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INTRODUCTION GÉNÉRALE

Cette thèse se compose de trois parties qui portent sur l’étude de certains problèmes

d’optimisation stochastique et de leurs applications en mathématiques financières.

La première partie étudie la représentation par des Equations Différentielles Stochas-

tiques Rétrogrades (EDSR) de solutions de problèmes d’optimisation stochastique séquen-

tielle en temps continu. Il s’agit de problème d’optimisation où les quantités évoluent en

temps continu mais où le contrôle est discret en temps : il consiste en une suite d’inter-

ventions. Nous nous intéressons à deux de ces problèmes : le contrôle impulsionnel et le

switching optimal.

Nous adoptons une nouvelle approche consistant à voir les inéquations (quasi-) variation-

nelles dont sont solutions les fonctions valeurs de tels problèmes d’optimisation comme des

problèmes contraints avec valeurs terminales données. Cette interprétation offre un cadre

naturel à l’étude des EDSRs contraintes.

Cette nouvelle classe d’EDSRs est mise ensuite en lien avec les EDSRs à réflexions

obliques, liées au problème de switching optimal, récemment introduites par Hu et Tang

[44] puis généralisées par Hamadène et Zhang [41].

La seconde partie étudie l’approximation des EDSRs associées aux systèmes d’inéqua-

tions variationnelles.

Nous nous intéressons d’abord à l’approximation des EDSRs contraintes à sauts. La

méthode de pénalisation utilisée pour la construction des solutions nous permet de mettre en

place une procédure numérique pour la résolution de systèmes d’inéquations variationnelles

fortement couplées.

Nous étudions ensuite les EDSRs à réflexions obliques et discrètes. Nous montrons

qu’elles constituent une approximation des EDSRs à réflexions obliques de Hu et Tang

[44]. Ces EDSRs à réflexions obliques discrètes permettent de mettre en place un schémas

naturel de discrétisation pour lequel on obtient une vitesse de convergence.

La troisième partie traite d’un modèle de liquidation de portefeuille sous contrainte de

coût et de risque d’exécution. Nous considérons un marché financier sur lequel un agent

11



12 INTRODUCTION GÉNÉRALE

doit liquider une position en un actif risqué i.e ne plus posséder de part en cet actif risqué

au bout d’une échéance fixée. L’intervention de cet agent influe sur le prix de marché de

cet actif et conduit à un coût d’exécution lié à la taille du volume échangé d’une part, et

à la fréquence d’intervention de l’agent sur le marché d’autre part. Ces phénomènes étant

dus en pratique à l’épuisement du carnet d’ordre. Nous caractérisons la fonction valeur de

notre problème comme solution minimale d’une inéquation quasi-variationnelle au sens de

la viscosité contrainte.

0.1 Première Partie : Représentations probabilistes des so-

lutions de problèmes d’optimisation stochastique séquen-

tielle en temps continu

Cette partie traite de la représentation par EDSRs, de fonctions valeurs de problèmes

d’optimisation stochastique séquentielle en temps continu : le contrôle impulsionnel et le

switching optimal.

Ces problèmes d’optimisation séquentielle en temps continu, ont connu depuis quelques

années un regain d’intérêt, notamment dans le monde financier, puisqu’ils permettent de

mettre en place des modélisations relativement proche de la réalité : risque de liquidité sur

les marchés financiers [42], [53] , gestion d’énergie [18], etc.

Nous considérons donc une nouvelle classe d’EDSR de la forme

Yt = ξ +

∫ T

t
f(s, Ys, Zs, Us)ds−

∫ T

t
Zs.dWs

−
∫ T

t

∫

E
Us(e)µ(de, ds) +KT −Kt, (0.1.1)

où W est un mouvement brownien, µ est une mesure aléatoire de Poisson et K est un

processus croissant permettant à la solution de satisfaire une contrainte de la forme

h(t, Yt, Zt, Ut(e), e) ≥ 0. (0.1.2)

0.1.1 Représentation de fonctions valeurs de problèmes de contrôle im-

pulsionnel markovien

Dans le premier chapitre, nous nous intéressons au lien entre les EDSRs et une famille

d’équations aux dérivées partielles appelées inéquations quasi-variationnelles. Ces équations

aux dérivées partielles prennent la forme suivante :

min
[
− ∂v

∂t
− Lv − f , inf

e∈E
{v −Hev}

]
= 0, sur [0, T ) × R

d, v(T, .) = g(.), sur R
d,
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avec L opérateur local du second ordre :

Lv(t, x) = b(x).Dxv(t, x) +
1

2
tr(σσ⊺(x)D2

xv(t, x)) ,

et H opérateur non local défini par :

Hev(t, x) = v(t, x+ γ(x, e)) + c(x, e) .

Les inéquations quasi-variationnelles interviennent en optimisation stochastique dans le

cas du contrôle impulsionel (voir par exemple [8]) dont la fonction valeur est définie par

v(t, x) = sup
α=(τi,ξi)i≥0

E

[
g(Xt,x,α

T ) +

∫ T

t
f(Xt,x,α

s )ds+
∑

t<τi≤T

c(Xt,x,α

τ−i
, ξi)
]
.

Le contrôle α = (τi, ξi)i≥0 est composé d’une suite de temps d’arrêts (τi)i≥0, représentant les

instants auxquels l’agent décide d’intervenir, et d’une suite de variables aléatoires (ξi)i≥0,

représentant l’amplitude de l’intervention de l’agent à chacun des instants τi. Pour un tel

contrôle α = (τi, ξi)i≥0, le processus d’état contrôlé Xt,x,α partant de x à l’instant t est

donné par

Xt,x,α
s = x+

∫ s

t
b(Xt,x,α

u )du+

∫ s

t
σ(Xt,x,α

u )dWu +
∑

t<τi≤s

γ(Xt,x,α

τ−i
, ξi)

Une approche possible, pour comprendre le lien entre inéquations quasi-variationnelles et

EDSRs, est de remarquer qu’en introduisant une diffusion à sauts X suivant la dynamique :

dXt = b(Xt)dt+ σ(Xt)dWt +

∫

E
γ(Xt− , e)µ(de, dt),

et une solution régulière v de l’inéquation quasi-variationnelle (0.1.3), alors le processus

v(t,Xt) est, par application de la formule d’Itô, solution d’une EDSR avec contrainte sur le

terme de saut :

v(t,Xt) = g(XT ) +

∫ T

t
f(s,Xs)ds−

∫ T

t
Zs.dWs −

∫ T

t

∫

E
Us(e)µ(de, ds) +KT −Kt,

Ut(e) = v(t,Xt + γ(Xt, e)) − v(t,Xt) ≥ c(Xt, e),

Ce lien entre inéquations quasi-variationnelles et EDSRs contraintes est également suggéré

dans [10]. Il identifie, sous des hypothèses assez générales, la fonction valeur d’un problème

de cible stochastique avec processus à saut non contrôlé avec la fonction valeur d’un problème

de switching optimal. Cette fonction valeur du problème de cible stochastique correspond à

la solution minimale de notre EDSR contrainte dans le cas d’un générateur ne dépendant

pas de l’inconnue (Y,Z, U).

Nous considérons dans ce chapitre une version markovienne des EDSRs contraintes :

Yt = g(XT ) +

∫ T

t
f(Xs, Ys, Zs)ds−

∫ T

t
Zs.dWs

−
∫ T

t

∫

E
[Us(e) − c(Xs− , Ys− , Zs, e)]µ(de, ds) +KT −Kt, (0.1.3)
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où la contrainte porte uniquement sur le terme de saut :

h(Ut(e), e) ≥ 0 , (0.1.4)

X étant une diffusion à sauts markovienne définie par :

dXt = b(Xt)dt+ σ(Xt)dWt +

∫

E
γ(Xt− , e)µ(de, dt) .

Notons que par changement de variable Vs(e) = Us(e)− c(Xs− , Ys− , Zs, e), cette EDSR ap-

paraît come un cas particulier de (0.1.1)-(0.1.2). Sous des hypothèses assez générales, nous

prouvons l’existence et l’unicité de solutions minimales à de telles équations. Nous intro-

duisons pour cela, en s’inspirant de la littérature sur les EDSRs soumises à des contraintes

(voir par exemple [29], [24]), une suite d’EDSRs, dites pénalisées, où le terme à annuler est

pénalisé par un facteur explosif. Dans notre cas ces EDSRs pénalisées prennent la forme

suivante :

Y n
t = g(XT ) +

∫ T

t
f(Xs, Y

n
s , Z

n
s )ds−

∫ T

t
Zns .dWs

−
∫ T

t

∫

E
[Uns (e) − c(Xs− , Ys− , Zs, e)]µ(de, ds) +Kn

T −Kn
t ,

où le terme Kn est explicité :

Kn
t = n

∫ t

0
max{−h(Uns (e), e), 0}λ(de)ds,

λ étant le compensateur de la mesure µ. Nous montrons que la suite (Y n, Zn, Un)n converge

vers la solution minimale de (0.1.3)-(0.1.4). La difficulté principale pour le passage à la

limite est la présence du terme non linéaire f . Nous résolvons cette difficulté en prouvant

une généralisation du théorème de limite monotone de Peng [64], au cas des EDSRs à sauts.

Cette suite d’équations pénalisées nous permet ensuite de faire le lien entre la solution

minimale de notre EDSR contrainte et les solutions, au sens de la viscosité, d’inéquations

quasi-variationnelles générales de la forme

min
[
− ∂v

∂t
− Lv − f(., v, σ⊺Dxv) , inf

e∈E
h(Hev − v, e)

]
= 0, sur [0, T ) × R

d,(0.1.5)

avec un opérateur non local H plus général :

Hev(t, x) = v(t, x+ γ(x, e)) + c(x, v(t, x), σ⊺Dxv(t, x), e).

Nous utilisons le lien entre EDSRs à sauts et équations aux dérivées partielles intégrales

donné par Barles, Buckdhan et Pardoux [5] pour lier notre EDSR pénalisée à l’équation aux

dérivées partielle suivante :

−∂v
∂t

− Lv − f(., v, σ⊺Dxv) − n

∫

E
max{−h(Hev − v, e), 0}λ(de) = 0,
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sur [0, T )×R
d. L’utilisation d’argument analytiques nous permettent alors de passer les pro-

priétés de viscosité à la limite pour obtenir une solution à l’inéquation quasi-variationnelle.

Pour compléter l’équation aux dérivées partielles (0.1.5), nous introduisons une condition

en T relaxée :

min
[
v(T, .) − g(.) , inf

e∈E
h(Hev(T−, .) − v(T−, .), e)

]
= 0, sur R

d. (0.1.6)

La propriété de viscosité pour cette condition terminale est obtenue par une caractérisation

dynamique de la minimalité de la solution à l’EDSR contrainte.

Enfin sous des hypothèses de convexité, nous montrons un résultat d’unicité pour les

solutions d’inéquations quasi-variationnelles (0.1.5)-(0.1.6) , ce qui nous permet de lier la

solution de l’EDSR contrainte à la fonction valeur du problème de contrôle impulsionnel.

Ce chapitre est tiré d’un article rédigé conjointement avec Jin Ma, Huyên Pham et

Jianfeng Zhang [46]. Cet article a été accepté pour publication dans la revue The Annals of

Probability.

0.1.2 Représentation de fonctions valeurs de problèmes de switching op-

timal et lien entre EDSRs contraintes à sauts et EDSRs à réflexions

obliques

Dans ce chapitre, nous étudions la représentation, par EDSRs contraintes à sauts, des

solutions de problèmes de switching optimal et de systèmes d’inéquations variationnelles.

Récemment, Hu et Tang [44] ont obtenu une représentation stochastique pour les sys-

tèmes d’inéquations variationnelles en introduisant la notion d’EDSRs multi-dimensionnelles

à réflexions obliques. Ce type d’EDSR, qui a ensuite été généralisé par Hamadène et Zhang

[41], prend la forme générale suivante :





Y i
t = ξi +

∫ T
t ψi(s, Y

1
s , . . . , Y

m
s , Zis)ds−

∫ T
t 〈Zis, dWs〉 +Ki

T −Ki
t ,

Y i
t ≥ maxj∈Ai

hi,j(t, Y
j
t ) ,

∫ T
0 [Y i

t − maxj∈Ai
{hi,j(t, Y j

t )}]dKi
t = 0.

(0.1.7)

Nous lions cette classe d’EDSRs aux EDSRs du type (0.1.1)-(0.1.2) lorsque le support

E de la mesure aléatoire µ est l’ensemble des indices I := {1, . . . , d}, d étant la dimension

de (0.1.7). Nous montrons que le processus (Y It
t )t∈[0,T ] est solution minimale de l’EDSR

contrainte à sauts suivante :

Ỹt = ξIT +

∫ T

t
ψIs(s, Ỹs + Ũs(1)1Is 6=1, . . . , Ỹs + Ũs(m)1Is 6=m, Z̃s)ds

+K̃T − K̃t −
∫ T

t
Z̃s.dWs −

∫ T

t

∫

I
Ũs(i)µ(ds, di),
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avec

1AI
t−

(i)
[
Ỹt− − hI

t−
,i(t, Ỹt− + Ũt(i))

]
≥ 0,

le processus I désignant l’indice chargé par la mesure µ à chaque instant. Ce lien est obtenu

par identification des équations pénalisées associées.

Une fois ce lien fait, nous nous intéressons à la représentation de problèmes de swit-

ching dans le cas non markovien. Le problème de switching optimal consiste à maximiser

la quantité

E

[
g(Xα

T , αT ) +

∫ T

0
f(t,Xα

t , αt)dt−
∑

τk≤T

c(τk, ξk−1, ξk)
]

suivant le contrôle α qui, comme dans le cas du contrôle impulsionnel, est constitué d’une

suite de temps d’arrêts (τk)k≥1 et d’une suite de variables aléatoires (ξk)k≥1 adaptées aux

temps d’arrêts. La diffusion Xα ayant une dynamique contrôlée de la manière suivante :

dXα
t = b(Xα

t , αt)dt+ σ(Xα
t , αt)dWt , (0.1.8)

avec αt = ξk pour t ∈ [τk, τk+1). Une première représentation, à l’aide d’une transformation

de Girsanov, a été obtenue par Hu et Tang [44] dans le cas où la diffusion sous jacente du

problème n’est que partiellement contrôlée sous la forme :

dXα
t = σ(Xα

t )
[
b(Xα

t , αt)dt+ dWt

]
.

Nous généralisons ce résultat en montrant que les EDSRs du type (0.1.1)-(0.1.2) donnent

une représentation des processus valeur de problèmes de switching dans le cas d’une diffusion

totalement controlée suivant l’équation (0.1.2).

Nous introduisons pour cela une famille d’EDSRs à réflexions obliques paramétrée par

un temps d’arrêt et une variable aléatoire. Ce paramètre représente la condition initiale de la

diffusion sous-jacente de l’EDSR. En utilisant les représentations des enveloppes de Snell et

des arrêts optimaux par EDSRs simplement réfléchies données par [29], nous caractérisons

la stratégie optimale comme temps de réflexion associés à une suite d’EDSRs et montrons

que le processus valeur associé est bien solution d’une EDSR du type (0.1.1)-(0.1.2).

Ce chapitre a donné lieu à un article rédigé conjointement avec Romuald Elie [32].

0.2 Seconde Partie : Approximation des solutions d’EDSRs à

sauts contraints et d’EDSRs à réflexions obliques

Nous étudions dans cette partie deux méthodes probabilistes d’approximation de

solutions de systèmes d’inéquations variationnelles. La première utilise la représentation par

EDSRs contraintes à sauts et nous donne un algorithme fondé sur la résolution d’EDSRs
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pénalisées associées. La seconde utilise la notion d’EDSR à réflexions obliques discrètes.

Dans ce dernier cas, nous obtenons une vitesse de convergence de l’approximation vers la

solution continûment réfléchie.

0.2.1 Représentation et approximation probabiliste pour des systèmes

couplés d’inéquations variationnelles

Nous nous intéressons dans ce chapitre à la représentation probabiliste de solutions

de systèmes d’inéquations variationnelles afin de mettre en place une procédure d’approxi-

mation numérique de ces solutions.

Nous considérons alors la solution de l’EDSR (0.1.1)-(0.1.2) dans le cas où :

– le support E de la mesure aléatoire µ est l’ensemble I := {1, . . . , d},
– les coefficients sont markoviens dirigés par un processus de diffusion-transmutation

(I,XI) introduit par Pardoux Pradeilles et Rao [63] pour prendre en compte les chan-

gements de régime des opérateurs différentiels intervenant dans les systèmes d’EDPs

associés.

L’EDSR étudiée prends alors la forme suivante :

Yt = g(XT , IT ) +

∫ T

t
fIs(Xs, Ys + Us(1), . . . , Ys + Us(d), Zs)ds

−
∫ T

t
Zs.dWs −

∫ T

t

∫

I
Us(i)µ(di, ds) +KT −Kt , (0.2.9)

la solution devant satisfaire une contrainte de la forme :

hI
t−
,j(t,X

I
t , Yt, Yt + Ut(j), Zt) ≥ 0 .

Le processus de diffusion-transmutation (I,XI) dirigeant cette EDSR étant défini

par :

dIt =

∫

i∈I
(i− It−)µ(di, dt) ,

dXI
t = b(XI

t , It)dt+ σ(XI
t , It)dWt .

Nous montrons que la solution Y de l’EDSR (0.1.1)-(0.1.2) constitue une représentation

de type Feynman-Kac pour des solutions de systèmes d’inéquations variationnelles de la

forme :

min
[
− ∂vi

∂t
− Livi − fi(·, v1, . . . , vd, σ⊺Dxvi) , min

j∈E
hi,j(·, vi, vj , σ⊺Dxvi)

]
= 0,

sur [0, T ) × R
d pour i ∈ {1, . . . , d}. Li étant l’opérateur local du second ordre défini par :

Liϕ(t, x) = b(x, i).Dxϕ(t, x) +
1

2
tr(σσ⊺(x, i)D2

xϕ(t, x)) .
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Ce lien avec la solution de l’EDP nous permet de mieux comprendre le rôle du processus

K dans l’equation (0.2.9). Nous obtenons en effet une condition de minimalité, similaire

à celle obtenue dans le cas réfléchi (voir [29]), lorsque la fonction h ne dépend pas de la

variable Z :
∫ T

0
min
j

{hI
t−
,j(t,X

I
t , Yt− , Yt− + Ut(j))}dKt = 0.

L’approximation de l’EDSR (0.2.9) se fait alors par discrétisation de l’EDSR pénalisée

associée en utilisant les résultats de convergence de Bouchard et Elie [12].

Ce chapitre a donné lieu à une noté rédigée conjointement avec Romuald Elie [33].

0.2.2 Discrétisation des EDSR multi-dimentionnelles à réflexions obliques

Dans ce chapitre, nous étudions l’approximation d’EDSRs à réflexions obliques de

la forme :




Ẏ i
t = gi(XT ) +

∫ T
t fi(Xs, Ẏ

i
s , Ż

i
s)ds−

∫ T
t Żis.dWs + K̇i

T − K̇i
t ,

Ẏ i
t ≥ maxj 6=i{Ẏ j

t − ci,j(Xt)} ,∫ T
0 [Ẏ i

t − maxj 6=i{Ẏ j
t − ci,j(Xt)}]dK̇i

t = 0 ,

(0.2.10)

avec X la diffusion définie par :

dXt = b(Xt)dt+ σ(Xt)dWt . (0.2.11)

Nous introduisons pour une grille de réflexion donnée ℜ := {r0 = 0, . . . , rκ = T}, l’EDSR

à réflexions obliques discrètes, étudiée pour les EDSRs unidimensionnelles réfléchies par

Bouchard et Chassagneux [11] dans le cas d’une barrière simple et par Chassagneux [22]

dans le cas d’une double barrière :




Ỹt = g(XT ) +
∫ T
t f(Xs, Ỹs, Z̃s)ds−

∫ T
t Z̃s.dWs + K̃T − K̃t ,

K̃t =
∑

t≤T ∆K̃t et ∆K̃t = Ỹt − Yt ,

Yt = Ỹt1t/∈ℜ + P(Xt, Ỹt)1t∈ℜ ,

(0.2.12)

avec P(x, .) opérateur de projection oblique :

P(x, y) =
(

max
1≤j≤d

{yi − ci,j(x)}
)

1≤i≤d
.

Nous considérons alors le schéma associé à cette EDSR discrètement réfléchie :





Z̄πti := (ti+1 − ti)
−1

Eti [Y
π
ti+1

(Wti+1 −Wti)
′] ,

Ỹ π
ti := Eti [Y

π
ti+1

] + (ti+1 − ti)f(Xπ
ti+1

, Ỹ π
ti , Z̄

π
ti) ,

Y π
ti := Ỹ π

ti 1ti /∈ℜ + P(Xπ
ti+1

, Ỹ π
ti )1ti∈ℜ ,

(0.2.13)

pour lequel nous montrons, par des techniques présentes dans la littérature ([56, 11, 21]), la

convergence vers la solution de (0.2.12). Cependant, la spécificité de l’opérateur de projec-

tion oblique constitue une difficulté pour l’application des méthodes classiques permettant

d’obtenir une vitesse de convergence.
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Nous utilisons alors l’approche de Hu et Tang [44], consistant à voir les solutions d’EDSR

à réflexions obliques comme processus valeur de problème de switching optimal d’EDSRs

unidimensionnelles. Cette approche nous permet, via des théorèmes de comparaison pour

les EDSRs d’obtenir un contrôle sur l’écart entre Ẏ et Ỹ . Nous montrons alors, dans le cas

où le générateur f ne dépends pas de la variable Z, la convergence, pour la composante Y ,

du schéma (0.2.13) vers l’EDSR discrètement réfléchie (0.2.12) à une vitesse |π| 12 , lorsque le

pas de discrétisation |π| tends vers 0.

Sous une hypothèse de bornitude du générateur f en la variable Z nous montrons,

toujours en utilisant cette interprétation, la convergence lorsque le pas de la grille de réflexion

|ℜ| tends vers 0, de l’EDSR discrètement réfléchie (0.2.12) vers l’EDSR (0.2.10), à la vitesse

|ℜ| 1−ε
2 sur les points de la grille, pour tout ε > 0. Dans le cas particulier de fonctions de

coûts constantes nous obtenons une vitesse de |ℜ| 12 pour cette même convergence.

La composition de ces deux résultats dans le cas ℜ = π, nous donne alors une majoration

de l’écart entre les composantes Y de l’EDSR (0.2.10) et du schéma (0.2.13).

Ce chapitre est tiré d’un travail réalisé en collaboration avec Jean-François Chassagneux

et Romuald Elie.

0.3 Troisième Partie : Un modèle de liquidation optimale de

portefeuille avec coût et risque d’exécution

Comprendre le fonctionnement des marchés financiers est un enjeu fondamental pour

les praticiens de la finance. Une question importante que se posent les intervenants est

comment liquider une position importante en un certain actif. Un dilemme se pose alors.

En échangeant rapidement, l’intervenant est soumis à des coûts élevés dus à l’épuisement

du carnet d’ordre. Il est donc préférable d’espacer ses interventions, mais alors l’intervenant

est soumis aux variations de cours du marché. Il y a récemment eu un regain d’intérêt dans

la littérature pour ces effets de liquidité qui a donné lieu à de nombreux travaux prenant en

compte ces impacts de prix dont Bertsimas et Lo [9], Almgren et Criss [1], Bank et Baum

[6], Cetin, Jarrow et Protter [19], Obizhaeva et Wang [58], He et Mamayski [42], Schied et

Schöneborn [74], Ly Vath, Mnif et Pham [53], Rogers et Singh [72], et Cetin, Soner et Touzi

[20].

Il existe principalement deux types de formulations pour les problèmes de gestion de

portefeuille : la modélisation en temps continu d’une part et en temps discret d’autre part.

Les modèles en temps continu ne sont pas très réalistes mais restent couramment utilisés,

notamment en raison de l’efficacité du calcul stochastique pour leurs résolutions.

Dans le cas des modélisations en temps discret, on peut distinguer trois types de travaux :

– temps d’exercices à dates déterministes fixées (voir [9]),

– temps d’exercices exogènes et aléatoires donnés par exemple par une mesure de Poisson

(voir [69], [7]),
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– temps d’exercices discrets choisis de manière optimale par l’investisseur sur un inter-

valle continu (voir [42] et [53]).

Dans ce dernier cas, il est commun de supposer l’existence de coûts de transaction fixes

afin de ne pas avoir de stratégies explosives i.e. accumulation des ordres qui se rapproche-

raient d’une stratégie continue. Cependant la présence d’un coût fixe de transaction n’est

pas toujours en accord avec la réalité des marchés.

Nous présentons un modèle issu de cette dernière famille et prenant en compte les effets

du manque de liquidité des marchés.

Nous considérons un marché financier comportant un actif sans risque au taux d’intérêt

r = 0 et un actif risqué de processus de prix (Pt)t. Nous considérons un agent détenant une

certaine quantité Y0 de cet actif risqué et cherchant à liquider cette position.

Stratégies d’investissement. Notre agent peut acheter ou vendre cet actif risqué suivant

une stratégie discrète α = (τn, ξn)n≥1 : τ1 ≤ · · · τn ≤ · · · ≤ T représentent les temps

d’intervention de l’investisseur, et ξn, le nombre d’actifs risqués achetés ou vendus lors de

ces interventions.

Coût d’intervention. Lorsque notre agent intervient sur le marché à une date τn ∈ [0, T ],

en achetant une quantité ξn, il paie alors le montant

Q(ξn, Pτn , τn − τn−1) = Pτnξnf(ξn, τn − τn−1) ,

la fonction f représentant l’impact temporaire de l’intervention de l’investisseur sur le prix.

Cet impact dépendant de la quantité échangée et de la fréquence d’intervention τn − τn−1.

Une telle modélisation permet de représenter le manque de liquidité dû à l’épuisement du

carnet d’ordre venant soit d’une intervention importante, soit d’une multitude d’interven-

tions de tailles moins importantes mais à des dates très proches. En particulier, l’investisseur

ne peut pas réduire l’impact de son intervention en segmentant un ordre important en plu-

sieurs ordres de tailles moindres.

Cette modélisation permet aussi de définir une condition de solvabilité. Nous imposons

à la richesse potentielle L(Zt,Θt) = L(Xt, Yt, Pt,Θt) de l’investisseur au temps t d’être

positive. Cette richesse potentielle étant définie comme la richesse si l’investisseur liquide

immédiatement sa position en actif risqué :

L(Xt, Yt, Pt,Θt) = Xt + YtPtf(−Yt,Θt) ,

Xt, Yt et Θt étant respectivement la quantité de cash, le nombre d’actifs risqués cumulés et le

délais depuis le dernier ordre passé au temps t. Une telle contrainte de solvabilité constitue

un atout important dans le contexte actuel de régulation bancaire en vue de limiter les

risques systémiques.

Le problème d’investissement. Nous étudions le problème de maximisation de l’espérance

d’utilité de la richesse terminale sous contrainte de liquidation de la position en actif risqué,
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YT = 0, et sous contrainte de position positive en l’actif risqué Yt ≥ 0 pour t ∈ [0, T ] :

v(t, z, θ) = sup
α∈A(t,z)

E[U(Xα
T )] ,

A(t, z) représentant l’ensemble des contrôles satisfaisant les contraintes.

Un premier résultat important est de montrer que les stratégies (presque) optimales sont

finies en dépit de l’absence de coûts fixes de transaction.

Nous montrons ensuite que la fonction valeur de notre problème est solution d’une

inéquation quasi-variationnelle :

min
[
− ∂v

∂t
− ∂v

∂θ
− Lv, v −Hv

]
= 0. (0.3.14)

Malheureusement, la forme singulière de l’opérateur non local H de cette inéquation quasi-

variationnelle ne permet pas de prouver l’unicité de la solution par la méthode habituelle

de construction d’une sur-solution stricte, initialement introduite par Ishii [45].

Nous caractérisons alors cette fonction valeur comme limite d’une suite de fonctions

valeurs associées à des problèmes d’investissement identiques mais avec l’ajout d’un coût

de transaction convergeant vers 0. Le modèle est identique avec un coût d’échange Qε de la

forme :

Qε(ξn, Pτn , τn − τn−1) = Q(ξn, Pτn , τn − τn−1) − ε ,

et une fonction de liquidation Lε de la forme :

Lε(Zt,Θt) = L(Zt,Θt) − ε .

Nous considérons alors la suite de fonctions valeurs (vctε ) définie par :

vctε (t, z) = sup
α∈Aε(t,z)

E[U(Lε(Z
ε
T ,ΘT )] ,

La présence de ce coût de transaction fixe permet alors de caractériser la fonction valeur ap-

prochée vctε comme unique solution de son l’inéquation quasi-variationnelle. Nous montrons

ensuite la convergence ponctuelle de vctε vers v lorsque ε tends vers 0.

Enfin une seconde approximation de notre fonction valeur par pénalisation d’utilité est

mise en place. Il s’agit du problème d’optimisation :

vpuε (t, z) = sup
α∈A(t,z)

E[U(XT ) − εN(α)] ,

avec N(α) le nombre d’ordre de la stratégie α. Cette approximation nous permet de montrer

que la fonction valeur v est la solution minimale de l’inéquation quasi-variationnelle (0.3.14).

Ce chapitre est issu d’un article rédigé en collaboration avec Huyên Pham [47].



INTRODUCTION AND SUMMARY

This thesis deals with the study of stochastic optimization problems and their applications

in financial mathematics.

The first part is devoted to the probabilistic representation, in terms of Backward

Stochastic Differential Equations, of optimization problems. Specifically we focus on the

impulse control and optimal switching problems.

In the first chapter, we consider the case of the impulse control problem in a Markovian

framework. It is well known (see e. g. [8]) that stochastic impulse control is linked to a class

of parabolic partial differential equations called Quasi-Variational Inequalities. We interpret

these QVIs as problems with given terminal condition whose solutions are submitted to a

specific constraint. This gives a suitable framework for the study of BSDEs with constrained

jumps. We then introduce these so-called BSDEs with constrained jumps for which we prove,

under mild conditions, the existence and uniqueness of minimal solutions. For this purpose

we introduce, as classically done in the literature, a sequence of penalized BSDEs. Adapting

the approach of Peng [64], we prove the convergence of this sequence of penalized solutions

to the minimal constrained solution. We then connect this minimal constrained solution to

QVIs. Using the results of [5], we link the penalized solutions to integral PDE. Then using

viscosity arguments inspired by [4], we get the viscosity property of the minimal constrained

solution using a limit argument. Finaly, we provide a comparison theorem for the studied

QVI under some convexity assumptions on the coefficients.

In the second chapter, we study the probabilistic representation of optimal switching

problems. Recently, such a representation was obtained by Hu and Tang [44], in terms of

BSDEs with oblique reflections. However this representation does not cover the general

case of optimal switching: the underlying diffusion is controlled only via its drift term. We

provide a stochastic representation for the general problem, in terms of constrained BSDEs

with jumps. For this purpose, we introduce a family of BSDEs with oblique reflections

indexed by the initial condition of the underlying diffusion. Using the representation of

22
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Snell envelopes and optimal stopping times in terms of one dimentional reflected BSDEs,

we provide an optimal switching strategy by jumping from a BSDE to another one in this

family. Finaly we link theses two types of BSDEs: constrained BSDEs with jumps and

obliquely reflected ones.

In the second part, we study the numerical approximation of BSDEs associated to

variational inequalities. In the first chapter we give a representation in terms of constrained

BSDEs with jumps, for solutions to systems of variational inequalities. As in Pardoux,

Pradeilles and Rao [63], we consider a markovian BSDE driven by a diffusion-transmutation

process, to take into account the fact that the differential operators are different at each

line of the system. We then link theses constrained BSDEs with jumps to general fully

coupled systems of variational inequalities. For this purpose we introduce penalized BSDEs

with jumps which are related to integral PDEs according to Barles, Buckdahn and Pardoux

[5]. We get the viscosity property using a limit argument. We also provide a numerical

approximating procedure, relying on the recent results on time discretization of BSDEs

with jumps by Bouchard and Elie [12].

The second chapter deals with the discrete-time approximation of BSDEs with oblique

reflections. We first study the discrete-time approximation of discretely reflected BSDEs,

introduced in [11, 22] for the one dimensional case, which are classical BSDEs being obliquely

projected on a convex set only on a finite time grid ℜ. We first prove the convergence of

the associated discrete-time scheme. Due to the particular form of the oblique projection

operator, the classical methods used in the literature cannot be applied to get a rate for the

previous convergence. Using the interpretation of the solution of such a BSDE as the value

process of an optimal switching problem as in [44], we prove that the component Y of the

scheme converges to the discretely reflected BSDE’s one at a rate |π| 12 .

Still using this approach, we prove the convergence of the discretely reflected BSDE to

the continuously reflected at a rate |ℜ| 1−ε
2 , for all ε > 0, when |ℜ| goes to 0, on the grid

points, for the particular case where f does not depend on Z.

Combining these two results, we obtain a rate for the convergence of the scheme to the

continuously reflected BSDE.

In the third part, we study a model of optimal liquidation with execution cost and risk.

We propose a continuous-time framework taking into account the main liquidity features

and risk/cost tradeoff of portfolio execution: there is a bid-ask spread in the limit order

book, and temporary market price impact penalizing rapid execution trades. However, in

contrast with previous papers (see e.g. [74] or [72]), we do not assume continuous-time

trading strategies. We consider instead real trading taking place in discrete-time, and

without assuming any ad-hoc fixed transaction cost, in accordance with the practitioner

literature. We consider an investor who has to liquidate at maturity, a quantity of risky

asset with price process P , and who tries to maximize its terminal expected utility. We



24 INTRODUCTION AND SUMMARY

then prove that the associated value function is a viscosity solution to a quasi-variational

inequality (QVI in short). Unfortunately, the particular form of the nonlocal operator H
involved in the previous QVI does not allow to prove uniqueness by the classical method of

Ishii [45].

We then provide two approximations to characterize the value function v. The first one

consists in introducing a small fixed transaction cost ε. In this case the associated value

function vtcε is characterized as the unique viscosity solution of its associated QVI. Then we

prove that the sequence (vtcε )ε converges to v pointwisely as ε goes to zero.

A second approximation consists in penalizing by a small parameter ε the terminal util-

ity for each intervention of the investor. We prove that the sequence of associated value

functions converges to v as ε goes to 0. This last approximation allows to prove that v is

the smallest viscosity solution to its associated QVI.
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Chapter 1

Backward SDEs with constrained

jumps and Quasi-Variational

Inequalities

Abstract : We consider a class of backward stochastic differential equations (BSDEs) driven

by Brownian motion and Poisson random measure, and subject to constraints on the jump

component. We prove the existence and uniqueness of the minimal solution for the BSDEs by

using a penalization approach. Moreover, we show that under mild conditions the minimal

solutions to these constrained BSDEs can be characterized as the unique viscosity solution

of quasi-variational inequalities (QVIs), which leads to a probabilistic representation for

solutions to QVIs. Such a representation in particular gives a new stochastic formula for

value functions of a class of impulse control problems. As a direct consequence, this suggests

a numerical scheme for the solution of such QVIs via the simulation of the penalized BSDEs.

Keywords: Backward stochastic differential equation, jump-diffusion process, jump con-

straints, penalization quasi-variational inequalities, impulse control problems, viscosity so-

lutions.
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1.1 Introduction and summary

Consider a parabolic quasi-variational inequality (QVI for short) of the following form:

{
min

[
− ∂v

∂t
− Lv − f , v −Hv

]
= 0, on [0, T ) × R

d,

v(T, ·) = g on R
d,

(1.1.1)

where L is the second order local operator

Lv(t, x) = 〈b(x), Dxv(t, x)〉 +
1

2
tr(σσ⊺(x)D2

xv(t, x)) (1.1.2)

and H is the nonlocal operator

Hv(t, x) = sup
e∈E

[v(t, x+ γ(x, e)) + c(x, e)]. (1.1.3)

In the above, Dxv and D2
xv are the partial gradient and the Hessian matrix of v with

respect to its second variable x, respectively; ⊺ stands for the transpose; 〈·, ·〉 denotes the

scalar product in R
d; S

d is the set of all symmetric d× d matrices; and E is some compact

subset of R
q.

It is well-known (see, e.g., [8]) that the QVI (1.1.1) is the dynamic programming equation

associated to the impulse control problems whose value function is defined by:

v(t, x) = sup
α=(τi,ξi)i

E

[
g(Xt,x,α

T ) +

∫ T

t
f(Xt,x,α

s )ds+
∑

t<τi≤T

c(Xt,x,α

τ−i
, ξi)
]
. (1.1.4)

More precisely, given a filtered probability space (Ω,F ,P,F) where F = {Ft}t, we define

an impulse control α as a double sequence (τi, ξi)i in which {τi} is an increasing sequence

of F-stopping times, and each ξi is an Fτi-measurable random variable taking values in E.

For each impulse control α = (τi, ξi)i, the controlled dynamics starting from x at time t,

denoted by Xt,x,α, is a càdlàg process satisfying the following SDE:

Xt,x,α
s = x+

∫ s

t
b(Xt,x,α

u )du+

∫ s

t
σ(Xt,x,α

u )dWu +
∑

t<τi≤s

γ(Xt,x,α

τ−i
, ξi), (1.1.5)

where W is a d-dimensional F-Brownian motion. In other words, the controlled process

Xt,x,α evolves according to a diffusion process between two successive intervention times τi

and τi+1, and at each decided intervention time τi, the process jumps with size ∆Xt,x,α
τi :=

Xt,x,α
τi −Xt,x,α

τ−i
= γ(Xt,x,α

τ−i
, ξi).

We note that the impulse control problem (1.1.4) may be viewed as a sequence of optimal

stopping problems combined with jumps in state due to impulse values. Moreover, the QVI

(1.1.1) is the infinitesimal derivation of the dynamic programming principle, which means

that at each time, the controller may decide either to do nothing and let the state process

diffuse, or to make an intervention on the system via some impulse value. The former is

characterized by the linear PDE in (1.1.1), while the latter is expressed by the obstacle
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(or reflected) part in (1.1.1). From the theoretical and numerical point of view, the main

difficulty of the QVI (1.1.1) lies in that the obstacle contains the solution itself, and it is

nonlocal (see (1.1.3)) due to the jumps induced by the impulse control. These features

make the classical approach of numerically solving such impulse control problems particular

challenging.

An alternative method to attack the QVI (1.1.1) is to find the probabilistic representation

of the solution using the Backward Stochastic Differential Equations (BSDEs), namely the

so-called nonlinear Feynman-Kac formula. One can then hope to use such a representation

to derive a direct numerical procedure for the solution of QVIs, whence the impulse control

problems. The idea is the following. We consider a Poisson random measure µ(dt, de) on

R+ × E associated to a marked point process (Ti, ζi)i. Assume that µ is independent of

W and has intensity λ(de)dt, where λ is a finite measure on E. Consider a (uncontrolled)

jump-diffusion process

Xs = X0 +

∫ s

0
b(Xu)du+

∫ s

0
σ(Xu)dWu +

∑

Ti≤s

γ(XT−
i
, ζi). (1.1.6)

Assume that v is a “smooth" solution to (1.1.1), and define Yt = v(t,Xt). Then, by Itô’s

formula we have

Yt = g(XT ) +

∫ T

t
f(Xs)ds+KT −Kt −

∫ T

t
〈Zs, dWs〉

−
∫ T

t

∫

E
(Us(e) − c(Xs− , e))µ(ds, de), (1.1.7)

where Zt = σ⊺(Xt−)Dxv(t,Xt−), Ut(e) = v(t,Xt− + γ(Xt− , e)) − v(t,Xt−) + c(Xt− , e), and

Kt =
∫ t
0 (−∂v

∂t
− Lv − f)(s,Xs)ds. Since v satisfies (1.1.1), we see that K is a continuous

(hence predictable), nondecreasing process, and U satisfies the constraint:

− Ut(e) ≥ 0, (1.1.8)

The idea is then to view (1.1.7) and (1.1.8) as a BSDE with jump constraints, and we expect

to retrieve v(t,Xt) by solving the “minimal" solution (Y,Z, U,K) to this constrained BSDE.

We can also look at the BSDE above slightly differently. Let us denote dK̄t = dKt −∫
E Us(e)µ(dt, de), t ≥ 0. Then K̄ is still a nondecreasing process, and the equation (1.1.7)

can now be rewritten as

Yt = g(XT ) +

∫ T

t
f(Xs)ds+

∫ T

t

∫

E
c(Xs− , e)µ(ds, de)

−
∫ T

t
〈Zs, dWs〉 + K̄T − K̄t. (1.1.9)

We shall prove that v(t,Xt) can also be retrieved by looking at the minimal solution

(Y, Z, K̄) to this BSDE. In fact, the following relation holds (assuming t = 0):
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v(0, X0) = inf {y ∈ R : ∃Z, y +

∫ T

0
〈Zs, dWs〉 ≥ (1.1.10)

g(XT ) +

∫ T

0
f(Xs)ds+

∫ T

0

∫

E
c(Xs− , e)µ(ds, de)}.

Notice that (1.1.10) also has a financial interpretation. That is, v(0, x) is the minimal capital

allowing to superhedge the payoff ΠT (X) = g(XT )+
∫ T
0 f(Xs)ds+

∫ T
0 c(Xs− , e)µ(ds, de) by

trading only the asset W . Here, the market is obviously incomplete, since the jump part

of the underlying asset X is not hedgeable. This connection between the impulse control

problem (1.1.4) and the stochastic target problem defined by the r.h.s. of (1.1.10) was

originally proved in Bouchard [10].

Inspired by the above discussion, we now introduce the following general BSDE:

Yt = g(XT ) +

∫ T

t
f(Xs, Ys, Zs)ds+KT −Kt −

∫ T

t
〈Zs, dWs〉 (1.1.11)

−
∫ T

t

∫

E
(Us(e) − c(Xs− , Ys− , Zs, e))µ(ds, de), 0 ≤ t ≤ T,

with constraints on the jump component in the form:

h(Ut(e)) ≥ 0, ∀e ∈ E, 0 ≤ t ≤ T, (1.1.12)

where h is a given nonincreasing function. The solution to the BSDE is a quadruple

(Y, Z, U,K) where, besides the usual component (Y,Z, U), the fourth component K is a

nondecreasing, càdlàg, adapted process, null at zero, which makes the constraint (1.1.12)

possible. We note that without the constraint (1.1.12), the BSDE with K = 0 was studied

by Tang and Li [77] and Barles, Buckdahn and Pardoux [5]. However, with the presence of

the constraint, we may not have the uniqueness of the solution. We thus look only for the

minimal solution (Y,Z, U,K), in the sense that for any other solution (Ỹ , Z̃, Ũ , K̃) satisfy-

ing (1.1.11)-(1.1.12), it must hold that Y ≤ Ỹ . Clearly, this BSDE is a generalized version

of (1.1.7)-(1.1.8), where the functions f and c are independent of y and z, and h(u) = −u.
We can also consider the counterpart of (1.1.9), namely finding the minimal solution

(Y, Z,K) of the BSDE:

Yt = g(XT ) +

∫ T

t
f(Xs, Ys, Zs)ds+

∫ T

t

∫

E
c(Xs− , Ys− , Zs, e)µ(ds, de)

−
∫ T

t
〈Zs, dWs〉 +KT −Kt, 0 ≤ t ≤ T. (1.1.13)

It is then conceivable, as we shall prove, that this problem is a special case of (1.1.11)-(1.1.12)

with h(u) = −u.
It is worth noting that if the generator f and the cost function c do not depend on

y, z, which we refer to as the impulse control case, the existence of a minimal solution to
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the constrained BSDEs (1.1.7)-(1.1.8) may be directly obtained by supermartingale decom-

position method in the spirit of El Karoui and Quenez [30] for the dual representation of

the super-replication cost of ΠT (X). In fact, the results could be extended easily to the

case where f is linear in z, via a simple application of the Girsanov transformation. In our

general case, however, we shall follow a penalization method, as was done in El Karoui et al.

[29]. Namely, we construct a suitable sequence (Y n, Zn, Un,Kn) of BSDEs with jumps, and

prove that it converges to the minimal solution that we are looking for. This is achieved as

follows. We first show the convergence of the sequence (Y n) by relying on comparison results

for BSDEs with jumps, see [73]. The proof of convergence of the components (Zn, Un,Kn)

is more delicate, and is obtained by using a weak compactness argument due to Peng [64].

Our next task of this paper is to relate the minimal solution to the BSDE with con-

strained jumps to the viscosity solutions to the following general QVI:

min
[
− ∂v

∂t
− Lv − f(·, v, σ⊺Dxv) , h(Hv − v)

]
= 0, (1.1.14)

where H is the nonlocal semilinear operator

Hv(t, x) = sup
e∈E

[v(t, x+ γ(x, e)) + c(x, v(t, x), σ⊺(x)Dxv(t, x), e)].

Under suitable assumptions, we shall also prove the uniqueness of the viscosity solution,

leading to a new probabilistic representation for this parabolic QVI.

We should point out that BSDEs with constraints have been studied by many authors.

For example, El Karoui et al. [29] studied the reflected BSDEs, in which the component Y

is forced to stay above a given obstacle; Buckdahn and Hu [15, 16] followed by Cvitanic,

Karatzas and Soner [24] considered the case where the constraints are imposed on the com-

ponent Z. Recently Peng [64] (see also [65]) studied the the general case where constraints

are given on both Y and Z, which relates these constrained BSDEs to variational inequali-

ties. The main feature of this work is to consider constraints on the jump component (U) of

the solution, and to relate these jump-constrained BSDEs to quasi-variational inequalities.

On the other hand, the classical approach in the theory and numerical approximation of

impulse control problems and QVIs is to consider them as obstacle problems and iterated

optimal stopping problems. However, our penalization procedure for jump-constrained BS-

DEs suggests a non-iterative approximation scheme for QVIs, based on the simulation of

the BSDEs, which, to our best knowledge, is new.

The rest of the paper is organized as follows: In Section 2 we give a detailed formulation

of BSDEs with constrained jumps, and show how it includes problem (1.1.13) as special

case. Moreover, in the special case of impulse control, we directly construct and show the

existence of a minimal solution. In Section 3 we develop the penalization approach for

studying the existence of a minimal solution to our constrained BSDE for general f , c, and

h. We show in Section 4 that the minimal solution to this constrained BSDE provides a

probabilistic representation for the unique viscosity solution to a parabolic QVI. Finally,
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in Section 5 we provide some examples of sufficient conditions under which our general

assumptions are satisfied.

1.2 BSDEs with constrained jumps

1.2.1 General formulation

Throughout this paper we assume that (Ω,F ,P) is a complete probability space on which

are defined a d-dimensional standard Brownian motion W = (Wt)t≥0, and a Poisson random

measure µ on R+ ×E, where E is a compact set of R
q, endowed with its Borel field E . We

assume that the Poisson random measure µ is independent of W , and has the intensity

measure λ(de)dt for some finite measure λ on (E, E). We set µ̃(dt, de) = µ(dt, de)−λ(de)dt,

the compensated measure associated to µ; and denote by F = (Ft)t≥0 the augmentation of

the natural filtration generated by W and µ, and by P the σ-algebra of predictable subsets

of Ω × [0, T ].

Given Lipschitz functions b : R
d → R

d, σ : R
d → R

d×d, and a measurable map γ : R
d×E

→ R
d, satisfying for some positive constants C and kγ ,

sup
e∈E

|γ(x, e)| ≤ C, and sup
e∈E

|γ(x, e) − γ(x′, e)| ≤ kγ |x− x′|, x, x′ ∈ R
d,

we consider the forward SDE:

dXs = b(Xs)ds+ σ(Xs)dWs +

∫

E
γ(Xs− , e)µ(ds, de). (1.2.1)

Existence and uniqueness of (1.2.1) given an initial condition X0 ∈ R
d, is well-known under

the above assumptions, and for any 0 ≤ T < ∞, we have the standard estimate

E

[
sup

0≤t≤T
|Xt|2

]
< ∞. (1.2.2)

In what follows we fix a finite time duration [0, T ]. Let us introduce some additional

notations. We denote by

• S2 the set of real-valued càdlàg adapted processes Y = (Yt)0≤t≤T such that ‖Y ‖
S2

:=
(
E

[
sup0≤t≤T |Yt|2

]) 1
2
< ∞.

• L
p(0,T), p ≥ 1, the set of real-valued processes (φt)0≤t≤T such that E

[ ∫ T
0 |φt|pdt

]
<

∞; and L
p
F
(0,T) is the subset of L

p(0,T) consisting of adapted processes.

• L
p(W), p ≥ 1, the set of R

d-valued P-measurable processes Z = (Zt)0≤t≤T such that

‖Z‖
Lp(W)

:=
(
E

[ ∫ T
0 |Zt|pdt

]) 1
p
<∞.

• L
p(µ̃), p ≥ 1, the set of P ⊗ E-measurable maps U : Ω × [0, T ] × E → R such that

‖U‖
Lp(µ̃)

:=
(
E[
∫ T
0

∫
E |Ut(e)|pλ(de)dt

]) 1
p
<∞.
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• A
2 the closed subset of S2 consisting of nondecreasing processes K = (Kt)0≤t≤T with

K0 = 0.

We are given four objects: (i) a terminal function, which is a measurable function

g : R
d 7→ R satisfying a growth sublinear condition

sup
x∈Rd

|g(x)|
1 + |x| < ∞, (1.2.3)

(ii) a generator function f , which is a measurable function f : R
d × R × R

d → R satisfying

a growth sublinear condition

sup
(x,y,z)∈Rd×R×Rd

|f(x, y, z)|
1 + |x| + |y| + |z| < ∞, (1.2.4)

and a uniform Lipschitz condition on (y, z), i.e. there exists a constant kf such that for all

x ∈ R
d, y, y′ ∈ R, z, z′ ∈ R

d,

|f(x, y, z) − f(x, y′, z′)| ≤ kf (|y − y′| + |z − z′|), (1.2.5)

(iii) a cost function, which is a measurable function c : R
d × R × R

d × E → R satisfying a

growth sublinear condition

sup
(x,y,z,e)∈Rd×R×Rd×E

|c(x, y, z, e)|
1 + |x| + |y| + |z| < ∞, (1.2.6)

and a uniform Lipschitz condition on (y, z), i.e. there exists a constant kc such that for all

x ∈ R
d, y, y′ ∈ R, z, z′ ∈ R

d, e ∈ E,

|c(x, y, z, e) − c(x, y′, z′, e)| ≤ kc(|y − y′| + |z − z′|), (1.2.7)

(iv) a constraint function, which is a measurable map h : R × E → R s.t for all e ∈ E,

u 7−→ h(u, e) is nonincreasing, (1.2.8)

satisfying a Lipschitz condition on u i.e. there exists a constant kh such that for all u, u′ ∈
R, e ∈ E,

|h(u, e) − h(u′, e)| ≤ kh|u− u′|. (1.2.9)

and such that
∫
E |h(0, e)|λ(de) < +∞.

Let us now introduce our BSDE with constrained jumps: find a quadruple (Y,Z, U,K)

∈ S2 × L
2(W) × L

2(µ̃) × A
2 satisfying

Yt = g(XT ) +

∫ T

t
f(Xs, Ys, Zs)ds+KT −Kt −

∫ T

t
〈Zs, dWs〉

−
∫ T

t

∫

E
(Us(e) − c(Xs− , Ys− , Zs, e))µ(ds, de), 0 ≤ t ≤ T, a.s. (1.2.10)
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with

h(Ut(e), e) ≥ 0, dP ⊗ dt⊗ λ(de) a.e. (1.2.11)

and such that for any other quadruple (Ỹ , Z̃, Ũ , K̃) ∈ S2 ×L
2(W)×L

2(µ̃)×A
2 satisfying

(1.2.10)-(1.2.11), we have

Yt ≤ Ỹt, 0 ≤ t ≤ T, a.s.

We say that Y is the minimal solution to (1.2.10)-(1.2.11). In the formulation of Peng [64],

one may sometimes say that Y is the smallest supersolution to (1.2.10)-(1.2.11). We shall

also say that (Y,Z, U,K) is a minimal solution to (1.2.10)-(1.2.11), and we discuss later the

uniqueness of such quadruple.

Remark 1.2.1 Since we are originally motivated by probabilistic representation of QVI’s,

we put the BSDE with constrained jumps in a Markovian framework. But all the results

of Section 3 about the existence and approximation of a minimal solution hold true in a

general non Markovian framework with the following standard modifications : the terminal

condition g(XT ) is replaced by a square integrable random variable ξ ∈ L
2(Ω,FT), the

generator is a map f from Ω × [0, T ] × R × R
d into R, satisfying a uniform Lipschitz

condition in (y, z), and f(·, y, z) ∈ L
2
F
(0,T) for all (y, z) ∈ R × R

d, and the cost coefficient

is a map c from Ω× [0, T ]×R×R
d ×E into R, satisfying a uniform Lipschitz condition in

(y, z), and c(·, y, z, e) ∈ L
2
F
(0,T) for all (y, z, e) ∈ R × R

d × E.

Remark 1.2.2 Without the h-constraint condition (1.2.11) on jumps, we have existence

and uniqueness of a solution (Y,Z, U,K) with K = 0 to (1.2.10), from results on BSDE

with jumps in [77] and [5]. Here, under (1.2.11) on jumps, it is not possible in general to

have equality in (1.2.10) with K = 0, and as usual in the BSDE literature with constraint,

we consider a nondecreasing process K to have more freedom. The problem is then to find a

minimal solution to this constrained BSDE, and the nondecreasing condition (1.2.8) on h is

crucial for stating comparison principles needed in the penalization approach. The primary

example of constraint function is h(u, e) = −u, i.e. nonpositive jumps constraint, which is

actually equivalent to consider minimal solution to BSDE (1.1.13) as showed later.

1.2.2 The case of nonpositive jump constraint

Let us recall the BSDE defined in the introduction: find a triplet (Y, Z,K) ∈ S2×L
2(W)×

A
2 such that

Yt = g(XT ) +

∫ T

t
f(Xs, Ys, Zs)ds+KT −Kt −

∫ T

t
〈Zs, dWs〉

+

∫ T

t

∫

E
c(Xs− , Ys− , Zs, e)µ(ds, de), 0 ≤ t ≤ T, a.s. (1.2.12)



36 CHAPTER 1. BSDES WITH CONSTRAINED JUMPS AND QVI

such that for any other triplet (Ỹ , Z̃, K̃) ∈ S2 × L
2(W) × A

2 satisfying (1.2.12), it holds

that

Yt ≤ Ỹt, 0 ≤ t ≤ T, a.s.

We will call such Y (and, by a slight abuse of notation, (Y,Z,K)) the minimal solution to

(1.2.12). We claim that this problem is actually equivalent to problem (1.2.10)-(1.2.11) in

the case h(u, e) = −u, corresponding to nonpositive jump constraint condition:

Ut(e) ≤ 0, dP ⊗ dt⊗ λ(de) a.e. (1.2.13)

Indeed, let (Y, Z, U,K) be any solution of (1.2.10) and (1.2.13). Define a process K̄ by

dK̄t = dKt −
∫
E Us(e)µ(dt, de), 0 ≤ t ≤ T , then K̄ is nondecreasing, and the triplet

(Y, Z, K̄) satisfies (1.2.12). It follows that the minimal solution to (1.2.12) is smaller than

the minimal solution to (1.2.10) and (1.2.13). We shall see in the next section, by using

comparison principles and penalization approach, that equality holds, i.e.

minimal solution Y to (1.2.12) = minimal solution Y to (1.2.10), (1.2.13).

We shall illustrate this result by considering a special case : when the functions f and c

do not depend on y, z (i.e., the impulse control case). In this case, one can obtain directly

the existence of a minimal solution to (1.2.10)-(1.2.13) and (1.2.12) by duality methods

involving the following set of probability measures. Let V be the set of P ⊗ E-measurable

essentially bounded processes valued in (0,∞), and given ν ∈ V, consider the probability

measure P
ν equivalent to P on (Ω,FT ) with Radon-Nikodym density :

dPν

dP
= ET

(∫ .

0

∫

E
(νt(e) − 1)µ̃(dt, de)

)
, (1.2.14)

where Et(.) is the Doléans-Dade exponential. Notice that the Brownian motion W remains

a Brownian motion under P
ν , which can then be interpreted as an equivalent martingale

measure for the “asset" price process W . The effect of the probability measure P
ν , by

Girsanov’s theorem, is to change the compensator λ(de)dt of µ under P to νt(e)λ(de)dt

under P
ν .

In order to ensure that the problem is well-defined, we need to assume :

(H1) There exists a triple (Ỹ , Z̃, K̃) ∈ S2 × L
2(W) × A

2 satisfying (1.2.12).

This assumption is standard and natural in the literature on BSDE with constraints, and

means equivalently here (when f and c do not depend on y, z) that one can find some

constant ỹ ∈ R, and Z̃ ∈ L
2(W) such that

ỹ +

∫ T

0
〈Z̃s, dWs〉 ≥ g(XT ) +

∫ T

0
f(Xs)ds+

∫ T

0

∫

E
c(Xs− , e)µ(ds, de) a.s.

This equivalency can be proved by same arguments as in [24]. Notice that Assumption

(H1) may be not satisfied as shown in Remark 1.3.1, in which case the problem (1.2.12) is

ill-posed.
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Theorem 1.2.1 Suppose that f and c do not depend on y, z, and (H1) holds. Then, there

exists a unique minimal solution (Y,Z,K,U) ∈ S2 × L
2(W) × L

2(µ̃) × A
2, with K pre-

dictable, to (1.2.10)-(1.2.13). Moreover, (Y,Z, K̄) is the unique minimal solution to (1.2.12)

with K̄t = Kt −
∫ t
0

∫
E Us(e)µ(ds, de), and Y has the explicit functional representation :

Yt = ess sup
ν∈V

E
ν
[
g(XT ) +

∫ T

t
f(Xs)ds+

∫ T

t

∫

E
c(Xs− , e)µ(ds, de)

∣∣∣Ft
]
,

for all t ∈ [0, T ].

Proof. First, observe that for any (Ỹ , Z̃, Ũ , K̃) ∈ S2×L
2(W)×L

2(µ̃)×A
2 (resp. (Ỹ , Z̃, K̃)

∈ S2 × L
2(W) × A

2) satisfying (1.2.10)-(1.2.13) (resp. (1.2.12)), the process

Q̃t := Ỹt +

∫ t

0
f(Xs)ds+

∫ t

0

∫

E
c(Xs− , e)µ(ds, de), 0 ≤ t ≤ T,

is a P
ν-supermartingale, for all ν ∈ V, where the probability measure P

ν was defined in

(1.2.14). Indeed, from (1.2.10)-(1.2.13) (resp. (1.2.12)), we have

Q̃t = Q̃0 +

∫ t

0
〈Z̃s, dWs〉 − K̄t, with K̄t = K̃t −

∫ t

0
Us(e)µ(ds, de),

( resp. Q̃t = Q̃0 +

∫ t

0
〈Z̃s, dWs〉 − K̃t), 0 ≤ t ≤ T.

Now, by Girsanov’s theorem, W remains a Brownian motion under P
ν , while from the

boundedness of ν ∈ V, the density dPν/dP lies in L2(P). Hence, from Cauchy-Schwarz

inequality, the condition Z̃ ∈ L
2(W), and Burkholder-Davis-Gundy inequality, we get the

P
ν-martingale property of the stochastic integral

∫
〈Z̃, dW 〉, and so the P

ν-supermartingale

property of Q̃ since K̄ (resp. K̃) is nondecreasing. This implies

Ỹt ≥ E
ν
[
ỸT +

∫ T

t
f(Xs)ds+

∫ T

t

∫

E
c(Xs− , e)µ(ds, de)

∣∣∣Ft
]
,

and thereby, from the arbitrariness of P
ν , ν ∈ V, and since ỸT = g(XT ),

Yt := ess sup
ν∈V

E
ν
[
g(XT ) +

∫ T

t
f(Xs)ds+

∫ T

t

∫

E
c(Xs− , e)µ(ds, de)

∣∣∣Ft
]

(1.2.15)

≤ Ỹt.

To show the converse, let us consider the process Y defined in (1.2.15). By standard

arguments as in [30], the process Y can be considered in its càd-làg modification, and we

also notice that Y ∈ S2. Indeed, by observing that the choice of ν = 1 corresponds to the

probability P
ν = P, we have Ŷ ≤ Y ≤ Ỹ , where (Ỹ , Z̃, K̃) ∈ S2×L

2(W)×A
2 is a solution

to (1.2.12), and

Ŷt = E

[
g(XT ) +

∫ T

t
f(Xs)ds+

∫ T

t

∫

E
c(Xs− , e)µ(ds, de)

∣∣∣Ft
]
.
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Thus, since Ŷ lies in S2 from the linear growth conditions on g, f , and c, and the estimate

(1.2.2), we deduce that Y ∈ S2. Now, by similar dynamic programming arguments as in

[30], we see that the process

Qt = Yt +

∫ t

0
f(Xs)ds+

∫ t

0

∫

E
c(Xs− , e)µ(ds, de), 0 ≤ t ≤ T, (1.2.16)

lies in S2, and is a P
ν-supermartingale, for all ν ∈ V. Then, from the Doob-Meyer decom-

position of Q under each P
ν , ν ∈ V, we obtain :

Qt = Y0 +Mν −Kν , (1.2.17)

where Mν is a P
ν-martingale, Mν

0 = 0, and Kν is a P
ν nondecreasing predictable càd-làg

process with Kν
0 = 0. Recalling that W is a P

ν-Brownian motion, and since µ̃ν(ds, de)

:= µ(ds, de) − νs(e)λ(de)ds is the compensated measure of µ under P
ν , the martingale

representation theorem for each Mν , ν ∈ V gives the existence of predictable processes Zν

and Uν such that

Qt = Y0 +

∫ t

0
〈Zνs , dWs〉 (1.2.18)

+

∫ t

0

∫

E
Uνs (e)µ̃ν(ds, de) −Kν

t , 0 ≤ t ≤ T.

