
HAL Id: tel-00428553
https://pastel.hal.science/tel-00428553

Submitted on 29 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantifying Studies of (Pseudo) Random Number
Generation for Cryptography

Andrea Roeck

To cite this version:
Andrea Roeck. Quantifying Studies of (Pseudo) Random Number Generation for Cryptography. Other
[cs.OH]. Ecole Polytechnique X, 2009. English. �NNT : �. �tel-00428553�

https://pastel.hal.science/tel-00428553
https://hal.archives-ouvertes.fr


Thèse de Doctorat

présentée à

L’ÉCOLE POLYTECHNIQUE

pour obtenir le titre de

DOCTEUR EN SCIENCES

Spécialité Informatique

soutenue le 18 mai 2009 par

Andrea Röck

Quantifying Studies of (Pseudo) Random
Number Generation for Cryptography.

Jury

Rapporteurs

Thierry Berger Université de Limoges, France
Andrew Klapper University of Kentucky, USA

Directeur de Thèse

Nicolas Sendrier INRIA Paris-Rocquencourt, équipe-projet SECRET, France

Examinateurs

Philippe Flajolet INRIA Paris-Rocquencourt, équipe-projet ALGORITHMS, France
Peter Hellekalek Universität Salzburg, Austria
Philippe Jacquet École Polytechnique, France
Kaisa Nyberg Helsinki University of Technology, Finland





Acknowledgement

It would not have been possible to finish this PhD thesis without the help of many people.
First, I would like to thank Prof. Peter Hellekalek for introducing me to the very rich

topic of cryptography. Next, I express my gratitude towards Nicolas Sendrier for being my
supervisor during my PhD at Inria Paris-Rocquencourt. He gave me an interesting topic to
start, encouraged me to extend my research to the subject of stream ciphers and supported
me in all my decisions. A special thanks also to Cédric Lauradoux who pushed me when it
was necessary. I’m very grateful to Anne Canteaut, which had always an open ear for my
questions about stream ciphers or any other topic. The valuable discussions with Philippe
Flajolet about the analysis of random functions are greatly appreciated. Especially, I want
to express my gratitude towards my two reviewers, Thierry Berger and Andrew Klapper,
which gave me precious comments and remarks. I’m grateful to Kaisa Nyberg for joining
my jury and for receiving me next year in Helsinki. I’m thankful to Philippe Jacquet for
assisting in my jury.

Especially, I own a lot to my parents Heinz and Elisabeth Röck and my sister Susanne
Röck. They always supported me in my studies, my goings abroad, and any of my decisions.
Without them, I would not be here. Also, I do not know what I would have done without
the support of Yann. Every time when I was frustrated, desperate or just tired, he cheered
me up and encouraged me to go on.

I spend four great years at the project SECRET (formerly known as project CODES).
A special thanks to all the people with which I could share the “buró uno”, the best of-
fice of the world, just beside the coffee table: Cédric, Maria, Mathieu (which we adopt),
Matthieu and Yann. I must not forget to mention Christelle. She is the soul of the project,
the best secretary, and a very good friend of mine. Thank you. There are many people
which passed at Inria and which contribute to the good atmosphere and the discussion at
the coffee table. I will mention them in alphabetic order and I hope that I do not forget
anyone. I’m grateful to all of them. Avishek Adhikari, Daniel Augot, Raghav Bhaskar,
Bhaskar Biswas, Céline Blondeau, Anne Canteaut, Christophe Chabot, Pascale Charpin,
Mathieu Cluzeau, Maxime Côte, Frédéric Didier, Cédric Faure, Matthieu Finiasz, Fabien
Galand, Benoit Gérard, Christelle Guiziou, Vincent Herbert, Stéphane Jacob, Deepak Ku-
mar Dalai, Yann Laigle-Chapuy, Cédric Lauradoux, Françoise Levy-dit-Vehel, Ayoub Ot-
mani, Raphael Overbeck, Maria Naya Plasencia, Ludovic Perret, Sumanta Sarkar, Nicolas
Sendrier, Jean-Pierre Tillich, Marion Videau, and Alexander Zeh.

Once again I want to thank all the people that helped and supported me during my

i



PhD. It is due to them that I can say now: Ça, c’est fait.



Contents

Acknowledgement i

1 Introduction 1

I General Notions 5

2 Entropy 7

2.1 Definition and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Stream Cipher 13

3.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.1 One-Time Pad (Vernam Cipher) . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Synchronous Stream Cipher . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Self-Synchronizing Stream Cipher . . . . . . . . . . . . . . . . . . . 16

3.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

II Studies of the HAVEGE Random Number Generator 19

4 Random Number Generators 21

4.1 Tests of Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 HAVEGE 23

5.1 Optimization Techniques of the Processor . . . . . . . . . . . . . . . . . . 24
5.1.1 Functionality of HAVEGE . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 General Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.1 HAVEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.2 HAVEGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



6 Empirical Tests 35
6.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2.1 Basic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2.2 Auto Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.3 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.4 Entropy of a Markov Chain . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

III Study of a Specific Stream Cipher 51

7 The Dragon Stream Cipher 53
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 Inner State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.1.2 Key and IV Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.1.3 State Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.1.4 Function F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 Published Distinguisher on Dragon . . . . . . . . . . . . . . . . . . . . . 57
7.2.1 Statistical Distinguisher . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2.2 Linear Distinguisher . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 Some Properties of Dragon . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3.1 Properties of G’s and H’s . . . . . . . . . . . . . . . . . . . . . . . 61
7.3.2 Relations among Words . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3.3 Bias of Different Equations . . . . . . . . . . . . . . . . . . . . . . . 62
7.3.4 Bias of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

IV Random Functions 69

8 Characteristics of Random Functions 71
8.1 Approach to Analyze Random Functions . . . . . . . . . . . . . . . . . . . 72

8.1.1 Use of Generating Function . . . . . . . . . . . . . . . . . . . . . . 72
8.1.2 Singularity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2 Known Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9 State Entropy of a Stream Cipher using a Random Function 81
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Estimation of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2.2 New Entropy Estimation . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3 Collision Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



9.3.1 States after k Iterations . . . . . . . . . . . . . . . . . . . . . . . . 95
9.3.2 Including Intermediate States . . . . . . . . . . . . . . . . . . . . . 96
9.3.3 Improvement with Distinguished Points . . . . . . . . . . . . . . . . 97

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

V FCSRs 101

10 Introduction to FCSRs 103

10.1 Characteristics of LFSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.2 Characteristics of FCSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.3 Applications of FCSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.4 Extensions of FCSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

10.4.1 d-FCSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
10.4.2 AFSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11 Entropy of the Inner State of an FCSR in Galois Setup 127

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
11.2 Entropy after One Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 128
11.3 Final State Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

11.3.1 Some Technical Terms . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.3.2 Final Entropy Case by Case . . . . . . . . . . . . . . . . . . . . . . 134
11.3.3 Complexity of the Computation . . . . . . . . . . . . . . . . . . . . 136

11.4 Lower Bound of the Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.4.1 Basis of Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.4.2 Induction Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

11.5 Bounds for the Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
11.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

12 Parallel generation of ℓ-sequences 145

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
12.3 Sub-Sequences Generators and m-Sequences . . . . . . . . . . . . . . . . . 148
12.4 Sub-Sequences Generators and ℓ-Sequences . . . . . . . . . . . . . . . . . . 150
12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Conclusion and Perspectives 159

Bibliography 176

Table of figures 178

List of algorithms 179



List of tables 181



Chapter 1

Introduction

Random numbers are an important tool in cryptography. They are used to generate
secret keys, to encrypt messages or to mask the content of certain protocols by combining
the content with a random sequence. A (pseudo) Random Number Generator (RNG)
produces “randomly looking” sequences from a short initial seed or from unpredictable
events. We mean by randomly looking that an adversary is not able to distinguish the
sequence from the outcome of independent and uniformly distributed random variables.
Shannon’s entropy is one example of an indicator of how hard it is for an adversary to
guess a value in the sequence (Chapter 2).

We consider RNGs in two different settings. The first one discusses a random number
generator which produces sequences from parameters that we cannot control. Thus, we are
not able to produce the same sequence twice. Such generators can be used to generate secret
keys. However, we always must be careful whether the output of the generator does contain
enough uncertainty/entropy. This was the problem in the random number generator of the
Netscape browser used for the Secure Sockets Layer (SSL) protocol. The generator was
seeded only from the time of the day, the process ID and the parent-process ID. These
values do not contain enough uncertainty, which allows an attack on the protocol [GW96].

The second class of random number generators are completely deterministic algorithms.
If we know the initial value, we are able to reconstruct the whole sequence. Thus, they
are often referred to as Pseudo RNGs (PRNGs). An area of application of such generators
are synchronous stream ciphers (Chapter 3). The initial value depends on the secret key
and the public Initialization Vector (IV), and the generated sequence is directly combined
with the plaintext.

This document consists of six different parts: In Part I, we explain some general notions
which we are going to use later. We give a short introduction to Shannon’s entropy in
Chapter 2. An overview of stream cipher designs is given in Chapter 3.

The rest of the document is devoted to the research I have done during my PhD. In
Part II we consider the HAVEGE random number generator [SS03]. We first give a short
introduction to RNGs in Chapter 4. HAVEGE falls into the first category of RNGs, i.e.
it creates unique sequences depending on unobservable parameters. Modern processors
contain several optimization techniques to increase their speed, like data or instruction
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caches or branch predictors. The HAVEGE generator uses the uncertainties in those
techniques to generates high quality random numbers. The inner state of the processor
changes at every interrupt and is not possible to measure without altering it. In Chapter 5,
we give a detailed description of the functionality of HAVEGE. We examined the statistical
properties of the data which the generator collects directly from the processor, without any
post-processing. The results of these studies can be found in Chapter 6.

The following parts consider stream ciphers or components of stream ciphers. In
Part III, we examine a specific stream cipher. We chose the Dragon cipher [CHM+04,
DHS08], which was a candidate of the European eSTREAM project [eST]. In the first
section of Chapter 7, we give a description of the cipher. At the same time as we studied
Dragon, two distinguishers on the cipher were published [EM05, CP07]. We present these
two works in Chapter 7.2. They cannot be counted as real attacks on Dragon since they
use much more keystream bits than are allowed. Finally, in Section 7.3, we give the results
of our own studies. We considered different properties of the components of Dragon;
however, we were not able to improve the previous mentioned distinguishers.

In Part IV, we study a general model of a stream cipher which uses a random function
to update its inner state. We give an overview over random functions and their properties
in Chapter 8. The model of the stream cipher itself is presented in Chapter 9. Let us
assume that the initial inner state of the stream cipher is uniformly distributed. The use
of a random function instead of a random permutation to update the inner state introduces
a loss of entropy. We study this loss in detail in Section 9.2. In the last part of this chapter,
we consider some state collision attacks on our model. These attacks were inspired by some
attacks [HK05] on the MICKEY stream cipher [BD05, BD08] and try to exploit the loss
of entropy in the inner state. We could show that in our model, these attacks are not more
efficient than a collision search in the initial states. The only way for those attacks to be
efficient would be to have a class of functions which lose on average much more entropy
than a random function.

In Part V, we consider Feedback with Carry Shift Registers (FCSRs) which can be
used as components in stream cipher [ABL08]. FCSRs were introduced by Klapper and
Goresky [KG93, KG97] and are a class of fast and non-linear shift registers. In Chapter 10,
we give an introduction to FCSRs, including their applications in cryptography and some
possible extensions of the original definition. Again, we assume that the initial state of
an FCSR is chosen uniformly, using all possible state and carry bits. A Galois FCSR will
then lose entropy already after some iterations. In Chapter 11, we consider this loss after
one iteration and after it reached a stable value. We could show that the entropy never
decreases under the size of the main register. The next chapter, Chapter 12, considers
the implementation of FCSRs. We studied the possibilities to parallelize the output of an
FCSR. We could show that the method of separated sub-FCSRs is not satisfying. How-
ever, partitioning the original FCSR into interconnected sub-registers allows an efficient
parallelization even if we have to consider the carry bits.

Finally, in Chapter 12.5, we conclude this work and give some perspectives of possible
future research.
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Figure 1.1: Statue of Claude E. Shannon, MIT, Cambridge, USA.

My greatest concern was what to call it. I thought of calling it ’information,’
but the word was overly used, so I decided to call it ’uncertainty.’ When I
discussed it with John von Neumann, he had a better idea. Von Neumann
told me, ’You should call it entropy, for two reasons. In the first place your
uncertainty function has been used in statistical mechanics under that name,
so it already has a name. In the second place, and more important, no one
really knows what entropy really is, so in a debate you will always have the
advantage.’ (Claude E. Shannon [TM71, p. 180])
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Chapter 2

Entropy

Entropy is an often used term when describing cryptographic primitives. It is a measure
for the uncertainty about the output of a data source and was introduced for the first
time 1948 by Shannon as a central concept of his work about communication theory. His
definition of entropy was an answer to the question:

Can we find a measure of how much “choice” is involved in the selection of the
event or how uncertain we are of the outcome? [SW49]

Entropy belongs to the area of information theory. In this chapter we deal with the
definition of entropy and some of its properties.

Shannon’s fundamental work on entropy can be found in [SW49]. Further information
on this topic is contained in Cover and Thomas’s monograph [CT91].

2.1 Definition and Characteristics

Shannon analyzed the process of communication. In his basic model, a source sends a
message that was chosen out of a set Ω. This message gets encoded into a symbol by
a transmitter and is sent over a defective channel. At the other end of the channel, the
received symbol is decoded by the receiver and forwarded to the destination (see Figure
2.1).

We are only interested in the initial part of the transmission. Shannon wanted to
know how much information is contained in the choice of a specific element of the source.
Hartley [Har28] claimed that if an element is chosen uniformly out of a set Ωn of size
|Ωn| = n, then the information of this choice is determined by

I(Ωn) = log2(n) . (2.1)

Shannon saw a need to modify this result. He was searching for a measure that takes into
account the probability of choosing an element of Ωn even if the corresponding distribution
is not uniform. Let us assume that we have the sample space Ωn = {ω1, ω2, . . . , ωn} and
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Figure 2.1: Schematic diagram of a general communication system [SW49].

that pi, 1 ≤ i ≤ n, is the probability of the occurrence of ωi. Of an appropriate measure
H(p1, p2, . . . , pn) of uncertainty we demand the following properties:

(H 1) H must be continuous in pi, for all 1 ≤ i ≤ n.

(H 2) If pi = 1
n

for all 1 ≤ i ≤ n, which means that occurrences of the elements of Ωn are
uniformly distributed, then H should monotonically increase with n. This property is
based on the characteristic that with uniformly distributed elements the uncertainty
of choosing a particular element increases with n.

(H 3) Let us assume that we split the choice into two successive ones, i.e. instead of
choosing element x directly out of Ωn = {ω1, ω2, . . . , ωn}, we first decide if x is ω1,
ω2, . . . , ωn−2 or falls into the set {ωn−1, ωn} and in a second choice we determine if
x = ωn−1 or x = ωn. Without loss of generality let p = pn−1 + pn > 0. Then, the
original measure should be equal to the measure of the first choice plus the weighted
measure of the second choice

H(p1, p2, . . . , pn) = H(p1, p2, . . . , pn−2, p) + p×H

(
pn−1

p
,
pn

p

)

. (2.2)

We will illustrate this property by an example (see Figure 2.2). Let us assume that
p1 = 1

2
, p2 = 1

3
, and p3 = 1

6
. In the left side of the figure we decide between the

three elements at once. In the right side we first decide if we take ω1 or one of the
other two elements. Each event has probability 1

2
. If we chose the second alternative,

then we additionally have to decide between ω2 and ω3, according to the two new
probabilities p′2 = 2

3
and p′3 = 1

3
. (H 3) then means that we demand the property

H

(
1

2
,
1

3
,
1

6

)

= H

(
1

2
,
1

2

)

+
1

2
H

(
2

3
,
1

3

)

.

The weight 1
2

is necessary because the second alternative is only taken with proba-
bility 1

2
.
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Figure 2.2: Decomposition of a choice from three possibilities [SW49].

We then have the following theorem.

Theorem 2.1 ([SW49]) Let P = {pi, 1 ≤ i ≤ n} be the probability distribution on Ωn =
{ω1, ω2, . . . , ωn}. The only function H satisfying the three assumptions (H 1), (H 2), and
(H 3) above is of the form:

H = K

n∑

i=1

pi log
1

pi

, (2.3)

where K is a positive constant.

The result of Theorem 2.1 motivates the definition of entropy for discrete random variables.

Definition 2.2 (Entropy) Let us assume that X is a discrete random variable on the
sample space Ωn = {ω1, ω2, . . . , ωn} with probability distribution P = {pi, 1 ≤ i ≤ n}. The
entropy H(X) of X is defined by

H(X) =
n∑

i=1

pi log2

1

pi

.

By convention, 0 log2
1
0

= 0, which is supported by the asymptotic behavior of the function
f(x) = x log2

1
x
, when x tends towards zero,

lim
x→0

x log2

1

x
= 0 .

Therefore, elements occurring with probability 0 have no effect on entropy.
For the definition of entropy we could have chosen any base of the logarithm. Since

loga(x) = logb(x)
logb(a)

, for every choice of bases a, b ≥ 2, a different base would change the value
of the entropy only by a constant factor, which conforms to (2.3). We will always use the
logarithm in base 2, since this choice corresponds to the binary representation of data in
a computer. In this case, the unit of entropy is one bit (binary digit). If we would have
chosen the Euler’s number e as base, then the entropy would be measured in nats (natural
units).
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Shannon did not limit his investigations to the case of a single random variable. He
also defined the entropy for sources that can be represented by an ergodic Markov chain.
In Section 6.2.4 we will discuss this topic in greater detail. Here, we focus our discussion
on the independent case. For a better understanding of the term entropy, we shall consider
two different examples.

Example 2.1 In the first example we will discuss three different cases of random vari-
ables, X1, X2, and X3. The three variables have the sample spaces Ω1 = {ω1, ω2, ω3, ω4},
Ω2 = {ω1, ω2, . . . , ω8}, and Ω3 = {ω1, ω2, ω3, ω4}, respectively. X1 and X2 are uniformly

distributed, which means that p
(1)
i = 1

4
, 1 ≤ i ≤ 4 and p

(2)
i = 1

8
, 1 ≤ i ≤ 8, respectively,

where p
(j)
i describes the probability of the event Xj = ωi. The probability distribution of

the last variable X3 is given by p
(3)
1 = 1

2
, p

(3)
2 = 1

4
, and p

(3)
3 = p

(3)
4 = 1

8
. This implies the

following values of entropy.

H(X1) = 2 ,

H(X2) = 3 .

Generally, if X is uniformly distributed on a sample space Ω, then H(X) = log2 |Ω|, which
is conform to (2.1). Thus, Hartley’s notion of information is a special case of Shannon’s
notion of entropy. Concerning X3, we have

H(X3) =
7

4
.

Let us first compare the entropy of the variables X1 and X2. H(X2) is larger than
H(X1), which corresponds to condition (H 2). The more elements are available, the larger
is the measure of uncertainty and thus the value of entropy.

The variables X1 and X3 have the same sample space, but H(X1) is larger than H(X3).
X1 is uniformly distributed, thus if someone wants to guess the outcome of X1, all elements
are equally probable. With X3, the occurrence of ω1 is as probable as the occurrence of the
other three elements together. If we guess ω1 as the outcome of X3 we would be right in
half of the cases. Thus, one may state that the value of X1 is more “uncertain” than the
value of X3.

Theorem 2.3 shows that for a fixed sample space the uniform distribution always has
maximum entropy.

Theorem 2.3 ([CT91]) Let X be a random number on the sample space ΩX and |ΩX |
denotes the number of elements in the range of X. Then,

H(X) ≤ log2 |ΩX |,

with equality if and only if X has a uniform distribution over ΩX .
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Remark 2.4 This characteristic of the uniform distribution is often used in relation with
random number generators (RNGs, see Chapter 4). A number is denoted “real random”,
if it was chosen according to a uniform distribution, which provides maximal entropy. Let
X be the random variable describing the output of a RNG. From a good RNG we would
expect H(X) to be as high as possible.

Example 2.2 (Minimal number of binary questions [CT91]) In this example we
study the number of binary questions that are, on average, necessary to find out which
element was produced by our information source. We will discuss the connection of this
number to Shannon’s entropy.

Let us assume that the random variable X represents the source, such that Ω is the
sample space and P = {p(x), x ∈ Ω} the probability distribution of X. A questioning
strategy S specifies which binary questions we will ask to determine the chosen element
x. E.g., if Ω = {1, 2, . . . , 8}, then such a question could be "Is x in the set {1, 3, 4, 7}?".
Such a strategy is equivalent to binary code. Each element x ∈ Ω is determined by a
finite sequence of responses of yes = 1 or no = 0. Let EQ denote the expected number of
questions in an optimal scheme. Considering the properties of a Huffman code we know
that

H(X) ≤ EQ ≤ H(X) + 1 .

This means that Shannon’s entropy is approximately equal to the minimal expected number
of necessary binary questions to determine a certain element. Consequently, if an ele-
ment was produced by an information source of high entropy, then an adversary needs, on
average, more effort guessing the specific element.

Until now, we have only considered the case of a single random variable. If we have two
random variables X, Y we can define the joint entropy H(X, Y ) as well as the conditional
entropy H(X|Y ). The first value gives the entropy of X and Y together, whereas the
second one defines the entropy of X if the value of Y is known.

Definition 2.5 (Joint Entropy) The joint entropy H(X, Y ) of a pair (X, Y ) of discrete
random variables with joint distribution p(x, y) is defined as

H(X, Y ) =
∑

x∈ΩX

∑

y∈ΩY

p(x, y) log2

1

p(x, y)
.

Definition 2.6 (Conditional Entropy) Let X, Y be two discrete random variable over
the state space ΩX and ΩY . We define by p(x, y) the joint probability X = x and Y = y and
by p(x|y) the probability of X = x under the condition that Y = y. Then the conditional
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entropy H(X|Y ) is defined as

H(X|Y ) =
∑

y∈ΩY

p(y)H(X|Y = y) ,

=
∑

y∈ΩY

p(y)
∑

x∈Ωx

p(x|y) log2

1

p(x|y)
,

=
∑

y∈ΩY

∑

x∈Ωx

p(x, y) log2

1

p(x|y)
.

The next theorem shows the connection between these two definitions:

Theorem 2.7 (Chain rule [CT91])

H(X, Y ) = H(X) + H(Y |X) .

From this follows that H(X, Y ) = H(X) + H(Y ) if and only if X and Y are independent,
i.e. H(Y |X) = H(Y ).
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Chapter 3

Stream Cipher

Symmetric key encryption schemes are divided in two main classes: block ciphers and
stream ciphers. The fist class works on blocks of sizes of ≥ 64 bits. In the basic mode
(electronic-codebook mode, ECB) each block is encrypted by the same mechanism only
depending on the key. There is no additional memory necessary. In the case of stream
ciphers, we encrypt much smaller blocks of size starting from one bit. The encryption func-
tion can change from block to block, depending on the current state of the cipher [MvOV96].
However, there are interconnections between these two classes. A block cipher in output
feedback (OFB) or counter (CTR) mode can be seen as a stream cipher of relative large
block sizes. The cipher feedback (CFB) mode can be interpreted as self-synchronizing
stream cipher. In this chapter, we consider only symmetric key stream ciphers; however,
in literature we find also examples of public key stream ciphers like the scheme of Blum
and Goldwasser [BG84].

Stream ciphers are often less hardware consuming than block ciphers. For example
in [GB07], the authors compare the hardware performance of some stream cipher candidates
of the eSTREAM project with the AES block cipher. In addition, a stream cipher encrypts
each bit/word independently. This is useful in areas where the buffering of data is not
possible or where the encryption should be done as soon as an element arrives. This is also
useful when the bandwidth is limited and when short messages are transmitted because
there is no need of padding. For synchronous stream cipher, there is no error propagation,
since the encryption does not depend on previous data. In the case of self-synchronizing
stream ciphers, the error propagation is limited.

In the next section, we give a classification of stream ciphers. However, the most
important class is surely the synchronous stream ciphers. In Section 3.2, we give a short
overview of the state of the art of stream ciphers.

3.1 Classification

There are three main classes of stream ciphers: the one-time pad, the synchronous, and
the self-synchronizing stream cipher. The one-time pad has a key of the same size as the
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plaintext and allows it to be used only once. The other two classes use one key for multiple
encryptions. If the encryption only depends on the key, each encryption produces the same
keystream which is then combined with the plaintext. Such a behavior facilitates attacks
on the stream cipher. Thus, most of the stream cipher schemes use an additional public
Initialization Vector (IV) which changes for each encryption. The initial state and the
keystream then depend on the key and the IV.

We denote by K and IV , respectively, the key and the IV of the encryption. The stream
of plaintext messages is denoted by the sequence m0, m1, m2, . . . and the corresponding
ciphertext by c0, c1, c2, . . .. If we produce a keystream from the key and the IV, we define
this sequence by z0, z1, z2, . . ..

3.1.1 One-Time Pad (Vernam Cipher)

Let the key, the message and the ciphertext be bit sequences of length n, i.e. mi, ci, ki ∈
{0, 1} for 0 ≤ i < n and K = (k0, k1, · · · , kn−1). For a Vernam Cipher we combine the
plaintext directly with the key by means of an XOR:

ci = mi ⊕ ki (encryption)

mi = ci ⊕ ki (decryption)

If the key was produced by an independent and uniformly distributed random process and
is used only once, this scheme is called a one-time pad.

Shannon [Sha49] showed that the one-time pad provides perfect security. This means
that the conditional entropy of the message M knowing the ciphertext C is the same as the
entropy of the original message, i.e. H(M |C) = H(M). He also showed that the one-time
pad is optimal in the sense that the previous conditions cannot be achieved with a key of
size smaller than the message.

The problem of the one-time pad is that we first have to agree on a key of the same
length as the message. For most applications this is not practical. The next two schemes
try to produce a “random looking” keystream from a short key and IV. By random looking,
we mean that we cannot distinguish the keystream from a random sequence in a complexity
less than trying all possible keys.

14



3.1.2 Synchronous Stream Cipher

(a) Encryption. (b) Decryption.

Figure 3.1: Model of a synchronous stream cipher.

A synchronous stream cipher (Figure 3.1) consists of an internal state Si for i ≥ 0, a state
update function f , a filter function g and a combination function h. We start from an
initial state S0 which depends on the key and the IV. For each new message mi the state
is updated by f . The keystream is generated by g from the state and is then combined
with the plaintext by mean of the function h. Let h−1 denote the inverse function of h
for a fixed zi, i.e. h−1(zi, h(zi, mi)) = mi. Then for the decryption, we only exchange the
combination function by h−1. In total we get:

Si = f(Si−1) ,

zi = g(Si) ,

ci = h(zi, mi) (encryption) ,

mi = h−1(zi, ci) (decryption) .

The key and the IV can have an influence on all three of the functions.

(a) Encryption. (b) Decryption.

Figure 3.2: Model of a additive stream cipher.
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The most common version of this scheme is the additive stream cipher (Figure 3.2).
As in the case of the Vernam cipher, it combines the keystream directly by XOR with the
plaintext. Thus, the encryption and decryption are identical. The keystream generator
works like a pseudo random number generator (PRNG). From a small initial value it
produces a pseudo random sequence, the keystream.

The additive stream ciphers are not vulnerable to error propagation, since every small
block is encrypted independently. Erasing or inserting such a block causes a loss of synchro-
nization. However, most of the recent schemes include a re-synchronization mechanism.

There exist several generic attacks on stream ciphers, like correlation attacks [Sie84],
fast correlation attacks [MS89, CJS00], time/memory/data tradeoff attacks [Bab95, Gol97],
or algebraic attacks [CM03]. To prevent these attacks, the cipher has to fulfill several
criteria:

• The keystream has to possess a large period length, otherwise it would be easy to
distinguish it from a random sequence.

• Let n denote the size of the inner state S. Then n must be at least twice as big as
the key size, otherwise a time/memory/data attack is possible [Bab95, Gol97, BS00].

• The filter function must be balanced. Otherwise the keystream is clearly not pseudo
random.

• If f and g are linear, then we can establish a system of linear equations depending on
the n bits in the inner state S. By using only n keystream bits, we have a system of
n equations and n unknown variables, which is easy to solve by Gaussian elimination
in only n3 operations. Thus at least one of the two functions f, g must be non-
linear. If we have 2n consecutive output bits, we can apply the Berlekamp-Massey
algorithm [Mas69] which has a complexity of only O(n2).

3.1.3 Self-Synchronizing Stream Cipher

(a) Encryption. (b) Decryption.

Figure 3.3: Model of a self-synchronizing stream cipher.
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A self-synchronizing stream cipher creates its keystream depending on the key and a fixed
number of previous ciphertext digits. The idea is that even if an element of the cipher-
text gets lost, the scheme is able to re-synchronize after only a short number of iterations.
The problem is that these ciphers seem to be very vulnerable to chosen ciphertext at-
tacks [ZWFB04, JDP05, JM06]. In practice, there are replaced by synchronous stream
ciphers with an external re-synchronization mechanism.

3.2 State of the Art

In 2000-2003 the NESSIE (New European Schemes for Signatures, Integrity and Encryp-
tion) project was launched in search for new cryptographic primitives [NES, Pre05]. There
were six stream ciphers submitted to this project; however, all of them fell to cryptanalysis.
This showed that at this moment there was not yet enough knowledge about stream ciphers
to build a strong scheme. In 2004, the eSTREAM project was initiated [eST, RB08] with
the goal of finding a portfolio of solid stream ciphers which improves the AES in stream
cipher mode in at least one criteria (throughput, space needed,...). There were 34 initial
proposals, divided in two categories:

• Profile 1: Stream ciphers for software applications with high throughput.

• Profile 2: Stream ciphers for hardware applications with highly restricted resources.

After four years of examination, the final portfolio consists of seven stream ciphers (Ta-
ble 3.1). The F-FCSR stream cipher was withdrawn from the original portfolio after an
attack of Hell and Johansson [HJ08].

Profile 1 (SW) Profile 2 (HW)

HC-128 [Wu08] Grain v1 [HJMM08]
Rabbit [BVZ08] MICKEY v2 [BD08]
Salsa20/12 [Ber08] Trivium [CP08]
SOSEMANUK [BBC+08]

Table 3.1: Final eSTREAM portfolio.

This project showed that it is possible to find different, robust designs for stream cipher
that are fast in software or modest in their hardware requirements. This might respond to
the question of Shamir: “Stream Ciphers: Dead or Alive?” [Sha04] that stream ciphers are
still an interesting area in cryptography.
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Chapter 4

Random Number Generators

The generation of random numbers is a crucial topic in cryptography. We differenti-
ate between random number generators (RNGs) and pseudo random number generators
(PRNGs).

Candidates of the first category generate non-deterministic sequences and are often
based on physical reactions, like chaotic oscillators [JF99, BGL+03, EÖ05], or the timing
of radioactive decay [Wal06]. These processes are often not very fast and the output is
biased, thus, they require additional post-processing procedures [Dic07, Lac08]. The final
output allows the creation of strong and unpredictable keys or random seeds.

A PRNG starts from a short seed and generates a long random looking sequence in
a deterministic way. These generators are normally much faster than RNGs. They can
be used as stream ciphers (see Chapter 3), where the key and the IV are the seed and
the generated sequence is combined with the plaintext. PRNGs also find applications
in systems where a big number of weaker keys is needed or in mathematical areas like
quasi-Monte Carlo methods [Nie92, L’E98].

There is also a big number of hybrid generators which try to collect randomness from
events that are deterministic but which depend on parameters that we assume to be unpre-
dictable. HAVEGE falls in this last category of generators. It depends on the inner state
of the processor. Since this state is changed by all processes running on a computer, we
cannot predict the behavior without knowing exactly which process starts at which time.
Also, we cannot measure the behavior without changing it.

For most (pseudo) random number generators, it is hard to give an exact analysis of the
output sequences. In general, we want that their output is computational indistinguishable
from a random process [GM84, Gol90]. If it is not possible to evaluate all the underlying
processes, we apply suites of statistical tests. If none of them detects a “non-random”, we
assume that the generator produces high-quality random numbers. In the next section, we
give a short overview of the most important tests for RNGs.
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4.1 Tests of Randomness

We want the output of a random number generator to behave like an independent and
uniformly distributed random process. The goal of statistical tests is to detect any “non-
random” statistical behavior.

Knuth gave in [Knu81] a nice introduction to statistical tests for random number gener-
ators. He presented several basic statistical tests, like the equidistribution test which counts
the frequency of each number, or the run test which considers the length of sequences of
the same number, e.g. the length of “runs” of all 0’s.

A more general test is Maurer’s universal statistical test [Mau92] which claims to find
any defect in a generator which can be modeled as an ergodic stationary source with finite
memory. Wegenkittl gives an extension to this approach in [Weg01] by using a test statistic
based on the entropy of an ergodic Markov chain.

The National Institute of Standards and Technology (NIST) presents an extensive guide
to statistical testing in [RSN+01] as well as a test suite which can be downloaded from
their site and contains a wide range of statistical tests.

The ENT pseudorandom sequence test program [Wal98] and the Marsaglia’s battery
of tests: Diehard [Mar95] are two other examples of available testing software for random
number generators.

Further documentation about this topic can be found in the standard FIPS-140-1 [Nat91]
and in the earlier versions of FIPS-140-2 [Nat01] as well as on the homepage of the pLab
Project [pLa].

The minimal requirement for a random number generator is that it passes the previously
mentioned tests. However, this does not guarantee complete security. The test result
does not give any information if the seed or the source of entropy is known or can be
manipulated.
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Chapter 5

HAVEGE

The HAVEGE (HArdware Volatile Entropy Gathering and Expansion) generator produces
random numbers using the uncertainties which appear in the behavior of the processor af-
ter an interrupt. This generator was developed by Sendrier and Seznec and is described in
[SS02, SS03]. The authors distinguish between HAVEG (HArdware Volatile Entropy Gath-
ering) and HAVEGE. Whereas HAVEG gathers entropy only in a passive way, HAVEGE
uses the data already collected to additionally affect the behavior of the processor. In our
tests, we used the whole implementation of HAVEGE; however, we examined directly the
collected data without the final processing step. The main part of this chapter is devoted
to HAVEGE, but a description of HAVEG can be found in Section 5.2.1. In the following,
many statements apply to both generators. For simplicity we will discuss only the more
powerful version, HAVEGE, in such cases.

HAVEGE extracts entropy from the uncertainty that is injected by an interrupt into
the behavior of the processor. Most random number generators that use entropy gathering
techniques obtain their entropy from external events, like mouse movements or input from
a keyboard. Each of those events causes at least one interrupt and thus changes some
inner states of the processor. In which way those states are changed will be discussed
later (see Section 5.1). HAVEGE gathers the uncertainty produced in the behavior of the
processor by means of the hardware clock counter. Sendrier and Seznec showed in [SS02]
that during one operating system interrupt, thousands of volatile states are changed within
the processor. Thus, the amount of entropy which can be collected by this technique is
considerably larger than the entropy of the original event.

Therefore, even HAVEG, which only uses the entropy gathering mechanism, still
achieves a much higher throughput (about 100 Kbits/s) than other entropy gathering
generators. For example, the Linux RNG /dev/random [Ts’99] only delivers a few bytes
per second on an inactive machine.

