N
N

N

HAL

open science

fMRI data analysis: statistics, information and
dynamics
Bertrand Thirion

» To cite this version:

Bertrand Thirion. fMRI data analysis: statistics, information and dynamics. Human-Computer
Interaction [cs.HC]. Télécom ParisTech, 2003. English. NNT: . tel-00457460

HAL Id: tel-00457460
https://pastel.hal.science/tel-00457460
Submitted on 17 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://pastel.hal.science/tel-00457460
https://hal.archives-ouvertes.fr

THESE

présentée a

INRIA SOPHIA-ANTIPOLIS

pour obtenir le titre de

DOCTEUR EN SCIENCES

Fcole Doctorale Télécom Paris

Spécialité

Signal & Image

soutenue par
Bertrand Thirion

le 1¢" octobre 2003

Titre
fMRI data analysis: statistics, information
and dynamics
Analyse de données d’ IRM fonctionnelle: statistiques, information

et dynamique

Directeur de these : Olivier Faugeras




Remerciements

Je voudrais tout d’abord remercier les membres du jury de cette soutenance, les rap-
porteurs Jean-Baptiste Poline et Lars Kai Hansen, ainsi qu’Isabelle Bloch, Nicolas Ayache
et Yves Burnod. Outre leur compétence, leur indulgence, et 'intérét qu’ils ont accepté
de porter a ce travail, c’est grace a eux que cette these n’est pas simplement un rapport
technique mais une publication.

Cette these est la conclusion de trois années de travail au sein du projet Robotvis/Odyssée.
Je suis trés heureux de ce temps passé a Sophia-Antipolis, et de tout ce que j’ai pu y ap-
prendre.

Plus que ces choses, ce sont en fait les membres de ’équipe qui resteront présents
a ma mémoire: ceux qui m’ont suggéré des voies et parfois mis sur la piste -Gerardo,
Christophe, Thierry; ceux qui m’ont donné les coups de main rapides ou sérieux, et sans
qui 'informatique ne ressemblerait qu’a un triste épouillage - Théo, Robert, Lionnel, Jean-
Philippe ; ceux qui -avec autant de mérite- m’ont aidé au dela de 'informatique stricte
-Marie-Cécile, Nicolas -qui fut en outre un voisin trés sympathique, David ; ceux qui ont
régulierement partagé leurs économies et leurs discussions lors des pauses gotter et/ou
autres apéritifs - en plus des précédents, Mickaél, Jan, Emmanuel, Maureen, Jacques,
Fred, Florent, Christophe, Matthieu, Pierre et Nour; Diane, pour les petits-déjeuners, le
canyoning et le ski de rando. Je dois une reconnaissance plus grande encore a Olivier qui,
avec courage et rigueur m’a entrainé dans I'approche de ces disciplines nouvelles et m’a
soutenu tout au long de cette these -et surtout a I’heure des choix pour le futur. Par
ailleurs, je n’oublie pas le personnel de 'INRIA, dont 'efficacité et le dévouement offre des
moyens remarquables et un cadre de travail bien agréable au quotidien. Avant de quitter
ces murs, je salue aussi David, Fabien, Aubin et tous ceux avec qui j’ai partagé un peu de
ma vie, au travail ou ailleurs.

Ma soutenance est aussi un enterrement, celle d’une vie d’étudiant, passionnante,
heureuse et ... longue. Je remercie mes parents qui lui ont donné l'impulsion initiale,
et m’ont permis de réaliser des choses que ni eux ni moi ne projetions. Graces leur soit
rendues pour la confiance et les moyens qu’ils m’ont offerts généreusement. S’ils ne m’ont
pas eu trop longtemps a charge, ils ont eu néanmoins le mérite de supporter - au sens
frangais et anglais- un fils pas toujours commode.

Quant a ce dernier point, ils sont néanmoins devancés par Marie, qui fut la premiere et
la plus exigeante lectrice du présent manuscrit, se faisant ainsi pardonner de m’avoir donné
quelques distractions lors de ma premiere année de these, et un nouveau co-locataire un
peu bruyant lors de la deuxieme année.



A Marie,
A TIrénée,
A e,



Résumé

Dans cette these, nous discutons et proposons un certains nombre de méthodes pour
Panalyse de données d'TRM -imagerie par résonance magnétique- fonctionnelle. L’IRM
fonctionnelle est une modalité récente de I’exploration du cerveau: elle produit des séquences
d’images reflétant 'activité métabolique locale, celle-ci reflétant I'activité neuronale. Nous
nous intéressons tout d’abord a la modélisation des séries temporelles obtenues pour chaque
voxel séparément, en faisant appel aux techniques de prédiction linéaire et au calcul de
linformation des processus modélisés. Nous étudions ensuite différentes généralisations
multivariées de ce modele. Apres avoir rappelé et discuté certaines techniques classiques
(analyse en composantes indépendantes, regroupement), nous proposons successivement
une approche linéaire fondée sur la théorie des systemes a état et une approche non-
linéaire fondée sur les décompositions a noyau. Le but commun de ces méthodes -qui
peuvent se compléter- est de proposer des décompositions qui préservent au mieux la dy-
namique des données. Nous introduisons ensuite une approche nouvelle par réduction de
la dimension des données; cette approche offre une représentation plus structurée et rela-
tivement agréable a visualiser. Nous montrons ses avantages par rapport aux techniques
linéaires classiques. Enfin, nous décrivons une méthodologie d’analyse qui synthétise une
grande partie de ce travail, et repose sur des hypotheses tres souples. Nos résultats offrent
ainsi une description globale des processus dynamiques qui sont mis en image lors des
expériences d’IRM fonctionnelle.

Abstract

In this thesis, we discuss and propose several methods for functional MRI -magnetic reso-
nance imaging- data analysis. Functional MRI is a recent modality for the study of brain
function: it produces image sequences that reflect local brain metabolic activity, which in
turn reflects neural activity. We first deal with the modeling of each voxel-based tempo-
ral pattern, using linear prediction techniques and estimating the information contained
in the temporal processes. We then study different multivariate generalizations of this
model. After recalling and discussing several classical methods (independent components
analysis, clustering), we first propose a linear approach based on state-space modeling,
and then a non-linear approach based on kernel decompositions. The common objective
of these methods -that are nevertheless complementary- is to propose decompositions that
preserve optimally the data dynamics. We then introduce a novel point of view based on
dimension reduction of the dataset, which allows for a more structured representation and
helps for visualization. We show its effectiveness with respect to classical linear decompo-
sition techniques. Finally, we describe a methodology of analysis that synthesizes different
parts of this work, and relies on soft hypotheses. Our results give a global description of
the dynamical processes embedded in the data produced by functional MRI.
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Chapter 1

Introduction

“Compter voir la vérité sortir de la pensée revient a
confondre le besoin de pensée avec l'appétit de savoir.”
Hannah Arendt,

La vie de l'esprit I. La pensée.

“ Arithmétique | Algebre | Géométrie | Trinité grandiose ! Triangle lumineux !
Celut qui ne vous a pas connues est un insensé I “

Lautréamont,

Les Chants de Maldoror. Chant deuxieme.

Dans cette introduction, nous allons expliquer la problématique que nous avons suivie
dans ce travail. Supposant d’abord que le lecteur connait I'IRM fonctionnelle et les possi-
bilités qu’elle offre pour I’exploration du cerveau, nous commencerons par expliquer notre
point de vue et notre démarche par rapport au vaste probleme de I'analyse de données
d’IRM fonctionnelle. Cela étant, nous dresserons une description de la suite de ce rap-
port. Enfin, nous essaierons de rendre compte des problemes inexplorés au cours de notre
travail.

1.1 Pourquoi parler de statistiques? De dynamique? D’in-
formation?

1.1.1 Estimation et inférence

Soulignons tout d’abord que l’analyse de données d’IRM fonctionnelle (IRMf) est mo-
tivée par les possibilités que cette modalité apporte dans la connaissance de D'activité
du cerveau. Techniquement, on dira que les données d’IRMf permettent d’effectuer des
inférences sur le fonctionnement de P'activité du cerveau. Ceci recouvre entre autres la
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localisation des principales zones fonctionnelles, ’étude des co-occurences de signaux au
sein du cortex, ou la structure temporelle de ces signaux. Mais si nous parlons d’inférence,
c’est pour indiquer que ce travail est produit a partir d’hypotheses sur les mécanismes
cognitifs, moteurs ou sensoriels étudiés. Avant d’étre une modalité d’exploration, 'IRMf
est une modalité de validation.

On comprend des lors que les premiers efforts en analyse de données (disons depuis
1990-1993 [11]) aient porté sur I’établissement d’un cadre statistique rigoureux pour per-
mettre Uinférence [173]. De fait, un standard et un logiciel d’analyse se sont imposés
sous le vocable SPM (Statistical Parametric Mapping). Toute méthode d’inférence re-
posant sur des hypotheses précises concernant le signal, il a aussi fallu affiner progres-
sivement la connaissance que 'on avait sur la structure du signal. C’est crucial, car des
hypotheses inexactes rendent l'inférence inefficace. Ce probléme a progressivement in-
duit deux branches importantes dans le processus d’analyse [172]: D'exploration d’une
part, Pestimation d’autre part (dans les deux cas, on peut également parler de détection,
bien que ce moment n’ait pas précisément le méme sens). L’exploration vise & mettre
en évidence les structures essentielles du signal, tandis que l'estimation sert a trouver
les parametres pertinents pour capter les informations essentielles du signal et permettre
linférence. Signalons d’ores et déja que ces problemes ne peuvent étre réglés une fois pour
toutes, étant donnés les différents modeles expérimentaux, la possibilité d’expérimenter sur
différentes especes animales, 1'utilisation éventuelle d’agents de contraste, mais surtout la
variabilité inter- et intra-individuelle.

La premiere possibilité & considérer pour résoudre les questions d’estimation est bien
stir d’inverser le processus connu de générations des images, de modéliser les sources
d’artefacts et finalement d’identifier I'information. Cette démarche est toutefois peu
répandue dans la communauté d’analyse, d’une part parce que les mécanismes physi-
ologiques a l'origine du signal IRMf sont encore partiellement inconnus, d’autres part
du fait de la multiplicité des sources vraisemblables du signal (tous les processus physi-
ologiques du sujet étudié, la signature de la machine), enfin parce que la génération du
signal est extrémement complexe -autrement dit, le processus n’est pas inversible. Dans
le cadre de notre travail, nous n’avions pas de possibilité simple d’aborder ces aspects,
et avons donc préféré une approche a posteriori, fondée sur 'observation des images et
la mise en évidence des causes vraisemblables. D’une certaine maniere, nous avons donc
ainsi considéré le systeme de stimulation et d’imagerie comme une machine inconnue dont
seuls les données (input) et les sorties (output) étaient connues. Nous ne considérons donc
pas les sources auxiliaires d’information (mesure du rythme cardiaque, du mouvement des
yeux, monitoring divers).

Apres ce premier développement, on conviendra qu’a ce jour les statistiques sont le
moyen de produire un modele & partir de données empiriques multiples. Dans notre cas,
nous nous servirons de ces statistiques pour identifier les structures principales des données,
non pour faire de 'inférence.

1.1.2 Modélisation multivariée, modélisation dynamique

Concretement, les données d’IRMf constituent ’échantillonnage d’un certain volume a
différents instants consécutifs. Il s’agit donc d’un ensemble & quatre dimensions (trois
d’espace, une de temps). Il convient de s’arréter un instant sur ce partage:
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e Si on considere que les volumes sont recalés, chaque décours temporel décrit le sig-
nal au niveau d’un voxel (élément de volume élémentaire). En confrontant cette
information a celle du paradigme expérimental, on pourra caractériser la réponse
au niveau d’un voxel. Il s’ensuit que I'interprétation des données se fait essentielle-
ment par examen des décours temporels. Ceci justifie & nos yeux lintroduction de
la notion de dynamique, entendue comme 1'étude des processus temporels. Plus
prosaiquement, la dynamique consistera a considérer le probleme embarrassant de
la corrélation temporelle des données: une fois le signal d’intérét retranché, celles-ci
ressemblent fort peu a un bruit blanc; il faut donc prendre en compte leur structure
temporelle complexe.

e Malheureusement, ce projet a peine esquissé se heurte a une double réalité: d’une
part les données temporelles sont relativement courtes, une centaine, quelques cen-
taines au plus d’échantillons par voxel, d’autre part un rapport signal a bruit relative-
ment faible. La conjonction de ces deux faits empéche d’envisager une simple esti-
mation et/ou exploration univariée -i.e. effectuée sur chaque voxel indépendamment.

Par ailleurs, la connaissance présente du cerveau confirme que le voxel est souvent trop
petit pour caractériser une unité fonctionnelle du cortex; on a donc tout intérét & effectuer
le travail d’exploration et d’estimation sur des domaines un peu étendus, voire sur I'image
entiere. L’analyse multivariée est cet art qui consiste a profiter de la multiplicité des voxels
pour batir un modele fiable des phénomeénes présents tout en mettant a jour des différences
fonctionnelles d’une région a ’autre.

1.1.3 Qu’entend-on par information ?

L’établissement de modeles statistiques quantitatifs a partir de données empiriques se
traduit assez naturellement en terme d’information, entendue au sens de la théorie de
linformation: toute suite aléatoire, et plus généralement toute chaine de caracteres peut
étre vue comme une source d’information ayant des caractéristiques mesurables.

Un malentendu potentiel existe entre ce que le neurophysiologiste entendra par infor-
mation, se référant au contenu des données, et ce que le modélisateur vise par ce terme, a
savoir la caractérisation statistique d’un systeme complexe de données (on verra d’ailleurs
que les notions d’information et de complexité sont treés liées).

Nous essayerons toutefois de recouper ces deux points de vue: par exemple, on peut
considérer que la quantité d’information contenue dans une série temporelle se définit par
la possibilité de prédire sa valeur a des instants futurs- ce que nous considérons comme
une propriété structurelle de cette série. Or précisément, si cette série est une fonction
du paradigme expérimental, elle est parfaitement prédictible, c’est-a-dire qu’elle contient
un maximum d’information, ou encore qu’elle est de complexité minimale. Finalement,
I’emploi des concepts dérivés de la théorie de I'information se justifiera des lors que I’on sera
dans le cadre d’un modele acceptable pour le neurophysiologiste. Aussi, lorsque nous ten-
terons de produire un modele intelligible des données, nous ne manquerons pas d’inclure le
paradigme expérimental, et nous réserverons tous nos commentaires a la part des données
qui est expliquée par ce paradigme. Notons que 'on pourrait tenir un raisonnement tres
similaire sur le lien entre la structure spatiale tres localisée des foyers d’activation et
I’entropie réduite des cartes spatiales qui permettent de les décrire.
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1.2 Détail de notre démarche

1.2.1 L’IRM fonctionnelle

L’IRM fonctionnelle (IRMf) est une modalité d’exploration du cerveau d’une trés grande
sophistication. Pour la comprendre, il faut rapprocher deux points de vue:

Point de vue physique Fondée sur le principe physique de la résonance magnétique
nucléaire, elle permet de produire des images du cerveau d’une assez bonne précision
(typiquement 3mm pour des images fonctionnelles) en un temps relativement bref (typ-
iquement 3s pour un volume). Sans entrer dans le détail de la physique d’acquisition, nous
rendons compte des phénomenes subtils qui permettent de produire des images a partir
de la résonance des noyaux des molécules d’eau (voir 2.2).

Point de vue biologique Plus récemment, on a découvert que les images acquises
étaient sensibles a 'activité métabolique locale. Cette activité entretient elle-méme des
liens assez complexes avec I'activité neuronale (synaptique) du cortex (voir 2.1). Ceci a fait
de 'IRM un moyen de mesurer l'effet BOLD (blood oxygen-level dependent), et finalement
de mesurer l'activité du cerveau dans les taches motrices, cognitives ou sensorielles.

Pour achever ce tour d’horizon, introduisons deux concepts importants:

Le paradigme expérimental Il s’agit de la succession des états ou des stimulations
qui caractérisent 'expérience du point de vue du sujet (voir 2.3.3). Il va de soi que
linterprétation de données se fait en fonction de ce paradigme. On conviendra de le
représenter par un vecteur d’état (généralement binaire, mais des variations sont possibles).

Les pré-traitements L’exploitation des séquences d’images d'IRM fonctionnelle
nécessite préalablement une séquence de pré-traitements: typiquement, une estimation
du mouvement au cours de 'acquisition, si nécessaire une correction de ces mouvements,
un recalage temporel des données pour compenser les décalages entre coupes d’acquisition,
la normalisation spatiale des images, le lissage, I’élimination de signaux de basse fréquence
(detrending). Nous faisons une critique rapide de ces méthodes et explicitons nos choix
méthodologiques en 2.4.

1.2.2 Etat de ’art de ’analyse de données d’IRMf

Le deuxieme chapitre vient classiquement exposer 1’état de I’art sur notre sujet. Nous
commengons par suggérer les difficultés techniques que I'analyse devra surmonter (section
3.1.1), puis nous explicitons la différence entre les méthodes inférentielles et les méthodes
exploratoires (section 3.1.2). Reste ensuite & affronter la multiplicité -le foisonnement- des
solutions existantes. Pour ne pas trop nous disperser, nous nous arrétons sur la méthode
standard, dite Statistical Parametric Mapping (SPM) (section 3.2.1), puis procédons par
variations progressives autour de ce standard. Nous rappelons donc les contributions qui
utilisent un modele similaire, mais different sur des aspects techniques (section 3.2.2), puis
les contributions qui s’appuient sur un modele différent. Nous finissons par les méthodes
multivariées (section 3.3), qui sont utilisées dans une approche exploratoire des données.
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1.2.3 Modele temporel de 'TRMf

Cela étant, nous nous penchons sur le probleme essentiel de ’analyse de données en
IRMTf: la modélisation des effets temporels. Pour ce faire, nous revenons d’abord sur la
phénoménologie de I'effet BOLD (section 4.1), et révisons les différentes modélisations pro-
posées pour la réponse hémodynamique. Attendu que ¢) un certain nombre d’incertitudes
subsistent sur la réponse “standard” ii) la variabilité semble étre la regle, nous faisons
le pari de la flexibilité pour nos modeles & venir. Reste ensuite a trouver un cadre
général et cohérent pour I'étude du processus temporel qu’est un signal BOLD. Apres
quelques tatonnements, nous adoptons (section 4.2) la décomposition de Wold comme
modele général. Un peu abusivement, nous identifions la composante déterministe de
cette décomposition avec la fraction du signal liée au paradigme. Reste alors a mettre
au point une procédure d’estimation. Rappelons encore que les séries temporelles sont
courtes et bruitées; il faut donc paramétrer parcimonieusement le processus. Ce controle
trouve une formalisation pratique avec la théorie de 'information, et notamment avec le
principe dit Minimum Description Length (MDL) (section 4.3); ce dernier est en outre
formellement identique au critere bayésien BIC, que nous développons dans 'appendice D
et qui semble donner le modele asymptotique le plus général de la complexité des modeles
temporels.

Apres cette premiere plongée dans la théorie de 'information, nous revenons (section
4.4) sur quelques problemes généraux (normalité du bruit, linéarité de la réponse), mais
repoussons les modeles trop généraux qui complexifient inutilement I’analyse, et réduisent
lefficacité des résultats.

1.2.4 Analyse multivariée et théorie de I'information

Une des difficultés de 'IRMf est que 1’étude univariée (voxel par voxel) des données
est a la fois difficile -a cause du faible rapport signal a bruit- insuffisante -car elle permet
de constater des effets, non des interactions- et redondante - car les effets présents sont
a priori nettement moins nombreux que les voxels. Une solution possible consiste & faire
une estimation globale -au niveau de 'image- des effets présents: c¢’est ce en quoi consiste
I’analyse multivariée. A certaines approches classiques mais limitées par des hypotheses
sous-jacentes simplistes (analyse en composantes principales (PCA) ou coalescence (clus-
tering)), nous préférons une rationalisation du probléme par les concepts et la théorie de
I'information. Nous appliquons ce point de vue a trois cas distincts:

Décomposition linéaire sous I’hypothése gaussienne Nous revisitons en 5.1.4
I’analyse par corrélation canonique (CCA), qui est un modele relativement simple et
efficace, bien qu’évidemment limité par I’hypotheése gaussienne! . Il s’agit d’une adap-
tation de la PCA qui permet de prendre en compte certaines caractéristiques des données
(corrélation spatiale ou temporelle, reproductibilité).

Ta modélisation gaussienne est utile pour définir une hypothése nulle sur le signal. Elle est donc fausse
a priori lorsqu’il s’agit de rendre compte de la structure empirique des signaux, dans la mesure ou l'on
s’attend effectivement a des activations. Une mixture de deux gaussiennes au moins est alors nécessaire
pour rendre compte des données.
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Décomposition linéaire sous 1’hypothése non-gaussienne La décomposition
linéaire des données sous I’hypothése non-gaussienne conduit nécessairement au critere
d’analyse en composantes indépendantes (ICA): c’est ce que nous montrons en partant
d’une approche par maximum de vraisemblance (voir la section 5.2). Nous nous arrétons
un moment sur les techniques disponibles, étant donnée I'importance prise par I'CA dans
lanalyse de données d’'TRM fonctionnelles. Nous rappelons aussi quelques limitations
essentielles de 'ICA (communes a presque toutes les techniques multivariées): la non-
considération des effets temporels (d’ou des difficultés d’interprétation), et le choix du
nombre de composantes a considérer dans la décomposition.

La quantification des données Parmi les méthodes non-linéaires, la quantification (ou
clustering) semble bien adaptée pour décrire des données multimodales (au sens statis-
tique). La méthode dite du goulot d’information (information bottleneck) fournit un cadre
rigoureux et assez naturel pour le probleme de la quantification des données (voir sec-
tion 5.3). Comme elle ne peut s’appliquer qu’a des données de petite dimension, nous
Iappliquons a des données pré-traitées, i.e. réduites a quelques coefficients associés a une
matrice de dispersion. Nous montrons sur un exemple synthétique que cette méthode per-
met effectivement de séparer différents modes d’une distribution statistique des données.

1.2.5 Vers un modele spatio-temporel des données d’IRMf

L’étape suivante consiste a réconcilier ’analyse temporelle et 'analyse multivariée. En
l’espece, il s’agit de modéliser le processus qui a généré les données, en prenant en compte
la structure temporelle de ces données. Ceci est 'objet de I'analyse en composantes dy-
namiques (section 6.1.1). Cependant, encore une fois, il faut adapter 'analyse aux con-
traintes propres a 'IRMf: nous avons donc choisi une modélisation faisant intervenir un
vecteur d’état (caché) qui décrit le processus générateur des données. Ce vecteur est lié aux
données par une équation de mélange (mizing) ou d’observation. Se pose alors a nouveau la
question de I'estimation des quantités impliquées dans le modele. Nous décrivons d’abord
une approche inspirée du filtrage de Kalman, mais utilisant une technique d’Expectation-
Maximization (EM). Cependant, la bonne surprise vient d’un modele linéaire assez simple
(non itératif) qui permet d’estimer les mémes quantités, avec une aussi bonne précision.
Apres avoir décrit cette solution en 6.2.2, nous nous penchons sur certains aspects tech-
niques du probleme (sections 6.2.2 et 6.2.3):

L’inclusion du paradigme expérimental Le modele initial, purement auto-régressif,
doit étre adapté pour prendre en compte 'information du paradigme expérimental. Notons
que le modele résultant donne nécessairement une approximation médiocre de la réponse
hémodynamique. Celle-ci aide pourtant a mieux caractériser les signaux d’activation dans
le cas de I'analyse exploratoire.

L’estimation du rang du systeme Pour une fois, il est relativement facile de pouvoir
estimer le rang du systéme, i.e. le nombre de composantes temporelles significativement
structurées. Nous proposons pour cela un test par simulation et un test analytique, ce
dernier reposant sur des hypotheses non validées; il convient tout de méme dans la limite
d’un petit nombre de composantes.
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Une approche récursive Un probleme de cette méthode est de reposer sur une
réduction initiale des données par PCA. Nous montrons qu’en appliquant I'algorithme
a des instants successifs de maniere récursive, on peut utiliser plus de composantes dans la
PCA initiale, limitant ainsi le risque de négliger des sources d’information présentes dans
les données.

En fait la méthode des espaces-états peut s’appliquer a des cas tres généraux (section
6.3): calcul du signal d’intérét en un voxel & partir de données multi-session, estimation
des principaux effets présents dans un ensemble de données, estimation de la réponse en
un voxel en tenant compte des voisins...

1.2.6 Kernel PCA et mélange non linéaire

Nous avons décrit un certain nombre d’approches linéaires multivariées; il est tentant
de regarder la possibilité d’analyses non-linéaires. L’intérét d’icelles est de permettre
des représentations redondantes (overcomplete) des données, permettant en particulier
d’examiner finement une partie de 'espace des signaux. Techniquement, nous avons choisi
la méthode d’analyse en composantes principales & noyau (kernel PCA ou KPCA) (sec-
tion 7.1). L’avantage est que l'optimisation se fait par diagonalisation d’une matrice de
covariance généralisée, évitant la minimisation d’un critere non convexe. Par ailleurs,
selon le choix du noyau, la PCA apparait comme un cas limite du modele, permettant
une interprétation claire de la non-linéarité. En somme, cette technique jouit d’un pouvoir
descripteur bien supérieur aux techniques linéaires habituelles; toutefois, c’est au prix d'un
colit élevé en calcul (la matrice de covariance a pour taille le nombre de voxels inclus),
et le probleme de la sélection du nombre de composantes significatives est encore plus
compliqué que pour la PCA. Nous esquissons des solutions a ces probléemes en 7.2.

L’application de la méthode peut se faire sur les décours temporels d’un ensemble de
données (section 7.3.1), ou en cascadant la méthode au modele d’espace-état précédent.
Dans ce cas, le choix d’'un noyau polynomial simplifie la charge des calculs (section 7.3.2).
Enfin, nous proposons une comparaison avec le modele linéaire multivarié (section 7.3.3).

