
 Pietro Ferrara, Francesco Logozzo, Manuel Fahndrich: Safer Unsafe Code for .Net 1

Static analysis via abstract interpretation of
multithreaded programs

Pietro Ferrara
École Polytechnique

Paris, France
Università Ca' Foscari

Venice, Italy

PhD Defense, École Normale Supérieure, Paris, France

May 22, 2009

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Multicore revolution
● The only way to try to prolong Moore's law
● Today: at least dual core processors
● Current trend: manycore

> Quad cores: 150 (AMD Phenom X4 9650)€
> Eight cores: server processors (e.g. AMD Opteron)
> Sixteen cores: soon...

● Sequential programs do not exploit multicores
● Applications with explicit parallelism

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Multithreading

● Parallelism supported through multithreading
> Java
> C#

● Implicit communications via shared memory
● Synchronization on monitors
● Subtle and problematic

“(...) in order for an application to take
advantage of the dual-core capabilities, the
application should be optimized for
multithreading.”

G. Koch. Discovering multi-core: extending the benefits of
Moore’s law. In Technology Intel Magazine. Intel, July 2005.

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Motivating Examples

● In order to expose the exception, we need that
> N > 1000
> Main thread reads a.i after at least 1.000 threads

read and increased it
● Really particular execution

> Exception rarely exposed by testing
> Difficult to reproduce this execution

ThreadIncrease Main Thread
a.i++; a.i=0;

for(int j=0; j<N; j++)
 new ThreadIncrease(a).start();
if(a.i>1000)
 throw new Exception();

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Motivating Examples

● Object a shared between both threads
● Field amount declared as volatile

> All accesses are synchronized
● No data race

> Writes and reads are synchronized
● Nondeterministic behavior

> 1.000$ may “disappear”
> Particular interleaving of threads' executions

Deposit 1 Deposit 2
int t1=a.amount;
t1=t1+1000$;
a.amount=t1;

int t2=a.amount;
t2=t2+1000$;
a.amount=t2;

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Motivating Examples

● At the beginning:
> i=0
> j=0

● The exception may be thrown
> Thread 2 may see the values written by Thread 1 in a

different order
● Memory model

> Specify which behaviors are allowed

Thread 1 Thread 2
a.i=1;
a.j=1;

if(a.j==1 && a.i==0)
 throw new Exception();

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Static analysis

● Testing can expose only few multithreaded executions
> Some executions exposed only by specific VM
> Difficult to reproduce an execution

● Not sufficient to effectively debug multithreading
● Thus static analysis is appealing for multithreading

> Infer and prove properties at compile time satisfied
by all possible executions

“Parallel programming is going to require
better programming tools to systematically
find defects, help debug programs, find
performance bottlenecks, and aid in testing.
(...) These tools use static program analysis”

Herb Sutter and James Larus. Software and the concurrency
revolution. In ACM Queue. ACM Press, 2005.

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Related work
● Much work on analysis of multithreaded programs:

> Specific properties
● E.g. data races and deadlocks

> Not sound for all the possible executions
● E.g. bounded model checking

● Generic analyzers based on abstract interpretation
> Successfully applied to sequential programs
> They can be equipped with several numerical domains

● Tradeoff between precision and efficiency
> The same analyzer is instantiated to various properties
> Sound w.r.t. all the possible executions

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Contribution
● Generic approach to the analysis of multithreading

> Abstract semantics sound w.r.t. a memory model
● Formalization of a specific property

> Non-determinism due to threads' interleaving
● Framework applied to Java bytecode programs
● Complete implementation

> Checkmate
● Generic static analyzer of Java multithreading

● Extension of an existing industrial generic analyzer
> Specific relational domain to analyze buffer overrun
> Only for single thread executions