By comparing the decomposition (1.2.18) under P
ν and P corresponding to ν = 1, and

identifying the martingale parts and the predictable finite variation parts, we obtain that

Zν = Z1 =: Z, Uν = U1 =: U for all ν ∈ V, and

Kν
t = K1

t −
∫ t

0

∫

E
Us(e)(νs(e) − 1)λ(de)ds, 0 ≤ t ≤ T. (1.2.19)

Now, by writing the relation (1.2.18) with ν = ε > 0, substituting the definition of Q in

(1.2.16), and since YT = g(XT ), we obtain :

Yt = g(XT ) +

∫ T

t
f(Xs)ds−

∫ T

t
〈Zs, dWs〉

−
∫ T

t

∫

E
(Us(e) − c(Xs− , e))µ(ds, de) (1.2.20)

+

∫ T

t

∫

E
Us(e)ελ(de)ds+Kε

T −Kε
t , 0 ≤ t ≤ T.

From (1.2.19), the process Kε has a limit as ε goes to zero, which is equal to K0 =

K1 +
∫ .
0

∫
E Us(e)λ(de)ds, and inherits from Kε, the nondecreasing path and predictabil-

ity properties. Moreover, since Q ∈ S2, in the decomposition (1.2.17) of Q under P = P
ν for

ν = 1, the process M1 lies in S2 and K1 ∈ A
2. This implies that Z ∈ L

2(W), U ∈ L
2(µ̃),

and also that K0 ∈ A
2. By sending ε to zero into (1.2.20), we obtain that (Y,Z, U,K0) ∈
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S2 ×L
2(W)×L

2(µ̃)×A
2 is a solution to (1.2.10). Let us finally check that U satisfies the

constraint :

Ut(e) ≤ 0, dP ⊗ dt⊗ λ(de). (1.2.21)

We argue by contradiction by assuming that the set F = {(ω, t, e) ∈ Ω× [0, T ]×E : Ut(e) >

0} has a strictly positive measure for dP × dt× λ(de). For any k > 0, consider the process

νk = 1F c + (k + 1)1F , which lies in V. From (1.2.19), we have

E[Kνk

T ] = E[K1
T ] − kE

[ ∫ T

0

∫

E
1FUt(e)λ(de)dt

]
< 0,

for k large enough. This contradicts the fact that Kνk

T ≥ 0, and so (1.2.21) is satisfied.

Therefore (Y,Z, U,K0) is a solution to (1.2.10)-(1.2.13), and it is a minimal solution from

(1.2.15). Y is unique by definition. The uniqueness of Z follows by identifying the Brownian

parts and the finite variation parts, and the uniqueness of (U,K0) is obtained by identifying

the predictable parts by recalling that the jumps of µ are inaccessible. By denoting K̄0 =

K0 −
∫ t
0

∫
E Us(e)µ(ds, de), which lies in A

2, we see that (Y, Z, K̄0) is a solution to (1.2.12),

and it is minimal by (1.2.15). Uniqueness follows by identifying the Brownian parts and the

finite variation parts. ✷

Remark 1.2.3 In Section 1.4, we shall relate rigorously the constrained BSDEs (1.2.10)-

(1.2.11) to QVIs. In particular, the minimal solution Yt to (1.2.10)-(1.2.13) or (1.2.12) is

Yt = v(t,Xt) where v is the value function of the impulse control problem (1.1.4). Together

with the functional representation of Y in Theorem 1.2.1, we then have the following relation

at time t = 0 :

v(0, X0) = sup
ν∈V

E
ν
[
g(XT ) +

∫ T

0
f(Xs)ds+

∫ T

0

∫

E
c(Xs− , e)µ(ds, de)

]
. (1.2.22)

We then recover a recent result obtained by Bouchard [10], who related impulse controls to

stochastic target problems in the case of a finite set E. We may also interpret this result as

follows. Recall that the effect of the probability measure P
ν is to change the compensator

λ(de)dt of µ under P to νt(e)λ(de)dt under P
ν . Hence, by taking the supremum over all P

ν ,

we formally expect to retrieve in distribution law all the dynamics of the controlled process

in (1.1.5) when varying the impulse controls α, which is confirmed by the equality (1.2.22).

Finally, we mention that the above duality and martingale methods may be extended

when the generator function f is linear in z by using Girsanov’s transformation. Our main

purpose is now to study the general case of h-constraints on jumps, and nonlinear functions

f and c depending on y, z.

1.3 Existence and approximation by penalization

In this section, we prove the existence of a minimal solution to (1.2.10)-(1.2.11), based on

approximation via penalization. For each n ∈ N, we introduce the penalized BSDE with
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jumps

Y n
t = g(XT ) +

∫ T

t
f(Xs, Y

n
s , Z

n
s )ds

+n

∫ T

t

∫

E
h−(Uns (e), e)λ(de)ds−

∫ T

t
〈Zns , dWs〉 (1.3.1)

−
∫ T

t

∫

E
(Uns (e) − c(Xs− , Y

n
s− , Z

n
s , e))µ(ds, de), 0 ≤ t ≤ T,

where h−(u, e) = max(−h(u, e), 0) is the negative part of the function h. Under the Lipschitz

and growth conditions on the coefficients f , c and h, we know from the theory of BSDEs with

jumps, see [77] and [5], that there exists a unique solution (Y n, Zn, Un) ∈ S2 × L
2(W) ×

L
2(µ̃) to (1.3.1). We define for each n ∈ N,

Kn
t = n

∫ t

0

∫

E
h−(Uns (e), e)λ(de)ds, 0 ≤ t ≤ T,

which is a nondecreasing process in A
2. The rest of this section is devoted to the convergence

of the sequence (Y n, Zn, Un,Kn)n to the minimal solution we are interested in.

1.3.1 Comparison results

We first state that the sequence (Y n)n is nondecreasing. This follows from a comparison

theorem for BSDEs with jumps whose generator is of the form f̃(x, y, z, u) = f(x, y, z) +∫
E h̃(u(e), e)λ(de) for some nondecreasing function h̃, which covers our situation from the

nonincreasing condition on the constraint function h.

Lemma 1.3.1 The sequence (Y n)n is nondecreasing, i.e. for all n ∈ N, Y n
t ≤ Y n+1

t ,

0 ≤ t ≤ T , a.s.

Proof. Define the sequence (V n)n of P ⊗ E-measurable processes by

V n
t (e) = Unt (e) − c(Xt− , Y

n
t− , Z

n
t , e), (t, e) ∈ (0, T ] × E and

V n
0 (e) = Un0 (e) − c(X0, Y

n
0 , Z

n
0 , e), e ∈ E,

From (1.3.1) and recalling that X and Y are càd-làg, we see that (Y n, Zn, V n) is the unique

solution in S2 × L
2(W) × L

2(µ̃) of the BSDE with jumps :

Y n
t = g(XT ) +

∫ T

t
Fn(Xs, Y

n
s , Z

n
s , V

n
s )ds

−
∫ T

t
〈Zns , dWs〉 −

∫ T

t

∫

E
V n
s (e)µ̃(ds, de),

with Fn(x, y, z, v) = f(x, y, z) +
∫
E (nh−(v(e) + c(x, y, z, e), e) − v(e))λ(de). Since h− is

nondecreasing, we have

Fn(t, x, y, z, v) − Fn(t, x, y, z, v
′) =
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∫

E

{
(v′(e) − v(e)) + n[h−(v(e) + c(x, y, z, e), e)

− h−(v′(e) + c(x, y, z, e), e)]
}
λ(de) ≤∫

E

{
(−1 + 1{v(e)≥v′(e)}nkh)(v(e) − v′(e))

}
λ(de).

Moreover, since Fn+1 ≥ Fn, we can apply the comparison theorem 2.5 of [73], and obtain

that Y n
t ≤ Y n+1

t , 0 ≤ t ≤ T , a.s. ✷

The next result shows that the sequence (Y n)n is upper-bounded by any solution to the

constrained BSDE. Arguments in the proof involve suitable change of probability measures

P
ν , ν ∈ V, introduced in (1.2.14).

Lemma 1.3.2 For any quadruple (Ỹ , Z̃, Ũ , K̃) ∈ S2 × L
2(W) × L

2(µ̃) × A
2 satisfying

(1.2.10)-(1.2.11), and for all n ∈ N, we have

Y n
t ≤ Ỹt, 0 ≤ t ≤ T, a.s. (1.3.2)

Moreover, in the case : h(u, e) = −u, the inequality (1.3.2) also holds for any triple (Ỹ , Z̃, K̃)

∈ S2 × L
2(W) × A

2 satisfying (1.2.12).

Proof. We state the proof for quadruple (Ỹ , Z̃, Ũ , K̃) satisfying (1.2.10)-(1.2.11). Same

arguments are used in the case : h(u, e) = −u and (Ỹ , Z̃, K̃) ∈ S2×L
2(W)×A

2 satisfying

(1.2.12).

Denote Ȳ = Ỹ−Y n, Z̄ = Z̃−Zn, f̄ = f(X, Ỹ , Z̃)−f(X,Y n, Zn) and c̄= c(X.− , Ỹ.− , Z̃, e)−
c(X.− , Y

n
.− , Z

n, e). Fix some ν ∈ V (to be chosen later). We then have :

Ȳt =

∫ T

t
f̄sds+

∫ T

t

∫

E
c̄sµ(ds, de) −

∫ T

t
〈Z̄s, dWs〉

−
∫ T

t

∫

E

{
Ũs(e) − Uns (e)

}
µ̃ν(ds, de) −

∫ T

t

∫

E

{
Ũs(e) − Uns (e)

}
νs(e)λ(de)ds

−n
∫ T

t

∫

E
h−(Uns (e), e)λ(de)ds+ K̃T − K̃t,

Ȳt =

∫ T

t
f̄sds+

∫ T

t

∫

E
c̄sµ(ds, de) −

∫ T

t
〈Z̄s, dWs〉

−
∫ T

t

∫

E

{
Ũs(e) − Uns (e)

}
µ̃ν(ds, de) −

∫ T

t

∫

E

{
Ũs(e) − Uns (e)

}
νs(e)λ(de)ds

−n
∫ T

t

∫

E
h−(Uns (e), e)λ(de)ds+ K̃T − K̃t,

where µ̃ν(dt, de) = µ(dt, de)−νt(e)λ(de)dt denotes the compensated measure of µ under

P
ν . Let us then define the following adapted processes:

at =
f(Xt, Ỹt, Z̃t) − f(Xt, Y

n
t , Z̃t)

Ȳt
1{Ȳt 6=0},
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and b the R
d-valued process defined by its i-th components, i = 1, . . . , d:

bit =
f(Xt, Y

n
t , Z

(i−1)
t ) − f(Xt, Y

n
t , Z

(i)
t )

V i
t

1{V i
t 6=0},

where Z
(i)
t is the R

d-valued random vector whose i first components are those of Z̃ and

whose (d − i) lasts are those of Zn, and V i
t is the i-th component of Z

(i−1)
t − Z

(i)
t . Let us

also define the P ⊗ E-measurable processes δ in R and ℓ in R
d by:

δt(e) =
c(Xt− , Ỹt− , Z̃t, e) − c(Xt− , Y

n
t− , Z̃t, e)

Ȳr
1{Ȳ

t−
6=0},

and

ℓir(e) =
c(Xt− , Y

n
t− , Z

(i−1)
t , e) − c(Xt− , Y

n
t− , Z

(i)
t , e)

V i
t

1{V i
t 6=0}.

Notice that the processes a, b, δ and ℓ are bounded by the Lipschitz conditions on f and c.

Define also ανt = at +
∫
E δt(e)νt(e)λ(de), βνt = bt +

∫
E ℓt(e)νt(e)λ(de), which are bounded

processes since a, b, δ, ℓ are bounded and λ is a finite measure on E, and denote V n
t (e) =

Ũt(e)−Unt (e)− δt(e)Ȳt− ℓt(e) · Z̄t. With these notations, and recalling that h−(Ũs(e), e) =

0 from the constraint condition (1.2.11), we rewrite the BSDE for Ȳ as:

Ȳt =

∫ T

t
(ανs Ȳs + βνs .Z̄s)ds−

∫ T

t
〈Z̄s, dWs〉 −

∫ T

t

∫

E
V n
s (e)µ̃ν(ds, de) + K̃T − K̃t

+

∫ T

t

∫

E

{
n[h−(Ũs(e), e) − h−(Uns (e), e)] − νs(e)[Ũs(e) − Uns (e)]

}
λ(de)ds.

Consider now the positive process Γν solution to the s.d.e.:

dΓνt = Γνt (α
ν
t dt+ 〈βνt , dWt〉), Γν0 = 1, (1.3.3)

and notice that Γν lies in S2 from the boundeness condition on αν and βν . By Itô’s formula,

we have

dΓνt Ȳt = −Γνt

∫

E

{
n[h−(Ũt(e), e) − h−(Unt (e), e)] − νt(e)[Ũt(e) − Unt (e)]

}
λ(de)ds

−Γνt dK̃t + Γνt 〈Z̄t, dWt〉 + Γνt Ȳt−〈βt, dWt〉 + Γνt

∫

E
V n
t (e)µ̃ν(dt, de),

which shows that the process

Γνt Ȳt +

∫ t

0
Γνs

∫

E

{
n[h−(Ũs(e), e) − h−(Uns (e), e)] − νs(e)[Ũs(e) − Uns (e)]

}
λ(de)ds

is a P
ν-supermartingale and so

Γνt Ȳt ≥ E
ν
[ ∫ T

t
Γνs

∫

E

{
n[h−(Ũs(e), e) − h−(Uns (e), e)]

−νεs(e)[Ũs(e) − Uns (e)]
}
λ(de)ds

∣∣∣Ft
]
.
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Now, from the Lipschitz condition on h, we see that the process νε defined by

νεt (e) =

{
n[h−(Ũt(e),e)−h−(Un

t (e),e)]

Ũt(e)−Un
t (e)

if Unt (e) > Ũt(e) and h−(Unt (e), e) > 0

ε else

is bounded and so lies in V, and therefore by taking ν = νε, we obtain :

Γν
ε

t Ȳt ≥ −εEνε
[ ∫ T

t
Γν

ε

s

∫

E
[Ũs(e) − Uns (e)]

1{Ũs(e)≥Un
s (e)}∪{h−(Un

s (e),e)=0}λ(de)ds
∣∣∣Ft
]

=: −εRεt , 0 ≤ t ≤ T. (1.3.4)

From the conditional Cauchy-Schwarz inequality, and Bayes formula, we have for all t ∈
[0, T ], ε > 0,

|Rεt | ≤
√

E

[
Zν

ε

T

Zν
ε

t

∫ T

t
|Γνε

s |2ds
∣∣∣∣Ft
]

.

√

E

[
Zν

ε

T

Zν
ε

t

∫ T

t

(∫

E
[Ũs(e) − Uns (e)]1{Ũs(e)≥Un

s (e)}∪{h−(Un
s (e),e)=0}λ(de)

)2
ds

∣∣∣∣Ft
]

=: R1,ε
t .R2,ε

t .

By definition of νε, we have for ε ≤ nkh:

Zν
ε

T

Zν
ε

t

≤ ZnT
Znt

exp

(∫ T

t

∫

E
nkhλ(de)ds

)
,

where Zn is the solution to dZnt = Znt−
∫
E (nkh − 1) µ̃(dt, de), Zn0 = 1. It follows that for all

t ∈ [0, T ], (R2,ε
t )ε is uniformly bounded for ε in a neighborhood of 0+. Similarly, using also

the boundedness of the coefficients αν
ε

and βν
ε

in the dynamics (1.3.3) of Γν,ε, we deduce

that (R1,ε
t )ε and thus (Rεt )ε is uniformly bounded for ε in a neighborhood of 0+. Finally,

since limε→0 Γν
ε

t = Γν
0

t > 0, by sending ε to zero into (1.3.4), we conclude that Ȳt ≥ 0. ✷

1.3.2 Convergence of the penalized BSDEs

We impose the following analogue of Assumption (H1).

(H2) There exists a quadruple (Ỹ , Z̃, K̃, Ũ) ∈ S2 × L
2(W) × L

2(µ̃) × A
2 satisfying

(1.2.10)-(1.2.11).

Assumption (H2) ensures that the problem (1.2.10)-(1.2.11) is well-posed. As indicated in

paragraph 1.2.2, Assumption (H2) in the case h(u, e) = −u, implies Assumption (H1).

Since (H1) is obviously stronger than (H2), these two Assumptions are equivalent in the

case h(u, e) = −u. We provide in Section 1.5 some discussion and sufficient conditions under

which (H2) holds.
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Remark 1.3.1 The following example shows that conditions (H1) and (H2) may be not

satisfied : consider the BSDEs

Yt = −
∫ T

t
〈Zs, dWs〉 +

∫ T

t

∫

E
cµ(ds, de) +KT −Kt, (1.3.5)

and {
Yt = −

∫ T
t 〈Zs, dWs〉 −

∫ T
t

∫
E [Us(e) − c]µ(ds, de) +KT −Kt

−Us(e) ≥ 0
(1.3.6)

where c is a strictly positive constant, c > 0. Then, there does not exist any solution to

(1.3.5) or (1.3.6) with component Y ∈ S2. On the contrary, we would have

Y0 ≥ −
∫ T

0
〈Zs, dWs〉 + cµ([0, T ] × E), a.s.

which implies that for all n ∈ N
∗, ν ≡ n ∈ V,

Y0 ≥ E
ν

[
−
∫ T

0
〈Zs, dWs〉 + cµ([0, T ] × E)

]
= cnλ(E)T.

By sending n to infinity, we get the contradiction : ‖Y ‖S2 = ∞.

We now establish a priori estimates, uniform on n, on the sequence (Y n, Zn, Un,Kn)n.

Lemma 1.3.3 Under (H2) (or (H1) in the case : h(u, e) = −u), there exists some con-

stant C such that

‖Y n‖
S2

+ ‖Zn‖
L2(W)

+ ‖Un‖
L2(µ̃)

+ ‖Kn‖
S2

≤ C, ∀n ∈ N. (1.3.7)

Proof. In what follows we shall denote C > 0 to be a generic constant depending only on

T , the coefficients f , c, the process X, and the bound for Ỹ in (H1) or (H2), and which

may vary from line to line.

Applying Itô’s formula to |Y n
t |2, and observing that Kn is continuous and ∆Y n

t =∫
E{Uns (e) − c(Xs− , Y

n
s− , Z

n
s , e)}µ({t}, de), we have

E|g(XT )|2 = E|Y n
t |2 − 2E

∫ T

t
Y n
s f(Xs, Y

n
s , Z

n
s )ds

−2E

∫ T

t
Y n
s dK

n
s + E

∫ T

t
|Zns |2ds

+E

∫ T

t

∫

E

{
|Y n
s− + Uns (e) − c(Xs− , Y

n
s− , Z

n
s , e)|2 − |Y n

s−|2
}
λ(de)ds

From the linear growth condition on f and the inequality Y n
t ≤ Ỹt by Lemma 1.3.2 under

(H2) (and also under (H1) in the case h(u, e) = −u), and using the inequality 2ab ≤ 1
αa

2
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+ αb2 for any constant α > 0, we have:

E|Y n
t |2 + E

∫ T

t
|Zns |2ds+ E

∫ T

t

∫

E
|Uns (e) − c(Xs− , Y

n
s− , Z

n
s , e)|2λ(de)ds

≤ E|g(XT )|2 + 2CE

∫ T

t
|Y n
s | (1 + |Xs| + |Y n

s | + |Zns |) ds

−2E

∫ T

t

∫

E
Y n
s−(Uns (e) − c(Xs− , Y

n
s− , Z

n
s , e))λ(de)ds

+
1

α
E

[
sup
t∈[0,T ]

|Ỹt|2
]

+ αE|Kn
T −Kn

t |2.

Using again the inequality 2ab ≤ 1
ηa

2 + ηb2 for η > 0, yields

E|Y n
t |2 + E

∫ T

t
|Zns |2ds

+
1 − η

2
E

∫ T

t

∫

E
|Uns (e) − c(Xs− , Y

n
s− , Z

n
s , e)|2λ(de)ds

≤ E|g(XT )|2 + 2CE

∫ T

t
|Y n
s | (1 + |Xs| + |Y n

s | + |Zns |) ds

+
λ(E)

η
E

∫ T

t
|Y n
s |2ds+

1

α
E

[
sup
t∈[0,T ]

|Ỹt|2
]

+ αE|Kn
T −Kn

t |2

≤ C
(
1 + E

∫ T

t
|Y n
s |2ds

)
+

1

2
E

∫ T

t
|Zns |2ds

+αE|Kn
T −Kn

t |2 +
λ(E)

η
E

∫ T

t
|Y n
s |2ds.

Then, by using the inequality (a− b)2 ≥ a2/2 − b2, we get

E|Y n
t |2 +

1

2
E

∫ T

t
|Zns |2ds+

1 − η

4
E

∫ T

t

∫

E
|Uns (e)|2λ(de)ds

≤ 1 − η

2
E

∫ T

t

∫

E
|c(Xs− , Y

n
s− , Z

n
s , e)|2λ(de)ds

+ C
(
1 + E

∫ T

t
|Y n
s |2ds

)
+ αE|Kn

T −Kn
t |2

≤ C
(
1 + E

∫ T

t
|Y n
s |2ds

)
+ C(1 − η)E

∫ T

t
|Zns |2ds+ αE|Kn

T −Kn
t |2, (1.3.8)

from the linear growth condition on c. Now, from the relation

Kn
T −Kn

t = Y n
t − g(XT ) −

∫ T

t
f(Xs, Y

n
s , Z

n
s )ds

+

∫ T

t

∫

E
(Uns (e) − c(Xs− , Y

n
s− , Z

n
s ))µ(ds, de) +

∫ T

t
〈Zns , dWs〉,

and the linear growth condition on f , c, there exists some positive constant C1 s.t.

E|Kn
T −Kn

t |2 (1.3.9)
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≤ C1

(
1 + E|Y n

t |2 + E

∫ T

t
(|Y n

s |2 + |Zns |2)ds+ E

∫ T

t

∫

E
|Uns (e)|2λ(de)ds

)
.

Hence, by choosing η > 0 s.t.
(

1
2 −C(1−η)

)
∧
(

1−η
2

)
> 0 and α > 0 s.t. C1α <

(
1
2 −C(1−

η)
)
∧
(

1−η
2

)
, and plugging into (1.3.8), we get

E|Y n
t |2 + E

∫ T

t
|Zns |2ds+ E

∫ T

t

∫

E
|Uns (e)|2λ(de)ds ≤ C

(
1 + E

∫ T

t
|Y n
s |2ds

)
.

By applying Gronwall’s lemma to t 7→ E|Y n
t |2 and (1.3.9), we obtain

sup
0≤t≤T

E|Y n
t |2 + E

∫ T

0
|Zns |2ds (1.3.10)

+E

∫ T

0

∫

E
|Uns (e)|2λ(de)ds+ E|Kn

T |2 ≤ C.

Finally, by writing from (1.3.1) that

sup
0≤t≤T

|Y n
t | ≤ |g(XT )| +

∫ T

0
|f(Xs, Ys, Zs)|ds+Kn

T + sup
s∈[0,T ]

∣∣∣∣
∫ T

0
〈Zs, dWs〉

∣∣∣∣

+

∫ T

0

∫

E
|Uns (e) − c(Xs− , Ys− , Zs, e)|µ(ds, de),

we obtain the required result from the Burkholder-Davis-Gundy inequality, the linear growth

condition on f , c, and (1.3.10). ✷

Remark 1.3.2 A closer look at the proof leading to the estimate in (1.3.7) shows that

there exists a universal constant C, depending only on T , and the linear growth condition

constants of f , c, such that for each n ∈ N :

sup
t∈[0,T ]

E[Y n
t ]2 ≤ C

(
1 + E|g(XT )|2 + (1.3.11)

E

[ ∫ T

0
|Xt|2dt

]
+ E

[
sup
t∈[0,T ]

|Ỹt|2
])
.

Lemma 1.3.4 Under (H2) (or (H1) in the case : h(u, e) = −u), the sequence of processes

(Y n
t ) converges increasingly to a process (Yt) with E

[
supt∈[0,T ] |Yt|2

]
<∞. The convergence

also holds in L
2
F
(0,T) and for every stopping time τ ∈ [0, T ], the sequence of random

variables (Y n
τ ) converges to Yτ in L

2(Ω,Fτ ), i.e.

lim
n→∞

E

[ ∫ T

0
|Y n
t − Yt|2dt

]
= 0 and lim

n→∞
E

[
|Y n
τ − Yτ |2

]
= 0. (1.3.12)
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Proof. From Lemmas 1.3.1 and 1.3.2, the (nondecreasing) limit

Yt := lim
n→∞

Y n
t , 0 ≤ t ≤ T, (1.3.13)

exists almost surely, and this defines an adapted process Y . Moreover, by Lemma 1.3.3 and

convergence monotone theorem, we have

E

[
sup

0≤t≤T
|Yt|2

]
< ∞.

From the dominated convergence theorem, we also get the convergences (1.3.12). ✷

We now focus on the convergence of the diffusion and jump components (Zn, Un). In our

context, we cannot prove the strong convergence of (Zn, Un) in L
2(W)×L

2(µ̃), and so the

strong convergence of
∫ t
0 Z

ndW and
∫ t
0

∫
E U

n(s, e)µ(ds, de) in L
2(Ω,Ft), see Remark 1.3.3.

Instead, we follow and extend arguments of Peng [64], and we shall prove that (Zn, Un)

converge in L
p(W)×L

p(µ̃), for 1 ≤ p < 2. First, we show the following weak convergence

and decomposition result.

Lemma 1.3.5 Under (H2) (or (H1) in the case: h(u, e) = −u), there exist φ ∈ L
2
F
(0,T),

Z ∈ L
2(W), V ∈ L

2(µ̃) and K nondecreasing predictable with E[|KT |2] <∞, such that the

limit Y in (1.3.13) has the form

Yt = Y0 −
∫ t

0
φsds−Kt +

∫ t

0
〈Zs, dWs〉 +

∫ t

0

∫

E
Vs(e)µ(ds, de), (1.3.14)

for all t ∈ [0, T ]. Moreover, in the above decomposition of Y , the components Z and V are

unique, and are respectively the weak limits of (Zn) in L
2(µ̃) and of (V n) in L

2(µ̃) where

V n
t (e) = Unt (e) − c(Xt− , Y

n
t− , Z

n
t , e), φ is the weak limit in L

2
F
(0,T) of a subsequence of

(fn) := (f(X,Y n, Zn)), and K is the weak limit in L
2
F
(0,T) of a subsequence of (Kn).

Consequently, the processes Y and K are càdlàg i.e. Y ∈ S2 and K ∈ A
2.

Proof. By Lemma 1.3.3, and the linear growth conditions on f , c together with (1.2.2),

the sequences (fn), (Zn), (V n) are weakly compact, respectively in L
2
F
(0,T), L

2(W) and

L
2(µ̃). Then, up to a subsequence, (fn), (Zn), (V n) converge weakly to φ, Z and V . By

Itô representation of martingales, we then get the following weak convergence in L
2(Ω,Fτ )

for each stopping time τ ≤ T :
∫ τ

0
fns ds ⇀

∫ τ

0
φsds,

∫ τ

0
〈Zns , dWs〉 ⇀

∫ τ

0
〈Zs, dWs〉,

∫ τ

0

∫

E
V n
s (e)µ(ds, de) ⇀

∫ τ

0

∫

E
Vs(e)µ(ds, de).

Since, we have from (1.3.1):

Kn
τ = −Y n

τ + Y n
0 −

∫ τ

0
fns ds (1.3.15)

+

∫ τ

0
〈Zns , dWs〉 +

∫ τ

0

∫

E
V n
s (e)µ(ds, de),
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we also have the weak convergence in L
2(Ω,Fτ ) :

Kn
τ ⇀ Kτ := −Yτ + Y0 −

∫ τ

0
φsds (1.3.16)

+

∫ τ

0
〈Zs, dWs〉 +

∫ τ

0

∫

E
Vs(e)µ(ds, de).

From Lemma 2.2 in [64], (1.3.13) and (1.3.16) we obtain the càdlàg reguarity of Y . The

process K inherits from Kn the nondecreasing path property, is square integrable and

adapted from (1.3.16).Moreover, by dominated convergence theorem, we see that Kn con-

verges weakly to K in L
2(0,T). Since Kn is continuous, and so predictable, we deduce that

K is also predictable, and we obtain the decomposition (1.3.14) for Y . The uniqueness of

Z follows by identifying the Brownian parts and finite variation parts, and the uniqueness

of V is then obtained by identifying the predictable parts and by recalling that the jumps

of µ are inaccessible. We conclude that (Z, V ) is uniquely determined in (1.3.14), and thus

the whole sequence (Zn, V n) converges weakly to (Z, V ) in L
2(W) × L

2(µ̃).

The càdlàg regularity of the processes Y and K is a consequence of the decomposition

(1.3.14) of Y given by and the following Lemma proved in [64]. ✷

Lemma 1.3.6 Let (yn)n be a sequence of (deterministic) càdlàg processes defined on [0, T ]

that increasingly converges to y: for each t ∈ [0, T ], ynt ↑ xt, with yt = bt− kt, where b is an

càdlàg process and k is an nondecreasing process with k0 = 0 and kT < ∞ . Then y and k

are also càdlàg processes.

The sequence (Un) is bounded in L
2(µ̃), and so, up to a subsequence, converges weakly

to some U ∈ L
2(µ̃). The next step is to show that the whole sequence (Un) converges

to U and to identify in the decomposition (1.3.14) φt with f(Xt, Yt, Zt), and Vt(e) with

Ut(e)−c(Xt− , Yt− , Zt, e). Since f and c are nonlinear, we need a result of strong convergence

for (Zn) and (Un) to enable us to pass the limit in f(Xt, Y
n
t , Z

n
t ) as well as in Unt (e) −

c(Xt− , Y
n
t− , Z

n
t , e), and to eventually prove the convergence of the penalized BSDEs to the

minimal solution of our jump-constrained BSDE. We shall borrow a useful technique of

Peng [64] to carry out this task.

Theorem 1.3.1 Under (H2), there exists a unique minimal solution (Y,Z, U,K) ∈ S2 ×
L

2(W) × L
2(µ̃) × A

2 with K predictable, to (1.2.10)-(1.2.11). Y is the increasing limit of

(Y n) in (1.3.13) and also in L
2
F
(0,T), K is the weak limit of (Kn) in L

2
F
(0,T), and for any

p ∈ [1, 2),

‖Zn − Z‖
Lp(W)

+ ‖Un − U‖
Lp(µ̃)

−→ 0,

as n goes to infinity. Moreover, in the case : h(u, e) = −u, (Y,Z, K̄) is the unique minimal

solution to (1.2.12) with K̄t = Kt −
∫ t
0

∫
E Us(e)µ(ds, de), and this holds true under (H1).

Consequently, the minimal solution Y to (1.2.12) and to (1.2.10)-(1.2.13) are the same.
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A similar result was proved by Royer [73] in a different context. His applies to the

Doob-Meyer decomposition of nonlinear f−supermartingales with jumps.

Proof. We apply Itô’s formula to |Y n
t − Yt|2 on a subinterval (σ, τ ], with 0 ≤ σ < τ ≤

T , two stopping times. Recall the decomposition (1.3.14), (1.3.15) of Y , Y n, and observe

that Kn is continuous, and ∆(Y n
t − Yt) = ∆Kt +

∫
E(V n

t (e) − Vt(e))µ({t}, de). We then

have :

E|Y n
τ − Yτ |2 = E|Y n

σ − Yσ|2 + E

∫ τ

σ
|Zns − Zs|2ds+ 2E

∫ τ

σ
[Y n
s − Ys][φs − fns ]ds

− 2E

∫ τ

σ
[Y n
s − Ys]dK

n
s + 2E

∫

(σ,τ ]
[Y n
s− − Ys− ]dKs + E

∑

t∈(σ,τ ]

|∆Kt|2

+ E

∫

(σ,τ ]

∫

E
[|Y n

s− − Ys− + V n
s (e) − Vs(e)|2 − |Y n

s− − Ys− |2]µ(ds, de)

= E|Y n
σ − Yσ|2 + E

∫ τ

σ
|Zns − Zs|2ds+ 2E

∫ τ

σ
[Y n
s − Ys][φs − fns ]ds

− 2E

∫ τ

σ
[Y n
s − Ys]dK

n
s + 2E

∫

(σ,τ ]
[Y n
s− − Ys− + ∆Ks]dKs

− E

∑

t∈(σ,τ ]

|∆Kt|2 + E

∫ τ

σ

∫

E
|V n
s (e) − Vs(e)|2λ(de)ds

+ 2E

∫ τ

σ

∫

E
(Y n
s − Ys)(V

n
s (e) − Vs(e))λ(de)ds.

Since (Y n
s −Ys)dKn

s ≤ 0, and by using the inequality 2ab ≥ −a2

2 −2b2 with a = V n
s (e)−Vs(e)

and b = Y n
s − Ys, we obtain :

E

∫ τ

σ
|Zns − Zs|2ds+

1

2
E

∫ τ

σ

∫

E
|V n
s (e) − Vs(e)|2λ(de)ds

≤ E|Y n
τ − Yτ |2 + 2E

∫ τ

σ
|Y n
s − Ys|2ds+ 2E

∫ τ

σ
|Y n
s − Ys||φs − fns |ds

+ 2E

∫

(σ,τ ]
|Y n
s− − Ys− + ∆Ks|dKs + E

∑

t∈(σ,τ ]

|∆Kt|2. (1.3.17)

The first two terms of the right side of (1.3.17) converge to zero by (1.3.12) in Lemma

1.3.4. The third term also tends to zero since (φ− fn)n is bounded in L
2(0,T), and so by

Cauchy-Schwarz inequality:

E

∫ T

0
|Y n
s − Ys||φs − fns |ds ≤ C

(
E

∫ T

0
|Y n
s − Ys|2ds

) 1
2 → 0. (1.3.18)

For the fourth term, we notice that the jumps of Y n are inaccessible since they are de-

termined by the Poisson random measure µ. Thus, the predictable projection of Y n is
pY n

t = Y n
t− . Similarly, from (1.3.14), and sinceK is predictable, we see that pYt = Yt−−∆Kt.

Since Y n increasingly converges to Y , then pY n also increasingly converges to pY , and by



50 CHAPTER 1. BSDES WITH CONSTRAINED JUMPS AND QVI

the dominated convergence theorem, we obtain:

lim
n→∞

E

∫

(0,T ]
|Y n
s− − Ys− + ∆Ks|dKs = 0. (1.3.19)

For the last term in (1.3.17), we apply Lemma 2.3 in [64] to the predictable nondecreasing

process K: for any δ, ε > 0, there exists a finite number of pairs of stopping times (σk, τk),

k = 0, . . . , N , with 0 < σk ≤ τk ≤ T , such that all the intervals (σk, τk] are disjoint and

E

N∑

k=0

(τk − σk) ≥ T − ε

2
, E

N∑

k=0

∑

σk<t≤τk

(∆Kt)
2 ≤ εδ

3
. (1.3.20)

We should note that in [64] the filtration is Brownian, therefore it is continuous, and hence

each stopping time σk can be approximated by a sequence of announceable stopping times

In our case the stopping times σk’s are constructed as the successive times of jumps of the

predictable process K with size bigger than some given positive level, the approximation of

σk by announceable stopping times is again possible. We can thus argue exactly the same

way as in Lemma 2.3 in [64] to derive both estimates in (1.3.20).

We now apply estimate (1.3.17) for each σ = σk and τ = τk, and then take the sum over

k = 0, . . . , N . It follows that

N∑

k=0

E

∫ τk

σk

|Zns − Zs|2ds+
1

2

N∑

k=0

E

∫ τk

σk

∫

E
|V n
s (e) − Vs(e)|2λ(de)ds

≤
N∑

k=0

E|Y n
τk

− Yτk |2 + 2E

∫ T

0
|Y n
s − Ys|2ds+ 2E

∫ T

0
|Y n
s − Ys||φs − fns |ds

+ 2E

∫

(0,T ]
|Y n
s− − Ys− + ∆Ks|dKs +

N∑

k=0

E

∑

t∈(σk,τk]

|∆Kt|2.

From the convergence results in Lemma 1.3.4, (1.3.18) and (1.3.19), we deduce that

lim sup
n→∞

N∑

k=0

E

∫ τk

σk

|Zns − Zs|2ds+
1

2

N∑

k=0

E

∫ τk

σk

∫

E
|V n
s (e) − Vs(e)|2λ(de)ds

≤
N∑

k=0

E

∑

t∈(σk,τk]

|∆Kt|2 ≤ εδ

3
.

Thus, there exists an integer ℓεδ > 0 such that for all n ≥ ℓεδ, we have

N∑

k=0

E

∫ τk

σk

|Zns − Zs|2ds+
1

2

N∑

k=0

E

∫ τk

σk

∫

E
|V n
s (e) − Vs(e)|2λ(de)ds ≤ εδ

2
.

This implies

dt⊗ P

[
(s, ω) ∈

N⋃

k=0

(σk(ω), τk(ω)] × Ω : |Zns (ω) − Zs(ω)|2 ≥ δ
]

≤ ε

2
,
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and

dt⊗ λ⊗ P

[
(s, e, ω) ∈

N⋃

k=0

(σk(ω), τk(ω)] × Ω × E : |V n
s (e, ω) − Vs(e, ω)|2 ≥ δ

]
≤ ε.

Together with (1.3.20), it follows that

dt⊗ P
[
(s, ω) ∈ [0, T ] × Ω : |Zns (ω) − Zs(ω)|2 ≥ δ

]
≤ ε,

and

dt⊗ λ× P
[
(s, e, ω) ∈ [0, T ] × E × Ω : |V n

s (e, ω) − Vs(e, ω)|2 ≥ δ
]

≤
ε(1 + λ(E)).

We deduce that for all δ > 0,

lim
n→∞

dt⊗ P
[
(s, ω) ∈ [0, T ] × Ω : |Zns (ω) − Zs(ω)|2 ≥ δ

]
= 0

and

lim
n→∞

dt⊗ λ⊗ P
[
(s, e, ω) ∈ [0, T ] × E × Ω : |V n

s (e, ω) − Vs(e, ω)|2 ≥ δ
]

= 0.

This means that the sequences (Zn)n and (V n)n converge in measure respectively to Z

and V . Since they are bounded respectively in L
2(W) and L

2(µ̃), they are uniformly

integrable in L
p(W) and L

p(µ̃) for any p ∈ [1, 2), respectively. Thus, (Zn) and (V n)

converge strongly to Z and V in L
p(W) and L

p(µ̃), respectively. Recalling that Unt (e) =

V n
t (e) + c(Xt− , Y

n
t− , Z

n
t , e), and by the Lipschitz condition on c, we deduce that the sequence

(Un) converges strongly in L
p(µ̃), for p ∈ [1, 2), to U defined by :

Ut(e) = Vt(e) + c(Xt− , Yt− , Zt, e), 0 ≤ t ≤ T, e ∈ E.

By the Lipschitz condition on f , we also have the strong convergence in L
p
F
(0,T) of (fn)

= (f(X,Y n, Zn)) to f(X,Y, Z). Since φ is the weak limit of (fn) in L
2
F
(0,T) , we deduce

that φ = f(X,Y, Z). Therefore, with the decomposition (1.3.14) and since YT = limn Y
n
T

= g(XT ), we obtain immediately that (Y, Z, U,K) satisfies the BSDE (1.2.10). Moreover,

from the strong convergence in L
1(µ̃) of (Un) to U , and the Lipschitz condition on h, we

have

E

∫ T

0

∫

E
h−(Uns (e), e)λ(de)ds → E

∫ T

0

∫

E
h−(Us(e), e)λ(de)ds,

as n goes to infinity. Since Kn
T = n

∫ T
0

∫
E h

−(Uns (e), e)λ(de)ds is bounded in L
2(Ω,FT),

this implies

E

∫ T

0

∫

E
h−(Us(e), e)λ(de)ds = 0,
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and so the constraint (1.2.11) is satisfied. Hence, (Y,Z,K,U) is a solution to the constrained

BSDE (1.2.10)-(1.2.11), and by Lemma 1.3.2, Y = limY n is the minimal solution. The

uniqueness of Z follows by identifying the Brownian parts and the finite variation parts,

and then the uniqueness of (U,K) is obtained by identifying the predictable parts and by

recalling that the jumps of µ are inaccessible.

Finally, in the case h(u, e) = −u, the process

K̄t = Kt −
∫ t

0

∫

E
Us(e)µ(ds, de), 0 ≤ t ≤ T,

lies in A
2, and the triple (Y, Z, K̄) is solution to (1.2.12). Again, by Lemma 1.3.2, this shows

that Y is the minimal solution to (1.2.10) and to (1.2.12). The uniqueness of (Y, Z, K̄) is

immediate by identifying the Brownian part and the finite variation part. ✷

Remark 1.3.3 From the estimate (1.3.17), it is clear that once the process K is continuous,

i.e. ∆Kt = 0, then (Zn, Un) converges strongly to (Z,U) in L
2(W)×L

2(µ̃). This occurs in

reflected BSDE’s as in [29] or [40], see also Remark 1.4.3. In the case of constraints on jump

component U as in (1.2.10)-(1.2.11), the situation is more complicated, and the process K

is in general only predictable. The same feature also occurs for constraints on Z as in [64].

To overcome this difficulty, we use the estimations (1.3.20) of the contribution of the jumps

of K, which allow to obtain the strong convergence of (Zn, Un) in L
p(W) × L

p(µ̃) for p

∈ [1, 2). Finally, notice that for the minimal solution (Y,Z, K̃) to the BSDE (1.2.12), the

process K̃ is not predictable.

1.3.3 The case of impulse control

In the impulse control case (i.e. f and c depend only on X and h(u, e) = −u), we have

seen in Theorem 1.2.1 that the minimal solution to our constrained BSDE has the following

functional explicit representation :

Yt = ess sup
ν∈V

E
ν
[
g(XT ) +

∫ T

t
f(Xs)ds+

∫ T

t

∫

E
c(Xs− , e)µ(ds, de)

∣∣∣Ft
]
.

In this case, we also have a functional explicit representation of the solution Y n to the

penalized BSDE (1.3.1) :

Y n
t = ess sup

ν∈Vn

E
ν
[
g(XT ) +

∫ T

t
f(Xs)ds (1.3.21)

+

∫ T

t

∫

E
c(Xs−)µ(ds, de)

∣∣∣Ft
]
,

where Vn = {ν ∈ V ; νs(e) ≤ n ∀(s, e) ∈ [0, T ] × E a.s.}. Indeed, denote by Ȳ n the right

side of (1.3.21). By writing that (Y n, Zn, Un) is the solution of the penalized BSDE (1.3.1),
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taking the expectation under P
ν , for ν ∈ Vn, and recalling that W is a P

ν-Brownian motion,

and νλ(de) is the intensity measure of µ under P
ν , we obtain :

Y n
t = E

ν
[
g(XT ) +

∫ T

t
f(Xs)ds+

∫ T

t

∫

E
c(Xs− , e)µ(ds, de)

∣∣∣Ft
]

+ E
ν
[ ∫ T

t

∫

E
{n[Uns (e)]+ − νs(e)U

n
s (e)}λ(de)ds

∣∣∣Ft
]
. (1.3.22)

Since this equality holds for any ν ∈ Vn, and observing that n[Uns (e)]+ − νs(e)U
n
s (e) ≥ 0,

for all ν ∈ Vn, we have

Ȳ n
t ≤ Y n

t ≤ Ỹ n
t (1.3.23)

+E
ν
[ ∫ T

t

∫

E
{n[Uns (e)]+ − νs(e)U

n
s (e)}λ(de)ds

∣∣∣Ft
]
.

Let us now consider the family (νε)ε of Vn defined by

νεs(e) =

{
n if Uns (e) > 0
ε otherwise.

Then, by using the same argument as in the proof of Lemma 1.3.2, we show that

E
νε
[ ∫ T

t

∫

E
{n[Uns (e)]+ − νs(e)U

n
s (e)}λ(de)ds

∣∣∣Ft
]

→ 0 as ε→ 0,

which proves with (1.3.23) that Y n
t = Ȳ n

t .

The representation (1.3.21) has a nice interpretation. It means that the value function of

an impulse control problem can be approximated by the value function of the same impulse

control problem but with strategies whose numbers of orders are bounded on average by

nTλ(E). This has to be compared with the classical approximation by iterated optimal

stopping problems, where the n-th iteration corresponds to the value of the same impulse

control problem but where the number of orders is smaller than n. The numerical advantage

of the penalized approximation is that it does not require iterations.

1.4 Relation with quasi-variational inequalities

In this section, we show that minimal solutions to the jump-constrained BSDEs provide a

probabilistic representation of solutions to parabolic QVIs of the form:

min
[
− ∂v

∂t
− Lv − f(·, v, σ⊺Dxv) , inf

e∈E
h(Hev − v, e)

]
= 0, on [0, T ) × R

d,(1.4.1)

where L is the second order local operator

Lv(t, x) = 〈b(x), Dxv(t, x)〉 +
1

2
tr(σσ⊺(x)D2

xv(t, x)),
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and He, e ∈ E, are the nonlocal operators

Hev(t, x) = v(t, x+ γ(x, e)) + c(x, v(t, x), σ⊺(x)Dxv(t, x), e).

For such nonlocal operators, we denote for q ∈ R
d :

He[t, x, q, v] = v(t, x+ γ(x, e)) + c(x, v(t, x), σ⊺(x)q, e).

Note that when h(u) does not depend on e, and since it is nonincreasing in u, the QVI

(1.4.1) may be written equivalently in

min
[
− ∂v

∂t
− Lv − f(·, v, σ⊺Dxv) , h(Hv − v)

]
= 0, on [0, T ) × R

d,

with Hv = supe∈E Hev. In particular, this includes the case of QVI associated to impulse

controls for h(u) = −u, and f , c independent of y, z.

We shall use the penalized parabolic integral partial differential equation (IPDE) asso-

ciated to the penalized BSDE (1.3.1), for each n ∈ N:

− ∂vn
∂t

− Lvn − f(·, vn, σ⊺Dxvn)

−n
∫

E
h−(Hevn − vn, e)λ(de) = 0, on [0, T ) × R

d. (1.4.2)

To complete the PDE characterization of the function v, we need to provide a suitable

boundary condition. In general, we can not expect to have v(T−, .) = g, and we shall

consider the relaxed boundary condition given by the equation:

min
[
v(T−, ·) − g , inf

e∈E
h(Hev(T−, ·) − v(T−, ·), e)

]
= 0, on R

d, (1.4.3)

In the sequel, we shall assume in addition to the conditions of paragraph 1.2.1 that the

functions γ, f , c, and h are continuous with respect to all their arguments.

1.4.1 Viscosity properties

Solutions of (1.4.1), (1.4.2) and (1.4.3) are considered in the (discontinuous) viscosity sense,

and it will be convenient in the sequel to define the notion of viscosity solutions in terms of

sub- and super-jets. We refer to [45], [78] and more recently to the book [60] for the notion

of viscosity solutions to QVIs. For a locally bounded function u on [0, T ] × R
d, we define

its lower semicontinuous (lsc in short) u∗, and upper semicontinuous (usc in short) envelope

u∗ by

u∗(t, x) = lim inf
(t′,x′)→(t,x),t′<T

u(t′, x′), u∗(t, x) = lim sup
(t′,x′)→(t,x),t′<T

u(t′, x′).
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Definition 1.4.1 (Subjets and superjets)

(i) For a function u : [0, T ]×R
d → R, lsc (resp. usc), we denote by J−u(t, x) the parabolic

subjet (resp. J+u(t, x) the parabolic superjet) of u at (t, x) ∈ [0, T ]×R
d, as the set of triples

(p, q,M) ∈ R × R
d × S

d satisfying

u(t′, x′) ≥ (resp. ≤) u(t, x) + p(t′ − t) + 〈q, x′ − x〉 +
1

2
〈x′ − x,M(x′ − x)〉

+ o(|t′ − t| + |x′ − x|2).

(ii) For a function u : [0, T )×R
d → R, lsc (resp. usc), we denote by J̄−u(t, x) the parabolic

limiting subjet (resp. J̄+u(t, x) the parabolic limiting superjet) of u at (t, x) ∈ [0, T ] × R
d,

as the set of triples (p, q,M) ∈ R × R
d × S

d such that

(p, q,M) = lim
n

(pn, qn,Mn), (t, x) = lim
n

(tn, xn),

with (pn, qn,Mn) ∈ J−u(tn, xn) (resp. J+u(tn, xn)), u(t, x) = lim
n
u(tn, xn).

We now give the definition of viscosity solutions to (1.4.1), (1.4.2) and (1.4.3).

Definition 1.4.2 (Viscosity solutions to (1.4.1))

(i) A function u, lsc (resp. usc) on [0, T ) × R
d, is called a viscosity supersolution (resp.

subsolution) to (1.4.1) if for each (t, x) ∈ [0, T ) × R
d, and any (p, q,M) ∈ J̄−u(t, x) (resp.

J̄+u(t, x)), we have

min
[
− p− 〈b(x), q〉 − 1

2
tr(σσ⊺(x)M) − f(x, u(t, x), σ⊺(x)q) ,

inf
e∈E

h(He[t, x, q, u] − u(t, x), e)
]

≥ ( resp. ≤) 0.

(ii) A locally bounded function on [0, T )×R
d is called a viscosity solution to (1.4.1) if u∗ is

a viscosity supersolution and u∗ is a viscosity subsolution to (1.4.1).

Definition 1.4.3 (Viscosity solutions to (1.4.2))

(i) A function u, lsc (resp. usc) on [0, T ) × R
d, is called a viscosity supersolution (resp.

subsolution) to (1.4.2) if for each (t, x) ∈ [0, T ) × R
d, and any (p, q,M) ∈ J̄−u(t, x) (resp.

J̄+u(t, x)), we have

−p− 〈b(x), q〉 − 1

2
tr(σσ⊺(x)M) − f(x, u(t, x), σ⊺(x)q)

−n
∫

E
h−(He[t, x, q, u] − u(t, x), e)λ(de) ≥ ( resp. ≤) 0.

(ii) A locally bounded function u on [0, T )×R
d is called a viscosity solution to (1.4.2) if u∗

is a viscosity supersolution and u∗ is a viscosity subsolution to (1.4.2).

Definition 1.4.4 (Viscosity solutions to (1.4.3))

(i) A function u, lsc (resp. usc) on [0, T ] × R
d, is called a viscosity supersolution (resp.

subsolution) to (1.4.3) if for each x ∈ R
d, and any (p, q,M) ∈ J̄−u(T, x) (resp. J̄+u(T, x)),

we have

min
[
u(T, x) − g(x), inf

e∈E
h(He[T, x, q, u] − u(T, x), e)

]
≥ ( resp. ≤) 0.
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(ii) A locally bounded function u on [0, T ]× R
d is called a viscosity solution to (1.4.3) if u∗

is a viscosity supersolution and u∗ is a viscosity subsolution to (1.4.3).

Remark 1.4.1 An equivalent definition of viscosity super and subsolution to (1.4.3), which

shall be used later, is the following in terms of test functions : a function u, lsc (resp. usc)

on [0, T ] × R
d, is called a viscosity supersolution (resp. subsolution) to (1.4.3) if for each

(t, x) ∈ [0, T ) × R
d, and any ϕ ∈ C1,2([0, T ] × R

d) such that (t, x) is a minimum (resp.

maximum) global of u− ϕ, we have

min
[
u(T, x) − g(x), inf

e∈E
h(He[T, x,Dxϕ(T, x), u] − u(T, x), e)

]
≥ ( resp. ≤) 0.

We have similar equivalent definitions of viscosity super and subsolution to (1.4.1) in terms

of test functions.

We slightly strengthen Assumption (H1) or (H2) by

(H1’) There exists a quadruple (Ỹ , Z̃, K̃) ∈ S2×L
2(W)×A

2 satisfying (1.2.12), with Ỹt

= ṽ(t,Xt), 0 ≤ t ≤ T , for some function deterministic ṽ satisfying a linear growth condition

sup
(t,x)∈[0,T ]×Rd

|ṽ(t, x)|
1 + |x| < +∞

(H2’) There exists a quadruple (Ỹ , Z̃, K̃, Ũ) ∈ S2 × L
2(W) × L

2(µ̃) × A
2 satisfying

(1.2.10)-(1.2.11), with Ỹt = ṽ(t,Xt), 0 ≤ t ≤ T , for some function deterministic ṽ satisfying

a linear growth condition

sup
(t,x)∈[0,T ]×Rd

|ṽ(t, x)|
1 + |x| < +∞

Under assumption (H1’) (resp. (H2’)), there esists for each (t, x) ∈ [0, T ]×R
d a unique

minimal solution {(Y t,x
s , Zt,xs , U t,xs ,Kt,x

s ), t ≤ s ≤ T} to (1.2.10)-(1.2.11) (resp. (1.2.12)-

(1.2.13)) with X = {Xt,x
s , t ≤ s ≤ T}, the solution to (1.2.1) starting from x at time t. We

can then define the (deterministic) function v : [0, T ] × R
d → R by

v(t, x) := Y t,x
t , (t, x) ∈ [0, T ] × R

d, (1.4.4)

Similarly, we define the function

vn(t, x) := Y n,t,x
t , (t, x) ∈ [0, T ] × R

d, (1.4.5)

where {(Y n,t,x
s , Zn,t,xs , Un,t,xs (.)), t ≤ s ≤ T} is the unique solution to (1.3.1) with Xs = Xt,x

s ,

t ≤ s ≤ T .

We first have the following identification.

Proposition 1.4.1 The function v links the processes Y t,x and Xt,x by the relation:

Y t,x
θ = v(θ,Xt,x

θ ), for all stopping time θ valued in [t, T ]. (1.4.6)
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Proof. From the Markov property of the jump-diffusion process X, and uniqueness of a

solution Y n to the BSDE (1.3.1), we have (see e.g. [5])

Y t,x,n
s = vn

(
s,Xt,x

s

)
, t ≤ s ≤ T. (1.4.7)

From Section 3, we know that v is the pointwise limit of vn. Moreover, by (1.3.12), Y t,x,n
θ

converges to Y t,x
θ as n goes to infinity, for all stopping time θ valued in [t, T ]. We then

obtain the required relation by passing to the limit in (1.4.7). ✷

Remark 1.4.2 Assumption (H2’) (or (H1’) which is weaker than (H2’) in the case h(u, e)

= −u) ensures that the function v in (1.4.4) satisfies a linear growth condition, and is in

particular locally bounded. Indeed, from (1.3.11) and by passing to the limit by Fatou’s

lemma for v(t, x) = Y t,x
t = limY n,t,x

t , we have

sup
t∈[0,T ]

|v(t, x)|2 ≤ C
(
1 + E|g(Xt,x

T )|2 + E

[ ∫ T

t
|Xt,x

s |2dt
]

+E[ sup
s∈[t,T ]

|ṽ(s,Xt,x
s )|2

])
.

The result follows from the standard estimate

E[ sup
t≤s≤T

|Xt,x
s |2] ≤ C(1 + |x|2),

and the linear growth conditions on g and ṽ.

The relation between the penalized BSDE (1.3.1) and the penalized IPDE (1.4.2) is

well-known from the results of [5]. Although our framework does not fit exactly into the

one of [5], by mimicking closely the arguments in this paper and using comparison theorem

in [73], we obtain the following result.

Proposition 1.4.2 The function vn in (1.4.5) is a continuous viscosity solution to (1.3.1).

By adapting stability arguments for viscosity solutions to our context, we now prove the

viscosity property of the function v to (1.4.1). We shall assume that the support of λ is the

whole space E, i.e.

(HE) ∀e ∈ E, ∃O open neighborhood of e, s.t. λ(O) > 0.

Theorem 1.4.1 Under (H2’) (or (H1’) in the case : h(u, e) = −u), and (HE), the

function v in (1.4.4) is a viscosity solution to (1.4.1).

Proof. From the results of the previous section, we know that v is the pointwise limit of

the nondecreasing sequence of functions (vn). By continuity of vn, we then have (see e.g.
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[4] p. 91) :

v = v∗ = lim
n→∞

inf∗vn, (1.4.8)

where lim
n→∞

inf∗vn(t, x) := lim inf
n → ∞

t′ → t, x′ → x

vn(t
′, x′),

v∗ = lim
n→∞

sup∗vn, (1.4.9)

where lim
n→∞

sup∗vn(t, x) := lim sup
n → ∞

t′ → t, x′ → x

vn(t
′, x′).

(i) We first show the viscosity supersolution property for v = v∗. Let (t, x) be a point

in [0, T ) × R
d, and (p, q,M) ∈ J̄−v(t, x). By (1.4.8) and Lemma 6.1 in [23], there exists

sequences

nj → ∞, (pj , qj ,Mj) ∈ J−vnj
(tj , xj),

such that

(tj , xj , vnj
(tj , xj), pj , qj ,Mj) → (t, x, v(t, x), p, q,M). (1.4.10)

We also have by definition of v = v∗ and continuity of γ :

v(t, x+ γ(x, e)) ≤ lim inf
j→∞

vnj
(tj , xj + γ(xj , e)), ∀e ∈ E. (1.4.11)

Moreover, from the viscosity supersolution property for vnj
, we have for all j

− pj − 〈b(xj), qj〉 −
1

2
tr(σσ⊺(xj)Mj) − f(xj , vnj

(tj , xj), σ
⊺(xj)qj)

−nj
∫

E
h−(He[tj , xj , qj , vnj

] − vnj
(tj , xj), e)λ(de) ≥ 0. (1.4.12)

Let us check that the following inequality holds :

inf
e∈E

h(He[t, x, q, v] − v(t, x), e) ≥ 0. (1.4.13)

We argue by contradiction, and assume there exists some e0 ∈ E s.t.

h(v(t, x+ γ(x, e0)) + c(x, v(t, x), σ⊺(x)q, e0) − v(t, x), e0) < 0.

Then, by continuity of σ, h, γ, c in all their variables, (1.4.10), (1.4.11), and the nonincreas-

ing property of h, one may find some ε > 0 and some open neighborhood O0 of e0 such that

for all j large enough :

h(vnj
(tj , xj + γ(xj , e)) + c(xj , vnj

(tj , xj), σ
⊺(xj)qj , e) − vnj

(tj , xj), e) ≤ −ε,

for all e ∈ O0. Since the support of λ is E, this implies
∫

E
h−(He(tj , xj , qj , vnj

) − vnj
(tj , xj), e)λ(de) ≥ ελ(O0) > 0.
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By sending j to infinity into (1.4.12), we get the required contradiction. On the other hand,

by (1.4.12), we have

−pj − 〈b(xj), qj〉 −
1

2
tr(σσ⊺(xj)Mj) − f(xj , vnj

(tj , xj), σ
⊺(xj)qj) ≥ 0,

so that by sending j to infinity:

−p− 〈b(x), q〉 − 1

2
tr(σσ⊺(x)M) − f(x, v(t, x), σ⊺(x)q) ≥ 0,

which proves, together with (1.4.13), that v is a viscosity supersolution to (1.4.1).

(ii) We conclude by showing the viscosity subsolution property for v∗. Let (t, x) a point in

[0, T ) × R
d, and (p, q,M) ∈ J̄+v∗(t, x) such that

inf
e∈E

h(He[t, x, q, v∗] − v∗(t, x), e) > 0. (1.4.14)

From (1.4.9) and Lemma 6.1 in [23], there exists sequences

nj → ∞, (pj , qj ,Mj) ∈ J+vnj
(tj , xj),

such that

(tj , xj , vnj
(tj , xj), pj , qj ,Mj) → (t, x, v∗(t, x), p, q,M). (1.4.15)

By continuity of the functions c, γ, and definition of v∗, we also have

lim sup
j→∞

He[tj , xj , qj , vnj
] ≤ He[t, x, q, v∗], ∀ e ∈ E. (1.4.16)

Now, from the viscosity subsolution property for vnj
, we have for all j

− pj − 〈b(xj), qj〉 −
1

2
tr(σσ⊺(xj)Mj) − f(xj , vnj

(tj , xj), σ
⊺(xj)qj)

−nj
∫

E
h−(He[tj , xj , qj , vnj

] − vnj
(tj , xj), e)λ(de) ≤ 0. (1.4.17)

From (1.4.14)(which is uniform in e ∈ E)-(1.4.15)-(1.4.16), continuity assumptions on h, c,

and the nonincreasing property of h, we have for j large enough

h(He[tj , xj , qj , vnj
] − vnj

(tj , xj), e) > 0, ∀e ∈ E,

and so
∫

E
h−(He[tj , xj , qj , vnj

] − vnj
(tj , xj), e)λ(de) = 0.

Hence, by taking the limit as j goes to infinity, into (1.4.17), we conclude that

−p− 〈b(x), q〉 − 1

2
tr(σσ⊺(x)M) − f(x, v∗(t, x), σ⊺(x)q) ≤ 0,

which shows the viscosity subsolution property for v∗ to (1.4.1). ✷

We next turn to the boundary condition.



60 CHAPTER 1. BSDES WITH CONSTRAINED JUMPS AND QVI

Theorem 1.4.2 Under (H2’) (or (H1’) in the case : h(u, e) = −u), and (HE), the

function v in (1.4.4) is a viscosity solution to (1.4.3).

In order to deal with the possible jump at the terminal condition, we need the following

dynamic programming characterization of the minimal solution.