Additionally, HAVEGE uses random data already collected, to affect the behavior of
the processor itself. Consequently, this generator is less dependent on the occurrence of
interrupts and achieves a throughput of more than 100 Mbits/s.

This chapter is organized in the following way: In Section 5.1, we explain some of the
optimization techniques in a processor and why they can be used by HAVEGE to gather
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entropy. The general structure of HAVEGE is explained in Section 5.2. Subsequently, in
Chapter 6 we give the results of our tests.

5.1 Optimization Techniques of the Processor

Before we discuss the structure of HAVEGE, we shall give a short introduction to those
components of the processor which are important for understanding the functionality of
the generator. The intention of our introduction is to give an overview over the operation
mode of the processor. However, implementations of specific processors may vary from our
description. A detailed discussion of this topic can be found in [HP02].

Today’s processors use a multitude of different optimization techniques to enhance
their speed. Examples of such techniques are the instruction cache, the data cache, the
instruction pipeline, and the branch predictor. We will shortly explain those techniques
and will show in which way HAVEGE uses them to collect entropy.

An important optimization technique is the so-called cache. A computer contains mem-
ory devices of different speed. Since faster memory is also more expensive, the storage

Figure 5.1: Memory devices.

volume of the different devices decreases with increasing speed. To take this fact into
account, computer designer have designed architecture to connect mass storage device,
which are the slowest memory component to the fastest, the registers. Another fact to
take into account is Moore’s law [Moo65]: The law states that the number of transistors
per integrated circuit within a processor doubles every 18 months, which means that the
speed is doubling virtually every 2 years. Another version of Moore’s law predict that the
speed of memory devices is doubling only every 10 year. To reduce this gap, fast memory
component like RAM or cache have been designed to increase the locality of data and hide
the latency of memory.

Generally, the cache is a fast memory, which temporally stores (caches) often used
data from a slower memory. As a consequence we do not always have to access the slower
memory, which highly reduces the access time of the data. For HAVEGE the instruction
cache and the data L1 cache are important. Both are located within the processor and are
applied to cache the instructions and respectively the data for the processor. To simplify
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matters we will only discuss the data cache. Since instructions are virtually nothing else
than data, the instruction cache works in the same manner.

If the processor needs specific data, it first checks if those data are already located in
the cache. If this is the case, the data can be used directly from the cache. This situation
is called a hit. If those data are not yet in the cache, they are first loaded from the slower
memory into the cache and used by the processor afterwards. This slow case is called a
miss. We have to consider that the cache is much smaller than slower memory. Thus, the
cache is not able to store all data. Nevertheless, the operating system tries to minimize
the number of misses.

Another optimization technique is based on the instruction pipeline. An instruction
can be partitioned into five different steps:

• IF (Instruction Fetch): loads the instruction,

• ID (Instruction Decode): decodes the instruction and loads the register,

• EX (EXecution): executes the instruction,

• MEM (MEMory access): accesses slower memory devices, and

• WB (Write Back): writes result into register.

Each phase is handled by a different unit of the processor. If a new instruction (I2) only
starts after the previous instruction (I1) has finished all its phases, then the different units
are idle most of the time. The instruction pipeline is used to improve the behavior of the

IF I1 I2

ID I1 I2

EX I1

MEM I1

WB I1

Table 5.1: Without instruction pipeline.

processor. As soon as a unit has finished its work with one instruction, it starts to work
on the subsequent one. Since the different units are not idle any more, the number of
instructions that can be processed in a given time highly increases. However, problems
occur if there exist dependencies between the individual instructions. How should the
pipeline behave if a program contains statements of the following form?
IF I1

THEN I2, I3, . . .
ELSE I ′

2, I ′
3, . . .

Only after I1 was finished, the processor knows which instructions will have to be executed
next. Basically the processor decides, based on rules, whether to take the main branch (I2,
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IF I1 I2 I3 I4 I5 I6 I7

ID I1 I2 I3 I4 I5 I6

EX I1 I2 I3 I4 I5

MEM I1 I2 I3 I4

WB I1 I2 I3

Table 5.2: Using the instruction pipeline.

I3, . . . ) or the alternative branch (I ′
2, I ′

3, . . . ) and includes the corresponding instructions
into the pipeline. If at the end of I1 it turns out that the wrong branch was chosen, then
all calculations after I1 were useless and the new branch must be loaded into the pipeline.
Consequently, much time is lost by choosing the wrong branch. Since a general program
contains many IF/ELSE statements, the processor needs a mechanism that is as reliable as
possible to predict the correct branch. Such a mechanism is called a branch predictor.

A simple branch predictor is presented in Figure 5.2. Each IF/ELSE decision is repre-

Figure 5.2: Branch predictor.

sented by a finite state machine with four states. If the machine is located in one of the
left two states, then the main branch is taken, otherwise this branch gets rejected. The
transition from one state to another depends on the fact if the prediction of the branch was
correct. Even if this machine is quite simple it achieves a good prediction rate on average
programs. The state machine can be represented by two bits, thus, the branch predictor
contains a small memory and by means of a hash function assigns each IF/ELSE decision
to two bits of this memory.
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5.1.1 Functionality of HAVEGE

Now that we know how the different optimization techniques work, the question remains in
which way these techniques produce entropy. HAVEGE measures the number of hardware
clock cycles, which are required to process a short sequence of instructions. Since these
instructions use the optimization techniques described above, the number of required clock
cycles highly depends on the current state of those techniques.

In a computer, many processes are executed concurrently, but the processor is only
able to handle one process at a time. Which process has access to the processor at which
time is controlled by the operating system. This control is called scheduling. While a
process allocates the processor, it writes its own data into the cache. After a new process
is loaded into the processor, the probability of a miss in the cache or a false prediction of
a branch is much higher than if the process would have been working continuously on the
processor. This is due to the fact that the data of the previous process may still be located
in the processor. Figure 5.3 demonstrates that the behavior of the process P1 may differ

Figure 5.3: Scheduling.

between Case 1 and Case 2. The figure describes which process allocates the processor at
which time. The time gaps between the processes in the second case arise from the cost of
scheduling. In the first case the process was continuously assigned to the processor, in the
second case the calculation was interrupted by the processes P2 and P3.

Altogether we see that the result of the hardware clock cycle measure of HAVEGE
highly depends on the number and type of processes which are handled in the meantime.
Each processed interrupt changes the measured value of clock cycles, because on the one
hand the handling of the interrupt uses the processor and on the other hand the interrupt
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may change the order of the executed processes. Thus, each interrupt injects entropy in
the number of required hardware clock cycles. Sendrier and Seznec state in [SS02, p.12]
that on average, HAVEG is able to collect at least 8K-16K of unpredictable bits on each
operating system interrupt by means of only this gathering technique.

5.2 General Structure

We first explain the entropy gathering in HAVEG and show, subsequently, how HAVEGE
extends this method by using two random walks in a big table.

5.2.1 HAVEG

HAVEG is the simpler version of the two generators. It just gathers the entropy that was
injected by an interrupt into the behavior of the processor. For this purpose, HAVEG uses
the method HARDTICK(), which returns the current value of the hardware clock counter.
The method also tests, whether the number of clock cycles since the last measurements
exceeds a given threshold. In this case, it assumes that an interrupt occurred and increases
the counter INTERRUPT. The call of HARDTICK() is embedded into a small sequence of
instructions, which uses a read and a write command to be influenced by the state of the
cache, as well as a conditional branch. In order to detect as many changes as possible in
the instruction cache, the sequence of instructions is repeated as often in the main loop as
is necessary to make the loop just fit into the instruction cache. The uncertainties in the
behavior of the processor are observable in the result of HARDTICK().

The output of HARDTICK() gets included at position K into the Entrop-Array by means
of a simple mixing function. The mixing function consists of cyclic shift and XOR opera-
tions. The shift should compensate the fact that most of the entropy is found in the least
significant bits. The XOR operations are used to combine the new input value with the
old values at positions K and K + 1 in the array. Thus, the program achieves that each
input value has an influence on each position of the array at least after an adequate time.

Since HAVEG gains its entropy from the chaotic behavior after an interrupt, the pro-
gram counts the number of interrupts in HARDTICK(), as we have seen before. NMININT

represents the minimal number of interrupts that must occur, such that the content of the
Entrop-Array can be seen as random. As soon as INTERRUPT exceeds NMININT, the program
leaves the main loop and the Entrop-Array contains the resulting random numbers.

The disadvantage of this program is that if no interrupts occur, the algorithm gets
highly deterministic and the output contains only little entropy.

5.2.2 HAVEGE

HAVEGE contains a table, the so-called Walk-Table, and two pointers PT and PT2. The
two pointers represent the current position of two simultaneous walks within the table.
This idea was taken from [BD76]. However, the security assumption of HAVEGE is not
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based on this article but on the behavior of the processor. The principle structure of
HAVEGE can be found in Algorithm 1.

Algorithm 1 Scheme of HAVEGE.
Require: int Walk[2 ∗ CACHESIZE], PT, PT2.
Ensure: int Result[SIZE] with SIZE = 220.
1: for j from 0 to 31 do {Fill Result array 32 times.}
2: while i < SIZE do
3: {Begin of OneIteration}
4: PTtest← PT >> 20 {Shift 20 positions to the right.}
5: if PTtest ≡ 1 (mod 2) then
6: PTtest← PTtest⊕ 3 {The operator ⊕ represents a bit-wise XOR.}
7: PTtest← PTtest >> 1
8: if PTtest ≡ 1 (mod 2) then
9: · · · {Use in total 10 nested if-branches.}

10: end if
11: end if
12: HARD ← HARDTICK()
13: Result[i]← Result[i]⊕Walk[PT ]
14: Result[i + 1]← Result[i + 1]⊕Walk[PT2]
15: Result[i + 2]← Result[i + 2]⊕Walk[PT ⊕ 1]
16: Result[i + 3]← Result[i + 3]⊕Walk[PT2⊕ 4]
17: i← i + 4
18: Replace the values of Walk[PT ], Walk[PT2], Walk[PT ⊕ 1], Walk[PT2⊕ 4] with

rotated values of the Walk table XORed with HARD.
19: Result[i]← Result[i]⊕Walk[PT ⊕ 2]
20: Result[i + 1]← Result[i + 1]⊕Walk[PT2⊕ 2]
21: Result[i + 2]← Result[i + 2]⊕Walk[PT ⊕ 3]
22: Result[i + 3]← Result[i + 3]⊕Walk[PT2⊕ 6]
23: i← i + 4
24: Replace the values of Walk[PT⊕2], Walk[PT2⊕2], Walk[PT⊕3], Walk[PT2⊕6]

with rotated values of the Walk table XORed with HARD.
25: Reset PT2 depending on values in the Walk table and PT .
26: · · · {A block similar to line 4-24.}
27: Reset PT depending on values in the Walk table and PT2.
28: {End of OneIteration}
29: Repeat line 3-28 as many times as to fill the instruction cache.
30: end while
31: end for

The main work is done in a sequence of instructions which are grouped together in
OneIteration. In this sequence, we read and write two blocks of eight integer words in
the Walk table, we read twice the value of HARDTICK and we output 16 integer words in
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the Result array. In addition, there are two big nested if-branches which depend on the
current value of the pointer PT. The code of OneIteration is repeated several times to fill
the instruction cache as well as possible.

The course of the random walks of the two pointers PT and PT2 is determined by the
content of the table, so the decisions in the if-branches depend on the content of the table.
In addition, the size of the table was chosen to be twice as big as the data L1 cache.
Therefore, the probability is about 50% that the data of the table, which gets accessed by
the two walks, is located in the cache. Hence the number of required clock cycles is not
only affected by the occurrence of interrupts but also by the content of the table. If one
assumes that the Walk-Table is filled with random numbers, it is reasonable to claim that
the behavior of the processor gets changed in a random way. However, the total absence of
interrupts makes HAVEGE a pure deterministic algorithm, but the use of the table helps
to compensate interrupt shortages.

The result of HARDTICK is each time merged into the content of the Walk table by
XORing with eight different, rotated entries. The rotation is done to distribute the higher
entropy in the last bits. The values which are put into the Result array are taken directly
from some positions in the Walk table, depending on the position of the pointers, and
are XORed with the previous values in the array. This simple mechanism is sufficient to
generate good random numbers. However, for the initialization of HAVEGE the Result

table is filled several times by the algorithm described above.

State Space

The size of the internal state is an important criterion for a PRNG. The internal state
of HAVEGE not only consists of the Walk-Table and the two pointers, which represent
the two random walks within the table, but also of all the volatile states inside of the
processor, which affect the number of required clock cycles. Therefore, the complete state
of HAVEGE cannot be observed without freezing the clock of the processor, since each
attempt to read the inner state of the processor alters it at the same time. The size of the
Walk-Table was chosen to be twice as big as the size of the data L1 cache. As an example,
the implementation in [SS03] uses a table of 8K 4-byte integers.

Since the volatile states of the processor are part of the inner state of the generator,
they have to be considered when determining the strength of HAVEGE. In [SS03] the
authors indicate that there are thousands of such binary states in the processor which are
changed during an interrupt and therefore influence the outcome of the generator. Thus,
the strength of HAVEGE is the size of the Walk-Table plus thousands of volatile states.

5.3 Empirical Results

Statistical Tests

The quality of HAVEGE and HAVEG was tested in [SS02] and [SS03] by means of a
specific battery of tests. The single tests were performed on 16 Mbyte sequences of random
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numbers, and each step of the battery was applied to several sequences.
The battery consists of four steps. In the first step the less time consuming ent test

[Wal98] was used to filter out the worst sequences. In the second and the third step the
FIPS-140-2 test suite [Nat01] and respectively the NIST statistical suit [RSN+01] were
applied. In both cases, a generator passes the tests if the result of the tests corresponds
to the average results of the Mersenne twister [MN98] pseudorandom number generator.
According to [SS03], the Mersenne twister is known to reliably satisfy uniform distribution
properties. In the fourth step the DIEHARD test suit [Mar95] was performed.

HAVEGE consistently passed this test battery on all tested platforms (UltraSparcII,
Solaris, Pentium III). This means that the output of HAVEGE is as reliable as pseudo-
random number generators like the Mersenne twister, without suffering from the general
security problems of PRNGs which arise from a compromised state.

In Chapter 6, we do some additional analysis. This time we consider the results of
HARDTICK before they are merged into the Walk table. We are interested in the general
statistical properties of these sequences and study which part of the processor has the
biggest influence on the uncertainties of HAVEGE.

Throughput

HAVEG exhaustively uses the entropy of an interrupt and thus achieves a much higher
throughput than general entropy gathering generators. Sendrier and Seznec showed in
[SS02], using an empirical entropy estimation, that HAVEG collects between 8K (Iita-
nium/Linux) and 64K (Solaris/UtrasparcII) of random bits during a system interrupt.
This corresponds to a throughput of a few 100 Kbits per second. For the empirical en-
tropy estimation, they determined for each machine, the necessary number NMININT of
interrupts, such that the content of the fixed size Entrop-Array continuously passes the
battery of test. From this value they concluded the number of random bits collected per
system interrupt.

Since HAVEGE is less dependent on the occurrence of interrupts it achieves a much
higher throughput. The authors state in [SS03] that HAVEGE needs about 920 million
cycles on a Pentium II to generate 32 Mbytes of random numbers. This is equal to a
throughput of approximately 280 Mbits per second.

5.4 Security

The security of HAVEGE is built on the large unobservable inner state of the generator.
Each effort of reading the internal state results in an interrupt and, therefore, alters it at
the same time. The only way of reading the total state would be to freeze the hardware
clock, which is only possible in special computer labs for research reasons. The high variety
of possible internal states and of ways to change them makes it practically impossible to
reproduce a sequence of random numbers.
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The XOR in the output function prevents information about the Walk-Table from being
gained from the output.

In contrast to other generators like Yarrow [KSF99, Sch03], HAVEGE reseeds its in-
ternal state permanently. Therefore, even if an adversary is able to learn the content of
the Walk-Table and the two pointers, he or she loses track of the walks and, thus, of the
future random numbers as soon as the next HARDTICK() result is processed. This means
that the generator is able to recover very fast from a compromised state.

It might be interesting to study different possibilities which may reduce the uncertainty
in the behavior of the processor, like for example flooding the processor with user defined
interrupts or changing the temperature of the processor. However, since the correlations
between the different influences are very complex it is unlikely that an adversary is able
to practically affect the result of the generator. In Chapter 6, we examine which influence
has the branch predictor and the cache on the entropy of the HARDTICK and thus, on the
data produced by HAVEGE.

5.5 Conclusion

HAVEGE is an innovative concept that exhaustively uses the entropy that an interrupt
injects into the behavior of the processor. It works on user level and does not use any
operating system calls and can therefore be used together with all machines and oper-
ating systems that use optimization techniques like branch predictors or caches. To run
HAVEGE on a certain computer we simply have to adjust some parameters which corre-
spond to the specific sizes of the branch predictor, the instruction cache and the data L1
cache. Such parameters are for example the number of iterations in the code or the size of
the Walk-Table. An implementation and adjustments for several processors can be found
at http://www.irisa.fr/caps/projects/hipsor/.

The quality of the output and the throughput of the generator is at least as good as
for general pseudorandom number generators. In addition, the security of HAVEGE is
hardly reducible. Each attempt to monitor the inner state of the processor alters it and
the continuous reseeding of the Walk-Table prevents compromised state attacks.

HAVEG, on its own, is a pure entropy gathering generator. It reaches a higher through-
put than other generators of this kind and may be used alone or in combination with other
generators.
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Factsheet of HAVEGE

Cryptographic None
Primitives used
Strength size of Walk table

+ thousands of volatile states
Statistical Test NIST test suite,
Results available DIEHARD battery
Speed HAVEG: 8K-16K bits/s

HAVEGE: 280 Mbits/s

Table 5.3: Summary of HAVEGE.
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Chapter 6

Empirical Tests

In this chapter, we examine the quality of the data which HAVEGE collects from the
HARDTICK function. For this purpose, we use a degenerated version of the HAVEGE
generator. The exact test setup is described in Section 6.1. We are interested in the
structure of the data, how much uncertainty we are able to collect, and how much influence
the branch predictor and the instruction cache have. In Section 6.2 we give the results of
our study and we conclude in Section 6.3

6.1 Test Setup

In the original version of HAVEGE, the output of the generator is taken from the Walk

table depending on the random walk of the two pointers PT and PT2. The content of the
table as well as the course of the random walks is influenced by the result of HARDTICK, i.e.
the current value of the clock cycle counter. The timing behavior of HAVEGE depends
on the state of the branch predictor, the instruction and data cache, and the content of
the Walk table. The time of the writing and reading processes is essentially influenced by
these parameters.

The degenerated version of HAVEGE still writes and reads values from and into the
table, to conserve the timing behavior of the generator as much as possible. However, for
the statistical tests, we use directly the content of the clock cycle counter as output data of
the generator. In OneIteration we call twice the HARDTICK function and write 16 values
in the Result array. In the degenerated version of HAVEGE, two of the 16 values will
contain the output of HARDTICK. The original HAVEGE generator produces 4 Mbytes of
random data in one pass. Since we use only every 8th value of the Result array we are
able to gather 128K integer values with one call of the program. As test data we finally
use the differences of the clock cycle counter values. The test data is represented as integer
values.

We tested four different versions of the degenerated HAVEGE generator:

• Normal: The only difference to the original version is that every 8th value of the
Result array contains the result of HARDTICK. All the other test setups are based on
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this version.

• No Branch Predictor: In file OneIteration we deleted the nested if-branches.
Thus, we lose the influence of the branch predictor.

• One Loop: In the original version, the content of OneIteration is repeated several
times to best fit into the instruction cache of the processor. In this setting, the
content of OneIteration is only repeated once and, therefore, does not take the
whole instruction cache.

• More Loops: This time, we repeat OneIteration more than the optimal number.
Thus the code does not fit anymore in the instruction cache.

These four versions were applied in three different situations:

• Idle: No special process is running during the random number generation.

• File Copy (Ordered): We copied a big file at the same time as we generated our
test data. The copied file consists of the string “abcd” repeated many times, thus, it
exhibits an ordered structure.

• File Copy (Random): Again we copy a big file during the generation process; how-
ever, this time the file consists of random data (previously generated by HAVEGE).

In the end we tested these 4× 3 cases on two different Pentium 4 computers with different
cache sizes:

• PC 1: Pentium 4, 3.20GHz, 1024 KB cache

• PC 2: Pentium 4, 3.40GHz, 2048 KB cache

One application of the degenerated HAVEGE generator creates 128K integer values, which
corresponds to the time differences between two calls of HARDTICK. For each setting, we
created ten different data files of 128K integer values. In addition, we produced files for
which we applied successively HAVEGE, respectively, 20, 50, 100, 200, and 500 times.

6.2 Test Results

We are interested in the structure and the quality of the data obtained by HARDTICK.
In contrast to many statistical tests for random number generators, we do not work on
bits and bytes but directly on the resulting integer values. We considered the differences
between two successive calls of HARDTICK. We studied some basic information of the test
data like the mean value, the variance, or their histograms (Section 6.2.1). In Section 6.2.2,
we considered the autocorrelation of the received data. Since we wanted to know the
amount of uncertainty we are able to collect, we examined which setting gives the highest
entropy (Section 6.2.3). In addition, we studied whether the empirical entropy changes if
we assume that the test data behaves like the output of a Markov chain (Section 6.2.4).
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6.2.1 Basic Data

The resulting data ranges from minimal 136 up to some millions. In general, a clock cycle
difference of over 5000 marks the occurrence of an interrupt; however, the majority of
values lie under 1000. We compare the average value of different settings and different
versions in Table 6.1. The results are taken over ten 128K integer files on PC 1. We can

Idle File Copy (Ordered) File Copy (Random)

Normal 299.22 324.81 337.73
No Branch Pred. 218.70 245.49 244.57
One Loop 248.05 285.29 249.63
More Loops 312.95 316.29 370.45

Table 6.1: Mean (PC 1).

see that without the influence of the branch predictor or a filled instruction cache, the
mean decreases. If we ignore all data values from an interrupt, i.e. the values larger than
5000, the mean does not changes a lot. However, the variance reduces from values over a
million for the original data, down to some thousands without counting the interrupts.

In a next step, we studied which values are possible. When we considered the small
window of the histogram displayed in Figure 6.1 we saw that only a part of all possible
numbers appear. In the case of PC 1, all results were multiples of 8. Hence, this was not
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Figure 6.1: Detail of histogram in normal/idle setting.

true for PC 2. If we consider Figures 6.2, 6.3, 6.4, and 6.5 we can see that the histogram
changes from version to version. However, the copying of a file has practically no influence
on the specific pattern.
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Figure 6.3: Histogram of version: No Branch Predictor.
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Figure 6.4: Histogram of version: One Loop.
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Figure 6.5: Histogram of version: More Loops.
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6.2.2 Auto Correlation

In this Section, we consider the autocorrelation of our sequence. It shows whether there is
a repeating pattern in the data.

Definition 6.1 Let us denote by (Xt)t≥0 a random process, where the mean µ and the
variance σ2 is the same for all variables Xt. Then, the normalized autocorrelation for a
shift τ is given by

R(τ) =
E [(Xt − µ)(Xt+τ − µ)]

σ2
, (6.1)

where E denotes the expectation. In the case of a discrete process (X0, X1, . . . , XN−1) of
length N , this can be written as

R̂(τ) =
1

Nσ2

N−1∑

i=0

(Xt − µ)(Xt+τ mod N − µ) . (6.2)

We considered the autocorrelation for a shift up to 200. In Figure 6.6, we see that there
is a significant pattern of size two in the correlation graph. This is due to the fact that
we read twice the HARDTICK in each sequence of OneIteration. The absolute amount
of the correlation is about constant for shifts up to 200. In Figure 6.7 we consider a
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Figure 6.6: Autocorrelation in the normal/idle setting with a shift of up to 200.

smaller window of shifts, to have a better look at the correlation depending on different
versions. We see that the autocorrelation is the smallest if we do not benefit from the
branch predictor.

In Figures 6.8 and 6.9 we consider the file copy settings. This simultaneous activity
reduces considerably the autocorrelation of the sequence. We have to zoom even more into
the window to recognize the correlations. Thus, we can conclude that the autocorrelation
is most important if the process is idle.
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Figure 6.7: Autocorrelation in setting: Idle.
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Figure 6.9: Autocorrelation in setting: File Copy (Ordered).

We saw that there is a pattern of size two in the autocorrelation. This indicates that
every second value is in a similar range. However, this does not say anything about the
exact values. This behavior arises from the fact that the number of commands between
the two calls of HARDTICK are not exactly the same. Thus, all the results from the first
calls are more likely to be in the same range, as well as all results from the second calls.
The absolute value reduces as soon as there are other processes running at the same time
on the computer.

6.2.3 Entropy

HAVEGE is a random number generator which collects its uncertainty from external
events. Thus, if we assume that it behaves like a random source, we would like to know
the entropy of this source. In a first step, we assume that we have an independent and
identically distributed (i.i.d) sequence X1, X2, . . . , XN over a finite state space S. For
simplicity we assume S = {1, 2, . . . ,m}. The probability distribution of the Xi’s is given
by the vector P = (p1, p2, . . . , pm), thus, our source has the entropy

H(P) =
m∑

i=1

pi log2

1

pi

.

We use the convention that 0 log 1
0

= 0, since a zero probability has no influence on the
entropy.

Definition 6.2 Let x1, x2, . . . , xN be a sample outcome of our sequence X1, X2, . . . , XN .
We denote P̂ = (p̂1, p̂2, . . . , p̂m) the vector of relative frequencies, where pi =

#{xj |xj=i}
N

.
Then, the sample entropy is given by

H(P̂) =
m∑

i=1

p̂i log2

1

p̂i

. (6.3)
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For N →∞, the sample entropy converges almost sure towards the real entropy of an i.i.d
source.

Idle File Copy (Ordered) File Copy (Random)

Normal 5.39 5.39 5.40
No Branch Pred. 3.73 3.75 3.75
One Loop 3.67 3.59 3.85
More Loops 4.71 4.72 4.75

Table 6.2: Sample entropy H(P̂) on PC 1.

Idle File Copy (Ordered) File Copy (Random)

Normal 5.89 5.90 5.90
No Branch Pred. 4.20 4.21 4.20
One Loop 4.31 4.33 4.34
More Loops 5.08 5.09 5.10

Table 6.3: Sample entropy H(P̂) on PC 2.

In Tables 6.2 and 6.3 we computed the sample entropy on two different computers.
Each time we took the average entropy over ten different files, even if there was not much
fluctuation between the values. We can observe that the entropy is not the same for
the two machines. The value for PC 2, which has a larger cache, is always higher. The
entropy does not change between the different situations (idle, file copy); however, there
are significant differences between the various versions. We achieve the highest value for
the normal version. If the version does not depend on the branch predictor or does not fill
the instruction cache, the entropy is lowest. When we use more than the optimal number
of OneIteration blocks we reduce the entropy, hence, it is still higher than in the case of
using only one block. With this results, we could confirm that the branch predictor and
state of the instruction cache has a big influence on the collected uncertainty. However,
the value also changes from machine to machine.

6.2.4 Entropy of a Markov Chain

In the previous section we assumed that HAVEGE produces i.i.d. random numbers.
This time we consider a model where the sequence is produced by an ergodic stationary
Markov chain (MC). We first give a small introduction to Markov chains and their entropy
estimation. In the end, we present the results on our test and discuss their relevance.

Definition 6.3 (Markov Chain of Order κ) The sequence (Xn)n∈N is called a homo-
geneous Markov chain of order κ with discrete time and state space S = {1, 2, . . . ,m} if
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and only if for every n ∈ N the condition

Pr[Xn+1 = j|X0 = i0, . . . , Xn = in] = Pr[Xn+1 = j|Xn−κ+1 = in−κ+1, . . . , Xn = in]

= pin−κ+1...inj

is satisfied for all (i0, . . . , in, j) ∈ Sn+2, for which Pr[X0 = i0, . . . , Xn = in] > 0.

Thus, the probability of Xn depends only on the previous κ states and is independent of
the specific n.

Remark 6.4 A Markov chain of order κ = 0 corresponds to an i.i.d. sequence as in
Section 6.2.3.

Markov chains are interesting for the description of RNGs, because they allow to model
the behavior of a generator if there exists a correlation between different output values.
Let (X

(d)
ℓ )ℓ≥1 define the sequence of overlapping d-tuples of the sequence (Xn)n≥1, where

X
(d)
ℓ = (Xℓ, . . . , Xℓ+d−1) for all ℓ ≥ 1. We observe as in [Weg98] that for each MC (Xn)n≥1

of order κ, the sequence (X̃
(d)
ℓ )ℓ≥1 of overlapping d− tuples forms a MC of order κ′ = 1 if

κ ≤ d. Thus, in the following we limit our discussion to the special case of a MC of order
κ = 1. For more details see [Weg98]. The advantage of a MC of order κ = 1 is that it can
be easily defined by means of a transition matrix.

Definition 6.5 (Homogenous Markov Chain of Order κ = 1) Let

• S = {1, . . . ,m} be the state space of the random variables Xn, n ≥ 1,

• P = (pij)(i,j)∈S2 be a transition matrix such that

pij ≥ 0 ∀(i, j) ∈ S2,
∑

j∈S

pij = 1 ∀i ∈ S,

and

• P = (p01, . . . , p0m) be the initial distribution with

p0i > 0 ∀i ∈ S,
∑

i∈S

p0i = 1.

Then the triple (S, P,P0) is a homogeneous Markov chain (Xn)n∈N of order κ = 1 if and
only if for every n ∈ N0 the condition

Pr[Xn+1 = j|X0 = i0, . . . , Xn = in] = Pr[Xn+1 = j|Xn = in] = pinj

is satisfied for all (i0, . . . , in, j) ∈ Sn+2, for which Pr[X0 = i0, . . . , Xn = in] > 0. The
probability distribution of the specific random variable Xn is then given by

P0P
n,

where P
n represents the n’th power of the transition matrix.
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An important probability distribution of a MC is its so-called stationary distribution.

Definition 6.6 (Stationary Distribution) A distribution P = (p1, . . . , pm) on the sam-
ple space S which satisfies

∑

i∈S pipij = pj for all states j ∈ S or PP = P in matrix
notation, is called a stationary distribution.

Definition 6.7 (Stationary Markov Chain) Let P be the stationary distribution of the
MC (S, P,P0). The stationary Markov chain (S,P) represents the chain that is generated
by setting P0 = P. In such a chain all random variables Xn of the MC (Xn)n∈N have the
same probability distribution P.

Now we return to the term ergodic. We call a MC ergodic if the stochastic properties of
sequences produced by the MC are independent of the length and the starting time of the
sequence. In more detail, this means that the relative frequencies of single elements or
d-dimensional tuples converge, for n approaching infinity, toward a fixed limit for almost
every sequence. Sequences for which this property does not hold have probability zero.
Ergodicity is satisfied if the MC is finite, irreducible and aperiodic.

A Markov chain is called finite if its sample space S is finite. We only consider finite
Markov chains. Let p

(n)
ij denote the elements of the n’th power matrix P

n, then we can give
the following definitions.

Definition 6.8 (Irreducibility) A MC is called irreducible (or undecomposable) if for

all pairs of states (i, j) ∈ S2 there exists an integer n such that p
(n)
ij > 0.

We denote by the period of an irreducible MC the smallest number p such that for all i ∈ S
the set of all possible return times from i to i can be written as pN = {p, 2p, 3p, . . .}, i.e.

p = gcd{n ∈ N : ∀i ∈ S, p
(n)
ii > 0}.

Definition 6.9 (Aperiodicity [Weg98]) An irreducible chain is called aperiodic (or acyclic)
if the period p equals 1.

The following lemma holds.

Lemma 6.10 ([Weg98]) Let (S, P,P0) be a finite, irreducible, aperiodic MC with sta-
tionary distribution P. Then P = (p1, . . . , pm) is given by

pj = lim
n→∞

p
(n)
ij (6.4)

for all pairs (i, j) ∈ S2 of states.

Markov chains that satisfy Condition (6.4), are called ergodic. According to this, the
behavior of an ergodic Markov chain approximates the behavior of a stationary Markov
chain if n approaches infinity. If not mentioned otherwise we will assume in the following
that all Markov chains are ergodic and of order κ = 1.

After we have studied the necessary definitions we are now able to define the entropy
of a Markov chain.

45



Definition 6.11 (Entropy of a Markov Chain) Denote by H(S, P) the entropy of the
ergodic chain (S, P,P0),

H(S, P) = −
m∑

i=1

pi

m∑

j=1

pij log2 pij,

where P = (p1, . . . , pm) is the stable distribution of the chain.

Now that we have all necessary definitions, we can deal with the entropy estimation of
Markov chains. To do so, we need some notation.

Remark 6.12 (Notation) Let (S, P,P0) be an ergodic MC with finite state space S,
where |S| = m. For simplicity we assume that S = {1, 2, . . . ,m}.
• (Xn)n≥1 denotes a sequence of random variables underlying (S, P,P0).

• (xn)N
n=1 is a realization of length N of the MC.

• xj
i , i ≤ j denotes the subsequence (xi, xi+1, . . . , xj).

• (X̃
(d)
ℓ )ℓ≥1 is the sequence of overlapping d-tuples defined in a cyclic way on the se-

quence (Xℓ)
n
ℓ=1 of length n, such that X̃

(d)
ℓ = X

(d)
r for all ℓ ≥ 1 if ℓ − 1 ≡ r − 1

(mod n) and 0 ≤ r ≤ n− 1.

• P̂ (d)(n) = (p̂
(d)
i

(n))i∈Sd is the vector of relative frequencies of the overlapping tuples
in xn

1 , with

p̂
(d)
i

(n) =
1

n
#{1 ≤ l ≤ n : X̃

(d)
l = i}

We can estimate the entropy of the MC using the relative frequency of overlapping d-tuples,

Ĥ(d) = −
∑

i∈Sd

p̂
(d)
i

(n) log2 p̂
(d)
i

(n) +
∑

i∈Sd−1

p̂
(d−1)
i

(n) log2 p̂
(d−1)
i

(n). (6.5)

The value Ĥ(d) is an asymptotically unbiased and consistent estimator for the entropy of a
Markov chain (S, P,P0), if the order κ of the Markov chain is less than d. Asymptotically
unbiased means that

lim
n→∞

E(Ĥ(d)) = H(S, P),

where E represents the expectation of the random variable. Consistency stands for the
condition that the estimator converges in probability toward the true value, i.e. for all
ǫ > 0

lim
n→∞

Pr[|Ĥ(d) −H(S, P)| ≤ ǫ] = 1.

Wegenkittl shows in [Weg01] in detail that the estimator even converges almost surely
(a.s.) if d > κ, and n→∞, which means

Pr[ lim
n→∞

Ĥ(d) = H(S, P)] = 1.
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A special characteristic of Ĥ(d) is that for d = 1 it estimates the entropy H(P) of the
stable distribution of the chain. In the independent case (k = 0) this is equivalent to
the entropy of the chain. However, we should not forget that if d ≤ κ, then Ĥ(d) only
estimates the d-dimensional marginal distribution, which may differ considerably from the
entropy H(S, P) of the chain. The estimator Ĥ(d) can also be used as a statistical test for
RNGs [Weg01]. It then reveals dependencies of order < d. In our case, we only use it to
estimate the entropy.
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Figure 6.10: Influence of data size for Markov chain entropy estimator.

