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Résumé

La performance d’un système de localisation de source passive acoustique au
moyen d’un ensemble de capteurs ne dépend pas uniquement du choix des
algorithmes d’estimation mais aussi de la géométrie du réseau de capteurs et
de la position de la source. Cette thèse s’intéresse à de nouveaux estimateurs
de position via un positionnement optimal de capteurs.

Pour une source ”quasi-statique”, trois mesures de performance sont suc-
cessivement traitées, comparées et évaluées : la borne inférieure de Cramer-
Rao (CRLB), la dilution de précision géométrique (GDOP) et le nombre de
conditionnement. Les deux premières décrivent l’influence du bruit de mesure
décrit par une fonction de probabilité connue, tandis que la dernière est une
mesure non-statistique. En considérant le bruit Gaussien et l’estimateur
d’un modèle linéarisé, il est montré que la même configuration optimale des
capteurs est obtenue par ces trois mesures.

Ces estimateurs sont étendus à une source mobile au moyen de deux ap-
proches. Dans la première, la zone de surveillance est décrite par plusieurs
points représentatifs et on minimise la moyenne des mesures de performance
de tous ces points. La deuxième est une approche dynamique qui modélise le
mouvement de la source par des équations d’état. Des estimateurs récursifs
Bayesiens, comme par exemple le filtre de Kalman dans le cas de systèmes
linéaires, sont ensuite appliqués afin de prédire la position future de la source.
On sélectionne alors parmi tous les microphones, un sous-ensemble qui min-
imise la mesure de performance pour la position prédite. Ce sous-ensemble
est alors utilisé pour l’estimation.
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Abstract

The performance of acoustic passive source localization based on a multiple
sensor system does not only depend on the chosen estimation algorithms,
but is also strongly correlated to the geometry of the sensor network and
the position of the source. This thesis approaches the optimization of the
estimation procedure, by utilizing an optimal microphone setup.

In order to carry out this optimization procedure for a ”quasi-static”
source, three performance measures, the Cramer-Rao Lower Bound (CRLB),
the Geometric Dilution of Precision (GDOP) and the condition number, are
addressed, compared and evaluated. While the two former describe the in-
fluence of measurement noise with known probability density function, the
latter is a non-statistical measure. Considering zero-mean Gaussian noise
and a linearized model estimator, it is shown that all three approaches lead
to the same configuration.

The performance measures are extended for a moving source proposing
two approaches. The first one is to represent the surveillance area by multiple
representative points. In order to assure a good coverage of the zone the
average performance measure of all these points is minimized. The second,
dynamic approach models the movement of the source using a state-space
representation. Recursive Bayesian estimators, such as the Kalman filter
for linear systems, predict the most likely upcoming position of the source.
Utilizing an adaptive microphone network, only those microphones, which
minimize the cost function for this predicted position, are then selected to
carry out the estimation procedure.
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Chapter 0

Introduction Française

L’estimation de la position d’un objet revêt une importance de tout premier
plan dans un très grand nombre de domaines d’applications. Citons entre
autres:

• La robotique: les robots autonomes doivent être capables d’estimer leur
position courante de manière à suivre un parcours déterminé tout en
évitant les obstacles;

• La navigation: les systèmes de positionnement par satellite (Global
Navigation Satellite Systems ou GNSS) qui trouvent leurs utilisations
dans les applications suivantes:

– Systèmes de guidage de véhicules, avions, bateaux, missiles, satel-
lites, etc.;

– Systèmes anticollision, comme par exemple le système d’identification
automatique (Automatic Identification System ou AIS) utilisé en
navigation maritime pour éviter les collisions entre navires;

• La sismique: par exemple la détection des mines en sous sol au moyen
d’ondes sismiques;

• La surveillance civile ou militaire: estimation de la position de troupes
ennemies, ou détection d’intrusion;

• La localisation d’orateur: l’estimation de la position d’un orateur dans
une salle de conférence permettent d’améliorer:

– les téléconférences: en pointant automatiquement une camera vers
un conférencier pendant son discours;

1
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– l’amélioration de la qualité de la voix (speech enhancement) par
filtres spatiaux: les signaux sonores provenant de la direction de
l’orateur sont amplifiés tandis que les bruits issus des autres di-
rections sont supprimés;

– les applications d’immersion sonore virtuelle d’une personne dans
une réalité virtuelle;

– les appareils d’aides auditives (hearing aids).

Ces applications peuvent recourir à une grande variété de systèmes de po-
sitionnements, comme par exemple le Global Positioning System (ou GPS),
éventuellement assistés de capteurs inertiels, de systèmes de traitement de
signaux vidéo dans l’infrarouge ou le visible, de radars RAdio Detection And
Ranging ou encore de sonars SOund Navigation And Ranging (ou SONAR).
Les deux derniers types de capteurs se subdivisent en deux classes: les cap-
teurs actifs et les capteurs passifs. Les systèmes actifs émettent un signal,
écoutent son écho sur l’objet cible au moyen d’un ou plusieurs récepteurs et
en déduisent une estimation de la position de la cible. Les systèmes passifs
n’émettent pas des signaux, ils écoutent directement les signaux provenant
de l’objet cible au moyen des capteurs et utilisent les informations ainsi re-
cueillies pour inférer la position de l’objet.

La systèmes de positionnements passifs se subdivisent en deux groupes:
ceux utilisant des méthodes indirectes et ceux utilisant des méthodes di-
rectes. Les méthodes indirectes résolvent le problème de l’estimation de la
position en deux étapes: i) la première étape consiste à estimer les retards
de temps (time differences of arrival ou TDOA) entre les paires de capteurs;
ii) la seconde étape utilise ces délais pour estimer la position de la source.
Les méthodes directes, quant à elles, estiment généralement la position de la
source en une seule étape, en transférant les signaux provenant des micro-
phones dans le domaine fréquentiel. Les méthodes les plus souvent appliquées
de la classe des estimateurs directs, sont le MUltiple SIgnal Classification
(MUSIC) un algorithme proposé par Schmidt[Sch86] ainsi qu’une variété de
techniques de ”beamforming”, comme par exemple le steered response power
beamformer [DBS01] ou encore le steered filter-and-sum beamformer [SMR99].

Le choix de la sous-classe, la mieux adaptée à un scénario d’estimation,
dépend fortement des caractéristiques physiques et des particularités de la
source ainsi que des propriétés de propagation des milieux où se déplace les
signaux sonores entre la source et le réseau de capteurs. Chen et al.[CYH02]
en identifient les caractéristiques fondamentales et les propriétés de la manière
suivante:

• Bande étroite versus large bande. Les signaux se classent dans ces deux
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catégories de bandes suivant le ratio de fréquence: fréquence haute
versus basse. Ainsi, le son provenant de véhicules roulant ou tractés
contient des fréquences allant de 20Hz à 2kHz. Leur ratio s’évalue
à environ 100, ce qui les classe comme des signaux à larges bandes.
Par contre, des signaux de transmissions radio sont généralement des
signaux à bande étroite puisque leur ratio est typiquement proche de
l’unité.

• Champ proche versus champ éloigné. Le front d’onde d’un signal émis
est courbe et sa courbure, à une position donnée, dépend de la distance
du signal à la source. Quand cette distance est petite on parle de champ
proche. Quand cette distance grandit, le front de l’onde s’aplatit et on
parle alors de champ éloigné. Dans le cas d’un champ éloigné, seule
la direction d’arrivée (direction of arrival ou DOA) de la source peut
être estimée, dans le cas d’un champ proche on peut aussi estimer sa
position.

• Propagation en espace dégagé versus propagation en espace réverbérant.
Dans un espace dégagé, le signal émis n’est reflété par aucun obstacle,
comme des murs, et il parvient au capteur en parcourant une trajectoire
directe (une ligne droite entre la source et le capteur). La plupart des
applications qui se situent en intérieur sont assez réverbérantes, aussi
le signal reçu par un capteur est la somme de la trajectoire directe
ainsi que des signaux reflétés par des murs et autres obstacles présents.
Les environnements fortement réverbérants rendent particulièrement
complexe l’estimation de la position d’une source puisqu’un obstacle
reflétant un signal peut être vu comme une source indépendante.

• Une source versus multiples sources. Le choix d’un estimateur dépend
naturellement du nombre de sources présentes.

Les méthodes directes furent tout d’abord dérivées pour l’estimation des
directions d’arrivées de signaux en bandes étroites et en champ éloigné.
Aujourd’hui, des extensions existent pour des signaux en larges bandes en
champs proches ou éloignés. Généralement, les extensions concernant des
signaux en large bande, subdivisent tout d’abord la bande des signaux, ap-
pliquent ensuite les algorithmes standards pour bandes étroites à chaque
sous-ensemble de fréquence considéré, et finalement, utilisent des méthodes
de fusion pour trouver une unique estimation de la position. Évidemment ces
approches sont très calculatoires et nécessitent des ordinateurs performants.

Cette thèse étudie la classe des estimateurs de position basée sur les
retards de temps d’arrivées (TDOA). Dans le chapitre 3, nous donnons une
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vue globale des estimateurs existants et discutons de leurs avantages et de
leurs faiblesses. Ces estimateurs sont quasiment indépendants des largeurs de
bandes des signaux et peuvent être aussi bien appliqués en champs proches
qu’en champs éloignés. Alors que la littérature dispose d’un grand nombre
d’articles sur la meilleure manière de mettre en oeuvre ces estimateurs dans
toutes sortes de situations, très peu d’informations existent sur la meilleure
manière de repartir les capteurs dans l’espace. Intuitivement, nous pouvons
considérer que les signaux reçus par les capteurs se ressemblent fortement
lorsque ces capteurs se trouvent dans un voisinage immédiat et en conclure
que l’estimation de la position sera de qualité médiocre. Au contraire, si
les capteurs sont répartis dans l’espace, l’information obtenue par un seul
capteur devient significative vis à vis des autres et la qualité de l’estimation
en sera améliorée. Ainsi, la deuxième question importante à laquelle nous
nous intéressons dans chapitre 3 concerne la manière de répartir les capteurs
afin d’obtenir une performance optimale dans l’estimation de la position.
Le chapitre 2 présente des méthodes permettant de mesurer la performance
d’un estimateur et décrit la manière d’utiliser ces mesures de qualité pour
optimiser la répartition spatiale des capteurs.

Dans le chapitre 3, nous montrons que les mesures de performance ne
dépendent pas uniquement des positions de capteurs, mais aussi de la position
de la source. Pour une source en mouvement, l’estimation de la configuration
optimale des capteurs se complexifie drastiquement. Une manière de résoudre
ce problème consiste à prédire la future position de la source et d’adapter la
configuration des capteurs à cette prédiction. Le chapitre 4 traite de cette
prédiction en utilisant pour cela des filtres Bayesiens récursifs.

Le chapitre 5 décrit la réalisation d’un système de localisation passif met-
tant en œuvre un ordinateur et plusieurs processeurs de traitement numérique
de signal (digital signal processors ou DSPs). Ces processeurs sont utilisés
de manière intensive dans la téléphonie et bénéficient ainsi d’une distribu-
tion de masse qui les rend peu coûteux. Les signaux, reçus par les micro-
phones, sont convertis par les convertisseurs analogiques/numériques des pro-
cesseurs et sont ensuite transférés vers l’ordinateur qui exécute le programme
d’estimation de position.

Chapter: Estimator Optimization

Ce chapitre introduit les fondements mathématiques des idées proposées dans
cette thèse. Il présente les aspects fondamentaux de la théorie de l’estimation
statistique. Une variété d’estimateurs classiques sont présentés ainsi que
deux mesures pour valider leur justesse: la borne inférieure de Cramer Rao
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(Cramer Rao Lower Bound ou CRLB) et la dilution géométrique de précision
(Geometric Dilution of Precision ou GDOP). Ces estimateurs optimaux et
sous-optimaux utilisent des informations statistiques sur les mesures bruitées
comme leur vecteur moyen et leur matrice de variance. Dans le cas où de
telles informations ne sont pas disponibles la théorie de l’estimation statis-
tique ne s’applique pas. Elle est remplacée par une approche fondée sur
la minimisation de l’erreur entre modèle et mesures (moindres carrés ou
least-squares estimators). Un critère de performance appelé le nombre de
conditionnement (condition number) est introduit pour ce dernier estima-
teur. Nous discuterons de la meilleure manière d’exploiter les mesures en
choisissant les paramètres internes de l’estimateur de manière optimale. Les
paramètres internes les plus courants sont : la position des capteurs (par
exemple pour l’estimateur de position), la dimension ou la taille des cap-
teurs (par exemple les jauges de déformation pour l’estimation de forces), la
fréquence de coupure des filtres intégrés, etc. Pour les estimateurs utilisant
les TDOA, les paramètres internes sont les positions des microphones.

Chapter: TDOA-Based Passive Source Local-

ization

Le sonar passif consiste en un ensemble de microphones ou d’hydrophones
répartis spatialement et utilise cette information spatiale pour estimer la
position de l’objet. Le son se propage avec une vitesse finie variable suivant
les milieux. Dans l’air à 20◦C, la vitesse du son est d’environ 343m/s. Dans
l’eau, cette vitesse dépend principalement de la pression, de la température
et de la salinité du milieu, et se situe typiquement autour de 1500m/s[Pie81]
et [NE92]. Due à cette vitesse de propagation limitée, le son produit par la
source arrivera aux microphones à des instants différents, ce sont ces retards
qui seront utilisés pour estimer la position de l’objet.

La classe des estimateurs passifs de position basés sur des TDOAs estime
la position en deux étapes. Dans la première étape, on estime les retards de
temps (les TDOAs) de chaque paire de microphones distribués dans l’espace.
Ensuite ces TDOAs sont utilisés dans une seconde étape pour estimer la
position courante de l’objet. A cause des bruits additionnels et des envi-
ronnements réverbérants, les TDOAs estimés peuvent être vus comme des
variables aléatoires composées à partir des valeurs réelles et d’un terme ad-
ditionnel de bruits. Afin de diminuer l’influence des termes concernant les
bruits, le nombre de microphones est habituellement choisi plus grand que le
nombre minimal de capteurs nécessaires (qui est la dimension de l’espace aug-
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mentée de deux), et la théorie des estimateurs statistiques est appliquée afin
de trouver la position de la source. En outre, la performance de l’estimation
est fortement corrélée à la distribution de capteurs.

La méthode de localisation passive de sources par TDOA se décompose
alors en trois parties: i) le choix d’un estimateur des retards de manière à
obtenir le vecteur de données; ii) le choix d’un estimateur de position basé sur
le modèle d’estimation des équations; iii) le choix du nombre de microphones
N et l’optimisation de leur configuration.

Bien que tous ces points soient traités dans le chapitre 3, ce chapitre se
focalise essentiellement sur le développement des point deux et trois.

Par soucis de complétude, trois estimateurs de TDOA seront présentés
dans la section 3.2:

1. l’estimateur utilisant la cross-corrélation généralisée (Generalized Cross-
Correlation estimator ou GCC);

2. l’estimateur utilisant les moindres carrés linéaires (Linear Mean Squares
estimator ou LMS);

3. l’estimateur utilisant la décomposition adaptative en valeurs propres
(Adaptive Eigenvalue Decomposition estimator ou AED).

Si on se base sur les résultats de simulations menées en environnement
réverbérant avec différents ratios de rapports signal sur bruit, les TDOAs
estimés peuvent être considérés comme la somme des TDOAs réels et d’un
vecteur aléatoire Gaussien avec une valeur moyenne de zéro. L’estimateur
itératif de vraisemblance maximale utilisant ce modèle de TDOA sera présenté
dans la section 3.4.1. Cet estimateur est habituellement le meilleur choix
d’estimateur dans la théorie de l’estimation statistique puisqu’il atteint asymp-
totiquement la borne inférieure de Cramer-Rao lorsque le nombre de mesures
tend vers l’infini. En réalité, le nombre de microphones est loin d’être infini.
D’autre part, il est nécessaire de connâıtre les informations statistiques sur le
bruit (valeur moyenne et variance) afin de pouvoir appliquer l’estimateur de
vraisemblance maximale, alors que, dans les applications acoustiques, ces in-
formations sont le plus souvent difficiles à obtenir ou en constante variation.
Pour toutes ces raisons, nous présenterons dans la section 3.4.2, un estima-
teur itératif linéaire qui ne prend pas en compte d’informations statistiques
sur le bruit.

Dans la section 3.5, nous dérivons plusieurs estimateurs analytiques qui
peuvent, soit être appliqués directement pour trouver une estimation de po-
sition, soit être utilisés comme initialisation des estimateurs linéaires ou de
l’estimation du maximum de vraisemblance. Ces estimateurs analytiques
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considèrent uniquement les retards de temps par rapport à un microphone
de référence. Leur biais et leurs matrices de covariances sont utilisés dans
le calcul de la dilution géométrique de précision (GDOP) et sont également
importants pour le suivi de trajectoires basé sur les TDOAs. Ces idées sont
présentées dans la chapitre 4.

Des configurations optimales de microphones pour les différents estima-
teurs seront données en section 3.7. Alors que les configurations des capteurs
basées sur le CRBL sont indépendantes de l’estimateur choisi, les configura-
tions trouvées soit par minimisation de la dilution géométrique de précision
soit par le nombre de conditionnement dépendent de l’estimateur sélectionné.

Nous considérerons ensuite plusieurs configurations optimales. La première
est la configuration optimale par rapport à la GDOP pour l’estimateur linéarisé,
considérant le bruit comme gaussien et de valeur moyenne nulle. La seconde
est la configuration optimale par rapport à la borne inférieure de Cramer-
Rao. Elle est décrite par les sommets de solides platoniques (tétraèdre,
hexaèdre ou cube, octaèdre, dodécaèdre, icosaèdre, fig. 3.9) ayant pour cen-
tre la position de la source. Nous montrerons que ces configurations sont
identiques et qu’elles restent optimales quand le nombre de conditionnent
devient la fonction de coût. Nous montrerons aussi que la performance des es-
timateurs itératifs augmente fortement quand ceux-ci sont initialisés à l’aide
d’estimateurs analytiques. En conséquence, il serait intéressant d’avoir une
configuration optimale non seulement pour les estimateurs itératifs, mais
aussi pour les estimateurs analytiques. Dans la section 3.7.3 nous décrivons
les configurations optimales par rapport au nombre de conditionnement. La
section 3.7.4 présentera une configuration optimale pour une combinaison
des deux estimateurs.

A la fin du chapitre, en section 3.8, nous décrirons un estimateur an-
alytique basé sur les configurations optimales par rapport au nombre de
conditionnement.

Chapter: Source Tracking

Le chapitre 4 ”Source Tracking” traite le problème d’estimation récursive
des positions successives d’un source mobile. Ces positions ne sont pas
indépendantes les unes des autres et leur dynamique est représentée au moyen
d’un modèle d’états dynamiques et d’une équation de mesure. Le vecteur
d’état contient toutes les données pertinentes nécessaires à la description de
la dynamique du système. Dans les applications, il est en général composé de
la position et de la vitesse du système, ainsi que des informations dynamiques
additionnelles comme l’angle de braquage d’un véhicule.
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L’estimation Bayésienne récursive fournit une estimation du vecteur d’état
à un instant k en se basant sur toutes les observations antérieures à k. Cette
méthode cherche à calculer la fonction de densité de probabilité à posteriori
du vecteur d’état. Une fois cette fonction de probabilité obtenue, l’estimation
de l’état optimal du système se calcule au moyen d’un critère statistique
quelconque comme la moyenne ou la médiane. Dans le cas d’un système
linéaire sous l’hypothèse de bruits Gaussien, l’estimateur récursif optimal est
équivalent à un filtre de Kalman. En cas d’équations non-linéaires ou de
bruit non-Gaussien, le filtre optimal généralement n’est plus calculable et on
doit utiliser des filtres sous-optimaux. Le plus courant est le filtre de Kalman
étendu (Extended Kalman Filter ou EKF) qui linéarise les équations et con-
sidère les bruits comme étant Gaussien. Récemment, une intéressante alter-
native au EKF, le filtre de Kalman non-parfumé (Unscented Kalman Filter ou
UKF) a suscité un intérêt grandissant dans la communauté du traitement du
signal. Plutôt que de linéariser les équations, le UKF approxime les fonctions
de densité de probabilité par des densités Gaussiennes, grâce à un ensemble
minimal et bien choisi de points d’échantillonnage déterministes (appelés les
sigma points). Ces points d’échantillonnage expriment les vraies valeurs de la
moyenne et de la covariance d’une variable aléatoire Gaussienne et, quand ils
sont propagés à travers un système non-linéaire, les points d’échantillonnage
permettent de calculer les valeurs à posteriori de la moyenne et de la covari-
ance au second ordre près.

Le troisième type de filtre étudié dans le cadre de cette thèse est le fil-
tre particulaire (particle filter ou PF) qui est plus approprié que les deux
précédents dans les cas où les fonctions sont fortement non-linéaires ou lorsque
les bruits sont clairement non-Gaussiens. Son principe est de représenter la
fonction de densité de probabilité à posteriori par un ensemble de points
d’échantillonnage pondérés appelés les particules et, de calculer l’estimation
souhaitée de l’état du système à partir de ces particules. Contrairement à
l’UKF, ces particules sont arbitrairement extraites de la fonction de den-
sité de probabilité. D’un point de vue calculatoire, les particules de ce filtre
étant beaucoup plus nombreuses que les points d’échantillonnage d’UKF,
l’utilisation de ce filtre entrâıne un plus grand nombre de calculs.

Ces filtres sont utilisés et comparés dans le cas du suivi de sources avec la
méthode TDOA, où le système d’équations est considéré comme linéaire et
l’équation de mesures, donnant la relation entre les TDOAs, la position de la
source et les positions des capteurs, non linéaire. De plus, on considère que
les bruits additionnels utilisés suivent des distributions Gaussiennes. Dans
un tel cas, on montre que les filtres présentés ont tous des performances
équivalentes, et que par conséquent on peut en déduire que soit les filtres
EKF soit les filtres UKF sont plus attractifs, compte tenu de leur avantage
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calculatoire.

Par ailleurs, nous montrons comment une configuration optimale des cap-
teurs, exhibée dans les chapitres précédents, peut modifier favorablement la
sortie du filtrage. Enfin, dans une discussion conclusive, nous présentons
comment utiliser le pas de prédiction de ces filtres récursifs pour mieux es-
timer les TDOA.

Chapter: DSP-based Passive Source Localiza-

tion

Le chapitre 5 présente un système de localisation passif de sources acous-
tiques par traitement numérique du signal. L’objectif est de proposer une
solution meilleure marché que celle existant dans la littérature. Le point
central de ces systèmes est la conversion analogique/numérique (analog to

digital conversion ou AC) des signaux provenant des microphones. Ces con-
vertisseurs sont en général issus de l’industrie musicale. Ils sont connectés à
un PC dédié à l’estimation de la position. Le prix minimum de ces systèmes
est d’environ 1000e et n’a pas de limite supérieure. Chen et Li [CL04] et
Bian et al. [BRA04] proposent deux architectures pour cette approche. Dans
J. C. Chen et al.[CYW+03] et M. Chen et al. [CLH+07] les systèmes de lo-
calisation sans fil utilisent respectivement des pocket PC et des ordinateurs
portables. De tels systèmes peuvent être intéressants pour localiser un ora-
teur dans une salle de conférence. En effet, la plupart des participants à
une conférence sont aujourd’hui munis soit de pocket PC soit d’ordinateurs
portables dont les microphones embarqués peuvent alors servir à localiser
le conférencier. Tandis que le problème de synchronisation est traité dans
[CYW+03], M. Chen et al. l’évitent en utilisant un algorithme de localisation
basé sur une fonction de l’énergie, plutôt que sur les TDOA.

Le besoin d’un système à bas coût est guidé par ses applications poten-
tielles. Un système de pointage automatique d’une caméra sur une cible
n’est économiquement intéressant que dans la mesure où le prix du système
est bas. En effet, plus on réalise d’économies sur le système de localisa-
tion/suivi, plus la part d’argent mise dans la caméra peut être élevée. Des
applications alternatives de la localisation passive de sources sont les kits
mains-libres pour la téléphonie. La direction de l’interlocuteur est estimée
à l’aide des algorithmes présentés et, un filtrage spatial (aussi connu sous le
nom de beamforming) est utilisé pour d’une part amplifier le son provenant
de la direction de l’interlocuteur et d’autre part atténuer les sons provenant
des autres directions. Un tel système peut trouver des application dans le
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domaine de l’industrie automobile puisque la plupart des pays restreignent
l’usage du téléphone portable par le conducteur aux systèmes mains-libres.
Cependant, les bruits parasites ambiants dans l’habitacle du véhicule i. e. le
moteur, les roues, les autres véhicules, l’aérodynamisme, ... sont de manière
générale plutôt importants et pénalisent l’utilisation des systèmes mains-
libres. L’utilisation d’algorithmes de localisation de sources peut permettre
de supprimer ces bruits et d’amplifier la voix de l’interlocuteur. Enfin, de
tels systèmes peuvent être aussi particulièrement intéressants pour des appli-
cations de réalité virtuelle ou des jeux vidéos. Plusieurs microphones pour-
raient être montés sur ou intégrés dans l’écran de l’ordinateur et la voix du
joueur pourrait être utilisée pour améliorer son immersion virtuelle dans le
jeu. Tous ces systèmes deviennent économiquement attractifs, si l’estimation
de la position peut être faite à un coût raisonnable.

Tandis que le coût des systèmes présentés précédemment reste supérieur
à 1000 Euros, l’objectif de ce chapitre est de présenter un système réalisable
pour un coût bien inférieur.

D’autre part, le système présenté dans cette section, est utilisé pour
évaluer la précision des algorithmes présentés dans la première partie de
cette thèse.



Chapter 1

Introduction

The estimation of an object’s position is of utmost importance for a large
number of application domains. Amongst others the following fields of ap-
plication strongly rely on an accurate position estimate:

• Robotics: autonomous robots need to be capable to estimate their
position in order to follow their intended paths and to avoid obstacles

• Navigation: navigation systems such as the global navigation satellite
systems (GNSS) find their application in fields such as

– Guidance systems for vehicles, aircrafts, ships, missiles, satellites,
etc.

– Anti-collision systems such as the autonomous identification sys-
tem (AIS) for vessel collision avoidance

• Seismic subsurface object detection, e.g. buried landmines

• Military and Surveillance: position estimation of own and enemies po-
sition, intrusion detection

• Speaker Localization: estimation of a speaker’s position in a room for
e.g.

– Hearing Aids

– Teleconference: automatically pointing a camera toward the speaker
during a conference

– Speech Enhancement by spatial filtering: signals coming from the
speaker’s direction are amplified, while sounds from the other di-
rections are suppressed

11
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– Acoustic virtual immersion of a person into a virtual reality

• etc.

The presented systems can access a large number of existing position
estimators, such as the global positioning system (GPS), possibly supported
by inertial sensors, infrared and video processing procedures, radio detection
and ranging (RADAR) and sound navigation and ranging (SONAR) systems.
The two latter can be divided into the classes of passive and active sensors.
Active sensors transmit a signal, which is reflected by the target and then
detected by one or multiple receivers of the sensor. The captured reflected
signals are then used to estimate the object’s position. Passive sensors do
not emit a signal, but detect the signals produced by the object itself by
multiple sensors and use the collected data of this sensor array to infer the
source’s position.

1.1 Passive Source Localization using Acous-

tic Sensor Arrays

The class of passive source localization estimators based on the measurements
of an acoustic sensor array, can be roughly subcategorized into direct and in-
direct methods. The indirect methods first estimate the time differences of
arrival between multiple sensor pairs and then use these delays to estimate
the source position in a second step. Direct methods, on the other hand, gen-
erally carry out the position estimation procedure in one step, by transferring
the received microphone signals into the frequency domain. Out of the class
of direct methods probably the MUltiple SIgnal Classification (MUSIC) al-
gorithm due to Schmidt [Sch86], and a variety of beamforming techniques,
such as the steered response power beamforming approach [DBS01] and the
steered filter-and-sum beamformer [SMR99] are currently the most widely
applied.

The choice of which subclass is best suited for a given estimation sce-
nario is strongly dependent on the physical characteristics and features of
the source(s) and the propagation properties between the source(s) and the
sensor array, Chen et al. [CYH02] characterize the basic features and prop-
erties as follows

• Narrow-band versus wide-band signal: signals can be divided into the
class of narrow-band or wide-band sources by the ratio of their high-
est to their lowest frequency component. The sound produced from



1.1. PASSIVE SOURCE LOCALIZATION USING ACOUSTIC SENSOR ARRAYS13

wheeled and tracked vehicles may range from 20Hz-2kHz, resulting in
a ratio of about 100, and consequently are referred to as wide-band
signals. On the contrary, transmitted radio signals are usually narrow-
band, since their ratio is typically close to unity.

• Far-field versus near-field source: the wavefront of an emitted signal is
curved and the curvature depends on the distance to the source. If the
sensors are assumed to be close to the source, the signal is said to be
in the near-field. If the distance becomes large, the wavefront becomes
planar, and the source is said to be in the far-field. For far-field sources,
only the direction of arrival (DOA) can be estimated, meaning that the
direction towards the source can be estimated. For near-field sources
its position can be estimated.

• Free-space versus reverberant space propagation: in free-space the emit-
ted signal is not reflected by obstacles, such as walls, and the emitted
signal arrives at the microphones only by the direct path (straight line
from source to sensor). Most indoor applications are fairly reverberant,
meaning that the received signal is the sum of the direct path signal
and signals reflected from the walls and other obstacles. Strongly re-
verberant environments make the position estimation rather difficult,
since the reflected signals might be interpreted as being an independent
source.

• Single versus multiple source: the choice of estimator is made upon to
the number of present sources.

The direct techniques were originally derived for narrow-band sources in
the far-field, estimating the direction of arrival (DOA) only. A variety of
extensions for broad-band signals in the near-, as well as in the far-field are
proposed in literature. These extensions do generally divide the entire fre-
quency range of the broad-band signal into frequency bins and then carry
out the estimation procedure for each frequency bin, using the standard algo-
rithms for narrow-band signals. This procedure results in position estimates
for each frequency bin, which must then be combined to obtain a single
source position estimate. Obviously, this results in a considerable computa-
tional burden.

On the other hand, the computational burden of the TDOA-based posi-
tion estimators is quasi independent of the bandwidth of the emitted source
signal, and can easily be utilized in near-field as well as far-field scenarios.
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1.2 Aim and Objectives of this Thesis

This thesis investigates the class of time difference of arrival (TDOA) based
position estimators and tries to give a comprehensive overview of the existing
TDOA-based estimators and discusses their strengths and weaknesses.

While a large number of articles has been published on how to best im-
plement the TDOA-based estimators in all kind of situations, relatively little
information can be found on how to best place the spatially separated micro-
phones. Intuitively it can be argued that if the microphones are all placed in
the near neighborhood of each other, that the received signals will be very
similar. Consequently, only little information can be obtained from the in-
dividual microphones and the estimation procedure is likely to be of poor
quality. Contrary, if the microphones are spread, the information obtained
from an individual microphone becomes more important and the estimation
quality will possibly increase. The question of how to best place the sensors
in order to obtain an optimal performance builds the second major part of
this thesis. It will be discussed how the quality of an estimator can be mea-
sured, and how this quality measure can then be used to optimize the sensor
configuration.

It will be seen that a sensor configuration being optimal for one source
position might be insufficient for other locations of the object. This can
lead to severe limitations of the estimation procedure, if a moving source
is considered. One way of addressing this problem is to predict the future
source position and then to adapt the sensor network. This procedure is
studied using recursive Bayesian estimation techniques.

Finally, a low-cost system is presented, which uses a low-cost digital signal
processor (DSP) to analog-digital convert the data of multiple microphones
and then transmit these to a standard PC, which carries out the actual
estimation procedure.

1.3 State of the Art

1.3.1 TDOA-based Position Estimation

Time difference of arrival (TDOA) based estimators are two step procedures
and can be applied to near-field as well as the far-field situations considering
narrow-band or wide-band signals in free- or reverberant-space. In a first
step the relative time differences between microphone pairs are estimated,
which are then, in the second step, used to estimate the source position.
Assuming a spatially separated microphone pair i and j and a single source,
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the sound produced by the source will arrive at the sensors as delayed and
filtered version of the origin signal. A variety of time delay estimators ex-
ist, which are capable of estimating the relative time delays of microphone
arrays. Knowing the sensor positions and the estimated TDOA of a sensor
pair, the position of the source lies on one half of an hyperboloid. Estimating
the TDOAs of multiple independent sensor pairs, the source’s position can
be estimated by the intersection of these hyperboloids. Consequently, in 3-D
space, three such hyperboloids, and consequently at least four microphones
are needed to get a unique position estimate. Fang [Fan90] derived an ex-
act solution of this intersection problem for situations where the number of
TDOA estimates is equal to the number of spatial dimensions. However, this
solution cannot be extended to extra TDOA measurements. But, additional
TDOA measurements can greatly increase the estimation accuracy, if distur-
bance noise is present. In such a case the multiple hyperboloids will usually
not intersect in a single point, and some compromise between the resulting
intersection points needs to be made.

The problem of the multiple intersections can be written as a nonlinear
maximum likelihood estimation problem, which needs to be solved via nu-
merical optimization. The maximum likelihood estimator is approximately
optimal if the number of observations, or in this case the number of TDOA
estimates, becomes large. However, a large number of TDOA estimates,
corresponds to a large number of microphones, and consequently results in a
large computational and financial burden. Further, the noise level in acoustic
scenarios most often strongly varies over time, which makes the application
of the maximum likelihood estimator even more troublesome. In order to
avoid any inaccuracy due to changing, or unknown statistical properties of
the noise, the TDOA-based position estimation problem is quite often de-
scribed as a nonlinear least-squares estimation problem. Iterative methods
which start with an initial guess and successively approximate the optimal
solution via a linearized least-squares estimate at each step in the procedure
exist [Foy76], [Tor84]. Obviously, such estimates suffer of numerical opti-
mization problems: they are not guaranteed to converge in many instances,
and tend to be sensitive to the choice of the initial guess.