1.2.7 L’espace signal vu comme une variété: étude a partir des cartes
Laplaciennes

On peut ne pas étre satisfait d’une représentation redondante des données: en effet, une
représentation enrichie offre sans doute plus de détails, mais risque de faire perdre de vue
la structure d’ensemble des données. On cherche donc a réduire la dimension des données,
toujours dans un cadre non-linéaire. Une approche géométrique (section 8.1) du probleme
consiste a considérer ’espace des signaux comme une variété a explorer. La géométrie nous
dit alors que les fonctions propres de I'opérateur de Laplace-Beltrami constituent une carte,
optimale au sens des moindres carrés, de cette variété. L’étape suivante consiste donc a
implémenter ce modele sur un graphe créé a partir des données, qui représente la variété.
Un aspect sympathique du probleme est que la matrice représentant les interactions est
en fait tres creuse du fait du caractere local de I'estimation, permettant le calcul sur des
ensembles de données importants (section 8.2). Si la méthode ne donne pas de choix
évident pour le nombre de composantes a considérer, il semble que dans bien des cas une
représentation de petite dimension (deux ou trois) suffise.
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Nous appliquons la méthode i) dans un cas purement exploratoire, en nous intéressant
a la matrice des corrélations empiriques entre voxels (section 8.3.1) 7i) dans un cas con-
traint ou un modele de filtre hémodynamique estimé est associé a chaque voxel -apres
pré-sélection (section 8.3.2). Il semble que la méthode donne une représentation concise
des principaux effets présents dans les données. Malheureusement, elle n’explicite pas le
plongement (embedding) qui va de la carte aux données.

1.2.8 Modele intégré des données

Pour finir, nous proposons une synthese de diverses idées développées dans ce travail.
Dans un premier temps, nous revenons sur les modeles temporels en conciliant I’approche
espace-état avec la théorie de l'information, afin d’obtenir un modele hémodynamique
associé a un petit nombre de séries temporelles (des voxels voisins, ou plusieurs sessions
de données); voir la section 9.1. Nous obtenons un critére et une méthode d’estimation
rapide.

Puis dans un second temps, nous batissons un modele d’analyse multi-session recalées
(qu’il s’agisse d’un ou de plusieurs sujets) en 9.2. L’idée est d’estimer un ensemble d’effets
par session (typiquement, un espace de nuisance), un modele hémodynamique par voxels
(cf le paragraphe précédent); on paracheve cette étude par la constitution d’une carte
des signaux par la méthode Laplacienne. L’estimation de l’espace de nuisance se fait
naturellement par la méthode d’espace-état (sans le paradigme expérimental). Celle-
ci a pour intérét de supprimer les composantes les plus corrélées du signal, dé-biaisant
Iestimation au niveau des voxels - ce que nous vérifions en montrant que les coefficients
d’auto-régression en chaque voxel reculent trés significativement grace a cette procédure.
L’estimation de ’espace de nuisance et des signaux d’intérét est donc conjointe, évitant le
calcul redondant d’une structure d’auto-corrélation en chaque site.

Nos expériences montrent que 'on accroit ainsi la sensibilité dans la détection des
signaux d’intérét (section 9.3). On peut par ailleurs utiliser ’espace de nuisance dans une
procédure d’inférence pour obtenir une estimation des amplitudes d’activation un peu plus
sensible.

Enfin, nous terminons ce travail par quelques annexes techniques. Tout d’abord,
Pappendice A décrit les données réelles et synthétiques qui nous ont servi dans nos
expériences d’analyse. L’appendice B traite du seuillage statistique des cartes multivariées;
nous y indiquons comment nous avons procédé en pratique dans ce travail. L’appendice D
décrit la dérivation du criteére d’information Bayésienne (BIC), que nous utilisons pour la
juste paramétrisation des processus temporels. Elle s’appuie notamment sur I'appendice
C qui définit les concepts de théorie de I'information utilisés dans cette these.

1.3 Quelques angles morts de ce travail

Nous faisons un point rapide sur certains aspects importants du probléeme qui ne sont
pas abordés dans ce travail. Nous expliquons pourquoi ces impasses.
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1.3.1 Les développements statistiques

Etant entendu que nous ne nous intéressons pas spécifiquement aux procédures
d’inférence sur les données, nous ne faisons qu’'un usage modéré des méthodes statistiques
avancées. De fait, certaines parties, comme le chapitre 6, mériteraient des développements
supplémentaires. Ce choix ne rend pas non plus justice aux travaux majeurs effectués
dans ce domaine (théorie des champs gaussiens, taux de fausses découvertes false discov-
ery rate). Nous nous contentons de réutiliser certaines recettes, avec quelques adaptations
si nécessaire (voir 'appendice B). Remarquons en passant que l'utilisation d’une correc-
tion dite de Bonferroni induit des seuils un peu plus élevés pour le seuillage des cartes
que I'absence de correction ou que 'utilisation du taux de fausse découvertes, mais que la
différence n’est pas nécessairement flagrante.

1.3.2 L’information anatomique

Un autre aspect qui mériterait d’étre développé est I'utilisation d’information ou de
contraintes anatomiques dans le processus d’estimation. En effet, la corrélation spatiale
est un aspect évident des données d’IRMf; ignorer est certainement tres sous-optimal.
Le lissage est une maniere tres médiocre de prendre en compte cette corrélation spatiale
(en raison de la finesse du cortex, de l'ordre du voxel); en revanche, I'utilisation de par-
cellisation semble un moyen judicieux pour estimer localement la présence et la nature
de signaux d’activation. Par exemple, on peut préférer une estimation locale du filtre
hémodynamique a une estimation voxélique. En fait, le voxel est une unité de volume
sans signification neurophysiologique, mal adaptée pour 'analyse anatomo-fonctionnelle.

Toutefois, cette approche suppose d’avoir recalé parfaitement les images anatomiques
et fonctionnelles, d’avoir segmenté la matiere grise sur les images anatomiques, et finale-
ment d’avoir défini la parcellisation. Ayant choisi de nous intéresser uniquement a des
probléemes fonctionnels, nous n’avons donc pas abordé cet aspect, pas plus que la fusion
de données anatomo-fonctionnelles.

1.3.3 Les études multi-sujet

Enfin, nous n’avons pas explicitement travaillé sur la question des études multi-sujet.
Celle-ci revét une grande importance pour 'établissement et la validation de résultats en
neurophysiologie. De fait, les analyses multi-sujet ont un intérét pour l'inférence plutot
que pour l'exploration, et surtout, que pour l’estimation. En revanche, nous indiquons
quelques pistes élaborées dans le cadre de ’analyse multi-session, qui s’étendent facilement
au cas multi-sujet recalé (voir 9.3.2). Pour autant, le principal probleme est le recalage
lui-méme, que nous n’abordons pas ici. Quant a I’étude éventuelle de données non recalées,
elle repose exclusivement sur l'identification de signaux temporels, avec toute la fragilité
que cela implique, étant donnés le bruit, 'impact de nuisance diverses sur le signal, et la
brieveté des séries temporelles.
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1.4

Publications associées a cette these

Les différentes pistes que nous avons explorées au cours de cette these nous ont permis
d’effectuer plusieurs publications:

Tout d’abord, dans le domaine de ’analyse univariée, nous nous sommes intéressé
a la modélisation du signal par chaine de Markov et a l'utilisation de I'information
mutuelle pour la mesure des activations [205], [206].

Nous nous sommes ensuite intéressé a des méthodes multivariées, abordées sous
le theme de lanalyse en composantes dynamiques dans [207]. Il s’agissait alors
d’une méthode d’analyse en composantes spatialement indépendantes contenant des
éléments d’information temporelle.

Nous avons repris le theme de l'analyse en composantes dynamiques, mais en le
reformulant dans le cadre de modeles a état, et en introduisant une solution linéaire,
dans [210].

Parallelement, nous avons abordé les modeles de mélange (mixture) non linéaire par
I’analyse en composantes principales a noyau; cette approche est publiée en [208], et
une comparaison avec le modele linéaire multivarié est décrite en [211].

Enfin, la méthode de clustering dite du goulot d’information (information bottleneck)
fait également I'objet d’une publication [209]. Rappelons que cette méthode est une
rationalisation par la théorie de I'information du probleme du clustering de données
expérimentales.

Ajoutons que, bien qu’inédite dans le cadre de 'IRMf, la méthode des plongements
laplaciens présentée au chapitre 8 n’a pas encore fait 'objet d’une publication. Enfin, nous
présentons au chapitre 5 un algorithme d’analyse en composantes indépendantes établi par
Christophe Chef d’Hotel, non encore publié.
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Chapter 2

Functional MRI, a recent tool for
the investigation of brain activity

This chapter outlines the importance of functional Magnetic Resonance Imaging (fMRI)
studies in the understanding of brain function, and some fundamental features of this
modality. The first section briefly exposes the physiological effects that underpin current
image studies of brain activity. The second section deals with basic facts about Magnetic
Resonance Imaging (MRI), and the third one outlines some particular aspects of functional
MRI. In the fourth part, we describe the main usual preprocessing steps applied to fMRI
data, i.e. the treatments that are performed prior to functional analysis of the data.

2.1 Investigating brain activity

2.1.1 Brain activity

A human cortex contains around 10'? neurons, the activity of which supports all the
cognitive, sensory or motor processes of the body. Basically, neurons carry electrical in-
formation and exchange it through their synapses. This electrical information consists in
the depolarization of the neuron membrane, which occurs through the exchange of ions -
essentially potassium K and sodium Na™; this phenomenon is known as action potential.
The information is exchanged at the level of synapses through the release of neurotrans-
mitters that bind to receptor sites on post-synaptic terminals, yielding the next neuron
to depolarization. Recovery from neuronal signaling requires uptake and repackaging of
neurotransmitter and restoration of ionic gradients, all processes that consume Adenosin
Triphosphate (ATP).

Important for us is that ATP consumption requires a continuous supply of glucose
and oxygen; this supply is allowed by the Cerebral Blood Flow (CBF). As an illustration,
the brain receives 15% of the total cardiac output of blood, and yet accounts for 2% of
the body weight; in particular, the flow per gram tissue to gray matter is comparable to
that in the heart muscle, the most energetic organ in the body [33]. Yet the brain has no
reserve store of oxygen, and depends on continuous delivery by CBF.

As noticed very early [119], brain activity could be assessed by the measurement of
regional CBF. Indeed, CBF increases substantially close to the areas of neural activation;
moreover, this increase is graded according to the degree of activation [69]. Such effects
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can be measured by Positron Emission Tomography (PET); but functional Magnetic Reso-
nance Imaging (fMRI) measures another effect: the blood oxygen level dependent (BOLD)
effect. Before turning to the latter, let us mention that the regulation of CBF is in itself a
complicated phenomenon that involves several vasodilatory agents, like nitric oxyd (NO).

2.1.2 The BOLD effect

If there is an evidence that both flow and glucose metabolism increase substantially in
activated areas of the brain, it has been established that the CBF change is not required
to supply the glucose metabolism change; in fact oxygen metabolism -measured in terms
of cerebral metabolic rate of oxygen, CMRO3- increases much less than blood flow during
brain activation. The result of this imbalance between CBF and CMRO> is a substantial
drop in oxygen extraction and a corresponding drop in the deoxyhemoglobin content of
the venous blood. The MR signal is sensitive to this change because deoxyhemoglobin
(dHb) is paramagnetic, and the presence of dHb reduces the MR signal at rest (as will be
explained next, the MR signal essentially depends on the total amount of deoxyhemoglobin
within an image voxel). By contrast, activation induces a slight increase of the MR signal:
this is known as the BOLD effect.

Note that the picture is in fact more complex: The BOLD signal change depends on
the combined changes in CBF, CMRO; and Cerebral Blood Volume (CBV). Assuming
that the CBV change is primarily on the venous side, increased CBV tends to increase
local deoxyhemoglobin content simply because the volume of venous blood increases. This
increase tends to counteract the effect of blood oxygenation, which decreases the deoxyhe-
moglobin content. The blood oxygenation effect dominates the blood volume effect (there
is a net deoxyhemoglobin content decrease), so that the BOLD signal change is positive
with activation.

Figure 2.1 represents a summary of the phenomena that occur during brain activation.
However, the detailed explanation of these mechanisms remains unknown.

2.2 MRI: the principles

2.2.1 NMR

Nuclear Magnetic Resonance (NMR) is the basic physical phenomenon used for Magnetic
Resonance Imaging (MRI). It concerns primarily hydrogen atoms present in the body
(water molecules of the tissues). Since hydrogen nuclei have a single proton, they have a
spin, which is an intrinsic angular moment. It can be associated with a magnetic dipole
moment: each hydrogen nucleus behaves as a tiny magnet, with the north/south axis
parallel to the spin axis. The sum of the moments of a sample of molecules is zero in the
absence of a magnetic field; but in the presence of a magnetic field By, the spin axes of
the protons precess around the direction of the magnetic field. The resulting magnetic
moment of a sample is oriented in the direction of By. The frequency vy of the precession
is linearly related to the field by the gyromagnetic ratio v, whose value depends on the
nature of the nuclei.

vy :’Y|B()| (21)
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Figure 2.1: Physiological changes accompanying brain activation.

Functional neuroimaging is largely based on the metabolism and flow changes in the lower
three blocks: the drop in oxygen extraction is the basis for the BOLD signal changes
measured with fMRI, but the MR signal is potentially sensitive to blood flow, volume,

and velocity as well. This figure is taken from [33].
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Figure 2.2: The basic physics of the NMR experiment.
In a magnetic field By, an equilibrium magnetization M, forms due to the alignment of
nuclear dipoles (left). An RF pulse tips over M creating a longitudinal component M,
and a transverse component M7 (middle). Mg precesses around the direction of By,
generating a detectable MR signal. Over time M7 decays to zero with a relaxation time
T, and My, returns to My with a relaxation time 77 (right). This picture is taken from
[33].

Besides the precession of the nuclei, a second phenomenon is important to us: the relax-
ation of the nuclei. In the presence of a constant field By, the spin axes of the nuclei slowly
tend to align with By, with a time constant called 77.

The Radio Frequency pulse (RF pulse) technique consists in applying in addition to
By a transient field pulse By, orthogonal to By, rotating at the resonance frequency of the
nuclei vy, and several orders of magnitude smaller. The resulting moment M of the item
is flipped (usually by 30 or 90 degrees, according to the duration of the pulse); when By is
switched off, M precesses around By and finally aligns with By: the transient transversal
moment also called Free Induction Decay (FID)) cancels with a time constant T, while the
longitudinal moment reaches its equilibrium with a time constant 77. 77 and 75 depend on
the environment, so that their local value can be used to discriminate between the tissues,
proton density being a third signature to discriminate between tissues. The difference in
the values of M are then measured by coils. An illustration of the phenomenon is given
in figure 2.2.

The repetition of the basic RF pulse is also called a pulse sequence. Many kinds of pulse
sequences are possible, and the sensitivity of the MR images to the different parameters
can be adjusted by tuning the repetition time (TR) between consecutive pulses. Typical
sequences may be of several kinds:

e The Gradient Echo Pulse Sequence simply consists of the repetition of the FID
described previously. It is simply described by the value of the flip angle o and the
repetition time (TR).

e The Spin Echo Pulse Sequence consists in applying a first 90 degrees pulse, then
after a time TE/2 a 180 degrees pulse in the transverse plane; the effect of this



2.2. MRI: THE PRINCIPLES 33

pulse is to refocus the signal whose phase has been quickly dispersed by local field
inhomogeneities. Thus an echo of signal appears at time TE; the measurement is
performed at this time; this echo can be repeated many times to sample the T, decay.

e The Inversion Recovery Pulse Sequence begins with a 180 degrees pulse and after a
delay TT a 90 degrees pulse. It enhances the T weighting of the image.

2.2.2 MRI

The pulse sequences produce a transient pattern of transverse magnetization across -and
around- the brain. Magnetic Resonance Imaging (MRI) consists in imaging in three dimen-
sions the distribution of the transverse magnetization within the brain. The principle is
the following: the phase of the local signal is manipulated in such a way that the net signal
traces out the spatial Fourier transform of the distribution of transverse magnetization.

The same coil is used for the transmission of the gradient and the reception of the
signal; since a coil typically encompasses the body (the head of the subject) it measures
a sum of the signals from each tissue in the head. Localization is based on relationship
(2.1): the magnetic field By is added with a gradient in the transverse direction. The
selection of a particular frequency at the receiver part is then equivalent to the selection
of a slice -a plane with a thickness of typically 1 to 10 mm- along the transverse direction
(z). This procedure is called the slice selection.

Then, within each slice or plane spanned by the resulting directions (z and y), two
gradients are applied during the relaxation. In the z direction, a negative gradient is
applied after the RF pulse, and a positive one during acquisition, which creates a gradient
echo during data acquisition, halfway through the second gradient pulse; the effect is that
the precession frequency varies along the z axis, so that a Fourier transform of the signal
gives its amplitude along the axis. This procedure is called frequency encoding.

Slice selection plus frequency encoding yield a two dimensional information. In the
remaining y direction, a gradient field is applied for a short interval between the RF pulse
and data acquisition; after cancellation of this field, the precession is at the uniform rate,
but with a phase shift determined by the position on y. Repeating the frequency encoding
many times with different phase shifts creates information on the y position. This third
procedure is known as phase encoding. A summary of a basic imaging pulse sequence is
given in figure 2.3.

Since functional imaging requires fast acquisition, some techniques have been developed
for fast imaging, the most important being echo planar imaging (EPI); in this case, the
gradient are oscillated very rapidly, so that sufficient gradient echoes are created to allow
measurement of all the phase-encoding steps required for an image. The full data for
a low-resolution image are acquired from the signal generated by one RF pulse. EPI
requires strong gradients. An 2D image matrix of size 64 x 64 is acquired in about 30
to 100 ms (instead of a few minutes for a conventional Th-weighted slice acquisition).
After acquisition of the data in the frequency space, also known as k—space, the data is
mapped into the 3D space by Fourier transform. The only information used in subsequent
discussion is the magnitude of the (complex) signal at each voxel.

The acquisition of a 3D volume of data is the sequence of multiple slice acquisitions,
that can be sequential (ordered in the z direction) or interleaved (pair slices acquired before



34 CHAPTER 2: FROM MRI TO BRAIN ACTIVITY

RF

Gx

Gy

A
£\
N—
data i

acquisition

Figure 2.3: A basic imaging pulse sequence.
During the RF excitation pulse a gradient in z is applied (slice selection), and during
read-out of the signal a gradient in z is applied (frequency encoding). Between these
gradient pulses, a gradient pulse in y is applied, and the amplitude of this pulse is stepped
through a different value each time the pulse is repeated (phase encoding). Typically
128 or 256 phase-encoding steps (repeats of the pulse sequence) are required to collect
sufficient information to reconstruct an image. This figure is taken from [33].
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odd slices). Direct 3D acquisition schemes have also been designed; they offer higher Signal
to Noise Ratio (SNR), but they do not allow for fast imaging procedures.

2.3 functional MRI

We concentrate here on BOLD fMRI, although other functional imaging techniques are
possible with fMRI (contrast agent methods, arterial spin labeling). This is because BOLD
fMRI is more frequent than other methods.

2.3.1 Blood susceptibility depends on deoxyhemoglobin content

Functional MRI (fMRI) is a way of measuring the field distortion around the vessels
due to deoxygenated blood. Indeed, while fully oxygenated blood has about the same
susceptibility as other brain tissues, deoxyhemoglobin is paramagnetic and changes blood
susceptibility. More precisely, the BOLD imaging is based on the following phenomena
discovered by Ogawa et al. [168], [169]: in the normal human brain 40% of the oxygen
delivered to the capillary bed in arterial blood is extracted and metabolized. There is thus
a substantial amount of deoxyhemoglobin in the venous vessels, yielding an attenuation
of the MR signal. When the brain is activated, the local flow increases substantially, but
oxygen metabolism increases only in a small amount (see figure 2.1). As a result, the
oxygen extraction is reduced, and the venous blood more oxygenated. The reduction of
deoxyhemoglobin concentration leads to a signal increase (a few percents at 1.5T, 5-15%
at 47T).

2.3.2 Mapping brain activity with BOLD signal changes

The prototype brain mapping experiment consists of alternating periods of stimulus task
and control task (e.g. finger tapping and resting) [11]. The periods are typically 20-
30 seconds or 10 times the repetition time (TR). The basic task alternance is repeated
several times. Throughout these stimulus/control cycles dynamic EPI images are collected
covering all or part of the brain, with relatively low resolution with respect to conventional
anatomical images (e.g. 3 x 3 x 3 mm? against 1 x 1 x 1). Each image of the chosen slices
are acquired in rapid succession, and after a time TR, this set of images is acquired
again. This process results in a four dimensional dataset: three spatial dimensions plus
time. Incidently, spatial distortions are not the same for anatomical and functional EPI
images. This makes the coregistration of both modalities a difficult problem, since non-
rigid deformations are involved.

Let us notice that the resulting data has neither a physical dimension nor an absolute
scale, which would help for interpretation. An increase or decrease of signal can thus be
described in terms of ratio of the mean level, or with its original absolute value.

2.3.3 The experimental design

The experimental paradigm is the sequence of events, stimuli or conditions that the subject
undergoes during the scanning session. It ranges within one of the following families:
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e The block design can be described in terms of state succession: during a number of
scans, the subject is in a certain behavioral state, that changes for another period,
and so on. When compatible with the studied function, this kind of design is usually
considered as optimal for detection purposes, since it maximizes the signal to noise
ratio (SNR) under certain hypotheses [140].

e Event-related designs cannot be described in terms of states, but rather as succes-
sions of stimuli onsets. They are especially useful for certain cognitive functions
(e.g. language), and as a methodological purpose, for the precise characterization of
the response (shape, delay, linearity) (e.g. [202]). Experiments based on adaptation
[100] can be put in this category.

e Periodic designs are useful for some functions. This is in particular the case for
retinotopy [196], [225] where the stimulation space (retinotopic polar angle, retino-
topic eccentricity) is continuous.

e Parametric designs are relatively rare, and usually used for testing whether there is
some proportionality between a parameter of the stimulation -e.g. the speed of a
moving target, or the contrast of a flickering checkerboard- and the analyzed response
[219].

Besides, the experimental paradigm may comprise one or many stimulation conditions,
i.e. at least two conditions, including the baseline. In the first case, the question of interest
is whether the stimulation elicits a response, while the second case yields more complex
inferences; for example, one may study the brain areas involved in one of the tasks, or
selectively activated by one experimental condition, or significantly more activated under
one condition than under another one.

2.4 Preprocessing the data

Now we consider a four-dimensional dataset acquired under a given experimental
paradigm. We call each volume of data acquired at a given TR an image; a set of se-
quentially acquired images is a run or a session. Many different sessions can be acquired
for a given dataset, with repetition of the same experimental paradigm or not. Next,
the same experiment can be replicated on many subjects to allow for neurophysiological
inference.

2.4.1 Registration

Due to the motion of the subject during the experiment, the images have to be registered,
so that a given voxel unambiguously represents a brain area for all the images. This
involves two steps:

e Motion estimation: it is often assumed that the motion is rigid; this is only ap-
proximately true due to the intrinsic artifacts of EPI images, that induce non-rigid
distortions between images even if the subject motion is rigid. Under this hypothe-
sis, motion estimation boils down to the estimation of six parameters (3 translations,
3 rotations). The most current method consists in finding the rigid transformation
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that minimizes the grey level difference between consecutive images; but this sim-
ple method has been shown to introduce artifacts, like spurious task-related motion
estimates. For this reason, it is preferable to use more robust methods [70]. In par-
ticular, INRIAlign procedure reduces the influence of large intensity differences by
weighting errors using a non-quadratic, slowly-increasing function. This is basically
the principle of an M-estimator.

Motion correction: according to Mangin et al. [70], this step should be performed
only when the estimated motion is non-negligible with respect to the voxel size, since
a reinterpolation of the data has ill-controlled effects on the data content. The usual
method is a trilinear interpolation of the data that takes into account the motion
estimates. We do not address the combination of motion with distortion.

Following motion estimation and correction, a step of spatial normalization can be
performed; this consists of coregistering the functional images with a MR anatomical image
of the same subject or with a template (this is of frequent use for multi-subjects studies),
and then to interpolate the functional images into the template. Let us notice that in that

case,
load.

the displacement field is considered as non-rigid, yielding a heavy computational
Care should be taken when employing this procedure, because:

The registration between images or different modalities and/or templates is very
difficult. Tt requires non-rigid deformations (e.g. spatial stretching of the data).
The effect on the resulting activation maps may be quite complex. Note that in
the SPM 99 software, smoothing is then recommended “as a preprocessing step to
suppress noise and effects due to residual differences in functional and gyral anatomy
during inter-subject averaging”. This is not very encouraging.

This procedure dramatically increases the number of voxels of the dataset, which in
turn increases the computation load for the analysis. This has a conservative effect
on the corrected P-values obtained with a Bonferroni correction(see next chapter).

Last, as any sub-sampling procedure, this simply increases the size of the images
without adding any information. In fact, it is simpler to interpolate the final images
(activation maps) into the template of interest instead of the raw functional images.