File Size Data size Datasize
#1−tuples

Datasize
#2−tuples

Datasize
#3−tuples

Datasize
#4−tuples

1 131, 072 910.22 40.48 3.07 1.1
20 2, 621, 440 5, 472.73 380.19 23.05 2.5
50 6, 553, 600 9, 335.61 645.42 45.11 4.14
100 13, 107, 200 14, 419.36 927.16 74.68 6.27
200 26, 214, 400 20, 242.78 1, 284.20 122.22 9.75
500 65, 536, 000 36, 900.90 2, 010.80 225.43 17.97

Table 6.4: Number of possible tuples compared with sample size.

We applied the estimator (6.5) on files containing, respectively, 1, 20, 50, 100, 200,
and 500 successive calls on the degenerated HAVEGE generator. In Figure 6.10, we
compare the result of the estimation for different file sizes and different values of order
d. In the case of size 1, the estimated entropy decreases very fast with increasing order.
However, this is not due the properties of HAVEGE but due the size of the test data.
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The number of possible d-tuples in comparison to the number of available integer values
is too small, as we can see in Table 6.4. With increasing d, the number of possible tuples
increases exponentially, thus, we can apply the estimator only for small values of d. There
is not much difference between the graph for size 200 and 500. Therefore, we assume that
the estimation for size 500 is near to the accurate value. The entropy still decreases for
increasing values of d. This implies that there are some dependencies in the output data,
but it is not possible to model it with a MC of order < 3. Otherwise the estimated value
should be constant.

In Figure 6.11, we consider the entropy estimator for files of size 500 and for different
versions of the degenerated HAVEGE generator. As in Tables 6.2 and 6.3, the entropy is
highest in the normal version and lowest if we do not apply the branch predictor. However,
the decrease of entropy for higher values of d is about the same, independent of the applied
version.

 0

 1

 2

 3

 4

 5

 6

 1  2  3  4

Normal
More Loops
One Loop
No Branch Pr

Figure 6.11: Entropy estimation for Markov chains of order κ < 4.

6.3 Conclusion

HAVEGE is divided in two parts, the collection of uncertainty from the inner state of the
processor, and the post-processing of the data by means of a big table and a random walk.
The final output passes all common tests of randomness. In this chapter we were interested
in the quality of the data collected from the HARDTICK function. We considered different
versions of a degenerated HAVEGE generator to study which influence has the branch
predictor and the cache on the collected data. All tests were done on integer values.
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We saw that the histogram depends on the applied version as well as on the used
processor. In the autocorrelation, we see a clear pattern of size two. The correlation is
biggest for an idle processor. When we considered the sample entropy of the test data, we
could confirm that the entropy is highest if we have an optimal dependency on the branch
predictor and the instruction cache. In a last step we assumed HAVEGE to behave like a
Markov chain. The entropy estimation reduces for increasing order, thus we might assume
a dependency structure in HAVEGE. It would be interesting to apply the tests for higher
orders to see from which order on the estimation stays constant. However, the large number
of possible tuples make the estimation impractical for MC of order ≥ 4.

We studied several properties of HAVEGE. However, we did not find any promising
results which would justify deeper research. Thus, we ended our analysis at this point.
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Part III

Study of a Specific Stream Cipher
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Chapter 7

The Dragon Stream Cipher

Dragon [CHM+04, DHS08] is one of the 16 phase 3 candidates of the eSTREAM [eST]
project. This project searched for a portfolio of promising new stream ciphers for con-
strained environments. They had a total of 34 initial submissions.

Together with Maria Naya-Plasencia, I studied several aspects of Dragon. Unfortu-
nately, we were not able to find a better attack than the distinguisher [CP07] presented by
Cho and Pieprzyk. Their distinguisher needs about 2150 keystream words generated with
the same key, which is much more than the maximal length 264 of keystream allowed per
key. Thus, it does not present a real attack on Dragon.

First, we give in Section 7.1 a description of the stream cipher itself. Subsequently in
Section 7.2, we show two published distinguishers on Dragon. We present some of our
own results in Section 7.3. However, until now we did not find any improvement of the
attacks in Section 7.2.

7.1 Introduction

Dragon is a 32-bit word based stream cipher which takes keys and IVs of length 128 or
256 bits (Dragon-128, Dragon-256) and outputs 64 bits in every iteration. A key can
be used to generate at most 264 bits, which represents 258 iterations of the state update
function.

7.1.1 Inner State

The inner state of Dragon consists of a register of length 1024 bits and a 64 bit memory
M . In the case of the key and IV setup, the large register is seen as eight 128-bit words
W0, . . . ,W7. The 64 bits of M are used as additional memory. During the generation of the
keystream, the main register is divided into 32 32-bit words B0, . . . B31 and the M works
as a 64 bit counter.
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7.1.2 Key and IV Setup

The key and IV setup depends on the size of the key/IV (128 or 256 bits). Let k, iv and
K, IV denote the key/IV pair of size, respectively, 128 and 256 bits. We mean by x the
bitwise complement of x and by x′ the value obtained by swapping the upper and lower half
of x. The exact key/IV setup working on 128-bit words is presented in Figure 7.1. First,
the main register is filled by combinations of the key and the IV. The external memory
M is set to the constant value M0 = 0x0000447261676F6E. Finally, we shift the main
register 16 times by using the update function F and the memory M . The shift is done
on the 128-bit words, i.e. Wi(t + 1) = Wi−1(t) for 1 ≤ i ≤ 7. In Section 7.1.4, we give the
exact description of F .

128 128128128 64

128 64

F

a' b' c' d' e' f'

fedcba

Figure 7.1: Key and IV setup in 128-bit word representation.

We can present the 16 final iterations also by means of 32-bit word operations. In this
case, the main register can be partitioned in four subregisters which are interconnected
by the function F . In each iteration, the subregisters are shifted by a 32-bit word. This
alternative presentation can be found in Figure 7.2.

7.1.3 State Update

After the key/IV setup, Dragon produces 64 bits of keystream at each iteration of the
update function. In Figure 7.3, we describe this procedure in detail. In each iteration of
the update function, we increase the value of the 64-bit counter by one. This approach
ensures that the keystream has a period of at least 264. All other computations are done on
32-bit words. The nonlinear function F takes six words from the main register and the two
halves ML, MR of the memory M . Two words of the output of F are used to generate the
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B0 B4 B8 B12 B16 B20 B24 B28

B25B5 B9 B13 B17 B29B1 B21

a' b' c'

ba c fed

e' f'd'

F ML MR

B15

B2 B6 B10 B14 B18 B22 B26 B30

B3 B7 B11 B19 B23 B27 B31

Figure 7.2: Key and IV setup in 32-bit word representation.

ML MRB30

kL kR keystream

B29B1 B7B5B3 B9 B27

B26B0 B2 B4 B6 B8 B10 B12 B14 B16 B18 B20 B22 B24 B28

B11 B13 B17B15 B31B19 B21 B23 B25

a' b' c'

ba c fed

e' f'd'

F

+ 1

M

Figure 7.3: Update function.
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keystream, two others are injected into the main register, and the final two are discarded.
The shift of the main register is done in steps of two 32-words, i.e. Bi(t + 1) = Bi−2(t) for
all 2 ≤ i ≤ 31. We can partition the register in two subregisters of even and odd indices.

7.1.4 Function F

The function F is a reversible, nonlinear mapping of 192 bits to 192 bits. We present
the 192-bit input and the output as a concatenation of six 32-bit words a||b||c||d||e||f and
a′||b′||c′||d′||e′||f ′, respectively. Then, F is defined in the following way:

Pre-mixing Layer:

b1 = a⊕ b d1 = c⊕ d f1 = e⊕ f
c1 = c + b1 e1 = e + d1 a1 = a + f1

S-box Layer:

d2 = d1 ⊕G1(a1) f2 = f1 ⊕G2(c1) b2 = b1 ⊕G3(e1)
a2 = a1 ⊕H1(b2) c2 = c1 ⊕H2(d2) e2 = e1 ⊕H3(f2)

Post-mixing Layer:

d′ = d2 + a2 f ′ = f2 + c2 b′ = b2 + e2

c′ = c2 ⊕ b′ e′ = e2 ⊕ d′ a′ = a2 ⊕ f ′

The addition + is done modulo 232 and the XOR ⊕ is done bit per bit. The exact equations
are given by:

a′ =
(

(a + (e⊕ f))⊕H1

[

(a⊕ b)⊕G3

(

e + (c⊕ d)
)])

⊕
{[

(e⊕ f)⊕G2

(

c + (a⊕ b)
)]

+
(

(c + (a⊕ b))⊕H2

[

(c⊕ d)⊕G1

(

a + (e⊕ f)
)])}

b′ =
[

(a⊕ b)⊕G3

(

e + (c⊕ d)
)]

+
(

(e + (c⊕ d))⊕H3

[

(e⊕ f)⊕G2

(

c + (a⊕ b)
)])

c′ =
(

(c + (a⊕ b))⊕H2

[

(c⊕ d)⊕G1

(

a + (e⊕ f)
)])

⊕
{[

(a⊕ b)⊕G3

(

e + (c⊕ d)
)]

+
(

(e + (c⊕ d))⊕H3

[

(e⊕ f)⊕G2

(

c + (a⊕ b)
)])}

d′ =
[

(c⊕ d)⊕G1

(

a + (e⊕ f)
)]

+
(

(a + (e⊕ f))⊕H1

[

(a⊕ b)⊕G3

(

e + (c⊕ d)
)])

e′ =
(

(e + (c⊕ d))⊕H3

[

(e⊕ f)⊕G2

(

c + (a⊕ b)
)])

⊕
{[

(c⊕ d)⊕G1

(

a + (e⊕ f)
)]

+
(

(a + (e⊕ f))⊕H1

[

(a⊕ b)⊕G3

(

e + (c⊕ d)
)])}

f ′ =
[

(e⊕ f)⊕G2

(

c + (a⊕ b)
)]

+
(

(c + (a⊕ b))⊕H2

[

(c⊕ d)⊕G1

(

a + (e⊕ f)
)])

(7.1)
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S-Boxes

The functions G1, G2, and G3 as well as H1, H2, and H3 are mappings of 32 bits to 32
bits. They are build by combining two S-boxes S1 and S2, which each expands 8 bits to 32
bits. Let x = x0||x1||x2||x3 denote the partition of the 32-bit word x into four 8-bit words.
Then, the Gi’s and Hi’s are defined by:

G1(x) = S1(x0)⊕ S1(x1)⊕ S1(x2)⊕ S2(x3)

G2(x) = S1(x0)⊕ S1(x1)⊕ S2(x2)⊕ S1(x3)

G3(x) = S1(x0)⊕ S2(x1)⊕ S1(x2)⊕ S1(x3)

H1(x) = S2(x0)⊕ S2(x1)⊕ S2(x2)⊕ S1(x3)

H2(x) = S2(x0)⊕ S2(x1)⊕ S1(x2)⊕ S2(x3)

H3(x) = S2(x0)⊕ S1(x1)⊕ S2(x2)⊕ S2(x3)

For the exact definition of the S-box tables of S1 and S2 we refer the reader to [CHM+04].

Inverse of F

Even if the functions G1, G2, G3 and H1, H2, H3 are not injective (see Section 7.3.1), the
function F is reversible and F−1 is defined by:

Post-mixing Layer:
c2 = c′ ⊕ b′ e2 = e′ ⊕ d′ a2 = a′ ⊕ f ′

d2 = d′ − a2 f2 = f ′ − c2 b2 = b′ − e2

S-box Layer:

a1 = a2 ⊕H1(b2) c1 = c2 ⊕H2(d2) e1 = e2 ⊕H2(f2)
d1 = d2 ⊕G1(a1) f1 = f2 ⊕G2(c1) b1 = b2 ⊕G3(e1)

Pre-mixing Layer:
c = c1 − b1 e = e1 − d1 a = a1 − f1

b = b1 ⊕ a d = d1 ⊕ c f = f1 ⊕ e

7.2 Published Distinguisher on Dragon

In the previous section, we saw a short description of the Dragon stream cipher. Dur-
ing the evaluation of the eSTREAM candidates, two distinguisher attacks on Dragon
were presented. Since both of them use much more keystream bits than the developer of
Dragon allow, neither of these two approaches can be seen as a real attack.
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7.2.1 Statistical Distinguisher

Englund and Maximov [EM05] proposed two statistical distinguishers on Dragon which
use 2255 words of the keystream and runs either with a time complexity of 2187 and a
memory complexity of 232 or a time complexity of 2155 and a memory complexity of 296.

The distinguisher is based on the assumption that the 32-bit words in the main register
are independent and uniformly distributed. This allows the authors to reduce the number
of active variables in the equation of a′ and e′ in (7.1), since the result of an XOR with
a uniformly distributed variable is again uniformly distributed. The authors reduce the
equations for a′ and e′ in a way such that we can write a′ = a ⊕ Na and e′ = e ⊕ Ne

where Na and Ne are noise variables. The distribution of Na and Ne depends only on some
uniformly distributed variables and the S-box functions G1, G2, G3, H1, H2, and H3.

In a next step, they observe that due to the shift in the main register:

e(t + 15) = a(t)⊕ML(t + 15) , (7.2)

where ML(t) is the left 32-bit word of the memory M at time t. Let s(t) = a′(t)⊕e′(t+15)
be the sample obtained by combining the output words a′, e′ at time t and t + 15. Then
we can write

s(t) = a′(t)⊕ e′(t + 15) = Na(t)⊕Ne(t + 15)⊕ML(t + 15) .

We do not know the content of M(t). However, we know that it works like a 64-bit counter
where ML(t) and MR(t) represents, respectively, the most and the least significant 32-bit
word. So the attacker guesses the content of MR(0), this way he will know when ML

changes. We denote these changes by a new variable ∆(t) which depends on MR(0). Thus,
we can write ML(t) = ML(0) + ∆(t), where the addition is done modulo 232. Since the
value of ML(0) is the same for all samples, it has no influence on the bias. The guessing
of MR(0) adds a time complexity of 232 to the distinguisher.

To finish the statistical distinguisher, Englund and Maximov need to compute the distri-
bution of the noise variables Na and Ne from the S-box functions. For a first distinguisher,
they compute the distribution of Na (mod 2n) and Ne (mod 2n) using the assumption that
all cells in the register are independent and uniformly distributed. The reduction modulo
2n allows the distribution to be computed in a practical time. By using values of n up to
10, the authors found a bias of 2−80.57. In a next step, they add some noise by approximat-
ing the additions modulo 232 by XORs. However, this allows the computation of the noise
variable modulo 2n with n = 32, which leads to a bias of 2−77.5. The authors apply this
bias for a distinguisher attack using about 2155 key words and having a time complexity
of 2155+32 and a memory complexity of 232. The time complexity can be reduced to 2155,
if we store the sample distribution of s(t) for each possible ∆(t) in a table. However, this
increases the memory complexity to 296.

7.2.2 Linear Distinguisher

Cho and Pieprzyk [CP07] obtain their distinguisher by applying a linear approximation to
the nonlinear function F . They achieve a bias of 2−75.32 which leads to an attack which
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uses 2150.6 keystream words and which guesses 59 bits of the internal memory.
Let x, y ∈ F2n be two vectors x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) of size n.

Then the standard inner product x · y is given by x0y0 ⊕ · · ·xn−1yn−1.

Definition 7.1 For any function f : {0, 1}m → {0, 1}n, any input mask Λ ∈ {0, 1}m, and
any output mask Γ ∈ {0, 1}n, the bias of the linear approximation Λ ·x = Γ · f(x) is given
by

εf (Λ, Γ) = 2−m(#{Λ · x⊕ Γ · f(x) = 0} −#{Λ · x⊕ Γ · f(x) = 1}) . (7.3)

Then, the probability that the approximation is correct is Pr[Λ · x = Γ · f(x)] = 1
2
(1 +

εf (Λ, Γ)).
Let + denote the the addition modulo 2n and x, y ∈ {0, 1}n. For any input mask

Λ ∈ {0, 1}n, and any output mask Γ ∈ {0, 1}n, the bias of the linear approximation
Λ · (x⊕ y) = Γ · (x + y) of the addition modulo 2nis given by

ε+(Λ, Γ) = 2−2n(#{Λ · (x⊕ y)⊕Γ · (x + y) = 0}−#{Λ · (x⊕ y)⊕Γ · (x + y) = 1}) . (7.4)

Then, the probability that the approximation is correct is Pr[Λ · (x ⊕ y) = Γ · (x + y)] =
1
2
(1 + ε+(Λ, Γ)).

The bias of the S-box functions can be computed by means of the bias of the S-boxes
S1 and S2. Let the 32-bit mask Γ be composed by concatenating four 8-bit masks Γ =
Γ0||Γ1||Γ2||Γ3. Then we can directly write the bias for H1 as

εH1
(0, Γ) = εS2

(0, Γ)εS2
(0, Γ)εS2

(0, Γ)εS1
(0, Γ) ,

εH1
(Γ, Γ) = εS2

(Γ0, Γ)εS2
(Γ1, Γ)εS2

(Γ2, Γ)εS1
(Γ3, Γ) .

The same method can be used for the functions G1, G2, G3, H2, and H3. The results for
εGi

(0, Γ) and, respectively, εHi
(0, Γ) are the same for all 1 ≤ i ≤ 3, thus, we can just write

εG(0, Γ) and εH(0, Γ). We only have to compute the bias for the two 8-bit to 32-bit S-boxes
which is easy for all possible masks.

In the case ε+(Γ, Γ), the authors of the attack applied a theorem that allows the bias
to be computed from the bit pattern of Γ.

Theorem 7.2 ([CP07]) Let n and m be positive integers. Given a linear mask Γ =
(γ0, γ1, . . . , γn−1) ∈ {0, 1}n we assume that the Hamming weight of Γ is m. We denote by
a vector WΓ = (w0, w1, . . . , wm−1), w0 < w1 < · · · < wm−1, the bit positions of Γ where
γi = 1. Then the bias ε+(Γ, Γ) is determined as follows.
If m is even, then

ε+(Γ, Γ) = 2−d1 where d1 =

m/2−1
∑

i=0

(w2i+1 − w2i) . (7.5)

If m is odd, then

ε+(Γ, Γ) = 2−d2 where d2 =

(m−1)/2
∑

i=1

(w2i − w2i−1) + w0 . (7.6)
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We have seen that for any mask Γ we are able to efficiently compute the biases ε+(Γ, Γ),
εG(0, Γ), εH(0, Γ) and εGi

(Γ, Γ), εHi
(Γ, Γ) for 1 ≤ i ≤ 3. In the next step, Cho and Pieprzyk

studied which biases we have to consider for the linear approximations Γ · a′ = Γ · a and
Γ · e′ = Γ · e. In the end, they just look for the mask which total bias is maximal. We will
examine the case of Γ · a′ = Γ · a in detail. From (7.1) we know that

a′ = ((a + (e⊕ f))⊕H1)⊕ {[(e⊕ f)⊕G2] + ((c + (a⊕ b))⊕H2)} .

If we apply Γ as input and as output mask and by the linear property of Γ we achieve

Γ · a′ = Γ · (a + (e⊕ f))⊕ Γ ·H1 ⊕ Γ · {[(e⊕ f)⊕G2] + ((c + (a⊕ b))⊕H2)} .

Now we approximate one + by ⊕ and obtain

Γ · a′ = Γ · (a + (e⊕ f))⊕ Γ ·H1 ⊕ Γ · (e⊕ f)⊕ Γ ·G2 ⊕ Γ · (c + (a⊕ b))⊕ Γ ·H2

with a bias of ε+(Γ, Γ). In a next step, we use the approximations Γ ·H1 = 0 and Γ ·H2 =
0 to simplify the equation. From the piling-up lemma [Mat93], we know that the bias
accumulates. Thus we can write

Γ · a′ = Γ · (a + (e⊕ f))⊕ Γ · (e⊕ f)⊕ Γ ·G2 ⊕ Γ · ((c + (a⊕ b)))

with a bias of ε+(Γ, Γ)εH(0, Γ)2. Now we apply the approximation Γ ·G2([c + (a⊕ b)]) =
Γ · [c + (a⊕ b)] and get

Γ · a′ = Γ · (a + (e⊕ f))⊕ Γ · (e⊕ f)

with bias ε+(Γ, Γ)εH(0, Γ)2εG2
(Γ, Γ). In a final step, we once again use the approximation

for + and obtain
Γ · a′ = Γ · a

with a bias of ε+(Γ, Γ)2εH(0, Γ)2εG2
(Γ, Γ). The same method can be applied to obtain the

bias for Γ · e′ = Γ · e.
By using (7.2) the authors combined the equations of e′ and a′. They could compute

the mask for which the equation

Γ · a′(t) = Γ · e′(t + 15)⊕ Γ ·ML(t + 15)

is maximal. For the mask Γ = 0 × 0600018D they obtain a total bias of 2−75.8. For an
attack using this mask and 2151.6 keystream words, they need to guess 32 bits of MR(0)
and 27 bits from ML(0).

In all the previous observations, we used the same mask for the input and the output.
For their final results of the bias, Cho and Pieprzyk applied the same techniques as Nyberg
and Wallén [NW06] in their attack on SNOW 2.0. The idea is to keep the same mask only
for the words that are combined by XOR. This means that we keep Γ only for a′(t) and
e′(t + 15). For the approximations of the S-box functions within the equations, they allow
different masks. This approach allows to increase the estimation of the bias 2−75.32.
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7.3 Some Properties of Dragon

The weak points in Dragon seem to be the S-boxes, which expand 8 bits to 32 bits
and are used multiple times in the Gi/Hi functions, as well as the partition of the main
register into subregisters of even and odd indices. In this section, we present some of the
properties of Dragon which we studied. Unfortunately, none of them leads to a more
efficient distinguisher than in [CP07].

7.3.1 Properties of G’s and H’s

The S-boxes are not reversible since there are many values x, x′ which map on the same
output. For example for G1:
Let x0, x1, x2, x3 be different 8 bits words and x = x0||x0||x2||x3 and x′ = x1||x1||x2||x3. It
is clear that x 6= x′ however G1(x) = G1(x

′).

Lemma 7.3 For any function Hi and Gi and 1 ≤ i ≤ 3 the size of the images is

≤ 253 224 + 3 216 ≈ 0.988× 232 .

Proof.
We show this property for the example of H1. The same approach applies for all other
functions Hi, Gi with 1 ≤ i ≤ 3. Let x = x0||x1||x2||x3 and let xi,yi be 8 bit words for
0 ≤ i ≤ 3. Then

H1(x) = S1(x0)⊕ S1(x1)⊕ S1(x2)⊕ S2(x3) .

For given y0, y1, we count the number of possibilities for x’s such that H1(x) = S1(y0) ⊕
S2(y1). We set x3 = y1. For the values x0, x1, x2 we have to count two different cases.

1. x0 = x1 = x2 = y0: It is easy to see that we obtain H1(x) = S1(y0)⊕ S2(y1).

2. One of the values x0,x1,x2 are y0, the remaining two values are identical and y2. In
this case it holds that H1(x) = S1(y0)⊕ S2(y1).
There are 3 possibilities to choose the index j ∈ {0, 1, 2} such that xj = y0 and 28−1
possibilities for y2. So in total, this case appears 3(28 − 1) times for each pair y0,y1.

For each pair y0,y1 there are 3(28−1)+1 = (3 28−2) possible x’s which produce the same
value H1(x) = S1(y0) ⊕ S2(y1). The rest of the time we assume that we do not have any
other collisions. Thus, the image has a size of

≤ 232 − 216(3 28 − 3) = 253 224 + 3 216 .

⋄

We showed that the S-box functions Gi and Hi are not bijective and that at least 216(3 28−
3) values are never reached. However, the output of those functions is always combined
with at least another 32-bit word. Thus, if this additional world takes all values in {0, 1}32,
the combination will take them as well. We did not find any practical weakness which arises
from the reduced image size.
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Remark 7.4 The S-boxes and thus the functions Gi and Hi are biased. We give an example
of the resulting biases in Table 7.4.

7.3.2 Relations among Words

Let ML(t) and MR(t) denote the 32-bit words corresponding to the left and right half
of the memory M at time t. In addition, we mean by a(t), b(t), c(t), d(t), e(t), f(t) and
a′(t), b′(t), c′(t), d′(t), e′(t), f ′(t) the input and output values of the function F at time t.
Since b′ and c′ are reinserted into the main register, we can write the relation between these
words for several time indices (Table 7.1).

a(t) c(t + 8) e(t + 15)⊕ML(t + 15) b′(t− 1)
b(t) d(t + 5) f(t + 11)⊕MR(t + 11) c′(t− 5)
c(t) a(t− 8) e(t + 7)⊕ML(t + 7) b′(t− 9)
d(t) b(t− 5) f(t + 6)⊕MR(t + 6) c′(t− 10)
e(t) a(t− 15)⊕ML(t) c(t− 7)⊕ML(t) b′(t− 16)⊕ML(t)
f(t) b(t− 11)⊕MR(t) d(t− 6)⊕MR(t) c′(t− 16)⊕MR(t)
b′(t) a(t + 1) c(t + 9) e(t + 16)⊕ML(t + 16)
c′(t) b(t + 5) d(t + 10) f(t + 16)⊕MR(t + 16)

Table 7.1: Relation among words.

7.3.3 Bias of Different Equations

We would like to simplify the representations of a′(t), b′(t), c′(t), d′(t), e′(t), f ′(t) in (7.1),
page 56, by applying linear approximations as in Section 7.2.2. Let Γ ∈ {0, 1} be a 32-
bit mask. Cho and Pieprzyk considered in their distinguisher attack only the equations
Γ · a′ = Γ · a and Γ · e′ = Γ · e. We wanted to know which bias we have to consider for a
bigger number of equations.

In Table 7.2, we show which biases we have to count for the linear approximation in the
second column. For example for G1, x means that we use the approximation Γ·G1(x) = Γ·x
and, thus, we need to count the bias εG1

(Γ, Γ). Whereas, 0 means that apply Γ ·G1(x) = 0
and that we have to consider εG1

(0, Γ). The column + counts the number of cases where
we approximate + by ⊕, i.e. Γ · (x + y) = Γ · (x ⊕ y). Thus, we have to use the bias of
ε+(Γ, Γ). The values A1, A2,. . . are necessary for the next table.

The problem is that the values of a′,b′,c′,d′,e′ and f ′ are built from the same elements
in the S-box layer (see Section 7.1.4). Thus, if we have for example G1 in the equation of
d′(t), we have the same value of G1 in the equation of e′. Therefore we are not allowed to
use the approximations Γ ·G1(x) = Γ · x and Γ ·G1 = 0, both at time t.

We will show this on a small example: For an arbitrary function g(x) we define z1 =
g(x) ⊕ y and z2 = g(x). Then for any mask Γ we have Γ · (z1 ⊕ z2) = Γ · y without any
bias. If we first use the approximation Γ · g(x) = 0 on z1 and Γ · g(x) = Γ · x on z2 we
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G1 G2 G3 H1 H2 H3 +

A1 Γ · a′ = Γ · a x 0 0 2
A2 Γ · a′ = Γ · (b⊕ c) 0 0 0 3
A3 Γ · a′ = Γ · (a⊕ c) 0 0 x 0 3
A4 Γ · a′ = Γ · (b⊕ d) 0 0 0 x 3

E1 Γ · e′ = Γ · e x 0 0 2
E2 Γ · e′ = Γ · (a⊕ f) 0 0 0 3
E3 Γ · e′ = Γ · (a⊕ e) 0 0 0 x 3
E4 Γ · e′ = Γ · (b⊕ f) 0 0 x 0 3

C1 Γ · c′ = Γ · c x 0 0 2
C2 Γ · c′ = Γ · (d⊕ e) 0 0 0 3
C3 Γ · c′ = Γ · (c⊕ e) 0 0 x 0 3
C4 Γ · c′ = Γ · (d⊕ f) 0 0 0 x 3

B1 Γ · b′ = Γ · (a⊕ b) x 0 1
B2 Γ · b′ = Γ · (a⊕ b⊕ c⊕ d⊕ e) 0 0 2
B3 Γ · b′ = Γ · (a⊕ b⊕ c⊕ d⊕ f) 0 0 x 2

D1 Γ · d′ = Γ · (c⊕ d) x 0 1
D2 Γ · d′ = Γ · (a⊕ c⊕ d⊕ e⊕ f) 0 0 2
D3 Γ · d′ = Γ · (b⊕ c⊕ d⊕ e⊕ f) 0 0 x 2

F1 Γ · f ′ = Γ · (e⊕ f) x 0 1
F2 Γ · f ′ = Γ · (a⊕ b⊕ c⊕ e⊕ f) 0 0 2
F3 Γ · f ′ = Γ · (a⊕ b⊕ d⊕ e⊕ f) 0 0 x 2

Table 7.2: Bias of equations.
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A1 A2 A3 A4 E1 E2 E3 E4 C1 C2 C3 C4 B1 B2 B3 D1 D2 D3 F1 F2 F3

A1 • • • • • • • • •
A2 • • • • • • • • • • • •
A3 • • • • • • •
A4 • • • • • • • •
E1 • • • • • • • • •
E2 • • • • • • • • • • • •
E3 • • • • • • •
E4 • • • • • • • •
C1 • • • • • • • • •
C2 • • • • • • • • • • • •
C3 • • • • • • •
C4 • • • • • • • •
B1 • • • • • • • • • • •
B2 • • • • • • • • • • • • • • •
B3 • • • • • • • • • •
D1 • • • • • • • • • • •
D2 • • • • • • • • • • • • • • •
D3 • • • • • • • • • •
F1 • • • • • • • • • • •
F2 • • • • • • • • • • • • • • •
F3 • • • • • • • • • •

Table 7.3: Possible combinations.

would assume that Γ · (z1 ⊕ z2) = Γ · (y ⊕ x) with a bias of εg(0, Γ)εg(Γ, Γ). However, if x
is uniform distributed, Γ · x cannot add any bias to the function.

Therefore, we made a table, which shows which equations can be combined. A •
indicates that we can use the two equations at the same time.

7.3.4 Bias of Equations

We tried to find the optimal mask to maximize the bias of a simplified equation. We
expanded the method proposed in [CP07] such that we can use any combination of εH(0, Γ),
εG(0, Γ), εHi

(Γ, Γ), εGi
(Γ, Γ) and ε+(Γ, Γ), however, always with the same mask. The

program runs in less than 3 minutes. The idea is that we first define which bias we want
to optimize and then look for which mask Γ we achieve the biggest bias. An example of
the biases for the mask Γ = 0x600018d is given in Table 7.4.

Example 1

We tried to find an equation which does not depend on ML(t). For our first example
we used the following approximations at time t: Γ · H2(x) = 0, Γ · G2(x) = Γ · x and
Γ ·(x+y) = Γ ·(x⊕y) for a′ and Γ ·H3(x) = 0, Γ ·G1(x) = 0 and twice Γ ·(x+y) = Γ ·(x⊕y)
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ε+(Γ, Γ) εG(0, Γ) εH(0, Γ)
2−3.00 2−8.99 2−8.58

εG1
(Γ, Γ) εG2

(Γ, Γ) εG3
(Γ, Γ)

2−13.59 2−15.91 2−12.89

εH1
(Γ, Γ) εH2

(Γ, Γ) εH3
(Γ, Γ)

2−14.96 2−12.64 2−15.66

Table 7.4: Biases for Γ = 0x600018d.

for f ′ . Then we get

Γ · a′(t) = Γ ·
[

[a(t) + (e(t)⊕ f(t))]⊕H1(t)⊕ e(t)⊕ f(t)
]

,

Γ · e′(t) = Γ ·
[

[a(t) + (e(t)⊕ f(t))]⊕H1(t)⊕ e(t)
]

,

and finally
Γ · (a′(t)⊕ e′(t)) = Γ · f(t) (7.7)

with a bias of εH(0, Γ)2εG(0, Γ)εG2
(Γ, Γ)ε+(Γ, Γ)3. In a next step, we use Table 7.1 to write

Γ · (a′(t)⊕ e′(t)) = Γ · (c′(t− 16)⊕ML(t)) .

We can approximate Γ·c′(t−16) by Γ·c(t−16), by adding a bias of εH(0, Γ)2εG3
(Γ, Γ)ε+(Γ, Γ)2

(Table 7.2). Thus we have

Γ · (a′(t)⊕ e′(t)) = Γ · (c(t− 16)⊕ML(t)) .

From Table 7.1 we know that we can write directly

Γ · (a′(t)⊕ e′(t)) = Γ · (a(t− 24)⊕ML(t)) .

In a last step, we use the approximation Γ · a(t− 24) = Γ · a′(t− 24) which adds a bias of
εH(0, Γ)2εG2

(Γ, Γ)ε+(Γ, Γ)2. Thus we obtain the final approximation

Γ · (a(t)′ ⊕ e(t)′) = Γ · (a′(t− 24)⊕ML(t))

for which we have to consider the total bias of:

• ε+(Γ, Γ)7

• εG(0, Γ)

• εH(0, Γ)6

• εG2
(Γ, Γ)2

• εG3
(Γ, Γ)
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Best bias: 2−126.17 with mask 0x600018d.

Example 2

For this example, we assume that we can apply different approximations of a′ at different
instances of time. We start from equation (7.7), thus we have

Γ · (a′(t)⊕ e′(t)) = Γ · f(t) , (7.8)

with a bias of εH(0, Γ)2εG(0, Γ)εG2
(Γ, Γ)ε+(Γ, Γ)3. We replace f(t) by b(t − 11) ⊕MR(t)

(Table 7.1) and obtain

Γ · (a′(t)⊕ e′(t)) = Γ · [b(t− 11)⊕MR(t)] . (7.9)

In a next step we use the approximation Γ · a′(t − 11) = Γ · [b(t − 11) ⊕ c(t − 11)] which
adds a bias of εH(0, Γ)2εG(0, Γ)ε+(Γ, Γ)3 (Table 7.2) to

Γ · (a′(t)⊕ e′(t)) = Γ · [a′(t− 11)⊕ c(t− 11)⊕MR(t)] . (7.10)

We use Table 7.1 to obtain

Γ · (a′(t)⊕ e′(t)) = Γ · [a′(t− 11)⊕ a(t− 19)⊕MR(t)] . (7.11)

In a final step, we apply the approximation Γ · a(t) = Γ · a′(t) which adds a bias of
εH(0, Γ)2εG2

(Γ, Γ)ε+(Γ, Γ)2. We obtain the approximation

Γ · (a(t)′ ⊕ e(t)′) = Γ · (a′(t− 11)⊕ a′(t− 19)⊕MR(t))

for which we have to count the following biases:

• ε+(Γ, Γ)8

• εG(0, Γ)2

• εH(0, Γ)6

• εG2
(Γ, Γ)2

Best bias: 2−125.27 with mask 0x600018d.

Result of Cho and Pieprzyk

In the end, we apply our program on the equation used in [CP07] (see Section 7.2.2):

Γ · a(t)′ = Γ · (e′(t + 15)⊕ML(t + 15)) .

In contrary to their final result, we use the same mask in each step. We have to consider:

• ε+(Γ, Γ)4

• εH(0, Γ)4

• εG1
(Γ, Γ)

• εG2
(Γ, Γ)
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Best bias: 2−75.8 with mask 0x600018d.