A large number of sub-optimal, closed-form TDOA-based estimators ex-
ist, which approximate the solution of the nonlinear problem [SA87], [BAS97],
[CH94], [HBE00], [HBEM01], [SR87], etc. These estimators are computa-
tionally undemanding and in [NFBM08] we showed that they suffer little
performance decrease compared to the optimal estimators, if an appropriate
sensor configuration is selected. Further, their outcome can be used as the
initial guess for the iterative estimators, which due to the accurate initializa-
tion become quite robust [NBM07].
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The advantages of these TDOA-based position estimators over the direct
methods is their flexibility of application (near-field vs. far-field, narrow-
band vs. wide-band, free-space vs. reverberant-space), and their significantly
smaller computation time. Their main inconvenience is their difficulty han-
dling multi-source situations. However, recently a number of multi-source
time delay estimators have been proposed, which seem capable of resolving
this problem.

Multiple Source TDOA-based Position Estimation

Recently a number of TDOA estimation procedures for the multi-source sce-
narios have been proposed. The majority of these time delay estimators are
based on the theory of blind source separation. Blind source separation deals
with separating multiple sources from a set of multiple mixed signals, without
any or only little knowledge on the source signals or the mixing process.

Assuming multiple acoustic sources and multiple microphones, the signal
of an individual microphone can be seen as the sum of the filtered versions
of the emitted signals. While the main goal of blind source separation would
be to reconstruct the individual emitted signals, for time delay estimates the
focus lies on identifying the channel impulse response, responsible for the
filtering process of the signals. If these channel impulse responses can be
identified, time delay estimates for each sensor pair and each source can be
obtained from these filters.

Independent component analysis (ICA) is currently the most popular
procedure for carrying out this separation procedure, if at least as many
microphones as sources are present.

The TRINICON algorithm due to Buchner, Aichner and Kellermann
[BAK07], as well as the frequency domain ICA approach due to Sawada et al.
[SMAM05] both use the convolutive version of the independent component
analysis to estimate the corresponding time delays of multiple sources.

In case of fewer microphones than sources Emile, Comon and Le Roux
[ECR98] have proposed a procedure for estimating the time delays based on
higher oder statistics.

While the three above presented methods can all be seen as blind source
separation techniques, Scheuing and Yang [SY06], [SY07] have proposed
a correlation-based technique for identifying the time delays of multiple
sources.



1.3. STATE OF THE ART 17

1.3.2 Optimal Sensor Configuration

The performance of a position estimator based on a, not necessarily acoustic,
sensor array is strongly dependent on the geometry of the microphone net-
work and the relative position of the source w.r.t. this array. The problem
of maximizing the estimator’s accuracy by using an optimal sensor config-
uration has been addressed in literature for a variety of different position
estimator, minimizing a variety of cost functions, describing the estimator’s
performance.

One of the most often utilized cost functions is the trace of the Cramer
Rao lower bound (CRLB). This performance measure was used by e.g. Abel
[Abe90], Aranda et al. [AMB05], and Yang and Scheuing [YS05], who all
considered the problem of passive acoustic source localization. While Abel
[Abe90] derived an analytic solution, constraining the sensors to lie on a
line segment, Yang and Scheuing derived an analytic solution without any
constraints on the sensor positions: the optimal configuration is obtained if
the sensors are evenly spread around the source position. Consequently, the
configuration will usually be optimal for a single source position. Aranda et
al. found the same configuration and relaxed the problem of a single source
position, by assuming a moving sensor network.

An extension of the Cramer Rao lower bound is used by Jourdan and
Roy [JR06] for ultra-wideband ranging sensors. Instead of using a moving
sensor network for achieving an optimal performance over an entire area or
trajectory, they minimize the average cost function over the considered area
or path.

Zhang [Zha95] and Levanon [Lev00] find the same sensor configurations
as Yang and Scheuing for two-dimensional estimation problems, using alter-
native cost functions. While Levanon minimizes the trace of the geometric
dilution of precision (GDOP) of a TDOA-based position estimator, Zhang
considers the estimation covariance matrix of an estimator composed of mul-
tiple acoustic transceivers.

Usually the geometric dilution of precision is utilized as a performance
measure for the global positioning system GPS. However, McKay and Pachter
[MP97] argued that the condition number is the better suited as a cost func-
tion for their inverted pseudolite positioning system. The condition number
was also used by Hegazy and Vachtsevanos [HV03] for optimizing the perfor-
mance of an energy-based acoustic position estimator.

In his PhD thesis Rabinkin [Rab98] focused on the signal to noise ratio
as a cost function for passive acoustic position estimation.
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1.3.3 Passive Acoustic Source Tracking

The goal of passive acoustic source tracking is to estimate the object’s trajec-
tory using noise-corrupted position or bearing measurements, from a passive
source localization estimator. While the object’s movement is usually de-
scribed as a dynamic state model, a measurement equation links the position
or bearing estimates to the state of this dynamic model.

If the two equations are linear and it is assumed that additive Gaussian
noise is disturbing both equations, then it is well known that the classical
Kalman filter is the optimal filter for the tracking problem [Kal60].

In tracking applications it is quite common to model the target motion
as a linear state model, such as the white noise acceleration model [BC07] 1.
For human source tracking applications Vermaak and Blake [VB01] proposed
a linear state model describing a Langevin process. This model has shown to
work well in practice [LJN07] and was adapted by e.g. Ward et al. [WLW03],
Lehmann and Johansson [LJ07] and Fallon and Godsill [FG07].

On the other hand, the measurement model is typically nonlinear, which
means that the classical Kalman filter is not applicable. In [WLW03], [LJN07],
[LJ07], [FG07] the steered beamformer approach is utilized for carrying out
the position estimation, which results in a nonlinear measurement equation.
The tracking problem becomes even more difficult if not consecutive posi-
tion estimates, but only bearing estimates are available. In such a case the
measurement model is nonlinear and the state vector becomes unobservable
(no range estimate is available), or at best only poorly observable [Cad98].
Bearing-only tracking systems find their application in e.g. marine applica-
tions, when the sensor geometry only allows a bearing estimate (e.g. sensors
installed on a cord dragged by a vessel).

For nonlinear state space models a variety of alternatives to the classical
Kalman filter are available. They range from the extended Kalman filter
over the unscented Kalman filter originally proposed by Julier and Uhlmann
[JU97], grid based filters [Ber99], to recursive particle filters, such as the
bootstrap filter [GSS93], or sequential importance sampling filters. An ex-
haustive overview of these particle filters can be found in technical report of
Doucet et al. [DGA00], in the tutorial of Arulampalam et al. [AMGC02],
and the PhD thesis of Bergman [Ber99], which also presents the ideas of the
grid based approaches.

The unobservability of the source’s range is compensated by the bearing-
only tracking approach by the movement of the sensor array. A large number
of recursive filters have been proposed for carrying out the actual tracking

1The survey article of Li and Jilkov [LJ03] gives a thorough overview of dynamic state
models for tracking applications
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procedure. Arulampalam and Ristic [AR00] have demonstrated the superi-
ority of particle filter approaches over the modified extended Kalman filter
approaches. However, Fearnhead [Fea98] demonstrated that the use of the
standard particle filter can nevertheless lead to a divergence of the position
estimation. This was also observed by Bréhard and Le Cadre [BC07] , who
propose to use the particle filter in combination with a coordinate transfor-
mation to resolve these divergence problems. Le Cadre and Trémois proposed
to solve the tracking problem by a grid based method using hidden Markov
models [CT98].

The majority of the beamformer based position trackers utilize the par-
ticle filter approach [LJN07], [LJ07], [FG07]. Vermaak and Blake utilize
the generalized cross-correlation based approach [VB01], and Ward et al.
[WLW03] do a comparative study of these two approaches.

1.4 Structure of the Thesis

Chapter 2 builds the framework for acoustic passive source localization and
its optimal sensor configuration. The basic ideas of estimation theory are
presented, and the Cramer Rao Lower Bound (CRLB) and the Geometric
Dilution of Precision (GDOP) are introduced as possible measures for sta-
tistical estimators, which use the available information about the present
disturbance noises. If no such information is available, the statistical estima-
tors are usually replaced by the least-squares estimator, which can be seen
as a ”fitting the data” estimator. It minimizes the squares of the residu-
als, which are the difference of an overdetermined model outcome and the
observed data. If the model is linear, the estimate is obtained by the multi-
plication of the pseudo-inverse of a matrix and the observation vector. The
calculation of a pseudo-inverse can numerically be delicate, if the concerned
matrix is ill-conditioned. A measure for the condition of a matrix is the
condition number, which in the next chapter will be introduced as an alter-
native performance measure to the CRLB and the GDOP. Further, it will be
discussed how these three measures can be used to optimize the performance
of a given estimator.

In chapter 3 the theory presented in chapter 2 is applied to the problem
of acoustic TDOA-based passive source localization. A detailed overview of
existing estimators is presented, and their advantages and inconveniences are
discussed. Depending on the problem at hand either one of the presented al-
gorithms might be favorable over the others. Due to their different structure,
a sensor configuration being optimal for one estimator might not be optimal
for the others. Consequently, the sensor configuration also depends on the
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chosen estimator. Procedures for optimizing the sensor configuration will
be presented for all estimators, considering all three performance measures.
It will be shown that under the assumption of independent and identically
distributed (i.i.d.) Gaussian noise all three measures lead to the same sensor
configuration for the class of statistical estimators.

In chapter 4 the ideas of recursive Bayesian estimation are presented
and the Kalman filter, the extended Kalman filter, the unscented Kalman
filter and Bootstrap filter in particular introduced. In combination with the
presented TDOA-based passive source localization estimators the estimation
accuracy can greatly be increased. Further, these recursive estimators have
the ability to predict the future position as a random variable with known
mean vector and covariance matrix. This statistical information will be used
to support the time delay estimation and the adaptive sensor configuration
procedures.

In chapter 5 a low-cost TDOA-based source localization system is pre-
sented, which is based on a digital signal processor (DSP) and a standard
PC.

Finally a conclusion and an outlook are given in chapter 6.



Chapter 2

Estimator Optimization

This chapter builds the mathematical framework for the ideas presented in
this thesis. The main aspects of statistical estimation theory will be pre-
sented. A variety of common estimators are introduced, and two measures
for validating their accuracy are described. The presented optimal, or sub-
optimal estimators are based on available statistical information on the noisy
measures, such as their means and covariance matrices. In case that no such
information is available, this theory cannot be applied, and might be replaced
by an approach, which minimizes the sum of square differences between a de-
fined model and the observed measures. This process is commonly known
as the least-squares approach. A third performance measure, the condition
number, is introduced for this non statistical estimator.

It will be discussed how the three presented measures can be exploited for
increasing the performance of the presented estimators by choosing optimal
values for the internal parameters of the estimator at hand. Those param-
eters are variables which can usually be arbitrarily chosen by the operator.
Common internal parameters are the position of the sensors (e.g. of local-
ization estimators), the dimension or size of the sensors (e.g. of resistance
strain gauges for force estimates), the cutoff frequencies of integrated filters,
and so forth.

2.1 Statistical Estimation Theory

The general idea of estimation theory is to infer values of unknown parame-
ters

θ = (θ1, . . . , θp)
T (2.1)

based on a set of discrete measurement data

x = [x[0], . . . , x[m − 1]]. (2.2)

21
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The discrete measurement data is usually found by the sampling process of a
computer or microcontroller of one or multiple continuous waveforms, which
are dependent on the unknown parameters collected in the vector θ. This
unknown parameter vector can be of statistical nature, but is considered to be
deterministic in this and the next chapter. In determining a good estimator
the first step is to mathematically model this dependency:

x̃ = h(θ, xi), (2.3)

where x̃ is the model output, which approximates the true observation x,
and xi denotes the internal parameters of the estimator in vector notation.
Since the measurement data is usually subject to disturbing noises n, which
are modeled as random variables, the measurement data are random as well.
Throughout this thesis it is considered that the disturbing noise is of additive
nature. Hence, the ideal model of eq. (2.3) transforms to

x = x̃ + n = h(θ, xi) + n. (2.4)

Since it is desired to determine θ based on the data, the goal of estimation
theory is to derive an estimator g, such that

θ̂ = g(x, xi, n), (2.5)

is an estimate of θ fulfilling some optimality criterion. Usually such an
estimate is based on the first two moments, the mean µ and the covariance
Cn of the additive noise n.

2.1.1 Unbiased and Minimum Variance Estimators

The interest is to find an estimator which fulfills some optimality criterion.
A natural one is the mean square error (MSE), defined as

mse(θ̂) = E((θ − θ̂)T (θ − θ̂))

= E([(θ − E(θ̂)) + (E(θ̂) − θ̂)]T [(θ − E(θ̂)) + (E(θ̂) − θ̂)])

= E(|θ − E(θ̂)|22) + E(|E(θ̂) − θ̂|22)
= |θ − E(θ̂)|22 + E(|E(θ̂) − θ̂|22)
= |E(θ̂) − θ|22 + trace(Cθ̂),

(2.6)
where E() denotes the expected value, Cθ̂ represents the covariance matrix
of the estimate and |.|2 denotes the Euclidean vector norm. The bias b is
defined as

b = E(θ̂) − θ. (2.7)
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Definition 1. An estimator is said to be unbiased if E(θ̂) = θ, otherwise it
is said to be biased.

In order to evaluate the bias b of an estimator, the true value of the
unknown parameter needs to be known. Therefore, the bias is a rather theo-
retical measure, and is generally unavailable in practice. Consequently, since
the MSE is the sum of the trace of the estimator’s covariance and the bias,
an estimator minimizing the MSE is generally not realizable. An alternative
is to minimize the variance Cθ̂ of the estimate, since this is only a function

on θ̂ and not on the true unknown parameters θ. The estimators, out of the
set of all unbiased estimators, with minimum variance are called minimum
variance unbiased MVU estimators. In order to find a MVU estimator, or to
test whether a given estimator is a MVU estimator, the Cramer Rao Lower
Bound usually needs to be derived.

2.1.2 Cramer Rao Lower Bound

The Cramer Rao Lower Bound (CRLB) defines a lower limit on the variance
of any unbiased estimator. This lower bound is of great importance for
the development of estimators. At best, the minimum variance unbiased
(MVU) estimator can directly be derived from it. At worst, it provides a
benchmark against which the performance of any unbiased estimator can
be compared. Furthermore, the theory of the CRLB offers a possibility to
determine whether an estimator, which actually attains this bound, exists
[Kay93].

In the following it is assumed that the measured data is given in vector
notation, that is x ∈ R

m.
Knowing the parameter vector θ = (θ1, . . . , θp)

T the likelihood function
for observing x, is denoted by the probability density function (pdf) p(x; θ).
The ”; ” in this pdf represents its dependency on the deterministic unknown
parameter θ. Consequently, the expectation of the data x taken with respect
to p(x; θ) is a function of θ as well, and is denoted by µ(θ).

The vector version of the CRLB is given by the following theorem.

Theorem 1 (Cramer-Rao Lower Bound - Vector Parameter). It is assumed
that the probability density function p(x; θ) satisfies the ”regularity” condi-
tions

E

[
∂ ln p(x; θ)

∂θ

]

= 0 for all θ, (2.8)

where the expectation is taken with respect to p(x; θ), and

∂ ln p(x; θ)

∂θ
=

(
∂ ln p(x; θ)

∂θ1
, . . .

∂ ln p(x; θ)

∂θp

)

. (2.9)
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Then, the covariance matrix Cθ̂ of any unbiased estimator θ̂ satisfies

Cθ̂ − F−1(θ) ≥ 0 (2.10)

where ≥ 0 indicates a positive semi-definite matrix. The Fisher information
matrix (FIM) F (θ) is given by

[F (θ)]ij = −E

[
∂2 ln p(x; θ)

∂θi∂θj

]

, (2.11)

where the derivatives are evaluated at the true value of θ and the expectation
is taken with respect to p(x; θ). Furthermore, an unbiased estimator may be
found that attains the bound in that Cθ̂ = F−1(θ) if and only if

(
∂ ln p(x; θ)

∂θ

)T

= F (θ) (g(x) − θ) (2.12)

for some p-dimensional function g and some p×p matrix F . That estimator,
which is the minimum variance unbiased (MVU) estimator, is θ̂ = g(x), and
its covariance matrix is F−1(θ).

The proof of this theorem is omitted, but can be found in estimation
theory literature, such as in [Kay93].

In the case of a Gaussian pdf p(x; θ) with mean vector µ and covariance
C the Fisher information matrix results in [Kay93]

[F (θ)]ij =

[
∂µ

∂θi

]T

C−1

[
∂µ

∂θj

]

+
1

2
trace

[

C−1 ∂C

∂θi
C−1 ∂C

∂θj

]

,

(2.13)

with
∂µ

∂θi
=

[
[∂µ]1
∂θi

, . . . ,
[∂µ]N
∂θi

]T

. (2.14)

Assuming that the measures x are equal to the nonlinear model of equa-
tion (2.4) perturbed by additive additive zero-mean Gaussian noise with con-
stant covariance Cn, n ∼ N (0, Cn),

x = h(θ, xi) + n, (2.15)

the likelihood function p(x; θ) is Gaussian, too. Rewriting eq. (2.15) as

n = x − h(θ, xi), (2.16)
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its pdf follows to

p(n) =
1

(2π)p/2 det(Cn)1/2
exp

(

−1

2
nT C−1

n n

)

=
1

(2π)p/2 det(Cn)1/2
exp

(

−1

2
(x − h(θ, xi))

T C−1
n (x − h(θ, xi))

)

= p(x; θ).
(2.17)

One sees that the likelihood function p(x; θ) is completely described by the
mean

µ = h(θ, xi) (2.18)

and the covariance Cn. Applying eq. (2.13), the Fisher information matrix
is found to be

F (θ, xi) = J
T (θ, xi)C

−1
n J (θ, xi), (2.19)

where J (θ, xi) denotes the Jacobian matrix given by

J (θ, xi) =
∂h(θ, xi)

∂θ
. (2.20)

If further it is assumed that the noise is independent identically distributed,
such that Cn = σ2I, then the bound on the unbiased estimators covariances
is given by

Cθ̂ ≥ σ2 · (J T (θ, xi)J (θ, xi))
−1, (2.21)

for which the inverse of J
T (θ, xi)J (θ, xi) needs to exist.

Definition 2. An estimator, which is unbiased and attains the CRLB, is
said to be efficient in that it efficiently uses the data.

2.1.3 Linear Model Estimators

As discussed above, the determination of the MVU is in general a difficult
task. However, for linear estimation models of the form

x = Hθ + n, (2.22)

with zero mean Gaussian noise n ∼ N (0, Cn), the MVU can directly be
derived using eq. (2.12). Replacing the nonlinear data model h(θ, xi) by the
linear term Hθ the pdf p(x; θ) follows to

p(x; θ) =
1

(2π)p/2 det(Cn)1/2
exp

(
1

2
(x − Hθ)T C−1

n (x − Hθ)

)

. (2.23)
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Defining

∂ ln p(x; θ)

∂θ
=

(
∂ ln p(x; θ)

∂θ1

, . . . ,
∂ ln p(x; θ)

∂θp

)

(2.24)

it follows that
(

∂ ln p(x; θ)

∂θ

)T

= HT C−1
n x − HT C−1

n Hθ

= (HT C−1
n H)

(
(HT C−1

n H)−1HT C−1
n x − θ

)
.
(2.25)

Comparing eq. (2.25) with eq. (2.12) one sees that the MVU for the linear
model is

θ̂ = (HT C−1
n H)−1HT C−1

n x, (2.26)

and its covariance follows to

Cθ̂ = (HT C−1
n H)−1. (2.27)

2.1.4 Maximum Likelihood Estimator

It is more complicated, and quite often even impossible to derive the min-
imum variance unbiased estimator for nonlinear systems. In such cases
the most popular alternative is the maximum likelihood (ML) estimator,
which is probably due to its approximate efficiency, for large data sets,
x = [x[0], . . . , x[m − 1]], with m → ∞, and its ease of implementation
[Kay93]. It is defined as the value that maximizes the probability density
function p(x; θ):

θ̂ = arg max
θ

p(x; θ). (2.28)

Because many density functions contain exponential functions, it is often
more convenient to find the maximum of the log likelihood function ln(p(x; θ)).
Since the log function is a strictly monotonically increasing function the es-
timate that maximizes p(x; θ) clearly also maximizes ln(p(x; θ)). The opti-
mization problem then results to

θ̂ = arg max
θ

ln(p(x; θ)). (2.29)

For zero-mean Gaussian noise, with covariance matrix Cn, the probability
density function p(x; θ) results to (see eq. (2.17))

p(x; θ) =
1

(2π)p/2 det(Cn)1/2
exp

(

−1

2
(x − h(θ, xi))

T C−1
n (x − h(θ, xi))

)

.

(2.30)
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If the covariance matrix is assumed to be independent of θ, the corresponding
optimization problem of eq. (2.29) can be simplified:

θ̂ = arg max
θ

ln(p(x; θ))

= arg min
θ

(x − h(θ, xi))
T C−1

n (x − h(θ, xi)).

(2.31)

A necessary condition for the maximum of eq. (2.30) is

∂

∂θ
ln(p(x; θ)) = 0. (2.32)

Since Cn is a symmetric matrix,

(
∂

∂y
(yTC−1

n y)

)T

= 2C−1
n y, (2.33)

and hence eq. (2.32) follows to

(
∂ ln p(x; θ)

∂θ

)T

= J (θ, xi)
T C−1

n (x − h(θ, xi)), (2.34)

with J (θ, xi) denoting the Jacobian of h(θ, xi) w.r.t. θ:

J (θ, xi) =
∂h(θ, xi)

∂θ
. (2.35)

The matrix product of J (θ, xi)
T C−1

n is of dimension R
p,m, with p being

the dimension of the unknown estimation vector θ ∈ R
p, and m being the

length of the observation vector x ∈ R
m. Usually m > p and hence the

solution of eq. (2.34) is θ, such that x − h(θ, xi) belongs to the kernel of
J (θ, xi)

T C−1
n . Of course, if there exists a θ such that x − h(θ, xi) = 0,

this θ will be the ML estimate. However, most often, the solution of this
maximum likelihood problem cannot be found in close-form and numerical
optimization must be applied for finding the maximum likelihood estimate.

Numerical Solution If the maximum cannot be found in closed-form, a
variety of numerical algorithms exist, which are suitable for carrying out the
search for the maximum.

The safest way of finding this maximum numerically is to perform a grid
search over the allowable region of the unknown parameter θ. If, however,
the unknown parameter θ is not constraint to a finite region, the grid search
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approach is likely to become computationally infeasible. In such a case iter-
ative maximization procedures, such as the expectation-maximization (EM)
algorithm [DLR77], the Quasi-Newton, the simplex downhill or the Newton-
Raphson method [Fle00] can replace the grid search. All these methods are of
iterative nature and their performance is strongly correlated to their initial-
ization. Meta-heuristic optimization techniques, such as the particle swarm
optimization [KE95], exist, which avoid the problem of needing a good ini-
tial guess. Nevertheless, they do not guarantee to converge to the global
maximum, either, and are computationally quite demanding.

In this thesis the Newton-Raphson algorithm is applied for such nonlin-
ear estimation problems. When additive Gaussian noise is considered, this
algorithm exploits the pseudo-inverse of the estimation model

J (θ, xi) =
∂h(θ, xi)

∂θ
, (2.36)

which will play a fundamental role for the optimization of the estimator’s
performance in the following sections and chapters.

Approximative Efficiency In numerical analysis the Newton-Raphson
algorithm is probably the best known method for finding the roots of a func-
tion. The idea is as follows: one starts with an initial guess as close as
possible to the true root. The function is then approximated by its tangent
at this point, and the root of the resulting linear term is calculated. This
value is then used as the new approximation of the root, and the procedure
is repeated. For multidimensional problems f : R

N → R
M the iterative step

is given by

xn+1 = xn − J (xn)†f (xn), (2.37)

with

J (xn) =
∂f (x)

∂x
|x=xn

. (2.38)

An inconvenience of the ML estimator is that it only approximates the
minimum variance estimator for infinite data sets. For a finite number of
observations, however, the ML estimator might be inefficient, or even biased.
However, strictly speaking, if the maximum likelihood estimator is biased its
performance cannot be evaluated by comparing it to the Cramer Rao Lower
Bound and alternative measures need to be considered. One alternative
performance measure, which is also applicable to biased estimators is the
dilution of precision.
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2.1.5 Dilution of Precision

In estimation theory it is often of great importance to have a measure for
the current accuracy of an estimator. A well-known application, which uses
this information, is a navigation system, which estimates the position of an
object by the sensor fusion of data obtained from a global navigation satellite
system (GNSS), such as GPS or Galileo, and some alternative sensors, such
as inertial sensors measuring the translational and radial accelerations of the
object. Most often the information obtained from the inertial sensors is used
to estimate the position of the object, when no GNSS position is available,
or if this measure can not be trusted. In GPS applications the measure
on how much a position estimate can be trusted is the dilution of precision
(DOP). It describes the geometric strength of satellite configuration on the
GPS accuracy. Roughly speaking, when visible satellites are close together
it is said to be weak and the DOP value is high. When the visible satellites
are far apart, the geometry is said to be strong and the DOP value is low.
The dilution of precision can be expressed as a number of separate measures
in GPS applications. One normally distinguishes between the horizontal
(HDOP), the vertical (VDOP), the position (3D) (PDOP) and the time
dilution of precision (TDOP). The combination of all these measures is called
the geometric dilution of precision, which is defined as the ratio of the root
mean square error (RMSE) of the position estimate xs and the RMSE of the
range error e

GDOP(xs) =
RMSE(xs)

RMSE(e)
, (2.39)

with the RMSE being defined as the square-root of the MSE of eq. (2.6)

RMSE(y) =
√

E(y − ŷ)T (y − ŷ). (2.40)

Appendix B presents more information on the GDOP for GPS applications.

For other classes of estimation problems the dilution of precision can be
defined as the ratio of the root mean square error (RMSE) of the observations
and the RMSE of the noise

GDOP(θ̂) =
RMSE(θ̂)

RMSE(n)
. (2.41)

In eq. (2.6) it was shown that the MSE, and therefore also the RMSE is
a combination of the estimator’s bias and its covariance. Therefore, the
dilution of precision is an appropriate measure for all kind of statistical esti-
mators, for which these values can be determined.
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This section presented some main ideas of statistical estimation theory.
Sometimes however, it is difficult to obtain the necessary statistical informa-
tion for deriving the proposed estimators, or for calculating the CRLB or the
GDOP. An alternative, non-statistical approach to estimation theory, is the
theory of least-squares, presented in the following section.

2.2 Least-Squares Estimation

The least-squares estimator (LSE) is widely used in practice due to its easy
implementation, and its availability to offer estimates even when no statistical
information about the noisy measures is available. It dates back to 1795
when Gauss used the method to study planetary motion. It is defined as the
estimate θ̂ which minimizes the sum of the squared difference between the
true observations x and the outcome x̃ of an observation model

θ̂ = arg min
θ

|x − x̃|2 = arg min
θ

|x − h(θ, xi)|2, (2.42)

with x̃ = h(θ, xi), as defined in eq. 2.3.

2.2.1 Linear Least-Squares Estimator

If the mathematical model is linear x̃ = Hθ, the least-squares estimator can
be written as

θ̂ = arg min
θ

|x − Hθ|2, (2.43)

where H is a known upright matrix with full column rank, referred to as the
observation matrix. Thus, the LSE is found by minimizing

J(θ) = (x − Hθ)T (x − Hθ). (2.44)

The gradient of J(θ) w.r.t. θ is easily found to be

(
∂J(θ)

∂θ

)T

= −2HT x + 2HT Hθ. (2.45)

Since the matrix H is assumed to be of full column rank, the square matrix
HT H is of full rank, too. Consequently, the linear least-squares estimator
results in

θ̂ = H†x, (2.46)

with H† = (HT H)−1HT denoting the pseudo-inverse of H .
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An extension of the LLSE is the weighted linear least-squares (WLLS)
estimator. Instead of minimizing (2.44), a positive definite matrix W is
included, such that

J(θ) = (x − Hθ)T W (x − Hθ) (2.47)

will be minimized. The idea of using such a weighting matrix is that mea-
sures, which are assumed to be more reliable, will have a greater influence
on the estimate. The weighted least-squares estimate then follows to

θ̂ = (HT WH)−1HWx. (2.48)

Note that if the weighting matrix W is set equal to the inverse of the noise’s
covariance matrix of eq.(2.26), it can be seen that the weighted least-squares
estimator is equal to the statistical linear model estimator of section 2.1.3.

In the general nonlinear case, the LSE of equation (2.42) can generally
not be derived in closed-form, and numerical analysis must be applied to find
the minimizing parameters.

2.2.2 Nonlinear Least-Squares Estimator

It is quite easily seen that the general nonlinear case results in the same
equations as the ones for the maximum likelihood estimator, replacing the
covariance matrix Cn by the identity matrix. The extension to the weighted
nonlinear least squares estimator, which is

θ̂ = arg min
θ

(x − h(θ, xi))
T W (x − h(θ, xi)), (2.49)

also results in the same equations. This time, however, the inverse of the
covariance matrix is replaced by the weighting matrix W .

2.2.3 Linearized Estimator

Ideally an estimate θ̂n will be found which results in no residual of the min-
imization problem of eq. (2.42), or equivalently in

x − h(θ, xi) = 0. (2.50)

Such an estimate can generally be found by the iterative Newton-Raphson
algorithm, which is based on the linearized model of h(θ, xi) in the neigh-
borhood of the estimate θ̂n:

h(θ, xi) ≈ h(θ̂n, xi) +
∂h(θ, xi)

∂θ
|θ=θ̂n

︸ ︷︷ ︸

J (θ̂n,xi)

(θ − θ̂n). (2.51)
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The iterative estimator is initialized by an initial guess of the estimator’s
outcome θ0 and then updated by

θ̂n+1 = θ̂n + J
†(θ̂n, xi)(x − h(θ̂n, xi)). (2.52)

For shorter notation the bracket of the Jacobian will from now on be omitted:
J = J (θ̂n, xi).

Even though this estimator does not guarantee to find the optimal esti-
mate, nor is it guaranteed to converge, it does usually perform quite well,
if the initial guess θ̂0 is in a close neighborhood of the true unknown vec-
tor θ. This makes the linearized estimator a standard estimator in estima-
tion theory, and particularly for position estimation systems, such as the
global positioning system [Zog06] and passive source localization estimators
[HBC06].

Note that this linearized estimator does not take possible information
about the disturbance noise into consideration. Still it is obviously of inter-
est how the estimator performs if statistical information about the noise is
available. Again, additive noise is considered:

x = x̃ + n

= h(θ, xi) + n.
(2.53)

Replacing x in eq. (2.52) by eq. (2.53) leads to

θ̂n+1 = θ̂n + J
† · (x − h(θ̂n, xi))

= θ̂n + J
† ·

(

h(θ, xi) + n − h(θ̂n, xi)
)

.
(2.54)

Further, if h(θ̂n, xi) is replaced by the approximation of eq. (2.51), the
estimate θ̂n+1 follows to

θ̂n+1 ≈ θ̂n + J
† ·

(

h(θ̂n, xi) + J · (θ − θ̂n) + n − h(θ̂n, xi)
)

= θ̂n + J
†(J · (θ − θ̂n) + n)

= θ + J
† · n.

(2.55)

The mean and the covariance of the estimate of the linearized estimator
then follow to

E(θ̂n+1) ≈ θ + J
†µ (2.56)

and

Cov(θ̂n+1) ≈ J
†Cn(J †)T . (2.57)
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Thus, for zero-mean additive noise µ = 0 the linearized estimator is unbiased
and its geometric dilution of precision results to

GDOP =

√

trace(Cov(θ̂n))
√

trace(Cn)
. (2.58)

If the individual terms of the noise vector n are assumed to be uncorre-
lated and identically distributed, its covariance matrix is of the form

Cn = σ2I. (2.59)

In such a case the covariance matrix of the linearized estimator becomes

Cov(θ̂n+1) ≈ σ2(J T
J )−1. (2.60)

Note that the covariance matrix of the linearized model and the CRLB are
then of the same form. The difference of these two are the different pa-
rameters for which the Jacobians are evaluated. While the Jacobians of the
linearized estimator are evaluated for the estimate found at time instant n,
the Jacobians of the Fisher information matrix are evaluated for the true
parameter. Consequently, the initialization of the linearized estimator is of
utmost importance. If ideally it would be initialized by the true parameter,
its covariance would be equal to the Fisher information matrix and hence,
the linearized estimator would be efficient.

In case that no statistical information about the disturbance noise is
available, it would still be interesting and important to have a quality measure
of the proposed estimators. In this thesis the condition number is studied
as a possible performance measure for the non statistical LLS estimator and
the linearized estimator.

2.3 Condition Number

The condition number is primarily used in numerical computation as a mea-
sure for the amenability of a problem to digital computation. It describes
the influence of disturbances on the input data on the solutions of a prob-
lem. A problem with low condition number is said to be well-posed, or
well-conditioned, while a problem with high condition number is said to be
ill-conditioned, or ill-posed.

The condition number is most widely used for linear problems given in
matrix, vector notation, such as

H · x = b. (2.61)



34 CHAPTER 2. ESTIMATOR OPTIMIZATION

Matrix H and vector b are known, but are subject to uncertainties such as
round-off errors or noise, and the unknown x is to be calculated numerically.
Assuming a full column matrix H the solution of eq. (2.61) is found by
multiplying both sides by the pseudo-inverse of H . However, most often
numerical algorithms are forced to use rounded values of the exact entries of
H and b. The question now arises of how the uncertainties in the matrix H

and the vector b influence the solution x. As an example for an ill-conditioned
system consider the matrix

H =

[
1 1
1 1 + e

]

, (2.62)

and the vector

b =

(
2

2 + e

)

. (2.63)

The inverse of the matrix H amounts to

H−1 =

[
1 + 1/e −1/e
−1/e 1/e

]

, (2.64)

and the solution results to

x = H−1b =

(
1
1

)

. (2.65)

In a first case consider that the vector b is somehow perturbed, such that

b̃ = b +

(
∆b1

∆b2

)

. (2.66)

The solution of the perturbed system then results to be

x̃ = x + H−1

(
∆b1

∆b2

)

= x +

(
∆b1 + (∆b1 − ∆b2)/e

(∆b2 − ∆b1)/e

)

. (2.67)

For example, if e = 10−3, ∆b1 = 0.01 and ∆b2 = −0.01, then the perturbed
solution becomes

x̃ =

(
21.01
−19

)

, (2.68)

which is obviously far from the true solution x =
[

1 1
]T

. Thus, uncer-
tainties in b of less than 1% can result in a complete miss-calcuation of x.