Lemma 1.4.1 Let (t, x) ∈ [0, T )×R
d, and (Y t,x, Zt,x, U t,x,Kt,x) be a minimal solution to

(1.2.10)-(1.2.11) on [t, T ] with Xs = Xt,x
s . Then for any stopping time θ valued in [t, T ],

(Y t,x
s , Zt,xs , U t,xs ,Kt,x

s )s∈[t,θ] is a minimal solution to :

Ys = v(θ,Xt,x
θ ) +

∫ θ

s
f(Xt,x

r , Yr, Zr)dr +Kt,x
θ −Kt,x

s −
∫ θ

s
〈Zr, dWr〉

−
∫ θ

s

∫

E

(
Ur(e) − c(Xt,x

r−
, Yr− , Zr, e)

)
µ(dr, de) (1.4.18)

with

h(Us(e), e) ≥ 0 dP ⊗ dt⊗ λ(de) a.e. on Ω × [t, θ] × E. (1.4.19)

Proof. Notice first from (1.4.6) that (Y t,x
s , Zt,xs , U t,xs ,Kt,x

s )s∈[t,θ] is solution to (1.4.18)-

(1.4.19). Let Y 1 be the minimal solution on [t, θ] of (1.4.18)-(1.4.19) (the existence of a

minimal solution in the case of a random terminal time is obtained by similar arguments

to those used in the case of a deterministic terminal time). For each ω ∈ Ω, there exists a

minimal solution Y 2,ω on [θ(ω), T ] to (1.2.10)-(1.2.11) with X = {Xθ(ω),Xt,x

θ(ω)
(ω)

s , θ(ω) ≤ s ≤
T}. We then have from the definition of v that Y 2,ω

θ(ω) = v
(
θ(ω), Xt,x

θ(ω)(ω)
)

for all ω ∈ Ω.

By a measurable selection result (see e.g. Thm 82 in the appendix to Ch. III in [25]),

there exists Y 2 ∈ S2 such that P(dω) a.s., we have Y 2
θ(ω)(ω) = Y 2,ω

θ(ω) = v
(
θ(ω), Xt,x

θ(ω)(ω)
)

and Y 2
s (ω) = Y 2,ω

s (ω) for s ∈ [θ(ω), T ]. We then define the process Ỹ by Ỹ |[t,θ] = Y 1 and

Ỹ |(θ,T ] = Y 2. Hence, Ỹ is a solution on [t, T ] to (1.2.10)-(1.2.11), which implies Ỹ ≥ Y t,x.

Moreover, since Y t,x
θ = v(θ,Xt,x

θ ), it follows that (Y t,x
s , Zt,xs , U t,xs ,Kt,x

s )s∈[t,θ] is a solution on

[t, θ] to (1.4.18)-(1.4.19). Hence Y 1 ≤ Y t,x on [t, θ], and therefore Y 1 = Y t,x on [t, θ]. ✷

Proof of Theorem 1.4.2 (i) We first prove the supersolution property of v∗ to (1.4.3).

Let x ∈ R
d, and (p, q,M) ∈ J̄−v∗(T, x). By same arguments as in (1.4.13), we have

inf
e∈E

h(He[T, x, q, v∗] − v∗(T, x), e) ≥ 0. (1.4.20)

Moreover, since the sequence of continuous functions (vn)n is nondecreasing and vn(T, .) = g,

we deduce that v∗(T, .) ≥ g, which combined with (1.4.20), proves the viscosity supersolution

property for v∗ to (1.4.3).

(ii) We next prove the subsolution property of v∗ to (1.4.3). We argue by contradiction and

assume that there exist x0 ∈ R
n, ϕ ∈ C1,2([0, T ] × R

n) such that

0 = (v∗ − ϕ)(T, x0) = max
[0,T ]×Rd

(v∗ − ϕ) (1.4.21)
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and

min
[
ϕ(T, x0) − g(x0) ,

inf
e∈E

h(He[T, x0, Dxϕ(T, x0), v
∗] − ϕ(T, x0), e)

]
=: 2ε > 0.

By the upper semicontinuity of v∗, the continuity of ϕ and its derivative, and the nonin-

creasing property of h, there exists an open neighbohood O of (T, x0) in [0, T ] × R
d, and

A, r > 0 such that for all (t, x, α, β) ∈ O × (−A,A) ×B(0, r), we have

ε ≤ min
[
ϕ(t, x) − α− g(x) , (1.4.22)

inf
e∈E

h(v∗(t, x+ γ(x, e))

+c(x, ϕ(t, x) − α, σ⊺(x)[Dxϕ(t, x) + β]) − [ϕ(t, x) − α], e)
]
.

Let (tk, xk)k be a sequence in [0, T ) × R
d such that

(tk, xk) → (T, x0) and v(tk, xk) → v∗(T, x0). (1.4.23)

Fix then δ > 0 such that for k large enough: [tk, T ] × B(xk, δ) ⊂ O, and let us define the

functions ϕk by

ϕk(t, x) = ϕ(t, x) + ζ
|x− xk|2

δ2
+ Ckφ

(
x− xk
δ

)
+

√
T − t,

where 0 < ζ < A ∧ δr, φ ∈ C2(Rd) satisfies φ|B̄(0,1) ≡ 0, φ|B̄(0,1)c > 0 and lim|x|→∞
φ(x)
1+|x| =

∞, and Ck > 0 is a constant to be chosen below. By (1.4.21), we notice that

(v∗ − ϕk)(t, x) ≤ −ζ for (t, x) ∈ [tk, T ] × ∂B(xk, δ),

and from the conditions on φ, we can choose Ck (large enough) so that

(v∗ − ϕk)(t, x) ≤ −ζ
2

for (t, x) ∈ [tk, T ] ×B(xk, δ)
c. (1.4.24)

Since ∂
∂t(

√
T − t) → −∞ as tր T , we have for k large enough :

−∂ϕk
∂t

− Lϕk(t, x) − f(x, ϕk(t, x) − α, σ⊺(x)Dxϕk(t, x))

≥ 0 for (t, x, α) ∈ [tk, T ) ×B(xk, δ) × (−A+ ζ,A). (1.4.25)

Fix now α∗ ∈ (0, A ∧ ζ
2 ∧ ε), and let us denote τk = inf

{
s ≥ tk ; Xk

s 6= Xk
s−

}
, θk =

inf
{
s ≥ tk ; Xk

s /∈ B(xk, δ)
}
∧τk∧T where Xk = Xtk,xk . Let us then define the quadruples

(Y k, Zk, Uk,Kk) on [tk, θk] by :

Y k
s =

[
ϕk(s,X

k
s ) − α∗

]
1{s∈[tk,θk)} + v(θk, X

k
θk

)1{s=θk} ,

Zks = σ⊺(Xk
s−)Dxϕk(s,X

k
s−) ,

Uks (e) = v∗(s,Xk
s− + γ(Xk

s− , e))

+c(Xk
s− , ϕk(s,X

k
s−) − α∗, σ⊺(Xk

s−)Dxϕk(s,X
k
s−))

− [ϕk(s,X
k
s−) − α∗],
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and

Kk
s = −

∫ s

tk

{∂ϕk
∂t

(r,Xk
r ) + Lϕk(r,Xk

r )

+f(Xk
r , ϕk(r,X

k
r ) − α∗, σ⊺(Xk

r )Dxϕk(r,X
k
r ))
}
dr

−
∫ s

tk

∫

E
(ϕk − α∗ − v∗)(r,Xk

r− + γ(Xk
r− , e))µ(dr, de)

+
(
ϕk(θk, X

k
θk

) − α∗ − v(θk, X
k
θk

)
)
1{s=θk}.

By construction and from Itô’s formula on ϕk(s,X
k
s ), we see that (Y k, Zk, Uk,Kk) satisfies

(1.4.18) on [tk, θk]. From (1.4.22), it is clear that the process Uk satisfies the constraint :

h(Ukt (e), e) ≥ 0, dP ⊗ dt⊗ λ(de) a.e. on Ω × [tk, θk] × E.

Observe also that

ϕk(θk, X
k
θk

) − α∗ ≥ v(θk, X
k
θk

) (1.4.26)

Indeed, we have two cases:

• (θk, X
k
θk

) ∈ [tk, T ] ×B(xk, δ)
c : since α∗ < ζ

2 , we have by (1.4.24),

ϕk(θk, X
k
θk

) − α∗ ≥ v∗(θk, X
k
θk

) ≥ v(θk, X
k
θk

).

• (θk, X
k
θk

) ∈ [tk, T ] ×B(xk, δ) ⊂ O : since α∗ ≤ ε, we have by (1.4.22)

ϕk(θk, X
k
θk

) − α∗ ≥ ϕ(θk, X
k
θk

) − ε ≥ g(Xk
T ) = v(θk, X

k
θk

).

Let us then check that Kk is nondecreasing on [tk, θk]. First, on [tk, θk), we notice that Kk

consists only in the Lebesgue term dr, and so is nondecreasing by (1.4.25). Moreover, we

see that Kk
θk

≥ Kk
θ−
k

. Indeed, there are two possible cases:

• θk < τk: then Kk
θk

= Kk
θ−
k

+ ϕk(θk, X
k
θk

) − α∗ − v(θk, X
k
θk

), and by (1.4.26), we have

Kk
θk

≥ Kk
θ−
k

.

• θk = τk: then Kk
θk

= Kk
θ−
k

− (ϕk(θk, X
k
θk

) − α∗ − v∗(θk, X
k
θk

)) + (ϕk(θk, X
k
θk

) − α∗ −
v(θk, X

k
θk

)), and so Kk
θk

≥ Kk
θ−
k

.

Therefore, the quadruple (Y k, Zk, Uk,Kk) is a solution on [tk, θk] to (1.4.18)-(1.4.19), and

by Lemma 1.4.1, we deduce that for all k,

ϕk(tk, xk) − α∗ = ϕ(tk, xk) +
√
T − tk − α∗ ≥ v(tk, xk).

We finally obtain a contradiction by sending k to ∞. ✷
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1.4.2 Uniqueness result

This paragraph is devoted to a uniqueness result for the QVI (1.4.1)-(1.4.3). We need to

impose some additional assumptions.

(H3) There exists a nonnegative function Λ ∈ C2(Rd) and a positive constant ρ satisfying

(i) LΛ + f(.,Λ, σ⊺DΛ) ≤ ρΛ,

(ii) infe∈E h(HeΛ(x) − Λ(x), e) > 0 for all x ∈ R
d,

(iii) Λ(x) ≥ g(x) for all x ∈ R
d,

(iv) lim|x|→∞
Λ(x)
1+|x| = ∞.

Assumption (H3) is similar to the one made in [78] or [10], and essentially ensures

the existence of a suitable strict supersolution to (1.4.1). We shall give in paragraph 1.5

some sufficient conditions for (H3). This strict supersolution allows to control the nonlocal

term in QVI (1.4.1)-(1.4.3) via some convex small perturbation. Thus, to deal with the

dependence of f , c on y, z, we also require some convexity conditions.
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(H4)

(i) The function f(x, ., .) is convex in (y, z) ∈ R × R
d for all x ∈ R

d.

(ii) The function h(., e) is concave in u ∈ R a for all e ∈ E.

(iii) The function c(x, ., ., e) is convex in (y, z) ∈ R × R
d for all (x, e) ∈ R

d × E.

(iv) The function c(x, ., z, e) is decreasing in y ∈ R for all (x, z, e) ∈ R
d × R

d × E.

Theorem 1.4.3 Assume that (H3) and (H4) hold, and let U (resp. V ) be a lsc (resp.

usc) viscosity supersolution (resp. subsolution) to (1.4.1)-(1.4.3) satisfying a linear growth

condition :

sup
x∈Rd

|U(t, x)| + |V (t, x)|
1 + |x| < ∞, ∀t ∈ [0, T ].

Then, U ≥ V on [0, T ]× R
d. Consequently, under (H2’) (or (H1’) in the case : h(u, e) =

−u), (H3), (H4), and (HE), the function v in (1.4.4) is the unique viscosity solution to

(1.4.1)-(1.4.3) satisfying a linear growth condition, and v is continuous on [0, T ) × R
d.

Proof. • Comparison principle. As usual, we shall argue by contradiction by assuming

that

sup
[0,T ]×Rd

(V − U) > 0. (1.4.27)

1 For some λ > 0 to be chosen below, let

Ũ(t, x) = e(ρ+λ)tU(t, x) , Ṽ (t, x) = e(ρ+λ)tV (t, x) and Λ̃(t, x) = e(ρ+λ)tΛ(x).

A straightforward derivation shows that Ũ (resp. Ṽ ) is a viscosity supersolution (resp.

subsolution) to

min
[
ρw − ∂w

∂t
− Lw − f̃ (·, w, σ⊺Dxw) , (1.4.28)

inf
e∈E

h̃
(
·, H̃ew − w, e

) ]
= 0, on [0, T ) × R

d

min
[
w(T−, ·) − g̃, (1.4.29)

inf
e∈E

h̃(T, H̃ew(T−, ·) − w(T−, ·), e)
]

= 0 on R
d

where

f̃(t, x, r, q) = e(ρ+λ)tf
(
x, re−(ρ+λ)t, qe−(ρ+λ)t

)
− λr

h̃(t, r, e) = e(ρ+λ)th(e−(ρ+λ)tr, e), g̃(x) = e(ρ+λ)T g(x)
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and

H̃w(t, x) = w(t, x+ γ(x, e)) + c̃ (x,w(t, x), σ⊺(x)Dxw(t, x), e)

with

c̃(t, x, r, q, e) = e(ρ+λ)tc(x, e−(ρ+λ)tr, e−(ρ+λ)tq, e)

for all (t, x, r, q, e) ∈ [0, T ] × R
d × R × R

d × E. Since f is Lipschitz, we can choose λ large

enough so that f̃ is nonincreasing in r. Denote W̃ = (1−µ)Ũ +µΛ̃ with µ > 0. By (1.4.27)

and the growth condition (H3)(iv) of Λ, we have for µ small enough

sup
[0,T ]×Rd

(Ṽ − W̃ ) = (Ṽ − W̃ )(t0, x0) > 0. (1.4.30)

for some (t0, x0) ∈ [0, T ]×R
d. Moreover from the viscosity supersolution property (1.4.28)-

(1.4.29) of Ũ , and the conditions (H3)(i), (ii), (H4)(i), (ii), (iii), we see that W̃ is a viscosity

supersolution to

ρw − ∂w

∂t
− Lw − f̃ (·, w, σ⊺Dxw) ≥ 0, on [0, T ) × R

d, (1.4.31)

inf
e∈E

h̃
(
·, H̃ew − w, e

)
≥ µq̃, on [0, T ] × R

d, (1.4.32)

where q̃(t, x) = e(ρ+λ)t infe∈E h(HeΛ(x) − Λ(x), e) is positive on [0, T ] × R
d by (H3)(ii).

2 Denote for all (t, x, y) ∈ [0, T ] × R
d × R

d and n ≥ 1

Θn(t, x, y) = Ṽ (t, x) − W̃ (t, y) − ϕn(t, x, y),

with

ϕn(t, x, y) = n|x− y|2 + |x− x0|4 + |t− t0|2.

By the growth assumption on U and V and (H3)(iii), for all n, there exists (tn, xn, yn) ∈
[0, T ]×R

d×R
d attaining the maximum of Θn on [0, T ]×R

d×R
d. By standard arguments,

we have :

(tn, xn, yn) → (t0, x0, x0), (1.4.33)

n|xn − yn|2 → 0, (1.4.34)

Ṽ (tn, xn) − W̃ (tn, yn) → Ṽ (t0, x0) − W̃ (t0, x0). (1.4.35)

3 We now show that for n large enough

inf
e∈E

h̃(tn, H̃e[tn, xn, Dxϕn(tn, xn, yn), Ṽ ] − Ṽ (tn, xn), e) > 0. (1.4.36)

On the contrary, up to a subsequence, we would have for all n,

inf
e∈E

h̃(tn, H̃e[tn, xn, Dxϕn(tn, xn, yn), Ṽ ] − Ṽ (tn, xn), e) ≤ 0,
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and so by uppersemicontinuity of Ṽ , compactness of E, there would exist a sequence (en)

in E such that

h̃(tn, H̃en [tn, xn, Dxϕn(tn, xn, yn), Ṽ ] − Ṽ (tn, xn), en) ≤ 0.

Moreover, by the viscosity supersolution property of W̃ to (1.4.32), we have

h̃(tn, H̃en [tn, yn,−Dyϕn(tn, xn, yn), W̃ ] − W̃ (tn, yn), en) ≥ µq̃(tn, yn).

From the nonincreasing and the Lipschitz property of h(., e), we deduce from the two pre-

vious inequalities that there exists a positive constant η such that

H̃en [tn, yn,−Dyϕn(tn, xn, yn), W̃ ] − W̃ (tn, yn) + ηq̃(tn, yn)

≤ H̃en [tn, xn, Dxϕn(tn, xn, yn), Ṽ ] − Ṽ (tn, xn),

which is rewritten as

Ṽ (tn, xn) − W̃ (tn, yn) + ηq̃(tn, yn)

≤ Ṽ (tn, xn + γ(xn, en)) − W̃ (tn, yn + γ(yn, en)) + ∆Cn (1.4.37)

where

∆Cn = c̃
(
tn, xn, Ṽ (tn, xn), σ

⊺(xn)Dxϕn(tn, xn, yn), en

)

− c̃
(
tn, yn, W̃ (tn, yn),−σ⊺(yn)Dyϕn(tn, xn, yn)

)
.

Now, we write ∆Cn = ∆C1
n + ∆C2

n + ∆C3
n, with

∆C1
n = c̃

(
tn, xn, Ṽ (tn, xn), σ

⊺(xn)Dxϕn(tn, xn, yn), en

)

− c̃
(
tn, xn, W̃ (tn, yn), σ

⊺(xn)Dxϕn(tn, xn, yn), en

)
,

∆C2
n = c̃

(
tn, xn, W̃ (tn, yn), σ

⊺(xn)Dxϕn(tn, xn, yn), en

)

− c̃
(
tn, xn, W̃ (tn, yn),−σ⊺(yn)Dyϕn(tn, xn, yn), en

)
,

∆C3
n = c̃

(
tn, xn, W̃ (tn, yn),−σ⊺(yn)Dyϕn(tn, xn, yn), en

)

− c̃
(
tn, yn, W̃ (tn, yn),−σ⊺(yn)Dyϕn(tn, xn, yn), en

)
.

We have Ṽ (tn, xn)− W̃ (tn, yn) → (Ṽ − W̃ )(t0, x0) > 0 by (1.4.30) and (1.4.35). Hence, for

n large enough, Ṽ (tn, xn) ≥ W̃ (tn, yn), and so from the nonincreasing condition (H4)(iv)

of c, we have ∆C1
n ≤ 0. Since σ⊺(xn)Dxϕn(tn, xn, yn) + σ⊺(yn)Dyϕn(tn, xn, yn) → 0 by

the Lipschitz condition on σ and (1.4.34), we deduce with the Lipschitz condition on c

that lim supn→∞ ∆C2
n ≤ 0. By (1.4.33) and continuity of c, we have limn→∞ ∆C3

n = 0.

Therefore, we obtain

lim sup
n→∞

∆Cn ≤ 0.
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Up to a subsequence, we may assume that (en) converges to e0 in E. Hence, by sending n

to infinity into (1.4.37), it follows with (1.4.35) and the upper (resp. lower)-semicontinuity

of Ṽ (resp. W̃ ) that :

(Ṽ − W̃ )(t0, x0 + γ(x0, e0), x0 + γ(x0, e0)) ≥ (Ṽ − W̃ )(t0, x0) + ηq̃(t0, x0)

> (Ṽ − W̃ )(t0, x0),

a contradiction with (1.4.30).

4 Let us check that, up to a subsequence, tn < T for all n. On the contrary, tn = t0

= T for n large enough, and from (1.4.36), and the viscosity subsolution property of Ṽ to

(1.4.29), we would get

Ṽ (T, xn) ≤ g̃(xn).

On the other hand, by the viscosity supersolution property of Ũ to (1.4.29) and (H3)(iii),

we have W̃ (T, yn) ≥ g̃(yn), and so

Ṽ (T, xn) − W̃ (T, yn) ≤ g̃(xn) − g̃(yn).

By sending n to infinity, and from continuity of g̃, this would imply (Ṽ − W̃ )(t0, x0) ≤ 0, a

contradiction with (1.4.30).

5 We may then apply Ishii’s lemma (see Theorem 6.1 in [34]) to (tn, xn, yn) ∈ [0, T )×R
d×

R
d that attains the maximum of Θn, for all n ≥ 1 : there exist (pn

Ṽ
, qn
Ṽ
,Mn) ∈ J̄2,+Ṽ (tn, xn)

and (pn
W̃
, qn
W̃
, Nn) ∈ J̄2,−W̃ (tn, yn) such that

pn
Ṽ
− pn

W̃
= ∂tϕn(tn, xn, yn) = 2(tn − t0),

qn
Ṽ

= Dxϕn(tn, xn, yn), qn
W̃

= −Dyϕn(tn, xn, yn),

and
(
Mn 0
0 −Nn

)
≤ An +

1

2n
A2
n, (1.4.38)

where An = D2
(x,y)ϕn(tn, xn, yn). From the viscosity supersolution property of W̃ to (1.4.31),

we have

ρW̃ (tn, yn) − pn
W̃

+ 〈b(yn), Dyϕ(tn, xn, yn)〉 −
1

2
tr(σ(yn)σ

⊺(yn)Nn)

−f̃(tn, yn, W̃ (tn, yn),−σ⊺(yn)Dyϕ(tn, xn, yn)) ≥ 0.

On the other hand, from (1.4.36) and the viscosity subsolution property of Ṽ to (1.4.28),

we have

ρṼ (tn, xn) − pn
Ṽ
− 〈b(xn), Dxϕ(tn, xn, yn)〉 −

1

2
tr(σ(xn)σ

⊺(xn)Mn)

−f̃(tn, xn, Ṽ (tn, xn), σ
⊺(xn)Dxϕ(tn, xn, yn)) ≤ 0.
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By subtracting the two previous inequalities, we obtain

ρ(Ṽ (tn, xn) − W̃ (tn, yn)) ≤ pn
Ṽ
− pn

W̃
+ ∆Fn

+ 〈b(xn), Dxϕn(tn, xn, yn)〉 + 〈b(yn), Dyϕn(tn, xn, yn)〉

+
1

2
tr (σ(xn)σ

⊺(xn)Mn − σ(yn)σ
⊺(yn)Nn) , (1.4.39)

where

∆Fn = f̃(tn, xn, Ṽ (tn, xn), σ
⊺(xn)Dxϕn(tn, xn, yn))

− f̃(tn, yn, W̃ (tn, yn),−σ⊺(yn)Dyϕn(tn, xn, yn)).

From (1.4.33), we have pn
Ṽ
− pn

W̃
→ 0 as n goes to infinity. From the Lipschitz property of

b, and (1.4.34), we have

lim
n→∞

(
〈b(xn), Dxϕn(tn, xn, yn)〉 + 〈b(yn), Dyϕn(tn, xn, yn)

)
= 0.

As usual, from (1.4.38), (1.4.33), (1.4.34), and the Lipschitz property of σ, we have

lim sup
n→∞

tr (σ(xn)σ
⊺(xn)Mn − σ(yn)σ

⊺(yn)Nn) ≤ 0.

Moreover, by the same arguments as for c̃, using the nonincreasing property of f̃ in its third

variable, and the Lipschitz property of f̃ , we have

lim sup
n→∞

∆Fn ≤ 0.

Therefore, by sending n→ ∞ into (1.4.39), we conclude with (1.4.35) that ρ(Ṽ −W̃ )(t0, x0)

≤ 0, a contradiction with (1.4.30).

• Uniqueness for v. The uniqueness result is then a direct consequence of the comparison

principle, and the continuity of v on [0, T )×R
d follows from the fact that in this case v∗ =

v∗. ✷

Remark 1.4.3 As a byproduct of the comparison principle in Theorem 1.4.3, we get the

continuity of the value function v on [0, T )×R
d. Since the jump-diffusion process X is quasi-

left continuous, then so is the minimal solution Yt = v(t,Xt) to the BSDE with constrained

jumps, and the penalized approximation Y n
t = vn(t,Xt). This implies that the predictable

projections pY and pY n, respectively of Y and Y n, are equal to pYt = Yt− and pY n
t = Y n

t− .

Therefore, Yt− = limn→∞ Y n
t− . From the weak version of Dini’s theorem, see [26] p. 202,

this yields the uniform convergence of Y n on [0, T ], i.e. limn→∞ supt∈[0,T ] |Y n
t − Yt| = 0,

and so by the dominated convergence theorem, the convergence of Y n to Y in S2 :

lim
n→∞

‖Y n − Y ‖
S2

= 0. (1.4.40)

Then, by applying Itô’s formula to t 7→ E|Yt − Y n
t | a in the proof of Theorem 1.3.1, we get

from the convergence of Y n to Y in S2 that (Zn, V n) converges to (Z, V ) in L
2(W)×L

2(µ̃)

and that K is continuous.
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1.5 Some sufficient conditions for (H2’) and (H3)

In this section, we provide various explicit conditions on the coefficients model, which ensure

that the general assumptions (H2’) and (H3) hold true.

1.5.1 Existence of the solution to BSDE with jump constraint

We first consider a case where we have upper bounds for the coefficients and h(u, e) = −u.

Proposition 1.5.3 Suppose that h(u, e) = −u, and assume that there exist real constants

C1, C2 and η ∈ R
d such that

g(x) ≤ C1 + 〈η, x〉 , c(x, y, z, e) + 〈η, γ(x, e)〉 ≤ 0 (1.5.41)

and f(x, y, z) + 〈η, b(x)〉 ≤ C2,

for all (x, y, z, e) ∈ R
d × R × R

d × E. Then (H2’) holds true.

Proof. Let us define a quadruple (Ỹ , Z̃, K̃, Ũ) by : Ỹt = C1 + C2(T − t) + 〈η,Xt〉 for t <

T , ỸT = g(XT ), Z̃t = σ(Xt−).η, Ũt(e) = 0 and

K̃t =

∫ t

0

{
C2 − η · b(Xs) − f(Xs, Ỹs, Z̃s)

}
ds

−
∫ t

0

∫

E

{
c(Xs−, Ỹs−, Z̃s, e) + 〈η, γ(Xs−, e)〉

}
µ(ds, de), t < T,

K̃T = K̃T− + C1 + 〈η,XT 〉 − g(XT ).

From (1.5.41), the process K̃ is clearly nondecreasing. Moreover, from the dynamics of X,

and by construction, we see that the quadruple (Ỹ , Z̃, K̃, Ũ) satisfies (1.2.10)-(1.2.13) and

the function ṽ(t, x) = C1 + C2(T − t) + η.x clearly satisfies a linear growth condition. ✷

We next give an example inspired by [10] where the jumps of X vanish as X goes out

of a ball centered in zero in the case of impulse control.

Proposition 1.5.4 Suppose that h(u, e) = −u, f, c does not depend on y, z, and assume

that c ≤ 0, γ = 0 on {x ∈ R
d : |x| ≥ C1} × E for some C1 > 0. Then, (H2’) holds true.

Proof. We consider the function v :

v(t, x) = sup
ν∈V

E
ν
[
g(Xt,x

T ) +

∫ T

t
f(Xt,x

s )ds+

∫ T

t

∫

E
c(Xt,x

s−
, e)µ(ds, de)

]
.

Since c ≤ 0, and the choice of ν = 1 corresponds to the probability measure P
1 = P, we see

that v̂ ≤ v ≤ v̄ where

v̂(t, x) = E

[
g(Xt,x

T ) +

∫ T

t
f(Xt,x

s )ds+

∫ T

t

∫

E
c(Xt,x

s−
, e)µ(ds, de)

]

v̄(t, x) = sup
ν∈V

E
ν
[
g(Xt,x

T ) +

∫ T

t
f(Xt,x

s )ds
]
.
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The function v̂ clearly satisfies a linear growth condition by the linear growth conditions

on g, f, c and the standard estimate for X. Moreover, under the assumptions on the jump

coefficient γ, it is shown in [10] that v̄ satisfies a linear growth condition. Therefore, v̂ also

satisfies a linear growth condition.

Let us now define the process Yt = v(t,Xt), which is then equal to

Yt = ess sup
ν∈V

E
ν
[
g(XT ) +

∫ T

t
f(Xs)ds+

∫ T

t

∫

E
c(Xs− , e)µ(ds, de)

∣∣∣Ft
]
,

and lies in S2 from the linear growth condition, and the estimate (1.2.2) for X. From

Theorem 1.2.1, we then know that there exists (Z,U,K) ∈ L
2(W)×L

2(µ̃)×A
2 such that

(Y, Z, U,K) is the minimal solution to (1.2.10)-(1.2.13), and so (H2’) is satisfied. ✷

We finally consider a case for general constraint function h.

Proposition 1.5.5 Assume that there exists a Lipschitz function w ∈ C2(Rd) satisfying a

linear growth condition, supersolution to (1.4.3), and such that

〈b,Dw〉 +
1

2
tr(σσ⊺D2w) + f(·, w, σ⊺Dw) ≤ C, on R

d,

for some constant C. Then (H2’) holds true.

Proof. Let us define a quadruple (Ỹ , Z̃, Ũ , K̃) by

Ỹt = w(Xt) + C(T − t), t < T, ỸT = g(XT ),

Z̃t = σ⊺(Xt−)Dw(Xt−), Ũt(e) = w(Xt− + γ(Xt− , e)) + c(Xt− , Ỹt− , Z̃t, e) − w(Xt−), and

K̃t =

∫ t

0
[C − 〈b(Xs), Dw(Xs〉)

−1

2
tr{σ(Xs)σ

⊺(Xs)D
2w(Xs)} − f(Xs, Ỹs, Z̃s)]ds, t < T,

K̃T = K̃T− + w(XT ) − g(XT ).

From the conditions on w, we see that (Ỹ , Z̃, K̃, Ũ) lies in S2 × L
2(W) × L

2(µ̃) × A
2.

Moreover, by Itô’s formula to w(Xt) and the supersolution property of w to (1.4.3), we

conclude that (Ỹ , Z̃, K̃, Ũ) is solution to (1.2.10)-(1.2.11), and ṽ(t, x) = w(t, x) +C(T − t)

satisfies a linear growth condition. ✷

1.5.2 The strict supersolution condition (H3)

We give a sufficient condition for (H3) in the usual case where f and c do not depend

neither on y nor on z.
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Proposition 1.5.6 Consider the case where h is given by

h(u, e) = −u.

Assume that there exists a constant α > 0 such that

−α < |x+ γ(x, e)|2 − |x|2 ∀(x, e) ∈ R
d × E

β := inf
(x,e)∈Rd×E

−c(x, e)
|x+ γ(x, e)|2 − |x|2 + α

> 0

Then assumption (H3) holds true.

Proof. We set Λ(x) := β|x|2 + ζ with ζ large enough so that Λ ≥ g, i.e. (H3)(iii) is

satisfied. A straightforward computation shows that

inf
e∈E

h(HeΛ(x) − Λ(x), e) ≥ αβ > 0

and hence (H3) (ii) is satisfied. Clearly, (H3) (iv) holds as well. Finally, it follows from the

linear growth assumption on b and σ that (H3) (i) holds for a sufficiently large parameter

ρ. ✷



Chapter 2

Constrained BSDEs with jumps :

Application to optimal switching

Abstract : This paper enlarges the class of backward stochastic differential equation (BSDE)

with jumps, adding some general constraints on all the components of the solution. Via a

penalization procedure, we provide an existence and uniqueness result for these so-called

constrained BSDEs with jumps. This new type of BSDE offers a nice and practical uni-

fying framework to represent and generalize the notions of constrained BSDEs studied in

[65], BSDEs with constrained jumps introduced recently by [46], as well as multidimen-

sional BSDEs with oblique reflection presented in [44] and [41]. For example, a switching

problem, represented by a multidimensional BSDE with oblique reflection, see [44], can be

directly solved through a one dimensional constrained BSDE with jumps. This result is very

promising from a numerical point of view for the resolution of high dimensional switching

problems. All the arguments presented here rely on probabilistic tools. This allows in par-

ticular to represent non-Markovian switching problems, where, for example, the switching

regime influences the dynamics of the underlined diffusion.

Keywords: Switching problems, BSDE with jumps, Constrained BSDE, Reflected BSDE.

72
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2.1 Introduction

Since its introduction by Pardoux and Peng in [61], the notion of Backward Stochastic Dif-

ferential Equations (BSDEs in short) has been widely extended. In particular, it appeared

as a very powerful tool to solve partial differential equations (PDE) and corresponding

stochastic optimization problems. Several generalizations of this notion are based on the

addition of new constraints on the solution. First, El Karoui et al. [29] study the case where

the component Y is forced to stay above a given process, leading to the notion of reflected

BSDEs related to optimal stopping and obstacle problems. Motivated by super replication

problems under portfolio constraints, Cvitanic et al. [24] consider the case where the com-

ponent Z is constrained to stay in a fixed convex set. More recently, Kharroubi et al. [46]

introduce a constraint on the jump component U of the BSDE, providing a representation of

solutions to a class of PDE, called quasi-variational inequalities, arising in optimal impulse

control problems. Generalizing the results of El Karoui et al. [29] in a multi-dimensional

framework, Hu and Tang [44] followed by Hamadène and Zhang [41] consider BSDEs with

oblique reflections and connect them with systems of variational inequalities and optimal

switching problems. Nevertheless, they only consider cases where the switching strategy

does not affect the dynamics of the underlying diffusion. Our paper introduce the notion of

constrained BSDEs with jumps, which offers in particular a nice and natural probabilistic

representation for these types of switching problems. This new notion essentially unifies and

extends the notions of constrained BSDE without jumps, BSDE with constrained jumps as

well as multidimensional BSDE with oblique reflections.

Let illustrate our presentation by the example of a switching problem and introduce an

underlying diffusion process, whose dynamics are given by

Xα
t = X0 +

∫ t

0
b(Xα

u , αu)du+

∫ t

0
σ(Xα

u , αu)dWu, 0 ≤ t ≤ T, (2.1.1)

where α is a switching control process valued in {1, . . . ,m}. We consider the following

switching control problem defined by

sup
α

E

[
g(Xα

T , αT ) +

∫ T

0
f(Xα

s , αs)ds+
∑

0<τk≤T

c(ατ−
k
, ατk)

]
, (2.1.2)

where (τk)k denotes the jump times of the control α. This type of stochastic control problem

is typically encountered by an agent maximizing the production rentability of a given good

by switching between m possible modes of production based on different commodities. A

switch is penalized by a given cost function c and, since the agent is a large actor on

the market, the chosen mode of production influences the dynamics of the corresponding

commodities. One of the mode of production can also be interpreted as a strategy where the

agent directly buys the good on a financial market. As observed by Tang and Yong [78], the
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value function associated to this problem interprets on [0, T ] as the unique viscosity solution

of a given coupled system of variational inequalities. The difficulty in the derivation of a

BSDE representation for this type of problem is, firstly, the dependence of the solution in

mode i ∈ {1, . . . ,m} with respect to the global solution in all possible modes, and secondly,

the dependence in the control of the drift and the volatility of X. As recently observed in

[10], the unique solution to the corresponding system of variational inequalities interprets as

the value function of a well suited stochastic target problem associated to a diffusion with

jumps. Using entirely probabilistic arguments, the BSDE representation provided in this

paper relies on this type of correspondence. In our approach, we let artificially the strategy

jump randomly between the different modes of production. As in [63], this allows to retrieve

in the jump component of a one-dimensional backward process, some information regarding

the solution in the other modes of production. Indeed, let us introduce a pure jump process

(It)0≤t≤T based on an independent random measure µ and construct the underlying process

(XIt
t )0≤t≤T , whose dynamics are based on the random mode of production I according

to equation (2.1.1). Let consider the following constrained BSDE associated to the two

dimensional forward process (I,XI) (called transmutation-diffusion process in [63]) and

defined on [0, T ] by:





Yt = g(XIT
T ) +

∫ T
t f(XIs

s , Is)ds+KT −Kt

−
∫ T
t 〈Zs, dWs〉 −

∫ T
t

∫
I Us(i)µ(ds, di) , 0 ≤ t ≤ T ,

Ut(i) ≥ c(i, It−), dP ⊗ dt⊗ λ(di) a.e.

(2.1.3)

We prove in this paper that (2.1.3) has one unique minimal solution which indeed relates

directly to the solution of the corresponding switching problem (2.1.2).

In order to unify our results with the one based on BSDE with oblique reflection consid-

ered in [44] or [41], we extend this approach and introduce the notion of constrained BSDE

with jumps whose solution (Y,Z, U,K) satisfies the general dynamics

Yt = ξ +

∫ T

t
f(s, Ys, Zs, Us)ds+KT −Kt

−
∫ T

t
〈Zs, dWs〉 −

∫ T

t

∫

I
Us(i)µ(ds, di) , 0 ≤ t ≤ T (2.1.4)

a.s., for 0 ≤ t ≤ T , as well as the constraint

h(t, Yt− , Zt, Ut(i), i) ≥ 0, dP ⊗ dt⊗ λ(di) a.e. , (2.1.5)

where f and h are given random functions. This notion of constrained BSDEs with jumps

also includes BSDEs studied by Buckdahn and Hu [16] for the pricing of american options

with underlying diffusions with jumps and portfolio constraints. Through a penalization

argument, we provide, in Section 2, existence and uniqueness of the minimal solution to

this type of constrained BSDE with jumps (2.1.4)-(2.1.5). For this purpose, we present
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in the Appendix an extension of Peng’s monotonic limit theorem [64] to the framework of

BSDEs with jumps. In Section 2, we mainly extend and unify the existing literature in

three directions:

• We generalize the notion of BSDE with constrained jumps considered in [46], letting

the driver function f depend on U and considering general constraint function h

depending on all the components of the solution.

• We add some jumps in the dynamics of constrained BSDE studied in [65] and let the

coefficients depend on the jump component U .

• In the case of general non linear switching problems considered in [41], the minimal

solution to our BSDE interprets nicely in terms of solution to their corresponding

BSDE with oblique reflections.

The constrained BSDEs with jumps offer a natural unifying framework to represent

these three distinct types of BSDE. We believe that the representation of a multidimen-

sional obliquely reflected BSDEs by a one dimensional constrained BSDE with jumps is

numerically very promising. It offers the possibility to generalize the results of [12] and

develop an entirely probabilistic algorithm for solving Markovian switching problems. Fur-

thermore, this algorithm could solve high dimensional systems of variational inequalities,

which relates directly to multidimensional BSDEs with oblique reflections, see [44] for more

details. The algorithm as well as the Feynman Kac representation of general constrained

BSDEs with jumps is currently under study and will appear in [33].

Like all the arguments of the paper, the proof relating constrained BSDEs with jumps

and BSDEs with oblique reflections only relies on probabilistic arguments and can be applied

in a non-Markovian setting. In particular, we provide a new multidimensional comparison

theorem, based on viability property for super-solutions to BSDE. Nevertheless, the class

of reflected BSDE studied in [44] or [41] does not allow for the consideration of switching

problems where the dynamics of the underlying diffusion depends in a general manner on

the current switching regime. The last section of the paper deals with this type of general

non Markovian switching problem, typically of the form of (2.1.2) where the functions g, f

and c are possibly random. We relate the value process of the optimal switching problem

to a well chosen family of multidimensional BSDE with oblique reflection. We finally link

via a penalization procedure this family of reflected BSDEs with a member of the class

of one-dimensional constrained BSDE with jumps. Therefore, constrained BSDEs with

jumps offer also a nice probabilistic representation for general switching problems, even in

a non-Markovian framework.

Notations. Throughout this paper we are given a finite terminal time T and a probability

space (Ω,G,P) endowed with a d-dimensional standard Brownian motion W = (Wt)t≥0,
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and a Poisson random measure µ on R+ ×I, where I = {1, . . . ,m}, with intensity measure

λ(di)dt for some finite measure λ on I with λ(i) > 0 for all i ∈ I. We set µ̃(dt, di) =

µ(dt, di) − λ(di)dt the compensated measure associated to µ. σ(I) denotes the σ-algebra

of subsets of I. For x = (x1, . . . , xℓ) ∈ R
ℓ with ℓ ∈ N, we set |x| =

√
|x1|2 + · · · + |xℓ|2

the euclidean norm. We denote by G = (Gt)t≥0 (resp.F = (Ft)t≥0) the augmentation of

the natural filtration generated by W and µ (resp. by W ), and by P the σ-algebra of

predictable subsets of Ω × [0, T ]. We denote by S2
F

(resp. Sc,2
F

, S2
G
) the set of real-valued

càd-làg F-adapted (resp. continous F-adapted, càd-làg G-adapted) processes Y = (Yt)0≤t≤T

such that

‖Y ‖
S2

:=

(
E

[
sup

0≤t≤T
|Yt|2

]) 1
2

< ∞.

where F = (Ft)t≥0 (resp. G = (Gt)t≥0) denotes the completed filtration generated by W

(resp. by W and µ). L
p(0,T), p ≥ 1, is the set of real-valued measurable processes φ =

(φt)0≤t≤T such that

E

[ ∫ T

0
|φt|pdt

]
< ∞,

and L
p
F
(0,T) (resp. L

p
G
(0,T)) is the subset of L

p(0,T) consisting of F–progressively mea-

surable (resp. G-progressively measurable) processes.

L
p
F
(W) (resp. L

p
G
(W)), p ≥ 1, is the set of R

d-valued F-progressively measurable (resp.

P-measurable) processes Z = (Zt)0≤t≤T such that

‖Z‖
Lp(W)

:=

(
E

[ ∫ T

0
|Zt|pdt

]) 1
p

< ∞.

L
p(µ̃), p ≥ 1, is the set of P ⊗ E-measurable maps U : Ω × [0, T ] × I → R such that

‖U‖
Lp(µ̃)

:=

(
E

[ ∫ T

0

∫

I
|Ut(i)|pλ(di)dt

]) 1
p

< ∞.

A
2
F

(resp. A
2
G
) is the closed subset of S2

F
(resp. S2

G
) consisting of nondecreasing processes

K = (Kt)0≤t≤T with K0 = 0.

For ease of notation, we omit in all the paper the dependence in ω ∈ Ω, whenever it is

explicit.

2.2 Constrained Backward SDEs with jumps

This section is devoted to the presentation of constrained Backward SDEs with jumps in

a framework generalizing the one considered in [46] and [65]. Namely we allow the driver

function to depend on the jump component of the backward process and we extend the class

of possible constraint functions by letting them depend on all the components of the solution
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to the BSDE. We provide here an existence and uniqueness result for this type of BSDEs

and remark that they are closely related to the notion of BSDEs with oblique reflections

studied by [44] and [41]. All the arguments presented here rely solely on probabilistic tools.

2.2.1 Formulation

A constrained BSDE with jumps is characterized by three objects :

• a terminal condition, i.e. a GT -measurable random variable ξ,

• a generator function, i.e. a progressively measurable map f : Ω× [0, T ]×R×R
d×R

I

→ R,

• a constraint function, i.e. a P ⊗B(R)⊗B(Rd)⊗σ(I)-measurable map h : Ω× [0, T ]×
R × R × R

d × I → R such that h(ω, t, y, z, ., i) is non-increasing for all (ω, t, y, z, i) ∈
Ω × [0, T ] × R × R

d × I.

Definition 2.2.1 A solution to the corresponding constrained BSDE with jumps is a quadru-

ple (Y,Z, U,K) ∈ S2
G
× L

2
G
(W) × L

2(µ̃) × A
2
G

satisfying

Yt = ξ +

∫ T

t
f(s, Ys, Zs, Us)ds+KT −Kt

−
∫ T

t
〈Zs, dWs〉 −

∫ T

t

∫

I
Us(i)µ(ds, di) , 0 ≤ t ≤ T , (2.2.1)

for 0 ≤ t ≤ T a.s., as well as the constraint

h(t, Yt− , Zt, Ut(i), i) ≥ 0, dP ⊗ dt⊗ λ(di) a.e. . (2.2.2)

Furthermore, (Y, Z, U,K) is referred to as the minimal solution to (2.2.1)-(2.2.2) whenever,

for any other solution (Ỹ , Z̃, Ũ , K̃) to (2.2.1)-(2.2.2), we have Y. ≤ Ỹ. a.s.. In this case, Y

naturally interprets in the terminology of Peng [64] as the smallest supersolution to (2.2.1)-

(2.2.2).

Remark 2.2.1 In the case where the driver function f does not depend on U and the

constraint function h is of the form h(u + c(t, y, z), i), observe that this BSDE exactly fits

in the framework considered in [46]. In the Brownian case (i.e. no jump component), this

type of BSDEs has been studied in [65].

In order to derive an existence and uniqueness result for solutions to this type of BSDE,

we require the classical Lipschitz and linear growth conditions on the coefficients as well as

a constraint on the dependence of the driver function in the jump component of the BSDE.

We regroup these conditions in the following assumption.
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(H0)

(i) There exists a constant k > 0 such that the functions f and h satisfy P−a.s. the

uniform Lipschitz property

|f(t, y, z, (uj)j) − f(t, y′, z′, (u′j)j)| ≤ k|(y, z, (uj)j) − (y′, z′, (u′j)j))| , (2.2.3)

|h(t, y, z, ui, i) − h(t, y′, z′, u′i, i)| ≤ k|(y, z, ui) − (y′, z′, u′i)| (2.2.4)

for all (t, i, y, z, (uj)j , y
′, z′, (u′j)j) ∈ [0, T ] × I × [R × R

d × R
I ]2.

(ii) The coefficients f and h satisfy the following growth linear condition : there exists a

constant C such that P−a.s.

|f(t, y, z, (uj)j)| + |h(t, y, z, ui, i)| ≤ C(1 + |y| + |z| + |(uj)j |) (2.2.5)

for all (t, i, y, z, (uj)j) ∈ [0, T ] × I × R × R
d × R

I .

(iii) There exist two constants C1 ≥ C2 > −1 such that P− a.s.

f(t, y, z, u) − f(t, y, z, u′) ≤
∫

I
(ui − u′i)γ

y,z,u,u′

t (i)λ(di),

for all (y, z, u, u′) ∈ R × R
d × [RI ]2, where γy,z,u,u

′
: Ω × [0, T ] × I → R is P ⊗

σ(I)−measurable and satisfies C2 ≤ γy,z,u,u
′ ≤ C1.

Remark 2.2.2 Under Assumption (H0) (i) and (ii), existence and uniqueness of a solution

(Y,Z, U,K) to the BSDE (2.2.1) with K = 0 follows from classical results on BSDEs with

jumps, see [5] or [77] for example. In order to add the h-constraint (2.2.2), one needs as

usual to relax the dynamics of Y by adding the non decreasing process K in (2.2.1). In

mathematical finance, the purpose of this new process K is to increase the super replication

price Y of a contingent claim, under additional portfolio constraints. In order to find a

minimal solution to the constrained BSDE (2.2.1)-(2.2.2), the nondecreasing property of h

is crucial for stating comparison principles needed in the penalization approach. The simpler

example of constraint function to keep in mind is h(., u, i) = c(., i)− u, i.e. upper-bounded

jumps constraint.

Remark 2.2.3 Part (iii) of Assumption (H0) constrains the form of the dependence of

the driver in the jump component of the BSDE. It is inspired from [73] and will ensure

comparison results for BSDEs driven by this type of driver.

2.2.2 Existence, uniqueness and approximation by penalization

In this paragraph, we provide an existence and uniqueness result for solutions to constrained

BSDEs with jumps of the form (2.2.1)-(2.2.2). This result requires an extension of Peng’s

monotonic limit theorem to the case of BSDE with jump, which is presented in the Appendix.
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The proof relies on a classical penalization argument and we introduce the following

sequence of BSDEs with jumps

Y n
t = ξ +

∫ T

t
f(s, Y n

s , Z
n
s , U

n
s )ds+ n

∫ T

t

∫

I
h−(s, Y n

s , Z
n
s , U

n
s (i), i)λ(di)ds (2.2.6)

−
∫ T

t
〈Zns , dWs〉 −

∫ T

t

∫

I
Uns (i)µ(ds, di), 0 ≤ t ≤ T, n ∈ N,

where h−(t, y, z, u, i) := max(−h(t, y, z, u, i), 0) is the negative part of the function h. Under

Assumption (H0), the Lipschitz property of the coefficients f and h ensures existence and

uniqueness of a solution (Y n, Zn, Un) ∈ S2
G
×L

2
G
(W)×L

2(µ̃) to (2.2.6), see [5] or [77] . Let

first state two comparison results ensuring a monotonic convergence of the sequence (Y n)n

under the additional assumption

(H1) There exists a quadruple (Ỹ , Z̃, K̃, Ũ) ∈ S2
G
× L

2
G
(W) × L

2(µ̃) × A
2
G

solution of

(2.2.1)-(2.2.2).

This assumption may appear restrictive but is classical and we present in Section 2.2.3

some examples where (H1) is satisfied, see Remark 2.2.4 below for more details. Let us

first state a general comparison theorem for BSDEs with jumps.

Lemma 2.2.1 Let f1, f2 : Ω×[0, T ]×R×R
d×R

I → R two generators satisfying Assumption

(H0) and ξ1, ξ2 ∈ L
2(Ω,GT ,P). Let (Y 1, Z1, U1) ∈ S2

G
× L

2
G
(W) × L

2(µ̃) satisfying

Y 1
t = ξ1 +

∫ T

t
f1(s, Y

1
s , Z

1
s , U

1
s )ds−

∫ T

t
〈Z1

s , dWs〉 −
∫ T

t

∫

I
U1
s (i)µ(ds, di) ,

for 0 ≤ t ≤ T a.s., and (Y 2, Z2, U2,K2) ∈ S2
G
× L

2
G
(W) × L

2(µ̃) × A
2
G

satisfying

Y 2
t = ξ2 +

∫ T

t
f2(s, Y

2
s , Z

2
s , U

2
s )ds−

∫ T

t
〈Z2

s , dWs〉 −
∫ T

t

∫

I
U2
s (i)µ(ds, di) +K2

T −K2
t ,

for 0 ≤ t ≤ T a.s.. If ξ1 ≤ ξ2 and f1(t, Y
1
t , Z

1
t , U

1
t ) ≤ f2(t, Y

1
t , Z

1
t , U

1
t ) for all t ∈ [0, T ]

then we have Y 1
t ≤ Y 2

t for all t ∈ [0, T ].

Proof. Let us denote Ȳ := Y 2 − Y 1, Z̄ := Z2 −Z1, Ū := U2 −U1, f̄ = f2(., Y
2, Z2, U2)−

f1(., Y
1, Z1, U1) and ξ̄ = ξ2 − ξ1 so that

Ȳt = ξ̄ +

∫ T

t
f̄sds−

∫ T

t
〈Z̄s, dWs〉

−
∫ T

t

∫

I
Ūs(i)µ(ds, de) + K̃T − K̃t, 0 ≤ t ≤ T, a.s. (2.2.7)

Let now define the process a by

at =
f2(t, Y

2
t , Z

2
t , U

2
t ) − f2(t, Y

1
t , Z

2
t , U

2
t )

Ȳt
1{Ȳt 6=0} ,
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and b the R
d-valued process defined component by component by

bkt =
f2(t, Y

1
t , Z

(k−1)
t , U2

t ) − f2(t, Y
1
t , Z

(k)
t , U2

t )

V k
t

1{V k
t 6=0} , k = 1, . . . , d ,

where Z
(k)
t is the R

d-valued random vector whose k first components are those of Z1 and

whose (d− k) lasts are those of Z2, and V k
t is the k-th component of Z

(k−1)
t − Z

(k)
t .

Notice that the processes a, b are bounded since f is Lipschitz continuous. Observe also

that the process K̂ defined by

K̂t = K2
t −

∫ t

0

∫

I
γ
Y 1

s−
,Z1

s ,U
2
s ,U

1
s

s Ūs(i)λ(di)ds+

∫ t

0
(f2(s, Y

1
s , Z

1
s , U

2
s ) − f1(s, Y

1
s , Z

1
s , U

1
s ))ds

is an increasing process according to (H0) (iii) and f1(t, Y
1
t , Z

1
t , U

1
t ) ≤ f2(t, Y

1
t , Z

1
t , U

1
t ) for

all t ∈ [0, T ]. With these notations, we rewrite (2.2.7) as:

Ȳt = ξ̄ +

∫ T

t

(
asȲs + bs.Z̄s +

∫

I
γ
Y 1

s−
,Z1

s ,U
2
s ,U

1
s

s Ūs(i)λ(di)

)
ds

−
∫ T

t
〈Z̄s, dWs〉 −

∫ T

t

∫

I
Ūs(i)µ(ds, de) + K̂T − K̂t .

Consider now the positive process Γ solution to the s.d.e.:

dΓt = Γt−

(
atdt+ 〈bt, dWt〉 +

∫

I
γ
Y 1

s−
,Z1

s ,U
2
s ,U

1
s

s µ(di, ds)

)
, Γ0 = 1.

Notice that Γ lies in S2
G

since a, b and γ are bounded, and Γ is positive according to (H3)

(iii). A direct application of Itô’s formula leads to

d[ΓȲ ]t = 〈Γt−Z̄t + Ȳt−Γt−bt, dWt〉 + Γt−

∫

I
γ
Y 1

s−
,Z1

s ,U
2
s ,U

1
s

s Ūs(i)µ̃(ds, di) − Γt−dK̂t ,

so that the process ΓȲ is a supermartingale since Γ > 0. Hence

ΓtȲt ≥ E
[
ΓT ȲT

∣∣Gt
]

= E
[
ΓT ξ̄

∣∣Gt
]
≥ 0 , 0 ≤ t ≤ T ,

leading to Ȳ ≥ 0. ✷

We can now state our comparison results for the sequence (Y n)n.

Proposition 2.2.1 Under (H0), the sequence (Y n)n is nondecreasing, and, for any quadru-

ple (Ỹ , Z̃, Ũ , K̃) ∈ S2
G
× L

2
G
(W) × L

2(µ̃) × A
2
G

satisfying (2.2.1)-(2.2.2), we have Y n ≤ Ỹ

a.s., n ∈ N. Under additional Assumption (H1), the sequence of processes (Y n) converges

increasingly and in L
2
G
(0,T) to a process Y ∈ S2

G
.

Proof. The monotonic property of the sequence (Y n) follows from a direct application of

Lemma 2.2.1 with f1 = f + n
∫
I h

−dλ, f2 = f + (n + 1)
∫
I h

−dλ and K2 ≡ 0. For any

quadruple (Ỹ , Z̃, Ũ , K̃) ∈ S2
G
×L

2
G
(W)×L

2(µ̃)×A
2
G

satisfying (2.2.1)-(2.2.2), we obtain Y n
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≤ Ỹ a.s., n ∈ N, taking f1 = f2 = f + n
∫
I h

−dλ in the previous lemma. Under additional

Assumption (H1), the sequence (Y n) is therefore increasing and upper bounded, ensuring

its monotonic and in L
2
G
(0,T) convergence. ✷

We now turn to the convergence of the triplet (Zn, Un,Kn)n where, for any n ∈ N, the

increasing process Kn ∈ A
2
G

is defined by

Kn
t = n

∫ t

0

∫

I
h−(s, Y n

s , Z
n
s , U

n
s (i), i)λ(di)ds, 0 ≤ t ≤ T.

For this purpose, we provide in Theorem 2.4.3 of the appendix an extension of Peng’s

monotonic limit theorem [64] to BSDEs with jumps.

Theorem 2.2.1 Under (H0)-(H1), there exists a unique minimal solution (Y,Z, U,K) ∈
S2

G
× L

2
G
(W) × L

2(µ̃) × A
2
G

to (2.2.1)-(2.2.2), with K predictable. Furthermore Y is the

increasing limit of (Y n)n, K is the weak limit of (Kn)n in L
2
G
(0,T), and

‖Zn − Z‖
Lp(W)

+ ‖Un − U‖
Lp(µ̃)

−→ 0,

for any p ∈ [1, 2), as n goes to infinity.

Proof. From Proposition 2.2.1 and Theorem 2.4.3, we derive the convergence of the

sequence (Y n, Zn, Un,Kn)n to (Y,Z, U,K), solution to (2.2.1). The constraint (2.2.2) is

satisfied by (Y,Z, U,K) since the sequence (Kn)n is bounded in S2
G
, see (2.4.22) in the

proof of Theorem 2.4.3. Observe also that K inherits the predictability of Kn, n ∈ N.

The uniqueness of the minimal solution (Y, Z, U,K) follows from the identification of the

predictable, continuous and bounded variation parts. ✷

Remark 2.2.4 Observe that the purpose of Assumption (H1) is to ensure an upper bound

on the sequence (Y n)n of solutions to the penalized BSDEs. If such an upper bound already

exists, this assumption is not required anymore but will be automatically satisfied from

the existence of a minimal solution to the constrained BSDE with jumps. Cases where

Assumption (H1) is satisfied are presented in the next section, and sufficient conditions for

this assumption in a markovian setting are presented in [33].

Remark 2.2.5 Notice that the convergence of Y n to Y , which is obtained in a weak sense

(i.e. in L
2
G
(0,T)) could be improved in the Markovian case (i.e. Y n → Y in S2

G
). In this

case we get the convergence (Zn, Un) to (Z,U) in L
2(W)×L

2(µ̃). See [33] for more details.

2.2.3 Link with multi-dimensional reflected Backward SDEs

In this section, we prove that multidimensional reflected BSDEs introduced by [44] and

generalized by [41] are closely related to constrained BSDEs with jumps. The arguments

presented here are purely probabilistic and therefore apply in the non Markovian frame-

work considered in [44]. Furthermore, the proofs require precise comparison results based
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on viability properties that are reported in the Appendix for the convenience of the reader.

Recall that solving a multidimensional reflected BSDE consists in finding m triplets

(Y i, Zi,Ki)i∈I ∈ (Sc,2
F

× L
2
F
(W) × A

2
F
)I satisfying





Y i
t = ξi +

∫ T
t ψi(s, Y

1
s , . . . , Y

m
s , Zis)ds−

∫ T
t 〈Zis, dWs〉 +Ki

T −Ki
t

Y i
t ≥ maxj∈Ai

hi,j(t, Y
j
t )

∫ T
0 [Y i

t − maxj∈Ai
{hi,j(t, Y j

t )}]dKi
t = 0

(2.2.8)

where, for all i ∈ I, ψi : Ω × [0, T ] × R
m × R

d → R is an F-progressively measur-

able map, ξi ∈ L
2(Ω,FT ,P), Ai is a nonempty subset of I \ {i}, and , for any j ∈ Ai,

hi,j : Ω × [0, T ] × R → R is a given function. As detailed in [44], existence and uniqueness

of a solution to (2.2.8) is ensured by the following assumption.

(H2)

(i) For any i ∈ I and j ∈ Ai, we have ξi ≥ hi,j(T, ξ
j).

(ii) For any i ∈ I, E
∫ T
0 supy∈Rm|yi=0 |ψi(t, y, 0)|2dt + E|ξi|2 < +∞, and ψi is Lipschitz

continuous: there exists a constant kψ ≥ 0 such that

|ψi(t, y, z) − ψi(t, y
′, z′)| ≤ kψ(|y − y′| + |z − z′|) , ∀(i, y, z, y′, z′) ∈ I × [R × R

d]2 .

(iii) For any i ∈ I, and j 6= i, ψi is increasing in its (j + 1)−th variable i.e. for any

(t, y, y′, z) ∈ I × [Rm]2 × R
d such that yk = y′k for k 6= j and yj ≤ y′j we have

ψi(t, y, z) ≤ ψi(t, y
′, z) P − a.s.

(iv) For any (i, t, y) ∈ I × [0, T ]×R and j ∈ Ai, hi,j is continuous, hi,j(t, .) is a 1-Lipschitz

and increasing function satisfying hi,j(t, y) ≤ y. Furthermore, for any l ∈ Aj , we have

l ∈ Ai ∪ {i} and hi,l(t, y) > hi,j(t, hj,l(t, y)).

Remark 2.2.6 Part (ii) and (iii) of Assumption (H2) are classical Lipschitz and monotony

properties of the driver. Part (iv) ensures a tractable form for the domain of R
m where

(Y i)i∈I lies, and (i) implies that the terminal condition is indeed in the domain,

Consider now the following constrained BSDE with jump: find a minimal quadruple

(Ỹ , Z̃, Ũ , K̃) ∈ S2
G
× L

2
G
(W) × L

2(µ̃) × A
2
G

satisfying

Ỹt = ξIT +

∫ T

t
ψIs(s, Ỹs + Ũs(1)1Is 6=1, . . . , Ỹs + Ũs(m)1Is 6=m, Z̃s)ds (2.2.9)

+K̃T − K̃t −
∫ T

t
〈Z̃s, dWs〉 −

∫ T

t

∫

I
Ũs(i)µ(ds, di), 0 ≤ t ≤ T, a.s.
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with

1AI
t−

(i)
[
Ỹt− − hI

t−
,i(t, Ỹt− + Ũt(i))

]
≥ 0, dP ⊗ dt⊗ λ(di) a.e. (2.2.10)

where the process I is a pure jumps process defined by

It = I0 +

∫ t

0

∫

I
(i− Is−)µ(ds, di) .

Remark that, if µ =
∑

n≥0 δ(τn,An), the process I is simply the pure jump process which

coincides with An on each [τn, τn+1). This BSDE enters obviously into the class of con-

strained BSDEs with jumps of the form (2.2.1)-(2.2.2) studied above, with the following

correspondence

ξ = ξIT , f(t, y, z, u) = ψIt(t, (y + ui1It 6=i)i∈I , z) and h(t, y, z, v, i) = y − hI
t−
,i(t, y + v) .

Observe further that Assumption (H0) is automatically satisfied under (H2), and, as de-

tailed in the next proposition, (H2) also implies (H1) for (2.2.9)-(2.2.10) and its minimal

solution can be directly related to the solution of the BSDE with oblique reflections (2.2.8).

Proposition 2.2.2 Let Assumption (H2) hold and ((Y 1, Z1,K1), . . . , (Y m, Zm,Km)) be

the solution to (2.2.8). Then (H1) holds true for (2.2.9)-(2.2.10) and, if we denote (Ỹ , Z̃, Ũ , K̃)

the minimal solution to (2.2.9)-(2.2.10), the following equality holds

Ỹt = Y It
t , Z̃t = Z

I
t−

t and Ut(.) = Y i
t − Y It

t−
.

