Figure 6.17 we can see the detailed results that were obtained. The figure

shows that the revenues obtained with the SRB simulations are always lower than the revenues of
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the equivalent SR simulations. Given that the corresponding SR and SRB simulations led to almost

identical imbalance results (vide Figure 6.16), the SRB approach can be disregarded. This is further

confirmed regarding the revenue generated by both stochastic approaches. Indeed, the revenue ob-

tained with the SRB approach seems to be limited to that obtained with the simpler DB deterministic

approach (vide Figure 6.17). However, things seem to be a bit different in what regards the SR ap-

proach. In fact, this approach may or not lead to revenue improvements relatively to the DB reference

approach. In the case where the d is equal to 0.01 (i.e.: di � 2), the revenue never attains the base

reference revenue given by simulation D, but almost always surpasses the revenue obtained with the

reference DB approach. This further confirms that the SRB approach should be disregarded.

The SR2 approach permitted to simultaneously obtain the best energy imbalance improvements (vide

Figure 6.16) and the best revenue results relatively to the cases aiming to reduce energy imbalances

(DB, SR and SRB). Moreover, the SR2 approach permitted in some cases to almost attain the ref-

erence revenue (D) while improving the energy imbalance of the system. Therefore, spot-risk models

taking into account low values of d seem to be good choices for improving the energy behavior of

power system cells without leading to substantial losses of revenue relatively to the case in which

forecast uncertainties are disregarded.

FIGURE 6.17: Revenue achieved in the wind/pumped-hydro case-study for different risk attitudes β.

Looking into some more detail on the imbalances implied by the various methods one can gain some

more insight on their implications. For this, a comparison between the levels of contracted and pro-
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FIGURE 6.18: Comparison between the levels of contracted and produced energy for the various simulation scenarios.

duced energy for the various simulation scenarios is depicted in Figure 6.18. As it can be seen in the

figure, all the methods led to more contracted energy than the base reference deterministic method (D)

with the sole exception of the SR2, 2 (case with small risk proneness). In addition, all the methods led

to more contracted than actually produced energy.

Let us now look back at figures 6.16 and 6.17. In these figures, it can be seen that the SR2 set

of simulations yielded the best overall results (at least in comparison with the remaining stochastic

simulations). Looking now back to Figure 6.18, one can see that the scheduling decisions obtained

through the SR2 set of simulations always led to a high stability of the produced energy in the sense that

the corresponding green dots are always very close to the constant dashed line starting at the reference

value of produced energy given by the green dot corresponding to the reference case (D). Regarding

the contracted energy, the SR2 set of simulations generally led to higher amounts of contracted energy

than that of the reference case D. This can be seen by analyzing the vertical position of the blue

squares corresponding to the SR2 set of simulations relatively to the constant dashed line starting at

the reference value of contracted energy given by the blue square corresponding to the reference case

(D).

Finally, Figure 6.19 contains the results on the expected day-ahead revenue for each simulation sce-

nario. This revenue represents the income that would have been attained if no penalties had been
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FIGURE 6.19: Day-ahead expected revenue achieved in the wind/pumped-hydro case-study for different risk attitudes β.

applied. In the figure, the revenue values are normalized by the day-ahead revenue of the base refer-

ence method (D). As it can be seen in the figure, all the simulations yielded, in general, lower values

of expected day-ahead revenue comparatively to the reference simulation. The only exception was the

SR2 simulation where a risk attitude of 0.2, which resulted to a higher value of day-ahead revenue than

simulation D. Moreover, a visual inspection of figures 6.17 and 6.19 seems to suggest that there is a

rather strong link between the expected day-ahead revenue and the actual revenue that was obtained.

Indeed, the correlation between these two equals 0.933.

Summarizing, the results show that the proposed stochastic approach (SR) is able to reduce energy im-

balances. However, the imbalance reduction remains quite small, which leads us to believe that further

improvement of the approach is possible. With the proposed approach such reduction can be higher

than the one obtained with the rule-of-thumb deterministic reference approach (DB). Nevertheless,

the revenue losses obtained with the proposed approach (SR) are lower than the ones obtained with

the reference deterministic approach (DB). However, in this case-study the proposed approach was as

good as the base deterministic approach (D) regarding the revenue obtained.
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6.4 Conclusions of the Chapter

This chapter presented two case-studies illustrating the results that can be obtained through the methods

proposed in chapter 5. The case-studies consisted of a microgrid and a wind/pumped-hydro system.

In the microgrid case, the different variants of the scheduling methodology developed in this work

were tested. From these, the deterministic and the single-stage spot-risk ones are selected for further

testing in the frame of the second case-study (i.e.: wind/pumped-hydro system).

In the wind/pumped-hydro case-study, an extensive analysis of the developed approaches is carried

out by using real-world historical data on day-ahead electricity market prices as well as historical data

on the hourly average power output of a real-world wind farm. The added-value of the developed

scheduling methods is quantified in terms of revenue and energy imbalance reduction. It is shown that

the methods proposed in this work may lead to increased money returns for investors. At the same

time, it is also shown that operators of non-dispatchable renewable energie units may become better

behaved (from a TSO perspective) if methods such as the ones proposed here are employed.
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CHAPTER 7

Conclusions and Perspectives for Further

Research

CHAPTER OVERVIEW

IN the previous chapters, the description of the objectives and context of this thesis, the associated theoretical
background, our contribution to the solution of the problem as well as numerical evaluation results were

presented and analyzed. This chapter summarizes the main partial conclusions of this work (presented at the end
of each chapter) drawing general conclusions. In addition, some perspectives for further research on the field of
the present Ph.D. thesis, or in closely related ones, are also suggested.
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7.1 Overall Conclusions

This work was carried out in the context of restructured power systems in which several independent

actors interact with an electricity market for placing their energy production/consumption bids. At the

same time, the EU targets for integrating large amounts of endogenous resources like, for instance,

renewable energies were kept in mind. Regarding this specific point, the role of distributed generation

for helping to reach those targets as well as its active integration into power systems was analyzed.

More specifically, the possibility to couple micro-generation with loads and energy storage devices was

into account. The ensemble was considered to behave as a controlled entity, which forms an individual

cell of the main power system. The general objective of the present work was to develop a scheduling

methodology for operating such types of power system cells under electricity market conditions.

For reaching the defined general objective, the first step was to understand in depth the general context

behind this work. This was done in chapter 2, where a short historical description of the most outstand-

ing events that happened in the power systems area from the early days up to the present situation was

made. This description allowed to better understand the present context especially in what regards the

role of distributed generation and the restructuring of the electricity sector, which were the two main

driving forces of this work. The description of the general context of the work ended with a discussion

on some decentralized power generation integration aspects and options that lead to the formulation of

the generic concept of power system cells, which are the specific entities dealt with in this work.

The objective of developing a day-ahead power system cell scheduling methodology suited to cells that

operate under electricity market conditions required knowledge contributions from two main fields:

power system scheduling and decision under uncertainty. These two prerequisites were analyzed in

chapters 3 and 4 for providing a solid basis leading to a better understanding of the problem addressed

here. In addition, this analysis permitted to develop the solutions proposed in this work for tackling the

day-ahead power system cell scheduling problem.

In chapter 3, the necessary background on what regards power system scheduling was given permitting

to better understand the concepts, complexity, and characteristics associated to power system schedul-

ing problems. This background consisted in a characterization of power system scheduling problems

comprising: a conceptual discussion on the subject, the identification of the main characteristics and

complexity that are typically associated to such problems, and a short insight on the main approaches
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that are usually followed for tackling problems of the kind. Following this characterization, a model

suited for multi-area power system scheduling problems was developed. This model consists on an uni-

fication of several models proposed in the literature. As a result, the proposed model is quite generic in

the sense that it is able to integrate the most common restrictions that are usually associated to problems

of the kind.