2.4.2 Smoothing

Spatial smoothing has become a standard routine for fMRI data analysis for two kinds of
reasons [173], [127], [5]: i) The increase of the SNR 4i) The interpretation of the images as
gaussian random fields (under the null hypothesis that no activation pattern is present).
Let us examine these two points:

Smoothing the data spatially increases the SNR in the sense that it reduces the effect
of the spatially uncorrelated noise with respect to a priori more structured signal of
interest. This is of course at the expense of spatial precision (the spatial precision
of functional images is quite coarse; in particular, the average grey matter width is
not much greater than the typical voxel size, so that it is unavoidable that isotropic
smoothing mixes tissues of different nature). The debate about spatial smoothing
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yields a tradeoff between bias (the precision in activation localization) and variance
(SNR gain by smoothing). However, it is clear that an optimal smoothing scheme
is not the isotropic gaussian filter employed usually, but is brought by adaptative
filters. An example of anatomically-based smoothing has been proposed in [5]. Other
anatomically-informed procedures have also been proposed: parcellation [66] and
anatomical basis functions [127].

e The second reason comes from the method adopted by the SPM software (see next
chapter) to assess activation significance: it is assumed that the residual of the
regression model can be treated as a gaussian random field with a certain smoothness;
this is probably not true if one considers the original images, but becomes likely after
the smoothing process.

It is important to consider that intrinsic spatial correlation is embedded in raw fMRI
datasets; in particular, though many functional brain areas are largely sub-voxel, there is
a consensus that reliable activation foci should encompass clustered voxels. Smoothing is
then simply a means for canceling spatially high frequency noise in the data. Though this
statement is correct, this intrinsic spatial correlation is certainly not isotropic. Moreover,
there are other ways of taking spatial autocorrelations into account than data smoothing
(see next chapter). Notice that the study of spatial correlations has been introduced as
a particular way of processing the data, in particular with the help of scale-space theory
(see [177] [47] and 5.1.4).

2.4.3 Removing global effects

This consists in subtracting to all voxel time courses the mean of each image. This
preprocessing is aimed at removing some physiological effects that are assumed to be
global over the image. However, this is at the risk of removing activation patterns, if the
latter have an influence on the global mean. This is actually the case, and recent studies
have enlightened the bias induced by this procedure [51].

2.4.4 Selecting voxels of interest

Signals of interest are expected only in the grey matter. It is thus tempting to ease the
analysis by selecting only the anatomically relevant voxels for further analysis. More
simply, one often uses a mask that keeps the brain voxels; a simple threshold on the 75
averaged image of the sequence is often sufficient. More sophisticated methods can be
employed (e.g. [120]), but they are integrated in the general framework of signal analysis.
Some developments of this work will require such posterior selection.

2.4.5 Detrending

Looking at the temporal part of the dataset, we also observe the presence of intrinsic
correlations. Although some methods use a smoothing in the temporal domain, this is not
a systematic usage in fMRI data processing. In fact, the presence of temporal correlations
is probably related to the intrinsic object of the measurement, in particular the presence of
biological rhythms (respiratory, cardiac) that some authors propose to correct [121]. But
there is more consensus on the presence of trends in the signal, which induces high temporal
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correlation (these effects have typically low frequency) in the dataset. Their cancellation is
thus important to enforce the stationarity hypothesis, which is fundamental in the analysis
of the data. This is performed by removing the low frequencies of the signal [221], or by
estimating adaptively the trend [147], or by fitting a wavelet basis [155]. A partial study
of detrending methods is available in [203].

A practical method is the removal from each voxel-based signal of a fitted low frequency
approximation:

Tdetrend(t) = w(t) — (z % g)(t) (2.2)

where ¢ is e.g. a gaussian filter wider than the timing of the effects of interest. The
computation of x * ¢ can be made quickly and efficiently through the use of recursive
filters [52].

2.4.6 Temporal registration or slice timing

Another source of artifacts in the interpretation of the data is the fact that all the slices are
not acquired at the same time, but at given fractions of the TR. This effect is problematic
when the sequence of events is quick (of the order of the TR). In that case, it may be
better to correct for this effect, that is to apply a kind of temporal registration between the
slices, so that their acquisition can be considered as simultaneous for further study. This
is currently done by preserving the spectrum of the signal obtained at different voxels and
shifting their phase. This method has been popularized under the name of slice timing
correction.

2.4.7 Preprocessing: what is essential ?

In this work, we are not particularly concerned by the analysis of pre-processing steps.
Notice that this is currently studied with high-level procedures in several works [134] [51].
We simply state here which parts of the above mentioned procedures are essential to us:

e Motion estimation is essential, since it gives some insight on the behavior of the
subject. Motion estimates that are correlated to the experimental paradigm in-
dicate probably a bad estimation. We use the INRIAlign method (http://www-
sop.inria.fr/epidaure/software/INRIAlign/).

e Motion correction should be applied as soon as motion amplitude is beyond a fraction
of a voxel. Otherwise it can be bypassed.

e We analyze the functional images in their original format and warp only the resulting
spatial maps towards the anatomical images. We use the method developed by [111]
[41]. Since most of our data is based on single subject studies, we do not consider
the problem of common registration.

e No global scaling is applied.
e We prefer to avoid spatial smoothing.

e Concerning block designs with long stimulation periods, the temporal registration
can also be avoided.
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e Voxel selection is applied by simple masking of the brain

e Detrending is performed through gaussian fitting -which can be done very quickly.



Chapter 3

fMRI data analysis: state of the
art

This chapter summarizes the main ideas that have been proposed to analyze fMRI data.
The basic distinction is between hypothesis-driven approaches, that perform a statistical
validation of prior hypotheses and exploratory methods that give an account of the data.
We will describe more precisely the Statistical Parametric Mapping (SPM) methodology,
which is used in standard fMRI studies, then give a quicker account of different univariate
and multivariate methods. The point is of course to discuss what each method assumes
and proposes. However, there is no place for an exhaustive description of each method.

3.1 An overview

3.1.1 Position of the problem

fMRI data analysis consists in extracting relevant information from the spatio-temporal
data produced by the experiment. In an engineering perspective, this means analyzing the
response of a system given inputs and outputs (see figure 3.1). By system we mean the
subject undergoing the experiment, who accomplishes -among other things- some sensory,
motor or cognitive tasks, but also the measurement setting, including all the physical
and computational steps that we briefly described in the first chapter and elementary
preprocessing, e.g. motion correction ; by input we mean the information delivered to the
subject in order for him to accomplish the experimental task ; in the remainder of this
work we will refer to this input as the experimental paradigm; by output we mean the
spatio-temporal collected dataset.

What is perhaps more problematic is the concept of relevant information: is it the
response to the experimental paradigm -assuming that it can be defined unambiguously-
or rather the amplitude of the response -which under some hypotheses is probably a more
tractable concept- or the delay, or other characteristics (filter, linearity) of the response ?
Or more generally, a synthetic representation of the dynamics of the dataset 7 In spite of
their naive formulations, these questions do not have plain answers, and all the authors
have paid more attention to one or the other aspect. We will develop some parts of this
discussion in the next subsection.
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Figure 3.1: Schematic representation of the data generation
This includes the input - represented as the experimental paradigm, but in fact all the
device that present information to the subject- the system itself -subject, measurement
setting, basic processing- that produce the dataset. By this generation scheme, we want
to point out that no simple relationship can give an account of the input/output rela-
tionship. Put more simply, the system is a kind of black box whose behavior can only be
approximated.

Before going further, we emphasize that the intrinsic complexity of the system does not
allow for simple interpretation (unlike engineering systems whose behavior is characterized
by a transfer function). To be clear, let us recall some of the basic facts that prevent us
from giving straightforward interpretation of the input/output relationship of the system
(without listing gross artifacts sources, as defective stimulus presentation):

e The experiment takes place in a particular environment (in a tunnel, with strong
acoustic noise).

e The subject is supposed to perform some motor/sensory/cognitive task, but we have
little control on his real behavior; though this is the purpose of good experiment
designs, the state of the subject does not reduce to what the experimental setting
defines.

e The structure of the neural answer is not well understood (this is in fact the ultimate
goal of neurobiology).

e Neither is the link between neural response and BOLD effect well understood.

e The respiratory and cardiac rhythms of the subject also appear in the BOLD re-
sponse (with evident aliasing concerning the cardiac rhythm).

e Inhomogeneities in the magnetic field create some distortions in the EPI images.

e Subject motion is only partially corrected by standard methods ; the combination
of subject motion with image distortion has complex effects.

e The machine itself has its own artifacts : signal drifts, thermal noise.
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e The spatial reconstruction of the data has its own limitations (ghosting effects, in-
troduction of spatial correlations).

This non-exhaustive list gives an idea of why the characterization of the system is far from
simple, even if the first preprocessing described in the first chapter counteracts some of
the nuisances. Let us also outline the effort of experimenters to measure the attention of
the subject and monitor some of his natural rhythms in order to take this side information
in the analysis.

As explained in section 2.3.3, the experimental paradigm can be of several kinds :
block design, event-related design, continuously varying stimulation, parametric design;
moreover, it may encompass one or several experimental conditions. Indeed, inference
from neuroimaging data is usually based on subtractive logic. The concept of subtractions
is highly associated with the idea of contrast in current methodology (see e.g. equation
3.10). In any case, one needs to define the input or excitatory variable of our system in a
numerically practical way. The most frequent way is to define a matrix P.(t),c = 1..C, t =
1,..,T, with one row for each experimental condition; typically P.(t) = 1/0 if the subject
undergoes/does not undergo condition ¢ at time ¢. Then this vector can be treated as any
quantity, for instance, it may be centered, normalized, whitened etc.

3.1.2 Hypothesis-driven and exploratory methods

fMRI data analysis has generated an abundant literature so that it is important to in-
troduce proper distinctions for the understanding of the different methods. We propose
here the characterization that is the most fundamental to us : the distinction between
hypothesis-driven and exploratory methods.

Hypothesis-driven methods [173] postulate a certain form for the response to the ex-
perimental stimulation. This allows the parameterization of the response, and then the
estimation of the model parameters ; this kind of methodology is followed by a statistical
test that assesses the response estimation and concludes to the presence or the absence
of an activation. More often, such methods are voxel-based (even if they have been gen-
eralized by spatially regularization with smoothing [5], Markov Random Fields [53], or
parcellation [65]). Their potential weakness is their way of assuming a certain form of the
response which may prove to be inadequate, thus yielding biased conclusions. On the other
hand, these methods provide clear conclusions on a particular question. For example, they
can answer the question ”Is the time course of this data voxel correlated with the assumed
response to the experimental paradigm?” with a clear response “ Yes/No” associated with
a probability value (P-value) of making mistakenly a positive statement. With some (still
controversial) hypotheses on the data and noise structure, they can even answer a question
like “Are there any clusters of connected activated (in the sense of being correlated with a
known pattern) voxels in the image?”, assorted with P-values. Even though considerable
efforts have been done to retain flexible models in this framework (introduction of tempo-
ral correlation, response space of dimension greater than 1, introduction of nonlinearities
or more generally deviations with respect to the assumed linear model (see in the next
section)), they still cannot answer general questions like “What is the strongest pattern
present in the dataset as a response to the experimental paradigm ?” or more generally
““What are the main spatio-temporal patterns present in this dataset 7”.
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This explains the necessity of introducing different methodologies that we will call
exploratory [172]; in that case, the idea is to search for a generative model of the data,
that is a model that shows which patterns appear in the dataset, and how these patterns
are temporally/ spatially structured. This kind of approach is now rather multivariate, in
the sense that it considers all voxels simultaneously. Its goal is thus to give an account of
the data content, which is interesting if one wants to investigate cautiously which effect
indeed appears in the data (given all the sources of confounds described earlier). However,
such an approach does not give definitive answers to hypotheses concerning the dataset,
since no question has been formulated in a closed form. Rather, the idea is to check by
exploration what is the main response pattern present in the dataset, if some confounds
can be identified (heart beat, respiration, motion, drifts). A perhaps more interesting -and
more difficult- question is which patterns can be generalized from one dataset to the other,
from one subject to the other.

Now we turn to a (non exhaustive) list of the most frequent methods, keeping in mind
the basic distinction given above.

3.1.3 Taxonomy

An overview of the main existing methods is given on figure 3.2. Let us give a quick
description before going to more details on the methods themselves. Hypothesis testing
methods try by different ways to assess the presence of a given activation pattern. The
methodological variations can be related to the estimation procedure used (temporal do-
main or frequency domain using Fourier transform), or to the statistical test employed to
assess the presence of the activation. Sometimes, the differences are essentially a matter
of vocabulary ; for example, Maximum Likelihood (ML) estimates are equivalent to the
linear estimates given a regression scheme. Bayesian methods rather look for a maximum
a posteriori (MAP) solution, given some priors on the response or parameters of interest.
Moreover, some authors have used non-parametric statistics (Kolmogorov-Smirnov test,
mutual information between the data and the experimental paradigm, conditional entropy
rate of the data) for activation assessment.

On the exploratory part, we have a set of methods that extract information from the
dataset, often without any prior knowledge of the experimental paradigm. The only way
to process is then to use some structural properties that can discriminate between features
of interest present in the data (decorrelation, independence, distance in a feature space,
similarity, which yields respectively Principal Components Analysis (PCA), Independent
Components Analysis (ICA), Clustering, and Self-organizing maps).

Some authors have tried to bridge the gap between the two families of methods. This
is the case of multivariate linear models (MLM).

3.2 Univariate methods: review and discussion

In this section, we give some more details on the main univariate methods, with a special
emphasis on the General Linear Model, which has been popularized with the Statistical
Parametric Mapping (SPM) software. Of course, this description is by no way exhaustive.
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Figure 3.2: Overview of the main methods for fMRI data analysis.
They can be broadly divided into two categories: The hypothesis testing methods that
primarily try to define which voxels can be said as activated given one signal model;
these methods differ either by the signal estimation procedure or by the statistical method
employed to assess the activation. On the right are the exploratory methods, that generally
extract a set of meaningful patterns from the dataset. Some methods, as the multivariate
linear model, try to play on both parts.
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Figure 3.3: Typical data analysis performed with the SPM software.
This figure is borrowed from [77].

3.2.1 The general linear model (G.L.M.)

A complete description of the General Linear Model as implemented in the Statistical
Parametric Mapping (SPM) software can be found in [77]. Here we sum up the steps of
the model, which is important since almost all the fMRI literature refers to it. A general
idea can be found in figure 3.3.

Let us denote X one session of a fMRI dataset, considered as a N x T matrix, where
N is the number of voxels in the dataset (we do not consider here their spatial structure),
and T the length of the time series. X,,(¢) will thus be the signal at voxel n and time t.

We assume that the subject undergoes different conditions of a given experimental
paradigm. The conditions are defined by the time course of the effect (usually, a stimula-
tion) P.(t),t =1..T,c =1..C.

In a first approximation, the G.L.M. assumes that the response to each experimental
tasks is proportional to a given time course, that can be defined through convolution
of the stimulation P.(¢) with a filter A known as the canonical hemodynamic response
function (hrf). This is the consequence of two technical assumptions: i) the linearity of
the response with respect to the stimulation, and i) the time-invariance of the response
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(a delay in the stimulation induces the same delay in the response); the linearity in the
response is equivalent to a superposition principle : if two tasks are associated in the
experiment, their effects in terms of response simply sum up. The filter h is assumed
identical for all voxels. The most basic signal model is then

—b0+Zb )% Pu(t) + e, (t) (3.1)

Where by is a constant of no interest, bc(n) the amplitude of the responses to the stimulus
c and €,(t) a noise term. In the sequel, we assume that the signal is centered, so that
bp = 0.

Let us denote g.(t) = h * P.(t); one can specify other explicative variables for the
analysis of the voxel time-course X, (¢): head motion estimates during the session, or
given functions of the time, like low frequency sinusoids, low order polynomials. More
recently, the (first or second) temporal derivatives of the first components g.(t),c = 1..C
have been used with the regressors of interest. We obtain thus a richer explicative model,
modeled as a set of temporal regressors G = g, (t), with r = 1.R,t = 1.T, R > C, called

the design matriz.
R

Xa(t) =Y br(n)gr(t) + en(t) (3.2)
r=1
The corresponding vector of regressors b(n) = (b.(n)),—=1..g can be estimated by least
squares estimation:

b(n) = (GTG)'GTX (n) (3.3)

with the dispersion matrix
Ay(n) = oc2(GTG) ! (3.4)

where ¢ is the residual variance. (It is implicit here that the design matrix is of full rank;
pseudo inverses can be used in a general case, but full rank designs are recommendable).
This technique yields the best linear unbiased estimator of b(n) if one assumes normal,
noise, and of Ay(n) if additionally the noise is white.

Non-normality of the noise is difficult to control, but it is known that fMRI noise is
correlated, at least temporally, so that three procedures can be performed: i) whiten the
signal X together with the regression model G [182], [221], [223]; this procedure requires
a careful estimation of the autocorrelation i) estimate the noise covariance ¥ [30], and
replace equations (3.3) and (3.4) by

b(n) = (GTS™'@)'GTS 71 X,. (3.5)
Ay(n) = (GTo~tG)™! (3.6)

at the risk of biasing the result if the estimate of ¥ is poor, and 4ii) add more correlation
than what is actually in the data, and derive a new noise covariance matrix [2]; neglecting
initial correlations, one can also reduce the final correlation of the data to that induced
by the analysis, or consider a simplified model [84]: equation (3.2) becomes

[k % X,,] Zb Mk % g, (8) + [k * €] (£) (3.7)
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where k(t) is a low-pass filter and equation (3.3) becomes
b(n) = (GTKTKG)'GTKTK X (n) (3.8)

where K is the filter & written in a matrix form. The dispersion around the estimate of
b(n) is given by the matrix

Ay(n) = o (GTKTKG)'G"TKTKYK"KG(GTKTKG)™! (3.9)

Both estimators (3.8) and (3.9) are biased; however it is argued in [84] that this bias is
inferior to the bias induced by an improper whitening. More recently, an optimization of
this procedure has been proposed in [40], based on an adaptative spline smoothing; the
adaptation is allowed by a generalization error criterion (cross-validation). This results
however in an heavier computational cost. It is shown that naive procedure (without
correction) and uniform correction overestimate the ensuing tests. Whatever the method
employed, these estimates can then be used to derive statistical maps. The statistics are
related to the definition of contrasts; a contrast « is a linear combination of the estimates
5; its interpretation is simple if one views the vector l;(n) as the set responses at voxel n
to the effects given by the matrix G. Contrasting them means that one checks whether
the response to a given effect is stronger or weaker than to another effect. Once the linear
combination and its dispersion (obtained from the dispersion matrix) are computed, one
assesses the significance of the estimated response to the contrast by comparing it to its
estimated dispersion: R
b(n)

YT Ap(n)y
where t4 is the Student distribution with d degrees of freedom, which are derived from the
design matrix G by standard methods [222]. The Student distribution is invocated here,
because, under the null hypothesis (the contrast v does not fit any particular feature of
the time series X,,(¢)), and assuming that the residual of the model is gaussian, then the
quantity on the left side is actually distributed under a Student density. For practical
application, the ¢ scores are then converted into a normal variable z through standard
procedures. The resulting map z(n),n = 1..N is our first statistical map.

This map can be thresholded for a certain significance value (or P value): still under
the null hypothesis, the probability that z is above a given threshold ¢ (usually in absolute
value) can be derived analytically. The inference consists in rejecting the null hypothesis
given the statistical score.

One can also take a set of contrasts I' = {71,..,77} and derive a statistical score to
assess the squared norm of the vector I'b(n) with respect to its dispersion:

~ tq(n) (3.10)

(Th(n))" (Th(n)) d
T Ay(n)T d_j ~ Fa, d, (n)

(3.11)

where Fy, 4, is the Fisher distribution with d; and dy degrees of freedom; d; and dy are
respectively the number of degrees of freedom from the numerator and the denominator,
and are derived from standard procedures. The resulting map can be used similarly as a
t map. An important difference with ¢ maps is that the information about the sign of the
effect (positive or negative) is lost.
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The last topic that makes up the standard SPM analysis is the introduction of map-
wise threshold; indeed, the P-value defined above is voxel-based, but we are interested in
controlling the number of false positive voxels for a given map. The simplest way to do that
is to assume that all the voxels are independent (in the sense that their associated signals
can be viewed as statistically independent). Then the Bonferroni correction procedure
applies: Let 7w be the probability that any voxel in the image has a z score above the
threshold ¢ under the null hypothesis, and p the same probability for one given voxel; then
7w = p. Given m and N, one straightforwardly derives p and then ¢. But this method
suffers from several disadvantages:

e The method does not take into account the spatial correlations that violate the
independence hypothesis.

e Consequently, an oversampling of the data increases the number of voxels N and
thus the threshold ¢, whereas we still have the same map. The reason is that the
increase in N is related to an increase in the spatial correlation.

e Last, the method does not take into account the spatial structure of supra-threshold
voxels: a set of clustered voxels more likely represents an activation pattern than
isolated voxels.

For these reasons, a more sophisticated framework has been developed. The idea is
that, under the null hypothesis, the z-map is a gaussian random field of dimension D
(2 or 3), in a volume V, with a given smoothness. It is possible to derive the expected
Euler-Poincaré characteristic y; of this field once thresholded at the level t¢:

E(x:) = VIA[F(2m) " Hp(t)e™ T (3.12)

where A is the covariance matrix of the field (basically, its smoothness or inverse point
spread function) and Hp the Hermite polynomial of degree D. Now, for a high value of ¢,
one has

P(mae > 1) " P(x: > 1) = 1 —e P00 x B(y,) (3.13)

Equations (3.12) and (3.13) together give a new way of setting a threshold on a smooth
gaussian random field. A concept of interest is the -dimensionless- notion of the number
of resolution elements (RESELS): This number is given by

RESELS = — (3.14)

M2, FWHM,’
where FW H M; represents the full width at half maximum of the spatial filter associated
with the map, in direction ¢, and related to the smoothness of the field by

V|A|z = RESELS(41og(2)) 2 (3.15)

This method has been further improved with the introduction of the spatial extent of
the activated areas [89], joint test on the height and size of supra-threshold clusters [178],
and the robust estimation of smoothness in presence of activations [128]. Note that this
approach is compatible with spatial smoothing of the data (more precisely, this model
encourages smoothing, which makes the hypothesis of a stationary gaussian random field
more credible).
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3.2.2 Variations around the G.L.M.

A great part of the fMRI literature has concentrated on partial improvement of aspects of
the linear model described above. While some authors have essentially tried to optimize
the parameters of the GLM (especially the hemodynamic model [45], see the next chapter
for more details), some others have refined the framework. We make here a non-exhaustive
review of those contributions.

Variations in noise modeling

Nuisance space modeling: A important concern in fMRI analysis is the ability to find
unbiased estimates of the regressors dispersion (see equation (3.4)). In many instances,
it has been observed that confounds are present in the dataset; their main effect is an
overestimate of the residual variance, then in the parameters dispersion, hence a loss in
efficiency. The standard solution implemented in SPM is the removal of low frequencies
by high pass filtering of the data [77, chapter 3]|; some authors have proposed to estimate
a nuisance subspace from the data [6]. The removal of the nuisance has the main effect of
increasing the likelihood of the data (see further).

Autoregressive models: Given that the noise is temporally correlated, it seems nec-
essary to take this into account in the dispersion estimate of the linear model. Friston
et al. have thus introduced an AR(1) noise model in the GLM [84], but this model is
uniform across the dataset, which is suboptimal [226]. Other authors use more general
AR(p) models [124], [223], AR(1)+white noise model [182] [30] [181] or estimations from
the frequency domain [123]. Complex models, including ARMA noise and trends, are
possible, but the estimation of all the quantities involved requires the use of nonlinear
optimization methods [141]. Wavelet resampling has also been proposed to assess the
presence of activation with colored noise [29].

Some statistical refinements

Maximum Likelihood framework: The maximum likelihood (ML) framework is attractive
for the problem of parameter estimation. Indeed, the least-squares estimation procedure
in equations (3.3) or (3.5) yields also essentially maximum likelihood estimators of b(n)
under the gaussian noise hypothesis (respectively white or with known covariance). This
idea has been generalized in [163] to deal with complex data.

Bayesian framework: Another statistical framework has received much attention for
fMRI data analysis: the Bayesian framework. The main difference with the ML framework
is the introduction of priors in the statistical model of the data; the inference is then made
a posteriori, given the prior and the data fit. For example, in [124], the authors use
Jeffrey’s rule in order to have uninformative prior, hence no bias on the final posterior
distribution.

Bayesian inference is now gaining popularity in the fMRI data analysis community;
besides many Bayesian works on the hemodynamic response (see next chapter), a recent
contribution is the introduction of hierarchical models in the case of i) multi-subject study,
it) inference when temporal correlations are considered. The introduction of Bayesian con-
cepts is in fact a way to optimize the parameters (response amplitude, residual covariance)
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in an expectation-maximization fashion [87] [81]. Bayesian formalism is a practical way
to introduce some priors (e.g. spatial smoothness) in the estimation of effects, as has been
done by many authors (see the paragraph on spatially regularized estimations).

Mixture model: Another way to assess the presence of activation in a set of voxels
is to introduce a statistical distribution for the activated data, and to finally select the
voxels that are more likely to be activated given that model. Unfortunately, this derivation
can be done properly only for particular experimental paradigms, and still with restrictive
hypotheses on the activation patterns [58]. A possible, still rarely explored way is to model
the regressors distribution with a mixture of gaussians, with one mode representing the
null hypothesis [15].

Non-parametric Permutation testing: For the specific goal of hypothesis testing, per-
mutation tests are an alternative to the use of analytic functions as implemented in SPM
[166]. Nevertheless, these methods are computationally demanding and ill-adapted for
temporally or spatially correlated data [29]. This explains why their use is rare in fMRI
data, or only with whitening procedures. However, permutation testing is of frequent use
in the case of multi-subject studies, when two populations have to be contrasted.

Use of false discovery rate This technique refers to the specific problem of the correction
necessary due to the multiple comparison problem. The standard solution has been the
modeling of images as a gaussian random field. However, this requires very smooth data,
hence intensive smoothing and blurring. Recently, a procedure has been proposed in [90]
to overcome this problem: the idea is not to control the number of false positive above a
given threshold, but to find a threshold for which a given fraction of subthreshold voxels
will be false positive on average. Since this method works on the rate of false positive voxels
rather than the number of false positive, it is not sensitive to the number of comparisons
performed, unlike the Bonferroni correction. It can then be reliably used on unsmoothed
dataset. However, a potential disadvantage of the method is that the threshold decreases
when more voxels are activated, allowing for a weaker control of false positives.