● Effort in order to apply generic analyzers in practice

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Outline
1. Introduction

2. Happens-before memory model
● Definition in fixpoint form and abstraction

3. Determinism of multithreaded programs
● Formalization of a specific property

4. Domain and semantics of Java bytecode
● Low-level domain, specific alias analysis

5. Checkmate
● Generic sound analyzer of multithreaded programs

6. Static analysis of unsafe code
● An industrial application of generic analyzer

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Memory Model (MM)
● Define which multithreaded behaviors are allowed

> Restrict non-determinism
> Allow the most part of

● compiler optimizations
● existing virtual machines
● existing processors

● Java MM introduced in 2005, runtime information
● Happens-before MM (HBMM) – L. Lamport 1978
● Main components:

> Program order (intra-thread order of statements)
> Synchronizes-with relation

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

HB order and consistency rule
● Happens-before order :

> Transitive closure of
● Program order
● Synchronizes-with relation

● Core: consistency rule
> Specify which values written in parallel are visible

● Happens-before consistency rule:
> A read r of a variable v may see a write w to v if:

●

● There is no w' to v such that
● We focus on

> Mutual exclusion
> Launch of a thread

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Concrete domain and semantics
● Generic w.r.t. programming language
● Collect for each thread its trace of execution

● Abstract away the inter-thread order of execution
> Consider each thread separately

● The semantics computes all possible executions

● step function returns the values visible w.r.t. HBMM
● Intra-thread semantics

> Partial trace semantics

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Concrete semantics
● Multithread semantics

● Two nested fixpoints
> Each iteration of the multithread semantics:

● Produces new multithreaded executions
> That may expose new values on shared memory
> That may produce new executions of other threads
> ...

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

The Example
Thread 1 Thread 2

a.i=1;
a.j=1;

if(a.j==1 && a.i==0)
 throw new Exception();

● 1st iteration of the multithread semantics
> : i=0

j=0

Thread 1: i=0
j=0

i=1
j=0

i=1
j=1

i=0
j=0Thread 2:

j==1 && i==0 ?
false

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

The Example

● 2nd iteration of the multithread semantics
> :

Thread 1 Thread 2
a.i=1;
a.j=1;

if(a.j==1 && a.i==0)
 throw new Exception();

Thread 1: i=0
j=0

i=1
j=0

i=1
j=1

i=1
j=0Thread 2:

j==1 && i==0 ?
false

i=0
j=0

i=1
j=0

i=0
j=1

i=1
j=1

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

The Example
Thread 1 Thread 2

a.i=1;
a.j=1;

if(a.j==1 && a.i==0)
 throw new Exception();

Thread 1: i=0
j=0

i=1
j=0

i=1
j=1

i=0
j=1Thread 2:

j==1 && i==0 ?
true

● 2nd iteration of the multithread semantics
> : i=0

j=0
i=1
j=0

i=0
j=1

i=1
j=1

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

The Example
Thread 1 Thread 2

a.i=1;
a.j=1;

if(a.j==1 && a.i==0)
 throw new Exception();

Thread 1: i=0
j=0

i=1
j=0

i=1
j=1

i=0
j=1Thread 2:

j==1 && i==0 ?
true

● 2nd iteration of the multithread semantics
> : i=0

j=0
i=1
j=0

i=0
j=1

i=1
j=1

An execution throws the exception

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Abstract domain and semantics
● Pointwise abstraction of the concrete definitions:

● One trace abstracts all the executions
> Upper bound of all the visible values

● Sound:

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

The Example

● 1st iteration of the multithread semantics
> :

Thread 1 Thread 2
a.i=1;
a.j=1;

if(a.j==1 && a.i==0)
 throw new Exception();

Thread 1: i=[0..0]
j=[0..0]

i=[1..1]
j=[0..0]

i=[1..1]
j=[1..1]

i=[0..0]
j=[0..0]Thread 2:

j==1 && i==0 ?
false

i=[0..0]
j=[0..0]

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

The Example
Thread 1 Thread 2

a.i=1;
a.j=1;

if(a.j==1 && a.i==0)
 throw new Exception();

