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Abstract

This thesis is concerned with quantum key distribution (QKD), a cryptographic prim-
itive allowing two distant parties, Alice and Bob, to establish a secret key, in spite of
the presence of a potential eavesdropper, Eve. Here, we focus on continuous-variable
protocols, for which the information is coded in phase-space. The main advantage of
these protocols is that their implementation only requires standard telecom components.

The security of QKD lies on the laws of quantum physics: an eavesdropper will
necessary induce some noise on the communication, therefore revealing her presence.

A particularly difficult step of continuous-variable QKD protocols is the “reconcilia-
tion” where Alice and Bob use their classical measurement results to agree on a common
bit string. We first develop an optimal reconciliation algorithm for the initial protocol,
then introduce a new protocol for which the reconciliation problem is automatically taken
care of thanks to a discrete modulation.

Proving the security of continuous-variable QKD protocols is a challenging problem
because these protocols are formally described in an infinite dimensional Hilbert space. A
solution is to use all available symmetries of the protocols. In particular, we introduce and
study a class of symmetries in phase space, which is particularly relevant for continuous-
variable QKD. Finally, we consider finite size effects for these protocols. We especially
analyse the influence of parameter estimation on the performance of continuous-variable
QDK protocols.

Keywords: quantum cryptography, quantum key distribution, quantum optics, quan-
tum communication, quantum bit commitment, phase-space representation, information
theory, quantum information theory error correcting code.
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Résumé

Cette thèse porte sur la distribution quantique de clés, qui est une primitive cryp-
tographique qui permet à deux correspondants éloignés, Alice et Bob, d’établir une clé se-
crète commune malgré la présence potentielle d’un espion. On s’intéresse notamment aux
protocoles “à variables continues” où Alice et Bob encodent l’information dans l’espace
des phases. L’intérêt majeur de ces protocoles est qu’ils sont faciles à mettre en œuvre
car ils ne requièrent que des composants télécom standards.

La sécurité de ces protocoles repose sur les lois de la physique quantique : acquérir de
l’information sur les données échangées par Alice et Bob induit nécessairement un bruit
qui révèle la présence de l’espion.

Une étape particulièrement délicate pour les protocoles à variables continues est la
“réconciliation” durant laquelle Alice et Bob utilisent leurs résultats de mesure classiques
pour se mettre d’accord sur une chaîne de bits identiques. Nous proposons d’abord
un algorithme de réconciliation optimal pour le protocole initial, puis introduisons un
nouveau protocole qui résout automatiquement le problème de la réconciliation grâce à
l’emploi d’une modulation discrète.

Parce que les protocoles à variables continues sont formellement décrits dans un
espace de Hilbert de dimension infinie, prouver leur sécurité pose des problèmes ma-
thématiques originaux. Nous nous intéressons d’abord à des symétries spécifiques de ces
protocoles dans l’espace des phases. Ces symétries permettent de simplifier considérable-
ment l’analyse de sécurité. Enfin, nous étudions l’influence des effets de tailles finies, tels
que l’estimation du canal quantique, sur les performances des protocoles.

Mots-clés : cryptographie quantique, distribution quantique de clés, optique quan-
tique, communications quantiques, mise en gage quantique, représentation dans l’espace
des phases, théorie de l’information, théorie de l’information quantique, code correcteur
d’erreurs.
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Résumé en français

Cette thèse s’intéresse à la distribution quantique de clés, et plus particulièrement à
certains aspects théoriques liés à l’utilisation de variables continues.

La distribution quantique de clés, souvent appelée de façon abusive cryptographie
quantique, est une primitive cryptographique1 qui permet à deux correspondants éloignés,
traditionnellement prénommés Alice et Bob, d’établir une clé secrète commune. Cette clé
secrète peut ensuite être utilisée pour chiffrer des communications à l’aide de protocoles
de cryptographie symétrique. En particulier, combiner distribution quantique de clés
avec le code de Vernam, qui est le seul protocole de chiffrage inconditionnellement sûr,
permet d’obtenir une sécurité absolue pour les communications. Rappelons rapidement le
fonctionnement du code de Vernam: Alice et Bob disposent initialement d’une clé secrète
C de longueur n. Si Alice veut envoyer un message M de longueur n à Bob2, elle calcule
le “ou exclusif” entre le message et la clé pour obtenir le message chiffré MC = M ⊕ C.
Ensuite, Bob décode ce message chiffré en appliquant simplement le “ou exclusif” avec la
clé secrète pour obtenir le message secret envoyé par Alice : M = MC⊕C. Il est simple
de montrer qu’un espion, prénommé Eve3, qui n’a accès qu’au message chiffré, ne peut
obtenir aucune information sur le message secret : H(M |MC) = H(M). Le problème,
insoluble classiquement au sens de la théorie de l’information, du code de Vernam réside
toutefois dans l’hypothèse qu’Alice et Bob disposent initialement d’une clé parfaitement
secrète.

L’intérêt de la distribution quantique de clés est de fournir une solution physique au

1Une primitive cryptographique est un protocole cryptographique de bas niveau qui peut être intégré
dans un système de cryptographie. Une autre primitive est par exemple l’autentification qui consiste à
établir ou confirmer l’identité de quelqu’un (ou quelque chose).

2En fait, afin d’optimiser le protocole, Alice commence en général par compresser son message de
façon à ce qu’il ait une entropie maximale.

3le choix du prénom Eve vient de l’anglais “eavesdropper”, qui réfère à un espion, ou plus généralement,
à quelqu’un qui écoute aux portes.

xv
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problème de la distribution de clés. L’idée de base est pour Alice et Bob d’échanger
des systèmes quantiques sur lesquels est encodée de l’information. Ensuite, les relations
d’incertitude d’Heisenberg garantissent que dans une certaine mesure, si Eve venait à
écouter la conversation quantique d’Alice et Bob, elle induirait des perturbations sur
les systèmes quantiques échangés, perturbations qui seraient suffisantes pour révéler sa
présence. A contrario, en l’absence de telles perturbations, Alice et Bob sont certains
que leur conversation n’a pas été écoutée, et peuvent utiliser leurs données respectives
pour établir une clé secrète. Bien sûr, cette présentation est simplifiée à l’extrême, et les
scientifiques travaillent depuis 25 ans, la date de l’invention de la distribution quantique
de clés par Bennett et Brassard [10], à la rendre plus rigoureuse. En particulier, même
en l’absence d’espion, les données d’Alice et Bob sont toujours plus ou moins bruitées,
simplement parce que les transmissions optiques ne sont jamais parfaites: les fibres op-
tiques (comme n’importe quel autre medium de transmission) présentent toujours des
pertes, les détecteurs ne sont jamais parfaits, etc. En pratique, ces défauts existent donc
toujours et sont a priori indiscernables de l’action malveillante d’un espion. Néanmoins,
si ces défauts sont suffisamment faibles, intuitivement, on sent que les données d’Alice et
Bob peuvent être utiles pour distiller des clés secrètes. La question théorique qui se pose
alors est de quantifier la taille de la clé secrète qu’Alice et Bob peuvent extraire à partir
de leurs données. En fait, la méthode d’extraction d’une clé d’une longueur donnée à
partir de données corrélées est bien établie. On procède typiquement en deux étapes.
D’abord, Alice et Bob transforment leurs données corrélées en données identiques, c’est
l’étape de correction d’erreurs, ou de réconciliation. Ensuite, ils utilisent une fonction de
hachage pour transformer leur chaîne de données commune en une clé parfaitement sûre.
La question est donc de savoir de combien il faut diminuer la taille de la chaîne initiale
pour obtenir une clé véritablement secrète.

Bien entendu, le but est de mettre au point un protocole aussi pratique que possible,
c’est-à-dire facile à mettre en œuvre expérimentalement, qui permette de distribuer un
débit maximum de clés secrètes. Aujourd’hui, en 2009, on ne sait pas toujours quel pro-
tocole est le meilleur. Répondre à cette question suppose d’abord d’avoir une définition
de la qualité d’un protocole. La performance typique d’un protocole est de permettre
de distribuer des clés tant qu’Alice et Bob ne sont pas trop éloignés. Plus précisément,
le taux de clé secrète K que l’on peut distribuer est une fonction de la distance d entre
Alice et Bob qui a généralement la forme suivante:

K(d) =

{

K010−ηd pour d ≤ dmax

0 pour d ≥ dmax.
(1)

Dans cette équation, η représente la perte linéique du medium de transmission, par
exemple η = 0.02 pour une fibre optique classique qui présente 0.2 dB de pertes par
kilomètre aux longueurs d’onde télécom. Le paramètre dmax représente une distance
maximale au-dessus de laquelle le protocole en question ne permet plus de distribuer une
clé secrète. L’ordre de grandeur typique pour cette distance maximale est de quelques
dizaines de kilomètres, voire une centaine de kilomètres, et dépend de façon cruciale de
la définition de sécurité utilisée.
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Un but évident est donc d’essayer de trouver les protocoles qui permettent de dis-
tribuer des clés sur des distances aussi grandes que possibles. Toutefois, cette question
est plus délicate qu’il n’y paraît car établir le taux secret d’un protocole donné est une
tâche compliquée. En effet, l’intérêt de la cryptographie quantique est de ne faire aucune
hypothèse sur l’espion, qui n’est contraint que par les lois de la mécanique quantique.
Ainsi, les stratégies possibles pour l’espion sont innombrables et déterminer laquelle est
optimale constitue un problème généralement insoluble, en dehors de quelques proto-
coles de distribution quantiques assez simples. Heureusement, ces protocoles assez sim-
ples pour pouvoir être étudiés (et mis en œuvre) apparaissent comme très robustes, et
sont probablement meilleurs que d’autres protocoles trop compliqués pour être étudiés
théoriquement ou réalisés expérimentalement.

La plupart de ces protocoles à la fois simples et robustes sont inspirés du protocole
BB84 introduit par Bennett et Brassard et ont la particularité d’encoder l’information
sur des systèmes quantiques à deux niveaux, par exemple la polarisation de photons
uniques. Le fait que ces systèmes, décrits dans des espaces de Hilbert de dimension 2,
soient particulièrement bien connus théoriquement grâce à la multitude de problèmes
physiques où ils interviennent, a pour conséquence de simplifier l’analyse théorique des
protocoles cryptographiques en question. L’inconvénient de ces protocoles, toutefois, est
que le support de l’information, un photon unique, est difficile à générer et plus encore à
détecter. En fait, l’absence de vraies sources de photons uniques ne constitue pas un trop
gros handicap pour la cryptographie quantique car de simples sources d’états cohérents
atténués remplacent avantageusement les sources de photons uniques : elles sont beau-
coup, beaucoup plus simples à mettre en œuvre et ont un impact limité en termes de
sécurité4. L’autre problème de ces protocoles est que Bob est obligé de détecter des pho-
tons uniques, ce qui est une tâche technologiquement délicate. En fait, les détecteurs de
photons uniques ont généralement une efficacité quantique limitée à quelque 10 ou 20%5.
Comme ces détecteurs de photons uniques n’ont qu’une application limitée, l’industrie
ne finance pas d’importants travaux de recherche et développement pour les améliorer,
et les progrès technologiques sont de ce fait assez lents.

Pour ces raisons, une alternative a été proposée au début des années 2000 : encoder
l’information dans l’espace des phases plutôt que dans un système quantique à deux
niveaux. L’intérêt est alors que la détection n’est plus faite par un détecteur de photons,
mais par une technique interférométrique appelée détection homodyne qui peut être réal-
isée à l’aide de photodiodes PIN standard. Comme ces photodiodes sont massivement
utilisées par l’industrie télécom, elles sont comparativement bien plus performantes que
les détecteurs de photons de la cryptographie quantique à la BB84. La distribution quan-
tique de clés où l’information est encodée dans l’espace des phases est dite “à variables
continues” par opposition aux traditionnels protocoles “à variables discrètes”.

Technologiquement, encoder l’information sur des variables continues, les quadratures
de l’espace des phases, semble être une bonne alternative aux protocoles à variables

4c’est-à-dire qu’on arrive à intégrer aux preuves de sécurité le fait que l’on utilise des sources d’états
cohérents atténués au lieu de vrais photons uniques.

5aux longueurs d’onde télécom, 1550 nm, pertinentes pour la cryptographie quantique.
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discrètes. Cependant, parce qu’espace des phases est synonyme d’espace de Hilbert
de dimension infinie, l’analyse théorique des protocoles de cryptographie quantique à
variables continues est assez délicate.

Au début de ma thèse, en 2006, des protocoles à variables continues avaient déjà
été proposés et étudiés. A cette époque, ces protocoles avaient été prouvés sûrs contre
une classe d’attaques restreintes appelées “attaques collectives”, dans le cas asymptotique
où les caractéristiques du canal gaussien6 liant Alice à Bob sont parfaitement connues.
Malheureusement, les protocoles à variables continues, bien que sûrs, ne semblaient alors
fonctionner que pour de courtes distances : 30 kilomètres maximum. La cause de cette
limitation était alors identifiée comme étant l’efficacité limitée de la réconciliation des
variables corrélées d’Alice et Bob. Améliorer cette réconciliation était donc une condition
sine qua non à l’augmentation de la portée des protocoles à variables continues.

L’objectif de cette thèse était double. D’abord, proposer de nouveaux algorithmes
pour améliorer la réconciliation, et ainsi augmenter la portée des protocoles à variables
continues. Ensuite, il s’agissait d’étendre les preuves de sécurité aux attaques les plus
générales, en prenant notamment en compte les effets de tailles finies.

Le premier objectif a été rempli doublement. Il fait l’objet de la Partie II de ce
manuscrit. D’une part, un algorithme de réconciliation spécifique a été proposé afin
d’améliorer l’efficacité de la réconciliation à faible rapport signal à bruit (voir chapitre
4). L’utilisation de cet algorithme permet, sans rien changer à l’implémentation expéri-
mentale du protocole à variables continues initial, de faire passer la portée du protocole
de 30 à 50 km. Ensuite, un nouveau protocole à variables continues utilisant une mod-
ulation discrète a été proposé. Cet algorithme a été prouvé aussi sûr que l’algorithme
initial qui utilise une modulation gaussienne, et permet de distribuer des clés secrètes
sur des distances supérieures à la centaine de kilomètres7. Ce protocole est donc tout-à-
fait compétitif vis-à-vis des traditionnels protocoles de distribution quantique de clés à
variables discrètes (voir chapitre 5).

Le second objectif –étudier la sécurité des protocoles à variables continues face aux
attaques les plus générales– était nettement plut délicat. Pendant ma thèse, la question
a en partie été résolue par Renner et Cirac [127] qui ont montré que les attaques col-
lectives étaient optimales dans la limite asymptotique. En revanche, la méthode qu’ils
emploient n’utilise pas les symétries naturelles des protocoles de distribution quantique
de clés à variables continues, et il est donc plausible que les bornes qu’ils obtiennent
puissent être substantiellement améliorées (voir chapitre 6). Ensuite, nous avons étudié
spécifiquement les effets de tailles finies pour les protocoles à variables continues (voir
chapitre 7). Les résultats obtenus sont assez pessimistes, mais sont conformes à ce que
l’on pouvait attendre suite aux récentes études sur les effets de tailles finies pour les pro-
tocoles à variables discrètes. Enfin, dans le chapitre 8, on étudie d’autres problèmes liés
à la cryptographie quantique avec des variables continues, différents de la distribution
quantique de clés. En particulier, on s’intéresse aux mesures optimales pour distinguer

6un canal gaussien est défini par deux grandeurs : sa transmission et son niveau de bruit.
7dans l’hypothèse d’un régime asymptotique où le canal gaussien reliant Alice à Bob est complètement

caractérisé.
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des états cohérents. Ensuite, on s’intéresse à une autre primitive cryptographique : la
mise en gage. On prouve en particulier que la mise en gage quantique est impossible avec
des états gaussiens et des opérations gaussiennes uniquement.

Les différentes parties de ce manuscrit sont maintenant décrites en détail.
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Partie I : Rappels généraux sur l’information quantique, les

variables continues et la cryptographie quantique

La première partie de ce manuscrit (chapitres 1 à 3) consiste en une présentation des out-
ils nécessaires à l’étude de la distribution quantique de clés à variables continues. Trois
chapitres peuvent sembler beaucoup pour présenter cette thématique, mais la distribu-
tion quantique de clés à variables continues est à l’intersection de diverses disciplines :
mécanique quantique, théorie de l’information, optique quantique, cryptographie, etc, et
son étude requiert une bonne connaissance de toutes ces disciplines.

Chapitre 1 : Information et communication quantiques

Le premier chapitre pose les fondations de la jeune discipline scientifique qu’est la théorie
de l’information quantique. Ce champ de recherche, vieux d’une vingtaine d’années, vise
à comprendre les liens entre la mécanique quantique et la théorie de l’information dévelop-
pées respectivement dans les années 20 et les années 50. Il est troublant que la théorie
de l’information quantique ait mis si longtemps à émerger puisqu’elle constitue le pro-
longement naturel de la théorie de l’information de Shannon. En effet, toute information
est codée de façon ultime sur un support quantique puisque la description de la nature
est quantique.

Le premier chapitre présente donc successivement les bases de la mécanique quan-
tique, en particulier les axiomes mathématiques qui la caractérisent, puis la théorie de
l’information de Shannon avec ses deux théorèmes centraux qui décrivent le codage de
source et le codage de canal, et naturellement les quantités qui leur sont associées :
l’entropie, et l’information mutuelle. Enfin, on décrit comment les notions d’entropie et
d’information mutuelle sont généralisées dans un contexte quantique. On introduit en
particulier le concept de “smooth min-entropy” qui est particulièrement pertinent pour
l’analyse théorique de protocoles cryptographiques quantiques.

Chapitre 2 : Information quantique avec des variables continues

Le deuxième chapitre s’intéresse aux spécificités de la théorie de l’information quantique
avec des variables continues. D’abord, on présente le domaine de l’optique quantique,
et la représentation dans l’espace de phases. Ensuite, on introduit les états gaussiens et
les opérations gaussiennes. Ces états et transformations sont incontournables en optique
quantique car ils correspondent exactement à ce qu’il est relativement facile de faire
expérimentalement, tout en disposant d’un formalisme théorique qui permet leur étude.
Ce deuxième point est essentiel car l’optique quantique est en général décrite dans un
espace de Hilbert de dimension infinie, ce qui rend les analyses théoriques infaisables dans
la plupart des cas, à l’exception notable des états gaussiens et opérations gaussiennes.

Enfin, on décrit les spécificités des variables continues par rapport aux outils de
l’information quantique. Il est intéressant de noter qu’alors que les variables contin-
ues posent de nombreux problèmes en théorie classique de l’information, ce n’est plus
nécessairement le cas en théorie quantique de l’information où les entropies par exemple
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restent bien définies pour les variables continues. On insiste également sur les propriétés
des états gaussiens qui se trouvent être extrémaux vis-à-vis de diverses fonctionnelles
telles que l’entropie par exemple. Ces propriétés font que les états gaussiens, outre le
fait qu’ils soient facilement décrits de manière théorique, sont en fait souvent les états les
plus adaptés à diverses tâches de communications quantiques, et tout particulièrement
pour la distribution quantique de clés.

Chapitre 3 : Distribution quantique de clés

Le troisième chapitre présente finalement la distribution quantique de clés. Le chapitre
commence par une discussion sur la notion de sécurité d’un protocole. En particulier,
la sécurité d’une clé est une notion qui n’est décrite de manière satisfaisante que depuis
très récemment8. Un protocole générique de distribution quantique de clés est ensuite
décrit, et le principe général de l’étude de la sécurité de cette primitive cryptographique
est détaillé. En particulier, la plupart des preuves de sécurité font appel à la notion
d’intrication virtuelle. La fin du chapitre s’intéresse plus particulièrement aux protocoles
à variables continues, et aux preuves de sécurité (contre les attaques collectives) qui les
concernent.

En conclusion, cette première partie ne contient quasiment pas de recherche originale.
C’est une partie d’introduction qui présente les outils théoriques nécessaires à l’étude de
protocoles de distribution quantique de clés.

8La thèse de Renato Renner [124] fait généralement autorité en ce qui concerne la définition et l’étude
de la sécurité de la distribution quantique de clés.
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Partie II : Améliorer la portée des protocoles à variables con-

tinues

La seconde partie de ce manuscrit présente des travaux de recherche dont le but était
d’augmenter la portée des protocoles de distribution quantique de clés à variables con-
tinues. Au début de ma thèse, en 2006, les protocoles à variables continues pouvaient
distribuer des clés sur des distances inférieures à 30 km. La raison de cette limitation
était alors déjà bien identifiée comme étant l’efficacité insuffisante de la réconciliation des
données corrélées d’Alice et Bob.

Deux solutions ont été apportées à ce problème. D’abord, un nouvel algorithme de
réconciliation a été introduit. Cet algorithme, conçu spécifiquement pour la réconciliation
de variables gaussiennes corrélées à faible rapport signal à bruit, permet d’augmenter la
portée du protocole de 30 à 50 km. La présentation détaillée de cet algorithme fait l’objet
du chapitre 4 de ce manuscrit.

Ensuite, afin de résoudre totalement les problèmes liés à la réconciliation, un nou-
veau protocole de distribution quantique de clés a été proposé. L’idée de ce protocole est
d’utiliser une modulation discrète au lieu de la traditionnelle modulation gaussienne. Ce
nouveau protocole est présenté dans le chapitre 5. Les performances de ce protocole sont
très intéressantes car elles sont comparables à celles des meilleurs protocoles à variables
discrètes en termes de portée. Pour être plus précis, dans la limite asymptotique de
clés infiniment longues, des distances nettement supérieures à 100 km peuvent être at-
teintes avec les implémentations expérimentales actuelles9. Par ailleurs, on prouve dans
le chapitre 5 que les preuves de sécurité du protocole à modulation gaussienne habituel
peuvent être adaptées pour le nouveau protocole à modulation discrète. Ainsi, ce nouveau
protocole est aussi sûr que le précédent, mais présente de bien meilleures performances
en termes de portée.

Chapitre 4 : Réconciliation de variables gaussiennes corrélées

Dans le chapitre 4, on s’intéresse au problème de l’amélioration du protocole de distri-
bution quantique de clés à variables continues basé sur une modulation gaussienne. Ce
protocole fonctionne de la façon suivante. Alice tire deux variables aléatoires (qA, pA)
qui suivent une distribution normale centrée de variance VA, et envoie à Bob un état
cohérent centré au point (qA, pA) de l’espace des phases. Bob reçoit cet état après qu’il
a traversé le canal quantique, typiquement une fibre optique, et choisit aléatoirement de
mesurer l’une ou l’autre des deux quadratures. Son résultat de mesure est noté y. Bob
informe alors Alice de son choix de quadrature. Alice ne conserve que la variable qA ou
pA correspondante et la note x. Alice et Bob répètent cette opération un grand nombre n
de fois (typiquement n prend des valeurs de l’ordre de 105 ou 106. Alice et Bob stockent

9Il faut toutefois relativiser ces résultats en tenant compte des effets de taille finie. Ces effets sont
décrits au chapitre 7 et mettent en doute la capacité de distribuer des clés secrètes sur des distances
nettement supérieures à 100 km. Toutefois, ce problème n’est pas du tout spécifique aux protocoles à
variables continues, et aucun protocole actuel n’est en mesure de distribuer des clés secrètes sur 100 km
si l’on tient compte de ces effets de taille finie.
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leurs variables dans deux vecteurs X = (x1, · · · , xn) et Y = (y1, · · · , yn). On suppose ici
qu’Alice et Bob connaissent parfaitement le canal gaussien qui les lie, qui est caractérisé
par sa transmission et son excès de bruit10. En fait, on suppose juste que les variances
d’Alice et Bob, ainsi que la covariance entre leurs données sont parfaitement connues. A
une normalisation près, le modèle pertinent pour leurs données est le suivant :

yi = xi + zi, (2)

où les xi (resp. les zi) sont des variables gaussiennes centrées indépendantes et identique-
ment distribuées de variance 1 (resp. σ2).

Le problème pour Alice et Bob est alors de transformer ces données en une clé secrète.
Deux étapes sont nécessaires :

• la réconciliation consiste pour Alice et Bob à utiliser leurs données corrélées pour
se mettre d’accord sur une chaîne de bits identiques,

• l’amplification de confidentialité consiste à utiliser une fonction de hachage pour
transformer leur chaîne commune en une clé secrète.

L’amplification de confidentialité ne pose pas de problème particulier, et on s’intéresse
ici uniquement à la réconciliation. Pour rendre les choses un peu plus compliquées, la
réconciliation doit être inverse11, c’est-à-dire que Bob doit calculer une chaîne U à partir
de son vecteur Y et qu’Alice doit déterminer cette chaîne U . A cette fin, Bob va envoyer
de l’information à Alice12 pour l’aider à retrouver U à partir de son vecteur X.

Le problème de la réconciliation est en fait très proche d’un problème de codage de
canal. La seule différence tient dans le fait que Bob reçoit une donnée aléatoire qu’il
doit faire retrouver à Alice, alors que dans un problème de codage de canal classique,
Alice envoie un mot de code à Bob qui doit le retrouver. Le moyen de transformer le
problème de la réconciliation en problème de codage de canal est de travailler avec un
code coset. Supposons qu’Alice et Bob utilisent des données binaires et que le canal qui
les relie soit un canal binaire symétrique. Dans ce cas, Alice et Bob choisissent un code
correcteur d’erreurs linéaire adapté au canal, et Bob peut simplement définir le code
coset qui contient Y en informant Alice du syndrome de Y pour le code en question.

En fait, le problème de la réconciliation de données binaires est presque trivial dans
le sens où il se ramène immédiatement à un problème bien connu de codage de canal.
Les choses se compliquent singulièrement pour des données continues. Dans ce cas, Bob

10En réalité, cette hypothèse est trop forte, et Alice et Bob doivent échanger N = n + m signaux,
dont m sont utilisés pour l’estimation du canal. Toutefois, l’hypothèse faite ici que le canal est bien
caractérisé correspond à une hypothèse très répandue dans le domaine de la cryptographie quantique.
Les effets liés à la taille finie, et en particulier le problème de l’estimation de paramètres, sont traités
dans le chapitre 7.

11l’alternative qu’est la réconciliation directe est en effet incompatible avec des pertes supérieures à 3
dB, et n’est donc pas intéressante pour distribuer des clés à grande distance puique 3 dB représentent
seulement 15 km de fibre.

12sur un canal classique authentifié sans erreur. En fait l’espion Eve a accès à ce canal qu’elle peut
écouter, mais elle ne peut pas modifier les communications qui y transitent.
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reçoit un vecteur réel qui n’appartient pas clairement à un code coset donné. La solution
à ce problème est pourtant d’essayer de définir un code pour lequel Y appartienne à un
coset. L’idée de base est de voir que Y n’est pas distribué uniformément dans R

n mais
que le vecteur normalisé Y/||Y || a une distribution uniforme sur la sphère unité, Sn−1, de
R

n. Le problème est maintenant de définir de bons codes correcteurs d’erreurs sur cette
sphère. Une façon naturelle de définir de bons codes sur la sphère Sn−1 est d’utiliser
l’isomorphisme suivant entre F

n
2 = {0; 1}n et Sn−1:

Φ : F
n
2 −→ Sn−1

b 7−→ (−1)b
√

n
.

(3)

On choisit donc de bons codes correcteurs pour le canal bi-AWGN (modulation binaire
±A suivie d’un canal additif à bruit blanc gaussien). Soit C un tel code, c’est-à-dire un
ensemble de points de Φ(Fn

2 ). Le problème est maintenant de faire correspondre à chaque
point possible Y/||Y || de la sphère un élément de C. La méthode que nous proposons est
la suivante. Bob choisit un point U de Φ(Fn

2 ) avec une distribution uniforme. Ce point
U est le vecteur binaire que doit retrouver Alice. Pour cela, Bob calcule α = U · Y −1

où la multiplication et l’inversion sont les lois d’un groupe que l’on va préciser. Ensuite,
Bob envoie à Alice la valeur du vecteur α ainsi que le syndrome du mot U pour le code
C. Alice calcule Û = α ·X = U · Y −1 ·X. Si le groupe est bien choisi, Û correspond à
une version bruitée de U telle que le bruit ||Û − U || soit égal au bruit ||Z|| = ||Y −X||.
Enfin, Alice décode Û dans le code coset de C défini par le syndrome de U et retrouve
la valeur de U (avec une probabilité d’erreur négligeable).

Pour que cette stratégie fonctionne, on voit qu’on a besoin de mettre une structure de
groupe sur la sphère Sn−1. En fait, une conséquence d’un théorème d’Adams est que les
sphères avec une structure de groupe (en fait, les sphères qui sont des algèbres de division)
sont les sphères unité dans R,R2,R4 et R

8. Ces sphères correspondent respectivement
aux unités des réels, des complexes, des quaternions et des octonions. Dans notre cas, on
cherche à travailler dans la plus grande dimension possible, c’est-à-dire en dimension 8. A
cette fin, les vecteurs X, Y et U sont divisés en sous-vecteurs de longueur 8, et identifiés
aux octonions correspondants. Pour ces octonions, Bob calcule simplement la division de
U par Y pour former α. Cette division correspond en fait à une rotation dans R

8, c’est-
à-dire une isométrie qui préserve les distances, ce qui assure que ||Û − U || = ||X − Y ||
pour la norme 2.

La stratégie décrite ci-dessus est optimale dans le sens que la dimension 8 est la di-
mension maximale qui ait les propriétés requises. L’algorithme de réconciliation ainsi
défini présente de bonnes performances, spécialement à faible rapport signal à bruit, par
exemple pour une variance du bruit gaussien σ2 = 2. En conséquence, l’utilisation de cet
algorithme dans le protocole de distribution quantique de clé à variables continues per-
met d’améliorer notablement les performances de ce dernier. En particulier, la distance
maximale du protocole est portée à 50 km contre 30 km en utilisant l’ancien algorithme
de réconciliation où les données sont quantifiées en dimension 1 plutôt qu’en dimension
8.
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Chapitre 5 : Distribution quantique de clés à longue distance : protocoles
à variables continues et modulation discrète

Dans le chapitre 4, on a décrit une technique de réconciliation permettant d’accroître
significativement la portée du protocole de distribution quantique de clé à modulation
gaussienne. Malheureusement, cette technique reste impuissante quand le rapport signal
à bruit se dégrade trop, ce qui arrive inévitablement lorsque l’on essaie de distribuer des
clés à longue distance.

Comme le problème vient de la réconciliation imparfaite des variables gaussiennes,
l’idée naturelle est de considérer un problème plus simple que l’on sait bien résoudre.
Ce problème est celui de la correction d’erreurs pour un canal bi-AWGN. En particulier,
on sait bien corriger les erreurs pour ce canal, même pour des rapports signal à bruit
arbitrairement proches de zéro13. L’idée est donc de faire en sorte que le problème de
réconciliation qui apparaît dans le protocole de distribution quantique de clés puisse se
ramener à une question de codage de canal pour un canal bi-AWGN. Ceci est facile à
réaliser si on utilise une modulation quaternaire dans l’espace des phases au lieu d’une
modulation gaussienne. Aussi Alice va-t-elle maintenant envoyer des états cohérents
centrés sur l’un des 4 points suivants de l’espace des phases : (qA, pA) = (±A,±A). Bob
procède ensuite comme dans le protocole habituel : il choisit de mesurer l’une ou l’autre
des quadratures et obtient un résultat de mesure y. Bob informe Alice de son choix, et
celle-ci détermine la valeur de x correspondante. Ainsi, la relation entre x et y est donnée
par :

y = x+ z, (4)

où à une normalisation près, x est une variable de Bernoulli prenant les valeurs ±1 avec
probabilité 1

2 et z est un bruit blanc gaussien de variance σ2.
L’intérêt de ce schéma de modulation est que les problèmes de réconciliation directe,

et de réconciliation inverse (où Bob envoie de l’information supplémentaire à Alice) sont
identiques. Comme le problème de réconciliation directe est un problème classique et
bien résolu en théorie de l’information, le problème inverse l’est également. Montrons
maintenant que le problème de réconciliation inverse est également un problème de codage
de canal avec une modulation binaire et un canal AWGN. Bob reçoit la variable y et
définit les variables (u, t) de la façon suivante :

(u, t) ≡ (y/|y|, |y|). (5)

Bob indique la valeur de t à Alice en utilisant le canal classique authentifié, et conserve
la valeur de u qui correspond à la variable qu’Alice doit déterminer. Alice calcule alors
la nouvelle variable v définie par

v ≡ t · signe(x). (6)

Il est facile de voir que v et u sont liés par

v = u+ w (7)
13Ici, le rapport signal à bruit est simplement défini comme le rapport de la variance de modulation

du signal et de la variance du bruit.
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où u est une variable de Bernoulli et w est un bruit blanc gaussien de variance σ2. Ainsi,
le problème de réconciliation inverse est identique au problème de réconciliation directe.

L’intérêt de la modulation binaire est que l’on peut facilement trouver de très bons
codes correcteurs d’erreurs qui fonctionnent à très faible rapport signal à bruit. En effet,
il suffit par exemple de considérer la concaténation d’un bon code correcteur d’erreur à
bas rendement (par exemple, un code LDPC multi-edge) avec un simple code à répétition.
Cette technique produit des codes presque optimaux à très faible rapport signal à bruit,
qui sont en plus très facilement décodables.

En utilisant ce type de codes, on obtient un algorithme de réconciliation qui reste
efficace pour des rapports signal à bruit arbitrairement faibles. Pour prouver que le
protocole quaternaire surpasse le protocole à modulation gaussienne, il ne reste qu’à
montrer que la sécurité du protocole n’est pas dégradée quand la modulation devient
discrète au lieu de gaussienne.

Les preuves de sécurité des protocoles à variables continues sont basées sur des pro-
priétés d’optimalité des états quantiques gaussiens. Pour cette raison, il est facile de
prouver la sécurité du protocole de distribution quantique de clé basé sur une modula-
tion gaussienne car ce protocole peut être interprété en termes d’états gaussiens. Ceci
n’est a priori plus possible pour un protocole quaternaire. En revanche, si la modula-
tion sur protocole quaternaire est suffisamment faible, cette modulation devient presque
identique à une modulation gaussienne de même variance. Cela peut être précisé en
termes d’états quantiques, et il existe ainsi un régime de variance où le protocole quater-
naire peut distribuer des clés secrètes avec une sécurité identique à celle du protocole à
modulation gaussienne.

Ainsi, à condition de travailler avec une variance de modulation suffisamment faible
(ce qui est requis afin d’atteindre des distances importantes), on peut prouver la sécurité
du protocole quaternaire, tout en disposant d’un algorithme de réconciliation efficace.
La conjonction de ces deux éléments a pour conséquence que le protocole quaternaire
permet de distribuer des clés secrètes sur des distances nettement plus importantes que
le protocole gaussien initial. En particulier, des distances supérieures à la centaine de
kilomètres sont possibles, à la condition de rester dans le régime asymptotique où l’on
fait l’hypothèse que le canal gaussien qui lie Alice et Bob est parfaitement connu. Cette
hypothèse est discutée dans le chapitre 7.
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Partie III : Etude de la sécurité des protocoles à variables

continues

Dans la troisième partie de ce manuscrit, on aborde plus spécifiquement l’étude de la
sécurité des protocoles cryptographiques. En effet, un protocole quantique donné est
caractérisé par deux éléments : sa performance d’une part, mais également sa sécurité.
N’oublions pas que l’intérêt majeur de la cryptographie quantique par rapport à la cryp-
tographie classique est justement que l’on peut prouver qu’un protocole donné est sûr,
sans avoir besoin de recourir à des hypothèses sur la difficulté de tel ou tel problème
mathématique.

De ce point de vue, le choix du plan de ce manuscrit peut sembler un peu incongru
: pourquoi commencer par étudier les performances d’un protocole sans avoir d’abord
établi qu’il était sûr ? La raison est historique et tient à la jeunesse du champ de recherche
dédié à la cryptographie quantique. En fait, jusqu’à très récemment, aucun protocole
n’était prouvé complètement sûr, la question se révélant être hautement non triviale.
Pour pallier à ce problème, il était courant (et c’est toujours le cas aujourd’hui) de com-
mencer à étudier la sécurité des protocoles face à des familles d’attaques restreintes, la
famille la plus emblématique de ce point de vue étant celle des attaques collectives. Une
attaque collective est telle que l’on peut supposer le canal quantique reliant Alice à Bob
sans mémoire14. Faire l’hypothèse d’une attaque collective simplifie donc considérable-
ment l’analyse théorique des protocoles. Par ailleurs, pour de nombreux protocoles, la
meilleure attaque possible est souvent une attaque collective, prouvant ainsi que faire
cette hypothèse n’est pas seulement pratique, mais également légitime. La sécurité des
protocoles à variables continues étant pour des raisons (principalement) techniques, plus
délicate à établir que celle des protocoles à variables discrètes, il apparaît naturel de faire
dans un premier temps l’hypothèse d’attaques collectives et d’étudier leurs performances
dans ce contexte. Ceci fait l’objet de la deuxième partie de ce manuscrit.

Dans la troisième partie, on adresse donc la question de la sécurité des protocoles de
cryptographie quantique à variables continues, dans le cas le plus général.

Dans le chapitre 6, on cherche à déterminer si les attaques collectives sont optimales
dans le cas des protocoles à variables continues. Un résultat récent de Renner et Cirac
en 2009 prouve que c’est bien le cas dans le régime asymptotique, et fournit des bornes
très conservatrices en régime non asymptotique. L’objet du chapitre 6 est de proposer
une approche différente de celle de Renner et Cirac, qui pourrait aboutir à des bornes
significativement meilleures en régime non asymptotique.

Le chapitre 7 est consacré justement aux effets de taille finie qui apparaissent dans
n’importe quelle implémentation expérimentale d’un protocole de distribution quantique
de clé. En particulier, le problème de l’estimation du canal (qui est supposé parfaitement
connu en régime asymptotique) est étudié. Les résultats trouvés sont assez pessimistes

14Plus précisément, faire l’hypothèse d’une attaque collective signifie que l’état quantique ρAB à n

modes partagé par Alice et Bob peut s’écrire sous la forme ρAB =
R

p(σ)σ⊗ndσ où σ est un état
bipartite et p(σ) est une distribution de probabilité. Cet état est dit identique et indépendamment

distribué.
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mais sont en accord avec les résultats récemment obtenus dans la littérature pour les
protocoles à variables discrètes. En particulier, les expériences actuelles, qui prennent
rarement en compte ces effets de taille finie, sont souvent beaucoup trop optimistes dans
les résultats qu’elles affichent.

Enfin, le chapitre 8 s’intéresse à des primitives cryptographiques quantiques autres
que la distribution de clé. On adresse en particulier la question de la discernabilité
des états cohérents, états qui constituent le support de l’information dans les protocoles
de distribution quantique de clé à variables continues. Ensuite, on étudie la primitive
qu’est la mise en gage quantique du point de vue des variables continues. La spécificité
de la mise en gage est que c’est une primitive impossible à réaliser classiquement, mais
également quantiquement (à la différence de la distribution de clé). Ici, on montre qu’elle
reste impossible même si l’on restreint les participants à utiliser uniquement des états
gaussiens et des opérations gaussiennes.

Chapitre 6 : Preuves de sécurité, les attaques collectives sont-elles opti-
males?

Dans le chapitre 6, on étudie les attaques les plus générales qu’un espion puisse effectuer
contre un protocole de distribution quantique de clé à variables continues. Un des avan-
tages de la cryptographie quantique est qu’une attaque peut être décrite, sans perte de
généralité, par l’état quantique ρAB décrivant les systèmes d’Alice et Bob. Cet état ap-
partient à l’espace de Hilbert (HA ⊗ HB)⊗n correspondant à n produits tensoriels des
espaces de Hilbert individuels HA d’Alice et HB de Bob. L’état d’Alice et Bob décrit
complètement l’attaque de Eve car on peut toujours considérer que l’état d’Eve purifie
l’état d’Alice et Bob, c’est-à-dire que ρAB = trE |ΨABE〉 où |ΨABE〉 décrit le système
joint d’Alice, Bob et Eve. Ainsi, l’état ρE de Eve est défini à une transformation unitaire
près.

Etudier un état ρAB ∈ (HA⊗HB)⊗n est en général simplement impossible car l’espace
de Hilbert considéré est beaucoup trop gros. L’idéal de ce point de vue serait de pouvoir
se ramener au cas d’une attaque collective car l’état quantique d’Alice et Bob prend
alors la forme simple suivante

∫

dσ p(σ)σ⊗n où σ ∈ HA ⊗HB. Une telle réduction n’est
pas toujours possible directement. La stratégie que l’on va donc adopter comprend deux
étapes.

Dans un premier temps, on utilise un argument de symétrie pour simplifier l’état
quantique qu’Alice et Bob ont besoin de considérer. Traditionnellement, l’argument est
que le protocole de distribution quantique de clé est invariant si Alice et Bob réordonnent
de façon coordonnée leurs n états quantiques respectifs (ceci est vrai pour la grande
majorité des protocoles de cryptographie quantique, y compris pour les protocoles à
variables continues). Ceci permet de montrer que l’état d’Alice et Bob peut toujours être
supposé symétrique, c’est-à-dire invariant par rapport à n’importe quelle permutation de
ses sous-systèmes15. L’intérêt de cette symétrisation est qu’elle réduit considérablement

15En fait, faire l’hypothèse d’un état symétrique peut juste amener Alice et Bob à sous-estimer leur
taux secret réel, et à surestimer la puissance de l’espion.
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la taille de l’espace à considérer : dans le cas où la dimension de HA ⊗ HB prend une
valeur finie, la taille du sous-espace symétrique de HA ⊗HB est polynomiale en n et non
pas exponentielle. Malheureusement, si l’espace initial est de dimension infinie comme
c’est la cas pour les protocoles à variables continues, la réduction apportée par cette
symétrisation n’est pas aussi spectaculaire.

Dans un deuxième temps, on étudie les propriétés des états symétriques, et on essaie
de montrer que ces états partagent beaucoup de propriétés avec les états indépendants et
identiquement distribués (i.i.d.) qui correspondent à une attaque collective. Historique-
ment (depuis 2007 !), la technique employée dans ce but était la version exponentielle
du théorème de de Finetti établie par Renner. Ce théorème montre qu’à condition de
tracer un nombre négligeable de sous-systèmes, un état symétrique est très proche d’un
état i.i.d.16. Cette technique donne des bornes particulièrement conservatrices sur le
taux de clé finale (en particulier pour les protocoles à variables continues pour lesquelles
une version spéciale du théorème a été établie en 2009 par Renner et Cirac). Une tech-
nique proposée plus récemment par Christandl, König et Renner, appelée technique de
post-sélection permet de s’affranchir du théorème de de Finetti, et permet d’obtenir de
meilleures bornes pour le taux secret. Cette technique est pour le moment limitée aux
espaces de Hilbert de dimension finie et exclut donc le cas des protocoles à variables
continues.

L’idée développée dans le chapitre 6 est que l’invariance par permutation n’est pas la
symétrie la plus adaptée pour les protocoles à variables continues. Pour être plus précis,
on va considérer un groupe de symétrie significativement plus gros, qui va conduire à une
diminution plus importante de la taille de l’espace symétrique final qu’il sera nécessaire
d’étudier. Pour cela, la remarque importante est que dans les protocoles à variables
continues à modulation gaussienne, les données classiques X,Y ∈ R

n obtenues par Alice
et Bob vérifient la relation suivante

Y = X + Z, (8)

où Z est un vecteur i.i.d; gaussien centré. Le protocole à variables continues est par con-
séquent bien invariant par permutation de ses sous-systèmes car la loi jointe des vecteurs
(X,Y ) est invariante par permutation. Mais cette loi est également invariante sous
l’action du groupe orthogonal. Plus précisément, pour toute transformation orthogonale
R ∈ O(n), la loi du couple (RX,RY ) est la même que celle du couple (X,Y ). Retranscrit
au niveau des états quantiques, cela signifie que le protocole de distribution quantique
est invariant si Alice et Bob appliquent tous les deux des opérations conjuguées dont
l’action dans l’espace des phases est décrite par une transformation orthogonale.

L’étude de cette invariance est critique pour la sécurité de protocole à variables con-
tinues car elle correspond à la symétrie naturelle du protocole. Toutefois, nous n’avons
pas encore été en mesure d’achever cette étude. Des résultats préliminaires intéressants
ont toutefois été obtenus. En particulier, un théorème de de Finetti dans l’espace des
phases a pu être prouvé. Ce théorème dit en substance que si un état quantique à n
modes est invariant par transformation orthogonale dans l’espace des phases, alors en

16En fait un état i.i.d. sur la grande majorité de ses sous-systèmes.
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traçant de plus en plus de modes, l’état devient de plus en plus proche d’un état ther-
mique multimodal. Ce théorème constitue une généralisation quantique d’un résultat de
Diaconis et Freedman qui dit que la distribution marginale des k premières coordonnées
d’une distribution uniforme sur la sphère unité dans R

n devient normale quand n tend
vers l’infini.

L’approche proposée au chapitre 6 n’a pas encore abouti à une preuve de sécurité pour
les protocoles à variables continues pour la raison que les états bipartites qui respectent la
symétrie décrite plus haut sont encore mal caractérisés. La façon naturelle d’obtenir une
preuve consiste donc à caractériser ces états bipartites puis à leur appliquer une version
adaptée à l’espace des phases de la technique de post-sélection de Christandl, König et
Renner.

Chapitre 7 : Analyse des effets de taille finie dans la sécurité des protocoles
de distribution quantique de clés

Dans le chapitre 7, on s’intéresse aux effets de taille finie, et à leurs conséquences en
termes de sécurité. Jusqu’à très récemment, la sécurité des protocoles de distribution
quantique de clé était étudiée le plus souvent dans le régime asymptotique. La principale
hypothèse faite dans le cadre asymptotique est qu’Alice et Bob ont une connaissance
parfaite du canal quantique. Dans sa thèse, Renner a développé un cadre théorique
qui permet d’étudier les effets de taille finie. L’objet du chapitre 7 est d’appliquer ce
cadre, initialement développé pour les protocoles à variables discrètes, aux protocoles de
distribution quantique de clé à variables continues.

La première spécificité liée aux effets de taille finie est qu’une clé donnée n’est jamais
complètement sûre. En fait, la sécurité d’une clé peut être caractérisée par un paramètre
petit ǫ qui correspond à la probabilité que le protocole de distribution quantique n’ait pas
fonctionné comme il devait : on parle alors d’une clé ǫ-sûre. Grosso modo, cela signifie
que la clé distribuée par le protocole est complètement sûre, sauf avec une probabilité ǫ.
Un ordre de grandeur possible pour ǫ est 10−10.

En régime non-asymptotique, ǫ est la somme de quatre termes, qui sont liés à quatre
effets distincts

ǫ = ǫEC + ǭ+ ǫPA + ǫPE. (9)

On détaille maintenant la signification de chacun de ces termes.
Le premier terme ǫEC est lié à la correction d’erreurs (ou plutôt réconciliation dans

le cas des variables continues). Il quantifie la probabilité qu’à l’issue de la réconciliation,
Alice et Bob obtiennent des chaînes de bits différentes et qu’ils ne s’en aperçoivent pas.
Dans un tel cas, ils poursuivent le protocole en procédant à l’amplification de confiden-
tialité et le protocole aboutit à deux clés potentiellement secrètes, mais malheureusement
différentes. Ce scénario correspond évidemment à un échec du protocole de distribution
quantique de clé et doit donc être évité. La façon de remédier à ce problème est assez
simple. A l’issue de l’étape de réconciliation, Alice et Bob choisissent une fonction de
hachage et calculent l’image de leur chaîne de bits respective avec cette fonction. Ils com-
parent ensuite publiquement leur résultat. L’intérêt de cette méthode que les fonctions de
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hachage ont la propriété d’amplifier les différences : si deux chaînes données ne diffèrent
que d’un bit, avec grande probabilité, leurs images par une fonction de hachage seront
très différentes. En particulier, la probabilité de ne pas détecter une différence entre les
deux chaînes décroît exponentiellement avec la longueur de la fonction de hachage. La
correction d’erreurs a un deuxième effet sur le taux secret final : l’efficacité de la récon-
ciliation n’atteint en effet jamais la borne maximale prédite par la théorie de Shannon.
Cet effet est loin d’être négligeable pour les protocoles à variables continues, et c’est
pour le combattre que les stratégies présentées dans la partie II de ce manuscrit ont été
développées.

Le deuxième terme, ǭ, correspond au fait que la “smooth min-entropy” (d’un état
i.i.d.) qui caractérise la longueur de la clé n’est égale à l’entropie de von Neumann que
dans la limite asymptotique. De même, le troisième terme ǫPA correspond à la probabilité
d’échec de l’amplification de confidentialité. Ces deux termes ne sont pas des données
observables pour un protocole donné, mais correspondent à des variables virtuelles, qu’il
s’agit d’optimiser sous la contrainte imposée par l’équation 9, afin de maximiser le taux
de clé secrète final.

Le dernier terme ǫPE correspond à la probabilité que l’estimation de paramètre échoue,
et constitue de loin l’effet de taille finie avec les plus grandes conséquences en termes de
diminution du taux de clé secrète par rapport au taux asymptotique. Pour être plus
précis, dans le protocole de distribution quantique de clé à variables continues, deux
paramètres doivent être estimés pour caractériser le canal quantique qui peut être supposé
gaussien : la transmission du canal, et la variance du bruit ajouté par le canal. Ces deux
grandeurs, que l’on peut supposer parfaitement connues dans le régime asymptotique,
doivent en réalité être mesurées. La façon de procéder à cette estimation est la suivante
: Alice et Bob échangent une nombre N = n + m de signaux quantiques pendant le
protocole. Parmi ces N signaux, m sont choisis aléatoirement et révélés publiquement,
tandis que les n autres servent à extraire une clé secrète comme précédemment. On
note déjà que le taux secret final est affecté d’un coefficient égal à n/N qui correspond
au nombre de signaux utiles comparé au nombre de signaux échangés. Par ailleurs,
les m paires de données dévoilées servent à construire deux estimateurs correspondant
respectivement à la transmission et à la variance de bruit sur le canal. Ces estimateurs
sont tels que l’on peut définir une région de confiance pour ce couple. On définit ainsi
une région de confiance paramétrée par ǫPE qui signifie que la vraie valeur des deux
estimateurs est située dans cette région, sauf avec une probabilité ǫPE. Ensuite, le taux
de clé secrète est calculé en prenant les valeurs situées dans cette région qui minimisent
le taux final. Ainsi est-on sûr que l’on considère bien la pire erreur statistique possible17,
compatible avec les m couples de données sacrifiées, sauf avec une probabilité ǫPE.

Notons ici que l’on se restreint aux attaques collectives. Pour certains protocoles très
symétriques comme BB84, les attaques collectives sont optimales, même en régime non
asymptotique. Dans le cas des protocoles à variables continues, le même résultat n’a pas
été établi et est seulement conjecturé pour le moment. Quoi qu’il en soit, si on souhaitait
prendre en compte les attaques les plus générales, il faudrait également ajouter un terme

17c’est-à-dire celle qui minimise la taille de la clé finale
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correctif apporté par l’application du théorème de de Finetti établi par Renner et Cirac.
Cette correction malheureusement conduirait à un scénario extrêmement pessimiste. Ce
fait montre clairement l’importance que revêt l’étude des symétries spécifiques du proto-
cole à variables continues suggérée au chapitre 6 car elle pourrait permettre d’améliorer
significativement les bornes de sécurité pertinentes face à des attaques générales.

La prise en compte de ces différents effets conduit à un taux secret nettement plus
pessimiste que le taux asymptotique généralement considéré. En particulier, le prob-
lème réside dans le fait que le nombre N de signaux qui doivent être échangés avant de
pouvoir extraire une clé secrète est de plusieurs ordres de grandeurs supérieur à ce qui
est habituellement mis en œuvre expérimentalement. Par exemple, pour un nombre de
signaux échangés égal à un million, aucune clé secrète ne peut être distribuée, même
avec un montage expérimental de grande qualité. Il semble qu’il faille des quantités de
signaux de l’ordre du milliard pour atteindre la cinquantaine de kilomètres et de l’ordre
de 1014 pour atteindre la centaine de kilomètres.

Dans ces conditions, les effets de taille finie, loin d’être négligeables, constituent à
présent l’obstacle majeur pour le déploiement de la distribution quantique de clés à
grande distance.

Chapitre 8 : Autres primitives cryptographiques quantiques à variables con-
tinues

Le dernier chapitre de ce manuscrit adresse des questions qui ne sont pas directement
liées à la distribution quantique de clé à variables continues. En effet, les variables
continues, avec leur technique de mesure spécifique qu’est la détection homodyne, peuvent
être utilisées pour réaliser d’autres primitives cryptographiques que la distribution de
clé. Dans le chapitre 8, on aborde deux problèmes distincts. Le premier problème est
assez générique et s’intéresse à la discernabilité des états cohérents. En effet, deux états
cohérents ne sont jamais orthogonaux et ne peuvent donc jamais être distingués de façon
parfaite. On donne ici quelques bornes sur la probabilité d’erreur lorsque l’on cherche à
distinguer parmi 2 ou 4 états cohérents. Ensuite, on introduit ce qui est probablement la
primitive cryptographique la plus étudiée après la distribution de clé : la mise en gage.
Bien entendu, on étudie ici la mise en gage quantique avec des variables continues, et
on s’intéresse plus particulièrement au cas où les participants sont restreints à utiliser
uniquement des états gaussiens et des opérations gaussiennes. On montre que dans ce
cas, la mise en gage est interdite par les lois de la mécanique quantique.

L’idée à la base de la cryptographie quantique est qu’encoder de l’information sur des
états quantiques non orthogonaux empêche un éventuel espion d’obtenir cette information
sans laisser de traces. En effet, deux états non orthogonaux ne peuvent jamais être
distingués parfaitement. Les états de prédilection pour la cryptographie à variables
continues sont les états cohérents car ils sont extrêmement faciles à produire puisqu’ils
correspondent simplement aux états générés par n’importe quel laser de bonne qualité.
Les états cohérents, étant des états gaussiens, ne sont jamais orthogonaux entre eux.
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Plus précisément, la fidélité de deux états cohérents |α〉 et |β〉 ne s’annule jamais:

|〈α|β〉|2 = e−|α−β|2 > 0. (10)

Dans le cadre de la distribution quantique de clé, deux ensembles d’états gaussiens sont
particulièrement intéressants : les ensembles S2 et S4 comprenant respectivement 2 et 4
états cohérents définis par

S2 = {|α〉, | − α〉}, (11)

S4 = {|α〉, |i α〉, | − α〉, | − i α〉}, (12)

où α > 0. Le problème que l’on étudie au chapitre 8 est le suivant : pour l’un ou
l’autre des deux ensembles S2 et S4, on génère aléatoirement l’un des états cohérents
avec une probabilité uniforme, et on cherche à déterminer, de manière optimale, quel
état a effectivement été généré. La notion d’optimalité peut être définie d’au moins deux
façons distinctes suivant que l’on utilise une technique de discrimination ambiguë ou non-
ambiguë. Une discrimination non-ambiguë signifie que pour chaque état, on applique un
technique qui donne un résultat de mesure, quitte à se tromper. L’objectif est alors de
minimiser cette probabilité d’erreur. Pour une discrimination ambiguë, en revanche, on
interdit la possibilité d’une erreur, et on autorise en contrepartie le fait que la technique
ne donne pas toujours de réponse. Ici, on considère le cas d’une discrimination non-
ambiguë et on étudie deux types de mesures différents : la mesure optimale autorisée
par la mécanique quantique, mesure qui donne la borne la plus générale, mais qui est
souvent difficile à implémenter, et la mesure homodyne (ou hétérodyne) qui est simple
à mettre en oeuvre, mais qui n’est pas optimale. Enfin, on considère dans les deux cas
l’information mutuelle entre la source qui produit les états aléatoirement et le récepteur
qui essaie de discriminer ces états de manière non-ambiguë.

Dans la deuxième partie du chapitre 8, on aborde un sujet très différent, celui de
la mise en gage quantique. L’idée de la mise en gage est assez simple : Alice s’engage
sur un certain bit vis-à-vis de Bob. L’image classique de cette primitive est la suivante
: Alice écrit son bit18 sur un morceau de papier, qu’elle place dans un coffre-fort. Elle
remet ensuite ce coffre-fort à Bob sans lui donner la clé. Plus tard, quand Alice décide de
révéler son bit, elle donne simplement la clé à Bob, qui peut donc prendre connaissance
de la valeur du bit mis en gage par Alice. Deux caractéristiques sont attendues d’un bon
protocole de mise en gage : Bob ne doit pas être en mesure d’obtenir de l’information
sur le bit d’Alice avant que celle-ci ne le souhaite, et Alice ne doit pas pouvoir changer
la valeur du bit sur lequel elle s’est engagée.

Classiquement, le problème de la mise en gage ne peut pas être résolu de manière
parfaite : si Bob est dans l’incapacité d’ouvrir le coffre, cela signifie qu’Alice peut tricher.
La différence notable avec la distribution de clé est que la mise en gage reste impossible
dans un contexte quantique.

18En général, la mise en gage peut concerner n’importe quel type de message, mais par simplicité, on
peut toujours se ramener au cas d’un bit, 0 ou 1.
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En effet, un protocole de mise en gage quantique peut toujours être réduit au protocole
suivant. Alice utilise deux états bipartites |Ψ0〉 et |Ψ1〉 pour encoder les bits respectifs
0 et 1. Dans la première phase du protocole, Alice remet à Bob la trace partielle de ces
états, c’est-à-dire ρ0 = trA |Ψ0〉 ou ρ1 = trA |Ψ1〉. Dans la deuxième partie du protocole,
quand Alice veut révéler la valeur de son bit, elle donne à Bob la seconde moitié de
son état. Malheureusement, si on veut interdire à Bob de tricher, il ne doit pas pouvoir
distinguer ρ0 et ρ1, ce qui signifie que les traces partielles des états |Ψ0〉 et |Ψ1〉 doivent
être égales. Dans ce cas, il est possible de montrer qu’Alice peut agir localement sur la
moitié de l’état qu’elle a conservé pour transformer à sa guise |Ψ0〉 en |Ψ1〉, et vice versa.

Le fait que la mise en gage quantique soit impossible de manière générale ne signifie
pas qu’elle ne puisse pas devenir possible si l’on restreint astucieusement Alice et Bob. Un
modèle possible est de supposer qu’Alice et Bob ne disposent que de mémoires quantiques
bornées. Dans ce cas (très réaliste), on peut montrer qu’il est possible de faire de la mise
en gage quantique. En fait, le fait d’avoir une mémoire quantique bornée force Alice ou
Bob à faire une mesure qui l’empêche ensuite d’utiliser la technique de triche quantique.

Ici, on s’intéresse à la mise en gage quantique avec des variables continues, et une
restriction naturelle dans ce cadre consiste à autoriser Alice et Bob à utiliser uniquement
des états gaussiens et des états gaussiennes, ce qui correspond effectivement à ce qu’il est
possible d’implémenter “facilement” dans un laboratoire. On montre toutefois que ces
restrictions ne permettent pas de réaliser la mise en gage quantique. Plus précisément,
si les états |Ψ0〉 et |Ψ1〉 sont gaussiens avec une trace partielle identique, il existe une
transformation gaussienne locale qui permette à Alice de passer d’un état à l’autre.

Une conséquence intéressante de ce résultat est qu’elle fournit un contre-exemple à
une conjecture formulée par Brassard et Fuchs qui espéraient que la mécanique quantique
puisse être caractérisée de manière unique par le fait qu’elle permet la distribution de clé,
mais interdit la mise en gage. Le résultat démontré au chapitre 8 montre que la mécanique
quantique gaussienne, qui est un sous-ensemble strict de la mécanique quantique19, vérifie
ces mêmes propriétés.

19le fait que la mécanique quantique gaussienne soit strictement comprise dans la mécanique quantique
résulte par exemple du fait qu’elle ne permet pas de violer les inégalités de Bell.



Introduction

The advent of Quantum Information Theory

Quantum Mechanics is a description of Nature that has been consistently tested and
challenged for 100 years without ever being proven wrong. It describes very accurately20

how Nature behaves at microscopic scales. However, despite its great success, it seems
yet unachieved as it does not stand on clear physical principles, in contrast for instance
with Special Relativity which can be derived from two very appealing principles: physics
laws are the same in all inertial frames, and the velocity of light is identical in vacuum
for all inertial frames. Quantum Mechanics, on the other hand, is presently based on a
series of mathematical axioms whose physical significance is very unclear.

A challenging goal for physicists would certainly be to reformulate these axioms in
more physical, and natural, terms. A possible way towards this ambitious objective
is to study the connections between Quantum Mechanics and Information Theory. In-
formation Theory was arguably discovered by Claude Shannon in the forties21 and his
seminal work [141] opened a new field of research that lead in particular to the society
of information we live in today. This development was also made possible thanks to the
technological possibilities offered by Quantum Mechanics without which the transistor,
the integrated circuit or the laser for instance would not have been invented. In a sense,
it is interesting to notice that our society of information and communication where the
Internet or intercontinental communications seem obvious and where the planet has be-
come a small village is a consequence of two scientific fields, Quantum Mechanics and
Information Theory, working separately instead of combining their efforts. Indeed, Quan-

20the most famous example for its accuracy comes from quantum electrodynamics and is concerned
with the value of the electron magnetic moment for which theoretical prediction and experimental pre-
cision agree with a precision of better than one part in a trillion [111].

