
HAL Id: tel-00433165
https://pastel.hal.science/tel-00433165

Submitted on 18 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modèles et normalisation des preuves
Denis Cousineau

To cite this version:
Denis Cousineau. Modèles et normalisation des preuves. Informatique [cs]. Ecole Polytechnique X,
2009. Français. �NNT : �. �tel-00433165�

https://pastel.hal.science/tel-00433165
https://hal.archives-ouvertes.fr

Models and proof normalization

Thèse de doctorat
Spécialité Informatique

Présentée et soutenue publiquement par

 le 1er décembre 2009

Denis Cousineau

Devant la comission d'examen composée de Gilles

Herman

Claude

Roberto

Thomas

Dale

Alexandre

DOWEK

GEUVERS

KIRCHNER

DI COSMO

EHRHARD

MILLER

MIQUEL

Directeur de thèse

Rapporteurs

Examinateurs

Composed with LATEX.

c© Denis Cousineau. All rights reserved.

Si c’était à refaire, recommenceriez-vous ? dit la chanson.

Jamais on ne recommencerait, à moins d’être gâteux ou d’ignorer le goût de l’expérience.

Boris Vian

Remerciements

5

Contents

1 Introduction 11

2 Proof normalization as a model-theoretic notion 19

2.1 Natural deduction . 19
2.1.1 Terms, propositions and inference rules 20
2.1.2 Proof-terms and typing rules 23
2.1.3 Cut elimination and normalization 27

2.2 Minimal deduction modulo 31
2.2.1 Rewrite rules versus axioms 31
2.2.2 Definition . 32
2.2.3 Theories expressed in minimal deduction modulo . . . 34

2.3 Reducibility candidates . 36
2.3.1 About reducibility candidates 37
2.3.2 Pre-models for deduction modulo 38

2.4 Truth values algebras . 40
2.4.1 Definition . 41
2.4.2 Models valued in truth values algebras 42
2.4.3 C, the TVA of reducibility candidates 43

3 Sound and complete semantics for strong normalization in
minimal deduction modulo 47

3.1 Are usual reducibility candidates complete ? 48
3.1.1 About the (CR3) property 49
3.1.2 The problem of neutral normal proof-terms 50
3.1.3 How to interpret the universal quantifier 51

7

3.1.4 Language-dependent truth values algebras 52

3.2 Well-typed reducibility candidates 55
3.2.1 C

≡
, the LDTVA of ≡-well-typed reducibility candidates 55

3.2.2 C
≡
-models as a sound semantics for strong normalization 59

3.2.3 C
≡
-models as a complete semantics for strong normal-

ization: the long way 61
3.2.4 C

≡
-models as a complete semantics for strong normal-

ization: the short way 66

3.3 Theory-independent sound and complete reducibility candi-
dates . 67
3.3.1 The main idea . 68
3.3.2 C′, yet another algebra of reducibility candidates . . . 68
3.3.3 Soundness of non-empty C′-models 71
3.3.4 Defining a function from C

≡
to C′ 73

3.3.5 Proving that this function is a morphism 78
3.3.6 Completeness of non-empty C′-models 82

3.4 Conclusion . 84

4 Sound and complete semantics for λΠ-modulo 87

4.1 The λΠ-calculus . 88
4.1.1 Syntax of the λΠ-calculus 89
4.1.2 Typing rules of the λΠ-calculus 90

4.2 The λΠ-calculus modulo . 93
4.2.1 Syntax of the λΠ-calculus modulo 93
4.2.2 Typing rules of the λΠ-calculus modulo 94
4.2.3 Technical lemmas . 96

4.3 Pre-models for λΠ-modulo . 100
4.3.1 Definition of pre-models 100
4.3.2 Soundness of pre-models for strong normalization . . . 104
4.3.3 An example of pre-model 106
4.3.4 Completeness of pre-models for strong normalization . 110

4.4 Conclusion . 116

5 Embedding functional Pure Type Systems in λΠ-calculus
modulo 119

5.1 The Pure Type Systems . 120

5.2 Embedding functional Pure Type Systems in the λΠ-calculus
modulo . 122
5.2.1 Definition . 123
5.2.2 Soundness of the embedding 125

8

5.3 How to prove strong normalization of the embedded theories
in λΠ-calculus modulo . 128

5.4 Conservativity of the embedding 130
5.4.1 Confluence of λΠP -calculus modulo 130
5.4.2 Which notion of conservativity? 137
5.4.3 Back translation . 138
5.4.4 Getting rid of weak η-long forms 144

5.5 Implementation . 148

5.6 Conclusion . 149

6 Conclusion and perspectives 153

6.1 Summary . 153

6.2 Future work . 154
6.2.1 Toward a sound and complete semantics for strong

normalization in Pure Type Systems 154
6.2.2 Weak and Strong normalization 156

6.3 Conclusion . 158

Bibliography 160

Index of definitions 167

9

1
Introduction

Representation of reasoning

For a long time, mathematics was purely about computation, long before
we even had machines to compute. Mathematics was at first essentially
confined to book-keeping. It is believed that humans have been able to count
and compute since at least 3500 b.c. in Mesopotamia. The mesopotamians
known how to divide a number of grains into equal parts, to compute the
area of a field, and so on... But it took approximately 3100 more years
for humans to be interested in the study of the part of mathematics which
analyses human reasoning: logics.

The greek philosopher Aristotle, which lived in the 4th century b.c. is
considered to be the inventor of formal logics. He introduced the notion of
syllogism to represent formally how a human argumentation can be built.
He realized that the human reasoning ought to be describable as a formal
deduction system, but he did not succeed in building a powerful enough
system to represent all legitimate argumentations.

2300 years later, at the end of the 19th century, such mathematicians as
David Hilbert, Gottlob Frege and Bertrand Russell reinvented the discipline
of logics by improving Aristotle’s method in order to define formal systems
that, in effect, constituted the first predicate logics (also called first-order
logics). With these formal systems, they developed an analysis of quantified
statements and formalized the notion of a proof in terms that logicians still
use today.

Finally, in the 1930’s Gehrard Gentzen and Stanisław Jaśkowski defined,
independently, what is considered today as the realization at last of the goal
of Aristotle to provide a formal system to represent logical reasoning, and is
still studied today. The systems they defined, Natural Deduction, Sequent

11

1. Introduction

Calculus, and the Method of Suppositions are slightly different but provide
the same expressiveness for representing proofs and proof-building. These
systems are much more expressive to represent proofs and propositions than
sentential axiomatizations that preceded, common to the systems of Hilbert,
Frege, and Russell. For example, Natural Deduction considers a language in
predicate logic which contains symbols of functions and predicates. Terms
are built up from term-variables and functions. Propositions are built up
from atomic propositions, which are predicates applied to terms, with the
usual connectives we use to represent propositions: the implication, the uni-
versal quantifier, the disjunction, and so on... Inference rules are provided
to distinguish between provable and unprovable propositions. A mathemat-
ical theory can be expressed in Natural Deduction, by the use of axioms,
which are propositions that are always considered true. For example, given
a language in predicate logic in which we represent integers, we represent the
addition by such axioms as “for all integers x, x+ 0 = x”, “for all integers
x and y, x+ (y+ 1) = (x+ 1) + y” ’, and so on... Given these axioms, we are
able, via the inference rules, to build proofs of propositions of arithmetic as
“2012 + 2012 = 4024”.

Confidence in those representations

How can we be sure that these formal systems actually represent human
reasoning ? We consider that a system is reliable if one cannot prove an
assertion and its opposite using this system, or, equivalently, that there
exists assertions which are not provable in this system. We say, in this case
that the system is consistent. Two different methods have been developed
to prove consistency of such a system. These two methods seem to be very
different as one is syntactic and the other is semantic. We shall see that they
are actually connected.

The syntactic method, called cut elimination, stems fom the question of
what kind of proofs can be built for a provable assertion. The notion of cut
represents the introduction of an intermediate lemma in a proof, in order to
use a particular case of this lemma. The cut elimination property expresses
the fact that we could have avoided to introduce the intermediate lemma
and proved the particular case we need directly. If a system allows to build a
cut-free proof for each provable assertion, then it is consistent, since we can
verify that there is no possibility to build a cut-free proof for some assertions,
which are therefore unprovable. Cut elimination has been proved by Gentzen
for the sequent calculus and by Prawitz for natural deduction, hence both of
them are consistent. In both sequent calculus and natural deduction, cuts
have a unique representation: as a specific rule in sequent calculus and as
a specific form of the proof, in natural deduction. But as soon as we want
to extend natural deduction to express more powerful theories by adding

12

axioms, we have to introduce different notions of cut and cut elimination
quickly becomes more complicated to prove.

The semantic method consists in building a model for such a system. A
model is a mathematical object, which represents the considered system, and
which proves the consistency of the system by its existence: the system is
reliable since it can be modeled in the “real” world of mathematical objects.
For example, let us consider a system in which implication ⇒ is represented
by the two rules: “if B is provable given a proof of A, then A ⇒ B is
provable” and “if A ⇒ B and A are both provable, then B is also provable.
We are able to build a model for this part of such a system by considering
the {⊤,⊥}-algebra: a set with two distinct elements ⊤ (that is “true”) and ⊥
(that is “false”), and, as a model of the implication, a mathematical function
⇒̃ which maps ordered pairs of elements of {⊤,⊥} to elements of {⊤,⊥}.
This function corresponds to the well known truth table for the implication:
⊤⇒̃⊤ = ⊤, ⊥⇒̃⊤ = ⊤, ⊥⇒̃⊥ = ⊤ (if A is false or B is true, then A ⇒ B
is true), and ⊤⇒̃⊥ = ⊥ (if A is true and B is false, then A ⇒ B is false).
This algebra has been used by George Boole, in the 19th century, to provide
a model for propositional logic, and to conclude that it is consistent. This
algebra has been extended into the so-called “Boolean algebra” on which we
can build models for proving consistency of theories expressed in classical
first-order logic. In this sense, having a model valued in this boolean algebra
is a sound criterion for consistency of theories expressed in classical first-order
logic. In 1929, Kurt Gödel proved that this criterion is also complete: all
consistent theories expressed in classical first-order logic have such a boolean
model. This completeness property expresses the fact that this criterion is
general enough to discriminate exactly the theories which are consistent.
Finally, this notion of algebra has been extended by Arend Heyting into
the so-called Heyting algebras. He proved that having a model valued in
such an algebra is a sound criterion for consistency of theories expressed in
intuitionistic first-order logic.

Proofs as programs

The study of computation swept back into mathematics when Alan Tur-
ing and Alonzo Church defined, in the 1930’s, Turing machines and the
λ-calculus, respectively. These systems both define the same notion of com-
putable functions. Functions that are computable are the functions whose
results can be computed, in finite time, of an algorithm composed by a finite
number of computation rules. They correspond to functions a computer can
compute, given a program implementing the algorithm.

The λ-calculus is a very simple and powerful language which represents
mathematical functions. There are three kinds of terms in this language:

13

1. Introduction

variables, functions and application of a term to another one. The com-
putation of functions is modeled by one single rule called the β-reduction.
This rule expresses the fact that the computation of a function f applied
to a term t is f(t), i.e. the value of the function which associates f(x) to
x when replacing all the occurences of x in f(x) by the term t. A term is
considered computable if β-reduction of this term terminates (and therefore
provides a value for this term). There exists terms which are not computable
in the λ-calculus. The simply-typed λ-calculus was introduced to discrim-
inate which of those terms are computable. The idea is to consider those
functions together with their domains (called types), which are the sets of
terms on which those functions are allowed to be applied. Whereas in the
pure λ-calculus, functions can be applied to any term, typed λ-terms only
contain functions applied to terms in their domains. The fact that a λ-term
is well-typed can be verified via an algorithm given by a set of typing rules.

The Brouwer-Heyting-Kolmogorov correspondence, relates, via the Curry-
de Bruijn-Howard isomorphism those typing rules and the deduction rules
of natural deduction. Indeed, the typing rules for functions are the following
ones: if f is of type A ⇒ B (which represents the type of functions from A
to B) and x is of type A, then f(x) is of type B; and if f(x) is of type B
when x is of type A, then f is of type A ⇒ B. We obtain in this way the
two deduction rules for the implication. This isomorphism identifies proving
and typing, and a proof of a proposition can be seen as a function of the
corresponding type, from a mathematical point of view, and therefore as a
program of the corresponding data type, from a programming point of view.
Via this isomorphism, the elimination of a cut is modeled via a β-reduction.

The first proof that the simply-typed λ-calculus actually capture only
computable terms was given by William Tait. He proved that all β-reductions
sequences from a well-typed term terminate. Therefore all well-typed terms
are computable. We call this property “strong normalization”. Since the elim-
ination of a cut is modeled as a β-reduction, the strong normalization prop-
erty entails the cut elimination property for the associated theory. Therefore
it is not surprising that Tait reused for this proof the technique developed
by Prawitz for proving cut elimination of natural deduction. This technique
has been generalized, as the “reducibility candidates” by Jean-Yves Girard
for strong normalization of system F.

This paradigm of “proofs as programs” is the foundation of several proof-
assistants that can check proofs built by a human user. A problem of proof-
assistants that use deductions rules to check those proofs is that expressing
computations is inconvenient and often inefficient. For example, given the
axioms of arithmetic x + 0 = x and x + (y + 1) = (x + 1) + y, we need
2013 steps of deduction to prove that 2012 + 2012 = 4024. The 2012 first
steps use the second axiom: 2012 + 2012 is equal to 2013 + 2011 which is
equal to 2014 + 2010, ... which is equal to 4024 + 0, which is finally equal to

14

4024, using the first axiom. Representing computation by deduction rules
is therefore a liability the efficiency of proof-assistants, whereas there exists
reliable processors which compute operations on integers very fast.

Deduction modulo

Deduction modulo was introduced by Gilles Dowek, Thérèse Hardin and
Claude Kirchner in order to provide a logical framework where proving and
computing are separated, in order to discriminate, in a proof, which parts are
more efficiently performed by a processor: the computation; and which parts
are more efficiently performed by a human: the (logical part of the) proof.
The idea is to consider as equal, propositions which are computed equal by
an external tool. This way, we only need one step of deduction to prove the
proposition 2012 + 2012 = 4024, since an external processor can compute
the term 2012 + 2012 into the term 4024. This formalism was introduced to
build improved proof-assistants, which allow the human user to focus only on
the parts of proofs which need human reasoning, and which can be faster in
checking proofs, by using a external dedicated reliable program to compute
on integers (or on other data types).

Deduction modulo is a powerful logical framework, since it allows to ex-
press proofs of theories like arithmetic, simple type theory, some variants of
set theory, and so on... The counter-part of this power, is that it allows to ex-
press theories which do not satisfy the cut elimination property or the strong
normalization property. Hence we have to prove cut elimination or strong
normalization for each theory that we want to prove consistent. Semantic
methods were developed by Olivier Hermant to prove cut elimination for
theories expressed in deduction modulo. On the other hand, Gilles Dowek
and Benjamin Werner adapted the technique of reducibility candidates to de-
duction modulo, by defining the notion of pre-model which provides a sound
criterion for strong normalization of theories expressed in deduction modulo.
Later, Gilles Dowek exhibited the connection between semantic methods of
building models and the apparently syntactic technique of reducibility can-
didates, by defining an extension of Heyting algebras, called Truth Values
Algebras, pointing out one of these algebras corresponding to reducibility
candidates, and deducing from his work with Benjamin Werner, that having
a model valued in this algebra is a sound criterion for strong normalization of
theories expressed in deduction modulo. However this criterion is not known
to be complete. It could be that there exists strongly normalizing theories
which do not satisfy this criterion.

15

1. Introduction

Complete criteria for strong normalization

In the present work, we shall define a model-theoretic criterion, based on a
refinement of reducibility candidates, which is a sound and complete seman-
tics for strong normalization of theories expressed in a fragment of deduction
modulo called minimal deduction modulo, and in the λΠ-calculus modulo
which is the adaptation of deduction modulo to the λΠ-calculus (the exten-
sion of the simply-typed λ-calculus with dependent types).

This thesis confirms the idea that the difference between strongly nor-
malizing theories and non-strongly normalizing theories has also a semantical
dimension and that model-theory methods can be very useful in proof-theory.

16

Outline

In chapter 2, we define formally natural deduction and how we can use the
syntax of the λ-calculus to represent proofs of (minimal) natural deduction.
We then define (minimal) deduction modulo and present some examples of
theories expressed in minimal deduction modulo. We present the technique
of reducibility candidates, and its adaptation for deduction modulo (pre-
models). We finally define the notion of Truth Values Algebras, and show
how pre-models can be defined as models valued in a specific Truth Values
Algebra.

In chapter 3, we first analyze the technique of reducibility candidates and
show why it would be difficult to prove that they provide a complete cri-
terion for strong normalization. We then adapt them into a sound and
complete criterion, by defining a refinement of Truth Values Algebras, called
Language-dependent Truth Values Algebras, and exhibiting two of those
Language-dependent Truth Values Algebras such that having a model valued
in one of them is a sound and complete criterion for strong normalization
in minimal deduction modulo. While the first Language-dependent Truth
Values Algebra depends on the studied theory, the second one does not and
provides therefore a theory-independent criterion.

In chapter 4, we first define the λΠ-calculus modulo, and then extend the
techniques developed in the previous chapter, to provide a sound and com-
plete criterion for strong normalization of theories expressed in the λΠ-
calculus modulo. For that purpose, we adapt the notion of pre-models for
deduction modulo to dependent types, and provide an innovative method for
building interpretations of dependent types, expressive enough to reuse the
techniques of the previous chapter, for proving completeness.

In chapter 5, we propose an embedding of another logical framework, called
functional Pure Type Systems, into the λΠ-calculus modulo. An example of
functional Pure Type System is the Calculus of Constructions which provides
the logical foundation of the proof-assistant Coq. This embedding, which
we prove sound and conservative, shows that the λΠ-calculus modulo is a
powerful logical framework, since it subsumes all the theories expressed in
functional Pure Type Systems. This embedding also provides an approach
to a sound and complete criterion for strongly normalizing functional Pure
Type Systems, by using the notion of pre-models for λΠ-calculus modulo.

17

2
Proof normalization as a

model-theoretic notion

Outline

The aim of this chapter is to provide a partial view of the state of the
art concerning proof normalization, in particular, in the logical framework
of deduction modulo. We shall, as a first step, present minimal natural
deduction, in order to define minimal deduction modulo thereafter. We
shall describe the main technique for proving proof normalization, introduced
by Girard, following the work of Tait, called reducibility candidates. We
shall see how we can adapt this technique to deduction modulo by defining
the so-called pre-models, expliciting the fact that this apparently syntactical
method can be viewed as the construction of a specific model, hence is also
a semantical method. Finally, we shall define truth values algebras which are
the kinds of algebras on which we can build such models.

2.1 Natural deduction

Natural deduction was independently proposed by Jaśkowski [37] (“the
method of suppositions”) and Gentzen [24] in 1935. It is a system much more
expressive to represent proofs and propositions than sentential axiomatiza-
tions common to the systems of Hilbert, Frege, and Russell that preceded.
This system considers a first-order language which can be many-sorted and
which contains symbols of functions and predicates. Terms are built up from
term-variables and functions. We shall consider minimal natural deduction,
where propositions are built up from atomic propositions, which are predi-
cates applied to terms, with the connective ⇒ and the universal quantifier ∀.
Inference rules are provided to distinguish between provable and unprovable
propositions by giving the rules for building a proof judgement. We shall see

19

2. Proof normalization as a model-theoretic notion

that, using the Curry-de Bruijn-Howard isomorphism, we can use the syntax
of λ-calculus [9] to represent proofs of this system and their behaviour. This
isomorphism relates typing to being a proof of a proposition. How to build
a proof of a proposition can therefore be defined by the typing rules of the
simply-typed lambda-calculus. Notice that we use two different binders λ
to represent abstracting on proofs and abstracting on terms. We shall see
in chapter 4 an extension of the simply-typed λ-calculus that uses a single
binder for both those abstractions.

2.1.1 Terms, propositions and inference rules

In this work, we present a version of Natural deduction based on a many-
sorted first-order language. We shall focus on minimal natural deduction,
that is natural deduction with only the connective representing the implica-
tion and the universal quantifier.

Definition 2.1 ((Many-sorted first-order) language).
A language 〈T,F,P〉 is the combination of a set T of sorts, a set F of function
symbols which come with their ranks, and a set P of predicate symbols which
also come with their ranks.

Given an infinite set of variables of each sort, we define the set of terms
associated to this language, as follows:

Definition 2.2 (Terms).
Given a language 〈T,F,P〉, the set of terms is defined inductively from vari-
ables.

• Variables of sort T are terms of sort T .

• If f is a function symbol of rank 〈T1, . . . , Tn, U〉 and t1, . . . , tn are re-
spectively terms of sort T1, . . . , Tn, then f t1 . . . tn is a term of sort U .

Propositions are built-up from predicates and terms with the connective
⇒ and the universal quantifier ∀. Notice that the quantification in ∀x.A is
implicitly restricted over the sort of the variable x.

Definition 2.3 (Propositions).
Given a language 〈T,F,P〉, the set of propositions of minimal natural deduc-
tion based on this language is defined as follows:

• If P is a predicate symbol of rank 〈T1, . . . , Tn〉 and t1, . . . , tn are respec-
tively terms of sort T1, . . . , Tn, then P t1 . . . tn is an atomic proposition.

• If A and B are two propositions, then A⇒ B is a proposition.

20

2.1 Natural deduction

• If A is a proposition and x is a variable, then ∀x.A is a proposition
(we say that x is bound in A by the universal quantifier ∀ and we
consider propositions equal modulo renaming of bound variables of the
same sort).

Definition 2.4 (Free variables).
The set FV (t) of free variables of a term t is the set of variables which appear
in t. For all propositions A, we define its set free variables FV (A) as the set
of occurrences of variables which appear in A and which are not bound by a
universal quantifier:

• FV (P t1 . . . tn) = FV (t1) ∪ . . . ∪ FV (tn)

• FV (A⇒ B) = FV (A) ∪ FV (B)

• FV (∀x.A) = FV (A) − {x}

A proposition (resp. a term) is closed if it does not contain free variables.

Definition 2.5 (Substitution).
The substitution (t/x)t′ of a variable x by a term t of the same sort (such
that x does not appear free in t) in a term t′ is defined by induction on the
structure of t′ as:

• (t/x)y = t, if x = y and y otherwise

• (t/x)(f t1 . . . tn) = f (t/x)t1 . . . (t/x)tn

The substitution (t/x)A of a variable x by a term t of the same sort (such
that x does not appear free in t) in a proposition A is defined by induction
on the structure of A as:

• (t/x)(P t1 . . . tn) = P (t/x)t1 . . . (t/x)tn

• (t/x)(A⇒ B) = (t/x)A⇒ (t/x)B

• (t/x)(∀y.A) = ∀y. (t/x)A
Notice that we suppose here that x 6= y and y /∈ FV (t)
(y has to be first renamed otherwise).

Remark 2.1. With this last assumption we can prove that if a variable x
does not appear free in a term t′ (resp. a proposition A), then for all terms
t of the same sort as x, we have (t/x)t′ = t′ (resp. (t/x)A = A).

In order to build proofs of propositions of minimal natural deduction, we
need to define the notion of context which corresponds to the propositions
we assume in order to prove another one.

21

2. Proof normalization as a model-theoretic notion

Definition 2.6 (Contexts).
Contexts are finite lists of propositions A1, . . . , An with n ∈ N.
We extend the notion of free variables to contexts as follows:
if Γ = A1, . . . , An, then FV (Γ) = FV (A1) ∪ . . . ∪ FV (An).

Definition 2.7 (⊆). For all contexts Γ,Γ′, we write Γ ⊆ Γ′ if and only if
each declaration in Γ also appears in Γ′.

Then we define the notion of proof judgement which allows to express
which propositions are true (i.e. provable) in minimal natural deduction
based on a predicates language.

Definition 2.8 (Proof judgement).
A proof judgement is given by a context Γ and a proposition A. The proof
judgement Γ ⊢ A expresses that A is true assuming that all propositions in
Γ are true.

In order to build such proof judgements, we define inference rules al-
lowing to build proof judgements from other proof judgements or from the
propositions which are assumed in the considered context.

Definition 2.9 (Inference rules).
In minimal natural deduction, we define five different inference rules. The
proof judgements on top of such a rule are called premises. The proof judge-
ment at the bottom is called goal.

• The axiom rule expresses the fact that if a proposition is assumed then
it is true.

A ∈ Γ
(axiom)

Γ ⊢ A

• The ⇒-introduction rule expresses how to build a proof of A⇒ B from
a proof of B when A is assumed.

Γ, A ⊢ B
(⇒ -intro)

Γ ⊢ A⇒ B

• The ⇒-elimination rule expresses how to build a proof of B from proofs
of A and A⇒ B.

Γ ⊢ A Γ ⊢ A⇒ B
(⇒ -elim)

Γ ⊢ B

22

2.1 Natural deduction

• The ∀-introduction rule expresses how to build a proof of ∀x.A from a
proof of A with x chosen abritrarily.

Γ ⊢ A
x 6∈ FV (Γ) (∀-intro)

Γ ⊢ ∀x.A

• The ∀-elimination rule expresses how to instantiate a proof of ∀x.A
into a proof of (t/x)A for all terms t of same sort as x.

Γ ⊢ ∀x.A
t has the same sort as x (∀-elim)

Γ ⊢ (t/x)A

We call proof derivations trees formed with these rules.

Example 2.1. Here is a proof derivation that for all propositions A, A⇒ A
is true in any context (and, in particular, in the empty context):

axiom

A ⊢ A
⇒-intro

⊢ A⇒ A

Definition 2.10 (Theory).
A theory expressed in minimal natural deduction is given by a language 〈T,F,P〉
and a context. We call axioms the elements of this context.

2.1.2 Proof-terms and typing rules

Following the Brouwer-Heyting-Kolmogorov correspondence, we use the syn-
tax of λ-calculus to define proof constructors, which we shall call proof-terms.
For example, we represent the constructor which builds a proof of A ⇒ B
as the function which forms a proof of B when applied to a proof of A.

In this language, proof-terms can contain both term variables (written
x, y, . . .) and proof variables (written α, β, . . .). We call X the set of proof
variables and Y the set of term variables. Notice that X and Y have no
common element. Terms are written t, u, . . . while proof-terms are written
π, ρ, . . .

Definition 2.11 (Proof-terms).
We call T , the set of proof-terms: π := α | λα.π | π π′ | λx.π | π t

23

2. Proof normalization as a model-theoretic notion

Each proof-term construction corresponds to a natural deduction infer-
ence rule: proof-terms of the form α express proofs built with the axiom rule,
proof-terms of the form λα.π and (π π′) express proofs built respectively with
the introduction and elimination rules of the implication and proof-terms of
the form λx.π and (π t) express proofs built with the introduction and elimi-
nation rules of the universal quantifier. This correspondence will be revealed
when defining typing rules of minimal natural deduction in the following.

Notice that variables α and x are bound in the constructions λα.π, and
λx.π. We therefore extend the notion of free-variables to proof-terms in the
following way.

Definition 2.12 (Free variables in proof-terms).
The set of free term-variables of a proof-term is defined inductively as follows:

• FV (α) = ∅

• FV (λα.π) = FV (π)

• FV (ππ′) = FV (π) ∪ FV (π′)

• FV (λx.π) = FV (π) − {x}

• FV (πt) = FV (π) ∪ FV (t)

And the set of free proof-variables of a proof-term as follows:

• FVp(α) = {α}

• FVp(λα.π) = FVp(π) − {α}

• FVp(ππ
′) = FVp(π) ∪ FVp(π

′)

• FVp(λx.π) = FVp(π)

• FVp(πt) = FVp(π)

Notice that we shall also write FV (π) for the set of free proof-variables of
the proof-term π, when it is not ambiguous.

We also extend the notion of substitution on proof-terms as follows. No-
tice that we can substitute term-variables by terms of the same sort in proof-
terms, as previously, and that we can also substitute proof-variables by proof-
terms in proof-terms. We shall use the same notation for those two notions
of substitution.

24

2.1 Natural deduction

Definition 2.13 (Substitution).
For all proof-terms π, term-variables x and terms t of the same sort as x,
we define (t/x)π, the substitution of x by t in π inductively as follows:

• (t/x)α = α

• (t/x)(λα.π) = λα.(t/x)π

• (t/x)(ππ′) = (t/x)π (t/x)π′

• (t/x)(πt′) = (t/x)π (t/x)t′

• (t/x)(λy.π) = λy. (t/x)π
Notice that we suppose here that x 6= y
(and we have to rename y otherwise).

For all proof-terms π, ρ and proof-variables α, we define (ρ/α)π, the sub-
stitution of α by ρ in π inductively as follows:

• (ρ/α)β = ρ if α = β and β otherwise

• (ρ/α)(λβ.π) = λβ.(ρ/α)π
Notice that we suppose here that α 6= β
(and we have to rename β otherwise).

• (ρ/α)(ππ′) = (ρ/α)π (ρ/α)π′

• (ρ/α)(πt′) = (ρ/α)π t′

• (ρ/α)(λx.π) = λx. (ρ/α)π
Notice that we suppose here that x /∈ FV (ρ)
(and we have to rename x otherwise).

Given this notion of proof-term, we can view the inference rules we de-
fined previously as typing rules on proof-terms, and proof judgements as
typing judgements. We have therefore to refine our definition of contexts as
follows.

Definition 2.14 (Contexts).
A context is a list of declarations α : A where α is a proof-variable and A is
a proposition, such that a proof-variable cannot be declared twice or more in
such a list (we consider, this way, only well-formed contexts).

Definition 2.15 (Typing judgements).
A typing judgement is given by a context Γ, a proof-term π and a proposition
A. The typing judgement Γ ⊢ π : A expresses that π is of type A in the
context Γ (or in other words, that π is a proof of the proposition A in the
context Γ).

25

2. Proof normalization as a model-theoretic notion

Definition 2.16 (Typing rules).
We refine the inference rules previously defined in order to obtain typing rules
on proof-terms:

• The axiom rule expresses the fact that if a proof-variable is assumed to
be a proof of a proposition then it is a proof of this proposition.

α : A ∈ Γ
(axiom)

Γ ⊢ α : A

• The ⇒-introduction rule expresses that if π is a proof of a proposition
B when assuming that α is a proof of A, then λα.π is a proof of A⇒ B.

Γ, α : A ⊢ π : B
(⇒ -intro)

Γ ⊢ λα.π : A⇒ B

• The ⇒-elimination rule expresses that if, in the same context, π is a
proof of A⇒ B and π′ is a proof of A, then ππ′ is a proof of B.

Γ ⊢ π′ : A Γ ⊢ π : A⇒ B
(⇒ -elim)

Γ ⊢ ππ′ : B

• The ∀-introduction rule expresses that if π is a proof of A then λx.π is
a proof of ∀x.A.

Γ ⊢ π : A
x 6∈ FV (Γ) (∀-intro)

Γ ⊢ λx.π : ∀x.A

• The ∀-elimination rule expresses that if π is a proof of ∀x.A and t is a
term of the same sort as x, then πt is a proof of (t/x)A.

Γ ⊢ π : ∀x.A
t has the same sort as x (∀-elim)

Γ ⊢ πt : (t/x)A

Trees formed with these rules are called typing derivations .

Example 2.2. Here is a typing derivation that for all propositions A, λα.α
is a proof of A⇒ A in any context (and, in particular, in the empty context):

axiom

α : A ⊢ α : A
⇒-intro

⊢ λα.α : A⇒ A

Definition 2.17 (Well-typed proof-terms).
A proof-term π a proof of a proposition A if there exists a context Γ such
that Γ ⊢ π : A is a derivable typing judgement (i.e. there exists a well-formed
typing derivation such that its root is this typing jugement). In this case π
is said to be well-typed.

26

2.1 Natural deduction

2.1.3 Cut elimination and normalization

Given the typing rules of minimal natural deduction, one can build different
typing derivations which correspond to the same typing judgement. Hence
one might wonder how to build a minimal tree giving the derivation of a
typing judgement (for automated theorem proving, for example). And how
to eliminate detours which may appear during the building of such typing
derivations, detours which we call cuts. The notion of cut represents the
introduction of an intermediate lemma in a proof, in order to use an instan-
tiation of this lemma. Formally, a cut in a proof derivation is an elimination
rule, whose main premise is the introduction rule of the same connective or
quantifier.

Example 2.3.
In natural deduction, a cut on the connective ⇒ is of the form:

Γ, A ⊢ B
⇒-intro

Γ ⊢ A⇒ B Γ ⊢ A
⇒-elim

Γ ⊢ B

And a cut on the universal quantifier ∀ is of the form:

Γ ⊢ A
∀-intro

Γ ⊢ ∀x.A
∀-elim

Γ ⊢ (t/x)A

With t a term of same sort as x.

The cut elimination property expresses the fact that we could have avoided
to introduce the intermediate lemma and proved the particular case we need
directly.

Definition 2.18 (Cut-free proofs).
We call cut-free those proof derivations which do not contain a cut.

The main property, concerning cut-free proofs is that such derivations have
a specific form:

Lemma 2.1.
A cut-free proof derivation of a proof judgement ⊢ A in an empty context
always ends with an introduction inference rule.

Remark 2.2. A proof derivation ends with an introduction rule if the last
(top down) inference rule used in this proof derivation is an introduction
rule.

27

2. Proof normalization as a model-theoretic notion

Proof. By induction on the length of the derivation.
This proof cannot be of length 0 because in this case it would end with the
rule axiom and it is not possible since it is a proof derivation with an empty
context. Otherwise the premises of this proof derivation are also cut-free
and therefore end with an introduction rule. If this proof derivation ends
with an elimination rule then it has to be the elimination rule of the same
connective as the introduction rule of the main premise. It therefore forms
a cut and this is contradictory.

Definition 2.19 (Cut elimination).
A logical framework has the cut elimination property iff each proposition
which has a proof derivation, also has a cut-free proof derivation.

The cut elimination property has been proved for natural deduction by
Prawitz in [45], following the work of Gentzen for sequent calculus [24]. The
cut elimination property induces a lot of properties for a logical framework.
In particular, in minimal natural deduction, it entails its consistency and
completeness of automated theorem proving methods like tableau method.
In deduction modulo, it also entails the disjunction property, the witness
property, and so on...

As for many logical frameworks, we consider minimal natural deduction
consistent if there exists propositions that are not provable. Notice that the
minimal natural deduction on a language whose set of predicates is empty,
is not consistent since its set of propositions is also empty.

Definition 2.20 (Consistency).
Minimal natural deduction based on a language 〈T,F,P〉is consistent iff there
exists a proposition built on this language which is not provable in the empty
context (i.e. there exists a proposition A such that we cannot construct a
proof derivation of ⊢ A).

Lemma 2.2 (Cut elimination and consistency).
For all languages 〈T,F,P〉 such that P 6= ∅, if minimal natural deduction
based on 〈T,F,P〉 has the cut elimination property, then it is consistent.

Proof. Since P is non-empty, there exists P ∈ P and a atomic proposition
P t1 . . . tn. There is no cut-free proof derivation of ⊢ P t1 . . . tn since such
a proof derivation cannot end with an introduction rule (using lemma 2.1).
Since minimal natural deduction based on 〈T,F,P〉 has the cut elimination
property, if there is no cut-free proof derivation of ⊢ P t1 . . . tn, there is
no proof at all of ⊢ P t1 . . . tn, hence minimal natural deduction based on
〈T,F,P〉 is consistent.

28

2.1 Natural deduction

Cut elimination can also be viewed as a proof-transformation process
via the well-known Curry-Howard isomorphism. Indeed, a cut in a proof
derivation correspond to a β-redex for the correspondent proof-terms. And
the elimination of this cut is simulated by the reduction of the associated
β-redex.

Definition 2.21 (β-reduction).
A β-redex is a proof-term of the form (λα.π)π′ or of the fo rm (λx.π)t.
The β-reduction is the relation on proof-terms defined by the rules:

(λα.π)π′ → (π′/α)π
(λx.π)t→ (t/x)π

and the contextual closure:

if π → π′ then λα.π → λα.π′

if π1 → π′1 then π1π2 → π′1π2

if π2 → π′2 then π1π2 → π1π
′
2

if π → π′ then λx.π → λx.π′

if π → π′ then πt→ π′1t

We write π →+ π′ if π β-reduces to π′ in one or more reduction steps.
We write π →∗ π′ if π β-reduces to π′ in an arbitrary number of reduction
steps.

As the elimination of a cut is simulated by the reduction of the associ-
ated β-redex, the cut elimination is entailed by the fact that all reduction-
sequences from all well-typed proof-terms are finite. This property is called
strong normalization.

Definition 2.22 (Confluence).
We say that a logical framework is confluent if and only if for all proof-terms
π1, π2, π3, if π1 →∗ π2 and π1 →∗ π3, then there exists a proof-term π4 such
that π2 →∗ π4 and π3 →∗ π4.

π1

π2 π3

π4

∗ ∗

∗∗

29

2. Proof normalization as a model-theoretic notion

Definition 2.23 (Normalization).

• We say that a proof-term is normal if it does not contain a redex.

• We say that a proof-term is weakly normalizing if there exists a re-
ductions sequence from it which reaches a normal proof-term (hence is
finite). We write WN for the set of weakly normalizing proof-terms.

• We say that a proof-term is strongly normalizing if all reductions se-
quences from it reach a normal proof-term. We write SN for the set
of strongly normalizing proof-terms.

• We say that a logical framework is weakly normalizing if all well-typed
proof-terms are weakly normalizing.

• We say that a logical framework is strongly normalizing if all well-typed
proof-terms are strongly normalizing.

Example 2.4. We define the proof-term δ = λα.αα. The proof-term δδ
is not weakly normalizing since its only β-reduct is itself. The proof-term
(λβ.λγ.γ)(δδ) is weakly normalizing since it reduces to λγ.γ in one step of
β-reduction, but it is not strongly normalizing since it also reduces to itself
in one step of β-reduction.

Finally we distinguish some of those proof-terms called neutral proof-terms.

Definition 2.24 (Neutral proof-terms).
We call neutral those proof-terms that are not abstractions i.e. that are proof-
terms of the form α, (ππ′) or (πt).

Remark 2.3. If π is a neutral proof-term, then for all proof-terms π′, ππ′

is not a β-redex. This property will be useful in the proofs of strong normal-
ization we shall study.

Definition 2.25 (Isolated proof-terms).
A proof term is called isolated if it is neutral and only β-reduces to neutral
proof-terms.

Example 2.5. For all proof-variables α, the proof-terms α, δδ and (λβ.β)α
are examples of isolated proof-terms.

Remark 2.4. If π is an isolated proof-term then for all proof-terms π′, ππ′

is an isolated proof-term.

30

2.2 Minimal deduction modulo

2.2 Minimal deduction modulo

There exists other methods than the one of axioms in order to express theo-
ries in minimal natural deduction. A first one, coming from Prawitz, consists
in replacing these axioms by new inference rules. This method is used, for
example, in the method of Minimal Generic Quantification [2] and in the
logical frameworks of Logic with Definitions [33] and Superdeduction [52].
Another method consists in replacing these axioms by rewrite rules. This
method is used, for example, in the logical framework of Deduction modulo.

Deduction modulo [17] is a logical framework which allows to express
theories via both axioms and rewrite rules, and therefore gives a formal ac-
count of the difference between deduction and computation in mathematical
proofs. It allows to express proofs of many theories like arithmetic [21],
simple type theory [18], some variants of set theory [19], and so on...

2.2.1 Rewrite rules versus axioms

In deduction modulo a theory is formed with a set of axioms and a congruence
relation, often defined by a set of rewrite rules. For instance, when defining
arithmetic in deduction modulo, we can either take the usual axiom ∀x. x+
0 = x or orient this axiom as a rewrite rule x+0 → x, preserving provability.
In this case the rule rewrites the term x+0 into the term x. Another solution
is to consider a rewrite rule on propositions as: x+ 0 = x→ A⇒ A (where
A is a proposition, since A⇒ A is derivable in any context as we have seen
in section 2.1.1).

Axioms and rewrite rules play different roles in proofs and the structure
of proofs is deeply affected when theories are expressed as rewrite rules. In
particular, the cut elimination property may hold for one formulation of an
axiom as a rewrite rule, but not for another one. Cut elimination is a much
more powerful result (and hence more difficult to prove) when theories are
expressed via rewrite rules: G. Burel has recently proved that cut elimina-
tion is an undecidable property in deduction modulo [8]. In particular, for
axiom-free theories, cut elimination implies consistency as in minimal nat-
ural deduction,. Indeed, in the case of theories expressed with axioms, we
cannot prove anymore that a cut-free proof always ends with an introduction
rule, since it can use one of the axioms of the considered context. Whereas
in axiom-free theories, we can still prove that all cut-free proofs in an empty
context end with an introduction rule. Notice that when theories are ex-
pressed via inference rules, as in Superdeduction, we can neither prove that
a cut-free proof always ends with an introduction rule, since it can use one
of the introduced inference rules.

Another important point is that deduction modulo permits to define
a uniform notion of cut for all theories that can be presented by rewrite
rules only. This notion of cut is the one we have defined in section 2.1.3

31

2. Proof normalization as a model-theoretic notion

and subsumes that of Church’s simple type theory (also-called higher-order
logic) since simple type theory can be defined as an axiom free theory modulo.
More generally, it subsumes the notion of cut introduced by Prawitz [45] and
used for various theories, in particular for set theory [10, 29, 3, 11, 22].

In chapter 3, we shall focus on rewriting and will consider theories expressed
without axioms turned into inference rules. Moreover, we shall only consider
theories expressed with rewrite rules on propositions (and not on terms). We
shall see in section 2.2.3 how (minimal) simple type theory and arithmetic
can be expressed this way in (minimal) deduction modulo.

2.2.2 Definition

We shall study, in this work (minimal) deduction modulo which is based
on (minimal) natural deduction, but there also exists modulo versions of
Gentzen’s sequent calculus (see [7] for example), λΠ-calculus ([14], we shall
study λΠ-calculus modulo in chapters 4 and 5) and other logical frameworks.

We shall focus on theories expressed via rewrite rules on propositions
only and not on terms. We shall not consider precisely the rewrite rules
used to express theories, but directly the congruence relation generated by
those rewrite rules.

Definition 2.26 (Minimal deduction modulo).
Given a language 〈T,F,P〉, and a congruence ≡ relation on propositions of
minimal natural deduction based on this language, we define the minimal
deduction modulo ≡ based on 〈T,F,P〉as follows:

• the syntax of terms is the one of minimal natural deduction based on
〈T,F,P〉:

t = x | f t . . . t

• the syntax of propositions is the one of minimal natural deduction based
on 〈T,F,P〉:

A = P t . . . t | A⇒ A | ∀x.A

• the syntax of proof-terms is the one of minimal natural deduction based
on 〈T,F,P〉:

π = α | λα.π | ππ | λx.π | πt

• the typing rules are the ones of minimal natural deduction based on
〈T,F,P〉 where ≡-equivalent propositions are considered equal:

α : A ∈ Γ
A ≡ B (axiom)

Γ ⊢ α : B

32

2.2 Minimal deduction modulo

Γ, α : A ⊢ π : B
C ≡ A⇒ B (⇒ -intro)

Γ ⊢ λα.π : C

Γ ⊢ π′ : A Γ ⊢ π : C
C ≡ A⇒ B (⇒ -elim)

Γ ⊢ ππ′ : B

Γ ⊢ π : A
x 6∈ FV (Γ), B ≡ ∀x.A (∀-intro)

Γ ⊢ λx.π : B

Γ ⊢ π : B
t has the same sort as x, B ≡ ∀x.A, C ≡ (t/x)A (∀-elim)

Γ ⊢ πt : C

The main point is that we can replace a proposition by a equivalent one at
any place in a typing derivation. That is how we can use rewrite rules to
express axioms instead of inference rules.

Definition 2.27 (Theory).
A theory expressed in minimal deduction modulo is given by a language
〈T,F,P〉and a congruence relation ≡ on propositions of minimal natural de-
duction based on this language. We write 〈T,F,P〉≡ this theory.

Let us now prove the so-called subject-reduction property: all β-reducts
of a proof of a proposition A, are also proofs of A. We need, for this purpose,
a first lemma about (well-typed) substitution in typing judgements.

Lemma 2.3 (Substitution in typing jugements).
For all contexts Γ, propositions A,B, term-variables x, terms t of same sort
as x, proof-terms π, π′ and proof-variables α,

1. if Γ, α : B ⊢ π : A and Γ ⊢ π′ : B then Γ ⊢ (π′/α)π : A,

2. if Γ ⊢ π : A then Γ ⊢ (t/x)π : (t/x)A.