7.4 Conclusion

The Dragon stream cipher consists of a non-linear shift register on 32-bit words. It applies
an additional 64 counter to guarantee a period length of 264 and restricts the number of
keystream bits generated from one key to 264. The non-linear function F is constructed by
means of S-boxes which map 8-bit words to 32-bit words. We can write relations between
words at different moments of time by applying the shift property of the main register.
However, we were not successful in improving the distinguisher presented in [CP07].

We do not think that we can find a better distinguisher based on the bias of the S-
boxes. There might be a possibility to attack the key/IV setup but until now we did not
find any efficient approach. During the four year of the eSTREAM project, no real attack
on Dragon was found.
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Part IV

Random Functions
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Chapter 8

Characteristics of Random Functions

Random functions are a probabilistic method of studying the characteristics of mappings
from a set of n elements into itself. For simplification reasons we assume that these
mappings work on the set {1, 2, . . . , n}.

Definition 8.1 Let Fn =
{

ϕ
∣
∣
∣ ϕ : {1, 2, . . . , n} → {1, 2, . . . , n}

}

be the set of all functions

which map the set of n elements onto itself. We say that Φ is a random function or a
random mapping if it takes each value ϕ ∈ Fn with the same probability Pr[Φ = ϕ] = 1/nn.

For an extended definition of a random function we refer to the book of Kolchin [Kol86].
In cryptography, random mappings are often used for theoretical models where the

attacker has no information about the function used. Thus, we assume that we have a
random mapping. For example in Time Memory Tradeoff attacks for block or stream
ciphers, the attacker assumes that a random function is applied [Hel80, Bab95, Gol97,
BS00]. In [TccSD08], the authors consider stream ciphers where the key is fixed and the
IV is randomly chosen and fixed except for ℓ positions. They compare the behavior of
the function from the ℓ bits of the IV to the first ℓ bits of the keystream with a random
function in Fℓ. In Chapter 9, we consider collision attacks on a stream cipher model which
applies a random function to update its inner state.

Parameters of random mappings have been studied for a long time [Har60, Ste69,
Mut88]. Flajolet and Odlyzko present in [FO89] a general framework to analyze the asymp-
totic behavior of random function parameters. We will discuss this method in detail in
Section 8.1. More recent results [DS97] consider for example the limiting distribution of
the image and the preimage of random functions.

In the next section, we will discuss the approach proposed by Flajolet and Odlyzko [FO89].
Subsequently, we give a short overview of some of the basic characteristics of random func-
tions. In Chapter 9, we examine a stream cipher model using a random function to update
its internal state. First, we introduce the model in Section 9.1. We derive, in Section 9.2,
a new parameter of random functions which can be used to evaluate the entropy of the
inner state of such a stream cipher. In Section 9.3, we discuss the complexities of some
attacks which try to exploit the entropy loss in our model.
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8.1 Approach to Analyze Random Functions

In this section, we will discuss in the approach of Flajolet and Odlyzko [FO89] to find
asymptotic parameters of random mappings. Their idea is to analyze the structure of the
functional graph of the functions ϕ ∈ Fn.

Definition 8.2 For a function ϕ ∈ Fn, the functional graph is defined by the set of

vertexes V (ϕ) = {1, 2, . . . , n} and the set of directed edges E(ϕ) =
{(

i, ϕ(i)
)∣
∣
∣1 ≤ i ≤ n

}

.

An example of a functional graph can be seen in Figure 8.1.

Figure 8.1: Example of a functional graph for ϕ : x 7→ ((x− 1)2 + 2) (mod 20) + 1 ∈ F20.

A functional graph of a finite function can be described as a set of cycles of trees, i.e.
one or more components, where each component is a cycle of roots of trees. The exact
composition can be displayed in the following way:

T ree = N ode ⋆ SET(T ree) ,
Component = CYC(T ree) ,
Fctgraph = SET(Component) ,

(8.1)

where ⋆ denotes a product of two elements, and SET and CYC, respectively, the set and
the cycle of elements from a given set. Flajolet and Odlyzko applied this structure on
generating functions, as we will see in Section 8.1.1. To obtain the final parameters, they
use singularity analysis on the generating functions. We briefly describe this final step in
Section 8.1.2.

8.1.1 Use of Generating Function

Exponential generation functions can be used to describe labelled combinatorial structures,
i.e. in these structures, each atom of an object is distinct from each other atoms by its
label. In our case, the atoms of an object are nodes in a graph which are labelled from 1
to n.

Definition 8.3 Let A denote a class of labeled combinatorial structures, and let an be the
number of elements α ∈ A of size |α| = n. The exponential generating function (EGF) of
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the sequence a0, a1, a2, . . . corresponding to A is defined by the function

A(z) =
∞∑

n=0

an
zn

n!
=
∑

α∈A

z|α|

|α|! . (8.2)

Let [zn]A(z) denote the coefficient of zn in the sum, then

an = n![zn]A(z) . (8.3)

The utilization of generating functions allows us to translate combinatorial constructions
directly onto the corresponding generating functions. The next theorem gives a summary
of some important structures and their corresponding manipulations of the generating
functions.

Theorem 8.4 ([FS08]) The associated operators on the exponential generating functions
for the construction of combinatorial sum, labeled product, sequence, set, and cycle are as
follows:

Sum : A = B + C A(z) = B(z) + C(z),
P roduct : A = B ⋆ C A(z) = B(z)× C(z),
Sequence : A = SEQ(B) A(z) = 1

1−B(z)
,

− k components : A = SEQk(B) ≡ (B)⋆k A(z) = B(z)k,
Set : A = SET(B) A(z) = eB(z),
− k components : A = SETk(B) A(z) = 1

k!
B(z)k,

Cycle : A = CYC(B) A(z) = log 1
1−B(z)

,

− k components : A = CYCk(B) A(z) = 1
k
B(z)k.

The notations SEQk(B), SETk(B), and CYCk(B) describe, respectively, a sequence, a set,
and a cycle consisting of k elements of B.

Applying this theorem to the structure in (8.1) leads to the following generating function
for the set of functional graphs Fctgraph = F =

⋃

n≥1Fn. Here, T (z), C(z), and F (z) are
the generating functions for, respectively, the sets T ree, Component, and Fctgraph:

T (z) = zeT (z) ,
C(z) = log 1

1−T (z)
,

F (z) = 1
1−T (z)

.
(8.4)

These generating functions allows us to count the number of possible functional graphs
of size n. However, if we want to consider an additional parameter of the graph we need
bivariate generating functions.

Definition 8.5 ([FS08]) Given a combinatorial class A, a parameter is a function from
A to N0 that associates to any object α ∈ A an integer value ξ(α). The sequence

an,k = card
(
{α ∈ A

∣
∣|α| = n, ξ(α) = k}

)
,
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is called the counting sequence of pairs A, ξ. The (exponential) bivariate generating func-
tion (BGF) of A, ξ is defined as

A(z, u) :=
∑

n,k≥0

an,k
zn

n!
uk =

∑

α∈A

z|α|

|α|!u
ξ(α) .

One says that the variable z marks size and the variable u marks the parameter ξ.

Let An define the subset of elements α ∈ A of size |α| = n. The probability of an element
α ∈ An to have ξ(α) = k is given by

PrAn
[ξ = k] =

an,k

an

=
[zn][uk]A(z, u)

[zn]A(z, 1)
.

Then, we can give expectation and the variance of the parameter ξ in the following way:

Proposition 8.6 ([FS08]) The first two moments of the parameter ξ can be determined
from the BGF by:

EAn
(ξ) =

[zn]∂uA(z, u)|u=1

[zn]A(z, 1)
, (8.5)

EAn

(
ξ2
)

=
[zn]∂2

uA(z, u)|u=1

[zn]A(z, 1)
+

[zn]∂uA(z, u)|u=1

[zn]A(z, 1)
, (8.6)

and the variance by:

VAn
(ξ) = EAn

(
ξ2
)
− EAn

(ξ)2 . (8.7)

Equation (8.5) is easy to see, if we differentiate the sum

∑

k

PrAn
[ξ = k]uk =

[zn]A(z, u)

[zn]A(z, 1)

with respect to u and if we consider the equation for the expectation

EAn
(ξ) =

∑

k

kPrAn
[ξ = k] .

In the following, we consider parameters which count the number of specific components
in an element α ∈ A. This can be done by marking the desired component with the variable
u in the bivariate generating function. Let us consider the case of random mappings. The
BGF counting the number of cycle nodes in the functional graph is

FC(z, u) = exp

(

log
1

1− uT (z)

)

=
1

1− uT (z)
.
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If we want to count the number of cycles of size k, we can use the operator for CYCk in
Theorem 8.4 to get the corresponding BGF

FCk
(z, u) = exp

(

log
1

1− T (z)
+ (u− 1)

T (z)k

k

)

.

The previous generating function can be used to compute the probability distribution of
the size of the cycles in functional graph of a random mapping (cf. Theorem 8.11).

In this section, we consider only the simple counting of objects in the generating func-
tion, since this is the approach that we follow in Section 9.2. In their article, Flajolet
and Odlyzko examine as well the generating functions of cumulative parameters, like the
average tail length or the average cycle length, and extremal statistics, like the maximal
tail length or the maximal cycle length. We refer the interested reader to their article or
to the monograph of Flajolet and Sedgewick [FS08].

Now that we know how to find the desired generating functions, we want to extract
their asymptotic coefficients. This can be done by means of singularity analysis, as we
describe in the next section.

8.1.2 Singularity Analysis

Flajolet and Odlyzko developed in [FO90] the idea of analyzing the singularities of a
generating function to obtain asymptotic values of the coefficients. Subsequently, they
applied this method to study the parameters of random mappings [FO89]. The topic
was further developed [Fla99, BFSS01, FFK05, FFG+06] to help in many other areas.
A detailed discussion of this approach is given in the monograph [FS08] of Flajolet and
Sedgewick.

Let us compare the generating functions and the asymptotic form of their coefficients
in Table 8.1.2. We see that the place of the singularity has an influence on the coefficient.

[zn] 1
1−3z

= 3n

[zn] 1
1−4z

= 4n

[zn] 1√
1−4z

∼ 4n√
πn

[zn] 1√
1−4z

log 1
1−4z

∼ 4n√
πn

log(n)

Table 8.1: Some examples of generating functions and their coefficients.

Likewise, the square root and the logarithm of the generating function appears again in the
asymptotic coefficients. The next theorem shows the connection between the generating
function and the coefficients.

Theorem 8.7 ([FO89]) Let f(z) be a function analytic in a domain

D =
{

z
∣
∣
∣ |z| ≤ s1, |Arg(z − s)| > π

2
− η
}

,
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where s, s1 > s and η are three positive real numbers. Assume that, with σ(u) = uα logβ u
and α 6∈ {0,−1,−2, . . .}, we have

f(z) ∼ σ

(
1

1− z/s

)

as z → s in D .

Then, the Taylor coefficients of f(z) satisfy

[zn]f(z) ∼ s−n σ(n)

nΓ(α)
,

where Γ(α) denotes the Gamma function.

Flajolet and Odlyzko showed that this theorem can be applied directly to the generating
function of a tree due to the following property.

Proposition 8.8 ([FO89]) The tree function T (z) defined by T (z) = zT (z) is analytic in
the domain D formed by the complex plane slit along (e−1, +∞). For z tending to e−1 in
D, T (z) admits the singular expansion

T (z) = 1−
√

2
√

1− ez − 1

3
(1− ez) + O((1− ez)3/2) . (8.8)

If we apply Theorem 8.7 to a function f(z) = γg(z) + ηh(z), then the corresponding
Taylor coefficients have the form fn = γgn + ηhn. Thus, for the asymptotic value of the
coefficient we are interested only in the dominant part of the generating function. Let
us consider the example of the generating function (8.8) of a tree. We have two different

functions f(z) ∼
(

1
1−ze

)−1/2
and g(z) ∼

(
1

1−ze

)−3/2
on which we can apply the singularity

analysis. The coefficients of those two functions grow, respectively, with O
(
e−nn−3/2

)
and

O
(
e−nn−5/2

)
. For n→∞, the dominant part corresponds to the function f(z). Thus, to

obtain the number of trees of size n we consider the function γf(z) with γ = −
√

2. Using
Γ(−1/2) = −2

√
π we get the asymptotic coefficients

[zn]γf(z) ∼
√

2en n−1/2

2n
√

π
.

By applying the Stirling approximation

n! ∼
√

2πn
(n

e

)n

,

and tn = n![zn]T (z) (8.3) we get

tn ∼
√

2πn
(n

e

)n√
2en n−3/2

2
√

π
= nn−1 (8.9)

for n → ∞. The value nn−1 is not only the asymptotic, but the exact number of trees of
size n. Thus, this proof can be used to show inversely the Stirling approximation.

We discussed the efficient approach of Flajolet and Odlyzko [FO89] to analyze param-
eters of random mappings. In the next section, we see the resulting asymptotic values for
some interesting parameters.

76



8.2 Known Properties

In this section, we review some parameters which might be interesting for the use of
random functions in cryptography. Most of the results are given by Flajolet and Odlyzko
in [FO89], even if some of them were already known before [Har60, PW68, Ste69, AB82].
We also briefly discuss some results concerning the distribution properties of images and
preimages [DS97].

The first theorem states the expectation of the number of occurrences of some objects
in the functional graph. All results are asymptotic values for n→∞. For a given function
ϕ ∈ Fn, let a component denote a cycle of a trees, and a cycle node a node in a cycle.
A terminal node x is a leave in a tree, which corresponds to a node with empty preimage
ϕ−1(x) = ∅. The image points are the nodes in the image ϕ

(
{1, 2, . . . , n}

)
, i.e. all the

nodes which are no terminal nodes. The k-th iterate image points are all the nodes in the
image ϕk

(
{1, 2, . . . , n}

)
after k iterations of ϕ.

Theorem 8.9 ([FO89]) The expectations of parameters number of components, number
of cyclic points, number of terminal points, number of image points, and number of k-th
iterate image points in a random mapping of size n have the asymptotic forms, as n→∞,

1. # Components: 1
2
log n ,

2. # Cyclic nodes:
√

πn/2 ,

3. # Terminal nodes: e−1n ,

4. # Image points: (1− e−1)n ,

5. # k-th iterate image points: (1− τk)n ,

where τk satisfy the recurrence τ0 = 0 and τk+1 = e−1+τk .

Lemma 8.10 The limit of the sequence τk is

lim
k→∞

τk = 1 .

Proof.
The exponential function is strictly increasing. Thus, we can write for all k ≥ 0:

• The sequence τk is strictly increasing, i.e. τk < τk+1.

• If 0 ≤ τk < 1 then e−1 ≤ τk+1 < 1.

From this follows that the sequence τk has a limit L such that e−1 ≤ L ≤ 1. For any k we
can write τk = L− ε. Thus, for the limit L must hold that for every 0 < ε ≤ L:

e−1+L−ε ≤ L .
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The only possible value L, with e−1 ≤ L ≤ 1, for which holds e−ε ≤ Le1−L for all 0 < ε ≤ L
is L = 1. ⋄

Lemma 8.10 shows that the value (1 − τk)n decreases down to 0 when k goes to +∞.
However, the number of k-th iterate image points cannot decrease below the number of
cycle points. Thus, the asymptotic value of parameter 5. is only valid as long as it is larger
than

√

πn/2.
If we want to know the probability distribution of, for example, the size of cycles, we

need to know the average number of cycle of size r for 1 ≤ r ≤ n. The next theorem
addresses this problems for some parameters. Let an r-node denote a node of indegree
r. By an r-predecessor tree we mean an arbitrary tree in the functional graph of size r,
whereas, by an r-cycle tree, we mean a tree of size r which is rooted in a cycle. By an
r-cycle and an r-component we denote, respectively, a cycle and a component of size r.

Theorem 8.11 ([FO89]) For any fixed integer r, the parameters number of r-nodes,
number of predecessor trees of size r, number of cycle trees of size r and number of com-
ponents of size r, have the following asymptotic mean values:

1. # r-nodes: ne−1/r! ,

2. # r-predecessor trees: ntre
−r/r! ,

3. # r-cycle trees:
(√

πn/2
)

tre
−r/r! ,

4. # r-cycles: 1/r ,

5. # r-components: cre
r/r! ,

where tr = rr−1 is the number of trees having r nodes, and cr = r![zr]c(z) is the number
of connected mappings of size r.

Until now, we considered parameters of the whole graph. In the next theorem, we
consider parameters of the nodes in the functional graph. Each node x ∈ {1, 2, . . . , n} in
the functional graph of ϕ ∈ Fn is part of a tree which is rooted in a cycle. We denote the
distance of x to its root by the tail length λϕ(x) and the length of its cycle by µϕ(x). The
whole path from x until the first value k such that ϕk(x) = ϕj(x) for an j < k is defined
by the rho length ρϕ(x) = λϕ(x) + µϕ(x). The tree size denotes the size of the whole tree
which contains x, whereas, the predecessors size denotes the size of the tree of which x is
the root. The component size gives the size of the component which contains x.

Theorem 8.12 ([FO89]) Seen from a random point in a random mapping of Fn, the
expectations of parameters tail length, cycle length, rho-length, tree size, component size,
and predecessors size have the following asymptotic forms:

1. Tail length (λ):
√

πn/8 ,
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2. Cycle length (µ):
√

πn/8 ,

3. Rho length (ρ = λ + µ):
√

πn/2 ,

4. Tree size: n/3 ,

5. Component size: 2n/3 ,

6. Predecessors size:
√

πn/8 .

The following three theorems consider maximal statistics, this means, they consider the
maximal value of a parameter on average over all functions ϕ ∈ Fn.

Theorem 8.13 ([FO89]) The expectation of the maximum cycle length (µmax) in a ran-
dom mapping of Fn satisfies

E (µmax) ∼ c1

√
n ,

where c1 ≈ 0.78248 is given by

c1 =

√
π

2

∫ ∞

0

(
1− e−E1(x)

)
dx ,

and E1(x) denotes the exponential integral

E1(x) =

∫ ∞

x

e−y dy

y
.

Theorem 8.14 ([FO89]) The expectation of the maximal tail length (λmax) in a random
mapping of Fn satisfies

E (λmax) ∼ c2

√
n ,

where c2 ≈ 1.73746 is given by
c2 =

√
2π log(2) .

Theorem 8.15 ([FO89]) The expectation of the maximal rho length (ρmax) in a random
mapping of Fn satisfies

E (ρmax) ∼ c3

√
n ,

where c3 ≈ 2.4149 is given by

c3 =

√
π

2

∫ ∞

0

(
1− e−E1(x)−I(x)

)
dx ,

with E1(x) denoting the exponential integral and

I(x) =

∫ x

0

e−y

(

1− exp

( −2y

ex−y − 1

))
dy

y
.
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In the end of this section, we consider some probability distribution of random function
parameters. Drmota and Soria [DS97] study the generating functions of some parameters
concerning the image and the preimage of random functions. Those generating functions
have a specific structure, and the authors could give some general theorems on the distri-
bution of these parameters. The exact theorems fill more than a page, thus in this section,
we cite only some of the applications on random function. We denote by N (µ, σ2) the
Gaussian distribution with mean µ and variance σ2 and by R(s) the Rayleigh distribution
with parameter s.

Theorem 8.16 ([Mut89, DS97]) Let Xn denote the number of noncyclic points at a
fixed distance d > 0 to a cycle in random mappings of size n. Then, Xn has the Rayleigh
limiting distribution

Xn√
n

d→ R(1) . (8.10)

Theorem 8.17 ([AB82, DS97]) Let r ≥ 0 be a fixed integer, and let Xn denote the
number of points v with |ϕ−1({v})| = r in mappings ϕ ∈ Fn, i.e. v is an r-node. Then

Xn − µn√
σ2n

d→ N (0, 1) , (8.11)

where µ = 1
er!

and σ2 = µ + (1 + (r − 1)2)µ2.

Theorem 8.18 ([DS97]) Let d ≥ 0 be a fixed integer, and let Xn denote the number of
points v with ∣

∣
∣
∣
∣

⋃

d≥0

ϕ−d({v})
∣
∣
∣
∣
∣
= 0

i.e. v can be reached by r different nodes, in mappings ϕ ∈ Fn. Then,

Xn − µn√
σ2n

d→ N (0, 1) , (8.12)

where µ = rr−1

r!
e−r and σ2 = µ− 2rµ2.

Theorem 8.19 ([DS97]) Let d ≥ 0 be a fixed integer, and let Xn denote the number of
points v ∈ ϕd({1, 2, . . . , n}), i.e. the d-th iterate image size, of mappings ϕ ∈ Fn. Then

Xn − µn√
σ2n

d→ N (0, 1) , (8.13)

where µ = hd

(
1
e

)
, σ2 = 2

e
h′

d

(
1
e

)
(1−µ)−µ, and hd(x) is the exponential generating function

of Cayley trees and satisfies the recursion h0(x) = 0 and hi+1(x) = xehi(x) for i ≥ 0.

In this section, we saw some interesting parameters for random functions. In the next
chapter, we present a new parameter which can be used to compute the expected state
entropy of a stream cipher having a random update function.
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Chapter 9

State Entropy of a Stream Cipher using

a Random Function

Replacing random permutations by random functions for the update of a stream cipher
introduces the problem of entropy loss. To assess the security of such a design, we need to
evaluate the entropy of the inner state. We propose a new approximation of the entropy
for a limited number of iterations. Subsequently, we discuss two collision attacks which
are based on the entropy loss. We provide a detailed analysis of the complexity of those
two attacks as well as of a variant using distinguished points.

The work from this chapter was presented at [Röc07b, Röc07a] and published in the
proceedings of the international conference on cryptology in Africa (Africacypt 2008) in
Casablanca, Morocco [Röc08b].

9.1 Introduction

Recently, several stream ciphers have been proposed with a non-bijective update function.
Moreover, in some cases the update function seems to behave like a random function as for
the Mickey stream cipher [BD05, BD08]. Using a random function instead of a random
permutation induces an entropy loss in the state. An attacker might exploit this fact to
mount an attack. Particularly, we will study some attacks which apply the approach of
Time–Memory tradeoff [Hel80] and its variants [HS05]. At first we introduce the model
with which we are going to work.

Stream Cipher Model The classical model of an additive synchronous stream cipher
(Figure 9.1) is composed of an internal state updated by applying a function Φ. Then a
filter function is used to extract the keystream bits from the internal state. To obtain the
ciphertext we combine the keystream with the plaintext.

The particularity of our model is that Φ is a random mapping (Definition 8.1) which
allows us to make some statistical statements about the properties of the stream cipher.
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Figure 9.1: Model of a simple stream cipher.

Let Sk be the random variable denoting the value of the state after k iterations of Φ,
for k ≥ 0. From the model in Figure 9.1, we see that Sk = Φ(Sk−1) where the value of Φ
is the same for all iterations k ≥ 1. The value of the keystream is given by Zk = g(Sk)
and the ciphertext by Ck = Mk⊕Zk. The probability distribution of the initial state S0 is
{pi}ni=1 such that

pi = Pr[S0 = i] .

If we do not state otherwise, we assume a uniform distribution. Thus pi = 1/n for all
1 ≤ i ≤ n. We describe by

pΦ
i (k) = Pr[Φk(S0) = i]

the probability of the state being i after applying k times Φ on the initial state S0. If we
write only pϕ

i (k) we mean the same probability but for a specific function ϕ ∈ Fn. The
notation above allows us to define the entropy of the state after k iterations of Φ as:

HΦ
k =

n∑

i=1

pΦ
i (k) log2

(
1

pΦ
i (k)

)

.

If pΦ
i (k) = 0, we use the classical convention in the computation of the entropy that

0 log2(
1
0
) = 0. This can be done, since a zero probability has no influence on the compu-

tation of the entropy. In this chapter, we are interested in expectations where the average
is taken over all functions ϕ ∈ Fn. To differentiate between a value corresponding to a
random mapping Φ, to a specific function ϕ, and the expectation of a value, taken over all
functions ϕ ∈ Fn, we will write in the following the first one italic (e.g. HΦ

k ), the second
one upright (e.g. Hϕ

k ), and the last one bold (e.g. Hk). For instance, the formula:

Hk = E(HΦ
k )
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denotes the expected state entropy after k iterations.

The subsequent chapter is divided in two main sections. In Section 9.2, we discuss
ways of estimating the state entropy of our model. We give a short overview of previous
results from [FO89] and [HK05] in Section 9.2.1. Subsequently in Section 9.2.2, we present
a new estimate which is, for small numbers of iterations, more precise than the previous
one. In Section 9.3, we examine if it is possible to use the entropy loss in the state to
launch an efficient attack on our model. We discuss two collision attacks against Mickey
version 1 [BD05] presented in [HK05]. We give a detailed evaluation of the costs of these
attacks applied to our model. For this evaluation, we consider the space complexity, the
query complexity and the number of different initial states needed. By the space complexity
we mean the size of the memory needed, by the query complexity we mean the number of
times we have to apply the update function during the attack. For the first attack, we show
that we only gain a factor on the space complexity by increasing the query complexity by
the same factor. For the second attack, we demonstrate that, contrary to what is expected
from the results in [HK05], the complexities are equivalent to a direct collision search in
the initial values. In the end, we present a new variant of these attacks which allows to
reduce the space complexity; however the query complexity remains the same.

9.2 Estimation of Entropy

The entropy is a measure of the unpredictability. An entropy loss in the state facilitates
the guessing of the state for an adversary. In this section, we therefore discuss different
approaches to estimate the expected entropy of the inner state.

9.2.1 Previous Work

As we presented in the previous chapter, Flajolet and Odlyzko provide, in [FO89], a wide
range of parameters of random functions by analyzing their functional graphs. To study
the state entropy in our model, we are interested in the average value of the maximal tail
length, the number of cyclic nodes, the number of r-nodes and the number of image points
after some iterations of functions ϕ ∈ Fn. The maximal tail length is, for each graph, the
maximal number of steps before reaching a cycle. An r-node is a node in the graph with
exactly r incoming nodes which is equivalent to a preimage of size r. By the image points
we mean all points in the graph that are reachable after k iterations of the function. From
Theorem 8.9, Theorem 8.11, and Theorem 8.14 we know the asymptotic values of these
parameters for n→∞:

• the expected number of cycle point cp(n) ∼
√

πn/2,

• the expected maximal tail length mt(n) ∼
√

πn/8,

• the expected number of r-nodes rn(n, r) ∼ n
r!e

, and
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• the expected number of image points after k iterations ip(n, k) ∼ n(1 − τk) where
τ0 = 0 and τk+1 = e−1+τk .

For all these values, the expectation is taken over all functions in Fn.
In [HK05], Hong and Kim use the expected number of image points to give an upper

bound for the state entropy after k iterations of a random function. They utilized the fact
that the entropy is always less than or equal to the logarithm of the number of points with
probability larger than zero. After a finite number of steps, each point in the functional
graph will reach a cycle, and thus the number of image points can never drop below the
number of cycle points. Therefore, the upper bound for the estimated entropy of the
internal state

Hk ≤ log2(n) + log2(1− τk) (9.1)

is valid only as long as ip(n, k) > cp(n). We see that for this bound the loss of entropy
only depends on k and not on n.

In Figure 9.2, we compare, for n = 216, the values of this bound with the empirically
derived average of the state entropy. To compute this value we chose 104 functions, using

121086420
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4

2

0

Figure 9.2: Upper bound and empirical average of the entropy for n = 216.

the HAVEGE random number generator [SS03], and computed the average entropy under
the assumption of a uniform distribution of the initial state. Even if n is not very big,
it is sufficient to understand the relation among the different factors. We can see in the
graph that if k stays smaller than mt(n) this bound stays valid and does not drop under
log2(cp(n)).

9.2.2 New Entropy Estimation

The expected number of image points provides only an upper bound (9.1) of the expected
entropy. We found a more precise estimation by employing the methods stated in [FO89]
and discussed in Section 8.1.

84



For a given function ϕ ∈ Fn, let i be a node with r incoming nodes (an r-node). The
idea is that this is equivalent to the fact that i is produced by exactly r different starting
values after one iteration. Thus, if the initial distribution of the state is uniform, this node
has the probability pϕ

i (1) = r/n. The same idea works also for more than one iteration.

Definition 9.1 For a fixed n, we choose a function ϕ ∈ Fn. Let ϕ−k(i) = {j|ϕk(j) = i}
define the preimage of i after k iterations of ϕ. We denote by

rnϕ
k (r) = #

{

i
∣
∣
∣

∣
∣ϕ−k(i)

∣
∣ = r

}

the number of points in the functional graph of ϕ which are reached by exactly r nodes after
k iterations.

For a random function Φ on a set of n elements, we define by rnk(n, r) the expected
value of rnϕ

k (r), thus

rnk(n, r) =
1

nn

∑

ϕ∈Fn

rnϕ
k (r) .

A small example might help to better understand these definitions. For n = 13 we consider

Figure 9.3: Example of a functional graph to illustrate rnϕ
k (r).

a function ϕ with a functional graph as displayed in Figure 9.3. The only points that are
reached by r = 3 points after k = 2 iterations are A and B. Thus, in this case we have
rnϕ

2 (13, 3) = 2. The value rn2(13, 3) is then the average taken over all functions ϕ ∈ F13.
Using Definition 9.1 we can state the following theorem.

Theorem 9.2 In the case of a uniform initial distribution, the expected entropy of the
inner state after k iterations is

Hk = log2(n)−
n∑

r=1

rnk(n, r)
r

n
log2(r) . (9.2)

Proof.
Let us fix a function ϕ. We use the idea that after k iterations of ϕ we have rnϕ

k (r) states

85



with probability r
n
. Thus, the entropy after k iterations for this specific function is

Hϕ
k =

n∑

r=1

rnϕ
k (r)

r

n
log2

(n

r

)

= log2(n)
1

n

n∑

r=1

r rnϕ
k (r)−

n∑

r=1

rnϕ
k (r)

r

n
log2(r) .

We ignore the case r = 0 since it corresponds to a probability zero, which is not important
for the computation of the entropy. Each 1 ≤ j ≤ n appears exactly in one preimage of
ϕ after k iterations. We see directly from the definition of rnϕ

k (r) that
∑n

r=1 r rnϕ
k (r) = n.

Therefore, we can write

Hϕ
k = log2(n)−

n∑

r=1

rnϕ
k (r)

r

n
log2(r) .

By using this equation, we can give the expected entropy after k iterations as

Hk =
1

nn

∑

ϕ∈Fn

Hϕ
k

=
1

nn

∑

ϕ∈Fn

[

log2(n)−
n∑

r=1

rnϕ
k (r)

r

n
log2(r)

]

= log2(n)− 1

nn

∑

ϕ∈Fn

[
n∑

r=1

rnϕ
k (r)

r

n
log2(r)

]

.

Since we only have finite sums we can change the order:

Hk = log2(n)−
n∑

r=1

[

1

nn

∑

ϕ∈Fn

rnϕ
k (r)

]

r

n
log2(r) .

We conclude our proof by applying Definition 9.1. ⋄

In the same way we can compute the entropy for any arbitrary initial distribution.

Theorem 9.3 For a given n, let P = {p1, p2, . . . , pn} define the distribution of the initial
state. Then, the expected entropy of the state after k iterations is given by

HP

k
=

n∑

r=1

rnk(n, r)
1
(

n
r

)

∑

1≤j1<···<jr≤n

(pj1 + · · ·+ pjr
) log2

1

pj1 + · · ·+ pjr

. (9.3)
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Proof.
Let us choose a specific ϕ and a state i. After k iterations of ϕ, the state i has the
probability

∑

j∈ϕ−k(i) pj. Therefore, the expected entropy after k iterations is given by

HP

k
=

1

nn

∑

ϕ∈Fn

n∑

i=1




∑

j∈ϕ−k(i)

pj



 log2








1
∑

j∈ϕ−k(i)

pj








. (9.4)

For a given r we fix a set of indices {j1, . . . , jr}. Without loss of generality we assume that
they are ordered, i.e. 1 ≤ j1 < · · · < jr ≤ n. We now want to know how many times we
have to count (pj1 + · · ·+ pjr

) log2
1

pj1
+···+pjr

in (9.4). This is equivalent to the number of

pairs (i, ϕ) where ϕ−k(i) = {j1, . . . , jr}.
From Definition 9.1, we know that nnrnk(n, r) is the number of pairs (i, ϕ) such that

|ϕ−k(k)| = r. Due to symmetry, each set of indices of size r is counted the same number
of times in (9.4). There are

(
n
r

)
such sets. Thus, (pj1 + · · ·+ pjr

) log2
1

pj1
+···+pjr

is counted

exactly nn
rnk(n,r)

(n
r)

times and we can write

HP

k
=

1

nn

n∑

r=1

nnrnk(n, r)
(

n
r

)

∑

1≤j1<···<jr≤n

(pj1 + · · ·+ pjr
) log2

1

pj1 + · · ·+ pjr

,

which is equivalent to (9.3). ⋄

Theorem 9.2 can also be shown by using Theorem 9.3; however the first proof is easier to
follow. Finally, we want to consider a further special case.

Corollary 9.4 For a given n, let the distribution of the initial state be Pm = {p1, p2, . . . , pn}.
From the n possible initial values only m occur with probability exactly 1

m
. Without loss of

generality we define

pi =

{
1
m

1 ≤ i ≤ m

0 m < i ≤ n .

In this case, we get

HPm

k
=

n∑

r=1

rnk(n, r)
1
(

n
r

)

r∑

ℓ=0

(
m

ℓ

)(
n−m

r − ℓ

)
ℓ

m
log2

m

ℓ
. (9.5)

Proof.
For a given r, let us consider the sum (pj1 + · · ·+ pjr

) for all possible index tuples 1 ≤ j1 <
· · · < jr ≤ n. In

(
m
ℓ

)(
n−m
r−ℓ

)
cases we will have (pj1 + · · · + pjr

) = ℓ
m

for 0 ≤ ℓ ≤ r. Thus,
(9.5) follows directly from Theorem 9.3. ⋄

To approximate rnk(n, r) for one iteration, we use directly the results for the expected
number of r-nodes, given in [FO89], since rn1(n, r) = rn(n, k) ∼ n

r!e
. We can see that
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already for k = 1, a uniform initial distribution, and n large enough, there is a non
negligible difference between our estimate (9.2)

H1 ∼ log2(n)− e−1

n∑

r=1

1

(r − 1)!
log2(r) ≈ log2(n)− 0.8272

and the upper bound (9.1)

H1 ≤ log2(n) + log2(1− e−1) ≈ log2(n)− 0.6617 .

For more than one iteration we need to define a new parameter.

Theorem 9.5 For n→∞ we can give the following asymptotic value

rnk(n, r) ∼ n ck(r) (9.6)

of the expected number of points in the functional graph which are reached by r points after
k iterations, where

ck(r) =

{
1

r!e
for k = 1

D(k, r, 1)f1(k)1
e

for k > 1

D(k, r, m) =







1 for r = 0

0 for 0 < r < m
∑⌊r/m⌋

u=0
ck−1(m)u

u!
D(k, r −mu, m + 1) otherwise

and

f1(k) =

{

1 for k = 1

ee−1f1(k−1) for k > 1 .

Proof.
The concept of this proof is the same as in Section 8.1. We see the functional graph as a
combinatorial structure. We are going to build the generating function corresponding to
this structure where we mark the desired parameter. By means of the singularity analysis
of the generating function we obtain the asymptotic value of this parameter. The difficulty
is to mark the right property in the generation function.

