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Boiron pour m’avoir donné la possibilité de vivre cette expérience très enrichissante,
non seulement du point de vue scientifique mais aussi du pont de vue humain. J’ai eu la
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Chris et par sa curiosité, qui ne s’arrête devant rien. Les nombreuses discussions sur
les manips en cours et sur les manips futures, là où on peut voyager avec la créativité
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Pierre, Laurent, William, Thorsten, José, Hari, Luca, Nathalie, Philippe, Zhanchun,
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Introduction

Optical interferometry was at the heart of the scientific revolution which lead to the
new era of the twentieth century. Probably the most renowed example is the Michelson
interferometer that was used to show that there is no detectable motion relative to
“ether”, a key point in support of special relativity [1], [2]. In the same way Young’s
interference experiments played a central role in the early discussion of the dual nature
of light. At the end of the nineteenth century Young’s double slit interferometer could
be completely described according to the classical theory of electromagnetism based on
Maxwell’s equations and the wave nature of light seemed to be affirmed [3]. However,
the situation changed radically in 1901 when M. Planck explained the ultraviolet catas-
trophe problem by assuming that black-body radiation is emitted in discrete energy
packets called quanta [4]. The first serious attempt to demonstrate the quantum nature
of light was performed by G. I. Taylor in 1909. He set up a Young’s slit experiment
and he reduced the intensity of the incident light beam to such an extent that there
would be one photon incident on the slits at a time [5]. However, he didn’t see any
difference between the interference pattern registered at low and high intensity. In fact
the classical explanation based in the interference of electric field amplitudes and the
quantum explanation based on the interference of probability amplitudes both explain
this phenomenon. In order to see a difference between classical and quantum theory one
should consider higher order interference experiments, such as intensity interference.

The pioneering experiment in intensity interferometry was performed by R. Hanbury
Brown and R. Q. Twiss in 1956 [6]. This experiment studied the correlations between
photons arriving at two different detectors. Hanbury Brown and Twiss showed an en-
hancement of the probability for two photons, coming from a thermal light source, to
arrive together on the two detectors, a phenomenon called photon bunching. Their
experiment provoked a storm of controversy in the contemporary scientific community
and the quantum explanation of the bunching effect was accepted only after the pub-
lication of a fundamental paper by E. M. Purcell [7]. Although their results may be
derived from both classical and quantum theory, the Hanbury Brown Twiss experiment
marked the birth of the modern quantum optics, since the quantum theory makes addi-
tional unique predictions. This was pointed out by R. Glauber in 1963 [8]. His work on
quantum formulation of optical coherence theory was awarded in 2005 with the Nobel
Prize [9]. One such prediction is photon antibunching, that was first observed by Kim-
ble et al. [10] on photons spontaneously emitted by single atoms. At the same time,
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6 Introduction

the advent of laser sources gave access to other interesting quantum states of light, such
as entangled states. The extraordinary character of entanglement, that has no classical
counterpart, was at the center of debates since the early years of the quantum era [11],
[12], [13], [14]. Realization of entangled states paved the way to new developments in
quantum information and, in particular in quantum teleportation. These topics are
nowadays still an open frontier of quantum physics. Other quantum effects such as
amplitude and frequency squeezing were observed in four wave mixing and paramet-
ric down conversion occurring in non-linear crystals and offered new possibilities for
precision measurements and interferometry [15].

In parallel with the explosion of quantum optics, the recent progress in the manip-
ulation of atomic states [16], [17], [18], [19] has led to several proposal for generating
atomic states with properties similar to the ones of the nonclassical states of light.
Photons and atoms are complementary under several points of view and experiments
that are possible with atoms could not be possible with photons and vice-versa. For
example, photons are well suited for transmission over long distances, but are difficult
to store at a fixed location, while the reverse is true for atoms. In order to take advan-
tage of the good properties of each system, there are several proposition of quantum
atom optics experiments, involving single atoms, atomic ensembles or atom-photon
pairs. Furthermore, a point of great interest for the development of quantum atom
optics relies on a sharp distinction between photons and atoms: atoms can obey both
quantum statistics, i.e. there are bosonic and fermionic atoms. This opens interesting
perspectives for the realization of tests of fundamental principles of quantum mechanics
with fermions and for a comparison of quantum effects for bosons and fermions, as in
the case of the experiment described in the first part of this thesis.

Historically, the first candidates for quantum atom optics have been trapped ions.
Since the early 1990s it has been possible to cool and trap single ions for a very long
time (several days) and to perform quantum logic operations on them [20], [21]. An
enormous amount of progress in this field has been made in the past twenty years
and trapped ions are at the moment a leading candidate for quantum information and
computing [22]. On the other hand, the achievement of Bose-Einstein condensation [23],
[24], [25], made available to quantum atom optics the material analogue of laser. This
analogy has been firmly established experimentally with the demonstration of spatial
and temporal coherence of Bose-Einstein condensates [26], [27], which therefore deserve
the name of matter waves. Not surprisingly as condensates became readily available
in laboratories across the world, quantum atom optics saw the same kind of explosion
as quantum optics after the developement of laser. The realization of atom lasers [28],
atom mirrors and beam splitters [29] and atom interferometers [30], constitute a good
example of the analogy between light and matter waves. Furthermore, the achievement
of degenerate Fermi gases of neutral atoms [31], [32], [33] is particularly important for
the reasons pointed out above.

Another significant step in the analogy between quantum optics and quantum atom
optics has been made with the observation of four-wave mixing of matter waves [34],
[35], [36]. In addition the generation of correlated atom pairs in the dissociation of cold
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molecules [37] and in the collision of Bose-Einstein condensates [38] was demonstrated.
The latter of these experiments has been performed in our group and is described in
the second part of this thesis.

The simplest atomic system that has a bosonic and a fermionic isotope is Helium.
Due to the fact that the ground state of Helium has no magnetic moment and that
the only transition available for optical cooling is in the UV part of the spectrum,
Bose-Einstein condensation is hard to achieve in the ground state. However, the triplet
metastable state, that has a life time of the order of 7000 s, can be magnetically
trapped and has atomic transitions suitable for laser cooling. Metastable Helium has
been Bose-Einstein condensed for the first time in the Atom Optics group of the Labora-
toire Charles Fabry de l’Institut d’Optique [39]. The metastable Helium experiment is
supervised by C. Westbrook, D. Boiron and A. Aspect. It constitutes an original setup
for the study of atom optics especially for its detector. In fact the large internal energy
of the metastable state makes possible to perform single atom detection, resolved in
space and time. This detector allows us to reproduce quantum optics experiments that
involve single photon counting.

When I joined the He* team in october 2005 to start my PhD thesis, the detector
had been installed one year earlier and the Hanbury Brown Twiss effect on a cold cloud
of bosons above and below the condensation threshold had been observed [40]. Almost
at the same time the group of W. Vassen at the Laser Centre of the Vrije Universiteit
succeeded in the production of degenerate Fermi gas of metastable Helium [41]. There-
fore in July 2006 we brought the detector to Amsterdam for two months and, after
having inserted it in the existent experimental apparatus, we measured the Hanbury
Brown Twiss effect on a cold cloud of fermions [42]. Furthermore we could compare
the correlation functions for clouds of bosons and fermions at the same temperature,
created in the same experimental apparatus, highlighting the different statistics obeyed
by the two systems. The preparation of the collaboration was committed to Martijn
Schellekens, another PhD student, and me. We spent the ten months before leaving
for Amsterdam in studying in detail the characteristics of the detector.

At the same time Aurélien Perrin as PhD student and Hong Chang as a post-doc
performed an experiment aimed at the creation of correlated pairs of atoms by the
collision of two Bose-Einstein condensates. The correlation between pairs of atoms was
demonstrated and the correlation function was studied in detail in three dimensions,
thanks to the use of our detector [38]. This experiment constitutes the atomic analogue
of the generation of correlated photon pairs in parametric down conversion or four-wave
mixing [43].

In order to perform a more detailed study on correlated pairs we decided to repeat
the experiment in an improved version. Unfortunately, the moving from Orsay to
Palaiseau in June 2007 imposed a break in our scientific activity. For the dismounting
and the reconstruction of the setup in the new building I was helped by Jean-Christophe
Jaskula and Vanessa Leung that recently have joined our team as a PhD student and
a post-doc respectively. After producing a Bose-Einstein condensate in February 2008,
the experimental setup was again fully functional. In 2008, another post-doc, Guthrie
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Partridge, and a PhD student, Marie Bonneau, joined our group. Together we finally
succeeded in fixing the experimental problems and we started data acquisition. The
data analysis is cumbersome and has to be done with great care. Some preliminary
results are available at this moment and are reported at the end of this thesis.

Outline of this thesis

This thesis is devoted to the description of the two experiments performed during my
PhD, the observation of fermionic antibunching and the creation of correlated atom
pairs by condensate collision.

This thesis is divided in two parts. The first part is devoted to the fermionic
Hanbury Brown Twiss effect and is divided in three chapters. In the first chapter
an historical overview of the Hanbury Brown Twiss effect is given, together with an
explanation of the Hanbury Brown Twiss effect in terms of quantum theory. A more
refined theory is derived in order to describe the correlation function for a gas of
fermions above and below degeneracy in an harmonic trap. In the second chapter we
describe the experimental setup used during the collaboration with the group of W.
Vassen. A comparison with our experimental setup is drawn and a special attention
is payed to the upgrades that would be necessary on our experiment in order to cool
the fermionic Helium isotope. In the third chapter we show the experimental results
obtained during the collaboration.

The second part of this thesis is devoted to the correlated pairs experiment. It is
divided in two chapters. In the first one we describe the quantum optics analogue of
our experiment and some fundamental experiments in quantum optics and quantum
atom optics that are useful to set the context of our measurements. We then describe
the experimental setup and the obtained results. In the second chapter we explain in
detail the motivation for the upgraded version of the experiment and we thoroughly
compare the two experiments. The new experimental setup is then described and some
preliminary results are showed.



Part I

The Hanbury Brown Twiss effect
for fermions

9





Chapter 1

The Hanbury Brown Twiss effect

This chapter is devoted to the Hanbury Brown Twiss effect. We will first give an
historical overview, highlighting the reasons why the experiment carried out by the two
astronomers in the 1950’s, was seminal in the development of the modern quantum
optics. In the second part of the chapter we will show the substantial difference in
the Hanbury Brown Twiss effect for bosons and fermions. Since the Hanbury Brown
Twiss effect for bosons has been studied in several other thesis of the group ([44],
[45]), we will concentrate on the experiments done on fermionic samples, as electrons
in semiconductors, electrons in vacuum, neutrons and neutral atoms. In the third
part we will present the theory that describes the experiment done in a collaboration
between our group and the group of W.Vassen in Amsterdam, where we observed the
Hanbury Brown Twiss effect on a cold cloud of 3He (fermionic Helium isotope) and of
4He (bosonic Helium isotope) [42]. We will concentrate on the theoretical formula of
the 2-body correlation function for a fermionic sample of ultracold atoms released from
a harmonic trap, indicating in particular the influence of the finite detector resolution
on the correlation length and on the antibunching height. The experimental apparatus
and the experimental results will be described in details in chapters 2 and 3.

1.1 Brief history of the Hanbury Brown Twiss effect

The radar technology developed during the Second World War opened the field of radio
astronomy and led very quickly to the discovery of bright radio sources in the sky. Since
their size was unknown, astronomers raised the problem of how to measure it. Since
then, the angular size of a star was measured with Michelson interferometer, that is
based on a Young’s double slit like interferometer. The Michelson stellar interferometer
is sketched in figure 1.1.

In Michelson interferometry one compares the amplitudes of the light landing at
two separated points. The distance between the two points is equal to the distance
between the two slits drawn in figure 1.1. If the separation is not too large, the two
signals can be superposed using a lens. The produced diffraction pattern varies as a
function of the separation of the slits. At a given point P on the screen the amplitude
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Figure 1.1: Michelson stellar interferometer. The outer mirrors send the light through a Young’s double
slit interferometer. The distance between the slits and the screen is a and the distance between the
two slits is called d. The diffraction pattern is detected on the screen below the double slit.

of the light will be given by the sum of the amplitudes transmitted by the two slits,
A1(t) and A2(t + τ). The time τ represents the time difference for the light to reach P
from each slit. The intensity observed on the screen at the point P will then be given
by

IP = 〈|A1 + A2|
2〉t = I1 + I2 + 2Re(Γ12(τ)) (1.1)

Γ12(τ) = 〈A1(t)
∗A2(t + τ)〉t

The latter term takes account of the observed interference pattern. In case of an
extended source the interference pattern varies over a typical distance, called coherence
length of the source, of the order of λ/θ, where θ is the angular size of the source. A
more detailed treatment of the Michelson interferometer can be found in [3] and [46].

It is clear that, in order to perform a measurement with an amplitude interfer-
ometer it is crucial to precisely measure the phase difference between A1 and A2. If
atmospheric perturbations or mechanical instabilities in the telescope make the path
difference change during the acquisition time, interference fringes can be blurred out.
In addition, the resolution in amplitude interferometry at a given wavelength is given
by the distance over which one is able to compare the amplitudes and their phases.
Therefore, if the star has a small angular size, it can be necessary to separate the mir-
rors (i.e. the two slits) by very large distances. In this case it might be impossible to
recombine the signals on the same point of the screen and the use of coherent inde-
pendent oscillators might be necessary. Since this technology was not available in the
early 1950’s, R. Hanbury Brown and R. Twiss decided to perform the measurement
in an alternative way, by doing intensity interferometry [47]. A schematic view of the
intensity interferometer is drawn in figure 1.2.
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Figure 1.2: Scheme of the intensity interferometer. The light coming from a star is detected on two
detectors separated by a distance d. The correlation between the detected intensities I1 and I2 is then
measured.

The radiation emitted by the star is collected on two independent detectors. The
intensities measured at the two detectors are: I1 = A∗

1A1 and I2 = A∗
2A2. Then one

measures the correlations between the two detected intensities as a function of the dis-
tance between the detectors, i.e., the quantity 〈I1I2〉 where 〈 〉 indicates the average
over random phases. Since the correlated signal varies as a function of the detector
separation d on a distance of the order of the correlation length, an intensity interfero-
metric measurement gives the angular size θ of the star. A more detailed explanation
of the Hanbury Brown Twiss effect in terms of classical electromagnetic waves can
be found in [48]. A familiar example of the Hanbury Brown Twiss observation is the
speckle pattern. When a non-pointlike incoherent light source illuminates a screen, a
large number of patches appears on the screen and the image is not homogeneous as
one would naively expect. This random intensity pattern is produced by the inter-
ference between the optical waves. The characteristic size of the speckle grain on the
plane of the screen is of the order of the spatial coherence of the beam and it is called
correlation length. The characteristic time over which this pattern changes is called
coherence time. We will come back on this three-dimensional aspect of the correlation
in the following sections.

The radio sources that the Hanbury Brown Twiss interferometer was intended to
measure, turned out to be resolvable within few kilometers, therefore the measurement
could have been performed with an amplitude interferometer as well. R. Hanbury
Brown was so disappointed that he described intensity interferometry as “a steam
roller to crack a nut” [49]. However, the importance of the intensity interferometer
was not only related to astronomical measurements. In fact, while it was accepted and
demonstrated theoretically and experimentally that intensity interferometry worked for
radio waves, it was not clear that the effect should also work for light. The fact that
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light was made by photons was still debated at that time and Hanbury Brown and
Twiss decided to test their intensity interferometer in a table-top experiment in which
they measured the intensity correlation of the light emitted by a mercury lamp [6]. The
experimental setup and the obtained results are reported in figure 1.3.
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Figure 1.3: On the left: Experimental setup used by Hanbury Brown Twiss for the table-top experiment
that proves the particle nature of light. The figure has been taken from [6]. On the right: Experimental
results. The intensity correlation for coincident detectors results to be twice bigger than the value
obtained when the detectors are far apart. In this case we find the value that we would have obtained
for statistically independent particles. This figure has been taken from [50] and has been adapted from
the data obtained in [6].

The light of the mercury lamp was split into two beams on a half silvered mirror and
the intensity of each beam was measured on a photomultiplier. One of the photodetector
could be spatially moved, so that the angular separation of the two detectors as seen
from the source could be changed. Therefore it was possible to measure the intensity
correlation as a function of the detector separation like in the stellar interferometer.
From the point of view of a stream of photons, measuring intensity correlation amounts
to measure the joint detection probability of two independently emitted photons on two
independent detectors. The measurement showed that the detection probability, when
the detectors are close together, is twice larger than the value obtained when they are
far apart. When the detectors are far apart one finds the value that one would have
obtained for statistically independent particles. The “photon bunching” was therefore
demonstrated and quantum optics was born. In a second table-top experiment Hanbury
Brown, Twiss and Little [50] measured the time correlation between photons emitted
from the same source. The experimental setup was similar to the one of fig. 1.3, but
a time-delay could be inserted before one detector in order to measure the correlation
as a function of time. The obtained results showed again a photon bunching. The
scientific community was sceptical about their results and several experiments were
done to disprove them. At the end Hanbury Brown and Twiss won the day, helped by
an important paper of E. M. Purcell [7], that explained the effect in terms of quantum
mechanics. In addition to a mathematical explanation, Purcell gave a strong example
to prove that the observed effect was a pure quantum mechanical effect:

“Were we to carry out a similar experiment with a beam of electrons, we should, of
course, find a slight suppression of the normal fluctuations instead of a slight enhance-
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ment; the accidentally overlapping wave trains are precisely the configurations excluded
by the Pauli principle. Nor would we be entitled in that case to treat the wave function
as classical field.”[7]

If for photons, that are bosons, bunching can be explained with a semi-classical
theory, it is impossible to explain antibunching for fermions without the aid of quantum
mechanics. Fermions are, in this sense, ”more quantum” than bosons. In the next
section we will explain the Hanbury Brown Twiss effect for bosons and fermions with
a simple calculation of quantum mechanics.

1.2 To bunch or not to bunch?

As we said in the previous section, in order to understand the Hanbury Brown and
Twiss effect we have to answer the questions:

“How large is the joint detection probability of two particles on two detectors?”
and:

“Does it depend on the statistics of the considered particle?”
To find the answer one has to calculate the two-body correlation function g(2)(d),

where d, as in the previous section, is the distance between the two detectors.
Consider two particles emitted by two source points S1 and S2 and two detectors

D1 and D2 (see figure 1.4). If we record a click on D1 and one on D2, we could have
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Figure 1.4: Two particles emitted by the two source points S1 and S2 are detected at D1 and D2. The
two particles can follow two paths that are sketched in this figure. The interference between the two
paths leads to the Hanbury Brown Twiss effect.

detected a particle emitted from S1 on D1 and a particle from S2 on D2 (configuration
sketched in figure 1.4 left), or a particle emitted from S1 on D2 and vice versa (see
figure 1.4 right). The source state vector, for two identical particles, can be written as:

|ψ(S1, S2)〉 =
1√
2
(|S1S2〉±| S2S1〉) (1.2)

If the two particles are identical bosons the state vector has to be symmetric for particle
exchange (+ sign in the equation above), if they are identical fermions it has to be
antisymmetric (− sign). When the two particles are detected, the source state vector,
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after temporal evolution, is projected on the two detector state |D1D2〉. The joint
detection probability is then given by:

P (D1, D2) = |〈D1D2|ψ(S1, S2)〉|2

=
1

2
(|〈D1D2|S1S2〉|2 + |〈D1D2|S2S1〉|2 ±

± 2 Re 〈D1D2|S1S2〉〈D1D2|S2S1〉) (1.3)

where the + sign holds for bosons and the - sign holds for fermions.
If the two particles are statistically independent, then:

PIndep(D1, D2) =
1

2
(|〈D1D2|S1S2〉|2 + |〈D1D2|S2S1〉|2) (1.4)

irrespective of the distance between the two detectors. On the other hand, for a sample
of identical particles, the correlation function (i.e. P (D1, D2)) will depend on the
detector separation and its value, for a small distance between the detectors, will depend
on the nature of the particle. For null detector separation, we will have 〈D1D2|S2S1〉 =
〈D1D2|S1S2〉 and the joint detection probability will be:

PBose(D1 ≡ D2) = (|〈D1D2|S1S2〉|2 + |〈D1D2|S2S1〉|2) = 2 × PIndep (1.5)

if the two particles are identical bosons, and

PFermi(D1 ≡ D2) = 0 (1.6)

if the two particles are identical fermions. As we pointed out in the previous section,
bosons arrive bunched on the detector and the probability of finding two bosons is
twice the probability for independent particles. On the other hand, fermions tend to
“antibunch”, because for the Pauli exclusion principle they cannot occupy the same
quantum state.

In the case of an extended source, as we increase the detector separation, the corre-
lation function will tend in both cases to the value obtained for independent particles
with a shape that is given by the interference term in equation 1.3. The typical dis-
tance over which the correlation function goes to the independent particles value is
called correlation length. In section 1.4.1 we will derive the formula of the correlation
function of a cold fermionic cloud released from a harmonic trap. Figure 1.5 sketches
the shape of the correlation function for a sample of identical bosons, fermions and
independent particles.

In the treatment above we assumed an ideal detector, i.e., with arbitrarily good
resolution. The effect of the finite detector resolution and efficiency will be treated
at the end of the chapter (section 1.4.5). For the moment we just note that, if the
correlation length is too small to be resolved, the correlation function will be broader
and the contrast will be smaller than 1. In other words, the finite resolution makes the
measured correlation length larger, but doesn’t change the number of correlated pairs,
i.e. the bunching (antibunching) area.
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Figure 1.5: Correlation function for a sample of statistical independent particles (dashed line), a sample
of identical non-interacting bosons and identical fermions. The correlation function has been normalized
with respect to the value obtained for statistical independent particles.

1.3 Experiments with fermions

The Hanbury Brown Twiss effect for fermions has been observed with electrons, neu-
trons and neutral atoms. The peculiarity of the last system is that the same atomic
species can have bosonic and fermionic isotopes and a direct comparison of the two
correlation functions can be made. It is the case of the experiment done in the col-
laboration between our group and the Amsterdam group with 3He and 4He [42]. We
will treat the theory underlying the measurement at the end of this chapter, while the
experimental apparatus and experimental results will be described in chapter 2 and 3
respectively.

In this section we will describe the other experiments where the Hanbury Brown
Twiss effect was measured on a sample of fermions. An overview of the experiments
done with bosons can be found in [44].

Before starting this brief review, we want to clarify the three dimensional character
of the two-body correlation function that we noted in section 1.1. We can identify two
kinds of experiments, the ones where the detectors receive a continuous flux of particles
and the ones where the entire sample is probed with a snap shot image. If the Hanbury
Brown Twiss measurement is done over a continuous flux of particles, one has access to
g(2)(∆x,∆y, ∆t), i.e., to the measurement of the spatial correlation length on the plane
xy, orthogonal to the particle propagation direction, and to the time correlation length
along the direction of propagation. This is the case of the speckle measurement that we
described in section 1.1, as well as of the Hanbury Brown Twiss table-top experiment
and, in the following overview, of the experiments done with electrons [51],[52],[53] and
neutrons [54]. On the other hand, if the experiment is carried out on a pulsed beam
of particles and the detection time is small with respect to the dynamics of the system
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(the detection is a snap shot), then the three directions of space are equivalent and one
will have access to g(2)(∆x,∆y, ∆z). This is the case of the experiments done with cold
atoms [55], [42], where either absorption imaging or a micro-channel plate is used to
perform the detection. In the case of the micro-channel plate detection, what we said
is valid only under the condition that the cloud doesn’t expand while passing through
the plate, as we will see in section 1.4.4.

1.3.1 Experiments with charged fermions

Electrons in mesoscopic conductors

The first experiments that observed the antibunching were carried out with electrons
in mesoscopic conductors [51], [52], [56], more than 40 years after the first observation
on photons. In fact, the statistical effects measured in the correlation function depend
on the occupation of the available states. Reaching the degeneracy regime, i.e. unit
occupation of all the states below the Fermi energy, was possible in 1999 for electrons
in mesoscopic conductors at very low temperature. In this year, Henny et al. [52]
and Oliver et al. [51] performed two very similar experiments. The scheme of the
experimental setup is shown in figure 1.6.
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Figure 1.6: On the left, simplified scheme of the setup used by Henny et al. and Oliver et al. to
measure the Hanbury Brown Twiss effect on a beam of electrons in a mesoscopic conductor. The figure
has been taken from [57]. On the right, an illustration of the different statistics describing bosons and
fermions and the expected correlations (anticorrelations) at the output of the beam splitter.

The current injected in the mesoscopic conductor from contact 1 travels in the
conductor until reaching a 50% beam splitter. The transmitted beam is then collected
on the contact 2 and the reflected beam is collected on contact 3 and the correlation
between the transmitted and reflected current is measured. The variable transmission
of the barrier between contacts 1 and 3 allows to vary the coherence of the electron
currents. To understand this let’s imagine a system of electrons where all the states
are occupied by one fermion (i.e. at zero temperature). The system will be fully
anticorrelated. Varying the transmission through the first barrier, amounts to empty
some of the states, with a distribution that is random in time. Therefore, if the sample
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was degenerate for a 100% transmission efficiency (i.e. all the states with a temperature
smaller than the Fermi temperature were occupied), it is no longer the case when the
efficiency is reduced. In other words one can artificially increase the temperature of the
sample thereby decreasing its time correlation length.

Both groups were able to demonstrate that, varying the transmission of the first
barrier, it is possible to pass from a regime where the currents measured at contacts 2
and 3 are fully anticorrelated to a regime where the statistic of the beam incident on
the beam splitter is Poissonian and the anticorrelation vanishes.

Beam of free electrons

A few years later (2002) the Hanbury Brown Twiss effect was observed on a beam
of electrons in vacuum by Kiesel and collaborators [53], [58]. Due to the difficulty to
achieve the degeneracy, observing anticorrelations in vacuum was more difficult than
in mesoscopic conductors. In order to perform the experiment, Kiesel et al. used a
very bright source, where the states occupation was close to one electron per interval
of coherence time. Their experiment mimics the stellar interferometer (see figure 1.7,
left): an electron field emitter illuminates two detectors and coincidences in the arrival
time of the electrons at the two detectors are measured.

Figure 1.7: On the left, simplified scheme of the setup used by Kiesel et al. to measure the Hanbury
Brown Twiss effect on a beam of electrons in vacuum. The figure has been adapted from [53]. On the
right, time coincidences for incoherent illumination (dashed lines) compared to coherent illumination
(full line). A reduction of the number of coincidences is shown.

Before arriving on the detectors, the electron beam passes through a lens. Changing
the magnification amounts to vary the effective lateral distance between the detectors
and their illumination changes from incoherent to coherent. The authors repeated
the correlation measurement for different magnification factors, showing a reduction of
the number of coincidences for a coherent illumination with respect to an incoherent
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illumination (see figure 1.7, right). As expected from theory, the antibunching height
was only of 10−3, but it was enough to demonstrate the existence of anticorrelation.

1.3.2 Experiments with neutral fermions

Since electrons are affected by Coulomb repulsion, one can argue that anticorrelations
observed in charged system are due to electrostatic repulsion. Actually the Coulomb
force is small and cannot explain the observed antibunching, but scientists found inter-
esting to repeat the Hanbury Brown Twiss experiment with samples of non-interacting
fermions, such as neutrons or cold atoms. In the following sections we will describe
those experiments.

Beam of free neutrons

In the “News and Views” [58] associated to the paper of Kiesel et al., J. C. H. Spence
affirms that reaching the degeneracy in a beam of neutrons would have been even more
difficult than for electrons, “making the observation of neutron anti-bunching a hope-
less endeavour”. Nevertheless, the observation of neutron antibunching by means of
coincidence measurements on a neutron beam was realized in 2006, thanks to technol-
ogy development, that made precise instrumentation and a precise knowledge of the
statistical properties of the source available. In an experiment carried out in Greno-
ble, Iannuzzi et al. [54] measured the Hanbury Brown Twiss effect on such a beam,
observing the antibunching and measuring the correlation time of the source. The
experimental setup is sketched in figure 1.8 on the left.

A monocromatic beam of thermal neutrons is split in two by a beam splitter. The
intensity of each beam is then measured on two detectors and the intensity correlation
is measured as a function of the relative distance of the detectors from the source. In
order to vary the detector separation, one of the detectors can be moved, parallel to
the beam propagation. This amounts to introduce a delay between the detection of the
two beams and therefore it gives access to g(2)(0, 0, ∆t). Care was taken in the choice
of the beam splitter and the detectors in order to reduce any additional spread of the
signal. The authors repeated the experiment with two kinds of detector, a gas detector
and a scintillator. The major difference between the two resides in the time resolution,
that is worse for the gas detector than for the scintillator, and in the translation step,
that is bigger for the gas detector than for the scintillator. The first quantity has to
be compared to the coherence time and will determine the antibunching height. The
number of coincidences as a function of the detector separation is reported in figure 1.8
on the right. The top panel reports the measurements obtained with the scintillators
and the bottom panel with the gas detector. With an accurate fit the authors can
determine the correlation time and the antibunching height, that are consistent with
theory.
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Figure 1.8: On the left, scheme of the setup used by Iannuzzi et al. to measure the Hanbury Brown
Twiss effect on a thermal beam of neutrons. The figure has been adapted from [54]. On the right,
number of coincidences N as a function of the detector separation. In the top panel the measurements
done with the scintillator detector are reported, in the bottom panel the measurements done with the
gas detector. The detector separation can be converted in time difference with the formula t = (x−x0)/v
where x0 is the dip center (that depends on detector calibration) and v is the neutron speed (about
630 m/s).

Cold atoms in an optical lattice

The group of I. Bloch performed in Mainz in 2006 a measurement of the Hanbury
Brown Twiss effect in a degenerate Fermi gas of 40K released from an optical lattice
[55]. This experiment is the fermionic counterpart of an experiment done by the same
group one year earlier on the Mott insulator phase of a rubidium Bose gas [59]. In
the fermionic experiment, the atoms are first cooled below the Fermi temperature and
then loaded in a three-dimensional optical lattice. The lattice is suddenly switched
off and, after a time-of-flight of 10 ms, the atoms are imaged on a CCD camera via
standard absorption imaging along the vertical axis. The position of the atoms after
the time-of-flight corresponds to their momentum distribution in the trap.

In the lattice, the atoms occupy Bloch states in the lowest energy band. Each Bloch
state is characterised by a crystal momentum h̄q, where q is the crystal wave vector,
defined in the first Brillouin zone of the reciprocal lattice. Due to the periodicity of the
Brillouin zone, each Bloch state is a superposition of states with momentum h̄q+2nh̄k,
with n an integer number and k the wave vector of the laser used to create the lattice.
When a particle with quasi-momentum h̄q is released from the lattice, it has equal
probability to be detected at any of the positions xn = (h̄q + 2nh̄k)t/m, where t is the
duration of the time-of-flight and m is the mass of the particle. Conversely, if a particle
has been detected at the position xn, it has to come from a state of the crystal with
quasi-momentum h̄q. Now, since we are dealing with identical fermions, the occupation
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of a single Bloch state by two particles is not allowed by the Pauli principle. Therefore
it will be impossible to detect a particle in the position xn and a particle in the position
xn′ . Since the positions xn are equally spaced by l = 2h̄kt/m, the spatial correlation
will vanish for any distance |xn − xn′ | integer multiple of l.

Figure 1.9: On the left: a. Single shot absorption image of the fermionic cloud released from an optical
lattice. The inset shows the occupation of the Brillouin zones, demonstrating that only the lowest is
occupied. b. Horizontal cut of image a. No spatial structure is present. On the right: c. Correlation
measured on 158 shots like that of figure a. A rectangular periodic array of black dots is visible, the
dots are circled by a solid black line. The horizontal profile through the centre of the correlation shows
that the the dots correspond to dips, spaced by l. The figure has been taken from [55].

In figure 1.9 we show the experimental results. On the left the image recorded
after the time-of-flight is reported. No periodic structure is present (as shown by the
one-dimensional cut through the image centre, figure 1.9 bottom left). On the right is
shown the correlation function obtained from the analysis of 158 images. A rectangular
periodic array of peaks is visible. A horizontal profile through the centre of the image
(bottom right) shows that the amplitude of the peaks is negative and that they are
spaced by a multiple of l, as expected as a signature of the Hanbury Brown Twiss
effect.

It is interesting to make a few comments on the imaging technique that has been
used in this experiment. In general absorption imaging allows one to measure the
column density of the atomic cloud, but it is not a single particle detection. The
measurement of second order correlations is then tricky and, in 2004, Altman et al.
[60] proposed for the first time to use this technique to measure spatial correlations
in fermionic superfluids and clouds released from an optical lattice. They proposed to
measure atom shot noise in the time-of-flight images. This is possible only if atomic
shot noise dominates over the shot noise of the absorbed beam and on the technical
noise. This requirements are hard to achieve with current CCD cameras.

In this perspective the enormous advantage of using metastable helium atoms is
that one can easily perform single atom detection in three dimensions. Measuring
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second order correlation functions is much easier with a single atom detector, than
with absorption imaging. With this kind of detector our group measured, in 2005, the
correlation function of a thermal cloud of bosons and of a Bose-Einstein condensate
[40]. In 2006 we were able to measure the same quantity for a cloud of bosons and
fermions [42]. As we already pointed out this will be the subject of chapters 2 and 3.
Here we only briefly outline it in order to complete our review of the measurements of
the HBT effect on fermions.

Amsterdam-Palaiseau experiment

An artistic view of the setup is reported in figure 1.10. A cold cloud of metastable 3He
(fermions) or 4He (bosons) atoms can be prepared with standard cooling techniques in a
magnetic, cigar shaped, trap (see chapter 2). When the desired temperature is reached
the trap is suddenly switched off and the atoms fall, under the effect of gravity, on the
detector, situated 63 cm below the trap centre. The trap frequencies are ωx/2π = 54 Hz
and ωyz/2π = 506 Hz for 3He and ωx/2π = 47 Hz and ωyz/2π = 440 Hz for 4He. We
acquired data with samples of 3He and 4He at a temperature of 0.5 µK in order to be
able to make a comparison between the correlation function of bosons and fermions at
the same temperature. We also acquired 3He cold clouds at 1 µK and 1.5 µK to follow
the change of the fermionic correlations as a function of the temperature.

Figure 1.10: Sketch of the experimental setup used in the Amsterdam-Palaiseau experiment. A meta-
stable helium cloud is released at the switch-off of the magnetic trap. The atoms fall under the effect
of gravity on a 3D single atom detector situated 63 cm below the trap.

The detector is a micro-channel plate with a delay-line anode (see appendix A for
technical details), capable to record the position of the single atoms on the xy plane and
their arrival time on the detector (i.e. the vertical position). The time-of-flight is very
long (about 360 ms) and the position of the atoms measured on the detector reflects the
momentum of the atoms in the trap. After the detection we can measure the two-body
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correlation function of the atomic cloud by just measuring the probability of finding an
atom at a certain distance from another one (all the details of the data analysis will be
given in chapter 3). In the next section we will derive the theoretical formulation of the
second order correlation function that we will compare with the obtained experimental
results presented in chapter 3. The major result obtained in this collaboration is the
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Figure 1.11: On the left: Two-body correlation function along the z direction for a cloud of 4He (upper
graph) and a cloud of 3He (lower graph) at 0.5 µK. The different quantum behavior of bosons and
fermions is clearly visible. The error bars correspond to the square root of the number of entries in
each bin. On the right: Correlation function along the z axis measured on a fermionic cold cloud at
0.5 µK. The light blue curve is the same as the one shown on the left side of the figure. The dark blue
is the correlation obtained when the effective size of the source is made smaller by the application of a
blue detuned laser during the time-of-flight. The contrast of the correlation function is increased.

measurement of the two-body correlation function in three dimensions in space for a
sample of fermions and a sample of bosons at the same temperature and in the same
experimental apparatus. Our detector allows us to perform quantitative measurements
of the correlation lengths. The two-body correlation function along the z (vertical)
axis is shown in figure 1.11 (left). As expected we observe a bunching for bosons
(upper graph) and an antibunching for fermions (lower graph). The correlation lengths
resulted to be inversely proportional to the angular size of the source as seen from
the detector. The comparison between correlation measured for bosons and fermions
showed that the correlation lengths are different due to the different mass of the two
isotopes. The contrast of the correlation function is limited by the detector resolution.
We also measured the correlation length for fermions as a function of the temperature
of the sample. The measured values are in good agreement with the theory developed
in section 1.4.

In a second experiment we artificially changed the size of the source by shining
a blue-detuned laser on the atomic cold cloud during the time-of-flight. The effective
source is then smaller than the trapped source and the correlation length at the detector
is larger. This way one can hope to increase the correlation length to a value larger
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than the detector resolution and to see the correlation function going down to zero. The
performances of our atomic lens were not that good but we could observe an increase in
the contrast of the correlation function of a factor 1.4. In figure 1.11 (right) we report
the measured correlation function along the z axis with (in blue) and without (in light
blue) the application of the atomic lens. The difference is clearly visible. In section 3.3
we will discuss this experiment in detail.

1.4 Theory for a ballistically expanding fermionic cloud

In this section we will derive the theoretical expression of the two-body correlation
function for a cloud of ultracold non-interacting fermions released from a harmonic
trap.

In section 1.4.1 we will derive the expression of the correlation function for a non-
interacting gas of fermions at thermal equilibrium in a trapping potential. Among
the data acquired during our collaboration the 3He clouds at 0.5 µK were degenerate
(T/TF ≈ 0.66), therefore we will derive the expression of the correlation function for
a degenerate trapped cloud and we will compare it with the result found for a non-
degenerate cloud.

In section 1.4.4 we will derive the expression of the correlation function after a
ballistic expansion.

At the end of the chapter we will discuss the effect of the finite detector resolution
and the finite detectivity on the correlation function (sec. 1.4.5).

1.4.1 Correlation function for a trapped cloud

Consider a cold cloud of identical (spin polarized) fermions confined in a trapping
potential. The sample is at thermal equilibrium at the temperature T. The trapping
potential is characterised by the parameters ǫj and φj , the energy and the wave function
of the level j. In second field quantisation, the field operators are defined as:

Ψ̂
†(r) =

∑

j

φ∗
j (r)â

†
j , Ψ̂(r) =

∑

j

φj(r)âj (1.7)

The operator â†j (âj) annihilates (creates) a particle in the state j and the field

operator Ψ̂
† (Ψ̂) annihilates (creates) a particle at the position r. Since we are dealing

with fermions, the system follows the Fermi-Dirac distribution and 〈â†j âk〉 = δjk(1 +

exp{β(ǫk−µ)})−1, where β = (kBT )−1, with kB the Boltzmann constant. The quantity

µ is the chemical potential and its value ensures that
∑

j〈â†j âk〉 = N , the total number
of particles in the system. In addition the field operators defined above will obey to
the following commutation rules:

{Ψ̂(r), Ψ̂†(r′)} = δ(r − r′)

{Ψ̂(r), Ψ̂(r′)} = 0

{Ψ̂†(r), Ψ̂†(r′)} = 0



26 The Hanbury Brown Twiss effect

If one neglects the shot noise term, the second order correlation function is given
by:

G(2)(r, r′) = 〈Ψ̂†(r)Ψ̂(r)Ψ̂†(r′)Ψ̂(r′)〉. (1.8)

We shall define two other quantities that will be useful in the calculation of 1.8, the
first order correlation function G(1)(r, r′) and the density of the sample ρ(r):

G(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉 (1.9)

ρ(r) = 〈Ψ̂†(r)Ψ̂(r)〉 = G(1)(r, r) (1.10)

If we go back to the beginning of this chapter, we see that equation 1.9 is the quantum
formulation of equation 1.2 (the product of two amplitudes), while G(2) is the quantity
measured in intensity interferometry (the product of two intensities). If we inject 1.7
in 1.8 we obtain:

G(2)(r, r′) =
∑

j,k,l,n

φ∗
j (r)φk(r)φ

∗
l (r

′)φn(r′)〈â†j âkâ
†
l ân〉 (1.11)

The Wick’s theorem [61] allows to write:

〈â†j âkâ
†
l ân〉 = 〈â†j âj〉〈â†kâk〉(δjlδkn − δjnδkl) + 〈â†j âj〉δklδjn (1.12)

that, injected into 1.11, using the definitions 1.9 and 1.10, leads to:

G(2)(r, r′) = ρ(r)ρ(r′) − |G(1)(r, r′)|2 + ρ(r)δ(r − r′). (1.13)

The last term is called shot-noise term and will be neglected in the following because
it is proportional to the number of atoms N while the other terms are proportional to
N2. We can now calculate the normalized correlation function:

g(2)(r, r′) =
G(2)(r, r′)

ρ(r)ρ(r′)
= 1 − |G(1)(r, r′)|2

ρ(r)ρ(r′)
(1.14)

We can make some remarks about the expression of g(2) that we just found. For a
bosonic sample far from the critical temperature the expression of g(2) is the same as
for fermions, but with a + sign instead of a - sign in front of the last term. It is this
sign that gives rise to bunching for bosons and antibunching for fermions. In fact, for
r = r′, |G(1)(r, r)|2 = ρ(r)ρ(r) and then g(2)(r, r) = 2 for bosons and g(2)(r, r) = 0 for
fermions. Moreover, if the cloud has a finite correlation length, G(1)(r, r′) → 0 when
|r − r′| →∞ and g(2) tends to 1, the value obtained for two independent particles.

If the temperature is closed or below the transition temperature (the Fermi temper-
ature for fermions, the critical temperature for bosons), the equation 1.14 is still valid
for fermions but not for bosons. In fact the population of the ground state is macro-
scopic for bosons close to the condensation threshold and the second order correlation
function becomes [62]:

g
(2)
BEC(r, r′) = 1 +

|G(1)(r, r′)|2

ρ(r)ρ(r′)
− ρ0(r)ρ0(r

′)

ρ(r)ρ(r′)
(1.15)
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where ρ0(r) is the ground state density. Since for a Bose-Einstein condensate at T = 0
only the ground state is occupied, then |G(1)(r, r′)|2 = ρ(r)ρ(r′) = ρ0(r)ρ0(r

′) and

therefore g
(2)
BEC(r, r′) = 1.

For a degenerate gas of fermions this doesn’t occur and equation 1.14 is still valid. In
the following section we will derive the expression of g(2)(r, r′) for a sample of fermions
trapped in a harmonic trap, as in case of the Amsterdam-Palaiseau experiment, and
we will study the behaviour of the correlation function close to the Fermi temperature.

1.4.2 Density and correlation function for a harmonic trap

Calling ωα the trap oscillation frequencies along the α direction, we can write the
hamiltonian of the system as:

Ĥ =
p̂2

2m
+

1

2
m(

∑

α

ω2
αr2

α) (1.16)

The eigenfunctions of the system, for the level j with energy ǫj will be given by:

φj(r) =
∏

α=x,y,z

Ajα
exp{−r2

α/2σ2
α}Hjα

(rα/σα) (1.17)

where σα =
√

h̄/mωα is the harmonic oscillator ground state size, Hjα
is the Her-

mite polynomial of order jα and Ajα
= [

√
πσα2jα(jα)!]−1/2 is the normalization factor.

According to [62] we can write the density and the first order correlation function in
the trap, for an ideal gas of fermions, as follows:

ρtrap(r) =
1

π3/2

∞
∑

l=1

(−1)l+1elβµ̃
∏

α

1

σα

√
1 − e−2lτα

e− tanh(lτα/2)(r2
α
/σ2

α
) (1.18)

G
(1)
trap(r, r

′) =
1

π3/2

∞
∑

l=1

(−1)l+1 elβµ̃
∏

α

1

σα

√
1 − e−2lτα

× exp

[

− tanh

(

ταl

2

) (

rα + r′α
2σα

)2

− coth

(

ταl

2

) (

rα − r′α
2σα

)2
]

(1.19)

with τα = βh̄ωα = h̄ωα/kBT and µ̃ = µ− 1
2

∑

α h̄ωα where µ is the chemical potential.
The size of the trapped cloud is sα = σα/

√
τα =

√

kBT/mω2
α. Note that formulas

1.18 and 1.19 are valid only if µ̃ < 0. As the temperature decreases the number of
terms that contributes to the sum increases. For a temperature well above the Fermi
temperature, µ̃ → −∞ and one finds the Maxwell-Boltzmann distribution. In this case
the density and the first order correlation function are:

ρtrap(r) =
N

λ3

∏

α

ταe−(τα/2)(r2
α
/σ2

α
) (1.20)

G
(1)
trap(r, r

′) =
N

λ3

∏

α

ταe−(τα/2)((rα+r′
α
)/2σα)2e−π((rα−r′

α
)/λ)2 (1.21)
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where λ = h̄
√

2π/
√

mkBT is the thermal De Broglie wavelength and N is the number
of trapped atoms.

Injecting the two expressions in equation 1.14, we find:

g
(2)
trap(r, r

′) = 1 −
∏

α

exp{(
1

4s2
α

− 2π

λ2
)(rα − r′α)2}

≈ 1 −
∏

α

exp{(−2π

λ2
)(rα − r′α)2} (1.22)

where the last equality holds because 4s2
α(2π/λ2) = 4(kBT/h̄ωα)2 ≫ 1. The normalized

correlation function (plotted in figure 1.12) has a Gaussian shape and the correlation
length in the trap is ltrap = λ/

√
2π (at 1 − 1/e). For bosons we find the same result

but with a + sign in front of the second term of 1.22.
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Figure 1.12: Second order normalized correlation function for a non degenerate gas of fermions in a
harmonic trap.

When the temperature is below the Fermi temperature, it is easier to calculate the
atomic density and the correlation function in the semiclassical approach, as we will
see in the next section.

1.4.3 Density and correlation function for a degenerate sample

As the sample is cooled below the Fermi temperature TF , the probability for the lowest
energy states to be occupied becomes higher and higher. However, the probability for
two fermions to occupy the same energy level is zero, due to the Pauli principle and the
atoms occupy one by one the lower energy levels. At zero temperature, the energy of
the higher occupied state defines the Fermi energy, EF = kBTF . At finite temperature
some of the levels below the Fermi energy are empty and some of the levels above the
Fermi energy are occupied. From the experimental point of view, as the sample is
cooled, the cloud initially shrinks, but as the temperature approaches TF , the cloud
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eventually stops shrinking and its size remains larger than the size of a classical gas with
the same number of atoms at the same temperature. This is the effect of the so-called
Fermi pressure and it is a direct consequence of the Pauli principle [32]. For the same
reason the density distribution is flattened in the central part and the distribution is
no longer Gaussian. The density of the trapped cloud is written, in the semiclassical
approximation, as:

ρtrap(p) =
1

h3

∫

dR
1

exp{β(p2/2m + V (R) − µ)} + 1
(1.23)

where V (R) is the trapping potential. The effect of the Fermi pressure is shown in figure
1.13, where we plot the density of a cloud of atoms using the Maxwell-Boltzmann and
the Fermi-Dirac distribution at fixed temperature and number of atoms. Since the wings
of the cloud are less dependent on the statistics, the Maxwell-Boltzmann distribution
and the Fermi-Dirac distribution coincide on the wings.

Figure 1.13: Density of a cloud of fermions at T/TF = 0.3 with 40 × 104 atoms as a function of
the distance to the trap center. The grey line is the density calculated using the Maxwell-Boltzmann
distribution. The black line is the density calculated using formula 1.23 that takes into account the
fact that the atoms follow the Fermi-Dirac statistics. The effect of the Fermi pressure is well visible
close to the trap center. In the inset we show the two normalized density distributions. Each curve is
normalized to its peak density, in order to make evident that the size of a cloud of fermions is larger
than the size of a classical gas.

One can then ask what is the second order correlation function for a gas of fermions
below TF . As we said in the previous section, equation 1.14 holds and g(2) goes to zero
for r = r′ and to 1 when |r − r′| →∞ . The second order correlation function can be
calculated, in the semiclassical approximation, as follows. At equilibrium, inside the
trap, the following equality holds [62]:

∫

dRG(1)(R − r/2,R + r/2) =

∫

dp ρtrap(p) e−ip·r/h̄ (1.24)
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Injecting 1.23 in 1.24 we find [62]:

G(1)(R − r/2,R + r/2) =
1

h3

∫

dp
1

exp{β(p2/2m + V (R) − µ)} + 1
e−ip·r/h̄ (1.25)

The integral can be calculated numerically and the normalized second order correlation
function is given by:

g(2)(R − r/2,R + r/2) =
G(2)(R − r/2,R + r/2)

ρtrap(R + r/2) ρtrap(R − r/2)
(1.26)

where the density is given by:

ρtrap(r) = − 1

λ3
g3/2

[

− exp

{

1

kBT
µ − mω2

kBT
r2

}]

(1.27)

In figure 1.14 we show the result of this calculation for a cloud of 4 × 104 atoms at
T = 0.3TF . The calculation has been made for an isotropic trap with trapping frequency
equal to the geometric average of the trapping frequencies of the Amsterdam-Palaiseau
experiment. We calculate the correlation function at three different positions: at the
center of the cloud, R = 0 (black line), at a distance equals to 12λ from the trap center
(light grey line), and for a classical gas (grey line). Defining the correlation length lc as
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Figure 1.14: Correlation function for a cloud of fermions at T/TF = 0.3. The correlation function has
been calculated in the center of the cloud (R = 0), black line, at R = 12λ, light grey line and for a
classical gas, grey line. As long as we go far from the trap center the effect of the Fermi pressure is less
strong and the correlation approaches the one obtained for a classical gas.

the lenght at which g(2)(lc) = 1 − 1/e, we see that the correlation length obtained for
the Fermi-Dirac distribution is smaller that the one obtained for a Maxwell-Boltzmann
distribution. In addition, the effect of the Fermi pressure is stronger close to the center
of the cloud, while the correlation function approaches that of a classical gas on the
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wings of the cloud. The relative difference in lc between a classical and a Fermi gas is
22% at the center of the cloud and 14% at R = 12λ.

We can study what happens if we measure the average of the correlation function
over all the atomic cloud, which we define as follows:

g(2)(r) =

∫

dRG(2)(R − r/2,R + r/2)
∫

dR ρtrap(R + r/2) ρtrap(R − r/2)
(1.28)

where G(2)(R − r/2,R + r/2) is defined in equation 1.13. The averaged correlation
function defined above corresponds to the quantity measurable in the experiment, as
we will see in chapter 3. The averaging procedure has the effect of partially washing
out the effect of the Fermi pressure. In figure 1.15 we show the normalized second order
correlation function for 4× 104 trapped atoms at different values of T/TF between 1.5
and 0.3. The calculation has been made for an isotropic trap with trapping frequency
equals to the geometric average of the trapping frequencies of the Amsterdam-Palaiseau
experiment. In each graph of figure 1.15 we report the second order correlation function
calculated with equation 1.28 and for a gas following the Maxwell-Boltzmann distribu-
tion (equation 1.22). As the figure shows, for T ≥ TF the correlation function calculated
using 1.28 coincides with the one calculated with the Maxwell-Boltzmann distribution,
as we have derived. The correlation length is λ/

√
2π, as derived in the section above.

On the other hand, for T ≤ TF the gas doesn’t follow the Maxwell-Boltzmann dis-
tribution and the two correlation functions are different. In particular the correlation
length is not λ/

√
2π, but is smaller because, due to the Fermi pressure, the size of the

trapped cloud is larger. The relative difference is 7.5% for T/TF = 0.5 (bottom left
graph in figure 1.15) and 19% for T/TF = 0.3 (bottom right graph in figure 1.15). If
we compare this result with the values obtained for the local correlation function for
T/TF = 0.3 we see that, as expected, the averaging process washes out the effect of the
Fermi pressure.

In the next section we will show how the second order correlation function varies
during the time-of-flight.

1.4.4 Correlation function after the time-of-flight

In our experiment the atoms are detected when they cross the detector plane, that we
fix for simplicity at the position z = 0. The second order correlation function is then:

G
(2)
det(r = {x, y, z = 0}, t; r′ = {x′, y′, z = 0}, t′) (1.29)

This is different from the experiments where absorption imaging is used, because in
that case an image of the entire cloud is taken at an instant t. However, if the detec-
tion is done in both cases after a long time-of-flight and one can neglect the expan-
sion of the cloud as it passes through the detector, the two correlation functions are
nearly the same. The complete calculation of the density and the correlation functions
during the expansion can be found in [62]. Here we just recall the idea of the calcu-
lation and the expression of g(2) at the detector. First of all, one has to calculate the
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Figure 1.15: Second order normalized correlation function for a gas of fermions trapped in an harmonic
isotropic potential. In each graph we plotted in grey g(2)(r) calculated with equation 1.22 and in
black the result of the numerical evaluation of 1.28. The two correlation functions show a significant
difference for T/TF < 1.

ballistic expansion of the wave functions of the stationary harmonic oscillator state.
This can be done analytically and one finds that the interesting part (with respect
to intensity interferometry) of the wave function is identical to that in the trap ex-
cept for a time-dependent scaling factor in the positions. Thereafter one can calculate
G(2)(r = {x, y, z = 0}, t; r′ = {x′, y′, z = 0}, t′) by using a flux operator that describes
the flux of atoms passing through the detector. Finally one finds:

G
(2)
det(r, t; r

′, t′) =
2gH

∏

α

√

(1 + ω2
αt2)(1 + ω2

αt′2)
[ρtrap(r̃)ρtrap(r̃

′) − |G(1)(r̃, r̃′)|2] (1.30)

where H is the vertical coordinate of the trap. The expression 1.30 is obtained under
two conditions that are verified in our experiment: the size of the cloud after expansion
(several mm in our case) has to be much larger than the size of the cloud in the trap
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(several tens of µm) and the velocity spread of the cloud (of the order of 6 cm/s) has to
be much smaller than the velocity acquired during the time-of-flight (about 3 m/s). It
is interesting to note that, under these conditions, we find the same correlation function
as in the trap, rescaled by the following factors:

x̃ ≈ x/(ωxt0)

ỹ ≈ y/(ωyt0)

z̃ ≈ g(t0 − t)/ωz (1.31)

where t0 ≈ 358 ms is the mean time-of-flight. Note that there is a direct correspondence
between the arrival time of the atoms and their vertical position with respect to the
trap position, for each time t. In fact, since we are neglecting the expansion of the
cloud while it passes through the detector, there are two equivalent ways to model the
detection process: either the detector is kept at a fixed position (z = 0) and the cloud
passes through it during a time ∆t, or the cloud is frozen at the instant t and the
detector moves along the vertical axis measuring the coordinate z of the atoms with
respect to its initial position.