Thread 1: i=[0..0]
j=[0..0]

i=[1..1]
j=[0..0]

i=[1..1]
j=[1..1]

i=[0..1]
j=[0..1]Thread 2:

j==1 && i==0 ?
top

i=[0..1]
j=[0..1]

● 2nd iteration of the multithread semantics
> :

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

The Example
Thread 1 Thread 2

a.i=1;
a.j=1;

if(a.j==1 && a.i==0)
 throw new Exception();

Thread 1: i=[0..0]
j=[0..0]

i=[1..1]
j=[0..0]

i=[1..1]
j=[1..1]

i=[0..1]
j=[0..1]Thread 2:

j==1 && i==0 ?
top

i=[0..1]
j=[0..1]

● 2nd iteration of the multithread semantics
> :

The program may throw the exception

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Outline
1. Introduction

2. Happens-before memory model
● Definition in fixpoint form and abstraction

3. Determinism of multithreaded programs
● Formalization of a specific property

4. Domain and semantics of Java bytecode
● Low-level domain, specific alias analysis

5. Checkmate
● Generic sound analyzer of multithreaded programs

6. Static analysis of unsafe code
● An industrial application of generic analyzer

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

An example
Deposit1 Deposit2

int t1=a.amount;
t1=t1+1000$;
a.amount=t1;

int t2=a.amount;
t2=t2+1000$;
a.amount=t2;

● At the end, do we deposit 1.000$ or 2.000$?
● It depends on threads' interleaving:

> If Deposit1 and Deposit2 read the initial amount:
● 1.000$

> If we execute e.g. first Deposit1 and then Deposit2:
● 2.000$

● Different values because of arbitrary interleaving

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Our solution
● Statically analyze the determinism

> Focused on communications on shared memory
> Generic w.r.t.

● Programming language
● Numerical domain
● Memory model

● Advantages
> Deal directly with the effects of arbitrary interleaving
> Flexible

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Concrete domain and property

● Each value is related to a thread identifier
> Trace which thread wrote it in the shared memory

● A program is not deterministic iff
> two executions

● of the same thread
● in the same position of the traces of execution

> contain two shared memories
● in which the same variable contains values related to

different thread identifiers

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

An example
Thread Deposit1:

Thread Deposit2:

Obj. Field Value Thread
a amount 10.000$ System

Obj. Field Value Thread
a amount 11.000$ Deposit1

Obj. Field Value Thread
a amount 11.000$ Deposit1

Obj. Field Value Thread
a amount 12.000$ Deposit2

Thread Deposit1:

Thread Deposit2:

Obj. Field Value Thread
a amount 10.000$ System

Obj. Field Value Thread
a amount 11.000$ Deposit1

Obj. Field Value Thread
a amount 10.000$ System

Obj. Field Value Thread
a amount 11.000$ Deposit2

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

An example
Thread Deposit1:

Thread Deposit2:

Obj. Field Value Thread
a amount 10.000$ System

Obj. Field Value Thread
a amount 11.000$ Deposit1

Obj. Field Value Thread
a amount 11.000$ Deposit1

Obj. Field Value Thread
a amount 12.000$ Deposit2

Thread Deposit1:

Thread Deposit2:

Obj. Field Value Thread
a amount 10.000$ System

Obj. Field Value Thread
a amount 11.000$ Deposit1

Obj. Field Value Thread
a amount 10.000$ System

Obj. Field Value Thread
a amount 11.000$ Deposit2

Non-deterministic executions!