The developed multi-area power system scheduling model is not a solution-oriented one in the sense

that it only focuses on the mathematical model that is behind multi-area power system scheduling

problems in general and not on the solution-techniques that may be used to solve them. Hence, the

model can be applied to a vast type of multi-area power system scheduling problems, while allowing

the easy consideration of additional constraints as well as the modification and/or subtraction of the

included constraints.

After having developed the multi-area power system scheduling model, guidelines were supplied for

straightforwardly converting it into a single-area one. The single-area model was then modified for

considering the case of an independent power producer participating in a day-ahead electricity market,

thus obtaining a market-player formulation version of the power system scheduling problem. This

formulation is the one that best fits the requirements of the present work and was therefore used as a

basis for developing the proposed power system cell scheduling model in chapter 5.

In chapter 4, the necessary background on decision under uncertainty problems was given. This per-

mitted to better understand the nature of such problems, the ways to model uncertainty, and the main

models that are available for making decisions in the presence of uncertainty. The characteristics of the

decision-making models were described and discussed, which permitted to better understand behavior

of the models. This was important because the types of power system cells considered herewith may

be subject to several types of uncertainty, which are associated to the several types of forecasts used as

inputs to the power system cell scheduling model herewith proposed:. Therefore, the analysis carried

out in chapter 4 permitted to develop the necessary tools as well as to understand them for reaching

one of the central objectives of this work, which was that of developing a power system cell scheduling

model capable of dealing with such types of uncertainties. This development was done in chapter 5.

In chapter 5, a model for performing the day-ahead scheduling of a power system cell under electricity

:Other uncertainties could be, for instance, the possibility of occurrence of generator failures, the possibility of loosing
the interconnection with the main grid, and so on.
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market conditions was proposed. Firstly, a modeling background was provided comprising a discussion

on the many modeling possibilities, the description of the main objective of the model, and some

possible applications of the proposed model. Then the scheduling scheme was described and the

power system cell scheduling problem formulated. The chapter proceeded with the proposal of a

solution method for addressing the scheduling problem based on a deterministic dynamic programming

optimization approach. This deterministic formulation was then extended for incorporating the energy-

related and day-ahead market-related uncertainties associated to the inputs of the power system cell

scheduling problem. Several models for addressing such uncertainties were proposed, formulated and

discussed.

The day-ahead electricity market conditions impose that the bids for each time-step of the next day be

placed into the market up to the gate closure time (typically at noon of the present day). This means

that scheduling decisions relative to later stage cannot consider what actually happened in previous

stages. In other words, no updated information can be made available between the various time-stages

of the scheduling problem. This creates an independence between the schedules made at different time-

stages of the multi-stage decision-making problem regarding the uncertainty associated to the various

forecasts used as input. This is also true the other way round because the uncertainties associated to

the various forecasts that are used as input to the scheduling problem are forecasted independently

from the system state. Consequently, regarding uncertainty, the transitions from a system state at a

given time-step to all possible alternatives available in the next time-step are equivalent. This may lead

to believe that there is no interest in integrating uncertainty information into the scheduling process,

as it would only contribute to render it more complex without added benefit. Regarding day-ahead

market participation, this may well be true in many situations. However, as was argued in chapter 5, it

seems natural to think that, from an operator’s viewpoint, the same amount of uncertainty may lead to

different perceptions of how good or bad a given transition may be. In other words, the operator’s past

experience and knowledge of how the system behaves as well as the current system state may contribute

to a more or less high valuation of the predicted uncertainty. Bearing this in mind, an approach based on

concepts of Risk Perception was developed for integrating the energy-related uncertainties associated

to the inputs of the power system scheduling problem in the decision-making process. The developed

approach is based on two principles that lead to separate risk perception rules. An appropriate algorithm

was proposed for mixing them. This algorithm yields a risk perception surface that is used for valuing

predicted uncertainty according to the operator’s requirements, thus placing the operator at the center

of the decision-making process.
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A scenario approach was followed for integrating the uncertainties associated to day-ahead market

price forecasts. This permitted to consider a discrete probability distribution of day-ahead market

prices per time-step of the scheduling horizon, where each possibility of market price represents a pos-

sible future scenario. Several methods based on Minkowski distances were adapted from the existing

literature for integrating such market price scenarios.

In chapter 6, two case-studies were developed for giving some insight on the results that can be obtained

through the proposed power system scheduling model. One consists of a microgrid and the other of a

combined wind/pumped-hydro power plant. In both cases a participation in the NordPool Elspot day-

ahead market was considered. The microgrid case served to test the different variants of the scheduling

methodology developed in this work. From these, the deterministic and the single-stage spot-risk ones

were selected for further testing in the frame of the second case-study. In this case-study, an extensive

analysis of some of the developed approaches was carried out by using real-world historical data on

day-ahead electricity market prices as well as the hourly average power output data of a real-world

wind farm. The added value of the developed scheduling methods was quantified in terms of revenue

and energy imbalance reduction. It was shown that the methods proposed in this work may lead to

increased money returns for investors. At the same time, it was also shown that independent operators

of systems based on non-dispatchable renewable energies may become better behaved (from a TSO

perspective) if methods such as the ones proposed here are employed.

7.2 Perspectives for Further Research

In this work, different approaches based on dynamic programming were proposed for performing the

scheduling of power system cells. While dynamic programming represents an elegant mathematical

principle that is judged appropriate for performing the global optimization of systems bearing rela-

tively low time-dependence complexity, it quickly becomes a burden for even medium-sized systems

due to its well-known curse of dimensionality [130]. Moreover, dynamic programming computer-

based solution-methods generally imply some discrete description of the states of the world. If, as

in the present case, such description is made by discretizing continuous variables, then some approx-

imation error is expected to be obtained. Therefore, alternative methods should be considered for

systems bearing higher time-dependence complexities than the one considered here and/or continuous

state variables. Such alternative methods could make use of loss functions, meta-heuristics, or some
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wise combination of the deterministic and stochastic variants herewith proposed (thus obtaining hybrid

deterministic/stochastic methods).

The use of loss functions, as proposed in [154], would most probably reduce both the CPU resources

needed for performing the calculations and the algorithmic complexity associated to the scheduling

methods while avoiding the need for discretizing the states-of-charge (SOC) of the energy storage de-

vice. However, the use of loss functions could imply the energy storage device to be used more as a

passive element and less as an active one as in the case of this work. So, comparisons between schedul-

ing methods based on loss functions with the ones developed here should be made for determining the

implications that such simplifications might have on the scheduling results.

The use of meta-heuristics-based methods, based on evolutionary programming for instance, for per-

forming the scheduling of power system cells as the ones considered in this work could also be inves-

tigated. Indeed, meta-heuristics-based methods may represent a good compromise between the com-

putational time needed for performing calculations and the sub-optimality of the obtained scheduling

solutions. Therefore, such methods could be interesting for systems bearing higher time-dependence

complexities than the ones considered here.

Finally, the results obtained for the case-study evaluated in section 6.3, seem to show that the stochas-

tic methods involve some compromise between the energy imbalance risks that were considered and

the benefit attained under their deterministic counterparts. It seems natural to think that time-steps

for which the energy-related forecasts are more-or-less certain should be treated through the base

deterministic method (for maximizing profits) and time-steps in which the uncertainties associated

to energy-related forecasts are high should be addressed by stochastic-based methods. This could

be achieved by simply defining thresholds of uncertainty that trigger the use of either deterministic

scheduling methods when uncertainties are low or stochastic scheduling methods when uncertainties

are high. Such could well mean that, without having to develop alternative scheduling methods or

improving the quality of input data, the profits generated in the case-study developed in section 6.3

could be potentially increased while further reducing the energy imbalances caused by energy-related

forecast uncertainties.