Now we can calculate the normalized second order correlation function at the detec-
tor. The formulation is analytical for a Maxwell-Boltzmann distribution and is shown
in the following part of this section.

Using the equivalence between z and t, we can write, for a cloud of atoms that
follows the Maxwell-Boltzmann distribution:

g
(2)
det(r, r

′) = 1 −
∏

α

exp{
1

ω2
αt20

(
1

4s2
α

− 2π

λ2
)(rα − r′α)2}

≈ 1 −
∏

α

exp{(− 2π

λ2 ω2
αt20

)(rα − r′α)2} (1.32)

Again, the formula for bosons will be the same but with a + sign instead of −. We
find that the correlation length is related to the one in the trap:

lα = ltrap × ωαt0. (1.33)

The scaling law will be the same for the correlation length of a degenerate Fermi gas. In
addition, by substituting the expression of the De Broglie wavelength in the expression
just obtained for the correlation length we find:

lα =
h̄ωαt0√
mkBT

=
h̄t0
msα

(1.34)

where sα is the size of the trapped sample. It is interesting to note that, even if
the density distribution at the detector is isotropic, the antibunching is not. The
correlation function at the detector is related to the correlation in the trap and to the
density distribution in the trap. In particular, since the correlation length is inversely
proportional to the size of the trapped sample, the antibunching anisotropy is inverted
with respect to the trap anisotropy.
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In figure 1.16 we plot the correlation length along the three axis as a function of the
temperature of the atomic cloud. The trap oscillation frequencies are the ones of the
cigar shape trap of the Amsterdam-Palaiseau experiment and the temperature range
corresponds to the data acquired during the collaboration. The smaller oscillation fre-
quency is along the x axis and is about ten times smaller than the oscillation frequencies
along the y and z axis. Therefore lx is about ten times smaller than lyz. As we will
see in the following section, lx is much smaller than the detector resolution along x and
this has some important consequences on the observed correlation function.
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Figure 1.16: On the left: Correlation length along the x axis as a function of the atomic cloud temper-
ature for the experimental parameters of the Amsterdam-Palaiseau experiment. On the right: Corre-
lation length along the y and z axis as a function of the atomic cloud temperature for the experimental
parameters of the Amsterdam-Palaiseau experiment.

1.4.5 Effect of the resolution and the detectivity of the detector

In the previous sections we assumed to have an ideal detector, with arbitrarily good
resolution and detectivity. In this section we will see how an imperfect detector can
affect the measurement of the correlation function.

Imperfect detectivity

Consider first a detector with a detection efficiency homogeneous, but smaller than
100%. The measurement of the correlation function will not be affected. In fact, the
detection efficiency can change the number of detected atom pairs, but doesn’t change
the statistical properties of the sample. If the probability for two atoms to occupy the
same quantum state is zero (or two in the case of bosons), it will stay zero (two), even
with an finite detectivity.

On the other hand, if the detection efficiency is not homogenous, we have to distin-
guish between the measurement of the local correlation function and of the correlation
function averaged over all the detector. If we call ǫr the detection efficiency at the
position r we have:

g(2)(R − r/2,R + r/2) =
ǫ(R−r/2)ǫ(R+r/2) G(2)(R − r/2,R + r/2)

ǫ(R−r/2)ǫ(R+r/2) ρtrap(R − r/2) ρtrap(R + r/2)
(1.35)
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Therefore the detection efficiency doesn’t affect the normalized correlation function, due
to the fact that the detectivity appears at both the numerator and the denominator
and it cancels out. In the experiment we measure the correlation averaged over all the
detector. In this case the detection efficiency doesn’t cancel out in the normalization
process and we have:

g(2)(r) =

∫

dR ǫ(R+r/2)ǫ(R−r/2) G(2)(R − r/2,R + r/2)
∫

dR ǫ(R+r/2)ǫ(R−r/2) ρtrap(R + r/2) ρtrap(R − r/2)
(1.36)

If the detection efficiency varies slowly with respect to the correlation length, it can
be considered as constant and can be pulled out from the integral. In this case the
contribution at the numerator and at the denominator of the normalized correlation
function cancels out. Our experiment falls in this last case.

Finite detector resolution

If the detector has a finite resolution, the measured two-body correlation function will
result in the convolution between the function that describes the resolution and the
expression of g(2)(∆r) calculated above (equation 1.32):

g(2)
res(∆r) = fres(x, y, z) ⊗ g(2)(∆r) (1.37)

In the following we will refer to the particular case of our detector, but the formula that
we will find can be used in a more general context. The resolution of our detector is
not the same in the three directions. It is very good, about 3 nm, along the z direction
and it is negligible with respect to the correlation length in this direction (between 700
and 400 µm for our samples and our trap frequencies, see figure 1.16). Therefore the
expression 1.32 still holds along the z axis. On the xy plane however the resolution
is not very good. The method that we use to measure the resolution is explained in
appendix A. In first approximation the resolution function of our detector is a Gaussian
with standard deviation of about dxy ≈ 250 µm. It means that the two-atom resolution
(at 1/e) is

√
2×

√
2×dxy ≈ 500 µm 1. The correlation length (value at 1−1/e, defined

by equation 1.34) along the x axis is one order of magnitude smaller as shown in figure
1.16 and it is of the same order of magnitude of the resolution along the y axis. It is then
already clear that the resolution will heavily affect the measurement of the correlation
lengths, making impossible the measurement along the x direction and delicate the
measurement along the y direction. It is interesting to see if the resolution affects
only the correlation length or the antibunching height as well. To understand it we
calculate the convolution between g(2)(∆x,∆y) and fres(x, y). Since we are far from
degeneracy, the three directions are independent and we can treat them separately.
With fres(xy) = 1/(2πd2

xy) exp{−(x2 + y2)/2d2
xy} one finds:

g(2)
res(∆x,∆y, ∆z) = 1 − η exp{−∆x2

L2
x

− ∆y2

L2
y

− ∆z2

L2
z

} (1.38)

1The first
√

2 comes from the fact that dxy is the one particle resolution (and not the two-particle
resolution) and the second

√
2 comes from the fact that dxy is an rms value instead of the value at 1/e
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where Lx, Ly, Lz are the measured correlation length, convoluted with the detector

resolution. The deconvolution gives: lα =
√

L2
α − (2dxy)2 for α = x, y. Note that,

since lx ≪ 2dxy, measuring the correlation length on the x direction is equivalent to
measure the two-particle resolution of the detector. Due to the very good resolution
on the vertical axis, lz = Lz. The contrast of the correlation function η is given by:

η = g(2)
res(0, 0, 0) − 1 = −

∏

α

√

√

√

√

1 + d2
xy/s2

det

1 + (2dxy)2/l2α

≈ −
∏

α

√

1

1 + (2dxy)2/l2α
(1.39)

with sdet the size of the cloud at the detector.
In fact, a careful examination reveals that the resolution function of our detector is

not well approximated by a Gaussian because the wings are too broad. A possibility
would have been to try with a Lorentzian function, but, as we wanted to keep the

expression of g
(2)
res(∆x,∆y, ∆z) simple, we approximated the resolution function with

the sum of three Gaussians. The exact formula for the correlation function in this case
is given in appendix A. This correlation function has been used to analyse the data
presented in chapter 3.

1.5 Conclusion

In this chapter we briefly reviewed the history of the Hanbury Brown Twiss effect and
we set the context of the birth of the modern quantum optics. Thereafter we have
derived a simple quantum mechanics explanation of the Hanbury Brown Twiss effect
for two point-like sources, that allows to highlight the different statistics followed by
bosons and fermions: bosons tend to arrive bunched on the detector, while fermions
tends to stay far apart. This is a consequence of the Pauli exclusion principle. If a
classical explanation of the Hanbury Brown Twiss effect exists for photons, that are
bosons, it is not the case for fermions, that don’t have a classical counterpart. For
this reasons it is interesting to repeat the Hanbury Brown Twiss experiment with a
sample of fermions. Experiments have been carried out on electrons in solids and in
vacuum, on neutrons and on samples of ultracold atoms. The experiment we made
within a collaboration with the group of W. Vassen joins this stream. We measured
the correlation function for a cold cloud of bosons and fermions produced in the same
experimental apparatus and at the same temperature and we were able to quantitatively
compare the results obtained for the two species.

Since the shape of the correlation function depends on the characteristics of the
sample on which it is measured, we derived the expression of the second order correla-
tion function for a cold cloud in a harmonic trap. We discussed the difference between
the correlation obtained for a thermal sample and for a degenerate cloud of fermions.
Due to the Fermi pressure, the size of a trapped cloud cooled below the Fermi tem-
perature is larger than the size of a non degenerate cloud and the density distribution
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is no longer Gaussian. Therefore the shape of the correlation function is not Gaussian
and the correlation length is smaller than the one obtained for a degenerate sample.
However we showed that this effect is small if we average over all the cloud.

Finally we derived the expression of the correlation function after the time-of-flight
and we discussed the effect of the finite detector resolution and of an imperfect detection
efficiency on the measured correlation function.

In chapter 3 we will compare the theoretical results derived here with our experi-
mental data. In the next chapter we will describe the experimental setup used in the
Amsterdam-Palaiseau collaboration.
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Chapter 2

Amsterdam Experimental Setup

At the beginning of July 2006 we started a collaboration with the group of Wim Vassen,
at the Laser Centre of the Vrije Universiteit, in Amsterdam. The goal was to measure
the Hanbury Brown Twiss effect on a fermionic cold cloud in order to study antibunch-
ing in an ultracold Fermi gas of neutral atoms.

The Amsterdam group recently succeeded in the production of a Fermi gas of 3He,
becoming the only group in the world having a degenerate Bose-Fermi mixture of
metastable helium [63], [41]. At the same time the ability of the Orsay detector in
measuring 2-body correlation functions in 3 dimensions had already been demonstrated
[40]. Therefore we just needed to combine the expertise of the two groups and perform
the experiment. Indeed, we installed the Orsay detector in the Amsterdam vacuum
apparatus and, after a short bake-out of the chamber, we performed the experiment.
We produced cold clouds of 3He and 4He at different temperatures between 0.5 µK and
1.5 µK in a magnetic trap. After the desired temperature was reached, we switched off
the trap, let the clouds fall on the detector under the effect of gravity, and we measured
the two body correlation function in three dimensions.

Working on this experimental setup has been an enriching experience. Not only it
gave us the possibility to look into a setup similar, rather not identical, to ours, but
also to deeply investigate the differences in the production of degenerate cloud of 3He
and of 4He. Since our group is planning to introduce 3He in our experimental setup,
this experience was useful to point up the changes we should make in the Palaiseau
setup to cool 3He as well. The detail of these upgrades together with an outlook of
the Amsterdam setup are the main topic of this chapter. In addition we will compare
the experimental parameters used in the two experiments. In the next chapter we will
describe the data analysis and the obtained results.

2.1 Helium atomic structure

Helium lines were observed for the first time in 1868 by the French astronomer Pierre
Jannsen in the solar spectrum. Since this element was unknown on the Earth (where
it was isolated only 27 years later) it was decided to call it Helium, from the name of
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the mythological greek god of sun.

Helium is the lighter of the rare gases, its atomic number is equal to 2 and it is
present in nature with two isotopes, 3He and 4He. While 4He has nuclear spin equal
to zero, 3He has nuclear spin equal to 1

2 and therefore exhibits hyperfine structure (see
section 2.3.2).

Since helium has two electrons, its energy spectrum consists of two nearly indepen-
dent systems of levels, one made of singlet states and the other made of triplet states.
Because intercombination lines are highly forbidden, helium has two metastable states,
one in the triplet and one in the singlet spectrum, which have a very long lifetime: since
the ground state is a singlet state, singlet metastable state has a lifetime of 19.6 ms,
while triplet metastable state has a lifetime of 7900 s. This makes metastable triplet
helium a good candidate to obtain a Bose-Einstein condensate. In addition, since un-
like the ground state its magnetic moment is different from zero, it can be magnetically
trapped and it has several optical transitions that are available for laser cooling.

Another important feature of helium is that the internal energy of the metastable
state is 19.8 eV. This makes metastable helium very interesting because one can use a
micro-channel plate to detect clouds of neutral atoms (see appendix A for a description
of the detector).

2.2 A Bose-Fermi mixture of metastable atoms

Before the achievement of the Fermi gas in Amsterdam, there were two open questions
about the possibility of cooling 3He to degeneracy. The first one concerned the suppres-
sion of Penning ionization in 3He -3He and 3He -4He collisions in a polarized sample,
the second one concerned the 3He -4He scattering length, responsible of the efficiency
of the 3He cooling process.

Penning ionizations

Due to the large energy of the metastable state, metastable Helium (He∗) shows an
important inelastic collision rate. When two He∗ atoms collide, the energy of the
system is enough to ionize one of the atoms (the ionization energy is 25 eV), leading
to Penning ionizations:

He∗ + He∗ →
{

He + He+ + e−

He+
2 + e−

(2.1)

Penning ionizations induce losses in the sample during all the phases of its preparation
and are enhanced by the presence of the MOT laser [64] (see section 2.3.5). In the
absence of the laser, the ionisation rate for an unpolarized sample decreases by a factor
of ≈ 100, but is still of the order of 5 × 10−10 cm3/s for 4He. However, atoms in a
magnetic trap are spin-polarized (see section 2.3.6) and in this case Penning ionization
for 4He are suppressed by 5 orders of magnitude, due to spin conservation [65], [66].
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This makes possible the achievement of high densities in the magnetic trap and 4He
Bose-Einstein condensation can be realized through evaporative cooling.

Since the Penning ionization rate was unknown for 3He -3He collision as well as for
3He -4He collisions, a similar suppression of losses for a mixture loaded in a magnetic
trap was not certain and the lifetime of the mixture in the trap was unpredictable.
Even if a precise measurement of the 2-body losses rate for a polarized sample of 3He
or 3He -4He has not been done yet, the achievement of a degenerate Fermi gas of 3He
atoms shows that 2-body losses are suppressed in a 3He -4He mixture as well. A rough
measurement of the 2-body losses rate can be inferred from [41]. The Amsterdam team
measured a lifetime of a pure polarized sample of either 3He or 4He in a magnetic trap
of ≈ 110 s, limited by collisions with residual background gas, while they measured
a lifetime of a polarized mixture of ≈ 100 s. From [41] we can extract the value of
the density of the clouds and their temperature and give an estimation of the 3He
-4He ionization rate. The density was 2.2 × 1011 at/cm3 for 4He and 6 × 108 at/cm3

for 3He, while the temperature was the same for the two gases (130 µK). With these
numbers a rough calculation gives a 2-body heteronuclear ionization rate of ≤ 4 ×
10−12 cm3/s. This rate is larger than the 4He -4He ionization rate (≈ 5 × 10−15 cm3/s
for a spin polarized sample), but the induced losses are still small with respect to the
losses induced by collisions with the background gas. Close to degeneracy the density
gets higher and the 2-body and 3-body ionizations become the dominant loss cause.
With the heteronuclear ionization rate calculated above, the lifetime of a mixture with
a density of 1012 at/cm3, would be of the order of few hundreds ms, which is still
reasonable.

Heteronuclear scattering length

The second important issue was the 3He -4He s-wave scattering length. In order to
obtain a Bose-Einstein condensate, bosons are usually first trapped in a magnetic trap
and then cooled by sweeping an RF frequency that couples the trapped state to a
non-trapped state and that selectively removes the hotter atoms (see section 2.3.6).
Elastic collisions then thermalize the sample, that is brought in this way to quantum
degeneracy. This cooling process is called evaporative cooling.

At the temperature of interest these collisions are primarily s-wave in nature and are
then forbidden for identical fermions. The method generally used to cool a fermionic
sample is called sympathetic cooling [67], [31], [33] and consists in immersing the
fermions in a bath of bosons. When bosons are evaporatively cooled, they collide
with fermions that then thermalize at the bosons temperature (see section 2.3.6). The
efficiency of the cooling process depends on the value of the heteronuclear scattering
length and on the density of the samples. This value has been predicted by theory
to be a34 = 28.8+3.9

−3.3 nm [68], but has not been measured yet. An estimation of the
scattering length is given by the measurement of the lifetime of the 4He condensate
in presence and in absence of 3He. In fact, such a large value for the heteronuclear
scattering length leads to expect that 3-body losses rate will be large, because it scales
as a4 [69], [41]. The theoretical estimation of the boson-boson-fermion rate constant
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and the measured lifetime of a pure condensate and of a degenerate mixture seem to
confirm the value of the scattering length given above [41]. In addition, no evidence
for mixture collapse seems to confirm the positive value for the scattering length.

2.3 Experimental sequence

In this section we will concentrate on the production of a cold cloud of 3He and, as we
said in the introduction, we will underline the important changes we should make on
the French setup in order to cool 3He.

For the reasons explained above, reaching the Fermi temperature is possible by
sympathetically cooling the 3He with 4He. Consequently the two species must be
loaded together in the magnetic trap. The experimental steps are the following:

1. A 3He-4He mixture at room temperature is first prepared in a reservoir, filled
with a given percentage of the two gases.

2. The mixture is then excited to the metastable state by using a DC discharge.

3. The atomic beam at the output of the discharge is then collimated transversally.

4. A Zeeman slower, that connects the source chamber to the magneto-optical-trap
(MOT) chamber, is then used to slow the atoms from a velocity of ≈ 1050 m/s
to ≈ 60 m/s.

5. A two species MOT is then loaded.

6. The sample is transferred in a magnetic trap where it is cooled by using 1D
Doppler cooling (see section 2.3.6).

7. The magnetic trap is then compressed (in order to increase the atomic density
and the collision rate). 4He is cooled by a RF evaporation ramp and 3He is
sympathetically cooled by collisions with 4He.

8. 4He is expelled from the trap by a RF sweep. The magnetic trap is switched off
and 3He time-of-flight is detected.

A sketch of the experimental setup is shown in figure 2.1. The experimental sequence
used to prepare a 4He sample is the same as the one used to prepare a 3He sample.
However in this case only 4He atoms enter the source chamber and are loaded in the
magnetic trap. The sample is then cooled to the desired temperature and the time-of-
flight is detected by switching off the magnetic trap.

The Amsterdam experimental sequence has no fundamental differences from the
Palaiseau sequence. Differences in the experimental parameters will be pointed out
throughout this section.
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Figure 2.1: Sketch of the experimental setup.

2.3.1 Source and recycling system

The source used in Amsterdam to excite the atoms in the metastable state is similar to
the one used in Palaiseau. Helium gas at room temperature is injected in the vacuum
chamber where it is excited by an electric DC discharge maintained between a needle
(held at high voltage) and a skimmer (grounded), as shown in figure 2.2. The discharge
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Figure 2.2: Sketch of the source used to excite helium atoms to the metastable state (see text). The
Boron nitride block (light grey) is inserted in a copper block (dark grey) that is cooled by liquid
Nitrogen.

is maintained through a nozzle, situated very close to the needle. The nozzle is a
narrow and long canal (diameter ≈ 200 µm, length ≈ 1 cm) drilled in a piece of boron-
nitride cooled by liquid nitrogen. Boron nitride is a material that presents poor electric
conductivity and good thermal conductivity. The collisions between the atoms and the
Boron nitride walls decrease the initial velocity of the atoms and create a supersonic
beam at the end of the canal. The excitation efficiency is of the order of one atom
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excited out of 104 atoms remaining in the ground state. Typical beams contain 1012

atoms/s with a longitudinal velocity of 1200-1300 m/s.

Since the natural abundance of 3He is just 1.4× 10−6, 3He is very expensive. Then,
when the source is used for 3He or for a 3He -4He mixture a recycling apparatus is used
to purify and recycle the gas. This is one of the major modification we need to introduce
in the French setup in order to cool 3He. During the moving of the laboratory from
Orsay to Palaiseau we have already prepared the installation of the recycling system.
In fact, we replaced the diffusion and rotary pumps used to make the vacuum in the
source chamber with turbo and dry pumps. The absence of oil in the recycling system
is an advantage when the gas has to be kept clean (see for comparison [70]).

In the Amsterdam setup the recycling apparatus is connected to the source chamber
so that the gas that does not end up in the beam is pumped out, filtered and then re-
injected in the source chamber. Figure 2.3 shows a sketch of the recycling system.

3He 
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Mixture 
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and filters

Scroll Pump

4He 
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Turbo 
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Pump

V3
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MOT  
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Figure 2.3: Sketch of the recycling system used in the Amsterdam setup when 3He is injected in the
apparatus (see text).

When the recycling system is in operation, helium is injected into the chamber from
the 3He-4He reservoir that is prefilled with a given percentage of 3He and 4He. Atoms
that do not go into the atomic beam are pumped by a turbo pump that is backed
by a scroll pump. The exhaust of the scroll pump is injected in a two stage filter,
liquid nitrogen cooled, that contains two different kinds of sodium zeolites. This filter



Experimental sequence 45

traps everything but helium. At the output of the filter, the gas passes in the needle
valve (V2) and is injected in the source chamber. Valves 1 and 2 allow to change the
percentage of 3He and 4He in the system during the operation. If the experiment is run
with 4He the scroll pump and the filters are excluded from the system, by commuting
valve 2 and 3, and the turbo pump is backed by a membrane pump. The output of
the latter is the atmosphere and the helium is lost. The use of a scroll pump instead
of a membrane pump in the recycling system is related to the requirement to have a
closed circuit: scroll pumps allow a larger exhaust pressure, ensuring a better ultimate
vacuum and a higher pumping speed, all things that can benefit to the working of a
turbo pump in a closed circuit.

2.3.2 Laser cooling transitions and laser system

The transition used to laser cool 3He and 4He is the 23S1 → 23P2 at a wavelength of
1083 nm. The level scheme for this transition is shown in figure 2.4. The line width is
Γ/2π = 1.6 MHz. The isotopic shift is about 30 GHz for the transition used for laser
cool 3He and 4He. The use of two laser systems is then necessary when one wants to
cool a 3He -4He mixture. Therefore, in view of the introduction of 3He in the Palaiseau
setup, we should double the actual laser system and reorganise it in order to install all
the optics on the same optical table.

As one can see in figure 2.4, the excited state is split in 3 fine structure components
with J= 0,1,2. The multiplet is inverted so that the 23P0 has a energy higher than
the 23P1 . 3He structure is a bit more complicated due to hyperfine level splitting.
The metastable state is split in two (with F= 1/2 and F= 3/2) and the 23P2 and the
23P1 are both split into two hyperfine components. Due to the isotopic shift the 3He
levels have on average an energy smaller than 4He levels. The 23P0,1/2 is higher than
the 23P2 by 811 MHz. Since the laser cooling transitions are the 23S1 → 23P2 for 4He
and the 23S1,3/2 → 23P2,5/2 for 3He, this can cause some depumping during the laser
cooling phase. We will address this problem in the section 2.3.5.

Laser system

In the Palaiseau setup four distributed Bragg reflector (DBR) diode lasers at 1083 nm
are used, in order to generate collimation, Zeeman slower, MOT, spin polarization and
1D Doppler cooling beams. DBR lasers have an output power of ≈ 40 mW and a
linewidth of ≈ 2 MHz.

In the Amsterdam setup the lasers used during the cooling steps are of different
type. The largest part of the light power is provided by a fiber laser for 3He and by a
solid state LNA laser for 4He [71].

The 3He laser (IPG YLD-1BC-1083) is an Ytterbium fiber laser, it has a nominal
output power of 1 W and a linewidth of ≈ 2 MHz. It provides all the power needed for
3He trapping, but for spin-polarization. For the latter a Toptica DL100 external cavity
diode laser is used. The output power is ≈ 40 mW [71].
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Figure 2.4: On the left, scheme of the optical transitions used to laser cool 4He. On the right, scheme
of the optical transition used to cool 3He. Since the isotopic shift is about 30 GHz, a double laser
system is needed. The transitions C3 and D2 are used to cool 3He and 4He respectively. An additional
laser resonant with the transition C2 of the 3He is needed as a repumper.

For the 4He laser, an LNA crystal is the active medium and is placed inside a ring
cavity. The crystal is pumped with a 4 W laser at 532.2 nm. To force the system to
operate on a single mode at 1083 nm a system of filters and etalons is used. The output
power at 1083 nm is 250 mW. The cavity is locked to a Fabry-Perot interferometer which
is locked to the 23S1 → 23P2 line. When locked, the laser has a linewidth of ≈ 160 kHz
[71]. Due to cavity instability (induced for example by room temperature drifts), the
LNA laser is quite unstable and difficult to lock and turned out to be one of the more
time demanding device of the Amsterdam setup, during the Hanbury Brown Twiss
data acquisition.

The LNA laser is used to generate collimation, Zeeman slower, and MOT beams.
For spin-polarization and 1D Doppler cooling two DBR lasers are used, the one for the
Doppler cooling in extended cavity configuration (linewidth ≈ 500 kHz).

In both setup lasers are locked with a saturated absorption scheme on He∗ cells.
The laser power available in the Amsterdam setup is much larger than the total power
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available in the Palaiseau setup. This can explain why our experiment is less stable and,
on average, the number of trapped atoms is smaller than in the other setup. Recently,
a laser amplifier has been implemented in our experimental apparatus, improving these
two aspects in agreement with our expectations.

2.3.3 Atomic beam collimation

After leaving the source the atoms enter in a second vacuum chamber, separated by
the first one by the small opening in the skimmer, where the atomic beam is collimated
in horizontal and vertical direction. Collimation is useful for two reasons: it increases
the metastable beam intensity and separates metastable and ground state atoms.

Collimation is made applying the so-called curve-wavefront technique [72], [73].
The radiation pressure force exerted on the atoms by two pairs of counter-propagating
laser beams is used to change the atomic trajectory. The laser beams are resonant
with the 23S1 → 23P2 transition for 4He and with 23S1,3/2 → 23P2,5/2 for 3He, are
linearly polarized and have an elliptical profile with the long axis parallel to the atomic
beam propagation direction. In order to keep the Doppler shift constant, the beams
are convergent and have a curvature radius that matches the curvature of the atomic
trajectory. In this way the atoms are always in resonance with the laser and the
collimation process is efficient over all the interaction region.

In the Amsterdam setup the curvature radius is 15 m for the vertical beam and
11 m for the horizontal beam. The total amount of power in the collimation section is
190 mW and the length of the interacting region is about 19 cm. The curvature radius
used in Palaiseau is larger (about 30 m), the total power is approximately 30 mW
and the length of the interaction region is about 10 cm. Since the parameters used
for the collimation of the atomic beam depends on the divergence of the atomic beam
and therefore on the particular geometry of the source, it is hard to compare the two
experimental setups.

In the Amsterdam setup the metastable beam is not only collimated but also de-
flected on the horizontal plane. The first half of the horizontal beam is used for collima-
tion while the second half of the retroreflected beam is blocked, in order to deflect the
atomic beam by about 1˚. A knife edge is positioned close enough to the metastable
beam axis, so that it blocks the beam of ground state atoms. In addition the metasta-
bles propagate in the Zeeman slower towards the trap chamber in the shadow-area of
the knife edge. Therefore, when the collimation laser is off, hardly any atom will enter
the trap chamber and perturb the trapped cloud. These two expedients have the result
of increasing the lifetime of the magnetically trapped cloud.

In the French setup the atomic beam is only collimated and not deflected. Therefore
both ground state atoms and metastable atoms can eventually reach the science cham-
ber. However, since ground state atoms are not resonant with the collimation laser,
their divergence is larger than for atoms in the metastable state. By subsequently pass-
ing the atom beam through small pinholes inserted inside the Zeeman slower tube (see
section 2.3.4), a large fraction of the ground state atoms are filtered away. In addition,
to avoid a perturbation of the experiments in the ultrahigh vacuum chamber due to the
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continuous atomic beam, a mechanical shutter situated at the end of the collimation
stage is closed once a sufficient number of atoms has been collected in the MOT. At
the same time the collimation beams are switched off.

2.3.4 The Zeeman slower

After leaving the collimation region the atoms enter the Zeeman slower, a 2.5m long
tube that connects the source chamber with the trap chamber. In the Zeeman slower
the atoms experience a longitudinally decreasing magnetic field that, in combination
with a counter-propagating laser beam, slows the atoms down, due to the simultaneous
presence of Zeeman and Doppler effect. Owing to their different masses 3He and 4He
have two different velocity distributions after the skimmer. Therefore, the capture
velocity of the Zeeman slower has to be increased in order to slow 3He. The Zeeman
slower of the Amsterdam setup can be used to slow both isotopes (at the same time
or separately) by using the two cycling transitions used for the collimation with a
detuning with respect to the atomic resonance of −250 MHz. The magnetic field goes
from 517 G to −140 G, consequently the atoms are slowed from 1055 m/s to 58 m/s [74].
The quantity of atoms slowed by the Zeeman slower depends of course on the velocity
distribution of the atoms at the beginning of it. The velocity distribution depends in
turn on the operation mode of the source. Assuming a similar velocity distribution
for the atoms issued from the French and the Dutch source, the French Zeeman slower
should be able to slow the 3He as well: with a magnetic field ranging from 450 G to
−280 G and a detuning of −400 MHz the atoms are brought from 1116 m/s to 80 m/s
[75].

In the Amsterdam setup, the Zeeman slower beam has a power of ≈ 15 mW, it has
a diameter in the trap chamber region of 3 cm and it focuses on the source chamber
skimmer, as in the French setup. A λ/4 waveplate assures a perfect σ+ polarization:
without this, due to a level crossing between 3He and 4He occurring at 200 G, 3He
atoms are pumped to non-slowed magnetic substates and are lost [76].

At the end of the Zeeman slower the atoms can be loaded in the magneto-optical
trap.

2.3.5 The two species magneto-optical trap

The magneto-optical trap (MOT) uses the combination of a gradient of the magnetic
field with 3 pairs of counter-propagating beams to cool and trap the atoms. The field
gradient is generated by two coils in anti-Helmholtz configuration. In the Amsterdam
setup its value is 19 G/cm on the axis, while in the Palaiseau setup it is 50 G/cm. The
gradient of the magnetic field on the radial axis is equal to half these values.

The light beams are generated, in both setups, from a single beam split into three
pairs of retroreflected beams: one propagates along the horizontal axis (perpendicularly
to the Zeeman slower), the others propagate in the vertical plane that contains the
Zeeman slower. As we have already mentioned, the optical power available in the
Dutch setup is larger than the power available in the French setup. The MOT beams
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have a total power of 15−30mW in Amsterdam and a diameter of 3−4 cm, while they
have a total power of 10 mW and a smaller diameter (about 2 cm) in Palaiseau. Their
intensity is about the same in both experiments, corresponding to 5 − 10 mW/cm2

(Isat = 160 µW/cm2).

The detuning of the MOT beams is quite large (∆ = −35 MHz ≈ −22Γ in Amster-
dam and ∆ = −54 MHz ≈ −34Γ in Palaiseau) with respect to the detuning used for
other atomic species (for example, the detuning of Rubidium MOT beams is typically
about −3Γ). This allows us to minimize light assisted Penning ionizations (see section
2.2), where the two colliding atoms are one in the 23S1 state, the other in the 23P2 state.
A larger detuning decreases the population of the 23P2 state and therefore light assisted
collisions. The drawback is a relatively high temperature. In fact, the temperature of
an helium MOT in the experimental conditions described above is about 1mK, much
higher than the Doppler temperature (40µK), obtained for ∆ = −Γ/2.

The Amsterdam setup is able to trap about 1.5 × 109 4He atoms at a temperature
of about 1mK [41], while the number of atoms trapped in the Palaiseau setup is about
5×108 at the same temperature. We would like to point out that a comparison between
the two MOT is not possible for several reasons. First, our actual detection system
makes the measurement of the number of atoms in the MOT quite inaccurate. This
is mainly due to the long distance between the micro-channel plate and the centre of
the trap (46 cm in Palaiseau). The observed time-of-flight of the MOT has a strange
shape that does not follow the shape obtained theoretically by just assuming a ballistic
expansion of the atomic cloud. In addition we do not know the detection efficiency of
our micro-channel plate (see appendix A). The number given above refers to an old
measurement made with an absorption imaging system [75].

Due to the fact that 4He has no hyperfine structure, a repumper is not needed
during the MOT phase. The situation for 3He is different as we saw above (section
2.3.2). As one can see in figure 2.4, if one loads a single specie 3He MOT, the large
intensity of the trapping light excites C5 transition that populates the 23S1,1/2 state.
However a repumper is not explicitly needed because C2 and C4 transitions are close
enough to Zeeman slower and MOT light to be excited as well and to repump the atoms
in the 23S1,3/2 level [76].

The loading of a two species MOT is more tricky. The 4He MOT light is almost
resonant with the C9 3He transition that brings the atoms in the 23P0,1/2 state. From
there they can decay in 23S1,1/2 . At that point the repumping via C2 and C4 already
present is not enough to compensate losses and a repumping light is needed [41]. To
generate it a part of the Zeeman slower light is reflected back in the AOM that provides
the −250MHz Zeeman slower detuning. After the second passage in the AOM the
detuning is double and the light generated is almost in resonance with C2 [71].

The Dutch setup is able to trap 7× 108 3He atoms at a temperature of about 1mK
[41]. The relative number of atoms can be changed by adjusting the ratio in the 3He
-4He reservoir or by loading 3He and 4He MOT for a different time. As we will see in
the following sections, in order to further cool the sample we need an excess of 4He:
the number of 3He atoms in the two species MOT is therefore reduced to ≈ 107.
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2.3.6 The Magnetic Trap

The two species are then loaded in a Ioffe-Pritchard magnetic trap, in clover-leaf con-
figuration [77]. The magnetic trap used in the Dutch setup is the same as the one used
in the French setup. The magnetic field is generated by 12 coils that are inserted in
two re-entrant flanges to be as close as possible to the center of the chamber. The
trapping potential has a cylindrical symmetry and is obtained by superposing a dipo-
lar field along the x axis to a quadrupole field on the yz plane1. The magnetic field
is different from zero at the center of the magnetic trap, a very important feature to
avoid Majorana spin flips. The magnetic field is given by:
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and the trap is harmonic. This approximation is valid if kB T ≪ 2µBB0 [78], i.e. for
large values of the bias field or for low temperature of the sample, when the atoms
explore just a small region of the trapping potential, near to the center of the trap.
It is evident from equation 2.3 that the confinement along the radial direction can be
increased simply by decreasing the value of B0.

The trapped states are the 23S1,3/2 , mF = 3/2 for 3He and the 23S1 , mJ = 1
for 4He. In order to have a good transfer efficiency from the MOT to the magnetic
trap, the latter has to match the shape of the cloud previously trapped in the MOT.
Therefore, the magnetic trap has to be very shallow (large B0) and its depth has to
be several mK, when it is switched on. In addition, prior to magnetic trapping, the
two species are further cooled by applying a phase of three-dimensional molasses and
they are spin polarized in the trapped states, in order to suppress Penning ionizations.
During the molasses phase the MOT beams are switched on for a duration of few ms
with a smaller intensity and a smaller detuning with respect to the MOT phase. At
the same time a magnetic field is switched on to compensate any spurious magnetic
field. At the end of this phase the temperature of the cloud is smaller and the transfer
in the magnetic trap is more efficient.

The trapping potential can be written as:

U(x) =
1

2
M4(3) (ω2

xx2 + ω2
yy

2 + ω2
zz

2) (2.4)

= µBg4(3)mJ(F )B(x) (2.5)

1Note that, for the sake of uniformity with other chapters, the axis of the trap is denoted with x
instead of z as more customary.
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where M4(3) is the 4He (3He) mass, g4(3) is the gyromagnetic ratio for 4He (3He) in
the trapped states. B(x) is the modulus of the magnetic field given by eq.2.3. From
equation 2.5 one can deduce the trapping frequencies:

ωx =

√

2µBg4(3)

M4(3)
B′′mJ(F ) (2.6)

ωy,z =
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2µBg4(3)

M4(3)
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2B0
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2

)

mJ(F ) (2.7)

Since both 3He and 4He are trapped in the fully stretched states, the gyromagnetic
ratios are g4 = 2 and g3 = 4

3 and the two isotopes feel the same trapping potential.
However, due to the mass difference, the trap frequencies will be different and they will
scale with the square root of the inverse mass ratio.

When the atoms are in the magnetic trap they are further cooled in two steps: a
first phase of Doppler cooling made at high bias field (≈ 25 G in the two experimental
setups), followed by a phase of evaporative and sympathetic cooling where the trap is
compressed by decreasing the bias field (to a value of 0.75 G in the Amsterdam setup
and to a value of 0.25 G in the Palaiseau setup) in order to increase the density of the
sample and hence the collision rate.

1D Doppler cooling

1D Doppler cooling starts after the spin polarization phase. A very weak laser σ+

polarized is switched on along the x direction. The beam is retroreflected and it is red-
detuned with respect to the atomic resonance at the center of the trap. The intensity
of the beam is about 1% of the saturation intensity. During the Doppler cooling phase
the bias field is high (25 G) in order to well define the quantization axis and hence the
beam polarization. As said above, if the polarization is not pure, the laser light will
depolarize the sample, introducing losses. Photons in the laser beam are absorbed by
the atoms moving towards the beam direction, resulting in the cooling of the sample
in the x direction. The sample is then denser and optically thicker. Cooling in the
other directions can be induced by two mechanisms: thermalizing elastic collisions
and reabsorption of spontaneously emitted photons [79], [63]. The importance of the
second mechanism is proved by the fact that when only 3He is loaded in the magnetic
trap and therefore elastic collisions are forbidden, 1D Doppler cooling still reduces the
temperature in all directions. This effect is also apparent in the mixture. In fact, even
if the application of 1D Doppler cooling to 4He reduces the temperature of 3He through
sympathetic cooling, the simultaneous application to 3He increases the efficiency of the
process [41], meaning that the reabsorption of spontaneously emitted photons plays a
role.

The intensity and the bias field used in both experimental setups are the same.
The duration of the application of the Doppler cooling laser can vary depending on the
initial atom number and therefore on the cloud density. It is normally shorter (2− 6 s)
in the Amsterdam setup than in the Palaiseau setup (4−10 s). The cloud temperature
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reached in Amsterdam at the end of the Doppler cooling phase is of the order of 150 µK
without loss of atoms [41], while in Palaiseau we normally reach temperatures of the
order of 300 µK.

Evaporative cooling

After the Doppler cooling phase, the bias field is lowered, compressing the trap. This
way the density of the sample increases and the collision rate gets larger. When we
acquired the data for the Hanbury Brown Twiss experiment, the trapping frequencies,
when the trap was fully compressed, were ωx/2π = 54 Hz and ωy,z/2π = 506 Hz for
3He and ωx/2π = 47 Hz and ωy,z/2π = 440 Hz for 4He. The final trapping frequencies
in the Palaiseau setup are different: ωx/2π = 47 Hz and ωy,z/2π = 1150 Hz for 4He.

As previously said, since 3He is a fermion, s-wave collisions are forbidden and 3He
is cooled by thermalizing via elastic collisions with 4He, which in turn is cooled by
evaporative cooling. If the mixture is in thermal equilibrium 3He reaches the same
temperature as 4He. This process is called sympathetic cooling.

The idea behind evaporative cooling is to remove from the trap the most energetic
atoms. The remaining atoms will undergo elastic collisions and will thermalize at a
temperature lower than the initial one [80]. The larger the collision rate, the faster the
thermalization process will be. For this reason the trap is compressed before starting
the evaporative cooling process. Experimentally the atom ejection is made by coupling
the trapped state (23S1 with mJ = 1) with a non-trapped state (23S1 with mJ = 0)
with a RF (see figure 2.5, left). The frequency is progressively lowered to the value
corresponding to the desired temperature of the sample.

During the Hanbury Brown Twiss data acquisition, the evaporation ramp consisted
in two pieces: the first one, exponential, started at a frequency of 30 MHz and ended
at 3.2 MHz; the second one, linear, went from 3.2 MHz to a frequency closed to the
bottom of the trap. The final value of the second ramp was decided according to
the temperature of the sample that we wanted to obtain and also on the isotope we
wanted to observe, as we will explain in the following section. The duration of the RF
evaporation stage depends on the initial number of atoms and on the initial temperature
and was adapted day by day to the experimental conditions. Typically ramps of 10 s
were used during Hanbury Brown Twiss data acquisition.

In Palaiseau the evaporation ramp normally consists in three linear pieces, depend-
ing on the initial number of atoms and on the initial temperature of the sample. The
initial value of the RF is 50 MHz. The first ramp ends at 10 MHz and has a speed of
5 MHz/s, the second one ends at 2 MHz with a speed of 1 MHz/s and the third one
starts from 2.5 MHz and ends at a value close to the bottom of the trap, depending on
the desired final temperature. The speed of the final ramp is about 1 MHz/s.

Observation of a 3He or 4He time-of-flight

As it is shown in figure 2.5, due to the different gyromagnetic ratio, a given RF that
outcouples 4He from mJ = 1 to mJ = 0 drives the 3He transition from mF = 3/2 to
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Figure 2.5: Potential energy of the different magnetic substates of 4He (left) and 3He (right) in a
Ioffe-Pritchard magnetic trap. 4He atoms in the trapped magnetic substate are coupled to the mJ = 0
substate with a RF frequency. The bottom of the 4He trap corresponds, with the Amsterdam values
for the magnetic confinement, to a frequency of 2.1 MHz. Due to the different magnetic moment, a
given RF that outcouples 4He from mJ = 1 to mJ = 0 drives the 3He transition from mF = 3/2 to
mF = 1/2 at a field which is 1.5 times larger.

mF = 1/2 at a field which is 1.5 times larger. While 4He atoms in the mJ = 0 state
are no longer confined and leave the trapping region, 3He atoms in mF = 1/2 are still
confined and could harm the evaporation process. This is almost not the case, because
Penning ionizations for two atoms in mF = 1/2, or an atom in mF = 1/2 and one in
mF = 3/2, are no longer spin forbidden. Therefore these atoms are ejected from the
trap.

Furthermore, for the trap used during the Hanbury Brown Twiss data acquisition,
the bias field was equal to 0.75 G corresponding to a frequency resonant with the
center of the cloud of 2.1 MHz for 4He atoms and to 1.4 MHz for 3He atoms. As soon
as the temperature of the gas is such that 10kBT ≤ hνRF , the population of 3He atoms
resonant with the transition becomes vanishingly small. As a consequence, once the
mixture is at T ≃ 3 µK, we can easily remove 4He by sweeping the RF ramp through
the bottom of the trap, without affecting 3He. Typically, for a mixture of ≈ 105 atoms
at ≤ 1.5 µK, a RF sweep going from 3 MHz to 1.9 MHz was able to empty the 4He
trap without affecting the 3He cloud. In order to observe the time-of-flight of a 3He
cold could we then switched off the magnetic trap to let the atoms fall on the detector
under effect of gravity.

This feature was important for our measurements because, since the micro-channel
plate is not able to distinguish between 3He and 4He, it provides a simple way to
separate the two isotopes. Of course more complicated ways can be imagined, for
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example one could use a laser to drive a Raman transition to eject one of the species
from the trap, or in the case of absorption imaging excite a transition resonant with
just one of the isotopes.

To observe a 4He cold cloud time-of-flight, we repeated the whole experimental
procedure described above loading a MOT containing only 4He atoms. Once the sample
reached the desired temperature a RF knife was kept on at a constant frequency for
500 ms. Then, after 100 ms, the trap was switched off and the atoms fell on the
detector.

An important difference between the French and the Dutch experiment resides in
the trap switch off. In both experiments, the current flowing in the magnetic trap coils
is cut abruptly, but the magnetic field does not go suddenly to zero. In Palaiseau the
bias field becomes negative for a duration of the order of 150 µs, thereafter it goes to
zero in 1 − 2 ms. The passage of the magnetic field from zero causes atomic spin-flips.
As a result, about 10% of the atoms goes in the level mJ = 0. Since these atoms are
insensitive to the magnetic field, they falls and they are detected. Atoms in the other
magnetic sublevels are pushed towards the walls of the science chamber and are not
detected. In section 4.5.1 we will see how we tried to avoid the problems caused by the
trap switched off by transferring all the trapped atoms in the mj = 0 substate with a
Raman transition.

In Amsterdam the magnetic trap switch off is driven in order to detect atoms with
mJ = 1. This is achieved by changing the delay between the switch off of the radial and
axial confinement. The fact that detected atoms are in a magnetic sensitive sublevel
can be a source of error in the measurement of the Hanbury Brown Twiss effect, as we
will see in section 3.2.3. In fact, eddy currents or residual curvatures of the magnetic
field can perturb the cloud during the fall making the definition of the relation between
the source and the correlation seen at the detector difficult.

Observation of a Bose-Einstein condensate

In order to observe a Bose-Einstein condensate of 4He we follow exactly the same
experimental procedure as for the creation of a 4He cold cloud, but we lower the final
frequency of the RF evaporation ramp to a value closer to the bottom of the trap.
Depending on the number of trapped atoms the condensation threshold will be reached
for different final values of the RF. By further lowering the final RF, we are able to
eliminate the residual thermal component and the atoms are all in the condensed state.
When the RF ramp reaches the final value the trap is switched off and the atoms fall
under the effect of gravity on the detector.

2.3.7 Detection

As we said above (section 2.1), one of the most interesting features of Helium is the high
energy of the metastable state, that allows the use of micro-channel plates to detect the
atoms. The Amsterdam setup uses two micro-channel plates to detect both metastable
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atoms and helium ions. In addition the Amsterdam group uses a CCD camera to detect
the atoms by using absorption imaging [71].

The two micro-channel plates used in the Amsterdam setup have a diameter of
14.5 mm. The one used to detect ions is situated above the trap and detects the ions
produced at the different stages of laser cooling and trapping due to Penning ionizations.
The one used to detect atoms is 11 cm below the trap. When the trap is switched off
the atoms fall on the micro-channel plate and are then detected. This micro-channel
plate is mounted on a translation stage that allows to move the detector horizontally
by ≈ 5 cm. The translation stage was originally used to move the detector out of the
path of the imaging laser beam, and it resulted to be very useful when we decided to
install the position-sensitive detector in the setup.

The position-sensitive detector has a diameter of 8 cm and was installed 63 cm
below the trap center (for more technical details about the detector see appendix A).
The translation of the small micro-channel plate was necessary in order to detect the
entire cloud on the Palaiseau detector. In addition, thanks to this translation stage,
we could use the small micro-channel plate to optimize the experiment and use the
position-sensitive detector only during the data acquisition.

Installation of the position-sensitive micro-channel plate

In order to install the micro-channel plate in the Amsterdam setup, the design of a
vacuum chamber was required. A sketch of the used vacuum chamber is shown in
figure 2.6. The vacuum chamber is cross-shaped with a port for a cold cathode gauge
and a port for a turbo pump. The micro-channel plate was installed on the bottom
flange and the top flange was connected to the Amsterdam science chamber. Before our
arrival the bottom flange of the science chamber was replaced by a valve (as shown in
figure 2.6). In this way, after having installed the detector vacuum chamber and having
pumped it out, we could bake only the part of the chamber below the valve, the upper
one having been kept under vacuum by closing the valve. Owing to the small volume of
the new chamber, three days of baking at about 120˚C allowed us to attend a pressure
of ≈ 10−11 mbar and the valve could be opened without any danger for the vacuum
in the upper part. Unfortunately, after the baking, the micro-channel plate dark count
was quite high and it took almost another week for the detector to be functional again.
During this time we could optimize the experiment by using the small micro-channel
plate and we obtained a 3He and 4He cold cloud.

In addition to the detector we needed to bring from Palaiseau and to install all the
electronics necessary for the detection, power supplies, constant-fraction-discriminator,
time-to-digital converter (see appendix A), as well as a computer with all the acquisi-
tion programs already installed. The time-to-digital converter and the computer were
triggered by the system driving the Amsterdam experiment and the data were saved
on the local acquisition pc and then copied to the server in Palaiseau for analysis.
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Figure 2.6: Sketch of the vacuum chamber brought to Amsterdam to perform the measurement of
the Hanbury Brown Twiss effect. The valve in the upper part of the chamber was installed in the
Amsterdam science chamber before our arrival, in order to separate the science chamber from the
detector chamber. As the figure shows, the detector was fixed on the bottom flange of the chamber.
The distance between the trap center and the micro-channel plate is 63 cm. The chamber was pumped
by a turbo pump and the pressure could be measured by a cold cathode ion gauge.

2.4 Conclusion

In this chapter we described the experimental apparatus used to perform the measure-
ment of the Hanbury Brown Twiss effect on a sample of bosons and fermions produced
in the same apparatus at the same temperature. This measurement has been done
within a collaboration between our group and the group of W. Vassen in Amsterdam.
The capability of our detection system, based on a micro-channel plate with delay-line
anode, of measuring correlations was joined to the capacity of the Amsterdam group
to create ultracold samples of 4He (bosons) and 3He (fermions) atoms.

In the description of the experimental apparatus a particular attention was drawn to
the changes we should bring to the French experimental setup in order to cool 3He. In
addition, a comparison between the parameters used in the two experimental sequences
was carried out.



Chapter 3

Amsterdam-Palaiseau
Experimental Results

In this chapter we will present the experimental results obtained in the framework of
the Amsterdam-Palaiseau collaboration. At the beginning of July 2006, M. Schellekens
and I brought the micro-channel plate and all the electronics needed for the detection
in Amsterdam and, after about ten days, the detector was fully functional. Thereafter
we spent a few days to optimize the experiment, with T. Jeltes and J. McNamara, two
PhD students of Vassen’s group. On the 14th of July, the first cold cloud of 3He fell
on the position-sensitive detector. We started the data acquisition on the spot and,
twelve hours later, we had the first signature of the fermionic antibunching. During
the second half of July we acquired and analysed data simultaneously. The experiment
was running almost continuously day and night, with three people working in shifts.
T. Jeltes and J. McNamara were taking charge of the optimization and the stability
of the experiment, whereas another person of the Palaiseau group (M. Schellekens, A.
Perrin, PhD students, and H. Chang, post-doc, and I) was taking charge of the data
acquisition. I was responsible of the data analysis, helped by the experience acquired
by M. Schellekens during the analysis of the data taken in Orsay one year before to
measure the Hanbury Brown Twiss effect on a cold cloud of 4He [40]. At the end of
July, we already had some preliminary results for the comparison of the Hanbury Brown
Twiss effect for 3He and 4He, but we still needed some data to study the behavior of the
correlation function as a function of the temperature. In order to have a precise idea
of the data we still had to acquire, we allotted two weeks to data analysis, pursuing
data acquisition during the second half of August. During this break we also decided
to perform a second experiment (see section 3.3), in order to see a bigger antibunching.
The second half of August was enough to reach our objective and we went back to
Palaiseau, where we completed the data analysis.

In this chapter we will show the acquired dataset and we will explain in detail
the procedure used to analyse them. We will show the measured correlation function
and we will compare it with theory. At the end of the chapter we will describe the
experimental setup used to perform the defocusing experiment and we will show and
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comment the experimental results.

3.1 Acquired Data

As we said in the introduction, during the four weeks of data acquisition, the experiment
was running day and night. The experiment was more stable during the night, probably
because of a better room temperature stability and a more quiet environment. Thanks
to the high repetition rate of the experiment (a cold cloud each 25 seconds) it was
possible to take several sets of data, for 3He and 4He and for different temperatures.
In total, we acquired about 6500 3He clouds at three different temperature and 3000
4He clouds. A post-acquisition analysis allowed us to select about a half of these clouds
on the basis of several criteria, like the temperature range, number of atoms, detector
saturation.

The first step of the data analysis consists in fitting the clouds one by one with a
Maxwell-Boltzmann distribution in order to measure the temperature, the mean arrival
time of the atoms on the detector and the peak atom rate. The detected atom number
is registered in this first part of data treatment as well. Subsequently the arrival time
distribution is plotted in order to eliminate any aberrant data and the temperature
distribution is plotted in order to decide what temperature range to use. The mean
temperature of the chosen set and its standard deviation are then measured. Thanks to
the good stability of the experimental setup, the cloud temperature was not fluctuating
too much around the target value and the temperature distributions are quite sharply
peaked around the mean. In table 3.1 we report the number of shots used to measured
the correlation function for each temperature, the fitted temperature and the detected
atom number.

Atomic Species Temperature (µK) Detected Atoms Number of TOFs
4He 0.52 ± 0.03 2000 − 14000 964
3He 0.53 ± 0.05 5000 − 9000 1078
3He 0.99 ± 0.06 6000 − 10000 1005
3He 1.4 ± 0.1 5000 − 12000 1468

Table 3.1: In this table we report the temperature, the detected atom number and the number of
time-of-flights for each set of data that we used to measure the correlation function. The detection
efficiency is estimated to be of the order of 10 − 15% (see appendix A). The number of atoms was
adjusted in order to limit the saturation of the detector.

We registered clouds of both 3He and 4He around 0.5µK in order to be able to
compare the bosonic and fermionic correlation functions. In addition we acquired
clouds of fermions at 1µK and 1.5µK in order to show the trend of the correlation
function as a function of the temperature. The number of acquired shots is adjusted
for each data set in order to have a good signal to noise ratio [44].

A parameter that can be checked in this first analysis step is the saturation of
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the detector. If the detector saturates, the time-of-flight is deformed and the central
part of the cloud (the more dense) is not properly detected (see appendix A). This
can affect the measured correlation length and the bunching or antibunching height,
as we will see later on (section 3.2.1). The saturation is small on a cold cloud and
is difficult to measure by studying the shape of the time-of-flight. However, we know
from an independent measurement [44] (see also appendix A), that the micro-channel
plate used during the collaboration saturates for a flux of incident particles larger than
80 × 103 particles/s/cm2. Therefore, knowing the number of detected particles during
the time-of-flight, we can have an estimation of the saturation of the detector. In figure

Figure 3.1: Number of detected atoms as a function of the temperature for the data used to measure
the two-body correlation function. The experimental data are the black spots. In the same graph we
plot the curve that indicates the saturation limit of the micro-channel plate. Saturation occurs above
the line labelled “MCP limit”. We also report the critical temperature and the Fermi temperature as
a function of the detected atom number. Degenerate regime is reached above the lines labelled “Fermi
gas” and “BEC”. The detection efficiency is assumed to be of 15%.