In a second case it is now assumed, that the vector b is perfectly known
and that now some kind of uncertainty occurs in matrix H :

H̃ = H +

[
0 0
0 ∆h

]

. (2.69)
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The inverse of this matrix calculates to

H̃−1 =

[
1 + (e + ∆h)−1 −(e + ∆h)−1

−(e + ∆h)−1 (e + ∆h)−1

]

, (2.70)

and the solution of the perturbed system becomes

x̃ =




2 − e

e + ∆h
e

e + ∆h



 . (2.71)

If e = 10−3 and ∆h = −e+10−5 the solution of the perturbed system becomes

x̃ =

(
−98
100

)

. (2.72)

Again, the solution of the perturbed system is not even related to the true
outcome.

Indeed, one can say that the above given example is ill-conditioned: a
small error in either H or b results in huge solution errors.

If the matrix H ∈ R
m,n with m ≥ n has full column rank, the inverse is

replaced by the pseudo-inverse H†, which minimizes the linear least-squares
problem. The perturbed solution

x̃ = x + ∆x (2.73)

to the perturbed system

H̃x̃ = b̃, (2.74)

with H̃ = H + ∆H and b̃ = b + ∆b, is the sum of the true solution x and
an absolute error ∆x. In the following lines an upper bound for the norm of
this error will be presented and the condition number is introduced. In the
following only induced (or operator) matrix norms are considered, which are
induced from vector norms:

‖H‖ = sup
x6=0

|Hx|
|x| . (2.75)

These norms have the additional property that they are sub-multiplicative,
that is ‖HB‖ ≤ ‖H‖‖B‖. Using this property the following theorem can
be derived.
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Theorem 2. Suppose H ∈ R
m,n, with m ≥ n, is of full rank. Then, provided

that ‖H†‖‖∆H‖ < 1, with ∆H describing an uncertainty about matrix H,
the relative error of the solution vector x is bounded by

|∆x|
|x| ≤ κ(H)

1 − κ(H)
‖∆H‖
‖H‖

( |∆b|
|b| +

‖∆H‖
‖H‖

)

, (2.76)

with
κ(H) = ‖H‖‖H†‖ (2.77)

being the condition number of H.

The proof can be found in the appendix.
Using the sub-multiplicative property of the induced matrix norms it can

easily be shown that

κ(H) ≥ 1. (2.78)

From now on only the spectral (or Euclidean) norm is considered

‖H‖2 = sup
|x|2=1

|Hx|2. (2.79)

In the appendix it will be shown that the spectral norm of H is just its
largest singular value σ:

‖H‖2 = maxσi(H) = σmax. (2.80)

Further, for a full rank matrix H the spectral norm of its pseudo-inverse
corresponds to the inverse of the smallest singular value of H

‖H†‖2 =
1

min σi(H)
=

1

σmin
. (2.81)

The corresponding condition number κ2(H) then follows to

κ2(H) =
σmax

σmin
. (2.82)

Hence, the minimum condition number is obtained if the singular values of
H are all identical σ = σ1 = · · · = σn.

Theorem 3. Assume that H ∈ R
m,n with m ≥ n. The singular values of

H are identical, σ1 = · · · = σn if and only if

HT H = σ2I (2.83)
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Proof. Since HT H is positive definite, its eigenvalues are real values greater
than zero and the corresponding eigenvectors orthogonal. Further, it is di-
agonalizable, such that

HT H = V T ∆V , (2.84)

with ∆ being a diagonal matrix, having the squares of the singular values σi

of H as its entries. V is a matrix consisting of the corresponding eigenvectors
of HT H . Assume that all singular values are identical σ = σ1 = · · · = σn,
then

HT H = σ2V T V , (2.85)

Since the eigenvectors of HT H are orthogonal V T V = I. Thus, HT H =
σ2I.

As a result, searching for a matrix H with κ2(H) = 1 is equivalent to
searching for a matrix, which fulfills eq. (2.83).

The condition number can directly be applied to the LLSE and the lin-
earized estimator. The smaller the condition number of the observation ma-
trix H of the LLSE, or the Jacobian J of the linearized estimator, the
smaller will be the relative error of the estimate θ̂.

2.4 Optimal Internal Parameter Selection for

Localization Estimators

In the preceding section two performance measures, the CRLB and the
GDOP, for the statistical estimation problem and the condition number for
non statistical estimation problems were introduced. In this section we will
discuss how these measures can be used, to optimize the performance of the
used estimators. While the three performance measures might be applied to
any kind of estimation problem, the problem of source localization is from
now on considered. The parameter to be estimated θ denotes the unknown
position of an object. The known internal parameters xi are the positions
of the sensors and the measure x is found by some kind of localization or
bearing estimator.

As discussed in the theory of the CRLB, the variance of unbiased esti-
mators is lower bounded by the Fisher information matrix. It was shown
that for linear models, the linear model estimator attains that bound, and
that for nonlinear models the linearized estimator approximates it, if it is
initialized by a position in the neighborhood of the true source location. Ev-
idently, if the trace of the Fisher information matrix is maximized, the trace
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of the covariance matrix of these estimators is minimized. An optimal sensor
configuration w.r.t. the CRLB can then be stated as

arg max
xi

(trace(F (θ, xi))) = arg min
xi

(
trace(F−1(θ, xi))

)
, , (2.86)

with F (θ, xi) being the Fisher information matrix given in eq. (2.19) and
xi being a vector consisting of the sensor positions. Note, that the CRLB is
independent of the chosen estimator and that the Fisher information matrix
is positive definite, if the covariance matrix of the noise is positive definite
Cn > 0, which is usually fulfilled, and if the Jacobian J (θ, xi) is of full rank.
Otherwise, it will be positive semi-definite.

The two other methods can directly be implemented by either minimizing
the GDOP of eq. (2.41) for statistical estimators or the condition number
of equation (2.77) for the LLSE or the linearized estimator. In optimization
theory the function to be minimized is often referred to as the cost function.
In the following lines this term will be used to represent either one of the three
proposed measures. Since all measures are functions of the source position θ

and the sensor positions xi, it will be denoted by J(xi, xs), which is not to
be confounded with the Jacobian J .

2.4.1 Comparison of Cost Functions

Which cost function to use, is strongly dependent on the situation, the chosen
estimator, and the knowledge about the noise. If an unbiased estimator is
known, which attains the CRLB, and further sufficient information about the
ambient noise is available, then the minimization of the trace of the Fisher
information matrix would probably be the favorable cost function. In this
case, the covariance matrix of the estimator is equal to the inverse of the
Fisher information matrix. No other unbiased estimator then exists, which
provides a better estimate w.r.t. to its covariance.

On the contrary, for biased, or non-efficient estimators the CRLB is prob-
ably not the favorable cost function. It offers no measure for biased and gives
only a lower bound for unbiased estimators. Assume that an unbiased es-
timator is used, which does not attain the CRLB (non-efficient). In such a
case, it is known that the covariance of the estimator can not be smaller than
the Fisher information matrix. However, no upper bound for it is available.
Therefore, minimizing the trace of the Fisher information matrix, does not
assure a better performance of non-efficient estimators.

For such estimators, the GDOP or the condition number might be the
favorable cost function, depending on the information on the ambient noise.
If the statistical information about this noise is available, in order to calculate
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the GDOP, the GDOP is a powerful measure to carry out the optimization
of the sensor geometry.

The condition number has its advantages if little, or no information about
the noise is known, so that the CRLB and the GDOP cannot be calculated.
Since it offers an upper bound on the relative estimation error, it is well suited
as a cost function. However, it is limited to linear or linearized problems,
such as the LLSE and the linearized estimator.

Due to the dependency of the proposed cost functions on the source po-
sition, a sensor configuration, optimal for one source location, might be in-
adequate for others.

2.4.2 Quasi-static Source

In this thesis an object, which is only slightly changing its position, is re-
ferred to as a quasi-static source. One possible application considering such
a quasi-static source might be an automatic camera-steering algorithm for a
tele-conference. Assume that the talk of a speaker in a conference is supposed
to be transmitted to a distant conference room. In such a case the voice of
the speaker as well as a live stream of its presentation would be transmitted
over the internet. The speaker is standing most of its time, e.g. behind the
lectern, or in front of the blackboard and a camera is supposed to be auto-
matically directed toward his face. For such a scenario an acoustic source
localization algorithm could estimate the position of the speaker’s mouth
and the orientation of the camera could be adjusted accordingly. The opti-
mization procedure for the sensor geometry then becomes straightforward: a
representative position, e.g. at the height of the speaker’s mouth right be-
hind the lectern, and the estimator, e.g. the linearized estimator, are chosen.
Further, the number of sensors is assigned and one of the three presented
cost functions is minimized for the selected reference source position.

Optimal Sensor Configuration for the Linearized Estimator

Assume that some kind of position estimation is to be implemented for a
quasi-static source. An additive zero-mean, i.i.d. Gaussian noise is consid-
ered, with covariance Cn = σ2I and the linearized estimator of eq. (2.52)
is chosen to carry out this procedure. We assume that its initial value θ̂0

is found by some kind of closed-form estimator, which offers an unbiased
estimate of the source position

E(θ̂0) = θ. (2.87)
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Since, statistical information about the additive noise is available, it is
reasonable to either choose the Cramer-Rao Lower Bound, or the geometric
dilution of precision as the cost function for optimizing the sensor configura-
tion. The Cramer-Rao Lower bound for this unbiased estimator was found
in section 2.1.2, eq. (2.21), to be

Cθ̂ ≥ σ2 · (J T (θ, xi)J (θ, xi))
−1 (2.88)

Further, in section 2.2.3, the covariance matrix Cθ̂ of the estimate at iteration
step n + 1 of the linearized estimator was found to be (eq. (2.57))

Cθ̂ ≈ J (θ̂n, xi)
†Cn(J (θ̂n, xi)

†)T

= σ2 · (J T (θ̂n, xi)J (θ̂n, xi))
−1.

(2.89)

Note that since the Jacobian is a function of the estimate at iteration step
n, this covariance matrix will be a random matrix. Considering the first
iteration θ̂1 it results to

Cθ̂ ≈ σ2 · (J T (θ̂0, xi)J (θ̂0, xi))
−1. (2.90)

If now the random vector θ̂0 is replaced by its mean, which above was as-
sumed to be the true vector, equality in eq. (2.88) holds. Consequently,
minimizing the CRLB is equal to minimizing the covariance matrix of this
estimator. The minimization of a matrix is usually carried out by minimiz-
ing its trace. The performance of the estimator is minimized by choosing the
optimal internal values collected in xi:

xi = arg min
xi

(
trace(J T (θ, xi)J (θ, xi))

−1
)
. (2.91)

Just as well the geometric dilution of precision can be used for the presented
problem. In section 2.1.5 it was defined by eq. (2.41) to be

GDOP(θ̂) =
RMSE(θ̂)

RMSE(n)
. (2.92)

Since, the linearized estimator is unbiased, the root mean square error of the
estimator is simply the trace of its covariance matrix

RMSE(θ̂) = trace(σ2 · (J T (θ̂n, xi)J (θ̂n, xi))
−1), (2.93)

and hence the GDOP follows to

GDOP(θ̂) =

√

trace(J T (θ̂n, xi)J (θ̂n, xi))−1/p, (2.94)



2.4. OPTIMAL INTERNAL PARAMETER SELECTION 41

with p being dimension of the noise vector n. Due to its dependency on
the random variable θ̂n, the GDOP is random, too. Arguing as before,
the random vector θ̂n is replaced by the true unknown parameter θ. Now
minimizing the GDOP w.r.t. the internal parameters xi, leads to the same
minimization problem as the one using the Cramer-Rao lower bound given
by eq. (2.91).

Hence, in the case of additive zero-mean, i.i.d. Gaussian noise, the GDOP
of the linearized estimator and the CRLB supply the same cost function for
an optimal sensor configuration.

Since,

trace(J T
J ) =

M∑

i=1

σ2
i and trace(J T

J )−1 =

M∑

i=1

1/σ2
i , (2.95)

with M being the number of columns of J , it might be of interest to find
a sensor configuration, which assures that all the singular values of J are
equal. This can easily be shown using the Cauchy-Schwarz inequality

M = [σ1, . . . , σM ][1/σ1 . . . 1/σM ]T

≤
√

trace(J T
J ) ·

√

trace(J T
J )−1

(2.96)

Consequently,

trace(J T
J )−1 ≥ M2

trace(J T
J )

. (2.97)

Since, equality holds if and only if σ1 = · · · = σM , it might be a good choice
to choose a configuration, which fulfills this condition. In section 2.3 it was
shown that if all singular values of J are equal, then

J
T
J = σ2I, (2.98)

and consequently, that the condition number of J is equal to one, which
optimizes the sensor configuration w.r.t. the condition number as well.

Note that the condition σ1 = · · · = σM is sufficient and necessary for the
condition number approach. However, for the CRLB and the GDOP this
might generally not be true, even though inequality (2.97), makes it very
likely.

Hence, the CRLB and the GDOP deliver the same sensor configurations
for the linearized estimator, if additive zero-mean i.i.d. Gaussian noise is
considered. Further, it is very likely that the found configuration will also be
optimal w.r.t. the condition number of the estimator. In chapter 3 it will be
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shown that this is indeed true in case of TDOA-based passive source localiza-
tion. The optimization of the sensor configuration thus becomes equivalent
to finding a setup for the static position θ such that the singular values of
J become all equal.

Things become more difficult for moving sources, because a trade off
between multiple source locations must be found.

2.4.3 Moving Source

While the quasi-static source assumptions is sufficient for a variety of localiza-
tion problems, most often a moving source must be considered. In robotics a
robot must estimate its position, in order to autonomously navigate through
a defined or undefined region, without hitting any obstacles. In surveillance
applications, the intrusion of an threatening object, or person into an indus-
trial, military, or strongly populated area must be detected and its trajectory
must be monitored. In such cases, the selection of a representative position,
for which the sensor geometry is optimized, might be difficult, or might even
be impossible, because an entire area must usually be covered.

Weighted Average Cost Function

In case of a coverage of multiple positions, trajectories, such as entry paths
of airplanes arriving at the airports, or areas, one solution for optimizing the
performance of the localization estimator is to discretized the coverage zone.
An equi-spaced grid might be placed on it, and the average cost function
over the corresponding points could be minimized:

arg min
xi

P∑

j=1

wj · J(xi, xsj
), (2.99)

with P being the number of source positions. Defining different weighting
terms wj, the importance of the individual positions can be taken into ac-
count. Positions, which are more important to be well covered, obtain a
larger weight than others.

An alternative approach could be based on moving sensors. An optimal
sensor geometry could be attained for each source position, by constantly
rearranging the sensor in order to achieve an optimal performance. However,
such a network would be quite expensive and complex to implement. Each
sensor would have to be installed on a robot and the observations would
need to be transmitted to a base station. In this thesis, an adaptive sensor
network is considered.
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Adaptive Sensor Network

The basic idea of an adaptive sensor network is the use of a large number
of sensors, from which only a subset, assuring an optimal performance, are
active. In case of acoustic passive source localization the sensors are micro-
phones, which are cheap in production. A large number of these can easily
be integrated in an estimation system, without causing a cost explosion of
the overall system.

If the source is considered to be slowly moving and the estimation rate
is considered to be high, then it can be assumed, that the position of the
object is not drastically changing from one time instant to another. In this
case the position estimate from time instant k is used to reconfigure the
sensor network for time instant k + 1.

Let us consider the problem of the tele-conference, again. This time
however, it is not assumed, that the speaker is standing at one position, but
that he is constantly moving around in the room. Beforehand, the room
is equipped with e.g. 20 microphones, which are installed at convenient
positions, such as the walls, the roof, at the edges of tables, etc. Again,
a grid over the accessible region of the speaker is placed, and a number of
microphones (e.g. 5) for each grid point are chosen, which minimize one
of the proposed cost functions. The positions together with their optimal
configurations are then stored in a database, which is accessed each time a
new position estimate is found. The position in the database closest to the
estimated position is determined and its corresponding sensor configuration
is selected for carrying out the next position estimation.

This approach can be extended by using the tracking algorithms, which
will be presented in chapter 4. A linear or nonlinear state-space model of
the source’s movement is established. The observation sequence up to time
instant k is estimated and the position of time instant k + 1 is predicted,
by means of recursive Bayesian estimation. The Kalman filter is optimal for
this prediction, if the source model is linear and the additive Gaussian noise
is assumed. In other cases alternative recursive filters, such as the extended
Kalman filter, the unscented transformation filter, or particle filters might
achieve better results, depending on the modelization of the source’s move-
ment and the chosen position estimator. Once, the predicted source position
is found, the sensor configuration of the database that is best adapted for the
predicted source position, is selected to carry out the upcoming estimation
procedure.
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2.5 Chapter Summary

This section presented the general ideas of estimating unknown parameters
on a series of measures. The statistical approach to estimation theory, based
on known statistical information about the measures was presented, and
two performance measures, the Cramer Rao lower bound and the geometric
dilution of precision were derived. Further, alternative estimators, mainly
based on the theory of least-squares were introduced, which can replace the
statistical ones in case that no, or only little statistical information about
the measures is available. For those non statistical estimators, the condition
number was proposed as an adequate performance measures.

All these three measures are functions of the unknown estimation param-
eters, the observed data, and internal selectable parameters of the estimator.
The problem of position estimation was presented, and it was discussed, how
the performance of the estimators can be increased, by optimizing one of the
performance measures w.r.t. the internal parameters, which in the presented
problem are mainly the positions of the sensors.

In the next chapter this general framework will be applied to the problem
of passive source localization, based on time difference of arrival measures.



Chapter 3

TDOA-Based Passive Source

Localization

The problem of passive source localization is addressed in this chapter. Ac-
tive sensors, such as radar or active sonar, emit a signal and estimate the
position or the bearing of an object by the reflected version of the transmitted
signal. Passive sonar does not transmit, but only uses the sound produced
by the object captured by spatially separated multiple microphones (in air),
or hydrophones (in water).

Sound travels with a finite velocity, which varies for different mediums.
In air at a temperature of 20◦C, the speed of sound is around c ≈ 343m/s.
In water, the sound speed mainly depends on the pressure, the ambient
temperature, and the salinity. It is typically around 1500m/s [Pie81], [NE92].

Due to this limited propagation speed, the sound produced by the object
will arrive at the spatially separated microphones at different time instances.
These different arrival times can be used to estimate the position of the
source.

3.1 Problem Statement

As already discussed in the introductory chapter, the TDOA-based passive
position estimator can be seen as a two step procedure. In the first step
the time differences of arrival of multiple spatially separated microphone
pairs are estimated, which are then used in the second step to estimate
the actual position of the source. Due to disturbance noises and reverberant
environments, the estimated time differences can be seen as random variables
consisting of the true value and an additive noise term. Denoting the source
position by xs and the sensor positions of microphones i and j by xi and

45
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xj, respectively, the time delay estimate τij can be represented as the sum
of range difference of the microphone pair

dij(xs, xi, xj) = |xi − xs|2 − |xj − xs|2 (3.1)

and an additive noise term nij :

τij = dij(xs, xi, xj)/c + nij. (3.2)

Note that assuming a three dimensional position estimation, eq. (3.1) de-
scribes one half of a hyperboloid with focal points xi and xj. Consequently,
having a single time delay estimate τij does not specify a unique source lo-
cation xs, but only restricts the potential location to lie on the hyperboloid
defined by the microphone positions and the time delay estimate. Having
multiple microphone pairs, the source location is restricted to lie on all re-
sulting hyperboloids. The estimation of the source’s position can thus be
seen as the intersection of multiple hyperboloids. In order to obtain a unique
position estimate at least three hyperboloids are needed, which means that
at least four microphones must be used for a unique three dimensional po-
sition estimate. Since the true range differences dij are unavailable, they
are estimated by the time delay estimates τij times the propagation speed.
However, the additive noise terms influences the shape of the hyperboloids
and consequently the estimate of the source position. In order to decrease
the influence of these noise terms, the number of microphone pairs is usually
chosen greater than three.

Collecting multiple time delay estimates of N microphones in a row vector
τ , eq. (3.2) can be expanded to

τ = d(xs, x1, . . . , xN)/c + n. (3.3)

Consequently, with xs = θ and τ = x, the TDOA-based position estima-
tion problem is written as the general estimation problem presented in the
previous chapter (eq. (2.4)), with

h(xs, x1, . . . , xN) = d(xs, x1, . . . , xN). (3.4)

Note that the internal parameters of the previous chapter are now the sensor
coordinates xi. Since in section 2 it was shown that for the given problem
the presented performance measures (the Cramer Rao lower bound, the ge-
ometric dilution of precision and the condition number) are all functions of
the estimation vector and the internal parameters, the performance of the
presented estimators can be increased by choosing optimal internal parame-
ters.

The problem of optimal TDOA-based passive source localization is thus
composed of three parts:
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1. choose an appropriate time delay estimator in order to obtain the data
vector τ

2. choose an appropriate position estimator based on the estimation model
of eq. (3.3)

3. choose an appropriate number of sensors N and optimize their config-
uration

These three points will be addressed in this section. However the focus is
directed on points 2 and 3. For completeness three time delay estimators,
the generalized cross correlator, the linear mean square error estimator, and
the adaptive eigenvalue decomposition estimator, will be presented in sec-
tion 3.2. Based on a number of simulations, considering varying reverberant
environments and varying signal to noise ratios, it will be argued that the
found time delay estimates can indeed be represented by eq. (3.3), and that
it is reasonable to assume that n is a zero-mean Gaussian random vector.
This in mind, the most often utilized position estimators for step two, based
on the noisy model of eq. (3.3), are presented in section 3.3. The Cramer
Rao lower bound for this problem is derived and it will be shown that for
the TDOA-based position estimation problem no unbiased estimator exists,
which attains this bound.

The maximum likelihood would then usually be the favorable choice of es-
timator, since it asymptotically attains the CRLB, when N → ∞. However,
the number of used microphones is typically far from infinity. Further, in
order to apply the maximum likelihood estimator, the statistical information
about the additive noise term n needs to be known. However, for a large
number of applications this information is hard to obtain, or will constantly
change. Therefore, the linearized estimator is usually the favorable choice of
estimator for TDOA-based passive source localization. Both, the maximum
likelihood estimator and the linearized estimator, are for the TDOA-based
position estimation of iterative nature.

A number of closed-form estimators exist, which can either be used by
their own, or can be used to initialize the linearized estimator or the maxi-
mum likelihood estimator. Further, if the statistical information about the
additive noise is available, these closed-form estimators can be implemented
in a way to approximate the maximum likelihood estimator.

Following some estimators’ derivations, their bias and covariance matrix
will be analytically derived. These terms are not only needed for the evalu-
ation of the geometric dilution of precision, but are also of great interest for
the TDOA-based source tracking procedure presented in chapter 4.
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In section 3.7 optimal sensor configurations for the individual estimators
are derived. While the sensor configurations based on the CRLB are indepen-
dent of the chosen estimator, the configurations found by either minimizing
the geometric dilution of precision or the condition number will depend on
the estimator selection.

Finally in section 3.8 an analytic estimator is proposed, which is derived
from the optimal sensor configuration of the linear approximation estimators.

3.2 Time Delay Estimation

A wavefront, emanating from a radiating sound source, arrives at spatially
separated microphones at different time instances. The difference of the ar-
rival time offer important information on the position of the source. There-
fore, it is of fundamental importance to reliably estimate these.

Sound radiating from one point in a closed environment usually arrives
at the sensors through multiple paths. The main path is the direct path and
is usually the least attenuated. However, due to reflections at e.g. walls,
additional versions of the produced sound also arrive at the sensors, having
an additional time delay. Since, only a part of the emitted signal hitting a
reflector is reflected, with the other part being absorbed, a reflected version
arriving at the microphone will usually be more attenuated than the direct
path signal. If the sound produced by the object is denoted by s(t), the
received signals of two microphones xi(t) and xj(t) can be modeled as the
convolution between the source signal and the channel impulse responses
hi(t) and hj(t) from the source to the receivers

xi(t) = hi(t) ∗ s(t) + ni(t)
xj(t) = hj(t) ∗ s(t) + nj(t),

(3.5)

with ni(t) and nj(t) denoting additive ambient noise, and ∗ being the con-
volution operator.

However, for the derivation of the generalized cross-correlator and the
least mean square adaptive (LMS) estimator it is convenient to simplify the
multi-path model to a single-path model. This ideal case, assumes that each
microphone output is only a delayed and attenuated copy of the source signal
corrupted by additive noise. Equation (3.5) then becomes

xi(t) = αis(t − Ti) + ni(t)
xj(t) = αjs(t − Tj) + nj(t),

(3.6)

where αi, αj ∈ [0, 1] are the attenuation factors and Ti, Tj correspond to
the unknown propagation times from the source to the microphone i and j,
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respectively:

Ti = |xi − xs|2/c. (3.7)

In the following it is assumed that the additive noises are uncorrelated
with each other, as well as with the source signal.

3.2.1 Generalized Cross-Correlation

Assuming the idealized propagation model of eq. (3.6) the cross-correlation
of the two microphone outputs is given by

rxi,xj
(τ) =

∫ ∞

−∞
xi(t)xj(t + τ)dt

= αiαj

∫ ∞

−∞
s(t − Ti)s(t − Tj + τ)dt

= αi · αj · rs,s(τ − Ti + Tj),

(3.8)

with rs,s(τ) denoting the autocorrelation of the source signal. Note that use
has been made of the assumption that the source signal and the additive
noise terms are uncorrelated.

Using the Cauchy-Schwarz inequality it can be shown that the autocor-
relation of any signal s(t) has the property that [GG95]

rss(τ) ≤ rss(0) ∀τ. (3.9)

Assuming a non-periodic source signal s(t) equality in (3.9) cannot be ob-
tained and ”≤” can be replaced by ”<”. Consequently, rxi,xj

(τ) will attain
its maximum value at

τ = Ti − Tj , (3.10)

which is equal to the time difference of arrival of the microphone pair i and
j. Hence, the TDOA τij of a microphone pair i and j can be calculated by

τij = arg max
τ

rxi,xj
(τ). (3.11)

Depending on the signal s(t) the correlation function might have multiple
local maxima and will be flat or steep in the neighborhood of τij. A flat
function, or one with multiple local maxima will make the search for the
maximum value more difficult, and might easily result in a wrong estimation
outcome. Consequently, the resulting correlation function would ideally be
a time-shifted Dirac function.
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The cross spectral density function Rxi,xj
is defined as the Fourier trans-

form of the cross-correlation function of xi(t) and xj(t)

Rxi,xj
(ω) =

∫ ∞

−∞
rxi,xj

(τ)e−jωτdτ

= Xi(ω)X∗
j (ω)

= S(ω)S∗(ω)e−jω(Ti−Tj)

(3.12)

with Xi(ω) being the Fourier transform of xi(t), X∗
j (ω) being the conjugate

complex Fourier transform of xj(t), and S(ω) being the Fourier transform of
the source signal s(t). In order to obtain a sharp cross-correlation function,
a variety of filters have been proposed, which are based on this cross spectral
density function. Multiplying the cross spectral density function in eq. (3.12)
by the Fourier transform Ξ(ω) of a filter ξ(t) and applying the inverse Fourier
transform to this product, leads to the so-called generalized cross-correlation
function

gxixj
(τ) =

∫ ∞

−∞
Ξ(ω)S(ω)S∗(ω)e−jω(Ti−Tj)ejωτdω. (3.13)

If ideally Ξ(ω) would be chosen to

Ξ(ω) =
1

|S(ω)S∗(ω)| (3.14)

the generalized cross-correlation function would result in the desired time
shifted Dirac function

gxixj
(τ) =

∫ ∞

−∞
e−jω(Ti−Tj)ejωτdω = δ(t − τij). (3.15)

However, the cross spectral density function of the source signal is usually
unavailable, and a filter must be designed based on the available signals
xi(t) and xj(t). Commonly used filters are the Roth processor [Rot71], the
smoothed coherence transform (SCOT) [CNC73], the Eckart filter, the phase
transform (PHAT), and the maximum likelihood (ML) processor [KC76].
Knapp and Carter [KC76] give an overview of these filters.

In literature the maximum likelihood and the PHAT filter seem to be the
favorable choices. Champagne et al. [BCS94, CBS96] tested the performance
of the ML estimator in reverberant environments. They found that for small
reverberation times, this estimator shows an efficient performance, meaning
that it attains the Cramer Rao Lower Bound. However, once the reverber-
ation time increases, its performance drastically decreases and no reliable
TDOA measurements can be carried out. On the contrary Gustafsson et al.
[GRT02], [GRT03] showed that the PHAT filter is optimal among the class of
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cross-correlation based time delay-estimators for reverberant environments.
It is given by the transfer function

Ξ(ω) =
1

|Rxi,xj
(ω)| . (3.16)

While in theory this filter perfectly whitens the spectrum, and hence
results in a Dirac function in the time domain, in practice only an approxi-
mation of Rxixj

(ω) can be calculated. Obviously, in practical applications the
time signals xi(t) and xj(t) are not available from t = −∞ to t = ∞, but only
a finite version, obtained by windowing the signals. Further, such systems
are usually implemented using digital computations and hence, the Fourier
transform is usually approximated by the fast Fourier transform (FFT) and
its inverse (IFFT).

Consequently the true cross spectral density Rxixj
(ω) can only be ap-

proximated by the discrete finite time series, whose sampling frequency and
window size are of crucial importance. If the sampling frequency is chosen
too small, aliasing effects can ruin the estimation procedure. Further, since
the time delay is estimated by the maximum of the now discrete time se-
ries, its resolution is the inverse of the sampling frequency. Contrary, if the
sampling frequency is chosen to be large, a large number of data must be
processed, which makes the estimation procedure time consuming. A large
window time will have the same influence on the computation time. Further,
if a moving source is considered, Doppler shifts can influence the estimation
accuracy. For smaller window sizes, the computational time will decrease
and the moving source might be considered to be stationary.

3.2.2 Least Mean Square Adaptive Estimator

The least mean square (LMS) estimator proposed by Reed et al. [RFB81]
also considers the ideal signal model in discrete form

xi[k] = αis[k − Ti] + ni[k]
xj [k] = αjs[k − Tj ] + nj [k],

(3.17)

where k is the discrete time instant. It adaptively estimates a channel impulse
response ĥ, between the microphone signals

xi[k] = ĥT xj[k], (3.18)

and finds the time delay of this sensor pair as the largest component of
this filter. Considering the ideal discrete model of eq. (3.17) the microphone



52 CHAPTER 3. TDOA-BASED PASSIVE SOURCE LOCALIZATION

output xi[k] can be written as a attenuated delayed version of the microphone
signal xj [k]

xi[k] = αxj[k − τij ] + n[k], (3.19)

with α = αi/αj, and n[k] = ni[k] − nj [k − τij ]/αj. Assuming a windowed
signal

xj[k] = (xj [k − L], . . . , xj[k + L])T , (3.20)

eq. (3.19) can be written as

xi[k] = hT xj[k] + n[k], (3.21)

with
hT = (0, . . . , 0, α, 0, . . . , 0) (3.22)

being a finite impulse response filter of length 2L+1, with entry α at position
τij + L.

The goal of the LMS estimator is now estimate ĥ, which will then lead
to the following time delay estimate

τij = arg max |ĥ| − L. (3.23)

In order to find this estimate an error signal can be formulated as

e[k] = xi[k] − hT [k]xj[k]. (3.24)

The linear mean-square estimate of h is achieved by minimizing E(e2[k]),
using either a batch or an adaptive algorithm. In [CBH07] the adaptive
algorithm

ĥ[k + 1] = ĥ[k] + µe[k]xj[k], (3.25)

with µ being a small positive adaptation step size, is proposed for carrying
out this estimation procedure.

The problem of the two so far presented time delay estimators (TDE)
is that they both assume an ideal transmission model, and do not consider
possible reverberations.

3.2.3 Adaptive Eigenvalue Decomposition

Benesty [Ben00] proposed a method that considers the more realistic sound
propagation model of eq. (3.5) in discrete form

xi[k] = hT
i s[k] + ni[k]

xj [k] = hT
j s[k] + nj [k],

(3.26)
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with hi and hj being two finite impulse responses of length L and

s[k] = (s[k], s[k − 1], . . . , s[k − L + 1]) . (3.27)

As opposed to the LMS estimator, the channel impulse responses hi and hj

are now assumed to have nonzero entries, due to the considered reverbera-
tions. Usually the entries of hi and hj corresponding to the direct path of
the signal to the microphones, will have the maximum value, because the
direct path signals will usually be less attenuated than the signals resulting
from reflections.

The goal of the adaptive eigenvalue decomposition (AED) estimator is
thus to blindly estimate the channel impulse responses hi(t) and hj(t) and
then infer the time delay estimate by

τij = arg max
t

|ĥi| − arg max
t

|ĥj|, (3.28)

where ĥn denotes the estimate of the nth channel impulse response.
Writing the received microphone signals of length L in vector notation

leads to

xi[k] =S[k] · hi + ni[k] (3.29)

xi[k] =S[k] · hi + ni[k], (3.30)

with

xi[k] =
(

xi[k], xi[k − 1], , . . . , xi[k − L + 1]
)T

(3.31)

xj [k] =
(

xj [k], xj[k − 1], , . . . , xj [k − L + 1]
)T

(3.32)

S[k] =








s[k] s[k − 1] . . . , s[k − L + 1]
s[k − 1] s[k − 2] . . . , s[k − L]

...
...