In order to derive this result, we need to introduce and discuss the corresponding penalized

BSDEs. For n ∈ N, consider the system of penalized BSDEs: find m couples (Y i,n, Zi,n)i∈I

∈ (Sc,2
F

× L
2
F
(W))I satisfying

Y i,n
t = ξi +

∫ T

t
ψi(s, Y

1,n
s , . . . , Y m,n

s , Zi,ns )ds−
∫ T

t
〈Zi,ns , dWs〉

+n

∫ T

t

∑

j∈Ai

[Y i,n
s − hi,j(s, Y

j,n
s )]−λ(j)ds, 0 ≤ t ≤ T, a.s. (2.2.11)

Lemma 2.2.2 Under (H2), the sequence (Y i,n)n is increasing and converges to Y i dP⊗dt
a.e. and in L

2
F
(0,T), and the sequence (Zi,n)n converges weakly to Zi in L

2
F
(W), for all

i ∈ I.

Proof. For any t ∈ [0, T ], y ∈ R
m and z ∈ [Rd]m, set

ψni (t, y, z) := ψi(t, y, zi) + n
∑

j∈Ai

[yi − hi,j(t, yj)]
−λ(j).
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From (H2) (iii) and (iv), we have ψni (t, y + y′, z) ≥ ψni (t, y, z) for any y′ ∈ (R+)m such

that y′i = 0. Since ψni depends only on zi, it satisfies inequality (2.4.21) in the Appendix.

Therefore, Theorem 2.4.2 leads to

Y i
t ≥ Y i,n+1

t ≥ Y i,n
t for all (t, i, n) ∈ [0, T ] × I × N . (2.2.12)

By Peng’s monotonic limit theorem, there exist m càdlàg processes Ŷ 1, . . . , Ŷ m ∈ S2
F
,

Ẑ1, . . . , Ẑm ∈ L
2
F
(W) and K̂1, . . . , K̂m ∈ A

2
F
, such that Y i,n ↑ Ŷ i a.e., Y i,n → Ŷ i in

L
2
F
(0,T), Zi,n → Ẑi in L

2
F
(0,T) weakly and

Ŷ i
t = ξi +

∫ T

t
ψi(s, Ŷ

1
s , . . . , Ŷ

m
s , Ẑis)ds−

∫ T

t
〈Ẑis, dWs〉 + K̂i

T − K̂i
t ,

with Y i
t ≥ maxj∈Ai

hi,j(t, Y
j
t ). Then, using the same arguments as in the proof of Theorem

2.4 in [41], we prove that (Ŷ , Ẑ, K̂) is the unique solution to (2.2.8). ✷

Proof of Proposition 2.2.2. For i ∈ I and n ∈ N, define the processes Y I,n ∈ S2
G
,

ZI,n ∈ L
2
G
(W) and U I,n ∈ L

2(µ̃) by

Y I,n
t := Y It,n

t , ZI,nt := Z
I
t−
,n

t and U I,ns (i) := Y i,n
s − Y I,n

s−
, 0 ≤ t ≤ T. (2.2.13)

We deduce from (2.2.11) that (Y I,n, ZI,n, U I,n) is the solution to the penalized BSDE as-

sociated to (2.2.9)-(2.2.10) given by

Y I,n
t = ξIT +

∫ T

t
ψIs(s, Y

I,n
s−

+ U I,ns (1)1Is 6=1, . . . , Y
I,n
s−

+ U I,ns (m)1Is 6=m, Z
I,n
s )ds

−
∫ T

t
〈ZI,ns , dWs〉 + n

∫ T

t

∫

I
h−(s, Y I,n

s−
, ZI,ns , U I,ns (i))λ(i)ds+

∫ T

t

∫

I
U I,ns (i)µ(di, ds) .

From (2.2.12), the sequence (Y I,n)n is bounded in S2
G

and, proceeding as in Section 2, we

prove that

‖Y I,n − Ỹ ‖
L2(0,T)

+ ‖ZI,n − Z̃‖
Lp(W)

+ ‖U I,n − Ũ‖
Lp(µ̃)

−→ 0 ,

where (Ỹ , Z̃, Ũ) is the minimal solution to (2.2.9)-(2.2.10). Combined with (2.2.13) and

Lemma 2.2.2, this concludes the proof. ✷

The main interest of the previous result is the unification of the notion of constrained

BSDEs without jumps studied in [65], the class of BSDEs with constrained jumps introduced

by [46] and the notion of BSDEs with oblique reflections considered in [41] and [44]. As a by

product, we deduce from [44] that constrained BSDE with jump of the form interpret as a

viscosity solution to a system of variational inequalities. This opens the door to the numer-

ical approximation of solution to this type of PDEs by purely probabilistic schemes in the

spirit of the algorithm presented in [12]. Instead of considering a multidimensional BSDE
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with oblique reflections, one just needs to approximate a one dimensional constrained BSDE

with jumps. The Feynman-Kac representation of general constrained BSDE with jumps and

the corresponding numerical algorithm are under study and will appear in a separate paper

[33].

Since the results presented here rely on probabilistic arguments, they can apply to

eventually non Markovian settings considered in [41] or [44]. Nevertheless, they do not

include cases where the dynamics of the underlying diffusion depends on the value of the

current switching regime. The purpose of the next section is to extend the link presented

here to a more general class of non-Markovian switching problems.

2.3 Constrained Backward SDEs with jumps and non-Markovian

switching

This section is devoted to the interpretation of non-Markovian switching problems in terms

of solutions to BSDEs with constrained jumps. In particular, we consider useful cases where

the current switching regime influences the dynamics of the underlying diffusion. This is

the case for example if we consider a producer who is a large investor on the commodity

market who influences the dynamics of the underlying commodity prices. One of the di-

mension of the underlying can also be the level of the stock in some commodity which is

of course directly related to the chosen mode of production. To our knowledge, no BSDE

representation has yet been established in this type of framework. We first extend the re-

sults of [44] and relate the solution to a general non-Markovian switching problem with a

well chosen family of multidimensional BSDE with oblique reflections. We finally link this

family of BSDE with one single one-dimensional constrained BSDE with jumps leading to

the announced representation property.

2.3.1 Non-Markovian optimal switching

Given the set I = {1, . . . ,m} and a terminal time T < +∞, an impulse strategy α consists

in a sequence α := (τk, ζk)k≥1, where (τk)k≥1 is an increasing sequence of F-stoppping times,

and ζi are Fτi-measurable random variables valued in I. To a strategy α = (τk, ζk)k≥1 and

an initial regime i0, we naturally associate the process (αt)t≤T defined by

αt :=
∑

k≥0

ζk1[τk,τk+1)(t) .

with τ0 = 0 and ζ0 = i0. We denote by A the set of admissible strategies. Given a strategy

α ∈ A and an initial condition (i0, X0), we define the controlled process Xα by

Xα
t = X0 +

∫ t

0
b(s, αs, X

α
s )ds+

∫ t

0
σ(s, αs, X

α
s )dWs , (2.3.1)
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and we consider the total profit at horizon T defined by

J(α) := E


g(αT , Xα

T ) +

∫ T

0
ψ(s, αs, X

α
s )ds+

∑

0<τk≤T

c(τk, ζk−1, ζk)


 . (2.3.2)

We suppose here that the functions b, σ, ψ : Ω× [0, T ]×I ×R
d → R

d,Rd×d,R are progres-

sively measurable functions and g : Ω×I ×R
d → R is FT ⊗σ(I)⊗B(Rd)-measurable, and

that c : Ω × [0, T ] × I × I → R is a progresively measurable function.

Given an initial data (X0, i0), the switching problem consists in finding a strategy α∗ ∈ A
such that

J(α∗) = sup
α∈A

J(α)

Such a strategy is called optimal and we shall work under the following assumption.

(H3)

(i) b and σ satisfy the Lipschitz property: there exists a constant k such that P−a.s.

|b(ω, t, i, x) − b(ω, t, i, x′)| + |σ(ω, t, i, x) − σ(ω, t, i, x′)| ≤ k |x− x′| ,

for all (ω, t, i, x, x′) ∈ Ω × [0, T ] × I × R
d × R

d.

(ii) The terminal condition g satisfies the following structural condition

g(ω, x, i) ≥ max
j∈I

{g(ω, x, j) + C(ω, T, i, j)} ∀(ω, i, x) ∈ Ω × R
d × I,

(iii) The functions g and ψ are bounded, i.e. there exists two constants ḡ and ψ̄ satisfying

sup
(ω,i,x)∈Ω×I×Rd

{|g(ω, i, x)|} ≤ ḡ and sup
(ω,t,i,x)∈Ω×[0,T ]×I×Rd

{|ψ(ω, t, i, x)|} ≤ ψ̄ .

(iv) The cost function c is upper-bounded, i.e. there exists a constant c̄ > 0 such that

max
(ω,t,i,j)∈Ω×[0,T ]×I×I

c(ω, t, i, j) ≤ −c̄ .

Furthermore c(., i, j) is continuous, for all i, j ∈ I, and it satisfies the structural con-

dition

c(ω, t, i, l) > c(ω, t, i, j)+c(ω, t, j, l) , ∀(ω, t, i, j, l) ∈ Ω×[0, T ]×[I]3 s.t. j 6= i , j 6= l .

Remark 2.3.1 Part (i) of Assumption (H3) provides existence and uniqueness of a solution

to (2.3.1). Part (ii) ensures the non-optimality of a switching at maturity, (iv) makes indirect

switching strategy irrelevant and (iii)-(iv) ensures the problem is well posed.

Let define the set of finite strategies D by

D := {α = (τk, ζk)k≥1 ∈ A | P(τk < T, ∀k ≥ 1) = 0} .

Let first observe the following property:
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Proposition 2.3.1 Under (H3), the supremum of J over A0,i coincides with the one over

D0,i, that is

sup
α∈A

J(α) = sup
α∈D

J(α) , ∀i ∈ I . (2.3.3)

Proof. Fix i ∈ I. Consider a strategy α = (τk, ζk)k≥0 ∈ A \ D and define B := {ω ∈
Ω | τn(ω) < T, ∀n ∈ N

∗} so that P(B) > 0. Such a strategy is not optimal since we derive

from (H3) (iii) and (iv) that

J(α) ≤ ḡ + T ψ̄ + E



∑

0<τk≤T

c(τk, ζk−1, ζk)1B


+ E



∑

0<τk≤T

c(τk, ζk−1, ζk)1Bc


 = −∞ .

✷

2.3.2 Reflected BSDEs and optimal switching

Following the approach of [27], we consider in this section a family of reflected BSDE. For

any couple (ν, η) with ν a stopping time valued in [0, T ] and η a Fν-measurable random

variable taking values in R
d, we consider the following reflected BSDE





(Y ν,i,η, Zν,i,η,Kν,i,η)i∈I ∈ (S2
F
× L

2
F
(W) × A

2
F
)I ,

Y ν,i,η
t = g(i,Xν,i,η

T ) +
∫ T
t ψ(s, i,Xν,i,η

s )1s≥νds−
∫ T
t 〈Zν,i,ηs , dWs〉 +Kν,i,η

T −Kν,i,η
t ,

Y ν,i,η
t ≥ maxj∈I{Y ν,j,η

t + c(t, i, j)},
∫ T
0 [Y ν,i,η

t − maxj∈I{Y ν,j,η
t + c(t, i, j)}]dKν,i,η

t = 0,
(2.3.4)

where Xν,i,η is the diffusion defined by

Xν,i,η
t = η1t≥ν +

∫ t

0
b(s, i,Xν,i,η

s )1s≥νds+

∫ t

0
σ(s, i,Xν,i,η

s )1s≥νdWs , ∀t ≥ 0.(2.3.5)

Under (H3), we know from [41] that (2.3.4) has a unique solution for any stopping time

ν and any Fν-measurable random variable η, and we denote by Oν,.,η its barrier defined by

Oν,i,ηt := max
j∈I

{Y ν,j,η
t + c(t, i, j)} , i ∈ I , t ≤ T. (2.3.6)

We aim at relating the solutions to this class of reflected BSDEs to the solution of the

optimal non Markovian switching problem presented in (2.3.2). The next proposition relates

a stability property, a Snell envelope representation and a global estimate on the family of

processes (Y ν,.,η)(ν,η).

Proposition 2.3.2 Assume that (H3) holds and take ν,ν ′ two F-stopping times such that

ν ≤ ν ′ and η an Fν-measurable random variable valued in R
d.

(i) For all i ∈ I and t ≥ ν ′, we have Y ν,i,η
t = Y

ν′,i,Xν,i,η

ν′

t , P-a.s.
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(ii) For all i ∈ I and t ≥ ν ′, we have the following representation

Y ν,i,η
t = ess sup

τ∈Tt

E

[∫ τ

t
ψ(s, i,Xν,i,η

s )1s≥νds

+Oν,i,η
τ 1τ<T + g(i,Xν,i,η

T )1τ=T

∣∣∣Ft
]
. (2.3.7)

(iii) There exists a constant Ȳ such that

sup
(t,ν,i,η)

|Y ν,i,η
t | ≤ Ȳ . (2.3.8)

Proof. (i) Notice first that Xν,i,η and Xν′,i,Xν,ζ,η

ν′ solve the same SDE, namely

Xν′ = Xν,i,η
ν′ and dXt = b(t, i,Xt)dt+ σ(t, i,Xt)dWt for t ≥ ν ′. (2.3.9)

Under (H3) (i), equation (2.3.9) admits a unique solution and we have Xν′,i,Xν,i,η

ν′ = Xν,i,η

on [ν ′, T ]. We deduce that (Y ν′,i,Xν,i,η

ν′ , Zν
′,i,Xν,i,η

ν′ ,Kν′,i,Xν,i,η

ν′ )i∈I satisfies the same BSDE

as (Y ν,i,η, Zν,i,η,Kν,i,η)i∈I on [ν ′, T ]. Uniqueness of solution to this BSDE is given by [41].

(ii) Regarding of (2.3.4), (Y ν,i,η, Zν,i,η,Kν,i,η) interprets as the solution to a reflected

BSDE with single barrier Oν,i,η. We deduce from [29] that Y ν,i,η admits the snell envelope

representation (2.3.7).

(iii) For fixed ν and η, the family (Y ν,i,η, Zν,i,η,Kν,i,η)i∈I is the solution to the BSDE

with oblique reflection (2.3.4). We know from [41] that (Y ν,i,η,n, Zν,i,η,n,Kν,i,η,n) converges

to (Y ν,i,η, Zν,i,η,Kν,i,η), where the sequence (Y ν,i,η,n, Zν,i,η,n,Kν,i,η,n)n is defined recursively

by

Y ν,i,η,0
t = g(i,Xν,i,η

T ) +

∫ T

t
ψ(s, i,Xν,i,η

T )1s≥νds−
∫ T

t
〈Zν,i,η,0s , dWs〉 and Kν,i,η,0

t = 0,

and, for n ≥ 1,





Y ν,i,η,n
t = g(i,Xν,i,η

T ) +
∫ T
t ψ(s, i,Xν,i,ζ

s )1s≥νds

−
∫ T
t 〈Zν,i,η,nt , dWs〉 +Kν,i,η,n

T −Kν,i,η,n
t ,

Y ν,i,η,n
t ≥ maxj∈I{Y ν,j,η,n−1

t + c(t, i, j)},
∫ T
0 [Y ν,i,η,n

t − maxj∈I{Y ν,j,η,n−1
t + c(t, i, j)}]dKν,i,η,n

t = 0 .

(2.3.10)

To derive (2.3.8), it suffices to prove by induction on n that

|Y ν,i,η,n
t | ≤ (T − t+ 1) max{ψ̄, ḡ} , i ∈ I , 0 ≤ t ≤ T , n ∈ N .

First, rewriting Y ν,i,η,0 as a conditional expectation, we derive

|Y ν,i,η,0
t | ≤ (T − t)ψ̄ + ḡ ≤ (T − t+ 1) max{ψ̄, ḡ} , 0 ≤ t ≤ T , i ∈ I .
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Fix n ∈ N and suppose the result is true for Y .,n. Using the representation of Y ν,i,η,n+1 as

a Snell envelope, we derive

Y ν,i,η,n+1
t = ess sup

τ∈Tt

E

[∫ τ

t
ψ(s, i,Xν,i,η

s )1s≥νds+ Oν,i,η,n+1
τ 1τ<T + g(i,Xν,i,η

T )1τ=T

∣∣∣∣Ft
]
,

where Oν,i,η,n+1
τ := maxj∈I{Y ν,j,η,n

τ + c(t, i, j)}. Combining this representation with As-

sumption (H3) leads to |Y ν,i,η,n+1
t | ≤ (T − t + 1) max{ḡ, ψ̄} and concludes the proof.

✷

For any stopping time ν, any Fν-random variable η and any I-valued random variable

ζ, we naturally introduce the processes Y ν,ζ,η and Oν,ζ,η by

Y ν,ζ,η
t =

∑

i∈I

Y ν,i,η
t 1ζ=i and Oν,ζ,η

t =
∑

i∈I

Oν,i,η
t 1ζ=i. (2.3.11)

We are now able to state the main results of this section characterizing the optimal

solution to the switching problem (2.3.2) in terms of reflected BSDEs.

Theorem 2.3.1 Let α∗ = (τ∗n, ζ
∗
n)n≥0 be the strategy given by α∗

0 = (0, i0) and defined

recursively for n ≥ 1 by

τ∗n := inf

{
s ≥ τ∗n−1 ; Y

τ∗n−1,ζ
∗
n−1,X

∗
τ∗
n−1

s = O
τ∗n−1,ζ

∗
n−1,X

∗
τ∗
n−1

s

}
, (2.3.12)

ζ∗n is s.t. O
τ∗n−1,ζ

∗
n−1,X

∗
τ∗
n−1

τ∗n
= Y

τ∗n,ζ
∗
n,X

∗
τ∗n

τ∗n
+ c(τ∗n, ζ

∗
n−1, ζ

∗
n) , (2.3.13)

with X∗ the diffusion defined by

X∗
t = x0 +

∑

n≥1

∫ τ∗n

τ∗n−1

b(s, ζ∗n−1, X
∗
s )1s≤tds+

∫ τ∗n

τ∗n−1

σ(s, ζ∗n−1, X
∗
s )1s≤tds, t ≥ 0.

Under Assumption (H3), the strategy α∗ is optimal for the switching problem (2.3.2) and

we have

Y i0
0 (0, x0) = J(α∗). (2.3.14)

Proof. The proof is performed in two steps.

Step 1. The strategy α∗ ∈ D and satisfies Y 0,i0,x0
0 = J(α∗).

The representation (2.3.7) rewrites

Y 0,i0,x0
0 = ess sup

τ∈T0

E

[∫ τ

0
ψ(s, i0, X

0,i0,x0
s )ds+ O0,i0,x0

τ 1τ<T + g(i0, X
0,i0,x0

T )1τ=T

]
.

Since the boundary O0,i0,x0 is continuous, the stopping time τ∗1 is optimal for (2.3.15) and

we get

Y 0,i0,x0
0 = E

[∫ τ∗1

0
ψ(s, i0, X

0,i0,x0
s )ds+ O0,i0,x0

τ∗1
1τ∗1<T

+ g(i0, X
0,i0,x0

T )1τ∗1 =T

]
.
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If τ∗1 = T , the proof is over. Let suppose that τ∗1 < T and, according to the definition of ζ∗1 ,

we derive

Y 0,i0,x0
0 = E

[∫ τ∗1

0
ψ(s, i0, X

0,i0,x0
s )ds+ Y

τ∗1 ,ζ
∗
1 ,X

0,i0,x0
τ∗1

τ∗1
+ c(τ∗1 , i0, ζ

∗
1 )

]
.

Similarly, we can use the representation of Y
τ∗1 ,ζ

∗
1 ,X

0,i0,x0
τ∗1

τ∗1
given by (2.3.7), and we deduce

recursively that

Y 0,i0,x0
0 = E



∫ τ∗n

0
ψ(s, i0, X

∗
s )ds+ Y

τ∗n,ζ
∗
n,X

∗
τ∗n

τ∗n
+
∑

0<k≤n

c(τk, ζ
∗
k−1, ζ

∗
k)


 , (2.3.15)

for all n ∈ N satisfying τn < T . We now prove α∗ ∈ D and assume on the contrary that

p := P(τ∗n < T, ∀n ∈ N) > 0. Combining (H3), (2.3.8) and (2.3.15), we derive

Y0(0, i0, x0) ≤ ψ̄T + E

[
sup
s≤T

∣∣∣∣Y
τ∗n,ζ

∗
n,X

∗
τ∗n

s

∣∣∣∣

]
− nc̄P(τ∗k < T , ∀k ≥ 0) ≤ ψ̄T + Ȳ − nc̄p .

Sending n to −∞ leads to Y 0,i0,x0
0 = −∞ which contradicts Y 0,i0,x0 ∈ S2

F
. Therefore

P(τ∗k < T , ∀k ≥ 0) = 0 i.e. α∗ ∈ D. Finally, taking the limit as n → ∞ in (2.3.15) leads

to Y 0,i0,x0
0 = J(α∗).

Step2. The strategy α∗ is optimal.

According to Proposition 2.3.1, it suffices to consider finite strategies and we pick any

α = (τn, ζn)n≥0 ∈ D. Since τ∗1 is optimal, we deduce from Part (i) of Proposition 2.3.2 that

Y 0,i0,x0
0 − E

[∫ τ1

0
ψ(s, i0, X

0,i0,x0
s )ds

]

≥ E

[
O0,i0,x0
τ1 1τ1<T + g(i0, X

0,i0,x0

T )1τ1=T

]

≥ E

[
(Y 0,ζ1,x0
τ1 + c(τ1, i0, ζ1))1τ1<T + g(i0, X

0,i0,x0

T )1τ1=T

]

≥ E

[(
Y
τ1,ζ1,X

0,ζ1,x0
τ1

τ1 + c(τ1, i0, ζ1)

)
1τ1<T + g(i0, X

0,i0,x0

T )1τ1<T

]
.

Proceeding as in step 1, an induction argument leads to

Y 0,i0,x0
0 ≥ E

[ ∫ τn

0
ψ(i0, X

α
s )ds+ Y

τn,ζn,Xα
τn

τn 1τn<T + g(ζn, X
α
T )1τn=T +

∑

0<k≤n

c(τk, ζk−1, ζk)
]
,

for all n satisfying τn < T . Since the strategy α is finite, we deduce Y 0,i0,x0
0 ≥ J(α) by

sending n→ ∞. ✷
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2.3.3 Approximation by penalisation and link with constrained BSDEs

with jumps

We finally conclude the paper and present in this paragraph the link between constrained

Backward SDEs with jumps and optimal switching in non-Markovian cases.

Consider the constrained BSDE with jumps: find a quadruple (Y, Z, U,K) ∈ S2
G
×

L
2
G
(W) × L

2(µ̃) × A
2
G

satisfying

Yt = g(IT , X
I
T ) +

∫ T

t
ψ(s, Is, X

I
s )ds+KT −Kt (2.3.16)

−
∫ T

t
〈Zs, dWs〉 −

∫ T

t

∫

I
Us(i)µ(ds, di), 0 ≤ t ≤ T, a.s.

with

− Ut(i) − c(t, It− , i) ≥ 0, dP ⊗ dt⊗ λ(di) a.e. (2.3.17)

where the process (I,XI) is defined by

It = i0 +

∫ t

0

∫

I
(i− It−)µ(dt, di) ,

XI
t = x0 +

∫ t

0
b(s, Is, X

I
s )ds+

∫ t

0
σ(s, Is, X

I
s )dWs ,

for t ≥ 0. The link between (2.3.16)-(2.3.17) and the optimal switching problem is given

by the following result which extends the link between BSDEs with constrained jumps and

BSDEs with oblique reflections presented in Proposition 2.2.2.

Proposition 2.3.3 Under (H3), (H1) holds for (2.3.16)-(2.3.17) and if we denote (Y,Z, U,K)

its minimal solution we have

Yt = Y
t,It,XI

t
t , Zt = Z

t,I
t−
,XI

t

t and Ut(i) = Y
t,It,XI

t
t − Y

t,I
t−
,XI

t

t−
. (2.3.18)

for 0 ≤ t ≤ T a.s.. In particular, we deduce Y0 = J(α∗) = supα∈A J(α).

Proof. For any stopping time ν and any random variable η, let define the processes

(Ỹ ν,i,η,n, Z̃ν,i,η,n, K̃ν,i,η,n)i∈I ∈ (S2
F
×L

2
F
(W)×A

2
F
)I as the solution to the penalized BSDE

Ỹ ν,i,η,n
t = g(i,Xν,i,η

T ) +

∫ T

t
ψ(s, i,Xν,i,η

s )ds−
∫ T

t
〈Z̃ν,i,η,ns , dWs〉

+n

∫ T

t

{∑

j∈I

[Ỹ ν,j,η,n
s + c(s, i, j) − Ỹ ν,i,η,n

s ]−λ(j)
}
ds

Under (H3), we know from Lemma 2.2.2 (or [44]) that (Y ν,i,η,n, Zν,i,η,n,Kν,i,η,n)i∈I con-

verges to (Y ν,i,η, Zν,i,η,Kν,i,η)i∈I as n goes to ∞, for each (ν, η). Proceeding as in the proof

of Proposition 2.2.2, one easily checks that the quadruple (Ỹ n, Z̃n, Ũn) defined by

Ỹ n
t = Ỹ

t,It,XI
t ,n

t , Z̃nt = Z̃
t,I

t−
,XI

t ,n
t and Ũnt (i) = Ỹ

t,It,XI
t ,n

t − Ỹ
t,I

t−
,XI

t ,n

t−
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is solution to the penalized BSDE associated to (2.3.16)-(2.3.17), namely

Yt = g(IT , X
I
T ) +

∫ T

t
ψ(s, Is, X

I
s )ds+ n

∫ T

t

∫

I
[Us(i) + c(s, Is− , i)]

−λ(di)ds

−
∫ T

t
〈Zs, dWs〉 −

∫ T

t

∫

I
Us(i)µ(ds, di), 0 ≤ t ≤ T. a.s.

From Proposition 2.3.2 (iii), we know that the monotone sequence (Ỹ n)n is bounded, and

we derive from Remark 2.2.4 that Assumption (H1) is satisfied and that (Ỹ n, Z̃n, Ũn)

converges to (Y, Z, U), which concludes the proof. ✷

Remark 2.3.2 The optimal strategy can be described by the constrained BSDE with jumps

(2.3.16)-(2.3.17). Indeed, using the definition of (τ∗n, ζ
∗
n)n≥0 and the identification (2.3.18)

we get

τ∗n+1 = inf

{
t ≥ τ∗n ; max

j∈I
E

[
Ut(j) − c(t, ζ∗n, j)

∣∣∣Is = ζ∗n ∀s ≥ τ∗n

]
= 0

}

and ζn+1 such that

E

[
Uτ∗n+1

(ζ∗n+1) − c(τ∗n+1, ζ
∗
n, ζ

∗
n+1)]

∣∣∣Is = ζ∗n ∀s ≥ τn

]
= 0.

2.4 Appendix

2.4.1 Viability property for BSDEs

We extend here the viability property of [17] for a closed convex cone C of R
m. Let (Y,Z)

∈ (Sc,2
F

× L
2
F
(W))m satisfying

Yt = YT +

∫ T

t
F (s, Ys, Zs)ds−

∫ T

t
〈Zs, dWs〉 +KT −Kt, 0 ≤ t ≤ T ,

where F : Ω× [0, T ]× R
m × R

m×d → R
m is a progressively measurable function satisfying

(H2) (i) and (ii) and K is an R
m-valued finite variation process such that

Kt =

∫ t

0
ksd|K|s ,

with kt ∈ C and |K|s the variation of K on [0, s] . Denote dC the distance to C (i.e. dC(x) =

miny∈C |x− y|) and ΠC the projection operator onto C, then we have the following result:

Proposition 2.4.4 Suppose YT ∈ C and there exists a constant C0 such that F satisfies

4〈y − ΠC(y), F (t, y, z)〉 ≤ 〈D2|dC |2(y)z, z〉 + 2C0|dC |2(y) (2.4.19)

for any point y ∈ R
m where |dC |2 is twice differentiable. Then, we have

Yt ∈ C , for all t ∈ [0, T ] P − a.s.
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Proof. Let η ∈ C∞(Rd) be a non-negative function with support in the unit ball and

such that
∫

Rd η(x)dx = 1. For δ > 0 and x ∈ R
d we put

ηδ(x) :=
1

δd
η
(x
δ

)

φδ(x) := |dC |2 ⋆ ηδ(x) =

∫

Rd

|dC(x− x′)|2ηδ(x′)dx′

Notice (see part (b) of the proof of Theorem 2.5 in [17]) that φδ ∈ C∞(Rd) and




0 ≤ φδ(x) ≤ (dC(x) + δ)2

Dφδ(x) =
∫

Rd D|dC(x′)|2ηδ(x− x′)dx′ and |Dφδ(x)| ≤ 2(dC(x) + δ)
D2φδ(x) =

∫
Rd D

2|dC(x′)|2ηδ(x− x′)dx′ and 0 ≤ |D2φδ(x)| ≤ 2Id

(2.4.20)

Applying Itô’s formula to φδ(Yt), this leads to

Eφδ(Yt) = Eφδ(YT ) + E

∫ T

t
〈DΦδ(Ys), F (s, Ys, Zs)〉ds−

1

2
E

∫ T

t
〈Φδ(Ys)Zs, Zs〉ds

+E

∫ T

t
〈DΦδ(Ys), ks〉d|K|s

≤ δ2 + E

∫ T

t

∫

Rd

[
〈D|dC(y)|2, F (s, y, Zs)〉 −

1

2
〈D2|dC(y)|2Zs, Zs〉

]
ηδ(Ys − y)dyds

−E

∫ T

t

∫

Rd

〈D|dC(y)|2, F (s, y, Zs) − F (s, Ys, Zs)〉ηδ(Ys − y)dyds

+E

∫ T

t

∫

Rd

〈D|dC(y)|2, ks〉ηδ(Ys − y)dyd|K|s ,

for 0 ≤ t ≤ T , δ > 0. Since kt ∈ C and C is a closed convex cone, we have 〈D|dC(y)|2, ks〉
≤ 0. Then, combining (2.4.19) with inequality 2dc(.) ≤ 1 + dc(.)

2, we get

Eφδ(Yt) ≤ δ2 + C0
E

∫ T

t

∫

Rd

|dC(y)|2ηδ(y − Ys)dyds

+2E

∫ T

t

∫

Rd

dC(y)ηδ(Ys − y) max
y′: |y′−Ys|≤δ

|F (s, y′, Zs) − F (s, Ys, Zs)|dyds

≤ δ2 + C0

∫ T

t
Eφδ(Ys)ds+ E

∫ T

t
(1 + φδ(Ys)) max

y′: |y′−Ys|≤δ
|F (s, y′, Zs) − F (s, Ys, Zs)|ds .

Using the Lipschitz property of F , we deduce

Eφδ(Yt) ≤ C(δ2 + δ +

∫ T

t
Eφδ(Ys)ds),

and Gronwall’s lemma leads to

Eφδ(Yt) ≤ C(δ2 + δ), 0 ≤ t ≤ T , δ > 0 .

Finally, from Fatou’s Lemma, we have

E|dC(Yt)|2 ≤ lim inf
δ→0

Eφδ(Yt) = 0 , 0 ≤ t ≤ T ,

which concludes the proof. ✷
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2.4.2 A multi-dimentional comparison theorem for BSDEs

We now turn to the obtention of a multi-dimentional comparison result. Consider (Y 1, Z1,K)

∈ (Sc,2
F

× L
2
F
(W) × A

2
F
)m satisfying

Y 1
t = Y 1

T +

∫ T

t
F1(s, Y

1
s , Z

1
s )ds−

∫ T

t
〈Z1

s , dWs〉 +KT −Kt

and (Y 2, Z2) ∈ (Sc,2
F

× L
2
F
(W))m satisfying

Y 2
t = Y 2

T +

∫ T

t
F2(s, Y

2
s , Z

2
s )ds−

∫ T

t
〈Z2

s , dWs〉

Then we have the following comparison theorem generalizing the one in [43].

Theorem 2.4.2 Suppose that Y 1
T ≥ Y 2

T and that, for any (y, y′, z, z′) ∈ [Rm]2 × [Rm×d]2,

we have

− 4〈y−, F1(t, y
+ + y′, z) − F2(t, y

′, z′)〉 ≤ 2

m∑

i=1

1yi<0|zi − z′i|2 + 2C0|y−|2 P − a.s.(2.4.21)

where C0 > 0 is a constant. Then Y 1
t ≥ Y 2

t , for all t ∈ [0, T ].

Proof. As in Theorem 2.1 in [43], it suffices to remark that F 1 is Lipschitz and apply

Proposition 2.4.21 to the couple (Y 1−Y 2, Y 2) and the closed convex cone C = (R+)m×R
m.

✷

2.4.3 Monotonic Limit theorem for BSDE with jumps

This paragraph is devoted to the extension of Peng’s monotonic limit theorem to the frame-

work of BSDEs driven by a Brownian motion and a Poisson random measure.

Theorem 2.4.3 () Let (Y n, Zn, Un,Kn)n be a sequence in S2
G
× L

2
G
(W) × L

2(µ̃) × A
2
G

satisfying

Y n
t = Y n

T +

∫ T

t
f(s, Y n

s , Z
n
s , U

n
s )ds−

∫ T

t
〈Zns , dWs〉 −

∫ T

t

∫

I
Uns (i)µ(di, ds) +Kn

T −Kn
t ,

for all t ∈ [0, T ]. If (Y n)n converges increasingly to Y with E[supt∈[0,T ] |Yt|2] < ∞, then

Y ∈ S2
G

(up to a modification) and there exists (Z,U,K) ∈ L
2
G
(W)×L

2(µ̃)×A
2
G

such that

Yt = YT +

∫ T

t
f(s, Ys, Zs, Us)ds−

∫ T

t
〈Zs, dWs〉 −

∫ T

t

∫

I
Us(i)µ(di, ds) +KT −Kt,

for all t ∈ [0, T ]. Moreover (Z,U) is the weak (resp. strong) limit of the sequence (Zn, Un)n
in L

2
G
(W) × L

2(µ̃) (resp. L
p
G
(W) × L

p(µ̃), for p < 2). Finally, K is the weak limit of

(Kn)n in L
2
G
(0,T) and, for any t ∈ [0, T ], Kt is the weak limit of (Kn

t )n in L
2(Ω,Ft,P).

Proof. The proof of Theorem 2.4.3 is an adaptation of the one presented in [64] and is

performed in four steps.
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1. Uniform estimate. Applying Itô’s formula to |Y n|2 and using standard arguments (BDG

inequality and Gronwall’s Lemma) we get the existence of a constant C > 0 such that

‖Y n‖S2
G

+ ‖Zn‖L2
G
(W) + ‖Un‖L2(µ̃) + ‖Kn‖S2

G

≤ C , n ∈ N . (2.4.22)

2. Weak convergence. Using the previous uniform estimate and the Hilbert structure

of L
2
G
(W) × L

2(µ̃) × L
2
G
(0,T) × L

2
G
(0,T), we deduce the existence of a subsequence of

(Zn, Un,Kn, f(., Y n, Zn, Un))n, which converges weakly to some (Z,U,K, F ). Identifying

the limits of (Y n)n and (Zn, Un,Kn, f(., Y n, Zn, Un))n, we get

Yt = YT +

∫ T

t
Fsds−

∫ T

t
〈Zs, dWs〉

−
∫ T

t

∫

I
Us(i)µ(di, ds) +KT −Kt, 0 ≤ t ≤ T. (2.4.23)

3. Properties of the process K. We first observe from Lemma 2.2 in [64] that the process K

admits a càdlàg modification. We then establish that the contribution of the jumps of K is

mainly concentrated within a finite number of intervals with sufficiently small total length.

This result is derived with similar arguments as in [64], relying only the right continuity of

the filtration and the predictability of the process K. As in Lemma 2.3 in [64], observe also

that, for any δ, ǫ > 0, there exists a finite number of pairs of stopping times (σk, τk)0≤k≤N

with 0 < σk ≤ τk ≤ T such that

(i) (σj , τj ] ∩ (σk, τk] = ∅ for j 6= k;

(ii) E
∑N

k=0(τk − σk) ≥ T − ε;

(iii) E
∑N

k=0

∑
σk<t≤τk

|∆Kt|2 ≤ δ.

4. Strong convergence. Following the arguments of the proof of Theorem 3.1 in [46], we

deduce the convergence of (Zn, Un)n to (Z,U) in dt ⊗ dP−measure. Together with the

uniform estimate (2.4.22), this leads to the strong convergence of (Zn, Un)n to (Z,U) in

L
p
G
(W) × L

p(µ̃), p < 2. Combining the Lipschitz property of f with (2.4.23), we conclude

that (Y, Z, U,K) satisfies

Yt = YT +

∫ T

t
f(s, Ys, Zs, Us)ds−

∫ T

t
〈Zs, dWs〉

−
∫ T

t

∫

I
Us(i)µ(di, ds) +KT −Kt, 0 ≤ t ≤ T.

✷
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Chapter 3

Probabilistic Representation and

Approximation for Coupled Systems

of Variational Inequalities

Abstract : This paper is dedicated to the probabilistic representation and approximation of

solution to coupled systems of variational inequalities. The dynamics of each component

of the solution is given by a different linear parabolic operator combined with a non linear

dependence in all the components of the solution. This dynamics is coupled with a global

structural constraint between all the components of the solution including the practical

example of optimal switching problems. In this paper, we interpret the unique viscosity

solution to this type of coupled systems of variational inequalities as the solution to one-

dimensional constrained BSDEs with jumps introduced recently in [32]. In the spirit of

[12], this new representation allows for the introduction of a natural entirely probabilistic

numerical scheme for the resolution of these systems. We detail the algorithm and discuss

its convergence.

Keywords: BSDE with jumps, variational inequalities, viscosity solutions, Monte Carlo si-

multations, Switching problems.

98
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3.1 Introduction

The theory of stochastic differential equations provides a Feynman-Kac probabilistic rep-

resentation for the solution of second order parabolic linear PDE’s. Pardoux and Peng

developed in [61] a theory for SDE with terminal conditions instead of initial one. These

equations, called Backward Stochastic Differential Equations, provide a probabilistic repre-

sentation of solution to quasilinear parabolic PDEs (see [62]). Coupling the diffusion process

with a pure jump process, Pardoux Pradeilles and Rao [63] extend this representation to

systems of coupled semilinear PDEs with different linear differential operators on each line.

Introducing restrictions on the domain of the Backward process, El Karoui et all [29] cover

the class of variational inequalities. Constraining instead the jump part of the Backward

process, Kharroubi, Ma, Pham and Zhang [46] allow to consider quasilinear variational

inequalities.

Our interest in this paper is to extend this type of Feynman-Kac representation to

the more general class of coupled systems of quasilinear variational inequalities, arising for

example in optimal impulse or switching problems. We will typically consider system of

PDEs of the form
[
− ∂vi

∂t
− Livi − f(i, ., (vk)1≤k≤m, σ

⊤Dxvi)
]
∧ min

1≤j≤m
h(i, ., vi, vj , σ

⊤Dxvi, j) = 0,

on [0, T ) × R
d, and vi(T, .) = g(i, .) on R

d, i ∈ {1, . . . ,m} (3.1.1)

where, for any i ∈ {1, . . . ,m}, Li is a linear second order local operator

Livi(t, x) = b(i, x).Dxvi(t, x) +
1

2
tr(σσ⊤(i, x)D2

xvi(t, x)) ,

and b, σ, f and h are Lipschitz continuous functions. These equations appear in particular

for the treatment of general switching problems in finite horizon, as observed in [78] or

[54]. Consider an agent trying to maximize the outcomes of a running (and terminal) profit

function f (and g), which are related to the path of a Brownian diffusion process X, whose

dynamics depends on the current operating regime of production. At any time, the agent

can switch between the different modes of productions, as long as the constraint given by

h is satisfied. For example, if h : (i, ., yi, yj , j) 7→ yi − yj − ci,j , the difference between

the value functions in both modes i and j stays above the constant ci,j . This is the case

whenever the agent has to pay a fixed cost ci,j in order to switch from regime i to regime

j. The major difficulty for the study of this equation is due to the coupling between all

the components vi of the solution. In particular, when the number of modes m is high, the

numerical resolution of (3.1.1) by classical PDE approximation methods is very tricky and

highly computational. We intend to provide a probabilistic representation to (3.1.1) leading

to an efficient numerical approximation scheme.

In the case where the drift µ and the volatility σ are independent on the regime of produc-

tion (i.e. their first variable) and the constraint function is of the form h : (i, ., yi, yj , j) 7→
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yi−yj−ci,j , Hu and Tang [44] interpret the vector solution to (3.1.1) as a multi-dimensional

BSDE with terminal condition and oblique reflections. To our knowledge, no numerical

scheme is unfortunately available to approximate obliquely reflected BSDEs. The challeng-

ing derivation of a convergent numerical approximation for this type of BSDE is of great

interest but is left for further research. The approach of this paper relies instead on a recent

reinterpretation of obliquely multi-dimensional reflected BSDEs in terms of one-dimensional

constrained BSDEs with Jumps, introduced by the authors in [32]. In the spirit of [63], the

idea is to introduce a random mode of production given by a pure Jump process (It)t driven

by an independant Poisson measure µ. Let consider a one-dimensional forward process XI ,

whose dynamics are characterized by the random drift and volatility functions µ(., It) and

σ(., It), so that LI is the Dynkin operator associated to (XI
t | It). Formally, given a smooth

solution v to (3.1.1), the process Yt := vIt(t,Xt) satisfies

Yt = g(IT , XT ) +

∫ T

t
f(Is, X

I
s , Ys + Us, Zs)ds+KT −Kt

−
∫ T

t
Zs.dWs −

∫ T

t

∫

{1,...,m}
Us(j)µ(ds, dj), (3.1.2)

where Zt := σ⊤(It− , Xt)DxvI
t−

(t,Xt), Ut(.) := v.(t,Xt) − vI
t−

(t,Xt), and Kt :=
∫ t
0 (−∂vIt

∂s
−LIsvIs −f(., Is))(s,Xs)ds. Since v satisfies (3.1.1), we know that K is a continuous (hence

predictable) nondecreasing process, and that the following constraint is satisfied:

h(It−, X
I
t , Yt−, Yt− + Ut(j), Zt, j) ≥ 0, j ∈ {1, . . . ,m} . (3.1.3)

The Backward SDE (3.1.2) combined with the constraint (3.1.3) enters into the class of

constrained BSDEs with jumps introduced in [32]. Under mild assumptions on the coef-

ficients including the decreasing property of h in its fourth variable, there exists a unique

minimal solution (Y,Z, U,K) to this BSDE. We prove in this paper that this solution inter-

prets in terms of viscosity solution to the coupled system of variational inequalities (3.1.1).

This Feynman-Kac representation extends the one in [46] since we consider general form of

constraint functions h, and the dependence in U of the driver function implies a coupling

between the different components of the solutions as in (3.1.1). Furthermore, the very gen-

eral form of constraint function h enlarges also the conclusions of Peng and Xu [65] derived

in the no-jump case. Finally, this result offers a Feynman-Kac representation for general

reflected BSDEs with interconnected obstacles introduced recently by Hamadene and Zhang

[41], and reinterpreted as constrained BSDEs with jumps in [32]. For the special case of

optimal switching problems, our framework allows for the realistic consideration of cases

where the dynamics of the forward process is influenced by the current switching regime.

Following the approach of [10] and [46], we provide under stronger assumptions a com-

parison theorem for the coupled system (3.1.1). Therefore, the component Y of the minimal
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solution to (3.1.2)-(3.1.3) interprets as the unique viscosity solution to (3.1.1). When the

constraint function h does not depend on Z, the comparison result provides also an extra

condition of the minimality for the constrained BSDE (3.1.2)-(3.1.3). This extra minimality

condition is the following:

∫ T

0
min

1≤j≤m
h(Is, X

I
s , Ys−, Ys− + Us, j)dKs = 0 . (3.1.4)

The main interest of this new probabilistic representation for the solution to (3.1.1) is

the obtention of a corresponding numerical algorithm. First, we approach the constrained

BSDE with jumps by a sequence of penalized BSDEs with jumps. Second, we approximate

the penalized BSDE using the algorithm introduced by Bouchard and Elie [12]. This leads

to a converging numerical scheme based on time discretization, Monte Carlo simulations

and numerical projections.

The rest of the paper is organized as follows: In Section 2, we precise the formulation

of the constrained BSDEs with jumps considered here and the corresponding system of

variational inequalities. We briefly recall existence and uniqueness results presented in [32],

and we discuss the existence of a minimality condition. We interpret in Section 3 and

4 the minimal solution to the constrained BSDE as the unique viscosity solution to the

corresponding system of parabolic variational inequalities. Finally, in Section 5 we discuss

numerical issues and present the probabilistic algorithm.

Notations. Throughout this paper, we fix m ∈ N and denote I := {1, . . . ,m}. Any

element x ∈ R
d will be identified to a column vector with i-th component xi and Euclidian

norm |x|. For xi ∈ R
di , i ≤ n and di ∈ N, we define (x1, . . . , xn) as the column vector

associated to (x1
1, . . . , x

d1
1 , . . . , x

1
n, . . . , x

dn
n ). For a (m × d)-dimensional matrix M , we note

|M | := sup{|Mx|; x ∈ R
d , |x| = 1}, M⊤ its transpose and we write M ∈ M

d if m = d.

Given p ∈ N and a measured space (A,A, µA), we denote by L
p(A,A, µA; Rd), or simply

L
p(A,A) or L

p(A) if no confusion is possible, the set of p-integrable R
d-valued measurable

maps on (A,A, µA). For p = ∞, L
∞(A,A, µA; Rd) is the set of essentially bounded R

d-

valued measurable maps. For a function v : [0, T ]×R
d → R

m and (t, x, i) ∈ [0, T ]×R
d×I we

denote by v(t, x, i) the i-th component of the vector v(t, x) ∈ R
m. C1,2([0, T ]×R

d×I) (resp.

C2(Rd × I)) denotes the set of functions ϕ : [0, T ] × R
d × I → R (resp. ϕ : R

d × I → R)

such that ϕ(., i) ∈ C1,2([0, T ] × R) (resp. ϕ(., i) ∈ C2(Rd)), for all i ∈ I. For a smooth

function ϕ : [0, T ] × R
d × I → R, ∂ϕ

∂t , Dxϕ and D2
xϕ denote respectively the derivative of

ϕ w.r.t. t, the gradient and the Hessian matrix of ϕ w.r.t. x. For ease of notation, we omit

in all the paper the dependence in ω ∈ Ω, whenever it is explicit.
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3.2 Constrained Forward Backward SDEs with jumps

We present in this section the notion of constrained Forward Backward SDEs with jumps

and briefly recall the existence and uniqueness results derived in [32]. We detail the ap-

proximation procedure based on penalization, which will prove its interest in the following

sections. We discuss the correspondence between the value function associated to Y and all

the components of the solution. Under an extra regularity assumption on the value function,

we provide a Skorohod type minimality condition for the considered BSDE.

3.2.1 Formulation

Throughout this paper we are given a finite terminal time T and a probability space (Ω,G,P)

endowed with a d-dimensional standard Brownian motion W = (Wt)t≥0, and an indepen-

dent Poisson random measure µ on R+ × I, where I = {1, . . . ,m}, with intensity measure

λ(di)dt for some finite measure λ on I with λ(i) > 0, for all i ∈ I. We set µ̃(dt, di) =

µ(dt, di) − λ(di)dt the compensated measure associated to µ. We denote by G = (Gt)t≥0

(resp.F = (Ft)t≥0) the augmentation of the natural filtration generated by W and µ (resp.

by W ), and by P the σ-algebra of predictable subsets of Ω × [0, T ].

The Forward process of the equation is composed of both a pure jump process I and a

diffusion X without jump depending on I. Let b : I × R
d → R

d and σ : I × R
d → R

d×d

be continuous functions, Lipschitz in their second variable uniformly in their first variable.

For each initial condition (t, i, x) ∈ [0, T ] × I × R
d, let (It,is , X

t,i,x
s )t≤s≤T be the unique

I × R
d-valued solution of the SDE:

{
Is = i+

∫ s
t

∫
I(j − Ir−)µ(dr, dj)

Xs = x+
∫ s
t b(Ir, Xr)dr +

∫ s
t σ(Ir, Xr)dWr

. (3.2.1)

Before introducing the backward SDE, we need to define some additional notations. For

any p > 2, We denote by Sp the set of real valued G-adapted càdlàg processes Y on [0, T ]

such that

‖Y ‖Sp := E

[
sup

0≤r≤T
|Yr|p

] 1
p

< ∞ ,

L
p
W is the set of progressively measurable R

d-valued processes Z such that

‖Z‖L
p
W

:= E

[(∫ T

0
|Zr|pdr

)] 1
p

< ∞ ,

L
p
µ̃ is the set of P ⊗ σ(I) measurable maps U : Ω × [0, T ] × I → R such that

‖U‖L
p
µ̃

:= E

[∫ T

0

∫

I
|Us(j)|pλ(dj)ds

] 1
p

< ∞ ,
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(here σ(I) denotes the class of subsets of I) and A
2 is the closed subset of S2 composed by

nondecreasing processes K with K0 = 0.

For any initial condition (t, i, x) ∈ [0, T ] × I × R
d, we consider the constrained BSDE

with jumps, whose dynamics is given by

Yt = g(It,iT , X
t,i,x
T ) +

∫ T

t
f(It,is , X

t,i,x
s , Ys + Us, Zs)ds+KT −Kt

−
∫ T

t
Zs.dWs −

∫ T

t

∫

I
Us(j)µ(ds, dj), (3.2.2)

together with the constraint

h(It,it−, X
t,i,x
t , Yt−, Yt− + Ut(j), Zt, j) ≥ 0, j ∈ I , (3.2.3)

where g, f and h are deterministic functions.

A solution to the constrained BSDE with jumps is a quadruplet (Y,Z, U,K) ∈ S2×L
2
W×

L
2
µ̃ × A

2 satisfying (3.2.2)-(3.2.3). Furthermore, (Y,Z, U,K) is referred to as the minimal

solution to (3.2.2)-(3.2.3) whenever, for any other solution (Y ′, Z ′, U ′,K ′) to (3.2.2)-(3.2.3),

we have Y ≤ Y ′ a.s..

3.2.2 Existence and uniqueness of a minimal solution

In order to ensure existence and uniqueness to the constrained BSDE with jumps (3.2.2)-

(3.2.3) starting from any initial condition (t, i, x) ∈ [0, T ] × I × R
d, we need to adapt the

assumptions presented in [32] and introduce:

(H0)

(i) There exists a constant k > 0 such that the functions f and h satisfy the uniform

Lipschitz property

|f(i, x, y + (uj)j∈I , z) − f(i, x, y′ + (u′j)j∈I , z
′)| ≤ k|(y, z, (uj)j∈I) − (y′, z′, (u′j)j∈I)|

|h(i, x, y, y + uj , z, j) − h(i, x, y′, y′ + u′j , z
′, j)| ≤ k|(y, z, uj) − (y′, z′, u′j)| ,

for all (x, i, j, y, z, u, y′, z′, u′) ∈ R
d × I2 × [R × R

d × R
I ]2.

(ii) The coefficients f(i, .), g(i, .) and h(i, ., j) are continuous for any i, j ∈ I and they

satisfy the following growth linear condition : there exists a constant C such that

|f(i, x, y + u, z)| + |g(i, x)| + |h(i, x, y, y + uj , z, j)| ≤ C(1 + |x| + |y| + |z| + |u|) ,

for all (x, i, j, y, z, u) ∈ R
d × I2 × R × R

d × R
I .
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(iii) There exist two constants C1 ≥ C2 > −1 and a measurable map γ : I ×R
d×R×R

d×
[RI ]2 × I → R such that C2 ≤ γ(.) ≤ C1 and

f(i, x, y + u, z) − f(i, x, y′ + u′, z′) ≤
∫

I
(uj − u′j)γ(i, x, y, z, u, u

′, j)λ(dj) ,

for all (i, x, y, z, u, u′) ∈ I × R
d × R × R

d × [RI ]2.

(iv) The function h(i, x, y, y+ ., z, j) is decreasing for all (i, x, y, z, j) ∈ I×R
d×R×R

d×I.

Assumptions (i) and (ii) are classical for the study of BSDEs and their links with PDEs.

(iii) and (iv) allows to set comarison theorem for penalized BSDEs defined below and used

to construct the minimal constrained solution (see [32]).

In order to ensure that this problem is well defined, we also need to assume:

(H1) For any initial condition, there exists a quadruple (Ỹ , Z̃, K̃, Ũ) ∈ S2×L
2
W ×L

2
µ̃×A

2

satisfying (3.2.2)-(3.2.3), with Ỹt = ṽ(t,Xt, It), ≤ t ≤ T , for some deterministic function ṽ

satisfying a linear growth condition

|ṽ(t, x, i)| ≤ C(1 + |x|) , (t, x, i) ∈ [0, T ] × R
d × I .

Remark 3.2.1 Being aware that Assumption (H1) is rather restrictive, we provide in

Remark 3.3.2 a more tractable sufficient condition for it. Notice that (H1) is slightly

stronger than its analogous in [32]. This allows to ensure the corresponding Markovian

value function defined below to satisfy a linear growth condition and to be in particular

locally bounded, see Lemma 3.3.1.

As a direct application of Theorem 2.1 in [32], we verify the following.

Theorem 3.2.1 Suppose Assumptions (H0) and (H1) hold. For all triple (t, i, x) ∈ [0, T ]×
I × R

d, there exists a unique quadruple (Y t,i,x, Zt,i,x, U t,i,x,Kt,i,x) ∈ S2 × L
2
W × L

2
µ̃ × A

2

minimal solution to (3.2.2)-(3.2.3), and v(t, x, i) := Y t,i,x
t defines a deterministic map from

[0, T ] × R
d × I into R.

3.2.3 Related penalized BSDE

In [32], the proof for the existence of a minimal solution to (3.2.2)-(3.2.3) relies on a penal-

ization argument. We will require the corresponding penalized BSDE in the next sections

and we choose to present it here. For any initial condition (t, i, x) ∈ [0, T ] × I × R
d and

n ∈ N, we denote by (Y t,i,x,n, Zt,i,x,n, U t,i,x,n) the solution to the following penalized BSDE

with jump

Yt = g(It,iT , X
t,i,x
T ) +

∫ T

t
f(It,is , X

t,i,x
s , Ys + Us, Zs)ds−

∫ T

t

∫

I
Us(j)µ(ds, dj) (3.2.4)

−
∫ T

t
Zs.dWs + n

∫ T

t

∫

I
h−(It,i

s−
, Xt,i,x

s , Ys− , Ys− + Us(j), Zs, j)λ(dj)ds , 0 ≤ t ≤ T .
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Under (H0), following the arguments of [5], we verify that there exists a unique solution

to (3.2.4), for any n ∈ N. From [32] we have the following result:

Theorem 3.2.2 Under (H0)-(H1), for any (t, i, x) ∈ [0, T ]×I×R
d, the sequence (Y t,i,x,n)n

is nondecreasing and converges to Y t,i,xin the folowing sense:

E

[ ∫ T

t

∣∣∣Y t,i,x,n
s − Y t,i,x

s

∣∣∣
2
ds
]

+ E

[∣∣∣Y t,i,x,n
τ − Y t,i,x

τ

∣∣∣
]

−→
n→∞

0,

for any stopping time τ valued in [τ, T ]. Moreover we have

‖Zt,i,x − Zt,i,x,n‖
L

p
W

+ ‖U t,i,x − U t,i,x,n‖
L

p
µ̃

−→
n→∞

0 , p < 2 . (3.2.5)

Under an extra regularity property of the process Y ., we can improve this convergence

result.

Proposition 3.2.1 If (H0)-(H1) holds and the process Y . is quasi-left continuous in time,

we have

‖Y . − Y .,n‖
S2 + ‖Z . − Z .,n‖

L2
W

+ ‖U . − U .,n‖
L2

µ̃

+ ‖K . −K .,n‖
S2 −→

n→∞
0 . (3.2.6)

Proof. First notice that, according to [63], the process Y .,n is also quasi-left continuous.

Therefore, the predictable projections of Y . and Y .,n are simply given by (Yt− .)t and (Y .,n
t−

)t

and satisfy Y.t− = limn→∞ Y .,n
t−

. We deduce from the weak version of Dini’s theorem, see

[26] p. 202, that Y .,n converges uniformly to Y . on [0, T ], and the dominated convergence

theorem leads to ‖Y . − Y .,n‖
S2 −→

n→∞
0. Combined with standard estimates of the form

‖Zn+p − Zn‖2

L2
W

+ ‖Un+p − Un‖2

L2
µ̃

+ ‖Kn+p −Kn‖2

S2
≤ C‖Y n+p − Y n‖2

S2
.

this implies that the sequences (Zn), (Un) and (Kn) are Cauchy in their respective Banach

spaces, which concludes the proof. ✷

Remark 3.2.2 Under the extra Assumptions (H2) and (H3) below, the value function

v : (t, x, i) 7→ Y t,x,i
t interprets as the unique viscosity solution to a well chosen system of

variational inequalities. In this case, v is continuous and Yt = v(t,Xt, It) is quasi left con-

tinuous so that we derive the strong convergence of the penalized BSDE to the constrained

one.

In order to derive viscosity properties on the solution to the constrained BSDE with

jump (3.2.2)-(3.2.3), we shall pass to the limit the viscosity properties of (3.2.4). Similarly

in Section 3.5, in order to approximate numerically the solution to (3.2.2)-(3.2.3), we shall

work directly on the penalized one.
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3.2.4 Link between (Y, U) and X

We give here a representation of the processes Y and U as deterministic functional of the

process X.

Let define the sequence of functions vn(resp. v) : [0, T ] × R
d × I → R by

vn(resp. v) : (t, x, i) 7→ Y t,i,x,n
t (resp. Y t,i,x

t ), (t, x, i) ∈ [0, T ] × R
d × I, (3.2.7)

where, for any initial condition (t, x, i) ∈ [0, T ] × R
d × I (Y t,i,x,n

s , Zt,i,x,ns , U t,i,x,ns )t≤s≤T is

the minimal solution to BSDE (3.2.2)-(3.2.3). Let first observe the following identification

between vn and the components of the solution to the BSDE (3.2.4).

Lemma 3.2.1 Let Assumption (H0)-(H1) hold. For all (t, i, j, x) ∈ [0, T ]2 × I2 × R
d, we

have the following identifications:

Y t,i,x,n
θ = vn(θ,X

t,i,x
θ , It,iθ ) (3.2.8)

for any stopping time θ valued in [t, T ], and

U t,i,x,ns (j) = vn(s,X
t,i,x
s , j) − vn(s,X

t,i,x
s , It,i

s−
) , (3.2.9)

for any s ∈ [t, T ].

Proof. Fix (t, i, j, x) ∈ [0, T ] × I2 × R
d and θ a stopping time valued in [t, T ]. The

identification of Y .,n comes from uniqueness of solution to (3.2.4) and from the Markov

property of (I,X). Let us now check the identification of U .,n and define

Ũ t,i,x,ns (j) := vn(s,X
t,i,x
s , j) − vn(s,X

t,i,x
s , It,i

s−
).

Using (3.2.4) and the identification of Y .,n, we derive
∫

I
U t,i,x,ns (j)µ(ds, dj) = Y t,i,x,n

s − Y t,i,x,n
s− =

∫

I
Ũ t,i,x,ns (j)µ(ds, dj) .

which gives
∫
I(U t,i,x,ns (j)− Ũ t,i,x,ns (j))2µ(ds, dj) =

[ ∫
I(U t,i,x,ns (j)− Ũ t,i,x,ns (j))µ(ds, dj)

]2
=

0. Hence, E[
∫ T
0

∫
I(U t,i,x,ns (j) − Ũ t,i,x,ns (j))2µ(ds, dj)] = 0 which implies that

E

[∫ T

0

∫

I
(U t,i,x,ns (j) − U t,i,x,ns (j))2λ(dj)ds

]
= 0 ,

and concludes the proof. ✷

Proposition 3.2.2 Let Assumption (H0)-(H1) hold. The function v links the processes

Y t,i,x and U t,i,x with Xt,i,x by the relation:

Y t,i,x
θ = v(θ,Xt,i,x

θ , It,i,xθ ), (3.2.10)

for any stopping time θ valued in [t, T ], and

U t,i,xs (j) = v(s,Xt,i,x
s , j) − v(s,Xt,i,x

s , It,i
s−

) , (3.2.11)

for any s ∈ [t, T ].

Proof. From Theorem 3.2.2 and the definition of v, we know that v is the pointwise limit

of (vn)n. We deduce (3.2.10) from (3.2.8) and (3.2.11) is implied by (3.2.9) and (3.2.5). ✷
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3.2.5 The minimality condition

Under an extra regularity assumption on the function v satisfied under Assumptions (H2)

and (H3) below, we deduce from the previous proposition a minimality condition for the

solution (Y,Z, U,K), which is a Skorohod type condition as in [29] in the case of reflected

BSDEs.

