
HAL Id: tel-00430495
https://pastel.hal.science/tel-00430495v1

Submitted on 7 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Expressivity of Infinite and Local Behaviour in
Fragments of the pi-calculus

Jesus Aranda

To cite this version:
Jesus Aranda. On the Expressivity of Infinite and Local Behaviour in Fragments of the pi-calculus.
Modeling and Simulation. Ecole Polytechnique X; Universidad del Valle, 2009. English. �NNT : �.
�tel-00430495�

https://pastel.hal.science/tel-00430495v1
https://hal.archives-ouvertes.fr

ÉCOLE POLYTECHNIQUE DE PARIS and UNIVERSIDAD

DEL VALLE COLOMBIA

Laboratoire d’Informatique (LIX) and

Esc. de Ing. de Sistemas y Computación (EISC)

P H D T H E S I S

to obtain the title of

PhD of Science

of the École Polytechnique and La Universidad del Valle

Specialty: COMPUTER SCIENCE

Defended by

Jesús Alexander ARANDA BUENO

On the Expressivity of Infinite and

Local Behaviour in Fragments of the

π-calculus

Thesis Advisors: Catuscia PALAMIDESSI (LIX) and

Frank D. VALENCIA (LIX) and

Juan Francisco DÍAZ (EISC)

prepared at LIX, COMETE Team

2

Abstract

The π-calculus [61] is one the most influential formalisms for modelling and an-

alyzing the behaviour of concurrent systems. This calculus provides a language

in which the structure of terms represents the structure of processes together with

an operational semantics to represent computational steps. For example, the par-

allel composition term P | Q, which is built from the terms P and Q, repre-

sents the process that results from the parallel execution of the processes P and

Q. Similarly, the restriction (νx)P represents a process P with local resource

x. The replication !P can be thought of as abbreviating the parallel composition

P | P | . . . of an unbounded number of P processes.

As for other language-based formalisms (e.g., logic, formal grammars and the

λ-calculus) a fundamental part of the research in process calculi involves the study

of the expressiveness of fragments or variants of a given process calculus. In this

dissertation we shall study the expressiveness of some variants of the π-calculus

focusing on the role of the terms used to represent local and infinite behaviour,

namely restriction and replication.

The first part of this dissertation is devoted to the expressiveness of the zero-

adic variant of the (polyadic) π-calculus, i.e., CCS with replication (CCS!) [21].

Busi et al [22] show that CCS! is Turing powerful [22]. The result is obtained

by encoding Random Access Machines (RAMs) in CCS!. The encoding is said to

be non-faithful because it may move from a state which can lead to termination

into a divergent one which do not correspond to any configuration of the encoded

RAM . I.e., the encoding is not termination preserving.

In this dissertation we shall study the existence of faithful encodings into CCS!

of models of computability strictly less expressive than Turing Machines. Namely,

grammars of Types 1 (Context Sensitive Languages), 2 (Context Free Languages)

and 3 (Regular Languages) in the Chomsky Hierarchy. We provide faithful en-

codings of Type 3 grammars. We show that it is impossible to provide a faithful

encoding of Type 2 grammars and that termination-preserving CCS! processes can

generate languages which are not Type 2. We finally conjecture that the languages

generated by termination-preserving CCS! processes are Type 1 .

We also observe that the encoding of RAMs [22] and several encoding of

ii

Turing-powerful formalisms in π-calculus variants may generate an unbounded

number of restrictions during the simulation of a given machine. This unbound-

edness arises from having restrictions under the scope of replication (or recursion)

as in e.g., !(νx)P or µX.(νx)(P | X). This suggests that such an interplay be-

tween these operators is fundamental for Turing completeness.

We shall also study the expressive power of restriction and its interplay with

replication. We do this by considering several syntactic variants of CCS! which

differ from each other in the use of restriction with respect to replication. We

consider three syntactic variations of CCS! which do not allow the generation of

unbounded number of restrictions: CCS−!ν
! is the fragment of CCS! not allowing

restrictions under the scope of a replication, CCS−ν
! is the restriction-free frag-

ment of CCS!. The third variant is CCS−!ν
!+pr which extends CCS−!ν

! with Phillips’

priority guards [76].

We shall show that the use of an unboundedly many restrictions in CCS! is

necessary for obtaining Turing expressiveness in the sense of Busi et al [22]. We

do this by showing that there is no encoding of RAMs into CCS−!ν
! which pre-

serves and reflects convergence. We also prove that up to failures equivalence,

there is no encoding from CCS! into CCS−!ν
! nor from CCS−!ν

! into CCS−ν
! . Thus

up to failures equivalence, we cannot encode a process with an unbounded num-

ber of restrictions into one with a bounded number of restrictions, nor one with a

bounded number of restrictions into a restriction-free process.

As lemmata for the above results we prove that convergence is decidable for

CCS−!ν
! and that language equivalence is decidable for CCS−ν

! but undecidable for

CCS−!ν
! . As corollary it follows that convergence is decidable for restriction-free

CCS. Finally, we show the expressive power of priorities by providing a faithful

encoding of RAMs in CCS−!ν
!+pr, thus bearing witness to the expressive power of

Phillips’ priority guards [76].

The second part of this dissertation is devoted to expressiveness of the asyn-

chronous monadic π-calculus, Aπ [15, 47]. In [70] the authors studied the expres-

siveness of persistence in Aπ [15, 47] wrt weak barbed congruence. The study is

incomplete because it ignores divergence.

We shall present an expressiveness study of persistence in Aπ wrt De Nicola

and Hennessy’s testing scenario which is sensitive to divergence. Following [70],

iii

we consider Aπ and three sub-languages of it, each capturing one source of persis-

tence: the persistent-input Aπ-calculus (PIAπ), the persistent-output Aπ-calculus

(POAπ) and the persistent Aπ-calculus (PAπ). In [70] the authors showed encod-

ings from Aπ into the semi-persistent calculi (i.e., POAπ and PIAπ) correct wrt

weak barbed congruence. We show that, under some general conditions related to

compositionality of the encoding and preservation of the infinite behaviour, there

cannot be an encoding from Aπ into a (semi)-persistent calculus preserving the

must testing semantics. We also prove that convergence and divergence are decid-

able for POAπ (and PAπ). As a consequence there is no encoding preserving and

reflecting divergence or convergence from Aπ into POAπ (and PAπ). This study

fills a gap on the expressiveness study of persistence in Aπ in [70].

iv

Contents

1 Introduction 1

2 Preliminaries 13

2.1 The π-calculus . 13

2.1.1 Syntax . 13

2.1.2 Semantics . 15

2.2 The asynchronous π-calculus: Aπ 18

2.3 The Calculus of Communicating Systems 19

2.3.1 Finite CCS . 20

2.3.2 Replication: CCS! . 20

2.3.3 Parametric Definitions: CCS and CCSp 21

2.4 Notions and equivalences . 22

2.4.1 Bisimilarity . 22

2.4.2 Language and failures equivalences 24

2.4.3 Testing semantics . 27

2.5 Petri Nets . 29

2.6 Random Access Machines RAMs 30

I 31

3 CCS! in the Chomsky Hierarchy 33

3.1 Introduction . 34

3.1.1 Contributions. 36

3.2 The Role of Strong Non-Termination 37

v

vi CONTENTS

3.3 CCS! without choice . 40

3.4 Undecidability results for CCS−ω
! 43

3.5 CCS! and the Chomsky Hierarchy 46

3.5.1 Encoding Regular Languages 46

3.5.2 Impossibility Result: Context Free Languages 52

3.5.3 Inside Context Sensitive Languages (CSL) 64

3.6 Summary and Related Work . 65

4 On the Expressive Power of Restriction and Priorities in CCS with

replication 69

4.1 Introduction . 70

4.1.1 Contributions . 72

4.2 Decidability of Convergence for CCS−!ν
! 73

4.2.1 Convergence-invariant properties in fragments of CCS−!ν
! . 74

4.2.2 The Reduction to Petri Nets 75

4.3 Decidability of Language Equivalence for CCS−ν
! 82

4.4 Impossibility results for failure-preserving encodings 83

4.5 Encoding from CCS−µν into CCS−ν
! 85

4.5.1 The Encoding . 86

4.6 Expressiveness of Priorities . 91

4.6.1 CCS! with priorities . 91

4.6.2 Encoding RAMs with priorities 92

4.7 Summary and Related Work . 96

II 101

5 Linearity, Persistence and Testing Semantics in the Asynchronous Pi-

Calculus 103

5.1 Introduction . 104

5.1.1 Contributions . 106

5.2 Semi-persistence in Aπ . 108

5.2.1 The (semi-)persistent calculi 108

5.3 Reasonable Properties of Encodings 109

CONTENTS vii

5.3.1 Contexts, Compositionality and Homomorphism 109

5.3.2 Preservation of infinite behaviour 111

5.4 Previous encodings of Aπ into semi-persistent subcalculi 112

5.5 Uniform impossibility results for the semi-persistent calculi 115

5.5.1 Non-existence of encodings homomorphic wrt ! 117

5.5.2 Non-existence of encodings preserving infinite behaviour . 120

5.6 Specialized impossibility result for PAπ 127

5.7 Decidability results for POAπ 129

5.7.1 Computing Successors 129

5.7.2 Decidability of convergence and divergence 132

5.8 Summary and related work . 135

6 Conclusions 137

viii CONTENTS

Chapter 1

Introduction

The (polyadic) π-calculus [61] is one of the most influential formalisms for mod-

eling and analyzing the behavior of concurrent systems; i.e. systems consisting

of multiple computing agents, called processes, that interact with one another. In-

deed, the π-calculus has attained a wide range of applications in different areas

of computer science and engineering, among others: Biology [32, 74, 75], busi-

ness processes [80, 86, 89], object-oriented programming [50, 77, 78], security

[1, 2, 36], session types [37, 40, 90], and service oriented computing [54, 57, 89].

One could argue that the development of the π-calculus is reminiscent of those

from other standard linguistic formalisms from computability such as logic, for-

mal languages, and most notably the λ-calculus. In fact, the treatment of proc-

esses in the π-calculus is akin to that of computable functions in the λ-calculus:

The π-calculus provides a language in which the structure of terms represents the

structure of processes and an operational semantics representing system evolution.

Another similarity with the λ-calculus is that the design of the π-calculus seems

to pay special attention to economy: There are few operators, each one denot-

ing a fundamental and primitive role, that can be combined to describe complex

concurrent behaviors.

For example, the parallel composition term P | Q, which is built from the

terms P and Q, represents the process that results from the parallel execution of

the processes P and Q. If P and Q have the form of an input (receiver) x(~y).P ′

and output (sender) x̄~z.Q′, resp., and they have the same arity (i.e., |~y| = |~x|) then

1

2 CHAPTER 1. INTRODUCTION

P | Q can be rewritten as P ′[~z/~y] | Q′ where [~z/~y] denotes the substitution of (the

names in) the vector ~z for (the placeholders in) the vector ~y. This rewritten term

can be thought of as resulting from the synchronization on a channel x and the

trasmittion along x of the names ~z sent from Q to P . One of the central terms

to this dissertation is the restriction (νx)P which represents a process P with a

local resource (name) x. The other is the replication !P which can be viewed as

P | P | . . ., i.e. an unbounded number of copies of P in parallel. These terms

can be combined to represent interesting behaviours, e.g., an unbounded number

of local resources !(νx)P .

Expressiveness

A fundamental part of the research in computability, and linguistic formalisms,

in particular, has involved the expressiveness of syntactic variants. This includes

questions such as whether a given fragment of a logic is as hard for validity as the

full language, or whether a given grammar can generate a certain set. Well-known

results include the fact that it is not possible to provide a computable transforma-

tion, or encoding, of arbitrary formulae into monadic ones that preserves valid-

ity and that the set anbn cannot be generated by any regular grammar. Standard

taxonomies include the Chomsky Hierarchy of formal languages and the logic

classification of prenex normal forms [14].

Unfortunately, the subject of expressiveness in the π-calculus, and process

calculi at large, is not a well-established discipline, or even a stable craft. Several

guiding principles and cogent classification criteria have been put forth in several

works such as [69, 43, 64, 92, 27, 45, 53, 16, 72, 91]. Hitherto, however, we do

not have a general agreement as to what are the properties that a taxonomy of

process calculi must consider in the way we have for the linguistic formalisms

of computability where the notion of language (generation) can be taken as the

canonical measure for expressiveness. This is perhaps due to the great diversity

of observations and properties often used to reason about concurrent behaviour

(e.g., divergence, convergence, failures, traces, barbs, must testing, bisimilarity,

etc). It may be the case that rather than being absolute, a taxonomy of concurrent

calculi ought to be parametric on the observations we wish to make of processes.

INTRODUCTION 3

After all concurrency is a field with a myriad of aspects for which we may require

different terms of discussion and analysis.

Nevertheless, expressiveness studies may offer crucial insights about the lim-

itations, redundancies and capabilities of a family of process calculi. Most works

on the expressiveness of the π-calculus consider questions such as whether a given

variant can express certain behaviours, whether a given variant is as expressive as

another one w.r.t. certain equivalence, or whether a given fragment is as hard for

certain property as the full language.

For example, there are certain context-free sets that cannot be represented in a

restriction-free variant of the zero-adic π-calculus [28]. (By n-adic we refer to the

maximal arity of the vectors of names that can be transmitted upon synchroniza-

tion.) We also know that every polyadic π term can be encoded into a monadic π

term preserving bisimilarity (a standard equivalence in concurrency theory) [83]

and that under certain reasonable requirements one cannot encode every monadic

π-calculus term into a zero-adic one [69]. These expressiveness questions are of

great interest as a variant may simplify the presentation of the calculus, be tailored

to specific applications, or be used to single out important aspects of the calculus.

This dissertation is devoted to the study of the expressiveness of several vari-

ants of the π-calculus. The main variants under consideration are the zero-adic π-

calculus, also known as CCS! [21, 22], and the asynchronous monadic π-calculus

Aπ [15, 47]. We shall mainly focus on behaviours arising from the restriction and

replication operators as well as from their interplay. The study will be conducted

by imposing natural constraints on these operators and their interaction, and then

showing their impact on the expressiveness of the constrained variant.

Our study is inspired in part by work and elements from linguistic formalisms

such as logic and formal grammars. This is evidenced by the kind of results

that we shall discuss in detail later on in this introduction. Namely, we shall

give a classification of zero-adic π-calculi following the Chomsky Hierarchy of

formal grammars as well as a classification of zero-adic π-calculus processes that

resembles the classification of prenex first-order formulae w.r.t. constraints on

quantifiers [14]. We shall also give a classification of semi-linear (semi-persistent)

π-calculus which is inspired by the notion of resource in Girard’s linear logic [39].

Our work builds on the seminal paper by Busi, Gabbrielli and Zavattaro on

4 CHAPTER 1. INTRODUCTION

CCS! [22] as well as the work by Palamidessi, Saraswat, Victor and Valencia on

the asynchronous π-calculus [70]. In fact, this dissertation has been structured in

two main parts reflecting the influence of these works. These parts are motivated

and discussed next.

Part I: The Expressiveness of CCS!

In [22] Busi et al demostrated that CCS! is Turing powerful by encoding Random

Access Machines (RAMs). The key property of the encoding is that it preserves

and reflects convergence (i.e., the existence of halting computations): Given a

RAM M , the encoding of M in CCS! converges if and only if M converges.

We wish to outline two observations we made about the encoding given in

[22] that are central to this part: (1) The mechanism used to force ”unfaithful”

computational paths of the encoding to be infinite and (2) the mechanism used

to generate an unbounded number of restricted names. Let us ellaborate on these

two points:

Chapter 3: Computational Expressiveness of CCS! The first observation is

that the CCS! encoding of RAMs uses a divergence mechanism to force the un-

faithful computational paths to be infinite. By unfaithful path we mean, infor-

mally, paths that do not correspond to those of the encoded machine. The CCS!

encoding of a given RAM can, during evolution, move from a state that may ter-

minate, i.e. a (weakly) terminating state, into one that cannot terminate, i.e., a

(strongly) non-terminating state. Consequently, the encoding does not preserve

(weak) termination during evolution. This allows us to ignore the unfaithful be-

haviour as follows: Whenever the encoding takes a computational path that makes

a wrong guess about a test for zero (i.e., it does not correspond to the test for zero

of the encoded RAM) then that path is forced to be infinite. This infinite path is

thus regarded as a non-halting computation and therefore ignored. All finite com-

putations of the encoding, however, correspond to those halting computations of

the encoded RAM. Hence, the encoding preserves and reflects convergence.

One may wonder if we can dispense with the above mechanism and still be

able to provide an encoding of RAMs that preserves and reflects convergence.

INTRODUCTION 5

Busi et al has answered negatively this question in [21]. Another legitimate ques-

tion is thus:

Q1: What less expressive computational models can be encoded into CCS!

without using this divergence mechanism, i.e. with weak-termination preserving

processes ?

We shall partially answer this question in Chapter 3. We study the family

of weak-termination preserving processes by considering models of computabil-

ity strictly less expressive that RAM’s. In particular we shall study the expres-

siveness of CCS! w.r.t. the existence of termination-preserving encodings of gra-

mmars of Types 1 (Context Sensitive grammars), 2 (Context Free grammars) and 3

(Regular grammars) in the Chomsky Hierarchy whose expressiveness corresponds

to (non-deterministic) Linear-bounded, Pushdown and Finite-State Automata, re-

spectively. We shall show that they can encode any Type 3 grammars but not Type

2 grammars. We also conjecture that the set of all finite sequences performed by

a weak-termination preserving process corresponds to Type 1 grammars.

Chapter 4: The Expressiveness of Restriction and Replication. The second

observation is that the CCS! encoding of RAMs [22] uses restriction operators un-

der the scope of replication as for example in !(νx)P . Indeed, to the best of our

knowledge, all the encodings of Turing-powerful formalisms in π-calculus vari-

ants such as CCS, the monadic π-calculus, the asynchronous π-calculus involve

restrictions under the scope of replication or under the scope recursive expressions

as for example in µX.(νx)(P |X).

As mentioned earlier in this introduction, a restriction under replication repre-

sents (the potential generation of) unboundedly many local processes in parallel:

!(νx)P represents infinitely many restricted declarations of x. This mechanism

seems crucial for the encoding of Turing-powerful formalisms mentioned above.

We then find it natural to ask:

Q2: Is the occurrence of restriction under the scope of replication necessary for

the Turing-completeness of some π-based calculi ?

6 CHAPTER 1. INTRODUCTION

At this point it is perhaps worth mentioning that a somewhat similar expres-

siveness situation, from which we partially took inspiration, arises in logic. We

can think of a formula ∀y∃xF (y, x) as describing potentially infinitely many ex-

istential declarations of x, one for each each possible y. There is a complete study

of decidable classes (w.r.t. satisfiability) of formulae involving the occurrence

of existential quantifiers under the scope of universal quantification. For exam-

ple, Skolem showed that the class of formulae of the form ∀y1...∀yn∃z1...∃zmF,

where F is quantifier-free formula, is undecidable while from Gödel we know that

its subclass ∀y1∀y2∃z1...∃zmF is decidable [14].

Perhaps a closer analogy arises in temporal logic [56]: The formula ✷∃xF (x),

whose intended meaning is ”always there exists x such that F (x)” can be viewed

as describing an unbounded number of existential declarations of x over time.

This scoping of the ”always” modality over existential quantification is central

to the proof that monadic temporal logic is undecidable w.r.t. validity and hence

cannot be encoded in propositional temporal logic [68].

In Chapter 4 we study the expressiveness of restriction and its interplay with

replication. We consider two syntactic variations of CCS! that do not allow the

use of an unbounded number of restrictions: CCS−!ν
! is the fragment of CCS! not

allowing restrictions under the scope of a replication. CCS−ν
! is the restriction-free

fragment of CCS!.

We shall show that having restriction under replication in CCS! is necessary

for obtaining Turing expressiveness in the sense of Busi et al [22] hence providing

an answer to question Q2 above. We do this by showing that there is no encoding

of RAMs into CCS−!ν
! which preserves and reflects convergence.

Furthermore, we shall also prove that up to failures equivalence, an standard

equivalence in concurrency theory, there is no encoding from CCS! into CCS−!ν
!

nor from CCS−!ν
! into CCS−ν

! . In other words, up to failures equivalence, we can-

not encode all processes that may generate an unbounded number of restrictions

with processes that can only generate a bounded number, nor all processes that

may generate bounded number of restrictions with restriction-free processes.

In the light of the above-mentioned results, one may now wonder whether

some other natural process construction can replace the use in CCS! of unbound-

edly many restrictions for achieving Turing expressiveness. We shall answer pos-

INTRODUCTION 7

itively this question by considering a third variant CCS−!ν
!+pr which extends CCS−!ν

!

with Phillips’ priority guards [76]. This bears witness to the expressive power of

this guarding construction.

Part II: The Asynchronous π-calculus

In [70] the authors presented an expressiveness study of linearity and persistence

of processes in the asynchronous version of the π-calculus, henceforth Aπ. Lin-

earity (and persistence) is understood in a similar sense of Girard’s linear logic;

the ability (incapability) of consuming a resource. The replication operator is cen-

tral in [70] and plays a role similar to the ”bang” operator from linear logic, also

denoted as !.

Chapter 5: Linearity and Persistence The study in [70] is conducted in the

asynchronous π-calculus (Aπ), which naturally captures the notion of linearity

and persistence also present in other calculi.

Let us for example consider π-calculus system

x̄z | x(y).P | x(y).Q

This system represents a linear message with a datum z, tagged with x, that can be

consumed by either (linear) receiver x(y).P or x(y).Q. Persistent messages (and

receivers) can simply be specified using the replication operator which, as previ-

ously mentioned, creates an unbounded number of copies of a given process. One

can then consider the existence of encodings from Aπ into three sub-languages of

it, each capturing one source of persistence: the persistent-input calculus (PIAπ),

defined as Aπ where inputs are replicated; the persistent-output calculus (POAπ),

defined dually, i.e. outputs rather than inputs are replicated; the persistent calculus

(PAπ), defined as Aπ but with all inputs and outputs replicated.

The main result in [70] basically states that we need one source of linearity,

i.e. either on inputs (PIAπ) or outputs (POAπ) to encode the behavior of arbitrary

Aπ processes via weak barbed congruence.

The notion of linearity (persistency) is present is several concurrency frame-

works. Persistence of messages is present , e.g., in Concurrent Constraint Pro-

8 CHAPTER 1. INTRODUCTION

gramming (CCP) [84], Winskel’s SPL [31] and the Spi Calculus variants in [35, 5].

In all these formalisms messages cannot be consumed. In the π-calculus persistent

receivers are used, for instance, to model functions, objects, higher-order commu-

nications, or procedure definitions. Furthermore, persistence of both messages

and receivers arise in the context of CCP with universally-quantified persistent

ask operations [67] and in the context of calculi for security, persistent receivers

can be used to specify protocols where principals are willing to run an unbounded

number of times (and persistent messages to model the fact that every message

can be remembered by the spy [12]).

Now, the previously mentioned positive result in [70] may give insights in the

context of the expressiveness of the above frameworks. The main drawback of the

work [70] is, however, that the notion of correctness for the encodings is based

on weak barbed bisimulation (congruence), which is not sensitive to divergence.

In particular, the encoding provided in [70] from Aπ into PIAπ is weak barbed

congruent preserving but not divergence preserving. Although in some situations

divergence may be ignored, in general it is an important issue to consider in the

correctness of encodings [26, 44, 43, 27, 24, 69].

As a matter of fact the informal claims of extra expressivity of Linear CCP

over CCP in [11, 34] are based on discrimination introduced by divergence that

is clearly ignored by the standard notion of weak bisimulation. Furthermore, in

[30] the author suggests as future work to extend SPL, which uses only persistent

messages and replication, with recursive definitions to be able to program and

model recursive protocols such as those in [4, 73]. Nevertheless, one can give an

encoding of recursion in SPL from an easy adaptation of the composition between

the Aπ encoding of recursion [83] (where recursive calls are translated into linear

Aπ outputs and recursive definitions into persistent inputs) and the encoding of

Aπ into POAπ in [70]. The resulting encoding is correct up to weak bisimilarity.

The encoding of Aπ into POAπ, however, introduces divergence and hence the

composite encoding does not seem to invalidate the justification for extending

SPL with recursive definitions.

The above works suggest that the expressiveness study of persistence of [70] is

relevant but incomplete since divergence is ignored. We therefore ask ourselves:

INTRODUCTION 9

Q3: Can the above-mentioned linearity be captured in (semi) persistent calculi

without introducing divergence ?

In the Chapter 5 we shall study the existence of encodings from Aπ into

the persistent sub-languages mentioned above using testing semantics [65] which

takes divergence into account. We shall provide a uniform and general negative

answer to question Q3 by stating that, under some reasonable conditions, Aπ can-

not be encoded into any of the above (semi) persistent calculi while preserving the

must testing semantics. The general conditions involve compositionality on the

encoding of constructors such as parallel composition, prefix, and replication. The

main result contrasts and completes the ones in [70]. It also supports the informal

claims of extra expressivity mentioned above.

We shall also state other more specialized impossibility results for must pre-

serving encodings from Aπ into the semi-persistent calculi, focusing on specific

properties of each target calculus. This helps clarifying some previous assump-

tions on the interplay between syntax and semantics in encodings of process cal-

culi. We believe that, since the study is conducted in Aπ with well-established

notions of equivalence, our results can be easily adapted to other asynchronous

frameworks such as CCP languages and the above-mentioned calculi for security.

Contributions and Organization

In summary this dissertation extends and strengthens the works [22, 70] by sin-

gling out key aspects of these works and then filling their gaps in the context of

the expressiveness in concurrency theory. Among the other previously mentioned

results, we shall show that without the divergence mechanism used in [22] for

encoding Minsky machines, CCS! can capture regular but not context-free be-

haviours. We shall also show that the scoping of replication (or recursion) over

restriction in the CCS! encoding in [22] (and in other π-based encodings of Turing-

powerful models) is necessary to achieve Turing completeness. We shall show that

under some natural conditions, the linearity of the asynchronous π-calculus [70]

cannot be encoded with semi-persistent asychronous π-calculi.

All in all, we shall show how the restriction operator, replication and their

interplay play a fundamental and complementary role in the computational ex-

10 CHAPTER 1. INTRODUCTION

pressiveness of some π-based calculi from the literature.

Organization

This dissertation is organized as follows: We begin with two introductory chapters

followed by the two parts previously discussed in the Introduction. We conclude

with some discussion about future work and an index table with the most relevant

notions and notations.

The first chapter motivates and discusses our work. In the second chapter we

provide some preliminary notions and prove some general properties that will be

used in the forthcoming chapters.

Each chapter in Part I and Part II begins with an introduction explaining the

motivation, lines of developments and the contributions, and it concludes with a

short summary and a discussion about related work.

Chapters 3-4 are included in Part I and were described earlier in the Intro-

duction. The third chapter provides the first classification based on the Chomsky

Hierarchy. The fourth chapter provides the classification based on the scoping of

replication over restriction.

Chapter 5 is included in Part II and was also previously described in the In-

troduction. This chapter provides a classification of linearity vs persistence in the

asychronous π-calculus.

Contributions

Most of the material of this dissertation has been previously reported in the fo-

llowing works. The unpublished material will be explicitely mentioned in each

chapter.

• J. Aranda, F. Valencia and C. Versari. On the Expressive Power of Restric-

tion and Priorities in CCS with Replication. In FoSSaCS 2009: 242-256.

Springer-Verlag. 2009.

The contributions of this paper are included in Chapter 4.

INTRODUCTION 11

• J. Aranda, C. Di Giusto, M. Nielsen and F. Valencia. CCS with Replication

in the Chomsky Hierarchy: The Expressive Power of Divergence. APLAS

2007: 383-398. Springer-Verlag. 2007.

The contributions of this paper are included in Chapter 3.

• D. Cacciagrano, F. Corradini, J. Aranda, F. Valencia. Persistence and Test-

ing Semantics in the Asynchronous Pi Calculus. in EXPRESS’07, Electr.

Notes Theor. Comput. Sci. 194(2): 59-84. Elsevier. 2007.

The contributions of this paper are included in Chapter 5.

• J. Aranda, C. Di Giusto, C. Palamidessi and F. Valencia. On Recursion,

Replication and Scope Mechanisms in Process Calculi. FMCO 2006: 185-

206 Springer-Verlag. 2006.

The contributions of this paper are included in Chapter 3.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

This chapter introduces some basic notions, notations and frameworks that will

be used in the following chapters. In particular, we shall introduce two subcalculi

of the polyadic π-calculus: Namely the asynchronous monadic π-calculus (Aπ)

[15, 47] and the zero-adic π-calculus (CCS!) [21]. We shall recall notions such as

bisimilarity, language and failures equivalence and frameworks such as Petri nets,

and random access machines. We shall also prove some general properties about

bisimilarity, failures and language equivalence.

2.1 The π-calculus

In what follows we shall introduce the π-calculus and the variants relevant for this

thesis.

2.1.1 Syntax

Names are the most primitive entities in the π-calculus. We presuppose a count-

able set N of (port, links or channel) names , ranged over by x, y, For each

name x, we assume a co-name x thought of as complementary, so we decree that

x = x. We use ~x to denote a finite sequence of names x1x2 · · ·xn. The other entity

in the π-calculus is a process. Processes are built from names as follows.

Definition 2.1.1 (Syntax) The processes, the summations and the prefixes in π-

13

14 CHAPTER 2. PRELIMINARIES

calculus are given respectively by:

P := M (νx)P P | P σ !P

M := 0 π.P M + M ′

π := x(y) xy τ

First we explain the summations and the prefixes and then the processes. The

process (summation) 0 does nothing. xy.P and x(y).P represent the output and

input process respectively, xy.P is a process which can output a datum y on chan-

nel x and then it behaves like P , xy is called a guard or (output) prefix . x(y).P

is a process which can perform an input action on channel x and then it behaves

like P{z/y}, the process which has replaced every occurrence of the name y, by

the datum z received, {z/y} is a substitution of z by y, x(y) is called a guard

or (input) prefix . The unobservable prefix τ.P can evolve invisibly to P . τ can

be thought of as expressing an internal action of a process, τ is called a guard or

(unobservable) prefix . the sum (or choice) P + Q represents the process which

can performs the capabilities of either P or Q but not both. Once a capability of P

(Q) has been performed, Q (P) is disregarded. In P | Q, the parallel composition

of P and Q, P and Q can proceed independently or can synchronise via shared

names. In (νx)P , the name x is declared private to P , i.e. initially, components of

P can use x to interact with one another but not with other processes, the scope of

x could change as a result of interaction between processes as will be seen later.

Finally, the replication !P can be thought of as unboundedly many P ’s in parallel

P | P | P | . . ., replication is the means to express infinite behaviour.

Notice that the operands in a sum must themselves be summations. Hence it

says that the π-calculus considers guarded-choice.

In each of x(y).P and (νy)P , the occurrence of y is binding with scope P .

An occurrence of a name in a process is bound if it is under the scope of a biding

occurrence of the name. An occurrence of a name is free if it is not bound. Given

Q we define its bound names bn(Q) as the set of names with a bound occurrence

in Q, and its free names fn(Q) as the set of names with a non-bound occurrence

in Q, hence n(Q) = fn(Q) ∪ bn(Q) is the set of names of Q.

2.1. THE π-CALCULUS 15

As consequence of the interchange of names between processes an unintended

capture of names by binders could arise, to avoid it, the following definition of α-

convertability is useful.

Definition 2.1.2 (α-convertability) [83]

1. If the name w does not occur in the process P , then P{w/z} is the process

obtained by replacing each occurence of z in P by w.

2. A change of bound names in a process P is the replacement of a subterm

x(z).P of P by x(z).Q{w/z}, or the replacement of a subterm (νz)Q of a

P by (νw)Q{w/z}, where in each case w does not occur in Q.

3. Processes P and Q are α-convertible, P = Q, if Q can be obtained from P

by a finite number of changes of bound names.

Hence we adopt two well-known conventions:

Convention 2.1.1 [83] Processes that are α-convertible are identified.

Convention 2.1.2 [83] When considering a collection of processes and substitu-

tions, we assume that the bound names of the processes are chosen to be different

from their free names and from the names of the substitutions.

2.1.2 Semantics

The above description is made precise by a labelled transition system. A transition

rule P
α

−→ Q says that P can perform an action α and evolve into Q, the set of

actions used in the transition system is composed by x̄y, xy, x̄(y), τ . x̄y, a free

output , sends the name y on the name x, xy, an input , receives the name y on

the name x, x̄(y), a bound output , sends a fresh name on x and τ is an internal

action .

Definition 2.1.3 (Actions) The actions, which are ranged over by α, are given by:

α := 0 x̄y xy x̄(y) τ (2.1)

Act refers the set of actions. The set of labels, ranged over by l and l′, is L which

is composed of all non-internal actions.

16 CHAPTER 2. PRELIMINARIES

Functions fn(), bn() and n() are extended to cope with labels as follows:

bn(xy) = ∅ bn(x̄y) = ∅ bn(x̄(y)) = {y} bn(τ) = ∅

fn(xy) = {x, y} fn(x̄y) = {x, y} fn(x̄(y)) = {x} fn(τ) = ∅

The subject , subj() , and object , obj() , of these actions is defined as:

subj(xy) = subj(x̄y) = subj(x̄(y)) = x, obj(xy) = obj(x̄y) = obj(x̄(y)) = y,

subj(τ) = subj(τ) = ∅.

Definition 2.1.4 (Semantics) The labelled transition relation
α

−→ is given by the

rules in Table 2.1. Ommited from Table 2.1 are the symmetric forms of Sum-L, Par-

L, Com-L and Close-L. Let us define the relation
α

=⇒ , with s = α1. . . . αn ∈ Act∗,

as (
τ

−→)∗
α1−→ (

τ
−→)∗ . . . (

τ
−→)∗

αn−→ (
τ

−→)∗. =⇒ is the reflexive and transitive

closure of
τ

−→.
τ̂

=⇒ is =⇒ and
β̂

=⇒ is
β

=⇒.

Some comments on the rules: the side-condition in Rule Par-L rule avoids the

capture of a name by the extrusion of the scope of another name. The Open rule

expresses extrusion of the scope of a name, this action allows the passing of a

name beyond its original scope, its side-condition avoids the execution of an ac-

tion whose subject is a bound-name as it should not interact with other processes

out of the scope of the name. Rule Close-L reflects the interaction between proc-

esses in which the left-process has transmitted a bound name to the right-process,

thus the scope of the restricted name is extended to include the process which

receives it.

Remark 2.1.1 We abbreviate, for any names x, y, the guards x(y) and x̄y by x

and x̄, respectively, where y, is a dummy name: in theses cases the datum which

can be received or sent is irrelevant

Notation 2.1.1 Throughout this dissertation, we use (νa1 . . . an)P as a short

hand for (νa1) . . . (νan)P . We often omit the “0” in α.0.