...
...

s[k − L + 1] s[k − L] . . . s[k − 2L + 2]








, (3.33)

ni[k] =(ni[k], . . . , ni[k − L + 1])T , (3.34)

nj [k] =(nj [k], . . . , nj [k − L + 1])T . (3.35)

Since S is a symmetric matrix,

hT
i Shj = hT

j Shi, (3.36)

and consequently
xT [k]u = (nT

j [k], nT
i [k])u, (3.37)
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with

x[k] =

(
xi[k]
xj[k]

)

, (3.38)

and

u =

(
hT

j

−hi

)

. (3.39)

Assuming that the noise terms ni,j[k] and the microphone vectors xT
i [k] are

uncorrelated, left multiplying eq. (3.37) by x[k] and taking the expectation
yields

Rxu = σ2u, (3.40)

where Rx = E(x[k]xT [k]) is the covariance matrix of x[k], and σ2 the vari-
ance of the individual noise terms

σ2 = E(nn[k]2). (3.41)

The collection u of two channel impulse responses can thus be seen as the
eigenvector of Rx corresponding to the eigenvalue λ = σ2. In [HBC06] the
authors argue that this eigenvalue is the smallest eigenvalue of Rx and offer
the following adaptive algorithm for finding the corresponding eigenvector
and consequently the desired channel impulse responses collected in u:

û[k + 1] =
û[k] − µe[k]x[k]

‖û[k] − µe[k]x[k]‖2
, (3.42)

with the constraint that ‖û[k]‖2 = 1,

e[k] = ûT [k]x[k] (3.43)

is an error signal and µ a constant, positive adaptation step. With the
estimated impulse responses collected in û, the time delay estimate can be
found by eq. (3.28).

3.2.4 Time Delay Estimator Evaluation

The three presented TDE are compared by a series of computer simulations,
considering different signal to noise ratios (SNRs) and different reverberation
times. The reverberation time RT60 is a measure for the magnitude of rever-
beration and is defined as the required time for the sound pressure level in
a room to decay to a value one millionth of its original intensity, or to drop
60dB. The simulation setup is taken from [CBH07]. A rectangular room,
with plane surfaces, is considered. All the walls, as well as the ceiling and
the floor have identical reflection coefficients, which can vary between 0 and
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Figure 3.1: time delay estimator comparison for varying reverberation times

1. The dimensions of the room are given by 3.05m× 4.57m× 3.81m. While
the source position is set to be 2.54m × 2.54m × 1.02m, two microphone
positions are set to 0.51m × 0.254m × 1.02m and 0.71m × 0.254m × 1.02m,
respectively. The room impulse responses from the source to the two sensors
are calculated by the image method, due to Allen and Berkley [AB79], for
3 different reflection coefficients. The resulting room impulse responses have
reverberation times of RT60 = 120ms, RT60 = 350ms, and RT60 = 580ms.

John F. Kennedy’s speech ”Ich bin ein Berliner” was samples with 16 bits
and a frequency of fs = 16kHz and the microphone inputs were calculated
by the convolution of this signal and the individual room impulse responses.
Zero-mean, white Gaussian noise was added to the signal, resulting in SNRs
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Figure 3.2: time delay estimator comparison for varying signal to noise ratios

of 15dB, 5dB, and −5dB.
The filter lengths h1 and h2 were set to 1024 for the AED, as well as for

the LMS estimator. The step sizes for the adaptive updates were chosen for
the AED to be µ = 0.01 and for the LMS to be µ = 0.001. The correlator-
based estimators were carried out using a uniform window of length 1024.

Figure 3.1 displays the first series of simulations, comparing the perfor-
mance of the four TDEs w.r.t. the reverberation time, using 300 trials each.
Note that the true TDOA calculates to

τ21 = d21/c ≈ 38ms, (3.44)

which corresponds to sample k = τ21 ·fs ≈ 6. Since the AED is the only TDE
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Figure 3.3: performance evaluation of the AED estimator for varying itera-
tions, k ± i: TDOA estimate is accurate within ±i samples

which considers the room reverberations, it outperforms the three others, as
expected. Also the LMS estimator seems to be quite robust against multi-
path problems.

The second series of simulations studies the effects of the additive noise.
Its results are shown in fig 3.2. None of the presented estimators have prob-
lems of estimating the TDOAs for moderate sensor noise, resulting in a SNR
of 15dB. However, as the SNR decreases, so does the performance of all
the presented estimators. Again, the AED and the LMS estimator seem to
outperform the correlation-based estimators. However, due to their iterative
nature, they are computationally quite expensive. As can be seen in figures
3.3 and 3.4, a large number of iterations is needed in order to obtain the
right TDOA estimates. At a sampling frequency of fs = 16000kHz a TDOA
which is wrong estimated by one sample corresponds to an range difference
error of 1 · c/fs ≈ 2cm. Such an error might still be acceptable for carrying
out a position estimation. Therefore, figures 3.3 and 3.4 also present the esti-
mation accuracy if the TDOAs are estimated within a sample precision. For
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Figure 3.4: performance evaluation of the LMS estimator for varying itera-
tions, k ± i: TDOA estimate is accurate within ±i samples

real-time implementations, the number of iterations and the size of filters for
the AED and the LMS estimator must be kept as small as possible. In such
cases, the performance of the LMS and AED estimators might drastically
decrease, and the correlation-based estimators might be favorable.

3.2.5 Time Delay Estimation Summary

In this section the most widely used time delay estimators were presented
and compared to each other. It is generally not possible to conclude that one
method outperforms the others. Rather, the selection of the best adapted es-
timator, depends on the room geometry, on the selection of used components,
and possible restrictions on the calculation time.

Looking at the shape of figures 3.1 and 3.2 it seems reasonable to represent
the found time delay estimates as a sum of the true outcome and a random
variable, as it was assumed in eq. (3.2):

τij = dij/c + nij . (3.45)



3.3. TDOA-BASED MEASUREMENT MODEL 59

Ri

R1

Rs

Di

D1

d i1
=

c ·
τ i1

0

x1

xs

xi

Figure 3.5: Passive Source Localization Setup

Further, by inspection, the random variable might be seen as being zero-
mean Gaussian distributed. Consequently, from now on it is assumed that
the time delay estimation vector τ has already been estimated and is treated
as a random vector with its mean being equal to the true vector.

3.3 TDOA-based Measurement Model

Based on the argumentation of the previous section that the time delay
estimates can indeed be seen as the sum of the corresponding range difference
dij divided by the propagation speed and a zero-mean noise term nij , the
measurement model for TDOA-based position estimation is now derived,
on which the presented estimators of chapter 2 are then applied. Above
it was argued that for a three dimensional position estimate at least four
microphones are necessary. However, in order to decrease the influence of
the additive noise terms more microphones are usually utilized.

Assuming N spatially distributed microphones, N(N−1)/2 distinct TDOAs
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can be calculated, knowing that τii = 0, ∀i and noting that τij = −τji. How-
ever, if the additional noise in eq. (3.45) is neglectable, (N − 1) independent
TDOA measures are sufficient to define all the others. Denoting the distance
between the microphone i and the source by

Di = |xi − xs|2, (3.46)

eq. (3.45) can be written as

τij = (Di − Dj)/c
= (Di − Dk − (Dj − Dk))/c
= τik − τjk.

(3.47)

Thus, selecting a reference sensor, the TDOA measures w.r.t. to this micro-
phone define a minimum spanning tree. In case of small ambient noise it
might thus be sufficient to calculate the (N − 1) TDOAs w.r.t. a reference
sensor. Combining these in vector notation

τ1 = (τ21, . . . , τN1)
T , (3.48)

and defining the range difference (RD) vector

d1(xs, x1, . . . , xN) = (d21, . . . , dN1)
T , (3.49)

the reference sensor based measurement model becomes

τ1 = d1(xs, x1, . . . , xN)/c + n1. (3.50)

In case of larger ambient noise it might be favorable to utilize all the N(N −
1)/2 TDOA measures. In fact Yang and Scheuing [YS05] proved that using all
N(N −1)/2 time delay estimates result in a more accurate position estimate.
In this case the measurement model of eq. (3.50) is modified to

τ = d(xs, x1, . . . , xN)/c + n. (3.51)

with
τ = d(xs, x1, . . . , xN)/c + n. (3.52)

and
d(xs, x1, . . . , xN) = (d21, d31, d32, . . . , dN,N−1)

T . (3.53)

For shorter notations the dependency of d(xs, x1, . . . , xN) on the source
and microphone positions will from now on either be written as

d(xs, X),

with
X = [x1, . . . , xN ] , (3.54)

or will completly be omitted.
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3.3.1 Cramer Rao Lower Bound

In the previous section two possible measurement models were derived, one
with respect to a reference sensor (eq. (3.50)) and one considering all N(N −
1)/2 available time delay estimates (eq. (3.51)). Due to the greater esti-
mation accuracy, the model of eq. (3.51) is now considered. Further it is
assumed that n is drawn from a zero-mean Gaussian distribution with co-
variance Cn, as argued in section 3.2.

It was shown in section 2.1.2 that the Fisher information matrix of the
CRLB for such a problem is given by

F (xs, X) = J
T (xs, X)C−1

n J (xs, X), (3.55)

with J (xs, X) being the Jacobian of (d/c) w.r.t. the source position xs. The
individual entries of d are the range differences dij = |xi −xs|2 − |xj −xs|2,
and its partial derivative w.r.t. xs follow to

gij =

(
∂dij

∂xs

)T

=

(
xi − xs

|xi − xs|2
− xj − xs

|xj − xs|2

)

. (3.56)

The Jacobian of d then results in

J (xs, X) =
1

c
[g21, g31, g32, . . .gN,N−1]

T . (3.57)

Consequently, the covariance matrix Cov(xs) of any unbiased TDOA-
based position estimator is lower bounded by

Cov(xs) − (J T (xs, X)C−1
n J (xs, X))−1 ≥ 0. (3.58)

Further theorem 1 states that equality holds if and only if the partial deriva-
tive of ln p(τ ; xs)

∂ ln p(τ ; xs)

∂xs

can be broad in the following form

(
∂ ln p(τ ; xs)

∂xs

)T

= F (xs) (g(τ ) − xs) (3.59)

for some p-dimensional function g and some p × p matrix F . That estima-
tor, which would then be the minimum variance unbiased (MVU) estimator,
would be given by xs = g(τ ), and its covariance matrix by F−1(θ).
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Theorem 4. Assuming a Gaussian error model of the form

τ = d/c + n, (3.60)

with the covariance matrix of n being denoted by Cn, no unbiased estimator
attains the Cramer Rao lower bound.

Proof. Using eq. (2.34) the partial derivative of ln p(τ ; xs) w.r.t. xs is found
to be (

∂ ln p(τ ; xs)

∂xs

)T

= J
T (xs, X)C−1

n (τ − d/c). (3.61)

The unknown source position xs appears in eq. (3.61) as a nonlinear term in
d, and consequently eq. (3.61) is not of the same form as eq. (3.59), which
proofs the theorem.

3.4 Iterative TDOA-based Estimators

In the previous section it was shown that no unbiased estimator can attain
the Cramer Rao lower bound. In such a case the most often utilized estimator
is the maximum likelihood estimator, since it approximates this bound, if the
number of measurements tends to infinity. However, in case of TDOA-based
passive source localization that would mean, that the TDOA vector τ would
need to tend to infinity and consequently the number of utilized microphones
must tend to infinity. This obviously contradicts with the demand of a low
cost system and the possible need for a realtime implementation. Further,
the covariance matrix of the additive noise needs to be known. However, in
acoustic environments this matrix is usually constantly changing. In out-
door applications possible influences on this covariance matrix are changing
wind speeds and the number of present vehicles. In indoor applications such
as teleconferences, the number of present spectators, possibly utilizing note-
books equipped with noisy fans, and the state of the windows, closed or open,
result in varying signal to noise ratios.

Least-squares estimators enjoy a large attention in TDOA-based position
estimation, since they do not need any information about the ambient noise.

3.4.1 Maximum Likelihood Estimator

Assuming an additive Gaussian noise vector n, with covariance matrix Cn,
the maximum likelihood estimator introduced in section 2.1.4 can readily
be applied to the problem of TDOA-based source localization, using either
one of the measurement models of eqs. (3.50) and (3.51). In the following
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the complete range difference vector d, considering all N(N − 1)/2 different
TDOA estimates is selected due to its higher precision. Assuming that the
covariance matrix Cn is independent of the source position xs, the maximum
likelihood estimator follows from eq. (2.31):

x̂s = arg min
xs

(τ − d/c)TC−1
n (τ − d/c). (3.62)

3.4.2 Linearized Estimator

The linearized estimator was introduced in chapter 2.2.3 as an alternative
to the maximum likelihood estimator, for estimation problems, in which the
noise’s covariance matrix is unknown, or constantly changing. This iterative
method can directly be derived from eq. 2.52 for the TDOA-based localiza-
tion approach:

xsn+1
= xsn

+ J
†(xsn

, X)(τ − d(xsn
)/c). (3.63)

Bias and Covariance Assuming an additive Gaussian noise and using
eqs. (2.56) and (2.57) the TDOA-based linearized estimator is seen to be
unbiased and its covariance matrix follows to

Cov(xsn+1
) ≈ J

†(xsn
, X)Cn(J †(xsn

, X))T . (3.64)

In section 2.2.3 it was pointed out that the covariance matrix of the linearized
estimator and the inverse of Fisher information matrix of the problem are
practically identical, if the noise’s covariance matrix is assumed to be of the
form

Cn = σ2I. (3.65)

The only difference is that the Jacobian in eq. (2.57) is evaluated at the
position estimate found at iteration step n, while the Jacobians in the Fisher
information matrix are evaluated at the true source position. Consequently,
if the linearized estimator would be initialized by the true source’s position
it would be efficient, in that its covariance matrix of the first iteration step
would be identical to the Fisher information matrix. As a direct consequence
it can be seen that the initialization of the linearized estimator is of crucial
importance.

3.4.3 Iterative Estimator Evaluation

In order to evaluate the performance of the linearized estimator, it is com-
pared to other iterative non-derivative optimization techniques applied to the
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maximum likelihood estimator. These are the ”non-derivative quasi-Newton
method” (QN) using the Broyden-Fletcher-Goldfarb-Shanno algorithm, the
”Levenberg-Marquardt algorithm” (LM), and the ”Nelder and Mead Sim-
plex Downhill Method” (SD). All three are readily implemented in Matlab’s
optimization toolbox [Mat06].

An independent identically distributed additive noise vector n is assumed,
such that its covariance matrix is of the from

Cn = σ2I. (3.66)

Following eq. (2.31) it can be seen that the maximum likelihood estimator
can then be written as

x̂s = arg min
xs

|τ − d/c|2, (3.67)

and is identical to the nonlinear least-squares estimator.
The evaluation is carried out by computer simulations, for a localization

procedure in a room with dimensions 10m, 10m, 10m. In the first test it is
assumed that no additive noise is disturbing the TDOA measures and the
linearized estimator as well as the three versions (QN, LM, and SD) of the
maximum likelihood estimator are initialized by placing the estimated source
at the origin of the coordinate frame. 1000 Monte Carlo trials are carried
out, by randomly placing 7 microphones within the room dimensions and by
randomly selecting a source position. Hence, good as well as bad configura-
tions are equally likely. Table 3.1 compares the outcomes of the four iterative
estimators. The mean error and standard deviation of the estimation pro-
cesses are denoted by µ(error) and σ(error), respectively, the mean number
of iterations and its standard deviation are denoted by µ(iter) and σ(iter).
Further, the mean computation time, using Matlab on a Pentium4 PC with
3GHz clock rate and 1GByte RAM, are indicated in the row ”µ(time)”. In
order to neglect the outliers of the estimation procedure, estimation outcomes
with positions 100m or further from the origin were omitted. The number of
outliers for each of the estimators is presented in the last row of table 3.1.

Neglecting the number of wrong estimates, one sees that all four meth-
ods achieve to estimate the true source position, when no ambient noise is
present. However, if the number of wrong estimates is considered, it becomes
obvious that the linearized estimator, as well as the maximum likelihood es-
timator utilizing eiter the Levenberg-Marquardt, or the simplex downhill
method have severe problems of finding the source location, if they are ini-
tialized by some fixed position. Only, the quasi-Netwon implementation of
the maximum likelihood estimator seems to be quite robust against the choice
of initialization, if no ambient noise is present.
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Levenberg-
Maquardt

Quasi
Newton

Simplex
Downhill

Linearized
Model

µ(error) 0.00 0.00 0.20 0.00
σ(error) 0.00 0.00 1.76 0.00
µ(iter) 8.36 31.20 209.18 7.08
σ(iter) 2.40 2.84 35.32 1.95
µ(time) 0.0210 0.0761 0.0791 0.0044
wrong est. 230 34 335 747

Table 3.1: comparison of iterative estimators using the origin as the initial
guess, no noise is added, µ and σ stand for the mean and the standard devi-
ation, respectively, error is the distance between the true and the estimated
position, ”iter” denotes the number of iterations, ”time” denotes the com-
putation time,”wrong estimates” is the number of times error≥ 100m (these
estimates are not considered in the calculation of the other values)

Levenberg-
Maquardt

Quasi
Newton

Simplex
Downhill

Linearized
Model

µ(error) 0.13 0.13 0.13 0.13
σ(error) 0.11 0.11 0.11 0.11
µ(iter) 4.64 10.06 53.69 4.21
σ(iter) 0.92 2.08 9.41 4.82
µ(time) 0.0130 0.0176 0.0218 0.0027
wrong est. 0 0 0 0

Table 3.2: comparison of iterative estimators using the true source position
as the initial guess, with zero mean Gaussian noise (σ = 0.1m), µ and σ stand
for the mean and the standard deviation, respectively, error is the distance
between the true and the estimated position, ”iter” denotes the number of
iterations, ”time” denotes the computation time,”wrong estimates” is the
number of times error≥ 100m (these estimates are not considered in the
calculation of the other values)
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Levenberg-
Maquardt

Quasi
Newton

Simplex
Downhill

Linearized
Model

µ(error) 1.33 1.33 1.34 1.36
σ(error) 1.71 1.71 1.71 1.76
µ(iter) 9.27 11.46 69.00 17.56
σ(iter) 2.08 2.73 14.97 28.66
µ(time) 0.0238 0.0179 0.0268 0.0106
wrong est. 1 1 1 1

Table 3.3: comparison of iterative estimators using the true source position
as the initial guess, with zero mean Gaussian noise (σ = 1.0m), µ and σ stand
for the mean and the standard deviation, respectively, error is the distance
between the true and the estimated position, ”iter” denotes the number of
iterations, ”time” denotes the computation time,”wrong estimates” is the
number of times error≥ 100m (these estimates are not considered in the
calculation of the other values)

Looking at table 3.2 it can be seen that the initialization is of utmost
importance. This time the estimators were initialized using the true source
position. Even though such an initialization is quite unrealistic (if the true
position would be known, it would not be necessary to estimate it), it is
very helpful to point out the importance of the initialization procedure. The
values were again found by 1000 Monte Carlo trials with arbitrarily sensor
and source positions using 7 microphones. All estimators show the same
performance and none of them has any divergence problems, even though a
small additive noise, with standard deviation equivalent to 0.1m was added
to the TDOA measures:

σ = 0.1m/c. =
0.1

343
s. (3.68)

Tables 3.3 and 3.4 show the outcomes of the same trials with larger am-
bient noise. The results in 3.4 are found for additive noise with standard
deviation equivalent to 1m, while the results in 3.4 represent the outcomes
with standard deviation equivalent to 2m. Looking at the number of wrong
estimates it becomes obvious that the linearized estimator is the least robust
w.r.t. ambient noise.

In chapter 2 it was shown that the robustness of the linearized estimator
is directly related to the condition number of the Jacobian. Figures 3.6
and 3.7 are found by using an optimal sensor configuration for the reference
point 5m, 5m, 5m. 6 microphones are installed with a radius of 5m from this
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Levenberg-
Maquardt

Quasi
Newton

Simplex
Downhill

Linearized
Model

µ(error) 3.05 3.05 3.07 3.15
σ(error) 4.73 4.73 4.76 5.04
µ(iter) 10.87 13.10 76.46 23.20
σ(iter) 2.40 2.84 35.32 1.95
µ(time) 0.0283 0.0196 0.0298 0.0140
wrong est. 12 12 11 55

Table 3.4: comparison of iterative estimators using the true source position
as the initial guess, with zero mean Gaussian noise (σ = 2.0m), µ and σ stand
for the mean and the standard deviation, respectively, error is the distance
between the true and the estimated position, ”iter” denotes the number of
iterations, ”time” denotes the computation time,”wrong estimates” is the
number of times error≥ 100m (these estimates are not considered in the
calculation of the other values)

reference point, building the edges of an octahedron (see fig. 3.9). In section
3.7 it will be shown that this microphone configuration indeed is optimal for
the linearized estimator, as well as the maximum likelihood estimator.

The covariance matrix of the disturbance noise is chosen to be σ2I, with
standard deviation equivalent to σ = 2m. The x-axis of the figures represent
the uncertainties of the initialization. Gaussian distributed noise with covari-
ance matrix σ2

xs0
I is added to the true sensor position. The Quasi-Newton

and the linearized estimator are then initialized by this random position.
Looking at fig. 3.6 one sees that the two estimators perform nearly the same
and that their accuracy decreases for initializations with larger σxs0

. Again,
estimates with a norm of larger than 100m are neglected, and the number of
those wrong estimates is plotted in fig. 3.7. For good initializations no wrong
estimates appear, and only as the initialization becomes worse the problem
of wrong estimates appears for the two estimators. Comparing these results
with the ones of table 3.4, one sees that the use of an optimal sensor config-
uration does not only increase the accuracy of the estimators, but also helps
to solve the problem of the number of wrong estimates.

3.5 Linear Approximation Estimators

In the previous section it was shown that the accuracy of an iterative TDOA-
based position estimator strongly relies on an accurate initialization. This
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Figure 3.6: Uncertain linearized estimator initialization

section presents a number of linear approximation estimators, which can ei-
ther estimate the source position in closed-form, or are self-initializing. All
these estimators only consider the time differences of arrival w.r.t. to a ref-
erence sensor. This reference sensor-based approach offers the possibility of
writing the estimation problem as a constrained linear least-squares prob-
lem. In the following the first microphone, at position x1, is selected as the
reference sensor, which leads to the TDOA and range difference vectors as
defined in eqs.(3.48) and (3.49)

τ1 = (τ21, . . . , τN1)
T ,

and
d1 = (d21, . . . , dN1)

T ,

respectively. While microphone one is chosen to be the reference sensor, the
remaining microphones are often referred to as the ”slave” sensors.

Squaring the entries of the range difference vector results in

d2
i1 = D2

i + D2
1 − 2DiD1. (3.69)

With Di = di1 + D1, the squared range difference can be written as

d2
i1 = D2

i − D2
1 − 2di1D1. (3.70)
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Figure 3.7: Uncertain linearized estimator initialization, wrong estimates

Utilizing the relation

D2
i = R2

i − 2xT
i xs + R2

s (3.71)

this leads to

d2
i1 = R2

i − R2
1 − 2(xi − x1)

T xs − 2D1di1, (3.72)

with Ri begin the distance form the origin to sensor i at position xi (see fig.
3.5). Replacing di1 by

di1 = c · τi1 + c · ni1, (3.73)

eq. (3.72) becomes

R2
i − R2

1 − cτ 2
i1 − 2(xi − x1)

T xs − 2D1cτi1 = ǫi1 (3.74)

with
ǫi1 = 2c2τi1ni1 − c2n2

i1 + 2D1cni1

= 2c(cτi1 + D1)ni1 − c2n2
i1.

(3.75)

being an error term due to the additive noise ni1. Considering all N −1 time
differences the following equation holds

b − 2Sxs − 2D1cτ1 = ǫ, (3.76)
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with

b =








R2
2 − R2

1 − (c · τ21)
2

R2
3 − R2

1 − (c · τ31)
2

...
R2

N − R2
1 − (c · τN1)

2








, (3.77)

S =








xT
2 − xT

1

xT
3 − xT

1
...

xT
N − xT

1








, (3.78)

ǫ =

(

ǫ21, ǫ31,
..., ǫN1

)T

. (3.79)

The goal of TDOA-based source localization can then be seen as finding
the source position xs that minimizes the error term ǫ. Schau and Robin-
son [SR87] proposed to set the error term equal to zero and then to solve
the resulting quadratic equation. We refer to this solution as the spherical
intersection estimator.

3.5.1 Spherical Intersection Estimator

Schau and Robinson [SR87] proposed to estimate the source position by
simply setting the error term ǫ in eq. (3.76) equal to zero and then to solve
the resulting quadratic equation. With ǫ = 0, solving eq. (3.76) for (xs−x1)
leads to

xs − x1 =
1

2
S†(b − 2D1cτ1 − 2Sx1). (3.80)

With

D2
1 = (xs − x1)

T (xs − x1), (3.81)

one obtains a quadratic equation in D1:

aD2
1 + bD1 + c = 0, (3.82)

with

a =1 − dT
1 (S†)T S†d1, (3.83)

b =(b − 2Sx1)
T (S†)T S†d1, (3.84)

c =(b − 2Sx1)
T (S†)T S†(b − 2Sx1). (3.85)
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Since D1 = |xs − x1|2 ≥ 0, only the positive root(s) of eq. (3.82) is
(are) possible estimates of D1. Assuming a single positive root, the position
estimate can be found by substitution of this root into eq. (3.80).

However, if two positive roots are found, the position estimate of this
spherical intersection approach is not unique. Further if no positive root
exists, no position estimate can be obtained. Both situations are quite likely
to happen, if the sensor geometry is not well chosen and if the additive noise
becomes large. More robust position estimators are based on the theory of
weighted least-squares estimation.

3.5.2 Weighted Least-Squares Estimator

The weighted least-squares estimator for the reference sensor, TDOA-based
position estimation problem is defined as the estimator that minimizes the
weighted cost function J(xs, X) on the error term ǫ of eq. (3.76)

J(xs, X) = ǫT Wǫ, (3.86)

with W denoting a weighting matrix:

x̂s = arg min
xs

J(xs, X) = arg min
xs

ǫT Wǫ. (3.87)

If no statistical information about the additive noise is available, the weight-
ing matrix is usually set to be the identity matrix. However, for a zero-mean
Gaussian noise vector n1, a weighting matrix can be constructed such that
the weighted least-squares estimator approximates the maximum likelihood
estimator.

Gaussian Noise Weighting Matrix

Neglecting the second order noise terms in eq. (3.75) the error term ǫi1 can
be approximated by

ǫi1 ≈ 2c(cτi1 + D1)ni1

= 2(cτi1 + D1)(cτi1 − D1)
≈ 2(di1 + D1)(cτi1 − D1)
= 2Di(cτi1 − D1).

(3.88)

The error vector ǫ then becomes

2Diag(D2, . . . , DN)(c · τ1 − d1), (3.89)
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and the cost function (3.86) results to

J(xs, X) = (c · τ1 − d1)
T Diag(D2, . . . , DN)WDiag(D2, . . . , DN)(c · τ1 − d1).

(3.90)
Note that the factor 2 is omitted, since it does not influence the optimization
outcome of the cost function.

Assuming zero-mean additive Gaussian noise, with constant covariance
matrix Cn, and choosing the weighting matrix to be

W = Diag(D2, . . . , DN)−1C−1
n Diag(D2, . . . , DN)−1, (3.91)

the cost function results to

J(xs, X) = (c · τ1 − d1)
T C−1

n (c · τ1 − d1). (3.92)

Note that minimizing this cost function results in the maximum likelihood
estimator of eq. (3.62), if only the TDOAs w.r.t. the reference sensor are
considered. However, the matrix Diag(D2, . . . , DN) is usually unavailable,
since its entries Di are dependent on the unknown sensor position xs. As a
solution, Smith and Abel [SA87] proposed an iterative approach: choose the
initial entries of W to be the identity matrix W = I, and iteratively update
those by calculating Di with the previous position estimate. They argue that
one or two iterations are sufficient for an appropriate position estimate.

So far it has been shown that estimators minimizing the cost function
defined in eq. (3.86) can approximate the maximum likelihood estimator,
if Gaussian noise is considered. In the following it will be shown how this
cost-function can be minimized in closed-form.

3.5.3 Weighted Linear Least-Squares Estimator

Collecting the source position xs and the distance between the reference
sensor and the source D1 in a vector θ = [xT

s , D1]
T and introducing matrix

A = 2[S, c · τ1] (3.93)

eq. (3.76) can be written as a constrained linear equation

ǫ = b − Aθ

subject to
D1 = |x1 − xs|2

, (3.94)

which results in the constrained, linear estimation problem

x̂s = arg min
xs

(b − Aθ)T W (b − Aθ)

subject to
D1 = |x1 − xs|2.

(3.95)
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Huang et al. [HBE00] proposed to just neglect the constraint of this
optimization problem, which then simply results in the weighted linear-least
squares problem

J = ǫT Wǫ

= (Aθ − b)T W (Aθ − b).
(3.96)

Using the results of chapter 2.2.1, and more precisely eq. (2.48) the
minimizing vector θ̂WLLS results to

θ̂WLLS =

(
x̂WLLS

s

D̂1

)

= (AT WA)−1AT Wb

= Awb,

(3.97)

Note that since the constraint was neglected that the relation between D̂1

and x̂WLLS
s

D̂1 = |x1 − x̂WLLS
s |2 (3.98)

does usually not hold. However, if the additive noise vector is considered to
be small, it can be argued that this estimator still offers an unbiased estimate
of the position.

Bias and Covariance In the approximation of eq. (3.88) error vector ǫ is
approximated to

ǫ ≈ Diag(2c(cτ21 + D1), . . . , 2c(cτN1 + D1))n. (3.99)

Assuming zero-mean noise with covariance matrix Cn, this error vector can
then be seen as a zero-mean random vector with covariance matrix

Cǫ ≈ Diag(2c(cτ21+D1), . . . , 2c(cτN1+D1))CnDiag(2c(cτ21+D1), . . . , 2c(cτN1+D1)).
(3.100)

Consequently, since b = Aθ + ǫ, the mean and covariance of the WLLS
estimator can be calculated to

µWLLS = E(θ̂WLLS) = Awb − Awµǫ ≈ Awb (3.101)

and
CWLLS ≈ AwCǫA

T
w. (3.102)

Hence, the weighted linear least-squares estimator of eq. (3.97) is approx-
imately unbiased, even though the constrained optimization problem was
converted into an unconstrained optimization, by simply neglecting the con-
straint.
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Linear Least-Squares Estimator

If the weighting matrix is set to be the identity matrix W = I, the position
estimation simply becomes the pseudo-inverse of A times the vector b and
the linear least-squares (LLS) estimator results:

θ̂LLS = ((x̂LLS
s )T , D̂1)

T = A†b. (3.103)

Bias and Covariance The mean and the covariance matrix of this esti-
mator then result in

µLLS = E(θ̂LLS) = A†b − A†µǫ ≈ A†b (3.104)

and

CLLS ≈ A†Cǫ(A
†)T . (3.105)

Spherical Interpolation

Abel [SA87] proposed to solve eq. (3.76) for xs by first premultiplying it by a
projection matrix for either τ1 or xs, which will eliminate the corresponding
term. The resulting linear estimation problem is then being solved by the
LLS approach. This procedure is now presented with a projection matrix for
τ1, which is given by

Pτ = I − τ1(τ
T
1 τ1)

−1τ T
1 (3.106)

Eq. (3.86) then turns out to be

ǫT PτWPτǫ = (Pτb − 2PτSxs)
T W (Pτb − 2PτSxs), (3.107)

which is maximized for

x̂LI
s = 1/2(STPτWPτS)−1ST PτWPτb. (3.108)

When the weighting matrix W is set to be the identity matrix W = I it
can be shown that eqs. (3.108) and (3.103) become the same and hence,
the methods based on the nonweigted linear least-squares approach of eq.
(3.103) and the non-weighted linear interpolation of eq. (3.108) are identical.
Consequently the mean and the covariance of the non-weighted spherical
interpolation estimator are identical to the ones of the LLS estimator (eqs.
(3.104) and (3.105)).
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3.5.4 Linear Correction Least-Squares Estimator

The obvious problem of the weighted linear least-squares approach is that it
neglects the constraint of eq. (3.94). Huang et. al [HBEM01] proposed an
iterative procedure, which takes this dependency into account based on the
theory of Lagrange multipliers. If the coordinate frame is chosen such that
the reference sensor x1 lies on the origin, the constraint of the optimization
problem defined in eq. (3.95) becomes

Rs = |xs|2, (3.109)

and θ becomes

θ =

(
xs

R̂s

)

. (3.110)

Consequently, the constraint can be written as

θTΣθ = 0, (3.111)

with
Σ = Diag(1, 1, 1,−1). (3.112)

If further the weighting matrix W is set to be the identity matrix, the prob-
lem of passive source localization becomes to find a θ which minimizes the
following linear, constrained optimization problem:

min
θ

(Aθ − b)T (Aθ − b)

subject to
θTΣθ = 0.

(3.113)

The Lagrangian of this constrained problem follows to

L(θ, λ) = (Aθ − b)T (Aθ − b) + λθT Σθ, (3.114)

where λ is the Lagrange multiplier. Necessary conditions for minimizing eq.
(3.114) can be obtained by taking the gradient of L(θ, λ) with respect to θ

and finding θ such that this gradient becomes zero. Solving for θ yields the
constrained least-squares estimate

θ̂ = (ATA + λΣ)−1AT b, (3.115)

where λ is yet to be determined such that the constraint of (3.114) is ful-
filled. Substituting (3.115) into the constraint of (3.113) leads to the following
equation

bT A(ATA + λΣ)−1Σ(ATA + λΣ)−1AT b = 0. (3.116)



76 CHAPTER 3. TDOA-BASED PASSIVE SOURCE LOCALIZATION

With Σ−1 = Σ, (ATA + λΣ)−1 follows to

(AT A + λΣ)−1 = Σ(ATAΣ + λI)−1. (3.117)

Consequently, eq. (3.116) can be written as

bT AΣ(ATAΣ + λI)−1(ATAΣ + λI)−1ATb = 0. (3.118)

This nonlinear equation must now be solved for λ. Assuming that

AT A > 0, (3.119)

the eigenvalues of AT AΣ will be real 1 and consequently the proposed eigen-
value factorization in [HBEM01] holds:

AT AΣ = UΛU−1, (3.120)

with Λ = Diag(γ1, . . . , γ4) and γi denoting the ith eigenvalue of the matrix
ATAΣ. The matrix U is composed of the corresponding eigenvectors, and
consequently, the constraint of eq. (3.118) becomes

pT (Λ + λI)−2q =

4∑

i=1

piqi

(λ + γi)2
= 0, (3.121)

with p = UTΣATb and q = U−1AT b. Since the solution to (3.121) is not
unique, it is proposed to use the secant method [PFTV02] to determine its
roots. If the ambient noise is small, the solution will be close to the linear
least-squares estimate of eq. (3.103). Hence, the Lagrange multiplier will be
small. Therefore Huang et al. [HBEM01] propose that the initial points of
the secant method should be chosen either as λ0 = 0 or as λ0 = β, where
β is a small number dependent on the array geometry. They state that five
iterations should be sufficient to give an accurate approximation to the root.