Let F =
⋃

n≥1Fn be the set of all functions which map a finite set into itself. For
a specific ϕ ∈ F , we denote by |ϕ| the size n of the finite set. We are interested in the
parameter

ξr,k(ϕ) = rnϕ
k (r)

which gives the number of nodes in the functional graph of ϕ which have a k-th iterate
preimage of size r. We now have to define the bivariate generating function Fr,k(z, u) of
the pair F , ξr,k. We will then apply Theorem 8.6 and singularity analysis to obtain the
asymptotic mean of ξr,k.

To define the function Fr,k(z, u), we start by a tree. A node in a tree which is reached
by r nodes after k iterations can be described by the concatenation of three elements:
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1. A node.

2. A SET of trees where each tree has a depth smaller than k − 1.

3. A concatenation of j trees where the order of the concatenation is not important
and where 1 ≤ j ≤ r. Each of these trees has a depth larger or equal to k − 1 and
their roots are reached by respectively i1, . . . , ij nodes after k−1 iterations such that
i1 + · · ·+ ij = r.

In Figure 9.4, these three elements are marked for the node A. To write the corresponding

Figure 9.4: Example of the structure explained in 1.-3. for the node A.

bivariate generating function we need three more notations:

• The generating function of a set of trees of depth smaller than k− 1, as described in
2., is given by f1(z, k) where

f1(z, k) =

{

1 for k = 1

ez f1(z,k−1) for k > 1 .

• We mean by Par(r) the integer partition of r, i.e. the set of all possible sequences
[i1, . . . , ij] for 1 ≤ j ≤ r such that 1 ≤ i1 ≤ · · · ≤ ij ≤ r and i1 + · · · + ij = r. For
example, for r = 4 we have Par(4) = {[1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4]}.

• Since the order of the concatenation in 3. is not important, we need a correction
term f2([i1, . . . , ij]). If there are some ix1

, . . . , ixℓ
with 1 ≤ x1 < · · · < xℓ ≤ j and

ix1
= · · · = ixℓ

we have to multiply by a factor 1/ℓ! to compensate this repeated
appearance, e.g. f2([1, 1, 1, 1, 2, 2, 3]) = 1

4!2!1!
.

Let Tr,k(z, u) be the bivariate generation function of an arbitrary tree. We define by ck(z, r)
a variable such that

ck(z, r)Tr,k(z, u)r

is the generating function of a tree where the root is reached by r nodes after k iterations.
For k = 1, such a tree has r children, where each child is again a tree. In terms of generating
functions, this structure can be represented by z

Tr,k(z,u)r

r!
. Thus, we get

c1(r, z) =
z

r!
.
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For k > 1 we can use the structure given in 1.-3. and our notations to write:

ck(z, r)

= 1
Tr,k(z,u)r

1.
︷︸︸︷

z

2.
︷ ︸︸ ︷

f1(z, k)
3.

︷ ︸︸ ︷
∑

[i1,...,ij ]∈Par(r)

[
ck−1(i1, z)Tr,k(z, u)i1

]
· · ·
[
ck−1(ij, z)Tr,k(z, u)ij

]
f2([i1, . . . , ij])

= zf1(z, k)
∑

[i1,...,ij ]∈Par(r) ck−1(i1, z) · · · ck−1(ij, z)f2([i1, . . . , ij]) .

In total we get

ck(z, r) =







for k = 1 : z/r!

for k > 1 :

z f1(z, k)
∑

[i1,...,ij ]∈Par(r)

ck−1(i1, z) · · · ck−1(ij, z) f2([i1, . . . , ij])

(9.7)

We can now write the generation function of a tree where we mark with the variable u
the nodes which are reached by r other nodes after k iterations:

Tr,k(z, u) = zeTr,k(z,u) + (u− 1)Tr,k(z, u)rck(z, r) .

The first part describes a tree as a node concatenated with a set of trees. The second part
correspond to our desired parameter. By applying the properties the structure in (8.1) we
get the bivariate generating function for a general functional graph

Fr,k(z, u) =
1

1− Tr,k(z, u)
.

In the next step, we apply Theorem 8.6. For this, we will use that for u = 1 we get the
general generating function of a tree Tr,k(1, z) = T (z) = zeT (z).

∂uFr,k(z, u)|u=1 =
1

(1− Tr,k(z, u))2
∂uTr,k(z, u)

∣
∣
∣
∣
u=1

=
1

(1− Tr,k(z, u))2

Tr,k(z, u)rck(z, r)

1− zeTr,k(z,u) − (u− 1)rTr,k(z, u)r−1ck(z, r)

∣
∣
∣
∣
u=1

=
1

(1− T (z))2

T (z)rck(z, r)

1− zeT (z)

=
T (z)rck(z, r)

(1− T (z))3
. (9.8)
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We cannot get directly the coefficients of the generating function (9.8), thus, we apply a
singularity analysis. For this, we need the singular expansion (8.8) for the tree function
T (z). The dominant factor for the singularity analysis is T (z) ∼ 1 −

√
2
√

1− ez for
z → e−1. We use that Fr,k(z, 1) = F (z) is the generating function for the set F , thus
[zn]Fr,k(z, 1) = nn

n!
. When applying (8.5), (9.8), and Γ(3/2) =

√
π/2 we can write:

EFn
(ξ) =

n!

nn
[zn]

T (z)rck(z, r)

(1− T (z))3
,

z→e−1

∼ n!

nn
[zn]

(
1−
√

2
√

1− ez
)r

ck(e
−1, r)

(
√

2
√

1− ez)3
,

n→∞∼ n!

nn

ck(e
−1, r)

23/2
en n3/2

n
√

π/2
,

n→∞∼ n ck(e
−1, r) .

Remark 9.6 In the construction of our generating function we only count the nodes in
the tree which are reached by r points after k iterations ( e.g. node A in Figure 9.3). We
ignore the nodes on the cycle ( e.g. node B in Figure 9.3). However, the average proportion
of the number of cycle points in comparison to the image size after k iterations is

cp(n)

ip(n, k)
∼
√

πn/2

n(1− τk)
.

For a fixed k and n→∞ it is clear that this proportion gets negligible.

Thus, we can write
rnk(n, r) ∼ n ck(e

−1, r) .

The computation of ck(e
−1, r) as defined in (9.7) is not very practical. In this paragraph,

we will show that we can do it more efficiently using dynamic programming. For simplicity
we write in the following ck(e

−1, r) = ck(r) and f1(e
−1, k) = f1(k). We define the new value

D(k, r, m) by

D(k, r, m) =
∑

[i1,...,ij ]∈Par≥m(r)

ck−1(i1) · · · ck−1(ij)f2([i1, . . . , ij])

where Par≥m(r) is the set of all partitions of the integer r such that for each [i1, . . . , ij] ∈
Par≥m(r) must hold that iℓ ≥ m for all 1 ≤ ℓ ≤ j. Using this, we can give the recursive
definition of D(k, r, m) and ck(r) as described in this theorem. ⋄

Most of the time we will compute ck(r) in a floating point arithmetic with fixed precision.
The following proposition gives the number of operations needed. It says nothing about
the precision of the final result.
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Proposition 9.7 Let as fix R and K. In a floating point arithmetic we can compute of
ck(r), as described in Theorem 9.5, for all r ≤ R and k ≤ K in a time complexity of
O (KR2 ln(R)).

Proof.
We use dynamic programming to compute ck(r).

The computation of f1(k) can be done once for all k ≤ K and then be stored. Thus,
it has a time and space complexity of O(K). For k = 1, if we start with r = 1 we can
compute c1(r) for all r ≤ R in R steps. The same is true for 1 < k ≤ K if we already know
D(k, r, 1) and f1(k).

The most time consuming factor is the computation of D(k, r, m). For a given k′, let
us assume that we have already computed all ck′−1(r) for 1 ≤ r ≤ R. In the computation
of D(k, r, m) we will go for r from 1 to R, and for m from r to 1. This means that

• For a given r′ we already know all D(k′, r, m) with r < r′.

• For a fixed r′ and m′ we already know all D(k′, r′, m) with m > m′.

• To compute
⌊r/m⌋
∑

u=0

ck−1(m)u

u!
D(k, r −mu, m + 1)

we need ⌊r/m⌋ steps.

Thus in total, for each 1 < k ≤ K we need

R∑

r=1

r∑

m=1

⌊ r

m

⌋

steps to compute all D(k, r, m). By using that
r∑

m=1

1

m
= ln(r) + C +O

(
1

r

)

where C = 0.5772 . . . is the Euler constant, and

R∑

r=1

r ln(r) ≤ ln(R)
R∑

r=1

r

= ln(R)
R(R + 1)

2

we obtain the final time complexity of O(KR2 ln(R)). ⋄
Let us go back to the expected entropy in (9.2). By using (9.6) we can write for n→∞

Hk ∼ log2(n)−
R∑

r=1

ck(r) r log2(r)

︸ ︷︷ ︸

(a)

−
n∑

r=R+1

ck(r) r log2(r)

︸ ︷︷ ︸

(b)

, (9.9)
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where (a) represents an estimation of the entropy loss which does not depend on n and
(b) is an error term. In Figure 9.5, we see that the value ck(r) r log2(r) decreases fast
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Figure 9.5: The course of ck(r) r log2(r) for different values of k and r.

with growing r. However, for larger k this decrease becomes slower. If we want (b) to be
negligible for larger k we also need a larger value for R. Unfortunately, we could not find
a closed formula of the function ck(r) r log2(r), so we restrict ourselves to the study of the
graph. In Table 9.1, we compare our entropy estimator

Hk(R) = log2(n)−
R∑

r=1

ck(r) r log2(r) (9.10)

with the estimated lower bound of the loss given by the expected number of image points
(9.1) and the empirical results from the experiment presented in Figure 9.2. From (9.6)
and (9.9) we know that

Hk ∼ Hk(R)

for n → ∞ and R → n. We can see that for small k, in the order of a few hundred, we
reach a much better approximation than the upper bound (9.1). For example, for most of
the modern stream ciphers, the number of iterations for a key/IV–setup is in this order of
magnitude. However, for increasing values of k we also need bigger values of R and, thus,
this method gets computationally expensive. For k = 100 and R = 1000 the result of our
estimate is about 0.02 larger than the empirical data. The fact that our estimate is larger
shows that it is not due to the choice of R (it does not change a lot if we take R = 2000)
but to the fact that our n = 216 is relatively small and, thus, the proportion of cycle points
which is about √

πn/2

n(1− τk)
≈ 0.253

is not negligible.
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k 1 2 3 · · · 10 · · · 50 · · · 100
empirical data, n = 216 0.8273 1.3458 1.7254 · · · 3.1130 · · · 5.2937 · · · 6.2529
image points (9.1) 0.6617 1.0938 1.4186 · · · 2.6599 · · · 4.7312 · · · 5.6913

R = 50 0.8272 1.3457 1.7254 · · · 3.1084 · · · 2.6894 · · · 1.2524
Hk(R), (9.10) R = 200 0.8272 1.3457 1.7254 · · · 3.1129 · · · 5.2661 · · · 5.5172

R = 1000 0.8272 1.3457 1.7254 · · · 3.1129 · · · 5.2918 · · · 6.2729

Table 9.1: Comparison of different methods to estimate the entropy loss.

In this section, we presented a new entropy estimator. We could show that if the
number of iterations is not too big, it is much more precise than the upper bound given
by the image size. In addition, the same method can be used for any arbitrary initial
distribution.

9.3 Collision Attacks

In the previous section, we studied the loss of entropy in the inner state of our stream
cipher model. In this section, we examine if it is possible to exploit this loss for a generic
attack on our model. Hong and Kim present in [HK05] two attacks on the Mickey stream
cipher [BD05, BD08], based on the entropy loss in the state. This stream cipher has a fixed
update function; however Hong and Kim state, due to empirical results, that the update
function behaves almost like a random function with regard to the expected entropy loss
and the expected number of image points. Thus, these attacks are directly applicable on
our model. We will give a detailed complexity analysis of these attacks and will show that
in the case of a real random function they are less efficient than what one might assume
from the argumentation of Hong and Kim.

Let us take two different initial states S0 and S ′
0 and apply the same function iteratively

onto both of them. We speak about a collision if there exist k and k′ such that Sk = Sk′ ,
for k 6= k′, or Sk = S ′

k′ for any arbitrary pair k, k′. The idea of Hong and Kim was
that a reduced entropy leads to an increased probability of a collision. Once we have
found a collision, we know that the subsequent output streams are identical. Due to the
birthday paradox, we assume that with an entropy of m-bits we reach a collision, with high
probability, by choosing 2

m
2 different states.

The principle of the attacks is that we start from m different, randomly chosen, initial
states X1, X2, . . . , Xm and that we apply iteratively the same update function k times on
each of them. In the end, we search for a collision and hope that our costs are less than for
a search directly in the initial states. We will study the two attacks proposed in [HK05] as
well as a variant using distinguished points. For each of these attacks we provide a detailed
complexity analysis where we examine the query and the space complexity as well as the
number of necessary initial states to achieve a successful attack with high probability. We
mean by the query complexity the number of all states produced by the cipher during the
attack which is equivalent to the number of times the updated function is applied. We
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denote by the space complexity the number of states we have to store, such that we can
search for a collision within them. Each time we compare the results to the attempt of
finding a collision directly within the initial states which has a space and query complexity
of ∼ √n.

All these attacks consider only the probability of finding a collision in a set of states.
This is not equivalent to an attack where we have m − 1 initial states prepared and we
want the probability that if we take a new initial state, it will be one of the already stored.
In such a scenario, the birthday paradox does not apply. We also never consider how many
output bits we would really need to store and to recognize a collision, since this value
depends on the specific filter function used. In the example of Mickey, Hong and Kim
states that they need about 28 bits to store a state.

9.3.1 States after k Iterations

The first attack of Hong and Kim takes randomly m different initial states X1, X2, . . . , Xm

and applies k times the same instance of Φ on each of them. Then, we search for a
collision in the m resulting states (Figure 9.6). Using the upper bound (9.1) we know that

Figure 9.6: Collision search in the last column.

the average entropy after k iterations is less than log2(n) + log2(1 − τk). Hong and Kim
conjecture, based on experimental results, that this is about the same as log2(n)−log2(k)+
1. Thus, with high probability we find a collision if m > 2(log2(n)−log2(k)+1)/2 =

√

2n/k.
This attack stores only the last value of the iterations and searches for a collision within

this set. This leads to a space complexity of m ∼
√

2n/k for large enough k. However,
Hong and Kim did not mention that we have to apply k times Φ on each of the chosen
initial states, which results in a query complexity of mk ∼

√
2kn. This means that we

increase the query complexity by the same factor as we decrease the space complexity and
the number of initial states.

The question remains, if there exist any circumstances under which we can use this
approach without increasing the query complexity. The answer is yes, if the stream cipher
uses a family of update functions which lose more than 2 log2(k) bits of entropy after k
iterations. Such a characteristic would imply that we do not use random functions to
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update our state, since they have different properties as we have seen before. However, the
principle of the attack stays the same.

9.3.2 Including Intermediate States

The second attack in [HK05] is equivalent to applying 2k − 1 times the same instance of
Φ on m different initial states and searching for a collision in all intermediate states from
the k-th up to the (2k − 1)-th iteration (Figure 9.7). Since after k − 1 iterations we have

Figure 9.7: Collision search in the second half of the iterations.

about log2(n)− log2(k) + 1 bits of entropy, Hong and Kim assume that we need a m such
that mk ∼

√

n/k. They state that this result would be a bit too optimistic since collisions
within a row normally do not appear in a practical stream cipher. However, they claim
that this approach still represents a realistic threat for the Mickey stream cipher. We
will show that for a random function, contrary to their conjecture, this attack has about
the same complexities as a direct collision search in the initial states.

Let us take all the 2km intermediate states for the 2k − 1 iterations. Let Pr[A] define
the probability that there is no collision in the all the 2km intermediate states. If there
is no collision in this set then there is also no collision in the km states considered by the
attack. Thus, the probability of a successful attack is even smaller than 1 − Pr[A]. By
means of only counting arguments we can show the following proposition.

Proposition 9.8 The probability of no collision in the 2km intermediate states is

Pr[A] =
n(n− 1) · · · (n− 2km + 1)

n2km
, (9.11)

where the probability is taken over all functions ϕ ∈ Fn and all possible choices of m initial
states X1, X2, . . . , Xm.

Proof.
Let Pr[I] be the probability of no collision in the m initial states. We can see directly that

Pr[A] = Pr[A ∩ I]

= Pr[A|I] Pr[I] .

96



Let us assume that we have chosen m different initial states. This happens with a proba-
bility of

Pr[I] =

(
n
m

)
m!

nm
. (9.12)

In this case we have:

• nn different instances ϕ ∈ Fn of our random functions, where each of them creates

•
(

n
m

)
m! different tables. Each table can be produced more than once. There exist

• n (n− 1) . . . (n− 2km + 1) different tables that contain no collisions. Each of them
can be generated by

• nn−(2k−1)m different functions, since a table determines already (2k − 1)m positions
of ϕ.

Thus, we get the probability

Pr[A|I] =
n (n− 1) . . . (n− 2km + 1) nn−(2k−1)m

nn
(

n
m

)
m!

(9.13)

for m > 0 and 2km ≤ n. By combining (9.12) and (9.13) we can conclude our proof. ⋄

The probability of Pr[A] given in (9.11) is exactly the probability of no collision in 2km
random points, which means that we need at least an m such that 2km ∼ √n. This leads
to a query complexity of ∼ √n and a space complexity of ∼ √n/2.

9.3.3 Improvement with Distinguished Points

Distinguished points are a well known technique in cryptography to reduce the number
of time expensive memory accesses. The idea was first mention by Rivest (see [Den82, p.
100]) and was applied in several practical attacks, like [QD88, QD89, BS00]. Using this
technique we can reduce the space complexity in the second attack; however the query
complexity stays the same.

We mean by distinguished points (DPs) a subset of the set {1, 2, . . . , n} which is distin-
guished by a certain property, e.g. by a specific number of 0’s in the most significant bits.
The idea is to compare only the DPs and not all intermediate values. In our new variant
of the second attack, we iterate Φ in each row up to the moment where we reach a DP. In
this case we stop and store the DP. If we do not reach a DP after kMAX iterations we stop
as well but we store nothing. If there was a collision in any of the states in the rows where
we reached a DP, the subsequent states would be the same and we would stop with the
same DP. Thus, it is sufficient to search for a collision in the final DPs (see Figure 9.8).

Let d be the number of distinguished points in the set {1, 2, . . . , n}. We assume that
the ratio c = d

n
≤ 1 is large enough that with a very high probability we reach a DP

before the end of the cycle in the functional graph. This means that the average number
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Figure 9.8: The attack using distinguished points.

of iterations before arriving at a DP is much smaller than the expected length of the tail
and the cycle together (which would be about

√
π n
2

due to [FO89]). We assume that in
this case, the average length of each row would be in the range of 1/c as in the case of
random points. We also suppose that that we need about m/c ∼ √n query points to find
a collision, as in the previous case. This leads to a query complexity of ∼ √n and a space
complexity of only ∼ c

√
n. Empirical results for example for n = 220, −6 ≤ log2(c) ≤ −1

and kMAX =
√

n confirm our assumptions, as we can see in Figure 9.9.

 4
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Figure 9.9: Empirical results for an attack with DP and n = 220.

A summary of the complexities of all attacks can be found in Table 9.2, where we marked
by (new) the results that where not yet mentioned by Hong and Kim. In the case where
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we consider only the states after k iterations, we have to substantially increase the query
complexity to gain in the space complexity and the number of initial states. We were able
to show that even when we consider all intermediate states, the query complexity has a
magnitude of

√
n. The variant using the distinguished points allows to reduce the space

complexity by leaving the other complexities constant.

attack # initial states space complexity query complexity

after k iterations, 9.3.1 ∼
√

2n/k ∼
√

2n/k ∼
√

2kn (new)
with interm. states, 9.3.2 ∼ √n/2k (new) ∼ √n/2 (new) ∼ √n (new)
with DPs, 9.3.3 ∼ c

√
n (new) ∼ c

√
n (new) ∼ √n (new)

Table 9.2: Complexities of attacks.

9.4 Conclusion

In this chapter, we studied a stream cipher model which uses a random update function.
We have introduced a new method of estimating the state entropy in this model. This
estimator is based on the number of values that produce the same value after k iterations.
Its computation is expensive for large numbers of iterations; however, for a value of k up
to a few hundred, it is much more precise than the upper bound given by the number of
image points.

In this model, we have also examined the two collision attacks proposed in [HK05] which
are based on the entropy loss in the state. We pointed out that the first attack improves the
space complexity at the cost of significantly increasing the query complexity. We proved
that the complexity of the second attack is of the same magnitude as a collision search
directly in the starting values. In addition, we discussed a new variant of this attack, using
distinguished points, which reduces the space complexity but leaves the query complexity
constant.

The use of a random function in a stream cipher introduces the problem of entropy
loss. However, the studied attacks based on this weakness are less effective than expected.
Thus, the argument alone that a stream cipher uses a random function is not enough to
threaten it due to a collision attack based on the entropy loss.
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Part V

FCSRs
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Chapter 10

Introduction to FCSRs

Feedback with Carry Shift Registers (FCSRs) are non linear shift registers. They are
constructed similarly to Linear Feedback Shift Registers (LFSRs), however instead of XOR,
i.e. an addition modulo 2, they use integer addition. FCSRs were first presented by
Klapper an Goresky in [KG93]. The two authors developed their idea further in several
conferences [KG93, GK94, KG95b, KG95a] and gave a detailed summary and introduction
into the area of FCSR in their article [KG97].

Independently, Marsaglia [Mar94] and Couture and L’Ecuyer [CL97] developed the
multiple-with-carry (MWC) random number generator as an enhancement of the add-
with-carry (AWC) generator [MZ91, CL94]. The MWC generator is based on the same
principles as the FCSR.

The original FCSR automaton corresponds to the Fibonacci architecture of an LFSR. In
2002, Klapper and Goresky [GK02] developed as well a Galois architecture for FCSRs. An
example for a Fibonacci and Galois architecture can be seen in Figure 10.3 and Figure 10.4,
respectively.

The big advantages of FCSRs are that they are non-linear, structured enough to allow
a detailed analysis and fast enough to be interesting in modern implementations. The
properties of LFSRs are well known [Gol81, McE87]. However, their linear update function
makes them vulnerable to algebraic attacks [CM03]. For this reason, Nonlinear Feedback
Shift Registers (NLFSRs) [Gol81] seem to be an interesting alternative, yet, in the general
case of NLFSRs, it is hard to give a detailed analysis. In the case of FCSRs, we can build
on the strong theory of 2-adic numbers. In addition, the simple structure allows an efficient
implementation in hardware and software [GB07, LR08].

The FCSRs found a concrete application in the F-FCSR stream cipher [AB05b, ABL08].
This cipher was a candidate of the European eSTREAM project [eST] in the Hardware
Profile and was first chosen as one of the finalists. However, after an attack from Hell
and Johansson [HJ08] the F-FCSR was withdrawn from the final eSTREAM portfolio.
Arnault, Berger, Minier and Pousse working on a new architecture for FCSRs which com-
bines the Galois and the Fibonacci setup. This allows to resist attacks which exploit the
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specific weaknesses of the particular architectures1. The FCSRs remain an interesting tool
in the area of cryptography.

FCSRs are a young research area and every year several new articles are published on
this topic. In addition to the original FCSRs, there exist several extensions like FCSRs over
finite fields [Kla94], the d-FCSRS [Kla04, GK04] or the Algebraic Feedback Shift Registers
(AFSRs) [KX99, KX04]. In Section 10.4 we will address these extensions shortly. However,
if not otherwise mentioned, we will consider binary FCSRs in Fibonacci or Galois setup.

FCSRs are analogous to LFSRs. Thus, we will first give an overview of the most
important properties of LFSRs in Section 10.1 to show afterwards, in Section 10.2, the
parallels and differences to FCSRs. In both cases, we will restrict our discussion to the
binary case, e.g. we consider an output sequence S = (s0, s1, s2, . . .) where every si ∈ {0, 1}
for i ≥ 0. Subsequently, we will discuss some applications of FCSRs in Section 10.3 and
the most interesting extension in Section 10.4. My contributions concerning FCSRs will
be described in detail in Chapters 11 and 12.

10.1 Characteristics of LFSRs

All the properties of LFSRs that we are going to state are well known and explained in
nearly every book concerning cryptography [CDR98, MvOV96, Sch95]. A detailed descrip-
tion can be found in the monographs of Golomb and McEliece [Gol81, McE87].

Definition 10.1 An LFSR is an automaton which generates linear recursive sequences,
which means that the output sequence S = (s0, s1, s2, . . .) can be described in the following
way in the finite field F2:

si = q1si−1 + q2si−2 + · · ·+ qnsi−n ∈ F2 , (10.1)

for i ≥ n and given values n ∈ N and q1, q2, . . . , qn ∈ F2.

The addition in F2 can be realized by an XOR, which we will denote by ⊕. Thus, the
relation in (10.1) is equivalent to the implementation in Figure 10.1 where the output is
taken from cell a0. Such an automata is called a Fibonacci LFSR. It is characterized by a
multiple inputs and single output feedback function. We will see later that the same sequence
can be produced by an automaton with multiple feedback functions with a common input
as described in Figure 10.2. This setup is called Galois LFSR. The following definition is
valid for the both variants.

Definition 10.2 The connection polynomial q(X) of an LFSR is defined by its feedback
positions:

q(X) = qnX
n + qn−1X

n−1 + · · ·+ q1X + 1 ∈ F2[X] . (10.2)

The characteristic polynomial Q(X) = Xnq(1/X) is the reciprocal polynomial of q(X):

Q(X) = qn + qn−1X + · · ·+ q1X
n−1 + Xn ∈ F2[X] . (10.3)

1Personnel communications with François Arnault, Thierry Berger, Marine Minier, and Benjamin
Pousse.
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Figure 10.1: Fibonacci LFSR.

Figure 10.2: Galois LFSR.

The generating function or formal power series of the sequence S is defined by the element
s(X) of the ring F2[[X]] of formal power series:

s(X) =
∞∑

i=0

siX
i .

Theorem 10.3 ([Gol81]) Let S = (s0, s2, s2, . . .) be a sequence satisfying the linear re-
currence si = q1si−1 +q2si−2 + · · ·+qnsi−n for i ≥ n. Then, its generating function is equal
to a quotient of two polynomials

s(X) =
h(X)

q(X)
∈ F2[[X]] , (10.4)

where the denominator is the connection polynomial q(X) = 1 +
∑n

i=i qiX
i of an LFSR

generating the sequence. If qn = 1, i.e. S is strictly periodic, the degree of the nominator
h(X) is smaller than the degree n of q(X).

Let us define q0 = 1 and assume an initial loading of a0, . . . , an−1. In the case of a Fibonacci
LFSR, the polynomial h(X) is given by

h(X) =
n−1∑

j=0

j
∑

i=0

qiaj−iX
j ,

whereas in the case of a Galois LFSR we have

h(X) = h(X) = a0 + a1X + · · ·+ an−1X
n−1 .
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The same sequence can be generated by different automata and different connection poly-
nomials. We say that q(X) is minimal if gcd (h(X), q(X)) = 1.

Definition 10.4 The linear complexity or linear span of a sequence S = (s0, s1, s2, . . .) is
the smallest LFSR, which generates the sequence, i.e. the smallest n such that there exists
q1, q2, . . . qn which fulfill the relation in (10.1). If S is strictly periodic, i.e. qn = 1, this is
equivalent to the degree of the minimal polynomial q(X) which correspond s(X).

We can use the Berlekamp-Massey algorithm [Mas69] to find the smallest LFSR, i.e.
the minimal q(X) which generates a given sequence S. This algorithm is is based on
Berlekamp’s algorithm for BCH decoding [Ber68b, Ber68a] and was first applied on LF-
SRs by Massey in [Mas69]. The algorithm is optimal in two senses, it finds the smallest
LFSR and needs the smallest number of output bits to do so, namely two times the linear
complexity of S.

If we bitwise combine two binary linear recurrent sequences S = (s0, s1, s2, . . .) and
U = (u0, u1, u2, . . .), the generating function of result has the form v(X) = s(X) + u(X) ∈
F2[[X]]. Then, the linear complexity of the combination V can not be bigger than the sum
of the linear complexities of S and U .

In the general case, we can give the following two statements about the period of a
linear recurrent sequence:

Theorem 10.5 ([Gol81])

1. The succession of states in the LFSR is eventually periodic, with period T ≤ 2n,
where n is the size of the LFSR.

2. Let S = (s0, s1, s2, . . .) be a sequence generated by an LFSR. The period of S is the
smallest positive integer T for which 1−XT is divisible by the connection polynomial
q(X).

In cryptography, we are often interested in sequences with high periods.

Definition 10.6 An output sequence of an LFSR is called an m–sequence if it has the
maximal period of 2n − 1. This is the case if and only if q(X) is a primitive polynomial.

A last property that we want to mention, is that the ith output of an LFSR can be
calculated not only by the recurrence equation, but also directly by means of the trace
function.

Theorem 10.7 ([GK02]) Let q(X) be the connection polynomial of degree n of our LFSR
which produces the sequence S = (s0, s1, s2, . . .). If q(X) is irreducible and λ ∈ F2n is a
root of q(X), then

si = Tr
(
Aλi

)
(10.5)

for all i ≥ 0 and for some A ∈ F2n, where A corresponds to the choice of the initial state
of the LFSR and Tr : F2n → F2 denotes the trace function.
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10.2 Characteristics of FCSRs

The first version of an FCSR presented by Klapper and Goresky [KG97] was in Fibonacci
architecture, as presented in Figure 10.3. The difference to an LFSR is that the sum
∑n

i=1 an−iqi is now calculated over Z and not F2, and that we have to consider the additional
memory m.

Definition 10.8 (Fibonacci FCSR) A Fibonacci FCSR is an automaton which realizes
the following state-update function:

Let n be the length of the main register, a0, a1, . . . , an−1 ∈ {0, 1} represent the value of
its cells and q1, q2, . . . , qn ∈ {0, 1} the feedback positions. The value m ∈ Z corresponds to
the auxiliary memory. Then, the transition of the state from time t to time t + 1 is given
by:

σ = m(t) +
∑n

i=1 an−i(t)qi ,
ai(t + 1) = ai+1 for 0 ≤ i ≤ n− 2 ,
an−1(t + 1) = σ mod 2 ,
m(t + 1) = σ div 2 ,

(10.6)

where div denotes the integer division.
The equations in (10.6) for an−1(t) and m(t) can be written together as:

2m(t + 1) + an−1(t + 1) = m(t) +
n∑

i=1

an−i(t)qi (10.7)

since it must hold that an−1 ∈ {0, 1}.

Figure 10.3: Fibonacci FCSR.

Remark 10.9 In the case of a Fibonacci FCSR, we mean by the state (A, m) the content
of the cells of the main register and the memory, i.e. A = (a0, a1, . . . , an−1), and m. We
will write respectively A(t) = (a0(t), a1(t), . . . , an−1(t)), and m(t) if we refer to the values
at a specific time t. The initial state denotes the state at time t = 0.

We say that the state is periodic if the FCSR will eventually return to it, after some
iterations of the transition function (10.6).
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In the following, we will often refer to the number of feedback positions. In the case of
a Fibonacci FCSR, we will denote this number by:

ℓ = #{qi = 1|1 ≤ i ≤ n} . (10.8)

The initial value of m can be any integer, however, the size of m is bounded as soon as the
FCSR reaches a periodic state.

Theorem 10.10 ([KG97]) Let ℓ be the number of feedback positions, i.e. the number of
i’s such that qi = 1. If an FCSR is in a periodic state, then the memory is in the range of
0 ≤ m ≤ ℓ, thus, we need no more than ⌊log2(ℓ− 1)⌋+ 1 bits to store m.

If the memory m(t) ≥ ℓ, then it will monotonically decrease and will arrive in the range
0 ≤ m < ℓ within ⌊log2 (m(t)− ℓ)⌋ + n steps. If the initial memory m(t) < 0, then it will
monotonically increase and will arrive in the range 0 ≤ m < ℓ within ⌈log2 (|m(t)|⌉ + n
steps.

The Galois FCSR was introduced by Klapper and Goresky some years later in [GK02].
It has not one integer summation, but one at each feedback path. This yields to an
advantage in the implementation, since the additions can be done in parallel. An example
for a Galois FCSR can be seen in Figure 10.4. Each symbol ⊞ represents an integer addition

Figure 10.4: Galois FCSR.

for up to three bits, where the carry is stored in ci for 1 ≤ i ≤ n− 1.

Definition 10.11 (Galois FCSR) A Galois FCSR is an automaton which consists of a
main register, and an integer addition with carry bit at each feedback position. Let n be the
size of the main register with cells a0, a1, . . . , an−1 and ai(t) ∈ {0, 1} for all 0 ≤ i ≤ n− 1.
The multiplication factors q1, q2, . . . qn ∈ {0, 1} determine the feedback positions, where
qn = 1, and the memory cells c1, c2, . . . cn−1 store the carry bits. The state transition from
time t to time t + 1 is done in the following way:

for all 1 ≤ i ≤ n− 1
σi = ai(t) + ci(t) + qia0(t) ,
ai−1(t + 1) = σi mod 2 ,
ci(t + 1) = σi div 2 ,

and
an−1(t + 1) = a0(t) .

(10.9)
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For 1 ≤ i ≤ n− 1, we can sum up the equation (10.9) for ai−1(t + 1) and ci(t + 1), in the
following way:

2ci(t + 1) + ai−1(t + 1) = ai(t) + ci(t) + qia0(t) . (10.10)

Remark 10.12 In Figure 10.4, we display all ci. However, in the following we will assume
that ci = 0 if qi = 0. Thus, in practice, we need only ℓ = #{qi = 1|1 ≤ i ≤ n − 1} carry
bits. In the following, we will denote by ℓ the number of carry cells used in a Galois FCSR.

The state of a Galois FCSR consists of the cells of the main register A = (a0, a1, . . . , an−1)
and the cells of the carry register C = (c1, c2, . . . , cn−1). Let us define the following two
integers

a =
n−1∑

i=0

ai2
i ∈ N , (10.11)

and

c =
n−2∑

i=0

ci+12
i ∈ N , (10.12)

which are equivalent representations of respectively the main and the carry register. Thus,
the state can be represented by the integer pair (a, c) or directly by the values of the cell
(A, C). The specific values at time t are given respectively by A(t) = (a0(t), a1(t), . . . an−1(t)),
C(t) = (c1(t), c2(t), . . . , cn−1(t)), and (a(t), c(t)).

Where the LFSRs are build on the theory of polynomials, the FCSRs are based on the
theory of 2-adic numbers.

Definition 10.13 (2-adic numbers Z2) Let Z2 denote the set of 2-adic numbers. An
element s ∈ Z2 is given by its formal power series

s =
∞∑

i=0

si2
i , (10.13)

with si ∈ {0, 1}. This sum always converges in the 2-adic topology, where addition and
multiplication are realized by transferring the carries to higher order terms, i.e. 2i + 2i =
2 2i = 2i+1. Together with addition and multiplication as defined above, Z2 is a ring with
additive identity 0 and multiplicative identity 1 = 1 20.