Proof. 1. By induction of the structure of π. If π is a proof-variable β then
either (π′/α)β = β if α 6= β or (π′/α)β = π′ if α = β. In both cases
we have Γ ⊢ (π′/α)π : A. And if π is a (proof- or term-) application or
a (proof- or term-) abstraction, we conclude by induction hypothesis.

2. By induction of the structure of π, remarking that if x is free in A then
it is also free in π. If π is a proof-variable β then (t/x)π = π. And if
π is a (proof- or term-) application or a (proof- or term-) abstraction,
we conclude by induction hypothesis.

33

2. Proof normalization as a model-theoretic notion

Lemma 2.4 (Subject-reduction).
For all contexts Γ, propositions A and proof-terms π, π′,
if Γ ⊢ π : A and π → π′ then Γ ⊢ π′ : A.

Proof. By induction on the place in π of the β-redex reduced in π → π′.

• If π = λα.π1 and π′ = λα.π′1 with π1 → π′1, we conclude by induction
hypothesis.

• If π = π1π2 and π′ = π′1π2 with π1 → π′1 or π′ = π1π
′
2 with π2 → π′2,

we conclude by induction hypothesis.

• If π = λx.π1 and π′ = λx.π′1 with π1 → π′1, we conclude by induction
hypothesis.

• If π = π1t with π′ = π′1t and π1 → π′, we conclude by induction
hypothesis.

• Otherwise,

– either π = (λα.π1)π2 and π′ = (π2/α)π1. By case on the last
rule used in Γ ⊢ π : A, there exists propositions B and C such
that Γ ⊢ λα.π1 : B ⇒ C, Γ ⊢ π2 : B and A ≡ C. Hence
Γ ⊢ π′ = (π2/α)π1 : C ≡ A by lemma 2.3.

– or π = (λx.π1)t and π′ = (t/x)π1. By case on the last rule used in
Γ ⊢ π : A, there exists a proposition B such that
Γ ⊢ λx.π1 : ∀x.B and A ≡ (t/x)Bt.
Hence Γ ⊢ π′ = (t/x)π1 : (t/x)B ≡ A by lemma 2.3.

2.2.3 Theories expressed in minimal deduction modulo

In this subsection, we propose two examples of theories expressed only via
rewrite rules in (minimal) deduction modulo. We focus here on minimal
simple type theory and arithmetic.

Minimal simple type theory

Intentional simple type theory [9] can be expressed in deduction modulo this
way (see [18]). We show, in the following, a subset of this embedding: how
to express minimal (intentional) simple type theory in minimal deduction
modulo.

The language is composed of:

the sorts which are are simple types inductively defined by:

34

2.2 Minimal deduction modulo

- ι and o are sorts,

- if T and U are sorts then T → U is a sort.

the individual symbols

- ST,U,V of sort (T → U → V) → (T → U) → T → V ,

- KT,U of sort T → U → T ,

- ⇒̇, of sort o→ o→ o,

- ∀̇T of sort (T → o) → o,

the function symbols αT,U of rank 〈T → U, T, U〉,

and the predicate symbol ε of rank 〈o〉.

The combinators ST,U,V and KT,U are used to express functions. The terms
⇒̇, and ∀̇T enable the representation of propositions as terms of sort o.
Finally, the predicate ε allows to transform such an object t of type o into
the actual corresponding proposition ε(t).

α(α(α(ST,U,V , x), y), z) → α(α(x, z), α(y, z))

α(α(KT,U , x), y) → x

ε(α(α(⇒̇, x), y)) → ε(x) ⇒ ε(y)

ε(α(∀̇, x)) → ∀y ε(α(x, y))

Arithmetic

Arithmetic can also be expressed in minimal deduction modulo (with two ad-
ditional connectives ⊤ and ⊥ which represent “True” and “False”) as follows.
See [21] for details.

The language is composed of:

the sorts ι and κ,

the constant 0 of sort ι,

the function symbols S and Pred of rank 〈ι, ι〉 and + and × of rank 〈ι, ι, ι〉,

the predicate symbols = of rank 〈ι, ι〉, Null and N of rank 〈ι〉 and ∈ of rank
〈ι, κ〉 and for each formula P in the language 0, S, Pred , +, ×, =, Null and
N and whose free variables are among x, y1, . . . , yn of sort ι, the function
symbol fx,y1,...,yn,P of rank 〈ι, . . . , ι, κ〉.

35

2. Proof normalization as a model-theoretic notion

The rewrite rules are

x ∈ fx,y1,...,yn,P (y1, . . . , yn) −→ P

y = z −→ ∀p (y ∈ p⇒ z ∈ p)

N(n) −→ ∀p (0 ∈ p⇒ ∀y (N(y) ⇒ y ∈ p⇒ S(y) ∈ p) ⇒ n ∈ p)

Pred(0) −→ 0

Pred(S(x)) −→ x

Null(0) −→ ⊤

Null(S(x)) −→ ⊥

0 + y −→ y

S(x) + y −→ S(x+ y)

0 × y −→ 0

S(x) × y −→ x× y + y

2.3 Reducibility candidates

Two main techniques have been developed to prove the cut elimination prop-
erty of a logical framework. The first one is (apparently) purely syntactical
and follows the work of Gentzen for its sequents calculus. This work has
been extended by Prawitz, Tait (realisability) and Girard (reducibility can-
didates) to obtain a method to prove normalization of proof-terms. The
second one is a semantical method developed by Beth, Hintikka, Kanger
and Schutte, using the notion of model and proving that if a proposition is
true in all models then it has a cut-free proof. This method has then been
used by Tait [47], Prawitz [45], Takahashi [49] and Andrews [1] to prove cut
elimination for simple type theory. It has been generalized, more recently,
by De Marco and Lipton [15] to prove cut elimination for an intuitionistic
variant of simple type theory, by Hermant [34, 36] to prove cut elimination
for classical and intuitionistic theories in deduction modulo and by Okada
[43] to prove cut elimination for intuitionistic linear logic.

In this section, we shall study the first method and we shall see, in the next
sections, how those two methods can be unified, by introducing the notions
of pre-models and then truth values algebras.

36

2.3 Reducibility candidates

2.3.1 About reducibility candidates

The main idea of reducibility candidates is to associate to each proposition
A a set of proof-terms called RA containing only strongly normalizing terms
and then prove the so-called adequacy lemma: if a proof-term π is a proof
of A (there exists a context Γ such that Γ ⊢ π : A) then it is in RA and
therefore strongly normalizing. In order to prove this adequacy lemma, we
need that the sets RA satisfy other properties than containing only strongly
normalizing proof-terms, as we shall see in the following.

The proof of this adequacy lemma is done by induction on the length of the
typing derivation Γ ⊢ π : A. Let us describe how it works for simply-typed
λ-calculus (we consider natural deduction with only one connective : ⇒).

We actually need a more precise formulation of the adequacy lemma as: if
Γ ⊢ π : A then if σ is a substitution such that for all proof-variables α
declared of type B in Γ, σα ∈ RB, then σπ ∈ RA (notice that in this case,
if such a substitution σ exists, then π ∈ SN since σπ ∈ SN). In order to
prove this statement, we reason by case on the last typing rule used in the
typing derivation Γ ⊢ π : A.

• If this last rule is the rule axiom then π is a proof variable declared
of type A in Γ therefore σπ ∈ RA by hypothesis.

• If this last rule is the rule ⇒-elim then π has the form π1π2 and we
know, by induction hypothesis that there exists a proposition B such
that σπ1 ∈ RB⇒A and σπ2 ∈ RB. In order to prove that σ(π1π2) is
therefore in RA we suppose another property on the sets RC , for all
propositions C: we suppose that for all propositions D and E, RD⇒E

is exactly the set of proof-terms ρ such that for all ρ′ in RD, ρρ′ is in
RE . Provided that the sets RC satisfy this property, we can conclude,
in this case, that σ(π1π2) = σπ1 σπ2 ∈ RA.

• If this last rule is the rule ⇒-intro then π has the form λα.π1, A has
the form B ⇒ C and we know, by induction hypothesis that
for all ρ ∈ RB, (ρ/α)σπ1 ∈ RC . But we want that for all ρ ∈ RB,
σ(λα.π1) ρ ∈ RC . We can notice that (ρ/α)σπ1 is a β-reduct of
σ(λα.π1) ρ. This leads to make another assumption on the sets RD,
for all propositions D: we suppose that if a proof-term is neutral and
all its β-reducts are in RD then it is also in RD (notice that we make
an assumption on all β-reducts of a neutral proof-term, not on only one
β-reduct, since we want this property to be adequate for strong nor-
malization and not for weak normalization). Then, in order to prove
that σ(λα.π1) ρ is in RC we reason on the sum of maximal lengths
of reductions sequences from σ(λα.π1) and ρ which are both strongly
normalizing since they belong to RB⇒C and RB respectively. If the

37

2. Proof normalization as a model-theoretic notion

considered β-reduct of σ(λα.π1) ρ is (ρ/α)σπ1, we can conclude by in-
duction hypothesis on the length of the typing derivation. Otherwise,
in order to be able to conclude by induction hypothesis on the maximal
lenghts of reductions sequences if the β-redex reduced in σ(λα.π1) ρ
appears either in σ(λα.π1) or ρ, we have to make a last assumption on
the sets RD, for all propositions D: they are stable by β-reduction.

In sum, the additional properties we want the sets RA are the following ones,
in the case of the simply-typed λ-calculus: for all propositions A, RA is a set
of proof-terms satisfying the so-called (CR1), (CR2) and (CR3) properties:

(CR1) RA ⊆ SN

(CR2) if π ∈ RA and π → π′ then π′ ∈ RA

(CR3) if π is a neutral proof-termfor whom all one-step β-reducts are
in RA, then π is also in RA.

And for all propositions A,B,

RA⇒B = {π such that for all π′ ∈ RA, ππ
′ ∈ RB}

In our particular case, since we are able to define such a set of reducibility
candidates for all propositions (by taking the set SN for atomic propositions
and the sets {π such that for all π′ ∈ RA, ππ

′ ∈ RB} for propositions of the
form A ⇒ B), we can conclude, via the adequacy lemma, that the simply-
typed λ-calculus is strongly normalizing.

Let us notice a last property on reducibility candidates: they are non-
empty since they contain all neutral normal proof-terms (in particular all
variables) because of the (CR3) property. A normal neutral proof-term has
no reduct therefore is in all reducibility candidates. We shall see in chapter
3 that this property can raise difficulties when trying to prove that we can
build such a set of reducibility candidates for all strongly normalizing logical
frameworks.

2.3.2 Pre-models for deduction modulo

As we have said, the strength of deduction modulo (with axioms turned
into rewrite rules and not into inference rules) is that it allows to express
powerful theories with only one notion of cut. Those theories can have the
cut elimination property or not. But the fact that we can express all sorts
of cuts with a single notion allows us to provide a general method to prove
cut elimination, independent from the theory expressed.

38

2.3 Reducibility candidates

In [20], Dowek and Werner have extended the notion of reducibility can-
didates to deduction modulo in order to provide a sufficient condition for a
theory to be strongly normalizing (and therefore to have the cut elimination
property) in deduction modulo. They renamed the set of reducibility candi-
dates obtained as pre-model in order to explicit the convergence between the
construction of such an interpretation of propositions and the construction
of a model. We shall see in the next section how, in a second step, Dowek
characterized those pre-models as models on some kind of algebras: truth
values algebras.

Let us detail the particular definition of pre-models for minimal deduc-
tion modulo with axioms turned into rewite rules on propositions of minimal
natural deduction. Notice that we propose, in the following, a sligthly differ-
ent version of the definition of pre-model. Whereas in [20], interpretations of
propositions are explicitely defined from the interpretations of atomic propo-
sitions, we only focus here on which properties interpretations of propositions
have to satisfy to be a pre-model.

Definition 2.28 (Valuations).
Given a set T̂ for all sorts T of the language 〈T,F,P〉,
a valuation is a function ϕ which maps variables of sort T to elements of T̂ .
For all valuations ϕ, we write dom(ϕ) the set of term-variables x such that
ϕx is defined.
For all propositions A, we write Val(A) for the set of valuations ϕ such that
all term-variables x free in A, are in dom(ϕ).
We write 〈x,m〉 the valuation which associates m to x and we write ϕ+ϕ′ the
concatenation of two valuations ϕ and ϕ′ such that dom(ϕ) ∩ dom(ϕ′) = ∅.

Definition 2.29 (pre-models).
Given a set T̂ for all sorts T of the language 〈T,F,P〉,
a function J.K. which associates to an ordered pair of a proposition A and a
valuation ϕ in Val(A), a set of proof-terms is a pre-model if and only if:

• for all propositions A and valuations ϕ in Val(A),
JAKϕ satisfies (CR1), (CR2) and (CR3),

• for all propositions A,B and valuations ϕ in Val(A) ∩ Val(B),
JA⇒ BKϕ = {π such that for all π′ ∈ JAKϕ, ππ

′ ∈ JBKϕ},

• for all propositions A, term-variables x and valuations ϕ in Val(∀x.A)
J∀x.AKϕ = {π such that for all t of same sort T as x, πt ∈ ∩m∈T̂ JAKϕ+〈x,m〉},

• for all propositions A,B and valuations ϕ in Val(A) ∩ Val(B),
if A ≡ B then JAKϕ = JBKϕ

39

2. Proof normalization as a model-theoretic notion

Apart from the property that interpretations of universally quantified
propositions have to satisfy (we shall discuss this property later), the main
difference with the usual method of reducibility candidates is that the sets
of proof-terms associated to two ≡-equivalent propositions have to be equal.
Indeed, if one can replace a proposition by an ≡-equivalent one in a typing
judgement, this property is necessary to prove the adequacy lemma (which
contains now a quantification on valuation and becomes: if Γ ⊢ π : A then
for all valuations ϕ ∈ Val(A), substitutions θ mapping term-variables to
closed terms of the same sort, and substitutions σ mapping proof-variables
of type B to elements of JBKϕ, we have σθπ ∈ JAKϕ). In fact, if Γ ⊢ π : A
and A ≡ B then we have also Γ ⊢ π : B, hence the adequacy lemma implies
that JAKϕ ⊆ JBKϕ and, conversely that JBKϕ ⊆ JAKϕ since ≡ is a congruence
relation and is therefore symmetric. This property on ≡-equivalent proposi-
tions is therefore necessary to prove the adequacy lemma and to deduce that
having a pre-model is a sufficient condition for theories expressed in minimal
deduction modulo to be strongly normalizing.

As a corollary, Dowek and Werner proved the cut elimination property for
many theories, in particular for theories presented by a quantifier free con-
fluent and terminating rewrite system, for theories presented by a confluent
and terminating positive rewrite system and for simple type theory. They
proved that we can construct a pre-model for all these theories hence they
are strongly normalizing and therefore have the cut elimination property. In
this work, we shall not focus on this question of which theories satisfy this
sound criterion for strong normalization, but on how we can improve this
criterion to make it more precise (i.e. also complete). Even so, we can notice
that whereas the sets T̂ chosen to interpret the sorts T are not always the
same ones (for example we can choose T̂ as a set of of sets of terms for simple
type theory), we shall focus in this work on the cases where we can choose
T̂ directly as the set of closed terms of sort T .

Let us first, in the next section, present how Dowek gave a more algebraic
view of his joint work with Werner, by defining the notion of truth values
algebras.

2.4 Truth values algebras

In [16], Dowek defined a generalization of Heyting algebras which enable the
distinction, in models valued in these algebras, between the computational
equivalence of formulae (the congruence of deduction modulo) and the prov-
able equivalence of formulae. We shall see how this definition of algebras
also allows to see reducibility candidates as models valued in one of these
algebras.

40

2.4 Truth values algebras

2.4.1 Definition

We shall present here, the subpart of truth values algebras (tvas), adapted
to minimal deduction modulo. We can notice that some elements of the
domain of a tva are called positive and represent propositions which can be
deduced from the axioms only. Of course, for axiom-free theories, this subset
of positive truth values becomes useless, as we shall see in our definition of
ldtvas of section 3.1.4, and we shall only consider the so-called trivial tvas .

Definition 2.30 (Truth values algebra).
Notice that since we consider many-sorted languages, we have to define a dif-
ferent interpretation of the universal quantifier for each sort of the language.
We then consider, for the following, a set T of sorts.

Let B be a set, whose elements are called truth values,
B+ be a subset of B, whose elements are called positive truth values,
for all T ∈ T, AT be a subset of P(B),
⇒̃ be a function from B × B to B,
for all T ∈ T, ∀̃T be a function from AT to B and

The structure B = 〈B,B+,AT , ⇒̃, ∀̃T 〉 is said to be a truth values algebra if
the set B+ is closed by the intuitionistic deduction rules i.e. if for all a, b,
c in B, sorts T ∈ T and A in AT ,

1. if a ⇒̃ b ∈ B+ and a ∈ B+ then b ∈ B+,

2. a ⇒̃ b ⇒̃ a ∈ B+,

3. (a ⇒̃ b ⇒̃ c) ⇒̃ (a ⇒̃ b) ⇒̃ a ⇒̃ c ∈ B+,

4. the set a ⇒̃ A = {a ⇒̃ e | e ∈ A} is in AT ,

5. if all elements of A are in B+ then ∀̃T A ∈ B+,

6. ∀̃T (a ⇒̃ A) ⇒̃ a ⇒̃ (∀̃T A) ∈ B+,

7. if a ∈ A, then (∀̃T A) ⇒̃ a ∈ B+,

Definition 2.31 (Full).
A truth values algebra is said to be full if for all sorts T ∈ T, AT = P(B),
i.e. if ∀̃T A exists for all subsets A of B ands sorts T ∈ T.

Definition 2.32 (Trivial).
A truth values algebra is said to be trivial if B+ = B.

Example 2.6. Let B = {0, 1}. Let B+ = {1}, AT = P(B) for all T ∈ T, ⇒̃
be the usual boolean operation, ∀̃T be the function mapping the sets {0} and
{0, 1} to 0 and ∅ and {1} to 1 Then 〈B,B+,AT , ⇒̃, ∀̃T 〉 is a truth values
algebra.

41

2. Proof normalization as a model-theoretic notion

Example 2.7. Let B be an arbitrary set, B+ = B, AT = P(B) for all T ∈ T,
and ⇒̃, ∀̃T be arbitrary operations. Then 〈B,B+,AT , ⇒̃, ∀̃T 〉 is a trivial and
full truth values algebra. Notice that we shall only consider this kind of truth
values algebras in section 3.1.4

Notice that truth values algebras can alternatively be characterized as pseudo-
Heyting algebras (i.e. Heyting algebras where the usual order of the algebra
is only a pre-order (a transitive and reflexive relation on elements of the
domain)). See [16] for details.

2.4.2 Models valued in truth values algebras

We detail in this subsection how we define models valued in those kinds of
algebras. Unlike what we have done in section 2.3.2, we shall present the
original way to build such models: inductively from interpretations of the
language.

Definition 2.33 (B-valued structure).
Let 〈T,F,P〉 be a many-sorted language in predicate logic and B be a truth
values algebra, 〈{T̂}T∈T, {f̂}f∈F, {P̂}P∈P〉 is a B-valued structure for the
language 〈T,F,P〉, if and only if

• for all T ∈ T, T̂ is a set,

• for all f ∈ F of rank 〈T1, . . . , Tn, U〉,

f̂ is a function from T̂1 × . . .× T̂n to Û ,

• for all P ∈ P of rank 〈T1, . . . , Tn〉,

P̂ is a function from T̂1 × . . .× T̂n to B.

A valuation associates to term-variables of sort T , elements of T̂ .

Definition 2.34 (Valuation).
Given a B-valued structure, a valuation ϕ is a function such that for all
term-variables of sort T , ϕ(x) ∈ T̂ .
We write Dom(ϕ) for the set of term-variables x such that ϕ(x) is defined.
For all propositions A, we write Val(A) for the set of valuations such that
FV (A) ⊆ Dom(ϕ).

Now we can define B-valued interpretations, inductively from a B-valued
structure using the so-called denotation defined as follows.

Definition 2.35 (Denotation).
Let B be a truth values algebra, 〈{T̂}T∈T, {f̂}f∈F, {P̂}P∈P〉 be a B-valued
structure and ϕ be a valuation. The denotation JAKϕ of a formula A in

〈{T̂}T∈T, {f̂}f∈F, {P̂}P∈P〉 is defined as follows

42

2.4 Truth values algebras

• JxKϕ = ϕ(x),

• Jf(t1, ..., tn)Kϕ = f̂(Jt1Kϕ, ..., JtnKϕ),

• JP (t1, ..., tn)Kϕ = P̂ (Jt1Kϕ, ..., JtnKϕ),

• JA⇒ BKϕ = JAKϕ ⇒̃ JBKϕ,

• J∀x. AKϕ = ∀̃T {JAKϕ+〈x,e〉 | e ∈ T̂} (with T the sort of x),

Notice that the denotation of a formula containing quantifiers may be unde-
fined, but it is always defined if the truth values algebra is full.

We can then distinguish some of these B-valued structures which are adapted
to the congruence (i.e. two equivalent propositions have the same denota-
tion). We call those particular B-valued interpretations “models”.

Definition 2.36 (Model).
Let ≡ be (a congruence relation defining) a theory in minimal deduction
modulo. The B-valued structure 〈{T̂}T∈T, {f̂}f∈F, {P̂}P∈P〉 is said to be a
model of the theory ≡ if for all propositions A and B such that A ≡ B and
valuations ϕ, JAKϕ and JBKϕ are defined and JAKϕ = JBKϕ.

Remark 2.5. The condition that JAKϕ and JBKϕ are defined, is not necessary
when considering full truth values algebras.

2.4.3 C, the TVA of reducibility candidates

Given this notion of truth values algebras, we are now able to define C, the
tva of reducibility candidates, and prove, using the work done for pre-models
by Dowek and Werner, that having a C-valued model is a sound semantics
for strongly normalizing theories in minimal deduction modulo.

Definition 2.37 (C).
We define 〈C, C+,A, ⇒̃, ∀̃〉, the tva of reducibility candidates, as follows:

• C is the set of sets of proof-terms which satisfy the properties (CR1),
(CR2) and (CR3),

• C+ = C
(or any other set of proof-terms closed by intuitionistic deduction rules),

• A = P(B),

• For all E,F ∈ C, E⇒̃F = {π such that for all π′ ∈ E, ππ′ ∈ F}

• For all A ∈ AT ,
∀̃TA = {π such that for all t of sort T and a ∈ A, πt ∈ a}.

43

2. Proof normalization as a model-theoretic notion

Given this tva of reducibility candidates, we are able to prove, using the
work done with pre-models, that if a theory in minimal deduction mod-
ulo has a model valued in C then it is strongly normalizing. In the next
chapter, we shall study how to refine those notions of tvas and reducibility
candidates in order to provide a semantics that is, moreover, complete for
strong normalization (i.e. a notion of model such that if a theory is strongly
normalizing, then it has such a model).

44

3
Sound and complete semantics for

strong normalization in minimal

deduction modulo

Context

We have detailed in the previous chapter the main method for proving strong
normalization in different logical frameworks, using the set of so-called re-
ducibility candidates. This method has been adapted for the logical frame-
work of deduction modulo by defining the notion of pre-model, which is a
set of reducibility candidates such that two equivalent propositions are in-
terpreted by the same set. Then we have seen how this technique can be
viewed as the building of a model on some sort of algebras called truth val-
ues algebras. And we have exhibited the particular truth values algebras
of reducibility candidates C, concluding that having a C-valued model is a
sound semantics for strong normalization in (minimal) deduction modulo.

Contributions

The aim of this chapter is to analyse how we can refine this notion of re-
ducibility candidates in order to provide a sound and also complete semantics
for strong normalization. We focus in this chapter on the logical framework
of minimal deduction modulo. We define a refinement of truth values alge-
bras (tva), called language-dependent truth values algebras (ldtva). We
call them language-dependent since this new notion of algebra depends on
the sets of closed terms of the sorts of the predicate language on which we
build a theory in minimal deduction modulo. Then we exhibit two of these
languages-dependent truth valuas algebras such that both provide a sound
and complete semantics for strong normalization via models valued in them.
The method for proving completeness uses a specificity of the first ldtva we

47

3. Sound and complete semantics for deduction modulo

define: the fact that we consider only proofs of a proposition in its interpre-
tation. We therefore define, given a theory 〈T,F,P〉≡, the ldtva of ≡-well-
typed reducibility candidates. It allows us to capture exactly the proofs of
a proposition, via sets of proof-terms which satisfy analog properties as the
well-known ones of reducibility candidates. We then define a more general
ldtva C′ which is independent of the congruence relation ≡ of the theory we
consider . This ldtva provides a general sound and complete semantics for
strong normalization for all theories expressed in minimal deduction modulo
(based on a same predicate language).

Outline

As a first step, we analyze precisely the role of the (CR3) property of re-
ducibility candidates, and of the interpretation of the universal quantifier in
the tva of reducibility candidates, in proofs of strong normalization. This
analysis suggests that both are responsible of the difficulties involved when
trying to prove that having a model valued in reducibility candidates is a
complete semantics for strong normalization, when trying to prove the con-
verse of the adequacy lemma for that purpose. We first adapt the latter by
defining language dependent truth values algebras which provide a functional
interpretation of the universal quantifier, and then propose two adaptations
of the (CR3) property which define two new definitions of reducibility can-
didates as some particular ldtvas . While the first depends on typing and
therefore on the congruence relation which defines the theory we consider,
the second one is theory-independent. We prove models valued in both these
ldtvas provide two different sound and complete semantics for strong nor-
malization in minimal deduction modulo. Completeness of models valued
in the second one is entailed by completeness of models valued in the first
one, by building a morphism of ldtvas from the first one to the second one,
inducing a mapping from models valued in the first one to models valued in
the second one.

3.1 Are usual reducibility candidates complete ?

We saw, in the previous chapter that reducibility candidates are sound for
strong normalization, in the sense that if we can build a set of reducibility
candidates adapted to a logical framework then this logical framework is
strongly normalizing. From a tva point of view it means that having a C-
valued model is a sufficient condition for a theory to be strongly normalizing
in minimal deduction modulo. Then we may wonder whether reducibility
candidates also are complete, i.e. whether having a C-valued model is also a
necessary condition for a theory to be strongly normalizing.

48

3.1 Are usual reducibility candidates complete ?

In 1929, Gödel proved his completeness theorem concerning consistency
of theories expressed in natural deduction. Gödel proved in [28] that besides
being a sound semantics, having a {0, 1}-valued model is a complete seman-
tics for the property of consistency of theories expressed in first order logic.
In other words, he exhibited a correspondence, in first order logic, between
truth an provability, between model theory and proof theory. Other com-
pleteness theorems have been proved: for higher order logic by Henkin [32]
and for modal logic, by Kripke [38]. They both concern sound and complete
semantics for consistency.

As we saw in 2.1.3, when we express theories in minimal deduction mod-
ulo, only within the congruence relation and not with axioms, the strong nor-
malization of the theory we consider entails its cut elimination and therefore
its consistency. Hence strong normalization implies consistency. The con-
verse is not true, since there exists theories which have the cut elimination
property, but which do not strongly normalize [35]. Hence strong normal-
ization is a strictly more powerful property than consistency. In this way,
we can see the work presented in this section, as the natural following of the
previous completeness theorems cited above.

As we said in 2.3.1, the main point of proofs of normalization using
reducibility candidates is the adequacy lemma, which states that each proof-
term which is a proof of a proposition belongs to the reducibility candidate
associated to this proposition, and is therefore strongly normalizing. The
first naïve idea to prove completeness of C-valued models for strong nor-
malization is to try to prove the converse of the adequacy lemma: each
reducibility candidate associated to a proposition contains only proofs of
this proposition, in order to obtain what we shall call well-typed reducibility
candidates. We shall see, in the following that it is not possible with usual
reducibility candidates, because of the definition of the interpretation of the
universal quantifier in tvas , and because of the (CR3) property. We will
therefore propose a new definition of algebras, and a modified version of the
(CR3) property in order to be able to prove the converse of the adequacy
lemma.

3.1.1 About the (CR3) property

Let us first analyze the role of the (CR3) property in soundness of reducibility
candidates. As we can notice in chapter 2, this property is used twice in
proofs of normalization. First to prove that C-models are non empty since
they contain all proof-variables, and moreover, all neutral normal proof-
terms. And in a second step, to prove that abstractions of type A ⇒ B
are in the interpretation of A ⇒ B. We first recall the definition of (CR3):
we say that a set E of proof-terms satisfies (CR3) if and only if all neutral
proof-terms whose all β-reducts are in E, are also in E.

49

3. Sound and complete semantics for deduction modulo

Variables

As soon as a set of proof-terms satisfies (CR3), it contains all neutral normal
proof-terms, since they have no reduct. Therefore all reducibility candidates
contain all neutral normal proof-terms, and, in particular, all proof-variables.
We shall see in 3.1.2 that this is one of the reasons why we cannot prove the
converse of the adequacy lemma with usual reducibility candidates.

Abstractions

In order to prove that an abstraction λα.π of type A ⇒ B is in the inter-
pretation of A ⇒ B, the method is to prove that for all elements π′ of the
interpretation of A, (λα.π)π′ is in the interpretation of B, as you can notice
in 2.3.1. The main argument is that (λα.π)π′ is neutral and all its reducts
are in the interpretation of B (by induction hypothesis). We can notice
that in this case, (λα.π)π′ is well-typed (of type B namely) and non-normal.
Those facts will be useful when we shall modify the (CR3) property in the
following.

Those two properties are essential in the proof of the adequacy lemma.
We shall have to verify that the new definitions of reducibility candidates we
shall propose in the following, still satisfy those properties, in order to prove
that they are still sound for strong normalization.

3.1.2 The problem of neutral normal proof-terms

The usual (CR3) property prevents from proving the converse of the ade-
quacy lemma: reducibility candidates do not contain only well-typed proof-
terms. We say that they are not adapted to typing. In fact, all reducibil-
ity candidates contain all neutral normal proof-terms: as we have seen for
variables, those proof-terms are neutral and do not have β-reducts. In par-
ticular, if α is a proof-variable, the proof-term αα belongs to all reducibil-
ity candidates, and yet it cannot be well-typed in a strongly normalizing
theory. Indeed, if there exists a context Γ and a proposition A such that
Γ ⊢ αα : A, then there exists propositions B and C such that Γ ⊢ α : B and
Γ ⊢ α : B ⇒ A, by case analysis on the last rule used in the derivation of
Γ ⊢ αα : A. Hence we also have B ≡≡ B ⇒ A. If we write δ = λα.αα, we
can then obtain Γ ⊢ δ : B ⇒ A, since Γ ⊢ α : B and Γ ⊢ αα : A. Moreover,
since B ⇒ A ≡ B, we also have Γ ⊢ δ : B, and we obtain Γ ⊢ δδ : A.

If we note Π0 the following typing judgement:

axiom

Γ, α : B ⊢ α : B ⇒ A
axiom

Γ, α : B ⊢ α : B
⇒-elim

Γ, α : B ⊢ αα : A
⇒-intro

Γ ⊢ λα.αα : B ⇒ A

50

3.1 Are usual reducibility candidates complete ?

and Π1 this one:

axiom

Γ, α : B ⊢ α : B ⇒ A
axiom

Γ, α : B ⊢ α : B
⇒-elim

Γ, α : B ⊢ αα : A
⇒-intro B ≡ B ⇒ A

Γ ⊢ λα.αα : B

then we obtain:

Π0

Γ ⊢ λα.αα : B ⇒ A
Π1

Γ ⊢ λα.αα : B
⇒-elim

Γ ⊢ (λα.αα)(λα.αα) : A

Finally, αα cannot be well-typed in a strongly normalizing theory, other-
wise δδ would be also well-typed, whereas it is not even weakly normalizing
since the only β-reduct of δδ is itself.

We therefore have to modify this (CR3) property in order to obtain a
definition of well-typed reducibility candidates, but we also have to modify
the interpretation of the universal quantifier as we shall see in the next
subsection.

3.1.3 How to interpret the universal quantifier

In the usual Truth Values Algebra C of reducibility candidates, the interpre-
tation of the universal quantifier is defined as an intersection of a set of sets
of proof-terms:

∀̂ E = ∩ E

For all propositions A, term-variables x of sort T , and valuations
ϕ ∈ Val(∀x.A), the interpretation of ∀x.A and the valuation ϕ is obtained
from all interpretations of A with the different valuations ϕ+〈x, t〉, for t ∈ T̂ :

J∀x.AKϕ = ∀̂{JAKϕ+〈x,t〉, t ∈ T̂}

= {π such that for all terms t1 and t2 ∈ T̂ , πt1 ∈ JAKϕ+〈x,t2〉}

In the particular case where T̂ is chosen as the set of closed terms of
sort T , we can notice that this definition of ∀̂ is not adapted to the no-
tion of typing, because of the fact that t1 and t2 are not synchronized. If
Γ ⊢ π : ∀x.A, and t1, t2 are two diferent closed terms in T̂ , then we do
not have necessarily Γ ⊢ πt1 : (t2/x)A. For example, in arithmetic, if we
consider the proposition ∀x. 1 + x = x + 1, we can build a proof of this
proposition which will, applied to a term z, use (z − 1) times the axiom

51

3. Sound and complete semantics for deduction modulo

y + (t + 1) = (y + t) + 1. Of course, when we apply this proof to 2, we do
not obtain a proof of 3 + 1 = 1 + 3.

In order to make interpretation of the universal quantifier adapted to the
notion of typing, we have therefore to modify the notion of Truth Values
Algebras. In order to synchronize t1 and t2 in the previous definition, we
have first to consider a different interpretation of the universal quantifier for
each sort of the language, and, secondly, we have to provide a interpretation
of the universal quantifier which takes in argument a function an not a set
of sets, in order to define a dependent intersection:

J∀x.AKϕ = {π such that for all t ∈ T̂ , πt ∈ JAKϕ+〈x,t〉}

We then adapt the notion of truth values algebras by defining language-
dependent truth values algebras, which use ∀̂ as a dependent intersection.
Those ldtvas depend on the language as we have to know the sets of closed
terms T̂ , to define such a synchronized interpretation of the universal quan-
tifier.

3.1.4 Language-dependent truth values algebras

We define in this subsection language-dependent truth values algebras (ldtva),
which differ from usual truth values algebras on two points. First, as we al-
ready said in 2.2 and 2.4, we only consider theories in deduction modulo
where axioms are expressed only within the congruence relation and not
with axioms. Therefore we do not distinguish positive truth values in the
domain of a ldtva .

Secondly, we always choose T̂ as the set of closed terms of sort T and
we define the interpretation of the universal quantifier ∀̂ as a function which
maps to elements of the domain, not subsets of the domain anymore but
functions from T̂ to the domain. We therefore define a family of interpreta-
tions of the universal quantifier (∀̂T)T∈T, which are indexed by the different
sorts of the language 〈T,F,P〉 we consider and more precisely, and which
depend on the sets of closed terms of each of these sorts. We then have to
define ldtvas , given a language 〈T,F,P〉, this is why we call them language-
dependent. Notice that the definition of a ldtva does not depend on the
whole language 〈T,F,P〉, but only on the set of closed terms of each sort in
T, hence it only depends on T and F. Notice, finally, that those interpreta-
tions ∀̂T cannot always be defined on the whole set of functions from T̂ to
the domain, but only on one of its subsets. We then define, for all sorts T ,
ÂT , which is the subset of the set of functions from T̂ to the domain, on
which ∀̂T is defined. This gives the following definition.

52

3.1 Are usual reducibility candidates complete ?

Definition 3.1 (Language-dependent tvas).
Let 〈T,F,P〉 be a many-sorted language in predicate logic.
〈B, ⇒̂, (ÂT), (∀̂T)〉 is a ldtva for 〈T,F,P〉 if and only if:

- B is a set (called the domain),

- ⇒̂ is a function from B × B to B,

- for all sorts T ∈ T, ÂT is a set of functions from T̂ to B,

- for all sorts T ∈ T, ∀̂T is a function from ÂT to B.

Notice that we shall write B both for denominating the ldtva B and its
domain.

In ldtvas , we define models in a different way than in tvas : we do not
define anymore interpretations of propositions from interpretations of atomic
propositions, using interpretations of connectives, and then call them models
if and only if they are adapted to the congruence (all equivalent propositions
have the same interpretation). As in our presentation of pre models of section
2.3.2, given a ldtva B, we define interpretations of propositions simply as
functions which map every ordered pair of a proposition A and a valuation
in Val(A) to an element of B.

Definition 3.2 (Interpretations). We call B-valued interpretations those
functions which map every ordered pair of a proposition A and a valuation
in Val(A) to an element of the domain of a ldtva B.

Definition 3.3. We say that an interpretation of propositions is non empty
if and only if each interpretation of a proposition and a valuation in Val(A)
is a non empty set.

And then we distinguish two properties of those interpretations. First,
we say that an interpretation is a model if it is adapted to the connectives
(with this definition, all tva -interpretations are models since they are built
inductively from the interpretation of connectives). And then we say that
such a model is a model of a theory 〈T,F,P〉≡ if and only if all ≡-equivalent
propositions have the same interpretation (we say that the interpretation is
adapted to the congruence). With these new definitions, we are able to define
interpretations of propositions adapted to the congruence, while not neces-
sarily adapted to the connectives, what we could not do with the original
definition of models valued in tvas. We shall see in section 3.2 how this
new technique has been useful in order to prove completeness of such models
(even if a simpler proof has been exhibited later).

53

3. Sound and complete semantics for deduction modulo

Definition 3.4 (Models).
Let 〈T,F,P〉≡ be a theory expressed in minimal deduction modulo and
B = 〈B, ⇒̂, (ÂT), (∀̂T)〉 be a ldtva for 〈T,F,P〉.

- A B-valued interpretation J.K. is a B-valued model if and only if:

- for all A,B ∈ P and ϕ ∈ Val(A⇒ B), JA⇒ BKϕ = JAKϕ ⇒̂ JBKϕ

- for all A ∈ P, x of sort T and ϕ ∈ Val(∀x.A) such that x /∈ dom(ϕ),
(t 7→ J∀x.AKϕ+〈x,t〉) ∈ ÂT and J∀x.AKϕ = ∀̂T (t 7→ JAKϕ+〈x,t〉)

- for all A ∈ P, x of sort T , t ∈ T̂ and ϕ ∈ Val(∀x.A) such that x /∈ dom(ϕ),
J(t/x)AKϕ = JAKϕ+〈x,t〉.

- A B-valued model J.K. is a model of the theory 〈T,F,P〉≡ if and only
if: for all A,A′ ∈ P, ϕ ∈ Val(A) and ψ ∈ Val(A′),
if ϕA ≡ ψA′, then JAKϕ = JA′Kψ

Remark 3.1. The previous conditions can be reformulated as:

1. Interpretations of propositions have to be adapted to the connectives
⇒ and ∀ to be a model.

2. Models have to be adapted to the congruence to be a model of the
associated theory.

We finally define a notion of morphism on ldtvas such that a morphism
between two ldtvas B1 and B2 based on a same language, maps B1-valued
models of a theory to B2-valued models of the same theory.

Definition 3.5 (Morphism).
Let B1 = 〈B1, ⇒̂1, (Â1

T), (∀̂1
T)〉〉 and B2 = 〈B2, ⇒̂2, (Â2

T), (∀̂2
T)〉 be two ldtvas.

A morphism from B1 to B2 is a function F from B1 to B2 such that:

- for all E,G ∈ B1, F (E ⇒̂1 G) = F (E) ⇒̂2 F (G),

- for all sorts T and f ∈ Â1
T , F ◦ f ∈ Â2

T ,

- for all sorts T and f ∈ Â1
T , F (∀̂1

T f) = ∀̂2
T (F ◦ f).

54

3.2 Well-typed reducibility candidates

Lemma 3.1. For all ldtvas B1 and B2 and morphisms F from B1 to B2,
if J.K. is a B1-valued model of a theory 〈T,F,P〉≡, then F ◦ J.K. is a B2-valued
model of 〈T,F,P〉≡.

Proof. We can first notice, that if J.K. is a B1-valued interpretation and F is
a function from B1 to B2 then F ◦ J.K. is a B2-valued interpretation. If J.K. is
adapted to the congruence then so does F ◦J.K. since F is a function. Finally,
if J.K. is adapted to the connectives and F is a morphism then F ◦ J.K. is also
adapted to the connectives through the definition of morphisms.

3.2 Well-typed reducibility candidates

We show in this section, given a theory 〈T,F,P〉≡ expressed in minimal de-
duction modulo, how to define the ldtva C

≡
of ≡-well-typed reducibility

candidates: reducibility candidates such that the reducibility candidate as-
sociated to a proposition A only contains proof-terms which are proofs of A.
We set, for the following, a theory 〈T,F,P〉≡ expressed in minimal deduction
modulo and we shall define the ldtva C

≡
associated to this theory.

3.2.1 C
≡
, the LDTVA of ≡-well-typed reducibility candidates

As a typing judgement Γ ⊢ π : A associates an ordered pair formed by a
context Γ and a proof π , to a proposition A, we shall consider, for the
domain of C

≡
, the set of sets of such pairs, and interpret propositions by the

pairs that are associated to. We write U the set of such pairs.

Definition 3.6 (U).
U = {(Γ, π) such that Γ is a context and π is a proof-term }.

We shall consider, for the domain of C
≡

(which we shall also call C
≡
),

the set of subsets of U which verify adapted versions of the usual properties
(CR1) and (CR2) of reducibility candidates, a modified version of (CR3) and
another property (CR≡), which both express well-typing.

(CR≡) expresses the fact that each reducibility candidate E is associated
to a proposition AE , and that all elements (Γ, π) of E satisfy Γ ⊢ π : AE .

In order to avoid proof-terms that are not well-typed in those new re-
ducibility candidates, we propose a modified version of (CR3): (CR3≡),
which excludes explicitely proof-terms that are not well-typed, i.e. a pair
(Γ, π) such that π is neutral and all its one-step reducts are in a reducibility
candidate E, can be added to E only if we have Γ ⊢ π : AE .

55

3. Sound and complete semantics for deduction modulo

Definition 3.7.
For all E ⊆ U , we define the following properties :

(CR≡) There exists AE such that ∀(Γ, π) ∈ E, Γ ⊢ π : AE

(CR1≡) For all (Γ, π) ∈ E, π ∈ SN

(CR2≡) For all (Γ, π) ∈ E, and π′ ∈ T such that π → π′, (Γ, π′) ∈ E

(CR3≡) For all (Γ, π) ∈ U such that π is neutral and Γ ⊢ π : AE,
if for all one-step reducts τ of π, (Γ, τ) ∈ E, then (Γ, π) ∈ E.

Remark 3.2. We could have merged the definitions of (CR≡) and (CR3≡)
as satisfying (CR3≡) has no sense for a set if it does not satisfy (CR≡): if we
want to restrict the (CR3) expansion to well-typed proof-terms, we have to as-
sociate to each reducibility candidate a proposition, and use our new (CR3≡)
property only on neutral proof-terms which are proofs of this proposition.

As explained in the following lemma, these properties define non-empty
sets: those new reducibility candidates still contain all ordered pairs of a
context and a proof-variable such that the proof-variable is well-typed in
the context. But they do not contain ordered pairs of a context and an ill-
typed normal neutral proof-term unlike in the usual candidates (where sets
of candidates contain ill-typed terms).

Lemma 3.2. For all E ⊆ U , if E satisfies (CR≡) and (CR3≡), then for all
proof-variables α, (α : AE , α) ∈ E, but (Γ, αα) /∈ E, for any context Γ, if
〈T,F,P〉≡ is strongly normalizing.

Proof. If E satisfies (CR≡) and (CR3≡), and Γ ⊢ α : AE , then (Γ, α) ∈ E
since α is neutral and normal. Moreover, we saw in 3.1.2 that the proof-term
αα cannot be well-typed in a strongly normalizing theory, therefore it cannot
belong to a set which satisfies (CR≡).

We then define the domain of C
≡

as the set of sets of ordered pairs (Γ, π)
satisfying the four properties we defined previously.

Definition 3.8 (domain C
≡
).

C
≡

is the set that contains all (and only) subsets of U satisfying (CR≡),
(CR1≡), (CR2≡) and (CR3≡).

Now that we have defined the domain of the ldtva C
≡
, let us define the

interpretations of connectives. We first adapt the usual interpretation of ⇒
to elements of U .