Corollary 3.2.1 Let Assumption (H0)-(H1) hold. Suppose that the function v(., i) is con-

tinuous on [0, T )×R
d for all i ∈ I, and that the function h does not depend on the component

Z. Then for all (t, i, x) ∈ [0, T ] × I × R
d the minimal solution (Y t,i,x, Zt,i,x, U t,i,x,Kt,i,x)

satisfy the Skorohod condition

∫ T

t
min
j∈I

[
h(It,i,x

s−
, Y t,i,x

s−
, U t,i,xs (j), j)

]
dKt,i,x

s = 0 (3.2.12)

Proof. Notice first that if v(., i) is continuous for all i ∈ I, then the processe Y t,i,x is quasi-

left continuous since (It,i,x, Xt,i,x) is too. From Proposition 3.2.1 and the representation

(3.2.11), we have also

‖Y t,i,x − Y t,i,x,n‖
S2 + max

j∈I
‖U t,i,x(j) − U t,i,x,n(j)‖

S2 −→
n→∞

0 . (3.2.13)

In particular we get (see Lemma 5.8 in [35] which is also true for càglàd functions)

∫ T

t
min
j∈I

[
h(It,i,x

s−
, Xt,i,x

s , Y t,i,x,n
s−

, U t,i,x,ns (j), j)
]
dKt,i,x,n

s −→
n→∞

∫ T

t
min
j∈I

[
h(It,i,x

s−
, Y t,i,x

s−
, U t,i,xs (j), j)

]
dKt,i,x

s (3.2.14)

Then using

∫ T

t
min
j∈I

[
h(It,i,x

s−
, Xt,i,x

s , Y t,i,x,n
s−

, U t,i,x,ns (j), j)
]
dKt,i,x,n

s ≤ 0,

and

∫ T

t
min
j∈I

[
h(It,i,x

s−
, Y t,i,x

s−
, U t,i,xs (j), j)

]
dKt,i,x

s ≥ 0,

we get (3.2.12). ✷

3.3 Link with coupled systems of variational inequalities

This section is devoted to the viscosity property of the minimal solution of the constrained

BSDE with Jump (3.2.2)-(3.2.3). Generalizing the representation derived in [46] and [65],

we interpret the value function v as a viscosity solution to a system of coupled variational

inequalities given below by (3.3.2)-(3.3.3). The argument relies on a passing to the limit

the viscosity properties of the corresponding penalized BSDEs with jumps.
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3.3.1 Viscosity properties of the penalized BSDE

The penalized parabolic integral partial differential equation (IPDE) associated to (3.2.4)

is naturally defined, for each n ∈ N, by





−∂ϕ
∂t

(., i) − Liϕ(., i) − f(i, x, (ϕ(., j))j∈I , σ
⊤Dxϕ(., i))

−n
∫
I [h(i, x, ϕ(., i)ϕ(., j), σ⊤Dxϕ(., i), j)]−λ(dj) = 0 on [0, T ) × R

d × I,
v(T, x, i) = g(x, i) on R

d × I ,
(3.3.1)

where L is the m-dimensional second order local operator associated to X and given by

Liϕ := b⊤(i, .)Dxϕ+
1

2
tr[σ(i, .)σ(i, .)⊤D2

xϕ] , on [0, T ] × R
d × I .

Since the penalized BSDE enters into the class of BSDE with jumps studied by Pardoux,

Pradeilles and Rao [63], we have the following Feynman-Kac representation result.

Proposition 3.3.1 Under (H0)-(H1) and for any n ∈ N, the functions vn defined in

(3.2.7) are continuous viscosity solutions to (3.3.1). Indeed, for any n ∈ N and i ∈ I,

vn(T, ., i) = g(., i) and, for any (t, x) ∈ [0, T ) × R
d and ϕ ∈ C1,2([0, T ] × R

d × I) such that

(t, x) is a global minimum (resp. maximum) of (vn − ϕ)(., i) for all i ∈ I, we have

−∂ϕ
∂t

(., i) − Liϕ(., i) − f(i, ., (ϕ(., j))j∈I , σ
⊤Dxϕ(., i))

−n
∫

I
h−(., ϕ(., i), ϕ(., j), σ⊤Dxϕ(., i), j)λ(dj) ≥ ( resp. ≤) 0 , i ∈ I .

Proof. The continuity of vn follows from the same argument as in the proof of Lemma

2.1 in [63]. Similarly, according to Lemma 3.2.1, the viscosity property of vn exactly fits in

the framework of Theorem 4.1 in [63]. ✷

3.3.2 Viscosity properties of the constrained BSDE with jumps

We state in this subsection the viscosity property of the function v. Formally, passing to

the limit in (3.3.1) when n goes to infinity, we expect v to be solution, on [0, T ) × R
d × I,

to the following coupled system of variational inequalities

min
[
− ∂v

∂t
(., i) − Liv(., i) − f

(
i, ., (v(., j))j∈I , σ

⊤Dxv(., i)
)
,

min
j∈I

h
(
i, ., v(., i), v(., j), σ⊤Dxv(., i), j

) ]
= 0, i ∈ I . (3.3.2)

To complete the PDE characterization of the function v, we need to provide a suitable

boundary condition. In general, we can not expect to have v(T−, .) = g, and we shall

consider the relaxed boundary condition given by

min
[
v(T−, x, i) − g(x, i),min

j∈I
h
(
i, x, v(., i), v(., j), σ⊤Dxv(., i), j

) ]
= 0 on R

d × I. (3.3.3)
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Remark 3.3.1 In the particular case where the driver function f is independent of (y, z)

and the constraint function is given by h̃ : (i, x, y, y + v, z, j) 7→ −c(i, j) − v with c a given

cost function, the variational inequality (3.3.2) rewrites equivalently as

min
[
− ∂v

∂t
(., i) − Liv(., i) − f(i, .), min

j∈I
[v(., i) − v(., j) − c(i, j)]

]
= 0, i ∈ I,

so that we retrieve the classical variational inequalities associated to switching problems.

Furthermore, the corresponding relaxed boundary condition (3.3.3) rewrites as

min
[
v(T−, ., i) − g(., i), min

j∈I
[v(T−, ., i) − v(T−, ., j) − c(i, j)]

]
= 0, on R

d × I.(3.3.4)

Therefore, if (3.3.4) satisfies a comparison theorem, v(T−, .) interprets as the smallest func-

tion grower to g satisfying (3.3.4) (see remark 3.4 in [66]). In particular, we retrieve the

terminal condition v(T−, .) = g proposed by [44] in the framework of reflected BSDE, since

their terminal condition g is assumed to satisfy the constraint.

Since we consider solutions in a discontinuous viscosity sense, we introduce, for any

locally bounded function u on [0, T ]×R
d×I, its lower semicontinuous and upper semicon-

tinuous (lsc and usc in short) envelopes u∗ and u∗ defined by

u∗(t, x, i) = lim inf
(t′,x′)→(t,x),t′<T

u(t′, x′, i), u∗(t, x, i) = lim sup
(t′,x′)→(t,x),t′<T

u(t′, x′, i) ,

for (t, x, i) ∈ [0, T ] × R
d × I.

We now turn to the definition of viscosity solutions to (3.3.2)-(3.3.3).

Definition 3.3.1 (Viscosity solutions to (3.3.2)-(3.3.3))

(i) A function u, lsc (resp. usc) on [0, T ) × R
d × I, is called a viscosity supersolution

(resp. subsolution) to (3.3.2)-(3.3.3) if, for each (t, x, i) ∈ [0, T ] × R
d × I and any ϕ ∈

C1,2([0, T ] × R
d × I) such that (t, x) is a global minimum (resp. maximum) of (u− ϕ)(., i)

for all i ∈ I, we have, if t < T ,

min
[
− ∂ϕ

∂t
(., i) − Liϕ(., i) − f(i, ., (ϕ(., j))j∈I , σ

⊤Dxϕ(., i)),

min
j∈I

h(i, x, ϕ(., i), ϕ(., j), σ⊤Dxϕ(., i), j)
]
(t, x) ≥ ( resp. ≤) 0 , i ∈ I ,

and, if t = T ,

min
[
u(T, x, i) − g(x, i), min

j∈I
h(i, x, ϕ(., i), u(., j), σ⊤Dxϕ(., i), j)

]
≥ ( resp. ≤) 0 , i ∈ I.

(ii) A locally bounded function u on [0, T ) × R
d × I is called a viscosity solution to (3.3.2)-

(3.3.3) if u∗ and u∗ are respectively viscosity supersolution and subsolution to (3.3.2)-(3.3.3).

We first observe that v is locally bounded.
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Lemma 3.3.1 Under (H0) and (H1), the function v satisfies the linear growth property

sup
t∈[0,T ]

|v(t, x, i)|2 ≤ C(1 + |x|2) , i ∈ I . (3.3.5)

Proof. Following the lines of the proof of Lemma 3.3 and Remark 3.2 in [46], standard

estimates on the penalized BSDE (3.2.4) lead to

sup
t∈[0,T ]

|Y t,i,x,n
t |2 ≤ C

(
1 + E

[
|g(Xt,i,x

T , It,iT )|2 +

∫ T

t
|Xt,i,x

s |2ds+ sup
s∈[0,T ]

|ṽ(s,Xt,i,x
s , It,is )|2

])
,

for any i ∈ I. Combining Fatou’s lemma with the standard estimates on X and the linear

growth condition on g and ṽ, see (H1), we directly compute (3.3.5). ✷

In order to derive the viscosity properties of the value function v, we shall appeal to the

following dynamic programming characterization of the minimal solution.

Lemma 3.3.2 Let (t, i, x) ∈ [0, T )×I×R
d, and (Y t,i,x, Zt,i,x, U t,i,x,Kt,i,x) be the minimal

solution to (3.2.2)-(3.2.3) on [t, T ] with (Xs, Is) = (Xt,i,x
s , It,is ). Then, for any stopping time

θ valued in [t, T ], (Y t,i,x
s , Zt,i,xs , U t,i,xs ,Kt,i,x

s )s∈[t,θ] is a minimal solution to :

Ys = v(θ,Xt,i,x
θ , It,iθ ) +

∫ θ

s
f(It,ir , X

t,i,x
r , Yr + Ur, Zr)dr +Kθ −Ks (3.3.6)

−
∫ θ

s
Zr.dWr −

∫ θ

s

∫

I
Ur(j)µ(dr, dj), t ≤ s ≤ θ, a.s.

with

h(It,ir−, X
t,i,x
r , Yr− , Yr− + Ur(j), Zr, j) ≥ 0 dP ⊗ dt⊗ λ(dj) a.e. on Ω × [t, θ] × I. (3.3.7)

Proof. We omit the standard proof of this lemma which is based on the same proba-

bilistic arguments as the proof of lemma 4.1 in [46]. It classically relies on a concatenation

of solutions to the BSDE on the time intervals [t, θ(ω)] and [θ(ω), T ]. ✷

We now turn to the main result of the section.

Theorem 3.3.1 Under (H0)-(H1), the function v is a (discontinuous) viscosity solution

to (3.3.2)-(3.3.3).

Proof of Theorem 3.3.1. First notice that v is locally bounded, according to lemma

3.3.1. • Viscosity property on [0, T ) × R
d.

From the results of the previous section, we know that v is the pointwise limit of the

nondecreasing sequence of functions (vn). By continuity of vn, we then have (see e.g. [4] p.

91) :

v = v∗ = lim
n→∞

inf∗vn, where lim
n→∞

inf∗vn(t, x, i) := lim inf
n → ∞

t′ → t, x′ → x

vn(t
′, x′, i), (3.3.8)

v∗ = lim
n→∞

sup∗vn, where lim
n→∞

sup∗vn(t, x, i) := lim sup
n → ∞

t′ → t, x′ → x

vn(t
′, x′, i).(3.3.9)
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(i) We first show the viscosity supersolution property for v = v∗. Let (t, x) a point in

[0, T )×R
d, i ∈ I and (p, q,M) ∈ J̄−v(t, x, i). By (3.3.8) and Lemma 6.1 in [23], there exists

sequences

nk → ∞, (pk, qk,Mk) ∈ J−vnk
(tk, xk, i),

such that

(tk, xk, vnk
(tk, xk, i), pk, qk,Mk) → (t, x, v(t, x, i), p, q,M). (3.3.10)

From the viscosity supersolution property for vnj
, we have for all k

− pk − b(xk, i).qk −
1

2
tr(σσ⊤(xk, i)Mk) − f(xk, i, (vnk

(tk, xk, j))j , σ
⊤(xk, i)qk)

−nk
∫

I
h−(i, xk, vnk

(tk, xk, i), vnk
(tk, xk, j), σ

⊤(xk, i)qk, j)λ(dj) ≥ 0.(3.3.11)

Let us check that the following inequality holds :

min
j∈I

h(i, xk, vnk
(tk, xk, i), vnk

(tk, xk, j), σ
⊤(xk, i)qk, j) ≥ 0. (3.3.12)

We argue by contradiction, and assume there exists some j0 ∈ I s.t.

h(i, xk, vnk
(tk, xk, i), vnk

(tk, xk, j), σ
⊤(xk, i)qk, j0) < 0.

Then, by continuity of h in all its variables, its nonincreasing property and (3.3.10), one

may find some ε > 0 such that for all k large enough :

h(i, xk, vnk
(tk, xk, i), vnk

(tk, xk, j), σ
⊤(xk, i)qk, j) ≤ −ε.

This implies
∫

I
h−(i, xk, vnk

(tk, xk, i), vnk
(tk, xk, j), σ

⊤(xk, i)qk, j)λ(dj) ≥ ελ(j0) > 0.

By sending k to infinity into (3.3.11), we get the required contradiction. On the other hand,

by (3.3.11), we have

−pk − b(xk, i).qk −
1

2
tr(σσ⊤(xk, i)Mk) − f(xk, i, (vnk

(tk, xk, j))j , σ
⊤(xk, i)qk) ≥ 0,

so that by sending k to infinity :

−p− b(x, i).q − 1

2
tr(σσ⊤(x, i)M) − f(x, i, (v(t, x, j))j , σ

⊤(x, i)q) ≥ 0,

which proves, together with (3.3.12), that v is a viscosity supersolution to (3.3.2).

(ii) We conclude by showing the viscosity subsolution property for v∗. Let (t, x) a point in

[0, T ) × R
d, i ∈ I and (p, q,M) ∈ J̄+v∗(t, x, i) such that

min
j∈I

h(i, xk, vnk
(tk, xk, i), vnk

(tk, xk, j), σ
⊤(xk, i)qk, j) > 0. (3.3.13)
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From (3.3.9) and Lemma 6.1 in [23], there exists sequences

nk → ∞, (pk, qk,Mk) ∈ J+vnk
(tk, xk, i),

such that

(tk, xk, vnk
(tk, xk, i), pk, qk,Mk) → (t, x, v∗(t, x, i), p, q,M). (3.3.14)

By continuity of the function h, and definition of v∗, we also have

lim sup
j→∞

h(i, xk, vnk
(tk, xk, i), vnk

(tk, xk, j), σ
⊤(xk, i)qk, j) ≤

h(i, x, v(t, x, i), v(t, x, j), σ⊤(x, i)q, j), ∀ j ∈ I. (3.3.15)

Now, from the viscosity subsolution property for vnk
, we have for all k

− pk − b(xk, i).qk −
1

2
tr(σσ⊤(xk, i)Mk) − f(xk, i, vnk

(tk, xk, i), σ
⊤(xk, i)qk)

−nk
∫

I
h−(i, xk, vnk

(tk, xk, i), vnk
(tk, xk, j), σ

⊤(xk, i)qk, j)λ(dj) ≤ 0. (3.3.16)

From (3.3.13)-(3.3.14)-(3.3.15), continuity and nonincreasing property of h, we have for k

large enough

h(i, xk, vnk
(tk, xk, i), vnk

(tk, xk, j), σ
⊤(xk, i)qk, j) > 0, ∀j ∈ I,

and so
∫

I
h−(i, xk, vnk

(tk, xk, i), vnk
(tk, xk, j), σ

⊤(xk, i)qk, j)λ(dj) = 0.

Hence, by taking the limit as k goes to infinity, into (3.3.16), we conclude that

−p− b(x, i).q − 1

2
tr(σσ⊤(x, i)M) − f(x, i, (v∗(t, x, j))j , σ

⊤(x, i)q) ≤ 0,

which shows the viscosity subsolution property for v∗ to (3.3.2).

• Viscosity property on {T} × R
d. (i) Let first consider the supersolution property of v∗ to

(3.3.3). Let x0 ∈ R
d and ϕ ∈ C1,2([0, T ] × R

d × I) such that (T, x0) is a global minimum

of (v∗ − ϕ)(., i) for all i ∈ I. Passing to the limit the viscosity properties of the penalized

BSDE, we naturally derive, as done below

min
j∈I

h(i, x, v∗(., i), v∗(., j), σ
TDxϕ(., i), j)](T, x0) ≥ 0 , i ∈ I . (3.3.17)

Furthermore vn(T, .) = g, n ∈ N, so that the monotonic property of (vn)n leads to v∗(T, .)

≥ g. Therefore v∗ is a viscosity supersolution to (3.3.3).

(ii) We now turn to subsolution property of v∗. Let argue by contradiction and assume the

existence of (x0, i0) ∈ R
d × I and ϕ ∈ C1,2([0, T ] × R

d × I) such that

0 = (v∗ − ϕ)(T, x0, j) = max
[0,T ]×Rd

(v∗ − ϕ)(., j) ∀j ∈ I , (3.3.18)



3.3. LINK WITH COUPLED SYSTEMS OF VARIATIONAL INEQUALITIES 113

and we have

min

[
ϕ(T, x0, i0) − g(x0, i0) , min

j∈I
h(i0, x, ϕ(., i0), ϕ(., j), Dxϕ(., i), j)](T, x0)

]
=: 2ε > 0.

From the regularity of v∗, ϕ and Dxϕ as well as the monotonic property of h, we derive the

existence of an open neighborhood O of (T, x0) ∈ [0, T ]×R
d, and Υ, r > 0 such that for all

(t, x, η, η′) ∈ O × (−Υ,Υ) ×B(0, r), we have

min
[
ϕ(t, x, i) − η − g(x, i) ,min

j∈I
h(i, x, ϕ(., i) − η, ϕ(., j), σT [Dxϕ(., i) + η′], j)](t, x)

]
≥ ε .(3.3.19)

Let (tk, xk)k be a sequence in [0, T ) × R
d satisfying (tk, xk) → (T, x0) and v(tk, xk, i) →

v∗(T, x0, i). Pick δ > 0 such that [tk, T ] × B(xk, δ) ⊂ O for k large enough, and introduce

the modified test function ϕk given by

ϕk(t, x, j) := ϕ(t, x, j) +

(
ζ
|x− xk|2

δ2
+ Ckφ

(
x− xk
δ

)
+

√
T − t

)
1j=i0 ,

where 0 < ζ < Υ∧δr, φ is a regular function in C2(Rd) such that φ|B̄(0,1) ≡ 0, φ|B̄(0,1)c > 0

and lim|x|→∞
φ(x)
1+|x| = ∞, and Ck > 0 is a constant to be determined precisely later on.

We deduce from (3.3.18) that (v∗ − ϕk)(t, x, j) ≤ −ζ, for (t, x, j) ∈ [tk, T ] × ∂B(xk, δ) × I.

Choosing Ck large enough, the particular form of the function φ leads to

(v∗ − ϕk)(t, x, j) ≤ −ζ
2

for (t, x, j) ∈ B(xk, δ)
c × [tk, T ] × I. (3.3.20)

Thanks to the
√
T − t term in the modified test function ϕk, we deduce that

− ∂ϕk
∂t

(t, x, i0) − Li0ϕk(t, x, i0) − f(i0, x, (ϕk(t, x, j) − η1j=i0)j∈I , σ
⊤Dxϕk(t, x, i) ≥ 0 ,(3.3.21)

for any (t, x, η) ∈ [tk, T )×B(xk, δ)×(−Υ+ζ,Υ) and k large enough. Choose now η < Υ∧ ζ
2∧ε

and introduce the stopping time

θk := inf
{
s ≥ tk ; Xk

s /∈ B(xk, δ) or Iks 6= Iks−
}
∧ T ,

where Xk := Xtk,i,xk and Ik := Itk,i. Let finally introduce the process (Y k, Zk, Uk,Kk)

defined on [tk, θk] by





Y k
s :=

[
ϕk(s,X

k
s , I

k
s ) − η

]
1s∈[tk,θk) + v(θk, X

k
θk
, Iks )1s=θk

,

Zks := σ⊤(Xk
s , I

k
s−)Dxϕk(s,X

k
s , I

k
s−) ,

Uks :=
([
ϕ(s,Xk

s , j) − [ϕk(s,X
k
s , I

k
s−) − η]

]
1j 6=i0

)

j∈I
,

Kk
s := −

∫ s
tk

{(
∂ϕk
∂t

+ Li0ϕk
)

(r,Xk
r , I

k
r ) + f(Ikr , X

k
r , (ϕk(r,X

k
r , j) − η1j=i0)j∈I , Z

k
s )

}
dr

−
∫ s
tk

∫
I(ϕk − η − ϕ)(r,Xk

r , j)µ(dr, dj) + [ϕk − η − v] (θk, X
k
θk
, Ikθk

)1s=θk
.

One easily checks from (3.3.19)-(3.3.20)-(3.3.21) that (Y k, Zk, Uk,Kk) is a solution to

(3.3.6)-(3.3.7) on [tk, θk]. By Lemma 3.3.2, we deduce that

ϕk(tk, xk, i) − η = ϕ(tk, xk, i) +
√
T − tk − η ≥ v(tk, xk, i) , for all k large enough .
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Letting k go to infinity, this contradicts (3.3.18) and concludes the proof. ✷

The main drawback of this result identifying the value function associated to the minimal

solution Y to (3.2.2)-(3.2.3) as a solution to the system of variational inequalities (3.3.2)-

(3.3.3) is that it requires the strong assumption (H1). Following from similar arguments

as Proposition 6.3 in [46], the next remark provides a nice sufficient condition for (H1).

Remark 3.3.2 Assume that there exists a Lipschitz function w ∈ C2(Rd × I) satisfying a

linear growth condition, supersolution to (3.3.3) and such that

Liw(., i) + f(·, (w(., j))j∈I , σ
⊤Dw(., i)) ≤ C, on R

d,

for some constant C. Then (H1) holds true.

3.4 Uniqueness result

The purpose of this section is to characterize the value function v as the unique viscosity

solution to the system of variational inequalities (3.3.2)-(3.3.3). The proof relies as usual

on the obtention of a comparison theorem presented below and generalizes the Theorem

4.3 in [46]. In particular, this implies the continuity of v and, as a consequence, the strong

convergence results by penalization and the minimality condition presented respectively in

sections 3.2.3 and 3.2.4 of the paper.

3.4.1 Assumptions

We shall require the following additional assumptions.

(H2) There exists a nonnegative function Λ ∈ C2(Rd × I) and a positive constant ρ

satisfying

(i) LiΛ(., i) + f(i, ., (Λ(., j))j∈I , σ
⊤DxΛ(., i)) ≤ ρΛ(., i), for all i ∈ I,

(ii) minj∈I h(i, x,Λ(x, i),Λ(x, j), σ⊤DxΛ(x, i), j) > 0, for all i ∈ I and x ∈ R
d,

(iii) Λ(x, i) ≥ g(x, i), for all i ∈ I and x ∈ R
d,

(iv) lim|x|→∞
Λ(x,i)
1+|x| = ∞, for all i ∈ I.

As in Bouchard [10], this assumption allows to to construct a nice strict supersolution

to (3.3.2) leading to a control on solutions to (3.3.2)-(3.3.3) by convexe perturbations.

Nevertheless, as in [46], the dependence of the driver f and the constraint h with respect

to some components (Y, Z, U) of the solution to the BSDE, forces us to add some extra

convexity conditions.
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(H3)

(i) The function f(i, x, ., .) is convex in ((yi)i∈I , z) ∈ R
I × R

d for all (x, i) ∈ R
d × I.

(ii) The function h(i, x, ., j) is concave in (yi, yj , z) ∈ [R]2×R
d a for all (x, i, j) ∈ R

d× [I]2.

(iii) The function f(i, x, y, z, u1, . . . , ui−1, ., ui+1, . . . , um) is increasing for all

(i, x, y, z, (uj)j∈I−{i}) ∈ I × R
d × R × R

d × [R]m−1

(iv) The function h(i, x, ., z, u, j) is decreasing for all (i, j, x, z, u) ∈ [I]2 × R
d × R

d × R

Remark 3.4.1 In the classical case of optimal switching case where f is independent of y

and z and h is of the form (i, u, j) 7→ −u−c(i, j), Assumption (H3) is automatically satisfied.

Furthermore, as in [10], (H2) holds under an additional assumption on the structure of the

constraint, specifying the existence of a sequence (di)i∈I such that c(i, j) < di − dj for all

(i, j) ∈ I × I such that i 6= j. Indeed, one easily checks that, in this case, the function

Λ : (x, i) 7→ α+ |x|2 + di with α large enough satisfies (H2).

3.4.2 The comparison theorem

Theorem 3.4.1 Assume that (H0), (H1), (H2) and (H3) hold. Then, for any U (resp.

V ) lsc (resp. usc) viscosity supersolution (resp. subsolution) to (3.3.2)-(3.3.3) satisfying a

linear growth condition :

sup
(t,x,i)∈[0,T ]×Rd×I

|U(t, x, i)| + |V (t, x, i)|
1 + |x| < ∞ ,

we have U ≥ V on [0, T ]×R
d×I. In particular, the function v in (3.2.7) is the unique vis-

cosity solution to (3.3.2)-(3.3.3) satisfying a linear growth condition, and v(., i) is continuous

on [0, T ) × R
d, for all i ∈ I.

Proof. • Comparison principle. As usual, we shall argue by contradiction by assuming

that

sup
[0,T ]×Rd×I

(V − U) > 0 . (3.4.1)

1. For some η > 0 to be chosen below, let

Û(t, x, i) := e(ρ+η)tU(t, x, i) , V̂ (t, x, i) := e(ρ+η)tV (t, x, i) and Λ̂(t, x, i) := e(ρ+η)tΛ(x, i).

A straightforward derivation shows that Û (resp. V̂ ) is a viscosity supersolution (resp.

subsolution) to

min
[
ρw − ∂w

∂t
− Liw − f̂

(
., w, σ⊤Dxw

)
,

min
j∈I

ĥ
(
., w, w(., j), σ⊤Dxw, j

) ]
(t, x, i) = 0 , (3.4.2)

min
[
w − ĝ,min

j∈I
ĥ(., w, w(., j), σ⊤Dxw, j)

]
(T−, x, i) = 0 , (3.4.3)
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respectively on [0, T ) × R
d × I and R

d × I, where

f̂(t, i, x, r1, . . . , rm, q) := e(ρ+η)tf̃
(
i, x, r1e

−(ρ+η)t, . . . , rme
−(ρ+η)t, qe−(ρ+η)t

)
− ηr ,

ĥ(i, t, x, ri, rj , q, j) := e(ρ+η)th̃(i, x, e−(ρ+η)t, rie
−(ρ+η)t, rje

−(ρ+η)t, qe−(ρ+η)t, j)

and ĝ(x, i) = e(ρ+η)T g(x, i), for all (t, x, r, q, i, j) ∈ [0, T ] × R
d × R × R

d × I × I. Since

f̃ is Lipschitz, we can choose η large enough so that f̂(i, .) is nonincreasing in ri. Denote

Ŵ := (1 − α)Û + αΛ̂ with α ∈ (0, 1). By (3.4.1) and the growth condition (H2)(iv) of Λ,

we have

sup
[0,T ]×Rd×I

(V̂ − Ŵ ) = (V̂ − Ŵ )(t0, x0, i0) > 0. (3.4.4)

for some (t0, x0, i0) ∈ [0, T ] × R
d × I and α small enough. Moreover from the viscosity

supersolution property (3.4.2)-(3.4.3) of Û , and the conditions (H2)(i), (ii), (H3)(i), (ii),

(iii), we see that Ŵ is a viscosity supersolution to

ρw(., i) − ∂w

∂t
(., i) − Liw(., i) − f̂

(
i, ., w, σ⊤Dxw(., i)

)
≥ 0, on [0, T ) × R

d,

min
j∈I

ĥ
(
i, ., w(., i), w(., j), σ⊤Dxw(., i), j

)
≥ αq̂(., i), on [0, T ] × R

d,

for all i ∈ I, where q̂(t, x, i) := e(ρ+η)t minj∈I h̃
(
i, x,Λ(x, i),Λ(x, j), σ⊤DxΛ(x, i), j

)
is pos-

itive on [0, T ] × R
d × I by (H2)(ii).

2. Denote for all (t, x, y, i) ∈ [0, T ] × R
d × R

d × I and n ≥ 1

Θn(t, x, y, i) := V̂ (t, x, i) − Ŵ (t, y, i) − ϕn(t, x, y, i),

with

ϕn(t, x, y, i) := n|x− y|2 + |x− x0|4 + |t− t0|2 + |i− i0|.

By the growth assumption on U and V and (H2)(iv), for all n, there exists (tn, xn, yn, in) ∈
[0, T ] × R

d × R
d × I attaining the maximum of Θn on [0, T ] × R

d × R
d × I. By standard

arguments, we have :

(tn, xn, yn, in) → (t0, x0, x0, i0), (3.4.5)

n|xn − yn|2 → 0, (3.4.6)

V̂ (tn, xn, in) − Ŵ (tn, yn, in) → V̂ (t0, x0, i0) − Ŵ (t0, x0, i0). (3.4.7)

3. Using the uppersemicontinuity of V̂ , the compactness of I, and properties of the func-

tions h and Λ, we obtain by the same arguments as in [46]

min
j∈I

ĥ(in, ., V̂ (., in), V̂ (., j), σ⊤Dxϕn(., yn, in), j))(tn, xn) > 0 , (3.4.8)

for n large enough.
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4. Let us check that, up to a subsequence, tn < T for all n ∈ N. Assume on the contrary

that tn = t0 = T for n large enough, and deduce from (3.4.8) and the viscosity subsolution

property of V̂ to (3.4.3) that

V̂ (T, xn, in) ≤ ĝ(xn, in).

On the other hand, by the viscosity supersolution property of Û to (3.4.3) and (H2)(iii),

we have Ŵ (T, yn, in) ≥ ĝ(yn, in), which leads to

V̂ (T, xn, in) − Ŵ (T, yn, in) ≤ ĝ(xn, in) − ĝ(yn, in).

Sending n to infinity, the continuity of ĝ implies (V̂ − Ŵ )(t0, x0, i0) ≤ 0 which contradicts

(3.4.4).

5. We may then apply Ishii’s lemma (see Theorem 8.3 in [23]) to (tn, xn, yn) ∈ [0, T ) ×
R
d × R

d that attains the maximum of Θn(., in), for all n ≥ 1 : there exist (pn
Ṽ
, qn
Ṽ
,Mn) ∈

J̄2,+Ṽ (tn, xn, in) and (pn
W̃
, qn
W̃
, Nn) ∈ J̄2,−W̃ (tn, yn, in) such that

pn
Ṽ
− pn

W̃
= ∂tϕn(tn, xn, yn, in) = 2(tn − t0),

qn
Ṽ

= Dxϕn(tn, xn, yn, in), qn
W̃

= −Dyϕn(tn, xn, yn, in),

and
(
Mn 0
0 −Nn

)
≤ An +

1

2n
A2
n, (3.4.9)

where An = D2
(x,y)ϕn(tn, xn, yn, in). From the viscosity supersolution property of W̃ to

(3.4.5), we have

ρW̃ (tn, yn, in) − pn
W̃

− b(yn, in) ·Dyϕ(tn, xn, yn, in) −
1

2
tr(σσ⊤(yn, in)Nn)

−f̃(tn, yn, in, (W̃ (tn, yn, j))j ,−σ⊤(yn, in)Dyϕ(tn, xn, yn, in)) ≥ 0.

On the other hand, from (3.4.8) and the viscosity subsolution property of Ṽ to (3.4.2), we

have

ρṼ (tn, xn, in) − pn
Ṽ

+ b(xn, in) ·Dxϕ(tn, xn, yn, in) −
1

2
tr(σσ⊤(xn, in)Mn)

−f̃(tn, xn, in, (Ṽ (tn, xn, j))j , σ
⊤(xn, in)Dxϕ(tn, xn, yn, in)) ≤ 0.

By substracting the two previous inequalities, we obtain

ρ(Ṽ (tn, xn, in) − W̃ (tn, yn, in)) ≤
pn
Ṽ
− pn

W̃
+ ∆Fn

−
(
b(xn, in) ·Dxϕn(tn, xn, yn, in) + b(yn, in) ·Dyϕn(tn, xn, yn, in)

)

+
1

2
tr
(
σσ⊤(xn, in)Mn − σσ⊤(yn, in)Nn

)
, (3.4.10)
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where

∆Fn = f̃(tn, xn, in, (Ṽ (tn, xn, j))j , σ
⊤(xn, in)Dxϕn(tn, xn, yn, in))

− f̃(tn, yn, in, (W̃ (tn, yn, j))j ,−σ⊤(yn, in)Dyϕn(tn, xn, yn, in)).

From (3.4.5), we have pn
Ṽ
− pn

W̃
→ 0 as n goes to infinity. From the Lipschitz property of b,

and (3.4.6), we have

lim
n→∞

(
b(xn, in) ·Dxϕn(tn, xn, yn, in) + b(yn, in) ·Dyϕn(tn, xn, yn, in)

)
= 0.

As usual, from (3.4.9), (3.4.5), (3.4.6), and the Lipschitz property of σ, we have

lim sup
n→∞

tr
(
σσ⊤(xn, in)Mn − σσ⊤(yn, in)Nn

)
≤ 0.

Moreover, using the nonincreasing property of f̃ in its third variable, and the Lipschitz

property of f̃ , we have from (3.4.5)-(3.4.6)-(3.4.7)

lim sup
n→∞

∆Fn ≤ 0.

Therefore, by sending n→ ∞ into (3.4.10), we conclude with (3.4.7) that ρ(Ṽ −W̃ )(t0, x0, i0)

≤ 0, a contradiction with (3.4.4).

• Uniqueness for v. The uniqueness result is a direct consequence of the comparison prin-

ciple, and the continuity of v(., i) on [0, T ) × R
d for all i ∈ I follows from the fact that in

this case v∗(., i) = v∗(., i). ✷

Remark 3.4.2 Without comparison theorem for (3.3.2)-(3.3.3), one can still characterize

v with the PDE (3.3.2)-(3.3.3) in the case where the IPDE (3.3.1) admits a comparison

principle. Following the arguments of the proof of Proposition 3.3 in [65], one can prove

that v is indeed the minimal viscosity solution to (3.3.2)-(3.3.3) in the class of functions

with linear growth.

Remark 3.4.3 Considering the particular case of a BSDE of the form (3.2.2)-(3.2.3) with-

out jump component, the previous theorem offers a nice uniqueness property for PDEs

representing solutions of constrained BSDEs derived in [65].

3.5 Numerical issues

This section is dedicated to the numerical implications of the Feynman Kac representation

of coupled systems of variational inequalities. In order to approach the solution to the

corresponding constrained BSDE with jump, we focus here on the approximation of the

corresponding penalized BSDE with jumps. We combine the discrete time scheme intro-

duced by [12] with the statistical estimation projection presented in [38]. This gives rise to
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a convergent probabilistic algorithm solving coupled systems of variational inequalities. In

all the section, we suppose that Assumptions (H0), (H1), (H2) and (H3) are satisfied.

Classical numerical resolution of quasi variational inequalities relies on the use of iterated

free boundary or optimal stopping problems presented in [60]. We first solve the semi-linear

PDE without free boundary condition. We then consider the same PDE combined with the

boundary condition caracterized by the previous value function. Iterating this procedure,

the algorithm converges to the solution of quasi variational inequalities. In a switching

problem, the algorithm corresponds to constraining the solution associated to n+1 possible

switches by the obstacle built with the solution where only n switches are allowed. Such

a numerical approach is computationally demanding, since it requires, at each induction

step n, the resolution of an optimal stopping problem. Moreover, at step n + 1, in order

to determine the solution at one point, one needs to compute the function at time n in the

whole space due to the nonlocal form of the obstacle.

We first add an assumption on g classicaly used for discretisation of BSDEs.

(H4) The functions g, f and h are Lipschitz continuous in x : there exists a constant k

such that

|g(x, i) − g(x′, i)| + |f(i, x, y, z, (uj)j) − f(i, x′, y, z, (uj)j)|
+|h(i, x, y, z, ui, uj , j) − h(i, x′, y, z, ui, uj , j)| ≤ k|x− x′|,

for all (i, j, x, x′, y, z, (uj)j) ∈ I2 × [Rd]2 × R × R
d × R

I .

We propose here a numerical approach based on the probabilistic representation of the

solution to the QVI (3.3.2) by the constrained BSDE given by

Yt = g(IT , XT ) +

∫ T

t
f(Is, X

I
s , Ys + Us, Zs)ds+KT −Kt

−
∫ T

t
Zs.dWs −

∫ T

t

∫

{1,...,m}
Us(i)µ(ds, di), (3.5.1)

together with the constraint

h(It−, X
I
t , Yt−, Yt− + Ut(j), Zt, j) ≥ 0, j ∈ {1, . . . ,m} . (3.5.2)

The algorithm divides in three steps.

Step 1. Approximation by penalization. We first approach the constrained BSDE

(3.5.1)-(3.5.2) by penalization as in section 3 of the paper. Given n ∈ N, the problem is

now to etimate the solution of

Y n
t = g(XT , IT ) +

∫ T

t
fn(Is, Xs, Y

n
s + Uns , Z

n
s )ds−

∫ T

t
Zns dWs −

∫ T

t

∫

I
Uns (j)µ̃(dj, ds), (3.5.3)
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where, for any (i, x, y, z, u) ∈ I × R
d × R × R

d × R
I, we have

fn(i, x, y, z, u) := f(i, x, y + u, z) −
∫

I
[u(j) + nh−(i, x, y, y + u(j), z, j)]λ(dj).

According to Proposition 3.2.1 and Remark 3.2.2, we have the following control on the

penalization error:

‖Y − Y n‖
S2

+ ‖Z − Zn‖
L2
W

+ ‖U − Un‖
L2

µ̃

−→
n→∞

0. (3.5.4)

Step 2. Time discretization. Observe that the pure Jump process I can be simulated

perfectly and denote by (τj) its jump times on [0, T ]. Let introduce the Euler time scheme

approximation Xh of the forward process X defined on the concatenation (sl)k of the regular

time grid {ti := ih, i = 1, . . . , T/h} with the jumps (τj) of J :

Xh
0 = X0 and Xh

sk+1
:= Xh

sk
+ b(Isk

, Xh
sk

)(sk+1 − sk) + σ(Isk
, Xh

sk
)[Wsk+1

−Wsk
].

We deduce an approximation Y n,h
T of Y n

T at maturity given by g(Xh
T , IT ). The penalized

BSDE (3.2.4) can now be discretized by an extension of the scheme exposed by Bouchard

and Elie [12]. An approximation of Y n at time 0 is computed recursively following the

backward scheme for i = T/h− 1, · · · , 0 :




Zn,hti := 1
hEti

[
Y n,h
ti+1

(Wti+1 −Wti)
]
;

Un,hti
(j) := 1

hEti

[
Y n,h
ti+1

µ̃((ti,ti+1]×{j})
λ(j)

]
, j = 1, · · · ,m;

Y n,h
ti

:= Eti

[
Y n,h
ti+1

+
∫ ti+1

ti
fn(Is, X

h
ti , Y

n,h
ti+1

, Zn,hti , Un,hti
)ds
]
,

(3.5.5)

where Eti denotes the conditional expectation with respect to Gti . Following the arguments

in section 2.5 of [12] and identifying (Y n,h, Zn,h, Un,h) as a constant by part process on each

interval (ti, ti+1], one can verify the convergence of this time-discretization approximation :

‖Y n − Y n,h‖
S2

+ ‖Zn − Zn,h‖
L2
W

+ ‖Un − Un,h‖
L2

µ̃

−→
h→∞

0, n ∈ N. (3.5.6)

Step 3. Approximation of the conditional expectations. The last step consists

in estimating the conditional expectation operators Eti arising in (3.5.5). There are sev-

eral methods proposed in the literature relying on quantization method, basis function

approximation, cubature formulas or Malliavin Calculus. We adopt here the approach of

Longstaff-Schwarz [52] generalized by [38] and [31] relying on least square regressions and

Monte Carlo simulations.

Fix N ∈ N and simulate N independent copies of the Brownian increments (W k
ti+1

−
W k
ti)0≤i≤T/h and the poisson measure (µ̃k((ti, ti+1]×I)0≤i≤T/h. For each simulation k ≤ N ,

define INk and Xh,N
k the trajectories of I and Xh. By induction, one can easily verify the

Markov property of the process (Y n,h, Zn,h, Un,h) defined in (3.5.5):

Y n,h
ti

= ξn,hi (Iti , X
h
ti), Zn,hti = φn,hi (Iti , X

h
ti), Un,hti

= ψn,hi (Iti , X
h
ti),
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for some deterministic functions ξn,hi , φn,hi , ψn,hi . The idea is to approximate these functions

using Ordinary Least Square (OLS) estimators, as detailed in [31]. Given L ∈ N, we

introduce a collection of basis functions (ξLl , φ
L
l , ψ

L
l )1≤l≤L of R×R

d×R
d. For each trajectory

k ≤ N , define the associated terminal value given by Y n,h,L,N
k,tN

:= g(INk,tN , X
h,N
k,tN

). Now we

define recursively (Zn,h,L,Nk,ti
, Un,h,L,Nk,ti

), backward in time for i = T/h−1, · · · , 0, by computing

OLS approximations as follows:

(α̂1, · · · , α̂L) := arg min
α1,···,αL

1

N

N∑

k=1

∣∣∣
1

h
Y n,h,L,N
k,ti+1

[W k
ti+1

−W k
ti ] −

L∑

l=1

αlφ
L
l (INk,ti , X

h,N
k,ti

)
∣∣∣
2
,

(β̂, · · · , β̂L)(j) := arg min
β1,···,βL

1

N

N∑

k=1

∣∣∣
1

h
Y n,h,L,N
ti+1

µ̃k((ti, ti+1] × {j})
λ(j)

−
L∑

l=1

βlψ
L
l (INk,ti , X

h,N
k,ti

)
∣∣∣
2
,

leading to the approximation

Zn,h,L,Nk,ti
:=

L∑

l=1

α̂lφ
L
l (INk,ti , X

h,N
k,ti

) and Un,h,L,Nk,ti
(j) :=

L∑

l=1

β̂l(j)ψ
L
l (INk,ti , X

h,N
k,ti

) , j ∈ I.

It remains to introduce (γ̂1, · · · , γ̂L) the minimizer of the mean square error

1

N

N∑

k=1

∣∣∣Y n,h,L,N
k,ti+1

+

∫ ti+1

ti

fn(I
N
k,s, X

h,N
k,ti

, Y n,h,L,N
ti+1

, Zn,h,L,Nti
, Un,h,L,Nti

)ds−
L∑

l=1

γlξ
L
l (INk,ti , X

h,N
k,ti

)
∣∣∣
2
;

in order to deduce the OLS approximation Y n,h,Xh,NL,N

k,ti
:=
∑L

l=1 γ̂lξ
L
l (INk,ti , X

h,N
k,ti

). We

refer to [38] and [31] for the control of the statistical error due to the approximation of the

conditional expectation operators by OLS projections. Adapting their arguments to our

context, we can verify that the statistical error

‖Y n,h − Y n,hL,N‖
S2

+ ‖Zn,h − Zn,h,L,N‖
L2
W

+ ‖Un,h − Un,h,L,N‖
L2

µ̃

−→
N,L→∞

0,(3.5.7)

for n ∈ N and h > 0.

The global error of the algorithm is controlled by (3.5.4), (3.5.6) and (3.5.7) and con-

verges to 0. In order to get a rate of convergence for the algorithm, we need to study the

dependence in n of all the estimates coming from the discretization and the statistical error.

Furthermore, one requires to control the penalization error which seems to be very intricate.

This very challenging point is left for further research.



Chapter 4

A discrete-time approximation for

multidimensional BSDEs with

oblique reflections

Abstract : In this paper, we study the discrete-time approximation of multi-dimensional

reflected BSDEs presented by Hu and Tang [44]. In comparison to the penalizing approach

followed by Hamadène and Jeanblanc [39] or Elie and Kharroubi [32], we study a more

natural scheme based on oblique projections. We provide a control on the error of the

algorithm by introducing and studying the notion of multidimensional discretely reflected

BSDE. In the particular case where the driver does not depend on the variable Z, the error

on the grid points is of order 1−ε
2 for all ε > 0, and 1

2 in the case of constant cost functions.

Keywords: BSDE with oblique reflections, discrete time approximation, Switching problems.
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4.1 Introduction

Trying to optimize the productivity of a power station with start-up and switch-down costs,

Hamadène and Jeanblanc [39] study the Snell envelope representation for optimal switching

problems in continuous time. Observing that the difference between the two value functions

starting in both modes of production is solution of a doubly reflected BSDE, they derive

existence and uniqueness of solution to this problem. Nevertheless their approach restricts

to optimal switching problems with only two possible modes of production. The extension

to optimal switching problem in high dimension is studied by Carmona and Ludkovski [18],

Porchet, Touzi and Warin [70] and by Pham, Ly Vath and Zhou [68] for an infinite time

horizon consideration. In these papers, the resolution of optimal switching problem relies

mostly on its link with systems of variational inequalities. The rigorous derivation of a

multidimensional BSDE representation for this type of problem is obtained by Djehiche,

Hamadène and Popier [28] and Hu and Tang [44]. In this latter paper, they introduce the

more general notion of multi-dimensional reflected BSDE, with dynamics of the form





Ẏ i
t = gi(XT ) +

∫ T
t f i(Xs, Ẏ

i
s , Ż

i
s)ds−

∫ T
t ŻisdWs + K̇i

T − K̇i
t ,

Ẏ i
t ≥ maxj∈I{Ẏ j

t − ci,j}, 0 ≤ t ≤ T ,∫ T
0 [Ẏ i

t − maxj∈I{Ẏ j
t − ci,j}]dK̇i

t = 0 , i ∈ I ,
(4.1.1)

where I := {1, . . . , d}, f and g are Lipschitz functions and X is the solution of a forward

stochastic differential equation. Hu and Tang [44] derive existence and uniqueness of solu-

tion to BSDE (4.1.1) and relate it to optimal switching problems where the driver f depends

on the Ẏ and Ż components of the BSDE solution. All the components of the Ẏ process are

interconnected so that the vector Ẏ lies in a closed convex set C characterized by the costs

ci,j . The vector process Ẏ is reflected obliquely on the boundaries of the domain. The main

contribution of this paper is to offer and study a numerical scheme for the discrete-time

approximation of the solution to multidimensional reflected BSDE of the form (4.1.1).

The key for the discrete time approximation of solution to BSDEs relies in the path

regularity of the process Z derived by Zhang in [80]. Based on this beautiful estimate,

Bouchard and Touzi [14] and Gobet, Lemor and Warin [37] introduced respectively an im-

plicit and explicit discrete time scheme for the resolution of classical BSDEs. Being given a

time discretization grid of [0, T ] with time mesh |π| and an Euler approximation Xπ of X,

the scheme computes backward in time some approximation of the solution to the BSDE,

with an optimal quadratic error of order |π|1/2. As detailed in the recent survey [13], several

extensions of this type of scheme allow in particular for the addition of jumps [12] or normal

reflections [11, 21, 22]. Since the approximation procedure always relies on a backward

induction, we shall regroup these schemes into the generic name of moonwalk scheme. We

intend here to extend this so-called moonwalk scheme to the consideration of oblique reflec-

tions appearing in (4.1.1). Recently two of the authors related in [32] the solution of (4.1.1)
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to corresponding constrained BSDEs with jumps. As presented in [33], this type of BSDE

can be numerically approximated combining a penalization procedure with the use of the

moonwalk scheme for BSDEs with jumps. Unfortunately, no convergence rate is available

for this algorithm. We present here a more natural scheme based on oblique reflections on

the boundary of the convex set C.

For this purpose, we introduce a grid ℜ = {r0, . . . , rκ} of possible reflection points,

simply extracted from the discretization grid. We then consider, as in [11, 21] but adapted

to our context, the following discretely obliquely reflected BSDE : YT = ỸT := g(XT ) ∈ C,

and for j ≤ κ− 1 and t ∈ [rj , rj+1)

{
Ỹt = Yrj+1 +

∫ rj+1

t f(Xu, Ỹu, Zu)du−
∫ rj+1

t ZudWu ,

Yt = Ỹt1{t/∈ℜ} + P(Ỹt)1{t∈ℜ}.
(4.1.2)

where P is the oblique projection operator on C. We then consider its natural discrete-time

scheme defined by

Y π
T := g(Xπ

T ) ,

and for i ∈ {0 . . . , n− 1}




Z̄πti := (ti+1 − ti)
−1

E

[
Y π
ti+1

(Wti+1 −Wti)
′ | Fti

]
,

Ỹ π
ti := E

[
Y π
ti+1

| Fti
]

+ (ti+1 − ti)f(Xπ
ti , Ỹ

π
ti , Z̄

π
ti) ,

Y π
ti := Ỹ π

ti 1{ti /∈ℜ} + P(Ỹ π
ti )1{ti∈ℜ} ,

(4.1.3)

Using classical argument, we obtain the convergence of this discrete time scheme to

(4.1.2). However, the obliqueness of the projections on C rules out classical methods (used

e.g. in [21] for the case of normal reflections) to get a bound on a convergence rate.

To overcome this difficulty, we interpret, as Hu and Tang [44], the solution of the BSDE

with discrete oblique reflection (4.1.1) as the value process of an optimal switching problem

with switching times belonging to ℜ. Introducing a convenient process dominating both

(4.1.3) and (4.1.2) and using a comparison argument, we are able to retrieve a bound of

the convergence rate of |π|1/2 for the value process, in the case where f does not depend

on the variable Z. Using the same approach, we prove, when f is bounded in the variable

Z, the convergence of the discretely reflected BSDE (4.1.2) to the continuously reflected

BSDE (4.1.1) at a rate |ℜ| 1−ε
2 for all ε > 0. Combining those two results, we then obtain

the convergence of (4.1.3) to (4.1.1) for the value process at a rate of |π| 1−ε
2 on the grid for

all ε > 0. In the case where the cost functions are constant this convergence holds at a rate

|π| 12 on the grid, and |π| 14 on [0,T], see Theorem 4.4.3.

All these results are obtained without any assumption on the non-degeneracy of the

volatility matrix σ.

The rest of the paper is organized as follows. In Section 2, we introduce the notion of

discretely reflected BSDEs, connect it with optimal switching problems. Section 3 focuses
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on the discrete time approximation of discretely reflected BSDEs. We present the discrete

time scheme and study its convergence. In the particular case where the driver function

does not involve the variable Z, we provide a rate of convergence. Finally, Section 4 study

the extension to the continuously reflected case. In the case where the driver f is bounded

in the variable Z, we provide a rate of convergence of the discretely reflected BSDE to the

continuously one.

Notations. Throughout this paper we are given a finite time horizon T and a probability

space (Ω,F ,P) endowed with a d-dimensional standard Brownian motion W = (Wt)t≥0.

Any element x ∈ R
ℓ with ℓ ∈ N will be identified to a column vector with i-th component

xi and Euclidian norm |x|. For x, y ∈ R
ℓ, x.y denotes the scalar product of x and y, and x′

denotes the transpose of x. We denote by � the component by component partial ordering

relation on vectors. Mm,d denotes the set of real matrices with m lines and d columns. We

denotes by Ckb the set of functions from R
d to R with continuous and bounded derivatives

up to order k. Sp (resp. Sc,p), p ≥ 1, is the set of real-valued càdlàg1 (resp. continuous)

F-adapted processes Y = (Yt)0≤t≤T such that

‖Y ‖
Sp := E

[
sup

0≤t≤T
|Yt|p

] 1
p

< ∞.

Hp, p ≥ 1, is the set of R
d-valued F-progressively measurable processes Z = (Zt)0≤t≤T such

that

‖Z‖
Hp := E

[
(

∫ T

0
|Zt|2dt)

p
2

] 1
p

< ∞.

A
p (resp. A

c,p), p ≥ 1, is the closed subset of Sp (resp. Sc,p) consisting of nondecreasing

processes K = (Kt)0≤t≤T with K0 = 0. In the following, we shall use these notations

without specifying the dimension or the dependence in ω ∈ Ω when it is clearly given by

the context.

4.2 Discretely obliquely reflected BSDE

In this section, we define and study discretely obliquely reflected BSDEs. In particular,

we show how its solution relates to the solution of a one-dimensional optimal switching

problem, where the switching times are restricted to a discrete set of time.

4.2.1 Definition

Let T > 0 be a given time horizon and (Ω,F ,P) be a stochastic basis supporting a d-

dimensional Brownian motion. The filtration F = (Ft)t≤T generated by the Brownian

motion is supposed to satisfy the usual conditions.

1The french acronym for continu à droite limité à gauche meaning right continuous with left limits.
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Let X be the solution on [0, T ] to the following Stochastic Differential Equation

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs , 0 ≤ t ≤ T , (4.2.1)

where X0 ∈ R
m and b : R

m → R
m and σ : R

m → Mm,d(R) are L-Lipschitz functions, for

some positive constant L.

In the sequel we denote by CL a constant whose value may change from line to line but

which depends only on L. We use the notation CpL whenever it depends on some other

parameter p > 0.

Under the above assumption, the following estimates are well known (see e.g. [50])

E

[
sup
t∈[0,T ]

|Xt|p
]
≤ CpL and sup

s∈[0,T ]

(
E

[
sup

u∈[0,T ],|u−s|≤h
|Xs −Xu|p

]) 1
p

≤ CpL
√
h . (4.2.2)

We then introduce a family (C(x))x∈Rm of closed convex domains:

C(x) :=

{
y ∈ R

d | yi ≥ max
j

(yj − ci,j(x)) , ∀i ∈ I
}
, (4.2.3)

recalling that I = {1, . . . , d}. The maps (ci,j)1≤i,j≤d, ci,j : R
m → R

+, are L-Lipschitz

continuous and satistfy:





ci,i(.) = 0 , for 1 ≤ i ≤ d ;
infx∈Rm ci,j(x) > 0 , for 1 ≤ i, j ≤ d , with i 6= j ;

infx∈Rm{ci,j(x)+cj,l(x)−ci,l(x)} > 0, for 1 ≤ i, j, l ≤ d, with i 6= j, j 6= l.
(4.2.4)

Remark 4.2.1 As detailled in [41], these conditions allow to get existence and uniqueness

of a solution to the corresponding continuously reflected BSDE, see Section 4 hereafter for

more details.

We consider P an oblique projection operator on C w.r.t. y defined by

P : (x, y) ∈ R
m × R

d 7→
(

max
j

{
yj − ci,j(x)

})

1≤i≤d

.

We present in the next Lemma some useful properties of P.

Lemma 4.2.1 The operator P is Lipschitz. For all x ∈ R
m, P(x, .) is an oblique projection

onto C(x) and it is increasing with respect to the partial ordering relation �, where y � y′

means yi ≥ (y′)i for all i ∈ I.
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Proof. Observe first that obviously P(x, y) = y for y ∈ C(x) and x ∈ R
m. It follows

from the structure condition (4.2.4) on the maps (cij)1≤i,j≤d that

P(x, y)i = max
j

{
yj − ci,j(x)

}
≥ max

j

{
yj − ck,j(x)

}
− ci,k(x) = P(x, y)k − ci,k(x) ,

for (x, y) ∈ R
m × R

d and 1 ≤ i, k ≤ d. Therefore P(x, .) is an oblique projection on C(x).

We compute that

|P(x1, y1) − P(x2, y2)| =

(
d∑

i=1

∣∣∣∣max
j

(yj1 − ci,j(x1)) − max
j

(yj2 − ci,j(x2))

∣∣∣∣
2
)1/2

≤
√
dmax

j
|yj1 − yj2| + |ci,j(x1) − ci,j(x2)|

≤ L
(
|y1 − y2| + |x1 − x2|

)
, y1, y2 ∈ R

d , x1, x2 ∈ R
m .

✷

In the spirit of [11, 22], we introduce the notion of multidimensional discretely obliquely

reflected BSDE characterized by

• a partition grid ℜ := {r0 = 0, . . . , rκ = T} of [0, T ] satisfying

|ℜ| := max
1≤k≤κ

|rk − rk−1| ≤
L

κ
, (4.2.5)

• the previous convex set valued function C,

• an L-Lipschitz function g : R
m → R

d such that g(x) ∈ C(x) for all x ∈ R
m,

• a generator function, i.e. an L-lipschitz map f : R
m × R

d ×Md,d(R) → R
d. We also

assume that the component i of f(t, y, z) depends only on the component i of the

vector y and on the line i of the matrix z i.e. f i(t, y, z) = f i(t, yi, zi). This allows to

interpret Y as the value process of an optimal switching of BSDEs (see [44]).

For a given data (ℜ, C, g, f), a discretely obliquely reflected BSDE is a triplet (Ỹ , Y, Z) ∈
(S2×S2×H2)I satisfying YT = ỸT := g(XT ) ∈ C(XT ), and, defined in a backward manner,

for j ≤ κ− 1 and t ∈ [rj , rj+1), by

{
Ỹt = Yrj+1 +

∫ rj+1

t f(Xu, Ỹu, Zu)du−
∫ rj+1

t Zu.dWu ,

Yt = Ỹt1{t/∈ℜ} + P(Xt, Ỹt)1{t∈ℜ}.
(4.2.6)

This rewrites equivalently on [0, T ] as

Ỹt = g(XT ) +

∫ T

t
f(Xu, Ỹu, Zu)du−

∫ T

t
Zu.dWu + (K̃T − K̃t) , 0 ≤ t ≤ T , (4.2.7)



128 CHAPTER 4. APPROXIMATION OF BSDES WITH OBLIQUE REFLECTIONS

where the nondecreasing (for the partial ordering �) process K̃ ∈ (A2)I is defined by

K̃t :=
∑

r∈ℜ\{0}

∆K̃r 1{r≤t} and ∆K̃t = Yt − Ỹt = −(Ỹt − Ỹt−) , 0 ≤ t ≤ T. (4.2.8)

Observe that Y and Ỹ differ only on the grid points of ℜ. On each interval of the

form [rk, rk+1), (Ỹ , Z) is solution to a classical non reflected BSDE with terminal condition

Yrk+1
, see [61]. Therefore, existence and uniqueness of the discretely reflected BSDE follows

directly from a concatenation of the solutions on all the grid intervals.

4.2.2 Corresponding optimal switching problem

In this section, we interpret the solution of the discretely obliquely RBSDE (4.2.7) as the

value process of a corresponding optimal switching problem, where the possible times of

switch are restricted to belong the grid ℜ. Our approach relies on similar arguments as the

one followed by Hu and Tang [44] in a framework with continuous reflections.

A switching strategy a is a nondecreasing sequence of stopping times (θj)j∈N , combined

with a sequence of random variables (αj)j∈N valued in I, such that αj is Fθj
−measurable,

for any j ∈ N. We denote by A the set of such strategies. For a = (θj , αj)j∈N ∈ A, we

introduce Na the (random) number of switch before T :

Na = #{k ∈ N
∗ : θk ≤ T} .

To any switching strategy a = (θj , αj)j∈N ∈ A, we associate the current state process

(at)t∈[0,T ] and the compound cost process (Aat )t∈[0,T ] defined respectively by

at := α01{0≤t≤θ0} +

Na∑

j=1

αj−11{θj−1<t≤θj} and Aat :=

Na∑

j=1

cαj−1,αj
(Xθj

)1{θj≤t≤T} ,

for 0 ≤ t ≤ T . For (t, i) ∈ [0, T ] × I, At,i the set of admissible strategies starting from i at

time t is defined by

At,i = {a = (θj , αj)j ∈ A |θ0 = t, α0 = i, E
[
|AaT |2

]
<∞}

We denote by Aℜ
t,i the set of ℜ−admissible strategies:

Aℜ
t,i := { a = (θj , αj)j∈N ∈ At,i | θj ∈ ℜ , ∀j ≤ Na } .

For (t, i) ∈ [0, T ]×I, and a ∈ Aℜ
t,i, we consider as in [44] the associated one dimensional

switched BSDE defined by

Uau = gaT (XT ) +

∫ T

u
fas(Xs, U

a
s , V

a
s )ds−

∫ T

t
V a
s .dWs −AaT +Aau , t ≤ u ≤ T . (4.2.9)
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Theorem 3.1 in [44] interprets the components of the solution to the continuously re-

flected BSDE (4.1.1) as the Snell envelop associated to switched processes of the form (4.2.9),

where the switching strategies a are not restricted to lie in the reflection grid ℜ. The next

theorem is a version of this Snell envelop representation to the discretely reflected BSDE

(4.2.7).

Theorem 4.2.1 For any i ∈ I and t ∈ [0, T ], the following holds:

(i) The process Ỹ dominates any switched BSDE, i.e.

Uat ≤ Ỹ i
t P − a.s. , for any a ∈ Aℜ

i,t . (4.2.10)

(ii) Define the strategy a∗ = (θ∗j , α
∗
j )j≥0 recursively by (θ∗0, α

∗
0) := (t, i) and, for j ≥ 1,

θ∗j := inf

{
s ∈ [θ∗j−1, T ] ∩ ℜ

∣∣∣ Ỹ
α∗

j−1
s ≤ max

k 6=α∗
j−1

{
Ỹ k
s + cα∗

j−1,k
(Xs)

}}
,

α∗
j := min

{
k 6= α∗

j−1

∣∣∣ Ỹ k
θ∗j

+ cα∗
j−1,k

(Xθ∗j
) = max

ℓ 6=α∗
j−1

{
Ỹ ℓ
s + cα∗

j−1,ℓ
(Xθ∗

k
)
}}

.

Then we have a∗ ∈ Aℜ
t,i and

Ỹ i
t = Ua

∗

t P − a.s. . (4.2.11)

(iii) The following “Snell envelop” representation holds

Ỹ i
t = essupa∈Aℜ

t,i
Uat , P − a.s. . (4.2.12)

Proof. Assertion (iii) is a direct consequence of (i) and (ii).