Introduction of non-linearities

The linearity of the response with respect to the stimulation is controversial. It is rare that
the stimulation is associated with an intensity parameter, so that the amplitude linearity
is difficult to check (an exception is the case where the stimulation intensity is defined
by a contrast or a frequency, e.g. for visual stimuli); but time invariance of the response
poses more problems, essentially when dealing with event-related designs, in which case
the succession of the stimulations can be very quick [219] [157]. This has incited Friston
et al. to introduce a non-linear term as an additional term in the G.L.M. [83]. We review
and discuss the question in section 4.1.

Analysis in the frequency domain

Some authors have introduced estimations in the frequency domain; this procedure has
several advantages: first, the low frequencies of the noise are well separated from the re-
mainder, which helps for signal identification, in particular for the hemodynamic response
estimation [137]; second, the Fourier coefficients are approximately independent in the
limit of infinitely long time series, allowing for unbiased hypothesis testing [147]. The
evident disadvantage is that this procedure is fully correct only for periodic stimulations,
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and does not help much in the case of multiple stimuli. However, this can be used for the
detection of some physiological rhythms as in [158] [106].

Spatially regularized models

Another controversial point in fMRI data analysis is the use of smoothing. Indeed, some
authors have advocated that it would be preferable to use spatial regularization of the noise
estimate instead of smoothing both activation and noise [199] [181] [18] [19] [223] [123]. A
potential limitation of these models is the adequacy of the spatial model, which is usually
isotropic, whereas a more proper model should be based on the anatomical geometry of
the cortex (at the resolution of fMRI, the cortex is essentially a folded surface).

Another way to regularize spatially fMRI data is the introduction of Markov random
fields [53]. A related method is the spatial mixture model proposed in [108]. The inference
based on Markov Random Fields can also be interpreted within the Bayesian framework,
where the prior probability is given by the voxel information (time course), while the pos-
terior probability takes into account the contextual information carried by the neighboring
voxels. Last, the optimal solution of Markov Random Fields labeling is hard to obtain;
for a two-classes problem, the normalized graph cuts methodology presented in [129] is an
elegant and optimal solution. But one should recall that all these methods are obviously
limited by the arbitrariness in the local interaction model.

3.2.3 Non-parametric methods

More marginally, some authors have worked on methods that demand less hypotheses,
especially avoiding the formulation in terms of linear combination of effects (equations
(3.1), (3.2)); but this is often at the expense of interpretability. Let us give a quick
account of these more original works.

Use of the Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) test has been widely used for assessment of an activation
without any assumption on the signal and noise distribution (see e.g. [184]). The idea is
to compute the empirical distribution of the signal given an experimental condition, and
then to test the identity of the obtained distributions. Rejection of the identity by the
KS test is interpreted as an activation. However, the estimation of signal distribution is
difficult for the short fMRI time series; thus the method is not efficient in general. It is
furthermore very sensitive to non-stationarities in the signal [1], which is problematic for
fMRI data. Last, a difference between two statistical distributions is easily interpretable
if the difference consists in a shift of the mean, but not if the difference involves higher
order moments of the distributions.

Use of information theoretic measures

A very similar approach has been proposed with the Kullback-Leibler divergence between
the statistical distribution of the signal and the distributions of the latter once marginalized
with respect to discrete values of the experimental paradigm; this amounts to computing
the mutual information between the experimental paradigm and the signal [215] [129].
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A nice feature of this approach is that it adapts well for more than two experimental
conditions. But very similar critics as for the KS test can be addressed to this method,
whose spatial maps are furthermore difficult to threshold [206]. A more adapted method
has been proposed with the introduction of the entropy rate, instead of the entropy, to
characterize the time courses, since it accounts for temporal information, and especially
non-stationarities [64]. Some close ideas will be developed in section 4.3.

Phase synchronization

An original contribution to non-linear analysis of fMRI time series is the introduction of
the concept of instantaneous phase in a signal, which is based on the Hilbert transform of
the temporal signals. The instantaneous phase of the signal can then be compared with
that of the assumed task-related response; a constant lag between the phases indicates
a synchrony between the time course and the assumed effect, hence an activation [136].
There remains nonetheless the difficulty of the sensitivity of this technique with respect
to noise and trends inevitably present in the data; moreover, the activation amplitude is
not really quantified.

The idea of phase synchronization has also been used in [213], though with slight
differences in the formulation. However, the algorithms proposed by the authors contains
ad hoc steps, making it hardly generalizable; statistical inference is not straightforward
-and often suboptimal- with such a complex modeling.

Markovian modeling

A property of Markov chains that makes them attractive for biological time series is that
they implement a concept of causality: an effect (observation or experimental condition)
at time ¢ explicitly determines the observation at times ¢t + 1. An original application of
Bayesian analysis has been the Markovian modeling of fMRI time series, where the prior is
in fact the past values of the data [113]. A different use of Markov chain models has been
proposed in [206], where the authors propose to simulate asymptotic signal distributions
conditionally locked to conditions of the experimental paradigm. This is of course valuable
only for block design experiments.

3.3 Multivariate methods: review and discussion

In this section, we develop the main multivariate methods that are used for exploratory
analysis of the data. Once again, we have no assurance of giving a complete panel of the
existing techniques. These methods are multivariate in the sense that all voxels are con-
sidered simultaneously. Principal and Independent Components Analysis are two methods
that produce a generative model of the data; they are based on the assumption that the
true model that generated the data is low dimensional, and that it can be recovered through
a kind of unmizing technique. By contrast, clustering techniques and self-organizing maps
are based on the assumption that the set of voxels can be split into different sets on which
one effect is predominant.
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3.3.1 Principal Components Analysis and related methods

The Principal Components Analysis (PCA) of fMRI data is often performed through a
Singular Value Decomposition (SVD) technique, after centering of the dataset. The SVD
simply decomposes the dataset into mutually orthogonal spatio-temporal components.
Recalling that we consider a given dataset (a session) as a N x T matrix (N = number
of voxels considered, T' = length of the time series) which has been centered (the sum of
each row is null), the SVD of X is

X =UxvT, (3.16)

where U and V are N x N and T x T orthogonal matrices, and ¥ a N x T matrix with
non-zero elements only on its diagonal. If one further requires that the diagonal elements
of ¥ are decreasing, the decomposition is unique up to change of sign of the columns
of U and V; U and V respectively diagonalize X X7 and X7 X. The columns of U are
interpreted as a set of images, and those of V' as a set of signals. Performing a SVD
of a raw dataset is a means to explore it which has rarely been employed; at least the
data is corrected for some confounds(low frequency components) [80] [88] [4]. But a more
common way to use it is to define a space of interest, which is analogous to a K x T
design matrix of the experiment G, and to perform the SVD of XG”'. This technique has
been further developed with different normalizations of the matrices X and G, yielding
the Canonical Variate Analysis (CVA) method [79], Partial Least Squares (PLS) [151] and
the Multivariate Linear Model (MLM) [224] [126]. The methods that use a design matrix
are not really exploratory, since nothing is known outside the space of interest spanned by
the rows of G.

Some authors have also tried to improve the basic setting with introducing spatial
smoothness with Markov property [176].

We go more into the details of this technique and associated questions in chapter 4.

Nonlinear PCA: Let us also quickly mention the introduction of non-linear PCA by
Friston et al. in [74] and [75]. In this work, Friston et al. introduced the concept of
interaction of the spatial modes, and proposed a neural network architecture to estimate
the deviation from the linear PCA. But this proposition has elicited little interest in the
neuroimaging community, probably because of the difficult assessment of such results.

3.3.2 Independent Components Analysis

Let us recall that both the spatial and temporal components of the SVD are mutually
orthogonal. By contrast, Independent Components Analysis (ICA) is devoted to the
derivation of statistically independent components either in the spatial or in the temporal
domain (but not both). This makes sense, since the independence of random variables is
a much more constrained problem than their decorrelation. We will study this problem
and its connection with information theory more thoroughly in chapter 4. Let us mention
that ICA has much more often been used with a spatial independence criterion than with
a temporal independence criterion, the most obvious reason being that there are much
more voxels than time points to assess statistical independence.
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The basic setting is the following (say, for spatial ICA):
The dataset X is a set of images X (¢) which are viewed as the superposition of independent
images, which are called sources and noted S in the ICA language.

XT=MS+FE (3.17)

The superposition is modeled by a mixing matrix M, and there is an additional noise
term. In the most general setting, X, M, S and F are N X T, T x K, K x N and T' x N
matrices of rank T, K < T, K and T'— K. K is the number of independent sources that
have generated the observed data (it is an unknown parameter), and F is the residual
noise '. The solution of the problem consists in estimating the matrices W and S so that

S=w(Xx -©g)7T (3.18)

The K x T matrix W is called the unmiring matrix and can be viewed as a generalized
inverse of the mixing matrix M. Especially, the resulting matrix S can be interpreted as
a set of activation maps associated with the different independent effects present within
the dataset.

The solution of this problem involves

e The definition of an independence criterion(see chapter 4 and [57]), which determines
a practical algorithm for the solution of (3.18).

e A separation between signal and noise, and, accordingly, an estimation of the rank
K of the generative model.

e The interpretation of the spatial maps obtained from the algorithm [68].

This technique is now well established (see [153], [154], [35], [101], [54], [38]), and is
probably the exploratory technique used most frequently for the study of fMRI data. Note
that temporal ICA has also been proposed ([37], [171], [145]).

We can also notice that a link has been made between ICA and the general linear
model in a hybrid approach [152]; this approach probably eases the interpretation of the
ICA method.

Last, ICA -like PCA, though to a greater extent- can be seen as a way of denoising
the data by separating the different effects present in the data (say, signal, confounds and
noise) into different components [212].

CCA, an intermediate method: Canonical Correlation Analysis (CCA) is a means
to detect the subcomponents of two multivariate datasets that are maximally correlated.
It has been proposed as a way of investigating fMRI datasets in [72], with two possible
applications: i) the derivation of the temporal components that are maximally correlated
at lag 1, i) the derivation of the most spatially smooth maps of the dataset. Speaking
informally, this is an equivalent of ICA with the advantage of a non-iterative procedure
(the criterion being bilinear after some normalization of the data). However, important
issues such as dimension selection, are not solved with this method.

!The concept of noise is problematic here, since no specification is made neither on signal nor on noise.
In fact, £ is simply neglected in the hypothesis of noise free mixing, and is in practice the residual of the
initial PCA performed for dimension reduction purposes.
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3.3.3 Clustering

Clustering is another exploratory method based on the following statistical viewpoint: the
dataset X is a set of N features (the temporal time courses) that belong to a given signal
manifold or feature space F. The distribution of the data in F can be modeled as a multi-
modal distribution; each mode will be characterized as a data cluster. The literature on
fMRI data clustering deals with the following problems:

e The method that is used for deriving the final clusters: among others, C-means al-
gorithm [10] , fuzzy C-means [12], [59], dynamical cluster analysis [13], deterministic
annealing [220] have been proposed.

e The definition of the feature space F, that is, of the metric that is used to quantify the
similarity between time courses: This similarity can be measured by the Euclidean
distance in the signal space of origin [220] or another distance based on correlations
[60], or a Mahalanobis metric [96]. The choice of a correct metric is not obvious; an
Euclidean metric can be a suboptimal choice [97] for high dimensional spaces F.

e The quality of clustering results is difficult to assess. To solve these problems, au-
thors have proposed some heuristics [60] [161], but these are not necessarily optimal;
moreover they are used after convergence of the algorithms, or sometimes yield com-
plex multistage strategies [59].

e This is related to the problem of the selection of the number of clusters [60]. It
is intuitively clear that the choice of a given number of clusters corresponds to a
certain bias/variance tradeoff, but this tradeoff is usually implicit.

These methods are efficient [12] from a computational point of view and can isolate
interesting patterns in the data; this explains their relative success for the analysis of fMRI
data. However, the solutions proposed to all the above problems are rather heuristic in
nature. We address the question with a new clustering method in chapter 4. Additionally,
clustering algorithms can spend a lot of efforts trying to isolate patterns of no interest;
this is due to the absence of prior information in these methods. Recent works [67] suggest
that introducing anatomical and functional information (i.e. a space of interest) improves
both the generality and the precision of the method. Last, unlike PCA or ICA, they do
not decompose the data into components, and thus do not benefit from the associated
denoising effect.

3.3.4 Self-organizing maps

Self-organizing maps are a variant of the clustering method. The particularity of self-
organizing maps is the use of a 2-dimensional map to represent the feature-space [62]. This
map represents cluster centers, which are updated by taking into consideration randomly
selected features of the dataset. The difference with respect to classical clustering methods
is that the incorporation of a new feature into the nearest cluster has also an impact on
the neighboring clusters, giving some consistency to the map. However this clustering
method is quite technical, and requires the use of several non-interpretable parameters, so
that the method is still of limited use for fMRI data analysis [165] [43].
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3.3.5 Multivariate spectral analysis

Let us mention an original work on multivariate exploratory analysis of fMRI data based
on the spectral representation of the data [162]. The authors present a way to derive
spectral parameters (with confidence intervals) from the data using Wiener theory: these
parameters are computed from each pair of voxels of the dataset: i) a coherence measure,
that basically measures the synchronization between the voxel time courses at a frequency
of interest, and 4i) the phase lead, which measures the advance of one voxel over the
other one. These quantities are original, and meaningful, but there is a real problem in
analyzing the resulting N x N matrices in a systematic way. Moreover, this technique
assumes that the information of interest is concentrated at a given frequency, which is
only true for periodical experimental designs, and problematic if several experimental
conditions alternate.

Beyond the methods

Let us make a final point on this chapter by noticing that the inflating corpus of existing
analysis methods makes the choice of the proper methodology embarrassing. This has
incited some authors to perform some meta analysis, i.e. some analyses that involve the
parallel derivation of some of the above methods, each one being taken as a statistical
signature of the data. This is notably the case of [104]; a toolbox has been created for
practical use [105]. This approach has the advantage of combining the specific inputs of
the included models. On the other hand, it may be computationally expensive and the
combination of different statistical signatures is both difficult to perform and to interpret.

3.4 Conclusion

We consider that univariate analysis of fMRI data has received much attention and thus
theoretically and practically sufficient solutions (though some particular aspects are still
currently improved technically). We will thus rather work in the margins of this main
approach, considering questions that are left behind by the standard GLM: what is actually
the shape, amplitude or delay of the hemodynamic response associated with the different
stimulations (chapter 4) 7 What can we do from a strictly statistical point of view, i.e.
without considering temporal modeling (multivariate approach, chapter 5) 7 We will focus
on the dynamics of the dataset, with either linear (chapter 6) or non-linear (chapter?)
methods. In an exploratory (multivariate) spirit, we will also consider fMRI datasets as
the embedding in a high dimensional space (the images) of a low dimensional system and
study it with nonlinear methods (chapter 8). These different points of view will finally
help us to propose an alternative analysis scheme that is data-driven, but with the ability
to focus on signals of interest (chapter 9).
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Chapter 4

Temporal modeling of fMRI data

In the study of fMRI data, the first concern is to build a temporal model of all phenomena
that appear in the fMRI dataset. Though we do not pretend to solve definitively this
issue, we make in this chapter a review of the main ideas that bridge the gap between our
knowledge of the underlying biological and physical phenomena of the experiment, and
the modeling of the empirical data. First, we summarize some common knowledge about
the BOLD signal -which characterizes the signal of interest present in the dataset- and
the fMRI measurements -which also include different, and sometimes problematic effects.
Then we propose a general mathematical framework (the prediction theory) to embed this
knowledge without introducing too many constraints of the nature of the signal. We make
a first connection with information theory, which characterizes the information associated
with stochastic processes; this allows for a generalization of the Maximum likelihood ap-
proach, where the structure of the representation is optimized with respect to a complexity
criterion. Last we discuss some of the basic technical assumptions that underpin tempo-
ral modeling (noise normality, response linearity) and -briefly- the extension to nonlinear
dynamical system fitting.

4.1 The input from biologists and experimenters

4.1.1 Phenomenological description of the BOLD effect

In figure 4.1, we reproduce the description of a typical signal given in [33]. The main
features of this scheme are accepted by many authors, though with minor differences
concerning the presence of an initial dip (which has not reached a consensus), and the
post stimulation undershoot. Note that the description concerns more the shape of the
stimulation than the values of the change -a few percent of signal change, depending on
the stimulation, the area under consideration, the acquisition sequence and the scanner.

Let us recall that the BOLD effect is a quite complicated effect that depends on changes
in cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate
of oxygen (CMROy). We sum up these facts in figure 4.2. Then we go on with several
points of interest concerning the BOLD effect.
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Figure 4.1: Schematic representation of the BOLD effect relative to a given stimulation.
Note that the quantity involved is a percentage of signal change; since there is no pro-
totypical value of change (which are typically in a range of 1% to 5%, depending on the
task, the area of the response, the acquisition sequence) we have not precisely quantified
the ordinate axis. The effect includes an initial delay of 1-3 s after the initialization of the
stimulation, followed by a ramp of 3-8 s before plateau signal change is reached. After
the end of the stimulus, the signal declines, and often undershoots the original baseline,
with a value which is half of the peak. The undershoot takes around 20 s to resolve. A
variant of the scheme is in the existence of an initial dip of 1-2 s at the beginning of the
stimulation.

CMRO, }

Stimulus | Neural . CBF T »| BOLD signal
activity
\ -~ /P

Figure 4.2: The chain of events leading to the BOLD signal.
The stimulus induces neural activity, which in counterparts triggers metabolic activity in
the form of a large increase of cerebral blood flow (CBF), a moderate increase of cerebral
blood volume (CBV) and a small increase of cerebral metabolic rate of oxygen (CMRO>).
The three effects result in the BOLD change.
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Location of BOLD signal changes

Because the venous vessels undergo the largest changes in deoxyhemoglobin content, the
largest BOLD signal probably arise around draining veins, which may be separated from
the area of neuronal activation by as much as 1 cm or more. It has been shown [135] that
the localization of BOLD and CBF changes do not always coincide. However, due to the
small signal changes obtained usually, it does not seem possible to correct for such spatial
bias.

The relationship between BOLD effect and neural activity

If it is commonly admitted that the BOLD effect actually reflects neuronal activity, a
quantitative relationship between these two effects has not been established yet. At this
point, let us simply mention here that neuronal activity can be quantified in at least
two ways: i) the average rate of generation of action potentials, and 7i) the average rate
of neurotransmitter recycling within the region. The question of which quantity mainly
triggers the BOLD signal is still under debate. However, an important contribution has
been made in [142], which describes simultaneous recordings of neural signals -local field
potentials and spiking activity- and fMRI responses from the visual cortex of monkeys.
It was shown that BOLD activity is better explained, in the framework of linear systems
theory, by local field potentials than by spiking activity. This suggests that the BOLD
contrast mechanism reflects the input and intra-cortical processing of a given area rather
than its spiking output.

The linearity of the BOLD response

Given the uncertainties concerning quantitative analysis of neuronal activity, the question
has turned into the following: Can one establish a linear relationship between the stimu-
lation timing and amplitude, and the final BOLD signal 7 Mathematically, this question
triggers the possibility of defining the BOLD response as linear time invariant filtering
process (i.e. a convolution) of the stimulation time course. Several studies have been done
experimentally comparing the response to brief stimuli to the response to longer stimuli,
using visual [219], auditory [93] and motor [93] stimuli. The consistent result of these
studies (see also section 4.1.2) is that the response is roughly linear, but that there is a
definite nonlinear component: the response to a brief stimulus appears to be stronger than
what would be expected given the response to a longer stimulus.

The nature of this nonlinearity may be related to either of the effects described in figure
4.2. First, the relationship between stimulation and neuronal response is certainly non-
linear, so that the main question is rather whether it is the only source of nonlinearity.
While the relationship between neuronal activity and metabolic activity is often assumed
linear, the relation of the latter with the BOLD effect can be affected by a ceiling effect,
or by a different timing of CBF and CBV changes.

Let us conclude that it is not safe to assume uniquely a linear response, which is however
the general hypothesis.
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Dynamics of the BOLD response

Although most studies are mainly concerned by the difference between the basis signal
level and the activation one, it is of interest to study the transient parts of the signal, at
the beginning and end of the stimuli. Once again, these transiences may be either the
effect of changes in neuronal activity and/or in the metabolic counterparts (combined
change of CBV, CBF and CMRO,). This difficult issue can nevertheless not be solved by
the use of BOLD fMRI alone.

For example, the signal undershoot after stimulation is attributed to the following effect:
the CBV remains elevated after stimulation while the CBF returns to baseline, so that
the deoxyhemoglobin content remains elevated after flow has returned to a resting level.
A biomechanical model called the balloon model has been proposed to explain this [31].
The initial dip is another important but controversial aspects of the BOLD response
dynamics. First, the observation of this effect with BOLD fMRI is not systematic,
and could be achieved only at high field strengths. Second, it has sometimes been
interpreted as an initial increase in local deoxyhemoglobin prior to the larger and latter
decrease, which suggests that it may map more tightly the areas of neural activity
than the deoxyhemoglobin decrease, which causes the massive part of the BOLD ef-
fect [146]. But this hypothesis is not the unique one, leaving the question unanswered [32].

Let us end up this section with some remarks inspired by the phenomenological study
of the BOLD response:

e Temporally, an activation signal is well characterized by a delayed increase.

e Spatially, the location of such increase is not necessarily accurate, but gives a rea-
sonable approximation of the neuronal activation locus

e In a general approach, it is not safe to assume uniquely a linear response. This is
however a frequent hypothesis, which is justified if the stimulus duration and inter
stimulus interval are not too short.

e One should preserve some flexibility in the choice of the hemodynamic or impulse
model in order to fit correctly the transient parts of the signal.

A perhaps more complex question, that we will not address, is the existence of brain
networks including excitatory and inhibitory systems, which yields a more complex dy-
namical evolution of metabolic activity.

4.1.2 The hemodynamic response filter: history and discussion

The study of the hemodynamic response function (hrf) is one of the main efforts in fMRI
data analysis literature. Schematically, the modeling and quantitative study of the hemo-
dynamic response has progressed in several steps:

e the use of an optimal model within a parametric family
e the introduction and use of physiologically meaningful parameters

e the use of non-parametric models
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e the study of the regional differences
e the study of the linearity

Let us give an account of these successive steps.

Parametric models

The first approach has been the use of heuristic model to describe the hemodynamic
response. In fact, its purpose was to detect reliable activations by taking into account the
delay in the response peak. The successive models were :

The model proposed in [82] was a Poisson filter, which is a particular choice within
the gamma family. The filter can be parametered by a delay value, but the dispersion is
also equal to the delay value, which is too restrictive.

A gaussian model has been proposed in [183]. It is discussed more thoroughly in the
next paragraph.

Lange and Zeger [137] have introduced a gamma function, whose parameters had to
be estimated in a computationally difficult manner.

A more physiologically plausible model has been retained for the hrf model of the SPM
software, which is the difference between two gamma functions:

h(t) = <§>aexp <—¥> o (%) exp (—t _b,dl> (4.1)

where d = ab is the time to peak, d’ = a'b’ is the time to undershoot, with a = 6,4’ = 12
and b =10 = 0.9s; ¢ = 0.35. This model has become the most frequent one (see e.g. [93]),
since it models both activation, undershoot, and that both modes are not symmetrical.

Physiologically oriented parametric models

Among the parametric models used for the characterization of the hemodynamic response
function (hrf), some of them were found preferable: for example, some particular parame-
terization of a gaussian kernel enables an interpretation of the estimated parameters, like
in [132], [202]:

Bo (t = B2)°

hit.8) = e (—7) T (42)

with 8 = (fo,..,33); Bo can be interpreted as the gain in the hrf, 3; as the duration
or dispersion of the hrf, G, as the delay of the hrf and 3 as the baseline level. But a
limitation of this model is the shape of the kernel, which is symmetrical around its peak,
which is not confirmed by inspection of the hrf. The gaussian kernel shape also neglects
the post-stimulus undershoot.
This model has been generalized in [133]. In particular, an asymmetric gaussian model has
been introduced, but it induces a heavy computational load; another more physiological
model was also introduced with inflow, outflow rates, but with still worse convergence.
The SPM hrf model can also be partially interpreted in terms of physiological param-
eters (equation 4.1).
A special emphasis has been put on the estimation of the delay parameter, which is
of course more crucial in the analysis of the response dynamics. A first attempt had been
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the introduction of the temporal derivative of the SPM standard hrf into the linear model,
which was meant to account for and statistically assess the delay [78]. But the method
has been shown not to allow for correct delay estimation [139]. In the latter work, an
unbiased method is proposed for estimation of the delay.

Another delay estimation procedure is described in [192], which is based on the spectral
study of the voxel time series. However, this study also showed the confounding effect of
low frequency effects present in the data.

Use of non-parametric model

A more general approach to the hrf estimation is to introduce a finite impulse response
(FIR) filter, and to optimize its coefficients given the data and some priors on the response.
This approach has been pioneered in [98], and recast in a simplified framework in [149].
The estimation procedure is based on a Bayesian framework for the tuning of model
hyperparameters; it has been generalized in [44], [150] and is probably close to optimal for
estimation purposes. The computational load is heavy, but can be reduced with adequate
approximations.

Note that Miezin et al [156] use a two-steps procedure, with first a FIR estimate
followed by a fit to a 3-parameter delayed gamma function.

However, even when assuming that a best estimate of the hemodynamic response is
derived, there remains some issues: the (spatial) non-stationarity of the hrf is taken into
account in the model, but it would be interesting to allow for a study of the different hrf
patterns across the dataset. Another concern is the non-linearity of the global response.