The concept of risk perception was used here for incorporating the experience and preferences of

the operators when scheduling a power system cell under uncertainty. This concept seems promising

and has the potential enable the definition of complex decisional behaviors from the combination of
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very simple principles. Therefore, more work should be devoted to this field for further testing the

applicability and potential associated to the use of risk perception principles for making decisions

under risk. Possible directions for such work comprise:

• The incorporation of higher moments of energy-related uncertainties (e.g.: their skewness, kurto-

sis, . . . ) in the construction/selection of adequate risk perception surfaces. For instance, various

risk perceptions can be built for a given problem and the skewness associated to the energy-

related forecasts could be used for determining which of them should be used.

• The study of risk perception rules other than the one that was used throughout this work and that

serves as an illustration of the applicability of the concept. Some examples of possible global

time-dependent risk perception rules can be: the forecasted local load, the forecasted main sys-

tem load, some quality index associated to day-ahead/regulation market price forecast quality

transmitting a degree of belief on the considered forecasts, the previous day up-regulation/down-

regulation prices transmitting quantifying possibilities of economic losses, the average regulation

prices obtained in the past. Regarding the technology-dependent rule (vide section 5.5.1.5), vari-

able state-of-charge (SOC) preferences can be determined based on operator’s specifications or

calculated from some basic principles. As an example, such SOC preferences can be calculated

for preparing the cell for overcoming detected energy imbalance trends, or as a function of the

local load, of the experience of the operator, of the absolute value of historical economic losses,

of the historical value of historical energy up- and down-regulation values, to mention a few

examples. Another option would be to use the skewness for determining the preferred energy

storage state at each time-step by using one of three options:

1. normalize skewness by the maximum absolute forecasted skewness value throughout the

scheduling horizon and then modify the preferred SOC state proportionally to each fore-

casted skewness;

2. define fuzzy regions (large positive skewness, large negative skewness, positive skewness,

negative skewness, too small skewness) imposing each of them a given amount of change

to the predefined energy storage state, and then determine the preferred SOC state based

on such value and on the predefined SOC value preference;

3. use a hybrid approach in which for sufficiently small values of skewness, option 1 of the

present list is used (i.e.: normalize skewness) and for sufficiently large value option 2 of

the present list is selected (i.e.: fuzzy regions).
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• Working with potential users of the methods herewith developed and proposed with the objective

of determining if such methods are judged as being interesting and, if this is the case, determine

which risk perception rules and principles are judged by such potential users as being the best

ones.

• Evaluating whether the risk perception principles used here can be seen as a way for determining

dynamic utility functions, which could help to explain the variations in attitude of decision-

makers faced with similar types of problems of decision-making under risk each bearing different

impacts of possible negative consequences. Ultimately, if risk perception surfaces are found to

be similar to dynamic utility functions (at least in some cases), then the procedure proposed here

for combining simple principles in order to obtain risk perception surfaces can be adopted as a

procedural way for determining complex dynamic utility functions.

The special case where the storage device is part of an electric vehicle can be considered as a case-

study of interest. In this case, the adequacy of the proposed scheduling principles to the determination

of optimal charge/discharge actions of electric vehicles could be evaluated. Other applications might

concern the possibility of scheduling thermal energy storages, of combined heat and power units, and of

reactive power production/consumption actions. In addition, the transition from interconnected modes

of operation of, as an example, a microgrid, to isolated modes of operation, for instance, for coping

with maintenance actions taken at the point of common coupling could also be studied.

As a general perspective, more case-studies differing from the ones tested here, and considering other

system compositions and types as well as other geographical locations should be tested. Simulations

of microgrids over long periods could be of high interest as they can permit to evaluate the economic

interest of the microgrid concept. This could be of high value provided that measurements from a real

microgrid are used. However, such data are not readily available today. Should real-world microgrid

data become available, then a more complete microgrids case-study considering a sequence of schedul-

ing and operation cycles (like the ones used here on the wind/pumped-hydro case study) over a long

period of time could be built and analyzed. For that purpose, a microgrids operation model like, for

instance, the one developed in [163] could be used for performing the its intraday operation.

Forecasting electricity market prices is very difficult. However, when the cell includes energy storage

devices and once these in operation, only the relation between peak and minimum prices is impor-

tant for determining the best storage operating strategies to use [162]. In other words, for optimally
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operating storage devices it seems to be best to accurately know the shape (or profile) that the price

curve takes throughout the scheduling horizon rather than the actual values of prices that will occur.

Therefore, emphasis could be given in methods that forecast such profiles.

Finally, the results presented in section 6.3 show that considerable energy imbalance reductions can

be obtained by increasing the controllability of wind power through the utilization of energy storage

devices. However, such reductions are not explicitly considered by present electricity markets as grid

services. This does not motivate independent power producers that rely on non-dispatchable power

sources to render these more dispatchable by combining them with dispatchable options such as energy

storage devices. Therefore, a discussion on how to measure and remunerate such energy imbalance

reductions seems to be of importance as such reductions contribute, for instance, to the increase of grid

stability.
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APPENDIX A

Résumé en Français

VUE GÉNÉRALE

LES travaux de cette thèse ont été menés au Centre Énergétique et Procédés de l’École des Mines de Paris (pôle
de Sophia-Antipolis, France). Ce chapitre inclut un résumé étendu en français du contenu de ce mémoire

de thèse de doctorat (rédigé en anglais) conformément aux obligations de l’École des Mines de Paris pour
l’obtention du grade de Docteur. Ce chapitre s’oriente, donc, au public francophone susceptible de s’intéresser
aux sujets et résultats de recherche abordés/obtenus au long de ce travail.

Ce résumé se divise en plusieurs parties. D’abord, une traduction intégrale du chapitre introductif de cette thèse
est fournie dans la première section du chapitre. Ensuite, les introductions partielles de chaque chapitre qui suit
sont aussi incluses dans des sections dédiées à l’exception du chapitre 7. En effet, vu la particularité ce chapitre,
non seulement l’introduction partielle est traduite en français, mais aussi la section contenant les conclusions
générales de ce travail de thèse.
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A.1 Chapitre 1 : Introduction

A.1.1 Principaux Axes d’Orientation

Ce chapitre introduit ce travail de recherche par une description des axes principaux qui ont motivé son

exécution. Ensuite, le chapitre procède avec la définition des objectifs et contributions de la thèse. La

structure du mémoire est décrite à la fin du chapitre.

Trois axes principaux sont à la base de ce travail de recherche. Le premier est lié à la volonté poli-

tique d’atteindre une intégration à grande échelle dans les systèmes électriques des technologies de

production d’électricité à partir des ressources renouvelables (dorénavant nommées technologies re-

nouvelables pour simplicité d’usage) dans le but de profiter des ressources endogènes disponibles en

vue de réduire la pollution associée à la production et à l’utilisation de l’électricité et d’accroitre le mix

et l’indépendance énergétique des pays à l’échelle mondiale. Le deuxième est associé aux avancées ré-

centes dans les secteurs de la production décentralisée et des technologies d’information. Le troisième

est issu du fait que, en opposition avec le passé récent, les systèmes électriques sont aujourd’hui ex-

ploités sous conditions de marché libéralisé d’électricité, ce qui implique des modifications et adapta-

tions au niveau de la planification, de la gestion et de l’exploitation des systèmes électriques actuels.

Une discussion courte sur chacun de ces axes sera faite en vue d’établir la base et les objectifs de ce

travail.

A.1.1.1 Intégration Grande-Échelle dans les Systèmes Électriques des Technologies Renouve-

lables

Les inquiétudes environnementales croissantes et la haute dépendance générale des ressources fossiles

pour produire de l’énergie ont mené les gouvernements de plusieurs pays à développer de nouvelles

politiques pour prendre en compte ces nouvelles réalités. L’établissement de quotas de certificats verts

pour pénaliser les émissions de carbone excessives et la mise en place de lois plus restrictives en ce qui

concerne l’efficacité énergétique des bâtiments constituent deux exemples concrets de telles politiques.