In summary the two steps of the linear-correction least-squares (LCLS)
estimation are as follows: the Lagrangian multiplier λ is determined by find-
ing the root of (3.121) around zero. Using this λ the position estimate is
found by eq. (3.115).

Even though this estimator uses an iterative procedure to calculate the
Lagrangian multiplier from the nonlinear eq. (3.118), it is integrated in the
section of the linear approximation estimator, since it is self-initializing.

1eigenvalues of AT AΣ are real valued, proof: since AT A > 0, AT AΣ can be written
as AT AΣ =

√
AT A(

√
AT A)T

Σ

√
AT A(

√
AT A)−1, with

√
AT A being a lower triangular

matrix obtained by the Cholesky factorization . Consequently the eigenvalues of AT AΣ
are equal to the eigenvalues of (

√
AT A)T

Σ

√
AT A, which are real valued, since, with Σ

being symmetric, (
√

AT A)T
Σ

√
AT A is symmetric, leading to real eigenvalues
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3.5.5 Hyperbolic Interpolation Estimator

Chan and Ho [CH94] extend the weighted LLS estimator of eq. (3.97) to
a two step procedure. In a first step a first position estimate is found by
the weighted linear least-squares estimator of eq. (3.97), using the presented
iterative procedure for finding the appropriate weighting matrix:

θ̂WLLS = Awb. (3.122)

It was shown that under the assumption of zero-mean Gaussian noise, this
estimate is approximately unbiased and Gaussian with covariance matrix
CWLLS given by eq. (3.102). Consequently, this estimate can be written
as the sum of the true position/range vector θ and an zero-mean Gaussian
distributed error vector ∆θ, with covariance matrix CWLLS. Assuming the
general three dimensional estimation problem with

θ̂WLLS = (θ̂x, θ̂y, θ̂z, θ̂D)T , (3.123)

∆θ = (∆θx, ∆θy, ∆θz, ∆θD)T , (3.124)

xs = (xs, yx, zs)
T , (3.125)

x1 = (x1, y1, z1), (3.126)

the following relation holds








(θ̂x − x1)
2

(θ̂y − y1)
2

(θ̂z − z1)
2

θ̂2
D1








=







(xs + ∆θx − x1)
2

(ys + ∆θy − y1)
2

(zs + ∆θz − z1)
2

(D1 + ∆θD)2







. (3.127)

Neglecting the quadratic error terms this equation can be approximated by








(θ̂x − x1)
2

(θ̂y − y1)
2

(θ̂z − z1)
2

θ̂2
D1








︸ ︷︷ ︸

h

≈







1 0 0
0 1 0
0 0 1
1 1 1







︸ ︷︷ ︸

Σhl





(xs − x1)
2

(ys − y1)
2

(zs − z1)
2





︸ ︷︷ ︸

θhl

+







2(xs − x1)∆θx

2(ys − y1)∆θy

2(zs − z1)∆θz

2D1∆θD







︸ ︷︷ ︸

ζ

,

(3.128)
which once more can be seen as a weighted linear-least squares problem.

With CWLLS being the covariance matrix of ∆θ, the covariance matrix
of the zero-mean random vector ζ follows to

Chl ≈ BhlCWLLSBhl, (3.129)
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with Bhl = Diag(xs − x1, ys − y1, zs − z1, D1). The weighted linear least-
squares solution of θhl is then found to be

θ̂hl = (ΣT
hlC

−1
hl Σhl)

−1ΣT
hlC

−1
hl h. (3.130)

Again, the true values of Chl are not known, since they contain the true
values of the source localization. An iterative approach just as before, has to
be applied, with the starting points chosen as the values found by eq. (3.97).
The final position is then obtained from θml

x̂hl
s = ±

√
√
√
√
√





θxhl

θyhl

θzhl



 +





x1

y1

z1



 (3.131)

Since eq. (3.131) results in eight possible locations, Chan and Ho [CH94] pro-
pose to choose the outcome which lies in a predefined search region. However,
if multiple of these outcomes lie within this region, all these estimates must
be considered.

Example 1. The reference sensor is placed at the origin and four other
sensors are arbitrarily placed in a cube of dimension [−5m, 5m]. The source
location is chosen to be [1,−2, 3] and a zero-mean Gaussian noise vector with
standard deviation of 0.01m is added to the corresponding RD vector d = c·τ .
If the hyperbolic algorithm as described in [CH94] is applied, the outcomes of
eq. (3.131) are

x̂hl
s1
≈ (±1.0058,±2.0157,±3.0036)T . (3.132)

In order to avoid this ambiguity, we propose an alternative decision pro-
cedure. The initial guess for the iterative calculation of eq. (3.130) is found
by eq. (3.97). Therefore, we propose to calculate the non-squared entries of
vector h,





θ̂x − x1

θ̂y − y1

θ̂z − z1



 = x̂WLLS
s − x1,

and save their sign. Correspondingly to these saved signs, the signs of the
individual entries of the square root of eq. (3.131) are chosen. In the example
above the initial guess was found to be (1.0057,−2.0153, 3.0027) and the signs
of (x̂WLLS

s −x1) should be memorized (+,−, +). The position estimate then
results to

x̂HL
s =





+
−
+





√
√
√
√
√





θxhl

θyhl

θzhl



 +





x1

y1

z1



 (3.133)
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Figure 3.8: Approximated hyperbolic intersections by cones

and the right position estimate results

x̂HL
s ≈ (1.0058,−2.0157, 3.0036)T . (3.134)

The modified hyperbolic location estimation algorithm is thus as follows:
use the WLLS estimator of eq. (3.97) with weighting matrix (3.91) for an
initial guess of the source position. Use this vector for the calculation of eq.
(3.130). The source position is then estimated to be

x̂HL
s =





x1

y1

z1



 + sign(x̂WLLS
s − x1) ◦

√
√
√
√
√





θxhl

θyhl

θzhl



, (3.135)

where ◦ denotes the Hadamard product (element-wise product) of two vectors
and sign(.) denotes the element-wise sign function of a vector.

3.6 Linear Intersection Estimator

Brandstein [BAS97] proposed a completely different closed-form approach
to the TDOA-based localization problem. It is based on the fact that, if a
time difference of arrival τi of a microphone pair with positions xi,1, xi,2 is
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known, the possible positions of a source are described by a hyperboloid. If
the source position is assumed to be far from the sensors, this hyperboloid
can be approximated by a cone with opening angle

αi = cos−1(cτi/|xi,1 − xi,2|2). (3.136)

and apex
mi = (xi1 − xi2)/2. (3.137)

Now, two sensor pairs {xi1, xi2} and {xi3, xi4} are considered with their mea-
sured TDOAs τi,12 and τi,34, respectively. The two lines connecting the sensor
pairs are constrained to be orthogonal and to intersect in their midpoints (fig.
3.8):

mi = (xi1 − xi2)/2 = (xi3 − xi4)/2. (3.138)

A local coordinate frame, with origin mi and the unit vectors chosen as

x =
xi1 − xi2

|xi1 − xi2|2
, (3.139)

y =
xi3 − xi4

|xi3 − xi4|2
, (3.140)

and
z = x × y, (3.141)

with × denoting the crossproduct of two three dimensional vectors, is estab-
lished. The range difference of the first sensor pair approximates a cone with
constant direction angle αi relative to the x-axis. The second sensor pair
defines a constant direction angle βi relative to the y-axis. Since both cones
represent the possible source locations, they will share at least one common
point. In fact, the intersection of those two cones are two lines (one with
z < 0 and one with z > 0) on which the source position has to lie. If the
sensor pairs are installed such that z < 0 is physically not possible 2, only
one bearing line li results

li = riai + mi, (3.142)

with

a =





cos(αi)
cos(βi)
cos(γi)



 (3.143)

2example: installing the sensor quadruples on the walls or the ceiling of a room, leads
to a z-coordinate pointing into the room. Consequently, one of the two resulting bearing
lines of a single quadruple points into the room, while the other points outwards. The
outward pointing line can then be neglected
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being the direction vector of the line (or bearing line) and ri being the dis-
tance to a point on the line. The remaining direction angle γi of the direction
vector ai may be calculated from the identity

cos2(αi) + cos2(βi) + cos2(γi) = 1 (3.144)

with 0 ≤ γi ≤ π
2
.

Given two or more of those sensor quadruples, each offering a bearing line,
the source location can be calculated in the noiseless case as the intersection
point of those bearings. However, if noise is present those bearing lines will
usually not intersect. The approach proposed by Brandstein is to calculate
a number of potential source locations from the points of closest intersection
for all pairs of bearing lines and use a weighted average of these locations to
generate a final estimate. Given two bearing lines

li = riai + mi (3.145)

lj = rjaj + mj (3.146)

the shortest distance of those is measured as the length of the two points on
those lines intersecting with their common normal and is given by

δij =
|(ai × aj) · (mi − mj)|2

|ai × aj|2
. (3.147)

Two possible source locations are then found for each bearing line pair: the
intersection of line li and the normal, resulting in an estimate x̂sij

, and the
intersection of line lj and the normal, resulting in x̂sji

. Those points are
found by first solving the overconstrainted equation

riai − rjaj = mj − mi − δij(ai × aj) (3.148)

for ri and rj and then setting those results into eqs. (3.145) and (3.146),
respectively. Assuming M sensor quadruples, and consequently M bearing
lines, leads to a total of M(M − 1) possible source positions x̂ij. The overall
source position is then calculated as the weighted sum over all these esti-
mates:

x̂LI
s =

M∑

j=1

M∑

k=1,k 6=j

wjkx̂jk, (3.149)

with wik denoting the weight corresponding to the estimate found by the
intersection of line i and its common normal with line k. If no statistical
information on the additive noise terms is available, the weights are set to
unity. If this information is at hand, the reader is referred to [BAS97], [Bra95]
on how to best choose the weighing terms.
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3.7 Optimal Sensor Configuration

In the last three sections a number of TDOA-based position estimators were
presented. While some are of iterative nature and others can be written in
closed-form, they all have in common that their accuracy depends on the
geometry of the sensor network and the source position. In chapter 2 it was
argued that the accuracy of an estimator could be increased by choosing
optimal internal parameters, which in the case of passive source localization
were identified as the sensor positions. Further, since the performance does
also depend on the actual source position, it was proposed to carry out this
optimization procedure in a first step w.r.t. a reference source position. In
this section optimal configurations for the previously presented TDOA-based
passive source location estimators are derived.

Assuming that the iterative maximum likelihood and linearized estima-
tors approximately attain the Cramer Rao lower bound, the first configu-
ration is derived using this bound. Considering the geometric dilution of
precision, as well as the condition number, it will be shown that all three
performance measures result in the same configuration for the linearized es-
timator.

The found configuration is not optimal for the linear approximation es-
timators of section 3.5. This is mainly due to the fact that these linear
approximation estimators do not consider all N(N − 1)/2 TDOA estimates.
For this class of estimators, it is proposed to find the optimal configuration
w.r.t. the condition number. Again, a close dependency, between the condi-
tion number and the geometric dilution of precision based configuration can
be seen. Since these estimators are ideally suited as initialization procedures
for the iterative linearized estimator, it is proposed to minimize the condi-
tion numbers of both estimators at the same time. A minimum number of
microphone setup will be presented, which achieves to render both condition
numbers equal to one.

The linear intersection estimator of section 3.6, strongly differs from the
other estimators, in that it assumes that the source is located in the far-field
of the individual sensor quadruples. Consequently, this estimator has to be
treated separately. Procedures for optimizing its performance are discussed,
again considering the condition number.

Yang and Scheuing [YS05] used the CRLB to derive an optimal sensor
configuration for TDOA-based passive source localization. The following
subsection is basically a summary of their work.



3.7. OPTIMAL SENSOR CONFIGURATION 83

3.7.1 CRLB Optimal Sensor Configuration

Theorem 5. If all N(N −1)/2 available TDOA measures of N microphones
are available, and their covariance matrix is given by Cτ = σ2I, then the
inverse of the Fisher information matrix is lower bounded by

trace(F−1) ≥ (c · σ)2 p2

N2
. (3.150)

Equality holds if and only if

1.
∑N

i=1 gi = 0, with

gi =
xi − xs

|xi − xs|2
. (3.151)

2. the matrix G = [g1, g2, . . . , gN ], satisfies GGT = (N/p)I, i.e. G has
orthogonal row vectors with equal row norm.

The reader is referred to [YS05] for a proof of this theorem, which gives
necessary and sufficient conditions for an optimal sensor configuration with
respect to the CRLB. The question now arises, of how to find a microphone
setup, which fulfills them. Note that the bound does not only depend on
the sensor positions, but also on the source position. Consequently, a sensor
configuration which is optimal for one prospective source position, is very
likely to not be optimal for others. In the following a sensor configuration
is presented, which fulfills the conditions of theorem 5 for one representative
position. Without loss of generality, it is assumed that this position is the
origin of the coordinate frame xs = 0. Again, the reader is referred to [YS05],
which proposes optimal configurations in the two and three dimensional case.

Since the gi’s are normalized vectors, Yang and Scheuing propose solu-
tions which lie on the unit circle in R

2 or the unit sphere in R
3. In R

2 it is
easily verified that a uniform angular array defined by the sensor positions

gi = (cosαi, sin αi)
T , (3.152)

with

αi = α1 +
2π

N
(i − 1), (3.153)

satisfies both conditions of theorem 5.
In R

3 the vectors gi which are equally distributed on the unit sphere,
fulfill the conditions of theorem 5 . They can be represented by a combina-
tion of the extremities of the five platonic solids (or symmetrical polyhedra)
[BSMM99]: tetrahedron, hexahedron (cube), octahedron, dodecahedron, and
icosahedron, see fig. 3.9.
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Figure 3.9: Tetrahedron, Octahedron, Hexahedron (cube), Dodecahedron,
and Icosahedron

Yang and Scheuing [YS05] also showed that no unbiased estimator for
TDOA-based position estimation can exist, which attains the CRLB. There-
fore, minimizing the CRLB, does not necessarily optimize the performance
of the chosen estimator. As a consequence the geometric dilution of preci-
sion and the condition number are now studied as possible cost functions for
increasing the performance of the linearized estimator.

3.7.2 Optimal Sensor Configuration for the Linearized

Estimator

The GDOP of the general linearized estimator was derived in chapter 2.
It can readily be applied to the linearized estimator of the TDOA-based
position estimation problem. If the TDOA measures are again assumed to
be independent measures, with additive Gaussian noise with covariance Cτ =
σ2I, the GDOP follows to

GDOP =

√

trace(J T (xsn
, X)J (xsn

, X))−1/p, (3.154)

with p being the dimension of the estimation problem (2D or 3D). Neglecting
this dimension term and the square root does not change the global mini-
mum of this equation. Further, as before, it is assumed that the estimator is
initialized by an unbiased closed-from estimator, such as the LLS estimator.
Then it is reasonable to optimize this GDOP for the initial value xsn

= xs,
and optimizing the GDOP becomes identical to optimizing the CRLB. Con-
sequently, the same sensor configuration as for the CRLB approach results.

A necessary condition for minimizing these measures is that J
T
J = γ2I.

However, theorem 3 states that this is equivalent to a minimum condition
number of the Jacobian

κ2(J ) = 1. (3.155)
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Consequently, the sensor configurations that optimize the CRLB and the
GDOP of the linearized estimator, are also optimal w.r.t. the condition
number of the linearized estimator.

3.7.3 Optimal Sensor Configuration for the LLS Esti-

mator

The presented linear approximation estimators of section 3.5 are all somehow
related to the calculation of the pseudo-inverse of A defined by eq. (3.93).
While the LLS estimator is directly calculated from this pseudo-inverse, the
WLLS, the hyperbolic interpolation, and the LCLS estimator are initialized
by the LLS estimator’s outcome. The non-weighted SI estimator was shown
to be equivalent to the LLS estimator. Consequently, we propose to derive
an optimal sensor configuration w.r.t. the condition number of A, such that

AT A = σ2I, (3.156)

with matrix A given by

A = 2[S, d1] = 2








xT
2 − xT

1 , d21

xT
3 − xT

1 , d31
...

xT
N − xT

1 , dN1








. (3.157)

Since the true RDs d21 are unknown, they are replaced by the measured
TDOAs times the propagation speed di1 = c · τi1. However, since these
measures are subject to noise, n = cτ − d, matrix A should rather be
replaced by Ã = A + ∆A, where

∆A = [0, n] (3.158)

is a matrix that takes the noise vector n into account, and 0 denotes a matrix
of appropriate size with all its entries being equal to 0:

Ã = 2[S, c · τ1] = 2








xT
2 − xT

1 , c · τ21

xT
3 − xT

1 , c · τ31
...

xT
N − xT

1 , c · τN1








. (3.159)

The LLS estimator is then given by

θ̂LLS = ((x̂LLS
s )T , D̂1)

T = Ã†b̃, (3.160)
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where b̃ = b + ∆b denotes the perturbed version of b, with

∆b = n ◦ n, (3.161)

where ◦ denotes the Hadamard product of two vectors. Hence, the LLS
estimator is perfectly described by theorem 2. This theorem clearly states
that the upper bound for the estimation error decreases for smaller condition
numbers. Therefore, it is desirable to minimize the condition number of the
LLS estimator.

Fig. 3.10 shows the dependency of the relative estimation error of the LLS
estimator as a function of the condition number κ2(A): 30 sensor configu-
rations using 4 sensors were found for each κ2(A) = [2, 3, . . . , 50], when the
source was set to the position [1, 1]. For each κ2(A) 1000 Monte-Carlo tri-
als were carried out with arbitrary sensor configurations. The corresponding
range differences were calculated and then perturbed by an additive zero-
mean Gaussian noise with standard deviation σ = 0.1m. Note that the
relative error of the LLS estimator seems to linearly increase with increasing
κ2(A).

The attention is now drawn on how to minimize the condition number of
the LLS estimator. Without loss of generality, it is assumed that the reference
sensor is placed at the origin x1 = 0. Matrix A can then be written as

A = 2








pT
2

pT
3
...

pT
N








, (3.162)

with

pi =

(
xi

di1

)

∈ R
p+1. (3.163)

Eq. (2.83) then gives an idea of how the sensors need to be installed in order
to obtain κ2(A) = σ2I. The column vectors of A need to be orthogonal
and of equal length in R

N−1 and the row vectors pi need to fulfill the range
difference equations

di1 = |xi − xs|2 − |xs|2, (3.164)

which describe a cone in the extended space R
p+1. E.g. in the two dimen-

sional case, the x-coordinate and the y-coordinate describe the position of the
slave sensors, while the z-coordinate indicates the RD. The cone has its apex
at (xT

s ,−|xs|2)T . The cones axis of revolution passes through the source po-
sition xs and at d = 0 the cone includes the position of the reference sensor,
which was set to zero (see fig. 3.11).
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Figure 3.10: Relative position error of the LLS estimator as a function of the
condition number κ(A), with the number of sensors N = 4, upper bound
given by (2.76), reference sensor at [0, 0], source position at [1, 1]

The condition that κ2(A) = 1, or equivalently AT A = σ2I, can be
interpreted as that the row vectors pi are random vectors with correlation
matrix

R =
σ2

4(N − 1)
I. (3.165)

This can be easily seen by

AT A = 4 ·
N∑

i=2

pip
T
i = σ2I. (3.166)

The correlation matrix R is calculated by

R =
1

N − 1

N∑

i=2

pip
T
i . (3.167)

A more detailed geometrical interpretation of these conditions is rather com-
plicated to obtain, when N > p + 2. In the following subsection analytical
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Figure 3.11: Cone representation of the RD equation

equations are derived, which offer an optimal sensor configuration with re-
spect to the condition number, when a minimum number of sensors for the
LLS approach N = p + 2 is considered.

Closed-form Sensor Configuration

When the minimum number of sensors is considered, the matrix A becomes
square and therefore

AT A = σ2I = AAT . (3.168)

Hence, three conditions for an optimal sensor configuration with respect to
κ2(A) = 1 need to be fulfilled. The extended sensor positions pi must all

1) lie on the cone defined by (3.164)
2) lie on the same sphere 4pT

i pi = σ2, ∀i ∈ {2, . . . , N}
3) be orthogonal pT

i pj = 0, ∀j 6= i .
(3.169)

Conditions 2) and 3) immediately result from (3.168). Since the vectors need
to lie on the cone of condition 1), as well as on the sphere defined by condition
2), these two conditions can be combined: the extended vectors pi need to
lie on the intersection of the cone and the sphere. Further, condition 3) rests
to be fulfilled.
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Figure 3.12: 2D minimal number of sensors configuration with κ2(A) = 1
and φi ∈ [0◦, 180◦], ◦: Source, ∗: reference sensor, +: slave sensors, ♦: slave
sensors with x2 at φ2 = 0◦, �: slave sensors with x2 at φ2 = 180◦

In order to simplify these equations, a special parameterization of pi is
used. Since all pi must lie on the cone defined by eq. (3.164), the cone is
parameterized as follows:

pi =

(
xi

di1

)

=

(
xs + riei

(ri − 1)|xs|2

)

, (3.170)

with |ei|2 = |xs|2, which is illustrated for the two dimensional case in fig.
3.11. Further, since

di1 = |xi − xs|2 − |x1 − xs|2
= |xi − xs|2 − |xs|2
≥ −|xs|2,

(3.171)

the height parameter ri is non negative.



90 CHAPTER 3. TDOA-BASED PASSIVE SOURCE LOCALIZATION

Using the cone representation of (3.170) condition 2) leads to:

r2
i + ri(cos φi − 1) + 1 = k, k =

σ2

8|xs|22
, (3.172)

with
xT

s ei = xT
s xs cos φi, (3.173)

and φi = ∠(xs, ei) being the angle between xs and ei.
The third condition pT

i pj = 0 for all i 6= j then results in

r2
i + r2

j − rirj(cos φij + 1) = 2k, (3.174)

with φij = ∠(ei, ej) being the angle between ei and ej .

Two dimensional analytic solution

In order to obtain further insight, the two dimensional case (p = 2) is now in-
vestigated. The cosine of the relative sensor angles φij may then be expressed
in terms of the cosines of the absolute sensor angles φi, φj:

cos φij = cos(φi − φj). (3.175)

The equations can be simplified by placing one of the slave sensors on the
{x1, xs} axis:

φ2 = π ⇒ cos φ2 = −1. (3.176)

Eq. (3.172) then becomes

r2
2 − 2r2 + 1 = k. (3.177)

Thus, the parameter r2 results to

r2 = 1 ±
√

k. (3.178)

As a consequence eq. (3.174) follows to

r2
i + r2

2 − rir2(cos φi2 + 1) = 2k; i ∈ {3, 4}. (3.179)

With eq. (3.175) and eq. (3.176) this leads to

r2
i + r2

2 + rir2(cos φi − 1) = 2k. (3.180)

Further, using eq. (3.178) this results to

r2
i + ri(cos φi − 1) + 1 − k

︸ ︷︷ ︸

=0, eq. (3.172)

±
√

k(ri(cos φi − 1) + 2) = 0. (3.181)
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Since, σ > 0 ⇒ k > 0 and ri > 0

ri =
√

1 + k
cos φi = 1 − 2√

1+k
,

(3.182)

with i ∈ {3, 4}. Hence, this sensor setup is symmetric w.r.t. the {x1, xs}
axis. This symmetry leads to

cos φ34 = cos(φ3 − φ4) = cos(2φi) = 2 cos2 φi − 1; i ∈ {3, 4} (3.183)

This and r3 = r4 = ri together with (3.174) for sensors 3 and 4 gives

r2
i (1 − cos2 φi) = k; i ∈ {3, 4} (3.184)

and with (3.182) this leads to a unique solution

k = 8 (3.185)

since σ > 0 ⇒ k > 0.
With this value of k, the slave sensor positions may be computed using

(3.176), (3.178), (3.182) and (3.170). The sensor configuration obtained this
way is illustrated in fig. 3.12 (represented by the �) and the values in the
case x1 = [0, 0]T and xs = [1, 0]T are given below:

• Source: xs = [1, 0]T

• Sensor 1 (reference): x1 = [0, 0]T

• Sensor 2: r2 = 1 +
√

8, φ2 = π hence x2 = [−
√

8, 0]T

• Sensor 3: r3 = 3, φ3 = arccos 1
3

hence x3 = [2,
√

8]T

• Sensor 4: r4 = 3, φ4 = −φ3 hence x4 = [2,−
√

8]T

In the general two dimensional case, where φ2 is arbitrary, numerical
analysis showed that the parameter k varies between 8 and 8.192 (e.g. when
φ2 = 0). Fig. 3.13 shows the evaluations of the sensor parameters k, ri and
φi as a function of φ2, when the above described two dimensional case is
considered.

Analog results can be found in a three dimensional setup. In this case the
slave sensors are placed on the surface of revolution defined by (3.172). The
resulting surface is the shape of fig. 3.12 rotated around the x1 − xs axis.
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Figure 3.13: 2D minimal number of sensors configuration with κ2(A) = 1
and φi ∈ [0◦, 180◦], parameter evolution

Performance Evaluation of the Analytic Estimators

Fig. 3.14 shows the performance evaluation of the above mentioned estima-
tors. The LLS, the WLLS, as well as the SI estimator perform identically, and
are clearly outperformed by the hyperbolic location and the linear correction
least-squares estimators. The difference of these two estimators compared to
the others is that they take the constraint D1 = ‖xs−x1‖2 into account. All
of the presented estimators show a dependency on the sensor configuration
in that their performances all increase for small condition numbers. Thus, if
either one of these estimators is chosen to carry out the localization proce-
dure, it might be desirable to use an optimal sensor configuration w.r.t. the
condition number κ2(A).
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Figure 3.14: Comparison of the LLS, WLLS, SI, Hyp, and LCLS estimator for
varying condition number κ2(A), the LLS, the WLLS, and the SI estimator
show an identical outcome and are denoted only by LLS

3.7.4 Optimal Sensor Configuration for the Combined

LLS, Linearized Estimator

If one of the linear approximation estimators of section 3.5 is used for finding
an initial guess for the linearized estimator, it might be interesting to min-
imize the condition number of the Jacobian κ2(J ) as well as the condition
number of the LLS estimator κ2(A). The problem can then be written as
finding the roots of the two-component function

J(x1, · · · , xN) =

[
κ2(J ) − 1
κ2(A) − 1

]

= 0. (3.186)

In section 3.7.3 analytic sensor configurations were found for the 2 dimen-
sional case. All the configurations found by applying the parameters repre-
sented in fig. 3.13 assured that the condition number of the LLS estimator
results to one. This figure also shows the development of the condition num-
ber of the linearized estimator κ2(J ). It shows that, when the second sensor
is placed at the position with φ2 = 180◦ that not only the condition num-
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Source Sensor 1 Sensor 2 Sensor 3 Sensor 4

ri/‖xs‖2 - - 3.828 3 3
φi - - −180◦ 70.52◦ −70.52◦

xi/‖xs‖2 1 0 -2.83 2 2
yi/‖xs‖2 0 0 0 2.83 -2.83

Table 3.5: Sensor positions fulfilling κ2(A) = κ2(J ) = 1. Reference sensor
x1 and x1−xs axis define the origin and the x-axis of the cartesian coordinate
frame, respectively

ber of the LLS estimator, but also the condition number of the linearized
estimator is equal to one

κ2(A) = κ2(J ) = 1. (3.187)

Hence, the resulting sensor configuration fulfills the condition of eq. (3.186)
and the individual sensor positions as well as the source position are given
in table 3.5.

3.7.5 Optimal Sensor Configuration of the LI estima-

tor

The problem of an optimal sensor configuration for the LI estimator is
twofold. The first part is the installation of the individual sensor quadru-
ples w.r.t. the source position. The bearing line of one sensor quadruple is
calculated by the intersection of two cones, which approximate the TDOA
hyperboloids of the two sensor pairs. For disadvantageous source positions
and ambient noise, theses two cones might not intersect, and imaginary posi-
tion estimates results. Assume that the source lies in the plane of the sensor
quadruple. If no ambient noise is present, the two resulting cones will tangent
each other. If now ambient noise is present it becomes very likely that the
two do not touch and a position estimation becomes impossible. Contrary, if
the source lies on the normal of the sensor quadruple, the two cones become
planes, which intersect at an angle of 90◦. Even if large disturbance noise
is present, it is very unlikely that the two resulting cones do not intersect.
Consequently, it is favorable to install the quadruples in such a way that
their normal points towards the source position. An alternative argue for
such an installation is the approximation of the hyperboloid by the cone. It
is argued that, if the source is far from the sensors, the resulting hyperboloids
representing the TDOAs of the sensor pairs can be approximated by cones.
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However, if the source lies on the normal of the sensor quadruple, the hyper-
boloid as well as the approximated cone become the same plan. In this case
no approximation error results.

The second part of finding an optimal sensor configuration for the LI
estimator is concerned with the relative sensor position of two or more sensor
quadruples. Equation (3.148) is easiest solved for ri and rj by rearranging it
to

[ai, aj]

(
ri

−rj

)

= mj − mi − dij(ai × aj). (3.188)

Left multiplying eq. (3.188) by the Moore-Penrose pseudo-inverse of [ai, aj]
gives the result. In the preceding chapter it was shown that the calculation
of the pseudo-inverse of a matrix is most robust, if the condition number of
the matrix is equal to 1. For the LI estimator this can be translated to the
problem of finding a geometry which fulfills

[ai, aj ]
T [ai, aj] = σ2I. (3.189)

Equation (3.189) is fulfilled if the bearing lines ai and aj of the sensor quadru-
ples i and j are orthogonal to each other. Consequently, if three sensor
quadruples are considered, they should be installed such that their bearing
lines are all orthogonal to each other for a specified reference point.

3.8 Analytic Linear Correction Least-Squares

Estimator

A disadvantage of the procedure of the linear correction least-squares esti-
mator of section 3.5.4 is the need of an iterative procedure for finding the
Lagrangian multiplier λ. The result of the estimator will then strongly de-
pend on the initial value of λ, and so might the number of iterations. An
alternative, analytic approach is proposed in this section. It is based on the
assumption that the condition number with respect to the 2-norm of matrix
A is approximately one. Let us thus suppose that

AT A = σ2I. (3.190)

The position estimate resulting from the linear correction least-squares esti-
mator of eq. (3.115) then becomes

θ̂ = (AT A + λΣ)−1ATb

= (σ2I + λΣ)−1

(
c

d

)

,
(3.191)
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with (
c

d

)

= AT b. (3.192)

Hence, the constraint of eq. (3.113) becomes

θ̂TΣθ̂ = (cT , d)T (σ2I + λΣ)−1Σ(σ2I + λΣ)−1

(
c

d

)

=
cT c

(σ2 + λ)2
− d2

(σ2 − λ)2
= 0.

(3.193)

This quadratic equation offers two possible solutions for the Lagrangian mul-
tiplier

λ1 = σ2 cT c − d

cT c + d
and λ2 = σ2 cT c + d

cT c − d
. (3.194)

A necessary and sufficient condition for that one of the λ’s is a local minimum
is that the Hessian matrix of the Lagrangian with respect to the estimation
vector θ is positive definite:

H(θ, λ) =
∂2

∂θ2
L(θ, λ) > 0. (3.195)

It is easily calculated to

H(θ, λ) = AT A + λΣ = σ2I + Diag(λ, λ, λ,−λ). (3.196)

In order to be positive its eigenvalues α1,2,3 = σ2 + λ and α4 = σ2 − λ need
to be positive. Assuming a small additive noise, this is only fulfilled by the
Lagrangian multiplier λ1. Supposing that no noise is present

(
c

d

)

= AT b = ATAθ = σ2

(
xs

‖xs‖2

)

, (3.197)

which would result in the multipliers λ1 = 0 and λ2 = ∞. Thus, λ1 results
in a positive definite Hessian and gives the solution to the constrained lin-
ear least-squares estimator. Now assuming a small additive noise vector n,
resulting in a small error vector ǫ,

(
c

d

)

=

(
xs

‖xs‖2

)

+ Aǫ, (3.198)

Therefore, c will still be close to σ2xs and d will still be in the neighborhood
of |xs|2, which will lead to a small multiplier λ1 and to a large multiplier λ2.

In the case when additive noise is considered, matrix A will be perturbed
and so will its condition number. As a result the matrix product AT A will
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no longer be diagonal with identical elements. However, if the condition
number of the non-perturbed system is equal to one, the diagonal elements
of AT A will still be close to the singular value of the non-perturbed A and
will still be big compared to the off-diagonal elements. It is then reasonable
to replace the ideal singular value of (3.116) by

σ2 = trace(AT A)/4. (3.199)

The Lagrangian multiplier then results to

λ =
1

4
trace(ATA)

cT c − d

cT c + d
. (3.200)

Once this multiplier is calculated, two options for calculating the position
estimate are left. It can either be calculated by eq. (3.115) using the term
σ2I

θ̂1 = (σ2I + λΣ)−1ATb, (3.201)

or the term AT A is being used

θ̂2 = (ATA + λΣ)−1AT b. (3.202)

3.8.1 Evaluation

Fig. 3.15 compares the performances of the proposed constrained linear least-
squares estimator and the unconstrained linear least-squares estimator. 50
sensor configurations, using 7 microphones were found for a source position
of (6m, 3m, 2m), assuring that the condition number κ(A) is equal to one.
Zero mean Gaussian noise with varying standard deviation (σ ∈ (0, 2)), was
added to the calculated range difference vector d = c · τ , and 1000 Monte
Carlo trials were carried out for each σ, while arbitrarily choosing one of the
50 sensor configurations. The root mean square error (RMSE) of the position
estimate as well as of the Lagrange multipliers are plotted over the standard
deviation of the added noise. It clearly shows, how the estimators based on
the Lagrangian outperform the linear least-squares estimator, which neglects
the constraint. Further, the analytic estimator based on eqs. (3.201) and eq.
(3.200) shows a clear advantage over the others.