Step 1. We first prove (i). Let fix t ∈ [0, T ] and i ∈ I. Set a = (θk, αk)k≥0 ∈ Aℜ
t,i and

the process (Ỹ a, Za) defined on [t, T ] by

Ỹ a
s :=

∑

k≥0

Ỹ αk
s 1{θk≤s<θk+1} + gaT (XT )1{s=T} and

Zas :=
∑

k≥0

Zαk
s 1{θk≤s<θk+1} , t ≤ s ≤ T . (4.2.13)

These processes jump between the components of the discretely reflected BSDE (4.2.6) and,

between two jumps, we have

Ỹ αk

θk
= Y αk

θk+1
+

∫ θk+1

θk

fαk(Xs, Ỹ
αk
s , Zαk

s )ds−
∫ θk+1

θk

Zαk
s .dWs + K̃αk

θk+1−
− K̃αk

θk

= Ỹ a
θk+1

+

∫ θk+1

θk

fas(Xs, Ỹ
a
s , Z

a
s )ds−

∫ θk+1

θk

Zas .dWs + K̃αk

θk+1−
− K̃αk

θk

+(Y αk

θk+1
− Ỹ

αk+1

θk+1
) , k ≥ 0 . (4.2.14)
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Introducing

K̃a
s :=

Na−1∑

k=0

[

∫

(θk∧s,θk+1∧s)
dK̃αk

s + 1{θk+1≤s}(Y
αk

θk+1
− Ỹ

αk+1

θk+1
+ cαk,αk+1

(Xθk+1
))] ,

for s ∈ [t, T ], and summing up (4.2.14) over k, we get

Ỹ a
u = gaT (XT ) +

∫ T

u
fas(Xs, Ỹ

a
s , Z

a
s )ds−

∫ T

u
Zas .dWs

−AaT +Aau + K̃a
T − K̃a

u , t ≤ u ≤ T . (4.2.15)

Using the equality Yθk
= P(Xθk

, Ỹθk
) for all k ∈ {0, . . . , Na}, we obtain that K̃a is increas-

ing. Since Ua solves (4.2.9), we deduce by a comparison argument (see Theorem 1.3 in [64])

that Uat ≤ Ỹ a
t , proving (4.2.10).

Step 2. We now consider the strategy a∗, recall (ii), and the associated processes Ỹ a∗

and Za
∗

defined as in (4.2.13). By definition of a∗, we have

Y
α∗

k

θ∗
k+1

=
[
P
(
Xθ∗

k+1
, Ỹθ∗

k+1

)]α∗
k

= Ỹ
α∗

k+1

θ∗
k+1

− cα∗
k
,α∗

k+1
(Xθ∗

k+1
) , k ≥ 0 ,

which gives
∫

(θ∗
k
,θ∗

k+1)
dK̃

α∗
k

s = 0 and Y
α∗

k

θ∗
k+1

− Ỹ
α∗

k

θ∗
k+1

+ cα∗
k
,α∗

k+1
(Xθ∗

k+1
) = 0 , (4.2.16)

for all k ∈ {0, . . . , Na∗ − 1}. We deduce from (4.2.15) that

Ỹ a∗

u = ga
∗
T (XT ) +

∫ T

u
fa

∗
s (Xs, Ỹ

a∗

s , Za
∗

s )ds−
∫ T

u
Za

∗

s .dWs −Aa
∗

T +Aa
∗

u , t ≤ u ≤ T .

Hence (Ỹ a∗ , Za
∗
) and (Ua

∗
, V a∗) are solutions of the same BSDE and Ỹ i

t = Ua
∗

t . We finaly

observe that a∗ ∈ Aℜ, i.e. E|Aa∗T |2 <∞. Indeed, we have

Aa
∗

T = Ỹ a∗

T − Ỹ a∗

t +

∫ T

t
fa

∗
s (Xs, Ỹ

a∗

s , Za
∗

s )ds−
∫ T

t
Za

∗

s .dWs +Aa
∗

t . (4.2.17)

By definition of a∗ and the structure condition on the cost (4.2.4), we have |Aa∗t | ≤
maxk 6=i |ci,k(Xt)| which gives E[|Aa∗t |2] ≤ CL. Then, using the fact that (Ỹ , Z) belongs

to S2 ×H2, and the properties of the generator f , we get from (4.2.17) the square integra-

bility of Aa
∗

T . ✷

Remark 4.2.2 Although the optimal strategy a∗ depends on the initial parameters t and

i, we omit the script (t, i) for ease of notation.

Remark 4.2.3 Notice that Theorem 4.2.1 holds true for a random generator (f(t, ., .))t

such that E

[∫ T
0 |f(s, 0, 0)|2ds

]
<∞, and random costs (ci,j(t))t, satisfying (4.2.4) and ci,j ∈

Sp, for i, j ∈ I.
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4.2.3 Some a priori estimates

We present here some estimates on the processes Ỹ , Z and their associated switched pro-

cesses Ua
∗
,V a∗ and Aa

∗
. The proof of the following Proposition is postponed to the ap-

pendix.

Proposition 4.2.1 The following holds

d∑

i=1

‖Ỹ i‖
Sp + ‖Zi‖

Hp + ‖K̃i‖
Sp ≤ CpL , p ≥ 2 ,

recalling that CpL does not depend on ℜ.

Using the link between (Ua
∗
, V a∗) and (Ỹ , Z), we obtain the same result for Ua

∗
, V a∗

and Aa
∗
.

Corollary 4.2.1 The following bound holds

E

[
sup
s∈[t,T ]

|Ua∗s |p
]

+ E

[
(

∫ T

t
|V a∗

s |2ds) p
2

]
+ E

[
sup
s∈[t,T ]

|Aa∗s |p
]

+ E[|Na∗ |p] ≤ CpL , p ≥ 2 ,

for all (t, i) ∈ [0, T ] × I, recalling that CpL does not depend on ℜ.

Proof. Fix p ≥ 2. According to the identification of (Ua
∗
, V a∗) with (Ỹ a∗ , Za

∗
), obtained

in the proof of Theorem 4.2.1, we get from the previous proposition

E

[
sup
s∈[t,T ]

|Ua∗s |p
]

+ E

[
(

∫ T

t
|V a∗

s |2ds) p
2

]
≤ CpL ,

Then, writing the equation satisfied by (Ua
∗
, V a∗) and using standard arguments for BSDEs,

we get

E

[
|Aa∗T |p

]
≤ CL(E

[
sup
s∈[t,T ]

|Ua∗s |p
]

+ E

[
(

∫ T

t
|V a∗

s |2ds) p
2

]
+ E[|Aa∗t |p]

By definition of a∗ and (4.2.4), we have |Aa∗t | ≤ CL(1 + |Xt|) which gives with the previous

inequality

E

[
|Aa∗T |p

]
≤ CL

From (4.2.4) we get CLE
[
|Na∗ |p

]
≤ E

[
|Aa∗T |p

]
which completes the proof. ✷

4.3 Discrete-time Approximation

We present here a discrete time scheme for the approximation of the solution of the discretely

reflected BSDE (4.2.6).
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4.3.1 Discrete-time approximation of the forward process

We consider a grid π := {t0 = 0, . . . , tn = T} on the time interval [0, T ], with modulus |π|
(|π| := max0≤i≤n−1 |ti+1 − ti|), such that ℜ ⊂ π and |π|n ≤ L. In the sequel, the process X

is approximated by its Euler scheme Xπ, whose dynamics are given by

Xπ
t = X0 +

∫ t

0
b(Xπ

π(s))ds+

∫ t

0
σ(Xπ

π(s)).dWs , 0 ≤ t ≤ T , (4.3.1)

where π(t) := sup{ti ∈ π ; ti ≤ t} is defined on [0, T ] as the projection to the closest

previous grid point of π. We then have the following bound uniform in the grid π:

E

[
sup

0≤t≤T
|Xπ

t |p
]1/p

≤ CpL , p ≥ 2 . (4.3.2)

The control of the error between X and its Euler scheme Xπ is well understood, see e.g.

[48], and we have

E

[
sup

0≤t≤T
|Xt −Xπ

t |p
]1/p

≤ CpL |π|
1
2 , p ≥ 2 . (4.3.3)

4.3.2 An approximation scheme for discretely reflected BSDEs

We introduce an Euler-type approximation scheme for the discretely reflected BSDEs.

Starting from the terminal condition

Y π
T = Ỹ π

T := g(Xπ
T ) ∈ C(Xπ

T )

we compute recursively, for i ≤ n− 1,




Z̄πti = (ti+1 − ti)
−1

E

[
Y π
ti+1

(Wti+1 −Wti)
′ | Fti

]
,

Ỹ π
ti = E

[
Y π
ti+1

| Fti
]

+ (ti+1 − ti)f(Xπ
ti , Ỹ

π
ti , Z̄

π
ti) ,

Y π
ti = Ỹ π

ti 1{ti /∈ℜ} + P(Xπ
ti , Ỹ

π
ti )1{ti∈ℜ}.

(4.3.4)

This kind of backward scheme has been already considered when no reflection occurs,

see e.g. [14], and in the reflected case, see e.g. [11, 56, 22]. See also [13] for a recent survey

on the subject.

Combining an induction argument with the Lispchitz-continuity of f , g and the projection

operator, one easily checks that the above processes are square integrable and that the

conditional expectations are well defined at each step of the algorithm.

Remark 4.3.1 This so-called moonwalk algorithm is given by an implicit formulation, and

one should use a fixed point argument to compute explicitly Ỹ π at each grid point. As

observed in [37], one could also use an explicit version of the scheme, replacing the second

equation in (4.3.4) by

Ỹ π
ti = E

[
Y π
ti+1

+ (ti+1 − ti)f(Xπ
ti , Ỹ

π
ti+1

, Z̄πti) | Fti
]
, i < n .
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For later use, we introduce the piecewise continuous time scheme associated to (Y π, Ỹ π, Z̄π).

By the martingale representation theorem, there exists Zπ ∈ H2 such that

Y π
ti+1

= Eti

[
Y π
ti+1

]
+

∫ ti+1

ti

Zπu .dWu , i ≤ n− 1 ,

and by the Itô isometry, for i ≤ n− 1,

Z̄πti =
1

ti+1 − ti
E

[∫ ti+1

ti

Zπs ds | Fti
]
. (4.3.5)

We set

Z̄πt := Z̄πti for t ∈ [ti, ti+1) .

We then define Ỹ π on [ti, ti+1) by

Ỹ π
t = Y π

ti+1
+ (ti+1 − t)f(Xπ

ti , Ỹ
π
ti , Z̄

π
ti) −

∫ ti+1

t
Zπu .dWu , (4.3.6)

and by

Y π
t := Ỹ π

t 1{t/∈ℜ} + P(Xπ
t , Ỹ

π
t )1{t∈ℜ} .

This can be rewritten:




Ỹ π
t = g(Xπ

T ) +
∫ T
t f(Xπ

π(u), Ỹ
π
π(u), Z̄

π
u )du−

∫ T
t Zπu .dWu + (K̃π

T − K̃π
t ) ,

K̃π
t =

∑
r∈ℜ\{0} ∆K̃π

r 1{r≤t} and ∆K̃π
t = Y π

t − Ỹ π
t = −(Ỹ π

t − Ỹ π
t−) ,

Y π
t = Ỹ π

t 1{t/∈ℜ} + P(Xπ
t , Ỹ

π
t )1{t∈ℜ} , 0 ≤ t ≤ T.

(4.3.7)

4.3.3 Convergence of the discrete-time scheme

The following proposition provides the convergence of the discrete time scheme to the solu-

tion of the discretely reflected BSDE (4.2.6).

Proposition 4.3.1 The discrete-time scheme (Ỹ π, Z̄π) converges to (Ỹ , Z):

sup
t∈[0,T ]

E

[
|Ỹt − Ỹ π

t |2 + |Yt − Y π
t |2
]

+ E

[∫ T

0
|Zs − Z̄πs |2ds

]
−→ 0 as |π| → 0 .

Proof. Using the same arguments as in the proof of Proposition 3.4.1 in [21], we get the

following inequality:

sup
t∈[0,T ]

E

[
|Ỹt − Ỹ π

t |2 + |Yt − Y π
t |2
]

+ E

[∫ T

0
|Zs − Z̄πs |2ds

]
≤

CLL
κ

(
|π| + E

[∫ T

0
(|Ỹt − Ỹπ(t)|2 + |Zt − Z̄π(t)|2)dt

])
(4.3.8)
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where κ+ 1 is the length of ℜ : ℜ = {r0 = 0, . . . , rκ = T}, and

Z̄ti :=
1

ti+1 − ti
E

[∫ ti+1

ti

Zsds | Fti
]
, i ∈ {0, . . . , n− 1}. (4.3.9)

The only difference is that P here is not 1-Lipschitz but only L-Lipschitz (See step 1.b

in the proof of Proposition 3.4.1 in [21]). This justifies the term Lκ in (4.3.8).

Obviously E

[∫ T
0 |Ỹt − Ỹπ(t)|2dt

]
−→ 0 as |π| ↓ 0 and since, Z̄ is the best approximation in

H2 of Z by adapted processes constant on [ti, ti+1), it follows from (4.3.8) that the scheme

is convergent. ✷

In the general case, we are not able to retrieve an explicit control on the convergence rate of

the scheme in term of |π|. This is usually done by studying the process Z and its regularity

property. This problem is left for further research. In the next section, we provide a suitable

control in term of |π| but under restrictions on the function f .

4.3.4 The case where f does not depend on Z

In this section, we improve substantially the results of Proposition 4.3.1 when the driver

function f does not depend on the variable Z.

Theorem 4.3.1 If f does not depend on Z, the following holds:

sup
t∈[0,T ]

E

[∣∣∣Ỹt − Ỹ π
t

∣∣∣
2
]

≤ CL|π| ,

for all π such that |π|L < 1.

In order to compare the processes Ỹ and Ỹ π, recall (4.2.7) and (4.3.7), we introduce the

process (Ŷ , Y̌ , Ẑ) ∈ (S2 × S2 ×H2)I solution to the discretely reflected BSDE:





Ŷt = g(XT ) ∨ g(Xπ
T ) +

∫ T
t f(Xu, Ỹu) ∨ f(Xπ

π(u), Ỹ
π
π(u))du

−
∫ T
t Ẑu.dWu + (K̂π

T − K̂π
t ) ,

K̂t =
∑

r∈ℜ\{0} ∆K̂π
r 1{r≤t} and ∆K̂π

t = Y̌t − Ŷt ,

Y̌t = Ŷt1{t/∈ℜ} + P̂(Xt, X
π
t , Ŷt)1{t∈ℜ} , 0 ≤ t ≤ T.

(4.3.10)

where P̂ : R
m × R

m × R
d is defined by

P̂(x1, x2, y)
i = maxj{yj − ci,j(x1) ∧ ci,j(x2)} = P(x1, y)

i ∨ P(x2, y)
i

Using a backward induction argument and the comparison theorem for non-reflected BSDEs,

we easily obtain the following property.

Lemma 4.3.1 We have Ŷt � max{Ỹt, Ỹ π
t } for all t ∈ [0, T ], P−a.s..
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Since P is only L-Lipschitz with L > 1, the “geometric” approach, used in the proof of

Proposition 4.3.1, does not allow to retrieve convenient controls. Instead, we use here the

correspondance between obliquely reflected BSDEs and optimal switching problem.

Fix (t, i) ∈ [0, T ] × I. For any strategy a = (θj , αj)j∈N ∈ Aℜ
t,i, we introduce the following

switched BSDEs:

Ũau = gaT (XT ) +

∫ T

u
fas(Xs, Ỹs)ds−

∫ T

u
Ṽ a
s .dWs − ÃaT + Ãau , t ≤ u ≤ T ,

Ũπ,au = gaT (Xπ
T ) +

∫ T

u
fas(Xπ

π(s), Ỹ
π
π(s))ds−

∫ T

u
Ṽ π,a
s .dWs − Ãπ,aT + Ãπ,au , t ≤ u ≤ T ,

Ûau = gaT (XT ) ∨ gaT (Xπ
T ) +

∫ T

u
fas(Xs, Ỹs) ∨ fas(Xπ

π(s), Ỹ
π
π(s))ds

−
∫ T

u
V̂ a
s .dWs − ÂaT + Âau , t ≤ u ≤ T , (4.3.11)

where

Ãau :=
∑

j∈N∗

cαj−1,αj
(Xθj

)1{θj≤u≤T} , t ≤ u ≤ T ,

Ãπ,au :=
∑

j∈N∗

cαj−1,αj
(Xπ

π(θj)
)1{θj≤u≤T} , t ≤ u ≤ T ,

Âau :=
∑

j∈N∗

cαj−1,αj
(Xθj

) ∧ cαj−1,αj
(Xπ

π(θj)
)1{θj≤u≤T} , t ≤ u ≤ T .

We denote by â = (θ̂i, α̂i)i≥0 ∈ Aℜ
t,i the optimal strategy starting from i at t (θ̂0 = t and

α̂0 = i) associated to Ŷ i
t recalling Theorem 4.2.1, Remark 4.2.3.

We first need to control the variable N â. To this end we control the moments of (Ŷ , Ẑ)

by the following proposition whose proof is postponed to the Appendix.

Proposition 4.3.2 For |π|L < 1, the following bound holds

E

[
sup
t∈[0,T ]

|Ŷt|p
]

+ E

[
(

∫ T

0
|Ẑt|2dt)

p
2

]
≤ CpL, p ≥ 2 ,

recall that CpL neither depends on ℜ nor on π.

Using standard arguments, recall (4.3.11), we then get

E

[
|ÂâT |p

]
≤ CpLE

[
sup
s∈[0,T ]

|Û âs |p + (

∫ T

0
|V̂ â
s |2ds)

p
2 + |Âât |p

]

By definition of â and (4.2.4), we have |Aa∗t | ≤ CL(1 + |Xt|) which gives with the previous

inequality and the link between (Û âs , V̂
â
s ) and (Ŷ â

s , Ẑ
â
s )

E

[
|Aa∗T |p

]
≤ CL
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From (4.2.4) we get CLE
[
|Na∗ |p

]
≤ E

[
|Aa∗T |p

]
which completes the proof.

E

[
|ÂâT |p + |N â|p

]
≤ CpL . (4.3.12)

Proof of Theorem 4.3.1.

Step 1. We first prove that the following holds

E|Ââu − Ãâu|2 + E|Ââu − Ãπ,âu |2 ≤ CL|π| , t ≤ u ≤ T . (4.3.13)

Indeed, using the inequality |x ∧ y − y| ≤ |x− y| for x, y ∈ R and the Lipschitz property of

ci,j , we compute

E|Ââu − Ãâu|2 + E|Ââu − Ãπ,âu |2 = E

∣∣∣
N â∑

k=1

[cα̂k−1,α̂k
(Xθ̂k

) ∧ cα̂k−1,α̂k
(Xπ

θ̂k
) − cα̂k−1,α̂k

(X̂θ̂k
)]1θ̂k≤u

∣∣∣
2

+E

∣∣∣
N â∑

k=1

[cα̂k−1,α̂k
(Xθ̂k

) ∧ cα̂k−1,α̂k
(Xπ

θ̂k
) − cα̂k−1,α̂k

(Xπ
θ̂k

)]1θ̂k≤u

∣∣∣
2

≤ CLE[|N â|2 sup
s∈[0,T ]

|Xs −Xπ
s |2] .

Using the Cauchy-Schwartz inequality and standard estimates (4.3.3) on the discretization

of diffusions we get

E|Ââu − Ãâu|2 + E|Ââu − Ãπ,âu |2 ≤ CL|π|
√

E[|N â|4] ,

which combined with (4.3.12) leads to the inequality (4.3.13).

Step 2. Define for u ∈ [t, T ]

δU âu = Û âu − Ũ âu , δUπ,âu = Û âu − Ũπ,âu ,

and

δΓâu = δU âu − (Ââu − Ãâu), δΓπ,âu = δUπ,âu − (Ââu − Ãπ,âu ) .

Applying Itô ’s formula, we have

E|δΓâu|2 ≤ E|gâT (XT ) ∨ gâT (Xπ
T ) − gâT (XT )|2

+2E

∫ T

u
δU âs [f âs(Xs, Ỹs) ∨ f âs(Xπ

π(s), Ỹ
π
π(s)) − f âs(Xs, Ỹs)]ds , t ≤ u ≤ T ,

and

E|δΓπ,au |2 ≤ E|gâT (Xπ
T ) ∨ gâT (XT ) − gâT (Xπ

T )|2

+2E

∫ T

u
δUπ,âs [f âs(Xs, Ỹs) ∨ f âs(Xπ

π(s), Ỹ
π
π(s)) − f âs(Xπ

π(s), Ỹ
π
π(s))]ds , t ≤ u ≤ T .
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Using the inequalities |x ∨ y − y| ≤ |x − y| and 2xy ≤ |x|2 + |y|2 for all x, y ∈ R, and the

Lipshitz property of f and g we get

E

[
|δΓâu|2 + |δΓπ,âu |2

]
≤ CL

(
E

[
sup
s∈[0,T ]

|Xπ(s) −Xπ
π(s)|2

]
+ sup
s∈[0,T ]

E

[
sup

u∈[0,T ],|u−s|≤|π|
|Xs −Xu|2

]

+

∫ T

u
E

[
|δU âs |2 + |δUπ,âs |2

]
ds+

∫ T

u
E|Ỹs − Ỹ π

π(s)|2ds
)
, t ≤ u ≤ T .

From standard estimates on diffusions (4.2.2)-(4.3.3) we have

E

[
|δΓâu|2 + |δΓπ,âu |2

]
≤ CL

(
|π| +

∫ T

u
E

[
|δU âs |2 + |δUπ,âs |2

]
ds

+

∫ T

u
E|Ỹs − Ỹ π

π(s)|2ds
)
, t ≤ s ≤ T . (4.3.14)

By definition of Γâ and Γπ,â, (4.3.13) and (4.3.14) we obtain

E

[
|δU âu |2 + |δUπ,âu |2

]
≤ CL

(
|π| +

∫ T

u
E

[
|δU âs |2 + |δUπ,âs |2

]
ds

+

∫ T

u
E|Ỹs − Ỹ π

π(s)|2ds
)
, t ≤ u ≤ T .

Applying Gronwall’s Lemma we get

E

[
|δU ât |2 + |δUπ,ât |2

]
≤ CL

(
|π| +

∫ T

t
E|Ỹs − Ỹ π

π(s)|2ds
)
. (4.3.15)

Then, by definition of â and Lemma 4.3.1, for any strategy a ∈ Aℜ
t,i, we have (see Theo-

rem 4.2.1)

Ũπ,at ≤ Ỹ π,i
t ≤ Ŷ i

t = Û ât and Ũat ≤ Ỹ i
t ≤ Ŷ i

t = Û ât ,

which gives

E|Ỹ i
t − Ỹ π,i

t |2 ≤ CLE

[
|δU ât |2 + |δUπ,ât |2

]
. (4.3.16)

Combining (4.3.16) and (4.3.15), we have

E|Ỹ i
t − Ỹ π,i

t |2 ≤ CL

(
|π| +

∫ T

t
E|Ỹs − Ỹπ(s)|2ds+

∫ T

t
E|Ỹ π

π(s) − Ỹπ(s)|2ds
)
.

Since i is arbitrary chosen, we get

E|Ỹt − Ỹ π
t |2 ≤ CL

(
|π| +

∫ T

t
E|Ỹs − Ỹπ(s)|2ds+

∫ T

t
E|Ỹ π

π(s) − Ỹπ(s)|2ds
)
. (4.3.17)

The same reasoning applied at time tj ∈ π with tj ≥ t leads to

E|Ỹtj − Ỹ π
tj |2 ≤ CL

(
|π| +

∫ T

t
E|Ỹs − Ỹπ(s)|2ds+ |π|

n∑

k=j+1

E|Ỹ π
tk
− Ỹtk |2

)
.
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Applying the discrete version of Gronwall’s lemma, we deduce

E|Ỹtj − Ỹ π
tj |2 ≤ CL

(
|π| +

∫ T

t
E|Ỹs − Ỹπ(s)|2ds

)
, for tj ≥ t, tj ∈ π.

Plugging this estimate into (4.3.17), we compute

E|Ỹt − Ỹ π
t |2 ≤ CL

(
|π| +

∫ T

t
E|Ỹs − Ỹπ(s)|2ds

)
.

The proof is concluded using the regularity of Ỹ given by Lemma 4.3.2 bellow. ✷

Lemma 4.3.2 When f does not depend on z, the following holds for the discretely reflected

BSDE,

E

[∫ T

0
|Ỹt − Ỹπ(t)|2dt

]
≤ CL|π|.

Proof. The process (Y, Z) is the solution of a discretely reflected BSDE. It follows then

from Proposition 4.2.1, that

E

[
sup
s∈[0,T ]

|Ỹs|2 +

∫ T

0
|Zs|2ds

]
≤ CL. (4.3.18)

For ti ≤ t < ti+1, i ∈ {0, . . . , n− 1}, we have

Ỹti − Ỹt =

∫ t

ti

f(Xti , Ỹti)ds−
∫ t

ti

Zs.dWs ,

and we easily compute

E

[
|Ỹti − Ỹt|2

]
≤ CL

(
(1 + E

[
|Xti |2 + |Yti |2

]
)|π| + E

[∫ ti+1

ti

|Zs|2ds
])

.

Integrating on [ti, ti+1) and summing on i leads to

E

[∫ T

0
|Ỹt − Ỹπ(t)|2dt

]
≤ CL|π|(1 + sup

1≤i≤n
E

[
|Xti |2 + |Ỹti |2

]
+ E

[∫ T

0
|Zs|2ds

]
).

The proof is then concluded combining the last inequality with (4.3.18) and (4.3.2). ✷

4.4 Extension to the continuously reflected case

In this section, we extend the convergence results of the scheme (4.3.4) to the case of

continuously reflected BSDEs. To this end, we show that the error between discretely and

continuously reflected BSDEs is controled in a convenient way.
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4.4.1 Convergence to continuously obliquely reflected BSDEs

In the sequel, we shall use the following assumption on f :

(Hf) The function f is bounded in its last variable : supz∈Md,d |f(0, 0, z)| ≤ CL.

We denote by (Ẏ , Ż, K̇) ∈ (S2 ×H2 × A
2)I the solution of the continuously obliquely

reflected BSDE:




Ẏ i
t = gi(XT ) +

∫ T
t f i(Xs, Ẏ

i
s , Ż

i
s)ds−

∫ T
t Żis.dWs + K̇i

T − K̇i
t ,

Ẏ i
t ≥ maxj∈I{Ẏ j

t − ci,j(Xt)} , 0 ≤ t ≤ T ,
∫ T
0 [Ẏ i

t − maxj∈I{Ẏ j
t − ci,j(Xt)}]dK̇i

t = 0 , i ∈ I .

(4.4.1)

Under the assumption on f , g and c, the existence and uniqueness of such a solution is given

by [41, 44]. As in the discretely reflected case, the process Ẏ i, i ∈ I can be interpreted

(see Theorem 3.1 in [44]) as the the Snell envelope of the family of processes (Ua)a, recall

(4.2.9):

Ẏ i
t = ess sup

a∈At,i

Uat .

It follows then from (4.2.12) that

Ẏ � Y � Ỹ , (4.4.2)

for any grid ℜ.

According to the proof of Theorem 3.1 in Hu and Tang [44], there exists, for each initial

condition (t0, i0) ∈ [0, T ] × I, an optimal switching strategy ȧ := (θ̇k, α̇k)k≥0 ∈ At0,i0 , such

that Ẏ i0
t0

= U ȧt0 . Moreover we have E|AȧT |p <∞ for all p ≥ 1. Indeed, since (Ẏ ȧ, Ż ȧ) satisfy

the switched equation (4.2.9) with a = ȧ (see Theorem 3.1 in [44]) and (Ẏ , Ż) ∈ (Sp×Hp)I

(see Proposition 4.5.2 in the Appendix), we have

E

[
sup

s∈[t0,T ]
|U ȧs |p

]
+ E

[
(

∫ T

t0

|V ȧ
s |2ds)

p
2

]
≤ CpL ,

Then, writing the equation satisfied by (U ȧ, V ȧ) and using standard arguments for BSDEs,

we get

E
[
|AȧT |p

]
≤ CL(E

[
sup

s∈[t0,T ]
|U ȧs |p

]
+ E

[
(

∫ T

t0

|V ȧ
s |2ds)

p
2

]
+ E[|Aȧt |p])

By definition of ȧ (see Theorem 3.1 in [44]) and (4.2.4), we have |Aȧt | ≤ CL(1 + |Xt|) which

gives with the previous inequality

E
[
|AȧT |p + |N ȧ|p

]
≤ CpL . (4.4.3)

We now present a key result in the proof of the convergence of the solutions of discretely

reflected BSDEs to the solutions of the corresponding continuously reflected ones.
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Theorem 4.4.1 Under (Hf), the following holds

E

[
sup
r∈ℜ

{
|Ẏr − Ỹr|2 + |Ẏr − Yr|2

}]
≤ CεL|ℜ|1−ε . (4.4.4)

for all ε > 0. Moreover if the cost functions are constant we have

E

[
sup
r∈ℜ

{
|Ẏr − Ỹr|2 + |Ẏr − Yr|2

}]
≤ CL|ℜ| . (4.4.5)

The proof of this result relies mainly on the interpretation in terms of switched BSDEs

provided in Section 4.2.2.

To an optimal strategy ȧ = (θ̇k, α̇k)k ∈ At0,i0 not restricted to lie in the grid ℜ, we

associate the corresponding ’discretized’ strategy a := (θk, αk)k≥0 ∈ Aℜ
t0,i0

defined by

θk := inf
{
r ≥ θ̇k ; r ∈ ℜ

}
and αk := α̇k , k ≥ 0 . (4.4.6)

Proof. Step 1. We first prove two key controls of the error between Aȧ and Aa.

We compute for h ≥ 2

(∫ T

t0

|Aȧs −Aas |2ds
)h

2

=



∫ T

t0

∣∣∣∣∣∣

N ȧ∑

k=1

cα̇k−1,α̇k
(Xθ̇k

)1θ̇k≤s
− cα̇k−1,α̇k

(Xθk
)1θk≤s

∣∣∣∣∣∣

2

ds




h
2

≤ ChL



∫ T

t0

∣∣∣∣∣∣

N ȧ∑

k=1

cα̇k−1,α̇k
(Xθ̇k

)1θ̇k≤s<θk

∣∣∣∣∣∣

2

ds




h
2

(4.4.7)

+ChL

∫ T

t0

∣∣∣∣∣∣

N ȧ∑

k=1

[
cα̇k−1,α̇k

(Xθk
) − cα̇k−1,α̇k

(Xθ̇k
)
]
1θk≤s

∣∣∣∣∣∣

h

ds .

Using the convexity inequality (
∑n

k=1 |xk|)2 ≤ n
∑n

k=1 |xk|2, we obtain



∫ T

t0

∣∣∣∣∣∣

N ȧ∑

k=1

cα̇k−1,α̇k
(Xθ̇k

)1θ̇k≤s<θk

∣∣∣∣∣∣

2

ds




h
2

≤ ChL(1 + sup
t∈[0,T ]

|Xt|h)|N ȧ|h|ℜ|h
2 (4.4.8)

Then, from the Lipschitz property of the maps ci,j and the convexity inequality (
∑n

k=1 |xk|)h
≤ nh−1

∑n
k=1 |xk|h, we get

∫ T

t0

∣∣∣∣∣∣

N ȧ∑

k=1

[
cα̇k−1,α̇k

(Xθk
) − cα̇k−1,α̇k

(Xθ̇k
)
]
1θk≤s

∣∣∣∣∣∣

h

ds ≤ ChL|N ȧ|h−1

∫ T

t0

N ȧ∑

k=1

|Xθk
−Xθ̇k

|h1θk≤sds
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By definition of θ̇k and θk, we get

∫ T

t0

∣∣∣∣∣∣

N ȧ∑

k=1

[
cα̇k−1,α̇k

(Xθk
) − cα̇k−1,α̇k

(Xθ̇k
)
]
1θk≤s

∣∣∣∣∣∣

h

ds ≤

ChL|N ȧ|h
∫ T

t0

κ∑

k=1

sup
r∈[rk−1,rk]

|Xr −Xrk |h1θk≤sds (4.4.9)

Combining (4.4.7) with (4.4.8) and (4.4.9) leads to

(∫ T

t0

∣∣Aȧs −Aas
∣∣2 ds

)h
2

≤ ChL|N ȧ|h
(

1 + sup
s∈[0,T ]

|Xs|h|ℜ|
h
2 + χ|ℜ|,h

)
. (4.4.10)

where χ|ℜ|,h :=
∑κ

k=1 supr∈[rk−1,rk] |Xr −Xrk |h.

For r ∈ ℜ, we have 1θ̇k≤r
= 1θk≤r which gives

|Aȧr −Aar |h ≤ (
N ȧ∑

k=1

∣∣∣cα̇k−1,α̇k
(Xθ̇k

) − cα̇k−1,α̇k
(Xθk

)
∣∣∣1θk≤r)

h ≤ ChL|N ȧ|hχ|ℜ|,h . (4.4.11)

Step 2. Recall that (t0, i0) is given. Let us introduce the processes Γ := Ua − A and

Γ̇ := U ȧ −Aȧ, so that the dynamics of Γ̇ − Γ on [t0, T ] is given by

Γ̇t − Γt =

∫ T

t

[
f ȧs(Xs, Γ̇s +Aȧs , V

ȧ
s ) − fas(Xs,Γs +Aas , V

a
s )
]
ds−

∫ T

t
(V ȧ
s − V a

s ).dWs .

Observe that,

|Ua − U ȧ| ≤ |Γ − Γ̇| + |Aa −Aȧ| . (4.4.12)

Applying Ito’s formula to the continuous process |Γ̇−Γ|2 on [t0, T ], using Gronwall Lemma

and the Lipschitz property of f , we obtain

|Γ̇t0 − Γt0 |2 ≤ CL E

[ ∫ T

t0

∣∣∣f ȧs(Xs, U
ȧ
s , V

ȧ
s ) − fas(Xs, U

ȧ
s , V

ȧ
s )
∣∣∣
2
ds

+

∫ T

t0

∣∣∣Aȧs −Aas

∣∣∣
2
ds
∣∣∣Ft0

]
, (4.4.13)

up to power h
2 , we get from Jensen inequality

|Γ̇t0 − Γt0 |h ≤ ChL E

[(∫ T

t0

∣∣∣f ȧs(Xs, U
ȧ
s , V

ȧ
s ) − fas(Xs, U

ȧ
s , V

ȧ
s )
∣∣∣
2
ds

)h
2

+

(∫ T

t0

∣∣∣Aȧs −Aas

∣∣∣
2
ds

)h
2 ∣∣∣Ft0

]
, (4.4.14)
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Under (Hf), we compute that

∫ T

t0

∣∣f ȧs(Xs, U
ȧ
s , V

ȧ
s ) − fas(Xs, U

ȧ
s , V

ȧ
s )
∣∣2 ds =

∫ T

t0

∣∣∣∣∣∣

N ȧ∑

k=1

fαk−1(Xs, U
ȧ
s , V

ȧ
s )
(
1θ̇k−1≤s<θ̇k

− 1θk−1≤s<θk

)
∣∣∣∣∣∣

2

ds ≤

CL|N ȧ|
N ȧ∑

k=1

∫ T

t0

(1 + |Xs|2 + |U ȧs |2)
∣∣∣1θ̇k−1≤s<θ̇k

− 1θk−1≤s<θk

∣∣∣ ds

which leads to

(∫ T

t0

∣∣f ȧs(Xs, U
ȧ
s , V

ȧ
s ) − fas(Xs, U

ȧ
s , V

ȧ
s )
∣∣4 ds

)h
2

≤ ChL|N ȧ|h sups∈[0,T ](1 + |Xs|h + |U ȧs |h)|ℜ|
h
2

Combining the last inequality with (4.4.10), (4.4.11), (4.4.12) and (4.4.14), we then obtain

|Ẏ i0
t0

− Ỹ i0
t0
|h ≤ ChLE

[
|N ȧ|h

(
sup
t∈[0,T ]

(1 + |Xs|h + |U ȧs |h)|ℜ|
h
2 + (χ|ℜ|,h)

)∣∣∣Ft0

]
.

Since i0 is arbitrary chosen we get

E

[
sup
r∈ℜ

|Ẏr − Ỹr|2
]

≤ ChL

(
E

[
sup
t∈[0,T ]

|M1
t |

h
2

]
|ℜ| + E

[
sup
t∈[0,T ]

|M2
t |

h
2

])
, (4.4.15)

where M1 and M2 are the martingales defined by

M1
t = E

[
|N ȧ|h sup

s∈[0,T ]
(1 + |Xs|h + |U ȧs |h)

∣∣∣Ft
]
,

M2
t = E

[
|N ȧ|hχ|ℜ|,h

∣∣∣Ft
]
, 0 ≤ t ≤ T .

From Burkholder-Davis-Gundy inequality we have

E

[
sup
t∈[0,T ]

|M1
t |

h
2

]
≤ ChL. (4.4.16)

Still using Burkholder-Davis-Gundy inequality we have

E

[
sup
t∈[0,T ]

|M2
t |

h
2

]
≤ ChL

(
|M2

0 |
h
2 + E

[
|MT |2

] 1
h

)
.

From Cauchy-Schwarz and Jensen inequalities we get

E

[
sup
t∈[0,T ]

|M2
t |

h
2

]
≤ ChL

(
|M2

0 |
h
2 + E

[
|χ|ℜ|,h|2

] 1
h

)
.
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Using then (4.2.2) the convexity inequality (
∑n

k=1 |xk|)p ≤ np−1
∑n

k=1 |xk|p for p ≥ 1, and

the condition κ|ℜ| ≤ L, we get

E

[
sup
t∈[0,T ]

|M2
t |

h
2

]
≤ ChL|ℜ|1−

2
h .

Combining this last inequality with (4.4.15), (4.4.16) and the Lipschitz property of P (see

Lemma 4.2.1), we deduce (4.4.4).

We now prove (4.4.5). Suppose that the cost functions are constant. Then the same

arguments as in Step 1. give

∫ T

t0

|Aȧs −Aȧs |2ds ≤ CL|ℜ|

and Aȧr −Aar = 0 for r ∈ ℜ. This gives with (4.4.13)

|Ẏ i0
t0

− Ỹ i0
t0
|2 ≤ CL|ℜ|E

[
|N ȧ|2 sup

t∈[0,T ]
(1 + |Xs|2 + |U ȧs |2)

∣∣∣Ft0

]
. (4.4.17)

Using Burkholder-Davis-Gundy inequality, we get

E

[
sup
t∈ℜ

|Ẏt − Ỹt|2
]

≤ CL|ℜ| .

Combined the Lipschitz property of P, we get (4.4.5). ✷

We now give a control of the error on the variable Z in the case where the maps ci,j are

constant.

Theorem 4.4.2 If the cost functions are constant, the following holds under (Hf)

sup
t∈[0,T ]

E

[
|Ẏt − Ỹt|2 + |Ẏt − Yt|2 +

∫ T

t
|Żs − Zs|2ds

]
≤ CL|ℜ|

1
2 .

Proof.

Step 1.a. Fix t ∈ [0, T ]. We introduce δỸ = Ẏ − Ỹ , δY = Ẏ − Y , δZ = Ż − Z

and δf = f(X, Ẏ , Ż) − f(X, Ỹ , Z). Applying Ito’s formula to the càdlàg process |δỸ |2, we

obtain

|δỸt|2 +

∫ T

t
|δZs|2ds = |δỸT |2 − 2

∫

(t,T ]
δỸs−.dδỸs

−
∑

t<s≤T

(|δỸs|2 − |δỸs−|2 − 2δỸs−.∆δỸs) . (4.4.18)

Recall δỸs− = δYs for s ∈ [0, T ]. Since

∑

t<s≤T

(|δỸs|2 − |δỸs−|2 − 2δỸs−.∆δỸs) =
∑

t<s≤T

|δỸs − δYs|2 ≥ 0 and

∫

(t,T ]
δYs.dK̃s ≥ 0 ,
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we have

E

[
|δỸt|2 +

∫ T

t
|δZs|2ds

]
≤ E

[
|δỸT |2 + 2

∫ T

t
δỸsδfsds+ 2

∫ T

t
δYs.dK̇s

]
.

Using standard arguments, we then compute

E

[
|δỸt|2 +

∫ T

t
|δZs|2ds

]
≤ CLE



κ−1∑

j=0

∫ rj+1

rj

δYs.dK̇s


 , (4.4.19)

recall ℜ = {r0, . . . , rκ}.

Step 1.b. We introduce (Y d, Zd) the solution of the following piecewise constant BSDE,

for j < κ, s ∈ [rj , rj+1)

Y d
s = Ẏrj+1 +

∫ rj+1

s
h(Xu, Y

d
u , Z

d
u)du−

∫ rj+1

s
Zdu.dWu ,

where for all 1 ≤ k ≤ d, hk : R
m × R ×M1,d → R is defined by

hk(x, y, z) :=
∑

1≤i≤d

(
|f i(x, y, z)| + max

j 6=i
|f i(x, y + cij , z)|

)
.

For i ≤ d, the process ((Y d)i, (Zd)i) is the solution of a discretely reflected BSDE with lower

barrier Ẏ i. Using the same argument as in the proof of Proposition 4.2.1, we obtain

E

[
sup
s∈[0,T ]

|Y d
s |p + (

∫ T

0
|Zds |2ds)

p
2

]
≤ CpL , p ≥ 2 .

The proof of the following result is postponed to Step 2 below

Y d � Ȳ . (4.4.20)

We then have

E



κ−1∑

j=0

∫ rj+1

rj

δYs.dK̇s


 ≤ E



κ−1∑

j=0

∫ rj+1

rj

(Y d
s − Ỹs).dK̇s


 ,

and

E

[∫ rj+1

rj

(Y d
s − Ỹs).dK̇s

]
= E

[∫ rj+1

rj

δYrj+1 .dK̇s

]
(4.4.21)

+E

[∫ rj+1

rj

∫ rj+1

s
(h(Xu, Y

d
u , Z

d
u) − f(Xu, Ỹu, Z̃u))du.dK̇s

]
.

We compute that

E



κ−1∑

j=0

∫ rj+1

rj

δYrj+1 .dK̇s


 = E



κ−1∑

j=0

δYrj+1 .(K̇rj+1 − K̇rj )


 ≤ CLE

[
sup
r∈ℜ

|δYr||K̇T |
]
, (4.4.22)
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Observe that the function h satisfies (Hf). Hence, we deduce from (4.4.21) and (4.4.22)

that

E

[∫ T

0
(Y d
s − Ỹs).dK̇s

]
≤ CL

(
E

[
sup
r∈ℜ

|δYr||K̇T |
]

+ |ℜ|E
[

sup
s∈[0,T ]

(1 + |Xs| + |Y d
s | + |Ỹs|)|K̇T |

])
.

Using Cauchy-Schwartz inequality and recalling Proposition 4.2.1 and Theorem 4.4.1,

we deduce

E

[∫ T

0
(Y d
s − Ỹs).dK̇s

]
≤ CL|ℜ|

1
2 . (4.4.23)

Together with (4.4.19), this estimate provides the announced result.

Step 2. We now prove (4.4.20).

As in [41], we consider the following sequence of multidimensional reflected BSDEs, for

n ≥ 0,

(Y n
t )i = gi(XT ) +

∫ T

t
f i(Xs, (Y

n
s )i, (Zns )i)ds−

∫ T

t
(Zns )i.dWs

+(Kn
T )i − (Kn

t )i ,

(Y n
t )i ≥ (Snt )i , ∀t ∈ [0, T ] and

∫ T

0
((Y n

t )i − (Snt )i)d(Kn
t )i = 0 .

with Snt = P(Xt, Y
n−1
t ), for n ≥ 1 and S0 = −∞, meaning that Y 0 is a non-reflected BSDE.

The sequence (Y n)n∈N converges increasingly to Ẏ , see [41] and we have

Ȳ � Y n � Y n−1 and Y n
t −→ Ẏt as n→ ∞ .

To obtain (4.4.20), we then prove Y d � Y n, for all n, using the following induction argument.

(i) Using a comparison argument, it is clear that Y d � Y 0.

Fix i, j ∈ I and introduce Γ0 := (Y 0)j − cij satisfying

Γ0
t = (Y 0

rk+1
)j − cij +

∫ rk+1

t
f j(Xs,Γ

0
s + cij , (Z

0
s )
j)ds

−
∫ rk+1

t
(Z0

s )
j .dWs , t ∈ [rk, rk+1) , k ∈ {0, . . . , κ− 1} .

Observe that

(Y d
r )i = Ẏ i

r ≥ Ẏ j
r − cij ≥ (Y 0

r )j − cij , r ∈ ℜ .

By definition hi ≥ f j , using a comparison theorem, we then obtain that (Y d
t )i ≥ Γ0

t which

leads, since i, j are arbitrary, to

Y d � S1 . (4.4.24)

(ii) Assume that Y d � Sn, for some n > 0. Therefore Y d interprets as a BSDE reflected

on Sn. Following a comparison argument, we deduce from Y d
T � Y n

T and the definitions of

h and f that

Y d � Y n+1 . (4.4.25)
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For i, j ∈ I, we then introduce Γn = (Y n)j − cij which satisfies for k ∈ {0, . . . , κ− 1}

Γnt = (Y n
rk+1

)j − cij +

∫ rk+1

t
f j(Xs,Γ

n
s + cij , (Z

n
s )j)ds

−
∫ rk+1

t
(Zns )j .dWs + (Kn

T )j − (Kn
t )j , t ∈ [rk, rk+1) .

Γnt ≥ (Snt )j , ∀t ∈ [0, T ] and

∫ T

0
(Γnt − (Snt )j)d(Kn

t )j = 0 .

Observe that

(Y d
r )i = Ẏ i

r ≥ Ẏ j
r − cij ≥ (Y n

r )j − cij , r ∈ ℜ .

By definition hi ≥ f j , using a comparison theorem, we then obtain that (Y d
t )i ≥ Γnt which

leads, since i, j are arbitrary, to

Y d � Sn+1 . (4.4.26)

(iii) The proof is then concluded combining (i) and (ii) above. ✷

4.4.2 Convergence results

Setting ℜ = π, and combining Theorem 4.3.1 with Theorem 4.4.1 and Theorem 4.4.2, we

obtain the following results.

Theorem 4.4.3 If f does not depend on z and |π|L < 1, the following holds

sup
i≤n

E

[
|Ẏti − Y π

ti |2 + |Ẏti − Ỹ π
ti |2
]

≤ CεL|π|1−ε ,

for all ε > 0. Moreover, whenever the cost functions are constant, we have

sup
i≤n

E

[
|Ẏti − Y π

ti |2 + |Ẏti − Ỹ π
ti |2
]

≤ CL|π| ,

and

sup
t∈[0,T ]

E

[
|Ẏt − Y π

t |2 + |Ẏt − Ỹ π
t |2
]

≤ CL|π|
1
2 .

4.5 Appendix: a priori estimates

4.5.1 A priori estimates for continuously and discretely reflected BSDEs

We first prove estimates for BSDEs with reflections in a somehow “abstract” setting. This

allows us to retrieve estimate for continuously and discretely reflected BSDEs.

We then consider a process (Y g,Kg, Zg) ∈ (S2 × S2 ×H2)I satisfying on [0, T ]

Y g
t = ξg +

∫ T

t
fg(s, Y g

s , Z
g
s )ds−

∫ T

t
Zgs .dWs +Kg

T −Kg
t , (4.5.1)
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where ξg is a random variable in (L2(FT ))I , the map (y, z) 7→ fg(., y, z) is L-Lipschitz

continuous and the random function s 7→ fg(s, 0, 0) belongs to (H2)I .

Moreover for Sg a continuous process in S2, (Y g,Kg) satisfies

∫ T

t
(Y g
u− − Sgu).dK

g
u = 0 , 0 ≤ t ≤ T . (4.5.2)

Finally, we suppose that the jumps of Y g and Kg occur only on a finite grid ℜ and we work

under the following integrability assumption

(Hg) There exist p0 ≥ 2 and a nonnegative random variable β such that

|ξg| + sup
t∈[0,T ]

(
|Sgt | + |Y g

t | +
∫ T

t
|fg(s, 0, 0)|ds

)
≤ β and E[|β|p0 ] ≤ Cp0L . (4.5.3)

Proposition 4.5.1 In the abstract setting introduced above and under (Hg), the following

holds

E

[
|Kg

T |p0 + (

∫ T

0
|Zgs |2ds)

p0
2

]
≤ Cp0L ,

recall that CpL does not depend on ℜ.

Proof. Applying Ito’s formula to the càdlàg process |Y g|2 on [0, t], we obtain

|Y g
t |2 = |Y g

0 |2 + 2
∫
(0,t] Y

g
s−.dY

g
s +

∫
(0,t] |Z

g
s |2ds+

∑
s≤t(|Y

g
s |2 − |Y g

s−|2 − 2Y g
s−.∆Y

g
s ) ,

where the last term at the right-hand side is obviously non negative. Recalling (4.5.1), we

get

|Y g
t |2 +

∫ T

t
|Zgs |2ds ≤ |Y g

T |2 + 2

∫ T

t
Y g
s−.f

g(s, Y g
s , Z

g
s )ds

+2

∫

(t,T ]
Y g
s−.dK

g
s + 2

∫ T

t
(ZgsY

g
s ).dWs.

Using standard arguments, together with (4.5.2) and (Hg), we compute that

∫ T

0
|Zgs |2ds ≤ CLβ(β +Kg

T ) + CL

∫ T

0
(ZgsY

g
s ).dWs. (4.5.4)

Moreover, we have,

|Kg
T |2 ≤ CL

[
β2 +

∫ T

0
|Zgs |2ds+ (

∫ T

0
Zgs .dWs)

2

]
(4.5.5)

Combining (4.5.4) and (4.5.5) we obtain for ǫ > 0,

∫ T

0
|Zgs |2ds ≤ CL

ǫ
β2 + ǫ

∫ T

0
|Zgs |2ds+ ǫ

(∫ T

0
Zgs .dWs

)2

+ CL

∫ T

0
(ZgsY

g
s ).dWs. (4.5.6)
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where we used the inequality ab ≤ ǫa2 + 1
ǫ b

2 for a, b ∈ R and ǫ > 0. We then compute,

E

[
(

∫ T

0
|Zgs |2ds)

p0
2

]
≤ CpL

(
ǫ−

p0
2 + ǫ

p0
2 E

[
(

∫ T

0
|Zgs |2ds)

p0
2

]

+ǫ
p0
2 E

[
(

∫ T

0
Zgs .dWs)

p0

]
+ CLE

[
(

∫ T

0
(ZgsY

g
s ).dWs)

p0
2

])
. (4.5.7)

Using Burkholder-Davis-Gundy inequality, we get

E

[
(

∫ T

0
|Zgs |2ds)

p0
2

]
≤ Cp0L

(
ǫ−

p0
2 + ǫ

p0
2 E

[
(
∫ T
0 |Zgs |2ds)

p0
2

]
+ E

[
(
∫ T
0 |ZgsY g

s |2ds)
p0
4

])
,

≤ Cp0L

(
ǫ−

p0
2 + ǫ−

p0
2 E

[
sups∈[0,T ] |Y g

s |p0
]

+ ǫ
p0
2 E

[
(
∫ T
0 |Zgs |2ds)

p0
2

])

It follows from (Hg), for ǫ small enough

E

[
(

∫ T

0
|Zgs |2ds)

p0
2

]
≤ Cp0L . (4.5.8)

Taking (4.5.5) up to the power p0
2 , and combining Burkholder-Davis-Gundy inequality with

the majoration obtained in (4.5.8) yields

E
[
|Kg

T |p0
]

≤ Cp0L ,

which concludes the proof of the proposition. ✷

We now apply the previous general result to two more explicit cases of interest.

Proposition 4.5.2 The solution of the continuously reflected BSDE (4.4.1) satisfies

E

[
sup
t∈[0,T ]

|Ẏt|p + |K̇T |p + (

∫ T

0
|Żs|2ds)

p
2

]
≤ CpL, p ≥ 2 .

Proof.

Step 1. Define the functions f̆ : R
d × R

d × R
d → R

d and ğ : R
d → R

d by

f̆ j =
d∑

i=1

|f i| and ğj =
d∑

i=1

|gi| , 1 ≤ j ≤ d ,

and denote by (Y̆ , Z̆) ∈ (S2 ×H2)I the solution to

Y̆t = ğ(XT ) +

∫ T

t
f̆(Xs, Y̆s, Z̆s)ds−

∫ T

t
Z̆s.dWs , 0 ≤ t ≤ T. (4.5.9)

Since all the components of Y̆ are similar, Y̆ ∈ C. Following the arguments in the proof of

Theorem 2.4 in [41], we deduce that Ẏ � Y̆ . Using a comparison argument, we also have

Y 0 � Ẏ where Y 0 is the solution to the BSDE

Y 0
t = g(XT ) +

∫ T

t
f(Xs, Y

0
s , Z

0
s )ds−

∫ T

t
Z0
s .dWs , 0 ≤ t ≤ T .



4.5. APPENDIX: A PRIORI ESTIMATES 149

Using standard arguments on non-reflected BSDEs, we compute that

E

[
sup
s∈[0,T ]

|Y̆s|p
]

+ E

[
sup
s∈[0,T ]

|Y 0
s |p
]

≤ CpL , p ≥ 2 .

and then

E

[
sup
s∈[0,T ]

|Ẏs|p
]

≤ CpL , p ≥ 2 . (4.5.10)

Step 2. For i ∈ I, we define Ṡi := maxj 6=i(Ẏ
j−cij(X)) and observe that the component

(Ẏ i, Żi, K̇i) is solution to simply reflected BSDE with lower barrier Ṡi, and

Ẏ i ≥ Ṡi, and

∫ T

0
(Ẏ i
s − Ṡis)dK̇

i
s = 0 . (4.5.11)

Therefore, the framework of Proposition 4.5.1 is satisfied since (4.5.1), (4.5.2) and (Hg)

hold true, and the proof is complete. ✷

We finally give the proof of Proposition 4.2.1.

Proof of Proposition 4.2.1 Following the same argument as in Step 1 of the proof of

Proposition 4.5.2 above, we retrieve

E

[
sup
t∈[0,T ]

|Ỹt|p + |S̃t|p
]

≤ CpL, p ≥ 2 , (4.5.12)

where S̃ := P(X, Ỹ ). Observe that S̃ is continuous and

∫ T

t
(Ỹu− − S̃u).dK̃u =

∑

r∈ℜ,r≥t

(Yr − S̃r).∆K̃r = 0 .

Therefore (4.5.1), (4.5.2) and (Hg) are satisfied for the process (Ỹ , Z, K̃) and the proof ends

applying Proposition 4.5.1. ✷

4.5.2 A priori estimates for discrete-time schemes of BSDEs

We state here a uniform bound for the discrete-time scheme of discretely reflected BSDEs

We suppose in the sequel that the generator f does not depend on the variable Z.

Proposition 4.5.3 For |π|L < 1, the following bound holds

sup
0≤i≤n

E

[
|Ỹ π
ti |p
]

≤ CpL, p ≥ 2, (4.5.13)

recall that CpL neither depends on ℜ nor on π.
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To prove this proposition, we first need a comparison theorem for discrete-time schemes

of BSDEs in the case where the driver does not depend on the variable Z.

For k = 1, 2, let ξk be a square integrable random variable and ψk : R
m × R

d → R
d a

L−Lipschitz generator function. We suppose that ξ1 ≥ ξ2 and ψ1 ≥ ψ2 on R
m × R

d. For a

time grid π, we denote by (Y π,k, Z̄π,k), k = 1, 2, the discrete-time scheme:

starting from the terminal condition

Y π,k
T := ξk

we compute recursively, for i ≤ n− 1,




Z̄π,kti = (ti+1 − ti)
−1

E

[
Y π,k
ti+1

(Wti+1 −Wti)
′ | Fti

]
,

Y π,k
ti

= E

[
Y π,k
ti+1

| Fti
]

+ (ti+1 − ti)ψk(X
π
ti , Y

π,k
ti

) ,
(4.5.14)

Lemma 4.5.1 For any π such that |π|L < 1, we have Y π,1
t ≥ Y π,2

t for all t ∈ π.

Proof. Recall that π = {t0 = 0, . . . , tn = T}. Since the results follows from a backward

induction on π, we just prove Y π,1
t ≥ Y π,2

t . Using (4.5.14), we compute

Y π,1
tn−1

− Y π,2
tn−1

= E

[
ξ1 − ξ2

∣∣∣Ftn−1

]

+(T − tn−1)
[
ψ1(X

π
tn−1

Y π,1
tn−1

) − ψ2(X
π
tn−1

Y π,2
tn−1

)
]

= E

[
ξ1 − ξ2

∣∣∣Ftn−1

]

+(T − tn−1)Λn−1

(
Y π,1
tn−1

− Y π,2
tn−1

)
+ ∆n−1 , (4.5.15)

where

Λn−1 =





ψ1(Xπ
tn−1

Y π,1
tn−1

)−ψ2(Xπ
tn−1

Y π,2
tn−1

)

Y π,1
tn−1

−Y π,2
tn−1

if Y π,1
tn−1

− Y π,2
tn−1

6= 0,

0 else ,
(4.5.16)

and

∆n−1 = ψ1(X
π
tn−1

Y π,2
tn−1

) − ψ2(X
π
tn−1

Y π,2
tn−1

) .

Since ψk is L−Lipschitz, k = 1, 2, the condition |π|L < 1, implies (T − tn−1)Λn−1 < 1.

Then using ξ1 ≥ ξ2 and ψ1 ≥ ψ2, we get from (4.5.15) the desired result . ✷

Proof of Proposition 4.5.3. Using the same arguments as in Step 1. of the proof of

Proposition 4.5.2, we obtain, using Lemma 4.5.1, Y̆ π � Y π � Y 0,π, where Y̆ π and Y 0,π are

the discrete time schemes associated respectively to (4.5.9) and (4.5.10), recall that f does

not depend on Z. Thus, to prove (4.5.13), it suffices to prove

sup
0≤i≤n

E[|Y̆ π
ti |p] + sup

0≤i≤n
E[|Y 0,π

ti
|p] ≤ CpL, p ≥ 2.



4.5. APPENDIX: A PRIORI ESTIMATES 151

Since the arguments are the same, we only prove the last bound for the process Y 0,π.

Applying Itô’s formula to |Y 0,π
s |2 for s ∈ [tj , tj+1] and using standard arguments, we compute

for t ≤ ti with i ≤ j

E[|Y 0,π
s |2|Ft] ≤ CLE

[
|Y 0,π
tj+1

|2 +

∫ tj+1

s
|Y 0,π
u |2du+

∫ tj+1

s
(1 + |Y 0,π

tj
|2 + |Xπ

tj |2)du
∣∣∣Ft
]
.

Applying Gronwall’s Lemma we get

E[|Y 0,π
s |2|Ft] ≤ eCL|π|

E

[
|Y 0,π
tj+1

|2 +

∫ tj+1

s
(1 + |Y 0,π

tj
|2 + |Xπ

tj |2)ds
∣∣∣Ft
]
,

this leads, for s = tj , t = ti (recall i ≤ j) and |π| small enough, to

E[|Y 0,π
tj

|2|Fti ] ≤ eCL|π|

1 − |π|E
[
|Y 0,π
tj+1

|2 + |π|(1 + sup
t∈[0,T ]

|Xπ
t |2)

∣∣∣Fti

]
,

using an induction argument, we get

E[|Y 0,π
tj

|2|Fti ] ≤ eCL|π|n

1 − |π|E
[
|g(Xπ

T )|2 + n|π|(1 + sup
t∈[0,T ]

|Xπ
t |2)

∣∣∣Fti

]
,

By definition |π|n ≤ L, hence we get

|Y 0,π
tj

|2 ≤ CL

(
1 + E

[
sup
t∈[0,T ]

|Xπ
t |2
∣∣∣Fti

])
.

Taking up the power p
2 , we get from (4.2.2)

sup
0≤i≤n

E
[
|Y 0,π|p

]
≤ CpL, p ≥ 2.

✷

We now now turn to the proof of Proposition 4.3.2.

Proof of Proposition 4.3.2. Using Proposition 4.2.1 and Proposition 4.5.3, we have

E

[∫ T

0

∣∣∣f(Xπ
π(s), Ỹ

π
π(s)) ∨ f(Xs, Ỹs)

∣∣∣
p
ds

]
≤ CpL , p ≥ 2. (4.5.17)

We introduce the processes (Ŷ 0, Ẑ0) and (
˘̂
Y ,

˘̂
Z) defined respectively by

Ŷ 0
t = g(XT ) ∨ g(Xπ

T ) +

∫ T

t
f(Xπ

π(s), Ỹ
π
π(s)) ∨ f(Xs, Ỹs)ds−

∫ T

t
Ẑ0
s .dWs, 0 ≤ t ≤ T,

and

˘̂
Y t = ˘̂g +

∫ T

t

˘̂
fsds−

∫ T

t

˘̂
Zs.dWs, 0 ≤ t ≤ T,
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where ˘̂g ∈ (Lp(FT ))I and f ∈ (Hp)I are defined by are defined by

˘̂g
k

=
∑

i∈I

|gi(XT ) ∨ gi(Xπ
T )| and

˘̂
f
k

s =
∑

i∈I

|f i(Xπ
π(s), Ỹ

π
π(s)) ∨ f i(Xs, Ỹs)|,

for 0 ≤ s ≤ T and k ∈ I. Following the same argument as in Step 1 of the proof of

Proposition 4.5.2 above, we retrieve from (4.5.17),
˘̂
Y � Ŷ � Ŷ 0 and

E

[
sup
t∈[0,T ]

|Ŷ 0
t |p
]

+ E

[
sup
t∈[0,T ]

| ˘̂Yt|p
]

≤ CpL, p ≥ 2 ,

which gives

E

[
sup
t∈[0,T ]

|Ŷt|p
]

≤ CpL, p ≥ 2 . (4.5.18)

From (4.5.18) and (4.5.17) we obtain that the discretely reflected BSDE (4.3.10) satisfy

(Hg) with p0 = p. The proof is then concluded using Proposition 4.5.1. ✷
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Chapter 5

Optimal portfolio liquidation with

execution cost and risk

Abstract : We study the optimal portfolio liquidation problem over a finite horizon in a

limit order book with bid-ask spread and temporary market price impact penalizing speedy

execution trades. We use a continuous-time modeling framework, but in contrast to pre-

vious related papers (see e.g. [72] and [74]), we do not assume continuous-time trading

strategies. We consider instead real trading that occur in discrete-time, and this is formu-

lated as an impulse control problem under a solvency constraint, including the lag variable

tracking the time interval between trades. A first important result of our paper is to show

that nearly optimal execution strategies in this context lead actually to a finite number

of trading times, and this holds true without assuming ad hoc any fixed transaction fee.