Now we define ≡ which shall be useful in the dissertation although it is not

included in the semantics:

2.1. THE π-CALCULUS 17

Input x(y).P
xz
−→ P{z/y} where x, y ∈ N

Output x̄y.P
x̄y
−→ P Tau τ.P

τ
−→ P

Sum-L
P

α
−→ P ′

P + Q
α

−→ P ′

Open
P

x̄y
−→ P ′

(νy)P
x̄(y)
−→ P ′

x 6= y Res
P

α
−→ P ′

(νy)P
α

−→ (νy)P ′
y 6∈ n(α)

Par-L
P

α
−→ P ′

P | Q
α

−→ P ′ | Q
bn(α) ∩ fn(Q) = ∅

Com-L
P

x̄y
−→ P ′, Q

xy
−→ Q′

P | Q
τ

−→ P ′ | Q′
Close-L

P
x̄(y)
−→ P ′, Q

xy
−→ Q′

P | Q
τ

−→ (νy)(P ′ | Q′)

Rep-Act
P

α
−→ P ′

!P
α

−→ P ′ | !P

Rep-Comm
P

x̄y
−→ P ′, P

xy
−→ P ′′

!P
τ

−→ (P ′ | P ′′) | !P

Rep-Close
P

x̄(z)
−→ P ′, P

xz
−→ P ′′

!P
τ

−→ ((νz)(P ′ | P ′′)) | !P
z /∈ fn(P)

Table 2.1: Operational semantics for the π-calculus.

Definition 2.1.5 Let ≡ the smallest congruence over processes satisfying α-

equivalence, the commutative monoid laws for composition with 0 as identity,

the replication law !P ≡ P |!P , the restriction laws (νx)0 ≡ 0, (νx)(νy)P ≡

(νy)(νx)P and the extrusion law: (νx)(P | Q) ≡ P | (νx)Q if x ∈ fn(P).

An important property of ≡ is that it respects the transitions of the operational

semantics:

Proposition 2.1.1 (First assertion of Harmony Lemma) [83]

P ≡
α

−→ P ′ implies P
α

−→≡ P ′.

Remark 2.1.2 All the calculi studied in this dissertation are restrictions of the

polyadic π-calculus . The polyadic π-calculus is a natural and convenient exten-

18 CHAPTER 2. PRELIMINARIES

sion of π-calculus where it is admitted processes that pass tuples of names, in this

case the prefixes are x̄~y, x(~z), τ where ~y is a tuple of names. Thus, the π-calculus

and its variant asynchronous π-calculus, described in Section 2.2, calculi where

an interaction involves the transmission of a single name from one process to an-

other, can be seen as restrictions of the polyadic π-calculus where the size of the

tuple is 1 . Similarly, the Calculus of Communicating Systems (CCS), described

in Section 2.3, can be considered a restriction of the polyadic π-calculus where

the size of the tuple is 0.

The definitions and concepts in this Section are extended naturally to them,

subject to the specific features of them.

2.2 The asynchronous π-calculus: Aπ

Communication in π-calculus is considered synchronous. The key property relies

on the fact that the output and the input prefix impose a precedence over the terms

which are underneath such that once a communication involving the output and the

input prefix occurs, the terms which were underneath the prefixes are unguarded

at the same time. This behaviour can be seen as a kind of acknowledgement of

the execution of the communication over the processes involved in it.

Asynchronous π-calculus (Aπ) is a variant of the π-calculus introduced in [47,

15]. In this variant the communication can be as asynchronous, in the sense that

the act of sending a datum and the act of receiving it can be seen as separate, hence

not simultaneous. It is achieved by restricting the term underneath the output

prefix to be 0 (the null process). In this way the kind of acknowledge provided by

the precedence in the output prefix is lost. Moreover, an unguarded occurrence of

x̄y can be thought of as a datum y in an implicit communication medium, tagged

with x to indicate that it is available to any unguarded term of the form x(z).P .

Thus, in the evolution of a term, the datum y can be considered to be sent when x̄y

becomes unguarded, and to be received when x̄y disappears via an internal action.

We consider a version of Aπ without τ and choice as proposed in [47, 15].

In general, the definitions, conventions and notions in Section 2.1 apply to Aπ,

of course taking into account the differences between the π and the Aπ calculi

described previously. However let us see the syntax and semantics for Aπ.

2.3. THE CALCULUS OF COMMUNICATING SYSTEMS 19

Definition 2.2.1 (Syntax) Processes in Aπ-calculus are given respectively by:

P, Q, . . . := 0 x(y).P xy (νx)P P | Q !P (2.2)

Definition 2.2.2 (Semantics) The labelled transition relation
α

−→ is given by the

rules in Table 2.2. Ommited from Table 2.2 are the symmetric forms of Par-L,

Com-L and Close-L.

Input x(y).P
xz
−→ P{z/y} where x, y ∈ N

Output x̄y
x̄y
−→ 0

Open
P

x̄y
−→ P ′

(νy)P
x̄(y)
−→ P ′

x 6= y Res
P

α
−→ P ′

(νy)P
α

−→ (νy)P ′
y 6∈ n(α)

Par-L
P

α
−→ P ′

P | Q
α

−→ P ′ | Q
bn(α) ∩ fn(Q) = ∅

Com-L
P

x̄y
−→ P ′, Q

xy
−→ Q′

P | Q
τ

−→ P ′ | Q′
Close-L

P
x̄(y)
−→ P ′, Q

xy
−→ Q′

P | Q
τ

−→ (νy)(P ′ | Q′)

Rep-Act
P

α
−→ P ′

!P
α

−→ P ′ | !P

Rep-Comm
P

x̄y
−→ P ′, P

xy
−→ P ′′

!P
τ

−→ (P ′ | P ′′) | !P

Rep-Close
P

x̄(z)
−→ P ′, P

xz
−→ P ′′

!P
τ

−→ ((νz)(P ′ | P ′′)) | !P
z /∈ fn(P)

Table 2.2: Operational semantics for the Aπ-calculus.

2.3 The Calculus of Communicating Systems

Undoubtedly CCS [59], a calculus for synchronous communication, remains as

a standard representative of process calculi. In fact, many foundational ideas in

the theory of concurrency have sprung from this calculus. In the following we

20 CHAPTER 2. PRELIMINARIES

shall consider two variants of CCS according to its mechanism to model infinite

behaviour. Hence, first we show the Finite fragment of CCS and the we introduce

the two infinite extensions.

2.3.1 Finite CCS

The finite CCS processes can be obtained as a restriction of the finite processes of

the π-calculus, i.e those π processes without occurrence of a term of the form !P ,

by requiring all inputs and outputs to have empty subjects only. Intuitively, this

means that in CCS there is no sending/receiving of links but synchronisation on

them.

In CCS, the actions are names, co-names and τ and therefore, we shall use

l, l′, . . . to range over names and co-names, where L is the set of names and co-

names. The set of actions Act , ranged over by α and β, extends L with the symbol

τ.

The syntax of finite CCS processes would be the following:

Definition 2.3.1 (Syntax) Processes in finite CCS are given respectively by:

P, Q, . . . := 0 x.P x.P (νx)P P | Q P + Q (2.3)

Definition 2.3.2 (Semantics) The labelled transition relation
α

−→ is given by the

rules in Table 2.3. Ommited from Table 2.3 are the symmetric forms of Par-L,

Com-L and Close-L.

In this document, we consider two variants of CCS which extends the above

syntax to express infinite behaviour in a different way. We describe them next.

2.3.2 Replication: CCS!

As said before, replication is the way of expressing infinite behaviour which has

been used in the π-calculus and the Aπ-calculus. It has also studied in the context

of CCS in [21, 38].

For replication the syntax of finite processes (Table 2.3) is extended as follows:

2.3. THE CALCULUS OF COMMUNICATING SYSTEMS 21

Input x.P
x

−→ P

Output x̄.P
x̄

−→ P Tau τ.P
τ

−→ P

Sum-L
P

α
−→ P ′

P + Q
α

−→ P ′
Res

P
α

−→ P ′

(νy)P
α

−→ (νy)P ′
y 6∈ n(α)

Par-L
P

α
−→ P ′

P | Q
α

−→ P ′ | Q
Com-L

P
x̄

−→ P ′, Q
x

−→ Q′

P | Q
τ

−→ P ′ | Q′

Table 2.3: Operational semantics for the finite CCS.

P, Q, . . . := . . . !P (2.4)

CCS! is the restriction of the π-calculus seen by requiring all inputs and out-

puts to have empty subjects only.

The operational rules for CCS! are those in Table 2.3 plus the following rules:

Rep-Act P
α

−→ P ′

!P
α

−→ P ′ | !P
Rep-Comm P

x̄y
−→ P ′ P

xy
−→ P ′′

!P
τ

−→ P ′ | P ′′ | !P

Table 2.4: Transition Rules for Replication in CCS!

2.3.3 Parametric Definitions: CCS and CCSp

A typical way of specifying infinite behaviour is by using parametric definitions

[61]. In this case we extend the syntax of finite processes (Equation 4.1) as fol-

lows:

P, Q, . . . := . . . A(y1, . . . , yn) (2.5)

22 CHAPTER 2. PRELIMINARIES

Here A(y1, . . . , yn) is an identifier (also call, or invocation) of arity n. We as-

sume that every such an identifier has a unique, possibly recursive, definition

A(x1, . . . , xn)
def
= PA where the xi’s are pairwise distinct, and the intuition is that

A(y1, . . . , yn) behaves as its body PA with each yi replacing the formal parameter

xi. For each A(x1, . . . , xn)
def
= PA, we require fn(PA) ⊆ {x1, . . . , xn}.

Following [38], we should use CCSp to denote the calculus with parametric

definitions with the above syntactic restrictions.

Remark 2.3.1 As shown in [38], however, CCSp is equivalent w.r.t. strong bisim-

ilarity to the standard CCS. We shall then take the liberty of using the terms CCS

and CCSp to denote the calculus with parametric definitions as done in [61].

The rules for CCSp are those in Table 2.3 plus the rule:

CALL
PA[y1, . . . , yn/x1, . . . , xn]

α
−→ P ′

A(y1, . . . , yn)
α

−→ P ′
if A(x1, . . . , xn)

def
= PA (2.6)

As usual P [y1 . . . yn/x1 . . . xn] results from replacing every free occurrence of xi

with yi renaming bound names in P wherever needed to avoid capture.

2.4 Notions and equivalences

The following notions are used in our expressiveness study throughout the thesis.

A central concept is the notion of encoding : A map from the terms of a π-

calculus variant (e.g., CCSp) into the terms of another (e.g., CCS!). The existence

of encodings that satisfy certain properties is typically used as a measure of ex-

pressiveness (see [26, 44, 43, 27, 24, 69]).

We now introduce the process equivalences we will use in the forthcoming

chapters.

2.4.1 Bisimilarity

In Section 4.2.1, we shall make use of the reduction bisimilarity and strong bisim-

ilarity equivalences which preserve convergence.

2.4. NOTIONS AND EQUIVALENCES 23

Definition 2.4.1 (Reduction Bisimilarity) A reduction simulation is a binary re-

lation R satisfying the following: (P, Q) ∈ R implies that:

• if P
τ

−→ P ′ then ∃Q′ : Q
τ

−→ Q′ ∧ (P ′, Q′) ∈ R.

The relation R is a reduction bisimulation iff both R and its converse R−1

are reduction simulations. We say that P and Q are reduction bisimilar, written

P ∼r Q iff (P, Q) ∈ R for some reduction bisimulation R.

Definition 2.4.2 (Strong Bisimilarity) A strong simulation is a binary relation

R satisfying the following: (P, Q) ∈ R implies that:

• if P
α

−→ P ′ then ∃Q′ : Q
α

−→ Q′ ∧ (P ′, Q′) ∈ R.

The relation R is a strong bisimulation iff both R and its converse R−1 are

strong simulations. We say that P and Q are strong bisimilar, written P ∼ Q iff

(P, Q) ∈ R for some strong bisimulation R.

Definition 2.4.3 (Weak Bisimilarity) A (weak) simulation is a binary relation R

satisfying the following: (P, Q) ∈ R implies that:

• if P
s

=⇒ P ′ where s ∈ L∗ then ∃Q′ : Q
s

=⇒ Q′ ∧ (P ′, Q′) ∈ R.

The relation R is a bisimulation iff both R and its converse R−1 are simula-

tions. We say that P and Q are (weak) bisimilar, written P ≈ Q iff (P, Q) ∈ R

for some bisimulation R.

Aπ bisimilarity

Let us now recall some standard process equivalences for the special case of Aπ.

First we recall a basic notion of observation.

Definition 2.4.4 (Barbs) Define P ↓x̄ iff ∃z1, . . . , zn, y, R : P ≡

(νz1)..(νzn)(x̄y | R) and ∀i ∈ [1..n], x 6= zi. Furthermore, P ⇓x̄ iff ∃Q :

P =⇒ Q ↓x̄.

24 CHAPTER 2. PRELIMINARIES

Intuitively, we say that x̄, a barb, can be (strongly) observed at an Aπ process

P , written P ↓x̄, iff P can perform an output on channel x. We also say that x̄ can

be weakly observed at P , written P ⇓x̄ , iff P can perform an output on channel x

after zero or more τ transitions.

We now recall the standard notion of asynchronous barbed bisimilarity.

Definition 2.4.5 (Asynchronous barbed bisimilarity and barbed congruence) [83]

An asynchronous weak barbed bisimulation is a symmetric relation R satisfying

the following: (P, Q) ∈ R implies that:

1. P
τ

−→ P ′ then ∃Q′ : Q =⇒ Q′ ∧ (P ′, Q′) ∈ R.

2. P ↓x̄ then Q ⇓x̄ .

We say that P and Q are asynchronous weak barbed bisimilar, written P
.
≈a Q,

iff (P, Q) ∈ R for some asynchronous weak barbed bisimulation R. Furthermore,

asynchronous weak barbed congruence ≈a is defined as: P ≈a Q iff for every

process context C[·], C[P]
.
≈a C[Q] .

2.4.2 Language and failures equivalences

In Chapters 3 and 4 we shall use the notion of language and failures in order

to measure the expressive power of the calculi. Language notion is particularly

suitable for the Chapter 3 where the comparison involves different computability

models. The notion of failure is central in Chapter 4 as failures equivalence allows

to study and compare different calculi by considering convergence as fundamen-

tal. The notion of language shall used again in Chapter 4 as the directed relation

beween languages and failures, which will be defined formally in 2.4.2 .

Following [9], we say that a process generates a sequence of non-silent actions

s if it can perform the actions of s in a finite maximal sequence of transitions.

More precisely:

Definition 2.4.6 (Sequence and language generation) The process P generates

a sequence s ∈ L∗ if and only if there exists Q such that P
s

=⇒ Q and Q 6
α

−→ for

any α ∈ Act . Define the language of (or generated by) a process P , L(P), as the

2.4. NOTIONS AND EQUIVALENCES 25

set of all sequences P generates. We say that P and Q are language equivalent ,

written P ∼L Q , iff L(P) = L(Q).

The above definition basically states that a sequence is generated when no

transition rules can be applied. It is clearly related to the notion of language

generation of models of computation we are comparing our processes with in this

thesis (see Chapter 3). Namely, formal grammars where a sequence is generated

when no rewriting rules can be applied.

We recall the notion of failure following [60]. We first need the following

notion:

Definition 2.4.7 We say that P is stable iff P 6
τ

−→.

Intuitively we say that a pair 〈e, L〉, with e ∈ L∗ and L ⊆ L, is failure of P

if P can perform e and thereby reach a state in which no further action (including

τ) is possible if the environment will only allow actions in L.

Definition 2.4.8 (Failures) A pair 〈e, L〉, where e ∈ L∗ and L ⊆ L, is a failure

of P iff there is P ′ such that: (1) P
e

=⇒ P ′, (2) P ′ 6
l

−→ for all l ∈ L, and (3) P ′ is

stable.

Define Failures(P) as the set of failures of a process P . We say that P and Q

are failures equivalent , written P ∼F Q iff Failures(P) = Failures(Q).

We recall the notions of convergence and divergence following [21, 22]. Intu-

itively, a process converges if it can reach a stable process after a sequence of τ

moves. A process is deemed divergent iff it can perform an infinite sequence of τ

moves.

Definition 2.4.9 (Convergence and Divergence) We say that P is convergent,

P ↓ , iff there is a stable process Q such that P (
τ

−→)∗Q. We say that P is di-

vergent, P ↑ , iff P (
τ

−→)ω, i.e., there exists an infinite sequence P = P0
τ

−→ P1
τ

−→ P ↑6 means P is not divergent and P ↓6 , P is not convergent.

We conclude this section by stating relations between the above notions which

we shall use in the rest of the document.

26 CHAPTER 2. PRELIMINARIES

Some Basic Properties of Failures

As said before the suitability of failures in our study mainly relies on its sensitivity

to convergence. The following proposition states it formally.

Proposition 2.4.1 Suppose that P ∼F Q. Then P is convergent iff Q is conver-

gent.

Proof. Suppose as a means of contradiction that P ∼F Q and that either (1) P is

convergent but Q is not, or (2) P is not convergent but Q is. If we assume (1), we

conclude that P has the failure 〈ǫ, ∅〉 which Q does not, a contradiction. The other

case is symmetric. ✷

To justify the rest of the above claim, take P = τ.!a.0 and P ′ =!τ.0. Clearly

P converges but P ′ does not, however they are both language equivalent. Now

take Q = τ.!τ.0 + τ.0 and Q′ =!τ.0. Thus Q converges but Q′ does not. It can be

verified that Q and Q′ are equated by these standard equivalences.

The relation between failures and languages is relevant in Chapter 4, as it fa-

cilitates the comparison between the calculi and it allows to make use of previous

results from the literature.

Now, we show that failures equivalence implies language equivalence.

Proposition 2.4.2 ∼F ⊆ ∼L.

Proof. As a means of contradiction, let us suppose there are two processes P and

Q such that P ∼F Q but P 6∼L Q . So either:

• There exists a string s such that s ∈ L(P) and s /∈ L(Q). From s ∈ L(P)

we have { 〈s, L〉 | L ⊆ L } ⊆ Failures(P). Since s /∈ L(Q) we have the

following two situations:

– There is no R such that Q
s

=⇒ R. In this case then Q has no failure

〈s, L〉 for any L ⊆ L, a contradiction.

– For every R such that Q
s

=⇒ R we have R
α

−→ . Let S be { α | ∃R :

Q
s

=⇒ R and R
α

−→ }. Clearly 〈s, S〉 is not a failure of Q but is failure

of P , a contradiction.

2.4. NOTIONS AND EQUIVALENCES 27

• There exists a string s such that s ∈ L(Q) and s /∈ L(P): Analogous to the

previous one.

✷

The following proposition shall be used to prove the correctness of the encod-

ing studied in Section 4.5 up to ∼F by using the fact that the encoding preserves

strong bisimulation.

Proposition 2.4.3 ∼ ⊆ ∼F .

Proof.

We shall that prove that for two any processes P and Q, if P ∼ Q then

Failures(P) = Failures(Q). Assuming P ∼ Q, we prove Failures(P) ⊆

Failures(Q) and Failures(Q) ⊆ Failures(P) as follows:

• Failures(P) ⊆ Failures(Q) : Let 〈e, L〉 be a failure of P , by Definition

2.4.8 there is P ′ such that P
e

=⇒ P ′, P ′ 6
l

−→ for all l ∈ L, and P ′ 6
τ

−→. As P

∼ Q there is Q′ such that Q
e

=⇒ Q′ where P ′ ∼ Q′. As P ′ ∼ Q′, Q′ 6
l

−→ for

all l ∈ L, and Q′ 6
τ

−→, therefore 〈e, L〉 ∈ Failures(Q) by Definition 2.4.8.

• Failures(Q) ⊆ Failures(P): Analogous to the previous one.

✷

2.4.3 Testing semantics

In Chapter 5, we shall use Testing semantics, a well-known framework sensitive

to divergence, to measure the expressiveness of Aπ and its semi-persistent subcal-

culi. Testing semantics shed light on the expressiveness gap between Aπ and its

fragments when divergence is taken into account.

In [65] De Nicola and Hennessy propose a framework for defining pre-orders

that is widely acknowledged as a realistic scenario for system testing. It means

to define formally when one process is a correct implementation of another con-

sidering specially unsafe contexts, in which is particularly important what is the

revealed information of the process in any context or test. In this section we sum-

marize the basic definitions behind the testing machinery for the π-calculi.

28 CHAPTER 2. PRELIMINARIES

Definition 2.4.10 (Observers) - The set of names N is extended as N ′ =

N ∪ {ω} with ω 6∈ N . By convention we let fn(ω) = {ω} and bn(ω) = ∅

(ω is used to report success).

- The set O (ranged over by o, o′, o′′, E, E ′, . . .) of observers (tests) is defined

by following the syntax of the corresponding calculus, where the grammar

is extended with the production P := ω.P .

-
ω

−→ is the least predicate overO satisfying the inference rules in Table 2.5.

Omega ω.E
ω

−→ Res
E

ω
−→

(νy)E
ω

−→

Par
E1

ω
−→

E1 | E2
ω

−→
Cong

E ′ ω
−→ E ′ ≡ E

E
ω

−→

Table 2.5: Predicate
ω

−→ .

Definition 2.4.11 (Maximal computations) Given a process P and o ∈ O, a

maximal computation from P | o is either an infinite sequence of the form

P | o = E0
τ

−→ E1
τ

−→ E2
τ

−→ . . .

or a finite sequence of the form

P | o = E0
τ

−→ E1
τ

−→ . . .
τ

−→ En 6
τ

−→ .

Definition 2.4.12 (May, must and fair relations1) Given a process P and o ∈

O, define:

- P may o if and only if there is a maximal computation (as in Def. 2.4.11) such

that Ei
ω

−→, for some i ≥ 0;

- P must o if and only if for every maximal computation (as in Def. 2.4.11) there

exists i ≥ 0 such that Ei
ω

−→;

- P fair o [17] if and only if for every maximal computation (as in Def. 2.4.11)

and ∀i ≥ 0, ∃ E ′
i such that Ei =⇒ E ′

i and E ′
i

ω
−→.

2.5. PETRI NETS 29

Correctness wrt testing: Concerning semantic correctness, we consider preser-

vation of sat testing, where sat can be respectively may, must and fair . Given an

encoding e = [[·]] from Aπ into some Aπ variant, we assume that its lifted version

e′ from the set of observers of π to the ones of P is an encoding satisfying the

following: e′(o) = e(o), in the case o has no occurrences of ω.

Definition 2.4.13 (Soundness, completeness and sat-preservation) We say

that [[·]] is:

- sound w.r.t. sat iff ∀ P ∈ Aπ, ∀ o ∈ O, [[P]] sat [[o]] implies P sat o;

- complete w.r.t. sat iff ∀ P ∈ Aπ, ∀ o ∈ O, P sat o implies [[P]] sat [[o]];

-sat-preserving iff [[·]] is sound and complete w.r.t.sat. Hence we have the definitions

of may , must and fair -preserving.

2.5 Petri Nets

We shall use some decidability results from one of the most representative models

for concurrent behaviour: Petri Nets [81]. The Petri net theory is a generalization

of the theory of automata to allow for the occurrence of several actions (state-

transitions) independently.

A Petri net is a graph in which the nodes represent transitions (i.e. discrete

events that may occur, signified by bars), places (i.e. conditions, signified by cir-

cles), and directed arcs (that describe which places are pre- and/or postconditions

for which transitions, signified by arrows). More precisely,

Definition 2.5.1 (Petri Nets) A Petri net is a tuple (S, T), where S is a set of

places, T is a set of transitions Mfin(S) × Mfin(S) with Mfin(S) being a finite

multiset of S called a marking.

A transition (c, p) is written in the form c =⇒ p. A transition is enabled at

a marking m if c ⊆ m. The execution of the transition produces the marking m′

= (m \ c) ⊕ p (where \ and ⊕ are the difference and the union operators on

multisets). This is written as m ✄ m′ . If no transition is enable at m we say that

m is a dead marking. A marked Petri net is a tuple (S, T, m0), where (S, T) is a

Petri net and m0 is the initial marking.

30 CHAPTER 2. PRELIMINARIES

A central property we shall use in Chapter 4 is the decidability of the conver-

gence problem for Petri Nets.

Definition 2.5.2 We say that the marked Petri net (S, T, m0) converges iff there

exists a dead marking m′ such that m0(✄)∗m′.

Theorem 2.5.1 [33] The convergence problem for Petri Nets is decidable.

2.6 Random Access Machines RAMs

In Chapters 3 and 4 we will encode Random Access Machines into a certain cal-

culus in order to show that the calculus is Turing-expressive.

A Random Access Machine, RAM [63] M(v0, v1, . . . , vn) is a Turing-

complete computational model which consists of a finite set of registers R1, R2,

. . . holding arbitrary large natural numbers and initialised with the values v0 and

v1, . . . , vn and a program, i.e. a finite sequence of numbered instructions which

modify the registers. There are three types of instructions j : Inst() where j is

the number of the instruction:

• j : Succ(Ri): adds 1 to the content of register Ri and goes to instruction

j + 1;

• j : DecJump(Ri, l): if the content of the register Ri is not zero, then

decreases it by 1 and goes to instruction j+1, otherwise jumps to instruction

l;

• j : Halt: stops computation and returns the value in register R1.

where 1 ≤ i ≤ 2, j, l ≤ n and n is the maximum number of instructions of the

program.

An internal state of the machine is given by a tuple (pi, r1, r2, . . . , rn) where

the program counter pi indicates the next instruction and r1, r2, . . . , rn are the

current contents of the registers. Given a program, its computation proceeds by

executing the instructions as indicated by the program counter. The execution

stops when an instruction number higher than the length of the program is reached,

it is equivalent to reach a Halt instruction.

Part I

31

Chapter 3

CCS! in the Chomsky Hierarchy

A remarkable result in [22] shows that in spite of its being strictly less expressive

than CCS w.r.t. weak bisimilarity, CCS with replication (CCS!) is Turing power-

ful. This is done by encoding Random Access Machines (RAM) in CCS!. The

encoding is said to be non-faithful, in the sense that it may move from a state

which can lead to termination into a non-convergent one which do not correspond

to any configuration of the encoded RAM. I.e., the encoding is not termination

preserving.

In this chapter we study the existence of faithful encodings into CCS! of mod-

els of computability strictly less expressive than Turing Machines. Namely, gra-

mmars of Types 1 (Context Sensitive Languages), 2 (Context Free Languages) and

3 (Regular Languages) in the Chomsky Hierarchy. We provide faithful encodings

of Type 3 grammars. We show that it is impossible to provide a faithful encoding

of Type 2 grammars and that termination-preserving CCS! processes can generate

languages which are not Type 2. We finally show that the languages generated by

termination-preserving CCS! processes are Type 1 .

The classification of the termination-preserving CCS! processes in the Chom-

sky Hierarchy in this chapter was originally published as [7]. In addition to the

work in [7], in this chapter we prove that the set of termination-preserving CCS!

processes is undecidable.

33

34 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

3.1 Introduction

Infinite behaviour is ubiquitous in concurrent systems. Hence, it ought to be rep-

resented by process terms. In the context of CCS we can find at least two repre-

sentations of them: Recursive definitions and Replication.

An interesting result is that in the π-calculus, itself a generalisation of CCS,

parametric recursive definitions can be encoded using replication up to weak

bisimilarity. This is rather surprising since the syntax of !P and its description

are so simple. In fact, in [21] it is stated that in CCS recursive expressions are

more expressive than replication. More precisely, it is shown that it is impossi-

ble to provide a weak-bisimilarity preserving encoding from CCS with recursion,

into the CCS variant in which infinite behaviour is specified only with replication.

From now on we shall use CCS to denote CCS with recursion and CCS! to the

CCS variant with replication.

Now, a remarkable expressiveness result in [22] states that, in spite of its being

less expressive than CCS in the sense mentioned above, CCS! is Turing powerful.

This is done by encoding (Deterministic) Random Access Machines (RAM) in

CCS! . Nevertheless, the encoding is not faithful (or deterministic) in the sense

that, unlike the encoding of RAMs in CCS, it may introduce computations which

do not correspond to the expected behaviour of the modeled machine. Such com-

putations are forced to be infinite and thus regarded as non-halting computations

which are therefore ignored. Only the finite computations correspond to those of

the encoded RAM.

A crucial observation from [22] is that to be able to force wrong computation

to be infinite, the CCS! encoding of a given RAM can, during evolution, move

from a state which may terminate (i.e. weakly terminating state) into one that

cannot terminate (i.e., strongly non-terminating state). In other words, the encod-

ing does not preserve (weak) termination during evolution. It is worth pointing

that since RAMs are deterministic machines, their faithful encoding in CCS given

in [21] does preserve weak termination during evolution. A legitimate question is

therefore: What can be encoded with termination-preserving CCS! processes?

In this chapter, we shall investigate the expressiveness of CCS! processes

which indeed preserve (weak) termination during evolution by studying the ex-

3.1. INTRODUCTION 35

istence of faithful encodings into CCS! of models of computability strictly less

expressive than Turing Machines. This way we disallow the technique used in

[20] to unfaithfully encode RAMs.

Notice that a sequence of actions s (over a finite set of actions) performed by

a process P specifies a sequence of interactions with P ’s environment. For exam-

ple, s = an.b̄n can be used to specify that if P is input n a’s by environment then

P can output n b’s to the environment. We therefore find it natural to study the ex-

pressiveness of processes w.r.t. sequences (or patterns) of interactions (languages)

they can describe. In particular we shall study the expressiveness of CCS! w.r.t.

the existence of termination-preserving encodings of grammars of Types 1 (Con-

text Sensitive grammars), 2 (Context Free grammars) and 3 (Regular grammars) in

the Chomsky Hierarchy whose expressiveness corresponds to (non-deterministic)

Linear-bounded, Pushdown and Finite-State Automata, respectively. As elabo-

rated later in the related work, similar characterizations are stated in the Caucal

hierarchy of transition systems for other process algebras [19].

It is worth noticing that by using the non termination-preserving encoding of

RAM’s in [21] we can encode Type 0 grammars (which correspond to Turing

Machines) in CCS!.

Remark 3.1.1 In this chapter we focus our study on the summation-free CCS!

fragment, in fact, the term CCS! will refer to the summation-free fragment, except

for Section 3.3. Although the work [22] considers guarded-summation for CCS!,

the results about the encodability of RAMs our work builds on can straightfor-

wardly be adapted to our summation-free CCS! fragment. (See Section 3.3).

Remark 3.1.2 In principle the mere fact that a computation model fails to gener-

ate some particular language may not give us a definite answer about its compu-

tation power. For a trivial example, consider a model similar to Turing Machines

except that the machines always print the symbol a on the first cell of the output

tape. The model is essentially Turing powerful but fails to generate b. Neverthe-

less, our restriction to termination-preserving processes is a natural one, much

like restricting non-deterministic models to deterministic ones, meant to rule out

unfaithful encodings of the kind used in [22]. As matter of fact, Type 0 grammars

36 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

can be encoded by using the termination-preserving encoding of RAMs in CCS

[21].

3.1.1 Contributions.

For simplicity, let us use CCS−ω
! to denote the set of CCS! processes which pre-

serve weak termination during evolution as described above. We show that CCS−ω
!

can generate all the regular languages by providing a language preserving en-

coding of Regular grammars into CCS−ω
! (Section 3.5.1) . We also prove that

CCS−ω
! processes can generate languages which cannot be generated by any Reg-

ular grammar by showing a particular process. Our main contribution is to show

that it is impossible to provide language preserving encodings from Context-Free

grammars into CCS−ω
! , it is done by showing that there is particular context-free

languages which can not be generated by any CCS−ω
! process, a family of CCS!

processes, namely trios − processes, is defined for technical reasons (Section

3.5.2). Conversely, we also show that CCS−ω
! can generate languages which can-

not be generated by any Context-free grammar by showing a particular process

(Section 3.5.2). We conclude our classification by conjecturing that all languages

generated by CCS−ω
! processes are context sensitive (Section 3.5.3). These results

are summarized in Fig. 3.1. Additionally, we prove the undecidability of the set

of CCS−ω
! processes.

Outline of this chapter. The rest of this chapter is organized as follows. In

Section 3.2 we discuss how the non-termination us used in CCS! and introduce

formally the notion of termination-preserving process. In Section 3.3 we show

the choice operator is not necessary for the Turing expressiveness of CCS!. In

Section 3.4 we prove that the set of CCS! terminating-processes is undecidable.

In Section 3.5, we present the main results of this chapter, which are summarized

in Fig. 3.1. Finally, in Section 3.6 we conclude by summarising this chapter and

discussing some related work .

3.2. THE ROLE OF STRONG NON-TERMINATION 37

Figure 3.1: Termination-Preserving CCS! Processes (CCS−ω
!) in the Chomsky Hi-

erarchy: the shaded area represents the set of CCS−ω
! processes, an area with

continuous border and name C represents the set of processes whose languages is

C, the area with dotted border represents the conjecture that the CCS−ω
! processes

are context sensitive.

3.2 The Role of Strong Non-Termination

In this section we shall single out the fundamental non-deterministic strategy for

the Turing-expressiveness of CCS!.

First, we need to define strongly (weakly) (non-)termination. As we shall see

below (strong) non-termination plays a fundamental role in the expressiveness of

CCS!. We borrow the following terminology from rewriting systems:

Definition 3.2.1 (Termination) We say that a process P is (weakly) terminating

(or that it can terminate) if and only if there exists a sequence s such that P gene-

rates s. We say that P is (strongly) non-terminating, or that it cannot terminate if

and only if P cannot generate any sequence.

Busi et al. in [22] show the Turing-expressiveness of CCS!, by providing a

CCS! encoding [[·]] of RAMs [63]. The encoding is said to be unfaithful (or non-

deterministic) in the following sense: Given M , during evolution [[M]] may make

a transition, by performing a τ action, from a weakly terminating state (process)

into a state which do not correspond to any configuration of M . Nevertheless such

states are strongly non-terminating processes. Therefore, they may be thought

38 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

of as being configurations which cannot lead to a halting configuration. Conse-

quently, the encoding [[M]] does not preserve (weak) termination during evolution.

Now rather than giving the full encoding of RAMs in CCS!, let us use a much

simpler example which uses the same technique in [22]. Below we encode a

typical context sensitive language in CCS!.

Example 3.2.1 Consider the following processes:

P = (ν k1, k2, k3, ub, uc)(k1 | k2 | Qa | Qb | Qc)

Qa = !k1.a.(k1 | k3 | ub | uc)

Qb = k1.!k3.k2.ub.b.k2

Qc = k2.(!uc.c | ub.DIV)

where DIV =!τ . It can be verified that L(P) = {anbncn}. Intuitively, in the

process P above, Qa performs (a sequence of actions) an for an arbitrary number

n (and also produces n ub’s). Then Qb performs bm for an arbitrary number

m ≤ n and each time it produces b it consumes a ub. Finally, Qc performs cn and

diverges if m < n by checking if there are ub’s that were not consumed.

The Power of Non-Termination. Let us underline the role of strong non-

termination in Example 3.2.1. Consider a run

P
anbm

=⇒ . . .

Observe that the name ub is used in Qc to test if m < n, by checking whether

some ub were left after generating bm. If m < n, the non-terminating process

DIV is triggered and the extended run takes the form

P
anbmcn

=⇒
τ

−→
τ

−→ . . .

. Hence the sequence anbmcn arising from this run (with m < n) is therefore not

included in L(P).

3.2. THE ROLE OF STRONG NON-TERMINATION 39

The tau move. It is crucial to observe that there is a τ transition arising from

the moment in which k2 chooses to synchronise with Qc to start performing the c

actions. One can verify that if m < n then the process just before that τ transition

is weakly terminating while the one just after is strongly non-terminating.