Regional differences

The regional differences for the response delay have been well characterized by the afore-
mentioned models [98], [192], [139]. A widespread hypothesis is that the signal due to
the veins is relatively late with respect to parenchymal signal, but there is also variability
within the parenchyma itself. A perhaps more complete study has been presented in [156].
Let us recall some conclusions made by the author:

e The amplitude and time to peak of a hemodynamic response are quite reproducible
for a subject and a stimulus, within a given region.

e The amplitude of the response depends on the trial presentation rate: closer stimu-
lations induce weaker responses.

e The timing and amplitude of the responses differ between regions, so that no sys-
tematic relationship can be obtained.

e Across subjects, the amplitude of the response shows no significant correlation with
timing of the response.

e Statistically significant timing differences can be observed between regions, allowing
for specific analysis of those relative timings.
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Finally, within-subject variability in terms of activation amplitude and timing has been
described in [164] as high, and in some instances, comparable to between-subject variabil-
ity. Of course, all these phenomena have been described in an empirical manner, and do
not yield straightforward interpretation in terms of neural responses.

Response Linearity

Last, a strategic issue in the study of the hrf is that the actual response to a stimulation
does probably not follow the simple linear convolution model. The consequence of this
hypothesis is that the response derived from a quick stimulation does not help much for
the case of long or closely presented stimuli. This specific issues has been studied in
[49], [219], [157], [21] [116] [174]. In [219] it was shown that short stimulation periods
and intensity yielded strong deviation from the otherwise acceptable linear model. This
observation is also made in [93], with 4 s of inter stimulus interval being a reasonable
limit of the linearity model. In [157], the study was done on both BOLD and CBF
with a perfusion technique, and supported the idea of a linearity between neural activity
-which is non-linearly related to the stimulation- and CBF, and a non-linearity (a
saturation) between CBF and BOLD signal. In short, the BOLD response to short
stimuli overpredicts the response to long stimuli. In [21], the authors further showed
that the non-linearity in the response was not spatially stationary. So did Huettel and
McCarthy in [116], who considered rather the non-linearity related to the refractory
period after one first stimulation. Finally, in [174], the link with field strength is studied
-high fields induce weaker non-linearities- and some evidence is given for a tissue (gray
matter) specific nonlinearity, interpreted as a switch effect associated to activation; this
also confirms the fact that deviations from linearity are significant for short stimulation
only.

The link with standard regression models is yet not systematic, even if a connection has
been made between the balloon model of Buxton et al. [31], and the explicit non-linear
model from Friston et al. [83] in [85]. A perhaps more promising application has been
given in [76], but its validation has still to be carried out.

In the remainder of this work, we will not be explicitly concerned with the precise
hemodynamic response. Rather, keeping in mind all these difficulties in the use of fixed
hemodynamic models, we will use flexible models to allow for correct signal detection given
some simple hypotheses on the response.

4.1.3 Some sources of confounds in the acquisition

The noise that adds further to the signals from a particular voxel has two sources: random
thermal noise and physiological fluctuations. The random thermal noise arises primarily
from stray current signals in the receiver coil. This thermal noise is spread throughout the
raw acquired data. The result in the reconstructed images can be accurately described
as gaussian, independent from voxel to voxel, and with uniform variance. However, the
variance of the signal over time is several times larger than what would be expected from
thermal noise alone, and exhibits both spatial and temporal structure.

Physiological fluctuations include several effects: cardiac pulsations create a pressure
wave that strongly affects the signal of flowing blood, but it also creates pulsations in CSF
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and in the brain parenchyma itself. This motion creates non-uniform signal fluctuations.
Usually, the cardiac rhythm is aliased in the data and can appear at low frequencies. The
respiratory rhythm is easily observed due to the more adapted sampling time of fMRI data.
There are also low frequencies resulting from either the scanner drift or slow physiological
pulsations (vasomotion) [158].

It is well known that strongly autocorrelated noise (often called % noise in the fMRI
literature [221]) biases usual models and their statistical results; however this effect has
been somehow minored in [148]. This kind of component is partially canceled by high-pass
filtering (detrending) of the data [223].

4.1.4 Processing-related artifacts

Let us underline here another difficulty: if little is known or assumed about the neural
activity associated with fMRI signals, the definition of the signals themselves is not un-
ambiguous: it clearly depends on the preprocessing performed on the data. This effect is
evident if we consider the spatial registration of the data, which is necessary to study the
signal on a voxel basis, but it can also bias the data (see chapter 1, section 4).

Other effects, such as the temporal registration performed of the data to account for
different acquisition timing are of paramount importance in the study of the response
delay. Note that performing first the spatial or the temporal correction yields different
datasets. Data smoothing is another controversial aspect of the problem, as global scaling
or detrending (see chapter 1, section 4).

The optimization of preprocessing choices is not the topic of this work, but we insist
that this question adds some relativity in the interpretation of experimental results. This
is another incentive for not over-constraining the temporal model of the data.

4.2 A mathematical framework for the temporal model

Until the end of this chapter, we consider a time series x(t), t = 1,..,T e.g. a voxel time
course, obtained from a fMRI dataset. We also assume, when necessary, that we have a
description of the experiment, formulated as a paradigm. We ask two simple questions:
First, does the time course contain information, and if yes, how can we measure it 7
Second, How can we highlight the information of x that is related to the experimental
paradigm 7

Before starting, let us point out the following question: if x is naturally a numerical
variable, the experimental paradigm is most often defined as a sequence of events or epochs
(that describe the subject state). The use of the latter in quantitative analysis requires
the setting of a numerical variable. As most authors, we solve this problem by defining
C' experimental conditions -basically the different states/events of the experiment- and
for each condition ¢ = 1..C' a time course P.(t). For example P.(t) = 1 means that the
subject undergoes condition ¢ at time ¢, while P.(¢) = 0 means that condition ¢ was not
realized at time ¢. The ensuing vector P = P.(t), ¢ =1,..,C, t = 1,..,T will be treated as
any numerical variable.
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4.2.1 Stochastic processes and generative models

First, let us notice that the observation x(¢) is corrupted by noise -whatever the true
nature of the noise. Consequently, it is advantageous to consider it as the realization of
an underlying stochastic process X (¢). Analyzing a time series or a set of time series
amounts then to the following inverse problem: given the observation x(t), try to identify
the underlying stochastic process that generated it. Such a task is possible only if we define
which class of stochastic process the signal may belong to: we need some prior on the
generative process of the data.

Considering all the previous work made on fMRI data, we will make the following
choice:

e The part of the signal which is related to the paradigm is the result of the convolution
of the latter with a finite impulse response (FIR) filter.

e The process that adds to this first component (it may be advisable to avoid the word
noise, since it may reflect informative processes [22]) has an autoregressive structure.

Both priors suggest some way to deal with data analysis, respectively projection and
prediction. Before going to these issues, let us clarify our mathematical framework. It
is convenient to consider that the process X(¢),t € 1,..,T (respectively ¢ € Z) belongs
to the Hilbert space of the finite (resp. infinite) processes of finite energy R? (resp. [?).
Additionally, the process X(¢),t = 1,..,7 will be assumed stationary; this means the
following three properties:

E(X(t)?) < ooVte([l,.,T] (4.3)
E(X(t) = p(=0)Vtell,.,T] :
E(X(r)X(t) = EX(@+s)X(t+s)V(rts)/1<rt<T—s (4.5)

In other words, X (¢) has finite second order moments, a mean ;1 = 0 and an autocovariance
function y(u) = E[X (¢)X (¢t — v)]. Note that none of these properties is in fact guaranteed
for empirical data, but the assumption is necessary for the application of mathematical
theory. However, detrending procedures (section 2.4.5) are explicitly designed for this
hypothesis. Equations (4.3) to (4.5) concern only weak stationarity, and conditions on
higher moments would be necessary for strict stationarity. However, concerning empirical
data it is sufficient and more realistic to work on a weak stationarity hypothesis.

Projection: Assuming that the space of task-related activations has a closed structure -
this is the case for finite impulse response (FIR) functions of the experimental stimulation-
then noting this space S, the following decomposition holds:

X =PsX + Z, (4.6)

where Z is simply defined as the residual of the equation, Pg is some projection operator,
which can depend both on S and the assumed residual structure. The General Linear
Model (section 3.2.1) is nothing but an implementation of this model. Noticing that pro-
jection can be seen as a minimization procedure
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Pgx = argmingeg ||z — s||, we see that this model requires two informations : the specifi-
cation of S, and the specification of a norm (the ambient metric)||||.

Specification of S: it may include the canonical response to the paradigm, i.e. S =
span(h x P.),c = 1..C, but also some derivative of these patterns with respect to some
parameters. Here, we use a more general FIR model S = span(P.(t —m)),c =1..C,m =
1..M. When the experimental paradigm reduces to a periodical stimulation of frequency
w, then S = span(sin (wt), cos (wt)) is an obvious choice.

Specification of the metric: this problem is related to the noise model (z = x—s), which
is not known -this is the main weakness of this model. If z is assumed i.i.d gaussian, then
the metric is the usual Euclidean one. If z has a known covariance structure (covariance
matrix A) then the metric is the bilinear form associated to A~!.

Prediction: The second approach is to consider that solving the inverse problem about
the generative process amounts to finding a predictive model of the data. A typical model
is autoregressive prediction, i.e. the definition of a predictor of X (¢ 4+ 1) given its past
values. In the Hilbertian framework, the predictor element of H; = span(X(1),.., X(¢))
with minimum mean-square distance with X (¢ 4+ 1) is noted Py, X (¢ 4 1).

The solution of this problem is not difficult. Let us concentrate on the one step
predictor
X(t + 1) = PHtXt-i—l? t> 0 (47)

X(t+1) € H, implies the existence of ¢y, .., ¢y so that

X(t+1) Z% (t+1—1i), (4.8)

where ¢¢1, .., ¢y satisfy the prediction equation

E(X(t+1DX(t+1-j)) (Z GuX(t+1—i)X(t+1 —j)) Lji=1,..t (4.9

In terms of autocorrelation, this gives

t
i=1

ie.
Ft(bt =Vt (411)

where I'y = [v(i — J)]ij=1.t, 7 = (v(1),..7(t)) and ®; = (P41, .., $). Equation (4.11) im-
plies the existence of the solution, since matrix ['; is non singular under general conditions:
If v(0) > 0 and y(h) > 0 as h — oo then the covariance matriz T'y is non singular for
every t.

This simple setting, known as Yule-Walker equation, provides an excellent model for
oscillating phenomena: for example, sinusoids are characterized by the equation z(t+1) =
2cos (w)x(t) — x(t — 1). Moreover, the natural Euclidean metric can be used for the
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estimation, since the residual is assumed white. But this approach clearly over-fits the
data, since the problem has as many unknowns (¢7;) as data items (y(t)).

Next we try to reconciliate prediction and projection approaches. Formally, the Wold
decomposition together with the Kolmogorov formula give a framework for the identifica-
tion of the generative process for X.

4.2.2 The Wold decomposition

The Wold decomposition of a process X defined for ¢t € Z gives a decomposition of the
process into a deterministic process V(t) and an uncorrelated stochastic process U(t),

X(t) =U(t)+V(t) (4.12)

First let us define o? = ]E[(X(t +1)— X(t+ 1))2]. Alternatively, o can be defined
by the Kolmogorov formula: let f the spectral density of the process X (defined a.e. on
[—7,7]). Then

1 ™
o = 2mexp <2—/ log(f()\))d)\> (4.13)
™ —T

This should be compared with the equivalent formula for the variance of X when considered
as a random variable

o= [ fOyar (4.14)

0? < v always holds, and "72 is the proportion of the variance of the process that can be
predicted given its past values.

Thus, if 0? = 0, the process is deterministic (i.e. fully predictable): U(t) = 0.

The other case (the unique case that makes sense for empirical data ) is treated by the
following theorem, stated in the hypothesis of an infinitely long time process (see [27] for
details):

If 02 > 0, X(t) can be expressed as

X(t) =Y W Z(t—j)+V(t) (4.15)
7=0

where
(i) o =1 and 332,97 < o0,
(ii)  Z(t) ii.d. ~N(0,0?),
(iii) Z(t) € Hy, YVt € T,
(iv) E(ZHV(5)) =0, Y(s, 1),
(0) V() €N Ha
(vi) V(t) is deterministic
The stochastic process U(t) = 372 ¢;Z;—; is thus defined as a M A(co) process, with
Z(t) as innovation process.
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Interestingly, the terms in (4.15) can be made explicit by letting

2 = X(t)— P, X1 (4.16)

o = % < X(1),Z(t—j) > (4.17)

V() = X(t) —Z%‘Z(t—j) (4.18)
=0

However, these formula make sense, and in particular yield a non-trivial deterministic
process V(t) only in the case of infinitely long time series (¢ € Z), which is not accessible
here.

A much similar conclusion can be drawn by looking at the spectral representation of
the process: the spectral distribution of any stochastic process that satisfies the above hy-
potheses decomposes into two parts f = fy + fi/, with fiy having an absolutely continuous
density, while fy is singular; fyy and fy are the spectral densities of U and V respectively.
Their definition naturally implies that only fi; is accessible from empirical (finite length)
data.

However, the stochastic variance of the process can be at least approximated by em-
pirical estimation of the process spectrum. In other words, we are able to quantify the
intrinsic uncertainty of the process without more knowledge on its content! Moreover, we
can consider some prior information in the definition of the deterministic component: the
experimental paradigm, for instance. The next step relies then on the identification of
U(t) and V(t) given our prior on the generative process.

4.2.3 Explicit prediction model

It seems that the analysis of the data in the frequency domain has several advantages in
terms of predictability analysis. However, this is quite problematic: first, the estimation
of the signal spectrum by FFT or related methods yields a poor estimate of the spec-
trum [27]. In practice, one has to use sophisticated methods to reduce the bias in the
estimation of the spectrum [191]. Moreover, the study of the density does not consider
important information as the phase of the Fourier coefficients. Last, unless the experi-
mental paradigm is periodical, the interpretation of the spectrum in terms of task-related
activity is problematic [147]. In particular, task-related responses to event related exper-
iments have a spread spectral representation, and thus can be well described only in the
temporal domain.

Therefore, we rather deal with an explicit model stated in the temporal domain as
in the Wold decomposition. We simply identify the deterministic component V' (¢) with
task-related activity, the remainder being the stochastic component U(t). This yields the
following model
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X(t) = U®)+ V() (4.19)
M C
V) = D) BuvelP(t —m) (4.20)
m=0 c=1
L
Z(t) = Ul)=> aZ(t-1) (4.21)
=1
or = war(2) (4.22)
(4.23)

This model is not exactly analogous to the Wold model, but it yields realistic estima-
tion. Parameters (g, .., By) represent the FIR hemodynamic model; (71, ..,7.) represent
the information of interest, i.e. the relative impact of each experimental condition on the
process; (aq,..,ay) are the autoregression parameters. Note that equations (4.19) and
(4.21) are equivalent to

X(t) = V() +A®) + Z(t) (4.24)

L
Aty = Y aZ(t-1) (4.25)
=1

Maybe it is now clearer that processes V(t), A(t) and Z(t) carry respectively informa-
tion about the experimental paradigm, the past values of the process, and the deviation
from prediction (innovation process). Next, we could generalize equation (4.20) by intro-
ducing a non-linearity

M C
Ut)=F(>_ Y BnyePel(t —m)) (4.26)

m=0 c=1

However, we do not consider this possibility here (see section 4.4.2 for some developments).
One may ask whether it would be simpler to consider V'(¢) as a random signal, avoiding
equations (4.21) or (4.25). But the distinction between these terms has several advantages:

e [t allows for the description of potential nuisance signals in the dataset, opening the
way towards identification.

e [t unbiases the noise estimate: the true stochastic variance can be identified as
var(Z) instead of var(V) (see the discussion about Kolmogorov formula in section
4.2.2).

e [t allows for an exploratory approach if the experimental paradigm is not determined,
or if one does not want to use this information (in particular if task related patterns
are close to periodical or low frequency patterns).

e It makes the residual more normal (see section 4.4.1).
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The next step is to estimate all the quantities involved in the model: (a;), (Gm), (7e¢),
but also -and this make the issue much more complex- L and M. For this reason, we
will use an information theoretical framework. In fact, this stems quite naturally from
a maximum likelihood approach; let us note 0 = ((«y), (Bm), (7:)) and ¢ the number of
independent parameters of the model ¢ = L+ M 4 C —1; then the estimation of § becomes
a classical maximum likelihood problem:

~

0 = arg max p(X10, P, )?, q) (4.27)

where )<_( is the past of X. Assuming that the model completely takes into account temporal
correlations, so that Z(t) is i.i.d., this right hand term factorizes

T
p(X10, P, X,q) = [[ p(X(®)]6, P. X (£).q) (4.28)
t=1
which incites us to consider the log-likelihood of the model

L(X|0,P, X, q) Zlog ()6, P, X (t),q)) (4.29)

which we identify as the opposite of the conditional entropy

H(X|0, P, X,q) = —Ellog (n(X(1)|6, P, X (1),q))] (4.30)

4.3 Prediction and information

4.3.1 Entropy rate of a stochastic process

Let us consider the stochastic process X. From the information theory point of view, it
can be endowed with an entropy rate (see appendix C.1.4 and [48]). The formal definition
of the entropy rate is

n(X) = lim H(X( ), X(2),.., X (1)) (4.31)

t—oo t

where H(X (1), X(2),..,X(¢)) is the entropy of the joint distribution of X(1),.., X(¢). Let
us recall that the definition of the entropy of a random variable Y of dimension d and
probability density p is !

HY) = Hip) == [ oz pdp = By (= 1og(0) (4.32)
The following property holds if the process X is stationary:

p(X) = lim H(X(8)[X(1),..,X(t — 1)) (4.33)

t—oo

In this work, we use the logarithm in basis e, by contrast with most of the information theoretic
literature which has been developed in basis 2 . This choice has no impact on the theory.
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This gives a more intuitive interpretation: the entropy rate can be interpreted as the
additional randomness of the process at each time step, i.e. its non-predictable part. This
quantity is also the limit of the increase of the extensive entropy in [20].

The entropy rate is easy to compute in at least two cases: for Markov processes and
for gaussian processes. For biological data, the gaussian model will be more convenient.
Let X be a gaussian stationary process. Let T' be the covariance matrix of X(1),.., X(¢)
(I is Toeplitz with I';; = (|t — j|), 7(k) being the autocorrelation coefficient of order k).
The joint entropy of the vector X (1),..X(¢) is thus

H(X(1), .., X(t) = %log (det(2exT)) (4.34)

But for ¢t — oo the density of the eigenvalues of I' tends to a limit, which is the spectrum
of the stochastic process. We thus obtain the following formula for the gaussian entropy

rate:
™

1 1
n(X) = 3 log 2me + - log(f(X))dA (4.35)
L
which is nothing but a restatement of Kolmogorov formula (4.13). In fact we have the
relationship

o’ = L62’7()() (4.36)
2me

o2 being the stochastic variance used in the Wold decomposition. Stated another way, the
entropy rate measures the stochasticity of the process, i.e. it is related to the variance of
the best estimator given an infinite past.

For fMRI data, the process is of course of finite length, but, as the stochastic variance,
the entropy rate can be computed through the estimated spectrum of the time series. As
indicated in section 4.2.3, it is nevertheless preferable to use explicit prediction schemes;
in any case, adding a correction term for the parameterization of the process, the entropy
rate can be generalized into a complexity measure. Minimizing the latter is the goal of
the Minimum Description Length approach.

4.3.2 Minimum Description Length

Let &(t) be the optimal predictor of z(¢) as in equation (4.24)

L M C
i) =u®) +at) = St =D+ 33 BurePult — m) (4.37)
=1

m=0 c=1

Let ¢ = L+ M 4+ C — 1 be the number of parameters used in equation (4.37) and € be the
set of coefficients ((ay), (Bm), (7e))-

Defining a prediction model for x is in fact equivalent to assuming a form for the joint
probability of x(1),..,2(T), the joint law being parameterized by 6; the complexity of
the model together with the uncertainty of the data given the parameterization yield a
complexity form, which is, as in Kolmogorov’s initial work on complexity, stated in terms
of description length; more precisely, we have the following theorem, stated and proved by
J. Rissanen in [189] (see also [186], [187], [188]). Under the (fairly general) assumptions:

e () ranges over a compact subset of R? with a nonempty interior,
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e the joint density depends smoothly on @,

e the central limit theorem holds for Maximum Likelihood (ML) estimators of 6 ev-
erywhere,

Letting L be any length function satisfying Kraft’s inequality for all T, then for all ¢ and
e>0,

ZE(L(X)) > H(X(1), ., X(T)) + (3 — L logT (4.38)
for all 0 except within a set whose volume goes to 0 as T — oo. Moreover, there ezist
integers ne and length functions for which the opposite inequality (<) holds for all negative
e when n > n. and for all 6 of all dimension.

Kraft’s inequality is simply a technical assumption about coding functions:
Z{X(T)} 2L(X) < 1, where the sum is taken over all strings of length 7'

This theorem states that, no matter which universal code one uses, the mean code
length is bounded below by the expression C(X, 0, q), for any particular processes defined
by 6. This can thus be taken as the intrinsic complexity of the process:

C(X,8,q) = H(X) + 5= log (T) (4.39)
The computation of the optimal predictor for the process X becomes then the solution
of the problem ming ,C(X,0,¢). The final predictor z can be viewed as the Minimum
Description Length (MDL) predictor of the process X (¢) within the family of the predictors
defined by equation (4.37). Note that the definition of length that we use here keeps only
the first two terms of a more complicated expression, which is valid only for 7" big enough.

An analogous criterion for model selection, known as Bayesian Information Criterion
(BIC) has been derived, using a non absolutely continuous prior in the parameter space
[195]:

BIC(x,0,q) = —L(X|0,q) + % log (T)) (4.40)

where L(x|0,q) stands for the log-likelihood of X; this is equivalent to (4.39) since
E(L(x|0,q)) = —H(x)
This criterion is maybe less famous than Akaike’s Information Criterion (AIC) [3]:

AIC(x,0,q) = —L(X|0,q) + % (4.41)

which is the asymptotic, expected value of the log-likelihood. But AIC does not take
into account the uncertainty of the parameter estimation when estimating the uncertainty
about predictions; BIC-MDL is in fact more conservative, especially for long time series.
The BIC-MDL criterion is an asymptotic approximation of the complexity of the generative
process. In [20], the penalty term £log(T) has been identified with the subextensive
entropy of the time series (z(1),..,2(T")), which is a universal measure of the complexity
of the underlying process; we develop this point of view in Appendix D.

4.3.3 Making it work in practice

The problem of process identification is now well-posed, we can now introduce further
simplifications to obtain a quick algorithm. First, let us notice that the estimation problem
(4.37) divides into two steps:
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e Estimation of the task-related response defined in equation (4.20). This involves M,
(Ve)s (Bm). This step is more difficult since the model is bilinear in the variables

(7e) X (Bm)-

e Estimation of the autoregression parameters L, (a;), and derivation of the final vari-
ance var(Z), following equation(4.20).

We propose that each step can be made efficiently through using orthogonal regressors.
In the first step, we consider a space of regressors P.(t — m),c = 1..C,m = 1..M where
M is sufficient to represent adequately the impulse response function. In order to obtain
the orthonormal basis Q = (wy, (1)), ¢ = 1..C,m = 1..M, we perform a PCA of the set of
regressors P.(t —m),c = 1..C;m = 1..M. This family is overcomplete, since it is of dimen-
sion MC instead of M + C’; but the complexity criterion prevents from overfitting, and
only a slight correction is made post hoc (see equation (4.49)) to constrain the factorized
solution. Then the minimization of the complexity criterion

XM, () (o)) = Lo varte = 33 trelatt — )+ SEMIET g

m=0 c=1

boils down to the sum

I'logT

I
COX, M, (), (B)) = C(X, 1, (8)) = 3 log (var(e — 3 b)) + 5
=1

1 11 T
= 5 log (var( 252 Og (4.44)

(4.43)

where §; is the fit value associated with w; (3 = X.Qf). § is thus obtained readily, and
ordered 61 > .. > dp7¢. Then the criterion (4.44) depends only on the number I of selected
regressors. Its minimization represents the tradeoff between goodness of fit -minimization
of the variance of the residual x — 21-1:1 b;wi- and simplicity of the structure measured by
glojgﬂT. One can also notice that criterion (4.44) is convex with respect to [ if the following
property holds for I > 1:

I-1

(var(x) = > 67)(67 — 8741) > 67 (4.45)
i=1

If this is true, the minimization can be performed by increasing [ until
o log(T
log 1 — . 5 _los(D) (4.46)
var(x) = iy 51'2 T

which can usually be approximated by

6141 log(T')
var(e) =60 T

In more general cases, the criterion has to be computed for all values of I.

(4.47)
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Once [ is obtained, one comes back to the original basis

I M C
D Giwi=>> (mePelt —m) (4.48)
=1

m=0 c=1

The solution in terms of (v.), () is then the best rank one approximation of the coeffi-
cients ((m,c):

((Fe), (Bm)) max g, (Cm c ﬂm’Yc)Q (4.49)

which is simply provided by the SVD of ((,,.) once written as a M x C matrix (from
our experiment, the approximation is always very accurate). All these tricks convert a
non-convex non linear problem into a convex linear one. Moreover, if many time courses
have to be analyzed, the regressors (w;) are computed once and for all.

Step 2 is solved in the same way, though the setting is more simple:

1
m(ln)—log var Z—Zalz (t—1))
L,(c

LlogT
2 T

(4.50)

where z(t) = x(t) — Z%zo 25:1 BmYePe(t —m) the regressors x(t —m) are orthogonalized
using the usual Gram-Schmidt procedure. This is because the order of the regressors
is important: (¢t — 1) conveys a priori more information on x(t), so that it is simply
normalized; then x(¢t — 2) is orthogonalized with respect to z(t — 1) and normalized,
x(t — 3) is orthogonalized with respect to x(t — 1) and (¢t — 2) and normalized and so
on. The minimization of the criterion (4.50) involves z instead of the input data z; this
means that the fraction of variance that could be attributed to paradigm-related activity
has been subtracted away. In turn var(z — Zle apz(t — 1)) is an improved estimation of
the true stochastic variance of the data.