Next, we derive the dynamic programming quasi-variational inequality satisfied by the value

function in the sense of constrained viscosity solutions. We also introduce a family of value

functions converging to our value function, and which is characterized as the unique con-

strained viscosity solutions of an approximation of our dynamic programming equation.

This convergence result is useful for numerical purpose, postponed in a further study.

Keywords: Optimal portfolio liquidation, execution trade, liquidity effects, order book, im-

pulse control, viscosity solutions.
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5.1 Introduction

Understanding trade execution strategies is a key issue for financial market practitioners,

and has attracted a growing attention from the academic researchers. An important pro-

blem faced by stock traders is how to liquidate large block orders of shares. This is a

challenge due to the following dilemma. By trading quickly, the investor is subject to

higher costs due to market impact reflecting the depth of the limit order book. Thus,

to minimize price impact, it is generally beneficial to break up a large order into smaller

blocks. However, more gradual trading over time results in higher risks since the asset

value can vary more during the investment horizon in an uncertain environment. There has

been recently a considerable interest in the literature on such liquidity effects, taking into

account permanent and/or temporary price impact, and problems of this type were studied

by Bertsimas and Lo [9], Almgren and Criss [1], Bank and Baum [6], Cetin, Jarrow and

Protter [19], Obizhaeva and Wang [58], He and Mamayski [42], Schied an Schöneborn [74],

Ly Vath, Mnif and Pham [53], Rogers and Singh [72], and Cetin, Soner and Touzi [20], to

mention some of them.

There are essentially two popular formulation types for the optimal trading problem

in the literature: discrete-time versus continuous-time. In the discrete-time formulation,

we may distinguish papers considering that trading take place at fixed deterministic times

(see [9]), at exogenous random discrete times given for example by the jumps of a Poisson

process (see [69], [7]), or at discrete times decided optimally by the investor through an

impulse control formulation (see [42] and [53]). In this last case, one usually assumes the

existence of a fixed transaction cost paid at each trading in order to ensure that strategies

do not accumulate in time and occur really at discrete points in time (see e.g. [49] or [59]).

The continuous-time trading formulation is not realistic in practice, but is commonly used

(as in [19], [74] or [72]), due to the tractability and powerful theory of the stochastic calculus

typically illustrated by Itô’s formula. In a perfectly liquid market without transaction cost

and market impact, continuous-time trading is often justified by arguing that it is a limit

approximation of discrete-time trading when the time step goes to zero. However, one may

question the validity of such assertion in the presence of liquidity effects.

In this paper, we propose a continuous-time framework taking into account the main

liquidity features and risk/cost tradeoff of portfolio execution: there is a bid-ask spread

in the limit order book, and temporary market price impact penalizing rapid execution

trades. However, in contrast with previous related papers ([74] or [72]), we do not as-

sume continuous-time trading strategies. We consider instead real trading that take place

in discrete-time, and without assuming ad hoc any fixed transaction cost, in accordance

with the practitioner literature. Moreover, a key issue in line of the banking regulation

and solvency constraints is to define in an economically meaningful way the portfolio value

of a position in stock at any time, and this is addressed in our modelling. These issues

are formulated conveniently through an impulse control problem including the lag variable
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tracking the time interval between trades. Thus, we combine the advantages of the stochas-

tic calculus techniques, and the realistic modeling of portfolio liquidation. In this context,

we study the optimal portfolio liquidation problem over a finite horizon: the investor seeks

to unwind an initial position in stock shares by maximizing his expected utility from ter-

minal liquidation wealth, and under a natural economic solvency constraint involving the

liquidation value of a portfolio.

A first important result of our paper is to show that nearly optimal execution strategies

in this modelling lead actually to a finite number of trading times. While most models

dealing with trading strategies via an impulse control formulation assumed fixed transaction

cost in order to justify a posteriori the discrete-nature of trading times, we prove here that

discrete-time trading appear naturally as a consequence of liquidity features represented by

temporary price impact and bid-ask spread. Next, we derive the dynamic programming

quasi-variational inequality (QVI) satisfied by the value function in the sense of constrained

viscosity solutions in order to handle state constraints. There are some technical difficulties

related to the nonlinearity of the impulse transaction function induced by the market price

impact, and the non smoothness of the solvency boundary. In particular, since we do not

assume a fixed transaction fee, which precludes the existence of a strict supersolution to

the QVI, we can not prove directly a comparison principle (hence a uniqueness result) for

the QVI. We then consider two types of approximations by introducing families of value

functions converging to our original value function, and which are characterized as unique

constrained viscosity solutions to their dynamic programming equations. This convergence

result is useful for numerical purpose, postponed in a further study.

The plan of the paper is organized as follows. Section 2 presents the details of the

model and formulates the liquidation problem. In Section 3, we show some interesting

economical and mathematical properties of the model, in particular the finiteness of the

number of trading strategies under illiquidity costs. Section 4 is devoted to the dynamic

programming and viscosity properties of the value function to our impulse control problem.

We propose in Section 5 an approximation of the original problem by considering small fixed

transaction fee. Finally, Section 6 describes another approximation of the model with utility

penalization by small cost. As a consequence, we obtain that our initial value function is

characterized as the minimal constrained viscosity solution to its dynamic programming

QVI.

5.2 The model and liquidation problem

We consider a financial market where an investor has to liquidate an initial position of

y > 0 shares of risky asset (or stock) by time T . He faces with the following risk/cost

tradeoff: if he trades rapidly, this results in higher costs for quickly executed orders and

market price impact; he can then split the order into several smaller blocks, but is then

exposed to the risk of price depreciation during the trading horizon. These liquidity effects



5.2. THE MODEL AND LIQUIDATION PROBLEM 159

received recently a considerable interest starting with the papers by Bertsimas and Lo [9],

and Almgren and Criss [1] in a discrete-time framework, and further investigated among

others in Obizhaeva and Wang [58], Schied an Schöneborn [74], or Rogers and Singh [72]

in a continuous-time model. These papers assume continuous trading with instantaneous

trading rate inducing price impact. In a continuous time market framework, we propose

here a more realistic modeling by considering that trading takes place at discrete points in

time through an impulse control formulation, and with a temporary price impact depending

on the time interval between trades, and including a bid-ask spread.

We present the details of the model. Let (Ω,F ,P) be a probability space equipped with

a filtration F = (Ft)0≤t≤T satisfying the usual conditions, and supporting a one dimensional

Brownian motion W on a finite horizon [0, T ], T <∞. We denote by P = (Pt) the market

price process of the risky asset, by Xt the amount of money (or cash holdings), by Yt the

number of shares in the stock held by the investor at time t, and by Θt the time interval

between time t and the last trade before t. We set R
∗
+ = (0,∞) and R

∗
− = (−∞, 0).

• Trading strategies. We assume that the investor can only trade discretely on [0, T ].

This is modelled through an impulse control strategy α = (τn, ζn)n≥0: τ0 ≤ . . . ≤ τn . . . ≤ T

are nondecreasing stopping times representing the trading times of the investor and ζn,

n ≥ 0, are Fτn−measurable random variables valued in R and giving the number of stock

purchased if ζn ≥ 0 or selled if ζn < 0 at these times. We denote by A the set of trading

strategies. The sequence (τn, ζn) may be a priori finite or infinite. Notice also that we do not

assume a priori that the sequence of trading times (τn) is strictly increasing. We introduce

the lag variable tracking the time interval between trades:

Θt = inf {t− τn : τn ≤ t}, t ∈ [0, T ],

which evolves according to

Θt = t− τn, τn ≤ t < τn+1, Θτn+1 = 0, n ≥ 0. (5.2.1)

The dynamics of the number of shares invested in stock is given by:

Yt = Yτn , τn ≤ t < τn+1, Yτn+1 = Yτ−n+1
+ ζn+1, n ≥ 0. (5.2.2)

• Cost of illiquidity. The market price of the risky asset process follows a geometric

Brownian motion:

dPt = Pt(bdt+ σdWt), (5.2.3)

with constants b and σ > 0. We do not consider a permanent price impact on the price, i.e.

the lasting effect of large trader, but focus here on the effect of illiquidity, that is the price

at which an investor will trade the asset. Suppose now that the investor decides at time t
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to make an order in stock shares of size e. If the current market price is p, and the time lag

from the last order is θ, then the price he actually get for the order e is:

Q(e, p, θ) = pf(e, θ), (5.2.4)

where f is a temporary price impact function from R × [0, T ] into R+ ∪ {∞}. We assume

that the Borelian function f satisfies the following liquidity and transaction cost properties:

(H1f) f(0, θ) = 1, and f(., θ) is nondecreasing for all θ ∈ [0, T ],

(H2f) (i) f(e, 0) = 0 for e < 0, and (ii) f(e, 0) = ∞ for e > 0,

(H3f) κb := sup(e,θ)∈R∗
−×[0,T ] f(e, θ) < 1 and κa := inf(e,θ)∈R∗

+×[0,T ] f(e, θ) > 1.

Condition (H1f) means that no trade incurs no impact on the market price, i.e. Q(0, p, θ)

= p, and a purchase (resp. a sale) of stock shares induces a cost (resp. gain) greater

(resp. smaller) than the market price, which increases (resp. decreases) with the size of the

order. In other words, we have Q(e, p, θ) ≥ (resp. ≤) p for e ≥ (resp. ≤) 0, and Q(., p, θ)

is nondecreasing. Condition (H2f) expresses the higher costs for immediacy in trading:

indeed, the immediate market resiliency is limited, and the faster the investor wants to

liquidate (resp. purchase) the asset, the deeper into the limit order book he will have to go,

and lower (resp. higher) will be the price for the shares of the asset sold (resp. bought), with

a zero (resp. infinite) limiting price for immediate block sale (resp. purchase). Condition

(H2f) also prevents the investor to pass orders at consecutive immediate times, which is

the case in practice. Instead of imposing a fixed arbitrary lag between orders, we shall see

that condition (H2) implies that trading times are strictly increasing. Condition (H3f)

captures a transaction cost effect: at time t, Pt is the market or mid-price, κbPt is the bid

price, κaPt is the ask price, and (κa − κb)Pt is the bid-ask spead. We also assume some

regularity conditions on the temporary price impact function:

(Hcf) (i) f is continuous on R
∗ × (0, T ],

(ii) f is C1 on R
∗
− × [0, T ] and x 7→ ∂f

∂θ
is bounded on R

∗
− × [0, T ].

A usual form (see e.g. [51], [71], [2]) of temporary price impact and transaction cost function

f , suggested by empirical studies is

f(e, θ) = eλ|
e
θ
|βsgn(e)

(
κa1e>0 + 1e=0 + κb1e<0

)
, (5.2.5)

with the convention f(0, 0) = 1. Here 0 < κb < 1 < κa, κa − κb is the bid-ask spread

parameter, λ > 0 is the temporary price impact factor, and β > 0 is the price impact

exponent. In our illiquidity modelling, we focus on the cost of trading fast (that is the

temporary price impact), and ignore as in Cetin, Jarrow and Protter [19] and Rogers and

Singh [72] the permanent price impact of a large trade. This last effect could be included

in our model, by assuming a jump of the price process at the trading date, depending on

the order size, see e.g. He and Mamayski [42] and Ly Vath, Mnif and Pham [53].
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• Cash holdings. We assume a zero risk-free return, so that the bank account is constant

between two trading times:

Xt = Xτn , τn ≤ t < τn+1, n ≥ 0. (5.2.6)

When a discrete trading ∆Yt = ζn+1 occurs at time t = τn+1, this results in a variation of

the cash amount given by ∆Xt := Xt −Xt− = −∆Yt.Q(∆Yt, Pt,Θt−) due to the illiquidity

effects. In other words, we have

Xτn+1 = Xτ−n+1
− ζn+1Q(ζn+1, Pτn+1 ,Θτ−n+1

)

= Xτ−n+1
− ζn+1Pτn+1f(ζn+1, τn+1 − τn), n ≥ 0. (5.2.7)

Notice that similarly as in the above cited papers dealing with continuous-time trading,

we do not assume fixed transaction fees to be paid at each trading. They are practically

insignificant with respect to the price impact and bid-ask spread. We can then not exclude

a priori trading strategies with immediate trading times, i.e. Θτ−n+1
= τn+1 − τn = 0 for

some n. However, notice that under condition (H2f), an immediate sale does not increase

the cash holdings, i.e. Xτn+1 = Xτ−n+1
= Xτn , while an immediate purchase leads to a

bankruptcy, i.e. Xτn+1 = −∞.

• Liquidation value and solvency constraint. A key issue in portfolio liquidation is to

define in an economically meaningful way what is the portfolio value of a position on cash

and stocks. In our framework, we impose a no-short sale constraint on the trading strategies,

i.e.

Yt ≥ 0, 0 ≤ t ≤ T,

which is in line with the bank regulation following the financial crisis, and we consider the

liquidation function L(x, y, p, θ) representing the net wealth value that an investor with a

cash amount x, would obtained by liquidating his stock position y ≥ 0 by a single block

trade, when the market price is p and given the time lag θ from the last trade. It is defined

on R × R+ × R
∗
+ × [0, T ] by

L(x, y, p, θ) = x+ ypf(−y, θ),

and we impose the liquidation constraint on trading strategies:

L(Xt, Yt, Pt,Θt) ≥ 0, 0 ≤ t ≤ T.

We have L(x, 0, p, θ) = x, and under condition (H2f)(ii), we notice that L(x, y, p, 0) = x

for y ≥ 0. We naturally introduce the liquidation solvency region:

S =
{

(z, θ) = (x, y, p, θ) ∈ R × R+ × R
∗
+ × [0, T ] : y > 0 and L(z, θ) > 0

}
.
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Figure 5.1: Domain S in the nonhatched zone for fixed p = 1 and θ evolving from 1.5 to

0.1. Here κb = 0.9 and f(e, θ) = κb exp( eθ ) for e < 0. Notice that when θ goes to 0, the

domain converges to the open orthant R
∗
+ × R

∗
+.

We denote its boundary and its closure by

∂S = ∂yS ∪ ∂LS and S̄ = S ∪ ∂S,

where

∂yS =
{

(z, θ) = (x, y, p, θ) ∈ R × R+ × R
∗
+ × [0, T ] : y = 0 and x = L(z, θ) ≥ 0

}
,

∂LS =
{

(z, θ) = (x, y, p, θ) ∈ R × R+ × R
∗
+ × [0, T ] : L(z, θ) = 0

}
.

We also denote by D0 the corner line in ∂S:

D0 = {0} × {0} × R
∗
+ × [0, T ] = ∂yS ∩ ∂LS.

• Admissible trading strategies. Given (t, z, θ) ∈ [0, T ] × S̄, we say that the impulse

control strategy α = (τn, ζn)n≥0 is admissible, denoted by α ∈ A(t, z, θ), if τ0 = t − θ, τn
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Figure 5.2: Lower bound of the domain S for fixed θ = 1. Here κb = 0.9 and f(e, θ) =

κb exp( eθ ) for e < 0. Notice that when p is fixed, we obtain the Figure 1.
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Figure 5.3: Lower bound of the domain S for fixed p = 1 with f(e, θ) = κb exp( eθ ) for e < 0

and κb = 0.9. Notice that when θ is fixed, we obtain the Figure 1.
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≥ t, n ≥ 1, and the process {(Zs,Θs) = (Xs,Ys, Ps,Θs), t ≤ s ≤ T} solution to (5.2.1)-

(5.2.2)-(5.2.3)-(5.2.6)-(5.2.7), with an initial state (Zt− ,Θt−) = (z, θ) (and the convention

that (Zt,Θt) = (z, θ) if τ1 > t), satisfies (Zs,Θs) ∈ [0, T ] × S̄ for all s ∈ [t, T ]. As usual,

to alleviate notations, we omitted the dependence of (Z,Θ) in (t, z, θ, α), when there is no

ambiguity.

Remark 5.2.1 Let (t, z, θ) ∈ [0, T ] × S̄, and consider the impulse control strategy α =

(τn, ζn)n≥0, τ0 = t− θ, consisting in liquidating immediately all the stock shares, and then

doing no transaction anymore, i.e. (τ1, ζ1) = (t,−y), and ζn = 0, n ≥ 2. The associated

state process (Z = (X,Y, P ),Θ) satisfies Xs = L(z, θ), Ys = 0, which shows that L(Zs,Θs)

= Xs = L(z, θ) ≥ 0, t ≤ s ≤ T , and thus α ∈ A(t, z, θ) 6= ∅.

• Portfolio liquidation problem. We consider a utility function U from R+ into R,

nondecreasing, concave, with U(0) = 0, and s.t. there exists K ≥ 0 and γ ∈ [0, 1):

(HU) 0 ≤ U(x) ≤ Kxγ , ∀x ∈ R+.

The problem of optimal portfolio liquidation is formulated as

v(t, z, θ) = sup
α∈Aℓ(t,z,θ)

E[U(XT )], (t, z, θ) ∈ [0, T ] × S̄, (5.2.8)

where Aℓ(t, z, θ) = {α ∈ A(t, z, θ) : YT = 0} is nonempty by Remark 5.2.1. Notice

that for α ∈ Aℓ(t, z, θ), XT = L(ZT ,ΘT ) ≥ 0, so that the expectations in (5.2.8), and the

value function v are well-defined in [0,∞]. Moreover, by considering the particular strategy

described in Remark 5.2.1, which leads to a final liquidation value XT = L(z, θ), we obtain

a lower-bound for the value function;

v(t, z, θ) ≥ U(L(z, θ)), (t, z, θ) ∈ [0, T ] × S̄. (5.2.9)

Remark 5.2.2 We can shift the terminal liquidation constraint in Aℓ(t, z, θ) to a terminal

liquidation utility by considering the function UL defined on S̄ by:

UL(z, θ) = U(L(z, θ)), (z, θ) ∈ S̄.

Then, problem (5.2.8) is written equivalently in

v̄(t, z, θ) = sup
α∈A(t,z,θ)

E

[
UL(ZT ,ΘT )

]
, (t, z, θ) ∈ [0, T ] × S̄. (5.2.10)

Indeed, by observing that for all α ∈ Aℓ(t, z, θ), we have E[U(XT )] = E[UL(ZT ,ΘT )], and

since Aℓ(t, z, θ) ⊂ A(t, z, θ), it is clear that v ≤ v̄. Conversely, for any α ∈ A(t, z, θ) as-

sociated to the state controlled process (Z,Θ), consider the impulse control strategy α̃ =

α ∪ (T,−YT ) consisting in liquidating all the stock shares YT at time T . The correspond-

ing state process (Z̃, Θ̃) satisfies clearly: (Z̃s, Θ̃s) = (Zs,Θs) for t ≤ s < T , and X̃T =

L(ZT ,ΘT ), ỸT = 0, and so α̃ ∈ Aℓ(t, z, θ). We deduce that E[UL(ZT ,ΘT )] = E[U(X̃T )]

≤ v(t, z, θ), and so by arbitrariness of α in A(t, z, θ), v̄(t, z, θ) ≤ v(t, z, θ). This proves

the equality v = v̄. Actually, the above arguments also show that supα∈Aℓ(t,z,θ)
U(XT ) =

supα∈A(t,z,θ) UL(ZT ,ΘT ).
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Remark 5.2.3 A continuous-time trading version of our illiquid market model with stock

price P and temporary price impact f can be formulated as follows. The trading strategy

is given by a F-adated process η = (ηt)0≤t≤T representing the instantaneous trading rate,

which means that the dynamics of the cumulated number of stock shares Y is governed by:

dYt = ηtdt. (5.2.11)

The cash holdings X follows

dXt = −ηtPtf(ηt)dt. (5.2.12)

Notice that in a continuous-time trading formulation, the time interval between trades is

Θt = 0 at any time t. Under condition (H2f), the liquidation value is then given at any

time t by:

L(Xt, Yt, Pt, 0) = Xt, 0 ≤ t ≤ T,

and does not capture the position in stock shares, which is economically not relevant. On

the contrary, by explicitly considering the time interval between trades in our discrete-time

trading formulation, we take into account the position in stock.

5.3 Properties of the model

In this section, we show that the illiquid market model presented in the previous section

displays some interesting and economically meaningful properties on the admissible trading

strategies and the optimal performance, i.e. the value function. Let us consider the impulse

transaction function Γ defined on R × R+ × R
∗
+ × [0, T ] × R into R ∪ {−∞} × R × R

∗
+ by:

Γ(z, θ, e) =
(
x− epf(e, θ), y + e, p

)
,

for z = (x, y, p), and set Γ̄(z, θ, e) = (Γ(z, θ, e), 0). This corresponds to the value of the

state variable (Z,Θ) immediately after a trading at time t = τn+1 of ζn+1 shares of stock,

i.e. (Zτn+1 ,Θτn+1) = (Γ(Zτ−n+1
,Θτ−n+1

, ζn+1), 0). We then define the set of admissible trans-

actions:

C(z, θ) =
{
e ∈ R : (Γ(z, θ, e), 0) ∈ S̄

}
, (z, θ) ∈ S̄.

This means that for any α = (τn, ζn)n≥0 ∈ A(t, z, θ) with associated state process (Z,Θ),

we have ζn ∈ C(Zτ−n ,Θτ−n
), n ≥ 1. We define the impulse operator H by

Hϕ(t, z, θ) = sup
e∈C(z,θ)

ϕ(t,Γ(z, θ, e), 0), (t, z, θ) ∈ [0, T ] × S̄.

We also introduce the liquidation function of the (perfectly liquid) Merton model:

LM (z) = x+ py, ∀z = (x, y, p) ∈ R × R × R
∗
+.
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For (t, z = (x, y, p), θ) ∈ [0, T ] × S̄, we denote by (Z0,t,z,Θ0,t,θ) the state process starting

from (z, θ) at time t, and without any impulse control strategy: it is given by

(
Z0,t,z
s ,Θ0,t,θ

s

)
= (x, y, P t,ps , θ + s− t), t ≤ s ≤ T,

where P t,p is the solution to (5.2.3) starting from p at time t. Notice that (Z0,t,z,Θ0,t,θ) is

the continuous part of the state process (Z,Θ) controlled by α ∈ A(t, z, θ). The infinitesimal

generator L associated to the process (Z0,t,z,Θ0,t,θ) is

Lϕ+
∂ϕ

∂θ
= bp

∂ϕ

∂p
+

1

2
σ2p2∂

2ϕ

∂p2
+
∂ϕ

∂θ
.

We first prove a useful result on the set of admissible transactions.

Lemma 5.3.1 Assume that (H1f), (H2f) and (H3f) hold. Then, for all (z = (x, y, p), θ)

∈ S̄, the set C(z, θ) is compact in R and satisfy

C(z, θ) ⊂ [−y, ē(z, θ)], (5.3.1)

where −y ≤ ē(z, θ) <∞ is given by

ē(z, θ) =

{
sup

{
e ∈ R : epf(e, θ) ≤ x

}
, if θ > 0

0 , if θ = 0.

For θ = 0, (5.3.1) becomes an equality : C(z, 0) = [−y, 0].

The set function C is continous for the Hausdorff metric, i.e. if (zn, θn) converges to

(z, θ) in S̄, and (en) is a sequence in C(zn, θn) converging to e, then e ∈ C(z, θ). Moreover,

if e ∈ R 7→ ef(e, θ) is strictly increasing for θ ∈ (0, T ], then for (z = (x, y, p), θ) ∈ ∂LS with

θ > 0, we have ē(z, θ) = −y, i.e. C(z, θ) = {−y}.

Proof. By definition of the impulse transaction function Γ and the liquidation function L,

we immediately see that the set of admissible transactions is written as

C(z, θ) =
{
e ∈ R : x− epf(e, θ) ≥ 0, and y + e ≥ 0

}

=
{
e ∈ R : epf(e, θ) ≤ x

}
∩ [−y,∞) =: C1(z, θ) ∩ [−y,∞). (5.3.2)

It is clear that C(z, θ) is closed and bounded, thus a compact set. Under (H1f) and (H3f),

we have lime→∞ epf(e, θ) = ∞. Hence we get ē(z, θ) < ∞ and C1(z, θ) ⊂ (−∞, ē(z, θ)].

From (5.3.2), we get (5.3.1). Suppose θ = 0. Under (H2f), using (z, θ) ∈ S̄, we have C1(z, θ)

= R−. From (5.3.2), we get C(z, θ) = [−y, 0].

Let us now prove the continuity of the set of admissible transactions. Consider a sequence

(zn = (xn, yn, pn), θn) in S̄ converging to (z, θ) ∈ S̄, and a sequence (en) in C(zn, θn)

converging to e. Suppose first that θ > 0. Then, for n large enough, θn > 0 and by

observing that (z, θ, e) 7→ Γ̄(z, θ, e) is continuous on R×R+×R
∗
+×R

∗
+×R, we immediately
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deduce that e ∈ C(z, θ). In the case θ = 0, writing xn − enf(en, θn) ≥ 0, using (H2f)(ii)

and sending n to infinity, we see that e should necessarily be nonpositive. By writing also

that yn + en ≥ 0, we get by sending n to infinity that y + e ≥ 0, and therefore e ∈ C(z, 0)

= [−y, 0].

Suppose finally that e ∈ R 7→ ef(e, θ) is increasing, and fix (z = (x, y, p), θ) ∈ ∂LS,

with θ > 0. Then, L(z, θ) = 0, i.e. x = −ypf(−y, θ). Set ē = ē(z, θ). By writing that

ēpf(ē, θ) ≤ x = −ypf(−y, θ), and ē ≥ −y, we deduce from the increasing monotonicity of

e 7→ epf(e, θ) that ē = −y. ✷

Remark 5.3.1 The previous Lemma implies in particular that C(z, 0) ⊂ R−, which means

that an admissible transaction after an immediate trading should be necessarily a sale. In

other words, given α = (τn, ζn)n≥0 ∈ A(t, z, θ), (t, z, θ) ∈ [0, T ] × S̄, if Θτ−n
= 0, then ζn

≤ 0. The continuity property of C ensures that the operator H preserves the lower and

upper-semicontinuity (see Appendix). This Lemma also asserts that, under the assumption

of increasing monotonicity of e → ef(e, θ), when the state is in the boundary L = 0, then

the only admissible transaction is to liquidate all stock shares. This increasing monotonicity

means that the amount traded is increasing with the size of the order. Such an assumption

is satisfied in the example (5.2.5) of temporary price impact function f for β = 2, but is

not fulfilled for β = 1. In this case, the presence of illiquidity cost implies that it may be

more advantageous to split the order size.

We next state some useful bounds on the liquidation value associated to an admissible

transaction.

Lemma 5.3.2 Assume that (H1f) holds. Then, we have for all (t, z, θ) ∈ [0, T ] × S̄:

0 ≤ L(z, θ) ≤ LM (z), (5.3.3)

LM (Γ(z, θ, e)) ≤ LM (z), ∀e ∈ R, (5.3.4)

sup
α∈A(t,z,θ)

L(Zs,Θs) ≤ LM (Z0,t,z
s ), t ≤ s ≤ T. (5.3.5)

Furthermore, under (H3f), we have for all (z = (x, y, p), θ) ∈ S̄,

LM (Γ(z, θ, e)) ≤ LM (z) − min(κa − 1, 1 − κb)|e|p, ∀e ∈ R. (5.3.6)

Proof. Under (H1f), we have f(e, θ) ≤ 1 for all e ≤ 0, which shows clearly (5.3.3). From

the definition of LM and Γ, we see that for all e ∈ R,

LM (Γ(z, θ, e)) − LM (z) = ep
(
1 − f(e, θ)

)
, (5.3.7)

which yields the inequality (5.3.4). Fix some arbitrary α = (τn, ζn)n≥0 ∈ A(t, z, θ) associated

to the controlled state process (Z,Θ). When a transaction occurs at time s = τn, n ≥ 1,

the jump of LM (Z) is nonpositive by (5.3.4):

∆LM (Zs) = LM (Zτn) − LM (Zτ−n ) = LM (Γ(Zτ−n ,Θτ−n
, ζn)) − LM (Zτ−n ) ≤ 0.
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We deduce that the process LM (Z) is smaller than its continuous part equal to LM (Z0,t,z),

and we then get (5.3.5) with (5.3.3). Finally, under the additional condition (H3f), we

easily obtain inequality (5.3.6) from relation (5.3.7). ✷

We now check that our liquidation problem is well-posed by stating a natural upper-

bound on the optimal performance, namely that the value function in our illiquid market

model is bounded by the usual Merton bound in a perfectly liquid market.

Proposition 5.3.1 Assume that (H1f) and (HU) hold. Then, for all (t, z, θ) ∈ [0, T ]×S̄,

the family {UL(ZT ,ΘT ), α ∈ A(t, z, θ)} is uniformly integrable, and we have

v(t, z, θ) ≤ v0(t, z) := E

[
U
(
LM (Z0,t,z

T )
)]
, (t, z, θ) ∈ [0, T ] × S̄,

≤ Keρ(T−t)LM (z)γ , (5.3.8)

where ρ is a positive constant s.t.

ρ ≥ γ

1 − γ

b2

2σ2
. (5.3.9)

Proof. From (5.3.5) and the nondecreasing monotonicity of U , we have for all (t, z, θ) ∈
[0, T ] × S̄:

sup
α∈Aℓ(t,z,θ)

U(XT ) = sup
α∈A(t,z,θ)

UL(ZT ,ΘT ) ≤ U(LM (Z0,t,z
T )),

and all the assertions of the Proposition will follow once we prove the inequality (5.3.8).

For this, consider the nonnegative function ϕ defined on [0, T ] × S̄ by:

ϕ(t, z, θ) = eρ(T−t)LM (z)γ = eρ(T−t)(x+ py)γ ,

and notice that ϕ is smooth C2 on [0, T ]× (S̄ \D0). We claim that for ρ > 0 large enough,

the function ϕ satisfies:

−∂ϕ
∂t

− ∂ϕ

∂θ
− Lϕ ≥ 0, on [0, T ] × (S̄ \D0).

Indeed, a straightforward calculation shows that for all (t, z, θ) ∈ [0, T ] × (S̄ \D0):

−∂ϕ
∂t

(t, z, θ) − ∂ϕ

∂θ
(t, z, θ) − Lϕ(t, z, θ)

= eρ(T−t)LM (z)γ−2
[(√

ρLM (z) +
bγ

2
√
ρ
yp
)2

+
(γ(1 − γ)σ2

2
− b2γ2

4ρ

)
y2p2

]
(5.3.10)

which is nonegative under condition (5.3.9).

Fix some (t, z, θ) ∈ [0, T ]×S̄. If (z, θ) = (0, 0, p, θ) ∈ D0, then we clearly have v0(t, z, θ)

= U(0), and inequality (5.3.8) is trivial. Otherwise, if (z, θ) ∈ S̄ \ D0, then the pro-

cess (Z0,t,z,Θ0,t,θ) satisfy LM (Z0,t,z,Θ0,t,θ) > 0. Indeed, Denote by (Z̄t,z, Θ̄t,θ) the process

starting from (z, θ) at t and associated to the strategy consisting in liquidating all stock
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shares at t. Then we have (Z̄t,zs , Θ̄t,θ
s ) ∈ S̄ \D0 for all s ∈ [t, T ] and hence LM (Z̄t,zs , Θ̄t,θ

s )>

0 for all s ∈ [t, T ]. Using (5.3.5) we get LM (Z0,t,z
s ,Θ0,t,θ

s ) ≥ LM (Z̄t,zs , Θ̄t,θ
s ) > 0.

We can then apply Itô’s formula to ϕ(s, Z0,t,z
s ,Θ0,t,θ

s ) between t and TR = inf{s ≥
t : |Z0,t,z

s | ≥ R} ∧ T :

E[ϕ(TR, Z
0,t,z
TR

,Θ0,t,θ
TR

)] = ϕ(t, z) + E

[ ∫ TR

t

(∂ϕ
∂t

+
∂ϕ

∂θ
+ Lϕ

)
(s, Z0,t,z

s ,Θ0,t,θ
s )ds

]

≤ ϕ(t, z).

(The stochastic integral term vanishes in expectation since the integrand is bounded before

TR). By sending R to infinity, we get by Fatou’s lemma and since ϕ(T, z, θ) = LM (z)γ :

E

[
LM (Z0,t,z

T )γ
]

≤ ϕ(t, z, θ).

We conclude with the growth condition (HU). ✷

As a direct consequence of the previous proposition, we obtain the continuity of the

value function on the boundary ∂yS, i.e. when we start with no stock shares.

Corollary 5.3.1 Assume that (H1f) and (HU) hold. Then, the value function v is con-

tinuous on [0, T ] × ∂yS, and we have

v(t, z, θ) = U(x), ∀t ∈ [0, T ], (z, θ) = (x, 0, p, θ) ∈ ∂yS.

In particular, we have v(t, z, θ) = U(0) = 0, for all (t, z, θ) ∈ [0, T ] ×D0.

Proof. From the lower-bound (5.2.9) and the upper-bound in Proposition 5.3.1, we have

for all (t, z, θ) ∈ [0, T ] × S̄,

U
(
x+ ypf( − y, θ)

)
≤ v(t, z, θ) ≤ E[U(LM (Z0,t,z

T ))] = E[U(x+ yP t,pT )].

These two inequalities imply the required result. ✷

The following result states the finiteness of the total number of shares and amount

traded.

Proposition 5.3.2 Assume that (H1f) and (H3f) hold. Then, for any α = (τn, ζn)n≥0 ∈
A(t, z, θ), (t, z, θ) ∈ [0, T ] × S̄, we have

∑

n≥1

|ζn| < ∞,
∑

n≥1

|ζn|Pτn < ∞, and
∑

n≥1

|ζn|Pτnf
(
ζn,Θτ−n

)
< ∞, a.s.

Proof. Fix (t, z = (x, y, p), θ) ∈ [0, T ] × S̄, and α = (τn, ζn)n≥0 ∈ A(t, z, θ). Observe first

that the continuous part of the process LM (Z) is LM (Z0,t,z), and we denote its jump at
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time τn by ∆LM (Zτn) = LM (Zτn) − LM (Zτ−n ). From the estimates (5.3.3) and (5.3.6) in

Lemma 5.3.2, we then have almost surely for all n ≥ 1,

0 ≤ LM (Zτn) = LM (Z0,t,z
τn ) +

n∑

k=1

∆LM (Zτk)

≤ LM (Z0,t,z
τn ) − κ̄

n∑

k=1

|ζk|Pτk ,

where we set κ̄ = min(κa − 1, 1 − κb) > 0. We deduce that for all n ≥ 1,

n∑

k=1

|ζk|Pτk ≤ 1

κ̄
sup
s∈[t,T ]

LM (Z0,t,z
s ) =

1

κ̄
(x+ y sup

s∈[t,T ]
P t,ps ) < ∞, a.s.

This shows the almost sure convergence of the series
∑

n |ζn|Pτn . Moreover, since the price

process P is continous and strictly positive, we also obtain the convergence of the series∑
n |ζn|. Recalling that f(e, θ) ≤ 1 for all e ≤ 0 and θ ∈ [0, T ], we have for all n ≥ 1.

n∑

k=1

|ζk|Pτkf(ζk,Θτ−
k

) =

n∑

k=1

ζkPτkf(ζk,Θτ−
k

) + 2

n∑

k=1

|ζk|Pτkf(ζk,Θτ−
k

)1ζk≤0

≤
n∑

k=1

ζkPτkf(ζk,Θτ−
k

) + 2

n∑

k=1

|ζk|Pτk . (5.3.11)

On the other hand, we have

0 ≤ LM (Zτn) = Xτn + YτnPτn

= x−
n∑

k=1

ζkPτkf(ζk,Θτ−
k

) + (y +

n∑

k=1

ζk)Pτn .

Together with (5.3.11), this implies that for all n ≥ 1,

n∑

k=1

|ζk|Pτkf(ζk,Θτ−
k

) ≤ x+ (y +

n∑

k=1

|ζk|) sup
s∈[t,T ]

P t,ps + 2

n∑

k=1

|ζk|Pτk .

The convergence of the series
∑

n |ζn|Pτnf(ζn,Θτ−n
) follows therefore from the convergence

of the series
∑

n |ζn| and
∑

n |ζn|Pτn . ✷

As a consequence of the above results, we can now prove that in the optimal portfolio

liquidation, it suffices to restrict to a finite number of trading times, which are strictly

increasing. Given a trading strategy α = (τn, ζn)n≥0 ∈ A, let us denote by N(α) the

process counting the number of intervention times:

Nt(α) =
∑

n≥1

1τn≤t, 0 ≤ t ≤ T.
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We denote by Ab
ℓ(t, z, θ) the set of admissible trading strategies in Aℓ(t, z, θ) with a finite

number of trading times, such that these trading times are strictly increasing, namely:

Ab
ℓ(t, z, θ) =

{
α = (τn, ζn)n≥0 ∈ Aℓ(t, z, θ) : NT (α) <∞, a.s.

and τn < τn+1 a.s., 0 ≤ n ≤ NT (α) − 1
}
.

For any α = (τn, ζn)n ∈ Ab
ℓ(t, z, θ), the associated state process (Z,Θ) satisfies Θτ−n+1

> 0,

i.e. (Zτ−n+1
,Θτ−n+1

) ∈ S̄∗ :=
{

(z, θ) ∈ S̄ : θ > 0
}

. We also set ∂LS∗ = ∂LS ∩ S̄∗.

Theorem 5.3.1 Assume that (H1f), (H2f), (H3f), (Hcf) and (HU) hold. Then, we

have

v(t, z, θ) = sup
α∈Ab

ℓ
(t,z,θ)

E[U(XT )], (t, z, θ) ∈ [0, T ] × S̄. (5.3.12)

Moreover, we have

v(t, z, θ) = sup
α∈Ab

ℓ+
(t,z,θ)

E[U(XT )], (t, z, θ) ∈ [0, T ] × (S̄ \ ∂LS), (5.3.13)

where Ab
ℓ+

(t, z, θ) = {α ∈ Ab
ℓ(t, z, θ) : (Zs,Θs) ∈ (S̄ \ ∂LS), t ≤ s < T}.

Proof. 1. Fix (t, z, θ) ∈ [0, T ] × S̄, and denote by Āb
ℓ(t, z, θ) the set of admissible trading

strategies in Aℓ(t, z, θ) with a finite number of trading times:

Āb
ℓ(t, z, θ) =

{
α = (τk, ζk)k≥0 ∈ Aℓ(t, z, θ) : NT (α) is bounded a.s.

}
.

Given an arbitrary α = (τk, ζk)k≥0 ∈ Aℓ(t, z, θ) associated to the state process (Z,Θ) =

(X,Y, P,Θ), let us consider the truncated trading strategy α(n) = (τk, ζk)k≤n ∪ (τn+1,−Yτ−n+1
),

which consists in liquidating all stock shares at time τn+1. This strategy α(n) lies in

Āℓ(t, z, θ), and is associated to the state process denoted by (Z(n),Θ(n)). We then have

X
(n)
T −XT =

∑

k≥n+1

ζkPτkf(ζk,Θτ−
k

) + Yτ−n+1
Pτn+1f( − Yτ−n+1

,Θτ−n+1
).

Now, from Proposition 5.3.2, we have

∑

k≥n+1

ζkPτkf(ζk,Θτ−
k

) −→ 0 a.s. when n→ ∞.

Moreover, since 0 ≤ Yτ−n+1
= Yτn goes to YT = 0 as n goes to infinity, by definition of α ∈

Aℓ(t, z, θ), and recalling that f is smaller than 1 on R− × [0, T ], we deduce that

0 ≤ Yτ−n+1
Pτn+1f( − Yτ−n+1

Θτ−n+1
) ≤ Yτ−n+1

sup
s∈[t,T ]

P t,ps

−→ 0 a.s. when n→ ∞.
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This proves that

X
(n)
T −→ XT a.s. when n→ ∞.

From Proposition 5.3.1, the sequence (U(X
(n)
T ))n≥1 is uniformly integrable, and we can

apply the dominated convergence theorem to get

E[U(X
(n)
T )] −→ E[U(XT )], when n→ ∞.

From the arbitrariness of α ∈ Aℓ(t, z, θ), this shows that

v(t, z, θ) ≤ v̄b(t, z, θ) := sup
α∈Āb

ℓ
(t,z,θ)

E[U(XT )],

and actually the equality v = v̄b since the other inequality v̄b ≤ v is trivial from the inclusion

Āb
ℓ(t, z, θ) ⊂ Aℓ(t, z, θ).

2. Denote by vb the value function in the r.h.s. of (5.3.12). It is clear that vb ≤ v̄b = v since

Ab
ℓ(t, z, θ) ⊂ Āb

ℓ(t, z, θ). To prove the reverse inequality we need first to study the behavior

of optimal strategies at time T . Introduce the set

Ãb
ℓ(t, z, θ) =

{
α = (τk, ζk)k ∈ Ab

ℓ(t, z, θ) : #{k : τk = T} ≤ 1
}
,

and denote by ṽb the associated value function. Then we have ṽb ≤ v̄b. Indeed, let α

= (τk, ζk)k be some arbitrary element in Āb
ℓ(t, z, θ), (t, z = (x, y, p), θ) ∈ [0, T ] × S̄. If

α ∈ Ãb
ℓ(t, z, θ) then we have ṽb(t, z, θ) ≥ E

[
UL(ZT ,ΘT )

]
, where (Z,Θ) denotes the pro-

cess associated to α. Suppose now that α /∈ Ãb
ℓ(t, z, θ). Set m = max{k : τk < T}.

Then define the stopping time τ ′ := τm+T
2 and the Fτ ′-measurable random variable ζ ′ :=

argmax{ef(e, T − τm) : e ≥ −Yτm}. Define the strategy α′ = (τk, ζk)k≤m ∪ (τ ′, Yτm − ζ ′)∪
(T, ζ ′). From the construction of α′, we easily check that α′ ∈ Ãb(t, z, θ) and E

[
UL(ZT ,ΘT )

]

≤ E

[
UL(Z ′

T ,Θ
′
T )
]

where (Z ′,Θ′) denotes the process associated to α′. Hence, we get ṽb ≥
v̄b.

We now prove that vb ≥ ṽb. Let α = (τk, ζk)k be some arbitrary element in Ãb
ℓ(t, z, θ),

(t, z = (x, y, p), θ) ∈ [0, T ]×S̄. Denote by N = NT (α) the a.s. finite number of trading times

in α. We set m = inf{0 ≤ k ≤ N−1 : τk+1 = τk} and M = sup{m+1 ≤ k ≤ N : τk = τm}
with the convention that inf ∅ = sup ∅ = N+1. We then define α′ = (τ ′k, ζ

′
k)0≤k≤N−(M−m)+1

∈ A by:

(τ ′k, ζ
′
k) =





(τk, ζk), for 0 ≤ k < m

(τm = τM ,
∑M

k=m ζk), for k = m and m < N,
(τk+M−m, ζk+M−m), for m+ 1 ≤ k ≤ N − (M −m) and m < N,

(τ ′,
∑M

l=m+1 ζl) for k = N − (M −m) + 1

where τ ′ = τ̂+T
2 with τ̂ = max{τk : τk < T}, and we denote by (Z ′ = (X ′, Y ′, P ),Θ′) the

associated state process. It is clear that (Z ′
s,Θ

′
s) = (Zs,Θs) for t ≤ s < τm, and so X ′

(τ)′−



5.3. PROPERTIES OF THE MODEL 173

= X(τ ′)− , Θ′
(τ ′)− = Θ(τ ′)− . Moreover, since τm = τM , we have Θτ−

k
= 0 for m+1 ≤ k ≤M .

From Lemma 5.3.1 (or Remark 5.3.1), this implies that ζk ≤ 0 for m+ 1 ≤ k ≤M , and so

ζ ′N−(M−m)+1 =
∑M

k=m+1 ζk ≤ 0. We also recall that immediate sales does not increase the

cash holdings, so that Xτk = Xτm for m+ 1 ≤ k ≤M . We then get

X ′
T = XT − ζ ′N−(M−m)+1Pτ ′f(ζ ′N−(M−m)+1,Θ

′
(τ ′)−)

≥ XT .

Moreover, we have Y ′
T = y +

∑N
k=1 ζk = YT = 0. By construction, notice that τ ′0 < . . . <

τ ′m+1. Given an arbitrary α ∈ Āb
ℓ(t, z, θ), we can then construct by induction a trading

strategy α′ ∈ Ab
ℓ(t, z, θ) such that X ′

T ≥ XT a.s. By the nondecreasing monotonicity of the

utility function U , this yields

E[U(XT )] ≤ E[U(X ′
T )] ≤ vb(t, z, θ),

and we conclude from the arbitrariness of α ∈ Ãb
ℓ(t, z, θ): ṽ

b ≤ vb, and thus v = v̄b = ṽb =

vb.

3. Fix now an element (t, z, θ) ∈ [0, T ]×(S̄ \∂LS), and denote by v+ the r.h.s of (5.3.13). It

is clear that v ≥ v+. Conversely, take some arbitrary α = (τk, ζk)k ∈ Ab
ℓ(t, z, θ), associated

with the state process (Z,Θ), and denote by N = NT (α) the finite number of trading times

in α. Consider the first time before T when the liquidation value reaches zero, i.e. τα =

inf{t ≤ s ≤ T : L(Zs,Θs) = 0} ∧ T with the convention inf ∅ = ∞. We claim that there

exists 1 ≤ m ≤ N +1 (depending on ω and α) such that τα = τm, with the convention that

m = N + 1, τN+1 = T if τα = T . On the contrary, there would exist 1 ≤ k ≤ N such that

τk < τα < τk+1, and L(Zτα ,Θτα) = 0. Between τk and τk+1, there is no trading, and so

(Xs, Ys) = (Xτk , Yτk), Θs = s− τk for τk ≤ s < τk+1. We then get

L(Zs,Θs) = Xτk + YτkPsf( − Yτk , s− τk), τk ≤ s < τk+1. (5.3.14)

Moreover, since 0 < L(Zτk ,Θτk) =Xτk , and L(Zτα ,Θτα) = 0, we see with (5.3.14) for s = τα

that YτkPταf(−Yτk , τα−τk) should necessarily be strictly negative: YτkPταf(−Yτk , τα−τk)
< 0, a contradiction with the admissibility conditions and the nonnegative property of f .

We then have τα = τm for some 1 ≤ m ≤ N+1. Observe that ifm ≤N , i.e. L(Zτm ,Θτm)

= 0, then U(L(ZT ,ΘT )) = 0. Indeed, suppose that Yτm > 0 and m ≤ N . From the

admissibility condition, and by Itô’s formula to L(Z,Θ) in (5.3.14) between τα and τ−m+1,

we get

0 ≤ L(Zτ−m+1
,Θτ−

k+1
) = L(Zτ−m+1

,Θτ−m+1
) − L(Zτα ,Θτα)

=

∫ τm+1

τα

YτmPs

[
β(Yτm , s− τm)ds+ σf( − Yτk , s− τm)dWs

]
,(5.3.15)

where β(y, θ) = bf(−y, θ) +
∂f

∂θ
(−y, θ) is bounded on R+ × [0, T ] by (Hcf)(ii). Since the

integrand in the above stochastic integral w.r.t Brownian motion W is strictly positive, thus
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nonzero, we must have τα = τm+1. Otherwise, there is a nonzero probability that the r.h.s.

of (5.3.15) becomes strictly negative, a contradiction with the inequality (5.3.15).

Hence we get Yτm = 0, and thus L(Zτ−m+1
,Θτ−m+1

) = Xτm = 0. From the Markov feature

of the model and Corollary 5.3.1, we then have

E

[
U
(
L(ZT ,ΘT )

)∣∣∣Fτm
]

≤ v(τm, Zτm ,Θτm) = U(Xτm) = 0.

Since U is nonnegative, this implies that U(L(ZT ,ΘT )) = 0. Let us next consider the

trading strategy α′ = (τ ′k, ζ
′
k)0≤k≤(m−1) ∈ A consisting in following α until time τα, and

liquidating all stock shares at time τα = τm−1, and defined by:

(τ ′k, ζ
′
k) =

{
(τk, ζk), for 0 ≤ k < m− 1(

τm−1,−Yτ−
(m−1)

)
, for k = m− 1,

and we denote by (Z ′,Θ′) the associated state process. It is clear that (Z ′
s,Θ

′
s) = (Zs,Θs)

for t ≤ s < τm−1, and so L(Z ′
s,Θ

′
s) = L(Zs,Θs) > 0 for t ≤ s ≤ τm−1. The liquidation

at time τm−1 (for m ≤ N) yields Xτm−1 = L(Zτ−m−1
,Θτ−m−1

) > 0, and Yτm−1 = 0. Since

there is no more trading after time τm−1, the liquidation value for τm−1 ≤ s ≤ T is given

by: L(Zs,Θs) = Xτm−1 > 0. This shows that α′ ∈ Ab
ℓ+

(t, z, θ). When m = N + 1, we

have α = α′, and so X ′
T = L(Z ′

T ,Θ
′
T ) = L(ZT ,ΘT ) = XT . For m ≤ N , we have U(X ′

T ) =

U(L(Z ′
T ,Θ

′
T )) ≥ 0 = U(L(ZT ,ΘT )) = U(XT ). We then get U(X ′

T ) ≥ U(XT ) a.s., and so

E[U(XT )] ≤ E[U(X ′
T )] ≤ v+(t, z, θ).

We conclude from the arbitrariness of α ∈ Āb
ℓ(t, z, θ): v ≤ v+, and thus v = v+. ✷

Remark 5.3.2 If we suppose that the function e ∈ R 7→ ef(e, θ) is increasing for θ ∈ (0, T ],

we get the value of v on the bound ∂LS∗: v(t, z, θ) = U(0) = 0 for (t, z = (x, y, p), θ) ∈
[0, T ] × ∂LS∗. Indeed, fix some point (t, z = (x, y, p), θ) ∈ [0, T ] × ∂LS∗, and consider

an arbitrary α = (τk, ζk)k ∈ Ab
ℓ(t, z, θ) with state process (Z,Θ), and denote by N the

number of trading times. We distinguish two cases: (i) If τ1 = t, then by Lemma 5.3.1, the

transaction ζ1 is equal to −y, which leads to Yτ1 = 0, and a liquidation value L(Zτ1 ,Θτ1)

= Xτ1 = L(z, θ) = 0. At the next trading date τ2 (if it exists), we get Xτ−2
= Yτ−2

= 0 with

liquidation value L(Zτ−2
,Θτ−2

) = 0, and by using again Lemma 5.3.1, we see that after the

transaction at τ2, we shall also obtain Xτ2 = Yτ2 = 0. By induction, this leads at the final

trading time to XτN = YτN = 0, and finally to XT = YT = 0. (ii) If τ1 > t, we claim that

y = 0. On the contrary, by arguing similarly as in (5.3.15) between t and τ−1 , we have then

proved that any admissible trading strategy α ∈ Ab
ℓ(t, z, θ) provides a final liquidation value

XT = 0, and so

v(t, z, θ) = U(0) = 0, ∀(t, z, θ) ∈ [0, T ] × ∂LS∗. (5.3.16)
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Remark 5.3.3 The representation (5.3.12) of the optimal portfolio liquidation reveals inte-

resting economical and mathematical features. It shows that the liquidation problem in a

continuous-time illiquid market model with discrete-time orders and temporary price impact

with the presence of a bid-ask spread as considered in this paper, leads to nearly optimal

trading strategies with a finite number of orders and with strictly increasing trading times.

While most models dealing with trading strategies via an impulse control formulation as-

sumed fixed transaction fees in order to justify the discrete nature of trading times, we prove

in this paper that discrete-time trading appears naturally as a consequence of temporary

price impact and bid-ask spread.

The representation (5.3.13) shows that when we are in an initial state with strictly

positive liquidation value, then we can restrict in the optimal portfolio liquidation problem

to admissible trading strategies with strictly positive liquidation value up to time T−. The

relation (5.3.16) means that when the initial state has a zero liquidation value, which is not

a result of an immediate trading time, then the liquidation value will stay at zero until the

final horizon.

5.4 Dynamic programming and viscosity properties

In the sequel, the conditions (H1f), (H2f), (H3f), (Hcf) and (HU) stand in force, and

are not recalled in the statement of Theorems and Propositions.

We use a dynamic programming approach to derive the equation satisfied by the value

function of our optimal portfolio liquidation problem. Dynamic programming principle

(DPP) for impulse controls was frequently used starting from the works by Bensoussan and

Lions [8], and then considered e.g. in [78], [60], [53] or [75]. In our context (recall the

expression (5.2.10) of the value function), this is formulated as:

Dynamic programming principle (DPP). For all (t, z, θ) ∈ [0, T ] × S̄, we have

v(t, z, θ) = sup
α∈A(t,z,θ)

E[v(τ, Zτ ,Θτ )], (5.4.1)

where τ = τ(α) is any stopping time valued in [t, T ] eventually depending on the strategy

α in (5.4.1). More precisely we have :

(i) for all α ∈ A(t, z, θ), for all τ ∈ Tt,T , the set of stopping times valued in [t, T ]:

E[v(τ, Zτ ,Θτ )] ≤ v(t, z, θ) (5.4.2)

(ii) for all ε > 0, there exists α̂ε ∈ A(t, z, θ) s.t. for all τ ∈ Tt,T :

v(t, z, θ) − ε ≤ E[v(τ, Ẑετ , Θ̂
ε
τ )], (5.4.3)

with (Ẑε, Θ̂ε) the state process controlled by α̂ε.
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The corresponding dynamic programming Hamilton-Jacobi-Bellman (HJB) equation is

a quasi-variational inequality (QVI) written as:

min
[
− ∂v

∂t
− ∂v

∂θ
− Lv , v −Hv

]
= 0, in [0, T ) × S̄, (5.4.4)

together with the relaxed terminal condition:

min [v − UL , v −Hv] = 0, in {T} × S̄. (5.4.5)

The rigorous derivation of the HJB equation satisfied by the value function from the

dynamic programming principle is achieved by means of the notion of viscosity solutions,

and is by now rather classical in the modern approach of stochastic control (see e.g. the

books [34] and [67]). There are some specificities here related to the impulse control and

the liquidation state constraint, and we recall in Appendix, definitions of (discontinuous)

constrained viscosity solutions for parabolic QVIs. The main result of this section is stated

as follows.

Theorem 5.4.1 The value function v is a constrained viscosity solution to (5.4.4)-(5.4.5).

Proof. The proof of the viscosity supersolution property on [0, T ) × S and the viscosity

subsolution property on [0, T )×S̄ follows the same lines of arguments as in [53], and is then

omitted here. We focus on the terminal condition (5.4.5).

We first check the viscosity supersolution property on {T}×S. Fix some (z, θ) ∈ S, and

consider some sequence (tk, zk, θk)k≥1 in [0, T ) × S, converging to (T, z, θ) and such that

limk v(tk, zk, θk) = v∗(T, z, θ). By taking the no impulse control strategy on [tk, T ], we have

v(tk, zk, θk) ≥ E[UL(Z0,tk,zk

T ,Θ0,tk,θk

T )].

Since (Z0,tk,zk

T ,Θ0,tk,zk

T ) converges a.s. to (z, θ) when k goes to infinity by continuity of

(Z0,t,z,Θ0,t,θ) in its initial condition, we deduce by Fatou’s lemma that

v∗(T, z, θ) ≥ UL(z, θ). (5.4.6)

On the other hand, we know from the dynamic programming QVI that v ≥ Hv on [0, T )×S,

and thus

v(tk, zk, θk) ≥ Hv(tk, zk, θk) ≥ Hv∗(tk, zk, θk), ∀k ≥ 1.

Recalling that Hv∗ is lsc, we obtain by sending k to infnity:

v∗(T, z, θ) ≥ Hv∗(T, z, θ).

Together with (5.4.6), this proves the required viscosity supersolution property of (5.4.5).
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We now prove the viscosity subsolution property on {T}×S̄, and argue by contradiction

by assuming that there exists (z̄, θ̄) ∈ S̄ such that

min [v∗(T, z̄, θ̄) − UL(z̄, θ̄) , v∗(T, z̄, θ̄) −Hv∗(T, z̄, θ̄)] := 2ε > 0. (5.4.7)

One can find a sequence of smooth functions (ϕn)n≥0 on [0, T ] × S̄ such that ϕn converges

pointwisely to v∗ on [0, T ] × S̄ as n → ∞. Moreover, by (5.4.7) and recalling that Hv∗ is

usc, we may assume that the inequality

min [ϕn − UL , ϕ
n −Hv∗] ≥ ε, (5.4.8)

holds on some bounded neighborhood Bn of (T, z̄, θ̄) in [0, T ] × S̄, for n large enough. Let

(tk, zk, θk)k≥1 be a sequence in [0, T )×S converging to (T, z̄, θ̄) and such that limk v(tk, zk, θk)

= v∗(T, z̄, θ̄). There exists δn > 0 such that Bn
k := [tk, T ]×B(zk, δ

n)×
(
(θk− δn, θk + δn)∩

[0, T ]
)
⊂ Bn for all k large enough, so that (5.4.8) holds on Bn

k . Since v is locally bounded,

there exists some η > 0 such that |v∗| ≤ η on Bn. We can then assume that ϕn ≥ −2η on

Bn. Let us define the smooth function ϕ̃nk on [0, T ) × S by

ϕ̃nk(t, z, θ) := ϕn(t, z, θ) + 4η
|z − zk|2
|δn|2 +

√
T − t

and observe that

(v∗ − ϕ̃nk)(t, z, θ) ≤ −η, (5.4.9)

for (t, z, θ) ∈ [tk, T ]× ∂B(zk, δ
n)×

(
(θk − δn, θk + δn)∩ [0, T ]

)
. Since

∂
√
T − t

∂t
−→ −∞ as

t→ T , we have for k large enough

− ∂ϕ̃nk
∂t

− ∂ϕ̃nk
∂θ

− Lϕ̃nk ≥ 0, on Bn
k . (5.4.10)

Let αk = (τkj , ζ
k
j )j≥1 be a 1

k−optimal control for v(tk, zk, θk) with corresponding state

process (Zk,Θk), and denote by σkn = inf{s ≥ tk : (Zks ,Θ
k
s) /∈ Bn

k } ∧ τk1 ∧ T . From the

DPP (5.4.3), this means that

v(tk, zk, θk) −
1

k
≤ E

[
1σk

n<(τk
1 ∧T ) v(σ

k
n, Z

k
σk

n
)
]

+ E

[
1σk

n=T<τk
1
UL(Zkσk

n
,Θk

σk
n
)
]

+ E

[
1τk

1 ≤σ
k
n
v(τk1 ,Γ(Zk

(τk
1 )−

,Θk
(τk

1 )−
, ζk1 ), 0)

]
(5.4.11)

Now, by applying Itô’s Lemma to ϕ̃kn(s, Z
k
s ,Θ

k
s) between tk and σkn, we get from (5.4.8)-

(5.4.9)-(5.4.10),

ϕ̃nk(tk, zk, θk) ≥ E

[
1σk

n<τ
k
1
ϕ̃nk(σ

k
n, Z

k
σk

n
,Θk

σk
n
)
]

+ E

[
1τk

1 ≤σ
k
n
ϕ̃nk(τ

k
1 , Z

k
(τk

1 )−
,Θk

(τk
1 )−

)
]

≥ E

[
1σk

n<(τk
1 ∧T )

(
v∗(σkn, Z

k
σk

n
,Θk

σk
n
) + η

)]
+ E

[
1σk

n=T<τk
1

(
UL(Zkσk

n
,Θk

σk
n
) + ε

)]

+ E

[
1τk

1 ≤σ
k
n

(
v∗(τk1 ,Γ(Zk

(τk
1 )−

,Θk
(τk

1 )−
, ζk1 ), 0) + ε

)]
.
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Together with (5.4.11), this implies

ϕ̃nk(tk, zk, θk) ≥ v(tk, zk, θk) −
1

k
+ ε ∧ η.

Sending k, and then n to infinity, we get the required contradiction: v∗(T, z̄, θ̄) ≥ v∗(T, z̄, θ̄)+

ε ∧ η. ✷

Remark 5.4.1 In order to have a complete characterization of the value function through

its HJB equation, we need a uniqueness result, thus a comparison principle for the QVI

(5.4.4)-(5.4.5). A key argument originally due to Ishii [45] for getting a uniqueness result

for variational inequalities with impulse parts, is to produce a strict viscosity supersolution.

However, in our model, this is not possible. Indeed, suppose we can find a strict viscosity

lsc supersolution w to (5.4.4), so that (w − Hw)(t, z, θ) > 0 on [0, T ) × S. But for z =

(x, y, p) and θ = 0, we have Γ(z, 0, e) = (x, y + e, p) for any e C(z, 0). Since 0 ∈ C(z, 0) we

have Hw(t, z, 0) = supe∈[−y,0]w(t, x, y + e, p, 0) ≥ w(t, z, 0) > Hw(t, z, 0), a contradiction.

Actually, the main reason why one cannot obtain a strict supersolution is the absence of

fixed cost in the impulse function Γ or in the objective functional.