Formally the class of termination-preserving processes is defined as follows.

Definition 3.2.2 (Termination Preservation) A process P is said to be weakly

termination-preserving if and only if whenever P
s

=⇒ Q
τ

−→ R:

• if Q is weakly terminating then R is weakly terminating.

We use CCS−ω
! to denote the set of CCS! processes that are termination-preserving.

(Notice that CCS−ω
! does not denote a sub-calculus of CCS!; it is a semantically,

not syntactically, defined set of processes)

One may wonder why only τ actions are not allowed in Definition 3.2.2 when

moving from a weakly terminating state into a strongly non-terminating one. The

next proposition answers to this.

Proposition 3.2.1 For every P, P ′, α 6= τ if P
α

−→ P ′ and P is weakly terminat-

ing then P ′ must be weakly terminating.

Proof. As a means of contradiction let P ′ be a strongly non-terminating process

such that P
α

−→ P ′ where α 6= τ . Let γ be an arbitrary maximal sequence of

transitions from P. Since P
α

−→ P ′, the action α will be performed in γ as a

visible action or in a synchronisation with its complementary action ᾱ. In the

synchronisation case, one can verify that there exists another maximal sequence

γ′ identical to γ except that in γ′, α and ᾱ appear as visible actions instead of their

corresponding synchronisation. Therefore, there exists a sequence P
t1=⇒ Q

α
−→

R
t2=⇒9 (Fig. 3.2). From P

t1=⇒ Q
α

−→ R and P
α

−→ P ′, we can show that

P
α

−→ P ′ t1=⇒ R
t2=⇒9 (Fig. 3.3) thus contradicting the assumption that P ′ is a

strongly non-terminating process. ✷

We conclude this section with a proposition which relates preservation of ter-

mination and the language of a process.

40 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

Figure 3.2: Alternative evolutions of P involving α

Figure 3.3: Confluence from P to R

Proposition 3.2.2 Suppose that P is terminating-preserving and that L(P) 6= ∅.

For every Q, if P
s

=⇒ Q then ∃s′ such that s.s′ ∈ L(P).

Proof. Let Q an arbitrary process such that P
s

=⇒ Q. Since L(P) 6= ∅ then P is

weakly terminating. From Definition 3.2.2 and Proposition 3.2.1 it follows that Q

is weakly terminating. Hence there exists a sequence s′ such that P
s

=⇒ Q
s′

=⇒

R 9 and thus from Definition 2.4.6 we have s.s′ ∈ L(P) as wanted. ✷

3.3 CCS! without choice

In this section we show that the encoding proposed by Busi et al. in [22] of RAMs

(Random Accesss machines) into CCS! with guarded summation can be easily

adapted to the summation-free fragment.

First, let us recall the encoding of RAMs into CCS! with guarded summation

proposed in [22]. Hence the encoding of the instructions and of a register rj

3.3. CCS! WITHOUT CHOICE 41

storing the value cj is:

J(i : Succ(rj)K = !pi.(incj | inc.pi+1)

J(i : DecJump(rj, s)K = !pi.(decj | (dec.pi+1 + zero.ps))

J(rj : cj)K = nrj |

!nrj.(ν m, i, d, u)(outm | !m.(incj.i + decj.d) |

!i.(m | inc | u | d.u.(m | dec)) |

d.(zero | u.DIV | nrj) |
∏

cj
(u | d.u.(m | dec)))

where DIV is a process able to activate an infinite observable computation, for

instance w′ | !w′.w′.

Along the computation, some “garbage process” can appear:

Gj : (ν m, i, d, u)(!m.(incj.i + decj.d) | !i.(m | inc | u | d.u.dec) | u.DIV)

Definition 3.3.1 [22] Let R be a RAM with program instructions (1 :

I1), . . . , (m : Im) and registers r1, . . . , rn. Given the configuration (i, c1, . . . , cn)

of R, we define

J(i, c1 . . . cn)KR =(ν p1 . . . pm, nr1, inc1, dec1 . . . nrn, incn, decn, inc, dec, zero)

(p1 | [[(1 : I1)]] | . . . | [[(m : Im)]] |
∏

i∈TI

pi.w |

[[r1 = c1]] | . . . | [[rn = cn]] |
∏

k1

G1 | . . . |
∏

kn

Gn)

where the modelling of program instructions [[(i : Ii)]], the modelling of registers

[[rj = cj]], the set of terminating indexes TI, and the garbage G1, . . . , Gn have

been defined above, and k1 . . . kn are natural numbers.

We recall the following theorem from [22] where the correctness of the encod-

ing is established.

Theorem 3.3.1 [22] Let R be a RAM with program (1 : I1), . . . , (m : Im)

and state (i, c1, . . . , cn) and let the process P be in [[(i, c1, . . . , cn]]R. Then

42 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

(i, c1, . . . , cn) terminates if and only if P converges. Moreover P converges if

and only if P ≈ τ.P + w.

This proves that convergence and weak bisimulation are undecidable for CCS!

with guarded summation.

If we consider the CCS! fragment without choice it is still possible to adapt

the encoding proposed in [22] to our language:

J(i : Succ(rj)Km = J(i : Succ(rj)K

J(i : DecJump(rj, s)Km = !pi.(decj | (〈〈dec.pi+1 + zero.ps〉〉))

〈〈dec.pi+1 + zero.ps〉〉 := (ν lvd, lvz)(dec.(pi+1 | lvz | lvd.DIV) |

zero.(ps | lvd | lvz.DIV))

J(rj : cj)Km = nrj |

!nrj.(ν m, i, d, u)(m | !m.〈〈(incj.i + decj.d)〉〉 |

!i.(m | inc | u | d.u.(m | dec)) |

d.(zero | u.DIV | nrj) |
∏

cj
(u | d.u.(m | dec)))

〈〈incj.i + decj.d〉〉 := (ν lvd, lvi)(incj.(i | lvd | lvi.DIV) |

decj.(d | lvi | lvd.DIV))

Where DIV is a process able to activate an infinite observable computation, in

particular we define DIV as w′ | !w′.w′.

The translation of choice in both 〈〈dec.pi+1 + zero.ps〉〉 and 〈〈incj.i + decj.d〉〉

introduces more computations which do not follow the expected behaviour of the

modeled RAM . However these computations are also infinite. Intuitively, once

the choice has been done, e.g. inc (zero) or dec can still participate in the com-

putation as they are in parallel, in this case the local variables lvd, lvi(lvz) trigger

divergence, ensuring that the computation cannot terminate.

In this way, Definition 3.3.1 and Theorem 3.3.1 can be adapted to CCS! with-

out choice. Given an initial configuration (1, 0, . . . , 0) of a RAM, it is possible

to provide an encoding [[(1, 0, . . . , 0)]]Rm
similar to the one of the Definition 3.3.1

but using [[·]]m. Clearly, (i, 0, . . . , 0) terminates if and only if [[(1, 0, . . . , 0)]]Rm

converges and [[(1, 0, . . . , 0)]]Rm
converges if and only if [[(1, 0, . . . , 0)]]Rm

≈ τ

[[(1, 0, . . . , 0)]]Rm
+w. Therefore convergence and weak bisimulation are unde-

3.4. UNDECIDABILITY RESULTS FOR CCS−ω
! 43

cidable for CCS! without choice.

From now on the term CCS! will refer to the CCS! variant without choice.

3.4 Undecidability results for CCS−ω
!

A relevant question is whether a CCS! process preserves termination or not. In

this section, we prove that this problem is undecidable. Recall that CCS−ω
! is not

a new language but a set of CCS! processes which satisfy a semantic property:

termination-preserving. In Chapter 4, we study the expressive power of syntactic

fragments of CCS!.

Lemma 3.4.1 Let P be a CCS! process, if L(P) = ∅ then P is termination-

preserving.

Proof. Let first observe that by definition L(P) = ∅ iff P is not weakly ter-

minating. As a mean of contradiction, let L(P) = ∅ and P be non-termination

preserving, since P is not termination-preserving then P
s

=⇒ Q
τ

−→ R such that

Q is weakly terminating and R is non-weakly terminating. Therefore Q recog-

nises at least one sequence and consequently also P . As P recognises at least one

sequence, L(P) 6= ∅, a contradiction. ✷

Notice that the notion of weakly termination and convergence are not the

same, as the first one takes into account the visible actions whereas the sec-

ond one not. For example !a is not weakly terminating but it is convergent,

and (ν a)(a | !a.a | b.a) is not convergent but it is weakly terminating, in fact

L((ν a)(a | !a.a | b.a)) = {b}. However when considering RAMs the two notion

are equivalent, indeed we can prove the following:

Lemma 3.4.2 [[M]]Rm
is weakly terminating iff [[M]]Rm

is convergent.

Proof.

First , let us consider the case if [[M]]Rm
is convergent: from the encoding

construction, then there exists only one maximal finite τ -sequence from [[M]]Rm
.

When this τ computation finishes a terminating instruction of the form pi.w has

been activated. Therefore at the end of the τ computation w is visible. There

44 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

is no further actions later on as w can not synchronise and hence a τ -action can

not arise therefore DIV is not active. As DIV is not active w′ and w′ are not

visible and as only one terminating instruction can be activated there is no other

w visible. Therefore [[M]]Rm

w
=⇒ Q 6

α
=⇒ for any α ∈ Act, there is no other finite

maximal sequence of visible actions from a finite maximal sequence of transitions

of [[M]]Rm
as two w actions can not appear in any sequence and w′ and w only

can appear in infinite τ -sequences. Notice that w, w′ and w′ are the only visible

actions in [[M]]Rm
. We conclude that if [[M]]Rm

is convergent then L([[M]]Rm
) =

{w} hence [[M]]Rm
is weakly terminating.

Conversely if [[M]]Rm
is weakly terminating, there is at least one finite maxi-

mal sequence of visible actions generated from a finite maximal sequence of tran-

sitions of [[M]]Rm
. In fact a finite maximal sequence of transitions from [[M]]Rm

only can generate sequences in which one occurrence of w is present and it is

the unique visible action. Let us understand why other sequences from a finite

maximal sequence of transitions from [[M]]Rm
can not be generated:

1. Let us consider a sequence with only τ actions: in this case [[M]]Rm
would

be convergent but [[M]]Rm
would exhibit w as well . Thus a maximal finite

sequence with only τ actions cannot exist.

2. Let us consider a sequence of the form s.w′.s′ or s.w′.s′ where s and s′ ∈

L∗: if w′ or w′ appear in the sequence then DIV is activated therefore there

is a process is of the form Q | !w′.w′ in the computation, hence the process is

non-weakly terminating and a maximal finite sequence with w′ or w′ cannot

exist.

3. Let us consider a sequence of the form s.w.s′ where s and s′ ∈ L∗ such that

|s′| ≥ 1: from item 1 and 2, it is left to study sequences made of only w

actions. But from the encoding construction only one occurrence of w is

visible along any sequence as only one terminating instruction, of the form

pi.w, can be activated. Therefore a sequence with at least two w actions

cannot exist.

Therefore if [[M]]Rm
is weakly terminating then L([[M]]Rm

) = {w}.

3.4. UNDECIDABILITY RESULTS FOR CCS−ω
! 45

Hence we conclude that [[M]]Rm
is weakly terminating iff [[M]]Rm

is conver-

gent.

✷

Lemmas 3.4.1 and 3.4.2 are necessary to prove the following undecidability

result:

Theorem 3.4.1 The property of being termination-preserving is undecidable for

CCS! .

Proof. Let us consider the encoding [[·]]Rm
from RAM into CCS!

1, it suffices to

prove that a RAM M halts iff (ν a)(a | a.[[M]]Rm
| a.DIV) is not terminating

preserving.

First, we prove that (ν a)(a | a.[[M]]Rm
| a.DIV) is not termination preserving

iff [[M]]Rm
is weakly terminating.

If [[M]]Rm
is non-weakly terminating (hence L([[M]]Rm

) = ∅) then

(ν a)(a | a.[[M]]Rm
| a.DIV) is non-weakly terminating (L((ν a)(a | a.[[M]]Rm

|

a.DIV)) = ∅) and therefore by Lemma 3.4.1 (ν a)(a | a.[[M]]Rm
| a.DIV) is

termination-preserving.

On the other hand, if [[M]]Rm
is weakly terminating, then (ν a)(a | a.[[M]]Rm

| a.DIV) is weakly terminating but notice that (ν a) (a | a.[[M]]Rm
| a.DIV)

τ
−→

(ν a)(a.[[M]]Rm
|DIV) where (ν a) (a.[[M]]Rm

|DIV) is non-weakly terminating

therefore (ν a)(a | a.[[M]]Rm
| a.DIV) is not termination preserving .

We have that [[M]]Rm
is weakly terminating iff [[M]]Rm

is convergent by

Lemma 3.4.2 and (ν a)(a | a.[[M]]Rm
| a.DIV) is not termination preserving

iff [[M]]Rm
is weakly terminating. Therefore [[M]]Rm

is convergent iff (ν a)(a |

a.[[M]]Rm
| a.DIV) is not termination preserving. Finally as M halts iff [[M]]Rm

is convergent, we conclude that M halts iff (ν a)(a | a.[[M]]Rm
| a.DIV) is not

termination preserving. ✷

1Recall this is the CCS! variant without choice

46 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

3.5 CCS! and the Chomsky Hierarchy

In this section we study the expressiveness of termination-preserving CCS! proc-

esses in the Chomsky hierarchy. Recall that, in a strictly decreasing expressive

order, Types 0, 1, 2 and 3 in the Chomsky hierarchy correspond, respectively,

to unrestricted-grammars (Turing Machines), Context-Sensitive Grammars (Non-

Deterministic Linear Bounded Automata), Context-Free Grammars (Non-Deter-

ministic PushDown Automata), and Regular Grammars (Finite State Automata).

We assume that the reader is familiar with the notions and notations of formal

grammars. A grammar is a quadruple G = (Σ, N, S, P) where Σ are the terminal

symbols, N the non-terminals, S the initial symbol, P the set of production rules.

The language of (or generated by) a formal grammar G, denoted as L(G), is

defined as all those strings in Σ∗ that can be generated by starting with the start

symbol S and then applying the production rules in P until no more non-terminal

symbols are present.

Notation 3.5.1 In the remainder of this chapter we shall write the summation

P + Q as an abbreviation of the process (ν u)(u | u.P | u.Q).

3.5.1 Encoding Regular Languages

Regular Languages (REG) are those generated by grammars whose production

rules can only be of the form A → a or A → a.B. They can be alternatively

characterised as those recognised by regular expressions which are given by the

following syntax:

e = ∅ | ǫ | a | e1 + e2 | e1.e2 | e∗

where a is a terminal symbol.

Definition 3.5.1 Given a regular expression e, the set of terminal symbols of e is

defined inductively as follows: Symb(∅) = ∅, Symb(ǫ) = ∅, Symb(a) = {a} ,

Symb(e1 + e2) = Symb(e1)∪Symb(e2), Symb(e1.e2) = Symb(e1)∪Symb(e2),

Symb(e∗) = Symb(e).

3.5. CCS! AND THE CHOMSKY HIERARCHY 47

J∅Km = DIV
JǫKm = m
JaKm = a.m

Je1 + e2Km =

Je1Km if L(e2) = ∅

Je2Km if L(e1) = ∅

Je1Km + Je2Km otherwise

Je1.e2Km =

{

DIV if L(e1) = ∅ or L(e2) = ∅

(ν m1)(Je1Km1 | m1.Je2Km) with m1 6∈ Symb(e1) otherwise

Je∗Km =

{

m if L(e) = ∅

(ν m′)(m′ | !m′.JeKm′ | m′.m) with m′ 6∈ Symb(e) otherwise

where DIV =!τ.

Figure 3.4: Encoding of regular expressions

Definition 3.5.2 Given a regular expression e, we define JeK as the CCS! process

(ν m) (JeKm) where JeKm, with m 6∈ Symb(e), is inductively defined as in Figure

3.4.

Remark 3.5.1 The conditionals on language emptiness in Definition 3.5.2 are

needed to make sure that the encoding of regular expressions always produce

termination-preserving processes. To see this consider the case a + ∅. Notice

that while [[a]] = a and [[∅]] = DIV are termination-preserving, a + DIV is not.

Hence [[e1 + e2]] cannot be defined as [[e1]] + [[e2]]. Since the emptiness problem

is decidable for regular expressions, it is clear that given e, [[e]] can be effectively

constructed.

Proposition 3.5.1 Given a regular expression e and JeKm as in Figure 3.4 with

m 6∈ Symb(e). Then L(JeKm) = {s.m|s ∈ L(e)} and JeKm is termination pre-

serving.

Proof. The proof will proceed by induction on the structure of regular expres-

sions.

• if e = ∅: From Figure 3.4 it is straightforward that L(J∅Km) = ∅ and J∅Km

= DIV is trivially termination-preserving.

48 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

• if e = ǫ: From Figure 3.4 it is straightforward that L(JǫKm) = m and JǫKm

= m is trivially termination-preserving.

• if e = a: From Figure 3.4 it is straightforward that L(JaKm) = a.m and

JaKm = a.m is trivially termination-preserving.

• if e = e1 + e2 :

– if L(e2) = ∅ : L(Je1 + e2Km) = L(Je1Km) from Figure 3.4. By in-

ductive hypothesis, L(Je1Km) = {s.m|s ∈ L(e1)} and L(Je1Km) =

{s.m|s ∈ L(e1 + e2)} as L(e1 + e2) = L(e1) when L(e2) = ∅. As

Je1 + e2Km = Je1Km and by inductive hypothesis Je1Km is termination-

preserving then Je1 + e2Km as well.

– if L(e1) = ∅ : L(Je1 + e2Km) = L(Je2Km) from Figure 3.4. By

inductive hypothesis, Je2Km = {s.m|s ∈ L(e2)} and L(Je2Km) =

{s.m|s ∈ L(e1 + e2)} as L(e1 + e2) = L(e2) when L(e1) = ∅. As

Je1 + e2Km = Je2Km and by inductive hypothesis Je2Km is termination-

preserving then Je1 + e2Km as well.

– in other case: L(Je1 + e2Km) = L(Je1Km + Je2Km) from Figure 3.4.

As L(Je1Km + Je2Km) = {s|s ∈ L(Je1Km) or s ∈ L(Je2Km)}

and by inductive hypothesis L(Je1Km) = {s.m| s ∈ L(e1)} and

L(Je2Km) = {s.m|s ∈ L(e2)}, L(Je1 + e2Km) = {s.m| s ∈

L(e1) or s ∈ L(e2)} = {s.m| s ∈ L(e1 + e2)}. As L(Je1Km)6= 0 and

L(Je2Km)6= 0 and by using inductive hypothesis we know that Je1Km

and Je2Km are weakly terminating and termination-preserving. From

Definitions 2.4.6 and 3.2.2 and Proposition 3.2.1, whenever Je1Km
s

=⇒ P , P is weakly-terminating and whenever Je2Km
s

=⇒ P ′, P ′ is

weakly-terminating. From Notation 3.5.1, either Je1Km + Je2Km =

(ν u)(u | u.Je1Km | u.Je2Km)
τ

−→ (ν u)(Je1Km | u.Je2Km) or Je1Km

+ Je2Km
τ

−→ (ν u)(u.Je1Km | Je2Km). As there is no occurrence of

u in (ν u)(Je1Km | u.Je2Km) and (ν u)(u.Je1Km | Je2Km), whenever

Je1Km + Je2Km
s

=⇒ Q, Q is either of the form (ν u)(P | u.Je2Km) or

(ν u)(u.Je1Km | P ′) where (ν u)(P | u.Je2Km) and (ν u)(u.Je1Km | P ′)

are weakly terminating as P and P ′ are weakly terminating because

3.5. CCS! AND THE CHOMSKY HIERARCHY 49

Je1Km
s′

=⇒ P and Je2Km
s′′

=⇒ P ′. From Definition 3.2.2 Je1Km + Je2Km

is termination-preserving.

• if e = e1.e2: L(Je1.e2Km) = L((ν m1)(Je1Km1 | m1.Je2Km)) with m1 6∈

Symb(e1) from Figure 3.4.

– if L(e1) = ∅ or L(e2) = ∅: from the encoding in Figure 3.4 , Je1.e2Km

= DIV , therefore L(Je1.e2Km) = ∅. It is straightforward Je1.e2Km is

termination-preserving.

– If L(e1) 6= ∅ and L(e2) 6= ∅: By inductive hypothesis a sequence s

is in L(e1) iff there exists Q such that Je1Km
s.m
=⇒ Q and Q 6

α
−→ for

any α ∈ Act and a sequence s′ is in L(e2) iff there exists Q′ such that

Je2Km
s′.m
=⇒ Q′ and Q′ 6

α
−→ for any α ∈ Act . Therefore for any s, s′ in

L(e1) and L(e2) respectively there exist Q and Q′ such that Je1.e2Km =

(ν m1)(Je1Km1 | m1.Je2Km)
s.s′.m
=⇒ (ν m1)Q | Q′. where Q 6

α
−→ and Q′

6
α

−→ and therefore (ν m1)Q | Q′ 6
α

−→ for any α ∈ Act. As a consequence,

{s.m|s ∈ L(e1.e2)} ⊆ L(Je1.e2Km). As for the other direction, i.e.

L(Je1.e2Km) ⊆ {s.m|s ∈ L(e1.e2)}, it comes from the fact Je1.e2Km

= (ν m1)(Je1Km1 | m1.Je2Km) cannot generate sequences apart from

{s.m|s ∈ L(e1.e2)}. It is because the restricted name m1 allows to

control that the sequences from Je1Km1 precede the sequences from

Je2Km. By inductive hypothesis Je1Km1 and Je2Km are termination-

preserving and weakly terminating. By Definitions 2.4.6 and 3.2.2 and

Proposition 3.2.1 whenever Je1Km
s

=⇒ P , P is weakly-terminating

and whenever Je2Km
s

=⇒ P ′, P ′ is weakly-terminating. We have

whenever (ν m1)(Je1Km1 | m1.Je2Km)
s

=⇒ Q, Q is either of the form

(ν m1)(P | m1.Je2Km) or (ν m1)(P | P ′) and Je1Km1

s
=⇒ P and Je2Km

s
=⇒ P ′. (ν m1)(P | P ′) is weakly terminating as P and P ′ are

weakly terminating and there is no possible synchronisation between

them which can arise divergent behaviour, (ν m1)(P | m1.Je2Km)

is weakly terminating as P and Je2Km are weakly terminating and

the only synchronisation is on m1 which cannot arise divergent be-

haviour. As whenever (ν m1)(Je1Km1 | m1.Je2Km)
s

=⇒ Q, Q is weakly

50 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

terminating, by using Definition 3.2.2 we have that L(Je1.e2Km) =

(ν m1)(Je1Km1 | m1.Je2Km) is termination-preserving.

• if e = e∗1:

– if L(e1) = ∅: it is trivial (similar to the case if e = ǫ).

– if L(e1) 6= ∅ : then L(e∗1) =
⋃

i≥0 L(ei
1) and

ei
1 =

ǫ if i = 0

e1.e
i−1
1 otherwise

By inductive hypothesis we have that L(Je1Km) = {s.m|s ∈ L(e1} .

We will first prove that {s.m|s ∈ L(e∗1)} ⊆ L(Je∗1Km). Let s ∈ L(e∗1)

by definition s is either ǫ or s ∈ L(en
1) = L(e1.e1

︸ ︷︷ ︸

i times

). For the case

s = ǫ, (ν m′)(m′ | !m′.JeKm′ | m′.m)
τ

−→ (ν m′)(!m′.JeKm′ | m)
m
−→

(ν m′)(!m′.JeKm′) 6
α

−→ for any α ∈ Act. For the case s = s1.s2.sn,

where si ∈ L(e1). By inductive hypothesis, JeKm′
si.m′

=⇒ Q where Q

6
α

−→ for any α ∈ Act. Therefore, (ν m′)(m′ | !m′.JeKm′ | m′.m)
τ

−→

(ν m′)(JeKm′ | !m′.JeKm′ | m′.m)
s1=⇒ (ν m′)(m′ | !m′.JeKm′ | m′.m)

τ
−→ (ν m′)(JeKm′ | !m′.JeKm′ | m′.m)

s2=⇒ (ν m′)(m′ | !m′.JeKm′ |

m′.m) . . .
sn=⇒ (ν m′)(m′ | !m′.JeKm′ | m′.m)

τ
−→ (ν m′)(!m′.JeKm′ |

m)
m
−→

τ
−→ (ν m′)(!m′.JeKm′) 6

α
−→ for any α ∈ Act.

As for L(Je∗1Km) ⊆ {s.m|s ∈ L(e∗1)}. Any sequence from

(ν m′)(m′ | !m′.JeKm′ | m′.m) is controlled by the synchronisation

on the bound name m′:

∗ Synchronisation of m′ with m′.m : we have that

(ν m′)(m′ | !m′.JeKm′ | m′.m)
τ

−→ (ν m′)(!m′.JeKm′ | m),

in this case the sequence is m′.

∗ Synchronisation of m′ with !m′.JeKm′ : we have that

(ν m′)(m′ | !m′.JeKm′ | m′.m)
τ

−→ (ν m′)JeKm′ | !m′.JeKm′ |

m′m)
s

=⇒ (ν m′)(m′ | !m′.JeKm′ | m′.m) where s ∈ L(e1), in

this case the sequence is a concatenation of sequences of L(e1).

3.5. CCS! AND THE CHOMSKY HIERARCHY 51

The concatenation is completed by a synchronisation of m′ with

m′.m and the generation of m, i.e. the sequence generated is of

the form s1.s2.sn.m where si ∈ L(e1).

By inductive hypothesis Je1Km is termination preserving and weakly

terminating (as L(e1) 6= ∅). As the synchronisations on m′ does not in-

troduce divergent behaviour, whenever (ν m′)(m′ | !m′.JeKm′ | m′.m)
s

=⇒ Q, Q is weakly terminating. Finally by Definition 3.2.2 Je∗1Km is

weakly terminating.

✷

The following proposition states the correctness of the encoding.

Proposition 3.5.2 Let [[e]] be as in Definition 3.5.2. We have L(e) = L([[e]]) and

furthermore [[e]] is termination-preserving.

Proof.

L(e) = L([[e]]) is straightforward from Proposition 3.5.1 and the fact that m is

a local name, therefore it is no part of the sequences generated from [[e]] = (ν m)

(JeKm).

If L(e) = ∅, by Proposition 3.5.1 L(JeKm) = ∅ and as m does not participate in

any action from JeKm, L([[e]]) = ∅. By Lemma 3.4.1 [[e]] is termination-preserving.

If L(e) 6= ∅, [[e]] is termination-preserving as the restriction on m only prevents

the action m, it clearly does not introduce divergent behaviour.

✷

From the standard encoding from Type 3 grammars to regular expressions and

the above proposition we obtain the following result.

Theorem 3.5.2 For every Type 3 grammar G, we can construct a termination-

preserving CCS! process PG such that L(G) = L(PG).

Proof. Follows immediately from Proposition 3.5.2 ✷

The converse of the theorem above does not hold; Type 3 grammars are strictly

less expressive.

52 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

Theorem 3.5.3 There exists a termination-preserving CCS! process P such that

L(P) is not Type 3.

Proof. The above statement can be shown by providing a process which generates

the typical anbn context-free language. Namely, let us take

P = (ν k, u)(k | !(k.a.(k | u)) | k.!(u.b)).

One can easily verify that P is termination-preserving and that L(P) = anbn. ✷

3.5.2 Impossibility Result: Context Free Languages

Context-Free Languages (CFL) are those generated by Type 2 grammars: gra-

mmars where every production is of the form A → γ where A is a non-terminal

symbol and γ is a string consisting of terminals and/or non-terminals.

We have already seen that termination-preserving CCS! process can encode a

typical CFL language such as anbn. Nevertheless, we shall show that they cannot

in general encode Type 2 grammars.

The nesting of restriction processes plays a key role in the following results

CCS!.

Definition 3.5.3 The maximal number of nesting of restrictions |P |ν can be in-

ductively given as follows:

|(ν x)P |ν = 1 + |P |ν |P | Q|ν = max(|P |ν , |Q|ν)

|α.P |ν = |!P |ν = |P |ν |0|ν = 0

A very distinctive property of CCS! is that the maximal nesting of restrictions

is invariant during evolution.

Proposition 3.5.3 Let P and Q be CCS! processes. If P
s

=⇒ Q then |P |ν = |Q|ν .

Proof. The proposition can be proved by induction on the reductions steps of the

operational semantics:

3.5. CCS! AND THE CHOMSKY HIERARCHY 53

• ACT
α.P

α
−→ P

: from definition 3.5.3 |α.P |ν = |P |ν .

• RES
P

α
−→ P ′

(ν a)P
α

−→ (ν a)P ′
if α 6∈ {a, a}: by inductive hypothesis we have

that |P |ν = |P ′|ν hence by definition 3.5.3 |(ν a)P |ν = |(ν a)P ′|ν .

• PAR1

P
α

−→ P ′

P | Q
α

−→ P ′ | Q
: by inductive hypothesis we have that |P |ν = |P ′|ν

hence by definition 3.5.3 |P | Q|ν = |P ′ | Q|ν . (Similarly one can prove

rule PAR2)

• COM
P

l
−→ P ′ Q

l
−→ Q′

P | Q
τ

−→ P ′ | Q′
: by inductive hypothesis we have that |P |ν =

|P ′|ν |Q|ν = |Q′|ν and hence by definition 3.5.3 |P | Q|ν = |P ′ | Q′|ν .

• REP
P | !P

α
−→ P ′

!P
α

−→ P ′
: by inductive hypothesis we have that |P | !P |ν = |P ′|ν

hence by definition 3.5.3 |P | !P |ν = max(|P |ν , |!P |ν) but |P |ν = |!P |ν

thus concluding that |!P |ν = |P ′|ν .

✷

Remark 3.5.2 In CCS because of the unfolding of recursive definitions the nest-

ing of restrictions can increase unboundedly during evolution2. E.g., consider

A(a) where A(x)
def
= (ν y)(x.ȳ.R | y.A(x)) (see Section 2.3.3) which has the

following sequence of transitions

A(a)
aaa...
=⇒ (νy)(R | (νy)(R | (νy)(R | . . .)))

Another distinctive property of CCS! is that if a CCS! process can perform a

given action β, it can always do it by performing a number of actions bounded

by a value that depends only on the size of the process. In fact, as stated below,

for a significant class of processes, the bound can be given solely in terms of the

maximal number of nesting of restrictions.

2Also in the π-calculus [83], an extension of CCS! where names are communicated, the nesting

of restrictions can increase during evolution due to its name-extrusion capability.

54 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

Now, the above statement may seem incorrect since as mentioned earlier CCS!

is Turing expressive. One may think that β above could represent a termination

signal in a TM encoding, then it would seem that its presence in a computation

cannot be determined by something bounded by the syntax of the encoding. Ne-

vertheless, recall that the Turing encoding in [22] may wrongly signal β (i.e., even

when the encoded machine does not terminate) but it will diverge afterwards.

Now we introduce some lemmas needed for proving our impossibility results

for CCS! processes.

Trios-Processes For technical reasons we shall work with a family of CCS!

processes, namely trios-processes. These processes can only have prefixes of the

form α.β.γ . The notion of trios was introduced for the π-calculus by Parrow in

[72]. We shall adapt trios and use them as a technical tool for our purposes.

We shall say that a CCS! process T is a trios-process iff all prefixes in T are

trios; i.e., they all have the form α.β.γ and satisfy the following: If α 6= τ then α

is a name bound in T , and similarly if γ 6= τ then γ is a co-name bound in T . For

instance (νl)(τ.τ.l | l.a.τ) is a trios-process. We will view a trio l.β.l as linkable

node with incoming link l from another trio, outgoing link l to another trio, and

contents β.

Interestingly, the family of trios-processes can capture the behaviour of arbi-

trary CCS! processes via the following encoding:

Definition 3.5.4 Given a CCS! process P , [[P]] is the trios-process (ν l)(τ.τ.l |

JP Kl) where JP Kl, with l 6∈ n(P), is inductively defined as follows:

J0Kl = 0

Jα.P Kl = (ν l′)(l.α.l′ | [[P]]l′) where l′ 6∈ n(P)

JP | QKl = (ν l′, l′′)(l.l′.l′′ | [[P]]l′ | [[Q]]l′′) where l′, l′′ 6∈ n(P) ∪ n(Q)

J!P Kl = (ν l′)(!l.l′.l | ![[P]]l′) where l′ 6∈ n(P)

J(ν x)P Kl = (ν x)[[P]]l

Notice that the trios-process [[α.P]]l encodes a process α.P much like a linked

list. Intuitively, the trio l.α.l′ has an outgoing link l to its continuation [[P]]′l and

incoming link l from some previous trio. The other cases can be explained analo-

3.5. CCS! AND THE CHOMSKY HIERARCHY 55

gously. Clearly the encoding introduces additional actions but they are all silent—

i.e., they are synchronisations on the bound names l, l′ and l′′.

Unfortunately the above encoding is not invariant w.r.t. language equivalence

because the replicated trio in J!P Kl introduces divergence. E.g, L((νx)!x) = {ǫ}

but L([[(νx)!x]]) = ∅. It has, however, a pleasant invariant property: weak bisimi-

larity, ≈ .

Now, in order to prove that P ≈ [[P]], we define a bisimulation in which we

need to take care of the processes derivated from [[P]] by internal communications

between non-essential prefixes, i.e. prefixes introduced by the encoding in order to

satisfy the structure of trios-processes. These processes are weak bisimilar to [[P]]

(and therefore to P), They are characterized in the bisimulation by the function

Dl(P).

Proposition 3.5.4 For every CCS! process P , P ≈ [[P]] where [[P]] is the trios-

process constructed from P as in Definition 3.5.4.

Proof.

We establish a weak bisimulation-up to strong bisimulation including

(P, (ν l)(l | JP Kl)), it is enough as [[P]] ≈ (ν l)(l | JP Kl). Let us define the set

of agents Cl(P) associated to P in the bisimulation : Cl(P) = {l | JP Kl} ∪ Dl(P)

where Dl(P) representing processes derivated by non-essential prefixes from [[P]]

is defined as follows:

• Dl(0) = {0}

• Dl(α.Q) = {(ν l′)α.l′|JQKl′} where l′ 6∈ n(Q).

• Dl(Q | R) = {(ν l′, l′′)l′.l′′|JQKl′|JRKl′′} ∪ {(CQ | CR) : CQ ∈

Cl′(Q), CR ∈ Cl′′(R)} where l′, l′′ 6∈ n(P) ∪ n(Q).

• Dl(!P) = {(ν l′, l′′)(!l.l′.l | l′.l | (l |)n | ![[P]]l′ | C1 | C2 | . . . | Cm) : n,m ≥

0, Ci ∈ Cl′(P)} where l′, l′′ 6∈ n(P) ∪ n(Q).

• Dl((ν x)P) = {(ν x)CP : CP ∈ Cl(P)}

56 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

Now we can define the relation S by S = {(P, (ν l)Cl(P))}, one can easily

verify that S is a weak bisimulation up-to strong bisimulation.

✷

Another property of trios is that if a trios-process T can perform an action α,

i.e., T
s.α
=⇒, then T

s′.α
=⇒ where s′ is a sequence of actions whose length bound

can be given solely in terms of |T |ν . This property is not exclusive for these trios-

processes. We shall prove this property for a more general kind of processes that

we call unrestricted trios processes.