21Although notions like entropy were familiar to physicists since the development of Statistical Me-
chanics, Shannon was the first to formalize the concept of information.

xxxv
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tum Mechanics was necessary to build the tools making all this possible and Information
Theory tells us how to use these tools to achieve our goals, but the two theories certainly
do not work hand in hand to give us their best!

What would it mean for Quantum Mechanics and Information Theory to work to-
gether? Quite astonishingly, Quantum Mechanics was already well established when the
field of Information Theory took off fifty years ago. Therefore, it could (and maybe
should) have been obvious back then that the ultimate support of information was nec-
essary quantum and not classical. Unfortunately, this thought only came to scientists
much later, in the early seventies, when Stephen Wiesner suggested a method to make
money unforgeable by using properties of Quantum Mechanics. At that time (and still
now quite frankly), the idea appeared quite impractical and did not catch the attention of
the scientific world22. A second attempt was made a few years later by Charles Bennett
and Gilles Brassard who introduced quantum protocols for two cryptographic primitives:
the distribution of secret keys among distant parties and bit commitment. Although
their paper also encountered difficulties to get published23, it became the seminal paper
that gave birth to the now very prolific field of Quantum Cryptography [10].

Quantum Cryptography, and particularly its most emblematic primitive, Quantum
Key Distribution, is now the first real application of the combined efforts of Quantum
Mechanics and Information Theory working hand in hand. For more than twenty years,
the new field of Quantum Information has been expanding quite rapidly. The goal of this
new scientific field is ambitious: it is to determine the fundamental limits Nature imposes
concerning the storage of information, the rate at which communication can be performed
between distant parties and also the ultimate limits on computation capabilities. The
first two questions concern the subfield of Quantum Information and Communication,
whereas the third question is emblematic of the younger Quantum Information Process-
ing subfield24. Apart from being raising arguably very interesting questions, Quantum
Information appears as a possible way towards finding the Physical grounds for Quantum
Mechanics that scientists are still desperately looking for at the beginning of the twenty-
first century. Indeed, many proposals have been made along this path. For instance, a
conjecture made by Fuchs and Brassard suggests that the following two principles are
sufficient to rederive Quantum Mechanics: Nature allows Key Distribution but Nature
forbids Bit commitment.

The field of Quantum Information is still very young and exciting developments occur
with a much more rapid pace than in other more established research fields25. Moreover,

22it actually took more than 10 years for the work of Wiesner to get published [156].
23it finally appeared in an obscure conference in India where the authors were invited and could submit

their unorthodox results.
24the real groundbreaking result that stirred the interest of scientists for Quantum Computing was

the unexpected polynomial algorithm for factoring integers [142] that clearly showed that a quantum
computer was apparently strictly more powerful than a classical computer, thus apparently violating
the celebrated Church-Turing thesis stating that all computation model are equivalent. However, before
Shor’s algorithm, the possible computational power of a quantum computer had already been touched
upon in a visionary paper of Feynman [46].

25Among the recent surprising new developments of Quantum Information, one can certainly think of
the various additivity conjectures for capacities of Quantum Channels that were proven wrong in 2008
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not only is the theoretical effort really impressive in the field, but experimenters also play
a major role. Indeed, the achievements of experiments in Quantum Optics for instance
are truly amazing: one can literally create and observe Schrödinger cats [115, 114],
witness the birth and death of a photon [55], developments that would certainly have
seen as impossible by the fathers of Quantum Mechanics26. There is also reasonable hope
to expect that Quantum computers will exist in the next few decades. At least, since
the invention of Quantum Error Correcting Codes [22] and the threshold theorem [121],
there does not seem to be any fundamental reason forbidding the existence of Quantum
computers. This gives hope that we are only at the beginning of Quantum Information
Theory and that much, much more is yet to be discovered.

Quantum key distribution

Cryptography has for main objective to make secure communication possible between
distant parties. Let us call these two parties without originality Alice and Bob, and let
us assume that they want to communicate secretly, even in the presence of a potential
eavesdropper that we shall name Eve. To achieve their goal, Alice and Bob will use keys
to encrypt and decrypt their messages. There are basically two types of cryptographic
protocols: symmetric cryptography where the encryption key is identical to the decryp-
tion key and asymmetric cryptography both keys differ. Only symmetric cryptography
can be proven unconditionally secure meaning that the eavesdropper cannot learn any-
thing about the message except with an exponentially small probability. This means in
particular that no assumption needs being made concerning the capabilities of Eve. This
is in sharp contrast with the situation of asymmetric cryptography for which security
relies on the fact that there exist one-way functions, that is functions are are easy to
compute but hard to invert27. The security of symmetric schemes, on the other hand,
is easy to establish: as soon as the key shared by Alice and Bob is secret, Alice can
simply compress her message and XOR it with the key. She then sends the result to Bob
who XOR it again with the key to recover the compressed message. This is the so-called
one-time pad. A simple entropic argument shows that Eve cannot learn anything con-
cerning the message from the ciphered text. Unfortunately, there is a catch to this too
simple protocol: how can Alice and Bob proceed to share a secret key in the first place?
This is the problem of the distribution of secret key. While there are different classical
ways to realize this task, none is completely satisfying. This is where Quantum Key
Distribution enters the game: Quantum Mechanics indeed provides an unexpected but
elegant solution to the problem of key distribution. It is indeed possible for Alice and
Bob to perform a protocol that allows them to share an unconditionally secure key [136].

[66, 147]!
26indeed, the question whether Schrödinger cats could really happen in Nature or if they were only

a Gedanken Experiment was not fully resolved by the time the mathematical foundations of Quantum
Mechanics were established.

27the most emblematic asymmetric protocol is certainly the scheme introduced by Rivest, Shamir and
Adleman RSA which bases its security on the assumption that factoring integers is hard [133].
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For a more detailed discussion on the advantages on QKD over classical schemes, the
interested reader is encouraged to consult the SECOQC White Paper and the references
therein [5].

Even if QKD is arguably a very interesting solution to the problem of key distribution
for symmetric cryptography, the question of whether QKD has a bright future in terms of
being implemented on a large scale is not yet solved. A positive answer will certainly not
come before standardization and certification efforts are made by the proponents of QKD.
In particular, the crucial problem of the unavoidable discrepancies between theoretical
models and technological implementations of QKD has to be addressed. Obviously, the-
oretical models include already an accurate description of the quantum channel between
the two protagonists Alice and Bob, but still fail to take into account all implementation
imperfections. Those can be coined by the generic name of side channels. A spectacular
result in this direction, however, has recently been obtained by Antonio Acín and collab-
orators [2, 1, 119] where they prove the security of a device-independent QKD protocol.
Hence, apart if the classical memories of Alice and Bob leak information to a potential
eavesdropper28, their protocol is actually resistant to completely faulty implementations.
The bottleneck of the protocol is that key distribution can only be achieved if Alice and
Bob are able to perform a loophole-free Bell test, which, is still out of reach today (but
seems possible in a foreseeable future). Anyway, the fact that such a protocol exists is
truly intriguing development which generalizes the idea of Artur Ekert who proved that
QKD could be performed even if the source of entangled particles was in the possession
of the eavesdropper [43]. The result by Acín and collaborators goes one step further: not
only can Eve distribute the photons, but she can also sell their equipment to Alice and
Bob! Quantum Key Distribution is therefore possible in principle even if you purchase
your equipment from an evil company!

For experts of the field, the result by Acín and coworkers was not a shocking revela-
tion: indeed it is intuitively clear that if Alice and Bob can violate Bell’s inequalities (in
a loophole-free manner), then their quantum states must be entangled in such a way that
they almost completely factorize from the environment, that is, from any eavesdropper.
The real tour de force was to be able to compute a bound on the accessible information
for an eavesdropper depending on a parameter stating measuring the violation of Bell’s
inequality. This is actually the recurring problem of QKD: being able to relate the corre-
lations between Alice and Bob’s data to the amount of information an eavesdropper can
acquire. This task appears tantamount as one needs to consider every possible eaves-
dropping strategy allowed by Nature (that is, not forbidden by Quantum Mechanics).
The difficulty of this problem explains why most QKD protocols studied today are very
simple, in the sense that they display a lot of symmetries for instance. An interesting
feature is that the most simple protocols also seem to be very competitive both in terms
of secret key rate and distance over which the distribution of secret key is possible.

The device-independent QKD proposal is one way to answer to the problem of side
channels. Unfortunately, however elegant, one must admits that it is far from being
a very practical solution, especially compared with the current level of technological

28in which case no secret communication can ever be expected ...
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implementations of QKD protocols which, it turns out, are not that complicated. The
first demonstration was performed in IBM labs in 198929 and complete systems can
already be bought today for less than 100 000 euro. This is not so bad as the perspectives
of getting any useful quantum computer for that price are far out of reach at present
time. If the device-independent protocol is not a practical solution against side channels,
what is? Well, one can proceed the other way around: instead of first considering all
possible side channels as in the case of a loophole-free Bell test, one can list all possible
side channels, and start addressing each of them, one by one. No need to say that this
solution appears far less appealing than the elegant device-independent proposal, but it
is fair to say that this is a much more realistic option, and that this work has to be
carried out as comprehensively as possible before QKD can really reach the market and
appear as a viable alternative to classical cryptography.

In this thesis, we do not consider the study of side channels. Indeed, our primary focus
is an alternative to the historical QKD protocols such as BB84 and is called continuous-
variable QKD. This alternative proposal which basically gets rid of single photon counters
is quite recent. The idea of encoding information on the continuous variables of the
Electro-Magnetic field has been introduced by Tim Ralph in 2000 [122] and the first
realistic proposals involving using coherent states along with homodyne detection were
developed in 2002 [64, 144]. Because of this very young age, continuous-variable (CV)
QKD is not as well established as its discrete-variable (DV) counterpart. In particular, at
the beginning of my thesis in September 2006, it was not clear what the good CV QKD
protocols were to achieve long-distance, and security proofs were not complete. The goal
of this thesis is to address these questions.

Outline of the thesis

The manuscript is divided into three parts. The first part introduces the material which is
necessary to understand quantum key distribution with continuous variables. The second
part deals with the problem of the range of continuous-variable quantum key distribution,
and gives solutions to improve it significantly. The third part finally discusses the security
of quantum cryptography with continuous variables.

Part I: From Quantum information to Quantum Key Distribution

Chapter 1: Quantum information and communication. In Chapter 1, we introduce
the field of quantum information theory. We first give a quick overview of Quantum Me-
chanics whose difficulty lies more in its counter-intuitive predictions than in its formalism
which is surprisingly quite simple. Then we present the basics of classical information
theory and concentrate on the definitions and properties of relevant quantities such as en-
tropy and mutual information. We finally end Chapter 1 by explaining how the concepts

29it is interesting to note that this first demonstration was burdened with obvious side channels. In
particular, Alice’s modulator made a different noise for the two encoding bases. The key distribution
was therefore theoretically secure only against deaf eavesdroppers!
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of entropy and mutual information are generalized to the quantum setting.

Chapter 2: Quantum information with continuous variables. In Chapter 2, we focus
on the use of continuous variables for quantum information theory. The main interest of
continuous variables is that the relevant quantum states can be produced and measured
experimentally with quantum optics techniques. In particular, the states that are relevant
for our purpose in this thesis, that is continuous-variable QKD, are very easy to produce:
they are simply the coherent states that any good laser will output, and can be measured
with a high efficiency thanks to an interferometric detection technique called homodyne
detection. In Chapter 2, we introduce the formalism for the study of continuous variables
in phase space. A notable feature of continuous variables is that, whereas being poorly
suited for classical information theory30, they are actually well-defined in the quantum
setting where the Hilbert spaces have an infinite but countable dimension.

Chapter 3: Quantum Key Distribution. In Chapter 3, we finally present quantum key
distribution. We first discuss the notion of security for a QKD protocol. We also detail
the general structure of a typical QKD protocol before explaining how most security
proofs are derived. An important concept from this point of view is virtual entanglement,
which is used to prove the security of a given protocol by studying an equivalent entangled
protocol. Then, we introduce continuous-variable QKD protocols as well as their security
proof against the restricted class of attacks called collective attacks. This proof is specific
to continuous-variable protocols and is based on the extremality of Gaussian states.

Part II: Increase the range of continuous-variable QKD

At the beginning of my thesis in 2006, CV QKD did not yet appear as a true alternative
to DV QKD protocols. Of course, the theoretical key rates at short distances were quite
high, but the main problem was that CV QKD seemed limited to short distances: back
then, it could not distribute secret keys beyond 30 km with state of the art technology, a
quite modest distance compared to more than 100 km (and now close to 200 km) for DV
QKD protocols. The main objective of my thesis was to address this specific question.
In 2006 already, the reason why CV QKD had such a limited range was well identified:
the answer lied in the classical post-processing of Alice and Bob’s data. It indeed turned
out that continuous variables were much more difficult to handle than the classical bits
one got in DV QKD protocols. The so-called reconciliation algorithms were then limiting
both the range and the speed of CV QKD protocols! Unfortunately, at that time already,
the best classical error correcting codes (LDPC codes) where used for this reconciliation
procedure and there was not much hope one could do much better...

Chapter 4: Reconciliation of correlated Gaussian random variables. In the first part
of my doctoral work, I worked on the problem of the reconciliation of correlated Gaussian

30where the entropy of a continuous variable needs to be replaced by the notion of differential entropies

which can take negative values...
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random variables. This study is described in Chapter 4 of this thesis. The problem can
be stated quite easily and is in fact very interesting from a purely mathematical point of
view. Alice and Bob are given correlated Gaussian random variables: for instance, Alice
has a vector x = (x1, x2, · · · , xn) where the xi are independent and identically distributed
(i.i.d.) normal variables: xi ∼ N (0, 1) and Bob is given the vector y = (y1, y2, · · · , yn)
where yi = xi+zi with the variables zi being also i.i.d. Gaussian variables with a variance
σ2: zi ∼ N (0, σ2). Their goal is then, through a one-way reconciliation (where only Alice
is authorized to send classical information to Bob31) to extract a common bit string U , as
long as possible, with the constraint that the classical communication should not reveal
any information about U to a potential eavesdropper. In Chapter 4, we give an explicit
solution for this problem and prove its optimality for the relevant range of parameters
(that is σ ≥ 1). This solution is quite effective since the new reconciliation algorithm
allows to distribute secret key over 50 km instead of the previous 30 km, without any
change in the hardware implementation and without any increase of the complexity of the
reconciliation algorithm. Therefore this new scheme greatly enhances the performance
of CV QKD, improving the range of the protocol without any added complexity.

Chapter 5: Long distance CVQKD: protocols with a discrete modulation. Unfortu-
nately, the algorithm presented in Chapter 4 is not a completely satisfying answer to the
problem of the limited range of CV QKD. It arguably improves the situation, but the
latter remains desperately less brilliant than for DV QKD protocols which do not seem
to be affected at all by reconciliation (or error correction) problems. In Chapter 5, we
address this question by proposing a new CV QKD protocol for which the reconciliation
problem can be solved efficiently and is not a obstacle anymore to the perspective of long
distance distribution of secret keys. The main feature of the new protocol is that the
modulation scheme involves now only a finite number of possible states (either two or
four states) instead of the previous Gaussian modulation. The new modulation scheme is
actually designed on purpose to solve the problem of reconciliation and manages to do so
quite efficiently. However, this is only one half of the problem. Indeed, as for any other
new QKD protocol, one must prove its security or it will be soon forgotten. The problem
was that previous security proofs for CV QKD were explicitly requiring a Gaussian mod-
ulation. A new approach was therefore required here. A method for proving the security
of discrete-modulation against the so-called collective attacks, which are thought to be
optimal, is given in Chapter 5 and a lower bound on the secret key rate is derived. The
performances of the protocols are then analyzed. The protocols introduced turn out to
be able to perform QKD over large distances comparable to DV QKD protocols. This
puts at rest the question of whether CV QKD is intrinsically restricted to short distances:
the short answer is “No!”

31Actually, the situation of interest is when only Bob can send information to Alice, but in the case
of a Gaussian modulation, both problems are equivalent.



xlii CONTENTS

Part III: Security of continuous-variable quantum cryptography

As we mentioned before, the task of analyzing the security of any QKD protocol might
appear quite daunting because of the size of the space of possibilities for the attacks of an
eavesdropper. Fortunately, a general framework for the study of the security of QKD was
recently developed by Renato Renner [124]. This framework provides a way to prove the
security of QKD against general attacks. This framework, however, is mainly concerned
with finite dimensions, that is, discrete-variable QKD and the techniques developed by
Renner cannot be directly applied to CV QKD which is described with an infinite-
dimensional Hilbert space. Moreover, even in the case of collective attacks32, there are a
number of subtleties that need to be taken into account, the main one being finite size
effects. Again, a framework for their study was recently developed by Valerio Scarani
and Renato Renner [137]. However, they again only focus on DV protocols and it turns
out that one more time, CV QKD presents some specificities that makes the problem
less easy. Finally, although we essentially considered QKD until now, it should be noted
that QKD is by no means the only quantum cryptographic primitive. An other very
important primitive is bit commitment, which is remarkable because it is forbidden both
in the classical and in the quantum frameworks.

Chapter 6: Are collective attacks optimal? As we said, there now exists a framework
to establish the unconditional security of QKD protocols. Among the nice features of
this framework is the use of a theorem, de Finetti’s theorem, which proves that collective
attacks are asymptotically optimal [125]. Therefore one only needs proving the security
of a QKD protocol against collective attacks. This is rather fortunate as these attacks
are much more restricted and easy to analyze than general attacks. Unfortunately, de
Finetti’s theorem explicitly depends on the dimension of the Hilbert space used to de-
scribe the protocol, and, as a consequence, it cannot apply directly to continuous-variable
protocols. Recently Renner and Cirac [127] found a way to generalize de Finetti’s the-
orem to make it work for reasonable CV QKD protocols. Their proof, however, do not
exploit all the symmetry properties of CV QKD, and one can hope that tighter bounds
could be obtained in the non-asymptotic regime.

The goal of chapter 6 is to study the symmetries of CV QKD protocols and to
suggest approaches that would take advantage of them. For instance, it is worth noting
that the security proof for the BB84 protocol does not require advanced tools such as
the exponential de Finetti theorem: considerations of symmetry are indeed sufficient
to establish the security of the protocol against general attacks. In some sense, CV
QKD also appears as a very symmetric protocol in phase space and one might hope that
symmetry considerations can be used in a more intensive way than in the approach by
Renner and Cirac to prove the security of the protocol.

32There are generally three types of attack considered in Quantum Key Distribution: general (or
coherent) attacks, collective attacks and individual attacks (see [53] and references therein for a detailed
description of the different attacks). Collective attacks turn out to be optimal (that is the best possible
attack for an eavesdropper) in the asymptotic setting for most QKD protocols.
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This line of research, involving specific symmetries in phase space, has not be com-
pletely successful yet as it has not lead to a new complete proof of security of CV QKD
protocols against general attacks, but partial results have already been established. This
is the case of a new de Finetti-type result considering orthogonally invariant states in
phase space.

Chapter 7: Finite size analysis. Until very recently, security of QKD was mainly studied
in the asymptotic regime where Alice and Bob exchange an infinite number of quantum
states and one is interested in the secret key rate. Reality, however, is quite different:
Alice and Bob only exchange a finite number N of quantum signals, and the question
is to determine the length of the secret key that can be distilled from these N quantum
signals. Various finite size effects need to be taken into account, that all lead to deviations
from the asymptotic key rate.

Without any doubt, the most crucial finite size effect is the imperfect parameter
estimation. Whereas in the asymptotic regime, Alice and Bob are assumed to know
perfectly the quantum channel, this is not true anymore in a real experiment. This turns
out to be quite problematic, especially for continuous-variable protocols, and leads to
very pessimistic results. In particular, most experimental implementations today use a
number N of quantum signals which is incompatible with unconditional security in a
finite size context.

Chapter 8: Other continuous-variable cryptographic primitives. The primary focus of
this thesis is Quantum Key Distribution. However, it is important to note that QKD is
not the only cryptographic primitive of interest in the Quantum world.

In Chapter 8, we first study the question of the distinguishability of coherent states.
This is a rather general problem which is interesting for most quantum cryptographic
primitives with continuous variables since coherent states are by far the most practical
support of information in this context.

Then we study quantum bit commitment, for which a no-go theorem was established
[103, 96]. More exactly, quantum bit commitment is impossible if the participants are
only restricted by the laws of quantum mechanics. However, it does not mean that there
cannot exist any secure protocol if one puts stronger restrictions on the capabilities of
the different players. In Chapter 8, we prove that the no-go theorem for bit commitment
still holds for continuous-variable protocols where both players are restricted to Gaussian
states and operations.
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CHAPTER 1

Quantum information and

communication

The goal of this chapter is to present the main tools of Quantum Mechanics and Infor-
mation Theory that will be useful for the study of quantum key distribution (QKD). The
reader already familiar with the topic of quantum information may skip the first part
of this chapter. Note, however, that if most of the content of this chapter can be found
already in Nielsen and Chuang’s textbook [109], the very last section 1.3.3 dealing with
operational entropic quantities introduces more recent concepts which play an important
role for proving the security of QKD against general attacks.

1.1 A rapid presentation of Quantum Mechanics

The object of this section is certainly not to give a comprehensive description of Quantum
Mechanics as one would really have a hard time summarizing it in a single book. However,
for our purpose, this is not at all a problem, as we only need to know the postulates of the
theory to be able to talk sensibly about quantum information theory and its application
to QKD. Note that is true because we mainly focus on the theoretical aspects of QKD in

3
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this thesis, and not too much on its implementation. In the same spirit, the knowledge
of Quantum Mechanics required to investigate the power of quantum computation is
rather limited, and a good grasp on the axioms of the theory is practically sufficient to
achieve this goal. This is obviously not the case anymore if one wants to be able to
physically build a quantum computer or even only consider possible implementations of
such a computer: in this case, one needs a very deep (and broad) understanding of the
physics involved. This low barrier to entry explains why the relatively young field of
quantum information and computation has attracted not only physicists but also many
mathematicians and computer scientists in the recent years.

The axioms of Quantum Mechanics really define a mathematical framework. They
give the playground that can be used to describe physical phenomena, but, by themselves,
they do not provide a complete description of Nature. This would require additional
theories such as the celebrated Quantum ElectroDynamics (QED) which has displayed
tremendous success in the description of the interaction between light and matter. Again,
it is important to distinguish between the axioms of Quantum Mechanics that are simply
a mathematical framework and the effective Physical theories that allow to understand
Physical phenomena.

The axioms of Quantum Mechanics aim at answering two basic questions: what is
the general description of a physical (quantum) system, and how does this system evolve
with time?

1.1.1 Description of a quantum physical system.

The first postulate of Quantum Mechanics gives the mathematical structure relevant for
the description of a physical system.

Postulate 1. Associated to any isolated physical system is a Hilbert space (i.e. a
complex vector space with inner product) known as the state space of the system. The
system is completely described by its state vector, which is a unit vector in the system
state’s space1.

Following the Dirac bra-ket notation, we refer to a state vector with the ket |ψ〉, while
its transpose is described by the bra 〈ψ|. The inner product between state vectors |ψ〉
and |φ〉 is 〈ψ|φ〉 and the normalization condition reads 〈ψ|ψ〉 = 1.

An alternative description of the first postulate is the superposition principle: if |ψ〉
and |φ〉 are two states, any superposition α|ψ〉 + β|φ〉 (such that |α|2 + |β|2 = 1) is a
legitimate state authorized by Quantum Mechanics. Even if any superposition is allowed
in principle2, some can be very fragile and are never observed in Nature. This is the case

1More exactly, a state is a ray in a Hilbert space, that is, an equivalence class of vectors that differ
by multiplication by a nonzero complex scalar. We usually choose a representative of a particular class
to have unit norm. Two vectors differing by a global phase describe the same physical system.

2although some physicists argue that the superposition principle should not be taken too literally,
and that the superposition principle might fail for macroscopic systems. Up until now, however, the
superposition principle has never been experimentally falsified. For instance, photonic kittens, which are
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of Schrodinger’s cat which is in the superposition of the state |alive〉 and the state |dead〉.

The second postulate aims at describing a composite system.

Postulate 2. The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems. Moreover, if we have systems
numbered 1 through n, and system i is prepared in the state |ψi〉, then the joint state of
the total system is |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉.

Let us now apply this second postulate to the case of a bipartite state. If the individual
systems are described by the Hilbert spaces HA and HB, the Hilbert space HAB of interest
for the bipartite quantum system is the tensor product of HA and HB:

HAB = HA ⊗HB. (1.1)

In particular, if BA = {u1, u2, · · · } and BB = {v1, v2, · · · } are respectively orthogonal
bases for HA and HB, then an orthogonal basis for HAB is given by BAB = {u1 ⊗
v1, u1 ⊗ v2, · · · , u1 ⊗ vn, · · · , u2 ⊗ v1, u2 ⊗ v2, · · · , um ⊗ vn, · · · }. If both HA and HB

are finite-dimensional Hilbert spaces with respective dimensions dA and dB, the tensor
product HAB is finite-dimensional with dimension dAB = dA dB.

From this tensor structure, and a simple dimension analysis, one can infer that all
physical systems cannot be described by vectors, that is, pure states. Indeed if the
subsystems A and B could always be described by state vectors |ψ〉A ∈ HA and |φ〉B ∈
HB, then the bipartite system could always be described by elements of the set SepAB =
{|ψ〉A ⊗ |φ〉B : |ψ〉A ∈ HA, |φ〉B ∈ HB} whose dimension is only dA + dB ≤ dAdB (for
dA, dB ≥ 2). In fact, SepAB corresponds to the set of separable states. Any state of HAB

that does not belong to SepAB is called an entangled state, meaning that its subsystems
A and B cannot be considered separately.

In the case of a bipartite state |ψ〉AB, the description of the system A (resp. B) is
given by the partial trace of |ψ〉AB over the Hilbert space HB (resp. HA), that is the
trace-one nonnegative operator:

ρA = trB|ψ〉〈ψ|AB and ρB = trA|ψ〉〈ψ|AB. (1.2)

If |ψ〉AB =
∑

i,j λi,j |ui〉A ⊗ |vj〉B, the partial trace over B is given by:

ρA = trB|ψ〉〈ψ|AB (1.3)

= trB
∑

i,j,k,l

λi,jλ
∗
k,l|ui〉〈uk|A ⊗ |vj〉〈vl|B (1.4)

=
∑

i,j,k,l

λi,jλ
∗
k,l|ui〉〈uk|A ⊗ 〈vj |vl〉 (1.5)

=
∑

i,j,k

λi,jλ
∗
k,j |ui〉〈uk|A if 〈vj |vl〉 = δj,l (1.6)

very small Schrödinger cats, have already been experimentally demonstrated [115].
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Such an operator ρ is referred to as a mixed state by opposition to the rank-one pure state
|ψ〉〈ψ|. We note S(H) the set of trace-one nonnegative operators on the Hilbert space H.
The partial trace over a subsystem of a pure entangled state is a genuine mixed state,
meaning that it cannot be intrinsically described by any pure state. An apparently
different kind of mixed states corresponds to the case where only partial information
about the state is available. For instance, consider a source generating randomly either
the state |ψ〉 with probability p or the state |φ〉 with probability 1 − p. The correct
description ρ of the random state generated by the source is a mixture of both pure
states: ρ = p|ψ〉〈ψ| + (1 − p)|φ〉〈φ|.

Therefore it seems as if there were two kinds of mixed states: the ones obtained by
taking the partial trace of a pure multipartite quantum state, and the ones due to an
incomplete knowledge about the state. In fact, the concept of purification shows that
this distinction is only apparent. For any mixed state ρA in a Hilbert space HA, one
can define a reference system R and a Hilbert space HR (isomorphic to HA) such that
there exists a pure state |ψ〉AR verifying ρA = trR|ψ〉〈ψ|AR. The state |ψ〉AR is called a
purification of ρA.

1.1.2 Evolution of a physical system

The first two postulates of Quantum Mechanics described the mathematical framework
of the theory. The last two are concerned with the dynamics of quantum states: how
do they evolve with time and what is the effect of a measurement? What is surprising
is that two distinct postulates are required to answer these questions whereas a mea-
surement could legitimately be seen as a regular evolution of a quantum system3 . The
special status of the measurement process among all the temporal evolutions is referred
to as the measurement problem and partly explains why physicists have been looking for
higher-level interpretations of Quantum Mechanics, hoping to get rid of this need for two
distinct axioms governing the dynamics of pure quantum systems.

The third postulate we introduce describes the normal evolution of a quantum sys-
tem, in contrast with a measurement process.

Postulate 3. The evolution of a closed quantum system is described by a unitary
transformation, that is, the state |ψ〉 of the system at time t1 is related to the state |ψ′〉
of the system at time t2 by a unitary operator U which depends only on the times t1 and
t2,

|ψ′〉 = U |ψ〉. (1.7)

Note that Quantum Mechanics does not a priori give the form of the unitary U . An
alternate formulation of this postulate is the Schrödinger equation which states that the

3It should be noted that this need for two distinct postulates is true in the Copenhagen interpretation
of Quantum Mechanics discussed here. Other interpretations such as the Many-Worlds interpretation

introduced by Hugh Everett are explicitly based on the idea that the wavefunction collapse should be
abandoned [45]. Unfortunately, this comes at a rather high price, namely, accepting the existence of an
infinity of parallel universes!
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state vector temporal evolution is governed by:

i~
d|ψ〉
dt

= H|ψ〉, (1.8)

where H is the Hamiltonian of the system. Both equations are in fact equivalent and
their respective advantage depends on whether one is actually interested in the physical
process involved or not.

The fourth and last postulate gives a description of the measurement process.

Postulate 4. Quantum measurements are defined by a collection {Mn} of mea-
surement operators. These are operators acting on the state space of the system being
measured. The index m refers to the measurement outcomes that may occur in the ex-
periment. If the state of the quantum system is |ψ〉 immediately before the measurement,
then the probability p(m) that the result m occurs is given by

p(m) = 〈ψ|M †
mMm|ψ〉, (1.9)

and the state of the system after the measurement is

Mm|ψ〉
√

〈ψ|M †
mMm|ψ〉

. (1.10)

The measurement operators satisfy the completeness equation
∑

m

M †
nMn = ✶. (1.11)

The measurement process is really where the Quantum weirdness crystallizes. The
other postulates describe a totally deterministic theory where states evolve under a de-
terministic and reversible (unitary) evolution. As soon as a measurement is involved,
both these properties appear to be lost: the evolution becomes intrinsically probabilistic
and non-reversible. The probabilistic aspect is clear from the statement of the postulate:
Quantum Mechanics can only predict probabilities, and not which outcome will actually
be observed (except in the case where there is an outcome of probability 1!). The fact
that a measurement makes the evolution non-reversible is a simple consequence that the
information of what the state was prior to the measurement is definitely lost. If one
starts with a state |ψ〉 in a random superposition of |0〉 and 1〉, |ψ〉 = α|0〉 + β|1〉 and
measures it in the basis {|0〉, |1〉}, then the measurement will yield either 0 or 1 but all
information concerning α and β will be lost, except that α 6= 0 (resp. β 6= 0) if the
outcome is 0 (resp. 1)4.

4However, one must be careful when talking of a non-deterministic theory as the Many Worlds
interpretation for instance argues that the theory is deterministic: the universe is attributed a state
vector |ψuniverse〉 which undergoes a unitary (reversible) evolution. Each measurement then corresponds
to a splitting of the universe into parallel universes. As all branches exist in parallel, meaning that all
possible outcomes of a measurement do occur, the theory is deterministic. However, even though the
evolution of the universe is deterministic, the observer (scientist or not), being part of the universe,
cannot do better than making probabilistic predictions.
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Projective measurement versus POVM. In the version of the measurement postulate
given above, one considers general measurements, also referred to as Positive Operator
Valued Measures (POVM) in contrast with the more familiar projective measurements
which display a supplementary condition, that is, that a projective measurement is de-
fined by a set {Π1, · · · ,Πn} of projectors such that ΠiΠj = δi,jΠi and

∑n
i=1 Πi = ✶. It

turns out, however, that requiring the operators to be projectors is unnecessary. In fact,
a consequence of Neumark’s dilation theorem is that a POVM element can always be
seen as a projective measurement on a larger Hilbert space .

As we saw previously, not all physical systems can be described by a state vector.
More general quantum systems are described by a density matrix. The same line of argu-
ment shows that not all evolution is unitary. In fact, the evolution of a density matrix is
expressed by a Completely Positive Trace Preserving (CPTP) map. A characterization of
such CPTP maps is given by the Kraus decomposition (or operator-sum decomposition)
theorem:

Theorem 1.1 (Kraus decomposition). Every CPTP map T : S(H) → S(H) can be given
the form

T (ρ) =
K
∑

k=1

tkρt
†
k (1.12)

for all ρ ∈ S(H). The K ≤ dim2H Kraus operators tk : H → H satisfy the completeness

relation
∑K

k=1 t
†
ktk = ✶.

An alternative to the Kraus decomposition is to go to the Church of the Larger Hilbert
Space, which makes use of the Stinespring’s dilation theorem that roughly states that
any quantum channel can be described as a unitary evolution in a larger Hilbert space.
Basically, any quantum channel, that is any CPTP map, can be decomposed in three
operations:

• tensoring with a second system, the ancilla,

• unitary evolution on the joint system,

• reduction to a subsystem.

The Stinespring’s dilation theorem gives a bound on the dimension of the Hilbert space
of the ancilla, and states that the representation is unique up to unitary equivalence.

Theorem 1.2 (Stinespring’s dilation). Let T : S(H) → S(H) be a CPTP map on a
finite-dimensional Hilbert space H. Then there exists a Hilbert space K and a unitary
operation U on H⊗K such that:

T (ρ) = trKU(ρ⊗ |0〉〈0|)U † (1.13)

for all ρ ∈ S(H). The ancilla space K can be chosen such that dimK ≤ dimH2. This
representation is unique up to unitary equivalence.
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Then, when considering the evolution of a general quantum system described by its
density matrix under a CPTP map, one can always instead study the problem, in a
non ambiguous way, by looking at a purification of the system that undergoes a unitary
evolution. Switching from one point of view to the other is merely a question of taste
and of simplicity. These two points of view are especially important in the case of QKD
for instance as one can either consider that Alice sends quantum states ρA to Bob which
are partially (or totally) intercepted by the eavesdropper Eve, that is, they evolve under
a CPTP map, or that Alice, Bob and Eve share a tripartite pure state |ψ〉ABE which
follows a unitary evolution. These two scenarios correspond respectively to the Prepare
and Measure and the Entanglement-Based descriptions of the protocol. Both give a
complete and equivalent description of the real protocol, but one approach might be
easier to analyze. In practice, it turns out that the entanglement-based description is
often easier to handle from a theoretic point of view.

For the sake of completeness, let us note that the equivalence between the Prepare
and Measure and the Entanglement-Based versions of the protocol is only true when
the protocol is well-defined. In particular, this means that the Hilbert space HA ⊗HB,
and especially its dimension, should be known. This is always the case when discussing
QKD protocols from a theoretical perspective. However, it becomes more problematic
when analyzing experimental implementations. In this case, it is in general very difficult
to prove that the effective Hilbert space describing the experimental protocol has the
right dimension. This leads for instance to the so-called problem of side channels, where
the relevant information is encoded in degrees of freedom not explicitly considered by
the theoretical protocol, meaning that the experimental Hilbert space is larger than the
one considered for proving the security of the protocol. A way to avoid this problem
is for instance to use properties which are independent of the dimension of the Hilbert
space considered: this has lead to the concept of device-independent QKD where the
security of the protocol can be linked to the violation of a Bell inequality, meaning that
no assumption one the dimension of the Hilbert space is necessary. This will be discussed
in more details in Chapter 3.

After this brief summary of the axioms of Quantum Mechanics, and before considering
quantum information theory, let us recall the basics of classical information theory. This
is the object of the following section.

1.2 Information theory: the classical picture

At the end of the forties, Claude Shannon proved two theorems that gave birth to the
field of Information Theory: the source coding and the noisy-channel coding theorems
which are respectively concerned with the limits for data compression of a source and
information transfer rate of a channel.

Here we only give a rapid overview of information theory. A more detailed presen-
tation can be found for instance in the textbooks “Elements of information theory” by
Cover and Thomas [33] and “Information theory, inference and learning algorithms” by
MacKay [100].
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1.2.1 Shannon entropy

A natural measure of the uncertainty of a random variable X is its (Shannon) entropy
H(X) defined as follows:

H(X) = −
∑

x∈X
p(x) log2 p(x) (1.14)

where X is the support of X and p(x) is the probability associated with each realization.
This notion can be generalized to n-uples of random variables X1, · · · , Xn with the joint
entropy :

H(X1, · · · , Xn) = −
∑

x1∈X1

· · ·
∑

xn∈Xn

p(x1, · · · , xn) log2 p(x1, · · · , xn) (1.15)

From this definition, one can immediately deduce the following properties:

Theorem 1.3 (Basic properties of the entropy [33]).

1. H(X) ≥ 0, with equality if and only if X is certain.

2. H is subadditive: H(X1, · · · , Xn) ≤ H(X1)+ · · ·+H(Xn) with equality if and only
if the Xi are independent.

3. If X is finite, H(X) ≤ log2 |X | with equality if and only if X is uniformly distributed
over X .

Besides being a useful tool for the study of probability distributions, the entropy also
has an operational interpretation. The source coding theorem relates the entropy of a
random variable to the optimal compression rate one can achieve for this variable. Before
stating this theorem, let us introduce the notion of source code. A binary source code C
for a random variable X is a mapping from X , the range of X, to the set of finite-length
bit strings. A source code should allow one to recover the source symbol x from C(x).
The expected length of the code C is

L(C) =
∑

x∈X
p(x)l(x) (1.16)

where l(x) is the length of C(x). The source coding theorem gives a lower bound on the
expected length of a code.

Theorem 1.4 (Source coding theorem [100]). N independent and identically distributed
(i.i.d.) random variables each with entropy H(X) can be compressed into more than
NH(X) bits with negligible risk of information loss, as N → ∞; conversely if they are
compressed into fewer than NH(X) bits it is virtually certain that information will be
lost.

Roughly speaking, the entropy of a random variable measures the number of bits
necessary to describe faithfully this variable.
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1.2.2 Generalization of the Shannon entropy

The Shannon entropy is not the only entropic quantity of interest for a random variable.
One can define the Rényi entropy of order α of the random variable X as:

Hα(X) =
1

1 − α
log2

∑

x∈X
p(x)α. (1.17)

Among the values of α of interest, one can find:

• H0(X) = log2 |X |, the max-entropy of X,

• H1(X) = H(X), which is simply the Shannon entropy of X,

• H2(X) = − log2

∑

x∈X p(x)
2, the collision entropy which plays a role for privacy

amplification protocols for instance [11].

• H∞(X) = − log2 supx∈X p(x), the min-entropy of X, which is related to the maxi-
mal probability of guessing the value of X.

For a given random variable X, (α 7→ Hα(X)) is a decreasing function of α. All the
Rényi entropies are additive, meaning that Hα(X,Y ) = Hα(X)+Hα(Y ) for independent
random variables X and Y . However, if X and Y are not independent, only in the case
of the Shannon entropy can one separate out the variables X and Y and write:

H(X,Y ) = H(X) + Ep(x)H(Y |X = x), (1.18)

where Ep(x) refers to the expectation under the law p(x). This leads to the definition of
the conditional entropy H(Y |X) of the random variable Y given X:

H(Y |X) = −
∑

x∈X

∑

y∈Y
p(x, y) log2 p(y|x) (1.19)

with the following property (chain rule):

H(X,Y ) = H(X) +H(Y |X). (1.20)

A fundamental property of conditioning is that it reduces the entropy:

H(X|Y ) ≤ H(X), (1.21)

with equality if and only if X and Y are independent random variables. One then defines
the mutual information I(X;Y ) between the random variables X and Y :

I(X;Y ) = −
∑

(x,y)∈X×Y
p(x, y) log2

p(x, y)

p(x)p(y)
(1.22)
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with the property that

I(X;Y ) = H(X) +H(Y ) −H(X,Y ) (1.23)

= H(X) −H(X|Y ) = H(Y ) −H(Y |X). (1.24)

The mutual information between two random variables is a measure of their correlation.
In particular, one has I(X;Y ) = 0 for independent variables. It should be noted that
equation 1.21 also holds for conditional entropies

H(X|Y,Z) ≤ H(X|Y ) (1.25)

which is called the strong subadditivity property. This property can equivalently be writ-
ten:

H(X,Y ) +H(Y,Z) ≥ H(X,Y, Z) +H(Y ). (1.26)

1.2.3 Operational interpretation: Shannon’s noisy-channel theorem

One of the great insights of Shannon was to give a very simple but universal model for
the transmission of data [141], consisting of five parts and depicted on Figure 1.1:

• an information source produces a message to be communicated to the destination,

• a transmitter operates on the message to produce a signal suitable for the trans-
mission over the channel,

• the channel is the physical medium used to transmit the signal,

• the receiver recovers the message from the received signal,

• the destination is the person for whom the message is intended.

Let us now give a mathematical definition of a communication channel. A discrete
channel is a system consisting of an input alphabet X , an output alphabet Y and a
probability transition matrix p(y|x) that expresses the probability of observing the output
y given the input x. The channel is said to be memoryless if the probability distribution
of the output only depends on the input at that time. One defines the capacity C of a
discrete memoryless channel (DMC) as

C = max
p(x)

I(X,Y ) (1.27)

where the maximum is taken over all possible input distributions p(x).
The Binary Symmetric Channel (BSC) is the simplest example of channels. The

input and output alphabet both are X = Y = {0, 1} and the probability transition
matrix is given by

p(y|x) =

{

1 − p if y = x
p if y 6= x

(1.28)
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Figure 1.1: Shannon’s model for the transmission of a message

Figure 1.2: Binary symmetric channel

This means that an error will occur with probability p and that both possible errors are
equally probable (see Figure 1.2).

Let us now prove that the capacity of the BSC is given by:

CBSC = 1 − h(p), (1.29)

where h(p) = −p log2 p− (1 − p) log2(1 − p) is the binary entropy function.

Proof. The mutual information between the input X and the output Y of the BSC is
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such that:

I(X;Y ) = H(Y ) −H(Y |X) (1.30)

= H(Y ) −
∑

x∈{0,1}
p(x)H(Y |X = x) (1.31)

= H(Y ) −
∑

x∈{0,1}
p(x)h(p) (1.32)

= H(Y ) − h(p) (1.33)

≤ 1 − h(p) (1.34)

since the entropy of a binary random variable is upper bounded by 1. Equality is achieved
when the input distribution is uniform.

An example of continuous alphabet channel of significant interest (especially for QKD
with continuous variables) is the Additive White Gaussian Noise (AWGN) channel where
the input X and the output Y are related through Y = X + Z where Z is a Gaussian
noise of variance σ2, Z ∼ N (0, σ2), independent of the input. This means that the
probability transition is given by:

p(y|x) =
1√
2πσ

e−
(y−x)2

2σ2 . (1.35)

If no restriction is imposed on the input, the capacity of the AWGN channel is infinite.
Usually, however, a energy constraint is imposed meaning that the variance of X is upper
bounded by some maximal energy Σ2. In that case, the capacity of the AWGN channel
is given by:

CAWGN =
1

2
log2(1 + SNR), (1.36)

where the signal-to-noise ratio (SNR) is defined as SNR = Σ2/σ2.

Proof. In order to compute the capacity of the AWGN channel, we need a generalization
of the notion of entropy for continuous variables as the input and output alphabets are
now a priori continuous: X = Y = R. The differential entropy h(X)5 is defined as

h(X) = −
∫

x∈X
p(x) log2 p(x), (1.37)

which, unlike the entropy, can be negative. The differential entropy of a normal distri-

5which is not to be mistaken with the binary entropy function h(p) of a probability p
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bution φ(x) = 1√
2πσ

exp(− x2

2σ2 ) is easily computed:

h(φ) = −
∫

φ log2 φ (1.38)

= −
∫

dxφ(x)

(

− x2

2σ2
+

1

2
log2(2πσ

2)

)

(1.39)

=
1

2
+

1

2
log2 2πσ2 (1.40)

=
1

2
log2 2πeσ2. (1.41)

This allows us to compute the mutual information I(X;Y ) between the input and output
of an AWGN channel:

I(X;Y ) = h(Y ) − h(Y |X) (1.42)

= h(Y ) − h(X + Z|X) (1.43)

= h(Y ) − h(Z|X) (1.44)

= h(Y ) − h(Z) (1.45)

because X and Z are independent random variables. Since Z ∼ N (0, σ2), h(Z) =
1
2 log2 2πeσ2. The independence of X and Z and the fact that EZ = 0 show that:

EY 2 = EX2 + EZ2 (1.46)

≤ Σ2 + σ2 (1.47)

We now use the fact that the normal distribution maximizes the entropy for a given
variance6 to bound h(Y ):

h(Y ) ≤ 1

2
log2 2πe(Σ2 + σ2). (1.48)

Finally, one gets an upper bound for I(X;Y ):

I(X;Y ) ≤ 1

2
log2

(

1 +
σ2

Σ2

)

. (1.49)

This inequality is saturated when the input follows a normal distribution, which concludes
the proof.

Error-correcting codes. Source coding is a way to remove redundancy in order to com-
press data. We are now interested with the converse problem, that is adding some
redundancy in order to protect data from noise. This protection is achieved thanks to
an error correcting code C which is also a mapping from the source alphabet X to the

6We do not give a proof of this statement (Theorem 8.6.5 of [33]) here, as we will derive a generalization
of this result for the quantum setting in Chapter 3.
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set of N -bit strings (for a code of length N). The encoded information C(x) is then sent
through the communication channel, where it can be affected by noise. The goal of the
error correcting code is for the output of the channel to be sufficient to recover x. As
one can define the expected length for a source code, one defines the rate of an error
correcting code as the ratio between log2 |X | and the length N of the code:

R =
log2 |X |
N

. (1.50)

The rate R is a measure of the quantity of information sent per use of the communica-
tion channel. The channel coding theorem gives an upper bound for the rate at which
information can be reliably sent through a channel.

Theorem 1.5 (Channel coding theorem [33]). All rates below capacity C are achievable,
and all rates above capacity are not; that is, for all rates R < C, there exists a sequence

of codes of length n with 2nR elements with probability of error p
(n)
e → 0. Conversely, for

rates R > C, p
(n)
e is bounded away from 0.

Roughly speaking, the channel coding theorem states that one can send information
reliably on a noisy channel up to a rate corresponding to the capacity of the channel. One
important remark is that this theorem does not provide a construction of a code achieving
the capacity of the channel. More exactly, the proof of the theorem uses the fact that a
random code will achieve the capacity, but such a code suffers important short-comings,
namely that both encoding and decoding will be very complex tasks that are therefore
not practical. Indeed, to any error-correcting code are associated two functions:

• an encoding function which associates every source signal x ∈ X to a bit-string
C(x) ∈ {0, 1}N (which is itself mapped to a physical signal to be sent on the
communication channel),

• a decoding function which maps the output of the channel to an estimated value
for x: x̂.

MacKay [100] suggested the following classification for error-correcting codes:

• Very good codes which achieve arbitrary small probability of error for any commu-
nication rate up to the capacity of the channel.

• Good codes which achieve arbitrary small probability of error for any communica-
tion rate up to some maximum rate which is less than the capacity of the channel.

• Practical codes which can be encoded and decoded on time and space polynomial
in the block length. As it turns out, the practical codes of interest are even more
constrained as one would rather have a complexity linear (or almost linear) in the
block length.

Unfortunately, practical very good codes are still unknown at the time of writing of this
manuscript. However, for the AWGN channel, two families of practical good codes are
known, turbo codes [13] and LDPC codes [132].
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1.3 Information theory in the quantum age

Let us now turn to quantum information theory. This field was born with the idea
that the physical support of information is ultimately quantum. The main topics of
interest for quantum information theory are the transmission of information (classical or
quantum) over quantum channels, and the tradeoff between acquisition of information
about a quantum state and disturbance of the state. This second topic, specific to
the quantum setting, is of primary importance for the study of cryptographic primitives
such as quantum key distribution for which the action of an eavesdropper will be detected
thanks to the disturbance of the state it induces.

Comprehensive expositions of quantum information theory can be found in John
Preskill’s lecture notes [73] or in Nielsen and Chuang’s “Quantum computation and quan-
tum information” [109].

1.3.1 Encoding quantum information

The fundamental support of quantum information is the qubit, that is a quantum state
in a two-dimensional Hilbert space spanned by the orthogonal basis {|0〉, |1〉}. A qubit
|ψ〉 can be written as:

|ψ〉 = α|0〉 + β|1〉 (1.51)

where α and β are complex amplitudes such that |α|2 + |β|2 = 1. Whereas it seems as if
an infinite amount of information is required to defined the state |ψ〉 (in order to describe
α and β), we will see later that, if fact, only one bit of classical information can be stored
in a qubit.

More generally, given a Hilbert space of dimension d spanned by the orthogonal basis
{|0〉, · · · , |d − 1〉}, one can define the notion of qudit as an generic element |ψ〉 of this
Hilbert space:

|ψ〉 = α0|0〉 + · · ·αd−1|d− 1〉 (1.52)

where |α|2 + · · ·+ |αd−1|2 = 1. A quantum state can even be defined in an infinite dimen-
sional Hilbert space, such as the Fock basis {|0〉, · · · , |n〉, · · · }. For instance, a qumode
describes the quantum state associated with a mode of the quantized electromagnetic
field, and is central to the study of quantum information with continuous variables (see
Chapter 2).

Distance between quantum states. Before even talking of encoding information on
quantum states, one needs to realize that contrary to the classical case, not all states
are perfectly distinguishable. We are thus interested in answering the following question:
“how close are two quantum states”? There is not any universal answer but two quantities,
the trace distance and the fidelity, which are generalizations of the classical concepts,
display some interesting properties.
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Trace distance

The trace distance between quantum states ρ and σ is defined as

D(ρ, σ) ≡ 1

2
||ρ− σ||1, (1.53)

where ||A||1 = tr|A| = tr
√
A†A. D is a genuine distance in the mathematical sense of

the term, meaning that the triangle inequality holds: for all states ρ, σ, τ ,

D(ρ, τ) ≤ D(ρ, σ) +D(σ, τ). (1.54)

The quantum trace distance is a generalization of the classical trace distance D(px, qx) ≡
1/2

∑

x |px − qx| between two classical probability distributions {px} and {qx}. This is
shown by the following theorem [109]:

Theorem 1.6. Let {Em} be a POVM, with pm ≡ tr(ρEm) and qm ≡ tr(σEm) as the
probabilities of obtaining a measurement outcome labeled by m. Then

D(ρ, σ) = max
{Em}

D(pm, qm), (1.55)

where the maximization is over all POVMs {Em}.

We will see later that a consequence of this theorem is that the trace distance is
related to the probability of distinguishing two quantum states. Because it only depends
on the spectrum of ρ− σ, the trace distance between ρ and σ is invariant under unitary
operations, that is, for any unitary U ,

D(UρU †, UσU †) = D(ρ, σ). (1.56)

In the case of two pure states ρ = |ψ〉〈ψ| and σ = |φ〉〈φ|, the expression of the trace
distance takes a simple form:

D(|ψ〉, |φ〉) =
√

1 − |〈ψ|φ〉|2. (1.57)

Fidelity

The fidelity between quantum states ρ and σ is defined as

F (ρ, σ) ≡ tr

√

ρ1/2σρ1/2. (1.58)

In the case where ρ and σ commute, they are diagonal in the same basis,

ρ =
∑

k

rk|k〉〈k| and σ =
∑

k

sk|k〉〈k|, (1.59)

and
F (ρ, σ) =

∑

k

√
rksk (1.60)
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meaning that F reduces to the classical fidelity between the distributions {rk} and {sk}.
If one of the states is pure, then the fidelity between |ψ〉 and ρ is simply given by

F (|ψ〉, ρ) =
√

〈ψ|ρ|ψ〉, (1.61)

and if both states are pure, the fidelity corresponds to their overlap. As the trace distance,
the fidelity is invariant under unitary operations, that is, for all unitary U , one has

F (UρU †, UσU †) = F (ρ, σ). (1.62)

The fidelity is a practical measure of closeness for two quantum states because of Uhlmann’s
theorem:

Theorem 1.7 (Uhlmann’s theorem). For any states ρ and σ, and any purification |ψ〉
of ρ, there exists a purification |φ〉 of σ such that

F (ρ, σ) = |〈ψ|φ〉|. (1.63)

Therefore, the fidelity between two mixed states can always be interpreted as the
maximal overlap between two purifications of these states.

The trace distance and the fidelity are related through the following inequalities [109]:

1 − F (ρ, σ) ≤ D(ρ, σ) ≤
√

1 − F (ρ, σ)2. (1.64)

Therefore, for most purposes, these two measures of distance between quantum states are
equivalent, and one should choose the most practical one for some practical application.

Distinguishing quantum states. A consequence of the linearity of quantum mechanics
is the no cloning theorem stating that there cannot exist an operation that clones an
arbitrary quantum state since the operation |ψ〉 7−→ |ψ〉|ψ〉 is not unitary. A corollary
to this result is that one cannot distinguish perfectly between non orthogonal quantum
states.

The general question of how well could two quantum states ρ0 and ρ1 be distinguished
was addressed by Helström [69]:

Theorem 1.8. Let ρ0 and ρ1 be two quantum states prepared with probability q and 1−q.
The probability to correctly identify the state is at most:

pguess =
1

2
[1 + ||qρ0 − (1 − q)ρ1||1]. (1.65)

The measurement saturating this bound is the POVM {M0,M1 = ✶−M0}, where M0 is
the projector on the positive eigenspace of qρ0 − (1 − q)ρ1.

This theorem explains why the trace distance is often chosen as an operational mea-
sure of the distance between quantum states: it gives the maximal probability of distin-
guishing two quantum states prepared with the same probability, given the best possible
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measurement7. In particular, in the case of any operational task (such as quantum key
distribution for instance), one is often interested in comparing the performance of the
actual protocol producing a state ρprotocol with an ideal realization of the task ρideal

8. If
D(ρprotocol, ρideal) ≤ ǫ for some small value of the parameter ǫ, it then means that the
outcome of protocol is indistinguishable from the one of an ideal protocol except with
probability ǫ.

There is a vast literature concerned with the problem of distinguishing quantum
states (see for instance [28] and references therein). It should be noted that this problem
(which is nothing more than an optimization problem) is often too complicated to be
solved explicitly. In the case where the number of states is greater than two, it can
however be solved if the states display important symmetry as we show now.

Let us consider the following problem of distinguishing between N states {|ψ1〉, · · · ,
|ψN 〉} prepared with uniform probability with the goal to minimize the probability of
errors. Let us assume moreover that the states are symmetric, in the sense that there
exists a unitary U such that

|ψk〉 = U |ψk−1〉 = Uk−1|ψ1〉, (1.66)

U |ψN 〉 = |ψ1〉. (1.67)

The optimum measurement for these states is known as the square-root measurement [28]
given by the POVM {Πk = |ωk〉〈ωk|}1≤k≤N where

|ωk〉 = Ψ−1/2|ψk〉 (1.68)

with the operator Ψ defined as

Ψ =
N
∑

k=1

|ψk〉〈ψk|. (1.69)

For a uniform probability distribution for the {|ψk〉}1≤k≤N , this measurement attains
the minimum possible error probability pe:

pe = 1 − 1

N

N
∑

k=1

|〈ψk|Ψ|ψk〉|2. (1.70)

7A related but different problem is concerned with unambiguous discrimination of quantum states
where the goal is not to minimize the error probability but to never make a wrong prediction about
which state was measured. Since this cannot be achieved in general because of the previous theorem,
one has to authorize a third kind of answer in addition to 0 and 1: in particular, the measurement result
labelled ‘?’ corresponds to the case where the measurement could not discriminate between states ρ0

and ρ1.
8For instance, in the case of a quantum key distribution protocol, the ideal protocol should produce

a state ρideal = ρK ⊗ ρE where ρK is the completely mixed uniform state shared by Alice and Bob and
corresponding to the key and ρE is the state of the eavesdropper which is completely uncorrelated with
the value of the key.
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Distinguishing quantum channels. A quantum channel is a completely positive trace-
preserving (CPTP) map transforming the state ρA of a system A at time t to ρ′A, the state
of a system A′ at time t′. In a similar way that one may be interested in distinguishing
two quantum states, one might also want to distinguish two quantum maps, for instance
the map describing an ideal realization of some operational task with the map of an
actual implementation of a protocol. For such a purpose, one needs to define a measure
of distance between CPTP maps. A possibility is to use the diamond norm ||.||⋄ of a
transformation9 T defined by

||T ||⋄ ≡ sup
k∈N

||T ⊗ idk||1, (1.71)

where
||S||1 ≡ sup

||σ||1≤1
||S(σ)||1 (1.72)

and idk denotes the identity map on states of a k-dimensional quantum system. The
suprema in both definitions are reached for positive σ and k equal to the dimension of
the input of T [79]. The diamond norm allows for the definition of the diamond distance
between two CPTP maps E and F :

D⋄(E ,F) ≡ ||E − F||⋄. (1.73)

As the trace distance, the diamond distance has an operational interpretation in the
following sense: if one is asked to distinguish between two physical processes respectively
described by the CPTP maps E and F , the maximal probability pguess of a correct guess,
if the player is allowed to observe the process once, with an input of his choice, possibly
correlated with a reference system, is given by [31]:

pguess =
1

2
(1 +D⋄(E ,F)) . (1.74)

von Neumann entropy. The von Neumann entropy is the quantum information theoretic
generalization of the Shannon entropy. The von Neumann entropy S(ρ) of a quantum
state ρ is defined as

S(ρ) = −trρ log2 ρ. (1.75)

In the orthogonal basis {|k〉} that diagonalizes ρ, one has

ρ =
∑

k

λk|k〉〈k|, (1.76)

and S(ρ) = −∑k λk log2 λk simply reduces to the Shannon entropy of the distribution
{λk}. In the following, the entropy of a density matrix ρA associated with a quantum
system A is written either S(A) or S(ρA).

We now list some properties of the von Neumann entropy (their proof can be found
in [109]):

9such a transformation can be a difference between two CPTP maps E and F : T = E − F
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Theorem 1.9 (Basic properties of S). 1. S(ρ) ≥ 0, with equality if and only if ρ is
pure10.

2. In a finite dimensional Hilbert space H of dimension d, S(ρ) ≤ log2 d, with equality
if and only if ρ = ✶H/d.

3. S is invariant under unitary operations: for any unitary U , S(UρU †) = S(ρ).

4. If a composite system AB is in a pure state, then S(A) = S(B).

5. If ρ =
∑

k pkρk where the ρk have support on orthogonal subspaces, then

S(ρ) = H(pk) +
∑

k

pkS(ρk). (1.77)

6. S is subadditive: S(ρAB) ≤ S(ρA) + S(ρB) with equality if and only if ρAB =
ρA ⊗ ρB

11.

As is the case for classical information theory, one can defines quantum joint and
conditional entropies as well as quantum mutual information for composite systems. Let
a quantum state of a composite system AB be represented by the density matrix ρAB,
one defines

• the joint entropy of the system AB as

S(A,B) = −tr ρAB log2 ρAB, (1.78)

• the conditional entropy of A given B as

S(A|B) = S(A,B) − S(B), (1.79)

• the quantum mutual information between systems A and B as

S(A : B) = S(A) + S(B) − S(A,B) (1.80)

= S(A) − S(A|B) = S(B) − S(B|A). (1.81)

An important difference with the classical setting is that the conditional von Neumann
entropy can be negative [24].

An non trivial property of the von Neumann entropy is given by the following theorem:

Theorem 1.10 (Strong subadditivity). For any three quantum systems, A, B and, C,
one has:

S(A,B,C) + S(B) ≤ S(A,B) + S(B,C). (1.82)

10A pure state therefore corresponds to a state of maximal knowledge, which is the quantum general-
ization of a classical probability distribution when one event has probability 1.

11The tensor product structure is therefore the quantum generalization of the notion of independence
for classical random variables.
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Corollaries of this result are:

1. Conditioning reduces entropy : S(A|B,C) ≤ S(A|B).

2. Discarding quantum systems never increases mutual information:
S(A : B) ≤ S(A : B,C).

3. Quantum operations never increase mutual information: if the systemAB is mapped
to A′B′ through a quantum operation, then S(A′ : B′) ≤ S(A : B). Here, a quan-
tum operation refers to a linear completely positive trace non-increasing map.