3.1 we show the dataset selected for the measurement of the Hanbury Brown Twiss
effect. In the same graph we plot the curve corresponding to the saturation of the
micro-channel plate. As one can see, some of the 4He clouds are slightly above the
saturation limit, while the fermionic clouds are all well below. In section 3.2.1 we will
comment on the effect it can have on the correlation function. However, since we had to
compromise between reducing the statistical error by retaining more data and dealing
with saturation, all the displayed points were included in the data analysis. In the
same graph we plot the curve for the critical temperature and the Fermi temperature
as a function of the detected atom number. In the case of bosons the function that we
plot takes into account atomic interactions and the effect of finite sample size [81]. The
plot shows that the 4He clouds were not condensed. The case of fermions is different
and the clouds at 0.5 µK are all in the degenerate regime. The Fermi temperature is
defined by

kB TF = h̄ω (6N)1/3 = h̄ω (6Ndet/α)1/3 (3.1)

where ω is the geometrical average of the trap frequencies along the three axis and
α is the detection efficiency. In figure 3.1 we set α = 15%. Although the real value
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of the detection efficiency is still not very well known, we have several experimental
determinations indicating that it is of this order of magnitude (see appendix A and [82]).
In this case, fig. 3.1 shows that all the 3He clouds at a temperature around 0.5µK are
degenerate, with T/TF ≈ 0.66. As we have shown in section 1.4.3, a degenerate Fermi
gas does not obey the Boltzmann statistics and, due to the Fermi pressure, the shape of
the time-of-flight is no longer Gaussian. Since the density distribution is flattened in the
central part, a Gaussian fit of the entire time-of-flight overestimates the temperature
of the gas. The wings are independent on the statistics (see figure 1.13), therefore, in
order to have a precise estimation of the cloud temperature, one could make a Gaussian
fit of the wings of the density distribution [83], [41]. However, the calculation of section
1.4.3 shows that the temperature obtained by fitting the entire time-of-flight differs
only by approximately 8% from the one obtained by fitting the wings and that the
deviation of the correlation length from the one obtained with a Maxwell-Boltzmann
distribution is less then 4% (if we average over all the detector). This discrepancy being
within our error bars, we decided to fit the entire cloud with a Gaussian function and
to fit the correlation function with a Gaussian as well. In addition, since the value of
the detection efficiency is not well known, this seems a sensible decision.

In addition, we paid a special attention to the detector resolution. As we explained
in section 1.4.5, the resolution has a strong effect on the measured correlation and it
affects both the correlation length and the bunching height. During the data acquisition
we noticed that the resolution differed by up to 30% from day to day. We still do not
understand the reason for this, as we never observed a similar behavior in Orsay. In
order to minimize the errors in the measurement of the correlation function caused
by these day by day fluctuations, we acquired the data at a given temperature in the
shortest possible delay. In this way we did not have to average over different days
(and therefore over data with different detector characteristics). In addition, we always
measured the resolution just before or after the acquisition of one data set and we used
the obtained value to correct the correlation function.

3.1.1 Data analysis

For the data analysis, we proceeded with the same scheme as for the measurement of
the Hanbury Brown Twiss effect on bosonic cold clouds made in Orsay in 2005 [40].
The procedure has been detailed in [44] and here we will recall the most important
points. The analysis steps are the following:

• Measurement of the three dimensional correlation function G(2)(∆x,∆y, ∆z).

• Normalisation of the correlation function.

• Measurement of the correlation length along the z axis.

• Measurement of the correlation length along the x and y axis and of the bunch-
ing/antibunching height.

In the following sections we will explain the analysis procedure step by step.
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Figure 3.2: Correlation histogram along the z axis for bosons (light blue) and fermions (dark blue) at
0.5 µK. The time separation has been converted in spatial separation with the formula z =

√
2gH(t−t0),

where t0 = 358 ms is the mean arrival time of the atoms on the detector. We note the double structure,
made by the superposition of two Gaussians. The broader is the autocorrelation of the cold cloud,
while the smaller one is the bunching/antibunching. The black curve is a fit made with the sum of two
Gaussians.

Measurement of G(2)(∆x,∆y, ∆z)

The correlation procedure simply consists in histogramming all the differences in time
and position between any couple of atoms hitting the detector. Background noise is
low and is concentrated in a few hot spots on the edge of the detector. Therefore it
can be easily excluded from the data before measuring the correlation function.

On the xy plane, the bin size of the correlation histogram is fixed by the pixel size,
that is equal to 133 µm. In order to decrease the computation time, we consider only
particles that are at most 15 pixels away, that is about three times the correlation
length along the y axis and thirty times the correlation length along the x axis. On
the time axis, the pixel size is very small (of the order of 1 ns) and the bin size is fixed
at 25 µs to increase the signal to noise ratio. In addition we introduce a dead-time of
300 ns in order to prevent spurious counts due to electronic noise, such as for example
reflections on the delay-lines (the maximum atom rate is about 1.2 Matoms/s).

At the end of this procedure we have a 3D histogram for each acquired time-of-
flight, that corresponds to the non-normalized correlation function G(2)(∆x,∆y, ∆t)
averaged over all the detector. We recall here that, as we said in section 1.4.4, the
arrival time of the atoms on the micro-channel plate can be translated into a vertical
position. The scaling factor is the mean velocity of the cloud falling on the detector
v =

√
2gH, with g the acceleration of gravity and H the height of the trap above the

detector. In the following, we will always refer to the vertical coordinate as a position.

In figure 3.2 we show the correlation histogram along the z axis obtained with the
procedure described above, for bosons and fermions at 0.5 µK. In order to increase
the signal to noise ratio we average over 10 couples (∆x,∆y) that are included in
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the coherence zone. The black curve is a fit made with the sum of two Gaussians, one
broader and one narrower on the top of the first one. The broader one is the result of the
correlation between atoms that are far away and that behave like independent particles.
In other words it is the autocorrelation of the cold cloud. Its width is proportional to the
temperature of the cloud. The narrower Gaussian distribution is the quantum effect we
are looking for: we see a small bunching on the top of the bosonic correlation histogram
and an antibunching on the top of the fermionic correlation histogram. The height of the
small Gaussian is only a few percent of the height of the autocorrelation and to measure
properly the height and the correlation length we will have to normalize the correlation
histogram. In particular, we note that the height of the correlation function cannot
be measured directly on figure 3.2 because we averaged over (∆x,∆y) to obtain this
figure. The averaging procedure has the effect of lowering the bunching/antibunching
height.

In the following section we will explain our normalization procedure.

Normalization procedure

In order to normalize the correlation histogram G(2)(∆x,∆y, ∆z) we want to divide it
by the correlation between particles that are statistically independent, in other words
we want to divide it by the autocorrelation of the cold cloud seen in the previous section.
The rigourous way to compute this quantity, would be to sum up all the time-of-flights
acquired for a given temperature (that are used to compute G(2)(∆x,∆y, ∆z)) and to
calculate the correlation between all the atoms of all the time-of-flights. Finally one
would end up with the quantity:

〈g(2)(∆x,∆y, ∆z)〉 =

∑

i G
(2)
i (∆x,∆y, ∆z)

〈∑i ρi(x, y, z)
∑

i ρi(x + ∆x, y + ∆y, z + ∆z)〉 (3.2)

where 〈 〉 indicates the average over all the detector. Unfortunately, the computation
of the denominator of equation 3.2 is very long. To have an order of magnitude, the
calculation of G(2)(∆x,∆y, ∆z) for a cloud of 5 × 103 atoms takes about a minute,
therefore the correlation between all the atoms of 103 time-of-fligths (≃ 5× 106 atoms)
would take 106 min ≈ 2 years, that is definitely too long. We decided to simplify the
procedure, exploiting the very good resolution of our detector on the vertical axis and
the fact that, as shown in section 1.4.5, in the correlation function the three directions
x, y and z are independent.

First of all, we normalize the correlation function along the vertical axis. To do this
we calculate the auto-correlation along z for (∆x,∆y) = (0, 0) of the sum of the time-
of-flights. In practice, for each pixel (x, y) of the histogram that contains the sum of all
the time-of-flights, we calculate the autocorrelation of the z column and we average the
result over all the (x, y) pixels. We end up with a 1-dimensional function that we use
to normalize the 3-dimensional correlation histogram G(2)(∆x,∆y, ∆z). To do this, we
divide the z column of G(2)(∆x,∆y, ∆z) by this function. The normalization in the z
direction is achieved in this way.
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We note that in the normalization procedure described above, we divided all the
z columns of the histogram G(2)(∆x,∆y, ∆z) by the autocorrelation measured for
(∆x,∆y) = (0, 0). One can therefore ask whether it is correct to do it for the z columns
having (∆x,∆y) 0= (0, 0). The answer can be found in the fact that the autocorrelation
Gaussian is much broader than the bunching (antibunching) Gaussian, therefore the
autocorrelation function does not evolve a lot in the coherence region. This allows us
to divide the z column by the normalization function obtained for (∆x,∆y) = (0, 0)
even for pairs with (∆x,∆y) 0= (0, 0).

The normalized correlation function along the z axis is plotted in figure 3.3 for
4He (left) and 3He (right) at 0.5 µK. We note that the normalized correlation is not
flat for large separation ∆z. This is due to the fact that the normalization method
discussed above works as long as all the time-of-flights have the same shape, i.e. if the
temperature and the number of atoms do not change from a realization to another.
Experimental fluctuations make this condition impossible to fulfill and the temporal
correlation function shows a curvature. This is taken into account in the data analysis
by fitting the normalized correlation function with a second order polynomial, in a
zone that excludes the bunching (or the antibunching) and that is shown in figure 3.3.
We fix the first order of the polynomial to zero and we fit the constant value with the
zeroth order and the curvature with the second order. Then we scale the data points
by the fitted value of the zeroth order (that is of the order of 0.98 instead of 1). In this
way the correlation function is equal to 1 for ∆z = 0 in absence of quantum bunching.
Figure 3.3 shows that the curvature is not important (the fit gives values between 10−5

and 10−4) and it is not taken into account in the rescaling.
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Figure 3.3: Normalised correlation function along the z axis for bosons (on the left) and fermions (on the
right) at 0.5 µK. In this figure the correlation function has been averaged over 10 couples (∆x, ∆y) in
order to increase the signal to noise ratio. The part of the graph in shadow is the bunching/antibunching
and it is not fitted with the polynomial function. The error bars correspond to the square root of the
number of entries in each bin.

Measurement of Lz

The correlation length Lz is obtained by fitting the normalized correlation function
computed above with a Gaussian plus the second order polynomial. The parameters
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of the polynomial are fixed at the values found during the normalization procedure. In
order to increase the signal to noise ratio the correlation histogram is averaged over 10
pairs (∆x,∆y) around the position (∆x,∆y) = (0, 0) and included in the coherence
zone. The averaging procedure decreases the uncertainty in the fitted value of Lz but
it decreases the contrast of the correlation function η. Therefore η cannot be measured
in this way. We recall that, since the resolution of our detector along the z axis is very
good, the value of the correlation length along this axis is fairly well defined by the
result of the Gaussian fit (see section 1.4.5).

Measurement of Lx, Ly and of the contrast of the correlation function

In order to measure the height of the correlation function and the correlation length
along x and y, we measure g(2) on the xy plane. We proceed as follows: for each
couple (∆x,∆y) we fit the z correlation function with a Gaussian of fixed width Lz,
then we report the fitted value of the bunching/antibunching height versus (∆x,∆y).
The result of this measurement is reported in figure 3.4 for fermions at 0.5µK. As we
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Figure 3.4: Normalised correlation function on the xy plane for fermions at 0.5 µK. A fit with the
convolution of the correlation function and the resolution function gives the values of lx, ly and η. The
axis of the detector are rotated by 45̊ with respect to the trap axis (indicated by the arrows). As one
can see the antibunching is anisotropic and the aspect ratio is inverted with respect to inside the trap.

expected the correlation function shows a hole. The correlation function is not isotropic,
but it is cigar-shaped. In addition the anisotropy is inverted with respect to the trap
anisotropy. This is what we expect from theory (see section 1.4.4 and equation 1.34),
since the correlation length is inversely proportional to the size of the trapped cloud.
However, the trap aspect ratio, of the order of 10, is not reproduced in the correlation
function, because of the finite detector resolution. In section 1.4.5 we saw that the
measured correlation function is the convolution between the theoretical correlation
function (1.32) and the detector resolution function. As a consequence, the measured
correlation length Li is the convolution between the correlation length obtained with

a perfect detector li and the resolution along the same axis di, i.e. Li =
√

l2i + (2di)2,
with i = x, y. In our experiment the detector has a resolution di ≃ 250 µm on the
xy plane (RMS value). The two-particle detector resolution (at 1/e) is 2di ≃ 500 µm
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and is about one order of magnitude larger than the expected value of the correlation
length along the x axis (see figure 1.16). Therefore, measuring Lx is equivalent to
measure the detector resolution. The correlation length along the y axis is of the
same order of magnitude than the resolution (see figure 1.16) and a deconvolution
will be necessary in order to properly measure it. It is evident that the accurate
knowledge of the resolution function is important for the correct measurement of η, Lx

and Ly. In section 1.4.5 we derived the correlation function for a Gaussian resolution.
However, a careful examination reveals that the resolution function of our detector is
not well approximated by a Gaussian but by the sum of three Gaussians. The exact
formulation of the obtained correlation function is given in appendix A, together with
the explanation of the procedure used to measure the detector resolution. A fit of the
measured g(2)(∆x,∆y) with the correlation function obtained by the convolution with
the three-Gaussians resolution gives the value of η and the values of the correlation
lengths lx and ly already deconvoluted with the resolution. In the following section we
will give the values measured with this more refined correlation function.

3.2 Experimental results

3.2.1 Bosons-Fermions comparison

As we said at the beginning of this chapter, we acquired about 2000 cold clouds of
3He and 4He at around 0.5µK (see table 3.1). Therefore we are able to compare the
correlation functions for the two species at the same temperature. In figure 3.5 we
report the measured correlation functions for bosons and fermions along the z axis and
on the xy plane. As expected we observe a bunching for bosons and an antibunching
for fermions. The contrast of the two correlation functions is not the same as well
as the correlation lengths. It is interesting to check if the difference between the two
correlation functions agrees with theory (see section 1.4.5).

Table 3.2 summarizes the values obtained with the analysis procedure described
above. In the last line of the table we report the ratio between the bosonic and the
fermionic correlation lengths as well as between the measured heights of the correlation
functions.

The correlation length is theoretically given by (see section 1.4.4):

li =
h̄ωit0√
kBTm

=
h̄t0
msi

(3.3)

where t0 is the mean arrival time of the atoms on the detector, ωi is the trap frequency
along the i axis, T is the temperature of the cloud and m the mass of the atoms. si

is the RMS size of the trapped cloud. Since the size of the trapped clouds is the same
for the two isotopes (same Zeeman shifts, see section 2.3.6), the ratio between the two
correlation lengths is inversely proportional to the mass ratio, i.e.

3li
4li

=
m4

m3
= 1.3 (3.4)
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Figure 3.5: Normalised correlation function along the z axis and on the xy plane for bosons (top) and
fermions (bottom) at 0.5 µK. For the correlation along the z axis the error bars correspond to the
square root of the number of entries in each bin. The black curve is a fit to a Gaussian function. For
the xy correlation function we note that the axis of the detector on the xy plane are rotated by 45̊
with respect to the trap axis, that are indicated by the arrows (in the bottom right figure).

The theoretical expectation for the contrast of the correlation function with the
resolution function of our detector is given in appendix A. The ratio η3/η4 is estimated
to be 1.2 with the resolution function obtained for these two sets of data. In table 3.3
we report the theoretical expectation for li and η. The error bars on the theoretical
values take account of the uncertainty on the sample temperature.

Generally the data are in good agreement with the theoretical values obtained with
the ideal gas model and they are consistent with theory within 2 standard deviations.
In addition the ratio 3lz/

4lz is equal to 1.3± 0.2 and it is in very good agreement with
the expected value of 1.3 ± 0.1. Despite of that, we can observe two small anomalies:
first, the contrast of the correlation function is, for 4He, smaller than expected. This
results in a ratio η3/η4 = 2.4 ± 0.2 instead of 1.2 ± 0.1. Second, the measured value of
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Data ly (µm) lz (µm) η
3He, 0.53 ± 0.05µK 565 ± 47 750 ± 65 0.078 ± 0.003
4He, 0.52 ± 0.03µK 570 ± 100 560 ± 80 0.033 ± 0.003

3ly/
4ly

3lz/
4lz η3/η4

0.99 ± 0.19 1.3 ± 0.2 2.4 ± 0.2

Table 3.2: Measured values for the correlation length along the y and z axis and for the contrast of the
correlation function, for a sample of 3He at 0.53 ± 0.05µK and a sample of 4He at 0.52 ± 0.03µK. The
correlation lengths have already been deconvoluted with the resolution function and can be directly
compared with theory. The value of lx is consistent with zero and is not reported. In the last line we
report the ratio between the correlation length and the contrast of 3He and 4He.

Theory ly (µm) lz (µm) η
3He, 0.53 ± 0.05µK 630 ± 30 630 ± 30 0.072 ± 0.003
4He, 0.52 ± 0.03µK 480 ± 14 480 ± 14 0.058 ± 0.002

3ly/
4ly

3lz/
4lz η3/η4

1.3 ± 0.1 1.3 ± 0.1 1.2 ± 0.1

Table 3.3: Theoretical expectations for ly, lz and η for a sample of 3He and a sample of 4He at around
0.5 µK. The uncertainty is due to the error on the temperature. The value of η is calculated for a
convolution of the correlation function with the three-Gaussian resolution function.

the fermionic correlation length along the y direction is low and not consistent with the
correlation length along z, leading to a ratio 3ly/

4ly = 0.99 ± 0.19 instead of 1.3 ± 0.1.

The small height of the 4He bunching can be due to the detector saturation. In figure
3.1, we have shown that some of the 4He clouds at 0.5µK saturate the detector, while the
3He clouds do not. If a saturation occurs, the probability to detect two particles close
together is smaller than the probability to detect two particles far apart. This is due to
the locality of such phenomenon. It is then easy to understand that the unnormalized
correlation function is affected by that. In fact the bunching (or the antibunching) will
show a flatter top and the height will be smaller. On the other hand the correlation at
large distance will be less affected by the saturation, because it results of the correlation
between atoms that are far apart. It is interesting then to understand what happens
when we normalize the correlation function. We said that the normalization is made
by calculating the correlation on a sample of statistically independent atoms, i.e. the
sum of all the time-of-flights used to calculate G(2)(∆x,∆y, ∆z). In this process we
will calculate again the correlation between atoms that are close together. However,
in this case, the correlation at small distances is calculated between atoms that belong
to different clouds, and the correlation (probability to detect a pair of atoms) is less
affected by saturation. Therefore, the normalization should not cancel the effect of
saturation for small pair separation and the bunching height should be smaller.

Concerning the second observed anomaly, there are several possible ways to explain
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the disagreement with theory. We will address them in section 3.2.3. In the following
section we will show the results for the correlation functions measured at 1µK and
1.5µK.

3.2.2 Other temperatures

As shown in table 3.1, we acquired about 1000 clouds of 3He at 0.99±0.06 µK and 1500
clouds of 3He at 1.4 ± 0.1 µK. With these data it was possible to study the trend of
the correlation length and of the antibunching height as a function of the temperature.
When the temperature of the sample increases, the size of the source increases with
the square root of the temperature and the correlation length decreases, as shown by
equation 3.3 and as discussed in section 1.4.4. The contrast of the correlation function
decreases as well.

Figure 3.6: Correlation measured on the z axis and on the xy plane for 3He at 0.53 ± 0.05 µK,
0.99 ± 0.06 µK and 1.4 ± 0.1 µK (from left to right).

The procedure used to measure the correlation function on these sets of data is the
one explained at the beginning of the chapter. In figure 3.6 we show the correlation
function for the three temperatures on the z axis and on the xy plane. The resolution
function has been measured independently for each set of temperatures in order to
have the best accuracy in the determination of the correlation length along y and the
antibunching height. The measured values are reported in table 3.4 and plotted in
figure 3.7, together with the theoretical expectations. The error bars are the root-
mean-square errors provided by the fitting procedure.

In order to directly compare our results with theory, we plot also equation 3.3 on
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Figure 3.7: Plot of the measured values of ly, lz and η as a function of the temperature. The black
curve in the two upper graphs is the theoretical expectation, given by equation 3.3. In the plot of
the antibunching height the filled dots are the theoretical value calculated with the resolution function
measured for each data set. All the measured values are in good agreement with theory.

Data ly (µm) lz (µm) η
3He, 0.53 ± 0.05µK 565 ± 47 750 ± 65 0.078 ± 0.003
3He, 0.99 ± 0.06 µK 360 ± 90 440 ± 90 0.054 ± 0.004
3He, 1.4 ± 0.1 µK 0 500 ± 110 0.040 ± 0.003

Theory ly (µm) lz (µm) η
3He, 0.53 ± 0.05µK 630 ± 30 630 ± 30 0.072±0.003
3He, 0.99 ± 0.06 µK 470 ± 14 470 ± 14 0.049 ± 0.001
3He, 1.4 ± 0.1 µK 390 ± 14 390 ± 14 0.036 ± 0.001

Table 3.4: Measured and theoretical values for the correlation length along the y and z axis and for
the contrast of the correlation function, for a sample of 3He at 0.53 ± 0.05µK, 0.99 ± 0.06 µK and
1.4 ± 0.1 µK. The measured correlation lengths have already been deconvoluted with the resolution
function and can be directly compared with theory. The value of lx is consistent with zero and is
not reported. The value of ly for the sample at 1.4 ± 0.1 µK is smaller then the resolution and is
therefore consistent with zero. In the theoretical data the uncertainty takes into account the error on
the temperature.
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the graph for ly and lz and, for the antibunching height, we plot the theoretical values
obtained, with the measured resolution function.

The agreement with theory is quite good again. The measured values are always
consistent with theory within less than two standard deviations. We do not plot the
value of ly for the set at 1.5µK because the measured value is consistent with zero, i.e.
the correlation length is smaller than the resolution.

In the next section we will give some possible explanation of the observed discrep-
ancies with theory.

3.2.3 Comments

In summary the measured correlation lengths and heights are in agreement with theory
within two standard deviations. The only measurement that shows a large discrepancy
is the 4He bunching height and consequently the ratio η3/η4. We already gave a possible
explanation for that in section 3.2.1. Here we would like to comment on some other
experimental problems that could affect the correlation function measurement and that
could take account of the other observed disagreement.

There are four phenomena that can affect our measurements: the saturation of
the detector, an anomaly in the switch off of the magnetic trap, a spin polarization
impurity of the sample and a wrong (or not accurate enough) measurement of the
detector resolution. The first of those can explain the too small contrast measured for
the 4He correlation function, as explained previously (section 3.2.1).

The second and the third phenomena can affect 3He and 4He in a different way.
During the data acquisition we measured the magnetic field during the switch off of
the trap in the radial and axial direction. We measured it with a gaussmeter from the
outside of the chamber. We observed that the switch off of the radial confinement is
slower than the one of the axial (with a time constant of some ms) and we also measured
a delay between the two. It is quite difficult to theoretically predict the behavior of the
atoms in such magnetic field, but naively we can expect a deformation of the cloud that
can affect our temperature measurement or the effective size of the source viewed from
the detector. We tried to measure the aspect ratio of the detected clouds, but we did
not see any anisotropy, within our error bars. Furthermore, due to the different mass,
the force generated by a magnetic field acts differently on fermions and bosons, and
this can explain the inconsistencies pointed out above. In the Amsterdam experiment,
the atoms are released from the magnetic trap in a magnetic sensitive state (mJ = 1 for
4He and mF = 3/2 for 3He) and the presence of eddy currents or residual curvatures
of the magnetic field, can affect the correlations. This is not the case in the Palaiseau
setup, where the 4He atoms were falling in the mJ = 0 state. Therefore the correlation
function measured on 4He in Palaiseau in 2005 [40], was not affected by this problem.

The third phenomenon that can decrease the correlation is the spin impurity of the
sample. As we explained in the first chapter, in order to observe the Hanbury Brown
Twiss effect, the particles have to be identical. In our case it is equivalent to say that
they have to be all in the same magnetic substate. When the magnetic trap is switched
off all the Zeeman substates are degenerate and have the same probability of being
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occupied. As we said, in the Amsterdam experiment the largest part of the atoms are
transferred in the state mJ = 1 for 4He and mF = 3/2 for 3He and fall on the detector.
During the data acquisition we checked that the samples were pure when they reached
the detector, by applying magnetic fields gradients during the time-of-flight. Therefore
this possible problem was ruled out.

The observed discrepancies can also be due to an error in the measurement of the
detector resolution. Even if all the methods that we use to measure it give approxi-
mately the same results (see appendixA), we are still not confident in our estimation.
As we have already said, in Amsterdam we noticed that the resolution was not stable
and differed by up to 30% from day to day. This behavior had never been observed
when the detector was in Orsay and we have not an explanation for it. An error on the
resolution determination would affect both the contrast of the correlation function and
the correlation length. A confirmation of that can be seen in the fact that the value
of lz, that is not affected by the resolution on the xy plane, is in good agreement with
theory.

3.3 Defocusing experiment

As we saw in the previous sections, as long as the detector resolution is not negligible
with respect to the correlation lengths the bunching (antibunching) height is smaller
than 1 (see section 1.4.5). The antibunching height as a function of the correlation
length is given by equation 1.39 in case of Gaussian detector resolution. As we said
our resolution function is given by the sum of three Gaussians, but equation 1.39 can
still be used to have an idea of the behavior of η as a function of the correlation length.
Equation 1.39 tells us that in order to observe a larger contrast of the g(2) function
one can try either to have a better resolution or to increase the correlation length.
However, getting a better detector resolution would require an hard work on each part
of the electronic chain and, far from being easy, would have taken a lot of time. Since
at the moment of our collaboration we just had few weeks to take data, we decided to
increase the contrast of the correlation function by increasing the correlation length. As
we explained in section 1.4.5 the antibunching height is governed by the ratio between
the correlation lengths on the xy plane and the resolution. We then tried to increase
lx and ly. Equations 3.3 show that it is equivalent to make the source smaller in these
two directions.

In optics a smaller source can be obtained by using a divergent lens. As shown on
the left side of figure 3.8, a divergent lens will create a virtual source smaller than the
original one situated between the original source and the lens.

In order to create a divergent lens for an atomic cold cloud one can use a blue
detuned laser beam. The dipolar force pushes the atoms towards regions of small
intensity. Since we want to modify the source size on the xy plane, we can apply a
vertically propagating beam, forcing the atoms away from the vertical axis. If the lens
does not suffer from aberrations, the correlation length at the detector is increased by
the lens demagnification factor and the antibunching height is increased consequently.
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Figure 3.8: On the left: The light generated by an extended source S passes through a divergent lens.
The effect of the lens is to create a virtual source S’, between the initial source and the lens, of size
smaller than the size of S. On the right: experimental realization of a divergent lens for a cold cloud
of Helium atoms. The lens is made by a blue detuned laser shined on the atomic cloud during the
time-of-flight. The virtual source is smaller than the initial one, therefore the correlation length at the
detector is larger (see equation 3.3).The figure is not in scale.

In the following section we will describe the experimental characteristics of our atomic
lens and the experimental sequence used to demagnify the fermionic cloud.

3.3.1 Experimental setup

To create the atomic lens we use a fiber laser (IPG YLD-1BC-1083) detuned on the
blue side of the 3He spectrum by about 300 GHz. The beam propagates vertically and
has a waist of 100 µm along the x axis and 150 µm along the y axis. The waist is barely
superposed with the trapped atomic cloud. The power of the beam is 300 mW and the
laser is linearly polarized.

The experimental procedure used to prepare the 3He defocused cold clouds is the
following. We first create a cold cloud (0.5µK) of 3He by using the same procedure
as for the previous experiment. After turning off the magnetic trap and waiting for
500µs for the magnetic field transients to die away, we switch on the defocusing laser
for 500µs. The rapid switch on and off of the laser beam is provided by the use of
an acousto-optical modulator that is inserted in the beam path. After the application
of the laser, we observe the time-of-flight on the detector. Due to the effect of the
diverging lens on the atomic cloud, about half of the cloud does not reach the detector
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and the atoms are lost. We then increased the number of trapped atoms by about a
factor of two in order to have clouds of 2000− 10000 atoms detected (as in case of the
data taken for 3He at 0.5 µK without lens, as shown in table 3.1). During the data
acquisition and analysis we checked that the temperature of the cloud along the vertical
axis, with and without lens, was stable at about 0.5 µK.

3.3.2 Experimental results

The data analysis is the same as for the measurements described above. In figure 3.9 we
report the antibunching observed with the lens on the xy plane and on the z direction.

Figure 3.9: Normalized correlation length along the z axis and on the xy plane for a sample of fermions
at 0.5 µK after the application of the diverging lens. The antibunching height is larger than the one
measured without the application of the lens. This fact demonstrates that the effect of the diverging
lens is that of decrease the size of the source.

The obtained results are listed in table 3.5 together with the values obtained without
applying the lens for mean of comparison. The detector resolution has already been
taken into account. For the diverging lens data, the resolution has been measured on
a defocused cold cloud by using a gain map acquired just after the acquisition of the
correlation data. This should minimize systematics due to the strange behavior of the
gain maps and of the resolution function. The value obtained for lx is still consistent
with zero and is not reported in table 3.5.

As one can see the effect of the diverging lens is consistent with our expectations.
In the defocusing experiment ly is 1.4 times larger than in the experiment without laser
and the antibunching height (measured on the normalized correlation function on the
xy plane, as explained in section 3.1.1) is 0.108±0.003 instead of 0.078±0.003. We are
not able to say if lx is increased as well because the measured value is still of the order
of the resolution. However, the fact that the observed antibunching is larger seems to
confirm that lx is larger as well. Finally lz is unchanged as expected, since the laser is
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Data lz (µm) ly (µm) η
3He, 0.5 µK 750 ± 65 565 ± 47 0.078 ± 0.003
3He, 0.5 µK with lens 750 ± 80 811 ± 37 0.108 ± 0.003

Table 3.5: Measured values for ly, lz and η for 3He at 0.5 µK with and without defocusing lens. The
antibunching height is increased in the data on which we applied the lens as well as the value of the
correlation length along y.

vertically propagating and the Rayleigh length is of the order of the centimeter.

The obtained results are, first of all, a demonstration of the fact that the defocusing
method is working and can be used to increase the correlation lengths and the contrast
of the correlation function. Unfortunately, since the laser waist was small respect to
the cloud size, the atomic lens we used presented a lot of aberrations and comparing
the experimental results with theoretical predictions is difficult. In fact, before the
application of the laser, after 500µs of free expansion, the RMS size of the cloud is
already about 100µm along the long axis of the trap and is 22µm along the short axis.
The RMS size of the laser is 50µm on the long axis and 75µm on the short axis1, so that
even at the beginning of the application of the lens, the laser interacts with a small part
of the cloud. Furthermore, during the time of application of the laser, 500 µs, the cloud
would expand by a factor of 3 in the absence of the laser action, making aberrations
even more important than at the beginning. For these reasons it is very complicated to
describe theoretically the action of the laser on the cloud. In the following section we
will describe the experiment on the theoretical point of view in the situation in which
the laser size is much larger than the cloud size.

3.3.3 Theory

The theoretical results derived in this section cannot be applied to our experimental
situation, because the aberrations present in the experiment are not taken into account.
However the calculation gives us an idea of the effect that one can have on the anti-
bunching height when the cold cloud is defocused by a laser lens without aberrations.

We can model the atomic cloud as an ideal gas. The density of the trapped sample

obeys to a Maxwell-Boltzmann distribution with RMS values σi =
√

kBT/mω2
i for

the position and σvi =
√

kBT/m for the velocity, with i = x, y, z. Here T is the
temperature of the sample, m the mass, ωi the oscillation frequency along the i axis
and kB the Boltzmann constant. The laser propagates in the vertical direction and the
Rayleigh length is of the order of 3 cm, therefore the dipolar force acting on the atoms
on the z direction is negligible. Consequently the motion of the atoms along the z axis
will be described by a simple ballistic expansion in the presence of gravity. The dipolar

1The laser was focused on the trap. During 500µs the cloud fall vertically by ≈ 1µm that is negligible
with respect to the Rayleigh length (3cm). Therefore we can say that the laser interacts with the atoms
at its waist.
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force has the largest effect on the xy plane. Therefore we will concentrate only on the
atomic motion on this plane.

Initial conditions

When the trap is turned off, an atom is at the position xtrap with velocity vtrap that
follow a Maxwell-Boltzmann distribution. Before turning the laser on, the atom moves
ballistically for a time t̃. When the laser is switched on the atom is at the position
x0 = xtrap + vtrapt̃ and has a velocity v0 = vtrap. In the following calculation we will
take x0 and v0 as the initial position and velocity.

Calculation steps

The calculation can be divided in 3 main steps that are listed here after:

1. At t = 0 the laser is switched on for a time τ and the atom, that is at the position
x0 and has a velocity v0 is submitted to the dipolar force.

2. At t = τ the laser is switched off and the atom is at the position xdip = x(τ) with
a velocity vdip = v(τ).

3. Then the atom moves ballistically for a time tdet and it reaches the detector at a
time t = τ + tdet at a position xdet = vdiptdet + xdip with a velocity vdet = vdip.

Analogous equations can be written for the y direction. Since we are interested in
the calculation of the magnification factor induced by the laser we will calculate the
RMS size of the cloud at the detector. The ratio between the size of the cloud at the
detector with and without the application of the laser will give the ratio between the
correlation length at the detector with and without laser and the formula 1.39 will give
the contrast of the correlation function.

3.3.4 Dipolar force

In this section we will give the equations to describe the motion of the atom submitted
to a dipolar force. When a two-level atom interacts with a laser field, it is submitted
to a potential given by:

U =
h̄∆

2
ln(1 + s) (3.5)

where ∆ is the detuning of the laser with respect to the atomic transition and s is the
saturation parameter, given by

s =
Ω

2/2

∆2 + Γ2/4
. (3.6)

Ω is the Rabi frequency for the considered transition and Γ = 2π ∗ 1.6 rad/s is the
natural linewidth of the transition. For our experimental parameters s ≪ 1 and we can
write

U ≈ h̄∆

2
s ≈ h̄

4

Ω
2

∆
(3.7)
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i.e. the potential is proportional to the light shift induced by the radiation on the atomic
level. Writing explicitly the dependence of U from the laser intensity one obtains:

U(x, y) =
h̄

4

Γ
2

2∆

I0

Isat
exp{−2

x2

w2
x

− 2
y2

w2
y

} (3.8)

Isat is the saturation intensity and is equal to 1.6 W/m2. I0, wx and wy are the
intensity and the waist of the laser along the x and y direction. The dynamic equations
describing the motion of the atom in the laser field will then be:

m
d2x

dt2
= −∂U(x, y)

∂x
= m ω2

dipx x exp{−2
x2

w2
x

− 2
y2

w2
y

}

m
d2y

dt2
= −∂U(x, y)

∂y
= m ω2

dipy y exp{−2
x2

w2
x

− 2
y2

w2
y

} (3.9)

with

ωdipx,y =

√

h̄

πm

Γ2

∆

P

Isat

1

w3
x,ywy,x

. (3.10)

In the equations above, m is the 3He mass and P is the power of the beam. The system
formed by equations 3.9 is not easy to solve and an analytical solution does not exist.
Numerically a Montecarlo simulation should allow to find the solution.

If the atoms explore just a small part of the optical potential close to the centre,
the solution is analytical. In this situation the Gaussian shape of the laser beam
can be approximate by a parabola and the potential is harmonic with a maximum
for x = y = 0. In the following section we will solve the dynamic equations in this
approximation and we will find some experimental situations where the atomic lens
would have given a larger antibunching.

Harmonic approximation

In the harmonic approximation the dynamic equations 3.9 are:

d2x

dt2
= ω2

dipx x (3.11)

d2y

dt2
= ω2

dipy y (3.12)

and describe an antitrapping potential in both directions x and y. Since the two equa-
tions are decoupled we will proceed in what follows by describing the solution for the x
direction. We can solve 3.11 with the initial conditions described above that take into
account the expansion of the cloud before the application of the laser. The position
and the velocity of the atom after the application of the lens for a time τ will then be:

xdip = x0 cosh(ωdipxτ) +
v0

ωdipx
sinh(ωdipxτ) (3.13)

vdip = x0ωdipx sinh(ωdipxτ) + v0 cosh(ωdipxτ) (3.14)



Defocusing experiment 77

and the position of the atoms at the detector will be given by:

xdet = vdip tdet + xdipx

= α(ωdipx, tdet, τ) x0 + β(ωdipx, tdet, τ) v0 (3.15)

with

α(ωdipx, tdet, τ) = ωdipxtdet sinh(ωdipxτ) + cosh(ωdipxτ)

β(ωdipx, tdet, τ) =
1

ωdipx
sinh(ωdipxτ) + tdet cosh(ωdipxτ)

3.3.5 Calculation of the demagnification factor

Now we can calculate the RMS size of the cloud at the detector after the application
of the laser, σdetx:

σ2
detx = 〈x2

det〉 − 〈xdet〉2 = 〈x2
det〉 (3.16)

where 〈 〉 indicates the average over all the positions and velocities. The second equality
holds due to the symmetry of the atomic cloud and because we consider the Maxwell-
Boltzmann distribution to be centered on zero. We can consider positions and velocities
to be independent and then set 〈xdetvdet〉 = 0. The calculation gives then:

σdetx = σx

√

α2(ωdipx, tdet, τ) + ω2
x β2(ωdipx, tdet, τ) (3.17)

where σx is the RMS size of the sample in the trap and ωx is the trap frequency along
the x axis. If the laser is not switched on (τ = 0) we find that the cloud expands by

a factor
√

1 + ω2
x t2det, that is the result of the ballistic expansion. The demagnification

factor is therefore simply given by σx

σdetx

√

1 + ω2
x t2det.

3.3.6 Results

The theoretical results derived above are valid only in the harmonic approximation. As
we said at the end of section 3.3.2, the conditions in which the experiment has been
run do not permit the application of this approximation. However we can calculate the
magnification factor that one can obtain with this experimental procedure with laser
parameters that make the harmonic approximation valid.

With our detector resolution, in order to observe an antibunching height equals to
1 we should be able to increase Lx by a factor of 20 and Ly by a factor of 6. With
this method such a big magnification factors are hardly achievable because they would
require a very large waist at least along the x axis. As a consequence we would need a
high laser power or/and a small detuning in order to exert a large dipolar force. The
last two parameters are delicate because they play an important role on the number of
scattered photons Γscatt and therefore on the heating of the cloud, given by:

Γscatt Trec τ =
1

4π

Γ
3

∆2Isat

P

wxwy
Trec τ (3.18)
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where Trec = 4µK/photon is the heating caused by the absorption of one photon.
Increasing the temperature of the cloud during the application of the laser would tend
to reduce the contrast of the correlation function and then to reduce the effect of the
lens.

It is also interesting to note that if the atoms are falling in a level that is not sensitive
to the magnetic field one does not have to wait for the magnetic field transients to go
away before switch the lens on. This is the case in the Palaiseau setup. If we can set
t̃ = 0 the initial cloud size is smaller, therefore we can use a smaller waist and keep the
laser on for a shorter time. These conditions translate in a stronger dipolar force and
a bigger magnification effect with less heating.

With a lens not affected by aberrations and with our detector resolution one can
reasonably observe a correlation function with an antibunching η = 0.26, almost a factor
of 4 bigger than our observation without lens. This can be obtained with wx = 700 µm,
wy = 300 µm, a detuning of 350 GHz and a power of 700 mW, if the lens is applied
just after the trap switch off and is kept on for 800 µs. With these parameters the
correlation length along the x axis is increased by a factor 2 and along the y axis by
a factor of 2.7. At the end of the application of the lens the atomic cloud would be
still more than 2 times smaller than the laser. Therefore about 75% of the atoms see
an anharmonicity of less then 20%. With these parameters the heating of the cloud is
about 0.1 µK.

Another way to get rid of the resolution would be to decrease the size of the trapped
sample directly in the trap by superposing a dipole trap to the magnetic trap. In this
case the laser would be on the red side of the resonance and the dipolar force would
have the effect of increase the trap oscillation frequencies. There are two possible
experimental ways to exploit this idea. The first one is to increase the oscillation
frequency by a factor of 20 and 6 along the x and y axis respectively. This is feasible
with an optical potential. The second possibility is to load the atoms in a vertical
dipolar trap in order to have the long axis of the trap aligned with the vertical direction
where the detector has a very good resolution. On the Palaiseau setup we are planning
to do the second experiment. For this we have already bought a laser at 1.5 µm that
will be superposed to the magnetic trap in order to load the atoms in a vertical trap
with trapping frequencies of about 1 − 5 kHz on the xy plane and 50 − 100 Hz along
the z axis. With these values for the oscillation frequencies it is possible to observe a
contrast of the correlation function equal to 1.

3.4 Conclusion

In this chapter we presented the results obtained during the collaboration with the
group of W. Vassen. First of all we described the procedure used to analyze the exper-
imental data. Direct computation of the normalized correlation function according to
equation 3.2 would be cumbersome due to the long computation time. Therefore we
decided to follow another strategy to normalize the data, taking advantage from the
good resolution of our detector over the vertical axis. In this way we can perform the
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measurement of the correlation length along the x, y and z axis and of the contrast of
the correlation function.

The acquisition of clouds of bosons and fermions at the same temperature allowed us
to compare the two correlation functions and to compare them with the theory derived
in chapter 1. The measurement of the Hanbury Brown Twiss effect on clouds of fermions
at different temperatures allowed the comparison with theory of the behavior of the
correlation as a function of the temperature. The agreement with theory is good and
almost all the measured values are consistent with theory within two standard deviation.
The reason for the observed discrepancies has been commented in this chapter and can
be found in the saturation of the detector, a measurement not accurate enough of the
detector resolution or in an anomaly of the switching off of the magnetic trap.

In the last part of the chapter we described a second experiment that we carried
out in Amsterdam, aimed at the observation of a larger antibunching contrast. In this
experiment the source size is artificially made smaller on the xy plane by applying a
blue detuned laser on the atoms during the time-of-flight. The action of the laser on the
atomic cloud is equivalent to a diverging lens for the light emitted from an extended
source. The lens creates a smaller virtual source. A smaller source implies a larger
correlation length that is therefore less affected by the resolution of the detector. The
measured antibunching is indeed larger than the one measured without application of
the lens on the atomic cloud. This experiment is first of all a demonstration of the
fact that this method allows to see a larger antibunching and that the height of the
correlation function is actually governed by our detector resolution. Unfortunately
the lens that we used on the experiment was strongly affected by aberrations and a
theoretical estimation of the expected antibunching height is not possible. In order
to quantify the maximum contrast observable with this method we derived a theory
for a non-aberrating lens and we found that, with our detector resolution and with
reasonable laser parameters we can observe an antibunching of 26%, about a factor of
four larger than the value observed without the application of the lens.



80



Part II

Correlated Atom Pairs

81





Chapter 4

First Generation Experiment

As we said in the introduction of this thesis, the generation of correlated photon pairs
by D. C. Burnham and D. L. Weinberg [43] in 1970 paved the way to the realization of
several experiments of fundamental interest for the generation of non-classical states of
light, such as squeezed or entangled states. As we will show in this chapter, there is an
equivalence between the Hamiltonian describing parametric down conversion and the
Hamiltonian describing processes such as dissociation of cold molecules or generation
of correlated atomic pairs by condensates collisions. This equivalence is a promising
way to follow for the generation of a matter wave analogue of these experiments carried
out in quantum optics.

The first part of this chapter is devoted to an historical overview in which we
will describe some fundamental experiments performed with correlated photon pairs
generated by parametric down-conversion.

In the second part of the chapter we will describe an experiment that we carried out
during my PhD, where we generated correlated pairs of Helium atoms by the collision
of two Bose-Einstein condensates. This experiment has been described in details in
the PhD thesis of a former student, Aurélien Perrin [82] and has been object of several
publications, theoretical and experimental [38], [84], [85], [86]. In this chapter we will
recall the experimental setup and the obtained results. When two condensates collide,
some of the atoms in the condensates are scattered in a spherical halo. For momentum
and energy conservation, atoms are scattered in pairs flying back to back in the center
of mass frame. The use of our three-dimensional single atom detector allows us to
demonstrate the existence of a strong correlation between two atoms forming a pair
and to fully characterize the correlation function. This is, without any doubt, the major
achievement of this experiment. Some other interesting results have been obtained in
this experiment, such as the observation of a correlation between atoms flying close
together. This is another manifestation of the Hanbury Brown Twiss effect. The
comparison of the measured correlation functions with theory is also reported in this
chapter.

Going further on in the analogy between correlated photon pairs and correlated
atom pairs, it would be very interesting to give an experimental demonstration of the
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fact that our system exhibits number squeezing or entanglement. Unfortunately, the
experiment presented in this chapter is affected by some limitations that are intrinsic
to the way the two condensates collide. In order to overcome these limits we repeated
the experiment in another collision geometry, as we will describe in details in chapter
5. The second generation experiment should also allow us to measure some interesting
properties of the scattering sphere, such as the thickness and the number of atoms
scattered per mode as a function of the scattering angle.

4.1 Correlated pairs of photons

The development of non-linear optics made possible the realization of new sources for
the creation of correlated photon pairs. The correlated photon pairs were generated
by a parametric down-conversion process in which a single photon from a pump laser
at angular frequency ω0 is converted into a pair of signal and idler photons at angular
frequency ω1 and ω2. Momentum and energy conservation impose that:

ω0 = ω1 + ω2

k0 = k1 + k2 (4.1)

where k is the wave vector of the photon in the crystal. The two conditions above
are called phase-matching conditions. Parametric down-conversion process is said to
be degenerate if ω1 = ω2 and non-degenerate otherwise. Furthermore, since nonlinear
crystals are also birefringent we can distinguish between two different kinds of phase-
matching: in type-I phase matching idler and signal photons have parallel polarization,
while in type-II phase matching the polarizations of the two photons are orthogonal.
The phase-matching conditions 4.1 impose that the signal and idler photons emerge on
the surface of two cones. The two cones can be concentric, as shown in figure 4.1 or
not, depending on the type of phase matching.

The first experiment that demonstrated the existence of correlated photon pairs
produced by a parametric amplifier was carried out by D. C. Burnham and D. L. Wein-
berg in 1970 [43]. In the next section we will describe this experiment and in section
4.1.2 we will describe parametric down-conversion from a theoretical point of view. As
we will see, correlated pairs of photons produced by this process show interesting quan-
tum features. In section 4.1.3 we will describe some key experiments that highlighted
this quantum character.

4.1.1 Burnham and Weinberg (1970)

Few years after the first observation of parametric down-conversion in a crystal (see
for example [87]), D. C. Burnham and D. L. Weinberg [43] performed an experiment
to demonstrate that photons emitted in non-linear crystal are correlated in pairs. The
experimental setup is shown in figure 4.2 left. A 9 mW He-Cd laser at 325 nm pumps
a non-linear crystal. Photons generated by parametric-down conversion are emitted in
two cones forming an angle φ1 and φ2 with respect to the pump beam. The coincidence
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Figure 4.1: Illustration of the phase-matching conditions in parametric down-conversion processes. In
case of type-I phase-matching the correlated photons are emitted on two concentric cones, as shown
in the left side of the figure. On the right side of the figure energy and momentum conservation are
illustrated.

rate is detected by two photomultipliers, one of which is fixed and aligned on the
direction of one of the photon beams, while the other one can be moved on the xy
plane (see figure 4.2). As in the case of Hanbury Brown Twiss experiments, measuring
the coincidence rate is equivalent to measure the second order correlation function of
the two photons, signal and idler, on the two detectors. On the right side of figure
4.2 we show the coincidence rate measured as a function of the displacement of one
of the photomultipliers along the y axis (perpendicular to the plane of figure 4.2).
The coincidence rate Rc shows a peak for a given position of the movable detector.
Since the detection rate R1, that is the number of photons detected on the movable
photomultiplier, stays constant over all the measurement range1, the peak shown by Rc

cannot result from an intensity enhancement of the photon beam. This is the signature
of the fact that photons arrive by pairs on the two detectors. The coincidence rate along
the x axis was limited by the spatial extension of the light beam. Further measurements
[43] proved that photon pairs verify phase-matching conditions 4.1.

Subsequent experiments, using a more precise and sophisticated electronics, mea-
sured the signal-idler time correlation. As expected the correlation time is inversely
proportional to the frequency width, in a way that doesn’t depend on the coherence
time of the pump laser [88]. The width of the correlation function along the three axis
(xy plane and time) is related to the size of the scattering modes [89].

4.1.2 Theory of the non-degenerate parametric amplifier

We can consider a simple model where only two of the correlated modes are selected
and the pump is treated as a classical field at frequency ω0. This last approximation is
verified because the pump is a laser beam with a large intensity and relative fluctuations

1The decrease of R1 for large y is due to scanning the detector off the light cone.
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Figure 4.2: On the left, setup used by Burnham and Weinberg to create correlated pairs of photons.
The pump laser at 325 nm is shined on the non-linear crystal. The two new beams are at a wavelength
of 633 nm and 688 nm and have the same polarization (type-I phase-matching). The generated photons
are emitted in two cones of light forming an angle φ1 and φ2 with the direction of the pump beam.
The coincidence rate in the two created beams is measured by two photomultipliers. One of the
photomultipliers can be translated on the xy plane. On the right, the measured coincidence rate is
shown, as a function of the vertical displacement (y axis) of the movable detector. Rc is the coincidence
rate on the two detectors, while R1 is the detection rate on one detector. The peak showed by Rc is
the signature of the correlation between signal and idler photons. The figure has been adapted from
[43].

can be neglected. The signal and the idler are fully quantum and are described by
creation and annihilation operators a†1, a1 and a†2, a2. The hamiltonian of the system
can be written as [15]:

H = h̄ω1a
†
1a1 + h̄ω2a

†
2a2 + ih̄χ(a†1a

†
2e

−iω0t − a1a2e
iω0t) (4.2)

The coupling constant is proportional to the second order susceptibility of the medium
and to the amplitude of the pump. The solutions of the Heisenberg equations of motion
in the interaction picture are:

a1(t) = a1(0) cosh χt + a†2(0) sinhχt

a2(t) = a2(0) cosh χt + a†1(0) sinhχt

If the system initially starts in the vacuum state (i.e. the two modes, signal and idler,
are empty) the time dependence of the mean number of photons in the two modes can
be written as [15]:

〈n1(t)〉 = 〈n2(t)〉 = sinh2 χt (4.3)

meaning that vacuum fluctuations are amplified in the process and that the number of
photons increases exponentially with time.

A two-mode system like the one generated in a parametric amplifier exhibits inter-
esting quantum correlations between the two modes. For example it has been demon-
strated theoretically and experimentally that such two-modes correlations can violate
classical inequalities [15], [90], [91], such as the Cauchy-Schwarz inequality.
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If the two fields a1 and a2 can be treated as classical fields, the Cauchy-Schwarz
inequality is [15]:

〈a†1a1a
†
2a2〉 ≤

[

〈a†21 a2
1〉〈a†22 a2

2〉
]1/2

(4.4)

The two modes of the non-degenerate parametric amplifier are symmetric, i.e. 〈n1〉 =

〈n2〉 and 〈n2
1〉 = 〈n2

2〉, where ni = a†iai. Therefore inequality 4.4 becomes:

〈a†1a1a
†
2a2〉 ≤ 〈a†21 a2

1〉 (4.5)

On the other hand, in quantum mechanics, the appropriate inequality for two non-
commuting operators is:

〈a†1a1a
†
2a2〉2 ≤ 〈(a†1a1)

2〉〈(a†2a2)
2〉 (4.6)

that, if the two modes are symmetric, can be written as [15]:

〈a†1a1a
†
2a2〉 ≤ 〈(a†1)2(a1)

2〉 + 〈a†1a1〉 (4.7)

By comparing equations 4.5 and 4.7 we can see that there can be quantum systems
that violate the classical Cauchy-Schwartz inequality. Furthermore, the violation of
the classical inequality will be the maximum allowed by quantum mechanics when
〈a†1a1a

†
2a2〉 = 〈(a†1)2(a1)

2〉 + 〈a†1a1〉.
One can show that, if the parametric amplifier exhibits perfect squeezing of the

number difference, then the violation of the Cauchy-Schwartz inequality is maximal.
In fact one can show that the following conservation law holds:

n1(t) − n2(t) = n1(0) − n2(0) (4.8)

Using this relation one can write:

〈n1(t)n2(t)〉 = 〈n2
1(t)〉 + 〈n1(t) [n2(0) − n1(0)]〉. (4.9)

Now, if the system is initially in the vacuum state, then one has simultaneously:

〈n1(t)n2(t)〉 = 〈a†1(t)a
†
1(t)a1(t)a1(t)〉 + 〈a†1(t)a1(t)〉

n1(t) − n2(t) = 0

The first of these equations corresponds to maximum violation of the classical Cauchy-
Schwarz inequality allowed by quantum mechanics, while the second corresponds to
perfect squeezing.