We say that a CCS! process T is an unrestricted trios-process iff all prefixes

in T are unrestricted trios; i.e., they all have the form α.β.γ where α, β and γ can

be any (co-)name either free or bound or τ . We also say that a CCS! process T is a

degenerate unrestricted trios-process iff each of the prefixes in T is an unrestricted

trio or is of the form α or α.β where α and β can be any (co-)name either free or

bound or τ . Notice that if P is an unrestricted trios-process then any process Q

such that P
s

=⇒ Q is a degenerate unrestricted trios-process, i.e., an unrestricted

trios-process only can evolve into a degenerate unrestricted trios-process.

Proposition 3.5.5 Let T be an unrestricted trios-process such that T
s·c

=⇒ and

n = |T |ν . There exists a sequence s′, whose length is bounded by 2n+1, such that

T
s′·c
=⇒.

Proof.

We know that there must be a minimum sequence (of visible actions) s′ such

that T
s′·c
=⇒. We can apply in T the replication law (!P ≡ P |!P) repeatedly in

order to unfold a number of (non-replicated) occurrences from every replicated

process (i.e., of the form !Q for some process Q) enough to generate the sequence

s′ · c without using more replicated processes. This means there must be an unre-

stricted trios-process T ′ such that T ≡ T ′, |T |ν = |T ′|ν , T ′ s′·c
=⇒ where s′ · c can

be generated without using any rule involving replication, obviously s′ is also a

minimum sequence (of visible actions) to reach c from T ′.

From the above, w.l.o.g we can restrict ourselves to analyse the generation of

the sequence s′ · c from T ′. Now we will prove that the length of this sequence s′

is bounded by 2n+1 where n = |T |ν = |T ′|ν ; we will do it by using induction on

3.5. CCS! AND THE CHOMSKY HIERARCHY 57

n. We can assume that all the bound names in T ′ are different and that only non-

replicated processes participate in the generation of the sequence s′ · c, therefore

we will only refer to prefixes that are not under the scope of replication:

• If n = 0 (i.e. there is no restricted declarations): We know that c must be

present in some prefix in T ′. As all the prefixes in T ′ are of the form α.β.γ

it is easy to see that the length of s′ is bound by 2 as s′ is minimum and it is

possible to perform the actions of this prefix directly from T ′. Notice that

the length of s′ is 2 when c only appears in prefixes of the form α.β.c where

α and β are not c.

• If n ≥ 1: We know that c must be present in some prefix in T ′. In particular

we know that there is at least one prefix in T ′ that can eventually provide

the occurrence of c in the generation of the sequence s′ · c. This prefix in T ′

can have one of the following forms:

– c.β.γ α.c.γ or α.β.c where α, β, and γ are free (co-) names: As in the

case n = 0 it is easy to see that the length of s′ is bound by 2.

– α.β.c where α and β are bound (co-)names: As this prefix can provide

the occurrence of c necessary to generate the sequence s′ · c from T ′

there must be a degenerate unrestricted trios-process Q resulting from

the evolution of T ′ after generating s′ where the prefix α.β.c or β.c(

if α has been consumed before from α.β.c) can interact with the com-

plementary of α or β respectively. We will consider the case when the

prefix α.β.c (and not β.c) is present in Q. The case of the prefix β.c, as

we will see, is easier. As the prefix α.β.c and a prefix of the form α.P

are present in Q and s′ has been already generated the presence of the

prefix of the form α.P could depend on the generation of the whole

sequence s′, otherwise it would mean that α could be consumed before

generating s′ then there would be a process similar to Q but with β.c.

Therefore we can assume that the generation of the sequence s′ was

necessary for α.P

it is possible that this means that s′ was ge

58 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

and immediately after with the complementary of β, α and β 3.

and other(s) prefix(es) can interact with it

–

The interesting situations happen when c is only present in prefixes where

c is guarded by at least one bound (co-) name, otherwise it is similar to

the case n = 0. From now on (in this case) we assume that c is only

present in T ′ in prefixes where c is guarded by at least one bound (co-) name.

This implies that at least one of these prefixes participates by providing the

occurrence of c for the generation of s′ · c. Let us consider that prefix.

If the prefix is of the form α.c.γ where α is a bound (co-) name, say (l) l,

then we know that there must a process Q such that T ′ s′
=⇒ Q

c
=⇒ where a

prefix of the form l.c.γ and a prefix of the form l.P appears. We also know

that the prefix l.P could not appear before generating s′ (otherwise it would

mean that there would be a process able to generate c before generating the

whole sequence s′.). Therefore s′ is necessarily generated before unguard-

ing l. A crucial observation at this point of the proof is that the actions

necessary to unguard l.P do not depend on the fact that l is a bound name

or not as l. Therefore, even if we take off the restriction declaration of l in

T ′ the same sequence s′ is generated before unguarding l.P , therefore now

l is not under the scope of any restriction declaration. Thus, to calculate the

size of s′ we can consider the case n = 0, i.e. the length of s′ is bound by 2.

If the prefix is of the form α.β.c where α and β are (co-) bound names, we

know that α and β refer to the same bound name, say l, because n = 1. In

this case we consider two possibilities to unguard c according to the number

of additional prefixes to interact with the prefix α.β.c to unguard c.

Let us suppose that this evolves only one additional prefix, then we know

that there must a process Q such that T ′ s′
=⇒ Q

c
=⇒ where a prefix of the

form α.β.c and a prefix of the form α.β.P appears. We also know that

the prefix α.β.P could not appear before generating s′ (otherwise it would

mean that there would be a process able to generate c before generating

3Although α.β.c could interact with α without the preβ could be

3.5. CCS! AND THE CHOMSKY HIERARCHY 59

the whole sequence s′.). Therefore s′ is necessarily generated before un-

guarding α.β.P . We use the crucial observation that the actions necessary

to unguard α.β.P do not depend on the fact that l is a bound name or not.

Therefore, even if we take off the restriction declaration of l in T ′ the same

sequence s′ is generated before unguarding α.β.P , therefore now α.β.P is

not under the scope of any restriction declaration. Thus, to calculate the size

of s′ we can consider the case n = 0, i.e. the length of s′ is bound by 2.

Let us suppose that this evolves two additional prefixes, then we know that

there must a process Q such that T ′ s′
=⇒ Q

c
=⇒ where a prefix of the form

α.β.c, a prefix of the form α.P and a prefix of the form β.P appears. We

also know that both the prefix α.P and the prefix β.P could not appear

before generating s′ (otherwise it would mean that there would be a process

able to generate c before generating the whole sequence s′.). Therefore s′

is necessarily generated before unguarding the prefix α.P and the prefix

β.P . We use the crucial observation that the actions necessary to unguard

the prefix α.P and the prefix β.P do not depend on the fact that l is a bound

name or not. Therefore, even if we take off the restriction declaration of l

in T ′ the same sequence s′ is generated before unguarding l, therefore now

l is not under the scope of any restriction declaration. Thus, to calculate the

size of s′ we can consider the case n = 0 for the both prefixes: α.P and

β.P , i.e. the length of s′ is bound by 4.

• n ≥ 1: We know that c must be present in some non-replicated prefix in

T ′. The interesting situations happen when c is only present in prefixes

where c is guarded by at least one bound (co-) name, otherwise it is similar

to the case n = 0. From now on (in this case) we assume that c is only

present in T ′ in prefixes where c is guarded by at least one bound (co-) name.

This implies that at least one of these prefixes participates by providing the

occurrence of c for the generation of s′ · c. Let us consider that prefix.

If the prefix is of the form α.c.γ where α is a bound (co-) name, say (l) l,

then we know that there must a process Q such that T ′ s′
=⇒ Q

c
=⇒ where a

prefix of the form l.c.γ and a prefix of the form l.P appears. We also know

that the prefix l.P could not appear before generating s′ (otherwise it would

60 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

mean that there would be a process able to generate c before generating the

whole sequence s′.). Therefore s′ is necessarily generated before unguard-

ing l. A crucial observation at this point of the proof is that the actions

necessary to unguard l do not depend on the fact that l is a bound name or

not. Therefore, even if we take off the restriction declaration of l in T ′ the

same sequence s′ is generated before unguarding l, therefore now l is not

under the scope of any restriction declaration. Thus, to calculate the size of

s′ we can consider the case n − 1, i.e. the length of s′ is bound by 2n.

If the prefix is of the form α.β.c where α and β are (co-) bound names, say

l and k. In this case we consider two possibilities to unguard c according to

the number of additional prefixes to interact with the prefix α.β.c to unguard

c.

Let us suppose that this evolves only one additional prefix, then we know

that there must a process Q such that T ′ s′
=⇒ Q

c
=⇒ where a prefix of the

form α.β.c and a prefix of the form α.β.P appears. We also know that

the prefix α.β.P could not appear before generating s′ (otherwise it would

mean that there would be a process able to generate c before generating

the whole sequence s′.). Therefore s′ is necessarily generated before un-

guarding α.β.P . We use the crucial observation that the actions necessary

to unguard α.β.P do not depend on the fact that l, the name associated to

α, is a bound name or not. Therefore, even if we take off the restriction

declaration of l in T ′ the same sequence s′ is generated before unguarding l,

therefore now l is not under the scope of any restriction declaration. Thus,

to calculate the size of s′ we can consider the case n = 0, i.e. the length of

s′ is bound by 2.

Let us suppose that this evolves two additional prefixes, then we know that

there must a process Q such that T ′ s′
=⇒ Q

c
=⇒ where a prefix of the form

α.β.c, a prefix of the form α.P and a prefix of the form β.P appears. We

also know that both the prefix α.P and the prefix β.P could not appear

before generating s′ (otherwise it would mean that there would be a process

able to generate c before generating the whole sequence s′.). Therefore s′

is necessarily generated before unguarding the prefix α.P and the prefix

3.5. CCS! AND THE CHOMSKY HIERARCHY 61

β.P . We use the crucial observation that the actions necessary to unguard

the prefix α.P and the prefix β.P do not depend on the fact that l is a bound

name or not. Therefore, even if we take off the restriction declaration of l

in T ′ the same sequence s′ is generated before unguarding l, therefore now

l is not under the scope of any restriction declaration. Thus, to calculate the

size of s′ we can consider the case n = 0 for the both prefixes: α.P and

β.P , i.e. the length of s′ is bound by 4.

✷

Proposition 3.5.6 Let T be a trios-process such that T
s·β
=⇒. There exists a se-

quence s′, whose length is bounded by a value depending only on |T |ν , such that

T
s′·β
=⇒.

Proof.

Our approach is to consider a minimal sequence of visible actions t =

β1. . . . βm performed by T leading to β (i.e., P
t

=⇒ and βm = β) and analyse

the causal dependencies among the (occurrences of) the actions in this t. Intu-

itively, βj depends on βi if T , while performing t, could not had performed βj

without performing βi first. For example in

T = (νl)(νl′)(νl′′)(τ.a.l | τ.b.l′ | l.l′.l′′ | l′′.c.τ)

β = c, t = abc, we see that c depends on a and b, but b does not depend on a since

T could had performed b before a.

We then consider the unique directed acyclic graph Gt arising from the transi-

tive reduction4 of the partial ordered induced by the dependencies in t. Because t

is minimal, β is the only sink of Gt.

We write βi ❀t βj (βj depends directly on βi) iff Gt has an arc from βi to βj .

The crucial observation from our restrictions over trios is that if βi ❀t βj then

(the trios corresponding to the occurrences of) βi and βj must occur in the scope

of a restriction process Rij in T (or in some evolution of T while generating t).

4The transitive reduction of a binary relation r on X is the smallest relation r′ on X such that

the transitive closure of r′ is the same as the transitive closure of r.

62 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

Take e.g, T = τ.a.τ | (ν l)(τ.b.l | l.c.τ) with t = a.b.c and b ❀ c. Notice that the

trios corresponding to the actions b and c appear within the scope of the restriction

in T .

To give an upper bound on the number of nodes of Gt (i.e., the length of

t), we give an upper bound on its length and maximal in-degree. Take a path

βi1❀tβi2 . . . ❀tβiu of size u in Gt. With the help of the above observation, we

consider sequences of restriction processes Ri1i2Ri2i3 . . . Riu−1iu such that for ev-

ery k < u the actions βik and βik+1
(i.e., the trios where they occur) must be

under the scope of Rikik+1
. Note that any two different restriction processes with

a common trio under their scope (e.g. Ri1i2 and Ri2i3) must be nested, i.e., one

must be under the scope of the other. This induces tree-like nesting among the

elements of the sequence of restrictions. E.g., for the restrictions corresponding

to βi1❀tβi2❀tβi3❀tβi4 we could have a tree-like situation with Ri1i2 and Ri3i4

being under the scope of Ri2i3 and thus inducing a nesting of at least two. Be-

cause of the tree-structure, for a sequence of restriction processes, the number m

of nesting of them should satisfy u ≤ 2m. Since the nesting of restrictions re-

mains invariant during evolution (Proposition 3.5.3) then u ≤ 2|T |ν . Similarly, we

give an upper bound 2|T |ν on the indegree of each node βj of Gt (by considering

sequences Ri1j, . . . , Rimj such that βik ❀ βj , i.e having common trio correspon-

ding to βj under their scope). We then conclude that the number of nodes in Gt is

bounded by 2|T |ν×2|T |ν
. ✷

Main Impossibility Result. We can now prove our main impossibility result.

Theorem 3.5.4 There exists a Type 2 grammar G such that for every termination-

preserving CCS! process P , L(G) 6= L(P).

Proof. It suffices to show that no process in CCS−ω
! can generate the CFL anbnc.

Suppose, as a mean of contradiction, that P is a CCS−ω
! process such that L(P) =

anbnc.

Pick a sequence ρ = P
an

=⇒ Q
bnc
=⇒ T 9 for a sufficiently large n. From

Proposition 3.5.4 we know that for some R, [[P]]
an

=⇒ R
bnc
=⇒ and R ≈ Q . Notice

that R may not be a trios-process as it could contain prefixes of the form β.γ and

3.5. CCS! AND THE CHOMSKY HIERARCHY 63

γ. However, such prefixes into τ.β.γ and τ.τ.γ, we obtain a trios-process R′ such

that R ≈ R′ and |R|ν = |R′|ν . We then have R′ bnc
=⇒ and, by Proposition 3.5.6,

R′ s′·c
=⇒ for some s′ whose length is bounded by a constant k that depends only on

|R′|ν . Therefore, R
s′·c
=⇒ and since R ≈ Q, Q

s′·c
=⇒ D for some D. With the help

of Proposition 3.5.3 and from Definition 3.5.4 it is easy to see that |R′|ν = |R|ν =

|[[P]]|ν ≤ 1 + |P | + |P |ν where |P | is the size of P . Consequently the length

of s′ must be independent of n, and hence for any s′′ ∈ L∗, ans′cs′′ 6∈ L(P).

Nevertheless P
an

=⇒ Q
s′·c
=⇒ D and therefore from Proposition 3.2.2 there must be

at least one string w = ans′cw′ ∈ L(P); a contradiction. ✷

It turns out that the converse of Theorem 3.5.4 also holds: termination-

preserving CCS! processes can generate non CFL’s.

Theorem 3.5.5 There exists a termination-preserving CCS! process P such that

L(P) is not a CFL.

Proof. Take

P = (ν k, u)(k | !k.a.(k | u)) | k.!u.(b | c))

One can verify that P is termination-preserving. Furthermore, L(P) ∩

a∗b∗c∗ = anbncn, hence L(P) is not a CFL since CFL’s are closed under inter-

section with regular languages. ✷

Now, notice that if we allow the use of CCS! processes which are not termina-

tion-preserving, we can generate anbnc straightforwardly by using a process sim-

ilar to that of Example 3.2.1.

Example 3.5.1 Consider the process P below:

P = (ν k1, k2, k3, ub)(k1 | k2 | Qa | Qb | Qc)

Qa = !k1.a.(k1 | k3 | ub)

Qb = k1.!k3.k2.ub.b.k2

Qc = k2.(c | ub.DIV)

where DIV =!τ. One can verify that L(P) = {anbnc}.

64 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

Termination-Preserving CCS. Type 0 grammars can be encoded by using the

termination-preserving encoding of RAMs in CCS given in [21]. However, the

fact that preservation of termination is not as restrictive for CCS as it is for CCS!

can also be illustrated by giving a simple termination-preserving encoding of

Context-Free grammars.

Theorem 3.5.6 For every type 2 grammar G, there exists a termination-preser-

ving CCS process PG, such that L(PG) = L(G).

Proof. For simplicity we restrict ourselves to Type 2 grammars in Chomsky nor-

mal form. All production rules are of the form A → B.C or A → a. We can

encode the productions rules of the form A → B.C as the recursive definition

A(d)
def
= (ν d′)(B(d′) | d′.C(d)) and the terminal production A → a as the defi-

nition A(d)
def
= a.d. Rules with the same head can be dealt using the summation

P + Q. One can verify that, given a Type 2 grammar G, the suggested encoding

generates the same language as G.

Notice, however, that there can be a grammar G with a non-empty language

exhibiting derivations which do not lead to a sequence of terminal (e.g., A →

B.C, A → a, B → b, C → D.C,D → d). The suggested encoding does not

give us a termination-preserving process. However one can show that there exists

another grammar G′, with L(G) = L(G′) whose derivations can always lead to a

final sequence of terminals . The suggested encoding applied to G′ instead, give

us a termination-preserving process. ✷

3.5.3 Inside Context Sensitive Languages (CSL)

Context-Sensitive Languages (CSL) are those generated by Type 1 grammars. We

conjecture that every language generated by a termination-preserving CCS! proc-

ess is context sensitive.

Our conjecture relies on the following claim: suppose that P generates a se-

quence s of size n. We believe that there must be a trace of P that generates s with

a total number of τ actions bounded by kn where k is a constant associated to the

size of P . We think that a constant number of τ actions is enough to produce each

of the symbols in s.

3.6. SUMMARY AND RELATED WORK 65

Now recall that context-sensitive grammars are equivalent to linear bounded

non-deterministic Turing machines. That is a non-deterministic Turing machine

with a tape with only kn cells, where n is the size of the input and k is a constant

associated with the machine. Given P , we can define a non-deterministic machine

which simulates the runs of P using the semantics of CCS! and which uses as

many cells as the total number of performed actions, silent or visible, multiplied

by a constant associated to P . Now, we define the conjecture:

Conjecture 3.5.7 If P is a termination-preserving CCS! process then L(P) is a

context sensitive language.

Notice that from the above conjecture and Theorem 3.5.4, we can conjecture

that the languages generated by termination-preserving CCS! processes form a

proper subset of context sensitive languages.

3.6 Summary and Related Work

In this chapter, we studied the expressiveness of encodings in CCS! that do not

allow unfaithful computations that move from a (weakly) terminating state into

a (strongly) non-terminating state that do not correspond to any configuration of

the encoded process. It is known that only unfaithful encodings, i.e. encodings

with unfaithful computations, can encode Turing Machines into CCS! [22]. We

extended the work in [22] by considering the existence of faithful encodings of

models of computability strictly less expressive than Turing Machines in CCS!.

We proved that CCS! can faithfully encode Regular Languages but it is not po-

ssible to provide a faithful encoding of Context Free Languages. Finally we con-

jectured that languages generated by using only faithful computations are Context

Sensitive.

The closest related work is that in [21, 22] already discussed in Section 3.1.

Furthermore in [21] the authors also provide a discrimination result between CCS!

and CCS by showing that the divergence problem (i.e., given P , whether P has an

infinite sequence of τ moves) is decidable for the former calculus but not for the

latter.

66 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

In [38] Giambiagi et al. study replication and recursion in CCS focusing on the

role of name scoping. In particular they show that CCS! is equivalent to CCS with

recursion with static scoping. The standard CCS in [59] is shown to have dynamic

scoping. A survey on the expressiveness of replication vs recursion is given in [71]

where several decidability results about variants of π, CCS and Ambient calculi

can be found. None of these works study replication with respect to computability

models less expressive than Turing Machines.

In [66] Nielsen et al. showed a separation result between replication and re-

cursion in the context of temporal concurrent constraint programming (tccp) cal-

culi. They show that the calculus with replication is no more expressive than

finite-state automata while that with recursion is Turing Powerful. The semantics

of tccp is rather different from that of CCS. In particular, unlike in CCS, proc-

esses interact via the shared-memory communication model and communication

is asynchronous.

In the context of calculi for security protocols, the work in [49] uses a proc-

ess calculus to analyse the class of ping-pong protocols introduced by Dolev and

Yao. Huttel and Srba show that all nontrivial properties, in particular reachabil-

ity, become undecidable for a very simple recursive variant of the calculus. The

authors then show that the variant with replication renders reachability decidable.

The calculi considered are also different from CCS. For example no restriction is

considered and communication is asynchronous.

There is extensive work in process algebras and rewriting transition systems

providing expressiveness hierarchies similar to that of Chomsky as well as results

closely related to those of formal grammars. For example works involving char-

acterisation of regular expression w.r.t. bisimilarity include [51, 58] and more

recently [10]. An excellent description is provided in [19]. These works do not

deal with replication nor the restriction operator which are fundamental to our

study.

As for future work, we plan to provide a proof for Conjecture 3.5.7 or to find a

counterexample. Moreover a somewhat complementary study to the one carried in

this paper would be to investigate what extension to CCS! is needed for providing

faithful encoding of RAMs. Clearly the extension with recursion does the job but

there may be simpler process constructions from process algebra which also do

3.6. SUMMARY AND RELATED WORK 67

the job.

The classification of CCS−ω
! in the Chomsky Hierarchy presented in this chap-

ter was originally published as [7]. In addition to the work in [7], in this chapter

we proved that the set of CCS−ω
! processes is undecidable.

68 CHAPTER 3. CCS! IN THE CHOMSKY HIERARCHY

Chapter 4

On the Expressive Power of

Restriction and Priorities in CCS

with replication

In the previous chapter, we presented a classification of CCS! variants based on

semantic properties: That of being termination preserving. In this chapter, we

shall provide instead a classification based on syntactic properties. More precisely,

we study the expressive power of restriction and its interplay with replication. We

do this by considering several syntactic variants which differ from each other in

the use of restriction with respect to replication. In particular, we consider three

syntactic variations of CCS! which do not allow the use of an unbounded number

of restrictions: CCS−!ν
! is the fragment of CCS! not allowing restrictions under the

scope of a replication. CCS−ν
! is the restriction-free fragment of CCS!. The third

variant is CCS−!ν
!+pr which extends CCS−!ν

! with Phillips’ priority guards.

We show that the use of unboundedly many restrictions in CCS! is necessary

for obtaining Turing expressiveness in the sense of Busi et al [22]. We do this

by showing that there is no encoding of RAMs into CCS−!ν
! which preserves and

reflects convergence. We also prove that up to failures equivalence, there is no

encoding from CCS! into CCS−!ν
! nor from CCS−!ν

! into CCS−ν
! . As lemmata for

the above results we prove that convergence is decidable for CCS−!ν
! and that

language equivalence is decidable for CCS−ν
! . As corollary it follows that con-

69

70

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

vergence is decidable for restriction-free CCS. Finally, we show the expressive

power of priorities by providing an encoding of RAMs in CCS−!ν
!+pr.

The results in this chapter were published as [8].

4.1 Introduction

Recall that [22] states that, in spite of its being less expressive than CCS, CCS!

is in fact Turing powerful. This is done by encoding Random Access Machines

(RAMs) [63]. The fundamental property of the encoding is that it preserves (and

reflects) convergence; i.e., the RAM converges if and only if its encoding con-

verges.

The CCS! encoding of RAMs in [22] uses an unbounded number of restrictions

arising from having restriction operators under the scope of a replication operator

as for example in !(νx)P . Similarly, the CCS encoding of RAMs in [21] involves

also an unbounded number of restrictions arising from having restrictions under

the scope of recursive expressions as for example in µX.(νx)(P | X). One then

may wonder if the generation of unboundedly many names is necessary for Turing

Expressiveness.

In this chapter we study the expressiveness of restriction and its interplay with

replication. We do this by considering two syntactic fragments of CCS!, namely

CCS−!ν
! and CCS−ν

! which differ from CCS! in the occurrences of restriction under

the scope of replication. These fragments and a variant of CCS!, CCS−!ν
!+pr, as well

as our classification criteria are described and motivated below.

Although different in nature, our work was inspired by the study of de-

cidable classes (wrt satisfiability) of formulae involving the occurrence of ex-

istential quantifiers under the scope of universal quantification. E.g., Skolem

showed that the class of formulae of the form ∀y1 . . . yn∃z1 . . . zmF , where F

is quantifier-free formula, is undecidable while from Gödel we know that its sub-

class ∀y1y2∃z1 . . . zmF is decidable [14].

The CCS! Variants. As explained above CCS! allows processes with restriction

under the scope of replication and hence they can generate an unbounded number

4.1. INTRODUCTION 71

of restricted names. In order to allow only processes with a number of restric-

ted names bounded by their size, we consider two variants of CCS! not allowing

restrictions under the scope of replications.

Definition 4.1.1 (CCS−!ν
! and CCS−ν

!) The processes of CCS−!ν
! are those CCS!

processes which do not have occurrences of a process of the form (νx)P within a

process of the form !R. The processes of CCS−ν
! are those CCS! processes with no

occurrences of processes of the form (νx)P .

To illustrate the expressiveness of CCS−!ν
! take for example

P = (νk)(νu)(k̄ | !(k.a.(k̄ | ū)) | k.!(u.b))

which uses only two restricted names. The reader familiar with CCS can verify

that the set of (maximal) finite sequences of visible actions performed by P cor-

responds to the context-free language anbn. A similar but slightly more complex

example involves a CCS−!ν
! process with only five restricted names whose set of

(maximal) finite sequences of visible actions corresponds to the context-sensitive

language anbncn–see [7].

Now, one may wonder whether a process that uses only a number of restricted

names bounded by its size, can be encoded, perhaps by introducing some addi-

tional non-restricted names, into one which uses none. For this purpose we also

consider CCS−ν
! defined above.

Finally, we may also wonder whether some other natural process construct

can replace the use in CCS! of unboundedly many restrictions in achieving Turing

expressiveness. For this purpose we shall consider a third variant CCS−!ν
!+pr, intro-

duced later on in this chapter, corresponding to CCS−!ν
! extended with Phillips’

priority guards construct [76].

Classifying Criteria. Our main comparison criteria for the above variants are

the decidability of convergence and their relative expressiveness wrt failures equi-

valence [18, 60].

As mentioned before, convergence is a fundamental property of processes and

its preservation and reflection are also fundamental properties of the encoding of

72

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

RAMs in CCS!. Furthermore, we choose it over divergence because the former is

undecidable for CCS! while the latter is already known to be decidable for CCS!.

Failures equivalence is a well-established notion of process equivalence and

we choose it over other equivalences because of its sensitivity to convergence. In

fact unlike failures equivalence, other standard equivalences for observable be-

haviour such as weak bisimilarity, must testing, trace equivalence and language

equivalence may actually equate a convergent process with a non-convergent one.

We already proved this claim about sensitivity to convergence in Section 2.4.2.

4.1.1 Contributions

Our main contributions are the following:

• We show that convergence is decidable for CCS−!ν
! and thus that there is

no (computable) encoding, which preserves and reflects convergence, of

RAMs using only a bounded number of restricted names. We do this by

encoding CCS−!ν
! into Petri Nets. Thus convergence is also decidable for

the fragment of CCS with no restrictions within recursive expressions, here

refered to as CCS−µν , because of the convergence preserving and reflecting

encoding into CCS−!ν
! given in [38] (Section 4.2).

• We show that, up to failures equivalence, CCS! is strictly more expressive

than CCS−!ν
! and, similarly, that CCS−!ν

! is strictly more expressive than

CCS−ν
! . Thus up to failures equivalence, we cannot encode a process with

an unbounded number of restrictions into one with a bounded number of

restrictions, nor one with a bounded number of restrictions into a restriction-

free process. (Section 4.4) .

• We show that priorities confer significant expressive power to CCS−!ν
! , it

is done by showing that adding Phillips’ priority guards to CCS−!ν
! ren-

ders the resulting calculus capable of encoding RAMs. Furthermore, unlike

the encoding into CCS! and just like the encoding into CCS, the encod-

ing of RAMs into CCS−!ν
!+pr preserves and reflects both convergence and di-

vergence. This bears witness to the expressive power of Phillips’ priority

guards (Section 4.6).

4.2. DECIDABILITY OF CONVERGENCE FOR CCS−!ν
! 73

Figure 4.1: A (crossed) arrow from C to C′ represents the (non) existence of an encoding from

C into C′ preserving and reflecting failures equivalence. Convergence is/isn’t decidable for each

C in/outside the inner rectangle. Divergence is/isn’t decidable for each C in/outside the outer

rectangle.

The classification of the various fragments mentioned above are summarized

in Figure 4.1.1. The undecidability of convergence and decidability of divergence

for CCS! as well as the undecidability of both divergence and convergence for

CCS were shown in [21, 22]. The other results are derived from the work here

presented.

Outline of this chapter. The remainder of this chapter is organized as follows.

In Section 4.2 we prove the decidability of convergence for CCS−!ν
! . In Section

4.3 we show that language equivalence is decidable in CCS−ν
! . In Section 4.4

we provide the separation results between CCS! and CCS−!ν
! and between CCS−!ν

!

and CCS−ν
! up to failures equivalence. In Section 4.5 we prove the correctness

of an encoding from CCS−µν into CCS−ν
! up to ∼F . In Section 4.6 we show that

CCS−!ν
! with Phillips’ priority guards is Turing Expressive. In Section 4.7, we

conclude by summarising this chapter and discussing some related work.

4.2 Decidability of Convergence for CCS−!ν
!

In this section we show the decidability of convergence for CCS−!ν
! by a reduction

to the same problem for a fragment of Petri Nets.

74

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

4.2.1 Convergence-invariant properties in fragments of

CCS−!ν
!

We use reduction bisimilarity and strong bisimilarity in order to prove Proposi-

tions 4.2.2 and 4.2.3.

Proposition 4.2.1 Let P and Q be CCS! processes. If P ∼r Q then P converges

if and only if Q converges.

Proof. If P converges, there exists a finite sequence of τ -actions as follows:

P = P1
τ

−→ P2
τ

−→ . . . Pn 6
τ

−→

By Definition 2.4.1, there must be a sequence of τ -actions as follows:

Q = Q1
τ

−→ Q2
τ

−→ . . . Qn

Where Pi ∼r Qi 1 ≤ i ≤ n. As Pn ∼r Qn, Qn 6
τ

−→. Therefore Q is

convergent. ✷

Notice that decidability of convergence for CCS−!ν
! can be reduced to the de-

cidability of convergence for CCS−ν
! .

Proposition 4.2.2 For every P in CCS−!ν
! one can effectively construct a CCS−ν

!

process P ′, such that P converges if only if P ′ converges.

Proof. First α-convert P into a process P ′ so that each bound name in P is re-

placed with a distinct bound name. Then remove from the process P ′ each occur-

rence of a “(νx)”. Let P ′′ be the resulting restriction-free process. As it is known

that α-conversion preserves convergence, it remains to show that P ′ converges if

and only if P ′′ converges. This can be obtained by using Proposition 4.2.1 and

showing that P ′ ∼r P ′′. For this latter one can easily verify that {(Q, f(Q) | Q ∈

CCS−!ν
! with distinct bound names} where f(Q) determines the process after

removing each occurrence of a “(νx)” in the process Q is a reduction bisimula-

tion and that (P ′, P ′′) ∈ {(Q, f(Q) | Q ∈ CCS−!ν
! with distinct bound names}.

✷

4.2. DECIDABILITY OF CONVERGENCE FOR CCS−!ν
! 75

Consequently, in what follows we reduce the convergence problem for CCS−ν
!

to convergence problem in Petri nets.

In order to simplify the reduction to Petri Nets, we shall consider the fragment

CCS−ν
s! of those CCS−ν

! processes in which replication can only be applied to

prefix or summation processses.

Proposition 4.2.3 For every CCS−ν
! process P , one can effectively construct a

CCS−ν
s! process Q such that P converges iff Q converges.

Proof.

In [83] it is shown that for any processes P , Q in the π-calculus (hence in

CCS−ν
!), !!P and !P are strongly bisimilar (!!P ∼ !P), similarly !(P | Q) ∼ !P | !Q

and !0 ∼ 0. From the well-known fact that ∼ is a congruence, systematically we

can replace in any CCS−ν
! process P every occurrence of the form !!R with !R,

!(R|R′) with !R | !R′, and !0 with 0. The resulting CCS−ν
s! process Q is strongly

bisimilar to P , as ∼ preserves convergence then P converges iff Q converges.

✷

4.2.2 The Reduction to Petri Nets

Here we shall provide a (Unlabelled Place/Transition) Petri Net semantics for

CCS−ν
s! which considers only the τ moves. For these Petri Nets convergence is

decidable [33].

Petri nets were already introduced in Chapter 2, however, we find it convenient

to recall the definition here.

Definition 4.2.1 (Petri Nets) A Petri net is a tuple (S, T), where S is a set of

places, T is a set of transitions Mfin(S) × Mfin(S) with Mfin(S) being a finite

multiset of S called a marking.

A transition (c, p) is written in the form c =⇒ p. A transition is enabled at

a marking m if c ⊆ m. The execution of the transition produces the marking m′

= (m \ c) ⊕ p (where \ and ⊕ are the difference and the union operators on

multisets). This is written as m ✄ m′. If no transition is enable at m we say that

76

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

m is a dead marking. A marked Petri net is a tuple (S, T, m0), where (S, T) is a

Petri net and m0 is the initial marking.

We say that the marked Petri net (S, T, m0) converges iff there exists a dead

marking m′ such that m0(✄)∗m′.

Intuitively, we will associate to each CCS−ν
s! process a Petri net so that:

• Places are identified as syntactic components reachable from P ,

• Markings are descriptions of processes reachable from P through τ -actions.

The places and tokens in the marking represent different syntactic compo-

nents and their number of occurrences in the process described.

• Transitions represent the τ -actions enabled to be performed at certain proc-

ess. Input places correspond to the components in the process involved in

the τ -action and Output places are the components to be enabled once the

τ -action has been executed.

Given a Petri net for P the elements of Sub(P) below will be the syntactic

components represented by places in the Petri net.

Definition 4.2.2 Define Sub(P), where P ∈ CCS−ν
s! , as Sub(0) = {0},

Sub(Σi∈IPi) = {Σi∈IPi} ∪ (
⋃

i∈I Sub(Pi)), Sub(α.P) = {α.P} ∪ Sub(P),

Sub(!P) = {!P} ∪ Sub(P) , Sub(P | Q) = Sub(P) ∪ Sub(Q).

Sub(P) denotes the set of all null, replicated, summation, prefix processes

occurring in P. Since a process P may have several parallel occurrences of an

element in Sub(P) we use a multi-set Occur(P) take into account its number of

occurrences.

Definition 4.2.3 (Occurrence) Let P ∈ CCS−ν
s! . The multiset of processes which

occur in P, Occur(P), is given by the following rule: Occur(P) = Occur(Q) ⊕

Occur(R) if P = Q | R else Occur(P) = {P}. Furthermore, we say that Q is

an occurrence of a process P if and only if Q ∈ Occur(P).