1.3.2 Communication over a quantum channel

After having considered various entropic measures for composite quantum states, let us
look more closely at some quantum information theoretic tasks, such as communicating
over a quantum channel. In particular, in the context of quantum key distribution, we
are especially interested in the problem of sending classical information on a quantum
channel.

An important result of quantum information theory is given by the Holevo bound
which implies that one cannot send more than n bits of information in n qubits.

Theorem 1.11 (Holevo bound). Suppose Alice prepares a state ρX where X = 0, · · · , n
with probabilities p0, · · · , pn. Bob performs a measurement described by POVM elements
{Ey} = {E0, · · · , Em} on that state with measurement outcome Y . Then, for any such
measurement,

I(X;Y ) ≤ S(ρ) −
∑

x∈X

pxS(ρx), (1.83)

where ρ =
∑

x pxρx.

The Holevo information of the ensemble E = {ρx, px} is noted χ(E) = S(ρ) −
∑

x pxS(ρx). In general, the Holevo bound is not tight, and the accessible information
which is the supremum over Bob’s measurements of I(X;Y ) cannot reach the Holevo
bound. In fact, the accessible information reaches the Holevo bound if and only if the
states {ρx}x∈X have orthogonal supports. Despite this, the Holevo bound is very use-
ful as it is much easier to compute than the accessible information which computation
amounts to an optimization problem over the set of POVMs that Bob can perform. The
Holevo bound is however reachable if Alice sends n-letter words (with n −→ ∞) and Bob
is allowed to perform a collective measurement instead of individual (product) measure-
ments. This is the reason why it is used to quantify the information potentially accessible
to an eavesdropper performing a collective attack against a QKD protocol (see [38] and
Chapter 3).

1.3.3 Operational entropic quantities for quantum protocols

The Shannon entropy H as well as its quantum generalization, the von Neumann entropy
S, are both relevant in the asymptotic limit of n independent instances of a same process.
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In the case where either one of these assumptions does not hold (infinite number of signals
or independence), one needs to consider more general entropic quantities.

Such a quantity is the conditional min-entropy. Following the notations of [83], we
introduce the generalization of the relative entropy12 of two states ρ and σ as:

D∞(ρ||σ) ≡ inf{λ ∈ R : ρ ≤ 2λσ}. (1.85)

For a bipartite state ρ = ρAB, one defines the min-entropy of A conditioned on B as

Hmin(A|B)ρ ≡ − inf
σB

D∞(ρAB||idA ⊗ σB) (1.86)

where idA is the identity on the subsystem A. As pointed out in [83], it is interesting to
note that the conditional von Neumann entropy can be written in a similar way:

S(A|B)ρ := − inf
σB

D(ρAB||idA ⊗ σB) (1.87)

where D is the relative entropy.

Operational meaning of min-entropy. An interesting case is when a classical system is
conditioned on a quantum system B. For instance, let us consider the state

ρ = ρXB =
∑

x

PX(x)|x〉〈x| ⊗ ρx
B, (1.88)

where {|x〉}x is a family of mutually orthogonal vectors representing the classical values
of X. Let us now consider the task of guessing the value of the classical variable X given
the knowledge of the system B. In general, such a strategy can always be described by a
POVM {Ex} on B and the corresponding probability of success pguess(X|B){Ex} is given
by:

pguess(X|B){Ex} =
∑

x

PX(x)tr(Exρ
x
B). (1.89)

We now define the guessing probability as the probability obtained for the optimal mea-
surement:

pguess(X|B) := max
{Ex}

pguess(X|B){Ex} (1.90)

In [83], it was proved that the min-entropy of X conditioned on B was linked to the
guessing probability through the following equality:

pguess(X|B) = 2−Hmin(X|B)ρ . (1.91)

12The relative entropy between the states ρ and σ is given by

D(ρ||σ) ≡ tr (ρ(log2 ρ− log2 σ)) . (1.84)
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Smooth min and max-entropies. For various reasons, it is fruitful to consider a slightly
generalized version of the min-entropy called the smooth min-entropy which corresponds
to the min-entropy of an optimal state in the neighborhood of the quantum state consid-
ered. More precisely, let ρ = ρAB be a bipartite quantum state and ǫ a positive number,
the smoothness parameter. The smooth min-entropy of A conditioned on B is given by:

Hǫ
min(A|B)ρ ≡ sup

ρ′
Hmin(A|B)ρ′ , (1.92)

where the supremum ranges over all the density operators ρ′ which are ǫ-close of ρ
for the trace-distance, that is such that ||ρ − ρ′||1 ≤ ǫ. The smooth min-entropy is a
generalization of the von Neumann entropy as can be seen by the following result [124]:

S(A|B)ρ = lim
ǫ→0

lim
n→∞

1

n
Hǫ

min(A
n|Bn)ρ⊗n . (1.93)

The smooth min-entropy shares some properties with the von Neumann entropy. In
particular, it is strongly subadditive:

Hǫ
min(A|B) ≥ Hǫ

min(A|BC). (1.94)

Alternatively, one can also define the conditional smooth max-entropy of A given B:

Hǫ
max(A|B)ρ := inf

ρ′
Hmax(A|B)ρ′ , (1.95)

where the supremum ranges over all the density operators ρ′ which are ǫ-close of ρ for
the trace-distance, and where the max-entropy is defined by:

Hmax(A|B)ρ ≡ −Hmin(A|C)ρ, (1.96)

where the min-entropy on the right hand side is evaluated for any purification ρABC of
ρAB.

Both smooth min and max-entropies have an operational meaning, and can be used
to quantify operational tasks such as data compression, channel coding and privacy
amplification.

Data compression. A random variable X is given, and we note lǫcompr(X) the minimum
length of an encoding ofX such thatX can be perfectly recovered except with probability
ǫ. In the case of an arbitrary long sequence of independent realizations of X, the source
coding theorem states that the right measure is given by the entropy of X, i.e.,

lim
ǫ→0

lim
n→∞

1

n
lǫcompr(X1, · · · , Xn) = S(X). (1.97)

If one of the assumptions is relieved, the right compression measure becomes the smooth
max-entropy [128]:

lǫcompr(X) = Hǫ′

max(X) +O(log 1/ǫ) (1.98)

for some ǫ′ ∈ [12ǫ, 2ǫ]. Here the term O(log 1/ǫ) is independent of the size of X and
becomes negligible in the asymptotic limit.
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Channel coding. Let us note lǫtransm(X → Y ) the maximum amount of bits that can be
reliably transmitted in one use of a classical channel X → Y . It was proven in [129] that:

lǫtransm(X → Y ) = max
PX

(

Hǫ′

min(X) −Hǫ′

max(X|Y )
)

+O(log 1/ǫ) (1.99)

for some ǫ′ ∈ [12ǫ, 2ǫ]. Again one easily recover the noisy-channel theorem as a special
case of an infinite sequence of independent realizations of the channel:

lim
ǫ→0

lim
n→∞

1

n
lǫtransm(Xn → Y n) = max

PX

I(X : Y ). (1.100)

Privacy amplification. Finally, of utmost importance in the case of quantum key distri-
bution, is the task of privacy amplification (also known as randomness extraction). Let
X be a classical random variable and B some side information. In a secret key estab-
lishment protocol, one wants to distill a key f(X) from X which appears completely
random from the point of view of an adversary having access to the system B. Let us
note lǫextr(X|B) the maximum length of a bit string f(X) which is ǫ-close to a string
perfectly uniform and independent of B. One has [124, 82]:

lǫextr(X|B) = Hǫ′

min(X|B) +O(log 1/ǫ) (1.101)

for some ǫ′ ∈ [12ǫ, 2ǫ]. This result is crucial as it gives the general secure key rate of a
QKD protocol. Unfortunately, the value of Hǫ′

min(X|B) is often difficult to compute. For
this reason, one usually consider the case of the so-called collective attacks which means
that X corresponds to an i.i.d. variable. Then equation 1.93 allows to express the key
rate as a conditional von Neumann entropy, which turns out to be much easier to handle.



CHAPTER 2

Quantum information with

continuous variables

The goal of this chapter is to present the formalism specific to the study of quantum
information with the continuous variables of a bosonic system, for instance, the electro-
magnetic field.

2.1 Phase space representation

2.1.1 Canonical quantization

In classical Hamiltonian mechanics, the state of a particle is specified by its position x
and momentum p. Hamiltonian mechanics is formulated in terms of Poisson brackets
where one defines the Poisson bracket {f, g} of two functions f(xi, pi, t) and g(xi, pi, t)
of N particles by:

{f, g} =

N
∑

i=1

[

∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi

]

(2.1)

27
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In particular, the canonical variables xi and pi satisfy the following relations:

{xi, xj} = 0, {xi, pj} = δi,j , {pi, pj} = 0. (2.2)

Finally, the only transformations allowed in Hamiltonian mechanics are the ones that
leave the Poisson bracket invariant. This characterizes the symplectic (or canonical)
structure of classical mechanics.

Generalizing this framework to quantum mechanics can be done through the process
of canonical quantization. In this case, the canonical variables are replaced by operators
x̂i and p̂i and the Poisson bracket is replaced by the commutator. In this context, the
relations between the canonical variables become

[x̂i, x̂j ] = 0, [x̂i, p̂j ] = iδi,j , [p̂i, p̂j ] = 0, (2.3)

in units where Plank’s constant ~ is set to 1 (which is always possible through a proper
rescaling of physical units). These commutation relations immediately lead to the Heisen-
berg uncertainty relation

∆x̂∆p̂ ≥ |〈[ x̂, p̂ ]〉| =
1

2
. (2.4)

More formally, an N -mode continuous-variable quantum system (think of N modes of
the electromagnetic field) is described in the infinite-dimensional Hilbert space

H =
N
⊗

k=1

Hk (2.5)

which is the tensor product of N Fock spaces Hi. Each Fock space Hi describes a
particular mode (characterized by its polarization, its energy and its spatial and temporal
wavefunction) and is spanned by a particular basis, the Fock basis {|0〉, |1〉, · · · , |n〉, · · · }
where the Fock state |n〉 describes the state of n (indistinguishable) photons present in
the mode1. The annihilation and creation operators respectively noted âi and â†i for the
mode i are defined as:

{

âi|n〉i =
√
n |n− 1〉i

â†i |n〉i =
√
n+ 1 |n+ 1〉i.

(2.6)

In the remaining of this manuscript, we shall omit the subscript i referring to a particular
mode when there is no ambiguity.
The annihilation and creation operators are linked to the quadrature operators x̂ and p̂
through

x̂ =
1√
2

(

â+ â†
)

and p̂ = − i√
2

(

â− â†
)

(2.7)

1The Fock space is built in such a way that the symmetry aspects of the wavefunction of a system of
N identical bosons are automatically taken care of. Hence the notation |n〉 is quite pragmatic as it allows
to describe the unique symmetric state of n bosons in a very compact form, without useless references
on how this symmetry is actually enforced.
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and thus follow the same commutation rules as x̂ and p̂:

[âi, âj ] = 0, [âi, â
†
j ] = δi,j , [â†i , â

†
j ] = 0. (2.8)

As we will see in the following, these commutation rules give rise to a symplectic structure
for transformations of continuous-variable quantum systems.

The vacuum state of the global Hilbert space H is noted |0〉 ≡ |0, 0, · · · , 0〉 and
corresponds to the ground state of the interaction-free Hamiltonian Ĥ of a system of N
harmonic oscillators:

Ĥ =
N
∑

i=1

[

â†i âi +
1

2

]

. (2.9)

The Fock basis of the global Hilbert space H is obtained by tensoring the Fock bases of
the individual Fock spaces and its generic element is given by

|n1, · · · , nN 〉, (2.10)

where ni ∈ N for i ∈ {1, · · · , N}. This state is formally obtained by adding ni photons
in the mode i to the vacuum state:

|n1, · · · , nN 〉 =
1√

n1!n2! · · ·nN !
â†n1

1 â†n2
2 · · · â†nN

N |0〉. (2.11)

At this point, there are two possibilities to study quantum systems in the Fock space.
One can proceed with the standard density operator description, as for finite dimensional
Hilbert spaces. In particular, states can be described by infinite-dimensional density
matrices:

ρ =
∞
∑

m,n=0

ρm,n|m1, · · · ,mN 〉〈n1, · · · , nN |, (2.12)

where m = (m1, · · · ,mN ) and n = (n1, · · · , nN ). However, whereas the density ma-
trix formalism is very useful and handy for small dimensions, it is no longer the case for
infinite-dimensional Hilbert spaces as its mathematical manipulation becomes intractable
in most cases. For this reason, it might be convenient to work in the phase space rep-
resentation. Formally, this is done by working with the quadratures operators of the
state instead of its density operator. The idea is really to exploit the most convenient
mathematical formalism, just as N particles might be easier to describe in phase space
in classical mechanics.
For an N -mode system, the quadratures can be grouped together in a vector r̂:

r̂ = (r̂1, r̂2 · · · , r̂2N )T = (x̂1, p̂1, x̂2, p̂2, · · · , x̂N , p̂N )T . (2.13)

This allows us to write the bosonic canonical commutation relations in a more compact
form:

[r̂k, r̂l] = iΩkl, (2.14)
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where Ω is the symplectic form

Ω =
N
⊕

i=1

[

0 −1
1 0

]

. (2.15)

A real-valued operator S is said to be symplectic if it leaves the symplectic form invariant:

SΩST = Ω. (2.16)

The set of symplectic operators has the structure of a group, and is noted Sp(2N,R).
Note that a consequence of the Stone - von Neumann theorem is that each element of this
group can be associated to a transformation corresponding to a quadratic Hamiltonian.
In the phase space representation, the Fock states become less relevant, and two sets of
states turn out to play a more central role: the quadrature eigenstates and the coherent
states, that we describe now.

Quadrature eigenstates. The quadrature eigenstates states are defined (not surpris-
ingly) as the eigenstates of the position and moment operators:

x̂|x〉 = x|x〉 (2.17)

p̂|p〉 = p|p〉. (2.18)

With these notations, |x〉 is a position eigenstate whereas |p〉 is a momentum eigenstate.
Since the operators x̂ and p̂ are Hermitian, their respective family of eigenstates form
two orthonormal bases of the Fock space

〈x |x′〉 = δ(x− x′), (2.19)

〈p | p′〉 = δ(p− p′) (2.20)

that give two resolutions of the identity
∫ ∞

−∞
|x〉〈x|dx = ✶, (2.21)

∫ ∞

−∞
|p〉〈p|dp = ✶. (2.22)

Both bases are related by Fourier transform:

|p〉 =
1√
2π

∫ ∞

−∞
dp eixp|x〉, (2.23)

|x〉 =
1√
2π

∫ ∞

−∞
dx e−ixp|p〉. (2.24)

The main interest of the quadrature eigenstates is that they are related to the wave
function of the state and to its Fourier transform: the wave function ψ(x) of a state |ψ〉
and its Fourier transform ψ(p) read

ψ(x) = 〈x |ψ〉, (2.25)

ψ(p) = 〈p |ψ〉. (2.26)
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Because of their link with the wave functions, the quadrature eigenstates are useful
theoretical tools. However, it should be noted that they do not correspond to physical
states as their energy diverges.

Coherent states. A more interesting class of quantum states both from the theoretical
and the experimental point of view, the coherent states, can be easily described in the
phase space formalism. Formally, they are defined as the eigenstates of the annihilation
operator: the state |α〉 is such that

â|α〉 = α|α〉, (2.27)

where α is a complex number. Note that because the annihilation operator â is not
Hermitian, the states |α〉 are not orthogonal.
Coherent states have a practical interest as they correspond to the output of (good)
lasers. For this reason, they are very easy to generate experimentally, in sharp contrast
with the Fock states2 or quadrature eigenstates (which are unphysical).
In order to study coherent states, it is useful to introduce the so-called displacement
operator D̂(α) defined as:

D̂(α) = eαâ†−α∗â, (2.28)

which is a unitary operator since i(αâ† − α∗â) is Hermitian. Applying the Hadamard
lemma for two operators X and Y such that X commutes with [X,Y ],

eXY e−X = Y + [X,Y ] (2.29)

to X = −αâ† + α∗â and Y = â, one gets:

D̂†(α)âD̂(α) = â+ α, (2.30)

D̂†(α)â†D̂(α) = â† + α∗. (2.31)

Let us now apply the annihilation operator to a displaced vacuum D̂(α)|0〉. This gives:

âD̂(α)|0〉 = D̂(α)(â+ α)|0〉 (2.32)

= α D̂(α)|0〉, (2.33)

which means that D̂(α)|0〉 is an eigenstate of the annihilation operator with eigenvalue
α. As a consequence, D̂(α)|0〉 = |α〉, and one can thus conclude that coherent states are
displaced vacuums.
In order to derive the expansion of |α〉 in the Fock basis, one can use the Baker-Hausdorff
formula,

D̂(α) = e−|α|2/2eαâ†

e−α∗â, (2.34)

2the vacuum state |0〉 is by definition easy to generate, but while single photons can be generated with
relatively good quality, the situation becomes more complicated with higher number states. It should
be noted, however, that generating such number states is the subject of intense ongoing experimental
efforts. For instance, the creation of a two-photon Fock state of free propagating light and Fock states
up to 7 photons in a cavity were reported in [116] and [20], respectively.
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to write

|α〉 = e−|α|2/2eαâ†

e−α∗â|0〉 = e−|α|2/2
∞
∑

n=0

αnâ†n

n!
|0〉, (2.35)

which gives the well-known expression3:

|α〉 = e−|α2|/2
∞
∑

n=0

αn

√
n!
|n〉. (2.36)

From the action on the displacement operator on the annihilation and creation operators,
one can immediately deduce its action on the quadrature operators, namely,

D̂†(α)x̂D̂(α) = x̂+
√

2 Re(α) (2.37)

D̂†(α)p̂D̂(α) = p̂+
√

2 Im(α), (2.38)

where Re(α) and Im(α) refer respectively to the real and imaginary part of α. This
means that the coherent state |α〉 can be interpreted as a vacuum state displaced by the
quantity dx =

√
2 Re(α) along the quadrature x̂ and the quantity dp =

√
2 Im(α) along

the quadrature p̂ in phase space.
Coherent states are often referred to as quasi-classical states since the saturate the

Heisenberg uncertainty principle. Let us indeed compute the variance of the quadrature
operators for a coherent state:

〈x̂2〉 =
1

2
〈α|â2 + [â, â† + 2â†â+ â†2|α〉 =

1

2

(

1 + (α+ α∗)2
)

= 〈x̂〉2 +
1

2
, (2.39)

which gives ∆2x̂ = 〈x̂2〉− 〈x̂〉2 = 1
2 and similarly ∆2p̂ = 1

2 . Thus, coherent states are the
states with minimal uncertainty on their quadratures.

Finally, while the set of coherent states does not form an orthonormal basis since

〈α|β〉 = e−(|α|2+|β|2)/2
∞
∑

n=0

(α∗β)n

n!
= e−

1
2(|α|2+|β|2−α∗β) 6= 0. (2.40)

Two coherent states are never orthogonal, meaning that it is in principle impossible to
distinguish perfectly between two coherent states. However, the probability

|〈α|β〉|2 = e−|α−β|2 (2.41)

rapidly falls to 0 when |α − β| exceeds a few shot noise units. A detailed study of the
discrimination of coherent states can be found in Appendix B. Let us also note that the
set of coherent states satisfies the completeness relation [139],

1

π

∫

C

|α〉〈α|d2α = ✶. (2.42)

3While Glauber was the first to provide a complete quantum-theoretic description of the coherence in
the EM field [54], coherent states had already been studied for a long time, notably by Erwin Schrödinger
who introduced them as the states of minimum uncertainty [138].
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2.1.2 Measurements in phase space

As we saw in the first chapter, a measurement is characterized by a set of positive op-
erators that form a resolution of the identity. For continuous-variable quantum systems,
two types of measurements are mainly considered: photon counting and homodyne mea-
surement which aim respectively at measuring the photon number and the quadrature
operators of the field.

Photon number discrimination. This first type of measurement is described by the
POVM corresponding to the Fock basis {|0〉〈0|, |1〉〈1|, · · · , |n〉〈n|, · · · }. Such a measure-
ment is extremely challenging from a experimental point of view, and actual photon
counters really implement the much simpler POVM with two elements {|0〉〈0|,✶−|0〉〈0|}
which discriminates between the absence and presence of photons. Even such a simpli-
fied measurement turns out to be quite difficult to realize experimentally and all present
implementations suffer of two sources of errors. First, the quantum efficiency of the de-
tection η is significantly less than 1. Its current value is closer to 20% for single photon
detectors working in the telecom regime (wavelength of 1550 nm). Second, detectors are
also affected by dark noise meaning that they display spontaneous clicks in absence of
a photon. The phenomenon of dark counts is actually quite problematic in applications
such as quantum key distribution.

Homodyne detection. The goal of homodyne detection is to measure a quadrature of
the state in phase space. It is an interferometric detection scheme where the mode to be
measured (x̂S , p̂S) interferes with a local oscillator which is (with a very good approxi-
mation) a classical state with quadratures (EL cos θ,EL sin θ). The phase θ between the
two modes can be easily adjusted with a piezoelectric transducer for instance (see Figure
2.1). Since the two modes are combined on a balanced beamsplitter, the outgoing modes
+,− are such that

x̂+ = (x̂S + EL cos θ)/
√

2 (2.43)

p̂+ = (p̂S + EL sin θ)/
√

2 (2.44)

x̂− = (x̂S − EL cos θ)/
√

2 (2.45)

p̂− = (p̂S − EL sin θ)/
√

2 (2.46)

(2.47)

The intensities I+ and I− of modes + and − are measured with PIN detectors and are
proportional to the photon numbers of each mode:

I+,− = n̂+,− =
1

2
(x̂2

+,− + p̂2
+,− − 1) (2.48)

where we take the proportionality constant equal to 1 for simplicity. Finally, we observe
the difference ∆I between the two intensities:

∆I = I+ − I− = 2 (x̂sELO cos θ + p̂sELO sin θ) . (2.49)
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Figure 2.1: Homodyne detection setup (from Ref [99]).

Then, by fixing the value of θ to either 0 or π/2, one has access to the measurement of
quadrature x̂s or p̂s, respectively. More generally, any rotated quadrature x̂θ = x̂s cos θ+
p̂s sin θ can be measured with a homodyne detection by applying the right dephasing
θ between the signal mode and the local oscillator. The main interest of homodyne
detection is that is quantum efficiency is much higher than the one of photon counting,
and typically approaches 90% in state-of-the-art experiments.

2.1.3 Wigner function

Displacement operators can be generalized to the N -mode case with the Weyl operator :

D̂(ξ) ≡ e−iξT Ωr̂, (2.50)

where ξ is a vector in the 2N -dimensional phase space. Then, instead of describing a
quantum state ρ through its density matrix, one can work in phase space and use the
characteristic function defined as

χρ(ξ) = tr[ρD̂(ξ)]. (2.51)

A state ρ is completely characterized by its representation in phase space as can be seen
in the inversion formula:

ρ =
1

(2π)N

∫

d2Nξ χρ(−ξ)D̂(ξ). (2.52)

Finally, by taking the Fourier transform of the characteristic function, one obtains the
Wigner function of the state

W (ξ) =
1

(2π)N

∫

d2Nζ eiξ
T Ωζχρ(ζ), (2.53)
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which corresponds to a quasi-probability distribution in phase space. For the interested
reader, a comprehensive discussion about the Wigner function and its properties can be
found in Reference [88].
Wigner’s formula [157] relates the state ρ of an N -mode bosonic quantum system and
its Wigner function in the N−dimensional phase space parametrized by the quadratures
(x1, p1, . . . , xN , pN ) through:

W (x1, p1, · · · , xN , pN ) =

1

πN

∫

Rn

dy1 · · ·dyN ei(p1y1+···+pNyN )〈x1 − y1, · · · , xN − yN |ρ|x1 + y1, · · · , xN + yN 〉.
(2.54)

In this formula, the bra and ket refer to position eigenstates.
Whereas the Wigner function is not a genuine probability function since it can take

negative values, it gives rise to such a genuine probability function in terms of homodyne
measurement results. More specifically, let us consider an N -mode state described by its
Wigner function W (x1, p1, · · · , xN , pN ), the joint probability of the results of N homo-
dyne measurements (one measurement per mode) is obtained by integrating the Wigner
function over the quadratures that are not measured. For instance, the probability dis-
tribution for the variables x1 and p2 of a 2-mode state is given by:

Pr(x1, p2) =

∫∫

dx2dp1W (x1, p1, x2, p2). (2.55)

For a single mode state ρ, one has:
∫ ∞

−∞
dp W (x, p) = trρ|x〉〈x|, (2.56)

∫ ∞

−∞
dx W (x, p) = trρ|p〉〈p|, (2.57)

and in the case of a pure state ρ = |ψ〉〈ψ|, one recovers respectively |ψ(x)|2 and |ψ(p)|2.
The Wigner function is a linear functional, meaning that the Wigner function of a mixed
state ρ =

∑

i piρi is given by:

Wρ(ξ) =
∑

i

pi Wρi(ξ). (2.58)

The integral of the Wigner function over the whole phase space is equal to the trace of
the state:

∫

Rn

dξ Wρ(ξ) = trρ. (2.59)

More generally, one can compute an operator ô expectation as an average of its Wigner
transform in phase space:

〈ô〉 =

∫

Rn

dξ Wρ(ξ)o(ξ). (2.60)
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One should keep in mind that the Wigner function formalism is completely equivalent to
the more usual density operator formalism. One should choose the point of view which
is the most practical for a specific application. In particular, Gaussian states that we
introduce now are much easier to study in phase space than in Fock space.

2.2 Gaussian states and Gaussian operations

Among all possible sets of states of continuous-variable quantum systems, one turns out
to be particularly relevant experimentally as well as quite tractable from a theoretical
point of view: Gaussian states which are given this name because their Wigner function
is Gaussian. For the same reasons, the class of Gaussian operations, that is quantum
operations that map any Gaussian state to a Gaussian state, is also central for the study
of quantum information with continuous variables.

2.2.1 Gaussian states

Definition and notations. Gaussian states are states whose characteristic function (and,
equivalently, Wigner function) is Gaussian4. Thus, they are completely characterized by
the first two moments of their characteristic function.
For a general state ρ, we define the displacement vector d ∈ R

2N

d = 〈r̂〉 = tr[ρ r̂] (2.62)

and the positive-semidefinite symmetric 2N × 2N covariance matrix γ

γij = tr [ρ {r̂i − di, r̂j − dj}] , (2.63)

where {} is the anticommutator. With these notations, we define a generic Gaussian
characteristic function to be

χρ(ξ) = exp

(

−1

4
ξT Γξ + iDT ξ

)

, (2.64)

whereD = Ωd and Γ = ΩγΩ. Taking the Fourier transform of the characteristic function,
one obtains the Wigner function of a Gaussian state:

W (r) =
1

π2N
√

detγ
e−(r−d)T γ−1(r−d). (2.65)

The remarkable property of Gaussian states is that they are entirely described by their
first two moments. This means that an N -mode Gaussian state is completely charac-
terized by a number of parameters only quadratic in N (despite the infinite dimension

4An alternative definition is that a state is said to be Gaussian if and only if its density matrix ρ is
the exponential of a quadratic function f on the canonical operators of the system,

ρ = exp
h

−f(a1, a
†
1, · · · , aN , a

†
N )

i

. (2.61)
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of the underlying Hilbert space). Such a compact description in phase space has many
advantages. For instance, we use it in Chapter 6 to introduce a new type of quantum de
Finetti theorem in phase space, despite the apparent restriction of de Finetti theorems
to finite-dimensional Hilbert spaces.

Before we detail the most important families of Gaussian states, we would like to
characterize admissible covariance matrices for a Gaussian states. Indeed, because of the
Heisenberg uncertainty principle, it is clear that not all covariance matrices correspond
to physical states. A necessary and sufficient condition that the covariance matrix γ has
to satisfy is [146]:

γ + iΩ ≥ 0. (2.66)

From the definition of Gaussian states, it is clear that the properties of a state are
contained in the structure of its covariance matrix. We now introduce the notion of
symplectic invariants that allow for a characterization of the covariance matrix of a
Gaussian state.

Symplectic invariants and symplectic spectrum. Let us start by applying Williamson’s
theorem [145] to the the case of the covariance matrix γ. This theorem implies that for
any covariance matrix γ, there exists a (non-unique) symplectic transformation S such
that

STγS = ν, (2.67)

where ν is a diagonal covariance matrix

ν =

N
⊕

k=1

[

νk 0
0 νk

]

(2.68)

The quantities νk are referred to as symplectic eigenvalues and form the symplectic spec-
trum of the covariance matrix γ. The symplectic eigenvalues correspond to the eigenval-
ues of the operator |iΩγ|. The matrix ν is the normal form of the covariance matrix γ.
The uncertainty principle 2.66 can be rewritten in terms of the symplectic eigenvalues as

νk ≥ 1 for k = 1, · · · , N. (2.69)

This bound is saturated only for pure Gaussian pure states with ν = ✶. This can be seen
by noting that the purity µ of a Gaussian state ρ with covariance matrix γ is given by

µ ≡ trρ2 =
1√

det γ
. (2.70)

It turns out that calculating the spectrum of |iΩγ| is generally not the most practical
way to determine the symplectic spectrum of a covariance matrix. An easier (and more
elegant) way to proceed is to use symplectic invariants, that is, quantities that are in-
variant under the action of symplectic group Sp(2N,R). We now apply this method to
the study of one-mode and two-mode states.
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One-mode normal decomposition. Here, we are concerned with one-mode states char-
acterized by their 2 × 2 covariance matrix γ1. In order to determine the symplectic
eigenvalue ν1 of γ1, we notice that the determinant is a symplectic invariant, that is for
any covariance matrix γ, and any symplectic operator S, one has

det(SγST ) = detγ (2.71)

since the determinant of a symplectic matrix S is necessary equal to 15. As a consequence,
one has in general

N
∏

k=1

ν2
k = det γ, (2.72)

which reduces in the case of a single-mode system to

ν1 =
√

det γ1. (2.73)

Two-mode normal decomposition. In order to compute the symplectic spectrum {ν1, ν2}
of a two-mode covariance matrix γ12

γ12 =

(

γ1 C12

C12 γ2

)

, (2.74)

where γ1, γ2 and C12 are 2×2 real matrices, we need to use a second symplectic invariant
∆ which is given by

∆ = det γ1 + det γ2 + 2det C12. (2.75)

This invariant corresponds to the principal minor of order 2 of the covariance matrix γ
and is equal to ν2

1 + ν2
2 . Hence, it is clear that ν2

1 and ν2
2 are the roots of the quadratic

form
X2 − ∆X + det γ12, (2.76)

that is

ν2
1,2 =

1

2

[

∆ ±
√

∆2 − 4det γ12

]

. (2.77)

Generalization of higher numbers of modes. More generally, higher order principal minors
can be used to define symplectic invariants of the covariance matrix γ. By noting Mk(α)
the principal minor of order k of the matrix α, one obtains N symplectic invariants
∆N

k (k = 1 · · ·N) of an N -mode [140]:

∆N
k ≡M2k(Ωγ), (2.78)

5It is easy to see that the determinant of a symplectic matrix is either 1 or −1 thanks to the relation
SΩST = Ω. The fact that it is necessary 1 can be proved with the identity Pf(ST ΩS) = detS Pf(Ω)
where Pf(Ω) = 1 is the Pfaffian of Ω.
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which are known as quantum universal invariants. Note that ∆N
N = det γ and ∆2

1

reduces to the quantity ∆ defined in the previous paragraph. The invariants can easily
be expressed as a function of the symplectic eigenvalues:

∆N
k =

∑

SN
k

∏

j∈SN
k

ν2
j , (2.79)

where the sum runs over all the possible k-subsets SN
k of the first N natural integers.

Calculating the symplectic spectrum then amounts at solving a polynomial equation of
degree N .

Principal families of Gaussian states.

One-mode Gaussian states. First, the coherent states are characterized by a displacement
vector d = (dx, dp) and a covariance matrix γ = ✶. Note that d = (0, 0) corresponds to
the vacuum state.
A generalization of the coherent states is given by the squeezed coherent states which are
characterized by a covariance matrix of the form

γ =

(

e−2r 0
0 e2r

)

(2.80)

where r is a squeezing parameter. For r > 0, the quadrature x̂ is squeezed, meaning
that its variance is less than the shot noise, whereas the quadrature p̂ is anti-squeezed. A
squeezed vacuum (with a displacement vector equal to (0, 0)) can be obtained by applying
a squeezing operator S(r) to the vacuum state. Its expansion in the Fock basis is given
by

S(r)|0〉 =
1√

cosh r

∞
∑

n=0

√

(2n)!

2nn!
tanhnr |2n〉. (2.81)

An interesting feature of the vacuum squeezed state is that, despite its name, it does
contain photons. Let us indeed compute the mean photon number 〈n̂〉 in the state
S(r)|0〉:

〈n̂〉 =
1

cosh r

∞
∑

n=0

2n
(2n)!

22n(n!)2
tanhnr = sinh2 r (2.82)

which is positive for non zero squeezing.
Another interesting set of states are the thermal states for which the displacement vector
is null and the covariance matrix is of the form

γ =

(

V 0
0 V

)

(2.83)

where V is related to the mean photon number through V = 2〈n〉 + 1.
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Two-mode Gaussian states. A general two-mode Gaussian state is characterized by a
displacement vector d = (dx1 , dp1 , dx2 , dp2) and a covariance matrix γ12:

γ12 =

(

γ1 C12

CT
12 γ2

)

, (2.84)

Note that the one-mode Gaussian state obtained by tracing out the second mode is
described by the displacement vector d1 = (dx1 , dp1) and the covariance matrix γ1.
The case where C12 = 0 corresponds, for a Gaussian state, to an absence of correlations
between the two modes meaning that the Gaussian state ρ12 is such that

ρ12 = ρ1 ⊗ ρ2, (2.85)

where ρ1 = tr2 ρ12 and ρ2 = tr1 ρ12. More generally, an N -mode Gaussian state with a
block-diagonal covariance matrix has a product-state structure.
An important class of two-mode Gaussian states are the two-mode squeezed states char-
acterized by a covariance matrix γTMS of the form

γTMS =

(

cosh 2r ✶2 sinh 2r σz

sinh 2r σz cosh 2r ✶2

)

, (2.86)

where

σz =

(

1 0
0 −1

)

. (2.87)

Since det γTMS = 1, a two-mode squeezed state is a pure state which plays a role in
continuous-variable quantum information similar to the Bell state |Φ+〉 = (|00〉+|11〉)/

√
2

in discrete-variable quantum information. This similarity becomes more obvious by not-
ing that the expansion in the Fock basis of a two-mode squeezed vacuum (with a dis-
placement vector d = (0, 0, 0, 0)) is given by:

|TMS〉 =
1

cosh r

∞
∑

n=0

tanhnr |n, n〉. (2.88)

Note that tracing out the second mode of a two-mode squeezed vacuum gives a thermal
state for the first mode. This gives a generic way to purify thermal noise as a thermal
state can always be interpreted as one half of a pure two-mode squeezed vacuum.
While it is in general very difficult to characterize entanglement of arbitrary quantum
states6, a truly remarkable result is the existence of a simple necessary and sufficient
condition for the separability of a general Gaussian state.

Theorem 2.1 (Separability of Gaussian states [41]). A Gaussian state with covariance
matrix γ is separable if and only if there exist covariance matrices γA and γB such that

γ ≥ γA ⊕ γB. (2.89)

Note, however, that this criterion is not always very practical as the matrices γA and
γB can be difficult to exhibit.

6a notable exception being bipartite qubit systems for which the positivity of the partial transpose is
a necessary and sufficient condition for separability [118],[71]
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2.2.2 Gaussian operations

Gaussian operations are characterized by the fact that they correspond to all operations
which can be performed on Gaussian states using linear optical elements (phase shifts,
beam splitters and squeezers) together with homodyne measurements [52]. They are
thus particularly relevant because these operations are exactly the ones that are easily
implementable experimentally.

Because Gaussian operations are experimentally accessible with present technology, a
crucial question in the field of quantum information with continuous variables is to char-
acterize which tasks can be implemented with Gaussian states and Gaussian operations
only. We will see later in this manuscript that quantum key distribution for instance is
possible in this framework (see Chapters 3-7) but that bit commitment is impossible (see
Chapter 8).

Symplectic transformations. Because a Gaussian map transforms every Gaussian state
into a Gaussian state, it is entirely characterized by its action on the displacement vector
d and the covariance matrix γ. In particular, to any Gaussian unitary transformation
is associated a symplectic operation S ∈ Sp(2N,R) which preserves the canonical com-
mutation relations [7]. Note that the inverse of S is given by S−1 = σSTσ−1. As a
consequence of the Stone-von Neumann theorem, there exists a unique unitary trans-
formation US associated to the real symplectic transformation S such that the Weyl
operators satisfy USD̂(ξ)U †

S = D̂(Sξ) for all ξ ∈ R
2N .

In particular, a Gaussian state with displacement vector d and covariance matrix γ
is sent under the action of US to the Gaussian state with displacement vector d′ and
covariance matrix γ′ given by

d′ = Sd (2.90)

and
γ′ = SγST . (2.91)

An important subset of all symplectic transformations is formed by orthogonal trans-
formations. They are described by the compact group K(N) = Sp(2N,R)∩O(2N) whose
elements correspond to passive operations that preserve the total photon number. These
transformations will be exploited in Chapter 6 of this manuscript where we introduce a
quantum de Finetti theorem that applies to states invariant under the action of the group
K(N). The operations of K(N) can be implemented with phase shifts, beam splitters
and homodyne detection only, that is excluding squeezers.

Let us now quickly describe the symplectic transformations corresponding to the
different operations.
A phase shift is a single-mode operation equivalent to a rotation in phase space. It is
characterized by a phase θ and the corresponding symplectic transformation SPS(θ) ∈
Sp(2,R)

SBS(T ) =

[

cos θ sin θ
− sin θ cos θ

]

. (2.92)
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A beam splitter operation of transmittance T makes a coherent combination of two modes
and is described by the symplectic transformation SBS(T ) ∈ Sp(4,R)

SBS(T ) =

[
√
T ✶2

√
1 − T ✶2

−
√

1 − T ✶2

√
T ✶2

]

. (2.93)

A single-mode squeezing transformation is parametrized by its squeezing factor r and is
described by the symplectic transformation SSq(r) ∈ Sp(2,R) given by

SSq(r) =

[

e−r 0
0 er

]

. (2.94)

A two-mode squeezing transformation is parametrized by its squeezing factor r and is
described by the symplectic transformation SSq2(r) ∈ Sp(4,R) given by

SSq2(r) =

[

cosh r ✶2 sinh r σz

sinh r σz cosh r ✶2

]

. (2.95)

Finally, the Euler decomposition of symplectic transformations says that any S ∈ Sp(2N,R)
can be decomposed into

S = K
N
⊕

k=1

[

e−rk 0
0 erk

]

L, (2.96)

where K,L ∈ K(N) and rk ∈ R. The interpretation of this theorem is that any Gaus-
sian map can be implemented as a first passive transformation followed by a single-mode
squeezing operation of each of the N modes finally followed by a second passive transfor-
mation. Another important class of transformations is becomes particularly interesting
in the multiparticle scenario where N modes can be distributed among different locations:
the class of local operations which corresponds to the subset Sp(2,R)N of Sp(2N,R). A
particular example is given by the standard form of a two-mode covariance matrix: any
two-mode Gaussian state with covariance matrix

γ12 =

[

γ1 C12

C12 γ2

]

, (2.97)

can be transformed by local Gaussian operations into a Gaussian state with covariance
matrix γ′12 in the standard form:

γ′12 =









a 0 c+ 0
0 a 0 c−
c+ 0 b 0
0 c− 0 b









. (2.98)
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Completely Positive maps. The most general transformations that can be applied to a
state (including measurements) forms the set of Completely Positive (CP) maps. Gaus-
sian CP maps are characterized by two 2N×2N matricesX and Y [41] that transform the
initial displacement vector din and covariance matrix γin into dout and γout respectively,
which are given by

dout = X din (2.99)

and
γout = XγinX

T + Y. (2.100)

Matrix Y is symmetric and the positivity of the map imposes the condition

Y + iΩ − iXΩXT ≥ 0. (2.101)

Let us now describe some important Gaussian channels: the lossy, amplification and
thermal noise channels.
A lossy channel of transmittance T corresponds to X =

√
T✶ and Y = (1− T )✶. It can

be modeled by combining the signal with the vacuum on a beam splitter of transmittance
T for which the second output mode is traced out.
An amplification channel with amplification factor η ≥ 1 corresponds to X =

√
η✶ and

Y = (η− 1)✶. It can be modeled by injecting the input signal into a two-mode squeezed
with a squeezing factor such that η = cosh2 r for which the second output (idler mode)
is traced out.
A thermal noise channel of transmittance T and excess noise ǫ corresponds to X =

√
T✶

and Y = Tχ✶ where χ is the added noise referred to the input

χ =
1 − T

T
+ ǫ. (2.102)

It can be modeled by combining the signal and a thermal state of variance V = Tχ/(1−T )
on a beamsplitter of transmittance T .

At this point, it is interesting to give a possible implementation for the displacement
operator in phase space. Let us consider the case of a single-mode displacement D̂(α) with
α = (α1, α2). The idea is to combine the signal mode with a large amplitude coherent
state centered on (α1/

√
1 − T , α2/

√
1 − T ) on a beam splitter of transmittance T → 1.

The two-mode Gaussian state composed of the signal mode and of this large amplitude
is characterized by its displacement vector d12 = (dx, dp, α1/

√
1 − T , α2/

√
1 − T ) and its

covariance matrix γ12 = γ⊕✶2 where the signal mode has a displacement vector (dx, dp)
and a covariance matrix γ. Using the beamsplitter transformation SBS(T ) and tracing
out the second mode, one obtains

(

d′x
d′p

)

=
√
T

(

dx

dp

)

+

(

α1

α2

)

(2.103)

and
γ′ = Tγ + (1 − T )✶, (2.104)

which effectively implements the displacement D̂(α) in the limit T → 1. Note that this
procedure can immediately be generalized to an arbitrary number of modes.
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2.2.3 Partial measurements

We now consider the general situation of a bipartite (NA + NB)-mode Gaussian state
ρAB with displacement vector d = (dA, dB) and covariance matrix

γ =

[

A C
CT B

]

, (2.105)

Homodyne measurement. Suppose we perform an homodyne measurement on the B part
of the state, and that the results of this measurement are given by m = (x1, 0, x2, 0, · · · ,
xNB

, 0), then this homodyne detection projected the state ρA on the Gaussian state ρ′A
characterized by its displacement vector

d′A = dA + C(XBX)MP(m− dB), (2.106)

and its covariance matrix
A′ = A− C(XBX)MPCT , (2.107)

where X = diag(1, 0, 1, 0, · · · , 1, 0) keeps track of which quadratures were measured (a
entry equal to 1 corresponds to the quadrature measured, all position quadratures were
measured in this example), and MP refers to the inverse on the range [41].
A property of Gaussian states is that the final covariance matrix A′ does not depend on
the measurement results.

Heterodyne measurement. An heterodyne measurement consists in sending the state to
be measured on a balanced beam splitter and then performing a different homodyne
measurement for each output mode. With the same notations as above, the state ρA is
projected on the Gaussian state ρ′A characterized by its displacement vector

d′A = dA +
√

2C(B + ✶2NB
)−1(m− dB), (2.108)

and its covariance matrix

A′ = A− C(B + ✶2NB
)−1CT , (2.109)

where m = (x1, p1, · · · , xNB
, pNB

) is the result of the heterodyne measurement. As in
the case of the homodyne measurement, we note that the covariance matrix of ρ′A does
not depend on the measurement results.

2.3 Quantum information with continuous variables

2.3.1 von Neumann entropy

In classical information theory, many problems arise for continuous variables. In partic-
ular, the Shannon entropy becomes ill-defined, and one has to replace it by the concept
of differential entropy which is defined up to some additive constant. In contrast, the



2.3. QUANTUM INFORMATION WITH CONTINUOUS VARIABLES 45

situation is actually more favorable in a quantum context as a continuous-variable system
can always be described in an infinite, but countable Hilbert space. More specifically,
any N -mode quantum state of a continuous-variable system is described by its density
operator

ρ =

∞
∑

m,n=0

ρm,n|m1, · · · ,mN 〉〈n1, · · · , nN |, (2.110)

where m = (m1, · · · ,mN ) and n = (n1, · · · , nN ). Then the definition of the von Neu-
mann entropy can be applied directly to a continuous-variable quantum system as

S(ρ) = −trρ log ρ. (2.111)

This quantity is well defined provided that the sum converges. Actually, it turns out that
this quantity diverges for almost all states in the Fock space. But this is not that big a
deal as it always takes a finite value on the compact set of states with bounded energy
[41], which is the set of interest for quantum information theory.

2.3.2 Entropy of Gaussian states

Our goal here is to compute the von Neumann entropy of a Gaussian state. First,
one shows that the entropy of a N -mode Gaussian state ρG does not depend on its
first moment. To see this, one just need to note that the entropy is invariant under a
displacement operation (since it is a unitary operation). As a consequence, the entropy
of a Gaussian state is entirely determined by the covariance matrix γ of the state. To
be more specific, we use the Williamson theorem stating the existence of a symplectic
transformation S such that

SγST =
N
⊕

k=1

[

νk 0
0 νk

]

(2.112)

where the {νk}k=1,··· ,N are the symplectic eigenvalues of the state. Hence, according to
Williamson’s theorem, there exists a unitary operation mapping the Gaussian state ρG

to a product of N thermal states with n̄k = 1
2(νk − 1) photons in the mode k. Noting

ρth(n̄) the single mode thermal state with a mean photon number n̄, one has:

S(ρG) =

N
∑

k=1

S(ρth(n̄k)). (2.113)

Entropy of a thermal state. We now explicitly compute the von Neumann entropy of
a thermal state. The density operator of a single-mode thermal state ρth is given by:

ρth =
∞
∑

n=0

n̄n

(n̄+ 1)n+1
|n〉〈n|, (2.114)
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where n̄ = tr(ρn) is the mean number of thermal photons in the state. Let us now
compute the von Neumann entropy of this state ρ:

S(ρth) = −trρth log2 ρth (2.115)

= − 1

n̄+ 1

∞
∑

k=0

(

n̄

n̄+ 1

)k

log2

[

1

n̄+ 1

(

n̄

n̄+ 1

)k
]

(2.116)

= − 1

n̄+ 1

∞
∑

k=0

(

n̄

n̄+ 1

)k [

− log2(n̄+ 1) + k log2

n̄

n̄+ 1

]

. (2.117)

Then using the following identity,
∞
∑

k=0

kxk =
x

(1 − x)2
, (2.118)

one finally gets:
S(ρth) = (n̄+ 1) log2(n̄+ 1) − n̄ log2 n̄. (2.119)

2.3.3 Extremality of Gaussian states

We already saw that Gaussian states play a central role among continuous-variable quan-
tum systems as they are at the same time relatively easy to generate experimentally, and
easy to analyze. The main reason why they can be studied from a theoretical point of
view is that they really are finite-dimensional systems in the sense that they are com-
pletely characterized by a number of parameters only quadratic in the number of modes
N . For instance, the entropy of a Gaussian state can be computed from its covariance
matrix only, as a function of the symplectic spectrum.

For most non Gaussian states, the situation is much more complicated and computing
the von Neumann entropy implies to compute the spectrum of the infinite-dimensional
density operator, which is almost always an intractable problem. Quite interestingly,
Gaussian states are extremal with respect to various functionals. In particular, the state
of maximal entropy for fixed first and second moments is Gaussian [76] (as in the classical
case). This is a consequence of the following theorem:

Theorem 2.2 (Extremality of Gaussian states [158]). Let f : B(H⊗N ) → R be a con-
tinuous functional, which is strongly sub-additive and invariant under local unitaries
f(U⊗NρU †⊗N ) = f(ρ). Then for every density operator ρ describing an N -partite sys-
tem with finite first and second moments, we have that

f(ρ) ≤ f(ρG), (2.120)

where ρG is the Gaussian state with the same first and second moments as ρ.

This theorem allows one to prove that Gaussian states are extremal for the von
Neumann entropy as well as for various entanglement measures, or channel capacities
[158]. In Chapter 3, we will show that, in the context of continuous-variable QKD,
Gaussian states are extremal for the functional corresponding to the secret key rate
secure against collective attacks.
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2.3.4 Possible tasks and no-go theorems for Gaussian states with Gaussian
operations

Quantum information theory began roughly 25 years ago when Bennett and Brassard
noticed that quantum mechanics allowed us to perform a task impossible in the classical
world, namely, distributing secret keys among distant parties with unconditional security.
Since this striking discovery, the main goal of the field has been to study the frontier
between the quantum and the classical worlds from an information theoretic point of
view: what are the tasks impossible in the classical world that become possible in the
quantum world, and vice versa?

In 2009, the frontier has not yet been completely uncovered or understood but quite
a few differences have already been established. Key distribution and teleportation are
compatible with quantum mechanics but not with any classical theory. It is the opposite
situation for the task of cloning information: cloning classical information is not forbid-
den by any physical law, whereas cloning quantum information is. Bit commitment is
impossible both for classical and quantum theories.

It is not known whether continuous-variable quantum mechanics is more or less pow-
erful than discrete-variable quantum mechanics, but there probably are no differences
between the two models. A much more interesting question, however, is to study what
can or cannot be done with Gaussian states and Gaussian operations only. One of the
main motivations for this question is that it concerns operations that could be relatively
easily implemented, in sharp contrast with a generic operation on a continuous-variable
quantum system. In this manuscript, we study two such questions, namely the possibil-
ity of Gaussian quantum key distribution and the impossibility of Gaussian quantum bit
commitment. Note that put together, they give a convincing (and very natural) counter
example for Brassard and Fuchs conjecture that quantum mechanics could be rederived
from the principles that key distribution should be possible but not bit commitment [16].
We discuss these results in more details in Chapter 8.

Being more restricted that quantum mechanics, it is not surprising that several other
no-go theorems have been established for Gaussian states and Gaussian operations. One
could cite a no-go theorem for entanglement distillation [42] and a no-go theorem for
quantum error correction [110]: this means that it is impossible to distill entanglement
or to perform error correction in a context where one is restricted to Gaussian states and
can only perform Gaussian operations.

Finally, one important feature of Gaussian states is that they are compatible with a
Local Hidden Variable (LHV) model as their Wigner function is everywhere positive and
thus corresponds to a genuine probability distribution. For this reason, it is impossible
to violated a Bell inequality with Gaussian states and Gaussian operations only. As a
consequence, there is not either any hope to devise a device-independent QKD scheme in
this restricted context.



48 CHAPTER 2. QUANTUM INFORMATION WITH CONTINUOUS VARIABLES

2.3.5 Gaussian states: Hilbert space versus phase space representation

As a conclusion for this chapter, we summarize the description of Gaussian states in
Hilbert space and phase space representations on Table 2.1 (from [4]).

Hilbert space H Phase space Γ

dimension ∞ 2N

structure ⊗ ⊕
description ρ γ

bona fide ρ ≥ 0 γ + iΩ ≥ 0

operations U :

{

U †U = ✶

ρ 7→ UρU † S :

{

ST ΩS = Ω

γ 7→ SγST

spectra
UρU † = diag{λk}

0 ≤ λk ≤ 1

SγST = diag{νk}
1 ≤ νk ≤ ∞

pure states λi = 1, λj 6=i = 0 νj = 1, ∀j ∈ {1, · · · , N}
purity trρ2 =

∑

k λ
2
k 1/

√
detγ =

∏

k ν
−1
k

Table 2.1: Gaussian states: Hilbert space versus phase space representation (from [4]).



CHAPTER 3

Quantum Key Distribution

Quantum key distribution (QKD) is a cryptographic primitive that allows two distant
parties, Alice and Bob, to distill a secret key1. Key distribution is an essential primitive
required to perform (classical) symmetric cryptography. Once solved, Alice and Bob,
can communicate with unconditional security thanks to one-time pad2. Unconditional
security, also referred to as information-theoretic security means that an adversary cannot
learn anything about the message except with negligible probability. What makes QKD
remarkable is that it has no classical equivalent.

1more importantly, as the first application of quantum information theory, it led to an impressive
development of this new scientific research field, which might have been overlooked without the discovery
of QKD.

2one-time pad, where the encryption and decryption simply consist in taking the XOR of the message
and the secret key, is actually proven to be optimal as there does not exist any cryptographic scheme
which requires a smaller key while guaranteeing perfect security. Note that in order to be optimal, the
message M to be sent should first be compressed so that its length becomes equal to its entropy. Thus
the minimal size of the key is given by the entropy of the message Alice and Bob want to exchange. In
particular, a given key can only be used once.

49
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3.1 Quantum Key Distribution

Our goal here is not to give a complete review of quantum key distribution. Such reviews
can be found in the following books intended for general audience [87, 134] or in more
technical review articles [53, 136] or books [153]. Let us however present the basic
principle of a QKD protocol.

Two honest distant parties, usually referred to as Alice and Bob, wish to establish a
key that remains secret from any adversary, usually named Eve. For this task, Alice and
Bob have access to two channels: a quantum channel, a priori insecure and potentially
completely controlled by Eve, and an authenticated classical channel. Authentication
means that Eve can listen to the conversation on the classical channel but cannot par-
ticipate to it: in other words, Eve cannot pretend to be either Alice or Bob. Such an
assumption is not required concerning the quantum channel. A QKD protocol will be
said to be secure if it does not generate non-secret keys. Hence, either the legitimate
parties distill a secret key or they abort the protocol. Obviously, the trivial protocol that
never generates any key is secure from this point of view, but not really interesting. Let
us now give a more precise definition of the security of a key.

3.1.1 Security of a key

A key is a tool given to distant parties that they will use in an application, typically
symmetric cryptography (not necessarily limited to one-time pad). As a consequence,
one needs a definition for the security of the key that does not directly depend on the
specific application it will be used for. This means that we require a universal definition
of security. Such a definition was not available until recently3. The universal definition
of security which we use in the following was introduced in Renato Renner’s PhD thesis
[124] and is characterized by the distance between the key S output by the protocol and
a perfect key. Following the notations of [124], we describe the joint state of the classical
key S and the adversary’s quantum system4 as

ρSE :=
∑

s∈S
PS(s)|s〉〈s| ⊗ ρs

E . (3.1)

This expression means that the key S is a random variable following the probability
distribution PS , and that the state of the adversary given that S = s is described by the
density matrix ρs

E of the Hilbert space HE . The family {|s〉}s∈S is an orthonormal basis
for the Hilbert space HS of the key5. Equipped with this description of the joint state of
the key and the adversary, we can now define the security of a key: the key S is ǫ-secure

3until then, security was often characterized in terms of accessible information. This definition,
however, was not composable [85] as a small accessible information is not a sufficient requirement to
insure that the key can be securely used in one-time pad for instance.

4this is by no means a restriction as even a classical adversary can be described without loss of
generality as a quantum adversary.

5the use of such an orthogonal basis is the usual way to represent a classical system in a quantum
setting as we consider only mixtures (and never superposition) of the basis elements.
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with respect to HE if
1

2
||ρSE − ρS ⊗ ρE ||1 ≤ ǫ, (3.2)

where ρS =
∑

s∈S
1
|S| |s〉〈s| is the completely mixed state on the set S of possible final

keys and ρE is any state of Eve. Put otherwise, a QKD protocol is ǫ-secure if the keys
computed by Alice and Bob are

• identical,

• uniformly distributed,

• independent from the adversary’s knowledge,

except with some small probability ǫ.

3.1.2 QKD protocols

A general QKD protocol consists of different steps:

• Alice and Bob start with the quantum distribution. This first step, which is at
the core of the QKD protocol, will be detailed below, but the important point
is that, at the end of it, we can assume that Alice and Bob share N bipartite
quantum systems described in (HA ⊗HB)⊗N . More precisely, this is true in the
entanglement-based version of the protocol. In practice, however, the distribution
often consists for Alice to send N states to Bob through the quantum channel. In
this case, the action of the quantum channel can be represented by a CPTP map
on the states. As we saw in Chapter 1, the two pictures can be made equivalent,
and it turns out that the analysis of a QKD protocol is often more simple in the
entanglement-based version.

• Alice and Bob then sacrifice some m ≡ N − n subsystems in order to perform a
parameter estimation. This is achieved by performing measurements on m random
subsystems and then publicly announcing the results on the authenticated public
channel. At this point, Alice and Bob can estimate the level of correlation of
their quantum subsystems, and decide either to proceed with the remaining of the
protocol or to abort the protocol if the correlation is too low for a secret key to be
distillable.

• Alice and Bob measure their n remaining quantum systems6 and obtain a pair of
raw keys Xn and Y n. Typically, Xn and Y n are only partially correlated and are
not secure (i.e. they are not totally decoupled from the adversary quantum state).
The rest of the QKD protocol aims at solving these two problems: first by letting
Alice and Bob agree on an identical bit string, then by processing this bit string to
establish a shorter string that will be secure.

6usually, this phase is performed at the same time as parameter estimation, but the data are only
used once the parameter estimation is complete. This relieves the need for quantum memories which are
still quite impractical with today’s technology.
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• Alice and Bob proceed with the reconciliation of their raw keys: using communi-
cation on the authenticated classical channel, they agree on a common bit-string
Un. Usually, for most discrete-variable (DV) QKD, schemes, Alice sends some side-
information to Bob to help him recover the value of Xn7: in this case Un = Xn.
For continuous-variable (CV) protocols, the situation is a little bit more involved.
First, it is advantageous to perform a reverse reconciliation [64] in place of a direct
reconciliation, meaning that the classical communication only goes from Bob to
Alice in the reconciliation phase. Then, Y n is a random variable taking values on
R

n and not on {0, 1}n. As the final key has to be a bit string, the output Un of the
reconciliation is also chosen to be a bit string8. Thus, for CV QKD, Un is usually
a bit string computed from Y n, i.e, there exists a function f : R

n → {0, 1}n such
that Un = f(Y n). Examples of such functions f will be described in Chapters 4
and 5.

• Finally, Alice and Bob need to turn Un into a secure key of length l. This is
achieved through privacy amplification. Typically, this is done thanks to two-
universal hashing.

There exist two main families of QKD protocols whose distinction lies in the quantum
distribution part: Prepare and Measure (P&M) protocols and Entanglement-Based (E-B)
protocols. E-B protocols involve the actual distribution of N bipartite systems between
Alice and Bob, whereas this distribution is only virtual for P & M protocols. More
precisely, a quantum distribution is also required in P & M protocols, but only single-
party systems are sent from Alice to Bob: no entanglement in particular is necessary in
such a scenario.

P & M protocols are the easiest ones to implement, and were the first protocols
introduced in the literature [10]. Alice prepares N random states and sends them to
Bob through the quantum channel. Bob proceeds by measuring these states in a random
basis. For a protocol to be secure, the family of states used by Alice and Bob should
contain non-orthogonal states otherwise one can always find a measurement that allows
to distinguish them perfectly. If there are non-orthogonal states however, one cannot
deterministically distinguish them. In particular, an eavesdropper willing to measure the
states sent by Alice to Bob will disturb them with a non-negligible probability. More
precisely, there exists a trade-off between the information acquired by Eve on the state
sent by Alice and the level of correlation between the states sent by Alice and the states
received and measured by Bob. This trade-off, which is a purely quantum effect, is at
the origin of the possibility of QKD. For a similar reason, it is also necessary for a QKD

7in reality Bob computes a guess X̂n of Xn.
8choosing Un to be a bit string is certainly a simplifying hypothesis. To our knowledge, alternatives

where Un would be described with a larger alphabet have not been considered in the literature and
it is not clear whether there would be any potential advantage to do so. Anyway, it does not seem
reasonable for Un to be a truly continuous variable as the precision of the electronic equipment used in a
CV QKD protocol is always finite and only a finite number of bits is required to describe Y n. However,
the question whether privacy amplification can be performed by taking real random values as an input
might be an interesting theoretical question on its own right.
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protocol to be secure that Bob performs randomly different measurements. Indeed, if
Bob were always to perform the same (projective) measurement, Eve could just apply
the same measurement and send back to Bob the state she measured. In this case, Bob
and Eve would share exactly the same data, and no secret key could be extracted this
way.

In an E-B protocol, the situation is a little bit different. A source of quantum bipartite
states is used to distribute correlations to Alice and Bob. This idea was first formulated by
Ekert in [43]. Alice and Bob proceed with measuring the states they receive with random
measurements. Again, it is crucial that Alice and Bob use at least two incompatible
measurements in order to prevent Eve to always apply the correct measurement. Such
an E-B protocol is clearly less practical than a P & M protocol as a source of entangled
states is required for the protocol to work. Note that entanglement is necessary and that
bipartite separable states are not sufficient to perform QKD with an E-B protocol.