Les technologies renouvelables ont le potentiel de contribuer à la réduction des émissions des gaz

polluants. Simultanément, en utilisant des ressources endogènes, ces technologies permettent aux
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pays qui les utilisent de renforcer leur indépendance énergétique et, en même temps, améliorer le mix

énergétique de leurs économies. Par conséquent, il y a des pays à l’échelle mondiale qui sont de plus

en plus en train d’investir dans l’intégration à grande échelle des technologies renouvelables dans leurs

systèmes électriques. À titre d’exemple, en 2004, seulement 6 % de la consommation globale d’énergie

de l’Union Européenne était fournie à partir de ressources renouvelables malgré leur abondance dans

le territoire. Cependant, cette valeur est prévue d’augmenter dans les prochaines années. L’objectif

fixé par l’Union Européenne pour la quantité d’énergie issue de sources renouvelables produites dans

le territoire atteint 12 % en 2010. L’objectif pour la production d’électricité est encore plus ambitieux.

En effet, en 2004, seulement 14 % de l’électricité produite était issue des ressources renouvelables.

Néanmoins, l’Union Européenne prévoit d’atteindre la valeur de 22, 1 % de production d’électricité à

partir de ressources renouvelables en 2010.

Les systèmes électriques n’ont pas été originalement conçus pour intégrer des grandes quantités de

production d’énergie à partir des ressources renouvelables. Par conséquence, l’intégration massive de

ce type de production d’électricité crée des sérieux défis pour les acteurs responsables pour la planifi-

cation, la gestion et l’exploitation des systèmes électriques. Les causes de ces défis sont principalement

deux :

1. la plupart des technologies renouvelables se distribue un peu partout dans le réseau électrique ce

qui peut mener à une augmentation des situations de congestion au niveau du réseau de transport

ainsi qu’à la dégradation de la qualité de la coordination des systèmes de protection du réseau ;

2. la plupart des technologies renouvelables utilise des ressources stochastiques et fortement vari-

ables (tels que le vent et le rayonnement solaire effectif) ce qui ajoute de l’incertitude significa-

tive au processus de gestion des systèmes électriques.

Des nombreux travaux de recherche sont menés au présent avec l’objectif de donner des réponses

à ces défis. Un des objectifs de cette thèse et celui de contribuer à l’optimisation de la gestion du

système électrique en proposant des outils de gestion des systèmes électriques qui soient adaptés à

l’intégration de la production décentralisée et qui prennent en compte la présence des sources et charges

stochastiques dans le processus de gestion.
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A.1.1.2 La Contribution de la Production Décentralisée et des Technologies d’Information

Les systèmes électriques actuels sont face à de nombreux défis comme, par exemple : la difficulté

d’installer de nouvelles lignes de transport d’électricité et de renforcer les lignes existantes tout en de-

vant fournir une demande électrique qui accroit et qui se déplace en permanence, le vieillissement des

composants du système de transport d’électricité et le besoin de réinvestir dans de nouveaux com-

posants et, comme dernier exemple, le vieillissement des infrastructures de production centralisée

actuelles. Simultanément, des technologies de production décentralisée nouvelles et/ou améliorées en-

trent en scène. Celles-ci incluent, entre autres, les microturbines, les turbines éoliennes, les piles à com-

bustible et les moteurs Stirling. En parallèle, des avancées au niveau des technologies d’information

et communication permettent d’ajouter de nouvelles capacités aux composants électriques ce qui rend

possible à la fois de repenser la façon de planifier, gérer et exploiter les systèmes électriques.

Contrastant avec les grandes centrales électriques qui intègrent les grands systèmes électriques, les

technologies de production décentralisée ont besoin de moins de temps pour leur installation. Ce fait,

allié à leur modularité, peut rendre l’investissement plus efficace en comparaison avec des technologies

de production centralisée. De plus, si faite correctement, l’adoption de la production décentralisée peut

permettre de reporter ou même d’éviter des investissements dans de nouveaux moyens de production

d’électricité souvent coûteux, moins efficaces et pour lesquels les permis de construction sont difficiles

à obtenir. Néanmoins, les unités de production décentralisée peuvent influencer le développement,

la gestion et l’exploitation des systèmes électriques. Dans quelques pays, la pénétration des moyens

de production décentralisée doit se limiter à 20 % pour restreindre les effets adverses que ce type

de moyens de production peut infliger au système électrique. En effet, les compagnies d’électricité

craignent la pénétration massive des moyens de production décentralisée dans le réseau électrique une

fois que des valeurs pénétrations excessives peuvent hausser les coûts globaux d’exploitation et baisser

les niveaux de sécurité et de fiabilité du système électrique. Voilà pourquoi, au présent, plusieurs

études sont faites dans le but d’estimer les niveaux maximum de moyens de production décentralisée

dans un système donné avant que leur impact collectif ne soit problématique, par exemple, au niveau

des courants électriques de défaut excessifs ou au niveau des fluctuations excessives des niveaux de

tension.

À la lumière des paragraphes précédents, une des questions principales est si l’on doit maintenir les

structures classiques des systèmes électriques ou adopter une nouvelle structure décentralisée du sys-
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tème électrique dans laquelle de nombreux composants lui sont additionnés à plusieurs niveaux. Dans

un certain sens la question précédente pourrait être si l’on doit maintenir le système plus ou moins

passif ou les rendre de plus en plus actif :. Les deux options mises en évidence précédemment ont

des avantages et des inconvénients et le meilleur choix doit probablement être quelque part au mi-

lieu des deux. De toute façon, l’industrie des systèmes électriques possède à ce jour des méthodes

et techniques établies pour gérer les systèmes électriques passifs, ce qui n’est pas le cas des moyens

de production décentralisée intégrant des capacités de contrôle et communication avancées. Donc, de

nouvelles méthodes, techniques et outils sont nécessaires pour gérer efficacement des grandes quantités

de moyens de production décentralisée intégrés dans les systèmes électriques. La communauté scien-

tifique et l’industrie des systèmes électriques travaillent déjà dans cette direction et des discussions

sur le sujet sont de plus en plus fréquentes. Ce travail de recherche à pour objectif de contribuer à la

connaissance existante dans le domaine de l’intégration à grande-échelle dans les systèmes électriques

des technologies de production décentralisée.

A.1.1.3 Les Marchés d’Électricité et les Systèmes Électriques

La restructuration des systèmes électriques mise en IJuvre dans plusieurs pays a mené à la sépara-

tion des systèmes électriques verticalement structurés et à l’établissement par la suite de marchés

d’électricité. Les marchés d’électricité facilitent et augmentent la transparence des transactions com-

merciales d’énergie électrique entre les producteurs indépendants et les consommateurs d’électricité.

Cela s’achève en établissant les commodités d’électricité qui doivent être échangées, les prix à payer

pour ces commodités et les règles à respecter par tous les participants au marché d’électricité en ques-

tion.

L’établissement des marchés d’électricité modifie la façon de gérer les systèmes électriques. L’objectif

global du système électrique reste celui de fournir sa demande avec de l’énergie électrique sûre et fiable

(contraintes techniques) au moindre coût (contraintes économiques). Cependant, sous conditions de

marché libéralisé d’électricité, le respect des contraintes techniques est souvent garanti par l’opérateur

indépendant du système; alors que la minimisation du coût de l’énergie électrique est confiée aux

mécanismes de marché.
:Ici, le mot actif signifie que les plusieurs composants du système électrique ont un niveau donné d’intelligence (commu-

nication avancée – entre eux et/ou avec le système principal – et capacité de contrôle) qui leur permet de prendre des actions
(choisies à partir d’un ensemble d’actions prédéfini) en accord avec les signaux de communication qu’ils reçoivent.