4.2. DECIDABILITY OF CONVERGENCE FOR CCS−!ν
! 77

Occur(P) associates to a CCS−ν
s! process P the multiset of its immediate par-

allel components (occurrences) and will be identified as the marking of P in the

Petri net.

We are now ready to define our Petri net encoding of CCS−ν
s! processes.

Definition 4.2.4 (Nets for CCS−ν
s!) Given a CCS−ν

s! process P , we define its

Petri net NP = (S, T) where S = {Q | Q ∈ Sub(P)} and T = T1 ∪ T2

where: T1 = {{Q} =⇒ Occur(Q′)| Q
τ

−→ Q′ where Q ∈ Sub(P)}

and T2 = {{Q, R} =⇒ Occur(Q′) ⊕ Occur(R′)|Q
α

−→ Q′ and R
α

−→

R′ where Q and R ∈ Sub(P)}.

The corresponding marked Petri net is NP (Occur(P)) = (S, T, Occur(P)).

Clearly, given P , NP and its marked one can be effectively constructed.

Roughly speaking, the set of transitions T represents the possible τ moves to

be performed and the initial marking Occur(P) is the one which identifies the

process P . In particular:

• T1 : this type of transition reflects a τ move coming from one of the com-

ponents, it is referred as P , going to the process P ′. Notice as a token

representing P is consumed and the tokens representing P ′, there might be

more than one component, are added, in this way the transition reflects the

evolution from the component P into the process P ′ .

• T2 : this type of transition reflects the τ -actions resulting from the synchro-

nisation of two components P and Q, as a result of the synchronisation the

processes P ′ and Q′ are reached, in this case, a token associated to both P

and another one associated to Q are consumed, the tokens representing P ′

and Q′ are added.

We can now state the correctness of the encoding of CCS−ν
! into Petri nets.

Proposition 4.2.4 Consider two CCS−ν
s! processes P and Q, if P

α
−→ Q then

Sub(Q) ⊆ Sub(P).

78

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

Proof. This proposition can be proven by induction on the depth of the inference

of P
α

−→ P ′. Let P
α

−→ P ′ be the conclusion of the last step in the inference.

We show below some of the cases, the rest of the cases can be proven in a similar

way:

• If P
α

−→ P ′ has been introduced by Rule PAR1 , then P is of the form P =

P1 | P2 and P ′ = P ′
1 | P2: so we know that P1

α
−→ P ′

1. Since Sub(P ′
1 | P2)

= Sub(P ′
1) ∪ Sub(P2) and by induction hypothesis Sub(P ′

1) ⊆ Sub(P1),

then Sub(P ′
1 | P2) ⊆ Sub(P1) ∪ Sub(P2) = Sub(P1 | P2).

• If P
τ

−→ P ′ has been introduced by Rule COM, then P is of the form

P1 | P2 and P ′ = P ′
1 | P ′

2: so we know that P1
l

−→ P ′
1 and P2

l
−→ P ′

2.

Since Sub(P ′
1 | P ′

2) = Sub(P ′
1) ∪ Sub(P ′

2) and by induction hypothe-

sis Sub(P ′
1) ⊆ Sub(P1) and Sub(P ′

2) ⊆ Sub(P2), then Sub(P ′
1 | P ′

2) ⊆

Sub(P1) ∪ Sub(P2) = Sub(P1 | P2).

• if P
τ

−→ P ′ has been introduced by Rule REPL2, then P is of the

form !P1 and P ′ = P2 | P3 | !P1, where P1
l

−→ P2 and R
l

−→ P3:

since Sub(P2 | P3 | !P1) = Sub(P2) ∪ Sub(P3) ∪ Sub(!P1) and by in-

duction hypothesis Sub(P2) ⊆ Sub(P1) and Sub(P3) ⊆ Sub(P1), then

Sub(P2 | P3 | !P1) ⊆ Sub(P1) ∪ Sub(!P1), as Sub(!P1) = {!P1}∪Sub(P1)

therefore Sub(P2 | P3 | !P1) ⊆ Sub(!P1).

✷

From Proposition 4.2.4, we obtain the following helpful corollary.

Corollary 4.2.1 Consider two CCS−ν
s! processes P and Q, if P (

τ
−→)∗ Q then

Sub(Q) ⊆ Sub(P).

Now we shall prove some additional statements.

Proposition 4.2.5 Let us consider two CCS−ν
s! processes P and Q and its corres-

ponding Petri nets NP = (S, T) and NQ = (S ′, T ′) such that P (
τ

−→)∗Q. Then

S ′ ⊆ S and T ′ ⊆ T .

4.2. DECIDABILITY OF CONVERGENCE FOR CCS−!ν
! 79

Proof.

From Corollary 4.2.1 we know that S ′ ⊆ S. By using Definition 4.2.4, we

prove by cases that T ′ ⊆ T . Let t be a transition in T ′ in one of the following

forms:

• t = {R} =⇒ Occur(R′) and R
τ

−→ R′ for some process R ∈ Sub(Q). By

Corollary 4.2.1 we know that Sub(Q) ∈ Sub(P) and by using the definition

of NP there must be a transition in T of the form {R} =⇒ Occur(R′) and

R
τ

−→ R′ for any R ∈ Sub(P), therefore t ∈ T .

• t = {R,S} =⇒ Occur(R′) ⊕ Occur(S ′) and R
α

−→ R′ and S
α

−→ S ′

for two processes R and S ∈ Sub(Q). By Corollary 4.2.1 we know that

Sub(Q) ∈ Sub(P) and by using the definition of NP there must be a tran-

sition in T of the form {R,S} =⇒ Occur(R′) ⊕ Occur(S ′) and R
α

−→ R′

and S
α

−→ S ′ for any two processes R and S ∈ Sub(P), therefore t ∈ T .

Hence T ′ ⊆ T .

✷

Proposition 4.2.6 Let us consider a CCS−ν
s! processes P and its corresponding

Petri net NP = (S, T). If P
τ

−→ Q then Occur(P) ✄ Occur(Q).

Proof.

There are two cases for P
τ

−→ Q :

• P = P1 | P2 . . . | Pj | . . . Pn and Q = P1 | P2 . . . | P ′
j | . . . Pn, where

Pi ∈ Sub(P) ∀ i ∈ {1, . . . , n} and Pj
τ

−→ P ′
j for some j ∈ {1, . . . , n}.

From Definition of NP , there is a transition t = {Pj} =⇒ Occur(P ′
j) as

Pj
τ

−→ P ′
j . As Pj ∈ {P1, . . . , Pn} = Occur(P), t is enabled at the mark-

ing Occur(P). By applying t at Occur(P), the next marking is m′ = (

Occur(P) \ {Pj}) ⊕ {Occur(P ′
j)} = Occur(Q). Therefore, Occur(P) ✄

Occur(Q).

• P = P1 | P2 . . . | Pj | . . . | Pk | . . . Pn and Q =

P1 | P2 . . . | P ′
j | . . . | P ′

k | . . . Pn where Pi ∈ Sub(P) ∀ i ∈

80

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

{1, . . . , n} and Pj
l

−→ P ′
j and Pk

l
−→ P ′

k for some j, k ∈ {1, . . . , n}

where j < k. From Definition of NP , there must be a transition t =

{Pj, Pk} =⇒ Occur(P ′
j) ⊕ Occur(P ′

k) as Pj
l

−→ P ′
j and Pk

l
−→ P ′

k.

As Pj and Pk ∈ {P1, . . . , Pn} = Occur(P), t is enabled at the marking

Occur(P). By applying t at Occur(P), the next marking is m′ = (

Occur(P) \ {Pj, Pk}) ⊕ {Occur(P ′
j)} ⊕ {Occur(P ′

k)} = Occur(Q).

Therefore, Occur(P) ✄ Occur(Q).

✷

Proposition 4.2.7 If m ✄ m′ in a Petri net (S, T), then m ✄ m′ in any petri net

(S ′, T ′) where T ⊆ T ′.

Proof.

If m ✄ m′ in (S,T), then there must be a transition t ∈ T where t = c =⇒ p

where c ⊆ m and the marking m′ = (m \ c) ⊕ p. In any petri net (S ′, T ′) where

T ⊆ T ′, t is enabled if the marking is m, hence the marking m′ can be produced

from m applying t in (S ′, T ′) therefore m ✄ m′.

✷

Proposition 4.2.8 Consider a CCS−ν
s! process P and the corresponding Petri Net

NP = (S, T). We have the following:

1. for any Q such that P (
τ

−→)∗Q, if Q
τ

−→ R then we have Occur(Q) ✄

Occur(R) in NP .

2. for any Q such that P (
τ

−→)∗Q and any marking m in NP , if Occur(Q) ✄

m in NP then there exists a R such that Q
τ

−→ R and m = Occur(R).

Proof.

We divide the proof into two parts according to the items in the proposition:

Proof of Item 1 : Let NQ = (S ′, T ′) be the petri net associated to Q. From

Proposition 4.2.6 and Q
τ

−→ R, we know that Occur(Q) ✄ Occur(R) in NQ.

From Proposition 4.2.5 and P (
τ

−→)∗Q we obtain that T ′ ⊆ T . By using Proposi-

tion 4.2.7 Occur(Q) ✄ Occur(R) in NP .

4.2. DECIDABILITY OF CONVERGENCE FOR CCS−!ν
! 81

Proof of item 2 : If Occur(Q) ✄ m in NP , there must be a transition t in T in

one of the following forms:

• t = {R} =⇒ Occur(R′) and R
τ

−→ R′ for some process

R ∈ Sub(P) where {R} ⊆ Occur(Q) and m = (Occur(Q) \

{R}) ⊕ Occur(R′): As {R} ⊆ Occur(Q), R ∈ Sub(Q) and the

multiset Ocurr(R′) = {R′
1, R

′
2, . . . , R

′
m} for some m where R′

i ∈

Sub(Q) for 1 ≤ i ≤ m. In fact for some m,n Occur(Q) =

{Q1, Q2, . . . , Qj−1, R, Qj+1, . . . , Qn} where Qi ∈ Sub(Q) for 1 ≤ i ≤ n

and m = {Q1, Q2, . . . , Qj−1, R
′
1, R

′
2, . . . , R

′
m, Qj+1, . . . , Qn}, therefore m

= Occur(Q1 | Q2 | . . . | Qj−1 | R′
1 | R′

2 | . . . | R′
m | Qj+1 | . . . | Qn)

and Q = Q1 | Q2 . . . Qj−1 | R | Qj+1 | . . . | Qn
τ

−→

Q1 | Q2 . . . | Qj−1 | R′
1 | R′

2 | . . . | R′
m | Qj+1 | . . . | Qn as R

τ
−→ R′ =

R′
1 | R

′
2 | . . . | R′

m.

• t = {R,S} =⇒ Occur(R′) ⊕ Occur(S ′) and R
α

−→ R′ and S
α

−→ S ′

for some processes R,S ∈ Sub(P) where {R}, {S} ⊆ Occur(Q) and

m = (Occur(Q) \ ({R} ⊕ {S})) ⊕ Occur(R′) ⊕ Occur(S ′): As

{R}, {S} ⊆ Occur(Q), R, S ∈ Sub(Q) and the multiset Ocurr(R′)

= {R′
1, R

′
2, . . . , R

′
l} for some l where R′

i ∈ Sub(Q) for 1 ≤ i ≤ l

and the multiset Ocurr(S ′) = {S ′
1, S

′
2, . . . , S

′
m} for some m where

S ′
i ∈ Sub(Q) for 1 ≤ i ≤ m. In fact for some l, m,n

Occur(Q) = {Q1, Q2, . . . , Qj−1, R, Qj+1, . . . , QS,Qj+1, . . . , Qn}

where Qi ∈ Sub(Q) for 1 ≤ i ≤ n and m =

{Q1, Q2, . . . , Qj−1, R
′
1, R

′
2, . . . , R

′
l, Qj+1, . . . , Qk−1, S

′
1, S

′
2, . . . , S

′
m

, Qk+1, . . . , Qn}, therefore m = Occur(Q1 |Q2 | . . . |Qj−1 |R
′
1 |R

′
2 | . . . |

R′
l | Qj+1 | . . . | Qk−1 | S ′

1 | S ′
2 | . . . | S ′

m | Qk+1 | . . . | Qn) and Q

= Q1 | Q2 . . . Qj−1 | R | Qj+1 | . . . | Qk−1 | S | Qk+1 . . . | Qn
τ

−→

Q1 | Q2 . . . | Qj−1 | R
′
1 | R

′
2 | . . . | R′

l | Qj+1 | . . . | Qk−1 | S
′
1 | S

′
2 | . . . |

S ′
m | Qk+1 | . . . Qn as R

α
−→ R′ = R′

1 | R′
2 | . . . | R′

l and S
α

−→ S ′ =

S ′
1 | S

′
2 | . . . | S ′

m .

✷

From Proposition 4.2.8, we have the following corollary:

82

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

Corollary 4.2.2 Let P , Q be two CCS−ν
s! processes such that P (

τ
−→)∗Q. Then,

Q
τ

−→ if and only if in the corresponding Petri net NP we have Occur(Q)✄.

With the help of the above propositions and corollaries we can now state that

our Petri net encoding preserves and reflects convergence.

Lemma 4.2.1 (Convergence-invariant property) For any CCS−ν
s! process P , P

converges if and only if the Petri net NP converges.

Proof.

• If P is convergent then P (
τ

−→)∗Q where Q 6
τ

−→. From Proposition 4.2.6 and

Corollary 4.2.2, we have Occur(P) ✄ m1 . . . ✄ mn where mn = Occur(Q)

and Occur(Q) is a dead marking. Therefore, NP is convergent.

• If NP is convergent, then Occur(P) ✄ m1 . . . ✄ mn where mn is a dead

marking. From Proposition 4.2.8 there exists a process Q such that mn

= Occur(Q) and P (
τ

−→)∗Q. From Corollary 4.2.2 we know that Q 6
τ

−→,

therefore P is convergent.

✷

Since convergence is decidable for Petri nets [33], we conclude from the above

lemma and our effective construction of Petri Nets that convergence is also decid-

able for CCS−ν
s! . Thus, from Propositions 4.2.2 and 4.2.3, we obtain the following

corollary.

Theorem 4.2.1 Convergence is a decidable property for CCS−!ν
! processes.

4.3 Decidability of Language Equivalence for

CCS−ν
!

We now prove that decidability of language equivalence for CCS−ν
! . The crucial

observation is that up to language equivalence every occurrence of a replicated

process !R in a CCS−ν
! process can be replaced with !τ.0 if R can perform at least

an action, otherwise it can be replaced with 0. More precisely, let P [Q/R] the

process that results from replacing in P every occurrence of R with Q.

4.4. IMPOSSIBILITY RESULTS FOR FAILURE-PRESERVING

ENCODINGS 83

Proposition 4.3.1 Let P be a CCS−ν
! process and suppose that !R occurs in P .

Then L(P) = L(P [Q/!R]) where Q =!τ.0 if there exists α s.t., R
α

−→ else Q = 0.

Given any R in CCS! one can effectively decide whether there exists α such

that R
α

−→, it can be proved by using the fact that the semantics is finitely-

branching. We can then use the above proposition for proving the following state-

ment.

Lemma 4.3.1 Let P be a CCS−ν
! process. One can effectively construct a process

P ′ such that L(P) = L(P ′) and P ′ is either !τ.0 or a replication-free CCS−ν
!

process.

Proof. Notice that we can use systematically Proposition 4.3.1 to transform any

CCS−ν
! process P into an language equivalent process Q whose replicated occur-

rences are all of the form !τ.0. Now a !τ.0 can occur either in a parallel com-

position, a summation or prefix process. Observe that (1) P | !τ.0 ∼L !τ.0, (2)

!τ.0 | P ∼L !τ.0, (3) α.!τ.0 ∼L !τ.0, (4) P+!τ.0 ∼L P , (5) !τ.0 + P ∼L P. One

can apply (1-5) from left to right to systematically transform Q into the process

P ′ as required in the lemma. ✷

From the above lemma, we conclude that every CCS−ν
! process can be effec-

tively transformed into a language equivalent finite-state process. Hence,

Theorem 4.3.1 Given P and Q in CCS−ν
! , the question of whether L(P) = L(Q)

is decidable.

4.4 Impossibility results for failure-preserving en-

codings

In this section, we shall state the impossibility results about the existence of com-

putable encodings from CCS! into CCS−!ν
! and from CCS−!ν

! into CCS−ν
! which

preserve and reflect failures equivalence. The separation results follow from our

previous decidability results and the undecidability results in the literature.

84

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

The non-existence of failure-preserving encoding from CCS! into CCS−!ν
! fol-

lows from Proposition 2.4.1, Theorem 4.2.1 and the undecidability of convergence

for CCS! [22].

Theorem 4.4.1 There is no computable function [[·]] : CCS! → CCS−!ν
! s.t [[P]] ∼F

P .

Proof. As a means of contradiction, let us suppose that there is a computable

encoding [[·]] : CCS! → CCS−!ν
! s.t [[P]] ∼F P . By Proposition 2.4.1, [[P]] is

convergent if and only if P is convergent, from Theorem 4.2.1 and the fact [[·]] is

computable, it is obtained that convergence is decidable for CCS!. However, the

undecidability of convergence for CCS! was shown in [22], a contradiction. ✷

To state the non-existence of failures-preserving encoding from CCS−!ν
! into

CCS−ν
! we appeal to the undecidability of language equivalence for BPP processes

[28, 46]. BPP processes form a subset of restriction-free CCS processes. Now

we can use the encoding of [38] to transform a restriction-free CCS processes

into CCS−!ν
! —the encoding is correct up to failures equivalence, Section 4.5 is

devoted to prove the correctness of this encoding. We can therefore conclude, with

the help of Proposition 2.4.2, that language-equivalence for CCS−!ν
! processes is

undecidable.

Proposition 4.4.1 Given P and Q in CCS−!ν
! , the problem of whether P ∼L Q is

undecidable.

Proof.

As a means of contradiction, let us assume that given two CCS−!ν
! processes

P and Q, the problem of whether P ∼L Q is decidable. Let us consider any

two BPP processes P ′ and Q′. By using the encoding [[·]] of [38] to transform a

restriction-free CCS processes into CCS−!ν
! , we can translate P ′ and Q′ into two

CCS−!ν
! processes JP ′K and JQ′K respectively. By Proposition 2.4.2 and Theorem

4.5.2, it followed that P ′ ∼L JP ′K and Q′ ∼L JQ′K. From the fact that [[·]] is com-

putable, the problem of whether P ′ ∼L Q′ is decidable. However, it contradicts

the undecidability of language equivalence for BPP processes [28, 46]. ✷

4.5. ENCODING FROM CCS−µν INTO CCS−ν
! 85

From the above proposition, the decidability of language equivalence for

CCS−ν
! (Theorem 4.3.1) and Proposition 2.4.2 we can conclude the following.

Theorem 4.4.2 There is no computable function [[·]] : CCS−!ν
! → CCS−ν

! s.t.

[[P]] ∼F P .

Proof. As a means of contradiction, let us suppose that there is a computable

function [[·]] : CCS−!ν
! → CCS−ν

! s.t. [[P]] ∼F P . By Proposition 2.4.2, the

problem of whether two CCS−!ν
! processes P and Q are language equivalent can

be transformed into the problem of whether JP K and JQK are language equivalent.

By Theorem 4.3.1, we obtain that the problem of whether two CCS−!ν
! processes

P and Q are language equivalent is decidable. But it contradicts Proposition 4.4.1.

✷

In the following section we shall show that restriction-free CCS processes can

be translated into CCS−!ν
! reflecting and preserving failures equivalence. In partic-

ular, we use the encoding proposed in [83] to translate π-calculus with recursive

definitions into π-calculus with replication and we show that this is correct up to

failures equivalence.

4.5 Encoding from CCS−µν into CCS−ν
!

In this section we shall show an encoding from CCS without restrictions within

constant definitions, henceforth called CCS−µν , into CCS−!ν
! preserving and re-

flecting failures equivalence. Therefore, BPP , a restriction-free fragment of

CCS, can be translated into ccsrTwo up to failures equivalence. Thus extend-

ing the undecidability of languages equivalence for BPP to CCS−!ν
! . Another

consequence of the correctness of the encoding up to failures equivalence is that

convergence is also decidable for CCS−µν .

Except for not including !P , CCS−µν extends the syntax of CCS! as follows:

P, Q . . . := . . . A (4.1)

86

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

Here A is an constant (also call, or invocation). We assume that every such an

identifier has a unique, possibly recursive, definition A
def
= PA. and the intuition

is that a call A behaves as its body PA. Processes in CCS−µν are those defined by

using the syntax above which do not have occurrences of a process of the form

(νx)P within the body of a constant.

The operational rules for CCS−µν are those in Table 2.3 plus the following

rule:

TR-CONS
PA

α
−→ P ′

A
α

−→ P ′
if A

def
= PA

We make a typical assumption on calls in CCS−µν : they need to be guarded in

the body of constant definitions. We say that an expression is guarded in P if only

if it lies within some sub-expression of P of the form α.Q.

Convention 4.5.1 We shall confine ourselves to CCS−µν processes where all the

calls appearing in the bodies of constant definitions are guarded.

First, we introduce the encoding from CCS−µν into CCS−!ν
! , and then we shall

prove that the encoding preserves and reflects failures equivalence.

4.5.1 The Encoding

The main idea of this encoding is to associate a replicated process !x.P ′ to each

variable definition and any occurrence of the variables in the process term could be

modelled as a name which communicates with its corresponding replicated proc-

ess. To do this, a local name could be helpful to guarantee the proper behaviour.

The encoding is basically the same used in [83].

Definition 4.5.1 Let J·K : CCS−µν −→ CCS−!ν
! be an encoding function that is

homomorphic over all operators in the sub-calculus defining finite behaviour and

is otherwise defined as follows:

JXiKaux = xi.0

JXi
def
= PiKaux = !xi.JPiKaux

4.5. ENCODING FROM CCS−µν INTO CCS−ν
! 87

Where each xi is a fresh name.

Let J·K : CCS−µν −→ CCS−!ν
! be the encoding (main) function which trans-

lates a CCS−µν process P where {Xi
def
= Pi : i = 1, 2, . . . , n} is its corresponding

set of constant definitions, as follows:

JP K = νx1, x2, . . . , xn(JP Kaux | JX1
def
= P1Kaux | . . . | JXn

def
= PnKaux)

In comparing CCS−µν and CCS−!ν
! , we find it convenient to consider another

variant calculus, as an intermediate step, which we call CCS−µν
τ . The syntax of

CCS−µν
τ agrees entirely with CCS−µν . Its transition relation −→τ is obtained by

replacing −→ with −→τ in the rules in Table 2.3 and by adding the following

rule:

TR-APP
A

τ
−→τ PA

if A
def
= PA

Rule TR-APP performs a τ -action when unfolding A’s definition, hence the

sub-index τ .

In order to witness an application of TR-APP, we introduce a relation

−→TR−APP . Define P −→TR−APP Q iff the derivation of P −→τ Q in-

cludes an application of Rule TR-APP. Similarly, we define P −→NTR−APP Q iff

P 6−→TR−APP Q, i.e., the derivation of P −→τ Q does not include applications

of TR-APP.

As CCS−µν
τ can be seen as a restriction of the π-calculus with constants def-

initions, referred πc in [83], by requiring all inputs and outputs to have empty

subjects only and without local names definitions and the encoding above is the

same as the one defined in [83] for translating from πc into π-calculus. The bisim-

ilarity property for the encoding showed in [83] also holds for CCS−µν
τ .

Proposition 4.5.1 [83] For P ∈ CCS−µν
τ we have P ∼ JP K.

As corollary from Proposition 4.5.1 and Proposition 2.4.3 we have the follo-

wing result:

Theorem 4.5.1 Let P be a CCS−µν
τ process, P ∼F JP K.

88

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

It remains to study the relation between CCS−µν and CCS−µν
τ . We shall prove

that a process P in both CCS−µν and CCS−µν
τ has the same failures.

First of all, we shall prove that CCS−µν
τ preserves the failures of the processes

in CCS−µν .

Lemma 4.5.1 For P ∈ CCS−µν , if P
s

=⇒ Q then P
s

=⇒τ Q .

Proof.

By induction on the number of transitions.

✷

Convention 4.5.2 From now on, we shall represent with

P{PA1/A1, PA2/A2, PA3/A3, . . . , PAn
/An} the process resulting after ap-

plying the rule TR − APP to all the unguarded occurrences of the constants

A1, A2, . . . , An in the CCS−µν
τ process P .

The next two lemmas show that a CCS−µν process can be equated to the re-

spective process in CCS−µν
τ once Rule TR-APP has been applied as much as po-

ssible, in thes sense, both perform the same immediate actions.

Lemma 4.5.2 Given a process P ∈ CCS−µν whose constants are A1, A2, . . . , An

, there exists Q such that P
ǫ

=⇒τ Q where Q = P{PA1/A1, . . . , PAn
/An}.

Proof.

It is straightforward from the repetitive application of Rule TR-APP until

reaching a process without unguarded occurrences of the constants. Notice that it

is possible to reach this process as CCS−µν
τ is guarded recursive, i.e., there is no

unguarded occurrences of a constant in the body of the constants.

✷

Lemma 4.5.3 Given a process P ∈ CCS−µν whose constants are

A1, A2, A3, . . . , An, {α | P
α

−→} = {α | P{PA1/A1, . . . , PAn
/An}

α
−→τ}.

4.5. ENCODING FROM CCS−µν INTO CCS−ν
! 89

Proof.

It is straightforward from Rules TR-CONS and TR-APP in CCS−µν and

CCS−µν
τ respectively and the fact that CCS−µν (CCS−µν

τ) is guarded.

✷

From now on, Failuresτ (P) represents the set of failures of a CCS−µν
τ process

P . The failures for CCS−µν
τ are defined in the usual way but using −→τ instead

of −→.

Lemma 4.5.4 Given a process P ∈ CCS−µν , Failures(P) ⊆ Failuresτ (P).

Proof.

Let 〈s, L〉 be a failure in P . By definition of failure, there must be a

process Q whose constants are A1, A2, A3, . . . , An such that P
s

=⇒ Q and

{α | Q
α

−→} ∩ (L ∪ {τ}) = ∅. By Lemmata 4.5.1 and 4.5.2, P
s

=⇒τ Q
ǫ

=⇒τ Q{PA1/A1, . . . , PAn
/An}. Finally considering Lemma 4.5.3, it is clear that

{α | Q{PA1/A1, . . . , PAn
/An}

α
−→τ} ∩ (L ∪ {τ}) = ∅, therefore 〈s, L〉 ∈

Failuresτ (P) as well.

✷

Now, it is left to prove that extending CCS−µν into CCS−µν
τ does not introduce

new failures.

Lemma 4.5.5 Given a process P ∈ CCS−µν , Failuresτ (P) ⊆ Failures(P).

Proof.

Let 〈s, L〉 ∈ Failuresτ (P). By definition of failure, there must be a process Q

such that P
s

=⇒τ Q and {α | Q
α

−→} ∩ (L∪{τ}) = ∅. It is possible to generate

an evolution from P into Q, where P
s

=⇒τ Q, just by reordering the actions

such that a τ -action from Rule TR-APP is to be performed only immediately

before the actions which are enabled once the τ -action has been performed. The

actions which do not depend on τ -actions from the application of Rule TR-APP

are performed at the beginning and the τ -actions involving the application of Rule

TR-APP whose enabled actions are not involved in the evolution are left at the

end. Considering this, the evolution can be seen as follows:

90

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

P (
α

−→NTR−APP)+ τ
−→TR−APP (

α
−→NTR−APP)+ . . .

. . .
τ

−→NTR−APP (
α

−→NTR−APP)+P ′(
τ

−→TR−APP)∗Q

Where
τ

−→TR−APP denotes the τ - action involving the rule TR-APP and Q =

P ′{PA1/A1, . . . , PAn
/An} where A1, A2, A3, . . . , An are the constants in P ′.

It is easy to see that by using Rule TR-CONS instead of the rule TR-APP in

the previous evolution, it is possible to generate an evolution from P into P ′ in

CCS−µν such that P
s

=⇒ P ′. From Q = P ′{PA1/A1, . . . , PAn
/An} and by using

Lemma 4.5.3 we conclude that {α | Q
α

−→} ∩ (L ∪ {τ}) = ∅, hence 〈s, L〉 ∈

Failures(P).

✷

As a direct consequence of the fact that CCS−µν
τ preserves failures-equivalence

and Theorem 4.5.1, it is shown that J·K preserves failures-equivalence .

Theorem 4.5.2 (Encoding preserving failures-equivalence) Let P be a

CCS−µν process, P ∼F JP K.

From the correctness of the encoding up to ∼F we can state the decidability

results for ∼F in CCS−!ν
! and convergence in CCS−µν as follows:

Theorem 4.5.3 ∼F is undecidable in CCS−!ν
! .

Proof. It is straightforward from Theorem 4.5.2 and the fact that failures equiva-

lence is undecidable for CCS−µν , this latter is a consequence of the decidability

of failures equivalence for BPP [48, 52].

✷

By Proposition 2.4.1, Theorem 4.2.1 and Theorem 4.5.2 we obtain the follo-

wing corollary.

Theorem 4.5.4 Convergence is a decidable property for CCS−µν .

4.6. EXPRESSIVENESS OF PRIORITIES 91

4.6 Expressiveness of Priorities

In this section we add Phillips’ priority guards [76] to CCS−!ν
! . We shall refer to

the resulting calculus as CCS−!ν
!+pr. This calculus corresponds to Phillips’ Calculus

of Priority Guards (CPG) with replication rather than recursion and no restrictions

within the scope of replication—hence it cannot use an unbounded number of

restrictions.

We show that CCS−!ν
!+pr turns out to be Turing powerful in the sense of Busi

et al [22] (i.e., preserving and reflecting convergence), thus bearing witness to

computational expressiveness of priority guards. Recall that from the previous

sections CCS!, and even CCS, cannot encode Turing machines, in the sense above,

without using an unbounded number of restrictions (Theorem 4.2.1 and Theorem

4.5.4).

4.6.1 CCS! with priorities

In CPG there are two sets of names: N which corresponds to the set of names used

to represent the visible actions in CCS−!ν
! and a set of priority names U . Each set

has a set of complementary actions : N̄ and Ū , where Std = N ∪ N̄ (the standard

visible actions), Pri = U ∪ Ū (the priority actions), Vis = Std ∪ Pri (the visible

actions), and Act = Vis ∪ τ (all actions). We let a, b, . . . range over N ∪ U ; u, v,

. . . over Pri ; λ, . . . over Vis; and α, β, . . . over Act. Also S, T , . . . range over

finite subsets of Vis , and U , V , . . . over finite subsets of Pri .

The syntax of processes in CCS−!ν
!+pr is like that of CCS−ν

! , except for the sum-

mations which now take the form of priority-guarded summations: Σi∈ISi : αi.Pi

where I and each Si are finite. The meaning of the priority guard S : α is that α

can only be performed if the environment does not offer any action in S̄
⋂

Pri

(see [76] for details).

Labelled Transition and Offers

We recall the set off (P) of “higher priority” actions “offered” by P .

Definition 4.6.1 (Offers) Let P be a CCS−!ν
!+pr process and u ∈ Pri . The relation

92

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

P off u (P offers u) is given by the rules in Table 4.1 . We define off (P) =

{u ∈ Pri : P off u}. Finally, we say that P eschews U iff off (P) ∩ Ū = ∅.

M + S : u.P + N off u if u /∈ S
P off u

P | Q off u

Q off u

P | Q off u
P off u

(νa) P off u
if a 6= name(u)

P off u

!P off u

Table 4.1:

The transitions are conditional on offers from the environment. Intuitively, a

transition of the form P
α

−→U P ′ means that P may perform α as long as the

environment does not offer ū for any u ∈ U (i.e., the environment ”eschews” U).

Example 4.6.1 The transition a : b.P
b

−→{a} P means that a : b.P may perform

b as long as the environment does not offer a. Thus, a : b.P | b.Q could evolve

into P | Q, i.e. a : b.P | b.Q
τ

−→{a} P | Q, however the system a : b.P | b.Q | a

could not evolve into P | Q | a, i.e. a : b.P | b.Q | a 6
τ

−→{a} P | Q | a, as the

presence of a prevents the execution of b and thus the τ -action resulting from (b, b)

communication.

This capability of processes to test the presence or the absence of a channel

ready to be performed will be fundamental to represent the test for zero in the

encoding of RAMs in CCS−!ν
!+pr presented in the next subsection. Transitions are

determined by the rules in Table 4.2.

Convention 4.6.1 We write P
α

−→∅ P ′ as P
α

−→ P ′ (i.e., α is not constrained

on offers from the environment thus corresponding to a standard CCS! transition).

Thus, the notions of divergence and convergence for CCS−!ν
!+pr are obtained as in

Definition 2.4.9 by replacing
τ

−→ with
τ

−→∅.

4.6.2 Encoding RAMs with priorities

Now we shall show that CCS−!ν
!+pr is Turing powerful by providing an encoding

from Random Access Machines into CCS−!ν
!+pr preserving and reflecting divergence

and convergence.

4.6. EXPRESSIVENESS OF PRIORITIES 93

SUM M + S : α.P + N
α

−→S∩Pri P if α ∈ S ∩ Pri

PAR1
P

α
−→U P ′ Q eschews U

P | Q
α

−→U P ′ | Q
PAR2

Q
α

−→U Q′ P eschews U

P | Q
α

−→U P | Q′

REACT
P

λ
−→U1 P ′ Q

λ
−→U2 Q′ P eschews U2 Q eschews U1

P | Q
τ

−→U1∪U2 P ′ | Q′

REP
P | !P

α
−→U P ′

!P
α

−→U P ′

RES
P

α
−→U P ′ if α /∈ {a, a}

(ν a)P
α

−→U−{a,a} (ν a)P ′

SUM
Σi∈Iαi.Pi

aj

−→ Pj

if j ∈ I

Table 4.2: An operational semantics for CCS−!ν
!+pr.

The Encoding. A register rj with value cj (written rj : cj) is modeled by a

corresponding number of processes of the form uj .

J(rj : cj)K =

cj∏

1

uj

The program counter is modeled with the absence of pi (i.e., the action pi

is eschwed by the encoding) indicating that the i-th instruction is the next to be

executed. The initial value of the program counter is 1 so by using
∏m+1

i=2 pi we

indicate the absence of p1.

The increasing instruction is modelled with a process J(i : Succ(rj))K which

is guarded by a τ -action which is only performed when there is an absence of pi.

J(i : Succ(rj))K = !({pi} : τ.(pi | pi+1 | uj))

Once activated, the instruction increases the register rj by offering uj , and

goes to the next instruction by both disallowing the current one by offering pi and

allowing the next one by performing pi+1 so that pi+1 can be consumed.

The decreasing instruction is defined similarly. In addition we consider the

absence of uj to test for zero.

94

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

J(i : DecJump(rj, l))K =!({pi} : uj.(pi | pi+1))|!({pi, uj} : τ.(pi | pl))

The encoding of a RAM is given below.

Definition 4.6.2 Let R be a RAM with program instructions (1 : I1), . . . , (m :

Im) and registers r1, . . . , rn. Given the configuration (i, c1, . . . , cn) we define its

encoding into CCS−!ν
!+pr as:

J(i, c1, . . . , cn)KR = (νp1, . . . , pm+1, u1, . . . , un)(
∏m

j=1J(j : Ij)K |
∏n

j=1J(rj :

cj)K |
∏i−1

j=1 pj |
∏m+1

j=i+1 pj)

In order to prove formally the correctness of the encoding. We will reason up-

to the following structural congruence ≡R used to remove terminated processes

equal to 0 as well as for the reordering of processes in parallel compositions.