Definition 3.9 (⇒̊). For all E,F ⊆ U ,
E⇒̊F = {(Γ, π) ∈ U such that for all (Γ′, π′) ∈ E, (ΓΓ′, ππ′) ∈ F}

56

3.2 Well-typed reducibility candidates

Remark 3.3. We recall the fact that we only consider well-formed contexts,
therefore the only variables Γ and Γ′ can share have to be declared proofs of
equivalent propositions, otherwise we have to rename variables in π′ and Γ′

when concatening Γ and Γ′ into ΓΓ′.

Let us prove now that this actually defines a function from C
≡
× C

≡
to C

≡
.

Lemma 3.3. ⇒̊ is a function from C
≡
× C

≡
to C

≡
.

Proof. Let E,F ∈ C
≡
, let us prove that E⇒̊F ∈ C

≡
. Let (Γ, π) ∈ E⇒̊F ,

- (CR≡) Let α be a proof-variable. Since E satisfies (CR≡) and (CR3≡),
(α : AE , α) ∈ E, therefore (Γ, α :AE , πα) ∈ F , since (Γ, π) ∈ E⇒̊F .
since F satisfies (CR≡), we have Γ, α : AE ⊢ πα : AF . Therefore
Γ ⊢ π : AE ⇒ AF (by case analysis on the last rule used in the
derivation of Γ, α:AE ⊢ πα : AF). Finally, AE⇒̊F ≡ AE ⇒ AF .

- (CR1≡) Let α be a proof-variable. Since E satisfies (CR≡) and (CR3≡),
(α : AE , α) ∈ E, therefore (Γ, α :AE , πα) ∈ F , since (Γ, π) ∈ E⇒̊F .
Since F satisfies (CR1≡), we have πα ∈ SN , therefore π ∈ SN .

- (CR2≡) Let τ be such that π → τ . Then, for all (Γ′, π′) ∈ E,
(ΓΓ′, ππ′) ∈ F and ππ′ → τπ′, therefore (ΓΓ′, τπ′) ∈ F since F satisfies
(CR2≡). Finally, (Γ, τ) ∈ E⇒̊F .

- (CR3≡) Let (Γ, µ) ∈ U such that Γ ⊢ µ : AE⇒̊F , µ is neutral and
all its one-step reducts are in E⇒̊F . Then, Γ ⊢ µ : AE ⇒ AF . For
all (Γ′, π′) ∈ E, µπ′ is neutral and we have ΓΓ′ ⊢ µπ′ : AF . Let τ
be a one-step reduct of µπ′. We prove, by induction on the maximal
length of a reduction sequence from π′ (∈ SN), that (ΓΓ′, τ) ∈ F .
As µ is neutral, either τ = µπ′′ with π′ → π′′, and we conclude by
induction hypothesis. Either τ = µ′π′, and in this case, (ΓΓ′, τ) ∈ F ,
by hypothesis on µ. Finally, for all (Γ′, π′) ∈ E, (ΓΓ′, µπ′) ∈ F , since
F satisfies (CR3≡), and finally (Γ, µ) ∈ E⇒̊F .

Let us now focus on how to define the interpretation of the universal
quantifier in C

≡
. We first define, for all sorts T ∈ T, ÅT as the set of

functions f from T̂ to C
≡

such that there exists a term-variable xf and a
proposition Af such that for all t ∈ T̂ , all ordered pairs (Γ, π) in f(t) satisfy
Γ ⊢ π : (t/xf)Af . This will help us to know, when interpreting a family of
functions from ÅT to C

≡
, which is the universally quantified proposition we

are interpreting.

57

3. Sound and complete semantics for deduction modulo

Definition 3.10 (ÅT). For all sorts T ,
ÅT = {f : T̂ 7→ C

≡
, such that there exists Af ∈ P and xf ∈ X such that

for all t ∈ T̂ and (Γ, π) ∈ f(t), Γ ⊢ π : (t/xf)Af}

Remark 3.4. In other words, f ∈ ÅT iff for all t ∈ T̂ , Af(t) = (t/xf)Af
(with the notation we used for (CR≡)).

Definition 3.11 (̊∀T). For all sorts T and functions f ∈ ÅT ,
∀̊T f = {(Γ, π) ∈ U s.t. π ∈ SN , Γ ⊢ π : ∀xf .Af and for all t ∈ T̂ , (Γ, πt) ∈ f(t)}

Let us now prove that ∀̊T actually defines a function from ÅT to C
≡
.

Lemma 3.4. For all sorts T , ∀̊T is a function from ÅT to C
≡
.

Proof. Let f ∈ ÅT , and (Γ, π) ∈ ∀̊T f

- (CR≡) By definition: if (Γ, π) ∈ ∀̊T f then Γ ⊢ π : ∀xf .Af .

- (CR1≡) By definiton.

- (CR2≡) Let π′ be such that π → π′. Then, for all t ∈ T̂ , πt → π′t,
therefore π′t ∈ f(t) ∈ C

≡
.

- (CR3≡) Let (Γ, µ) ∈ U such that µ is neutral, Γ ⊢ µ : ∀xf .Af , and
for all one-step reducts µ′ of µ, (Γ, µ′) ∈ ∀̊T f . Let t ∈ T̂ , then µt is
neutral, Γ ⊢ µt : (t/xf)Af , and, since µ is neutral, all one-step reducts
of µt are of the form µ′t, with µ → µ′, hence (Γ, µt) ∈ f(t) since f(t)
satisfies (CR3≡). Finally, (Γ, µ) ∈ ∀̊T f .

Remark 3.5. We could have defined ∀̊T in a simpler way without assuming
explicitely that all (Γ, π) ∈ ∀̊T f satisfy π ∈ SN and Γ ⊢ π : ∀xf .Af . This
would have led to the following definition:

∀̊T f = {(Γ, π) ∈ U s.t. for all t ∈ T̂ , (Γ, πt) ∈ f(t)}

But in order to prove that ∀̊T is a function from ÅT to C
≡
, and in particular

that for all f in ÅT , ∀̊T f satisfies (CR≡) and (CR1≡), we would have to
assume, in this case, that all sets T̂ contain at least two different elements,
for all sorts T ∈ T. As soon as T̂ contains at least one element t and
(Γ, πt) ∈ f(t) ∈ C

≡
, we can conclude that πt ∈ SN and so does π. And in

order to prove that if (Γ, π) ∈ ∀̊T f then Γ ⊢ π : ∀xf .Af , since we only know

that for all t ∈ T̂ , Γ ⊢ πt : (t/xf)Af , we have to suppose that T̂ contains
two different elements, otherwise, we can only conclude that Γ ⊢ π : ∀xf .A

′,
with (t/xf)A

′ = (t/xf)Af .

58

3.2 Well-typed reducibility candidates

We finally define C
≡

with the domain and the interpretations of connectives
we previously defined.

Definition 3.12 (C
≡
). C

≡
is the ldtva 〈C

≡
, ⇒̊, (ÅT), (̊∀T)〉.

Let us prove in the next section that this definition of (≡-)well-typed re-
ducibility candidates still provide a sound criterion for strong normalization
in minimal deduction modulo.

3.2.2 C
≡
-models as a sound semantics for strong normalization

It is not difficult to adapt the usual adequacy lemma to prove that if a
theory has a C

≡
-valued model adapted to typing (i.e. the interpretation of a

proposition and a valuation is the value of this valuation on this proposition),
then it is strongly normalizing.

In fact, as explained in 3.1.1, (CR3) is only required twice: to prove that
interpretations are non-empty since they contain all normal neutral proof-
terms, and to prove that abstractions of type A⇒ B are in the interpretation
of A⇒ B. We have seen in lemma 3.2 that C

≡
-interpretations are also non-

empty since the interpretation of a proposition A contains all ordered pairs
(Γ, π) such that π is neutral and normal, and Γ ⊢ π : A. Moreover, when
proving that abstractions λα.π of type A ⇒ B (in a context Γ) are (when
paired with Γ) in the interpretation of A⇒ B, the fact that Γ ⊢ λα.π : A⇒
B is assumed, and we can therefore use (CR3≡) instead of (CR3) without
any problem.

The only difference with the usual soundness lemma (like the one of
section 2.3.2) is the fact that since we use a synchronized version of the
interpretation of the universal quantifier, the statement of this lemma reflects
this synchronization. This statement is of the form: if Γ ⊢ π : A then for all
(adapted) substitutions σ and valuations ϕ, we have σϕπ ∈ JAKϕ whereas
in the usual statement of the soundness lemma, there is a quantification on
two different valuations: for all valuations θ and ϕ, σθπ ∈ JAKϕ. Let us see
precisely this difference in the following lemma.

Lemma 3.5. For all theories 〈T,F,P〉≡ expressed in minimal deduction
modulo, if J.K. is a C

≡
-model adapted to typing, then for all typing judge-

ments Γ ⊢ π : A, valuations ϕ ∈ Val(A) and substitutions σ such that
for all proof-variables α declared of type B in Γ, (Γ, σα) ∈ JBKϕ, we have
(Γ, σϕπ) ∈ JAKϕ.

Proof. By induction on the length of the derivation of Γ ⊢ π : A. by case
analysis on the last rule used. If the last rule used is :

• axiom: in this case, π is a variable α, and Γ contains a declaration α : B
withA ≡ B (therefore ϕA ≡ ϕB). Then (Γ, σϕπ) = (Γ, σα) ∈ JBKϕ = JAKϕ.

59

3. Sound and complete semantics for deduction modulo

• ⇒-intro: in this case, π is an abstraction λα.τ , and we have
Γ, α : B ⊢ τ : C with A ≡ B ⇒ C. Let σ′ be such that for all vari-
ables β declared in Γ, σ′β = σβ and (ϕ(Γ, α : B), σ′α) is an element
of JBKϕ. Then (ϕ(Γ, α : B), σ′ϕτ) ∈ JCKϕ by induction hypothesis
(and σ′ϕτ is in SN , therefore σϕπ is also in SN). Let (Γ′, π′) ∈ JBKϕ,
we prove by induction on the sum of both maximal lengths of a re-
ductions sequence from σϕ(λα.τ) and π′ (each in SN) that every
one-step reduct µ of the neutral well-typed (by A in ΓΓ′) proof-term
σϕ(λα.τ) π′ satisfies the fact that (ΓΓ′, µ) ∈ JCKϕ. If the one-step
reduct is σϕ(π′/α)τ , we conclude by induction hypothesis (on the
length of the derivation) as (Γ′, π′) ∈ JBKϕ. Otherwise, the reduc-
tion takes place either in σϕ(λα.τ), either in π′. We conclude by
induction hypothesis on the sum of the maximal lengths of reductions
sequence from σϕ(λα.τ) and π′. And the fact that both JBKϕ and
JB ⇒ CKϕ satisfy (CR2≡). Finally, (ΓΓ′, σϕ(λα.τ) π′) ∈ JCKϕ, since
it satisfies (CR3≡) and σϕ(λα.τ) π′ is neutral and well-typed. Hence
(Γ, σϕ(λα.τ)) ∈ JBKϕ⇒̃JCKϕ = JB ⇒ CKϕ = JAKϕ

• ⇒-elim: in this case, π is an application ρτ , and we have
Γ ⊢ ρ : C ≡ B ⇒ A and Γ ⊢ τ : B. Therefore, by induction hypothesis,
(Γ, σϕρ) ∈ JB ⇒ AKϕ = JBKϕ⇒̃JAKϕ and (Γ, σϕτ) ∈ JBKϕ.
Therefore (Γ, σϕ(ρτ)) ∈ JAKϕ.

• ∀-intro: in this case, π is a term abstraction λx.π′ and we have Γ ⊢ π′ : B
withA ≡ ∀x.B. Let t ∈ T̂ (where T is the sort of x), and ϕ′ = ϕ+ 〈x, t〉.
Then (Γ, σϕ′π′) = (Γ, σϕ(t/x)π′) ∈ JBKϕ′ , by induction hypothesis.
Therefore (Γ, σϕ(λx.π′)) ∈ ∀̃T (t 7→ JBKϕ+〈x,t〉) = JAKϕ (by induction

on the maximal length of a reductions sequence from πt, with t ∈ T̂ , us-
ing the fact that for all t ∈ T̂ , JBKϕ+〈x,t〉 satisfies (CR2≡) and (CR3≡)).

• ∀-elim: in this case, π is an application ρt, and we have Γ ⊢ ρ : ∀x.B
with A = (t/x)B and x /∈ FV (Γ). By induction hypothesis, we have
(Γ, σϕρ) ∈ J∀x.B, ϕK = ∀̃T (t 7→ JBKϕ+〈x,t〉). Therefore we have
(Γ, σϕ(ρt)) = (Γ, σϕρ (ϕt)) ∈ JBKϕ+〈x,ϕt〉 = J(t/x)BKϕ = JAKϕ

Proposition 3.1 (Soundness).
For all theories 〈T,F,P〉≡ expressed in minimal deduction modulo, if it has
a C

≡
-model adapted to typing J.K. (i.e. for all propositions A, ϕ ∈ Val(A)

and (Γ, π) ∈ JAKϕ, Γ ⊢ π : ϕA) then it is strongly normalizing.

Proof. As usual, we deduce from the previous lemma that if a proof-term
π is well-typed then there exists a substitution σ (as C

≡
-interpretations are

non-empty) such that σπ ∈ SN therefore π is also in SN .

60

3.2 Well-typed reducibility candidates

3.2.3 C
≡
-models as a complete semantics for strong normaliza-

tion: the long way

We detail in this subsection the first proof of completeness of C
≡
-models for

strong normalization we obtained. Thanks to an idea of Stéphane Lengrand,
we obtained afterwards a simpler proof of completeness of C

≡
-models for

strong normalization. This simpler proof is detailed in the next subsection.

An interpretation of propositions adapted to typing

Now that we have defined the ldtva C
≡

of well-typed reducibility candidates,
our goal is to build a C

≡
-valued interpretation which is a model of the theory

〈T,F,P〉≡ if it is strongly normalizing. For that purpose, we define a first C
≡
-

valued interpretation [.]. in a natural way: we interpret atomic propositions
by proofs of A which are strongly normalizing, with their associated contexts,
and we then deduce inductively interpretations of all propositions by using
the definitions of ⇒̊ and ∀̊T (as usually done in the construction of models
valued in original truth values algebras).

Definition 3.13. Let A be a proposition and ϕ ∈ Val(A).
We define the subset of U , [A]ϕ by induction over the structure of A.

- [P t1 . . . tn]ϕ = {(Γ, π) ∈ U such that π ∈ SN and Γ ⊢ π : ϕ(P t1 . . . tn)}

- [B ⇒ C]ϕ = [B]ϕ⇒̊[C]ϕ

- [∀x.B]ϕ = ∀̊T (t 7→ [B]ϕ+〈x,t〉)

Let us first prove that this actually defines a C
≡
-valued interpretation,

with the particularity that for all propositions A and ϕ ∈ Val(A), their
interpretation [A]ϕ only contains proofs of ϕA. In other words, [.]. is a
C
≡
-valued interpretation adapted to typing..

Lemma 3.6. For all A ∈ P, and ϕ ∈ Val(A),
[A]ϕ ∈ C

≡
with A[A]ϕ = ϕA (i.e, for all (Γ, π) ∈ [A]ϕ, Γ ⊢ π : ϕA).

Proof. By induction on A.

• If A is an atomic proposition P t1 . . . tn,

(CR≡) By definition. (where A[P t1...tn]ϕ ≡ P ϕ(t1) . . . ϕ(tn)).

(CR1≡) By definition.

(CR2≡) By subject-reduction (lemma 2.4) and the fact that each
reduct of a proof-term in SN is also in SN .

(CR3≡) If all one-step reducts of a proof-term are in SN , then it
is also in SN .

61

3. Sound and complete semantics for deduction modulo

• If A = B ⇒ C, as ⇒̊ : C
≡
× C

≡
7→ C

≡
, we conclude by induction

hypothesis
(whereA[B⇒C]ϕ = A[B]ϕ⇒̊[C]ϕ ≡ A[B]ϕ ⇒ A[C]ϕ ≡ ϕB ⇒ ϕC = ϕ(B ⇒ C)).

- If A = ∀x.B, let T be the sort of x and f = t 7→ [B]ϕ+〈x,t〉.

Then f is a function from T̂ to C
≡
, by induction hypothesis. Moreover,

for all t ∈ T̂ , Af(t) = (t/x)ϕB, by induction hypothesis. Therefore

f ∈ ÅT and ∀̊T f ∈ C
≡

(where A[∀x.B]ϕ = ∀x.Af = ϕ(∀x.B)).

By construction, since we define [.]. inductively using ⇒̊ and ∀̊, there re-
mains only one property to prove, to show that this interpretation is adapted
to the connectives and therefore a C

≡
-valued model.

Lemma 3.7. For all A ∈ P, x of sort T , t ∈ T̂ and ϕ ∈ Val(∀x.A) such
that x /∈ dom(ϕ), we have [(t/x)A]ϕ = [A]ϕ+〈x,t〉.

Proof. By induction on A. Let us write ϕ′ = ϕ+ 〈x, t〉.

• If A is an atomic proposition P t1 . . . tn,

[(t/x)A]ϕ = {(Γ, π) s.t. π ∈ SN and Γ ⊢ π : P (t/x)ϕ(t1) . . . (t/x)ϕ(tn)}

= {(Γ, π) s.t. π ∈ SN and Γ ⊢ π : P ϕ′(t1) . . . ϕ
′(tn)}

= [A]ϕ+〈x,t〉

as t is term-closed.

• If A = B ⇒ C,

[(t/x)A]ϕ = [(t/x)B ⇒ (t/x)C]ϕ

= [(t/x)B]ϕ⇒̊[(t/x)C]ϕ

= [B]ϕ+〈x,t〉⇒̊[C]ϕ+〈x,t〉 by induction hypothesis

= [B ⇒ C]ϕ+〈x,t〉

= [A]ϕ+〈x,t〉

• If A = ∀y.B, let T be the sort of x

[(t/x)A]ϕ = [(t/x)∀y.B]ϕ

= [∀y.(t/x)B]ϕ as t is term-closed

= ∀̊T (t′ 7→ [(t/x)B]ϕ+〈y,t′〉)

= ∀̊T (t′ 7→ [(B]ϕ+〈y,t′〉+〈x,t〉) by induction hypothesis

= ∀̊T (t′ 7→ [(B]ϕ+〈x,t〉+〈y,t′〉) as t is term-closed

= [∀y.B]ϕ+〈x,t〉

= [A]ϕ+〈x,t〉

62

3.2 Well-typed reducibility candidates

We have proved that [.]. is a C
≡
-valued model: it is a C

≡
-valued inter-

pretation adapted to the connectives. We have still to prove that it is a
C
≡
-valued model of 〈T,F,P〉≡ (i.e. also adapted to the congruence ≡) when

this theory is strongly normalizing. Although we conjecture that it is the
case, we did not find a way to prove it. It is not easy to prove that all
≡-equivalent propositions have the same interpretation when the theory is
strongly normalizing (we shall see in the next subsection that it is not so
hard when choosing the short way). We therefore chose another way to get
this result: first define a second C

≡
-valued interpretation which is adapted

the congruence, and then show that it is also adapted to the connectives
when the theory is strongly normalizing.

Adapting this interpretation to the congruence

Changing our first interpretation to make it adapted to the congruence is not
difficult: we simply take the intersection of all the previous interpretations
of equivalent propositions. We then define a second interpretation ⌊.⌋. as
follows:

Definition 3.14 (⌊.⌋.). For all A ∈ P and ϕ ∈ Val(A),

⌊A⌋ϕ =
⋂

ϕA≡ψA′

[A′]ψ

Remark 3.6. For all A,A′ ∈ P, ϕ ∈ Val(A) and ψ ∈ Val(A′) such that
ϕA ≡ ψA′, we have ⌊A⌋ϕ = ⌊A′⌋ψ, by construction: ⌊.⌋. is always adapted
to the congruence whereas the theory is strongly normalizing or not.

Then we prove that ⌊.⌋. is also a C
≡
-valued interpretation adapted to typing,

and that it satisfies the property of models concerning term-substitution.

Lemma 3.8. For all A ∈ P, and ϕ ∈ Val(A),
⌊A⌋ϕ ∈ C

≡
with A⌊A⌋ϕ

= ϕA (i.e, ∀(Γ, π) ∈ ⌊A⌋ϕ, Γ ⊢ π : ϕA).

Proof. By lemma 3.6, since ⌊A⌋ϕ ⊆ [A]ϕ.

Lemma 3.9. For all A ∈ P, x of sort T , t ∈ T̂ and ϕ ∈ Val(∀x.A) such
that x /∈ dom(ϕ), we have ⌊(t/x)A⌋ϕ = ⌊A⌋ϕ+〈x,t〉.

Proof. As (ϕ+ 〈x, t〉)A = (t/x)ϕ(Aϕ).

Finally, we proved, that ⌊.⌋. is a C
≡
-valued interpretation of propositions

adapted to typing and to the congruence relation ≡. Let us now show that if
the theory 〈T,F,P〉≡ is strongly normalizing, then ⌊.⌋. is a C

≡
-valued model

63

3. Sound and complete semantics for deduction modulo

of 〈T,F,P〉≡, i.e. it is also adapted to connectives. In order to prove that ⌊.⌋.
is a C

≡
-valued model of 〈T,F,P〉≡, if it is strongly normalizing, we proceed

by contraposition, showing that if ⌊.⌋. is not connectives-adapted, then we
can exhibit a typing judgement Γ ⊢ π : A such that π /∈ SN .

We first show that if ⌊.⌋. is not adapted to the connective ⇒, then we
can exhibit a proposition C, a valuation ψ ∈ Val(C) and (Γ, π) ∈ U such
that Γ ⊢ π : ψC but (Γ, π) /∈ ⌊C⌋ψ

Lemma 3.10.
If there exists A,B ∈ P and ϕ ∈ Val(A⇒ B), such that

⌊A⇒ B⌋ϕ 6= ⌊A⌋ϕ⇒̊⌊B⌋ϕ

then there exists π ∈ T , C ∈ P, ψ ∈ Val(C) such that

Γ ⊢ π : ψC and (Γ, π) /∈ ⌊C⌋ψ.

Proof. • If there exists (Γ, π) ∈ U such that (Γ, π) /∈ ⌊A⇒ B⌋ϕ and
(Γ, π) ∈ ⌊A⌋ϕ⇒̊⌊B⌋ϕ. Then Γ ⊢ π : ϕA⇒ ϕB = ϕ(A⇒ B).
We take C = A⇒ B and ψ = ϕ.

• If there exists (Γ, π) ∈ U such that (Γ, π) ∈ ⌊A ⇒ B⌋ϕ and
(Γ, π) /∈ ⌊A⌋ϕ⇒̊⌊B⌋ϕ. Then there exists (Γ′, π′) ∈ ⌊A⌋ϕ such that
(ΓΓ′, ππ′) /∈ ⌊B⌋ϕ. Since (Γ, π) ∈ ⌊A ⇒ B⌋ϕ, and (Γ′, π′) ∈ ⌊A⌋ϕ, we
have Γ ⊢ π : ϕ(A ⇒ B) = ϕA ⇒ ϕB and Γ′ ⊢ π′ : ϕA. Therefore
ΓΓ′ ⊢ ππ′ : ϕB. We take C = A⇒ B and ψ = ϕ.

Then we show the same for the universal quantifier ∀: if ⌊.⌋. is not
adapted to ∀, then we can exhibit a proposition C, a valuation ψ ∈ Val(C)
and (Γ, π) ∈ U such that Γ ⊢ π : ψC but (Γ, π) /∈ ⌊C⌋ψ

Lemma 3.11.
If there exists A ∈ P, ϕ ∈ Val(A), and x of sort T not in dom(ϕ), s.t.

⌊∀x.A⌋ϕ 6= ∀̊T (t 7→ ⌊A⌋ϕ+〈x,t〉)

then there exists π ∈ T , C ∈ P, ψ ∈ Val(C) such that

Γ ⊢ π : ψC and (Γ, π) /∈ ⌊C⌋ψ.

Proof. • If there exists (Γ, π) ∈ U such that (Γ, π) /∈ ⌊∀x.A⌋ϕ and
(Γ, π) ∈ ∀̊T (t 7→ ⌊A⌋ϕ+〈x,t〉). Then Γ ⊢ π : ϕ(∀x.A).
We take C = ∀x.A and ψ = ϕ.

• If there exists (Γ, π) ∈ U such that (Γ, π) ∈ ⌊∀x.A⌋ϕ and
(Γ, π) /∈ ∀̊T (t 7→ ⌊A⌋ϕ+〈x,t〉). Then there exists t ∈ T̂ such that
(Γ, πt) /∈ ⌊A⌋ϕ+〈x,t〉). As (Γ, π) ∈ ⌊∀x.A⌋ϕ, we have Γ ⊢ π : ϕ(∀x.A),
therefore Γ ⊢ πt : (t/x)ϕA. We take C = A and ψ = ϕ+ 〈x, t〉

64

3.2 Well-typed reducibility candidates

Given these lemmas, we can now deduce that if ⌊.⌋. is not adapted to the
connectives, then we can exhibit a proposition D, a valuation ψ ∈ Val(D)
and (Γ, π) ∈ U such that Γ ⊢ π : ψD but (Γ, π) /∈ [D]ψ (the first interpreta-
tion).

Lemma 3.12.
If there exists A,B ∈ P, ϕ ∈ Val(A⇒ B) or ϕ′ ∈ Val(∀x.A)
with x of sort T , x /∈ dom(ϕ′) and

⌊A⇒ B⌋ϕ 6= ⌊A⌋ϕ⇒̃⌊B⌋ϕ or ⌊∀x.A⌋ϕ′ 6= ∀̊T (t 7→ ⌊A⌋ϕ′+〈x,t〉

then there exists D ∈ P, π ∈ T , ψ ∈ Val(D) such that

Γ ⊢ π : ψD and (Γ, π) /∈ [D]ψ.

Proof. By lemmas 3.10 and 3.11, there exists C, Γ, π and ψ such that Γ ⊢
π : ψC and (Γ, π) /∈ ⌊C⌋ψ. Therefore, there exists a proposition D and
ψ′ ∈ Val(D) such that ψ′D ≡ ψCi and (Γ, π) /∈ [D]ψ′ . And Γ ⊢ π : Dψ′ , by
equivalence of ψC and ψ′D.

And finally, this allows us to prove that if ⌊.⌋. is not adapted to the
connectives, then there exists a well-typed proof-term which is not strongly
normalizing.

Lemma 3.13.
If there exists A,B ∈ P, ϕ ∈ Val(A⇒ B) or ϕ′ ∈ Val(∀x.A)
with x of sort T , x /∈ dom(ϕ′) and

⌊A⇒ B⌋ϕ 6= ⌊A⌋ϕ⇒̃⌊B⌋ϕ or ⌊∀x.A⌋ϕ′ 6= ∀̊T (t 7→ ⌊A⌋ϕ′+〈x,t〉)

then there exists a (term-closed) proposition E, π ∈ T and a context
Γ such that

Γ ⊢ π : E and π /∈ SN .

Proof. By lemma 3.12, there exists a proposition D, a context Γ, a proof π
and ϕ ∈ V(D) such that Γ ⊢ π : ϕD and (Γ, π) /∈ [D]ϕ. By induction on D.

• if D is atomic, then since Γ ⊢ π : ϕD, we have π /∈ SN .

• if D = F ⇒ G,
then Γ ⊢ π : ϕ(F ⇒ G) and (Γ, π) /∈ [F ⇒ G]ϕ = [F]ϕ⇒̊[G]ϕ.
Then there exists (Γ′, π′) ∈ [F]ϕ such that (ΓΓ′, ππ′) /∈ [G]ϕ. Since
(Γ, π) ∈ [F ⇒ G]ϕ, and (Γ′, π′) ∈ [F]ϕ, we therefore have
Γ ⊢ π : ϕ(F ⇒ G) = ϕ ⇒ ϕG and Γ′ ⊢ π′ : ϕF . Therefore
ΓΓ′ ⊢ ππ′ : ϕG. We conclude by induction hypothesis.

• if D = ∀x.F ,
then Γ ⊢ π : ϕ(∀x.F) and (Γ, π) /∈ [∀x.F]ϕ. Then there exists
t ∈ T̂ such that (Γ, πt) /∈ [F]ϕ+〈x,t〉). As (Γ, π) ∈ [∀x.F]ϕ, we have
Γ ⊢ π : ϕ(∀x.F), therefore Γ ⊢ πt : (t/x)ϕF . We conclude by induc-
tion hypothesis.

65

3. Sound and complete semantics for deduction modulo

We can then conclude this subsection by the following proposition: if
〈T,F,P〉≡ is a strongly normalizing theory, then ⌊.⌋. is a C

≡
-valued model of

〈T,F,P〉≡. In other words, having a C
≡
-valued model is a complete condition

for a theory to be strongly normalizing.

Proposition 3.2 (Completeness).
If the theory 〈T,F,P〉≡ is strongly normalizing,
then ⌊.⌋. = 〈A,ϕ〉 7→ ⌊A⌋ϕ is a C

≡
-model of this theory.

Proof. By remark 3.6 and lemmas 3.8 and 3.13.

3.2.4 C
≡
-models as a complete semantics for strong normaliza-

tion: the short way

Thanks to an idea of Stéphane Lengrand, we were able to provide a simpler
proof of completeness of C

≡
-models for strong normalization. We propose

for the interpretation of a proposition A and ϕ ∈ Val(A) directly the set of
ordered pairs (Γ, π) such that Γ ⊢ π : ϕA. This interpretation is adapted to
connectives as interpretations of connectives follow the definitions of typing
rules. It is adapted to the congruence since a proposition can be replaced by
an ≡-equivalent one in a typing judgement. It satisfies (CR2≡) by subject-
reduction and obviously (CR3≡). And finally, it satisfies (CR1≡) if (and only
if) the theory is strongly normalizing.

We shall also write ⌊.⌋. for this interpretation in order to muddle it with
the former one in the following of this work.

Definition 3.15 ((Second) ⌊.⌋.).
For all propositions A and ϕ ∈ Val(A),

⌊A⌋ϕ = {(Γ, π) such that Γ ⊢ π : ϕA}.

Proposition 3.3 (Completeness).
If the theory 〈T,F,P〉≡ is strongly normalizing,
then ⌊.⌋. = 〈A,ϕ〉 7→ ⌊A⌋ϕ is a C

≡
-model of this theory.

Proof. If the theory 〈T,F,P〉≡ is strongly normalizing,

• let us first prove that ⌊.⌋. is a C
≡
-valued interpretation. For all propo-

sitions A, if (Γ, π) ∈ ⌊A⌋ϕ then Γ ⊢ π : ϕA and therefore π ∈ SN
and ⌊A⌋ϕ satisfies (CR1≡), since the theory is strongly normalizing.
Moreover if π → π′ then Γ ⊢ π′ : ϕA by subject-reduction hence ⌊A⌋ϕ
satisfies (CR2≡). Finally ⌊A⌋ϕ satisfies obviously (CR≡) and (CR3≡).

66

3.3 Theory-independent sound and complete reducibility
candidates

• ⌊.⌋. is adapted to the congruence since a proposition can be replaced
by an ≡-equivalent one in a typing judgement.

• Let us finally prove that ⌊.⌋. is adapted to the conncetives.

– for all propositions A and ϕ + 〈x, t〉 ∈ Val(A), ⌊(t/x)A⌋ϕ is ob-
viously equal to ⌊A⌋ϕ+〈x,t〉.

– Let A,B be propositions and ϕ ∈ Val(A⇒ B).

∗ Let (Γ, π) ∈ ⌊A ⇒ B⌋ϕ hence Γ ⊢ ϕA ⇒ ϕB. And for all
(Γ′, π′) ∈ ⌊A⌋ϕ, we have Γ′ ⊢ π′ : ϕA hence ΓΓ′ ⊢ ππ′ : ϕB
and (ΓΓ′, π, π′) ∈ ⌊B⌋ϕ. Finally, (Γ, π) ∈ ⌊A⌋ϕ⇒̊⌊B⌋ϕ.

∗ Let (Γ, π) ∈ ⌊A⌋ϕ⇒̊⌊B⌋ϕ, for all proof-variables α not free in
π, since (α : ϕA) ∈ ⌊A⌋ϕ, we have (Γ, α : ϕA, πα) ∈ ⌊B⌋ϕ
hence Γ, α : ϕA ⊢ πα : ϕB therefore Γ ⊢ π : ϕA ⇒ ϕB by
case analysis on the last rule used in Γ, α : ϕA ⊢ πα : ϕB, and
finally
(Γ, π) ∈ ⌊A⇒ B⌋ϕ.

– Let A be a proposition and ϕ ∈ Val(∀x.A) such that x /∈dom(ϕ),

∗ Let (Γ, π) ∈ ⌊∀x.A⌋ϕ hence Γ ⊢ π : ϕ(∀x.A) = ∀x.ϕA since
x /∈dom(ϕ). Then π ∈ SN since the theory is strongly
normalizing. Let t ∈ T̂ , then Γ ⊢ πt : (t/x)ϕA hence
(Γ, πt) ∈ ⌊A⌋ϕ+〈x,t〉. Finally, (Γ, π) ∈ ∀̊T (t 7→ ⌊A⌋ϕ+〈x,t〉.

∗ If (Γ, π) ∈ ∀̊T (t 7→ ⌊A⌋ϕ+〈x,t〉), then Γ ⊢ π : ϕ(∀x.A) by
definition.

3.3 Theory-independent sound and complete reducibil-

ity candidates

We have introduced, for each theory 〈T,F,P〉≡ a ldtva C
≡

such that having
a C

≡
-valued model is a sound and complete semantic condition for strong

normalization property. But each ldtva C
≡

depends on the congruence
relation ≡, while we want to define a sufficient and necessary semantics for
all strongly normalizing theories expressed in minimal deduction modulo.
Notice that, as previously, since ldtvas depend on the sets of closed terms
of the studied theory, we define a class of ldtvas , each corresponding
to a class of theories in minimal deduction modulo based on many-sorted
predicate languages which share the same sets of sorts and functions.

67

3. Sound and complete semantics for deduction modulo

In this section, we introduce another ldtva which we call C′, independent
of the theory studied, and we prove that having a C′-valued model is also a
sound and complete semantics for strongly normalizing theories in minimal
deduction modulo.

3.3.1 The main idea

As we want C′ to be theory-independent, we cannot assume properties of
typing in its definition. Therefore we are not able to reuse the techniques
developed in 3.2.3, since they depend explicitely on those assumptions on
typing. In particular, we shall not be able to prove the converse of the ade-
quacy lemma directly. But we can reuse the results of 3.2.3 in the following
way: in order to prove completeness of C′-models, we build a morphism of
ldtvas from each ldtva C

≡
corresponding to a strongly normalizing theory

〈T,F,P〉≡, to C′. Actually, we build a more general morphism: from each
sub-ldtva satisfying the substitution property (defined in 3.3.5) of each C

≡

to C′.

SN

C≡-model C′-model
morphism

This way, as soon as a theory 〈T,F,P〉≡ is strongly normalizing, it has a
C
≡
-valued model, as proved in 3.2, and this model is mapped to a C′-valued

model, by the morphism we are to build. This will prove that having a
C′-valued model is also a complete semantics for strongly normalizing the-
ories, and we shall prove separately that it is still a sound semantics. This
technique of building models by using morphisms of algebras is, up to our
knowledge, innovative and could lead to other new results about normaliza-
tion. We shall discuss on that point in section 6.2.2.

3.3.2 C ′, yet another algebra of reducibility candidates

Let us define, in this subsection the ldtva C′. We shall use, for this purpose,
a notion of substitution with capture which we define below.

Definition 3.16. For all proof-variables α, proof-terms π and π′,
we define [π′/α]π by induction on the structure of π:

68

3.3 Theory-independent sound and complete semantics

• if π is a proof-variable β,
then [π′/α]π = π′ if α = β and [π′/α]π = π otherwise,

• if π is an abstraction λγ.ρ, then [π′/α]π = λγ.[π′/α]ρ

• if π is an abstraction λx.ρ, then [π′/α]π = λx.[π′/α]ρ′,

• if π is an application ρ1ρ2 then [π′/α]π = [π′/α]ρ1 [π′/α]ρ2,

• if π is an application ρ1t then [π′/α]π = [π′/α]ρ1 t,

Notice that renaming in π is not allowed in this case.

Example 3.1. For all proof-variables α and proof-terms π,
[π/α](λα.α) = λα.π whereas (π/α)(λα.α) = λα.α.

First, we naturally consider in this ldtva sets of proof-terms again,
and we do not mention contexts in the ldtva we build, since we do not
want to depend on typing anymore. And we define the domain of C′ as
the set of sets E of proof-terms that satisfy the usual (CR1), (CR2) and
another modified version of (CR3) below.

Definition 3.17.
For all sets E of proof-terms, we define (or recall) the following properties :

(CR1) For all π ∈ E, π ∈ SN .

(CR2) For all π ∈ E, for all π′ ∈ T such that π → π′, then π′ ∈ E.

(CR3’) For all n ∈ N, for all ν, µ1, . . . , µn ∈ T , if

- for all i ≤ n, µi is neutral and non-normal,

- ∀ρ1, . . . , ρn ∈ T such that for all i ≤ n, µi → ρi, [ρi/αi]i≤nν ∈ E

then [µi/αi]i≤nν ∈ E.

This (CR3’) property is different from the usual (CR3) on two points.
First, as we said in 3.1.2, the problem with usual reducibility candidates

for being complete comes from the fact that all neutral normal proof-terms
belong to all candidates because of the (CR3) property. With this new
definition, we do not allow neutral normal proof-terms but only neutral non-
normal proof-terms whose all one-step reducts are in the set. For example,
unlike with the usual (CR3) property, αα can’t be added to a set using this
new property since it is normal.

As a second step, those neutral non-normal proof-terms are allowed not
only at the root of a proof-term but at the root of different subtrees of this
proof-term. For example, if we write δ = λα.αα, K = λα.λβ.α and if λγ.γ is

69

3. Sound and complete semantics for deduction modulo

in a set E, then λγ.(Kγ δ) can be added by (CR3’) to E: we take ν = λγ.α1

and µ1 = Kγ δ. µ1 is neutral, non-normal and its only β-reduct is γ, with
[γ/α1]ν = λγ.γ which is in E. We can notice that λγ.(Kγ δ) is not neutral
therefore it could not have been added with the usual (CR3) property.

Finally, (CR3’) allows to add non-neutral proof-terms to a set E, unlike
(CR3), but these proof-terms will always reduce to an element of E (still
unlike (CR3)). We shall see in 3.3.5 how those two differences allow us
to build morphisms from each ldtva C

≡
of a strongly normalizing theory

〈T,F,P〉≡ to C′.

Notice that a specific case of this (CR3’) property is the (CR3) property
with an additional condition on the neutral proof-term considered: to be
non-normal (take n = 1 in the definition of (CR3’)).

For the interpretation of the connective ⇒, we use, in C′, the usual definition
of reducibilty candidates.

Definition 3.18 (⇒̃).
For all E,F ⊆ T , E⇒̃F = {π ∈ SN such that for all π′ ∈ E, ππ′ ∈ F}.

Then we verify that this defines a function from C′ × C′ to C′. As for
the usual (CR3) property, if E and F are sets of proof-terms, which satisfy
(CR3’) then E⇒̃F also satisfy (CR3’).

Lemma 3.14. ⇒̃ is a function from C′ × C′ to C′.

Proof. Let E,F ∈ C′ and π ∈ E⇒̃F ,

(CR1) π ∈ SN , by definition.

(CR2) If ρ is a one-step reduct of π, then for all π′ ∈ E, ρπ′ is a
one-step reduct of ππ′.

(CR3’) If there exists ν, µ1, . . . , µn ∈ T , such that each µi is neutral
non-normal, τ = [µi/αi]i≤n ν and for all (ρi)i≤n ⊆ T , such that for all
i ≤ n,
µi → ρi, then [ρi/αi]i≤n ν ∈ E⇒̃F . Then, for all π′ ∈ E,
τπ′ = [µi/αi]i≤n νπ′ = [µi/αi]i≤n ν ′ with ν ′ = νπ′. And for all
(ρi)i≤n ⊆ T , such that for all i ≤ n, µi → ρi, we have
[ρi/αi]i≤n ν

′ = [ρi/αi]i≤n ν π
′ ∈ F by hypothesis, therefore τπ′ ∈ F

as it satifies (CR3’). And finally, τ ∈ E⇒̃F .

And we define the interpretation of the universal quantifier in a functional
way, as in 3.2.1.

Definition 3.19 (ÃT).
For all sorts T , ÃT is the set of all function from T̂ to C′.

70

3.3 Theory-independent sound and complete semantics

Definition 3.20 (∀̃T). For all sorts T and function f ∈ ÃT ,
∀̃T .f = {π ∈ SN such that for all t ∈ T̂ , πt ∈ f(t)}

Then we verify that this defines a function from ÃT to C′.

Lemma 3.15. For all sorts T and f ∈ ÃT , ∀̃T f ∈ C′.

Proof. Let T be a sort, f ∈ ÃT and π ∈ ∀̃T .f .

(CR1) By definition.

(CR2) Let π′ be such that π → π′. Then for all t ∈ T̂ , π′t is a one-step
reduct of πt.

(CR3’) If there exists ν, µ1, . . . , µn ∈ T , such that each µi is neu-
tral non-normal, τ = [µi/αi]i≤n ν and for all (ρi)i≤n ⊆ T , such that
for all i ≤ n, µi → ρi, then [ρi/αi]i≤n ν ∈ ∀̃T .f . Then, for all t ∈ T̂ ,
τt = [µi/αi]i≤n νt = [µi/αi]i≤n ν ′ with ν ′ = νt. And for all
(ρi)i≤n ⊆ T , such that for all i ≤ n, µi → ρi, we have
[ρi/αi]i≤n ν

′ = [ρi/αi]i≤n ν t ∈ f(t) by hypothesis, therefore τt ∈ f(t)
as it satifies (CR3’). And finally, τ ∈ ∀̃T .f .

Remark 3.7. As in 3.2.1, we could have defined ∀̃T in a simpler way, with-
out assuming explicitely that proof-terms in ∀̃T .f are strongly normalizing:
∀̃T .f = {π such that for all t ∈ T̂ , πt ∈ f(t)}. But this would have led us, as
previously, to consider only theories such that there exists at least one closed
term of each sort.

We finally define formally C′ with the previous definitions.

Definition 3.21 (C′). C′ is the ldtva 〈C′, ⇒̃, (ÃT), (∀̃T)〉.

3.3.3 Soundness of non-empty C ′-models

As explained in 3.1.1, we can notice that in the usual adequacy lemma, (CR3)
is only used on proof-variables and on non-normal proof-terms. For non-
normal proof-terms, adapting the proof of this lemma to the new property
(CR3’) can be done without any difficulty as explained below. But with the
new (CR3’) property, we cannot deduce that C′ models are non-empty from
the fact that they contain all proof-variables. We have therefore to suppose
explicitely that the models we consider are non-empty. Another difference
with the original adequacy lemma for pre models of section 2.3.2 comes from
our synchronized version of the interpretation of the universal quantifier.
Due to this synchronization, our new form of adequacy lemma quantifies on
only one valuation (and not two as previously) as we shall see below.

71

3. Sound and complete semantics for deduction modulo

Lemma 3.16. If J.K. is a non-empty C′-valued model of a theory 〈T,F,P〉≡,
then for all A ∈ P, contexts Γ, ϕ ∈ Val(A) ∩ Val(Γ), π ∈ T and σ substi-
tutions such that for all declarations α : B in Γ, σα ∈ JBKϕ, we have:

if Γ ⊢ π : A then σϕπ ∈ JAKϕ.

Proof. By induction on the length of the derivation of Γ ⊢ π : A. by case
analysis on the last rule used. If the last rule used is :

• axiom: in this case, π is a variable α, and Γ contains a declaration α : B
with A ≡ B (therefore ϕA ≡ ϕB). Then σϕπ = σα ∈ JBKϕ = JAKϕ.