Then step 1 and step 2 are iterated until convergence, x being replaced with = —
Zlel apz(t—1) in step 1 to have an improved stochastic variance estimation. Convergence
is not proved, but is quick in practice (there are only two discrete parameters left, I and
L). One example of the resulting procedure is given in figure 4.3.

The philosophy of the minimum complexity approach is illustrated and discussed in
figure 4.4, where it is shown on a simulation that the accuracy of the hemodynamic
repose model, defined by the number of regressors that survive the minimum complexity
test (equation(4.44)), is related to the signal to noise ratio (SNR): stated differently, this
means that higher SNR allow for more sophisticated, hence more accurate hemodynamic
response estimation.

We discuss some limits of this model and generalize it when multiple realizations of
the data are given in input in section 9.1.

4.4 Some estimation issues

A very important problem is the set of admissible hypotheses that can be made for the
mathematical treatment of the functional MR signal. This question has two counterparts:
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Figure 4.3: Illustration of the temporal model.

Given the fictive experimental paradigm (represented in grey, block design) a time course
of length 7" = 130 has been generated by adding a task-related pattern (blue time curve), a
Brownian signal and white noise, so that the signal to noise ratio (SNR) is approximately
0.5. This signal is detrended, providing the input signal for the algorithm (in black). The
algorithm provides two components: the estimated task-related component (in green),
that is related to experimental design, and the autoregressive one (in cyan). The residual
of the model (in red) has been lowered by 8 units in order to facilitate visualization. Note
that the task-related component is correctly approximated by the model, in spite of the
noise level.

e These hypotheses should be relevant given the knowledge that we have from the
data.

e They should yield computationally tractable models given the nature of the data
(noise, length of the available series).

With these two points of view in mind, we address some classical questions about temporal
modeling of fMRI data: the normality of the noise, and the linearity of the response
with respect to the stimulation. Last, we discuss the use of more technically advanced
techniques issued from the theory of dynamical systems.
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Figure 4.4: Minimum Complexity and Signal to Noise Ratio (SNR)

Given a fictive experimental paradigm (gray strips), we simulate task-related activity with
different Signal to Noise Ratios: 1 (a), 0.33 (b) and 0.1 (c), and analyze the resulting time
courses (in black) with the method presented in 4.3.3. The estimated task-related signals
are represented in green. As expected, the amplitude of the resulting pattern is related
to the SNR, but the accuracy of the model is also highly dependent on the SNR: The
model in (a) has been estimated with 3 coefficients, the model in (b) with 2 coefficients,
the model in (¢) with 0 coefficient. The interpretation is that in the minimum complexity
perspective, higher SNR allow for more sophisticated, hence more accurate models.

4.4.1 The gaussian noise hypothesis
Is it reasonable?

Actually, it is extremely important to define what is assumed normal or not: for example,
the residual from a regression analysis applied to raw fMRI data is, in general, far from
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gaussian. However, if a more complete data decomposition is applied, as in the Wold
model (4.12), there will likely be little deviation from normality in the residual. But, does
the difference between these two cases lie in the temporal structure (autocorrelation), or
in the statistical distribution ? Using the vocabulary of information theory, we notice
that both deviation from normality and whiteness can be interpreted as the presence of
information in the signal. Indeed:

e From the statistical perspective, the gaussian distribution is the one that has maxi-
mal entropy (i.e. dispersion) for a given variance [48], which we interpret the follow-
ing way: among all signals of identical energy, the gaussian is the one that carries
minimal information. The notion of information becomes clear if we compare the
gaussian distribution with a bimodal distribution, that can code e.g. for the state
of a binary system.

e From a dynamical perspective, the entropy rate, i.e. the intrinsic randomness of a
process, decreases when the autocorrelation i 1ncreases (for an AR(1) gaussian process
of coefficient p, the entropy rate is equal to —3 Iog V1 = p? + cste).

Moreover, these two aspects are not independent in practice; for example, the density
of a sinusoidal signal is d(u) = im, thus certainly not gaussian.

We restate thus the question in the following manner: does deviation from normality
in fMRI data have a meaning per se, or is it rather related to the temporal structure ?
We plead for the second explanation, due to the known predominance of low frequency
-probably aliased- signals in fMRI data. On the other hand, there is to our knowledge no
particular source of non-gaussian randomness in fMRI.

In practice, this means that temporal models that account well for trends and data
correlation can be assumed to have gaussian residuals. This clearly eases the estimation

procedures.

How can one manage data analysis without this hypothesis?

Assuming that the gaussian hypothesis should be rejected, we would have to face the
problem of estimating the signal distribution from empirical data. It is then advisable
to use non parametric methods, such as kernel estimation as in [63]: for example, let us
assume that we would like to estimate the statistical density D of a random variable X
given T samples X (1),.., X(T'): we can then use the estimation

1 T
== > Ko(u—X(1)) (4.51)
t=1

where K is a kernel, e.g. a gaussian kernel, of width parameter ¢. The entropy of the
distribution is then easily derived

H(X) = H(D) = / log(D(u))D(u)du (4.52)

Thus there remains only to derive the parameter . We have the following theorem, stated
and demonstrated in [26] for the general case of a multivariate process X of dimension d:
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_1
If X is stationary and if D decays rapidly at oo, then, setting o = ¢ (%) e (c>0),

1 T 4+
log T \log T supyerd|Do(x) = D(7)|7—00 — 0 a.s. (4.53)
In practice, for d = 1, setting o = Uar(X)T_% gives a good approximation of the

density. But from our experiments, this is not necessary for fMRI data.

4.4.2 The linearity hypothesis
Non-linearity in the BOLD response

We have insisted a lot on this question in the beginning of this chapter, in sections 4.1.1
and 4.1.2. We simply recall that for an inter-stimulus interval of more than 4 seconds, the
deviation from linearity is expected to be small.

What if we abandon the linearity hypothesis?

Assuming that temporal resolution of fMRI experiments improves, this question may be-
come recurrent in future analysis. Different methods are then possible.

e Find a parametric model of the non-linear activation, and estimate the parameters
given the data [76]. This approach has the advantage of being well-founded, yielding
then interpretable results, but relies on a possibly wrong or incomplete model, and
is often hardly tractable.

e Find a general model for non-linearities that allows for quick estimations, e.g.
Volterra series expansions [83]. This method is more efficient but less interpretable
than the first one, except if they can be linked together [85].

e Find a more general -non parametric- estimator of the non-linearity. This more
exploratory approach can be made efficient with adapted techniques. It has probably
little power for inference, but it may be interesting for exploratory analyses. A typical
way to do it is to introduce a non-linear function between the predictor variable &
and the output data =

x(t) = ¢(2(1)) + €(t) (4.54)

¢ can be estimated by a kernel procedure

x|% Dy () Ko (u — 2(1))
o =B = = o et —500) -

4.4.3 Non-parametric dynamical system

It is tempting to consider fMRI time series as being generated by a complex, unknown
and non-linear dynamical system. The question is then to characterize this system.
Dynamical systems known through their outputs can be characterized in several ways:

e The Lyapunov exponents that describe the time series [180].
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e The correlation integral defined in [99], and used in [50].
e Invariant measures or all other quantities that describe physical systems [55].

However, we have to stress that these methods are of no use here: for fMRI data, one
should keep in mind three basic characteristics: i) the time series are short, 7i) the data
is noisy, and the noise level is comparable in magnitude with respect to the signal of
interest, i77) the data is quite redundant (multiplicity of the time series). Both i) and ii)
readily imply that the use of nonlinear dynamical systems characterization is hopeless; in
other words, stochastic effects are stronger than dynamic ones. The only hope is that the
redundancy of the information can help for its characterization, but this is matter for the
next chapter.

Conclusion on temporal modeling

Finally, our proposition for the temporal modeling of fMRI data results in a combination
of FIR fitting methods with Wold decomposition and Minimum Description Length. This
stands as a compromise between flexibility -motivated by the a priori unknown structure
of the hemodynamic response- risk of over-fitting the data and interpretability of the tem-
poral components. One of the interesting results of this approach is the definition of the
stochastic variance of the time series, which quantifies its randomness, even if the gener-
ative process is not known. Moreover, via the entropy rate, this quantity is related to the
complexity of the process, a quantity that emerge from different approaches ([189], section
D), and seems to yield a universal characterization of temporal processes.

Note that the modeling proposed here is not concerned with the elimination of false pos-
itives; it rather tries to give an explicit form to the structured components that emerge
from the study of the time series. The problem of false positives control, as well as the
extension to multi-session data, will be studied in more detail in section 9.1.
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Chapter 5

Dealing with multivariate data

In this chapter, we discuss the second question which is essential in fMRI analysis, i.e.
the way of taking into account the redundant information contained in the sequence of
images. In other words, considering the image sequence as a statistical process, we should
consider this process as multivariate (N —variate if we consider N voxels of the dataset). In
fact, since current multivariate methods do not really consider temporal modeling, we will
temporarily consider the dataset as /N dimensional random variable, thus losing temporal
information.

This basic approach does not consider the spatial structure of the data. This is of
course a weakness, but we have preferred not to address this question, since the spatial
organization of the data is related to the anatomy, which requires specific approaches.

Leaving spatial structure apart, we simply have statistical tools to model the data.
We have briefly described them in chapter 2, we will develop here some more technical
questions; however, we will insist on the theoretical basis of these methods by relating
them to information theory, in three instances: i) in the Canonical Correlation Analysis
(CCA) framework, which makes a gaussian signal hypothesis, 1) in the ICA framework
(we will discuss some of the current algorithms), which takes exactly the opposite point
of view of non-normally distributed data and 4iz) in compression theory, since we propose
an information bottleneck algorithm for data clustering.

5.1 The second order approach: SVD

We start this chapter with a few words on the Singular Values Decomposition (SVD),
since it can be seen as an elementary independent component analysis method. We recall
its main features, then some difficulties that arise in practice, and possible solutions.
Last we make the connection with information theory concepts by considering Canonical
Correlation Analysis.
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5.1.1 SVD : the simplest data decomposition technique
Interpreting a SVD of fMRI data

Let X be a dataset, i.e. a N x T matrix (N = number of voxels considered, T' = length
of the time series). The SVD of X is

X =UuxvT, (5.1)

where U and V are N x N and 7" x T orthogonal matrices, and ¥ a N x T matrix with
non-zero elements only on its diagonal. The interpretation of (5.1) is that the columns
of U and V are orthogonal spatial and temporal components respectively. The diagonal
of ¥, i.e. the set of singular values (oy, k = 1..T), gives the amount of data described
by the associated spatio-temporal components (i.e. the columns u; and v, of U and V
associated with the singular values): in other words, the SVD basically solves the following
optimization problem:
ul X

Ok = MAT(y »)cRN xRT ———
(w) VuTl uvoT v

under the constraint u L span(uq,..,ur_1) and v L span(vy,..,vp_1).

(5.2)

Practical advantages

The method has the advantage of its efficiency, since it can be achieved in O(NT?) opera-
tions, which makes it slightly heavier than the General Linear Model, for instance. Let us
add that the method is non-iterative, so that there is no particular difficulty in applying
it. Additionally, the outcome of the method is not very sensitive with respect to small
variations in the data (e.g. eliminating some voxels from the analysis), at least if the
singular values o1, .., o) are sufficiently distant.

Natural “information bottleneck”

The consequence of equation (5.2) is that the SVD provides an optimized representation
of the data in the sense that the first ' components are those -among all possible rank K
representations- that retain most of the data variance.

5.1.2 Practical difficulties with SVD of fMRI data
Orthogonality constraint

Clearly, in equation (5.2), all spatio temporal components are constrained to be mutually
orthogonal (or decorrelated, in the statistical language). In fact, this provides an increas-
ing constraint space when the rank of the component increases.

For fMRI data, the space of interest (task-related activity) is thus not necessarily well
described through SVD: if the first component is explicitly the main effect present in the
data, no such clear interpretation is possible for the second or third task-related compo-
nent. In fact, the SVD does not unmix the data into mutually independent components,
so that the separation of the different effects of the dataset is generally poor.
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Order selection

Among the components of the decomposition, some of them are of interest and the others
will be considered as noise. This induces two problems: the problem of subspace of interest
selection (which can be simply solved by selecting the temporal patterns that well fit the
data matrix) and the problem of order selection. If we denote the order of the final model
by K, we need some additional way to do it.

A frequent way to deal with this is to use a rank test as Wilk’s lambda [79], or Bartlett
or, more generally, sphericity test [224] [126]. The underlying hypothesis is that the noise
space or null space is isotropic, i.e. its singular values are approximately equal, whereas the
signal space deviates from isotropy. But this heuristics is satisfactory only after projection
of the data onto a space of interest (see the MLM method in 5.1.3.).

Another approach is the introduction of a generalization error criterion that includes a
data fit and a rank penalty term, based on asymptotic approximations [103]. The authors
moreover report that the analytical rank estimate obtained from the training dataset is
too optimistic, and that data splittings are better suited for rank estimation than the
analytical method based on only one training dataset.

The underlying hypothesis: gaussianity

Let us insist on the fact that SVD gives in general a bad description of the signal space.
If the assumption that the noise space is gaussian is probably correct, there is no reason
why a signal space should be gaussian. In fact, the presence of activations in the data is
actually characterized by the deviation from gaussianity in the general linear model. But,
precisely, the SVD description of that data is sufficient under the gaussian hypothesis (the
SVD relies only on the covariance structure of the dataset, which is in turn equivalent
to a gaussian hypothesis). For instance, the simple-minded synthetic example given in
appendix A.1 violates this hypothesis.

Lack of priors

The basic SVD setting is simply based on the covariance of the data, and by no way
enhances temporal effects of interest in the data. In other words, the SVD does not
incorporate any temporal priors for data modeling. This issue has been solved by means
of data projection in the CVA, PLS and MLM methods (see section 5.1.3).

Some pitfalls in SVD interpretation

Performing a SVD of the data has sometimes been interpreted as a study of functional
connectivity of the subject [80]. By this, the authors simply meant the correlation structure
of the data, which is neither the anatomical connectivity nor the effective connectivity,
which has been elaborated in the analysis of multiunit recordings of separable neural spike
trains. In fact, nothing supports an interpretation in terms of connectivity (at most could
one speak of correlation between fMRI time courses), and the spatial maps evidenced
by multivariate analysis are a complex compound of effects present in the data. The
interpretation of such maps is simply indicative of the co-occurrence of some effect during
the experiment. Moreover, spontaneous correlations seem to be related to low frequency
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fluctuations in fMRI data [22]; but this observation blurs rather than it confirms the
concept of functional connectivity as applied to fMRI or PET data (see [115] a discussion
on functional connectivity).

A more subtle abuse is to interpret the spatio-temporal components as different modes
of hemodynamic activity. In reality, nothing more can be said than that the space spanned
by the first components contains most of the signal variance. This is a strong difference
with ICA, where each component can be interpreted on its own. Statistically speaking,
one can observe that decorrelated components can be treated as independent only if the
data is gaussian, which is probably not the case if the dataset contains activation patterns.

5.1.3 Overcoming the lack of prior: the MLM

Some efforts have been made to overcome the lack of temporal information inherent to
the SVD method. In particular, let us mention the Multivariate Linear Model (MLM)
[126] (see also [224]), which additionally uses an over-specified design matrix G of the
experiment. The MLM performs in fact the SVD of Xng, with X, and G, being
respectively the whitened versions of X and . This procedure is in fact equivalent to
performing the SVD of the whitened data X, projected onto the rows of the design matrix,
ie. X,GT(GGT)~'G. The advantage is that the resulting spatio-temporal components
can be interpreted in terms of linear combination of the rows of G, so that the SVD is
used for selecting a sub-model of the design matrix which is tailored to the data (this is

why it is advantageous to choose initially an over-specified design matrix).

This method optimally uses the compression properties of the SVD, but does not
address some weaknesses intrinsic to the method (decorrelation constraint, order selection,
assumed normality).

5.1.4 Mutual Information and Canonical Correlation

In order to interpret covariance-based methods from an information theoretic perspective,
it is necessary to assume that the observed structure is gaussian. Indeed, if we assume
that two multivariate variables (e.g. two datasets) X; and Xy of size n; X m and ny x m
are gaussian and centered, their mutual information is then

xxt xxr
det T T
XoXT XpX]

det (X1 X7{) det (X2 X7T)

1
I(X1,X3) = —- log

= (5.3)

i.e. the logarithm of the determinant of the covariance matrix of the joint variable [ X7, X5]
divided by the products of the determinants of the covariance of X and Xs. Letting A
be the block diagonal matrix of the marginal covariances

_(xixt o
A= (B0, 50
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and assuming (without loss of generality, since X; and X» can be preprocessed) that A is
full rank, one has

(5.5)

1 T T
(X1, %) = —§1ogdetA—%<X1X1 X1 )A—%

XoX{ XoXT
Ty—2 T Ty—1
= —logdet oyt (0X) R ()T ()
2 (XX3) 2X0X7 (X0 X7) 2 In

where I, is the identity matrix of size m. The interesting thing is that Ci» =
(Xle)_%XlXQT(XQXQT)_% is nothing but the correlation matrix of Xy and Xs, i.e. the
product of the matrices after whitening. Then noting the singular values of this matrix
O1,-.,0m, we have the following

1 1 —
I(X, Xp) = — log det ( CI’I}; 6;1*2 ) =3 > log(1 - o) (5.7)
) mn i=1

Indeed, it results from the definition of C 5 that Vi € 1,..,m,0 < oy < 1. This observation
can be used for data analysis. Let (U, X,V) be the singular value decomposition of C' .
Then the singular values o; are the correlation between the vectors U; X; and V; X5, and
I, = —% log (1 — 02) is the associated mutual information. This method, known as Canon-
ical Correlation Analysis (CCA), aims at recovering the components that are common to
X and Xs. In fMRI data analysis, it can be used in at least 3 instances:

e To compare two different datasets (e.g. different sessions) with similar time length
and/or spatial support (this has not been done to our knowledge).

e To obtain maximally autocorrelated (at lag one) components of a dataset by letting
X, =X(1,..,.T—1)and X, = X(2,..,7) [72].

e To derive maximally autocorrelated spatial maps by letting X; = X and X, a
spatially smoothed version of X [72].

For any CCA method, the mutual information can be interpreted as the volume of the
intersection of the space spanned by the columns of X7 and X5 after some normalization.

Interestingly, a generalization to more than 2 datasets has been proposed in [9]. To
our knowledge, this has not be used in fMRI data analysis. This stems from the following
generalization of (5.3). Let Xy,.., X be K gaussian datasets

xxt .. xixk
det : :
1 AXKAX%1 . XKX[];

Xy, Xp) = —=1
(X1, X) = =5 log det (X, X7)..det (XxXT)

(5.8)

The derivation on canonical components is performed through the generalized eigenvalue
problem

Cu = \Au (5.9)
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where C' is the empirical covariance (or Gram) matrix

xxt . xixk
C= : : (5.10)
XrXT .. XgXE
and A the block diagonal matrix
X xt o0 0
A= 0 XpXxF 0 (5.11)
0 0  XgXE

A possible application of this technique is the derivation of some patterns in the data that
are present across different scales by using a dataset X; = X and increasingly smooth
versions of the latter for Xy, .., X (see next section). A second application is the deriva-
tion of repeatable patterns across many sessions of an experiment for a given subject (the
experimental paradigm does not need to be the replicated).

Last, as PCA, CCA suffers from the underlying gaussian hypothesis. For non-gaussian
data, it may yield non obvious results.

5.1.5 Illustration on a synthetic example

We have used the spatial CCA method on the synthetic dataset described in Appendix,
section A.1. The method finds the most correlated components between the original
dataset and the same dataset smoothed in 3D. In fact, this yields the details which are
present throughout the image sequence, at the scale specified by the smoothing filter.
We have made experiments with different filter width ranging from 0.5 to 10 voxels, or by
combining different scales (equation (5.8)). An example is displayed in figure 5.1. The first
two components are invariably the same, forming a basis of the two dimensional subspace
of activated patterns. However, the method does not explicitly predict the dimension of
the final space of interest, which has to be chosen by ad hoc means. Last, it embeds
the three modes activation pattern into a two dimensional space. This is correct, but
suboptimal from the perspective of activation space description.

The limitation of that method is obviously the choice of a particular spatial kernel,
which amounts to assuming a priori a certain structure for the components of interest.

5.2 Information and non-normality: Independent Compo-
nents Analysis

In this section, we study Independent Components Analysis (ICA), which is a linear
decomposition method that is connected to information theory. It is more sophisticated
than Principal Components Analysis (i.e. SVD), and corresponds more to the intrinsic
concept of a generative model of the data. As mentioned in chapter 2, it is quite successful
for fMRI data analysis. We start by stating the main features of this model; then we
mention some theoretical difficulties that arise with the use of ICA on fMRI data, and
then some more practical concerns.
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Figure 5.1: Two main resulting images of the spatial CCA method applied to the synthetic
dataset.

These images, converted into z-scores and thresholded as indicated in appendix B, are a
basis of the spatio-temporal activation patterns present within the data. The 3 modes
structure of the activation appears through the different intensity of the 3 clusters within
the two images, but the decomposition itself is not able to disentangle the 3 modes. This
can be viewed as a fundamental limitation of the covariance-based methods, which are
optimal only for gaussian data.

5.2.1 ICA foundations

We derive here the equations for spatial ICA of fMRI data. The basic setting is the
following: the dataset X is a set of images X (¢) which are viewed as the superposition of
independent images, which are called sources and noted S in the ICA language:

X=MS+E (5.12)

The superposition is modeled by a mixing matrix M, and an additional noise term F. In
the most general setting, X, M, S and E are T'x N, T'x K, K x N and T x N matrices of
rank 7', K < T, K and T'— K respectively. K is the number of independent sources that
have generated the observed data (it is an unknown parameter), and N is the residual
noise. The solution of the problem consists in estimating the matrices W and S so that

S=W(X - E) (5.13)

The K x T matrix W is called the unmiring matrix and can be viewed as a generalized
inverse of the mixing matrix M. Especially, the resulting matrix S can be interpreted as
a set of activation maps that correspond to different independent components present
within the dataset.

Let us focus on the criteria that may be used to enforce the derivation of statistically
independent components. We first deal with the case of noise free mixing.
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Noise free mixing We assume here that K = T'; in practice this means that the data
has been previously reduced to a N x K matrix, for example by PCA data reduction.
Consequently, the noise matrix £ in (5.12) vanishes; moreover W = M~!. The following
deviation is inspired by the maximum likelihood approach of [39]: the likelihood of the
data, P(X), derives from (5.12) and the -unknown- probability density ¢ of the source S
by the following model:

P(X|q, M) = | det (M~1)|q(S) (5.14)

taking the log and denoting the log-likelihood of the data £(X), one obtains
L(X|q, M) = log |det M| 4 log (¢(M X)) (5.15)

which has to be optimized with respect to M. Let us note that ¢ is an unknown K-
dimensional distribution with independent entries. Now, a key hypothesis is that the
voxels are independent realizations of the random variable X. Then one can normalize
equation (5.15):

>nei log (g(M X (n)))
N
Due to the law of large numbers -and given the hypothesis that the N realizations

X(1),..,X(N) of the process are independent- the above expression converges when
N — oo towards its expectancy, i.e.

1
~£(Xa. M) = log (| det M)+ (5.16)

lim %C(X(l..Nﬂq,M) = log(|det M 1) — E(log(¢(M1X))) (5.17)

N—o0

= log(|det M~1)) = K[D(M~1X)]|q] (5.18)

where K[d|q] stands for the Kullback-Leibler divergence between the densities d and ¢
(see appendix C.1.2), and D(M 'X) for the probability density of the vector M X,
No prior is available for ¢. However, letting D be the density that has the same
marginals as D(M!X), but with an additional independence property (i.e. D =

le D(M~'X);), one has the classical property of the Kullback-Leibler divergence,

known as the Pythagorean theorem [48, chapter 12]:
K[D(M~'X)|q] = K[D(M~'X)|D] + K[D|q] (5.19)

K[Dlq] > 0is not accessible to us, so that there remains only to minimize K[D(M ' X)|D],
which depends only on M and X. The quantity K[D(M~'X)|D] is also known as the
mutual information between the reconstructed sources S = (M 'X)., k = 1..K, which
we denote by Z(M~'X). Z(M~'X) emerges thus as the natural measure for the statistical
independence of the components of M 1 X. Therefore, the computation of the independent
components consists in minimizing the functional

Froa(M) =T(M™'X) +log (| det M~'|) (5.20)
with respect to the mixing matrix M, which can now be addressed.
The more frequent way to deal with the minimization of (5.20), is to additionally

impose that the reconstructed sources (M 'X); are decorrelated, which is implied by
their mutual independence. In practice, this choice has 3 positive consequences:
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e If the input vectors X are whitened -as is often done in practice- and if the decor-
related sources are chosen to have unit variance, the mixing matrix M becomes
orthogonal, so that log (| det M ~!|) = 0, which solves half of the problem.

e Though this feature is rarely used in traditional methods, the orthogonal matrix
M can be estimated within the manifold of orthogonal matrices, which is a smaller
space than the linear group (see below Chef d’Hotel’s method).

e The term Z(M~'X) simplifies to Sp_, H((M X)) — H(M~'X), where the nota-
tion H(Y') is used to denote the entropy of the probability density of the vector Y.
Now, the entropy of the joint sources is H(M 'X) = H(X) since M is orthogonal.