Remark 10.14 A number s ∈ Z2 is positive if there exists an N such that si = 0 for all
i > N . The number −1 is given by −1 =

∑∞
i=0 1 2i. It is easy to verify that 1 + (−1) = 0

in the ring of Z2. For a given element s = 2n (1 +
∑∞

i=0 si2
i) we can write its negative

value in the following way

−s = 2n

(

1 +
∞∑

i=0

si

)

,

where si defines the complement of si.
Every odd element s ∈ Z2, i.e. where s0 = 1, has a unique multiplicative inverse.
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The last remark can be used to give the following theorem.

Theorem 10.15 ([KG97]) There is a one-to-one correspondence between rational num-
bers s = h/q (where q is odd) and eventually periodic binary sequences S = (s0, s1, . . .),
which associates to each such rational number s the bit sequence s0, s1, . . . of its 2-adic
expansion. The sequence S is strictly periodic if and only if s ≤ 0 and |s| < 1.

Let ordq(2) define the order of 2 modulo q, i.e. the smallest k such that 1 = 2k mod q. An
old result of Gauss follows from the previous theorem which is interesting for the case of
FCSRs.

Corollary 10.16 ([Gau01, KG97]) If h and q are relatively prime, −q < h ≤ 0, and q is
odd, then the period of the bit sequence for the 2-adic expansion of s = h/q is T = ordq(2).

Remark 10.17 Let us consider the rational number s = h/q corresponding to an eventu-
ally periodic sequence. We want that h/q ≤ 0 is negative, however, whether we choose q
positive or negative is a matter of taste. In the following, we will always assume that q is
positive.

Now that we know the basic facts about 2-adic numbers, we will consider the case of
Fibonacci and Galois FCSRs.

Definition 10.18 For a given FCSR (Fibonacci or Galois), as described in Figures 10.3
and 10.4, let us define the connection integer as

q = −1 +
n∑

i=1

qi2
i ∈ Z , (10.14)

where qn = 1. We call n the degree of the q.

Theorem 10.19 ([KG97]) Suppose an FCSR with connection integer q of degree n has
initial loading a0, a1, . . . , an−1 and initial memory m. Set

h = m2n −
n−1∑

j=0

j
∑

i=0

qiaj−i2
j ∈ Z (10.15)

where q0 = −1. Then the output sequence is the coefficient sequence of the 2-adic number
s = −h/q. Conversely, if S = (s0, s1, . . .) is an eventually periodic binary sequence, let
s = −h/q be the corresponding 2-adic number. Then q is the connection integer of an
FCSR which generates the sequence, and h determines the initial loading by (10.15). The
sequence S is strictly periodic if and only if h ≥ 0 and h < q. In this case, the memory
must lie in the range 0 ≤ m < wt(q + 1), where wt denotes the Hamming weight of the
2-adic representation of q + 1, i.e. the number of 1 ≤ i ≤ n such that qi = 1.
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Theorem 10.20 ([GK02]) Suppose an n-stage Galois-FCSR with connection integer q
has initial loading with register and memory contents a0, a1, . . . , an−1 and c1, c2, . . . , cn−1,
respectively. Set

h = a0 + (a1 + c1)2 + · · ·+ (an−1 + cn−1)2
n−1 . (10.16)

Then the output sequence s0, s1, s2, . . . of the FCSR is the coefficient sequence for the 2-
adic expansion of the rational number s = −h/q. Conversely, if S = (s0, s1, . . .) is any
strictly periodic sequence, let s = −h/q be the corresponding 2-adic number. Then q is the
connection integer of a Galois FCSR which generates the sequence, and h determines the
initial loading by (10.16).

If we compare (10.11) and (10.12) we see that (10.16) is equivalent to

h = a + 2c . (10.17)

For a Galois FCSR we assume that ci = 0 if qi = 0, thus, the maximal value of h is
bounded by h ≤∑n−1

i=0 2i +
∑n−1

i=1 qi2
i = q and reaches the bound exactly if all the bits in

the FCSR are 1. Therefore, from Theorems 10.15 and 10.20 we know that the sequence
S = (s0, s1, ...) generated by a Galois FCSR is always strictly periodic. However, this is
not true for the state itself. There is often more than one possibility for a and c to create
one h. This problem is discussed in more detail in Chapter 11. In Figure 10.5 we see the
example of a functional graph of a Galois FCSR. In this graph, a vertex with the pair (a, c)
represents a specific state and an arrow from state (a, c) to (a′, c′) the transition from one
state to another. We can see that there are only a subset of all states which are periodic,
i.e. which are rereached after a finite number of state transitions. In [ABM08] Arnault,
Berger and Minier discuss in detail the sequences in each cell of a Galois FCSR and not
only of the output sequence S. They also show that a Galois FCSR reaches a periodic state
after at most n + 4 iterations.

Figure 10.5: Functional graph of a Galois FCSR with n = 3 and q = 13.
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In the case of Fibonacci FCSRs, there is a one-to-one mapping between the state (A, m)
and h. This is easy to verify if we consider the equation (10.15) and the 2-adic components
of h =

∑r
i=0 hi2

i:

h0 = a0

h1 = (a1 − a0q1) mod 2

h2 =
(

a2 − a1q1 − a0q2 + (a1 − a0q1) div 2
)

mod 2

. . .

Due to this one-to-one mapping, the output of a Fibonacci FCSR is strictly periodic if and
only if its state is strictly periodic as well.

An important method to classify binary sequences is the linear complexity (Defini-
tion 10.4), i.e. the minimal length of an LFSR generating the sequence. The analogue for
FCSRs is the 2-adic complexity.

Definition 10.21 (2-adic complexity [KG97]) Let S = (s0, s1, . . .) be a sequence rep-
resented by the rational number s = h/q < 0, such that gcd(h, q) = 1. Then, the 2-adic
complexity is the real number Λ2(S) = log2(max(|p|, |q|)).
This number does not correspond exactly to the number of cells in the FCSR. For example,
for a strictly periodic sequence the 2-adic complexity will always be log2(|q|), and, thus,
determine the size of the main register without counting the bits of the memory or the
carry bits. However, in this case, the necessary number of bits for the auxiliary memory is
bounded. Klapper and Goresky propose for Fibonacci FCSRs a second term which really
determines the size in terms of memory cells of the smallest FCSR producing the sequence.

Definition 10.22 (2-adic span for Fibonacci FCSRs) For a given Fibonacci FCSR
with connection integer q and initial memory m, let ℓ = wt(q + 1) denote the number of
qi = 1 for 1 ≤ i ≤ n and

λ = n + max
(

⌊log2(ℓ)⌋+ 1, ⌊log2(|m|)⌋+ 1
)

+ 1

the number of bits in the FCSR. The 2-adic span λ2(S) of a binary, eventually periodic
sequence S = (s0, s1, . . .), is the smallest value of λ which occurs among all Fibonacci
FCSRs whose output is the sequence S.
As we will see in the following, there is a direct connection between the 2-adic complexity
and the 2-adic span for FCSRs.

Proposition 10.23 ([KG97]) If s =
∑∞

i=0 si2
i = h/q is the rational number, reduced to

lowest terms, corresponding to an eventually periodic sequence S, then the 2-adic span and
complexity are related by

|(λ2(S)− 2)− Λ2(S)| ≤ log2(Λ2(S)) .
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In the case of random periodic binary sequences, empirical evidences suggest that the 2-adic
complexity is about half of the length of the sequence [KG95a]. However, if we combine
by integer addition two sequences with small 2-adic complexity, the resulting sequence has
small 2-adic complexity as well.

Theorem 10.24 ([KG97]) Suppose S and T are periodic binary sequences with corre-
sponding 2-adic numbers s and t. Let U denote the binary sequence obtained by adding
the sequences S and T with carry, i.e. the 2-number u =

∑∞
i=0 ui2

i is obtained by adding
u = s + t. Then the 2-adic complexity of U is bounded as follows,

Λ2(U) ≤ Λ2(S) + Λ2(T ) + 1.

This property allows Klapper and Goresky [KG95a] to attack the Rueppel’s and Massey’s
summation combiner [MR89, Rue86]. The principle of this generator is to combine, by
addition with carry, the output of several LFSRs with maximal periods, where the periods
of the LFSRs are pairwise coprime. The linear complexity of the output tends to be near
the product of all periods. However, the 2-adic complexity grows only by addition of the
complexities.

Now that we know the connection between a rational number h/q < 0 and an FCSR
we want to find the smallest pair (h, q) which represents a given sequence S, i.e. we
search for an equivalent to the Berlekamp-Massey algorithm for FCSRs. There are two
algorithms which fulfill this task. The first one was introduced by Klapper and Goresky
in [KG97] and is based on De Weger’s algorithm [dW79]. Klapper’s and Goresky’s Rational
Approximation Algorithm is optimal in two senses:

1. Given the first T bits of S it always finds the smallest FCSR, in terms of the 2-adic
complexity, which produces these T bits (cf. Theorem 10.25).

2. It finds the pair (h, p) with the minimal number of bits of S, namely for T ≥
2⌈Λ2(S)⌉+ 2 (cf. Theorem 10.26).

Theorem 10.25 ([KG97]) Let Φ be defined for any pair g = (g1, g2) ∈ Z× Z as Φ(g) =
max(|g1|, |g2|).

Let g = (g1, g2) denote the output of the Rational Approximation Algorithm when the
first T bits of S = (s0, s1, . . .) are used. Then g2 is odd,

sg2 − g1 ≡ 0 (mod 2T ) ,

and any other pair g′ = (g′
1, g

′
2) which satisfies these two conditions has Φ(g′) ≥ Φ(g).

Theorem 10.26 ([KG97]) Suppose S = (s0, s1, . . .) is an eventually periodic sequence
with associated 2-adic number s =

∑∞
i=0 si2

i = h/q. With h, q ∈ Z and gcd(h, q) = 1.
If T ≥ ⌈2Λ2(S)⌉ + 2 bits si are used, then the 2-adic Rational Approximation Algorithm
outputs g = (h, q).
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Let T = ⌈2Λ2(S)⌉+ 2, then this algorithm has a complexity of O(T 2 log T log log T ).
The second algorithm was proposed by Arnault, Berger and Necer in [ABN04, AB08]

and is based on Euclid’s Algorithm. It has the advantage that it is easy to implement and
that is has a complexity of only O(T 2), where T = 2Λ2(S) + 3 is the number of necessary
bits to recover h and q such that s =

∑∞
i=0 si2

i = h/q < 0.
As in the case of LFSRs, we are interested in sequences with maximal period. We will

call them ℓ-sequences. From Corollary 10.16 we know that if s = h/q with h and q coprime
and q odd, the period of T is ordq(2). Let ϕ denote Euler’s Phi function. It is a widely
known fact that if q is odd, ordq(2)|ϕ(q). The maximal value ϕ(q) can only be reached if
q is prime or a prime factor q = pe with p prime. In those two cases ϕ(q) is respectively
q− 1 and pe−1(p− 1). Klapper and Goresky gave two definitions for ℓ-sequences. The first
considers the case where q is prime, whereas the second one deals with an arbitrary q.

Definition 10.27 (ℓ-sequence for q prime [KG97]) An ℓ-sequence is a periodic se-
quence (of period T = q − 1) which is obtained from an FCSR with prime connection
integer q for which 2 is a primitive root.

In the same year they published a more general definition.

Definition 10.28 (ℓ-sequence (general case) [GK97]) The period of an FCSR can be
made large by choosing q so that 2 is a primitive root modulo q, i.e. ordq(2) = ϕ(q). For
this to be true it is necessary that q be a power of a prime q = pe, but no precise condition
for 2 to be a primitive root modulo q is known. However, it is known that if 2 is a primitive
root modulo p and modulo p2, then it is a primitive root modulo pe for every e. We call
such sequences ℓ-sequences.

Remark 10.29 In cryptography, we are more interested in sequences corresponding to
Definition 10.27, since they allow a maximal period for all −q < h < 0. If q = pe for
e > 1, then all h with gcd(h, q) > 1 have the period ordq/gcd(h,q)(2) < ordq(2). Another
advantage of q prime is that it produces a sequence of period T which the smallest q possible,
i.e. q = T + 1. This leads to an FCSR of size log2(T + 1). For example, an ℓ-sequence
of period T = 18 can be produced by q = 19 and q = 27. The preference for q prime in
cryptographic applications is reflected in the following definition.

Definition 10.30 ([ABM08]) We say that a FCSR automaton with connection integer
q is optimal if the order of 2 modulo q is exactly T = q − 1.

Sometimes the output of multiple FCSRs is combined by bitwise XOR. In this case,
the period of the generated sequence is given by the next theorem.

Theorem 10.31 ([GK06]) Let S = (s0, s1, . . .) be a binary periodic sequence of (mini-
mal) period Ts with each si ∈ {0, 1}, and let U = (u0, u1, . . .) be a binary periodic sequence
of (minimal) period Tu with each ui ∈ {0, 1}. Let W = (w0, w1, . . .) be the sequence with
wi = si ⊕ ui for each i. Suppose that for every prime p, the largest power of p that divides
Ts is not equal to the largest power of p that divides Tu. Then W is periodic and the period
of W is the least common multiple of Ts and Tu.
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Thus, the maximal period which we can reach by combining two ℓ-sequences is the follow-
ing:

Corollary 10.32 ([GK06]) Let S = (s0, s1, . . .), U = (u0, u1, . . .) be binary ℓ-sequences
with prime connection integers q and q′ respectively. Suppose that 4 divides q−1 but does not
divide q′−1 and that no odd prime divides both q−1 and q′−1 (so that gcd(q−1, q′−1) = 2).
Then the sequence W = S ⊕ U obtained by taking the termwise sum, modulo 2, of S and
U has period (q − 1)(q′ − 1)/2.

In cryptography, we are interested in sequence which have have a uniform looking
behaviour. The ideal case would be a 2-ary de Bruijn sequence, i.e. a sequence of period 2n

which contains every n-tuple (x0, x1, . . . , xn−1) ∈ {0, 1}n exactly once in each period [vT05].
This cannot be reached directly by an FCSR. However, ℓ-sequences have almost de Bruijn
properties as we will see in the following.

Theorem 10.33 ([KG97]) Let q be a power of a prime p, say q = pe, and suppose that
2 is primitive modulo q. Let r be any non-negative Integer, and let α and β be r-bit
subsequences. Let S be any maximal period, purely periodic FCSR sequence, generated by
an FCSR with connection integer q. Then the number of occurrences of α and β in S with
their staring positions in a fixed period of S differ by at most 2.

Corollary 10.34 ([ABM08]) If q is prime and the order of 2 modulo q is maximal ( i.e.
equals to q− 1), then the 2n sequences with n consecutive bits appear at least one time and
at most two times in a period of the binary expansion of any p/q where −q < p < 0.

In addition, the period behaves symmetrically.

Proposition 10.35 ([GK97]) If S is an ℓ-sequence, then the second half of one period
of S is the bitwise complement of the first halft.

In the case of a Galois FCSR, we know even more:
Every Galois FCSR has two fixpoints, (0, 0) and (2n−1,

∑n−2
i=0 qi+12

i). They correspond
to the cases where all the cells of the FCSR contains respectively only 0’s or 1’s.

Proposition 10.36 ([ABLM07]) Let q be the connection integer of a Galois FCSR of
degree n and ℓ the number of carry cells. If the order of 2 modulo q is exactly T = q − 1,
then the graph contains the two fixpoints (0, 0) and (2n−1,

∑n−2
i=0 qi+12

i) and only one more
component of 2n+ℓ − 2 points, considered as a main cycle of length q − 1 to which many
tails converges. ( cf. Figure 10.5).

We even know the upper bound of steps for each point before reaching the main cycle.

Theorem 10.37 ([ABM08]) Suppose that a Galois FCSR with connection integer q and
degree n starts from the state (a, c). Then the FCSR will be in a periodic state, i.e. on a
cycle in the functional graph, after at most n + 4 iterations. More generally, the length of
the tails of the functional graph of the FCSR are at most n + 4.
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Until now we always considered the output sequence S of the FCSR, i.e. the sequence
produced in cell a0. However, in the case of a Galois FCSR, we can also determine the
sequence in each cell of the main register. LetAi = (ai(t))t∈N denote the sequence generated
in cell ai for 0 ≤ i ≤ n− 1, thus, A0 = S.

Theorem 10.38 ([AB05a]) Consider an n-stage Galois FCSR with connection integer
q. Then for all i such that 0 ≤ i ≤ n − 1, there exists an integer hi such that Ai is the
2-adic expansion of hi/q. These integers are related by the following formulas:

hi = qai(0) + 2hi+1 if qi+1 = 0
hi = q

(
ai(0) + 2ci+1(0)

)
+ 2(hi+1 + h0) if qi+1 = 1

The exact formula for each hi can be found in [ABM08].
As in the case of LFSRs, we can directly compute the i’th output of an FCSR.

Theorem 10.39 ([KG97]) Suppose a periodic sequence S = (s0, s1, . . .) is generated by
an FCSR with connection integer q. Let γ = 2−1 ∈ Z/(q) be the (multiplicative) inverse
of 2 in the ring Z/(q) of integers modulo q. Then there exists α ∈ Z/(q) such that for all
i = 0, 1, 2, . . . we have

ai = αγi (mod q) (mod 2) . (10.18)

Here the notation (mod q) (mod 2) means that first the number αγi should be reduced
modulo q to give a number between 0 and q − 1, and then that number should be reduced
modulo 2 to give an element of F2.

10.3 Applications of FCSRs

FCSRs are easy to implement, nonlinear and based on the well known theory of 2-adic
numbers. They can provide large periods (cf. Definition 10.27) and almost de Bruijn
properties(cf. Theorem 10.33 and Corollary 10.34). This makes them interesting for the
creation of pseudorandom numbers and particularly in the use of stream ciphers. In this
section, we will thus present some stream cipher proposals using FCSRs as their main
component.

The first example of such a stream cipher was presented in 2005 at the Fast Software En-
cryption conference [AB05b]. If we would use directly the output of an FCSR as keystream
for a stream cipher, it would be easy to compute the content of the register [KG95a]. This
can be done by the two algorithms [KG97, ABN04] mentioned in the previous section, by
using only 2Λ2 + 3 output bits. Here Λ2 is the 2-adic complexity of the sequence, which
is about the size of the main register. Therefore, Arnault and Berger propose a filtered
FCSR (F-FCSR). Their main idea is to use a Galois FCSR, which is initialized by the key
and the IV. They use a q prime with order ordq(2) = q − 1 to achieve a maximal period.
In addition, they request that the period q−1 = 2p is twice a prime. This implies that the
combination of the output sequence has periods of p or 2p, except of degenerated cases.
The output is taken by a linear filter from the main register. Since the FCSR possesses
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Figure 10.6: F-FCSR.

already a non-linear behavior, the authors chose linear filtering, which guarantees optimal
resilience. In addition, they demand that between every cell used as inputs for the filter,
there must be at least one feed-back path. Otherwise the dependence between two such
cells would only be a shift. Arnault and Berger propose one FCSR with four different
filters, two static and two dynamic ones. The Galois FCSR has a size of the main register
of n = 128 bits and ℓ = 68 carry cells. Thus, the size of the inner state is 196, thus the
authors hoped that this stream cipher would have a complexity of a time/memory/data
tradeoff attack [BS00] of 298. To augment the size of the state, they propose to choose the
filter dynamically depending on the key. The stream cipher has a key of 128 bits and an IV
of up to 64 bits. The key/IV setup is done by inserting the key into the main register and
the IV into the carry cells. After six initial iterations of the FCSR, the filter produces one
or eight bits from the main register at each clock cycles. The four variants of the stream
cipher are the following:

F-FCSR-SF1: Uses a static filter which outputs one bit per clock cycle.

F-FCSR-SF8: Uses a static filter which outputs eight bits per clock cycle.

F-FCSR-DF1: Uses a dynamic filter which outputs one bit per clock cycle.

F-FCSR-DF8: Uses a dynamic filter which outputs eight bits per clock cycle.

The short number of only six initial iterations was definitely too short and allowed
algebraic attacks in the IV mode [BM05]. Therefore, Arnault, Berger and Lauradoux
increase the number of initial iterations to 64 for their proposals [BAL05] to the ECRYPT
Stream Cipher Project [eST, RB08]. They presented two stream ciphers which are based
on the principles explained in [AB05b].

F-FCSR-8:
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• Key size of 128 bits and an IV of up to 128 bits.

• Size of main register n = 128 bits and ℓ = 68 carry cells.

• Dynamic filter depending on the key which outputs 8 bits at each clock cycle.

• Key/IV setup:

– Put the key K directly into the main register and put all carry cells to 0.

– Clock 128 times the FCSR.

– Put the first 64 bit of the IV into the carry register and clock 64 times.

– If the IV is larger than 64 bits, put the remaining bits into the carry register
and clock again 64 times.

F-FCSR-H:

• Key size of 80 bits and IV of size v bits with 32 ≤ v ≤ 80.

• Size of main register n = 160 bits and ℓ = 82 carry cells.

• Static filter which outputs 8 bits per clock cycle.

• Key/IV setup:

– The main register is initialized by concatenating the key and the IV. All
carry bits are set to 0.

– Clock 160 times the FCSR.

The authors hoped that increasing the number of initial iterations would prevent further
attacks. However, Jaulmes and Muller showed some general weaknesses of the design
in [JM05b] and some specific attacks on the F-FCSR-H and F-FCSR-8 stream cipher
in [JM05a]. They showed that a time/memory/data tradeoff attack on the F-FCSR-8
is possible with a complexity of 280 in time and memory, by using only 267 data bits.
This is due to the fact that the main cycle in the functional graph has only a length of
q− 1 ≃ 2128. As soon as this cycle is reached, there are only about 2128 possible states left.
This corresponds to a large loss of entropy as we will see in Chapter 11. The dynamic filter
is not a big problem either, since each output bit depends on only 16 secret taps, which
can be guessed for the attack. The authors also pointed out that due to the slow diffusion,
there still remains some statistical imbalances, even after the increased number of initial
iteration. This can be used for resynchronization attacks.

As a result of these attacks Arnault, Berger and Lauradoux [ABL05] changed the key
and IV setup and the size of the main register of their eSTREAM proposals. They also
abandoned the idea of a dynamic filter. The final versions works at follows [ABL08]:

F-FCSR-H:

• Key size of 80 bits and IV of size of up to 80 bits

• Size of main register n = 160 bits and ℓ = 82 carry cells.
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• Uses a static filter which outputs 8 bits per clock cycle. The j’th bit of the
output is given by:

n/8−1
⊕

i=0

q8i+j+1a8i+j.

To use the values qi in the filter implies that the filter tap is always at a cell
directly after a feedback position.

• Key/IV setup:

– The main register is initialized by concatenating the key and the IV. All
carry bits are set to 0.

– The FCSR is clocked 20 times. The main register is reinitialized with the
generated 8× 20 = 160 bits. The carry bits are set to 0.

– The FCSR is clocked another 162 times while discarding the output. This
guarantees the necessary diffusion.

F-FCSR-16:

• Key size of 128 bits and an IV of up to 128 bits.

• Size of main register n = 256 bits and ℓ = 130 carry cells.

• Uses a static filter which outputs 16 bits per clock cycle. The j’th bit of the
output it given by:

n/16−1
⊕

i=0

q16i+j+1a16i+j.

• Key/IV setup:

– The main register is initialized by concatenating the key and the IV. All
carry bits are set to 0.

– The FCSR is clocked 16 times. The main register is reinitialized with the
generated 16× 16 = 256 bits. The carry bits are set to 0.

– The FCSR is clocked another 258 times while discarding the output. This
guarantees the necessary diffusion.

The hardware performance of this version was studied in [GB07]. The authors compared
the throughput, power consumption, area-time product, throughput per area and power-
area-time product of the F-FCSR-H cipher with other eSTREAM Profile II (Hardware)
candidates. The performance of the F-FCSR-H lies in the average of the candidates.
Finally, the authors suggest the F-FCSR-H as second choice for WLAN applications with
key-length of 80 bits, i.e. for applications with about 10Mbps, in contrary to low-end
wireless applications in RFID/WSN tags which work at a rate of about 100kHz.

Arnault, Berger and Minier showed in [ABM08] that by setting the carry bits to 0
during the initialization, it is not possible anymore for two different initial states to collide
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to the same state after some iterations. This implies that the number of possible initial
states is only q − 1 ≃ 2n and that the entropy does not decrease anymore. This change,
together with the augmentation of the state size, makes the time/memory/data tradeoff
attack unfeasible for the new version of the F-FCSR. They authors proved as well that a
Galois FCSR cannot produce a sequence of n + 1 consecutive 0’s or 1’s and that after only
n+4 iterations it is sure that the FCSR reached a periodic state. They state [ABL05] that
due to the n + 2 iterations it is not possible anymore to find any statistical imbalance that
can be used for a distinguishing attack. Arnault, Berger and Minier [ABM08] demonstrated
that the state transition function F-FCSR has a linear behavior if all the carry bits and
the feedback bit a0 are 0 for several iterations. However, they could show that for the F-
FCSR-H and F-FCSR-16 such a situation cannot appear as soon as we are on the main
cycle, thus after n + 4 iterations they should be safe. Unfortunately this property was not
strong enough as was shown by Hell and Johansson [HJ08]. There are states which have
all zeros in the carry bits except one in the least significant carry bit. By compensating for
this single one, they obtain linear equations connecting the output to the inner state. If
the carry bits stay in this way for only 18 iterations and then twice in a state of all zeros,
it is possible to retrieve the whole state. Since in each iteration the eight output bits are
generated independently of each other, we can write eight independent sets of equations.
This simplifies the solving of the linear system. Hell and Johansson showed empirically
that the probability of the F-FCSR being in a state which is favorable to the attack, is
about 2−25.3. Thus, they could completely recover the internal state of the F-FCSR with
a practical number keystream bits. The authors even sketch out how to retrieve the secret
key, once the state is known.

The F-FCSR stream ciphers reached the third phase of the eSTREAM project. At
first, they where even chosen as one of the four final candidate in the hardware profile.
However, after the attack of Hell and Johansson, they were withdrawn from the final
portfolio. Arnault, Berger, Minier and Pousse are working on a new version of the stream
cipher which combines the Fibonacci and Galois architecture and is able to withstand the
latest attack2.

The stream ciphers mentioned above were adapted for hardware implementation, how-
ever, for software implementations they are to slow. With the X-FCSR [ABLM07], Ar-
nault, Berger, Lauradoux and Minier introduce an FCSR based stream cipher family, which
was designed for efficient software implementations. These stream ciphers use keys of 128
bits and IVs of length 64 to 128 bits. The principle is based on two FCSRs with a main
register size of 256 bits each. Their corresponding connection integers q and q′ are distinct,
but both optimal, i.e. 2 is a primitive root modulo q and q′, respectively. They are clocked
in opposite directions and the states A and A′ of the two main registers are combined by
bit-wise XOR after each iteration. The connection integers where chosen in a way such
that at least one of two combined bits is influenced by a feedback.

To avoid the time-intensive n + 2 iterations after each IV setup, the X-FCSR uses a

2Personnel communications with François Arnault, Thierry Berger, Marine Minier, and Benjamin
Pousse.
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different approach. Like for the SOSEMANUK stream cipher [BBC+08], the key and IV
setup are separated. For each new key, the X-FCSR extracts a set of subkeys once. This
set is then used in the IV setup as roundkeys for an AES like blockcipher. The IV is
encrypted and the output after rounds 12, 16, 20 and 24 are used to fill the main registers
of the two FCSRs. The carry bits are set to 0.

There are two different versions of the X-FCSR, the X-FCSR-128 and the X-FCSR-
256, which generates respectively 128 and 265 bits at each clock cycle. A scheme of the
X-FCSR-256 can be found in Figure 10.7. The main different between these two versions

Figure 10.7: X-FCSR-256.

is that the X-FCSR-128 folds the 256 bits from the XOR of the main registers and works
subsequently on 128 bits, whereas the X-FCSR-256 directly works on the 256 bits. Let
X(t) denote the 128 or 256 bit output from the FCSRs at time t. Then the stream cipher
applies an AES like round function, respectively, Round128 and Round256, at X(t) to obtain
W (t) which is stored in an auxiliary memory. This memory contains all previous values of
W up to W (t − 16). Finally, we combine X(t) and W (t − 16) to produce the keystream.
Storing the output for 16 iteration was done to make algebraic attacks infeasible.

Unfortunately, there was also an attack found on the X-FCSR stream cipher family.
Stankovski, Hell and Johansson announced an efficient key recovery attack on X-FCSR-
254 at the Fast Software Encryption conference 2009 in Leuven, Belgium.

In this section, we saw different proposals of stream ciphers using FCSRs. Even when
the first versions were flawed, the idea of using the nonlinear property of an FCSR in a
stream cipher remains interesting and there is still space for new developments in this area.
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10.4 Extensions of FCSRs

In the previous sections, we considered exclusively binary FCSRs. However, there exists a
big range of extension to the binary case. We will mention some of them in this section.

The most obvious extension consists in exchanging 2 by a prime number p. This implies
that all cells in the FCSR contain numbers in Fp. Most of the properties mentioned in
Section 10.2 can be applied directly to this case [KG97]. The addition-with-carry (AWC)
generator [MZ91] can be seen as a Fibonacci FCSR over Fp for which the connection integer
has the special form q = pa + pb − 1 for two different integers a and b.

The next step is to use numbers in Z/(N) for any arbitrary integer N . Again, most
of the previous theorems can be extended to this case, as the interested reader can see in
[KX89], [ABN04], and [GK08].

The first extension which does not work directly on Z/(N) and which has a slightly
different structure is the d-FCSR.

10.4.1 d-FCSRs

Binary FCSRs are based on 2-adic numbers. The carry bit in addition and multiplication
is shifted one position, for example:

1 + 1 = 2 = 0× 20 + 1× 21 .

A d-FCSRs shifts the carry not by one but by d positions. This idea was presented
by Goresky and Klapper in [GK94, KG97]. We will first consider the case of binary d-
FCSRS. To analyze these automata we work with the ring Z[π] where πd = 2, i.e. π
is a d-root of 2. Any element z ∈ Z[π] of the ring can be described as a polynomial
z = z0 + z1π + z2π

2 + · · ·+ zd−1π
d−1 with zi ∈ Z. We say that z is nonnegative if all zi ≥ 0.

A nonnegative z can be uniquely described by a polynomial

z =
k∑

i=0

z′iπ
i

where all z′i ∈ {0, 1}. This is done by applying the binary representations of the zi’s and
the fact that 2 = πd. In the following, we assume that all z are nonnegative. Multiplication
and addition preserve this property and use:

1 + 1 = 2 = 0 + 0π + 0π2 + · · ·+ 0πd−1 + 1πd .

This means a shift of the carry bit by d positions.
In the case of a Fibonacci d-FCSR, the implementation is done in two steps, as we can

see in Figure 10.8. At first, we add the values of the main register by a normal integer
addition:

σ =
n∑

i=1

qian−i .
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Figure 10.8: Fibonacci d-FCSR.

Subsequently, we add σ to m = m0 + m1π + · · · + mjπ
j by an addition in Z[π]. This

addition is represented by the symbol Π in Figure 10.8 . Let σ =
∑k

i=0 σi2
i be the binary

representation of σ. Then, its corresponding polynomial is given by

σ = σ0 + σ1π
d + σ2π

2d + · · ·+ σkπ
kd ∈ Z[π] .

An implementation of the Z[π] adder for d = 2 and σ ≤ 7 is shown in Figure 10.9. The
carry bit is reinjected d positions later. The main register is shifted one position to the
right and the cell an−1 is updated with the value σ + m mod π.

Figure 10.9: The Z[π] adder in detail for d = 2 and
∑n

i=1 qian−i ≤ 7.

The Galois setup for a d-FCSR was presented in [GK02]. The idea is again to inject
the carry of the addition qia0 +ai at position i+d. In the case of d = 2, we need additional
cells an and cn, as we can see in Figure 10.10. For d > 2 we need t + 1 additional carry
cells and d + t − 1 additional cells in the main register. The necessary size of t such that
there will not be a memory overflow, is bounded. For more details about the size of t we
refer to [GK02].

The theory of d-FCSRs is not limited to the binary case. For any integer N and any
fixed d ≥ 1 such that the polynomial Xd − N is irreducible, we can define d-FCSRs over
Z[π] where πd = N .

The theory of π-adic numbers allows us to nicely describe the properties of d-FCSR.
More details of their distribution and correlation properties can be found in, respectively,
[Kla04] and [GK04].
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Figure 10.10: Galois d-FCSR for d = 2.

10.4.2 AFSR

Algebraic Feedback Shift Registers (AFSRs) are a generalization of all the previous cases.
They were introduced by Klapper and Xu in [KX99].

Definition 10.40 ([KX99]) Let R be a domain with fraction field F , principal maximal
prime ideal I generated by an element π, and finite residue field K = R/I. Let S, T ⊆ R
be a pair of complete sets of residues. For any α =

∑∞
i=0 aiπ

i the reduction of α modulo π
is a0 and the integral quotient of α by π is given by quo(α, π) = α =

∑∞
i=0 ai+1π

i.
An algebraic feedback shift register (AFSR) over (R, π, S, T ) of length n is specified

by n + 1 elements q0, q1, . . . , qn ∈ T called the taps, with q0 6≡ 0 mod π and q0 invertible
modulo π. It is an automaton each of whose states consist of n elements a0, a1, . . . an−1 ∈ S
and an element m ∈ R. The state is updated by the following steps.

1. Compute

τ =
n∑

i=1

qian−i + m

2. Find an ∈ S such that q0an ≡ τ mod π.

3. Replace (a0, . . . , an−1) by (a1, . . . , an) and replace m by quo(τ − q0an, π).

Figure 10.11: AFSR.
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This definition implies the following equation:

q0an(t + 1) + πm(t + 1) =
n∑

i=1

qian−i(t) + m(t) . (10.19)

It differs from the equation of a general FCSR mainly in q0. The case for q0 = 1 corresponds
to an FCSR over finite fields as discussed in [Kla94]. If we set R = Z, π = 2, S = T = {0, 1}
we have the case of the original FCSR. An LFSR over a field K is realized by (R, π, S, T ) =
(K[X], X, K, K).

Klapper and Xu [KX04] studied several cases of AFSRs which allow an efficient syn-
thesis algorithm, i.e. an algorithm to find the smallest AFSR generating a sequence.
Klapper [Kla08] discusses the average π-adic complexity of sequences and gives the result
for the case π2 = 2. The connection between the multiply-with-carry random number
generator [Mar94, CL97] and AFSRs is shown in [GK03].

The theory of AFSRs has consequences for cryptographic applications. If we want that
a sequence is not easy to reproduce it should not only provide high linear complexity, but
also high π-adic complexity for all cases for which efficient synthesis algorithm exists.
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Chapter 11

Entropy of the Inner State of an FCSR

in Galois Setup

When we use FCSRs in areas like cryptography or generation of pseudorandom sequences,
we do not want an attacker to be able to easily guess the content of the register. This
requires a high entropy of the inner state. In the case of a Galois FCSR, the same output
sequence can be produced by different initial states. This leads to a loss of entropy in the
inner state of the FCSR. In this chapter, we show that we already lose after one iteration a
lot of entropy. The entropy reduces until the moment where the FCSR reaches a periodic
behavior. We present an algorithm which computes the final entropy of an FCSR and
which also allows us to show that the entropy never decreases under the size of the main
register.

The results of this chapter were presented at the Fast Software Encryption 2008 in
Lausanne, Switzerland [Röc08a].

