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Abstract

Concurrent Constraint Programming (CCP) [Saraswat 1993] is a formalism for concurrency
in which agents (processes) interact with one another by telling (adding) and asking (read-
ing) information represented as constraints in a shared medium (the store). Temporal Con-
current Constraint Programming (tcc) extends CCP by allowing agents to be constrained
by time conditions. This dissertation studies temporal CCP as a model of concurrency for
mobile, timed reactive systems. The study is conducted by developing a process calculus
called utcc, Universal Temporal CCP. The thesis is that utcc is a model for concurrency
where behavioral and declarative reasoning techniques coexist coherently, thus allowing for
the specification and verification of mobile reactive systems in emergent application areas.

The utcc calculus generalizes tcc [Saraswat 1994], a temporal CCP model of reactive
synchronous programming, with the ability to express mobility. Here mobility is under-
stood as communication of private names as typically done for mobile systems and security
protocols. The utcc calculus introduces parametric ask operations called abstractions that
behave as persistent parametric asks during a time-interval but may disappear afterwards.
The applicability of the calculus is shown in several domains of Computer Science. Namely,
decidability of Pnueli’s First-order Temporal Logic, closure-operator semantic character-
ization of security protocols, semantics of a Service-Oriented Computing language, and
modeling of Dynamic Multimedia-Interaction systems.

The utcc calculus is endowed with an operational semantics and then with a symbolic
semantics to deal with problematic operational aspects involving infinitely many substitu-
tions and divergent internal computations. The novelty of the symbolic semantics is to use
temporal constraints to represent finitely infinitely-many substitutions.

In the tradition of CCP-based languages, utcc is a declarative model for concurrency.
It is shown that utcc processes can be seen, at the same time, as computing agents and as
logic formulae in the Pnueli’s First-order Linear-time Temporal Logic (FLTL) [Manna 1991].
More precisely, the outputs of a process correspond to the formulae entailed by its FLTL
representation.

The above-mentioned FLTL characterization is here used to prove an insightful decid-
ability result for Monadic FLTL. To do this, it is proven that in contrast to tcc, utcc is
Turing-powerful by encoding Minsky machines [Minsky 1967]. The encoding uses a simple
decidable constraint system involving only monadic predicates and no equality nor function
symbols. The importance of using such a constraint system is that it allows for using the
underlying theory of utcc to prove the undecidability of the validity problem for monadic
FLTL without function symbols nor equality. In fact, it is shown that this fragment of FLTL
is incomplete (its set of tautologies is not recursively enumerable). This result refutes a de-
cidability conjecture for FLTL from a previous work. It also justifies the restriction imposed
in previous decidability results on the quantification of flexible-variables. This dissertation
then fills a gap on the decidability study of monadic FLTL.

Similarly to tcc, utcc processes can be semantically characterized as partial closure
operators. Because of the additional technical difficulties posed by utcc, the codomain of
the closure operators is more involved than that for tcc. Namely, processes are mapped
into sequences of future-free temporal formulae rather than sequences of basic constraints
as in tcc. This representation is shown to be fully abstract with respect to the input-output
behavior of processes for a meaningful fragment of the calculus. This shows that mobility
can be captured as closure operators over an underlying constraint system.

As a compelling application of the semantic study of utcc, this dissertation gives a



10 Contents

closure operator semantics to a language for security protocols. This language arises as a
specialization of utcc with a particular cryptographic constraint systems. This brings new
semantic insights into the modeling and verification of security protocols.

The utcc calculus is also used in this dissertation to give an alternative interpretation
of the π-based language defined by Honda, Vasconcelos and Kubo (HVK) for structuring
communications [Honda 1998]. The encoding of HVK into utcc is straightforwardly extended
to explicitly model information on session duration, allows for declarative preconditions
within session establishment constructs, and features a construct for session abortion. Then,
a richer language for the analysis of sessions is defined where time can be explicitly modeled.
Additionally, relying on the above-mentioned interpretation of utcc processes as FLTL
formulae, reachability analysis of sessions can be characterized as FLTL entailment.

It is also illustrated that the utcc calculus allows for the modeling of dynamic multi-
media interaction systems. The notion of constraints as partial information neatly defines
temporal relations between interactive agents or events. Furthermore, mobility in utcc

allows for the specification of more flexible and expressive systems in this setting, thus
broadening the interaction mechanisms available in previous models.

Finally, this dissertation proposes a general semantic framework for the data flow anal-
ysis of utcc and tcc programs by abstract interpretation techniques [Cousot 1979]. The
concrete and abstract semantics are compositional reducing the complexity of data flow
analyses. Furthermore, the abstract semantics is parametric with respect to the abstract
domain and allows for reusing the most popular abstract domains previously defined for
logic programming. Particularly, a groundness analysis is developed and used in the verifi-
cation of a simple reactive systems. The abstract semantics allows also to efficiently exhibit
a secrecy flaw in a security protocol modeled in utcc.

Keywords: Concurrent Constraint Based Calculi, Denotational Semantics, Symbolic
Semantics, Security Protocols, First-Order Linear-Time Temporal Logic.



Chapter 1

Introduction

Nowadays concurrent and mobile systems are ubiquitous in several domains and appli-
cations. They pervade different areas in science (e.g. biological and chemical systems),
engineering (e.g., security protocols and mobile and service oriented computing) and even
the arts (e.g. tools for multimedia interaction).

In general, concurrent systems exhibit complex forms of interaction, not only among
their internal components, but also with the surrounding environment. When mobility is
also considered, an additional burden one has to deal with is the fact that the internal
configuration and communication structure of the system evolve while interacting.

A legitimate challenge is then to provide computational models allowing to understand
the nature and the behavior of such complex systems as the observation of the evolution
and interaction of their components.

As an answer to this challenge, process calculi such as CCS [Milner 1989], the π-calculus
[Milner 1999, Sangiorgi 2001] and CSP [Hoare 1985] among several others have arisen as
mathematical formalisms to model and reason about concurrent systems. They treat con-
current processes much like the λ-calculus treats computable functions. They then provide
a language in which the structure of terms represents the structure of processes together
with an operational semantics to represent computational steps.

Arguably, the π-calculus [Milner 1999, Milner 1992b, Sangiorgi 2001] is one of the most
notable and simple computational models to describe concurrent and mobile systems. In
this model, mobility is understood as generation and communication of private names or
links. Roughly speaking, processes in the π-calculus interact by creating, and synchronously

sending and receiving communications names (or links). Thus, one can see that the pro-
cesses evolve changing their communication structure during computation.

As an alternative to models for concurrency based on the π-calculus, Concurrent Con-
straint Programming (CCP) [Saraswat 1993] has emerged as a model for concurrency that
combines the traditional operational view of process calculi with a declarative one based
upon logic. This combination allows CCP to benefit from the large body of reasoning
techniques of both process calculi and logic. In fact, CCP has successfully been used in
the modelling and verification of several concurrent scenarios: E.g., timed, reactive and
stochastic systems. See e.g., [Saraswat 1993, Saraswat 1994, Nielsen 2002a, Buscemi 2007,
Gupta 1996a, Hildebrandt 2009, Rueda 2004, Olarte 2008a, Bortolussi 2008].

Agents in CCP interact with each other by telling and asking information represented
as constraints (e.g, x > 42) in a global store. The type of constraints (i.e. basic constructs)
is not fixed but parametric in an underlying constraint system defining the vocabulary of
assertions the processes can use [Saraswat 1993] .

The basic constructs in CCP are the process tell(c) adding the constraint c to the store,
thus making it available to the other processes; and the positive ask when c do P querying
if the current store is strong enough to entail the guard c; if so, it behaves like P . Otherwise
it remains blocked until more information is added to entail the constraint c. This way, ask
processes define a synchronization mechanism based on entailment of constraints.

Apart from the above mentioned operations, and similarly to most process calculi, CCP
languages feature constructs for information hiding and parallel composition: The process
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(localx) P declares a private variable x for P . The process P ‖ Q stands for the parallel
execution of P and Q possibly communicating through the shared store.

Interaction of CCP processes is then asynchronous as communication takes place through
the shared store of partial information. Similar to other formalisms, by defining local (or
private) variables, CCP processes specify boundaries in the interface they offer to inter-
act with each other. Once these interfaces are established, there are few mechanisms to
modify them. This is not the case e.g., in the π-calculus where processes can change their
communication patterns by exchanging their private names.

In this dissertation, we aim at developing a theory for a CCP-based model where pro-
cesses may change their interaction mechanisms by communicating their local names, i.e.,
they can exhibit mobile behavior in the sense of the π-calculus.

The novelty of the model we propose relies on two design criteria that distinguish CCP-
based calculi from other formalisms:

(1) Logic correspondence, which provides CCP with a unique declarative view of processes:
processes can be seen, at the same time, as computing agents and logic formulae. This
allows for example for rechability analysis using deduction in logic [Saraswat 1994,
de Boer 1997, Nielsen 2002a].

(2) Determinism, which is the source of CCP’s elegant and simple semantic character-
izations. For example, semantics based on closure operators [Scott 1982], i.e. ex-
tensive, monotonic and idempotent functions, as in [Saraswat 1993, Saraswat 1991,
Saraswat 1994].

This thesis then strives for finding a concurrency model for the specification of mobile
reactive system where logic and behavioral approaches coexist coherently. Doing that, we
bring new reasoning techniques for the modeling and verification of systems in emergent
application areas as we describe below.

Before describing our approach, let us discuss previous studies of mobility in the context
of CCP. Basic CCP is able to specify mobile behavior using logical variables to represent
channels and unification to bind messages to channels [Saraswat 1993]. In this approach,
if two messages are sent through the same channel, they must be equal. In other case an
inconsistency arises. In [Laneve 1992] this problem is solved by using Atomic CCP where
tell(c) adds c to the current store d if c ∧ d is not inconsistent. Here a protocol is required
since messages must compete for a position in a list representing the messages previously
sent. Atomic tells then introduce non-determinism to the calculus since executing or not
tell(c) depends on the current store.

The approach in [Buscemi 2007, Buscemi 2008] combines the CCP model with the name-
passing discipline of the π-F calculus [Wischik 2005] leading to the cc-pi calculus. In this
setting, CCP processes are allowed to send and receive communication channels by means
of the constructs inherited from π-F. Nevertheless, the cc-pi calculus is not deterministic
and does not feature a declarative view of processes as formulae in logic.

Mobility can be also modelled in CCP by adding linear parametric ask processes as
done in Linear CCP [Fages 2001, Saraswat 1992]. A parametric ask A(x) can be viewed
as a process when c do P with a variable x declared as a formal parameter. Intuitively,
A(x) may evolve into P [y/x], i.e. P with x replaced by y, if c[y/x] is entailed by the
store. Mobility is exhibited when y is a private variable (link) from some other process.
This extension, however, is non-deterministic: If both c[y/x] and c[z/x] are entailed by the
store, A(x) may evolve to either P [y/x] or P [z/x].
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The above kind of non-determinism can be avoided by extending CCP only with persis-

tent parametric asks following the semantics of the persistent π-calculus in [Palamidessi 2006].
The idea is that if both c[y/x] and c[z/x] are entailed by the store, a persistent A(x) evolves
into A(x) ‖ P [y/x] ‖ P [z/x]. Forcing every ask to be persistent, however, makes the exten-
sion not suitable for modelling typical scenarios where a process stops after performing its
query (e.g., web-services requests).

Our approach is to extend CCP with temporary parametric ask operations. Intuitively,
these operations behave as persistent parametric asks during a time-interval but may dis-
appear afterwards. We do this by generalizing the timed CCP model in [Saraswat 1994].
We call this extension Universal Timed CCP (utcc).

In utcc, like in tcc, time is conceptually divided into time intervals (or time units).
In a particular time interval, a CCP process P gets an input c from the environment,
it executes with this input as the initial store, and when it reaches its resting point, it
outputs the resulting store d to the environment. The resting point determines a residual
process Q which is then executed in the next time interval. The resulting store d is not

automatically transferred to the next time interval. This view of reactive computation
is particularly appropriate for programming reactive systems in the sense of Synchronous
Languages [Berry 1992], i.e., systems that react continuously with the environment at a
rate controlled by the environment such as controllers or signal-processing systems.

The fundamental move in utcc is to replace the tcc ask operation when c do P with
a temporary parametric ask of the form (abs ~x; c) P . This process can be viewed as a
lambda abstraction of the process P on the variables ~x under the constraint (or with the
guard) c. Intuitively, Q = (abs ~x; c) P executes P [~t/~x] in the current time interval for all

the sequences of terms ~t s.t c[~t/~x] is entailed by the current store. Furthermore, Q evolves
into skip (representing inaction) after the end of the time unit, i.e. abstractions are not
persistent when passing from one time unit to the next one.

We shall show that the new construct in utcc has a pleasant duality with the local
operator: From a programming language perspective, ~x in (local ~x; c) P can be viewed as
the local variables of P while ~x in (abs ~x; c) P can be viewed as the formal parameters of
P. From a logical perspective, these processes correspond, respectively, to the existential

and the universal formulae ∃~x(c ∧ FP ) and ∀~x(c ⇒ FP ) where FP corresponds to P .

In this dissertation we shall also show that the interplay of the local and the abstraction
operator in utcc allows for communication of private names, i.e., mobility as is understood
in the π-calculus. This way, we provide a model for concurrency to specify mobile reactive

systems that complies with the criteria (1) and (2) above. More precisely, we shall show
a strong correspondence between utcc processes and formulae in first-order linear-time
temporal logic [Manna 1991]. Furthermore, utcc being deterministic, allows for an elegant
semantic characterization of processes as closure operators. We shall show that this allows
us to capture compositionally the behavior of processes.

We shall also show that the utcc calculus has interesting applications in meaningful con-
current scenarios in several domains of Computer Science. Namely, decidability of Pnueli’s
First-order Temporal Logic [Manna 1991], closure-operator semantic characterization of se-
curity protocols, semantics of a Service-Oriented Computing languages, and modeling of
Dynamic Multimedia-Interaction systems. We elaborate more on these results next.
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1.1 Contributions and Organization

In what follows we describe the structure of this dissertation and its contributions. Each
chapter concludes with a summary of its content and a discussion about related work.
Frequently used notational conventions and terminology are summarized in the Index.

Chapter 2 [Background]. In this chapter we introduce the basic concepts and
terminology used throughout this dissertation. We briefly describe the Concurrent
Constraint Programming model and the ideas from process calculi, reactive systems
and temporal logics that motivated the development of utcc.

Chapter 3 [Operational Semantics]. In the same lines of tcc [Saraswat 1994,
Nielsen 2002a], we give utcc an operational semantics defined by an internal and an
observable transition relation. The first one describes the evolution of processes during
a time unit. The second one describes how, given an input from the environment,
a process reacts outputting the final store obtained from a finite number of internal
reductions. This way, we define the input-output behavior of processes. Finally, we
show that utcc allows for mobility and it is deterministic.

Chapter 4 [Symbolic Semantics]. Due to the abstraction operator in utcc, some
processes may exhibit infinitely many internal reductions when considering the op-
erational semantics of Chapter 3. We solve this problem by endowing utcc with a
novel symbolic semantics that uses temporal constraints to represent finitely a pos-
sible infinite number of substitutions. This way, we can observe the behavior of
processes exhibiting infinitely many internal reductions. For instance, those arising
in the verification of security protocols where the model of the attacker may gen-
erate an unbound number of messages (constraints). To our knowledge, this is the
first symbolic semantics in concurrency theory using temporal constraints as finite
representations of substitutions.

Chapter 5 [Logic Characterization]. In addition to the usual behavioral tech-
niques from process calculi, CCP enjoys a declarative view of processes based upon
logic. This makes CCP a language suitable for both the specification and implemen-
tation of programs. In this chapter, we show that the utcc calculus is a declarative
model for concurrency. We do this by exhibiting a strong correspondence of utcc and
First-Order Linear-Time Temporal Logic (FLTL) [Manna 1991]. This way, processes
can be seen, at the same time, as computing agents and FLTL formulae. The logic
characterization we propose allows for using well-established techniques from FLTL
for reachability analysis of utcc processes. For instance, we can show if there is a way
to reach a state in a security protocol where an intruder knows a secret, i.e., there is
a secrecy breach.

Chapter 6 [Expressiveness and Decidability of FLTL]. The computational ex-

pressiveness of tcc languages have been thoroughly studied in the literature allowing
for a better understanding of tcc and its relation with other formalisms. In particu-
lar, [Saraswat 1994] and [Valencia 2005] shows that tcc processes can be represented
as finite-state Büchi automata [Buchi 1962] and thus cannot encode Turing-powerful
formalisms. In this chapter we show the full computational expressiveness of utcc

and its compositional correspondence to functional programming: we provide an en-
coding of Minsky machines and the λ-calculus into well-terminated utcc processes,
i.e. processes that do not exhibit infinite internal computations. Although both for-
malisms are Turing-equivalent these encodings serve two different purposes. On the
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one hand, the encoding of Minsky machines uses a very simple constraint system: the
monadic fragment without equality nor function symbols of first-order logic. On the
other hand, the encoding of the λ-calculus uses instead a polyadic constraint system
but it is compositional unlike that of Minsky machines. This encoding is a significant
application showing how utcc is able to mimic one of the most notable and simple
computational models achieving Turing completeness.

As an application of this expressiveness study, we use the FLTL characterization in
Chapter 5 and the encoding of Minsky machines to prove an insightful (un)decidability
result for Monadic FLTL. We prove the monadic fragment of FLTL without equality
nor function symbols to be strongly incomplete, and then, undecidable its validity
problem. This result clarifies previous decidability results and conjectures in the
literature. This dissertation then fills a gap on the decidability study of monadic
FLTL.

Chapter 7 [Denotational Semantics]. By building on the semantics of tcc in
[Saraswat 1994, Nielsen 2002a], we show that the input-output behavior of utcc pro-
cesses can be characterized as a closure operator. Because of additional technical
difficulties posed by utcc, the codomain of the closure operators is more involved
than that for tcc. Namely, we shall use sequences of future-free temporal formulae
(constraints) rather than sequences of basic constraints as in tcc. Next, we give
a compositional denotational account of this closure-operator characterization. We
show that the denotational model is fully abstract with respect to the symbolic input-
output behavior of processes for a significant fragment of the calculus. This in par-
ticular shows that mobility in utcc can be elegantly represented as closure operators
over some underlying constraint system.

Chapter 8 [Closure Operators for Security]. As a compelling application of the
denotational account of utcc, we shall bring new semantic insights into the modeling
of security protocols. We identify a process language for security protocols that can
be represented as closure operators. This language arises as a parameterization of
utcc with a particular cryptographic constraint systems. We shall argue that the
interpretation of the behavior of protocols as closure operators is a natural one. For
instance, a spy can only produce new information (extensiveness); the more infor-
mation she gets, the more she will infer (monotonicity); and she infers as much as
possible for the information she gets (idempotence). To our knowledge no closure
operator denotational account has previously been given in the context of calculi for
security protocols.

Chapter 9 [Other Applications]. The utcc calculus was not specifically designed
for the modeling and verification of security protocols but to model in general mo-
bile reactive systems. In this chapter we show that utcc has much to offer in the
specification and verification of systems in two emergent application areas.

– Service Oriented Computing. We give an alternative interpretation of the π-
based language defined by Honda, Vasconcelos and Kubo (HVK) for structuring
communications [Honda 1998]. The encoding of HVK into utcc is straightfor-
wardly extended to provide a richer language for the analysis of sessions where
time can be explicitly modeled. Relying on the FLTL characterization of utcc,
we show that it is possible to perform reachability analysis of sessions.

– Multimedia Interaction Systems. As second application domain, we shall
illustrate that the utcc calculus allows for the modeling of dynamic multime-
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dia interaction systems. The notion of constraints as partial information neatly
defines temporal relations between interactive agents or events. Furthermore,
mobility in utcc allows for the specification of more flexible and expressive sys-
tems in this setting, thus broadening the interaction mechanisms available in
previous models.

Chapter 10 [Static Analysis]. In this chapter we propose a semantic framework
for the static analysis of utcc and tcc programs based on abstract interpretation
techniques [Cousot 1977]. The abstract semantics proposed is compositional, thus
allowing us to reduce the complexity of data flow analyses. Furthermore, it effectively
approximates the behavior of utcc programs. The proposed framework is parametric
with respect to the abstract domain and then, different analyses can be performed
by instantiating it. We illustrate how it is possible to reuse abstract domains previ-
ously defined for logic programming to perform, e.g., a groundness analysis of a tcc

program. Furthermore, we make also use of the abstract semantics to automatically

exhibit a secrecy flaw in a security protocol.

Chapter 11 [Concluding Remarks]. This chapter presents an overview of this
dissertation and gives some directions for future work.

1.2 Publications from this Dissertation

Most of the material of this dissertation has been previously reported in the following works.

• Proceedings of conferences.

– C. Olarte and F. Valencia. The Expressivity of Universal Timed CCP: Unde-

cidability of Monadic FLTL and Closure Operators for Security. In Proc of
PPDP’08: 8-19. ACM Press. 2008 [Olarte 2008b].

The main contributions of this paper are included in Chapters 5, 6, 7 and 8.

– Carlos Olarte and Frank D. Valencia. Universal Concurrent Constraint Pro-

graming: Symbolic Semantics and Applications to Security. In Proc. of SAC
2008. ACM Press, 2008.

The main contributions of this paper are included in Chapters 3, 4 and 5.

– M. Falaschi, C. Olarte and C. Palamidessi. A Framework for Abstract Interpre-

tation of Timed Concurrent Constraint Programs. In Proc of PPDP09. ACM
Press. 2009 (To appear) [Falaschi 2009].

The main contributions of this paper are included in Chapter 10.

– M. Falaschi, C. Olarte, C. Palamidessi and F. Valencia. Declarative Diagnosis

of Temporal Concurrent Constraint Programs. In Proc. of ICLP 2007: 271-285.
Springer. 2007 [Falaschi 2007].

The main contributions of this paper are included in Chapter 10.

– Carlos Olarte and Camilo Rueda. A declarative language for dynamic multi-

media interaction systems. In Proc of. MCM’09 (to appear). Springer, 2009
[Olarte 2009b].

The main contributions of this paper are included in Chapter 9.
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• Proceedings of workshops.

– H. A. López, C. Olarte, and J. A. Pérez. Towards a Unified Framework for

Declarative Structured Communications. In Proc. of PLACES’09, February
2009 [Lopez 2009].

The main contributions of this paper are included in Chapter 9.

• Book Chapters.

– C. Olarte, C. Rueda and F. Valencia. Concurrent Constraint Calculi: a Declara-

tive Paradigm for Modeling Music Systems. Nouveaux paradigmes pour l’informatique
musicale: 93-112. Delatour France / IRCAM-Centre Pompidou. 2009 [Olarte 2009a].

• Abstracts and Short Papers.

– C. Olarte, C. Palamidessi and F. Valencia. Universal Timed Concurrent Con-

straint Programming (Abstract). ICLP 2007: 464-465. Springer-Verlag. 2007
[Olarte 2007b].

– Jesús Aranda, Gerard Assayag, Carlos Olarte, Jorge A. Pérez, Camilo Rueda,
Mauricio Toro and Frank D. Valencia. An Overview of FORCES: An INRIA

Project on Declarative Formalisms for Emergent Systems. To appear in Proc. of
ICLP 2009 [Aranda 2007].

• Others

– C. Olarte. A Process Calculus for Universal Concurrent Constraint Program-

ming: Semantics, Logic and Application. Vol. 20 n. 3/4, December 2007 of the
Association for Logic Programming (ALP) Newsletter [Olarte 2007a].

– C. Olarte, C. Rueda and Frank D. Valencia. Concurrent Constraint Program-

ming: Calculi, Languages and Emerging Applications. Vol. 21 n. 2-3, August
2008 of the Association for Logic Programming (ALP) Newsletter [Olarte 2008a].





Chapter 2

Preliminaries

In this chapter we introduce the basic concepts and terminology used throughout this dis-
sertation. We briefly describe the Concurrent Constraint Programming model and the ideas
from process calculi, reactive systems and temporal logics that motivated the development
of utcc. We do not intent to give an in-depth review of these concepts but rather to con-
textualize the development of utcc in this thesis. We encourage the reader to follow the
references to have a complete description of each topic addressed in this chapter.

2.1 Process Calculi

Process calculi such as CCS [Milner 1989] , CSP [Hoare 1985], the process algebra ACP
[Bergstra 1985, Baeten 1990] and the π-calculus [Milner 1999, Sangiorgi 2001] are among
the most influential formal methods for reasoning about concurrent systems. A common
feature of these calculi is that they treat processes much like the λ-calculus treats com-
putable functions. For example, a typical process term is the parallel composition P ‖ Q,
which is built from the terms P and Q with the constructor ‖ and represents the process
that results from the parallel execution of the processes P and Q. An operational semantics
may dictate that if P can reduce to (or evolve into) P ′, written P −→ P ′, then we can also
have the reduction P | Q −→ P ′ | Q.

Process calculi in the literature mainly agree in their emphasis upon algebra. The
distinctions among them arise from issues such as the process constructions considered (i.e.,
the language of processes), the methods used for giving meaning to process terms (i.e. the
semantics), and the methods to reason about process behavior (e.g., process equivalences
or process logics). Some other issues addressed in the theory of these calculi are their
expressive power, and analysis of their behavioral equivalences.

The utcc process calculus aims at modeling mobile reactive systems, i.e., systems that
interact continuously with the environment and may change their communication structure.
In this dissertation mobility is understood as generation and communication of private
links or channels much like in the π-calculus [Milner 1999, Sangiorgi 2001], one of the main
representative formalisms for mobility in concurrency theory. Mobility is fundamental, e.g.,
to specify security protocols where nonces (i.e, randomly-generated unguessable items) are
transmitted. In the next section we give a brief introduction of the π-calculus. This will
help us to better understand the notion of mobility we address in this dissertation and also
the applications we describe in Chapters 8 and 9.

2.2 The π-calculus

The π-calculus [Milner 1999, Milner 1992b, Sangiorgi 2001] is a process calculus aiming at
describing mobile systems whose configuration may change during the computation. Similar
to the λ-calculus, the π-calculus is minimal in that it does not contain primitives such as
numbers, booleans, data structures, variables, functions, or even the usual flow control
statements.
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Mobility in the π-calculus. As we said before, mobility in the π-calculus is understood
as generation and communication of private names or links. Links between processes can be
created and communicated, thus changing the communication structure of the system. This
also allows us to consider the location of an agent in an interactive system to be determined
by the links it possesses, i.e. which other agents it possesses as neighbors.

2.2.1 Names and Actions

Names are the most primitive entities in the π-calculus. The simplicity of the calculus
relays on the dual role that they can play as communication channels and variables.

We presuppose a countable set of (ports, links or channels) names, ranged over by
x, y, .... For each name x, we assume a co-name x thought of as complementary, so that
x = x. We shall use l, l′, ... to range over names and co-names.

Definition 2.2.1 (π-calculus syntax). Process in the π-calculus are built from names by

the following syntax:

P,Q, ... :=
∑
i∈I

(αi.Pi) | (νx)P | P | Q

α := xy | x(y)

where I is a finite set of indexes.

We shall recall briefly some notions as well as the intuitive behavior of the constructs
above. See [Milner 1999, Milner 1992b, Sangiorgi 2001] for further details.

The construct
∑
i∈I

αi.Pi represents a process able to perform one -but only one- of its

αi’s actions and then behave as the corresponding Pi . When |I| = 0 we shall simply
write 0 (i.e. the inactive process). The actions prefixing the Pi’s can be of two forms: An
output xy and an input x(y). In both cases x is called the subject and y the object. The
action xy represents the capability of sending the name y on channel x. The action x(y)

represents the capability of receiving the name, say z, on channel x and replacing y with z

in its corresponding continuation. Furthermore, in x(y).P the input action binds the name
y in P . The other name binder is the restriction (νx)P that declares a name x private to
P , hence bound in P . Given a process Q, we define in the standard way its bound names
bn(Q) as the set of variables with a bound occurrence in Q, and its free names fn(Q) as
the set of variables with a non-bound occurrence in Q.

Finally, the process P | Q denotes parallel composition ; P and Q running in parallel.

2.2.2 Operational Semantics

The above intuition about process behavior in the π-calculus is made precise by the rules in
Table 2.1. The reduction relation −→ is the least binary relation on processes satisfying the
rules in Table 2.1. These rules are easily seen to realize the above intuition. We shall use
−→∗ to denote the reflexive and transitive closure of −→. A reduction P −→ Q basically
says that P can evolve, after some communication between its subprocesses, into Q. The
reductions are quotiented by the structural congruence relation ≡ which postulates some
basic process equivalences.

Definition 2.2.2 (π-calculus Structural Congruence). Let ≡ be the smallest congruence

over processes satisfying the following axioms:

1. P ≡ Q if P and Q differ only by a change of bound names (α-conversion).
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REACT
(x(y).P + M) | (x(z).Q + N) −→ P [z/y] | Q

PAR
P −→ P ′

P | Q −→ P ′ | Q
RES

P −→ P ′

(νa)(P ) −→ (νa)P ′

STRUCT
P ≡ P ′ −→ Q′ ≡ Q

P −→ Q

Table 2.1: Reductions Rules for the π-calculus.

2. P | 0 ≡ P , P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R.

3. If x /∈ fn(P ) then (νx)(P | Q) ≡ P | (νx)Q.

4. (νx)0 ≡ 0 , (νx)(νy)P ≡ (νy)(νx)P .

2.2.3 An Example of Mobility

Let us extend the syntax in Definition 2.2.1 with the match process [x = y].P . This process
behaves as P if x and y are the same name, otherwise it does nothing.

Consider now the following processes:

P = c1(y).c2y

Q = (νz)(c1z.c2(z
′).[z = z′].R)

Intuitively, if a link y is sent on channel c1, P forwards it on channel c2. Now, Q sends its
private link z on c1 and if it gets it back on c2 it executes the process R.

Using the rules in Table 2.1 we can verify the following

P | Q −→∗ (νz)(c1(y).c2y | c1z.c2(z
′).[z = z′].R)

−→∗ (νz)(c2z | c2(z
′).[z = z′].R)

−→∗ (νz)(([z = z′].R)[z/z′])

−→∗ (νz)(R[z/z′])

This means that the parallel composition of P and Q leads to a configuration where the
process R is executed. We shall come back to this example in Section 3.6 where we show
that the utcc calculus is able to mimic the mobile behavior of the processes above, where
the private name z of Q is sent to P .

2.3 Concurrent Constraint Programming

Concurrent Constraint Programming (CCP) [Saraswat 1993, Saraswat 1991] has emerged
as a simple but powerful paradigm for concurrency tied to logic. CCP extends and sub-
sumes both concurrent logic programming [Shapiro 1989] and constraint logic programming
[Jaffar 1987]. A fundamental feature in CCP is the specification of concurrent systems by
means of constraints. A constraint (e.g. x + y ≥ 10) represents partial information about
certain variables. During the computation, the current state of the system is specified by a
set of constraints called the store. Processes can change the state of the system by telling
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information to the store (i.e., adding constraints), and synchronize by asking information
to the store (i.e., determining whether a given constraint can be inferred from the store).

Like done in process calculi, the language of processes in the CCP model is given by
a small number of primitive operators or combinators. A typical CCP process language
features the following operators:

• A tell operator adding a constraint to the store.

• An ask operator querying if a constraint can be deduced from the store.

• Parallel Composition combining processes concurrently.

• A hiding operator (also called restriction or locality) introducing local variables and
thus restricting the interface a process can use to interact with others.

2.3.1 Reactive Systems and Timed CCP

Reactive systems [Berry 1992] are those that react continuously with their environment at a
rate controlled by the environment. For example, a controller or a signal-processing system,
receive a stimulus (input) from the environment. It computes an output and then, waits
for the next interaction with the environment.

Languages such as Esterel [Berry 1992], Lustre [Halbwachs 1991], Lucid Synchrone
[Caspi 1999] and Signal [Benveniste 1991] among others have been proposed in the literature
for programming reactive systems. Those languages are based on the hypothesis of Perfect

Synchrony : Program combinators are determinate primitives that respond instantaneously
to input signals.

The timed CCP calculus (tcc) [Saraswat 1994] extends CCP for reactive systems. The
fundamental move in the tcc model is then to extend the standard CCP with delay and
time-out operations. The delay operation forces the execution of a process to be postponed
to the next time interval. The time-out operation waits during the current time interval
for a given piece of information to be present and if it is not, triggers a process in the next
time interval.

Time in tcc is conceptually divided into time intervals (or time units). In a particular
time interval, a CCP process P gets as input a constraint c from the environment, it executes
with this input as the initial store, and when it reaches its resting point, it outputs the
resulting store d to the environment. The resting point determines also a residual process
Q which is then executed in the next time unit. The resulting store d is not automatically
transferred to the next time unit. This way, computations during a time unit proceed
monotonically but outputs of two different time units are not supposed to be related to
each other.

We postpone the presentation of the syntax and the operational semantics of CCP and
tcc to Chapter 3 where we introduce the utcc calculus.

2.4 First-Order Linear-Time Temporal Logic

Temporal logics were introduced into computer science by Pnueli [Pnueli 1977] and there-
after proven to be a good basis for specification as well as for (automatic and machine-
assisted) reasoning about concurrent systems.

In this dissertation, we shall show that utcc is a declarative model for concurrency. More
precisely, we shall show that utcc processes can be seen, at the same time, as computing
agents and formulae in First-Order Linear-Time Temporal Logic (FLTL) [Manna 1991].
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Furthermore, the symbolic semantics that we develop in Chapter 4 makes use of temporal
formulae to give a finite representation of a possible infinite number of substitutions in the
operational semantics.

For those reasons, in this section we recall the syntax and semantics of FLTL. We refer
the reader to [Manna 1991] for further details.

Recall that a signature Σ is a set of constant, function and predicate symbols. A first-
order language L is built from the symbols in Σ, a denumerable set of variables x, y, . . .,
and the logic symbols ¬,∧,∨,⇒,⇔,∃,∀, true and false.

Definition 2.4.1 (FLTL Syntax). Given a first-order language L, the FLTL formulae we

use are given by the syntax:

F,G, . . . := c | F ∧ G | ¬F | ∃xF | ⊖ F | ◦F | �F.

where c is a predicate symbol in L.

The modalities ⊖F, ◦F and �F state, respectively, that F holds previously, next and
always. We shall use ∀xF for ¬∃x¬F , and ✸F as an abbreviation of ¬�¬F . Intuitively,
✸F means that F eventually has to hold.

We say that F is a state formula if F does not have occurrences of temporal modalities.

2.4.1 Semantics of FLTL.

As done in Model Theory, the non-logical symbols of L (predicate, function and constant
symbols) are given meaning in an underlying L-structure, or L-model, M(L) = (I,D). This
means, they are interpreted via I as relations over a domain D of the corresponding arity.

States and Interpretations A state s is a mapping assigning to each variable x in L
a value s[x] in D. This interpretation is extended to L-expressions in the usual way, for
example, s[f(x)] = I(f)(s[x]). We write s |=M(L) c if and only if c is true with respect to
s in M(L).

The state s is said to be an x-variant of s′ iff s′[y] = s[y] for each y 6= x. This is, s and
s′ are the same except possibly for the value of the variable x.

We shall use σ, σ′, . . . to range over infinite sequences of states. We say that σ is an
x-variant of σ′ iff for each i ≥ 0, σ(i) (the i-th state in σ) is an x-variant of σ′(i) .

Flexible and Rigid Variables. The set of variables is partitioned into rigid and flexible.
For the rigid variables, each state σ must satisfy the rigidity condition: If x is rigid then
for all s, s′ in σ s[x] = s′[x]. If x is a flexible variable then different states in σ may assign
different values to x.

Definition 2.4.2 (FLTL Semantics). We say that σ satisfies F in an L-structure M(L),

written σ |=M(L) F, if and only if 〈σ, 0〉 |=M(L) F where:

〈σ, i〉 |=M(L) true

〈σ, i〉 6|=M(L) false

〈σ, i〉 |=M(L) c iff σ(i) |=M(L) c

〈σ, i〉 |=M(L) ¬F iff 〈σ, i〉 6|=M(L) F

〈σ, i〉 |=M(L) F ∧ G iff 〈σ, i〉 |=M(L) F and 〈σ, i〉 |=M(L) G

〈σ, i〉 |=M(L) ⊖F iff i > 0 and 〈σ, i − 1〉 |=M(L) F

〈σ, i〉 |=M(L) ◦F iff 〈σ, i + 1〉 |=M(L) F

〈σ, i〉 |=M(L) �F iff for all j ≥ i, 〈σ, j〉 |=M(L) F

〈σ, i〉 |=M(L) ∃xF iff for some x-variant σ′ofσ, 〈σ′, i〉 |=M(L) F
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We say that F is valid in M(L) if and only if for all σ, σ |=M(L) F . F is said to be valid
if F is valid for every model M(L).



Chapter 3

Syntax and Operational Semantics

This chapter introduces the syntax of the utcc calculus as well as its operational semantics.
In the same lines of tcc [Saraswat 1994, Nielsen 2002a], the operational semantics of utcc
is given by an internal and an observable transition relation. The first one describes the
evolution of processes during a time unit. The second one describes how given an input from
the environment, a process reacts outputting the final store obtained from a finite number
of internal reductions. This defines the input-output behavior of a process. We shall also
discuss some technical problems the abstraction construct of utcc poses in the operational
semantics. Namely, we show that there exist processes that exhibit infinitely many internal
reductions thus never producing an output. We shall deal with these termination problems
in the next chapter where we present a symbolic semantics for utcc.

3.1 Constraint Systems

Concurrent Constraint programming (CCP) based calculi are parametric in a constraint

system [Saraswat 1993] that specifies the basic constraints agents can tell or ask during
execution. In this section we recall the definition of these systems.

A constraint represents a piece of (partial) information upon which processes may
act. A constraint system then provides a signature from which constraints can be built.
Furthermore, the constraint system provides an entailment relation (|=) specifying inter-
dependencies between constraints. Intuitively, c |= d means that the information d can be
deduced from the information represented by c. For example, x > 60 |= x > 42.

Formally, we can set up the notion of constraint system by using First-Order Logic
as in [Smolka 1994, Nielsen 2002a]. Let us suppose that Σ is a signature (i.e., a set of
constant, function and predicate symbols) and that ∆ is a consistent first-order theory over
Σ (i.e., a set of sentences over Σ having at least one model). Constraints can be thought
of as first-order formulae over Σ. Consequently, the entailment relation |=∆ is defined as
follows: c |=∆ d if the implication c ⇒ d is valid in ∆. This gives us a simple and general
formalization of the notion of constraint system as a pair (Σ,∆).

Definition 3.1.1 (Constraint System). A constraint system is as a pair (Σ,∆) where Σ is

a signature of constant, function and predicate symbols, and ∆ is a first-order theory over

Σ (i.e., a set of first-order sentences over Σ having at least one model).

Given a constraint system (Σ,∆), let L be its underlying first-order language with vari-
ables x, y, . . ., and logic symbols ¬,∧,∨,⇒,⇔,∃,∀, true and false. Constraints, denoted
by a, b, c, d, . . . are first-order formulae over L.

We say that c entails d in ∆, written c |=∆ d, iff (c ⇒ d) ∈ ∆ (i.e., iff c ⇒ d is true in
all models of ∆). We shall omit "∆" in |=∆ when ∆ = ∅. Furthermore, we say that c is
equivalent to d, written c ≡ d, iff c |=∆ d and d |=∆ c.

Henceforth we shall use the following notation.

Notation 3.1.1 (Constraints and Equivalence). Henceforth, C denotes the set of con-

straints modulo ≡ in the underlying constraint system. So, we write c = d iff c and d are
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in the same (≡) class. Furthermore, whenever we write expressions such as c = (x = y) we

mean that c is (equivalent to) the constraint x = y.

Substitutions and Terms. Along this dissertation we shall use the following conventions
for substitutions and terms.

Convention 3.1.1 (Terms and Substitutions). Let T be the set of terms induced by the

signature Σ of the constraint system with typical elements t, t′, ... We use ~t for a sequence of

terms t1, . . . , tn with length |~t| = n. If |~t| = 0 then ~t, the empty sequence of terms, is written

as ε. Given ~t = t1.t2....tn and ~t′ = t′1.t
′
2....t

′
m, we shall use ~t; ~t′ to denote the sequence of

terms t1.t2....tn.t′1.t
′
2....t

′
m.

We shall use
.
= to denote syntactic term equivalence (e.g. x

.
= x and x 6

.
= y). We write

~x 6
.
= ~t to denote

∨
1≤i≤|~x| xi 6

.
= ti. If |~x| = 0, ~x 6

.
= ~t is defined as false.

We use c[~t/~x], where |~t| = |~x| and xi’s are pairwise distinct, to denote c in which the

free occurrences of xi have been replaced with ti. The substitution [~t/~x] will be similarly

applied to other syntactic entities.

We say that ~t is admissible for ~x, notation adm(~x,~t), if |~x| = |~t| and for all i, j ∈
{1, ..., |~x|}, xi 6

.
= tj. If |~x| = |~t| = 0 then trivially adm(~x,~t). Similarly, we say that the

substitution [~t/~x] is admissible iff adm(~x,~t).

Basic Constraints and Processes. As traditionally done in CCP-based languages
[Saraswat 1993, Smolka 1994, Fages 1998], processes will only be allowed to tell or ask
basic constraints defined as follows.

Definition 3.1.2 (Basic Constraints). Let p(·) be a predicate symbol of arity |~t|. We say

that c is a basic constraint iff c can be generated from the following syntax:

c := p(~t) | c ∧ c

3.2 Timed CCP (tcc)

In the CCP model, the information in the store evolves monotonically, i.e., once a constraint
is added it cannot be removed. This condition has been relaxed by considering temporal
extensions of CCP such as tcc [Saraswat 1994]. In tcc, time is conceptually divided into
time intervals (or time units). In a particular time interval, a CCP process P gets an
input c from the environment, it executes with this input as the initial store, and when it
reaches its resting point, it outputs the resulting store d to the environment. The resting
point determines a residual process Q which is then executed in the next time interval. The
resulting store d is not automatically transferred to the next time interval.

This view of reactive computation is particularly appropriate for programming reac-
tive systems in the sense of Synchronous Languages [Berry 1992], i.e., systems that react
continuously with the environment at a rate controlled by the environment.

Following the notation in [Nielsen 2002a], the syntax of tcc is as follows.

Definition 3.2.1 (Syntax of tcc). Processes P,Q, . . . in tcc are built from basic con-

straints in the underlying constraint system by the following syntax:

P,Q := skip | tell(c) | when c do P | P ‖ Q |
(local ~x; c) P | nextP | unless c nextP | !P

with the variables in ~x being pairwise distinct.
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The process skip does nothing thus representing inaction. The process tell(c) adds c

to the store in the current time interval, thus making it available to the other processes.
The process when c do P asks if c can be deduced from the store. If so, it behaves as
P . In other case, it remains blocked until the store contains at least as much information
as c. The process P ‖ Q denotes P and Q running concurrently during the current
time interval possibly “communicating” via the common store. Given a finite set of indexes
I = {i1, i2, ..., in}, we shall use

∏
i∈I

Pi to denote the parallel composition Pi1 ‖ Pi2 ‖ ... ‖ Pin
.

Hiding on a set of variables ~x is enforced by the process (local ~x; c) P . It behaves like P ,
except that all the information on the variables ~x produced by P can only be seen by P and
the information on the global variables in ~x produced by other processes cannot be seen by
P . The local information on ~x produced by P corresponds to the constraint c representing
a local store. When c = true, we shall simply write (local ~x)P instead of (local ~x; true) P.

The process (local ~x; c)P binds the variables ~x in P . We use bv(P ) and fv(P ), to denote
respectively the set of bound variables and free variables in P .

Timed Constructs. The unit-delay nextP executes P in the next time interval. The
negative ask unless c nextP is also a unit-delay but P is executed in the next time unit
if and only if c is not entailed by the final store at the current time interval. This can
be viewed as a (weak) time-out: It waits one time unit for a piece of information c to be
present and if it is not, it triggers activity in the next time interval. The process P must be
guarded by a next process to avoid paradoxes such as a program that requires a constraint
to be present at an instant only if it is not present at that instant (see [Saraswat 1994]).

Finally, the replication !P means P ‖ nextP ‖ next 2P..., i.e. unboundedly many
copies of P but one at a time.

Remark 3.2.1. Notice that in general Q = unless c nextP does not behave the same as

Q′ = when ¬c do nextP . This can be explained from the fact that d 6|=∆ c does not imply

d |=∆ ¬c. Let for example ∆ be the axioms of Peano arithmetic and assume d = “x > 0”

and c = “x = 42”. We have both, x > 0 6|=∆ x 6= 42 and x > 0 6|=∆ x = 42. Then, the

process P is executed in Q but it is precluded from execution in Q′.

3.3 Abstractions and Universal Timed CCP

In [Saraswat 1994, Valencia 2005], tcc processes were shown to be finite-state. This sug-
gests they cannot be used to describe infinite-state behaviors like those arising from mo-
bile systems such as Security Protocols which is one of the application domains in this
dissertation. Here mobility is understood in the sense of the π-calculus [Milner 1992b,
Sangiorgi 2001], i.e., communication of (private) variables or names.

Let us take for example a predicate (constraint) of the form out(·) and let P =

when out(x) do R. We notice that under input out(42), P does not execute R since
out(42) does not entail out(x) (i.e. out(42) 6|= out(x)). The issue here is that x is a
free-variable and hence does not act as a formal parameter (or place holder) for every term
t such that out(t) is entailed by the store.

To model mobile behavior, utcc replaces the tcc ask operation when c do P with a
more general parametric ask construction, namely (abs ~x; c)P . This process can be viewed
as a λ-abstraction of the process P on the variables ~x under the constraint (or with the
guard) c. Intuitively, Q = (abs ~x; c) P performs P [~t/~x] (i.e. P with the free occurrences of
~x replaced with ~t) in the current time interval for all the terms ~t s.t c[~t/~x] is entailed by the
current store. For example, P = (abs x; out(x))R under input out(42) executes R[42/x].
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This way, from a programming language perspective, while we can see the variables
~x in (local ~x; c) P as the local variables of P , we can see ~x in (abs ~x; c) P as the formal
parameters of the process P .

Definition 3.3.1 (utcc Processes). The utcc processes result from replacing when c do P

by (abs ~x; c) P in the syntax of Definition 3.2.1. The variables in ~x are assumed to be

pairwise distinct.

The process Q = (abs ~x; c) P binds the variables ~x in P and c. The sets of free and
bound variables, fv(·) and bv(·) respectively, are extended accordingly. Furthermore Q

evolves into skip at the end of the time unit, i.e., abstractions are not persistent when
passing from one time unit to the next one.

Notation 3.3.1. Recall that ε denotes the empty vector of variables. We shall write

when c do P instead of the the empty abstraction (abs ε; c)P.

3.3.1 Recursion in utcc

In some of the applications of this dissertation we shall use parametric process definitions
of the form

p(~y)
def
= P

where ~y is a set of pairwise distinct variables, p is the recursive definition name and P

can recursively call p(·).
As in the π-calculus [Milner 1992c], we do not want, when unfolding recursive calls

of p, the free variables of P to get captured in the lexical-scope of a bound-variable in
P . In other words, we want static scoping rather than dynamic scoping. Then, following
[Nielsen 2002a, Milner 1992c] we assume that fv(P ) ⊆ ~y.

Intuitively, a call of a recursive definition of the form p(~t) must execute the process
P substituting ~y (the formal parameters) in P by ~t (the actual parameters). This clearly
resembles the idea of an abstraction in utcc. The following encoding of recursion reflects
this intuition.

Definition 3.3.2 (Recursive Definitions in utcc). Assume a recursive definition of the

form p(~y)
def
= P . We add to the constraint system under consideration an uninterpreted

predicate callp(·) of arity |~y|. The process definition and calls can be encoded as follows:

• For the process definitions: pp(~y)
def
= Pq =! (abs ~y; callp(~y)) P̂

where P̂ is the process obtained by replacing in P any call p(~x) by tell(callp(~x)).

• Analogously, the call p(~x) in all its other occurrences is replaced by tell(callp(~x)).

From now on, we shall freely use parametric recursive definitions taking into account
that they can be straightforwardly encoded as abstractions.

Remark 3.3.1. Assume a recursive definition of the form p(x)
def
= P . In a programming

language with recursion, if several calls of p(x) are executed using the same actual parameter

t, each call will spawn the execution of P [t/x]. Note that this is not the case in the encoding

above. The issue here is that the abstraction modeling the recursive definition reduces to

(abs x; callp(x) ∧ x 6
.
= t) P . Therefore, a second call of p(t) (adding callp(t) to the current

store) does not spawn P [t/x] again. This can be also explained from the fact that adding

twice the constraint callp(t) to the store has the same effect that adding it only once.

From this, notice also that a recursive definition of the form p(x)
def
= p(x) does not cause

divergent computations in the encoding above.



3.4. Structural Operational Semantics 29

3.4 Structural Operational Semantics

The structural operational semantics (SOS) [Plotkin 1981] of utcc considers transitions

between process-store configurations 〈P, c〉 with stores represented as constraints and pro-
cesses quotiented by the structural congruence ≡ in Definition 3.4.1. We shall use γ, γ′, . . .

to range over configurations.

Definition 3.4.1 (Structural Congruence). Let ≡ be the smallest congruence satisfying:

1. P ≡ Q if they differ only by a renaming of bound variables (alpha-conversion).

2. P ‖ skip ≡ P

3. P ‖ Q ≡ Q ‖ P

4. P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R

5. P ‖ (local ~x; c) Q ≡ (local ~x; c) (P ‖ Q) if ~x 6∈ fv(P ) (Scope Extrusion)

6. (local ~x; c) (local ~y; d) P ≡ (local ~x; ~y ; c ∧ d)P if ~x ∩ ~y = ∅ and ~y /∈ fv(c).

We extend ≡ by decreeing that 〈P, c〉 ≡ 〈Q, d〉 iff P ≡ Q and c ≡ d.

Notice that we have used the same symbol for logical equivalence (Section 3.1) and for
structural congruence of processes. The meaning of ≡ shall be then understood according
to its operands.

Internal and Observable Transitions. The SOS transitions are given by the relations
−→ and =⇒ in Table 3.1. The internal transition 〈P, d〉 −→ 〈P ′, d′〉 should be read as “P
with store d reduces, in one internal step, to P ′ with store d′ ”. The observable transition

P
(c,d)

====⇒ R should be read as “P on input c, reduces in one time unit to R and outputs d”.
The observable transitions are obtained from finite sequences of internal transitions.

Let us describe the internal reduction rules in Table 3.1.

• The rule RTELL says that the process tell(c) adds c to the current store d, via con-
junction, and evolves into skip.

• The rule RPAR is the standard interleaving rule for parallel composition: If P may
evolve into P ′, this reduction also takes place when running in parallel with other
process Q.

• Let Q = (local ~x; c) P in Rule RLOC. The global store is d and the local store is c.
We distinguish between the external (corresponding to Q) and the internal point of
view (corresponding to P ). From the internal point of view, the information about
~x, possibly appearing in the “global” store d, cannot be observed. Thus, before re-
ducing P we first hide the information about ~x that Q may have in d by existentially
quantifying ~x in d. Similarly, from the external point of view, the observable infor-
mation about ~x that the reduction of internal agent P may produce (i.e., c′) cannot
be observed. Thus we hide it by existentially quantifying ~x in c′ before adding it to
the global store. Additionally, we make c′ the new private store of the evolution of
the internal process.