• ⇒-intro: in this case, π is an abstraction λα.τ , and we have
Γ, α : B ⊢ τ : C with A ≡ B ⇒ C. Let σ′ such that for all vari-
ables β declared in Γ, σ′β = σβ and σ′α is an element of JBKϕ.
Then σ′ϕτ ∈ JCKϕ by induction hypothesis (and σ′ϕτ is in SN ,
therefore σϕπ is also in SN). Let π′ ∈ JBKϕ, we prove by induc-
tion on the sum of both maximal lengths of a reductions sequence
from σϕ(λα.τ) and π′ (each in SN) that every one-step reduct of
the neutral non-normal proof-term σϕ(λα.τ) π′ is in JCKϕ. If the
one-step reduct is σϕ(π′/α)τ , we conclude by induction hypothesis
(on the length of the derivation) as π′ ∈ JBKϕ. Otherwise, the re-
duction takes place either in σϕ(λα.τ), either in π′. We conclude
by induction hypothesis on the sum of the maximal lengths of reduc-
tions sequence from σϕ(λα.τ) and π′. And the fact that both JBKϕ
and JB ⇒ CKϕ satisfy (CR2). Finally, σϕ(λα.τ) π′ ∈ JCKϕ, since
it satisfies (CR3’) and σϕ(λα.τ) π′ is neutral, non-normal. Hence
σϕ(λα.τ) ∈ JBKϕ⇒̃JCKϕ = JB ⇒ CKϕ = JAKϕ

• ⇒-elim: in this case, π is an application ρτ , and we have
Γ ⊢ ρ : C ≡ B ⇒ A and Γ ⊢ τ : B. Therefore, by induction hypoth-
esis, σϕρ ∈ JB ⇒ AKϕ = JBKϕ⇒̃JAKϕ and σϕτ ∈ JBKϕ. Therefore
σϕ(ρτ) ∈ JAKϕ.

• ∀-intro: in this case, π is a term abstraction λx.π′ and we have Γ ⊢ π′ : B
withA ≡ ∀x.B. Let t ∈ T̂ (where T is the sort of x), and ϕ′ = ϕ+ 〈x, t〉.
Then σϕ′π′ = σϕ(t/x)π′ ∈ JBKϕ′ , by induction hypothesis. Therefore,
σϕ(λx.π′) ∈ ∀̃T (t 7→ JBKϕ+〈x,t〉 = JAKϕ (by induction on the maximal

length of a reductions sequence from πt, with t ∈ T̂ , using the fact
that for all t ∈ T̂ , JBKϕ+〈x,t〉 satisfies (CR2) and (CR3’).

• ∀-elim: in this case, π is an application ρt, and we have Γ ⊢ ρ : ∀x.B
with A = (t/x)B and x /∈ FV (Γ). By induction hypothesis, we
have σϕρ ∈ J∀x.B, ϕK = ∀̃T (t 7→ JBKϕ+〈x,t〉). And therefore
σϕ(ρt) = σϕρ (ϕt) ∈ JBKϕ+〈x,ϕt〉 = J(t/x)BKϕ = JAKϕ

72

3.3 Theory-independent sound and complete semantics

Proposition 3.4 (Soundness).
If 〈T,F,P〉≡ has a non-empty C′-valued model, then 〈T,F,P〉≡ is strongly
normalizing.

Proof. If J.K. is a non-empty C′-valued model of 〈T,F,P〉≡ then for all typing
judgement Γ ⊢ π : A and ϕ as in the previous proposition, there exists a
substitution σ as in the previous proposition (as J.K. is non-empty) and we
have σϕπ ∈ JAKϕ hence σϕπ ∈ SN , therefore π ∈ SN .

Finally, we proved that this (CR3’) property, slightly different from the
usual (CR3) is sufficient to prove the adequacy lemma, provided that we
suppose explicitely the non-emptiness of our models. Hence having a non-
empty C′-valued model is still a sound semantics for strongly normalizing
theories in minimal deduction modulo. Let us now prove, in the following,
that this definition of C′ is also adequate to prove completeness of (non-
empty) C′-valued models.

3.3.4 Defining a function from C
≡

to C ′

In order to build a function from C
≡

to C′, the first idea is to filter sets in C
≡
,

by a same context (i.e. only consider proof-terms that are in a element of C
≡

associated to a same context). This means that from each set in C
≡

we shall
only consider proof-terms that are associated to a same context in this set.
In order to obtain big enough sets in C′, we need to consider a context ∆
which contains, for each proposition, an infinity of variables declared proofs
of this proposition. But since we can only consider finite contexts in typing
judgements, we shall filter sets in C

≡
by finite subcontexts of ∆.

Definition 3.22 (∆). We consider a context which contains an infinite num-
ber of variables for each proposition. ∆ = (βAi : A)A∈P,i∈N.

Let us define now the notion of leaf of a proof-term. The leaves of a proof-
term are its first β-reducts which are normal or non-neutral. Intuitively,
when proving that a proof-term π belongs to a set E satisfying (CR3’), the
leaves of π are the first reducts of π on which we cannot use (CR3’) to prove
that they are in E. In other words, it is sufficient that all leaves of π belong
to E, in order to prove that π is in E (as soon as E satisfies (CR3’)).

Definition 3.23 (Leaves).
For all proof-terms ρ, π, ρ is a leaf of π if and only if ρ is normal or non-
neutral and there exists n ≥ 0 and π1 . . . πn−1 neutral non-normal terms such
that π = π1 → . . .→ πn−1 → ρ). We call L(π) the set of leaves of π.

Remark 3.8. The only leaf of a normal or non-neutral proof-term is itself.
If π is a neutral non-normal proof-term, then ρ ∈ L(π) if and only if there
exists a one-step reduct π′ of π such that ρ ∈ L(π′).

73

3. Sound and complete semantics for deduction modulo

Then we define our function Cl(.) as follows. First we filter sets in C
≡

by our context ∆. But we can notice that those filtered sets cannot satisfy
(CR3’). Indeed, ill-typed proof-terms can be added to a set using this (CR3’)
property as we have seen previously, whereas those filtered sets only contain
well-typed proof-terms in ∆. Therefore we have to saturate those sets by
(CR3’) in order to obtain sets in C′. Notice, that in the following defini-
tion, we use the notion of leaf in order to obtain directly a (CR3’) big-step
expansion whereas (CR3’) is originally defined as a small-step expansion.

Definition 3.24 (Cl). For all E ⊆ U , we define Cl(E) as follows :
for all k ∈ N,

• Cl0(E) = {π, ∃∆′ ⊆ ∆ finite such that (∆′, π) ∈ E}

• Clk+1(E) = {π ∈ T , such that ∃n ∈ N:
∃νπ ∈ T ,∃(µi)i≤n ⊆ SN , each neutral non-normal s.t.

π = [µi/αi]i≤n νπ and ∀(ρi)i≤n ⊆ T , s.t. ∀i ≤ n, ρi ∈ L(µi),
we have [ρi/αi]i≤n νπ ∈ Clk(E)}

• Cl(E) = ∪j∈NCl
j(E)

Remark 3.9. Notice that for all E ∈ C
≡

and k ∈ N, Clk(E) ⊆ Clk+1(E)
(take n = 0 in the definition).

Lemma 3.17. For all E ∈ C
≡
, if E 6= ∅, then Cl(E) 6= ∅.

Proof. If E 6= ∅, there exists (Γ, π) ∈ E, let us write Γ′ and π′ for the context
Γ and the proof-term π where proof-variables are renamed in order to obtain
Γ′ ⊆ ∆. Then (Γ′, π′) is also in E and therefore in Cl0(E) ⊆ Cl(E), hence
Cl(E) 6= ∅.

Let us now prove that Cl(.) maps each element of C
≡

to an element of C′.
Although this statement may seem quite intuitive, we shall see that it is not
so simple to prove.

Lemma 3.18.
For all π ∈ SN , if π is not isolated then there exists an abstraction τ such
that for all abstractions τ ′ such that π →∗ τ ′, we have τ →∗ τ ′.

We call τ the primary leaf of π.

Remark 3.10. This definition of primary leaf is very closed to C. Riba’s
definition of the notion of princpal reduct [46]. The only difference is that
in our case, the primary leaf has to be an abstraction.

74

3.3 Theory-independent sound and complete semantics

Proof. If π is not isolated, then all reductions sequences from π reach a non-
neutral proof-term, by confluency. Notice that the not-neutral reducts of π
are either all proof-abstractions, either all term-abstractions, by confluency.
In particular, the head-reduction sequence from π reach a not-neutral proof-
term. Let τ be the first non-neutral proof-term reached in this reductions
sequence. If π is not neutral, then π = τ , therefore all non-neutral reducts
of π are obviously reducts of π = τ . Otherwise, π is neutral and has the
form ρ θ1 . . . θn, with each θi a term or a proof-term, n > 0 (as π is neutral),
and ρ is not neutral (as π is not isolated). We suppose, in the following
that ρ is a proof-abstraction λα.ρ′, then θ1 is a proof-term (the proof is the
same in the case of a term-abstraction). Let us prove by induction on the
maximal length of a reductions sequence from π (∈ SN), that each non-
neutral reduct of π is a reduct of τ . If this maximal length is equal to zero,
then π cannot be neutral. Otherwise, let π′, π′′ ∈ T such that π′′ is not
neutral and π = (λα.ρ′) θ1 . . . θn → π′ →∗ π′′.

- If π′ = (θ1/α)ρ′ θ2 . . . θn, then π′ is the head-one-step-reduct of π,
therefore π′′ is a reduct of τ , by induction hypothesis.

- If π′ = (λα.ρ′′) θ1 . . . θn, with ρ′ → ρ′′, let τ ′ be the first non-neutral
term reached in the head-reduction of (θ1/α)ρ′′ θ2 . . . θn (then τ ′ is
also the first not neutral term reached in the head-reduction of π′). By
induction hypothesis, τ ′ is a reduct of τ . Moreover, π′′ is a reduct of
τ ′ by induction hypothesis (as τ ′ is the first non-neutral head-reduct
of (θ1/α)ρ′ θ2 . . . θn). Finally, π′′ is a reduct of τ .

- If π′ = (λα.ρ′) θ1 . . . θi−1 θ
′
i θi+1 . . . θn, we use the same sort of argu-

ment than in the previous point.

Definition 3.25 (π q α). For all α ∈ X and π ∈ T ,
we write π q α the number of occurrences of α in π.

Definition 3.26 (K).
K = { 〈ν, n, (µ1, . . . , µn)〉 such that

. n ∈ N, ν ∈ T , µ1 . . . µn ∈ SN

. for all i ≤ n, ν q αi ≤ 1

. for all (ρi)i≤n each respectively in L(µi), [ρi/αi]i≤nν ∈ SN }

Definition 3.27 (⇁).
Let η = 〈ν, n, (µ1, . . . , µn)〉 and η′ = 〈ν ′, n′, (µ′1, . . . , µ

′
n)〉 in K.

We say that η ⇁ η′ if and only if one of the following conditions occurs:

(a) ν = ν ′ and there exists i0 ≤ n such that for all i 6= i0, µi = µ′i, µi0 is
neutral and µi0 → µ′i0

75

3. Sound and complete semantics for deduction modulo

(b) there exists i0 ≤ n such that µi0 is not neutral, ν ′ = (µi0/αi0)ν, n
′ =

n− 1 and µ′1 . . . µ
′
n′ = µ1 . . . µi0−1 µi0+1 . . . µn

(c) ν → ν ′ and the µ′i are copies of the µi resulting of the linearization of
the occurrences of the variables αi in ν ′.

Definition 3.28 (ℓ(π)).
For all π ∈ SN , we define ℓ(π) as follows: if π is isolated, ℓ(π) = α0 (a
special variable), otherwise, ℓ(π) is the primary leaf of π.

Definition 3.29 (||η||).
For all η = 〈ν, n, (µ1, . . . , µn)〉 ∈ K, ||η|| = (ℓ(µi)/αi)i≤nν.

Remark 3.11. For all η ∈ K, ||η|| ∈ SN , by definition.

Lemma 3.19. For all η, η′ ∈ K, if η ⇁ η′ then ||η|| →∗ ||η′||.

Proof. by case analysis on η ⇁ η′.

(a) If the µi0 which is reduced (on µ′i0) is isolated then ℓ(µi0) = ℓ(µ′i0) = α0,
therefore ||η|| = ||η′||. Otherwise ℓ(µi0) →∗ ℓ(µ′i0), by lemma 3.18,
therefore ||η|| →∗ ||η′||.

(b) In this case, ||η|| = ||η′||.

(c) In this case, ||η|| → ||η′|| (as ν → ν ′).

Lemma 3.20. All ⇁-reductions sequences from an element η of K are finite.

Proof. As all the µi are in SN (and n is finite), there can only be a finite
number of consecutive (a) and (b) reductions. As ||η|| ∈ SN , there can only
be a finite number of (c) reductions from η, by lemma 3.19. Hence there
cannot be an infinite ⇁-reductions sequence from η.

Then we can use the previous lemmas in order to prove that Cl(.) maps
elements of C

≡
to elements of C′.

Proposition 3.5.
For all E ∈ C

≡
, Cl(E) ∈ C′.

Proof. Let E ∈ C
≡
.

(CR2) Let π ∈ Cl(E) and π′ ∈ T such that π → π′. Then there exists
(a minimal) k ∈ N such that π ∈ Clk(E). By induction on k.

- If k = 0, then there exists ∆′ ⊆ ∆, finite, such that (∆′, π) ∈ E,
therefore (∆′, π′) ∈ E since it satisfies (CR2≡).

76

3.3 Theory-independent sound and complete semantics

- If k > 0, then π = [µi/αi]i≤nν with each µi in SN , neutral and
non-normal, and such that ∀i ≤ n, and for all (ρi)i≤n such that
for all i ≤ n, ρi ∈ L(µi), we have [ρi/αi]i≤nν ∈ Clk−1(E). We
suppose that for all i ≤ n, ν q αi ≤ 1. As each µi is neutral:

. Either π′ = [µ′i0/αi0][µi/αi]i6=i0ν, with µi0 → µ′i0 . In this
case,

. if µ′i0 ∈ L(µi0) then π′ = [µi/αi]i6=i0ν
′′, with ν ′′ = (µ′i0/αi0)ν,

, and for all (ρi)i≤n such that ∀i 6= i0, ρi ∈ L(µi), we have
[ρi/αi]i≤nν

′′ ∈ Clk−1(E), hence π′ ∈ Clk(E).

. Otherwise, µ′i0 is neutral, non-normal and all its leaves
are leaves of µi0 , hence π′ ∈ Clk(E).

. Either π′ = [µi/αi]i≤nν with ν → ν ′. In this case, we con-
clude by the fact that Clk−1(E) satisfies (CR2) by induction
hypothesis.

(CR1) Let π ∈ Cl(E), then there exists (a minimal) k ∈ N such that
π ∈ Clk(E). By induction on k.

- If k = 0, then there exists ∆′ ⊆ ∆, finite, such that (∆′, π) ∈ E,
therefore π ∈ SN since E satisfies (CR1≡).

- If k > 0, then π = [µi/αi]i≤nν with each µi in SN , neutral and
non-normal, and such that ∀i ≤ n, and ∀(ρi)i≤n such that for all
i ≤ n, ρi ∈ L(µi), we have [ρi/αi]i≤nν ∈ Clk−1(E) ⊆ SN , by in-
duction hypothesis. Then, if we suppose that for all i ≤ n, ν||αi ≤
1, if
π → π′, and if we write ηπ = 〈ν, n, (µ1, . . . , µn)〉 (and the same for
ηπ′ , since π′ ∈ Clk(E) as explained in the previous point), then
ηπ ⇁ ηπ′ . Hence all reductions sequences from π are finite, by
lemma 3.20.

(CR3’) Let n ∈ N, ν, µ1, . . . , µn ∈ T , such that for all i ≤ n, µi is
neutral and non-normal, and for all µ′1, . . . , µ

′
n ∈ T such that ∀i ≤ n,

µi → µ′i, [µ′i/αi]i≤nν ∈ Cl(E). Since the number of one-step reducts of
a term is finite, there exists k ∈ N, such that for all µ′1, . . . , µ

′
n ∈ T such

that ∀i ≤ n, µi → µ′i, we have [µ′i/αi]i≤nν ∈ Clk(E). Therefore, for all
ρ1 . . . ρn each respectively a leaf of µ1 . . . µn,
[ρi/αi]i≤nν ∈ Clk(E) since it satisfies (CR2) and each µi is neutral
non-normal. Finally, [µi/αi]i≤nν ∈ Clk+1(E).

77

3. Sound and complete semantics for deduction modulo

3.3.5 Proving that this function is a morphism

Now that we have defined our function Cl(.) and have proved that it maps
elements of C

≡
to elements of C′, we still need to prove that it is a morphism

of ldtvas , in order to induce a mapping from C
≡
-models to C′-models.

We shall prove that Cl(.) is a morphism from each ldtva C
≡

which corre-
sponds to a strongly normalizing theory 〈T,F,P〉≡, to C′. More generally,
we shall prove that Cl(.) is a morphism from each ldtva C

≡
satisfying the

substitution property, to C′.

⇒-morphism

Let us first focus on the ⇒-property of morphisms. As we shall see, Cl(.)
is not a morphism on the entire ldtva C

≡
, but on each subldtva of C

≡

which satisfies the substitution property. As explained below, satisfying the
substitution property for a subldtva of C

≡
means that each set of this

subldtva is stable by well-typed substitution.

Definition 3.30. For all E ∈ C
≡
,

we say that E satisfies the substitution property if and only if
for all F ∈ C

≡
, proof-variables α, π, π′ ∈ T and contexts Γ,Γ′,

if (Γ, α) ∈ E, (Γ′, π′) ∈ E and (Γ, π) ∈ F then (ΓΓ′, (π′/α)π) ∈ F .

We say that a subldtva of C
≡

satisfies the substitution property if and only
if each of its elements satisfies the substitution property.

We point out, in the following lemma, the main property of subldtvas which
satisfy the substitution property. If E,F ∈ C

≡
such that F satisfies the

substitution property, then it is sufficient to prove that a proof-term maps
proof-variables in E to F , to prove that it is in E⇒̊F . This property will
be very useful to prove that Cl(.) is a ⇒-morphism from C

≡
to C′.

Lemma 3.21. For all E,F ∈ C
≡

such that F satisfies the substitution prop-
erty, for all (Γ, π) ∈ U , if for all (Γ′, α) ∈ E, (ΓΓ′, πα) ∈ F , then (Γ, π) ∈ E⇒̊F .

Proof. In this case, for all (Γ′, π′) ∈ E, (ΓΓ′, ππ′) = (ΓΓ′, (π′/α)πα) ∈ F
since F satisfies the substitution property, if α is not free in π (we can
rename α in π if it is not the case).

Let us now prove some lemmas, which will be useful for the proof that
Cl(.) is a ⇒-morphism.

Lemma 3.22. For all E ⊆ T and π ∈ T ,
If π ∈ SN , π is neutral non-normal and ∀ρ ∈ L(π), ρ ∈ Cl(E), then π ∈ Cl(E)

78

3.3 Theory-independent sound and complete semantics

Proof. As π ∈ SN , L(π) is defined and finite.
And, if we call km = max{min{k, ρ ∈ Clk(E)}, ρ ∈ L(π)},
then π ∈ Clkm+1(E) ⊆ Cl(E).

Remark 3.12. In the same way, if there exists νπ ∈ T , and (µi)i≤n ⊆ SN ,
each neutral non-normal such that π = [µi/αi]i≤n νπ and ∀(ρi)i≤n ⊆ T , such
that for all i ≤ n, ρi ∈ L(µi), then [ρi/αi]i≤n νπ ∈ Cl(E), then we have
π ∈ Cl(E).

Lemma 3.23. For all E,F ∈ C
≡
,

if F satisfies the substitution property, (∆, α) ∈ E, and (α/β)π ∈ Cl(F)
then λβ.π ∈ Cl(E⇒̊F).

Proof. There exists a minimal k such that (α/β)π ∈ Clk(F).
By induction on k.

• if k = 0 then (∆, π) ∈ F and π is normal. Since (∆, α) ∈ E, we
have (∆, (λβ.π)α) ∈ F , by (CR3≡). Therefore (∆, λβ.π) ∈ E⇒̊F , by
substitution property. And λβ.π ∈ Cl0(E⇒̊F), since it is normal.

• if k > 0, then (α/β)π = [µi/αi]i≤nν with each µi in SN, neutral
and non-normal, and such that ∀i ≤ n, and ∀(ρi)i≤n such that for
all i ≤ n, ρi ∈ L(µi), we have [ρi/αi]i≤nν ∈ Clk−1(F), therefore
λβ.[ρi/αi]i≤nν = [ρi/αi]i≤nλα.ν ∈ Cl(E⇒̊F), by induction hypothe-
sis. Therefore λβ.π ∈ Cl(E⇒̊F) by remark 3.12.

Lemma 3.24. For all E,F ∈ C
≡

and π ∈ Cl(E)⇒̃Cl(F),
π cannot reduce to a term-abstraction.

Proof. Let π ∈ Cl(E)⇒̃Cl(F), then π ∈ SN . If π reduces to a term-
abstraction, then its normal form is a term-abstraction λx.ρ, by confluency.
Let α ∈ X such that (∆, α) ∈ E, then α ∈ Cl(E) and πα ∈ Cl(F), therefore
(λx.ρ)α ∈ Cl(F), since F satisfies (CR2). Moreover, (λx.ρ)α is normal,
therefore (λx.ρ)α ∈ Cl0(F). Hence (∆, (λx.ρ)α) ∈ F and ∆ ⊢ (λx.ρ)α : AF .
That’s absurd.

We prove now that for all E,F ∈ C
≡

such that F satisfies the substitution
property, we have Cl(E⇒̊F) = Cl(E)⇒̃Cl(F).

Proposition 3.6. For all E,F ∈ C
≡
,

if F satisfies the substitution property, then Cl(E⇒̊F) = Cl(E)⇒̃Cl(F).

79

3. Sound and complete semantics for deduction modulo

Proof. ⊆ Let π ∈ Cl(E⇒̊F),
then π ∈ SN by (CR1). Moreover there exists (a minimal) k ∈ N, such
that π ∈ Clk(E⇒̃F). Let π′ ∈ Cl(E), then there exists (a minimal)
j ∈ N, such that π′ ∈ Clj(E). Let us show that ππ′ ∈ Cl(F) by
induction on k + j.

- If k + j = 0 then (∆, π) ∈ E⇒̊F and (∆, π′) ∈ E therefore
(∆, ππ′) ∈ F and ππ′ ∈ Cl0(F).

- If k > 0, then there exists νπ ∈ T , and (µi)i≤n ⊆ SN , each neutral
non-normal such that π = [µi/αi]i≤n νπ and ∀(ρi)i≤n ⊆ T , such
that for all i ≤ n, ρi ∈ L(µi), then [ρi/αi]i≤n νπ ∈ Clk−1(E⇒̊F).
Therefore [ρi/αi]i≤n (νπ π

′) = [ρi/αi]i≤n νπ π
′ ∈ Cl(F) by induc-

tion hypothesis. Hence ππ′ ∈ Cl(F), since it satisfies (CR3’).

- If j > 0, then there exists νπ′ ∈ T , and (µi)i≤n ⊆ SN , each neu-
tral non-normal such that π′ = [µi/αi]i≤n νπ′ and ∀(ρi)i≤n ⊆ T ,
such that for all i ≤ n, ρi ∈ L(µi), then [ρi/αi]i≤n νπ′ ∈ Clj−1(E).
Therefore [ρi/αi]i≤n (π νπ′) = [ρi/αi]i≤n π νπ′ ∈ Cl(F) by induc-
tion hypothesis. Hence ππ′ ∈ Cl(F), since it satisfies (CR3’).

⊇ Let π ∈ Cl(E)⇒̃Cl(F). Then π ∈ SN and for all π′ ∈ Cl(E),
ππ′ ∈ Cl(F). By lemma 3.24, π cannot reduce to a term-abstraction.

- If π is a proof-abstraction λα.π′, let β ∈ X such that ∆ ⊢ β : AE ,
then (λα.π′)β ∈ Cl(F) and so does (β/α)π′, by (CR2). Therefore
π ∈ Cl(E⇒̊F) by lemma 3.23.

- If π is neutral and normal, let α ∈ X such that ∆ ⊢ α : AE , then
πα ∈ Cl(F). Moreover π is neutral and normal, therefore πα is
normal, hence πα ∈ Cl0(F), i.e. (∆, πα) ∈ F , with (∆, α) ∈
E, therefore (∆, π) ∈ E⇒̊F , since F satisfies the substitution
property.
Finally, π ∈ Cl0(E⇒̊F), since it is normal.

- Otherwise, π ∈ SN , is neutral and non-normal. All its leaves are
either neutral, either proof-abstractions, by lemma 3.24. And all
these leaves are in Cl(E)⇒̃Cl(F), since it satisfies (CR2), there-
fore they also are in Cl(E⇒̊F), as we saw in the previous points.
Finally, π ∈ Cl(E⇒̊F), by lemma 3.22.

Let us now explain why we could not build a morphism from C
≡

to
the usual C, and why the new property (CR3’) is adequate since it allows
to add non-neutral proof-terms to a set. If we take π in Cl(F) such that
(∆, π) /∈ F and α not free in π, then λα.π is in Cl(E)⇒̃Cl(F) because for

80

3.3 Theory-independent sound and complete semantics

all π′ ∈ Cl(E), (λα.π)π′ is neutral non-normal and all its reducts are in
Cl(F) (by induction on the maximal length of a reductions sequence from
π′: if π′ is normal, then the only reduct of (λα.π)π′ is π which is in Cl(F)
by hypothesis). But λα.π /∈ Cl0(E⇒̊F), since (∆, π) /∈ F and λα.π could
not had been added to Cl(E⇒̊F) by the usual (CR3) since it is not neutral.

∀-morphism

We prove now that for all sorts T and f ∈ ÅT , Cl(̊∀T f) = ∀̃T Cl ◦ f . Notice
that for all functions f ∈ ÅT , Cl ◦ f ∈ ÃT .

Lemma 3.25. For all E ∈ C
≡
, k ∈ N, terms t, term-variables x, proof-terms

π′, if (t/x)π ∈ Clk(E), then (λx.π)t ∈ Clk(E).

Proof. By induction on k.
• If k = 0, by (CR3≡) since (λx.π)t is neutral, non-normal, well-typed

and we can prove by induciton on the maximal length of a reductions
sequence from π (∈ SN) that all its β-reducts are in Cl0(E) .

• If k > 0, by induction hypothesis.

Lemma 3.26. For all π ∈ T and f ∈ ÅT , if π ∈ ∀̃T Cl ◦ f then there exists
k ∈ N such that π ∈ ∀̃T Clk ◦ f .

Proof. For all E ∈ C
≡
, if π ∈ Cl(E) then π ∈ SN and if k is the maximal

length of a reductions sequence from π then π ∈ Clk(E). Then, since the
maximal length of reductions sequence from πt is the same for all t ∈ T̂ ,
if we note l this maximal length, we have, for all t ∈ T̂ , πt ∈ Cll ◦ f(t),
therefore π ∈ ∀̃TCl

l ◦ f .

Proposition 3.7. For all sorts T and f ∈ ÅT , Cl(̊∀T f) = ∀̃T Cl ◦ f .
Proof. ⊆ Let π ∈ Cl(̊∀T f), then there exists (a minimal) k ∈ N such that

π ∈ Clk (̊∀T f). By induction on k.

- If k = 0, (∆, π) ∈ ∀̊T f and π ∈ SN , then for all t ∈ T̂ ,
(∆, πt) ∈ f(t), hence πt ∈ Cl0 ◦ f(t). And π ∈ ∀̃T Cl ◦ f .

- If k > 0, then π = [µi/αi]i≤nν, with each µi neutral non-normal
and such that for all (ρi)i≤n each respectively a leaf of µi, we have
[ρi/αi]i≤nν ∈ Clk−1(̊∀T f) ⊆ ∀̃T Cl ◦ f , by induction hypothesis.
Let t ∈ T̂ , then if we write ν ′ = νt, we have πt = [µi/αi]i≤nν

′ and
for all (ρi)i≤n each respectively a leaf of µi,
[ρi/αi]i≤nν

′ = [ρi/αi]i≤nν t ∈ Cl ◦ f(t). Therefore πt ∈ Cl ◦ f(t)
by remark 3.12. Finally, π ∈ ∀̃T Cl ◦ f .

81

3. Sound and complete semantics for deduction modulo

⊇ Let π ∈ ∀̃T Cl ◦ f , then, by lemma 3.26, there exists k ∈ N such that
π ∈ ∀̃TCl

k ◦ f . By induction on k.

- If k = 0, then there exists t ∈ T̂ such that πt ∈ Cl0 ◦ f(t).
Hence (∆, πt) ∈ f(t) and πt is normal. Hence π is normal and
for all t′ ∈ T̂ , πt′ is also normal, therefore, since πt′ ∈ Cl ◦ f(t),
we have, in particular, πt′ ∈ Cl0 ◦ f(t). Finally, for all t′ ∈ T̂ ,
(∆, πt′) ∈ f(t), therefore (∆, π) ∈ ∀̊T f , and π ∈ Cl0(̊∀T f), since
it is normal.

- If k > 0, let t ∈ T̂ such that πt ∈ Clk ◦ f(t). Therefore
πt = [µi/αi]i≤nν, with each µi neutral non-normal and such that
for all (ρi)i≤n each respectively a leaf of µi, we have
[ρi/αi]i≤nν ∈ Clk−1 ◦ f(t).

∗ If ν 6= α1, then ν = ν ′t, with π = [µi/αi]i≤nν
′, and for all

(ρi)i≤n each respectively a leaf of µi, we have
[ρi/αi]i≤nν

′ ∈ Cl(̊∀T f), by induction hypothesis. We con-
clude by lemma 3.22.

∗ Otherwise, every leaf of πt is in Clk−1 ◦ f(t). If π is iso-
lated, then all its leaves ρ are neutral and normal, hence ρt
is a leaf of πt, therefore ρ ∈ Cl(̊∀T f), by induction hypoth-
esis, and we conclude by lemma 3.22. If π reduces to λx.π′

then all leaves of (t/x)π′ are in Clk−1 ◦ f(t), therefore, for all
leaves ρ of π′, we have (λx.ρ)t ∈ Clk−1 ◦f(t), by lemma 3.25,
hence λx.ρ ∈ Cl(̊∀T f), by induction hypothesis. And finally,
λx.π′ ∈ Cl(̊∀T f), and so does π.

Finally, we proved that Cl(.) maps non-empty sets in C
≡

to non-empty
sets in C′, and that it is a morphism from each subldtva of C

≡
satisfying

the substitution property to C′. Hence Cl(.) induce a mapping from non-
empty C

≡
-valued models satisfying the substitution property (i.e. such that

each interpretation of a proposition satisfies the substitution property) to
non-empty C′-models. Therefore the last thing to prove, in order to prove
that having a non-empty C′-model is a complete semantics for strong nor-
malization in minimal deduction modulo, is that for all propositions A and
ϕ ∈ Val(A), ⌊A⌋ϕ satisfies the substitution property, if 〈T,F,P〉≡ is strongly
normalizing.

3.3.6 Completeness of non-empty C ′-models

Let us prove that for all propositions B and ϕ ∈ Val(B), ⌊B⌋ϕ satisfies
the subtitution property when 〈T,F,P〉≡ is strongly normalizing. Let us
first notice that it is a corollary of lemma 2.3 in the case of the version of

82

3.3 Theory-independent sound and complete semantics

⌊.⌋. of the “short way” and that we do not need the hypothesis of strong
normalization in this case. We prove, in the following lemma, that when the
theory is strongly normalizing then the version of ⌊.⌋. of the “long way” also
satisfies the substitution property.

Lemma 3.27. If 〈T,F,P〉≡ is strongly normalising,
then for all E ∈ C

≡
, proof-variables α, π, π′ ∈ T , B ∈ P, ϕ ∈ Val(B),

and Γ,Γ′ contexts such that (Γ, α) ∈ E, (Γ′, π′) ∈ E and (Γ, π) ∈ [B]ϕ
(resp. ⌊B⌋ϕ) then (ΓΓ′, (π′/α)π) ∈ [B]ϕ (resp. ⌊B⌋ϕ).

Proof. Notice that if the [.]. version of this lemma is true, then also is the
⌊.⌋. version. Let us prove the [.]. version by induction on A.

• If A is atomic, we have Γ ⊢ π : ϕB, Γ ⊢ α : AE and
Γ′ ⊢ π′ : AE , therefore, ΓΓ′ ⊢ (π′/α)π : ϕB. Moreover 〈T,F,P〉≡
is strongly normalizing, so (π′/α)π ∈ SN and (ΓΓ′, (π′/α)π) ∈ [B]ϕ.

• If B = C ⇒ D, then (Γ, π) ∈ [C]ϕ⇒̊[D]ϕ. Let (Γ′′, τ) ∈ [C]ϕ such
that τ doesn’t contain α (by α-conversion). Then (ΓΓ′′, πτ) ∈ [D]ϕ
therefore (ΓΓ′Γ′′, (π′/α)(πτ)) = (ΓΓ′Γ′′, (π′/α)π τ) ∈ [D]ϕ, by induc-
tion hypothesis. Finally, (ΓΓ′, (π′/α)π) ∈ [C]ϕ⇒̊[D]ϕ = [B]ϕ.

• If B = ∀x.C, then (Γ, π) ∈ ∀̊T (t 7→ ⌊C⌋ϕ+<x,t>). Let t ∈ T̂ , then
(Γ, πt) ∈ [C]ϕ+<x,t>. Hence (ΓΓ′, (π′/α)(πt)) = (ΓΓ′, (π′/α)πt) ∈ [C]ϕ+<x,t>,
by induction hypothesis. Finally (ΓΓ′, (π′/α)π) ∈ [B]ϕ.

We finally get the following (second) completeness result:

Proposition 3.8. If 〈T,F,P〉≡ is strongly normalizing,
then Cl ◦ ⌊.⌋. is a (non-empty) C′-valued model of 〈T,F,P〉≡.

Proof. By lemma 3.1, 3.27 and propositions 3.2 (or 3.3), 3.5, 3.6, 3.7.

Theorem 3.1. A theory 〈T,F,P〉≡ expressed in minimal deduction modulo
is strongly normalizing iff it has a non-empty C′-valued model.

Proof. By propositions 3.4 and 3.8.

83

3. Sound and complete semantics for deduction modulo

3.4 Conclusion

In this chapter, we have given a sound and complete semantics, based on
a refinement of Girard’s reducibility candidates, for strong normalization of
theories expressed in the logical framework of minimal deduction modulo.
The soundness part is usual since many proofs of strong normalization of
various logical frameworks use the definition of reducibility candidates we
used or alternative versions. But the completeness part is innovative and
there is, up to our knowledge, no other work on complete semantics for
strong normalization based on the notion of reducibility candidates.

For this purpose, we have first defined a refinement of Dowek’s truth
values algebras called language-dependent truth values algebras. Those
ldtvas are not anymore completely independent of the studied theory, since
they depend on the language (more precisely the set of sorts and function
symbols of this language) on which we built minimal natural deduction. A
following of this work could be to analyse how we can change this definition
of ldtva in order to obtain a totally theory-independent notion of algebra
which also allows to build a sound and complete semantics for strong nor-
malization. This does not seem obvious since we explicitely use the fact that
we know the set of closed terms of each sort of the language in our definition
of ldtvas .

We have exhibited two of these language-dependent truth values algebras
such that having a model valued in one of those two ldtvas provides a sound
and complete semantics for strong normalization. The first one called C

≡
also

depends on the congruence relation ≡ of the theory we study. It allows us
to build this ldtva of ≡-well-typed reducibility candidates. And although
the proof of soundness of C

≡
-valued models does not differ from usual proofs

of strong normalization using reducibility candidates, the proof of complete-
ness of C

≡
-valued models use explicitely the fact that the interpretation of a

proposition only contains proofs of this proposition (and we think we could
not have obtained this property without being able to characterize ≡-typing
into the algebra).

The second ldtva we have built is called C′ and is theory-independent
since it is independent of a specific congruence relation. It is also a refinement
of reducibility candidates: it modifies the well-known property (CR3) such
that each proof-term we add to the interpretation of a proposition via this
modified (CR3’) property, is not necessarily a proof of this proposition but
it will always reduce to a proof of this proposition: each reductions sequence
from such a proof-term reaches a proof of this proposition. It is quite easy
to obtain this property by supposing that the neutral proof-terms usually
considered in (CR3) have, this time, to be non-normal. The second difference
of this modified (CR3’) property is that we allow those neutral non-normal
proof-terms not only at the top of the considered proof-term, but also at

84

3.4 Conclusion

different places in this proof-term. This allows us to build a morphism of
ldtvas from each C

≡
of a strongly normalizing theory to C′ and therefore

prove the completeness of C′-valued models (the proof of soundness also
follows the original proof of Girard).

This technique of building models by using morphisms of ldtvas is, up
to our knowledge, also innovative. And we think that it might provide other
theorems about normalization in deduction modulo and other logical frame-
works. In particular, we hope to be able to prove that weak normalization
implies strong normalization in minimal deduction modulo, by building a
morphism from a ldtva complete for weak normalization to a ldtva sound
for strong normalization (C

≡
or C′ for example). Unfortunately, we didn’t

succeed in managing the technical difficulties involved before the writing of
this manuscript.

In the next chapter, we shall adapt this work on minimal deduction
modulo in order to provide a sound and complete semantics for λΠ-calculus
modulo, a logical framework based on the λΠ-calculus (the simply-typed λ-
calculus with dependent types) with a congruence relation on propositions.

85

4
Sound and complete semantics for

strong normalization in

λΠ-calculus modulo

Context

The λΠ-calculus (also known as λP -calculus), is an extension of the simply-
typed λ-calculus with dependent types. Different variants have been intro-
duced in [39] (Intuitionistic Type Theory), [51] (Automath) and [31] (Logical
Framework). The precise definition we shall study is that of [4]. The λΠ-
calculus can be used as a system for interpreting proofs of minimal natural
deduction, but it can also express proofs of stronger theories, by applying the
idea of deduction modulo, defining the λΠ-calculus modulo [14]. There exists
a proof of strong normalization of the λΠ-calculus by defining a translation
from terms of λΠ to terms of the simply typed λ-calculus ([31]), but this
method for proving strong normalization cannot apparently be extended for
theories expressed in λΠ-calculus modulo. There also exists proofs of strong
normalization of the λΠ-calculus using the method of reducibility candidates
([25]). We can therefore wonder if we can adapt our notion of sound and
complete reducibility candidates for theories expressed in the λΠ-calculus
modulo.

Contributions

We exhibit a notion of pre-models for λΠ-calculus modulo, which provide a
sound and complete semantics for strong normalization of theories expressed
in the λΠ-calculus modulo. For that purpose, we adapt the method used
for minimal deduction modulo and use the notion of sound and complete
reducibility candidates we have defined in section 3.3. The first difference
with the work done in chapter 3 comes from the presence of dependent types.

87

4. Sound and complete semantics for λΠ-modulo

We refine the usual method for building interpretations of dependent types by
using valuations, in order to use the method for proving completeness of those
reducibility candidates shown in sections 3.2.4 and 3.3.4. The second main
difference is that in λΠ-calculus modulo, β-reduction and rewrite rules can be
applied on a same kind of term (whereas in deduction modulo, β-reduction
is only applied on proof-terms, and rewrite rules only on propositions). For
example, we shall see that the theory defined by a single rewrite rule P → P ,
with P an atomic proposition, is strongly normalizing in deduction modulo
but not in λΠ-calculus modulo.
This work can be seen as a first step in finding the notion of algebra, on which
we should build models for theories expressed in the λΠ-calculus modulo, as
it has been done for deduction modulo.

Outline

We first introduce the λΠ-calculus and define its syntax and typing rules.
We then introduce the λΠ-calculus modulo which is the application of the
ideas of deduction modulo to the λΠ-calculus, and prove some properties of
theories expressed in the λΠ-calculus modulo, like subject-reduction, unique-
ness of types (modulo the congruence relation) and weakening. We finally
define the notion of pre-model for theories expressed in the λΠ-calculus mod-
ulo and prove that it provides a sound and complete semantics for strong
normalization of those theories.

4.1 The λΠ-calculus

The λΠ-calculus is a dependently typed lambda-calculus that permits to
construct types depending on terms, for instance a type array n, of arrays
of size n, that depends on a term n of type nat. It also permits to construct a
function f taking a natural number n as an argument and returning an array
of size n. Thus, the arrow type nat⇒ array of simply typed lambda-calculus
must be extended to a dependent product type Πx : nat. (array x) where,
in the expression Πx : A. B, the occurrences of the variable x are bound
in B by the symbol Π (the expression A ⇒ B is used as a shorter notation
for the expression Πx : A. B when x has no free occurrence in B). When
we apply the function f to a term n, we do not get a term of type array x
but of type array n. Thus, the application rule must include a substitution
of the term n for the variable x. The symbol array itself takes a natural
number as an argument and returns a type. Thus, its type is nat ⇒ Type,
i.e. Πx : nat. Type. The terms Type, nat ⇒ Type, ... cannot have type
Type, because Girard’s paradox [27] could then be expressed in the system,
thus we introduce a new symbol Kind to type such terms. To form terms,
like Πx : nat. Type, whose type is Kind, we need a rule expressing that

88

4.1 The λΠ-calculus

the symbol Type has type Kind and a new product rule allowing to form
the type Πx : nat. Type, whose type is Kind. Besides the variables such
as x whose type has type Type, we must permit the declaration of variables
such as nat of type Type, and more generally, variables such as array whose
type has type Kind. This leads to introduce the following syntax and typing
rules.

4.1.1 Syntax of the λΠ-calculus

Notice that, unlike in deduction modulo, we use a single syntax to represent
proof-terms and propositions (terms and types) in λΠ-calculus, as a type
(proposition) can depend on a term (proof-term) as explained above.

Definition 4.1 (The syntax of λΠ). The syntax of the λΠ-calculus is

t = x | Type | Kind | Πx : t. t | λx : t. t | t t

Notice that in the constructions Πx : t1. t2 and λx : t1. t2, the variable x
is bound in the term t2.

Then we redefine free variables and substitution for λΠ-calculus.

Definition 4.2 (Free variables).
We call free variables of a term t those occurrences of variables which appear
in t and are not bound in t. We define the set FV (t) of free variables of a
term t by induction on the structure of t:

• FV (x) = {x}

• FV (Type) = FV (Kind) = ∅

• FV (Πx : t1. t2) = FV (t1) ∪ (FV (t2) − {x})

• FV (λx : t1. t2) = FV (t1) ∪ (FV (t2) − {x})

• FV (t1 t2) = FV (t1) ∪ FV (t2)

We say that a term is closed if it does not contain free variables.

Definition 4.3 (Substitution).
We define the substitution (t/x)t′ of a variable x by a term t (such that x is
not free in t) in a term t′ by induction of the structure of t′ as:

• (t/x)y = t if x = y and y otherwise

• (t/x)Type = Type

• (t/x)Kind = Kind

89

4. Sound and complete semantics for λΠ-modulo

• (t/x)(Πy : t1.t2) = Πy : (t/x)t1. (t/x)t2
Notice that we suppose here that x 6= y and y /∈ FV (t1) ∪ FV (t2)
(we have to rename y otherwise).

• (t/x)(λy : t1.t2) = λy : (t/x)t1. (t/x)t2
Notice that we suppose here that x 6= y and y /∈ FV (t1) ∪ FV (t2)
(we have to rename y otherwise).

• (t/x)(t1 t2) = (t/x)t1 (t/x)t2

Remark 4.1. As usual, if a variable x is not free in a term t′ then for all
terms t, we have (t/x)t′ = t′.

Definition 4.4 (β-reduction).
A β-redex is a proof-term of the form (λx.t) t′.
The β-reduction is the relation defined by the following rule:

(λx.π)t→ (t/x)π

and the contextual closure:

if t1 → t′1 then Πx : t1.t2 → Πx : t′1.t2,
if t2 → t′2 then Πx : t1.t2 → Πx : t1.t

′
2,

if t1 → t′1 then λx : t1.t2 → λx : t′1.t2,
if t2 → t′2 then λx : t1.t2 → λx : t1.t

′
2,

We write t→+ t′ if t β-reduces to t′ in one or more reduction steps.
We write t →∗ t′ if t β-reduces to t′ in an arbitrary number of reduction
steps.
We write ≡β for the congruence relation induced by the β-reduction.

4.1.2 Typing rules of the λΠ-calculus

A particularity of the λΠ-calculus is that the formation of contexts is also
defined by inference rules. Since we have a single syntax for terms and types,
we have to specify which of these terms can considered as types. As we shall
see in the following, terms which can be considered as types are Kind and
all terms typed by Type or Kind (see rules Declaration, Declaration2 and
Sort).

Another particularity about contexts in λΠ-calculus is that, unlike in
natural deduction, the order of the declarations does matter: for example, a
type in a context can depend on a variable which has been previously declared
in this context. Hence concatenation of contexts can be more complicated to
define than in natural deduction (we shall avoid using those concatenations
in the present work).