;La désignation officielle en anglais est : Independent System Operator – ISO.
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Les opérateurs indépendants du système représentent un des acteurs majeurs des marchés d’électricité

et ont la responsabilité d’assurer que les contraintes techniques décrites ci-dessus soient respectées en

permanence. Par conséquent, ces acteurs sont tenus responsables de la maintenance des niveaux de

sûreté et de fiabilité du système électrique aussi élevés que possible en vérifiant que :

• les offres de production d’énergie électrique placées sures et acceptées par le marché mènent à

des flux d’énergie et à des niveaux de tension acceptables au niveau de chaque ligne/nIJud du

réseau de transport d’électricité ;

• les niveaux de sûreté N � 1 (dans quelques cas, N � 2 et ceci d’un point de vue de l’analyse de

contingences) soient respectées.

Comme décrit auparavant, la minimisation des coûts de l’énergie électrique est confiée aux mécanismes

du marché. Ces mécanismes génèrent des signaux de prix qui sont par la suite interprétés par les

participants du marché comme, par exemple, les producteurs indépendants d’électricité. En effet, les

producteurs indépendants d’électricité utilisent ces signaux de prix pour placer ses offres de production

d’énergie électrique en accord avec ses objectifs individuels. Ces objectifs correspondent souvent

à la maximisation de ses profits individuels. Cependant, pour ce faire, sous conditions de marché

libéralisé d’électricité, les producteurs indépendants d’électricité n’ont plus accès aux décisions de

production obtenues la veille avec une gestion centralisée optimale du système électrique pour atteindre

ses objectifs individuels, mais doivent réaliser une série complète de nouvelles tâches. Ces tâches

peuvent se résumer principalement en trois phases :

1. gérer les niveaux de production des différents générateurs (pour le lendemain, au cours de la

semaine qui suit,...) ;

2. placer des offres stratégiques de commodités dans le marché d’électricité en vue d’établir les

contrats les plus rentables pour les commodités définies ;

3. opérer les différents générateurs pour respecter aussi bien que possible les contrats préétablis

pour les commodités et ainsi éviter le paiement de pénalités.

Ce travail de recherche se focalise surtout dans la gestion individuelle d’un producteur indépendant

d’électricité pour le lendemain.
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A.1.1.4 Objectifs et Contributions de la Thèse

L’objectif général de ce travail de recherche est celui de contribuer à l’intégration grande-échelle des

technologies de production décentralisée dans les systèmes électriques. Deux options existent pour

intégrer la production décentralisée. La première (classique) consiste à la connexion passive de la pro-

duction décentralisée et à subir les conséquences possibles qui peuvent éventuellement arriver par la

suite. La deuxième consiste à intégrer cette production décentralisée de façon active. Sous ce principe,

la production décentralisée possède un niveau donné d’intelligence (d’un point de vue du système

électrique:) lui permettant de coopérer avec des technologies intelligentes pour suivre une stratégie

d’opération donnée cherchant activement à réduire le mal qui peut être causé par la production décen-

tralisée au système électrique principal ou même à contribuer à la bonne santé du système principal.

L’intégration active de la production décentralisée dans les systèmes électriques est en train de créer

des défis à plusieurs niveaux tels que :

• l’augmentation de la complexité de la gestion du système électrique due à la présence de beau-

coup plus d’acteurs que dans le passé ce qui augmente la compétition entre les participants du

marché et réduit la marge de profit individuel ;

• le besoin de communication bidirectionnelle entre plusieurs acteurs ce qui leur permet de re-

cevoir des signaux (ex. : les signaux de prix du marché reçus par les différent générateurs) et

d’informer les autres participants de leurs états et décisions individuelles (ex. : un générateur

peut placer une offre directement dans le marché, informer son contrôleur de ces intentions de

produire ou non de l’énergie électrique à une heure donnée, informer son entourage d’une panne

éventuelle, etc.) ;

• dans le cas de pénétration de la génération non-dispatchable (ex. : certaines énergies renouve-

lables), la contrôlabilité du système électrique décroit (au moins localement) ce qui demande des

méthodologies innovantes pour gérer le système électrique ;

• l’intégration d’éléments distribués incluant un niveau donné d’intelligence offre des opportunités

:Cette intelligence peut être donnée par la capacité de communiquer soit avec d’autres éléments qui opèrent au même
niveau de communication (ex. : autre générateurs), soit avec des éléments d’interface entre niveaux de communication (ex. :
assembleur). Un autre niveau d’intelligence pourrait être au niveau de l’autonomie donné à la production décentralisée pour
leur permettre de répondre de façon autonome à des occurrences d’évènements prédéfinies (ex. : survenance de sous-tensions
ou de surtensions locales).
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nouvelles au niveau du contrôle et de la gestion du système électrique ce qui peut permettre le

développement de structures de gestion plus avancées du système électrique.

Cette thèse se focalise dans l’intégration active de la production décentralisée dans les systèmes élec-

triques. Au cours de cette thèse, des possibilités de gestion du système électrique potentiellement

applicables au cas des générateurs distribués ont été investiguées. Ces possibilités incluent :

• la coordination entre plusieurs éléments du système électrique pour atteindre un objectif commun

;

• l’utilisation de dispositifs de stockage d’énergie pour accroitre la contrôlabilité globale du sys-

tème ainsi que les bénéfices (ex. : profits) de ses opérateurs respectifs ;

• l’intégration de techniques de gestion de la charge directement dans les gestionnaires d’énergie.

Dû aux spécificités de l’énergie électrique, la gestion du système est très complexe et intègre plusieurs

échelle et résolutions temporelles. Ce travail se focalise surtout dans la gestion pour le lendemain

sous conditions de marché libéralisé d’électricité de ressources distribuées coopérant entre eux. Quand

elles sont mises en coopération, ces ressources forment des cellules du système électrique:. Ce travail

considère la gestion pour le lendemain de ce type de cellules qui peuvent intégrer de combinaisons

variées de plusieurs éléments : des générateurs et des charges non-dispachables, des générateurs et des

charges dispachables et des dispositifs de stockage d’énergie.

Les cellules du système électrique prises en compte dans ce travail de thèse sont considérées pour

participer au marché d’électricité et incluent des sources de production stochastique telles que les tur-

bines éoliennes et les panneaux photovoltaïques. Par conséquent, la gestion de ce type de cellules doit

se baser sur des prédictions des prix de l’énergie électrique sur le marché et sur des prédictions de

production/consommation des générateurs/charges non-dispachables. Toutes ces prédictions injectent

de l’incertitude dans le processus de gestion et les rendent plus difficile que celles des systèmes élec-

triques conventionnelles ou la charge est fortement prédictible et où la pénétration de la production

non-dispatchable est en règle générale réduite.

:A posteriori, ces cellules pourraient être nommées de cellules intelligentes du système électrique grâce aux options
variées qu’elles intègrent aux niveaux de leur contrôle, de leur gestion et de leur capacité de communication.
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Dans ce travail, deux méthodes de gestion de cellules du système électrique sont proposées : une déter-

ministe et une stochastique avec plusieurs variantes. La méthode déterministe ignore les incertitudes

liées aux prédictions des différents éléments non-dispachables. Les différentes variantes de la méthode

stochastique considèrent ces incertitudes comme base pour l’estimation du risque lié à l’opération de

la cellule. De plus, l’intégration des risques d’origine énergétique estimés dans le processus de gestion

est faite par la considération de la perception du risque et de l’attitude en face du risque de l’opérateur

de la cellule du système électrique. En d’autres termes, l’opérateur est placé au centre du processus de

gestion par la prise en compte de ses préférences en face d’un niveau de risque donné. Aussi bien dans

la méthode déterministe que dans les variantes de la méthode stochastique, le stockage est un élément

central du problème de gestion.