• Since the process P = unless c nextQ executes Q in the next time unit only if the
final store at the current time unit does not entail c, in the rule RUNL P evolves into
skip if the current store d entails c.
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RTELL
〈tell(c), d〉 −→ 〈skip, d ∧ c〉

RPAR

〈P, c〉 −→ 〈P ′, d〉

〈P ‖ Q, c〉 −→ 〈P ′ ‖ Q, d〉

RLOC

〈P, c ∧ (∃~xd)〉 −→ 〈P ′, c′ ∧ (∃~xd)〉

〈(local ~x; c) P, d〉 −→ 〈(local ~x; c′) P ′, d ∧ ∃~xc′〉

RUNL

d |=∆ c

〈unless c next P, d〉 −→ 〈skip, d〉

RREP
〈!P, d〉 −→ 〈P ‖ next !P, d〉

RABS

d |=∆ c[~t/~x] [~t/~x] is admissible.

〈(abs ~x; c) P, d〉 −→
〈
P [~t/~x] ‖ (abs ~x; c ∧ ~x 6

.
= ~t ) P, d

〉

RSTR
γ1 −→ γ2

γ′
1 −→ γ′

2

if γ1 ≡ γ′
1 and γ2 ≡ γ′

2

ROBS

〈P, c〉 −→∗ 〈Q, d〉 6−→

P
(c,d)

====⇒ F (Q)

Table 3.1: Internal and observable reductions. ≡ and F are given in Definitions 3.4.1 and
3.4.2 respectively. 6

.
= and admissibility of [~t/~x] are defined in Convention 3.1.1.

• Rule RREP dictates that the process !P produces a copy of P at the current time
unit, and then persists in the next time unit.

• Rule RABS describes the behavior of P = (abs ~x; c) Q. Recall that adm(~x,~t) means
that none of the variables in ~x is syntactically equal to an element in ~t and then, the
substitution [~t/~x] is admissible. If the current store entails c[~t/~x], then the process
P [~t/~x] is executed. Additionally, the abstraction persists in the current time interval
to allow other potential replacements of ~x in P . Notice that c is augmented with
~x 6

.
= ~t to avoid executing P [~t/~x] again.

• Rule RSTR says that structurally congruent configurations have the same reductions.

Observable Transition and Future Function. The seemingly missing rules for the
processes nextP and unless c nextP (when c cannot be entailed from the current store)
are given by the rule ROBS. This rule says that an observable transition from P labeled
with (c, d) is obtained from a terminating sequence of internal transitions from 〈P, c〉 to
〈Q, d〉. The process R to be executed in the next time interval is equivalent to F (Q) (the
“future” of Q). The process F (Q) is obtained by removing from Q abstractions and any
local information that has been stored in Q, and by “unfolding” the sub-terms within next



3.5. Properties of the Internal Transitions 31

and unless expressions. More precisely:

Definition 3.4.2. Let F be a partial function defined as:

F (P ) =






skip if P = skip

skip if P = (abs ~x; c) Q

F (P1) ‖ F (P2) if P = P1 ‖ P2

(local ~x)F (Q) if P = (local ~x; c) Q

Q if P = nextQ

Q if P = unless c nextQ

Remark 3.4.1. Notice that F can be defined as a partial function since whenever we need

to apply F to a P , the processes of the form tell(c) and !Q must be occur within a next

or unless expression.

For the sake of presentation, in the sequel we assume the following convention.

Convention 3.4.1 (Local Information). Given an observable transition P
(c,c′)

====⇒ Q, we

assume that for all process of the form (local ~x; c)R in P , c = true. Then, we simply

write (local ~x) R. Note that this is not a loss of generality since for any c, the process

(local ~x; c) R can be written as (local ~x) (R ‖ tell(c)).

To conclude this section, we define the size of a process. We shall use this measure in
some of the proofs in this dissertation.

Definition 3.4.3 (Size of a process). Given a utcc process P , we define the size of P as

M(P ) =






0 if P = skip

1 if P = tell(c)

1 + M(P ′) if P = (abs ~x; c) P ′

M(Q) + M(R) if P = Q ‖ R

1 + M(P ′) if P = (local ~x; c) P ′

1 + M(P ′) if P = nextP ′

1 + M(P ′) if P = unless c nextP ′

1 + M(P ′) if P =!P ′

3.5 Properties of the Internal Transitions

In this section we study some simple but fundamental properties of the internal reduction
relation that we shall use in the forthcoming results.

The first property states that the store can only be augmented.

Lemma 3.5.1 (Internal Extensiveness). If 〈P, c〉 −→ 〈Q, d〉 then d |=∆ c.

Proof. The proof proceeds by a simple induction on the inference of 〈P, c〉 −→ 〈Q, d〉.

Augmenting the store may increase the potentiality of internal reductions, that is, the
number of possible internal transitions. The following lemma states that any configuration
〈Q, e〉 obtained from 〈P, d〉 can also be obtained from 〈P, c〉, where c entails d and c is
weaker than e.

Lemma 3.5.2 (Internal Potentiality). If e |=∆ c |=∆ d and 〈P, d〉 −→ 〈Q, e〉 then 〈P, c〉 −→
〈Q, e〉
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Proof. Assume that e |=∆ c |=∆ d. We proceed by induction on the inference of 〈P, d〉 −→
〈Q, e〉. We consider only the case for the rule RABS. The other cases are easy. If the rule
RABS was used in the derivation 〈P, d〉 −→ 〈Q, e〉, it must be the case that P ≡ (abs ~x; c′) P ′

and there exists a term ~t such that d |=∆ c′[~t/~x]. Hence, if c |=∆ d then c |=∆ c′[~t/~x] and
we conclude 〈P, c〉 −→ 〈Q, e〉.

Finally we state a lemma which resembles a fixed point property.

Lemma 3.5.3 (Internal Restartability). Whenever 〈P, c〉 −→ 〈Q, d〉, 〈P, d〉 −→ 〈Q, d〉.

Proof. Assume that 〈P, c〉 −→ 〈Q, d〉. Then from Lemma 3.5.1 d |=∆ c. The result follows
from Lemma 3.5.2.

3.6 Mobility in utcc

Mobility in utcc is obtained from the interplay between the abstractions and the lo-
cal operators. Recall that here mobility is understood in the sense of the π-calculus
[Milner 1992b, Sangiorgi 2001], i.e, communication of (private) variables or names. Let
us illustrate this by modeling in utcc the example presented in Section 2.2.3.

Example 3.6.1 (Scope Extrusion). Let Σ be a signature with the unary predicates out1, out2, . . .

and a constant 0. Let ∆ = ∅ and P,Q be processes defined as follows

P = (abs y; out1(y)) tell(out2(y))

Q = (local z) (tell(out1(z)) ‖ when out2(z) do next tell(out2(0)))

Intuitively, if a link y is sent on channel out1, P forwards it on out2 . Now, Q sends

its private link z on out1 and if it gets it back on out2 it outputs 0 on out2 .

Let γ = 〈P ‖ Q, true〉. Using the rules in the Table 3.1 we can verify that γ evolves

into a configuration including the process next tell(out2(0)):

γ −→∗ 〈(local z) (tell(out1(z)) ‖ when out2(z) do next tell(out2(0)) ‖ P )

, true〉 — by structural congruence (scope extrusion) and rule RSTR

−→∗ 〈(local z; out1(z)) (skip ‖ when out2(z) do next tell(out2(0)) ‖ P )

, ∃z(out1(z))〉
−→∗ 〈(local z; out1(z)) (when out2(z) do next tell(out2(0)) ‖ P ′

‖ tell(out2(z))) , ∃z(out1(z))〉 — by Rule RABS

−→∗ 〈(local z; out1(z) ∧ out2(z)) (next tell(out2(0)) ‖ P ′)

, ∃z(out1(z) ∧ out2(z))〉 6−→

where P ′ = (abs y; out1(y)∧ y 6
.
= z) tell(out2(y)). Let d = ∃z(out1(z)∧ out2(z)). We then

conclude P ‖ Q
(true,d)
====⇒ tell(out2(0)) as expected.

Observation 3.6.1 (Scope Extrusion). Notice that in the derivation above, the Equation

(5) in the structural congruence (Definition 3.4.1) is used in the first step to extrude the

scope of the local variable z defined by the process Q. This way, the abstraction in P is able

to substitute z for y under the same local environment.

The reader may have noticed that in the previous example the number of communication
channels is determined by the number of predicates of the form outi in the underlying
constraint system. Furthermore, they can only be seen as public channels since any process
can send a datum on them. The next example uses binary predicates to provide for local
channels as in the π-calculus.
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Example 3.6.2 (Private Channels). Let Σ be a signature with a binary predicate out and

the constant symbols a, 0. Let ∆ be as in the Example 3.6.1 and P and Q be defined as:

P = (local z) (tell(out(a, z)) ‖ (abs y; out(z, y)) tell(out(y, 0)))

Q = (abs x; out(a, x)) (local z′) (tell(out(x, z′)) ‖ when out(z′, 0) do R)

Here the constant a can be seen as the name of a public channel that P and Q share to

communicate each other their local names (or private channels) z and z′ respectively. Once

Q receives the local name z from P , it sends z′ on channel z. Then, P receives the channel

z′ from Q and outputs on it the constant 0 triggering the execution of R in Q. To see this,

let us show the internal reductions derived from the configuration γ = 〈P ‖ Q, true〉:

γ −→∗ 〈(local z) (tell(out(a, z)) ‖ (abs y; out(z, y)) (tell(out(y, 0))) ‖ Q)

, true〉
−→∗ 〈(local z; out(a, z)) ((abs y; out(z, y)) (tell(out(y, 0))) ‖ Q)

, ∃z(out(a, z))〉
−→∗ 〈(local z, z′; out(a, z)) ((abs y; out(z, y)) (tell(out(y, 0)))

‖ Q′ ‖ tell(out(z, z′))

‖ when out(z′, 0) do R)

, ∃z(out(a, z))〉
−→∗ 〈(local z, z′; out(a, z) ∧ out(z, z′)) (P ′ ‖ tell(out(z′, 0)) ‖ Q′ ‖

when out(z′, 0) do R)

, ∃z,z′(out(a, z) ∧ out(x, z′))〉
−→∗ 〈(local z, z′; out(a, z) ∧ out(z, z′) ∧ out(z′, 0)) (P ′ ‖ Q′ ‖ R) , d〉 6−→

where

Q′ = (abs x; out(a, x) ∧ x 6
.
= z) (local z′) (tell(out(x, z′)) ‖ when out(z′, 0) do R)

P ′ = (abs y; out(z, y) ∧ y 6
.
= z′) tell(out(y, 0))

d = ∃z,z′(out(a, z) ∧ out(x, z′) ∧ out(z′, 0))

As expected, the processes P and Q running in parallel reduce to a process where R is

executed.

In Chapter 8, for the applications to security, we shall use the communication pattern
in Example 3.6.1. This communication pattern is akin to the version of the spi-calculus
[Abadi 1997] in [Fiore 2001] where only a global (public) channel is considered. The intu-
ition is that all the messages are sent through an untrusted network under the control of the
spy. The advantage is that we do not require binary predicates as in Example 3.6.2. Fur-
thermore, as was pointed out in [Hildebrandt 2009], the use of binary predicates to model
communication channels allows agents to guess channel names by universal quantification
(see related work in Section 3.9).

Unary predicates as communication channels are also used in this dissertation in Chapter
6 to encode Minsky machines into utcc. In this case, having a simple constraint system
with only unary predicates is central to apply this encoding to prove the undecidability of
the monadic fragment of first-order linear-time temporal logic (see Chapter 6).

3.7 Input-Output Behavior

In this section we define the notion of observable behavior in utcc. Furthermore, we show
that utcc processes are deterministic, i.e., the outputs of a process are the same up to
logical equivalence.
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Reactive Observations. Consider the following sequence of observable transitions

P = P1
(c1,c′1)====⇒ P2

(c2,c′2)====⇒ P3
(c3,c′3)====⇒ . . .

This sequence can be seen as the interaction of the system P with the environment. At
the time unit i, the environment provides as input the constraint ci and P responds with
the final store c′i. Let α = c1.c2.c3... and α′ = c′1.c

′
2.c

′
3... be sequences of constraints. As

observers, we can see that on input α, the process P responds with α′. We then regard
(α, α′) as a reactive observation of P . We shall call the set of reactive observations of P

the input-output behavior of P .
When the sequence of inputs α is the sequence true . true . true ..., we say that P

outputs α′ without the influence of any environment. Then, we say that α′ is the default

output of P .
Before stating formally the above notions of behavior, we require the following notation

on sequences of constraints.

Notation 3.7.1. We shall denote with Cω the set of infinite sequences of constraints with

typical elements α, α′, β, β′, . . . . Given c ∈ C, cω represents the sequence of constraints

c.c.c. . . . . The i-th element in α is denoted by α(i). We shall write α ≥ α′ whenever

α(i) |=∆ α′(i) for i > 0.

Definition 3.7.1 (Input-Output Relation and Equivalences). Let P be a utcc process.

Given α = c1.c2... and α′ = c′1.c
′
2..., we write P

(α,α′)
====⇒ whenever

P = P1
(c1,c′1)====⇒ P2

(c2,c′2)====⇒ P3
(c3,c′3)====⇒ . . .

The set io(P ) = {(α, α′) | P
(α,α′)
====⇒} denotes the input-output behavior of P . If io(P ) =

io(Q) we say that P and Q are input-output equivalent and we write P ∼io Q.

We say that α′ is the default output of P , denoted by o(P ), if (trueω, α′) ∈ io(P ). This

means, P outputs α′ without the influence of any (external) environment. Furthermore, if

there exists i > 0 s.t. α′(i) |=∆ c, we say that P eventually outputs c and we write P ⇓c.

Finally, if o(P ) = o(Q) we say that P and Q are output equivalent and we write P ∼o Q.

Based on the rules of internal and observable transitions, we can make the following
observation over the elements of the input-output relation.

Observation 3.7.1. Let P be a process and α, α′ be sequences of constraints such that

(α, α′) ∈ io(P ). Similar to tcc [Saraswat 1994], computations in utcc during a time unit

progress via the monotonic accumulation of constraints (see Lemma 3.5.1). Then, for all

i > 0, α′(i) |=∆ α(i). Recall also that the final store at the end of the time unit is not

automatically transferred to the next one. Therefore, it may be the case that α′(i) 6|=∆

α′(i − 1). Finally, constraints in α are provided by the environment as input to the system

and then, they are not supposed to be related to each other.

Determinism. Now we prove that utcc processes are deterministic, i.e., the outputs of
a process are equivalent regardless the execution order of the parallel components.

We first need to state an important property of internal transitions, namely that of
confluence.

Lemma 3.7.1 (Confluence). Suppose that γ0 −→ γ1, γ0 −→ γ2 and γ1 6≡ γ2. Then, there

exists γ3 such that γ1 −→ γ3 and γ2 −→ γ3.
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Proof. Given a configuration γ = 〈P, c〉 we define the size of γ as the size of P , M(P ) (see
Definition 3.4.3). Suppose that γ0 ≡ 〈P, c0〉 −→ γ1, γ0 −→ γ2 and γ1 6≡ γ2. The proof
proceeds by induction on the size of γ0. From the assumption γ1 6≡ γ2, it must be the
case that P is not a process of the form tell(c), !P ′ or unless c nextP ′ since from those
processes there is a unique possible transition modulo structural congruence.

For the case P = Q ‖ R, we have to consider three cases. Assume that γ1 ≡ 〈Q′ ‖ R, c1〉
and γ2 ≡ 〈Q′′ ‖ R, c2〉. We know by induction that if γ′

0 ≡ 〈Q, c0〉 −→ γ′
1 ≡ 〈Q′, c1〉 and

γ′
0 −→ γ′

2 ≡ 〈Q′′, c2〉 then there exists γ′
3 ≡ 〈Q′′′, c3〉 such that γ′

1 −→ γ′
3 and γ′

2 −→ γ′
3.

We conclude by noticing that γ1 −→ γ3 ≡ 〈Q′′′ ‖ R, c3〉 and γ2 −→ γ3 by rule RPAR.
The case when R has two possible transitions is similar to the previous one. Now assume
that γ1 ≡ 〈Q′ ‖ R, c0 ∧ c1〉 and γ2 ≡ 〈Q ‖ R′, c0 ∧ c2〉. Then, by Lemma 3.5.1 we have
γ3 ≡ 〈Q′ ‖ R′, c0 ∧ c1 ∧ c2〉.

Finally, let γ0 ≡ 〈P, c0〉 with P = (abs ~x; c) Q. One can verify that γ1 ≡ 〈P1, c0〉 where
P1 takes the form (abs ~x; c∧~x 6

.
= ~t1) Q ‖ Q[~t1/~x] and γ2 ≡ 〈P2, c0〉 where P2 takes the form

(abs ~x; c ∧ ~x 6
.
= ~t2) Q ‖ Q[~t2/~x] for some terms ~t1 and ~t2. From the assumption γ1 6≡ γ2, it

must be the case that ~t1 6
.
= ~t2. Let γ3 ≡ 〈P3, c0〉 where P3 = (abs ~x; c∧~x 6

.
= ~t1 ∧~x 6

.
= ~t2) Q ‖

Q[~t1/~x] ‖ Q[~t2/~x]. Clearly γ1 −→ γ3 and γ2 −→ γ3 as wanted.

As a corollary of the previous lemma we obtain a fundamental property of utcc, i.e.,
determinism.

Theorem 3.7.1 (Determinism). Let α, β and β′ be sequences of constraints. If both (α, β),

(α, β′) ∈ io(P ) then for all i > 0, β(i) ≡ β′(i).

Proof. Assume that P
(a,c)

====⇒ Q, P
(a,c′)

====⇒ Q′ and let γ1 ≡ 〈P, a〉, γ2 ≡ 〈P, a〉. If γ1 6−→
then trivially γ2 6−→, c ≡ c′ and Q ≡ Q′. Now assume that γ1 −→∗ γ′

1 ≡ 〈c, P1〉 6−→ and
γ2 −→∗ γ′

2 ≡ 〈c′, P2〉 6−→. By repeated applications of Lemma 3.7.1 we conclude γ′
1 ≡ γ′

2

and then, c ≡ c′ and P1 ≡ P2. We therefore have Q ≡ Q′.

3.8 Infinite Internal Behavior

In tcc, processes are supposed to respond “instantaneously” to the environment when an
input is provided. This is akin to the Perfect Synchrony Hypothesis in reactive systems
[Berry 1992]: program combinators are determinate primitives that respond instantaneously
to input signals. For this reason, a tcc process must reach its resting point (where no further
evolution is possible) in a finite number of internal transitions.

The abstraction operator in utcc may induce an infinite sequence of internal transitions
within a time interval thus never producing an observable transition. The sources of infinite
behavior may include:

• Abstraction Loops: Take for example

R = (abs x; out1(x)) (local z) tell(out1(z)))

Each time R gets a link on out1, it generates a new link z on out1 thus causing infinite
internal behaviors. A similar problem involves several abstractions producing mutual
recursive behaviors. This kind of looping problems can be avoided by requiring for
each (abs x; c) P that P must be a next expression. This restriction, however, may
also disallow behaviors which will not cause infinite internal computations as those in
Example 3.6.1 and 3.6.2.
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• Infinitely Many Substitutions: Another source of infinite internal behaviors in-
volves the constraint system under consideration. Let R = (abs x; c) P . If the current
store d entails c[t/x] for infinitely many t’s, then R will have to produce P [t/x] for
each such t’s. This kind of infinite internal behaviors can be avoided by allowing
only guards c so that for any d the set {t | d |=∆ c[t/x]} modulo logic equivalence is
finite. This seems inconvenient for the modelling of cryptographic knowledge as typ-
ically is done in process calculi: The presence of some messages entails the presence
of arbitrary compositions among them (see Chapter 8).

We then define the fragment of well-terminated processes as such processes that do not
exhibit infinite internal behavior. Formally:

Definition 3.8.1 (Well-termination). The process P is said to be well-terminated if and

only if for every α such that α(i) 6= false for each i, there exists α′ such as (α, α′) ∈ io(P ).

The set of well-terminated processes constitute a meaningful fragment of utcc. We
shall show that they are enough, for instance, to encode Turing-powerful formalisms (see
Chapter 6), to give a declarative account to a language for structured communication (see
Chapter 9) and to model multimedia interaction systems (see Chapter 9).

In the next chapter we consider an alternative symbolic operational semantics which
deals with the above-mentioned internal termination problems. This semantics will allow
us to describe the behavior of non well-terminated processes such as those arising from the
verification of security protocols that we illustrate in Chapter 8.

3.9 Summary and Related Work

This chapter introduced the syntax and the operational semantics of utcc. We defined the
input-output behavior of a process as well as its default output behavior. We illustrated
how the interplay between abstractions and local processes allows for a name passing dis-
cipline in utcc. We also proved that the calculus is deterministic. Finally, we pointed out
that there exist processes that exhibit infinitely many internal reductions and then, they
do not produce any output. We shall deal with this problem in the next chapter.

The material of this chapter was originally published as [Olarte 2008c].

Related Work. In the CCP model, it is also possible to specify mobile behavior us-
ing logical variables to represent channels and unification to bind messages to channels
[Saraswat 1993]. Recall that a logical variable can be bound to a value only once. There-
fore, if two messages are sent through the same channel, they must be equal to avoid an
inconsistent store. This problem is solved in [Laneve 1992] by considering atomic tells
where the constraint c in tell(c) is added to the store d if the conjunction c∧d is consistent.
Channels are represented as “imperative style” variables by binding them to streams record-
ing the current and the previous values. Therefore, a protocol is required since messages
must compete for a position in such a stream. Notice that unlike CCP, Atomic CCP is
non-deterministic. Take for example, tell(c).P ‖ tell(¬c). The execution of P depends on
whether tell(¬c) is scheduled for execution first or not. Furthermore, to the best of our
knowledge, no logic characterizations have been given to this calculus.

In our approach, communication of messages is represented by predicates (i.e. con-
straints) of the form out(x), where out stands for a public (global) channel as in Example
3.6.1. Channel names can be explicitly modeled by using binary predicates of the form
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out(x, y) where y is the datum sent through the channel x as in Example 3.6.2. Therefore,
it is possible to send different messages through the same channel.

In [Hildebrandt 2009], the authors show that modeling communication channels using
binary predicates in utcc allows agents to guess channel names by using abstractions. For
example, the process (abs x, y; out(x, y))P is able to capture all possible messages in transit
due to the quantification of the channel name x. Then, a type system for constraints used as
patterns in abstractions is proposed. Roughly speaking, the type system rules out processes
where the variable representing the channel name is bound by an abstraction operator.

As it was pointed out in [Fages 2001], asks in CCP are not parametric in the sense
that free-variables in the guard are not supposed to be universally quantified. For in-
stance, the configuration 〈when c(x) do P, c(0)〉 does not have any internal transition
since c(0) 6|=∆ c(x). For certain constraint systems, it is possible to have the same ef-
fect of the universal quantification by using the interplay of asks and tells with the lo-
cal operator. For example, assuming the Herbrand constraint system [Saraswat 1993], let
Q = when ∀y,z(x = [y|z]) do P be a process that splits the list x into [y|z] and then
executes P . We can define Q′ = when ∃y,z(x = [y|z]) do (local y, z) (tell(x = [y|z]) ‖ P )

where tell(x = [y|z]) unifies y and z to be respectively the head and the tail of the list x

as expected. Nevertheless, this programming technique cannot be generalized to arbitrary
constraint systems.

In Linear CCP [Fages 2001], the universal quantification in ask processes is explicit.
Then a parametric ask A(x) can be viewed as a process when c do P with a variable
x declared as a formal parameter much like the abstraction process defined here. Unlike
standard CCP, asks in Linear CCP are not persistent. Then, A(x) may evolve to either
P [y/x] or P [z/x] if both c[y/x] and c[z/x] are entailed. Thus non-determinism arises.
This kind of non-determinism can be avoided by using persistent parametric asks (with
replication “! "). Forcing every ask to be persistent, however, makes the extension not
suitable for modelling typical scenarios where a process stops after performing its query.

The abstraction operator in utcc can be then seen as a temporary persistent extension
of the parametric ask in Linear CCP. Recall that Q = (abs ~x; c) P executes P [~t/~x] in the
current time interval for all the sequences of terms ~t s.t c[~t/~x] is entailed by the current
store but Q evolves into skip after the end of the time unit.

Another difference between utcc and Linear CCP is the logic characterization these
languages enjoy. In utcc, processes can be related to formulae in first-order linear-time
temporal logic (see Chapter 5) while processes in Linear CCP correspond to formulae in
Girard’s Linear logic [Girard 1987]. Moreover, no closure operator semantics in the lines of
standard CCP has been given to Linear CCP (we shall give a closure operator semantics
to utcc in Chapter 7).

In [Buscemi 2007], the cc-pi calculus is proposed. This language results from the com-
bination of the CCP model with a name-passing calculi. More precisely, cc-pi extends CCP
by adding synchronous communication and by providing a treatment of names in terms of
restriction and structural axioms closer to nominal calculi than to variables with existential
quantification.

The cc-pi name passing discipline is reminiscent to that in the pi-F calculus [Wischik 2005]
whose synchronization mechanism is global and, instead of binding formal names to actual
names, it yields explicit fusions, i.e., simple constraints expressing name equalities. For
example, the process x̄〈y〉.P (sending y on x) synchronizes with x〈z〉.Q and evolves into
P ‖ Q ‖ y = z. This approach differs from ours since mobility in cc-pi is achieved by means
of the constructs inherited from pi-F.

The π+-calculus [Díaz 1998] is an extension of the π-calculus with constraint agents that
can perform tell and ask actions. Similarly as in cc-pi, the mobility of π+comes from the
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operands inherited from the π-calculus. Furthermore, no logic characterization has been
given to π+.

The language LMNtal [Ueda 2006] uses logical variables to specify mobile behavior as
basic CCP does. Since LMNtal was designed as a unifying model of concurrency, it is non-
deterministic. Furthermore, to our knowledge no correspondence between this languages
and logic has been given.

All in all, the novelty of utcc is to allow for mobile behavior in the CCP model but
preserving the appealing features of the initial language. Namely, (1) determinism, leading
to rather simple and elegant denotational semantics based on solution of equations, and (2)
declarative view of processes as formulae in logic.



Chapter 4

Symbolic Semantics

In the previous chapter we gave utcc an operational semantics and we showed how the ab-
straction operator may pose some technical problems. Namely, utcc processes may generate
infinitely many substitutions thus causing divergent (i.e., infinite) internal computations.
Since the observable relation in utcc is obtained from a finite number of internal reductions,
it is not then possible to observe the behavior of non well-terminated processes.

In this chapter we address this problem by endowing utcc with a novel symbolic se-

mantics that uses temporal constraints to represent finitely a possible infinite number sub-
stitutions. We shall show that without appealing to any syntactic restrictions like those in
Section 3.8, this semantics guarantees that every sequence of internal transitions is finite.
Furthermore, for the fragment of well-terminated processes, we prove that the outputs of
both semantics correspond to each other.

To our knowledge, this is the first symbolic semantics in concurrency theory using tem-
poral constraints as finite representations of substitutions.

4.1 Symbolic Intuitions

Before defining the symbolic semantics let us give some intuitions of its basic principles.

(A) Substitutions as Constraints. Take R = (abs x; c)P. The operational semantics
in Table 3.1 performs P [t/x] for every t s.t c[t/x] is entailed by the store d. Instead, the
symbolic semantics we propose here dictates that R should produce e = (d ∧ ∀x(c ⇒
d′)) where, similarly, d′ should be produced according to the symbolic semantics by
P . Let t be an arbitrary term s.t d |=∆ c[t/x]. The idea is that if e′ is operationally
produced by P [t/x] then e′ should be entailed by d′[t/x]. Since d |=∆ c[t/x] then
e |=∆ d′[t/x] |=∆ e′. Therefore e entails the constraint that any arbitrary P [t/x]

produces.

(B) Timed Dependencies in Substitutions. The symbolic semantics represents
as temporal constraints dependencies between substitutions from one time interval
to another. For instance, suppose that for the process R above, P = next tell(e).
Operationally, once we move to the next time unit, the constraints produced are of
the form e[t/x] for those terms t’s such that the final store d in the previous time unit
entails c[t/x]. The symbolic semantics captures this behavior as e′ = (⊖d)∧∀x((⊖c) ⇒
e) where ⊖ is the “previous” modality of first-order linear-time temporal logic (FLTL)
[Manna 1991]. Intuitively, ⊖c′ means that c′ holds in the previous time interval. This
way, the information of the previous time units is transferred to the current one as
past information to deal with next-guarded constructs in the body of abstractions.

In the sequel we formalize the idea of temporal formulae as constraints and we define
the internal and observable reductions for the symbolic semantics. We then prove the
correspondence of this semantics with respect to the operational semantics.
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4.1.1 Future-Free Temporal Formulae as Constraints

As explained above, the symbolic semantics of utcc requires the past modality of FLTL to
represent timed dependencies in substitutions. Let us then define the following fragment of
the FLTL described in Section 2.4.

Definition 4.1.1 (Future-Free Formulae). A temporal formula is said to be future-free iff

it does not contain occurrences of the modalities � and ◦.

We shall use FF to denote the set of future-free formulae with typical elements e, e′.

Sequences of future-free formulae are ranged by w, w′, v, v′, u, u′, . . . .

From now on, given a constraint system with underlying first-order languages L, we
shall assume that constraints are built from L and the past modality ⊖. More precisely,

Definition 4.1.2 (FLTL Theories). Given a constraint system (∆,Σ) with first-order lan-

guage L, the FLTL theory induced by ∆, T (∆) is the set of FLTL sentences that are valid

in all the L-structures (or L-models) of ∆. We write F |=T (∆) G iff (F ⇒ G) ∈ T (∆). We

omit “(∆)” in |=T (∆) when ∆ = ∅.

We shall assume that processes and configurations are extended to include future-free
formulae rather than just constraints. So, for example a process-store configuration of the
form 〈(abs y;⊖c) P,⊖d〉 may appear in the transitions of the symbolic semantics. We also
assume that no process, other than the ones generated from the symbolic internal and
observable transitions, can contain temporal modalities.

4.2 Symbolic Reductions

The internal and observable symbolic transitions −→s,=⇒s are defined as in Table 3.1 for
the operational semantics with |=∆ replaced with |=T (∆) (entailment of temporal formulae)
and with the rules RABS and ROBS replaced with RABS−SYM and ROBS−SYM as in Table
4.1 respectively.

The rule RABS−SYM represents with the temporal constraint ∀~x(e ⇒ e′) the substitu-
tions that its operational counterpart RABS would induce, as intuitively explained in Section
4.1 (A). Notice that in the reduction of P the variables ~x in e are hidden, via existential
quantification, to avoid clashes with those in P .

The future function Fs in ROBS−SYM is similar to its operational counterpart F in
Definition 3.4.2. However, Fs records the final global and local stores as well as abstraction
guards as past information. As explained in Section 4.1 (B), this past information is needed
in the next time unit when next guarded processes occur in the body of an abstraction.

Definition 4.2.1. Let Fs be a partial function defined by Fs(P, e) = tell(⊖e) ‖ F ′
s(P )

where:

F ′
s(P ) =






skip if P = skip

(abs ~x;⊖e) F ′
s(Q) if P = (abs ~x; e) Q

F ′
s(P1) ‖ F ′

s(P2) if P = P1 ‖ P2

(local ~x;⊖e)F ′
s(Q) if P = (local ~x) (Q ‖ tell(⊖(e)))

Q if P = nextQ

Q if P = unless c nextQ

Let us introduce some notation about (sequences of) temporal formulae that we shall
use in the sequel.
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RABS−SYM
〈P,∃~xe〉 −→s 〈Q, e′′ ∧ ∃~xe〉

〈(abs ~x; e′) P, e〉 −→s 〈(abs ~x; e′) Q, e ∧ ∀~x(e′ ⇒ e′′)〉

ROBS−SYM
〈P, e〉 −→∗

s 〈Q, e′〉 6−→s

P
(e,e′)

====⇒s Fs(Q, e′)

Table 4.1: Symbolic Rules for Internal and Observable Transitions. The function Fs is
given in Definition 4.2.1.

Notation 4.2.1. Let e and e′ be future-free formulae. We write e � e′ whenever e |=T (∆) e′.

If e � e′ and e′ � e we write e ≡ e′. If e � e′ and e 6≡ e′ then we write e ≻ e′. We extend

�, ≻ and ≡ to sequences of future-free formulae: w � v (resp. w ≡ v) iff for all i > 0,

w(i) � v(i) (resp. w(i) ≡ v(i)). We shall write w ≻ v if w � v and there exists i > 0 s.t.

w(i) ≻ v(i).

If P = P1
(e1,e′

1)====⇒s P2
(e2,e′

2)====⇒s ..., we write P
(w,w′)
====⇒s if w = e1.e2... and w′ =

e′1.e
′
2.... We shall write P ∼io

s Q whenever for any sequence w, P
(w,v)

====⇒s iff Q
(w,v)

====⇒s.

Finally, similar to the operational semantics, we shall say that P eventually outputs c,

notation P ⇓c
s, if P

(trueω,w)
====⇒ s and there exists i > 0 s.t. w(i) |=T (∆) c.

4.2.1 The Abstracted-Unless Free Fragment

It is worth noticing that the symbolic semantics fails to give a representation of unless

processes in the scope of an abstraction. Basically, the problem is to represent nega-
tion of entailment as a logical formula. Let us explain this with an example. Take
P = (abs x; true) Q and let Q = unless e next tell(e′). Assume that the final store
in the first time unit when running P is d. Operationally, tell(e′)[t/x] is executed in the
second time unit for those t’s such that d 6|=∆ e[t/x]. Following Section 4.1, one may try to
capture this in the symbolic semantics with the temporal constraint ⊖d ∧ ∀x(⊖(¬e) ⇒ e′)

as if we had Q = Q′ = when ¬e do next tell(e′). Nevertheless, this wrongly assumes that
Q and Q′ behave the same (see Remark 3.2.1).

Taking the previous observation into account, we define the abstracted-unless free frag-
ment of utcc processes.

Definition 4.2.2 (Abstracted-unless free Processes). We say that P is abstracted-unless
free if there is no processes of the form unless c nextQ in P under the scope of an

abstraction.

The following proposition introduces an obvious fact on this fragment.

Proposition 4.2.1 (Abstracted-unless freeness Invariance). Let P be an abstracted-unless

free process. If P
(e,d)

====⇒s Q then Q is also abstracted-unless free.

Proof. Given an abstracted-unless free process P , one can easily show that if 〈P, e〉 −→s

〈P ′, e′〉 then P ′ is also abstracted-unless free. One concludes by noticing that for any P

abstracted-unless free and future-free formula e, Fs(P, e) is also abstracted-unless free.
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Abstract-unless free processes represent a meaningful and practical fragment of utcc. For
example, this fragment allows us to model Security Protocols as we shall show in Chapter 8.
Then, we can use the symbolic semantics to observe the behavior of the processes modeling
those protocols which in general are non well-terminated.

4.2.2 Past-Monotonic Sequences

As explained above, the future function in Definition 4.2.1 transfers the final store of a time

unit to the next one as a past formula. Therefore, for any process P , if P
(w,w′)
====⇒ then w′

is a past-monotonic sequence in the following sense.

Definition 4.2.3 (Past-Monotonic Sequences, PM). We say that an infinite sequence of

future-free formulae w is past-monotonic iff for all i > 1, w(i) |=T (∆) ⊖w(i − 1). The set

of infinite sequences of past-monotonic formulae is denoted by PM .

Given a sequence of future free formulae, we can add to it the corresponding past
information to obtain a past-monotonic sequence as follows.

Notation 4.2.2. Given a sequence e1.e2..., we shall use e1.e2... to denote the past-monotonic
sequence

e1.(e2 ∧ ⊖e1).(e3 ∧ ⊖e2 ∧ ⊖2e1)...

Notice that if v is a past-monotonic sequence then v ≡ v.

4.3 Properties of the Symbolic Semantics

In this section we state some properties of the symbolic semantics. Among them, we
shall prove that similar to the operational semantics, the symbolic semantics is confluent.
Furthermore, for all process and input, every sequence of symbolic internal transitions is
finite. This means that the symbolic semantics solves the infinite internal behavior problem
of the operational semantics when considering non well-terminated processes. Moreover, a
remarkable property of the symbolic semantics is that the symbolic output of a process is
in some sense “insensitive” to the input. More precisely, we shall show that the contribution
of a process to the output is the same regardless the input.

Determinism. We start by showing that, similar to the operational semantics, the sym-
bolic internal transitions are confluent.

Lemma 4.3.1 (Confluence –Symbolic Semantics–). Suppose that γ0 −→s γ1, γ0 −→s γ2

and γ1 6≡ γ2. Then, there exists γ3 such that γ1 −→s γ3 and γ2 −→s γ3.

Proof. Similarly to the proof of Lemma 3.7.1, we define the size of γ as M(P ) (see Definition
3.4.3). We only consider the case for the abstraction operator. The other cases are the same
as in Lemma 3.7.1. Thus let γ0 ≡ 〈P0, c0〉 with P0 = (abs ~x; c)Q. One can verify that
γ1 ≡ 〈P1, c1〉 where P1 takes the form (abs ~x; c) Q1 and γ2 ≡ 〈P2, c2〉 where P2 takes the
form (abs ~x; c) Q2. From the assumption γ1 6≡ γ2, it must be the case that Q1 6≡ Q2. Then,
by induction there exists γ′

3 such that γ′
0 ≡ 〈Q,∃~x(c0)〉 −→s 〈Q1,∃~x(c0)∧c′1〉 ≡ γ′

1 , γ′
0 −→s

〈Q2,∃~x(c0)∧ c′2〉 ≡ γ′
2 and γ′

1, γ
′
2 commute to γ′

3 ≡ 〈Q′
3, c

′
3〉. By the rule RABS−SYM we have

that γ1 and γ2 commute to γ3 ≡ 〈P3, c3〉 where P3 = (abs ~x; c) Q′
3 and c3 = c0∧∀~x(c ⇒ c′3)

as wanted.

As a corollary of the previous lemma we have that the symbolic outputs of a process
are equivalent up to logical equivalence.
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Theorem 4.3.1 (Determinism). Let w be a sequence of constraints, w′ and v be sequences

of past-monotonic formulae and P be an abstracted-unless free process. If P
(w,v)

====⇒s and

P
(w,v′)
====⇒s , then for all i > 0, v(i) ≡ v′(i).

Proof. Similar to the proof of Determinism in the operational semantics (Theorem 3.7.1).

Finite Number of Symbolic Internal Reductions. One of the most important prop-
erties of the symbolic semantics is that it solves the problem of infinitely many internal
reductions described in Section 3.8. More precisely,

Lemma 4.3.2 (Finiteness of the Symbolic Internal Reductions). Given a configuration

γ0 = 〈P, e〉, there exist configurations γ1, ..., γn with n < ω s.t.

γ0 −→s γ1 −→s γ2 −→s . . . −→s γn 6−→s

Proof. Observe that next-guarded processes do not exhibit any internal transition. Then,
define M ′(P ) as M(P ) in Definition 3.4.3 but let M ′(nextP1) = 0. By induction on the
size of P , one can show that if 〈P, e〉 −→ 〈P ′, e′〉 then there exists P ′′ ≡ P ′ such that
M ′(P ) > M ′(P ′′). Therefore, the number of symbolic internal reductions of P is bound by
M ′(P ).

From the previous lemma we straightforwardly deduce the following corollary.

Corollary 4.3.1 (Finite Symbolic Internal Transitions). Given an abstracted-unless free

process P , for any sequence of future free formulae w there exists w′ such that P
(w,w′)
====⇒s.

Non-blocking Symbolic Abstractions. In addition to the fact that the symbolic se-
mantics does not exhibit infinite internal behavior, there is another fundamental difference
between both semantics. The rule for the abstraction in the symbolic semantics does not

depend on the current store, i.e., an abstraction in the symbolic semantics does not block

until the entailment of its guard. Take for example P = (abs x; c) tell(d) and assume the
configuration γ1 = 〈P, c′〉 where there is no t such that c′ |=∆ c[t/x]. Operationally, there
is no an internal reduction, i.e., γ1 6−→. Nevertheless, in the symbolic semantics we have a
derivation of the form

γ1 −→s 〈skip, c′ ∧ ∀x(c ⇒ d)〉 6−→s

Later on we shall show that the final store c′ in the operational semantics and d′ =

c′ ∧∀x(c ⇒ d) in the symbolic one are related. Roughly speaking, c′ and d′ entail the same
basic constraints (see Definition 3.1.2).

4.3.1 Normal Form of Processes

The following definition introduces a normal form of processes useful for proving some of
the results in this dissertation.

Definition 4.3.1 (Normal Forms). We say that the utcc process P is in normal form if

it takes the form

P ≡ (local ~x; c)





∏
i∈I

tell(ci) ‖
∏

j∈J

(abs ~yj ; cj) Pj ‖
∏

k∈K

nextPk ‖
∏
l∈L

unless cl nextPl ‖
∏

m∈M

!Pm
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where each Pj, Pk, Pl and Pm are themselves in normal form. We assume the variables

in ~x and ~yj do not appear bound elsewhere, i.e., ~x, the ~y′s and the bound names of the Pk’s,

Pl’s and Pm’s are pairwise distinct. Furthermore, no variable appears both free and bound

in the process P .

The proposition below states that for all process P there exists P ′ structurally congruent
to P in normal form.

Proposition 4.3.1. Given a process P , there exists P ′ in the normal form of Definition

4.3.1 such that P ≡ P ′.

Proof. The proof proceeds trivially by induction on the structure of P .

The following observation points out that for a configuration γ = 〈P, e〉 such that there
is no symbolic internal transitions from γ, the process P takes a simpler normal form.

Observation 4.3.1. Let P be a process in normal form and γ = 〈P, e〉. If γ 6−→s then P

must take the form

P ≡ (local ~x; c)

(
∏

j∈J

(abs ~xj ; cj) Pj ‖
∏

k∈K

nextPk ‖
∏
l∈L

unless cl nextPl

)

and for all l ∈ L, c ∧ ∃~xe 6|=T (∆) cl. Furthermore, for all j ∈ J , 〈Pj , c ∧ ∃~xe〉 6−→s.

The previous observation follows from the fact that if a constraint cl can be entailed
from e, then there is a symbolic transition from γ where the process unless cl nextPl

evolves into skip. Similarly, if a process Pj may evolve, then there exists a transition from
γ using the rule RABS−SYM.

4.3.2 Symbolic Output Invariance

In this section we prove that the symbolic output of a process in a time unit is independent
of the input, i.e., the contribution of a process to the final output is the same regardless
the input from the environment. This can intuitively be explained from the fact that only
the symbolic rule for P = unless c nextQ depends on the current store and P can only
add information to the store in the next time unit.

Firstly, we prove that the symbolic output of a process P is independent from the context
running in parallel with P .

Lemma 4.3.3 (Parallel Composition Invariance). Let P and Q be abstracted-unless free

utcc processes and c be a constraint. If P
(c,d)

====⇒s P ′ and Q
(c,e)

====⇒s Q′, then there exist

P ′′ and Q′′ s.t P ‖ Q
(c,d∧e)
====⇒s P ′′ ‖ Q′′.

Proof. Assume the following derivations of P = P1 and Q = Q1 with c = d1 = e1

〈P1, d1〉 −→s 〈P2, d2〉 −→
∗
s 〈Pn, dn〉 6−→s

〈Q1, e1〉 −→s 〈Q2, e2〉 −→
∗
s 〈Qm, em〉 6−→s

By Proposition 4.3.1 and Observation 4.3.1 we must have that

Pn ≡ (local ~x; c1)

(
∏

j∈J1

(abs ~xj ; cj) Pj ‖
∏

k∈K1

nextPk ‖
∏

l∈L1

unless cl nextPl

)

Qm ≡ (local ~x; c′1)

(
∏

j∈J2

(abs ~xj ; cj) Qj ‖
∏

k∈K2

nextQk ‖
∏

l∈L2

unless cl nextQl

)
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where 1) for all j ∈ J1, 〈Pj , dn ∧ ∃~x(c1)〉 6−→s; 2) for all j ∈ J2 〈Qj , em ∧ ∃~x(c′1)〉 6−→s

and 3) for all l ∈ L1, l′ ∈ L2, c ∧ ∃~xdn 6|=T (∆) cl and c ∧ ∃~xem 6|=T (∆) cl′ .
We can show that there exists a derivation of the form

〈P1 ‖ Q1, c〉 −→
∗
s 〈Pn ‖ Q1, dn〉 −→

∗
s

〈Pn ‖ Qm, dn ∧ em〉 −→∗
s

〈P ′
n ‖ Q′

m, dn ∧ em〉 6−→s

where the derivations in 〈Pn, dn ∧ en〉 −→
∗ 〈P ′

n, dn ∧ en〉 can only use the rules RSTR

and RUNL (i.e., some of the unless processes in Pn evolved into skip). Similarly for the
evolution from Qn into Q′

n. Therefore, there exists L′
1 ⊆ L1 and L′

2 ⊆ L2 s.t.

P ′
n ≡ (local ~x; c1)

(
∏

j∈J1

(abs ~xj ; cj) Pj ‖
∏

k∈K1

nextPk ‖
∏

l∈L′
1

unless cl nextPl

)

Q′
m ≡ (local ~x; c′1)

(
∏

j∈J2

(abs ~xj ; cj) Qj ‖
∏

k∈K2

nextQk ‖
∏

l∈L′
2

unless cl nextQl

)

Since d = dn and e = em we conclude P ‖ Q
(c,d∧e)
====⇒s Fs(P

′
n, d) ‖ Fs(Q

′
m, e).

The previous proof can be straightforwardly adapted to show that the contribution of
a process to the final output is the same regardless the input from the environment.

Lemma 4.3.4 (Input Invariance). Let P,Q be abstracted-unless free processes such that

P
(e,e∧d)
====⇒s Q ‖ tell(⊖(e ∧ d)). For all future-free formula e′ there exists Q′ s.t.

P
(e′,e′∧d)
====⇒ s Q′ ‖ tell(⊖(e′ ∧ d))

Furthermore, Q ≡ Q′ if for all basic constraint c, e′ ∧ d |=T (∆) c iff e ∧ d |=T (∆) c.

Proof. Directly from the proof of Lemma 4.3.3. Notice that the processes Q and Q′ may
differ only in that some unless processes in P evolve into skip under input e and not under
input e′ or vice versa. If both e∧d and e′∧d entail the same basic constraints, then trivially
Q ≡ Q′.

4.3.3 The Monotonic Fragment

Note that, unlike the other constructs in utcc, the unless operator exhibits non-monotonic
input-output behavior in the following sense: Given w′ � w and P = unless c nextQ,

if P
(w,v)

====⇒s and P
(w′,v′)
====⇒s, then it may be the case that v′ 6� v. For example, take

Q = tell(d), w = trueω and w′ = c. trueω. In this case, v = true .d. trueω, v′ = trueω,
w′ � w but v′ 6� v.

We then define the monotonic fragment of utcc processes as follows.

Definition 4.3.2 (Monotonic Processes). We say that P is a monotonic process iff P does

not have occurrences of processes of the form unless c nextQ.

The following proposition introduces an obvious fact on this fragment.

Proposition 4.3.2 (Monotonic Invariance). Let P be a monotonic process. If P
(e,d)

====⇒s

Q then Q is also monotonic.

Proof. Immediate.
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For the monotonic fragment of utcc, Lemma 4.3.4 can be strengthen in two ways. On
the one hand, the Lemma 4.3.5 states that the process Q to be executed in the next time
unit is the same regardless the input of the process P . On the other hand, Lemma 4.3.6
generalizes this result to infinite sequences of observable transitions.

Lemma 4.3.5 (Monotonic Input Invariance). Let P,Q be monotonic processes and d be a

constraint such that P
(d,d∧e)
====⇒s Q ‖ tell(⊖(d ∧ e)). For all future-free formula d′,

P
(d′,d′∧e)
====⇒ s Q ‖ tell(⊖(d′ ∧ e))

Proof. Directly from the proof of Lemma 4.3.4 and using the fact that P does not have
occurrences of unless processes.

Lemma 4.3.6 (Monotonic Input Insensitiveness). Let P be a monotonic process and u, v, w

be past-monotonic sequences. If P
(w,w∧v)
====⇒s then P

(u,u∧v)
====⇒s.

Proof. Immediate by repeated applications of the Lemma 4.3.5.

For the monotonic fragment it is also possible to relate the behavior of the process P and
the behavior of P [~t/~x]. This is central to prove the semantic correspondence of the symbolic
and the operational semantics when considering the case of the abstraction operator. Before
doing this, we need the Lemma 4.3.7 that shows that P [~t/~x] and (local ~x) (P ‖! tell(~x = ~t))

behave the same much like in logic F [~t/~x] ≡ ∃~x(F ∧ �~x = ~t).
Recall that the substitution [~t/~x] is said to be admissible if the variables in ~x do not

appear in ~t, i.e., adm(~x,~t) (see Convention 3.1.1). Recall also that ∼io is the input-output
equivalence in Definition 3.7.1.

Lemma 4.3.7. Let P be a utcc process and ~x be a sequence of pairwise distinct variables.

Let ~t ∈ T |~x| and [~t/~x] be an admissible substitution. We have the following

1. P [~t/~x] ∼io (local ~x) (P ‖! tell(~x = ~t))

2. P [~t/~x] ∼io
s (local ~x) (P ‖! tell(~x = ~t))

Proof. We only prove (1). The proof of (2) is analogous but considering instead the symbolic
reduction relation.

(⇒) We shall prove that for any c, if P [~t/~x]
(c,c′)

====⇒ P ′[~t/~x] then (local ~x) (P ‖! tell(~x =

~t))
(c,c′)

====⇒ (local ~x) (P ′ ‖! tell(~x = ~t)). The conclusion follows from repeated appli-
cations of the following reasoning.

Assume by alpha conversion that ~x /∈ fv(c). Notice that ~x does not occur free nei-
ther in P [~t/~x] nor in (local ~x) (P ‖! tell(~x = ~t)). One can show that if 〈P [~t/~x], c〉 −→∗

〈P ′[~t/~x], c′〉 6−→ then it must be the case that 〈P ‖ tell(~x = ~t), c〉 −→∗ 〈P ′, c′ ∧ ~x = ~t〉 6−→.
Since ~x /∈ fv(c), one can verify that

〈(local ~x) (P ‖! tell(~x = ~t)), c〉 −→∗ 〈(localx; c′∧~x = ~t) (P ′ ‖ next ! tell(~x = ~t)), c′′〉 6−→

where c′′ = ∃~x(c′ ∧ ~x = ~t) = c′[~t/~x]. From ~x /∈ fv(c) ∪ fv(P [~t/~x]) and the fact that
〈P [~t/~x], c〉 −→∗ 〈P ′[~t/~x], c′〉 we derive that ~x /∈ fv(c′) and then, c′′ = c′. By noticing

that F (Q[~t/~x]) ≡ F (Q)[~t/~x] we conclude P [~t/~x]
(c,c′)

====⇒ F (P ′[~t/~x]) and

(local ~x) (P ‖! tell(~x = ~t))
(c,c′)

====⇒ (local ~x) (F (P ′) ‖! tell(~x = ~t))
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(⇐) The only if part can be obtained analogously by reversing the proof of the “if” case.