Therefore the quantum correlations exhibited by the non-degenerate quantum am-
plifier violate classical inequalities. These quantum correlations can be further exploited
to give squeezing and states similar to those discussed in the Einstein-Podolsky-Rosen
paradox. In the following sections we will describe some of the pioneering experiments
using these quantum properties of parametric down conversion.
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4.1.3 Experiments with correlated photon pairs

Quantum fluctuations in a two-mode parametric oscillator

Several years later, degenerate parametric down-conversion was used to generate squeezed
states of light on one of the two beams produced in the process [92], [93]. At the same
time, S. Reynaud et al. [94] showed that the photon numbers in signal and idler beams
generated in non-degenerate down-conversion are strongly correlated. As shown by
equation 4.8, even if the intensity of each beam can fluctuate, the fluctuations of the
two beams are identical. Therefore the intensity difference of the two beams will carry
no fluctuation at all, i.e. the variance of I1 − I2 (where I1 and I2 are the intensities
of each beam) is zero. The first experimental confirmation of the number difference
squeezing in twin beams was given by Heidmann et al. [95]. The experimental setup

Figure 4.3: Experimental setup used by Heidmann et al. to prove number difference squeezing in twin
beams. The twin beams were generated in an OPO, in order to increase light intensity. The two beams,
that have different polarization, are separated by a polariziong beam splitter (PBS) and are focussed
on two photodiodes. The measured photo-current is then amplified and subtracted. The noise on the
current difference is then monitored by a spectrum amplifier. The figure has been taken from [95].

is shown in figure 4.3. In order to increase the intensity of the generated beams, the
authors of [95] used an optical parametric oscillator (OPO). In this device, a type-
II non-linear crystal is placed inside an optical cavity, that amplifies the intensity of
the modes of the twin beams without changing the correlation. The OPO emits two
cross polarized twin beams that are separated by a polarizing beam splitter and then
focussed onto two photodiodes having the same quantum efficiency. The two photo-
currents are then amplified and subtracted and the noise on the resulting difference
current is monitored by a spectrum analyzer. A noise reduction of about 30% with
respect to the shot-noise limit is observed. Subsequent experiments (see for example
[96], [97]) showed a reduction of 88% below the shot-noise limit.
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Hong-Ou-Mandel interferometer

Parametric down-conversion was also used to show quantum interference effects. A
fundamental experiment has been carried out by C. K. Hong, Z. Y. Ou and L. Mandel
in 1987 [98]. They observed the interference between signal and idler photons gener-
ated by type-I degenerate down-conversion in a nonlinear crystal. The experimental

Figure 4.4: On the left side: Experimental setup used by Hong, Ou and Mandel to measure single photon
interference. The signal and idler photons generated by parametric down-conversion are combined on
a beam splitter. The intensity at the two output ports of the beam splitter is measured with two
detectors (D1 and D2). The measured detection coincidences are reported on the right side of the
figure, as a function of the position of the beam splitter. The plot has been taken from [98]. When the
position of the beam splitter is such that the signal and idler paths are equal, a coincidence reduction
is detected.

arrangement and the experimental results are shown in figure 4.4. Signal and idler
photons are recombined on a 50 : 50 beam splitter, the intensities at the two output
ports of the beam splitter are measured and detection coincidences are registered. The
beam splitter can be translated in order to change the path lengths of idler and signal
photons. If the path lengths are identical, no coincidences are detected. This means
that either the two photons went to D1 or both went to D2. Since the two photons are
identical, destructive interference of the probability amplitude prevents the possibility
that the two photons go to two different output ports. On the contrary, if the difference
in the path lengths is larger than the correlation length, no interference occurs and each
photon randomly exits either output port, producing coincidences on D1 and D2 for
50% of the events.

Einstein-Podolsky-Rosen paradox and Bell’s inequalities

The generation of correlated photon pairs paved the way for the generation of entan-
gled states and for fundamental tests of quantum mechanics. In 1935 A. Einstein, B.
Podolsky and N. Rosen published a famous paper titled ”Can quantum-mechanical
description of physical reality be considered complete?” [11] where they formulated a
paradox suggesting that the quantum mechanic description of reality could be incom-
plete. In a gedanken experiment, they consider a system composed by two sub-systems
that interacted for a finite amount of time, but that are no longer interacting at the
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moment of the measurement. This is the case of a correlated photon pair. The cen-
tral point of the EPR paradox is that, if the two systems are no longer interacting, a
measurement made on one system cannot affect the other one. In other words physical
reality is described by local variables. This hypothesis has a strong implication: one
can exactly measure the value of two non-commuting variables, performing the mea-
surement of one variable on one system and the measurement of the other variable on
the second system. This is in contradiction with the Heisenberg uncertainty principle.
Therefore, either the EPR hypothesis is false, or the quantum mechanical description
of reality is not complete.

Non-locality is the basis for quantum entanglement and has no classical counterpart.
Bell designed an ingenious variation of the EPR experiment and proved that there are
physical situations in which quantum mechanics prediction differs from the results one
would obtain if the EPR hypothesis is verified. Bell’s key result was the derivation
of an inequality which bear his name. Bell’s theorem states that the inequality is
always obeyed if the EPR interpretation of the world is correct. Violation of Bell’s
inequality has been experimentally demonstrated by A. Aspect et al. using correlated
photon pairs generated by atomic cascade of calcium [99],[100],[101]. Subsequently,
many experiments have been performed to test for violations of Bell’s inequalities with
very high degree of accuracy. The use of entangled photon pairs generated by down-
conversion has increased the sensitivity of the experiments, thus leading to even more
convincing demonstrations [102]. The use of optical fibers allowed the demonstration
of non-locality over very large distances and with strictly independent observers (see
for example [103] and [104]). The violation of Bell’s inequalities demonstrates the
importance of quantum entanglement and is at the heart of quantum information.

4.2 Correlated pairs of atoms

Greiner et al. (2005)

The experiment of Greiner et al. [37] is the analogue of the experiment of Burnham and
Weinberg [43] described in section 4.1. Pairs of atoms are created by the dissociation
of ultracold diatomic molecules of fermionic 40K atoms. After dissociation, the two
atoms move back to back obeying momentum and energy conservation, as imposed
by the dissociation process. The atoms are then detected after a time-of-flight by
using absorption imaging. In 2004 Altman et al. proposed a way to measure quantum
correlations from the atom shot noise present in absorption images [60]. Combining the
theoretical prediction of K.Kheruntsyan and P. D. Drummond [105] and the suggestion
by Altman, the authors demonstrated that the atoms generated by dissociation of
ultracold molecules are correlated in pairs. The obtained results are shown in figure
4.5. On the left side of figure 4.5 a scheme of molecular dissociation is shown. After
dissociation the two atoms propagate back to back, in the centre of mass frame, with
momentum +k and −k respectively. In the middle of figure 4.5 we show the absorption
image after dissociation. The black spot in the middle is a residual cloud of atoms and
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Figure 4.5: On the left: sketch of the molecular dissociation in the centre of mass frame. After
dissociation, the correlated atoms are emitted back to back with momentum k and −k. In the middle:
Absorption image of the sphere after dissociation. A spherical halo is clearly visible. The black spot
results from a residual cloud of atoms and molecules. On the right: correlation as a function of ∆φ,
that is the angle between two k vectors. The peak at ∆φ = π is the signature of the correlation between
atoms with opposite momenta. The figure has been adapted from [37].

molecules that did not dissociate. The correlated atom pairs are in the spherical halo
around the black spot. On the right side of figure 4.5 we show the non-normalized
correlation function as a function of the angle ∆φ between the k vectors of the two
atoms. A peak for ∆φ = π is clearly visible, proving that the atoms of opposite
momentum are well correlated in pairs. The width of the correlation peak is limited by
the resolution of the detection system. Note that, since the cloud image is integrated
along one direction, the authors don’t have access to the correlation function along
three dimensions in space. For the same reason, a measurement of the thickness of the
spherical halo is difficult.

He* correlated pairs

In 2007 we performed an experiment to generate metastable He atom pairs from the
collision of two counterpropagating Bose-Einstein condensates [38]. The collision takes
place along the long axis of the condensates. After the collision the atoms were de-
tected by a micro-channel plate with a delay-line anode, the same detector used for
the Amsterdam-Palaiseau experiment described in the previous chapter of this thesis.
Detailed information about the detector can be found in appendix A.

Thanks to the three-dimensional features of this detector it has been possible to
deeply study the correlation function as well as the characteristics of the spherical col-
lision shell. In particular we characterized the correlation function in three dimensions,
measuring the height and the width of the correlation peaks. We observed a strong
correlation peak for atoms propagating back to back, a clear signature of the fact that
the atoms are correlated in pairs. We also observed a peak for atoms that have collinear
velocity, a signature of the Hanbury Brown Twiss effect relying on the indiscernibility
of two atomic pairs [86]. We will come back to this point in section 4.6.4. In both
cases, collinear and back to back correlations, the width of the correlation peak is re-
lated to the velocity spread of the colliding condensates, that therefore fixes the size of
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a scattering mode.
In section 4.5 we will describe in detail the experimental production of the correlated

He atom pairs and in section 4.6 we will comment on the obtained results.
As we said in the introduction of this chapter, in order to overcome some of the

limits of the experiment done in 2007 we repeated the experiment in another collision
geometry. This time the collision takes place along the short axis of the condensates.
This new version of the experiment should allow us to study in detail the population of
the scattering modes as a function of the angle and, eventually, to observe a squeezing
in the difference of the number of atoms scattered into two correlated modes. This
experiment will be described in chapter 5 and we will present some preliminary results.

In the next section we would like to draw the attention of the reader on the analogy
between the production of correlated photon pairs via parametric down-conversion
and the production of correlated atom pairs via the collision of two condensates on a
theoretical point of view.

4.3 Analogy with the parametric amplifier

The collision between two condensates can be modeled by a contact potential V (r) =
gδ(r), where g = 4πh̄2a/m depends on the scattering length a. The N body Hamilto-
nian can therefore be written as2 [109]:

H = −
∫

drΨ̂†(r, t)
h̄2∇2

2m
Ψ̂(r, t) + g

∫

drΨ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t) (4.10)

The trapping potential used for preparing the initial condensate before the collision
is omitted since, during the collision, the two condensates are no longer trapped (see
section 4.5.1). The field operators Ψ̂

†(r, t) and Ψ̂(r, t) are the creation and annihilation
operators for a particle at the position r and verify the bosonic commutation rules:

[

Ψ̂(r, t), Ψ̂†(r′, t)
]

= δ(r − r′)
[

Ψ̂(r, t), Ψ̂(r′, t)
]

= 0 (4.11)

Since the Hamiltonian 4.10 is of the fourth order in Ψ̂(r, t), the Heisenberg equation
governing the evolution of the field,

ih̄∂tΨ̂(r, t) = − h̄2∇2

2m
Ψ̂(r, t) + gΨ̂

†(r, t)Ψ̂(r, t)Ψ̂(r, t) (4.12)

is nonlinear and therefore, in general, analytically intractable. However, we can model
our system assuming that the two counter-propagating condensates constitute an un-
depleted source for the process of scattering, exactly as in the case of the parametric

2The Hamiltonian describing the dissociation of a cold cloud of molecules has several analogies with
the one describing the collision between two condensates. A detailed treatment has been carried out
in several papers by K. Kheruntsyan et al., see for example [106],[107],[108].
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amplifier (see section 4.1.2). Therefore we can apply a Bogoliubov approximation and
split the field operator into two parts: ψ and δ̂.

The first contribution describes the macroscopically occupied modes, in our case
the two Bose-Einstein condensates, where fluctuations are usually small and can be
neglected. These modes can be treated classically.

The second contribution, δ̂, describes field modes that show large fluctuations and
require a full quantum mechanical treatment. In general this term is small and can be
treated in a perturbative way. In our case it represents the scattering modes that are
populated by atoms scattered during the condensates collision.

The bosonic field can then be written in the following way:

Ψ̃(r, t) = ψQ(r, t) + ψ−Q(r, t) + δ̂(r, t) (4.13)

where ±Q denotes the mean momentum of the colliding condensates.
At this point it is already easy to understand the equivalence between Hamiltonian

4.2 and 4.10, in the undepleted pump approximation. Furthermore, the equivalence
can become even more explicit if we model the two counter-propagating condensates
as plane waves [110]:

ψ±Q(r, t) =
√

n±Q e∓iQ·r e−ih̄(Q2/2m)t (4.14)

where n±Q is the density of the particles. In what follows we will assume for simplicity
that both waves are equally populated, meaning nQ = n−Q = n. In a box of size L,
the boson field operator can be decomposed into normalized plane waves:

δ̂(r, t) = L−3/2
∑

q

e−iq·r aq(t) (4.15)

where aq(t) is the annihilation operator of an atom of the wave vector q.
Substituting equations 4.14 and 4.15 into Hamiltonian 4.10 we obtain:

H =
∑

q

(

h̄2q2

2m
a†q(t)aq(t) + gn

(

e−ih̄(Q2/2m)ta†q(t)a†−q(t) + h.c.
)

)

(4.16)

If we only consider two modes of opposite momentum ±q, the Hamiltonian 4.16 is
formally equivalent to the Hamiltonian 4.2.

The solution of the Heisenberg equations of motion for annihilation and creation
operators can be found analytically and takes the following form:

ap(t) = e−ih̄(Q2/2m)t
[

F1(t, p)ap(0) − F2(t, p)a†−p(0)
]

(4.17)

where

F1(t, p) = cosh[
√

∆(p)t] − ih̄
p2 − Q2

2m

sinh[
√

∆(p)t]
√

∆(p)

F2(t, p) = i gn
p2 − Q2

m

sinh[
√

∆(p)t]

∆(p)

∆(p) = (2gn/h̄)2 − (h̄(p2 − Q2)/2m)2 (4.18)
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From the solution of the Heisenberg equations we can see that modes that are initially
empty are occupied as in the case of the parametric amplifier. More precisely, modes
can be divided into two classes according to their evolution: modes for which the
kinetic energy difference between the incident and the scattered atoms is smaller than
the mean field energy (∆(p) > 0) have their occupation growing exponentially with
time and experience Bose enhancement; modes that have ∆(p) < 0 have a population
that oscillates around unity. We will come back to this point in section 4.7.2.

We would like to point out that the analogy between the collision of two condensates
and the generation of correlated photon pairs is even stronger if we consider four-wave
mixing phenomena. Two counterpropagating pump waves interact with a non-linear
medium and give rise to two twin beams satisfying phase-matching conditions imposed
by the process. Four-wave mixing occurs in non-linear medium with third order non-
linear susceptibility. The Hamiltonian of the process is formally equivalent to the one
describing parametric amplification processes [111], [112] and indeed four-wave mixing
has been observed for atomic matter waves [34], [35], [36].

4.4 A more refined theory

In the previous section, we modeled the two colliding condensates as plane waves.
However, in order to model our experiment in a way closer to reality, a more accurate
theoretical treatment can be done and two different theoretical approaches can be
followed. Our group collaborates with two groups of theoreticians. The group of
M. Trippenbach, in Poland, had already published several works about the analytical
calculation of the correlation function between atoms issued from the collision of two
condensates [113], [110], [109]. The group of K. Kheruntsyan, in Australia, had already
studied pair creation during the dissociation of molecules [105], [114], [115], [106], [107].
The calculation done by this group is fully numerical and uses the so-called positive-P
method. Details about the calculation procedure can be found in [82]. In the following
sections we will describe the two theoretical approaches. They can be applied to the two
experiments that we carried out. However, at the actual stage, we only have theoretical
results for the first generation experiment and we will discuss how the experimental
results compare with them in section 4.7. A further study, going in parallel with the
progress of the experimental work will make possible soon a comparison with the second
generation experiment as well.

4.4.1 Analytical approach

The approach followed by the group of M. Trippenbach is based on the analytical
calculation of the solution of the Heisenberg equations for the Hamiltonian 4.10. The
procedure is the one used in the previous section, but the condensates are modeled
by Gaussians. We can inject equation 4.13 into the Heisenberg equation 4.12 and, in
the spirit of the Bogoliubov approximation, we keep only terms at the first order in
δ̂. Furthermore, since the mean-field energy is negligible with respect to the mean
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kinetic energy of the two scattering condensates (h̄2Q2/2m), the mean-field terms can
be neglected and we obtain:

ih̄∂tδ̂(r, t) = − h̄2∇2

2m
δ̂(r, t) + g

[

2ψQ(r, t)ψ−Q(r, t) + ψ2
Q(r, t) + ψ2

−Q(r, t)
]

δ̂†(r, t)

(4.19)
The three terms in brackets correspond to three different processes that are illustrated
in figure 4.6. The first one corresponds to annihilation of two particles from counter-
propagating condensates and creation of two particles in the field δ̂ of scattered atoms.
The second and the third terms correspond to the annihilation of two particles from the
same condensate (either ψQ or ψ−Q) and creation of two particles in the δ̂ field. Since
the second and the third processes are non-resonant, their probability to occur is small
and the corresponding terms can be neglected. Therefore the Heisenberg equation can
be simplified to:

ih̄∂tδ̂(r, t) = − h̄2∇2

2m
δ̂(r, t) + 2gψQ(r, t)ψ−Q(r, t)δ̂†(r, t) (4.20)

Figure 4.6: Visualisation of the three scattering terms entering in equation 4.19. On the left side
we represent the term proportional to 2ψQψ−Qδ̂†. Two atoms, one from each of the condensates,
are annihilated and two atoms conserving momentum and energy are created. In the middle we
represent the term proportional to ψ2

−Qδ̂†. Two atoms are annihilated from ψ−Q and scattered such
that momentum is conserved. On the right we show the analogous sketch for the term proportional to
ψ2

Qδ̂†

To allow analytical calculations we model the condensates wave-functions as Gaus-
sians with cylindrical symmetry. The spatial widths of the condensates, σx along the
bias axis and σyz in the radial direction, are extracted from the initial condensate wave-
function which is calculated numerically from the Gross-Pitaevskii equation. Now we
have all the ingredients to calculate δ̂.

This approach allows to have an analytical formulation of the thickness of the
scattering sphere and of the two-body correlation function. In addition, this method
has the advantage to be analytical. This allows to identify of the physical processes (in
particular energy and momentum conservation) involved in the pair formation process.
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However it doesn’t take account of some effects (for example the mean-field interaction
between the atoms in the condensate or the expansion of the condensates during the
collision, see 4.5.1) that could be important in our experiment. We will come back on
these points in section 4.7, where we will compare the theoretical and the experimental
results.

4.4.2 Numerical approach

The numerical calculation done by K. Kheruntsyan et al. to simulate our experi-
ment uses the positive-P representation method [15], [116], [82]. The advantage of this
method is that, given the Hamiltonian of the interacting many-body system, no addi-
tional approximations are imposed to simulate the quantum dynamics governed by the
Hamiltonian. The drawback is that it is subject to large sampling errors and boundary
problems as the simulation time increases, eventually leading to diverging results. For
this reason the simulation of our experiment is restricted to a very short collision time
(typically ≈ 25 µs, [84]), which is about 6 times shorter than the experimental colli-
sion time for the first generation experiment and about 2 times shorter for the second
generation experiment (see section 5.2.1). An extrapolation to longer times is therefore
needed. In addition, energy conservation is a less stringent constraint for short collision
times and this can possibly lead to a discrepancy between theory and experiment.

The Hamiltonian used to describe the system is 4.10. In the positive-P approach
the quantum field operators Ψ̂(r, t) and Ψ̂

†(r, t) are represented by two complex fields
Ψ(r, t) and Ψ̃(r, t) that are allowed to fluctuate independently (i.e. they are two stochas-
tic complex fields). The dynamics of Ψ(r, t) and Ψ̃(r, t) is governed by the following
stochastic equations [117]:

∂Ψ(r, t)

∂t
=

ih̄

2m
∇2

Ψ − ig

h̄
Ψ̃ΨΨ +

√

− ig

h̄
Ψ2 ζ1(r, t)

∂Ψ̃(r, t)

∂t
= − ih̄

2m
∇2

Ψ̃ +
ig

h̄
ΨΨ̃Ψ̃ +

√

ig

h̄
Ψ̃2 ζ2(r, t) (4.21)

where ζ1(r, t) and ζ2(r, t) are real independent white noise sources with zero mean and
the following correlation:

〈ζj(r, t)ζk(r
′, t′)〉 = δjkδ(r − r′)δ(t − t′) (4.22)

There is an equivalence between statistical averages over the fields Ψ(r, t) and Ψ̃(r, t)
and corresponding normally ordered expectation values of operators Ψ̂(r, t) and Ψ̂

†(r, t):

〈
[

Ψ̂
†(x, t)

]m [

Ψ̂(x′, t)
]n
〉 = 〈

[

Ψ̃(x, t)
]m [

Ψ(x′, t)
]n〉 (4.23)

As the number of numerical realizations grows towards∞, the equivalence 4.23 becomes
exact [117]. The initial condition for the simulation is the wave function of the initial
trapped condensate modulated with a standing wave that imparts initial momenta
±krec in the direction of the collision.
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After having numerically solved equations 4.21, one can calculate the correlation
function and the thickness of the scattering sphere. The results obtained for the first
generation experiment will be given in section 4.7.2 and a comparison with the experi-
mental results will be drawn.

4.5 Experimental setup

The first experimental step consists in the production of a Bose-Einstein condensate.
The procedure has been described in chapter 2. Here we recall only the experimental
values that are important in this context. In the experiment of ref. [38] we are able to
create Bose-Einstein condensates of the order of 104 − 105 atoms. The trap has a cigar
shape with trapping frequencies of 1150 Hz along the radial direction and 47 Hz along
the axial direction. The long axis of the condensate is aligned with the bias field, that
defines the quantization axis. We will call the bias axis x in the following. Once the
condensate has been produced it is separated in two counterpropagating condensates
that collide. The result of the collision is a sphere of atoms verifying momentum and
energy conservation. In the next section we will explain in detail the method used to
the production of the two condensates.

4.5.1 Production of two colliding condensates

The two colliding Bose-Einstein condensates are produced by using stimulated Raman
transitions with different momentum transfers. The Raman transitions are produced by
three laser beams L1, L2 and L′

2. The three beams are blue detuned by ∆ = 400 MHz
from the transition 23S1 → 23P0 (at 1083 nm). In figure 4.7 we show the level scheme
for this transition. Due to the presence of the trapping magnetic field, the magnetic
substates of the level 23S1 are not degenerate. The energy difference depends on the
value of the bias field. For our trap configuration the energy difference is h × δ =
h × 700 kHz. L2 and L′

2 have the same frequencies and the same (σ−) polarization,
while L1 is π polarized. The frequency difference between L1 and L2 is δ. Raman
transitions are driven by L2 and L1 and by L′

2 and L1. Since L2 and L′
2 have different

propagation directions the momentum transferred to the atoms by the couple L1 + L2

differs from the momentum transferred by L1 + L′
2. In the next subsection we will see

the details of this momentum transfer and we will explain why this is responsible of
the separation of the initially trapped condensate into two colliding condensates.

Raman transitions not only make the two condensates collide, but also transfer in a
coherent way the atoms trapped in the mx = 1 state to the mx = 0 state, where they are
no longer trapped. Therefore the atoms that undergo the Raman transition fall under
the effect of gravity and are detected by the micro-channel plate without switching off
the magnetic trap. This is an important feature of the Raman transfer driven here: as
we have already pointed out several times in this thesis we are not really able to control
the switch off of the magnetic trap. Eddy currents and residual fields make the trap
switch off a really delicate step that can introduce uncontrolled perturbations on the
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Figure 4.7: Scheme of the Raman transition used to create the two colliding condensates. Since the
final state of the Raman transition is insensitive to the magnetic field, the atoms that undergo the
Raman transition fall on the micro-channel plate under the effect of gravity and are detected without
the need of switching off the magnetic trap.

atomic cloud. Therefore a method allowing time-of-flight detection without switching
off the magnetic field is useful.

The relative power and detuning of the Raman beams is chosen so that the Raman
transition is insensitive to the initial velocity of the atoms in the condensate. This can
be realized providing that

2
|Ω1||Ω2|

|∆|
≫ |δDopp| (4.24)

where |Ω1| and |Ω2| are the one photon Rabi frequencies of the two beams driving the
considered Raman transition (L1 and L2 or L1 and L′

2) and δDopp is the detuning of
each atom with respect to the laser beams due to the Doppler effect. We are able to
drive Raman oscillations with an efficiency of the order of 90%3 for a pulse duration of
≈ 500 ns. The power of the beams is ≃ 80 mW their size is ≃ 2 mm (at 1/e2).

Momentum transferred by the Raman beams

The geometrical configuration of the three beams will define the momentum transferred
from photons to atoms. Figure 4.8 shows the disposition of the three Raman beams
in the vacuum chamber. L1 propagates in the vertical plane and forms an angle of 8˚
with the vertical axis. As we said above (see figure 4.7), L1 should be π polarized,
i.e. the polarization vector has to be parallel to the bias field. This condition can be
satisfied for the beam L1. On the other hand L2 propagates on the horizontal plane

3The estimation of the efficiency of the Raman transfer is made hard by the saturation of the micro-
channel plate during the detection of a condensate. The estimation given in the text has been made
by decreasing the voltage of the micro-channel plate in order to limit saturation, but it still remains
an estimate.
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Figure 4.8: Bottom left and right: top view and side view of our science chamber. L1 propagates in the
vertical plane with an angle φ1 = 8˚ with respect to the z axis. It is reflected out of the chamber by a
mirror that is in vacuum. L2 propagates on the horizontal plane with an angle φ2 = 5˚ with respect
to the x axis. L′

2 is generated by retroreflecting L2 and is not shown in figure. The inset on the top of
the figure shows the direction of the three Raman beams with respect to the condensate axis.

and has to be circularly σ− polarized (see figure 4.7). L′
2 is generated by retroreflecting

L2 and has to be σ− polarized as well. The propagation direction of the beams form
an angle of 5˚ with the bias axis due to a limited optical access. For this reason, L2

and L′
2 cannot be perfectly circularly polarized and the polarization will not be pure.
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In section 4.6.1 we will see the consequence of this fact.

We set the power of the three beams, the relative detuning and the duration of
the Raman pulse in order that half of the trapped cloud makes a Raman transition
driven by L1 and L2, and half of the cloud makes a Raman transition driven by L1 and
L′

2. Indicating with eπ and eσ the propagation vectors of L1 and L2 respectively, the
condensate that is extracted from the trap is in a superposition of two components with
different momentum. The atoms that interact with L1 and L2 acquire a momentum
equal to h̄krec(eσ−eπ), because they absorb a photon from L2 and emit a photon in L1.
The atoms that undergo the Raman transition with L1 and L′

2 acquire a momentum
of h̄krec(−eπ − eσ). Therefore, the two colliding condensates travel with a relative
momentum of 2h̄kreceσ.

The efficiency of the three beam process is smaller than the efficiency of the Raman
transfer made with only two beams. We estimate the efficiency of the three beam
process to be about 60%. This is disappointing if compared with the efficiency of the
two beam process. The saturation of the micro-channel plate plays an important role
in this case as well, but the difference between the efficiency of the two processes is not
completely understood. A possible explanation can be found in the fact that, since the
windows are not anti-reflection coated, the two beams L2 and L′

2 have not the same
power. Therefore the Rabi frequency of the Raman transition driven by L1 and L2 is
not the same as the one of the transition driven by L1 and L′

2. In the second generation
experiment we changed the experimental sequence in order to overcome this problem,
as explained in section 5.3.

4.6 Experimental results

4.6.1 Observation of the collision sphere

As we said in the previous section, the relative velocity of the two colliding condensates
is 2vrec = 2h̄krec/m along the eσ axis. Since the angle between eσ and the direction of
the long axis of the condensate is quite small (only 5˚) we can say that the collision
takes place along the long axis of the trap. The center of mass of the collision is in
a frame initially traveling upward at one recoil velocity and accelerating downward
due to gravity. In the centre of mass frame the two condensates moves back to back
with momentum ±h̄krec along eσ. The relative collision velocity (2 × vrec = 2 ×
9.2 cm/s) is about 8 times larger than the speed of sound of the initial condensate (vs =
√

µ/m = 2.4 cm/s), therefore elementary excitations of the condensate correspond to
free-particles. A particle in the condensate with momentum h̄krec can make an elastic
collision with a particle in the other condensate, with momentum −h̄krec. The atoms
behave as classical particles and energy and momentum conservation can be written
as:

k1f + k2f = 0

k2
1f + k2

2f = 2k2
rec (4.25)



Experimental results 101

where h̄k1f and h̄k2f are the final momentum of the two particles. The two equations
4.25 imply that, h̄k1f and h̄k2f have the same modulus, equals to h̄krec but opposite
direction. Therefore, after collision, atoms are equally distributed on a sphere of radius
h̄krec, in momentum space. This classical model doesn’t take into account the initial
spread of the two colliding condensates. Due to the Heisenberg principle, the momen-
tum spread of a condensate is inversely proportional to its spatial extension. This will
cause a broadening of the spherical shell. In section 4.6.2 we will see how the two things
are related. In addition this model doesn’t account for the interactions between the
atoms during the expansion and it supposes that all the collisions happen at the same
time and in the same position. In the following sections we will see how well these
hypothesis are verified in our case.

In figure 4.9 we show the scattering sphere obtained by making two condensates
collide with the procedure described above. The figure is drawn in velocity space and
in the center of mass frame. The x axis is the long axis of the trap, while y is the short
axis of the trap, parallel to the plane of the detector. Each frame represents a 2.4 ms
time slice of the atomic cloud as it passes the detector plane (xy). We recall that the
images are taken after a long time-of-flight (320 ms in this experiment). Therefore the
condensates have not a cigar shape anymore, but they are pancakes. In figure 4.9 we
see four condensates falling on the detector. The ones indicated by number I and II are
the two colliding condensates. As expected they are at ±vrec along the x axis and they
are centered at 0vrec along the y direction. The small misalignment of the centre of
the two condensates along y is due to the fact that L2 and L′

2 don’t propagate exactly
along the x axis (see figure 4.8). Condensate III underwent no momentum transfer and
its presence is probably due to the imperfect polarization of the Raman beams. In fact,
if the polarization is not pure, an atom can absorb a σ photon and emit a π photon
from the same laser beam, undergoing a Raman off resonant transition. Since the
two photons come from the same beam the momentum transfered to the atom is zero.
Condensate IV contains a smaller number of atoms than condensate III, it underwent
no momentum transfer on the plane xy but it has a velocity of 2vrec downward. It
is probably generated by a four-wave mixing process [34], [35] of condensate III with
the colliding condensates I and II. In figure 4.9, the collision sphere is well visible as
well. Its radius is about vrec. The number of detected atoms in the sphere can vary
from 30 to 300 depending on the number of atoms in the initial condensate and on the
efficiency of the Raman process. Since about 40% of the sphere is superposed to the 4
condensates that we mentioned above, we estimate to have on average 2300 atoms in
the sphere (assuming a detection efficiency of 10%). In section 4.7.2 we will see how
this value compares with theory.

The three dimensional detector permits a study of the scattering sphere in detail
and to measure its thickness. In the next section we will give the experimental result
of this measurement and we will compare it with theory.
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Figure 4.9: Slices of the collision sphere on the xy plane as it falls on the detector. Each slice is averaged
over 2.4 ms. The image is averaged over 150 time-of-flights. The two colliding condensates are indicated
by numbers I and II. Condensate III has no momentum transfer and is due to the imperfect polarization
of our Raman beams. Condensate IV is the result of a four-wave mixing process between condensate
III and the two colliding ones. The origin of the spots in the centre of the sphere is not well known.
They are probably due to spurious light scattered by the chamber from the Raman beams.

4.6.2 Sphere thickness

In order to precisely measure the sphere thickness we can plot the distribution of the
modulus of the momentum of the atoms that belong to the scattering sphere. In doing
this we exclude the zones with the four condensates and the zone inside the sphere with
the two spots of atoms. This plot is shown in figure 4.10. There are several things that
we can note. The distribution of the modulus of k stays over a tilted background. This
is due to the presence of a residual thermal cloud around the condensates that is hard
to be properly cut away. In order to estimate the thickness and the radius of the sphere
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Figure 4.10: Cross section of the scattering halo averaged over all the scattering angles. The sloped
background is due to the presence of a residual thermal cloud around the condensates that has not
been properly cut away. The red dashed curve is the result of a fit made with a gaussian plus a straight
line that takes account of the sloped background.

we can fit the distribution with a straight line plus a gaussian and thereafter subtract
the straight line in order to estimate correctly the RMS width. We find 0.067 krec.
With the same method we can find the centre of the distribution, that is 1.02 krec.

As we mentioned in section 4.6.1, the thickness of the sphere is related to the
momentum spread of the two colliding condensates, that imposes a minimum width. By
numerically solve the Gross-Pitaevski equation in the Thomas-Fermi approximation, for

9.84×104 atoms, the initial momentum-space widths are found to be σ
(k)
x = 0.0025 krec

and σ
(k)
yz = 0.055 krec [84]. Therefore we would expect to see a strong anisotropy of

the scattering halo, reproducing the trap anisotropy. Unfortunately, the presence of
the colliding condensates along the x axis makes the measurement of such anisotropy
impossible and the sphere thickness is measured chiefly in the yz direction. In addition,
since the resolution of our detector in the xy plane is of the order of 0.01 krec, the
measured width of the sphere would be broadened by the detector resolution (mainly in
the x direction). In conclusion, the good agreement between the calculated momentum
spread of the initial condensate along the yz direction and the measured thickness of
the sphere indicates that the initial momentum spread has the bigger effect in the
determination of the sphere thickness. This is also confirmed by the results of the
analytical calculation reported in section 4.7.1.

There are other physical arguments that can suggest that the thickness of the sphere
is not only determined by the momentum spread of the initial condensate. We will
discuss this particular in section 4.7.2.
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4.6.3 Back to back correlation

In order to demonstrate that atoms emitted back to back (in the collision center of
mass frame) are correlated in pairs, we measured the two-body correlation function
G(2)(k,−k + δk), where k is a three dimensional vector. Since the number of atoms
scattered in the sphere in each shot is small, we measure the correlation function
averaged over all the collision sphere (i.e. over all possible values of k) in order to
increase the signal to noise ratio. We therefore measure:

G(2)(δk) =

∫

d3kG(2)(k,−k + δk) (4.26)

As in case of the measurements described in chapter 3 we have to normalize the correla-
tion function in order to measure its width. In the pairs experiment the normalization
is even more important because the normalized and non-normalized correlation func-
tions have almost the same width. This was not the case in the Amsterdam-Palaiseau
experiment (see figure 3.2). To normalize G(2) we will divide it by the sum of the corre-
lation calculated between atoms belonging to independent clouds. As we have already
commented in section 3.1.1, this is the most rigorous normalization procedure. This
normalization was not applicable on the Amsterdam-Palaiseau data because it would
have taken a too long calculation time. In the pairs experiment however the number
of atoms in each sphere is about 100 (compared to 5000 of the Hanbury Brown Twiss
experiment), over 1108 acquired time-of-flights, and the computing time is reasonable
(only few hours). Therefore we will calculate the correlation on the sum of all the ac-
quired shots and we will use the result to normalize G(2)(δk) calculated over the single
shot. At the end of this procedure we average g(2)(δk) over all the acquired data. More
details on the data analysis can be found in [82].

Figure 4.11 shows the normalized correlation function for atoms being scattered
back to back. We plot the projection of g(2)(δk) over the three axis of the trap. We
clearly observe a peak around δk = 0, that is the signature of the correlation of atoms
emitted back to back.

Width of the correlation

The height and the width of the pair correlation function have been measured by making
a Gaussian fit of the 3D histogram containing the normalized correlation function. The
fit function has a cylindrical symmetry, like the trap, and is:

g(2)(δk) = 1 + η exp

(

−δk2
x

2ξ2
x

−
δk2

y + δk2
z

2ξ2
yz

)

(4.27)

The free parameters are η, ξx and ξyz. The fit results for the back to back correlation
are listed in the following table:

ξBB
x (krec) ξBB

yz (krec) ηBB

0.017 ± 0.002 0.081 ± 0.004 0.19 ± 0.02
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Figure 4.11: Projection of the back to back correlation function along the trap axis plotted in units of
h̄krec. The peak at δp = 0 is the signature of the fact that atoms are correlated in pairs of opposite
momenta. The solid line is the result of a Gaussian fit. See text for more details.

As in case of the Amsterdam-Palaiseau experiment the height of the correlation
function cannot be measured on the projections showed in figure 4.11, because integra-
tion modifies the height of the correlation. The solid curves reported in figure 4.11 are
the result of a Gaussian fit with the amplitude as the only free parameter. The width
has been fixed to the value found with the three-dimensional fit.

The quality of the Gaussian fit is good in the x and z directions. The projection
along the y direction seems to be quite noisy compared to the other two and a Gaussian
doesn’t seem to fit the data points. The origin of this noise has to be found in our
analysis procedure. In fact, the first step of the analysis consists in cutting the four
condensates falling with the collision sphere. This procedure breaks the cylindrical
symmetry of the problem, therefore the noise on the y and z axis can be different [82].
Furthermore the sphere thickness is of the same order of magnitude as the correlation
width along y and z, making the normalization problematic. Indeed, the number of
detected coincidences decreases when one looks far from δk = 0 due to the finite
thickness of the halo and the noise on the measurement of the correlation function
increases.

One can therefore ask whether the hypothesis of cylindrical symmetry imposed by
the fit function 4.27 is verified or not. In section 4.7 we will compare our results with
the two theoretical models described previously and we will see that the two models
predict a cylindrical symmetry of the correlation function.

The width of the back to back correlation function can be naively inferred with
a simple classical model that has been developed by A. Perrin in his PhD thesis [82]
and that we report also here. In this model the atoms are treated as billiard balls.
The momentum distribution of the two colliding condensates is a three-dimensional
Gaussian. The initial momentum of the particles will be randomly chosen following
this distribution. After that the momentum of the particles evolves according to the
phase-matching conditions 4.25. The scattering direction is chosen randomly as well.
Once data are generated with this model, we can analyze them with exactly the same
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procedure used for the experimental data. We find that the back to back correlation
has a cylindrical shape and the width is not far from the experimental one [82]. Of
course this model doesn’t account for several physical phenomena that are present in
the experiment, such as the mean-field effect, the spatial extension of the condensates,
the expansion of the condensates during the collision, but it allows one to have a simple
view of the basic process taking place in the experiment.

Height of the correlation

The correlation function that we just measured tells us that if we want to find the
partner of an atom of momentum h̄k in the collision sphere, we have to look inside
the correlation volume measured in the previous section. Inside the correlation volume
there will be several atoms but only one of those is “perfectly” correlated with the
one of momentum h̄k. Following this reasoning, we can say that the contrast of the
correlation function for δk = 0 is given by:

1 + ηBB =
true + random

random
(4.28)

where we call ”random” the atoms that are not correlated with the first one. Let’s define
∆V the correlation volume defined by the widths found above, N the total number
of atoms in the scattering shell and V the total volume of the scattering shell. In a
correlation volume we will have 1 true coincidence and N/V ×∆V random coincidences.
Therefore,

1 + ηBB =
true + random

random
= 1 +

V

N∆V
(4.29)

For our experiment V/∆V ≃ 1300 and, assuming a detection efficiency of 10%, N ≃
2300 [82]. Therefore we find ηBB ≈ 0.6 that is of the same order of magnitude of
the measured ηBB. The discrepancy can be due to an imprecise determination of N,
V or ∆V or to the simplicity of the model developed here. In order to verify the
dependence of ηBB we measure the height of the correlation function on three data sets
with different number of scattered atoms. In figure 4.12 we show our results for the
correlation along the x direction. The dependence on the number of atoms is clearly
visible.

4.6.4 Collinear correlation

If the correlation between atoms emitted back to back described in section 4.6.3 can
be understood in terms of classical mechanics, just by assuming that atoms behave
like billiard balls, the effect that we are going to describe in this section is not. In
fact, if atoms behaved like classical particles, their distribution on the collision sphere
shouldn’t depend on the scattering angle, i.e they should be randomly emitted in all
directions. Therefore one shouldn’t expect to see any correlation peak for atoms having
been scattered in the same direction. However, since 4He is a boson, atoms tends to be
scattered in bunches. This is a nice demonstration of the Hanbury Brown Twiss effect
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<N>=70 <N>=140 <N>=220

Figure 4.12: Measured two-body correlation function along the x direction for different number of
atoms detected on the sphere (in units of h̄krec). From left to right, the mean number of atoms is
70, 140, 220. As predicted by the simple model explained in this section, the height of the correlation
function goes as the inverse of the number of detected atoms.

and it is a demonstration of the importance of quantum mechanics in the description
of this experiment.

Following the same procedure as for the measurement of back to back correlations
we can measure the correlation between atoms emitted with collinear velocity. This is
equivalent to measure:

G(2)(δk) =

∫

d3kG(2)(k,k + δk) (4.30)

Normalization is then carried out as in case of back to back correlations (see section
4.6.3). Figure 4.13 shows the correlation measured on our experimental data for pairs
of atoms emitted with collinear velocity.

Figure 4.13: Projection of the collinear correlation function along the trap axis in units of h̄krec. The
peak at δp = 0 is the signature of the fact that atoms are bosons and tends to be bunched on the
detector. This is a further demonstration of the Hanbury Brown Twiss effect. The solid line is the
result of a Gaussian fit. See text for more details.

We can explain this correlation with a simple argument, sketched in figure 4.14. We
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have to consider a four particle system, formed by two pairs of atoms emitted back to
back. In figure 4.14 they are represented by the empty and the full pair of dots 4. When
we detect a particle on detector D1 and a particle on detector D2 we don’t know if the
detected particles belong to the empty or to the full pair of dots. This is equivalent to
say that we don’t know if the two particles followed the path drawn with a solid line in
figure 4.14 of the path drawn with a dashed line. The two possible paths can interfere
and this gives rise to the correlation peak (see the simple theoretical argument given
in section 1.2 to explain the Hanbury Brown Twiss effect). An analytical calculation
done assuming a Gaussian shape for the colliding condensates can be found in [86].

D
1

D
2

Figure 4.14: This sketch explains the reason why we observe an Hanbury Brown Twiss correlation for
two atoms with collinear momenta. The empty and the full dots are two pairs of correlated atoms
emitted back to back. The two colliding condensates are represented by the two grey ellipses in the
center of the sphere. When a particle is detected by detector D1 and a particle is detected by D2 we
are not able to say if the detected particle belong to the empty or to the full pair of dots, i.e. we cannot
know if the detected particle followed the solid or the dashed path. The two paths interfere and we
observe a bunching.

Width and height of the correlation

Height and width of the local correlation function are measured with the method used
for the back to back correlation (see section 4.6.3). The results of the three dimensional
fit are listed in the following table:

ξCL
x (krec) ξCL

yz (krec) ηCL

0.016 ± 0.003 0.069 ± 0.008 0.10 ± 0.02

As in case of the Hanbury Brown Twiss effect described in the first chapter, the width
of the correlation has to be related to the inverse of the spatial extent of the source

4The distinction between the two pairs is only graphical. The four atoms are indistinguishable in
the quantum mechanics sense.
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(i.e. it has to be proportional to the momentum spread of the source). Indeed the
measured width in the yz direction is not so different from the estimated width of
the source in momentum space ≈ 0.055 krec (for a condensate of 9.84 × 104 atoms).
The width on the x direction is limited by the detector resolution. Furthermore the
width of the collinear correlation is of the same order of magnitude as the width of
the back to back correlation. This is a quite interesting result. In fact, the width of
the collinear correlation gives a measurement of the size of the pair production source,
or equivalently of a mode of the scattered matter wave field. Since the back to back
and collinear widths are close, the pairs produced in the experiment are well emitted
in oppositely directed modes.

If the detector resolution had been arbitrarily good, the height of the collinear
correlation function should have been equal to 2. As we have already mentioned this
is not the case of our detector. A rough estimation of the expected bunching height is
given by (compare with equation 1.39):

η ≈ σ
(k)
x

ξCL
x

≈ 0.15 (4.31)

that is in good agreement with the measured value of ηCL.

4.6.5 Mode occupancy

In order to estimate the number of atoms per mode in the scattering sphere, we can
measure the ratio between the total volume of the sphere V and the correlation volume
∆V . However, the measured correlation volume is strongly affected by the detector
resolution, at least in the x direction. Therefore, in order to estimate the mean mode
occupation number, we first need to estimate the “real value” of the correlation lengths.
This can be done by using the height of the collinear correlation function as a reference.
In fact we know that the amplitude of the collinear correlation has to be equal to 2
if measured with an arbitrarily good detector. The collinear correlation length in
the x direction has to be ≈ 10 times smaller in order to reach this value. Therefore
the “real” correlation volume is 10 times smaller than the measure one. With our
experimental values we obtain N ≃ 2300 and V/∆V ≃ 1300 (see section 4.6.3) and
then V/∆Vreal ≃ 1300 × 10. Therefore the number of atoms per scattering volume is
≈ 0.2 and the pairs production is in the spontaneous regime [118].

4.6.6 Influence of the gain of the detector

As in the case of the measurement of fermionic antibunching described in the previous
chapters of this thesis, we would like to understand what is the role of the detection
efficiency on the correlations. In the case of the collinear correlation, we can follow
the same reasoning as the one done for fermions in section 1.4.5, equation 1.36. If the
detection efficiency varies slowly with respect to the correlation length, it cancels out
in the normalization process and the normalized correlation function doesn’t depend
on it.
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The situation is different for the back to back correlation. In fact here we measure
the correlation between two atoms that are far apart, on the opposite sides of the
detector. Furthermore, we are averaging over all the scattering angles. The result
obtained after this average procedure is meaningful only if we assume that G(2)(k,−k+
δk) depends only on δk and not on k. In this case, calling ǫk the detectivity of the
zone of the micro-channel plate that detects atoms with momentum k the correlation
function averaged over all the detector will be:

G
(2)
det(δk) =

∫

d3k ǫk ǫ−k+δk G(2)(k,−k + δk)

= G(2)(δk)

∫

d3k ǫk ǫ−k+δk (4.32)

As we said in section 4.6.3, the normalization is made by dividing the correlation
function calculated for each shot by the correlation calculated on the sum of all the
acquired shots. The same reasoning as for equation 4.32 can be done on the correlation
of the sum of all the shots. The contributions of the detection efficiency will cancel
in the normalization procedure and the final result will not depend on the detection
efficiency.

4.7 Comparison with theory

4.7.1 Analytical calculation

The perturbative approach described in section 4.4.1 allows one to calculate analytically
the second order correlation function and the sphere thickness.

The calculation has been done by M. Trippenbach et al. in [85] for the collision
geometry of the first generation experiment. Here we recall the calculation results. The
two-body correlation function is given by [85]:

G(2)(k1,k2, t) = 〈δ̂†(k1, t)δ̂†(k2, t)δ̂(k2, t)δ̂(k1, t)〉
= G(1)(k1,k1, t) · G(1)(k2,k2, t) + |G(1)(k1,k2, t)|2 + |M(k1,k2, t)|2 (4.33)

where δ̂ can be calculated in the way described in section 4.4.1. M(k1,k2, t) =
〈δ̂(k1, t)δ̂(k2, t)〉 is the anomalous density and G(1)(k1,k2, t) = 〈δ̂†(k1, t)δ̂(k2, t)〉 is
the first order correlation function. As we will see in what follows, the anomalous
density describes the back to back correlation while the first order correlation function
takes account of the collinear correlation. Since the measurement is done after a long
time-of-flight, we can calculate G(2) for a time t → ∞.

Taking the momenta in units of h̄krec, to the lowest order in δ̂, the anomalous
density is given by [85]:

M(k1,k2) = −i
αβ2γ2

16π
exp

(

−β2

4
(k1,x + k2,x)2

)

×

× exp

(

−γ2β2

4
(k1,r + k2,r)

2 − ∆
2

4

)

(

1 − erf

(

i∆

2

))

(4.34)
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with

α =
4Naσx

σ2
yz

√
π

β = Qσx

γ =
σyz

σx

∆ = β

(

1 − k2
1 + k2

2

2

)

In our experiment, for N = 105 atoms and Q = krec we have α = 1053, β = 227,
γ = 0.05.

We can decompose M(k1,k2) into two contributions.

The factor
[

exp
(

−β2

4 (k1,x + k2,x)2
)

exp
(

−γ2β2

4 (k1,r + k2,r)
2
)]

expresses momentum

conservation in the collision process. It is non negligible only when k1 ≈ −k2 and
decreases exponentially on a width that has the same anisotropy as the condensate
momentum density but it is two times larger.

The factor exp
(

−∆2

4

) (

1 − erf
(

i∆
2

))

expresses the conservation of the energy and is

non-negligible only for ∆ ≤ 1. As β is large, ∆ ≃ 1 for k1 ≈ 1 and k2 ≈ 1, that is the
requirement expressed by the energy conservation (see equation 4.25).

The result obtained for our experimental parameters (after having normalized equa-
tion 4.34 and averaged it over all the scattering angles, see [85]) is reported in figure
4.15. The experimental results (dots) are superposed to the curve obtained with the
theoretical calculation (black line). As the figure shows experiment and theory are in
very good agreement. This is a verification of the fact that the width of the back to
back correlation function is governed by momentum conservation, as expected with the
naive model described in section 4.6.3. The calculated width of the correlation along
the x axis is much narrower than the experimental one due to the resolution of our
detector.

As we said above, the first order correlation function takes account of the collinear
correlation. Under the assumption that the following conditions are satisfied:

β ≫ 1 ,
γ

|ur|
≪ 1 ,

1

|ur|βγ
≪ 1 (4.35)

where u = (k1 + k2)/|k1 + k2| and ur = (k1r + k2r)/|k1 + k2| is the radial component
(yz plane) of u, the first order correlation function is given by [85]:

G(1)(k1,k2) =
α2βγ3

32
√

2π|ur|
exp

[

γ2β2

8
∆k2

r − β2

8
∆k2

x

]

×

× exp

(

−β2

8
(u · ∆k)2

)

(

1 − erf

(

iβu · ∆k

2
√

2

))

×

× exp

(

−2β2γ2
∆K2

u2
r

)

(4.36)
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Figure 4.15: Back to back (top line) and collinear (bottom line) normalized correlation function calcu-
lated with the analytical model described in section 4.7.1 (solid line) as compared with experimental
data. The height of the calculated correlation function has been set in order to take account for the
fact that experimental data are projections of the three-dimensional correlation function (see text for
more details).

with ∆K = |k1+k2|
2 − 1 and ∆k = k1 − k2. We also assumed |∆k| small. The

assumptions 4.35 are verified in our experiment, because the region with ur ≈ 0 is
occupied by the two colliding condensates and is excluded from the analysis.

As in the case of the anomalous density, we can decompose G(1)(k1,k2) into two
parts. The first line of equation 4.36 expresses momentum conservation, the second
and third lines express energy conservation. The widths imposed by the momentum
contribution are

√
2 larger than the width of the back to back correlation5. However, in

this case, the energy conservation contribution has more important consequences than
in the back to back case. In fact, if the energy is strictly conserved, then equation 4.25

implies k1 = k2 and therefore u ·∆k =
k2
1−k2

1
|k1+k2|

= 0. In this case the collinear correlation
is the one given by momentum conservation. However, if u · ∆k 0= 0, the width of the
collinear correlation function is proportional to 1/β even in the radial direction, in
contradiction with the simple classical model developed in section 4.6.4 for which the
width of the collinear correlation is proportional to the momentum spread of the initial

5A numerical study done by K. Kheruntsyan with the positive-P method demonstrated that the
factor of 2 is only due to the Gaussian ansatz done for the shape of the colliding condensates.
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condensate.
Experimental data and theoretical results are plotted together in figure 4.15, bottom

line. As in the case of the back to back correlation, equation 4.36 has been normalized
and averaged over all the scattering angles in order to be compared with our data.
Once again the width of the correlation along the x direction is much smaller than the
experimental width. However, also the width along the y and z direction are much
smaller than the experimental ones. This effect comes from the energy conservation
requirement that, as we said above, would impose a much narrower width than the one
imposed by simply taking only momentum conservation into account.

A possible reason for this discrepancy could be that this method doesn’t take ac-
count of the mean-field interaction, neither between atoms in the same magnetic sub-
state or between atoms that are in the mx = 0 and mx = 1 substate. Our group
has already started a further study to quantify this effect. In addition, this model
doesn’t take account for the expansion of the two condensates during the collision.
This hypothesis seems to be reasonable (we will further discuss it in section 5.2.1), but
a quantitative estimation of the effect of condensate expansion is probably needed.

Sphere thickness and density

The same analytical treatment allows to calculate the collision sphere density and
thickness. In the hypothesis that the assumptions 4.35 are verified, we find:

ρ(k) = G(1)(k,k) =
α2βγ3

32
√

2π|ur|
exp

[

−2β2γ2(k − 1)2

|ur|

]

(4.37)

The sphere density is peaked around k = 1 with a width of |ur|
βγ

≪ 1. This theory thus
predict an anisotropic halo thickness, but the anisotropy is only strong for ur ≈ 0. This
direction is unaccessible to the first generation experiment, but will be fully accessible
in the second generation experiment, as we will see in chapter 5. It is worth noting
that the assumptions made above allows the calculation to be entirely analytical. The
thickness of the sphere and the collinear correlation function in the ur ≈ 0 direction
would be accessible by doing the calculation numerically.

4.7.2 Positive-P calculation

In this section we will compare our experimental results with the results obtained
with the numerical calculation done by K. Kheruntsyan and collaborators [84] that we
described in section 4.4.2.

The initial condition for the simulation is the wave function of the initial trapped
condensate modulated with a standing wave that imparts initial momenta ±krec in the
x direction:

Ψ(r, 0) = 〈Ψ̂(r, 0)〉 =
√

ρ0(r)/2
(

eikrecx + e−ikrecx
)

Ψ̃(r, 0) = Ψ
∗(r, 0) (4.38)



114 First Generation Experiment

where ρ0 is the density profile of the initial condensate (trapped in the mx = 1 state).

The numerical simulation has been run for a initial condensate of 9.84× 104 atoms
and a peak density of 2.5× 1019 m−3. The duration of the simulation is 25 µs and the
number of scattered atoms after this time is approximately 1.8% of the total number of
atoms in the initial condensate. This number has to be compared to the experimentally
measured fraction of 5% at the end of the collision (≈ 140 µs). Since the experiment is
in the spontaneous regime, we can approximate the behavior of the number of scattered
atoms as a function of time as linear (see figure 5.3). In this case the calculated fraction
of 1.8% can be extrapolated to 10% at 140µs. In the experiment the efficiency of the
transfer from mx = 1 to mx = 0 is estimated to be of the order of 60%, while the
numerical simulation assumes a transfer efficiency of 100%. In addition the part of the
sphere that can be used in the experiment is only 60% of the total volume. Taking
these factors into account the number of atoms in the simulated sphere scales down to
4%, in good agreement with the experimentally estimated fraction.

In the following table we report the experimental widths of the back to back and
collinear correlation function together with the numerically calculated ones (after a
collision time of 25 µs) [84]:

ξBB
x (krec) ξBB

yz (krec) ξCL
x (krec) ξCL

yz (krec)

Exp. 0.017 ± 0.002 0.081 ± 0.004 0.016 ± 0.003 0.069 ± 0.008

Theory 0.0025 ± 0.0001 0.076 ± 0.002 0.0032 ± 0.0001 0.086 ± 0.002

The error on the theoretical values takes account of the error due to stochastic sampling,
that is of the order of 3%. The calculated widths along the x axis are, as expected,
smaller than the measured ones. The numerically calculated values in the y and z
directions are in good agreement with the experimental ones, for both collinear and
back to back correlation. The remaining discrepancy between theory and experiment
may be due to the evolution of the system after 25 µs, not accessible with the positive-
P method. However, the good agreement leads one to think that the width of the
correlation function is mainly governed by the initial momentum distribution of the
condensate. This is in agreement with the simple model presented in section 4.6.4, but
it disagrees with the analytical calculation shown in section 4.7.1.

Some deviations between the experimental results and the numerical simulation can
be due to the fact that in the simulation of the collision process the efficiency of the
transfer from the trapped state to the mx = 0 state is assumed to be 100%. Therefore
interactions between mx = 1 and mx = 0 atoms are not taken into account. However as
we said in section 4.5.1, in the experimental realization of the collision experiment only
the 60% of the atoms is extracted from the trap and interactions are not completely
negligible. The effect of interactions will be calculated in a future study.