While being conceptually quite different, it appears that E-B and P & M protocols
are in fact equivalent from a theoretical point of view. In particular, they are (theoreti-
cally) equally secure. We now prove that any P&M protocol can be associated with an
equivalent E-B protocol. Let us consider a generic P&M protocol where Alice sends the
(pure) state |φk〉B to Bob with probability pk for k ∈ {1, · · · ,K}. This is equivalent to
an E-B protocol where Alice produces the following state |ψ〉AB:

|ψ〉AB =

K
∑

k=1

√
pk|k〉A|φk〉B (3.3)

where the family {|k〉}k∈{1,··· ,K} forms an orthogonal basis of the Hilbert space HA.
Then Alice can simply perform the projective measurement {|1〉〈1|, · · · , |K〉〈K|} on HA.
She will obtain the result k with probability pk, thus effectively preparing the second
half of the state in |φk〉B. From Eve and Bob’s points of view, this E-B scheme is
genuinely undistinguishable from the original P&M protocol. For this reason, the two
protocols share the same security properties and the security of the P&M protocol can
be established by considering the one of the E-B protocol.

However, the practical implementations of both schemes are rather different, and
E-B protocols might be more resistant to potential side-channels, which are basically
discrepancies between the theoretical model and the practical implementation. More
precisely, a side-channel is present each time that some information about the raw key
is encoded in degrees of freedom not considered in the theoretical model. This amounts
to wrongly assess the dimension of the relevant Hilbert space HA ⊗ HB describing the
protocol. For instance, if different lasers are used to generate the different states sent by
Alice in a P&M protocol, these lasers should be in principle rigorously identical. It might
unfortunately be the case that they have a slightly different wavelength, in which case
the eavesdropper can use a grating to distinguish the different wavelengths and acquire a
complete information about the state sent by Alice without destroying information in a
noticeable way for Alice and Bob. Other potential side-channels exist besides frequency,
for instance the timing of the detectors. Usually, there exists a counter-measure for each
side-channel, but it is difficult to be sure that every possible side-channels are taken into
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account in a given implementation (see the “Black paper of quantum cryptography” [135]
for a more detailed discussion). The bottom-line is that one cannot in principle prove
that all side-channels are taken into account in a P&M protocol whereas it might be the
case in some E-B protocols, in particular, for device-independent protocols [1, 119].

Hence, one should be careful when using the equivalence between P&M and E-B pro-
tocols. A fundamental hypothesis in order to write |ψ〉AB is that the number of different
states sent by Alice in the P&M version is indeed K. This hypothesis is unfortunately not
valid as soon as there are side-channels not accounted for. In this case, the state given
by Eq. 3.3 does not correspond to an effective purification of the experimental P&M
protocol, and the security proof becomes consequently invalid. The idea behind device-
independent cryptography is to use properties that are independent of the dimension of
HA ⊗ HB to prove that the correlations of Alice and Bob can be use to extract some
secret. Such a dimension-independent property is for instance given by the violation of
a Bell inequality.

To summarize the principle of a QKD protocol, Alice and Bob exchange non or-
thogonal quantum states, thus preventing an adversary from measuring them without
introducing some errors, that is, some noise. If this noise level is sufficiently low (as
determined in the parameter estimation phase), then with high probability, Alice and
Bob quantum states (or data) or more correlated than with the eavesdropper quantum
states. In information-theoretic terms, this means roughly that the mutual information
between Alice and Bob is provably higher than the mutual information between Eve and
either Alice or Bob. Then, using a reconciliation procedure and a privacy amplification
step, it is possible to distill a secret key (i.e. a bit string shared by Alice and Bob which
appears to be uniform from anybody else’s point of view, except with a probability ǫ for
an ǫ-secure key). For this reason, any sensible QKD protocol works for a certain regime
of noise9, which is in sharp contrast with the situation of cryptographic protocols such
as bit commitment for instance where no scheme can actually work (see Chapter 8 for
a discussion about quantum bit commitment). Obviously, the real challenge is to link
the correlations between Alice and Bob to an upper bound on the eavesdropper informa-
tion. For this reason, only a few QKD protocols have be proven unconditionally secure10.
Quite fortunately, these protocols turn out to be efficient and practical. The formalism
used to prove the security of QKD was mainly introduced by Renato Renner [124]. We
now give a quick overview of this formalism.

3.2 Security analysis of QKD

Here we briefly present the general formalism which allows for a derivation of the secret
key rate of a given QKD protocol. We use the same notations than before and note l the
size of a secret key and N the number of quantum signal exchanged during the protocol.

9In fact, it was proven by Bennett [12] that any two non-orthogonal states were sufficient to allow for
secure QKD.

10In general, these are very simple protocols displaying a fair amount of symmetries.
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Thus, the secret key rate K is just the ratio between these two quantities:

K ≡ l

N
. (3.4)

Note that this convention is as general as possible, and is compatible with a finite-size
analysis. A more restricted scenario is concerned with asymptotic analysis for with one
can define an asymptotic secret key rate Kasympt:

Kasympt ≡ l

n
, (3.5)

where n is the size of the raw key (that is once parameter estimation and possibly sifting11

have been done).
Here, we restrict the analysis to one-way post-processing consisting of reconciliation

and privacy amplification. In such protocols, the reconciliation scheme must be unidirec-
tional12: it can be either direct, in which case Alice will help Bob correct his errors and
guess the value of Xn which will be used for privacy amplification, or reverse in which
case Alice and Bob’s roles are inverted. In the following, we use the notations for reverse
reconciliation as it is the one relevant for continuous-variable QKD.

The formula for the number of ǫ-secure secret key bits l was established in [124] and
is given by

l = H ǭ
min(Y

n|En) − leakrec − 2 log2

1

2(ǫ− ǭ− ǫrec)
, (3.6)

for some ǭ ≥ 0. In this expression, leakrec corresponds to the number of bits carrying
information about Y n that need to be transmitted over the public channel during the
reconciliation procedure, and ǫrec is the failure probability of the reconciliation, that is,
the probability that Alice makes a wrong guess about Y n.

Thus, the secret key rate of a QKD protocol is known as soon as one can estimate
the smooth min-entropy H ǭ

min(Y
n|En). Unfortunately, this turns out to be a rather

complicated task, and one usually prefers to consider the much simpler problem where
one restricts the adversary to perform collective attacks. For such a collective attack, the
bipartite state ρANBN ∈ (HA ⊗HB)⊗N takes a simple form:

ρANBN =

∫

dσAB p(σAB)σ⊗N
AB , (3.7)

11Sifting corresponds to the action of discarding the data that have been measurement in incompatible
bases by Alice and Bob.

12Note that one-way post-processing, which simplifies the security proofs of most QKD protocols, and
is even required for some continuous-variable schemes, was not used in early implementations of QKD
protocols. In particular, the reconciliation step would often be interactive meaning that Alice and Bob
would alternatively send information to each other to correct the discrepancies between their classical
data. Such a reconciliation protocol used the algorithm “Cascade” developed in 1994 by Brassard and
Salvail [19]. One-way reconciliation protocols were introduced more recently, especially in the context of
continuous-variable QKD [14, 91, 89] and make an intensive use of powerful error correction techniques
such as low-density parity-check (LDPC) codes [132]. Such codes can also be of benefice for discrete-
variable QKD as they perform better than Cascade for most relevant situations [44].
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where p(σAB) is a probability distribution on HA ⊗ HB. Such a state is called an in-
dependent and identically distributed (i.i.d.) state. It turns out that the assumption
of collective attacks, in addition to be mathematically convenient, is actually quite rea-
sonable from the security point of view. It can indeed be shown that for most QKD
protocols, collective attacks are optimal in the asymptotic regime. The interested reader
is referred to Chapter 6 for a more detailed description of the relation between general
(coherent) attacks and collective attacks.

In the case of a collective attack, the quantity H ǭ
min(Y

n|En) can be lower bounded
by [124]:

H ǭ
min(Y

n|En) ≥ n

(

min
σȲ Ē∈Γ

S(Ȳ |Ē) − (2Hmax(ρY ) + 3)

√

log2(2/(ǭ− ǭ′)/2)

n

)

, (3.8)

for any ǭ ≥ ǭ′. In this formula, Γ is a set of quantum states compatible with the
statistics obtained during the parameter estimation procedure, except with probability
ǭ′. Characterizing the set Γ is the challenging task required for a finite-size analysis of
the security of QKD. Until recently, people preferred to consider the asymptotic analysis
where Γ is a set of measure 0 supposed to be perfectly known. Unfortunately, this
assumption is quite strong and not justified for actual implementations. This has led to
pessimistic results concerning the real security of QKD implementations [137]. A finite-
size analysis of continuous-variable QKD can be found in Chapter 7 of this manuscript.

Let us now consider the security of QKD against collective attacks in the asymptotic
limit. In this case, the leakage leakrec/n per symbol can become arbitrarily close from
the Shannon limit H(Y |X) given by the channel coding theorem. As a consequence, in
this scenario, one recovers the result of Devetak and Winter [38]:

Kasymp
coll = S(Y |E) −H(Y |X), (3.9)

which can also be written as

Kasymp
coll = I(X;Y ) − S(Y ;E) (3.10)

where S(Y ;E) is the Holevo information between the classical variable Y and the quan-
tum state ρE if the adversary.

With the exception of Chapters 6 and 7, we are mainly interested in the asymptotic
secret key rate secure against collective attacks in the manuscript. For this reason, when
the context is clear, we shall note this quantity K instead of Kasymp

coll . Another remark
concerning notations is that the classical variable resulting from Alice’s (resp. Bob’s)
measurement is noted either X or a (resp. Y or b).

3.3 Continuous-variable QKD

The idea of continuous-variable QKD is to use a different support of information to
encode the key: instead of working in the Bloch sphere of a two-level system13, one

13or any low-dimensional generalization
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prefers to exploit degrees of freedom in phase space. The main consequence of this choice
is that CV QKD and DV QKD involve different measurement stages: homodyne (or
heterodyne14) for continuous-variable protocols instead of photon counting techniques
for discrete-variable protocols. The main advantage of CV QKD is thus to use only
standard telecom components (such as PIN photodiodes) that are much more mature
from a technological point of view than single photon detectors whose primary use is
QKD. A review on continuous-variable QKD can be found in [26].

3.3.1 General presentation of continuous-variable protocols

The idea of CV QKD is to encode information in phase space. To do so, Alice and Bob
will exchange quantum states whose Wigner functions are peaked near specific values
in phase space. Indeed, in a Prepare & Measure protocol, Alice will send states from a
family {|φ1〉, · · · , |φK〉} with K possibly equal to +∞ such that the Wigner function of
|φk〉 is peaked around the complex value αk ∈ C. Depending on whether Bob performs
an homodyne or an heterodyne detection, he will have access to an estimate of Re(αk),
Im(αk) or both values. Many families of quantum states satisfy this condition. However,
an important requirement for a QKD protocol is to be practical. In particular, the
quantum states |φk〉 should be easy to generate. For this reason, the states usually
considered are Gaussian states:

• coherent states |α〉 which are the states of minimum uncertainty around their mean
α ∈ C,

• squeezed states which can be chosen to have a well-defined quadrature (at the
expense of the other quadrature).

It would seem that squeezed states are well suited for protocols involving a homodyne
detection whereas coherent states are more natural for protocols with a heterodyne detec-
tion. Fortunately, it turns out that coherent states (that are much easier to generate than
squeezed states) are also compatible with protocols involving only a homodyne detection
(which is at least twice as easy to implement than a heterodyne detection!). Historically,
squeezed states were considered for CV QKD as they were facilitating the derivation
of security proofs, but they are not used anymore as QKD schemes based on squeezed
states are not practical enough. For this reason, in the following, we only consider QKD
protocols encoding information on coherent states.

There are two families of CV QKD protocols (using coherent states) but the distinc-
tion between them somewhat drifted during the last few years. To be more precise, a
family of CV QKD protocols is characterized by a specific theoretical framework that
can be used to study the security of the protocols in question. In particular, some proof

14in the context of CV QKD, an heterodyne detection refers to a simultaneous measurement of both
quadratures of an optical mode in phase space. Obviously, such a measurement is forbidden by quantum
mechanics, but can nevertheless be implemented at the cost of adding 3 dB of noise: a balanced beam-
splitter is used to send the two halves of the signal to two homodyne detection stages, each of which
measuring a different quadrature.
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techniques can be used to compute the secret key rates of some but not all CV QKD
protocols. Until recently, the border between the two classes of CV QKD protocols
was concerned with the modulation: some protocols use a Gaussian modulation whereas
other use a discrete modulation15. The reason for it is that a specific framework had
been developed to study protocols with a Gaussian modulation, and that protocols with
a discrete modulation did not seem to be compatible with this framework. However, we
recently managed to analyze protocols with a discrete modulation within this framework
(see [93] and Chapter 5 of this manuscript for details), thus erasing the frontier between
the two kinds of protocols. It is interesting to note that not all CV QKD protocols can
yet be analyzed within this framework. This thus gives rise to a new distinction, specifi-
cally between protocols using or not a postselection procedure16. In this manuscript, we
will restrict ourselves to protocols without postselection.

Before going further in the description of CV QKD protocols, let us emphasize that
there are two types of results (or bounds) one could be interested in:

• lower bounds on the secret key rate: such bounds are the most pessimistic and give
a conservative estimate of the secret key rate.

• upper bounds on the secret key rate which are derived for a specific attack. Such
bounds study the security against particular attacks, and do not guarantee uncon-
ditional security.

The ultimate goal is obviously to have the two kinds of bounds coincide. This would
mean that the optimal attack against a protocol is known and that tight bounds on the
secret key rate are established. In the case of CV QKD with a Gaussian modulation,
an heterodyne detection and without postselection procedure for instance, the (known)
upper and lower bounds only coincide in the case of individual attacks [98, 151].
In this manuscript, we are mainly concerned with lower bounds on the secret key rate.

3.3.2 A brief history of CV QKD protocols: from EPR states to coherent
states

Before starting the study of CV QKD and especially its security, it is interesting to give
an historical perspective.

The first QKD protocols were all designed to work with single photons. However,
as such states are not very easy to produce, they were quickly replaced by attenuated
coherent states as a first approximation. An interesting question was then to see if
specific QKD protocols could be built to intrinsically work with such states. Because

15obviously, for any practical implementation, any modulation scheme only uses a finite number of
states. This is due to the limited precision of both the random number generators and the modulators.
However, in this case, the number of possible inputs is much larger than the one for a discrete-modulation
scheme which usually requires 2 or 4 different coherent states.

16Postselection refers to the fact that Alice and Bob might discard some of their data in the case
where they fail to satisfy some condition. Such a condition might be that the result of Bob’s homodyne
detection should have an absolute value greater than some predetermined threshold.
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coherent states are not orthogonal, it was known that the answer was positive [12], but
how practical such schemes might be was unknown.

The first proposals for continuous-variable QKD were based on EPR-like entangle-
ment [122], [123] [9], [107], [143] and consequently not very practical. Other ideas con-
cerned P&M protocols [70], [58] which used a discrete modulation and [27] with a Gaus-
sian modulation. Note that [27] was the first paper to introduce a protocol where Bob
performs an homodyne detection and uses the variance of the excess noise to upper bound
Eve’s information thanks to Shannon information theory with continuous variables. This
technique was using results concerning cloning machines for continuous variables [25].
Unfortunately, these protocols were all relying on squeezed states which are still signifi-
cantly harder to generate than coherent states. In particular, the secret key rate of the
protocol [27] drops to 0 in the limit where the squeezing disappears.

The first protocol which made used of coherent states was introduced in 2002, and
the main new idea consisted in modulating both quadratures simultaneously [64]. In this
protocol, Alice sends coherent states modulated with a Gaussian distribution to Bob who
chooses randomly to perform an homodyne detection on either one of the quadratures.

This protocol, while being much more practical than previous proposals, still suffered
from an important drawback: it was limited to losses below 3 dB. Indeed, for higher
losses, Eve’s knowledge concerning Alice’s state is necessary higher than Bob’s knowl-
edge, thus preventing the distillation of any secret. This 3 dB limit was beaten the
following year by two new proposals: reverse reconciliation [60], [61] and postselection
[144]. Reverse reconciliation means that the secret key is derived from Bob’s measure-
ment results instead of Alice’s. Postselection consists for Alice and Bob to discard some
data that are too noisy, and thus only keep the data for which Eve was unsuccessful to
acquire more information than Bob.

3.3.3 The GG02 protocol

There are many continuous-variable QKD protocols being studied today. These protocols
can all be seen as variations around the GG02 protocol, which was the first protocol
using coherent states only. In the following, we call GG02 the protocol where reverse
reconciliation is used. We now give a detailed description of this protocol.
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The GG02 protocol

1. Alice draws 2N random variables according to a centered normal distribution
with variance VA:

q1, p1, · · · , qN , pN ∼ N (0, VA). (3.11)

Then, she sends the N coherent states |q1 + ip1〉, · · · , |qn + ipN 〉 to Bob through
the quantum channel.

2. For each state, Bob randomly chooses a quadrature q or p and performs an
homodyne detection along this quadrature. He obtains N classical variables
y1, · · · , yN . Bob informs Alice of his choice of quadratures. Alice keeps only the
relevant data for each state, either qi or pi and notes it xi. At this points, Alice
and Bob share N couples of correlated classical variables (x1, y1), · · · , (xN , yN ).

3. Alice and Bob randomly choose a subset of m indices {i1, · · · , im} ∈ {1, · · · , N}
and reveal publicly there corresponding data (xi1 , yi1), · · · , (xim , yim). From
these data, they perform a parameter estimation for the transmission T and the
excess noise ξ of the quantum channel. More precisely, the parameter estimation
allows Alice and Bob to upper bound Eve’s information (see Chapter 7).

4. After the estimation phase, Alice and Bob still share two n-dimensional corre-
lated vectors X and Y where n = N −m.

5. In the reverse reconciliation phase, the goal is for Alice and Bob to agree on a
common bit string U . This reconciliation is achieved thanks to error correction
techniques very similar to those that are widely used in the telecom industry.
A subtlety here is that the reconciliation is reverse, meaning that only Bob can
send classical information to Alice. This is precisely one of the difficulties of
continuous-variable QKD. This problem is extensively addressed in Chapters 4
and 5.

6. After the reconciliation step, Alice and Bob share a common binary vector U .
Obviously, U is not completely secret and does not constitute a secret key. The
extraction of the key is done through the final step of the protocol which is the
privacy amplification. This step is the same as for any other QKD protocol,
thanks to two-universal hashing: Alice and Bob choose randomly a hashing
function that takes U as input and outputs a secure key of size l (where l is the
secret key size computed thanks to the parameter estimation).

Variations around the GG02 protocol. There are many ways to tweak the GG02 proto-
col in order to potentially improve performances. We now discuss such possible variations

Modulation. In the original GG02 protocol, Alice uses a Gaussian modulation. Some
alternative protocols consider a discrete modulation. In Chapter 5, we will see that a dis-
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crete modulation can be beneficial as the reconciliation procedure is simplified. However,
the security proofs are specifically designed for a Gaussian modulation and generalizing
these proofs for protocols with a discrete modulation was one of the achievements of this
thesis (see Chapter 5 for details).

Detection. In the GG02 protocol, Bob performs an homodyne detection. However, the
protocol can be easily modified to allow for an heterodyne detection where Bob measures
both quadratures. Such an heterodyne detection is a slightly more involved to implement
but can be beneficial in terms of performances (see Appendix B for details).

Postselection. An other possible variation around the GG02 protocol is to perform a
postselection. Intuitively, it sounds as a good idea: Alice and Bob discard the data
that are too noisy, and only keep the good data for which Eve has presumably only
little information. Unfortunately, it is very difficult to establish general security proofs
compatible with postselection. All proofs presently known require a complete tomography
of the states received by Bob. This means that an infinity of parameters need to be
estimated! In theory, this is always possible in the asymptotic limit, but it is clearly
incompatible with any experiment which involves the exchange of only a finite number
of quantum states. For this reason, we do not consider postselection in this thesis.

3.3.4 Security of CV QKD

The GG02 protocol is proven secure against collective attacks [51, 106] and the corre-
sponding lower bound on the secret key rate has recently been shown to hold asymp-
totically against coherent attacks [127]. The security proof against collective attacks is
based on the optimality property of Gaussian states and is reviewed here. Note that
Gaussian attacks have always played a central role for continuous-variable QKD proto-
cols. A first result showing that one only needed consider such attacks (in the case of
protocols without postselection) could already be found in [63].

The idea is to use Theorem 2.2 to bound the Holevo information between Eve and
Bob. As we saw in the previous Section, the secret key rate Kcoll secure against collective
attacks is given by:

Kcoll = I(a; b) − S(b;E). (3.12)

Here we use lowercase letters to describe classical variables (such as the measurement
results a and b of Alice and Bob, respectively) and uppercase letters to describe quantum
states (such as the quantum system E of Eve). As we will see in Chapter 4, the effect
of an imperfect reconciliation procedure can be summarized by an additional parameter
β ≤ 1, the reconciliation efficiency, which modifies the secret key rate in the following
way:

Kreal = βI(a; b) − S(b;E). (3.13)

In practice, the first term of the right side hand, βI(a; b) is directly observed in a given
implementation of the protocol. The real question is therefore to determine the value of



62 CHAPTER 3. QUANTUM KEY DISTRIBUTION

S(b;E), or at least, to be able to find an upper bound for this quantity in order to derive
a lower bound on the actual secret key rate of a given experiment.

Before explaining how this can be achieved, we would like to emphasize how counter-
intuitive it is that this can be done at all. First, it is easy to see that S(b, E) is a function
of the quantum state ρAB shared by Alice and Bob in the equivalent entanglement-based
protocol. Indeed, in such a protocol, Eve is without loss of generality supposed to hold
a purifying system of ρAB, that is, the state ρABE shared by Alice, Bob and Eve can be
considered to be pure. That said, Eve’s quantum state, ρE = trAB(ρABE) is defined up to
a unitary operation on the system E. However, the quantity S(b;E) = S(E)−S(E|b) is
left invariant under such unitaries (this is a consequence of the fact that the von Neumann
entropy is invariant under unitary operations). This means that there exists a function
f such that S(b;E) = f(ρAB).
That fact being established, let us look more closely at our problem, that is evaluating
f(ρAB) in a given experiment. There are actually two mains issues to be considered.
First, we do not know how to compute f for a generic state ρ. f can only be computed
(with today’s knowledge) for a small class of states. The reason for that is that in general,
the value of f(ρAB) is given by an optimization problem (in infinite dimension) that is
intractable except for very specific families of states. For instance, if ρAB is the singlet
state, then Eve’s quantum state can be factorized from Alice and Bob’s state, meaning
that the quantity S(b;E) is necessarily null in this case. Unfortunately, in practice, ρAB

is never a pure entangled state. Another class of states for which f can be computed
is Gaussian states, as we will see below. Unfortunately, proving that a given state is
Gaussian is impossible in practice as it would in principle require an infinite number of
copies of the state17. More generally, since we work in an infinite-dimensional Hilbert
space, it is not reasonable for a proof to require a perfect tomography of the state of Alice
and Bob18. Note however that the restriction to collective attacks considerably simplifies
the analysis as the state ρAB describing Alice and Bob’s respective N systems can be
written as ρAB =

∫

dσAB p(σAB)σ⊗N
AB . Even with this restriction to collective attacks, it

does not seem reasonable to assume that Alice and Bob have a perfect knowledge of the
quantum state ρAB they share. In these conditions, it might appear quite lucky that we
can indeed find an upper bound to the quantity S(b;E), even considering an imperfect
knowledge of ρAB.

The solution to our problem is brought by Theorem 2.2. It can indeed be shown that
the function f : ρAB 7−→ f(ρAB) = S(b;E) satisfies the hypotheses of Theorem 2.2. Let
us now check these different hypotheses.

(i) Continuity. First, for two quantum states ρAB and σAB such that ||ρAB−σAB||1 ≤
ǫ, there exist respective purifications ρABE and σABE such that ||ρABE −σABE ||1 ≤ 2

√
ǫ.

17this is exactly the problem encountered when deriving the security of CV QKD protocols with
postselection. Such security proofs always assume that the state ρAB is Gaussian [68] but this can never
be completely checked in practice.

18the situation is different for discrete-variable QKD protocols where the Hilbert spaces considered
usually have a small dimension, and where performing a tomography of the state is a reasonable demand.
However, we will see in Chapter 7 that this task is not as benign as it looks in the case of a finite size
analysis of the security.
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Thus, since f does not depend on the choice of purification of ρ, it is sufficient to prove
the continuity of f(ρABE) to infer that of f(ρAB). Here, we keep the same notation
to represent S(b;E) whether we consider this Holevo information to be a function of
ρAB or ρABE . Since partial trace can only decrease the trace norm, it follows that
||ρBE − σBE ||1 ≤ 2

√
ǫ and ||ρE − σE ||1 ≤ 2

√
ǫ. Moreover, the homodyne detection

performed by Bob being a quantum operation, it can also only decrease the trace norm,
meaning that ||ρbE − σbE ||1 ≤ 2

√
ǫ. Finally, one needs to use a continuity argument for

the von Neumann entropy. Unfortunately, it is known that the von Neumann entropy
is discontinuous almost everywhere in an infinite dimensional Hilbert space. In order
to restore the continuity of this functional, one can for instance bound the energy of
the system in order to make the set of states compact (see for example Proposition 6.6
of [112]). Note that requiring the energy of the system to be bounded appears as a
reasonable assumption. On the compact states of bounded energy, the von Neumann
entropy is therefore continuous and so is the quantity S(b;E) = S(E) − S(E|b). This
concludes the proof of the continuity of f .

(ii) Strong sub-additivity. Here we follow the same steps as in [50, 51]. The goal is
to show that f(ρA1B1 ⊗ ρA2B2) = f(ρA1B1) + f(ρA2B2) (additivity) and f(ρA1B1A2B2) ≤
f(ρA1B1) + f(ρA2B2) where ρA1B1 = trA2B2(ρA1B1A2B2) and ρA2B2 = trA1B1(ρA1B1A2B2)
(strong sub-additivity). Let us consider the case where Alice and Bob share a bipartite
state ρA1B1A2B2 and Eve holds a purifying system E such that ρA1B1A2B2E is pure. One
has:

f(ρA1B1A2B2) = S(b1, b2;E) (3.14)

= S(b1, b2) − S(b1, b2|E) (3.15)

= S(b1, b2) − S(b1|b2E) − S(b2|b1E) − S(b1; b2|E). (3.16)

Now, using the following basic properties of the von Neumann entropy,














S(b1, b2) ≤ S(b1) + S(b2)
S(b1|b2E) ≥ S(b1|A2B2E)
S(b2|b1E) ≥ S(b2|A1B1E)
S(b1; b2|E) ≥ 0

(3.17)

one gets:

f(ρA1B1A2B2) ≤ S(b1) − S(b1|A2B2E) + S(b2) − S(b2|A1B1E). (3.18)

Finally, observing that the system E1 ≡ A2B2E (resp. E2 ≡ A1B1E) purifies A1B1

(resp. A2B2), one obtains

f(ρA1B1A2B2) ≤ S(b1;E1) + S(b2;E2) = f(ρA1B1) + f(ρA2B2), (3.19)

which is the strong sub-additivity. The additivity of f results from the additivity of the
von Neumann entropy. This concludes the proof of the strong sub-additivity of f .

(iii) Invariance under unitaries. The crucial point here is that in order to prove
Theorem 2.2, it is not necessary to show the invariance of f under any unitary U . It



64 CHAPTER 3. QUANTUM KEY DISTRIBUTION

is sufficient to consider the Gaussification unitary operation UG which is the Gaussian
operation acting on the quadratures [x1, · · · , xN ]T (with N = 2m) in the following way:







x1
...
xN







out

=

(

1√
2

1√
2

1√
2

− 1√
2

)⊗m






x1
...
xN







in

(3.20)

Such a Gaussification unitary operation does not mix the different quadratures and thus
commutes with the measurement process of the CV QKD protocol. Hence it leaves the
quantity S(b;E) invariant.

This concludes the proof that the quantity f(ρAB) = S(b;E) satisfies the hypotheses
of Theorem 2.2. As a consequence, one has:

f(ρAB) ≤ f(ρG
AB), (3.21)

which means that the quantity S(b;E) can be bounded by the same quantity computed
for the Gaussian state ρG

AB with the same first and second moments as ρAB. In fact, it
turns out that the Holevo information between b and E computed for such a Gaussian
state does not depend on the first moment of ρAB.

Two things are left to do in order to complete the security proof of the protocol
against collective attacks. First, one needs to show how to compute S(b;E) in the case
where ρAB is Gaussian. Second, one needs to be able to derive the covariance matrix
ΓAB of the state ρAB from the data obtained in the Prepare and Measure version of the
protocol.

Before addressing these two tasks, we would like to come back on the notion of
optimality of Gaussian attacks often found in the literature. What we proved above
is that is is always safe to assume the state ρAB to be Gaussian. This statement is
equivalent to the optimality of Gaussian attacks, meaning that the quantum channel
is Gaussian, only if the initial state is Gaussian. Obviously, this is the case in the
GG02 protocol as Alice uses a Gaussian modulation (or equivalently, Alice uses two-
mode squeezed states in the entanglement-based protocol). However, in the case where
Alice does not use a Gaussian modulation, the result we proved is different from saying
that the optimal attack is Gaussian. We will elaborate on this in Chapter 5 when we
introduce and prove the security of a continuous-variable QKD protocol using a discrete
(non Gaussian) modulation.

3.3.5 Estimation of the covariance matrix in the entanglement-based pro-
tocol from data observed in the Prepare and Measure protocol

The first link between the GG02 P&M protocol and its equivalent E-B protocol was
established in [59]. The main idea is to describe two different protocols, which are
completely identical from Bob and Eve’s points of view: only the task performed by Alice
differs, but her final classical data are the same for both protocols. For this reason, the
protocols are indistinguishable and the secret key rate valid for one of them is also valid
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for the other one. One of the protocols, the Prepare and Measure version, corresponds to
GG02 as it is implemented in practice. However, its security analysis is rather involved.
On the other hand, the Entanglement-Based version of the protocol is not implemented
in practice, mostly because it is less practical, but turns out to be easier to analyze
because it involves an entangled, bipartite state shared by Alice and Bob. Since both
protocols are equivalent, there is no advantage to implement the E-B version, and it is
sufficient to implement the P&M version.

In the P&M version of the GG02 protocol, Alice encodes information in the quadra-
tures X and P of coherent states. The random variables X and P are drawn according
to a Gaussian distribution of variance VA: X,P ∼ N (0, VA).
In the E-B version, Alice starts with a two-mode squeezed state |ψ〉 with covariance
matrix Γ given by

Γ =

(

V ✶2

√
V 2 − 1σz√

V 2 − 1σz V ✶2

)

(3.22)

where V = VA + 1. Then she performs an heterodyne detection on the first half of

the state, thus preparing a coherent state centered on
√

2(V 2−1)

V +1 (XA,−PA) if Alice’s
measurements were (XA, PA), according to equation 2.108.

At the end of the quantum exchange, Alice and Bob perform a parameter estimation
which is done by analyzing m pairs of correlated data (xi, yi)1≤i≤m where yi refers to
the quadrature measurement of Bob and xi refers to the corresponding value of Alice’s
quadrature. As we saw, for continuous-variable QKD, it is sufficient to estimate the
covariance matrix ΓAB of the state shared by Alice and Bob. In fact it turns out that
only two parameters need being estimated:

• the variance on Bob’s side 〈y2〉,

• the correlation between Alice and Bob’s data 〈xy〉.

Why are these two parameters the only ones to be estimated? One could have expected
to know the 10 parameters describing a general 4 × 4 covariance matrix. The answer is
that Alice and Bob could add a symmetrization procedure to the protocol to ensure that
ΓAB is of the form

ΓAB =

(

V ✶2

√

T (V 2 − 1)σz
√

T (V 2 − 1)σz (1 + T (V − 1) + Tξ)✶2

)

(3.23)

This symmetrization procedure is explained in more details in Chapter 6 as well as in
Reference [90]. It is interesting to note that the assumption that only two parameters
were required was done for many years without any theoretical justification. As we will
see in Chapter 6, symmetrization is a very powerful tool for the security analysis of QKD
protocols.

We directly wrote the matrix ΓAB in the form of 3.23 because it makes the connection
with the observed transmission T and excess noise ξ of the quantum channel. T and ξ
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are linked to 〈x2〉, 〈y2〉 and 〈xy〉 through










V = 〈x2〉 + 1

T = 〈xy〉2
〈x2〉2

1 + T (V − 1) + Tξ = 〈y2〉
(3.24)

In order to compute the secret key rate of the continuous-variable QKD protocol, one
needs to upper bound S(b;E), which can be done by computing the value for the Gaussian
state with the same covariance matrix. Therefore, one needs to compute S(b;E) for the
Gaussian state with covariance matrix ΓAB:

S(b : E) = S(E) − S(E|b) (3.25)

= S(AB) − S(AB|b), (3.26)

since the system E can be considered without loss of generality to be a purifying system
for AB. The quantities S(AB) and S(AB|b) can be easily computed from the symplectic
eigenvalues ν1, ν2 of ΓAB and ν3 of ΓAB|b where ΓAB|b is the covariance matrix of Alice’s
mode, given Bob’s result of the homodyne measurement of say, quadrature x:

ΓAB|b =

(

V − T (V 2−1)
1+TV +Tξ 0

0 V

)

. (3.27)

The symplectic eigenvalues are given by:

ν2
1 =

1

2

[

∆ +
√

∆2 − 4D
]

(3.28)

ν2
2 =

1

2

[

∆ −
√

∆2 − 4D
]

(3.29)

ν2
3 = V

(

V − T (V 2 − 1)

1 + T (V − 1) + Tξ

)

, (3.30)

where one defines

∆ = V 2 + (1 + T (V − 1) + Tξ)2 − 2T (V 2 − 1) (3.31)

D =
(

(1 + T (V − 1) + Tξ)V − T (V 2 − 1)
)2
. (3.32)

Now, recall the expression the expression of the entropy of a Gaussian state as a function
of its symplectic eigenvalues, one obtains:

S(b;E) = g

(

ν1 − 1

2

)

+ g

(

ν2 − 1

2

)

− g

(

ν3 − 1

2

)

, (3.33)

where the function g is defined as

g(x) = (x+ 1) log2(x+ 1) − x log2 x. (3.34)
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3.3.6 Paranoid versus realistic mode

The derivation described above corresponds to the so-called paranoid mode, that is, all
the sources of excess noise are attributed to a potential attack of the eavesdropper. In
a particular implementation, however, the main source of excess noise is the electronic
noise associated to the homodyne detection. Whereas this electronic noise can be made
very low in state of the art experiments [48], it is still the main source of noise in a
typical experiment. This is rather problematic as it considerably decreases the secret key
rate associated the the QKD protocol, while at the same time, it seems very reasonable
to suppose that this noise is not signature of a particular attack of an eavesdropper.
The following question then naturally arises: can we consider that the electronic noise
is legitimate, meaning that it is entirely caused by Bob’s equipment and is therefore not
associated with any leak of information to the eavesdropper? To answer positively to
this question requires to be able to track perfectly any source of such legitimate noise. In
particular, it means that Alice and Bob’s devices should be calibrated. The question of
paranoid versus realistic mode then boils down to the problem of calibrating the devices
used for the QKD protocol. Here we can consider three possible scenarios:

• the device independent scenario, which is by far the most pessimistic one. In this
case, Alice and Bob buy all there equipment from the eavesdropper and cannot
trust it at all. The only assumptions necessary are hardly the obvious ones without
which cryptography would not even make sense, that is, that the eavesdropper
cannot read Alice and Bob’s data, and does not have any influence on the choices
of measurements performed by Alice and Bob. A more comprehensive discussion
of these hypotheses can be found in [119]. For this scenario to work, one needs
to rule out any local hidden variable model for the experiment performed by Alice
and Bob. Quite astonishingly, this is possible at the (expensive) price of being able
to perform a loophole-free Bell test. It is important to note that such a test has
not yet been performed but it is reasonable to think that it should be doable in the
next few years [113]. However, even if this is a fascinating theoretical scenario19 ,
it is absolutely not practical! If only such a scenario existed, QKD would hardly
be more than just a theoretical curiosity.

• the uncalibrated scenario, which is the scenario usually considered for most discrete-
variable QKD protocols. In such a scenario, Alice and Bob trust their devices,
meaning that they know what their device do, and measure. However, any imper-
fection of the devices is seen as the signature of the eavesdropper. For instance,
the dark counts of a photon counter are seen as errors which are attributed to the
malicious action of the eavesdropper. One should emphasize that when talking
of calibrated or uncalibrated scenarios, one mostly refers to the behavior of the

19one should point out, however, that the unconditional security of device-independent QKD has not
been established yet. So far, only security against collective attacks could be proven, and the usual tools
(such as the exponential de Finetti theorem) to prove the asymptotic optimality of collective attacks
do not work for such a scenario because one cannot easily bound the dimension of the Hilbert spaces
relevant to describe the protocol.
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detection stage, and not so much to Alice’s device. The position of considering an
uncalibrated scenario is therefore somewhat ambiguous as one does not completely
trust the detection stage (meaning that some legitimate errors, induced by dark
counts for instance, are conservatively attributed to Eve) but one trusts the prepa-
ration stage on Alice’s side, in particular, ruling out various side-channels, that
is relevant information encoded in degrees of freedom not explicitly relevant to a
particular QKD protocol. Note also that an uncalibrated scenario does not make
sense in the case of a continuous-variable QKD protocol20 . The reason for that
is that there is always a legitimate source of noise in a CV QKD protocol: shot
noise. Moreover, this shot noise necessarily needs being calibrated, meaning that
Bob always needs to perform some calibration of his detection stage.

• the calibrated scenario, in which Bob supposedly knows how his detection stage
works. In particular, he knows the level of legitimate noise generated by his de-
tectors. Therefore, there is no reason to attribute this noise to the action of an
eavesdropper, and this allows for a significant improvement of the real performance
of a QKD protocol. To be more precise, the secret key rate is roughly given by
the difference between the mutual information between Alice and Bob and the
information acquired by Eve on the key. In any of the three scenarios considered
above, the mutual information between Alice and Bob is the same21, but significant
differences appear when evaluating Eve’s information. This consequently greatly
impacts the secret key rate of the protocol.

For a more comprehensive discussion concerning the calibrated versus uncalibrated sce-
narios, the interested reader is invited to consult the recent review by Scarani et al [136].

As we just saw, in the case of a continuous-variable QKD protocol, it does not make
much sense to consider an uncalibrated scenario as one needs to calibrate the shot noise
anyway, and this is why we can legitimately consider the calibrated scenario, that is the
realistic one. In order to do that, one must be able to calibrate Bob’s detectors and to
model their imperfections in order to put an upper bound on Eve’s information. For CV
QKD, this can be done by modeling the homodyne detection with two parameters: its
quantum efficiency η and its electronic noise Velec. The derivation of the mutual informa-
tion S(b;E) between Eve and Bob’s data can then be done in a rather straightforward
way [97].
In the remaining of this manuscript, for the reasons pointed out above, we choose to
consider the calibrated scenario.

It is also interesting to note that various assumptions are made while studying the
security of QKD, and that it is not always clear how these assumptions compare to each
other. Among these, we can cite

20at least for all the existing CV QKD protocol, which always consider excess noise. It might however
be possible for instance to perform a loophole-free violation of a Bell inequality in the continuous-variable
context, and therefore perform a device-independent, and thus uncalibrated, QKD protocol.

21More precisely, the size of the common bit string Alice and Bob agree on at the end of the reconcil-
iation procedure is completely known.
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• calibrated vs uncalibrated,

• with or without side-channels,

• asymptotic or finite-size security analysis,

• collective or coherent attacks22.

The question of deciding which assumptions are more pertinent and can be safely be
made has not yet been solved, and is clearly a prerequisite for any potential commercial
application of QKD.

The problem of postselection. Here I would like to discuss rapidly CV QKD protocols
using a postselection procedure, and in particular to argue that the security proofs pre-
sented above cannot directly be applied to them. A postselection procedure [144] has
been suggested in the literature to help beat the 3dB limit that CV QKD was facing in
2002 before the concept of reverse reconciliation procedure was introduced. In a proto-
col with postselection, Bob basically announces the absolute value of his measurement
result23 and decides to throw away all the data for which this absolute value is smaller
than some threshold. Typically this threshold is chosen so that

• measurements below the threshold correspond to data such that I(a; b) ≤ S(b;E),

• measurements above the threshold correspond to data such that I(a; b) ≥ S(b;E),

where the value S(b;E) is computed for a certain class of attacks (usually Gaussian
collective attacks). By only keeping the “good” data for which Eve has less information
than Alice and Bob, one can significantly improve the performances of the QKD protocol,
in particular, its range. However, one main drawback of this procedure is that it is not
yet known to be secure, even against collective attacks. The security could only be
established so far against Gaussian collective attacks, but it is not clear at all that such
attacks should be optimal against protocols involving a postselection scheme (in contrast
with protocols without such a postselection procedure).

I would now like to explain why the protocols with a postselection procedure cannot
easily be analyzed in the framework described above. Roughly speaking, the reason is
that the entanglement-based version of the protocol is not defined in an unambiguous
way. More precisely, in order to use the same technique as before, one needs to know
the covariance matrix of the bipartite state shared by Alice and Bob in the E-B version
of the protocol, and especially, the covariance matrix corresponding to the postselected
state that will be used to distill a key. Unfortunately, the relation between this covariance
matrix ΓAB in the entanglement-based protocol is not directly related to the data observed

22in this thesis, we do not discuss the so-called individual attacks. For a definition of these attacks,
one can consult Reference [53].

23the raw key bit which corresponds to the sign of Bob’s result, being independent of the absolute
value of this result, is not compromised by this disclosure.
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by Alice and Bob in the Prepare and Measure protocol, and in particular to the values
of the second moments of these data: 〈x2〉, 〈y2〉 and 〈xy〉.

Indeed, if Bob postselects some states, he will have an influence on Alice’s state in
the entanglement-based version of the protocol. Therefore, the covariance matrix used
to calculate the secret key rate might change. Now, this means that Eve has a way
to influence the state of Alice in a protocol with postselection. Taking such effects into
account does not appear possible with current analysis tools and one is restricted to study
different class of attacks, without being capable to derive lower-bound for the secret key
rate.

If one really wants to apply the optimality of Gaussian states to analyze the security
of protocols with a postselection procedure, this can be done, but the price to pay is too
high to prove the security of key distillation over reasonable distances. Indeed, one can
upper bound the Holevo information between Eve and Bob’s data, but this needs to be
done on all the data. Unfortunately, because of the postselection, only some (typically
small) fraction f of the data are used to make a raw key. This fraction f therefore
appears as some new reconciliation efficiency coefficient, and the final secret key rate
KPS for a protocol with postselection reads

KPS = fβI(A;B) − S(b;E), (3.35)

where β is the usual reconciliation efficiency for the postselected data. This key rate is
secure against arbitrary collective attacks, but is equal to zero for any low value frac-
tion f of postselected states, thus completely annihilating the purpose of postselection.
Obviously, such a pessimistic secret key rate is not known to be tight, but has the main
advantage to consider all collective attacks, in contrast with more optimistic proofs which
only consider Gaussian attacks.

Let us conclude this section by emphasizing two points. First, the assumption of a
Gaussian attack is quite problematic from a theoretical point of view as one can never
prove that a particular finite-size attack is indeed Gaussian. This is why a theorem prov-
ing that such attacks are indeed optimal is indeed very useful. Second, when considering
protocols with postselection, it is not at all clear (even intuitively) that Gaussian attacks
should be optimal. Let us sketch a possible non-Gaussian attack: Eve can for instance
use a noiseless non-deterministic amplifier to amplify the coherent states sent by Alice.
Such an amplifier would perform the following transformation

|α〉〈α| 7−→ ρ(α) ≡ P |gα〉〈gα| + (1 − P )|0〉〈0|, (3.36)

where |α〉 is a coherent state, |g| > 1 is the amplification factor and P is the probability
of success of the amplification, and where a heralding signal identifies which term in the
output density operator ρ(α) has been produced by any particular run of the device.
Obviously, the laws of quantum mechanics forbid P to be equal to 1 as soon as |g| > 1
and the maximal allowed probability P is given by [160]

P ≤ Pmax ≡ 1 − e−|α|2

1 − e−|gα|2 (3.37)
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Eve, when the amplification procedure worked, can keep part of the amplified state |gα〉 in
her quantum memory and send the rest of the state back to Bob. When the amplification
procedure fails, Eve just sends to vacuum state |0〉 to Bob. If Alice and Bob are not
careful enough, and for example discard all the data such that Bob’s measurement has a
too low absolute value, they might not realize that Eve has been spying as for successful
amplification procedures, Eve did not add any noise to the state |α〉. Such a type of
attacks clearly indicates that even the states that fail the postselection sieve have to be
closely monitored as they can be the only trace left by a possible eavesdropper. Thus, it
is not possible to obtain any secure key rate by computing parameters only on the data
that pass the postselection step.
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Part II

Increase the range of

continuous-variable QKD
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CHAPTER 4

Reconciliation of correlated

Gaussian random variables

The goal of this chapter is to provide a way to improve the reconciliation technique of
the Grosshans-Grangier protocol (characterized by a Gaussian modulation of coherent
states), referred to in the following as GG02 [64], in the low SNR regime in order to
increase its range. Indeed, even with a state of the art experimental implementation,
the protocol can only distribute secret keys over distances less than 30 km [97, 48, 117]
and it turns out that this limitation is more a consequence of the imperfect reconcilia-
tion scheme, which is concerned with extracting all the available information from the
correlated random variables shared by the legitimate parties at the end of the quantum
part of the protocol, than of technological imperfections. To this end, we suggest a
new reconciliation scheme adapted to the GG02 protocol, than can be applied without
any modification of the hardware implementation, and without added complexity1, that
improves the range of the protocol from 30 km to 50 km2.

1it is important to note that the reconciliation procedure currently also limits the rate of the protocol.
2this reconciliation scheme was the object of a publication in Physical Review A [91] and of a confer-

ence presentation at ISIT 2008 [89].
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4.1 Figures of merit for a QKD system.

Two main technical figures of merit are usually considered for describing the performances
of a QKD system: its secret rate (usually considered at zero distance), that is how many
secret bits can be delivered by unit of time, and its range, that is the maximal distance
between the legitimate parties compatible with a positive secret rate. In fact, both these
figures of merit have been extensively used for advertising the performances of some
protocols. However, such a picture is in fact too simple, and it is much more accurate
to describe a QKD system by the entire function K = f(d) giving the secret key rate
as a function of the distance between Alice and Bob. Such a function is particularly
relevant because the working point of a given QKD protocol is never at zero distance
(where the key rate is maximum) nor at the distance where the key rate drops to zero. In
practice, the working point is intermediate between these two extremes and can only be
found when having access to the function K = f(d). Such considerations are especially
important if one wants to integrate several QKD systems in a network topology, which is
arguably the next challenge for QKD3. Such a function can be measured experimentally
for any implementation, but can also be estimated for a theoretical protocol. In order to
perform such an estimation, one must know a priori the quantum channel, which is a bit
counterintuitive as this quantum channel is usually assumed to be completely controlled
by Eve. The solution to this problem is actually rather simple: the QKD protocols are
compared for normal conditions, that is, in absence of an eavesdropper. This is rather
natural as QKD is really a means to prove the security of the key distributed and does not
allow the legitimate parties to do so in the case where an eavesdropper wants to prevent
them for communicating. More precisely, QKD is helpless against an adversary who
would cut the optical fiber between Alice and Bob for instance. The function of QKD is
to distribute secret keys when possible or to abort if the security is not guaranteed. From
this perspective, it is natural to compare QKD protocols in an optimal environment, as
they are optimized for working in these conditions.

Hence, in the case of a fiber-optics implementation, it is usual to model the quantum
channel as a typical fiber characterized by its transmission T = 10−0.02d where d is the
distance in kilometers between Alice and Bob. This is compatible with regular telecom
fibers which have losses of 0.2dB per kilometer. In the literature, the secret key rate is
either given as a function of the transmission T or of the distance d. Whereas T appears
more natural, especially because it does not depend on the specific performance of optical
fibers which is subject to improvement with time, the distance d is in fact more used as
it is more relevant for today’s applications. Indeed, it is more meaningful4 to say that
quantum key distribution can be performed over 100 km than to say that it tolerates
losses of 99%. For this reason, in this thesis, we will alway plot the expected secret key
rate as a function of the distance, for an optical fiber with losses of 0.2dB per kilometer.

Even with the previous considerations, it is not quite clear how to measure the secret

3The question of topological optimization for QKD networks has just started being studied in the
literature, and a first discussion can be found in [6].

4even if one can certainly argue that it is subjective



4.1. FIGURES OF MERIT FOR A QKD SYSTEM. 77

key rate as a function of the distance. In particular, the actual secret key rate generated
in a real implementation is often much smaller than the secret key rate expected from
the theoretical model.

As an example of this problem, let us consider typical performances of the GG02
protocol. The most recent data can be found in [48] and are summarized on Figure 4.1.
There, it is shown that (at least) four different values of the secret key rate can be used:

• the maximum theoretical secret key rate of the protocol Kmax given by

Kmax = I(A;B) − S(B;E)|perf. impl. (4.1)

where “perf. impl.” stands for perfect implementation meaning that Alice and
Bob’s boxes are ideal. In particular, the Bob’s homodyne detection is supposed to
be noiseless (absence of excess noise) and with a quantum efficiency of 100%,

• the theoretical secret key rate Kmax, noisy compatible with the non ideal character-
istics of Bob’s detection stage, but assuming an infinite amount of computational
power, meaning that the reconciliation efficiency can be considered to be 100%
(perfect reconciliation scheme) and that the post-processing of the data is instan-
taneous5

Kmax, noisy = I(A;B) − S(B;E)|noisy but fast impl. , (4.2)

• the realistic secret key rate Kreal, assuming noisy detectors, as well as realistic
computing power and therefore a necessarily imperfect reconciliation scheme char-
acterized by a finite reconciliation efficiency β, but for which the post-processing
is still considered to be much faster than the optical treatment of data:

Kreal = βI(A;B) − S(B;E), (4.3)

• and finally, the secret key rate really Kimplementation observed in an experimental
implementation of the protocol, where all the optical data cannot be processed in
real-time. This implies to add a correction factor α < 1 to the expression of Kreal

meaning that only the fraction α of the data can be processed:

Kimplementation = α (βI(A;B) − S(B;E)) . (4.4)

Actually, the situation is even more complicated than that. Indeed, we only considered
here the asymptotic security of the protocol against collective attacks. Even if collective
attacks have been proven optimal in the asymptotic regime against the GG02 protocol
[127], it is in principle crucial to take into account the finite-size effects. Unfortunately,
these effects appear to have important consequences when estimating the secret key rate.
Preliminary results in this direction for CV QKD can be found in Chapter 7.

5in fact, it is sufficient to consider that the post-processing of the data is much faster than the optical
repetition rate.
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Figure 4.1: Various secret key rates corresponding to a given QKD protocol (This figure is taken
from Reference [48]). The upper solid curve represents the maximum theoretical rate compatible
with the protocol (perfect implementation, infinite computational resources). (a) Drop in rate
due to a realistic implementation (here, effect of an excess noise of 4%). (b) Drop due to a
realistic, imperfect reconciliation scheme (here, we take an efficiency of 90% for a signal-to-noise
ratio of 3). (c) Drop due to the current impossibility to post-process all the data at the optical
emission rate. The lower solid curve is the practical achievable secret key distribution rate.

A specificity of continuous-variable QKD protocols with a Gaussian modulation and
without postselection is that taking into account the finite reconciliation efficiency has a
great impact on the performances of the scheme. It is clear from Figure 4.1 that this is the
main reason for the limited range of CVQKD. On the other hand, the effect of the slow
post-processing compared to the optical rate as only a small impact: it limits the rate
of the protocol, but this problem could easily be solved by giving a few supplementary
computers to Bob. From this perspective, the reconciliation problem is very different:
the computing power necessary to go from a finite reconciliation efficiency to a perfect
reconciliation efficiency is clearly much more than a few additional computers6. Thus it

6The only known way to achieve a perfect reconciliation efficiency is to use a random code. Unfortu-
nately, decoding such a random code appears to be a problem intractable with current technology: it is
indeed an NP-complete problem. If the celebrated P 6= NP conjecture is true, then this decoding will
always be out of reach of any classical (and even certainly quantum) technology.
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appears reasonable to be interested in the effect of a non-ideal detection stage, as well
as a non-ideal reconciliation efficiency, but the problem of the mismatch between the
optical repetition rate and the post-processing power can safely be omitted. This is the
scenario that we will consider in the rest of this manuscript.

4.2 The reconciliation problem for continuous-variable QKD

We now turn to the question of the reconciliation for a continuous-variable QKD protocol:
more precisely, Alice and Bob are given correlated random vectors and they want to
find a way to agree on a common bit string with the help of classical communication.
Obviously, to make the task more interesting, this classical communication should be kept
to a minimum as the classical channel is not private, meaning that Eve can in principle
have access to it.

Two different approaches have been presented in the literature to extract binary
information from Gaussian variables. Slice reconciliation [154, 108, 14, 153] consists
in quantizing continuous variables and then correcting errors on the resulting discrete
variables. It allows in principle to transmit more than 1 bit per pulse, and to extract
all the information available, but only if the quantization takes place in R

d with d ≫ 1,
which results in an unacceptable increase of complexity in practice. Therefore the present
protocols always use d = 1, resulting in finite efficiency, which limits the range of the
QKD to about 30 km. The second approach uses the sign of the continuous variable to
encode a bit, and it has the advantage of simplicity. It can also be efficient, at least in the
case where the signal to noise ratio is low enough, so that less than 1 bit per pulse can be
expected. But since the Gaussian distribution is centered around 0 and most of the data
have a small absolute value, it becomes difficult to discriminate the sign when the noise
is important. As a consequence, it has been proposed to use postselection [144] to get rid
of the “low amplitude” data, and keep only the more meaningful “large amplitude” data7.
However, this approach has a major drawback: since the optimal attack against such a
postselected protocol is unknown, the secret key rate can be calculated only for certain
types of restricted attacks [144, 68]. So the security is significantly weaker than the
initial non postselected Gaussian-modulated protocol, where one can use the optimality
of Gaussian attacks [51, 106] in order to prove that the protocol is secure against arbitrary
general collective attacks.

Here we are interested in the problem of extending continuous-variable QKD over
longer distances without postselection, but with proven security. This involves to keep
unchanged the quantum distribution part. The main idea is as follows: whereas Gaussian
random values are centered around 0, this is not the case for the norm of a Gaussian
random vector. Such a vector lies indeed on a shell which gets thinner and thinner as the
dimension of the space increases (see Fig. 4.2). Thus, if one performs a clever rotation

7To be more precise, the postselection idea was not introduced in order to specifically tackle the
reconciliation problem. The goal was in fact to get rid of the noisy data as they are the one for which
an eavesdropper might have more information than Bob. But it turns out that the postselection scheme
also simplifies the reconciliation procedure.
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(see Fig. 4.3) before encoding the key in the sign of the coordinates, one automatically
gets rid of the small absolute value coordinates without postselection. Whereas this effect
gets stronger and stronger for large dimensions, we will prove that we are intrinsically
limited to performing such rotations in R

8. As we will show below, this is related to the
algebraic structure of octonions. For our purpose, working in R

8 is already a significant
improvement since it allows to exchange secure secret keys over more than 50 km, without
postselection, and with a reasonable complexity for the reconciliation protocol8.
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Figure 4.2: Probability distributions χ(1), χ(2), χ(4), χ(8) of the radius of a Gaussian vector
of dimension 1, 2, 4 and 8. When the dimension goes to infinity, the distribution gets closer to
a Dirac distribution.

The rest of the chapter is organized as follows: Section 4.3 presents the link between
the reconciliation and the security of the protocol, Section 4.4 describes the reconciliation
in the case of discrete variables QKD protocols, Section 4.5 shows how to generalize this
approach to Gaussian variables protocols. The performance of the scheme is finally
analyzed in Section 4.6. The last section discusses some remaining open questions.

8in fact, there is actually a decrease of the complexity compared to slice reconciliation since here only
one LDPC code needs being decoded against two codes for usual implementations of slice reconciliation
[97].
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b)

x2 x2x2

x1 x1 x1

a) c)

Figure 4.3: Consider two successive states x1, x2 sent by Alice: the states really sent correspond
to x1 > 0, x2 > 0. Figures a), b) and c) show the four possible states Bob needs to discriminate
after Alice has sent him some side information over the classical authenticated channel. a)
corresponds to slice reconciliation [154, 14]: the four states are well separated but the Gaussian
symmetry is broken, b) corresponds to the case where the information is encoded on the sign of
the Gaussian value [144]: the symmetry of the problem is preserved but some states are very
close and thus difficult to discriminate, c) corresponds to the approach presented in this paper
where the states are well separated and the symmetry is preserved.

4.3 Reconciliation and security

The purpose of this section is to give a theoretical justification for the expression of the
secret key rate Kreal when taking into account the fact that the reconciliation procedure
applied in practice is necessarily imperfect:

Kreal = βI(A;B) − S(A;E). (4.5)

More precisely, let x and y be the classical random variables associated with the measured
quantities of the legitimate parties Alice and Bob, and let E refer to the quantum system
of the eavesdropper. It has been shown [38] that the theoretical secret key rateK obtained
using one-way reconciliation is bounded from below by

K ≥ I(x; y) − S(x;E) ≡ Kth (4.6)

if the adversary is limited to collective attacks9. Recall that S(x;E) can also be seen
as the Holevo quantity associated to the quantum measurements performed by Eve.
This secret key rate is valid for one-way reconciliation: the classical communication
between Alice and Bob is therefore restricted to be unidirectional, and not interactive.
For the protocol described above, the quantum mutual information between Bob and
Eve is smaller than between Alice and Eve. As a consequence, one will generally use

9but it was recently proven that this key rate remains valid against general attacks in the asymptotic
limit [127].
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reverse reconciliation [64]: the final key is extracted from Bob’s data, and Bob sends
extra information to Alice on the authenticated classical channel to help her correct her
“errors”. In this chapter, however, we are interested in describing a new reconciliation
scheme. It turns out that this scheme works in the same manner for both direct and
reverse reconciliations. Therefore, in order to simplify its description, we present it here
in the context of direct reconciliation, but it could be applied without modification for a
reverse reconciliation. However, the theoretical justification for the reverse reconciliation
is slightly more involved and such complications are avoided here. In the next chapter,
we will present a new CV QKD protocol, together with its specific reverse reconciliation,
and will then elaborate on the differences between direct and reverse reconciliation.

The theoretical secret key rate Kth is only relevant in the case where one has access
to a perfect reconciliation scheme, allowing Alice and Bob to extract all the information
available in their correlated data. How should Kth be modified in the case of a real-
world imperfect reconciliation scheme? In order to extract a secret from their data,
Alice and Bob have access to a classical authenticated channel and have agreed on a
particular code CN whose size N is such that log2(N) ≤ I(x; y). The principle of the
reconciliation protocol is the following: Alice chooses randomly an element U ∈ CN and
sends some information α to Bob who should be able to efficiently recover U from the
knowledge of y and α, i.e., H(U |y, α) = 0, the conditional entropy of U given y and α
is null, or equivalently I(U : y, α) = H(U). In this case, Alice and Bob have extracted
a common string U from their data, which they will be able to turn into a secret key
thanks to privacy amplification, but they have also given the extra information α to the
eavesdropper. As a consequence, the effective key rate after the reconciliation becomes:

K ≥ H(U) − S(U : E,α) ≡ Kreal. (4.7)

Unfortunately, one always has Kreal < Kth and Kreal reaches 0 for a finite channel
transmission. In other words, the range of the protocol is limited because of the imperfect
reconciliation. It should be noted that this is one of the main differences with discrete
variables protocols which are currently limited by technology, and more particularly
by the dark counts of the photodetectors. A real difficulty lies in the estimation of
S(U : E,α). One specificity of QKD is that it allows Alice and Bob to estimate an upper
bound of S(x : E) by comparing a subset of their data. However it is generally impossible
to deduce S(U : E,α) from it. One exception is when U and α are independent10, in
which case the following lemma applies.

Lemma 4.1. Let a and b be two classical random values, let E be a random quantum
state. If a and b are independent, then S(a : E, b) ≤ S(a, b : E).

10the independence of U and α is a crucial assumption here, which can easily be justified in the case of
a direct reconciliation since the random variable x follows a genuine Gaussian modulation. In the case
of a reverse reconciliation, this assumption is a priori more complicated to justify as Bob does not know
a priori the distribution of the variable y. We will see in Chapter 5 that this issue can in fact be solved
for a particular choice of U and α. Note also that this proof applies in the case of the reconciliation
scheme presented in this chapter.
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Proof. The chain rule for mutual quantum information reads:

S(a, b : E) = S(b : E) + S(a : E|b) ≥ S(a : E|b) (4.8)

where the inequality results from the non-negativity of mutual quantum information.
Then, by definition of conditional mutual information,

S(a : E|b) = S(a|b) − S(a|E, b) = S(a) − S(a|E, b) (4.9)

= S(a : E, b) (4.10)

where the second equality follows from independence of a and b.