11.1 Introduction

Let S = (s0, s1, . . .) be the output sequence of a binary Galois FCSR (cf. Figure 10.4)
with connection integer q of degree n. We use the integer tuple (a(t), c(t)) to describe the
inner state of the FCSR at time t, where a and c are defined as in, respectively, (10.11) and
(10.12). By ℓ we mean the number of carry bits, i.e. the number of qi = 1 for 1 ≤ i ≤ n−2.
We use T to denote the state transition function T (a(t), c(t)) = (a(t + 1), c(t + 1)).

From Theorem 10.20 we know that the 2-adic number s corresponding to the output
sequence S can be described as rational number −h/q. The integer h = a(0) + 2c(0) is
determined by the initial state and must lie in the range 0 ≤ h ≤ q < 2n+1. We can write
h =

∑n
i=0 hi2

i.
In total, we have n + ℓ cells in our FCSR, thus, there are 2n+ℓ possible states. Let us

enumerate the 2n+ℓ values of the state. We then denote the probability that the FCSR is
in the i’th value of the state at time t by pi(t), for 1 ≤ i ≤ 2n+ℓ. Thus, the state entropy
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of the FCSR at time t is given by

H(t) =
2n+ℓ
∑

i=1

pi(t) log2

(
1

pi(t)

)

. (11.1)

We assume a uniform initial distribution, thus pi(0) = 1/2n+ℓ for all i. This implies that
the initial entropy H(0) = n + ℓ. If the i’th state is produced by exactly v other states at
time t, then its probability is pi(t) = v/2n+ℓ.

Remark 11.1 In the case of a stream cipher, the assumption of a uniform initial dis-
tribution corresponds to a key/IV setup which influences the main register and the carry
bits in the initial state. This was done in the F-FCSR described in [ABN02] and the first
version of the F-FCSR-8 [BAL05] proposed at the eSTREAM workshop. However, this is
not always the case, e.g. for later versions of the F-FCSR [ABL05], the carry bits of the
initial value are always set to 0. This implies that at the beginning this stream cipher has
only n bits of entropy, however, it will not lose any more entropy, as we will see later.

We lose entropy if two states collide, i.e there are (a(t), c(t)) 6= (a′(t), c′(t)) such that
T (a(t), c(t)) = T (a′(t), c′(t)). Such a behaviour represents a tree node with more than one
child in the functional graph (cf. Figure 10.5). As soon as we reach a point on the cycle
from any possible starting point, the FCSR behaves like a permutation and the entropy
stays constant. We will denote this value by the final entropy Hf .

In this chapter, we often use the following two finite sums:

S1(k) =
2k
∑

x=2k−1+1

x log2(x) ,

S2(k) =
2k−1∑

x=1

x log2(x) .

For simplification reasons we will write only S1(k) and S2(k). Their exact values are
hard to compute for large values of k, however, we give close upper and lower bounds in
Section 11.5.

This chapter is structured in the following way: In Section 11.2, we compute the state
entropy after one iteration. Subsequently, in Section 11.3, we present an algorithm which
computes the final entropy for any arbitrary FCSR. This algorithm uses S1 and S2, which
makes it difficult to evaluate for large ℓ. However, we give a method to compute very close
upper and lower bounds of the entropy. The same algorithm is used in Section 11.4 to
prove that the final entropy is always larger than n. In Section 11.5, we give upper and
lower bounds for the sums S1(k) and S2(k) which we use to approximate the final entropy.

11.2 Entropy after One Iteration

If the initial value of the state is chosen uniformly, we have an initial state entropy of n+ ℓ
bits. We are interested in how many bits of entropy we lose already after one iteration.
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Let us take an arbitrary initial state (a(0), c(0)) which produces the state (a(1), c(1))
after one iteration. To compute the probability of (a(1), c(1)), we want to know the number

v = #
{

(a′(0), c′(0)) 6= (a(0), c(0))
∣
∣
∣ T (a′(0), c′(0)) = (a(1), c(1))

}

of other initial states, which produces the same state (a(1), c(1)) after one iteration. The
probability of this state is then p(a(1),c(1)) = (v + 1)/2n+ℓ.

Let us consider the state transition function T as described in (10.9). We want to know
which bits of (a′(0), c′(0)) must be the same as in (a(0), c(0)) and which can be different.
From the last line in (10.9) we see that a′

0(0) = an−1(1) = a0(0) is fixed. For a given
1 ≤ i ≤ n − 1, if qi = 0 we know that ci = 0 as well and we can write the equation in
(10.10) as

ai−1(t + 1) = ai(t) .

Thus for any i with qi = 0 the values a′
i+1(0) = ai(1) = ai+1(0) are already determined.

By using (10.10) and the previous remarks, we can write for qi = 1:

2ci(1) + ai−1(1) = a′
i(0) + c′i(0) + a0(0)

2ci(1) + ai−1(1) = ai(0) + ci(0) + a0(0)

and thus

c′i(0) + a′
i(0) = ci(0) + ai(0) .

If ai(0) = ci(0) it must hold that ai(0) = c′i(0) = a′
i(0) since each value can only be either

0 or 1. Therefore, the only possibility for (a′(0), c′(0)) to differ from (a(0), c(0)) is if there
is a position 1 ≤ i ≤ n− 1 with qi = 1 and ai(0) 6= ci(0).

Let j be the number of positions 1 ≤ i ≤ n − 1 in the initial state where qi = 1 and
ci(0) + ai(0) = 1. Then there are exactly v = 2j − 1 other initial states which produce the
same state after one iteration. Thus, (a(1), c(1)) has a probability of 2j/2n+ℓ.

In a next step, we want to know how many states (a(1), c(1)) have this probability
2j/2n+ℓ. Such a state must be created by an initial state (a(0), c(0)) which has j positions
1 ≤ i ≤ n− 1 with qi = 1 and ci(0)+mi(0) = 1. There are

(
ℓ
j

)
possibilities to choose these

positions. At the remaining ℓ − j positions 1 ≤ i ≤ n − 1 with qi = 1 we have ai(0) =
ci(0) ∈ {0, 1}. In the same way we can choose between 0 and 1 for the remaining n − ℓ
positions. Thus, there exist exactly 2n−j

(
ℓ
j

)
different states (a(1), c(1)) with a probability

of 2j/2n+ℓ.
Using (11.1),

∑ℓ
j=0

(
ℓ
j

)
= 2ℓ and

∑ℓ
j=0 j

(
ℓ
j

)
= ℓ2ℓ−1 we can write the entropy after one

iterations as

H(1) =
ℓ∑

j=0

2n−j

(
ℓ

j

)

2j−n−ℓ(n + ℓ− j)

= n +
ℓ

2
.
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We have shown that the entropy after one iteration is

H(1) = n +
ℓ

2
(11.2)

which is already ℓ
2

bits smaller than the initial entropy.

11.3 Final State Entropy

We have shown that after one iteration the entropy has already decreased by ℓ/2 bits. We
are now interested in down to which value the entropy decreases after several iterations,
i.e. the final entropy Hf . For the computation of Hf , we need to know how many initial
states arrive at the same cycle point after the same number of iterations. We are going to
use the following proposition.

Proposition 11.2 [ABM08, Prop. 5] Two states (a, c) and (a′, c′) are equivalent, i.e.
a + 2c = a′ + 2c′ = h, if and only if they eventually converge to the same state after the
same number of iterations.

Let us assume that we have iterated the FCSR sufficiently many times that we are on
the cycle of the functional graph. In this case, we do not have any more collisions. If a
state in the cycle is reached by v other states, it has a probability of v/2n+ℓ. After one
iteration, all probabilities shift one position in the direction of the cycle, which corresponds
to a permutation of the probabilities. However, the definition of the entropy is invariant
to such a permutation. Let v(h) denote the number of states which produce the same h.
From Proposition 11.2, we know that we find a corresponding state in the cycle, which is
reached by v(h) states and has a probability of v(h)/2n+ℓ. We can write the final entropy
by means of equation (11.1):

Hf =

q
∑

h=0

v(h)

2n+ℓ
log2

(
2n+ℓ

v(h)

)

. (11.3)

Remark 11.3 Let us have a look at an FCSR as mentioned in Remark 11.1, which always
sets c(0) = 0. For each 0 ≤ h < 2n there is only one possibility to form h = a. This means
that there are no collision and the final entropy is the same as the initial entropy, namely
n bits.

The numerator h can take any value between 0 and 2n− 1+
∑n−1

i=1 qi2
i = q. We look at

the binary representations of a, 2c and h to find all possible pairs (a, c) which correspond
to a given h. We study bit per bit which values are possible. This idea is presented in
Figure 11.1, where each box represents a possible position of a bit. We mean by 2c the
carry bits of the value c all shifted one position to the left.
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Figure 11.1: Evaluation of h = a + 2c bit per bit.

11.3.1 Some Technical Terms

Before continuing, we give some technical terms which we need for our computation:
In the following, we consider only the integer addition a+2c, thus, if we talk of a carry

we mean the carry of this addition. We mean by

ca(j) = [aj + cj + ca(j − 1)] div 2

the carry which is produced by adding the bits aj, cj and the carry ca(j−1) of the previous
position. E.g. if we have a = 13 and c = 2 we have ca(1) = 0 and ca(2) = ca(3) = 1 (c.f
Figure 11.2). The value ca(0) is always 0 since we only have a0 for the sum.

Figure 11.2: Example for a = 13 and c = 2.

In our computation, we often consider a specific value of h and want to know the
position of its most significant bit which is not 0. We denote this position by

i(h) := ⌊log2(h)⌋ .

Most of the time, we will use directly i = i(h). We refer by

ℓ′(i) = #{j ≤ i|qj = 1}

to the number of indices smaller or equal to i for which qj = 1.
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For a given h let
r(h) = max{j < i|qj = 0, hj = 1}

be the highest index smaller than i such that qj = 0 and hj = 1. In this case, the carry of
the integer addition a + 2c cannot be forwarded over the index r(h), i.e. we always have
ca(r(h)) = 0, independently of ca(r(h)− 1). If there is no index j with qj = 0 and hj = 1,
we set r(h) = −1. For the case i < n and qi = 0, we get a range of −1 ≤ r(h) < i. Let

r∗ = max{1 ≤ j ≤ n− 1|qj = 1}
denote the maximal index j < n such that qj = 1. In the case of 2n ≤ h ≤ q, the value
r(h) is only possible for −1 ≤ r(h) < r∗. For simplicity reasons, we sometimes write only
r if it is clear which h we are meaning or if there are multiple h’s with the same value for
r(h).

In the further computation we will use the following helping function:

f1(r) =

{

2r for r ≥ 0

1 for r = −1 .

It is used to combine the cases where r = −1 and r ≥ 0.
For a given r such that r = r(h), we define by

ℓ′′(r) = #{j < r|qj = 1}
the number of indices strictly smaller than r for which qj = 1. Again, we use sometimes
only ℓ′′ if it is clear to which r we refer.

As mentioned above, we will denote by

v(h) = #{(a, c)|a + 2c = h}
the number of pairs (a, c) which create h = a + 2c.

In Case 2 in Section 11.3.2, we will see that it is sufficient to consider the indices j
with r(h) < j < i and qi = 1 to know if there is a carry at position i− 1. To facilitate the
computation, we use the following notations:

We mean with h′, a′ and c′ the bit strings h, a, 2c reduced to the positions j with
r < j < i and qj = 1. An example can be seen in Figure 11.3.

Remark 11.4 The value c′ corresponds to 2c and not to c. Thus, we consider a′ and c′

(and not 2c′) such that h′ = a′ + c′.

In contrast to c, the value of c′ is a continuous bit string, since we are only interested in
positions where there is a feedback register. The length of h′, a′ and c′ is ℓ′ − ℓ′′ − 1 bits.

We define by 0h′ and 1h′ the integers which we obtain by concatenating, respectively,
0 and 1 to the left of the bit string h′.

Let k = ℓ′ − ℓ′′ − 1 be the size of h′. We denote by X(h′) the number of possible bit
strings a′ and c′ such that 1h′ = a′ + c′, i.e. 2k + h′ = a′ + c′. This corresponds to the case
where we have a carry ca(i − 1) in the addition h = a + 2c. We use the following lemma
to determine the value of X(h′).

132



Figure 11.3: Reduction of h, a, 2c to h′, a′, c′.

Lemma 11.5 Let h′, a′ and c′ be three bit strings of length k. For all 0 ≤ x ≤ 2k − 1,
there exists exactly one h′ with X(h′) = x, i.e. there exists exactly one h′ such that for x
different pairs (a′, c′) we can write 1h′ = a′ + c′.

Proof.
Let h′, a′, c′ be three bit strings of size k and let X(h′) be the number of possible pairs
(a′, c′) such that 1h′ = a′ + c′. We are going to use the following properties:

• For a given h′, let (a′, c′) be such that 1h′ = a′ + c′. We have two possibilities,
10h′ = 0a′ + 1c′ = 1a′ + 0c′, to create 10h′. If (a′, c′) is such that 0h′ = a′ + c′, we
only have one possibility, 10h′ = 1a′ + 1c′, to build 10h′. Thus, we can write:

X(0h′) = 2X(h′) +
(
2k −X(h′)

)
. (11.4)

• The only possibility to create 11h′ is 11h′ = 1a′+1c′ for a (a′, c′) such that 1h′ = a′+c′.
Therefore, it holds that

X(1h′) = X(h′) . (11.5)

• It is easy to see that

X(1) = 0 , (11.6)

X(0) = 1 . (11.7)

For any 0 ≤ j ≤ k−1, let h′
j denote the j’th bit of h′. From Equations (11.4),(11.5),(11.6),

and (11.7), we see that for any position 0 ≤ j ≤ k − 1 with h′
j = 0 we have to count 2j in

X(h′). If h′
j = 1, we count nothing. Thus X(h′) is the integer value corresponding to the

complement of h′ and we can write:

X(h′) = 2k − 1− h′ . (11.8)

This one-to-one mapping between h′ and X(h′) shows that for any 0 ≤ x ≤ 2k − 1, there
is exactly one value h′ = 2k − 1− x such that X(h′) = x.

⋄
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11.3.2 Final Entropy Case by Case

We cannot write the sum (11.3) for the final entropy directly in a simple equation. However,
we partition the set of all possible 0 ≤ h ≤ q in four cases. For each case, we will evaluate

the value v(h)
2n+ℓ log2

(
2n+ℓ

v(h)

)

for all its h’s. We obtain the final sum of the entropy by summing

all these values.

Case 1: 1 ≤ i < n and qi = 0
To create hi = 1 at position i, we have to add ai+ca(i−1). For each value of ca(i−1)
there exists exactly one possibility for ai. For each position j with a feedback bit,
qj = 1, we have two possibilities to create the value of hj. In this case, we can write
for each h:

v(h) = 2ℓ′ .

For each i, all h’s within the range [2i, 2i+1[ are possible. So we must add:

H1(n, i, ℓ, ℓ′) = 2i 2ℓ′−n−ℓ(n + ℓ− ℓ′) (11.9)

to the entropy for each 1 ≤ i ≤ n with qi = 0.

Case 2: 1 ≤ i < n and qi = 1:

For a given h we know from the definition of r(h) that for all j’s with r(h) < j < i, if
qj = 0, then hj = 0. In the case of (qj = 0, hj = 0), a carry is always forwarded. This
means that for a + 2c, if we have ca(j − 1) = 1, aj must be 1 and we have ca(j) = 1.
However, with ca(j − 1) = 0 we have aj = 0, and so we have ca(j) = 0 as well. It is
sufficient to consider the ℓ′ − ℓ′′ − 1 positions j with i > j > r(h) for which qj = 1,
to know if we have a carry at index i− 1.
From the definition of this case, we know that hi = 1 and qi = 1. If we have
ca(i−1) = 0 we have two possibilities for (ai, ci), namely (1, 0) and (0, 1), to generate
the hi = 1. Otherwise, we only have one possibility (0, 0). For a given h′ we have:

X(h′) + 2(2ℓ′−ℓ′′−1 −X(h′)) = 2ℓ′−ℓ′′ −X(h′) (11.10)

possibilities to choose a′,c′ and (ai, ci−1). We use Lemma 11.5 to compute X(h′). In
our case: k = ℓ′−ℓ′′−1. The next question is, how many h’s have the same reduction
h′. If 0 ≤ r < i we have 2r possibilities, in the case r = −1 we have only one. We
consider this behavior by using the helping function f1(r).

By combining Lemma 11.5 and (11.10), we obtain that for each 2ℓ′−ℓ′′−1 + 1 ≤ y ≤
2ℓ′−ℓ′′ there is exactly one h′ which is generated by y different combinations of a′ and
c′. Each h which corresponds to such a h′, is generated by y2ℓ′′ different pairs (a, c),
since at each position j < r with qj = 1 we have two possibilities to create h. This

means that this h has a probability of y2ℓ′′

2n+ℓ .
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For fixed values of i, r, ℓ′ and ℓ′′ we have to add the following value to the entropy:

H2(n, r, ℓ, ℓ′, ℓ′′)

= f1(r)
2ℓ′−ℓ′′

∑

y=2ℓ′−ℓ′′−1+1

y2ℓ′′

2n+ℓ
log2

(
2n+ℓ

y2ℓ′′

)

= f1(r)2
−n−ℓ

[

2ℓ′−2
(

3 2ℓ′−ℓ′′−1 + 1
)

(n + ℓ− ℓ′′)− 2ℓ′′S1(ℓ
′ − ℓ′′)

]

.

Thus, in this case, we have to add for every 1 ≤ i ≤ n − 1 with qi = 1, and every
−1 ≤ r < i with qr = 0 the value:

H2(n, r, ℓ, ℓ′, ℓ′′) = f1(r)2
−n−ℓ

[

2ℓ′−2
(

3 2ℓ′−ℓ′′−1 + 1
)

(n + ℓ− ℓ′′)− 2ℓ′′S1(ℓ
′ − ℓ′′)

]

(11.11)
where ℓ′ = ℓ′(i) and ℓ′′ = ℓ′′(r).

Case 3: i = n, 2n ≤ h ≤ q:
In this case, we always need a carry ca(n− 1) to create hn = 1. Like in the previous
case, we are going to use r(h), ℓ′′, h′, (a′, c′) and X(h′). However, this time we have
i = n and ℓ = ℓ′.

For h = q, which means that (a, c) consists of only 1’s, it holds that for all n > j > r∗,
we have hj = 0. If we would have a r(h) ≥ r∗, then h would be greater than q which
is not allowed. Therefore, r must be in the range of −1 ≤ r < r∗.

From Lemma 11.5, we know that for all 1 ≤ x ≤ 2ℓ−ℓ′′ − 1 there exists exactly one
h′ with X(h′) = x, i.e. there are x pairs of (a′, c′) with 1h′ = a′ + c′. We exclude
the case X(h′) = 0, because we are only interested in h′s that are able to create a
carry. For each h′, there are f1(r) possible values of h which are reduced to h′. If h′

is created by x different pairs of (a′, c′), then each of its corresponding values of h is

created by x2ℓ′′ pairs of (a, c) and has a probability of x2ℓ′′

2n+ℓ .

For a given r and ℓ′′ the corresponding summand of the entropy is:

H3(n, r, ℓ, ℓ′′) = f1(r)
2ℓ−ℓ′′−1∑

x=1

x2ℓ′′

2n+ℓ
log2

(
2n+ℓ

x2ℓ′′

)

= f1(r)2
−n
[

2−1
(

2ℓ−ℓ′′ − 1
)

(n + ℓ− ℓ′′)− 2ℓ′′−ℓS2(ℓ− ℓ′′)
]

.

In this case, we have to add for each value of −1 ≤ r < r∗ with qr = 0 and ℓ′′ = ℓ′′(r):

H3(n, r, ℓ, ℓ′′) = f1(r)2
−n
[

2−1
(

2ℓ−ℓ′′ − 1
)

(n + ℓ− ℓ′′)− 2ℓ′′−ℓS2(ℓ− ℓ′′)
]

. (11.12)

Case 4: 0 ≤ h ≤ 1
If h = 0 or h = 1, there exists only one pair (a, c) which can produce the corresponding
h. Thus, for each of these h’s we have to add:

H4(n, ℓ) = 2−n−ℓ(n + ℓ) (11.13)
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to the sum of the entropy.

The Algorithm 2 shows how we can compute the final entropy for an FCSR defined by n
and q using the summands of the individual cases.

Algorithm 2 Final entropy.
1: Hf ← 0
2: ℓ′ ← 0
3: ℓ←∑n−1

i=1 qi

4: Hf ← Hf + 2H4(n, ℓ) {h = 0 and h = 1}
5: for i = 1 to n− 1 do
6: if qi = 0 then
7: Hf ← Hf + H1(n, i, ℓ, ℓ′)
8: else {qi = 1}
9: ℓ′ ← ℓ′ + 1

10: ℓ′′ ← 0
11: for r = −1 to i− 1 do
12: if qr = 0 then
13: Hf ← Hf + H2(n, r, ℓ, ℓ′, ℓ′′)
14: else {qr = 1}
15: ℓ′′ ← ℓ′′ + 1
16: end if
17: end for
18: end if
19: end for
20: ℓ′′ ← 0
21: for r = −1 to r∗ do {2n ≤ h ≤ q}
22: if qr = 0 then
23: Hf ← Hf + H3(n, r, ℓ, ℓ′′)
24: else {qr = 1}
25: ℓ′′ ← ℓ′′ + 1
26: end if
27: end for

11.3.3 Complexity of the Computation

In our algorithm we use the sums S1(k) =
∑2k−1

x=1 x log2(x) and S2(k) =
∑2k

x=2k−1+1 x log2(x).
If we have stored the values S1(k) and S1(k) for 1 ≤ k ≤ ℓ, we are able to compute the
final entropy in O(n2). We need O

(
2ℓ
)

steps to evaluate both sums, which is impractical
for large ℓ. However, by using the bounds (11.19)-(11.20) for larger k’s, we can easily
compute a lower and upper bound of those sums. In Table 11.1, we compare for different
FCSRs the exact computation with those using upper and lower bounds. The values of q
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are arbitrarily chosen. However, the accuracy of the estimation of the sums can be shown
anyway.

We mean by Hf the exact computation of the final entropy. The values lb/ub Hf mean
the lower and the upper bound obtained by using the approximation of S1 and S2. The
last two columns, lb/ub Hf , k > 5, we gain by using the approximations only for k > 5.
This last approximation is as close that we do not see any difference between the lower
and the upper bound in the first 8 decimal places.

n q ℓ Hf lb Hf ub Hf lb Hf , k > 5 ub Hf , k > 5
8 0x15B 4 8.3039849 8.283642 8.3146356 8.3039849 8.3039849
16 0x148BB 7 16.270332 16.237686 16.287598 16.270332 16.270332
24 0x14B369B 12 24.273305 24.241851 24.289814 24.273304 24.273305
32 0x14A96F8BB 17 32.241192 32.289476 32.272834 32.272834

Table 11.1: Comparison of the exact computation of the final state entropy, with upper
and lower bounds.

11.4 Lower Bound of the Entropy

We can use the algorithm of the previous section and induction to give a lower bound of the
final state entropy. For a given n and ℓ we first compute the entropy for an FCSR where
all the carry bits are the ℓ least significant bits. Subsequently, we show that by moving a
feedback position to the left, the direction of the most significant bit, we increase the final
entropy. In both steps, we study all 0 ≤ h ≤ q case by case and use the summands of the
entropy H1, H2, H3 and H4 as presented in Section 11.3.

11.4.1 Basis of Induction

For a fixed n and ℓ we study the final state entropy of an FCSR with

q = 2n +
ℓ∑

i=1

2i − 1 = 2n + 2ℓ+1 − 3 .

This represents an FCSR which has all its feedback positions grouped together at the least
significant bits (see Figure 11.4). As in the previous section, we are going to compute the
entropy case by case.

• h = 0 and h = 1.

• 1 ≤ i ≤ ℓ: Here we have qi = 1, ℓ′ = i, r = −1 or 0 and thus ℓ′′ = 0.

• i = n, i.e. ℓ < i < n: We have qi = 0 and ℓ′ = ℓ.
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Figure 11.4: FCSR with q = 2n + 2ℓ+1 − 3.

• 2n ≤ h ≤ q: In Section 11.3.1 we showed that −1 ≤ r(h) < r∗, where
r∗ = max{1 ≤ j ≤ n − 1|qj = 1}. In our case we have r∗ = ℓ. An index r requires
that qr = 0, thus, the only possible values for r are −1 and 0. Hence, we have ℓ′′ = 0.

So in this case, the final entropy is:

Hf (n, q) = 2H4(n, ℓ)

+
ℓ∑

i=1

(H2(n,−1, ℓ, i, 0) + H2(n, 0, ℓ, i, 0))

+
n−1∑

i=ℓ+1

H1(n, i, ℓ, ℓ)

+ H3(n,−1, ℓ, 0) + H3(n, 0, ℓ, 0)

= n + ℓ
(
2−n+ℓ+1 − 2−n+1

)
− 2−n−ℓ+2S2(ℓ) .

By using the lower bound (11.20) for S2(ℓ) we can write:

Hf (n, q) ≥ n +
2−n+ℓ+2

12 ln(2)

(
3− (4 + ℓ)2−2ℓ − 2−3ℓ + 21−4ℓ

)
.

Let us examine the function g(ℓ) = 3− (4 + ℓ)2−2ℓ − 2−3ℓ + 21−4ℓ. It is easy to verify that
g(ℓ + 1) − g(ℓ) > 0 for all ℓ ≥ 1. Thus, we can write g(ℓ) ≥ g(1) = 7/4 for all ℓ ≥ 1 and
finally:

Hf (n, q) ≥ n + 2−n+ℓ 7

12 ln(2)
≥ n . (11.14)

11.4.2 Induction Step

We show that by moving one feedback position one position to the left, which means in
direction of the most significant bit, the final state entropy increases. To prove this, we
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Figure 11.5: Moving the feedback position.

compare two cases A and B. In Case A we choose a u such that qu = 1 and qu+1 = 0. It
must hold that:

1 ≤ u ≤ n− 2, (11.15)

3 ≤ n . (11.16)

To create Case B, we move the feedback at index u one position to the left. This is
equivalent to:

q[B] = q[A] − 2u + 2u+1.

In Figure 11.5, we display the two values 2c[A] and 2c[B] which we are going to use to
compute the different finale entropies. Let

L = #{j < u|qj = 1}

be the number of feedback positions smaller than u. We mean by

Ir
<u = {−1 ≤ j < u : qi = 0}

the set of all indices smaller than u where there is no feedback and which are thus possible
values for r. It must hold that |Ir

<s| = u− L.
We want to show that:

Hf [B] −Hf [A] ≥ 0 . (11.17)

To do this, we study the different cases of h. Each time, we examine if the summands from
the algorithm in Section 11.3 are different or not. In the end we sum up the differences.

• h = 0 or h = 1: The summands of the entropy in A and B are the same.

• i < u: The summands of the entropy in A and B are the same.

• n > i > u + 1:

– qi = 0: In this case, i and ℓ′ are the same for A and B and thus the summands
of the entropy as well.

– qi = 1: We have:
L + 2 ≤ ℓ′ ≤ ℓ .
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∗ r < u: In this case, i, r, ℓ′ and ℓ′′ are the same and thus the summands of
the entropy as well.

∗ u + 1 < r: In this case, i, r, ℓ′ and ℓ′′ are the same and thus the summands
of the entropy as well.

∗ u ≤ r ≤ u + 1:

· A: Since for r it must hold that qr = 0, we get r = u + 1 and thus
ℓ′′ = L + 1. In this case, we have to count:

H2(n, u + 1, ℓ, ℓ′, L + 1) .

· B: In this case, we have r = u and ℓ′′ = L and therefore the term:

H2(n, u, ℓ, ℓ′, L) .

• 2n ≤ h ≤ q:

– r < u: In this case, i, r and ℓ′ are the same and thus the summands of the
entropy as well.

– u + 1 < r: In this case, i, r and ℓ′ are the same and thus the summands of the
entropy as well.

– u ≤ r ≤ u + 1:

∗ A: We have r = u + 1 and ℓ′′ = L + 1. Therefore, the summand of the
entropy in this case is:

H3(n, u + 1, ℓ, L + 1) .

∗ B: We have to consider r = u and ℓ′′ = L and therefore:

H3(n, u, ℓ, L) .

• u ≤ i ≤ u + 1: We are going to use ℓ′′(r) to denote the value of ℓ′′ corresponding to
a specific r.

– i = u:

∗ A: In this case, we have qi = 1 and ℓ′ = L + 1. Thus we have to count for
each r ∈ Ir

<u:
H2(n, r, ℓ, L + 1, ℓ′′(r)) .

∗ B: Since qi = 0 and ℓ′ = L we get:

H1(n, u, ℓ, L) .

– i = u + 1:
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∗ A: In this case, we have ℓ′ = L + 1 and qi = 0, thus we need to consider:

H1(n, u + 1, ℓ, L + 1) .

∗ B: This time, we have qi = 1. For ℓ′ = L + 1, r ∈ Ir
<u and r = u we get:

H2(n, r, ℓ, L + 1, ℓ′′(r)) .

In the case of r = u, we can write ℓ′′ = L.

By combining all these results, we get a difference of the final entropies of:

Hf [B] −Hf [A] =
ℓ∑

ℓ′=L+2

(H2(n, u, ℓ, ℓ′, L)−H2(n, u + 1, ℓ, ℓ′, L + 1))

+ H3(n, u, ℓ, L)−H3(n, u + 1, ℓ, L + 1)

+ H1(n, u, ℓ, L)−
∑

r∈Ir
<u

H2(n, r, ℓ, L + 1, ℓ′′(r))

+
∑

r∈Ir
<u

H2(n, r, ℓ, L + 1, ℓ′′(r)) + H2(n, u, ℓ, L + 1, L)

− H1(n, u + 1, ℓ, L + 1)

= 2ℓ−1 (4ℓ− 4L− 2) + 22ℓ−L + 2L+1 (3S2(ℓ− L− 1)− S1(ℓ− L)) .

If we use the lower bound (11.20) for S2(ℓ − L − 1) and the upper bound (11.19) for
S1(ℓ− L), we can write:

Hf [B] −Hf [A] ≥ 2L

(

(ℓ− L)
1

4 ln(2)
+

7

12 ln(2)
+ 2−(ℓ−L) 14− 12 2−(ℓ−L)

12 ln(2)

)

.

From ℓ > L, it follows directly (11.17), which means that the difference of the final entropies
is greater or equal to 0.

Every FCSR with ℓ feedback positions can be build by starting with the FCSR described
in Section 11.4.1 and successively moving one feedback position to the left. Thus, by
combining (11.14) and (11.17) we write the following theorem.

Theorem 11.6 An FCSR in Galois architecture, with given values for n and ℓ, has at least
n+2ℓ−n 7

12 ln(2)
≥ n bits of entropy if all 2n+ℓ initial states appear with the same probability.
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11.5 Bounds for the Sums

In this section, we prove the following lower and upper bounds for the sums S1(k) and
S2(k):

2k
∑

x=2k−1+1

x log2(x) ≥ 22k−3

(

3k + 1− 3

2 ln(2)

)

+2k−2(k + 1)+
1− 2−k+1

24 ln(2)
, (11.18)

2k
∑

x=2k−1+1

x log2(x) ≤ 22k−3

(

3k + 1− 3

2 ln(2)

)

+2k−2(k + 1)+
1− 2−k + 321−2k

12 ln(2)
,(11.19)

2k−1∑

x=1

x log2(x) ≥ 22k−1

(

k − 1

2 ln(2)

)

− 2k−1k +
4 + k + 2−k+1

24 ln(2)
, (11.20)

2k−1∑

x=1

x log2(x) ≤ 22k−1

(

k − 1

2 ln(2)

)

− k 2k−1 +
4 + k + 2−k − 21−2k

12 ln(2)
. (11.21)

The idea of this proof is that:

1

2

(

x log2(x) + (x + 1) log2(x + 1)
)

≈
∫ x+1

x

y log2(y) dy ,

since log2(x) increases much slower than x and, thus, x log2(x) is almost a straight line.
This integral can be directly computed by:

∫ x+1

x

y log2(y) dy =
y2

2

(

log2(y)− 1

2 ln(2)

)∣
∣
∣
∣

x+1

y=x

=
1

2

(

x log2(x) + (x + 1) log2(x + 1)
)

− 1 + 2x

4 ln(2)

+ log2

(

1 +
1

x

)
x

2
(x + 1) .

We use the approximation of the natural logarithm:

1

ln(2)

(
1

x
− 1

2x2
+

1

3x3
− 1

4x4

)

≤ log2

(

1 +
1

x

)

≤ 1

ln(2)

(
1

x
− 1

2x2
+

1

3x3

)

for x > 0 to get:

1 + 2x

4 ln(2)
−
(

1
3x
− 1

6x2 + 1
2x3

)

4 ln(2)
≤ x

2
(x + 1) log2

(

1 +
1

x

)

≤ 1 + 2x

4 ln(2)
−
(

1
3x
− 2

3x2

)

4 ln(2)

and finally the bounds for the integral:
∫ x+1

x

y log2(y) dy ≥ 1

2
(x log2(x) + (x + 1) log2(x + 1))−

(
1
3x
− 1

6x2 + 1
2x3

)

4 ln(2)
(11.22)

∫ x+1

x

y log2(y) dy ≤ 1

2
(x log2(x) + (x + 1) log2(x + 1))−

(
1
3x
− 2

3x2

)

4 ln(2)
. (11.23)
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By combining the exact value of the integral:

∫ 2k

2k−1

y log2(y) dy = 22k−3

(

3k + 1− 3

2 ln(2)

)

with the lower bound:

∫ 2k

2k−1

y log2(y) dy

≥ 1

2

2k−1∑

x=2k−1

x log2(x) +
1

2

2k
∑

x=2k−1+1

x log2(x)− 1

4 ln(2)

2k−1∑

x=2k−1

(
1

3x
− 1

6x2
+

1

2x3

)

=
2k
∑

x=2k−1+1

x log2(x)− 2k−2(k + 1)− 1

4 ln(2)

2k−1∑

x=2k−1

(
1

3x
− 1

6x2
+

1

2x3

)

.

gained by means of (11.22), we receive the upper bound:

2k
∑

x=2k−1+1

x log2(x) ≤ 22k−3
(

3k + 1− 3
2 ln(2)

)

+ 2k−2(k + 1)

+ 1
4 ln(2)

∑2k−1
x=2k−1

(
1
3x
− 1

6x2 + 1
2x3

)
.

(11.24)

In the same way, by using (11.23) we get:

2k
∑

x=2k−1+1

x log2(x) ≥ 22k−3
(

3k + 1− 3
2 ln(2)

)

+ 2k−2(k + 1)

+ 1
4 ln(2)

∑2k−1
x=2k−1

(
1
3x
− 2

3x2

)
.