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Levels of abstraction
● First level:
● Parameterized by an abstract numerical domain

> One value for each thread

● Second level:
● Trace

> One abstract value
> The set of threads that may have written it

● Sound

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Determinism on abstract states
● First abstraction

● Second abstraction

● Soundness

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

An example – 1st abstraction

Thread Deposit1:

Obj. Field Thread Value
a amount System [10.000..10.000]$

Obj. Field Thread Value
a amount Deposit1 [11.000..11.000]$

Thread Deposit2:

Obj. Field Thread Value
a amount System [10.000..10.000]$

Deposit1 [11.000..11.000]$

Obj. Field Thread Value
a amount Deposit2 [11.000..12.000]$

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

An example – 1st abstraction

Thread Deposit1:

Obj. Field Thread Value
a amount System [10.000..10.000]$

Obj. Field Thread Value
a amount Deposit1 [11.000..11.000]$

Thread Deposit2:

Obj. Field Thread Value
a amount System [10.000..10.000]$

Deposit1 [11.000..11.000]$

Obj. Field Thread Value
a amount Deposit2 [11.000..12.000]$

Non-deterministic program!

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Weak determinism

● Relax the full determinism
> On the first level of abstraction
> Rely on a numerical abstract domain

● It allows non deterministic behaviors iff
> The abstract values written in parallel by different

threads are the same
● E.g. if the sign of the values is the same

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Projecting states and traces
● Check the determinism only

> On a subset of the shared variables
● Only the amount of the bank account

> On a subset of the trace
● Only the actions that deposit or withdraw money

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Outline
1. Introduction

2. Happens-before memory model
● Definition in fixpoint form and abstraction

3. Determinism of multithreaded programs
● Formalization of a specific property

4. Domain and semantics of Java bytecode
● Low-level domain, specific alias analysis

5. Checkmate
● Generic sound analyzer of multithreaded programs

6. Static analysis of unsafe code
● An industrial application of generic analyzer

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

From theory to practice
● Ultimate goal

> Develop a static analysis of Java programs
● Theoretical approach:

> Set of thread identifiers
> Set of shared locations
> Set of synchronizable elements

● From theory to... Java!
> Threads: objects
> Shared memory: heap
> Synchronizable elements: monitors on objects

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Features
● We support

> Dynamic allocation of shared memory
> Dynamic creation and launch of threads
> Dynamic creation of monitors

● In addition, common Java features like
> Strings
> Arrays
> Static fields and methods
> Overload, overriding, recursion

● We fully support the Java bytecode language

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Concrete domain
● Low-level domain

> Simulate the Java Virtual Machine (JVM)
> Based on the JVM specification

● Operand stack:
● Heap:
● Local variables:
● Locked monitors:

● We represent programs as Control Flow Graph
● 1st abstraction:

> Executions on the Control Flow Graph
> Sound abstraction of real executions

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Alias analysis
● Concrete references: potentially infinite
● We need to check when references

> May point to the same location (may-aliasing)
> Always point to the same location (must-aliasing)

● May aliasing:
> Bound each reference to the program point that

allocates it

● Must aliasing:
> Each reference related to an equivalence class
> Rough but precise enough

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Abstract domain and semantics
● Other components: (almost) pointwise abstraction

> Operand stack:
> Heap:
> Local variables:
> Locked monitors:

● Proved the soundness

● Operational semantics of statements
● Proved the local soundness

● Applied to HBMM and determinism

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Outline
1. Introduction

2. Happens-before memory model
● Definition in fixpoint form and abstraction

3. Determinism of multithreaded programs
● Formalization of a specific property

4. Domain and semantics of Java bytecode
● Low-level domain, specific alias analysis

5. Checkmate
● Generic sound analyzer of multithreaded programs

6. Static analysis of unsafe code
● An industrial application of generic analyzer

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Checkmate
● Generic analyzer of multithreaded program

> Sound
> Flow-sensitive

● Generic w.r.t.
> Numerical domain

● Interval, sign, parity, congruence
> Memory model

● Happens-before memory model
> Property of interest

● Multithreading: data race, deadlock, determinism
● Well-known: division by zero, access to null, etc..

http://www.pietro.ferrara.name/checkmate

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Architecture

JAVA
Source
Code

if(i>=0)
 println("Ok");
else
 println("No");