Formally, ≡R is the least congruence relation satisfying the following axioms:

P | 0 ≡R P

P | Q ≡R Q | P

P | (Q | R) ≡R (P | Q) | R

It is easy to see that ≡R preserves the operational semantics of CCS−!ν
!+pr up

to strong bisimulation. It is a direct consequence of Lemma 5.3 in [76] where

≡ was proved to respect the transitions of CPG, which uses recursion instead

of replication, and the fact that replication can be encoded by using recursive

definitions up to strong bisimulation.

Corollary 4.6.1 Let P , Q ∈ CCS−!ν
!+pr with P ∼≡R∼ Q. If P

α
−→U P ′ then there

exists Q′ such that Q
α

−→U Q′ and P ′ ∼≡R∼ Q′.

In the rest of this section, we will only focus on computations of τ -actions and

we will say that a computation P1
τ

−→ P2
τ

−→ . . .
τ

−→ Pn[. . .] is deterministic

if there is no other possible computation (of τ -actions) from P1. Notice that this

implies that there is no other possible computation (of τ -actions) from each Pi

where i ≥ 1.

The following proposition shows that the encoding of RAM behaves deter-

ministically.

4.6. EXPRESSIVENESS OF PRIORITIES 95

Proposition 4.6.1 Let R be a RAM with program instructions (1 : I1), . . . , (m :

Im) and registers r1, . . . , rn. Given a configuration (i, c1, . . . , cn) of R, we have

that, if i > m then J(i, c1, . . . , cn)KR is a stable process, otherwise:

1. if (i, c1, . . . , cn) −→R (i′, c′1, . . . , c
′
n) then we have J(i, c1, . . . , cn)KR

τ
−→

+

≡R J(i′, c′1, . . . , c
′
n)KR

2. there exists a non-zero length deterministic computation J(i, c1, . . . , cn)KR
τ

−→ Q1
τ

−→ Q2
τ

−→ . . .
τ

−→ ≡R J(i′, c′1, . . . , c
′
n)KR such that (i, c1, . . . , cn)

−→R (i′, c′1, . . . , c
′
n).

Proof.

It is immediate to see that J(i, c1, . . . , cn)KR is stable if i > m, because all

processes (that compose it by means of parallel) are stuck on inputs or τ -actions

that can not be triggered as they can perform as long as the environment does not

offer pi for some 1 ≤ i ≤ m.

Otherwise, if i ≤ m, let us suppose (i, c1, . . . , cn) −→R (i′, c′1, . . . , c
′
n). We

have two cases:

• If Ii is a Succ(rj) instruction, the process J(i, c1, . . . , cn)KR proceeds de-

terministically by performing a reduction sequence composed of two re-

duction steps that leads to a process which is structurally equivalent to

J(i′, c′1, . . . , c
′
n)KR: the first reduction corresponds to the performing of a

τ -action from J(i : Succ(rj))K, the second one is caused by the synchroni-

sation on pi+1. Thus both statements 1 and 2 are satisfied.

• If Ii is a DecJump(rj, l) instruction, we have two sub-cases depending on

cj = 0 or cj ≥ 0.

– If cj = 0 then J(i, c1, . . . , cn)KR proceeds deterministically by per-

forming a reduction sequence composed of two reduction steps that

leads to a process which is structurally equivalent to J(i′, c′1, . . . , c
′
n)KR:

the first reduction corresponds to the performing of a τ -action from

J(i : DecJump(rj, l))K, the second one is caused by the synchronisa-

tion on pi+1. Thus both statements 1 and 2 are satisfied.

96

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

– If cj > 0 then J(i, c1, . . . , cn)KR proceeds deterministically by per-

forming a reduction sequence composed of two reduction steps that

leads to a process which is structurally equivalent to J(i′, c′1, . . . , c
′
n)KR:

the first reduction is caused by a synchronisation on uj , the second one

by a synchronisation on pi+1.

✷

Theorem 4.6.1 Let R be a RAM with program instructions (1 : I1), . . . , (m : Im)

and registers r1, . . . , rn. Given the initial configuration (i, 0, . . . , 0) of R we have

that R terminates if and only if the process J(1, 0, . . . , 0)KR converges.

Proof.

As a means of contradiction, assume that the RAM computation does not ter-

minate and the corresponding encoding converge. However by using Proposition

4.6.1 (statement 1) it is immediate to see that the encoding has an infinite compu-

tation and by statement 2 we obtain that this computation is the only one possible,

so the encoding of the RAM is not convergent, a contradiction.

Assume now that RAM terminates. By using induction on the length of

the computation of RAM, the statement 1 and the first part of Proposition

4.6.1, we prove that the encoding reaches a process structural congruent to

J(m, c′1, . . . , c
′
n)KR, so this reached process is a stable one. Thus obtaining the

convergence of the encoding.

✷

As the process J(1, 0, . . . , 0)KR generated by the encoding is deterministic, we

have that it converges if and only if it does not diverge (i.e., all computations are

terminating). Henceforth, also divergence is undecidable.

4.7 Summary and Related Work

In this chapter, we studied the expressiveness of restriction and its interplay with

replication in CCS!. We proved that Turing expressiveness in the sense of [22]

is lost when not using restriction under the scope of replication. We also showed

4.7. SUMMARY AND RELATED WORK 97

that even more expressive power is lost when considering only restriction-free

processes. We have proved and/or used the decidability of properties such as con-

vergence, language equivalence and failures equivalence to establish these nega-

tive results. Finally, we showed the expressive power of priorities by providing

an encoding of RAMs in CCS−!ν
!+pr preserving and reflecting convergence and di-

vergence. This implies that CCS−!ν
!+pr can not be encoded into CCS!. Similar to

[21], we gave formal evidence that recursion cannot be replaced by replication

when considering fragments of the π-calculus without mobility. In particular,

we showed that a restriction-free fragment of the π-calculus with recursive def-

initions without mobility and without synchronisation (BPP) is more expressive

than a restriction-free fragment of the π-calculus with replication without mobility

(CCS−ν
!).

The work in [21, 22] was already discussed in Section 4.1. In [38] the au-

thors study replication and recursion in CCS focusing on the role of restriction

and name scoping. In particular they show that CCS! is equivalent to CCS with

recursion with static scoping. The standard CCS is shown to have dynamic scop-

ing precisely because the use of restriction within recursive definitions. However,

if no restriction appears within recursive expressions then there is no distinction

between static and dynamic scoping. Hence, if no restriction is allowed within

recursive expressions then we know from [38] that CCS can be encoded in CCS!,

without restriction under replication, while preserving and reflecting convergence.

As for the other direction, clearly νX.(P |X) behaves as !P . Nevertheless, if re-

cursion is required to be prefix guarded, it is not clear how to produce an encoding

which preserves and reflects convergence—without appealing to the decidability

results for CCS! here presented. Consider e.g., E = νX.(P |α.X) and !P . If

α = τ then E does not converge and !P may—take P = a.0. If α 6= τ then E

may converge and !P may not—take P = τ.0.

The authors in [29] also pointed out the role of restriction in the expressiveness

of CCS. They showed that strong bisimilarity is decidable for restriction-free CCS,

in contrast with the undecidability result for CCS [87]. It is not clear to us how to

relate strong bisimilarity with convergence or failures equivalence.

The authors of [6] studied a fragment of the asynchronous π-calculus with

restricted forms of bound name generation. A closely related result in of [6] is the

98

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

decidability of the control reachability problem for restriction-free asynchronous

π-calculus. This implies the decidability of the same problem for the restriction-

free fragment of asynchronous CCS! (i.e., only 0 can be prefixed with an output

action). It is not obvious how to relate control reachability to failures equiva-

lence or convergence. Also it is not clear how to encode our CCS! fragment into

restriction-free asynchronous CCS!.

In [42] a Petri net semantics is proposed for a subset of CCS without restriction

and with guarded choice. Also in [87] it was shown that the subset studied in [42]

can not be extended significantly. These works also presuppose guarded recursion

in their fragments which seem crucial for their Petri net constructions. We do

not restrict our Petri net construction to guarded sums. Furthermore, as explained

above, it is not clear how to translate CCS! into CCS with guarded recursion while

preserving convergence.

In [93] the authors show the decidability of convergence for a restriction-free

calculus for the compositional description of chemical systems, called CFG which

seems closely related to CCS. The calculus, however, presupposes guarded sum-

mation and guarded recursion and thus, as argued before, it is not clear how to

encode CCS! into such a calculus while preserving convergence.

As for related work dealing with the expressiveness of priorities in Process

Calculi, in [3] it was shown that the priority operator of Baeten, Bergstra and

Klop cannot be expressed using positive rule formats for operational semantics,

we think that this inexpressibility result could be valid for other priorities opera-

tors due to the non-monotonicity of these kind of operators. In [76] it was shown

that priorities add expressive power to CCS by modelling electoral systems that

cannot be modelled in CCS. Also [91] studies two process algebras enriched with

different priority mechanisms. The work reveals the gap between the two priori-

tised calculi and the two non prioritised ones by modeling electoral systems. Both

[76] and [91] state the impossibility of the existence of an encoding subject to

certain structural requirements such as homomorphism wrt parallel composition

and name invariance. Our derived impossibility result about the non-existence of

convergent preserving encodings makes no structural assumptions on the encod-

ings. Finally, we claim that our expressivity results involving priorities are also

held by using other priority approaches as they provide the capability of processes

4.7. SUMMARY AND RELATED WORK 99

to know if another process is ready to perform a synchronisation on some channel

or not.

The results in this chapter were originally published as [8].

100

CHAPTER 4. ON THE EXPRESSIVE POWER OF RESTRICTION AND

PRIORITIES IN CCS WITH REPLICATION

Part II

101

Chapter 5

Linearity, Persistence and Testing

Semantics in the Asynchronous

Pi-Calculus

In this chapter we continue our study on the expressive power of variants of the

π-calculus, in particular of a significant subcalculus: the asynchronous π-calculus

(Aπ). As before, we consider the special role of replication and properties sensi-

tive to infinite computations as an issue to compare the expressiveness in different

subcalculi of Aπ.

In [70] the authors studied the expressiveness of persistence in the asyn-

chronous π-calculus (Aπ) wrt weak barbed congruence. The study is incomplete

because it ignores the issue of divergence. In this chapter we shall present an

expressiveness study of persistence in the asynchronous π-calculus (Aπ) wrt De

Nicola and Hennessy’s testing scenario, which is sensitive to divergence.

Following [70], we consider Aπ and three sub-languages of it, each capturing

one source of persistence: the persistent-input calculus (PIAπ), the persistent-

output calculus (POAπ) and the persistent calculus (PAπ). In [70] the authors

showed encodings from Aπ into the semi-persistent calculi (i.e., POAπ and PIAπ)

correct wrt weak barbed congruence.

In this chapter we prove that, under some general conditions, there cannot be

an encoding from Aπ into a (semi)-persistent calculus preserving the must testing

103

104

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

semantics.

The separation result between Aπ and its semi-persistent subcalculi in Section

5.5.1 and the separation result between Aπ and PAπ in Section 5.6 were published

as [25].

The separation results between Aπ and its semi-persistent subcalculi in Sec-

tion 5.5.2 and the decidability of convergence and divergence for POAπ in Section

5.7 have not been published.

5.1 Introduction

In [70] the authors present an expressiveness study of linearity and persistence

of processes. Since several calculi presuppose persistence on their processes, the

authors address the expressiveness issue of whether such persistence restricts the

systems that we can specify, model or reason about in the framework. Their work

is conducted using the standard notion of weak barbed congruence and hence it

ignores divergence issues. Since divergence plays an important role in expres-

siveness studies, particularly in those studies involving persistence, in this work

we aim at extending and strengthening their study by using the standard notion

of testing equivalences. As elaborated below, our technical results contrast and

complement those in [70]. More importantly, our results also clarify and support

informal expressiveness claims in the literature.

Linearity is present in process calculi such as CCS, CSP, the π-calculus [62]

and Linear CCP [85, 34], where messages are consumed upon being received.

In the π-calculus the system x̄z | x(y).P | x(y).Q represents a message with a

datum z, tagged with x, that can be consumed by either x(y).P or x(y).Q. Persis-

tence of messages is present in several process calculi. Perhaps the most promi-

nent representative of such calculi is Concurrent Constraint Programming (CCP)

[84]. Here the messages (or items of information) can be read but, unlike in Lin-

ear CCP, they cannot be consumed. Other prominent examples can be found in

the context of calculi for analyzing and describing security protocols: Crazzo-

lara and Winskel’s SPL [31], the Spi Calculus variants by Fiore and Abadi [35]

and by Amadio et all [5], and the calculus of Boreale and Buscemi [13] are op-

erationally defined in terms of configurations containing messages which cannot

5.1. INTRODUCTION 105

be consumed. Persistent receivers arise, e.g. in the notion of omega receptive-

ness [82], where the input of a name is always available—but always with the

same continuation. In the π-calculus persistent receivers are used, for instance, to

model functions, objects, higher-order communications, or procedure definitions.

Furthermore, persistence of both messages and receivers arise in the context of

CCP with universally-quantified persistent ask operations. In the context of cal-

culi for security, persistent receivers can be used to specify protocols where prin-

cipals are willing to run an unbounded number of times (and persistent messages

to model the fact that every message can be remembered by the spy). In fact, the

approach of specifying protocols in a persistent setting, with an unbounded num-

ber of sessions, has been explored in [12] by using a classic logic Horn clause

representation of protocols (rather than a linear logic one).

Expressiveness of Persistence: Drawbacks and Conjectures. The study in

[70] is conducted in the asynchronous π-calculus (Aπ), which naturally captures

the persistent features mentioned above. Persistent messages (and receivers) can

simply be specified using the replication operator of the calculus which creates

an unbounded number of copies of a given process. In particular, the authors in

[70] investigate the existence of encodings from Aπ into three sub-languages of

it, each capturing one source of persistence: the persistent-input calculus (PIAπ),

defined as Aπ where inputs are replicated; the persistent-output calculus (POAπ),

defined dually, i.e. outputs rather than inputs are replicated; the persistent calculus

(PAπ), defined as Aπ but with all inputs and outputs are replicated.

The main result in [70] basically states that we need one source of linearity,

i.e. either on inputs (PIAπ) or outputs (POAπ) to encode the behavior of arbitrary

Aπ processes via weak barbed congruence.

Nevertheless, the main drawback of the work [70] is that the notion of correct

encoding is based on weak barbed bisimulation (congruence), which is not sensi-

tive to divergence. In particular, the encoding provided in [70] from Aπ into PIAπ

is weak barbed congruent preserving but not divergence preserving. Although in

some situations divergence may be ignored, in general it is an important issue to

consider in the correctness of encodings [26, 44, 43, 55, 24].

In fact, the informal claims of extra expressivity of Linear CCP over CCP in

106

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

[11, 34] are based on discrimination introduced by divergence that is clearly ig-

nored by the standard notion of weak bisimulation. Furthermore, the author of

[30] suggests as future work to extend SPL, which uses only persistent messages

and replication, with recursive definitions to be able to program and model re-

cursive protocols such as those in [4, 73]. One can, however, give an encoding

of recursion in SPL from an easy adaptation of the composition between the Aπ

encoding of recursion [83] (where recursive calls are translated into linear Aπ out-

puts and recursive definitions into persistent inputs) and the encoding of Aπ into

POAπ in [70]. The resulting encoding is correct up-to weak bisimulation. The

encoding of Aπ into POAπ, however, introduces divergence and hence the com-

posite encoding does not seem to invalidate the justification for extending SPL

with recursive definitions. The above works suggest that the expressiveness study

of persistence is relevant but incomplete if divergence is not taken into account.

In this chapter we shall therefore study the existence of encodings from Aπ

into the persistent sub-languages mentioned above using testing semantics [65]

which takes divergence into account.

5.1.1 Contributions

Our main contribution is to show formally that (semi-) persistent subcalculi of

Aπare not as expressive as Aπ. It is done by providing a uniform and general

negative result stating that, under some reasonable conditions, Aπ cannot be en-

coded into any of the above (semi-) persistent calculi while preserving the must

testing semantics (Section 5.5). The general conditions involve compositionality

on the encoding of constructors such as parallel composition, prefix, and repli-

cation. The main result contrasts and completes the ones in [70]. Furthermore,

we prove that convergence and divergence are decidable in POAπ (hence in PAπ)

unlike Aπ (Section 5.7). The decidability is a direct consequence of the absence

of continuation of the persistent output prefixes in POAπ. Thus, strengthening the

separation result between Aπ and POAπ.

It also supports the informal claims of extra expressivity mentioned above. We

shall also state other more specialized impossibility results for must preserving

encodings from Aπ into the semi-persistent calculi, focusing on specific proper-

5.1. INTRODUCTION 107

Decid.

Converg
no yes ? yes

Decid.

Diverg.
no yes ? yes

Figure 5.1: Separation results between Aπ and its semi-persistent calculi (PIAπ, POAπ, PAπ).

A crossed arrow from C to C ′ represents the non-existence of an encoding from C to C ′ preserving

the must testing semantics . The table summarises the decidability results for Aπ and its semi-

persistent subcalculi.

ties of each target calculus. This helps clarifying some previous assumptions on

the interplay between syntax and semantics in encodings of process calculi. We

believe that, since the study is conducted in Aπ with well-established notions of

equivalence, we can easily adapt our results to other asynchronous frameworks

such as CCP languages and the above-mentioned calculi for security.

The contributions are summarized in Figure 5.1.1.

Remark 5.1.1 Convergence and divergence are undecidable in Aπ. In [21], it

was proved the undecidability of convergence and divergence for CCS. That result

is extended directly to Aπ by using the encoding from π-calculus with recursive

functions into replication showed in [83], the encoding from guarded-choice π-

calculus into choice-free π-calculus given in [64], and either Honda and Tokoro’s

encoding or Boudol’s encoding from π-calculus into Aπ proposed in [47] and

[15] respectively. All of these encodings preserve and reflect divergence and con-

vergence.

Outline of this chapter. The remainder of this chapter is organized as follows.

In Section 5.2, we present the semi-persistent subcalculi we are going to compare.

108

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

In Section 5.3 we recall some properties of encodings. In Section 5.4 we recall the

encodings in [70] and study them by using Testing Semantics. Section 5.5 is the

core of this chapter, we present the separability results between Aπ and its semi-

persistent subcalculi by showing the non-existence of encodings preserving must-

testing. In Sections 5.6 and 5.7 we provide some specialized separation results

between Aπ and PAπ and Aπ and POAπ by showing the non-existence of a larger

class of encodings from Aπ into PAπ and the decidability of convergence and

divergence in POAπ. In Section 5.8 we conclude by summarising and discussing

some related work.

5.2 Semi-persistence in Aπ

Here we define the syntactic restrictions of Aπ. The reader may find it useful to

look at the notions and notations given in Sections 2.2 and 2.4.

5.2.1 The (semi-)persistent calculi

The persistent-input calculus PIAπ results from Aπ by requiring all input proc-

esses to be replicated. Processes in PIAπ are generated by the following grammar:

P, Q, . . . := 0 ! x(y).P x̄y P | Q (νx)P ! P

The persistent-output calculus POAπ arises as from Aπ by requiring all out-

puts to be replicated. Processes in POAπ are generated by the following grammar:

P, Q, . . . := 0 x(y).P ! x̄y P | Q (νx)P ! P

Finally, we have the persistent calculus PAπ , a subset of Aπ where output

and input processes must be replicated. Processes in PAπ are generated by the

following grammar:

P, Q, . . . := 0 ! x(y).P ! x̄y P | Q (νx)P ! P

The relation
α

−→ for PIAπ, POAπ and PAπ can be equivalently de-

fined as in Table 2.2, with Input replaced with Input(PIAπ), Output replaced

with Output(POAπ), and Input and Output replaced with Input(PIAπ) and

Output(PIAπ) rules respectively. (Table 5.1). The new rules reflect the persistent-

input nature of PIAπ (Rule Input(PIAπ)), the persistent-output nature of POAπ

5.3. REASONABLE PROPERTIES OF ENCODINGS 109

(Rule Output(POAπ)), and the persistent nature of PAπ (Rules Input and

Output(PAπ)). Notice that these new rules can be derived directly from the appli-

cation of the Rules Input, Output, and Rep-Act in Table 2.2.

Input(PIAπ) !x(y).P
xz
−→ P{z/y} | !x(y).P where x, y ∈ N

Output(POAπ) ! x̄z
x̄y
−→ 0 | ! x̄z

Input(PAπ) !x(y).P
xz
−→ P{z/y} | !x(y).P where x, y ∈ N

Output(PAπ) ! x̄z
x̄y
−→ 0 | ! x̄z

Table 5.1: Transition Rules.

Notation 5.2.1 We shall use P to range over the set of the calculi in this chapter

{Aπ, PIAπ, POAπ, PAπ}.

5.3 Reasonable Properties of Encodings

As mentioned earlier, an encoding is a mapping from the terms of a calculus into

the terms of another. In general a “good” encoding satisfies some additional re-

quirements, but as discussed in the introduction there is no agreement on a general

notion of “good” encoding. Perhaps indeed there should not be a unique notion,

but several, depending on the purpose.

In this section we shall introduce and justify the requirements used in the forth-

coming sections.

5.3.1 Contexts, Compositionality and Homomorphism

Let us begin by recalling the notion of (multi-hole) process contexts [83] to de-

scribe compositionality.

Recall that a P context C with k holes is a term with occurrences of k distinct

holes []1, . . . , []k such that a P process must result from C if we replace all the

occurrences of each []i with a P process. The context C is singularly-structured

if each hole occurs exactly once. For example, []1 | x(y).([]2 | []1) is an Aπ

non singularly-structured context with two holes. Given P1, . . . , Pk ∈ P and a

110

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

context C with k holes, C[P1, . . . , Pk] is the process that results from replacing

the occurrences of each []i with Pi. The names of a context C with k holes, n(C),

are those of C[Q1, . . . , Qk] where each Qi is 0. The free and bound names of a

context are defined analogously. We can regard the input prefix x(y), | and ! as

the operators of arity 1, 2 and 1 respectively in Aπ in the obvious sense.

Definition 5.3.1 (Compositionality w.r.t. an operator) Let op be an n-ary oper-

ator of Aπ. An encoding [[·]] : Aπ → P is compositional w.r.t. op iff there is a P

context Cop with n holes such that [[op(P1, .., Pn)]]= Cop[[[P1]], .., [[Pn]]].

Furthermore, given an encoding [[·]] : Aπ → P , we define Cop
[[·]] as the context

C such that [[op(P1, . . . , Pn)]] = C[[[P1]], . . . , [[Pn]]]. We shall often omit the “[[·]]”

in Cop
[[·]] since it is easy to infer from the context. Cop[·] refer to the context

encoding the operator op with a hole with any number of occurrences. Cop[P] will

refer to the context encoding the operator op and P represents the term placed

in every occurrence of the hole in the context. Thus, for example Ca(x)[[[āz]]]

= [[a(x).āz]] if the encoding is compositional wrt input prefix. Ca(x)[0] is the

resulting process after replacing every occurrence of the hole in Ca(x)[·] with 0.

Notice that Ca(x)[P] and Ca(x)[[[P]]] are not the same as the in the first case the

hole is replaced with P and in the second case it is replaced with [[P]], if the

encoding is compositional wrt input prefix Ca(x)[[[P]]] = [[a(x).P]].

An interesting case of compositionality is homomorphism w.r.t a given opera-

tor op.

Definition 5.3.2 (Homomorphism) Let op be an n-ary operator of Aπ. An

encoding [[·]] : Aπ → P is homomorphic w.r.t. op iff [[op(P1, . . . , Pn)]] =

op([[P1]], . . . , [[Pn]]).

It is worth pointing out that homomorphism w.r.t parallelism, also called

distribution-preserving [92], can arguably be considered as a reasonable require-

ment for an encoding. In particular, the works [92, 69, 27, 43, 44] support the

distribution-preserving hypothesis by arguing that it corresponds to requiring that

the degree of distribution of the processes is maintained by the translation, i.e.

no coordinator is added. Some of these works are in the context of solving elec-

toral problems and some others in more general scenarios [43, 44]. Other works

5.3. REASONABLE PROPERTIES OF ENCODINGS 111

[64, 79], however, argue that the requirement can be quite demanding as it rules

out practical implementation of distributed systems.

Some of our impossibility results will appeal to the distribution-preserving

hypothesis. If we accept this hypothesis then it is also reasonable to require ho-

momorphism for replication, since ! represents an infinite parallel composition.

In the following section, however, we will argue for weaker, and probably less

controversial, requirements over replication.

5.3.2 Preservation of infinite behaviour

Now we introduce a requirement involving replication, named preservation of in-

finite behaviour w.r.t !. From our point of view, this requirement is rather natural

and relies on the ability to preserve the behaviour of !, i.e., the ability of replication

to provide certain behaviour unlimitedly. Since !P can be seen as an unbounded

number of copies of P , therefore the behaviour associated to P would be offered

permanently . Furthermore, this requirement could be used to compare a language

involving ! with other language with another mechanism to simulate infinite be-

haviour, e.g , the encoding of replication into recursion showed in [83] preserves

infinite behaviour wrt replication as presented in Definition 5.3.3.

Definition 5.3.3 (Preservation of infinite behaviour wrt !) An encoding [[·]] :

Aπ → P preserves infinite behaviour wrt ! iff:

• If [[P]]
α

=⇒ Q for some process Q and α 6= τ then [[!P]]
α

=⇒ Q for some

process Q

• If [[!P]]
α

=⇒ Q for some process Q and α 6= τ then [[!P]]
α

=⇒≡ P ′ | [[!P]] for

some process P ′.

The intuition behind the first item in Definition 5.3.3 is that an encoding should

take into account that !P is able to interact with the environment as P does. There-

fore all the observable actions (after an arbitrary number of τ -actions) of [[P]]

should be present in [[!P]]. As for the second item, the idea is that the persistent

behaviour associated to !P , which is inherent of replication, should be preserved

at least partially by the encoding. Therefore a process encoding !P , i.e. [[!P]],

should be preserved along its evolution.

112

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

Remark 5.3.1 It is worth noticing that an encoding with homomorphism w.r.t !,

i.e. [[!P]] = ![[P]], satisfies the requirements in Definition 5.3.3 since trivially [[P]]

⇓x̄ iff ![[P]] ⇓x̄ and ![[P]]
α

−→ Q | ![[P]]. Clearly, the same happens when the

encoding is homomorphic wrt ! up to ≡.

With preservation of infinite behaviour, we want to capture preservation of the

behaviour of !P . If !P
α

−→ Q with α 6= τ then Q ≡ R | !P and hence we see

that the infinite behaviour is preserved after any interaction of the process with

its environment, thus any observable action remains able to be performed, i.e.,

observable infinite behaviour. Now, if !P
τ

−→ Q and α = τ then we also have

Q ≡ R | !P so the infinite behaviour is also preserved after any internal action,

i.e. the internal actions will also be present along the evolution, i.e., internal

infinite behaviour. Homomorphism wrt replication preserves both kinds of infinite

behaviour. Encodings satisfying the property from Definition 5.3.3 preserve a

weaker form of observable infinite behaviour.

In the following sections we shall study the existence of encodings [[·]] : Aπ →

P from π into P ∈ {PAπ, PIAπ, POAπ} satisfying some of the properties de-

scribed in this section and the standard testing semantics defined in Section 2.4.3.

As mentioned earlier in the introduction to this chapter, the focus on testing

semantics is due to its treatment of divergency which was ignored in previous

work.

5.4 Previous encodings of Aπ into semi-persistent

subcalculi

In this section we shall state some properties of existing encodings of Aπ into its

semi-persistent subcalculi. Let us recall the following encoding from Aπ to PIAπ,

defined in [70].

Definition 5.4.1 [70] The encoding [[·]] : Aπ → PIAπ is a homomorphism for 0,

parallel composition, restriction and replication, otherwise is defined as

- [[x̄z]] = x̄z, and

5.4. PREVIOUS ENCODINGS OF Aπ INTO SEMI-PERSISTENT

SUBCALCULI 113

- [[x(y).P]] = (νtf)(t̄ | !x(y).(νl)(l̄ | !t.!l.([[P]] | !f̄) | !f.!l.x̄y))

where t, f, l 6∈ fn(P) ∪{x, y}. (The lifted version is given adding [[ω.P]] =

ω.[[P]].)

In [70], it was shown that this encoding enjoys a strong property: namely,

for any P, [[P]]≈a P ,

Proposition 5.4.1 [70] Let [[·]] : Aπ → PIAπ as in Definition 5.4.1. For any Aπ

process P, [[P]]≈a P .

Proposition 5.4.1 implies, in a testing scenario, that a process passes a test if

and only if the encoding of the process passes the encoding of the test as long as

may and fair testing are considered. First, we need to consider ω as a barb.

Remark 5.4.1 Let us extend the notion of barb in Definition 2.4.4 to include ω,

where ω, in contrast to the rest of the barbs (co-names), has the following restric-

tions :

• It can be only present in processes of O.

• It does not have a corresponding co-action, i.e., it is not possible to syn-

chronise via ω.

• It can not be the subject of an action, therefore it can not be transmitted.

As a straightforward consequence, P
ω

−→ and P ↓ω coincide.

Proposition 5.4.2 For any P in O, P
ω

−→ if and only if P ↓ω .

We can now prove that the encoding given [70] is both ”may” and ”fair” pre-

serving.

Proposition 5.4.3 Let [[·]] : Aπ → PIAπ as in Definition 5.4.1. ∀ P ∈ Aπ, ∀ o ∈

O P sat o iff [[P]] sat [[o]], where sat can be respectively may and fair .

114

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

Proof.

First, we show that [[·]] is may-preserving. Consider any P ∈ Aπ and any

o ∈ O. We know that P | o
.
≈a [[P | o]] by Proposition 5.4.1. As a consequence

of Definition 2.4.5 and the fact that [[·]] is homormorphic wrt parallelism we have

that (P | o) ⇓ω iff ([[P]] | [[o]]) ⇓ω . Hence, there exists a maximal computation:

P | o = To | o0
τ

−→ T1 | o1
τ

−→ T2 | o2
τ

−→ . . . Ti | oi
τ

−→ . . .

such that Ti | oi ↓ω, for some i ≥ 0 if and only if there exists a maximal

computation:

[[P]] | [[o]] = T ′
o | o

′
0

τ
−→ T ′

1 | o
′
1

τ
−→ T ′

2 | o
′
2

τ
−→ . . . T ′

j | o
′
j

τ
−→ . . .

such that T ′
i |o

′
i ↓ω, for some i ≥ 0. By Proposition 5.4.2 and Definition 2.4.12

we have that P may o iff [[P]] may [[o]].

As for fair-testing, let us suppose P fair o. Then for every maximal compu-

tation P | o = E0
τ

−→ E1
τ

−→ . . .
τ

−→ Ei [
τ

−→ . . .] we have Ei =⇒ E ′
i ↓ω,

for every i ≥ 0. Since P | o
.
≈a [[P | o]] = [[P]] | [[o]], every process Q such

that [[P]] | [[o]] (
τ

−→)∗Q is asynchronous barbed bisimilar to at least one process

reachable from P | o by τ -actions. Therefore for every maximal computation

[[P]] | [[o]] = A0
τ

−→ A1
τ

−→ . . .
τ

−→ Ai [
τ

−→ . . .] Ai ⇓ω, for every i ≥ 0. I.e.

[[P]] fair [[o]].

✷

To see that the above statement is not satisfied in the case of must semantics,

consider P = (a.0 |!ā) and o = a.ω. We have P must o but [[P]] 6must [[o]].

In [70] the encoding in Definition 5.4.1 is used to get an encoding of Aπ into

POAπ, by composing it with the following mapping from PIAπ into POAπ.

Definition 5.4.2 The encoding f = [[·]] : PIAπ → POAπ is a homomorphism for

0, parallel composition, restriction, and replication, otherwise is defined as

- [[x̄z]] = (νs)(!x̄s | s(r).!r̄z), and

- [[!x(y).P]] =!x(s).(νr)(!s̄r | r(y).[[P]])

5.5. UNIFORM IMPOSSIBILITY RESULTS FOR THE SEMI-PERSISTENT

CALCULI 115

where s, r 6∈ fn(P) ∪ {x, z}. (The lifted version is given adding [[ω.P]] =

ω.[[P]].)

Let g be [[·]] : Aπ → PIAπ in Definition 5.4.1. The encoding h = [[·]] : Aπ →

POAπ is the composite function f ◦ g.

Since this encoding maps a linear output into a replicated one with the same

barb, the composite encoding h = [[·]] : Aπ → POAπ in Definition 5.4.2 does

not satisfy [[P]] ≈a P . It has a weaker property: namely, P ≈a Q iff [[P]] ≈a

POAπ
[·] [[Q]], where [[P]] ≈a

POAπ
[·] [[Q]] means that ∀C context in Aπ, [[C]][[[P]]] and

[[C]][[[Q]]] (assuming [[[·]]] = [·]) are weak barbed bisimilar [83].

As for the testing scenario, the above encoding satisfies the following:

Proposition 5.4.4 Let h = [[·]] : Aπ → POAπ as in Definition 5.4.2. ∀ P ∈

Aπ, ∀ o ∈ O, P sat o if and only if [[P]] sat [[o]], where sat can be respectively

may and fair .

Proof. Similar to the proof of the may (fair)-preservation of Boudol’s encoding

from π into Aπ in [23]. ✷

The above proposition would not hold if sat were must . Consider P =!ā

and o = a.ω: then P must o but [[P]] 6must [[o]].

5.5 Uniform impossibility results for the semi-

persistent calculi

In the previous section we stated that previous encodings from Aπ into the semi-

persistent subcalculi are not must preserving. We shall now demonstrate that un-

der some general conditions such encodings must not exist.

This section is the core of the chapter and it focuses on general and uniform

negative results for encodings of Aπ into PIAπ, POAπ and PAπ. We identify some

reasonable conditions which will guarantee that none of these encodings can be

must-preserving. Namely, compositionality, homomorphism wrt replication, and

preservation of infinite behaviour wrt replication.

116

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

Besides them we use some additional hypothesis such as [[ω]]
ω

−→ and

fn([[0]]) = 0 which we also consider reasonable. The condition [[ω]]
ω

−→ seems

to be reasonable as it can follow from the existence of a divergent process in the

range of the encoding, which is necessary if the encoding preserves divergence—

recall that P diverges, P ↑, if there is an infinite sequence of reductions from P .

However, the hypothesis [[ω]]
ω

−→ can be also obtained in a purely syntactic way,

i.e without divergence. Now, the condition fn([[0]]) = 0 since it is natural that 0,

the process which does nothing, is translated in a way such that it does not express

any external behaviour.

We shall show two general impossibility results from Aπ into PIAπ, POAπ

and PAπ, differing slightly in their hypotheses. The results relies on the fact that

in a testing scenario, i.e. an observer and a test in parallel, any encoding intro-

duces divergence. It arises as a translation forces some kind of action, either input

or output, to be persistent, thus an interaction between a linear component and a

persistent component turns out to be an interaction between two persistent compo-

nents, hence the introduction of divergence. This divergence can delay indefinitely

the execution of some actions in the target language which were expected to be

performed in order to be consistent with the behaviour of the original process in

the source language. In term of testing semantics it means that there is no must-

preserving encoding as the divergence introduced in the testing scenario by the

encoding delays indefinitely the report of success, i.e the observation of ω.