In the reconciliation protocol, U is chosen randomly by Alice, independently of x,
meaning that S(x, U : E) = S(x : E). Then, since α is a function of x and U , the
data-processing inequality gives S(U,α : E) ≤ S(x : E). In addition, in the case where
α is independent of U , Lemma (4.1) gives: S(U : E,α) ≤ S(x : E).
If one defines the efficiency of reconciliation

β =
H(U)

I(x : y)
, (4.11)

one obtains finally
Kreal ≥ βI(x : y) − S(x : E), (4.12)

which is the usual expression of the secret key rate taking into account the imperfect
reconciliation protocol.

4.4 Reconciliation of binary variables

Reconciliation is a means for Alice and Bob to extract available common information
from their correlated data. In the case when the data consists of binary strings, it is very
similar to the problem of channel coding where the goal is for Alice to send information
to Bob through a noisy channel. Channel coding is solved by appropriately choosing
subsets of binary strings: codes. When Alice restricts her messages to codewords, Bob
can recover them with high probability if the code size is not too large, given the channel
noise. More precisely, Shannon’s theorem [141] states that the size of the code |C| is
bounded by the mutual information between Alice and Bob: log2(|C|) ≤ I(x : y). The
problem of channel coding has been extensively studied during the past 60 years, but only
recently were discovered codes almost achieving Shannon’s limit while being efficiently
decoded thanks to iterative algorithms: turbocodes [13] and Low Density Parity Check
(LDPC) codes [132].

The main difference between reconciliation and channel coding is that in the case
of reconciliation, Alice does not choose what she sends and thus cannot restrict her
messages to codewords of a given code. However, if one wants to take advantage of the
code formalism, knowing what she sent, Alice can describe to Bob a code for which her
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word is a codeword. Thus if Bob can guess what codeword Alice sent, they will effectively
share a common sequence of bits. This is the method used for discrete QKD protocols.
Indeed, given a linear code C and its parity check matrix H, the group F

n
2 = {0, 1}n of

possible states sent by Alice can be seen as the product of codewords and syndromes: if
Alice sends x to Bob, she can tell him the syndrome of x which is H · x thus defining
a coset code containing x. This coset code is the ensemble: {z ∈ F

n
2 |H · z = x}. An

equivalent solution is for Alice to randomly choose a codeword U from a given code and
to send U ⊕ x = α to Bob where ⊕ represents the addition in the group F

n
2 . Bob then

computes y⊕α which allows him to retrieve U if the code is well adapted to the channel
between Alice and Bob. This coset coding scheme was initially suggested by Wyner [159].

In a way, the side information (information sent by Alice over the classical authen-
ticated channel) corresponds to a change of coordinates allowing one to transform the
initial reconciliation problem into the well-known problem of channel coding. Two prop-
erties are essential for this approach to work: first, the probability distribution of the
states sent by Alice is uniform11 over F

n
2 ; second, the total space is a partition of the cosets

of a linear code. Thus, any word can be seen as a unique codeword for a unique coset
code and telling which coset code contains the word gives zero information about the
codeword. The question is then whether or not it is possible to generalize this approach
to continuous variables.

4.5 Reconciliation of Gaussian variables

4.5.1 Gaussian modulation

One of the main differences between discrete and continuous QKD protocols is the prob-
ability distribution of Alice’s variables: the uniform distribution on F

n
2 is changed into

a nonuniform Gaussian distribution on R
n. This is rather unfortunate since the unifor-

mity of the distribution on F
n
2 is an essential assumption in order to prove that the side

information (e.g., the syndrome) Alice sends to Bob on the public channel does not give
any relevant information to Eve about the codeword chosen by Alice. An interesting
property of the Gaussian distribution N (0,✶n) on R

n whose covariance matrix is the
identity is that it has a spherical symmetry in R

n. In other words, if the vector x follows
such a distribution, then the normalized random vector x

|x| has a uniform distribution

on the unit sphere Sn−1 of R
n. Thus, spherical codes, codes for which all codewords lie

on a sphere centered on 0, can play the same role for continuous-variable protocols as
binary codes for discrete protocols. Some very good codes are known for binary chan-
nels: LDPC codes and turbocodes both almost achieve the Shannon limit and can be
efficiently decoded thanks to iterative decoding algorithms. Are there codes with similar
qualities among the spherical codes? The answer is almost. There is indeed a canonical
way to convert binary codes into binary spherical codes and this can be achieved thanks

11In fact, this uniformity is not really required, but it greatly simplifies the theoretical analysis.



4.5. RECONCILIATION OF GAUSSIAN VARIABLES 85

to the following mapping of F
n
2 onto an isomorphic image in the n-dimensional sphere:

F
n
2 → Sn−1 ⊂ R

n, (b1, . . . , bn) 7→
(

(−1)b1
√
n

, . . . ,
(−1)bn

√
n

)

. (4.13)

Then, as LDPC codes and turbocodes can both be optimized for binary symmetric
channels, they can also be optimized for a binary phase shift keying (BPSK) modulation,
where the bit 0 (1) is encoded into the amplitude +A (−A), and where the channel noise
is considered to be additive white Gaussian noise (AWGN). Thus, one has access to a
family of very good codes (in the sense that they are very close to the Shannon limit)
for which very efficient iterative decoding algorithms are available. It is important to
note that there are actually two different Shannon limits considered here depending on
the modulation, BPSK or Gaussian modulation, but these limits become asymptotically
close when the signal-to-noise ratio (SNR) is small. Thus, at low SNR, a binary code
optimized for a BPSK modulation can almost achieve the Shannon limit for a Gaussian
modulation.

A remark is in order : the use of binary codes as described above limits the rate
of the code to less than 1 bit per channel use, whereas one of the interests of a Gaus-
sian modulation is precisely to get rid of this limit. Actually, one could use non-binary
spherical codes, but their decoding is more complicated and thus slows down the recon-
ciliation protocol. In addition, this is not really needed, since in the high loss scenario
which interests us most here, the mutual information between Alice and Bob is always
much less than 1 bit per channel use. Consequently the use of binary codes turns into an
advantage, since they can be decoded very efficiently. In the low-loss case however, that
is for short distances, one can hope to distill more than 1 bit per channel use, and the
“usual” approach [97] will be more suitable than the one described in the present article
(see also discussion in Sec. 4.6).

Now that we have a probabilistic space with a uniform probability distribution and
a family of codes for this space, we need to see if the total space is a partition of a code
and of its “generalized coset codes”. First, the canonical hypercube of R

n (which is the
image of F

n
2 by the isomorphism defined above) is described as a partition of a linear

code and its cosets. The question that remains to be solved is whether the unit sphere is
a partition of such hypercubes. Another way to see this problem is the following: given a
random point in Sn−1, is there a hypercube inscribed in the sphere for which this point
is a vertex? Surely there are such hypercubes, many in fact. Actually, the manifold of
these hypercubes is a [(n − 1)(n − 2)/2]-dimensional manifold (this is the dimension of
the subgroup of orthogonal group O(n) that transports the canonical hypercube onto the
ensemble of hypercubes containing the point in question).

Yet another way to express the problem is the following: given two points x, y ∈ Sn−1,
is it possible to find an orthogonal transformation mapping x to y? One can immediately
think of transformations such as the reflection across the mediator hyperplane of x and
y. Unfortunately, such an orthogonal transformation gives some information about x
and y as soon as n > 2 (this is linked to the phenomenon of concentration of measure for
spheres in dimensions n > 2), and therefore cannot be used by Alice as legitimate side
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information, which should be independent from the key in order to fulfill the hypothesis
of Lemma 4.1.

A correct solution would then be to randomly choose an orthogonal transformation
with uniform probability in the ensemble of orthogonal transformations mapping x to y.
This can be done in the following way: one first draws a random orthogonal transfor-
mation mapping x to some random x′. Then one composes this transformation with the
reflection across the mediator hyperplane of x′ and y. Although theoretically correct,
this procedure is not doable in practice for n≫ 1 since generating a random orthogonal
transformation on R

n is a computational demanding task requiring to draw an n × n
Gaussian random matrix and to calculate its QR decomposition (i.e., its decomposition
into an orthogonal and a triangular matrix) which is an operation of complexity O(n3).

A practical solution involves the following scenario: for each word x ∈ Sn−1 sent by
Alice, for each codeword U ∈ Sn−1 chosen by Alice (not necessarily a binary codeword),
there should exist an continuous application M of the variables x and U such that
M(x, U) ∈ On and M(x, U) · x = U . Then if Alice gives M(x, U) to Bob, one has the
continuous equivalent of U ⊕ x in the discrete protocol. The following theorem shows
that the existence of such an application M restricts the possible values of n to be 1, 2,
4 or 8.

Theorem 4.1. If there exists a continuous application

M : Sn−1 × Sn−1 −→ On

(x, y) 7−→ M(x, y)
(4.14)

such that M(x, y) · x = y for all x, y ∈ Sn−1, then n = 1, 2, 4 or 8.

The proof of this theorem uses a result from Adams [3], which quantifies the number
of independent vector fields on the unit sphere of R

n:

Theorem 4.2 (Independent vector fields on Sn−1 (J.F. Adams, 1962)). For n = a · 2b

with a odd and b = c+4d, one defines ρn = 2c+8d. Then the maximal number of linearly
independent vector fields on Sn−1 is ρn − 1.

In particular, the only spheres for which there exist (n− 1) independent vector fields
are the unit sphere of R, R

2, R
4 and R

8, which can respectively be seen as the units of
the real numbers, the complex numbers, the quaternions and the octonions.

Proof of Theorem 4.1. The idea of the proof is to use the existence of such a contin-
uous function M to exhibit a family of (n − 1) independent vector fields on Sn−1.
Let (e1, e2, . . . , en) be the canonical orthonormal basis of R

n. For 1 ≤ i ≤ n, let
ui(x) = M(en, x) · ei. One has: un(x) = x and

(ui(x)|uj(x)) = eTi M(en, x)
TM(en, x)ej (4.15)

= δi,j since M(en, x) ∈ On. (4.16)

Then, for x ∈ Sn−1, u1(x), u2(x), . . . , un−1(x) are (n − 1) independent vector fields on
Sn−1 and finally n = 1, 2, 4 or 8.
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4.5.2 Rotations on S1, S3 and S7

Now that we have proved that such an application M can only exist in R, R
2, R

4 and R
8,

we need to answer three more questions: does it exist? Can Alice compute it efficiently?
Does it leak any information about the codeword to Eve? Note that the trivial case of
R for which the unit sphere is {−1, 1} corresponds to the method where one encodes a
bit in the sign of the Gaussian variable [144].

Existence. Let us start with the easiest case: R
2. The existence of such an application

M verifying M(x, y) · x = y for the unit circle is obvious: it is simply the rotation
centered in O of angle Arg(y) − Arg(x) where Arg(x) denotes the angle between x and
the x-axis. An alternative way to see M is M(x, y) = yx−1 where x and y are identified
with complex numbers of modulus 1. The same is true for dimensions 4 and 8 where S3

and S7 can respectively be identified with the quaternion units and the octonion units,
and for which a valid division exists.

Computation of M(x, y). For n = 2, 4 and 8, there exists a (non-unique) family of n
orthogonal matrices An = (A1, . . . , An) of R

n×n such that A1 = ✶n, and for i, j > 1,
{Ai, Aj} = −2δi,j✶n where {A,B} is the anticommutator of A and B. An example of
these families is explicitly given in Appendix A. The following lemma shows how to use
such a family to construct a continuous function M with the properties described above.

Lemma 4.2. M(x, y) =
∑

i=1...n

αi(x, y)Ai with αi(x, y) = (Aix|y) is a continuous map

from Sn−1 × Sn−1 to O(n) such that M(x, y)x = y.

Proof. First, because of the anticommutation property, one can easily check that the
family (A1x,A2x, . . . , Anx) is an orthonormal basis of R

n for any x ∈ Sn−1. Then, for
any x, y ∈ Sn−1, (α1(x, y), . . . ,
αn(x, y)) are the coordinates of y in the basis (A1x,A2x, . . . , Anx). This proves that
M(x, y)x = y. Finally, the orthogonality of M(x, y) follows from some simple linear
algebra.

Then α = (α1, . . . , αn) is sufficient to describe M(x, y) and the computation of αi can
be done efficiently since the matrices Ai are simply permutation matrices with a change
of sign for some coordinates. In the QKD protocol, Alice chooses randomly u in a finite
code and gives the value of α(x, u) to Bob, who is then able to compute M(x, u)y which
is a noisy version of u. One should note that the final noise is just a "rotated" version of
the noise Bob has on x: in particular, both noises are Gaussian with the same variance.

No leakage of information. In order to prove that α = M(x, u) does not give any
information about u, one needs to show that u and α are independent, in other words
that: Pr(u = ui|M(x, u) = α) = Pr(u = ui) = 1

N if one considers the spherical code
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CN = {u1, . . . , uN}. This is true because x and u have uniform distributions (on Sn−1

and CN respectively) and because the function:

fu : R
n −→ R

n

x 7−→ fu(x) = α with αi = (u|Aix)
(4.17)

has a constant Jacobian equal to 1 for each u ∈ CN . To see this, one should note that
the lines of the Jacobian matrix of fu are the AT

i u which form an orthonormal basis of
R

n.

Resulting channel capacity between Alice and Bob The channel between Alice and
Bob is characterized by its signal-to-noise ratio (SNR). The capacity is achieved for a
Gaussian modulation and is given by:

C = 1/2 log2(1 + SNR). (4.18)

The reconciliation schemes presented above consist in the definition of a binary channel
QX which results in a subcapacity for the channel. Figure 4.4 shows the subcapacities
of the different cubes QX . First, if QX is a real n-dimensional cube (with width 2/

√
n),

then the channel defined by the reconciliation is the so-called BI-AWGN channel. It is
the best binary channel one can hope for and corresponds to a rotation in R

n for n≫ 1.
The subcapacities of the “sign coding” scheme [144] and of the rotations in R

8 are also
displayed, showing the improvement brought by the method presented in this paper for
a signal-to-noise ratio around 1.

4.6 Application of the multi-dimensional reconciliation scheme

to CVQKD

Now that we have explained how efficient reconciliation of correlated Gaussian variables
can be achieved with rotations in R

8, let us look at the implications in terms of perfor-
mance for continuous-variable QKD.

At the end of the quantum part of the continuous-variable QKD protocol, Alice and
Bob share correlated random values and their correlation depends on the variance of
the modulation of the coherent states and on the properties of the quantum channel.
The channel can safely be assumed to be Gaussian since it corresponds to the case of
the optimal attack for Eve. This means that it can be entirely characterized by its
transmission and excess noise. Both these parameters are accessible to Alice and Bob
through an estimation step prior to the reconciliation [124]. Once these parameters are
known, one can calculate the SNR of the transmission, which is the ratio between the
variance of the signal (the variance of the Gaussian modulation of coherent states in
our case) and the variance of the noise (noise induced by losses as well as excess noise).
The SNR quantifies the mutual information between Alice and Bob when a Gaussian
modulation is sent over a Gaussian channel:

I(A : B) =
1

2
log2(1 + SNR). (4.19)
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Figure 4.4: Capacity of the Gaussian channel and subcapacities for the different binary channels
mentioned in the text: BI-AWGN channel (corresponding to a rotation in R

n for n ≫ 1), “sign
coding” [144] and the multidimensional reconciliation based on the properties of the octonions

Note also that the efficiency of the reconciliation only depends on the correlation between
Alice’s and Bob’s data, that is, on the SNR. Thus, for a given transmission and excess
noise, the secret key rate is a function of the SNR, which can be optimized by changing
the variance of the modulation of the coherent states.

It is not easy to know exactly how the efficiency of reconciliation depends on the SNR.
However, each reconciliation technique performs better for a certain range of SNR: slice
reconciliation is usually used for a SNR around 3 [97] while rotations in R

8 are optimal
for a low SNR, typically around 0.5. Figure 4.5 shows the performance of rotations in
R

8 compared to slice reconciliation for typical experimental parameters [97, 48]. Both
approaches achieve comparable reconciliation efficiencies (around 90%) but for different
SNR. One can observe two distinct regimes: for low loss, i.e., short distance, slice recon-
ciliation is better but only rotations in R

8 allow QKD over longer distances (over 50 km
with the current experimental parameters).

Concerning the complexity of the reconciliation, one should be aware that almost all
the computing time is devoted to decoding the efficient binary codes, either LDPC codes
or turbocodes. Compared to this decoding, the rotation in R

8 only takes a negligible
amount of time. Thus, the complexity of the reconciliation presented here is smaller than
the one of slice reconciliation since the latter uses several codes (one code per slice).
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Figure 4.5: Performance of slice reconciliation vs rotation in R
8. Experimental parameters:

excess noise referred to the channel input ξ = 0.005, efficiency of Bob’s detector η = 0.606 and
electronic noise at Bob’s side Velec = 0.041 [97]. The reconciliation based on rotations in R

8 uses
a LDPC code of rate 0.26 [72]

4.7 Conclusion and open questions

We presented a protocol for the reconciliation of correlated Gaussian variables, which
is is particularly well adapted for low signal-to-noise ratios. This turns out to be very
interesting as it is exactly encountered when one wants to perform QKD over long dis-
tances. By taking into account current typical experimental parameters, one shows that
this new reconciliation allows QKD over more than 50 km. Moreover, contrary to other
protocols that have been proposed to increase the range of continuous-variable QKD,
this protocol does not require any postselection. Hence, the security proofs based on the
optimality of Gaussian attacks remain valid, meaning that the protocol is secure against
general collective attacks, and even general attacks in the asymptotic limit.

If the mountain won’t come to Muhammad. It should be pointed out that we de-
liberately chose a practical approach for the problem of the reconciliation of correlated
Gaussian variables. Indeed, a maybe more natural approach would have been to see
the problem as purely a coding problem. A possible solution for this problem is to de-
sign good spheric codes in n dimensions. Here, we did not follow such a path. On the
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contrary, the motivation was to avoid designing new codes as there already exist very
good codes (close to the Shannon limit, and with an efficient decoding algorithm) for a
different but related channel, the BI-AWGN channel. The idea was then to see if these
optimized codes could be used for the reconciliation problem and thus avoid to optimize
specific codes for our problem. Our approach turned out to work rather well in prac-
tice, and had the additional advantage to be easily incorporated within existing security
proofs. Indeed, in sharp contrast with regular channel coding, QKD is characterized by
the presence of a potential adversary who can listen to all classical messages exchanged
by Alice and Bob.

A few words concerning the optimal modulation variance, or equivalently the optimal

signal-to-noise ratio. The security analysis of CV QKD (protocol GG02 as well as other
protocols using squeezed states) has often been performed in the limit of an infinite
modulation variance [62, 105]. However, it turns out that this regime is never interesting
in practice. The reason it is not relevant is because it is an “unstable regime”. Indeed, it
is shown that the quantity I(A;B)−S(B;E) tends to a finite limit when the modulation
variance tends to infinity [62]. However, both I(A;B) and S(B;E) diverge in this case.
This means that the realistic key rate Kreal ≡ βI(A;B)−S(B : E) becomes zero as soon
as the reconciliation efficiency is strictly less than 1. To be fair, if one can ensure than
the reconciliation efficiency is sufficiently close to 1 as the modulation variance increases,
then the secret key rate might be positive. However, all the reconciliation schemes
presently known seem to achieve a reconciliation efficiency which is less than 95 % for
instance. Therefore, with the reconciliation techniques available today, considering the
limit of large modulation variance is only an intellectual exercise without any practical
relevance.

Is there a solution for the reconciliation problem for a Gaussian modulation? Even
if the new reconciliation scheme described in this chapter brings a great improvement
compared to previous known techniques, such as slice reconciliation, in the low SNR
regime, it does not get rid of the problem. Efficient reconciliation (meaning that the
reconciliation efficiency is at least 80%) is possible for signal-to-noise ratios greater that
roughly 0.5, but unfortunately, the technique reaches its limits for lower SNR. This
is problematic as it appears that one needs to work at very low SNR to reach longer
distances. For this reason, even if the solution proposed here is a step in the right
direction, it is not entirely satisfying as it does not completely solve the reconciliation
problem for CV QKD with a Gaussian modulation. Solving this problem would mean
(as is the case for most discrete-variable protocols) that the range of the protocol would
be limited by noise in the detectors (dark counts for DV QKD, or excess noise for CV
QKD). This is clearly not yet the case with continuous-variable QKD.
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CHAPTER 5

Long distance CVQKD: protocols

with a discrete modulation

The goal of this chapter is to improve the existing continuous-variable QKD protocols
so that larger distances can be reachable1. Before this work, discrete-variable QKD
seemed to achieve much more than one hundred kilometers2 whereas continuous-variable
QKD was only demonstrated over 30 km [97, 48] and theoretically possible over 50 km
(see previous chapter and [91]). The question that we want to address here is whether
this situation is accurate, meaning that 100 kilometers will always be out of reach of
experimental CV QKD, as seems to be the case for the GG02 protocol which is limited by
the reconciliation efficiency, despite using the best error correction techniques available.
We will see in this chapter that continuous-variable QKD is not intrinsically limited to
short distances, and that one can overcome the main limitation (reconciliation efficiency)
by slightly modifying the original GG02 protocol, more specifically by switching from a

1The content of this chapter was the object of a publication in Physical Review Letters [93] and of a
pending patent.

2although one should be careful when comparing performances of different protocols for which the
security assumptions might significantly differ.

93
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Gaussian modulation to a discrete modulation, but without including any postselection
procedure which cannot be proved secure with any known technique. The main new
idea is therefore to exploit a binary modulation in order to improve the reconciliation
efficiency at very low SNR.

A comment on the realist mode and on typical values of the experimental parameters.

In this chapter, one is interested in improving the current CV QKD protocols in order
to increase their range. In accordance with what we wrote in Chapter 3, we consider
here a realist mode where Bob’s detection stage is calibrated. This calibration includes
the quantum efficiency η as well as the electronic noise of the detector Velec. It turns
out that the exact value of the electronic noise has only a negligible impact on the final
secret key rate. Moreover, distinguishing η from the total transmission T of the quantum
channel also has a negligible impact on the final key rate. For these reasons, the secret
key rate obtained in a realist mode with reasonable values for both parameters (η ≥ 0.5
and Velec around a few percent of the shot noise) is very close from the secret key rate
obtained in a paranoid mode when the electronic noise is supposed to be null. Hence,
in order to simplify the computations in this chapter, we will consider a paranoid mode
where Velec = 0 and the total transmission of the channel varies as

T = η10−0.02d, (5.1)

where d is the distance between Alice and Bob in kilometers and η = 0.6 which corre-
sponds to typical experimental implementations [48]. Therefore, the secret key rate only
depends on the distance d, the reconciliation efficiency, and the excess noise ξ. A typical
value for the excess noise is around one percent of the shot noise.

5.1 Longer distances mean lower SNR

A first important remark is that reconciliation efficiency is a crucial parameter to esti-
mate the performance of a CV QKD protocol. Second, the reconciliation efficiency alone
is not a sufficient criterium, one needs to know at which signal-to-noise ratio (SNR)
a given reconciliation efficiency can be achieved. It is indeed pretty clear that, for a
Gaussian quantum channel, or more precisely an additive white Gaussian noise (AWGN)
channel3, the reconciliation efficiency is a function of the SNR. Figure 5.1 displays the
maximum distance that can be achieved by a CV QKD protocol (such as the GG02 pro-
tocol) as a function of the SNR of the channel. Three curves are displayed corresponding
respectively to reconciliation efficiencies of 99%, 90% and 80%, meaning that such ef-
ficiencies are supposed to be achieved for the SNR considered. Note that these three
values corresponds respectively to an ideal, but rather unrealist situation (β = 99%),
a very good reconciliation efficiency which can be attained with state-of-the-art coding

3an AWGN channel for the classical data shared by Alice and Bob corresponds to a quantum Gaussian
channel that does not mix the quadratures and that has the same effect on both quadratures. Such a
channel is completely described by its transmission T and excess noise ξ.
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techniques4 (β = 90%), and finally to a more reasonable value of the reconciliation ef-
ficiency (β = 80%). From Figure 5.1, one can infer that gaining a few percents for
the reconciliation efficiency immediately translates into an increased range for the QKD
protocol. However, the real insight brought by Figure 5.1 is that it is not the value of
the reconciliation efficiency that really matters, but rather the signal-to-noise ratio at
which such a value can be obtained. In particular, it is striking to note that the solution
to increase the range of CV QKD is not to work to bring the reconciliation efficiency
impossibly close to the maximum theoretical value of 100 % but rather to work to be
able to get reasonable reconciliation efficiencies at very low SNRs.
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Figure 5.1: Maximal distance reachable for a CV QKD protocol as a function of the
SNR. On the left, we use a linear scale for the SNR, on the right, we use a logarithmic
scale in order to analyze the situation at very low SNR. The excess noise is 0.01 which
is a typical value encountered in experiments (note the plots are almost the same for an
excess noise of 0.001). From top to bottom, the reconciliation efficiency considered is
0.99, 0.9 and 0.8.

So far, the problem of obtaining good reconciliation efficiencies for a protocol with a
Gaussian modulation has not been solved in a very satisfying manner. The slice reconcil-
iation technique [154], even with the help of LDPC codes [14] is not capable to perform
efficiently when the SNR is too low. The technique presented in the previous chapter
improves things a little, but the SNR should not be much less than 0.5 in order to get
an efficient reconciliation. Hence, both these strategies fail if one needs to work with a
SNR of 1/100 for instance.

The goal of this chapter is therefore to investigate whether it is possible to modify the
original GG02 protocol, in such a way that the reconciliation can be performed efficiently
at low SNR, and that the security of the scheme can be proven.

4and a substantial amount of computing power, which might lead to a possible slow-down of the key
distribution
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5.2 Reconciliation at very low SNR

As we saw so far, reconciliation of correlated Gaussian variables is quite complicated at
low SNR, and the present techniques are not efficient in this regime. A possible approach
would be to keep searching for better and better reconciliation algorithms at low SNR,
but the adversarial context of reconciliation where Alice and Bob should not publicly
exchange any information that might help Eve (who is supposed to have access to an
infinite amount of computational power) makes the task even more difficult.

Another strategy, that we choose to follow here, is to change the quantum protocol in
a way that directly solves the reconciliation problem at (very) low SNR. This is achieved
simply by switching from a Gaussian modulation to a discrete modulation. The idea
is that the classical data that are used as input of the reconciliation scheme should be
the same as those of a BI-AWGN channel, that is a classical binary modulation followed
by an additive white Gaussian noise channel. To do this, Alice should send coherent
states such that an homodyne detection of either one of the quadratures leads to a BI-
AWGN classical channel. This can be done by either one of the two following modulation
schemes:

• Alice sends randomly one of the two coherent states from the set

S2 = {αe−iπ/4,−αe−iπ/4}, (5.2)

where α is a positive number such that 2α2 corresponds to Alice’s modulation
variance. This is the modulation used in our new two-state protocol.

• Alice sends randomly one of the four coherent states from the set

S4 = {αeiπ/4, αe3iπ/4, αe5iπ/4, αe7iπ/4}. (5.3)

This is the modulation used in our new four-state protocol.

For both modulation schemes, Bob will “see” an effective BI-AWGN channel for either
choice of quadrature. Assuming that the quantum channel is known and is indeed Gaus-
sian (which is the case in actual experiments), Alice and Bob can model their classical
data respectively as x = (x1, · · · , xn) (with xi = ±α/

√
2) and y = (y1, · · · , yn) (here

we assume that N − n data have already been used to estimate the parameters, trans-
mission and excess noise, and that Bob has informed Alice of his choice of quadrature
in the four-state protocol). Therefore, yi corresponds to Bob’s measurement result for
the signal i (normalized with the transmission) and xi corresponds to the corresponding
quadrature for Alice’s state. The Gaussian channel model reads:

yi = xi + zi, (5.4)

where zi is a normal random variable with known variance σ2 and xi is simply an unbiased
Bernoulli random variable (that we can assume takes values +1 or −1 up to a simple
renormalisation). With these notations, the signal-to-noise ratio is given by:

SNR =
1

σ2
, (5.5)
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and we would like to find reconciliation scheme that perform well, say β = 80%, for very
small values of the SNR, for instance 1/100, or even less.

Good low rate error correcting codes. First of all, the reconciliation procedure is nec-
essarily based on good error correcting codes, such as low-density parity-check (LDPC)
codes5. Despite their great performances, LDPC codes are not universal in the sense
that they have not been optimized for every channel. For instance, they perform very
well for the BI-AWGN channel when their rate is at least 0.2. The reason for this is that
it is not profitable for the telecom industry to work with very noisy channels: it would
cost too much to send reliable information. Therefore, there was no particular incentive
to develop very good, very low rate LDPC codes. The situation is rather different in the
context of quantum key distribution. Here, classical communications are considered as
almost free, and requiring a large amount of error correction is not a problem. Quite on
the contrary, classical noise is useful in a sense, as it helps to hide the information from
the eavesdropper.

A special kind of LDPC codes was recently developed to work at reasonably low SNR:
these are the multi-edge type LDPC codes [131]. These perform very well for rates as
low as 1/10. Even if they help working at low SNR, these codes do not solve our problem
completely as we would like codes working at much lower rates. What rate do we need
exactly? The rate R is linked to the reconciliation efficiency β through

β =
R

CGauss

, (5.6)

where
CGauss =

1

2
log2(1 + s) (5.7)

is the capacity of the AWGN channel (which is achieved with a Gaussian modulation)
and s is the SNR. Since in our protocol, we are restricted to a binary modulation, this
capacity cannot be reached, and the maximal value of the mutual information between
Alice and Bob is given by the capacity of the BI-AWGN channel, CBI-AWGN(s):

CBI-AWGN(s) = −
∫

φs(x) log2(φs(x))dx− 1

2
log2(2πe) +

1

2
log2(s) (5.8)

where

φs(x) =

√

s

8π

(

e−s(x+1)2/2 + e−s(x−1)2/2
)

. (5.9)

Quite interestingly, for small values of the SNR, both quantities CGauss and CBI-AWGN

are almost equal as can be seen on Figure 5.2. However, the two quantities are obviously
quite different for large SNR as the Gaussian capacity is unbounded whereas the capacity
for a binary modulation is upper bounded by 1: one cannot send more than one bit of
information per channel use with a binary modulation. With these notations, one can

5The history of LDPC codes is quite interesting. There were initially invented by Robert Gallager
in 1963, but were impractical at that time [49]. They since were forgotten for more than 30 years and
rediscovered in 1996 [101]. Now LDPC codes almost achieve the Shannon capacity of AWGN channels
[132] and are therefore widely used in the telecom industry.
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Figure 5.2: Channel capacities for an AWGN channel with a Gaussian modulation (upper
curves) and a binary modulation (lower curves) as a function of the signal-to-noise ratio

rewrite the reconciliation efficiency as

β = βmodulation
R

CBI-AWGN

, (5.10)

where
βmodulation =

CGauss

CBI-AWGN

(5.11)

is a factor that rapidly tends to 1 as the signal-to-noise ratio tends to 0, and the second
term R/CBI-AWGN directly reflects the performance of a given code of rate R on the BI-
AWGN channel. In the limit of low SNR, we can approximate βmodulation ≈ 1, meaning
that the code rate that we require is given as a function of the SNR s by

R(s) ≈ β

2
log2(1 + s) (5.12)

≈ log2 e

2
β s. (5.13)

Since we want to fix the value of the reconciliation efficiency (for instance to 80%), we see
that we need to find error correcting codes with a rate proportional to the signal-to-noise
ratio. Hence, we would like to have a process such that if we know a code with rate R
and efficiency β for a SNR s, we can construct a code with rate R′ = R/k (for some
integer k ≥ 2) which achieves an efficiency β′ close to β at a SNR s′ = s/k. This can be
done quite simply with the idea of repetition code. Let us indeed consider the following
scenario: instead of sending a random xi = ±1 for each use of the channel, Alice sends
k times the same value, that is, xi1 = xi2 = · · · = xik ≡ Xi. Hence Bob receives k noisy
versions of Xi:

yi1 = xi1 + zi1 (5.14)

yi1 = xi1 + zi1 (5.15)

· · · = · · · (5.16)

yik = xik + zik , (5.17)
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where zi1 , zi2 , · · · , zik are k independent and identically distributed random variables:
zij ∼ N (0, σ2) for j ∈ {1, · · · , k}. Let us now consider the new random variables defined
as:

Xi ≡
1

k

k
∑

j=1

xij , Yi ≡
1

k

k
∑

j=1

yij , Zi ≡
1

k

k
∑

j=1

zij . (5.18)

One has
Yi = Xi + Zi, (5.19)

with Xi = ±1, and Zi ∼ N (0, σ2

k ). The new channel with input Xi and output Yi is
therefore also a BI-AWGN channel but with a signal-to-noise ratio k times higher than
for the initial channel. Hence, if one knows a code with rate R achieving a reconciliation
efficiency β(s) for a BI-AWGN channel with SNR s, one can use a repetition scheme
length k to build a code of rate R′ = R/k achieving a reconciliation efficiency β′(s/k)
for a SNR s′ = s/k. The new reconciliation efficiency β′(s/k) is given by

β′(s/k) = β(s)
log2(1 + s)

k log2(1 + s/k)
. (5.20)

For small values of s, this gives β′(s/k) ≈ β(s) as expected. Unfortunately, as we said
before, good codes are not known for very small values of s, and the best low rate codes
presently available are the multi-edge type LDPC codes. In particular, the code of rate
1/10 described in [131] manages to decode reasonably well for a SNR of 0.17. This means
that this code is such that β(0.17) ≈ 88%. Using equation 5.20, one observes that for
all k ≥ 1, β′(0.17/k) ≥ 80%. Hence, we can construct codes with arbitrarily low rate
that have a reconciliation efficiency greater that 80%. We plot the performance of such
codes on Figure 5.3 where we compare it with the reconciliation efficiency achieved with
a Gaussian modulation. The difference is striking for low SNR: our concatenation of
repetition codes with multi-edge type LDPC codes has a reconciliation efficiency alway
greater than 80% when the SNR tends to zero, whereas the reconciliation efficiency is
good (in the sense that in can be used in a CV QKD protocol) only for large enough
SNR6.

Specificities of the reverse reconciliation. Until now, we described a generic method
to achieve a good reconciliation efficiency on channels with arbitrarily low SNR. Unfor-
tunately, the approach we described is not directly compatible with QKD. The reason
for this is two-fold:

• first, Alice cannot choose to send k times in a row the same quantum state, as this
might give some information to the eavesdropper7,

6Actually, using the multidimensional reconciliation presented in Chapter 4 improves things a little,
but the conclusion is almost the same: there is a minimal value of the SNR below which the reconciliation
scheme is not efficient enough to allow for the distillation of secret keys.

7in fact, this is not necessarily problematic as one could probably extend the security proof presented
later in this chapter to the case where Alice sends many times the same quantum state.
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Figure 5.3: (Color online) Practical reconciliation efficiency for a binary modulation
(dashed line) and for a Gaussian modulation (full line) [14].

• but, more importantly, continuous-variable QKD uses reverse reconciliation, mean-
ing that Alice needs to guess Bob’s measurement result, and not the other way
around which would correspond to a direct reconciliation scheme. The problem
here is that Bob cannot decide to measure k times in a row the same value. More-
over, it is not completely clear that the channel corresponding to the reverse recon-
ciliation procedure is a BI-AWGN channel as well. We now proceed by answering
these two points.

The reverse reconciliation channel. As we said, whereas the direct reconciliation channel
is a BI-AWGN channel:

input: x = ±1 −→ output: y = x+ z with z ∼ N (0, σ2), (5.21)

it is not clear what the reverse reconciliation channel is, simply because its input in
real-valued (instead of binary), and that its output is binary instead of being real-valued!
In fact, it turns out that this reverse reconciliation channel can be transformed into a
BI-AWGN channel, if Bob sends some side-information to Alice. Our goal is to define two
variables u for Bob and v for Alice such that the channel mapping u to v is a BI-AWGN
channel. This can be done through the following procedure. First Bob computes two
values u and the side-information t from his variable y. These two numbers are defined
as

{

u = y/|y|,
t = |y| (5.22)

Note that for an AWGN channel, the variables u and t are independent: the sign of y
is independent from its absolute value since the distribution of y is symmetric. One can
also note that u is a unbiased Bernoulli random variable, and therefore corresponds to
a legitimate input for a BI-AWGN channel. Now, t is considered as a side-information
and is sent by Bob to Alice, who can use it to compute a random variable v defined as

v =

{

t if x = 1,
−t if x = −1.

(5.23)
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One can check that u and v are related through

v = u+ w, (5.24)

where

w = v − u (5.25)

= sgn(x)|y| − sgn(y) (5.26)

= sgn(y) (sgn(x)y − 1) (5.27)

= sgn(y) (sgn(x)(x+ z) − 1) (5.28)

= sgn(y) (1 + sgn(x) z − 1) (5.29)

= sgn(xy) z (5.30)

which means that w ∼ N (0, σ2) since Prob(sgn(xy) = 1) = Prob(sgn(xy) = −1) = 1/2.
Hence, the channel corresponding to the reverse reconciliation scenario, taking u as input
and v as output is a BI-AWGN channel.

Let us now show how one can apply the repetition trick to this channel. The main
problem now is that one would want ui1 to be equal to ui2 , · · · , uik . Obviously, there
is only one chance over 2k−1 for this to happen. The way to overcome this difficulty
is in fact quite simple. In the direct reconciliation protocol, Bob would need to guess
whether (xi1 , · · · , xik) equals (1, · · · , 1) or (−1, · · · ,−1). In the reverse reconciliation
protocol, Bob will inform Alice of the signs of yi2 , · · · , yik relatively to the sign of
yi1 (which therefore encode the relevant information), that is, Bob will give Alice the
following (k − 1) values: sgn(yi1yi2), · · · , sgn(yi1yik). Hence, in the reverse reconcilia-
tion protocol, Alice needs to guess whether (yi1 , · · · , yik) equals (1, yi1yi2 , · · · , yi1yik) or
(−(1,−yi1yi2 , · · · ,−yi1yik). Clearly, this problem is completely equivalent to the direct
reconciliation case. In fact, this solution exactly corresponds to Bob informing Alice of
the syndrome of his bit string relative to the repetition code of length k.

To summarize, the reconciliation procedure starts with Alice and Bob having two
correlated vectors of length k × m: (x1, · · · , xkm) and (y1, · · · , ykm). Bob defines the
vector u = (u1, · · · , ukm) and sends some side information to Alice, namely the vector
t = (t1, · · · , tkm) as well as the m vectors (1, sgn(yki+1yki+2), · · · , sgn(yki+1yki+k) so that
Alice needs to guess the value of the vector U = (sgn(u1), sgn(uk+1), sgn(u2k+1), · · · ,
sgn(u(m−1)k+1)), which is a binary vector of length m. To do this, Alice and Bob first
agree on a particular multi-edge type LPDC code C, and Bob sends the syndrome of U

relative to C to Alice. Alice simply proceeds by decoding C in the coset code defined by
the syndrome in question, and recovers U.

To conclude, it is easy to adapt the error correction scheme to a reverse reconcili-
ation procedure: it simply involves for Bob to send some well-chosen side-information
to Alice through the authenticated classical channel. For a Gaussian channel, this side-
information is useless to Eve as it does not contain any information on the vector U . A
more detailed discussion on the potential role of this side-information for the security of
the protocol can be found in Section 5.7 of this chapter.
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The repetition scheme presented above provides a simple method to build a good code
of rate R/k out of a code of rate R. This construction is not optimal compared to using a
very good error correcting code at the considered signal-to-noise ratio but exhibits some
interesting features. First, designing very good codes at low SNR is not easy, and has not
been intensively studied so far, mainly because the telecom industry does not operate in
this regime: this would not be economical since an important number of physical signals
would be required to send one information bit. The problem is very different in QKD,
where quantum noise is an advantage rather than a drawback. A second advantage of
this repetition scheme lies in its simplicity. As we mentioned earlier, the main bottleneck
of CV QKD is the reconciliation : it used to limit both the range and the rate of the
protocol. In particular, the rate is limited by the complexity of decoding LDPC codes,
which is roughly proportional to the size of the code considered (in fact O(N logN)).
If one uses a repetition scheme of length k, then the length of the genuine LDPC code
becomes m = N/k allowing a speedup of a factor k. The speed of the reconciliation is
not proportional to the number of signals exchanged by Alice and Bob anymore, but to
the mutual information they share, which is a major improvement for noisy channels,
i.e., long distance. Finally, the penalty in terms of reconciliation efficiency imposed by
using this scheme instead of a dedicated low rate error correcting code is actually quite
small, as soon as one knows a good low rate code. As we saw, a multi-edge type code of
rate 1/10 is sufficient for our purpose.

Now that we have an efficient reconciliation algorithm available at (very) low SNR,
let us introduce new continuous-variable QKD protocols that can make a good use of it.

5.3 Presentation of the new discrete-modulation protocols

5.3.1 CV QKD protocols with a discrete modulation

In the following, we consider two CV QKD protocols with a discrete modulation involving
respectively two and four coherent states. In any such protocol, Alice sends N random
states drawn from a specified set of coherent states, either S2 or S4 . For instance, in the
two-state protocol8, the set of coherent states is S2 = {|αe−iπ/4〉, | − αe−iπ/4〉} while the
set corresponding to the four-state protocol is S4 = {|αeiπ/4〉, |αe3iπ/4〉, |αe5iπ/4〉, |αe7iπ/4〉}.
As before, α is a positive number. Then Bob performs an homodyne measurement on
a random quadrature x or p. He obtains a real random variable yi for i ∈ {1, · · · , N}.
Alice and Bob use a reverse reconciliation, and the sign of yi encodes the raw key bit,
as described in the previous section. Alice then recovers the value of the sign of yi. An
alternative for the four-state protocol consists for Bob to perform an heterodyne measure-
ment instead of an homodyne measurement. In this case, he measures both quadratures,

8It should be noted that a slight variation of this protocol was introduced in [67]. In this protocol,
Alice sends either |α〉 or | − α〉 and Bob perform an heterodyne measurement on his received state.
The security of this protocol against collective attacks was established in [163]. However, this security
proof only holds in the asymptotic limit where Alice and Bob know perfectly the conditional probability
distribution p(y|x). This assumption, which is certainly problematic in the context of a finite-size
analysis, is not required for the protocols presented in this chapter.
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and obtains two measurement results yx
i and yp

i for each state sent by Alice. For the
four-state protocol, the raw key now consists in both signs of yx

i and yp
i .

One should also note a supplementary step has to be added for channel estimation:
Alice and Bob publicly reveal (N − n) couples of their data and compute the covariance
matrix of the state ρAB that they would share in an entanglement-based version of the
protocol. This allows them to compute an upper bound on Eve’s information on y, the
Holevo information S(y;E). If the error correcting code used by Alice and Bob has a
rate R, the secret key rate against collective attacks (in the limit where the fraction of
data revealed for parameter estimation becomes negligible) reads:

K = R− S(y;E). (5.31)

R is upper bounded by the mutual information I(x; y) between Alice and Bob and we
saw in the previous section that R could be written R = βI(x; y) with β ≈ 80%. for low
SNR. Finally, one finds the more common expression for the secret key rate:

K = βI(x; y) − S(y;E). (5.32)

The mutual information I(x; y) refers here to the capacity of the Gaussian channel (and
not to the mutual information in the case of a binary modulation) and is given by9

I(x; y) =
1

2
log2(1 + SNR) (5.33)

where the SNR is linked to the parameters of the channel by

SNR =
TVA

1 + Tξ
, (5.34)

where VA = 2α2 is Alice’s modulation variance, T is the transmission of the channel and
ξ is the excess noise. The variances are here expressed in shot noise units.

Hence the first term βI(x, y) of the secret key rate can easily estimated for a given
implementation (since VA is chosen in advance, ξ is a characteristic of the experimen-
tal implementation, and T is linked to the distance d between Alice and Bob and the
quantum efficiency η of the detection through T = η10−0.02d). Note that one can thus
anticipate how an actual implementation will behave on a given distance, but that in a
real distribution, Alice and Bob just observe the value R = βI(x; y) that they get. On
the contrary, Alice and Bob cannot directly observe the second term S(y;E) in a given
experiment10, they need to upper bound its value. To give such an upper bound as a
function of the measured parameters of an experiment (VA, T and ξ) is precisely the role
of the security proof that we detail now.

9since we are here only interested in very low signal-to-noise ratio, we prefer to consider CGauss

instead of the capacity of the BI-AWGN channel CBI-AWGN. The ratio between these two capacities
βmod is directly included in β. This has the advantage that the expression for CGauss is simpler that the
one for CBI-AWGN.

10this is actually a recurring problem for QKD: one cannot directly observe that the distribution was
successful but always needs to trust the theoretical model that is used in order to prove that the key
that is distributed is indeed secret.
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5.3.2 General outline of security proofs against collective attacks

The security of the various protocols we consider here is studied through the entanglement-
based versions of the protocols. In the Prepare and Measure version of the protocols that
are used in practice, Alice randomly draws N binary or quaternary variables, each cor-
responding to a specific coherent state of S2 for the two-state protocol or of S4 in the
case of the four-state protocol. Alice then prepares these N coherent states and sends
them to Bob through the quantum channel. In the entanglement-based version of the
protocol, Alice starts with a pure bipartite state |Φ2〉 (or |Φ4〉 depending on the protocol)
and performs a projective measurement on the first half of this state. The second half is
sent to Bob through the quantum channel. For instance, in the protocol with a Gaussian
modulation [64], the initial bipartite state is a two-mode squeezed vacuum, and the pro-
jective measurement performed by Alice is an heterodyne measurement, which projects
the second half of the state on a coherent state [59]. The covariance matrix ΓTMS of the
two-mode squeezed vacuum reads

ΓTMS =

(

(1 + 2α2)✶2 ZGσz

ZGσz (1 + 2α2)✶2

)

, (5.35)

where σz =
(

0 1
−1 0

)

and ZG = 2
√
α4 + α2. Rewriting ΓTMS with a direct reference to

Alice’s modulation variance VA in the prepare and measure protocol, one has:

ΓTMS =

(

(VA + 1)✶2 ZGσz

ZGσz (VA + 1)✶2

)

. (5.36)

As the second half of the state is sent through a quantum channel characterized by its
transmission T and excess noise ǫ, one can write the covariance matrix ΓGaussof the state
ρAB Alice and Bob share in the CV QKD protocol with a Gaussian modulation:

ΓGauss =

(

(VA + 1)✶2

√
TZGσz√

TZGσz (TVA + 1 + Tξ)✶2

)

. (5.37)

Then the Holevo information between Eve and Bob’s measurement result can be upper
bounded by a function of ΓGauss (see Chapter 3).

For the protocols of interest here, that is the two-state and the four-state protocols,
our goal is to apply the same proof technique. We therefore want to find a purification
|Φ2〉 (resp. |Φ4〉) with a covariance matrix Γ2 (resp. Γ4) as close as possible as the
covariance matrix ΓTMS of a two-mode squeezed state. This covariance matrix has the
following form:

Γ2,4 =

(

(VA + 1)✶2 Z2,4σz

Z2,4σz (VA + 1)✶2

)

, (5.38)

and the goal is to find a bipartite state |Φ2〉 (resp. |Φ4〉) such that Z2 (resp. Z4) is
as close as possible of ZG. Because a Gaussian state is the state of maximum entropy
for a given covariance matrix, and because the entropy of the two-mode squeezed state
is null, we know that necessarily: Z2, Z4 < ZG. Of course, in order to be a legitimate
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entanglement-based version of the protocol, the bipartite initial state must be such that
there exists a projective measurement that Alice can perform that projects the second
half of the state onto the desired 2 (or 4) coherent states of the set S2 (or S4).

The main idea of the discrete modulation protocols we study here is that there exists
a regime for VA such that

{

I2(x; y) ≈ I4(x; y) ≈ IG(x; y),
S2(y;E) ≈ S4(y;E) ≈ SG(y;E)

(5.39)

but with β2 ≈ β4 ≫ βG where β2, β4 and βG refer respectively to the reconciliation ef-
ficiencies for the binary modulation, the quaternary modulation and the Gaussian mod-
ulation. Here, the superscripts 2, 4 and G refer respectively to the two-state, four-state
and Gaussian protocols. The existence of such a regime allows for the secret key rates
K2,K4 to be positive for distances where the secret key rate for a Gaussian modulation
KG is null.

In the next two sections, we introduce such states |Φ2〉 and |Φ4〉 and compute the
correlation terms Z2 and Z4 of their covariance matrices.

5.4 Security of the two-state protocol

In the prepare and measure version of the two-state protocol, Alice sends the coherent
states |β〉 = |αe−iπ/4〉 and | − β〉 = −|αe−iπ/4〉 with probability 1/2 to Bob. Hence Bob
sees a mixture ρ2 given by:

ρ2 =
1

2
(|β〉〈β| + | − β〉〈−β|)

=
1

2
e−α2





∞
∑

m,n=0

e−i(n−m)π/4αn+m

√
n!
√
m!

|n〉〈m| +
∞
∑

m,n=0

(−1)n+m e
−i(n−m)π/4αn+m

√
n!
√
m!

|n〉〈m|





= e−α2
∞
∑

m,n=0

e−i(n−m)π/2α2(n+m)

√

(2n)!(2m)!
|2n〉〈2m| + e−i(n−m)π/2α2(n+m+1)

√

(2n+ 1)!(2m+ 1)!
|2n+ 1〉〈2m+ 1|

= λ0|φ0〉〈φ0| + λ1|φ1〉〈φ1|,

where λ0 = e−α2
coshα2, λ1 = e−α2

sinhα2 and

|φ0〉 =
1√

coshα2

∞
∑

n=0

(−i)n(α)2n

√

(2n)!
|2n〉, (5.40)

|φ1〉 =
1√

sinhα2

∞
∑

n=0

e−iπ/4 (−i)nα2n+1

√

(2n+ 1)!
|2n+ 1〉. (5.41)

In order to use the proof technique described in the previous section, we need to consider
the entanglement based version on the protocol. In this version, Alice starts with a
bipartite pure state |Φ2〉. She performs a projective measurement on one half of the
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state and sends the other half to Bob through the quantum channel. Depending on the
binary result of her measurement, the state sent to Bob is either |αe−iπ/4〉 or |−αe−iπ/4〉
with equal probabilities. Let us consider the following purification for ρ2:

|Φ2〉 =
√

λ0|φ∗0〉|φ0〉 +
√

λ1|φ∗1〉|φ1〉 (5.42)

where |φ∗0〉 and |φ∗1〉 are simply defined as:

|φ∗0〉 =
1√

coshα2

∞
∑

n=0

(i)n(α)2n

√

(2n)!
|2n〉, (5.43)

|φ∗1〉 =
1√

sinhα2

∞
∑

n=0

eiπ/4 (i)nα2n+1

√

(2n+ 1)!
|2n+ 1〉. (5.44)

|Φ2〉 can also be rewritten as:

|Φ2〉 =
1√
2
|ψ0〉|β〉 +

1√
2
|ψ1〉| − β〉 (5.45)

with
{

|ψ0〉 = 1√
2
(|φ0〉∗ + |φ1〉∗)

|ψ1〉 = 1√
2
(|φ0〉∗ − |φ1〉∗) (5.46)

At this point, it is worthing noting that in the entanglement based version of the protocol,
Alice simply applies the projective measurement {|ψ0〉〈ψ0|, |ψ1〉〈ψ1|} to the first half of
the state |Φ2〉 and that she therefore projects the second half either on the coherent state
|β〉 or the coherent state | − β〉 with equal probabilities. The state |Φ2〉 can also be seen
as a superposition of coherent states:

|Φ2〉 = µ0|e0〉 + µ1|e1〉 (5.47)

with
µ0,1 =

√

1 + e−4α2ν0,1 (5.48)

and

|e0〉 =
1

√

2(1 + e−4α2)
(|β∗〉|β〉 + | − β∗〉| − β〉) (5.49)

|e1〉 =
1

√

2(1 + e−4α2)
(| − β∗〉|β〉 + |β∗〉| − β〉) . (5.50)

Note that the states |e0〉 and |e1〉 are not orthogonal:

〈e0|e1〉 =
2e−2α2

1 + e−4α2 . (5.51)

We now proceed by evaluating the covariance matrix Γ2 of |Φ2〉. Symmetry arguments
show that it has the following form:

Γ2 =

(

X✶2 Zσz

Zσz Y ✶2

)

, (5.52)
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with






X = 〈Φ2|2a†a+ 1|Φ2〉
Y = 〈Φ2|2b†b+ 1|Φ2〉
Z2 = 〈Φ2|ab+ a†b†|Φ2〉

(5.53)

where a, a† and b, b† are respectively the annihilation and creation operators on Alice and
Bob’s modes of the state. In order to compute X, one can consider the state

ρA =
1

2
(|β∗〉〈β∗| + | − β∗〉〈−β∗|) (5.54)

obtained by tracing over the second subsystem of |Φ〉:

X = 〈Φ2|2a†a+ 1|Φ2〉 (5.55)

= tr(2a†a+ 1)ρA (5.56)

= 1 + tr(a†a|β〉〈β|) + tr(a†a| − β〉〈−β|) (5.57)

= 1 + 2α2 (5.58)

since a| ± β〉 = ±β | ± β〉. The symmetry of the state |Φ2〉 shows that

Y = 〈Φ2|2b†b+ 1|Φ2〉 = X. (5.59)

Finally, applying the operator ab on the state |Φ2〉 gives:

ab|Φ2〉 = α2µ0|e0〉 − α2µ1|e1〉 (5.60)

and:

〈Φ2|ab|Φ2〉 = α2(µ2
0 − µ2

1) (5.61)

and finally

Z2 = 〈Φ2|ab+ a†b†|Φ2〉 (5.62)

= 2Re〈Φ2|ab|Φ2〉 (5.63)

= 2α2(µ2
0 − µ2

1) (5.64)

=
1 + e−4α2

2
√
λ0λ1

(5.65)

= 2α2 1 + e−4α2

√

1 − e−4α2
(5.66)

The quantity Z2 is displayed on Figures 5.5 and 5.6. It is clear from these plots that for
α ≤ 0.15, Z2 is almost indistinguishable from ZG thus suggesting that in this regime,
S2(y;E) ≈ SG(y;E).
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5.5 Security of the four-state protocol

In this section, we study the security of four-state protocol. More specifically, we intro-
duce a state |Φ4〉 that can be used in an entanglement-based version of the protocol and
for which we compute the covariance matrix.

In the prepare and measure version of the protocol, Alice sends the coherent states
|β〉 = |αeiπ/4〉, |β∗〉 = |αe3iπ/4〉, |−β〉 = |αe5iπ/4〉 and |−β∗〉 = |αe7iπ/4〉 with probability
1/4 to Bob. Hence Bob sees a mixture ρ4 given by:

ρ4 =
1

4
(|β〉〈β| + |β∗〉〈β∗| + | − β〉〈−β| + | − β∗〉〈−β∗|) (5.67)

= λ0|φ0〉〈φ0| + λ1|φ1〉〈φ1| + λ2|φ2〉〈φ2| + λ3|φ3〉〈φ3|, (5.68)

where
{

λ0,2 = 1
2e

−α2 (

cosh(α2) ± cos(α2)
)

λ1,3 = 1
2e

−α2 (

sinh(α2) ± sin(α2)
) (5.69)

and

|φk〉 =
e−α2/2

√
λk

∞
∑

n=0

(−1)n α4n+k

√

(4n+ k)!
|4n+ k〉 (5.70)

for k ∈ {0, 1, 2, 3}. Applying the annihilation operator a to |φk〉 gives:

a|φk〉 = α

√

λk−1√
λk

|φk−1〉 (5.71)

for k ∈ {1, 2, 3} and

a|φ0〉 = −α
√
λ3√
λ0

|φ3〉. (5.72)

Let us now introduce the following purification |Φ4〉 of the state ρ4:

|Φ4〉 =
√

λ0|φ0〉|φ0〉 +
√

λ1|φ1〉|φ1〉 (5.73)

+
√

λ2|φ2〉|φ2〉 +
√

λ3|φ3〉|φ3〉 (5.74)

This state can also be written as:

|Φ4〉 =
1

2
(|ψ0〉|β〉 + |ψ1〉| − β∗〉 + |ψ2〉| − β〉 + |ψ3〉|β∗〉) (5.75)

where the states

|ψk〉 =
1

2

3
∑

m=0

ei(1+2k)mπ/4|φm〉 (5.76)

are orthogonal non-Gaussian states. These states are displayed on Figure 5.4. This makes
apparent the projective measurement that Alice needs to perform in the entanglement-
based version of the four-state protocol to project the second half of |Φ4〉 on one of the
four coherent states of S4, namely {|ψ0〉〈ψ0|, |ψ1〉〈ψ1|, |ψ2〉〈ψ2|, |ψ3〉〈ψ3|}. Let us compute
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Figure 5.4: States |ψ0〉, |ψ1〉, |ψ2〉 and |ψ3〉 for α2 = 0.5 unit of shot noise.

the covariance matrix Γ4 of the bipartite state |Φ4〉. Using symmetry arguments, it is
clear again that Γ4 has the following form:

Γ4 =

(

X✶2 Z4σz

Z4σz X✶2

)

, (5.77)

where

X = Y = 〈Φ4|1 + 2a†a|Φ4〉 = Φ4|1 + 2b†b|Φ4〉 (5.78)

= tr(1 + 2a†a ρ4) (5.79)

= tr(1 +

3
∑

k=0

a†a λk|φk〉〈φk|) (5.80)

= 1 + 2
3
∑

k=0

λk〈φk|a†a|φk〉 (5.81)

= 1 + 2α2
3
∑

k=0

λk
λk−1

λk
= 1 + 2α2

3
∑

k=0

λk−1 (5.82)
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and finally
X = Y = 1 + 2α2. (5.83)

We are now interested in the correlation term of the covariance matrix, that is

Z4 = 〈Φ4|ab+ a†b†|Φ4〉 (5.84)

= 2Re〈Φ4|ab|Φ4〉. (5.85)

One has:

ab|Φ4〉 = ab
3
∑

k=0

√

λk|φk〉|φk〉 (5.86)

= α2
3
∑

k=0

λk−1

λk

√

λk|φk−1〉|φk−1〉 (5.87)

where addition should be understood modulo 4. Finally, one obtains:

Z4 = 2α2
3
∑

k=0

λ
3/2
k−1

λ
1/2
k

. (5.88)

The behavior of Z4 is plotted on Figures 5.5 and 5.6. For α ≤ 0.5, Z4 and ZG are almost
indistinguishable, meaning that in this regime, one has S4(y;E) ≈ SG(y;E). We confirm
this intuition in the next section.
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2

4

6

8

Figure 5.5: Comparison of the correlation Z2 for the two-state protocol (lower curve),
Z4 for the four-state protocol (middle curve) and for the Gaussian modulation protocol
ZG (upper curve) as a function of α (for large values of α)

Already, Figures 5.5 and 5.6 suggest that the four-state protocol will be easier to
implement than the two-state protocol since Z4 is larger than Z2. In particular, the co-
variance matrix of |Φ4〉 is almost indistinguishable from the one of the two-mode squeezed
state for a much larger range of variances that the one of |Φ2〉.
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Figure 5.6: Comparison of the correlation Z2 for the two-state protocol (lower curve),
Z4 for the four-state protocol (middle curve) and for the Gaussian modulation protocol
ZG (upper curve) as a function of α (for small values of α)

5.6 Performances of the protocols

For both protocols, the Holevo information between Eve and Bob’s measurement result is
upper bounded by the same quantity computed for a Gaussian state ρG

AB with the same
covariance matrix as the state ρAB shared by Alice and Bob in an entanglement-based
version of the protocol. Hence one can give a lower bound for both secret key rates K2

and K4:
{

K2 ≥ βI2(x; y) − S2(y;E),
K4 ≥ βI4(x; y) − S4(y;E),

(5.89)

The expression for the upper bound on S2(y;E) (resp. S4(y;E)) is computed from the
symplectic eigenvalues ν1, ν2 of Γ2 (resp. Γ4) and from the eigenvalue ν3 of the matrix
Γ2 |y (resp. Γ4 |y) corresponding to the covariance matrix of Alice’s state given the result
of Bob’s homodyne measurement. The covariance matrix Γ2,4 of the state shared by
Alice and Bob is given by:

Γ2,4 =

(

(VA + 1)✶2

√
TZ2,4σz√

TZ2,4σz (TVA + 1 + Tξ)✶2

)

. (5.90)

The reduced covariance matrix given Bob’s measurement result depends on the type of
measurement performed, either homodyne or heterodyne:

Γhom
2,4 |y =

(

VA + 1 − (Z2,4)2

TVA+1+Tǫ 0

0 VA + 1

)

, (5.91)

and

Γhet
2,4 |y =

(

VA + 1 − (Z2,4)2

TVA+2+Tǫ 0

0 VA + 1 − (Z2,4)2

TVA+2+Tǫ

)

. (5.92)
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It is worth mentioning that the bounds for the Holevo information S(y;E) that we derive
from the covariance matrices of |Φ2〉 and |Φ4〉 are not proven to be tight. Indeed, even in
the case where the quantum channel between Alice and Bob is perfect, that is T = 1 and
ξ = 0, the bounds we compute do not give S(b;E) = 0 as we would expect, except in the
limit of infinitely small modulation variances α→ 0. This is because the states |Φ2〉 and
|Φ4〉 are not Gaussian. However, the approximation becomes reasonably good for low
modulation variances and one can expect the bounds not to be too loose. An intriguing
question is whether the value of S(y;E) computed for the Gaussian protocol is an upper
bound for the same quantity computed for the discrete-modulation protocols. With the
proof we presented, this is not the case (for instance, for a perfect quantum channel,
SG(y;E) = 0 as expected, whereas the bounds we found for S2(y;E) and S4(y;E) are
positive). It is quite natural to expect the following relation to hold S2(y;E), S4(y;E) <
SG(y;E) since a discrete modulation never maximizes the mutual information between
Alice and Bob, and it is doubtful that it presents any advantage for a eavesdropper.
However, our security proof cannot bring a definitive answer to this question.