Unfortunately, the matrix A is dependent on the ambient noise. If addi-
tive Gaussian noise is assumed on the TDOA vector, d1 = c · τ1 + n1, the
real matrix Ã will be a perturbed version of the ideal matrix A:

Ã = A + ∆A, (3.203)

with ∆A = [0, n1]. Thus, the condition κ(Ã) = 1 will usually not hold.
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Figure 3.15: Position estimation with κ(A) ≈ 1 and Gaussian noise with
standard deviation between 0 and 2, LCLS: linear correction least-squares
estimator (eqs. (3.121) and 3.115), LLS: linear least-squares estimator
(eq.(3.103)), SVD: analytic constrained linear least-squares estimator (eq.
(3.201)) and (eq. (3.200)), SVD2: analytic constrained linear least-squares
estimator (eq. (3.202)) and (eq. (3.200))

Fig. 3.16 studies the influence of a condition number κ(A) not equal to
one. Arbitrary sensor configurations for κ(A ∈ (1, 2) were found and a series
of Monte Carlo trials were carried out. This time the standard deviation
of the zero mean Gaussian noise was kept constant at σ = 1m. The LCLS
procedure of section 3.5.4 was tested with two different starting points of the
iterative search of λ. λ0 was either set to zero (LCLS) or was calculated by
eq. (3.200) (LCLS2). These two starting points result in identical outcomes
up to a condition number of around 1.5. At higher values the performance of
the LCLS2 estimator plunges. An even more drastic decrease appears for the
analytic constrained linear least-squares estimators (SVD and SVD2). While
they outperform the others for condition numbers smaller than 1.2, their
results become unacceptable for higher condition numbers. Consequently,
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Figure 3.16: Position estimation with κ(A) between 1 and 2 and Gaussian
noise with standard deviation equal to 1. LCLS: linear correction least-
squares estimator (eqs. (3.121) and 3.115) with λ0 = 0, LCLS2: same as
LCLS, only λ0 is calculated using eq. (3.200), LLS: linear least-squares esti-
mator (eq.(3.103)), SVD: analytic constrained linear least-squares estimator
(eq. (3.201)) and (eq. (3.200)), SVD2: analytic constrained linear least-
squares estimator (eq. (3.202)) and (eq. (3.200))

in order to apply the analytic linear least-squares estimator it is of utmost
importance to assure that κ2(A) is kept very close to unity. If this cannot
be guaranteed, the standard linear correction least-squares estimator is the
better choice initialized by λ0 = 0.

3.9 Chapter Summary

This chapter summarized the TDOA-based passive source localization algo-
rithms, and concentrated on how to optimize the performance of those, by
using optimal sensor configurations. Three different time delay estimators
were presented and evaluated. The right choice of such an estimator is depen-
dent on multiple factors, such as the signal to noise ratio, the reverberation
time, and the computational capacities.

The most widely used TDOA-based position estimators were introduced,
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and extensions for the hyperbolic interpolation and the linear correction least-
squares estimator are proposed, to further increase their accuracy.

The main contribution of this chapter was the derivation of optimal sensor
configurations for the linearized, the linear interpolation, and all the reference
sensor based estimators. Further, an optimal, minimum number of sensor
configuration was presented for the combined linear least-squares/ linearized
estimator.

All these optimal sensor configurations were found for a reference source
position. However, if moving sources are considered, such a reference source
position might become difficult to define. The problem of moving sources is
addressed in the next chapter.



Chapter 4

Source Tracking

The previous two chapters addressed the problem of optimizing TDOA-based
acoustic passive source localization by choosing optimal positions for the
microphones. It was assumed that a reference source position could be chosen
for which the configuration was to be optimized. The true position of the
source was assumed to be a deterministic value and no dependency between
two consecutive position estimates were assumed.

This chapter addresses the problem of recursively estimating the source
position, when consecutive source positions are no longer independent of each
other, but can be modeled by a discrete dynamic state-space approach. The
central part of such a state-space model are the discrete system equation,
which models the evolution of the system with time, and the measurement
equation, which describes the dependency of the measures on the state vector
of the system. The state vector contains all relevant information to describe
the modeled system. In tracking applications this state vector usually is
composed of the position, the velocity, and additional dynamic information
about the system, such as the steering angle of a vehicle.

Recursive Bayesian estimation deals with estimating the state vector at
time instant k, based on the previous state vector at k − 1, and all the ob-
servations up to k. It attempts to calculate the posterior probability density
function of the state vector, which contains all statistical information about
it. Once this pdf is obtained the optimal state estimate can be obtained
w.r.t. any statistical criterion, such as the mean or the median. In case of
a linear system, a linear measurement model, and additive Gaussian noise,
the recursive Bayesian estimator w.r.t. any statistical criterion results in the
Kalman filter.

In the following section the general framework of recursive Bayesian esti-
mation is presented, and a variety of filters are derived for varying system and
measurement models, considering Gaussian and non-Gaussian noise. This

101
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framework is then applied to TDOA-based source tracking and an evalua-
tion of the different filters is carried out for this problem, focusing on the
sensor geometry.

4.1 Recursive Bayesian Estimation

Assume that the state vector xk+1 at time instant k + 1 can be modeled by
the system equation

xk+1 = f (xk, uk, wk), (4.1)

where f is a possibly nonlinear function of the state vector xk, a system input
uk, and a process noise wk. The objective of recursive Bayesian estimation
is then to recursively estimate xk from the measures

zk = g(xk, uk) + vk, (4.2)

where g is a possibly nonlinear function of the true state vector and the
input vector pertured by a measurement noise vector vk. More precisely, the
estimation is not only based on the measure at time instant k, but on the
set of all available measurements up to time k denoted by

Z1:k = {z1, . . . , zk}. (4.3)

Assume that at time instant 0 no measures are available, and that the initial
posterior pdf p(x0|z0) is equal to the available prior p(x0). Then, p(xk|Z1:k)
can recursively be obtained by a prediction and an update stage. The pre-
diction stage is based on the observation that the system equation (eq. (4.1))
describes a Markov process of order one, such that

p(xk|xk−1, Z1:k−1) = p(xk|xk−1). (4.4)

Consequently the state prediction pdf p(xk|Z1:k−1) follows to

p(xk|Z1:k−1) =

∫ ∞

−∞
p(xk, xk−1|Z1:k−1)dxk−1

=

∫ ∞

−∞
p(xk|xk−1, Z1:k−1)p(xk−1|Z1:k−1)dxk−1

=

∫ ∞

−∞
p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1,

(4.5)

which is known as the Chapman-Kolmogorov equation [AMGC02].
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The update stage uses the measurement model of eq. (4.2) and the known
statistics of vk to calculate

p(zk|Z1:k−1) =

∫ ∞

−∞
p(zk|xk)p(xk|Z1:k−1)dxk. (4.6)

Using this equation the posterior pdf p(xk|Z1:k) calculates to

p(xk|Z1:k) =
p(zk|xk)p(xk|Z1:k−1)

p(zk|Z1:k−1)
. (4.7)

Recursively applying eqs. (4.5) and (4.7) results in the posterior pdf p(xk|Z1:k),
which can then be used to estimate xk w.r.t. to any statistical optimality
criterion. The most common criteria are:

• Maximize the probability

x̂k = arg max
xk

p(xk|Z1:k) (4.8)

Using Bayes’ theorem

p(xk|Z1:k) =
p(Z1:k|xk)p(xk)

p(Z1:k)
, (4.9)

it is easily seen that if p(xk) is uniformly distributed, this estimate is
equal to the classical maximum likelihood estimate:

x̂k = arg max
xk

p(xk|Z1:k)

= arg max
xk

p(Z1:k|xk)p(xk)

p(Z1:k)

= arg max
xk

p(Z1:k|xk)

p(Z1:k)

= arg max
xk

p(Z1:k|xk).

(4.10)

• Minimum Variance Estimate

x̂k = arg min
y

E(|y − xk|22|Z1:k), (4.11)

with E(|y − xk|22|Z1:k) being the expectation of |y − xk|22 taken over
p(xk|Z1:k). It can be shown (e.g. [AM79]) that x̂k results in:

x̂k = E(xk|Z1:k). (4.12)
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• Median Estimator

x̂k = min max |xk − x̂k|2 (4.13)

Note that if the conditional pdf p(xk|Z1:k) is symmetric, the three presented
optimality criteria result in the same estimate. Among others this is true for
the Gaussian density function.

The approach of optimal recursive Bayesian estimation is of theoretical
nature, in that in general the posterior density cannot be determined ana-
lytically. However, in case of linear system and measurement equations with
additive Gaussian noise vectors wk and vk, respectively, the solution can be
written in closed-form.

4.1.1 Linear System, Gaussian Noise: Kalman Filter

Under the assumption of white Gaussian observation and measurement noise
wk ∼ N (0, Qk) and vk ∼ N (0, Rk), it can be shown that the posterior
density function of xk+1 is Gaussian, too, if the system and measurement
equations are linear, such that

xk+1 = Akxk + Bkuk + Gkwk, (4.14)

and

zk = Ckxk + vk. (4.15)

In the following it is assumed that wk and vk are independent of each other,
such that

E(wkv
T
k ) = 0. (4.16)

In [HL64] the following corresponding probability density functions are de-
rived

p(xk−1|Z1:k−1) ∼ N (xk−1|k−1,Σk−1|k−1), (4.17)

p(xk|Z1:k−1) ∼ N (xk|k−1,Σk|k−1), (4.18)

and
p(xk|Z1:k) ∼ N (xk|k,Σk|k), (4.19)

where
xk|k−1 = Ak−1xk−1|k−1 + Bk−1uk−1, (4.20)

xk|k = xk|k−1 + Kk(zk − Ckxk|k−1), (4.21)

Σk|k−1 = Ak−1Σk−1|k−1A
T
k−1 + Gk−1Qk−1G

T
k−1, (4.22)

Σk|k = (I − KkCk)Σk|k−1, (4.23)
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and
Kk = Σk|k−1C

T
k (CkΣk|k−1C

T
k + Rk)

−1 (4.24)

denotes the Kalman gain. No matter which optimality criterion is applied
on p(xk|Z1:k), the estimate results in the mean xk|k

xk = xk|k. (4.25)

The Kalman filter is usually initialized by the mean and covariance matrix
of the prior density function p(x0) ∼ N (x̄0, P0):

x0|−1 = x̄0, (4.26)

and
Σ0|−1 = P0. (4.27)

The update stage of the Kalman filter is then composed of calculating the
Kalman gain, using eq. (4.24), which is used for calculating the state estimate
by eq. (4.21), once a new measurement zk is observed. The last part of the
update stage then consists in calculating Σk+1|k using eq. (4.22).

The prediction stage of the Kalman filter is composed of the calculation of
the state prediction xk+1|k using eq. (4.20) and its covariance matrix Σk+1|k
using eq. (4.22).

In order to understand the functioning of the Kalman filter, assume that
the matrix Ck is a square nonsingular matrix and that the prediction co-
variance matrix Σk|k−1 is positive definite. If the measurement noise vk is
assumed to be small, the covariance matrix Rk will be small, too. Assuming
that, when compared to CkΣk|k−1C

T
k , it can be neglected, then the Kalman

gain follows to

Kk = Σk|k−1C
T
k (CkΣk|k−1C

T
k )−1 = Ck. (4.28)

Consequently, the state estimate follows to

xk|k = xk|k−1 + C−1
k (zk − Ckxk|k−1) = C−1

k zk, (4.29)

which is independent on the state prediction vector and only uses the obser-
vation for estimating the state vector.

Contrary, if the system noise wk is considered to be small, then the covari-
ance matrix of the predicted state vector Σk|k−1 will be small. Consequently
the Kalman gain will be small, too, and the state estimate is basically the
predicted state vector. Hence, if the system noise is large compared to the
measurement noise, the Kalman filter will trust the true observation, more
than the state prediction. On the contrary, if the system noise is smaller
than the measurement noise, more weight will be put on the prediction than
on the observation.
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4.1.2 Nonlinear System, Gaussian Noise

In the general nonlinear case the probability density functions of eqs. (4.17),
(4.18), (4.19) can usually not be calculated analytically and approximations
must be made. Due to its wide spread in control theory, the standard approx-
imation is the extended Kalman filter. In classical control theory nonlinear
systems are linearized using the first oder Taylor approximation

f (x) ≈ f (x0) +
∂f (x)

∂x
|x=x0

(x − x0) , (4.30)

with x0 denoting the operation point around which f (x) is linearized. Once
the linear approximations are obtained, the classical linear control theory
can be applied. One of the most often used controllers is the state feedback
estimator, which feedbacks the measured states to the input of system. How-
ever, often these states cannot completely be measured, because no adequate
sensors exist. Also, as the number of states becomes large, the measurement
of all of them might become quite expensive. In such cases the extended
Kalman filter is used, which uses the measures zk to infer the states of the
system. Those can then be fed back to the input of the control loop.

4.1.3 Extended Kalman Filter

If the classical Kalman filter is applied to a linearized system, one speaks of
the extended Kalman filter. Its prediction and update stages are only slightly
modified versions of the classical Kalman filter.

Assume that the system equation (4.1) is first order linearized, such that

xk+1 = f (xk, uk, wk)
≈ Ak(xk − xk|k) + Gk(wk − 0),

(4.31)

with

Ak =
∂f (xk, uk, wk)

∂xk

|xk=xk|k,wk=0, (4.32)

and

Gk =
∂f (xk, uk, wk)

∂wk
|xk=xk|k,wk=0. (4.33)

Similarly, the measurement equation (4.2) is first order linearized, such that

zk = g(xk, uk) + vk

≈ Ck(xk − xk|k) + vk,
(4.34)

with

Ck =
∂g(xk, uk)

∂xk
|xk=xk|k

. (4.35)
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The extended Kalman filter is initialized such as the standard Kalman filter
by eqs. (4.26) and (4.27). Its update and prediction stages are then trivial
variations of the standard Kalman filter [AM79].

Update Stage :

Kk = Σk|k−1C
T
k (CkΣk|k−1C

T
k + Rk)

−1 (4.36)

xk|k = xk|k−1 + Kk(zk − g(xk|k−1, uk)) (4.37)

Σk|k = (I − KkCk)Σk|k−1 (4.38)

Prediction Stage :

xk+1 = f (xk, uk, 0) (4.39)

Σk+1|k = AkΣk|kA
T
k + GkQkG

T
k (4.40)

4.1.4 Unscented Kalman Filter

Julier and Uhlmann [JU97] proposed an alternative approach to the extended
Kalman filter for nonlinear, Gaussian systems. Rather than linearizing the
nonlinear equations, they propose to approximate the resulting probability
density functions as Gaussian densities. This approximation is carried out by
the unscented transformation, which is a method for calculating the statistics
of a random variable x which undergoes a nonlinear transformation

y = f (x). (4.41)

A set of so-called Sigma points Xi are chosen such that their sample mean x̄

and their sample covariance Pxx are equal to the mean and covariance of the
random variable x. The nonlinear function f (x) is applied on each sigma
point Xi, which results in the corresponding points

Yi = f (Xi). (4.42)

These Yi are then used to approximate the mean and the covariance of y.
As opposed to Monte Carlo-type methods, the sigma points are not selected
at random, but by a specific, deterministic algorithm. Julier proposed an
extension to the classical unscented transformation [JU97], called the scaled
unscented transformation, in [Jul02]. For an n-dimensional random variable
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x with mean x̄ and covariance Pxx the 2n + 1 scaled sigma points are given
by

X0 = x̄, w0 = λ/(n + λ),

Xi = x̄ + (
√

(n + λ)Pxx)i, wi = λ/(n + λ),

Xi+n = x̄ − (
√

(n + λ)Pxx)i, wi = λ/(n + λ),

(4.43)

with λ = α2(n + κ) − n , κ ∈ R, and 0 ≤ α ≤ 1 being scaling parameters.
(
√

(n + κ)Pxx)i denotes the ith row or column of the matrix square root of
(n + κ)Pxx, found by e.g. the Cholesky factorization, and wi is the weight
which is associated with the ith sigma point Xi.

After the sigma points SXi are passed through eq. (4.42), the mean of
the random variable y can be approximated by

ȳ =

2n∑

i=0

wiYi. (4.44)

Correspondingly, the covariance matrix of y is approximated by

Pyy =
2n∑

i=1

wi(Yi − ȳ)(Yi − ȳ)T +(w0 +1+β−α2)(Y0− ȳ)(Y0− ȳ)T , (4.45)

with β being an additional weighting term, which weights the importance
of the zeroth sigma point for the calculation of the covariance. By this
scaled unscented transformation the mean and covariance of y are captured
precisely up to the second order. In [Jul02] β = 2 is shown to be optimal for
a Gaussian prior.

κ can be used as an extra degree of freedom to ”fine tune” the higher
order moments of the approximation. In [JU97] it is proposed that if x is
assumed to be Gaussian, to choose κ such that

n + κ = 3. (4.46)

Alternative weighting terms are propose in literature to further increase the
approximation accuracy. Wan and Merwe [WM01] for instance propose to
use different weighting terms for the calculation of the mean and covariance.
Some alternative implementations can be found in [vdMWJ04], which also
furnishes the corresponding pseudo-codes for implementing the Sigma-Point
Kalman, or the unscented Kalman filter.

In order to utilize these results for recursive Bayesian estimation, the
assumption is made that all densities remain Gaussian. In this case, the
densities are completely described by their mean and covariance. Further,
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an innovation vector νk is introduced, by which the Kalman equations can
alternatively be derived, by the following linear update rule

xk|k = xk|k−1 + Kkνk, (4.47)

with

νk = zk − g(xk|k−1, uk, 0) (4.48)

denoting the innovation vector, which is the difference between the predicted
observation vector and the actual sensor observation. The Kalman gain Kk

is chosen such that it minimizes the mean square error of the estimate:

Kk = arg min
Kk

E((xk|k − xk)
T (xk|k − xk)|Z1:k). (4.49)

In can be shown (e.g. [AM79], [Kal60]) that the Kalman gain then results to

Kk = Pxν(k|k − 1)P−1
νν (k|k − 1), (4.50)

with

Pxν(k|k − 1) = E((xk|k − xk)ν
T
k |Z1:k−1), (4.51)

and

Pνν(k|k − 1) = E((νkν
T
k |Z1:k−1). (4.52)

The filter iteration then follows to [Jul97]:

Prediction

State Prediction

xk|k−1 = E(xk|Z1:k−1) (4.53)

Pxx(k|k − 1) = E((xk|k − xk)(xk|k − xk)
T |Z1:k) (4.54)

Observation Prediction

ẑk|k−1 = E(zk|Z1:k−1) (4.55)

Pνν(k|k − 1) = E(νkν
T
k |Z1:k−1) (4.56)

Pxν(k|k − 1) = E(xk|k−1 − xk)ν
T
k |Z1:k−1) (4.57)
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Update

xk|k = xk|k−1 + Kkνk (4.58)

Pxx(k|k) = Pxx(k|k − 1) − KkPνν(k|k − 1)KT
k (4.59)

Kk = Pxν(k|k − 1)P−1
νν (k|k − 1), (4.60)

νk = zk − g(xk|k−1, uk, 0) (4.61)

In order to apply the unscented transformation on these recursion steps, an
augmented state vector is introduced:

xa
k =

(
xk

wk

)

. (4.62)

Since it is assumed that even after the nonlinear transformations Gaussian
variables are obtained, this augmented state vector is a random variable with
approximated mean [xT

k|k, 0]T and covariance matrix

P a
k|k =

[
Pxx(k|k) 0

0 Qk

]

. (4.63)

Note, that it is assumed that xk and wk are uncorrelated. The 2n + 1 sigma
points X a

i (k|k) according to this density function can be calculated and the
corresponding sigma points X a

i (k+1|k) of xk+1|k can be calculated by passing
them through the nonlinear system equation (4.1). In order to initialize the
unscented Kalman filter, the sigma points representing x0|0 are drawn from
the prior density function of x0 ∼ N (x̄0, P0) and are denoted by

Xi(0|0), (4.64)

with weights wx
i . The unscented Kalman filter then follows to

Prediction

State Prediction

X a
i (k|k − 1) = f (Xi(k − 1|k − 1), uk−1) (4.65)

xk|k−1 =
2na
∑

i=0

wx
i Xi(k|k − 1), (4.66)
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with na being the dimension of the augmented state vector

Pxx(k|k − 1) =

2na
∑

i=0

wx
i

(
Xi(k|k − 1) − xk|k−1

) (
Xi(k|k − 1) − xk|k−1

)T
+

(wx
0 + 1 + β − α2)

(
X0(k|k − 1) − xk|k−1

)
·

·
(
X0(k|k − 1) − xk|k−1

)T

(4.67)

Observation Prediction For the observation prediction step only the
sigma point inputs representing the state variable xi are needed:

Xi(k|k − 1) =
[

I 0
]
X a

i (k|k − 1), (4.68)

with I ∈ R
n,n being the identity matrix.

Zi(k|k − 1) = g(Xi(k|k − 1), uk) (4.69)

ẑk|k−1 =
2n∑

i=0

wz
iZi(k|k − 1) (4.70)

Pνν(k|k − 1) =

2n∑

i=0

wz
i (Zi(k|k − 1) − ẑk|k−1)(Zi(k|k − 1) − ẑk|k−1)

T +

+ Rk + (wz
0 + 1 + β − α2)(Z0(k|k − 1) − ẑk|k−1)·

· (Z0(k|k − 1) − ẑk|k−1)
T (4.71)

Pxν(k|k − 1) =
2n∑

i=0

wz
i (Xi(k|k − 1) − xk|k−1)(Zi(k|k − 1) − ẑk|k−1)

T +

+ (wz
0 + 1 + β − α2)(X0(k|k − 1) − xk|k−1)·

· (Z0(k|k − 1) − ẑk|k−1)
T (4.72)

(4.73)

Update

Kk = Pxν(k|k − 1)P−1
νν (k|k − 1) (4.74)

νk = zk − ẑk|k−1 (4.75)

xk|k = xk|k−1 + Kkνk (4.76)

Pxx(k|k) = Pxx(k|k − 1) − KkPνν(k|k − 1)KT
k (4.77)

The update stage is ended by calculating the sigma points Xi(k|k) corre-
sponding to the probability density function N (xk|k, Pxx(k|k)).
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A detailed summary on the unscented transformation and the resulting
unscented Kalman filter can be found in [vdM04]. It summarizes its main
properties as

• Mean and covariance of state estimate is calculated accurately to at
least the second order as opposed to the limited first order accuracy of
the extended Kalman filter

• The unscented Kalman filter and the extended Kalman filter have an
equivalent computational complexity

• In contrast to the extended Kalman filter, no analytical derivatives
(Jacobian) need to be calculated. Hence, it can be applied on discon-
tinuous functions

• The unscented Kalman filter consistently outperforms (or at least equals)
the extended Kalman filter for state and parameter estimation

Julier and Uhlmann [JU97], [JU04] propose the problem of converting
from polar to Cartesian coordinates, as an example for showing the supe-
riority of the unscented transformation (unscented Kalman filter) over the
linearized model estimation (extended Kalman filter). One possible appli-
cation is a active sonar sensor, such as the ”range-optimized” sonar sensor
proposed in [LDW91].

Example 2. A range-optimized sonar sensor can provide fairly good range
measurements r, with e.g. a standard deviation of 2cm, but extremely poor
bearing measurements β, with e.g. a standard deviation of 15◦. These po-
lar coordinates need to be converted to the Cartesian coordinates x, y by the
nonlinear equation (

x
y

)

=

(
r cos(β)
r sin(β)

)

. (4.78)

Suppose that the true position of an object is [0m, 1m], then the true range and
bearings result to r = 1 and β = 90◦, respectively. Carrying out 100000 sim-
ulations by adding Gaussian noise with the above mentioned standard devia-
tions, the effects of the unscented transformation, using two different weight-
ing terms and the linearized estimation are presented in fig. 4.1 It shows the
mean estimate of the position in Cartesian coordinates found by the 100000
Monte Carlo trials, by the linearized model and by the unscented transforma-
tion. Further, the 1-contour plots ({x : (x− x̄)T P−1(x− x̄) = 1}) of the the
covariance matrices P are plotted. The both, the scaled unscented transfor-
mation [Jul02], as well as the original unscented transformation [JU97] are
tested and compared to the linearized estimate and the true values.
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Figure 4.1: Polar to Cartesian coordinate transformation in sonar applica-
tions, weight1: α = 0.001, β = 2 and κ = 0 (scaled unscented transformation
[Jul02]), weight2: α = β = 0, κ = 3 − n = 1 (classical unscented tranforma-
tion [JU97])

It can be seen, that both unscented transformations accurately estimate
the true mean and the true covariance of the nonlinear system, while the lin-
earized estimator is biased and inconsistent, in that the estimated covariance
is smaller than the true covariance. In recursive estimation this inconsistency
can lead to progressively worse position estimates, because the estimator be-
lieves to know the state estimate better than it really does [Jul97].

4.1.5 Nonlinear System, Non-Gaussian Noise

The extended and the unscented Kalman filter both approximate the pos-
terior density function p(xk|Z1:k) by a Gaussian function. However, this
approximation can fail, if the considered functions are strongly nonlinear,
or if the considered noises are non-Gaussian. Recently particle filters have
been proposed to recursively update the posterior pdf using sequential impor-
tance sampling and resampling [DGA00], [AMGC02]. Their principle idea is
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to represent the posterior pdf by a set of weighted samples (particles) and
to compute the desired state estimate based on these samples and weights.
Using Monte Carlo simulation the posterior density function can be approx-
imated by the following empirical estimate [vdM04]:

p(xk|Z1:k) = p̂(xk|Z1:k) =
1

N

N∑

i=1

δ(xk − xi
k), (4.79)

where the random samples xi
k, i = 1, . . . , N are drawn from p(xk|Z1:k) and

δ(.) denotes the Dirac delta function. According to the law of large numbers
any expectation of the form

E(g(xk)) =

∫

g(xk)p(xk|Z1:k)dxk (4.80)

can be approximated by the sum

E(g(xk)) ≈
1

N

N∑

i=1

g(xi
k). (4.81)

Lately a large number of algorithms appeared on how to best utilize the
Monte Carlo simulations for recursive Bayesian estimation. The currently
most widely utilized ones are the sampling importance resampling (SIR), or
recursive bootstrap filter [GSS93], and the Bayesian sequential importance
sampling (SIS) filter. In [AMGC02] it is shown how the SIR filter can be
derived from the SIS filter and a variety of alternatives, which all are based
on the SIS filter are presented. In [DGA00] these estimators are compared
to each other, when applied to a linear Gaussian system and a nonlinear
Gaussian system. For the linear system both estimators achieve the same
accuracy as the optimal Kalman filter. For the nonlinear system both esti-
mators achieve equivalent accuracies. Similar results were found by Bergman
[Ber99], who compared the two estimators on a realistic navigation system.
Due to the similar performances only the SIR estimator is presented in the
following lines.

In order to apply the SIR filter, it must be possible to draw samples
from the prior density function p(x1) = p(x1|z0) and from the transition
density function p(xk+1|xi

k). Assume that we have N samples drawn from
the pdf p(xk|Z1:k−1), with equal weights wk

i = 1/N . Then this pdf can be
approximated by

p(xk|Z1:k−1) ≈
1

N

N∑

i=1

δ(xk − xi
k), (4.82)
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and the update stage can be approximated by

p(xk|Z1:k) =
p(zk|xk)p(xk|Z1:k−1)

p(zk|Z1:k−1)

∝ p(zk|xk)p(xk|Z1:k−1)

≈
N∑

i=1

p(zk|xk)/N
︸ ︷︷ ︸

w̃k
i

δ(xk − xi
k).

(4.83)

Note that due to the proportionality the weights are not normalized. Nor-
malizing these,

wi
k = w̃k

i /

N∑

i=1

w̃k
i , (4.84)

the update pdf approximates to

p(xk|Z1:k) ≈
N∑

i=1

wi
kδ(xk − xi

k). (4.85)

The minimum variance estimate of eq. (4.11) could then be approximated
by combining eqs. (4.12) and (4.85)

x̂k = E(xk|Z1:k) ≈
N∑

i=1

wi
kx

i
k. (4.86)

The prediction step is initialized by generating a new set of M equally
weighted samples of p(xk|Z1:k), so that it can be approximated by

p(xk|Z1:k) ≈
1

M

M∑

i=1

δ(xk − xi
k). (4.87)

The prediction pdf of eq. (4.5) is then approximated by

p(xk+1|Z1:k) =

∫ ∞

−∞
p(xk+1|xk)p(xk|Z1:k)dxk

≈
M∑

i=1

p(xk+1|xi
k).

(4.88)

Drawing N samples, with equal weight wk+1
i from eq. (4.88) allows us to

return to the update stage. This sampling stage is usually carried out by
sampling N/M samples from each of the M pdf

p(xk+1|xi
k). (4.89)
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Figure 4.2: Resampling procedure for producing M equally weighted particles
out of the set of N weighted particles

For reliable results M should be chosen greater than N . Rubin’s guideline
[Rub88] is to choose at least M = 10N [Ber99].

One crucial aspect of the implementation of this recursive bootstrap fil-
ter is the resampling procedure at the beginning of the prediction step. The
straightforward procedure would be to generate M independent identically
distributed variables βi of the uniform density function U(0, 1), which has
a uniform distribution on the interval [0, 1]. The M generated variables
would then be sorted in ascending order and compared to the cumulative
sum of the normalized weights wi

k. At sampling step j the particle x
j
k is

chosen such that βk is equal to the cumulate sum till weight wj
k. Fig 4.2

gives a graphical representation of this procedure. However, the best sort-
ing algorithm has a complexity of order M log M [Ber99], meaning that the
computational time can be approximated by t = k · M log M , with k being
some constant. It has been noted in practical applications that this severely
limits the implementation possibilities. In order to decrease the computa-
tional burden, a variety of resampling procedures have been proposed. Hol et
al. [HSG06] present and compare four of such resampling procedures, whose
computational complexities are all linear in M . Namely those are the multi-
nomial resampling [GSS93], the stratified resampling [Kit96], the systematic
resampling [AMGC02], and the residual resampling [LC98] algorithms. Even
though all these algorithms are linear in M , t = k·M , the residual resampling
algorithm has the smallest value k and therefore is fastest. It is a two step
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procedure, which in the first step calculates a number of deterministically
chosen children of particle i by using the floor function

Md
i = ⌊Mwk

i ⌋. (4.90)

The remaining

Ms = M −
M∑

i=1

Md
i (4.91)

samples are then sampled using the new weights

w̃k
i =

1

Ms

(
wk

i M − Md
i

)
. (4.92)

This statistical second step can be carried out by the systematic resampling
algorithm, which generates Ms ordered uniformly distributed random num-
bers by

βi =
(i − 1) + ui

Ms
with ui ∼ U(0, 1). (4.93)

In order to demonstrate the strength of particle filters, the following ex-
ample was proposed by van der Merwe [vdM04].

Example 3. The state space model is given by

xk+1 = xk + wk

zk = αx2
k + vk,

(4.94)

where xk+1 ∈ R wk is the additive Gaussian process noise term with a very
small variance (σ2

x = 1e−6), α = 10 is a scaling term, and vk denotes the ad-
ditive Gaussian measurement noise with variance σ2 = 1. Due to the squared
nonlinearity of the observation function, it is impossible to disambiguate the
sign of the true value of the state based on the observations alone. In other
words, the posterior pdf p(xk|Z1:k) will have two maxima, one at xk = xt

and one at xk = −xt.
Fig. 4.3 shows the outcome of the extended Kalman filter, the unscented

Kalman filter, and the bootstrap filter, when the true state value is set to xt =
−.5. The initial state is randomly chosen as a random vector sampled from
the uniform distribution U(−1, 1). The bottom graph PF shows the results of
the particle filter. The filter quickly converges toward the two possible state
outcomes xk = xt and xk = −xt. Since, the extended Kalman filter, as well
as the unscented Kalman fiter, approximate the posterior pdf p(xk|Z1:k) as
Gaussian functions, both estimators fail on estimating the value of the state.
While the extended Kalman filter quickly converges to one of the two possible
outcomes (unfortunately to the wrong one in the current case), the unscented
Kalman filter results in a broad Gaussian posterior pdf, with its mean in
between the two possible state estimates.
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Figure 4.3: Nonlinear, non-Gaussian State Estimation

Clearly, given the posterior pdf found by the particle filter, the minimum
variance estimate will be a bad choice for estimating the state value, since it
is found by the mean value of the pdf, which in the current case, is around
zero. Therefore, it might be favorable to use the MAP estimate in this case.

4.2 TDOA-based Passive Source Tracking

The above presented filters are now integrated in the problem of TDOA-based
acoustic passive source localization. A multitude of applications for such a
tracking system exist. One of the main areas of interest is the detection
and localization via passive sonar of threatening vessels in coast and harbor
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security and hostile vessels in military actions. A completely different appli-
cation is the procedure of indoor speaker tracking for speech enhancement
and teleconferences. Even though these two applications purpose completely
different interests, they both utilize the same estimators and both systems
can be greatly enhanced by using recursive Bayesian estimation. The ob-
servation sequence of the trajectories will be smoothed, which make further
steps, such as inferring the aim of a hostile vessel, easier to implement. Fu-
ture positions can more accurately be predicted, which can be used to further
increase the accuracy of the estimators. For example, the estimate source
position could be used to adaptively choose an appropriate sensor configu-
ration, as proposed in chapter 2. Further, based on the estimated future
position, the resulting future TDOA measures can be estimated. Often the
resulting graphs of the TDOA estimators do not have a single, but multiple
peaks with similar heights. In such a case the TDOA estimation becomes
rather difficult, and often results in wrong position estimates. Predicting
the probability density function of the future TDOA outcome, based on the
already observed outcomes, this information can be used to help selecting
from multiple peaks.