Thickness of the sphere

In sections 4.6.2 and 4.7.1 we said that we would expect the thickness of the sphere to be
anisotropic, with an aspect ratio inverted with respect to the trap. Unfortunately, since
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the positive-P simulation can be done for a collision time much shorter than the real
collision time, the numerical results are not directly comparable with the experiment. In
fact, at short collision times the thickness of the sphere is governed by the time-energy
uncertainty relation and, for a mean k-vector krec, the sphere is broadened by:

δkrec ≃
m

h̄krec∆t
(4.39)

Therefore in the numerical simulation the sphere width turns out to be isotropic and the
comparison between simulations run with different collision durations [84] shows that
it follows equation 4.39. In the experiment, the thickness of the sphere is not governed
by the effect described above because the collision time is very long. Therefore a
comparison between experiment and theory is not possible.

Another effect that can determine the thickness of the sphere at short collision time
can be evaluated, for a uniform system, with the approach used in section 4.3. The
mode occupation number can be calculated analytically and the population of modes
experiencing Bose enhancement can be taken into account. At short collision times the
population of modes that grow exponentially with time is larger than the population
of modes that oscillate at the spontaneous noise level. This allows one to calculate the
approximate width of the scattering sphere. The calculation has been done in [84] and
the sphere thickness turns out to be:

δk ≃ 4πa0 n0

krec
(4.40)

where a0 is the scattering length between atoms in the mx = 0 level and n0 is the
peak density. The width of the sphere no longer depends on the collision duration, it
increases with the effective coupling a0n0 and it decreases with the recoil momentum.
The positive-P simulation for He atoms simulates the collision for a time shorter than
25 µs, when the thickness of the sphere is governed by equation 4.39. Therefore, also
in this case, a direct comparison of the numerical simulation with the result obtained
from equation 4.40 is not possible. However numerical simulations in the long time
limit can be done for Sodium. In this case the agreement between the numerical result
and equation 4.40 is good [84]. Therefore we are tempted to think that equation 4.40
could play a role in the determination of the thickness of the sphere for collision times
of the order of the experimental ones. The evaluation of 4.40 for our experimental
parameters gives: δk/krec ≃ 0.05 [84]. This value has to be added in quadrature to the

momentum width of the initial condensate along the radial direction σ
(k)
yz = 0.055 krec,

the other quantity that determines the thickness of the sphere in the zone available
in the experiment. One obtains δk = 0.074 krec, not far from the measured value
δk = 0.067 krec. This can confirm our hypothesis that the mechanism leading to
equation 4.40 can play a role in the experiment. However we note that equation 4.40
is valid if the system enters the stimulated regime, while the experiment is in the
spontaneous regime. Therefore the above estimation cannot be fully trusted.
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4.8 Conclusion

In this chapter we highlighted the noticeable analogy between correlated photon pairs
created by parametric down-conversion and correlated atom pairs issued from the colli-
sion of two condensates of metastable helium. We discussed the important implications
of correlated photon pairs for the study of quantum mechanics and we described some
of the fundamental experiments performed in quantum optics with this system.

In order to describe the creation of pairs in the collision of two condensates from
the theoretical point of view, we collaborated with two groups of theoreticians, that
use two different methods for the solution of the Heisenberg equations for the system,
one analytical and the other numerical. The two methods have been described and we
pointed out advantages and drawbacks of both.

During my PhD we performed an experimental demonstration of the fact that atoms
created in the collision of two condensates are correlated by pairs. A complete char-
acterization of the correlation function, for atoms scattered back to back and with
collinear velocity has been made and reported in this chapter. The experimental data
have also been compared with the theoretical results obtained with the analytical and
the numerical method described above. Theory and experiments are in general in good
agreements, but have both some limitation that, in some cases, makes the comparison
difficult. These limits are recalled in the following list:

Experiment:

• Due to the collision geometry, the thickness of the sphere cannot be measured
along the x direction because of the presence of the colliding condensates and an
eventual anisotropy cannot be shown.

• In section 4.6.1 we pointed out that, due to a four-wave mixing phenomenon, we
detect a condensate on the top of the sphere and one on the bottom in addition to
the two colliding condensates. This fact is annoying because the four condensates
have to be removed from the data before starting the analysis and this causes
several problems (see sections 4.6.3 and 5.1.2).

• The transfer efficiency of the trapped atoms in the two colliding condensates is
only of the order of 60%. A larger efficiency is preferable because it would imply a
larger number of atoms scattered in the collision sphere. In addition interactions
between atoms in mx = 0 state and atoms that are still trapped can influence the
sphere thickness and the correlations.

Theory:

• The analytical model shows a good agreement with the experiment concerning
the back to back correlation but not for the collinear correlation. This can be
due to the fact that it doesn’t take into account the mean-field effect and the
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expansion of the condensates during the collision. Further studies are going to
quantify this effect.

• The numerical model shows a good agreement for both collinear and back to
back correlation functions, but it can calculate them only for short collision times
(about a factor of 6 shorter than in the experiment).

• The analytical model predicts an anisotropic sphere thickness, governed by the
momentum spread of the initial condensate, while the numerical calculation can-
not give any prediction. However there are physical arguments (discussed in
section 4.7.2) that predict an isotropic scattering shell thickness. For these rea-
sons, it would be interesting to measure the sphere thickness on experimental
data, on the long direction of the condensate.

In order to overcome the experimental issues outilned above and to make a more
thorough study, we devised an experiment in a new collision geometry. The next chapter
will be devoted to the description of this second experiment and to the topics that we
would like to study in this upgraded version of the experiment.
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Chapter 5

Second Generation Experiment

This chapter is devoted to the description of the upgraded version of the atomic pairs
experiment described in the previous chapter. In order to measure the sphere thickness
and density we decided to perform the experiment in another collision geometry, to get
rid of the two condensates falling in the direction of the long axis of the trap. In addition
this second version of the experiment will allow us to study an even more intriguing
topic, the squeezing of the difference of the number of atoms in two correlated volumes
of the sphere.

In the first part of this chapter we will give some theoretical insight of these two
topics, we will try to estimate the theoretical expectations and the potential problems
that we could encounter. Thereafter we will describe in detail the experimental setup
used in the second generation and we will describe advantages and disadvantages of the
second version of the experiment with respect to the first version. At the end of the
chapter we will present some preliminary results since data acquisition and analysis are
still in progress.

5.1 Motivations for an upgraded experiment

5.1.1 Sphere thickness and density

As we said in the previous chapter, an analytical model predicts that the sphere thick-
ness should be anisotropic (see section 4.7.1), with an aspect ratio inverted with respect
to the trap. Unfortunately we weren’t able to measure it in the first generation ex-
periment because the two colliding condensates are situated in the region where the
anisotropy should be the stronger. On the other hand, there are physical arguments
that suggest that the sphere thickness should show an aspect ratio smaller than that
of the trap, as explained in section 4.7.2. Therefore we would like to perform an exper-
imental check.

The second subject that we would like to study is the density of the scattering
sphere and, in particular, how it varies as a function of the scattering angle. In fact one
can wonder whether the elongated geometry of the condensate enhances the scattering
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of atoms along the long axis of the trap. Gain directionality has been observed in
phenomena like superradiance, where a condensate is illuminated by a polarized laser
beam. Due to bosonic stimulation scattered photons travels preferentially along the
long axis of the condensate, in the so-called end-fire mode [119],[120],[121].

Gain directionality has been studied in a situation similar to our experiment by
H. Pu and P. Meystre [122]. They demonstrated that the gain of the amplification of
the mode population depends on the geometry of the source and that it is stronger
along the long axis of the condensates. Recent numerical simulations carried out by P.
Deuar showed that, with 105 atoms in the initial condensate, in the collision geometry
used in the second generation experiment, we should observe an enhancement of the
population scattered along the long axis of the condensate of ≃ 30% with respect to
the population scattered along the short axis [123].

5.1.2 Relative number squeezing

In section 4.1 we showed that correlated pairs of photons produced with parametric
down conversion have an interesting property. Since each photon forming a pair is
emitted in one of the two correlated modes we expect the number of photons in the
two twin modes to be correlated in such a way that their difference does not fluctuate.
This effect is called amplitude or number squeezing. It has already been demonstrated
several times in nonlinear optics and it would be interesting to check if we can observe it
in our correlated atom pairs system. In our experiment we should measure the difference
between the number of atoms in two correlated modes for several realizations of the
experiment and prove that this quantity is consistent with zero and its fluctuations are
sub-Poissonian.

This is actually another way, alternative to the measurement of the correlation
function, to prove that atoms (or photons) are emitted in correlated pairs. Furthermore
number squeezing doesn’t depend on the number of atoms per scattering mode, while
the correlation function does. As we have shown in section 4.6.3, the height of the
back to back correlation peak decreases as the number of atoms per mode increases,
making eventually hard to demonstrate atom-atom correlation by measuring g(2) in case
of stimulated scattering regime. On the contrary, number squeezing should be easier
to see if the number of atoms per mode is large. In fact, the population difference
between two correlated modes i and j is squeezed if its variance is smaller than the
Poissonian fluctuation 〈Ni〉 + 〈Nj〉, where 〈Ni〉 and 〈Nj〉 are the mean populations of
the two modes. If the population of each mode is small, an observed number difference
squeezing could be non significant. In this case however, the height of the correlation
function should be large. The two methods are therefore complementary.

More formally, the normalized variance of the relative number fluctuations between
N̂i and N̂j is given by [84]:

Vi−j =
〈
[

∆(N̂i − N̂j)
]2
〉

〈N̂i〉 + 〈N̂j〉
= 1 +

〈:
[

∆(N̂i − N̂j)
]2

:〉
〈N̂i〉 + 〈N̂j〉

(5.1)
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where ∆X̂ = X̂−〈X̂〉 is the fluctuation. The variance has been normalized with respect
to the value it would have if the atoms were not correlated but randomly distributed
on the sphere (Poissonian statistics). Therefore, with this definition, we have Vi−j = 1
for randomly distributed atoms. If the atoms are correlated in pairs, we would have a
reduction of fluctuations below the shot-noise level and then Vi−j would be smaller than
one. Perfect squeezing of the relative number fluctuations corresponds to Vi−j = 0.

Relative number squeezing has been measured on the data generated with the nu-
merical simulation described in section 4.7.2 [84]. The sphere has been divided in four
quadrants, indicated in figure 5.1 left, by the letters A, B, C, D. The two colliding
condensates have been removed in a way that allows to keep the same volume for the
four regions. Quadrants A and C and quadrants B and D contain atoms correlated in
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Figure 5.1: On the left side: illustration of the four quadrants A, B, C, D on the scattering sphere. The
two colliding condensates are cut in order to keep the symmetry. On the centre and right: normalized
variance for the relative number squeezing between correlated quadrants (center) and uncorrelated
quadrants (right) as a function of time.

pairs. Therefore the number differences NA − NC and NB − ND must show squeez-
ing, while NA − NB and NC − ND should have a variance equal to 1. On the right
side of figure 5.1 we show the results given by the positive-P simulation, as a function
of time, for VA−C (or equivalently VB−D) and for VA−B (or equivalently VC−D). As
expected, the relative number fluctuations between diametrically opposite quadrants
shows a normalized variance of 0.2, i.e. a squeezing of 80%. On the other hand, the
relative number fluctuations between neighboring (non correlated) quadrants is Poisso-
nian and its variance is equal to 1. There are a few things to note. The first one is that
numerical simulations have been done assuming a detection efficiency η = 1. Squeezing
is strongly dependent on the detection efficiency. In fact, if η 0= 1, if the atoms are
randomly distributed on the sphere, the variance of the number difference is:

V random
i−j = η

(

〈N̂i〉 + 〈N̂j〉
)

(5.2)
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and equation 5.1 becomes:

Vi−j = 1 + η
〈:

[

∆(N̂i − N̂j)
]2

:〉
〈N̂i〉 + 〈N̂j〉

. (5.3)

In our experiment the detection efficiency is estimated to be η ≈ 10%, therefore the
above prediction of ≃ 80% relative number squeezing will be degraded down to a much
smaller value of ≃ 8%.

The second thing to note is that even the data produced by the numerical simulation
do not show a 100% squeezing. The reason for that can be found in the cut that we
have to perform on the sphere to divide it in four quadrants and to remove the colliding
condensates. In fact, since each mode has a finite size, given by the width of the
correlation function, there is a non-zero probability for one of the atoms forming a pair
to be in one of the four quadrants, while its partner falls in a quadrant uncorrelated with
the first one or in an excluded zone. This border effect reduces the measured squeezing.
For the same reason the larger is the quadrant size, the better is the squeezing [107].

Results of the first generation experiment

We tried to measure number difference squeezing on the data of the first generation
experiment. From the experimental point of view, things are a bit more complicated for
three reasons. First, we have to remove from the sphere four condensates instead of two,
artificially decreasing the observable squeezing, for the reasons mentioned above. Sec-
ond, the detector efficiency is not homogeneous over all the sphere. This can introduce
a systematic error that can cause a displacement of the center of the number differ-
ence distribution. Third, the number of atoms detected on the sphere changes from a
realization to another. Therefore averaging over different realizations corresponds to
averaging distributions with different variances. The latter is solved by normalizing
∆N = Ni − Nj obtained for each realization of the experiment by

√

Ni + Nj . More
details about the data analysis can be found in [82].

In figure 5.2 we show the normalized distribution obtained from our experimental
data. The data used here are the same on which we measured the correlation functions
shown in section 4.6. The sphere have been divided into two symmetric volumes, one
containing atoms with momentum pz > 0, the other containing atoms with momentum
pz < 0. The four condensates falling on the sphere have been excluded in order to
keep the two volumes symmetric. During the data analysis, we observed that the
width of the distribution strongly depends on the size of the zones removed around the
four condensates. This is probably due to the existence of thermal clouds around the
condensates that are difficult to be properly cut. The measured standard deviation of
the number difference distribution fluctuates from 0.96 to 1.01, depending of the size
of the excluded zones. Since the standard deviation is normalized to the value it would
have in case of randomly distributed pairs, it has to be smaller than one in order to
prove that the distribution is squeezed.
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Figure 5.2: Measured distribution of the difference of the number of atoms detected in two correlated
volumes of the scattering sphere. The solid line is a Gaussian fit. The RMS value of the distribution
is 0.96.

As we said above, squeezing is strongly affected by the detector efficiency. The best
value obtained (standard deviation equal to 0.96) would give a squeezing of the order
of 80%, assuming a detection efficiency η = 10%. This value would be in agreement
with the prediction of [84]. However, since the measured variance strongly depends on
the way we analyze the data and since we don’t know exactly the detection efficiency,
these data have to be considered merely encouraging.

5.2 New collision geometry

In the second generation experiment the collision takes place along the short axis of the
condensate instead of taking place along the long axis. This presents some advantages
and disadvantages with respect to the first experimental realization. The first advantage
is that the two colliding condensates are on the top and on the bottom of the sphere.
Therefore we would be able to study the sphere in the direction of the long axis of
the condensate. Second, the beams used to produce the two colliding condensates
have a well defined polarization (we will give more details on this point in section
5.3), reducing the probability of non-resonant Raman transitions with respect to the
previous realization. In the first version of the experiment, these transitions and four-
wave mixing phenomena were responsible for the observation of the condensates III and
IV shown in figure 4.6.1. In addition, the suppression of unwanted condensates would
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decrease the size of the zones that have to be removed from the sphere, increasing the
signal to noise ratio for the measurement of the correlation function and increasing
the observable amount of squeezing. Furthermore, since it is still not clear whether
the detector saturation is a local phenomenon or not, the fact of having only two
condensates, instead of four, falling on the detector within a short delay (about 20 ms)
is preferable. For reasons that we will explain in section 5.3 we decided to make first a
Raman transition to transfer the atoms in the untrapped state mx = 0 and then a Bragg
pulse to separate the untrapped condensate in two counterpropagating condensates in
the state mx = 0. The geometry of the Raman and Bragg beams defines the relative
velocity of the condensates that, in the present case, is

√
2vrec. In section 5.3 we will

give all the details concerning the experimental realization.
The drawback of the new collision geometry is that the total number of scattered

particles during the condensates collision is smaller than in the old geometry. In section
5.2.1 we will discuss the two time scales that play a role in this experiment and we will
develop a simple collision model to study the collision rate during the separation of the
condensates. A comparison between the two collision geometries will be drawn.

5.2.1 Number of scattered atoms

In both versions of the experiment, the collision between the two condensates happens
when the condensates are in the magnetic sublevel mx = 0 where they are no longer
trapped. For this reason, there are two physical quantities that govern the number of
collisions: the atomic density, that changes due to the free expansion of the condensates,
and the separation of the two condensates, determined by their relative velocity. These
two physical processes define two different time scales, that we will now estimate.

Rough estimate

In the Thomas-Fermi regime, i.e. when the kinetic energy of the atoms in the con-
densate is negligible with respect to the interaction energy, the wave function of the
trapped condensate is an inverted parabola:

ΦTF (r) =

(

µ − U(r)

gN

)1/2

(5.4)

where µ is the chemical potential, U(r) is the trapping potential, N is the number of
atoms. The interaction constant is defined as g = 4πh̄2a0/m with a0 = 5.3 nm, the
scattering length for atoms in mx = 0. The chemical potential is given by:

µ =
1

2
h̄ω

(

15Na0

√

mω

h̄

)2/5

(5.5)

where ω is the geometrical average of the trapping frequencies. The spatial extension
of the trapped condensate is given by the Thomas-Fermi radius:

Ri =

√

2µ

mω2
i

(5.6)
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for i = x, y, z. For our trapping frequencies, with N = 105, we find Rx = 114 µm and
Ryz = 4 µm. If we neglect the expansion, the separation time of the two condensates
will be:

tsepx = 1.20 ms (5.7)

in the first collision geometry (two counterpropagating condensates with a velocity of
vrec along the x direction) and

tsepyz = 70 µs (5.8)

in the second collision geometry (two counterpropagating condensates with a velocity
of 0.7vrec along the radial direction). On the other hand, the condensates will expand
very quickly on the radial axis, while the expansion will be negligible on the long axis.
A rough estimate of the expansion time of the condensates is given by:

texp
yz =

1

ωyz
= 140 µs (5.9)

At this time, the Thomas-Fermi radius is a factor of
√

2 larger. From this rough
estimate we already see that the physical processes governing the two experiments are
different: when the collision happens along the long direction, the number of collisions
is limited by the expansion of the condensate along the radial direction, while when the
collision happens along the radial direction the number of scattered atoms is limited
by the separation time of the condensates. This is about two times shorter than texp

yz .
In the following section we will estimate more quantitatively the number of collisions
in the two cases.

Collision model

In order to determine the total number of atoms scattered during the collision of the
two condensates we will use the approach described in [109]. The authors of this paper
have shown that a good estimation of the number of scattered atoms is given by:

Ncoll(t) = 2

∫ t

0
dt′

∫

dr∆v σ0 n1(r, t
′)n2(r, t

′) (5.10)

where ∆v is the relative velocity of the two condensates, σ0 = 8πa2
0 is the scattering

cross section and n1(r, t) and n2(r, t) are the densities of the two condensates. The
factor of 2 accounts for the fact that there are two atoms scattered for each collision.

The time dependence of the densities of the two condensates takes into account the
spatial separation of the condensates and the expansion of the condensates. In order to
model the expansion we use the model developed by Y. Castin and R. Dum in [124], in
the Thomas-Fermi regime, where the expansion of the condensate can be written in an
analytical form. Following this model, the density of the condensates can be written
as:

n1,2(r, t) =
µ

gλ‖(t)λ
2
⊥(t)

(

1 − m

2µ

(

ω2
x

λ2
‖(t)

x2 +
ω2

yz

λ2
⊥(t)

(y2 + z2)

))

(5.11)
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Here λ⊥(t) and λ‖(t) take into account the expansion of the condensate in the radial and
in the axial direction respectively. For a strongly elongated condensate ǫ = ω‖/ω⊥ ≪ 1
and, defining τ = ω⊥t, one can write:

λ⊥ ≃
√

1 + τ2

λ‖ ≃ 1 + ǫ2
(

τ arctan(τ) − ln
√

1 + τ2
)

(5.12)

As we will see, the collision time is very short (about 50 µs when the collision takes
place on the short axis of the condensate and about 150 µs when the collision takes
place along the long axis of the condensate) and we can neglect the expansion of the
condensate along the long axis of the trap. In order to fix the initial density of the
two colliding condensates we proceed as follows: we fix the number of atoms in the
trapped condensate and we suppose 100% efficiency for the Raman process. Then we
suppose that the Bragg pulse splits the condensate in two parts with the same number
of atoms and therefore with a peak density equal to half the peak density of the initial
condensate. In case of a non-perfect 50% splitting, the number of atoms in the sphere
will be smaller1. Finally we suppose that the Thomas-Fermi radius of the two colliding
condensates is equal to the Thomas-Fermi radius of the initial condensate (i.e. the
chemical potential is the same).

In figure 5.3 we compare the number of scattered atoms as a function of time (for
105 atoms in the initial condensate) and as a function of the relative velocity, for the
two collision geometries. In the left column we report the results obtained in case that
the collision takes place along the short axis of the condensate and in the right column
for the collision along the long axis.

If we look at the number of scattered atoms as a function of time (first row of figure
5.3), we see that, if the collision happens along the long axis, the collision time is about
300 µs, much longer than in the other geometry (for which it is about 50 µs). In agree-
ment with the rough estimate done at the beginning of this section, the collision time
is comparable with the expansion of the two condensates for the first generation exper-
iment, while it is limited by the separation time for the second generation experiment.
For this reason, the number of scattered atoms, in the first generation experiment, is
about 10 time larger than in the ”short axis collision” case. This means that particular
care is needed to carry out the second generation experiment, in order to have large
condensates, a very good Raman transfer efficiency and a very good 50% Bragg pulse
and therefore the maximum number of atoms detected on the sphere.

In the second row of figure 5.3 we show how the number of scattered atoms varies
as a function of the relative velocity of the two colliding condensates. The trend of the
curve is different in the two collision geometries. If the collision happens along the short
axis, the number of scattered atoms is almost insensitive to the relative velocity and
decreases if this increases. On the contrary, if the collision happens along the long axis
of the condensate, the number of collisions shows a stronger dependence on the relative

1The number of atoms in the sphere is proportional to the product of the number of atoms in each
condensate. This product is maximum if the two condensates have the same number of atoms.
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Figure 5.3: Number of scattered atoms as a function of time (first row) and as a function of the relative
velocity of two colliding condensates (second row). In the left column we report the results obtained
when the collision happens along the short axis of the condensate and in the right column we report
the results obtained when the collision happens along the long axis of the condensates. The calculation
have been made for 105 atoms in the initial condensate. The number of scattered atoms as a function
of time (first row) has been calculated for the appropriate collision velocity.

velocity and the number of scattered atoms increases as the relative velocity increases.
We can understand this trend if we go back to equation 5.10. In case of collision
along the short axis the expansion of the condensates is negligible. This means that
we can perform the temporal integration of equation 5.10. The collision time is given
by ∆t = 2Ryz/∆v, therefore:

Ncoll = 2 ∆t

∫

dr∆v σ0 n1(r)n2(r)

= 4Ryzσ0

∫

drσ0 n1(r)n2(r)

that doesn’t depend on the collision velocity. The effective trend of the number of
collisions as a function of the collision velocity will be given by the competition between
the two effects: if the relative velocity decreases the collision time is longer and the
expansion starts to count. If the collision happens along the long axis, the number
of collisions is dominated by the density of the condensates and will increase with the
relative velocity, as predicted by equation 5.10.
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5.3 Experimental setup

We have seen in the previous section that, if the collision between the condensates
happens along the short axis, the number of scattered atoms is quite small. Therefore
all the experimental steps bringing to the production of the colliding condensates have
to be as efficient as possible.

In section 4.5.1 we saw that whereas the transfer efficiency of the two-beam Raman
transition is quite good (about 90%), as soon as we retroreflect the horizontal beam
in order to split the condensate in two counterpropagating condensates, the transfer
efficiency drops to 60%. Even though this behavior has not been completely under-
stood, a possible explanation can be found in the fact that the retroreflected beam L′

2

has a power smaller than L2, due to reflections on the windows of the science chamber.
This makes the Rabi frequency of the transition driven by the couple L1 + L2 different
from the one of the couple L1 + L′

2. Since the two Rabi frequencies cannot be inde-
pendently tuned, the power unbalance between L2 and L′

2 decreases the three-beam
process efficiency.
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Raman transition Bragg transition

Figure 5.4: Level scheme for the transition used to drive Raman and Bragg transition.

In order to solve this problem we decided to decouple the process that transfers the
atoms in the untrapped level from the process that generates the two counterpropagat-
ing condensates. Therefore we proceed as follows: a Raman transition is driven by the
beams L1 and L2 drawn in the level scheme of figure 5.4. Atoms absorb a photon from
L2 and emit a photon in L1. Therefore they are transferred from the trapped level
mx = 1 to the untrapped level mx = 0 and acquire a momentum h̄krec(e2 − e1), where
e1 and e2 indicate the direction of propagation of the L1 and L2. Thereafter a Bragg
transition driven by the beams L1 and L3 (see the level scheme of figure 5.4) splits the
untrapped cloud into two parts: the duration of the Bragg pulse is such that half of
the cloud stays in the state of momentum h̄krec(e2 − e1) and half of the cloud absorbs
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a photon from L1 and emits a photon in L3 and is therefore transferred in the state of
momentum h̄krec(e2 − e1) + h̄krec(e1 − e3), where e3 is the direction of propagation
of L3. The collision is made between these two condensates.

Figure 5.5: Arrangement of the Raman and Bragg beams in the science chamber. The bias field is
oriented along the x direction. The three beams are contained in the vertical plane. L1 forms an angle
θ ≃ 8˚ with the horizontal plane, whereas L2 and L3 forms an angle φ ≃ 7˚ with the vertical axis.
In the inset we show the section of the collision sphere in the vertical plane in momentum space. The
frame axis are the propagation vectors of the three laser beams and to simplify the drawing we imposed
θ, φ = 0˚.

Figure 5.5 shows the arrangement of the three beams in the chamber. L1 is perpen-
dicular to the bias and forms an angle θ ≃ 8˚ with the horizontal plane. L2 and L3 are
counterpropagating (therefore e2 = −e3), they are contained in the vertical plane and
they form an angle of φ ≃ 7˚ with the vertical direction. The inset of figure 5.5 shows
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the collision sphere and the two colliding condensates in the velocity frame. For sim-
plicity, in the inset we pose θ,φ ≃ 0˚. The sphere is centered at (3/2e2 − 1/2e1)h̄krec

and its radius is h̄krec|e1 + e2|/2 = h̄krec/2
√

(cos θ + sinφ)2 + cos2 φ ≃ h̄krec/
√

2.

Beams polarization

As one can see from figure 5.4, L1 and L3 have to be π polarized, i.e. with linear po-
larization perpendicular to the bias axis. This can be achieved in the present geometry
by assuring that they propagate in the vertical (yz) plane. L2 has to be σ polarized.
Since it propagates in the vertical plane as well, its polarization is set to be linear and
perpendicular to the bias axis. In this case, the polarization vector can be written
as the sum of two components, one with right circular polarization and one with left
circular polarization. Since atoms in mx = 1 are only sensitive to the left circular
polarized component, the effective power seen by the atoms is half of the total power.
We note that a photon that is σ+ polarized can drive, together with a σ− polarized
photon, a non-resonant Raman transition from the mx = 1 state to the mx = −1 state.
However a simulation shows that the population of this state is smaller than 1% and
can be neglected.

The fine adjustment of the polarization is done by using half-wave plates and po-
larizer beam splitters situated just before the beam enters the science chamber and
minimizing the amount of atoms extracted from the condensate due to off-resonant
Raman transitions.

Experimental control of Raman and Bragg beams

We already pointed out the fact that Raman and Bragg pulses must have a high Rabi
frequency so that the transfer is not sensitive to the velocity spread of the atoms in the
condensate (see equation 4.24) and to bias fluctuations, that are of the order of a few
kHz. Therefore we work with Rabi frequencies ranging between 100 kHz and 1 MHz.
Raman and Bragg beams are switched on and off by acousto-optical modulators driven
by low-noise synthesizers. The effective temporal superposition of the light pulses used
to drive the Raman or the Bragg transition is assured by the use of RF switches with
a controllable delay. With the present setup we can drive pulses of a duration down to
500 ns.

The three beams are generated from the same DBR diode laser that injects a laser
amplifier. The light at the output of the amplifier is split into two parts: one goes
into an acousto-optical modulator and generate L1, the other part goes into a second
acousto-optical modulator and is used to generate L2 and L3. In fact, L2 and L3 don’t
need to be on at the same time because one is used for the Raman transition and
the other one for Bragg. An electro-optical modulator, triggered after the end of the
Raman pulse, is used to switch the polarization of the beam from perpendicular to the
bias field (L2) to parallel to the bias field (L3). A polarizing beam splitter installed
just after the electro-optical modulator switches between the two different optical paths
that L2 and L3 must follow to go respectively on the top and on the bottom of the
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science chamber (see scheme represented in figure 5.6). This way to generate L2 and
L3 allows to have the maximum amount of power at our disposal for each beam. The
transmission efficiency of the electro-optical modulator is 82% and the extinction rate
is 0.8%.

Fiber amplifier 
output 

A
O

M
  

A
O

M
  

L1

EOM  

L2

L3

Figure 5.6: Scheme of the optical setup used to generate the three beams needed to drive Raman and
Bragg transitions. The laser beam at the output of the fiber amplifier is split into two parts: one
passes through an acousto-optical modulator (AOM) and generates the beam L1; the other one passes
through an AOM and through an electro-optical modulator (EOM). The latter is used to change the
polarization of the beam by 90˚between the Raman and the Bragg pulse. A beam splitter installed
after the EOM is used then to change the path followed by the laser beam: L2 drives the Raman
transition and enters in the science chamber from the top; L3 drives the Bragg transition and enters
in the science chamber from the bottom (see figure 5.5). Mechanical shutters (not drawn for sake of
simplicity) are inserted in the path of the three beams to assure that no light enters the science chamber
when not required.

Since the number of atoms scattered in the sphere depends on the density of the
cloud, the delay between the Raman and the Bragg pulse is set to the smallest possible
value, about 1 µs. During this delay we trigger the electro-optical modulator and we
change the power and the detuning of L3 by acting on the acousto-optical modulator.
At the same time the power of L1 is changed as well. In this way we can have a control
of all the parameters that determine the efficiency of the Raman and Bragg processes.
The laser is detuned on the blue side of the atomic resonance by ∆/2π = 600 MHz.

5.3.1 Theory of the Bragg transitions

As we pointed out in section 5.2.1, since the number of scattered atoms in this geometry
is quite small, we want all the processes involved in the production of the two colliding
condensates as efficient as possible. In the previous version of the experiment we had
already managed to drive two-beam Raman transitions with a good efficiency. In this
section we will show what are the requirements to have an efficient Bragg transition.

The difference between a Bragg and a Raman transition resides in the final internal
states of the atoms. In a Raman transition the initial and the final internal states are
different, while in a Bragg transition they are the same (see figure 5.4). For this reason,
it is possible to have a 2N-photon Bragg transition, where the atoms will end in the
same final state but with a different final momentum, determined by the number of
photons exchanged with the laser beams and by their momentum. By changing the
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power and the detuning of the laser beams one can decide which state to populate. We
would like to note that, since in this collision geometry the number of scattered atoms
doesn’t depend too much on the collision velocity (see figure 5.3, second row), we are
not interested in driving a 2N (N > 1) Bragg transition. On the other hand, this could
be a nice trick to increase the number of scattered atoms in the other collision geometry.
However, in our apparatus, a sphere of radius bigger than vrec would be bigger than
the detector and would not be entirely detected. This prevents the measurement of
back to back correlations but it still allows the measurement of collinear correlations
and of the thickness of the sphere.
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Figure 5.7: Energy diagram of the states that can be excited in a two-photon and a four-photon Bragg
process.

In figure 5.7 we show the states that can be populated by driving a two-photon
and a four-photon Bragg transition. Due to the quadratic dependence of the energy
on the momentum acquired by the atoms, the states involved lay on a parabola. The
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initial state is |0〉 = |g,p〉, where g stands for ground and p is the initial momentum
of the atoms. If the atoms make a two-photon Bragg transition, they absorb a photon
of momentum h̄k1 = h̄krece1 and they emit a photon of momentum h̄k3 = h̄krece3.
Therefore they will be transferred in the virtual state |1〉 = |e,p + h̄k1〉 (where e stays
for excited) and will end up in the state |2〉 = |g,p + h̄(k1 − k3)〉. For a four-photon
transition, they will absorb a third photon of momentum h̄k1 and they will emit a
fourth photon of momentum h̄k3. Therefore they will be transferred to the virtual level
|3〉 = |g,p+ h̄(2k1 −k3)〉 and they will end up in the state |4〉 = |g,p+ h̄(2k1 − 2k3)〉.

The population of states |0〉, |2〉 and |4〉 is determined by the duration of the in-
teraction between the laser field and the atoms, by the relative detuning between the
two laser beams δ and by the two-photon Rabi frequency Ω = Ω1Ω3/(2∆). In order
to perform our experiment we want to keep the population of the state |4〉 negligible
with respect to the population of states |0〉 and |2〉 and we want to end up with half
of the atoms in |0〉 and half in |2〉 in order to have the maximum collision rate. In the
following section we will calculate the populations of these states.

Schrödinger equation

The Hamiltonian describing the interaction between the atoms and the laser field can
be written, in the dipole approximation, as:

HINT = −d · E(r, t) (5.13)

where d is the atomic electric dipole moment. The laser field E(r, t) = E1(r, t)+E3(r, t)
is the sum of the fields of the two lasers, L1 and L3, driving the Bragg transition, that
can be written as:

E1(r, t) = E1e1(ei(k1·r−ω1t) + c.c.)

E3(r, t) = E3e3(ei(k3·r−ω3t) + c.c.)

The Rabi frequency associated to the one-photon process bringing the atom from |g〉
to |e〉 and vice-versa is given by:

Ω1 =
2

h̄
〈e|d · E1e1)|g〉

Ω3 =
2

h̄
〈g|d · E3e3)|e〉

The interaction hamiltonian is therefore written as:

HINT = h̄
Ω1

2
e−iω1t|1〉〈0| + h̄

Ω3

2
e−iω3t|1〉〈2| +

+ h̄
Ω1

2
e−iω1t|3〉〈2| + h̄

Ω3

2
e−iω3t|3〉〈4| + c.c. (5.14)

while the atomic Hamiltonian is given by:

HA =
4

∑

i=0

Ẽi |i〉〈i| (5.15)
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where Ẽi is the energy of the |i〉 state and takes account of the energy difference between
|e〉 and |g〉, of the light shift of the atomic levels and of the momentum acquired by the
atom due to emission or absorption of photons.

The wavefunction |ψ〉 can be written as:

|ψ〉 =
4

∑

i=0

Cie
−iẼi t|i〉 (5.16)

In the hypothesis that the spontaneous emission is negligible, the Schrödinger equa-
tion is given by the following expressions:

Ċ0 = −i
Ω1

2
ei∆01t C1

Ċ1 = −i
Ω1

2
e−i∆01t C0 − i

Ω3

2
e−i(∆01+δ02)t C2

Ċ2 = −i
Ω1

2
ei∆23t C3 − i

Ω3

2
ei(∆01+δ02)t C1

Ċ3 = −i
Ω1

2
e−i∆23t C2 − i

Ω3

2
e−i(∆23+δ24)t C4

Ċ4 = −i
Ω3

2
ei(∆23+δ24)t C3 (5.17)

In the equations above, ∆01 and ∆23 are the detuning of the laser field E1(r, t) with
respect to the transition |0〉 → |1〉 and |2〉 → |3〉, taking into account the momentum
transferred to the atoms. Since ∆/2π = (ω1 − ω0)/2π = 600 MHz is much larger than
the recoil frequency ωrec/2π = h̄k2

rec/2m/2π ≃ 40 kHz we can set ∆01 ≃ ∆23 ≃ ∆.
The quantities δ02 and δ24 are the effective detunings of the transitions |0〉 → |2〉

and |2〉 → |4〉 respectively and are given by:

δ02 = ω3 − ω1 +
(p + h̄k1 − h̄k3)2

2mh̄
− p2

2mh̄

δ24 = ω3 − ω1 +
(p + 2h̄k1 − 2h̄k3)2

2mh̄
− (p + h̄k1 − h̄k3)2

2mh̄

where we supposed that the light shifts of the states |g〉 and |e〉 are equal2 and therefore
cancel away.

In order to obtain the dynamic equations for states |0〉, |2〉, |4〉 we adiabatically
eliminate the virtual levels |1〉 and |3〉. This is justified when ∆ ≫ Ω1,Ω3, δ02, δ24.
In this case we can integrate the equations for Ċ1 and Ċ3 considering C0, C2 and C4

constant in time. We therefore obtain:

Ċ0 = i

(

Ω
2
1

4∆
C0 +

Ω1Ω3

4(∆ + δ02)
e−iδ02t C2

)

Ċ2 = i

((

Ω
2
1

4∆
+

Ω
2
3

4(∆ + δ02)

)

C2 +
Ω1Ω3

4∆
eiδ02t C0 +

Ω1Ω3

4(∆ + δ24)
e−iδ24t C4

)

2This is true if Ω1 = Ω3.
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Ċ4 = i

(

Ω
2
3

4(∆ + δ24)
C4 +

Ω1Ω3

4∆
eiδ24t C2

)

(5.18)

We can set ∆ + δ02 ≃ ∆ + δ24 ≃ ∆ and Ω1 = Ω3 and obtain:

Ċ0 = i
Ω

2

(

αC0 + e−iδ02tC2

)

Ċ2 = i
Ω

2

(

e−iδ02tC0 + βC2 + e−iδ24tC4

)

Ċ4 = i
Ω

2

(

e−iδ24tC2 + αC4

)

(5.19)

where Ω = Ω
2
1/2∆ is the two-photon Rabi frequency. According to equation 5.18,

one clearly has α = 1 and β = 2. However, if one makes the calculation by also
taking into account the contribution of states | − 2〉 = |g,p − h̄(k1 − k3)〉 and |6〉 =
|g,p + h̄(3k1 − 3k3)〉, other terms appear in equations 5.19. These terms would take
into account the pumping from levels |−2〉 and |6〉 and one would have α ≃ 2. In order
to account for this effect we will set α = 2 in the following.

Resonance condition

As we said in section 5.3, we want to use the Bragg transition to populate the state
|2〉. In order to be resonant with this state the detuning δ02 has to be zero. Therefore

ω3 − ω1 =
p2

2mh̄
− (p + h̄k1 − h̄k3)2

2mh̄
(5.20)

The initial momentum of the atoms p is the momentum transferred by the Raman
beams, therefore p = −h̄(k3 + k1) and the 5.20 becomes:

ω3 − ω1 =
h̄

2m

(

(k1 + k3)2 − (2k3)2
)

(5.21)

If we are resonant with the two-photon transition, we will be detuned by

δ24 =
h̄

m
(k1 − k3)2 (5.22)

If k1 ⊥ k3, the resonance condition is ω3 − ω1 = −2ωrec and δ24 = 4ωrec. By solving
the system of equations 5.19 we can calculate the population of states |0〉, |2〉, |4〉 and
find a situation were the population of |4〉 is negligible with respect to the other two.
In addition, we want to satisfy two requirements: first, we want the velocity spread of
the condensate to be negligible with respect to the Rabi frequency; second, we want
the total duration of the process (Raman + Bragg) to be small with respect to the
expansion of the condensate, in order to have the highest number of collisions.

The evolution of the three populations as a function of time is shown in figure
5.8. The beams are resonant with the two-photon transition and the two-photon Rabi
frequency is set to Ω = 2ωrec (where ωrec/2π ≃ 40 kHz). Therefore with a pulse
duration of 3 µs we should be able to transfer half of the atoms in the state |2〉 and
leave half in |0〉. At t = 3 µs the population of the state |4〉 is ≃ 5% of the total
population.
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Figure 5.8: Population of the states |0〉, |2〉, |4〉 as a function of time. The relative detuning of the two
laser beams is set to be in resonance with the transition |0〉 → |2〉 and the Rabi frequency is Ω = 2ωrec.
The population of the state |0〉 is drawn with the solid line, the population of the state |2〉 with a
dashed line and the population of the state |4〉 with dots. The population of the |4〉 is always negligible
with respect to the other two.

5.3.2 Spontaneous emission

In this second version of the experiment, the detuning ∆ of the three beams L1, L2,
L3 has been set to 600 MHz instead of 400 MHz in order to decrease the spontaneous
emission rate. In fact, when an atom is brought to the excited level with the absorp-
tion of a photon there is a non-zero probability for the atom to decay to one of the
three magnetic sublevels of the 23S1 state spontaneously emitting a photon. Since the
direction of emission of this photon is random, the recoil momentum of the atom will
be h̄krec with a random direction. Therefore atoms that undergo this process will be
on a sphere of radius h̄krec (in momentum space). Since we detect only atoms falling in
mx = 0 (the trap is alway kept on), we will detect a third of the atoms that underwent
a spontaneous emission process. This can be a big problem. In fact, if the spontaneous
emission sphere coincides or intersects the collision sphere, the measurement of the
scattering mode population or of the squeezing can be distorted. It will probably have
a smallest impact on the back to back correlations, because the atoms on the sponta-
neous emission sphere are not correlated by pairs of opposite momenta. However it can
affect the collinear correlation because atoms on the spontaneous emission sphere will
show an Hanbury Brown Twiss like correlation as well. In the following sections we
will calculate the spontaneous emission rate and we will show some experimental ob-
servations. We will also try to predict the impact of the spontaneous emission spheres
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that we can observe in the present experimental situation on the measurements that
we want to perform.

Spontaneous emission rate

Let us consider a two level atom in a laser field. For instance we can consider the
transition between the states 23S1 with mx = 1 and 23P0 with mx = 0 and the laser
field generated by L2 that is σ− polarized and is detuned by ∆ = 600 MHz on the blue
side of the considered transition. The population of the excited level is given by:

ρe =
1

2

s

1 + s
(5.23)

with s the saturation parameter:

s =
Ω

2
1/2

∆2 + Γ2/4
(5.24)

where Γ/2π = 1.6 MHz is the natural linewidth of the considered transition. Ω1 is the
one-photon Rabi frequency defined as Ω1 = Γ

√

I/(3 × 2Isat), where I is the intensity
of the beam and Isat = 167 µW/cm2 is the saturation intensity. For our beam intensity
and size Ω1/2π ≃ 20 MHz. The factor of 3 in the definition of Ω1 takes account
of the appropriate Clebsch-Gordan coefficient. The number of photons emitted in a
spontaneous emission process is therefore given by:

Nsp = Γsp τ = ρe Γ τ ≃ Γ
Ω

2
1

4∆2
τ (5.25)

where τ is the duration of the laser pulse and Γsp is the spontaneous emission rate. The
last equality holds in our case because ∆ ≫ Γ,Ω1. With our experimental parameters,
the spontaneous emission rate is about 6× 10−3 photons per µs per atom. In order to
give an estimate of the number of atoms detected in this way, we will consider only the
simplest process, in which an atom is excited to the upper level, it decays in mx = 0
with the emission of a photon and is detected. Since the probability of this process
to happen is 1/3, the spontaneous emission rate per atom will be divided by three. If
one atom emits on average 2 × 10−3 photons per µs, if the condensate contains 105

atoms, we will detect 200 atoms per µs. Since the duration of the Raman and Bragg
pulses is aroud 3 µs, we can detect 600 atoms on the spontaneous emission sphere.
This is not negligible with respect to the number of atoms in the collision sphere that,
in section 5.2.1, we estimated to be about 1600. For this reason, we choose the beams
geometry by carefully checking that the collision sphere would not be superposed with
the spontaneous emission sphere, in order to have a good signal to noise ratio. In the
following section we will show where the two spheres would fall on the detector and we
will comment on the possible problems.

As we have already noted, this is a simplified picture of the process. In fact there
are several other processes that can happen: an atom can absorb a photon and decay
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into the mx = −1 state and not be detected or decay in mx = 1 where it can eventually
absorb another photon and start the cycle again. In order to calculate exactly the
number of atoms decaying in mx = 0 we should take into account the evolution of the
process. Therefore the estimation above gives only an order of magnitude.

Experimental observations

Spontaneous emission is quite useful during the alignment of the beams. In fact one
can shine on the atoms one beam at a time, with σ polarization and check, for a given
duration and intensity, when the number of atoms detected in the spontaneous emission
sphere is maximum as a function of the alignment of the beam.

In figure 5.9 we report the spontaneous emission sphere detected when only the L3

beam is on, with σ polarization. The data have been plot in momentum space in a
frame that falls under the effect of gravity. A sphere centered at h̄krec is clearly visible.
Since the atoms have absorbed one photon from L3, they receive a one photon recoil
kick towards the top of the chamber and they emit a π polarized photon in a random
direction. The three dimensional visualization of the sphere allows one to note that the
atoms do not occupy the sphere homogeneously. In fact we can clearly see a hole in the
direction of the x axis. This is due to the fact that a linear polarized photon cannot be
emitted along the quantization (x) axis. In addition the thickness of the sphere seems
to vary as a function of the angle. The statistical properties (density and correlation
function) will be the subject of a further study in the short term. The condensate that
is visible at h̄krec = 0 is generated by an off-resonant Raman transition induced by a
small amount of linear polarization present in the beam: some of the atoms can absorb
a σ photon from the laser beam and emit in a stimulated way a π photon in the same
beam, therefore the total momentum transfer for this transition is zero.
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Figure 5.9: Spontaneous emission sphere in momentum space (units of h̄krec). The sphere has been
observed by shining the L3 beam with σ polarization on the condensate. On the left side we report a
slice on the xz plane integrated in the interval −0.3 < py < 0.3. On the right side we report a slice on
the yz plane integrated in the interval −0.3 < px < 0.3.
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Observable spheres

In our experimental situation, atoms are brought to the excited level either by absorb-
ing a photon from L2 (when we drive the Raman transition) or by absorbing a photon
from L1 (when we drive the Bragg transition). Since we detect only atoms that decay
in the substate mx = 0, if the atoms have absorbed a photon from L2, the center of
the detected spontaneous emission sphere will move (in the free falling frame) with
momentum h̄krece2 and will have a radius equal to h̄krec. The other possible spon-
taneous emission sphere can be formed by atoms that undergo the Raman transition
and then absorb a photon from L1 but, instead of terminating the Bragg transfer, emit
spontaneously a photon3. This sphere will be centered on h̄krec(e2 − e1)+ h̄krece1, will
have a radius equal to h̄krec and is therefore coincident with the first one.
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Figure 5.10: Simulation of the experiment (here we have taken θ = 8˚ and φ = 7˚, see figure 5.5).
The scattering sphere (black thick circle) and the spontaneous emission sphere (grey circle) are shown
as they fall on the detector. The spheres have been plotted in velocity space, in unity of vrec. The thin
black circle represents the detector.

In figure 5.10 we show the result of a simulation of the experiment. Time slices of
the scattering sphere (black) and of the spontaneous emission sphere (grey) are shown
in velocity space (in unity of the recoil velocity) as they fall on the detector. The black
circle represents the detector. The equator of the scattering sphere crosses the detector

3Other spontaneous emission spheres can be observed, however, since they don’t intersect the scat-
tering sphere, they are not taken into account.



140 Second Generation Experiment

for t = 294 ms. As we can see, at the same time, the spontaneous emission sphere
intersects the scattering sphere in the shadowed region, in the direction of the long axis
of the condensate (see also the picture at t = 297 ms). This region is important for
the study of the anisotropy of the sphere and of the mode population as a function of
the angle. The presence of the spontaneous emission sphere can eventually spoil the
result. The problem can be overcome by estimating the number of atoms present in a
region of the spontaneous emission sphere symmetric with respect to the highlighted
one and by subsequently subtracting it from the total number of atoms detected in the
highlighted region.

5.4 Preliminary results

During the final part of my PhD, we started data acquisition for the second generation
experiment after overcoming several technical problems. The analysis that measures
the sphere density, correlations and squeezing is long and cumbersome. In this section
we will just present some preliminary results.

Figure 5.11 shows the observed scattering sphere in velocity space, in the reference
of the center of the sphere. We show slices in the yz plane. Each slice is averaged over
vx = 0.2 vrec. The two large spots are the two condensates that underwent the collision,
as shown in the inset. As expected no condensate is present on the x direction that is
therefore available to study thickness and density of the sphere.

These data have been obtained for a power of 13 mW for the Raman beams and of
6 mW for the Bragg beams. The beam size is 1.88 mm (at 1/e2). The Raman pulse
duration is 4 µs and the Bragg pulse duration is 3 µs.

In order to check the efficiency of the Bragg pulse, we measured the number of
atoms remaining in the condensate extracted with the Raman pulse versus the number
of atoms transferred by the Bragg pulse. In the left graph of figure 5.12 we plot the
number of atoms in the Raman condensate versus the number of atoms in the Bragg
condensate. A linear fit gives a slope of 0.9, meaning that the population of the two
condensates is very well balanced. We would like to note that this measurement is
strongly affected by the saturation of the detector. However, since the saturation
depends on the density of the cloud, here it is reasonable to suppose that the number
of atoms detected in each condensate is affected in the same way.

A first comparison with theory can be made by looking at the number of scattered
atoms as a function of the number of atoms in the initial condensate. This quantity
is plotted on the right side of figure 5.12 together with the theoretical expectation
computed from equation 5.10 taking into account 10% detection efficiency (dashed
line). As one can see the agreement is poor even if we take into account the dispersion
of the data. This is due to the fact that saturation is not taken into account. Since the
density of the sphere is small compared with the condensate density, we expect that the
number of scattered atoms is not affected by the saturation, while the number of atoms
in the condensate is. This is supported by the observation that the number of atoms
detected in the condensate is systematically smaller than expected. A better agreement
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Figure 5.11: Slices of the collision sphere on the yz plane as it falls on the detector, observed in the
second version experiment. The sphere has been plotted in velocity space, in units of vrec in the
reference of the center of the sphere. Each slice has been averaged over 0.2 vrec on the x axis. As the
inset shows, the two large spots are the condensate extracted with Raman and Bragg pulses.

is obtained assuming that the number of atoms detected in the condensate is a factor 3.5
smaller than the real number (solid line in figure 5.12). However, this measurement does
not allow to distinguish the contribution of the two detector parameters. Therefore the
obtained value of the detector saturation strongly depends on the assumed detection
efficiency. If we could independently measure the detection efficiency (by calibrating the
micro-channel plate or by measuring squeezing), the trend of the number of scattered
atoms as a function of the number of colliding atoms would allow us to measure the
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Figure 5.12: On the left side: Number of atoms detected in the condensate with momentum imparted
by the Raman pulse as a function of the number of atoms transfered in the second condensate by
the Bragg pulse (black circles). The solid line is a linear fit. The slope is 0.92 ± 0.005, therefore the
number of atoms in the two condensates are well balanced, as required. On the right side: Number
of scattered atoms as a function of the number of atoms detected in the two colliding condensates
(black squares). The dashed line is the theoretical expectation calculated from equation 5.10 assuming
a detection efficiency of 10%. The solid line is the theoretical expectation calculated from equation
5.10 assuming a detection efficiency of 10% and that, due to the detection saturation, the number of
atoms detected in the condensates is a factor of 3.5 smaller than the real number (see text).

saturation.

Holding the reasonable assumption that the population of the sphere is not affected
by the detector saturation, if the detection efficiency is unchanged between the two
generations of the experiment (see appendix), the number of scattered atoms is roughly
a factor of two less than in the previous version of the experiment (see section 4.6.1).
As we pointed out in section 5.2.1, if the number of atoms in the initial condensate
is the same, the expected number of scattered atoms is a factor of 10 smaller in the
new geometry. Our observation tells us that we succeeded in improving the number of
atoms in the initial condensate by roughly a factor of two (see section 5.2.1).

5.5 Conclusion

In this chapter we presented an upgraded version of the He* pairs experiment. We
explained the motivation for a deeper study and we performed a detailed comparison
between the two versions of the experiments. We showed that the upgraded version
allows us to overcome the limitations of the first version (summarized in the conclusion
of chapter 4). In addition, since the number of scattered atoms in the second version is
much smaller than in the first version, all the experimental steps for the generation of
the colliding condensates have to be optimized with great care. A special attention has
been payed to the study of Bragg transitions that we use to split the initial condensate
into two counterpropagating condensates. Other possible problems related to spon-
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taneous emission of photons during Raman and Bragg transitions have been studied
and quantified. In the last section of the chapter some preliminary results have been
presented. The observed scattering sphere confirms that the experimental goals of the
second generation experiment have been reached: the region along the x direction is
available for the measurement of the sphere thickness and the sphere is visible with a
significant signal to noise ratio. A detailed analysis of the statistical properties of the
sphere (density, correlation functions and squeezing) is in progress at present.
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Conclusion

In this thesis we presented two experiments on ultracold gases of metastable Helium:
the measurement of the Hanbury Brown Twiss effect on a cloud of fermions and the
generation of correlated pairs of bosons in atomic four-wave mixing.

Both experiments constitute the extension, to matter waves, of experiments that
have been fundamental for the development of quantum optics. In sharp contrast to
photons, 4He has a readily available fermionic counterpart: 3He. This isotope has been
cooled to degeneracy in the metastable state by the group of W. Vassen in Amsterdam
in 2005. This achievement allows one to go beyond the simple analogy between bosonic
atoms and photons. In fact, since a fermionic counterpart of photon doesn’t exist, it
is not possible to directly compare the correlation function for bosons and fermions in
an experiment that involves only the light. This has been possible with atoms and it
is one of the major achievement of the experiment described in the first part of this
thesis. A direct comparison between the correlation function of bosons and fermions
produced in the same experimental apparatus and at the same temperature has been
performed. Our detection system allowed us to obtain quantitative measurements of
the correlation functions of the two isotopes in three dimensions.

The second experiment described in this thesis is the analogue of the experiment
performed by Burnham and Weinberg in 1970 with correlated pairs of photons gen-
erated in parametric down conversion. In our experiment correlated atom pairs are
generated by the collision of two Bose-Einstein condensates. Atomic interactions play
the same role as non-linear susceptibility in non-linear crystals. The measurement of
the correlation function allows us to demonstrate that atoms flying back to back on
the collision sphere are correlated in pairs. Furthermore the observation of a Hanbury
Brown Twiss correlation between atoms with collinear velocity demonstrates that our
system cannot be interpreted in terms of classical mechanics, but that the bosonic
nature of 4He atoms plays a crucial role.