5.5 An approximating problem with fixed transaction fee

In this section, we consider a small variation of our original model by adding a fixed trans-

action fee ε > 0 at each trading. This means that given a trading strategy α = (τn, ζn)n≥0,

the controlled state process (Z = (X,Y, P ),Θ) jumps now at time τn+1, by:

(Zτn+1 ,Θτn+1) =
(
Γε(Zτ−n+1

,Θτ−n+1
, ζn+1), 0

)
, (5.5.1)

where Γε is the function defined on R×R+ ×R
∗
+ × [0, T ]×R into R∪ {−∞}×R×R

∗
+ by:

Γε(z, θ, e) = Γ(z, θ, e) − (ε, 0, 0) =
(
x− epf(e, θ) − ε, y + e, p

)
,

for z = (x, y, p). The dynamics of (Z,Θ) between trading dates is given as before. We also

introduce a modified liquidation function Lε defined by:

Lε(z, θ) = max[x, L(z, θ) − ε], (z, θ) = (x, y, p, θ) ∈ R × R+ × R
∗
+ × [0, T ].

The interpretation of this modified liquidation function is the following. Due to the presence

of the transaction fee at each trading, it may be advantageous for the investor not to liquidate

his position in stock shares (which would give him L(z, θ) − ε), and rather bin his stock

shares, by keeping only his cash amount (which would give him x). Hence, the investor

chooses the best of these two possibilities, which induces a liquidation value Lε(z, θ).

We then introduce the corresponding solvency region Sε with its closure S̄ε = Sε ∪ ∂Sε,
and boundary ∂Sε = ∂ySε ∪ ∂LSε:

Sε =
{

(z, θ) = (x, y, p, θ) ∈ R × R+ × R
∗
+ × [0, T ] : y > 0 and Lε(z, θ) > 0

}
,
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∂ySε =
{

(z, θ) = (x, y, p, θ) ∈ R × R+ × R
∗
+ × [0, T ] : y = 0 and Lε(z, θ) ≥ 0

}
,

∂LSε =
{

(z, θ) = (x, y, p, θ) ∈ R × R+ × R
∗
+ × R+ : Lε(z, θ) = 0

}
.

We also introduce the corner lines of ∂Sε. For simplicity of presentation, we consider a

temporary price impact function f in the form:

f(e, θ) = f̃
(e
θ

)
= exp

(
λ
e

θ

)(
κa1e>0 + 1e=0 + κb1e<0

)
1θ>0,

where 0 < κb < 1 < κa, and λ > 0. A straightforward analysis of the function L shows that

y 7→ L(x, y, p, θ) is increasing on [0, θ/λ], decreasing on [θ/λ,∞) with L(x, 0, p, θ) = x =

L(x,∞, p, θ), and maxy>0 L(x, y, p, θ) = L(x, θ/λ, p, θ) = x+ p θλ f̃(−1/λ). We first get the

form of the sets C(z, θ):

C(z, θ) = [−y, ē(z, θ)] ,

where the function ē is defined in Lemma 5.3.1. We then distinguish two cases: (i) If

p θλ f̃(−1/λ) < ε, then Lε(x, y, p, θ) = x. (ii) If p θλ f̃(−1/λ) ≥ ε, then there exists an unique

y1(p, θ) ∈ (0, θ/λ] and y2(p, θ) ∈ [θ/λ,∞) such that L(x, y1(p, θ), p, θ) = L(x, y2(p, θ), p, θ)

= x, and Lε(x, y, p, θ) = x for y ∈ [0, y1(p, θ))∪ (y2(p, θ),∞), Lε(x, y, p, θ) = L(x, y, p, θ)−ε
for y ∈ [y1(p, θ), y2(p, θ)]. We then denote by

D0 = {0} × {0} × R
∗
+ × [0, T ] = ∂ySε ∩ ∂LSε,

D1,ε =
{

(0, y1(p, θ), p, θ) : p
θ

λ
f̃(

−1

λ
) ≥ ε, θ ∈ [0, T ]

}
,

D2,ε =
{

(0, y2(p, θ), p, θ) : p
θ

λ
f̃(

−1

λ
) ≥ ε, θ ∈ [0, T ]

}
.

Notice that the inner normal vectors at the corner lines D1,ε and D2,ε form an acute angle

(positive scalar product), while we have a right angle at the corner D0.

Next, we define the set of admissible trading strategies as follows. Given (t, z, θ) ∈
[0, T ]× S̄ε, we say that the impulse control α is admissible, denoted by α ∈ Aε(t, z, θ), if τ0

= t− θ, τn ≥ t, n ≥ 1, and the controlled state process (Zε,Θ) solution to (5.2.1)-(5.2.2)-

(5.2.3)-(5.2.6)-(5.5.1), with an initial state (Zεt− ,Θt−) = (z, θ) (and the convention that

(Zεt ,Θt) = (z, θ) if τ1 > t), satisfies (Zεs ,Θs) ∈ [0, T ] × S̄ε for all s ∈ [t, T ]. Here, we stress

the dependence of Zε = (Xε, Y, P ) in ε appearing in the transaction function Γε, and we

notice that it affects only the cash component. Notice that Aε(t, z, θ) is nonempty for any

(t, z, θ) ∈ [0, T ]×S̄ε. Indeed, for (z = (x, y, p), θ) ∈ S̄ε, i.e. Lε(z, θ) = max(x, L(z, θ)− ε) ≥
0, we distinguish two cases: (i) if x ≥ 0, then by doing none transaction, the associated state

process (Zε = (Xε, Y, P ),Θ) satisfies Xε
s = x ≥ 0, t ≤ s ≤ T , and thus this zero transaction

is admissible; (ii) if L(z, θ) − ε ≥ 0, then by liquidating immediately all the stock shares,

and doing nothing more after, the associated state process satisfies Xε
s = L(z, θ) − ε, Ys =

0, and thus Lε(Z
ε
s ,Θs) = Xε

s ≥ 0, t ≤ s ≤ T , which shows that this immediate transaction

is admissible.
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Figure 5.4: Domain Sε in the nonhatched zone for fixed p = 1 and θ = 1 and ε evolving

from 0.1 to 0.4. Here κb = 0.9 and f(e, θ) = κb exp ( eθ ) for e < 0. Notice that for ε large

enough, Sε is equal to open orthant R
∗
+ × R

∗
+.
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Figure 5.5: Lower bound of the domain Sε for fixed θ = 1 and f(e, θ) = κb exp ( eθ ) for e < 0.

Notice that when p is fixed, we obtain the Figure 4.
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Figure 5.6: Lower bound of the domain Sε for fixed p = 1 and ε = 0.2. Here κb = 0.9 and

f(e, θ) = κb exp ( eθ ) for e < 0. Notice that when θ is fixed, we obtain the Figure 4.
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Given the utility function U on R+, and the liquidation utility function defined on S̄ε
by ULε(z, θ) = U(Lε(z, θ)), we then consider the associated optimal portfolio liquidation

problem defined via its value function by:

vε(t, z, θ) = sup
α∈Aε(t,z,θ)

E[ULε(Z
ε
T ,ΘT )], (t, z, θ) ∈ [0, T ] × S̄ε. (5.5.2)

Notice that when ε = 0, the above problem reduces to the optimal portfolio liquidation

problem described in Section 2, and in particular v0 = v. The main purpose of this section

is to provide a unique PDE characterization of the value functions vε, ε > 0, and to prove

that the sequence (vε)ε converges to the original value function v as ε goes to zero.

We define the set of admissible transactions in the model with fixed transaction fee by:

Cε(z, θ) =
{
e ∈ R :

(
Γε(z, θ, e), 0

)
∈ S̄ε

}
, (z, θ) ∈ S̄ε.

A similar calculation as in Lemma 5.3.1 shows that for (z = (x, y, p), θ) ∈ S̄ε,

Cε(z, θ) =

{
[−y, ēε(z, θ)], if θ > 0 or x ≥ ε,

∅, if θ = 0 and x < ε,

where ē(z, θ) = sup{e ∈ R : epf̃(e/θ) ≤ x− ε} if θ > 0 and ē(z, 0) = 0 if x ≥ ε. Here, the

set [−y, ēε(z, θ)] should be viewed as empty when ē(z, θ) < y, i.e. x+ pyf̃(−y/θ) − ε < 0.

We also easily check that Cε is continuous for the Hausdorff metric. We then consider the

impulse operator Hε by

Hεw(t, z, θ) = sup
e∈Cε(z,θ)

w(t,Γε(z, θ, e), 0), (t, z, θ) ∈ [0, T ] × S̄ε,

for any locally bounded function w on [0, T ] × S̄ε, with the convention that Hεw(t, z, θ) =

−∞ when Cε(z, θ) = ∅.
Next, consider again the Merton liquidation function LM , and observe similarly as in

(5.3.7) that

LM (Γε(z, θ, e)) − LM (z) = ep
(
1 − f(e, θ)

)
− ε

≤ −ε, ∀(z, θ) ∈ S̄ε, e ∈ R. (5.5.3)

This implies in particular that

HεLM < LM on S̄ε. (5.5.4)

Since Lε ≤ LM , we observe from (5.5.3) that if (z, θ) ∈ Nε := {(z, θ) ∈ S̄ε : LM (z) < ε},
then Cε(z, θ) = ∅. Moreover, we deduce from (5.5.3) that for all α = (τn, ζn)n≥0 ∈ Aε(t, z, θ)

associated to the state process (Z,Θ), (t, z, θ) ∈ [0, T ] × S̄ε:

0 ≤ LM (ZT ) = LM (Z0,t,z
T ) +

∑

n≥0

∆LM (Zτn)

≤ LM (Z0,t,z
T ) − εNT (α),
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where we recall that NT (α) is the number of trading times over the whole horizon T . This

shows that

NT (α) ≤ 1

ε
LM (Z0,t,z

T ) < ∞ a.s.

In other words, we see that, under the presence of fixed transaction fee, the number of

intervention times over a finite interval for an admissible trading strategy is finite almost

surely.

The dynamic programming equation associated to the control problem (5.5.2) is

min
[
− ∂w

∂t
− ∂w

∂θ
− Lw , w −Hεw

]
= 0, in [0, T ) × S̄ε, (5.5.5)

min [w − ULε , w −Hεw] = 0, in {T} × S̄ε. (5.5.6)

The main result of this section is stated as follows.

Theorem 5.5.1 (1) The sequence (vε)ε is nonincreasing, and converges pointwise on [0, T ]×
(S̄ \ ∂LS) towards v as ε goes to zero.

(2) For any ε > 0, the value function vε is continuous on [0, T )×Sε, and is the unique (in

[0, T )×Sε) constrained viscosity solution to (5.5.5)-(5.5.6), satisfying the growth condition:

|vε(t, z, θ)| ≤ K(1 + LM (z)γ), ∀(t, z, θ) ∈ [0, T ] × S̄ε, (5.5.7)

for some positive constant K, and the boundary condition:

lim
(t′,z′,θ′)→(t,z,θ)

vε(t
′, z′, θ′) = v(t, z, θ)

= U(0), ∀(t, z = (0, 0, p), θ) ∈ [0, T ] ×D0. (5.5.8)

We first prove the convergence of the sequence of value functions (vε).

Proof of Theorem 5.5.1 (1).

Notice that for any 0 < ε1 ≤ ε2, we have Lε2 ≤ Lε1 ≤ L, Aε2(t, z, θ) ⊂ Aε1(t, z, θ) ⊂
A(t, z, θ), for t ∈ [0, T ], (z, θ) ∈ S̄ε2 ⊂ S̄ε1 ⊂ S̄, and for α ∈ Aε2(t, z, θ), Lε2(Z

ε2 ,Θ) ≤
Lε2(Z

ε1 ,Θ) ≤ Lε1(Z
ε1 ,Θ) ≤ L(Z,Θ). This shows that the sequence (vε) is nonincreasing,

and is upper-bounded by the value function v without transaction fee, so that

lim
ε↓0

vε(t, z, θ) ≤ v(t, z, θ), ∀(t, z, θ) ∈ [0, T ] × S̄. (5.5.9)

Fix now some point (t, z, θ) ∈ [0, T ] × (S̄ \ ∂LS). From the representation (5.3.13) of

v(t, z, θ), there exists for any n ≥ 1, an 1/n-optimal control α(n) = (τ
(n)
k , ζ

(n)
k )k ∈ Ab

ℓ+
(t, z, θ)

with associated state process (Z(n) = (X(n), Y (n), P ),Θ(n)) and number of trading times

N (n):

E[U(X
(n)
T )] ≥ v(t, z, θ) − 1

n
. (5.5.10)
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We denote by (Zε,(n),Θ(n)) = (Xε,(n), Y (n), P ),Θ(n)) the state process controlled by α(n) in

the model with transaction fee ε (only the cash component is affected by ε), and we observe

that for all t ≤ s ≤ T ,

Xε,(n)
s = X(n)

s − εN (n)
s ր X(n)

s , as ε goes to zero. (5.5.11)

Given n, we consider the family of stopping times:

σ(n)
ε = inf {s ≥ t : L(Zε,(n)

s ,Θ(n)
s ) ≤ ε} ∧ T, ε > 0.

Let us prove that

lim
εց0

σ(n)
ε = T a.s. (5.5.12)

Observe that for 0 < ε1 ≤ ε2, X
ε2,(n)
s ≤ X

ε1,(n)
s , and so L(Z

ε2,(n)
s ,Θs) ≤ L(Z

ε1,(n)
s ,Θs)

for t ≤ s ≤ T . This implies clearly that the sequence (σ
(n)
ε )ε is nonincreasing. Since this

sequence is bounded by T , it admits a limit, denoted by σ
(n)
0 = limε↓0 ↑ σ(n)

ε . Now, by

definition of σ
(n)
ε , we have L(Z

ε,(n)

σ
(n)
ε

,Θ
(n)

σ
(n)
ε

) ≤ ε, for all ε > 0. By sending ε to zero, we then

get with (5.5.11):

L(Z
(n)

σ
(n),−
0

,Θ
(n)

σ
(n),−
0

) = 0 a.s.

Recalling the definition of Ab
ℓ+

(t, z, θ), this implies that σ
(n)
0 = τ

(n)
k for some k ∈ {1, . . . , N (n)+

1} with the convention τ
(n)

N(n)+1
= T . If k ≤ N (n), arguing as in (5.3.15), we get a contra-

diction with the solvency constraints. Hence we get σ
(n)
0 = T .

Consider now the trading strategy α̃ε,(n) ∈ A consisting in following α(n) until time σ
(n)
ε

and liquidating all the stock shares at time σ
(n)
ε , i.e.

α̃ε,(n) = (τ
(n)
k , ζ

(n)
k )1

τk<σ
(n)
ε

∪ (σ(n)
ε ,−Y

σ
(n),−
ε

).

We denote by (Z̃ε,(n) = (X̃ε,(n), Ỹ ε,(n), P ), Θ̃ε,(n)) the associated state process in the market

with transaction fee ε. By construction, we have for all t ≤ s < σ
(n)
ε : L(Z̃

ε,(n)
s , Θ̃

ε,(n)
s ) =

L(Z
ε,(n)
s ,Θ

(n)
s ) ≥ ε, and thus Lε(Z̃

ε,(n)
s , Θ̃

ε,(n)
s ) ≥ 0. At the transaction time σ

(n)
ε , we then

have X̃
ε,(n)

σ
(n)
ε

= L(Z̃
ε,(n)

σ
(n),−
ε

, Θ̃
ε,(n)

σ
(n),−
ε

)− ε = L(Z
(n)

σ
ε,(n),−
ε

,Θ
(n)

σ
(n),−
ε

)− ε, Ỹ ε,(n)

σ
(n)
ε

= 0. After time σ
(n)
ε ,

there is no more transaction in α̃ε,(n), and so

X̃ε,(n)
s = X̃

ε,(n)

σ
(n)
ε

= L(Z
(n)

σ
ε,(n),−
ε

,Θ
(n)

σ
(n),−
ε

) − ε ≥ 0, (5.5.13)

Ỹ ε,(n)
s = Ỹ

ε,(n)

σ
(n)
ε

= 0, σ(n)
ε ≤ s ≤ T, (5.5.14)

and thus Lε(Z̃
ε,(n)
s , Θ̃

ε,(n)
s ) = X̃

ε,(n)
s ≥ 0 for σ

(n)
ε ≤ s ≤ T . This shows that α̃ε,(n) lies in

Aε(t, z, θ), and thus by definition of vε:

vε(t, z) ≥ E[ULε(Z̃
ε,(n)
T , Θ̃

ε,(n)
T )]. (5.5.15)
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Let us check that given n,

lim
ε↓0

Lε(Z̃
ε,(n)
T , Θ̃

ε,(n)
T ) = X

(n)
T , a.s. (5.5.16)

To alleviate notations, we set N = N
(n)
T the total number of trading times of α(n). If the

last trading time of α(n) occurs strictly before T , then we do not trade anymore until the

final horizon T , and so

X
(n)
T = X(n)

τN
, and Y

(n)
T = Y (n)

τN
= 0, on {τN < T}. (5.5.17)

By (5.5.12), we have for ε small enough: σ
(n)
ε > τN , and so X̃

ε,(n)

σ
(n),−
ε

= X
ε,(n)
τN , Ỹ

ε,(n)

σ
(n),−
ε

= Y
(n)
τN

= 0. The final liquidation at time σ
(n)
ε yields: X̃

ε,(n)
T = X̃

ε,(n)

σ
(n)
ε

= X̃
ε,(n)

σ
(n),−
ε

− ε = X
ε,(n)
τN − ε,

and Ỹ
ε,(n)
T = Ỹ

ε,(n)

σ
(n)
ε

= 0. We then obtain

Lε(Z̃
ε,(n)
T , Θ̃

ε,(n)
T ) = max

(
X̃
ε,(n)
T , L(Z̃

ε,(n)
T , Θ̃

ε,(n)
T ) − ε

)

= X̃
ε,(n)
T = Xε,(n)

τN
− ε on {τN < T}

= X
(n)
T − (1 +N)ε on {τN < T},

by (5.5.11) and (5.5.17), which shows that the convergence in (5.5.16) holds on {τN < T}.
If the last trading of α(n) occurs at time T , this means that we liquidate all stock shares at

T , and so

X
(n)
T = L(Z

(n)
T− ,Θ

(n)
T−), Y

(n)
T = 0 on {τN = T}. (5.5.18)

On the other hand, by (5.5.13)-(5.5.14), we have

Lε(Z̃
ε,(n)
T , Θ̃

ε,(n)
T ) = X̃

ε,(n)
T = L(Z

(n)

σ
ε,(n),−
ε

,Θ
(n)

σ
(n),−
ε

) − ε

−→ L(Z
(n)
T− ,Θ

(n)
T−) as ε goes to zero,

by (5.5.12). Together with (5.5.18), this implies that the convergence in (5.5.16) also holds

on {τN = T}, and thus almost surely. Since 0 ≤ Lε ≤ L, we immediately see by Proposi-

tion 5.3.1 that the sequence {ULε(Z̃
ε,(n)
T , Θ̃

ε,(n)
T ), ε > 0} is uniformly integrable, so that by

sending ε to zero in (5.5.15) and using (5.5.16), we get

lim
ε↓0

vε(t, z, θ) ≥ E[U(X
(n)
T )] ≥ v(t, z) − 1

n
,

from (5.5.10). By sending n to infinity, and recalling (5.5.9), this completes the proof of

assertion (1) in Theorem 5.5.1. ✷

We now turn to the viscosity characterization of vε. The viscosity property of vε is

proved similarly as for v, and is then omitted. From Proposition 5.3.1, and since 0 ≤ vε
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≤ v, we know that the value functions vε lie in the set of functions satisfying the growth

condition in (5.5.7), i.e.

Gγ([0, T ] × S̄ε) =
{
w : [0, T ] × S̄ε → R, sup

[0,T ]×S̄ε

|w(t, z, θ)|
1 + LM (z)γ

< ∞
}
.

The boundary property (5.5.8) is immediate. Indeed, fix (t, z = (x, 0, p), θ) ∈ [0, T ]× ∂ySε,
and consider an arbitrary sequence (tn, zn = (xn, yn, pn), θn)n in [0, T ] × S̄ε converging to

(t, z, θ). Since 0 ≤ Lε(zn, θn) = max(xn, L(zn, θn) − ε), and yn goes to zero, this implies

that for n large enough, xn = Lε(zn, θn) ≥ 0. By considering from (tn, zn, θn) the admissible

strategy of doing none transaction, which leads to a final liquidation value XT = xn, we

have U(xn) ≤ vε(tn, zn, θn) ≤ v(tn, zn, θn). Recalling Corollary 5.3.1, we then obtain the

continuity of vε on ∂ySε with vε(t, z, θ) = U(x) = v(t, z, θ) for (z, θ) = (x, 0, p, θ) ∈ ∂ySε, and

in particular (5.5.8). Finally, we address the uniqueness issue, which is a direct consequence

of the following comparison principle for constrained (discontinuous) viscosity solution to

(5.5.5)-(5.5.6).

Theorem 5.5.2 (Comparison principle)

Suppose u ∈ Gγ([0, T ] × S̄ε) is a usc viscosity subsolution to (5.5.5)-(5.5.6) on [0, T ] × S̄ε,
and w ∈ Gγ([0, T ]× S̄ε) is a lsc viscosity supersolution to (5.5.5)-(5.5.6) on [0, T ]×Sε such

that

u(t, z, θ) ≤ lim inf
(t′, z′, θ′) → (t, z, θ)

(t′, z′, θ′) ∈ [0, T ) × Sε

w(t′, z′, θ′), ∀(t, z, θ) ∈ [0, T ] ×D0. (5.5.19)

Then,

u ≤ w on [0, T ] × Sε. (5.5.20)

Notice that with respect to usual comparison principles for parabolic PDEs where we

compare a viscosity subsolution and a viscosity supersolution from the inequalities on the

domain and at the terminal date, we require here in addition a comparison on the boundary

D0 due to the non smoothness of the domain S̄ε on this right angle of the boundary. A

similar feature appears also in [53], and we shall only emphasize the main arguments adapted

from [4], for proving the comparison principle.

Proof of Theorem 5.5.2.

Let u and w as in Theorem 5.5.2, and (re)define w on [0, T ] × ∂Sε by

w(t, z, θ) = lim inf
(t′, z′, θ′) → (t, z, θ)

(t′, z′, θ′) ∈ [0, T ) × Sε

w(t′, z′, θ′), (t, z, θ) ∈ [0, T ] × ∂Sε. (5.5.21)

In order to obtain the comparison result (5.5.20), it suffices to prove that sup[0,T ]×S̄ε
(u−w)

≤ 0, and we shall argue by contradiction by assuming that

sup
[0,T ]×S̄ε

(u− w) > 0. (5.5.22)
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• Step 1. Construction of a strict viscosity supersolution.

Consider the function defined on [0, T ] × S̄ε by

ψ(t, z, θ) = eρ
′(T−t)LM (z)γ

′

, t ∈ [0, T ], (z, θ) = (x, y, p, θ) ∈ S̄ε,

where ρ′ > 0, and γ′ ∈ (0, 1) will be chosen later. The function ψ is smooth C2 on [0, T )×
(S̄ε \D0), and by the same calculations as in (5.3.10), we see that by choosing ρ′ > γ′

1−γ′
b2

2σ2 ,

then

− ∂ψ

∂t
− ∂ψ

∂θ
− Lψ > 0 on [0, T ) × (S̄ε \D0). (5.5.23)

Moreover, from (5.5.4), we have

(ψ −Hεψ)(t, z, θ) = eρ
′(T−t)

[
LM (z)γ

′ − (HεLM (z))γ
′
]

=: ∆(t, z) (5.5.24)

> 0 on [0, T ] × S̄ε.

For m ≥ 1, we denote by

ũ(t, z, θ) = etu(t, z, θ), and w̃m(t, z, θ) = et[w(t, z, θ) +
1

m
ψ(t, z, θ)].

From the viscosity subsolution property of u, we immediately see that ũ is a viscosity

subsolution to

min [ũ− ∂ũ

∂t
− ∂ũ

∂θ
− Lũ , ũ−Hεũ] ≤ 0, on [0, T ) × S̄ε (5.5.25)

min [ũ− ŨLε , ũ−Hεũ] ≤ 0, on {T} × S̄ε, (5.5.26)

where we set ŨLε(z, θ) = eTULε(z, θ). From the viscosity supersolution property of w, and

the relations (5.5.23)-(5.5.24), we also derive that w̃m is a viscosity supersolution to

w̃m − ∂w̃m
∂t

− ∂w̃m
∂θ

− Lw̃m ≥ 0 on [0, T ) × (Sε \D0) (5.5.27)

w̃m −Hεw̃m ≥ 1

m
∆ on [0, T ] × Sε. (5.5.28)

w̃m − ŨLε ≥ 0 on {T} × Sε. (5.5.29)

On the other hand, from the growth condition on u and w in Gγ([0, T ]×S̄ε), and by choosing

γ′ ∈ (γ, 1), we have for all (t, θ) ∈ [0, T ]2,

lim
|z|→∞

(u− wm)(t, z, θ) = −∞.

Therefore, the usc function ũ− w̃m attains its supremum on [0, T ] × S̄ε, and from (5.5.22),

there exists m large enough, and (t̄, z̄, θ̄) ∈ [0, T ] × S̄ε s.t.

M̃ = sup
[0,T ]×S̄ε

(ũ− w̃m) = (ũ− w̃m)(t̄, z̄, θ̄) > 0. (5.5.30)
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• Step 2. From the boundary condition (5.5.19), we know that (z̄, θ̄) cannot lie in D0, and

we have then two possible cases:

(i) (z̄, θ̄) ∈ Sε \D0

(ii) (z̄, θ̄) ∈ ∂Sε \D0.

The case (i) where (z̄, θ̄) lies in Sε is standard in the comparison principle for (nonconstained)

viscosity solutions, and we focus here on the case (ii), which is specific to constrained

viscosity solutions. From (5.5.21), there exists a sequence (tn, zn, θn)n≥1 in [0, T )×Sε such

that

(tn, zn, θn, w̃m(tn, zn, θn)) −→ (t̄, z̄, θ̄, w̃m(t̄, z̄, θ̄)) as n→ ∞.

We then set δn = |zn − z̄|+ |θn − θ̄|, and consider the function Φn defined on [0, T ]× (S̄ε)2
by:

Φn(t, z, θ, z
′, θ′) = ũ(t, z, θ) − w̃m(t, z′, θ′) − ϕn(t, z, θ, z

′, θ′)

ϕn(t, z, θ, z
′, θ′) = |t− t̄|2 + |z − z̄|4 + |θ − θ̄|4

+
|z − z′|2 + |θ − θ′|2

2δn
+
( d(z′, θ′)
d(zn, θn)

− 1
)4
.

Here, d(z, θ) denotes the distance from (z, θ) to ∂Sε. Since (z̄, θ̄) /∈ D0, there exists an

open neighborhood V̄ of (z̄, θ̄) satisfying V̄ ∩ D0 = ∅, such that the function d(.) is twice

continuously differentiable with bounded derivatives. This is well known (see e.g. [36])

when (z̄, θ̄) lies in the smooth parts of the boundary ∂Sε \ (D1,ε∪D2,ε). This is also true for

(z̄, θ̄) ∈ Dk,ε for k ∈ {1, 2}. Indeed, at these corner lines, the inner normal vectors form an

acute angle (positive scalar product), and thus one can extend from (z̄, θ̄) the boundary to a

smooth boundary so that the distance d is equal, locally on the neighborhood, to the distance

to this smooth boundary. From the growth conditions on u and w in Gγ([0, T ] × S̄ε), there

exists a sequence (t̂n, ẑn, θ̂n, ẑ
′
n, θ̂

′
n) attaining the maximum of the usc Φn on [0, T ] × (S̄ε)2.

By standard arguments (see e.g. [4] or [53]), we have

(t̂n, ẑn, θ̂n, ẑ
′
n, θ̂

′
n) −→ (t̄, z̄, θ̄, z̄, θ̄) (5.5.31)

|ẑn − ẑ′n|2 + |θ̂n − θ̂′n|2
2δn

+
(d(ẑ′n, θ̂′n)
d(zn, θn)

− 1
)4

−→ 0 (5.5.32)

ũ(t̂n, ẑn, θ̂n) − w̃m(t̂n, ẑ
′
n, θ̂

′
n) −→ (ũ− w̃m)(t̄, z̄, θ̄). (5.5.33)

The convergence in (5.5.32) shows in particular that for n large enough, d(ẑ′n, θ̂
′
n) ≥ d(zn, θn)/2

> 0, and so (ẑ′n, θ̂
′
n) ∈ Sε. From the convergence in (5.5.31), we may also assume that for

n large enough, (ẑn, θ̂n), (ẑ′n, θ̂
′
n) lie in the neighborhood V̄ of (z̄, θ̄) so that the derivatives

upon order 2 of d(.) at (ẑn, θ̂n) and (ẑ′n, θ̂
′
n) exist and are bounded.

• Step 3. We show that for n large enough,

ũ(t̂n, ẑn, θ̂n) −Hεũ(t̂n, ẑn) > 0. (5.5.34)
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Otherwise, up to a subsequence, we would have for all n:

ũ(t̂n, ẑn, θ̂n) −Hεũ(t̂n, ẑn) ≤ 0.

By sending n to infinity, and from the upper-semicontinuity of Hεũ, we get with (5.5.31):

−∞ < ũ(t̄, z̄, θ̄) ≤ Hεũ(t̄, z̄, θ̄), which shows in particular that Cε(z̄, θ̄) is not empty. More-

over, by the viscosity supersolution property (5.5.28), we have

w̃m(t̂n, ẑ
′
n, θ̂

′
n) −Hεw̃m(t̂n, ẑ

′
n, θ̂

′
n) ≥ 1

m
∆(t̂n, ẑ

′
n, θ̂

′
n).

By substracting the two previous inequalities, we would get

ũ(t̂n, ẑn, θ̂n) − w̃m(t̂n, ẑ
′
n, θ̂

′
n) ≤ Hεũ(t̂n, ẑn) −Hεw̃m(t̂n, ẑ

′
n, θ̂

′
n) −

1

m
∆(t̂n, ẑ

′
n, θ̂

′
n).

By sending n to infinity, and from the upper-semicontinuity of Hεũ, the lower-semicontinuity

of Hεw̃m and ∆, this yields with (5.5.31), (5.5.33)

(ũ− w̃m)(t̄, z̄, θ̄) ≤ Hεũ(t̄, z̄, θ̄) −Hεw̃m(t̄, z̄, θ̄) − 1

m
∆(t̄, z̄, θ̄).

Now, by compactness of Cε(z̄, θ̄) 6= ∅, there exists ē ∈ Cε(z̄, θ̄) such that Hεũ(t̄, z̄, θ̄) =

ũ(t,Γε(z̄, θ̄, ē), 0) and so

M̃ = (ũ− w̃m)(t̄, z̄, θ̄) ≤ ũ(t̄,Γε(z̄, θ̄, ē), 0) − w̃m(t̄,Γε(z̄, θ̄, ē), 0) − 1

m
∆(t̄, z̄, θ̄)

≤ M̃ − 1

m
∆(t̄, z̄, θ̄),

a contradiction.

• Step 4. We check that, up to a subsequence, t̂n < T for all n. On the contrary, t̂n = t̄ = T

for n large enough, and we would get from (5.5.34) and the viscosity subsolution property

(5.5.26):

ũ(T, ẑn, θ̂n) ≤ ŨLε(ẑn, θ̂n).

Moreover, by (5.5.29), we have w̃m(T, ẑ′n, θ̂
′
n) ≥ ŨLε(ẑ

′
n, θ̂

′
n), which combined with the former

inequality, implies

ũ(T, ẑn, θ̂n) − w̃m(T, ẑ′n, θ̂
′
n) ≤ ŨLε(ẑn, θ̂n) − ŨLε(ẑ

′
n, θ̂

′
n).

By sending n to infinity, this yields with (5.5.31), (5.5.33) and continuity of ŨLε : M̃ =

(ũ− w̃m)(t̄, z̄, θ̄) ≤ 0, a contradiction with (5.5.30).

• Step 5. We use the viscosity subsolution property (5.5.25) of ũ at (t̂n, ẑn, θ̂n) ∈ [0, T )×S̄ε,
which is written by (5.5.34) as

(ũ− ∂ũ

∂t
− ∂ũ

∂θ
− Lũ)(t̂n, ẑn, θ̂n) ≤ 0. (5.5.35)
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The above inequality is understood in the viscosity sense, and applied with the test function

(t, z, θ) → ϕn(t, z, θ, ẑ
′
n, θ̂

′
n), which is C2 in the neighborhood [0, T ]×V̄ of (t̂n, ẑn, θ̂n). We also

write the viscosity supersolution property (5.5.27) of w̃m at (t̂n, ẑ
′
n, θ̂

′
n) ∈ [0, T ) × (Sε\D0):

(w̃m − ∂w̃m
∂t

− ∂w̃m
∂θ

− Lw̃m)(t̂n, ẑ
′
n, θ̂

′
n) ≥ 0. (5.5.36)

The above inequality is again understood in the viscosity sense, and applied with the test

function (t, z′, θ′) → −ϕn(t, ẑn, θ̂n, z′, θ′), which is C2 in the neighborhood [0, T ] × V̄ of

(t̂n, ẑ
′
n, θ̂

′
n). The conclusion is achieved by arguments similar to [53]: we invoke Ishii’s

Lemma, substract the two inequalities (5.5.35)-(5.5.36), and finally get the required contra-

diction M̃ ≤ 0 by sending n to infinity with (5.5.31)-(5.5.32)-(5.5.33). ✷

5.6 An approximating problem with utility penalization

We consider in this section another perturbation of our initial optimization problem by

adding a cost ε to the utility at each trading. We then define the value function v̄ε on

[0, T ] × S̄ by

v̄ε(t, z, θ) = sup
α∈Ab

ℓ
(t,z,θ)

E

[
UL(ZT ,ΘT ) − εNT (α)

]
, (t, z, θ) ∈ [0, T ] × S̄. (5.6.1)

The convergence of this approximation is immediate.

Proposition 5.6.1 The sequence (v̄ε)ε is nondecreasing and converges pointwise on [0, T ]×
S̄ towards v as ε goes to zero.

Proof. It is clear that the sequence (v̄ε)ε is nondecreasing and that v̄ε ≤ v on [0, T ] × S̄
for any ε > 0. Let us prove that limεց0 v̄ε = v. Fix n ∈ N

∗ and (t, z, θ) ∈ [0, T ] × S̄ and

consider some α(n) ∈ Ab
ℓ(t, z, θ) such that

E

[
UL(Z

(n)
T ,Θ

(n)
T )
]

≥ v(t, z, θ) − 1

n
,

where (Z(n),Θ(n)) is the associated controlled process. From the monotone convergence

theorem, we then get

lim
εց0

v̄ε(t, z, θ) ≥ E

[
UL

(
Z

(n)
T ,Θ

(n)
T

)]
≥ v(t, z, θ) − 1

n
.

By the arbitrariness of n ∈ N
∗, we conclude that limε v̄ε ≥ v, which ends the proof since we

already have v̄ε ≤ v. ✷

The nonlocal impulse operator H̄ε associated to (5.6.1) is given by

H̄εϕ(t, z, θ) = Hϕ(t, z, θ) − ε,
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and we consider the corresponding dynamic programming equation:

min
[
− ∂w

∂t
− ∂w

∂θ
− Lw , w − H̄εw

]
= 0, in [0, T ) × S̄, (5.6.2)

min [w − UL , w − H̄εw] = 0, in {T} × S̄. (5.6.3)

By similar arguments as in Section 5, we can show that v̄ε is a constrained viscosity

solution to (5.6.2)-(5.6.3), and the following comparison principle holds:

Suppose u ∈ Gγ([0, T ]×S̄) is a usc viscosity subsolution to (5.6.2)-(5.6.3) on [0, T ]×S̄, and

w ∈ Gγ([0, T ] × S̄) is a lsc viscosity supersolution to (5.6.2)-(5.6.3) on [0, T ] × S, such that

u(t, z, θ) ≤ lim inf
(t′, z′, θ′) → (t, z, θ)

(t′, z′, θ′) ∈ [0, T ) × S

w(t′, z′, θ′), ∀(t, z, θ) ∈ [0, T ] ×D0.

Then,

u ≤ w on [0, T ] × S. (5.6.4)

The proof follows the same lines of arguments as in the proof of Theorem 5.5.2 (the function

ψ is still a strict viscosity supersolution to (5.6.2)-(5.6.3) on [0, T ] × S̄), and so we omit it.

As a consequence, we obtain a PDE characterization of the value function v.

Proposition 5.6.2 The value function v is the minimal constrained viscosity solution in

Gγ([0, T ] × S̄) to (5.4.4)-(5.4.5), satisfying the boundary condition

lim
(t′,z′,θ′)→(t,z,θ)

v(t′, z′, θ′) = v(t, z, θ) = U(0), ∀(t, z, θ) ∈ [0, T ] ×D0. (5.6.5)

Proof. Let V ∈ Gγ([0, T ] × S̄) be a viscosity solution in Gγ([0, T ] × S̄) to (5.4.4)-(5.4.5),

satisfying the boundary condition (5.6.5). Since H ≥ H̄ε, it is clear that V∗ is a viscosity

supersolution to (5.6.2)-(5.6.3). Moreover, since lim(t′,z′,θ′)→(t,z,θ) V∗(t
′, z′, θ′) = U(0) =

v(t, z, θ) ≥ v̄∗ε(t, z, θ) for (t, z, θ) ∈ [0, T ] × D0, we deduce from the comparison principle

(5.6.4) that V ≥ V∗ ≥ v̄∗ε ≥ v̄ε on [0, T ] × S. By sending ε to 0, and from the convergence

result in Proposition 5.6.1, we obtain: V ≥ v, which proves the required result. ✷

Appendix: constrained viscosity solutions to parabolic QVIs

We consider a parabolic quasi-variational inequality in the form:

min
[
− ∂v

∂t
+ F (t, x, v,Dxv,D

2
xv) , v −Hv

]
= 0, in [0, T ) × Ō, (A.1)

together with a terminal condition

min [v − g , v −Hv] = 0, in {T} × Ō. (A.2)

Here, O ⊂ R
d is an open domain, F is a continuous function on [0, T ] × R

d × R × R
d × Sd

(Sd is the set of positive semidefinite symmetric matrices in R
d×d), nonincreasing in its last
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argument, g is a continuous function on Ō, and H is a nonlocal operator defined on the set

of locally bounded functions on [0, T ] × Ō by:

Hv(t, x) = sup
e∈C(t,x)

[v(t,Γ(t, x, e)) + c(t, x, e)].

C(t, x) is a compact set of a metric space E, eventually empty for some values of (t, x), in

which case we set Hv(t, x) = −∅, and is continuous for the Hausdorff metric, i.e. if (tn, xn)

converges to (t, x) in [0, T ] × Ō, and (en) is a sequence in C(tn, xn) converging to e, then

e ∈ C(t, x). The functions Γ and c are continuous, and such that Γ(t, x, e) ∈ Ō for all e ∈
C(t, x, e).

Given a locally bounded function u on [0, T ]×Ō, we define its lower-semicontinuous (lsc

in short) envelope u∗ and upper-semicontinuous (usc) envelope u∗ on [0, T ] × S̄ by:

u∗(t, x) = lim inf
(t′, x′) → (t, x)

(t′, x′) ∈ [0, T ) × O

u(t′, x′), u∗(t, x) = lim sup
(t′, x′) → (t, x)

(t′, x′) ∈ [0, T ) × O

u(t′, x′).

One can check (see e.g. Lemma 5.1 in [53]) that the operator H preserves lower and upper-

semicontinuity:

(i) Hu∗ is lsc, and Hu∗ ≤ (Hu)∗, (ii) Hu∗ is usc, and (Hu)∗ ≤ Hu∗.
We now give the definition of constrained viscosity solutions to (A.1)-(A.2). This notion,

which extends the definition of viscosity solutions of Crandall, Ishii and Lions (see [23]),

was introduced in [76] for first-order equations for taking into account boundary conditions

arising in state constraints, and used in [79] for stochastic control problems in optimal

investment.

Definition A.1 A locally bounded function v on [0, T ]×Ō is a constrained viscosity solution

to (A.1)-(A.2) if the two following properties hold:

(i) Viscosity supersolution property on [0, T ] × O: for all (t̄, x̄) ∈ [0, T ] × O, and ϕ ∈
C1,2([0, T ] ×O) with 0 = (v∗ − ϕ)(t̄, x̄) = min(v∗ − ϕ), we have

min
[
− ∂ϕ

∂t
(t̄, x̄) + F (t̄, x̄, ϕ∗(t̄, x̄), Dxϕ(t̄, x̄), D2

xϕ(t̄, x̄)) ,

v∗(t̄, x̄) −Hv∗(t̄, x̄)
]

≥ 0, (t̄, x̄) ∈ [0, T ) ×O,

min [v∗(t̄, x̄) − g(x̄) , v∗(t̄, x̄) −Hv∗(t̄, x̄)
]

≥ 0, (t̄, x̄) ∈ {T} × O.

(ii) Viscosity subsolution property on [0, T ] × Ō: for all (t̄, x̄) ∈ [0, T ] × Ō, and ϕ ∈
C1,2([0, T ] × Ō) with 0 = (v∗ − ϕ)(t̄, x̄) = max(v∗ − ϕ), we have

min
[
− ∂ϕ

∂t
(t̄, x̄) + F (t̄, x̄, ϕ∗(t̄, x̄), Dxϕ(t̄, x̄), D2

xϕ(t̄, x̄)) ,

v∗(t̄, x̄) −Hv∗(t̄, x̄)
]

≤ 0, (t̄, x̄) ∈ [0, T ) × Ō,

min [v∗(t̄, x̄) − g(x̄) , v∗(t̄, x̄) −Hv∗(t̄, x̄)
]

≤ 0, (t̄, x̄) ∈ {T} × Ō.



Bibliography

[1] Almgren R. and N. Chriss (2001): “Optimal execution of portfolio transactions", Journal of

Risk, 3, 5-39.

[2] Almgren R., Thum C., Hauptmann E. and H. Li (2005): “Equity market impact", Risk, July

2005, 58-62.

[3] Bally V. et G. Pagès (2003) : “Error analysis of the quantization algorithm for obstacle problems”

Stochastic Processes and their Applications, 106, 1-40.

[4] Barles G. (1994) : Solutions de viscosité des équations d’Hamilton-Jacobi, Mathématiques et

Applications, Springer Verlag.

[5] Barles G., Buckdahn R. and E. Pardoux (1997) : “Backward stochastic differential equations

and integral-partial differential equations", Stochastics and Stochastics Reports, 60, 57-83.

[6] Bank P. and D. Baum (2004): “Hedging and portfolio optimization in illiquid financial markets

with a large trader", Mathematical Finance, 14, 1-18.

[7] Bayraktar E. and M. Ludkovski (2009): “Optimal trade execution in illiquid markets", Preprint.

[8] Bensoussan A. and J.L. Lions (1984) : Impulse control and quasi-variational inequalities,

Gauthier-Villars.

[9] Bertsimas D. and A. Lo (1998): “Optimal control of execution costs", Journal of Financial

Markets, 1, 1-50.

[10] Bouchard B. (2006) : “A stochastic target formulation for optimal switching problems in finite

horizon", Stochastics, 81 (2), 171-197.

[11] Bouchard B. and J.-F. Chassagneux (2008) : “Discrete time approximation for continuously

and discretely reflected BSDE’s” Stochastic Processes and their Applications, 118 (12), 612-632.

[12] Bouchard B. and R. Elie (2008) : “Discrete-time approximation of decoupled forward-backward

SDE with jumps", Stochastic Processes and their Applications, 118, 53-75.

[13] Bouchard B., R. Elie and N. Touzi (2009), “Discrete-time Approximation of BSDEs and Prob-

abilistic schemes for Fully Nonlinear PDEs”, Radon Series on Computational and Applied Math-

ematics.

[14] Bouchard B. and N. Touzi (2004) : “Discrete-Time Approximation and Monte-Carlo Simulation

of Backward Stochastic Differential Equations”, Stochastic Processes and their Applications, 111

(2), 175-206.

[15] Buckdahn R. and Y. Hu (1998) : “Hedging contingent claims for a large investor in an incom-

plete market", Advances in Applied Probability, 30, 177-203.

193



194 BIBLIOGRAPHY

[16] Buckdahn R. and Y. Hu (1998) : “Pricing of American Contingent Claims with Jump Stock

Price and Constrained Portfolios", Mathematics of Operations Research, 23, 239-255.

[17] Buckdahn R., M. Quincampoix and A. Rascanu (2000) : “Viability property for a backward

stochastic differential equation and applications to partial differential equations”, Probab. Theory.

Relat. Fields, 116, 485-504.

[18] Carmona R. and M. Ludkovski (2005), “Optimal switching with applications to energy tolling

agreements”, Preprint.

[19] Cetin U., Jarrow R. and P. Protter (2004): “Liquidity risk and arbitrage pricing theory",

Finance and Stochastics, 8, 311-341.

[20] Cetin U., Soner M. and N. Touzi (2008): “Option hedging for small investors under liquidity

costs", to appear in Finance and Stochastics.

[21] Chassagneux J.F. (2008), Processus réfléchis en finance et probabilité numérique. PhD Thesis,

Université Paris 7.

[22] Chassagneux J.F. (2009) : “A discrete time approximation for doubly reflected BSDEs” Ad-

vances in Applied Probability, 41, 101-130.

[23] Crandall M., Ishii H. and P.L. Lions (1992) : “User’s guide to viscosity solutions of second

order partial differential equations", Bull. Amer. Math. Soc., 27, 1-67.

[24] Cvitanic J., Karatzas I. and M. Soner (1998) : “Backward stochastic differential equations with

constraints on the gain-process", Annals of Probability, 26, 1522-1551.

[25] Dellacherie C. and P.A. Meyer (1975) : Probabilités et Potentiel, I-IV, Hermann, Paris.

[26] Dellacherie C. and P.A. Meyer (1980) : Probabilités et Potentiel, V-VIII, Hermann, Paris.

[27] Djehiche B., Hamadène S. and I. Hdhiri (2008), “Stochastic Impulse Control of Non-Markovian

Processes”, Preprint.

[28] Djehiche B., Hamadène S. and A. Popier (2007) : “A finite horizon optimal multiple switching

problem”, Preprint.

[29] El Karoui N., Kapoudjian C., Pardoux E., Peng S. and M.C. Quenez (1997) : “Reflected

solutions of Backward SDE’s, and related obstacle problems for PDEs", Annals of Probability,

25, 702-737.

[30] El Karoui N. and M.C. Quenez (1995) : “Dynamic programming and pricing of contingent

claims in an incomplete market", SIAM J. Control and Optimization, 33, 29-66.

[31] Elie R. (2006). Controle Stochastique et méthodes numériques en finance mathématique. PhD

thesis, Paris-Dauphine University.

[32] Elie R. and I. Kharroubi (2008) :“ Constrained Backward SDEs with Jumps: Application to

Optimal Switching”, Submitted.

[33] Elie R. and I. Kharroubi (2009) : “Probabilistic representation and approximation for coupled

systems of variational inequalities”, Preprint.

[34] Fleming W. and M. Soner (2006) : Controlled Markov processes and viscosity solutions, 2nd

edition, Springer Verlag.

[35] Gegout-Petit A. and E. Pardoux (1995) : Equations différentielles stochastiques rétrogrades

réfléchies dans un convexe. Stochastics and Stochastic Reports, 57, 111-128.



BIBLIOGRAPHY 195

[36] Gilbarg D. and N. Trudinger (1977) : Elliptic partial differential equations of second order,

Springer Verlag, Berlin.

[37] Gobet E., J.-P. Lemor and X. Warin (2005), A regression-based Monte Carlo method to solve

backward stochastic differential equations. Annals of Applied Probability, 15 (3), pp. 2172-2202.

[38] Gobet E., J.P. Lemor and X. Warin (2006) : “Rate of convergence of empirical regression

method for solving generalized BSDE” Bernoulli , 12(5), 889-916.

[39] Hamadene, S. and M. Jeanblanc (2007) : “On the starting and stopping problem: application

in reversible investments”, Mathematics of Operations Research, 32 (1).

[40] Hamadène S. and Y. Ouknine (2003) : “Reflected backward stochastic differential equations

with jumps and random obstacle", Elect. Journal of Prob., 8, 1-20.

[41] Hamadène S. and J. Zhang (2008) : “The Starting and Stopping Problem under Knightian

Uncertainty and Related Systems of Reflected BSDEs” Preprint.

[42] He H. and H. Mamaysky (2005): “Dynamic trading policies with price impact", Journal of

Economic Dynamics and Control, 29, 891-930.

[43] Hu Y. and S. Peng (2006) : “On comparison theorem for multi-dimentional BSDEs”, C. R.

Acad. Sci. Paris, 343, 135-140.

[44] Hu Y. and S. Tang (2008) : “Multi-dimensional BSDE with oblique reflection and optimal

switching", to appear in Proba. Theory and Rel. Fields.

[45] Ishii K. (1993) : “Viscosity solutions of nonlinear second order elliptic PDEs associated with

impulse control problems", Funkcial. Ekvac., 36, 123-141.

[46] Kharroubi I., Ma J., Pham H. and J. Zhang (2008) : “Backward SDEs with constrained jumps

and Quasi-Variational Inequalities”, To appear in Annals of Probability.

[47] Kharroubi I. and Pham H. (2009) : “Optimal portfolio liquidation with execution cost and

risk”, Submitted.

[48] Kloeden P. E. and E. Platen (1992) : Numerical solutions of Stochastic Differential Equations,

Applied Math. 23, Springer, Berlin.

[49] Korn R. (1998): “Portfolio optimization with strictly positive transaction costs and impulse

control", Finance and Stochastics, 2, 85-114.

[50] Kunita H. (1990), Stochastic flows and stochastic differential equations, Cambridge Stud. Adv.

Math. 24, Cambridge University Press, Cambridge.

[51] Lillo F., Farmer J. and R. Mantagna (2003): “Master curve for price impact function", Nature,

421, 129-130.

[52] Longstaff F. and E. Schwartz (1998) : “Valuing American options by simulation: a least-squares

approach", Review of Financial Studies, 14, 113-147.

[53] Ly Vath V., Mnif M. and H. Pham (2007): “A model of optimal portfolio selection under

liquidity risk and price impact", Finance and Stochastics, 11, 51-90.

[54] Ly Vath V. and H. Pham (2007) : “Explicit solution to an optimal switching problem in the

two-regime case", SIAM Journal on Control and Optimization, 46-2, 395-426.

[55] Ma, J. and J. Zhang (2002) : “Path Regularity for Solutions of Backward SDE’s", Proba.

Theory and Relat. Fields, 122, 163-190.



196 BIBLIOGRAPHY

[56] Ma, J. and J. Zhang (2005) : “Representation and regularities for solution to BSDEs with

reflection", Stochastic Processes and their Applications, 115, 539-569.

[57] Meyer, P. and W. Zheng (1984) : “Tightness criteria for laws of semimartingales", Ann. Inst.

Henri Poincaré, 20, 353-372.

[58] Obizhaeva A. and J. Wang (2005): “Optimal trading strategy and supply/demand dynamics",

to appear in Journal of Financial Markets.

[59] Oksendal B. and A. Sulem (2002): “Optimal consumption and portfolio with both fixed and

proportional transaction costs", SIAM J. Cont. Optim., 40, 1765-1790.

[60] Oksendal B. and A. Sulem (2007) : Applied stochastic control of jump-diffusions, Universitext,

Springer Verlag, 2nd edition.

[61] Pardoux E. and S. Peng (1990) : “Adapted solution of a backward stochastic differential equa-

tion", Systems and Control Letters, 14, 55-61.

[62] Pardoux E. and S. Peng (1992) : “Backward Stochastic Differential Equation and Quasilinear

Parabolic Partial Differential Equations", Lecture Notes in CIS, 176, 200-217 Springer.

[63] Pardoux E., F. Pradeilles and Z. Rao (1997) : “Probabilistic interpretation of a system of

semi-linear parabolic PDEs”, Ann. Inst. H. Poincaré, sec. B, 33 (4), 467-490.

[64] Peng S. (1999) : “Monotonic limit theory of BSDE and nonlinear decomposition theorem of

Doob-Meyer’s type", Prob. Theory and Related Fields, 113, 473-499.

[65] Peng S. and M. Xu (2007) : “Constrained BSDE and viscosity solutions of variation inequali-

ties", Preprint.

[66] Pham H. (2005) : “On some recent aspects of stochastic control and their applications”, Prob-

ability Surveys, 2, 506-549.

[67] Pham H. (2009): Continuous-time stochastic control and optimization with financial applica-

tions, Springer Verlag, Series: Stochastic Modelling and Applied Probability.

[68] Pham H., V. Ly Vath and X. Zhou (2009), “Optimal switching over multiple regimes”, SIAM

J. Control Optim, 48-4, 2217-2253.

[69] Pham H. and P. Tankov (2008): “A model of optimal consumption under liquidity risk with

random trading times", Mathematical Finance, 18, 613-627.

[70] Porchet A., N. Touzi and X. Warin (2009) : “Valuation of a powerplant under production

constraints and markets incompleteness”, Mathematical Methods of Operations research, 70-1.

[71] Potters M. and J.P. Bouchaud (2003): “More statistical properties of order books and price

impact", Physica A, 324, 133-140.

[72] Rogers L.C.G. and S. Singh (2008): “The cost of illiquidity and its effects on hedging", to

appear in Mathematical Finance.

[73] Royer M. (2006) : “Backward stochastic differential equations with jumps and related nonlinear

expectations", Stochastic Processes and their Applications, 116, 1358-1376.

[74] Schied A. and T. Schöneborn (2009): “Risk aversion and the dynamics of optimal liquidation

strategies in illiquid markets", Finance and Stochastics, 13, 181-204.

[75] Seydel R. (2008): “Existence and uniqueness of viscosity solutions for QVI associated with

impulse control of jump-diffusions", Preprint, University of Leipzig.



BIBLIOGRAPHY 197

[76] Soner H. (1986): “Optimal control with state-space constraint", SIAM J. Control and Opti-

mization, 24, 552-561.

[77] Tang S. and X. Li (1994) : “Necessary conditions for optimal control of stochastic systems with

jumps", SIAM J. Control and Optimization, 32, 1447-1475.

[78] Tang S. and J. Yong (1993) : “Finite horizon stochastic optimal switching and impulse controls

with a viscosity solutions approach", Stochastics, 45, 145-176.

[79] Zariphopoulou T. (1988): Optimal investment-consumption models with constraints, PhD The-

sis, Brown University.

[80] Zhang J. (2004) : “A numerical scheme for BSDEs”, Annals of Applied Probability, 14 (1),

459-488.







Résumé : Nous étudions le lien entre EDS rétrogrades et certains problèmes d’optimisation stochas-

tique ainsi que leurs applications en finance. Dans la première partie, nous nous intéressons à la

représentation par EDSR de problème d’optimisation stochastique séquentielle : le contrôle impul-

sionnel et le switching optimal. Nous introduisons la notion d’EDSR contrainte à sauts et montrons

qu’elle donne une représentation des solutions de problème de contrôle impulsionnel markovien.

Nous lions ensuite cette classe d’EDSR aux EDSRs à réflexions obliques et aux processus valeurs de

problèmes de switching optimal. Dans la seconde partie nous étudions la discrétisation des EDSRs

intervenant plus haut. Nous introduisons une discrétisation des EDSRs contraintes à sauts utilisant

l’approximation par EDSRs pénalisées pour laquelle nous obtenons la convergence. Nous étudions

ensuite la discrétisation des EDSRs à réflexions obliques. Nous obtenons pour le schéma proposé une

vitesse de convergence vers la solution continument réfléchie. Enfin dans la troisième partie, nous

étudions un problème de liquidation optimale de portefeuille avec risque et coût d’exécution. Nous

considérons un marché financier sur lequel un agent doit liquider une position en un actif risqué.

L’intervention de cet agent influe sur le prix de marché de cet actif et conduit à un coût d’exécution

modélisant le risque de liquidité. Nous caractérisons la fonction valeur de notre problème comme

solution minimale d’une inéquation quasi-variationnelle au sens de la viscosité contrainte.

Mots-clés : EDS rétrogrades contraintes, réflexions obliques, contrôle impulsionnel, switching

optimal, solution de viscosité, inégalités variationnelles, discrétisation d’EDSR, risque de liquidité,

maximisation d’utilité.

Discipline : Mathématiques

Abstract : We study the link between Backward SDEs and some stochastic optimal control

problems and their application to mathematical finance. In the first part we focus on the BSDE

representation of solution to impulse control and optimal switching. We first introduce the notion

of constrained BSDEs with jumps and prove that it gives a representation of solutions to Markovian

impulse control problems. We then bind these contrained BSDEs to BSDEs with oblique reflexion

and optimal switching problems. In the secoond part, we study the time discretization of the

previous BSDEs. We first state a discretization of constrained BSDE using the approximation given

by the penalized BSDEs. We the provide a speed convergence for the natural scheme associated to

BSDEs with oblique reflections. Finally, in the third part, we consider a liquidation problem under

execution risk and cost. We characterize the associated value function as the minimal solution to

the associated quasi-variational inequality.

Key words : Constrained Backward SDEs, impulse control, optimal switching, viscosity solution,

variational inégalites, BSDE discrétization, liquidity risk, utility maximization.

Laboratoire de Probabilités et Modèles Aléatoires,
CNRS-UMR 7599, UFR de Mathématiques, case 7012

Université Paris 7, Paris Diderot
2, place Jussieu, 75251 Paris Cedex 05.


	INTRODUCTION GÉNÉRALE 
	0.1 EDSR et contrôle stochastique séquentiel
	0.1.1 Représentation de fonctions valeurs de problèmes de contrôle impulsionnel markovien
	0.1.2 Représentation de fonctions valeurs de problèmes de switching optimal et lien entre EDSRs contraintes à sauts et EDSRs à réflexions obliques

	0.2 Approximation d'EDSR
	0.2.1 Représentation et approximation probabiliste pour des systèmes couplés d'inéquations variationnelles 
	0.2.2 Discrétisation des EDSR multi-dimentionnelles à réflexions obliques

	0.3 liquidation optimale avec coût et risque d'exécution

	INTRODUCTION AND SUMMARY 
	I PROBABILISTIC REPRESENTATION OF SEQUENTIAL OPTIMAL STOCHASTIC CONTROL IN CONTINUOUS TIME
	1 BSDEs with constrained jumps and QVI
	1.1 Introduction and summary
	1.2 BSDEs with constrained jumps
	1.2.1 General formulation
	1.2.2 The case of nonpositive jump constraint

	1.3 Existence and approximation by penalization
	1.3.1 Comparison results
	1.3.2 Convergence of the penalized BSDEs
	1.3.3 The case of impulse control

	1.4 Relation with quasi-variational inequalities
	1.4.1 Viscosity properties
	1.4.2 Uniqueness result

	1.5 Some sufficient conditions for (H2') and (H3)
	1.5.1 Existence of the solution to BSDE with jump constraint
	1.5.2 The strict supersolution condition (H3) 


	2 Constrained BSDEs and optimal switching
	2.1 Introduction
	2.2 Constrained Backward SDEs with jumps
	2.2.1 Formulation
	2.2.2 Existence, uniqueness and approximation by penalization
	2.2.3 Link with multi-dimensional reflected Backward SDEs

	2.3 BSDEs and non-Markovian switching
	2.3.1 Non-Markovian optimal switching
	2.3.2 Reflected BSDEs and optimal switching
	2.3.3 Approximation by penalisation and link with constrained BSDEs with jumps

	2.4 Appendix
	2.4.1 Viability property for BSDEs
	2.4.2 A multi-dimentional comparison theorem for BSDEs
	2.4.3 Monotonic Limit theorem for BSDE with jumps



	II DISCRETE-TIME APPROXIMATIONS OF BDSES ASSOCIATED WITH SEQUENTIAL OPTIMIZATION
	3 BSDEs and Systems of Variational Inequalities
	3.1 Introduction
	3.2 Constrained Forward Backward SDEs with jumps
	3.2.1 Formulation
	3.2.2 Existence and uniqueness of a minimal solution
	3.2.3 Related penalized BSDE
	3.2.4 Link between (Y,U) and X
	3.2.5 The minimality condition

	3.3 Link with coupled systems of variational inequalities
	3.3.1 Viscosity properties of the penalized BSDE
	3.3.2 Viscosity properties of the constrained BSDE with jumps

	3.4 Uniqueness result
	3.4.1 Assumptions
	3.4.2 The comparison theorem

	3.5 Numerical issues

	4 Approximation of BSDEs with oblique reflections
	4.1 Introduction
	4.2 Discretely obliquely reflected BSDE
	4.2.1 Definition
	4.2.2 Corresponding optimal switching problem
	4.2.3 Some a priori estimates

	4.3 Discrete-time Approximation
	4.3.1 Discrete-time approximation of the forward process
	4.3.2 An approximation scheme for discretely reflected BSDEs
	4.3.3 Convergence of the discrete-time scheme
	4.3.4 The case where f does not depend on Z

	4.4 Extension to the continuously reflected case
	4.4.1 Convergence to continuously obliquely reflected BSDEs
	4.4.2 Convergence results

	4.5 Appendix: a priori estimates
	4.5.1 A priori estimates for continuously and discretely reflected BSDEs
	4.5.2 A priori estimates for discrete-time schemes of BSDEs



	III OPTIMAL PORTFOLIO LIQUIDATION WITH LIQUIDITY RISK
	5 Optimal portfolio liquidation 
	5.1 Introduction
	5.2 The model and liquidation problem
	5.3 Properties of the model
	5.4 Dynamic programming and viscosity properties
	5.5 An approximating problem with fixed transaction fee
	5.6 An approximating problem with utility penalization

	Bibliography