Roughly speaking, the impossibility results in this section will use the

fact that for any encoding [[·]] from Aπ into a semi-persistent calculi we have

C![Cx(y)[0]] | [[x̄z | x̄′z′]] ↑ or Cx(y)[0] | C![[[x̄z | x̄′z′]]] ↑, i.e for any term T ,

[[!x(y).T]]|[[x̄z]]|x̄′z′]] ↑ or [[x(y).T]]|[[!(!x̄z|x̄′z′)]] ↑ if the encoding is compo-

sitional. In this way any such encoding would introduce divergent behaviour

that can be used to delay an action which can be expected to be performed.

Thus replacing T with [[x′z′.ω]] we can prove that [[!x(y).x′(y′).ω]]|[[x̄z]]|x̄′z′]] or

[[x(y).x′(y′).ω]]|[[!(!x̄z|x̄′z′)]] can delay forever an action that may unguard ω—i.e.,

causing ω to become observable. Consequently, we must obtain [[!x(y).x′(y′).ω]] 6

must [[x̄z]]|x̄′z′]] or [[x(y).x′(y′).ω]] 6must [[!(!x̄z|x̄′z′)]].

In the first general impossibility result (Section 5.5.1) , we show that there

does not exist a must-preserving compositional encoding, homomorphic wrt repli-

5.5. UNIFORM IMPOSSIBILITY RESULTS FOR THE SEMI-PERSISTENT

CALCULI 117

cation, from π-calculus into any semi-persistent calculus, assuming that [[ω]]
ω

−→ .

In the second general impossibility result (Section 5.5.2), we prove a similar

result to the one in Section 5.5.1 but by considering a weaker notion: preservation

of infinite behaviour wrt replication. However, additionally it is assumed that

fn([[0]]) = 0.

In the next two subsections we show the two general impossibility results men-

tioned above in that order.

5.5.1 Non-existence of encodings homomorphic wrt !

In order to prove the impossibility result wrt must-preservation, we first prove that

the encoding introduces divergent behaviours. As said before, must-preservation

is sensitive to divergence.

We first need an auxiliary result about the occurrence of the hole in Cx(y)[·]

being prefixed.

Definition 5.5.1 We say that the hole in the context C[·] is prefixed iff every oc-

currence of [] in C[·] is within a context of the form x(y).C ′[·].

Proposition 5.5.1 Let [[·]] : Aπ → P ∈ {PIAπ, POAπ, PAπ} be an encoding

satisfying:

1. compositionality w.r.t. input prefix,

2. must-preservation,

3. [[ω]]
ω

−→ .

Then ∀x, y ∈ N , the hole in C
[[·]]
x(y) is prefixed.

Proof. By definition we have that 0 6must x(y).ω, and since [[·]] is must-preserving,

we have that [[0]] 6must [[x(y).ω]]. Hence, [[0]] 6must Cx(y)[[[ω]]] by compositionality

wrt input prefix. Since [[ω]]
ω

−→ by hypothesis, every occurrence of [[ω]] has to be

prefixed in Cx(y)[[[ω]]]. ✷

We can now prove that any must-preserving, compositional wrt input pre-

fix, homomorphic wrt ! encoding must introduce divergence under the natural

118

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

assumption that [[ω]]
ω

−→ . This is done by showing that ∀x, y, z, x′, z′ ∈ N ,

C![Cx(y)[0]] | [[x̄z | x̄′z′]] ↑ or Cx(y)[0] | C![[[x̄z | x̄′z′]]] ↑.

Lemma 5.5.1 Let [[·]] : Aπ → P ∈{PIAπ, POAπ, PAπ} be an encoding satisfy-

ing:

1. compositionality wrt input prefix,

2. homomorphism wrt replication,

3. must-preservation,

4. [[ω]]
ω

−→ ,

Then ∀x, y, z, x′, z′ ∈ N , C![Cx(y)[0]] | [[x̄z | x̄′z′]] ↑ or Cx(y)[0] | C![[[x̄z | x̄′z′]]] ↑

Proof.

By homomorphism wrt !, C![Cx(y)[0]] | [[x̄z | x̄′z′]] = ![Cx(y)[0]] | [[x̄z | x̄′z′]]

and Cx(y)[0] | C![[[x̄z | x̄′z′]]] = Cx(y)[0] | ![[[x̄z | x̄′z′]]]. We consider different cases

according to the behaviour of the encoded processes:

• Cx(y)[0]
τ

−→ or [[x̄z | x̄′z′]]
τ

−→: Trivially ![Cx(y)[0]] | [[x̄z | x̄′z′]] ↑ if

Cx(y)[0]
τ

−→, and Cx(y)[0] | ![[[x̄z | x̄′z′]]] ↑ if [[x̄z | x̄′z′]]
τ

−→.

• Cx(y)[0] 6
τ

−→ and [[x̄z | x̄′z′]] 6
τ

−→ : As the encoding is must-preserving we

know that [[x(y).ω]] must [[x̄z | x̄′z′]]. Therefore by compositionality wrt

input prefix

(⋆) [[x(y).ω]] = Cx(y)[[[ω]]] must [[x̄z | x̄′z′]].

Since the hole in Cx(y)[·] is prefixed (Proposition 5.5.1) and Cx(y)[0] 6
τ

−→

we conclude that Cx(y)[[[ω]]] 6
τ

−→ and Cx(y)[[[ω]]] 6
ω

−→ . From this together

with (⋆) and [[x̄z | x̄′z′]] 6
τ

−→ we conclude that there must be at least one

interaction between Cx(y)[[[ω]]] and [[x̄z | x̄′z′]], i.e., Cx(y)[[[ω]]] | [[x̄z | x̄′z′]]
τ

−→ where either Cx(y)[[[ω]]]
x̄′′z′′
−→ and [[x̄z | x̄′z′]]

x′′z′′
−→ , Cx(y)[[[ω]]]

x′′z′′
−→ and

[[x̄z | x̄′z′]]
x̄′′z′′
−→ , Cx(y)[[[ω]]]

x̄′′(z′′)
−→ and [[x̄z | x̄′z′]]

x′′z′′
−→ , or Cx(y)[[[ω]]]

x′′z′′
−→

and [[x̄z | x̄′z′]]
x̄′′(z′′)
−→ . Here we consider the first two cases, the others are

similar.

5.5. UNIFORM IMPOSSIBILITY RESULTS FOR THE SEMI-PERSISTENT

CALCULI 119

– If Cx(y)[[[ω]]]
x̄′′z′′
−→ and [[x̄z | x̄′z′]]

x′′z′′
−→ : Now let us consider

the possible target calculi: if P = PIAπ, then Cx(y)[[[ω]]] ≡

(νz1)..(νzn)(x̄′′z′′|Q) where ∀i ∈ [1..n], x′′ 6= zi and [[x̄z | x̄′z′]]

≡ (νz1)..(νzm)(!x′′(y′′).P ′|Q′) where ∀i ∈ [1..m], x′′ 6= zi. Since

the hole in Cx(y)[·] is prefixed (Proposition 5.5.1) and Cx(y)[[[ω]]] ≡

(νz1)..(νzn)(x̄′′z′′|Q) where ∀i ∈ [1..n], x′′ 6= zi we can conclude

that Cx(y)[0] ≡ (νz1)..(νzn)(x̄′′z′′|Q′′) where ∀i ∈ [1..m], x′′ 6= zi.

Therefore ![Cx(y)[0]] | [[x̄z | x̄′z′]] ↑. If P = POAπ, then Cx(y)[[[ω]]] ≡

(νz1)..(νzn)(!x̄′′z′′|Q) where ∀i ∈ [1..n], x′′ 6= zi and [[x̄z | x̄′z′]] ≡

(νz1)..(νzm)(x′′(y′′).P ′|Q′) where ∀i ∈ [1..m], x′′ 6= zi. We can again

use Proposition 5.5.1 and Cx(y)[[[ω]]] ≡ (νz1)..(νzn)(!x̄′′z′′|Q) where

∀i ∈ [1..n], x′′ 6= zi to verify that Cx(y)[0] ≡ (νz1)..(νzn)(!x̄′′z′′|Q′′)

where ∀i ∈ [1..m], x′′ 6= zi. Therefore Cx(y)[0]|![[[x̄z |x̄′z′]]] ↑.The case

P = PAπ is analogous to (and easier than) the previous two cases.

– If Cx(y)[[[ω]]]
x′′z′′
−→ and [[x̄z | x̄′z′]]

x̄′′z′′
−→ : Now let us consider

the possible target calculi: if P = PIAπ, then Cx(y)[[[ω]]] ≡

(νz1)..(νzn)(!x′′(y′′).P |Q) where ∀i ∈ [1..n], x′′ 6= zi and [[x̄z | x̄′z′]]

≡ (νz1)..(νzm)(x̄′′z′′.P ′|Q′) where ∀i ∈ [1..m], x′′ 6= zi. Since

the hole in Cx(y)[·] is prefixed (Proposition 5.5.1) and Cx(y)[[[ω]]]

≡ (νz1)..(νzn)(!x′′(y′′).P |Q) where ∀i ∈ [1..n], x′′ 6= zi we can

conclude that Cx(y)[0] ≡ (νz1)..(νzn)(!x′′(y′′).P ′′|Q′′) where ∀i ∈

[1..m], x′′ 6= zi, therefore Cx(y)[0] | ![[[x̄z | x̄′z′]]] ↑. If P = POAπ, then

Cx(y)[[[ω]]]≡ (νz1)..(νzn)(x′′(y′′).P |Q) where ∀i ∈ [1..n], x′′ 6= zi and

[[x̄z | x̄′z′]] ≡ (νz1)..(νzm)(!x̄′′z′′.P ′|Q′) where ∀i ∈ [1..m], x′′ 6= zi.

We can again use the fact the hole in Cx(y)[·] is prefixed (Proposi-

tion 5.5.1) and Cx(y)[[[ω]]] ≡ (νz1)..(νzn)(x′′(y′′).P |Q) where ∀i ∈

[1..n], x′′ 6= zi to conclude that Cx(y)[0]≡ (νz1)..(νzn)(x′′(y′′).P ′′|Q′′)

where ∀i ∈ [1..n], x′′ 6= zi , therefore ![Cx(y)[0]] | [[x̄z | x̄′z′]] ↑. The case

P = PAπ is analogous to (and easier than) the previous two cases.

✷

Now, with the help of Lemma 5.5.1 and Proposition 5.5.1 we can prove the

first impossibility result in this Section. We show that there is no encoding from

120

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

Aπ into PIAπ, POAπ and PAπ by assuming compositionality, homomorphism wrt

replication, [[ω]]
ω

−→ and must-preservation:

Theorem 5.5.1 Let [[·]] : Aπ → P , with P ∈{PIAπ, POAπ, PAπ}, be an encod-

ing satisfying:

1. compositionality wrt. input prefix,

2. homomorphism wrt replication,

3. [[ω]]
ω

−→ .

Then [[·]] is not must-preserving.

Proof.

Let C[·] = C![Cx(y)[·]] | [[x̄z | x̄′z′]] and C ′[·] = Cx(y)[·] | C![[[x̄z | x̄′z′]]]. By

Lemma 5.5.1, for any x, y, z x′, z′ ∈ N , C[0] ↑ or C ′[0] ↑. Now if C[0] or C ′[0]

may diverge with 0 replacing the hole, then C[T] or C ′[T] may also diverge with

a term T replacing the hole without T being ever involved in the generation of the

divergency. Therefore, there is at least one divergent computation from C[T] or

C ′[T] where any term prefixed in T remains prefixed along the computation. By

Proposition 5.5.1 [[ω]] is prefixed in T = Cx′(y′)[[[ω]]]. Hence, there is at least one

maximal infinite computation of C![Cx(y)[T]] | [[x̄z | x̄′z′]] or Cx(y)[T] |C![[[x̄z | x̄′z′]]]

where any occurrence of ω is prefixed, thus ω is not observable. Consequently,

by compositionalilty wrt input prefix and replication and the definition of must-

preservation [[!x(y).x′(y′).ω]] 6must [[x̄z | x̄′z′]] or [[x(y).x′(y′).ω]] 6must [[!x̄z | x̄′z′]]

even if x 6= x′. Therefore [[·]] is not must-preserving.

✷

5.5.2 Non-existence of encodings preserving infinite behaviour

We now show that the assumption on homomorphism wrt replication can be weak-

ened by using the property described in Definition 5.3.3 instead (Theorem 5.5.2

).

5.5. UNIFORM IMPOSSIBILITY RESULTS FOR THE SEMI-PERSISTENT

CALCULI 121

Our separation result in this section states that there is no must-preserving,

compositional wrt input prefix, preserving infinite behaviour wrt ! encoding from

Aπ into PIAπ, POAπ and PAπ.

Similar to the previous impossibility results in this section. We first prove

that any must-preserving, compositional wrt input prefix, preserving infinite be-

haviour wrt ! encoding introduces divergent behaviours (Lemma 5.5.4) . However,

unlike the previous section, we need more auxiliary results as the requirement of

preservation of infinite behaviour is weaker. The notion of preservation of infinite

behaviour does not consider internal infinite behaviour, as a consequence we can

not infer that if [[!P]]
τ

−→ then [[!P]]↑ by using preservation of infinite behaviour.

From the above, we first introduce four auxiliary results before showing any

must-preserving, compositional wrt input prefix, preserving infinite behaviour wrt

! encoding encoding introduces divergent behaviours.

The following three auxiliary results, presented in Propositions 5.5.2 and 5.5.3

and Lemma 5.5.2, are used in the proof of the fourth auxiliary result: Lemma

5.5.3, that in turn will be used to prove that any encoding introduces divergent

behaviours (Lemma 5.5.4). Finally with the help of Lemma 5.5.4 we obtain the

separation result Theorem 5.5.2.

Proposition 5.5.2 Let [[·]] : Aπ → P with P ∈ {PIAπ, POAπ, PAπ}, satisfying

must-preserving. Then [[0]] ↑6 .

Proof.

As a means of contradiction, let us suppose that [[0]] ↑. By must-preservation

[[āz | a(x).ω]] 6
ω

−→ as otherwise [[a(x)]] must [[āz | a(x).ω]], a contradiction. Then

[[0]] | [[āz | a(x).ω]] can diverge following an infinite computation of τ -actions

from [[0]] without intervention of [[āz | a(x).ω]]. Therefore [[0]] 6must [[āz | a(x).ω]]

but 0 must āz | a(x).ω. As the encoding is must-preserving this is a contradiction.

✷

Proposition 5.5.3 Let [[·]] : Aπ → P with P ∈ {PIAπ, POAπ, PAπ}, satisfying

must-preserving. Then [[āz | ā′z′]] ↑6 .

Proof.

122

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

As a means of contradiction, let us suppose that [[āz | ā′z′]] ↑. By must-

preservation [[b̄y | b(x).ω]] 6
ω

−→ as otherwise [[b(x)]] must [[b̄y | b(x).ω]] a contradic-

tion, then [[āz | ā′z′]] | [[b̄y | b(x).ω]] can diverge following an infinite computation

of τ -actions from [[āz | ā′z′]] without intervention of [[b̄y | b(x).ω]]. Therefore

[[āz | ā′z′]] 6must [[b̄y | b(x).ω]] but āz | ā′z′ must b̄y | b(x).ω. As the encoding is

must-preserving this is a contradiction.

✷

For the remainder of this section we use the notion of derivative process:

Definition 5.5.2 (Derivative processes) For any process P the set of its (τ)

derivative processes is defined as Der(P) := {Q|P (
τ

−→)∗Q}.

Lemma 5.5.2 Let [[·]] : Aπ → P with P ∈{PIAπ, POAπ, PAπ}, satisfying must-

preserving and fn([[0]]) = ∅. There is at least one maximal computation from

[[x(y).ω]] such that [[x(y).ω]]
τ

−→ P1
τ

−→ P2
τ

−→ P3
τ

−→ [. . .], where there is no

Pi
ω

−→ with i ≥ 0.

Proof.

Let us consider [[x(y).ω]] | [[0]]. Since fn([[0]]) = ∅ we know that there are

no possible synchronisations between [[0]] and its derivatives with [[x(y).ω]] and

its derivatives. As [[0]] ↑6 (Proposition 5.5.2), then the maximal computations of

τ -actions from [[0]] are finite. Therefore in any maximal computation of τ -actions

from [[0]] | [[x(y).ω]] there is a finite number of τ -actions corresponding to those

ones of a maximal (finite) computation of τ -actions from [[0]] and the rest of τ -

actions corresponds to those ones of a maximal computation of τ -actions from

[[x(y).ω]]. By must-preservation [[0]] 6must [[x(y).ω]], it means there is a maximal

computation from [[0]] | [[x(y).ω]] where there is no process satisfying the predi-

cate
ω

−→. Therefore there must be a least one maximal computation of τ -actions

from [[x(y).ω]] such that [[x(y).ω]]
τ

−→ P1
τ

−→ P2
τ

−→ P3
τ

−→ [. . .], where there

is no Pi
ω

−→ with i ≥ 0. ✷

The following result is needed in the proof of the main lemma of this section.

Lemma 5.5.3 Let [[·]] : Aπ → P with P ∈{PIAπ, POAπ, PAπ}, satisfying:

5.5. UNIFORM IMPOSSIBILITY RESULTS FOR THE SEMI-PERSISTENT

CALCULI 123

• compositionality w.r.t input prefix.

• must-preservation.

• fn([[0]]) = 0.

then [[x̄z | x̄′z′]] or some of its derivatives can synchronise with Cx(y)[0] or with

some of Cx(y)[0]’s derivatives.

Proof.

As a means of contradiction, let us suppose that neither [[x̄z | x′z′]] nor its

derivatives can synchronise with Cx(y)[0] or its derivatives. Considering this

assumption we analyse maximal computations of τ -actions from Cx(y)[[[ω]]] and

[[x̄z | x̄′z′]] | Cx(y)[[[ω]]] we shall conclude that [[x̄z | x̄′z′]] 6must [[x(y).ω]] for any

names x, y, z, x′, z′. This is a contradiction since the encoding is must-preserving.

From Lemma 5.5.2 and compositionality wrt input prefix there is a maximal

computation s of τ -actions from Cx(y)[[[ω]]] does not satisfy the predicate
ω

−→. It

means [[ω]] is guarded in the whole computation. Let us consider two possible

cases for s

• The computation s is finite: Cx(y)[[[ω]]]
τ

−→ P1
τ

−→ P2
τ

−→ . . . Pn 6
τ

−→.

Where [[ω]] is guarded in Ci, for all i ∈ {1, . . . , n}. Therefore it is possible

to construct a maximal computation of τ -actions for [[x̄z | x′z′]] | Cx(y)[[[ω]]]

of the following form:

[[x̄z | x̄′z′]] | Cx(y)[[[ω]]]
τ

−→ Q1 | Cx(y)[[[ω]]]
τ

−→ . . .

. . . Qm | Cx(y)[[[ω]]]
τ

−→ Qm | P1
τ

−→ . . . Qm | Pn 6
τ

−→

Where [[x̄z | x′z′]]
τ

−→ Q1
τ

−→ . . . Qm 6
τ

−→ is a maximal computation of

τ -actions of [[x̄z | x′z′]] 1. Notice that Qm | Pn 6
τ

−→ as Qm 6
τ

−→, Pn 6
τ

−→ and as

[[ω]] is guarded in Pn, Pn can not synchronise with Qm (it is because of the

assumption that [[x̄z | x′z′]] and its derivatives cannot synchronise [[a(x).0]]

and its derivatives).

1Notice that every maximal computation of τ -actions of [[x̄z | x′z′]] is finite as [[x̄z | x′z′]] ↑6
from Theorem 5.5.3.

124

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

Therefore there is a maximal computation of τ -actions of

[[x̄z | x̄′z′]] | Cx(y)[[[ω]]] not satisfying the predicate
ω

−→ i.e. [[x̄z | x̄′z′]] 6must

[[x(y).ω]]. By must-preservation this is a contradiction.

• The computation s is infinite: [[x(y).ω]]
τ

−→ R1
τ

−→ R2
τ

−→ Where [[ω]]

is guarded in Ri, for all i ≥ 1. It is possible to construct a maximal infinite

computation of τ -actions for [[x̄z | [[x′z′]] | x(y).ω]] of the following form:

[[x̄z | x̄′z′]] | Cx(y)[[[ω]]]
τ

−→ [[x̄z | x̄′z′]] | R1
τ

−→ [[x̄z | x̄′z′]] | R2
τ

−→ . . .

Where [[x̄z | x̄′z′]] |Ri
τ

−→ [[x̄z | x̄′z′]] |Ri+1 for all i ≥ 1. It means that there

is a maximal infinite computation of τ -actions of [[x̄z | x̄′z′]] | [[x(y).ω]] with

[[ω]] unguarded and therefore this does not satisfy the predicate
ω

−→. Then

[[x̄z | x̄′z′]] 6must Cx(y)[[[ω]]]. By must-preservation it is a contradiction.

✷

Now, we can prove that a must-preserving, compositional wrt input prefix,

preserving infinite behaviour wrt ! encoding introduces divergent behaviours.

Lemma 5.5.4 Let [[·]] : Aπ → P ∈{PIAπ, POAπ, PAπ} be an encoding satisfy-

ing:

• compositionality w.r.t. input prefix and replication,

• must-preservation,

• preservation of infinite behaviour wrt !,

• [[ω]]
ω

−→ ,

• fn([[0]]) = ∅,

Then ∀x, x′, y, z, z′ ∈N , C![Cx(y)[0]] | [[x̄z | x̄′z′]] ↑ or Cx(y)[0] | C![[[x̄z | x̄′z′]]] ↑.

Proof.

From Lemma 5.5.3 a synchronisation can happen between a derivative of

[[x̄z | x̄′z′]] and a derivative of Cx(y)[0]. There are four cases:

5.5. UNIFORM IMPOSSIBILITY RESULTS FOR THE SEMI-PERSISTENT

CALCULI 125

• Case 1 : Cx(y)[0]
x̄′′z′′
=⇒ and [[x̄z | x̄′z′]]

x′′z′′
=⇒ : From compositionality wrt

replication C![Cx(y)[0]] = [[!Cx(y)[0]]] and C![[[x̄z | x̄′z′]]] = [[!x̄z | x̄′z′]].

From Item 1 of preservation of infinite behaviour C![Cx(y)[0]]
x̄′′z′′
=⇒ and

C![[[x̄z | x̄′z′]]]
x′′z′′
=⇒ .

• Case 2 : Cx(y)[0]
x′′z′′
=⇒ and [[x̄z | x̄′z′]]

x̄′′z′′
=⇒ : From compositionality wrt

replication C![Cx(y)[0]] = [[!Cx(y)[0]]] and C![[[x̄z | x̄′z′]]] = [[!x̄z | x̄′z′]].

From Item 1 of preservation of infinite behaviour C![Cx(y)[0]]
x′′z′′
=⇒ and

C![[[x̄z | x̄′z′]]]
x̄′′z′′
=⇒ .

• Case 3 : Cx(y)[0]
x̄′′(z′′)
=⇒ and [[x̄z | x̄′z′]]

x′′z′′
=⇒ : From compositionality wrt

replication C![Cx(y)[0]] = [[!Cx(y)[0]]] and C![[[x̄z | x̄′z′]]] = [[!x̄z | x̄′z′]].

From Item 1 of preservation of infinite behaviour C![Cx(y)[0]]
x̄′′(z′′)
=⇒ and

C![[[x̄z | x̄′z′]]]
x′′z′′
=⇒ .

• Case 4 : Cx(y)[0]
x′′z′′
=⇒ and [[x̄z | x̄′z′]]

x̄′′(z′′)
=⇒ : From compositionality wrt

replication C![Cx(y)[0]] = [[!Cx(y)[0]]] and C![[[x̄z | x̄′z′]]] = [[!x̄z | x̄′z′]].

From Item 1 of preservation of infinite behaviour C![Cx(y)[0]]
x′′z′′
=⇒ and

C![[[x̄z | x̄′z′]]]
x̄′′(z′′)
=⇒ .

Now we prove that in each of the cases above C![Cx(y)[0]] | [[x̄z | x̄′z′]] ↑ or

Cx(y)[0] | C![[[x̄z | x̄′z′]]] ↑.

• From Case 1 we know that Cx(y)[0]
x̄′′z′′
=⇒ , C![[[x̄z | x̄′z′]]]

x′′z′′
=⇒ ,

[[x̄z | x̄′z′]]
x′′z′′
=⇒ , and C![Cx(y)[0]]

x̄′′z′′
=⇒ . Now we can consider each of

the target calculus:

– If P = PIAπ or P = PAπ: From [[x̄z | x̄′z′]]
x′′z′′
=⇒ we know that

[[x̄z | x̄′z′]] =⇒ ≡ (νz1)..(νzm)(!x′′z′′.P ′|Q′) where ∀i ∈ [1..m], x′′ 6=

zi. From C![Cx(y)[0]]
x̄′′z′′
=⇒ and Item 2 of preservation of infi-

nite behaviour wrt ! we have C![Cx(y)[0]]
x̄′′z′′
=⇒

x̄′′z′′
=⇒ Therefore

C![Cx(y)[0]] | [[x̄z | x̄′z′]] ↑

– If P = POAπ: From Cx(y)[0]
x̄′′z′′
=⇒ we know that Cx(y)[0]

≡ (νz1)..(νzm)(!x̄′′z′′|Q′) where ∀i ∈ [1..m], x′′ 6= zi. From

126

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

C![[[x̄z | x̄′z′]]]
x′′z′′
=⇒ and Item 2 of preservation of infinite be-

haviour wrt ! we have C![[[x̄z | x̄′z′]]]
x′′z′′
=⇒

x′′z′′
=⇒

x′′z′′
=⇒ Therefore

Cx(y)[0] | C![[[x̄z | x̄′z′]]] ↑.

• From Case 2 we know that Cx(y)[0]
x′′z′′
=⇒ , C![[[x̄z | x̄′z′]]]

x̄′′z′′
=⇒ ,

[[x̄z | x̄′z′]]
x̄′′z′′
=⇒ , and C![Cx(y)[0]]

x′′z′′
=⇒ . Now we can consider each of

the target calculus:

– If P = PIAπ or P = PAπ : From Cx(y)[0]
x′′z′′
=⇒ we know that

Cx(y)[0] ≡ (νz1)..(νzm)(!x′′z′′.P ′|Q′) where ∀i ∈ [1..m], x′′ 6= zi.

From C![[[x̄z | x̄′z′]]]
x̄′′z′′
=⇒ and Item 2 of preservation of infinite be-

haviour wrt ! we have C![[[x̄z | x̄′z′]]]
x̄′′z′′
=⇒

x̄′′z′′
=⇒

x̄′′z′′
=⇒ Therefore

Cx(y)[0] | C![[[x̄z | x̄′z′]]] ↑.

– If P = POAπ : From [[x̄z | x̄′z′]]
x̄′′z′′
=⇒ we know that [[x̄z | x̄′z′]]

=⇒ ≡ (νz1)..(νzm)(!x̄′′z′′.P ′|Q′) where ∀i ∈ [1..m], x′′ 6= zi. From

C![Cx(y)[0]]
x′′z′′
=⇒ and Item 2 of preservation of infinite behaviour wrt !

we have C![Cx(y)[0]]
x′′z′′
=⇒

x′′z′′
=⇒ Therefore C![Cx(y)[0]]|[[x̄z |x̄′z′]] ↑

• The treatment of Case 3 Case 4 are similar to that of Case 1 and Case 2

respectively.

Therefore we can conclude that C![Cx(y)[0]] | [[x̄z | x̄′z′]] ↑ or

Cx(y)[0] | C![[[x̄z | x̄′z′]]] ↑.

✷

We conclude this section with our second impossibility result:

Theorem 5.5.2 Let [[·]] : Aπ → P ∈{PIAπ, POAπ, PAπ} be an encoding satis-

fying:

• compositionality w.r.t. input prefix and replication,

• preservation of infinite behaviour wrt !,

• [[ω]]
ω

−→ ,

5.6. SPECIALIZED IMPOSSIBILITY RESULT FOR PAπ 127

• fn([[0]]) = ∅,

Then the encoding is not must-preserving

Proof.

Similar to Proof of Theorem 5.5.1 but using Lemma 5.5.4 instead of Lemma

5.5.1.

✷

5.6 Specialized impossibility result for PAπ

In the previous section we gave a uniform impossibility result for the existence

of encodings of Aπ into the (semi-)persistent calculi. In this section, we give a

further impossibility result, under different hypotheses, for encodings from Aπ

into PAπ.

Theorem 5.6.1 Let [[·]] be an encoding from Aπ into PAπ that satisfies:

1. compositionality w.r.t. input prefix,

2. [[ω]]
ω

−→ .

Then [[·]] is not must-preserving.

Proof. As a means of contradiction, let us suppose that [[·]] is must-preserving.

Therefore, [[x(y).ω]] must [[x̄z]] for any x, y, z ∈ N , by compositionality wrt

input prefix Cx(y)[[[ω]]] must [[x̄z]]. Let us consider two cases according to the

behaviour of Cx(y)[[[ω]]], as a result we shall conclude that Cx(y)[0] | [[x̄z]] ↑:

• Cx(y)[[[ω]]]
τ

−→ : In this case, Cx(y)[[[ω]]] ≡ (νz1)..(νzn)(!x′(y′).P |!x̄′z′|Q).

As the hole in Cx(y)[·] is prefixed (Proposition 5.5.1) we infer that Cx(y)[0]

≡ (νz1) . . . (νzn)(!x′(y′).P ′|!x̄′z′|Q′), as a result Cx(y)[0] | [[x̄z]] ↑.

• Cx(y)[[[ω]]] 6
τ

−→: As the hole in Cx(y)[·] is prefixed (Proposition 5.5.1)

and ω /∈ Cx(y)[·] (This is a consequence of ω /∈ N) we conclude

that ω is prefixed in Cx(y)[[[ω]]]. As for [[x̄z]], if [[x̄z]]
τ

−→ then [[x̄z]] ≡

128

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

(νz1) . . . (νzn)(!x′′(y′′).P ′′|!x̄′′z′′|Q′′). Therefore [[x̄z]] ↑ and thus Cx(y)[0] |

[[x̄z]] ↑. Hence, we consider the case when [[x̄z]] 6
τ

−→ in the remainder of this

proof. Since Cx(y)[[[ω]]] 6
τ

−→, ω is prefixed in Cx(y)[[[ω]]] and [[x̄z]] 6
τ

−→ , there

must be at least one interaction between Cx(y)[[[ω]]] and [[x̄z]] so that ω be-

comes observable. i.e., Cx(y)[[[ω]]] | [[x̄z]]
τ

−→ where either Cx(y)[[[ω]]]
x̄′′z′′
−→

and [[x̄z]]
x′′z′′
−→ or Cx(y)[[[ω]]]

x′′z′′
−→ and [[x̄z]]

x̄′′z′′
−→ , let us consider two cases,

the other are analogous:

– Cx(y)[[[ω]]]
x̄′′z′′
−→ and [[x̄z]]

x′′z′′
−→ : then, Cx(y)[[[ω]]] ≡

(νz1)..(νzn)(!x̄′′z′′.P |Q) where ∀i ∈ [1..n], x′′ 6= zi and [[x̄z]]

≡ (νz1)..(νzm)(!x′′(y′′).P ′|Q′) where ∀i ∈ [1..m], x′′ 6= zi. As

the hole in Cx(y)[·] is prefixed (Proposition 5.5.1) Cx(y)[0] ≡

(νz1)..(νzn)(!x̄′′z′′.P ′′|Q′′) where ∀i ∈ [1..n], x′′ 6= zi. As a result,

Cx(y)[0] | [[x̄z]] ↑ .

– Cx(y)[[[ω]]]
x′′z′′
−→ and [[x̄z | x̄′z′]]

x̄′′z′′
−→ : then, [[x̄z]] ≡

(νz1)..(νzm)(!x̄′′z′′.P ′|Q′) where ∀i ∈ [1..m], x′′ 6= zi and Cx(y)[[[ω]]]

≡ (νz1)..(νzn)(!x′′(y′′).P |Q) where ∀i ∈ [1..n], x′′ 6= zi. As

the hole in Cx(y)[·] is prefixed (Proposition 5.5.1) Cx(y)[0] ≡

(νz1) . . . (νzn)(!x′′(y′′).P ′′|Q′′) where ∀i ∈ [1..n], x′′ 6= zi. There-

fore, Cx(y)[0] | [[x̄z]] ↑.

As Cx(y)[0] | [[x̄z]] ↑ and by following the reasoning used in the proof of The-

orem 5.5.1 we can conclude that Cx(y)[[[ω]]] | [[x̄z]] has at least one infinite com-

putation where ω is not observable. Hence, Cx(y)[[[ω]]] 6must [[xz]], i.e., [[x(y).ω]]

6must [[x̄z]]. [[·]] is not must-preserving, this is a contradiction.

✷

The above theorem resembles the impossibility result in [70] about the exis-

tence of an encoding from Aπ into PAπ wrt weak bisimulation (and output equi-

valence). However, the hypothesis of the result in [70] is different. Namely, it is

restricted to encodings homomorphic wrt parallelism.

5.7. DECIDABILITY RESULTS FOR POAπ 129

5.7 Decidability results for POAπ

We shall prove that there is no computable encoding preserving divergence or

convergence from Aπ into POAπ. We do this by proving that unlike for Aπ,

divergence and convergence are decidable for POAπ processes.

We need to prove that the set of reachable processes through a τ -action can be

computed; Succ(P) = {P ′ P
τ

−→ P ′} is computable.

W.l.o.g we assume that all the bound and free names are distinct in every

process we consider in this section. Notice that every process can be transformed

into an equivalent process with distinct names by using α-conversion.

It is well-known that the relation
α

−→ is image-finite [83]. Therefore the set of

successors of a process P , Succ(P), is finite. Here we describe how to build this

set.

5.7.1 Computing Successors

Lemma 5.7.1 For any P , Derivx̄z(P) = {P ′ P
x̄z
−→ P ′} is computable.

Proof.

Let us define inductively the set Der(P) as follows:

• P = 0: Der(P) := ∅.

• P = x̄y.Q: Der(P) := {Q} if y = z, otherwise Der(P) = ∅.

• P = x(y).Q : Der(P) := ∅.

• P = Q | R : Der(P) := {(Q′ | R) Q′ ∈ Der(Q)} ∪ {Q | R′ R′ ∈

Der(R)}.

• P = (νy)Q : Der(P) := {(νy)Q′ Q′ ∈ Der(Q)} if y /∈ {x, z}.

• P =!Q : Der(P) := {(Q′ | !Q) Q′ ∈ Der(Q)}.

It can be proved that Der(P) = Derivx̄z(P) by induction on P .

✷

130

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

Lemma 5.7.2 For any P , Derivbound−output(P) = {(α, P ′) P
α

−→

P ′ where α is a bound − output} is computable.

Proof.

Let us define inductively the set Der(P) as follows:

• P = 0: Der(P) := ∅.

• P = x̄y.Q: Der(P) := ∅.