Les méthodes proposées sont évaluées dans deux cas d’étude. Un de ces cas d’étude considère un

micro-réseau et l’autre considère un système composé d’une centrale hydraulique gravitaire réversible

couplée à une ferme éolienne.

A.1.2 Structure de la Thèse

Le premier chapitre de la thèse décrit synthétiquement le cadre du travail réalisé ainsi que ses princi-

paux objectifs et conclusions. Le chapitre 2 présente plus en détail le cadre de développement de ce

travail. Il commence par le développement d’une description plus complète du contexte général dans

lequel ce travail a été développé. Ensuite, le chapitre présente la description des hypothèses principales

qui ont été suivies/utilisées au cours de ce travail.

Plusieurs aspects ont du être étudiés et combinés pour mener à bout ce travail tels que, par exemple :

• les concepts liés aux marchés d’électricité ;

• les principes de gestion des systèmes électriques ;

• les principes, méthodes et techniques d’optimisation ;

• la compréhension et principes d’utilisation de prédictions ;

• les modèles de représentation de l’incertitude et les concepts de risque ;
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• les techniques pour prendre des décisions sous incertitude ;

• etc.

Parmi ces aspects, deux ressortent : le problème de gérer le système électrique et les domaines associés

à la décision sous incertitude. La raison découle du fait que ces deux points sont centraux dans cette

thèse. Par conséquent, ils sont analysés plus en détail dans ce manuscrit.

La problématique liée à la gestion du système électrique est présentée est analysée au cours du chapitre

3. Dans ce même chapitre, les approches principales qui peuvent être utilisées pour résoudre les prob-

lèmes de gestion des systèmes électriques sont discutées et une formulation généralisée de la gestion

des systèmes électriques est proposée se basant sur le travail bibliographique qui a été réalisé sur le

sujet. Cette formulation concerne le cas général de la gestion multi-zonale . Elle est ensuite adaptée

au cas d’une seule région et du participant individuel au marché. Ce développement fournit la com-

préhension nécessaire et les outils qui seront utilisés plus tard pour développer le modèle de gestion

des cellules du système électrique proposé dans le chapitre 5.

Ici, les domaines d’intérêt associés à la décision sous incertitude se composent principalement de dif-

férentes façons de modéliser l’incertitude et les modèles permettant de prendre des décisions sous

incertitude. Ces deux points sont analysés au cours du chapitre 4. Une discussion sur les méthodes et

principes pour prendre des décisions sous incertitude est fournie incluant une description courte des

façons selon lesquelles l’incertitude peut être modélisée et les modèles principaux utilisables dans le

cadre de la prise de décision sous incertitude. Les principes de modélisation de l’incertitude et les mod-

èles de prise de décision sous incertitude présentés dans ce chapitre servent de support à l’intégration

des incertitudes associées au problème de gestion de cellules du système électrique considéré dans ce

travail. En effet, ils sont inclus dans les variantes de la méthode de gestion stochastique proposée dans

le chapitre 5.

Le chapitre 5 développe l’approche de gestion des cellules du système électrique proposée dans ce

travail. Une première approche déterministe est proposée et utilisée comme référence et point de

départ pour le développement de plusieurs variantes de la méthode stochastique proposée par la suite.

Cette méthode stochastique prend en compte les incertitudes liées au problème de gestion de cellules

du système électrique mentionnées ci-dessus. Dans le chapitre 6, deux cas d’étude illustrant quelques

applications possibles des méthodes de gestion proposées ainsi que les résultats atteignables avec la
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méthodologie développée dans ce travail sont proposés et discutés. Finalement, le chapitre 7 contient

les conclusions générales du travail ainsi que quelques unes des perspectives principales de recherche

issues de ce travail de thèse.

A.2 Chapitre 2 : Contexte et Hypothèses Principales du Travail

VUE GÉNÉRALE

Ce chapitre peut être vu comme le point de départ de ce travail. Au début, le chapitre fournit une

évolution chronologique simplifiée des déroulements principaux qui sont survenus dans le domaine des

systèmes électriques. Cela permet de mieux comprendre le contexte et les motivations qui supportent

ce travail de recherche. En détail, le rôle de la production décentralisée et les formes de l’intégration

dans les systèmes électriques sont discutés. Une discussion sur les hypothèses de travail définies est

aussi incluse pour mieux clarifier le cadre de ce travail.

A.3 Chapitre 3 : Gestion des Systèmes Électriques

VUE GÉNÉRALE

Ce chapitre aborde un des principaux domaines de connaissance nécessaires pour ce travail : celui

de la gestion des systèmes électriques. L’idée principale est de fournir les bases nécessaires pour

la formulation du problème spécifique de la gestion de cellules du système électrique traité dans le

contexte du chapitre 5.

Plusieurs formulations des problèmes de gestion des systèmes électriques sont accessibles dans la lit-

térature. Cependant, dans sa majorité elles sont soit spécifiques à un problème donné, ou orientées

surtout vers les techniques de solutions du problème de gestion et non purement vers la formulation

mathématique du problème de gestion des systèmes électriques. Ces caractéristiques rendent ces for-

mulations désadaptées à l’objectif de ce chapitre qui est celui de fournir des descriptions et formulations

suffisamment génériques des problèmes de gestion des systèmes électriques et non pas d’analyser une
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spécificité donnée de ces problèmes ni les techniques de solutions précises qui sont accessibles dans

la littérature spécialisée. Pour cette fin, une analyse générale des caractéristiques de ce type de prob-

lèmes est fournie. De plus, une formulation unifiée du problème généralisé de la gestion du système

électrique est proposée utilisant les résultats du travail bibliographique mené dans le sujet.

Trois possibilités sont identifiées pour formuler les problèmes de gestion des systèmes électriques

: gestion classique multi-zonale du système électrique, gestion classique mono-zonale du système

électrique et la gestion du participant individuel au marché. En premier lieu, ce chapitre présente la

formulation du problème de gestion le plus général qui est celui de la gestion classique multi-zonale

du système électrique. Ensuite, des modifications de cette formulation initiale sont suggérées en vue

de l’adapter aux autres cas qui ont été identifiés auparavant.

A.4 Chapitre 4 : Décision Sous Incertitude

VUE GÉNÉRALE

Traditionnellement, les décisions de gestion du système électrique sont prises avant l’opération ef-

fective du système. Telles décisions de gestion, en accord avec ce qui à été discuté dans le chapitre

précédent, servent essentiellement à préparer le système électrique pour répondre à ces besoins opéra-

tionnels en accord avec un objectif ou un ensemble d’objectifs d’opération prédéfini(s). Par conséquent,

ces besoins doivent eux aussi être estimés avant leur occurrence effective.

Ce travail de recherche traite le problème de la gestion d’une cellule du système électrique assujettie

à des incertitudes considérables. Ceci peut représenter le cas d’un micro-réseau ou celui d’un système

combiné éolien/centrale hydraulique gravitaire réversible dans lesquels les incertitudes sont liées à

la connaissance imparfaite des conditions futures sous lesquelles la cellule du système électrique va

fonctionner. Ces incertitudes jouent, donc, un rôle majeur dans les décisions de gestion à prendre.

Ce chapitre discute de la décision sous incertitude qui a été identifiée dans le chapitre 2 comme un

des deux principaux domaines de connaissance nécessaires à l’exécution de ce travail (l’autre est celui

de la gestion des systèmes électriques qui a été traité dans le cadre du chapitre 3). De cette façon,

ce chapitre passe en revue les différentes façons de modéliser l’incertitude et de l’intégrer dans les
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processus de prise de décision. Ceci sert à établir la base de modélisation prenant en compte les

incertitudes typiquement liées aux problèmes de gestion des systèmes électriques tels que celui traité

dans ce travail.