90

4.1 The λΠ-calculus

In the following, we detail the typing rules of a part of the λΠ-calculus
called the λΠ−-calculus (notice that we write here [] for the empty context).

Definition 4.5 (The typing rules of λΠ−).

Empty
[] well-formed

Γ ⊢ A : Type
Declaration x not in Γ

Γ[x : A] well-formed

Γ ⊢ A : Kind
Declaration2 x not in Γ

Γ[x : A] well-formed

Γ well-formed
Sort

Γ ⊢ Type : Kind

Γ well-formed x : A ∈ Γ
Variable

Γ ⊢ x : A

Γ ⊢ A : Type Γ[x : A] ⊢ B : Type
Product

Γ ⊢ Πx : A B : Type

Γ ⊢ A : Type Γ[x : A] ⊢ B : Kind
Product2

Γ ⊢ Πx : A B : Kind

Γ ⊢ A : Type Γ[x : A] ⊢ B : Type Γ[x : A] ⊢ t : B
Abstraction

Γ ⊢ λx : A t : Πx : A B

Γ ⊢ t : Πx : A B Γ ⊢ u : A
Application

Γ ⊢ (t u) : (u/x)B

It is useful, in some situations, to add a rule allowing to build type families
by abstraction, for instance λx : nat (array (2×x)) and rules asserting that
a term of type (λx : nat (array (2×x)) n) also has type array (2×n). This
leads to introduce the following extra typing rules.

Definition 4.6 (The typing rules of λΠ).
The typing rules of λΠ are those of λΠ− plus the following ones:

Γ ⊢ A : Type Γ[x : A] ⊢ B : Kind Γ[x : A] ⊢ t : B
Abstraction2

Γ ⊢ λx : A t : Πx : A B

91

4. Sound and complete semantics for λΠ-modulo

Γ ⊢ A : Type Γ ⊢ B : Type Γ ⊢ t : A
Conversion A ≡β B

Γ ⊢ t : B

Γ ⊢ A : Kind Γ ⊢ B : Kind Γ ⊢ t : A
Conversion2 A ≡β B

Γ ⊢ t : B

where ≡β is the β-equivalence relation.

As we have said previously, the order in which variables are declared does
matter in λΠ-calculus modulo, unlike in deduction modulo. Hence we have to
redefine sub-contexts in this logical framework, as initial sublists of a context.
Notice that we shall only consider well-formed contexts in the following of
this chapter.

Definition 4.7 (⊆).
For all (well-formed) contexts Γ,Γ′, Γ is said to be a sub-context of Γ′ if and
only if there exists n ∈ N, variables x1, . . . , xn and terms A1, . . . , An such
that Γ′ = Γ[x1 : A1] . . . [xn : An]. We write Γ ⊆ Γ′.

It can be proved that types are preserved by β-reduction, that β-reduction
is confluent and strongly normalizing and that each term has a unique type
modulo β-equivalence. We shall not detail those proofs in the present work
but will focus on the proofs of subject-reduction and uniqueness of types
for λΠ-calculus modulo detailed in section 4.2 (the proofs for λΠ-calculus
modulo can easily be adapted for λΠ-calculus).

The λΠ-calculus, and even the λΠ−-calculus, can be used to express
proofs of minimal natural deduction, following the Brouwer-Heyting-Kolmogorov
interpretation and the Curry-de Bruijn-Howard correspondence. Let 〈T,F,P〉
be a language, we consider a context Γ formed with variables ι1, ..., ιn of type
Type (corresponding to the differents sorts of T, for each function symbol
f ∈ F, a variable f of type ι ⇒ ... ⇒ ι ⇒ ι and for each predicate symbol
P ∈ P, a variable P of type ι⇒ ...⇒ ι⇒ Type.

To each formula P containing free variables x1, ..., xp we associate a term
P ◦ of type Type in the context Γ, x1 : ι, ..., xp : ι translating each variable,
function symbol and predicate symbol by itself and the implication symbol
and the universal quantifier by a product.

To each proof π, in minimal natural deduction, of a sequent A1, ..., An ⊢
B with free variables x1, ..., xp, we can associate a term π◦ of type B◦ in
the context Γ[x1 : ι] . . . [xp : ι][α1 : A◦

1] . . . [αn : A◦
n]. From the strong

normalization of the λΠ-calculus, we get cut elimination for minimal natural
deduction and therefore its consistency.

92

4.2 The λΠ-calculus modulo

4.2 The λΠ-calculus modulo

The λΠ-calculus modulo is the adaptation of the principle of deduction mod-
ulo to λΠ-calculus. As we shall see in example 4.1 (and also in chapter
5), we can express, via the Brouwer-Heyting-Kolmogorov interpretation and
the Curry-de Bruijn-Howard correspondence, stronger theories than minimal
natural deduction by adding typing rules to λΠ-calculus (as we can extend
theories expressed in minimal natural deduction by adding axioms as infer-
ence rules). But another solution is to add rewrite rules on types, as done
in deduction modulo, this leads to the definition of λΠ-calculus modulo. By
the way, we shall see that the former method can be simulated by the latter
one in chapter 5.

4.2.1 Syntax of the λΠ-calculus modulo

If Σ, Γ1 and Γ2 are contexts, a substitution θ, binding the variables declared
in Γ1, is said to be of type Γ1 ❀ Γ2 in Σ if for all x declared of type T in
Γ1, we have ΣΓ2 ⊢ θx : θT , and that, in this case, if ΣΓ1 ⊢ u : U , then
ΣΓ2 ⊢ θu : θU .

A rewrite rule is a quadruple l −→Γ1,T r where Γ1 is a context and l, r
and T are β-normal terms. Such a rule is said to be well-typed in the context
Σ if, in the λΠ-calculus, the context ΣΓ1 is well-formed and the terms l and
r have type T in this context.

If Σ is a context, l −→Γ1,T r is a rewrite rule well-typed in Σ and θ is a
substitution of type Γ1 ❀ Γ2 in Σ then the terms θl and θr both have type
θT in the context ΣΓ2. We say that the term θl rewrites to the term θr.

If Σ is a context and R a set of rewrite rules well-typed in the λΠ-calculus
in Σ, then the congruence generated by R, ≡R, is the smallest congruence
relation such that if t rewrites to u then t ≡R u.

Definition 4.8 (Theory).
A theory expressed in λΠ-calculus is given by a context and a set of set of
well-typed rewrite rules on terms.

Given such a context Σ (which we shall call signature) and such a set of
rewrite rules R, we define the λΠ-calculus on Σ modulo R, as follows:

Definition 4.9 (The syntax of λΠ modulo).
Given a signature Σ and a rewrite system R, the syntax of the λΠ-calculus
on Σ modulo R is the same as the one of λΠ-calculus:

t = x | Type | Kind | Πx : t. t | λx : t. t | t t

Notice that variables declared in Σ have not the same behaviour as other
variables since they cannot be bound or substituted.
We write Λ the set of terms of λΠ-calculus on Σ modulo R.

93

4. Sound and complete semantics for λΠ-modulo

Definition 4.10 (Neutral terms).
We call neutral those proof-terms of Λ that are not abstractions i.e. that
are terms of the form x, Type, Kind, Πx : t.t′ or tt′ are the only neutral
proof-terms.

Then we define the notions of isolated terms and leaves of a term, as we
have done for minimal deduction modulo.

Definition 4.11 (Isolated proof-terms).
A term is called isolated if it is neutral and only βR-reduces to neutral proof-
terms.

Definition 4.12 (Leaves).
The leaves of a term tare its first βR-reducts which are normal or not neutral.
We call L(t) the set of leaves of t.

Definition 4.13 (Normalization).

• We say that a term is normal if it does not contain neither a β-redex
nor a R-redex.

• We say that a proof-term is weakly normalizing if there exists a βR-
reductions sequence from it which reaches a normal term (hence is fi-
nite).

• We write WN for the set of weakly normalizing terms.

• We say that a term is strongly normalizing if all βR-reductions se-
quences from it reach a normal proof-term.

• We write SN for the set of strongly normalizing proof-terms.

• We say that a theory expressed in λΠ-calculus modulo is weakly nor-
malizing if all well-typed proof-terms are weakly normalizing.

• We say that a theory expressed in λΠ-calculus modulo is strongly nor-
malizing if all well-typed proof-terms are strongly normalizing.

4.2.2 Typing rules of the λΠ-calculus modulo

As for deduction modulo, the main particularity of λΠ-calculus modulo is
that we can replace a type by an ≡R-equivalent one in a typing judgement.
As we were yet able to replace β-equivalent types in λΠ-calculus, we shall
consider ≡βR-equivalence here, as you can see in the following rules Conver-
sion and Conversion2.

94

4.2 The λΠ-calculus modulo

Definition 4.14 (The typing rules of λΠ modulo).

Empty
[] well-formed

ΣΓ ⊢R A : Type
Declaration x not in ΣΓ

ΣΓ[x : A] well-formed

ΣΓ ⊢R A : Kind
Declaration2 x not in ΣΓ

ΣΓ[x : A] well-formed

Γ well-formed
Sort

ΣΓ ⊢R Type : Kind

Γ well-formed x : A ∈ ΣΓ
Variable

ΣΓ ⊢R x : A

ΣΓ ⊢R A : Type ΣΓ[x : A] ⊢R B : Type
Product

ΣΓ ⊢R Πx : A B : Type

ΣΓ ⊢R A : Type ΣΓ[x : A] ⊢R B : Kind
Product2

ΣΓ ⊢R Πx : A B : Kind

ΣΓ ⊢R A : Type ΣΓ[x : A] ⊢R B : Type ΣΓ[x : A] ⊢R t : B
Abstraction

ΣΓ ⊢R λx : A t : Πx : A B

ΣΓ ⊢R A : Type ΣΓ[x : A] ⊢R B : Kind ΣΓ[x : A] ⊢R t : B
Abstraction2

ΣΓ ⊢R λx : A t : Πx : A B

ΣΓ ⊢R t : Πx : A B ΣΓ ⊢R u : A
Application

ΣΓ ⊢R (t u) : (u/x)B

ΣΓ ⊢R A : Type ΣΓ ⊢R B : Type ΣΓ ⊢R t : A
Conversion A ≡βR B

ΣΓ ⊢R t : B

ΣΓ ⊢R A : Kind ΣΓ ⊢R B : Kind ΣΓ ⊢R t : A
Conversion2 A ≡βR B

ΣΓ ⊢R t : B

Where ≡βR is the congruence of terms generated by the rules of R and the rule β.

95

4. Sound and complete semantics for λΠ-modulo

Example 4.1. Consider the signature Σ0 = [P : Type,Q : Type], then
Σ0Γ ⊢ P : Type and Σ0Γ ⊢ Πx : Q.Q : Type. We can therefore define the
single rewrite rule R0 = P −→[],T ype Πx : Q.Q. In the λΠ calculus on Σ0

modulo R0, we have Σ0[y : Q] ⊢R0
(λx : P.x)y : Q.

4.2.3 Technical lemmas

Let us first detail some useful technical lemmas about theories expressed in
λΠ-calculus modulo. Let us prove a property of λΠ-calculus modulo called
weakening: the fact that if a term is well-typed in a context then it is also
well-typed by the same type in all well-formed contexts which contain the
first one.

Lemma 4.1 (Weakening).
For all (well-formed) contexts Γ,Γ′ and t, A ∈ Λ,
if ΣΓ ⊢R t : A and Γ ⊆ Γ′, then ΣΓ′ ⊢R t : A.

Proof. By induction on the length of the derivation ΣΓ ⊢R t : A. By case
on the last rule used in this derivation. If the last rule is:

• Sort: we have t = Type and A = Kind, and Type is of type Kind in
any well-formed context.

• Variable: then t is a variable x such that either x : A ∈ Σ or x : A ∈ Γ.
Therefore x : A ∈ Σ or x : A ∈ Γ′ hence ΣΓ′ ⊢R x : A

• Product: then t is a product Πx : B.C and A is Type (resp. Kind).
Notice that we can choose x such that x is not declared in Γ′. By
induction hypothesis, ΣΓ′ ⊢R B : Type and ΣΓ′[x : B] ⊢R C : Type
(resp. Kind). Notice that since x is not declared in Γ′, Γ′[x : B]
is well-formed and we may do not have Γ[x : B] ⊆ Γ′[x : B], but
Γ′[x : B] is equivalent to a sup-context of Γ[x : B] in the sense that it
defines exactly the same set of ordered pairs of two terms such that the
former one is typed by the latter one in this context. Finally, we have
ΣΓ′ ⊢R Πx : B.C : Type (resp. Kind).

• Abstraction: then t = λx : B.u and A = Πx : B.C. As previously we
can choose x such that x is not declared in Γ′, in this case Γ′[x : B] is
equivalent to a sup-context of Γ[x : B]. Hence, by induction hypothesis,
we have ΣΓ′ ⊢R B : Type, ΣΓ′[x : B] ⊢R C : Type (resp. Kind) and
ΣΓ′[x : B] ⊢R u : C. Hence ΣΓ′ ⊢R λx : B.u : Πx : B.C.

• Application: then t = uv and A = (v/x)C, with ΣΓ′ ⊢R u : Πx : B.C
and ΣΓ′ ⊢R v : B, by induction hypothesis, hence ΣΓ′ ⊢R uv : (v/x)C.

96

4.2 The λΠ-calculus modulo

• Conversion: by induction hypothesis.

The next lemma is about well-typed substitution in typing judgements.
The main difference with what we have seen in chapter 3 for minimal deduc-
tion modulo is that the substitution applies also on contexts besides applying
on terms and types (but not on the signature Σ since its variables cannot be
substituted).

Lemma 4.2 (Substitution in typing judgements).
For all variables x, terms t, t′, A,B ∈ Λ and well-formed contexts Γ1[x : B]Γ2,
If ΣΓ1[x : B]Γ2 ⊢R t : A and ΣΓ1 ⊢R t′ : B then ΣΓ1(t

′/x)Γ2 ⊢R (t′/x)t : (t′/x)A.

Proof. Notice, that in order to prove that Γ1(t
′/x)Γ2 is a well-formed con-

text, we need to use this lemma on types of which variables are declared
in Γ2. We therefore have to reason by induction on the length of Γ2. We
present, in the following, the reasoning which can be used in both atomic
and induction cases of this induction. We reason by induction on the length
of the derivation of ΣΓ1[x : B]Γ2 ⊢R t : A. By case on the last rule used in
this derivation. If the last rule is:

• Sort: we have t = (t′/x)t = Type and A = (t′/x)A = Kind, hence
ΣΓ1(t

′/x)Γ2 ⊢R (t′/x)t : (t′/x)A.

• Variable: then t is a variable y.

– If x = y, then A = B and x /∈ FV (B) = FV (A) since Γ1[x : B]
is well-formed. Moreover ΣΓ1 ⊢R (t′/x)t = t′ : B = (t′/x)B =
(t′/x)A. Therefore ΣΓ1(t

′/x)Γ2 ⊢R (t′/x)t : (t′/x)A by lemma
4.1.

– If x 6= y,

∗ if x ∈ FV (A), then the declaration y : A appears in Γ2 (since
Γ1[x : B]Γ2 is well-formed, types containing free occurrences
of x can only appear in Γ2). Hence y : (t′/x)A appears in
(t′/x)Γ2. Therefore ΣΓ1(t

′/x)Γ2 ⊢R (t′/x)t = y : (t′/x)A.

∗ if x /∈ FV (A), then (t′/x)A = A and y : A appears in
Γ1(t

′/x)Γ2 therefore ΣΓ1(t
′/x)Γ2 ⊢R (t′/x)t = y : A =

(t′/x)A.

• Product: then t is a product Πy : C.D and A is Type (resp. Kind).
By induction hypothesis, we have ΣΓ1(t

′/x)Γ2 ⊢R (t′/x)C : Type and
ΣΓ1(t

′/x)Γ2[y : (t′/x)C] ⊢R (t′/x)D : Type (resp. Kind). Hence
ΣΓ1(t

′/x)Γ2 ⊢R (t′/x)t = Πy : (t′/x)C.(t′/x)D : Type (resp. Kind).

97

4. Sound and complete semantics for λΠ-modulo

• Abstraction: then t = λy : C.u and A = Πx : C.D.
By induction hypothesis, we have ΣΓ1(t

′/x)Γ2 ⊢R (t′/x)C : Type,
ΣΓ1(t

′/x)Γ2[y : (t′/x)C] ⊢R (t′/x)D : Type (resp. Kind) and
ΣΓ1(t

′/x)Γ2[y : (t′/x)C] ⊢R (t′/x)u : (t′/x)D. Hence we have
ΣΓ1(t

′/x)Γ2 ⊢R (t′/x)t = λy : (t′/x)C.(t′/x)u : (t′/x)(Πy : C.D).

• Application: then t = uv and A = (v/y)D, with ΣΓ1[x : B]Γ2 ⊢R

u : Πy : C.D and ΣΓ1[x : B]Γ2 ⊢R v : B. By induction hypothesis, we
have ΣΓ1(t

′/x)Γ2 ⊢R (t′/x)u : Πy : (t′/x)C.(t′/x)D and also
ΣΓ1(t

′/x)Γ2 ⊢R (t′/x)v : (t′/x)C.
Hence ΣΓ1(t

′/x)Γ2 ⊢R (t′/x)(uv) : ((t′/x)v/y)((t′/x)D).

• Conversion: If A ≡βR C, then (t′/x)A ≡βR (t′/x)C, because (t′/x)
is a substitution of type Γ1[x : B]Γ2 ❀ Γ1(t

′/x)Γ2 in Σ.

The following lemma states that each well-typed proof-term in λΠ-calculus
modulo on Σ modulo R has a unique type modulo βR-equivalence.

Lemma 4.3 (Uniqueness of types).
For all well-formed contexts Γ and t, A,B ∈ Λ,
if ΣΓ ⊢R t : A and ΣΓ ⊢R t : B, then A ≡βR B.

Proof. By induction on the structure of t. For each case, the last rule used
in the derivation of ΣΓ ⊢R t : A can only be the rule which corresponds to
the syntactic form of t or the rule Conversion (resp. Conversion2).

The following lemma states that types are preserved under βR-reduction in
λΠ-calculus modulo on Σ modulo R.

Lemma 4.4 (Subject-reduction).
For all t, t′, A ∈ ΛΣ and well-formed contexts Γ,
if ΣΓ ⊢R t : A and t→βR t′ then ΣΓ ⊢R t′ : A

Proof. • If t →R t′, by lemma 4.3 and the fact that rewrite rules in R
are well-typed.

• If t →β t′, by induction on the position of the β-redex reduced in
t→β t

′. If this redex is not at the root of t, we conclude by induc-
tion hypothesis. Otherwise t = (λx : B.u)v and t′ = (v/x)u with
ΣΓ ⊢R λx : B.u : Πx : B.C, ΣΓ[x : B] ⊢R v : B and A ≡βR (v/x)C by
lemma 4.3. Hence ΣΓ[x : B] ⊢R u : C therefore Σ(v/x)Γ ⊢R (v/x)u :
(v/x)C by lemma 4.2. We conclude by the fact that x is not declared
in Γ and therefore cannot be free in Γ, hence (v/x)Γ = Γ.

98

4.2 The λΠ-calculus modulo

Finally we define formally what we have been calling types since the begin-
ning of this chapter. Given a signature Σ, a set of rewrite rules R, and a
specific context Γ, we discriminate the elements of Λ which can be used as
types of variables in Γ, as the term Kind and those which are of type Type
or Kind in Γ.

Definition 4.15 (IΓ). Given a signature Σ and a set of rewrite rules R,

IΣ,R,Γ = {Kind} ∪ {A s.t. ΣΓ ⊢R A :Type or ΣΓ ⊢R A :Kind }

We shall write IΓ for IΣ,R,Γ when there is no ambiguity.

We can notice that the terms A which are of type Type or Kind in a context
Γ are the ones which can be used to extend Γ into a context Γ[x : A],
via the rules Declaration and Declaration2, hence the ones which can be
considered as types in Γ. We verify, in the following lemma, that IΓ contains
all inhabited types in Γ.

Lemma 4.5. For all A ∈ Λ, t ∈ Λ and (well-formed) contexts Γ,
if ΣΓ ⊢R t : A, then A ∈ IΓ.

Proof. If ΣΓ ⊢R t : A, we reason by case on the last rule used in the deriva-
tion of ΣΓ ⊢R t : A. If the last rule is:

• Sort: we have t = Type and A = Kind.

• Variable: then t is a variable x and we have x : A ∈ Γ.
Therefore ΣΓ ⊢R A : Type or ΣΓ ⊢R A : Kind (rules Declaration
and Declaration2).

• Product: then t is a product Πy : C.D and A is Type or Kind.

• Abstraction: then t = λy : C.u and A = Πx : C.D. Therefore
ΣΓ ⊢R A : Type or ΣΓ ⊢R A : Kind (rules Product and Product2).

• Application: then t = uv and A = (v/y)D, with ΣΓ ⊢R u : Πy : C.D
and ΣΓ ⊢R v : B. By rules Product or Product2, we have
ΣΓ[y : C] ⊢R D : Type or ΣΓ[y : C] ⊢R D : Kind hence, by lemma
4.2, we have ΣΓ ⊢R (v/y)D : Type or ΣΓ ⊢R (v/y)D : Kind.

• Conversion: This condition is necessary to use the rules Conversion
and Conversion2.

Notice that the converse is not true: if ΣΓ ⊢R A : Type (resp. Kind), we
only know that for all variables x not declared in Γ, A is inhabited in Γ[x : A]
(which is well-formed), but it may be not in Γ.

99

4. Sound and complete semantics for λΠ-modulo

4.3 Pre-models for λΠ-modulo

In this section, we provide a definition of pre-models for λΠ-calculus modulo.
As it has been for deduction modulo, this work can be seen as a first step
in the search of a definition of algebras for λΠ-calculus modulo on which
we could build models sound (and complete) for consistency and for strong
normalization. This definition of algebras may emerge from our definition of
ldtvas of section 3.1.4, because as we shall see the interpretation of products
we propose can be seen as a mixing of interpretations of the implication and
the universal quantifier of ldtvas. It will be studied in future work.

4.3.1 Definition of pre-models

Let us first redefine the notion of substitution with capture and the definition
of properties (CR1), (CR2) and (CR3’) we have already seen in section 3.3.2.

Definition 4.16. We define [u/x]t the substitution with capture of x by u
(such that x /∈ FV (u)) in t by induction on the structure of t as follows:

• [u/x]y = u if x = y and y otherwise
(notice that x cannot be a variable declared in the signature Σ).

• [u/x]Type = Type

• [u/x]Kind = Kind

• [u/x](λy : t1. t2) = λy : [u/x]t1. [u/x]t2

• [u/x](Πy : t1. t2) = Πy : [u/x]t1. [u/x]t2

• [u/x](t1 t2) = [u/x]t1 [u/x]t2

Definition 4.17.
For all E ⊆ Λ, we define the following properties :

(CR1) For all t ∈ E, t ∈ SN

(CR2) For all t ∈ E, and t′ such that t→βR t′, t′ ∈ E

(CR3’) For all n ∈ N, for all v, u1, . . . , un ∈ Λ, if
- for all i ≤ n, ui is neutral and non-normal,
- ∀r1, . . . , rn such that for all i ≤ n, ui →βR ri, [ri/xi]i≤nv ∈ E
then [ui/xi]i≤nv ∈ E.

100

4.3 Pre-models for λΠ-modulo

Notice that the real difference with the properties defined in section 3.3.2
is that we consider now βR-reduction in (CR1), (CR2) and (CR3’), and not
only β-reduction anymore.

Let us now think about how to define interpretations and (pre-)models for
λΠ-calculus modulo. First, we want to interpret types (propositions, as in
deduction modulo) as sets of terms. Since we do not have distinguished
syntaxes for terms and types, we shall interpret terms which can be consid-
ered as types in a specific (well-formed) context Γ and we shall use, for that
purpose, the set IΓ we have defined in section 4.2.
Now what about the property we want interpretations of products to satisfy
? As we have seen for deduction modulo, in order to prove completeness of
our definition of pre-models, we want interpretations of a connective to be
modeled on the elimination rule of this connective (notice that there exists
also works on normalization in which we use the introduction rule of the
connective, as in [20]). For example, we want the interpretation of A⇒ B to
be equal to the set of (proof-)terms which map elements in the interpretation
of A to elements in the interpretation of B. Following this method, we
would want the interpretation of a product Πx : A.B to be equal to the
set of terms which map elements u of the interpretation of A to elements
of the interpretation of (u/x)B, using a kind of dependent intersection, as
we have done for the interpretation of the universal quantifier in ldtvas of
section 3.1.4. The problem is that, since we consider interpretations of types
which can contain ill-typed terms, the term (u/x)B may not be a type (i.e.
in a specific IΓ). The usual solution to this problem is to use a notion
of valuation (here functions which map variables to terms). The property
about interpretations of products becomes: the interpretation of a product
Πx : A.B and a valuation ϕ is equal to the set of terms which map elements
u of the interpretation of A and ϕ to elements of the interpretation of B and
ϕ + 〈x, u〉. This solution has been used (in slightly different forms) in [26]
or [41]. The main difference is that, we consider here a kind of dependent
intersection, whereas in [26], the interpretation of the product Πx : A.B and
a valuation ϕ is defined as the intersection of all the interpretations of B in
ϕ + 〈x, u〉, for u in the interpretation of A and ϕ. This way, we adapt to
products of λΠ the work done in section 3.1.3 for the interpretation of the
universal quantifier in ldtvas , by refining the considered intersection as a
dependent intersection.

Let us formally define the notions of valuation and interpretations.

Definition 4.18 (Valuations).
For all well-formed contexts Γ, a valuation on Γ is a substitution which maps
none to all the variables declared in Γ to terms in Λ. We shall call them total
valuations on Γ if they map all the variables in Γ.

101

4. Sound and complete semantics for λΠ-modulo

Remark 4.2. With this definition, for all (well-formed) contexts Γ,Γ′ such
that Γ ⊆ Γ′, a valuation on Γ is also a valuation on Γ′. And we can also
notice that the only valuation on the empty context is the empty substitution.

Definition 4.19 (Interpretations).
An interpretation is a collection J.K.. such that for all well-formed contexts Γ,
J.KΓ. is a function which maps ordered pairs of a term A in IΓ and a valuation
ϕ on Γ, to a set JAKΓϕ of terms of Λ, such that:

• for all contexts Γ,Γ′, A ∈ IΓ and valuations ϕ on Γ, if Γ ⊆ Γ′, then
JAKΓϕ ⊆ JAKΓ

′

ϕ ,

• for all contexts Γ, A ∈ IΓ and valuations ϕ+ 〈x, u〉 on Γ, if t ∈ JAKΓϕ
and x /∈ FV (t), then t ∈ JAKΓϕ+〈x,u〉.

This second property is, up to our knowledge, unusual. This property is
necessary in order to build what we call adequate valuations (given an in-
terpretation J.K.. and a context Γ). An adequate valuation for J.KΓ. , is either
empty or a valuation ϕ+ 〈x, u〉 such that x is declared of a type B in Γ and
u ∈ JBKΓϕ. We shall see that we can only consider this kind of valuations
in our definition of pre-models since we only use this kind of valuations in
the adequacy lemma. And we shall see that it is very convenient for proving
completeness of those pre-models for strong normalization.

Definition 4.20 (Adequate valuations).
Given an interpretation J.K.. and a (well-formed) context Γ, an adequate val-
uation on Γ for J.K.. (we shall also say “adequate for J.KΓ. ”), is defined induc-
tively as follows:

• the empty valuation is adequate on Γ for J.K..,

• if ϕ is adequate on Γ for J.K.., x : B ∈ Γ (with x /∈ Dom(ϕ)), and
u ∈ JBKΓϕ, then ϕ+ 〈x, u〉 is adequate on Γ for J.K...

We shall say “adequate valuations on a context Γ” when there is no ambiguity
about the considered interpretation.

Definition 4.21 (Length of a valuation).
The length of a valuation is the number of variables it substitutes. Proofs by
induction on a valuation ϕ are done by induction on the length of ϕ.

Let us now define pre-models for λΠ-calculus modulo. They are interpreta-
tions such that each associated interpretation of a type in IΓ and an adequate
valuation on Γ satisfies (CR1), (CR2) and (CR′

3), and that are non-empty if
there exists a variable declared of this type in the considered context or in

102

4.3 Pre-models for λΠ-modulo

Σ. Such that interpretations of Kind are modeled on the associated typing
rule (i.e. contain the term Type). Such that interpretations of products are
modeled on the associated elimination typing rules. Such that interpreta-
tions are adapted to the congruence (interpretations of ≡βR-equivalent types
are equal). And finally such that interpretations are adapted to well-typed
substitution (see behind for a formal definition).

Definition 4.22.
A variable x is said to be fresh for a (well-formed) context Γ is x is not
declared in Γ, nor in Σ (in this case it cannot appear free in a type of Γ).

Definition 4.23 (pre-model).
An interpretation J.K. is a pre-model iff for all (well-formed) contexts Γ,

(a) interpretations of types which appear in ΣΓ are non-empty and for all
declarations x : A in Γ, x is in the interpretation of A:

1. for all adequate valuations ϕ on Γ, A ∈ IΓ and x : A ∈ ΣΓ such
that x /∈ Dom(ϕ), then x ∈ JAKΓϕ

2. for all adequate valuations ϕ on Γ, A ∈ IΓ and x : A ∈ ΣΓ,
JAKΓϕ is non-empty and contains a term whose free variables are
all declared in Γ,

(b) interpretations satisfy (CR1), (CR2) and (CR′
3):

1. for all adequate valuations ϕ on Γ and A ∈ IΓ,
JAKΓϕ satisfies (CR1), (CR2) and (CR′

3),

(c) interpretations of Type, Kind and products are modeled on the asso-
ciated typing rules:

1. for all adequate valuations ϕ on Γ, Type ∈ JKindKΓϕ

2. for all adequate valuations ϕ on Γ, variables x and propositions
A,B such that Γ[x : A] is a well-formed context, if A ∈ JTypeKΓϕ

and B ∈ JTypeK
Γ[x:A]
ϕ , then Πx : A.B ∈ JTypeKΓϕ,

3. for all adequate valuations ϕ on Γ, variables x and propositions
A,B such that Γ[x : A] is a well-formed context, if A ∈ JTypeKΓϕ

and B ∈ JKindK
Γ[x:A]
ϕ , then Πx : A.B ∈ JKindKΓϕ,

4. for all adequate valuations ϕ on Γ and Πx : A.B ∈ IΓ with x fresh
for Γ,

JΠx : A.BKΓϕ = {t s.t. for all u ∈ JAK
Γ[x:A]
ϕ , tu ∈ JBK

Γ[x:A]
ϕ+〈x,u〉},

103

4. Sound and complete semantics for λΠ-modulo

(d) interpretations are adapted to the βR-congruence:

1. for all adequate valuations ϕ on Γ and A,B ∈ IΓ,
if A ≡βR B in Γ, then JAKΓϕ = JBKΓϕ.

(e) interpretations are adapted to well-typed substitution:

1. for all adequate valuations ϕ on Γ, t, B ∈ Λ, variables x not
declared and not free in Γ and A ∈ IΓ[x:B],

if ΣΓ ⊢R t : B, then JAK
Γ[x:B]
ϕ+〈x,ϕt〉 ⊆ J(t/x)AKΓϕ

(notice that in this case, (t/x)A ∈ IΓ).

4.3.2 Soundness of pre-models for strong normalization

Let us now prove that this definition of pre-models provides a sound seman-
tics for strong normalization in λΠ-calculus modulo (that is: if a theory is
λΠ-calculus modulo has a pre-model, then it is strongly normalizing). We
have to refine again the statement of our adequacy lemma by syncronizing
one more time the different valuations/substitutions which appear in this
statement. As previously for deduction modulo, this synchronization reflects
the fact that our definition of pre-models is modeled on the typing rules of
the λΠ-calculus modulo, in order to provide an also complete semantics for
strong normalization. There was three different valuations/substitutions in
the adequacy lemma for pre-models for deduction modulo, two for models
valued in ldtvas , and now only one for pre-models for λΠ-calculus mod-
ulo: we prove that for specific valuations if ΣΓ ⊢R t : A then σt ∈ JAKΓσ .
In the usual adequacy lemma, those specific valuations are the ones which
map variables declared of type B in Γ to elements of the interpretation of
B. In this synchronized version, we should therefore consider valuations σ
on Γ such that for all x : B ∈ Γ, σx ∈ JBKΓσ . We shall actually consider,
more generally, total (in the sense that they map all the variables in Γ) ad-
equate valuations. These total adequate valuations satisfy this property: if
Γ is empty, the empty valuation satisfy this property, and if Γ = Γ′[x : B],
an adequate valuation σ + 〈x, u〉 satisfies the fact that u ∈ JBKΓϕ and also
u ∈ JBKΓϕ+〈x,u〉, as x cannot be free in u and J.K.. is an interpretation.

Proposition 4.1. For all pre-models J.K. and well-formed contexts Γ,
if ΣΓ ⊢R t : A then for all total adequate valuations σ on J.KΓ. ,
we have σt ∈ JAKΓσ.

Proof. By induction on the length of the derivation ΣΓ ⊢R t : A. By case
on the last rule used in this derivation. If the last rule is:

104

4.3 Pre-models for λΠ-modulo

• Sort: we have σType = Type ∈ JKindKΓσ , since J.K.. is a pre-model.

• Variable: then t is a variable x such that either x : A ∈ Σ or x : A ∈ Γ.
Therefore σx ∈ JAKΓσ , by hypothesis on σ and since J.K.. is a pre-model
(remind that if x is declared in Σ, then σx = x).

• Product: then t is a product Πx : B.C and A is Type (resp. Kind).
Notice that we can (and have to) choose x such that x is not declared in
Γ therefore σ does not substitute x, and we have
x ∈ JBK

Γ[x:B]
σ . By induction hypothesis, we have σB ∈ JTypeKΓσ and

(x/x)σC ∈ JTypeK
Γ[x:B]
σ+〈x,x〉 = JTypeK

Γ[x:B]
σ (resp. JKindK

Γ[x:B]
σ). Hence

σ(Πx : B.C) = Πx : σB.σC ∈ JTypeKΓσ (resp. JKindKΓσ), since J.K.. is a
pre-model.

• Abstraction: then t = λx : B.u and A = Πx : B.C. As previ-
ously, notice that we have to choose x such that x is not declared in Γ

therefore σ does not substitute x, and we have x ∈ JBK
Γ[x:B]
σ . By induc-

tion hypothesis, σB ∈ JTypeKΓσ and for all v ∈ JBK
Γ[x:B]
σ , (v/x)σu ∈

JCK
Γ[x:B]
σ+〈x,v〉. Hence we can prove by induction on the sum of maximal

lengths of reductions sequences from σB, σu and v (all in SN by in-

duction hypothesis and (CR1)), that (λx : σB.σu) v ∈ JCK
Γ[x:B]
σ+〈x,v〉 using

(CR2) and (CR3’), as usual. Finally σt = λx : σB.σu ∈ JΠx : B.CKΓσ .

• Application: then t = uv and A = (v/x)C, with σu ∈ JΠx : B.CKΓσ
and σv ∈ JBKΓσ , by induction hypothesis. Hence σ(uv) ∈ JCK

Γ[x:B]
σ+〈x,σv〉

since J.K.. is a pre-model. Moreover, since ΣΓ ⊢R v : B, we have

JCK
Γ[x:B]
σ+〈x,σv〉 ⊆ J(v/x)CKΓσ and therefore σ(uv) ∈ J((v/x)C)KΓσ .

• Conversion: then, by induction hypothesis, we have σt ∈ JBKΓσ , with
B ≡βR A in Γ. Hence JAKΓσ = JBKΓσ , as J.K.. is a pre-model. Finally,
σt ∈ JAKΓσ .

We can therefore prove that having a pre-model is a sound semantics for
theories expressed in λΠ-calculus modulo.

Proposition 4.2 (Soundness).
If a theory in λΠ-modulo has a pre-model, then it is strongly normalizing.

Proof. If ΣΓ ⊢R t : A, then either Γ is empty, and in this case, t ∈ SN by
proposition 4.1, or Γ is non-empty and therefore there exists a substitution
σ as in proposition 4.1: since the theory has a pre-model J.K.., if we write

Γ = [x1 : A1] . . . [xn : An], we know that JA1K
[x1:A1]
• 6= ∅ (with • the empty

105

4. Sound and complete semantics for λΠ-modulo

substitution) and therefore contains an element t1 (whose all free variables

are declared in [x1 : A1]). And so on, JA2K
[x1:A1][x2:A2]
〈x1,t1〉

6= ∅ and therefore con-
tains an element t2 (whose all free variables are declared in [x1 : A1][x2 : A2]).
This way we are able to build σ as 〈x1, t1〉 + . . . + 〈xn, tn〉, and it satisfies,
for all i ≤ n, σxi ∈ JAiK

Γ
σ , since [x1 : A1] . . . [xi : Ai] ⊆ Γ, and xi+1,. . . ,xn

are not free in ti. Finally, since σt ∈ SN , we also have t ∈ SN .

We shall see, in the following subsection that we can prove the strong
normalization of the λΠ-calculus by building such a pre-model for the λΠ-
calculus based on an empty signature modulo an empty set of rewrite rules.

4.3.3 An example of pre-model

We present, in this subsection, the simplest corollary of proposition 4.2 about
soundness of pre-models for strong normalization: the λΠ-calculus is strongly
normalizing. By λΠ-calculus, we mean here the empty theory in λΠ-calculus
modulo, i.e. the λΠ-calculus based on an empty signature modulo an empty
set of rewrite rules.
Let us first remark that for all (well-formed) contexts Γ, IΓ can be defined
as the union of the singleton {Kind} and the set which is composed by
(well-typed) β-expansions of what we call atomic types and (well-typed) β-
expansions of products inductively built on those (β-expansions of) atomic
types.

Definition 4.24 (Atomic types).
Given a (well-formed) context Γ, we call atomic types, terms of the form
x t1 . . . tn with x a variable, n ∈ N and t1 . . . tn terms such that
ΣΓ ⊢R x t1 . . . tn : Type or ΣΓ ⊢R x t1 . . . tn : Kind.
In the following, we shall also call atomic, well-typed β-expansions of atomic
types (notice that such a β-expansion cannot be a product).

Remark 4.3. We can therefore define an interpretation by giving its value on
Kind, Type and atomic types, and by defining inductively the interpretation
of (β-expansions of) a product Πx : A.B a context Γ and a valuation ϕ
as the set of proof terms which map elements u of the interpretation of A,
Γ[x : A] and ϕ to elements of the interpretation of B, Γ[x : A] and ϕ+〈x, u〉.
The interpretations defined this way automatically satisfy the property (c4) of
pre-models. Moreover, by defining interpretations of Kind, Type and atomic
types as the set SN , we automatically obtain the properties (a1), (a2), (b1),
(c1), (c2) and (c3). And finally we obtain the property (e) by the fact that the
interpretations of types we propose do not depend on the considered valuation
and the fact that for all well-typed substitutions (t/x), A is an atomic type
if and only if (t/x)A is also an atomic type.

106

4.3 Pre-models for λΠ-modulo

Let us define such an interpretation for the empty theory in λΠ-calculus
modulo and verify that we automatically obtain all these properties.

Definition 4.25 ([.]..).
For all contexts Γ and valuations ϕ on Γ,

• [Kind]Γϕ = SN ,

• [Type]Γϕ = SN ,

• for all A ∈ IΓ,

- if A is (a well-typed β-expansion of) an atomic type, then [A]Γϕ = SN ,
- if A is (a well-typed β-expansion of) a product Πx : B.C ∈ IΓ,

then [A]Γϕ = {t s.t. for all u ∈ [B]
Γ[x:B]
ϕ , tu ∈ [C]

Γ[x:B]
ϕ+〈x,u〉}

We then verify that this provides a pre-model for λΠ-calculus modulo the
empty theory.

Lemma 4.6.
[.].. is a pre-model for the λΠ-calculus based on an empty signature modulo
an empty set of rewrite rules.

Proof. Let us first notice, that the interpretation of a type is the same in
any context Γ and valuations ϕ (as soon as it is a type in Γ and ϕ is a
valuation on Γ). Hence [.].. is a well-defined interpretation: for all contexts
Γ,Γ′, A ∈ IΓ and valuations ϕ on Γ, if Γ ⊆ Γ′, then [A]Γϕ ⊆ [A]Γ

′

ϕ . Moreover
for all contexts Γ, A ∈ IΓ and valuations ϕ + 〈x, u〉 on Γ, if t ∈ [A]Γϕ and
x /∈ FV (t), then t ∈ [A]Γϕ+〈x,u〉, since [A]Γϕ = [A]Γϕ+〈x,u〉. Let us now prove
that it is a pre-model.

(a) 1. for all adequate valuations ϕ on Γ, A ∈ IΓ and x : A ∈ Γ such that
x /∈ Dom(ϕ), then x ∈ [A]Γϕ. Indeed, we can prove, by induction
on A that [A]Γϕ contains all isolated strongly normalizing terms
(remind that isolated terms are neutral terms which reduce only
to neutral terms). If A is Kind or (a well-typed β-expansion of)
an atomic type, it is obvious. If A is (a well-typed β-expansion
of) a product, we can notice that if t is isolated and strongly
normalizing and u is strongly normalizing, then tu is isolated and
strongly normalizing.

2. for all adequate valuations ϕ on Γ, A ∈ IΓ and x : A ∈ Γ, [A]Γϕ
is non-empty and contains a term whose free variables are all
declared in Γ. We can use the same argument as in the previous
point: if x : A ∈ Γ, then x ∈ [A]Γϕ.

107

4. Sound and complete semantics for λΠ-modulo

(b) 1. for all adequate valuations ϕ on Γ and A ∈ IΓ, ⌊A⌋Γϕ satisfies
(CR1). Indeed, for Kind and (well-typed β-expansions of) atomic
types on Γ, SN satisfies obviously (CR1). And for (well-typed
β-expansions of) product types Πx : B.C, since there exists a

term u in [B]
Γ[x:B]
ϕ , tu ∈ [C]

Γ[x:B]
ϕ+〈x,u〉, hence tu ∈ SN by induction

hypothesis and so does t.

2. for all adequate valuations ϕ on Γ and A ∈ IΓ, [A]Γϕ satisfies
(CR2). Indeed, SN is stable by β-reduction. And for product
types Πx : B.C, if t ∈ [Πx : B.C]Γϕ and t −→β t′ then for all

u ∈ [B]
Γ[x:B]
ϕ , t′u is a βR-reduct of tu and is therefore in [C]

Γ[x:B]
ϕ+〈x,u〉

since it satisfies (CR2) by induction hypothesis.

3. for all adequate valuations ϕ on Γ and A ∈ IΓ, ⌊A⌋Γϕ satisfies

(CR3’). Indeed SN satisfies (CR3’) and if [C]
Γ[x:B]
ϕ+〈x,u〉 satisfies

(CR3’) (with u ∈ [B]
Γ[x:B]
ϕ) then [Πx : B.C]Γϕ also satisfies (CR3’).

(c) 1. for all adequate valuations ϕ on Γ, Type ∈ [Kind]Γϕ , since Type
is strongly normalizing.

2. for all adequate valuations ϕ on Γ, variables x and propositions
A,B such that Γ[x : A] is a well-formed context, if A ∈ [Type]Γϕ

and B ∈ [Type]
Γ[x:A]
ϕ , then Πx : A.B ∈ [Type]Γϕ. Since [Type]Γϕ =

SN for all well-formed contexts Γ and valuations ϕ on Γ. And if
A,B ∈ SN then so does Πx : A.B.

3. for all adequate valuations ϕ on Γ, variables x and propositions
A,B such that Γ[x : A] is a well-formed context, if A ∈ [Type]Γϕ

and B ∈ [Kind]
Γ[x:A]
ϕ , then Πx : A.B ∈ [Kind]Γϕ, by the same

argument as in the previous point.

4. for all adequate valuations ϕ on Γ and Πx : A.B ∈ IΓ with x fresh
for Γ, [Πx : A.B]Γϕ = {t s.t. for all u ∈ [A]

Γ[x:A]
ϕ , tu ∈ [B]

Γ[x:A]
ϕ+〈x,u〉},

by construction.

(d) 1. for all adequate valuations ϕ on Γ and A,B ∈ IΓ, if A ≡β B in
Γ, then [A]Γϕ = [B]Γϕ, since the interpretations of a type and one
of its (well-typed) β-expansions are defined equal.