.class
iload 1
iflt 15
getstatic #2
ldc #3
invokevirtual #4
goto 23
getstatic #2
ldc #5
invokevirtual #4
return

Control
Flow

Graph
Builder

Numerical Domain
{⊥, 0, +, -, T}

Memory Model
Happens-before

Multithread
Abstract

Semantics

Property
Data race

Property
Checker

Output

A data race may
happen at line 5
of class Temp when
executed by thread
th1.
The value may be
written in parallel
by thread th2 when
executing line 16 of
class MyThread

Input

Analyzer engine

Output

Abstract
Semantics

Result

Parameters

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Experimental results
● Applied to

> A set of examples taken from [JMM]
> Some case studies taken from [LEA]
> A family of applications of increasing size
> Some benchmarks taken from [PRA,BENCH]

● Fast for small programs
● Precise

> But not scalable for large/industrial programs
[JMM] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In ACM
Press, editor, Proceedings of POPL ’05, 2005.
[LEA] D. Lea. Concurrent Programming in Java. Addison-Wesley, 1996.
[PRA] C. Von Praun and T. R. Gross. Object race detection. In ACM Press,
editor, Proceedings of OOPSLA 01, 2001.
[BENCH] Java Grande Forum Benchmark Suite. At
http://www.epcc.ed.ac.uk/research/activities/java-grande/

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

External benchmarks

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Outline
1. Introduction

2. Happens-before memory model
● Definition in fixpoint form and abstraction

3. Determinism of multithreaded programs
● Formalization of a specific property

4. Domain and semantics of Java bytecode
● Low-level domain, specific alias analysis

5. Checkmate
● Generic sound analyzer of multithreaded programs

6. Static analysis of unsafe code
● An industrial application of generic analyzer

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Generic analyzers

● Extend an industrial generic analyzer
> Clousot - Microsoft Research

● Sound only at single-thread level
> Effort to apply generic analyzers to a property
> Show practical interest of this type of analyzers
> Future work:

● Apply Checkmate to industrial programs

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Background
● .Net: safe environment of execution

> Exception: unsafe code
> Direct access to the memory

● No guarantees on direct memory accesses
> Buffer overrun

● Goal: apply Clousot to unsafe code
● Combination with contracts

> Method boundary annotation
> Lightweight domains

● Stripes: new relational domain
● Combined with well-known numerical domains

> Scalability
● .Net libraries analyzed in a couple of minutes

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Numerical Domains - Stripes

n*base k

n*countp

WB(p)

● Relational
● Precise

● Linear complexity in practice

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Example: InitToZero

unsafe void InitToZero(int* ptr, uint len)
{
 Contract.Requires(Contract.WB(ptr) ≥ len*4);
 for (int i = 0; i < len; i++)
 *(ptr + i) = 0;
}

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Example: InitToZero

unsafe void InitToZero(int* ptr, uint len)
{
 Contract.Requires(Contract.WB(ptr) ≥ len*4);
 for (int i = 0; i < len; i++)
 *(ptr + i) = 0;
}

Infer:
WB(ptr)≥4*len
len≥i+1
WB(ptr)≥4*i+4

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Example: InitToZero

unsafe void InitToZero(int* ptr, uint len)
{
 Contract.Requires(Contract.WB(ptr) ≥ len*4);
 for (int i = 0; i < len; i++)
 *(ptr + i) = 0;
}

Infer:
WB(ptr)≥4*len
len≥i+1
WB(ptr)≥4*i+4

Proof obligation:
WB(ptr)≥4+i*4

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

unsafe void InitToZero(int* ptr, uint len)
{
 Contract.Requires(Contract.WB(ptr) ≥ len*4);
 for (int i = 0; i < len; i++)
 *(ptr + i) = 0;
}