The realization of a source of correlated atom pairs constitutes the first fundamen-
tal step towards the realization of new experiments of quantum atom optics. As the
experiment performed by Burnham and Weinberg paved the way to the observation
of squeezed and entangled states with photons, it would be very interesting to demon-
strate that our atom pairs are entangled and, in the future, to violate Bell’s inequalities
with atoms. The second version of the pairs experiment described in this thesis goes
in this direction. It is aimed to the observation of number squeezing between two
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correlated volumes of the scattering sphere. This is the first (and the easiest) step
in view of more complicated experiments, that culminate with the violation of Bell’s
inequalities. In analogy with the experiment carried out by Rarity and Tapster [125]
we could perform a Bell test by recombining the atoms belonging to two different pairs.
However this experiment is quite hard to perform because the low repetition rate of
the experiment together with the low detection efficiency would make the acquisition
time unpractically long.

In order to increase the repetition rate one can increase the number of pairs recom-
bined in a single shot. In a scheme like the one of [125] one can use a spherical atom
mirror to recombine several pairs at a time or to make several Bragg pulses in different
directions in order to recombine several pairs in the same shot. Another approach con-
sists in forcing the atom pairs to be emitted in a small number of momentum mode.
Following a suggestion by K. Mølmer [126], Ketterle’s group observed atomic four wave
mixing by loading a stationary Bose-Einstein condensate into a moving lattice [127].
The presence of the lattice forces atoms to be scattered in two momentum modes im-
posed by phase matching conditions. Entanglement between particles scattered by the
lattice has not been demonstrated experimentally. A recent theoretical work by M. J.
Davis et al. [128] suggests a scheme for the detection of entanglement in this system
and the experimental requirements seem to be reasonable (even though not trivial).
The realization of an experiment of this kind is envisaged in the near future of the He*
experiment.

In the very short term, our experimental apparatus will be modified in order to
install a dipole trap. After the standard cooling cycle, the sample will be loaded in an
anisotropic optical trap with its long axis along the vertical direction. This would allow
us to take advantage of the extremely good resolution of our detector on the vertical
direction, with an consequent gain in terms of signal to noise ratio in the correlation
measurement.

Along a different line, whose exploration began with this thesis and that of M.
Schellekens [44], the group is also planning to introduce 3He in the experimental setup
in order to perform quantum atom optics experiments with fermions. This field of
research is interesting for several reasons. First, as we said above, quantum optics
analogues for experiments with fermions do not exist. Second, it is interesting to
compare the behavior of bosons and fermions in the same experiment. For instance,
the observation of matter wave amplification, superradiance and four wave mixing
has raised the question whether these processes depend on the quantum nature of
particles or not. In fact they are normally described as processes which relies on bosonic
stimulation, but some theoretical works affirm that they are related to multi-particles
interference effects and to the coherence properties of the atomic gas [129], [130], which
could be exploited also with fermions. At the moment this question is still waiting for
an answer from the experimental side.

The strong interest in quantum atom optics is proved by the ever increasing number
of groups all around the world that entered this research field. Besides the experimental
results achieved at the Institut d’Optique there have been a number of demonstrations
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of quantum atom optics phenomena in recent years. Two and three-body correlations
have been used to study strongly correlated systems [131], [132], and non classical
correlations have been observed in the Mott insulator phase [59]. Number squeezing
has been observed between atoms trapped in different sites of an optical lattice [133].
Along the same line, several groups have developed new detection techniques to perform
three dimensional single atom detection for alkali atoms, as for example the group of
D. S. Weiss at the Penn State University [134], the group of H. Ott in Mainz [135], or
the group of Schmiedmayer in Wien [136]. Nevertheless, the versatility of the detection
technique used for the experiments presented in this thesis keeps the He* experiment
in Palaiseau on the foreground of this kind of research. From the measurement of the
Hanbury Brown Twiss effect for bosons and fermions through the generation of atom
pairs, the work done by the He* team sets the stage for new important developments.
Without doubts, owing to the commitment and the ability of the team I’ve the pleasure
to work with, these will be soon obtained.
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Appendix A

The detector

The detector that we used to perform the measurements described in this thesis is a
micro-channel plate (MCP) with a delay-line anode. This detector allows us to perform
single atom detection, space and time resolved. In this appendix we will describe the
way this detector works and the characteristics of the three different kinds of MCPs
that we have used during my PhD. The detector used for the Hanbury Brown Twiss
experiment performed in Amsterdam (see chapter 1) has been produced by Burle and
is referred as “Burle 1” in the following. It has also been used for the first correlated
pairs experiment (see chapter 4). The second detector that we used has been produced
by Hamamatsu and is referred as “Hamamatsu”. The third detector has been bought
from Burle (now Photonis) as well and is referred as “Burle 2” in the following. It has
been used for the second pairs experiment (see chapter 5).

A.1 The micro-channel plate

A micro-channel plate(MCP) is a thin glass plate pierced with many tiny channels. It
is fabricated from an array of millions of glass tubes, with a diameter of tens of microns,
which is cut into slices around a millimeter thick. The front and the rear face of the
MCP are metal coated. MCPs are normally used to detect high energy photons (UV),
ions or high energy particles. Due to the large internal energy of the metastable state,
metastable Helium can also be detected by a MCP.

Figure A.1 shows a sketch of a MCP and illustrates the way the MCP works. A
particle arriving on the input surface of the MCP ejects an electron from the channel
wall. The channel then behaves like an electron multiplier. In fact, when an electron
enters the channel, is accelerated by an electric field. This electric field is generated
by applying a high voltage between the front and the back face of the plate. Since the
electric field direction has a small angle with the channel (about 7˚), the electron is
forced into collision with the channel wall, hence ejecting secondary electrons. Those
secondary electrons are then accelerated and hit the channel walls, ejecting other elec-
trons and so on. For each incoming particle about 103 − 104 electrons are ejected. The
typical duration of this amplification process is about 100 ps.
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Company Burle 1 Hamamatsu Burle 2

Channel Diameter (µm) 10 25 25

Channel Distance (µm) 12 31 32

Open Area Ratio 70% 57% > 45%

MCP Active Diameter (cm) 7.5 7.5 7.5

Stack Thickness (mm) 1.2 2.0 3.0

Stack Resistance (MΩ) 60 80 30

Voltage range (kV) 1.9 − 2.35 1.6 − 2.1 1.9 − 2.4

Table A.1: Technical specifications for the three detectors used during this thesis. The open area ratio
is the ratio between the surface occupied by the channel core and that of the entire MCP.

A.2 The delay-line anode

In order to perform a time and space resolved detection of the electron pulses (and
therefore of the atoms), electrons going out of the MCP have to be detected. Various
detection scheme can be used, such as phosphor screens or charge division devices
(resistive anode and delay-line). A comparison between the different kinds has been
drawn in the thesis of M. Schellekens [44]. Our choice has gone to a delay-line anode
commercially distributed and designed by Roentdek Handels Gmbh. We use the model
DLD80.

A.2.1 Working principle

The working principle of the delay-line anode is shown in figure A.3. A delay-line is
a transmission line over which the electrons going out of the MCP are collected. The
electronic pulse is divided into two parts, propagating towards the edges of the delay-
line. The arrival time of the two pulses at the two edges can be measured. By knowing
the propagation speed of the signal on the line and the line length we can infer the
position of the atoms on the line.

t2

e
−

x

t1

0

Figure A.3: Delay-line working principle. The electronic pulse at the output of the MCP is collected
on the delay-line and is divided in two part, each propagating towards one of the edge of the line. The
arrival time of the pulses at the edge of the line can be measured and the initial position of the electron
cloud on the line can be measured.
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If we consider a line oriented along the x direction, the arrival time of the pulses at
the line edge will be given by:

t1 = t0 + (L/2 + x)/vL and t2 = t0 + (L/2 − x)/vL (A.1)

where t0 is the arrival time of the pulse on the line, L is the line length and vL is
the propagation speed of the pulse on the line. The two equations above allow one to
calculate the position x of the pulse on the line and its arrival time t0 on the line (i.e.
the arrival time of the particle on the MCP) by measuring t1 and t2. By disposing of
two transmission lines, one along the x direction and the other along the y direction,
we know the position of the particle on the xy plane and its arrival time on the MCP,
that can be converted in a vertical position (see section 1.4.4).

This simple description of the process hides a problem that has to be overcome in
the real life. In fact, the propagation speed is of the order of vL = c/3. The time
resolution is normally of the order of 200 ps, that translates in a pixel size of 2 cm,
definitely too large to perform a precise measurement of the initial position of the
particle (our MCP has a diameter of 8 cm and a condensate falling on the MCP has
the size of a 2 euros coin).

winded delay-line
metallic anode

t1 t2

effective x-axis

Figure A.4: In order to increase the number of pixels, the propagation speed of the electronic pulse on
the delay-line is decreased by winding the line around a metallic plate. The measurement axis becomes
the winding axis and the number of pixels along this axis is increased by the number of windings.

A simple way to solve this problem is to wind the delay-line, as illustrated in figure
A.4. The delay-line is wound 100 times around a metallic anode. The effective speed of
the pulse along the winding axis is therefore artificially reduced by a factor of 100. The
winding axis is the effective measurement axis and the pixel size is artificially reduced
by the same factor.

In order to measure the position of the atoms in the other direction on the xy plane
a second wire is put between the first wire and the anode and is wound in a direction
perpendicular to the first one.

The experimental assembly of our detector is shown in figure A.5. The detector
(MCP stack plus delay-lines) is mounted on a CF160 flange. The MCP is on the top
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of the frame, just above the delay-lines. The delay-lines are shown in the picture on
the right side of the figure. The delay lines are at a positive voltage with respect to
the rear face of the MCP in order to attract the electron shower. The applied voltages
influences the detector resolution and efficiency, as it has been studied in [44].

Figure A.5: On the left side: MCP detector with delay-line anode assembly. On the right side: the
delay-lines are shown. The MCP has been removed from the mount.

A.2.2 Electronic chain

In order to measure the arrival time of the electronic pulses two methods can be used.
The pulses at the edge of the delay lines can be visualized and registered on an oscil-
loscope. Several informations can be extracted, such as the pulse arrival time, shape,
duration and height. However the use of an oscilloscope proves to be particularly ex-
pensive in terms of network bandwidth, storage space and computing power. Strictly
speaking, the arrival times are the only data required to reconstruct the atom position
and therfore we decided to use another method to measure the arrival time. This is
based on the use of a Constant Fraction Discriminator (CFD) and a Time to Digital
Converter (TDC) that convert the analog signal associated to each pulse as it arrives at
the edge of the delay-line into a logic signal, that is written onto a memory. A scheme
of the electronic chain is shown in figure A.6. It is important to note that the four
signals arriving at the edges of the delay-lines are treated in parallel. Each channel
has a CFD and a TDC that are independent on the other channels. The signal is first
of all amplified and processed by a CFD. The CFD associates a NIM signal to each
pulse. The leading edge of the NIM signal coincides with the time at which the signal
at the input of the CFD goes above a given threshold. This threshold is fixed to a
given fraction of the height of the pulse being processed. This fraction is fixed by the
CFD and is the same for all the pulses. The amplifiers and the CFDs that we use are
produced commercially by Roentdek (model DLATR6).
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Amp CFD TDCDelay-line

NIM time (sec)

Acquisition
PC

Figure A.6: Sketch of the electronic chain used to measure the arrival time of the electronic pulses
at the edge of the delay-line. The pulses are first of all amplified, than the signal is processed by a
Constant Fraction Discriminator (CFD), that associates a NIM signal to each pulse. The Time to
Digital Converter (TDC) measures the arrival time of the NIM signal by comparing it with a clock.

The NIM signals are then sent to the TDC. The TDC is mainly a counter that
compares the arrival time of a logical input pulse with a clock. The coding step of the
TDC fixes the time resolution of the pulses and therefore the number of pixels on the
xy plane of the detector. The output of the TDC is the arrival time of each pulse.
During this thesis we used two different TDCs. The first one had been developed by
the Institut de Physique Nucléaire in Orsay and has a coding step of 400 ps. This
corresponds to about 400 × 400 pixels on the xy plane (the pixel size is 200 µm).
It has been used for the first experiment on pair correlation described in this thesis.
The second TDC has been developed by the company IsiTech, a spin-off of Paris-Sud
University and has a coding step of 275 ps. This corresponds to 600×600 pixels on the
xy plane (the pixel size is 133 µm). This TDC has been used for the Amsterdam data
campaign and for the second generation of the pairs experiment. Even if this TDC has
a smaller coding step than the first one, we were quite disappointed in discovering that
the detector resolution wasn’t better than with the first TDC. The only advantage of
this TDC with respect to the other one is that, due to the different acquisition and
storage protocol used, it accepts a larger input flux.

A.2.3 Determination of the position of the atoms in 3D

When the arrival time of the electronic pulses is recorded on the acquisition computer,
we have to process the data in order to determine to which atom the detected pulse
belongs. In addition we have to exclude signals coming from technical noise. Therefore
a software data treatment is necessary in order to perform these operations and finally
reconstruct the position of the atoms in three dimensions. A detailed description of the
methods that we use can be found in [44], [82]. With these methods we can reconstruct
up to 90% of the atoms, depending on the quality of the MCP and on the noise.

Once we determined which are the four time signals tx1, tx2, ty1, ty2 that belong to
the same atom, the following simple relations allow us to infer the position of the atom
in the xy plane and its arrival time t on the MCP:

x =
1

2
(tx1 − tx2) × veff

y =
1

2
(ty1 − ty2) × veff



Detector characteristics 155

t =
1

2

(

tx1 + tx2 −
Lx

veff

)

t =
1

2

(

ty1 + ty2 −
Ly

veff

)

(A.2)

where Lx and Ly are the length of the x and y delay-line respectively. The quantity
veff is the effective velocity of the pulses along the delay-line winding axis and it is
equal to 0.98mm/ns for our delay-line anode (with an accuracy of 5%). The first and
the second equations above allow one to calculate the position of the atom in the xy
plane. The third and the fourth ones are equivalent and allow one to calculate the
arrival time of the atom on the detector. It is interesting to note that, since we have
four equations and three variables, we can determine x, y and t even if we know only
three of the four arrival times tx1, tx2, ty1, ty2. However, since we really want to be
sure that the reconstructed particle corresponds to a real atom falling on the detector
we do not consider this situation.

A.3 Detector characteristics

A.3.1 Pulse-height distribution

As we said above, the electronic pulses at the edge of the delay-lines are first of all
amplified. The DLATR6 module allows us to visualize the pulses at the output of each
amplifier. The amplified pulses can therefore be visualized with an oscilloscope and
their shape can be studied.

For our detector the typical pulse length is of the order of 10 ns. The height is
strongly dependent on the number of electrons emitted in the amplification process
and depends on the high voltage applied across the MCPs. We can distinguish between
two amplification regimes. The pulse height distribution associated to each regime
is sketched in figure A.7. When the voltage is in the low range (typically between

distribution

Pulse Height

#

Low Gain Height Distribution 

Threshold?
Pulse Height

#

High Gain Height Distribution 

Threshold

noise counts

Figure A.7: Pulse height distribution for a chevron MCP working in the low gain region and in the
high gain region. At low gain the amplitude distribution is exponential and cannot be distinguished
from the background noise. When the gain saturates a double structure appears in the amplitude
distribution and it is possible to discriminate between real counts and noise.
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1600 V and 1900 V for the Hamamatsu MCP and between 1900 V and 2100 V for
the Burle detectors) the amplification gain is low and the amplitude distribution of
the electronic pulses is exponential (see left side of figure A.7). In this regime it is
impossible to distinguish between pulses generated by real particles and the residual
electronic noise. On the other hand, when the voltage is in the high range (for the
Hamamatsu detector between 1900 V and 2100 V and for the Burle MCP between
2100 V and 2300 V) the amplification enters the saturated regime (right side of figure
A.7). The electronic density inside the channel of the MCP is higher than in the non
saturated case and the static electric potential is screened by the electron cloud itself.
This has the effect of reducing the amplification and the number of electrons going
out of the channels saturates around a value that depends on the characteristics of the
MCP. In the pulse height distribution we will therefore distinguish two peaks: one at
low amplitudes that shows an exponential decay and is mostly due to electronic noise,
one at high amplitudes, bell-shaped, due to real counts. In this regime it is therefore
possible to fix a threshold in order to discriminate between noise and real counts. For
this reason, particle counting is performed in this regime.

In figure A.8 we show the pulse height distribution obtained for the three detectors
used during this PhD thesis. The pulse height distribution have been acquired when
the detector was working in the saturated gain regime. The pulse height distribution
shows an evident double structure for the two Burle MCPs, while the double structure is
much less evident for the Hamamatsu MCP. The threshold that discriminates between
real counts and noise was set in the three cases aroud 50 mV.

A.3.2 Flux saturation

Several times in this thesis we pointed out that our detector saturates when the flux
of detected particles is high, such as for example when we detect a cold cloud below
or above the condensation threshold. This is due to the fact that the detection of a
particle influences the detection of the following particle. In fact, the channel that
has been used for the first detection shows an electronic depletion. This depletion is
compensated by a strip current, that is normally very low (of the order of µA) because
of the high resistance of the MCPs stack 1. The amplitude of the pulse generated
by the second detected particle will be smaller than the amplitude of the first one
and eventually smaller than the threshold used to discriminate real counts and noise.
Therefore the second particle will eventually not be detected.

During the first year of my PhD, M. Schellekens and I tried to quantify this effect.
We measured how the pulse height distribution changes during the detection of a time-
of-flight of a 4He cloud at 1.6 µK. The data are reported in figure A.9. The detector
is operated in counting mode, at 2.35 kV. We report on the same graph the particle
rate averaged over the whole detector as a function of time, and the averaged pulse
height as a function of time. We can clearly see that the pulse height distribution

1The resistance of the MCP can be reduced by using special coatings. However a reduction of the
resistance is limited by an eventual heating of the MCP (that would make the value of the resistance
not stable with time) and by the use of high power high voltage supplies.
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Figure A.8: Pulse height distribution for the three MCPs used during this thesis. The pulse height
has been measured in the high gain region (at 2350 V for “Burle 1”, 2100 V for “Hamamtsu”, 2400 V
for “Burle 2”). The two Burle MCPs clearly show a double structure, while this is less evident for the
Hamamatsu. The vertical scale is not the same for the three graphs.
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Figure A.9: Measurement of the saturation of the detector. This measurement has been performed
on the detector referred as “Burle 1”. We report the time-of-flight of a 4He cloud at 1.6 µK together
with the variation of the averaged pulse height. We note a clear drop in the pulse height when the
flux of detected atoms reaches 1.7 ± 0.2 Matoms/s. This corresponds to a detected particle rate of
82 ± 10 katoms/cm2/s.

drops when the global particle rate goes over 1.7± 0.2 Matoms/s. At this temperature
this corresponds to a maximum particle rate of 82 ± 10 katoms/cm2/s. We observe a
reestablishment of the pulse height after 10 − 15 ms. This gives an upper bound for
the saturation time constant, since electrons are still being emitted as atoms continue
to fall on the plate. Furthermore we note that the time-of-flight is not symmetric with
respect to the mean arrival time (estimated to be 308.3 ms), as we would expect for an
ultracold cloud following the Maxwell-Boltzmann distribution. This distortion can be
attributed to the saturation as well. In fact, when the pulse height drops, the number
of atoms being effectively detected decreases in a way that depends on the saturation
time constant discussed above.

A.3.3 Background noise

The three MCPs used in this thesis have a different background noise.

“Burle 1” had a very large dark count, up to 1300 counts/s at 2300 V. This noise
was spatially very well localized in some hot spots on the edge of the MCP (an image
can be found in [44]). These hot spots could easily be excluded from the data.

The Hamamatsu and “Burle 2” showed a very small dark count. It is 40 counts/s at
2100 V for the Hamamatsu MCP, and 100 counts/s at 2350 V for the “Burle 2” MCP.
The dark count per unit surface is smaller than 0.5 counts/cm2/s. This is negligible
with respect to the mean number of counts detected in a cold cloud at around 1 µK,
typically larger than 24 kcounts/cm2/s.
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The dark count is much higher when the MCPs have just been put under vacuum
and lowers progressively with the operation time. It can be due to particles that are
trapped inside the channels and that can start an electron avalanche. They disappear
as the gas is pumped away. In addition, the fact that the MCP slightly heats up when
it is on, contributes to degassing the channels, speeding up the decrease of the dark
count.

A.3.4 Detection homogeneity

In order to study the gain map of the detector, we drop onto it an homogeneous flux
of atoms, such as the one obtained from a magneto-optical trap. By comparing the
number of atoms detected on the different regions of the MCP, we can compare their
gain. In figure A.10 we report the gain map of our three detectors, acquired at 2350 V
for “Burle 1” and “Burle 2”, and at 2100 V for “Hamamatsu”. In order to compare
the three gain maps we normalized the number of counts in each pixel ni by the mean
number of counts per pixel (

∑

ni)/N , where N is the number of pixels. The three maps
show a higher gain in the central region and gain fluctuations up to 50%. The “Burle
1” presents several zones with a gain close to zero, near to the edges of the MCP.

We experimentally observed that the gain map depends a lot on the mechanical
stress imposed on the MCP by its mount. By changing the position of the clamps that
hold the MCP it was possible to observe a zone with gain close to zero appear near to
the centre of the MCP. This behavior of the gain was more evident for “Burle 1” than
for the other two detectors, probably because of the reduced thickness of this MCP
with respect to the other two (see table A.1).

Hamamatsu and Burle (Photonis) propose several detection qualities and coatings
in order to have a more performing detector. The three MCPs used during this thesis
were of the lowest available quality. In the future the purchase of a better quality
detector could be interesting in order to increase the actual performances.

A.3.5 Detection efficiency

As we pointed out several times in this thesis, the detection efficiency is a crucial param-
eter from which depends the understanding and the improvement of a good number of
our experimental observations (such as for example, in the correlated pairs experiment,
number difference squeezing, height of the back to back correlation function, determi-
nation of the number of atoms in the sphere, etc...). In order to precisely measure
it, we should have an independent, calibrated, detection system with which compare
the number of atoms detected on our detector. This kind of measurement has been
done during the collaboration with the group of W. Vassen. In fact, they have two
detection systems: a MCP and an absorption imaging system. Few years before our
collaboration, they used the absorption imaging system to calibrate the MCP that they
use to detect their clouds. During our collaboration we could compare the number of
atoms detected on their MCP with the number of atoms detected on ours. This com-
parison allowed us to estimate the detection efficiency of our detector to be ≃ 11%.
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Burle 1

Hamamatsu

Burle 2

Figure A.10: Gain maps of the three MCPs used during this thesis. The number of atoms per pixel
has been divided by the average number of counts per pixel in order to make a comparison among the
three maps. The “Burle 1” gain map has been acquired in Amsterdam at 2350 V. The Hamamatsu
gain map has been acquired at 2100 V and the “Burle 2” gain map has been acquired at 2350 V.
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This estimation has been done on the “Burle1” detector and is a measurement of the
global detection efficiency. It is important to note that this measurement only gives
an order of magnitude. In fact we know that the MCP detection efficiency decreases
with time. Therefore it is possible that the detection efficiency of the Amsterdam MCP
at the moment of the comparison with ours wasn’t the same as the one measured few
years before with the camera. In addition, the fact that mechanical stress makes the
gain map change, can affect a global measurement of the detection efficiency. A more
reliable measurement would have been the direct calibration of our MCP with their
imaging system. Unfortunately, when we started our collaboration, they had to remove
the imaging system in order to install our detector.

The implementation of an absorption imaging system on the Palaiseau setup is
planned. It would provide a second diagnostic tool and it would allow us to calibrate
the MCP gain and eventually to monitor changes as a function of time.

A way to improve the detection efficiency

In section 5.1.2 we pointed out that the higher the detection efficiency, the easier the
measurement of the number difference squeezing is. Therefore we decided to try to
increase the detection efficiency by installing a grid above the MCP. Good results
obtained with this method have been reported with ions in [137] and have also been
observed with metastable Neon atoms in the group of G. Birkl (private communication).
The idea is illustrated in figure A.11. Since the open area ratio (i.e. the ratio between

e-
Grid

MCP

Vgrid

Vfront

Vback

e- e- channel

Figure A.11: Scheme used to increase the detection efficiency of the MCP. A grid is installed in front
of the MCP. The voltage applied to the grid is negative with respect to the voltage applied on the
front face of the MCP (Vgrid < Vfront < Vback). A particle falling in a region between two channels
can extract an electron from the surface of the MCP. The electron is pushed inside the closest channel
by the electric field create between the grid and the front face of the MCP and eventually start an
avalanche process. In this way the particle is detected.

the surface covered with channels and the total MCP surface) is only 60%, one can ask
what happens to the atoms that instead of hitting the channel wall, hit a zone between
two channels. An electron can be extracted, as a result of the collision, but, since it is
not amplified, the atom cannot be detected. In order to amplify these electrons one can
create an electric field above the MCP to push the electrons inside the closest channel.
They will have a non zero probability to start an electron avalanche inside the channel
and therefore there is a non zero probability for the particle to be detected. Such an
electric field can be generated by putting a grid above the front face of the MCP. The
grid must be negatively charged with respect to the front face of the MCP in order to
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repulse the electrons. During her Master stage, M. Bonneau studied the problem by
numerically simulating the electric field generated by the grid and she estimated a gain
of a factor 1.2 to 2 in the detection efficiency [138].

The grid that we installed above the MCP has a transmission efficiency of 85%,
the hole size is 200 × 200 µm, the thickness is 4 µm and it is installed over the entire
MCP active surface at a distance of 5 − 8 mm from the MCP. In order to test the
effect of the grid on the detection efficiency we drop on the detector the atoms loaded
in a magneto-optical trap and we observe how the number of detected atoms changes
as a function of the voltage applied on the grid. We repeated the experiment for two
different voltages applied across the MCP: 1.6 kV and 1.9 kV. The MCP used is the
“Hamamatsu”. At a voltage of 1.6 kV it works in the low gain region and at 1.9 kV it
enters the saturated gain region. The plot of the detected atom number as a function of
the grid voltage has been reported in figure A.12. As shown in the figure, the detection
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Figure A.12: Detected atom number as a function of the voltage applied to the grid. The graph has
been plot for two different voltages applied across the MCP. At 1.6 kV the MCP is in the low gain
region, while at 1.9 kV it is in the saturated gain region. The number of detected atoms has been
normalized by the number of atoms detected when the voltage applied on the grid is zero. To have
an order of magnitude in mind, the number of atoms detected at 1.9 kV is ≈ 70 times larger than the
number of atoms detected at 1.6 kV when the grid is at 0 V.

efficiency increases only when the voltage applied across the MCP is low, while at high
voltage the detection efficiency stays almost constant. Since all our experiments are
performed in counting mode (i.e. in the saturated region gain), the fact that at 1.9 kV
the grid has no effect is quite disappointing. We didn’t really understand why the grid
didn’t give the expected results. A possible explanation can be found if one think of the
electric field experienced by the electrons inside the channel when a voltage is applied
on the grid. The electric field inside the channel is perturbed by the potential applied
on the grid. Since Vgrid < VMCPFront < VMCPback, when the grid is at a negative
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voltage, the electric field inside the channels is larger than when the grid is at zero.
This has the effect to increase the amplification gain. Therefore the increase of the
number of detected atoms can be due to the fact that the mean pulse height at the
output of the MCP is larger and that therefore a larger number of pulses is detected.
This effect is large only when the gain is not saturated yet, while it is small when
the gain is saturated. If this explanation is true, either the number of electrons ejected
when a metastable hits the region between two channels is ridiculous, or these electrons
have not enough energy to start an avalanche process.

We would have liked to study this process in more details, for example by studying
the pulse height distribution. Unfortunately, for an unknown reason, the grid intro-
duced a large noise on the detector that made any further measurement impossible.
We therefore decided to remove the grid.

A.3.6 Detector resolution

One of the methods that can be used to measure the resolution of our detector consists
in putting a mask with a defined pattern in front of the detector and measure how well
the pattern is imaged. The mask has to be easy to remove, if one wants to measure
the resolution several times. In our case this procedure is time demanding since the
mask needs to be inside the vacuum chamber. For this reason we use another method
to measure the resolution, based on an algorithm that combines the signals coming out
from the delay-lines when a cloud falls on the detector.

As we have seen above (equations A.2), the position of the atom along the x axis is
given by 1

2(tx1 − tx2)× veff and by 1
2(ty1 − ty2)× veff along the y axis. The resolution

is the precision of the measurement of the x and y positions and therefore on the four
times tx1, tx2, ty1, ty2. In order to measure it we proceed as follows. For each pixel of
the detector and for each shot we calculate:

Sum = [(tx1 + tx2) − (ty1 + ty2)] − 〈[(tx1 + tx2) − (ty1 + ty2)]〉N (A.3)

where 〈 〉N indicates the average over N shots. If our resolution was arbitrarily good,
the distribution of Sum would be a Dirac delta centered on 0. Unfortunately the
distribution is not a Dirac delta, but it has a finite width, because the value of Sum for
a given position (x, y) changes from a realization to another. The standard deviation of
the distribution of Sum over M realizations is related to the resolution in the following
way:

σ2
Sum = 〈Sum2〉M − 〈Sum〉2M

= 〈Sum2〉M
= 〈[(tx1 + tx2) − (ty1 + ty2)]

2〉M − 〈(tx1 + tx2) − (ty1 + ty2)〉2M
= σ2

tx1
+ σ2

tx2
+ σ2

ty1
+ σ2

ty2
(A.4)

In the last passage we supposed the four variables to be independent. This assumption
is reasonable because the electronic chains that are used to measure them are different
(there is an amplifier, a CFD and a TDC for each signal).
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As long as the physical process that generates the four signals is the same, we can
suppose that the four variables follow the same distribution and write σtx1 = σtx2 =
σty1 = σty2 . This lands to:

σ2
Sum = 4σ2

tx1
. (A.5)

Since the RMS single particle resolution on the x direction is dx =
√

σ2
tx1

+ σ2
tx2

, then :

dx =
1√
2
σSum (A.6)

and the same on the y direction.
Since σSum can be measured for any pixel (x,y), i.e. for any txi, tyi, this method

give access to a measurement of the local resolution and to the resolution averaged over
all the detector. The typical values for our detectors are 250− 300 µm on the xy plane
and 0.7 ns on the vertical axis (this translates in a spatial resolution on the vertical
axis of ≈ 3 nm).

The study of the local resolution showed that for the “Burle 1” MCP there is
a correlation between the detector efficiency and the resolution. Zones with a poor
detectivity show a bad resolution, while zones with a good detectivity show a better
resolution [82]. For the resolution map of the other two MCPs this correlation is less
evident.

A.4 Influence of the resolution on the correlation function

As we pointed out in section 1.4.5, the detector resolution influences the correlation
function. The measured correlation function is the convolution between the detector
resolution and the correlation function obtained with an arbitrarily good detector.
Therefore, a good knowledge of the resolution is crucial for our measurements.

In figure A.13 we show the distribution of Sum/
√

2 averaged over all the detector
for the “Burle 1” MCP. This distribution has been obtained on a set of data acquired
in Amsterdam. On the left side of figure A.13 the distribution has been fitted with a
Gaussian (solid line).

In fact, a careful examination reveals that the resolution function of our detector
is not well approximated by a Gaussian because the wings are too broad. A Gaussian
fit leaves about 7% of the area of the distribution out of the fit curve. A possibility
would have been to try with a Lorentzian function. However, since the correlation
function has a Gaussian shape, the convolution with the detector resolution is much
simpler if we approximate the resolution function with the sum of three Gaussian. The
three Gaussian are centered on zero, have amplitude Ai and standard deviation wi

(with i = 1, 2, 3). The fit made with the sum of three Gaussians is shown in figure
A.13, on the right (solid line). We proceeded to the fit by first fitting the wings of the
distribution with a Gaussian of amplitude A3 and width w3. Then we fitted the wings
plus a more central part of the distribution with the sum of two Gaussians, one with
fixed parameters A3 and w3 and a second one of parameters A2 and w2. Finally we
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Figure A.13: Plot of the distribution of Sum/
√

2 over all the detector. On the left we show the
distribution fitted with a Gaussian. On the right the fit is made with the sum of three Gaussians.

fitted the entire distribution by the sum of three Gaussians, two of which with fixed
parameters A2, A3, w2 and w3 and the third one of parameters A1, w1 left free to vary.

Convolution of the correlation function with the resolution function

The convolution of the correlation function (for a cold gas of bosons or fermions as
in the Amsterdam experiment) with the resolution function given by the sum of three
Gaussians is:

g
(2)
3Gauss(∆x,∆y, ∆z) = fresol ⊗ g(2)(∆x,∆y, ∆z) (A.7)

= 1 ±
1

(
∑

i=1,2,3 Aiwi)2
e
−∆z2

l2z

∏

α=x,y

∑

i=1,2,3

Aiwilα
√

2w2
i + l2α

e
− ∆α

2

2w2
i
+l2

α (A.8)

where lα is the correlation length already deconvoluted by the detector resolution.
The contrast of the correlation function, is therefore given by:

η =
1

(
∑

i=1,2,3 Aiwi)2

∏

α=x,y

∑

i=1,2,3

Aiwilα
√

2w2
i + l2α

(A.9)

The correlation length along x: another method to measure the resolution

We now go back to the more simple model where the detector resolution on the xy plane
is modeled by only one Gaussian with standard deviation equal to the one-particle RMS
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resolution dxy. In this case it is easy to show that another, independent way to measure
the resolution is to measure the correlation length along the x axis. As we have shown
in section 1.4.5, the convolution between the correlation function and the one-Gaussian
resolution function is (equation 1.38):

g(2)
res(∆x,∆y, ∆z) = 1 − η exp

{

−∆x2

L2
x

− ∆y2

L2
y

− ∆z2

L2
z

}

where η is the contrast of the correlation function which is given by (equation 1.39):

η = g(2)
res(0, 0, 0) − 1 = −

∏

α

√

1 + d2
α/s2

det

1 + (2dα)2/l2α

and Lx, Ly, Lz are the measured correlation lengths, convoluted with the detector
resolution. The deconvolution gives: lα =

√

L2
α − (2dα)2 for α = x, y, z. In section

1.4.5 we pointed out that the expected value for ly and lz is of the order of 700 µm,
while it is of the order of 70 µm for lx (see figure 1.16). Since the detector resolution
along the z axis is negligible with respect to Lz, then Lz ≃ lz. Along the y axis the
resolution is small compared to the correlation length, but not negligible, therefore the
deconvolution is necessary in order to measure ly. On the other hand, the expected
value of the correlation length along the x axis is much smaller (about 7 times) than
2dx ≃ 500 µm. Therefore, measuring Lx is equivalent to measure 2dx. In order to
perform the measurement we fit the correlation on the xy plane with a two-dimensional
Gaussian, having as free parameters Lx, Ly and the amplitude. The fit results for Lx

are values ranging from 350± 40 µm to 470± 60 µm, that are in reasonable agreement
with the value found with the measurement of σSum (giving 500 µm) discussed at the
beginning of this section.
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LETTERS

Comparison of the Hanbury Brown–Twiss effect for
bosons and fermions
T. Jeltes1, J. M. McNamara1, W. Hogervorst1, W. Vassen1, V. Krachmalnicoff2, M. Schellekens2, A. Perrin2,

H. Chang2, D. Boiron2, A. Aspect2 & C. I. Westbrook2

Fifty years ago, Hanbury Brown and Twiss (HBT) discovered
photon bunching in light emitted by a chaotic source1, highlight-
ing the importance of two-photon correlations2 and stimulating
the development of modern quantum optics3. The quantum inter-
pretation of bunching relies on the constructive interference
between amplitudes involving two indistinguishable photons,
and its additive character is intimately linked to the Bose nature
of photons. Advances in atom cooling and detection have led to
the observation and full characterization of the atomic analogue of
the HBT effect with bosonic atoms4–6. By contrast, fermions
should reveal an antibunching effect (a tendency to avoid each
other). Antibunching of fermions is associated with destructive
two-particle interference, and is related to the Pauli principle
forbidding more than one identical fermion to occupy the
same quantum state. Here we report an experimental comparison
of the fermionic and bosonic HBT effects in the same apparatus,
using two different isotopes of helium: 3He (a fermion) and 4He (a
boson). Ordinary attractive or repulsive interactions between
atoms are negligible; therefore, the contrasting bunching and
antibunching behaviour that we observe can be fully attributed
to the different quantum statistics of each atomic species. Our
results show how atom–atom correlation measurements can
be used to reveal details in the spatial density7,8 or momentum
correlations9 in an atomic ensemble. They also enable the direct
observation of phase effects linked to the quantum statistics of a
many-body system, which may facilitate the study of more exotic
situations10.

Two-particle correlation analysis is an increasingly important
method for studying complex quantumphases of ultracold atoms7–13.
It goes back to the discovery, by Hanbury Brown and Twiss1, that
photons emitted by a chaotic (incoherent) light source tend to be
bunched: the joint detection probability is enhanced, compared to
that of statistically independent particles, when the two detectors are
close together. Although the effect is easily understood in the context
of classical wave optics14, it took some time to find a clear quantum
interpretation3,15. The explanation relies on interference between the
quantum amplitude for two particles, emitted from two source
points S1 and S2, to be detected at two detection points D1 and D2

(see Fig. 1). For bosons, the two amplitudes D1h jS1i D2h jS2i and
D1h jS2i D2h jS1i must be added, which yields a factor of 2 excess in
the joint detection probability, if the two amplitudes have the same
phase. The sum over all pairs (S1,S2) of source points washes out the
interference, unless the distance between the detectors is small
enough that the phase difference between the amplitudes is less
than one radian, or equivalently if the two detectors are separated
by a distance less than the coherence length. Study of the joint
detection rates versus detector separation along the i direction then

reveals a ‘bump’ whose width li is the coherence length along that
axis1,5,16–19. For a source size si (defined as the half width at e21/2 of a
gaussian density profile) along the i direction, the bump has a half
width at e21 of li5 ht/(2pmsi), where m is the mass of the particle, t
the time of flight from the source to the detector, and h Planck’s
constant. This formula is the analogue of the formula li5 Ll/(2psi)
for photons, if l5 h/(mv) is identifiedwith the de Broglie wavelength
for particles travelling at velocity v5 L/t from the source to the
detector.

For indistinguishable fermions, the two-body wavefunction is
antisymmetric, and the two amplitudes must be subtracted, yielding
a null probability for joint detection in the same coherence volume.
In the language of particles, it means that two fermions cannot have
momenta and positions belonging to the same elementary cell of

1Laser Centre Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands. 2Laboratoire Charles Fabry de l’Institut d’Optique, CNRS, Univ. Paris-sud, Campus

Polytechnique RD 128, 91127 Palaiseau Cedex, France.
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Figure 1 | The experimental set-up. A cold cloud of metastable helium
atoms is released at the switch-off of amagnetic trap. The cloud expands and
falls under the effect of gravity onto a time-resolved and position-sensitive
detector (microchannel plate and delay-line anode) that detects single
atoms. The horizontal components of the pair separationDr are denotedDx
andDy. The inset shows conceptually the two 2-particle amplitudes (in black
or grey) that interfere to give bunching or antibunching: S1 and S2 refer to
the initial positions of two identical atoms jointly detected at D1 and D2.
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phase space. As a result, for fermions the joint detection rate versus
detector separation is expected to exhibit a dip around the null
separation. Such a dip for a fermion ensemble must not be confused
with the antibunching dip that one can observe with a single particle
(boson or fermion) quantum state—for example, resonance fluor-
escence photons emitted by an individual quantum emitter20. In
contrast to the HBT effect for bosons, the fermion analogue cannot
be interpreted by any classical model, either wave or particle, and
extensive efforts have been directed towards an experimental demon-
stration. Experiments have been performed with electrons in
solids21,22 and in a free beam23, and with a beam of neutrons24, but
none has allowed a detailed study and a comparison of the pure
fermionic and bosonic HBT effects for an ideal gas. A recent experi-
ment using fermions in an optical lattice25, however, does permit
such a study and is closely related to our work.

Here we present an experiment in which we study the fermionic
HBT effect for a sample of polarized, metastable 3He atoms (3He*),
and we compare it to the bosonic HBT effect for a sample of polar-
ized, but not Bose condensed, metastable 4He atoms (4He*) pro-
duced in the same apparatus at the same temperature. We have
combined the position- and time-resolved detector, previously
used5,26 for 4He*, with an apparatus with which ultracold samples
of 3He* or 4He* have recently been produced27. Fermions or bosons
at thermal equilibrium in a magnetic trap are released onto the
detector, which counts individual atoms (see Fig. 1) with an effi-
ciency of approximately 10%. The detector allows us to construct
the normalized correlation function g(2)(Dr), that is, the probability
of joint detection at two points separated by Dr, divided by the
product of the single detection probabilities at each point.
Statistically independent detection events result in a value of 1 for
g(2)(Dr). A value larger than 1 indicates bunching, while a value less
than 1 is evidence of antibunching.

We produce gases of pure 3He* or pure 4He* by a combination of
evaporative and sympathetic cooling in an anisotropic magnetic trap
(see Methods). Both isotopes are in pure magnetic substates, with
nearly identical magnetic moments and therefore nearly identical
trapping potentials, so that trapped non-degenerate and non-inter-
acting samples have the same size at the same temperature. The
temperatures of the samples yielding the results of Fig. 2, asmeasured
by the spectrum of flight times to the detector, are 0.536 0.03 mK and
0.526 0.05 mK for 3He* and 4He*, respectively. The uncertainties
correspond to the standard deviation of each ensemble. In a single
realization, we typically produce 73 104 atoms of both 3He* and
4He*. The atom number permits an estimate of the Fermi and
Bose–Einstein condensation temperatures of approximately 0.9 mK
and 0.4 mK, respectively. Consequently, Fermi pressure in the trapped
3He* sample has a negligible (3%) effect on the trap size, and repuls-
ive interactions in the 4He* sample have a similarly small effect. The
trapped samples are therefore approximately gaussian ellipsoids
elongated along the x axis with an r.m.s. size of about 1103
123 12 mm3. To release the atoms, we turn off the current in the
trapping coils and atoms fall under the influence of gravity. The
detector, placed 63 cm below the trap centre (see Fig. 1), then records
the x–y position and arrival time of each detected atom.

The normalized correlation functions g(2)(0,0,Dz) along the z (ver-
tical) axis, for 3He* and 4He* gases at the same temperature, are
shown in Fig. 2. Each correlation function is obtained by analysing
the data from about 1,000 separate clouds for each isotope (see
Methods). Results analogous to those of Fig. 2 are obtained for cor-
relation functions along the y axis, but the resolution of the detector
in the x–y plane (about 500 mm half width at e21 for pair separation)
broadens the signals. Along the x axis (the long axis of the trapped
clouds), the expected widths of the HBT structures are one order of
magnitude smaller than the resolution of the detector and are there-
fore not resolved.

Figure 2 shows clearly the contrasting behaviours of bosons and
fermions. In both cases we observe a clear departure from statistical

independence at small separation. Around zero separation, the fer-
mion signal is lower than unity (antibunching) while the boson signal
is higher (bunching). Because the sizes of the 3He* and 4He* clouds at
the same temperature are the same, as are the times of flight (pure free
fall), the ratio of the correlation lengths is expected to be equal to the
inverse of the mass ratio, 4/3. The observed ratio of the correlation
lengths along the z axis in the data shown is 1.36 0.2. The individual
correlation lengths are also in good agreement with the formula
lz5 ht/(2pmsz), where sz is the source size along z. Owing to the finite
resolution, the contrast in the signal, which should ideally go to 0 or
2, is reduced by a factor of order ten. The amount of contrast reduc-
tion is slightly different for bosons and fermions, and the ratio should
be about 1.5. The measured ratio is 2.46 0.2. This discrepancy has
several possible explanations. First, the magnetic field switch-off is
not sudden (timescale ,1ms), and this could affect bosons and
fermions differently. Second, systematic errors may be present in
our estimate of the resolution function. The resolution, however,
does not affect the widths of the observed correlation functions along
z, and thus we place the strongest emphasis on this ratio as a test of
our understanding of boson and fermion correlations in an ideal gas.
More information on uncertainties and systematic errors, as well as a
more complete summary of the data, are given in Supplementary
Information.

Improved detector resolutionwould allow amore detailed study of
the correlation function, and is thus highly desirable. The effect of the
resolution could be circumvented by using a diverging atom lens to
demagnify the source4. According to the formula l5 ht/(2pms), a
smaller effective source size gives a larger correlation length. We have
tried such a scheme by creating an atomic lens with a blue-detuned,
vertically propagating, laser beam, forcing the atoms away from its
axis (see Methods). The laser waist was not large compared to the
cloud size, and therefore our ‘lens’ suffered from strong aberrations,
but a crude estimate of the demagnification, neglecting aberrations,
gives about 2 in the x–y plane. Figure 3 shows a comparison of
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Figure 2 | Normalized correlation functions for 4He* (bosons) in the upper

plot, and 3He* (fermions) in the lower plot. Both functions are measured at
the same cloud temperature (0.5 mK), and with identical trap parameters.
Error bars correspond to the square root of the number of pairs in each bin.
The line is a fit to a gaussian function. The bosons show a bunching effect,
and the fermions show antibunching. The correlation length for 3He* is
expected to be 33% larger than that for 4He* owing to the smaller mass. We
find 1/e values for the correlation lengths of 0.756 0.07mm and
0.566 0.08mm for fermions and bosons, respectively.
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g(2)(Dz) for fermions with and without the defocusing lens. We
clearly see a greater antibunching depth, consistent with larger cor-
relation lengths in the x–y plane (we have checked that ly is indeed
increased) and therefore yielding a smaller reduction of the contrast
when convolved with the detector resolution function. As expected,
the correlation length in the z direction is unaffected by the lens in the
x–y plane. Although our atomic lens was far from ideal, the experi-
ment shows that it is possible to modify the HBT signal by optical
means.

To conclude, we emphasize that we have used samples of neutral
atoms at a moderate density in which interactions do not play any
significant role. Care was taken to manipulate bosons and fermions
in conditions as similar as possible. Thus the observed differences can
be understood as a purely quantum effect associated with the
exchange symmetries of wavefunctions of indistinguishable particles.

The possibility of having access to the sign of phase factors in a
many-body wavefunction opens fascinating perspectives for the
investigation of intriguing analogues of condensed-matter systems,
which can now be realized with cold atoms. For instance, one could
compare the many-body state of cold fermions and that of ‘fermio-
nized’ bosons in a one-dimensional sample28,29. Our successful
manipulation of the HBT signal by interaction with a laser suggests
that other lens configurations could allow measurements in position
space (by forming an image of the cloud at the detector) or in any
combination of momentum and spatial coordinates.

METHODS
Experimental sequence.Clouds of cold 4He* are produced by evaporative cool-

ing of a pure 4He* sample, loaded into a Ioffe–Pritchard magnetic trap30. The

trapped state is 23S1,mJ5 1, and the trap frequency values are 47Hz and 440Hz

for axial and radial confinement, respectively. The bias field is 0.75G, corres-

ponding to a frequency of 2.1MHz for a transition between the mJ5 1 and

mJ5 0 states at the bottom of the trap. After evaporative cooling, we keep the

radio frequency evaporation field (‘r.f. knife’) on at constant frequency for

500ms, then wait for 100ms before switching off the trap. In contrast to the

experiments of ref. 5, atoms are released in a magnetic-field-sensitive state.

To prepare 3He* clouds, we simultaneously load 3He* and 4He* atoms in the

magnetic trap27. The trapping state for 3He* is 23S1, F5 3/2,mF5 3/2, and axial

and radial trap frequencies are 54Hz and 506Hz—the difference compared to
4He* is only due to themass. The two gases are in thermal equilibrium in the trap,

so that 3He* is sympathetically cooled with 4He* during the evaporative cooling

stage. Once the desired temperature is reached, we selectively eliminate 4He*

atoms from the trap using the r.f. knife. The gyromagnetic ratios for 4He* and
3He* are 2 and 4/3 respectively, so that the resonant frequency of the m5 1 to

m5 0 transition for 4He* is 3/2 times larger than the m5 3/2 to m5 1/2 trans-
ition for 3He*. An r.f. ramp from 3MHz to 1.9MHz expels all the 4He* atoms
from the trap without affecting 3He*. We then use the same trap switch-off
procedure to release the 3He* atoms (also in a magnetic-field-sensitive state)
onto the detector. We can apply magnetic field gradients to check the degree of
spin polarization of either species.

Correlation function.The detailed procedure leading to this correlation is given
in ref. 5. Briefly, we convert arrival times to z positions, and then use the three-
dimensional positions of each atom to construct a histogram of pair separations
Dr in a particular cloud. We then sum the pair distribution histograms for 1,000
successive runs at the same temperature. For separations much larger than the
correlation length, this histogram reflects the gaussian spatial distribution of the
cloud. To remove this large-scale shape and obtain the normalized correlation
function, we divide the histogramby the autoconvolution of the sumof the 1,000
single-particle distributions.

Atom lens experiment.A 300mW laser beamwith an elliptical waist of approxi-
mately 1003 150mm2 propagates vertically through the trap. The laser fre-
quency is detuned by 300GHz from the 23S1 to 23P2 transition. After turning
off themagnetic trap, and waiting 500ms for magnetic transients to die away, the
defocusing laser is turned on for 500ms.
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Supplementary material for "Hanbury Brown Twiss effect for bosons versus fermions" 

1. Unnormalised pair histogram  

 In order to give the reader an idea of the "raw" data, we show in Supplementary figure 

1 some unnormalised pair histograms. The data correspond to the normalised plots shown in 

Fig. 2 in the main text. In addition to the bunching and antibunching feature for separations 

below 1 mm, the histogram also shows a broad structure which is due to the approximately 

Gaussian shape of the cloud. The broad structure is eliminated by the normalisation procedure 

described in Ref. 5 of the main text and summarised in Methods.  

 

 

Supplementary figure. 1. Unnormalised pair histograms for bosons (light blue) 

and fermions (dark blue). The black lines represent a fit to the sum of two 

Gaussian functions.  

 

2. Fit results 

 If one neglects finite resolution effects, the normalised correlation function should be 

well described by a Gaussian function:  
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where the + sign refers to bosons and the – sign to fermions. We denote the correlation 

lengths in the 3 different spatial directions i, by li. In practice this function must be convolved 

with the resolution function of the detector. The resolution function is determined by the 

method discussed in Ref. 26.  The resolution along the z direction is approximately 3 nm and 

is neglected. The convolution in the x-y plane is described in Ref. 19 for the case of a 

Gaussian resolution function. Careful measurements have revealed that the wings of the 

resolution function are broader than those of a Gaussian and we thus use an empirically 

determined analytical function to approximate the pair resolution function. Its 1/e halfwidth is 

about 500 !m. Since the correlation length in the x direction is more than an order of 

magnitude smaller than the resolution, we set lx = 0. The convolution also affects the height of 
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the signal so that g
(2)

(0,0,0) = 1 ± !. The parameter ! is referred to as the contrast. The fit 

parameters are thus ly, lz and !.  

 Data were taken for fermions (
3
He*) at 0.5 !K, 1.0 !K and 1.4 !K. The corresponding 

fit results for lz and ! are plotted in Supplementary Figure 2. In addition, we have data for two 

other situations, one using 
4
He* at 0.5 !K, and another using 

3
He* at 0.5 !K and a diverging 

lens. All 5 runs are summarised in table 1. In the graphs, we have plotted the formula lz 

=ht/2"msz, extracting the size sz from the measured temperature, trap oscillation frequency 

and assuming the cloud is an ideal gas. For the contrast !, we plot the expected variation 

based on the measured resolution function.  

 

 

Supplementary figure. 2. Summary of data taken for 3He* clouds at three 

different temperatures. The solid lines show the expected results (see text). 

 

 

 

 

Run lz (!m) ly (!m) ! 

3
He*, 0.5 !K 750 ± 70 570 ± 50 0.078 ± 0.003 

3
He*, 1 !K 440 ± 90 360 ± 90 0.054 ± 0.004 

3
He*, 1.4 !K 500 ± 110 0 * 0.040 ± 0.003 

4
He*, 0.5 !K 560 ± 80 570 ± 100 0.033 ± 0.003 

3
He*, 0.5 !K, with lens 750 ± 80 810 ± 40 0.108 ± 0.003 

*In this run, the fitted width of the correlation function along y is actually smaller than the resolution. 

Thus no reasonable value can be extracted for ly. 

Supplementary table 1. Summary of fit results for all data sets 
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 Generally the data are in good agreement with the predictions of the ideal gas model. 

In the run with the lens, we have made no quantitative comparison with a calculation because 

it would involve taking into account the severe aberrations of the lens. Qualitatively however, 

we see that, as expected, the correlation length along z is unchanged while that along y, as 

well as the contrast, are increased. The fitted values of ! do not correspond to those one 

would deduce from the data in Figs. 2 and 3 in the main text. This is because, as in Ref. 5, we 

computed the correlation function along the z axis over an area slightly larger than the width 

of the resolution function. This procedure improves the signal to noise ratio and preserves the 

form and the width of the correlation function but slightly modifies its height.  

 

 We observe three small anomalies: first, the contrast ! for both bosons and fermions at 

0.5 !K is below the prediction and the ratio, after correction for the resolution, is 2.4 ± 0.2 

instead of the expected value 1.5. Second, the correlation length ly for fermions at 0.5 !K 

seems quite low resulting in a ratio of fermions to bosons of 1.0 ± 0.2 instead of 1.3. Third, 

the width of the antibunching dip in the normalised pair separation histogram along y for 

fermions at 1.4 !K is smaller than the width of the measured resolution function, meaning 

that the fitted value of ly is consistent with zero.  

 A systematic error may be present in the estimation of the detector resolution. After 

moving the detector from Orsay to Amsterdam, we noticed that the detector resolution,  

differed by up to 30% from day to day. A systematic error in the resolution has approximately 

the same relative effect on the value of !. It would also have an effect on the value of ly. 

Uncontrolled variations in the resolution may thus account for the above anomalies. The 

correlation length in the vertical direction lz however, should not be affected by an imprecise 

knowledge of the resolution in the x-y plane. The good agreement we find with our 

expectations along this axis is the strongest argument that the correlations we observe are 

consistent with the ideal gas model. 