The performances of the two-state protocol are displayed on Figure 5.7 corresponding
to a perfect reconciliation efficiency and a perfect quantum efficiency for Bob’s detector,
and on Figure 5.8 corresponding to a realistic scheme where the reconciliation efficiency
is only 80% and the quantum efficiency of Bob’s detector is equal to 60%. One can
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Figure 5.7: Secret key rate of the two-state protocol for a perfect reconciliation efficiency
and a quantum efficiency of Bob’s detection equal to 1. From top to bottom, excess
noise is 0.001, 0.0015, 0.002. The respective optimized modulation variances (in number
of photons) are 0.015, 0.018 and 0.23.

see from these figures that the two-state protocol can only work in a regime where the
excess noise is very small: around 1/1000, which is compatible with the results obtained
in [163] where the authors also study the security of a slightly different version of the two-
state protocol (but where they need to assume the perfect knowledge of the probability
distribution p(y|x)!).

The performance of the four-state protocol is presented on Figure 5.9 for an realistic
reconciliation efficiency of 80% as well as a realistic quantum efficiency of 60% for Bob’s
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Figure 5.8: Secret key rate of the two-state protocol for a imperfect, realistic reconciliation
efficiency of 80% and a quantum efficiency of Bob’s detection equal to 0.6. From top
to bottom, excess noise is 0.001, 0.0015, 0.002. The respective optimized modulation
variances (in number of photons) are 0.015, 0.018 and 0.23.
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Figure 5.9: Secret key rate of the four-state protocol for a imperfect, realistic reconcilia-
tion efficiency of 80% and a quantum efficiency of Bob’s detection equal to 0.6. From top
to bottom, excess noise is 0.002, 0.004, 0.006, 0.008 and 0.01. The modulation variance
(in number of photons) is 0.125, that is VA = 0.25.

detector. One immediately notices that the four-state protocol performs much better
than its two-state counterpart, that is, it allows for a distribution of secret keys over longer
distances, and tolerates a much higher (and more reasonable) excess noise. This better
resistance to excess noise is extremely important as we will see that the results presented
so far are a little too optimistic in the sense that they assume a perfect knowledge of the
transmission and excess noise (which is already infinitely less demanding that requiring
a perfect knowledge of the quantum channel, which is described by an infinite number
of parameters!). In practice, however, these parameters can never be perfectly known,
and they can only be estimated with a precision depending on the number N −n of data
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used in the parameter estimation. The main consequence of this imperfect parameter
estimation is to increase the effective excess noise, thus decreasing the actual performance
of the protocols. We will come back on these aspects later in this manuscript, especially
in Chapter 7.

5.7 Remaining issues

5.7.1 Potential issue with reverse reconciliation

In the case of discrete-variable QKD, the error correction messages exchanged by Alice
and Bob during the reconciliation procedure always involve a finite number of bits. Then
it is relatively easy to bound the amount of information that Eve can learn from Alice and
Bob classical communication [124, 80]. Unfortunately, the situation is more involved for
continuous-variable protocols as the reconciliation procedure might involve the exchange
of continuous variables, that is, an a priori infinite amount of information. For instance,
in the reconciliation scheme that we presented before, Bob needs to send the absolute
value t of his measurement result to Bob. Intuitively, this is not a problem as t seems
to be uncorrelated with the sign u of his measurement result. A rigorous proof of this
intuition can be found in [163] and we reproduce it here.

Let us first recall the notations. Alice and Bob have access to correlated random
variables x and y which corresponds respectively to the value of a quadrature of the
coherent state sent by Alice and to Bob’s result when measuring the corresponding
quadrature on the state he received. Bob computes two values from y: its sign, u =
sgn(y) = ±1 which corresponds to the raw key element and its absolute value t = |y|
which is sent to Alice with the classical channel as side information. The result we want
to prove is the following inequality:

S(u;E|t) ≤ S(y;E). (5.93)

This inequality means that Eve cannot learn any useful information about u from the
knowledge of the side information t. The main idea of the proof is to use the concavity of
the von Neumann entropy. First, the quantum state of Eve conditioned to Bob’s outcome
y can be written as

ρy
E =

∑

x

Pr(x|y)ρx,y
E (5.94)

where Pr(y|x) is the probability of Alice’s classical data being x given that Bob’s mea-
surement result is y and ρx,y

E is Eve’s quantum state conditioned on both Alice and Bob’s
classical variables. During the reconciliation procedure, Bob compute the variables t and
u from y:

ρt,u
E =

∑

y

Pr(y|t, u)ρy
E . (5.95)
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Using these notations, one can lower bound the quantity S(E|t, u) as follows:

S(E|t, u) =
∑

u

∫

t
dtPr(t, u)S

(

ρt,u
E

)

(5.96)

=
∑

u

∫

dtPr(t, u)S
(∫

dtPr(y|t, u)ρy
E

)

(5.97)

≥
∑

u

∫

dtPr(t, u)
∫

dtPr(y|t, u)S
(

ρy
E

)

(5.98)

=
∑

u

Pr(y)S
(

ρy
E

)

(5.99)

= S(E|y), (5.100)

where the inequality is the direct application of the concavity of the entropy [109]. Now,
one has

S(u;E|t) = S(E|t) − S(E|u, t) (5.101)

≤ S(E) − S(E|y) (5.102)

≤ S(y;E), (5.103)

which is what we wanted.

5.7.2 Other potential issues for long distance CV QKD

So far, our results indicate that combining a discrete modulation together with a very
efficient reconciliation procedure at low SNR allows to considerably increase the range
of continuous-variable QKD. However, one might encounter other (technical) problems
when trying to implement such a protocol. We list some potential problems below,
together with possible approaches to solve them.

Statistical noise. Probably the main issue regarding long distance CV QKD is statistical
noise. This is directly related to the problem of finite-size effects that we analyze in more
details in Chapter 7. In fact, statistical noise relates to the specific problem of parameter
estimation. As we stated before, the continuous-variable protocols we study are described
by two main parameters that need to be known in order to compute the secret key
rate: the transmission T and the excess noise ξ of the quantum channel between Alice
and Bob. To be more precise, one also needs to know precisely the variance of Alice’s
modulation, but we can assume quite realistically, that this value is exactly known.
Whereas the precise estimation of T is rather easy, the more crucial estimation of the
excess noise appears quite involved, and the imperfect estimation has the immediate
consequence of rather drastically reducing the range of the protocol even for quite long
blocks (N ≈ 106 − 107). Even if the problem of statistical noise is very relevant to
continuous-variable protocol where one needs to precisely monitor the excess noise, it
should be noted that the same issue also affects every discrete-variable QKD protocol.
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Unfortunately, the solution to this problem is known. “Unfortunately” because the
solution in question, whereas clear in theory, is rather complicated to implement. The
solution is simply to increase the block length in such a way that the statistical noise
becomes negligible. This seems straightforward, but is really problematic if this length
must be in the order of a few billions (today, most implementations have block lengths
of a few millions at most), and completely impossible if this length needs to be increased
by a few more orders of magnitude. A more precise analysis in the case of CV QKD is
detailed in Chapter 7.

Limited accuracy of the acquisition card. A second problem, that becomes highly
relevant in the context of long distance where signals become very low, is the limited
accuracy of the acquisition card used in Bob’s homodyne detection. For long distances,
one needs indeed to work at very low SNR meaning that the signal can easily be 10
or 100 times smaller than the noise. In these conditions, the signal is encoded in only
a few bits of the (usually) 12 bits of the acquisition card. This implies that the data
observed by Bob cannot be considered to be truly continuous, but rather discrete. The
main consequence is that this digitization artifact behaves like some added noise. This
is an issue for at least two reasons:

• the added noise might lead to a worse performance than anticipated for reconcilia-
tion efficiency since the reconciliation scheme is designated to fight Gaussian noise.
This effect is difficult to precisely model theoretically, and one needs to test it in
practice to see whether it is damaging or not. However, one might be confident that
in certain regimes, this effect should not be too important thanks to the central
limit theorem which states that adding many uncorrelated sources of random noise
tends to a Gaussian noise. In particular, one can expect such a behavior from the
use of the repetition codes at low SNR: one adds several weak and noisy signals to
obtain a large and less noisy signal which is then corrected with standard LDPC
codes.

• the second problem is that this new source of noise increases the excess noise, that is
all the noise which is not the shot noise, nor the electronic noise. As a consequence,
this noise will decrease the secret key rate of the protocol11. Fortunately, this noise
is not caused by the eavesdropper and should be given a similar status than the
electronic noise: it should decrease the mutual information between Alice and Bob,
but not increase the Holevo information between Eve’s quantum state and Bob’s
data. However, whereas modeling the source of electronic noise is rather easy (see
[97]), modeling the noise due to the finite accuracy of the acquisition card is less
obvious. This is because this modeling should be done by considering a purification
of the quantum system shared by Alice and Bob: in these conditions, the Gaussian
electronic noise is just modeled by an additional two-mode squeezed state, but
the finite precision of the acquisition card probably cannot be modeled with a

11which is a decreasing function of the excess noise.
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Gaussian state, which might make computations (as well as security proofs) much
more tedious.

Sending the local oscillator far away. The third issue we would like to address when
considering continuous-variable QKD over long distance is the problem of the local oscil-
lator. Indeed, for the protocol to work, and more especially the homodyne detection to
be possible, Bob needs a local oscillator perfectly synchronized with Alice’s. Usually, for
most CV QKD implementations (for instance [97] and [48]), the local oscillator is simply
sent through the quantum channel (an optical fiber) along with the signal encoded the
information. This is achieved by multiplexing the signal and the local oscillator, either
in time, or in polarization, or both. Unfortunately, this system, which works very well
over short distances, becomes problematic as the losses increase. The principal reason is
that the local oscillator should be sufficiently intense on Bob’s side in order to make the
homodyne detection possible. However, amplifying the local oscillator (which is autho-
rized in theory) is not possible if the local oscillator is sent in the same fiber than the
quantum signal (which should not be amplified), and sending it in a distinct channel is
not a very good solution as one will lose the synchronization between the oscillator and
the quantum signal quite quickly. A possible solution would be to use clock recovery
techniques, but it would imply a much more complicated setup than the ones used in
current implementations.

5.8 Perspectives: convergence between DV and CV QKD

at long distance

Whereas Alice usually sends coherent states with a few photons per pulse (between 3 and
10) in the Gaussian modulation protocol, here, the optimal number of photons per pulse
typically ranges from 0.2 to 1. Therefore, the similitudes with discrete-variable QKD are
important : the information is encoded onto low amplitude coherent states with generally
less than 1 photon per pulse. The main difference is that an homodyne detection replaces
photon counting. In the protocols we presented here, however, the error rate is not
upper bounded (and can be as close as 0.5 as the reconciliation efficiency allows). This
sounds in disagreement with security proofs for discrete-variable protocols that impose
a maximum admissible quantum bit error rate (QBER). The reason for which this is
nonetheless correct is that the error rate in our case in induced by both the noise added
by Eve as well as the losses. This is in fact equivalent to a BB84 protocol where Bob
would assign a random value to each pulse he did not detect. In this case, the QBER
is arbitrarily high, but the security is still insured. In some sense, the main difference
between the two schemes is that the vacuum noise is processed in two very different
ways : whereas it creates “deletion errors” (which are ignored) in the photon counting
scheme, it produces “real errors” (which have to be corrected) in the continuous-variable
scheme.
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CHAPTER 6

Are collective attacks optimal?

Up until now, we have mainly focussed on the security of CV QKD against collective
attacks. However, collective attacks correspond to a restriction on Eve’s capabilities1 and
security against this class of attacks does not necessarily mean unconditional security.

Quite recently, Renner and Cirac generalized a method previously used for discrete-
variable QKD to establish that collective attacks were asymptotically optimal also for
CV QKD [127]. While being quite remarkable, this result presents a few drawbacks.
First, it involves a checking step in order to verify that the Hilbert space relevant to
describe the protocol is in fact finite-dimensional. Second, being an adaptation of the
discrete-variable case, this technique does not fully take advantage of continuous-variable
specificities (symmetries for instance), and consequently does not give the tightest bounds
one could hope for in the non-asymptotic case, which is problematic for a finite-size
analysis. Let us recall here that asymptotic results are useless in practice as one only has
access to finite resources. First finite-size analyses are very pessimistic and suggest that
asymptotic bounds become relevant only for very, very large block lengths, which are
not achievable in practice. Therefore, one of the great challenges left for the theoretical
study of QKD is to improve these non-asymptotic bounds. Whereas some components of

1and quite interestingly, a restriction on the limitations of theoretic physicists who find these attacks
much easier to analyze than general attacks!
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finite-size analysis, such as parameter estimation are already tight, it is not the case of the
correction terms necessary to consider general attacks instead of collective attacks. These
additional terms appear to be purely technical and without strong physical interpretation,
and might disappear in future, with clever security proofs.

At this point, it is worth noting that symmetries of a QKD protocol can be exploited
to derive security bounds, and it would seem that the more symmetric a protocol is,
the simpler the optimal attack is. For instance, collective attacks are optimal against
BB84, even for finite size [57, 86, 130]. Hence, in the case of BB84, there is no penalty to
consider general attacks instead of collective attacks. In some sense, CV QKD protocols
such as GG02 also appear to display important symmetries which could optimistically
expected to be useful to derive tighter security proofs, and maybe to prove that collective
attacks are always optimal, even in a non-asymptotic scenario.

The outline of this chapter is the following: we first review a general two-step strategy
to prove the security of a QKD protocol, and we show how these two steps translate in
the case of continuous-variable QKD. Then, we present preliminary results, in particular,
a new de Finetti theorem in phase space representation. Unfortunately, these first results
are not yet strong enough to prove the unconditional security of CV QKD. We conclude
the chapter by exploring potential approaches for such a security proof.

6.1 Strategy for a proof

In this section, we start by defining the problem at hand: namely, how to reduce (when
possible) the study of general (coherent) attacks to the study of the more easily handled
collective attacks. We then explain a two-step strategy to solve this problem. Such a
strategy will consist first in a symmetrization procedure, then on a proof that for our
purpose (the security of QKD), symmetric states are reasonably close to i.i.d. states.
Such closeness (in terms of the secret key rate distillable from a given state) can be
established with at least two approaches: either an exponential version of the quantum
de Finetti theorem2 [125] or a postselection procedure [31]3.

6.1.1 Collective versus general attacks

Even if this claim has been made repeatedly since the proposal of the first QKD protocol
in 1984 [10], it is only recently that complete security proofs have been rigorously estab-
lished. Proving the security of a scheme without making any simplifying assumptions is
indeed quite challenging: the legitimate parties, Alice and Bob, need to infer what is the
most efficient attack that an eavesdropper, Eve, could perform. This can be achieved
by considering all bipartite states ρAB compatible with Alice and Bob’s data, but this
quickly becomes almost intractable since the dimension of the Hilbert space H⊗n relevant

2in which case, one proves the closeness between the (partial trace of) symmetric states and the i.i.d.
states in terms of trace-distance.

3Note that despite its name, such a postselection procedure is not linked to the procedure consisting
in postselecting certain data in CV QKD, such as in [144].
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to describe ρAB grows exponentially with the number n of quantum signals exchanged
during the protocol. Here, we note H = HA ⊗ HB the tensor product of the Hilbert
spaces HA and HB which respectively describe Alice’s and Bob’s quantum systems. As
a consequence, security proofs were often derived while restricting the adversary to the
so-called collective attacks. For such attacks, the state ρAB is supposed to be independent
and identically distributed (i.i.d.), meaning that there exists a state σAB ∈ H such that
ρAB = σ⊗n

AB, or more exactly, ρAB should be a mixture of such i.i.d. states, that is, there
exists a probability p(σ) over all bipartite states σ ∈ H such that

ρAB =

∫

dσ p(σ)σ⊗n. (6.1)

As a consequence, the Hilbert space needed to analyze the protocol becomes H instead
of H⊗n: no need to emphasize that this “small” assumption considerably simplifies the
analysis!

The question then is to know whether such a hypothesis limits the power of the
adversary in a non trivial way, or, said otherwise, whether this leads to an unreasonably
optimistic view of the security of QKD. Fortunately, this is not the case as collective
attacks were recently proven asymptotically optimal against protocols described with a
finite-dimensional Hilbert space [125]. In order to establish such a proof, two steps are
usually necessary:

• first, one needs to show that the state ρAB can safely be assumed to be symmetric:
this is done through the so-called symmetrization argument that we will detail
below. The rough idea of this symmetrization is that if the QKD protocol displays
some symmetries (for instance, the protocol is invariant under a reordering of the
signals exchanged as in BB84, B92, GG02 and most QKD protocols), then Alice and
Bob can always assume that the quantum state they share in the Entanglement-
Based version of the protocol displays the same symmetries,

• then, it can be shown that, in general, such symmetric states are well-behaved with
regard to QKD: this means that a symmetric state will allow one to distill roughly
the same secret key rate than an i.i.d. state. Two methods can be used to prove
this result. A brute-force approach consists in showing that up to some negligible
operations (such as tracing out a negligible-sized subsystem4), a symmetric state
is actually very close to a mixture of (almost) i.i.d. states for the trace distance:
this is the content of the exponential version of de Finetti theorem [125]. The
second approach works backwards: the idea is to show that if a protocol is ǫ-secure
against collective attacks, then it is ǫ′-secure against coherent attacks where the
ratio between ǫ′ and ǫ is at most polynomial in the number of states exchanged by
Alice and Bob. Since ǫ can be made exponentially small simply by shortening the
length of the final key, this method can indeed be applied to show the unconditional
security of a QKD protocol for which the security against collective attacks has been
established. This second approach called postselection technique [31] turns out to

4in the asymptotic regime
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be better than de Finetti theorem for proving security of QKD protocols as it gives
much tighter bounds.

The challenge in the case of continuous-variable QKD is to adapt this general strategy
to the case of infinite dimensional Hilbert spaces. Although this seems quite difficult with
the usual symmetries considered for discrete-variable QKD, it might still be possible when
using symmetries that are more specific to continuous-variable protocols.

6.1.2 Symmetrization

The goal of this section is to explain how symmetry considerations can simplify the
theoretical analysis of quantum cryptography. In particular, we would like to provide a
theoretical (but intuitive) justification to the common attitude of considering the state
ρAB shared by Alice and Bob as being symmetric. Note that a more mathematical
argument can be found in [31]. The symmetry which is usually considered is that the
state ρAB ∈ H⊗n is invariant under any permutation of its n subsystems. Here we
show that Alice and Bob can indeed always make this assumption, but that they are in
fact not limited to the symmetric group Sn, but can instead consider larger symmetry
groups. Basically, the idea is that assuming any symmetry results in Alice and Bob
underestimating the secret key rate they can extract from their data.

The secret key rate for a particular instance of a QKD protocol is a function of
the state ρAB shared by the legitimate parties, Alice and Bob. The eavesdropper, Eve,
is assumed to have the maximal information compatible with ρAB meaning that her
state ρE is such that ρE = trAB(|ΨABE〉) where |ΨABE〉 is any purification of ρAB.
Note that all purifications are equivalent up to a unitary operation applied on system
E. More precisely, ρAB represents the knowledge that Alice and Bob have about the
quantum state they share. For this reason, ρAB is subjective and inevitably depends on
assumptions made by Alice and Bob5. A crucial observation is that Alice and Bob would
like to ignore or forget the properties of ρAB they are not interested in, typically possible
correlations between the N subsystems of their state, hence obtaining ρAB = σ⊗n

AB for
some prototype state σAB ∈ H, which would exactly corresponds to the case of a collective
attack. Unfortunately, this action of forgetting comes at a price, namely erasing some
potentially useful information. The first idea to make the argument more rigorous is
that Alice and Bob can actually enforce the symmetry they want. Let us for instance
consider symmetry under permutations of the subsystems of ρAB which is the symmetry
commonly used in various QKD security proofs (with the notable exception of protocols
such as the Differential Phase Shift (DPS) [75] or the Coherent One-Way (COW) [150]).
This symmetry can be enforced in the following way: Alice and Bob can perform the
same random permutation π over their respective state, with π being chosen uniformly

5It must be emphasized that this cannot be avoided by performing a quantum tomography of the
state since the latter is also subject to hypotheses, namely that one has access to an arbitrary large
number of independent and identical copies of a single state.
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over the symmetric group Sn. This operation transforms ρAB into

1

n!

∑

π∈Sn

Pπ ρAB P†
π ⊗ |π〉〈π|C (6.2)

where Pπ is the unitary operator implementing the permutation π to both systems A and
B, {|π〉}π is an orthogonal family of vectors and C is a classical auxiliary space whose
sole purpose is to store the information concerning the permutation π that was applied.
Then, tracing over system C (or equivalently giving this system to Eve), Alice and Bob
obtain the state ρ̄AB

ρ̄AB ≡ 1

n!

∑

π∈Sn

Pπ ρAB P†
π, (6.3)

which is symmetric by construction. Obviously, for any practical purpose, applying such
a procedure is out of question as it would at least involve a quantum memory in order to
store each subsystem while Alice and Bob wait for the total state ρAB. One may object,
however, that applying such a permutation π to ρAB is equivalent to merely relabeling
the indices of Alice and Bob’s data, which is a much simpler task to perform. The key is
that both procedures are indistinguishable, which is a clear consequence of the fact that
the permutation of subsystems commutes with the measurement procedure and classical
post-processing. This is true for most protocols, such as BB84 or continuous-variable
protocols, but not for DPS or COW6. In order for the two procedures to be completely
equivalent, Alice and Bob should completely forget which particular permutation was
performed. A second crucial point is that, in reality, Alice and Bob do not even need
to permute the labels of their data. What is really necessary is that they should never
use any information related to the order of their data (the labeling of their data) in later
parts of the QKD protocol (for instance during parameter estimation or reconciliation).
If they do not use such potential information, then the protocol is exactly the same as if
they would perform a random symmetry then forget which symmetry they applied.

It must be realized that enforcing such a symmetry can only decrease the secret key
rate since Alice and Bob give additional information to Eve, or, equivalently, forget some
a priori available information. This means that the quantity S(b;E) can only be larger
for the symmetrized state than for the initial state. On the other hand, while they are
only throwing information that they do not use7 in practice (the labeling of their data),
this symmetrization step has no impact on βI(a; b) which is the length of their raw key
after the reconciliation procedure, but before the privacy amplification. Hence, the fi-
nal secret key rate βI(a; b) − S(b;E) can only be decreased during the symmetrization
procedure. The point is to choose a symmetry which simplifies the analysis, but does
not impact the secret key rate too much. Note than nothing forbids one to use such a
technique in the study of the DPS and COW protocols. However, correlations between
different subsystems are essential for these protocols to work and no key could be ex-
tracted if one was forgetting them. Essentially, if the usual symmetrization was applied

6for these protocols, the information is encoded onto successive signals, meaning that permuting the
signals erases all the information, making the key distribution impossible.

7and do not know how to use
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to these protocols, the resulting extracted mutual information βI(a; b) would simply be
null, which is certainly problematic as the secret key rate would be null as well, but then
the protocols would still be theoretically secure, even if useless, as they do not produce
insecure keys. In principle, any symmetrization is applicable to any QKD protocol, but
some symmetrization procedures essentially erase all the relevant information and are
consequently useless for the study of such protocols. Other symmetries have been inves-
tigated in the literature, for instance random bit-flip or phase-flip applied simultaneously
by Alice and Bob, and have led to simplifications in the analysis of some protocols [86].

The above reasoning can easily be generalized to other symmetries. Let G = GA⊗GB

be a symmetry group in H⊗n. More exactly, G is local in the sense that its elements g are
of the form g = gA ⊗ gB where gA ∈ GA and gB ∈ GB are operations acting respectively
on Alice and Bob’s systems. If Alice and Bob perform a random g = gA ⊗ gB drawn
from G and later forget about g, they effectively transform their ρAB into

ρ̄GAB ≡ 1

#G
∑

gA⊗gB∈G
(gA ⊗ gB) ρAB

(

g†A ⊗ g†B

)

, (6.4)

where #G is the cardinal of G. The group G can even be continuous (but still compact),
in which case the discrete sum should simply be replaced by an integral over the Haar
distribution of G. This is actually what we will do for continuous-variable protocols.

6.1.3 Symmetric states versus i.i.d. states

Now that we have shown that the state ρAB shared by Alice and Bob in the Entanglement-
Based version of the QKD protocol could be assumed to display some relevant symme-
tries, we need to establish that such a symmetrized state is almost as good as an i.i.d.
state for the purpose of distilling a secret key. We will detail two approaches to this prob-
lem: the exponential version of de Finetti’s theorem and the postselection procedure.

de Finetti’s theorem. There has been a renewed interest in de Finetti’s theorem [37]
over the recent years, especially in the context of quantum information theory. In a
classical setting, de Finetti’s theorem addresses the statistics of large composite systems
obeying some fundamental symmetry (e.g., invariance under permutations of its parts),
stating that its parts can be well approximated by identical independent subsystems. In
the language of probability theory, a permutation-invariant joint probability distribution
of n random variables is shown to approach a probabilistic mixture of independent and
identically distributed (i.i.d.) variables. In a quantum setting, the theorem makes the
connexion between two types of n-mode states in H⊗n: symmetric states, i.e., states
that are invariant under permutations of their subsystems (ρ such that ρ = πρπ† for
any permutation π ∈ Sn), and mixtures of i.i.d. states of the form σ⊗n for some state
σ ∈ H. Whereas an i.i.d. state is obviously symmetric, the converse is not true in general.
According to the quantum de Finetti theorem [74, 23], a symmetric state becomes in-
creasingly close to a mixture of i.i.d. states as one traces out more of its parts. Attempts
at characterizing the speed of convergence towards an i.i.d. state are more recent, both in
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the classical case [39] and quantum case [81, 30]: the trace distance between the partial
trace over (n−k) parties of an n-partite symmetric state and a mixture of k-partite i.i.d.
states is bounded from above by 2d2k/n, where d is the dimension of the Hilbert space.

Interestingly, a striking difference with the classical case is that the trace distance in
the quantum case necessarily depends on the dimension of the Hilbert space. In particu-
lar, this rules out the possibility of a direct generalization of the theorem to an infinite-
dimensional Hilbert space. This was proven in Ref. [30], where a counter-example was
exhibited: the n-dimensional generalization of the singlet state 1/

√
n!
∑

π sign(π) π(|0〉⊗
|1〉⊗ · · · ⊗ |n− 1〉) is symmetric but any bipartite part, being a mixture of singlet states,
cannot be approximated by a mixture of i.i.d. states. Even if a general quantum de
Finetti theorem does not hold in infinite dimension, it is still possible to establish inter-
esting versions of the theorem by restricting the set of states considered. For instance,
such results can be obtained for coherent cat states [36] and Gaussian states [84].

Exponential de Finetti theorem. Unfortunately, the versions of de Finetti theorem men-
tioned above are useless for QKD. This is because the error in the approximation is
proportional to k/n, which would make necessary to trace out most of the subsystems in
order to get a “not so good” approximation. In particular, in the context of QKD, one
requires the error to be exponentially small in the number n of subsystems. A way to
obtain such an excellent approximation is to relax a little bit the i.i.d. property. This
is the idea followed in Renner’s exponential version of de Finetti theorem [125]. One
introduces the notion of ( n

m )-i.i.d. state: ρ(n) is called ( n
m )-i.i.d. (with prototype σ) if

there exists a permutation π and a state ρ̃(n−m) on n−m subsystems such that

ρ(n) = Pπ

(

σ⊗mρ̃(n−m)
)

P†
π. (6.5)

One recovers the usual i.i.d. property when m = n. The exponential de Finetti theorem
then states that any n-partite part ρ(n) of an N -partite symmetric state ρ(N) is approx-
imated by a probabilistic mixture of states ρ(n)

σ parametrized by σ, where each ρ
(n)
σ is

contained in the space spanned by ( n
n−r )-i.i.d. states with prototype σ, for r ≪ n. The

remarkable property of this approximation is that its error is upper bounded by

ǫ = 3e−r N−n
N

+d ln(N−n), (6.6)

where d is the dimension of the subsystems, meaning that the error is exponentially small
in r. By setting r = Nα and n = N −Nα for 1/2 < α < 1, one obtains that a symmetric
state ρ(N) can be seen as a mixture of i.i.d. states (with an error exponentially small in
N) if we ignore Nα subsystems and tolerate deviations in at most Nα of the subsystem,
where Nα is sublinear in N .

This exponential version of de Finetti theorem can then be used in the context of
QKD since it is known (see [124]) that the security of a QKD protocol in not affected
by alterations of a small number of subsystems of ρ(N). Note, however, that is is only
true in the asymptotic limit. In a finite-size analysis, correction terms depending on



128 CHAPTER 6. ARE COLLECTIVE ATTACKS OPTIMAL?

ǫ = 3e−r N−n
N

+d ln(N−n) must be taken into account8.
In this present form, this theorem cannot be directly applied to CV QKD since the di-

mension d of the relevant Hilbert space is infinite, making the error ǫ in the approximation
also infinite. This problem can be solved thanks to a generalization of the exponential
version of de Finetti theorem to infinite dimensional quantum systems.

An exponential version for infinite-dimensional Hilbert spaces. As we mentioned earlier, a
crucial difference between the classical and quantum versions of de Finetti theorem is that
the latter makes an explicit reference to the dimension of the considered system while
the former does not. In the case of continuous-variable QKD, the relevant Hilbert space
is the Fock space which is infinite-dimensional. This would be an irremediable problem
is there was not a subtlety, namely that the dimensions for continuous variables in fact
correspond to energy levels. As a consequence, physical systems, which necessary have
a finite energy, can be very well described with only a finite number of dimensions. This
is because the populations in the very excited energy levels are always very small. Using
this idea, Renner and Cirac were able to derive a generalization of the exponential de
Finetti theorem for continuous variables, but restricted to the case where some property
of the system can be checked, for instance that its energy is low enough [127]. Such a
condition can be that the results of homodyne measurements performed on parts of the
system should have a small absolute value. More precisely, the security proof of CV QKD
protocols will work at the expense of an extra step in the protocol. This step is such
that Alice and Bob will continue the protocol if the values zi corresponding to results
of homodyne measurements performed on random quadratures are such that z2

i ≤ n0
2

for some n0, and abort otherwise. This verification step allows one to make sure, that
with high probability, the relevant Hilbert space to describe the state ρAB is spanned by
the eigenvectors of X̂A + P̂A and X̂B + P̂B with eigenvalues smaller than n0. The quite
involved technical part of the proof is detailed in [126].

Postselection procedure. The postselection technique recently introduced by Chris-
tandl, König and Renner in [31] gives a general method to upper bound the distance
between to quantum channels, that is two completely positive trace-preserving (CPTP)
maps, at the condition that the maps act symmetrically on an n-partite system with
subsystems H of finite dimension. The distance between maps that we consider is the
diamond distance which is derived from the diamond norm ||.||⋄ introduced in Chapter
1: the norm of the CPTP map T is given by

||T ||⋄ ≡ sup
k∈N

||T ⊗ idk||1, (6.7)

where
||S||1 ≡ sup

||σ||1≤1
||S(σ)||1 (6.8)

8in such an analysis, an optimization procedure is applied to determine the best choice for the pa-
rameters r and n. This optimization also takes into account the parameter estimation phase. A more
detailed presentation can be found in the next chapter of this manuscript.
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and idk denotes the identity map on states of a k-dimensional quantum system. The
suprema in both definitions are reached for positive σ and k equal to the dimension of
the input of T [79]. The postselection technique allows one to compute an upper bound
on the distance ||E − F||⋄ by only considering a de Finetti state, that is a state of the
form9

τH⊗n ≡
∫

σ⊗n
H µ(σH), (6.9)

where µ(.) is the measure on the space of states on H.
In the context of QKD, the idea is to choose for E the map performed by the protocol:

E takes ρAB ∈ (HA ⊗ HB)⊗n as input and outputs the pair (SA, SB) corresponding to
Alice and Bob’s final keys as well as some classical communication C. The map F will be
an ideal QKD protocol and takes ρAB as input but outputs the perfect keys (S, S) with
the same length as SA and SB as well as the same classical communication C as E . At
the condition that E and F both act symmetrically on ρAB, one can bound the distance
between the QKD protocol studied and the ideal protocol by the product of the same
distance computed for a de Finetti state and a polynomial in n of degree (dimH)2 − 1.
In particular, this means that if a QKD protocol is ǭ-secure against collective attacks, it
is ǫ-secure against general attacks where

ǫ ≡ (n+ 1)d2−1 ǭ, (6.10)

where d = dim(HA ⊗HB). It is crucial to note that such a polynomial ratio between the
security parameters relative to collective attacks and general attacks is not a problem.
Indeed, the parameter ǭ can actually be chosen exponentially small, ǭ ≤ 2−cδ2n for some
c > 0 at the cost of the of reducing the key size by an arbitrarily small fraction δ compared
to the asymptotically optimal rate [31].

This postselection technique gives improved bounds for the secret key rate secure
against coherent attacks compared to the results obtained from an application of the
exponential version of de Finetti theorem. Unfortunately, the case of CV QKD cannot be
treated directly through this approach as the final security parameter depends explicitly
on the dimension of the Hilbert space HA ⊗HB.

6.2 Symmetries in phase space10

In this section, we introduce a new group of symmetry which is particularly important
for continuous-variable QKD for at least two reasons:

• first, because the symmetry group introduced here is larger than the symmetric
group Sn, it is reasonable to think that its use will simplify the security analysis
of continuous-variable QKD against general attacks. Indeed, this symmetry group
allows for a new version of de Finetti theorem, which was shown to be impossible
when considering the action of Sn in infinite dimensional Hilbert spaces [92].

9a de Finetti state corresponds to the state of n subsystems prepared as identical and independent
copies of an unknown density operator σH.

10The results of this section were published in New Journal of Physics [90].
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• second, it allows us to justify the (usually assumed) form of the covariance matrix
ΓAB of the bipartite state ρAB shared by Alice and Bob in the Entanglement-
Based version of the GG02 protocol when studying the security against coherent
(or collective) attacks.

6.2.1 A symmetry group in phase space

The state ρ of an n-mode bosonic quantum system is completely characterized by its
Wigner function in the 2n−dimensional phase space parametrized by the quadratures
x1, p1, . . . , xn, pn, namely

W (x1, p1, · · · , xn, pn)

=
1

πn

∫

Rn

dy1 · · ·dyn e
i(p1y1+···+pnyn)〈x1 − y1, · · · , xn − yn|ρ|x1 + y1, · · · , xn + yn〉

(6.11)

The Wigner function is well known to be a quasi-probability distribution, and not a
genuine probability distribution as it can take negative values. However, by integrating
it over one quadrature (x or p) for each mode, one obtains the n-variate probability dis-
tribution characterizing the outcomes of the n homodyne measurements (one performed
on each mode).

One is of course not restricted to measuring quadratures xk or pk, but can also mea-
sure rotated quadratures with any angle θk in phase space. Thus, from a Wigner function,
one can always construct a genuine probability distribution p(r1, · · · , rn), where rk cor-
responds to a particular rotated quadrature of the kth mode. In addition, one can also
mix several modes with the help of a passive linear interferometer before performing
the homodyne measurements, which means that the variables rk become (normalized)
linear combinations of the quadratures x1, p1, . . . , xn, pn. In summary, starting with an
arbitrary Wigner function, one can always construct a family of n-variate probability
distributions p(r1, · · · , rn) using the following procedure: first, one process the n modes
through a passive linear interferometer (a network of beamsplitters and phase shifters),
and then one measures one fixed quadrature for each output mode. This exactly corre-
sponds to passive Gaussian operations.

Let us now consider possible symmetries of the joint probability distribution charac-
terizing the n random variables rk. A first symmetry, which is standard in the context of
de Finetti’s theorem, is the invariance under permutations of the variables. This means
that p(r1, · · · , rn) = p(rπ(1), · · · , rπ(n)) for any permutation π ∈ Sn, which denotes the
group of permutations on {1, . . . , n}. Another symmetry, which has not been explored
so far in the quantum context, emerges naturally if one considers the real-valued random
vector r = (r1, · · · , rn) ∈ R

n. Note that the previous permutation symmetry simply
means that the distribution probability is not affected by reordering the coordinates. As
we work in R

n, however, it seems more appropriate to substitute a discrete symmetry
group such as Sn with a continuous symmetry group. A natural choice in this respect is
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the orthogonal group O(n), that is, the group of orthogonal transformations (or isome-
tries) acting on vector r. Note that applying an orthogonal transformation on r precisely
corresponds to inserting an n-mode passive linear interferometer before performing the
n homodyne measurements.

In classical probability theory, distributions that are invariant under orthogonal trans-
formations are referred to as orthogonally invariant distributions. It has long been known
that such probability distributions tend to mixtures of i.i.d. Gaussian distributions in
the limit n → ∞, or, more formally, that the first k coordinates of a random point that
is uniformly distributed on the n-dimensional sphere are asymptotically normal. (An
historical perspective of this property, going back to Poincaré, Borel, and Maxwell, can
be found in Ref. [40], where the authors also derive a sharp bound for the theorem).
In what follows, we consider the natural quantum counterpart of these distributions,
namely n-mode states ρ for which the probability distribution p(r1, · · · , rn) that results
from measuring n quadratures of ρ is unaffected by an n-mode passive interferometer
preceding the measurement. This is equivalent to the condition that the state ρ is itself
invariant under passive symplectic transformations, or, more physically, that ρ remains
unchanged after being processed via any n-mode passive linear interferometer. In what
follows, we will refer to these states as orthogonally invariant in phase space.

This orthogonal invariance in phase space clearly encompasses the permutation in-
variance in state space since permuting the coordinates in phase space is just a special
case of an orthogonal transformation. Since we are considering a continuous instead of a
discrete symmetry group, this invariance in phase space might appear quite restrictive,
and we may question whether there exist interesting orthogonally invariant states. This
is fortunately the case as, for example, any multimode thermal state is orthogonally in-
variant. This can be readily checked by considering its Wigner function which is given
by a 2n-partite Gaussian distribution with variance σ2,

Wth(x1, p1, · · · , xn, pn) =
1

(2πσ2)n/2
e−(x2

1+p2
1+···+x2

n+p2
n)/2σ2

(6.12)

which is clearly invariant under orthogonal transformations of the coordinates. Note
that such a multimode thermal state is nothing but a product of identical thermal states,
which, in fact, plays the same role for the invariance under orthogonal transformations as
i.i.d. states for the usual invariance under permutations. Another class of orthogonally
invariant states is, for example, the multimode extension of Fock states that we will
consider in the following.

6.2.2 Single-party case: main properties of orthogonal invariance in phase
space

Let us now give two alternative characterizations of the set of orthogonally invariant
states. The most natural one relies on phase space representation, since this is how the
symmetry is expressed. In order to be invariant under orthogonal transformations in
phase space, these states must simply have a Wigner function that only depends on one
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single parameter, namely the modulus ||r|| = (x2
1 + p2

1 + · · · + x2
n + p2

n)1/2. The charac-
terization of this set of states in the Fock state representation is slightly more involved.
We note that this set is convex as any mixture of orthogonally invariant states remains
invariant under orthogonal transformations. It is, therefore, completely characterized by
its extremal points, which can be shown to be the states

σn
p =

1

an
p

∑

p1···pn

s.t.
P

i pi=p

|p1 · · · pn〉〈p1 · · · pn| (6.13)

with an
p =

(

n+p−1
n−1

)

. These extremal states are the multimode generalization of num-
ber states |p〉, that is, they correspond to the (normalized) projectors onto the various
eigenspaces of the total number operator n̂ = n̂1 + . . . + n̂n. For instance, σn

p , which is
proportional to the projector onto the eigenspace of n̂ with eigenvalue p, physically cor-
responds to a state with p photons distributed over n modes. The normalization factor
an

p simply coincides with the number of ways of distributing p photons over n modes.
These extremal states σn

p form a discrete infinite set of mixed states parametrized by p
(or pure states for n = 1 as σ1

p = |p〉〈p|). Importantly, any pure eigenstate chosen in
the eigenspace corresponding to a given total photon number p is generally not orthogo-
nally invariant; Schur’s lemma insures that only the uniform mixture of them fulfills this
invariance, which is why the extremal states σn

p are mixed for n > 1.
Finally, any state ρ that is invariant under orthogonal transformations in phase space

can be written as

ρ =
∞
∑

k=0

ckσ
n
k (6.14)

where the weights ck satisfy 0 ≤ ck ≤ 1 and
∑

k ck = 1.

6.2.3 Bipartite case: application to continuous-variable QKD

One of the nice features of continuous-variable QKD is that the security against collective
attacks is entirely characterized by the covariance matrix of ρAB (see Chapter 3 for
details). Let us first restrict our analysis to collective attacks, so that one has ρAB = σ⊗n

AB,
and the covariance matrix γ of σAB is usually assumed to be of the form:

γsym =

(

X✶2 Zσz

Zσz Y ✶2

)

, (6.15)

where σz = diag(1,−1). Note that this form can easily be understood from an experi-
mental point of view since the quantum channel is not supposed to induce correlations
between different quadratures, for instance, but no theoretical justification has been given
so far11. Here, we use a specific symmetry in phase space to prove that γ can indeed be
supposed to take this simple form.

11in an implementation, the parameters X, Y and Z are linked to the experimental parameters VA

(Alice’s modulation variance), T (the channel transmission) and ξ (the excess noise) through X =
VA + 1, Y = 1 + TVA + Tξ and Z =

p

T (V 2
A + 2VA).
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Since we make the assumption of a collective attack, the covariance matrix γ is well
defined and can be estimated by Alice and Bob. The most general form for γ is:

γ =









X11 X12 Z11 Z12

X12 X22 Z21 Z22

Z11 Z21 Y11 Y12

Z12 Z22 Y12 Y22









. (6.16)

The idea is that Alice and Bob can perform some symmetrization operation, which trans-
forms γ into the symmetrized covariance matrix γsym. First, note that their classical data
are two strings x, y ∈ R

n, which correspond to the results of homodyne measurements of
the various quadratures of ρAB

12. The reconciliation is always optimized for a Gaussian
channel, meaning that the random variable y is modeled as y = tx+ z [91] where t is a
(constant) transmission factor and z is a random variable modeling the added (isotropic)
noise and characterized by its variance σ2. Therefore, the reconciliation procedure would
not be affected if Alice and Bob both performed the same random orthogonal transforma-
tion R ∈ O(n) to their respective data, since one would then have Ry = tRx+z′, where z′

is a rotated (isotropic) noise with the same variance σ2 (that is, z and z′ are two random
variables with the same law). If Alice and Bob apply such a random orthogonal transfor-
mation and forget which one was performed, their data become “symmetric” in the sense
that the matrix γ takes the form of γsym where X = (X11 +X22)/2, Y = (Y11 + Y22)/2
and Z = (Z11 − Z22)/2. The fact that the covariance matrix γsym features Zσz instead
of Z✶2 simply reflects the fact that γsym is not the covariance matrix of the classical
data of Alice and Bob in the Prepare & Measure scenario, but the covariance matrix of
ρAB in the equivalent Entanglement-Based version. In the latter case, Alice and Bob
would actually apply conjugate orthogonal transformations to their respective share of
the state instead of the same transformation. Conjugate transformation here means the
transformation whose corresponding 2n× 2n matrix in phase space is obtained from the
original one by flipping the sign of all rows whose label corresponds to a p quadrature
and then flipping the sign of all columns whose label corresponds to a p quadrature.
This can be understood by considering a two-mode squeezed vacuum, which is the state
characterizing the inherent symmetry of continuous-variable QKD: this state has a co-
variance matrix Γsym where Y = X and Z =

√
X2 − 1, and is invariant under conjugate

orthogonal transformations performed by Alice and Bob13.

12more exactly, here x and y refers to Alice and Bob’s classical data in the Prepare & Measure version
of the protocol.

13To be more precise, there are orthogonal transformations that Alice and Bob can apply to their
classical data which do not have a true physical equivalent in phase space. Such a transformation is the
change of coordinates



x ← x,

p ← −p.
(6.17)

Such an operation corresponds to a phase conjugation in phase space or to a time reversal. Even if such
an operation appears difficult to genuinely implement, it can be easily simulated if Alice and Bob simply
agree to perform the change of coordinates 6.17. This operation is crucial for our purpose as it allows
us to set the values of X12, Y12 and Z12 to zero.
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In fact, using the notations of Section 6.1.2, Alice and Bob can safely replace their
state ρAB by the state ρ̄GAB given by

ρ̄GAB ≡
∫

U∈G
(U ⊗ U∗) ρAB

(

U † ⊗ UT
)

dU, (6.18)

where G is the group of Gaussian unitary operators corresponding to a real symplectic
orthogonal in phase space, and where dU refers to the Haar measure over G. Note that
this symmetrization procedure is very similar to a twirling operation14. For this reason,
the state ρ̄GAB can be seen as isotropic in phase space.

Hence starting with any state ρAB, this symmetrization outputs a state ρ̄GAB with the
property that its covariance matrix Γsym is given by

Γsym =















γsym 0 · · · 0
0 γsym
...

. . .
...

γsym 0
0 · · · 0 γsym















, (6.19)

with

γsym =

(

X✶2 Zσz

Zσz Y ✶2

)

. (6.20)

The new symmetry group we introduce is therefore immediately useful as it allows
to justify us an old (and until now unproven) assumption about the structure of the
covariance matrix of ρAB. Moreover, we will argue in the following that this new sym-
metrization procedure (based on orthogonal transformations in phase space instead of
permutations in state space) also gives a much simpler structure for the state ρAB. In
particular, it makes possible the existence of a de Finetti theorem in phase space for
instance.

6.3 de Finetti theorem and postselection procedure in phase

space

The goal of this section is to give some insights on the structure of the states which
are invariant under orthogonal transformations in phase space such as the state ρ̄GAB

described in the previous section. Ultimately, our goal would be to be able to derive an
exponential version of de Finetti theorem for such states, or to be able to use them with
the postselection technique introduced in [31]. Unfortunately, we still need to restrict
ourselves to the case of single-party systems, instead of bipartite systems which would
be directly relevant for their application in CV QKD, because the characterization of the

14for a twirling operation, the group G is the unitary group, and one would apply U on both systems
A and B.
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latter is more complicated and not yet well understood. This means that we will mainly
consider states of the form ρ = trB ρ̄AB, that is

ρ =
∞
∑

k=0

ckσ
(n)
k (6.21)

where the weights ck satisfy 0 ≤ ck ≤ 1 and
∑

k ck = 1.

6.3.1 de Finetti theorem in phase space representation15

As mentioned above, a classical de Finetti’s theorem exists for classical orthogonally
invariant probability distributions. The theorem states that, in the limit of infinite
sequences X1, · · · , Xn with n → ∞, the first k variables are exactly mixtures of i.i.d.
Gaussian distributions.

This result only holds approximately for finite sequences [40]: if the distribution
of X1, · · · , Xn is invariant under orthogonal transformations in R

n, then the marginal
distribution of the first k coordinates X1, · · · , Xk is close to a mixture of i.i.d. Gaussian
distributions. Here, the “closeness” is measured in the sense that the variation distance
is bounded from above by 2(k + 3)/(n− k − 3) for 1 ≤ k ≤ n− 3.

In the following, we establish the quantum counterpart of the previous result.

Theorem 6.1. If ρn is a n-mode orthogonally invariant quantum state, its partial trace
over any (n − k) modes trn−k(ρ

n) can be approximated in the sense of the trace-norm
distance by a mixture of k-mode thermal states ρk

th
(x), that is,

∣

∣

∣

∣

∣

∣

∣

∣

trn−k(ρ
n) −

∫

ρk
th(x)µ(dx)

∣

∣

∣

∣

∣

∣

∣

∣

1

≤ 2

(

n2

(n− k − 1)(n− k − 2)
− 1

)

, (6.22)

where ρk
th

(x) is the tensor product of k thermal states with a mean number of x photons
per mode, and µ is a probability measure.

The idea of the proof is inspired from that of the classical version of the theorem
for geometric probability distributions, as described in [40]. If X1, · · · , Xn are integer
classical random variables whose joint distribution is invariant under transformations that
keep the sum X1 + · · · + Xn constant, then the marginal law of the first k coordinates
X1, · · · , Xk is close, in the sense of the variation distance, to a mixture of i.i.d. geometric
distributions. The link with the quantum problem comes from the fact that in the Fock
basis, any passive linear interferometer redistributes the photons among the modes in
such a way that the total photon number is kept constant, since the energy is conserved.
The invariance under orthogonal transformations in phase space therefore translates into
the invariance under transformations that keep the total photon number constant in the
Fock basis. As a consequence, the asymptotic state in our theorem is characterized by
a geometric distribution in the Fock basis, which precisely is the signature of a thermal
state. The proof will thus consist in bounding the convergence of an n-mode state that

15The results of this section were published in Physical Review A [92].



136 CHAPTER 6. ARE COLLECTIVE ATTACKS OPTIMAL?

is invariant under a redistribution of photons among the n modes (with a constant total
photon number) towards a mixture of thermal states.

Proof. First, any n−mode orthogonally invariant state ρn can be written as a convex
mixture of the multimode number states σn

p , namely

ρn =

∞
∑

p=0

cp σ
n
p (6.23)

with arbitrary weights cp satisfying 0 ≤ cp ≤ 1 and
∑

p cp = 1. Now, using the convexity
of the trace-norm distance

∣

∣

∣

∣

∣

∣

∣

∣

trn−k(ρ
n) −

∫

ρk
th(x)µ(dx)

∣

∣

∣

∣

∣

∣

∣

∣

1

≤
∞
∑

p=0

cp

∣

∣

∣

∣

∣

∣

∣

∣

trn−k(σ
n
p ) −

∫

ρk
th(x)µ(dx)

∣

∣

∣

∣

∣

∣

∣

∣

1

(6.24)

we see that it is sufficient to prove the theorem for the extremal states σn
p , that is, it is

enough to prove
∣

∣

∣

∣

∣

∣
trn−k(σ

n
p ) − ρk

th(p/n)
∣

∣

∣

∣

∣

∣

1
≤ 2

(

n2

(n− k − 1)(n− k − 2)
− 1

)

, (6.25)

for any p. Note that we have arbitrarily reduced the mixture of thermal states to one
single term, which is natural since we start with an extremal state σn

p . Note also that
we have taken x = p/n for this single term, that is, we characterize the convergence of
the reduced state towards a k-mode thermal state with a mean number of p/n photons
per mode.

The reduced state trn−k(σ
n
p ) is obviously orthogonally invariant in the remaining

space of k modes, which implies that it can be written as a mixture of k-mode number
states,

trn−k(σ
n
p ) =

p
∑

l=0

f(l)σk
l (6.26)

where a simple combinatorial argument shows that:

f(l) =
ak

l a
n−k
p−l

an
p

. (6.27)

The k-mode thermal state ρk
th(x) is defined as the product of k single-mode thermal

states with x photons per mode, namely ρk
th(x) = ρth(x)

⊗k with

ρth(x) =

∞
∑

l=0

xl

(1 + x)l+1
|l〉〈l| (6.28)

A straightforward calculation shows that it can be written as a mixture of k-mode number
states

ρk
th(x) =

∞
∑

l=0

g(l)σk
l , (6.29)
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with

g(l) = ak
l

xl

(1 + x)l+k
(6.30)

which confirms that it is also orthogonally invariant.
We now prove Eq. (6.25) using the fact that both trn−k(σ

n
p ) and ρk

th(x) are diagonal
in basis of k-mode number states. This implies that their trace-norm distance is given
by the variation distance between the classical probability distributions f and g, that is

∣

∣

∣

∣

∣

∣
trn−k(σ

n
p ) − ρk

th(p/n)
∣

∣

∣

∣

∣

∣

1
=

∞
∑

l=0

|f(l) − g(l)| (6.31)

= 2
∞
∑

l=0

(

f(l)

g(l)
− 1

)+

g(l) (6.32)

≤ 2

(

sup
l

f(l)

g(l)
− 1

)

(6.33)

where the function (x)+ is equal to x if x ≥ 0 and vanishes otherwise. Using the notation

h(l) ≡ f(l)

g(l)
=
an−k

p−l (1 + p/n)l+k

an
p (p/n)l

, (6.34)

the rest of the proof consists in upper bounding the supremum of h(l) as tightly as
possible. Expanding the binomials in an−k

p−l and an
p , the function h(l) can be rewritten as:

h(l) =
(n− 1)!

nk (n− k − 1)!

(p− 1)!

pl−1 (p− l)!

(n+ p)k+l (n+ p− k − l − 1)!

(n+ p− 1)!
(6.35)

=

∏k
t=1(1 − t

n)
∏l−1

t=1(1 − t
p)

∏k+l
t=1(1 − t

n+p)
. (6.36)

The logarithm of h(l) can be expressed as

log h(l) = −S(n, k) − S(p, l − 1) + S(n+ p, k + l), (6.37)

where S(n, k) is defined as

S(n, k) ≡ −
k
∑

t=0

log

(

1 − t

n

)

. (6.38)

The function x 7→ − log(1 − x) being monotonically increasing on [0, 1[, one has

nJ

(

k

n

)

≤ S(n, k) ≤ nJ

(

k + 1

n

)

, (6.39)
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where

J(x) ≡ −
∫ x

0
log(1 − t) dt (6.40)

= x+ (1 − x) log(1 − x). (6.41)

Let us introduce the two reduced variables u = k/n and v = l/p, which both belong to
the interval [0, 1[. Since the function J(x) is convex on [0, 1[, we have

J(αu+ (1 − α) v) ≤ αJ(u) + (1 − α)J(v), (6.42)

where 0 ≤ α ≤ 1. If we choose α = n/(n+ p), this equation translates into

(n+ p) J

(

k + l

n+ p

)

≤ nJ

(

k

n

)

+ p J

(

l

p

)

. (6.43)

By using Eq. (6.39), we can lower (upper) bound the left- (right-) hand side term of Eq.
(6.43), which yields

S(n+ p, k + l − 1) ≤ S(n, k) + S(p, l). (6.44)

Substituting k with k + 2 and l with l − 1, we get the equivalent inequality

S(n+ p, k + l) ≤ S(n, k + 2) + S(p, l − 1), (6.45)

which can be used to upper bound the quantity of interest obtained in Eq. (6.37), namely

log h(l) ≤ S(n, k + 2) − S(n, k). (6.46)

We conclude that

h(l) ≤ n2

(n− k − 1)(n− k − 2)
, (6.47)

which, using Eq. (6.33), concludes the proof of the theorem.

Towards a security proof based on a de Finetti theorem in phase space. So far, we only
discussed single-partite orthogonally-invariant states. Obviously, in order to use this
approach to the study of QKD security, one needs a bipartite generalization. Let us
consider the case of a 2n-mode bipartite state ρAB, meaning that Alice and Bob each
have n modes. Such a state ρAB is termed invariant under conjugate orthogonal transfor-
mations in phase space if, for any Gaussian unitary operation U corresponding to a real
symplectic orthogonal transformation in Alice’s 2n-dimensional phase space, it satisfies

U ⊗ U∗ ρAB U † ⊗ UT = ρAB (6.48)

where U∗ is the Gaussian unitary operation corresponding to the conjugate orthogonal
transformation in Bob’s phase space. Physically, this invariance means that ρAB remains
unchanged when Alice processes her n modes into any passive linear interferometer while
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Bob processes his n modes into the passive linear interferometer effecting the conjugate
rotation in phase space.

Ideally, one should have a quantum de Finetti theorem for bipartite orthogonally
invariant states since this is the case which is directly relevant for proving the security
of continuous-variable QKD. The reason is that, following the arguments in Section
6.2, Alice and Bob can indeed assume their bipartite state ρAB to be invariant under
conjugate orthogonal transformations. Thus, a bipartite quantum de Finetti theorem
would rigorously prove that ρAB is “close to” a product of Gaussian states. Note, however,
that an exponential version of the theorem would actually be required to address the
security of continuous-variable QKD, meaning that it is enough to trace over only an
exponentially small number of modes in order to get a good approximation by a Gaussian
state. Then, such a Gaussian state would be the product of n i.i.d. Gaussian states, and
the security against collective attacks would therefore imply the security against arbitrary
attacks.

Finding a bipartite version of this quantum de Finetti theorem is the subject of further
work. Although we do not have a rigorous proof yet, the fact that a bipartite version of the
theorem holds is very likely. In particular, both partial traces ρA = trB ρAB and ρB =
trA ρAB are single-partite orthogonally-invariant states, for which the theorem applies.
Hence, locally, we already know that a state ρAB that is invariant under conjugate
orthogonal transformations in phase space becomes asymptotically Gaussian. One only
needs to prove that the correlations between Alice and Bob also behave according to the
bipartite version of the theorem.

6.3.2 Postselection technique in phase space

We now are interested in generalizing the postselection technique introduced in [31] to
continuous variables. In [31], the authors show that they can start with an i.i.d. state of
the form

τH⊗n ≡
∫

σ⊗n
H µ(σH), (6.49)

where µ(.) is the measure on the space of states on H, and generate an arbitrary symmet-
ric state on H⊗n with a success probability decreasing only polynomialy in n. Roughly
speaking, in the context of QKD, this means that if one can prove the security of a
protocol against collective attacks, then the protocol has to be secure against general
attacks with a security parameter only polynomialy larger.

Here we would like to prove a generalization of this postselection technique in phase
space. As in the previous section, we restrict ourselves to the single-party case here.
The natural generalization of the purification of i.i.d. state τH⊗n will be the n-mode
continuous-variable EPR pair:

|Φn
EPR(x)〉 ≡ |ΦEPR(x)〉⊗n (6.50)

=

∞
∑

k=0

√

λk |ψn
k 〉 (6.51)
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where λk ≡
(

n+k−1
n−1

)

xk

(1+x)k+n and

|ψn
k 〉 ≡

1
√

an
k

∑

k1···kn

s.t.
P

i ki=k

|k1, · · · , kn〉|k1, · · · , kn〉. (6.52)

A generalization of the postselection technique to continuous variables aims at com-
puting the probability of success psucc of producing any orthogonally-invariant state
ρ =

∑∞
k=0 ck σ

n
k by performing a measurement on one half of the state |Φn

EPR(x)〉 for
a well chosen value of x. Our goal here is to find the smallest value of psucc. A con-
vexity argument shows that this value is necessarily obtained when the orthogonally
invariant state considered is an extremal state σn

k . We will consider the following pro-
cedure to create an arbitrary orthogonally invariant state: one just applies the POVM
{✶A ⊗MB,✶A ⊗ (✶B −MB)} to the state |Φn

EPR(x)〉 where M =
∑∞

k=0 µ
n
kσ

n
k and the

parameters µk are such that 0 ≤ µk ≤ 1. This measurement produces the state

ρsucc ≡
trB(✶A ⊗MB)|Φn

EPR(x)〉〈Φn
EPR(x)|

tr(✶A ⊗MB)|Φn
EPR(x)〉〈Φn

EPR(x)| , (6.53)

with a success probability

psucc(n) = tr(✶A ⊗MB)|Φn
EPR(x)〉〈Φn

EPR(x)|. (6.54)

One gets:

ρsucc(n) =

∑∞
k=0 λkµkσ

n
k

∑∞
k=0 λkµk

, (6.55)

and

psucc =

∞
∑

k=0

λkµk. (6.56)

If one wants to produce the state σn
k , then one should choose the POVM element M = σn

k

together with the initial EPR state with a mean photon number x equal to k/n. This
gives the probability of success

psucc(n) = λk =

(

n+ k − 1

n− 1

)

(k/n)k

(1 + k/n)k+n
. (6.57)

The binomial coefficient can be approximated thanks to Stirling’s formula:

(

n+ k − 1

n− 1

)

∼
√

1 + 1/x

nx
2n G(x), (6.58)

where G(z) = (z + 1) log2(z + 1) − z log2(z) is the von Neumann entropy of a thermal
state with z photons. Hence, one finally obtains

psucc(n) ≈
√

1 + 1/x

nx
, (6.59)
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which is a behaviour compatible with the use of the postselection theorem to prove the
security of continuous-variable QKD against arbitrary attacks. Obviously, once again, a
complete proof would concern bipartite orthogonally invariant states and not only single-
party state as here. However, the fact that the probability of success decreases only as
the inverse of the square-root of the number of modes considered and not exponentially
with this number, is a good indication that the post-selection technique might apply for
symmetries in phase space.