Example: InitToZero

Proof obligation:
WB(ptr)≥4+i*4

Infer:
WB(ptr)≥4*len
len≥i+1
WB(ptr)≥4*i+4Validate

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Intervals

for (int i=0; i<len; i++)
 *(ptr + i) = 0;

● Stripes do not prove i≥0

WB(ptr)≥4*len
len≥i+1
WB(ptr)≥4*i+4

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Intervals

i=[0..+∞]

WB(ptr)≥4*len
len≥i+1
WB(ptr)≥4*i+4

for (int i=0; i<len; i++)
 *(ptr + i) = 0;

● Stripes do not prove i≥0

for (int i = 0; i < len; i++)
*(ptr + i) = 0;

● Intervals do it!

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Experimental Results
Assembly #Methods Time Checked Val. %

18084 3m43s 3069 1835 59.79%
13776 3m18s 1720 1048 60.93%
11333 3m45s 138 59 42.75%
11419 2m42s 16 10 62.50%
3120 19s 48 29 60.42%

22076 3m19s 88 44 50.00%
23180 4m31s 364 266 73.08%
10046 2m41s 772 311 40.28%

Average 57.96%

mscorlib.dll
System.dll
System.Data.dll
System.Design.dll
System.Drawing.dll
System.Web.dll
System.Windows.Forms.dll
System.XML.dll

● Scalable analysis
● Code not annotated, false alarms
● System.Drawing exposes warnings on 5 methods

> Bug
● Public method
● It causes the crash at runtime

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Conclusion
● Generic static analysis of multithreaded programs

> Based on abstract interpretation
> Applied to a real programming language

● Bytecode level, it can analyze other languages
> E.g. Scala

> Implementation
● Experimental results encouraging
● Scalability is still an open issue

● Other generic analyzers scale up
> Local reasoning, i.e. not whole program analyses
> Based on method boundary annotations

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Future work

● How to refine the MM and its analysis
> Other synchronizations have to be considered
> Interesting restrictions of the Java MM

● How to relax the property of determinism
● Refine bytecode domain and semantics

> Goal: apply to numerical relational domains
● Implement it in Checkmate

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Future work
● Whole program analysis

> Limit: it does not scale!
● Modular reasoning

> Impossible on multithreaded programs
> Lack of programming languages and contracts

● Object-oriented programs
> Restrict the visibility of fields and methods

● public, private, protected
> Contracts on classes and methods

● Intuition
> Apply and tune these ideas to multithreading

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Publications
[Ferr08] P. Ferrara, "Static analysis via abstract interpretation of
the happens-before memory model", in Springer editor,
Proceedings of TAP 2008, volume 4966 of LNCS, Prato, Italy, April
9-11, 2008

[Ferr08b] P. Ferrara, "Static analysis of the determinism of
multithreaded programs", in IEEE Computer Society, editor,
Proceedings of SEFM 2008, Cape Town, South Africa, November
10-14, 2008

[Ferr08a] P. Ferrara, "A fast and precise analysis for data race
detection", in Elsevier editor, Proceedings of Bytecode'08,
ENTCS, Budapest, Hungary, April 6, 2008

[FLF08] P. Ferrara, F. Logozzo and M. Fähndrich, "Safer unsafe
code for .NET", in ACM Press, editor, Proceedings of OOPSLA
2008, Nashville, USA, October 19-23, 2008

Pietro Ferrara: “Static analysis via abstract interpretation of multithreaded programs”
PhD Defense, École Normale Supérieure, Paris, France

Question time

Thank you!

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41
	Pagina 42
	Pagina 43
	Pagina 44
	Pagina 45
	Pagina 46
	Pagina 47
	Pagina 48
	Pagina 49
	Pagina 50
	Pagina 51
	Pagina 52
	Pagina 53
	Pagina 54
	Pagina 55
	Pagina 56
	Pagina 57
	Pagina 58
	Pagina 59
	Pagina 60
	Pagina 61