A.5 Chapitre 5 : Modèle de Gestion Proposé

VUE GÉNÉRALE

Dans ce chapitre, un modèle adapté à la gestion d’une cellule du système électrique participant dans un

marché d’électricité est proposé. Le modèle se base dans les caractéristiques du problème décrit dans

le chapitre 2 et utilise les concepts de gestion des systèmes électriques discutés dans le chapitre 3.

Dans une première phase, le modèle de gestion proposé est développé dans un cadre déterministe.

Comme tel, le modèle n’intègre pas un quelconque modèle des incertitudes liées aux prédictions des

ressources d’énergie renouvelable non-dispachables, aux prédictions des demandes non-dispachables

et aux prédictions-point des prix du marché d’électricité. Ceci dit, le modèle déterministe prend en

compte quelques aspects économiques liés au problème de gestion (ex. : coûts de production de

l’énergie, rémunération liée à la fourniture de la demande, coûts liés aux ordres de contrôle donnés

aux demandes dispachables, prédictions-point des prix du marché,...) pour maximiser le bénéfice de

l’opérateur de la cellule du système électrique qu’ ici correspond aux profits générés.

Dans une deuxième phase, le modèle déterministe proposé est étendu dans le but d’incorporer la com-

posante stochastique du problème de gestion. Pour ce faire, plusieurs modules d’extension pour pren-

dre des décisions sous incertitude sont proposés pour prendre en compte les deux incertitudes prin-

cipales du problème de gestion qui sont liées aux prix du marché du lendemain et aux charges et

ressources d’énergie non-dispachables. Ces modèles de décision sous incertitude se basent sur les

principes de décision décrits et analysés dans le chapitre 4. L’objectif principal des modèles proposés

pour prendre en compte les incertitudes liées au problème de gestion traité est celui de minimiser les

déviations d’énergie dues aux erreurs des prédictions tout en profitant des moments les plus avantageux

pour utiliser les ressources d’énergie locales d’un point de vue de l’efficacité économique.
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A.6 Chapitre 6 : Cas d’Études

VUE GÉNÉRALE

Au cours du chapitre 5, une méthodologie a été développée pour réaliser la gestion du lendemain de

cellules du système électrique fonctionnant sous condition de marché d’électricité. Cette méthodologie

intègre plusieurs alternatives de gestion prenant en compte les variables stochastiques du problème.

Dans ce chapitre, cette méthodologie est testée dans deux cas d’études. Le premier considère un micro-

réseau tandis que le deuxième considère un système combiné éolien/centrale hydraulique gravitaire

réversible.

Le chapitre commence avec une description générale des objectifs individuels de chaque cas d’étude.

Ensuite, le chapitre procède avec la description des méthodes de prédiction utilisées pour produire les

entrées nécessaires. Finalement, les cas d’étude considérés et les résultats obtenus sont présentés et

analysés.

A.7 Chapitre 7 : Conclusions et Perspectives de Recherche Addition-

nelle

VUE GÉNÉRALE

Dans les chapitres précédents, la description des objectifs et le contexte de ce travail de thèse, les bases

théoriques associées à ce travail, notre contribution à la solution du problème traité et les résultats

issus des évaluations numériques ont été présentées et analysés. Ce chapitre résume les conclusions

partielles de ce travail (présentées à la fin de chaque chapitre) et tire des conclusions générales. De plus,

quelques perspectives de recherche additionnelle dans le domaine dans lequel cette thèse de doctorat a

été réalisée, ou dans des domaines associés, sont aussi suggérées.

CONCLUSIONS GÉNÉRALES

Ce travail a été réalisé dans le cadre des systèmes électriques restructurés dans lesquels plusieurs ac-
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teurs interagissent avec un marché d’électricité pour placer leurs offres de production/consommation

d’énergie. En même temps, les objectifs de l’Union Européenne qui vont dans le sens de l’intégration

massive de ressources endogènes telles que, par exemple, les énergies renouvelables ont été gardés à

l’esprit. En ce qui concerne ce point spécifique, le rôle de la production décentralisée pour aider à

atteindre ces objectifs ainsi que son intégration active dans les systèmes électriques a été analysé. Plus

spécifiquement, la possibilité de coupler de la micro-génération avec des charges et des dispositifs de

stockage d’énergie à été prise en compte. L’ensemble a été analysé et considéré comme une entité

contrôlée formant une cellule individuelle du système électrique. L’objectif général de ce travail a été

celui de développer une méthodologie de gestion de ce type de cellules du système électrique opérant

sous conditions de marché libéralisé d’électricité.

Pour atteindre l’objectif général défini, la première phase a consistée à comprendre en profondeur le

contexte général de ce travail. Ceci a été réalisé au cours du chapitre 2 où une courte description his-

torique des évènements les plus marquants qui sont survenus dans le domaine des systèmes électriques

dès leur création et jusqu’à présent. Cette description a permis de mieux comprendre le contexte actuel

surtout en ce qui concerne le rôle de la production décentralisée et la restructuration du secteur élec-

trique, lesquelles ont été les principales forces agissantes de ce travail. La description du contexte

général du travail a abouti sur une discussion de quelques aspects et options liés à l’intégration de la

production décentralisée qui ont eux mêmes mené à la formulation du concept générique des cellules

du système électrique, lesquels représentent les entités spécifiques traitées dans ce travail.

L’objectif de développer une méthodologie de gestion de cellules du système électrique pour le lende-

main adaptée à des cellules opérant sous condition de marché d’électricité requiert l’utilisation de la

connaissance existante sur deux domaines principaux : celui de la gestion des systèmes électriques et

celui de la décision sous incertitude. Ces deux sujets ont été analysés dans les chapitres 3 et 4 dans le

but de fournir une base solide menant à une meilleure maîtrise du problème traité ici. De plus, cette

analyse a permis de développer les solutions proposées dans ce travail pour résoudre le problème de la

gestion de cellules du système électrique pour le lendemain.

Au cours du chapitre 3, les bases nécessaires en ce qui concerne la gestion des systèmes électriques

ont été données permettant de mieux comprendre les concepts, complexité et caractéristiques associés

à ce type de problèmes de gestion. Ces bases ont consisté à la caractérisation des problèmes de gestion

des systèmes électriques intégrant : une discussion conceptuelle sur le sujet, l’identification des ses

caractéristiques principales et à la complexité qui lui sont associées et, finalement, un aperçu court
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des approches principales qui sont souvent suivies pour résoudre les problèmes de ce type. Ensuite,

un modèle adapté aux problèmes de gestion multi-zonale de systèmes électriques a été développé. Ce

modèle unifie plusieurs modèles proposés dans la littérature. Comme résultat, le modèle proposé est

assez générique dans le sens où il est capable d’intégrer les restrictions plus typiquement associées aux

problèmes du type.

Le modèle de gestion multi-zonale de systèmes électriques développé n’est pas orienté vers une solu-

tion précise de ce type de problèmes de gestion dans le sens où il se focalise purement sur le modèle

mathématique qui les représente en général et non pas dans les techniques de solution qui peuvent être

utilisées pour résoudre un problème de gestion multi-zonale donné. De là, le modèle peut être appliqué

à une multitude de problèmes de gestion multi-zonale de systèmes électriques tout en permettant de

considérer facilement des contraintes additionnelles ainsi que la modification et/ou soustraction des

contraintes incluses dans le modèle proposé.

Ensuite, des instructions ont été données pour simplifier le modèle de gestion multi-zonale de systèmes

électriques et ainsi l’adapter au cas de la gestion mono-zonale fournie. Finalement le modèle de gestion

mono-zonale est lui-même modifié et adapté au cas d’un producteur indépendant participant au marché

d’électricité. Cette dernière formulation est celle qui a été retenue comme base pour le développement

de la solution de gestion de cellules des systèmes électriques proposées dans le chapitre 5.