Now we are ready to relate the behavior of the processes P and P [~t/~x].

Lemma 4.3.8. Let P be a monotonic process and w, w′ be past-monotonic sequences such

that ~x /∈ fv(w). If P
(w,w′)
====⇒s and [~t/~x] is an admissible substitution, then P [~t/~x]

(w,w′[~t/~x])
====⇒ s

Proof. Assume that [~t/~x] is an admissible substitution. Let w = e1.e2.e3..., w′ = e′1.e
′
2.e

′
3...

and assume that P
(w,w′)
====⇒s, i.e., there is a derivation of the form

P = P1
(e1,e′

1)====⇒s P2
(e2,e′

2)====⇒s P3
(e3,e′

3)====⇒s . . .

Let v = (~x = ~t)ω = d1.d2.d3... (see Notation 4.2.2). By Lemma 4.3.6 there exist P ′
1, P

′
2, P

′
3, ...

such that

P1 = P ′
1

(e1∧d1,e′
1∧d1)

====⇒ s P ′
2

(e2∧d2,e′
2∧d2)

====⇒ s P ′
3

(e3∧d3,e′
3∧d3)

====⇒ s . . .

Let Q =! tell(~x = ~t). Since v = (~x = ~t)ω, one can verify that

P ′
1 ‖ Q

(e1,e′
1∧d1)

====⇒ s P ′
2 ‖ Q ‖ tell(⊖(d1))

(e2,e′
2∧d2)

====⇒ s P ′
3 ‖ Q ‖ tell(⊖(d2))

(e3,e′
3∧d3)

====⇒ s . . .

Let w′′ = e′′1 , e′′2 .e′′3 ... such that e′′i = e′i ∧ di. Since w′′ is past-monotonic we have

e′′1 = e′1 ∧ (~x = ~t)

e′′2 = e′2 ∧ (~x = ~t) ∧ ⊖(~x = ~t)

. . .

e′′n = e′n ∧ (~x = ~t)
∧

1≤j≤n−1

⊖j(~x = ~t)

Since ~x /∈ fv(w), we must have a derivation of the form

(local ~x) (P ′
1 ‖ Q)

(e1,∃~xe′′
1 )

====⇒ s (local ~x;⊖e′′1) (P ′
2 ‖ Q)

(e2,∃~xe′′
2 )

====⇒ s (local ~x;⊖e′′2) (P ′
3 ‖ Q)

. . .

From the fact that ∃~x(F ∧ �~x = ~t) = F [~t/~x] for any formula F , ∃~xe′′1 = e′1[~t/~x]. By
definition of the symbolic future function, e′i |=T (∆) ⊖(e′i−1) for i > 1 and then

∃~xe′′i ≡ ∃~x(e′i ∧ ~x = ~t
∧

1≤j≤i−1

⊖j(~x = ~t))

≡ ∃~x(e′i ∧ ~x = ~t ∧ ⊖(e′i−1 ∧ ~x = ~t) ∧ ⊖2(e′i−2 ∧ ~x = ~t) ∧ ... ∧ ⊖i−1(e′1 ∧ ~x = ~t))

≡ (e′i ∧ ⊖(e′i−1) ∧ · · · ∧ ⊖i−1(e′1))[~t/~x] ≡ e′i[~t/~x]

By Lemma 4.3.7, P [~t/~x] ∼io
s (local ~x) (P ‖! tell(~x = ~t)) and we conclude P [~t/~x]

(w,w′[~t/~x])
====⇒ s.

4.4 Relating the SOS and the Symbolic Semantics

This section is devoted to proving the correspondence between the operational and the
symbolic semantics. Recall that while the operational semantics outputs basic constraints,
the symbolic semantics outputs future-free formulae. Then, we shall show that the basic
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constraints entailed from the operational and the symbolic outputs of a process are the
same.

We shall proceed as follows. We first show how the local variables ~x in a process of the
form (local ~x; c)Q can be replaced by “fresh variables”. That is, variables that do not appear
elsewhere in a process or the store. We do this in a similar way as existential quantifiers
are eliminated in first-order formulae by Skolemization. Then, relaying in a previous result
in CCP, we show that the output of P and that of the resulting process P ′ without local
binders are the same when existentially quantifying on the fresh variables. Next, we give
a simple characterization of the operational and the symbolic outputs of a process without
local operators. Finally, appealing to this characterization and the lemmata in the previous
section we establish the semantic correspondence in Theorem 4.4.1.

4.4.1 Elimination of local processes

In [Mendler 1995] and [Nielsen 2002b] it was shown that the semantics of the local operator
can be redefined by making use of fresh variables in each transition. As in [Mendler 1995],
we use the notion of fresh variable meaning that it does not occur elsewhere in a process or
the store. This change in the semantics will allow us to get rid of the local operators, thus
simplifying the proof of the correspondence between de SOS and the Symbolic semantics.

Assume that the set of variables V is partitioned into two infinite sets F and V − F .
We shall assume that the fresh variables are taken from F and that no input from the
environment or process, other than the ones generated when reducing a local process, can
contain variables in F . Following [Mendler 1995], one can redefine the rule for the local

operator as follow:

R′
LOC

〈P [~y/~x], d ∧ c[~y/~x]〉 −→ 〈P ′, d′〉 ~y is fresh

〈(local ~x; c) P, d〉 −→ 〈P ′, d′〉

The fresh variables introduced by R′
LOC are not to be visible from the outside. Therefore,

we hide the variables in F by existential quantification. More precisely, we can replace the
rule for the observable transitions ROBS by the rule

R′
OBS

〈P, c〉 −→∗ 〈Q, d〉 6−→

P
(c,∃Fd)
====⇒ F (Q)

In the sequel we provide a map from a process P to a process P ′ without occurrences
of local operators such that P and P ′ are (symbolic) input-output equivalents. The idea is
to replace P = (local ~x; c) Q with P ′ = (tell(c) ‖ Q)[~x′/~x] guaranteeing that the variables
~x′ ∈ F |~x| are fresh in the sense above.

Mapping local variables into fresh variables. Recall that in the process of Skolem-
ization in first-order logic, existentially quantified variables are replaced by functions de-
pending on the variables bound by universal quantifiers preceding the existential quantifier.
Similarly, in the process (local ~x; c)Q we shall syntactically substitute the variables ~x by a
term of the form f~x(·). This term denotes a function that takes as argument the variables
bound in c and Q by abs operators and return a vector ~x′ of fresh variables.

Let us illustrate this situation with an example. Assume the following process

P = (abs x; c) (local y) tell(out(x, y))

For each term t such that the current store entails c[t/x], the process P must have a
new fresh variable y′ and then execute tell(out(t, y′)). Let fy : T → F be a function from
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terms in the constraint system to fresh variables. We get rid of the local process in P by
syntactically replacing y by the term fy(x) (rather than the application of fy to x), notation
{fy(x)/y}. We then obtain P ′ = (abs x; c) tell(out(x, fy(x))). As expected, if the current
store entails c[t/x], the process tell(out(t, f(t))) is executed. Decreeing fy to be injective,
we guarantee that fy(t) 6= fy(t′) for two different terms t and t′.

Remind that ~x; ~y denotes the concatenation of the vector ~x and ~y (Convention 3.1.1).
The following definition formalizes this idea.

Definition 4.4.1. Let P be a utcc process in the normal form of Definition 4.3.1 without

replications and FL[[·]]~x : Proc × P(V) ⇀ Proc be defined as:

FL[[P ]]~x =






skip if P = skip

tell(c) if P = tell(c)

FL[[Q1]]~x ‖ FL[[Q2]]~x if P = Q1 ‖ Q2

(abs ~y; c) FL[[Q]]~x;~y if P = (abs ~y; c) Q

(tell(c) ‖ FL[[Q]]~x){f~y(~x)/~y} if P = (local ~y; c) Q

nextFL[[Q]]~x if P = nextQ

unless c nextFL[[Q]]~x if P = unless c nextQ

where f~y(~x) : T |~x| → F |~y|. The function f~y(·) is assumed to be injective. Furthermore,

given two such functions f~y and f~z, we assume ran(f~y) ∩ ran(f~z) = ∅.

Let us point out some details about the previous definition.

1. In FL[[P ]]~x we require P to be in normal form. Then, the variables ~y in a process of the
form (local ~y; c) Q or (abs ~y; c) Q do not occur quantified elsewhere (see Definition
4.3.1). This prevents us from replacing two different local variables by the same
function. This also explains why it is not necessary the side condition ~x ∩ ~y = ∅ in
the rule for the abstraction operator in FL[[·]].

2. The function FL[[P ]]~x is not defined for P =!Q. The reason is that it would be
necessary to expand P into the infinite parallel composition Q ‖ nextQ ‖ next 2Q ‖
. . . to obtain a set of different fresh variables in each time unit. Take for example
R = tell(c(y)) ‖ next tell(c(y)) and P = (local y) R where c(y) denotes a constraint
c such that y ∈ fv(c). The intuitive behavior of !P is then to create a different local
variable y in each time unit and then execute R with this new local variable. Assume
we were to define

FL[[!P ]]~x =!FL[[P ]]~x

Under this definition, we obtain FL[[!P ]]~x =!R{fy/y} where a unique fresh variable
(fy) is created. Therefore, in the second time unit we observe only c(fy) instead of
c(y1) ∧ c(y2) for two different fresh variables y1, y2 as expected.

3. Finally, as intended, the process Q = FL[[P ]]~x does not contain occurrences of local

operators.

The following lemma states the correspondence between the behavior of the processes
P and FL[[P ]].

Lemma 4.4.1. Let FL[[·]] be as in Definition 4.4.1 and P be a process in the normal form

of Definition 4.3.1 without replications.
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1. P = P1
(a1,b1)
====⇒ P2

(a2,b2)
====⇒ ...Pi

(ai,bi)
====⇒ if and only if

FL[[P ]]∅ = P ′
1

(a1,b′1)====⇒ P ′
2

(a2,b′2)====⇒ ...P ′
i

(ai,b
′
i)====⇒

where bj = ∃F (b′j) for 0 < j ≤ i.

2. P = P1
(a1,e1)
====⇒s P2

(a2,e2)
====⇒s P3

(a3,e3)
====⇒s . . . if and only if

FL[[P ]]∅ = P ′
1

(a1,e′
1)====⇒s P ′

2

(a2,e′
2)====⇒s P ′

3

(a3,e′
3)====⇒s . . .

where ei = ∃F (e′i) for i > 0.

Proof. Let P ′ = (local ~y; c) Q be a subterm of the process P . By construction of FL[[P ]]∅, we
can show that in FL[[P ′]]~x = P ′′ = (tell(c) ‖ FL[[Q]]~x){f~y(~x)/~y}, the variables in the range
of f~y do not appear elsewhere. The lemma then follows from the semantic correspondence
of the standard local operator of CCP and the one defined by using fresh variables in
[Mendler 1995, Nielsen 2002b].

4.4.2 Local-Free Fragment

In this section we describe a simpler normal form of processes without occurrences of local
and replicated constructs. Then, we show that the output of this kind of processes can be
easily characterized in both the operational and the symbolic semantics. This shall ease
the proof of the forthcoming results.

The Local-Free Fragment. We say that a process P is in local-free normal form if P

does not have occurrences of local operators and for all process of the form (abs ~x; c) Q in
P , Q is either tell(c) or nextQ′. More precisely,

Definition 4.4.2 (Local-Free Normal Form). We say that a process P is in Local-Free
Normal Form if P takes the form

P ≡ tell(c) ‖
∏

j∈J

(abs ~yj ; cj) tell(dj) ‖
∏

j′∈J′

(abs ~y′
j ; c

′
j)nextP ′

j ‖
∏

k∈K

nextPk ‖
∏
l∈L

unless cl nextPl

where each P ′
j,Pk and Pl are in local-free normal form.

The following lemma states that for all process without replication, an input-output
equivalent process in local-free normal form can be found. In this lemma, we shall use
the standard notion of process context: a process context is a process expression with a
single hole, represented by E [·], such that placing a process in the hole yields a well-formed
process.

Lemma 4.4.2. Let P be an abstracted-unless free process without local nor replicated

processes. Then, there exists P ′ in local-free normal form such that for all context E [·],
E [P ] ∼io E [P ′] and E [P ] ∼io

s E [P ′].

Proof. Let P be an abstracted-unless free process in the normal form of Definition 4.3.1
without local nor replicated processes:

P ≡
∏
i∈I

tell(ci) ‖
∏

j∈J

(abs ~yj ; cj) Pj ‖
∏

k∈K

nextPk ‖
∏
l∈L

unless cl nextPl
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We shall show that we can obtain P ′ in the desired normal form. Let E [·] be an arbitrary
context.

It is easy to see that E [
∏
i∈I

tell(ci)] ∼
io E [tell(c)] and E [

∏
i∈I

tell(ci)] ∼
io
s E [tell(c)] where

c =
∧
i∈I

ci. Notice that in the case I = ∅, we have c = true.

Now we have to show that a process of the form P ′ = (abs ~x; c)Q can be decomposed
such that Q is either tell(c) or nextQ′. If Q is of the form tell(c) or nextQ′ we are done.
If this is not the case, we have to consider two cases: Q = Q1 ‖ Q2 and Q = (abs ~y; d) Q′.
We proceed separately for the case of the operational and the symbolic semantics.

∼io Let Q = Q1 ‖ Q2. We can verify that E [P ′] ∼io E [(abs ~x; c)Q1 ‖ (abs ~x; c) Q2] by
noticing that if the current store entails c[~t/~x], then both Q1[~t1/~x] and Q2[~t1/~x] are
eventually executed.

Now assume Q = (abs ~y; d) Q′. Note that Q′[~t1/~x, ~t2/~y] is executed only if the
current store entails both c[~t1/~x] and d[~t1, ~t2/~x, ~y]. Then, we can show that E [P ′] ∼io

E [(abs ~x; ~y; c ∧ d) Q′] assuming, by alpha conversion, that ~y /∈ fv(c).

∼io
s For the case Q = Q1 ‖ Q2, we use the fact that ∀~x(c ⇒ (c1∧c2)) ≡ ∀~x(c ⇒ c1)∧∀~x(c ⇒

c2) to show E [P ′] ∼io
s E [(abs ~x; c)Q1 ‖ (abs ~x; c) Q2].

Now assume Q = (abs ~y; d) Q′. By alpha conversion we assume ~y /∈ fv(c). We can
use the fact that ∀~x(c ⇒ (∀~y(d ⇒ e))) ≡ ∀~x∀~y(c ∧ d ⇒ e) (if ~y /∈ fv(c)) to show that
E [P ′] ∼io

s E [(abs ~x; ~y; c ∧ d) Q′].

Notice that in Definition 4.4.2 and then in Lemma 4.4.2 we do not consider replicated
processes. This is due to two reasons. Firstly, our mechanism to remove local operators
cannot handle replicated processes (Lemma 4.4.1). Secondly, in the general case, it is not
possible to find the local-free normal form for replicated processes. To see this, take for
example the local-free processes R = (abs y; d) !Q and P = (abs x; c) !R. One can de-
compose P as (abs x; c)R ‖ (abs x; c)next !R and find the normal form for (abs x; c) R.
Nevertheless, (abs x; c)next !R is not in normal form (since R is not in normal form).
Then, we have to unfold next !R into next (R ‖ next !R) where next !R is not, once
again, in normal form.

Outputs in Normal Form Now we can characterize the (symbolic) outputs of a process
in Local-Free normal form.

Lemma 4.4.3 (Output in Normal Form). Let P be an abstracted-unless free process without

replicated nor local processes in local-free normal form:

P ≡ tell(c) ‖
∏

j∈J

(abs ~yj ; cj) tell(dj) ‖
∏

j′∈J′

(abs ~y′
j ; c

′
j)nextP ′

j ‖
∏

k∈K

nextPk ‖
∏
l∈L

unless cl nextPl

If P
(a,b)

====⇒ Q, then for all j ∈ J and j′ ∈ J ′ there exists Tj ⊆fin T | ~yj |, T ′
j ⊆fin T | ~y′

j | and

L′ ⊆ L such that

b ≡ c ∧
∧

j∈J

(
∧

~t∈Tj

dj [~t/~yj ]

)

Q ≡
∏

j′∈J

∏
t′∈T ′

j

(
P ′

j [
~t′/~y′

j ]
)
‖
∏

k∈K

Pk ‖
∏

l∈L′

Pl
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Proof. The proof is immediate from the rules in Table 3.1. The sets Tj and T ′
j rep-

resents the set of terms making valid the guards cj and c′j in (abs ~yj ; cj) tell(dj) and

(abs ~y′
j ; c

′
j)nextP ′

j respectively. Notice that we can assume Tj and T ′
j to be finite sets

since we have an observable transition P
(a,b)

====⇒ Q. Finally, L′ corresponds to the subset
of unless processes whose guard cl cannot be entailed from b.

Similarly, we characterize the symbolic output of processes in Local-Free Normal Form.

Lemma 4.4.4 (Symbolic Output in Normal Form). Let P be an abstracted-unless free

process without replicated nor local processes in local-free normal form

P ≡ tell(c) ‖
∏

j∈J

(abs ~yj ; cj) tell(dj) ‖
∏

j′∈J′

(abs ~y′
j ; c

′
j)nextP ′

j ‖
∏

k∈K

nextPk ‖
∏
l∈L

unless cl nextPl

If P
(a,e)

====⇒s Q, then there exists L′ ⊆ L such that

e ≡ c ∧
∧

j∈J

(
∀ ~yj

(cj ⇒ dj)
)

Q ≡ tell(⊖e) ‖
∏

j′∈J

(abs ~yj
′;⊖c′j) P ′

j ‖
∏

k∈K

Pk ‖
∏

l∈L′

Pl

Proof. The proof is immediate from the rules in Table 4.1.

Recall that a process of the form (abs ~x; c)nextP does not exhibit any internal symbolic
reduction since nextP does not evolve during the current time unit. Nevertheless, in the op-
erational semantics, the process above evolves into a set of processes of the form nextP [~t/~x].

This explains the difference between the residual process Q =
∏

j′∈J

∏
t′∈T ′

j

(
P ′

j [
~t′/~y′

j ]
)

in

Lemma 4.4.3 and Q′ =
∏

j′∈J

(abs ~yj
′;⊖c′j)P ′

j in Lemma 4.4.4. The following lemma re-

lates Q and Q′ by showing that the symbolic outputs of both processes entail the same
basic constraints.

Lemma 4.4.5. Let S, R be abstracted-unless free processes of the form

S = tell(⊖(e)) ‖
∏

j∈J

(abs ~yj ;⊖cj) Qj ‖ P

R =
∏

j∈J

∏
t∈Tj

(
Qj [~t/~yj ]

)
‖ P

such that for all j ∈ J , Tj = {~t | e |=T cj [~t/ ~xj ]} ⊆fin T | ~xj |. Assume that P,Qj are processes

without occurrences of past formulae and let α be a sequence of constraints. If S
(α,w)

====⇒s

and R
(α,w′)
====⇒s, then for all basic constraint d and i > 0, w(i) |=T d iff w′(i) |=T d.

Proof. For the sake of clarity and without loss of generality, we shall assume J to be a
singleton. The following arguments straightforwardly extend to the general case |J | > 1.

Let α = a1.a2.a3..., T ′ = {~t | e |=T c[~t/~y]} ⊆fin T | ~xj | and

S = tell(⊖(e)) ‖ (abs ~y;⊖(c))Q ‖ P

R =
∏

~t∈T ′

Q[~t/~y] ‖ P
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By alpha conversion we can assume ~y /∈ fv(α)∪ fv(P ). Assume the following derivation
of S and R

S = S1
(a1,d1∧g1)
====⇒ s S2

(a2,d2∧g2)
====⇒ s S3

(a3,d3∧g3)
====⇒ s . . .

R = R1
(a1,d′

1∧g′
1)====⇒ s R2

(a2,d′
2∧g′

2)====⇒ s R3
(a3,d′

3∧g′
3)====⇒ s . . .

where d1, d2, d3... and d′1, d
′
2, d

′
3... correspond to the constraints output by the processes

tell(⊖(e)) ‖ (abs ~y;⊖(c))Q and
∏

~t∈T

Q[~t/~y] respectively; and g1.g2.g3... and g′1.g
′
2.g

′
3... cor-

respond to the output of P in S and R, respectively.
Recall that the symbolic future function Fs transfers the final store e to the next time

unit as ⊖(e). Given that ~y /∈ fv(α)∪ fv(P ), by the rule RABS−SYM and the definition of Fs,
there exists f1, f2, ... such that

Q = Q1
(a1,f1)
====⇒s Q2

(a2,f2)
====⇒s Q3

(a3,f3)
====⇒s . . .

and for i > 0, di = ⊖i−1 ⊖ (e) ∧ ∀~y(⊖i−1 ⊖ (c) ⇒ fi) = ⊖i(e) ∧ ∀~y(⊖i(c) ⇒ fi).
Since S, R are abstracted-unless free, then Q is monotonic. By Lemma 4.3.8 we can

show that there exists Q′
1, Q

′
2, Q

′
3... such that

∏

~t∈T

Q[~t/~y] = Q′
1

(a1,d′
1)====⇒s Q′

2

(a2,d′
2)====⇒s Q′

3

(a3,d′
3)====⇒s . . .

where d′i =
∧

~t∈T ′

fi[~t/~y].

Given that P and Q do not have occurrences of past formulae, we must have that for
i > 0, all the past-formulae in fi and gi are guarded by at most i − 1 past operators. By
hypothesis T ′ = {~t | e |=T c[~t/~y]} ⊆fin T |~y| and then, we can show that for all basic
constraint d,

⊖i(e) ∧ ∀~y(⊖i(c) ⇒ fi) |=T d iff
∧

~t∈T ′

fi[~t/~y] |=T d

Hence di |=T d iff d′i |=T d. By Lemma 4.3.4 we deduce gi = g′i. We then conclude
di ∧ gi |=T d iff d′i ∧ g′i |=T d.

Summing up the previous results, we have characterized the (symbolic) output of pro-
cesses without local nor replicated processes. We have proven that the seemingly different
residual processes resulting from both semantics exhibit the same symbolic outputs. The
final step is then to show that the basic constraints entailed from both the symbolic and
the operational outputs are the same. The following lemma proves that fact to conclude
then with the correspondence theorem.

Lemma 4.4.6. Let P be a abstracted-unless free process without local nor replicated pro-

cesses and a be a basic constraint. If P
(a,b)

====⇒ Q and P
(a,e)

====⇒s R then for all basic

constraint c, b |=T c iff e |=T c. Furthermore, for all sequence of constraints α, if Q
(α,w)

====⇒s

and R
(α,w′)
====⇒s, then for i > 0 w(i) |=T c iff w′(i) |=T c.

Proof. By Lemma 4.4.2, there exist S in the following normal form

S = tell(ci) ‖
∏

j∈J

(abs ~yj ; cj) tell(dj) ‖
∏

j′∈J′

(abs ~y′
j ; c

′
j)nextP ′

j

‖
∏

k∈K

nextPk ‖
∏
l∈L

unless cl nextPl
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such that S ∼io P and S ∼io
s P . By hypothesis, P

(a,b)
====⇒ Q and P

(a,e)
====⇒s R. Since

S ∼io P and S ∼io
s P , by Lemmas 4.4.3 and 4.4.4, we have

b ≡ ci ∧
∧

j∈J

(
∧

~t∈Tj

dj [~t/~yj ]

)

Q ≡
∏

j′∈J

∏
t′∈T ′

j

(
P ′

j [
~t′/~y′

j ]
)
‖
∏

k∈K

Pk ‖
∏

l∈L′

Pl

e ≡ ci ∧
∧

j∈J

(
∀yj

(cj ⇒ dj)
)

R ≡ tell(⊖e) ‖
∏

j′∈J

(abs ~yj
′;⊖c′j)P ′

j ‖
∏

k∈K

Pk ‖
∏

l∈L′′

Pl

where for all j ∈ J , the set Tj ⊆fin T | ~yj | corresponds to the set of terms {~t | b |= cj [~t/~yj ]}.
One can prove that b |=T c iff e |=T c for all basic constraint c. Hence L′ = L′′.

Since each Pk and Pl do not have occurrences of past formulae, by Lemma 4.4.5 we

conclude that for all sequence of basic constraints α, if Q
(α,w)

====⇒s and R
(α,w′)
====⇒s, then

w(i) |=T c iff w′(i) |=T c for i > 0 .

Notice that in the two previous lemmata we used the notation |=T instead of |=T (∆).
Recall that we write |=T when ∆ = ∅. The following observation justifies this fact.

Observation 4.4.1 (Entailment and the Empty Theory). When a set of axioms ∆ is

assumed, it is possible that the formula representing the symbolic output of a process may

entail more basic constraints than the constraint output by the operational semantics. This

is due to the fact that once a theory ∆ is considered, a particular interpretation of the

predicates is assumed. Then, one may have that F |=∆ c by appealing to the axioms in ∆

and not only to the classical inference rules in logic.

Let for example ∆ be the axioms in Peano arithmetic and let

P = when x ≥ y do tell(d) ‖ when x < y do tell(d)

Operationally, we know that P
(true,true)
====⇒ and symbolically P

(true,e)
====⇒s where

e = (x ≥ y ⇒ d) ∧ (x < y ⇒ d)

Using ∆, we know that ¬(x ≥ y) = x < y and ¬(x < y) = x ≥ y. Therefore, e |=∆ d.

It is worth noticing that if ∆ = ∅, from ¬(x ≥ y) is not possible to entail x < y and then

e 6|= d as above.

Notice also that processes are only allowed to add basic constraints (see Definition 3.1.2).

Then, a process cannot add a constraint of the form ¬c.

This phenomenon was also studied in [de Boer 1997] where the authors enriched the logic

of the constraint system to allow for a correspondence between the programming constructs

in CCP and logical expressions as e above.

Taking into account the previous observation, in the following results we assume only
constraint systems where the theory ∆ is empty.

4.4.3 Semantic Correspondence.

Now we are ready to state the main result of this section: The semantic correspondence
between the operational and the symbolic semantics.
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Theorem 4.4.1 (Semantic Correspondence). Let P be an abstracted-unless free process.

Suppose that P = P1
(a1,b1)
====⇒ P2

(a2,b2)
====⇒ . . . Pi

(ai,bi)
====⇒ and P = P ′

1

(a1,e1)
====⇒s P2

′ (a2,e2)
====⇒s

. . . P ′
i

(ai,ei)
====⇒ . Then for every basic constraint c and j ∈ {1, . . . , i}, dj |= c iff ej |=T c.

Proof. Since we are considering the execution of P until the i-th time unit, we can unfold
the processes of the form !Q into Q ‖ nextQ ‖ ... ‖ next i−1Q. By Lemma 4.4.1 we can
find P ′ such that P ′ ∼io P and P ′ ∼io

s P without local processes. The proof follows directly
by repeated applications of Lemma 4.4.6.

4.5 Summary and Related Work

In this chapter we introduced a symbolic semantics for the utcc calculus aiming at solving
the infinite-branching problem of the operational semantics when considering non well-
terminated processes. This semantics, for all process, is able to produce an output regardless
the input from the environment. The key idea is to represent finitely with temporal formulae
the infinitely many constraints output by the operational semantics. This way, the behavior
of non well-terminated process can be observed. We proved that for the case of well-
terminated processes, the output of both semantics entail the same basic constraints.

An application of this semantics is given in Chapter 8 where we model security protocols
as utcc processes. These processes are non well-terminated since the model of the attacker
may generate an unbound number of messages (constraints). This then shows the relevance
of the symbolic characterization of utcc processes.

Furthermore, in Chapter 7, we shall define the symbolic input-output relation of a
process and we shall show that this relation is a closure operator [Scott 1982], i.e., an idem-
potent, extensive and monotonic function when P is a monotonic process. We then give a
denotational semantics capturing the set of fixed points of such an operator and we show
that the behavior of P can be compositionally described.

The material of this chapter was originally published as [Olarte 2008c].

Related Work. In [Boreale 1996] a symbolic semantics is introduced to deal with the
infinite-branching reduction relation in the π-calculus caused by infinitely many substitu-
tions. Similarly, the works in [Boreale 2001b, Fiore 2001] propose a symbolic semantics for
the spi-calculus to give a compact representation of the traces generated by the execution
of a protocol. Roughly speaking, boolean constraints over names represent conditions the
transition must hold to take place.

In the context of CCP based languages, in [Buscemi 2008] a symbolic characterization
of the cc-pi calculus [Buscemi 2007] is given. Recall that cc-pi is a language combining the
name passing mechanisms of the π-calculus and the CCP model. The constraint systems in
cc-pi relies on named c-semirings, i.e. c-semirings [Bistarelli 1997] enriched with a notion
of support to express the relevant names of a constraint.

The key idea of the symbolic transition system in [Buscemi 2008] is to have labels
specifying the minimum conditions that must hold in order for a transition to take place.
For instance, a process of the form P = ask c then Q under a store d exhibits a symbolic
transition of the form P −→c

′

Q where c′ is the least restrictive constraint allowing P to evolve.
The constraint c is obtained by means of the division operator (÷) of the c-semiring i.e.,
c′ = d÷c. This symbolic semantics allows the authors to define an efficient characterization
of open bisimulation [Sangiorgi 1996] for cc-pi.
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Unlike the works mentioned above, the symbolic semantics we propose here not only deal
with the infinite-branching problem but also with temporal issues and divergent internal
computation in the operational semantics. To our knowledge, our proposal is the first
semantics in concurrency theory using temporal constraints as finite representations of
substitutions.



Chapter 5

Temporal Logic Characterization

of utcc Processes

In addition to the usual behavioral techniques from process calculi, CCP-based calculi
enjoy a declarative view of processes based upon logic [Saraswat 1993, Saraswat 1994,
Mendler 1995, Fages 2001, Nielsen 2002a, de Boer 1997]. This makes CCP a language suit-
able for both the specification and the implementation of programs. In this chapter, we
show that the utcc calculus is a declarative model for concurrency: utcc processes can be
seen, at the same time, as computing agents and first-order linear-time temporal logic for-
mulae (FLTL) [Manna 1991]. We do this by presenting a compositional encoding from utcc

processes into FLTL formulae. Then, we prove that the (symbolic) outputs of a process
P entail the same basic constraints that the FLTL formula A corresponding to P . That
is, the operational point of view of processes and their logic characterization correspond to
each other.

The logical characterization of utcc processes we propose here allows for using well-
established techniques from FLTL for reachability analysis of utcc processes. For example,
we can verify if a given security protocol modelled in utcc can reach a state where a secrecy
property is violated. We later illustrate this scenario in Chapter 8.

Furthermore, in Chapter 6, we shall present a theoretical application of the logical view
of utcc processes as FLTL formulae: We shall prove the undecidability of the validity
problem for the monadic fragment of FLTL without equality nor function symbols.

5.1 utcc processes as FLTL formulae

In this section we give a compositional encoding from utcc processes into FLTL formulae.
We shall use the past-free fragment of the Pnueli’s FLTL [Manna 1991] in Definition 2.4.1.
More precisely, we shall use the formulae generated by the following syntax:

F,G, . . . := c | F ∧ G | ¬F | ∃xF | ◦F | �F.

Recall that c is a basic constraint and the modalities ◦F and �F state, respectively, that
F holds next and always. See Definition 2.4.2 for the semantics of this logic.

The logic characterization of utcc is based upon a compositional mapping TL[[·]] from
processes to FLTL formulae given below.
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Definition 5.1.1. Let TL[[·]] be a map from utcc processes to FLTL formulae given by:

TL[[P ]] =






true if P = skip

c if P = tell(c)

∀~y(c ⇒ TL[[Q]]) if P = (abs ~y; c) Q

TL[[Q1]] ∧ TL[[Q2]] if P = Q1 ‖ Q2

∃~x(c ∧ TL[[Q]]) if P = (local ~x; c)Q

◦TL[[Q]] if P = nextQ

c ∨ ◦TL[[Q]] if P = unless c nextQ

✷TL[[Q]] if P =!Q

Let us give some intuitions about the previous encoding. Since skip cannot add any
constraint, its corresponding formula is true. Similarly, tell(c) can only output c. Then,
we map this process to the formula c.

The process P = (abs x; c) Q executes Q[~t/~x] such that c[~t/~x] can be entailed from
the current store. Then, basic constraints that can be deduced from the output of P must
correspond to formulae of the form TL[[Q]][~t/~x]. Therefore, we map P to the universally
quantified formula ∀~x(c ⇒ TL[[Q]]).

The parallel composition P1 ‖ P2 is mapped to the conjunction A = TL[[P1]] ∧ TL[[P2]]:
A constraint c can be entailed from A if and only if the output produced by the interaction
of P1 and P2 can entail c.

The local process P = (local ~x; c) Q is dual to the abstraction. It corresponds to the
existentially quantified formula A = ∃~x(c∧TL[[Q]]). The intuition is that the output of the
processes P and P ′ = tell(c) ‖ Q differ only in that P hides the information produced on
the variables in ~x.

For the case of the temporal constructs, let A = TL[[Q]]. We map the process nextQ

to the formula ◦A. If P = unless c nextQ, either the guard c holds in the current time
interval or the formula A must hold in the next time interval. Then P is mapped to c∨◦A.
Finally, the replication !Q is mapped to �A, meaning that A must hold in all time intervals.

5.2 FLTL Correspondence

This section is devoted to proving the relation between the symbolic outputs of P and the
basic constraints entailed by its corresponding formula A = TL[[P ]]. Recall that we say that
P eventually outputs c, notation P ⇓c

s, if P exhibits a sequence of observable transitions

of the form P = P1
(true,e1)
====⇒ s P2

(true,e2)
====⇒ s ....Pi

(true,ei)
====⇒s and ei |=T c (see Definition

4.2.1). Recall also that the modality ✸F is an abbreviation of ¬�¬F , intuitively meaning
that eventually the formula F holds. Roughly speaking, we shall prove that for any basic
constraint c, P ⇓c

s if and only if A |=T ✸c.
We shall also extend this result for the operational semantics when considering well-

terminated processes.

5.2.1 Symbolic Reductions Correspond to FLTL Deductions

We start by proving that symbolic reductions correspond to logic deductions. More pre-
cisely,

Lemma 5.2.1. Let TL[[·]] be as in Definition 5.1.1 and P be an abstracted-unless free

process. If 〈P, e〉 −→s 〈P ′, e′〉 then TL[[P ]] ∧ e |=T TL[[P ′]] ∧ e′.
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Proof. The proof proceeds by induction on (the depth of) the inference of 〈P, e〉 −→s

〈P ′, e′〉.

• Using RTELL: In this case, P = tell(c), P ′ = skip and e′ = e ∧ c. We then trivially
have e ∧ c |=T e ∧ c.

• Using RPAR: Then P = Q ‖ R and P ′ = Q′ ‖ R where 〈Q, e〉 −→s 〈Q′, e′〉 by
a shorter inference. We know by induction that TL[[Q]] ∧ e |=T TL[[Q′]] ∧ e′. By
definition, TL[[Q ‖ R]] = TL[[Q]] ∧ TL[[R]]. We then conclude TL[[Q]] ∧ TL[[R]] ∧ e |=T

TL[[Q′]] ∧ TL[[R]] ∧ e′.

• Using RABS: Then P = (abs ~x; c)Q, P ′ = (abs ~x; c) Q′ and e′ = e ∧ ∀~x(c ⇒ d). By
alpha conversion we can assume ~x /∈ fv(e) and then we have the following derivation

〈Q, e〉 −→s 〈Q′, e ∧ d〉

By inductive hypothesis we have TL[[Q]] ∧ e |=T TL[[Q′]] ∧ e ∧ d.

One can prove that given F, F ′ s.t. F |=T F ′, it must be the case that ∀~x(c ⇒ F ) |=T

∀~x(c ⇒ F ′). We then derive that

∀~x(c ⇒ (TL[[Q]] ∧ e)) |=T ∀~x(c ⇒ (TL[[Q′]] ∧ e ∧ d))

Since ~x /∈ fv(e), one can easily show that e |=T ∀~x(c ⇒ e). Using the equation above,
we can deduce the following

∀~x(c ⇒ TL[[Q]]) ∧ e |=T ∀~x(c ⇒ (TL[[Q′]] ∧ d)) ∧ e

By definition, TL[[(abs ~x; c) Q]] = ∀~x(c ⇒ TL[[Q]]). Then we conclude

TL[[(abs ~x; c)Q]] ∧ e |=T TL[[(abs ~x; c)Q′]] ∧ e ∧ ∀~x(c ⇒ d)

• Using RLOC. We must have P = (local ~x; c) Q and a derivation of the form

〈Q, c ∧ ∃~xe〉 −→s 〈Q′, c′ ∧ ∃~xe〉

Then, e′ = e ∧ ∃~xc′ and P ′ = (local ~x; c′) Q′. By induction,

TL[[Q]] ∧ c ∧ ∃~xe |=T TL[[Q′]] ∧ c′ ∧ ∃~xe

Therefore,
∃~x(c ∧ TL[[Q]]) ∧ ∃~xe |=T ∃~x(c′ ∧ TL[[Q′]]) ∧ ∃~xe

From the fact that e |=T ∃~x(e), we derive the following

∃~x(c ∧ TL[[Q]]) ∧ e |=T ∃~x(c′ ∧ TL[[Q′]]) ∧ e ∧ ∃~x(c′)

By definition, TL[[(local ~x; c) Q]] = ∃~x(c ∧ TL[[Q]]). Given that e′ = e ∧ ∃~x(c′), we
conclude

TL[[(local ~x; c) Q]] ∧ e |=T TL[[(local ~x; c′) Q′]] ∧ e′

• Using RUNL. In this case, P = unless c nextQ, e |=T c, P ′ = skip and e′ = e.
Then, trivially we have TL[[P ]] ∧ e |=T e.
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• Using RREP. Then P =!Q, e = e′ and P ′ = Q ‖ next !Q. By definition of �, for all
formula F , �F |=T F ∧ ◦�F . Then we conclude

�TL[[Q]] ∧ e |=T TL[[Q]] ∧ ◦�TL[[Q]] ∧ e

The previous lemma relates a single step of the symbolic internal reduction relation
(−→s) with deductions in the FLTL. We extend this result to the symbolic observable
relation ( ====⇒s) in the next theorem.

Theorem 5.2.1. Let TL[[·]] be as in Definition 5.1.1. Given a monotonic process P ,

(1) If 〈P, e〉 −→∗
s 〈P ′, e′〉 6−→s then TL[[P ]] ∧ e |=T TL[[P ′]] ∧ e′

(2) If P
(e,e′)

====⇒s Q then TL[[P ]] ∧ e |=T ◦TL[[Q]] ∧ e′.

Proof. (1) is proved by repeated applications of Lemma 5.2.1.
For (2), let e1 = e and assume the following derivation of P1 = P

〈P1, e1〉 −→s 〈P2, e2〉 −→s . . . −→s 〈Pn, en〉 6−→s

Then, e′ = en and Q = Fs(Pn, en). From (1), we have TL[[P1]]∧ e1 |=T TL[[Pn]]∧ en and
therefore TL[[P ]] ∧ e |=T e′. By Proposition 4.3.1, Pn takes the following normal form

Pn ≡ (local ~x; c)

( ∏
j∈J

(abs ~xj ; cj) Pj ‖
∏

k∈K

nextPk

)

By case analysis of the function Fs one can easily prove that

TL[[Pn]] ∧ en |=T ◦TL[[Fs(Pn, en)]]

Let us point out an important issue in the previous theorem.

Remark 5.2.1. Recall that the process P = unless c nextQ is mapped to a formula of

the form F = c∨◦TL[[Q]]. Notice that in general, from F , it is not possible to entail neither

c nor ◦TL[[Q]]. Let us clarify this with a simple example. Assume Q = tell(d) and let e

be a constraint such that e 6|=T c. Then P
(e,e)

====⇒s Q′ ≡ tell(d) ‖ tell(⊖(e)). In this

case, F = TL[[P ]] = c ∨ ◦d. We notice that from the fact that e 6|=T c we cannot conclude

e ∧ F |=T ◦d and then it does not hold that TL[[P ]] ∧ e |=T ◦(Q) – (2) in Theorem 5.2.1.

This can be explained from the fact that e 6|=T c does not imply e |=T ¬c as we pointed

out in Remark 3.2.1.

Consequently, we restricted the previous theorem to the monotonic fragment of utcc.

5.2.2 Deductions in FLTL correspond to Symbolic Reductions

Now we shall study the relation between the basic constraints entailed from A = TL[[P ]] and
those entailed by the symbolic outputs of P . Notice that A may contain future modalities
(i.e. �, ◦) while the output of P in a given time unit, say e′, is a future-free formula. Then,
to establish the relation between FLTL and symbolic reductions, we define a “projection” of
A into a future free formula A′ that replaces with true the subformulae guarded by more
than a given number of next (“◦”). More precisely,
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Definition 5.2.1. Let F be a past-free formula and CutF be defined as

CutF (F, i) =






c if F = c

CutF (F1, i) ⊗ CutF (F2, i) if F = F1 ⊗ F2 and ⊗ ∈ {∧,∨,⇒}
true if F = ◦F1 and i = 0

◦CutF (F1, i − 1) if F = ◦F1 and i > 0

CutF (F1, i) ∧ ◦CutF (�F1, i − 1) if F = �F1

∇CutF (F1, i) if F = ∇F1and ∇ ∈ {∃~x,∀~x}

Intuitively, CutF (F, n) replaces the formulae of the form �F with a finite extension
F ∧ ◦F ∧ ◦2F....∧ ◦nF . Furthermore, it replaces all the subformulae guarded by more than
n occurrences of the next modality (◦) with true.

Let us give a simple example illustrating the function CutF .

Example 5.2.1 (Function CutF ). Let out1(·) and out2(·) be as in Example 3.6.1 and let

P =! (abs x; out1(x))next tell(out2(x)) be a process that sends in the next time unit on

channel out2 every message received (in the current time unit) on channel out1.

We have F = TL[[P ]] = �(∀~x(out1(x) ⇒ ◦ out2(x))). The formula CutF (F, 2) is ob-

tained as follows:

CutF (F, 2) = ∀~x(out1(x) ⇒ ◦ out2(x))∧
◦ ∀~x(out1(x) ⇒ ◦ out2(x))

◦◦∀~x(out1(x) ⇒ true) ∧ ◦◦◦ true

Simplifying the expression above we obtain:

CutF (F, 2) = ∀~x(out1(x) ⇒ ◦ out2(x)) ∧ ◦ ∀~x(out1(x) ⇒ ◦ out2(x))

The following theorem states that in a derivation of the form P
(e,e′)

====⇒s P ′, the output
e′ entails the formula CutF (TL[[P ]], 0). Furthermore it establishes the relation between the
FLTL formulae corresponding to P and P ′.

Theorem 5.2.2. Let TL[[·]] be as in Definition 5.1.1 and P be an abstracted-unless free

process. If P
(e,e′)

====⇒s P ′ then

1. e′ |=T CutF (TL[[P ]], 0)

2. ◦TL[[P ′]] |=T TL[[P ]]

Proof. Assume a derivation of the form P
(e,e′)

====⇒s P ′. We proceed by induction on the
size of P . In each case we prove (1) and (2) above.

• P = skip. Trivial

• P = tell(c). We must have the following derivation

P
(e,e∧c)
====⇒s tell(⊖(e ∧ c))

Let F1 = TL[[tell(c)]] = c and F2 = TL[[tell(⊖(e ∧ c))]] = ⊖(e ∧ c). Then we have (1)
e ∧ c |=T F1 and (2) ◦(F2) |=T F1.
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• P = Q ‖ R. For Q = Q1 and R = R1, we must have the following derivation:

〈Q1, e〉 −→s 〈Q2, e ∧ d2〉 −→
∗
s 〈Qn, e ∧ dn〉 6−→s

〈R1, e〉 −→s 〈R2, e ∧ g2〉 −→
∗
s 〈Rm, e ∧ gm〉 6−→s

By Proposition 4.3.1, Qn and Rm must have the following normal form:

Qn ≡ (local ~x; c1)

(
∏

j∈J1

(abs ~xj ; cj) Qj ‖
∏

k∈K1

nextQk ‖
∏

l∈L1

unless cl nextQl

)

Rm ≡ (local ~x; c′1)

(
∏

j∈J2

(abs ~xj ; cj) Rj ‖
∏

k∈K2

nextRk ‖
∏

l∈L2

unless cl nextRl

)

Since P is an abstracted-unless free process, by Lemma 4.3.3, it must be the case that

〈Q1 ‖ R1, e〉 −→
∗
s 〈Qn ‖ R1, e ∧ dn〉 −→

∗
s

〈Qn ‖ Rm, e ∧ dn ∧ gm〉 −→∗
s

〈Q′
n ‖ R′

m, e ∧ dn ∧ gm〉 6−→s

where Q′
n and R′

m are as Qn and Rm respectively, but where some of the processes
unless c nextS evolve into skip. Hence, there exists L′

1 ⊆ L1 and L′
2 ⊆ L2 s.t.

Q′
n ≡ (local ~x; c1)

(
∏

j∈J1

(abs ~xj ; cj) Qj ‖
∏

k∈K1

nextQk ‖
∏

l∈L′
1

unless cl nextQl

)

R′
m ≡ (local ~x; c′1)

(
∏

j∈J2

(abs ~xj ; cj) Rj ‖
∏

k∈K2

nextRk ‖
∏

l∈L′
2

unless cl nextRl

)

Notice that Q
(e,e∧dn)
====⇒s Fs(Qn, e∧ dn) and R

(e,e∧gn)
====⇒s Fs(Rm, e∧ gn). By inductive

hypothesis we then have e ∧ dn |=T CutF (TL[[Q]], 0) and e ∧ gm |=T CutF (TL[[R]], 0).
Since TL[[Q ‖ R]] = TL[[Q]] ∧ TL[[R]] we conclude

(1) e ∧ dn ∧ gm |=T CutF (TL[[Q ‖ R]], 0)

As for (2), by inductive hypothesis we also have the following

◦TL[[Fs(Qn, e ∧ dn)]] |=T TL[[Q]]

◦TL[[Fs(Rm, e ∧ gm)]] |=T TL[[R]]

Then, by definition of the function Fs we derive

◦TL[[Fs(Qn ‖ Rm, e ∧ dn ∧ gm)]] |=T TL[[Q ‖ R]]

We know by Lemma 4.3.3 that the derivation from Qn ‖ Rn into Q′
n ‖ R′

n corresponds
only to reductions of processes of the form unless cl nextQl into skip. Then it must
be the case that e ∧ dn ∧ gm |=T cl and therefore e ∧ dn ∧ gm |=T (cl ∨ G) for any
G, in particular, G = ◦TL[[Ql]]. Using the same reasoning for all l ∈ L1 − L′

1 and
l′ ∈ L2 − L′

2 we conclude

(2) ◦TL[[Fs(Q
′
n ‖ R′

m, e ∧ dn ∧ gm)]] |=T TL[[Q ‖ R]]
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• P = (abs ~x; c) Q. By alpha conversion assume that ~x /∈ fv(e). We then must have
the following evolution of Q1 = Q

〈Q1, e〉 −→s 〈Q2, e ∧ d2〉 −→
∗
s 〈Qn, e ∧ dn〉 6−→s

We then have Q
(e,e∧dn)
====⇒s Fs(Qn, e ∧ dn) and by inductive hypothesis

(1) e ∧ dn |=T CutF (TL[[Q]], 0) and (2) ◦TL[[Fs(Qn, e ∧ dn)]] |=T TL[[Q]]

Since ~x /∈ fv(e), by the Rule RABS−SYM we have

〈(abs ~x; c) Q, e〉 −→∗
s 〈(abs ~x; c) Qn, e ∧ ∀~x(c ⇒ dn)〉 6−→s

For any formula F, F ′ s.t. F |=T F ′, we can prove that ∀~x(c ⇒ F ) |=T ∀~x(c ⇒ F ′).
Given that e ∧ dn |=T CutF (TL[[Q]], 0) and ~x /∈ fv(e) we deduce

e ∧ ∀~x(c ⇒ dn) |=T ∀~x(c ⇒ CutF (TL[[Q]], 0))

and by definition of CutF we conclude

(1) e ∧ ∀~x(c ⇒ dn) |=T CutF (∀~x(c ⇒ TL[[Q]]), 0)

To prove (2), let F ′
s be as in Definition 4.2.1 (symbolic future function). From ~x /∈ fv(e)

and ◦TL[[Fs(Qn, e ∧ dn)]] |=T TL[[Q]] we derive

e ∧ dn ∧ ◦TL[[F ′
s(Qn)]] |=T TL[[Q]]

e ∧ (c ⇒ dn) ∧ c ⇒ ◦TL[[F ′
s(Qn)]] |=T c ⇒ TL[[Q]]

e ∧ ∀~x(c ⇒ dn) ∧ ∀~x(c ⇒ ◦TL[[F ′
s(Qn)]]) |=T ∀~x(c ⇒ TL[[Q]])

From TL[[(abs ~x; c) Q]] = ∀~x(c ⇒ TL[[Q]]) and the definition of Fs we conclude

(2) ◦TL[[Fs((abs ~x; c) Qn, e ∧ ∀~x(c ⇒ dn))]] |=T TL[[(abs ~x; c) Q]]

• P = (local ~x; c) Q. Let Q1 = Q. We must have the following derivation:

〈Q1,∃~x(e) ∧ c〉 −→s 〈Q2,∃~x(e) ∧ c ∧ d2〉 −→
∗
s 〈Qn,∃~x(e) ∧ c ∧ dn〉

Therefore, Q
(e1,e2)
====⇒s Fs(Qn, e2) where e1 = ∃~x(e) ∧ c and e2 = ∃~x(e) ∧ c ∧ dn. By

inductive hypothesis we have

(1) ∃~x(e)∧c∧dn |=T CutF (TL[[Q]], 0) and (2) ◦TL[[Fs(Qn,∃~x(e)∧c∧dn)]] |=T TL[[Q]]

By the Rule RLOC we have the following

〈(local ~x; c) Q, e〉 −→∗
s 〈(local ~x; c ∧ dn) Qn, e ∧ ∃~x(c ∧ dn)〉 6−→s

From ∃~x(e)∧c∧dn |=T CutF (TL[[Q]], 0) we derive ∃~x(e)∧c∧dn |=T CutF (TL[[Q]], 0)∧c

and then ∃~x(e)∧∃~x(c∧dn) |=T ∃~x(CutF (TL[[Q]], 0)∧c). Since e |=T ∃~x(e) we conclude

(1) e ∧ ∃~x(c ∧ dn) |=T ∃~x(c ∧ CutF (TL[[Q]], 0)) = CutF (TL[[P ]], 0)

For (2), let F ′
s be as in Definition 4.2.1 (symbolic future function). From ◦TL[[Fs(Qn,∃~x(e)∧

c ∧ dn)]] |=T TL[[Q]] and TL[[(local ~x; c) Q]] = ∃~x(c ∧ TL[[Q]]) we derive

∃~x(e) ∧ c ∧ dn ∧ ◦TL[[F ′
s(Qn)]] |=T TL[[Q]] ∧ c

∃~x(e) ∧ ∃~x(c ∧ dn ∧ ◦TL[[F ′
s(Qn)]]) |=T ∃~x(TL[[Q]] ∧ c)

◦TL[[F ′
s((local ~x; c ∧ dn) Qn,∃~x(e))]]) |=T TL[[(local ~x; c)Q]]

Since e ∧ ∃~x(c ∧ dn) |=T ∃~xe we conclude

(2) ◦TL[[Fs((local ~x; c ∧ dn) Qn, e ∧ ∃~x(c ∧ dn)]] |=T TL[[(local ~x; c) Q]]
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• P = nextQ. We must have a derivation of the form

P
(e,e)

====⇒s tell(⊖e) ‖ Q

Since CutF (◦TL[[Q]], 0) = true, we trivially have (1) e |=T CutF (◦TL[[Q]], 0). We also
trivially have (2) ◦(⊖(e) ∧ TL[[Q]]) |=T ◦TL[[Q]].