The key to successfully applying recursive Bayesian estimation is to es-
tablish an accurate mathematical state space description of the system.

4.2.1 System Equation

In tracking applications the source is usually considered to be a point mass
and its control input is unknown. Further most often little information is
available to construct the true object’s dynamic model, but rather a kine-
matic model is developed, which describes the motion, without considering
the cause of these movements. Li and Jilkov [LJ03] classify the motions into
two classes: maneuver and non-maneuver. The non-maneuver motion de-
scribes a straight and level motion at a constant velocity. All other motions
are collected under the term maneuver motions. Usually the motions of the
maneuvering systems are due to changes of the control input. Since this gen-
erally non-random value is usually unknown, it is approximated as a random
process with certain properties, which must be carefully chosen.

A sub-classification of target tracking is the distinction between coupled
and uncoupled system equations. While in coupled systems a motion in
one direction (e.g. x−axis) may impose a motion on another direction (e.g.
y−axis), in uncoupled systems the x, y, z motions are independent of each
other. Examples of coupled systems are vehicles, vessels and aircrafts. Con-
trary, the movement of humans can be modeled as an uncoupled system. Li
and Jilkov [LJ03] offer a detailed survey on the varying system models for
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target tracking.
Depending on the application, the system equation will be linear or non-

linear. For speaker tracking an uncoupled linear system equation describing
a Langevin process is well-established in literature. The model was first pro-
posed for speaker tracking by Vermaak and Blake [VB01] and later adopted
by e.g. Ward et al. [WLW03] and Fallon and Godsill [FG07]. Assuming a
2D source tracking problem the state vector at time instant k is defined as

xk = (xk, ẋk, yk, ẏk)
T , (4.95)

where ẋk and ẏk denote the velocities in x− and y− direction, respectively.
The system equation is then given by

xk+1 = Akxk + Gkwk =

[
Ax 0

0 Ay

]

xk +

[
Gx

Gy

](
Fxk

Fyk

)

, (4.96)

with

Ax =

[
1 ∆T
0 ax

]

, Ax =

[
1 ∆T
0 ax

]

, Gx =

[
0 0
1 0

]

, Gy =

[
0 0
0 1

]

,

(4.97)
and ai = exp(−βi∆T ), bx = v̄i

√

1 − a2
i . βi denotes a rate constant in direc-

tion i and v̄i is the steady-state root-mean-square velocity [VB01].

4.2.2 TDOA Measure Tracking

The common measurement equation of TDOA-based acoustic passive source
tracking is the relation between the TDOA vector τ and the source position
xs, given by

τ1 =






τ21
...

τN1




 =






(|x2 − xs|2 − |x1 − xs|2)/c
...

(|x2 − xs|2 − |x1 − xs|2)/c




 + n1, (4.98)

if only the TDOAs w.r.t. the reference sensor x1 are available, or given by

τ =






τ21
...

τN,N−1




 =






(|x2 − xs|2 − |x1 − xs|2)/c
...

(|xN − xs|2 − |xN−1 − xs|2)/c




 + n, (4.99)

if all N(N−1)/2 TDOA measures of the N microphones are accessible. Note
that both equations are of the same form as eq. (4.2). Both are clearly non-
linear and hence, the extended Kalman filter, the unscented Kalman filter,
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Figure 4.4: TDOA Based Tracking Estimates in x and y direction

or the Bayesian bootstrap filter must be applied for the tracking algorithm.
The measurement vector is then either zk = τ1, or zk = τ and the considered
additive measurement noise of eq.(4.2) corresponds to vk = n1, or vk = n.

Example 4. The three presented recursive estimators for nonlinear problems
are tested on the following two dimensional source localization problem. The
state of dynamic system is chosen to be the source position xk = xs(k) and
is updated by

xk+1 = xk + wk, (4.100)

with wk denoting zero-mean additive Gaussian noise with covariance matrix
Qk = 0.1m2I. The initial state is randomly chosen from a Gaussian density
with covariance P0 = Qk. Three microphones are set to positions x1 =
[5m, 0], x2 = [−5m, 0], x3 = [0, 5m] and only the time delays w.r.t. the
reference sensor x1 are considered (eq. (4.99)). Further it is assumed that
these measures are subject to zero-mean additive noise with covariance Rk =
0.1m2I. The bootstrap filter is implemented using N = 5000 particles.

Figs. 4.4 compares the estimates of the extended Kalman, the unscented
Kalman and the bootstrap filter, which for the presented problem perform
identically. This becomes even more obvious looking at fig. 4.5, which plots
the estimated density functions of the three filters. Even though the mea-
surement equation is nonlinear, the posterior density function p(xk|Z1:k)
estimated by the particle filter strongly resembles a Gaussian density, with
identical mean as the extended Kalman filter and the unscented Kalman fil-
ter. Also the covariance matrices of the estimates found by the three filters
are quite similar, as can be seen in table. 4.1.

Consequently, it seems that either one of the three nonlinear estimators
can be used for the problem of passive acoustic source tracking based on non-



122 CHAPTER 4. SOURCE TRACKING

EKF UKF PF

iter 1

iter 10

iter 20

Figure 4.5: TDOA Based Tracking Densities

linear TDOA measures. In this case either the extended Kalman or the
unscented Kalman filter are favorable, due to their smaller computational
complexity.

Alternatively one of the linear approximation estimators or the linearized
estimator of chapter 3 can be utilized to obtain a linear measurement equa-
tion, for which the optimal linear Kalman filter can be applied.

4.2.3 Position Measure Tracking

Instead of using eqs. (4.98), or (4.99) as the measurement equation of our
nonlinear state space model, a TDOA-based position estimator of chapter 3
can be used to obtain a linear measurement equation. If the system equation
is linear, too, the optimal Kalman filter can be applied for the problem of
TDOA-based passive source localization. The measurement vector zk is then
equal to the outcome of the selected estimator

zk = x̂s, (4.101)
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EKF UKF PF

i = 1

[
0.021 0.015
0.015 0.072

] [
0.021 0.015
0.015 0.072

] [
0.019 0.011
0.011 0.046

]

i = 10

[
0.021 0.013
0.013 0.053

] [
0.019 0.012
0.012 0.056

] [
0.023 0.017
0.017 0.061

]

i = 20

[
0.019 0.013
0.013 0.068

] [
0.017 0.012
0.012 0.07

] [
0.019 0.014
0.014 0.078

]

Table 4.1: Covariances of the EKF, UKF and particle filter for acoustic
passive source localization at iteration steps i = 1, 10, 20

and the measurement equation follows to

zk = Ckxk + ṽk, (4.102)

with ṽk representing zero-mean, additive noise with covariance R̃k on the
position estimate. Knowing the statistics of the additive noise on the TDOA
measures, the statistics of the position estimate noise is dependent of the
chosen estimator.

A natural choice is the linearized estimator of section 3.4.2, using the
predicted outcome

zk|k−1 = Ck−1xk|k−1 (4.103)

as the initial guess for the estimator. From now on it is assumed that only
the TDOAs w.r.t. the reference sensor τ1 are available. In this case the
estimator results in

zk = zk|k−1 + J
†(τ1 − g(zk|k−1)), (4.104)

with

g(zk|k−1) =






τ21
...

τN1




 =






(|x2 − xs|2 − |x1 − xs|2)/c
...

(|x2 − xs|2 − |x1 − xs|2)/c




 , (4.105)

and J being the Jacobian of g(x) w.r.t. x, evaluated at x = zk|k−1.
If zero-mean, µ = 0, additive noise on the TDOA measures is considered,

the mean and covariance of the linearized estimator result to (see: eqs. (2.56)
and (2.57))

E(zk) = θ + J
†µ = θ, (4.106)

and
R̃k = J

†Rk(J
†)T , (4.107)
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with Rk denoting the covariance matrix of the additive noise on the TDOA
measures. The state estimate of the linear system of eq. (4.21) then follows
to

xk|k = xk|k−1 + Kk(zk − Ckxk|k−1)
= xk|k−1 + Kk(zk|k−1 + J

†(τ1 − g(zk|k−1)) − Ckxk|k−1)

= xk|k−1 + KkJ
†(τ1 − g(zk|k−1)),

(4.108)

with corresponding covariance eq. (4.23)

Σk|k = (I − KkCk)Σk|k−1. (4.109)

The Kalman gain of eq. (4.24) results to

Kk = Σk|k−1C
T
k (CkΣk|k−1C

T
k + R̃k)

−1

= Σk|k−1C
T
k (CkΣk|k−1C

T
k + J

†Rk(J
†)T )−1.

(4.110)

Assuming that the Jacobian is a square matrix of full rank, eq. (4.110) can
be written as

Kk = Σk|k−1C
T
k J

T (J CkΣk|k−1C
T
k J

T + Rk)
−1

︸ ︷︷ ︸

K̃k

J , (4.111)

and eq. (4.108) follows to

xk|k = xk|k−1 + KkJ
†(τ1 − g(zk|k−1))

= xk|k−1 + K̃k(τ1 − g(zk|k−1)).
(4.112)

Accordingly, the covariance of the estimate follows from eq. 4.109 to

Σk|k = (I − K̃kJ Ck)Σk|k−1. (4.113)

Note J is the Jacobian of g w.r.t. to the measurement vector zk, and not
w.r.t. the state estimate xk. Let us the denote the Jacobian w.r.t. the state
estimate xk by J s. Then, with zk = Ckxk + vk,

J s =
δg

δxk
=

δg

δzk

δzk

δxk
= J Ck. (4.114)

Replacing the terms J Ck by J s in eqs. (4.112), and (4.113), the update
stage results to

K̃k = Σk|k−1J
T
s (J sΣk|k−1J

T
s + Rk)

−1 (4.115)

xk|k = xk|k−1 + K̃k(zk − g(xk|k−1, uk)) (4.116)

Σk|k = (I − K̃kJ s)Σk|k−1 (4.117)

Note that this update stage is identical to the update stage of the extended
Kalman filter (eqs. (4.36), (4.37), and (4.38)). Obviously, for linear system
equations the update stage of the two filters is identical, too.
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4.3 Optimal Sensor Configuration

In the previous section it was shown that for linear system equations and
squared, full rank Jacobians, the Kalman filter for a linear measurement equa-
tion based on the linearized estimator is identical to the extended Kalman
filter. Further, it was shown in chapters 2 and 3 that the performance of the
linearized estimator could be greatly increased by minimizing the condition
number of the Jacobian J . Consequently, the performance of the extended
Kalman filter will be improved, too.

Example 5. Assume that a source has a rather chaotic movement repre-
sented by the system equation

xk+1 = xk + wk, (4.118)

with xk being the state of the system, which has the source position as its
entries. The system is initialized by x0 = [0, 0] and the zero-mean white
Gaussian noise has a covariance matrix of Qk = 0.1m2I.

The linear Kalman filter using eq. (4.104), which results in a linear mea-
surement equation of the form of eq. (4.103), with Ck = I, is compared to the
recursive estimators for the nonlinear estimator resulting from the reference
sensor based approach. The TDOA measures are assumed to be perturbed by
zero-mean white noise with covariance matrix Rk = 0.1m2I.

Ten trajectories were randomly constructed, each making measurements at
20 different time instances. The recursive estimators were applied to estimate
the true source position using two different sensor networks, with four micro-
phones each. The first configuration has the microphones placed at positions
[5m, 0m], [−5m, 0m], [0m, 5m], and [0m,−5m]. When the source is assumed
to be at the origin, this corresponds to a condition number of around 1.7.
The second sensor configuration is composed of four microphones placed at
the positions [5m, 0.25m], [5m,−0.25m], [−5m, 0.25m], and [−5m,−0.25m].
This corresponds to a condition number of around 23.

Fig. (4.6) presents the mean square error of the estimates of each tra-
jectory. The upper bar plot shows the results for the well-posed configuration
(κ2(J ) ≈ 1.7): all four recursive estimators behave quite similar. The lower
bars correspond to the results found by the ”ill-posed” sensor network. As
expected the Kalman filter as well as the extended Kalman filter now perform
worse. In the previous section it was shown that these two filters are iden-
tical if the Jacobian is squared and of full rank. Note that the Jacobian in
this example is not squared, but in R

3,2. Still, both estimators perform nearly
identical.
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Figure 4.6: TDOA Based Tracking with varying condition numbers for the
initial source position xs = [0, 0]T . The configuration with κ2(J ) ≈= 1.7
uses 4 microphones located at x1 = [5, 0]T , x2 = [−5, 0]T , x3 = [0, 5]T ,
and x4 = [0,−5]T .The configuration with κ2(J ) ≈= 23 uses 4 micro-
phones located at x1 = [5, 0.25]T , x2 = [5,−0.25]T , x3 = [−5, 0.25]T , and
x4 = [−5,−0.25]T . Kalman: classical Kalman filter applied on the outcome
of the linearized estimator, EKF: extended Kalman filter on the nonlinear
measurement model, UKF: unscented Kalman filter, PF: particle filter based
on 1000 samples

Further, note that the unscented Kalman filter and the bootstrap filter also
show a clear dependency on the sensor configuration, even though they do not
make use of the Jacobian of the measurement equation.

Consequently, the performance of TDOA-based acoustic passive source
tracking can also be increased by choosing sensor configurations, which are
optimal w.r.t. one of the proposed cost functions. Based on the above example
the condition number seems to be a reasonable choice. It is dependent on
the Jacobian of the measurement equation evaluated at the predicted state
xk|k−1. Obviously this prediction step can be integrated in the procedure for
obtaining the next measurement, as discussed in section 2.4.3: e.g. if enough
microphones are available and somehow distributed in the search region, only
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a subset of those can be chosen to carry out the estimation procedure, which
fulfills that the condition number for the predicted state is minimized.

However, the adaptive optimization of the sensor network is only one
possible advantage of the TDOA-based source tracking procedure. Obviously,
another fundamental advantage of the tracking procedure is that the observa-
tion sequence becomes smoother, and the estimation outcomes become more
reliable. A third important aspect is investigated in the following section.

4.4 Time Delay Estimations

In section 3.2 three general procedures for TDOA estimation were presented.
Namely, those were the methods based on the cross-correlation function, the
adaptive eigenvalue decomposition and the linear mean square estimator.
All of these estimators choose the maximum peak of some discrete time
limited sequence as the time difference of arrival estimate of one sensor pair.
However, the received signals are often subject to large reverberations, or
large ambient noise. In such cases, the resulting time sequence may have
multiple local maxima and the peak corresponding to the true TDOA is not
necessarily the largest. Obviously such a sequence will result in a wrong
TDOA estimate and consequently in a wrong position estimate.

In order to avoid these wrong estimates, the recursive filters can be used
to estimate the probability density function of the next estimation. Assuming
a linear system equation with additive Gaussian noise, the state prediction
at time instant k − 1 denoted by xk|k−1 is Gaussian distributed, too, with
corresponding covariance matrix Σk|k−1 found by any of the presented recur-
sive filters. Obviously, if the predicted source position xs(k|k− 1) is linearly
dependent on the state, such that

xs(k|k − 1) = Lxk|k−1, (4.119)

the predicted source position will be a Gaussian distributed random vector
with mean Lxk|k−1 and covariance Cov(xs(k|k− 1) = LΣk|k−1L

T . Calculat-
ing the corresponding sigma points and weights by eq. (4.43), the mean and
covariance of either of the measurement equations (4.98) or (4.99) can be
estimated using the unscented transformation composed of eqs. (4.44) and
(4.45). Considering the microphone pair i, j the predicted mean of the TDOA
τ := τij(k|k−1) is denoted by µ(τ) and the corresponding covariance matrix
by Cov(τ). The probability density function for the TDOA measurement can
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Figure 4.7: left: approximated pdf of the predicted source position
p(xs|xk|k−1) found by 100,000 samples with true source position at [3m, 0m]
and unity covariance matrix,, microphone 1 at [5m, 0m], microphone 2 at
[−5m, 0m], right: corresponding pdf of the range difference (c·τ) p(c·τ |xk|k−1)
found by passing the 100,000 samples through the nonlinear equation (MC)
and the approximation by the unscented transformation (UT) and eq. (4.120)

then be approximated by

p(τ |xk|k−1) ≈
N (τ, µ(τ), Cov(τ)) · rect(τ,−τmax, τmax)

∫ τmax

−τmax

N (τ, µ(τ), Cov(τ))dτ

, (4.120)

with

rect(τ,−τmax, τmax) =

{
1, τ ∈ [−τmax, τmax]
0 else

, (4.121)

which assures the probabilities of τ ≥ τmax, or τ ≤ τmax, with τmax =
|xi − xj|2, are zero. The denominator of eq. (4.120) normalizes the integral
of this product.

Fig. 4.7 compares the approximation of the pdf of the range difference
(TDOA times propagation speed) by the unscented transformation followed
by eq. (4.120) and the approximation of this pdf by 100,000 Monte Carlo
trials: two microphones are placed at the positions [5m, 0m] and [−5m, 0m].
100,000 samples are then drawn from a Gaussian distribution of the predicted
source position with mean [3m, 0m] and covariance matrix

Cov(xs(k|k − 1) = 1I. (4.122)

The left plot of figure 4.7 shows the approximation of p(xs|xk|k−1) by the
100,000 samples. The corresponding pdf of the range difference measure is
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Figure 4.8: left: approximated pdf of the predicted source position
p(xs|xk|k−1) found by 100,000 samples with true source position at [4.5m, 0m]
and unity covariance matrix, microphone 1 at [5m, 0m], microphone 2 at
[−5m, 0m], right: corresponding pdf of the range difference (c·τ) p(c·τ |xk|k−1)
found by passing the 100,000 samples through the nonlinear equation (MC)
and the approximation by the unscented transformation (UT) and eq. (4.120)

plotted on the right side. The MC graph represent the approximation of the
pdf by the 100,000 samples, while the UT graph indicates the approxima-
tion found by the unscented transformation, followed by eq. (4.120). Note
that the two graphs closely match. Based on the law of large numbers, the
Monte Carlo approximation, and consequently the unscented transformation
approximation will be quasi-alike with the true pdf. This is true as long
as the true source position is not too close to one of the microphones. Fig.
4.8 shows the same example, only now the true source position is set to
[4.5m, 0m]. Since now the drawn samples are in the neighborhood of mi-
crophone one, the resulting range differences will be close to the maximum
possible range difference. The resulting pdf found by the Monte Carlo ap-
proximation no longer has a Gaussian shape, and hence, is no longer well
approximated by the unscented transformation approach.

However, if the sensor configuration is adaptively updated, such that
the condition number of the Jacobian is small, the found sensor positions
are generally far from the predicted source position and consequently, the
unscented transformation approach can be utilized.
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Figure 4.9: Most Likely Local Maximum approach demonstrated on unfil-
tered cross-correlation (CC) TDOA estimate. The K = 5 highest peaks of
the CC function are detected and their corresponding probabilities are com-
pared. The possible TDOA with highest probability is then selected: in this
case peak 4

4.4.1 Most Likely Local Maximum

Having a reasonable approximation for the conditional probability density
function of τ , this knowledge can be used to support the estimation proce-
dure of the true TDOA. Assume that time sequence, which is used for the
TDOA estimate, has multiple local maxima, of similar magnitude. Possi-
ble scenarios for such a multi-maxima observation sequence, include periodic
signals, signals perturbed by directed noise, and reverberant signals. The
choice of which peak to select for the TDOA estimate then becomes rather
difficult.

We propose to select the K highest peaks as possible TDOA estimates
and compare their corresponding conditional probabilities. The peak having
the highest probability is then selected as the TDOA estimate.

Fig. 4.9 shows an example of this procedure. As the time sequence
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the outcome of the unfiltered cross-correlation algorithm is chosen. For this
example the source signal is a superposition of multiple sinusoidal waves
with different frequencies. The simulated microphone inputs are windowed,
delayed versions of this source signal. The unfiltered cross-correlation of the
two resulting signals is plotted in the upper graph of fig. 4.9. Due to the
period nature of the source signal, the outcome has multiple local maxima.
The K = 5 highest peaks are detected and their corresponding conditional
probability densities are obtained from p(τ |xk|k−1). In this example the 4th
highest peak would then be selected as the resulting TDOA estimate.

4.4.2 Weighted Probability Density Function

The most likely local maximum approach does not consider the magnitude
of the individual peaks. However, if some of the peaks are large compared
to all the others, this information should be taken into account. One possi-
bility would be to adjust the number of considered peaks K adaptively: e.g.
consider all the peaks whose value is at least 60% of the value of the highest
peak.

Alternatively, the height of the peaks of the time sequence could be
weighted by the pdf p(τ |xk|k−1). Either one of the TDOA estimators pro-
vides a time series, denoted by h(τ), whose maximum is usually considered to
be the TDOA. Now the additional information given by the pdf p(τ |xk|k−1)
could be used to rescale this sequence in the following way:

hm(τ) = h(τ)β · p(τ |xk|k−1), (4.123)

where β denotes an additional scaling parameter. The TDOA estimate is
then defined as the argument which maximizes hm(τ):

τ̂ = arg max
τ

hm(τ). (4.124)

Normalizing eq. (4.123) by its area, it can be seen as a probability density
function

ph(τ |xk|k−1) =
h(τ)β · p(τ |xk|k−1)

∫ τmax

−τmax

h(τ)β · p(τ |xk|k−1)dτ

, (4.125)

which is a rescaled version of the pdf p(τ |xk|k−1). Probabilities at time in-
stances with high peaks in the time series h(τ), will be amplified, while
probabilities corresponding to small values in the time series will be attenu-
ated.
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4.5 Chapter Summary

The problem of recursive Bayesian estimation was presented in this chapter.
The classic Kalman filter for linear state space systems and three possible
extensions, namely the extended Kalman filter and the unscented Kalman
filter and the bootstrap filter, for nonlinear systems were introduced. Their
strengths and weaknesses were pointed out by some representative examples.

The recursive estimators were applied for the TDOA-based acoustic pas-
sive source localization procedure. Assuming a linear system equation, two
possibilities for the application of these estimators result. Either, the nonlin-
ear measurement equation, which relates the source position to the measured
TDOAs, is utilized, or one of the source position estimators of chapter 3 is
used to render the measurement equation linear. In the case, one of the
nonlinear recursive estimators, such as the extended Kalman filter, the un-
scented Kalman filter, or the bootstrap filter, needs to be applied. The second
procedure leads to a linear measurement equation, and hence, the optimal
Kalman filter can be applied. If the linearized estimator is chosen to carry
out the position estimation, it can be seen that in certain cases, the extended
Kalman filter considering the nonlinear measurement equation is identical to
the linear measurement approach.

Consequently, we argue that one of the optimal sensor configurations
proposed in chapter 3 should be considered, even if the recursive estimators
based on the nonlinear measurement equation, do not make use of the estima-
tors proposed in chapter 3. This claim was supported by an example, which
compared the results found with a well-conditioned sensor configuration with
those found by an ill-conditioned configuration.

Two procedures for supporting the estimation of the TDOAs were pro-
posed, based on the recursive estimators. Those are particular useful if the
time series obtained by the TDOA estimators have multiple local maxima.
In this case the conditional probability of the TDOA outcome at time instant
k is estimated by the unscented transformation, knowing the observations till
time instant k − 1.



Chapter 5

DSP-based Passive Source

Localization

The presented acoustic passive source localization system is intended to offer
a low cost alternative to existing systems. A variety of setups can be found in
literature, which tend to be quite expensive. A central part of such systems
is the simultaneous analog to digital conversion (ADC) of the multiple micro-
phones. Most often audio specific AD converters are used, which are mainly
used by the music industry. These external converters are then connected to
a personal computer (PC), which carries out the actual estimation of the po-
sition. While the minimum cost for such a system is currently around 1000e,
an upper bound can hardly be defined. In [CL04] and [BRA04] two possible
setups of this classical approach are presented. J. C. Chen et al. [CYW+03]
as well as M. Chen et al. [CLH+07] propose wireless localization systems,
which use multiple pocket PC [CYW+03], or multiple notebooks [CLH+07].
Such systems might be interesting for the localization of the talker in a con-
ference room. Nowadays, most of the participants of conferences have either
a pocket PC or a notebook with them. The integrated microphones can
then be used to localize the talker. While the problem of synchronization is
addressed in [CYW+03], M. Chen et al. avoid it by using an energy-based,
rather then a TDOA-based localization algorithm.

The need for a low cost system results from its possible applications. An
autonomous camera pointing system is commercially only attractive, if the
price is kept small. The more money is saved on the localization/steering
system, the more money can be spent on the camera. An alternative appli-
cation for passive source localization is a handsfree set for telephony. The
direction to the speaker is estimated by the presented algorithms and spatial
filtering, also known as beamforming, is carried out to amplify the sound of
the speaker’s direction, and to attenuate the other directions. Such a system
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could find its applications in the automobile industry. Most countries forbid
the use of mobile phones for the driver of the car and only allow hands-
free systems. However, the ambient noise of e.g. the motor, the tires, the
aerodynamics, and other vehicles, is usually quite loud and makes the use of
handsfree systems in a car rather bothersome. The use of the source local-
ization algorithm could permit to suppress these noises and to amplify the
speaker’s voice. Such a system might also be interesting for virtual reality
applications, and computer games. Multiple microphones could then e.g. be
mounted on or integrated in the screen and the voice of the player could be
used for his/her virtual immersion into the game. All these systems become
commercially attractive if the position estimation can be carried out at a
reasonable price.

While the above presented systems are beyond 1000 Euros, it is the goal
of this chapter to present a system realizable for far less than that.

Further, the presented system will be used to evaluate the accuracy of
the algorithms presented in the first part of this thesis.

5.1 System Hardware

The central component of the presented system is a digital signal proces-
sor (DSP). A DSP is a microprocessor specially designed for digital signal
processing. It usually has multiple analog and digital in- and outputs. The
analog input ports are converted by a ADC, while the analog output ports
result from a digital to analog conversion (DAC) of the digital DSP signals.
It usually offers a rather small size memory, which is optimized for real-time
implementation and signal processing algorithms. Further, a DSP offers spe-
cial arithmetic operations, such as fast multiply-accumulates, which optimize
the calculation of signal processing based algorithms, such as the fast Fourier
transform, its inverse and finite impulse responses. These properties make a
DSP a powerful component for passive source localization based on micro-
phone arrays.

The overall hardware system is presented in fig. 5.1. Multiple micro-
phones are connected to the analog inputs of the DSP, which will simultane-
ously discretize the received signals. Those signals will then either be directly
treated by the DSP, or will be transmitted to a PC, which can carry out the
remaining part of the localization algorithm, such as the calculation of the
position, or the recursive Bayesian filtering, for source tracking applications.
In the following subsections the DSP-PC communication, and a variety of
DSP implementations are presented.
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Figure 5.1: Hardware Setup of the TDOA-based passive source localization

5.1.1 PC-DSP communication

Modern microcontrollers usually have one or multiple universal asynchronous
receiver/transmitter (UART) ports, which can be used for serial communi-
cation with peripheral devices, or PCs. The standard protocol used by the
serial port of a PC is the recommended standard (RS) 232. It serially trans-
mits and receives 8 bit words, which are preceded by a start bit and followed
by a stop bit. A parity bit might be set between the last bit of the data
and the stop bit, but is usually not utilized. The transmission speed for
this serial communication is usually limited by the serial ports of standard
personal computers to 115,200 bauds/s.

While the serial port of a PC requires negative logic, i.e. logic ’1’ is -3V
to -12V and logic ’0’ is +3V to +12V, microcontrollers are usually using
transistor-transistor logic (TTL), i.e. logic ’1’ is 2.2V-5V and logic ’0’ is 0V-
0.8V. In order to establish a serial communication between those two, a level
converter must be used, which converts from TTL logic to RS 232 levels,
and vice versa. Commonly used integrated circuits for such a conversion are
the ”MAX 232” and the ”DS 275”. While the MAX 232 requires 4 external
electrolytic capacitors of around 1µF and must be supplied with a 5V voltage,
the DS 275 does not need any external components and steals power from the
signal lines. However, it is a bit more expensive and guaranties a baud-rate
of only 19,200 bauds/s [DS295].
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Figure 5.2: Multi-DSP setup for linear approximation estimators: TDOAs
are measured w.r.t. the reference sensor Mic1. by individual DSPs and are
collected by a reference DSP, denoted by DSPref, which also synchronizes the
others and communicates with the PC

5.1.2 Multi-DSP System

The utilized microcontroller is a DSP, which is equipped with a single ADC.
This ADC is connected to the output of a multiplexer, which multiplexes
up to 32 analog input ports of the DSP. The maximum AD conversion rate
of fmax = 80kHz is hence divided by the number of selected input ports N .
Thus, the maximum possible sampling frequency of an individual microphone
is

fs,max = fmax/N. (5.1)

For a large number of microphones the sampling frequency could thus
become insufficient. Therefore, it might be interesting to use one DSP for
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each sensor pair. Consequently, the maximum possible sampling frequency
would result to fs,max = 40kHz. Fig. 5.2 shows such a system. The indi-
vidual DSPs are synchronized by a reference DSP, which also collects all the
estimated TDOAs. Those are then transmitted via the UART to the PC,
which carries out the position estimation. Another advantage of this configu-
ration is that only relatively little data needs to be stored and treated by one
DSP. While the amount of stored data is limited by the available memory,
the limited processor speed of the DSP makes it necessary to treat as little
as possible data in order to assure a real-time implementation.

This multi-DSP system is well-suited for the linear approximation esti-
mators, or the linear intersection estimator presented in sections 3.5 and 3.6.
For the latter, one DSP could either be used for a sensor pair or a sensor
quadruple, which could then transmit either the two TDOAs, or the resulting
bearing line.

5.1.3 Single-DSP System

The alternative to the multi-DSP system is a single-DSP system, which han-
dles all the microphones at the same time and is only supported by the PC.
Its main advantages are the lower cost and circuit complexity. No synchro-
nization of multiple DSP must be carried out. Further, no reference DSP
and no communication between this reference DSP and the remaining DSP
is necessary.

However, due to the relation presented by equation (5.1), the number of
microphones must be kept small. If the sampling frequency drops below two
times the maximum sound frequency, aliasing will affect the TDOA estima-
tions. Further, the computational aspect becomes more important. As the
number of TDOA estimates increases, so will the number of FFTs and IFFTs.
This computational load might become too large for real-time applications.

5.2 Algorithm Implementation

The above presented hardware solutions for acoustic passive source localiza-
tion leave a number of options for the actual position estimation. Either
the TDOAs will directly be estimated by the DSPs, or the collected data
can be transmitted via the serial port to the PC, which then carries out
the actual estimation process. In both cases however it is intended that the
TDOA-based position estimation is done by the PC.
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5.2.1 Data Acquisition

Three different TDOA estimation procedures are presented in this section
for the single-DSP estimator. While the first one carries out the TDOA
estimation on the DSP, the two other use the PC.

Version 1

Version 1 uses the DSP to carry out the TDOA estimations, based on the
unfiltered cross-correlator. The system operator chooses the parameters,
such as the sampling frequency, the window size, the discretization accuracy
(8,10, or 12 bits), and the chosen microphones and enters them into the PC.
The PC forwards these via the serial port to the DSP. Once, the DSP has
obtained these data, it starts collecting the data of the chosen microphones
and stores this data in its internal memory. Afterwards, it calculates the
corresponding TDOAs using the unfiltered cross-correlator. The estimated
TDOAs are then transmitted to the PC, which can integrate these in the
position estimation procedure.

The main reason for using the unfiltered cross-correlation estimator, is
that the DSP is well-adapted for this operation. As a consequence the un-
filtered cross-correlation is the computationally fastest of the presented esti-
mators, when implemented on the DSP. Using N microphones, it might be
necessary to calculate all the N(N −1)/2 TDOA estimates. While the calcu-
lation of the unfiltered cross-correlation is easily implemented in the chosen
DSP, the alternative algorithms are more difficult to run on the DSP and
above all are computationally slow.

Version 2

The second version collects the data the same way as the first version does.
However, once all the collected data is stored on the internal memory it is
transmitted via the serial port to the PC. The PC then carries out the TDOA
estimation procedure. This leaves the door open for using alternative TDOA
estimators. E.g. in case of large reverberations, the unfiltered GCC might
be insufficient, and rather the adaptive eigenvalue decomposition estimator
should be used, which runs faster on a modern PC than on the presented
DSP.

Version 3

Version three does not store the collected data on the internal memory, but
directly transmits it over the serial port to the PC. In this case the sampling
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frequency is mainly defined by the baud-rate of the serial interface, which
in our application is set to the maximum speed of 115,200 bauds/s. While
the ADC converts with 10 or 12 bits, the serial port only transmits 8 bit
words with additional start and stop bits. This leaves two options for the
transmission, either only the 8 most representative bits of the data stream
are transmitted, or the data is first grouped together to a single data string
of length L

L = N · B, (5.2)

with N being the number of used microphones and B being the resolution
(10 or 12 bits). The total string is then regrouped into 8 bit words, which
are then individually transmitted over the serial port. The total number of
bits Q to be transmitted for one conversion cycle then follows to

Q = N · B +

⌈
N · B

8

⌉

· 2, (5.3)

where ⌈.⌉ denotes the rounding operator to the next higher integer. The
second term on the right side of eq. (5.3) corresponds to the number of
transmitted start and stop bits.

The transmission time Tt for one cycle then follows to

Te = Q/115200. (5.4)

Since the DSP does also need to convert the analog inputs, additional con-
version time Tc must be considered. Sampling with 80 kHz, the conversion
time follows to Tc = 1/80kHz = 12.5µs. The total sampling frequency Fs

then follows to

Fs =
1

Te + Tc

. (5.5)

Table 5.1 shows the corresponding sampling frequencies for varying sampling
resolutions and varying number of microphones.