 A second possible source of systematic error is related to the switch-off of the 

magnetic trap. Eddy currents cause a typical time scale of 1 ms in this turn-off
30

. Since, unlike 

in Ref. 5, the released atoms are in a magnetic field sensitive state, partially adiabatic effects 

or focussing by residual curvatures could affect our measurement of the temperature or of the 

effective source size viewed from the detector. We have no independent estimate of the 

magnitude of these effects and can simply conclude that the reasonable agreement with our 

model means that these effects are not very large. 
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Observation of Atom Pairs in Spontaneous Four-Wave Mixing
of Two Colliding Bose-Einstein Condensates

A. Perrin, H. Chang, V. Krachmalnicoff, M. Schellekens, D. Boiron, A. Aspect, and C. I. Westbrook*

Laboratoire Charles Fabry de l’Institut d’Optique, CNRS, Univ Paris-Sud, Campus Polytechnique,

RD128, 91127 Palaiseau cedex, France
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We study atom scattering from two colliding Bose-Einstein condensates using a position sensitive, time

resolved, single atom detector. In analogy to quantum optics, the process can also be thought of as spon-

taneous, degenerate four-wave mixing of de Broglie waves. We find a clear correlation between atoms

with opposite momenta, demonstrating pair production in the scattering process. We also observe a

Hanbury Brown–Twiss correlation for collinear momenta, which permits an independent measurement of

the size of the pair production source and thus the size of the spatial mode. The back-to-back pairs occupy

very nearly two oppositely directed spatial modes, a promising feature for future quantum optics

experiments.

DOI: 10.1103/PhysRevLett.99.150405 PACS numbers: 03.75.Nt, 34.50.!s

Recent years have seen the emergence of ‘‘quantum

atom optics’’, that is the extension of the many analogies

between atom optics and traditional optics to the quantum

optical domain in which phenomena like vacuum fluctua-

tions and entanglement play a central role. In optics, the

advent of correlated photon pairs [1] has provided a fruitful

avenue of investigation, with examples including single

photon sources and entangled states [2]. Partly inspired

by this work, there have been many proposals concerning

atom pairs, especially the production and observation of

entanglement [3–7]. Many authors have also theoretically

investigated other aspects of the pair production mecha-

nism in both atomic collisions and in the breakup of

diatomic molecules [7–13].

As emphasized in Ref. [4], pair production can be

studied in two limits. If many atoms are created in a single

mode, stimulated emission of atoms is important, and one

can speak of two mode squeezing in analogy with

Ref. [14]. The opposite limit, in which the occupation

number of the modes is much less than unity, corresponds

to the spontaneous production of atom pairs, entangled

either in spin or momentum in analogy with

Refs. [15,16]. Experiments on stimulated atomic four-

wave mixing [17–19] and on parametric amplification in

an optical lattice [20,21] are in the first limit, and pairs of

‘‘daughter BEC’s’’ with opposite velocities have been

clearly observed. Experiments in the regime of individual

atom pairs include the many experiments investigating the

scattered halo in collisions of cold atoms either in the

s-wave regime [22–24] or for higher partial waves

[25,26]. None of these experiments, however, has demon-

strated correlated pairs. The only evidence of atom pair

production with cold atoms has been reported in absorption

images of atoms from the breakup of molecules near a

Feshbach resonance [27].

Here, we report on the observation of individual atom

pairs with opposite velocities produced in the collision of

two condensates. A time and position resolved, single atom

detector [28] permits us to reconstruct the three dimen-

sional distribution of the scattered atoms: a spherical shell

in velocity space. We also reconstruct the two-particle

correlation function in 3D and find a strong correlation

between atoms emitted back to back. This process can be

interpreted as a spontaneous four-wave mixing process

constrained by a phase matching condition as in the non

linear optical analog which produces twin photons [2]. It

can also be seen as the result of pairwise elastic collisions

between atoms, constrained by momentum conservation.

We measure the width of the velocity correlation function

for a back to back atom pair and show that it corresponds

very nearly to the uncertainty limited momentum spread of

the colliding BECs.

This interpretation is confirmed by the observation of

the velocity correlation function for two atoms scattered

in the same direction. This latter effect, predicted in

Refs. [7,10,13], is another manifestation of the Hanbury

Brown–Twiss effect (HBT). As in high energy collisions

[29], the effect allows us to measure the size of the colli-

sion volume.

The fact that the width of the HBT peak is close to that of

the back-to-back correlation confirms that for a given atom

on the collision sphere, its partner is scattered into a single

mode of the matter wave field. This observation is crucial

for future experiments in which one would like to bring

pairs back together in order to confirm their entanglement

in the spirit of Ref. [16] or observe other quantum effects

[30].

We produce condensates of 104–105 atoms in the mx "

1 sublevel of the 2
3S

1
state of metastable helium (He#).

The condensates are stored in a cylindrically symmetric

magnetic trap with axial and radial trapping frequencies of

47 and 1150 Hz, respectively. The bias field is 0.25 G in the

x direction (see Fig. 1), and defines the quantization axis.

The uncertainty limited velocity spread of the colliding
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atoms is thus anisotropic and we calculate it numerically

using the Gross-Pitaevskii equation [31]. For a condensate

with 3! 10
4 atoms, we find rms axial and radial velocity

spreads of vrms
x " 0:0044vrecand vrms

yz " 0:091vrec, where

vrec" 9:2 cm=sis the single photon recoil velocity, @k=m
where k is the photon wave vector and m is the atomic

mass. The spread in these values due to the spread in

condensate number is about #20%.

To generate two colliding Bose-Einstein condensates,

we use two stimulated Raman transitions with different

momentum transfers, produced by phase coherent laser

beams L1, L2, and L0

2
, as shown in Fig. 1 [31]. These

transitions have two purposes: first they transfer atoms to

the magnetic field insensitive state mx " 0 so that they

freely fall to the detector and second, they separate the

condensate into two components with velocities vrec$e1 #
e2%, where e1 and e2 are the unit vectors along the propa-

gation axes of the laser beams L1 and L2 respectively. The

beams are pulsed on for a duration of &500 nsand couple

about 60% of the atoms to the mx " 0 state. We do not

switch off the magnetic trap, therefore atoms remaining in

mx " 1 stay trapped. The two colliding condensates travel

with a relative velocity of 2vrec, at least 8 times larger than

the speed of sound in the initial condensate. This ensures

that elementary excitations of the condensate correspond to

free particles. Since they are no longer trapped, the two

colliding condensates expand radially, reducing the colli-

sion rate. A numerical model [8], assuming an expansion

identical to that of a single condensate with the same total

number of atoms, shows a roughly exponential decrease in

the pair production rate with a time constant of &150 !s.

After the collision, atoms fall onto a 8 cm microchannel

plate detector placed 46.5 cm below the trap center. This

detector measures the arrival time of the atoms and their

positions in the x-y plane [28,32]. Figure 2 shows succes-

sive 2.4 ms time slices showing the atom positions as they

cross the detector plane. The time of flight for the center of

mass to reach the detector is 320 ms. Since this time of

flight is large compared to the collision duration, and the

observed patterns are large compared to the collision vol-

ume, the observed 3D atom positions accurately reflect the

velocity distribution after collision. In the following, we

will only refer to the velocities of the detected atoms.

In Fig. 2, one clearly sees a spherical shell of radius of

vrec, represented by circles of varying diameter [see also

Fig. 1(b)]. In the midplane of the sphere one can see the

unscattered, pancake-shaped condensates I, II which lo-

cally saturate the detector. Other features are also visible in

Fig. 2. In frames (a),(b) one sees a condensate, III, which

underwent no momentum transfer, possibly due to the

imperfect polarization of the Raman beams which can

produce an off resonant, single beam Raman transition

[31]. A fourth condensate, IV, probably resulting from

four-wave mixing [17] of condensate III and the main

unscattered condensates I, II is visible in frames (h),(i).

Frames (b),(c) show a collision sphere due to the collision

of I with atoms remaining trapped in mx " 1 and with

condensate III. The two spots within the sphere in frames

(d)–(f) are not understood.

To avoid effects of local saturation of the detector in our

analysis, we exclude regions around the 4 condensates,

representing about 40% of the sphere. On the remaining

area of the sphere we detect between 30 and 300 atoms on

FIG. 2 (color online). (a)–(i) Images of the collision of two

condensates. Each frame represents a 2.4 ms time slice of the

atomic cloud as it passes the plane of the detector (x-y). 150

shots have been averaged to obtain these images. The two

colliding condensates I, II and the collision sphere are clearly

visible. Other features visible in the images are discussed in the

text. The axes are marked in units of the recoil velocity.

FIG. 1 (color online). (a) View of the magnetically trapped

condensate (in the mx " 1 state) and the three laser beams which

create two cigar shaped counterpropagating free condensates (in

the mx " 0 state) by "
'=# Raman transfers induced by L1 ' L2

and L1 ' L0

2
, respectively (see inset). L1 is #-polarized (along x)

while L2 and L0

2
are "'-polarized. (b) Representation in velocity

space of the expected atomic density after the collision. The

scattered atoms are on a sphere and the remaining condensates,

pancake-shaped after expansion, lie on the edge of the sphere

along the x axis. A collision process involving an atom of each

condensate is also represented. The shape of the scattering

modes is related to the uncertainty limited momentum spread

of the condensates.
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each shot, with an average of about 100 per shot. Assuming

a detection efficiency of 10% [32], this means that !5% of

the atoms are scattered from the two condensates. This

number is consistent with the expected s-wave cross sec-

tion [33] and the estimated evolution of the density during

the collision.

We examine the pair correlation function for atoms in

back to back directions by constructing, within the set of all

the scattered atoms in one shot, a three-dimensional histo-

gram containing all the pairs with a velocity sum V "
V1 # V2 close to zero. We then sum the histograms over

1100 shots. Another histogram containing all the pairs of

the sum of all shots gives the accidental coincidence rate

for uncorrelated atoms and is used as a normalization. We

thus recover the normalized second order correlation func-

tion, averaged over the sphere [31], g$2%$V% of the distri-

bution of relative velocities of atom pairs on the sphere.

Figure 3(a) shows the behavior of g$2%$V% around V " 0

projected along the three space axes. The peak indicates

that, given the detection of an atom on the sphere, there is

an enhanced probability of detecting a second one on the

opposite side. Cartesian coordinates are best suited to

plotting the data because of the competing spherical sym-

metry of the scattering process and the cylindrical symme-

try of the source.

To analyze these results further, we perform a three-

dimensional Gaussian fit to the normalized histogram:

 g$2%$Vx; Vy; Vz% " 1# !e&'$V2
x=2"

2
x%&$Vy#Vz%

2=$2"2
yz%(: (1)

The fit gives !BB"0:19)0:02, "BB
x "0:017)0:002vrec,

and "
BB
yz "0:081)0:004vrec. The observed width in the

x direction is limited by the rms pair resolution of the

detector, 0:14vrec [31,36]. In the y and z directions, the

observed width is close to the uncertainty limited velocity

scale vrms
yz discussed above. It is therefore reasonable to

conclude that the anisotropy in the correlation function is

closely related to the anisotropy of the momentum distri-

bution in the source. Detailed modeling accounting accu-

rately for this width is in progress, but for purposes of this

Letter, we will simply compare the width with that of the

correlation function for collinear atoms as described below.

The procedure to construct the correlation function for

nearly collinear velocities (the HBT effect) is the same as

that for the back-to-back correlation function. Defining the

relative velocity V0 " V1 & V2, we show in Fig. 3(b) the

correlation function g$2%$V0% around V0 " 0. Using the

fitting function, Eq. (1), we find: !
CL " 0:10) 0:02,

"
CL
x " 0:016) 0:003vrec, and "

CL
yz " 0:069) 0:008vrec.

As in the back to back case, the width in the x direction is

limited by the resolution while in the y-z plane it is close to

vrms
yz . If we think of the HBT effect as giving a measure of

the size of the pair production source, the width of the

collinear correlation function defines the size of a mode of

the scattered matter wave field. The fact that the back-to-

back and collinear widths are so close, at least in the

directions we can resolve, is further, strong evidence that,

at least in the directions we resolve, the pairs we produce

are in oppositely directed modes.

We now turn to the height of the peaks!. In the collinear

case we expect the value of !CL to be unity for a detector

resolution much smaller than the peak width. Since in the x
direction the width is clearly limited by the resolution, a

crude estimate for !CL is the ratio of the ideal width to the

observed one: !
CL * vrms

x ="x " 0:3. The discrepancy

with the fitted value may have to do with our crude estimate

of the effective source size along x and therefore of vrms
x .

In the back-to-back case, the height of the peak is not

limited to unity. A simple model of the peak height com-

pares the number of true pairs to random coincidences in a

volume !V defined by the widths observed in Fig. 3:

 1# !
BB "

true# random

random
" 1#

V

N!V
: (2)

Here N is the number of atoms scattered on a single shot

(but not necessarily detected) and V is the volume of the

scattering shell. A rough estimate of !V=V is 1=1400. As

mentioned above, we detect on average 100 atoms on the

analyzed 60% of the sphere. Assuming again a quantum

efficiency of 10%, a rough estimate of the average number

N is 1700 so that we find !
BB * 0:8 which gives the

correct order of magnitude. We emphasize that !V is

limited by the detector resolution in the x direction and is

therefore about 10 times larger than the volume corre-

sponding to a single mode. Thus, as stated in the introduc-

FIG. 3. Back-to-back [panel (a)] and collinear [panel (b)] cor-

relation peaks. (a) Projection of g$2%$V " V1 # V2% along the

different axes of the experiment and around V " 0. The projec-

tion consists in averaging the correlation in the two other

directions over a surface equal to the products of the correspond-

ing correlation lengths. This averaging makes the height smaller

than the 3D fitted value !
BB " 0:19) 0:02. The peak is the

signature for correlated atoms with opposite velocities. (b) Pro-

jection of g$2%$V0 " V1 & V2% along the different axes of the

experiment. This peak is due to the Hanbury Brown–Twiss

bunching effect. All velocities are expressed in units of the recoil

velocity.
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tion, the number of scattered atoms per mode is small

compared to unity, and we are in the separated entangled

pair production regime. We can verify the 1=N dependence

of Eq. (2) by binning the data according to the number of

scattered atoms per shot. Dividing the 1100 shots into

3 bins of different atom numbers we do observe the ex-

pected trend as shown in Fig. 4.

A detailed model of the pair production process must

include a more careful description of the collision geome-

try of colliding and expanding condensates as well as the

effect of the condensates’ mean field on the scattered

atoms, something which is neglected in the above discus-

sion. A rough estimate of the mean field effect is found by

adding the chemical potential to the kinetic energy of a

scattered atom. This gives an additional velocity broad-

ening of order 0:03vrec, not entirely negligible compared to

the observed widths. Several workers are developing such

models. The correlation functions we observe lend them-

selves to an investigation of Cauchy-Schwartz inequalities

[2]. A cross correlation (back-to-back) greater than an

autocorrelation (collinear) violates a Cauchy-Schwartz in-

equality for classical fields. Sub-Poissonian number differ-

ences between opposite directions should also be present

[7]. A future publication will discuss these aspects of the

experiment.
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Observation of atom pairs in spontaneous four wave mixing of two

colliding Bose-Einstein Condensates: supplementary information

A. Perrin, H. Chang, V. Krachmalnicoff, M. Schellekens, D. Boiron, A. Aspect

and C. I. Westbrook

Here we give some additional technical details con-
cerning the experiment for interested readers.

Raman laser beams: Figure 1 shows the approximate
geometry of the Raman laser beams which generate
the two colliding condensates. More precisely, an ap-
proximately vertical beam propagates in the direction
defined by e1 = cos θ ez + sin θ ey with θ ≈ 7◦, and
where e represents a unit vector. This beam is π-
polarized (parallel to the x-axis). A second, hori-
zontal beam propagates in the direction defined by
e2 = cos φ ex + sin φ ey with φ ≈ 5◦. The polariza-
tion is circular and corresponds nearly to σ−. Per-
fect σ− polarization with respect to the x axis is not
possible unless φ = 0. The laser beams are blue-
detuned by 400 MHz from the 23S1 − 23P0 transi-
tion (wavelength 1083 nm) and have a relative detun-
ing of about 700 kHz to match the Raman resonance
between the two Zeeman sublevels. The horizontal
beam is retro-reflected. The intensity of laser L1 is
100 mW/cm2 whereas the intensities of laser L2 and L′

2

are 50 mW/cm2. The waist of these beams is 2.8 mm
so that the intensity over the condensate is approxi-
mately constant.

The Raman detuning, 700 kHz is not very large com-
pared to the Fourier limited width of the pulses. If in
addition, the polarization of one beam is not exactly
π or σ, a single beam (L1, L2 or L′

2) can drive a Ra-
man transition with no momentum transfer. This is
the likely mechanism for the production of the conden-
sate III in Fig. 2. In subsequent experiments we have
observed that a better polarizer for L1 substantially
reduces the number of atoms in condensate III.

Detector resolution: In earlier work, we showed that
the single particle resolution was of order 300µm cor-
responding to a velocity resolution of 0.1 vrec. The two
particle resolution is a factor of

√
2 larger.

Size of the condensate: In the Thomas Fermi limit
and for 3 × 104 atoms the chemical potential is µ/h =
3.5 kHz. The Thomas-Fermi radii R are 90 µm and
3.5 µm in the axial and radial directions. Since the
number of atoms is not large, the Thomas Fermi ap-
proximation is questionable. To go beyond that ap-
proximation we calculate the BEC profiles numerically,
by solving the Gross-Pitaevskii equation. The deduced
profile only differs from the Thomas-Fermi one by the
appearance of wings in the profile along the radial axes.
This makes the velocity distribution of the condensates
slightly different. Our numerically estimated rms ve-

locities given in the main text are about 2h̄/mR.
In addition to governing the width of the correla-

tion functions, the quantity vrms should determine the
thickness of the scattering sphere. We observe an rms
width of 0.08 vrec averaged over the detected part of the
sphere, close to the value of vrms

yz
(0.091 vrec). Along

the x direction the thickness of the sphere should be
smaller corresponding to vrms

x
(0.0044 vrec), but the

presence of the unscattered condensates renders that
direction inaccessible. Thus the measured thickness of
the sphere corroborates our estimate of the size and
velocity distribution of the source.

Definition of g(2)(V): Our histogramming procedure
to find the correlation function for back to back pairs
corresponds to first calculating the averaged unnormal-

ized correlation function G(2):

G(2)(V) =

∫
d3

V1 G(2)(V1,−V1 + V) (1)

For collinear pairs we compute

G(2)(V′) =

∫
d3

V1 G(2)(V1,V1 + V
′) (2)

These results are normalized as explained in the main
text to obtain g(2)(V) and g(2)(V′).

Comment on Fig. 3: The figure plots a projected and
averaged correlation function. This procedure tends to
reduce the peak heights. The plotted curve in each
panel is a Gaussian with a width determined by the
3D fit and a height determined by fitting the height of
the averaged and projected data.

In the second panel of Fig. 3 a (the y axis), the
points lie systematically above the line. This may be
due to the fact that because of our elimination of the
areas around the condensates, most of the data for the
y direction comes from points close to the y − z plane.
This means that the main contribution to the corre-
lation data along y comes from different points along
the radius of the sphere. Since the thickness of the
sphere is of similar shape and size as the correlation
function itself, the normalization has the same shape
as the correlation data rendering the normalization of
the wings of the curve very sensitive to noise. Thus the
correlation functions along x and z give a better view
of the quality of the data. The fit however makes use
of all the data points at once and suffers less from this
problem.
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On page 3, column 1, second paragraph, Eq. (1) should read:

 g"2#"Vx;Vy;Vz#$ 1 % !e! "V2
x=2"

2
x#! &"V2

y % V2
z#="2"

2
yz#': (1)

In the same paragraph, the phrase ‘‘. . . the pair resolution of the detector, 0:14vrec,’’ should read ‘‘. . . the pair resolution of

the detector, 0:014vrec.’’ In the EPAPS document No. E-PRLTAO-99-043742, in the paragraph entitled ‘‘Detector

resolution:,’’ the quantity ‘‘0:1vrec’’ should read ‘‘0:01vrec.’’
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Low energy elastic scattering between clouds of Bose condensed atoms leads to the well known s-wave halo

with atoms emerging in all directions from the collision zone. In this paper we discuss the emergence of

Hanbury Brown and Twiss coincidences between atoms scattered in nearly parallel directions. We develop a

simple model that explains the observations in terms of an interference involving two pairs of atoms each

associated with the elementary s-wave scattering process.
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I. INTRODUCTION

In a number of experiments, Bose-Einstein condensates
have been prepared to collide with each other with well de-
fined collision energies and momenta. At the microscopic
level, when two particles with equal mass and opposite ve-
locities collide in an s-wave collision, the collision partners
will propagate away from each other with the same probabil-
ity amplitude in all directions, but their individual momenta
are correlated in opposite directions, as their total center-of-
mass momentum is conserved in the collision process. In
experiments with colliding condensates, the scattering into
all directions has been clearly observed as a so-called s-wave
halo of scattered particles #1$. The observation of pair corre-
lations of particles leaving the collision region back-to-back
!see Fig. 1", requires efficient detection of all momentum
components of individual atoms, and this correlation has re-
cently been observed as a significant coincidence signal in a
collision experiment with Bose-Einstein condensates of
metastable atomic helium #2$. The same experiment also ob-
served an increased coincidence of particles scattered into
the same direction. This phenomenon is due to the bosonic
nature of the particles and to the fact that several independent
scattering processes occur simultaneously.

We shall present a theoretical analysis of this Hanbury
Brown and Twiss correlation phenomenon, aiming at a
simple model which explains its qualitative and quantitative
character in experiments. It is important to emphasize that
the appearance of atoms moving in the same direction is not
compatible with momentum conservation in a single colli-
sion process of two counterpropagating atoms, and our dis-

cussion will, indeed, refer to effects that rely on a many-body

treatment of the collision of larger ensembles. In order to get

physical insight, we will separate the problem in two: first,

we treat independent pairwise collisions in which the colli-

sional interaction gives rise to pairs of scattered atoms, and

second, we treat the evolution of the many-body state de-

scribing the ensemble of scattered atoms neglecting the in-

teractions in order to apply analytic methods. The validity of

this separation and means to improve the theory, if necessary,

will be discussed.

In Sec. II, we present a full second quantized description

of the collision of a large number of identical bosons. We

shall write down the second quantized many-body Hamil-

tonian, and discuss how the elementary processes of interest

relate to the different terms in this Hamiltonian. We treat the

case where all the atoms initially populate two counterpropa-

gating single particle states which are only weakly depleted

by the collisions, and which will hence serve as c-number

field sources for creation of pairs. This is in analogy with the

quantum optics treatment of spontaneous four-wave mixing,

where photon pairs are generated from the interaction of two

incident laser beams, described by classical electromagnetic

waves. In Sec. III, we discuss the Bogoliubov transforma-

tion, which provides a very accurate approximation to the

time evolution of the system. We shall not, however, apply

this transformation in a quantitative treatment, but rather

show that its formal structure already predicts the collinear

#Hanbury Brown and Twiss !HBT"$ correlation and moti-

vates a quite general analytical Ansatz for the quantum state

of the scattered atoms. In Sec. IV, we shall consider the

leading two- and four-atom terms in an expansion of the

quantum state of scattered atoms, and show that they hold

the key to the observed Hanbury Brown and Twiss correla-

FIG. 1. !Color online" Diagrammatic representation of two con-

densates colliding and giving rise to an s-wave halo of scattered

particles. Particles are scattered pairwise back-to-back.
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tions. In Sec. V, we shall use energy conservation and phase
matching considerations to motivate a simple analytical
model, from which we show that the coincidence of scattered
particles in the same direction, though a many-body effect,
can be understood quantitatively from the properties of the
simple two-atom scattering wave function. Section VI con-
cludes the paper with a discussion of the insights offered by
our analysis.

II. COLLIDING BOSE-EINSTEIN CONDENSATES

The Hamiltonian,

H =! dr!!̂†"r!#$−

"2

2m
# + V"r!# +

g

2
!̂†"r!#!̂"r!#%!̂"r!# , "1#

with field operators obeying the Bosonic commutator rela-
tions &!"r!# ,!†"r!!#'=$"r!−r!!#, gives a good description of

bosons interacting at low collision energies via a short range
potential. The interaction is represented by a delta-function
interaction term with strength g, proportional to the s-wave
scattering length. The atoms may be subject to a wide range
of trapping or guiding potentials V"r!#, or they may propagate

freely "V=0#, and the initial state of the system may be

specified according to experimental preparation procedures
to describe, for example, a single condensate or several mac-
roscopically populated components. We are interested in the
situation, in which two condensates with well defined mo-
menta, and hence relatively large spatial extent, propagate
toward each other. The conventional second quantized
Hamiltonian fully describes the problem, and a Monte Carlo-
type simulation of the dynamics &3–5', and perhaps even
simpler simulation approaches based on truncated Wigner
function expansions &6,7', may solve this problem in full
generality by full three-dimensional "3D# propagation of sto-
chastic Schrödinger-type equations.

We assume that elastic collisions occur with a sufficiently
small cross section that the colliding condensates are only
weakly depleted due to the collision term in Eq. "1#. The
Hamiltonian has terms describing the kinetic energy and the
potential energy of atoms moving in the external potential
and finally, a term describing the mean field repulsive or
attractive potential due to the other atoms of the colliding
condensates. But the product of two creation and two anni-
hilation operators in the interaction term does not only read
as density dependent correction to the potential energy in the
Gross-Pitaevskii equation: the product of two creation opera-
tors may also cause the creation of a pair of atoms with
momenta entirely different from the incident ones, extracted
consistently from the condensates by the product of annihi-
lation operators. The pairs of atoms “created” in the scatter-
ing process are the ones that are detected as the s-wave halo
around the condensate collision region in Fig. 1.

We can think of each point in the collision zone as a point
source for a pair of initially close atoms "atoms only collide
at short range#, which are subsequently separated by free
propagation, perturbed by the interaction with the condensate
components. This propagation, together with the coherent
addition of pair amplitudes originating from the entire colli-

sion zone leads to a complicated many-body entangled state,
but energy conservation, imposed after a sufficiently long
interaction time, and momentum conservation, imposed by
phase matching, serves to justify our simpler model, de-
scribed below.

III. BOGOLIUBOV APPROXIMATION

If the original condensates are only weakly depleted by
the scattering, we may follow Refs. &8–10' and expand the
atomic field annihilation operator,

!̂"r!,t# = %k!0
"r!,t# + %

−k!0
"r!,t# + !̂!"r!,t# , "2#

as a sum of mean field terms %&k!0
describing the incident

wave packets, and noise terms !̂!"r! , t#, describing field com-

ponents of the initially unpopulated scattering modes. We
shall assume that there is no active external potential during
the collision, and for convenience we omit the prime on the
noise operator terms in the following. The Bogoliubov ap-
proximation consists of applying the Gross-Pitaevskii equa-
tion to the propagation in time of the mean field part and of
obtaining the Heisenberg equations of motion for the field
operators from an expansion of the Hamiltonian "1# to sec-
ond order in the noise operator terms.

These equations of motion are linear in the field creation
and annihilation operators,

i"!t!̂"r!,t# = $−

"2

2m
# + 2g(%k!0

"r!,t# + %
−k!0

"r!,t#(2%!̂"r!,t#

+ g&%k!0
"r!,t# + %

−k!0
"r!,t#'2!̂†"r!,t# . "3#

By expanding the operator solution to this equation as a for-
mal Bogoliubov transformation,

!̂"r!,t# =! dr!! &f"r!,r!! ,t#!̂"r!! ,0# + g"r!,r!! ,t#!̂†"r!! ,0#' ,

"4#

the Heisenberg equations of motion "3# can be rewritten as
partial differential equations for the c-number functions f

and g, and the atomic annihilation operators are at any given
time explicitly expressed as linear combinations of the anni-
hilation and creation operators at time zero, where the initial
state is assumed to be known "incident condensate wave
functions, no scattered atoms#. The mean atom number and
any higher order correlation function of the field can there-
fore be expressed algebraically in terms of the expansion
coefficients of the Bogoliubov transformation and the known
vacuum expectation values of field operator products. Al-
though obviously related, the use of the Bogoliubov transfor-
mation here is different from the Bogoliubov approximation
used to identify low-lying, collective excitation modes in a
condensate. The analysis rather follows the philosophy of
squeezed light generation with optical parametric oscillators
in quantum optics, where the Bogoliubov method is used to
diagonalize a multimode Hamiltonian with pair creation and
annihilation operators &11' "see also &12,13'#. By use of the
Bogoliubov approximation, the full many-body problem has
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been reduced to partial differential equations of a complexity

comparable to the single particle Schrödinger equation, and

one only has to solve time dependent wave equations in three

spatial dimensions as done in Refs. !8–10".
Here we shall demonstrate some properties of the solution

that follow by purely analytical arguments, i.e., without ac-

cess to the precise solution. Since the initial state of the

atomic scattering modes #momentum components$ of interest

is the vacuum state, which has a Gaussian #Wigner$ probabil-

ity distribution for the multimode field variables, and the

Bogoliubov transformation is linear in field operators, the

state will, independently of the precise form of the transfor-

mation, at all later times be a Gaussian with vanishing mean

field expectation value !14". If we restrict the analysis to a

single final momentum state #mode$, by a partial trace over

all other modes, the state of this mode is also a Gaussian

state with vanishing mean amplitude. It is thus fully charac-

terized by the second moments of the Hermitian linear com-

binations qk! %#!̂†#k!$+!̂#k!$$ /&2, pk! = i#!̂†#k!$−!̂#k!$$ /&2 of

the field operators. We now wish to establish that our Gauss-

ian distribution is symmetric, i.e., Var#qk!$=Var#pk!$. This in-

deed follows if the “anomalous” moments '!̂†#k!$2(

= '!̂#k!$2(=0, i.e., if there is no coherence between states

differing by two atoms propagating in the given direction.

We now apply the physical argument, that the collisional

Hamiltonian does not produce such coherence, since the col-

lision process can only produce pairs of atoms propagating in

opposite directions, and states, e.g., with zero and two atoms

with momentum k! must also contain zero and two atoms

with momentum around −k!. The anomalous moments vanish

due to the orthogonality of these parts of the wave function.

It is well known in quantum optics, that a symmetric

Gaussian state is equivalent to an incoherent mixture of num-

ber states with exponential number distribution, also known

as a thermal state with the density matrix !11",

"1 = #1 − )t)2$ * )t2)n)n('n) . #5$

The state conditioned upon detection, and annihilation, of a

single particle reads,

"c = #â"1â† =
#1 − )t)2$2

)t)2
*

n

)t2)nn)n − 1('n − 1) , #6$

where # is a normalization constant. A straightforward cal-

culation shows that this state has precisely twice as many

bosons on average as #5$, and hence that the probability to

detect two bosons by a low efficiency detector is twice the

square of the single quantum detection probability. It thus

follows that the coincidence counting rate for observing two

atoms leaving the collision zone in the same, narrowly de-

fined, direction, '!̂†#k!$!̂†#k!$!̂#k!$!̂#k!$( is twice the square

of the mean counting rate, and twice the coincidence rate for

seeing atoms in two unrelated directions.

Without performing any calculations, we therefore under-

stand qualitatively the observed coincidences observed in the

experiments !2" as the direct consequence of the thermal

counting statistics #Gaussian quadrature distribution$ of the

output flux in all scattering directions. This is the famous

Hanbury Brown and Twiss effect !17–20" observed origi-

nally as photon bunching in chaotic light resulting from the

addition of the contributions of many incoherent emitters.

We note that the factor n in the expansion #6$ is a bosonic

amplification factor stemming from the &n coefficients ac-

companying the annihilation operator acting on the quantum

state. The effects of this amplification factor are also ob-

served in condensate formation !21" and matter wave ampli-

fication !22" experiments. In order to provide a natural esti-

mate of the HBT momentum correlation function, one could

develop the field correlations by solution of the linear

Bogoliubov-de-Gennes equations for the problem !8–10"
which by the corresponding linear transformation of opera-

tors provides the first and second order momentum correla-

tion functions and hence the momentum range within which

the bunching effect takes place. Here, we will rather keep

track of the binary scattering states, and in particular of the

counterpropagating partners, which will give us an alterna-

tive and very useful physical interpretation of the effect.

The Bogoliubov transformation of field operators is

equivalent to a multimode unitary squeezing operation !11",
which is indeed nothing but the time evolution operator of a

Hamiltonian with quadratic terms in field creation and anni-

hilation operators. Such an operator can be ordered as a

product of three exponentials !15,16": one involving a sum

of products of pairs of creation operators, one involving a

sum of products of creation and annihilation operators and

one involving a sum of products of pairs of annihilation op-

erators. When acting on the initial vacuum state vector, only

the unit term of the series expansion of the latter two expo-

nentials contribute, and the state can therefore be written in

terms of a quadratic form of creation operators of atoms, e.g.,

in the momentum space representation,

)!( = N! exp+, dk!1dk!2$#k!1,k!2$!̂†#k!1$!̂†#k!2$-)vac( .

#7$

The function $#k!1 ,k!2$ generally depends in a complex man-

ner on the dynamical evolution. It is of course related to the

scattering wave function of a single pair of atoms, and we

shall come back to this relationship in connection with the

model studied in Sec. V of the paper. The use of second

quantization automatically yields the bosonic symmetry of

our state, but in addition we can require that the pair ampli-

tude function obey the explicit exchange symmetry

$#k!1 ,k!2$=$#k!2 ,k!1$. For now, let us assume, that the propen-

sity for atoms to be scattered into opposite directions also

implies that $#k!1 ,k!2$ takes nonvanishing values for all direc-

tions of the scattered particles, but only if k!1.−k!2. The func-

tion $#k!1 ,k!2$ is not a normalized wave function: the larger its

amplitude the more particle pairs are created, and higher or-

der terms of the exponential play more and more important

roles. The many-body state )!( is normalized by the prefac-

tor N! in #7$.
We now proceed to determine the density-density correla-

tions of atoms detected in two different directions, labeled by

HANBURY BROWN AND TWISS CORRELATIONS IN … PHYSICAL REVIEW A 77, 033601 #2008$
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momentum states !k! ,k!!", i.e., the expectation value

F!k!,k!!" ! #"̂†!k!""̂†!k!!""̂!k!!""̂!k!"$ !8"

The state !7" is a Gaussian state, and by Wick’s theorem %23&
this expectation value can be written down in terms of only
pair-expectation values. We shall address the contribution
from the four-atom component in the expansion of the expo-
nential in !7", as this provides a straightforward interpreta-
tion of the origin and the behavior of the atomic Hanbury
Brown and Twiss correlations.

IV. TWO-ATOM AND FOUR-ATOM STATES

The state !7" can be written explicitly,

'"$ = N"('vac$ +) dk!1dk!2#!k!1,k!2""̂†!k!1""̂†!k!2"'vac$

+
1

2
() dk!1dk!2#!k!1,k!2""̂†!k!1""̂†!k!2"*2

'vac$ + . . .* .

!9"

The zero order term is the vacuum state. The first order term
is a two-atom state of atoms propagating back-to-back, and
the second order term of the series expansion of !7" is the
four-atom state

'"4$ + () dk!1dk!2#!k!1,k!2""̂†!k!1""̂†!k!2"*2

'vac$ , !10"

which we will show accounts for the observed HBT effect.
The squared pair creation operator in !10" can be expanded
as a fourfold integral. To obtain the correlation function !8",
we have to apply the product of the two annihilation opera-
tors on '"4$ and determine the squared norm of the resulting
state,

F!k!,k!!" ! ,"̂!k!""̂!k!!"'"4$,2. !11"

Using the field commutator relations, we can shift the anni-
hilation operators to the right of all creation operators in !11".
This yields a total of 12 terms, which by relabeling and use
of the exchange symmetry can be reduced to a sum of three
different contributions,

"̂!k!""̂!k!!"'"4$ !) dk!1dk!2-#!k!1,k!2"#!k!,k!!"

+ #!k!1,k!"#!k!2,k!!"

+ #!k!1,k!!"#!k!2,k!"."̂†!k!1""̂†!k!2"'vac$ .

!12"

and thus its squared norm:

F!k!,k!!" !) dk!1dk!2'#!k!1,k!2"#!k!,k!!" + #!k!1,k!"#!k!2,k!!"

+ #!k!1,k!!"#!k!2,k!"'2. !13"

This is the main result of the paper. Dealing explicitly with

the four atom component it is easy to see what happens. In
Fig. 2. we illustrate the case of detection of a particle pair in

random directions. Because, as noted below Eq. !4", #!k! ,k!!"
vanishes unless k! and k!! are anti-parallel, the first term in Eq.
!10" only contributes if the detectors correspond to opposite
directions. For opposite or random directions such as in Fig.
2, there is also no cross term between the second two terms

because one vanishes whenever the other is finite. If !k! ,k!!"
are nearly parallel, as illustrated in Fig. 3, the last two terms
evaluate the two different #-terms at the detector directions
and at the direction specified by the integration variables.

FIG. 2. !Color online" State of four atoms, scattered pairwise

back-to-back. Atoms detected by detectors A and B in an arbitrary

pair of directions have partners recoiling in the opposite directions

within a certain width imposed by the uncertainty on total and rela-

tive momentum of the atoms. The quantum state of the detected pair

is obtained by a partial trace over the recoiling momentum compo-

nents, and the coincidence counting yield in the detectors is just the

product of the single detector count signals

FIG. 3. !Color online" State of four atoms, with two atoms de-

tected in nearly parallel directions. The detected atoms are not un-

ambiguously identified with their recoiling partners if their momen-

tum distributions are wide enough to overlap. This leads to an

interference term in the coincidence counting yield in detectors A

and B as expressed by the formal expression !13".
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This means that values of the integration variables k!1 ,k!2 ex-

ist !opposite to the detector directions", where both of the last

terms in !13" contribute, namely if k!1 and k!2 are within the

“recoil cone” of both detection directions k! and k!!. For iden-

tical k! and k!! this interference give precisely the factor 2

increase of coincidences compared to the case of random

directions. We also note that the enhanced coincidences oc-

cur within a solid angle specified precisely by this “recoil

cone”. The next section develops our model one step further

and carries out the calculation for the special choice of a

Gaussian for the function !!k!1 ,k!2".

V. RESULT FOR A SIMPLE ANSATZ FOR !„k"1 ,k"2…

As stated above, the Bogoliubov approximation to the ac-

tual state can be found numerically by solution of linear

wave equations. In this section, we shall rather take a simpler

approach by making an Ansatz for the shape of the function

! by appealing to the dynamics and the conservation laws

valid in the bipartite collision dynamics.

Energy conservation, which is effectively enforced during

the temporal solution of the Schrödinger equation, suggests

that the atomic pair state !!k!1 ,k!2" describes particles with

the same energy as the incident condensate particles. Mo-

mentum conservation suggests that they also have the same

total momentum as the colliding pair. Due to the finite size of

the colliding clouds, this does not strictly imply that the two

atoms must have exactly opposite momenta. The finite size

of the collision zone implies a quantum mechanical momen-

tum uncertainty, and if contributions from small regions

!with correspondingly large total momentum uncertainty" are

added coherently the resulting phase matching condition is

not sharp if the entire collision zone has finite size. There are

therefore quantum fluctuations of both the modulus and di-

rection of the momenta. When the particles escape from the

collision zone as illustrated in Fig. 1, they are also repelled

by the mean field interaction with the two condensate com-

ponents. Here we will not try to describe accurately the ef-

fect of this interaction, which is in any case small when

atoms leave a condensate after receiving an initial kinetic

energy large compared to the chemical potential #24$. Note,

however, that such mean field repulsion has in fact turned out

to be tractable in the atom laser output from a condensate,

where a generalized ABCD matrix formalism yields an ana-

lytical description of the propagation #25$.
We define coordinates such that the nearly parallel k! ,k!! of

interest are close to the negative z-direction. Their partners at

k!1 ,k!2 must both be close to the positive z-direction, and we

shall assume the z-coordinates to be equal and opposite and

only look at their x and y components. Their widths are

related to the wave functions of the colliding condensates,

both due to the amplitude of collisions out of these conden-

sates and due to the mean field repulsion, and they are thus in

general anisotropic. We restrict for simplicity the integration

to one transverse coordinate !putting vector arrows on the

arguments will yield the 2D result", and we assume that a

single pair is described by a wave function, where the wave

function amplitude for the recoiling partner has a bell shaped

profile, that we for simplicity approximate by a Gaussian,

centered at minus the coordinates of the detected particle.

The width of this wave function is parametrized by a mo-

mentum width K which thus represents both the momentum

width of the colliding condensate particles and the accelera-

tion due to the mean field.

Assuming thus the last two terms in !13" to be of such

Gaussian shape, and ignoring the first term which vanishes

for the geometry studied, we can explicitly calculate the co-

incidence signal:

F!k!,k!!" "% dk1dk2&exp'− #!k1 + k"2 + !k2 + k!"2$/2K2(

+ exp'− #!k1 + k!"2 + !k2 + k"2$/2K2(&2

" 1 + exp#− !k − k!"2
/2K2$ , !14"

where we recall that k and k! here refer to !small" transverse

coordinates of the detector directions with respect to a given

axis, i.e., !k−k!" is the radial momentum of the outgoing

particles multiplied with their mutual !small" angle in radi-

ans.

We recover the Hanbury Brown and Twiss correlations,

and we observe that the correlations persist for final state

momenta within a distance from each other of the order of

the quantum mechanical uncertainty of the total momentum

of the atom pair escaping the collision zone. This is in accord

with our interpretation in terms of the interference between

the indistinguishable components illustrated as the overlap-

ping recoil cones in Fig. 1!c", that leads to the last term in

!14" depending on both k and k!, whereas the direct terms

lose the k and k! dependence due to the Gaussian integrals.

It is interesting to note, that Eq. !14" follows from a two-

state amplitude !!k ,k!""exp!−!k+k!"2 /2K2" for transverse

momentum components of atoms propagating in nearly op-

posite directions, and therefore the two atom component of

Eq. !9" predicts a correlation of atoms in opposite directions

with the dependence &!!k ,k!"&2"exp!−!k+k!"2 /K2". The

Hanbury Brown and Twiss bunching thus occurs within a

Gaussian width that is )2 times larger than the range of

correlation of recoiling atomic momenta. This prediction for

the Gaussian wave functions has been verified by more de-

tailed analysis of the full 3D propagation #5$. One way to

understand the broadening is to recognize that the density

dependence of the pair production mechanism results in a

source which is spatially narrower than the condensates

themselves.

Although we have based our analysis on the four-atom

component of the full many body states, we have argued that

a calculation based on the full state would yield the same

results, and in particular that the HBT correlation amounts to

a factor of two in parallel directions while the correlation in

opposite directions is not limited by this factor. When mul-

tiple scattering is neglected, the complete many-body prob-

lem is solved by the Bogoliubov-de-Gennes equations, and

the resulting Gaussian or thermal character of the many-body

state is fully accounted for by the second moments. This

does not imply, however, that one would get the same quan-

titative results for scattering of few and many atoms. If the
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normalized wave function for a single scattered pair in the

case of a low scattering probability is denoted !!k!1 ,k!2", it

may be reasonable to describe the collision process by the

effective Hamiltonian H="#dk!1dk!2!!k!1 ,k!2"#̂†!k!1"#̂†!k!2"
+H.c., where " is a coupling strength. The unitary time evo-
lution operator is the exponential of this operator multiplied
by !t / i$" or integrated over a suitable time interval. We note

that this does not generally result in an expression for

%!k!1 ,k!2" in !7" which is proportional to !!k!1 ,k!2". In the case

of single mode squeezing, it is known that one must evaluate
the hyperbolic tangent function of the squeezing parameter
to convert the squeezing operator to the normal order form
$11%, and in our general multimode case, normal ordering is
accomplished by evaluating the tanh function of a matrix
argument $15,16%. For small arguments, in the perturbative
regime of spontaneous four wave mixing, tanh is a linear
function, and we get the same momentum dependence. Out-
side the perturbative regime, we retain the factor 2 bunching
effect by our general argument, but the precise shape of the
correlation peak may be modified.

VI. DISCUSSION

We have presented a simple interpretation of the observed
Hanbury Brown and Twiss correlations observed in the elas-
tic scattering of Bose-Einstein condensates. We emphasize,
that in order to make quantitative predictions, it is necessary
to make a more elaborate calculation of the pair formation
and the propagation of the atoms both in free space and in
the regions where the mean field of the condensate compo-
nents act as a perturbing potential. Such a description is of-
fered by the Bogoliubov theory in Refs. $8–10%, and we note
that $10% as well as $4% also provide numerical evidence for
the density correlations discussed in the present paper. Our
interpretation relies on the structural property of the solu-
tions to the Bogoliubov theory !7", but it proceeds by apply-
ing a different physical reasoning which recognizes that the
two detected particles are accompanied by collision partners
propagating in the opposite directions, and we hence observe
part of a four-atom state. This is an appealing picture, in
particular because the prediction of the coincidence signal,
and in particular its width, relates to the transverse spreading
of the pair wave functions of oppositely propagating atoms
after the bipartite collisions.

As we discussed in the text, when observed from only one
direction, the reduced density matrix of the expanding
atomic cloud is similar to a thermal state. This density matrix
is sufficient to predict the outcome of any measurement on
the observed part of the system, and it explains the experi-
mental findings as an analog of the observed bunching of the
photons from a thermal/chaotic light source. The optical
Hanbury Brown and Twiss experiment has a characteristic
transverse spatial scale over which the correlation falls to
unity, related to the transverse momentum distribution of the
photons impinging on the detector, and in a similar manner
we have a finite transverse coherence length in the atomic

scattering experiment. We discussed the isotropic s-wave
scattering, with possible corrections due to anisotropy of the
colliding clouds and spatial phase matching. In addition, one
may apply a periodic background potential, which may alter
the energy dependence on the momentum vector of moving
atoms, and hence modify the scattering profile $26,27%, and
with confinement to one dimension, it may lead to highly
selective population of specific momentum states with
strong, observable quantum correlations $28,29%.

It is interesting to recall that a mixed quantum state, i.e., a
density matrix, can always be formally obtained as the re-
duced state of a larger quantum system which is in a pure
state, and in particular any thermal quantum state of a
bosonic degree of freedom can be modeled by a pure
squeezed state in a doubled tensor space. This is known as
the “thermofields” formulation $30%, and for example the
single mode thermal state !5" can be obtained as the trace
over one of the modes of a non-degenerate two mode
squeezed state, as obtained, e.g., from a non-degenerate op-
tical parametric oscillator !OPO",

&%OPO' & (
n

t
n&n,n' . !15"

In our four-atom analysis, the apparently thermal state arriv-
ing at nearby detectors is precisely part of such a larger sys-
tem. The advantage of this insight is that the spatial scale of
the extended state, in our case the probability distribution of
the total momentum of scattered atoms, directly yields the
density correlations in the reduced density matrix. More
elaborate analyses $31% have shown how density-density cor-
relations in the image of expanding gases can reveal a wide
range of more complex many-body properties, as confirmed
by experiments $32%.

Finally, if the collision occurs between two different
bosonic species, the same kind of correlations will occur for
the density correlations of each species, but not for the cross
correlation, where the recoiling atoms are distinguishable,
and hence do not interfere. For collisions between bosons
and fermions the situation is different. Electrons have been
demonstrated to show antibunching related to their fermionic
character $33%, and antibunching has also been demonstrated
for neutral fermionic atoms $34,35%. Collisions between a
Bose condensate and a degenerate Fermi gas, where all fer-
mions initially occupy orthogonal states, but where Pauli
blocking forbids more than one atom ending up in the same
final state should lead to observable antibunching effects in
the scattered bosons.
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1. Introduction

Recent years have seen the introduction of powerful new tools for studying degenerate quantum

gases. For example, on the experimental side correlation measurements offer a new experimental

probe of many-body effects [1]–[11]. On the theoretical side, the challenges posed by the new

experimental techniques are being met by quantum dynamical simulations of large numbers

of interacting particles in realistic parameter regimes. These are becoming possible due to

the advances in computational power and improvements in numerical algorithms (for recent

examples, see [12]–[15]).

In this paper, we study metastable helium (4He∗), which is currently unique in quantum

atom optics in that it permits a comparison of experimentally measured [16] and theoretically

calculated quantum correlations. This is one of the first examples in which experimental

measurements can be considered in the context of first-principles calculations. Our goal in this

paper is to confront a theoretical analysis with the results of recent experiments on atomic

four-wave mixing via a collision of two Bose–Einstein condensates (BECs) of metastable 4He∗

atoms [16]. Figure 1 is a schematic momentum space diagram of these experiments. Two

condensates, whose atoms have approximately equal but opposite momenta, k1 and k2 ≃ −k1,
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Figure 1. Schematic momentum space diagram of the atomic four-wave

mixing interaction. Optical Raman pulses generate untrapped condensates with

momenta k1 and k2 = −k1 parallel to the x-axis (dark disks). These undergo a

four-wave mixing interaction to produce correlated atomic pairs on a spherical

shell of radius k1.

interact by four-wave mixing, while they spatially overlap, to produce correlated atomic pairs

with approximately equal but opposite momenta, k3 and k4, satisfying momentum conservation,

k1 +k2 = k3 +k4. Figure 1 corresponds to the experimental data shown in figure 2 of [16], since

after time-of-flight expansion, atomic momentum is mapped into atomic position.

We perform first-principles quantum simulations of the collision dynamics using the

positive P-representation method [17]–[20]. The advantage of this method is that given the

Hamiltonian of the interacting many-body system, no additional approximations are imposed to

simulate the quantum dynamics governed by the Hamiltonian. The drawback on the other hand,

is that it usually suffers from large sampling errors and the boundary term problem [21] as the

simulation time tsim increases, eventually leading to diverging results.

An empirically estimated upper bound for the positive-P simulation time (beyond which

the stochastic trajectories start to make large excursions in phase space, leading to boundary

term problem and uncontrollable sampling errors [21]) for the evolution of condensates with

s-wave scattering interactions is given approximately by [22]

tsim ! 2.5m(!V )1/3/[4π h̄aρ
2/3

0 ], (1)

where m is the atom mass, a is the s-wave scattering length, ρ0 is the condensate peak density,

and !V = !x!y!z is the volume of the elementary cell of the computational lattice, with

lattice spacings of !x, !y and !z. Applying this formula to metastable helium, we see that

this is a particularly challenging case among commonly condensed atoms due to its small

atomic mass and relatively large scattering length. Our simulations are restricted to short

interaction times (typically !25µs), which are about six times shorter than the experimental

interaction time of [16]. Despite this, our positive-P simulations provide useful insights into

the experimental observations; in addition, they can serve as benchmarks for approximate

theoretical methods (such as the Hartree–Fock–Bogoliubov method [23]–[26] or the truncated

Wigner method [12, 13]) to establish the range of their validity.
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We note that the simulations of BEC collisions of [12, 13] using the truncated Wigner

method are in a different regime than the ones carried out here using the positive-P method.

More specifically, the authors of [12, 13] simulate condensates at much higher densities, for

which the approximations of the method [13, 27] are satisfied. The advantage of the Wigner

method over the positive-P is that it does not suffer from boundary term problem and can be

used to simulate condensate collisions for longer durations.

In the present paper, we calculate atom pair correlations within the scattering halo produced

spontaneously during the collision (see figure 1). The scattering halo is a spherical shell in

momentum space. In the limit of small occupation of the scattered modes, the s-wave nature of

the collisions ensures an approximately uniform atom population over the halo. We consider the

strength and the width of the correlation signal, as well as the momentum width of the halo. We

also analyze relative atom number squeezing and the violation of the classical Cauchy–Schwartz

inequality.

In section 2 of this paper, we will summarize the experimental results we wish to analyze.

In section 3, we discuss order of magnitude estimates. In section 4, we describe simulations

using the positive P-representation method, and in section 5, we discuss the results of our

simulations. Section 6 summarizes our work.

2. Summary of experimental results

2.1. Overview of the experiment

The starting point of the experiment is a 4He∗ condensate of 104–105 atoms confined in

a magnetic trap whose frequencies are: ωx/2π = 47Hz and ωy/2π = ωz/2π = 1150Hz. A

sudden Raman outcoupling drives the trapped 4He* from the mx = 1 Zeeman sublevel into

the magnetic field insensitive state mx = 0 [16]. The Raman transition also splits the initial

(mx = 1) condensate into two roughly equally populated condensates with opposite velocities

along the x-direction. The magnitude of each velocity is equal to the recoil velocity vr =
9.2 cm s−1, defined by the momentum of the photons used to create the colliding condensates

h̄kr , kr = 5.8× 106m−1. The relative velocity 2vr of the two condensates is about eight times

higher than the speed of sound cs =
√

µ/m of the initial condensate, ensuring that the relevant

elementary excitations of the condensates correspond to free particles.

During the separation of the condensates, elastic collisions occurring between atoms with

opposite velocities scatter a small fraction (5%) of the total initial atom number into the halo.

The system is shown in three dimensions (3D) in an accompanying video of the experimental

results after a 320ms time of flight5. For the purposes of this paper, the experiment consists

in the acquisition of the 3D positions of the particles scattered into the collision halo after the

time of flight. This information permits the reconstruction of the 3D momentum vectors of the

individual particles after they have ceased interacting with each other.

5 A 3D, animated rendition of the atomic positions 320ms after release from the trap, available from

stacks.iop.org/NJP/10/045021/mmedia. The vertical positions are derived from the arrival times as described

in [16]. Each point corresponds to the detection of one atom and the animation shows the sum of 50 separate runs.

The ellipsoids at the sides are the colliding condensates. The ellipsoids at the top and bottom result from imperfect

Raman polarizations and stimulated atomic four-wave mixing (see [16]). The four condensates are excluded from

the analysis given in the text.
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2.2. Main results

Knowledge of the momentum vectors in turn permits the construction of two-particle correlation

functions in momentum space. The correlation function shows features for particles traveling

both back-to-back (BB) and collinearly. The BB correlation results from binary, elastic

collisions between atoms, whereas the collinear (CL) correlation is a two particle interference

effect involving members of two different pairs: a Hanbury Brown–Twiss correlation [28].

Both correlation functions are anisotropic because of the anisotropy of the initial colliding

condensates.