• P = unless c nextQ. We consider two cases

– e |=T c. Therefore P
(e,e)

====⇒s tell(⊖e). Since CutF (c ∨ ◦TL[[Q]], 0) = (c ∨
true) = true, we trivially have (1) e |=T CutF (TL[[unless c nextQ]], 0). Fur-
thermore, e |=T c implies e |=T (c ∨ G) for any G. Then we conclude (2)
◦(⊖e) |=T (c ∨ ◦TL[[Q]]).

– e 6|=T c. Then we have P
(e,e)

====⇒ tell(⊖e) ‖ Q and we proceed as in the case of
nextQ.

• P =!Q. We must have the following derivation for Q

〈Q, e〉 −→∗
s 〈Q′, e′〉 6−→s

By inductive hypothesis we have

e′ |=T TL[[Q]] and ◦TL[[Fs(Q
′, e′)]] |=T TL[[Q]]

By the rule RREP we must have

〈!Q, e〉 −→s 〈Q ‖ next !Q, e〉〉 −→∗
s 〈Q′ ‖ next !Q, e′〉 6−→s

Since CutF (TL[[next !Q]], 0) = true we conclude (1) e′ |=T CutF (TL[[!Q]], 0). Finally,
since ◦TL[[Fs(Q

′, e′)]] |=T TL[[Q]] then

(2) ◦TL[[Fs(Q
′ ‖ next !Q, e′)]] |=T TL[[Q]] ∧ ◦TL[[!Q]] = TL[[P ]]

The Theorem 5.2.2 considers a single interaction of the process P with the environment.
The following corollary extends this result by considering a sequence of interactions.

Corollary 5.2.1. Let TL[[·]] be as in Definition 5.1.1 and P be an abstracted-unless free

process. If P = P1
(e1,e′

1)====⇒s P2
(e2,e′

2)====⇒ P3
(e3,e′

3)====⇒ . . . then for i > 0

◦i−1(e′i) |=T CutF (TL[[P ]], i − 1)

Proof. Let P1 = P . If i = 1, from Theorem 5.2.2 we have

e′1 |=T CutF (TL[[P1]], 0)

For i > 1, by repeated applications of Theorem 5.2.2 and the definition of CutF we derive
the following

◦i−1TL[[Pi]] |=T TL[[P1]]

CutF (◦i−1TL[[Pi]], i − 1) |=T CutF (TL[[P1]], i − 1)

◦i−1CutF (TL[[Pi]], 0)]] |=T CutF (TL[[P1]], i − 1)

By Theorem 5.2.2, e′i |=T CutF (TL[[Pi]], 0) and we conclude

◦i−1e′i |=T CutF (TL[[P1]], i − 1)
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Theorem 5.2.1 and Corollary 5.2.1 allow us to prove the desired correspondence between
the symbolic outputs of P and the basic constraints entailed by the FLTL formula TL[[P ]].

Theorem 5.2.3. Let TL[[·]] be as in Definition 5.1.1, ⇓s be as in Definition 4.2.1, P be an

abstracted-unless free process and c be a basic constraint.

1. If there exists k ≥ 0 such that CutF (TL[[P ]], k) |=T ✸c then P ⇓c
s.

2. If P is monotonic and P ⇓c
s then TL[[P ]] |=T ✸c.

Proof. Let P be an abstracted-unless free process and assume the following derivation

P = P1
(true,e1)
====⇒ s P2

(true,e2)
====⇒ s ....Pi

(true,ei)
====⇒s . . .

1. Assume that there exists k ≥ 0 such that F = CutF (TL[[P ]], k) and F |=T ✸c. Then it
must be the case that F |=T

∨
i∈0..k

(◦i(c)). Let 0 ≤ i ≤ k and assume that F |=T ◦i(c).

By Corollary 5.2.1 we know that ek+1 |=T ⊖kF and then ek+1 |=T ⊖k−i(c). Since
the sequence e1.e2... is a past-monotonic sequence, we conclude e1+i |=T c and then
P ⇓c

s.

2. Assume that P is monotonic and P ⇓c
s. Then there exists i > 0 s.t. ei |=T c. By

repeated application of Theorem 5.2.1 we have TL[[P ]] |=T ◦i−1(ei). From the fact
that ei |=T c we conclude TL[[P ]] |=T ✸c.

Relaying on the semantic correspondence in Theorem 4.4.1 we can straightforwardly
extend the previous result to the case of the operational semantics.

Corollary 5.2.2 (FLTL Correspondence -SOS). Let TL[[·]] be as in Definition 5.1.1, ⇓ be

as in Definition 3.7.1, P be a well-terminated and abstracted-unless free process and c be a

basic constraint.

1. If there exists k ≥ 0 such that CutF (TL[[P ]], k) |=T ✸c then P ⇓c.

2. If P is monotonic and P ⇓c then TL[[P ]] |=T ✸c.

Proof. Directly from Corollary 5.2.3 and Theorem 4.4.1.

5.3 Summary and Related Work

In this chapter we gave a logic characterization of utcc processes as formulae in the future-
free fragment of the Pnueli’s first-order linear-time temporal logic [Manna 1991]. We showed
that the operational view of processes and the declarative one based upon FLTL correspond
each other. Namely, we proved that the (symbolic) outputs of a process and the FLTL
formula corresponding to P entail the same basic constraints. This logic characterization
allows for reachability analysis of utcc processes using techniques from FLTL. For example,
in Chapter 8 we shall verify that a process P modeling a flawed security protocol reaches a
state where a secret is revealed. Furthermore, as a compelling application of the encoding
of utcc processes into FLTL formulae, we shall prove in Chapter 6 the undecidability of the
validity problem for the monadic fragment of FLTL without equality nor function symbols.

The material of this chapter was originally published as [Olarte 2008c].
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Related Work. CCP-based languages have been shown to have a strong connection to
logic that distinguishes this model from other formalisms for concurrency. In [Mendler 1995],
this correspondence is deeply studied by showing that CCP processes can be viewed as logic
formulae, constructs in the language as logical connectives and simulations (runs) as proofs.

In [de Boer 1997], a calculus for proving correctness of CCP programs is introduced. In
this framework, the specification of the program is given in terms of a first-order formula.
The authors pointed out that some problems arise when representing non-deterministic
choices by disjunction and when considering the representation of this logical connective
in the constraint system. For example, the constraint x ≥ 0 does not really represent the
disjunction x = 0 ∨ x > 0 since x ≥ 0 6|= x = 0 nor x ≥ 0 6|= x > 0. Therefore, the
logic of the constraint system is enriched to describe properties of constraints. Then, a
property represented by a constraint is interpreted as the set of constraints that entails it.
Consequently, logical operators are interpreted in terms of the corresponding set-theoretic
operations. This way, a program P is said to satisfy a given property A if the set of all its
outputs is a subset of the constraints defining A.

The results in [de Boer 1997] are extended and strengthened in [Nielsen 2002a], where
a proof system for the ntcc calculus is proposed (a non-deterministic extension of tcc).
Unlike [de Boer 1997], due to the temporal nature of ntcc, [Nielsen 2002a] considers com-
putation along time units.

In [Saraswat 1994] the authors propose a proof system for tcc based on an intuition-
istic logic enriched with a next operator. Judgements in the proof system have the form
A1, ..., An |= A where A1, ..., An and A are agents (processes). Such judgements are valid if
and only if the intersection of the denotations of the agents A1, ..., An is contained in the
denotation of A; equivalently, any observation that can be made from the parallel system
of agents A1, ..., An can also be made from A.

In the context of the π-calculus, in [Palamidessi 2006] it is shown that a logic inter-
pretation as formulae in First-Order Logic can be given to persistent π processes. In this
fragment of the π-calculus, all inputs and outputs are assumed to be replicated, much like
in utcc every input (abstraction) and output (tell) is persistent during a time unit (we
shall elaborate more on the relation between π’s inputs-outputs and utcc’s abstractions-
tells in Chapter 6). Using this logic characterization, a correspondence between barbed
observability (output of a process) and logical consequence is proven similar to our logic
correspondence in Theorem 5.2.3.

The necessity of performing rechability analysis of utcc processes motivated the de-
velopment of the logic characterization here presented. Particularly, we were interested in
verifying if a process P eventually exhibits certain output c. We then considered more
appropriated to establish a correspondence between the operational semantics and the
logic characterization rather than defining a proof system in the lines of [Saraswat 1994,
Nielsen 2002a, de Boer 1997].

As future work, we plan to extend the proof system in [Nielsen 2002a] to consider the
utcc abstraction operator and then, to cope with judgements of the form P ⊢T A where
A is a past-free formula. The meaning of this judgment is that every possible output of P

is a model for the formula A. Notice that in [Nielsen 2002a] the underlying logic is CLTL
(a temporal logic where formulae are interpreted on sequences of constraints). Here, the
semantics of FLTL formulae is given in terms of sequences of states as described in Section
2.4. Both semantics are related as it was shown in [Valencia 2005, Lemma 5.4].



Chapter 6

Expressiveness of utcc and

Undecidability of FLTL

In the previous chapters we have studied the semantics of utcc and its declarative view of
processes as first-order linear time temporal-logic (FLTL) formulae. This chapter is devoted
to studying the computational expressiveness of utcc. As an application of this study, we
state a noteworthy decidability result for FLTL. Namely, the undecidability of the validity
problem for monadic FLTL without equality nor function symbols.

The computational expressiveness of tcc languages has been thoroughly studied in the
literature [Saraswat 1994, Valencia 2005, Tini 1999]. This allowed for a better understand-
ing of tcc and its relation with other formalisms. In particular, the expressiveness studies
in [Saraswat 1994, Valencia 2005] show that tcc processes can be represented as finite-state

Büchi automata [Buchi 1962] and thus cannot encode Turing-powerful formalisms. In con-
trast, here we show that well-terminated utcc processes (see Definition 3.8.1) can encode
formalisms such as Minsky machines and the λ-calculus. Although both formalisms are
Turing-equivalent, these encodings serve different purposes.

On the one hand, the encoding of Minsky machines uses a very simple constraint system:
the monadic fragment of first-order logic (FOL) without equality nor function symbols. It is
well known that the validity and the satisfiability problems for this fragment are decidable
(see e.g. [Borger 2001]). The utcc theory and the encoding of Minsky machines will allow
us to prove that the same fragment in FLTL is strongly incomplete, and then, undecidable
its validity problem. On the other hand, we provide a compositional encoding of the call-by-
name λ-calculus but using a more involved constraint system. Namely, we use a constraint
system with binary and ternary uninterpreted predicates. This encoding is a significant
test of expressiveness since it shows that utcc is able to mimic one of the most notable and
simple computational models achieving Turing completeness.

It is worth noticing that there are several works in the literature addressing the decid-
ability of fragments of FLTL and in particular the monadic one [Abadi 1990, Merz 1992,
Szalas 1988, Hodkinson 2000, Valencia 2005]. Our decidability result is insightful in that
it answers an issue raised in a previous work and justifies some restrictions on monadic
FLTL in other decidability results. More specifically, in [Valencia 2005] it was suggested
that one could dispense with the restriction to negation-free formula in the decidability
result for the FLTL fragment there studied. Our undecidability result actually contradicts
this conjecture since with negation that logic would correspond to the FLTL here stud-
ied. Furthermore, the work in [Merz 1992] proves the decidability of monadic FLTL. This
seemingly contradictory statement arises from the fact that unlike our result, [Merz 1992]
disallows quantification over flexible variables. Our results, therefore, show that restriction
to be necessary for decidability.

In summary, this chapter shows the full computational expressiveness of utcc, states
new results in the decidability of monadic FLTL and clarifies previous decidability results
and conjectures in the literature.
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M−INC
(li, INC(cn, lj)) v′n = vn + 1 v′1−n = v1−n

(li, v0, v1) −→M (lj , v
′
0, v

′
1)

M−DEC
(li, DECJ(cn, lj , lk)) vn 6= 0 v′n = vn − 1 v′1−n = v1−n

(li, v0, v1) −→M (lk, v′0, v
′
1)

M−DECJ
(li, DECJ(cn, lj , lk)) vn = 0

(li, v0, v1) −→M (lj , v0, v1)

Figure 6.1: Reduction relation in Minsky machines.

6.1 Minsky Machines

We start our expressiveness study by presenting an encoding of Minsky machines [Minsky 1967]
into monotonic well-terminated utcc processes. First, we briefly recall some basic definition
of this computational model.

A two-counter Minsky machine M is an imperative program consisting of a sequence
of labeled instructions (l1, L1); . . . ; (ln, Ln) which modify the values of two non-negative
counters c0 and c1.

The instructions, using counters cn for n ∈ {0, 1}, are of three kinds:

• (li : HALT) : Halts the machine.

• (li : INC(cn, lj)): Increments the counter cn and jumps to the instruction lj .

• (li : DECJ(cn, lj , lk)): Tests if cn is zero and then jumps to the instruction lj . If cn is
not zero, it jumps to lk.

A configuration in a Minsky machine is a tuple (li, v0, v1) where li is the label of the
instruction to be executed and v0 and v1 the current value of the counters. Evolutions
between such configurations are described by the reduction relation −→M in Figure 6.1.
We shall use −→∗

M to denote the reflexive and transitive closure of −→M .
In the sequel, without loss of generality, we assume that counters are initially set to zero

and the machine starts at the instruction l1.
We say that a Minsky machine M halts if the control reaches the location of a HALT

instruction. Furthermore, it computes the value n if it halts with c0 = n.

Definition 6.1.1 (Minsky Machine Computations). Let M be a Minsky machine with

instructions (l1, L1); . . . ; (lm; HALT); . . . (ln, Ln). Let −→M be as in Figure 6.1. We say

that M halts if there exists a derivation (l1, 0, 0) −→∗
M (lm, v0, v1) 6−→M . Furthermore, if

v0 = n, we say that M computes the value n.

6.2 Encoding Minsky Machines into utcc

We shall use in our encoding recursive definitions of the form p(~x)
def
= P . Recall that in

utcc they can be encoded as abstractions using a uninterpreted predicate callp(·) of arity
~x (see Section 3.3.1).

Let us first introduce the constraint system we shall use for our encoding.
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Counters:

ZEROn
def
= when incn do next (local a) (NOT-ZEROn(a) ‖

!when out(a) do ZEROn) ‖
when idlen do next ZEROn ‖
tell(iszn)

NOT-ZEROn(x)
def
= when incn do next (local b) (NOT-ZEROn(b) ‖

!when out(b) do NOT-ZEROn(x)) ‖
when decn do next tell(out(x)) ‖
when idlen do next NOT-ZEROn(x) ‖
tell(not-zeron)

Instructions:

[[(li : Li)]]I
def
= when out(li) do ins(li, Li) where

ins(li, HALT) = tell(halt) ‖ next tell(out(li)) ‖ tell(idle0 ∧ idle1)

ins(li, INC(cn, lj)) = tell(incn) ‖ next tell(out(lj)) ‖ tell(idle1−n)

ins(li, DECJ(cn, lj , lk)) = when iszn do (next tell(out(lj)) ‖ tell(idlen)) ‖
when not-zeron do (tell(decn) ‖ next tell(out(lk ))) ‖
tell(idle1−n)

Figure 6.2: Encoding of Registers and Instructions . n ∈ {0, 1}

Constraint System for the encoding. We shall assume a very simple constraint sys-
tem for our encoding. Namely, we shall use the monadic fragment of first-order logic without
functions, nor equality. We presuppose the (monadic) predicates out(·) and call_not-zero(·)
(to encode the recursive procedure NOT-ZERO –see Definition 3.3.2). Furthermore, we as-
sume the 0-adic predicates iszn, incn, decn, not-zeron, idlen for n ∈ {0, 1}, halt and
call_zero (to encode the recursive procedure ZERO).

Counters. The counters c0 and c1 initially set to 0 are obtained by replacing the sub-
index n in the definition of ZEROn with 0 and 1 respectively in Figure 6.2. Intuitively, iszn

is used to test if the counter is zero and incn and decn to trigger the actions of increment
and decrement the counters respectively. The constraint not-zeron in the store indicates
that the value of the counter is not zero.

Each time an increment instruction is executed, a new local variable is created, say a,
and the process NOT-ZERO(a) executed. Decrement operations output these local variables
on the global channel out(·). The process NOT-ZERO, when receiving the corresponding
local variable on channel out, moves to the state immediately before the last increment
instruction took place. If the counter is not currently used, i.e., if idlen can be deduced,
the counter remains in the same state.
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Instructions. For the set of instruction (l1, L1); . . . ; (ln, Ln) we assume a set of variables
l1, . . . , ln. By adding the constraint out(li), the code of the instruction li is spawned. In
the case of (li, HALT), the constraint halt is added to the current store. Furthermore, by
adding the constraint idle0 ∧ idle1 , we specify that both counters are idle. The operation
(li : INC(cn, lj)) adds the constraint incn and then activates the instruction lj in the next
time unit. It also adds the constraint idle1−n to assert that the other counter is idle. Fi-
nally, the encoding of the instruction (li : DECJ(cn, lj , lk)) asks if the counter cn is zero, i.e,
if iszn can be deduced from the current store. If it is the case, then it activates in the next
time unit the instruction lj . If the constraint not-zeron can be deduced (i.e. cn > 0), then
the encoding of this instruction adds the constraint decn and activates the instruction lk in
the next time unit.

The following definition makes use of the processes in Figure 6.2 to define the encoding
of a Minsky machine in utcc.

Definition 6.2.1 (Encoding of Minsky Machines into utcc). Let M be a Minsky machine

with instructions (l1 : L1), ..., (ln : Ln). Let [[·]]I be as in Figure 6.2 and

DEFS = pZERO0q ‖ pZERO1q ‖ pNOT-ZERO0(x)q ‖ pNOT-ZERO1(x)q

where p·q is the encoding of recursion in Definition 3.3.2. The encoding M[[·]] is defined as:

M[[M ]] = (local l1, . . . , ln) ( tell(out(l1)) ‖
∏

i∈{1,..,n}

! [[(li : Li)]]I ‖ ZERO0 ‖ ZERO1 ‖ DEFS)

where ZERO0, ZERO1, NOT-ZERO0 and NOT-ZERO1 are obtained by replacing the sub-index n by

0 and 1 respectively in the definition of ZEROn and NOT-ZEROn in Figure 6.2

Notice that in the definition of M[[·]], the first instruction (l1) is activated by adding the
constraint out(l1). Furthermore, both counters are initially set to zero.

6.2.1 Representation of Numbers in utcc

As hinted at above, increment operations create a local name, say a, and then execute the
process NOT-ZERO(a). For the decrement operations, these local names are sent back on
channel out. Then, the encoding moves to the state immediately before the last increment
operation took place. In the following definition, we give a characterization of the state of
the counters that makes more precise this idea.

Definition 6.2.2 (Numbers in utcc). Let cn be a counter and DEFS be as in Definition
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6.2.1. Let us define [[cn = k]]N = [[cn = k]]′N ‖ DEFS where

[[cn = 0]]′N
def
= ZEROn

[[cn = 1]]′N
def
= (local a1) (!when out(a1) do ZEROn ‖

NOT-ZEROn(a1))

[[cn = 2]]′N
def
= (local a1, a2) (!when out(a1) do ZEROn ‖

!when out(a2) do NOT-ZEROn(a1)

NOT-ZEROn(a2))

. . .

[[cn = k]]′N
def
= (local a1, a2, ..., ak) (

!when out(a1) do ZEROn ‖
!when out(a2) do NOT-ZEROn(a1))

. . .

!when out(ak) do NOT-ZEROn(ak−1)

NOT-ZEROn(ak))

The above construction realizes our intuition of the behavior of the encoding in Defi-
nition 6.2.1. The “state” [[cn = 0]]N is represented by the the process ZEROn which adds
the constraint iszn to the current store. If no increment instruction is executed (i.e. the
counter is idle), the process ZEROn is executed in the next time unit and then the counter
remains in zero.

A number k > 0 is represented by k local variables a1, .., ak and the respective ask
processes waiting for the reception of the corresponding variable on channel out to move to
the previous state. For the case of k = 1, a decrement operation causes that NOT-ZEROn(a1)

outputs the constraint out(a1) in the next time unit. Therefore, !when out(a1) do ZEROn

will execute the process ZEROn . Similarly, for the case k > 1, a decrement operation causes
that the process NOT-ZEROn(ak) adds the constraint out(ak) in the next time unit. Then,
the process !when out(ak) do NOT-ZEROn(ak−1) spawns NOT-ZEROn(ak−1) and we obtain
the state [[cn = k − 1]]N .

In the presence of an increment operation, the process NOT-ZEROn(ak) creates a new
local variable, say ak+1, with the corresponding when process waiting for the reception of
that variable. Furthermore, the process NOT-ZEROn(ak+1) is executed and we obtain the
state [[cn = k + 1]]N .

Notation 6.2.1. In the sequel, for the sake of presentation, we shall omit the process DEFS

when presenting a derivation of a process of the form [[cn = k]]N .

6.2.2 Encoding of Machine Configurations

Using our definition of numbers, we can give a suitable mapping from configurations of the
machine into utcc processes. This shall help us to prove the operational correspondence of
the encoding.

Definition 6.2.3 (Encoding of Configurations). Let M be a Minsky machine with instruc-

tions (l1;L1), ..., (ln;Ln). Let [[·]]N be as in Definition 6.2.2 and [[·]]I be as in Figure 6.2.

The encoding [[·]]C of a configuration of M is defined as

[[(li, v0, v1)]]C
def
= (local l1, ..., ln) ( [[c0 = v0]]N ‖ [[c1 = v1]]N ‖

tell(out(li)) ‖
∏

i∈{1,..,n}

! [[(li : Li)]]I )
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6.3 Correctness of the Encoding

This section is devoted to proving the correctness of the encoding above: We shall show that
reductions of the Minsky machine M and the observable transitions of the utcc process
M[[M ]] correspond to each other.

Before that, notice that the process P = M[[M ]] is not meant to be executed under the
influence of any environment. In other words, we shall observe the transitions of P when
the input is true. Then, for the sake of presentation, we shall use the following notation
that ignores the observable outputs and assume the inputs to be true.

Notation 6.3.1. We shall write P1 −→ P2 −→ P3 . . . to denote the sequence of internal

transitions 〈P1, c1〉 −→ 〈P2, c2〉 −→ 〈P3, c3〉 . . . when c1 ≡ true and the constraints c2, c3, ...

are unimportant. Similarly, we shall write P ====⇒ P ′ when P
(true,c)
====⇒ P ′ and c is

unimportant. For any equivalence relation between processes ∼, if P ====⇒ P ′ and P ′ ∼ Q

we shall write P ====⇒∼ Q.

Residual Processes and Observables. The reader may have noticed that the processes
of the form Q = when out(ak) do P , waiting for the entailment of the constraint out(ak),
appear replicated in Figure 6.2. This is because we cannot know a priori when the constraint
out(ak) will be added to the store. We can show that once the process P in Q is executed,
it is not executed again. In other words, after the execution of P , the process Q in the next
time unit will remain inactive for the rest of the execution of the encoding.

Let us illustrate this with an example. We can show that P = [[cn = 2]]N ‖ tell(decn)

exhibits the following reductions:

P −→∗ (local a1, a2) (!when out(a1) do ZEROn ‖!when out(a2) do NOT-ZEROn(a1))

when incn do next (local b) (NOT-ZEROn(b) ‖
!when out(b) do NOT-ZEROn(a2)) ‖

when decn do next tell(out(a2)) ‖
when idlen do next NOT-ZEROn(a2) ‖ tell(not-zeron) ‖ tell(decn)

−→∗ (local a1, a2) (!when out(a1) do ZEROn ‖!when out(a2) do NOT-ZEROn(a1))

when incn do next (local b) (NOT-ZEROn(b) ‖
!when out(b) do NOT-ZEROn(a2)) ‖

next tell(out(a2)) ‖
when idlen do next NOT-ZEROn(a2) 6−→

Then we have P ====⇒ Q where

Q ≡ (local a1, a2) (!when out(a1) do ZEROn ‖!when out(a2) do NOT-ZEROn(a1))

‖ tell(out(a2))

and

Q −→∗ (local a1, a2) (!when out(a1) do ZEROn ‖!when out(a2) do NOT-ZEROn(a1)

‖ NOT-ZEROn(a1)) ≡ Q′

By a simple inspection of Q′, it is easy to see that a2 only occurs in the process
!when out(a2) do NOT-ZEROn(a1)) (as a guard). Therefore, neither the process NOT-ZEROn(a1)

nor !when out(a1) do ZEROn can add to the store a constraint entailing out(a2).
One can thus show that after eliminating the “residual” process

!when out(a2) do NOT-ZEROn(a1))

the behavior of Q′ remains the same, more precisely, one obtains an output equivalent
process to Q′.
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Proposition 6.3.1. Let P ≡ [[cn = k]]N for some k and ∼o be as in Definition 3.7.1.

Assume a /∈ fv(P ). Then for all process Q the following holds

P ∼o (local a) (P ‖!when out(a) do Q)

Proof. Since a /∈ fv(P ) one can show that P ≡ [[cn = k]]N cannot add a constraint c entailing
out(a). Then, the process when out(a) do Q does not exhibit any internal transition.

6.3.1 Derivations in the Minsky Machine and utcc Observables

In this section we prove the correspondence between derivations in the Minsky machine
M and the derivations of the process M[[M ]]. Before establishing this correspondence, we
require some additional results.

The following proposition states that the encoding of the set of instructions adds in each
time unit one and only one of the following constraints: incn, or decn or idlen for n ∈ {0, 1}

Proposition 6.3.2 (Counter Operations). Let M be a Minsky machine with instructions

(l1 : L1), ..., (ln : Ln). Let [[·]]I be as in Figure 6.2 and R be defined as:

R = (local l1, . . . , ln) ( tell(out(li)) ‖
∏

i∈{1,..,n}

! [[(li : Li)]]I)

If R
(true,c)
====⇒, then for n ∈ {0, 1} these conditions hold

1. c |= incn implies c |= idle1−n.

2. c |= decn implies c |= idle1−n.

3. c |= idlen implies c 6|= incn and c 6|= decn.

Proof. One can easily show that tell(out(li)) causes the execution of ins(li, Li) in R. By
a simple analysis of the process ins(li, Li) one can verify the conditions above.

The following proposition introduces an obvious fact on the encoding of numbers in
utcc. Namely, if there are no increment or decrement instructions on a counter (i.e., it is
idle) its value remains the same.

Proposition 6.3.3. Let ins(·) be as in Figure 6.2, (li, Li) be an instruction and Cn =

[[cn = k]]N for some k. If Li is a halt instruction or an instruction on counter n , there

exists k′ and l′i such that

(local l1, . . . , ln) ( [[c1−n = k′′]]N ‖ [[cn = k]]N ‖ tell(out(li)) ‖
∏

i∈{1,..,n}

! [[(li : Li)]]I)

====⇒
(local l1, . . . , ln) ( [[c1−n = k′′]]N ‖ [[cn = k′]]N ‖ tell(out(l′i)) ‖

∏
i∈{1,..,n}

! [[(li : Li)]]I)

Proof. Assume that R = ins(li, Li). If Li is a halt instruction or an instruction on counter
cn, then by Proposition 6.3.2 we know that R adds the constraint idle1−n and cannot add
neither inc1−n nor dec1−n. Let P = [[cn−1 = k′′]]. Assume that k′′ = 0. By a simple
analysis on P we notice that only the guard of the process when idlen−1 do next ZEROn−1

can be entailed and then the conclusion follows.
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Assume now k′′ > n. Then P = [[c1−n = k′′]]N takes the form

(local a1, a2, ..., a
′′
k) (

!when out(a1) do ZERO1−n ‖
!when out(a2) do NOT-ZERO1−n(a1))

. . .

!when out(a′′
k) do NOT-ZERO1−n(a′′

k−1))

NOT-ZERO1−n(a′′
k)

By a simple analysis of the process NOT-ZERO1−n we can show that only the guard of the
process when idle1−n do next NOT-ZERO1−n(a′′

k) can be deduced and then the conclusion
follows.

Now we are ready to prove that derivations in the Minsky machine (−→M ) correspond
to observable derivations ( ====⇒) in utcc.

Lemma 6.3.1 (Completeness). Let M be a Minsky machine with instructions (l1;L1), ..., (ln;Ln),

[[·]]C be as in Definition 6.2.3 and (li, v0, v1) be a configuration of M .

If (li, v0, v1) −→M (l′i, v
′
0, v

′
1) then [[(li, v0, v1)]]C ====⇒∼o [[(l′i, v

′
0, v

′
1)]]C

Furthermore, if (li, v0, v1) 6−→M , (i.e. li is a HALT instruction),

[[(li, v0, v1)]]C
(true,c)
====⇒ [[(li, v0, v1)]]C and c |= halt

Proof. Assume (li, v0, v1) −→M (l′i, v
′
0, v

′
1) and let

P = [[(li, v0, v1)]]C = (local l1, ..., ln) ( C0 ‖ C1 ‖ tell(out(li)) ‖
∏

i∈{1,..,n}

! [[(li : Li)]]I )

where Cn = [[cn = vn]]N for n ∈ {0, 1}.
We shall prove that P ====⇒ Q and Q ∼o [[(l′i, v

′
0, v

′
1)]]C . The proof proceeds by case

analysis of the instruction Li.

1. (li : INC(cn, lj)): We trivially have that tell(out(li)) in parallel with the encoding
of the set of instructions reduces to the process tell(incn) ‖ next tell(out(lj)). By
using Proposition 6.3.3 we can show that the process C1−n remains the same in Q.
Now we have to prove that Cn evolves into C ′

n = [[cn = v′n]]N with v′n = vn + 1.

Let us consider first the case P ′ = [[cn = 0]]N ‖ tell(incn). We can show that there is
a derivation of the form

P ′ −→∗ next (local a1) (!when out(a1) do ZEROn ‖ NOT-ZEROn(a1)) ‖
when idlen do next ZEROn ‖ tell(iszn)

−→∗ next (local a1) (!when out(a1) do ZEROn ‖ NOT-ZEROn(a1)) ‖
when idlen do next ZEROn 6−→

Therefore, we have the following observable transition:

P ′ ====⇒ (local a1) (!when out(a1) do ZEROn ‖ NOT-ZEROn(a1)) ≡ [[cn = 1]]N

Now consider the case P ′ = [[cn = k]]N ‖ tell(incn) for k > 0. We must have the
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following derivation

P ′ −→∗ (local a1, a2, ..., ak) (

!when out(a1) do ZEROn ‖
. . .

!when out(ak) do NOT-ZEROn(ak−1) ‖
when incn do next (local ak+1) (NOT-ZEROn(ak+1) ‖

!when out(ak+1) do NOT-ZEROn(ak)) ‖
when decn do next tell(out(ak)) ‖
when idlen do next NOT-ZEROn(ak) ‖
tell(not-zeron) ‖ tell(incn))

−→∗ (local a1, a2, ..., ak) (

!when out(a1) do ZEROn ‖
. . .

!when out(ak) do NOT-ZEROn(ak−1) ‖
next (local ak+1) (NOT-ZEROn(ak+1) ‖

!when out(ak+1) do NOT-ZEROn(ak)) ‖
when decn do next tell(out(ak)) ‖
when idlen do next NOT-ZEROn(ak)) 6−→

We then have P ′ ====⇒∼o Q′ where

Q′ ≡ (local a1, a2, ..., ak, ak+1)

!when out(a1) do ZEROn ‖
!when out(a2) do NOT-ZEROn(a1) ‖
. . .

!when out(ak+1) do NOT-ZEROn(ak) ‖
NOT-ZEROn(ak+1))

≡ [[cn = k + 1]]N

We then conclude that Q ∼o [[(l′i, v
′
0, v

′
1)]]C .

2. (li : DECJ(cn, lj , lk)). Similar to the increment case, by using Proposition 6.3.3 we can
show that the process C1−n remains the same in Q.

We then have to prove that Cn = [[cn = vn]]N evolves into C ′
n = [[cn = vn]]N if vn = 0

and into C ′
n = [[cn = vn − 1]]N otherwise.

Consider the case cn = 0. Then, [[cn = 0]]N ≡ ZEROn and the constraint iszn is added
to the current store. Hence, the guard of the process when iszn do next tell(out(lj))

can be entailed and then, [[(li : DECJ(cn, lj , lk))]]I reduces to the process tell(idlen) ‖
next tell(out(lj )). Furthermore, the process when not-zeron do next tell(out(lk))

remains blocked since the constraint not-zeron is not added to the current store. We
then have the activation of lj in the next time unit. Since the constraints ideln is
added to the current store, by Proposition 6.3.3, Cn remains the same in Q.

Now assume that cn > 0. Then, it must be the case that [[cn = k]]N adds the constraint
not-zeron into the store. Therefore, the process tell(decn) ‖ next tell(out(lk))) in
the definition of [[(li : DECJ(cn, lj , lk))]]I is executed.

Now we have to show that Cn ‖ tell(decn) reduces to [[cn = vn−1]]N . We consider two
cases: when k > 1 and k = 1. Assume that k > 0 and P = [[cn = k]]N ‖ tell(decn).
We must have the following derivation
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P −→∗ (local a1, a2, ..., ak) (

!when out(a1) do ZEROn ‖
. . .

!when out(ak) do NOT-ZEROn(ak−1)

when incn do next (local ak+1) (NOT-ZEROn(ak+1) ‖
!when out(ak+1) do NOT-ZEROn(ak)) ‖

when decn do next tell(out(ak)) ‖
when idlen do next NOT-ZEROn(ak) ‖
tell(not-zeron) ‖ tell(decn))

−→∗ (local a1, a2, ..., ak) (

!when out(a1) do ZEROn ‖
. . .

!when out(ak) do NOT-ZEROn(ak−1)

when incn do next (local ak+1) (NOT-ZEROn(ak+1) ‖
!when out(ak+1) do NOT-ZEROn(ak)) ‖

next tell(out(ak)) ‖
when idlen do next NOT-ZEROn(ak)) 6−→

We then have P ====⇒ Q where

Q ≡ (local a1, a2, ..., ak) (

!when out(a1) do ZEROn ‖
!when out(a2) do NOT-ZEROn(a1) ‖
. . .

!when out(ak) do NOT-ZEROn(ak−1) ‖
tell(out(ak)))

By proposition 6.3.1 we can show that Q ∼o [[cn = k− 1]]N . The case k = 1 is similar
to the previous one by noticing that tell(out(a1)) triggers the execution of ZEROn and
then [[cn = k]]N ‖ tell(decn) ====⇒∼o ZEROn ≡ [[cn = 0]]N .

3. (li, HALT): In this case, tell(out(li)) in parallel with the encoding of the set of in-
structions reduces to the process tell(halt) ‖ next tell(out(li)) ‖ tell(idle0 ∧ idle1).
By Proposition 6.3.3 we can show that the encoding of the counters does not change

when passing to the next time unit and then P
(true,c)
====⇒ P and c |= HALT

Now we prove the converse of the previous lemma.

Lemma 6.3.2 (Soundness). Let M be a Minsky machine with instructions (l1;L1), ..., (ln;Ln),

[[·]]C be as in Definition 6.2.3 and (li, v0, v1) be a configuration. If [[(li, v0, v1)]]C
(true,c)
====⇒ P

then, one of the following holds

1. There exists a configuration (l′i, v
′
0, v

′
1) such that (li, v0, v1) −→M (l′i, v

′
0, v

′
1) and P ∼o

[[(l′i, v
′
0, v

′
1)]]C .

2. (li, v0, v1) 6−→M , P ∼o [[(li, v0, v1)]]C and c |= halt.
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Proof. By an analysis on the structure of [[(li, v0, v1)]]C , one can see that the process
tell(out(li)) triggers the execution of the definition of the instruction Li. The other pro-
cesses evolve according to the type of the instruction Li. We then proceed by case analysis
of [[(li : Li)]]I .

For (1), if (li, v0, v1) −→M (l′i, v
′
0, v

′
1) then li is an increment or a decrement operation. We

analyze both cases:

• (li : INC(cn, lj)). We then have v′n = vn +1 and v′1−n = v1−n. By exhibiting the same
reductions that in the proof of Lemma 6.3.1 case(1), we have [[(li, v0, v1)]]C ====⇒∼o

[[(li, v
′
0, v

′
1)]]C .

• (li : DECJ(cn, lj , lk)). We have to consider two cases: (a) cn = 0 and then (li, v0, v1) −→M

(lj , v0, v1); (b) cn > 0 and then (li, v0, v1) −→M (lk, v′0, v
′
1) with v′n = vn − 1 and

v′1−n = v1−n. In both cases, we can exhibit the same reductions that in Lemma 6.3.1
case (2) to show the following:

(a) : [[(li, v0, v1)]]C ====⇒∼o [[(lj , v0, v1)]]C .

(b) : [[(li, v0, v1)]]C ====⇒∼o [[(lk, v′0, v
′
1)]]C

For (2), if (li, v0, v1) 6−→M then it must be the case that Li is a HALT instruction. By

an analysis similar to that of (3) in Lemma 6.3.1 we conclude [[(li, v0, v1)]]C
(true,c)
====⇒∼o

[[(li, v0, v1)]]C where c |= halt.

6.3.2 Termination and Computations of the Minsky Machine

We conclude this section by presenting a theorem that follows directly from Lemmas 6.3.1
and 6.3.2. This result proves that computations in the Minsky machines correspond to
computations in the utcc encoding.

Let us define a process decrementing n times the counter c0. If it succeeds, it outputs
the constraint yes:

Dec0
def
= when isz0 do tell(yes)

Decn
def
= unless isz0 next (tell(dec0 ) ‖ Decn−1 )

Recall that given a process P and a constraint c, P ⇓c means P = P1
(true,c1)
====⇒

P2
(true,c2)
====⇒ . . . Pi

(true,ci)
====⇒ Pi+1 and ci |= c. The following theorem states that a Min-

sky machine computes the value n (Definition 6.1.1) if and only if after the encoding halts,
one can decrement c0 exactly n times until telling “yes”. More precisely:

Theorem 6.3.1 (Correctness). Let M be a Minsky machine and M[[·]]′ be as in Definition

6.2.1 but where ins(li, HALT) = Decn ‖! tell(idle1).

The machine M computes the value n iff M[[M ]]′ ⇓yes

Proof. Since we are assuming that counters start in zero and the first instruction to be
executed is l1, it is easy to see that M[[M ]] ≡ [[(l1, 0, 0)]]C . If M computes the value n,
then there exists a derivation (l1, 0, 0) −→∗

M (lj , n, v1) with (lj : HALT). By Lemmas 6.3.1
and 6.3.2, it is possible if and only if [[(l1, 0, 0)]]C ====⇒∗∼o [[(lj , n, v1)]]C . Since lj is a
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HALT instruction, by definition of M[[·]]′ the process Decn is executed and we must have the
following derivations.

[[(lj , n, v1)]]C ‖ Q ====⇒∼o [[(lj , n, v1)]]C ‖ tell(dec0) ‖ Decn−1

====⇒∼o [[(lj , n − 1, v1)]]C ‖ tell(dec0) ‖ Decn−2

====⇒∼o . . .

====⇒∼o [[(lj , 0, v1)]]C ‖ Dec0
(true,c)
====⇒ Q′

where c |= yes and then M[[M ]]′ ⇓yes

As an application of the above result, we can show the undecidability of the output
equivalence for well-terminated processes.

Corollary 6.3.1. Fix the underling constraint system to be monadic first-order logic with-

out equality nor function symbols. Then, the question of whether P ∼o Q, given two

well-terminated processes P and Q, is undecidable.

Proof. Given a Minsky machine M , let us define M[[M ]]′ as the encoding M[[M ]] except that
ins(HALT) = skip. Notice that ins(HALT) = tell(halt) in Figure 6.2. Clearly, M does not
halt if and only if M[[M ]]′ ∼o M[[M ]].

A more compelling application of our encoding is given in the next section where we
prove the undecidability of the monadic fragment of FLTL.

6.4 Undecidability of monadic FLTL

In this section we shall state a new undecidability result for monadic FLTL. We shall prove
that the monadic fragment of FLTL without equality nor function symbols is strongly
incomplete. We start by recalling some results in [Merz 1992] where it is proven that the
above fragment of FLTL is decidable. Then we explain why this apparent contradiction
with our result arises.

In [Merz 1992] a FLTL named TLV is studied. The logic we presented in Definition
2.4.1 differs from TLV only in that TLV disallows quantification of flexible variables as well
as the past operator. We shall see that quantification over flexible variables is fundamental
for our encoding of Minsky machines. We also state in Theorem 6.4.1 that the past-free
monadic fragment of the FLTL in Definition 2.4.1 without equality nor function symbols is
strongly incomplete. This in contrast with the same TLV fragment which is decidable with
respect to validity [Merz 1992].

Because of the above-mentioned difference with TLV we shall use the following notation:

Notation 6.4.1. Henceforth we use TLV-flex to denote the past-free fragment of the FLTL

presented in Definition 2.4.1, i.e., the set of FLTL formulae without occurrences of the past

modality ⊖.

Decidability of monadic TLV. In [Merz 1992] it is proven that the problem of validity
of a monadic TLV formula A without equality nor function symbols is decidable. This result
is proven the same way as the standard decidability result for classical monadic first-order
logic (FOL). Namely, by obtaining the prenex form of the formula, getting rid of quantifiers
and then reducing the problem to the decidability of propositional LTL.

This strategy does not work in the case of TLV-flex. Basically, it is not possible to
move a quantifier binding a flexible variable to obtain the prenex form. To see this, con-
sider for example the formula F = (x = 42 ∧ ◦x 6= 42). If x is a flexible variable, notice
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that �∃xF is satisfiable whereas ∃x�F is not. Hence, moving quantifiers to the outermost
position to get a prenex form does not preserve satisfiability. Notice also that if x is a rigid
variable instead, �∃xF and ∃x�F are both logically equivalent to false.

To prove our undecidability result, we shall reduce the validity problem of a TLV-flex
formula to the halting problem in Minsky machines. We then first need to represent a
Minsky machine as a TLV-flex formula. This is done by appealing to the encoding of
Minsky machines into utcc processes in Definition 6.2.1 and then the encoding of utcc

processes into TLV-flex formulae in Definition 5.1.1.

Proposition 6.4.1. Let M be a Minsky machine and P = M[[M ]] as in Definition 6.2.1.

Let A = TL[[P ]] be the FLTL formula obtained as in Definition 5.1.1. Then A is a monadic

TLV-flex formula without equality nor function symbols.

Proof. Directly from the fact that the constraint system required in M[[·]] is the monadic
fragment without equality nor function symbols of FOL.

To see the importance of quantifying over flexible variables in the encoding A = TL[[P ]]

take the output of x (i.e., the process tell(out(x))) in the definition of NOT-ZEROn(x) (Figure
6.2). Assume that the variables were rigid. Notice that the abstraction modeling the
definition of this procedure is replicated (see Notation 3.3.2). This thus corresponds to a
formula of the form �∀x out(x) ⇒ F . Once the formula out(a) is true, by the rigidity of a,
the formula F [a/x] must be true in the following states, which does not correspond to the
intended meaning of the machine execution. Instead, if a is flexible, the fact that out(a) is
true at certain state does not imply that F [a/x] must be true in the subsequent states.

Now, using the above proposition and our construction of Minsky machines we have the
following:

Lemma 6.4.1. Given a Minsky machine M , it is possible to construct a monadic TLV-

flex formula without equality nor function symbols FM such that FM is valid iff M loops

(i.e., it never halts).

Proof. Let M be a Minsky machine and P = M[[M ]]′′ where M[[M ]]′′ is defined as the
encoding M[[M ]] in Definition 6.2.1 except that ins(·) (Figure 6.2) adds tell(running) in
parallel to the encoding of all instructions but HALT, i,e,:

ins′′(li, HALT) = ins(li, HALT)

ins′′(li, INC(cn, lj)) = ins(li, INC(cn, lj)) ‖ tell(running)

ins′′(li, DECJ(cn, lj , lk)) = ins(li, DECJ(cn, lj , lk)) ‖ tell(running)

Take A = TL[[P ]]. One can verify that if A |=T ✸ halt then, it must be the case that
there exists j ≥ 0 such that CutF (A, j) |=T ✸ halt. Let FM = A ⇒ � running. One
can show that FM is not valid if and only if CutF (A, j) |=T ✸ halt since when halt can
be deduced, by construction of ins′′, running cannot be deduced. By Corollary 5.2.2,
CutF (A, j) |=T ✸ halt iff P ⇓halt and from Lemmas 6.3.1 and 6.3.2, P ⇓halt iff M halts.
Therefore, FM is valid iff M never halts.

Since the set of looping Minsky machines (i.e. the complement of the halting problem)
is not recursively enumerable, a finitistic axiomatization of monadic TLV-flex without
equality nor function symbols would yield a recursively enumerable set of tautologies.

Theorem 6.4.1 (Incompleteness). There is no a sound and complete finitistic axiomati-

zation for monadic TLV-flex without equality nor function symbols.
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Proof. Directly from Lemma 6.4.1.

From this corollary it follows that the validity problem in the above-mentioned monadic
fragment of TLV-flex is undecidable. Our results then show that the restriction on the
quantification of flexible variables is necessary for the decidability result of monadic TLV
in [Merz 1992].

In Appendix A we present an alternative proof of the Theorem 6.4.1 using only argument
from logic. We prove that the formula corresponding to the process M[[M ]] faithfully describe
the behavior of the machine M . Then we show that there exists a formula that is valid if
and only if M never halts.

6.5 Encoding the λ-calculus into utcc

In this section we give a compositional encoding of the call-by-name λ-calculus into utcc

processes. This encoding is a significant application showing how utcc is able to mimic
one of the most notable and simple computational models achieving Turing completeness.
Here, the ability to express mobility is central to our encoding that is built upon the ideas
in the encoding of the λ-calculus into the π-calculus in [Milner 1992b, Sangiorgi 1992].

We shall recall briefly some notions of the lazy λ-calculus [Abramsky 1993] and the
encoding of it into the π-calculus [Milner 1992b, Sangiorgi 1992].

6.5.1 The call-by-name λ-calculus

Terms in the λ-calculus denoted by M,N, ... are built from variables x, y, ... by the following
syntax:

M ::= x | (λx.M) | (MN)

The term (λx.M) is known as λ-abstraction and (MN) as the application of M to N .
Computations in the call-by-name λ-calculus are described by the relation −→λ:

β
((λx.M)N) −→λ M [N/x]

µ
M −→λ M ′

MN −→λ M ′N

Rule β replaces the placeholder x by the argument N in the body M . The parameter N

in such an expression is not evaluated before the substitution takes place. The expression
(λx.M) is called β-redex and the result of the reduction, M [N/x], is called contractum.
Rule µ allows us to replace the leftmost β-redex in the application (MN) by its contractum.
Notice that terms in the body of an abstraction are not reduced.

Since the parameters are not evaluated, the call-by-name strategy allows for the manip-
ulation of infinite objects. Furthermore, reductions are deterministic: the redex is always
at the extreme left of the term [Abramsky 1993].

6.5.2 Encoding the λ-calculus into the π-calculus

The encoding of the λ-calculus in [Milner 1992b] and [Sangiorgi 1992] makes use of channels
to represent the linkage between an abstraction of the form M = λx.M0 and the sequence of
arguments M1M2..., when applying M to M1M2.... The encoding of M is then parametric to
a channel name indicating where to find the first argument. This way, function application
is a particular form of parallel combination of two agents, the function and its argument.
Beta-reduction is modeled as process interaction. Since channels can communicate only
names, the communication of a term is simulated by the communication of a trigger for it
[Sangiorgi 1998].
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The translation is inductively defined as follows

variable [[x]]πu
def
= x〈u〉

λ-abstraction [[λx.M ]]πu
def
= u(x, v).[[M ]]πv

Application [[(MN)]]πu
def
= νv([[M ]]πv | νw(v〈w, u〉 | !w(m).[[N ]]πm))

In the encoding above, the application MN causes that [[M ]]πv consumes the process
v〈x, v′〉, thus finding the name x of the first argument and a link (v′) to the reminder of
the arguments.

See [Sangiorgi 1992] and [Sangiorgi 1998] for further details on this encoding and the
correspondence theorems.

6.5.3 Encoding the λ-calculus into utcc

In our encoding we shall mimic the input and output actions in the π-calculus encoding of
the λ-calculus. Notice that inputs and outputs in the π-calculus disappear only after being
involved in an input-output interaction. In utcc, the tell and abstraction processes can be
thought of as being outputs and inputs, respectively, in π, but they are not automatically
transferred from one time unit to the next one—intuitively, they will disappear right after
the current time unit even if they did not interact.

Consequently, to mimic π inputs we define the derived operator (wait ~x; c) do Q that
waits, possibly for several time units until for some ~t, c[~t/~x] holds. Then it executes Q[~t/~x].

Definition 6.5.1 (Wait Process). Assuming an uninterpreted predicate out′ in the signa-

ture of the constraint system and stop, go /∈ fv(P ) we define

(wait ~x; c) do P
def
= (local stop, go) tell(out′(go))

‖!unless out′(stop) next tell(out′(go))

‖! (abs ~x; c ∧ out′(go)) (P ‖! tell(out′(stop))

In the previous definition, the guard of the abstraction c is augmented with the constraint
out′(go) which is added to the store until the constraint out′(stop) is deduced. The latter
is added once the body of the abstraction (i.e., P ) is executed.

Notation 6.5.1. Recall that the empty sequence of terms is written as ε. We shall use

whenever c do P as a shorthand for (wait ε; c) do P .

To mimic π outputs, we require a derived constructor able to perform the output until
some process is able to “read” the constraint produced—after interacting with an input
process. We shall write tell(c) for the persistent output of c until some process reads c. We
also define an auxiliary input process that adds a constraint acknowledging the reading of
c namely (wait ~x; c) do P .