(e) 1. for all adequate valuations ϕ on Γ, t, B ∈ Λ, variables x not
declared and not free in Γ and A ∈ IΓ[x:B], if Γ ⊢R t : B, then

[A]
Γ[x:B]
ϕ+〈x,ϕt〉 ⊆ [(t/x)A]Γϕ. Indeed we can prove by induction on A,

that [(t/x)A]Γϕ = [A]Γϕ since in this case; if A is atomic then so
does (t/x)A. Moreover, [A]Γϕ = [A]Γϕ+〈x,ϕt〉 as the interpretation
of A is the same for all valuations ψ on Γ.

108

4.3 Pre-models for λΠ-modulo

Corollary 4.1.
The λΠ-calculus based on an empty signature modulo an empty set of rewrite
rules is strongly normalizing.

We have seen that if we define the interpretation of a type A, a context
Γ and a valuation ϕ by induction on A as the set SN for (β-expansions of)
atomic types and using the interpretation of products of pre-models for (β-
expansions of) products, the only property we do not obtain automatically is
the property (d1): the fact that it is adapted to the congruence. But, as we
have identified the interpretations of types and their β-expansions, we can
do the same for the rewrite rules of the theory studied, as explained in the
following lemma in which we prove the strong normalization of the theory
defined in example 4.1.

Lemma 4.7.
Let Σ0 be the signature [P : Type,Q : Type]
and R0 be the single rewrite rule P −→[],T ype Πx : Q.Q. For all contexts Γ
and valuations ϕ on Γ, we define:

• [Kind]Γϕ = SN ,

• [Type]Γϕ = SN ,

• [P]Γϕ = {t such that for all u ∈ SN , tu ∈ SN}
(and is equal to the interpretations of β-expansions of P),

• Otherwise, for all A ∈ IΓ,
- if A is (a well-typed β-expansion of) an atomic type, then [A]Γϕ = SN ,
- if A is (a well-typed β-expansion of) a product Πx : B.C ∈ IΓ,

then [A]Γϕ = {t s.t. for all u ∈ [B]
Γ[x:B]
ϕ , tu ∈ [C]

Γ[x:B]
ϕ+〈x,u〉}

[.].. is a pre-model hence the λΠ-calculus based on Σ0 modulo R0 is strongly
normalizing.

Proof. The only difference with the interpretation for the empty theory
we have previously defined, is that we interpret P and its (well-typed) β-
expansions directly as the interpretation of Πx : Q.Q in order to obtain the
property (d1).

Remark 4.4. Notice that we cannot use this method for building a pre-model
for the theory defined by the signature [P : Type] and the single rewrite
rule P −→[],T ype P , since P is not strongly normalizing in this case and is
therefore not in the interpretation of Type. An interpretation built using this
method cannot therefore satisfy the property (a1) and it is not a pre-model
(fortunately because this theory is not strongly normalizing in λΠ-calculus

109

4. Sound and complete semantics for λΠ-modulo

modulo). This theory reveals one of the differences between expressing a
theory in deduction modulo and expressing it in λΠ-calculus modulo, as it
is strongly normalizing in deduction modulo but not strongly normalizing in
λΠ-calculus modulo.

We have proposed a method for building a pre-model for a given theory
in λΠ-calculus modulo, obtaining, as a corollary of soundness of those pre-
models for strong normalization in λΠ-calculus modulo, the strong normal-
ization of this given theory. We shall see, in the following subsection that
this definition of pre-models also provide a complete semantics for strong
normalization in λΠ-calculus modulo.

4.3.4 Completeness of pre-models for strong normalization

In order to prove that this definition of pre-models also provides a complete
semantics for strong normalization in λΠ-calculus modulo, we use the same
method as in sections 3.2.4 and 3.3.4. Since we have not defined a notion
of algebras for λΠ-calculus modulo, we cannot use morphisms on those not
defined algebras, but we shall define directly our candidate to be a pre-model,
as the sets of (CR3’) expansions of sets of well-typed terms. We can therefore
see the following proof as an adapted version of the one of sections 3.2.4 and
3.3.4 with an eliminated cut.

In order to use our technique for proving completeness, we would want
to define the equivalent of our C

≡
-interpretation (which we shall call 0-

interpretation in the following) as the function which, given a context Γ,
associates to a type A in IΓ and a valuation ϕ the set of terms typed by
ϕA in Γ, however ϕA is not necessarily in IΓ. If we build this equivalent of
C
≡
-interpretation as the function which associates, given a context Γ, to a

type A and a valuation ϕ the set of terms ϕt with t of type A in Γ, we shall
be able to deduce from the fact that the theory is strongly normalizing, the
fact that all the elements of this set are strongly normalizing, but only for
an adequate valuation. We shall therefore define our interpretation only for
adequate valuations, by first defining a function Cl(.)Γ• from IΓ to P(ΛΣ) as
the (CR3’) expansions of sets of well-typed terms. And then we shall define,
inductively adequate valuations and Cl(A)Γϕ, with ϕ an adequate valuation,
as the set which contains all ϕt with t ∈ Cl(A)Γ• . We can therefore build our
interpretation only on adequate valuations. This is sufficient since we only
need this kind of valuations in the definition of pre-models.

Let us first define the function Cl(.)Γ• from IΓ to P(ΛΣ) as the (CR3’) ex-
pansion of sets of well-typed terms in Γ.

Definition 4.26 (Cl(.)Γ•).
For all (well-formed) contexts Γ and A ∈ IΓ,

110

4.3 Pre-models for λΠ-modulo

Cl0(A)Γ• = {t such that ΣΓ ⊢R t : A}
Clk+1(A)Γ• = {t, such that ∃n ∈ N:

∃v,∃(ui)i≤n, each neutral non-normal such that
t = [ui/xi]i≤n v and ∀(ri)i≤n, s.t. ∀i ≤ n, ui →βR ri,

we have [ri/xi]i≤n v ∈ Clk(A)Γ•}
Cl(A)Γ• = ∪j∈NCl

j(A)Γ•

We then define inductively Cl(.)Γϕ, with ϕ an adequate valuation, as the set
which contains all ϕt with t ∈ Cl(A)Γ• .

Definition 4.27 (Cl(.)Γϕ).
For all (well-formed) contexts Γ, valuations ϕ on Γ and A ∈ IΓ,

• if ϕ is the empty valuation, then Cl(A)Γϕ = Cl(A)Γ• ,

• otherwise, if ϕ = ψ+ < x, u >, x : B ∈ Γ and u ∈ Cl(B)Γψ, then

Cl(A)Γϕ = {(u/x)t, t ∈ Cl(A)Γψ}

This definition provides an interpretation, as it easy to verify that for all con-
texts Γ,Γ′, A ∈ IΓ and valuations ϕ on Γ, if Γ ⊆ Γ′, we have
Cl(A)Γϕ ⊆ Cl(A)Γ

′

ϕ , by weakening, in the case of an adequate valuation.
And that for all contexts Γ, A ∈ IΓ and adequate valuations ϕ+ 〈x, u〉 on Γ,
if t ∈ Cl(A)Γϕ and x /∈ FV (t), then t ∈ Cl(A)Γϕ+〈x,u〉 since t ∈ Cl(A)Γϕ+〈x,u〉

by construction. For non-adequate valuations ϕ, we can define Cl(A)Γϕ as
the set SN . In this case, both previous properties are satisfied.

Now let us prove in the following lemmas, that Cl(.).. forms a pre-model
when the considered theory is strongly normalizing.

Lemma 4.8. For all (well-formed) contexts Γ, adequate valuations ϕ on Γ,
A ∈ IΓ and x : A ∈ ΣΓ such that x /∈ Dom(ϕ), then x ∈ Cl(A)Γϕ.

Proof. For all x : A ∈ ΣΓ, ΣΓ ⊢R x : A, therefore x ∈ Cl0(A)Γ• ⊆ Cl(A)Γ• ,
and x = ϕx ∈ Cl(A)Γϕ if x /∈ Dom(ϕ).

Lemma 4.9. For all (well-formed) contexts Γ, adequate valuations ϕ on Γ,
A ∈ IΓ and x : A ∈ ΣΓ, Cl(A)Γϕ is non-empty and contains a term whose
free variables are all declared in Γ.

Proof. For all x : A ∈ ΣΓ, ΣΓ ⊢R x : A, therefore x ∈ Cl0(A)Γ• ⊆ Cl(A)Γ• ,
and ϕx ∈ Cl(A)Γϕ, notice that free variables of ϕx are all declared in Γ.

111

4. Sound and complete semantics for λΠ-modulo

Lemma 4.10. If the theory is stronly normalizing, then for all (well-formed)
contexts Γ, A ∈ IΓ and adequate valuations ϕ on Γ, Cl(A)Γϕ satisfies (CR1),
(CR2) and (CR3’).

Proof. The proofs that Cl(A)Γϕ satisfies (CR1), (CR2) and (CR3’) follow the
ones we have seen in section 3.3.4.

• If the theory is strongly normalizing, then Cl0(A)Γ• ⊆ SN and so does
Cl(A)Γ• , as done for deduction modulo in section 3.3.4 (all reductions
sequences from an element of Cl(A)Γ• reach a well-typed term). Then
we can prove by induction on the length of an adequate valuation ϕ
that Cl(A)Γϕ ⊆ SN (as all reductions sequences from an element of
Cl(A)Γϕ reach a well-typed term). Indeed, if ϕ is the empty valuation
then Cl(A)Γϕ = Cl(A)Γ• . Otherwise, if ϕ = ψ + 〈x, u〉, Cl(A)Γψ ⊆ SN

by induction hypothesis and all terms in Cl(A)Γϕ are of the form (u/x)t

with t ∈ Cl(A)Γψ. Therefore we can prove that all reduction sequences
from such a term (u/x)t will also reach a well-typed term (as done in
section 3.3.4 for deduction modulo) since all reduction sequences from
u will reach a term of the same type as x in Γ, and therefore (u/x)t is
strongly normalizing.

• Cl0(A)Γ• is stable by βR-reduction, by subject-reduction property,
hence its (CR3’) expansion Cl(A)Γ• is stable by βR-reduction, as done
for deduciton modulo in section 3.3.4. Finally, Cl(A)Γϕ is also stable
by βR-reduction, since terms substituted in ϕ are (CR3’) expansions
of terms of the same type in Γ as the associated variable.

• Cl(A)Γ• satisfies (CR′
3) by construction. And so does Cl(A)Γϕ are terms

substituted in ϕ are yet (CR3’) expansions of terms of the same type
in Γ as the associated variable.

Lemma 4.11.
For all (well-formed) contexts Γ and adequate valuations on Γ, we have
Type ∈ Cl(Kind)Γϕ.

Proof. For all adequate valuations ϕ on Γ, Type ∈ Cl0(Kind)Γ ⊆ Cl(Kind)Γ,
therefore ϕType = Type ∈ Cl(Kind)Γϕ.

Lemma 4.12.
For all (well-formed) contexts Γ, adequate valuations ϕ on Γ, variables x

fresh for Γ, A ∈ Cl(Type)Γϕ and B ∈ Cl(Type)
Γ[x:A]
ϕ , (resp. Cl(Kind)

Γ[x:A]
ϕ),

Πx : A.B ∈ Cl(Type)Γϕ (resp. Cl(Kind)Γϕ).

112

4.3 Pre-models for λΠ-modulo

Proof. By induction on ϕ.

• If ϕ is the empty substitution, there exists k, j ∈ N such that
A ∈ Clk(Type)Γ• and B ∈ Clj(Type)

Γ[x:A]
• (resp. Clj(Kind)

Γ[x:A]
•).

By induction on k + j.

– If k + j = 0, then ΣΓ ⊢R A : Type and ΣΓ[x : A] ⊢R B : Type
(resp. Kind). Hence we have ΣΓ ⊢R Πx : A.B : Type (resp.
Kind) therefore Πx : A.B ∈ Cl0(Type)Γ• ⊆ Cl(Type)Γ• (resp.
Cl0(Kind)Γ• ⊆ Cl(Kind)Γ•).

– If k > 0, then A is a (one-step) (CR3’) expansion of a term
A′ ∈ Clk−1(Type)Γ• . Hence Πx : A′.B ∈ Cl(Type)Γ• (resp.
Cl(Kind)Γ•) by induction hypothesis. And Πx : A.B is a (CR3’)
expansion of Πx : A′.B therefore Πx : A.B ∈ Cl(Type)Γ• (resp.
Cl(Kind)Γ•) since it satisfies (CR3’).

– If j > 0, then B is a (one-step) (CR3’) expansion of a term
B′ ∈ Clj−1(Type)Γ• (resp. Clj−1(Kind)Γ•). Hence we have
Πx : A.B′ ∈ Cl(Type)Γ• (resp. Cl(Kind)Γ•) by induction hypoth-
esis. And Πx : A.B is a (CR3’) expansion of Πx : A.B′ therefore
Πx : A.B ∈ Cl(Type)Γ• (resp. Cl(Kind)Γ•) since it satisfies
(CR3’).

• If ϕ = ψ + 〈y, v〉, then A = (v/y)A′ with A′ ∈ Cl(Type)Γψ and

B = (v/y)B′ with B′ ∈ Cl(Type)Γψ. By induction hypothesis, we

have Πx : A′.B′ ∈ Cl(Type)Γψ (resp. Cl(Kind)Γψ). Finally, we have

Πx : A.B = (v/y)(Πx : A′.B′) ∈ Cl(Type)Γϕ (resp. Cl(Kind)Γϕ).

Lemma 4.13. for all (well-formed) contexts Γ, adequate valuations ϕ on
Cl(.)Γ and Πx : A.B ∈ IΓ with x fresh for Γ,

Cl(Πx : A.B)Γϕ = {t s.t. for all u ∈ Cl(A)
Γ[x:A]
ϕ , tu ∈ Cl(B)

Γ[x:A]
ϕ+〈x,u〉},

Proof. By induction on ϕ.

• If ϕ is the empty substitution,

⊆ Let t ∈ Cl(Πx : A.B)Γ• and u ∈ Cl(A)
Γ[x:A]
• . Then there exists

k ∈ N such that t ∈ Clk(Πx : A.B)Γ• . By induction on k.

∗ If k = 0, then ΣΓ ⊢R t : Πx : A.B therefore ΣΓ[x : A] ⊢R tx : B

hence tx ∈ Cl0(B)
Γ[x:A]
• and, since x is not free in t,

tu = (u/x)(tx) ∈ Cl0(B)
Γ[x:A]
〈x,u〉 ⊆ Cl(B)

Γ[x:A]
〈x,u〉 .

113

4. Sound and complete semantics for λΠ-modulo

∗ If k > 0 then t is a (CR3’) expansion of a term t′ in

Clk−1(Πx : A.B)Γ• hence t′u ∈ Cl(B)
Γ[x:A]
〈x,u〉 by induction hy-

pothesis, and so does tu since it is a (CR3’) expansion of t′u

and Cl(B)
Γ[x:A]
〈x,u〉 satisfies (CR3’) .

⊇ Let t be a term such that for all u ∈ Cl(A)
Γ[x:A]
• , tu ∈ Cl(B)

Γ[x:A]
〈x,u〉 .

∗ If t is an abstraction λy : A.t′, since x ∈ Cl(A)
Γ[x:A]
• , there

exists k ∈ N such that (λy : A.t′)x ∈ Clk(B)
Γ[x:A]
• and so does

(x/y)t′ by (CR2). Hence we can prove that
t ∈ Cl(Πx : A.B)Γ• by induction on k: if k = 0, then
ΣΓ[x : A] ⊢R (x/y)t′ : B, hence ΣΓ ⊢R λx : A.(x/y)t′ : Πx : A.B
(by case on the last rule used in the former typing judgement)
and λx : A.(x/y)t′ ∈ Cl0(Πx : A.B)Γ• and so does λy : A.t′

by renaming. If k > 0, we conclude by induction hypothesis.

∗ If t is neutral and normal, then so does tx. And since tx
is in Cl(B)

Γ[x:A]
• , it is in Cl0(B)

Γ[x:A]
• , because (CR3’) expan-

sions only add non-normal proof-terms to a set. Finally, since
ΣΓ[x : A] ⊢R tx : B, we also have ΣΓ ⊢R t : Πx : A.B, and
t ∈ Cl0(Πx : A.B)Γ• .

∗ If t is neutral and non-normal, since it is in SN (because

tx ∈ Cl(B)
Γ[x:A]
〈x,u〉 ⊆ SN), and all its leaves are in the set

{u s.t. for all v ∈ Cl(A)
Γ[x:A]
• , uv ∈ Cl(B)

Γ[x:A]
〈x,v〉 } (because

this set is stable by βR-reduction), we can conclude that
t ∈ Cl(Πx : A.B)Γ• since Cl(Πx : A.B)Γ• satisfies (CR3’).

• If ϕ = ψ + 〈y, v〉,

⊆ Let t ∈ Cl(Πx : A.B)Γϕ then there exists t′ ∈ Cl(Πx : A.B)Γψ such
that t = (v/y)t′. By induction hypothesis, we have

t′x ∈ Cl(B)
Γ[x:A]
ψ , hence tx = (v/y)(t′x) ∈ Cl(B)

Γ[x:A]
ϕ (as x

cannot be equal to y) and therefore, for all u ∈ Cl(A)
Γ[x:A]
ϕ ,

tu = (u/x)(tx) ∈ Cl(B)
Γ[x:A]
ϕ+〈x,u〉 (as x is not free in t).

⊇ Let t be a term such that for all u ∈ Cl(A)
Γ[x:A]
ϕ , tu ∈ Cl(B)

Γ[x:A]
ϕ+〈x,u〉.

Then tx ∈ Cl(B)
Γ[x:A]
ϕ hence there exists t′′ ∈ Cl(B)

Γ[x:A]
ψ such

that tx = (v/y)t′′. If t′′ = y then tx = v ∈ Cl(B)
Γ[x:A]
ψ there-

fore for all u ∈ Cl(A)
Γ[x:A]
ψ , tu = (u/x)v ∈ Cl(B)

Γ[x:A]
ψ+〈x,u〉 (as

x /∈ FV (t)). Therefore we have t ∈ Cl(Πx : A.B)Γψ, by induction

hypothesis and t ∈ Cl(Πx : A.B)Γϕ since y is not free in v and

114

4.3 Pre-models for λΠ-modulo

therefore neither in t. Otherwise there exists a term t′ such that
t′′ = t′x, then t = (v/y)t′ and t′ ∈ Cl(Πx : A.B)Γψ by induction

hypothesis, hence we have t ∈ Cl(Πx : A.B)Γϕ.

Lemma 4.14.
For all (well-formed) contexts Γ, adequate valuations ϕ on Γ and A,B ∈ IΓ,
if A ≡βR B, then Cl(A)Γϕ = Cl(B)Γϕ.

Proof. If A ≡βR B then Cl0(A)Γ = Cl0(B)Γ by rules Conversion and Con-
version2. Hence Cl(A)Γ• = Cl(B)Γ• and therefore Cl(A)Γϕ = Cl(B)Γϕ.

Lemma 4.15.
For all contexts Γ, adequate valuations ϕ on Γ, t, B ∈ Λ, variables x fresh

for Γ and A ∈ IΓ[x:B], if ΣΓ ⊢R t : B, then Cl(A)
Γ[x:B]
ϕ+〈x,ϕt〉 ⊆ Cl(t/x)A)Γϕ.

Proof. By induction on ϕ.

• If ϕ is the empty substitution. Let u ∈ Cl(A)
Γ[x:B]
〈x,t〉 then there exists

u′ ∈ Cl(A)
Γ[x:B]
• such that u = (t/x)u′. And there exists k ∈ N such

that u′ ∈ Clk(A)
Γ[x:B]
• . By induction on k.

– If k = 0, then ΣΓ[x : B] ⊢R u′ : A. Therefore we have
ΣΓ[x : B] ⊢R (t/x)u′ : (t/x)A by lemma 4.2. Moreover we have
ΣΓ ⊢R (t/x)u′ : (t/x)A since x is not free neither in (t/x)u′, nor
in (t/x)A. Finally u = (t/x)u′ ∈ Cl0((t/x)A)Γ• .

– If k > 0 then u′ is a (CR3’) expansion of a term u′′ in Clk−1(A)
Γ[x:B]
• .

Therefore (t/x)u′′ ∈ Cl((t/x)A)Γ• by induction hypothesis. And
since (t/x)u′ is also a (CR3’) expansion of (t/x)u′′ (because the
neutral terms considered in a (CR3’) expansion are non-normal),
we finally have u = (t/x)u′ ∈ Cl((t/x)A)Γ• since it satisfies (CR3’).

• If ϕ = ψ+〈y, v〉, let u ∈ Cl(A)
Γ[x:B]
ϕ+〈x,ϕt〉, then there exists u′ ∈ Cl(A)

Γ[x:B]
ψ

such that u = (ϕt/x)(v/y)u′ then u = (v/y)(ϕt/x)u′ since x is not free
in v and y is yet substituted by v in ϕ. Since ϕ = ψ + 〈y, v〉, we have
u = (v/y)(ψt/x)u′, with (ψt/x)u′ ∈ Cl((t/x)A)Γψ by induction hypoth-

esis, hence u = (v/y)(ψt/x)u′ ∈ Cl((t/x)A)Γψ+〈y,v〉 = Cl((t/x)A)Γϕ.

115

4. Sound and complete semantics for λΠ-modulo

Using those previous lemmas, we are finally able to prove that Cl(.) actually
defines a pre-model when the theory considered in λΠ-calculus modulo is
strongly normalizing.

Proposition 4.3 (Completeness).
If a theory is strongly normalizing, then Cl(.).. is a pre-model of this theory.

Proof. By lemmas 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15.

And we finally can assert the following theorem: having a pre-model is a
sound and complete semantics for strong normalization of theories expressed
in λΠ-calculus modulo.

Theorem 4.1 (Soundness and Completeness).
A theory in λΠ-modulo is strongly normalizing iff it has a pre-model.

Proof. By propositions 4.2 and 4.3.

4.4 Conclusion

In this chapter, we have given a sound and complete semantics, based on
our work of chapter 3, for strong normalization of theories expressed in the
logical framework of λΠ-calculus modulo. The soundness part is usual as
many proofs of strong normalization of various logical frameworks (with or
without dependent types) use reducibility candidates (with slightly different
definitions from the one we used). But the completeness part is innovative
and there is, up to our knowledge, no other work on complete semantics for
strong normalization based on the notion of reducibility candidates in logical
frameworks with dependent types.

As it has been done for deduction modulo, we have defined a notion of
pre-model such that having a pre-model is a sound semantics for strongly
normalizing theories in λΠ-calculus modulo. Moreover, we have reused the
ideas of chapter 3, in order to obtain an also complete semantics for strong
normalization. The completeness part comes from the use of our modified
property (CR3’), instead of the usual (CR3) property and from a refinement
of the method for interpreting dependent types using valuations. This work
can be seen as a first step in the search of a definition of algebras for λΠ-
calculus modulo on which we could build models sound (and complete) for
consistency and for strong normalization (as it has been done for deduc-
tion modulo). This definition of algebras may emerge from our definition of

116

4.4 Conclusion

ldtvas of section 3.1.4, but it has not been studied in the present work. No-
tice that this definition of algebras for λΠ-calculus modulo would not depend
on the language anymore, since there is no universal quantifier in λΠ-calculus
modulo. But we could reuse the idea of dependent intersection of the inter-
pretation of the universal quantifier to propose a dependent interpretation
of the product Π, as we have done in our definition of pre-models.

Apart from the algebraic point of view, we can see the completeness proof
of this chapter as the one of chapter 3 where a cut has been eliminated:
instead of defining a notion of well-typed pre-model (the equivalent of the
notion of C

≡
-valued model) using an equivalent of properties (CR1≡),(CR2≡)

and (CR3≡) and defining a function which maps all well-typed pre-models to
a pre-model, we have only defined this function, when the theory is strongly
normalizing, on a precise well-typed pre-model (based on well-typed terms,
as in section 3.2.4), and only proved that this precise well-typed pre-model
was led to a pre-model by our function.

As a last remark on this chapter, we have seen that the theories which are
strongly normalizing when expressed in deduction modulo and in λΠ-calculus
modulo, are not the same ones. For example the theory defined by the rewrite
rule P → P , with P an atomic proposition or a variable declared of type Type
in the signature, is strongly normalizing when expressed in deduction modulo
but not when expressed in λΠ-calculus modulo. This induces an interesting
question: how to define a criterion for strongly normalizing theories expressed
in deduction modulo that are also strongly normalizing when expressed in in
λΠ-calculus modulo. The termination of the rewrite system is a necessary
condition because of the previous example, but it may be not sufficient.

In the next chapter, we shall introduce another extension of λΠ-calculus
called (functional) Pure Type Systems, and we shall see how those functional
Pure Type Systems can be embedded as a theory in λΠ-calculus modulo.

117

5
Embedding functional Pure Type

Systems in λΠ-calculus modulo

Context

We have detailed in the previous chapters the technique of expressing theo-
ries via a set of rewrite rules concerning propositions in natural deduction,
defining the deduction modulo, or via a set of rewrite rules concerning terms
in the λΠ-calculus, defining the λΠ-calculus modulo. In order to extend
the λΠ-calculus to express stronger theories than minimal predicate logic,
another solution is to add typing rules to the λΠ-calculus. For example, by
adding the possibility to type polymorphic products and type constructors
products to the λΠ-calculus, we obtain the calculus of constructions ([12]).
More generally, by authorizing an arbitrary set of sorts (not only Type and
Kind), different typing rules concerning sorts and products allowed, we ob-
tain the notion of Pure Types Systems (PTS) [5],[50]. In [14] G. Dowek has
defined an embedding as a theory in λΠ-calculus modulo of those PTS in
which uniqueness of types is satisfied, called functional PTS. This embed-
ding is inspired both by the expression of simple type theory in Deduction
modulo and by the mechanisms of universes à la Tarski [40] of Intuitionistic
type theory.

Contributions

We first provide a discussion on how to prove strong normalization of those
theories expressed in λΠ-calculus modulo, and obtain, as a corollary of
soundness of this embedding, a proof of strong normalization of the em-
bedded functional PTS. We then prove in this chapter, the conservativity of
this embedding. This property was not so simple to prove. Indeed, using the
λΠ-calculus to simulate PTS is very convenient since we can use the depen-

119

5. Functional PTS in λΠ modulo

dent types of λΠ and simulate therefore easily the behaviour of terms in PTS.
The obverse of that convenience is that the theory obtained in λΠ-modulo
can be more expressive than P , in the sense that there exists terms in this
theory which do not correspond to translations of terms of the embedded
PTS. We had therefore to be very precise concerning the form of statement
of conservativity we wanted to prove. This conservativity property we have
proved is similar to that of the Curry-de Bruijn-Howard correspondence, re-
lating terms in normal form in the theory expressed in λΠ-modulo to terms
in the embedded PTS. In order to prove this conservativity property, we
need to prove confluence of the theories in λΠ modulo which correspond to
embeddings of functional PTS.

Outline

We first define formally PTS, and functional Pure Type Systems. We then
define, for each functional PTS P , a theory in λΠ modulo called λΠP given
by specific signature and set of rewrite rules. We then define two translations
from terms of P to terms of λΠp. One as a term and one as a type. We
point out the soundness of our embedding by proving that the translation
as a term of a well-typed term of P is typed by the translation as a type
of the former type. In order to prove the conservativity of this embedding,
we first prove the confluence of all theories λΠP for P a functional PTS. We
then prove a first conservativity property: the fact that all terms in a certain
form called weak η-long normal form and typed by the translation as a type
of a type of P , are equivalent to a term of P well-typed by this same type.
We finally get rid of this condition about weak η-long forms by proving that
the weak η-long form of a well-typed term has the same type as this term.

5.1 The Pure Type Systems

As we have seen, the λΠ-calculus is a dependently typed lambda-calculus
that allows to express proofs of minimal predicate logic through the Brouwer-
Heyting-Kolmogorov interpretation and the Curry-de Bruijn-Howard corre-
spondence. It can be extended in several ways to express proofs of some
theory. A first solution is to express the theory in Deduction modulo [17, 20],
i.e. to orient the axioms as rewrite rules and to extend the λΠ-calculus to
express proofs in Deduction modulo [6]. We get this way the λΠ-calculus
modulo we have studied in the previous chapter. This idea of extending the
dependently typed lambda-calculus with rewrite rules is also that of Intu-
itionistic type theory used as a logical framework [42].

A second way to extend the λΠ-calculus is to add typing rules, in partic-
ular to allow polymorphic typing and type constructors. We get this way the
Calculus of Constructions [12] that allows to express proofs of simple type

120

5.1 The Pure Type Systems

theory and more generally the Pure Type Systems [5, 50, 4]. These two kinds
of extensions of the λΠ-calculus are somewhat redundant. For instance, sim-
ple type theory can be expressed in deduction modulo [18], hence the proofs
of this theory can be expressed in the λΠ-calculus modulo. But they can
also be expressed in the Calculus of Constructions. This suggests to relate
and compare these two ways to extend the λΠ-calculus.

We show in this chapter that all functional Pure Type Systems can be
embedded in the λΠ-calculus modulo using an appropriate rewrite system.
This rewrite system is inspired both by the expression of simple type theory
in Deduction modulo and by the mechanisms of universes à la Tarski [40]
of Intuitionistic type theory. In particular, this work extends Palmgren’s
construction of an impredicative universe in type theory [44].

There are several ways to extend the functional interpretation of proofs
to simple type theory. The first is to use the fact that simple type theory can
be expressed in Deduction modulo with rewrite rules only [18]. Thus, the
proofs of simple type theory can be expressed in the λΠ-calculus modulo, and
even in the λΠ−-calculus modulo. The second is to extend the λΠ-calculus
by adding the following typing rules, allowing for instance the construction
of the type ΠP : Type (P ⇒ P).

Γ ⊢ A : Kind Γ[x : A] ⊢ B : Type
Product3

Γ ⊢ Πx : A B : Type

Γ ⊢ A : Kind Γ[x : A] ⊢ B : Kind
Product4

Γ ⊢ Πx : A B : Kind

Γ ⊢ A : Kind Γ[x : A] ⊢ B : Type Γ[x : A] ⊢ t : B
Abstraction3

Γ ⊢ λx : A t : Πx : A B

Γ ⊢ A : Kind Γ[x : A] ⊢ B : Kind Γ[x : A] ⊢ t : B
Abstraction4

Γ ⊢ λx : A t : Πx : A B

We obtain the Calculus of Constructions [12].

The rules of the simply typed λ-calculus, the λΠ-calculus and of the
Calculus of Constructions can be presented in a schematic way as follows.

Definition 5.1 (Pure type system).
A Pure Type System P is defined by a set S, whose elements are called sorts,
a subset A of S × S, whose elements are called axioms and a subset R of
S × S × S, whose elements are called rules. The typing rules of P are

Empty
[] well-formed

Γ ⊢ A : s
Declaration s ∈ S and x not in Γ

Γ[x : A] well-formed

121

5. Functional PTS in λΠ modulo

Γ well-formed
Sort 〈s1, s2〉 ∈ A

Γ ⊢ s1 : s2

Γ well-formed x : A ∈ Γ
Variable

Γ ⊢ x : A

Γ ⊢ A : s1 Γ[x : A] ⊢ B : s2 Product 〈s1, s2, s3〉 ∈ R
Γ ⊢ Πx : A B : s3

Γ ⊢ A : s1 Γ[x : A] ⊢ B : s2 Γ[x : A] ⊢ t : B
Abstraction 〈s1, s2, s3〉 ∈ R

Γ ⊢ λx : A t : Πx : A B

Γ ⊢ t : Πx : A B Γ ⊢ u : A
Application

Γ ⊢ (t u) : (u/x)B

Γ ⊢ A : s Γ ⊢ B : s Γ ⊢ t : A
Conversion s ∈ S A ≡β B

Γ ⊢ t : B

Example 5.1. The simply typed λ-calculus is the system defined by the sorts
Type and Kind, the axiom 〈Type,Kind〉 and the rule 〈Type, Type, Type〉.
The λΠ-calculus is the system defined by the same sorts and axiom and the
rules 〈Type, Type, Type〉 and 〈Type,Kind,Kind〉. The Calculus of Con-
structions is the system defined by the same sorts and axiom and the rules
〈Type, Type, Type〉, 〈Type,Kind,Kind〉, 〈Kind, Type, Type〉 and
〈Kind,Kind,Kind〉. Other examples of Pure Type Systems are Girard’s
systems F and Fω.

In all Pure Type Systems, types are preserved under reduction and the
β-reduction relation is confluent. It terminates in some systems, such as the
λΠ-calculus, the Calculus of Constructions, the system F and the system
Fω. Uniqueness of types is lost in general, but it holds for the λΠ-calculus,
the Calculus of Constructions, the system F and the system Fω, and more
generally for all functional Pure Type Systems.

Definition 5.2 (Functional Pure Type Systems).
A type system is said to be functional if

〈s1, s2〉 ∈ A and 〈s1, s3〉 ∈ A implies s2 = s3

〈s1, s2, s3〉 ∈ R and 〈s1, s2, s4〉 ∈ R implies s3 = s4

5.2 Embedding functional Pure Type Systems in

the λΠ-calculus modulo

We have seen that the λΠ-calculus modulo and the Pure Type Systems are
two extensions of the λΠ-calculus. At a first glance, they seem quite different
since the latter adds more typing rules to the λΠ-calculus, while the former

122

5.2 Embedding functional PTS in λΠ modulo

adds more computation rules. But they both allow to express proofs of
simple type theory.

We show in this section that functional Pure Type Systems can, in fact,
be embedded in the λΠ-calculus modulo with an appropriate rewrite system.

5.2.1 Definition

Consider a functional Pure Type System P = 〈S,A,R〉. We build the fol-
lowing context and rewrite system.
The context ΣP contains, for each sort s, two variables

Us : Type and εs : Us ⇒ Type

for each axiom 〈s1, s2〉, a variable

ṡ1 : Us2

and for each rule 〈s1, s2, s3〉, a variable

Π̇〈s1,s2,s3〉 : ΠX : Us1 (((εs1 X) ⇒ Us2) ⇒ Us3)

The type Us is called the universe of s and the symbol εs the decoding
function of s.

The rewrite rules are
εs2(ṡ1) −→ Us1

in the empty context and with the type Type, and

εs3(Π̇〈s1,s2,s3〉 X Y) −→ Πx : (εs1 X) (εs2 (Y x))

in the context X : Us1 , Y : (εs1 X) ⇒ Us2 and with the type Type.

These rules are called the universe-reduction rules, we write ≡P for the
equivalence relation generated by these rules and the rule β and we call the
λΠP -calculus the λΠ-calculus modulo these rewrite rules and the rule β. To
ease notations, in the λΠP -calculus, we do not recall the context ΣP in each
sequent and write Γ ⊢ t : T for ΣPΓ ⊢ t : T , and we note ≡ for ≡P when
there is no ambiguity.

Example 5.2. The embedding of the Calculus of Constructions is defined
by the context

˙Type : UKind UType : Type UKind : Type

εType : UType ⇒ Type εKind : UKind ⇒ Type

Π̇〈Type,Type,Type〉 : ΠX : UType (((εType X) ⇒ UType) ⇒ UType)

123

5. Functional PTS in λΠ modulo

Π̇〈Type,Kind,Kind〉 : ΠX : UType (((εType X) ⇒ UKind) ⇒ UKind)

Π̇〈Kind,Type,Type〉 : ΠX : UKind (((εKind X) ⇒ UType) ⇒ UType)

Π̇〈Kind,Kind,Kind〉 : ΠX : UKind (((εKind X) ⇒ UKind) ⇒ UKind)

and the rules
εKind(˙Type) −→ UType

εType(Π̇〈Type,Type,Type〉 X Y) −→ Πx : (εType X) (εType (Y x))

εKind(Π̇〈Type,Kind,Kind〉 X Y) −→ Πx : (εType X) (εKind (Y x))

εType(Π̇〈Kind,Type,Type〉 X Y) −→ Πx : (εKind X) (εType (Y x))

εKind(Π̇〈Kind,Kind,Kind〉 X Y) −→ Πx : (εKind X) (εKind (Y x))

We shall use two translations from terms of a functionnal pure type sys-
tem to the associated λΠ-calculus modulo. As we have seen for the variables
used to represent a sort of the functionnal pure type system, we distinguish
whether this sort is considered as a term or as a type. This is useful not to
confound those two different cases. Hence we shall define a translation as a
term and a translation as a type of terms of the functionnal pure type sys-
tem. We can notice that the translation as a type use the so-called decoding
functions and the translation as a term.

Definition 5.3 (Translation as a term).
Let Γ be a context in a functional Pure Type System P and t a term well-
typed in Γ, we defined the translation |t| of t in Γ, that is a term in λΠP , as
follows

• |x| = x,

• |s| = ṡ,

• |Πx : A B| = Π̇〈s1,s2,s3〉 |A| (λx : (εs1 |A|) |B|), where s1 is the type of
A, s2 is the type of B and s3 the type of Πx : A B,

• |λx : A t| = λx : (εs |A|) |t|,

• |t u| = |t| |u|.

Definition 5.4 (Translation as a type).
Consider a term A of type s for some sort s. The translation of A as a type
is

‖A‖ = εs |A|.

Note that if A is a well-typed sort s′ then

‖s′‖ = εs ṡ
′ ≡P Us′ .

124

5.2 Embedding functional PTS in λΠ modulo

We extend this definition to non well-typed sorts, such as the sort Kind in
the Calculus of Constructions, by

‖s′‖ = Us′

The translation of a well formed context is defined by

‖[]‖ = [] and ‖Γ[x : A]‖ = ‖Γ‖[x : ‖A‖]

5.2.2 Soundness of the embedding

Let us first prove some useful lemmas for proving the soundness of the em-
bedding we have defined in the previous subsection. The first one expresses
the fact that the translation (as a term or as a type) of a substitution is the
substitution of the associated translated terms.

Lemma 5.1.
For all variables x and terms t, u such that t and (u/x)t are well-typed,
we have |(u/x)t| = (|u|/x)|t| and ‖(u/x)t‖ = (|u|/x)‖t‖.

Proof. • Let us first prove that |(u/x)t| = (|u|/x)|t| by induction of the
structure of t.

– If t is a variable y, then either y = x and in this case,
|(u/x)t| = |u| = (|u|/x)|t| since |t| = |x| = x. Or y 6= x, and
in this case, |(u/x)t| = |y| = y = (|u|/x)|y|.

– If t is a sort s, then (u/x)s = s therefore |(u/x)s| = |s| = ṡ =
(|u|/x)ṡ since ṡ 6= x.

– If t is a product Πy : A.B corresponding to a rule 〈s1, s2, s3〉, then

|(u/y)(Πx : A.B)| = |Πx : (u/y)A.(u/y)B|

= Π̇〈s1,s2,s3〉 |(u/y)A| (λx : (εs1 |(u/y)A|) |(u/y)B|)

= Π̇〈s1,s2,s3〉 (|u|/y)|A| (λx : (εs1 (|u|/y)|A|) (|u|/y)|B|)

(by induction hypothesis)

= (|u|/y)(Π̇〈s1,s2,s3〉 (|A| (λx : (εs1 |A|) (|B|))

= (|u|/y)|Πx : A.B|

– If t is an abstraction λy : A.v with s the sort of A, then

|(u/y)(λx : A.v)| = |λx : (u/y)A.(u/y)v|

= λx : (εs|(u/y)A|).|(u/y)v|

= λx : (εs(|u|/y)|A|).(|u|/y)|v|

(by induction hypothesis)

= (|u|/y)λx : (εs|A|).|v|

= (|u|/y)|λx : A.v|

125

5. Functional PTS in λΠ modulo

(notice that A and (u/y)A have the same sort using an analogous
property as in lemma 4.2)

– If t is an application t1 t2, then (|u|/x)|t| = (|u|/x)(|t1| |t2|) =
(|u|/x)|t1| (|u|/x)|t2| = |(u/x)t1| |(u/x)t2| by induction hypothe-
sis and it is therefore equal to |(u/x)t1 (u/x)t2| = |(u/x)(t1 t2)|.

• If ‖t‖ is defined then either t is an ill-typed sort s and in this case
‖(u/x)s‖ = ‖s‖ = Us = (|u|/x)Us. Or ‖t‖ = εst with s the sort of t.
And we have (|u|/x)‖t‖ = (|u|/x)(ε|t|) = ε (|u|/x)|t| = ε |(u/x)t| =
‖(u/x)t‖, using the first point.

The following lemma states that if a term β-reduces to another one then so
do their translations as a term.

Lemma 5.2.
For all (well-typed) terms t, u, if t −→β u then |t| −→β |u|.

Proof. We can notice that an abstraction of a PTS P is translated (as a
term) as an abstraction of the associated λΠP -calculus modulo, and that the
translation as a term of an application is the application of the translations
as a term of the terms of this application, therefore a β-redex of a PTS P is
translated as a β-redex of the associated λΠP -calculus modulo.

The following lemma states that the translation as a type of a product is
equivalent to the product of the translations of the arguments of the former
product. This reflects the fact that we exploit the similarities of the λΠ-
calculus modulo and Pure Type Systems, and use the actual product of
λΠ-calculus modulo to represent the products of the embedded Pure Type
System.

Lemma 5.3.
For all well-formed products Πx : A B of a PTS P ,
we have ‖Πx : A. B‖ ≡P Πx : ‖A‖. ‖B‖

Proof. Let s1 be the type of A, s2 that of B and s3 that of Πx : A B. We
have

‖Πx : A. B‖ = εs3 |Πx : A. B|

= εs3 (Π̇〈s1,s2,s3〉 |A| (λx : (εs1 |A|) |B|))

≡P Πx : (εs1 |A|). (εs2 ((λx : (εs1 |A|) |B|) x))

≡P Πx : (εs1 |A|). (εs2 |B|)

≡P Πx : (εs1 |A|). (εs2 |B|)

= Πx : ‖A‖. ‖B‖

126

5.2 Embedding functional PTS in λΠ modulo

Example 5.3. In the Calculus of Constructions, the translation as a type of
ΠX : Type (X ⇒ X) is ΠX : UType ((εType X) ⇒ (εType X)). The transla-
tion as a term of λX : Type λx : X x is the term λX : UType λx : (εTypeX) x.
Notice that the former is the type of the latter. The generalization of this
remark is the following proposition.

Proposition 5.1 (Soundness).
For all contexts Γ, and terms t, B of a functional PTS P ,
If Γ ⊢ t : B in P then ‖Γ‖ ⊢ |t| : ‖B‖ in λΠP .

Proof. By induction on the structure of t.

• If t is a variable x, then |x| = x and x is declared of type ‖B‖ in ‖Γ‖ .

• If t = s1 thenB = s2 (where 〈s1, s2〉 is an axiom), we have ṡ1 : Us2 = ‖s2‖.

• If t = Πx : C D, let s1 be the type of C, s2 that of D and s3 that of
t. By induction hypothesis, we have

‖Γ‖ ⊢ |C| : Us1 and ‖Γ‖, x : ‖C‖ ⊢ |D| : Us2

i.e.

‖Γ‖, x : (εs1 |C|) ⊢ |D| : Us2

Thus
‖Γ‖ ⊢ (Π̇〈s1,s2,s3〉 |C| λx : (εs1 |C|) |D|) : Us3

i.e.

‖Γ‖ ⊢ |Πx : C D| : ‖s3‖

• If t = λx : C u, then we have

Γ, x : C ⊢ u : D

and B = Πx : C D. By induction hypothesis, we have

‖Γ‖, x : ‖C‖ ⊢ |u| : ‖D‖

i.e.

‖Γ‖, x : (εs1 |C|) ⊢ |u| : ‖D‖ then ‖Γ‖ ⊢ λx : (εs1 |C|) |u| : Πx : ‖C‖ ‖D‖

i.e.

‖Γ‖ ⊢ |t| : ‖Πx : C D‖

127

5. Functional PTS in λΠ modulo

• If t = u v, then we have

Γ ⊢ u : Πx : C D, Γ ⊢ v : C

and B = (v/x)D. By induction hypothesis, we get

‖Γ‖ ⊢ |u| : ‖Πx : C D‖ = Πx : ‖C‖ ‖D‖ and ‖Γ‖ ⊢ |v| : ‖C‖

Thus
‖Γ‖ ⊢ |t| : (|v|/x)‖D‖ = ‖(v/x)D‖

This soundness property about typing of our embedding allows us to
prove another soundness property about strong normalization: for all func-
tional PTS P , the strong normalization of P is entailed by the strong nor-
malization of λΠP .