The criterion (5.20) simplifies to

K

Frea(M) =Y H((M ' X)) (5.21)
k=1

This particularly simple form is easy to interpret: since the variance of the reconstructed
sources S; is equal to 1, the minimization of their entropy for a constant variance makes
their probability density more distant from the gaussian distribution, i.e. it emphasizes
the non-normality of the data. Indeed, the gaussian distribution is the one that has
maximal entropy for a given variance. In fact, there is an underlying idea which is that
the mizture (linear superposition) of independent statistical variables is closer to a gaussian
distribution than the independent variables themselves. This is nothing but a restatement
of the central limit theorem. Technically, one can also consider that the criterion (5.21)
is intended to maximize the negentropy of the marginals of M ~!'X, i.e. the sum of the
differences between the entropy of the unit variance univariate gaussian and the entropy
of the actual source

E -1 -1 = log (2e)
Foeg = SO 500) = H(O1 00 = 3 (PEZ)

- H((M—lxm) (5.22)
k=1 k=1

This equivalent criterion makes explicit the deviation from normality of the sources. But
a consequence of this analysis is that such ICA algorithms cannot unmix gaussian sources.
Before going to the algorithms used for the solution of this problem, let us introduce the
notation:
DI

V(X) = VH(X) = (log(P))'(X) = 5 (X) (5.23)
where D is the probability density of X. ¢(X), known as the score vector of X, is the
natural gradient of the entropy criterion (see appendix C.1.3). For a gaussian variable X9,
one has in particular ¢(X9) = WXQ)XQ = X9 if the variance of X is fixed to 1; therefore
non-gaussianity is equivalent to non-linearity of the gradient with respect to X. Letting
D evolve in the opposite direction of its (supposedly non-linear) score vector minimizes
locally its entropy. Thus — plays the role of an empirical contrast function that stirs
away the density from its gaussian approximation. The estimation of D, and thus of ¥ is
carried as described in appendix C.2.
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Some algorithms for ICA

The minimization of criterion (5.21) can be achieved in many ways. Several algorithms
have been proposed:

a) FastICA [117]: This algorithm does not use the natural gradient of the criterion
(5.21), but an arbitrary gradient -or contrast function- that does not require the compu-
tationally heavy estimation of the density D. For instance

e 1 (X) = 4X? is the derivative of the kurtosis of the distribution of X with respect to
X. Since the kurtosis of a gaussian variable is 0, this simple criterion is a consistent
way of maximizing negentropy.

e 5(X) = tanh(aX) which biases the resulting density of S towards a m dis-
tribution, but requires a choice for a. The resulting density has heavier tails than a
gaussian density.

e 3(X) = Xexp (—X72> which introduces another explicit non-linearity in the score

function, which puts more weight on the tails of density.

The update rule for the unmixing matrix W = (Wq, .., W) is then
Wi & EX¢(W! X) — B (W X)W (5.24)

with the desired form for ¢, followed by an orthogonalization procedure, until convergence
of the algorithm at the fixed point. Note that this method is derived from a Newton
optimization approach [117]. This procedure used is for fMRI data in [37], [68], and [15]
for instance.

b) The infomax algorithm: A second approach is the computation of the unmixing
matrix directly from (5.20) (i.e. without imposing M and W orthogonal). Formally, this
algorithm intends to learn the true sources and mixing matrix by iteratively updating
their current estimates.

W = eI + ' (WX).(WX)"yw (5.25)

where (x) = m is an arbitrary nonlinear function and e is a learning rate -
i.e. a rate of change in the estimation procedure. Note that this form of the learning
maximizes the entropy H (W X), but does not necessarily minimize the mutual information
of the reconstructed sources Z((W X)) = Zszl H((WX))—H(WX), since the marginal
entropies are not controlled. As a consequence, this algorithm is theoretically suboptimal
from the above perspective. However, it has been used extensively in the fMRI literature
[153] [154] [101] [35] [38] [212].

A study has shown that the outcome of the ICA procedure depends very weakly on

the algorithm used [57].

c¢) Chef d’Hotel ICA algorithm. This more recent procedure has still not been used
in the fMRI literature, but we mention it, since it brings several improvements in the
minimization of the problem (5.21). After whitening of the sources, the noiseless ICA
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problem amounts to finding the orthogonal matrix W in order to minimize a criterion of
the output marginals (5.21). In fact the problem is formally the learning of an optimal
orthogonal unmixing matrix given an objective function:

K
ming, Y H (W +cdw)X), | (W + 6w) € O(K) (5.26)
k=1

Where ¢ is some positive constant and O(K’) the orthogonal group of dimension K. To
simplify matters, let us denote S = WX and éyy = 64W If we denote ¢ the natural
gradient of the problem in S (as in equation (5.23)), the optimal §4 is defined by

3; = argming, |6 AW X — || = argming,||64S — V|| (5.27)

for some norm, under the constraint that éy € TywO(K), i.e., that éy belongs to the
tangent space of the orthogonal group in W this is equivalent to requiring that 64 be-
long to the tangent space of the orthogonal group at the identity, which is the space of
antisymmetric matrices. A straightforward solution is to take 64 = ST — SyT. Then
W +ebw = (I +e64)W remains approximately orthogonal. The new idea of Chef d'Hotel
is that I + 264 can be advantageously replaced exp (¢64). The main advantage is that W
remains strictly orthogonal (and not up to the first order), since exp (g64) is orthogonal
Ve. Straightforwardly, this allows to increase the learning rate ¢ without deviating from
the manifold of orthogonal matrices. This is not a ¢rick, but stems from the observation
that the curve

e —exp(cdy) (5.28)

is in O(K) the geodesic -for the usual norm- with tangent vector 64 at the origin (¢ = 0).
Last, this exponential is well approximated by

exp (264) ~ (I — g(sA)*l(IJrg&A) (5.29)

This approximation is fortunately an orthogonal matrix. In our implementation of spatial
ICA, we use this method, which takes the best advantage of the mathematical framework
of the problem.

Temporal ICA

It is probably unsafe to use the simple transposition of the spatial ICA into temporal ICA
for fMRI data. The reason is that the statistical distribution of spatial maps relies on N
samples, NV being the number of voxels, and is thus quite reasonable, while the number of
time samples is only 7" << N. This procedure is nevertheless achieved in [23] [37], though
with little details. More realistically, some authors have used specifically temporal methods
based on signal autocorrelation as in [171] [145]. The temporal Canonical Correlation
Analysis (CCA) (see 5.1.4), is essentially another implementation of the same idea: the
temporal signals of interest are strongly autocorrelated, so that temporal ICA can be
performed by autocorrelation maximization. Last, the combination of both spatial and
temporal ICA has been proposed in [201], but the choice of ad hoc weighting and contrast
functions as well as the lack of intrepretability (no clear definition of the solution) weaken
the credibility of this proposition.
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5.2.2 1ICA applied to fMRI: some pitfalls

An overview of the questions related to ICA of fMRI data can be found in [34]. However,
we discuss here some points drawn from our own experience.

Theoretical point of view

Non-compatibility with spatial smoothing In the derivation of the ICA criterion,
we have noticed that the statistical independence of the voxels was necessary. This is
not completely true in practice, since there are spatial correlations embedded in the data.
More importantly, this hypothesis is violated when prior spatial smoothing is applied to
the data. However, the smoothing procedure has been applied in several studies [37] [35]
[36] [38] [15], [201] which is a methodological inconsistency.

Arbitrariness in the contrast function The learning process associated with ICA
should be based on the natural gradient of the problem (5.23). However, the -relative-
difficulty of the estimation of the latter has induced the use of contrast functions that in-
troduce some deviation from normality of the statistical distribution of the reconstructed
components. This can be interpreted as the introduction of priors in the statistical distri-
bution of the true sources (see for example [153]), but, to our knowledge, the validity of
this argument has not been investigated for fMRI data.

Independence: a good criterion for fMRI data ? The ultimate justification for
the use of ICA in fMRI data analysis is that the data is the superposition of statistically
independent spatial patterns, which correspond to some effect. This is probably false
in the sense that the spatio-temporal structure of fMRI datasets cannot be completely
factorized into spatial and temporal components; rather there exists a kind of functional
connectivity that governs simultaneous and successive neural -and thus hemodynamic-
activations. What is criticized here is that ICA tries to uncover a generative process of
the data, and that a description in terms of spatially independent components probably
fails to reach a realistic generative process [158].

Practical point of view

Dimension reduction The main [CA algorithms have been denoised to use invertible,
and thus square mixing matrices, so that the number of sources K is the dimension of the
ambient space. This yields quite immediately two related difficulties: how to choose K,
and how to choose the ambient space 7 The second question is often solved by choosing
the number of components of PCA, which is used for data reduction. The problem is then
exactly the problem described in 5.1.2, for which only heuristics are currently available.
It is worse however for ICA, since the use of an ICA algorithm with multiple gaussian
distributions is likely to create spurious components. On the other hand, ignoring too
many components may yield insufficient reconstruction of the true signal. To date, no
systematic approach is available to answer this question.

Interpretation of ICA outcome A difficult point is to deal with the outcome of an
ICA decomposition, since nothing tells us which components are of interest. This is due
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to the fact that ICA never considers the informative content of the time courses, but only
the statistical structure of the dataset. We are in a situation where we lack priors. Some
solutions have been proposed:

e To study the information structure of the results (connectivity of spatial components,
autocorrelation of the associated temporal components, measure of the deviation
from normality of the spatial components (e.g. kurtosis)) [68]. For example, one
can conclude from figure 5.2 that the marginal entropy of the sources is a possible
indicator for the presence of a particular effect.

e More simply, to study the temporal components by linear regression, or by correla-
tion with the hypothesized response - which is of course done more or less implicitly
by all authors. But then, is it really worth to perform ICA ?

e Building an hybrid model in between the general linear model and the ICA decom-
position [152]. The result is still difficult to interpret, so that the method has not
been considered in practical applications.

On the other hand, one can also notice that the absence of priors is an advantage in the
absence of an experimental paradigm. In particular, ICA can be used in the study of
spontaneous physiological fluctuations [130].

5.2.3 Some improvements of the ICA methodology
Probabilistic ICA

Probabilistic ICA (PICA) embeds the usual spatial ICA algorithm in a well-defined prob-
abilistic framework ([15], [14]). In fact, it is based on the initial noisy mixing model (5.12).
It gives a principled way to achieve model order selection through the initial PCA, the in-
corporation of prior information about data structure and the thresholding of the resulting
spatial maps.

e Model order selection relies once again on a sphericity test, but the natural spread
of the spectrum is now taken into account. The reproducibility of the results across
different validation techniques is promising. Still, one may wonder whether any
information of interest is contained outside the first principal components of the
data. Moreover, systematically removing the first components of the data from the
noise can potentially yield an underestimate of the latter.

e Prior information: the confidence about the voxel information can be tuned through
anatomical considerations, and, less convincingly when dealing with ICA, with neigh-
boring terms.

e The thresholding of the spatial maps is improved by the normalization of voxel
values by the estimated noise level. The assessment is also improved by the mixture
modeling on the spatial maps and the formulation of alternative to the absence of
activation.

Another implementation of Probabilistic ICA can be found in [112].
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Mean field ICA

Mean field ICA [114] is a generalization of probabilistic ICA that explicitly deals with
the estimation of noise covariance, and the case of correlated sources - besides the usual
unmixing problem. This approach requires the introduction of a prior model for the
sources; then the mean field theory is used for the estimation of the sources. Next,
the mixing matrix and noise covariance are maximum a posteriori estimates. To our
knowledge, this promising technique has not been used for fMRI data analysis.

Convolutive ICA

The main reproach that one may want to address to spatial ICA on fMRI data is the fact
that it neglects the temporal structure of the data. On the other hand, temporal ICA
completely overlooks the coupling and interactions among components. In particular, the
temporal ICA model implies a trivial structure for the covariance matrix. While spatio-
temporal ICA [201] has a blurring effect on ICA interpretation, convolutive ICA [102]
seems to be much more adapted to fMRI data; it allows for both the characterization of
joint activations among different regions, and the study of different temporal behavior. If
this technique raises new difficult methodological issues (selection of components, complex
estimation of the spatio-temporal filter) it seems very promising given the nature of fMRI
data.

5.2.4 Experiment with a synthetic example

We have used Chef d’Hotel’s spatial ICA algorithm for the same dataset (A.1), and in
the same conditions as the spatial CCA method. The spatial ICA algorithm typically
had a better convergence speed and yielded more denoised components than CCA (see
figure 5.2). It has excellent reproducibility under different random initializations. Last,
the non-gaussian components can be very easily determined from the observation of the
final sources entropies. However, since the space of activated patterns has dimension
2, the algorithm is not able to separate the 3 modes of activation. To obtain this, an
overcomplete representation would be necessary.

One can conclude from this that spatial ICA is good for separating different effects, but
it is not well adapted to a precise study of the activation space -indeed, different activation
patterns, as those simulated in the dataset, are distinguishable, but not independent.

5.3 Clustering vs Vector quantization: what information
theory tells us.

Let us recall that clustering is another exploratory method based on the following statisti-
cal viewpoint: the dataset X is a set of N features (the temporal time courses) that belong
to a given signal manifold or feature space F. The distribution of the data in F can be
modeled as a multi-modal distribution; each mode will be characterized as a data cluster.
One can notice that clustering cannot provide us with a generative model of the data,
since the different processes that generate the data are not identified. Rather, clustering
can be thought of as a way to give a simplified overview of the data.
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Figure 5.2: Outcome of the ICA algorithm applied to the synthetic dataset.
(Top) Marginal entropies of the output spatial components versus the null (i.e. gaussian
with the same variance) entropy. There are clearly only two non-gaussian components.
Two main resulting images of the spatial ICA method applied to the synthetic images after
PCA reduction to 30 components. These images, converted into z-scores and thresholded
as indicated in appendix B, are a basis of the spatio-temporal activation patterns present
within the data. The 3 modes structure of the activation appears through the different
intensity of the 3 clusters within the two images, but the decomposition itself is not able

to disentangle the 3 modes. This would require an overcomplete representation of the data
by the decomposition, which is not possible with usual ICA algorithms.

0
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5.3.1 Clustering: a fruitful approach for fMRI data?

As noticed earlier, clustering is a very flexible approach. It does not require the use of a
linear decomposition of the data, as PCA or ICA. But the price to pay for this flexibility
is quite heavy:

e The first difficulty is the definition of the feature space F, that is, the metric that is
used to quantify the similarity between time courses. If non Euclidean metrics are
preferable, the convergence of the algorithms can be problematic in that case (for
example, the update rules of C-means/ fuzzy C-means algorithms yield convergence
in the case of an Euclidian metric, but not necessarily for arbitrary metrics).

e The quality of clustering results is difficult to assess (see the discussion in section
3.3.3).

e Determining the number of clusters (main modes of the data density in I') is not
obvious. It results in fact in a bias/ variance trade-off: the more clusters you use to
describe the dataset, the less bias you have in the resulting clusters -i.e. each sample
resembles more in average to its cluster- but the more variance you have in the
precise determination of the clusters: doing the clustering procedure with different
realizations of the data more likely results in different configurations. However, this
tradeoff is usually ruled implicitly by the blind choice of the number of clusters.

e If some undesirable effect (trend, spike) is present in the dataset, then potentially
all clusters can be affected, while ICA or PCA can -at least in theory- isolate such
a pattern.

e More generally, the influence of noise on clustering procedures is not easily identified.

e It is difficult to make inference on clustered data (most authors simply claim that
a cluster of voxels is activated if its centroid is correlated with the reference time
course, but what about all the voxels of the cluster 7).

In the next section, we propose thus a clustering method which is based on the explicit
definition of a low dimensional space of interest in which each voxel is not represented by a
point (i.e. its projection onto the feature space), but by a probability density, which reflects
the uncertainty about the exact position of the point within the space. A key feature of
this method is that it makes explicit the bias/variance inherent to any clustering method.
This correspond to the work published in [209].

5.3.2 Making the compactness/precision trade-off explicit: the Infor-
mation Bottleneck approach

The feature space:

We assume here that some preprocessing has been done on the data, so each observation
is reduced to a low dimensional feature v, i.e. F =" . A typical case is the choice of v =0
as the outcome of linear regression described in equations (3.3)-(3.4). The dataset is thus
represented by a set of voxels X isomorphic to [1,.., N], and the conditional distribution

p(yIn) = N(%(n), Ay(n)) (5.30)
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where N(9(n), Ay(n)) is the normal distribution of mean 4(n) and variance A,(n), these
quantities being typically the least square estimates and dispersion of a parameter of
interest.

The Information Bottleneck method

The Information Bottleneck (IB) method, described in [214], is a solution to the problem
of optimal lossy data compression. It addresses the following problem: given a discrete
dataset X = [1,.., N], a discrete space of interest I', and the conditional densities p(vy|n),
find the codewords X that maximize compression while retaining most of the information
on p(I'|X). In mathematical terms this leads to the minimization of the quantity

I(X,X) - BI(X,T) (5.31)

with respect to X, where I(X,X) is the mutual information between the dataset and
its compressed representation, I()Z', ') is the mutual information between the compressed
representation and the variable of interest, and (§ a positive scalar. We will see that [
controls the bias/variance tradeoff. The minimization of I(X, X) yields compression of
the original data X into X, while the maximization of I(X,T') implies that the compressed
data must preserve as much information as possible on T'.

This problem has been shown to have a formal solution, which is obtained by differen-
tiating equation (5.31) with respect to p(Z|z). In terms of p(Z|z) it satisfies the equation

ey = PE ) loe 2OV 12)
p(ele) = 705 p( ﬂ;p(vl )1 gp(m)) (5:32)

where
1

p(7)

p(11E) = pla)p(ald) = —= > p(v|2)p(El2)p(x) (5.33)

(the first equality is postulated, while the second is the application of the classical Bayes
theorem) and

= T)ex — xz)lo p(v|x)
Z(w,ﬁ)—;p( ) p( ﬁ;p(vl )1 gp(ﬂ@) (5.34)

is the normalization function.

Let us note that . p(y|z)log % is nothing but the Kullback-Leibler divergence
between the two probability distributions p(vy|x) and p(v|Z), also noted K [p(~v|z)|p(v|Z)]

in section 5.2.1. We write it henceforth d(x, 7). Then, equation (5.34) rewrites
Z(x,B) = Y p(¥) exp(—Bd(x, 7)) (5.:35)

The practical solution of this problem does not have a closed form. Nevertheless, the
following result holds [214]:
Equation (5.32) is satisfied at the minima of the functional

F(p(il2), p(@),p(117)) = — (log Z(x, B)), ) = I(X, X) + Bd(x,8))pz)  (5:36)
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where (S(a)),,) stands for the expectation of the quantity S under the law p. The mini-
mization can be done independently over the convex sets of the normalized distributions
p(z), p(z|z) and p(|E) by the converging alternating iterations (¢ being here the iteration
step):

pi(T)

pu(fr) = m%p(—ﬁ-d(w,ﬂ?)) (5.37)

pesa(®) = Y p(a)pi(d|x) (5.38)
pr(y1E) = D p(ylw)pi(al?) (5.39)

An excessive number of clusters are generated randomly at the beginning. The IB
algorithm (equations (5.37), (5.38), (5.39)) is applied to the data until convergence (typi-
cally a few hundred iterations). We use then the final probability laws p(Z|z) for a hard
clustering of the data (cl(x) = argmax; p(Z|x)). The final number of clusters is given by
the ones whose probability has not canceled during the iterations (i.e. {Z/3x/% = cl(x)}).
The number of remaining clusters is thus provided by the algorithm and depends highly
on the choice of 3, whose interpretation as a scale parameter is obvious. Consequently, the
bias/variance trade-off in this quantization model is completely governed by the parameter
3.

In practice, the use of a finite grid for the sampling of the probability density functions
(pdfs) is important. From our experiments, it seems that the grid precision does not have
much importance on the final result, as long as it is not coarser than the intrinsic data
dispersion.

5.3.3 Making inference

Once data quantization is achieved, each surviving cluster & is naturally represented by
the density in the feature space

p(1E) = > p(yl)p(x) (5.40)

c(z)=x

This can be used to decide which clusters are significantly far from the null hypothesis;
this means that one can check that p(y = 0|%) is significantly small. This can be done by
using the Highest Posterior Density (HPD) regions method (see [124], [98]). One considers
the region Hy = {~/p(v|Z) > p(0|Z)} and the associated probability 1 —«a = fHo p(y|Z)dry.
Then the null hypothesis can be rejected with probability « for cluster . Of course, this
method is nothing but a heuristic, but it is useful in practice to characterize activation at
the cluster level.

If a hypothesis can be represented as a hyperplane splitting the feature space, then the
inference is more simple. Let H; and H; be the two alternatives and F; and F, be their
image in the feature space. One obtains easily

p(H|7) = /F p(117)dy (5.41)

and p(Hy) = 1 — p(Hy). This makes hypothesis testing easy.
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5.3.4 Some experimental results

Once again, we use the synthetic dataset presented in A.1. Through equations (3.3) (3.4),
we obtain a S = 2 dimensional feature-space that corresponds to the amount of signal
associated with each experimental condition. We have displayed the estimated feature at
each voxel in figure 5.3(a). Then, we have discretized the feature space on a (20 x 20) grid
and analyzed it with the IB method. To study the dependence of the number %k of final
clusters on /3, we present the cluster hierarchy, indexed by 3, in figure 5.3 (b).

Figure 5.3 (b) shows that the 4 clusters configuration is the main non-trivial one.
The associated pdf p(y|#) ( figure 5.3(c)) confirms the pertinence of this model. For
comparison, we have applied a fuzzy-C-Means algorithm with 4 clusters on the same
feature space, with 10* independent random initializations. In no case did we obtain
the results described in figure 5.3 (d). This may be attributable to the small number of
activated voxels, and to the inadequate choice of the Euclidean metric.

Conclusion

Let us emphasize the benefits of information theory in multivariate analysis of fMRI data:
it gives a principled way to handle some bias/variance tradeoffs that inevitably emerge
in multivariate modeling: For example, the Bayesian Information Criterion (BIC) D is a
practical solution for the selection of the meaningful components of linear decompositions
(see e.g.[103]). Figure 5.2 shows that the negentropy (5.22) of spatial maps is a possible
measure for their deviation from null (i.e. gaussian) maps; last, the Information Bot-
tleneck method shows that mutual information provides usable criteria for handling the
bias/variance tradeoff inherent to any clustering method.

In the sequel of this thesis, we try to integrate multivariate and temporal modeling ap-
proaches to constrain the results of data decompositions towards interpretable phenomena.
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Figure 5.3: Cluster analysis of FMRI data with the Information Bottleneck method
(a) Estimated features at each voxel 4(n) = (51(n),%2(n)) (each point represents the cen-
ter of a gaussian density, and is thus associated with a dispersion, which is not represented
here). (b) Cluster hierarchy obtained by letting the scale parameter [ vary. Clusters ap-
pear by successive bifurcations or splittings. The terms activation clusters and background
clusters refer to post hoc inference. The configuration with 4 clusters is stable over a large
scale interval; we refer to this configuration in figures (¢) and (d). The associated spatial
map cl(n) (d) is in fact identical to the original activation map(c). Probability density
functions are associated with the four clusters p(vy|%). Note that they correspond readily
to the main mode and the three “arms” of the feature distribution clearly visible in figure
(a). Colors of figure (¢) and (d) match.
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Chapter 6

Towards a spatio-temporal
understanding of fMRI data: A
state-space approach

In the previous two chapters, we have successively developed temporal models adapted to
univariate modeling of fMRI data, and multivariate methods that give global descriptions
of the data. A question of interest is naturally to build an integrated framework where
both approaches are used. We reintroduce here the concept of generative model, and
adopt a state-space formulation. We then describe some solutions to the problem, and
three practical applications of this approach. We first state the problem in terms of
dynamical components analysis.

6.1 Reformulation of the problem

Here we clearly state the general question of fMRI data analysis as a joint mixing/evolution
estimation problem, or equivalently as the estimation of a generative model.

6.1.1 Dynamical Components Analysis

Let X be a fMRI dataset, where each X(¢) is an image which is simply written as an
N-dimensional vector. IV is thus the number of voxels considered in the analysis, and the
length of the series is T'. As stated in [207], the dynamical components analysis of X is a
decomposition:

X(t) =" Myz(t) + W(t) (6.1)

where 0 < K < min(N,T), {My}k =1..K and each W (t) are N-dimensional vectors and
{zk(t)}, k = 1..K are temporal signals.

Equation (6.1) means that the dataset is decomposed into meaningful signals plus a
noise term. The problem is to estimate K, M = {M}} and Z(t) = {zx(¢)} given the data
X and some prior information on the experiment (e.g. the experimental paradigm). The
experimental paradigm will be represented as a C'x T matrix P, where C' is the number of
experimental conditions. Each row of P is the time course of an experimental condition.
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First, let us notice that this model is typically a generative model of the data: one can
indeed assume that the empirical data is the compound of different processes; the general
problem consists in finding those processes, together with the mixing model that relates
them with the observations.

Second, the question is whether the processes of interest should be considered as in-
dependent or not. If yes, the problem essentially reduces to temporal ICA - with some
possible constraints on the spatial counterparts of the decomposition. In particular, in
[207], each component is treated as a univariate model analogous to those presented in
chapter 4. Typical solutions to this problem are described in [175]. But it is probably
more realistic to consider that the dynamical components can interact, so that their joint
evolution does not simply factorize into spatio-temporal components. The different voxels
of the dataset present different mixtures of this multi-dimensional system. In section 6.1.2,
we develop a model based on this second idea; this model has been presented in [210].

Third, this problem is difficult, since all the quantities involved in the right-hand side
of equation (6.1) have to be estimated. Moreover, the short time series derived from fMRI
data are not well suited for the unambiguous definition of temporal effects. This is a
common pitfall to all temporal ICA methods applied to fMRI data. We develop these
questions in section 6.1.3.