Definition 6.5.2 (Persistent Tells and Waits). Assuming stop, go /∈ fv(c). Define

tell(c)
def
= (local go, stop) tell(out′(go)) ‖!when out′(go) do tell(c) ‖

!unless out′(stop) next tell(out′(go)) ‖
!when c do ! tell(out′(stop))

(wait ~x; c) do P
def
= (wait ~x; c) do (P ‖ tell(c))

Intuitively, the constraint c is added to the store in order to acknowledge that c was read.
Once this happens, the resulting process R is only able to output constraints of the form
out′(x) where x is a local variable. This is due to the processes of the form ! tell(out′(stop))

in R. We shall elaborate more about this issue in the next section where we prove that R

can be viewed as an inactive process for the execution of the encoding.
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The Encoding. The encoding below maps arbitrary λ-terms into utcc processes. We
presuppose a constraint system with two uninterpreted predicates out2 and out3 and the
corresponding acknowledgments out2 and out3. For the sake of simplicity, we shall omit
the sub-indexes in out2 and out3 and they are understood as the arity of out.

variable [[x]]uλ
def
= tell(out(x, u))

λ-abstraction [[λx.M ]]u
def
= (wait x, v; out(u, x, v)) do next [[M ]]vλ

Application [[(MN)]]uλ
def
= (local v) ([[M ]]v ‖

(localw) tell(out(v, w, u) ‖
! (wait m; out(w, m)) do next [[N ]]m))

As the reader can see, our encoding follows directly from that of the λ-calculus into the
π-calculus. Intuitively, the constraint out2(a, x) represents sending the name x on channel
a as in Example 3.6.2. Similarly, out3(a, x, y) represents sending both x and y on a.

6.5.4 Correctness of the Encoding

In this section we prove the correspondence between the derivations of a lambda term and
the derivations of its corresponding utcc process. Before doing that, let us introduce some
facts on the processes tell and wait.

Notice that once the processes tell and wait interact, their continuation in the next
time unit is a process able to output only a constraint of the form ∃x out

′(x). We then
define the following equivalence relation that allows us to “ignore” these processes.

Definition 6.5.3 (Observables). Let ∼o be the output equivalent relation in Definition

3.7.1. We say that P and Q are observable equivalent, notation P ∼obs Q, if

P ‖! tell(∃xout
′(x)) ∼o Q ‖! tell(∃xout

′(x))

Using the previous equivalence relation, we can show the following.

Observation 6.5.1. Assume that c(~x) is a predicate symbol of arity |~x|.

1. If true 6|= c then (wait ~x; c) do P ====⇒ (wait ~x; c) do P .

2. If P ≡ tell(c(~t)) ‖ (wait ~x; c(~x)) do nextQ then P ====⇒∼obs Q[~t/~x].

Proof. For (1), one can show that there is a derivation of the form

(wait ~x; c) do P −→∗ (local stop, go; out′(go))

‖ unless out′(stop) next tell(out′(go))

‖ next !unless out′(stop) next tell(out′(go))

‖ (abs ~x; c ∧ out′(go)) (P ‖ tell(c) ‖! tell(out′(stop))

‖ next ! (abs ~x; c ∧ out′(go)) (P ‖ tell(c) ‖! tell(out′(stop)) 6−→

Notice that the unless process above executes the process tell(out′(go)) in the next time
unit. By observing the definition of wait, it is easy to see that (wait ~x; c) do P ====⇒
(wait ~x; c) do P .
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For (2), assume that P = nextQ and let R = tell(c(~t)) ‖ (wait ~x; c(~x)) do P . One can
show that there is a derivation of the form

R −→∗ (local go, stop; out′(go))when out′(go) do tell(c(~t)) ‖
!unless out′(stop) next tell(out′(go)) ‖
!when c(~t) do ! tell(out′(stop)) ‖

(local stop′, go′; out′(go′))

‖!unless out′(stop′) next tell(out′(go′))

‖! (abs ~x; c ∧ out′(go′)) (P ‖ tell(c(~t)) ‖! tell(out′(stop′))
−→∗ (local go, stop; out′(go) ∧ c(~t)) ‖

!unless out′(stop) next tell(out′(go)) ‖
!when c(~t) do ! tell(out′(stop)) ‖

(local stop′, go′; out′(go′))

‖!unless out′(stop′) next tell(out′(go′))

‖! (abs ~x; c ∧ out′(go′)) (P ‖ tell(c(~t)) ‖! tell(out′(stop′))

Since stop, go, stop′, go′ /∈ fv(c) ∪ fv(P ) we must have

R −→∗ P [~t/~x] ‖ (local go, stop; out′(go) ∧ c(~t) ∧ out′(stop))next ! tell(out′(stop)) ‖
unless out′(stop) next tell(out′(go)) ‖
next !unless out′(stop) next tell(out′(go)) ‖

(local stop′, go′; out′(go′) ∧ c(~t) ∧ out′(stop′))next ! tell(out′(stop′))

‖ unless out′(stop′) next tell(out′(go′))

‖ next !unless out′(stop′) next tell(out′(go′))

‖ (abs ~x; c ∧ out′(go′) ∧ ~x 6
.
= ~t) (P ‖ tell(c(~t)) ‖! tell(out′(stop′))

‖ next ! (abs ~x; c ∧ out′(go′)) (P ‖ tell(c(~t)) ‖! tell(out′(stop′))
−→∗ P [~t/~x] ‖ (local go, stop; out′(go) ∧ c(~t) ∧ out′(stop))next ! tell(out′(stop)) ‖

next !unless out′(stop) next tell(out′(go)) ‖
(local stop′, go′; out′(go′) ∧ c(~t) ∧ out′(stop′))next ! tell(out′(stop′))

‖ next !unless out′(stop′) next tell(out′(go′))

‖ (abs ~x; c ∧ out′(go′) ∧ ~x 6
.
= ~t) (P ‖ tell(c(~t)) ‖! tell(out′(stop′))

‖ next ! (abs ~x; c ∧ out′(go′)) (P ‖ tell(c(~t)) ‖! tell(out′(stop′)) 6−→

Let R′ = P [~t/~x] ‖ R′′ be the process in the configuration above. Notice that in R′′ the pro-
cesses unless out′(stop) next tell(out′(go)) and unless out′(stop′) next tell(out′(go′))

cannot add the constraints out′(go) and out′(go′) because of the processes ! tell(out′(stop))

and ! tell(out′(stop′)). Hence, the process R′′ can only output constraints of the form
out′(x) where x is a local variable and P cannot be spawn from R′′. Since P = nextQ we
conclude R ====⇒∼obs Q[~t/~x].

For the sake of presentation, the notation below introduces a shorthand for the residual
process generated by a process of the form tell(c(~t)) ‖ (wait ~x; c) do Q.

Notation 6.5.2 (Residual process). Let c(~x) be a predicate symbol of arity |~x| and P =

tell(c(~t)) ‖ (wait ~x; c) do Q. We shall use inact-wait(~x,~t, c,Q) to denote the process

P ′ ‖ P ′′ where
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P ′ ≡ (local go, stop; out′(go) ∧ out′(stop) ∧ c(~t))

next !unless out′(stop) next tell(out′(go)) ‖
next ! tell(out′(stop))

P ′′ ≡ (local stop′, go′; out′(go′) ∧ c(~t) ∧ out′(stop′))next ! tell(out′(stop′))

‖ next !unless out′(stop′) next tell(out′(go′))

‖ (abs ~x; c ∧ out′(go′) ∧ ~x 6
.
= ~t) (Q ‖ tell(c(~t)) ‖! tell(out′(stop′))

‖ next ! (abs ~x; c ∧ out′(go′)) (Q ‖ tell(c(~t)) ‖! tell(out′(stop′))

Now we are ready to state the correctness of our encoding.

Theorem 6.5.1 (Correctness). Let M and N be λ terms.

• (Soundness). If M −→λ N , there is P s.t. [[M ]]u ====⇒∗ P and P ∼obs [[N ]]u.

• (Completeness). If [[M ]]u ====⇒∗ P, there is N ′ s.t M −→∗
λ N ′ and [[N ′]]u ∼obs P.

Proof. The proof follows that in [Sangiorgi 1992] for the encoding of the lazy-lambda cal-
culus (call-by-name lambda calculus) into HOπ (a higher-order extension of π).

Both, soundness and completeness are proven by induction on the structure of M . We
consider three cases:

1. M = λx.M ′. In this case, M does not exhibit any reduction. By definition of [[·]]λ we
have

[[λx.M ′]]uλ = (wait x, v; out(u, x, v)) do next [[M ′]]vλ

By (1) in Observation 6.5.1 we conclude

[[λx.M ′]]uλ ====⇒∼obs [[λx.M ′]]uλ

2. M = M1M2 and M1 = λx.M3. We then have M −→λ M3[M2/x]. According to the
definition of [[·]]λ we have the following processes

[[M ]]uλ = (local v) ([[M1]]
v
λ ‖ (localw) tell(out(v, w, u) ‖

! (wait m; out(w, m)) do [[M2]]
m
λ ))

[[M1]]
v
λ = (wait x, v′; out(v, x, v′)) do next [[M3]]

v′

λ

Observe that the process tell(out(v, w, u)) in the definition of [[M ]]uλ interacts with
the wait process in the definition of [[M1]]

v
λ and we obtain the following derivation

[[M ]]uλ −→∗ (local v, w) (next [[M3]]
v′

λ [w/x, u/v′] ‖
inact-wait(xv′, wu, out(v, x, v′),next [[M2]]

m
λ ) ‖

next ! (wait m; out(w, m)) do next [[M2]]
m
λ ) 6−→

Since v′ is substituted by u we can prove that

[[M ]]uλ ====⇒∼obs (local v, w) ([[M3]]
u
λ[w/x] ‖! (wait m; out(w, m)) do next [[M2]]

m
λ )

Now we shall prove that any application of x to a term M ′ in M3[M2/x] must reduce
to the application of M2 to M ′. Without loss of generality, assume that M3 = M ′

3M
′

and M ′
3 −→∗

λ x. Then, it must be the case that M3[M2/x] −→∗
λ M2M

′[M2/x]. By
inductive hypothesis we have

[[M ]]uλ ====⇒∗∼obs P ≡ (local v, w) ([[xM ′]]uλ[w/x] ‖! (wait m; out(w, m)) do [[M2]]
m
λ )
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By the definition of [[·]]λ we obtain

P = (local v, w, v′) ([[x]]v
′

λ [w/x] ‖! (wait m; out(w, m)) do next [[M2]]
m
λ

‖ (localw′) (tell(out v′, w′, u) ‖

! (wait m′; out(w′, m′)) do next [[M ′]]m
′

λ [w/x])))

Notice that [[x]]v
′

λ [w/x] = tell(w, v′). This way, the process

(wait m; out(w, m)) do next [[M2]]
m
λ

triggers the execution of [[M2]]
m
λ [v′/m] and we derive

P ====⇒∼obs (local v, w, v′) ([[M2]]
v′

λ ‖! (wait m; out(w, m)) do next [[M2]]
m
λ

‖ (localw′) (tell(out v′, w′, u) ‖
! (wait m′; out(w′, m′)) do

next [[M ′]]m
′

λ [w/x])))

We then conclude [[M ]]uλ ====⇒∗∼obs [[M2M
′[M2/x]]]uλ

3. M = M1M2 and M1 is not of the form λx.M3. It must be the case that M1 −→λ M ′
1

and then M −→λ M ′
1M2. By induction we have

[[M1]]
v
λ ====⇒∗∼obs [[M ′

1]]
v
λ

By the definition of [[·]]λ we have

[[M ]]uλ = (local v) ([[M1]]v ‖ (localw) tell(out(v, w, u) ‖
! (wait m; out(w, m)) do next [[M2]]m))

Since M1 is not of the form λx.M3, the constraint out(v, w, u) cannot interact with
any process in [[M1]]

v
λ (notice that only the encoding of λ-abstractions can syn-

chronize with ternary predicates). Furthermore, since the variable w is local in
(wait m; outw, m) do [[M2]]

m
λ , the process [[M1]]

v
λ cannot add a constraint enabling

the guard of this wait process. Then, the only derivation of [[M ]]vλ is the following

[[M ]]uλ ====⇒∼obs (local v) ([[M ′
1]]

v
λ ‖ (localw) tell(out(v, w, u) ‖

! (wait m; out(w, m)) do next [[M2]]
m
λ ))

We then conclude [[M ]]uλ ====⇒∼obs [[M ′
1M2]]uλ

6.6 Summary and Related Work

In this chapter we studied the expressiveness of utcc. We showed that well-terminated
processes and a very simple constraint system are enough to encode Turing-powerful for-
malisms. More precisely, using the monadic fragment of first-order logic (FOL) without
equality nor function symbols, we encoded Minsky machines. Furthermore, using a polyadic
constraint system, we proposed a compositional encoding of the call-by-name λ-calculus into
utcc following the ideas in [Milner 1992b, Sangiorgi 1998].

As an application of this expressiveness study, we showed that the monadic fragment
without equality nor function symbols of FLTL is strongly incomplete. This result refutes a
decidability conjecture for FLTL in [Valencia 2005]. It also justifies the restriction imposed
in previous decidability results on the quantification of flexible-variables [Merz 1992]. This
dissertation then fills a gap on the decidability study of monadic FLTL.

The material of this chapter was originally published as [Olarte 2008b].
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Related Work. The expressivity of CCP calculi has been explored in [Saraswat 1994,
Nielsen 2002b, Valencia 2005]. These works show that tcc processes are finite-state. The
results in [Nielsen 2002b] also imply that the processes of the extension of tcc with arbitrary
recursive definitions are not finite-state. Nevertheless these results do not imply that they
can encode Turing-expressive formalisms.

There are several works addressing the decidability of fragments of FLTL. The work in
[Merz 1992] shows that the validity problem in monadic TLV without equality nor function
symbols is decidable. As mentioned before, TLV unlike TLV-flex does not allow quan-
tification over flexible variables. Our decidability results justifies the imposition of this
quantification restriction.

The work in [Valencia 2005] shows the decidability of the satisfiability problem of the
negation-free fragment of TLV-flex. It was also suggested in [Valencia 2005] that one could
dispense with the restriction of negation-free. The Theorem 6.4.1 refutes this since including
negation one can obviously define universal quantification (not present in the negation-free
fragment of [Valencia 2005]) and then be able to reproduce the encoding of looping Minsky
machines here presented.

The full expressiveness of process calculi such as CCS [Milner 1992a] and the π-calculus
[Milner 1999, Sangiorgi 2001] (or fragments of them) has been also proven by exhibiting
encodings of Register machines (or Minsky machines) into the target language. The en-
coding we presented in Section 6.2 was inspired on the ideas of [Busi 2003, Busi 2004,
Palamidessi 2006], where a sequence of local variables is used to represent a number. Using
these encodings, the works in [Busi 2003, Busi 2004, Aranda 2009] compare the expres-
siveness power of different syntactic variants of CCS. These results allowed the authors to
prove the (un)decidability of the problem whether two processes are equivalent under a
given equivalence relation or to know if a process can exhibit terminating computations
(convergence). Similarly, in [Palamidessi 2006], it is shown that the persistent fragment of
the π-calculus (all inputs and outputs are replicated) is enough to encode Minsky machines.
This result along with a characterization of this fragment into First-Order Logic allowed
the authors to identify decidable classes with respect to barbed (output) reachability.

Expressiveness of FLTL. Based on the undecidability result of TLV(∅) [Szalas 1988]
(i.e. TLV with the empty set of predicates), [Merz 1992] proves an incompleteness result
for monadic without equality and function symbols TLP logic. Unlike TLV, in TLP the
interpretation of the predicates is flexible (state dependent) and all the variables are rigid.
[Merz 1992] also relates undecidability results of n-adic fragments of TLP with undecid-
ability results of n + 1-adic fragments of TLV. Thus adding binary predicates turns TLV
strongly incomplete.

In [Hodkinson 2000] the monodic fragment of FLTL is introduced. A formula is monodic
if every subformulae beginning with a temporal operator have at most one free variable. In
this case the authors use a TLP-like semantics and conclude that the set of valid formulae in
the 2-variable monadic fragment (i.e. monadic formulae with at most 2 distinct individual
variables) is not recursively enumerable even considering finite domains in the interpreta-
tion. Nevertheless validity in the fragment of 2-variable monodic formulae is decidable. In
[Degtyarev 2002] these results are extended claiming the undecidability for validity in the
monodic monadic 2-variable with equality fragment of TLP. The work in [Hussak 2008] ex-
tends the results in [Hodkinson 2000] by showing the decidability of the monadic, monodic
fragment of TLP with function symbols.

Finally, our encoding in utcc of the λ-calculus builds on the corresponding encoding in
the π-calculus in [Milner 1992b, Sangiorgi 1998] and in Higher-order Linear CCP (HL-CCP)
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[Saraswat 1992]. HL-CCP as presented in [Saraswat 1992] is a calculus closely related to
the π-calculus and, unlike utcc, is higher-order. The encoding in [Saraswat 1992] appeals
to the higher-order nature of HL-CCP.





Chapter 7

Denotational Semantics

In Chapter 4 we studied a symbolic semantics for utcc aiming at observing the behavior
of non well-terminated processes. We showed that this semantics gives a compact (and
abstract) representation of the outputs of a process by using temporal formulae. In the case
of the abstraction operator P = (abs ~x; c) Q, this semantics differs from the operational
semantics in that symbolically, the current store is augmented with a constraint of the form
∀~x(c ⇒ F ) regardless if d entails c[~t/~x] for some ~t or not. In contrast, we know that P

operationally does not exhibit any transition if d does not entail c[~t/~x] for some ~t.
In this chapter we first characterize the output of a process from the symbolic constraints

we observe from it. To do this, we shall define the symbolic input-output behavior of a

process as follows. Assume that P
(d,e′)

====⇒s Q, i.e., under input d, the process P produces
symbolically e′. We shall say that the output of P under input d is e where e is the minimal
constraint (w.r.t. �) entailing the same information (basic constraints) than e′.

We shall then show that for the monotonic fragment, the symbolic input-output relation
is a closure operator [Scott 1982], i.e., an extensive, idempotent and monotonic function.
A pleasant property of these functions is that they are uniquely determined by their set of
fixed points. Then, we shall define the strongest postcondition of a process as the set of
fixed points of the closure operator associated to its symbolic input-output relation.

Next, following the denotational semantics of tcc in [Saraswat 1994, Nielsen 2002a], we
shall give a compositional characterization of the symbolic strongest postcondition relation.
Recall that the symbolic outputs of a process are past-monotonic sequences (see Defini-
tion 4.2.3). Consequently, the codomain of our denotational model will be past-monotonic
sequences unlike sequences of basic constraints as in tcc.

We shall prove our representation to be fully abstract with respect to the symbolic input-
output behavior for a meaningful fragment of the calculus. This shows that mobility can
be captured as closure operators over an underlying constraint system. Furthermore, we
shall show that the input-output behavior of monotonic processes can be compositionally
retrieved from its denotation.

As an application of the semantics here presented, in Chapter 8 we shall give a closure
operator semantics to a language for the specification of security protocols that arises as a
specialization of utcc with a cryptographic constraint system.

7.1 Symbolic Behavior as Closure Operators

As we studied in Chapter 4, the outputs of the symbolic and the operational semantics
are rather different. On the one hand, operationally, only basic constraints can be output.
This way, the environment observes exactly what the process computes in each time unit.
On the other hand, the symbolic semantics outputs past-monotonic sequences which are an
abstract representation of all the potential outputs the process can exhibit.

We have also shown that even if both representations are different, they coincide in
the set of basic constraints they can entail when considering well-terminated processes.
One may then wonder how to determine the actual behavior of a process by observing the
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temporal formulae it outputs when providing an input. For example, one may expect that
the process when c do tell(d) under input true outputs true (assuming c 6= true) and
not the implication e = c ⇒ d (produced by the symbolic semantics). In fact, we know
that only the basic constraint true can be entailed from e and then, the operational output
true corresponds to the symbolic output e.

Fixed Formulae. Aiming at capturing such a “more concrete” representation of the out-
put of a process, we shall define the symbolic input-output relation for utcc processes. This

relation is based on the following idea. Assume that P
(d,e′)

====⇒s Q, i.e., under input d, P

produces symbolically e′. We shall define Fix (e′) as the set of formulae (constraints) such
that e′ cannot add any new information. This means, for any d′ in Fix (e′), the formulae
e′∧d′ and d′ entail the same basic constraints. We then define the output of P under input
d as the minimum element e of Fix (e′) greater than the input d. Later on, we prove that e

and e′ entail the same basic constraints, i.e., e and e′ represent the same information.

Sequences of formulae and ~x-variants. Before formalizing the ideas above, let us first
introduce some notation and definitions about sequences of formulae. Recall that an infinite
sequence of future-free formulae w is said to be past-monotonic if and only if for all i > 1,
w(i) |=T ⊖w(i− 1) (see Definition 4.2.3). Recall also that FF denotes the set of future-free
formulae.

Notation 7.1.1. We shall use ∃~xw to denote the sequence obtained by pointwise applying ∃~x

to each constraint in w. Similarly, w∧w′ denotes the sequence v such that v(i) = w(i)∧w′(i)

for i > 0.

Definition 7.1.1 (~x-variant). We say that e and e′ are ~x-variants if ∃~xe = ∃~xe′. Similarly,

the sequence w is an ~x-variant of the sequence w′ iff ∃~xw = ∃~xw′.

Recall that adm(~x,~t) means that none of the elements in ~x is syntactically equal to the
elements in ~t (Convention 3.1.1). Lemma 7.1.1 characterizes a special form of ~x-variants
that we shall consider in the forthcoming proofs.

Lemma 7.1.1. Let w be a sequence of future-free formulae s.t. ~x /∈ fv(w) and ~t ∈ T |~x|

be a sequence of terms s.t. adm(~x,~t). If w′ is an ~x-variant of w and w′ � (~x = ~t)ω

then w′ ≡ (w ∧ (~x = ~t)ω). Furthermore, if w, w′ are past-monotonic sequences, then

w′ ≡ (w ∧ (~x = ~t)ω).

Proof. Let w′ be an ~x-variant of w such that w′ � (~x = ~t)ω. We can rewrite w′ as

w′ = w′′ ∧ (~x = ~t)ω ∧ w′′′

for some w′′ and w′′′ s.t. ~x /∈ fv(w′′). We can substitute in w′′′ all the occurrences of xi ∈ ~x

by its corresponding ti ∈ ~t obtaining w′ = v′ ∧ (~x = ~t)ω, where v′ = w′′ ∧ w′′′[~t/~x]. From
~x /∈ fv(w) ∪ fv(v′) and the definition of ~x-variant we derive

w = ∃~xw′ = ∃~x(v′ ∧ (~x = ~t)ω) = ∃~x(v′) = v′

Then we conclude w′ ≡ (w ∧ (~x = ~t)ω).

Similarly we can prove the case when w and w′ are past-monotonic sequences.



7.1. Symbolic Behavior as Closure Operators 91

Definition 7.1.2 (Fixed Formulae). Let n ≥ 0 and Fix : FF ⇀ P(FF ) be defined as

Fix (c) = {F ∈ FF | F |=T c}
Fix (F1 ∧ F2) = {F ∈ FF | F ∈ Fix (F1) and F ∈ Fix (F2)}
Fix (∀~x ⊖n (c) ⇒ F1) = {F ∈ FF | for all ~x-variant F ′ of F , if F ′ |=T (⊖n(c) ∧ ~x = ~t)

for some ~t ∈ T s.t. adm(~x,~t) then F ′ ∈ Fix (F1) }
Fix (∃~xF1) = {F ∈ FF | there exists an ~x-variant F ′ of F s.t. F ′ ∈ Fix (F1)}
Fix (⊖F1) = {F ∈ FF | F = ⊖F ′ and F ′ ∈ Fix (F1)}

Given the future-free formulae F and G, if F ∈ Fix (G) we say that F is a fixed formula

for G.

Roughly speaking, F ∈ Fix (G) if the formula F ∧ G entails the same basic constraints
than F . It intuitively means that G cannot add new information to F (we shall formally
prove this in Lemma 7.1.2).

Let us give some intuitions about the equations in Definition 7.1.2. If F |=T c then c

cannot add new information to the formula F . F is a fixed formula for the conjunction
F1 ∧ F2 if F is a fixed formula for both F1 and F2.

A formula F is a fixed formula for the implication F1 ⇒ F2 if either F does not entail
the antecedent F1 or F is a fixed formula for the consequence F2. We extend this idea
to universally quantified implications of the form ∀~x(F1 ⇒ F2) taking into account the
substitutions making valid F1. The intuition is that for any ~x-variant F ′ of F , if F ′ |=T

⊖nc∧ ~x = ~t, i.e., F ′ |=T F1σ for an admissible substitution σ = [~t/~x], then F ′ must be also
a fixed formula for F2σ.

Let F ′ be an ~x-variant of F (i.e., ∃~xF = ∃~xF ′). For the existentially quantified formula
G = ∃~xF1, if F ′ cannot add any new information to F1 then F cannot add any new
information to G. Hence, F is a fixed formula for G if there exists an ~x-variant F ′ of F

such that F ′ is a fixed formula for F1.
Finally, the formula F = ⊖F ′ cannot add any information to G = ⊖F1 if F ′ cannot add

any new information to F1.

Remark 7.1.1. Notice that we defined Fix (·) explicitly for the subset of future-free formulae

generated by the symbolic semantics that corresponds to the following syntax

F,G, . . . := c | F ∧ G | ∀~x(⊖n(c) ⇒ F ) | ∃~xF | ⊖ F.

where c is a basic constraint in the underlying constraint system and n ≥ 0.

Let us now lift the definition of Fix (·) to sequences of future-free formulae.

Notation 7.1.2. Let w and v be sequences of future-free formulae. We shall write w ∈
Fix (v) whenever w(i) ∈ Fix (v(i)) for i > 0 and we say that w is a fixed sequence for v.

7.1.1 Symbolic Input-Output Relation

Using the previous definition of fixed formulae, we define here the symbolic input-output
relation of a process. Later on, we shall show that for the monotonic fragment, this relation
is a closure operator [Scott 1982], i.e., a monotonic, extensive and idempotent function.

We shall use the following notation.

Notation 7.1.3 (Upper Closure). The upper closure of a future-free formula e is the set

{e′ | e′ � e} and we write ↑ e. We extend this notion to sequences of future-free formulae

by decreeing that ↑ w = {w′ | w′ � w}.
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The following definition makes precise our idea of the symbolic input-output behavior
of a process. Recall that we use w to denote the past-monotonic sequence obtained from w

by adding the necessary past information (see Notation 4.2.2).

Definition 7.1.3 (Symbolic Input-Output Relation). Let min be the minimum function wrt

the order induced by �. Given an abstracted-unless free process P , we define the symbolic-

input output behavior of P as the set

ios(P ) = {(w, v) | P
(w,v′)
====⇒ and v = min(↑ w ∩ Fix (v′))}

We say that P and Q are symbolically input-output equivalent, notation P ≈io
s Q iff

ios(P ) = ios(P ).

Closure Properties of ios(·). We can show that for the monotonic fragment of utcc,
the relation ios(·) is a closure operator. In the following proposition we prove this.

Proposition 7.1.1 (Closure Properties). Let P be a monotonic utcc process. We have

the following:

(1) ios(P ) is a function.

(2) ios(P ) is a closure operator, namely it satisfies:

• Extensiveness: If (w, v) ∈ ios(P ) then v � w.

• Idempotence: If (w, v) ∈ ios(P ) then (v, v) ∈ ios(P ).

• Monotonicity: if (w1, v1) ∈ ios(P ) and w2 � w1, then there exists v2 such that

(v1, v2) ∈ ios(P ) and v2 � v1.

Proof. The proof of (1) is immediate from Theorem 4.3.1. For (2), assume that (w, v) ∈

ios(P ) and P
(w,w∧v′)
====⇒ . By definition of ios(·), it must be the case that

v = min(↑ w ∩ Fix (w ∧ v′))

Then we have the following.

• Extensiveness. It is easy to see that w � w. Since v = min(↑ w ∩ Fix (w ∧ v′)) we
conclude v � w.

• Idempotence. Assume that (v, u) ∈ ios(P ). Then, we have P
(v,v∧u′)
====⇒ and u =

min(↑ v ∩ Fix (v ∧ u′)). Since P is a monotonic process, by Lemma 4.3.6 we know
that u′ = v′. Then we have u = min(↑ v ∩ Fix (v ∧ v′)). By hypothesis we know
that v = min(↑ w ∩ Fix (w ∧ v′)) and then v ∈ Fix (v′). Since v is a past-monotonic
sequence, we also know that v = v. We then conclude by noticing that it must be the
case that u = v.

• Monotonicity. Let w′ � w and assume that (w′, u′) ∈ ios(P ). Then P
(w′,w′∧u′′)

====⇒
and u′ = min(↑ w′ ∩ Fix (w′ ∧ u′′)). By appealing to Lemma 4.3.6, we know that
u′′ = v′ and then u′ = min(↑ w′ ∩ Fix (w′ ∧ v′)). Since v = min(↑ w ∩ Fix (w ∧ v′))

and w′ � w we conclude u′ � v.
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A pleasant property of closure operators is that they are functions uniquely determined
by their set of fixed points. We shall call that set of fixed points the strongest postcondition

that we define as follows.

Definition 7.1.4 (Strongest Postcondition). Given a monotonic process P , the set sps (P ) =

{w | (w, w) ∈ ios(P )} denotes the strongest postcondition of P . Moreover, if w ∈ sps(P ),

we say that w is a quiescent sequent for P , i.e. P under input w cannot add any information

whatsoever. Define P ∼sp
s Q iff sps(P ) = sps(Q).

The following proposition introduces a obvious fact on the strongest postcondition re-
lation.

Proposition 7.1.2. Given a monotonic process P and the past-monotonic sequences w, v

we have if (w, v) ∈ ios(P ) then v ∈ sps(P ).

Proof. Directly from the idempotence of ios(·).

Finally, we give an alternative characterization of the strongest postcondition as the

sequences w such that P
(w,v)

====⇒s and w is a fixed sequence for v. The following proposition
shows that this representation and that of Definition 7.1.4 are equivalent. Then, in the
sequel, we shall use indistinguishably both definitions of the strongest postcondition.

Proposition 7.1.3 (Alternative Characterization of sps(·)). Let P be a monotonic process.

w ∈ sps(P ) iff P
(w,v)

====⇒s and w ∈ Fix (v)

Proof. (⇒) Assume that w ∈ sps(P ). Then, w is a past-monotonic sequence and w = w.

Hence, it must be the case that P
(w,w∧v)
====⇒s and w = min(↑ w ∩ Fix (w ∧ v)). Then, we

must have that w ∈ Fix (w ∧ v). Hence, w ∈ Fix (v).

(⇐) Assume that P
(w,v)

====⇒s and w ∈ Fix (v). Then w = min(↑ w ∩ Fix (v)) and we
conclude (w, w) ∈ ios(P ).

7.1.2 Retrieving the Input-Output Behavior

An interesting application of the fact that ios(P ) is a closure operator is that this relation
can be retrieved from its set of fixed points, i.e., from the relation sps(P ) similarly as in
the case of tcc [Saraswat 1994, Nielsen 2002a].

Corollary 7.1.1 (Input-output Retrieval from sps ). Given a monotonic utcc process P ,

(w, w′) ∈ ios(P ) iff w′ = min(↑ w ∩ sps (P ))

Proof. Directly from the fact that ios(·) is a closure operator.

Therefore, to characterize the input-output behavior of a monotonic process P , it suffices
to specify sps (P ). In the next section we shall introduce a denotational semantics aiming at
capturing sps (·) compositionally. Then, we can retrieve the symbolic input-output relation
compositionally relaying on the previous corollary.
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Properties of Fix Before presenting the denotational semantics for utcc, the following
lemma proves our intuition that if F ∈ Fix (G) then F ∧ G and F entail the same basic
constraints.

Lemma 7.1.2. Let F,G be future free formulae and d be a basic constraint. If F ∈ Fix (G),

then F |=T d iff F ∧ G |=T d.

Proof. The if part is trivial. Concerning the only-if part we proceed by induction on the
structure of G. We only present the cases for the existential and the universal quantification.
The other cases are easier.

Assume that F ∈ Fix (G) and F ∧ G |=T d where d is a basic constraint. In both cases
below, by alpha conversion we shall assume that ~x /∈ fv(F ). Then, if F ∧ G |=T d we can
also assume that ~x /∈ fv(d).

• G = ∃~xF1. By definition of Fix , there exists an ~x-variant F ′ of F s.t. F ′ ∈ Fix (F1).
Since F and F ′ are ~x-variants and ~x /∈ fv(F ), F = ∃~xF ′ and then F ′ |=T F . We also
have F1 |=T G since G = ∃~xF1. Given that F ∧ G |=T d we derive the following

F ′ ∧ F1 |=T F ′ ∧ G |=T F ∧ G |=T d

By inductive hypothesis, if F ′ ∧ F1 |=T d then F ′ |=T d. From the assumption
~x /∈ fv(d) we conclude ∃~xF ′ |=T d and then F |=T d.

• G = ∀~x(⊖n(c) ⇒ F1) with n ≥ 0. We shall prove for any model σ if σ |=T F ∧G ⇒ d

then it must be the case that σ |=T F ⇒ d. We have to consider two cases: σ |=T d

and σ 6|=T F ∧ G:

– If σ |=T d then trivially σ |=T F ⇒ d.

– If σ 6|=T F ∧ G then either σ 6|=T F or σ 6|=T G. In the first case, trivially we
have σ |=T F ⇒ d. In the second case, there exists σ′ ~x-variant of σ such that
σ′ |=T ⊖n(c) and σ′ 6|=T F1. Then, we must have that σ′ |=T F ∧ F1 ⇒ d.
By inductive hypothesis, σ′ |=T F ⇒ d. Since ~x /∈ fv(F ) ∪ fv(d) we conclude
σ |=T F ⇒ d.

Finally, we can prove that the set of basic constraints entailed from v in (u, v) ∈ ios(P )

and v′ in P
(w,v′)
====⇒s coincide.

Theorem 7.1.1 (Basic Constraints and Symbolic Outputs). Let P be a abstract-unless

free process such that P
(w,v′)
====⇒s and (w, v) ∈ ios(P ). For all i > 0 and basic constraint d,

v′(i) |=T d iff v(i) |=T d.

Assume that P
(w,v′)
====⇒s and (w, v) ∈ ios(P ). Then, it must be the case that w ∈ Fix (v).

Let i > 0 and di = w(i), e′i = v′(i) and ei = v(i).

Proof. (⇒) Assume that e′i |=T d and then e′i ∧ ei |=T d. Since ei ∈ Fix (e′i), by Lemma
7.1.2 we know that ei |=T d.

(⇐) Assume that ei |=T d. By definition of ios(·) we know that v = min(↑ w ∩ Fix (v′)).
By extensiveness, it must be the case that v′ � w. One can show that for all sequence
v′, v′ ∈ Fix (v′). Therefore, v′ � v and we conclude e′i |=T d.
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7.2 Denotational Semantics for utcc

In this section we define a compositional semantics capturing the symbolic strongest post-
condition in Definition 7.1.4. The semantics is defined as a function [[·]] that associates to
each process a set of sequences of past-monotonic formulae, namely [[·]] : Proc → P(PM )

(see Table 7.1).
Let us give some intuitions about the semantic equations. Recall that the strongest-

postcondition of a process P is the set of sequences on input of which P can run without
adding any information whatsoever. Since skip cannot add any information to any sequence
in PM , then any past-monotonic sequence is quiescent for skip (Equation DSKIP).

The sequences to which tell(c) cannot add information are those whose first element
can entail c (Equation DTELL).

The Equation DPAR says that a sequence is quiescent for P ‖ Q if it is for P and Q.
A process nextP has not influence on the first element of a sequence, thus e.w is

quiescent for it if w is quiescent for P (Equation DNEXT). Similarly, a sequence e.w is
quiescent for unless c nextP if either e entails c or w is quiescent for P (Equation DUNL).

A sequence w is quiescent for !P if w is quiescent for all process of the form next nP

with n ≥ 0. This implies that every suffix of w is quiescent for P (Equation DREP).

Binding Processes. We now consider the binding processes. Recall that a sequence
w is ~x-variant of w′ if ∃~xw = ∃~xw′ (Definition 7.1.1). A sequence w is quiescent for
Q = (local ~x; c) P if there exists an ~x-variant w′ of w such that w′ is quiescent for P .
Hence, if P cannot add any information to w′ then Q cannot add any information to w.
To see this, assume that w and w′ are ~x-variants. Clearly Q cannot add any information
on (the global variables) ~x appearing in w. So, if Q were to add information to w, then P

could also do the same to w′. But the latter is not possible since w′ is quiescent for P .
Now, we may then expect that the semantics for the abstraction operator can be straight-

forwardly obtained in a similar way by quantifying over all possible ~x-variants. Nevertheless,
this is not the case as we shall show in the next section.

7.2.1 Semantic Equation for Abstractions Using ~x-variants

Recall that the ask tcc process when c do Q is a shorthand for the empty abstraction
process (abs ε; c) Q (Notation 3.3.1). Recall also that T denotes the set of all terms in
the underlying constraint system. The first intuition for the denotation of the process
P = (abs ~x; c)Q arises directly from the fact that P can be viewed as the (possibly
infinite) parallel composition of the processes (when c do Q)[~t/~x] for every sequence of
terms ~t ∈ T |~x|. Then we can give the following semantic equation for this operator:

[[(abs ~x; c) P ]] =
⋂

~t∈T |~x|

[[(when c do Q)[~t/~x]]] (7.1)

where [[when c do Q]] is the denotational equation for the tcc ask operator [Saraswat 1994]:

[[when c do Q]] = {w | w(1) |=T c implies w ∈ [[Q]]}

Nevertheless, we can give a denotational equation for the abstraction operator which is
analogous to that of the local operator. By using the notion of ~x-variants, the equation
does not appeal to substitutions as the one above. As illustrated in the example below,
the denotation of the abs operator is not entirely dual to the denotation of the local
operator. The lack of duality between DLOC and DABS is reminiscent of the result in CCP
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[de Boer 1997] stating that negation does not correspond exactly to the complementation
(see [Cortesi 1997, de Boer 1997]).

Example 7.2.1. Let w be as in Notation 4.2.2 and Q = (abs x; c) P where c = out (x)

and P = tell(out′(x)). Take the past-monotonic sequence

w = (out(0) ∧ out′(0)). trueω ∈ sps (Q).

Suppose that we were to define:

[[Q]] = {w | for every x-variant w′ of w if w′(1) |=T c then w′ ∈ [[P ]]} (7.2)

Let c′ = out(0)∧out′(0)∧out(x) and w′ = c′. trueω. Notice that the w′ is an x-variant

of w, w′(1) |=T c but w′ /∈ [[P ]] (since c′ 6|=T out′(x)). Then w /∈ [[Q]] under this naive

definition of [[Q]].

We fix the Equation 7.2 by adding the extra condition that w′ � (~x = ~t)ω for a sequence
of terms ~t such that |~t| = |~x| and adm(~x,~t) as in Equation DABS (Table 7.1). Intuitively,
this condition together with w′(1) |=T c requires that w′(1) |=T c ∧ ~x = ~t and hence that
w′(1) |=T cσ for an admissible substitution σ = [~t/~x]. Furthermore w′ � (~x = ~t)ω together
with w′ ∈ [[P ]] realizes the operational intuition that P runs under the substitution σ.

We can prove the Equations DABS and 7.1 to be equivalents. Before that we require the
following Lemma.

Lemma 7.2.1. Let [[·]] be as in Table 7.1 and w be a past-monotonic sequence such that

~x /∈ fv(w). For any process P and admissible substitution [~t/~x] the following holds

w ∈ [[P [~t/~x]]] iff w ∈ [[(local ~x) (P ‖! tell(~x = ~t))]]

Proof. (⇒). Assume w ∈ [[P [~t/~x]]] and ~x 6∈ fv(w) by alpha conversion. Since ~x 6∈ fv(P [~t/~x]),

we can prove that w′ = w ∧ (~x = ~t)ω ∈ [[P [~t/~x]]]. Given that ~x 6∈ fv(w) then w′ is an ~x-
variant of w. By Equation DTELL, w′ ∈ [[! tell(~x = ~t)]] and by Equations DLOC and DPAR,
w ∈ [[(localx) (P [~t/~x] ‖! tell(~x = ~t))]]. One can easily prove that [[P [~t/~x] ‖! tell(~x = ~t)]] =

[[P ‖! tell(~x = ~t)]]. Therefore, w ∈ [[(localx) (P ‖! tell(~x = ~t))]].
The proof of (⇐) can be obtained easily by reversing the previous steps.

The following proposition shows the Equations RABS and 7.1 to be equivalents.

Proposition 7.2.1. Let [[·]] be as in Table 7.1 and P = (abs ~x; c) Q.

w ∈ [[P ]] iff w ∈
⋂

~t∈T |~x|

[[(when c do Q)[~t/~x]]]

Proof. By alpha-conversion we can assume ~x /∈ fv(w).

(⇒) As a mean of contradiction, assume that w ∈ [[P ]] and

w /∈
⋂

~t∈T |~x|

[[(when c do Q)[~t/~x]]]

Then by definition of [[when c do Q]] there exists ~t′ ∈ T |~x| such that w(1) |=T c[~t′/~x] and
w /∈ [[Q[~t′/~x]]]. By Lemma 7.2.1, w /∈ [[(local ~x) (Q ‖! tell(~x = ~t′))]] and then, there is not
an ~x-variant w′ of w such that w′ ∈ [[Q]]∩ [[! tell(~x = ~t′)]] (Rules DLOC and DPAR). We have
to consider two cases:
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DSKIP [[skip]] = PM

DTELL [[tell(c)]] = {e.w ∈ PM | e |=T c}

DPAR [[P ‖ Q]] = [[P ]] ∩ [[Q]]

DNEXT [[nextP ]] = {e.w ∈ PM | w ∈ [[P ]]}

DUNL [[unless c nextP ]] = {e.w ∈ PM | e 6|=T c and w ∈ [[P ]]}∪
{e.w ∈ PM | e |=T c}

DREP [[!P ]] = {w ∈ PM | for all v, v′ s.t. w = v.v′, v′ ∈ [[P ]]}

DLOC [[(local ~x; c) P ]] = {w ∈ PM | there exists an ~x-variant
w′ of w s.t w′(1) |=T c and w′ ∈ [[P ]]}

DABS [[(abs ~x; c) P ]] = {w ∈ PM | for every ~x-variant w′ of w if w′(1) |=T c

and w′ � (~x = ~t)ω for some ~t s.t. |~x| = |~t| and
adm(~x,~t) then w′ ∈ [[P ]]}

Table 7.1: Denotational Semantics for utcc. The function [[·]] is of type Proc → P(PM ).
In DABS, ~x = ~t denotes the constraint

∧
1≤i≤|~x| xi = ti and adm(~x,~t) is as in Convention

3.1.1. If |~x| = 0 then ~x = ~t is defined as true.

• Assume adm(~x, ~t′). Let w′′ = w[~t′/~x]∧ (~x = ~t′)ω. Since ~x /∈ fv(w), w′′ is an ~x-variant
of w. From w′′ � (~x = ~t′)ω and w(1) |=T c[~t′/~x] we have w′′(1) |=T c[~t′/~x]. By
equation DABS, w′′ ∈ [[Q]] ∩ [[! tell(~x = ~t′)]] thus a contradiction.

• Assume that t′i
.
= xj for some i, j. In this case the ~x-variant w′′ = w[~t′/~x]∧ (~x = ~t′)ω

as above does not satisfy the condition w′′ 6� (~x = ~t)ω for a ~t admissible for ~x. Then,
we cannot use directly the equation DABS. Let ~x = x1, ..., xn and ~y = y1, .., yn such
that yi does not occur neither in w nor in P . Let P ′ be as P but renaming each xi by
yi. Then P ≡ P ′ (alpha-conversion) and w ∈ [[P ′]]. Since ~x∪~y /∈ fv(w), we proceed as

in the previous case by using the ~x-variant (and ~y-variant) w′′ = w[~t′/~x] ∧ (~y = ~t′)ω.

(⇐) As a mean of contradiction, assume that w ∈
⋂

~t∈T |~x|

[[(when c do Q)[~t/~x]]] and there

exists a ~t admissible for ~x s.t. w′ is an ~x-variant of w, w′(1) |=T c, w′ � (~x = ~t′)ω and
w′ /∈ [[Q]]. By hypothesis and Lemma 7.2.1 we have

w ∈ [[(local ~x) (when c do Q ‖! tell(~x = ~t′))]]

Hence, there exists an ~x-variant w′′ of w such that w′′ ∈ [[when c do Q]] ∩ [[! tell(~x = ~t′)]].

Then, w′, w′′ � (~x = ~t′)ω and by Lemma 7.1.1 w′ = w′′ = w ∧ (~x = ~t)ω. By hypothesis,
w′(1) |=T c, so w′′(1). Then, since w′′ ∈ [[when c do Q]], w′, w′′ ∈ [[Q]], thus a contradiction.
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7.3 Full Abstraction

In this section we shall prove our denotational model to be fully abstract with respect
to the symbolic input-output behavior for the locally-independent and abstracted-unless
free fragment of the calculus (see Definition 7.3.1). We first prove the soundness of the
denotation, i.e., sps(P ) ⊆ [[P ]], in Section 7.3.1. Later on, in Section 7.3.2, we prove
completeness, i.e., [[P ]] ⊆ sps(P ). Finally, we show that the symbolic input-output behavior
of a monotonic process (i.e. a process without occurrences of unless processes) can be
compositionally retrieved from its denotation.

7.3.1 Soundness of the Denotation

As we shall see, the proof of the soundness theorem proceeds by induction on the structure
of the process. For the cases of the abstraction and the local operator, we shall require
some auxiliary results.

The following proposition relates the strongest postcondition of the process P = (abs ~x; c) Q

and Q.

Proposition 7.3.1. Let P = (abs ~x; c) Q be an abstracted-unless free process and w be a

past-monotonic sequence. The following statements are equivalent

1. w ∈ sps(P )

2. For all w′ ~x-variant of w s.t. w′ � (~x = ~t)ω for a ~t admissible for ~x, if w′ |=T c then

w′ ∈ sps(Q).

Proof. Assume by alpha-conversion that ~x /∈ fv(w) and assume the following derivation:

P = P1
(e1,e1∧d1)
====⇒ s P2

(e2,e∧d2)
====⇒ s P3

(e3,e3∧d3)
====⇒ s . . .

Let w = e1.e2.e3..., v = d1.d2.d3... and v′ = d′1.d
′
2.d

′
3.... Assume the following derivation:

Q = Q1
(e1,e1∧d′

1)====⇒ s Q2
(e2,e2∧d′

2)====⇒ s Q3
(e3,e3∧d′

3)====⇒ s . . .

By the rule RABS−SYM and the fact that ~x /∈ fv(w), we must have that d1 = ∀~x(c ⇒ d′1)

and for all i > 1, di = ∀~x(⊖i−1(c) ⇒ d′i) ∧ ⊖(di−1) . Furthermore, since Q is a monotonic

process, by Lemma 4.3.8 we know that Q
(w′,w′∧v′)
====⇒ s for any w′.

(⇒) Assume that w ∈ sps(P ) and then w ∈ Fix (v). Let w′ be an ~x-variant of w s.t.
w′ |=T c, w′ � (~x = ~t)ω and adm(~x,~t). Since w′ |=T c and w ∈ Fix (v) we know that

w′ ∈ Fix (v′). We conclude that w′ ∈ sps(Q) by noticing that Q
(w′,w′∧v′)
====⇒ s.

(⇐) Since ~x /∈ fv(w), by Lemma 7.1.1 we know that if w′ is an ~x-variant of w such that

w′ � (~x = ~t)ω and adm(~x,~t), it must be the case that w′ = w ∧ (~x = ~t)ω. Let

w′ = w ∧ (~x = ~t)ω for an arbitrary ~t ∈ T |~x| admissible for ~x. If w′ |=T c we know by
hypothesis that w′ ∈ sps(Q) and then w′ ∈ Fix (v′). Since for every w′ satisfying the
conditions above, w′ ∈ Fix (v′) we conclude that w ∈ Fix (v) and then w ∈ sps(P ).

Now we state an auxiliary result that we shall use for the proof of the case of the local
operator. We shall prove that for a process of the form Q = (local ~x) P where P is a
monotonic process, if w ∈ sps(Q) then there exists w′ ~x-variant of w such that w′ ∈ sps(P ).
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Proposition 7.3.2. Let P = (local ~x; c) Q such that Q is a monotonic process and let w

be a past-monotonic sequence such that w ∈ sps(P ). Then, there exists w′ ~x-variant of w

such that w′ ∈ sps(Q).

Proof. Assume by alpha-conversion that ~x /∈ fv(w). Assume also that P
(w,w∧∃~xu)
====⇒ s and

w ∈ sps(P ). Therefore, w ∈ Fix (∃~xu). By definition of Fix (·), there exists w′ ~x-variant

of w such that w′(1) |=T c and w′ ∈ Fix (u). Since P
(w,w∧∃~xu)
====⇒ s, by using the rule RLOC

one can show that Q
(v,v∧u)
====⇒ where v = w ∧ c. trueω. Since Q is a monotonic process,

by Lemma 4.3.5 we have Q
(w′,w′∧u)
====⇒ and we conclude that w′ ∈ sps(Q) by noticing that

w′ ∈ Fix (u).

In the previous lemma, we assumed the process Q in (local ~x; c)Q is monotonic. Hence-
forth, we shall call locally-independent any process that verifies such a property.

Definition 7.3.1 (Locally Independent Processes). We say that P is locally independent

iff P has no occurrences of processes of the form unless c nextQ under the scope of a local

operator.

The following proposition introduces an obvious fact on the locally independent fragment
of the calculus.

Proposition 7.3.3 (Locally-Independence Invariance). Let P be a locally-independent pro-

cess. If P
(e,d)

====⇒s Q then Q is also locally-independent.

Proof. By induction on the structure of P and the definition of the symbolic future function
Fs.

Now we are ready to state the soundness of the denotation.

Theorem 7.3.1 (Soundness). Given a locally-independent and abstracted-unless free pro-

cess P , sps(P ) ⊆ [[P ]].

Proof. Assume that w ∈ sps(P ). The proof proceeds by induction on the structure of P .

• P = skip. This case is trivial.

• P = tell(c). Let w = e.v. We must have: tell(c)
(e,e∧c)
====⇒s Q

(v,v′)
====⇒s for some Q

and v′. Since w ∈ sps(P ) then e ∈ Fix (c) and it must be the case that e |=T c. Hence
by definition of [[tell(c)]] we conclude w ∈ [[P ]].

• P = Q ‖ R. Let w = e1.e2.e3... and Q = Q1 and R = R1. Assume the following
derivation

Q1 ‖ R1
(e1,e1∧d1∧g1)

====⇒ s Q2 ‖ R2
(e2,e2∧d2∧g2)

====⇒ s Q3 ‖ R3 . . .

Such that for i > 0, each Qi+1 (resp. Ri+1) is an evolution of Qi (resp. Ri) and di

(resp. gi) is the output of Qi (resp. Ri) . By hypothesis w ∈ sps(Q ‖ R) and for
i > 0, ei ∈ Fix (di) and ei ∈ Fix (gi). By using Lemma 7.1.2 we know that for all basic
constraint c, ei ∧ di ∧ gi |=T c iff ei ∧ di |=T c iff ei ∧ gi |=T c. By using Lemma 4.3.4,
one can show that there exists Q1 = Q′

1, Q
′
2, Q

′
3, .... and R1 = R′

1, R
′
2, R

′
3, .... s.t.