Au cours du chapitre 4, les bases nécessaires en ce qui concerne la décision sous incertitude ont été don-

nées. Cela a permis de mieux comprendre la nature de ce type de problèmes, les façons de modéliser

l’incertitude et les modèles principaux qui existent à ce jour pour prendre des décisions en présence

d’incertitude. Les caractéristiques des modèles de prise de décision ont été décrites et discutées ce

qui a permis de mieux comprendre les enjeux derrière ces modèles. Ceci a été très important une fois

que le type de cellules des systèmes électriques considérées dans le cadre de ce travail peut comporter

des niveaux d’incertitude importants dus aux plusieurs types de prédictions utilisés comme entrées du

modèle de gestion proposé:. De cette façon, l’analyse menée dans le chapitre 4 a servi à dévelop-

per et maîtriser les outils nécessaires pour atteindre un des objectifs principaux de ce travail qui a été

celui de développer un modèle de gestion de cellules du système électrique capable de traiter ce type

d’incertitude. Ce développement a été réalisé dans le chapitre 5.

:D’autres incertitudes pourraient être, par exemple, la possibilité de pannes de ses générateurs et la possibilité de perte de
l’interconnexion avec le réseau principal.
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Au cours du chapitre 5, un modèle pour réaliser la gestion pour le lendemain d’une cellule du système

électrique sous conditions de marché libéralisé d’électricité a été proposé. D’abord, les bases de la

modélisation ont été présentées intégrant une discussion sur plusieurs possibilités de modélisation, la

description de l’objectif principal du modèle et quelques applications possibles du modèle proposé.

Ensuite, le schéma de gestion a été décrit et le problème de gestion de la cellule du système électrique

a été formulé. Le chapitre continue avec la proposition d’une méthode de solution du problème de

gestion formulé, basée sur une approche d’optimisation utilisant les principes de la programmation

dynamique déterministe. Cette formulation déterministe a ensuite été étendue pour incorporer les

différentes incertitudes considérées. Plusieurs modèles ont été proposés, formulés et discutés pour

prendre en compte ces incertitudes.

Dû a la spécificité du problème de gestion traité et à la technique de solution développée, comme ex-

pliqué et justifié au cours du chapitre 5, une nouvelle technique utilisant les principes de la perception

du risque encouru par l’opérateur de la cellule du système électrique a été développé pour intégrer les

incertitudes liés aux prédictions des demandes et productions non-dispachables. Cette approche est

basée sur deux principes qui mènent à des règles de perception du risque séparées. Un algorithme

approprié a été proposé pour les mélanger. Cet algorithme donne comme résultat une surface de per-

ception du risque qui est utilisée pour valoriser le niveau d’incertitude prédit en accord avec les besoins

de l’opérateur ce qui le place au centre du processus de décision.

Une approche utilisant des scénarios a été suivie pour intégrer les incertitudes associées aux prédictions

des prix du marché d’électricité. Ceci a permis de considérer la distribution discrète de probabilité

des prix du marché à chaque pas de temps de l’horizon de gestion où chaque possibilité de prix de

marché représente un scenario futur. Plusieurs méthodes basées sur les distances de Minkowski ont

été adaptées à partir de la littérature existante pour intégrer ces scenarios du prix du marché dans le

processus de décision sous incertitude.

Au cours du chapitre 6, deux cas d’études ont été développés pour donner un aperçu du type de résul-

tats qui peuvent être obtenus avec la méthodologie de gestion proposée dans ce travail. L’un des deux

cas d’études utilise un micro-réseau et l’autre utilise un système combinant une ferme éolienne avec

une centrale hydraulique gravitaire réversible. La valeur ajoutée des méthodes de gestion proposées

a été quantifiée en termes de revenu et de réduction des déséquilibres entre la production et la con-

sommation d’énergie. Il a été montré que les méthodes proposées dans ce travail peuvent mener à des

augmentations de profit d’éventuels investisseurs dans des cellules des systèmes électriques du type
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considéré. En même temps, il a aussi été montré que les opérateurs indépendants de systèmes basés

sur des ressources énergétiques non-dispachables peuvent devenir mieux comportés (d’un point de vue

du GRT:) quand ils utilisent des méthodes telles que celles qui ont été proposées dans le cadre de ce

travail de thèse.

:Gestionnaire du Réseau de Transport
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GESTION DE CELLULES DES SYSTÈMES ÉLECTRIQUES INTÉGRANT DES SOURCES DE PRODUCTION STOCHAS-
TIQUES

Résumé
L’approvisionnement en énergie et le changement climatique représentent aujourd’hui deux problèmes remarquables qui
doivent être surmontés par la société dans un contexte de croissance de la demande d’énergie. La reconnaissance de ces
problèmes par l’opinion publique encourage la volonté politique de prendre différentes actions pour les surmonter de façon
aussi rapide qu’efficace. Ces actions se basent sur l’augmentation de l’efficacité énergétique, la diminution de la dépendance
sur les énergies fossiles et la réduction des émissions de gaz à effet de serre. Dans ce contexte, les systèmes électriques
subissent des changements importants au niveau de leur planification et de leur gestion. D’une part, les structures verti-
calement intégrées sont en train d’être remplacées par des structures de marché d’électricité donnant naissance à plusieurs
acteurs au niveau du fonctionnement des marchés et de la production, distribution et commercialisation d’électricité. D’autre
part, les systèmes électriques qui se basaient sur la production d’énergie issue de grandes centrales génératrices voient arriver
aujourd’hui la fin de vie de ces grandes centrales. Le rôle de la production répartie d’électricité à partir de technologies
telles que l’éolien et le solaire devient de plus en plus important dans ce contexte. Cependant, l’intégration à grande échelle
de ces types de ressources réparties pose plusieurs défis liés, par exemple, aux incertitudes associées à la variabilité de la
production de ces ressources. Toutefois, des systèmes combinant des outils avancés de prédiction de l’éolien ou du solaire
peuvent être combinés avec des éléments contrôlables tels que des moyens de stockage d’énergie, des turbines à gaz ou de la
demande électrique contrôlable, peuvent être créés dans le but de réduire les impacts associés à ces incertitudes. Ce travail de
thèse traite de la gestion, sous conditions de marché libéralisé d’électricité, de ce type de systèmes qui fonctionnent comme
des sociétés indépendantes qui sont ici nommées cellules des systèmes électriques. À partir de la bibliographie existante,
une vision unifiée des problèmes de gestion des systèmes électriques est proposée comme un premier pas vers la gestion
d’ensembles de cellules des systèmes électriques dans un cadre de gestion multi-cellule. Des méthodologies pour la gestion
journalière et optimale de ce type de cellules sont proposées, discutées et évaluées dans un cadre à la fois déterministe et
stochastique, ce dernier intégrant dans le processus de gestion les incertitudes liées au problème. Les résultats obtenus mon-
trent que l’utilisation des approches proposées peut conduire à des avantages importants pour les opérateurs chargés de la
gestion de cellules des systèmes électriques.

Mots clés : Gestion des Systèmes Électriques, Prise de Décision, Production Décentralisée, Cellule du Système Électrique, Micro-réseau,
Centrale Virtuelle, Incertitude, Risque, Marché d’Électricité, Energies Renouvelables.

SCHEDULING OF POWER SYSTEM CELLS INTEGRATING STOCHASTIC POWER SOURCES

Synopsis
Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with
under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions
for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing
dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing impor-
tant changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced
by market structures in which power systems are unbundled. On the other, power systems that once relied on large power
generation facilities are witnessing the end of these facilities’ life-cycle and, consequently, their decommissioning. The role
of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context.
However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty
associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more con-
trollable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the
impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these
types of systems that act like independent societies and which are herewith named power system cells. From the available
literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power
system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling
of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that
directly integrates the uncertainty information into the scheduling process. Results show that the utilization of the proposed
approaches may lead to important advantages for operators managing these types of power system cells.
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