Proposition 5.2.
If λΠP is strongly normalizing then P is strongly normalizing.

Proof. Let t1 be a well-typed term in P and t1, t2, ... be a reduction sequence
of t1 in P . By Proposition 5.1, the term |t1| is well-typed in λΠP and, by
lemma 5.2, |t1|, |t2|, ... is a reduction sequence of |t1| in λΠP . Hence it is
finite.

5.3 How to prove strong normalization of the em-

bedded theories in λΠ-calculus modulo

We propose in this section a discussion on how to prove strong normalization
of such a theory obtained as the embedding, defined in section 5.2.1, of a
functional PTS in λΠ-calculus modulo. As a corollary of soundness of this
embedding, proving strong normalization of such a theory in λΠ-calculus
modulo also provides a proof of strong normalization of the embedded Pure
Types System. For example, proving strong normalization of the theory in
λΠ-calculus modulo defined in example 5.2, would provide another proof
of strong normalization of the Calculus of Constructions. Now raises the
question of which method should we use to prove strong normalization of
such theories. Can we use the notion of pre-model we have defined in section
4.3, or should we use a more usual technique as the one defined in [26] ?

We have seen in section 4.3.3 how to build a pre-model for two very simple
theories, the empty theory and the theory defined by the single rewrite rule

128

5.3 Strong normalization of the embedded theories

P −→ Πx : Q.Q with signature [P : Type, Q : Type]. But building a pre-
model for stronger theories can be more difficult. Let us analyze the case of
the embedding in λΠ modulo of the Calculus of Constructions: λΠCC .

Expressing polymorphic types and type constructors by the meaning of
rewrite rules in λΠ-calculus modulo instead of rules of the Calculus of Con-
structions does not seem to simplify the method to prove strong normaliza-
tion of this theory. We conjecture that we can prove strong normalization
of λΠCC by adapting the method defined in [26] in order to interpret R-
equivalent types by the same set of reducibility candidates. But it seems dif-
ficult, because of the presence of polymorphic types and type constructors,
to avoid using a technique which is not directly reusable with our definition
of pre-model of section 4.3.

This technique consists in interpreting products which correspond to
polymorphism (rule 〈Kind, Type, Type〉) and types construction (rule
〈Kind,Kind,Kind〉) by the intersection of a set of reducibility candidates.
In [26], a valuation ξ is a function which associates sets of terms to vari-
ables, and the interpretation is a function which associates to a type and a
valuation, a set of proof-terms. In order to interpret polymorphic and type
constructors products, Geuvers first defines for each term A of type Kind,
the set-interpretation of A as the set of sets of proof-terms V(A). It allows
to define, when A is a term of type Kind, the interpretation JΠx : A.BKξ of
a product Πx : A.B and a valuation ξ as the set of terms t which map each
element of JAKξ to a term which belongs to every JBKξ+〈x,a〉 for a ∈ V(A).
This technique is similar to the interpretation of universal quantifiers in the
definition of pre-models for deduction modulo of section 2.3.2. It allows to
avoid the circularity which appears when trying to interpret polymorphic
and types constructor products using the dependent intersection we have
defined in property (c4) of pre-models for λΠ-calculus modulo in section 4.3:
we cannot define inductively the interpretation of Πx : A.B from all inter-
pretations of (u/x)B for each u in the interpretation of A since the size of
(u/x)B is strictly greater than the size of Πx : A.B when u contains prod-
ucts and x appears free in B. Notice that this problem does not appear in
deduction modulo, in the case of the interpretation of the universal quantifier
as a dependent intersection, since terms cannot contain types in deduction
modulo therefore for all variables x, terms t and propositions A, the size of
∀x.A is strictly greater than the size of (t/x)A.

But this interpretation we would obtain by adapting the method of [26] does
not seem, at a first glance, to satisfy the property (c4) of our definition of
pre-models for λΠ-calculus modulo. We might be able to use this technique
of (non-dependent) intersection anyway, by using the fact that polymorphic
and types constructor products are represented by variables of the signa-
ture in λΠ-calculus modulo, which may not bring as many problems if they

129

5. Functional PTS in λΠ modulo

are not reduced to the products associated by the rewrite rules. It will be
investigated in future work.

To summarize, proofs of strong normalization for λΠCC cannot reuse directly
neither the technique defined in [26], nor the one defined in section 4.3.3.
But if we suppose that we can adapt the technique of [26] for λΠCC , then
this system is strongly normalizing and, using the completeness theorem, it
has a pre-model. The link between the model built using the method of
[25] and the pre-model given by the completeness theorem still needs to be
investigated.

5.4 Conservativity of the embedding

In this section, we prove conservativity of our embbeding of functional PTS in
λΠ-calculus modulo. We shall see that this conservativity is not as strong as
the soundness we have proved: there exists well-typed terms in λΠP -calculus
modulo which are not translations of well-typed terms of P (think about the
embedding of the simply-typed λ-calculus which is not polymorphic, whereas
λΠ-calculus modulo is). We shall see that the notion of conservativity prop-
erty we shall prove is similar to that of the Curry-de Bruijn-Howard corre-
spondence: if a type is inhabited by a normal term in λΠP , then this normal
term is the translation of a well-typed term of P . We need, for that purpose,
to prove first confluence in λΠP -calculus modulo, for any functional PTS P .

5.4.1 Confluence of λΠP -calculus modulo

We prove in this subsection that for any functional Pure Type System P , the
system λΠP is confluent. Like that of pure λ-calculus, the reduction relation
of λΠP is not strongly confluent: the term M = (λx (x x)) ((λy y) z) has
two one-step reducts: N1 = (λx (x x)) z and N2 = ((λy y) z) ((λy y) z)
and these two terms have no common one-step reduct. Thus, we introduce
another reduction relation (−→pp) that can reduce, in one step, none to all
the βR-redices that appears in a term, that is strongly confluent and such
that −→∗

pp = −→∗. Then, from the confluence of the relation −→pp , we
shall deduce that of the relation −→.

Definition 5.5 (Parallel reduction).
The parallel reduction (−→pp) in λΠP , is the smallest relation on terms
which verifies the following rules:

(α)
M −→pp M

130

5.4 Conservativity of the embedding

(β) 〈s1, s2〉 ∈ A
εs2 ṡ1 −→pp Us1

A −→pp A′ M −→pp M ′

(γ)
λx : A M −→pp λx : A′ M ′

A −→pp A′ B −→pp B′

(δ)
Πx : A B −→pp Πx : A′ B′

M −→pp M ′ N −→pp N ′

(θ1)
M N −→pp M ′ N ′

M −→pp M ′ N −→pp N ′

(θ2)
(λx : A M) N −→pp (N ′/x)M ′

A −→pp A′ B −→pp B′

(η1) 〈s1, s2, s3〉 ∈ R
εs3 (Π̇〈s1,s2,s3〉 A B) −→pp εs3 (Π̇〈s1,s2,s3〉 A

′ B′)

A −→pp A′ B −→pp B′

(η2) 〈s1, s2, s3〉 ∈ R
εs3 (Π̇〈s1,s2,s3〉 A B) −→pp Πx : (εs1 A

′) (εs2(B
′ x))

Then we prove that if two terms are parallel reducts of two other terms,
then the substitution of one parallel reduct by the other parallel reduct is
also a parallel reduct of the substitution on the associated term by the other
associated one.

Lemma 5.4. For all terms M , M ′, N , N ′ of λΠP ,
if M −→pp M ′ and N −→pp N ′, then (N/x)M −→pp (N ′/x)M ′.

Proof. By induction on M.

• if M is a variable,

⋆ if M = x, then M ′ = M = x
(because M −→pp M ′ and the only rule we can apply is (α)).
Therefore, (N/x)M = N −→pp N ′ = (N ′/x)M ′.

⋆ if M = y 6= x, then, by the rule (α), (N/x)M = y −→pp y =
(N ′/x)M ′ (and we conclude by the same way for M = Type and
M = Kind).

• if there exists terms A and B such that M = λy : A B, then there
exists terms A′ and B′ such that M ′ = λy : A′ B′ with A −→pp A′

and B −→pp B′ (because the only rules we can apply to an abstraction
are (α) and (γ)). By induction hypothesis, we have (N/x)A −→pp (N ′/x)A′

and (N/x)B −→pp (N ′/x)B′. Therefore, using the rule (γ), we have
(N/x)M = λy : ((N/x)A) (N/x)B −→pp λy : ((N ′/x)A′) (N ′/x)B′ = (N ′/x)M ′

131

5. Functional PTS in λΠ modulo

• if there exists terms A and B such that M = Πy : A B, then there
exists terms A′ and B′ such that M ′ = Πy : A′ B′ with A −→pp A′ and
B −→pp B′ (because the only rules we can apply to an abstraction are
(α) and (δ)). By induction hypothesis, we have (N/x)A −→pp (N ′/x)A′

and (N/x)B −→pp (N ′/x)B′. Therefore, using the rule (δ), we have
(N/x)M = Πy : ((N/x)A) (N/x)B −→pp Πy : ((N ′/x)A′) (N ′/x)B′ = (N ′/x)M ′

• if there exists terms P and Q such that M = P Q,
if the last rule of the derivation of M −→pp M ′ is:

(α) then M ′ = M = P Q and we have P −→pp P and Q −→pp Q,
then, by induction hypothesis, (N/x)P −→pp (N ′/x)P and
(N/x)Q −→pp (N ′/x)Q. Therefore, using the rule (θ1), we have
(N/x)M = (N/x)P (N/x)Q −→pp (N ′/x)P (N ′/x)Q = (N ′/x)M ′.

(β) then there exists a rule 〈s1, s2〉 such thatM = εs2 ṡ1 andM ′ = Us1 .
Therefore, by (β), (N/x)M = εs2 ṡ1 −→pp Us1 = (N ′/x)M ′

(θ1) then there exists terms P ′ and Q′ such that M ′ = P ′ Q′ with
P −→pp P ′ and Q −→pp Q′. By induction hypothesis, we have
(N/x)P −→pp (N ′/x)P ′ and (N/x)Q −→pp (N ′/x)Q′. Therefore, by (θ1),
(N/x)M = (N/x)P (N/x)Q −→pp (N ′/x)P ′ (N ′/x)Q′ = (N ′/x)M ′

(θ2) then there exists terms A, B, B′, Q′ such that P = λy : A B and
M ′ = (Q′/y)B′ with B −→pp B′ and Q −→pp Q′. By induction hy-
pothesis, we have (N/x)B −→pp (N ′/x)B′ and (N/x)Q −→pp (N ′/x)Q′.
Therefore, by (θ2),
(N/x)M = (λy : (N/x)A (N/x)B) (N/x)Q −→pp ((N ′/x)Q′/y) (N ′/x)B′

= (N ′/x)((Q′/y)B′) = (N ′/x)M ′

(η1) then there exists a rule 〈s1, s2, s3〉 and terms A, A′, B, B′ such
that M = εs3 (Π̇〈s1,s2,s3〉 A B) and M ′ = εs3 (Π̇〈s1,s2,s3〉 A

′ B′),
with A −→pp A′ and B −→pp B′. By induction hypothesis, we have
(N/x)A −→pp (N ′/x)A′ and (N/x)B −→pp (N ′/x)B′. Therefore, by (η1),
(N/x)M = εs3 (Π̇〈s1,s2,s3〉 (N/x)A (N/x)B)

−→pp εs3 (Π̇〈s1,s2,s3〉 (N ′/x)A′ (N ′/x)B′) = (N ′/x)M ′.

(η2) then there exists a rule 〈s1, s2, s3〉 and terms A, A′, B, B′ such
thatM = εs3 (Π̇〈s1,s2,s3〉 AB) andM ′ = Πy : (εs1 A

′) (εs2 (B′ y)),
with A −→pp A′ and B −→pp B′. By induction hypothesis, we have
(N/x)A −→pp (N ′/x)A′ and (N/x)B −→pp (N ′/x)B′. Therefore, by (η2),
(N/x)M = εs3 (Π̇〈s1,s2,s3〉 (N/x)A (N/x)B)
−→pp Πy : (εs1 (N ′/x)A′) (εs2 ((N ′/x)B′ y)) = (N ′/x)M ′.

Then we associate, to each term t of λΠP , a term t†, obtained by reducing
in parallel all its βR-redices.

132

5.4 Conservativity of the embedding

Definition 5.6. Let t be a term of λΠP .
We define, by induction on the structure of t, the term t† as follows:

• x† = x, Type† = Type, Kind† = Kind

• (λx : A M)† = λx : A† M †, (Πx : A B)† = Πx : A† B†

• ((λx : A M) N)† = (N †/x)M †

• (εs2 ṡ1)
† = Us1 , if 〈s1, s2〉 ∈ A,

• (εs3(Π̇〈s1,s2,s3〉A B))† = Πx : (εs1A
†) (εs2(B

†x)), if 〈s1, s2, s3〉 ∈ R,

• (M N)† = M †N †, otherwise.

And we verify that all terms t reduce to t† in one step of parallel reduction.

Lemma 5.5. If M is a term of λΠP , then M −→pp M †

Proof. By induction on M.

• x† = x, Type† = Type, and Kind† = Kind, then by the rule (α), we
have x −→pp x†, Type −→pp Type† and Kind −→pp Kind†

• If we suppose, by induction hypothesis, A −→pp A† and N −→pp N †,
then, by the rule (γ), λx : A N −→pp λx : A† N † = (λx : A N)†

• If A −→pp A† and B −→pp B†, then by the rule (δ),
Πx : A B −→pp Πx : A† B† = (Πx : A B)†

• If M is an application then we consider four cases.

⋆ If there exists an axiom 〈s1, s2〉 such that M = εs2 ṡ1, then, by
the rule (β), we have εs2 ṡ1 −→pp Us1 = (εs2 ṡ1)

†.

⋆ If there exists terms A, N and P such that M = (λx : A N) P ,
and if we suppose, by induction hypothesis that N −→pp N †

and P −→pp P †, then using the rule (θ2), we have
(λx : A N) P −→pp (P †/x)N † = ((λx : A N) P)†.

⋆ If there exists a rule 〈s1, s2, s3〉 and terms A and B such that
M = εs3 (Π̇〈s1,s2,s3〉 A B), and if we suppose, by induction hypoth-
esis that A −→pp A† and B −→pp B†, then by the rule (η2), we have
εs3 (Π̇〈s1,s2,s3〉 A B) −→pp Πx : (εs1 A

†) (εs2(B
† x)) = (εs3 (Π̇〈s1,s2,s3〉 A B))†.

⋆ Otherwise, if there exists terms N and P such that M = N P ,
and if we suppose, by induction hypothesis, that N −→pp N † and
P −→pp P †, then by the rule (θ1) we have N P −→pp N † P † =
(N P)†.

133

5. Functional PTS in λΠ modulo

Let us prove now that a one-step parallel reduct of a term M can be parallely
reducted to M † in one step of parallel reduction.

Lemma 5.6. For all terms M and M ′ of λΠP ,
if M −→pp M ′ then M ′ −→pp M †

Proof. By induction on the last rule of the derivation of M −→pp M ′.
If the last rule is:

(α) then M ′ = M . By lemma 5.5 we have M −→pp M †

(β) then there exists a rule 〈s1, s2〉 such that M = εs2 ṡ1 and M ′ = Us1 .
Therefore M ′ −→pp Us1 = M † by the rule (α).

(γ) then there exists terms A, A′, P and P ′ such that M = λx : A P
and M ′ = λx : A′ P ′ with A −→pp A′ and P −→pp P ′. By induction
hypothesis, we have A′ −→pp A† and P ′ −→pp P †, then, by the rule (γ),
M ′ = λx : A′ P ′ −→pp λx : A† P † = M †

(δ) then there exists terms A, A′, B and B′ such that M = Πx : A B
and M ′ = Πx : A′ B′ with A −→pp A′ and B −→pp B′. By induction
hypothesis, we have A′ −→pp A† and B′ −→pp B†, then, by the rule (δ),
M ′ = Πx : A′ B′ −→pp Πx : A† B† = M †

(θ1) then there exists terms P , P ′, Q and Q′ such that M = P Q and
M ′ = P ′ Q′ with P −→pp P ′ and Q −→pp Q′.

⋆ If there exists terms A and B such that P = λx : A B, then
there exists terms A′ and B′ such that P ′ = λx : A′ B′ with
A −→pp A′ and B −→pp B′ (because the only rules we can apply to
an abstraction are (α) and (γ)). Therefore, by induction hypoth-
esis, B′ −→pp B† and Q′ −→pp Q†. And, using the rule (θ2), we have
M ′ = P ′ Q′ = (λx : A′ B′) Q′ −→pp (Q†/x)B† = ((λx : A B) Q)† = M †

⋆ If there exists a axiom 〈s1, s2〉 such that P = εs2 and Q = ṡ1,
then P ′ = P and Q′ = Q (because the only rules we can apply to
(εs2 ṡ1) are (α), (β) and (θ1 with (α) on both premises)).
And, by (β), M ′ = (εs2 ṡ1) −→pp Us1 = M †

⋆ If there exists a rule 〈s1, s2, s3〉 and terms A, B, such that P = εs3
and Q = Π̇〈s1,s2,s3〉A B, then P ′ = P = εs3 (because the only rule
we can apply is (α)), and there exists terms A′ and B′ such that
Q′ = Π̇〈s1,s2,s3〉A

′ B′ with A −→pp A′ and B −→pp B′ (because the
only rule we can apply is (θ1)). Therefore, by induction hypoth-
esis, A′ −→pp A† and B′ −→pp B†. And, by (η2),
M ′ = εs3 (Π̇〈s1,s2,s3〉A

′ B′) −→pp Πx : (εs1 A
†)(εs2 (B† x) = M †

134

5.4 Conservativity of the embedding

⋆ Otherwise, (P Q)† = P † Q†. We have, by induction hypothesis,
P ′ −→pp P † and Q′ −→pp Q†. Therefore, using the rule (θ1), we have
M ′ = P ′ Q′ −→pp P † Q† = M †.

(θ2) then there exists terms A, B, B′, Q, Q′ such that M = (λx : A B) Q
and M ′ = (Q′/x)B′ with B −→pp B′ and Q −→pp Q′.
By induction hypothesis, we have B′ −→pp B† and Q′ −→pp Q†.
Therefore, by lemma 5.4, M ′ = (Q′/x)B′ −→pp (Q†/x)B† = M †

(η1) then there exists a rule 〈s1, s2, s3〉 and terms A, B such that
M = εs3 (Π̇〈s1,s2,s3〉 A B) and M ′ = εs3 (Π̇〈s1,s2,s3〉 A

′ B′)
with A −→pp A′ and B −→pp B′.
By induction hypothesis, we have A′ −→pp A† and B′ −→pp B†.
Therefore, by (η2),
M ′ = εs3 (Π̇〈s1,s2,s3〉 A

′ B′) −→pp Πx : (εs1A
†) (εs2(B

†x)) = M †.

(η2) then there exists a rule 〈s1, s2, s3〉 and terms A, B such that
M = εs3 (Π̇〈s1,s2,s3〉 A B) and M ′ = Πx : (εs1A

′) (εs2(B
′x))

with A −→pp A′ and B −→pp B′.
By induction hypothesis, we have A′ −→pp A† and B′ −→pp B†.
Therefore, by (α), (δ) and (η1),
M ′ = Πx : (εs1A

′) (εs2(B
′x)) −→pp Πx : (εs1A

†) (εs2(B
†x)) = M †.

As a corollary of the previous lemma we can prove now that the relation
−→pp is strongly confluent (i.e. one-step confluent).

Lemma 5.7. The relation −→pp is strongly confluent in λΠP , i.e. for all
M , M ′ and M ′′, if M −→pp M ′ and M −→pp M ′′ then there exists a term N
such that M ′ −→pp N and M ′′ −→pp N .

Proof. By lemma 5.6, M ′ −→pp M † and M ′′ −→pp M †.

Finally, we focus on the relations between parallel reduction and usual re-
duction, to conclude that a term M can be reduced in an abitrary number
of steps to a term M ′ if and only if it can be parallely reduced in an abitrary
number of steps to M ′.

Lemma 5.8. For all terms M and M ′ of λΠP ,

1. if M −→M ′ then M −→pp M ′

2. if M −→pp M ′ then M −→∗ M ′

3. M −→∗
pp M ′ if and only if M −→∗ M ′ (i.e. −→∗

pp = −→∗).

135

5. Functional PTS in λΠ modulo

Proof.

1. If M −→M ′, then M −→β M
′ or M −→R M ′

⋆ If M −→β M
′ then M −→pp M ′, by (θ2) and (α)

⋆ If M −→R M ′ then M −→pp M ′, by (β), or (η2) and (α)

2. By induction on the last rule of the derivation of M −→pp M ′.
If the last rule is:

(α) then M ′ = M , and we have M −→∗ M .

(β) then there exists a rule 〈s1, s2〉 such that M = εs2 ṡ1 and M ′ =
Us1 , and we have εs2 ṡ1 −→R Us1 , therefore M −→∗ M ′.

(γ) then there exists terms A, A′, P and P ′ such that M = λx : A P ,
M ′ = λx : A′ P ′ with A −→pp A′ and P −→pp P ′. By induction
hypothesis, we have A −→∗ A′ and P −→∗ P ′, therefore
M = λx : A P −→∗ λx : A′ P ′ = M ′.

(δ) then there exists terms A, A′, B and B′ such that M = Πx : A B,
M ′ = Πx : A′ B′ with A −→pp A′ and B −→pp B′. By induction
hypothesis, we have A −→∗ A′ and B −→∗ B′, therefore
M = Πx : A B −→∗ Πx : A′ B′ = M ′.

(θ1) then there exists terms P , P ′, Q and Q′ such that M = P Q
and M ′ = P ′ Q′ with P −→pp P ′ and Q −→pp Q′. By induction
hypothesis, we have P −→∗ P ′ and Q −→∗ Q′, therefore
M = P Q −→∗ P ′ Q′ = M ′

(θ2) then there exists terms A, B, B′, Q, Q′ such that M = (λx :
A B) Q andM ′ = (Q′/x)B′ with B −→pp B′ and Q −→pp Q′. By in-
duction
hypothesis, we have B −→∗ B′ and Q −→∗ Q′, therefore
M = (λx : A B) Q −→∗ (λx : A B′) Q′ −→β (Q′/x)B′ = M ′.

(η1) then there exists a rule 〈s1, s2, s3〉 and terms A, B such that
M = εs3 (Π̇〈s1,s2,s3〉 A B) and M ′ = εs3 (Π̇〈s1,s2,s3〉 A

′ B′)
with A −→pp A′ and B −→pp B′. By induction hypothesis,
we have A −→∗ A′ and B −→∗ B′, and therefore
M = εs3 (Π̇〈s1,s2,s3〉 A B) −→∗ εs3 (Π̇〈s1,s2,s3〉 A

′ B′) = M ′.

(η2) then there exists a rule 〈s1, s2, s3〉 and terms A, B such that
M = εs3 (Π̇〈s1,s2,s3〉 A B) and M ′ = Πx : (εs1A

′) (εs2(B
′x))

with A −→pp A′ and B −→pp B′. By induction hypothesis, we have
A −→∗ A′ and B −→∗ B′, therefore
M = εs3 (Π̇〈s1,s2,s3〉 A B) −→∗ εs3 (Π̇〈s1,s2,s3〉 A

′ B′)
−→R Πx : (εs1A

′) (εs2(B
′x)) = M ′.

136

5.4 Conservativity of the embedding

3. By induction on the number of reductions in M −→∗ M ′ and the first
point, for one way. And by induction on the length of the derivation
of M −→pp M ′ and the second point for the other way.

Finally, from strong confluence of −→pp , we can deduce confluence of −→ in
λΠP -calculus modulo.

Proposition 5.3.
The relation −→ is confluent in λΠP , i.e. for all M , M ′ and M ′′, if
M −→∗ M ′ and M −→∗ M ′′ then there exists a term N such that M ′ −→∗ N
and M ′′ −→∗ N .

Proof. From lemma 5.7 the relation −→pp is strongly confluent, hence it is
confluent. Hence, by lemma 5.8 the relation −→ is confluent.

5.4.2 Which notion of conservativity?

Let P be a functional Pure Type System. Of course, since we can embed
less powerful PTS (as the simply-typed λ-calculus), all terms of a λΠP -
calculus modulo do not correspond to the translation of a term of P (think
about the dependent product, namely). We could attempt to prove that
if the type ‖A‖ is inhabited in λΠP , then A is inhabited in P , and more
precisely that if Γ is a context and A a term in P and t a term in λΠP , such
that ‖Γ‖ ⊢ t : ‖A‖, then there exists a term u of P such that |u| = t and
Γ ⊢ u : A. Unfortunately this property does not hold in general as shown by
the following counterexamples.

Example 5.4. If P is the simply-typed lambda-calculus, then the polymor-
phic identity is not well-typed in P , in particular:

nat : Type 0 ((λX : Type λx : X x) nat) : (nat⇒ nat)

however, in λΠ, we have

nat : ‖Type‖ ⊢ ((λX : ‖Type‖ λx : ‖X‖ x) |nat|) : ‖nat⇒ nat‖

Example 5.5. If 〈s1, s2, s3〉 is a rule of P , then we have
ΣP ⊢ Π̇〈s1,s2,s3〉 : ‖ΠX : s1 ((X ⇒ s2) ⇒ s3)‖ but the term Π̇〈s1,s2,s3〉 is
not the translation of any term of P .

137

5. Functional PTS in λΠ modulo

Therefore, we shall prove a slightly weaker property: that if the type ‖A‖
is inhabited by a normal term in λΠP , then A is inhabited in P . Notice that
this restriction vanishes if λΠP is terminating.

We shall prove, in a first step, that if ‖Γ‖ ⊢ t : ‖A‖, and t is a weak
η-long normal term then there exists a term in u such that such that |u| = t
and Γ ⊢ u : A. Then we shall get rid of this restriction on weak η-long forms.

Definition 5.7 (Weak η-long terms).
A term t of λΠP is a weak η-long term if and only if each occurrence

of Π̇〈s1,s2,s3〉 in t, is in a subterm of the form (Π̇〈s1,s2,s3〉 t1 t2) (i.e. each

occurrence of Π̇〈s1,s2,s3〉 is η-expanded).

5.4.3 Back translation

Let us define now a back translation from terms of λΠP -calculus modulo to
terms of the former PTS P . We suppose, fot that purpose, that P contains
at least one sort, wich we note s0 (PTS without sorts are not very expressive
by the way).

Definition 5.8 (Back translation).
We define a translation from λΠP to P as follows:

• x∗ = x,

• s∗ = s0

• ṡ∗ = s,

• U∗
s = s,

• (Πx : A. B)∗ = Πx : A∗. B∗,

• (λx : A. t)∗ = λx : A∗. t∗,

• (Π̇〈s1,s2,s3〉 A B)∗ = Πx : A∗. (B∗ x),

• (εs u)
∗ = u∗,

• (t u)∗ = t∗ u∗ otherwise.

Remark 5.1. Notice that Πx : A∗ B∗ is not necessarily well-formed in P
even if Πx : A B is well-formed in λΠP (remind our example when P is the
simply-typed λ-calculus which is not polymorphic but λΠP is). That’s why we
shall not be able to prove that all back translations of a typing judgement in
λΠP are typing judgements in P . We shall only prove that if the context and
the type of a typing jugement can be seen as translations as types of terms of
P , then the back translation of this typing judgement is a typing judgement
in P .

138

5.4 Conservativity of the embedding

Let us prove now that that this back translation is actually a right inverse
of the translations as a term and as a type.

Lemma 5.9. For all terms t of P ,
if |t| (resp. ‖t‖) is well defined, then |t|∗ −→β t (resp. ‖t‖∗ −→β t).

Proof. • Let t a term of P such that |t| is defined. By induction on the
structure of t.

– |x|∗ = x∗ = x

– |s|∗ = ṡ∗ = s

–

|Πx : A B|∗ = (Π̇〈s1,s2,s3〉 |A| (λx : (εs1 |A|) |B|))∗

= Πx : |A|∗. ((λx : (εs1 |A|). |B|)∗ x)

= Πx : |A|∗. ((λx : (εs1 |A|)∗. |B|∗) x)

= Πx : |A|∗. ((λx : |A|∗. |B|∗) x)

−→∗
β Πx : A. ((λx : A. B) x)

by induction hypothesis

−→β Πx : A. B

where 〈s1, s2, s3〉 is the rule used to form Πx : A.B.

–

|λx : A. t|∗ = (λx : (εs |A|). |t|)
∗

= (λx : (εs |A|)
∗. |t|∗

= λx : |A|∗. |t|∗

−→∗
β λx : A. t

by induction hypothesis

– |t u|∗ = (|t| |u|)∗ = |t|∗ |u|∗ −→∗
β t u by induction hypothesis.

• Let t a term of P such that ‖t‖ is defined. Then either t is a ill-typed
sort s, in this case ‖s‖∗ = U∗

s = s. Or ‖t‖ = εs|t| with s the type of t.
In this case, ‖t‖∗ = (εs|t|)

∗ = |t|∗ −→∗
β t by the first point.

Let us now prove some lemmas useful to prove our property of conservativity.
The first one states that the back reduction of a substitution is equal to the
substitution of the back translations of the considered terms.

Lemma 5.10.
For all terms t, u and variables x of λΠP , ((u/x)t)∗ = (u∗/x)t∗

139

5. Functional PTS in λΠ modulo

Proof. By induction on the structure of t.

• If t is a variable y, then either y = x and in this case, ((u/x)t)∗ = u∗ =
(u∗/x)t∗ since t∗ = x∗ = x. Or y 6= x, and in this case, ((u/x)t)∗ =
y∗ = y = (u∗/x)y∗. Notice that if t is an actor ṡ or a scene Us, then
we can use the same reasoning as for the second point.

• If t is a sort s, then (u/x)s = s therefore ((u/x)s)∗ = s∗ = s0 =
(u∗/x)s0 since s0 6= x.

• If t is a product Πy : A.B then

((u/y)(Πx : A.B))∗ = (Πx : (u/y)A.(u/y)B)∗

= Πx : ((u/y)A)∗.((u/y)B)∗

= Πx : ((u∗/y)A∗).((u∗/y)B∗)

(by induction hypothesis)

= (u∗/y)(Πx : A∗.B∗)

= (u∗/y)(Πx : A.B)∗

• If t is an abstraction λy : A.v then

((u/y)(λx : A.v))∗ = (λx : (u/y)A.(u/y)B)∗

= λx : ((u/y)A)∗.((u/y)v)∗

= λx : ((u∗/y)A∗).((u∗/y)v∗)

(by induction hypothesis)

= (u∗/y)(λx : A∗.v∗)

= (u∗/y)(λx : A.B)∗

• If t is of the form Π̇〈s1,s2,s3〉 A B,

((u/y)(Π̇〈s1,s2,s3〉 A B))∗ = (Π̇〈s1,s2,s3〉 (u/y)A (u/y)B)∗

= Πx : ((u/y)A)∗.(((u/y)B)∗ x)

= Πx : ((u∗/y)A∗).(((u∗/y)B∗) x)

(by induction hypothesis)

= (u∗/y)(Πx : A∗.(B∗ x))

= (u∗/y)(Π̇〈s1,s2,s3〉 A B)∗

• If t is of the form εs v, then ((u/y)(εs v)
∗ = (εs (u/y)v)∗ = ((u/y)v)∗ =

(u∗/y)v∗ by induction hypothesis and it is therefore equal to (u∗/y)(εs v)
∗.

140

5.4 Conservativity of the embedding

• If t is another application t1 t2, then ((u/y)(t1 t2))
∗ = ((u/y)t1 (u/y)t2)

∗ =
((u/y)t1 (u/y)t2)

∗ = ((u/y)t1)
∗ ((u/y)t2)

∗ = ((u∗/y)t∗1) ((u∗/y)t∗2)
by induction hypothesis, and it is therefore equal to (u∗/y)(t∗1 t

∗
2) =

(u∗/y)(t1 t2)
∗.

Let us prove now that if a term is a β-reduct of another one, then the
back translation of the former one is also a β-reduct of the latter one.

Lemma 5.11. For all terms t, u of λΠP , if t −→ u then t∗ −→∗
β u

∗ in P .

Proof. • If t −→β u then t∗ −→β u
∗. By induction on the position of

the reduced β-redex in t. If t = (λx : A.t1)t2, and u = (t2/x)t1, then
t∗ = (λx : A∗.t∗1)t

∗
2 −→β (t∗2/x)t

∗
1 = u∗ by lemma 5.10. The other cases

are proven by induction hypothesis.

• If t −→R u, then t∗ = u∗. By induction on the position of the re-
duced R-redex in t. Notice that (εs2(ṡ1))

∗ = (ṡ1)
∗ = s1 = (Us1)

∗

and (εs3(Π̇〈s1,s2,s3〉 X Y))∗ = (Π̇〈s1,s2,s3〉 X Y)∗ = Πx : X∗.(Y ∗x)
= Πx : (εs1 X)∗ (εs2 (Y x))∗ = (Πx : (εs1 X) (εs2 (Y x)))∗.

We give, in the following, a last lemma about translations and equivalence
between terms.

Lemma 5.12. For all terms A, B of P and C, D of λΠP

(such that ‖A‖ and ‖B‖ are well defined),

1. If A ≡
β
B, then ‖A‖ ≡ ‖B‖.

2. If C ≡ D, then C∗ ≡
β
D∗.

3. If ‖A‖ ≡ ‖B‖, then A ≡
β
B.

4. If C ≡ ‖A‖, then C ≡ ‖C∗‖.

Proof. 1. By induction on the length of the path of β-reductions and
β-expansions between A and B, and by lemma 5.2.

2. By the same reasoning as for the first point, using lemma 5.11.

3. By the second point and lemma 5.9.

4. By the first and second points and lemma 5.9.

141

5. Functional PTS in λΠ modulo

And we are finally able to prove the following property of conservativity for
our translations as a term and as a type: if a term in weak η-long normal
form is typed by the translation (as a type) of a type A of P in a translated
context Γ of P , then it is equivalent to the translation (as a term) of a term
which is of type A in Γ.

Proposition 5.4 (Conservativity).
If there exists a context Γ, a term A of P , and a term t, in weak η-long
normal form, of λΠP , such that ‖Γ‖ ⊢ t : ‖A‖, Then there exists a term u
of P such that |u| ≡ t and Γ ⊢ u : A.

Proof. By induction on t.

• If t is a well-typed product or sort, then it cannot be typed by a
translated type (by confluence of λΠP).

• If t = λx : B t′. The term t is well typed, thus there exists a term C of
λΠP , such that ‖Γ‖ ⊢ t : Πx : B C . Therefore ‖A‖ ≡ Πx : B C (α).

And Πx : B C ≡ ‖(Πx : B C)∗‖ = ‖Πx : B∗ C∗‖ ≡ Πx : ‖B∗‖ ‖C∗‖.

In particular (by confluence of λΠP),

B ≡ ‖B∗‖, C ≡ ‖C∗‖ and ‖Γ‖ ⊢ λx : B t′ : Πx : ‖B∗‖ ‖C∗‖

Therefore ‖Γ‖, x : ‖B∗‖ ⊢ t′ : ‖C∗‖. The term λx : B t′ is in weak
η-long normal form, thus t′ is also in weak η-long normal form, and,
by induction hypothesis, there exists a term u′ of P , such that |u′| ≡ t′

and Γ, x : B∗ ⊢ u′ : C∗. Therefore Γ ⊢ λx : B∗ u′ : Πx : B∗ C∗ (β).
Moreover, A ≡β Πx : B∗ C∗ by (α) and lemma 5.12. Thus, by the
conversion rule of P , we get Γ ⊢ λx : B∗ u′ : A.
And |λx : B∗ u′| = λx : ‖B∗‖ |u′| ≡ λx : B t′ = t.

• If t is an application or a variable, as it is normal, it has the form
x t1 ... tn for some variable x and terms t1, ..., tn. We have
‖Γ‖ ⊢ x t1 ... tn : ‖A‖ (α0).

⊸ If x is a variable of the context ΣP ,

∗ If x = ṡ1 (where 〈s1, s2〉 is an axiom of P),
then n = 0 (because t is well typed) and ‖A‖ = Us2 .
We have ⊢ s1 : s2 in P , therefore Γ ⊢ s1 : s2.

∗ If x = Us (where s is a sort of P), then n = 0 and
‖A‖ ≡ Type. That’s an absurdity by confluence of λΠP .

∗ If x = εs (where s is a sort of P), then, as t is well typed
n ≤ 1.

142

5.4 Conservativity of the embedding

⋆ If n = 1, then ‖Γ‖ ⊢ t1 : Us, and ‖A‖ ≡ Type (absurdity).

⋆ If n = 0, then ‖A‖ ≡ Us ⇒ Type, and therefore
Us ⇒ Type ≡ ‖(Us ⇒ Type)∗‖ = ‖s⇒ s0‖ ≡ ‖s‖ ⇒ ‖s0‖,

by lemmas 5.12 and 5.3. Therefore Type ≡ ‖s0‖ (ab-
surdity).

∗ If x = Π̇〈s1,s2,s3〉 (where 〈s1, s2, s3〉 is a rule of P), then
since t is well-typed and in weak η-long form, n = 2. We
have ‖A‖ ≡ Us3 thus A ≡ s3 by lemma 5.12.
And ‖Γ‖ ⊢ t1 : Us1 i .e. ‖Γ‖ ⊢ t1 : ‖s1‖.
And ‖Γ‖, t1 : Us1 ⊢ t2 : ((εs1t1) ⇒ Us2) (α1)
t1 is also in weak η-long normal form, then, by induction
hypothesis, there exists a term u1 of P such that:

|u1| ≡ t1 and Γ ⊢ u1 : s1 (β1)

Then, by (α1), ‖Γ‖, t1 : ‖s1‖ ⊢ t2 : ‖u1 ⇒ s2‖.
In particular, ‖Γ‖, t1 : ‖s1‖ ⊢ t2 : ‖u1‖ ⇒ ‖s2‖.
However t2 is also in weak η-long normal form, then there
exists a term t′2 (in weak η-long normal form) of λΠP such
that

t2 = λx : ‖u1‖ t
′
2 and ‖Γ‖, x : ‖u1‖ ⊢ t′2 : ‖s2‖

By induction hypothesis, there exists a term u′2 of P , such
that

|u′2| ≡ t′2 and Γ, x : u1 ⊢ u′2 : s2 (β2)

Then we choose u = Πx : u1 u
′
2 that verifies Γ ⊢ u : s3 , by

(β1), (β2), and the fact that 〈s1, s2, s3〉 is a rule of P . And,
finally,
|u| = Π̇〈s1,s2,s3〉|u1| (λx : (εs1 |u1|) |u′2| ≡ Π̇〈s1,s2,s3〉t1 t2 = t

⊸ If x is a variable of the context Γ,

For k ∈ {0, .., n}, let (Hk) be the statement: “The term x t1 ... tk
is typable in ‖Γ‖ and its type is in the image of ‖.‖”.

We first prove (H0),...,(Hn) by induction.

⋆ k = 0 : x is a variable of the context Γ, then there exists a
well typed term or a sort T in P such that Γ contains x : T .
Therefore ‖Γ‖ contains x : ‖T‖.

⋆ 0 ≤ k ≤ n− 1 : We suppose (Hk).
x t1 ... tk+1 is well typed in Γ, then there exists terms D and
E of λΠP such that ‖Γ‖ ⊢ tk+1 : D (δ1) ,
‖Γ‖ ⊢ x t1 ... tk : Πy : D E (δ2), and ‖Γ‖ ⊢ x t1 ... tk+1 : E(δ3).
However, by (Hk), we can type x t1 ... tk by a translated type
in ‖Γ‖, then by (δ2) and lemma 5.12,
Πy : D E ≡ Πy : ‖D∗‖ ‖E∗‖ . In particular, E ≡ ‖E∗‖ (η1) ,
We conclude, by (δ3), (η1) and the conversion rule of λΠP .

143

5. Functional PTS in λΠ modulo

Then, if n = 0, we take u = x and Γ contains x : T with
‖T‖ ≡ ‖A‖. And, if n > 0, then, by (α0), there exists terms B and
C of λΠP such that ‖Γ‖ ⊢ tn : B (θ1) and
‖Γ‖ ⊢ x t1 ... tn−1 : Πy : B C (θ2) with ‖A‖ ≡ (tn/y)C (θ3) .
Then, by (Hn−1), (θ2), and lemma 5.12.4, we have
Πy : B C ≡ Πy : ‖B∗‖ ‖C∗‖ , therefore B ≡ ‖B∗‖ and
C ≡ ‖C∗‖.
Thus, ‖Γ‖ ⊢ tn : ‖B∗‖ and ‖Γ‖ ⊢ x t1 ... tn−1 : ‖Πy : B∗ C∗‖.

tn and x t1 ... tn−1 are both in weak η-long normal form, then,
by induction hypothesis, there exists terms w1 and w2 of P such
that:

|w1| ≡ x t1 ...tn−1 and Γ ⊢ w1 : Πy : B∗ C∗

|w2| ≡ tn and Γ ⊢ w2 : B∗

Let u = w1 w2, we have:

|u| = |w1| |w2| ≡ x t1 ... tn−1 tn and Γ ⊢ u : (w2/y)C
∗.

However, by (θ3) and lemma 5.12, we have:
A ≡ (t∗n/y)C

∗ ≡ (w2/y)C
∗ , and, finally, Γ ⊢ u : A .

5.4.4 Getting rid of weak η-long forms

Finally, we get rid of the weak η-long form restriction with the following
lemmas. As we have seen, we have only proved, in proposition 5.4, that if t is
a term in weak η-long normal form, and ‖Γ‖ ⊢ t : ‖A‖ is a typing judgement
in λΠP , then t is equivalent in λΠP to the translation (as a term) of a term
in P , of type A in Γ. In order to enforce that conservativity property, by
considering terms only in normal form, we prove, in the following, that the
weak η-long form of a term has the same type as this term, and that it is
equivalent to this term in λΠP .

Let us first define formally the weak η-long form of a term in λΠP . It is this
term, in which all Π̇s are η-expanded.

Definition 5.9 (Weak η-long form of a term).
If t is a term of λΠP , its weak η-long form t⋄ is defined inductively as follows.

• x⋄ = x,

• s⋄ = s

• ṡ⋄ = ṡ,

144

5.4 Conservativity of the embedding

• U⋄
s = Us,

• (Πx : A. B)⋄ = Πx : A⋄. B⋄,

• (λx : A. t)⋄ = λx : A⋄. t⋄,

• (Π̇〈s1,s2,s3〉)
⋄ = λx : Us1 . λy : ((εs1 x) ⇒ Us2). (Π̇〈s1,s2,s3〉 x y),

(we recall that (εs1 x) ⇒ Us2 stands for Πy : (εs1 x). Us2 since Us2
does not depend on y)

• (t u)⋄ = t⋄ u⋄.

We prove, in the following lemma, some useful statements about reduction,
weak η-long form and translation as a type. We prove that the weak η-long
forms of two equivalent terms, are equivalent in λΠP . That a term in weak
η-long form is β-equivalent to its ⋄-translation. That the translation as a
type of a term of P is equivalent to its weak η-long form. And finally, the
statement we need for our second conservativity property: if a term of λΠP

is equivalent to the translation as a type of a term of P , then it is equivalent
to its ⋄-translation.

Lemma 5.13.
For all terms A, B of λΠP , and for all well typed terms or sort C of P ,

1. If A −→ B then A⋄ −→∗ B⋄

2. If A ≡ B then A⋄ ≡ B⋄

3. If A is in weak η-long form, then A⋄ −→∗
β A, in particular A⋄ ≡ A

4. ‖C‖⋄ ≡ ‖C‖

5. If A ≡ ‖C‖ then A⋄ ≡ A

Proof. 1. If A −→β B, then A⋄ −→β B
⋄ (by induction on the position in

A of the β-redex reduced).

If A −→R B,

• for all axioms 〈s1, s2〉, (εs2 (ṡ1))
⋄ = εs2 (ṡ1) −→R Us1 = (Us1)

⋄.

• for all rules 〈s1, s2, s3〉,

(εs3(Π̇〈s1,s2,s3〉C D))⋄

= εs3((λx : Us1λy : ((εs1 x) ⇒ Us2) (Π̇〈s1,s2,s3〉 x y)) C
⋄ D⋄)

−→2
β εs3(Π̇〈s1,s2,s3〉C

⋄ D⋄)

−→R Πx : (εs1 C
⋄) (εs2 (D⋄ x))

= Πx : (εs1 C
⋄) (εs2 (D x)⋄)

145

5. Functional PTS in λΠ modulo

2. By the first point and induction on the number of derivations and
expansions from A to B.

3. By induction onA, remarking that (Π̇〈s1,s2,s3〉 t1 t2)
⋄ −→2

β Π̇〈s1,s2,s3〉 t
⋄
1 t

⋄
2.