Q′
1

(e1,e1∧d1)
====⇒ s Q′

2

(e2,e2∧d2)
====⇒ s Q′

3

(e3,e3∧d3)
====⇒ s . . .
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and

R′
1

(e1,e1∧g1)
====⇒ s R′

2

(e2,e2∧g2)
====⇒ s R′

3

(e3,e3∧g3)
====⇒ s . . .

From the fact that for i > 0, ei ∈ Fix (di) and ei ∈ Fix (gi) we conclude w ∈ sps(Q)

and w ∈ sps(R). By inductive hypothesis, w ∈ [[Q]] and w ∈ [[R]] and then w ∈ [[P ]].

• P = (abs ~x; c) Q. By using alpha-conversion we can assume ~x /∈ fv(w). Let w =

e1.e2.e3... and v = d1.d2.d3... and assume the following derivation of P

P = P1
(e1,e1∧d1)
====⇒ s P2

(e2,e2∧d2)
====⇒ s P3

(e3,e3∧d3)
====⇒ s ...

By hypothesis w ∈ sps(P ) and then w ∈ Fix (v). Let v′ = d′1.d
′
2.d

′
3... and assume the

following derivation of Q

Q = Q1
(e1,e1∧d′

1)====⇒ s Q2
(e2,e2∧d′

2)====⇒ s Q3
(e3,e3∧d′

3)====⇒ s ...

where d1 = ∀~x(c ⇒ d′1) and for i > 1, di = ⊖(di−1) ∧ ∀~x(⊖i−1(c) ⇒ d′i).

Let w′ be an arbitrary ~x-variant of w such that w′ � (~x = ~t)ω for a ~t admissible for ~x

and w′(1) |=T c. Since Q is monotonic, by Lemma 4.3.8 we know that Q
(w′,w′∧v′)
====⇒ s.

By Proposition 7.3.1, it must be the case that w′ ∈ sps(Q) and then, w′ ∈ Fix (v′).
Therefore, by appealing to induction, w′ ∈ [[Q]] and we conclude.

• P = (local ~x; c) Q. Since P is a locally-independent process then Q is monotonic. By
Proposition 7.3.2 we know that there exists w′ ~x-variant of w such that w′(1) |=T c

and w′ ∈ sps(Q). By induction we know that w′ ∈ [[Q]] and then w ∈ [[(local ~x; c) Q]].

• P = nextQ. Let w = e.w′. Then

P
(e,e)

====⇒s Q
(w′,w′′)
====⇒s

By hypothesis, w′ ∈ Fix (w′′) and then w′ ∈ sps(Q). By inductive hypothesis w′ ∈ [[Q]]

and by definition of [[nextQ]], w ∈ [[P ]].

• P = unless c nextQ. We distinguish two cases:

1. w(1) |= c. Immediate

2. w(1) 6|= c. This case is similar to the case of P = nextQ.

• P =!Q. Let w = e1.e2.e3..., w′ = e′1.e
′
2.e

′
3.... We can verify that

〈P, e1〉 −→s 〈Q ‖ next !Q〉 −→∗
s 〈Q′ ‖ next !Q, e′1〉

We then have the following derivation for Q = Q1,1:

!Q1,1
(e1,e′

1)====⇒s Q1,2 ‖!Q1,1

(e2,e′
2)====⇒s Q1,3 ‖ Q2,2 ‖!Q1,1

(e3,e′
3)====⇒s Q1,4 ‖ Q2,3 ‖ Q3,2 ‖!Q1,1

. . .
(en−1,e′

n−1)
====⇒ s Q1,n ‖ Q2,n−1 ‖ Q3,n−2 ‖ · · · ‖ Qn−1,2!Q1,1

. . .
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where each parallel component contributes in the following way:

Q1,1
(e1,e′

1)====⇒s Q1,2
(e2,e′

2)====⇒s Q1,3 . . .
(en−1,e′

n−1)
====⇒ s Q1,n

(en,e′
n)

====⇒s . . .

Q1,1
(e2,e′

2)====⇒s Q2,2
(e3,e′

3)====⇒s Q2,3 . . .
(en−1,e′

n−1)
====⇒ s Q2,n−1

(en,e′
n)

====⇒s . . .

Q1,1
(e3,e′

3)====⇒s Q3,2
(e4,e′

4)====⇒s Q3,3 . . .
(en−1,e′

n−1)
====⇒ s Q3,n−2

(en,e′
n)

====⇒s . . .

. . .

By hypotheses, w ∈ Fix (w′) and then

e1.e2.e3...en... ∈ [[Q]]

e2.e3...en... ∈ [[Q]]

e3...en... ∈ [[Q]]

. . .

By equation DREP we conclude w ∈ [[Q]]

Remark 7.3.1. In tcc, the locally-independent condition is required only for completeness

and not for soundness. For the proof of the case P = (local ~x; c) Q above, we appealed

to Proposition 7.3.2. Therefore, we required Q to be a monotonic process. The technical

problem is that from w ∈ Fix (∃~xw′) we can only deduce that there exists w′′ ~x-variant of

w such that w′′ ∈ Fix (w′). Nevertheless, this is not enough to prove that w′′ ∈ sps(Q). We

believe that we can dispense with this restriction by finding an alternative way to prove the

Proposition 7.3.2 for an arbitrary Q.

7.3.2 Completeness of the Denotation

In this section we prove the completeness of the denotation, i.e., [[P ]] ⊆ sps(P ). For this
result we have similar technical problems that in the case of tcc, namely: the combination
between the local and the unless operator (see [Nielsen 2002a] for details).

Take for example P = unless x = a next tell(d) and Q = (localx) P . Under input w =

(x = a). trueω, P outputs w′ = w and under input trueω it outputs w′′ = true .d. trueω.
Then w′ ∈ [[Q]] but w′ /∈ sps(Q). Thus, we shall prove the completeness of the denotation
for the locally-independent fragment of utcc.

Theorem 7.3.2 (Completeness). Given a locally independent and abstracted-unless free

process P , [[P ]] ⊆ sps(P )

Proof. Assume that w ∈ [[P ]]. We proceed by induction on the structure of P :

• skip. This case is trivial

• P = tell(c). Let w = e.w′ with e |=T c. Hence we have

P
(e,e)

====⇒s tell(⊖e)
(w′,w′)
====⇒s

Since w is a past-monotonic sequence, w′(i) |=T ⊖i(e) for i > 0. Then we conclude
w ∈ sps(P )
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• P = Q ‖ R. Since w ∈ [[P ]] we know that w ∈ [[R]], w ∈ [[Q]] and by hypothesis,
w ∈ sps(R) and w ∈ sps(Q). Assume the following derivations of Q and R:

Q = Q1
(e1,e1∧d1)
====⇒ s Q2

(e2,e2∧d2)
====⇒ s Q3

(e3,e3∧d3)
====⇒ s . . .

R = R1
(e1,e1∧g1)
====⇒ s R2

(e2,e2∧g2)
====⇒ s R3

(e3,e3∧g3)
====⇒ s . . .

Let v = e1.e2.e3..., v = d1.d2.d3... and u = g1.g2.g3.... Since w ∈ sps(R) and w ∈
sps(Q), we know that w ∈ Fix (v) and w ∈ Fix (u) and then w ∈ Fix (v ∧ u). By
Lemma 7.1.2, for i > 0 if ei ∧ di ∧ gi |=T c for a basic constraint c, it must be the case
that ei |=T c. Then, by appealing to Lemma 4.3.4 one can prove that there exists
Q = Q′

1, Q
′
2, Q

′
3, ... and R = R′

1, R
′
2, R

′
3, ... such that

Q′
1 ‖ R′

1

(e1,e1∧d1∧g1)
====⇒ s Q′

2 ‖ R′
2

(e2,e2∧d2∧g2)
====⇒ s Q′

3 ‖ R′
3

(e3,e3∧d3∧g3)
====⇒ s . . .

From w ∈ Fix (v ∧ u) we conclude w ∈ sps(Q ‖ R).

• P = (abs ~x; c) Q. By alpha-conversion we can assume ~x /∈ fv(w). Let w′ be an
arbitrary ~x-variant of w such that w′ � (~x = ~t)ω, w′(1) |=T c and adm(~x,~t). From
the assumption w ∈ [[P ]] we know that w′ ∈ [[Q]]. Appealing to induction we deduce
that w′ ∈ sps(Q). Since for every ~x-variant w′ of w satisfying the conditions above
we have w′ ∈ sps(Q), we can use Proposition 7.3.1 to conclude w ∈ sps(P ).

• P = (local ~x; c) Q. Let w = e1.e2.e3... and by alpha conversion assume that ~x /∈ fv(w).
From the assumption w ∈ [[P ]], it must be the case that there exists w′ = e′1.e

′
2.e

′
3... ~x-

variant of w such that e′1 |=T c and w′ ∈ [[Q]]. By induction we know that w′ ∈ sps(Q).

Assume the following derivation

Q = Q1
(e′

1,e′
1∧d′

1)====⇒ s Q2
(e′

2,e′
2∧d′

2)====⇒ s Q3
(e′

3,e′
3∧d′

3)====⇒ s . . .

Let v′ = d′1.d
′
2.d

′
3.... Since P is a locally-independent process then Q is monotonic.

Let v′′ = c. trueω = d′′1 .d′′2 .d′′3 .... By Lemma 4.3.6 we can show that there exists
Q = Q′

1, Q
′
2, Q

′
3, ... such that

Q′
1

(e1∧d′′
1 ,e1∧d′′

1 ∧d′
1)====⇒ s Q′

2

(e2∧d′′
2 ,e2∧d′′

2 ∧d′
2)====⇒ s Q′

3

(e3∧d′′′
3 ,e3∧d′′

3 ∧d′
3)====⇒ s . . .

Given that ~x /∈ fv(w), by using the rule RLOC we can show that

P = P1
(e1,e1∧∃~x(d′

1∧d′′
1 ))

====⇒ s Q2
(e2,e2∧∃~x(d′

2∧d′′
2 ))

====⇒ s Q3
(e3,e3∧∃~x(d′

3∧d′′
3 ))

====⇒ s . . .

Since w′ ∈ sps(Q) then w′ ∈ Fix (v′). Furthermore, given that w′(1) |=T c then
w′ ∈ Fix (v′′) and thus w′ ∈ Fix (v′ ∧ v′′). Since w′ is an ~x-variant of w we derive
w ∈ Fix (∃~x(v′ ∧ v′′)) and then, w ∈ sps(P ).

• P = nextQ. Let w = e.w′. We have P
(e,e)

====⇒s Q ‖ tell(⊖(e)). Since w is a past-
monotonic sequence, then w′(1) |=T ⊖(e). We know that w′ ∈ [[Q]] and by induction

w′ ∈ sps(Q). Therefore, if nextQ
(w,v′)
====⇒s it must be the case that w ∈ Fix (v′).

Therefore w ∈ sps(P ).

• P = unless c nextQ. Let w = e.w′. We distinguish two cases:

1. e |= c. Then P
(e,e)

====⇒s skip. Since skip
(w′,w′)
====⇒s then w ∈ sps(P )
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2. e 6|= c and w′ ∈ [[Q]]. We have P
(e,e)

====⇒s Q and by inductive hypothesis,
w′ ∈ sps(Q). Then we conclude w ∈ sps(P )

• P =!Q. Let w = e1.e2.e3.... By definition of [[!Q]] we have

e1.e2.e3...en... ∈ [[Q]]

e2.e3...en... ∈ [[Q]]

e3...en... ∈ [[Q]]

. . .

By inductive hypothesis we have the following:

e1.e2.e3...en... ∈ sps(Q)

e2.e3...en... ∈ sps(Q)

e3...en... ∈ sps(Q)

. . .

By a reasoning similar to the case of P =!Q in Theorem 7.3.1, we conclude w ∈ sps(P )

From the soundness and the completeness results and the symbolic input-output char-
acterization of utcc by means of its strongest postcondition in Corollary 7.1.1, we conclude
by stating the full abstraction of our semantics.

Theorem 7.3.3 (Full abstraction). Let P and Q be a monotonic processes and [[·]] as in

Table 7.1. Then

P ≈io
s Q iff [[P ]] = [[Q]].

Proof. Directly from the Soundness and Completeness theorems and Corollary 7.1.1.

7.4 Summary and Related Work

In this chapter we studied the symbolic input-output relation of utcc processes to give a
more concrete representation of the actual output of a process. We defined this relation as
the set of pairs (w, v) such that v is the least sequence entailing the same information (basic

constraints) than v′ in P
(w,v′)
====⇒s. We showed that this relation is a closure operator for

the monotonic fragment of the calculus and then, it can be fully characterized by its set of
fixed points here called the strongest postcondition.

Following the semantics for CCP and tcc in [Saraswat 1991, de Boer 1995b, Saraswat 1994,
Nielsen 2002a], we gave a compositional characterization of the strongest postcondition rela-
tion. Since the symbolic semantics outputs past-monotonic sequences, in our denotational
model, the codomain was defined as sequences of past-monotonic sequences and not as
sequences of basic constraints as in tcc.

We proved our denotational model to be fully abstract with respect to the symbolic
semantics for the monotonic fragment. This then allowed us to retrieve compositionally the
input-output behavior of monotonic processes. We shall use this result in Chapter 8 where
we give a semantic account based on closure operators to a language for security protocols
based on the semantics here presented.

The material of this chapter was originally published as [Olarte 2008b].





Chapter 8

Closure Operators for Security

Due to technological advances such as the Internet and mobile computing, security has be-
come a serious challenge involving several fields of Computer Science, in particular Process
Calculi. Typically, these calculi provide mechanisms for communication of private names
(nonces), i.e., mobility as is understood in this dissertation. Furthermore, they offer a
set of reasoning techniques to verify if a given cryptographic property such as secrecy or
authentication holds.

Remarkably, most process calculi for security protocols have strong similarities with
CCP. For instance, SPL [Crazzolara 2001], the Spi calculus variants in [Abadi 1997] and
[Amadio 2003], and the calculus in [Boreale 2000] are all operationally defined in terms
of configurations containing information which can only increase during evolution. Such a
monotonic evolution of information is akin to the notion of monotonic store, which is central
to CCP and a source of its simplicity. Also, the calculi in [Amadio 2003, Fournet 2003,
Boreale 2001a] are parametric in the underlying logic much like CCP is parametric in an
underlying constraint system.

In this chapter we show how the monotonic fragment of utcc and its closure operator
characterization can be used to give meaning to a SPL-like process language enjoying the
typical features of calculi for security mentioned above. This language, called SCCP (Se-
curity Concurrent Constraint Programming Language), arises as a specialization of utcc

with a particular cryptographic constraint systems. We shall show that processes in the
language can be compositionally specified as closure operators. This way, the set of mes-
sages a protocol may produce can be represented as a closure operator over sequences of
temporal constraints (i.e., future free formulae).

We believe that the interpretation of the behavior of protocols as closure operators
is a natural one. For instance, a spy can only produce new information (extensiveness);
the more information she gets, the more she will infer (monotonicity); and she infers as
much as possible for the information she gets (idempotence). To our knowledge no closure
operator denotational account has previously been given in the context of calculi for security
protocols. We then bring new semantic insights into the modeling and verification of security
protocols.

Finally, in this chapter we also show that the declarative characterization of utcc pro-
cesses as FLTL formulae allows for reachability analysis of security protocols modeled in
SCCP. In particular, we can verify if a protocol may reach a state where a secrecy property
is violated.

8.1 The modeling language: SCCP

As a modeling language, we shall use a syntax of processes following that of the Security

Protocol Language (SPL) defined in [Crazzolara 2001]. Roughly speaking, this language
offers primitives to output and receive messages as well as to generate secrets or nonces
(randomly-generated unguessable items). We shall refer to this language as SCCP (Security
Concurrent Constraint Programming Language).
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Definition 8.1.1 (Syntax of SCCP). The SCCP language is given by the following syntax:

Values v, v′ ::= n | x

Keys k ::= pub(v) | priv(v)

Messages M,N ::= v | k | (M, N) | {M}k

Processes R,R′ ::= nil

| new(x)R

| out(M).R

| in (~x)[M ].R

| !R

| R ‖ R′

SCCP includes a set of names (values) with n, m, A, B ranging over it. These values
represent ids of principals (A, B, ...) or nonces (n, m, ...). The set of keys is built upon two
constructors providing the public (pub(v)) and the private key (priv(v)) associated to a
value.

Messages can be constructed from composition (M,N) and encryption {M}k. As ex-
plained below, message decomposition and decryption can be obtained by using pattern
matching on inputs.

8.1.1 Processes in SCCP

Intuitively, processes in SCCP run in time intervals. This way, a process of the form P.R

represents a process executing P in the current time interval and R in the next one.
The output process out(M).R broadcasts M over the network and then it behaves as

R in the next time unit. As standardly done, messages are supposed to be sent to an
untrusted network where the spy can see and store all of them (see e.g., [Fiore 2001]).

The input in (~x)[M ].R waits for all the messages of the form M [~t/~x] to be output
on the network and then behaves like R[~t/~x] in the next time unit. This process binds
the variables ~x in R. For example, if the message (A, B)pub(k) is ouput, the process
in (x, y)[(x, y)pub (k)].R executes R[A/x, B/y] in the next time unit.

The process new(x)R generates a (nonce) x private to R. The process nil does nothing
and R ‖ R′ denotes the parallel execution of R and R′. Given a finite set of indexes
I = {i1, i2, ..., in}, we shall use

∏
i∈I

Pi to denote the parallel composition Pi1 ‖ Pi2 ‖ ... ‖ Pin
.

Finally !R denotes the execution of R in each time unit.

8.2 Dolev-Yao Constraint System

Typically, in the modeling of security protocols one must take into account all possible
actions the attacker may perform. This attacker is usually given in terms of the Dolev and
Yao thread model [Dolev 1983] which presupposes an attacker that can eavesdrop, disas-
semble, compose, encrypt and decrypt messages with available keys. It also presupposes
that cryptography is unbreakable.

Before giving a closure operator semantics to our security language, we then need a con-
straint system handling the cryptographic constructs (e.g., message encryption and com-
position) and whose entailment relation follows the inferences a Dolev-Yao attacker may
perform.

Definition 8.2.1. Let Σs be a signature with constant symbols in V, function symbols enc,

pair , priv and pub and the unary predicate out. Let ∆s be the closure under deduction of

{ F | ⊢s F } with ⊢s as in Table 8.1. The (secure) constraint system is the pair (Σs,∆s).
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PRJ
F ⊢s out((m1, m2))

F ⊢s out(mi) i ∈ {1, 2}

PAIR
F ⊢s out(m1) F ⊢s out(m2)

F ⊢s out((m1, m2))

ENC
F ⊢s out(m) F ⊢s out(k)

F ⊢s out({m}pub(k))

DEC
F ⊢s out(priv(k)) F ⊢s out({m}pub(k))

F ⊢s out(m)

Table 8.1: Security constraint system entailment relation.

Intuitively, V represents the set of principal ids, nonces and values. We use {m}k and
(m1, m2) respectively, for enc(m, k) (encryption) and pair(m1, m2) (composition).

Rule PRJ in Table 8.1 says that if one can infer a composed message (m1, m2), then one
can infer also the components of the message, i.e., m1 and m2. Rule PAIR is the converse of
the previous one: given two messages m1 and m2, one can infer the composition (m1, m2).
Rule ENC says that if one can infer that the message m as well as a key k are output on
the global channel out, then one may as well infer that {m}pub(k) is also output on out.
Finally, DEC dictates that the message m can be deduced if both, the encrypted message
{m}pub(k) and the corresponding private key priv(k) can be deduced.

Let us note two important issues about the constraint system above.

Remark 8.2.1. Firstly, notice that the secure constraint system in Definition 8.2.1 intro-

duces infinitely many internal reductions if we were to observe the behavior of a process

by using the operational semantics. To see this, assume that F ⊢s out(m) and let P =

(abs x; out(x))P ′. Then, from F it is also possible to entail out(m, m), out(m, (m, m)),

etc. Then, P must execute P ′ for all these possible terms.

Secondly, we note that for the sake of presentation we added the capabilities of the spy as

inferences rules in the constraint system. Nevertheless, those rules can be easily specified as

utcc processes, thus leading to a simpler constraint system with the empty theory (∆ = ∅).
Take for example the rule ENC. One can define this ability of the spy as the process

PEnc = (abs x, k; out(x) ∧ out(k)) tell(out({x}pub(k))).

8.3 Modeling a Security Protocol in SCCP

To illustrate the language SCCP, consider the Needham-Schröder (NS) protocol described
in [Needham 1978]. This protocol aims at distributing two nonces in a secure way, whose
purpose is to ensure the freshness of messages.

Figure 8.1(a) shows the steps of NS where m and n represent the nonces generated,
respectively, by the principals A and B. The protocol initiates when A sends to B a new
nonce m together with her own agent name A, both encrypted with B’s public key. When
B receives the message, he decrypts it with his secret private key. Once decrypted, B
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M1 A → B : {(m, A)}pub(B)

M2 B → A : {(m, n,B)}pub(A)

M3 A → B : {n}pub(B)

M1 A → C : {(m, A)}pub (C)

M′
1

C → B : {(m, A)}pub (B)

M2 B → A : {(m, n,B)}pub (A)

M3 A → C : {n}pub (C)

(a) (b)

Figure 8.1: Needham-Schroeder Protocol

prepares an encrypted message for A that contains a new nonce together with the nonce
received from A and his name B. Acting as responder, B sends it to A, who recovers the
clear text using her private key. A convinces herself that this message really comes from B
by checking whether she got back the same nonce sent out in the first message. If that is
the case, she acknowledges B by returning his nonce. B does a similar test.

Secrecy Attack. Assume the execution of the protocol between A, B and C in Figure
8.1(b). Here C is an intruder, i.e. a malicious agent playing the role of a principal in the
protocol. As it was shown in [Lowe 1996], this execution leads to a secrecy flaw where the
attacker C can reveal n which is meant to be known only by A and B.

In this execution, the attacker replies to B the message sent by A and B believes that
he is establishing a session key with A. Since the attacker knows the nonce m from the first
message, he can decrypt the message {n}pub (C) and n is not longer a secret between A and
B as intended.

The Model in SCCP. We model the behavior of the initiator and the responder in our
running example as follows:

Init(A, B) ≡ !new(m)

out({(m, A)}pub(B)).

in (x)[{(m, x,B)}pub(A)].out({x}pub(B)).nil

Resp(B) ≡ ! in (x, u)[{(x, u)}pub(B)].

new(n)

out({m, n,B}pub (u)).nil

Spy ≡ ‖A∈P !out(A).nil

‖A∈P !out(pub(A)).nil

‖A∈Bad !out(priv(A)).nil

The process Spy corresponds to the initial knowledge the attacker has. Given the set of
principals of the protocol P, the spy knows all the names of the principals in the protocol
and their public keys. He also knows a set of private keys denoted by Bad. This set
represents the leaked keys, for example, the private key of C in the above configuration
exhibiting the secrecy flaw (Figure 8.1 (b)).

Notice that the processes Init and Resp are replicated. This models the fact that principal
may initiate different sessions during the execution of the protocol.
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8.4 Closure Operator semantics for SCCP

In this section we give a closure operator semantics to SCCP following that of utcc in
Chapter 7.

We start by defining a compositional mapping from SCCP constructs into monotonic
utcc processes.

Definition 8.4.1. Let I be a function from SCCP to monotonic utcc processes defined by:

I (P) =






skip if R = nil

(localx) I (R′) if R = new(x)R′

! tell(out(M)) ‖ next I (R′) if R = out(M).R′

(abs ~x; out(M))next I (R′) if R = in (~x)[M ].R′
∏
i∈I

I (Ri) if R =
∏
i∈I

Ri

! I (R′) if R =!R′

It is easy to see that the above interpretation realizes the behavioral intuition of SCCP
given before. Intuitively the output out(M) is mapped to a process adding the constraint
out (M). Since the final store in utcc is not automatically transferred to the next time
interval, the process tell(out(M)) is replicated. This reflects also the fact that the attacker
can remember all the messages posted over the network.

For the case of the input process in (~x)[M ].R′, we use an abstraction to execute the
process nextR′[~t/~x] for every message of the form M [~t/~x] output on the network, i.e., when
a constraint of the form out(M)[~t/~x] can be deduced.

Semantics of SCCP The following function maps our security processes into its set of
fixed points as specified in Table 7.1—i.e., its strongest postcondition.

Definition 8.4.2. For any SCCP process R we define [[R]]SCCP as [[I (R)]] with I (·) as in

Definition 8.4.1 and [[·]] as in Table 7.1.

Since the interpretation function I is given in terms of the monotonic fragment of utcc,
it follows from Section 7.1 that [[R]]SCCP corresponds to a closure operator.

8.4.1 Closure Properties of SCCP

We conclude this section by pointing out that the interpretation of the behavior of protocols
as closure operators is a natural one. To see our intuition, let us suppose that f is a closure
operator denoting a SCCP Spy eavesdropping and producing information in the network.
Assume also that w, v are sequences of constraints representing the set of messages posted
on the network, i.e., the information available from the execution of the protocol.

• Extensiveness f(w) � w: The Spy produces new information from the one he
obtains.

• Monotonicity. If w � v then f(w) � f(v): The more information the Spy gets, the
more he will infer.

• Idempotence f(f(w)) = f(w): The Spy infers as much as possible from the info he
gets.
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8.5 Verification of Secrecy Properties

We can represent protocols in such a way that potential attacks can be specified as the least
fixed point of the closure operators representing them. To detect when the secret created
by Resp is revealed by the attacker, we modify the definition of this process as follows:

Resp′(B) ≡ in (x, u)[{(x, u)}pub(B)].

new(n)(out({m, n,B}pub (u)).nil) ‖
! in [n].out(attack).nil)

Intuitively, Resp′ outputs the message attack when the message n appears unencrypted
on the network, i.e., when out(n) can be deduced from the current store.

Recall that false is an absorbing element for conjunction and it is the greatest future-
free formula with respect to �. Our approach is then to add the constraint false when the
message attack can be read from the network. In terms of the closure operator semantics it
implies that if a process R outputs the message attack, then every fixed point of the closure
operator representing R is a sequence whose suffix is the sequence falseω. More precisely,

Proposition 8.5.1. Let R be a SCCP process. Let f be defined as

f = [[R]]SCCP ∩ [[!when out(attack) do ! tell(false)]]

Therefore, I (R) ⇓attack
s iff all fixed point of the closure operator corresponding to f takes

the form w. falseω

Proof. Immediate from the definition of f and full-abstraction in Theorem 7.3.3.

The previous proposition allows us to exhibit the secrecy flaw in our running example.
Let P = {A, B,C} be the set of principal names and Bad = {C} be the set of leaked keys
in our previous protocol example. Given the process

NS = Init(A, C) ‖
∏

X∈P Resp′(X) ‖ Spy

and f = [[NS]]SCCP ∩ [[!when out(attack) do !tell(false)]], one can verify that the least
fixed point v of f takes the form v = w. falseω .

8.6 Reachability Analysis in SCCP

In the previous section we used the semantic characterization of utcc processes as closure
operators to exhibit a secrecy flaw in a security protocol. In this section we show how
the declarative characterization of utcc as FLTL formulae can be exploited to perform
reachability analysis of a security protocol modeled in SCCP.

Remind that the process Resp′ outputs the constraint attack when the nonce generated
by the responder has been sent on the global channel out. Then, by appealing to the FLTL
correspondence in Theorem 5.2.3 and Proposition 8.5.1 we have:

Proposition 8.6.1. Let R be a SCCP process and I as in Definition 8.4.1. Let A =

TL[[I(R)]] be the FLTL formula corresponding to I(R) (Definition 5.1.1) and

f = [[R]]SCCP ∩ [[!when out(attack) do ! tell(false)]]

The following statements are equivalent
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• Symbolic Output: I (R) ⇓attack
s

• Closure Operator Semantics: The least-fixed point of the closure operator corre-

sponding to f takes the form w. falseω

• FLTL Characterization: There exists k ≥ 0 such that CutF (A, k) |=T ✸attack

Proof. Directly from Theorems 5.2.3 and 7.3.3 and the definition of f .

8.7 Summary and Related Work

In this chapter we defined SCCP, a simple language for the specification of security pro-
tocols based on Crazzolara and Winskel’s SPL [Crazzolara 2001]. This language arises as
a specialization of utcc with a particular cryptographic constraint system and features
mechanisms to create local names (nonces) and to specify input and output of messages
on a network. We made use of the semantics in Chapter 7 to give a closure operator in-
terpretation of this language. We then showed that the least fixed point of the closure
operator associated to the process modeling a protocol may allow us to verify whether
a secrecy property is not verified. Furthermore, relying on the FLTL characterization of
utcc processes in Chapter 5, we showed that it is possible to verify if a protocol reaches a
state where a secrecy property is violated. We illustrate our approach by exhibiting a well
known attack in the Needham-Schroeder protocol [Needham 1978] described in [Lowe 1996].

The material of this chapter was originally published as [Olarte 2008c, Olarte 2008b].

Related Work. Several process languages have been defined to analyze security proto-
cols. For instance Crazzolara and Winskel’s SPL [Crazzolara 2001], the spi calculus variants
by Abadi [Abadi 1997] and Amadio [Amadio 2003], Boreale’s calculus in [Boreale 2000] and
the Applied π-calculus [Fournet 2003] among others. Although utcc can be used to reason
about certain aspects of security protocols (e.g., secrecy), it was not specifically designed
for this application domain. Here we illustrated how the closure operator semantics of utcc
may offer new reasoning techniques for the verification of security protocols. We also ar-
gued for the closure operators as a natural characterization of the information that can be
inferred (e.g., by Spy) from a protocol. To our knowledge closure operators had not been
considered in the study of security protocols.

The successful logic programming approach to security protocols in [Abadi 2005] is
closely related to ours. Basically, in [Abadi 2005] protocols are modeled as a set of Horn
clauses rather than processes. The verification of the secrecy property relies in deducing
(or proving that it is not possible) the predicate attack(M) from the set of Horn clauses. A
benefit from our approach is that we can overcome the problem of false attacks pointed in
[Blanchet 2005]: Consider for example a piece of data that needs to be kept secret in a first
phase of the protocol and later is revealed when it is not required to be a secret. Because
the lack of temporal dependency this may generate a false attack. The temporal approach
here presented may allow us to control when a message is required to be secret. The work
in [Blanchet 2005] also avoid false attacks by using a linear logic [Girard 1987] approach
rather than a temporal one.

The authors in [Hildebrandt 2009] show that the abstraction operator in utcc allows
agents to guess channel names and encrypted values by universal quantification. For ex-
ample, the process (abs x, y; out(x, y))P is able to capture all possible messages in tran-
sit due to the quantification of the channel name x. Furthermore, a process of the form
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(abs x, k; out({x}pub(k)))P is able to reveal the message x without knowing the private key
associated to k. The authors then propose a type system to guarantee that, e.g., channel
names and encrypted values are only extracted by agents that are able to infer the channel
or the nonencrypted value from the store.

The model of the attacker in our secrecy analysis is given by the inference rules of
the cryptographic constraint system in Definition 8.2.1. This means, the attacker is not
represented as an arbitrary process running in parallel with the specification of the protocol.
Thus, our model of the attacker can only deduce new information according to the Dolev
and Yao thread model [Dolev 1983]. Aiming at developing reasoning techniques for utcc

based on behavioral equivalences like those in [Abadi 1997, Fournet 2003], must certainly
take into account the work in [Hildebrandt 2009] to rule out contexts defining a spy “more
powerful” than a Dolev-Yao attacker.

Finally, in Chapter 10 we shall introduce an abstract semantics for utcc that approxi-
mates the semantics in Chapter 7. We then show that the fixed point of the abstract seman-
tics can be computed in a finite number of steps. This way, with the help of prototypical
implementation, we shall exhibit the secrecy flaw illustrated in this chapter automatically.



Chapter 9

Applications

We have illustrated in the previous chapters the applicability of the utcc calculus in the
modeling and verification of security protocols. It is worth noticing that utcc was not
specifically designed for this application domain but to model in general mobile reactive
systems. In this chapter we show that utcc has much to offer in the specification and verifi-
cation of systems in two emergent application areas. Namely, Service Oriented Computing
and Multimedia Interaction Systems.

Service Oriented Computing. In Section 9.1, we shall give an alternative interpreta-
tion of the π-based language defined by Honda, Vasconcelos and Kubo, henceforth referred
to as HVK, for structured communications [Honda 1998]. The encoding of HVK into utcc is
straightforwardly extended to explicitly model information on session duration, allows for
declarative preconditions within session establishment constructs, and features a construct
for session abortion. Then, a richer language for the analysis of sessions is defined where
time can be explicitly modeled. Additionally, relying on the FLTL characterization of utcc
processes as FLTL formulae, reachability analysis of sessions can be characterized as FLTL
entailment.

Multimedia Interaction Systems. As second application domain, in Section 9.5 we
argue for utcc as a language for the modeling of dynamic multimedia interaction systems.
We shall show that the notion of constraints as partial information allows us to neatly
define temporal relations between interactive agents or events. Furthermore, mobility in
utcc allows for the specification of more flexible and expressive systems in this setting, thus
broadening the interaction mechanisms available in previous models.

9.1 Service Oriented Computing

Service Oriented Computing (or SOC for short) is often seen as a natural progression from
component based software development, and as a mean to integrate different component
development frameworks. A service in this context may be defined as a behavior that is
provided by a component to be used by any other component. This behavior is described
by an interface contract identifying the capabilities provided by the service.

SOC is in principle different from distributed systems as it gives more abilities to the
agents involved. First of all, services are composable by nature, meaning that a service can
be either a singular activity or a process where different services are assembled to provide
a result. Second, service composition is open; in terms that any service that matches the
requirements specified by the service requester should be able to be bound in the compo-
sition. Third, services can be loosely-coupled, referring to the capability of a service to
interact in ever-changing environments, probably moving its partial computations to differ-
ent locations where services are more reliable; Finally, services can operate in asynchronous
environments, where a single computation can take months or even years to execute.
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Modeling Services. From the viewpoint of reasoning techniques, two main trends in
modeling in SOC can be singled out. On the one hand, a behavioral approach focuses
on how process interactions can lead to correct configurations. Typical representatives
of this approach are based on process calculi and Petri nets (see, e.g., [Lapadula 2007,
Boreale 2006, Lanese 2007]), and count with behavioral equivalences and type disciplines
as main analytic tools. On the other hand, in a declarative approach the focus is on the set
of conditions components should fulfill in order to be considered correct, rather than on the
complete specification of the control flows within process activities (see, e.g., [Pesic 2006]).
Even if these two trends address similar concerns, they have evolved rather independently
from each other.

We shall show that utcc may allow for an approach in which behavioral and declarative
techniques can harmoniously converge for the analysis of sessions. More precisely, we shall
give an alternative interpretation to the language defined by Honda, Vasconcelos and Kubo
in [Honda 1998] (HVK). This way, structured communications can be studied in a declarative
framework in which time is explicit. We begin by proposing an encoding of the HVK language
into utcc; such an encoding defines asynchronous session establishment and satisfies a rather
standard operational correspondence property. We then move to the timed setting, and
propose HVK-T, a timed extension of the HVK language. The extended language explicitly
includes information on session duration, allows for declarative preconditions within session
establishment constructs, and features a construct for session abortion. We then show that
the encoding of HVK into utcc straightforwardly extends to HVK-T.

9.2 A Language for Structured Communication

We begin by introducing HVK, the language for structured communication proposed in
[Honda 1998]. We assume the following notational conventions: names are ranged over
by a, b, . . . ; channels are ranged over by k, k′; variables are ranged over by x, y, . . . ; con-

stants (names, integers, booleans) are ranged over by c, c′, . . . ; expressions (including con-
stants) are ranged over by e, e′, . . . ; labels are ranged over by l, l′, . . . ; process variables

are ranged over by X, Y, . . . . Finally, u, u′, . . . denote names and channels. The sets of
free names/channels/variables/process variables of P , is defined in the standard way, and
respectively denoted by fn(·), fc(·), fv(·) and fpv(·). Processes without free variables or free
channels are called programs.

Definition 9.2.1 (The HVK language [Honda 1998]). Processes in HVK are built from:

P,Q ::= request a(k) in P Session Request

| accept a(x) in P Session Acceptance

| k![~e]; P Data Sending

| k?(x) in P Data Reception

| k ✁ l;P Label Selection

| k ✄ {l1 : P1 ‖ · · · ‖ ln : Pn} Label Branching

| throw k[k′]; P Channel Sending

| catch k(k′) in P Channel Reception

| if e then P else Q Conditional Statement

| P | Q Parallel Composition

| inact Inaction

| (νu)P Hiding

| def D in P Recursion

| X[~e~k] Process Variables
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D ::= X1(x1k1) = P1 and · · ·and Xn(xnkn) = Pn

9.2.1 Operational Semantics of HVK

The operational semantics of HVK is given by the reduction relation −→HVK which is the
smallest relation on processes generated by the rules in Table 9.2. In Rule Str, the struc-
tural congruence ≡ is the smallest relation satisfying :

1. P ≡ Q if they differ only by a renaming of bound variables (alpha-conversion).

2. P | inact ≡ P , P | Q ≡ Q | P , (P | Q) | R ≡ P | (Q | R).

3. (νu)inact ≡ inact, (νuu)P ≡ (νu)P , (νuu′)P ≡ (νu′u)P , (νu)(P | Q) ≡ (νu)P | Q

if x /∈ fv(Q), (νu)(def D in P ) ≡ (def D in ((νu)P )) if u /∈ fv(D).

4. (def D in P ) | Q ≡ def D in (P | Q) if fpv(D) ∩ fpv(Q) = ∅.

5. def D in (def D′ in P ) ≡ def D and D′ in P if fpv(D) ∩ fpv(D′) = ∅.

Link accept a(x) in P | request a(k) in Q −→HVK (νk)(P | Q)

Com (k![~e];P ) | (k?(x) in Q) −→HVK P | Q[~c/~x] if e ↓ ~c

Label k ✁ li;P | k ✄ {l1 : P1 ‖ · · · ‖ ln : Pn} −→HVK P | Pi (1 ≤ i ≤ n)

Pass throw k[k′];P | catch k(k′) in Q −→HVK P | Q

If1 if e then P else Q −→HVK P (e ↓ true)
If2 if e then P else Q −→HVK Q (e ↓ false)

Def def D in (X[~e~k] | Q) −→HVK def D in (P [~c/~x] | Q) (e ↓ ~c, X(~x~k) = P ∈ D)

Scop P −→HVK P ′ implies (νu)P −→HVK (νu)P ′

Par P −→HVK P ′ implies P | Q −→HVK P ′ | Q

Str If P ≡ P ′ and P ′ −→HVK Q′ and Q′ ≡ Q then P −→HVK Q

Table 9.2: Reduction Relation for HVK [Honda 1998].

Let us give an intuition about the rules above. The central idea in HVK is the notion of
session. A session is a series of reciprocal interactions between two parties, possibly with
branching and recursion, and serves as a unit of abstraction for describing interaction.

Communications belonging to a session are done via a port specific to that session, called
a channel which is generated when initiating each session.

The initialization of a session in HVK can be specified by a process of the form

accept a(x) in P | request a(k) in Q

In this case, the request first requests, via a name a, the initiation of a session as well as
the generation of a fresh channel. The accept, on the other hand, receives the request for
the initiation of a session via a, and generates a new channel k which is used for P and Q

to communicate each other.
Three kinds of atomic interactions are available in the language: sending (including

name passing), branching and channel passing (or delegation). Those actions are described
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ATM (a, b) = accept a(k) in k?(id) in

k ✄






deposit : request b(h) in

k?(amt) in h ✁ deposit;

h![id, amt];ATM(a, b)

||withdraw : request b(h) in

k?(amt) in h ✁ withdraw;h![id, amt];

h ✄

{
success : k ✁ dispense; k![amt];ATM(a, b)

||failure : k ✁ overdraft ;ATM (a, b)

}

||balance : request b(h) in h ✁ balance;h?(amt) in

k![amt];ATM(a, b)






Figure 9.1: ATM process specification [Honda 1998]

by the rules Com, Label and Pass respectively. In the case (k![~e];P ) | (k?(x) in Q), the
expression ~e is sent on the port (session channel) k. Then the process k?(x) in Q receives
such a data and then execute Q[~c/~x] where ~c is the result of evaluating the expression ~e.

The case of Pass is similar but considering that only session names are transmitted in
throw k[k′];P | catch k(k′) in Q.

In the case of k ✁ li;P | k ✄ {l1 : P1 ‖ · · · ‖ ln : Pn}, the process k ✁ li;P selects one
label and then the corresponding process Pi is executed.

The other rules are self-explanatory.

9.2.2 An Example

Let us give an intuition on how a declarative approach could be useful in the analysis
of sessions. Consider the ATM example from [Honda 1998, Section 4.1] (see Figure 9.1).
There, an ATM has established sessions with a user (via the channel a) and his bank (via
the channel b). it allows for deposit, balance, and withdraw operations. In the latter
case, if there is not enough money to withdraw, then an overdraft message appears to the
user.

Consider now an extension of the previous system with a malicious card reader that
keeps the user’s sensible information and uses it to continue withdrawing money without
his/her authorization. A greedy card reader could even repeatedly withdraw until causing
an overdraft, as in Figure 9.2.

The card reader acts as an interface between the user and the ATM. By creating sessions
between them, the card reader is able to receive the data about the user’s identity and
use that data later to establish a session with the ATM. The card reader then uses the
information associated to the user’s transaction to first provide him the money and then
to continue withdrawing more money without the user’s authorization; this is the role of
recursive process R. The process Q above can be assumed to be a process that sends a
message through a session with the bank saying that the account has run out of money:
Q = kbank![0]; inact.

In this simple scenario, the correspondence between utcc and first-order linear-time
temporal logic (FLTL) may come in handy to reason about the possible states for this
specification. These can be used not only to describe the operational behavior of the
compromised ATM above, but also to provide declarative arguments regarding its evolution.
For instance, assuming Q as above, one could show that a utcc specification of the ATM
example satisfies the FLTL formula ✸ out(kbank, 0), which intuitively means that in the
presence of the malicious card reader the user’s bank account will eventually go to overdraft.
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Reader = accept r(k′) in k′?(id) in

request a(k) in k![id];

k′
✄






withdraw : k′?(amt) in

k ✁ withdraw; k![amt];

k ✄

{
dispense : k′

✁ dispense; k![amt];R(k, amt)

‖ overdraft : Q

}






R(j , x ) = def R′ in k ✁ withdraw; j![x]; j ✄

{
dispense : j?(amt) in R(j, x)

‖ overdraft : Q

}

User = request r(k′) in k′![myId];

k′
✁ withdraw; k′![58]; k′

✄ {dispense : k′?(amt) in P ||overdraft : Q}

Figure 9.2: ATM Example with a Malicious Card Reader.

9.3 A Declarative Interpretation for Sessions

The Table 9.4 presents a compositional encoding of HVK processes into utcc. In this encod-
ing we make us of the derived constructs (wait ~x; c) do Q and tell(c) that we defined in
Section 6.5.3. Recall that (wait ~x; c) do Q is a persistent abstraction waiting for possibly
several time units until for some ~t, c[~t/~x] holds. Then it executes Q[~t/~x]. The process tell(c)

outputs the constraint c in several time units until a process of the form (wait ~x; c) do P

“read” the constraint c. Furthermore, whenever c do Q stands for (wait ~x; c) do Q when
|~x| = 0, i.e., ~x = ε (see Notation 6.5.1).

Let us briefly provide intuitions on this encoding. Consider the HVK processes

P = request a(k) in P ′

Q = accept a(x) in Q′

The encoding of P declares a new variable session k and sends it through the channel a

by posting the constraint req(a, k). Once H[[Q]] receives the session key (local variable)
generated by H[[P ]], it adds the constraint acc(a, k) to notify the acceptance of k. Then,
H[[P ]] and H[[Q]] synchronize using this constraint and they execute their continuation in
the next time unit. Label selection and branching synchronize on the constraint sel(k, l).
We use the parallel composition

∏
1≤i≤n

when l = li do nextH[[Pi]] to execute the selected

choice. Notice that we do not require a non-deterministic choice since the constraints l = li
are mutually exclusive [Falaschi 1997, Nielsen 2002a].

As in [Honda 1998], in the encoding of if e then P else Q , we assume an evaluation
function on expressions. Once e is evaluated, ↓ e is a constant boolean value.

The encoding of def D in P exploits the scheme described in Section 3.3.1 to define
recursive definitions in utcc making use of abstractions.

Note that the encoding above delays the execution of the continuation of a process
(e.g. P ′ in request a(k) in P ′) to the next time unit (i.e., nextH[[P ′]]). Therefore, we
shall establish the correspondence between the HVK transition −→HVK and the observable
transition ====⇒ as we explain in the next section.
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H[[request a(k) in P ]] = (local k) (tell(req(a, k)) ‖ whenever acc(a, k) do nextH[[P ]])
H[[accept a(k) in P ]] = (wait k; req(a, k)) do (tell(acc(a, k)) ‖ next (H[[P ]]))

H[[k![~e]; P ]] = tell(out(k,~e)) ‖ whenever out(k,~e) do nextH[[P ]]
H[[k?(~x) in P ]] = (wait ~x; out(k, ~x)) do nextH[[P ]]

H[[k ✁ l; P ]] = tell(sel(k, l)) ‖ whenever sel(k, l) do nextH[[P ]]
H[[k ✄ {l1 : P1|| . . . ||ln : Pn}]] = (wait l; sel(k, l)) do

Q

1≤i≤n

when l = li do nextH[[Pi]]

H[[throw k[k′]; P ]] = tell(outk(k, k′)) ‖ whenever outk(k, k′) do nextH[[P ]]
H[[catch k(k′) in P ]] = (whenever outk(k, k′)) do nextH[[P ]]

H[[if e then P else Q ]] = when e ↓ true do nextH[[P ]] ‖ when e ↓ false do nextH[[Q]]
H[[P | Q]] = H[[P ]] ‖ H[[Q]]
H[[inact]] = skip

H[[(νu)P ]] = (localu) H[[P ]]

H[[def D in P ]] =
Q

Xi(xiki)∈D

(pXi(xiki)q ‖ Ĥ[[P ]])

Table 9.4: An Encoding from HVK into utcc. p·q and P̂ as in Definition 3.3.2.

9.3.1 Operational Correspondence

In this section we prove the correctness of our encoding. For the sake of simplicity, without
loss of generality, we assume programs of the form def D in P where there are not procedure
definitions in P .

Let us introduce the following normal form of HVK processes.

Definition 9.3.1 (Processes in normal form). We say that the HVK process P is in normal
form if takes the form def D in ν~u(Q1 | · · · | Qn) where neither the operators “ν” and “|”
nor process variables occur in the top level of Q1, . . . , Qn.

The following proposition states that given a process P we can find P ′ in normal form
such that: either P ′ is structurally congruent to P or results from replacing the process
variables in the top level of P by their corresponding definition using the rule Def .

Proposition 9.3.1. For all HVK process P there exists P ′ in normal form s.t. P −→∗
HVK

≡ P ′

only using the rules Def and Str in Table 9.2.

Proof. Let P be a process of the form def D in Q where there are no procedure definitions
in Q. By repeated applications of the rule Def, we can show that P −→∗

HVK P ′ where P ′

does not have occurrences of processes variables in the top level. Then, we use the rules
of the structural congruence to move the local variables to the outermost position and find
P ′′ ≡ P ′ in the desired normal form.

Notice that the rules of the operational semantics of HVK are given for pairs of processes
that can interact with each other. We shall refer to those pairs of processes as redex.

Definition 9.3.2 (Redex). A redex is a pair of dual processes composed in parallel as in

- request a(k) in P | accept a(k) in Q

- k![~e];P | k?(~x) in Q

- k ✁ l;P | k ✄ {l1 : P1 ‖ · · · ||ln : Pn}
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- throw k[k′];P | catch k(k′) in Q.

It is worth noticing that a redex in HVK synchronizes and reduces in a single transition
as in (k![~e];P ) | (k?(x) in Q) −→HVK P | Q[~e/~x]. Nevertheless, in utcc, the encoding of the
processes above requires two internal transitions: one for adding the constraint out(k,~e)

to the current store, and another one in which the process (wait ~x; out(k, ~x)) do next [[Q]]

“reads” that constraint to later execute next [[Q[~e/~x]]]. We shall then establish the oper-
ational correspondence between an observable transition of utcc (obtained from a finite
number of internal transitions) and the following reduction relation over HVK processes:

Definition 9.3.3 (Outermost Reductions). Let P ≡ def D in ν~x(Q1 | · · · |Qn) be an HVK

program in normal form. We define the outermost reduction relation P ====⇒HVK P ′ as

the maximal sequence of reductions P −→∗
HVK

P ′ ≡ def D in ν ~x′(Q′
1 | · · · |Q

′
n) such that

for every i ∈ {1, ..n}, either

1. Qi = if e then R1 else R2 −→HVK R1/2 = Q′
i;

2. for some j ∈ {1, ..n}, Qi|Qj is a redex such that Qi|Qj −→HVK ν~y(Q′
i|Q

′
j), with ~y ⊆ ~x′;

3. there is no k ∈ {1, ..n} such that Qi |Qk is a redex and Qi ≡ Q′
i.

In addition to the difference between the synchronous and the asynchronous nature of
HVK and utcc, there is another fundamental difference between both languages that we
need to consider to establish the semantic correspondence. Namely, utcc is a deterministic
languages while HVK may exhibit non-deterministic behavior. In the following we explain
why this difference is not relevant when considered well-typed HVK processes.

Observation 9.3.1 (Typable HVK processes). In the π-calculus, and in HVK, inputs and

outputs are not necessarily persistent. Then, the parallel composition of two outputs and

one input on the same channel may lead to different configurations. Take for example

P = k![~e];Q1 | k![~e′];Q2 | k?(~x) in Q3. We have one of the following derivations:

- P −→HVK Q1 | k![~e′];Q2 | Q3[~e/~x]

- P −→HVK Q2 | k![~e];Q1 | Q3[~e′/~x]

In both cases, there is an output that cannot interact with the input k?(~x) in Q3.

In utcc, inputs are represented by abstractions which are persistent during a time unit.

Then, in the example above, we shall observe that both outputs react with the input, i.e., we

observe that H[[P ]]
(true,c)
====⇒ H[[Q3[~e/~x]]] ‖ H[[Q3[~e′/~x]]].

A similar situation arises when one considers a parallel composition of the form P1 | ... | Pn

where there exist a process Pi that form a redex with two different processes Pj and Pk.

Here, to establish the semantic correspondence we appeal to the typed nature of the HVK

language. Roughly speaking, the type discipline in [Honda 1998] ensures a correct “pairing”

between complementary components, i.e., redex. Our encoding assumes then processes to be

typable with respect to such a discipline.