To quantify these correlations, we first introduce the unnormalized normally-ordered

second-order correlation function between the densities at two points in momentum space,

G(2)(k1,k2) = 〈: n̂(k1)n̂(k2) :〉. (2)

Here, n̂(k) = â†(k)â(k) is the momentum density operator, â†(k) and â(k) are the Fourier

transforms of the field creation and annihilation operators !̂
†(x) and !̂(x), and the colons ::

stand for normal ordering of the operators according to which all creation operators stand to the

left of the annihilation operators, so that

〈: n̂(k1)n̂(k2) :〉 = 〈â†(k1)â
†(k2)â(k2)â(k1)〉. (3)

Because of a low data rate, the correlation measurements must be averaged over the entire

collision sphere to get statistically significant results. The average CL second-order correlation

as a function of the relative displacement"ki in the ki -direction (i = x, y, z) is defined as

g
(2)
CL("ki) =

∫

D

d3kG(2)(k,k+ ei"ki)

∫

D

d3k〈n̂(k)〉〈n̂(k+ ei"ki)〉
, (4)

where ei is the unit vector in the ki -direction. The normalization of g
(2)
CL("ki) ensures that for

uncorrelated densities g
(2)
CL("ki) = 1. The integration domainD in (4) selects a certain region of

interest in momentum space and can be defined, for example, to contain only a narrow spherical

shell and to eliminate the initial colliding condensates. Due to the averaging, the dependence of

the correlation functions on the direction k is lost.

The average BB correlation function g
(2)
BB("ki) between two diametrically opposite points,

one of which is additionally displaced by "ki in the ki -direction, is defined similarly to

g
(2)
CL("ki):

g
(2)
BB("ki) =

∫

D

d3kG(2)(k, −k+ ei"ki)

∫

D

d3k〈n̂(k)〉〈n̂(−k+ ei"ki)〉
. (5)

The experimental observations can be summarized as follows. The width of both

correlation functions along the axial direction of the condensate, the x-axis, is limited by the

resolution of the detector and hence contains little information about the collision. In the radial

direction (with respect to the symmetry of the colliding condensates), one observes a peak which

can be fitted to a Gaussian function with rms widths σ
CL
y,z and σ

BB
y,z for the CL and BB cases,

respectively. The experimental results are summarized in the following table

σ
BB
y,z /kr σ

CL
y,z /kr σ

CL
y,z /σ

BB
y,z

0.081± 0.004 0.069± 0.008 0.85± 0.15
(6)

New Journal of Physics 10 (2008) 045021 (http://www.njp.org/)

http://www.njp.org/


6

0 0.5 1.0 1.5

0

0.2

0.4

0.6

0.8

1.0

k /kr

A
rb

. 
u
n
it
s

Figure 2. Cross-section of the scattering halo. A sloped background is present

due to thermal atoms in the trap. This background has been fitted to a straight

line and subtracted in order to estimate the rms width, δk ≃ 0.067kr .

One can also use the data to deduce the averaged radial width δk of the scattering halo.

Figure 2 shows a cross-section of the halo, averaged over all accessible scattering angles. The

presence of the unscattered condensates prevents observation of the shell along the x-axis, but

along the accessible directions we find δk ≃ 0.067kr .

3. Qualitative analysis

In this section, we discuss some simple, analytical estimates of the measured quantities. In later

sections, we will do more precise, numerical calculations which will verify the results of this

section.

3.1. Width of the pair correlation functions

As discussed in [16], the width of the BB and CL correlation functions should be on the order

of the momentum width of the initial condensate, which in turn is proportional to the inverse

width of its spatial profile. For a Gaussian density profile of the initial condensate in position

space ρ(x) = 〈#̂†(x)#̂(x)〉 = ρ0 exp [−
∑

i=x,y,z r
2
i /(2w

2
i )], and therefore a Gaussian density

distribution in momentum space, n(k) = 〈n̂(k)〉 ∝ exp [−
∑

i=x,y,z k
2
i /(2σ

2
i )], with σi = 1/2wi ,

an approximate theoretical treatment based on a simple ansatz for the pair wavefunction predicts

a Gaussian dependence of the BB and CL correlation functions on the relative wavevectors

%ki [28]:

G(2)(k, −k+ni%ki) ∝ exp

(

−
%k2i

2(σBBi )2

)

, (7)

G(2)(k,k+ni%ki) ∝ exp

(

−
%k2i

2(σCLi )2

)

. (8)
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The widths of the BB (σBBi ) and CL (σCLi ) correlations are related to the momentum-space

width σi of the initial (source) condensate via [28]

σ
BB
i /σi =

√
2, (9)

σ
CL
i /σi = 2, (10)

and therefore the width of the BB correlation is
√
2 times smaller than the width of the CL

correlation. Similar predictions of correlation widths have been made and discussed in [13, 24].

In section 5.1, the initial momentum-space widths are found to be σx = 0.0025kr and σy,z =

0.055kr , assuming N = 9.84× 104 atoms. Expressing the experimentally measured widths in
units of σy,z, we can rewrite (6) as

σ
BB
y,z /σy,z σ

CL
y,z /σy,z σ

CL
y,z /σ

BB
y,z

1.47± 0.07 1.25± 0.15 0.85± 0.15
(11)

and therefore, equation (9) is in agreement with the measured width of the radial BB correlation

function, whereas (10) overestimates the width of the CL correlation function by almost 60%.

As we show below, first-principles simulations using the positive-P method and incorporating

atom–atom interactions result in widths which are closer to the experimental values.

The discrepancy between the two theoretical approaches (which apparently is larger for the

CL correlations than for the BB ones) comes mostly from the fact that the above calculation

is made for a Gaussian shape of the initial BEC density profile, whereas in practice and

in the positive-P simulations the spatial density of a harmonically trapped condensate is

closer to an inverted parabola (as in the Thomas–Fermi limit) rather than to a Gaussian. An

alternative theoretical model [29], based on the undepleted source condensate approximation

and a numerical solution to the linear operator equations of motion for scattered atoms, also

confirms that for short times the momentum-space correlation widths are narrower if the source

condensate has a parabolic spatial density profile, compared to the case of a Gaussian density

profile.

3.2. Width of the scattered halo

A second, experimentally accessible quantity in a BEC collision is the width h̄δki in momentum

space of the halo on which the scattered atoms are found. Clearly the momentum spread σi (in

i = x-, y- or z-direction) of the colliding condensates imposes a minimum width

δki ! σi . (12)

This limit suggests that the halo could be anisotropic. As noted above, however, the experiment

in [16] is not highly sensitive to such an anisotropy, and measures the width chiefly in the

y- and z-directions.

Other physical considerations also affect this width, and suggest that the halo should rather

be isotropic, in which case we can drop the index from δk. Here, we discuss two mechanisms

that impose a finite radial width on the halo.

If the pairs are produced during a finite time interval #t , the total energy of the pair is

necessarily broadened by h̄/#t . This is true even if the relative momentum is well defined.

New Journal of Physics 10 (2008) 045021 (http://www.njp.org/)

http://www.njp.org/


8

For a mean k-vector kr , the finite interaction time between the colliding BECs results in a

broadening of

δk ≃
m

h̄kr"t
, (13)

where we assumed δk/kr ≪ 1. In the experiment, the collision time is sufficiently long that

the above effect does not impose a limitation on the width of the sphere. In the positive-P

simulations, however, numerical stability problems limit the maximum collision time that can

be simulated, as discussed in section 5, and this time does indeed impose a width on the halo. For

short collision times, where the scattering is in the spontaneous regime, our numerical results

for the width δk are in good agreement with the simple estimate of equation (13).

For long collision times, it can happen that so many atoms are scattered that Bose

enhancement and stimulated effects become important. In this case, the width of the

scattering shell can be estimated by a slightly more involved approximate approach based on

analytic solutions for the uniform system within the undepleted ‘pump’ (source condensate)

approximation [30]. Under this approximation, the present system is equivalent to the

dissociation of a condensate of molecular dimers studied in detail in [14, 31, 32]. The latter

system in turn is analogous to parametric down-conversion in optics [33]. The details of the

approximate solutions, common to condensate collisions and molecular dissociation, and the

relationship between them are given in appendix C. The resulting width of the halo found from

this approach is

δk ≃
4πaρ0

kr
. (14)

We see that in this regime, the width is proportional to the scattering length a and the peak

density ρ0, but it no longer depends on the collision duration.

The physical interpretation of equation (14) is that with the stronger effective coupling

(or nonlinearity) aρ0, one can excite and amplify spectral components that are further detuned

from the exact resonance condition h̄"k = 0 (or further ‘phase mismatched’). The inverse

dependence on collision momentum kr can be understood via the quadratic dependence of the

energy on momentum k: to get the same excitation at a given energy offset h̄"k , (C.3), one

requires smaller absolute momentum offset δk at larger kr than at small kr .

Positive-P simulations covering the transition from the spontaneous to stimulated regimes

are available for 23Na condensate collisions as in [15]. The numerical results in this case are

in agreement with the simple analytic estimate of equation (14). More specifically, we find

that for collision durations between 300 and 640µs the actual numerical results for the width

of the spherical halo vary, respectively, between δk/kr ≃ 0.13 and δk/kr ≃ 0.087, whereas

equation (14) predicts δk/kr ≃ 0.096.

For 4He∗, on the other hand, the small mass and the larger scattering length of 4He∗ atoms

limit the maximum simulation time to tsim ! 25µs. This is far from the stimulated regime,

and therefore we do not have a direct comparison of the numerical results with equation (14).

The experiment is also not in the stimulated regime. We are nevertheless tempted by the

numerical 23Na result to extrapolate equation (14) to 4He∗ BEC collisions in the long time

limit and we obtain δk/kr ≃ 0.05. Adding this width in quadrature to the momentum width

of the initial condensate, σy,z ≃ 0.055kr , gives
√

(0.05kr)2 + (0.055kr)2 = 0.074kr , not far from

the experimentally observed radial momentum width of δk ≃ 0.067kr . We thus suggest that the

mechanism leading to equation (14) may play a role in the experiment.
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4. Model

The effective field theory Hamiltonian governing the dynamics of the collision of BECs

is given by

Ĥ =
∫

dx

{

h̄2

2m
|∇!̂|2 + h̄U0

2
!̂†!̂†!̂!̂

}

, (15)

where !̂(x, t) is the field operator with the usual commutation relation [!̂(x, t), !̂†(x′, t)]=
δ(3)(x− x′),m is the atomic mass, the first term is the kinetic energy, and the second term

describes the s-wave scattering interactions between the atoms. The trapping potential for

preparing the initial condensate before the collision is omitted since we are only modeling the

dynamics of the outcoupled condensates in free space. The use of the effective delta function

interaction potential U (x − y) =U0δ(x − y) assumes a UV momentum cutoff kmax. In our

numerical simulations, the momentum cutoff is imposed explicitly via the finite computational

lattice. If the lattice spacings (#x, #y and #z) in each spatial dimension are chosen to

be much larger than the s-wave scattering length a, then the respective momentum cutoffs

satisfy kmaxx,y,z ≪ 1/a. In this case the coupling constant U0 is given by the familiar expression

U0 ≃ 4π h̄a/m [34] without the need for explicit renormalization.

To model the dynamics of quantum fields describing the collision of two BECs, we use the

positive P-representation approach [17]. In this approach, the quantum field operators !̂(x, t)

and !̂†(x, t) are represented by two complex stochastic c-number fields !(x, t) and !̃(x, t)

whose dynamics is governed by the following stochastic differential equations [15]:

∂!(x, t)

∂t
= ih̄

2m
∇2! − iU0!̃!! +

√

−iU0!2 ζ1(x, t), (16a)

∂!̃(x, t)

∂t
= −

ih̄

2m
∇2!̃ + iU0!!̃!̃ +

√

iU0!̃2 ζ2(x, t). (16b)

Here, ζ1(x, t) and ζ2(x, t) are real independent noise sources with zero mean, 〈ζ j(x, t)〉 = 0,

and the following non-zero correlation:

〈ζ j(x, t)ζk(x
′, t ′)〉 = δ jkδ

(3)(x− x′)δ(t − t ′). (17)

The stochastic fields !(x, t) and !̃(x, t) are independent of each other [!̃(x, t) (= !∗(x, t)]

except in the mean, 〈!̃(x, t)〉 =〈 !∗(x, t)〉, where the brackets 〈. . .〉 refer to stochastic averages

with respect to the positive P-distribution function. In numerical realizations, this is represented

by an ensemble average over a large number of stochastic realizations (trajectories). Observables

described by quantum mechanical ensemble averages over normally ordered operator products

have an exact correspondence with stochastic averages over the fields!(x, t) and !̃(x, t):

〈[!̂†(x, t)]m[!̂(x′, t)]n〉 =〈 [!̃(x, t)]m[!(x′, t)]n〉. (18)

The initial condition for our simulations is a coherent state of a trapped condensate,

modulated with a standing wave that imparts initial momenta±kr (where kr = mvr/h̄ and vr is

the collision velocity) in the x-direction,

!(x, 0) = 〈!̂(x, 0)〉 =
√

ρ0(x)/2
(

eikr x + e−ikr x
)

, (19)

with !̃(x, 0) = !∗(x, 0). Here, ρ0(x) is the density profile given by the ground state solution to

the Gross–Pitaevskii equation in imaginary time. The above initial condition models a sudden
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Raman outcoupling of a BEC of trapped 4He∗ atoms in the mx = 1 sublevel into the magnetic

field insensitive state mx = 0, using two horizontally counter-propagating lasers and a third

vertical laser [16]. In this geometry, the Raman transitions split the initial (mx = 1) condensate

into two equally populated condensates and simultaneously impart velocities of ±vr onto

the two halves. As a result, the two outcoupled condensates undergo a collision and expand

in free space. Accordingly, in our dynamical simulations, the field !̂(x, t) represents the atoms

in the untrapped state mx = 0, having the s-wave scattering length of a00 = 5.3 nm ([16] and

references therein), while the initial density profile ρ0(x) refers to that of the trapped atoms in

the mx = 1 state having the scattering length of a11 = 7.51 nm [35]. The same distinction in

terms of the scattering length in question applies to the definition of the interaction strength

U0 ≃ 4π h̄a/m, in which a has to be understood as a11 for the trapped condensate or as a00 for

the outcoupled cloud.

In our simulations, we assume for simplicity that the outcoupling from the trapped mx = 1

state is 100% efficient, in which case the entire population is transferred into the mx = 0 state

and therefore we have only to model s-wave scattering interactions between the atoms in the

mx = 0 state. In the experiment, on the other hand, the transfer efficiency is only about 60%

and therefore the collisions between the atoms in the mx = 0 and mx = 1 are not completely

negligible and may be responsible for some of the deviations between the present theoretical

results and the experimental observations.

5. Results and discussion

5.1. Main numerical example

Here, we present the results of positive-P numerical simulations of collisions of two

condensates of 4He∗ atoms (m ≃ 6.65× 10−27 kg) as in the experiment of [16]. The key

parameters in our main numerical example are the collision velocity, vr = 9.2 cm s−1, and the

peak density of the initial trapped condensate, ρ0 = 2.5× 1019m−3. The trap frequencies are

matched exactly with the experimental values,ωx/2π = 47Hz andωy/2π = ωz/2π = 1150Hz.

The s-wave scattering length for the magnetically trapped atoms in the mx = 1 sublevel is

a11 = 7.5 nm; the s-wave scattering length for the outcoupled atoms in the mx = 0 sublevel

is a00 = 5.3 nm. Other simulation parameters are given in appendix D.

The initial state of the trapped condensate is found via the solution of the Gross–

Pitaevskii equation in imaginary time. Given the above trap frequencies and the peak density

as a target, we find that the total number of atoms in the main example is N = 9.84× 104.

With these parameters, the average kinetic energy of colliding atoms is Ekin/kB = mv2r/2kB ≃

2.0× 10−6K, which is about 7.4 times larger than the mean-field energy of the initial condensate

EMF/kB = 4π h̄2a11ρ0/mkB ≃ 2.7× 10−7K.

The duration of simulation in the main example is t f = 25µs. This is considerably smaller

than the estimated duration of collision in the experiment, 140µs (see appendix A). The number

of scattered atoms in our numerically simulated example at t f = 25µs is ∼1750, representing

∼1.8% of the total number of atoms in the initial BEC. Operationally, the fraction of scattered

atoms is determined as the total number of atoms contained within the scattering halo (see

figure 3 showing two orthogonal slices through the momentum density distribution) after

eliminating the regions of momentum space occupied by the two colliding condensates. We

implement the elimination by simply discarding the data points corresponding to |kx | > 0.99kr ,
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Figure 3. Slices through kz = 0 (a) and kx = 0 (b) of the 3D atomic density

distribution in momentum space n(k, t f ) after t f = 25µs collision time. Due to

the symmetry in the transverse direction (orthogonal to x), the average density

through ky = 0 coincides with that of kz = 0. The color scale is chosen to clearly

show the halo of spontaneously scattered atoms and cuts off the high-density

peaks of the two colliding condensates (shown in white on the left panel).

which fully contain the colliding condensates. This cuts off a small fraction of the scattered

atoms as well, but the procedure is simple to implement operationally and is unambiguous.

In order to compare our calculated fraction of scattered atoms at t f = 25µs with the

experimentally measured fraction of 5% at the end of collision at ∼140µs, we first note that

these timescales are relatively short and correspond to the regime of spontaneous scattering. The

number of scattered atoms increases approximately linearly with time, therefore our calculated

fraction of 1.8% can be extrapolated to about 10% to correspond to the expected fraction at

∼140 µs. Next, one has to scale this value by a factor 0.62 to account for the fact that in the

experiment only 60% of the initial number of atoms was transferred to the mx = 0 state of the

colliding condensates. Accordingly, our theoretical estimate of 10% should be proportionally

scaled down to 4% conversion, in good agreement with the experimentally estimated fraction

of 5% (see also appendix A).

In figure 4, we plot the radial momentum distribution of scattered atoms (solid line),

obtained after angle averaging of the full 3D distribution within the region |kx |! 0.8kr . The

numerical result is fitted with a Gaussian ∝ exp[−(k− k0)
2/(2δk2)] (dashed line), centered at

k0 = 0.98kr and having the radial width of δk = 0.10kr ≃ 5.8× 105m−1, where k = |k|. The

fitted radial width of δk = 0.10kr of the numerical simulation is in reasonable agreement with

the simple estimate of equation (13), which gives δk ≃ 0.075kr for "t = 25µs.

Figure 5 shows the numerical results for the BB and CL correlations (solid lines with

circles), defined in equations (4) and (5). Due to the symmetry of the y- and z-directions, the

results in these directions are practically the same. In order to verify the hypothesis that the

shape and therefore the width of the pair correlation functions is governed by the width of

the momentum distribution of the source condensate, we also plot the actual initial momentum

distributions of the source condensate in the two orthogonal directions (with the understanding

that the horizontal axis "ki now refers to the actual wavevector component ki ). The actual data

points for the correlation functions and for the momentum distribution of the source are shown

by the circles and squares, respectively, and are fitted with Gaussian curves for simplicity and
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Figure 4. Angle averaged (radial) momentum distribution n(k) of the scattered

atoms (solid line) and a simple Gaussian fit (dashed line) used to define the radial

width δk = 0.10kr of the halo around the peak momentum k0 = 0.98kr (see text).

to guide the eye. The Gaussian fits for the correlation functions (solid lines) give:

g
(2)
BB("ki) − 1= 9.2 exp {−"k2i /[2(σ

BB
i )2]}, (20)

g
(2)
CL("ki) − 1= exp {−"k2i /[2(σ

CL
i )2]}, (21)

where the correlation widths σ
BB
i and σ

CL
i are shown in the table (22) below. The Gaussian fits

(dashed lines) for the slices of the initial momentum distribution n0(ki) ∝ exp {−k2i /[2(σi)
2]}

are scaled to the same peak value as g
(2)
BB/CL(0) − 1 and have σx = 0.0025kr and σy,z = 0.055kr .

By comparing the solid and the dashed lines, we see that the shape of the correlation

functions indeed closely follow the shape of the momentum distribution of the source. More

specifically, we find that the following results provide the best fit to our numerical data:

σ
BB
x /σx σ

BB
y,z /σy,z σ

CL
x /σx σ

CL
y,z /σyz

1.18 1.39 1.27 1.57
(22)

The ratios between the CL and BB correlation widths are σ
CL
x /σBBx ≃ 1.08 and σ

CL
y,z /σ

BB
y,z ≃ 1.13.

The errors due to stochastic sampling on all quoted values of the correlation widths are smaller

than 3%.

The values for σCLy,z /σy,z and σ
BB
y,z /σy,z can be compared with the respective experimentally

measured values of table (11) and we see reasonably good agreement, even though the numerical

data are for a much shorter collision time. The remaining discrepancy between the numerical

data at t f = 25µs and the experimentally measured values after a ∼140µs interaction time

may be due to the evolution of the condensates past 25µs, not attainable within the positive-P

method. The above numerical results for the correlation widths can also be compared with the

simple analytic estimate based on the Gaussian ansatz treatment of equations (9) and (10). We

find that the approximate analytic results overestimate the BB and CL widths by∼20 and 40%,

respectively, in the present example.
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Figure 5. BB and CL atom–atom pair correlation, g
(2)
BB/CL(!ki) − 1 as a function

of the displacement !ki (i = x, y and z) in units of the collision momentum

kr , after t f = 25µs collision time. The circles are the numerical results, angle-

averaged over the halo of scattered atoms after elimination of the regions

occupied by the two colliding condensates; the solid lines are simple Gaussian

fits to guide the eye (see text). For comparison, we also plot the initial momentum

distribution n0(ki) of the colliding condensates; the actual data points are shown

by the squares and are fitted by a dashed-line Gaussian.

The amplitude of the correlation functions can also be inferred by simple models. In

fact, the CL correlation function is a manifestation of the Hanbury Brown and Twiss effect

since it involves pairs from two independent spontaneous scattering events and we expect an

amplitude of g
(2)
CL(0) = 2 [28]. This is in agreement with the positive-P simulations. The BB

correlation amplitude, on the other hand, can be substantially higher and display super-bunching

(g
(2)
BB(0) ≫ 1) [14, 24] since the origin of this correlation is a simultaneous creation of a pair of

particles in a single scattering event.

In a simple qualitative model [16], the amplitude of the BB correlation can be linked to

the inverse population of the atomic modes on the halo. As we show in appendix B, this model

follows the trends observed in our first-principles numerical simulations.

5.2. Shorter collision time

Here, we present the results of numerical simulation for the same parameters as in our main

numerical example from section 5.1, except that the data are analyzed at t f = 12.5µs, which

is half the previous interaction time. We found in section 5.1 that σ
BB
yz , σCLyz and the width of

the halo δk are all nearly the same. In section 3, however, we argue that the widths of the

correlation functions and the halo are governed by different limits (equations (9), (10) and (13)

or (14), respectively). The example in this section illustrates this point.
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Figure 6. Same as in figure 3, except for t f = 12.5µs collision time.

0 0.5 1.0 1.5

0

2

4

6

8

× 10–19

k /kr

n
(k

) 
(m

3
)

Figure 7. Same as in figure 4, except for t f = 12.5µs collision time. The width

and the peak of the fitted Gaussian here are: δk = 0.20kr and k0 = 0.95kr .

Figure 6 shows two orthogonal slices of the s-wave scattering sphere in momentum space

(cf figure 3), whereas figure 7 is the corresponding radial distribution after angle averaging. The

most obvious feature of the distribution is that it is broader than at t f = 25µs and the fitted

Gaussian gives the radial width of δk = 0.20kr . This is precisely twice the width in figure 4 and

is in agreement with the simple qualitative estimate of equation (13).

The BB and CL correlation functions after t f = 12.5µs collision time are qualitatively

very similar to those shown in figure 5, except that the Gaussian fits are

g
(2)
BB("ki) − 1= 35.6 exp{−"k2i /[2(σ

BB
i )2]}, (23)

g
(2)
CL("ki) − 1= exp{−"k2i /[2(σ

CL
i )2]}, (24)
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Figure 8. Same as in figure 3, except for
√
2 times smaller collision velocity, v′

r =

6.46 cm s−1 (k ′
r = 4.09× 106m−1). The axes for the momentum components ki

(i = x, y and z) are in units of smaller recoil momentum than in figure 3, and

therefore the absolute radius of the s-wave scattering sphere is smaller in the

present example.

with the correlation widths given by

σ
BB
x /σx σ

BB
y,z /σy,z σ

CL
x /σx σ

CL
y,z /σyz

1.16 1.28 1.27 1.48
(25)

The ratios between the widths are σ
CL
x /σBBx ≃ 1.09 and σ

CL
y,z /σ

BB
y,z ≃ 1.16.

For the correlation functions, the main difference compared to the case for 25µs is that

the peak value of the BB correlation is now larger, reflecting the lower atomic density on the

scattering halo. The correlation widths, on the other hand, are practically unchanged, at least

within the numerical sampling errors of the positive-P simulations; the errors are at the level

of the third significant digit in the quoted values, which we suppress. The number of scattered

atoms in this example is about 850, which is approximately half the number at 25µs, confirming

the approximately linear dependence on time in the spontaneous scattering regime.

5.3. Smaller collision velocity

In this example, we present the results of simulations in which the collision velocity is smaller

by a factor
√
2 than before, v′

r = 6.5 cm s−1 (k ′
r = 4.1× 106m−1), while all other parameters

are unchanged. In practice, this can be achieved by changing the propagation directions of the

Raman lasers that outcouple the atoms from the trapped state. As in the previous example, the

halo width illustrates equation (13).

The results of positive-P simulations for the momentum density distribution at t f = 25µs

are shown in figures 8 and 9. The most obvious feature of the distribution is again the fact that

it is now broader than in our main example of section 5.1. The width of the Gaussian function

fitted to the numerically calculated radial momentum distribution is given by δk = 0.21k ′
r . This

is again in excellent agreement with the simple analytic estimate of equation (13), which predicts

the broadening to be inversely proportional to the collision velocity. We also note that the peak

momentum (relative to k ′
r ) in the present example is slightly shifted towards the center of the
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Figure 9. Same as in figure 4 except for
√
2 times smaller collision velocity

v′
r (k

′
r = 4.1× 106m−1). The width and the peak of the fitted Gaussian are

δk = 0.21k ′
r = 8.6× 105m−1 and k0 = 0.92k ′

r .

halo, k0 = 0.92k ′
r , which is a feature predicted in [30] to occur when the ratio of the kinetic

energy to the interaction energy per particle is reduced.

The BB and CL correlation functions in this example are again qualitatively very similar

to those shown in figure 5, except that the Gaussian fits are

g
(2)
BB("ki) − 1= 9.0 exp {−"k2i /[2(σ

BB
i )2]}, (26)

g
(2)
CL("ki) − 1= exp {−"k2i /[2(σ

CL
i )2]}, (27)

with the correlation widths given by

σ
BB
x /σx σ

BB
y,z /σy,z σ

CL
x /σx σ

CL
y,z /σy,z

1.16 1.35 1.31 1.51
(28)

where σx/k
′
r ≃ 0.0035 and σx/k

′
r ≃ 0.078. The ratios between the CL and BB correlation widths

are σ
CL
x /σBBx ≃ 1.13 and σ

CL
y,z /σ

BB
y,z ≃ 1.12.

As we see from these results, the absolute widths of the correlation functions are practically

unchanged compared to the main numerical example (22). This provides further evidence that,

at least for short collision times, the correlation widths are governed by the momentum width

of the source condensate, which is unchanged in the present example compared to the case of

section 5.1.

The number of scattered atoms in this example is about 1270, which is approximately√
2 times smaller than in section 5.1 and corresponds to ∼1.3% conversion. This scaling is in

agreement with the rate equation approach [24], according to which the number of scattered

atoms is proportional to the square root of the collision energy and hence to the collision

momentum, which is
√
2 times smaller here.
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Figure 10. Same as in figure 3 except for the scattering lengths of a00 = 2.65 nm

and a11 = 3.75 nm, which are twice as small as before.

5.4. Smaller scattering length

Finally, we present the results of numerical simulations for the same parameters as in our

main numerical example from section 5.1, except that the scattering lengths a11 and a00 are

artificially halved, i.e. a00 = 2.65 nm and a11 = 3.75 nm. The trap frequencies are unchanged

and we modify the chemical potential to arrive at the same peak density of the initial BEC in the

trap, ρ0 ≃ 2.5× 1019m−3. The total number of atoms is now smaller, N ≃ 3.5× 104. One effect
of changing the scattering length is that it changes the size and shape of the trapped cloud,

and therefore also its momentum distribution. The shape is slightly closer to a Gaussian and

therefore also to the treatment in [28].

Due to the smaller scattering length, the density distribution in position space of the initial

trapped condensate is now narrower and conversely the momentum distribution of the colliding

condensates is broader. On the other hand, the width of the halo (see figures 10 and 11 at

t f = 25µs) of scattered atoms is practically unchanged compared to the example of figure 4, as

it is governed by the energy–time uncertainty consideration (13), for the spontaneous scattering

regime. The only quantitative difference is the lower peak density on the scattering sphere,

which is due to the weaker strength of atom–atom interactions resulting in a slower scattering

rate. The number of scattered atoms at 25µs is ∼180, corresponding to 0.51% conversion of

the initial total number N ≃ 3.5× 104. The fraction 0.51% itself corresponds approximately to

a scaling law of ∼a3/2, which is the same as the scaling of the total initial number of trapped
atoms in the Thomas–Fermi limit for a fixed peak density.

Since the widths of the correlation functions are governed by the width of the momentum

distribution of the initial colliding condensates, we expect corresponding broadening of the

correlation functions as well (see figure 12). To quantify this effect, we fit the momentum

distribution of the initial BEC by a Gaussian ∝ exp {−k2i /[2(σi)
2]}, where σx = 0.0036kr and

σy,z = 0.068kr (cf with σx = 0.0025kr and σy,z = 0.055kr in figure 5, which are ∼
√
2 smaller).

The Gaussian fits to the correlation functions in figure 12 are

g
(2)
BB(#ki) − 1= 49 exp {#k2i /[2(σ

BB
i )2]}, (29)

g
(2)
CL(#ki) − 1= 0.94 exp {#k2i /[2(σ

CL
i )2]}, (30)
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Figure 11. Same as in figure 4 except for twice as small values of the scattering

lengths a00 and a11. The width and the peak of the fitted Gaussian are δk = 0.10kr
and k0 = 0.98kr , which are the same as in figure 4.
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Figure 12. Same as in figure 5 except for twice as small s-wave scattering lengths

a11 and a00.
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Figure 13. Illustration of the four regions of the momentum space density,

forming the quadrants A, B,C and D on the s-wave scattering sphere, on which

we analyze the data for relative number squeezing.

where the widths σ
BB
i and σ

CL
i are given by

σ
BB
x /σx σ

BB
y,z /σy,z σ

CL
x /σx σ

CL
y,z /σy,z

1.18 1.53 1.42 1.81
(31)

We see that the relative widths are practically unchanged, implying that the absolute widths

are broadened. The ratios between the CL and BB correlation widths are slightly increased and

are given by σ
CL
x /σBBx ≃ 1.20 and σ

CL
y,z /σ

BB
y,z ≃ 1.18.

These numerical results make the present example—with the diminished role of atom–

atom interactions—somewhat closer to the simple analytic predictions of equations (9) and (10)

based on a Gaussian ansatz for non-interacting condensates.

5.5. Relative number squeezing and violation of Cauchy–Schwartz inequality

Another useful measure of atom–atom correlations is the normalized variance of the relative

number fluctuations between atom numbers N̂ i and N̂ j in a pair of counting volume elements

denoted via i and j ,

Vi− j =
〈["(N̂ i − N̂ j)]

2〉

〈N̂ i〉+ 〈N̂ j〉
= 1 +

〈: ["(N̂ i − N̂ j)]
2 :〉

〈N̂ i〉+ 〈N̂ j〉
, (32)

where "X̂ = X̂ − 〈X̂〉 is the fluctuation. This definition uses the conventional normalization

with respect to the shot-noise level characteristic of Poissonian statistics, such as for a coherent

state, 〈N̂ i〉+ 〈N̂ i〉 . In this case, the variance Vi− j = 1, which corresponds to the level of

fluctuations in the absence of any correlation between N̂ i and N̂ j . Variance smaller than one,

Vi− j < 1, implies reduction (or squeezing) of fluctuations below the shot-noise level and is due

to quantum correlation between the particle number fluctuations in N̂ i and N̂ j . Perfect (100%)

squeezing of the relative number fluctuations corresponds to Vi− j = 0.
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Figure 14. Relative number variance in the diametrically opposite and

neighboring quadrants, VA−C/B−D and VA−B/C−D, as a function of time.

In the context of the present model for the BEC collision experiment and possible

correlation measurements between atom number fluctuations on diametrically opposite sides

of the s-wave scattering sphere, we assign the indices i, j = A, B,C and D in equation (32) to

one of the four quadrants as illustrated in figure 13. The total atom number operator N̂ i in each

quadrant Di within the s-wave scattering sphere is defined after elimination of the regions in

momentum space occupied by the two colliding condensates

N̂ i(t) =

∫
Di

dkxdky

∫ +∞

−∞

dkzn̂(k, t). (33)

Operationally, this is implemented by discarding the data points beyond |kx | > 0.8kr . In

addition, the quadrantsDi are defined on a 2D plane after integrating the momentum distribution

along the z-direction, which in turn only takes into account the 3D data points satisfying

|1− k2/k2r | < 0.28, i.e. lying in the narrow spherical shell kr ± δk with δk ≃ 0.14kr . The

elimination of the inner and outer regions of the halo is done to minimize the sampling error in

our simulations, since these regions have vanishingly small population and produce large noise

in the stochastic simulations.

The choice of the quadrants as above is a particular implementation of the procedure

of binning, known to result in a stronger correlation signal and larger relative number

squeezing [11, 36]. Due to strong BB pair correlations, we expect the relative number

fluctuations in the diametrically opposite quadrants to be squeezed, VA−C , VB−D < 1, while the

relative number variance in the neighboring quadrants, such as VA−B and VC−D, is expected to

be larger than or equal to one. The positive-P simulations confirm these expectations and are

shown in figure 14, where we see strong (∼80%) relative number squeezing for the diametrically

opposite quadrants, VA−C,B−D ≃ 1− 0.8= 0.2.

These results assume a uniform detection efficiency of η = 1, whereas if the efficiency

is less than 100% (η < 1), then the second term in equation (32) should be multiplied

by η. This implies, that for η = 0.1 as an example, the above prediction of ∼80% relative

number squeezing will be degraded down to a much smaller but still measurable value of

∼ 8% squeezing (VA−C,B−D ≃ 1− 0.08= 0.92). Even with perfect detection efficiency, our

simulations do not lead to ideal (100%) squeezing. This can be understood in terms of a small

fraction of collisions that take place with a center-of-mass momentum offset that is (nearly)

parallel to one of the borders between the quadrants. As a result, the respective scattered pairs
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fail to appear in diametrically opposite quadrants during the (finite) propagation time (see

also [36]).

For the symmetric case with 〈N̂ i〉 =〈 N̂ j〉 and 〈N̂ 2
i 〉 =〈 N̂ 2

j〉, the variance Vi− j can be

rewritten as

Vi− j = 1 + 〈N̂ i〉[g
(2)
i i − g

(2)
i j ], (34)

where the second-order correlation function g
(2)
i j is defined according to

g
(2)
i j =

〈: N̂ i N̂ j :〉

〈N̂ i〉〈N̂ j〉
. (35)

Equation (34) helps to relate the relative number squeezing, Vi− j < 1, to the violation of

the classical Cauchy–Schwartz inequality g
(2)
12 > g

(2)
11 , studied extensively in quantum optics with

photons [33, 37]. The analysis presented here (see also [36] on molecular dissociation) shows

that the Cauchy–Schwartz inequality, and its violation, is a promising area of study in quantum

atom optics as well.

6. Summary

An important conclusion that we can draw from the numerical simulations is that the predicted

widths of the correlation functions are remarkably robust against the parameter variations we

were able to explore (in section 5.1 through 4). This gives us confidence in our physical

interpretation of the width as being chiefly due to the initial momentum width of the condensate.

The discrepancy with the analytical calculation of [28] seems to be primarily due to the different

cloud shapes used. The width of the halo varies with the parameters we tested in a predictable

way and also confirms the discussion in section 3.

As for comparison with the experiment, the numerically calculated widths of the scattering

halo and the correlation functions coincide with the experimental ones to within better than

20% in most cases. The main discrepancy with the experiment is in the ratio of the BB

and CL correlation widths. From the experimental point of view, these ratios are more

significant than the individual widths since some sources of uncertainty, such as the number

of atoms and the size of the condensates, cancel. The discrepancy may mean that the CL

correlations are not sufficient to characterize the size and momentum distribution in the source

at this level of accuracy. The discrepancies may of course also be due to the numerous

experimental imperfections, especially the fact that the Raman outcoupling was only 60%

efficient, and therefore an appreciable trapped mx = 1 condensate was left behind. This defect

may be remedied in future experiments. On the other hand, the current simulations neglect the

unavoidable interaction of the scattered atoms with unscattered, mx = 0 condensates as they

leave the interaction region. This interaction could alter the trajectories of the scattered atoms

in a minor, but complicated way. Future numerical work must examine this possibility further.

Still, the overall message of this work is that a first principles quantum field theory

approach can quantitatively account for experimental observations of atomic four-wave mixing

experiments. This work represents the first time that this sort of numerical simulation has been

carefully confronted with an experiment. An interesting extension would be to examine the

regime of stimulated scattering. It has been predicted that a highly anisotropic BEC could lead

to an anisotropic population of the scattering halo [38, 39]. This effect would be a kind of atomic
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!ky = 3.06× 105m−1 and !kz = 2.04× 105m−1. The momentum cutoffs are k(max)
x = 1.75×

107m−1, k(max)
y = 7.66× 106m−1 and k(max)

z = 7.15× 106m−1.
The momentum cutoff in the collision direction, k(max)

x , is more than 3 times larger
than the collision momentum kr , and hence it captures all relevant scattering processes
of interest, including the energy non-conserving scatterings (kr)+ (kr) → (3kr)+ (−kr) and
(−kr)+ (−kr) → (−3kr)+ (kr) [15]. In all our figures, the regions of momentum space covering
kx ≃ ±3kr are not shown for the clarity of presentation of the main halo. These scattering
processes, which produce a weak but not negligible signal at kx ≃ ±3kr , i.e. outside the main
halo, are enhanced by Bose stimulation due to the large population of the colliding condensate
components at kx ≃ ∓kr , respectively. In the remaining y- and z-directions, such processes are
absent and therefore the number of lattice points and the momentum cutoffs can be smaller.

Since the momentum distribution of the initial condensate is narrowest in the kx -direction,
one may question whether the resolution of !kx = 2.49× 104m−1 with 1400 lattice points
is sufficient. We check this by repeating the simulations with 4200× 40× 40 lattice points
and quantization lengths of L x = 753µm and L y = L z = 15.4µm, which give smaller lattice
spacing !kx = 8.24× 103m−1, together with !ky = !kz = 4.08× 105m−1, k(max)

x = 1.75×

107m−1 and k(max)
y = k(max)

z = 8.16× 106m−1. Our results on the new lattice reproduce the
previous ones, within the sampling errors of the stochastic simulations. We typically average
over 2800 stochastic trajectories, and take 128 time steps in the simulations over 25µs collision
time. A typical simulation of this size takes about 100 h on 7CPUs running in parallel at 3.6GHz
clock speed.
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analogue of superradiance observed when off-resonant light is shone on a condensate [40, 41].

In addition, our results may be useful beyond the cold atom community: theoretical descriptions

of correlation measurements in heavy ion collisions [42] may benefit from some of our insights.
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Appendix A. Duration of the collision

In order to estimate the collision duration one can consider a simple classical model of the

collision [24]. Denoting by ρ1(x, t) and ρ2(x, t) the density distributions of the two condensates,

the number of scattered atoms Nsc(t) at a given time can be written

Nsc(t) = 2

∫ t

0

dt ′
∫
d3x2σ0vrρ1(x, t

′)ρ2(x, t
′), (A.1)

where σ0 = 8πa200 is the cross-section for a collision of two particles. In this latter formula

a00 ≃ 5.3 nm is the scattering length between mx = 0 atoms [16].

The time-dependent density of the two condensates can be calculated from the expansion

of a condensate in the Thomas–Fermi regime described in [44]. This approach suggests two

different timescales for the collision duration. First, the separation of the two condensates occurs

in a time defined by the ratio of the longitudinal size of the condensates and their relative

velocity tsep = Rx/vr . Taking for Rx the Thomas–Fermi radius of the initial condensate, one

can show that tsep is on the order of 1 ms. At the same time, the condensates expand during

their separation on a timescale texp = 1/ωy = 1/ωz ≃ 140µs. This latter effect appears to be

predominant in the evaluation of equation (A.1) and texp can be taken as a definition of the

collision duration%t . The numerical evaluation of equation (A.1) gives Nsc(%t) ≃ 0.66Nsc(∞)

and the estimated total number of scattered atoms corresponds to the experimentally observed

5% of the initial total number of atoms in the trapped condensate.

Appendix B. Occupation number of the scattering modes and amplitude of the

BB correlation

In order to estimate the occupation number of the scattering modes one needs to compare the

number of scattered atoms Nsc to the number of scattering modes Nm . To achieve this one has

to first consider the volume of a scattering mode Vm , given by the first-order coherence volume

(also dubbed ‘phase grain’ in [12, 15]). Such a volume corresponds in fact to the coherence

volume of the source condensate, and in practice it can also be deduced from the measurement

of the width of the CL correlation function g
(2)
CL(%ki) as one expects in a Hanbury Brown–Twiss
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experiment. For simplicity, we match the scattering mode volume Vm to the coherence volume

of the source condensate in momentum space,

Vm ≃ βσx(σyz)
2, (B.1)

where β is a geometrical factor which depends on the geometry of the modes. Approximating

the source condensate in momentum space by a Gaussian ∝ exp [−x2/(2σ 2x ) − (y2 +

z2)/(2σ 2y,z)], one has β = (2π)3/2.

The number of scattering modes Nm can in turn be estimated from knowledge of the total

volume of the scattering shell V ,

Nm =
V

Vm
, (B.2)

where the volume V is determined from the value of the width of the scattering shell δk:

V =
∫

d3k exp [−(k− kr)
2/(2δk2)]

≃ 4π
√
2πk2r δk, (B.3)

for δk ≪ kr . If we apply this estimate to the results of the main numerical example (see

section 5.1), we find Nm ≃ 26 400. As Nsc = 1750, this implies an occupation number per mode

of Nsc/Nm ≃ 0.066. Such an estimate confirms that the system is indeed in the spontaneous

regime and that bosonic stimulation effects are negligible.

The simple model of [16] for the BB correlation predicts that its height is given by

g
(2)
BB(0) = 1 + Nm/Nsc. (B.4)

Using the above estimate of Nm and the actual value of Nsc found from the numerical

simulations, we obtain that the height of the BB correlation peak should be approximately given

by ∼ 16. This compares favorably with the actual numerical result of 10.2. Similarly, we obtain

the BB correlation peak of: ∼62 in the example with the shorter collision time (compare with
the numerical result of 36.6); ∼18 in the example with the smaller collision velocity (compare
with 10); and ∼70 in the example with the smaller scattering length (compare with 50).

Appendix C. Width of the s-wave scattering sphere in the undepleted ‘pump’

approximation

To estimate the width of the halo of scattered atoms beyond the spontaneous regime we use

the analytic solutions for a uniform system in the so-called undepleted ‘pump’ approximation

in which the number of atoms in the colliding condensates are assumed constant. This

approximation is applicable to short collision times. Nevertheless, it formally describes the

regime of stimulated scattering and can be used to estimate the width of the s-wave scattering

sphere as we show here.

The problem of BEC collisions in the undepleted ‘pump’ approximation was studied

in [30]; the solutions for the momentum distribution of the s-wave scattered atoms are formally

equivalent to those obtained for dissociation of a BEC of molecular dimers in the undepleted

molecular condensate approximation [14, 31]. For a uniform system with periodic boundary

conditions, one has the following analytic solution for momentum mode occupation numbers:

nk(t) =
ḡ2

ḡ2 − %2
k

sinh2
(

√

ḡ2 − %2
k t

)

. (C.1)
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Here, the constant ḡ is given by

ḡ = 2U0ρ0 =
8π h̄a00ρ0

m
, (C.2)

where U0 = 4π h̄a00/m corresponds to the coupling constant g/h̄ of [30], and we note that the

results of [30] contain typographical errors and have to be corrected as follows [45]: given the

Hamiltonian of (1), with g = 4π h̄2a/m, the coupling g in (2), (7), (9) and (10), as well as in the

definition of#(p) after (9), should be replaced by 2g. In the problem of molecular dissociation,

the constant ḡ corresponds to ḡ = χ
√

ρ0 [14], where χ is the atom–molecule coupling and ρ0
is the molecular BEC density.

The parameter #k in equation (C.1) corresponds to the energy offset from the resonance

condition

h̄#k ≡
h̄2k2

2m
−
h̄2k2r

2m
, (C.3)

where h̄kr is the collision momentum; in molecular dissociation, h̄
2k2r /m corresponds to the

effective dissociation energy 2h̄|#eff|, using the notation of [14].

From equation (C.1), we see that modes with ḡ2 − #2
k > 0 experience Bose enhancement

and grow exponentially with time, whereas the modes with ḡ2 − #2
k < 0 oscillate at the

spontaneous noise level. The absolute momenta of the exponentially growing modes lie

near the resonant momentum h̄kr , and therefore we can use the condition ḡ2 − #2
k = 0 to

define the approximate width of the s-wave scattering sphere. First, we write k = kr +#k and

assume for simplicity that kr is large enough so that #k ≪ kr . Then the condition ḡ
2 − #2

k = 0

can be approximated by

1−
(

h̄kr#k

mḡ

)2

≃ 0. (C.4)

This can be solved for #k and used to define the width δk = #k/2 of the s-wave scattering

sphere as

δk

kr
≃

mḡ

2h̄k2r
=
4πa00ρ0

k2r
. (C.5)

The reason for defining it as half of #k is to make δk closer in definition to the half-width at

half maximum and to the rms width around kr .

The above simple analytic estimate (C.5) gives δk/kr ≃ 0.05 for the present 4He∗

parameters. For comparison, the actual width of the analytic result (C.1) varies between δk/kr ≃
0.12 and δk/kr ≃ 0.027 for durations between ḡt = 1 and ḡt = 7, corresponding, respectively,

to t ≃ 20µs and t ≃ 140µs in the present 4He∗ example.

Appendix D. Positive-P simulation parameters

The positive-P simulations in our main numerical example of section 5 are performed on a

computational lattice with 1400× 50× 70 points in the (x, y, z)-directions, respectively. The
length of the quantization box along each dimension is L x = 252µm, L y = 20.52µm and

L z = 30.76µm. The computational lattice in momentum space is reciprocal to the position

space lattice and has the lattice spacing of #ki = 2π/L i , giving #kx = 2.49× 104m−1,
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[46] M. O. Scully and M. S. Zubairy. Quantum Optics (Cambridge University
Press, 2006)

[47] R. H. Brown and R. Q. Twiss. “A new type of interferometer for use in radio
astronomy”. Phil. Mag., 45 663 (1954)

[48] G. Baym. “The physics of Hanbury Brown Twiss intensity interferometry: from
stars to nuclear collisions”. Acta Physica Polonica B, 29 1839 (1998)

[49] R. H. Brown. Boffin (Adam Hilger, Bristol, 1991)

[50] R. H. Brown. The Intensity Iterferometer (Taylor & Francis LTD, London,
1974)

[51] W. D. Oliver, J. Kim, R. C. Liu and Y. Yamamoto. “Hanbury Brown and
Twiss-type experiment with electrons”. Science, 284 299 (1999)

[52] M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin, M. Hol-

land and C. Schönenberger. “The fermionic Hanbury Brown and Twiss
experiment”. Science, 284 296 (1999)

[53] H. Kiesel, A. Renz and F. Hasselbach. “Observation of Hanbury Brown-
Twiss anticorrelations for free electrons”. Nature, 418 392 (2002)

[54] M. Iannuzzi, A. Orecchini, F. Sacchetti, P. Facchi and S. Pascazio.
“Direct experimental evidence of free-fermion antibunching”. Physical Review
Letters, 96 080402 (2006)



BIBLIOGRAPHY 219

[55] T. Rom, T. Best, D. van Oosten, U. Schneider, S. Fölling, B. Paredes
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[56] M. Büttiker. “Bunches of photons–antibunches of electrons”. Science, 284 275
(1999)

[57] S. Oberholzer, M. Henny, C. Strunk, C. Schönenberger, T. Heinzel,
K. Ensslin and M. Holland. “The Hanbury Brown and Twiss experiment
with fermions”. Physica E: Low-dimensional Systems and Nanostructures, 6 314
(2000)

[58] J. C. H. Spence. “Spaced-out electrons”. Nature, 418 377 (2002)

[59] S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke and I. Bloch.
“Spatial quantum noise interferometry in expanding ultracold atom clouds”. Na-
ture, 434 481 (2005)

[60] E. Altman, E. Demler and M. D. Lukin. “Probing many-body states of
ultracold atoms via noise correlations”. Phys. Rev. A, 70 013603 (2004)

[61] W. H. Louisell. Quantum Statistical Properties of Radiation (Wiley, 1973)

[62] J. V. Gomes, A. Perrin, M. Schellekens, D. Boiron, C. I. Westbrook

and M. Belsley. “Theory for a Hanbury Brown Twiss experiment with a bal-
listically expanding cloud of cold atoms”. Phys. Rev. A, 74 053607 (2006)

[63] A. S. Tychkov, T. Jeltes, J. M. McNamara, P. J. J. Tol, N. Her-

schbach, W. Hogervorst and W. Vassen. “Metastable helium Bose-Einstein
condensate with a large number of atoms”. Phys. Rev. A, 73R 031603 (2006)

[64] P. J. J. Tol, N. Herschbach, E. A. Hessels, W. Hogervorst and
W. Vassen. “Large numbers of cold metastable helium atoms in a magneto-
optical trap”. Phys. Rev. A, 60R 761 (1999)

[65] G. V. Shlyapnikov, J. T. M. Walraven, U. M. Rahmanov and M. W.

Reynolds. “Decay kinetics and Bose condensation in a gas of spin-polarized
triplet helium”. Phys. Rev. Lett., 73 3247 (1994)

[66] O. Sirjean, S. Seidelin, J. V. Gomes, D. Boiron, C. I. Westbrook, A. As-

pect and G. V. Shlyapnikov. “Ionization rates in a Bose-Einstein condensate
of metastable helium”. Phys. Rev. Lett., 89 220406 (2002)

[67] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wie-

man. “Production of two overlapping Bose-Einstein condensates by sympathetic
cooling”. Phys. Rev. Lett., 78 586 (1997)



220 BIBLIOGRAPHY

[68] M. Przybytek and B. Jeziorski. “Bounds for the scattering length of spin-
polarized helium from high-accuracy electronic structure calculations”. J. Chem.
Phys., 123 134315 (2005)

[69] P. O. Fedichev, M. W. Reynolds and G. V. Shlyapnikov. “Three-body
recombination of ultracold atoms to a weakly bound s level”. Phys. Rev. Lett.,
77 2921 (1996)

[70] V. Krachmalnicoff. Spettroscopia di precisione dell’3He: verso una determi-
nazione della struttura iperfine e dello shift isotopico. Master’s thesis, Università
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RESUME

Cette thèse présente deux expériences sur des gaz ultrafroids d’hélium métastable qui 
constituent l’extension, à des ondes de matière, d'expériences fondamentales en optique 
quantique. Le succès de ces expériences repose sur l’utilisation d’un détecteur d’atomes 
uniques capable de reconstruire la position des atomes en trois dimensions.
Dans la première expérience nous avons comparé, sur le même dispositif expérimental, la 
fonction de corrélation à deux corps des atomes appartenant  à un nuage froid de fermions 
identiques à celle d’un nuage froid de bosons identiques à la même température. Comme 
bosons et  fermions suivent  deux statistiques quantiques différentes, les deux fonctions de 
corrélation sont  différentes : les bosons ont  tendance à arriver groupés sur le détecteur, 
alors que les fermions ont tendance à arriver dégroupés, à cause du principe d’exclusion 
de Pauli.
Dans la deuxième expérience nous avons étudié la corrélation entre paires d’atomes 
bosoniques générées dans la collision de deux condensats de Bose-Einstein. La mesure de 
la fonction de corrélation nous a permis de démontrer que les atomes d’impulsion 
opposée, dans le référentiel du centre de masse, sont corrélés par paires. De plus 
l’observation d’une corrélation de type Hanbury Brown Twiss entre paires d’atomes 
diffusés dans la même direction démontre que notre système ne peut  pas être interprété en 
termes de mécanique classique, mais que la statistique bosonique y joue un rôle 
important. Une nouvelle génération de cette expérience permettra de mesurer la 
dépendance angulaire de la population des modes atomiques diffuses et d'étudier le 
squeezing de la différence de population entre modes opposés.  

mots-clés: atomes froids - optique atomique quantique - effet Hanbury Brown Twiss - 
fonction de corrélation - gaz de Fermi - condensat de Bose-Einstein - mélange à quatre 
ondes - galette de micro-canaux

ABSTRACT

This thesis presents two experiments on ultracold gases of metastable Helium that 
constitute the extension, to matter waves, of experiments that  have been fundamental for 
the development of quantum optics. Both experiments have been realized by using a 
single atom detector, that allows one to reconstruct the position of the atoms in three 
dimensions.
In the first experiment we directly compared the two-body correlation function for a cold 
cloud of identical fermions and for a cold cloud of identical bosons at the same 
temperature issued from the same experimental apparatus. Since bosons and fermions 
obey different  quantum statistics, the two-body correlation functions are different: 
identical bosons tend to be detected bunched in pairs, while identical fermions tend to 
antibunch because of the Pauli exclusion principle. 
In the second experiment  we studied the correlation between pairs of bosonic atoms 
generated in the collision of two Bose-Einstein condensates. The measurement of the 
correlation function allows us to demonstrate that atoms flying back to back in the centre 
of mass frame are correlated in pairs. Furthermore the observation of a Hanbury Brown 
Twiss correlation between atoms with collinear velocity demonstrates that  our system 
cannot be interpreted in terms of classical mechanics, but that the bosonic statistics plays 
a crucial role. A new version of the experiment will allow us to measure the angular 
dependence of the population of the scattering modes and the number difference 
squeezing between two correlated modes.

keywords: cold atoms - quantum atom optics - Hanbury Brown Twiss effect - correlation 
function - Fermi gas - Bose-Einstein condensate - four wave mixing - micro-channel plate
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