(11.25)

Let us have a closer look at the two functions g1(x) = 1
3x
− 1

6x2 + 1
2x3 and g2(x) = 1

3x
− 2

3x2 .
If we analyze their first derivatives, we see that g1(x) is decreasing for x ≥ 1 and g2(x) is
decreasing for x ≥ 4. For the upper bound of the sum, we can write directly:

2k
∑

x=2k−1+1

x log2(x) ≤ 22k−3

(

3k + 1− 3

2 ln(2)

)

+ 2k−2(k + 1)

+
1

4 ln(2)

2k−1∑

x=2k−1

(
1

3 2k−1
− 1

6 22k−2
+

1

2 23k−3

)

= 22k−3

(

3k + 1− 3

2 ln(2)

)

+ 2k−2(k + 1) +
1− 2−k + 3 21−2k

12 ln(2)
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for all k ≥ 1. In the case of the lower bound, we can write:

2k
∑

x=2k−1+1

x log2(x) ≥ 22k−3

(

3k + 1− 3

2 ln(2)

)

+ 2k−2(k + 1)

+
1

4 ln(2)

2k−1∑

x=2k−1

(
1

3 2k
− 2

3 22k−2

)

= 22k−1

(

k − 1

2 ln(2)

)

− 2k−1k +
4 + k + 2−k+1

24 ln(2)

for k ≥ 3. However, we can verify by numeric computation that the lower bound also holds
in the cases k = 1 and k = 2. Thus, we have shown (11.18) and (11.19) for k ≥ 1. Finally,
by employing:

2K−1∑

x=1

x log2(x) =
K∑

k=1

2k
∑

x=2k−1+1

x log2(x)−K2K

and the previous results, we receive the bounds (11.20) and (11.21).

11.6 Conclusion

If we allow all initial states of the FCSR with the same probability 2−n−ℓ, we have an
initial entropy of the state of n + ℓ bits. We showed in this chapter that already after one
iteration, the entropy is reduced to n + ℓ/2 bits.

As soon as the FCSR has reached its periodic behavior, the entropy does not reduce
any more. In this chapter, we presented an algorithm which computes this final entropy in
O (n2) steps. The algorithm is exact if the results of the sums S1(k) =

∑2k

x=2k−1+1 x log2(x)

and S2(k) =
∑2k−1

x=1 x log2(x) are known for k ≤ ℓ. For large values of ℓ, the same algorithm
allows us to give close upper and lower bounds for the entropy by using approximations of
S1(k) and S2(k).

In the end, we used the same algorithm to prove that the final state entropy never drops
under n bits. One might argue that this is evident, since there are q different values of h
and log2(q) ≈ n. However, it would be possible that the probabilities are not very regular
distributed and that we would have a lower entropy. With our bound, it is sure that the
entropy cannot drop under n bits.

The entropy of an FCSR decreases quite fast. However, it stays always larger or equal
to n bits.
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Chapter 12

Parallel generation of ℓ-sequences

The generation of pseudo-random sequences at a high rate is an important issue in modern
communication schemes. The representation of a sequence can be scaled by decimation to
obtain parallelism and more precisely a sub-sequences generator. Sub-sequences generators
and therefore decimation have been extensively used in the past for linear feedback shift
registers (LFSRs). However, the case of automata with a non linear feedback is still open.
In this chapter, we study how to transform a feedback with carry shift register (FCSR)
into a sub-sequences generator. We examine three solutions for this transformation. The
first one is based on the decimation properties of ℓ-sequences, i.e. FCSR sequences with
maximal period, the second one is based on multiple steps implementation and the last
one consists in implementing an 2d-adic FCSR with d > 1. We show that the solution
based on the decimation properties leads to much more costly results than in the case of
LFSRs. For the multiple steps implementation, we show how the propagation of carries
affects the design. The use of 2d-adic FCSRs is easy to design but might increase the size
of the register.

This work represents a cooperation with Cédric Lauradoux and was presented at the
international conference on SEquences and Their Applications (SETA) 2008 [LR08].

12.1 Introduction

The synthesis of shift registers consists in finding the smallest automaton able to generate
a given sequence. This problem has many applications in cryptography, sequences and
electronics. The synthesis of a single sequence with the smallest linear feedback shift
register is achieved by the Berlekamp-Massey [Mas69] algorithm. There exists also an
equivalent of Berlekamp-Massey in the case of multiple sequences [FT91, SS06]. In the case
of FCSRs, we can use algorithms based on lattice approximation [KG97] or on Euclid’s
algorithm [ABN04]. For AFSRs we can apply the general synthesis algorithm of Klapper
and Xu [KX04]. This chapter addresses the following issue in the synthesis of shift registers:
given an automaton generating a sequence S, how to find an automaton which generates
in parallel the sub-sequences associated to S. Throughout this chapter, we will refer to
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this problem as the sub-sequences generator problem. We aim to find the best solution to
transform a 1-bit output pseudo-random generator into a multiple outputs generator. In
particular, we investigate this problem when S is generated by a feedback with carry shift
register (FCSR) with a maximal period, i.e. S is an ℓ-sequence.

The design of sub-sequences generators has been investigated in the case of LFSRs [LE71,
SC88] and two solutions have been proposed. The first solution [Rue86, Fil00] is based
on the classical synthesis of shift registers, i.e. the Berlekamp-Massey algorithm, to define
each sub-sequence. The second solution [LE71] is based on a multiple steps design of the
LFSR. We have applied those two solutions to FCSRs. Our contributions are as follows:

• We explore the decimation properties of ℓ-sequences for the design of a sub-sequences
generator by using an FCSR synthesis algorithm.

• We show how to implement a multiple steps FCSR in Fibonacci and Galois configu-
ration.

• We compare the two previous methods with an implementation of an 2d-adic FCSR
where d > 1 is the decimation factor.

The next section presents the motivation of this work. In Section 12.3, the existing
results on LFSRs are described and we show multiple steps implementations of the Galois
and the Fibonacci configuration. We describe in Section 12.4 our main results on the
synthesis of sub-sequences generators in the case of ℓ-sequences. Then, we give some
conclusions in Section 12.5.

12.2 Motivation

The decimation is the main tool to transform a 1-bit output generator into a sub-sequences
generator. An example for a 2–decimation can be found in Figure 12.1. The decimation

generator

Single sequence

Sub-sequences

generator

Figure 12.1: Model of a sub-sequences generator.

allows us to increase the throughput of a pseudo-random sequence generator (PRSG).
Let S = (s0, s1, s2, · · · ) be an infinite binary sequence of period T , thus sj ∈ {0, 1} and
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sj+T = sj for all j ≥ 0. For a given integer d, a d–decimation of S is the set of sub-sequences
defined by:

S i
d = (si, si+d, si+2d, · · · , si+jd, · · · )

where i ∈ [0, d− 1] and j = 0, 1, 2, · · · . Hence, a sequence S is completely described by the
sub-sequences:

S0
d = (s0, sd, · · · )
S1

d = (s1, s1+d, · · · )
...

...
...

Sd−2
d = (sd−2, s2d−2, · · · )
Sd−1

d = (sd−1, s2d−1, · · · ) .

A single automaton is often used to generate the pseudo-random sequence S. In this
case, it is difficult to achieve parallelism. The decomposition into sub-sequences overcomes
this issue as shown by Lempel and Eastman in [LE71]. Each sub-sequence is associated to
an automaton. Then, the generation of the d sub-sequences of S uses d automata which
operate in parallel. Parallelism has two benefits, it can increase the throughput or reduce
the power consumption of the automaton generating a sequence.

Throughput — The throughput T of a PRSG is defined by: T = n× f , with n is the
number of bits produced every cycle and f is the clock frequency of the PRSG. Usually, we
have n = 1, which is often the case with LFSRs. The decimation achieves a very interesting
tradeoff for the throughput: Td = d × γf with 0 < γ ≤ 1 the degradation factor of the
original automaton frequency. The decimation provides an improvement of the throughput
if and only if γd > 1. It is then highly critical to find good automata for the generation of
the sub-sequences. In an ideal case, we would have γ = 1 and then a d-decimation would
imply a multiplication of the throughput by d.

Power consumption — The power consumption of a CMOS device can be estimated
by the following equation: P = C × V 2

dd × f , with C the capacity of the device and Vdd

the supply voltage. The sequence decimation can be used to reduce the frequency of the
device by interleaving the sub-sequences. The sub-sequences generator will be clocked
at frequency γf

d
and the outputs will be combined with a d-input multiplexer clocked at

frequency γf . The original power consumption can then be reduced by the factor γ
d
, where

γ must be close to 1 to guarantee that the final representation of S is generated at frequency
f .

The study of the γ parameter is out of the scope of this work since it is highly related to
the physical characteristics of the technology used for the implementation. In the following,
we consider m-sequences and ℓ-sequences which are produced respectively by LFSRs and
FCSRs.

Throughout the chapter, we detail different representations of several automata. We
denote by (ai) a memory cell and by ai(t) the content of the cell (ai) at time t. The
internal state of an automaton at time t is denoted by A(t), (A(t), m(t)) and (A(t), C(t)),
respectivley, for a LFSR, a Fibonacci and a Galois FCSR.
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12.3 Sub-Sequences Generators and m-Sequences

The decimation of LFSR sequences has been used in cryptography in the design of new
stream ciphers [MR84]. There exist two approaches to use decimation theory to define the
automata associated to the sub-sequences.

Construction using LFSR synthesis. This first solution associates an LFSR to each
sub-sequence (cf. Figure 12.2). This construction is based on well-known results on the

Figure 12.2: Sub-sequences generator using LFSR synthesis.

decimation of LFSR sequences. It can be applied to both Fibonacci and Galois represen-
tation without any distinction.

Theorem 12.1 ([Zie59, Rue86]) Let S be a sequence produced by an LFSR whose char-
acteristic polynomial Q(X) is irreducible in F2 of degree n. Let α be a root of Q(X) and
let T be the period of Q(X). Let S i

d be a sub-sequence resulting from the d-decimation of
S. Then, S i

d can be generated by an LFSR with the following properties:

• The minimum polynomial of αd in F2n is the characteristic polynomial Q⋆(X) of the
resulting LFSR.

• The period T ⋆ of Q⋆(X) is equal to T
gcd(d,T )

.

• The degree n⋆ of Q⋆(X) is equal to the multiplicative order of Q(X) in ZT ⋆ .

In practice, the characteristic polynomial Q⋆(X) can be determined using the Berlekamp-
Massey algorithm [Mas69]. The sub-sequences are generated using d LFSRs defined by
the characteristic polynomial Q⋆(X) but initialized with different values. In the case of
LFSRs, the degree n∗ must always be smaller or equal to n.

Construction using a multiple steps LFSR. This method was first proposed by
Lempel and Eastman [LE71]. It consists in clocking the LFSR d times in one clock cycle
by changing the connections between the memory cells and by some duplications of the
feedback function. We obtain a network of linearly interconnected shift registers. This
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method differs for Galois and Fibonacci setup. Let nextd(ai) denote the cell connected to
the output of (ai). For an n-bit Fibonacci LFSR with transition function f , the transfor-
mation into an automaton which generates d bits per cycle is achieved using the following
equations:

nextd(ai) = (ai−d mod n) (12.1)

ai(t + d) =

{

f
(

A(t + i− n + d)
)

if n− d ≤ i < n

ai+d(t) if i < n− d
(12.2)

Equation 12.1 corresponds to the transformation of the connections between the memory
cells. All the cells (ai) of the original LFSR, such that i mod d = k, are gathered to form
a sub-shift register, where 0 ≤ k ≤ d− 1. This is the basic operation to transform a LFSR
into a sub-sequences generator with a multiple steps solution. The content of the last cell
of the k-th sub-shift registers corresponds to the k-th sub-sequence Sk

d . Equation 12.2
corresponds to the transformation of the feedback function. It must be noticed that the
synthesis requires to have only relations between the state of the register at time t+ d and
t. Figure 12.3 shows an example of such a synthesis for a Fibonacci setup defined by the
connection polynomial q(X) = X8 + X5 + X4 + X3 + 1 with the decimation factor d = 3.
The transformation of a Galois setup is described by the Equations 12.1 and 12.3:

ai(t+d) =

{

a0(t + d− n + i)⊕⊕n−2−i
k=0 qi+k+1a0(t + d− k − 1) if n− d ≤ i < n

ai+d(t)⊕
⊕d−1

k=0 qi+d−ka0(t + k) if i < n− d
(12.3)

with q(X) = 1+ q1X + q2X
2 + · · ·+ qn−1X

n−1 +Xn. The Equation 12.3 does not provide a
direct relation between the state of the register at time t+d and t. However, this equation
can be easily derived to obtain more practical formulas as shown in Figure 12.4.

Comparison. We have summarized in the Table 12.1 the two methods used to synthe-
size the sub-sequences generator. By wt(Q(X)), we mean the Hamming weight of the
characteristic polynomial Q, i.e. the number of non-zero monomials. The method based
on LFSR synthesis proves that there exists a solution for the synthesis of the sub-sequences
generator. With this solution, both memory cost and gate number depends on the deci-
mation factor d. The method proposed by Lempel and Eastman [LE71] uses a constant
number of memory cells for the synthesis of the sub-sequences generator.

Method Memory cells Logic Gates
LFSR synthesis [Mas69] d× n⋆ d× wt(Q⋆)

Multiple steps LFSRs [LE71] n d× wt(Q)

Table 12.1: Comparison of the two methods for the synthesis of a sub-sequences generator.

149



3-decimation

1-decimation

Figure 12.3: Multiple steps generator for a Fibonacci LFSR.

The sub-sequences generators defined with the Berlekamp-Massey algorithm are not
suitable to reduce the power consumption of an LFSR. Indeed, d LFSRs will be clocked
at frequency λf

d
to produce the sub-sequences, however, the power consumption of such a

sub-sequence generator is given by:

P = d×
(

Cd × V 2
dd ×

γf

d

)

= λC × V 2
dd × γf

with C and Cd = λC the capacity of LFSRs corresponding, respectively, to S and S i
d. We

can achieve a better result with a multiple steps LFSR:

P = λ′C × V 2
dd ×

γf

d

with Cd = λ′C .

12.4 Sub-Sequences Generators and ℓ-Sequences

This section presents our main contribution. We apply the two methods used in the
previous section to the case of ℓ-sequences. In addition, we consider the implementation
of an 2d-adic FCSR.
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Feedback t=0

Feedback t=1

Feedback t=2

Figure 12.4: Multiple steps generator for a Galois LFSR.

Construction using FCSR synthesis. There exist algorithms based on Euclid’s al-
gorithm [ABN04] or on lattice approximation [GK97], which can determine the smallest
FCSR to produce S i

d. These algorithms use the first k bits of S i
d to find h⋆ and q⋆ such that

h⋆/q⋆ is the 2-adic representation of the sub-sequence, −q⋆ < h⋆ ≤ 0 and gcd(q⋆, h⋆) = 1.
Subsequently, we can find the feedback positions and the initial state of the FCSR in Galois
or Fibonacci architecture. The value k is in the range of twice the 2-adic complexity of
the sequence. For our new sequence S i

d, let h⋆ and q⋆ define the values found by one of the
algorithms mentioned above. By T ⋆ and T , we mean the periods of respectively S i

d and S .
For the period of the decimated sequences, we can make the following statement, which

is true for all periodic sequences.

Lemma 12.2 Let S = (s0, s1, s2, . . .) be a periodic sequence with period T . For a given
d > 1 and 0 ≤ i ≤ d − 1, let S i

d be the decimated sequence with period T ⋆. Then, it must
hold:

T ⋆

∣
∣
∣
∣

T

gcd(T, d)
. (12.4)

If gcd(T, d) = 1 then T ⋆ = T .

Proof.
The first property is given by:

sd[j+T/gcd(T,d)]+i = sdj+i+T [d/ gcd(T,d)] = sdj+i .
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For the case gcd(T, d) = 1, there exits x, y ∈ Z such that xT + yd = 1 due to Bezout’s
lemma. Since S is periodic, we define sj = sk for any j < 0 and k ≥ 0, if j (mod T ) = k .
Thus, we can write for any j:

sj = si+(j−i)xT+(j−i)yd = si+(j−i)yd ,
sj+T ⋆ = si+(j−i)xT+T ⋆xT+(j−i)yd+T ⋆yd = si+(j−i)yd+T ⋆yd .

However, since T ⋆ is the period of S i
d we get:

sj+T ⋆ = sj+(j−i)yd = sj .

Therefore, it must hold that T |T ⋆ which together with (12.4) proves that T ⋆ = T if
gcd(T, d) = 1 . ⋄

In case gcd(T, d) > 1, the real value of T ⋆ might depend on i, e.g. if S is the 2-adic
representation of −1/19 and d = 3 we have T/gcd(T, d) = 6, however, for S0

3 the period
T ⋆ = 2 and for S1

3 the period T ⋆ = 6 .
A critical point in this approach is that the size of the new FCSR can be exponentially

bigger than the original one. In general, we only know that for the new q⋆ it must hold that
q⋆|2T ⋆ − 1 . From the previous paragraph we know that T ⋆ can be as big as T/gcd(T, d) .
In the case of an allowable decimation [GKMS04], i.e. a decimation where d and T are
coprime, we have more information:

Corollary 12.3 ([GK97]) Let S be the 2-adic representation of h/q, where q = pe is a
prime power with p prime, e ≥ 1 and −q ≤ h ≤ 0. Let d > 0 be relatively prime to
T = pe− pe−1, the period of S. Let S i

d be a d-decimation of S with 0 ≤ i < d and let h⋆/q⋆

be its 2-adic representation such that −q⋆ ≤ h⋆ ≤ 0 and gcd(q⋆, h⋆) = 1. Then q⋆ divides

2T/2 + 1 .

If the following conjecture is true, we have more information on the new value q⋆ .

Conjecture 12.4 ([GK97]) Let S be an ℓ-sequence with connection number q = pe and
period T . Suppose p is prime and q 6∈ {5, 9, 11, 13}. Let d1 and d2 be relatively prime to T
and incongruent modulo T . Then for any i and j, S i

d1
and Sj

d2
are cyclically distinct, i.e.

there exists no τ ≥ 0 such that S i
d1

is equivalent to Sj
d2

shifted by τ positions to the left.

This conjecture has already been proved for many cases [GKMS04, XQ06, TQ09] but
not yet for all. Recently, Bourgain et al. showed that the conjecture is valid for all
q > 1.09 × 2184 [BCPP09]. If it holds, this implies that for any d > 1, S i

d is cyclically
distinct from our original ℓ-sequence. We chose q such that the period was maximal, thus,
any other sequence with the same period which is cyclically distinct must have a value
q⋆ > q. This means that the complexity of the FCSR producing the subsequence S i

d will
be larger than the original FCSR, if d and T are relative prime.
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Remark 12.5 Let us consider the special case where q is prime and the period T = q −
1 = 2p is twice a prime number p > 2, as recommended for the stream cipher proposed
in [AB05a]. The only possibilities in this case for gcd(d, T ) > 1 is d = 2 or d = T/2 .

For d = T/2, we will have T/2 FCSRs where each of them outputs either 0101 . . . or
1010 . . ., since for an ℓ-sequence the second half of the period is the inverse of the first
half [GK97]. Thus, the size of the sub-sequences generator will be in the magnitude of T
which is exponentially bigger than the 2-adic complexity of S which is log2(q) .

In the case of d = 2, we get two new sequences with period T ⋆ = p. As for any FCSR,
it must hold that T ⋆|ordq⋆(2), where ordq⋆(2) is the multiplicative order of 2 modulo q⋆ .
Let ϕ(n) denote Euler’s function, i.e. the number of integers smaller than n which are
relative prime to n. It is well known, e.g. [McE87], that ordq⋆(2)|ϕ(q⋆) and if q⋆ has the
prime factorization pe1

1 pe2

2 · · · per
r then ϕ(q⋆) =

∏r
i=1 pei−1

i (pi − 1). From this follows that
p 6= ϕ(q⋆), because otherwise (p + 1) must be a prime number, which is not possible since
p > 2 is a prime. We also know that T ∗ = p|ϕ(q∗), thus 2 × p = q − 1 ≤ ϕ(q∗) . This
implies that q⋆ > q, since from T ⋆ = T/2 follows that q 6= q⋆ .

Together with Conjecture 12.4, we obtain that for such an FCSR any decimation would
have a larger complexity than the original one. This is also interesting from the perspective
of stream ciphers, since any decimated subsequence of such an FCSR has larger 2-adic
complexity than the original one, except for the trivial case with d = T/2 .

Construction using a multiple steps FCSR. A multiple steps FCSR is a network of
interconnected shift registers with a carry path: the computation of the feedback at time
t depends directly on the carry generated at time t − 1. The transformation of an n-bit
FCSR into a d sub-sequences generator uses first Equation (12.1) to modify the mapping

of the shift register. For the Fibonacci setup, let g
(

A(t), m(t)
)

= h
(

A(t)
)

+ m(t) denote

the feedback function of the FCSR with

h
(

A(t)
)

=
n−1∑

i=0

qn−iai(t) . (12.5)

Then, the transformation uses the following equations:

ai(t + d) =







if n− d ≤ i < n :

g
(

A(t + d−m + i), m(t + d−m + i)
)

mod 2

if i < n− d :
ai+d(t)

(12.6)

m(t + d) = g
(

A(t + d− 1), m(t + d− 1)
)
/2 (12.7)

Due to the nature of the function g, we can split the automaton into two parts. The
first part handles the computation related to the shift register A(t) and the other part is
the carry path as shown in Figure 12.5 for q = 347.

153



Figure 12.5: Multiple steps generator for a Fibonacci FCSR.

The case of Galois FCSRs is more difficult because the circuit can not be split into
two parts: each bit of the carry register must be handle separately. The modification of
the basic operator of a Galois FCSR, i.e. addition with carry, is the key transformation
to obtain a sub-sequences generator. Let us consider a Galois FCSR with q = 19. This
automaton has a single addition with carry as shown in Figure 12.6(a). The sub-sequences
generator for d = 2 associated to this FCSR is defined by:

t + 1







a1(t + 1) =
(

a0(t) + a2(t) + c2(t)
)

mod 2

c2(t + 1) =
(

a0(t) + a2(t) + c2(t)
)

div 2
(12.8)

t + 2







a1(t + 2) =
(

a0(t + 1) + a3(t) + c2(t + 1)
)

mod 2

c2(t + 2) =
(

a0(t + 1) + a3(t) + c2(t + 1)
)

div 2
(12.9)

with c1 the carry bit of the FCSR.

For the implementation of the multiple steps FCSR, we are interested in the description
at the bit-level. An addition with carry (represented by ⊞ in the figures) can be done by
5 XORs and one multiplications (logic AND). This operator is also known as a full adder.
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Thus on bit-level, the previous equation can be expressed as follows:

t + 1

{
a1(t + 1) = a0(t)⊕ a2(t)⊕ c2(t)
c2(t + 1) = [a0(t)⊕ a2(t)] [a0(t)⊕ c2(t)]⊕ a0(t)

(12.10)

t + 2

{
a1(t + 2) = a0(t + 1)⊕ a3(t)⊕ c2(t + 1)
c2(t + 2) = [a0(t + 1)⊕ a3(t)] [a0(t + 1)⊕ c2(t + 1)]⊕ a0(t + 1)

(12.11)

The equations corresponding to time t+2 depend on the carry, c1(t+1), generated at time
t + 1. This dependency between full adders is a characteristic of a well-known arithmetic
circuit: the k-bit ripple carry adder (Figure 12.6(b)).

(a) Galois FCSR for q = 19.

r
0

carry
in

r
1

a
1

b
1

a
0

b
0

carry
out

(b) 2-bit ripple carry adder.

Figure 12.6: Example for a Galois FCSR with q = 19.

Thus, all the full adders in a d sub-sequences generator are replaced by d-bit ripple
carry adders as shown in Figure 12.7.

We can derive a more general representation of a multiple steps Galois FCSR from the
previous formula:

ai(t+d) =







if n− d ≤ i < n :

a0(t + d−m + i)⊕⊕n−2−i
k=0 qi+k+1 [a0(t + d− k − 1)⊕ ci+k+1(t + d− k − 1)]

if i < n− d :

ai+d(t)⊕
⊕d−1

k=0 qi+d−k [a0(t + k)⊕ ci+d−k(t + k)]
(12.12)

ci(t + d) = [a0(t + d− 1)⊕ ai(t + d− 1)] [a0(t + d− 1)⊕ ci(t + d− 1)]⊕ a0(t + d− 1) .
(12.13)

Equation (12.13) shows the dependencies between the carries which corresponds to the
propagation of the carry in a ripple carry adder. Equation (12.12) corresponds to the path
of the content of a memory cell ai(t) through the different levels of the ripple carry adders.
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Figure 12.7: Multiple steps generator for a Galois FCSR.

Implementation as an 2d-adic FCSR. Let d > 1 be the decimation factor. Until now,
we saw the output sequence S as an 2-adic representation of a negative rational number h

q

and we used 2-adic FCSRs. In the same way, we can see S, h, q as a 2d-adic numbers and
use 2d-adic FCSRs. Practically all theorems of binary FCSRs can be directly applied to
the 2d-adic case [KX89]. In such an FCSR, every cell in the main register can have a value
in Z2d and can thus be represented by d bits. We can see the FCSR as d interconnected
sub-register. The connection integer q is defined like in (10.14) as

q = −1 +
n∑

i=1

qi(2
d)i ,

however, this time qi ∈ Z2d .
The main advantage of the 2d-adic implementation is that it is easy to design. For a

given 2-adic FCSR with a connection integer q we can directly obtain the feedback position
of its 2d-adic counterpart. Though, there are some small disadvantages:

• We have to implement the multiplications by qi ∈ Z2d .

• If q 6≡ −1 (mod 2d) we cannot use the original q and h. However, we can use
h⋆ = x × h and q⋆ = x × q with x > 0 and q⋆ ≡ −1 (mod 2d). Then h⋆

q⋆ = h
q

will
produce the same output sequence S.

• The size of the main register is a multiple of d-bits. This might change the size of
the resulting FCSR.

To illustrate the method, let us consider the example of an 2-adic Galois FCSR with
connection integer q = 37 and a d = 2 decimation. Since 37 ≡ 1 (mod 3), we have to
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change the the connection integer to q⋆ = 111. This means, that we have to multiply all
values h by 3 to obtain h⋆. The resulting 4-adic FCSR for q⋆ can be found in Figure 12.8(b).
It has in total six bits in the main register and two bits in the carry register and we need
one multiplication by three.

(a) Galois FCSR for q = 37.

(b) Using 4-adic numbers. (c) Multiple steps FCSR.

(d) Multiple steps FCSR.

Figure 12.8: FCSR synthesis.

Comparison. The construction using FCSR synthesis is more complicated than in the
case of LFSRs. The size of the minimal generator producing S i

d can depend on i, and we
can only give upper bounds for q⋆ namely that q⋆|2T⋆ − 1 in the general case and that
q⋆|2T/2 +1 if gcd(d, T ) = 1. Based on Conjecture 12.4, we saw that q⋆ > q if gcd(T, d) = 1.
Moreover, in the case q = 2p+1 with p and q prime, the resulting sub-sequences generator
is always larger than the original one.

Apart from the carry path and the cost of the addition with carry, the complexity of a
multiple steps implementation of a FCSR is very similar to the multiple steps implemen-
tation of an LFSR. There is no overhead in memory and the number of logic gates for a
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Galois FCSR is 5d×wt(q) where wt(q) is the number of ones in the binary representation
of q and the number 5 corresponds to the five gates required for a full-adder (four XORs
and one AND cf. Equation 12.10). In the case of a Fibonacci setup, the number of logic
gates is given by:

d× (5× (wt(q)− ⌈log2(wt(q) + 1)⌉) + 2× (⌈log2(wt(q) + 1)⌉ − wt(wt(q)) + 5× size(m))

with (5× (wt(q)− ⌈log2(wt(q) + 1)⌉) + 2× (⌈log2(wt(q) + 1)⌉ − wt(wt(q))) the cost of the
implementation of a parallel bit counter [MP75], i.e. the h function (cf. Equation 12.5)
and 5× size(m) is the cost of a ripple carry adder which adds the content of size(m) bits
of the carry with the output of h.

The implementation of an 2d-adic FCSR is easy to design. However, the result might
be less efficient than a multiple steps FCSR. The size of the 2d-adic main register will
always be a multiple of d bits. Sometimes we have to multiply the connection integer with
a constant factor to achieve that q⋆ ≡ −1 (mod 2d). This has also an influence of the
initial value of the FCSR since we have to change h to h⋆. In the case of 2d-adic numbers,
we have not only to implement the addition modulo 2d but also the multiplications for all
qi ∈ Z2d with 1 ≤ i ≤ n.

In Figure 12.4, we compare all three methods for an Galois FCSR with connection
integer q = 37 and a d = 2 decimation. In this case gcd(T, d) > 1.

12.5 Conclusion

We have presented in this chapter how to transform an FCSR into a sub-sequences gener-
ator to increase its throughput or to reduce its power consumption. Our results emphasize
the similarity between LFSRs and FCSRs in terms of implementation properties. In both
cases, the solution based on the classical synthesis algorithm fails to provide a minimal
solution. Even worse, in the case of FCSRs the memory needed is in practice exponentially
bigger than for the original FCSR. Thus, we need to use multiple steps implementations
as for LFSRs. The propagation of carries is the main problem in multiple steps implemen-
tations of FCSRs: if we consider d sub-sequences, we obtain d-bit ripple carry adders with
carry instead of additions with carry in a Galois setup. In the case of a Fibonacci setup,
the situation is different since we can split the feedback function into two parts. A third
alternative is the use of 2d-adic FCSRs. Their design is very simple, but in some cases
they are less efficient than the multiple steps implementation. The last two parallelization
methods can significantly improve the hardware implementation of FCSRs but it may also
be possible to improve software implementations.
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Conclusion and Perspectives

In this thesis, we considered the generation of (pseudo) random numbers for cryptography.
In a first part, we examined the HAVEGE generator, which produces random numbers
from the volatiles states in a processor. These states, like the cache or the branch predictor,
are not observable without altering them and hard to control. This means that we are not
able to produce the same sequence twice. We studied the quality of the data collected from
the processor by considering different versions of the generator and different test settings.
We could confirm the assumption that the collected entropy is highest if the generator
exploits the uncertainty in the branch predictor and in the instruction cache. In addition,
we applied an entropy estimator for Markov chains on the test data. We could see that
the estimated entropy decreases if we consider higher orders Markov chains. However, the
number of needed test data increases exponentially with the order of the MC. This effect
limited our studies to order of size 4. We could not find any specific weakness of structure
in HAVEGE which demanded further studies. Thus, we stopped our examination at this
point.

In the rest of this thesis, we studied pseudo random number generators (PRNGs) which
produce completely deterministic sequences from a short initial value. Particularly, we con-
sidered the case where these generators are used as stream ciphers. We examined a specific
cipher (Dragon), a general model (using random functions), and possible components
(FCSRs). Dragon is a 32-bit word based stream cipher which consists of non-linear shift
register combined with a 64-bit counter. We studied several properties of the non-linear
state update function. Amongst other things, we considered the bias of the linear approxi-
mations of combined output words. Finally, we were not able to find a better distinguisher
than the two proposed by Englund/Maximov and Cho/Pieprzyk.

We also considered a general model of stream ciphers. This time we assumed that
the state update function is realized by a random function and that the initial state is
uniformly distributed. This can be seen as an attack model where an attacker has no
information about the initial state or the update function, because they depend on the
secret key and the IV. We were interested in how much entropy we lose in the state. In
a first part, we found an approximation of the state entropy after several iterations of the
random function. This was done by exploiting the structure of the functional graph of a
random mapping. We gave an recursive formula of the approximation. In addition, we
showed that for a number of iterations k up to a few hundreds, we are able to give an
estimate of the entropy which is much better than the upper bound given by the number
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of image points. Subsequently, we studied if this loss of entropy can be exploited for a
collision search in the inner state of our stream cipher model. We showed that in the
case of a random update function, such a search is not more efficient than a search for a
collision directly in the initial states. The only way for these attacks to be efficient would
be a family of functions which either lose more entropy or where we can compute the k’th
iterate in less than k steps.

In the last big part of this thesis, we considered Feedback with Carry Shift Registers
(FCSRs). These are fast and non-linear feedback shift register and have a structure similar
to Linear Feedback Shift Registers (LFSRs). Where LFSRs can be described by the theory
of polynomials, FCSRs uses the theory of 2-adic numbers. In a first part, we considered
FCSRs in Galois setup. We assume that the initial values of all the bits in the state (main
register and carry register) are independent and uniformly distributed. This means that
the entropy of the initial state is the size of the main register plus the size of the carry
register. The state update of a Galois FCSR is a non-injective function, thus, we lose
entropy in the inner state. After a finite number of iterations, the entropy arrives at a
stable value. This is true for any function which maps a finite set onto itself. We could
show that in the case of a Galois FCSR, we lose already a lot of entropy after one iteration.
We also gave an algorithm, which allows to compute the final entropy of any Galois FCSR.
In addition, we could use this algorithm to prove that the final entropy can never decrease
under the size of the main register. If we chose only the bits of the main register in the
initial state, and set the bits of the carry register to all 0’s we have an initial and final
entropy of the size of the main register. Thus, we could show that concerning the entropy
we are finally not worse if we allow to set all bits in the initial state.

Finally, we studied an aspect of the implementation of FCSRs. The original imple-
mentation of an FCSR generates the output bit per bit. We were interested in an imple-
mentation which allows to generate multiple bits in parallel. Inspired by the similarities
between LFSRs and FCSRs, we tried the methods of parallelization which are already
known for LFSRs. The first technique generates each subsequence by an independent shift
register. This works fine for LFSRs. However, we showed that in the case of FCSRs, the
new registers are in general much bigger than the original one. Thus, we cannot use this
method to increase the efficiency of the register. The second approach partitions the origi-
nal register in interconnected sub-registers and duplicates the feedback paths. In contrary
to LFSRs, we have to consider the subsequent generation of the carry bits. However, based
on components like the n-bit ripple carry adder, we are still able to provide an efficient
parallelization of FCSR sequences.

Perspectives

In this Section, we mention a few question which we would like to examine further.
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Random Mappings and Hash Functions

We considered in detail the stream cipher model using a random update function. It
would be interesting to know if we can use the same approach for other primitives. Hash
functions are an example of primitives which are currently in the center of attention.
In October 2008, the National Institute of Standards and Technology (NIST) started a
four year project to find a new standard of cryptographic hash functions [SHA]. In the
context of hash functions, an important property is the probability of a collision or a
multi-collision. We would like to know, if we are able to find multi-collisions based on
the structure of random functions with a higher probability than the generalized birthday
paradox [DM89, STKT06]. In connection with our stream cipher model, we already showed
that it is not possible to find a single collision faster by iteration a random function several
times. However, it might be possible to exploit the structure of the function graph in a
different way to find multi-collisions efficiently.

FCSRs

In the area of FCSRs there are still a lot of open questions. Are there are other possible
applications for FCSRs than stream ciphers? In this thesis we mainly considered binary
Galois and Fibonacci FCSRs. However there exists a multitude of extensions, like d-FCSRs
or the new architecture examined by Arnault, Berger, Minier, and Pousse which represents
a hybrid of the Galois and the Fibonacci setup. Is it possible to apply our parallelization
on these more general cases? Can we make any statements about the state entropy?

It was shown that neither a binary Galois FCSR nor a binary Fibonacci FCSR is optimal
for the use in stream ciphers. The first one changes only one bit in the main register in
each iteration [FMS08]. The second one has an almost linear behavior with a relative high
probability [HJ08]. Does these attacks apply also for extensions of the FCSRs?

The family of FCSRs and its extensions are very large. They have the advantage that
they are non-linear and supported by a strong theory. This leaves a lot of interesting
questions in this area.
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