6.4 Possible approaches to prove the unconditional security

of CVQKD

In this chapter, we discussed strategies to prove the unconditional security of continuous-
variable QKD protocols. As we already mentioned, such a proof already exists [127] but
the bounds it gives are only interesting in the asymptotic regime where collective attacks
are optimal. We think that using the symmetries in phase space specific to continuous-
variable QKD protocols such as GG02 would allow for the derivation of tighter bounds.
Indeed, GG02 is in a sense the continuous-variable equivalent of BB84, meaning that it
is very (maximally?) symmetric in the relevant Hilbert space, and it is known that for
BB84, the secret key rate secure against general attacks is exactly the same as the one
secure against collective attacks (the proof for this result explicitly uses the symmetries
of BB84). Therefore it is reasonable for keep looking for security proofs for GG02 relying
explicitly on the symmetries of the protocol in phase space.

Such a security proof has not been established yet. In this section, we review the
challenges that need to be met in order to derive such a proof, and discuss other possible
approaches to prove the unconditional security of QKD.

6.4.1 Characterization of isotropic states in phase space

The key element that is still missing is a complete characterization of the bipartite states
of interest for continuous-variable QKD. These are the states obtained from any initial
state ρAB through a twirling-like operation mapping ρAB to ρ̄AB defined as

ρ̄AB ≡
∫

U∈G
(U ⊗ U∗) ρAB

(

U † ⊗ UT
)

dU, (6.60)

where G is the group of Gaussian unitary operators corresponding to a real symplectic
orthogonal transformation in phase space, and where dU refers to the Haar measure over
G.

Note that ρ̄AB is very close to what one could call an isotropic continuous-variable
state. Indeed, in a d-dimensional Hilbert space, one defines the projector Piso which
projects ρ onto the isotropic state as

Piso ρ ≡
∫

U∈U(d)
U ⊗ U∗ ρ (U ⊗ U∗)†dU, (6.61)
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where U(d) is the group of d-dimensional unitary matrices. Isotropic states correspond
to maximally entangled states mixed with white noise.

In the case of continuous-variable systems, this definition does not directly hold for
various reasons. First of all, such an operator would be ill-defined simply because the
group U(∞) of unitary operators is not compact, with the consequence that one cannot
define a Haar measure for this group. This is a mathematical reason, but there is a least
one physical reason for why the definition fails in the case of infinite-dimensional Hilbert
spaces: the energy of the resulting state would indeed be infinite, which is a serious
problem.

What is worth noting, is that in the case of continuous-variable quantum systems, not
all dimensions play a similar role, in contrast with what happens for d-dimensional Hilbert
spaces. In finite dimension, a basis of the Hilbert space is typically noted {|0〉, · · · , |d−1〉},
but the labels of the basis elements are not really meaningful and could be exchanged
without any consequence. This is not true anymore in continuous-variable systems. In
that case, the infinite basis {|0〉, |1〉, |2〉, · · · } refers to the Fock basis, and the index
of the various vectors is not merely an index: it characterizes the state as being the
vacuum for the state labeled |0〉 and corresponds to k bosonic excitations for the state |k〉.
Importantly, the index is directly linked to the energy of the state. From this perspective,
when discussing potential continuous-variable isotropic states, it is reasonable to ask that
the group of operators used in the twirling-like operation should conserve the energy of
the initial state. This is what justifies the choice of the group G of Gaussian unitary
operators corresponding to a real symplectic orthogonal transformation in phase space.

The characterization of the set of states ρ̄AB is clearly a required preliminary to a
potential security proof based on symmetries in phase space. Unfortunately, this set
appears to be more complicated that one set of single-party orthogonally invariant states
which is a polytope with simple extremal vertices (the n-mode generalizations of number
states).

6.4.2 Further than symmetrization and postselection

Let us recall once more the general strategy to prove the security of a particular QKD
protocol against coherent attacks. The first idea is to characterize the natural symmetries
of the protocol. These symmetries are described by a symmetry group S acting on
density matrices. Then Alice and Bob can always replace their initial state ρAB (in the
entanglement-based version of the protocol) to be replaced by ρ̄SAB defined as:

ρ̄SAB ≡
∫

U∈S
(U ⊗ U∗) ρAB

(

U † ⊗ UT
)

dU. (6.62)

Then the second step is to prove that this state is close enough to a mixture of i.i.d. states,
either through an exponential version of de Finetti theorem, or through a postselection
procedure.

A question that arises is whether one can go a little bit further with the first step.
Indeed, the second step becomes more and more easier as the relevant state becomes
more and more “symmetric”. A maximally symmetric state, in this sense, would be a
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mixture of i.i.d. states and one can see that if Alice and Bob could assume their state
to be i.i.d., then this would immediately prove that collective attacks are optimal among
general attacks. Unfortunately, this is not possible in general as a symmetrization that
would make the state i.i.d. would typically consist in erasing all the correlations relevant
for the QKD protocol.

Usually the relevant symmetry group used in the symmetrization procedure is such
that is leaves invariant the parameters of the protocol:

• for discrete-variable protocols such as BB84, the symmetry group preserves the
quantum bit error rate (QBER), hence leaving the mutual information between
Alice and Bob, as well as Eve’s information unchanged. A typical symmetry group
leaving the QBER unchanged is the symmetric group consisting of permutations
of the labels of Alice and Bob’s data.

• for continuous-variable QKD, the parameters that should be invariant are the trans-
mission T and the excess noise ξ of the quantum channel between Alice and Bob.
It turns out that Gaussian unitary operations corresponding to real orthogonal
symplectic transformations in phase space exactly leave T and ξ invariant.

A possibility would be to consider a symmetry group that leaves the parameters in
question invariant asymptotically (and only almost invariant in a finite-size setting). For
instance, in the case of continuous variables, one would like the state shared by Alice
and Bob to be as close as possible from a Gaussian state. An idea would therefore be for
Alice and Bob to apply operations on a small subset of their subsystems (for instance)
such that the overall state becomes more Gaussian but in such a way that T and ξ would
not be too affected.

The idea for example would be to define a group Sǫ (containing S) such that the
state

ρ̄S
ǫ

AB ≡
∫

U∈Sǫ

(U ⊗ U∗) ρAB

(

U † ⊗ UT
)

dU, (6.63)

would not be too degraded compared to ρ̄SAB concerning its potential usage in the QKD
protocol. For a CV QKD protocol, this means that the transmission T ǫ and the excess
noise ξǫ of the new state should not be too different from the initial values of T and ξ.
A possible way to characterize this difference is to consider the secret key rate secure
against collective attacks Kcoll(T, ξ) compatible with the parameters T and ξ and impose
that T ǫ and ξǫ should be such that

|Kcoll(T, ξ) −Kcoll(T
ǫ, ξǫ)| ≤ ǫ. (6.64)

The idea is that the state ρ̄S
ǫ

AB will be much easier to use for the postselection technique
for instance, and would lead to an improved overall security parameter than the one
obtained while using ρ̄SAB.

An example of such a larger symmetry group Sǫ for continuous-variable protocols
would include for instance Alice and Bob applying random squeezing operations on part
of their subsystems. This obviously leads to a change of the parameters T and ξ as a
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squeezing operation does not conserve the total energy for instance. However, applying
such random squeezing operators symmetrizes the state ρAB. An other possibility would
be for Alice and Bob to mix their states with additional (classically correlated) modes.

More generally, Alice and Bob could apply a local Hamiltonian to their respective
state that would drive their bipartite state closer to an i.i.d. state. The question of
which Hamiltonian would be the most effective with the respect of the final key rate is
still unsolved.

6.4.3 Links with Statistical Mechanics

Our goal ultimately is to show that there exists a procedure allowing Alice and Bob to
transform their initial state ρAB into a state which is as close as possible to a Gaussian
state. Such a procedure could be to couple their respective n modes with a heat reservoir,
so that their respective states could be described by the canonical ensemble and then
converge to Gaussian states.

A possible procedure would be the following. Alice and Bob start with a N -mode
state which they first symmetrize using the technique detailed in the previous section.
Then they define n particular modes that will be used in the raw key while the other
N − n≪ N are used for a procedure close to the parameter estimation. More precisely,
if N − n ≪ n, then the n modes act like a heat reservoir for the N − n modes. One
can therefore proceed with measurements on these N − n modes to obtain information
concerning the other n modes. More specifically, if the state considered was simply ρA
instead of ρAB, the parameter of interest would be the temperature of the system A
(or equivalently, its energy). Here we consider a bipartite system, so the parameters of
interest are the energies for both Alice and Bob’s systems as well as the level of correlation
between these systems. With this information, Alice and Bob could prepare two heat
reservoirs with the appropriate temperature and couple them with their respective n
modes. If this coupling is done appropriately (not sure how ...), the correlation between
Alice and Bob should remain the same (in total, not per mode!), and the secure key rate
one could obtain would be necessarily equal or less than the initial key rate. However,
now, the new state shared by Alice and Bob would be much closer to a Gaussian state.

These ideas are still preliminary and should be the object of future investigation.



CHAPTER 7

Finite size analysis

So far in this manuscript, we mostly (exclusively?) focused on the problem of the security
of continuous-variable QKD protocols in the asymptotic limit and not on the ultimately
necessary finite size analysis. This choice can be justified by different reasons. The main
reason is historical. When, in 1984, Bennett and Brassard came up with the idea of a
quantum key distribution protocol, they only had a hint to believe that their protocol
had to be secure in some appropriate regime (for instance in the unrealistic case where
Alice and Bob’s data are perfectly correlated) but could not establish any security proof
for a realistic setup at that time. During the last 25 years, security proofs have steadily
improved by including more and more effects: what happens if the quantum channel is
lossy or noisy, what happens if Alice uses weak coherent pulses instead of true single
photons for discrete-variable protocols, etc. Some questions are still not answered today:
for instance, there is still no convincing theoretical framework allowing to deal with side-
channels1. Among the questions that have been solved quite recently (at least in the
discrete-variable case) is the one of finite size effects: how does the key rate depend on

1An extreme solution in order to avoid this problem is to use device-independent QKD [1] but this
is highly unpractical! In fact, if one cannot prove the security of more practical protocols, taking into
account imperfect implementations, then quantum key distribution will probably have no future, except
from a completely (fascinating) theoretical perspective.

145
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the number of signals exchanged by Alice and Bob? This question was first addressed
by Renner in his PhD thesis [124] and subsequently detailed in [137] and [21] where the
authors published very pessimistic results. In particular, it is not totally unreasonable to
think that the security of all QKD implementations realized until now was jeopardized
due to the (way) too short length of the blocks exchanged by Alice and Bob.

The goal of this chapter is to extend the framework of finite size analysis to continuous-
variable QKD protocols. We do not solve this problem completely here, and we mainly
consider the finite size effects on the parameter estimation procedure. Despite the fact
that all questions are certainly not yet answered, we will be able to give an estimation
of the secret key rate of the protocols described in the previous chapters for a finite
size analysis. As expected, these results are considerably more pessimistic than the ones
presented in Chapters 4 and 5 where we were only interested in the asymptotic regime.

7.1 The general framework for finite size analysis

The formalism developed in Renner’s thesis allows for the following generalization of
the secret-key rate of a discrete-variable QKD protocol which is secure against collective
attacks2 [137]:

k =
n

N

(

SǫPE
(x|E) − ∆ − leakEC

n

)

. (7.1)

This key rate has to be compared to the asymptotic key rate K given by

K = S(x|E) −H(x|y), (7.2)

and four differences can be noticed:

• only n signals are used for the establishment of the key, out of the N signals
exchanged. This is due to the fact that N − n signals are used for parameter
estimation. This leads to the presence of the prefactor n/N in front of the secret
key rate.

• the parameter estimation has a finite precision characterized by the parameter ǫPE,
which is the probability that the true values of the parameters are not inside the

2If one was to consider general security, it would be necessary to add a correction term linked to the
use of the exponential version of de Finetti theorem [125], or to the postselection technique [31] and
this would give an even more pessimistic key rate. However, in the case of BB84 for instance, collective
attacks are optimal, even in the case of finite size analysis, and such terms are therefore not required.
For CV QKD protocols, it is also conjectured but not yet proven that collective attacks are always
optimal. Therefore, it makes sense to consider the finite size analysis when the eavesdropper is restricted
to collective attacks. Without the proof of the optimality of collective attacks, one can certainly use the
bound derived in [127] for the application of an exponential version of de Finetti theorem for infinite-
dimensional Hilbert spaces. However, this bound leads to very, very pessimistic results, and it is not
believed that this bound is tight.
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confidence region computed from the parameter estimation procedure3. There ex-
ists a clear trade-off between the level of precision desired and the number of signals
that need being used to this end, and that would be useless for the distillation of
the key. In [21], the authors suggest that in the limit where N tends to infinity,
the optimal number of samples N − n used for the parameter estimation should
be on the order of

√
N . However, for reasonable values of the block length N , the

number of samples certainly needs to be much larger than
√
N , especially in the

case of continuous-variable protocols.

• the parameter ∆ accounts for the security parameter of the privacy amplification
and will be detailed below.

• finally, leakEC corresponds to the amount of information which needs to be ex-
changed by Alice and Bob during the reconciliation phase. This quantity is neces-
sarily equal or larger than the conditional entropy H(x|y) due to Shannon theorem,
but in practice, it always turns out out be strictly larger than the optimal value.

A few remarks are in order. First, we would like to emphasize that the effect of an
imperfect reconciliation, which is parameterized by leakEC here, was already taken into
account for the study of continuous-variable QKD through the term β that corresponds
to the so-called reconciliation efficiency (the reader is referred to Chapters 4 and 5 for
a precise definition of β). This effect has indeed been for a long time the cause of the
limited range of CV QKD protocols. In the case of discrete-variable QKD protocols,
leakEC is typically modeled as:

leakEC ≈ fECH(x|y) +
1

n
log2(2/ǫEC), (7.3)

where fEC > 1 is a parameter characterizing the reconciliation efficiency (in a slightly
different way than β for continuous-variable reconciliation4) and ǫEC is the probability
that the reconciliation fails and that this failure goes undetected by Alice and Bob5.

3Note there is never unicity of such a confidence region, but one is free to optimize his choice among
all possible regions compatible with the failure probability ǫPE. This choice can be based on the easiness
of the description of the region (for instance the Cartesian product of nPE intervals if nPE independent
parameters need to be estimated), or on an optimization maximizing the final secret key rate, in which
case the confidence region is a very general region in the nPE-dimensional space of the parameter space.
Unfortunately, such an optimization is often rather complicated to perform, and in general, one chooses
confidence regions with very simple shapes.

4In fact, fEC and β are related to each other (for binary variables) through the following equation

(fEC − 1)H(x|y) = (1− β)I(x; y). (7.4)

Using the fact that I(x; y) = H(x)−H(x|y) = 1−H(x; y) for symmetric binary variables, one obtains

fEC =
1− β(1−H(x|y))

H(x|y)
. (7.5)

5In practice, this probability can be made arbitrarily small. The idea is for Alice and Bob to compute
a hash of their respective bit strings after the reconciliation and to publicly compare it. This method is
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Second, the factor n/N due to the fact that N − n data are used for parameter
estimation is not very critical: it would maybe be very relevant if a QKD protocol were
to be implemented and commercialized as it limits the rate of the protocol, but in practice,
it has very little effect on the final rate, say a factor 1/2 if 50% of the data are used for
parameter estimation. Indeed, the real theoretical problem today is certainly to decide
when a given QKD protocol is secure, more precisely, in which conditions (of losses and
noise) it can be used to distill a secret key. From this point of view, optimizing every
possible parameter in order to maximize the secret key rate seems a little bit premature6.

Let us now turn to the new finite size effect that is ∆. As we said, ∆ is linked to the
security of the privacy amplification procedure. Its value is given by

∆ ≡ (2dimHX + 3)

√

log2(2/ǭ)

n
+

2

n
log2(1/ǫPA), (7.6)

where HX is the Hilbert space corresponding to the variable x used in the raw key, ǭ
is a smoothing parameter and ǫPA is the failure probability of the privacy amplification
procedure. Both the smoothing parameter ǭ and ǫPA are intermediate parameters which
should be optimized numerically. The first term of ∆, that is the square-root term, actu-
ally corresponds to the speed of convergence of the smooth min-entropy of an i.i.d. state
(remember that we consider collective attacks here) towards the von Neumann entropy.
Indeed, only in the asymptotic limit is the smooth min-entropy of an independent and
identically distributed quantum state to its von Neumann entropy. The second term is
directly linked to the failure probability ǫPA of the privacy amplification procedure. The
parameter ǫPA should also be optimized numerically.

Finally, the last finite size effect is the finite precision of the parameter estimation.
For BB84, only one parameter needs be estimated7: the quantum bit error rate (QBER).
Using Hoeffding’s inequality for instance, one can find a confidence interval (parame-
terized by ǫPE) for this parameter such that the true value of the parameter (here the
QBER) is inside the interval with probability 1− ǫPE. In the case where several param-
eters must be estimated (for instance in continuous-variable QKD protocols), the notion
of confidence interval should be replaced by a confidence region8 such that the true value

very interesting because computing a hash acts like an error amplification: even if the original strings
only differ for a few bits out of several millions, their hash will be different with a very high probability.
Hence Alice and Bob can check that they share a common bit-string while sacrificing only a negligible
quantity of data.

6For a given QKD protocol, the important (still unsolved because of side-channel effects for instance)
question is clearly to determine the two regions (parametrized by the distance between Alice and Bob,
and the level of noise in the channel for instance) where the protocol can be used and where it is useless.
From a theoretical point of view, a factor 2 on the final secret key rate is therefore almost meaningless.
But this would however not be the case anymore if quantum key distribution were to be deployed for
real-world applications.

7actually, depending on the implementation, more parameters might need being estimated especially
if weak coherent states are sent instead of true single photons, for instance in the case where the decoy-
state technique [95] is applied.

8when two parameters have to be estimated, the confidence region can be a rectangle or an ellipse
for example.
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of the parameters lies in the region with a probability at least 1 − ǫPE. Then one needs
to compute the minimum value of the conditional entropy S(x|E) compatible with the
confidence interval: this gives SǫPE

(x|E). Whereas this procedure is relatively straight-
forward for the QBER (which is a bounded parameter since 0 ≤ QBER ≤ 1), we will see
in the following that the question is more involved for continuous-variable QKD protocols
where one needs to estimate a priori unbounded parameters such as the excess noise.
In the following, we will consider two parameters to be estimated in continuous-variable
QKD: the transmission T and the excess noise ξ. In principle, these are not the only
parameters to be estimated in a real implementation as one also needs to know Alice’s
modulation variance9, but one can reasonably assume that this parameter is relatively
well known, in comparison to T and ξ.

In the end, one needs to fix an overall security parameter ǫ for the quantum key
distribution protocol. This parameter corresponds to the failure probability of the whole
protocol, meaning that the protocol is assured to performed as is supposed to10 except
with a probability at most ǫ. This failure probability can be computed from the various
parameters described above, and in the limit of small parameters11, one has

ǫ = ǫEC + ǭ+ ǫPA + ǫPE. (7.7)

Note that all parameters ǫEC, ǭ, ǫPA and ǫPA can independently be fixed at arbitrarily
low values:

• ǫEC can be decreased simply by increasing the length of the hash Alice and Bob
compute from their raw keys. Indeed, the larger the length of the hash, the smaller
the probability that their raw keys differ.

• ǭ and ǫPA are virtual parameters that can be optimized in the computation. They
must simply satisfy both equalities 7.6 and 7.7.

• ǫPE can also be made as low as desired simply by increasing the size of the sample
used for parameter estimation (and therefore not used for establishing a key).

As a consequence, the overall security parameter ǫ can be chosen arbitrarily small, to a
value corresponding to the users wishes. Obviously, this comes at the cost of decreasing
the final secret key size.

Note also that an additional (experimental) parameter needs to be taken into account
in order to compute the real secret key rate (in bits per second), that is the detection
rate which quantifies the rate at which Alice and Bob exchange quantum signals. Here
however, we do not consider such a parameter and always express the secret key rate in
bits per channel use.

9as well as the electronic noise if one considers a scenario where Bob’s detection is calibrated.
10here, we do not consider problems due to an imperfect implementation, which might lead to the

existence of side-channels that can be used by an eavesdropper.
11in general, one has 1− ǫ = (1− ǫEC)(1− ǭ)(1− ǫPA)(1− ǫPE), which gives equation 7.7 for ǫ≪ 1.
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7.2 Outline of the CV QKD protocol in a finite size context

Traditionally, in the asymptotic regime, one knows perfectly the quantum channel, even
before the experiment is actually performed. Hence the optimization of the various free
parameters can be made before the exchange of data, and even the final secret key rate
is known in advance.

In the finite-size scenario, the situation is rather different. In particular, one does
not know in advance the characteristics of the quantum channel. To be fair, even after
the exchange of quantum signals, the quantum channel is only partially known: more
precisely, a few relevant parameters (QBER for qubit channels12, transmission and excess
noise for continuous-variable channels) are known to lie inside some confidence regions,
except with probability ǫPE.

Even if Alice and Bob do not know in advance the properties of the quantum channel
they will use, they can guess them with a reasonable accuracy, making the assumption
that no eavesdropper will actually try to control the quantum channel. Note that this
guess is only used in order to a priori optimize various parameters of the protocols
and consequently maximize the expected secret key rate, under a “normal use” of the
quantum channel. If an eavesdropper is present, the guess made by Alice and Bob might
not be very good, hence leading to an non optimized use of the quantum channel, but
the security of the key distribution will not be affected.

For a continuous-variable QKD protocol, the secret key rate depends (in the asymp-
totic limit) on three main physical parameters: Alice’s modulation variance VA, the
transmission of the channel T and the excess noise ξ. The idea is to optimize VA in
order to maximize the expected secret key rate. To do that, Alice and Bob can guess
the values of T and ξ. Indeed, the value of ξ depends on the quality of the setup and
turns out to be fairly stable from one experimental run of the QKD protocol to the next.
Typically, for state-of-the-art implementations, its value is around 1% of the shot noise
[48]. The transmission can also be evaluated quite precisely with T ≈ η10−0.02d where
η is the known quantum efficiency of Bob’s detection (typically around 60%) and d is
the distance in kilometers between Alice and Bob. Here, we assume an optical fiber
with losses of 0.2dB per kilometer. In practice, Alice and Bob generally have a good
estimate of the transmission of the quantum channel before they even start the quantum
key distribution protocol.

At the beginning of the protocol, Alice and Bob agree on a particular value of the
overall security parameter ǫ. They also agree on a reconciliation protocol, meaning that
they know the parameter ǫEC in advance. Since both ǭ and ǫPA are virtual parameters

12In general, as many as three different QBER could be considered depending on the polarization
choice σX , σY or σZ . For BB84, two such polarizations are relevant but one can apply random bit-flips
and phase-flips in order to need to consider only one (symmetrized) QBER. Remember that in a finite-
size scenario, the fewer parameters to consider, the better, which is in sharp contrast with the situation
encountered in the case of asymptotic analysis where the better the quantum channel is characterized,
the higher the secret key rate [155]. This is consistent with the results of Chapter 6 where it is shown that
Alice and Bob can always consider symmetrized versions of the quantum channel, without overestimating
their secret key rate.
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that have to be optimized afterwards. The rest of the initial (that is before the quantum
distribution) optimization consists in studying the parameter ǫPE which quantifies the
failure probability of the parameter estimation. This parameter depends on the number
N − n of samples used for this parameter estimation as well as on some properties of
the quantum channels such as the expected true values of the parameters13. Therefore,
given the expected behavior of the quantum channel, one can infer the value of N − n
required to obtain a particular value of the parameter ǫPE. This in turn puts a lower
bound on the block size N .

At this point, still before the actual start of the quantum key distribution protocol,
Alice and Bob can optimize the values of the total number N of signal exchanged, the
length of the raw key n as well as the optimal value for Alice’s modulation variance
VA in order to maximize the expected secret key rate compatible with a overall security
parameter ǫ. The values of N , n and VA can be considered to be fixed at this stage.

Then, Alice and Bob proceed with the quantum exchange part of the QKD protocol:
Alice sends N random coherent states (modulated with a variance VA) who measures
them with a homodyne (or heterodyne) detection. Bob informs Alice of his measure-
ment choices (that is, for each state, Bob tells Alice whether he measured the X or the
P quadrature, or both) and Alice discards the data that Bob did not measure. They
publicly compare N − n of their correlated data in order to estimate the true values of
the transmission and excess noise of the quantum channel. They can therefore compute
the value of SǫPE

(y|E), the conditional von Neumann entropy of Bob’s data (which will
be used to form the key in a reverse reconciliation procedure) given Eve’s quantum state,
which is compatible with the estimated parameters except with probability ǫPE. If this
value is compatible with a positive secret key rate, Alice and Bob continue with the
reconciliation procedure, otherwise they abort the protocol. At the end of the recon-
ciliation procedure, Alice and Bob compute the hash of their respective bit strings (for
some well chosen hash function, that is a randomly chosen hash function from a family
such that the equality of both hashs guarantees that the reconciliation procedure worked
except with probability ǫEC). If their strings differ (because their hashs differ), Alice
and Bob abort the protocol14. If their hashs are identical, Alice and Bob compute the
final key size compatible with the security parameter ǫ (by optimizing over ǭ and ǫPA)
and perform the privacy amplification, that is, they randomly pick a hash function from
a two-universal family of hash functions from {0, 1}n to {0, 1}l where l = kN is the size
of the ǫ-secure secret key that they can extract from their data.

In the remaining of the chapter, we try to adapt the framework presented in the
previous section to the case of continuous-variable QKD protocols. More precisely, in
Section 7.3, we present various issues that are specific to continuous-variable QKD, linked
in particular to the problem of the infinite dimension of the Hilbert space HA⊗HB. Then,
in Section 7.4, we study the procedure which is at the heart of finite-size analysis, that

13Actually, the general situation is rather involved for continuous-variable QKD and in this manuscript,
we will have to make the assumption of a Gaussian quantum channel in order to deal with the parameter
estimation problem, especially in order to derive the confidence region.

14Note however, that Alice and Bob might try to continue with the protocol by exchanging more
classical information in order to complete the reconciliation procedure.
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is, parameter estimation. Finally, we present the results of this finite-size analysis for the
4-state protocol as well as the GG02 protocol in section 7.5. Note that in this chapter,
we only address the security of CV QKD protocols which do not involve a postselection
procedure15.

7.3 Various issues specific to continuous variables

First of all, we would like to insist on the fact that we are only considering here collective
attacks and not general attacks. This decision can be motivated by the fact that the
optimality of collective attacks has been proven asymptotically and that it is conjectured
that this optimality could hold in a finite-size setting. Moreover, the correction terms
computed in [127] are quite large and probably not tight. Therefore, using the proof
of [127] to study the behavior of CV QKD in a finite-size scenario would appear quite
pessimistic and might hide interesting effects (such as the dependence of the key rate
on parameter estimation) behind purely technical details such as (temporary?) bounds
linked to a particular mathematical proof (exponential version of de Finetti theorem for
infinite dimensional Hilbert spaces).

7.3.1 Dimensionality

The main difference between discrete-variable and continuous-variable QKD protocols
is obviously the infinite dimensionality of the Hilbert space required to describe CV
QKD protocols. This is in general rather problematic when studying the security of
CV QKD but it becomes even more annoying when one considers finite size effects. In
particular, if one is only interested in asymptotic key rates, the dimension problem can
be solved by saying that in the end, everything in the experiment is discrete (even the
homodyne detection since the local oscillator has a finite energy). Therefore, one can
always theoretically bound the dimension of the relevant Hilbert space by a number large
enough and prove that the correction terms due to this large dimension all go to zero in
the asymptotic limit. Unfortunately, for a finite-size scenario, such an approach fails as
the convergence towards the asymptotic rate is very (very) slow.

For that reason, it is important to come up with security proofs that are as dimension-
independent as possible. When this is not possible, one should be able to replace the
real dimension of the system (for instance of the order of 212 if one uses 12-bit analog-
to-digital converters) by its effective dimension. Such an effective dimension is generally
much smaller than the real dimension and is sufficient to capture the relevant features of
the continuous-variable system. Different definitions for this effective dimension can be
proposed. Generally however, one defines the effective dimension deff

1 of a mixed system

15Remember that protocols with a postselection procedure are only proved to be secure against Gaus-
sian attacks. Unfortunately, in a finite-size context, it is impossible to prove rigorously that an attack is
indeed Gaussian. One can probably upper-bound the probability that it is not the case but this is not a
trivial task, and it is quite certain that the final secret key rate one could compute would be very small.
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ρ as [120]

deff
1 (ρ) ≡ 1

trρ2
, (7.8)

which quantifies the number of states over which ρ is spread. For instance, a totally
mixed state over N orthogonal states has deff = N . A more speculative variant would be
to remember that according to [83], the proper max-entropy Hmax of a state is not the
Rényi entropy of order 0 (which diverges for any quantum state of a CV system) but the
Rényi entropy of order 1/2. Therefore one could also define the effective dimension deff

2

as the exponential of this entropy, that is

deff
2 (ρ) ≡ (tr

√
ρ)2. (7.9)

The advantage of the first definition is that it relates to the energy of the state, and that
it is automatically bounded, for any state ρ.

In any case, it is intuitively clear that ultimately, it is such effective dimensions that
should appear in security proofs of CV QKD protocols. This question certainly needs to
be investigated further. We stress again that such a problem, which is rather benign in
the asymptotic limit, plays a crucial role in a finite-size analysis.

7.3.2 Ill-defined entropies for continuous variables

Another specificity of CV QKD is that classical entropies are ill-defined for continuous
variables: the Shannon entropy has to be replaced by a differential entropy, which is not
a practical quantity to analyze secret key rates. For this reason, the expression

SǫPE
(y|E) − leakEC

n
(7.10)

is inadequate for CV QKD. The solution is to rewrite the different quantities in terms of
mutual information instead of relative entropies. Hence, the previous expression can be
replaced by

βI(x : y) − SǫPE
(y : E) (7.11)

in the case of a CV protocol. Here βI(x : y) gives the amount of mutual information Alice
and Bob were effectively capable to extract through the reconciliation phase: β is the so-
called reconciliation efficiency which ranges from 0 when no information was extracted
to 1 for a perfect reconciliation scheme. While SǫPE

(y|E) is defined as the minimum
conditional entropy compatible with the statistics given by the parameter estimation
except with probability ǫPE, SǫPE

(y : E) is naturally defined as the maximum of the
Holevo information compatible with the statistics except with probability ǫPE. Hence, in
the case of a continuous-variable QKD protocol, the secret key rate obtained for a finite
size analysis reads:

k =
n

N
(βI(x : y) − SǫPE

(y : E) − ∆) . (7.12)
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7.3.3 Reconciliation efficiency

Whereas the question of error-correction has never been a crucial issue for DV protocols
where it just implied a small correction term, the same is not true for CV protocols without
postselection. For these schemes, Alice and Bob need to be able to extract their mutual
information very efficiently. The absence of efficient reconciliation protocols working in
the low Signal-to-Noise Ratio (SNR) regime was, for a long time, the reason why CV
protocols could not distribute secret keys as far as their DV counterparts. To be more
precise, a reconciliation protocol is considered efficient if β is larger than roughly 80%. For
such efficiencies, the correction term appears quite negligible and has a limited impact
on the QKD protocol. For a Gaussian modulation, the best known protocols achieve
efficiencies higher than 80 % only for SNR larger than 1 [91]. For lower SNR (relevant
to increase the range of the protocol), no good protocol is known for the reconciliation
of correlated Gaussian variables. Fortunately, this problem can be solved in this regime
by switching to a discrete modulation where efficient protocols are available for all SNR
lower than 1 [93].

To summarize, both modulation schemes (Gaussian and discrete) are useful depending
on the working distance of the protocol. When working at short distances, a Gaussian
modulation should be chosen whereas a discrete modulation is more adapted to reach
longer distances. In both cases, the effect of imperfect reconciliation can be taken care
of by taking β = 0.8 which is a conservative value consistent with state of the art
reconciliation schemes.

7.4 Parameter estimation

For discrete-variable QKD protocols, it turns out that the principal finite-size effect, in
terms of its consequences on the secret key rate, is the parameter estimation. A similar
situation is expected for continuous-variable protocols, the main problem being without
any doubt, the estimation of the excess noise.

In this section, we study the parameter estimation procedure for continuous-variable
protocols, without postselection. Quite fortunately, despite being described in an infinite
dimensional Hilbert space, there are only a few parameters that need to be estimated:
these are the parameters characterizing the covariance matrix of the state shared by Alice
and Bob in the entanglement-based version of the protocol. On the positive side, this
covariance matrix can be symmetrized through the approach explained in Chapter 6, and
that the symmetrized version is described by only two unknown parameters16. On the
negative side, in order to be able to estimate the two relevant parameters, it seems that
one still has to make the assumption of a Gaussian channel. This does not look as a very

16Of course, if one is interested in the asymptotic secret key rate (secure against collective attacks),
one should not proceed with the symmetrization as it can only decrease the secret key rate. However,
without such a symmetrization, the covariance matrix is described by 10 real parameters against only
two for the symmetrized covariance matrix. It will be clear at the end of this chapter (if it is not yet the
case) that when considering finite-size analysis, one should really consider the symmetrized state instead
of the non-symmetric one.
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constraining assumption as it is known that Alice and Bob can always assume their state
to be Gaussian (see results in Chapter 5). However, this result has only been established
in the asymptotic limit, and one cannot yet rigorously exclude the (improbable) situation
where this result does not hold in general.

A non-Gaussian attack that would exploit such a possible loophole would have to
be quite subtle. Indeed, the usual security proof stating that Gaussian states are the
ones which minimize the secret key rate cannot be used here because the proof implicitly
assumes the knowledge of the covariance matrix. For a given covariance matrix, the state
maximizing Eve’s information is Gaussian. The only possible loophole would be that
because the covariance matrix is not perfectly known in a finite-size scenario, there might
exist a non-Gaussian state, compatible with the estimated covariance matrix computed
with a Gaussian assumption, that would be better for Eve than the Gaussian state
estimated by Alice and Bob. Let us detail things a little. Let us note Sg

ǫPE
the set of

states compatible with the results of the parameter estimation, under a Gaussian model,
except with probability ǫPE. Let us Sng

ǫPE
the set of states compatible with the results of

the parameter estimation, under a general, non-Gaussian model, except with probability
ǫPE. It is not easy to compare the two sets a priori, but one can imagine that they
probably get closer and closer as ǫPE goes to 0 (we typically consider ǫPE = 10−10). In
the following, because we make the Gaussian assumption, we consider the Gaussian state
ρg ∈ Sg

ǫPE
which maximizes Eve’s information (note that Sg

ǫPE
is not only composed of

Gaussian states, but we know that the worst case from Alice and Bob’s point of view
is Gaussian). However, it is not yet possible to exclude the existence of a non-Gaussian
state ρng ∈ Sng

ǫPE
such that the secret key rate obtained for ρng is strictly lower that the

one obtained for ρg. This is however quite unlikely.
For this reason, we conjecture that the Gaussian optimality still holds in a non-

asymptotic scenario, and in the following, the make the assumption of a Gaussian channel.
Again we insist on the point that even if this conjecture were proven wrong, the bounds
computed here would still be quite accurate.

Our goal here is to compute SǫPE
(y : E), the maximal value of the Holevo informa-

tion between Eve and Bob’s classical variable compatible with the statistics except with
probability ǫPE. The nice property of CV protocols without postselection is that S(y : E)
can be bounded from above by a function of two parameters only. More precisely, this
function depends on the covariance matrix ΓAB of the state ρAB shared by Alice and
Bob in the entanglement-based version of the protocol [106, 51]. One can always suppose
that ΓAB take the following form (see Chapter 6):

Γ =

(

(VA + 1)✶2

√
TZσz√

TZσz (TVA + 1 + Tξ)✶2

)

, (7.13)

where VA is the variance of Alice’s modulation in the prepare and measure scheme and T
and ξ refer to the experimentally estimated effective transmission and excess noise of the
channel. The parameter Z is a function of VA which depends on the modulation scheme.

For instance, one has: ZGauss =
√

V 2
A + 2VA in the case of a Gaussian modulation. For

a discrete modulation, Z has a more complicated expression but turns out to be almost
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equal to ZGauss for small variances (see Chapter 5): for the two-state protocol, one has

Z2 = VA
1 + e−2VA

√
1 − e−2VA

, (7.14)

and for the four-state protocol, one has

Z4 = VA

(

λ
3/2
0

λ
1/2
1

+
λ

3/2
1

λ
1/2
2

+
λ

3/2
2

λ
1/2
3

+
λ

3/2
3

λ
1/2
0

)

, (7.15)

where
{

λ0,2 = 1
2e

−VA/2 (cosh(VA/2) ± cos(VA/2))

λ1,3 = 1
2e

−VA/2 (sinh(VA/2) ± sin(VA/2))
(7.16)

In order to compute SǫPE
(y : E), one simply needs to evaluate ΓǫPE

, the covariance
matrix compatible with the data except with probability ǫPE which maximizes the Holevo
information between Eve and Bob’s classical data.

The estimation of ΓǫPE
is made through the sampling of m ≡ N − n couples of

correlated variables (xi, yi)i=1···m. As we said before, we consider here a normal model
for these variables. Within this model, Alice and Bob’s data are linked through the
following relation17:

y = tx+ z (7.17)

which is a normal linear model parametrized by t =
√
T ∈ R and where z follows a

centered normal distribution with unknown variance σ2 = 1 + Tξ. The random variable
x can be either a normal random variable with variance VA in the case of the CV QKD
protocol with a Gaussian modulation, or an unbiased Bernoulli random variable taking
values ±√

VA in the case of the two- and four-state protocols. At this point, it is worth
considering the dependence of S(y : E) in the variables t and σ2. One can in particular
check numerically that the following inequalities hold for any value of the modulation
variance VA and for both modulation schemes (discrete and Gaussian):

∂S(y : E)

∂t

∣

∣

∣

∣

σ2

< 0 and
∂S(y : E)

∂σ2

∣

∣

∣

∣

t

> 0. (7.18)

This means that one can find the covariance matrix ΓǫPE
which minimizes the secret key

rate with a probability at least 1 − ǫPE:

ΓǫPE
=

(

(VA + 1)✶2 tminZσz

tminZσz (t2minVA + σ2
max)✶2

)

, (7.19)

where tmin and σ2
max correspond respectively to the minimal value of t and the maximal

value of σ2 compatible with the sampled data, except with probability ǫPE/2. Note that
this means that the confidence region we consider here is simply a two-dimensional rect-
angle. One could obviously study more complicated regions that might slightly improve

17the simplicity of this relation comes from the fact that the state ρAB and consequently the quantum
channel are symmetrized.
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the final key rate. However, here, we prefer to study this simpler solution which has
the advantage of displaying the same features as a more complicated model, but without
drowning them under too technical mathematical details.

Maximum-Likelihood estimators t̂ and σ̂2 are known for the normal linear model
[104]:

t̂ =

∑m
i=1 xiyi
∑m

i=1 x
2
i

and σ̂2 =
1

m

m
∑

i=1

(yi − t̂xi)
2. (7.20)

Moreover, t̂ and σ̂2 are independent estimators with the following distributions:

t̂ ∼ N
(

t,
σ2

∑m
i=1 x

2
i

)

and
mσ̂2

σ2
∼ χ2(m− 1), (7.21)

where t and σ2 are the true values of the parameters. This allows us to compute tmin, a
lower bound for t, and σ2

max, an upper bound for σ2 in the limit of large m18:






tmin ≈ t̂− zǫPE/2

√

σ̂2

m VA

σ2
max ≈ σ̂2 + zǫPE/2

σ̂2
√

2√
m

(7.22)

where zǫPE/2 is such that (1 − erf(zǫPE/2/
√

2)/2 = ǫPE/2.
In a given experiment, one can simply compute the values of both estimators t̂ and

σ̂2 and plug them in the previous equation in order to get the values of tmin and σ2
max

and finally the value of SǫPE
(y : E). In order to keep analyzing the protocol from a

theoretical point of view, we take for t̂ and σ̂2 their expected values:

E[t̂] =
√
T ,

E[σ̂2] = 1 + Tξ.
(7.23)

Using these values, one can compute tmin and σ2
max:







tmin ≈
√
T − zǫPE/2

√

1+Tξ
m VA

σ2
max ≈ 1 + Tξ + zǫPE/2

(1+Tξ)
√

2√
m

.
(7.24)

Finally, one gets the covariance matrix ΓǫPE
which should be used to compute the

expected secret key rate SǫPE
(y : E) in the finite case:

E[ΓǫPE
] = Γ +

(

0 ∆Zσz

∆Zσz ∆B✶2

)

, (7.25)

with






∆Z = −zǫPE/2

√

1+Tξ
m VA

∆B =
zǫPE/2√

m
((1 + Tξ)

√
2 − 2

√
TVA) + z2

ǫPE/2
1+Tξ

m .
(7.26)

18Indeed, for large m, the χ2 distribution converges to a normal distribution. The approximation is
almost exact in our case as we consider values of m (much) larger than 106.
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At the first order, for long distances, the main effect is clearly the uncertainty on the
excess noise. The effective excess noise ∆mξ due to the imprecision of the estimation is
given by:

∆m ξ ≈
zǫPE/2

√
2

T
√
m

. (7.27)

We will display in the next section the effect of the parameter estimation on the secret
key rate, but we can already give a hint about what kind of block length will generally
be required for a given distance. Indeed, one has

m ≈
2z2

ǫPE/2

T 2∆mξ2
. (7.28)

For ǫPE = 10−10, one has zǫPE/2 ≈ 6.5, and if one requires ∆mξ ≈ 1/100, which is a
typical value for the true excess noise [48], then the number of samples required scales
as a function of the transmission as

m ∝ 106

T 2
. (7.29)

For instance, if the distance between Alice and Bob is 50 km, then T = 10−1 which means
that one expects the block length19 to be on the order of 108, which is barely realistic.
If the distance is 100 km, then the block length should be on the order of 1010, which is
much more complicated. We will see in Section 7.5 that the reality is even worse than
that ...

Expected secret key rate or most probable secret key rate. For a given experiment,
the secret key rate can be computed and is a function of the observed values of the
estimators t̂ and σ̂2 (but not only). One can write Kexp = f(t̂, σ̂2). From a theoretical
point of view, that is without performing the actual experiment, there are two different
secret key rates that can be computed.

The first possibility, considered for instance in [21], in to compute the secret key rate
K1 obtained for the expected values of the parameters:

K1 ≡ f(E[t̂],E[σ̂2]). (7.30)

In some sense, this corresponds to what one could call the most probable secret key rate.
However, this interpretation is not correct.

In any case, the correct theoretical secret key rate K2 is the expected value of the
secret key rate, that is

K2 ≡ E[f(t̂, σ̂2)]. (7.31)

Obviously, this value is much more difficult to evaluate in general as one needs to know
the probability distributions of both estimators t̂ and σ̂2, whereas in the case of K1, one
just needs to know the expected values. We will see in Section 7.5 that in fact both
values are remarkably close, meaning that one can always safely use K1 as the secret key
size.

19as a first approximation, the block length is comparable to the number m of samples used in the
parameter estimation.
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More economical parameter estimation procedure. An interesting characteristics of
continuous-variable QKD protocols is that it might be possible to perform the parameter
estimation without sacrifing any data. This is obviously something impossible in discrete-
variable QKD where estimating the quantum bit error rate (QBER) requires for Alice
and Bob to disclose part of their data.

In continuous-variable QKD however, the bit used for the raw key is encoded in only
a part of Bob’s classical data. Let us take the example of the four-state protocol for
instance [93]. In this case, Bob’s data {yi}1≤i≤N are real numbers and the raw key
elements are simply given by the sign of the variables yi. The absolute value is sent to
Alice through the public, authenticated channel, and Alice uses it to perform the reverse
reconciliation procedure.

In the parameter estimation procedure that we described above, Alice and Bob would
agree on a certain subset of their data and completely disclose their data in this subset.
This means that the absolute values of the rest of Bob’s data are not used for this pa-
rameter estimation, whereas it manifestly contains information concerning the covariance
matrix of the state shared by Alice and Bob. One could certainly use this information
to improve the accuracy of the parameter estimation, or equivalently, obtain the same
accuracy while using less samples, therefore increasing the final secret key rate. However,
the statistics techniques necessary for this study are beyond the scope of this manuscript,
and we do not address this question more extensively here.

Before concluding this section, we give another possible way to improve upon the
parameter procedure presented here. For continuous-variable QKD protocols, it is clear
that the critical parameter to estimate is the excess noise. The transmission on the other
hand is less critical for two reasons: first, it can be estimated more precisely than the
excess noise with the same amount of data (in particular, the relative uncertainty for
the transmission is smaller than the one for the excess noise), and second, the secret key
rate is much more sensitive to variations in the excess noise than in the transmission.
Therefore, one could use the following method in order to estimate the transmission and
the parameters:

• the transmission is estimated through the same procedure as before, with m sam-
ples,

• Bob uses the totality of his data to compute an estimation of the variance of his
data. Then using the relation 〈y2〉 = 1 + TVA + Tξ and his estimation of T , Bob
infers an estimation for the excess noise.

This approach seems better than the one studied above. However, it involves computing
two dependent estimators and the probability distributions of the estimators (necessary
to compute confidence regions) are not known.

Therefore, in this chapter, we use a probably suboptimal procedure to perform the pa-
rameter estimation, but this procedure allows for the computation of explicit bounds. The
question of what is the best parameter estimation procedure in the case of continuous-
variable QKD is still open, and is certainly worth investigating further, as it turns out
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that the parameter estimation is an important problem if one wants to distribute secret
keys over long distance, while using realistic block lengths.

7.5 Results

7.5.1 Influence of ∆

On Figure 7.1, we plot the value of the parameter ∆ as a function of n, the size of the raw
key. Here, we take dimHY = 2 since for all continuous-variable protocols we considered
in this thesis, the raw key is encoded on bits. Among notable features, one sees that
the value of ∆ does not depend to much on the parameters ǭ and ǫPA which need to be
optimized in theory. The important lesson is the large value of ∆, even for (seemingly)
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Figure 7.1: Parameter ∆ as a function of n for various values of ǭ and ǫPA. From top to
bottom,ǭ = ǫPA = 10−6, 10−7, 10−8, 10−9, 10−10.

quite large sizes of the raw key. In particular, one observes that ∆ is larger than 0.01 for
raw key sizes smaller than 107. In practice, this means that if the asymptotic secret key
rate is below 0.01 bit per channel use, then if one wants to take into account finite-size
effects, one has to use block lengths larger than 10 million in order to be able to claim to
have truly distributed a secret key among distance parties. No need to say that secret key
rates well below 0.01 bit per channel use have been repeatedly claimed to be achieved in
the literature whereas it is doubtful any experiment actually used raw key lengths larger
than 10 million!
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7.5.2 Influence of the parameter estimation

Here, we focus on the value of the effective excess noise ∆mξ due to the finite precision
of the parameter estimation. On Figure 7.2, we display this effective excess noise as a
function of m, the number of samples used in the parameter estimation. From Figure

10
6

10
8

10
10

10
12

10
14

m

10
-5

10
-4

0.001

0.01

0.1

1

DΞ

Figure 7.2: Parameter ∆mξ as a function of m for ǫPE = 10−10 (in fact, ∆mξ does not
depend too critically of the precise value of ǫPE, and one obtains almost similar plots for
ǫPE = 10−5 for instance). From bottom to top, we consider channel losses of 5 dB, 10
dB, 15 dB and 20 dB. With a perfect homodyne detection (quantum efficiency equal to
1), this is equivalent to distances of 25, 50, 75 and 100 km.

7.2, it is clear that the parameter estimation has a major impact on the final secret key
rate. Indeed, the four-state protocol for instance, which can achieve remarkably long
distances in the asymptotic limit, requires very low values of the excess noise, typically
less than one percent in order to distribute key over distances close to 100 km. Here
we see that such parameters require to sample 10 billion couples of correlated data! For
this reason, it is doubtful that continuous-variable QKD is very practical over distances
much larger than 100 km.

7.5.3 Secret key rate in the finite-size scenario

Here, we first consider the secret key rate K1 which is the one obtained if the estimators t̄
and σ̄2 are equal to their expected values. We do not proceed to a complete optimization
of the various parameters since it will not fundamentally change the results and instead
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take the following values:






















ǫEC = ǭ = ǫPA = ǫPE = 10−10

ǫ ≈ 10−10

m = n = N/2
β = 80%
η = 0.6.

(7.32)

The choice for ǫ is a very conservative choice, but it turns out that the secret key rate
does not depend very critically on ǫ (a similar observation was made in [137]). The choice
to use half of the data for the parameter estimation procedure results from the fact that
the block size is almost entirely decided by the number of data actually sampled. The
reconciliation efficiency of 80% is a conservative value (see Chapters 4 and 5). Finally,
we consider the quantum efficiency of the homodyne detection to be 60% which corre-
sponds to a typical experimental parameter [48]. Moreover, as we explained before in this
manuscript, we consider the paranoid mode were the electronic noise is null. As a first
approximation, this is equivalent (in the asymptotic regime) with the case of a realistic
mode where the electronic noise is non negligible but is not supposed to be caused by the
action of an eavesdropper. In the finite-size regime, one can always make the assumption
that Bob’s detection is very well calibrated and that there is virtually no uncertainty on
the value of the electronic noise. As a consequence, in order to avoid too many techni-
cal details, we present here results obtained in the paranoid scenario without electronic
noise. Note that this solution was also chosen in the review by Scarani et al [136].

The secret key rates displayed on Figure 7.3 correspond to the key rate one can expect
if the estimators give the true value of the parameters. As we argued above, a more
relevant secret key rate corresponds to the expected value computed for the probability
distributions of the estimators t̂ and σ̂2.

As we already explained, the most important parameter for the final secret key rate is
the excess noise. This means that one should mainly consider the probability distribution
of the estimator σ̂2. According to Equation 7.21, one has:

mσ̂2

σ2
∼ χ2(m− 1). (7.33)

For large m, the χ2 distribution tends to a normal distribution, which translates into

σ̂2 ∼ N
(

σ2,
2σ4

m

)

, (7.34)

where as before, σ2 corresponds to the true value of the parameter. Here, we can therefore
compute an approximate value of the expected secret key rate K2 as

K2 = E[f(t̂, σ̂2] ≈ E[f(t, σ̂2] (7.35)

since t̂ has a probability distribution peaked around the true value of the parameter t
and because f does not depend critically on the value of t. Using the normality of the
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Figure 7.3: Secret key rate for the four-state protocol. The green red, blue and black
curves correspond respectively to block lengths of N = 108, 1010, 1012 and 1014. Full
lines, dashed lines and dotted lines correspond respectively to an expected value of the
excess noise of 0.001 (optimistic), 0.005 (realistic), 0.01 (conservative). The secret key
rate is null for a block length of 106.

random variable σ̂2, one obtains

K2 =

∫ ∞

−∞

1

2σ2

√

m

π
exp

(

−m(s− σ2)2

4σ4

)

f(t, s)ds. (7.36)

From the relation σ2 = 1+Tξ, one concludes that the observed value of the excess noise
ξ̂ has the following probability distribution

ξ̂ ∼ N
(

ξ,
2

T 2m

)

, (7.37)

in the limit where Tξ ≪ 1. Here, ξ represents the true value of the excess noise (typically
between 10−3 and 10−2) and ξ̂ is the observed value of the excess noise.

It turns out that the behavior of K2 is numerically indistinguishable from the value
of K1. For this reason, we do not display it here. The main consequence is that one
can in very good approximation compute the final key rate by considering the expected
values of the parameters being estimated. This is rather fortunate as computing K2 is
much more demanding from a computing point of view than computing K1.

Finally, on Figure 7.4, we display the secret key rate obtained when the failure prob-
ability ǫPE of the parameter estimation procedure is set at 10−5 instead of 10−10 as in
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Figure 7.4: Secret key rate for the four-state protocol obtained for an expected realistic
value of the excess noise of 0.005, and for ǫPE = 10−5 (thin curves) or ǫPE = 10−10 (thick
curves). From top to bottom, the block length N is equal to 1014, 1012, 1010 and 108.
The secret key rate is null for a block length of 106.

the previous plots. As expected, the final secret key rate is not significantly impacted
by the precise value of ǫPE and increasing its value from 10−10 to 10−5 merely results in
an improvement of a couple of kilometers for the range of the continuous-variable QKD
protocol.

7.6 Perspectives

As we saw in this chapter, the problem of finite-size analysis of continuous-variable QKD
protocols is still not completely solved. Several problems remain open and should be
addressed in further studies:

• first, one should prove whether or not collective attacks are optimal in the finite-
size setting. If this is the case, then all is for the best and the bounds derived
here are accurate. But is collective attacks are not optimal, then one needs to
come up with bounds as tight as possible. On this subject, it would seem that
adapting the postselection technique from [31] to continuous variables (using for
instance symmetries in phase space as explained in Chapter 6) would lead to much
tighter bounds that the one currently available through an exponential version of
de Finetti theorem for infinite dimensional Hilbert spaces [127].

• Second, one still needs to make the assumption of a Gaussian attack (if one restricts
the adversary to collective attacks). Whereas this is completely legitimate in the
asymptotic regime [51, 106], it is not so clear in a finite-size scenario, where very
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subtle (and highly improbable) attacks might perform slightly better. Such attacks
would have to be based on the idea of fooling Alice and Bob by having them make
wrong assumptions in the parameter estimation procedure.

Despite the fact that there are still open problems concerning the finite size analysis of
continuous-variable quantum key distribution, some lessons can already be learned. The
main lesson is that, as is the case for discrete-variable QKD protocols, the most impor-
tant finite-size effect is the limited accuracy of the parameter estimation20. The results
presented here are very pessimistic for that matter, but the worst part is certainly that
there is only one solution to fight this effect, namely increasing up to presently unrealistic
values the block length. A possible alternative approach might be to give up Prepare and
Measure protocols and replace them with Entanglement-based protocols. This seems to
work relatively well in the case of discrete-variable QKD where entanglement-based pro-
tocols clearly outperform their Prepare and Measure alternatives in the finite-size regime
(but not in the asymptotic limit) [21].

20In fact, this is true because the reconciliation is no longer a problem for continuous-variable QKD
protocols such as the four-state protocol presented in Chapter 5. Before this protocol, the imperfect
reconciliation efficiency at low SNR was preventing to distribute secret keys over distances larger than 30
or 50 km. Hence, at that time, the reconciliation efficiency was (temporarily) the most important finite-
size effect (remember that the asymptotic limit can be understood as a situation where the reconciliation
efficiency is equal to 100%.
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CHAPTER 8

Other continuous-variable

cryptographic primitives

In this chapter, I would like to investigate questions that are not directly related to
continuous-variable QKD without postselection. In particular, I will first study the
problem of the optimal measurement to distinguish coherent states as this is directly rel-
evant for the security of CV QKD with postselection (and maybe also as an alternative
approach to prove the security of the protocols already discussed in this manuscript).
This problem is actually quite general and might be of importance for various crypto-
graphic schemes with continuous variables. Then, I explain the results we obtained in
collaboration with Loïck Magnin, Frédéric Magniez and Nicolas Cerf concerning quan-
tum bit commitment: more precisely, we established a no-go theorem for quantum bit
commitment with Gaussian states and Gaussian operations [102]. A nice consequence
of this result is that is falsifies a conjecture formulated by Gilles Brassard and Christo-
pher Fuchs concerning the possibility of deriving quantum mechanics from operational
principles such as the possibility of secure key distribution and the impossibility of bit
commitment [16].

167
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8.1 Distinguishing coherent states

In this section, we study the problem of the discrimination of coherent states. In partic-
ular, we consider the cases of two and four coherent states described by the sets S2 and
S4 which are relevant respectively for the two- and the four-state protocols presented in
Chapter 5. Let us recall the definition of these sets1:

S2 = {|α〉, | − α〉}, (8.1)

S4 = {|αeiπ/4〉, |αe3iπ/4〉, |αe5iπ/4〉, |αe7iπ/4〉}. (8.2)

Since the different elements of S2 and S4 are not orthogonal to each other, it is
impossible to distinguish them perfectly. The question that logically arises is how well
they can be distinguished. There is not a unique answer to this question, as it depends
how distinguishability is defined.

There are two main notions of distinguishability studied in the literature [28]:

• ambiguous discrimination, where the goal is to maximize the probability of success,

• unambiguous discrimination where errors are not authorized, at the expense of
getting inconclusive results.

Both notions are relevant to the security of QKD: unambiguous discrimination for attacks
where Eve does not introduce any error (or noise), and ambiguous discrimination when
she introduces noise on the quantum channel.

In the following, we focus on ambiguous discrimination and consider two different
probabilities of success: the maximal probability authorized by quantum mechanics,
pQM,2 or pQM,4 for the sets S2 or S4, and the probability achievable with homodyne (or
heterodyne) measurements, phom or phet.

8.1.1 Case of two coherent states

Optimal measurement. The general question of distinguishing two quantum states ρ0

and ρ1 has been addressed by Helström [69]:

Theorem 8.1. Let ρ0 and ρ1 be two quantum states prepared with probability q and 1−q.
The probability to correctly identify the state is at most:

pQM,2 =
1

2
[1 + ||qρ0 − (1 − q)ρ1||1]. (8.3)

The measurement saturating this bound is the POVM {M0,M1 = ✶−M0}, where M0 is
the projector on the positive eigenspace of qρ0 − (1 − q)ρ1.

1Note that we slightly change the definition of S2 compared to Chapter 5. This is without consequence
as the distinguishability of two coherent states in phase space depends only on the euclidean distance
between their displacement vectors.
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In our case, since we consider the set S2, we have ρ0 = |α〉〈α|, ρ1 = | − α〉〈−α| and
q = 1/2. Let us define ρ = 1

2 (|α〉〈α| + | − α〉〈−α|). As we saw in Chapter 5, one has:

ρ = λ0|φ0〉〈φ0| + λ1|φ1〉〈φ1| (8.4)

where λ0 = e−α2
coshα2, λ1 = e−α2

sinhα2 and:

|φ0〉 =
1√

coshα2

∞
∑

n=0

α2n

√

(2n)!
|2n〉, (8.5)

|φ1〉 =
1√

sinhα2

∞
∑

n=0

α2n+1

√

(2n+ 1)!
|2n+ 1〉. (8.6)

Let us also define |ω0〉 and |ω1〉:

|ω0〉 =
1√
2

(|φ0〉 + |φ1〉) (8.7)

|ω1〉 =
1√
2

(|φ0〉 − |φ1〉) . (8.8)

The following lemma states that the projective measurement on the states |ω0〉 and |ω1〉
corresponds to the optimal measurement for distinguishing between |α〉 and | − α〉.

Lemma 8.1. The optimal measurement for distinguishing the coherent states |α〉 and
|−α〉 is the POVM {M0 = |ω0〉〈ω0|,M1 = |ω1〉〈ω1|,M2 = ✶−M0−M1}. When obtaining
result 0 (resp. 1), we infer that the coherent state was |α〉 (resp. |−α〉). Note that result
2 never occurs when measuring ρ.

Proof. First, note that {M0,M1,M2} forms a legitimate POVM as one has 0 ≤M2 ≤ ✶

since M0 and M1 have orthogonal supports. The probability of success of this POVM is:

psucc =
1

2
tr(M0|α〉〈α|) +

1

2
tr(M1| − α〉〈−α|) (8.9)

=
1

2
|〈ω0|α〉|2 +

1

2
|〈ω1| − α〉|2. (8.10)

One has:

〈ω0|α〉 =
e−α2

√
2

(

1√
coshα2

∞
∑

n=0

(α2)2n

(2n)!
+

1√
sinhα2

∞
∑

n=0

(α2)2n+1

(2n+ 1)!

)

(8.11)

=
1√
2

(

√

λ0 +
√

λ1

)

(8.12)

= 〈ω1| − α〉. (8.13)

Therefore, it follows that

psucc =
1

2

(

√

λ0 +
√

λ1

)2
=

1

2

(

1 +
√

1 − e−4α2
)

. (8.14)
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Let us now compute the Helström bound:

pQM,2 =
1

2

(

1 +
1

2
|| |α〉〈α| − |α〉〈α| ||1

)

. (8.15)

One needs to compute the trace norm of σ = 1
2 (|α〉〈α| − | − α〉〈−α| ):

||σ||1 = tr|σ| = tr
√
σ2 (8.16)

= tr (λ0λ1 (|φ0〉〈φ0| + |φ1〉〈φ1|)) (8.17)

= 2
√

λ0λ1. (8.18)

Therefore, one gets the Helström bound:

pQM,2 =
1

2

(

1 +
√

1 − e−4α2
)

. (8.19)

This proves that the POVM {M0,M1,M2} saturates the Helström bound.

