Modélisation de la dépendance et simulation de processus en finance - PASTEL - Thèses en ligne de ParisTech
Thèse Année : 2009

Modeling dependence and simulating processes in finance

Modélisation de la dépendance et simulation de processus en finance

Résumé

The first part of this thesis deals with probabilistic numerical methods for simulating the solution of a stochastic differential equation (SDE). We start with the algorithm of Beskos et al. [13] which allows exact simulation of the solution of a one dimensional SDE. We present an extension for the exact computation of expectations and we study the application of these techniques for the pricing of Asian options in the Black & Scholes model. Then, in the second chapter, we propose and study the convergence of two discretization schemes for a family of stochastic volatility models. The first one is well adapted for the pricing of vanilla options and the second one is efficient for the pricing of path-dependent options. We also study the particular case of an Orstein-Uhlenbeck process driving the volatility and we exhibit a third discretization scheme which has better convergence properties. Finally, in the third chapter, we tackle the trajectorial weak convergence of the Euler scheme by providing a simple proof for the estimation of the Wasserstein distance between the solution and its Euler scheme, uniformly in time. The second part of the thesis is dedicated to the modelling of dependence in finance through two examples : the joint modelling of an index together with its composing stocks and intensity-based credit portfolio models. In the forth chapter, we propose a new modelling framework in which the volatility of an index and the volatilities of its composing stocks are connected. When the number of stocks is large, we obtain a simplified model consisting of a local volatility model for the index and a stochastic volatility model for the stocks composed of an intrinsic part and a systemic part driven by the index. We study the calibration of these models and show that it is possible to fit the market prices of both the index and the stocks. Finally, in the last chapter of the thesis, we define an intensity-based credit portfolio model. In order to obtain stronger dependence levels between rating transitions, we extend it by introducing an unobservable random process (frailty) which acts multiplicatively on the intensities of the firms of the portfolio. Our approach is fully historical and we estimate the parameters of our model to past rating transitions using maximum likelihood techniques.
La première partie de cette thèse est consacrée aux méthodes numériques pour la simulation de processus aléatoires définis par des équations différentielles stochastiques (EDS). Nous commençons par l'étude de l'algorithme de Beskos et al. [13] qui permet de simuler exactement les trajectoires d'un processus solution d'une EDS en dimension un. Nous en proposons une extension à des fins de calcul exact d'espérances et nous étudions l'application de ces idées à l'évaluation du prix d'options asiatiques dans le modèle de Black & Scholes. Nous nous intéressons ensuite aux schémas numériques. Dans le deuxième chapitre, nous proposons deux schémas de discrétisation pour une famille de modèles à volatilité stochastique et nous en étudions les propriétés de convergence. Le premier schéma est adapté à l'évaluation du prix d'options path-dependent et le deuxième aux options vanilles. Nous étudions également le cas particulier où le processus qui dirige la volatilité est un processus d'Ornstein-Uhlenbeck et nous exhibons un schéma de discrétisation qui possède de meilleures propriétés de convergence. Enfin, dans le troisième chapitre, il est question de la convergence faible trajectorielle du schéma d'Euler. Nous apportons un début de réponse en contrôlant la distance de Wasserstein entre les marginales du processus solution et du schéma d'Euler, uniformément en temps. La deuxième partie de la thèse porte sur la modélisation de la dépendance en finance et ce à travers deux problématiques distinctes : la modélisation jointe entre un indice boursier et les actions qui le composent et la gestion du risque de défaut dans les portefeuilles de crédit. Dans le quatrième chapitre, nous proposons un cadre de modélisation original dans lequel les volatilités de l'indice et de ses composantes sont reliées. Nous obtenons un modèle simplifié quand la taille de l'indice est grande, dans lequel l'indice suit un modèle à volatilité locale et les actions individuelles suivent un modèle à volatilité stochastique composé d'une partie intrinsèque et d'une partie commune dirigée par l'indice. Nous étudions la calibration de ces modèles et montrons qu'il est possible de se caler sur les prix d'options observés sur le marché, à la fois pour l'indice et pour les actions, ce qui constitue un avantage considérable. Enfin, dans le dernier chapitre de la thèse, nous développons un modèle à intensités permettant de modéliser simultanément, et de manière consistante, toutes les transitions de ratings qui surviennent dans un grand portefeuille de crédit. Afin de générer des niveaux de dépendance plus élevés, nous introduisons le modèle dynamic frailty dans lequel une variable dynamique inobservable agit de manière multiplicative sur les intensités de transitions. Notre approche est purement historique et nous étudions l'estimation par maximum de vraisemblance des paramètres de nos modèles sur la base de données de transitions de ratings passées.
Fichier principal
Vignette du fichier
These_MS.pdf (1.34 Mo) Télécharger le fichier

Dates et versions

tel-00451008 , version 1 (27-01-2010)
tel-00451008 , version 2 (24-11-2010)

Identifiants

  • HAL Id : tel-00451008 , version 1

Citer

Mohamed Sbai. Modélisation de la dépendance et simulation de processus en finance. Mathématiques [math]. Université Paris-Est, 2009. Français. ⟨NNT : ⟩. ⟨tel-00451008v1⟩

Collections

INRIA CERMICS
1000 Consultations
1399 Téléchargements

Partager

More