4. By the third point and the fact that a translated term ‖C‖ is in weak
η-long form.

5. If A ≡ ‖C‖ then A⋄ ≡ ‖C‖⋄ ≡ ‖C‖, by the the second and fourth
points.

And we finally prove that the ⋄-translation of a term as the same type of
this term, when this term is typed bt the translation (as a type) of a term
of P in a translated (as a type) context.

Lemma 5.14. Let t be a normal term of λΠP ,

if ‖Γ‖ ⊢ t : ‖A‖ then ‖Γ‖ ⊢ t⋄ : ‖A‖

Proof. By induction on t.

• If t is a well-typed product or sort, then it cannot be typed by a
translated type (by confluence of λΠP).

• If t = λx : B u, then there exists a term C of λΠP , such that
‖A‖ ≡ Πx : B C (α1), with Γ, x : B ⊢ u : C. By (α1), we have
B ≡ ‖B∗‖ (α2) and C ≡ ‖C∗‖. Thus Γ, x : ‖B∗‖ ⊢ u : ‖C∗‖. Then,
by induction hypothesis, we have Γ, x : ‖B∗‖ ⊢ u⋄ : ‖C∗‖, therefore
Γ ⊢ λx : ‖B∗‖ u⋄ : Πx : ‖B∗‖ ‖C∗‖ ≡ ‖A‖ thus Γ ⊢ λx : B u⋄ : ‖A‖,
by (α2). Finally, by (α2) and lemma 5.13.5, λx : B u⋄ ≡ λx : B⋄ u⋄,
therefore, by subject reduction, Γ ⊢ t⋄ = λx : B⋄ u⋄ : ‖A‖

• If t is an application or a variable, as it is normal, it has the form
x t1 ... tn for some variable x and terms t1, ..., tn.
We suppose ‖Γ‖ ⊢ x t1 ... tn : ‖A‖ (α0).

⊸ If x is a variable of the context ΣP ,

∗ If x = ṡ1 (where 〈s1, s2〉 is an axiom of P),
then n = 0 (because t is well typed) and we have (ṡ1)

⋄ = ṡ1.

∗ If x = Us (where s is a sort of P), then n = 0 and ‖A‖ ≡
Type. That’s an absurdity by confluence of λΠP .

∗ If x = εs (where s is a sort of P), then, as t is well typed
n ≤ 1.

⋆ If n = 1, then ‖Γ‖ ⊢ t1 : Us, and ‖A‖ ≡ Type (absurdity).

⋆ If n = 0, we have (εs)
⋄ = εs

146

5.4 Conservativity of the embedding

∗ If x = Π̇〈s1,s2,s3〉 (where 〈s1, s2, s3〉 is a rule of P), then since

t is well-typed, n ≤ 2. Moreover, Π̇〈s1,s2,s3〉, (Π̇〈s1,s2,s3〉 t1),

and (Π̇〈s1,s2,s3〉 t1 t2) have the same types than their weak
η-long forms.

⊸ If x is a variable of the context Γ,

∗ If n = 0, we have x⋄ = x.

∗ If n > 0, then there exists terms B and C of λΠP such that
‖Γ‖ ⊢ tn : B (α1) and ‖Γ‖ ⊢ x t1 ... tn−1 : Πy : B C (α2)
with ‖A‖ ≡ (tn/y)C (α3) . As in the proof of Proposi-
tion 5.4, we can type x t1 ... tn−1 by a translated type, then
Πy : B C ≡ Πy : ‖B∗‖ ‖C∗‖ . In particular, B ≡ ‖B∗‖ and
C ≡ ‖C∗‖. Thus, ‖Γ‖ ⊢ tn : ‖B∗‖ and we therefore also have
‖Γ‖ ⊢ x t1 ... tn−1 : ‖Πy : B∗ C∗‖.
By induction hypothesis, we have ‖Γ‖ ⊢ t⋄n : ‖B∗‖ and
‖Γ‖ ⊢ x t⋄1 ... t

⋄
n−1 : Πy : ‖B∗‖ ‖C∗‖. Finally, by (α3) and

lemma 5.13.5, ‖Γ‖ ⊢ t⋄ = x t⋄1 ... t
⋄
n : (t⋄n/y)C ≡ ‖A‖.

This leads to the following stronger second conservativity property: if λΠP is
strongly normalizing and a normal term of λΠP is typed by the translation
(as a type) of a type A of P in a translated context Γ of P , then it is
equivalent to the translation (as a term) of a term which is of type A in Γ.

Proposition 5.5 (Conservativity). If λΠP is stronly normalizing and there
exists a context Γ, a term A of P , and a normal term t of λΠP , such that
‖Γ‖ ⊢ t : ‖A‖, Then there exists a term u of P such that |u| ≡ t and
Γ ⊢ u : A.

Proof. If ‖Γ‖ ⊢ t : ‖A‖, then ‖Γ‖ ⊢ t⋄ : ‖A‖ by lemma 5.14 and so does the
normal form t′ of t⋄, by subject-reduction. Since t′ is in weak η-long form,
there exists u of P such that |u| ≡ t′ and Γ ⊢ u : A, by proposition 5.4.
Moreover, |u| ≡ t′ ≡ t⋄ ≡ t by lemma 5.13.3.

And finally we get the following theorem: our embedding of Pure Type
Systems in λΠ-calculus modulo is sound and conservative, in the sense that
if λΠP is strongly normalizing, then a type ‖A‖ is inhabited by a closed term
if and only if A is.

Theorem 5.1. Let P be a functional Pure Type System, such that λΠP is
strongly normalizing. The type ‖A‖ is inhabited by a closed term in λΠP if
and only if the type A is inhabited by a closed term in P .

147

5. Functional PTS in λΠ modulo

Proof. If A has a closed inhabitant in P , then by Proposition 5.1, ‖A‖ has a
closed inhabitant in λΠP . Conversely, ‖A‖ has a closed inhabitant then the
term u of proposition 5.5 is also closed.

Remark 5.2. This conservativity property we have proved is similar to that
of the Curry-de Bruijn-Howard correspondence. If the type A◦ is inhab-
ited in λΠ-calculus, then the proposition A is provable in minimal natural
deduction, but not all terms of type A◦ correspond to proofs of A. For in-
stance, if A is the proposition (∀x P (x)) ⇒ P (c), then the normal term
λα : (Πx : ι. (P x)). (α c) corresponds to a proof of A but the term
λα : (Πx : ι. (P x)). (α ((λy : ι. y) c)) does not.

5.5 Implementation

This embedding of functional Pure Type Systems in λΠ-calculus modulo is
the origin of an implementation of a translator from proofs of the well-known
proof-assistant Coq, to a generic proof-checker based on the λΠ-calculus
modulo, called Dedukti.

Coq is a proof-assistant which allows the interactive construction of for-
mal proofs, and also the manipulation of functional programs consistently
with their specifications. It is based on the logical framework called the cal-
culus of inductive constructions (the calculus of constructions with inductive
types).

More information is available at http://coq.inria.fr

Dedukti is a generic proof-checker based on the formalism of the λΠ-
calculus modulo. The motivation is to provide an independent proof-checker,
together with proof translators from several proof-assistants as Coq, PVS,
HOL, PVS... to proofs of Dedukti, in order to provide a external check
of proofs developed in those proof-assistants and increase the confidence we
can have about these proofs. Dedukti has been developed by Mathieu
Boespflug and Gilles Dowek. “Dedukti” means “to deduce” in Esperanto.

More information is available at http://www.lix.polytechnique.fr/dedukti

We have developed with Guillaume Burel a translator called CoqInE
from Coq proofs to their equivalents expressed in λΠ-calculus modulo and
therefore checkable by Dedukti. Since Coq-proofs are expressed in the
calculus of inductive constructions, we have to extend the embedding pre-
sented in this chapter, in order to translate inductive types of Coq into the
λΠ-calculus modulo. Some design choices of the theoritical aspect of this

148

http://coq.inria.fr
http://www.lix.polytechnique.fr/dedukti

5.6 Conclusion

embedding of inductive types are not completely made at the time of writ-
ing this thesis, so this embedding is not detailed in the present manuscript.
But it will be soon presented in future work.

5.6 Conclusion

We have defined, in this chapter a sound and conservative embedding of
functionnal Pure Type Systems into the logical framework of λΠ-calculus
modulo, inspired both by the expression of simple type theory in Deduction
modulo and by the mechanisms of universes à la Tarski [40] of Intuitionis-
tic type theory. We have proposed, for each functionnal PTS P , a specific
theory expressed in λΠ–calculus modulo, called λΠP and given by a context
(variables representing the different sorts and products of P) and rewrite
rules modelizing the behaviour of those sorts and products. This embedding
shows the strength of the logical framework since it subsumes all theories
expressed in functionnal PTS. An interesting point is that it is, for example,
possible to represent impredicative systems as System F or the Calculus of
Constructions in λΠ-calculus modulo, whereas the λΠ-calculus is a predica-
tive system.

The soundness of this embedding is comparatively easy to prove, by
defining a translation from terms of P to terms of the associated λΠP (more
precisely by defining two translations, one as a term and one as a type). We
were able to prove, this way, that if λΠP is strongly normalizing then P is also
strongly normalizing, since our translation maps β-redices of P to β-redices
of λΠP . The conservativity is much more complicated to prove. Indeed,
using the λΠ-calculus to simulate PTS is very convenient since we can use
the dependent types of λΠ and simulate therefore easily the behaviour of
terms in PTS. The obverse of that convenience is that λΠP can be more
expressive than P , in the sense that there exists terms in λΠP which do
not correspond to translations of terms of P . The simpler example consists
of the embedding of the simply-typed λ-calculus in the associated theory
in λΠ-calculus modulo: dependent types are well-formed in the latter while
they are not in the former. Moreover, we can build well-typed terms in
λΠP which are equivalent to translations of ill-typed terms of P . In the
case of the embedding of the simply-typed λ-calculus, the translation of
polymorphic typing is well-formed in the associated theory in λΠ-calculus
modulo whereas polymorphic typing is not well formed in the simply-typed
λ-calculus. We had therefore to be very precise concerning the form of
statement of conservativity we wanted to prove. We proved that all terms in
a specific form, typed in λΠP by the translation of a type A, are equivalent
to the translation of a term of type A in P . This particular form consists
of normal terms (we had to prove an intermediate lemma concerning weak

149

5. Functional PTS in λΠ modulo

η-long normal terms, but we finally got rid of this condition of weak η-long
form). This conservativity property we have proved is similar to that of
the Curry-de Bruijn-Howard correspondence, since this correspondence also
consider only normal (proof-)terms. Finally, we were not able, with the back
translation we proposed, to associate β-redices of P to redices of λΠP . Hence
we could not prove that if P is strongly normalizing then so does λΠP . We
shall discuss on this point in section 6.2.1.

Finally, let us make a remark on the computational behavior of our em-
bedding. There are two ways to express proofs of simple type theory in the
λΠ-calculus modulo. We can either use directly the fact that simple type
theory can be expressed in Deduction modulo or first express the proofs of
simple type theory in the Calculus of Constructions and then embed the
Calculus of Constructions in the λΠ-calculus modulo. These two solutions
have some similarities, in particular if we write o the symbol UType. But
they have also some differences: the function λx x of simple type theory is
translated as the symbol I — or as the term λ1 — in the first case, using a
symbol I — or the symbols λ and 1 — specially introduced in the context
to express this particular theory, while it is expressed since λx x using the
symbol λ of the λΠ-calculus modulo in the second. More generally in the
second case, we exploit the similarities of the λΠ-calculus modulo and sim-
ple type theory — the fact that they both allow to express functions — to
simplify the expression while the first method is completely generic and uses
no particularity of simple type theory. This explains why this first expres-
sion requires only the λΠ−-calculus modulo, while the second requires the
conversion rule to contain β-conversion.

150

6
Conclusion and perspectives

6.1 Summary

In this work, we have investigated the notion of proof normalization from
a semantical view. We have contributed to reveal the link between syntac-
tic methods and semantics methods in proofs of cut elimination. One of
the main contributions of this work is to refine Girard’s apparently syntac-
tic notion of reducibility candidates to obtain a sound (as before) and also
complete semantics for strong normalization. This work can be seen as the
following of Gödel’s completeness theorem about {⊤,⊥}-models and consis-
tency in propositionnal logic, as we have seen that consistency is entailed by
cut elimination and therefore by strong normalization.

We have defined a sound and complete semantics for strong normaliza-
tion of theories expressed in minimal deduction modulo, and for theories
expressed in λΠ-calculus modulo. For minimal deduction modulo, we have
given a totally algebraic criterion, by defining a refinement of Dowek’s Truth
Values Algebras called Language-dependent Truth Values Algebras (as indi-
cated by their names, those ldtvas still depend on the set of closed terms
of each sort we consider). We were able, with this definition, to exhibit one
precise ldtva C′ (which is a refinement of the tva C of usual reducibility
candidates defined by Dowek) such that having a model valued in this algebra
is equivalent for a theory to be strongly normalizing. The soundness part of
this theorem follows the usual proof of Tait and Girard, while the complete-
ness part uses an innovative method of building models using morphisms on
ldtvas . The idea is to build, when the theory is strongly normalizing, a
first model valued in the ldtva of well-typed reducibility candidates, which
depends on the theory since typing does. And then map this model to a
model valued in C′ by using a morphism from each ldtva of well-typed
reducibility candidates to C′. This new technique for building models may

153

6. Conclusion and perspectives

be interesting for understanding the link between weak normalization and
strong normalization in deduction modulo, λΠ-calculus modulo, and other
logical frameworks. We shall discuss on that point in section 6.2.2.

We have defined for the moment the notion of algebra on which we should
build models for λΠ-calculus modulo. However we have made a first step
toward this goal by defining a notion of pre-model which provides a sound
and complete semantics for strong normalization in λΠ-calculus modulo.
We have followed the same way as Dowek and Werner had done for sound
semantics for strong normalization in deduction modulo, by first providing
a specific semantics, in order to understand on which algebra this sort of
semantics can be defined thereafter. This notion of algebras may emerge
from our definitions of ldtvas and pre-models for λΠ-calculus modulo. This
will be explored in future work.

Finally we proposed a sound and conservative embedding of functionnal
Pure Type Systems in λΠ-calculus modulo, inspired both by the expression of
simple type theory in deduction modulo and by the mechanisms of universes
à la Tarski. We have defined, for each functionnal PTS P a theory expressed
in λΠ-calculus modulo, we called λΠP , and provided a translation from
terms of P to terms of λΠP . Although the soundness of this embedding
was quite easy to prove, the conservativity was much more complicated and
involved a lot of properties of λΠP like its confluence for example. This
embedding, combined with our notion of pre-model for λΠ-calculus modulo
may be the origin of the definition of a sound and complete semantics for
strong normalization in functionnal Pure Type Systems, as we shall see in
section 6.2.1.

6.2 Future work

6.2.1 Toward a sound and complete semantics for strong nor-
malization in Pure Type Systems

In order to to define a sound and complete semantics for strong normaliza-
tion of Pure Type Systems, we could adapt the work we have followed for
λΠ-calculus modulo, by defining a notion of pre-model for Pure Type Sys-
tems based on the work of [26] or [41], using our definition of the (CR3’)
property and our technique for proving completeness of pre-models using
(CR3’). Another solution could be to use our embedding of functional Pure

154

6.2 Future work

Type Systems into λΠ-calculus modulo and our notion of sound and com-
plete pre-models for λΠ-calculus modulo. We shall have a discussion on this
second solution in the following.

In section 5.2.2, we have proved that for all functional PTS P , if λΠP

is strongly normalizing then P is also strongly normalizing. We therefore
already have, this way, a sound semantics for strong normalization of func-
tional PTS: if λΠP has a pre-model, then it is strongly normalizing and so
does P (although we have seen that building such a pre-model can be diffi-
cult). In order to prove that it also provides a complete semantics, we should
prove that if a functional PTS P is strongly normalizing then so does λΠP

(and therefore λΠP has a pre-model, as we have seen in section 4).

We can notice that in order to prove that strong normalization of λΠP

entails strong normalization of P , we have used the fact that well-typed
terms of P were translated as well-typed terms of λΠP and that a β-redex
of P was translated as a β-redex in λΠP (therefore a reductions sequence
of a well-typed term in P is finite since its translation is finite, if λΠP is
strongly normalizing). In order to prove that if P is strongly normalizing
then λΠP is also strongly normalizing we would like to prove the two analog
lemmas for the back translation: first, if a term is well-typed in λΠP then
so does its back translation in P , and secondly, a βR-redex of λΠP is back
translated as a β-redex in P . Unfortunately, both are wrong, as explained
in the following.

As we have seen in 5.4, the back translation of a product (defined as the
product of the back translation of its arguments) may not be well-typed. This
situation occurs when the embedded PTS is the simply-typed calculus for
example. More generally, for all sorts s1, s2 of P the product Πx : Us1 . Us2
is well-formed (and of type Type) in λΠP , since Us1 and Us2 are both of
type Type in λΠP , even if there is no sort s3 such that 〈s1, s2, s3〉 is a rule
of P . Hence in all PTS P containing two sorts s1, s2 such that there exists
no rule 〈s1, s2, s3〉, there exists products in λΠP for whom back translations
do not correspond to well-formed products in P . We can still notice that
the Calculus of Constructions is not one of those PTS. Nevertheless there
exists also another problem with this back translation, even for the Calculus
of Constructions: how to back translate Type and Kind. In order to prove
that the back translation of a term is typed by the back translation of its
type, we have to suppose that the considered functional PTS contains at
least two sorts s1, s2 and an axiom 〈s1, s2〉, and we also have to modify our
back translation in order to map Type to s1 and Kind to s2. We would
have also to suppose that the considered functional PTS also contains a rule
〈s1, s2, s2〉, as the dependent product Πx : A.B with A of type Type and B of
type Kind is well formed and of type Kind in λΠP . But we would still have
a problem about typing of products: in λΠP , the product Πx : Us1 .Us2 is of
type Type in λΠP and not of type Kind or Us2 or any term for whom back

155

6. Conclusion and perspectives

translation is β-equivalent to s2. We would have therefore to modify again
our back translation or obtain a weakened statement about typing of back
translated terms (this second solution seems a better track to investigate).

If we manage to find a solution to this first problem, we shall still have
another problem: the fact that a βR redex of λΠP is not translated as a
β-redex of P (remind that we would like to prove that a reductions sequence
in λΠP is translated as a longer reductions sequence in P : if the second one
is finite then so is the first one). For example, if the considered PTS contains
an axiom 〈s1, s2〉, then the R-redex (εs2 ṡ1) of λΠP is back translated as the
normal term of P : s1. We think that this second problem can be easily
circumvented: with the back translation we have defined in section 5.4.3,
we can notice that β-redices are back translated as β-redices, and that two
R-equivalent terms have the same back translation. We can also remark
that there cannot be an infinite R-reductions sequence in λΠP , since the
number of consecutive R-reductions from a term t is lesser than or equal to
the number of ṡ (with s a sort of P) and Π̇〈s1,s2,s3〉 (with 〈s1, s2, s3〉 a rule

of P) appearing in t since if t −→R t′ then the number of ṡ and Π̇〈s1,s2,s3〉

appearing in t is stirctly greater than the one of t′ (for each R-reduction,
one of those ṡ or Π̇〈s1,s2,s3〉 disappear and none other is introduced).

Therefore the main problem for obtaining a complete semantics for func-
tional PTS via our embedding in λΠ-calculus modulo, is the first one: the
fact that the back translation of a well-typed term is not necessarly well-
typed. A solution could be to prove that if a term is well-typed in λΠP then
its back translation is also well-typed not necessarily in P but in another PTS
P ′ (containing more rules than P , typically all the rules 〈s1, s2, s2〉 with s1
and s2 sorts of P such that there is no rule 〈s1, s2, s3〉 in P), such that the
strong normalization of P ′ is entailed by the one of P . For example, if P is
the simply-typed λ-calculus, we should take the Calculus of Constructions
for P ′. We shall study this track in future work.

6.2.2 Weak and Strong normalization

The technique developped in chapter 3 could provide a new way to explore
the link between weak normalization and strong normalization in deduction
modulo, λΠ-calculus modulo and other logical frameworks like Pure Type
Systems. In the case of minimal deduction modulo, the idea would be to
define a notion of weakly normalizing well-typed reducibility candidates (i.e.
a ldtva), prove that we can build model valued in this ldtva and then
map this model to a model valued in C′. Since having a C′-valued model
is a sound semantics for strong monrmalization, it would entail that weak
normalization implies strong normalization in minimal deduction modulo.
Adapting the notion of reducibility candidates to weak normalization (in
a WN-complete way) is not very difficult, (CR1) becomes “all proof-terms

156

6.2 Future work

of the considered set are weakly normalizing”, (CR2) becomes “all weakly
normalizing β-reducts of an element of the considered set, are also in this
set” and (CR3) becomes “If a proof-term is a neutral and has a β-reduct in
the considered set, then it is in this set”. The main problem comes from the
definition of the morphism, and how to map weakly normalizing terms to
strongly normalizing terms, with respect to the properties of morphisms.

The naïve idea to filter the original sets of weakly normalizing terms,
keeping only strongly normalizing terms, doesn’t work. Indeed if proof-
terms π, π′ are respectively in the interpretations of propositions A ⇒ B
and A, and strongly normalizing, the proof-term ππ′ is in the interpretation
of B but may be non-strongly normalizing. A solution could be to consider
for the interpretation of a proposition A ⇒ B the set of proof-terms which
map (only) proof-variables in the interpretation of A to proof-terms in the
interpretation of B. Since for all proof-terms π and proof-variables α, π is
strongly normalizing if and only if πα is strongly normalizing. Unfortunately
we did not succeed in proving that this interpretation of ⇒ was sufficient to
prove soundness of models valued in C′ equipped with this interpreation. If
the conjecture of Jan Willem Klop that all not strongly normalizing proof-
terms contain a subterm consisting of a proof-term applied itself, we should
be able to prove the previous statement. Since as we have seen, in this case,
we are able to type (λα.αα)(λα.αα) which is not weakly normalizing.

Another idea would to be more precise on how to filter those sets of
weakly normalizing proof-terms, and filter in regard to their associated types.
We associate to each proposition A a subset of SN , SNA as follows:
SNP = SN for atomic propositions P and SNA⇒B is defined as the set
of proof-terms which map elements of SNA to elements of SNB. For exam-
ple, if P is an atomic proposition, SNP⇒P is the set of strongly normaliz-
ing proof-terms which are still strongly normalizing when applied to other
strongly normalizing proof-terms (we can notice that we could also take a
symmetric view by considering proof-terms π′ such that ππ′ is still strongly
normalizing for all strongly normalizing proof-terms π). This solution raises
difficulties when considering theories modulo, since we would like to filter
a set A by the intersection of all SA′ , for A′ a proposition equivalent to A,
and we have not succeeded, for the moment, in resolving the problems it
involves (notice that the symmetric solution seems to be less problematic).
It will be investigated in future work, with the aim of giving a proof to the
(functionnal form of the) Barendregt-Geuvers-Klop conjecture which states
that all weakly normalizing (functionnal) Pure Type Systems are strongly
normalizing. Solving problems detailed in this section and in the previous
one would provide a solution.

157

6. Conclusion and perspectives

6.3 Conclusion

This work provides new answers to the following two questions: what is
the good notion of reducibility candidates. And what is the good notion of
theory.

Girard’s reducibility candidates provide a very powerful method for prov-
ing strong normalization. They have been used for proving strong normal-
ization of a very large number of logical frameworks. However this method
seems too powerful to capture exactly strongly normalizing logical frame-
works. We have seen that the fact that a set of usual reducibility candidates
can be built for a logical framework does not seem to be a complete criterion
for strong normalization property. By providing a refinement of the (CR3)
property, we have weakened the notion of reducibility candidates just enough
for this new notion to capture exactly strongly normalizing logical frame-
works. Building those new reducibility candidates for theories expressed in
deduction modulo, is not harder than building the original one but it is
not the case for theories expressed in λΠ-calculus modulo when encoding
polymorphic and types constructor products for example. Expressing this
new notion of reducibility candidates from a algebraical point of view, as
the ldtva C′, will certainly help us to understand even better the notion
of reducibility candidates (by wondering whether this special ldtva is an
initial element of the category of ldtvas for example).

Aristotle, Frege and Russell did not introduce the notion of theory since
they thought that there was only one: a unique system in which we could ex-
press all mathematical reasonings. Since systems of Hilbert and Ackermann,
logicians has thought that there exists not only one mathematical theory but
many different ones. And that there exists, among them, reliable and not
reliable theories. The notion of reliable theory changed over time. First, lo-
gicians considered as reliable consistent theories. However computers and in
particular automated theorem provers changed the notion of reliable theory:
a theory is reliable not only if it is consistent, but also if proofs of theorems
that are provable can be computed by such a program. A theory is therefore
considered as reliable if it has the cut elimination property, and moreover the
strong normalization property. The fact that we have re-characterized this
notion of reliable theory by another method which is model-theoritic seems to
confirm that the strong normalization property provides a satisfying notion
of reliable theory.

158

Bibliography

[1] P.B. Andrews. Resolution in type theory. The Journal of Symbolic Logic,
36(3):414-432, 1971.

[2] D. Baelde, On the interaction of minimal generic quantification and
fixed points, Logical Frameworks and Meta-languages: Theory and Prac-
tice, 2008.

[3] S.C. Bailin, A normalization theorem for set theory, The Journal of
Symbolic Logic, 53, pp. 673-695, 1988.

[4] H. Barendregt, Lambda calculi with types, Handbook of Logic in Com-
puter Science, S. Abramsky, D. Gabbay, and T. Maibaum (eds.), Oxford
University Press, pp. 117-309, 1992.

[5] S. Berardi, Towards a mathematical analysis of the Coquand-Huet Cal-
culus of Constructions and the other systems in Barendregt’s cube,
manuscript, 1988.

[6] F. Blanqui, Definitions by rewriting in the Calculus of Constructions.
Mathematical Structures in Computer Science, 15, 1, pp. 37-92, 2005.

[7] P. Brauner, C. Houtmann and C. Kirchner, Principles of Superdeduc-
tion, Proceedings of LICS 2007, pp. 41-50, 2007.

[8] G. Burel, Bonnes démonstrations en déduction modulo, PhD thesis,
Université Henri Poincaré (Nancy 1), 2009.

[9] A. Church, A formulation of the simple theory of types, The Journal of
Symbolic Logic, 5, pp. 56-68, 1940.

[10] M. Crabbé, Non-normalisation de ZF, manuscript, 1974.

161

BIBLIOGRAPHY

[11] M. Crabbé, Stratification and cut-elimination, The Journal of Symbolic
Logic, 56, pp. 213-226, 1991.

[12] T. Coquand and G. Huet, The Calculus of Constructions, Information
and Computation, 76, pp. 95-120, 1988.

[13] D. Cousineau, Complete reducibility candidates, Proof search in type
theory, pp 1-13, 2009.

[14] D. Cousineau and G. Dowek, Embedding Pure Types Systems in the
lambda Pi-calculus modulo, Typed Lambda calculi and Applications.
Lecture Notes in Computer Science 4583, Springer. pp. 102-117. 2007.

[15] M. De Marco and J. Lipton. Completeness and cut-elimination in the
intuitionistic theory of types. Journal of Logic and Computation, 15:821-
854, 2005.

[16] G.Dowek. Truth values algebras and proof normalization. Types for
proofs and programs. Lecture Notes in Computer Science 4502, pp. 110-
124, 2007.

[17] G. Dowek, Th. Hardin, and C. Kirchner, Theorem proving modulo,
Journal of Automated Reasoning, 31, pp. 33-72, 2003.

[18] G. Dowek, Th. Hardin, and C. Kirchner, HOL-lambda-sigma: an inten-
tional first-order expression of higher-order logic, Mathematical Struc-
tures in Computer Science, 11, pp. 1-25, 2001.

[19] G. Dowek and A. Miquel, Cut elimination for Zermelo set theory,
manuscript, 2007.

[20] G. Dowek and B. Werner, Proof normalization modulo, The Journal of
Symbolic Logic, 68, 4, pp. 1289-1316, 2003.

[21] G.Dowek and B.Werner. Arithmetic as a theory modulo. J. Giesel (Ed.),
Term rewriting and applications, Lecture Notes in Computer Science
3467, Springer-Verlag, pp. 423-437, 2005.

[22] J. Ekman, Normal proofs in set theory, Doctoral thesis, Chalmers uni-
versity of technology and University of Göteborg, 1994.

[23] M. Fiore, G. Plotkin and D. Turi. Abstract syntax and variable binding.
14th Annual Symposium on Logic in Computer Science, pp. 193-202,
1999.

[24] G. Gentzen. Untersuchungen über das logische Schliessen. Mathematis-
che Zeitschrift, 39 :176–210, 405–431, 1934.

162

BIBLIOGRAPHY

[25] H. Geuvers and M.J. Nederhof, A modular proof of strong normalization
of the calculus of constructions, Journal of Functional Programming,
vol. 1 (2), pp. 155-189, 1991.

[26] H. Geuvers. A short and flexible proof of Strong Normalization for the
Calculus of Constructions in Types for Proofs and Programs, Int. Work-
shop TYPES ’94, Bastad, Sweden, Selected Papers, eds. P. Dybjer, B.
Nordstr"om and J. Smith, LNCS 996, pp 14-38, Springer, 1995.

[27] J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse, et
son application à l’élimination des coupures dans l’analyse et la théorie
des types. In J.Fenstad, editor, 2nd Scandinavian Logic Symposium, pp.
63-92. North Holland, 1971.

[28] K.Gödel. Über die Vollständigkeit des Logikkalküls. Doctoral disserta-
tion, University Of Vienna. 1929.

[29] L. Hallnäs, On normalization of proofs in set theory, Doctoral thesis,
University of Stockholm, 1983.

[30] M. Hamana, Universal Algebra for Termination of Higher-Order Rewrit-
ing, 16th International Conference on Rewriting Techniques and Appli-
cations, Lecture Notes in Computer Science 3467, Springer, pp. 135-149,
2005.

[31] R. Harper, F. Honsell, and G. Plotkin, A framework for defining logics,
Journal of the ACM, 40, 1, pp. 143-184, 1993.

[32] L. Henkin, Completeness in the theory of types, Journal of Symbolic
Logic, 15, pp. 81-91, 1950.

[33] R. Mc Dowell and D. Miller, Cut-Elimination for a Logic with Defini-
tions and Induction, Theoretical Computer Science (232), pp. 91-119,
2000.

[34] O. Hermant. A model based cut elimination proof. In 2nd St-Petersbourg
Days in Logic and Computability, 2003.

[35] O. Hermant. Méthodes sémantiques en déduction modulo. Doctoral The-
sis. Université de Paris 7, 2005.

[36] O. Hermant. Semantic cut elimination in the intuitionistic sequent cal-
culus. In P. Urzyczyn, editor, Typed Lambda Calculi and Applications,
number 3461 in Lectures Notes in Computer Science, pp. 221-233, 2005.

[37] S. Jaśkowski, S. 1934. On the Rules of Supposition in Formal Logic in
Studia Logica: Wydawnictwo Poświȩcone Logice i jej Historii, ed. by
Jan Lukasiewicz,1, 1934.

163

BIBLIOGRAPHY

[38] S. Kripke, A Completeness Theorem in Modal Logic, Journal of Sym-
bolic Logic, 24(1), pp. 1-14, 1959.

[39] P. Martin-Löf, An intuitionistic type theory of types: predicative part,
Logic colloquium, pp. 73-118, 1975

[40] P. Martin-Löf, Intuitionistic Type Theory, Bibliopolis, 1984.

[41] P.A.Melliès and B.Werner. A Generic Normalization Proof for Pure
Type Systems, Types for proofs and programs, Lecture Notes in Com-
puter Science 1512, 1996.

[42] B. Nordström, K. Petersson, and J.M. Smith, Martin-Löf’s type theory.
Handbook of Logic in Computer Science, S. Abramsky, D. Gabbay, and
T. Maibaum (eds.), Clarendon Press, pp. 1-37, 2000.

[43] M. Okada. A uniform semantic proof for cut elimination and complete-
ness of various first and higher order logics. Theoretical Computer Sci-
ence, 281, pp. 471-498, 2002.

[44] E. Palmgren, On universes in type theory, Twenty five years of con-
structive type theory, Oxford Logic Guides, 36, Oxford University Press,
1998, pp. 191-204.

[45] D. Prawitz. Hauptsatz for higher order logic. The Journal of Symbolic
Logic, pp. 452-457, 1968.

[46] C. Riba. On the Stability by Union of Reducibility Candidates. 10th
International Conference on Foundations of Software Science and Com-
putational Structures, pp. 317-331, 2007.

[47] W. W. Tait. A non constructive proof of Gentzen’s Hauptsatz for second
order predicate logic. Bulletin of the American Mathematical Society,
pp. 980-983, 1966.

[48] W.W. Tait. Intentional interpretations of functionals of finite type I.
The Journal of Symbolic Logic, pp. 198-212, 1967.

[49] M. & O. Takahashi. A proof of cut-elimination theorem in simple type
theory. Journal of the Mathematical Society of Japan, pp. 399-410, 1967.

[50] J. Terlouw, Een nadere bewijstheoretische analyse van GSTT’s,
manuscript, 1989.

[51] D. van Daalen, A description of AUTOMATH and some aspects of its
language theory, Synmposium on APL, 1973.

[52] B. Wack, Typage et déduction dans le calcul de réécriture, PhD thesis,
Université Henri Poincaré, Nancy 1, 2005.

164

Index of definitions

β-reduction
in λΠ-calculus, 90
in minimal natural deduction, 29

C, 43
U , 55
C
≡
, 59

C′, 71
IΓ, 99
〈T,F,P〉≡, 33

Adequate valuations, 102
Atomic

propositions of minimal natural deduction, 20
types of λΠ-calculus modulo, 106

Axioms in minimal natural deduction, 23

Back translation, 138

Closed
terms and propositions in minimal natural deduction, 21
terms and propositions of minimal natural deduction, 21
terms in λΠ-calculus, 89

Confluence
in minimal natural deduction, 29

Consistency, 28
Contexts

in λΠ-calculus, 90
in minimal natural deduction, 25
of minimal natural deduction, 22

167

INDEX OF DEFINITIONS

Cut elimination, 28
Cut-free proofs, 27

Denotation, 42

Free variables
of proof-terms in minimal natural deduction, 24
of terms and propositions in minimal natural deduction, 21
of terms in λΠ-calculus, 89

Fresh variables, 103
Functional Pure Type Systems, 122

Goal, 22

Inference rules of minimal natural deduction, 22
Interpretations

for theories expressed in λΠ-calculus modulo, 102
on Language-dependent Truth Values Algebras, 53

Isolated
proof-terms of minimal natural deduction, 30
terms of λΠ-calculus modulo, 94

Language, 20
Language-dependent Truth Values Algebras, 53
Leaves

of a proof-term in minimal deduction modulo, 73
of a term in λΠ-calculus modulo, 94

Length of a valuation, 102

Many-sorted first order language, 20
Minimal deduction modulo, 32
Models

valued in Language-dependent Truth Values Algebras, 54
valued in truth values algebras, 43

Morphisms on Language-dependent Truth Values Algebras, 54

Neutral
proof-terms of minimal natural deduction, 30
terms of λΠ-calculus modulo, 94

Normalization
in λΠ-calculus, 90
in λΠ-calculus modulo, 94
in minimal natural deduction, 30

Pre-models
for λΠ-calculus modulo, 103

168

INDEX OF DEFINITIONS

for minimal deduction modulo, 39
Premise, 22
Proof judgements in minimal natural deduction, 22
Proof-terms of minimal natural deduction, 23
Propositions of minimal natural deduction, 20
Pure Type Systems, 121

Substitution
in proof-terms of minimal natural deduction, 25
in terms and propositions of minimal natural deduction, 21
in terms of λΠ-calculus, 89

Substitution property, 78
Substitutions with capture

in λΠ-calculus modulo, 100
in minimal deduction modulo, 68

Terms
of λΠ-calculus, 89
of λΠ-calculus modulo, 93
of minimal natural deduction, 20

Theory
expressed in λΠ-calculus modulo, 93
expressed in minimal deduction modulo, 33
expressed in minimal natural deduction, 23

Translation
as a term, 124
as a type, 124

Truth values algebras, 41
Typing judgements

in minimal natural deduction, 25
Typing rules

of λΠ-calculus, 91
of λΠ-calculus modulo, 95
of λΠ−-calculus, 91
of minimal natural deduction, 26

Valuations
for λΠ-calculus modulo, 101
for minimal deduction modulo, 39
for models valued in truth values algebras, 42

Weak η-long
form of a term, 144
terms, 138

Well-typed proof-terms in minimal natural deduction, 26

169

Résumé. La notion de théorie s’est séparée de la notion de logique à la fin des années 1920, lorsque Hilbert
et Ackermann ont distingué les règles de déduction, indépendantes de l’objet du discours, des axiomes qui lui
sont spécifiques. S’est alors posée la question de caractériser les théories, définies donc comme des ensembles
d’axiomes, que l’on peut utiliser pour formaliser une partie du raisonnement mathématique. Un premier critère
est la cohérence de cette théorie : le fait qu’on ne puisse pas démontrer toutes les propositions de cette théorie.
Cependant il est progressivement apparu que la cohérence n’était pas une propriété suffisante. Le fait que les
démonstrations constructives vérifient les propriétés de la dijonction ou du témoin, ou la complétude de certaines
méthodes de démonstration automatique ne découlent pas de la seule cohérence d’une théorie. Mais toutes trois
sont par contre conséquentes d’une même propriété : la normalisation des démonstrations.

En 1930, le théorème de complétude de Gödel montra que le critére de cohérence pouvait être vu sous
différents angles. En plus de la définition précédente interne à la théorie de la démonstration, on peut également
définir de manière algébrique la cohérence d’une théorie comme le fait qu’elle possède un modèle. L’équivalence
entre ces deux définitions constitue un outil fondamental, qui a permis notamment la démonstration de la
cohérence de nombreuses théories : la théorie des ensembles avec la négation de l’axiome du choix par Fraenkel
et Mostovski, la théorie des ensembles avec l’axiome du choix et l’hypothèse du continue par Gödel, la théorie
des ensembles avec la négation de l’hypothèse du continu par Cohen, . . .

A l’inverse, la normalisation des démonstrations semblait ne pouvoir se définir que de manière interne à la
théorie de la démonstration. Certains critères inspirés de la théorie des modèles étaient certes parfois utilisés
pour démontrer la propriété de normalisation des démonstrations de certaines théories, mais la nécéssité de ces
critéres n’avait pas été établie.

Nous proposons dans cette thèse un critère algébrique à la fois nécessaire et suffisant pour la normalisation
des démonstrations. Nous montrons ainsi que la propriété de normalisation des démonstrations peut également
se définir comme un critère algébrique, à l’instar de la propriété de cohérence. Nous avons pour cela défini
une nouvelle notion d’algèbre de valeurs de vérités (TVA) appelée algèbres de vérité dépendant du langage

(LDTVA). La notion de TVA permet d’exhiber l’algèbre de valeurs de vérité des candidats de réductibilité
définis par Girard en 1970. L’existence d’un modèle à valeurs dans cette algèbre définit un critère algébrique
suffisant pour la propriété de normalisation des démonstrations. Puis nous avons défini un raffinement de la
notion de candidats de réductibilité comme une de ces LDTVAs et avons montré que l’existence d’un modèle
à valeurs dans cette algèbre définit un critère algébrique toujours suffisant mais également nécessaire pour la
propriété de normalisation des démonstrations.

Ce critère est défini pour les cadres logiques de la déduction minimale et du λΠ-calcul modulo. Et nous exhi-
bons finalement la puissance du λΠ-calcul modulo en montrant que tous les systèmes de types purs fonctionnels
peuvent être simulés dans ce cadre logique.

Abstract. The notion of theory split from the notion of logics in the late 1920’s when Hilbert and Ackermann
distinguished between deduction rules, which do not depend on the object of the speech, and axioms, which
depend on it. Then arose the question of how to characterize theories - defined by a set of axioms - which can
be used to formalize mathematical reasoning. A first criterion is consistency : the fact that one cannot prove
all propositions of a theory. However, it gradually appeared that this criterion was not a sufficient property.
Witness and disjunction properties for constructive proofs, and completeness of certain methods of automated
deduction are not entailed by the consistency of a theory. But those properties are all consequences of a single
property : proof normalization.

In 1930, Gödel’s completeness theorem exhibited the fact that consistency can be defined by different means.
It can be defined internally to the theory, as we have seen, but il can also be defined in an algebraic way : a
theory is consistent if and only if it has a model. The equivalence between those two définitions is a fundamental
tool that allowed to prove consistency of many theories : set theory with negation of the axiom of choice by
Mostovski and Fraenkel, set theory with the axiom of choice and the continuum hypothesis by Gödel, set theory
with negation of the continuum hypothesis by Cohen, . . .

On the contrary, proof normalization property seemed to be only definable internally to the theory. Some
model-theory inspired criteria have been used to prove proof normalization for certain theories but those criteria
were not proved to be necessary.

We propose in this thesis a algebraic criterion both necessary and sufficient for proof normalization. We
show this way that proof normalization property can also be defined as a algebraic criterion like consistency
property. For that purpose, we define a new notion of truth values algebras (TVA) called language dependent
truth values algebras (LDTVAS). The notion of TVA allows to exhibit the algebra of reducibility candidates
(the notion defined by Girard in 1970). The existence of a model valued on this algebra defines a algebraic
sufficient criterion for proof normalization. We then define a refinement of the notion of reducibility candidates
as one of those LDTVAS and prove that the existence of a model valued on this algebra defines a algebraic still
sufficient but also necessary criterion for proof normalization.

This criterion is defined for the logical frameworks of minimal deduction modulo and λΠ-calculus modulo.
We finally exhibit the strength of λΠ-calculus modulo by showing that all functional Pure Type Systems can
be embedded in it.

	Introduction
	Proof normalization as a model-theoretic notion
	Natural deduction
	Terms, propositions and inference rules
	Proof-terms and typing rules
	Cut elimination and normalization

	Minimal deduction modulo
	Rewrite rules versus axioms
	Definition
	Theories expressed in minimal deduction modulo

	Reducibility candidates
	About reducibility candidates
	Pre-models for deduction modulo

	Truth values algebras
	Definition
	Models valued in truth values algebras
	C, the TVA of reducibility candidates

	Sound and complete semantics for strong normalization in minimal deduction modulo
	Are usual reducibility candidates complete ?
	About the (CR3) property
	The problem of neutral normal proof-terms
	How to interpret the universal quantifier
	Language-dependent truth values algebras

	Well-typed reducibility candidates
	C, the LDTVA of -well-typed reducibility candidates
	C-models as a sound semantics for strong normalization
	C-models as a complete semantics for strong normalization: the long way
	C-models as a complete semantics for strong normalization: the short way

	Theory-independent sound and complete reducibility candidates
	The main idea
	C', yet another algebra of reducibility candidates
	Soundness of non-empty C'-models
	Defining a function from C to C'
	Proving that this function is a morphism
	Completeness of non-empty C'-models

	Conclusion

	Sound and complete semantics for -modulo
	The -calculus
	Syntax of the -calculus
	Typing rules of the -calculus

	The -calculus modulo
	Syntax of the -calculus modulo
	Typing rules of the -calculus modulo
	Technical lemmas

	Pre-models for -modulo
	Definition of pre-models
	Soundness of pre-models for strong normalization
	An example of pre-model
	Completeness of pre-models for strong normalization

	Conclusion

	Embedding functional Pure Type Systems in -calculus modulo
	The Pure Type Systems
	Embedding functional Pure Type Systems in the -calculus modulo
	Definition
	Soundness of the embedding

	How to prove strong normalization of the embedded theories in -calculus modulo
	Conservativity of the embedding
	Confluence of P-calculus modulo
	Which notion of conservativity?
	Back translation
	Getting rid of weak -long forms

	Implementation
	Conclusion

	Conclusion and perspectives
	Summary
	Future work
	Toward a sound and complete semantics for strong normalization in Pure Type Systems
	Weak and Strong normalization

	Conclusion

	Bibliography
	Index of definitions