Homodyne detection. Unfortunately, the POVM described above is not very practical.
A much easier way to discriminate the two coherent states |α〉 and | − α〉 is to perform
an homodyne measurement. In this case, we assign the state |α〉 for positive results
and | −α〉 for negative results. This procedure, homodyne measurement followed by the
post-processing assigning a different state for each sign of the result, can also be seen as
a POVM {Mhom

0 ,Mhom
1 } with

Mhom
0 =

∫ ∞

0
|x〉〈x|dx and Mhom

1 = ✶−Mhom
0 =

∫ 0

−∞
|x〉〈x|dx. (8.20)

The probability of success of this strategy is obtained by integrating the square of the
wavefunction of |α〉 (resp. | − α〉) over the positive (resp. negative) real numbers:

phom =

∫ ∞

0
|〈x|α〉|2dx (8.21)

=

∫ ∞

0
|φ(x)|2dx (8.22)

=
1√
π

∫ ∞

0
e−(x−α)2dx (8.23)

=
1

2

(

1 + erf
(√

2α
))

. (8.24)

This probability is strictly smaller than the Helström bound but turns out to be almost
optimal for very low values2 of the parameter α (see Figure 8.1). Note also that the ho-
modyne detection has recently been proven to be optimal among Gaussian measurements
[152].

2as well as for large values of α since both states than become almost orthogonal.
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Figure 8.1: Probability of success of distinguishing {|α〉, | − α〉} with an optimal mea-
surement (upper curve), and an homodyne detection (lower curve), as a function of α.

8.1.2 Case of four coherent states

We now consider the four coherent states {|α0〉, |α1〉, |α2〉, |α3〉} of the set S4 are prepared
with probability 1/4, |αk〉 = |ei(2k+1)π/4α〉 for k ∈ {0, 1, 2, 3}. Let us consider the mixed
state σ defined as:

σ =
1

4
(|α0〉〈α0| + |α1〉〈α1| + |α2〉〈α2| + |α3〉〈α3|) . (8.25)

The state σ is a rank 4 operator that can be diagonalized as follows:

σ =
3
∑

k=0

µk|φk〉〈φk| (8.26)

where

µ0,2 =
1

2
e−α2

(cosh(α2) ± cos(α2)), (8.27)

µ1,3 =
1

2
e−α2

(sinh(α2) ± sin(α2)) (8.28)

and

|φk〉 =
e−α2/2

√
λk

∞
∑

n=0

α4n+k

√

(4n+ k)!
(−1)n|4n+ k〉 (8.29)

for k ∈ {0, 1, 2, 3}.
The idea now is to determine the optimal POVM {M0,M1,M2,M3} for the am-

biguous discrimination of the four coherent states. To our knowledge, such a POVM,
specifically concerned with the discrimination of coherent states, has not yet been studied
in the literature.
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Optimal measurement. The states {|α0〉, |α1〉, |α2〉, |α3〉} are pure and symmetric, in
the sense that

|αk〉 = U |αk−1〉 = Uk|α0〉 (8.30)

U |α3〉 = |α0〉, (8.31)

where U = exp(iπ4a
†a). For such states, the measurement that maximizes the probability

of success for the discrimination is known: it is the so-called square-root measurement
[28]: the optimal measurement operators are M0,M1,M2 and M3 defined as

Mk =
1

4
σ−1/2|αk〉〈αk|σ−1/2. (8.32)

Note that these operators form a genuine POVM as they are positive operators which
sum to ✶. Then, the maximal probability of success allowed by Quantum Mechanics is:

pQM,4 =
1

16

3
∑

k=0

|〈αk|σ−1/2|αk〉|2. (8.33)

In order to make this explicit, we first notice that the states |αk〉 are linear combinations
of the |φk〉:

|αk〉 =
3
∑

m=0

√
µme

im(2k+1)π/4|φm〉. (8.34)

Therefore, one has Mk = |ωk〉〈ωk| with:

|ωk〉 = σ−1/2|αk〉 (8.35)

=

3
∑

p,q=0

µ−1/2
p |φp〉〈φp|√µqe

iq(2k+1)π/4|φq〉 (8.36)

=

3
∑

p=0

eip(2k+1)π/4|φp〉, (8.37)

and

pQM,4 =
1

16

3
∑

k=0

|〈αk|ωk〉|2 (8.38)

=
1

4

(

3
∑

k=0

√
µk

)2

. (8.39)

Heterodyne measurement. The natural generalization of the homodyne detection in
the case of four coherent states is an hererodyne measurement. It consists in sending
the state on a balanced beamsplitter and proceeding with homodyne detections along
two different quadratures for the two output modes. Sending the state |αk〉 through a
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balanced beamsplitter outputs the bimodal state |αk/
√

2〉1|αk/
√

2〉2. Then one proceeds
with the heterodyne measurement of this bimodal state which can be seen as a POVM
measurement {Mhet

0 ,Mhet
1 ,Mhet

2 ,Mhet
3 } where:

Mhet
0 =

∫ ∞

0
|x〉〈x|1 dx⊗

∫ ∞

0
|p〉〈p|2 dp (8.40)

Mhet
1 =

∫ 0

−∞
|x〉〈x|1 dx⊗

∫ ∞

0
|p〉〈p|2 dp (8.41)

Mhet
2 =

∫ 0

−∞
|x〉〈x|1 dx⊗

∫ 0

−∞
|p〉〈p|2 dp (8.42)

Mhet
3 =

∫ ∞

0
|x〉〈x|1 dx⊗

∫ 0

−∞
|p〉〈p|2 dp. (8.43)

The success probability of the heterodyne measurement can immediately be inferred from
the one of an homodyne measurement:

phet =
1

4

(

1 + erf

(

α√
2

))2

. (8.44)

This probability is again strictly smaller than the optimal bound but turns out to be
almost optimal for very low values of the parameter α (see Figure 8.2). It is not known
whether the heterodyne detection is optimal among Gaussian measurements, but this
appears to be quite a reasonable conjecture.
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Figure 8.2: Probability of success of distinguishing
{|eiπ/4α〉, |e3iπ/4α〉, |e5iπ/4α〉, |e7iπ/4α〉} with an optimal measurement (upper curve),
and an heterodyne detection (lower curve), as a function of α.

8.1.3 Mutual information, Holevo information

Here we consider another figure of merit of the different measurement schemes, that is,
the mutual information between the source (generating either a mixture of |α〉 and |−α〉,
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or of |α0〉, |α1〉, |α2〉 and |α3〉) and the output of the measurement. Yet another measure
is the Holevo information which gives an upper bound (not tight since the different states
do not have orthogonal supports) of this mutual information.

Case of two coherent states. Let us first compute the different mutual informations
relative to an optimal measurement and to an homodyne detection. The protocol which
consists in generating a random coherent state with probability 1/2 and measuring it,
can be seen as a classical binary symmetric (BSC) channel. The mutual information we
are interested in then corresponds to the classical capacity of the BSC channel, which
is known to be CBSC = 1 − h(psucc) where h is the binary entropy function defined as
h(x) = −x log2 x− (1− x) log2(1− x). Therefore, the mutual information corresponding
to an optimal measurement IQM,2 and to an homodyne detection Ihom are given by:

IQM,2 = 1 − h(pQM,2) (8.45)

Ihom = 1 − h(phom). (8.46)

The other quantity of interest, especially in the case of an application to quantum key
distribution (QKD), is the Holevo information which is defined for an ensemble of states
{ρi}i=1,··· ,n with probabilities {pi}i=1,··· ,n as

χ({ρi, pi}) = S(
∑

i

piρi) −
∑

i

piS(ρi), (8.47)

where S(ρ) = −trρ log2 ρ is the von Neumann entropy of the state ρ. The Holevo
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Figure 8.3: Case of 2 coherent states: mutual information between encoding and the mea-
surement result, for an optimal measurement (middle curve), and an homodyne detection
(lower curve), as a function of α. The upper curve represents the Holevo information of
the state.

information is known to be an upper bound to the accessible information of a quantum
state [109]. However, this bound is only tight when the states {ρi} commute, which is
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not the case of any coherent state. In our case, the Holevo information can be easily
computed:

χ2 = S(ρ) − 1

2
S(|α〉) − 1

2
S(| − α〉) (8.48)

= −λ0 log2 λ0 − λ1 log2 λ1 (8.49)

since the von Neumann entropy of coherent states, which are pure states, is zero. It
turns out that this bound is much larger that the mutual information computed above,
as can be seen on Figure 8.3. In fact, in the case of two coherent states, the maximal
accessible information is known under the name Levitin bound [94] which turns out to be
equal to IQM,2. Interestingly, in the context of quantum key distribution, the accessible
information and the Holevo information relate respectively to individual and collective
attacks.

Case of four coherent states. Here the situation is a little bit more complicated as
different types of errors have to be taken into account. In particular, if the state |α0〉
has been generated, the measurement might indicate either state |α1〉 or |α3〉 with the
same error probability p1 or the state |α2〉 with error probability p2. Here again, the
mutual information we are interested in can be seen as the classical capacity of a classical
communication channel with four inputs and transition probabilities defined as:

|αk〉 −→ |αk〉 with probability psucc,
|αk〉 −→ |αk−1〉 with probability p1,
|αk〉 −→ |αk+1〉 with probability p1,
|αk〉 −→ |αk+2〉 with probability p2.

(8.50)

where all additions must be understood modulo 4.
The corresponding capacity reads:

C4 = 2 + psucc log2 psucc + 2p1 log2 p1 + p2 log2 p2. (8.51)

This capacity is achieved when the four input states are emitted with uniform probability,
and is therefore equal to the mutual information we are looking for.

Optimal measurement. The probability of the first type of error is given by:

p1 =
1

16

3
∑

k=0

|〈αk|ωk+1〉|2 (8.52)

=
1

4
|√µ0 + i

√
µ1 −

√
µ2 − i

√
µ3|2 . (8.53)

The probability of the second type of error is likewise computed in the following way:

p2 =
1

16

3
∑

k=0

|〈αk|ωk+2〉|2 (8.54)

=
1

4
|√µ0 −

√
µ1 +

√
µ2 −

√
µ3|2 . (8.55)
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Heterodyne detection. The first type of errors occurs when one of the homodyne detec-
tions is successful while the second leads to an error. Its probability is:

phet
1 =

1

4
− 1

4

(

erf

(

α√
2

))2

. (8.56)

Finally, the probability of the second type of error is given by:

phet
2 =

1

4

(

1 − erf

(

α√
2

))2

. (8.57)

Holevo information. The Holevo information has the same form as in the case of two
coherent states, namely:

χ4 = S(σ) − 1

4

3
∑

k=0

S(|αk〉〈αk|) (8.58)

= −
3
∑

k=0

µk log2 µk. (8.59)

Discussion. The comparison between the different mutual information and the Holevo
information can be found on Figure 8.4. As before, one should notice that the Holevo
information is much larger that the other 2 quantities. In the case of four coherent states,
the maximal accessible information is not known, but it seems natural to conjecture that
it is equal to the quantity:

IQM,4 = 2 + pQM,4 log2 pQM,4 + 2p1 log2 p1 + p2 log2 p2. (8.60)

8.2 A no-go theorem for Gaussian quantum bit commitment

Cryptography is not at all limited to key distribution. Among other important primitives,
one can cite bit commitment and oblivious transfer. Similarly to key distribution, both
these tasks are impossible classically. But it turns out that they are also impossible in
a quantum framework, in sharp contrast with key distribution. The fact that they are
impossible in general, that is, if the players are only limited by quantum mechanics, does
not mean that their study is not interesting. In this section, we consider quantum bit
commitment with continuous variables. In particular, we prove a no go theorem for bit
commitment where both parties are restricted to using Gaussian states and operations.

The results presented in this section where obtained in collaboration with Loïck
Magnin, Frédéric Magniez and Nicolas Cerf. Loïck was the main architect of the proof.
This work was presented in Ref. [102].
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Figure 8.4: Case of 4 coherent states: mutual information between encoding and the
measurement result, for an optimal measurement (middle curve), and an heterodyne
detection (lower curve), as a function of α. The upper curve represents the Holevo
information of the state.

8.2.1 Quantum bit commitment

Bit commitment is a cryptographic involving only two players, Alice and Bob, who
distrust each other. The basic idea is that Alice should commit to a bit, either 0 or 1,
and commit to it. To make the task more interesting, Bob should not be able to guess
the value of the bit before Alice tells him, but Alice should not be able to change her
mind once she committed to a certain bit. A more imaged (classical) description is the
following: Alice writes down a bit on a piece of paper that she puts in a safe. She then
hands the safe over to Bob. Obviously, with a good safe, Bob cannot learn the value of
the bit at that point, and Alice cannot change her mind anymore. When Alice decides
to reveal her bit, she just gives the key of the safe to Bob, who can open it and read the
value of the committed bit.

Let us now give some terminology. Bit commitment is a two-step protocol:

• in the committing phase, Alice chooses a bit and informs Bob that she has made a
commitment,

• in the revealing phase (also called opening phase), she reveals her choice to Bob.

The time interval between the two phases is sometimes referred to as holding phase: it
is when Alice and Bob can both try to cheat.

Obviously, a good bit commitment primitive should be secure against either a dishon-
est Alice or a dishonest Bob. A protocol secure against Alice cheating is called binding
as it prevents Alice to change her mind after the committing phase. A protocol secure
against Bob cheating is called concealing, meaning that Bob cannot learn anything con-
cerning the value of the bit before the revealing phase. This concept of bit commitment
scheme was first formalized by Brassard, Chaum and Crépeau in 1988 [17].
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In a similar way as key distribution is a primitive for secure communication between
distant parties, bit commitment is a primitive for various cryptographic applications. For
instance, bit commitment can be used for

• coin flipping : Alice and Bob flip a fair coin,

• secure computation: Alice and Bob have respective secret data x and y and they
wish to compute the value of a function f for these data in such a way that neither
the computation not the value of f(x, y) can give Alice (resp. Bob) any information
about y (resp. x) [161],

• zero-knowledge proofs are interactive protocols where one party wishes to prove
to the other that a mathematical statement is true without revealing any other
information except that the statement is true [56]. Roughly speaking, one wishes
to show that he knows the mathematical proof of a theorem, without revealing the
proof in question.

In the classical setting, a bit commitment protocol can never be unconditionally se-
cure, that is perfectly binding and concealing at the same time [78]. One therefore needs
to make extra assumptions on the hardness of certain tasks, and can only achieve com-
putational security. Unfortunately, even with such restrictions, known bit commitment
protocols are only either computationally binding or computationally concealing (see Ref.
[35] and references therein for more details). A natural question is to ask whether there
exist secure quantum bit commitment schemes. Remember that secure key distribution
is impossible classically but allowed by the laws of quantum mechanics.

Actually, this question was asked a long time ago since it was indirectly addressed
(but not solved) in the seminal paper of Bennett and Brassard that introduced the BB84
QKD protocol [10]. In this article, the authors proposed a quantum bit commitment
QBC protocol (more precisely, a version adapted from coin tossing) but suggested a
cheating attack for Alice where she would use an EPR pair. The basic idea is that the
committing phase will consist for Alice to send one half of an EPR pair to Bob, while
keeping the other half. The cheating strategy then simply amounts to performing the
right operation on the second half of the pair. In 1993, Brassard, Crépeau, Jozsa and
Langlois introduced a new QBC scheme [18] where the players are forced to perform
measurements and communicate classically during the protocol in order to avoid the
loophole of Bennett and Brassard’s scheme. This scheme was believed to be secure until
1996 when Mayers [103] and independently Lo and Chau [96] showed that all previous
QBC schemes were vulnerable to a generalized EPR attack and proved the impossibility
of QBC in general: this is the celebrated no-go theorem for quantum bit commitment.

However, the story does not end here. The proofs for the no-go theorem are based
on a reduction of any QBC protocol to a purified protocol, and it was not clear at that
time that such a reduction encompassed all QBC protocols. For this reason, the no-go
theorem was not universally accepted (see for instance Ref. [162] and subsequent works
by the same author). More recently, the question was arguably put to rest by d’Ariano
and collaborators in Refs [35] and [29].
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Again, the fact that the no-go theorem of QBC is now widely accepted by the scientific
community is still not the end of the story. Indeed, one should stress that the no-go
theorem only applies to unconditionally secure protocols, that is, protocols where Alice
and Bob are only limited by the laws of quantum mechanics. This does not mean that
there are no other (more restricted) contexts where QBC could be interesting. A classical
analogy would be to consider protocols computationally secure in the hypothesis where
one could establish results about the hardness of certain computations (remember that
such results are only conjectured today). For instance, in a reasonable scenario, Alice and
Bob only have access to limited quantum memories, this is the so-called bounded storage
model (which is a quantum version of the model introduced in Ref. [8]). Quantum bit
commitment can be made secure within this model[34]: the idea is that, due to their
finite-size quantum memories, Alice and Bob have to measure their quantum states at
some point, hence preventing them from applying unitary cheating strategies on their
whole quantum system. Another way around the no-go theorem is to use the constraints
imposed by special relativity to achieve unconditional security [77]. However, this last
proposal is far from being practical as Alice and Bob should be space-like separated and
need to synchronize their communication quite precisely!

The conclusion of this preamble is two-fold. First, there exists a general no-go theorem
for quantum bit commitment. Second, it is possible to put reasonable constraints on Alice
and Bob capabilities to allow them to perform secure quantum bit commitment. We now
introduce such reasonable constraints, namely that Alice and Bob are restricted to use
Gaussian states and Gaussian operations only. Then we prove that in this framework,
secure Gaussian quantum bit commitment is impossible.

8.2.2 Bit commitment with Gaussian states and Gaussian operations

A reasonable restriction for continuous variables. In this section, we introduce QBC
schemes with continuous variables, and study more particularly the restriction to Gaus-
sian states and Gaussian operations. Indeed, as is the case for QKD, most protocols
were initially considered in finite-dimensional Hilbert spaces. In this chapter, there is no
need to argue one more time that continuous variables can represent a valid alternative
to qubits (or low dimensional systems) to encode quantum information.

There are various reasons to justify the restriction to Gaussian states and Gaussian
operations we impose to Alice and Bob. First, the obvious reason is that one needs to
impose a restriction, otherwise the usual no-go theorem applies and there is nothing more
to say. The question then is to find a reasonable restriction. The Gaussian restriction
we consider is reasonable from two perspectives. First, it has the great advantage of
considerably simplifying the theoretical analysis of the protocol: this is because Gaussian
states and Gaussian operations can entirely be described by their first two moments in
phase space. In fact, the analysis boils down to considering covariance matrices, which
have the nice property of being finite-dimensional. Therefore, the Gaussian restriction
is already convincingly justified as it allows for a tractable theoretical description of the
problem. A second point of view is the experimental perspective. We saw in Chapter 2
that Gaussian operations exactly correspond to what is easily performed in a lab. They
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can indeed be implemented with linear optical elements (phase shifts, beam splitters and
squeezers) together with homodyne detection [52]. The fact that Gaussian operations
are easily implementable experimentally is crucial for QBC: indeed, the general no-go
theorem tells us that there always exists a cheating strategy for Alice or Bob, but in
practice, one wants to know whether such a strategy can be implemented or not. From
this perspective, Gaussian cheating strategies are relatively “easy” to implement. In the
following, we will prove that if Alice and Bob are both restricted to Gaussian states and
Gaussian operations, then there always exists a Gaussian cheating strategy.

Notations and main theorem. Before proving this no-go theorem for Gaussian QBC, we
need to recall some definitions and notations. To do this, we detail the generic description
of any (reduced) QBC protocol. Alice starts by choosing a bit b which she encodes into
a bipartite pure state |ψb〉. She then sends one half of her state, ρb = trA|ψb〉〈ψb| to
Bob and keeps the second half. The QBC protocol is said ǫ-concealing if D(ρ0, ρ1) ≤ ǫ
(where D is the trace distance defined in Chapter 1). Because of the Helström bound,
this means that Bob cannot learn the value of b, except with probability at most ǫ. The
second part of the protocol, the revealing phase, consists for Alice to send the second
half of |φb〉 to Bob. We now define the notion of δ-cheating strategy (for Alice3): Alice
sends a state ρ♯ to Bob in the committing phase and decides later whether her bit should
be 0 or 1, corresponding respectively to final states |ψ♯

0〉 or |ψ♯
1〉. Such a strategy is said

to be a δ-cheating strategy if Bob cannot distinguish it from a honest strategy with a
probability greater that δ. This implies the following conditions:

D(ρ♯, ρb) ≤ δ and D(|ψ♯
b〉, |ψb〉) ≤ δ for b ∈ {0, 1}. (8.61)

As it is sufficient to exhibit one cheating strategy to prove a no-go theorem, here, we only
need to consider the slightly simpler scenario where ρ♯ = ρ0 and |ψ♯

0〉 = |ψ0〉. Therefore,
in the case we study, Alice always commits to 0 but can later decide to switch to 1. This
will allow us to prove the following no-go theorem for Gaussian QBC:

Theorem 8.2. Given any ǫ-concealing Gaussian quantum bit commitment protocol, there
exists a Gaussian

√
2ǫ-cheating strategy for Alice.

Note that removing the word “Gaussian” from this statement gives the usual no-go
theorem for QBC [35].

Proof of the main theorem. For QBC in finite dimension, the core of the proof of the
no-go theorem is Uhlmann’s theorem (see Theorem 1.7 in Chapter 1). For any two states
ρ0 and ρ1, this theorem guarantees the existence of two respective purifications |ψ0〉 and
|ψ1〉 such that F (|ψ0〉, |ψ1〉) = F (ρ0, ρ1). Because Uhlmann’s theorem is independent of
the dimension of the Hilbert space, it also works for continuous-variable quantum systems
and the general no-go theorem remains valid for continuous-variable QBC. However, it

3in fact, it is sufficient to establish the existence of a cheating strategy for Alice to prove a no-go
theorem for QBC.
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does not give anymore explicitly the purifications |ψ0〉 and |ψ1〉 in infinite dimension4. In
particular, one does not know any explicit cheating strategy, in contrast with the finite-
dimensional case. Here, we cannot use the usual Uhlmann’s theorem as we require the
purifications to be Gaussian and the theorem does not say anything about Gaussianity.
Moreover, we could not yet prove a conjectured Uhlmann’s theorem for Gaussian states
which is that if ρ0 and ρ1 are Gaussian states, then there exist Gaussian purifications |ψ0〉
and |ψ1〉 such that F (|ψ0〉, |ψ1〉) = F (ρ0, ρ1) (where F is the fidelity between two states).
In the absence of such a result, we will need to find explicit Gaussian purifications that
almost reach Uhlmann’s bound. The existence of such purifications is the object of the
following lemma:

Lemma 8.2. Given two (n-mode) states ρ0 and ρ1, there exist (2n-mode) purifications
|ψ̂0〉 of ρ0 and |ψ̂1〉 of ρ1 such that

D(|ψ̂0〉, |ψ̂1〉) ≤
√

2D(ρ0, ρ1). (8.62)

Moreover, if ρ0 and ρ1 are Gaussian states, so are their purifications |ψ̂0〉 and |ψ̂1〉.

In order to prove this lemma, we introduce the concept of intrinsic purification [102],
which we explain below. First, remember that an n-mode Gaussian state ρ is character-
ized by its Gaussian Wigner function (see Chapter 2):

Wρ(r) =
1

πn
√

detγ
exp

{

−(r − µ)Tγ−1(r − µ)
}

, (8.63)

where µ ∈ R
2n is the displacement vector and γ ∈ R

2n ×R
2n is the covariance matrix of

ρ.
Where Gaussian states and Gaussian operations are very nice, is that everything

can be described easily in phase space. In particular, a Gaussian map E is entirely
characterized by a displacement vector d and a symplectic matrix S such that for all
states ρ, one has [7]

WE(ρ)(r) = Wρ(S
−1r − d). (8.64)

The Williamson decomposition theorem states that for any covariance matrix γ, there
exists a symplectic transformation S such that

SγST =
n
⊕

k=1

νk✶2, (8.65)

where {ν1, · · · , νn} is the symplectic spectrum of γ. For a Gaussian state ρ, this means
that there exists a Gaussian operation V , a Williamson unitary, such that

V ρV † =
∑

i

(

n
∏

k=1

(1 − xk)x
ik
k

)

|i〉〈i|, (8.66)

4more precisely, one would need to prove the existence of a polar decomposition for non-invertible
bounded linear operators.
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where xk = (νk −1)/(νk +1) and |i〉 = |i1〉 · · · |in〉 is the Fock basis of the n-mode Hilbert
space that describes ρ. This means that any Gaussian state can be mapped to a tensor
product of thermal states via a Gaussian operation.

We now introduce the concept of intrinsic purification. Let ρ be an n-mode state and
U be a diagonalization of ρ in the Fock basis, that is a unitary operator such that

〈i|U †ρU |j〉 = piδij , (8.67)

where δij is the Kronecker delta. A purification |ψ̂〉 of ρ will be said intrinsic if it can be
written as

|ψ̂〉 = (U∗ ⊗ U)
∑

i

√
pi |i〉|i〉, (8.68)

where A∗ (resp. AT ) denotes the complex conjugate (resp. the transpose) of any linear
operator A relatively to the Fock basis, that is

〈i|A∗|j〉 = 〈i|A|j〉∗ and 〈i|AT |j〉 = 〈j|A|i〉. (8.69)

For a Gaussian state, one simply obtains a Gaussian intrinsic purification by choosing
U = V . To see that, it is sufficient to show that the purification is indeed Gaussian. First,
the state

∑

i

√
pi|i〉|i〉 is Gaussian in this case since it is the tensor product of two-mode

squeezed states. Therefore, all is left to do is to show that U ⊗ U∗ is Gaussian. Since
U is Gaussian, one only needs to prove that its complex conjugate U∗ is also Gaussian.
Let us note d and S the displacement vector and the symplectic matrix associated with
the Gaussian map U . It can be shown [102] that for any state state σ,

WU∗σU∗†(r) = Wσ(Σn
zS

−1Σn
z r − Σn

zd), (8.70)

where

Σn
z =

n
⊕

k=1

(

1 0
0 −1

)

. (8.71)

This shows that U∗ is a Gaussian map characterized by the displacement vector Σn
zd and

the symplectic matrix Σn
zS

−1Σn
z .

Proof of Lemma 8.2. We take for |ψ̂0〉 and |ψ̂1〉 the intrinsic purifications of ρ0 and ρ1.
A straightforward calculation shows that

tr
√
ρ0
√
ρ1 =

√

F (|ψ̂0〉, |ψ̂1〉). (8.72)

Using the Battacharyya bound (second part of Eq. 1.64), one gets

1 −D(ρ0, ρ1) ≤
√

F (|ψ̂0〉, |ψ̂1〉). (8.73)

Then, the relation between fidelity and trace distance (first part of Eq. 1.64) gives

D(|ψ̂0〉, |ψ̂1〉) ≤
√

2D(ρ0, ρ1) −D(ρ0, ρ1)2, (8.74)

which concludes the proof of Lemma 8.2.
In order to prove our no-go theorem for Gaussian QBC, we need a second lemma:
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Lemma 8.3. Let |ψ0〉 and |ψ1〉 be two 2n-mode Gaussian states such that trA|ψ0〉〈ψ0| =
trA|ψ1〉〈ψ1|, there exists a Gaussian unitary operator U acting on n modes such that
(U ⊗ ✶)|ψ0〉 = |ψ1〉, where ✶ is the identity on n modes.

Note that without the Gaussian property, the lemma is a consequence of the Schmidt
decomposition of |ψ0〉 and |ψ1〉. In the Gaussian case, one needs to work in phase space,
and this lemma results from the normal mode decomposition [15]. The complete proof
of Lemma 8.3 can be found in [102].

With Lemmas 8.2 and 8.3, we can finally prove the no-go theorem for Gaussian QBC.

Proof of Theorem 8.2. We consider an ǫ-concealing protocol where Alice prepare the
state |ψ0〉 and sends ρ0 = trA|ψ0〉〈ψ0| to Bob. If Alice wants to reveal the bit 0, she just
sends the second half of |ψ0〉 to Bob. If she wants to cheat and to switch her bit to 1,
she applies a local Gaussian unitary operation to her half of |ψ0〉 which maps the pure
state to |ψ♯

1〉 and she sends her half of the state to Bob. In order to prove the existence
of a

√
2ǫ-cheating strategy for Alice, we only need to show that there exists such a state

|ψ♯
1〉 which is

√
2ǫ-close to |ψ1〉.

According to Lemma 8.2, there exist purifications |ψ̂0〉 of ρ0 and |ψ̂1〉 of ρ1 such that

D(|ψ̂0〉, |ψ̂1〉) ≤
√

2D(ρ0, ρ1). (8.75)

Since |ψb〉 and |ψ̂b〉 are two Gaussian purifications of the same state ρb with b ∈ {0, 1},
Lemma 8.3 ensures the existence of two local Gaussian unitaries U0 and U1 such that

(U0 ⊗ ✶)|ψ0〉 = |ψ̂0〉 and (U1 ⊗ ✶)|ψ1〉 = |ψ̂1〉 (8.76)

We define |ψ♯
1〉 as

|ψ♯
1〉 = (U−1

1 U0 ⊗ ✶)|ψ0〉 = (U−1
1 ⊗ ✶)|ψ̂0〉. (8.77)

Since the trace distance is invariant under unitaries, one has:

D(|ψ♯
1〉, |ψ1〉) = D(|ψ̂0〉, |ψ̂1〉) (8.78)

≤
√

2D(ρ0, ρ1) (8.79)

≤
√

2ǫ, (8.80)

for ǫ-concealing protocols, which concludes the proof of the no-go theorem for Gaussian
quantum bit commitment.

8.3 Deriving Quantum Mechanics from information theory

axioms

As we already mentioned in the introduction, although the predictions of quantum me-
chanics have not been falsified yet5, it still lacks a derivation from basic postulates.

5despite an important experimental effort during the last hundred years
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Whether this situation is definitive or not is impossible to say right now, but it certainly
did not stop people from trying to derive quantum mechanics from a few operational
principles. Such a situation applies for both special relativity (the physical laws, as well
as the velocity of light, are the same for all inertial frames) and general relativity (equiva-
lence between a gravitational field and an accelerated frame in absence of a gravitational
field). Yet, quantum mechanics is currently described by mathematical axioms that are
not derived from fundamental physical postulates.

With the rapid development of quantum information theory in the last two decades,
people started to wonder if quantum mechanics was not in the end only concerned with
information, and consequently if it could not be derived from information theory axioms.
Such a possibility became even more interesting with the development of quantum cryp-
tography, and more precisely with the discovery of differences between the classical world
and quantum mechanics concerning cryptography. Among notable results, one should
cite the fact that key distribution is allowed in a quantum world but not in a classi-
cal world whereas bit commitment is forbidden in both situations. Christopher Fuchs
and Gilles Brassard suggested that quantum mechanics could be derived from these two
axioms [16]:

1. possibility of perfect confidentiality,

2. impossibility of bit commitment.

However, it was soon proven that these two axioms were not sufficient to rederive quan-
tum mechanics as toy models could be invented such that they satisfy these two properties
while being incompatible with quantum mechanics [148] (although this counter-example
might suffer some physical pathologies [65]). At the same time, Bub, Clifton and Halvor-
son suggested to replace the possibility of key distribution with two more fundamental
postulates [32], namely,

• the no-signaling property, that is, that no manipulations occurring at some point
in space can have an instantaneously (faster than what is authorized by special
relativity) observable effect at some remote location,

• the no-cloning theorem.

Quite remarkably, from the three no-go theorems that are no-signaling, no-cloning and
no bit commitment, Bub, Clifton and Halvorson were able6 to rederive some genuine
features of quantum mechanics: interferences, non-commutativity of measurements and
the existence of space-like separated entanglement.

However, despite this success, we argue here that their three axioms cannot be suffi-
cient to completely rederive quantum mechanics. The reason for this is that we have ex-
hibited a theory compatible with the three information theoretic axioms of Bub, Clifton

6to be more precise, they also had to assume that the laws of physics can be described in the
mathematical framework of C⋆-algebras, that is complex algebras of linear operators on a complex
Hilbert space which are closed for the norm topology of operators as well as under the operation of
taking adjoints of operators.
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and Halvorson that is strictly different from quantum mechanics. This theory is the
theory of Gaussian states and Gaussian operations, or more simply Gaussian quantum
theory.

It is indeed easy to see that Gaussian quantum theory satisfies all three axioms of
Bub, Clifton and Halvorson:

• being contained within quantum theory, it obviously respects the no-signaling prop-
erty,

• the argument concerning the no-cloning property is a little more elaborate since
classical mechanics is superseded by quantum mechanics but does not satisfy the
no-cloning theorem. If fact, the no-cloning theorem is valid within Gaussian in-
formation theory since there exist non orthogonal Gaussian states. Actually, there
cannot exist orthogonal Gaussian states at all since their Wigner functions, being
Gaussian distributions, necessary overlap.

• the impossibility of Gaussian quantum bit commitment was just established in the
previous section.

To complete our argument, we also need to establish that Gaussian quantum the-
ory is strictly different from quantum theory. This can be seen, for instance, by noting
that Wigner functions never take negative values for Gaussian state. A particular conse-
quence of this fact is that there always exists a local hidden-variable model that describes
a Gaussian quantum system. Hence, one cannot violate any Bell inequality with Gaussian
states and Gaussian operations7 only. Since Bell inequalities violations are theoretically
allowed by quantum mechanics (and even experimentally demonstrated), Gaussian quan-
tum theory forms a strict subset of quantum theory.

It must be pointed out that a previous counter-example, that is, satisfying the three
axioms suggested by Bub, Clifton and Halvorson but strictly different from Quantum
Mechanics, was exhibited by Spekkens [149]. However, his counter-example is really an
ad hoc toy model, and we might argue that Gaussian states and Gaussian operations
give a much more physically motivated counter-example. The reason why the argument
of Bub, Clifton and Halvorson fails in both cases is that they cannot be described with
C∗-algebras.

Interestingly, the C∗-algebra assumption which seemed rather benign to begin with
turns out to be in fact quite strong. Therefore, it would be nice to formulate axioms where
such a mathematical structure was not imposed a priori. Answering such a question is
clearly out of the scope of this thesis.

7meaning, for example, homodyne or heterodyne detection
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Conclusion and perspectives

In this thesis, we studied continuous-variable quantum key distribution from a theoret-
ical point of view. However, “theoretical” here does not mean disconnected from any
experimental consideration. Quite the opposite actually! Indeed, the first half of our
work was directly concerned with improving the current continuous-variable QKD pro-
tocols in order to make them more robust to losses, and consequently increase their
range. This lead us to introduce new protocols which clearly outperform the historical
protocol involving coherent states sent with a Gaussian modulation. A striking feature
of these new protocols is that they look suboptimal on the paper, but turn out to be
more efficient in practice. In the second half of our work, we investigated the security
of continuous-variable QKD. In particular, we suggested approaches to prove its security
against general attacks. The goal here is to obtain bounds as tight as possible so that
they can be used, even when taking into account finite size effects.

We now discuss some perspectives concerning these two issues:

• What are the best continuous-variable QKD protocols, and do they represent a
viable alternative to discrete-variable protocols?

• What are the remaining open questions concerning the security of continuous-
variable protocols?

Better continuous-variable QKD protocols?

The history of continuous-variable quantum key distribution is interesting. The first
protocols that were suggested involved squeezed states and were consequently quite hard
to implement. Later, it was proven that coherent states were indeed sufficient to guar-
antee security. This was a great step as coherent states are much easier to produce than

189



190

squeezed states. At that moment, it was possible to implement continuous-variable QKD
with only standard telecom components.

However, the story was not quite finished yet as a Gaussian modulation was still
required in order for the security proofs (against collective attacks) to hold. The next
improvement was to extend the security proofs to a discrete modulation. Such a mod-
ulation combines two advantages. First, it allows for a simpler experimental scheme as
only one modulator is required instead of two for a truly Gaussian modulation. Second,
a quaternary modulation allows for much more efficient reconciliation algorithms, which
results in an drastically increased range for the key distribution.

Can one do even better? There are two possible paths to improve a QKD protocol.
One can simplify its experimental setup in order to make it as practical as possible. This is
clearly what one might want to achieve in order to eventually sell QKD. The other consists
in improving the performances of the protocol, especially its range. Concerning the
experimental setup, one can hardly hope for a much simpler scheme than the four-state
protocol presented in Chapter 5. Indeed, only one modulator is required on Alice’s side,
and a (simple) homodyne detection is performed on Bob’s side. There does not seem to
be much room for improvement. On the performance aspect, one might wonder whether
the four-state protocol can be improved. For instance, one could add quantum memories
to the scheme in order to significantly increase its range, but this would represent a
real technological step. Another (more modest) possibility is to change the detection
scheme and to allow Bob to perform an heterodyne measurement instead of an homodyne
detection. This would actually open the door for new modulation schemes that would
perform as well as the quaternary modulation in terms of reconciliation efficiency, but
would lead to an improved secret key rate (because one could derive tighter bounds on
the eavesdropper information). Such a new protocol based on an heterodyne detection,
and a continuous modulation is presented in Appendix B. This protocol is shown to
outperform the four-state protocol (at the price of an heterodyne detection). Because
this is less practical than an homodyne detection, it might not be relevant for an eventual
commercial application. Time will tell.

Concerning the historical battle between discrete variables and continuous variables,
it is difficult to make a definitive opinion already. However, whereas 5 years ago, dis-
crete variables clearly outperformed continuous variables, it is not the case anymore: the
performances and the security proofs are now similar, only the experimental implemen-
tations differ significantly for the detection stage. From the experimental point of view,
continuous variables have the great advantage of only requiring off-the-shelf telecom
equipment compared to discrete variables which need specific single photon detectors.
All considered, continuous variables certainly appear as a credible alternative to discrete
variables.
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Remaining issues concerning the security of continuous-variable

QKD

In Chapters 6 and 7 of this thesis, we investigated some questions linked to the security of
continuous-variable QKD protocols. Three years ago, their security was only established
against collective attacks in the asymptotic regime. Since then, Renner and Cirac have
proved that the security bounds still held against general attacks, in the asymptotic limit.

In Chapter 6, we suggested a possible approach to improve Renner and Cirac’s re-
sult, in particular, in the context of finite size effects. This approach has not been
successful yet, but we conjecture that collective attacks should be optimal, even in the
non-asymptotic regime. A natural approach to tackle this problem consists in exploiting
the symmetries in phase space that are specific to continuous-variable QKD protocols.
Given the power of symmetries in physics in general, and QKD in particular, it is quite
clear that such an approach should be fruitful as it has already been in the past . A
symmetry argument is indeed used to reduce the security against general attacks to the
security against collective attacks (permutation invariance). An other symmetry argu-
ment is used to prove that collective attacks are optimal against BB84 (invariance under
bit-flips and phase-flips). The remaining question is what the symmetries in phase space
can tell about the security of continuous-variable QKD.

In Chapter 7, we investigated finite-size effects for continuous-variable QKD. An
intriguing question on that matter is the status of the dimension in security proofs.
Indeed, many bounds referring to discrete-variable QKD protocols involve the dimension
of the Hilbert space that describes the protocol. Such bounds are not applicable for
continuous-variable protocols as the Hilbert space of interest become infinite dimensional.
At the same time, it is clear that this infinite dimension is not relevant for a given protocol
when only a few photons are exchanged between Alice and Bob. One then expects that a
notion of effective dimension should replace the usual dimension in the various security
proofs. How to define such an effective dimension? Can it simply be related to the
energy of the quantum states considered for instance, or does one need to consider more
complicated quantities? This is still an open question.

Finally, I would like to recall that the problem of the side-channels was not at all
addressed in this thesis. The reason for this choice is that there is not yet any satisfying
theoretical framework to study them. This, however, is not a question that one can easily
discard: side-channels are indeed present in any physical implementation, and certainly
need to be included in the security proofs before claiming unconditional security. At the
time of writing, two approaches are suggested to take care of the side-channels. The
first solution, not very exciting from a theoretical point of view, but in the end probably
unavoidable, consists in painstakingly listing as exhaustively as possible, all known side-
channels and finding a practical solution for every one of them. Device-independent QKD
certainly appears as a much more exciting alternative. However, because it involves a
loophole-free Bell test, it is not at all practical. A fascinating question is to determine
whether their exists a middle ground between these two extreme solutions.
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APPENDIX A

Examples of families A2, A4 and

A8

We give here examples of families A2, A4 and A8 which are used in the reconciliation
procedure for correlated Gaussian variables presented in Chapter 4. These families re-
spectively correspond to matrix representations of the complex numbers, the quaternions
and the octonions in dimension 2, 4 or 8.

Notations

Let us introduce the following 4 2 × 2 matrices:

K0 =

(

1 0
0 1

)

,K1 =

(

0 1
1 0

)

,K2 =

(

0 −1
1 0

)

and K3 =

(

1 0
0 −1

)

and the tensor

product Ki1,..,il = Ki1 ⊗ ..⊗Kil .
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Examples

Family A2: {K0,K2}

A1 =

(

1 0
0 1

)

, A2 =

(

0 −1
1 0

)

Family A4: {K00,K32,K20,K12}

A1 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, A2 =









0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0









,

A3 =









0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0









, A4 =









0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0









Family A8: {K000,K332,K320,K312,K200,K102,K123,K121}

A1 =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























,

A2 =

























0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0

























,

A3 =

























0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0

























,
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A4 =

























0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0

























,

A5 =

























0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

























,

A6 =

























0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0

























,

A7 =

























0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0

























,

A8 =

























0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

























.
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APPENDIX B

Long distance CV QKD with

large modulation variance

B.1 Yet another continuous-variable QKD protocol

Here, we introduce a new continuous-variable QKD protocol specifically designed to
allow for larger modulations variances than the two- and four-state protocols presented
in Chapter 5. This protocol displays improved performances compared to all previous
protocols, at the price of requiring an heterodyne detection instead of an homodyne
detection.

One might wonder whether a new protocol is needed since the four-state protocol al-
ready displays nice performances over long distances. However, as was argued in Chapter
7, finite-size effects considerably worsen the behaviour of the protocol compared to the
asymptotic scenario. Actually, even without taking into account all finite-size effects, in
an experimental implementation, one needs to perform a reliable parameter estimation
in order to compute a secret key rate. This parameter estimation, unfortunately, turns
out to be quite challenging if the signal-to-noise ratio (SNR) is very low. More generally,
from an experimental perspective, when possible, it is more convenient to work with
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reasonably large SNR. As a rough estimate, the SNR is approximately equal to TVA for
small transmissions, where T is the channel transmission and VA is Alice’s modulation
variance expressed in shot noise units1. Since there is nothing that can be done to in-
crease T for a given distance (except developing better optical fibers!), the only way to
work at higher SNR is to allow for a larger modulation variance. A specificity of the
four-state protocol, however, is to only work with low modulation variances: this is a
consequence of the security proof which uses the extremality of Gaussian states. Indeed,
the entanglement-based version of the four-state protocol is actually very close to the
entanglement-based version of the CV protocol with a Gaussian modulation, but only
for small variances2. A typical modulation variance for the four-state protocol is around
0.5 units of shot noise. While this is perfectly alright from a theoretical point of view,
the experimental implementation is rather tricky as soon as the distance considered is
larger than a few tens kilometers. Hence, it would be nice to have a protocol allowing
for larger modulation variances. We now introduce such a protocol.

As we already discussed at length, one critical step in a CV QKD protocol is the
reconciliation phase: the reconciliation efficiency must be large enough at low SNR,
otherwise the range of the protocol gets drastically limited. In this manuscript, we
studied two different modulation schemes:

• a Gaussian modulation which allows for tight security bounds, but unfortunately
suffers of inefficient reconciliation algorithms at low SNR,

• discrete modulations (with either two or four elements) for which efficient reconcil-
iation algorithms exist, but which work only for low modulation variances.

Let us say a few words concerning the reconciliation procedure. A necessary condition
in order to achieve long distances is to be able to have an efficient reconciliation at low
SNR. The main difficulty here lies in the fact that we need a reverse reconciliation.
Indeed, if we only considered a direct reconciliation, we could take advantage of the
arsenal of solutions typically used in digital communication problems and choose an
adapted quadrature amplitude modulation in order to get a good reconciliation efficiency
for various values of the SNR. This, however, seems to be incompatible with a reverse
reconciliation as the side information sent by Bob must help Alice without giving Eve any
information. The only schemes where side information seems to have these properties are
the Gaussian modulation where side information describes rotations in R

8 (see Chapter
4) and the binary and quaternary modulations where side information consists in the
absolute value of Bob’s measurement result.

1To be more precise, in the case of an homodyne detection, one has

SNR =
TVA

1 + Tξ
, (B.1)

where ξ is the excess noise. This relation can indeed be well approximated with SNR ≈ TVA when the
excess noise is on the order of a few percents.

2The situation is even worse for the two-state protocol where the approximation holds only for even
lower variances.
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In Chapter 4, we considered a Gaussian modulation, and the reconciliation scheme
was based on the algebraic properties of the octonions in R

8. This reconciliation scheme
was not optimal as successive vectors in R

8, whose coordinates were eight successive
measurement results for Bob, did not have a constant norm. More precisely, the norm
of Alice’s corresponding vector was following a χ distribution with 8 degrees of freedom.
If those vectors had had a constant norm, the reverse reconciliation problem could have
been reduced to a channel coding problem for a bi-AWGN channel, hence allowing for
an efficient reconciliation procedure, even at arbitrary low SNR.

The protocol we introduce solves the previous problem in the following way. Alice
sends 4n coherent states to Bob such that the coordinates of all quadruples

{|α4k〉, |α4k+1〉, |α4k+2〉, |α4k+3〉}k=1,··· ,n

are drawn with the uniform probability on the seven-dimensional sphere of radius 2α in
phase space (where α is a positive number characterizing the modulation variance):

|α4k|2 + |α4k+1|2 + |α4k+2|2 + |α4k+3|2 = 4α2. (B.2)

Then Bob proceeds with an heterodyne measurement. Here, it is crucial that both quadra-
tures are measured in order to use the property of Eq. B.2. Then, the reconciliation
procedure is a mix between the reconciliation using the octonions presented in Chapter
4 and the one described in Chapter 5 using the concatenation of good error correcting
codes with a repetition code in order to be able to work at very low SNR. It goes at
follows. Bob first puts together his n 8-dimensional real vectors and choose randomly
n 8-bit strings. He then computes the n rotations in R

8 as described in Chapter 4 and
sends them to Alice with the authenticated classical channel. He also sends the norm of
each of his n vectors. Alice applies the same n rotations to her data. At this point, Bob
computes the syndrome of his 8n-bit string for a code C he and Alice agreed on before-
hand and sends this syndrome to Alice. Finally, Alice simply decodes in the correct coset
code of C. The efficiency of this procedure is the same as the one of the reconciliation
of the four state protocol.

Why working with 8 dimensions? The key in order to be able to perform an efficient
reconciliation is that all Alice’s data corresponding to Bob’s measurements should have
the same amplitude: this allows us to map the reconciliation problem to a channel coding
problem for a BI-AWGN channel, which we know how to solve at arbitrarily low SNR.
If Bob is restricted to homodyne detection, then both quadratures should have the same
amplitude for Alice’s state, restricting her to send coherent states among the sets S2 or
S4 defined in Chapter 5. If Bob performs an heterodyne measurement instead, it gives
Alice more freedom for the coherent states she can send. In particular, she can now
send any coherent state |α〉 such that |α| is constant. If now, Bob can perform rotations
in R

n and inform Alice of such a rotation without leaking any relevant information to
a potential eavesdropper, this gives even more freedom for Alice’s modulation. It was
established in Chapter 4 that the only allowed values for n were n ∈ {1, 2, 4, 8} if we
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require that Bob should be able to efficiently compute the rotation in question3. The case
n = 2 corresponds to Alice sending one-mode coherent states with the same amplitude,
the case n = 8 corresponds to Alice sending four-mode coherent states which lie on a
7-dimensional real sphere in R

8.
From the point of view of the reconciliation efficiency, all these strategies work equally

well, but the higher the dimension considered, the closer Alice’s modulation is from a
Gaussian modulation. Hence, in order to get the maximal secret key rate (using a
security proof based on the optimality of Gaussian states), one should work with the
highest possible dimension, that is dimension 8.

B.1.1 βI(A; B) versus S(b; E)

The secret key rate K for continuous-variable QKD protocols has the following general
expression:

K = βI(A;B) − S(B;E). (B.3)

In order to increase this secret key rate, one needs to find the best possible balance
between a large value of βI(A;B) and a small value of S(B;E). From this perspective, the
initial GGO2 protocol with a Gaussian modulation and the four-state protocol introduced
in Chapter 5 appear to be at the two ends of the spectrum:

• the protocol with a Gaussian modulation insures the lowest possible value of S(B;E),
but unfortunately, the quantity βI(A;B) is also quite small, and one cannot distill
secret keys over large distances with this protocol4,

• the four-state protocol is designed specifically to maximize the quantity βI(A;B)
at the cost of increasing S(B;E). Indeed, the bound on S(B;E) computed from
the Gaussian optimality theorem is less tight for the four-state protocol than for
the GG02 protocol, because the mixture of four coherent states only roughly ap-
proximate a genuine Gaussian modulation.

In Chapter 4, we saw how one could use rotations in R
8 in order to improve the rec-

onciliation of Gaussian variables. The idea was that such rotations made the Gaussian
modulation closer from a binary modulation, hence facilitating the reconciliation prob-
lem. However, as the modulation was still Gaussian, the bound on S(B;E) remained
valid. The use of the algebraic properties of the octonions helped to increase the quantity
βI(A;B) while leaving S(B;E) constant, and consequently improved the performances

3Indeed, with infinite computational power, Bob could just pick a random orthogonal transformation
in R

n with n arbitrarily high. However, such a scheme would not be at all practical. In the hypothesis
where Alice and Bob are given infinite computational power, it would be much simpler to conclude that
Alice and Bob can perform a perfect reconciliation for correlated Gaussian variables, using for instance
random spherical codes. In this manuscript, however, we are only interested in procedures that can be
performed with realistic computational capabilities.

4In theory, however, this protocol also maximizes the quantity I(A;B), making it probably the best
theoretical continuous-variable QKD protocol. In practice, unfortunately, because of the very small
efficiency β at low SNR, this protocol does not work as well as one could expect from theory.
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of the QKD protocol.
Here, we would like to use the octonions the other way around. We start with the
four-state protocol, for which the reconciliation problem is solved5. The goal, now, is
to decrease the bound on S(B;E). To this end, Alice will used a rotated modulation
in R

8, which is much closer from a Gaussian distribution than is the four-state modu-
lation. Thanks to the properties of the octonions in R

8, this can be achieved without
degrading the reconciliation efficiency βI(A;B). Hence, with this new protocol, the
quantity S(B;E) is decreased compared to the one of the four-state protocol, while leav-
ing βI(A;B) unchanged. As a consequence, the performance of this new QKD protocol
is significantly improved compared to the four-state protocol.

B.2 Security of the protocol

Before computing the Holevo information between Bob and Eve, let us first consider the
mutual information between Alice and Bob. This mutual information differs from the one
of the usual protocol as Bob performs an heterodyne detection instead of an homodyne
detection.

B.2.1 Mutual information between Alice and Bob

In the case of an heterodyne detection, Alice and Bob share twice as many data that
in the case of an homodyne detection. However, the data are noisier as the heterodyne
detection is implemented by splitting the pulses with a balanced beamsplitter before
measuring both modes on a different quadrature with an homodyne de detection. This
amounts to 3 supplementary decibels of noise, compared to an homodyne detection. The
mutual information I(A;B) therefore reads [47]:

I(A;B) = I(x1; y1) + I(x2; y2) (B.4)

= 2 × 1

2
log2(1 + SNR) (B.5)

= log2

(

1 +
TVA

2 + Tξ

)

. (B.6)

On the other hand, the reconciliation efficiency is exactly the same as for the four-state
protocol (this new protocol is indeed designed specifically with this property in mind).

B.2.2 Holevo information between Bob and Eve: entanglement-based ver-
sion of the protocol

In order to compute the Holevo information between Bob and Eve, we proceed along the
same lines as in the case of the discrete modulation protocols presented in Chapter 5 and
we first need to consider the entanglement-based version of our new QKD protocol.

5meaning that we are satisfied with the value of βI(A;B)
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Entanglement-based version of the protocol. Because of the choice of modulation, the
mixed state ρ4 sent by Alice corresponds to four successive coherent states uniformly
distributed on a real 7-dimensional sphere and is given by

ρ4 ≡
∫∫∫

Sα

|α1〉〈α1| ⊗ |α2〉〈α2| ⊗ |α3〉〈α3| ⊗ |α4〉〈α4|dS (B.7)

where the sphere Sα is defined as

Sα ≡ {(α1, α2, α3, α4) ∈ C
4 : |α4k|2 + |α4k+1|2 + |α4k+2|2 + |α4k+3|2 = 4α2}, (B.8)

and dS is the Haar measure on Sα. Because ρ4 is a four-mode orthogonally invariant
state (by construction), we saw in Chapter 6 that one can write

ρ4 =
∞
∑

k=0

λk σ
4
k, (B.9)

where
σ4

k =
1

(

k+3
3

)

∑

k1···k4
s.t.

P

i ki=k

|k1, k2, k3, k4〉〈k1, k2, k3, k4|. (B.10)

In order to determine the {λk}k=0,··· ,∞, we use again the symmetry invariance of ρ4. Let
us compute the probability Pr(k) of finding k photons in the four-mode state ρ4:

Pr(k) = tr(ρ4σ4
k) (B.11)

= 〈2α|〈0|〈0|〈0|σ4
k |2α〉|0〉|0〉|0〉, (B.12)

since |2α〉|0〉|0〉|0〉 ∈ S4. Because the coherent state |0〉, which refers to the vacuum, does
not contain any photon, one has:

Pr(k) = 〈2α|σ4
k|2α〉 (B.13)

= e−4α2 (2α)2k

k!
(B.14)

= λk. (B.15)

We therefore get the expression of ρ4:

ρ4 = e−4α2
∞
∑

k=0

(2α)2k

k!
σ4

k. (B.16)

The natural purification of ρ4 which should be considered in the entanglement-based
version of the QKD protocol is |Ψ4〉 defined as:

|Ψ4〉 ≡ e−2α2
∞
∑

k=0

(2α)k

√
k!

|ψ4
k〉, (B.17)

where
|ψ4

k〉 =
1

√

(

k+3
3

)

∑

k1···k4
s.t.

P

i ki=k

|k1, k2, k3, k4〉|k1, k2, k3, k4〉. (B.18)
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Covariance matrix of |Ψ4〉. Now that we know the pure state used in the entanglement-
based of the protocol, all is left to do is to compute its covariance matrix, in particular
the following values

X ≡ 〈Ψ4|1 + 2a†a|Ψ4〉 = 〈Ψ4|1 + 2b†b|Ψ4〉 (B.19)

Z ≡ 〈Ψ4|ab+ a†b†|Ψ4〉 (B.20)

where a and b refer to Alice and Bob’s annihilation operators relative to the first mode.
Indeed, because of the symmetry of |Ψ4〉, its covariance matrix, Γ4, reads,

Γ4 =

4
⊕

i=1

(

X✶2 Zσz

Zσz X✶2

)

. (B.21)

First, the partial trace ρ1
k of |ψ4

k〉 over the first mode is given by:

ρ1
k =

1
(

k+3
3

)

k
∑

l=0

(

k − l + 2

2

)

|l, l〉〈l, l|. (B.22)

One immediately has:

tr(a†aρ1
k) =

1
(

k+3
3

)

k
∑

l=0

l

(

k − l + 2

2

)

=
k

4
. (B.23)

Then,

tr(a†aρ4) =

∞
∑

k=0

e−4α2 (2α)2k

k!

k

4
(B.24)

= α2, (B.25)

as expected. Finally X = 1 + 2α2.
Let us now compute Z = 〈Ψ4|ab+ a†b†|Ψ4〉. First, one notes that 〈φ4

l |ab|ψ4
k〉 = 0 except

if l = k − 1. Some combinatorics shows that

〈φ4
k−1|ab|ψ4

k〉 =
1

√

(

k+3
3

)(

k+2
3

)

k
∑

l=0

l

(

k − l + 2

2

)

(B.26)

=
1

4

√

k(k + 3). (B.27)

Using the expression of |Ψ4〉, one obtains

〈Ψ4|ab|Ψ4〉 =
1

4
e−4α2

∞
∑

k=0

√
k + 4

k!
(2α)2k+1, (B.28)
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and finally

Z =
1

2
e−4α2

∞
∑

k=0

√
k + 4

k!
(2α)2k+1. (B.29)

Now, using the same procedure as in Chapter 5, we can compute the secret key rate as
a function of the transmission T and the excess noise ξ. We address this question in the
next section, directly in the finite size framework.

The fact that Z < ZG ≡ 2
√
α4 + α2 leads to an increase of the upper bound on

S(y;E) one can derive from a Gaussian optimality argument. In particular, the value of
S(y;E) one obtains corresponds to the value one would obtain for a Gaussian modulation
protocol with a quantum channel characterized by it transmission TG and excess noise
ξG which are given by TG = T/F ≈ T and ξG = Fξ+ (F − 1)VA ≈ ξ+ (F − 1)VA, where
F ≡ (ZG/Z)2. Since one has F ≈ 1 for reasonable values of VA, the main effect of the
non-Gaussian is the equivalent excess noise ∆ξ = (F − 1)VA. Figure B.1 displays this
equivalent excess noise in the case of the protocol presented here as well as for the 4-state
protocol. In state-of-the-art implementation, the excess noise is typically less than a few
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Figure B.1: (Color online) Equivalent excess noise due to the non-Gaussian modula-
tion. Upper curve refers to the 4-state protocol [93], lower curve to the new continuous-
modulation protocol. An excess noise of two units of shot noise corresponds to an
entanglement-breaking channel, therefore no security is possible with such a level of
noise.

percent of the shot noise. This gives a approximate limit for the value of the equivalent
excess noise that is acceptable. In particular, for the 4-state protocol, one needs to work
with modulation variances below 0.5 units of shot noise. On the contrary, it becomes
possible to work with much higher variances in the case of our new protocol.

This can be seen on Figure B.2 where we display the asymptotic secret key rate for
a distance of 50 km for the new protocol as well as for the 4-state protocol as a function
of Alice’s modulation variance. The various parameters are chosen conservatively: a
quantum efficiency of 60% and an excess noise of 0.01. Both plots correspond respectively
to a reconciliation efficiency of 80% and a more optimistic value of 90%. The superiority
of the new protocol is quite clear: the secret key rate is higher by nearly an order of
magnitude, and one can work with significantly larger modulation variances.
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Figure B.2: (Color online) Asymptotic secret key rate for the new protocol and the four-
state protocol (heterodyne detection) for a distance of 50 km, as a function of Alice’s
modulation variance. The various parameters are an excess noise of 0.01 and quantum
efficiency of the detectors is η = 60%. Reconciliation efficiency is supposed to be a
conservative 80% on the left Figure, and an optimistic 90% on the right Figure.

B.2.3 Finite size performance

On Figure B.3, we display the secret key rate of the new protocol where finite sizes are
taken into account. This finite size analysis is similar to the one described in Chapter
7. One should note that the secret key rate is computed against collective attacks, and
not general attacks. The reason for this is that the optimality proof of Ref. [127] is only
valid asymptotically and that the finite size corrections lead to very pessimistic results.
However, the bounds of Ref. [127] are not believed to be tight. In particular, these might
be improved by considering specific symmetries in phase space [90]. Among various finite
size effects [137], the most crucial ones for continuous-variable protocols are clearly the
imperfect reconciliation efficiency (which prevents the protocol with a Gaussian modu-
lation to achieve key distribution over large distances) and parameter estimation. While
the reconciliation efficiency is taken care of with our 8-dimensional continuous modu-
lation, the parameter estimation is quite sensitive for continuous-variable protocols. In
fact, the real problem lies in the estimation of the excess noise ξ, which is an extremely
small in comparison to the shot noise. In Figure B.3, all finite size effects are taken into
account. The protocol is now slightly modified as Alice and Bob exchange N quantum
states, and use m = N/2 for the parameter estimation, while the other half is used for the
key distillation. The results of the finite size analysis are quite pessimistic, but remember
that the same situation is also true for all discrete-variable protocols [21]. While exchang-
ing 1014 quantum signals is rather unrealistic, exchanging 108 or even 1010 signals can
be done with today’s technology. Hence, our new protocol allows for the distribution of
secret keys over distances of the order of 50 km, while taking into account all finite-size
effects.
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Figure B.3: (Color online) Secret key rate for the new protocol (thick lines) and the
four-state protocol (thin lines) obtained for an expected realistic value of the excess
noise of 0.005, and for ǫPE = 10−10. Quantum efficiency of the detectors is η = 60%.
Reconciliation efficiency is supposed to be 80% for the bi-AWGN channel. The number
of samples used for the parameter estimation is m = n = N/2. From top to bottom, the
block length N is equal to 1014, 1012, 1010 and 108.

B.2.4 Perspectives

As a conclusion, we presented a new unconditionally secure continuous-variable QKD
protocol based on a continuous but non-Gaussian modulation. The use of a specific rec-
onciliation procedure allows for the distribution of secrets keys over long distances, which
was impossible with a Gaussian modulation. Moreover, this protocol clearly outperforms
all known practical continuous-variable, with a secret key rate an order of magnitude
higher than for the four-state protocol.
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