In the sequel we shall thus consider only HVK processes P where for n ≥ 1, if P ≡h

P1 ====⇒h P2 ====⇒h · · · ====⇒h Pn and P ≡h P ′
1 ====⇒h P ′

2 ====⇒h · · · ====⇒h

P ′
n then Pi ≡h P ′

i for all i ∈ {1, .., n} , i.e., P is a deterministic process.
Recall the Notation 6.3.1 for the utcc internal and observable transitions P −→ Q

and P ====⇒ Q respectively where the inputs are assumed to be true and the outputs
unimportant. We shall also use the observable equivalence relation ∼obs in Definition 6.5.3
that ignores the residual processes generated by the evolution of the processes of the form
tell(c(~t)) ‖ (wait ~x; c) do Q (see Notation 6.5.2).
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Theorem 9.3.1 (Operational Correspondence). Let P,Q be typable HVK processes in nor-

mal form and R,S be utcc processes. It holds:

1) Soundness: If P ====⇒HVK Q, then there exists R s.t. H[[P ]] ====⇒ R ∼obs H[[Q]]

2) Completeness: If H[[P ]] ====⇒ S, then there exists Q s.t. P ====⇒HVK Q and

H[[Q]] ∼obs S.

Proof. Assume that
P ≡h def D in ν~x(Q1 | · · · |Qn)

Q ≡h def D in ν ~x′(Q′
1 | · · · |Q

′
n)

1. Soundness. Since P ====⇒h Q there must exist a sequence of derivations of the form
P ≡h P1 −→HVK P2 −→HVK ... −→HVK Pn ≡h Q. The proof proceeds by induction on
the length of this derivation, with a case analysis on the last applied rule. We then
have the following cases:

(a) Using the rule If1. It must be the case that there exists Qi ≡h if e then R1 else R2

and Qi −→HVK R1 ≡h Q′
i and e ↓ true. One can easily show that when e ↓

true do next [[Q′
i]] ====⇒ [[Q′

i]].

(b) Using the rule If2 Similarly as for If1.

(c) Using the rule Link. It must be the case that there exist i, j such that Qi ≡h

request a(k) in Q′
i and Qj ≡h accept a(x) in Q′

j and then Qi | Qj −→HVK

(νk)(Q′
i | Q′

j). We then have a derivation of the form

[[Qi]] ‖ [[Qk]] −→∗ (local k; c) (R′
i ‖ whenever acc(a, k) do next [[Q′

i]] ‖

(wait k′; req(a, k′)) do (tell(acc(a, k′)) ‖

next ([[Q′
j ]]))

−→∗ (local k; c′) (R′
i ‖ whenever acc(a, k) do next [[Q′

i]] ‖

R′
j ‖ tell(acc(a, k)) ‖ next ([[Q′

j [k/k′]]])

−→∗ (local k; c′′) (R′
i ‖ R′

j ‖ next [[Q′
i]] ‖ next ([[Q′

j [k/k′]]]) 6−→

where c = req(a, k), c′ = c ∧ req(a, k), c′′ = c′ ∧ acc(a, k) ∧ acc(a, k) and R′
i, R′

j

are the processes resulting after the interaction of the processes in the parallel
composition tell(req(a, k)) ‖ (wait k′; req(a, k′)) do · · · , i.e.:

R′
i ≡u (local go, stop; out′(go) ∧ out

′(stop) ∧ c(~t))

next !unless out
′(stop) next tell(out′(go)) ‖

next ! tell(out′(stop))

R′
j ≡u (local stop′, go′; out′(go′) ∧ c(~t) ∧ out

′(stop′))next ! tell(out′(stop′))

‖ next !unless out
′(stop′) next tell(out′(go′))

‖ (abs ~x; c ∧ out
′(go′) ∧ ~x 6

.
= ~t) (Q ‖ tell(c(~t)) ‖! tell(out′(stop′))

‖ next ! (abs ~x; c ∧ out
′(go′)) (Q ‖ tell(c(~t)) ‖! tell(out′(stop′))

We notice that R′
i ‖ R′

j 6−→ and it is a process that can only output the con-
straint out′(x) where x is a local variable. By appealing to Observation 6.5.1 we
conclude [[Qi]] ‖ [[Qj ]] ====⇒∼obs (local k) ([[Q′

i]] ‖ [[Q′
j ]]).

(d) The cases using the rules Label and Pass can be proven similarly as the case
for the rule link.

2. Completeness. Given the encoding and the structure of P , we have a utccprocess
R = [[P ]] such that

R ≡u (local ~x) ([[Q1]] ‖ ... ‖ [[Qn]]) .
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Let Ri = [[Qi]] for 1 ≤ i ≤ n. By an analysis on the structure of R, if Ri −→ R′
i then

it must be the case that either (a) Ri = when e do next [[Q′
i]] and R′

i = next [[Q′
i]] or

(b) 〈Ri, c〉 −→ 〈R′
i, c∧ d〉 where d is a constraint of the form req(·), sel(·), out(·), or

outk(·). In both cases we shall show that there exists a R′′
i such that Ri −→

∗ R′′
i 6−→

such that Qi −→HVK Q′
i and R′′

i = next [[Q′
i]].

(a) Assume that Ri = when e ↓ true do next [[Q′
i]] for some Q′

i. Then it must
be the case that Qi = if e then Q′

i else Q′′
i . If e ↓ true we then have

R′′
i = next [[Q′

i]]. The case when e ↓ false is similar by considering Ri =

when e ↓ false do Q′
i.

(b) Assume now that 〈Ri, c〉 −→ 〈R′
i, c ∧ d〉 where d is of the form req(·), sel(·),

out(·) or outk(·). We proceed by case analysis of the constraint d. Let us consider
only the case d = ∃k(req(a, k)); the cases in which d takes the form sel(·), out(·),
or outk(·) are handled similarly. If d = ∃k(req(a, k)) for some a, then we must
have that Qi ≡h request a(k) in Q′

i for some i. If there exists j such that
Qj ≡h accept a(x) in Q′

j , one can show a derivation similar to the case of the
rule Link in soundness to prove that Ri ‖ Rj −→∗∼o (local k) (next [[Q′

i]] ‖
next [[Q′

j ]]). If there is no Qj such that Qi |Qj forms a redex, then one can show
that Ri ====⇒∼obs Ri.

9.4 HVK-T: An Temporal extension of HVK

In this section we propose HVK-T, a temporal extension of HVK in which a bundled treatment
of time is explicit and session closure is considered. More precisely, the HVK-T language arises
as the extension of HVK processes with refined constructs for session request and acceptance,
as well as with a construct for session abortion.

Definition 9.4.1 (HVK-T syntax). HVK-T processes are given by the following syntax:

P ::= request a(k) during m in P Timed Session Request

| accept a(k) given c in P Declarative Session Acceptance

| · · · { the other constructs, as in Def. 9.2.1 }

| kill ck Session Abortion

The intuition behind these three operators is the following: request a(k) during m in P

will request a session k over the service name a during m time units. Its dual construct
is accept a(k) given c in P : it will grant the session key k when requested over the
service name a provided by a session and a successful check over the constraint c. Notice
that c stands for a precondition for agreement between session request and acceptance. In
c, the duration m of the corresponding session key k can be referenced by means of the
variable durk . In the encoding we syntactically replace it by the variable corresponding to
m. Finally, kill ck will remove ck from the valid set of sessions.

Adapting the encoding in Table 9.4 to consider HVK-T processes is remarkably simple.
Indeed, modifications to the encoding of session request and acceptance are straightfor-
ward. The most evident change is the addition of the parameter m within the constraint
req(a, k, m). The duration of the requested session is suitably represented as a bounded
replication (! [m]) of the process defining the activation of the session k represented as the
constraint act(k). The execution of the continuation H[[P ]] is guarded by the constraint
act(k) (i.e., P can be executed only when the session k is valid). In the encoding, we use
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H[[request a(k) during m in P ]] = (local k) tell(req(a, k, m)) ‖
whenever acc(a, k) do next (

tell(act(k)) ‖ Gact(k)(H[[P ]]) ‖
! [m]unless kill(k) next tell(act(k)))

H[[accept a(k) given c in P ]] = (wait k; req(a, k, m) ∧ c[m/durk ]) do (

tell(acc(a, k)) ‖ nextGact(k)(H[[P ]]))

H[[kill k]] = ! tell(kill(k))

Table 9.5: The Extended Encoding. Gd(P ) is given in Definition 9.4.2. The process ! [m]P

means P ‖ nextP ‖ ... ‖ next mP .

the function Gd(P ) to stand for the process which behaves as P when the constraint d can
be entailed from the current store, and that is precluded from execution otherwise. More
precisely,

Definition 9.4.2. Let Gd :→ Procs → Procs be defined as

Gd(P ) =






skip if P = skip

when d do tell(c) if P = tell(c)

(abs ~x; c)Gd(Q) if P = (abs ~x; c) Q and ~x /∈ fv(d)

Gd(P1) ‖ Gd(P2) if P = P1 ‖ P2

(local ~x; c)Gd(Q) if P = (local ~x; c) Q and ~x /∈ fv(d)

when d do nextGd(Q) if P = nextQ

when d do unless c nextGd(Q) if P = unless c nextQ

!Gd(Q) if P =!Q

In the side of session acceptance, the main novelty is the introduction of c[m/durk ]. As
explained before, we syntactically replace the variable durk by the corresponding duration
of the session m. This is a generic way to represent the agreement that should exist between
a service provider and a client; for instance, it could be the case that the client is requesting
a session longer than what the service provider can or want to grant.

9.4.1 Case Study: Electronic booking

Here we present an example in a electronic booking scenario that makes use of the constructs
introduced in HVK-T.

Consider the electronic portal of a airline company AC which offers flights online. A
customer makes us of this service by establishing a timed session with AC. The costumer
may ask for a flight proposal given a set of constraints such as dates allowed, destinations,
etc. After receiving an offer from AC, the customer checks, for example, that the price is
below a given threshold. If so, she accepts the proposal initializing the contract phase. One
possible HVK-T specification of this scenario is described in Table 9.6.

In the specification of the service AC, the process checks if the duration of the session
requested by the customer is less than a parameter maxtime. This service also closes the
session if the customer rejects the proposal. This way, dangling sessions are avoided.
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Customer = request ob(k) during m in (k![bookingdata];Select(k))

Select(k) = k?(offer) in (if (offer .price ≤ 1500 ) then k ✁ Contract ; else k ✁ Reject ; )

AC = accept ob(k) given durm ≤ maxtime in (

k?(bookingData) in

(νu)k![u]; k ✄
{
Contract : Accept | Reject : kill k

}
)

Table 9.6: Online booking example

9.4.2 Exploiting the Logic Correspondence

We can draw inspiration from the constraint templates put forward in [Pesic 2006], a set
of LTL formulas that represent desirable/undesirable situations in service management.
Such templates are divided in three types: existence constraints, that specify the number of
executions of an activity; relation constraints, that define the relation between two activities
to be present in the system; and negation constraints, which are essentially the negated
versions of relation constraints. Appealing to the logic characterization of utcc processes as
FLTL formulae, we may verify the existence and relation constraints over HVK-T programs.
Assume a HVK-T program P and let F = TL[[H[[P ]]]] (i.e., the FLTL formula associated to
the utcc representation of P ). For existence constraints, assume that P defines a service
accepting requests on channel a. If the service is eventually active, then it must be the case
that F |= ✸∃k(acc(a, k)) (recall that the encoding of accept adds the constraint acc(a, k)

when the session k is accepted).
This way, additional to the behavior techniques, utcc may offer also declarative reason-

ing techniques based upon ratability in FLTL.

⋆ ⋆ ⋆

9.5 Multimedia Interaction Systems

Interactivity in multimedia systems has become increasingly important. The aim is to
devise ways for the machine to be an effective and active partner in a collective behavior
constructed dynamically by many actors. In its simplest form, a person (say a musician) sig-
nals the computer when specific previously defined processes should be launched or stopped.
In more complex forms of interaction the machine is always actively adapting its behavior
according to the information derived from the activity of the other partners who, in turn,
adapt theirs according to the computer actions. To be coherent these machine actions must
be the result of a complex adaptive system, composed itself of many agents that should be
coordinated in precise ways. Constructing such systems is thus a challenging task. More-
over, ensuring their correctness poses a great burden to the usual test-based techniques. In
this setting, CCP-based languages has much to offer: CCP calculi are explicitly designed for
expressing complex coordination patterns in a very simple way by means of constraints. In
addition, their declarative nature allows formally proving properties of interactive systems
modeled with them.

Interactive scores [Allombert 2007] can be seen as models for reactive music systems
adapting their behavior to different types of intervention from a performer. The weakly
defined temporal relations between the components in an interactive score specify loosely
coupled music processes potentially changing their properties (temporal, harmonic, etc.)
in reaction to stimulus from the environment (a performer, another machine, etc). An
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Figure 9.3: Interactive score

interactive score defines a hierarchical structure of processes. Musical properties of a process
depend on the hierarchical context it is located in. Although the hierarchical structure has
been treated as static in previous works on interactive scores [Allombert 2007], there is no
reason it should be so. A process, in reaction to a musician action, for example, could
be programmed to move from one context to another or simply to disappear. One can
imagine, for instance, a particular set of musical materials within different contexts that
should only be played when an expected information from the environment actually takes
place. Modeling this kind of interactive score mobility in a coherent way is greatly simplified
by using utcc.

Musical improvisation is another natural context for interacting agents. Improvisa-
tion is effective when the behavior of the agents adapts to what has been learned in pre-
vious interactions. A music style-learning/improvisation scheme such as Factor Oracle
[Allauzen C. 1999, Assayag 2006] can also be seen as a reactive system where several learn-
ing and improvising agents react to information provided by the environment or by other
agents. In its simplest form three concurrent agents, a player, a learner and an improviser
must be synchronized. Since only three independent processes are active, coordination can
be implemented without major difficulties using traditional languages and tools. The ques-
tion is whether such implementations would scale up to situations involving several players,
learners and improvisers. For an implementation using traditional languages the complexity
of such systems would most likely impose many simplifications in coordination patterns if
behavior is to be controlled in a significant way. A utcc model, as described here, provides
a very compact and simple model of the agents involved in the FO improvisation, one in
which coordination is automatically provided by the blocking ask construct of the calculus.
Moreover, additional agents could easily be incorporated in the system. As an extra bonus,
fundamental properties of the constructed system can be formally verified in the model.

Here we argue for utcc as a declarative language for the modeling and verification of
dynamic multimedia interaction systems. We shall show that its extra expressiveness to
model mobile behavior allow us to neatly define more flexible and dynamic systems. More
precisely, we shall present a utcc model for interactive scores where the interactive points
allow the composer to dynamically change the hierarchical structure of the score. We
then broaden the interaction mechanisms available for the user in previous (more static)
models, e.g., [Allombert 2006]. Furthermore, we propose a model for the Factor Oracle
improvisation scheme that is simpler than that in [Assayag 2006].
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9.6 Dynamic Interactive Scores

An interactive score [Allombert 2007] is a pair composed of temporal objects and Allen tem-
poral relations [Allen 1983]. In general, each object is comprised of a start-time, a duration,
and a procedure. The first two can be partially specified by constraints, with different con-
straints giving rise to different types of temporal objects, so-called events (duration equals
zero), textures (duration within some range), intervals (textures without procedures) or
control-points (a temporal point occurring somewhere within an interval object). The pro-
cedure gives operational meaning to the action of the temporal object. It could just be
playing a note or a chord, or any other action meaningful for the composer. Figure 9.3,
based on one from [Allombert 2007], shows an interactive score where temporal objects are
represented as boxes. Objects are Ti, durations Di. Object T4 is a control point, whereas
T0 and T3 are intervals. Duration D3 should be such that Ds ≤ D3 ≤ Df .

The whole temporal structure is determined by the hierarchy of temporal objects. Sup-
pose that, as a result of the information obtained by the occurrence of an event, object T2

should no longer synchronize with a control-point inside T1 but, say, with a similar point
inside T5. This very simple interaction cannot be modeled in the standard model of inter-
active scores [Allombert 2007]. Another example is an object waiting for some interaction
from the performer within some temporal interval. If the interaction does not occur, the
composer might then determine to probe the environment again later when a similar mu-
sical context has been defined. This amounts to moving the waiting interval from one box
to another.

9.6.1 A utcc model for Dynamic Interactive Scores

Figure 9.4 shows our model for dynamic interactive scores. The process BoxOperations

may perform the following actions:

• mkbox(id, d): defines a new box with id id and duration d. The start time is defined
as a new (local) variable s whose value will be constrained by the other processes.

• destroy(id): firstly, it retrieves the box sup which contains the box id. If the box
id is not currently playing, in the next time unit, it drops the boundaries of id by
inserting all the boxes contained in id into sup.

• before(x, y): checks if x and y are contained in the same box. If so, the constraint
bf(x, y) is added.

• into(x, y): dictates that the box x is into the box y if x is not currently playing.

• out(x, y): takes the box x out of the box y if x is not currently playing.

Process Constraints adds the necessary constraints relating the start times of each
temporal object to respect the hierarchical structure of the score. For each constraint of
the form in(x, y), this process dictates that the start time of x must be less than the one
of y. Furthermore, the end time of y (i.e. dy + sy) must be greater than the end time of x.
The case for bf(x, y) can be explained similarly.

The process Persistence transfers the information of the hierarchy (i.e. box declara-
tions, in and bf relations) to the next time unit.

The process Clock defines a simple clock that binds the variable t to the value v in the
current time unit and to v + 1 in the next time unit.
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BoxOperations
def
= (abs id, d; mkbox(id, d))

(local s) tell(box(id, d, s))
‖ (abs id; destroy(id))

(abs x, sup; in(x, id) ∧ in(id, sup))
unless play(id) next tell(in(x, sup))

‖ (abs x, y; before(x, y))when ∃z(in(x, z) ∧ in(y, z)) do

unless play (y) next tell(bf(x, y))
‖ (abs x, y; into(x, y))unless play (x) next tell(in(x, y))
‖ (abs x, y; out(x, y))when in(x, y) do

unless play (x) next (abs z, in(y, z); tell(in(x, z)))

Constraints
def
= (abs x, y; in(x, y)) (abs dx, sx; box(x, dx, sx))

(abs dy, sy; box(y, dy, sy))
tell(sy ≤ sx) ‖ tell(dx + sx ≤ dy + sy)

‖ (abs x, y; bf(x, y)) (abs dx, sx; box(x, dx, sx))
(abs dy, sy; box(y, dy, sy)) tell(sx + dx ≤ sy)

Persistence
def
= (abs x, y; in(x, y))when play(x) do next tell(in(x, y))

‖ unless out(x, y) ∨ destroy(x) next tell(in(x, y))
‖ (abs x, y; bf(x, y))when play(y) do next tell(bf(x, y))

‖ unless (out(x, y) ∨ destroy(y) next tell(bf(x, y))
‖ (abs x; box(x, dx, sx))when play(x) do next tell(box(x, dx, sx))

‖ unless destroy(x) next tell(box(x, dx, sx))

Clock(t, v)
def
= tell(t = v) ‖ next Clock(t, v + 1)

Play(x, t)
def
= when t ≥ 1 do tell(play(x)) ‖ unless t ≤ 1 next Play(x, t − 1)

Init(t)
def
= (wait x; init(x)) do

(abs dx, sx; box(x, dx, sx))
Clock(t, 0) ‖ tell(sx = t) ‖
! (wait y, dy, sy; box(y, dy, sy) ∧ sy ≤ t) do Play(y, dy)

System
def
= (local t) Init(t) ‖! Persistence ‖! Constraints ‖! BoxOperations ‖ UsrBoxes

Figure 9.4: A utcc model for Dynamic Interactive Scores

The process Play(x, t) adds the constraint play(x) during t time units. This informs
the environment that the box x is currently playing.

The process Init(t) waits until the environment provides the constraint init(x) for the
outermost box x to start the execution of the system. Then, the clock is started and the
start time of x is set to 0. The rest of the boxes wait until their start time is less or equal
to the current time (t) to start playing.

Finally, the whole system is the parallel composition between the previously defined
processes and the specific user model, for instance, the process UsrBoxes in Figure 9.5.

This system defines the hierarchy in Figure 9.6(a). When b starts playing, the system
asks if the signal signal is present (i.e., if it was provided by the environment). If it was
not, the box d is taking out from the context b. Furthermore, a new box f is created such
that b must be played before f and f before d as in Figure 9.6(b). Notice that when the
box d is taken out from b, the internal box e is still into d preserving its structure.

9.6.2 Verification of the Model

The processes defined by the user may lead to situations where the final store is inconsistent
as in st < 5∧ st > 7 where st is the start time of a given box. Take for example the process
UsrBoxes above. If the box f is defined with a duration greater than 5, the execution of f

(and then that of d) will exceed the boundaries of the box a which contains both structures.
In this context, the declarative view of utcc processes as FLTL formulae provides a

valuable tool for the verification of the model: The formula A = TL[[P ]] may allow us to
verify whether the execution of P leads to an inconsistent store. Thus, we can detect pitfalls
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UsrBoxes
def
= tell(mkbox(a, 22) ∧ mkbox(b, 12) ∧ mkbox(c, 4)) ‖

tell(mkbox(d, 5) ∧ mkbox(e, 2)) ‖
tell(into(b, a) ∧ into(c, b) ∧ into(d, b) ∧ into(e, d)) ‖
tell(before(c, d)) ‖
whenever play(b) do unless signal next

tell(out(d, b) ∧ mkbox(f, 2) ∧ into(f, a)) ‖
tell(before(b, f) ∧ before(f, d))

Figure 9.5: Example of a Specification of Boxes

in the user model such as trying to place a bigger box into a smaller one or taking a box
out of the outermost box.

In the following, we present two simple examples of temporal properties we could verify
in an interactive score represented as the process P .

• [[P ]] |=T ✸∃x,dx,sx,y,dy,sy
(box(x, dx, sx)∧ box(y, dy, sy)∧ in(x, y)∧ sx + dx > sy + dy):

The end time of the box y is less than the end time of the inner box x. I.e., the box
y cannot contain x.

• [[P ]] |=T ✸∃dx,sx
(box(x, dx, sx) ∧ play(x)): Eventually the structure x is played.

Remark 9.6.1. For the sake of presentation we only defined here the before relation. Our

model can be straightforwardly extended to support all Allen temporal relations [Allen 1983].

Making use of the into and out operations, we can define also the operation move(a, b)

meaning, move the structure a into the structure b.

9.7 A Model for Music Improvisation

As described above, in interactive scores the actual musical output may change depending
on interactions with a performer, but the framework is not meant for learning from those
interactions, nor to change the score (i.e. improvise) accordingly.

Music improvisation provides a complex context of concurrent systems posing great
challenges to modeling tools. In music improvisation, partners behave independently but

(a) (b)

Figure 9.6: Example of an Interactive Score Execution
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Figure 9.7: A FO automaton for s = ab

are constantly interacting with others in controlled ways. The interactions allow building
a complex global musical process collaboratively. Interactions become effective when each
partner has somehow learned about the possible evolutions of each musical process launched
by the others, i.e, their musical style. Getting the computer involved in the improvisation
process requires learning the musical style of the human interpreter and then playing jointly
in the same style. A style in this case means some set of meaningful sequences of musical
material the interpreter has played. A graph structure called factor oracle (FO) is used to
efficiently represent this set [Allauzen C. 1999].

A FO is a finite state automaton constructed in an incremental fashion. A sequence of
symbols s = σ1σ2 . . . σn is learned in such an automaton, which states are 0, 1, 2 . . . n. There
is always a transition arrow (called factor link) labeled by the symbol σi going from state
i − 1 to state i, 1 ≤ i < n. Depending on the structure of s, other arrows will be added.
Some are directed from a state i to a state j, where 0 ≤ i < j ≤ n. These also belong to
the set of factor links and are labeled by the symbol σj . Some are directed “backwards”,
going from a state i to a state j, where 0 ≤ j < i ≤ n. They are called suffix links, and
bear no label (represented as ’⋆’ in our processes below). The factor links model a factor
automaton, that is every factor p in s corresponds to a unique factor link path labeled by
p, starting in 0 and ending in some other state. Suffix links have an important property :
a suffix link goes from i to j iff the longest repeated suffix of s[1..i] is recognized in j. Thus
suffix links connect repeated patterns of s.

The oracle (see Figure 9.7) is learned on-line. For each new input symbol σi, a new
state i is added and an arrow from i − 1 to i is created with label σi. Starting from i − 1,
the suffix links are iteratively followed backward, until a state is reached where a factor
link with label σi originates (going to some state j), or until there is no more suffix links
to follow. For each state met during this iteration, a new factor link labeled by σi is added
from this state to i. Finally, a suffix link is added from i to the state j or to state 0
depending on which condition terminates the iteration. Navigating the oracle in order to
generate variants is straightforward : starting in any place, following factor links generates
a sequence of labelling symbols that are repetitions of portions of the learned sequence;
following one suffix link followed by a factor links creates a recombined pattern sharing a
common suffix with an existing pattern in the original sequence. This common suffix is, in
effect, the musical context at any given time.

In [Assayag 2006] a tcc model of FO is proposed. This model has three drawbacks.
Firstly, it (informally) assumes the basic calculus has been extended with general recursion
in order to correctly model suffix links traversal. Secondly, it assumes dynamic construction
of new variables δiσ set to the state reached by following a factor link labelled σ from state
i. This construction cannot be expressed with the local variable primitive in basic tcc.
Thirdly, the model assumes a constraint system over both finite domains and finite sets.
We use below the expressive power of the abstraction construction in utcc to correct all
these drawbacks (see Figure 9.8). Furthermore, our model leads to a compact representation
of the data structure of the FO based on constraints of the form edge(x, y,N) representing
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an arc between node x and y labeled with N .

FO
def
= Counter ‖ Persistence

‖! (abs Note; play(Note))whenever ready do Step1(Note)

Counter
def
= tell(i = 1) ‖! (abs x; i = x) (when ready do next tell(i = x + 1)

‖ unless ready next tell(i = x))

Persistence
def
= ! (abs x, y, z; edge(x, y, z))next tell(edge(x, y, z))

Step1(Note)
def
= tell(edge(i − 1, i, Note)) ‖ Step2(Note, i − 1)

Step2(Note, E)
def
= when E = 0 do

(abs k; edge(E, k, Note)) (tell(edge(i, k, ⋆)) ‖ next tell(ready))
‖ unless ∃k edge(E, K, Note) next (tell(ready) ‖ tell(edge(i, 0, ⋆)))

when E 6= 0 do

(abs j; edge(E, j, ⋆))
when ∃k edge(j, k, Note) do

(abs k; edge(j, k, Note)) (tell(edge(i, k, ⋆)) ‖ next tell(ready))
‖ unless ∃k edge(j, k, Note) nextwhen j 6= 0 do tell(edge(j, i, Note))

‖ Step2(Note, j)

Figure 9.8: Implementing the FO into utcc

Process Counter signals when a new played note can be learned. It can be learned
when all links for the previous note have already been added to the FO. Process Persistence

transmits information about already constructed arcs (factor and suffix) to all future time
units. Process Step1 adds a factor link from i − 1 to i labelled with a just played note
and launches traversal of suffix links from i − 1. When state zero is reached by traversing
suffix links, process Step2 adds a suffix link from i to a state reached from 0 by a factor
link labelled Note, if it exists, or from i to state zero, otherwise. For each state k different
from zero reached in the suffix links traversal, process Step2 adds factor links labelled Note

from k to i.
The inclusion of a new agent in our FO model (e.g. a learner agent for a second per-

former) entails a new process and new interactions, both with the new process and among
the existing ones. In traditional models this usually means major changes in the synchro-
nization scheme, which are difficult to localize and control. In utcc, all synchronization is
done semantically, through the available information in the store. Each agent would thus
have to be incremented with processes testing for the presence of new information (e.g.
a factor link with some label in the other agent’s FO graph). The new synchronization
behavior that this demands is automatically provided by the blocking ask (abstraction)
construct.

9.8 Summary and Related Work

In this chapter we showed the application of utcc in the modeling and verification of mobile
reactive systems in two different emergent areas: Service Oriented Computing and Multi-
media Interaction Systems.

The material of this chapter was originally published as [Lopez 2009] and [Olarte 2009b].

Service Oriented Computing. We have argued for utcc as a declarative alternative
for the analysis of sessions. We presented an encoding of the language for structured
communication in [Honda 1998] into utcc, as well as an extension of such a language that
considers explicitly elements of partial information and session duration. To the best of our
knowledge, a unified framework where behavioral and declarative techniques converge has
not been proposed before for the analysis of sessions.
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Our work has not addressed the typed nature of the HVK language. Roughly speaking,
the type discipline in [Honda 1998] ensures a correct “pairing” between complementary
components (e.g. session providers and requesters). Our encoding assumes processes to
be well-typed with respect to such a discipline. This is because, in our view, declarative
techniques should not conflict with operational techniques. Hence, we find it reasonable
to assume that a utcc-based analysis of sessions takes places once the type system in
[Honda 1998] has ensured a correct pairing.

In this initial effort, we have focused on exploring to what extent temporal logic can
provide correctness guarantees at the session level. In a later stage, we expect to undertake
a thorough study of the interplay between types, constraints, and temporal formulas in the
unified framework CCP provides.

Ongoing work also includes to explore alternative formulations of our encodings. In
particular, we would like to determine whether or not they can be expressed in the mono-

tonic fragment of utcc, i.e. the fragment without occurrences of unless processes. As we
have seen, this fragment enjoys more appealing properties. Hence, having encodings of HVK
into such a fragment would further support our claims on the convenience of a CCP-based
framework for declarative structured communications.

Related Work One approach to combine the declarativeness of constraints and process
calculi techniques is represented by a number of works that have extended name-passing
calculi with some form of partial information (see, e.g., [Victor 1998, Díaz 1998]). The cru-
cial difference between such a strand of work and CCP-based calculi is that the latter offer
a tight correspondence with logic, which greatly broadens the spectrum of reasoning tech-
niques at one’s disposal. Recent works similar to ours include cc-pi [Buscemi 2007] and the
calculus for structured communication in [Coppo 2008]. Such languages feature elements
that resemble much ideas underlying CCP (especially [Buscemi 2007]). The main difference
between such works and our approach is that the reasoning techniques they feature are dif-
ferent from logic-based ones. In [Buscemi 2007], a language for Service-Level Agreement
(SLA) is proposed, featuring constructs for name-passing, constraint retraction and soft
constraints. There, the reasoning techniques are essentially operational. In [Coppo 2008]
a language for sessions featuring constraints is proposed. There, the key for analysis is
represented by a type system which provides consistency for session execution, much as in
the original approach in [Honda 1998].

Multimedia Interaction Systems. We argued for utcc as a declarative framework
for modeling and verifying dynamic multimedia interaction systems. We showed that the
synchronization mechanism based on entailment of constraints leads to simpler models that
scale up when more agents are added. We modeled two non trivial interacting systems. The
model proposed for interactive scores in Section 9.6 improved considerably the expressivity
of previous models such as [Allombert 2007]. It allows the composer, e.g., to dynamically
change the structure of the score according to the information derived from the environment.

It is worth noticing that the variables in utcc are flexible, i.e., they may take different
values in each time-unit. In [Manna 1991], it is shown that by universally quantifying on
rigid variables and using equality, it is possible to define a counter in FLTL. Assume the
following process P =! (abs u;x = u)next tell(x = u + 1). If u is a rigid variable, we shall
observe that the process P will increase the value of x in each time-unit. Thus, considering
explicitly rigid variables in the calculus makes easier, e.g., to define clocks in multimedia
interactive systems.



Chapter 10

Abstract Semantics and Static

Analysis of utcc Programs

In this chapter we propose a semantic framework for the static analysis of utcc and tcc

programs. We consider the denotational semantics for tcc, and we extend it to a “collecting”
semantics for utcc. Relying on this semantics, we formalize a general framework for data
flow analyses of tcc and utcc programs by abstract interpretation techniques [Cousot 1977].

The concrete and abstract semantics we propose are compositional, thus allowing us to
reduce the complexity of data flow analyses. Furthermore, the domain of this semantics is
simpler with respect to that of the semantics in Chapter 7 . Namely, we shall use sequences
of constraints instead of sequences of future-free formulae. This way, we give a precise
meaning to tcc programs and we effectively approximate the behavior of utcc programs.

We show that our method is sound and parametric with respect to the abstract domain.
Thus, different analyses can be performed by instantiating the framework. We illustrate for
example how it is possible to reuse abstract domains previously defined for logic program-
ming to perform a groundness analysis of a tcc program. We show the applicability of this
analysis in the context of verification of reactive systems. Furthermore, we make also use of
the abstract semantics to automatically exhibit the secrecy flaw in the Needham-Schröder
(NS) protocol [Needham 1978] illustrated in Chapter 8.

10.1 Static Analysis and Abstract Interpretation

Static code analysis aims at analyzing properties of a program without actually executing
it. The idea is to reason about the semantics of the program which captures the set of all
possible outputs it can exhibit when considering an arbitrary input. In the context of utcc,
recall that the strongest postcondition of a process P , denoted by sp(P ), captures the set
of sequences that P can output under the influence of an arbitrary environment. Therefore,
proving whether P satisfies a given property A, in the presence of any environment, reduces
to proving whether sp(P ) is a subset of the the set of sequences (outputs) satisfying the
property A.

In general, programs properties are undecidable. For example, one may be interested
in analyzing when a given program terminates (see e.g., [Giesl 2007, Mesnard 2005]) or
determining whether the final value of a variable is in a given interval (see e.g. [Cousot 1977,
Bagnara 2007]). In the context of concurrent languages, one may also wonder if there exists
a computation leading to a dead lock or if a communication channel is never used (see e.g.
[Feret 2005, Garoche 2007, Bodei 1998]).

Abstract interpretation [Cousot 1977, Cousot 1979] is a general theory for approximat-
ing the semantics of programs. The idea is to derive a decidable semantics from a concrete
one that abstracts away from irrelevant matters. Roughly speaking, in the abstract seman-
tics, concrete properties are replaced by approximated properties modeled by an abstract
domain. Because of the approximation, the result is not complete, meaning that not all
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the properties of the program are discovered. Nevertheless, the result is sound, i.e., all the
captured properties are satisfied in the concrete semantics.

10.1.1 Static Analysis of Timed CCP Programs

The tcc calculus [Saraswat 1994] was designed for the modeling and verification of reactive
systems such as controllers or signal-processing systems. In fact, it has been shown that
synchronous data flow languages such as Esterel [Berry 1992] and Lustre [Halbwachs 1991]
can be encoded as tcc processes [Saraswat 1994, Tini 1999]. This makes tcc an expressive
declarative framework for the modeling and verification of reactive systems, for which it
is fundamental to develop tools aiming at helping to develop correct, secure, and efficient
programs.

For the analysis of tcc programs we can start building on the frameworks and ab-
stract domains previously defined for Logic Programming, for example in [Cousot 1992,
Codish 1999, Armstrong 1998, Comini 2003]. Nevertheless, timed CCP programs pose ad-
ditional difficulties. Namely, the concurrent, timed nature of the language, and the syn-
chronization mechanism by entailment of constraints (blocking asks). Aiming at statically
analyzing utcc as well as tcc programs, we have to consider the additional technical is-
sues due to mobility, particularly, the infinite internal computations generated by the abs

operator in utcc (see Section 3.8).
We shall then proceed as follows. We develop a semantics for tcc and utcc that col-

lects all concrete information required to properly abstract the properties of interest. This
semantics is based on closure operators [Scott 1982] over sequences of constraints in the
lines of [de Boer 1995b, Saraswat 1994, Nielsen 2002a]. Our semantics is precise for tcc

and allows us to effectively approximate the operational semantics of utcc and composi-
tionally describe the behavior of programs. Next, we propose an abstract semantics that
approximates the concrete one.

The abstraction we develop proceeds in two-levels. First, we approximate the con-
straint system leading to an abstract constraint system in the lines of [Falaschi 1997,
Zaffanella 1997]. This way, we can capture as “abstract” constraints the properties of inter-
est. Second, as tcc and utcc programs are supposed to run forever, we approximate the
output of the program by a finite cut.

The framework we propose is formalized by abstract interpretation techniques and is
parametric with respect to the abstract domain. It allows us to exploit also the work
done for developing abstract domains for logic programs. Moreover, we can make new
analyses for reactive and mobile systems, thus widening the reasoning techniques, available
for both, tcc and utcc such as type systems [Hildebrandt 2009], logical characterizations
[Mendler 1995, Nielsen 2002a, Olarte 2008c] and semantics [Saraswat 1994, Olarte 2008b,
Nielsen 2002a]. Our results then should foster the development of analyzers for different
concurrent systems modeled in utcc and its sub-calculi (see [Gupta 1996b, Olarte 2008a]
for a survey of applications of CCP-based languages).

Instances of the framework. To show the applicability of our framework, we shall in-
stantiate it in two different scenarios. The first one tailors an abstract domain for ground-
ness and type dependencies analysis in logic programming to perform a groundness analysis
of a tcc program. This analysis is proven useful to derive a property of a control system
specified in tcc. The second scenario presents an abstraction of the cryptographic con-
straint system in Definition 8.2.1. We then use the abstract semantics to approximate the
behavior of a protocol and exhibit automatically the secrecy flaw illustrated in Section 8.5.
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This is done by using a prototypical application of our framework that implements the
abstract domain for the verification of secrecy properties.

10.2 Constraint Systems as Information Systems

To develop the abstract interpretation framework for the analysis of tcc and utcc programs,
we need to give a more general notion of constraints than the one we considered in Definition
3.1.1. Namely, up to now we have seen constraints as formulae in first-order logic. It has
been useful to formalize the logic characterization of utcc processes as formulae in first-
order linear-time temporal logic. Nevertheless, for some analysis such as groundness (i.e.,
determining if a variable is bound to a ground term), we may have as constraints sets of
variables. For example, a constraint of the form c = {x, y} may represent the information
that both x and y are ground variables.

CCP [Saraswat 1991, Saraswat 1993] was originally introduced with a general notion of
constraints as information systems [Scott 1982]. Under this definition, a constraint system
is a structure C = 〈C,≤,⊔, true, false,Var ,∃, d〉 such that

• 〈C,≤,⊔, true, false〉 is a lattice with ⊔ the lub operation (representing the logical
and), and true, false the least and the greatest elements in C respectively. Con-
straints are then the elements in C.

• Var is a denumerable set of variables and for each x ∈ Var the function ∃x : C → C
is a cylindrification operator satisfying: (1) ∃xc ≤ c. (2) If c ≤ d then ∃xc ≤ ∃xd. (3)
∃x(c ⊔ ∃xd) = ∃xc ⊔ ∃xd. (4) ∃x∃yc = ∃y∃xc.

• For each x, y ∈ Var , dxy ∈ C is a diagonal element and it satisfies: (1) dxx = true.
(2) If z is different from x, y then dxy = ∃z(dxz ⊔dzy). (3) If x is different from y then
c ≤ dxy ⊔ ∃x(c ⊔ dxy).

The cylindrification operators model a sort of existential quantification, helpful for defin-
ing the local operator as we showed in Chapter 3. The diagonal elements are useful to model
parameter passing in procedures calls. If C contains an equality theory, then dxy can be
thought as the formulae x = y.

Under this definition of constraint system, we say that d entails c in C if and only if
c ≤ d.

The notion of constraint system as first-order formulae in Definition 3.1.1 can be seen
as an instance of this more general one. Thus, our results straightforwardly apply when
considering the notion of constraint as logic formulae in Chapter 3.

All the notation we have used so far for constraints, terms and substitutions remains
the same in this chapter. Nevertheless, to avoid confusion with the abstraction functions
usually denoted with α, we shall use s, s′ to range over sequences of constraints. This way,
we shall write s ≤ s′ iff |s| ≤ |s′| and for all i ∈ {1, . . . , |s|}, s′(i) |= s(i). If |s| = |s′| and
for all i ∈ {1, ..., |s|}, s(i) ≡ s′(i), we shall write s ≡ s′. We shall use C∗ to denote the set
of finite sequences of constraints.

10.2.1 Recursion and Parameter Passing

Unlike utcc, general recursion cannot be encoded directly in tcc. In [Nielsen 2002a], the
authors show that only value passing recursion can be defined using the basic constructs.
It means, in a call of the form p(t), t is assumed to be a term fixed to a value v, i.e.,
the current store must entail t = v. Furthermore, in a recursive definition of the form
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p(~x)
def
= P , P is restricted to call p(·) at most once and such a call must be within the scope

of a next operator. The reason for such a restriction is to avoid infinitely or unboundedly
many recursive calls of p(~x) within the same time interval.

For this reason, to broaden the applicability of our framework, we shall consider tcc

programs with recursive definitions.

Definition 10.2.1 (Timed CCP programs). Given a set of procedure declarations D, a

(u)tcc program takes the form D.P where P is a (u)tcc process. For every procedure

name, we assume that there exists one and only one corresponding declaration in D.

We remind the reader that tcc is a subcalculus of utcc and that recursive definition
does not add any expressive power to utcc as we explained in Section 3.3.1.

Operational Semantics. We slightly modify the rules of the operational semantics in
Table 3.1 to be consistent with the definition of constraint system in this chapter. We also
add the rule RCALL to deal with recursive definitions in tcc (see Table 10.1). The structural
congruence relation “≡” is the same as in Definition 3.4.1 and the Future function F for
the rule ROBS is the same as in Definition 3.4.2.

In the rule RCALL we make use of the diagonal elements to model parameter passing as
standardly done in CCP [Saraswat 1991]. In this rule,

∆~x
~yP = (local~a) (! tell(d~x~a) ‖ (local ~y) (! tell(d~a~y) ‖ P ))

where the variables in ~a are assumed to occur neither in the declaration nor in the process
P , and d~x~y denotes the constraint

⊔
1≤i≤|~x| dxiyi

. Roughly speaking, ∆~x
~y equates the formal

parameters ~x and the actual parameters ~y (see [Saraswat 1993]).
The notions of Observables and input-output behavior are the same as in Section 3.7

considering the new definition of the internal reduction relation in Table 10.1.

Strongest Postcondition. Since we are considering here the operational semantics which
only outputs basic constraints, we do not require the notion of fixed formulae to define the
strongest postcondition of a process as in Chapter 4. We then define the strongest postcon-
dition for the operational semantics as standardly done in tcc and CCP [Saraswat 1991,
de Boer 1995b, Nielsen 2002a].

Definition 10.2.2 (Strongest Postcondition). Let io(·) be the input-output relation in Def-

inition 3.7.1. Given a utcc process P , the strongest postcondition of P , denoted by sp(P ),

is defined as the set {s | (s, s) ∈ io(P )}.

We can think of sp(P ) as the set of sequences that P can output under the influence
of an arbitrary environment. Therefore, proving whether P satisfies a given property A, in
the presence of any environment, reduces to proving whether sp(P ) is a subset of the set
of sequences (outputs) satisfying the property A.

10.3 A Denotational model for tcc and utcc

As we explained before, the strongest postcondition relation fully captures the behavior of
a process considering any possible output under an arbitrary environment. In this section
we develop a denotational model for the strongest postcondition. The semantics is the basis
for the abstract interpretation framework we shall develop in the next section.
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RTELL
〈tell(c), d〉 −→ 〈skip, d ⊔ c〉

RPAR

〈P, c〉 −→ 〈P ′, d〉

〈P ‖ Q, c〉 −→ 〈P ′ ‖ Q, d〉

RLOC

〈P, c ⊔ (∃~xd)〉 −→ 〈P ′, c′ ⊔ (∃~xd)〉

〈(local ~x; c) P, d〉 −→ 〈(local ~x; c′) P ′, d ⊔ ∃~xc′〉

RUNL

d |= c

〈unless c next P, d〉 −→ 〈skip, d〉

RREP
〈!P, d〉 −→ 〈P ||next !P, d〉

RABS

d |= c[~t/~x] |~t| = |~x| [~t/~x] is admissible.

〈(abs ~x; c) P, d〉 −→
〈
P [~t/~x]||(abs ~x; c ⊔ ~x 6

.
= ~t )P, d

〉

RSTR
γ1 −→ γ2

γ′
1 −→ γ′

2

if γ1 ≡ γ′
1 and γ2 ≡ γ′

2

RCALL

p(~y)
def
= P ∈ D

〈p(~x), d〉 −→
〈
∆~x

~yP, d
〉

ROBS

〈P, c〉 −→∗ 〈Q, d〉 6−→

P
(c,d)

====⇒ F (Q)

Table 10.1: Operational Semantics for tcc and utcc considering constraint systems as
partial information systems. 6

.
= and admissibility of [~t/~x] are defined in Convention 3.1.1.

Our semantics is built on the closure operator semantics for tcc in [Saraswat 1994,
Nielsen 2002a] and specifies compositionally the strongest postcondition relation in Defi-
nition 10.2.2. Unlike the semantics in Chapter 7, the semantics we present here is more
appropriate for the data-flow analysis due to its simpler domain based on sequences of con-
straints instead of sequences of temporal formulae. In Section 10.6 we elaborate more on
the differences between both semantics.

Roughly speaking, the semantics is based on a (continuous) immediate consequence
operator TD, which computes in a bottom-up fashion the interpretation of each procedure
definition p(~x)

def
= P in D. Such an interpretation is given in terms of the set of the quiescent

sequences for p(~x).

Compositional Semantics. Let ProcHeads denote the set of process names with their
formal parameters. Recall that Cω stands for the set of infinite sequences of constraints.
We shall call Interpretations the set of functions in the domain ProcHeads → P(Cω). The
semantics is defined as a function [[·]] : (ProcHeads → P(Cω)) → (Proc → P(Cω)) which
given an interpretation I, associates to each process a set of sequences of constraints.
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DSKIP [[skip]]I = Cω

DTELL [[tell(c)]]I = {d.s ∈ Cω | d |= c}

DPAR [[P ‖ Q]]I = [[P ]]I ∩ [[Q]]I

DNEXT [[nextP ]]I = {d.s ∈ Cω | s ∈ [[P ]]I}

DUNL [[unless c nextP ]]I = {d.s ∈ Cω | d 6|= c and s ∈ [[P ]]I} ∪ {d.s ∈ Cω | d |= c}

DREP [[!P ]]I = {s ∈ Cω | for all s′′, s′ s.t. s = s′′.s′, s′ ∈ [[P ]]I}

DLOC [[(local ~x; c) P ]]I = {s ∈ Cω | there exists an ~x-variant s′ of s s.t.
s′(1) |= c and s′ ∈ [[P ]]I}

DASK [[when c do P ]]I = {d.s ∈ Cω | d |= c and d.s ∈ [[P ]]I} ∪ {d.s ∈ Cω | d 6|= c}

DABS [[(abs ~x; c) P ]]I =
⋂

~t∈T |~x|

[[(when c do P )[~t/~x]]]I

DCALL [[p(~x)]]I = I(p(~x))

Table 10.2: Semantic Equations for tcc and utcc constructs. In DABS, if |~x| = 0 then T |~x|

is defined as {ε}

The semantic equations are given in Table 10.2. They are similar to those in Figure
7.1. The main difference is that each equation is parametric on an interpretation I. This
interpretation is used to give meaning to the calls of procedures (Rule DCALL).

Notice that here we follow the semantic equation for the abstraction operator (abs x; c) P

based on the representation of this operator as a parallel composition
∏

~t∈T |~x|

(when c do P )[~t/~x]

where T denotes the set of terms in the underlying constraint system (see Section 7.2.1).

Concrete Domain. The domain of the denotation is E = (E,⊆c) where E = P(Cω) and
⊆c is a Smyth-like ordering defined as follows: Let X, Y ∈ E and . be the preorder s.t
X . Y iff for all y ∈ Y , there exists x ∈ X s.t. x ≤ y. X ⊆c Y iff X . Y and (Y . X

implies Y ⊆ X). The bottom of E is then Cω (the set of all the sequences). We do not
consider the empty set to be part of the domain. Then, the top element is the singleton
{falseω} (since false is the greatest element in (C,≤)).

We note that the Hoare power domain is not suitable for our construction since the bot-
tom element would be the empty set. Then, all intersection (due to a parallel composition)
will collapse.

Formally, the semantics is defined as follows:

Definition 10.3.1 (Concrete Semantics). Let [[·]]I be defined as in Table 10.2. The seman-
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tics of a program D.P is defined as the least fixed point of the continuous operator:

TD(I)(p(~y)) = [[∆~x
~yP ′]]I if p(~x)

def
= P ′ ∈ D

We shall use [[P ]] to represent [[P ]]lfp(TD)

Let us exemplify the least fixed point construction above.

Example 10.3.1. Assume two constraints outa(·) and outb(·) ,intuitively representing

outputs of names on two different channels a and b. Let D be the following procedure

definitions

D = p()
def
= tell(outa(x)) ‖ next tell(outa(y))

q()
def
= (abs z; outa(z)) tell(outb(z)) ‖ next q()

r()
def
= p() ‖ q()

The procedure p() outputs on channel a the variables x and y in the first and second time

units respectively. The procedure q() resends on channel b every message received on channel

a. Starting from the bottom interpretation I⊥ (assigning Cω to each name procedure), the

semantics of r() is obtained as follows

I1 : p → {c.c′.s | c |= outa(x) and c′ |= outa(y)}
q → {c1.s | c1 |= outa(t) implies c1 |= outb(t)}
r → Cω ∩ Cω = Cω

I2 : p → I1(p)

q → {c1.c2.s | ci |= outa(t) implies ci |= outb(t) i=1,2}
r → I1(p) ∩ I1(q)

. . .

Iω : p → I1(p)

q → {s | (s(i) |= outa(t) imp. s(i) |= outb(t) for i > 0}
r → Iω(p) ∩ Iω(q)

where t denotes any term. In words, if s ∈ [[r()]] then s(1) |= outa(x), s(2) |= outa(y) and

for i ≥ 1, if s(i) |= outa(t) then s(i) |= outb(t)

10.3.1 Semantic Correspondence

In this section we prove the semantic correspondence between the operational and the
semantics in Definition 10.3.1. Before that, recall that unlike tcc, some utcc processes may
exhibit infinite behavior during a time unit due to the abstraction operator (see Section
3.8). Considering this fact, it may be the case that sequences in the input-output behavior
(and then in the strongest postcondition in Definition 10.2.2) are finite or even the empty
sequence ε. Therefore, unlike the results in Chapter 7 relating the symbolic strongest
postcondition and the denotational semantics, here we relate the outputs of a process and
the subsequences of its denotation.

Before stating the soundness theorem, we require a similar result to that in Proposition
7.3.1 but using the notion of Strongest Postcondition in Definition 10.2.2.

Proposition 10.3.1. Let P = (abs ~x; c) Q and s be a sequence of constraints. The follow-

ing statements are equivalent.

• s ∈ sp(P ).

• T ′ = {~ti | s(1) |= c[~ti/~x]} ⊆fin T |~x| and for all ~t ∈ T ′ admissible for ~x, s ∈ sp(Q[~t/~x]).
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Proof. Let P = (abs ~x; c) Q and s = c1.c2.c3.... By alpha conversion we assume that
~x /∈ fv(s).

(⇒) Assume that s ∈ sps(P ). Then, there exists P1 = P ′
1, P

′
2...., P

′
i such that

P = P1
(c1,c1)
====⇒ P2

(c2,c2)
====⇒ ....Pi

(ci,ci)
====⇒

Let ~t ∈ T |~x| be an arbitrary term such that s(1) |= c[~t/~x]. Let Q1 = Q1
1 = Q[~t/~x] and

P1 = P 1
1 . Since c1 |= c[~t/~x], by rule RABS we must have a derivation

〈P 1
1 , c1〉 −→

∗ 〈P i
1 ‖ Q1

1, c1〉 −→
∗ 〈Pm

1 ‖ Qn
1 , c1〉 6−→

for some P 2
1 , .., Pm

1 and Q2
1, .., Q

n
1 . Since P 1

1 = P1 and P1
(c1,c1)
====⇒ P2, we have

P2 ≡ F (Pm
1 ‖ Qn

1 ) where F is the future function in Definition 3.4.2. By the semantics
of the parallel composition we can verify that

Q1
(c1,c1)
====⇒ Q2

(c2,c2)
====⇒ Q3

(c3,c3)
====⇒ . . .