• P = x(y).Q : Der(P) := ∅.

• P = Q | R : Der(P) := {(α, Q′ | R) (α, Q′) ∈ Der(Q)} ∪

{(α, Q | R′) (α, R′) ∈ Der(R)}.

• P = (νy)Q : Der(P) := {(x̄(y), (νy)Q′) Q′ ∈ Derivx̄y(P)) where x /∈

y}

• P =!Q : Der(P) := {(α, Q′ | !Q) (α, Q′) ∈ Der(Q)}.

It can be proved that Der(P) = Derivbound−output(P) by induction on P .

✷

Lemma 5.7.3 For any P , Derivxz(P) = {P ′ P
xz
−→ P ′} is computable.

Proof.

Let us define inductively the set Der(P) as follows:

• P = 0: Der(P) := ∅.

• P = x̄y.Q: Der(P) := ∅.

• P = x(y).Q : Der(P) := {Q{z/y}}.

• P = Q | R : Der(P) := {(Q′ | R) Q′ ∈ Der(Q)} ∪ {(Q | R′) R′ ∈

Der(R)}.

• P = (νy)Q : Der(P) := {((νy)Q′) Q′ ∈ Der(Q)} if y /∈ {x, z}.

5.7. DECIDABILITY RESULTS FOR POAπ 131

• P =!Q : Der(P) := {(Q′ | !Q) Q′ ∈ Der(Q)}.

It can be proved that Der(P) = Derivxz(P) by induction on P .

✷

Now we show how to calculate Succ(P) = {P ′ P
τ

−→ P ′}.

Lemma 5.7.4 For any P , Succ(P) = {P ′ P
τ

−→ P ′} is computable.

Proof.

Let us define inductively the set Der(P) as follows:

• P = 0: Der(P) := ∅.

• P = x̄y.Q: Der(P) := ∅.

• P = x(y).Q : Der(P) := ∅.

• P = Q | R : Der(P) := {(Q′ | R) Q′ ∈ Der(Q)} ∪ {(Q | R′) R′ ∈

Der(R)} ∪ Dern(P) where Dern(P) represents the set of the deriva-

tives processes from P through τ -action resulting from synchronization

between Q and R, Dern(P) is defined as follows: Dern(P) :=

{(Q′ | R′) Q′ ∈ Derivx̄z(Q), R′ ∈ Derivxz(R) for some x, z ∈ fn(Q)}

∪ {(Q′ | R′) Q′ ∈ Derivxz(Q), R′ ∈ Derivx̄z(R) for some x, z ∈

fn(R)} ∪ {(νz)(Q′ | R′) (x̄(z), Q′) ∈ Derivbound−output(Q), R′ ∈

Derivxz(R) for some x ∈ fn(Q), z /∈ fn(R)} ∪

{(νz)(Q′ | R′) (x̄(z), R′) ∈ Derivbound−output(R), Q′ ∈

Derivxz(Q) for some x ∈ fn(R), z /∈ fn(Q)}.

• P = (νy)Q : Der(P) := {(νy)Q′ Q′ ∈ Der(Q)}

• P =!Q : Der(P) := {(Q′ | !Q) Q′ ∈ Der(Q)} ∪ {((Q′ | Q′′) | !Q) Q′ ∈

Derivx̄z(Q), Q′′ ∈ Derivxz(Q) for some x, z ∈ fn(Q)}

∪ {((νz)(Q′ | Q′′)|!Q) (x̄(z), Q′) ∈ Derivbound−output(Q), Q′′ ∈

Derivxz(Q) for some x ∈ fn(Q), z /∈ fn(Q)} .

132

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

The calculability of Der(P) when P = Q | R or P =!Q relies on the cal-

culability of Derivxz(), Derivx̄z() and Derivbound−output() which is shown in

Lemmata 5.7.3,5.7.1,5.7.2 respectively.

It can be proved that Der(P) = Succ(P) by induction on P .

✷

By using the function Succ, we can now determine whether a process is con-

vergent (divergent) or not.

5.7.2 Decidability of convergence and divergence

Nowe, we can show that convergence and divergence are decidable for POAπ.

First we need to introduce the notion of occurrence of linear input prefix.

Definition 5.7.1 (Occurrences of linear inputs prefix) Let P ∈ POAπ. The

maximal number of occurrences of linear inputs in P, LinearInp(P),

is given inductively as follows : LinearInp(0) = 0, LinearInp(!x̄) =

0, LinearInp(a(x).P) = 1 + LinearInp(P), LinearInp(!P) = 0 ,

LinearInp((νx)P) = LinearInp(P), LinearInp(P | Q) = LinearInp(P) +

LinearInp(Q).

The following proposition says that only input actions that come from linear

input prefixes can participate, by a synchronization, in a finite maximal sequence

of τ -actions.

Proposition 5.7.1 Let P , P ′ ∈ POAπ such that P
τ

−→ P ′ and P ′ is convergent.

Then P is convergent and each τ -move from P into P ′ is produced by a synchro-

nisation between an output and an input action coming from a linear input prefix.

Proof.

To prove the first part, as a means of contradiction let us suppose that P is non-

convergent, i.e. there is no maximal finite computation from P . As any maximal

computation from P ′ can be seen as the ending part of a maximal computation

from P passing through P ′. Each maximal computation from P ′ must be infinite.

Therefore. P ′ is non-convergent, a contradiction.

5.7. DECIDABILITY RESULTS FOR POAπ 133

To prove that each τ -move from P into (convergent) P ′ is produced by a syn-

chronisation between an output and an input action coming from a linear input

prefix. It is enough to see that P ′ is non-convergent in other case: the output ac-

tions are persistent at time in POAπ, i.e. once an output action can be performed,

it can be executed at anytime later on, the input actions coming from a non-linear

input prefix are persistent as well, it is due to the effect of the replication oper-

ator over the input prefix. Therefore once a synchronisation involving an input

action from a non-linear input prefix can happen, it can be repeated at anytime

later on. i.e. there would not be a maximal finite computation after performing

this kind of synchronisation. i.e. If P
τ

−→ P ′ where the synchronisation (τ -move)

results from the participation of an input action coming from a non-linear input

prefix, then any maximal computation from P ′ would be infinite. P ′ would be

non-convergent. ✷

As a corollary from Proposition 5.7.1, we have the following proposition:

Proposition 5.7.2 Let P , P ′ ∈ POAπ such that P
τ

−→ P ′ and P ′ is convergent.

Then LinearInp(P) ≥ 1.

A crucial observation to prove the decidability of convergence and divergence

in POAπ is that the number of occurrences of linear input prefix decreases as long

as a finite computation is performed.

Proposition 5.7.3 Let P and P ′ ∈ POAπ such that P
τ

−→ P ′ and P ′ is conver-

gent. Then LinearInp(P ′) = LinearInp(P) − 1.

Proof. From Proposition 5.7.1, we know that any τ -move from P into P ′ cor-

responds to a synchronisation where the input action comes from a linear input

prefix. The participation of this kind of input action implies that an occurrence of

a linear input prefix is consumed from P . Notice that although the execution of

this input action can substitute names in P , the linear or persistent nature of the

rest of the process remains unchanged. As for the output action, the consumption

of an output action does not alter the number of occurrences of linear input prefix,

it is due to the asynchronous nature of the calculus. ✷

134

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

The following Lemma states an upper bound of the length of the maximal

finite computations which depends on the number of occurrences of linear in-

puts prefix. Notice that the lower bound does not depend on this number, e.g.

a(x).0 | a(x).0 | . . . | a(x).0 6
τ

−→.

Lemma 5.7.5 Let P ∈ POAπ. For each maximal finite computation c from P ,

length(c) ≤ LinearInp(P).

Proof.

Let us consider any maximal finite computation from P :

P
τ

−→ P1
τ

−→ P2
τ

−→ P3
τ

−→ . . .
τ

−→ Pn 6
τ

−→

From Theorem 5.7.3, we know that LinearInp(P1) = LinearInp(P) −

1, in general LinearInp(Pi) = LinearInp(P) − i. Consequently,

LinearInp(PLinearInp(P)) = 0. From Proposition 5.7.2 LinearInp(PLinearInp(P))

6
τ

−→. Therefore length(c) ≤ LinearInp(P).

✷

From the computable function Succ, we can define and calculate a function

Succi(P) = {P ′′ P ′ τ
−→ P ′′ for some P ′ ∈ Succi−1(P)} where Succ1(P)

= Succ(P) and Succ0(P) = {P}, in a similar way we can identify the sta-

ble processes derivable from P at i τ -actions by the function SuccSti(P) =

{P ′′ P ′ τ
−→ P ′′ for some P ′ ∈ Succi−1(P) and Succ(P ′′) = {}} where

SuccSt0(P) = {P Succ(P) = {}}.

Now, it is easy to see from Lemma 5.7.5 and by using the function Succi and

SuccSti, which are computable from Lemma 5.7.4, that divergence and conver-

gence are decidable.

Theorem 5.7.1 Divergence is decidable in POAπ.

Proof.

From Lemma 5.7.5, a POAπ process P is divergent if and only if

there is at least one computation from P whose length is greater than

5.8. SUMMARY AND RELATED WORK 135

LinearInp(P). It can be checked whether such a computation exists by ver-

ifying that |SuccLinearInp(P)+1(P)| ≥ 0. From Lemma 5.7.4 it is clear that

SuccLinearInp(P)+1(P) can be straightforwardly calculated. ✷

Theorem 5.7.2 Convergence is decidable in POAπ.

Proof. From Theorem 5.7.5, a POAπ process P is convergent if and only if there

is at least one maximal computation from P whose length is less or equal to

LinearInp(P), i.e. if there is at least one stable process derivable from P at

most in LinearInp(P) τ -moves. It can be checked whether such a stable process

exists by verifying that |SuccSt0(P)| + |SuccSt1(P)| + |SuccSt2(P)| + . . . +

|SuccStLinearInp(P)(P)| ≥ 1. From Lemma 5.7.4 it is clear that SuccSti(P) for

any natural number i can be straightforwardly calculated.

✷

As corollary from Theorem 5.7.1 and Theorem 5.7.2 and considering Remark

5.1.1 we obtain the following separation result:

Theorem 5.7.3 There is no encoding preserving and reflecting divergence (con-

vergence) from Aπ into POAπ.

5.8 Summary and related work

In this chapter we studied the expressive power of several subcalculi of Aπ by

considering Testing semantics. As main contribution we showed a general nega-

tive result for a large class of encodings from Aπ into any of its semi-persistent

subcalculi w.r.t must semantics. This class of encodings have properties such as

compositionality and preservation of infinite behaviour wrt !, fn([[0]]) = 0 and [[ω]]
ω

−→, in our opinion all these properties are reasonable. In fact, the encodings pro-

posed in [70] belong to this class. The expressiveness gap relies on the fact that

the encoding necessarily introduces divergence: it arises when translating proc-

esses with linear components (e.g. x̄z, xy) and persistent ones (e.g. !a(x).w)).

The translation transforms some linear components into persistent ones, thus some

136

CHAPTER 5. LINEARITY, PERSISTENCE AND TESTING SEMANTICS IN

THE ASYNCHRONOUS PI-CALCULUS

interactions will introduce divergence. A stronger separation result holds for en-

codings into POAπ and PAπ. We proved that there are no computable encodings

from Aπ into POAπ or PAπ preserving and reflecting divergence or convergence.

This was proved by showing that convergence and divergence are decidable for

the target calculi.

Most of the related work was discussed in the introduction. In a different

context, in [64] it is shown that the separate choice encoding of the π-calculus

into the asynchronous π-calculus preserves weak bisimulation, while in [26] the

authors prove that no must-preserving encoding of the (choiceless) synchronous

π-calculus into the asynchronous one exists. Hence must semantics is a good

candidate to study the expressiveness of persistence when divergence is taken into

account. Nevertheless, differently from [26], where the separation result is mainly

due to the non-atomicity of the sequences of steps which are necessary in the asyn-

chronous π-calculus to mimic synchronous communication, our negative results

rely on the fact that divergence is introduced when encoding Aπ-processes in a

semi-persistent subcalculus. As previously mentioned the study of persistence in

[70] is incomplete as ignores the crucial issue of divergence. In this chapter, we

used the divergence-sensitive framework of testing semantics to give a more com-

plete account of the expressiveness of persistence in asynchronous calculi. In par-

ticular, as discussed in the introduction of this chapter, this work supports informal

expressiveness loss claims in persistent asynchronous languages [11, 34, 30].

The separation result between Aπ and its semi-persistent subcalculi showed in

Section 5.5.1 and the separation result between Aπ and PAπ in Section 5.6 were

published as [25].

The separation results between Aπ and its semi-persistent subcalculi showed

in Section and 5.5.2 and the decidability of convergence and divergence for POAπ

given in Section 5.7 have not been published.

Chapter 6

Conclusions

We shall conclude this dissertation with a discussion on general related work and

an overall summary of its contents (more specialized related work and summaries

can be found at the end of each previous chapter). We shall also describe possible

directions for future research.

• Chapter 3. In Chapter 3 we have studied the expressive power of CCS! w.r.t

faithful encodings. These encodings do not allow to move from a (weakly)

terminating state into a (strongly) non-terminating state. It is well-known

that non-faithful encodings are necessary to achieve Turing expressivenes

in CCS! [22]. We have proved that it is not possible to provide faithful

encodings for models of computability strictly less expressive than Turing

Machines into CCS!, e.g. Context-Free languages. A mechanism allowing

to move from a (weakly) terminating state into a (strongly) non-terminating

state is also used in encodings of other languages in order to show their ex-

pressive power [41, 16]. We could explore as a future work the expressive

power of these languages w.r.t. faithful encodings. In the author’s opinion,

it would be interesting to see whether the line of research followed in Chap-

ter 3 could be useful in the understanding of the expressive power of the

formalisms in [41, 16].

• Chapter 4. In Chapter 4 we have studied the expressive power of the inter-

play between replication and restriction. As two of the main results we have

137

138 CHAPTER 6. CONCLUSIONS

proved that Turing-expresiveness is lost in CCS! when the restricted decla-

rations are not under the scope of replication, and this in turn is more ex-

pressive than restriction-free CCS!. This study leaves open expressiveness

questions about other forms of interplay between replication and restriction.

For example, the behaviour that can be achieved in CCS! by imposing that

the occurrences of restricted names declared previously under the scope of

replication can not be under the scope of other replication. The author thinks

that that fragment is not Turing-expressive in the sense of Busi, Gabbrielli

and Zavattaro [21, 22]. It would also interesting to study the expressiveness

w.r.t. the number of restricted names. e.g two restricted names provides

more expressiveness than only one? As shown in Chapter 3, priorities pro-

vides a significant expressive power. An interesting direction would be to

find non-trivial fragments with a limited form of priorities in which rel-

evant properties such as reachability, convergence and divergence among

others are decidable. We claim that there is a relation between priorities

and inhibitor arcs in Petri Nets as both are able to preclude other actions

from being executed. This behaviour is fundamental in achieving Turing-

expressiveness. These similarities could be explored, for example, by using

decidability results of a proper subclass of Petri Nets systems with inhibitor

arcs, called Primitive Systems [20].

• Chapter 5. In Chapter 5 we have studied the expressive power of linearity

in Aπ by using Testing semantics. As main result we have proved that

full linearity, i.e., linearity in both inputs and outputs, is necessary in Aπ

in terms of expressiveness. Our result relies on the fact that the interplay

between linear terms and persistent terms in Aπ can not be simulated, under

some reasonable conditions, when linearity is restricted to either inputs or

outputs. This expressivenes gap arises as divergence is introduced. It would

be interesting to explore if full linearity without presence of any means of

infinite behaviour is more expressive, at some extent, than a limited form

of linearity (either in inputs or outputs) together with persistence. We think

that it is possible to define a problem along the lines of [69, 27, 91] which

can be solved by using full linearity but not with persistence and a limited

CONCLUSIONS 139

linearity.

We also think that it would be interesting to use Testing semantics to study

other elements such as polyadicity in the π-calculus. In fact, we believe that

it is possible to show that there exists an expressiveness gap between the

polyadic and the monadic (a) synchronous π-calculus under some reason-

able conditions including must-testing preservation. Intuitively the reason

is that an encoding from polyadic into monadic would require to encode

the polyadic synchronisation by following a sequence of two or more steps

in the monadic one resembling a protocol. The completion of this ”proto-

col”, unlike the polyadic synchronisation, could be precluded because of

a divergent behaviour. In fact the well-known encoding from the polyadic

π-calculus into the monadic π-calculus is not must-preserving.

Although in Chapter 4 we focused our expressiveness study on fragments of

CCS! (i.e. the π-calculus without mobility) we claim that all the results presented

in that chapter are valid for the full π-calculus as mobility does not seem to add

expressiveness to CCS−!ν
! and CCS−ν

! that would invalidate the results there pre-

sented. Likewise we claim that, apart from the specialized result for POAπ, the

results presented in Chapter 5 are valid for the full synchronous π-calculus as the

results do not rely on asynchrony.

140 CHAPTER 6. CONCLUSIONS

Bibliography

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communi-

cation. In POPL, pages 104–115, 2001.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The

spi calculus. Inf. Comput., 148(1):1–70, 1999.

[3] L. Aceto and A. Ingólfsdóttir. On the expressibility of priority. Inf. Process.

Lett., 109(1):83–85, 2008.

[4] J. Alves-Foss. An efficient secure authenticated group key exchange algo-

rithm for large and dynamic groups. In Proceedings of the 23rd National

Information Systems Security Conference, 2000.

[5] R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of

processes with cryptographic functions. Theor. Comput. Sci., 290(1):695–

740, 2003.

[6] R. Amadio and C. Meyssonnier. On decidability of the control reachability

problem in the asynchronous π−calculus. Nordic Journal of Computing,

9(2), 2002.

[7] J. Aranda, C. D. Giusto, M. Nielsen, and F. D. Valencia. Ccs with replication

in the chomsky hierarchy: The expressive power of divergence. In Z. Shao,

editor, APLAS, volume 4807 of Lecture Notes in Computer Science, pages

383–398. Springer, 2007.

[8] J. Aranda, F. D. Valencia, and C. Versari. On the expressive power of res-

triction and priorities in ccs with replication. In L. de Alfaro, editor, FOS-

141

142 BIBLIOGRAPHY

SACS, volume 5504 of Lecture Notes in Computer Science, pages 242–256.

Springer, 2009.

[9] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of bisimula-

tion equivalence for processes generating context-free languages. J.ACM.,

40(3):653–682, 1993.

[10] J. C. M. Baeten and F. Corradini. Regular expressions in process algebra.

In LICS ’05, pages 12–19, Washington, DC, USA, 2005. IEEE Computer

Society.

[11] E. Best, F. de Boer, and C. Palamidessi. Partial order and sos semantics for

linear constraint programs. In D. Garlan and D. L. Métayer, editors, CO-

ORDINATION, volume 1282 of Lecture Notes in Computer Science, pages

256–273. Springer, 1997.

[12] B. Blanchet. Security protocols: from linear to classical logic by abstract

interpretation. Inf. Process. Lett., 95(5):473–479, 2005.

[13] M. Boreale and M. Buscemi. A framework for the analysis of security pro-

tocols. In L. Brim, P. Jancar, M. Kretı́nský, and A. Kucera, editors, CON-

CUR, volume 2421 of Lecture Notes in Computer Science, pages 483–498.

Springer, 2002.

[14] E. Borger, E. Gradel, and Y. Gurevich. The Classical Decision Problem.

Springer Verlag, 1994.

[15] G. Boudol. Asynchrony and the pi-calculus. Technical Report RR-1702,

INRIA Sophia Antipolis, 1992.

[16] M. Bravetti and G. Zavattaro. On the expressive power of process interrup-

tion and compensation. Mathematical. Structures in Comp. Sci., 19(3):565–

599, 2009.

[17] E. Brinksma, A. Rensink, and W. Vogler. Fair testing. In I. Lee and S. A.

Smolka, editors, CONCUR, volume 962 of Lecture Notes in Computer Sci-

ence, pages 313–327. Springer, 1995.

BIBLIOGRAPHY 143

[18] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicat-

ing sequential processes. Journal of the ACM, 31(3):560–599, July 1984.

[19] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite

structures, chapter 9, pages 545–623. Elsevier, North-Holland, 2001.

[20] N. Busi. Analysis issues in petri nets with inhibitor arcs. Theor. Comput.

Sci., 275(1-2):127–177, 2002.

[21] N. Busi, M. Gabbrielli, and G. Zavattaro. Replication vs. recursive defini-

tions in channel based calculi. In ICALP’03, volume 2719 of LNCS, pages

133–144. Springer-Verlag, 2003.

[22] N. Busi, M. Gabbrielli, and G. Zavattaro. Comparing recursion, replication,

and iteration in process calculi. In ICALP’04, volume 3142 of LNCS, pages

307–319. Springer-Verlag, 2004.

[23] D. Cacciagrano. On Synchronous and Asynchronous Communication: Some

Expressiveness Results. PhD thesis, University of L’Aquila, 2004.

[24] D. Cacciagrano and F. Corradini. On synchronous and asynchronous com-

munication paradigms. In A. Restivo, S. R. D. Rocca, and L. Roversi, ed-

itors, ICTCS, volume 2202 of Lecture Notes in Computer Science, pages

256–268. Springer, 2001.

[25] D. Cacciagrano, F. Corradini, J. Aranda, and F. D. Valencia. Linearity, per-

sistence and testing semantics in the asynchronous pi-calculus. Electr. Notes

Theor. Comput. Sci., 194(2):59–84, 2008.

[26] D. Cacciagrano, F. Corradini, and C. Palamidessi. Separation of synchronous

and asynchronous communication via testing. Electr. Notes Theor. Comput.

Sci., 154(3):95–108, 2006.

[27] M. Carbone and S. Maffeis. On the expressive power of polyadic synchro-

nisation in pi-calculus. Nord. J. Comput., 10(2):70–98, 2003.

[28] S. Christensen. Decidability and Decomposition in Process Algebras. PhD

thesis, Edinburgh University, 1993.

144 BIBLIOGRAPHY

[29] S. Christensen, Y. Hirshfeld, and F. Moller:. Decidable subsets of ccs. Com-

put. J, 37(4):233–242, 1994.

[30] F. Crazzolara. Language, Semantics, and Methods for Security Protocols.

PhD thesis, University of Aarhus, 2003.

[31] F. Crazzolara and G. Winskel. Events in security protocols. In ACM Confer-

ence on Computer and Communications Security, pages 96–105, 2001.

[32] C. Eccher and C. Priami. Design and implementation of a tool for trans-

lating sbml into the biochemical stochastic pi-calculus. Bioinformatics,

22(24):3075–3081, 2006.

[33] J. Esparza and M. Nielsen. Decidability issues for petri nets. Technical

report, BRICS RS-94-8, 1994.

[34] F. Fages, P. Ruet, and S. Soliman. Linear concurrent constraint program-

ming: Operational and phase semantics. Inf. Comput., 165(1):14–41, 2001.

[35] M. Fiore and M. Abadi. Computing symbolic models for verifying crypto-

graphic protocols. In CSFW, pages 160–173. IEEE Computer Society, 2001.

[36] C. Fournet and M. Abadi. Hiding names: Private authentication in the ap-

plied pi calculus. In M. Okada, B. C. Pierce, A. Scedrov, H. Tokuda, and

A. Yonezawa, editors, ISSS, volume 2609 of Lecture Notes in Computer Sci-

ence, pages 317–338. Springer, 2002.

[37] S. J. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta

Inf., 42(2-3):191–225, 2005.

[38] P. Giambiagi, G. Schneider, and F. D. Valencia. On the expressiveness of

infinite behavior and name scoping in process calculi. In I. Walukiewicz, ed-

itor, FoSSaCS, volume 2987 of Lecture Notes in Computer Science. Springer,

2004.

[39] J. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

BIBLIOGRAPHY 145

[40] M. Giunti, K. Honda, V. T. Vasconcelos, and N. Yoshida. Session-based

type discipline for pi calculus with matching. Presented at PLACES 2009

— 2nd International Workshop in Programming Language Approaches to

Concurrency and Communication-cEntric Software, 2009.

[41] C. D. Giusto, J. A. Pérez, and G. Zavattaro. On the expressiveness of for-

warding in higher-order communication. In M. Leucker and C. Morgan,

editors, ICTAC, volume 5684 of Lecture Notes in Computer Science, pages

155–169. Springer, 2009.

[42] U. Goltz. Ccs and petri nets. In I. Guessarian, editor, Semantics of Systems

of Concurrent Processes, volume 469 of LNCS, pages 334–357. Springer,

1990.

[43] D. Gorla. On the relative expressive power of asynchronous communication

primitives. In L. Aceto and A. Ingólfsdóttir, editors, FoSSaCS, volume 3921

of Lecture Notes in Computer Science, pages 47–62. Springer, 2006.

[44] D. Gorla. Synchrony vs asynchrony in communication primitives. Electr.

Notes Theor. Comput. Sci., 175(3):87–108, 2007.

[45] D. Gorla. Towards a unified approach to encodability and separation results

for process calculi. In van Breugel and Chechik [88], pages 492–507.

[46] Y. Hirshfeld. Petri nets and the equivalence problem. In Proceedings of

CSL’93, volume 832 of LNCS, pages 165–174. Springer Verlag, 1993.

[47] K. Honda and M. Tokoro. An object calculus for asynchronous commu-

nication. In P. America, editor, ECOOP, volume 512 of Lecture Notes in

Computer Science, pages 133–147. Springer, 1991.

[48] H. Hüttel. Undecidable equivalences for basic parallel processes. In

TACS’94, volume 789 of Lecture Notes in Computer Science, pages 454–

464. Springer, 1994.

[49] H. Huttel and J. Srba. Recursion vs. replication in simple cryptographic

protocols. In SOFSEM’05, volume 3381 of LNCS, pages 175–184. Springer-

Verlag, 2005.

146 BIBLIOGRAPHY

[50] C. B. Jones. A pi-calculus semantics for an object-based design notation.

In E. Best, editor, CONCUR, volume 715 of Lecture Notes in Computer

Science, pages 158–172. Springer, 1993.

[51] P. C. Kanellakis and S. A. Smolka. CCS expressions finite state processes,

and three problems of equivalence. Inf. Comput., 86(1):43–68, 1990.

[52] N. Kobayashi and T. Suto. Undecidability of bpp equivalences revisited.

Technical report, Tohoku University, 2007.

[53] C. Laneve and A. Vitale. Expressivity in the kappa family. Electr. Notes

Theor. Comput. Sci., 218:97–109, 2008.

[54] R. Lucchi and M. Mazzara. A pi-calculus based semantics for ws-bpel. J.

Log. Algebr. Program., 70(1):96–118, 2007.

[55] S. Maffeis and I. Phillips. On the computational strength of pure ambient

calculi. In EXPRESS’03, 2003.

[56] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems, Specification. Springer, 1991.

[57] R. Meersman, Z. Tari, M.-S. Hacid, J. Mylopoulos, B. Pernici, Ö. Babaoglu,

H.-A. Jacobsen, J. P. Loyall, M. Kifer, and S. Spaccapietra, editors. On the

Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE,

OTM Confederated International Conferences CoopIS, DOA, and ODBASE

2005, Agia Napa, Cyprus, October 31 - November 4, 2005, Proceedings,

Part I, volume 3760 of Lecture Notes in Computer Science. Springer, 2005.

[58] R. Milner. A complete inference system for a class of regular behaviours. J.

Comput. Syst. Sci., 28(3):439–466, 1984.

[59] R. Milner. Communication and Concurrency. International Series in Com-

puter Science. Prentice Hall, 1989. SU Fisher Research 511/24.

[60] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

BIBLIOGRAPHY 147

[61] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge

University Press, 1999.

[62] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Infor-

mation and Computation,, 100, 1992.

[63] M. Minsky. Computation: finite and infinite machines. Prentice Hall, 1967.

[64] U. Nestmann. What is a ‘good’ encoding of guarded choice? Electr. Notes

Theor. Comput. Sci., 7, 1997.

[65] R. D. Nicola and M. Hennessy. Testing equivalences for processes. Theor.

Comput. Sci., 34:83–133, 1984.

[66] M. Nielsen, C. Palamidessi, and F. Valencia. On the expressive power of

concurrent constraint programming languages. In PPDP 2002, pages 156–

167. ACM Press, Oct. 2002.

[67] C. Olarte. Universal Temporal Concurrent Constraint Programming. PhD

thesis, l’Ecole Polytechnique, 2009.

[68] C. Olarte and F. D. Valencia. The expressivity of universal timed CCP:

Undecidability of monadic FLTL and closure operators for security. In Proc.

of PPDP 08. ACM, 2008.

[69] C. Palamidessi. Comparing the expressive power of the synchronous and

asynchronous pi-calculi. Mathematical Structures in Computer Science,

13(5):685–719, 2003.

[70] C. Palamidessi, V. A. Saraswat, F. D. Valencia, and B. Victor. On the expres-

siveness of linearity vs persistence in the asychronous pi-calculus. In LICS,

pages 59–68. IEEE Computer Society, 2006.

[71] C. Palamidessi and F. D. Valencia. Recursion vs replication in process cal-

culi: Expressiveness. Bulletin of the EATCS, 87:105–125, 2005.

[72] J. Parrow. Trios in concert. In G. Plotkin, C. Stirling, and M. Tofte, editors,

Proof, Language and Interaction: Essays in Honour of Robin Milner, pages

621–637. MIT Press, 2000.

148 BIBLIOGRAPHY

[73] L. C. Paulson. Mechanized proofs for a recursive authentication protocol. In

CSFW, pages 84–95. IEEE Computer Society, 1997.

[74] A. Phillips and L. Cardelli. Efficient, correct simulation of biological proc-

esses in the stochastic pi-calculus. In M. Calder and S. Gilmore, editors,

CMSB, volume 4695 of Lecture Notes in Computer Science, pages 184–199.

Springer, 2007.

[75] A. Phillips, L. Cardelli, and G. Castagna. A graphical representation for

biological processes in the stochastic pi-calculus. 4230:123–152, 2006.

[76] I. Phillips. Ccs with priority guards. J. Log. Algebr. Program., 75(1):139–

165, 2008.

[77] B. C. Pierce. Concurrent objects in a process calculus. In T. Ito and

A. Yonezawa, editors, Theory and Practice of Parallel Programming, vol-

ume 907 of Lecture Notes in Computer Science, pages 187–215. Springer,

1994.

[78] B. C. Pierce and D. N. Turner. Pict: a programming language based on

the pi-calculus. In G. D. Plotkin, C. Stirling, and M. Tofte, editors, Proof,

Language, and Interaction, pages 455–494. The MIT Press, 2000.

[79] K. V. S. Prasad. Broadcast calculus interpreted in ccs upto bisimulation.

Electr. Notes Theor. Comput. Sci., 52(1), 2001.

[80] F. Puhlmann. Soundness verification of business processes specified in the

pi-calculus. In R. Meersman and Z. Tari, editors, OTM Conferences (1),

volume 4803 of Lecture Notes in Computer Science, pages 6–23. Springer,

2007.

[81] W. Reisig. Petri Nets: An Introduction, volume 4 of Monographs in Theo-

retical Computer Science. An EATCS Series. Springer, 1985.

[82] D. Sangiorgi. The name discipline of uniform receptiveness. Theor. Comput.

Sci., 221(1-2):457–493, 1999.

BIBLIOGRAPHY 149

[83] D. Sangiorgi and D. Walker. The π−calculus: A Theory of Mobile Processes.

Cambridge University Press, 2001.

[84] V. Saraswat. Concurrent Constraint Programming. The MIT Press, Cam-

bridge, MA, 1993.

[85] V. Saraswat and P. Lincoln. Higher-order linear concurrent constraint pro-

gramming. Technical report, Xerox PARC, 1992.

[86] H. Smith and P. Fingar. Business Process Management: The Third Wave.

Meghan-Kiffer Press, 2003.

[87] D. Taubner. Finite representation of CCS and TCSP programs by automata

and Petri nets. In LNCS 369. Springer Verlag, 1989.

[88] F. van Breugel and M. Chechik, editors. CONCUR 2008 - Concurrency The-

ory, 19th International Conference, CONCUR 2008, Toronto, Canada, Au-

gust 19-22, 2008. Proceedings, volume 5201 of Lecture Notes in Computer

Science. Springer, 2008.

[89] W. M. P. van der Aalst. Pi calculus versus Petri nets: Let us eat humble pie

rather than further inflate the Pi hype, 2004.

[90] V. T. Vasconcelos. Fundamentals of session types. In M. Bernardo,

L. Padovani, and G. Zavattaro, editors, SFM, volume 5569 of Lecture Notes

in Computer Science, pages 158–186. Springer, 2009.

[91] C. Versari, N. Busi, and R. Gorrieri. On the expressive power of global and

local priority in process calculi. In CONCUR, volume 4703 of LNCS, pages

241–255. Springer, 2007.

[92] M. Vigliotti, I. Phillips, and C. Palamidessi. Separation results via leader

election problems. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P.

de Roever, editors, FMCO, volume 4111 of Lecture Notes in Computer Sci-

ence, pages 172–194. Springer, 2005.

[93] G. Zavattaro and L. Cardelli. Termination problems in chemical kinetics. In

van Breugel and Chechik [88], pages 477–491.

Index

⇓x̄, 23
α

=⇒, 16
β̂

=⇒, 16
τ̂

=⇒, 16

=⇒, 16

α-conversion, 14

≈, 23

≈a , 24
.
≈a , 24

↓, 25

↑, 25

↓x̄, 23

≡, 33

∼F , 25

fair , 28

fair -preservation, see testing

∼L, 24
α

−→, 15

may , 28

may -preservation, see testing

must , 28

must -preservation, see testing

↓6 , 25

↑6 , 25

ω, see testing

π-calculus, 13

PIAπ, 102

POAπ, 102

PAπ, 102

asynchronous, 18

polyadic , 17

✄, 29

∼, 23

∼r, 22

(strongly) non-terminating , 37

action, 15

bound input, 15

free output, 15

input, 15

internal, 15

object of, 15

subject of, 15

asynchronous

weak barbed bisimilarity, 23

weak barbed congruence, 24

barbs, 23

bisimilarity, 22

reduction, 22

strong, 23

weak, 23

CCS, 19

CCSp, 21

150

INDEX 151

CCS!, 21

CCS−!ν
!+pr, 85

CCS−ν
! , 65

CCS−!ν
! , 65

CCS−ω
! , 36

compositionality, see encoding

convergence, 25

divergence, 25

encoding, 22

compositionality, 104

homomorphism, 104

preservation of infinite behaviour,

105

failures, 25

equivalent, 25

fair-testing, see testing

homomorphism, see encoding

language

generation, 24

equivalence, 24

maximal computations, see testing

may-testing, see testing

must-testing, see testing

name, 13

names

bound names, 14

free names, 14

observers, see testing

Petri nets, 29

prefix

input, 14

output, 14

unobservable, 14

preservation of infinite behaviour, see

encoding

RAMs, see Random Access Machines

Random Access Machines, 30

stable, 25

terminating, 37

weakly, 37

weakly termination-preserving, 39

testing , 27

fair -preservation, 28

may -preservation, 28

must -preservation, 28

ω , 28

fair-testing, 28

maximal computations , 28

may-testing, 28

must-testing, 28

observers , 27

weakly termination-preserving, see ter-

minating