If the system is to be applied for speaker localization or tracking, Shan-
non’s theorem, saying that the sampling frequency must be at least two times
the maximum frequency of the sound, might not be fulfilled. Human speech
ranges from approximately 300Hz to 3400Hz [Wik08]. Thus, the sampling
frequency would need to be above 2 · 3400Hz = 6800Hz. None of the pre-
sented configurations in table 5.1 validate this minimum frequency. In order
to avoid aliasing, it might thus be necessary to integrate a low-pass filter in
the amplification circuit of the microphones.
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8 bit 10 bit 12 bit

2 Mics 5.37 4.198 3.66
3 Mics 3.66 2.92 2.428
4 Mics 2.78 2.24 1.875
5 Mics 2.24 1.76 1.49
6 Mics 1.875 1.49 1.26

Table 5.1: maximum sampling frequencies in kHz for the single-DSP imple-
mentation using version 3

5.2.2 Microphone Circuit

Electret microphones are chosen to be implemented into the system. Those
low cost microphones are a type of condenser microphone, which need no
external power supply, but use the available voltages from the integrated
circuit they are connected to. A metal disc and a conductible foil being
separated by only a few micrometers usually build the core of those, which
basically work like a plate capacitor. Applying a voltage to the plate and
the foil results in a tension, which is build up between them. Arriving sound
will result in a vibration of the foil, by which the distance between the plate
and the foil will change, and hence the capacity of the condenser. These
capacity variations lead to variations of the tension, which are proportional
to the arriving sound waves. The magnitude of these voltage variations are
usually only a few millivolts and must therefore be amplified in order to be
captured by the DSP, which usually allows input signals in the range of 0V
to 3.3V or 5V.

Fig 5.3 shows a possible amplification circuit for such electret micro-
phones. The capsule is powered by around 10V which are taken from the
supply voltage and are passed through the resistance R1. The operation
amplifier is powered by a single supply voltage Vcc, while its negative sup-
ply is connected to ground. The input voltage must thus be around Vcc/2,
which is achieved by the potential divider R2, R3, with R2 and R3 having
the same resistance. The microphone signal is injected by the capacity C1.
The amplifier input is thus a voltage with a constant component of Vcc/2
plus a varying millivolt voltage, which is proportional to the received sound
signal. Since the operation point of the amplifier is at Vcc/2, only the varying
voltage component is treated by it. The amplification factor of the circuit is
determined by the feedback resistor R4 = 180kΩ and the serial connection
of the resistor R5 = 180Ω, the capacity C2 = 10µF and the potentiometer
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Figure 5.3: Microphone Amplification Ciccuit

P1 ∈ [0, 1kΩ]. The transfer function of the amplifier results to

H(f) = 1 +
j2πR4C2f

1 + j2π(R5 + P1)C2f
, (5.6)

which basically is a high-pass amplifier. Low frequencies will not be amplified
H(f → 0) = 1, while high frequencies will be amplified by the factor

ν = H(f → ∞) = 1 + R4/(R5 + P1). (5.7)

If the potentiometer is set to P1 = 0Ω the maximum possible amplification
results to νmax = R4/R5 + 1 = 1001. The cutoff frequency of any filter is
defined as the frequency at which the output signal is 1/

√
2 times the input

signal, or equivalently, at which the output energy is half the input energy.
For a first-order passive RC filter, using one resistance R and one capacity
C, such as the one used in the amplification circuit, the cutoff frequency fcut

is given by fcut = 1/(2πRC). Correspondingly, the cutoff frequency of the
presented non-inverting active high-pass is given by

fcut =
1

2π(R5 + P1)C2
. (5.8)
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For this frequency the amplitude of the amplifier’s transfer function results
to

|H(fcut)| =

√

1 + ν2

2
+

1√
2
. (5.9)

Assuming that ν >> 1, this amplitude becomes approximately

|H(fcut)| ≈
ν√
2
, (5.10)

which can be seen as 1/
√

2 times the input signal amplified by ν. Since the
operation amplifier uses 0V and 10V as the power supply and has a mean-free
input signal (due to capacity C2), the output of the amplifier is composed
of a constant voltage of Vcc/2 and a varying voltage, which might now range
from −Vcc/2 to Vcc/2, depending on the signal strength and the amplification
factor ν. Potentiometer P2 is used as an adjustable potential divider, which
reduces the output voltage of the amplifier to the desired voltage range of
the DSP.

The low-pass filter LP eliminates potential high frequency oscillations
from the power supply, which would negatively influence the behavior of the
operational amplifier.

Band-pass Filter

The proposed system using the third version of the TDOA estimation, has
a very limited sampling rate (see table 5.1). Considering the 2 dimensional
source localization estimators based on the linear approximation estimators
of section 3.5 at least four microphones are required. Using a 10 bit quan-
tification the maximum sampling frequency results to fs = 2.24kHz. If
sound sources, such as human speech, are considered which have frequency
components larger than fmax = fs/2 = 1.12kHz, aliasing will affect the mea-
surement of the TDOAs. In order to avoid these problems, it is proposed
to replace the high-pass amplifier of the circuit presented in figure 5.3, by
an amplifying band-pass filter. Fig. 5.4 shows an inverting active first order
band-pass. Its transfer function results to

H(f) = − R4

1 + j2πR4C4f
· j2πC2

1 + j2π(R5 + P1)C2 · f
. (5.11)

In order to increase the flexibility for choosing the right cutoff frequencies,
resistor R4 might be replaced by another potentiometer. Fig. 5.5 shows the
magnitude of the transfer functions for R5 = 100Ω, P1 = 0Ω, R4 = 100kΩ,
and C2 = 32µF . An inverting high-pass is obtained, when the capacity C4 is
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Figure 5.4: Active Band-pass Filter

removed, otherwise, if it is chosen to be C4 = 16nF , a band-pass with cutoff
frequencies f1 = 1/(2π(R5+P1)C2) = 50Hz and f2 = 1/(2πR4C4) = 1000Hz
results. Hence, such a configuration would assure the validation of Shannon’s
sampling theorem for a 10 bit quantification of four microphones.

5.2.3 System Realization

The presented system is realized using Microchip’s ”Explorer 16 Development
Board”, mounted by the DSP ”dsPIC33FJ256GP710”. The development
board offers a power supply of 3.3V , 5.0V , and 9V . Further, it is equipped
with one UART using a DB9 connector. A ”PICTail plus” connector allows
the connection to additional electronic circuits, and is used as the connector
to the individual microphones, which are AD converted by the internal ADC
of the dsPIC33. The conversion is carried out by multiplexing over up to 32
analog inputs.

The electric circuit is a slightly modified version of the microphone pre-
amplifier circuit sold by ”Conrad Electronics” [Con99]: while the commer-
cially available circuit has an additional capacity at the output of the op-
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Figure 5.5: Transfer functions of the active high-pass filter with cutoff fre-
quency fc = 50Hz and of the active band-pass filter with cutoff frequencies
f1 = 50Hz and f2 = 1000Hz

erational amplifier, this capacity is bypassed in our circuit. Its purpose is
mainly to remove the mean of the output signal. However, in order to sample
the signals by the analog-digital converter of the DSP, the signals maximum
amplitude should match the maximum possible input voltage of the ADC.

The connection of the development board and the microphone circuits is
realized by RJ9 connectors, which are used for wired telephones. This way
commercially available telephone cables can be used for the connection.

The used microphone capsule is MCE-101, which is inexpensive and has
a frequency range of 50Hz-12000Hz.Consequently, it covers the whole range
of voice frequency. It is omni-directional and can be supplied with 1V-10V,
which makes it compatible with the utilized development board.
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5.3 Time Delay Estimation

In chapter 4 possible implementation issues for the TDOA estimations were
presented for scenarios in which the future positions could be estimated by
Bayesian filtering. Further, it was proposed to search the peaks only in the
admissible region, which is defined by the sensor positions, i.e.

τij ∈ [−τmax,ij , +τmax,ij], (5.12)

with

τmax,ij = |xi − xj|2/c. (5.13)

While these supports can help to achieve better estimation results, when
large reverberations are present, or when the signal to noise ratio is low, the
proposed hardware solution introduces another handicap. The resolution of
the TDOA ∆τij and range difference estimate ∆dij is limited by the sampling
frequency fs

∆τij = 1/fs, (5.14)

and

∆dij = c/fs, (5.15)

respectively. Assume that four microphones are used with a quantification
of 10 bits the maximum possible sampling frequency is fs = 2.24kHz. As-
suming a propagation speed of c = 343m/s, the range difference resolution
then follows to ∆dij ≈ 15.3cm, which severely limits the performance of the
position estimation. In order to decrease this uncertainty, we propose to
carry out an interpolation of the signals either before or after the time delay
estimation.

5.3.1 Interpolation

The process of converting a discrete signal from a given sampling rate fs =
1/Ts to a different rate fn = 1/Tn is called sampling rate conversion. When
the new sampling rate is higher than the original rate fn > fs, the process is
generally called interpolation. The process of converting the sampling rate
of a signal from a given rate fs to a lower rate fn is called decimation.

If the band-pass filter of section 5.2.2 is included in the microphone circuit,
and the components are chosen such that the Shannon theorem is fulfilled,
the received signals are band-limited and the sampling frequency is at least
twice as high as the Nyquist frequency fc, then Shannon’s theorem states
that the real continuous signals can be perfectly recovered. Assume that
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the true, continuous signal of one of the microphones, denoted by x(t), is

sampled by a dirac comb ∆Ts
= Ts

∞∑

n=−∞
δ(t − nTs)

xn(nTs) = x(t) · ∆Ts
= Ts

∞∑

n=−∞
x(nTs)δ(t − nTs). (5.16)

The spectrum of the sampled signal Xn(f) is then the periodic continuation
of the spectrum of the original signal X(f) with periodicity fs = 1/Ts

F(xn[nTs)]) = Xn(f) =
∞∑

n=−∞
X(f − n · fs). (5.17)

Since the sampling frequency was chosen to be larger than the Nyquist fre-
quency, no aliasing occurs, and the true signal can be obtained by an appro-
priate low-pass filter. In theory the ideal low-pass filter is often considered:

H(f) =

{
1 for |f | ≤ fc

0 otherwise.
(5.18)

The inverse Fourier transform of Xn(f) · H(f) then results in the so-called
Whittaker-Shannon interpolator

x(t) =

∞∑

n=−∞
xn[nTs] · sinc

(
t − nTs

Ts

)

, (5.19)

with sinc(t) denoting the sinus cardinalis.
Theoretically a perfect interpolation, meaning that the interpolated sig-

nals correspond to the true signal at the selected time instances, can be car-
ried out by first recovering the true continuous signal by application of eq.
(5.19) and then sampling the found signal by the new sampling frequency
fn. In practice however this approach is neither very convenient (passing
from a discrete signal to a continuous signal in order to obtain another dis-
crete signal), nor physically possible, since the sinus cardinalis is a non causal
function. However, the digital implementation of the interpolation problem is
closely related to the above presented continuous interpolation. The perfect
rectangular window of eq. (5.18) is replaced by some physically realizable
low-pass filter, such as the Kaiser window [Smi08]. Further, it is assumed
that the ratio of the sampling rates can be expressed as a rational fraction

fs/fn = M/L, (5.20)
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Range Differences Source Position

Real Values [2.828, 2, 2]T [1, 0]T

f = 100kHz [2.823, 1.9997, 1.9997]T [0.996, 0]T

DSP: fs = 1875Hz [2.9086, 1.9997, 1.9997]T [0.931, 0]T

1)Correlation,
2)Interpolation,
fn = 20kHz

[2.826, 1.9997, 1.9997]T [0.9986, 0]T

1)Interpolation,
2)Correlation,
fn = 20kHz

[2.826, 1.9997, 1.9997]T [0.9986, 0]T

Table 5.2: Evaluation of the interpolation procedure for passive source local-
ization

where M and L are integers. The interpolation is than carried out by first in-
serting L−1 new sample values between each pair of sample values of xn[nTs]
and then decimating the new signal by the factor M . The interpolation step
is done by first inserting L−1 zeros between the sample values such that the
new signal wm[mTn] is given by

wm[mTn] =

{
xn[mTn/L], for m = 0,±L,±2L, . . .
0 otherwise.

(5.21)

The Fourier transform of the new found signal wm[mTn] is equal to the spec-
trum of the originally sampled signal xn[nTs]

Wm(f) = F(wm[mTn]) = Xn(f). (5.22)

Using an appropriate FIR low-pass filter hm, the interpolated signal can be
found by

xm[mTn] = wm[mTn] ∗ hm, (5.23)

where ∗ denotes the convolution operator. A detailed tutorial on the dig-
ital implementation can be found in e.g. [CR81], which also presents and
compares a variety of FIR low-pass filters.

5.3.2 Evaluation

Fig. 5.6 shows an evaluation of the interpolation procedure for passive source
localization. A test signal, composed of an overlap of multiple sinus waves
with frequencies up to 500Hz, sampled at f = 100kHz is constructed and
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Figure 5.6: Evaluation of the Interpolation procedure, Real Data corresponds
to the ”continuous” signal (at 100kHz), DSP Mic1 represents the data ob-
tained by microphone one (at fs = 1875Hz), ”Interp” corresponds to the
interpolated signal of microphone one (fn = 20kHz), a) signal received by
microphone 1, c) corresponding correlation between microphone one and two,
b) detailed view on signal of microphone one, d) detailed view on correlation
between microphone one and two

is used to simulate the ”continuous” sound of the source. Its position is set
to [1m, 0m], and an optimal four sensor configuration according to the re-
sults of section 3.7.3 is presumed. The reference sensor is set at the origin
x1 = [0m, 0m] and hence the slave sensor positions result to [−

√
8m, 0m],

[2m,
√

8m], and [−2m,
√

8m]. In order to not influence the results by present
noise and reverberations, the real microphone system is not used for this
evaluation procedure, but the received signals are simulated, as the delayed
version of the true signal. The DSP sampling rate is set to the 12bit quan-
tification rate using four microphones fs = 1875Hz (see table 5.1). It is
desired to achieve a sampling rate of fn = 20kHz, by using the presented
interpolation procedure to obtain a total of 3000 samples. Fig. 5.6 a) shows
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the true continuous signal arriving at microphone one, the sampled signal
obtained by the DSP, and the interpolated signal at fn = 20kHz. Look-
ing at figure b) a detailed view is given on the obtained signals. It can be
seen that the interpolated signal perfectly matches the true signal, while the
DSP signal at the low frequency shows some degeneration. Figures c) and d)
show the corresponding correlations of microphones two and one. In d) the
problem of the low sampling frequency becomes apparent. The maximum
of the DSP signal at fs = 1875Hz clearly different from the true TDOA.
However, the TDOA found after the interpolation process approximates the
true TDOA quite precisely, which can also be seen in table 5.2. The range
difference, found by the standard cross-correlation, are indicated, as are the
corresponding estimated source positions using the linear least-squares esti-
mator presented in sec. 3.5.3. It is due to the chosen sensor configuration
and the assumption of no present noise, nor any reverberations, that the
range differences two and three are the same for all four estimations. Fur-
ther, it is a ”lucky accident” that the interpolated estimators obtain a closer
estimate, than the one found by the true ”continuous” signals. The fact that
the range difference estimates, and hence the position estimate, are slightly
different from the true values is because the ”continuous” signal is not re-
ally a continuous signal, but a sampled version with high sampling frequency
f = 100kHz. However, this high frequency corresponds to a range difference
uncertainty of ∆d = c/f = 3.43 · 10−3m, which explains this slight offset.

Note, that it makes no difference if the interpolation is carried out before,
or after the calculation of the cross-correlation. This was also observed, when
random sensor positions were chosen. Using this observation, the computa-
tional burden can be decreased. Instead of carrying out two interpolations
of two initial signals of length N and then calculating the correlation of the
augmented signals, the correlation can be carried out with the original signals
of length N . Afterwards an interpolation of the found result can be carried
out in the region of possible range differences, only, instead of interpolating
the total correlation outcome.

5.4 System Evaluation

The presented system was tested in a standard office with dimensions 6.5m×
4.5m× 2.6m. The office was equipped with a number of tables, bookshelves,
two notebooks, and a ceiling light, responsible for the major part of the
ambient noise. The optimal four microphone configuration presented in
chapter 3.7.3 was installed in the center of the room, and the coordinate
frame for the localization procedure was set to the position of the reference
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sensor x1 = [0m, 0m]. The three slave sensors were set to the positions
x2 = [−1m, 0m], x3 = [0.71m, 1m] and x3 = [0.71m,−1m], which results
in a condition number κ2(A) = 1 for the source position xs = [0.35m, 0m].
The four microphones were connected to a single DSP, which sequentially
sampled them with an eight bit quantification. According to table 5.2.1 this
results in a sampling frequency of fs = 2780Hz.

The estimation of the three time delay estimates w.r.t. the reference sen-
sor were carried out by the unfiltered cross-correlation function as presented
in section 3.2.1. The actual position estimate based on these TDOAs was
then carried out by the linear least-squares estimator of section 3.5.3.

A standard computer loudspeaker, playing the sound produced by a mo-
torcycle, was selected as the target. In a first test this loudspeaker was
set to the optimal source position xs = [0.35m, 0m], playing the sound at
a moderate level. For this setup, the signal to noise ratios of the individ-
ual microphone inputs resulted to SNR(x1) = 21dB, SNR(x2) = 14sdB,
SNR(x3) = 10dB, SNR(x4) = 12dB.

Fig. 5.7 shows the estimation of the true source position. The time
delays of the three microphone pairs were estimated, using four different
window lengths (N = 127, 255, 511, 1023), 100 times each and were then
interpolated with a factor eight, resulting in a new sampling frequency of
fn = 22.08kHz. The position was then estimated using the original data,
as well as the interpolated data. Consequently, for each window length, 100
estimates using the original data and 100 estimates using the interpolated
data, were obtained.

Fig. 5.8 indicates the success rate of the position estimates: estimates
within 5cm of the true location were considered to be right. Note that even
with only N = 127 (which corresponds to only 46ms) data samples the posi-
tion estimate is accurate more than 90% of the time, and that the interpolated
data estimates slightly outperform the estimates found by the original data.
For the presented problem, considering the source at the optimal position,
the success rate could be increased to 100% by increasing the number of data
samples.

However, the position estimates are slightly biased. In the case of the
unbiased data this bias can result from the low resolution of the time delay
estimates. The time delay of a sensor xi and the reference sensor x1 given
in samples ki1 = fs · τi1 is

ki1 = fs · (|xi − xs|2 − |x1 − xs|2)/c. (5.24)

For the given problem these sample time delays result to k21 ≈ −8.05, and
k31 = k41 ≈ −5.73. However, these values can only be estimated by integer
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Figure 5.7: position estimation using the optimal four microphone sensor
setup. true position: xs = [0.35m, 0m]. left column: estimates found by
original data with sampling frequency fs = 2780Hz, right column: estimates
found by interpolated data with interpolation factor M = 8 (fn = 8 · fS =
22.08kHz). rows: window lengths of the original data set

values. Consequently, if k31 would be estimated to 5 a range error of

0.73 · c/fs ≈ 9cm (5.25)

s results, and even if k31 is estimated to 6 the range error still is 3.3cm.
In case of the interpolated data, the resolution of the time delay estimates

increases by a factor eight. Nevertheless, a slight bias is still observed. While
the true time delays w.r.t. the interpolated sampling frequency fn calculate
to k21 ≈ −64.4, k31 = k41 ≈ −45.8, the mean of the estimated time delays was
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Figure 5.8: success rate of position estimate within 5cm of the true location
in %, left bars: based on original data, right bars: based on interpolated data

observed to be µ(k21) = −61, µ(k31) = −48.68, and µ(k41) = −44.88. These
inaccuracies can probably be explained by an inaccurate sensor installation
and the fact, that the loudspeakers are not a point source, but of dimension
7cm × 7cm × 17cm.

Figs 5.9 and 5.10 show the outcomes of the same tests for source positions
xs = [0.7m,−0.4m], and xs = [1.6m,−0.4m], respectively. Both figures
clearly show that the estimation procedure becomes more difficult, when the
source is further from the origin, which results in a larger variation of the
estimates. This is partially due to the larger distance of the source to the
sensors x1 and x2, resulting in a lower signal to noise ratio, which in chapter
3.2.4 was shown to degrade the time delay estimates. But this is only one
reason for the more inaccurate position estimation. It can be observed, that
the time delays for the position xs = [0.7m,−0.4m], using the interpolated
data, were constantly (≥ 70%, considering all N) estimated to

k21 ∈ [−57,−54], k31 ∈ [−47,−44], k41 ∈ [4, 6],

even though the true sampled time delays for this position are k21 = −60.5,
k31 = −38.2, and k41 = 13.3. Consequently, there is a bias on the time delay
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Figure 5.9: position estimation using the optimal four microphone sensor
setup. true position: xs = [0.7m,−0.4m]. left column: estimates found by
original data with sampling frequency fs = 2780Hz, right column: estimates
found by interpolated data with interpolation factor M = 8 (fn = 22.08kHz).
rows: window lengths of the original data set

estimates ranging from 3 to 8 samples for this test, corresponding to a range
error between 4.7cm and 12.4cm. The same observation can be made for the
position estimate of xs = [1.6m,−0.4m]. Surprisingly, for the most part of
the estimates the errors are smaller than 4 samples, even though the source
is now even further away from the sensors. Still, looking at figs. 5.9 and
5.10, one sees that the corresponding estimates are worse than the estimates
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Figure 5.10: position estimation using the optimal four microphone sensor
setup. true position: xs = [1.6m,−0.4m]. left column: estimates found by
original data with sampling frequency fs = 2780Hz, right column: estimates
found by interpolated data with interpolation factor M = 8 (fn = 22.08kHz).
rows: window lengths of the original data set

of the source position xs = [0.7m,−0.4m].

This can be explained by the more ill-conditioned situation: while the
source location xs = [0.3536, 0] results in a condition number of the LLS
estimator of κ2(A) = 1, the source locations xs = [0.7m,−0.4m] and xs =
[1.6m,−0.4m] result in condition numbers κ2(A) ≈ 2.3 and κ2(A) ≈ 5.45,
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Figure 5.11: Condition number distribution as a function of the source posi-
tion xs = [x, y] for the given sensor configuration, circles: sensor positions

respectively. In order to stress the influence of the conditioning of the prob-
lem, let us assume that the sample time delays of the three situations are
all biased by −5, corresponding to a range error of −7.7cm. A source in the
optimal location would then be estimated to the position x̂s = [0.346m, 0m],
which would result in an absolute error of around 8mm, only. The same
bias on the sample time delay estimates corresponding to the two other
source positions would result in the estimates x̂s = [0.65m,−0.36m] and
x̂s = [1.31−0.29], resulting in the absolute errors of 6.4cm and 31cm, respec-
tively. Clearly, the least well-conditioned estimator, with the source being
located at xs = [1.6m,−0.4m], has the greatest problems of estimating the
source position.

Fig. 5.11 illustrates the importance of source position relative to the
sensor network. Inside the circle spanned by the three slave sensors, the
condition number is small, and consequently a position estimate will be quite
accurate, if reasonable time delay estimates are available. However, outside
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this circle κ2(A) strongly increases, which usually results in a poor estimate.

5.5 Chapter Summary

This chapter presented a low cost hardware configuration for a TDOA-based
passive source localization system. Two possibilities were presented. In order
to decrease the calculation time and increase the sampling frequency, the first
system uses multiple DSPs. The second system uses only one DSP and is
therefore easier to implement and less expensive.

The second system has been realized using Microchip’s ”Explorer 16 De-
velopment Board”. This board has an integrated level converter, such that
the serial communication with the PC is readily implemented. Further ad-
vantages are its power supply, which can be used for the electret microphone
circuits, and the extension slots for easy connection with external cards.

The system was tested on a two dimensional indoor estimation problem
using a four microphone optimal sensor configuration. The system was able
to accurately estimate the source position, when the source was set to the
reference position, and offered reasonable results, when the source was posi-
tioned at other locations. The dependency of the estimate’s accuracy on the
condition number was pointed out.

The main limitation of the system is the very limited sampling rate, re-
sulting in a low resolution of the time delay estimates and severe constraint
on the bandwidth of the target’s sound. In order to increase the transmis-
sion rate between the DSP and the PC alternative DSPs, offering a USB
communication, could be used. While the RS232 serial port only allows a
maximum baud rate of 115200bauds/s, modern USB connections transmit
with up to 480Mbits/s. Such a system would then fulfill Shannon’s sampling
theorem for the entire frequency rage of human voice. Using a low cost DSP
the common sampling rate of telephone applications fs = 8000Hz could then
easily be attained for multiple sensors.



Chapter 6

Conclusion and Outlook

6.1 Conclusion

The performance of TDOA-based passive acoustic source localization can be
greatly increased by arranging the sensors in some optimal sense.

TDOA-based passive source localization is a two step estimation prob-
lem. In the first step time differences of arrival of multiple spatially separated
microphone pairs are estimated. The second step is then composed of esti-
mating the source position by considering the estimated time difference and
utilizing the knowledge of the microphone positions and the propagation
speed. Assuming a time delay estimator at hand, the question of how to
best place the sensors for optimizing the performance of the existing position
estimators, carrying out the second step, was addressed in this work. It was
argued that in this case, the available time delay estimates can be seen as
the sum of the true time differences and an additive noise term.

Depending on the available statistical information on this noise term the
actual localization problem can either be stated as a statistical estimation
problem, or a non-statistical estimation problem, based on the least-squares
approach. If the problem is described statistically, the Cramer Rao lower
bound (CRLB) and the geometric dilution of precision (GDOP) are suitable
measures, not only for delivering information on the accuracy of the estimator
at hand, but also for optimizing the sensor geometry.

While the CRLB, defining a lower limit on the variance of all unbiased
estimators, is identical for all estimators, the GDOP is estimator specific.
Consequently, an optimal sensor configuration w.r.t. the GDOP for one
estimator, will usually not be the optimal configuration for others. However,
considering a linearized estimator and assuming Gaussian noise, it is shown
that the optimal sensor configuration w.r.t. the GDOP is identical to the

157



158 CHAPTER 6. CONCLUSION AND OUTLOOK

configuration found w.r.t. the CRLB.
Considering the TDOA-based localization problem as a non-statistical

estimation problem has two main advantages over the statistical approach.
Firstly, the statistical information does not need to be known for constructing
the estimators. Quite often the ambient noise is constantly changing and
then becomes difficult to obtain. Secondly, the nonlinear estimation problem
can be posed as a constrained linear estimation problem, if only the time
differences w.r.t. a reference sensor are considered. A number of closed-
form estimators exist, which approximate the solution to this constrained
problem. It was shown that these estimators are all somehow dependent
on an accurate calculation of the Moore-Penrose pseudo-inverse of the LLS
matrix, whose entries are composed of the sensor positions and the time
difference estimates. If this matrix is close to singular, the position estimates
are of poor quality. Therefore, we proposed to choose a sensor configuration
minimizing the condition number (singularity measure) of the LLS matrix.

An analytical optimal sensor configurations for the linear approximation
estimators are presented in this work, which all result in condition numbers
equal to one.

For the above mentioned linearized estimator the condition number based
optimal configuration becomes identical to the configurations found by the
CRLB and the GDOP.

An optimal sensor configuration for bearing line intersection estimators
(e.g. the TDOA-based linear intersection estimator) w.r.t. the condition
number are obtained, if the bearing lines become orthogonal to each other.

Assuming an optimal sensor configuration for the linear approximation
estimators, the constrained linear least-squares problem can be solved an-
alytically. The found estimator outperforms the other TDOA-based linear
approximation estimators, if the condition number is kept below around 1.2.
However, if the condition number becomes larger, this estimator is no longer
adequate.

One option for assuring a small condition number for non static sources is
to use a large sensor network and to activate only those microphones which
render the condition number for a predicted source position close to one. The
prediction of the source’s near future position can be carried out by recursive
Bayesian filtering. Since, the estimation problem is generally nonlinear, the
classical Kalman filter is usually not applicable, and in literature is often
replace by particle filters.

In this thesis the extended Kalman filter, the unscented Kalman filter
and the recursive bootstrap filter are evaluated for the TDOA-based tracking
problem. The close connection of the extended Kalman filter to the above
mentioned linearized estimator, makes it perform quite well compared to the
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two other methods, when an optimal sensor configuration for the linearized
estimator is utilized. At the same time the two other procedures also seem
to increase their performance, if the microphones are installed in such an
optimal setup.

6.2 Outlook

Optimal sensor configurations for the second step of the two step TDOA-
based localization estimators have been proposed. Currently, these configu-
rations do not consider the time delay estimation procedures and are invariant
to scaling and rotation. Consequently, the same sensor network geometry in
small scale (close to the source) and large scale (microphones far from the
source) are currently considered to be equal. However, since the energy of
sound reduces quadratically with increasing distance, the signal to noise ratio
for a large scale configuration will be drastically smaller than the SNR of the
small scale configuration, resulting in poorer time delay estimates.

Therefore, the first step should be integrated into the sensor geometry
optimization. In this thesis, we presented an upper bound on the relative
position error of the linear least-squares estimator, which is basically a func-
tion of the condition number, the norm of the LLS matrix and the norm of
an error term on this LLS matrix. In case of TDOA-based passive source
localization this error term is due to the inaccurate time delay estimates.
Consequently this function upper bounds the position estimation error, con-
sidering both steps of the TDOA-based position estimators: if the LLS ma-
trix is ill-conditioned due to an inappropriate sensor configuration, the upper
bound will be large, and the quality of the estimation procedure is likely to
be poor. At the same time, if the sensors are too far from the source, the
time delay estimates will be poor, resulting in a large error term on the LLS
matrix, also increasing the bound.

The error on the LLS matrix will mainly be a function of the SNRs
and consequently, on the distance between the source and the microphones.
In order to optimize the configuration, considering both estimation steps,
the dependency of the error matrix on this distance must be established.
An optimal sensor configuration will then probably be found by numerical
minimization of this upper bound.
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Appendix A

Matrix Algebra

A.1 Induced Matrix Norms

‖A‖2 = sup
|x|2=1

|Ax|2. (A.1)

‖A‖2 = sup|x|2=1

√
xTAT Ax

=
√

sup|x|2=1 xT AT Ax
(A.2)

This constrained optimization can be solved using the Lagrangian multiplier
approach:

L(x, λ) = xT AT Ax − λxTx (A.3)

(
∂L
∂x

)T

= 2ATAx − 2λx
!
= 0 (A.4)

⇒ ATAx = λx (A.5)

Hence the Lagrangian multiplier λ is an eigenvalue of AT A.

xT AT Ax = λxT x = λ (A.6)

⇒ ‖A‖2 =
√

sup λ =
√

λmax (A.7)

Since σ =
√

λ is the singular value of A, the induced 2-norm of a matrix is
equal to its largest singular value:

‖A‖2 = σmax (A.8)
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A.2 Condition Number

Theorem 6. Suppose A is of full rank. Then, provided that ‖A†‖‖∆A‖ < 1,
with ∆A describing an uncertainty about matrix A, the relative error of the
solution vector x is bounded by

|∆x|
|x| ≤ κ(A)

1 − κ(A)
‖∆A‖
‖A‖

( |∆b|
|b| +

‖∆A‖
‖A‖

)

, (A.9)

with
κ(A) = ‖A‖‖A†‖ (A.10)

being the condition number of A.

A system of linear equations with unknown vector x can be written as

Ax = b. (A.11)

Under the presence of small perturbations in the parameters A, b this nom-
inal system becomes disturbed and can be represented as

(A + ∆A)(x + ∆x) = b + ∆b. (A.12)

In order to quantify the effect of these perturbations on the solution, this
equation can be brought into the following explicit form for the absolute
error of the solution ∆x:

∆x = (I + A†∆A)−1A†(∆b − ∆Ax). (A.13)

Taking the norm of this absolute error results in

|∆x| ≤ ‖(I + A†∆A)−1‖‖A†‖|(∆b − ∆Ax)|
≤ ‖(I + A†∆A)−1‖‖A†‖(|∆b| + ‖∆A‖|x|). (A.14)

But

|∆b| = |b| |∆b|
|b|

≤ ‖A‖|x| |∆b|
|b| ,

(A.15)

and hence,

|∆x| ≤ ‖(I + A†∆A)−1‖‖A†‖‖A‖|x|
(|∆b|

|b| +
‖∆A‖
‖A‖

)

. (A.16)
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The relative error of the solution then follows to be

|∆x|
|x| ≤ ‖(I + A†∆A)−1‖‖A‖‖A†‖

( |∆b|
|b| +

‖∆A‖
‖A‖

)

. (A.17)

Substituting A†∆A by −B, the term of the first norm of the right hand side
of eq. (A.17) leads to

(I − B)−1 = (I + A†∆A)−1. (A.18)

It is further assumed that ‖B‖ < 1, which is equivalent to

‖A†∆A‖ < 1. (A.19)

As a consequence the inverse of (I −B) can be written as the Cauchy series

(I − B)−1 =

∞∑

i=0

Bi (A.20)

and its norm is bounded by the geometric series

‖(I − B)−1‖ ≤
∞∑

i=0

γi =
1

1 − γ
, (A.21)

with γ = ‖B‖ < 1. Resubstitution leads to

‖(I − B)−1‖ ≤ 1

1 − ‖A†∆A‖ , (A.22)

and finally

|∆x|
|x| ≤ 1

1 − ‖A†∆A‖‖A‖‖A†‖
( |∆b|

|b| +
‖∆A‖
‖A‖

)

. (A.23)

Defining the condition number of the linear least-squares problem as

κ(A) = ‖A‖‖A†‖ (A.24)

and using the sub-multiplicative property of the matrix norm

‖A†∆A‖ ≤ ‖A†‖‖∆A‖ (A.25)

proofs the theorem.
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Appendix B

Geometric Dilution of Precision

for GPS

Table B.1 gives an interpretation of the GDOP for the GPS. While position
estimates with a GDOP value between zero and six can be trusted to be quite
accurate, estimates with values greater than ten should better be discarded.

DOP
Value

Rating Description

0 Ideal this is the highest possible confidence level to be used for applica-
tions demanding the highest possible precision at all times

1-3 Excellent At this confidence level, positional measurements are considered
accurate enough to meet all but the most sensitive applications

4-6 Good Represents a level that marks the minimum appropriate for making
business decisions. Positional measurements could be used to make
reliable in-route navigation suggestions to the user

7-8 Moderate Positional measurements could be used for calculations, but the fix
quality could still be improved. A more open view of the sky is
recommended

9-20 Fair Represents a low confidence level. Positional measurements should
be discarded or used only to indicate a very rough estimate of the
current location

21-50 Poor At this level, measurements are inaccurate by as much as 50 metres
and should be discarded

Table B.1: Dilution of precision taken from [Per05]
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