Since Q1 = Q[~t/~x] we conclude s ∈ sp(Q[~t/~x]).

(⇐) Let T ′ = {~ti | s(1) |= c[~ti/~x]} ⊆fin T |~x| and assume that for any ~t ∈ T ′ we have
s ∈ sp(Q[~t/~x]), i.e., we have a derivation of the form

Q[~t/~x] = Q1
(c1,c1)
====⇒ Q2

(c2,c2)
====⇒ Q3

(c3,c3)
====⇒ ...

By the rule RABS we know that

〈P, c1〉 −→
∗ 〈P ′ ‖

∏

~ti∈T ′

Q[~ti/~x], c1〉 −→
∗ 〈P ′ ‖

∏

~ti∈T ′

Q′
i[~ti/~x], c1〉 6−→

We conclude by noticing that if none of the Q[~ti/~x] above can add new information

to s, it must be the case that P
(s,s)

====⇒ and then s ∈ sp(P ).

The following theorem shows that if a (finite) sequence s is in the strongest postcon-
dition, then there exists a infinite sequence s′ in the denotation such that s is a prefix of
s′.

Theorem 10.3.1 (Soundness). Let [[·]] be as in Definition 10.3.1. Given a program D.P ,

if s ∈ sp(P ) then there exists s′ s.t. s.s′ ∈ [[P ]].

Proof. The proof proceeds by induction on the structure of the process P . All the cases
but P = (abs ~x; c)Q are the same as in tcc and proven in [de Boer 1995b, Saraswat 1994,
Nielsen 2002a]. We then only prove the case for the abstraction operator.

Assume that P = (abs ~x; c) Q and s ∈ sp(P ). Recall that falseω is quiescent for
any process. As a mean of contradiction assume that s′ = s. falseω /∈ [[P ]]. Then, there
exists ~t s.t. s′ 6∈ [[(when c do Q)[~t/~x]]]. Then, it must be the case that s′(1) |= c[~t/~x] and
s′ 6∈ [[Q[~t/~x]]]. Since s ∈ sp(P ) and s(1) |= c[~t/~x], by Proposition 10.3.1, s ∈ sp(Q[~t/~x]). By
inductive hypothesis s ∈ [[Q[~t/~x]]] then a contradiction.

Similar to the Theorem 7.3.2, the completeness theorem holds only for the local inde-
pendent and abstracted-unless free fragment of utcc.
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Theorem 10.3.2 (Completeness). Let D.P be a locally independent and abstracted-unless

free program s.t. s ∈ [[P ]]. For all prefixes s′ of s, if there exists s′′ s.t. (s′, s′′) ∈ io(P )

then s′ ≡ s′′, i.e., s′ ∈ sp(P ).

Proof. The proof proceeds by induction on the structure of the process P . All the cases
but P = (abs ~x; c) Q are the same as in tcc and proven in [de Boer 1995b, Saraswat 1994,
Nielsen 2002a]. We then only prove the case for the abstraction operator.

Let P = (abs ~x; c)Q. By extensiveness we know that if (s′, s′′) ∈ io(P ) then s′ ≤ s′′.
As a mean of contradiction assume that s ∈ [[P ]] and there exists a prefix s′ of s s.t.
(s′, s′′) ∈ io(P ) and s′ < s′′ (i.e., s′ /∈ sp(P )). Then, by Proposition 10.3.1, there exists ~t

s.t. s′(1) |= c[~t/~x] and s′ /∈ sp(Q[~t/~x]). By inductive hypothesis, there is no a sequence s′′

s.t. s = s′.s′′ ∈ [[Q[~t/~x]]]. Given that s′ is a prefix of s, s(1) |= c[~t/~x]. Since s ∈ [[P ]] and
s(1) |= c[~t/~x], by Equation DABS we have s ∈ [[Q[~t/~x]]]. Thus a contradiction.

10.4 Abstract Interpretation Framework

In this section we develop the abstract interpretation framework [Cousot 1992] for the anal-
ysis of utcc programs. The framework is based on the above denotational semantics, thus
allowing for a compositional analysis of utcc (and then tcc) programs. The abstraction
proceeds in two-levels: (1) we abstract the constraint system and then (2) we abstract the
infinite sequences of abstract constraints by a finite cut. The abstraction in (1) allows us to
reuse the most popular abstract domains previously defined for logic programming. Adapt-
ing those domains, it is possible to perform, e.g., groundness, freeness, type and suspension
analyses of tcc and utcc programs. Furthermore, it allows us to restrict the set of terms
to be considered in the Equation DABS. Thus, we can even approximate the output of a
non-well terminated process as we show in Section 10.5.3. On the other hand, the abstrac-
tion in (2) along with (1) allow for computing the approximated output of the program in
a finite number of steps.

10.4.1 Abstract Constraint Systems

Let us recall some notions from [Falaschi 1997] and [Zaffanella 1997].

Definition 10.4.1 (Abstract C.S. and Descriptions). Given two constraint systems

C = 〈C,≤ ⊔, true, false,Var ,∃, d〉
A = 〈A,≤α ⊔α, trueα, falseα,Var ,∃α, dα〉

a description (C, α,A) consists of an abstract domain (A,≤α) and a monotonic abstraction

function α : C → A. We lift α to sequences of constraints in the obvious way.

We shall use cκ, dκ to range over constraints in A and sκ, s′κ to range over sequences in
Aω and A∗. Let |=α be defined as in the concrete counterpart, i.e. cκ ≤α dκ iff dκ |=α cκ.
The set of abstract terms is denoted by Tκ and ranged by tκ, t′κ...

Following standard lines in [Falaschi 1997, Zaffanella 1997] we impose the following re-
strictions over α:

Definition 10.4.2 (Correctness). Let α : C → A be monotonic. We say that A is upper
correct w.r.t the constraint system C if for all c ∈ C and x, y ∈ V: (1) α(∃xc) = ∃α

xα(c).

(2) α(dxy) = dα
xy. (3) α(c ⊔ d) |=α α(c) ⊔α α(d). Let αt : T → Tκ be the term-abstraction

structurally based on α. Given the sequence of variables ~x and ~t,~t′ ∈ T |~x|, (4) α(c[~t/~x]) =

α(c[~t′/~x]) whenever αt(~t) = αt(~t′).



140 Chapter 10. Abstract Semantics and Static Analysis of utcc Programs

Conditions (1), (2) and (3) relate the cylindrification, diagonal and lub operators of both
constraints systems. Condition (4) is only necessary to have a safe approximation of the
abs operator in utcc, but it is not required when analyzing tcc programs. It informally
says that substituting for terms mapped to the same abstract term, must lead to the same
abstract constraint.

In the example below we illustrate an abstract domain for the groundness analysis of
tcc programs. Here we give just an intuitive description of it. We shall elaborate more on
this domain and its applications in Section 10.5.1.

Example 10.4.1. Let the Herbrand constraint system (Hcs) [Saraswat 1991] be the con-

crete domain. In Hcs, a first-order language L with equality is assumed. The entail-

ment relation is that one expects from equality, e.g., [x|y] = [a|z] must entail x = a

and y = z. Terms, as usual, are variables, constants and functions applied on terms.

As abstract constraint system, let constraints be predicates of the form iff(x, []) mean-

ing that x is a ground variable. Abstract terms are variables and the special term g

meaning “ground”. In this setting, α(x = [a]) = iff (x, []) (i.e., x is a ground vari-

able). Furthermore αt(a) = αt(b) = g. Therefore, by Condition (4) in Definition 10.4.2,

α((x = [y])[a/y]) = α((x = [y])[b/y]) = iff(x, []).

We conclude this section by defining when an “abstract" constraint approximates a
concrete one.

Definition 10.4.3 (Approximations). Let A be upper correct w.r.t C and (C, α,A) be a

description. Given dκ = α(d), we say that dκ is the best approximation of d. Furthermore,

for all cκ ≤α dκ we say that cκ approximates d and we write cκ ∝ d. This definition is

extended to sequences of constraints in the obvious way.

10.4.2 Abstract Semantics

Starting from the semantics in Section 10.3, we develop here an abstract semantics which
approximates the observable behavior of a program and is adequate for modular data-flow
analysis. We focus our attention on a special class of abstract interpretations obtained
from what we call a sequence abstraction mapping possibly infinite sequences of (abstract)
constraints into finite ones.

Definition 10.4.4 (Sequence Abstraction). A sequence abstraction τ : Aω ∪ A∗ → A∗ is

an anti-extensive (τ(sκ) ≤α sκ) and monotonic operator. We lift τ to sets of sequences in

the obvious way: τ(Sκ) = {sκ | sκ = τ(s′κ) and s′κ ∈ S}.

A simple albeit useful instance of the abstraction τ is the sequence(k) cut. This abstrac-
tion approximates a sequence by projecting it to its first k elements, e.g., sequence(2)(sκ) =

sκ(1).sκ(2).

Abstract Domain. Given a description (C, α,A), we choose as concrete domain E =

(E,⊆c) as defined in Section 10.3. The abstract domain is A = (A,⊆α) where A = P(A∗)

and ⊆α is defined similarly to ⊆c: Let X, Y ∈ A and .α be the preorder s.t. X .α Y iff
for all y ∈ Y , there exists x ∈ X s.t. x ≤α y. X ⊆α Y iff X .α Y and (Y .α X implies
Y ⊆ X). The bottom and top of this domain are, similar to the concrete domain, A∗ and
{falseα . falseα ...} respectively.

We require A to be noetherian (i.e., there are no infinite ascending chains). This guar-
antees that the fixed point of the abstract semantics can be reached in a finite number of
iterations.
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The semantic equations are given in Table 10.3. We shall dwell a little upon the de-
scription of the rules AASK, AABS and AUNL. The other cases are easy.

For the case of AASK, we follow [Zaffanella 1997, Falaschi 1993, Falaschi 1997] for the
abstract semantics of the synchronization (ask) operator in CCP. Intuitively, the Equation
AASK says that if the abstract computation proceeds, then every concrete computation it
approximates proceeds too. This is formalized by the relation dκ |=A c, meaning that the
abstract constraint dκ entails c if all concrete constraint approximated by dκ entails c.

Definition 10.4.5. Given dκ ∈ A and c ∈ C, dκ |=A c iff for all c′ ∈ C s.t. dκ ∝ c′, c′ |= c.

In Equation AABS, we compute the intersection over the abstract terms (Tκ) and we
replace ~x with a concrete term ~t′ s.t. αt(~t′) = ~tκ. Notice that it may be the case that there
exists ~t1, ~t2 s.t. αt(~t1) = αt(~t2) = ~tκ. Using property (4) in Definition 10.4.2, we can show
that the choice of the concrete term is irrelevant.

Proposition 10.4.1. Let [[·]]τX be as in Table 10.3 and ~t1, ~t2 be concrete terms different

from ~x s.t. |~x| = |~t1| = |~t2| and αt(~t1) = αt(~t2). For every sequence sκ s.t. ~x 6∈ fv(sκ),

sκ ∈ [[P [~t1/~x]]]τX iff sκ ∈ [[P [~t2/~x]]]τX .

Proof. Let ~t1, ~t2 ∈ T |~x| and assume that ~t1 6= ~t2. Assume also that sκ ∈ [[P [~t1/~x]]]τX . One
can show that sκ ∈ [[(local ~x) (P ‖! tell(~x = ~t1))]]

τ
X . By Equations DLOC and DPAR, there

exists s′κ ~x-variant of sκ s.t. s′κ ∈ [[P ]]τX and s′κ ∈ [[! tell(~x = ~t1)]]
τ
X . By Property (4) in

Definition 10.4.2, s′κ ∈ [[! tell(~x = ~t2)]]
τ
X . We conclude sκ ∈ [[P [~t2/~x]]]τX .

Abstract Semantics for the unless operator. One could think of defining the abstract
semantics of the unless operator similarly to that of the when operator as follows:

[[unless c nextP ]]τX = τ({dκ.sκ | dκ 6|=A c and sκ ∈ [[P ]]τX)

∪ τ({dκ.sκ | dκ |=A c)

Nevertheless, this equation leads to a non safe approximation of the concrete semantics.
This is because from dκ 6|=A c we cannot conclude that d 6|= c where α(d) = dκ. To see this,
take Q = unless c nextP and d such that d |= c. Then d. trueω ∈ [[Q]]. Take c′ such that
c′ 6|= c and c′κ = α(c′) ≤α α(d) = dκ. Then, dκ ∝ c′ and dκ 6|=A c. If P is not the process
skip, we have dκ. true∗ /∈ [[Q]]τ .

Defining dκ 6|=A c as true iff c′ 6|= c for all c′ approximated by dκ does not solve the
problem. This is because under this definition, dκ 6|=A c would not hold for any dκ and
c: false entails all the concrete constraints and it is approximated for every abstract
constraint.

Therefore, we cannot give a better (safe) approximation of the semantics of Q =

unless c nextP than τ(Aω), i.e. [[Q]]τX = [[skip]]τX (Rule AUNL).

Abstract Semantics. We define formally the abstract semantics as follows:

Definition 10.4.6. Let [[·]]τX be as in Table 10.3. The abstract semantics of a program D.P

is defined as the least fixed point of the following continuous semantic operator:

Tα
D(X)(p(~x)) = [[(∆~y

~xP ′)]]τX if p(~y)
def
= P ′ ∈ D

We shall use [[P ]]τ to denote [[P ]]τ
lfp(Tα

D)
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ASKIP [[skip]]τX = τ(Aω)

ATELL [[tell(c)]]τX = τ({dκ.sκ ∈ Aω | dκ |=α α(c)})

APAR [[P ‖ Q]]τX = [[P ]]τX ∩ [[Q]]τX

ANEXT [[nextP ]]τX = τ({dκ.sκ ∈ A∗ | sκ ∈ [[P ]]τX})

AUNL [[unless c nextP ]]τX = τ(Aω)

AREP [[!P ]]τX = τ({sκ ∈ A∗ | for all s′κ, wκ s.t. sκ = wκ.s′κ,
s′κ ∈ [[P ]]τX})

ALOC [[(local ~x; c) P ]]τX = τ({sκ ∈ A∗ | there exists a ~x-variant s′κ of sκ s.t.
s′κ(1) |=α α(c) and s′κ ∈ [[P ]]τX})

AASK [[when c do P ]]τX = τ({dκ.sκ ∈ A∗| dκ 6|=A c})∪
τ({dκ.sκ ∈ A∗| dκ |=A c and dκ.sκ ∈ [[P ]]τX})

AABS [[(abs ~x; c) P ]]τX =
⋂

~tκ∈T
|~x|

κ

[[(when c do P )[~t′/~x]]]τX where αt(~t′) = ~tκ

ACALL [[p(~x)]]τX = X(p(~x))

Table 10.3: Abstract denotational semantics for utcc. |=A in Definition 10.4.5

10.4.3 Soundness of the Approximation

This section proves the correctness of the abstract semantics in Definition 10.4.6. We
first establish a Galois insertion between the concrete and the abstract domains. From
[Zaffanella 1997, Proposition 3], we deduce the following:

α(E) := τ({α(s) | s ∈ E})
γ(A) := {s | τ(α(s)) ∈ A}

We have used α to avoid confusion with α in (C, α,A). We can lift in the standard way to
abstract interpretations [Cousot 1992] the approximation induced by the above abstraction.
Let I : ProcHeads → E, X : ProcHeads → A and p a procedure name. Then

α(I)(p) := τ({α(s) | s ∈ I(p)})
γ(X)(p) := {s | τ(α(s)) ∈ X(p)}

The next theorem proves that the concrete computations are safely approximated by the
abstract semantics.

Theorem 10.4.1 (Soundness of the approximation). Let A be upper correct with respect to

C, (C, α,A) be a description and τ be a sequence abstraction. Let [[·]] and [[·]]τ be respectively

as in Definitions 10.3.1 and 10.4.6. Given a utcc program D.P , if s ∈ [[P ]] then τ(α(s)) ∈
[[P ]]τ .
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Proof. The proof proceeds by induction on the structure of P . Assume that s ∈ [[P ]] and
that sκ = τ(α(s)). In each case we shall prove that sκ ∈ [[P ]]τ .

• P = skip. This case is trivial since τ(Aω) approximates every possible concrete
computation.

• P = tell(c). If s ∈ [[P ]] then s(1) |= c. Let sκ = τ(α(s)). Then, it must be the case
that sκ(1) |=α α(c) and then τ(α(s)) ∈ [[P ]]τ .

• P = Q ‖ R. We must have that s ∈ [[Q]] and s ∈ [[R]]. By inductive hypothesis we
know that sκ ∈ [[Q]]τ and sκ ∈ [[R]]τ and then, sκ ∈ [[Q ‖ R]]τ .

• P = nextQ. Let s′ = s(2).s(3)...., s′κ = sκ(2).sκ(3)...., We know that s′ ∈ [[Q]] and
by inductive hypothesis s′κ ∈ [[Q]]τ . We then conclude sκ ∈ [[P ]]τ .

• P = unless c nextQ. This case is trivial since τ(Aω) approximates every possible
concrete computation.

• P =!Q. We now that every suffix of s′ of s is in [[Q]]. By induction the corresponding
suffix of s′κ of sκ is in [[Q]]τ and we conclude sκ ∈ [[P ]]τ .

• P = when c do Q. Assume that s(1) |= c and then s ∈ [[Q]]. We can have either
sκ |=A c or sκ 6|=A c . In the first case, since s ∈ [[Q]] by induction sκ ∈ [[Q]]τ and then
sκ ∈ [[P ]]τ . If sκ 6|=A c, then trivially sκ ∈ [[P ]]τ .

Assume now that s(1) 6|= c. Then, it must be the case that sκ(1) 6|=A c and then
trivially sκ ∈ [[P ]]τ .

• P = (abs ~x; c) Q. If s(1) |= c[~t/~x] for some ~t ∈ T then s ∈ [[when c do Q[~t/~x]]].
By an analysis similar to the case of P = when c do Q we can show that sκ ∈
[[when c do Q[~t/~x]]]τ . We conclude by noticing that if there exist ~t and ~t′ s.t. αt(~tκ) =

α′
t(~tκ), by Proposition 10.4.1 it must be the case that sκ ∈ [[when c do Q[~t/~x]]]τ iff

sκ ∈ [[when c do Q[~t′/~x]]]τ .

10.5 Applications

This section describes two specific abstract domains as instances of our framework. Firstly,
we tailor two abstract domains from logic programming to perform a groundness and a
type analysis of a tcc program. We then apply this analysis in the verification of a reactive
system in tcc. Secondly, we abstract the cryptographic constraint system in Definition
8.2.1. We then use the abstract semantics to approximate the behavior of a protocol and
exhibit automatically the secrecy flaw illustrated in Section 8.5.

10.5.1 Groundness Analysis

In logic programming, one useful analysis is groundness. It aims at determining if a variable
will always be bound to a ground term. This information can be used, e.g., for optimization
in the compiler (to remove code for suspension checks at runtime) or as base for other data
flow analyses such as independence analysis, suspension analysis, etc. Here we illustrate a
groundness analysis for a tcc program. To this end, we shall use as concrete domain the
Herbrand constraint system (Hcs) [Saraswat 1991] (see Example 10.4.1).
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Assume the following procedure definitions:

gena(x)
def
= (localx′) (! tell(x = [a|x′]) ‖

when goa do next gena(x ′) ‖
when stopa do ! tell(x ′ = [ ]))

genb(x)
def
= (localx′) (! tell(x = [b|x′]) ‖

when gob do next genb(x
′) ‖

when stopb do ! tell(x ′ = [ ]))

append(x, y, z)
def
= when x = [ ] do ! tell(y = z) ‖

when ∃x′,x′′(x = [x′ |x′′]) do

(localx′, x′′, z′) (! tell(x = [x′ | x′′]) ‖
! tell(z = [x′ | z′]) ‖
next append(x′′, y, z′))

The process gena(x) adds to the stream x an “a” when the environment provides goa as
input. Under input stopa, it terminates the stream binding its tail to the empty list. Let
x_goa and x_stopa be two distinct variables different from x and x′, and goa and stopa be
the constraints x_goa = [] and x_stopa = []. The process genb can be explained similarly.
The process append(x, y, z) binds z to the concatenation of x and y.

The Abstract Domain. We shall use Pos [Armstrong 1998] as abstract domain for
the groundness analysis. In Pos, positive propositional formulae represent groundness
dependencies among variables. Elements in the domain are ordered by logical implication.
Let αg be defined over equations in normal form as:

αg(x = t) = iff(x, fv(t))

For instance, αg(x = [y|z]) = iff(x, {y, z}) representing the propositional formula x ⇔
(y ∧ z) meaning, x is ground if and only if y and z are ground.

Notice that Pos does not distinguish between the empty list and a list of ground terms,
i.e., dκ = αg(x = []) = αg(x = [a]) = iff(x, {}). Therefore, we have dκ 6|=A x = [] (see
Definition 10.4.5).

Type Dependency Analysis. We can improve the accuracy of our analysis by using the
abstract domain in [Codish 1994] to derive information about type dependencies on terms.
The abstraction is defined as follows:

αT (x = t) =

{
list(x, xs) if t = [y | xs] for some y

nil(x) if t = []

Informally, list(x, xs) means x is a list iff xs is a list and nil(x) means x is the empty list.
If x is a list we write list(x). Elements in the domain are ordered by logical implication.

Let Ag = 〈A,≤α ⊔α, trueα, falseα,Var ,∃α, dα〉 be the abstract constraint system
obtained from the reduced product ([Cousot 1992]) of the previous abstract domains. El-
ements g, g′... ∈ A are tuples 〈cκ, dκ〉 where cκ corresponds to groundness information
and dκ to type dependency information. The abstraction function is defined as expected,
i.e., α(c) = g = 〈αg(c), αT (c)〉 . The operations ⊔α, ∃α correspond to logical conjunction
and existential quantification over the components of the tuple. The diagonal element dxy

corresponds to 〈x = y, x = y〉. Finally, 〈cκ, dκ〉 ≤
α 〈c′κ, d′κ〉 if c′κ ⇒ cκ and d′κ ⇒ dκ.
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micCtrl(Error, Button)
def
=

(localE′, B′, e, b)

! tell(Error = [e | E′] ⊔ Button = [b|B′])

‖ when on ⊔ open do

! tell(e = yes ⊔ E′ = [] ⊔ b = stop)

‖ when off do tell(e = no) ‖ nextmicCtrl(E ′,B ′)

‖ when closed do tell(e = no) ‖ nextmicCtrl(E ′,B ′)

Figure 10.1: tcc model for a microwave controller.

Let τ = sequence(κ) and g1.g2....gκ ∈ [[Gena(x)]]τ . By a derivation similar to that of
Example 10.3.1, if there exists i ∈ {1, .., κ} such that gi |=A stopa, one can show that there
exists ~x′ = x′

0, x
′
1, ..., x

′
i such that

gi |=
α ∃~x′

〈 iff(x, x′
0) ⊔

⊔
0<j<i

iff(x′
j , {x

′
j+1}) ⊔ iff(x′

i, {}) ,

list(x, x′
0) ⊔

⊔
0<j<i

list(x′
j , x

′
j+1) ⊔ nil(x′

i)

〉

Thus, if gi |=A stopa we can deduce that x is a list and x is a ground variable.
Let sk = [[Gena(x) ‖ Genb(y) ‖ append(x, y, z)]]τ . If there exist i, j ≤ κ s.t. sκ(i) |=A

stopa and sκ(j) |=A stopb, we can show that for l ≥ max(i, j), the variables x, y and z are
list of ground elements. More precisely,

sκ(l) |=α 〈iff(x, []) ⊔ iff(y, []) ⊔ iff(z, []), list(x) ⊔ list(y) ⊔ list(z)〉

10.5.2 Analysis of Reactive Systems

The works in [Saraswat 1994, Tini 1999] show that synchronous data flow languages such
as Esterel [Berry 1992] and Lustre [Halbwachs 1991] can be encoded as tcc processes. This
makes tcc an expressive declarative framework for the modeling and verification of reactive
systems. Here we show how our framework can provide additional reasoning techniques in
tcc for the verification of such systems: We shall use the groundness analysis developed in
Section 10.5.1 to verify if a simplified version of a control system for a microwave complies
with its intended behavior. Namely, the door must be closed when it is turned on. Let us
introduce first the model of such a system.

Example 10.5.1 (Control System). Assume a simple control system for a microwave check-

ing that the door must be closed when it is turned on. Otherwise, it must emit an error

signal. The specification in tcc of this system is depicted in Figure 10.1.

In this tcc program, constraints of the form X = [e|X ′] asserts that X is a list with

head e and tail X ′. This way, the process micCtrl binds Error to a list ended by “yes”

when the microwave was turned on and the door was open at the same interval of time.

Furthermore, the constant stop is added into the list Button signaling the environment that

the microwave must be powered off.

Similarly to the example in Section 10.5.1, we assume on, off, closed and open be re-
spectively the constraints on = [], off = [], close = [] and open = [] for variables on, off , close

and open different from E and E′. The symbols yes and stop denote constant symbols.
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Our analysis consists in determining when the variable Error is bound to a ground term.
If the system is correct, it must happen when the the door is open and the microwave is
turned on.

Let τ = sequence(κ) for a given κ. We can verify that if sκ ∈ [[micCtrl(Error, Button)]]τ

and sκ(i) |=A (open⊔ on) then sκ(i) |=α 〈iff (Error, []), list(Error)〉, i.e., Error is a ground
variable.

We then conclude that the system effectively binds the list Error to a ground term
whenever the system reaches an inconsistent state.

10.5.3 Analyzing Secrecy Properties

In this section we show how the abstract semantics allows us to approximate the behavior
of a security protocol modeled in SCCP (see Chapter 8). We shall propose an abstraction of
the Security Constraint System in Definition 8.2.1 and then, with the help of a prototypical
tool, we exhibit automatically the secrecy flaw in the Needham-Schröder (NS) protocol
[Needham 1978] illustrated in Section 8.5.

Recall that the rules PAIR and ENC in the secure constraint system (Definition 8.2.1)
generates infinite behavior due to the infinitely many messages (constraints) they can entail.
For example, let P = (abs x; out(x))Q. If the current store is out(m), by the rule PAIR,
P must execute Q[{m, m}/x], Q[{m, {m, m}}/x] and so on.

To deal with this state explosion problem, the number of messages to be considered can
be bound (see e.g. [Song 2001]). We formalize this with the following abstraction.

Definition 10.5.1 (Abstract secure cons. system). Let M be the set of (terms) messages

in the constraint system in Definition 8.2.1 and lg : M → N be defined as:

lg(m) =






0 if m ∈ P ∪ K ∪ Var

1 + lg(m1) + lg(k) if m = {m1}k

1 + lg(m1) + lg(m2) if m = (m1, m2)

Let cutκ be the following term abstraction

cutκ(m) =

{
m if lg(m) ≤ κ

m⊤ otherwise

with m⊤ /∈ M (representing all the messages with length greater than κ) . Let C be as in

Definition 8.2.1 and (C, α,A) be a description where α(out(m)) = out(cutκ(m)).

10.5.3.1 Secrecy Analysis

To illustrate our approach, we shall use the NS protocol that we modeled in SCCP in
Section 8.5.

Assume the configuration involving the principals P = {A, B,C} and where the private
key of C has been leaked. Recall that this configuration can be modeled as follows:

NS = Init(A, C) ‖X∈P Resp′(X) ‖ Spy
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where

Init(A, B) = !new(m)

out({(m, A)}pub(B)).

in (x)[{(m, x,B)}pub(A)].out({x}pub(B)).nil

Resp′(B) = in (x, u)[{(x, u)}pub(B)].

new(n)(out({m, n,B}pub (u)).nil) ‖
! in [n].out(attack).nil)

Spy = ‖A∈P !out(A).nil

‖A∈P !out(pub(A)).nil

‖A∈Bad !out(priv(A)).nil

The abstraction cut3 and τ = sequence(2) allows us to verify the following:

if sκ ∈ [[NS]]τ then sκ(2) |=α out(attack)

meaning that NS leads to a secrecy attack. Notice the importance of having here a finite
cut of the messages (terms) generated by the constraint system to compute [[NS]]τ . This
allows us to restrict the set of terms considered by the abs operator and over-approximate
its behavior.

10.5.4 A prototypical implementation

We have implemented our framework and the abstract domain for secrecy analysis in a
prototype developed in Oz (http://www.mozart-oz.org/). This tool is described at

http://www.lix.polytechnique.fr/~colarte/prototype/

and allows the user to compute the least element of the abstract semantics of a process
P . The current implementation supports constraints as those used in the cryptographic
constraint system (e.g., predicates of the form out(enc(x, pub(y)))). It implements the
sequence(κ) and cutκ′ abstractions where κ and κ′ are parameters specified by the user. We
started by implementing the secrecy analysis since one of the most appealing application
of the utcc calculus is the modeling and verification of security protocols. Our goal is
to develop (or adapt from existing implementation) previously defined domains for logic
programs such as those used in Section 10.5.1. This then will provide a valuable tool for
the analysis of tcc and utcc programs.

The reader may find in the URL above a deeper description of the tool and some
examples. Furthermore, we provide the program excerpts to compute the output of the
secrecy analysis for the Needham-Schroeder Protocol [Lowe 1996]. We also illustrate a
similar analysis for the Denning-Sacco key distribution protocol [Denning 1981]

10.6 Summary and Related Work

In this chapter we presented a general abstract interpretation framework for the static anal-
ysis of utcc and tcc programs. We built on a compositional semantics based on closure
operators on sequences of constraints. We first approximated the constraint system and
then we computed a finite cut on the infinite sequences of constraints produced by the con-
crete semantics. As an application of our framework, we showed how to adapt domains from
logic programming to perform a groundness analysis on tcc programs. We then applied
this analysis to verify a property of a control system modeled in tcc. Finally, we showed

http://www.mozart-oz.org/
http://www.lix.polytechnique.fr/~colarte/prototype/
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that the abstract semantics allows us to automatically exhibit the secrecy flaw illustrated
in Section 8.5.

The material of this chapter was originally published as [Falaschi 2009, Falaschi 2007].

Related Work Several frameworks and abstract domains for the analysis of logic pro-
grams have been defined (see e.g. [Cousot 1992, Codish 1999, Armstrong 1998]). Those
works differ from ours since they do not deal with the temporal behavior and synchroniza-
tion mechanisms present in tcc-based languages. On the contrary, since our framework is
parametric with respect to the abstract domain, it can benefit from those works.

Unlike the semantics based on sequences of future-free formulae in Chapter 7, the seman-
tics here presented turned out to be more appropriate to develop our abstract interpreta-
tion framework. Firstly, the inclusion relation between the strongest postcondition and the
semantics is verified for the whole language (Theorem 10.3.1) – in the semantics of Chap-
ter 7 this inclusion is verified only for the locally-independent and abstracted-unless free
fragment–. Secondly, this semantics makes use of the entailment relation over constraints
rather than the more involved entailment over first-order linear-time temporal formulae.
This shall ease the implementation of tools based on the framework. Finally, our semantics
allows us to capture the behavior of tcc programs with recursion. This is not possible with
the semantics in Chapter 7 which was built only for utcc programs where recursion can be
encoded (see Section 3.3.2).

The framework we propose here provides the theoretical basis for building tools for the
data-flow analyses of utcc and tcc programs whose verification and debugging are not
trivial due to their concurrent nature and synchronization mechanisms. We have shown for
example, how to analyze groundness and how to detect mistakes in safety critical applica-
tions, such as control systems and embedded systems.

Our results should foster the development of analyzers for different concurrent systems
modeled in utcc and its sub-calculi. We plan to perform freeness, suspension, type and
independence analyses among others. It is well known that this kind of analyses have many
applications, e.g. for code optimization in compilers, for improving run-time execution, and
for approximated verification.

We believe that the framework proposed here can also help to develop new analyses for
other languages for reactive systems (e.g. Esterel [Berry 1992]), which can be translated
into tcc [Tini 1999, Saraswat 1994] and for languages featuring mobile behavior as the
π-calculus [Milner 1992b, Sangiorgi 2001]. For the latter, many analyses have been already
defined, see e.g. [Feret 2005, Garoche 2007]. As future work, it would be interesting to see
if it is possible to carry out similar analyses in our framework for suitable fragments of π

that can be encoded into utcc (see e.g., Chapter 9 where we encode a π-based language for
structured communication into utcc).



Chapter 11

Concluding Remarks

We conclude this dissertation by summarizing its contributions and describing possible
directions for future research. The reader can find a more detailed summary, related and
future work in the final section of each chapter.

11.1 Overview

In this dissertation we studied a declarative model for the specification of mobile reactive

systems based on the Saraswat’s Concurrent Constraint Programming model [Saraswat 1993].
To do this, we introduced Universal Timed CCP (utcc), an extension of tcc [Saraswat 1994]
with the ability to express mobile behavior.

We added to tcc an abstraction operator of the form (abs ~x; c) P that represents a
temporary parametric ask process. We illustrated how the interplay of this operator and
the local operator (local ~x; c) Q allows for the communication of local names, i.e., mobility.

Since abstractions in utcc may generate infinitely many internal reductions in the opera-
tional semantics (Chapter 3), we endowed the language with a symbolic semantics (Chapter
4) that uses temporal constraints to represent finitely a possible infinite number of substi-
tutions. We proved that for all processes this semantics produces a finite number of internal
reductions during a time-unit.

The relevance of the model we proposed in this dissertation is that it complies with
two criteria that distinguish CCP from other formalisms for concurrency. Namely, (1) a
declarative view of processes as logic formulae and (2) determinism. For (1), we proved
in Chapter 5 a strong correspondence of utcc processes with formulae in Pnueli’s First-
Order Linear-Time Temporal Logic (FLTL) [Manna 1991]. This then allowed us to perform
reachability analysis of systems modeled in utcc. As for (2), we proved the outputs of a
process to be equivalent when considering the same input.

The criteria (1) and (2) above allowed us to develop a rich theory for utcc with applica-
tions in different fields of Computer Science. For instance, it allowed us to exhibit a secrecy
flaw of a security protocol (Chapter 8), to give a declarative characterization of sessions
(Chapter 9) and to verify minimal conditions to be satisfied for a multimedia interaction
system to avoid raise conditions in execution time (Chapter 9).

The deterministic nature of the utcc calculus allowed us to give a simple and elegant
characterizations of utcc processes as closure operators (Chapter 7). We use this semantic
characterization in Chapter 8 to give a closure operator semantics to a language for security.
This way, we brought new semantic insights into the verification of security protocols.

We also studied the expressiveness of the utcc calculus with respect to its predeces-
sor tcc. We showed that, unlike tcc where processes can be represented as finite-state

Büchi automata, a very simple constraint system is enough to encode Minsky machines
into utcc (Chapter 6). We also showed that utcc can compositionally encode the call-by-
name lambda calculus.

As a compelling application of the underlying theory in utcc, we showed in Chapter
6 that the monadic fragment of FLTL without equality nor function symbols is strongly
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incomplete, and then, undecidable its validity problem. Our decidability result is insightful
since it fills a gap on the decidability study of monadic FLTL: This result refutes a decid-
ability conjecture for FLTL in [Valencia 2005]. It also justifies the restriction imposed in
previous decidability results on the quantification of flexible-variables [Merz 1992].

Finally, we provided an abstract interpretation framework as basis for the static analysis
of utcc processes. We showed that the abstract semantics allows us to approximate the
behavior of non well-terminated processes as those arising in the verification of security
protocols. Since the framework we proposed is parametric on the abstract domain, we
showed that it is possible to reuse abstract domains previously defined in logic programming
to analyze utcc programs.

11.2 Future Directions

The following are, in the author’s opinion, some interesting directions for future work.

Non-determinism. In several application domains it is convenient to be able to specify
non-deterministic behavior. Take for example the language for structured communication
studied in Section 9.1. One may be interested in specifying competing services where a
client can choose among several servers that offer the same service. As it was pointed out
in Observation 9.3.1, this behavior cannot be modeled in utcc due to its deterministic
nature.

In process calculi the non-determinism can arise from an explicit choice construct as
in CCS [Hoare 1985], the π-calculus [Milner 1992b, Sangiorgi 2001] and the ntcc calculus
[Nielsen 2002a]. It is also possible that the parallel operator introduces non-determinism
(linearity) as in the case of the π-calculus and Linear CCP [Fages 2001, Saraswat 1992].

It would be interesting to study how restricted forms of non-determinism and linear-
ity can be introduced in utcc to broaden its applicability. The works in [Nielsen 2002a,
Fages 2001, Saraswat 1992, de Boer 1995a, Falaschi 1997, de Boer 1997] may bring some
ideas on how to deal with the semantics and the logic correspondence issues arisen when
non-determinism is added to CCP-based languages.

FLTL Correspondence and Decidability of FLTL. We plan to extend the proof
system in [Nielsen 2002a] to consider the utcc abstraction operator and then, to cope
with judgements of the form P ⊢T A where A is a past-free formula. The meaning of
this judgment is that every possible output of P is a model for the formula A. Notice
that in [Nielsen 2002a] the underlying logic is CLTL (a temporal logic where formulae are
interpreted on sequences of constraints). The semantics of the underlying logic in utcc is
given in terms of sequences of states as described in Section 2.4. Both semantics are related
as it was shown in [Valencia 2005, Lemma 5.4].

The formula obtained from the encoding of Minsky machines in Chapter 6 is clearly not
monodic (i.e., a temporal subformula has more than one free variable –[Degtyarev 2002]) .
It would be interesting to find the minimum number of distinct free variables that can occur
in a FLTL formula (or in a TLV-like logic) to obtain undecidability as in [Degtyarev 2002]
for the case of TLP (see related work in Section 6.6).

Type Systems. In [Hildebrandt 2009] a type system for utcc was proposed to avoid
processes of the form (abs x, y; out(x, y))P where both, the channel name (x) and the
message sent (y) are quantified (see Sections 3.9 and 8.7). It would be interesting to
continue the study of type disciplines for CCP-based languages. For example, one could
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define a type system in the lines of [Honda 1998] for HVK-T (see Section 9.1) better suited
to the nature of utcc processes. Studying new type disciplines and their relation with
reasoning techniques based on temporal logic seems also to be an interesting research field.

Abstract Interpretation Framework. The framework proposed in Chapter 10 is in-
tended to be the basis for developing static analyzers for CCP programs. Here much work
remains to be done at the implementation level. From the theoretical point of view, it seems
to be a challenge to develop abstract domains for CCP that cope with the loss of information
due to the synchronization mechanism based on entailment of constraints. It would be also
interesting to explore abstract debugging techniques (see e.g., [Comini 1999, Falaschi 2007])
for utcc programs using the semantics of Chapter 10.
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Appendix A

Incompleteness of Monadic FLTL:

Alternative Proof

In this appendix we present a more direct proof of the undecidability of monadic FLTL
without equality nor function symbols. This proof relies solely on arguments of logic and
not on the underlying theory of utcc as the one we presented in Chapter 6. Basically we
prove that the FLTL formula corresponding to the process modeling the Minsky machine
M faithfully captures the behavior of M . Then, we effectively build a formula that is valid
if and only if M never halts. We refer the reader to the Chapter 6 for further discussions
regarding this result.

A.1 Encoding Minsky Machines

Counters. The formulae modeling the two counters c0 and c1 are obtained by replacing
the subindex n by 0 and 1 respectively in the formulae Fzeron and Fnot-zeron. Roughly
speaking, the formula Fzeron models the state cn = 0 and Fnot-zeron the state cn = k

for k > 0.
State Zero: Once zeron holds, iszn must also hold. We can then use the propositional

variable iszn to test if the counter is zero.
If the current instruction does not modify the value of cn, idlen must hold (due to the

formula F ins) and then, the formula ◦ zeron must also hold. This way, we model the fact
that the counter remains in zero.

State Not-Zero: When an increment instruction is executed, incn holds (due to the
formula F ins), and so does a formula of the form H = ◦∃a.(not-zeron(a)∧�(out(a) ⇒ F )).
In H, F is zeron if cn = 0 (see Fzeron) and not-zeron(x) otherwise (see Fnot-zeron).
Intuitively, F represents the state immediately before the last increment instruction took
place. This way, when a decrement instruction is performed, out(a) holds and so does F .

Consider now Fnot-zeron which is of the form ∀x.not-zeron(x) ⇒ G. As we explained
before, a formula of the form H = ◦∃a.(not-zeron(a)) holds when an increment instruction
is performed. Using H in conjunction with Fnot-zeron we obtain an instantiation of the
form ∃a.(G[a/x]) that represents the state cn = k +1. Notice that when ∃a.(G[a/x]) holds,
iszn must not hold. Furthermore, similarly to the state zero, if the counter is not modified
by the current instruction (idlen holds), ◦not-zeron(a) must hold and then, the counter
takes the same value in the next time interval.

Instructions. For the set of instruction (l1, L1); . . . ; (lm, Lm) we assume a set of variables
l1, . . . , lm. If the predicate out(li) holds in a state, it means that the instruction li is
executed. In the case of a halt instruction (li, HALT), halt holds. For an increment or a
decrement instruction ¬ halt holds.

The formula representing an increment operations (li : INC(cn, lj)) assures that incn

holds. It also guarantees that idle1−n holds while idlen does not.
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Counters

Fzeron = zeron ⇒

0

B

B

@

incn ⇒ ◦∃a.( not-zeron(a)∧
�(out(a) ⇒ zeron))

∧ idlen ⇒ ◦ zeron

∧ iszn

1

C

C

A

Fnot-zeron = ∀x.not-zeron(x) ⇒
0

B

B

B

B

@

incn ⇒ ◦∃b.( not-zeron(b)∧
�(out(b) ⇒ not-zeron(x)))

∧ decn ⇒ ◦ out(x)
∧ idlen ⇒ ◦not-zero(x)
∧¬ iszn

1

C

C

C

C

A

Instructions

F ins =
V

1≤i≤m

out(li) ⇒ [[li : Li]]I where

[[li : HALT]]I = halt

[[li : INC(cn, lj))]]I = ¬ halt∧ inc∧¬ idlen ∧ idle1−n ∧◦ out(lj)
[[li : DECJ(cn, lj , lk))]]I = isz ⇒ (idlen ∧◦ out(lj))∧

¬ isz ⇒ (¬ idlen ∧ decn ∧◦ out(lk))∧
idle1−n ∧¬ halt

Figure A.1: Representation of a Minsky machine with instructions (l1 : L1); ...; (lm : Lm).
The subindex n ∈ {0, 1} .

Finally, the formula representing a decrement instruction of the form (li : DECJ(cn, lj , lk))

tests if the counter cn is zero. If this is the case, then it activates in the next time interval
the instruction lj . If iszn does not hold, i.e. cn > 0, decn must hold and the instruction
lk is activated in the next time unit.

The following definition introduces the formula FM that simulates the behavior of a
Minsky machine M .

Definition A.1.1 (Encoding of a Minsky Machine). Let M be a Minsky machine with

instructions (l1 : L1), ..., (ln : Lm). The encoding [[M ]] is defined as the formula

FM = �(Fzero0 ∧ Fnot-zero0 ∧ Fzero1 ∧ Fnot-zero1 ∧ F ins)

where Fzero0,Fnot-zero0,Fzero1 and Fnot-zero1 are obtained by replacing the sub-index

n in the Equations in Figure A.1.

A.2 Encoding of Numbers and Configurations

To show that the formula FM above faithfully describes the behavior of the machine M ,
we shall give first a suitable representation of numbers and configurations of M . This shall
ease the forthcoming proofs.

As hinted at above, when an increment operations is performed, a formula of the form
H = ◦∃a.(not-zeron(a) ∧ �(out(a) ⇒ F )) must hold, where F represents the state im-
mediately before the last increment instruction took place. Recall also that a decrement
operation causes that out(a) holds and so does F

We can then represent the state cn = k, for k > 0, as a formula of the form ∃.a1, .., ak(F1∧
... ∧ Fk ∧ not-zeron(ak)) where F1 is of the form � out(a1) ⇒ zeron and for 1 < i ≤ k,
Fi = � out(ai) ⇒ not-zeron(ai−1). More precisely,
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Definition A.2.1 (Representation of Numbers). The FLTL formula representing the state

cn = k, notation [[cn = k]]N , is defined as follows:

[[cn = 0]]N = zeron

[[cn = 1]]N = ∃.a1(� out(a1) ⇒ zeron ∧
not-zeron(a1))

. . .

[[cn = k]]N = ∃.a1, a2, ..., ak( � out(a1) ⇒ zeron ∧
� out(a2) ⇒ not-zeron(a1)∧
. . .

� out(ak) ⇒ not-zeron(ak−1)∧
not-zeron(ak))

Using the previous definition of numbers, we define next the FLTL formula representing
a configuration of a Minsky machine.

Definition A.2.2 (Encoding of Configurations). Let M be a Minsky machine with instruc-

tions (l1;L1), ..., (lm;Lm). Let [[·]]N be as in Definition A.2.1 and FM be as in Definition

A.1.1. The encoding [[·]]C of a configuration of M is defined as

[[(li, v0, v1)]]C = FM ∧ [[c0 = v0]]N ∧ [[c1 = v1]]N ∧ out(li)

A.3 Monadic FLTL is Undecidable

We shall use the above construction to exhibit a formula that is valid if and only if the
machine M loops (i.e., it never halts). This shall allow us to show that this fragment of
FLTL is incomplete, i.e., its set of tautologies is not recursively enumerable.

We start by proving that computations of M are faithfully described by the formula
FM in Definition A.1.1.

Lemma A.3.1 (Soundness of the Encoding). Let M be a Minsky machine with instructions

(l1;L1), ..., (lm;Lm), [[·]]C be as in Definition A.2.2 and (li, v0, v1) be a configuration of M .

If (li, v0, v1) −→M (l′i, v
′
0, v

′
1) then [[(li, v0, v1)]]C |= ¬ halt∧◦[[(l′i, v

′
0, v

′
1)]]C

Furthermore, if (li, v0, v1) 6−→M , i.e., li is a HALT instruction, then it holds [[(li, v0, v1)]]C |=
halt.

Proof. First assume that (li, v0, v1) 6−→M . Then (li : Li) is a HALT instruction and it is
easy to see that [[(li, v0, v1)]]C |= halt for any v0, v1.

Assume now that (li, v0, v1) −→M (l′i, v
′
0, v

′
1). Then, (li : Li) must be an increment or

a decrement instruction. It is easy to see that for both cases [[(li, v0, v1)]]C |= ¬ halt. Now
we shall prove that [[(li, v0, v1)]]C |= ◦[[(l′i, v

′
0, v

′
1)]]C for both kind of instructions.

• Assume that (li : Li) is of the form (li : INC(cn, lj)). It must be the case that
l′i = lj , v′n = vn + 1 and v′1−n = v1−n. Let F = out(li) ⇒ [[(li : Li)]]I be the
subformula in [[(li, v0, v1)]]C representing the encoding of the instruction li. We know
that [[(li, v0, v1)]]c |= out(li) and we can derive the following:

F ∧ out(li) |= inc∧¬ idlen ∧ idle1−n ∧◦ out(lj)

For the counter c1−n, it is easy to see that

FM ∧ idle1−n ∧[[c1−n = v1−n]]N |= ◦[[c1−n = v1−n]]N
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For the counter cn we consider two cases: vn = 0 and vn > 0. For vn = 0 we can
derive the following

FM ∧ incn ∧[[cn = 0]]N |= ◦∃.a1(not-zero(a1)∧
� out(a1) ⇒ zeron)

≡ ◦[[cn = 1]]N

If vn = k for k > 0, then we have

FM ∧ incn ∧[[cn = k]]N |= ◦∃.a1, ..., ak, ak+1(

� out(a1) ⇒ zeron ∧
. . .

�(out(ak+1) ⇒ not-zeron(ak))∧
not-zeron(ak+1))

≡ ◦[[cn = k + 1]]N

We then conclude [[(li, v0, v1)]]C |= ◦[[(l′i, v
′
0, v

′
1)]]C .

• Assume now that (li : Li) is of the form (li : DECJ(cn, lj , lk)). We must consider two
cases.

– If cn = 0 then it must be the case that v′n = vn and l′i = lj . We can derive the
following

FM ∧ [[cn = 0]]N |= iszn ∧ idlen ∧ idle1−n ∧◦(out(lj) ∧ zeron)

|= ◦[[cn = 0]]N

– If cn = k for some k > 0, then we derive

FM ∧ [[cn = k]]N |= ¬ iszn ∧ decn ∧ idle1−n ∧◦ out(lk)

Let F ′ = FM ∧ [[cn = k]]N ∧ decn. We derive the following

F ′ |= FM ∧ ∃.a1, ..., ak( � out(a1) ⇒ zeron ∧
. . .

� out(ak) ⇒ not-zeron(ak−1)

∧not-zeron(ak) ∧ ◦ out(ak))

|= ◦∃.a1, ..., ak(� out(a1) ⇒ zeron ∧
. . .

� out(ak−1) ⇒ not-zeron(ak−2)

∧not-zeron(ak−1)

≡ ◦[[cn = k − 1]]N

Using the previous lemma, we can show that a machine M produces an infinite run if
and only if the formula FM ⇒ �¬ halt is valid.

Lemma A.3.2. A Minsky machine M loops (i.e. it never halts) if and only if

[[(l1, 0, 0)]]C |= �¬ halt

Proof. Let v1
0 = v1

1 = 0 and l1 = l1.
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(⇒) Assume that M produces an infinite run

(l1, v1
0 , v1

1) −→M (l2, v2
0 , v2

1) . . . −→M (ln, vn
0 , vn

1 ) −→M . . .

where for all i ≥ 1, li is not a HALT instruction. From Lemma A.3.1 we know that for
all i ≥ 1, [[(li, vi

0, v
i
1)]]C |= ◦[[(li+1, vi+1

0 , vi+1
1 )]]C and also that [[(li, vi

0, v
i
1)]]C |= ¬ halt.

Therefore, for i ≥ 0, it holds

[[(l1, v1
0 , v1

1)]]C |= ◦i(¬ halt)

where ◦0(F ) ≡ F for any formula F . We then conclude [[l1, 0, 0]]C |= �¬ halt.

(⇐) We proceed by contradiction. Assume that [[l1, 0, 0]]C |= �¬ halt and there exists
n ≥ 1 such that the machine produces a run

(l1, v1
0 , v1

1) −→M (l2, v2
0 , v2

1) . . . −→M (ln, vn
0 , vn

1 ) 6−→M

i.e., ln is a HALT instruction. By Lemma A.3.1 we know that

[[(l1, v1
0 , v1

1)]]C |= ◦n−1[[(ln, vn
0 , vn

1 )]]C |= ◦n−1 halt |= ✸ halt

thus a contradiction.

Since the set of looping Minsky machines (i.e. the complement of the halting problem)
is not recursively enumerable, a finitistic axiomatization of monadic FLTL without equality
nor function symbols would yield a non-recursively enumerable set of tautologies.

Theorem A.3.1 (Incompleteness). There is not a sound and complete finitistic axiomati-

zation for monadic FLTL without equality nor function symbols.

Proof. Directly from Lemma A.3.2.
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