6.1.2 The state-space formulation

The next step is to add to equation (6.1) another equation that defines the evolution of the
system, which is the “dynamical” part of the problem. Let ® be a function from RE+¢
to RE. We propose the following model for the data:

Z(t+1) = ®(Z(t),P{) + V(1) (6.2)
X(t) = MZ(#t)+W(t)

where each K —dimensional vector V(¢) is a second noise term, known as innovation pro-
cess. Note that equation (6.3) is exactly equation (6.1), which we will call the mixing
equation, since it interprets the observation X as a noisy mixing of the K —dimensional
state variable Z. Equation (6.2) is the evolution equation, which models the temporal
evolution of the data. Z is called the state of the system, since it indeed gives all the
relevant temporal information about the system. The covariance matrices of V' and W
will be denoted Ay and Ay, respectively.

We now have to deal with the estimation of ®, which requires the use of more assump-
tions. Let us look for a linear approximation of ® which will be written as a K x (K + C)
matrix A. Equation (6.2) becomes :

Z({t+1)=A[Z(t),P(t)] + V(t). (6.4)
Letting A = [AT AT]T equation (6.4) rewrites

Z(t+1) = A1 Z(t) + Ay P(t) + V (1), (6.5)

One can recognize that our evolution equation is a well-known multivariate AR(1)
model, excited by the input P(¢). More in the spirit of the model presented in chapter 4,
we can also make separate models for autoregressive components and task-related ones.
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Importantly, we can notice that the multivariate state Z is in fact a signal subspace, and
that the marginals do not have necessarily any meaningful interpretation.

An obvious limitation of the system (6.2-6.3) is the restriction to a first order model.
One formal answer is to translate higher order evolution models into a first order one by
introducing an auxiliary variable Y (¢) = (Z(t), Z(t + 1)) and solving a similar system in
Y. However, this is not always practical, since it introduces more parameters to estimate
in the model.

Last, it can be observed that the solution space of equations (6.2-6.3) is invariant
under the action of the linear group GI(K): it N € GI(K), and (Z, Ay, Ay, M, Ay, Aw) is
a solution, then
(NZ,NAN7' NAy, MN~' NAyNT Aw) is also a solution.

This invariance is not incidental; it is the mathematical counterpart of the fact that
the state is not a variable, but a space; the invariance under the action of GI(K') being the
fact that any basis of that space gives an equivalently correct representation. Note that
this invariance is somehow opposite -or complementary- to the concept of independent
components. However, the practical solution of the problem will yield a particular choice
for Z.

To our knowledge, state-space models have been proposed for fMRI data only in [113]
and [95]. In [113] the authors propose a univariate modeling of the data, without prior
knowledge of the experimental paradigm. In fact, the paradigm is formally replaced by a
discrete state variable which is estimated from the data. In contrast, we use a multivariate
model, which is probably better suited for fMRI data, and use explicitly the information
about the experimental paradigm. In [95], the authors introduce a time-varying mod-
ulation of the response amplitude. This certainly improves data fitting, but prevents
statistical testing and even simple interpretation of the data.

6.1.3 Strategy in the solution of the problem

Before turning to a description of linear estimation procedures, let us notice that this
problem has received recently much attention [8] [7] [216] , and that non-linear estimation
procedures have been proposed, in the spirit of artificial neural networks (i.e. models with
non linear evolution and mixing models). Such models can be very successful for the study
of non-linear dynamical systems (e.g. Lorenz attractors), but they are not usable for fMRI
data at least for 3 reasons:

e These methods are built to deal with low dimensional systems with long observation
intervals (i.e. N < T'), which is never the case for fMRI data.

e These methods deal with high SNR data, once again in contrast with fMRI.

e fMRI signals are not exactly stationary, so that any investigation method should be
sufficiently robust to weak non-stationarities. This is very challenging for non-linear
methods.

Instead, we follow the classical point of view developed in [61]: the identification of
the linear dynamical system enjoys a unique -modulo the above indeterminacy under the
action of GI(K)- optimal solution, namely the Kalman solution. Moreover, the systematic
study of this model, namely the time series with a Markovian representation, shows that
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all the information about the underlying dynamics and optimal estimators are in fact given
by the study of the covariance

Ax(t) =BXHX(t+7)T) (6.6)

Though we will present in section 6.2.2 a simplified model, it is interesting to notice that
the methodology proposed in [61, section 8.7]:

e Derivation of the autocovariance function Ax(7)
e [dentification of the model given the autocovariance function
e Derivation of the state Z,

is the one that we follow quite closely in our work.

6.2 Solving the problem in practice

There are at least two ways to estimate the quantities involved in equations (6.2-6.3). The
first one is an extension of the classical Kalman procedure, which iteratively estimates
the state variable Z, and the related quantities M, A, Ay, Ay . It requires a value for the
state dimension K. The other model is based on simplifying assumptions, and is thus
less complicated, and moreover non-iterative. It is thus easier to apply, and gives good
approximations of the global solution. Moreover, it can be used to estimate the state
dimension K.

6.2.1 E.M. Kalman method

The first solution of the problem consists in implementing an Expectation Maximization
version of the Kalman method [92]. This approach requires the prior knowledge of K. We
use the following formulation of the problem

Z(t+1) = A Z(t)+ AP(t) + V(t) (6.7)
X(t) = MZ(t)+W(t)

for ¢t = 1..T — 1 where the innovation and observation noise processes are not auto-
correlated but have covariance matrices Ay and Ay, respectively. Moreover, we as-
sume that the initial state is gaussian with mean gy and covariance Ay. Then, given
Av, Aw, p1, A1, Ay, Ay, M the log-likelihood of the joint state and observation writes

T
£(2,X) = 3 S (X() - MZWO AwlX(5) ~ MZ(0)]) - 5 log | Aw]

t=1
T-1

5 20+ 1) A Z(1) ~ APOIAVIZ(E+1) — A1 Z() — AoP(1)
t=1

L 2_ ! log |Av|

L 20) — i M(Z(1) - ]~ Slog ]~ TP pog o (6.9
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PO Z(t+1)=A[Z(t), P(t)]

z | ]z

(Z(t):HX(t) X(t+1)=MZ(t+1)+W(t+1)

X() X(t+1)

Figure 6.1: Basic mixing/evolution model in the case of a deterministic (V' = 0) evolution.

The EM algorithm maximizes L£(Z,X) alternatively by estimating Z given
(X, Av,Aw,pu1,A1, M) by the Kalman method (E step), then by estimating
(Av,Aw,p1, Ay, Ay, Ao, M) given (Z,X) (M step). The M step is provided by standard
derivation of the expectation of criterion (6.9). We do not restate the formulas, which are
given in [92].

A few comments on this method This method is somehow cumbersome in practice,
since it artificially increases the number of variables. Moreover, it requires an initial guess
for the dimension K of the state. A possible solution is to use information criteria together
with equation (6.9) to validate K among many possibilities. What we propose is rather to
use the procedure described next, which moreover yields a good approximation of the state
vector in the sense of equation (6.9), and to keep the Kalman filter for the optimization
of the solution, when necessary.

6.2.2 The linear method

We start by recalling the linear estimation procedure introduced by Soatto and Chiuso
[198] in the context of dynamical textures analysis. This method is in fact analogous to
the temporal CCA method (see section 5.1.4), or to some versions of temporal ICA [160]
[200]; however the state space formalism emphasizes the concept of generative model,
which is important in our context; in particular, we address explicitly the problem of
state dimension estimation. The method proposed by Soatto and Chiuso is to first derive
estimates for M and Z and only then for A; W and V are residuals of the estimation
procedure. Assuming a deterministic evolution V = 0, we are in the situation described
in figure 6.1. Note that the following equations assume that the dataset is reduced (e.g.
by PCA) to N < T entries. We come back to that point at the end of the section.

We start by neglecting the experimental paradigm A = 0. Given the observation
noise covariance Ay, the model represented in figure 6.1 yields the following problem:

mina | X(t+1) = MALHX(1)]|a, (6.10)

where H is the unmixing matrix associated with the mixing matrix M (Z(t) = HX(t)),

and ||z|a,, stands for /a7 Ay .

Since Ay is not known, one has to approximate this solution; one possibility is to make
sure that the noise is white. Therefore, we first whiten the data X in order to approximate
the situation where W is white (A ~ In).
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Let X1 = [X(1),..X(T = 1)], Z, = [Z(1), ... Z(T = 1)], X5 = [X(2),..,X(T)] and
Zy =17(2),..,Z(T)]. Let Ly and Ly be the Cholesky decomposition of X; and X» (LiLiT =
X, X!, i =1,2, and L;,i = 1,2 is trigonal, L;=Cholesky(X;)). Equation (6.10) is thus
reformulated as

M, H = argmin||Ly; (Xy — MA HL LT X1)||s (6.11)

One can introduce the whitened data Y7 = L1_1X1 and Yy = L2_1X2 to rewrite the equation
M, H = argmin||Yy — Ly ' M A HL Y| (6.12)

Since we solve the problem first in terms of M and Z; = H X, without prior knowledge
on A;, we make further assumptions on A;: its singular values should be less than or
equal to 1, otherwise, the system would be unstable. On the other hand, what makes the
difference between the state and the noise is that the state of the system is temporally
structured, so that the singular values of A; are close to 1. Hence, we make the hypothesis
that A; is an orthogonal matrix. It can then be incorporated into H. This yields the
following problem:

M,H = argmin||Yy— Ly"MHLY: |, (
= argmin||YyY{ — Ly MHL|| (

6.13)
6.14)

The latter equation resulting from the orthogonality of Yj. It is a classical result [94]
that the singular value decomposition (SVD) of Y>Y;' provides us with the best estimate
of M and Z; = HX; in the sense of Frobenius, i.e. in the least squares sense:

Y,V =vusQl (6.15)

Where U and 2 are orthogonal matrices, and ¥ is diagonal. Note that by construction the
singular values o1 > .. > oy are between 0 and 1 and represent the correlation between
the data components at time ¢ and ¢t + 1. They can equivalently be interpreted in terms
of mutual information between these components through the formula I; = 3 log (#)
The whitening procedure amounts to analyzing the empirical cross-correlation matrix of
the data ( oY = Ly' Xy XT L) instead of its empirical cross-covariance (XoX7).

In the ideal case of noise-free mixing, one has oy > .. > o > 0and oy =..=on =0
(see the above hypothesis on Aj). In practice, one has to set a threshold. This question
is addressed later. This being done, one reduces the matrices U, ¥ and € to their first K

rows, which yields Uy, Y and Q.

M = LyUgsi/? (6.16)
and R
7y =xM20l L xy = 9 PULL X, (6.17)

The estimation (6.16) of the mixing matrix M allows for a least squares solution for
Z and W, given equation (6.3) (note that in [198], a reprojection is proposed for the
estimation of Zy, but this has little impact on the final results). Given an estimate of Z;
and Z», an estimate of Ay follows:

Ay = 2,275} (6.18)
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This comes from the fact that Z; ZIT = Yk by equation (6.17). An estimation of V' follows
immediately. Note that Z has indeed a diagonal covariance matrix. In contrast, A; is not
necessarily diagonal, which means that some coupling between the state components is
allowed (the state variable Z is a true multivariate process).

Introducing priors in the analysis The next idea is to introduce prior knowledge in
the estimation procedure: we know that the experimental paradigm P is a potential factor
of the data dynamics, which has to be taken into account in the definition of the state
variable Z and the mixing matrix M. To do this we replace equation (6.11) by:

M, H = argmin||L; (X, — M(AHX, + Ay P))||s (6.19)

Writing Py = [P(1),.., P(T — 1)] and X; = [X], PT]T, one computes L; = cholesky(X;)
and
Xy, (6.20)

which allows us to rewrite equation (6.19):
M., H = argmin||Ly ' (Xo — MAAL YY) (6.21)

where H is the generalized -i.e. completed by the identity on its C' last rows- unm1x1ng
matrix. This problem is solved exactly the same way by computing the SVD of YQYl ,
and identifying M and Z1 Once 7 is estimated, A; and Ao are the least squares estimates
obtained from equation (6.5).

A perhaps more intuitive way to understand this method is to interpret it in terms of
projection: from equation (6.14), one has

MZy = MHX, = LY, Y LTI X, = XoYT'Y (6.22)

Since Y{'Y; = XT(X;X!1)71X;, Y{'Y; is nothing but the projector onto the rows of
X1; thus equation (6.22) simply means that the product of the mixing matrix with the
state matrix is actually the projection of the data at time ¢ + 1 onto the data at time
t. Introducing priors in the model consists simply in augmenting the projection operator:
one projects Xo onto the rows of X; and P; instead of X only.

Estimation of K The most important part of the procedure is to determine the correct
value for K, given the singular values 1 > o1,..,0n > 0. However , the problem is ill-posed:
as soon as N > %, one has necessarily o1 = 1; in fact, the rows of Y] and Y5 generate two
subspaces of dimension N in R”, thus they share at least one vector. It becomes actually
impossible to test for the presence of coherent sources in the process that generated the
data. We solve this issue with the recursive model (see below). Next, assuming -as all
authors do, whether explicitly [72] or not- that N < T, the general method is to estimate
the distribution of ¢1: Keeping the projection interpretation given in equation (6.22), o
is simply the highest correlation between any two vectors belonging to two N-dimensional
subspaces in R ~! (spanned by Z; and Z, respectively). Hence its value under the null
hypothesis -no underlying dynamical structure in the data- depends only on N and 7.
This problem is tentatively illustrated in figure 6.2.
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Figure 6.2: Canonical correlation and projection.

Given equation (6.22), one may interpret M Z; as the orthogonal projection of the space
spanned by X, onto the space spanned by X; (Y2 and Y; are nothing but orthonormal
bases of these spaces). As an illustration, in R?, if these two spaces are of dimension
1 (left), the operation reduces to the projection of one vector onto the other, and the
eigenvalue o is distributed as the correlation between any two random unitary vectors
of R3. If the two subspaces have dimension 2 (right), they have necessarily one vector u
in common, so that oy = 1, and o3 is the correlation between the remaining vectors that
belong to ut = R?.

A simple way to obtain the distribution of o is to generate random matrices X and
derive the values of 1. The repetition of this procedure gives an empirical distribution for
o1, and in particular, a confidence interval I; , so that oy € I} with sufficient probability.
A simplification of this procedure is to derive only the empirical mean m, and standard
deviation s of the law of oy; then, approximating this distribution by a gaussian, [; =
[my — 3.2951,m1 + 3.2951] is an interval with P-value 1073, Since only the empirical mean
and variance have to be estimated, this allows for quick simulation procedures.

However, let us point out the fact that the distribution of oy is not gaussian (in
particular, it is bounded, since 0 < o1 < 1). It is known that the singular values of
random gaussian matrices have a Wishart distribution [56], so that the distribution of oy
is probably also close to a Wishart distribution; however a gaussian approximation of the
latter distribution is acceptable in practice.

One tests the null hypothesis on the first eigenvalue oy; if the test is negative, one
recursively tests the null hypothesis for oz, in R¥N =X and RT—X until the null hypothesis
is no longer rejected. This simple procedure gives excellent results on test samples.

An analytical approach Last, one can propose an approximate test for the significance
of the canonical correlations. First, let us notice that the singular values defined by (6.15)
are also the singular values of the matrix YQYITYI =L, IXQYITYI. Indeed we have noticed
that the multiplication by Y'Yy is nothing but the projection of the rows of Y5 onto a
subspace of dimension N of R”. Let us write y, = YQYITY1. The first singular value of
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(6.15) is thus exactly

wyay3 w
o1 = \/mawaH:leyngM = \/mawaRNTu? (6.23)

Now, let 29 = Loys. Applying the change of variable u = Ly w (u € RY) in (6.23), we
obtain

ulzoxlu
= ——— 6.24
o1 \/max T LoLTu ( )
but LyLY = X, XT' so that
ulzoxlu
= —_ 6.25
7 \/maxu ul' Xo XTu (6:25)

Now, under the null hypothesis, the entries of X5 are i.i.d. normal and centered with
variance v. Note that (6.25) does not depend on v so that we can assume that v = 1. We
propose to approximate (6.25) by

o = maxu(uTxQ?Tu) (6.26)

E(ul X;XTu)
This approximation is correct for N < T (and thus o1 < 1). Without loss of generality
one can impose that ||u|| = 1. Since u?' X XJ'u is a yo variable with T degrees of freedom,

E(u” XoXTu) =T.

Moreover, since x9 = Loyy = XQYITYI results from the orthogonal projection of the
rows of X on an N-dimensional space, there exists a matrix A of size N x N so that
ul'zorlu = ul AATu and the entries of A can be assumed i.i.d. Aij ~N(0,1),1 <id,j <
N. Let ¢1 = max(u” AT Au).

From [122], we have the following result: the distribution of ¢;, has a limit when N
goes to 0o. Indeed, letting 1 = (VN + N —1)? and s = (VN — 1+\/ﬁ)(\/ﬁ + %)1/3,
then ©=£ approaches a Tracy-Widom law of order 1, whose values are tabulated, so that
confidence intervals can be found for ¢;. Though the result holds for N — oo, it is already
correct for N ~ 10.

This upper bound can then be used to derive an upper bound for o} = /%, which is

an approximation for the upper bound of o.
A comparison of the gaussian model with the empirical estimate is given in figure 6.3.
The analytical is quite realistic for N < T.

6.2.3 A refinement of the linear method: the recursive model

As noted in the previous section, the procedure to estimate the state rank K breaks down
when N > % (and before in practice). This may depend on the way the state-space
formalism will be used, but in general, for fMRI, the number of simultaneous observations
exceeds by far the number of time samples, i.e. N > T. Since the rank of the data is
less than or equal to min(N,T) = T, one can consider that N < 7. In [72], the authors

simply reduce their data by PCA in order to achieve N < T'. However, this is a bit crude.
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Figure 6.3: Empirical vs analytical estimation of the singular values distribution
(blue) Empirical distribution of o7 for surrogate white gaussian data. (red) gaussian
distribution with the same mean and variance. The parameters here are T'= 120 and N =
10; 50000 independent surrogate datasets have been simulated. In practice, the gaussian
approximation for the density yields an acceptable approximation. Vertical lines : upper
bound of the 99% confidence interval: surrogate data (blue), surrogate data-+gaussian
hypothesis (red), analytical estimate (green).
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A more cautious alternative is to keep N high enough, but to add some constraints in
the estimation procedure to bypass this limitation. For example applying recursively the
evolution model (6.5) provides a system of equations:

p—1 p—1
Z(t+p)=ALZ(t)+ > AT AP+ 7))+ > ATV, p> 1 (6.27)
7=0 7=0

this model simply means that the prediction procedure that is used to predict X (¢t+1) from
X (t) and P(t) could also be extended to predict X (t+p) from X (¢) and P(t),.., P(t+p—1)
-without making the model more complex.

In practice, the method is thus to generate the successive observation matrices X7,..,.X,
(instead of X and X3 only), their whitened counterparts Y7, Y5..Y,, -which may also in-
corporate the experimental paradigm as in (6.20)-, and then to apply recursively the
projection equation (6.22):

Ys =YY (6.28)
Y, =505 (6.29)

then we simply have: N
L'MZy =Y, (6.30)

The mixing matrix M is then estimated by computing the SVD of }7;,,, and the estimation
of Z and other quantities simply follows by least squares methods.

The reason why this works is that one recursively projects a N-dimensional subspace
onto a second one, then a third one ... so that the probability of having by chance a vector
common to all subspaces becomes negligible. The empirical rank test described previously
adapts to this generalization, by using the same iteration procedure for the surrogate data.
As could be expected, the variance of the estimators increases with p.

Given N and T, we first estimate p, i.e. how many projections will be necessary in
order to enable a test for the value of K, which amounts to requiring o; < 1 with a given
P-value (see figure 6.4). Then, one applies the recursive projection procedure to the data,
possibly with the experimental paradigm. The rank of the state process is then determined
by comparison with the empirical null distribution of the eigenvalues.

6.2.4 Validation on a synthetic example

We validate here our model, based on the synthetic example presented in appendix A.
The main question of interest is of course the estimation of the dimension of the signal
space, and then the estimation of a basis of this space. The dataset is reduced by PCA to
N dimensions; we derive an estimate of I given this subspace. This involves the choice
of adapted values for p (see section 6.2.3). Our result is given in table 6.1. Let us recall
that the true dimension of the generative process is 2.

The dimension of the state has been estimated to 2 in all but three cases, in which it
has been estimated to 1 only. This means that our rank test is correct in general, though
a bit too conservative for high values of N. But this should be contrasted with sphericity
tests, that do not succeed at all on such datasets, due to the flatness of the spectrum.
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Figure 6.4: Order selection for a dataset.

Left: T = 120, N = 15; the red line represents the gaussian upper bound at P = 1072
for each singular value, under the null hypothesis: we are in the situation where N < T
and the basic projection step works. Right: here 7' = 120 and N = 40; the red line
represents the gaussian upper bound at P = 1072 for each singular value, under the null
hypothesis; (green) the same thing, but after two projections (p = 2 instead of 1). In this
case, a second order model (p = 2) is recommended for the estimation of the rank K of
the system.
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Table 6.1: Estimation of the rank of the state of the synthetic dataset

The associated signal basis is given in figure 6.5, and is a correct approximation of the
true activation basis: the correlation of each component with the input activation signals
is respectively 0.835 and 0.739. This illustrates the good noise reduction ability of the
state-space approach.

6.3 Three applications of the state-space approach

6.3.1 Analyzing multi-session data

This first application of the state-space framework is the following: we concentrate on a
voxel, which is observed during several sessions, during which the subject undergoes the
same experimental paradigm. It is known that the use of multi-session data increases the
sensitivity of the analysis [193]. Here, the problem is to characterize the activation pattern
given the multisession observation. A trivial way to condense multi-session observation
is averaging, but this removes the -essential- information about session-wise variability;
moreover, this is sensitive to gross artifacts. Alternatively, state-space modeling can be
applied:

Z(t+1) = A Z(t)+ AP(t) + V(1) (6.31)
X(t) = MZ(t)+W(t) (6.32)

with V = S, the number of sessions. The motivation for this model is that the repro-
ducible pattern Z(t) among the time series Xi(t), .., Xg(t) taken from different sessions is
likely to be also the task-related pattern -whereas most autoregressive patterns are likely
not to be reproducible.

The fact that M is not constant allows for different signal intensities across different
sessions (in other words, response amplitude is treated as a random effect). In that case,
the estimation method can be viewed as a kind of averaging of the data, but that uses
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Figure 6.5: Basis of the state-space of the synthetic dataset.
This basis is a correct approximation of the true basis (compare with figure A.1): the
resulting signals have high correlation levels with the activation signals used in the gener-
ation of the data.

prior information (the experimental paradigm) to give more or less confidence to each
observation. By contrast, a SVD of the data gives more weight to the time series that
have greater variance, while simple averaging gives equal weight to all time series.

We have applied this analysis on a voxel of the dataset taken from appendix A.3. After
spatial registration of the sessions, we obtain for the given voxel 12 time series -one for
each session. These time courses, acquired with the same experimental paradigm, are
represented in figure 6.6.

The algorithm is applied, with the inclusion of the experimental paradigm and p = 1
since 12 = N < T = 160. The singular values obtained from (6.15) are displayed in figure
6.7, together with their analytically derived expected and maximal value. Unambiguously,
one notices that K = 1; interestingly, the analytical method slightly overestimates the
next singular values. This is attributable to the fact that the first component makes up an
important proportion of the data variance, so that the effective variance of the residuals
is smaller than what would be true theoretically.

The ensuing state time series is given in figure 6.8, together with the experimental
paradigm. there is clearly an activation pattern, which is confirmed by examining the A
matrix: A; = 0.61, and Ay = [-11.95 — 7.21], after normalization with respect to the
innovation process (Ay = 1). Note that the values in Ay are not the ¢ values associated to
the two experimental conditions. However, one can still interpret equations (6.31-6.32) as
a linear model, and test whether the values in Ay are significantly different or significantly
far from 0. The resulting statistic should take into account the variance of the state
estimate Ay and the variance of the unfitted residual Ay . For example, the significance
of the difference between A5(1) and As(2) can be tested with

t = (As(1) — As(2 /\/AV trace( AV)V), (6.33)

Which is student distributed with ST — 4 degrees of freedom. However, it is not very
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Figure 6.6: Typical input for the multi-session state-space model
The time course at a given voxel of the data recorded during 12 sessions , but with the same
experimental paradigm. State-space procedures disentangle the dynamics that generated
this data.

powerful, since it relies on a very rough approximation of the true signal, and the state
estimation does not completely make a difference between task-related signals and poten-
tial confounds. More accurate models will be presented in chapter 9 for the derivation of
accurate voxel-based multi-session hemodynamic models. This model has the advantage
of using very weak priors on the signal.

Last, let us notice that using the E.M. Kalman procedure on this result did not modify
it. A possible reason is that the eventual suboptimality in the estimation of the state
variable is less important than the uncertainty about the other quantities of the methods,
so that the Kalman procedure does not improve the estimation.

Robustness with respect to noise Here we check the robustness of our method with
respect to noise in the data. To do this, we keep the same dataset, but replace the last
six session data by gaussian white noise with the same variance: this means that exactly
half of the data no longer carries any information. Our procedure yields once again one
component (o1 = 0.87, which is high above the threshold in figure 6.7). Moreover, the
corresponding time course is very close to our ground truth -the time course showed in
6.8- while the average signal over the 12 sessions is now quite noisy, as can be seen in
figure 6.9.

We obtained the same result by replacing 9 of the input time courses by noise (in
that case oy = 0.77 ). This shows that the method is robust with respect to the massive
presence of confounds in some of the sessions. Once again, the EM-Kalman method did
not further improve the outcome.
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Figure 6.7: Empirical singular values and estimation of the rank of the state-space
Distribution of the singular values that result from the analysis of the dataset of 6.6 (blue),
together with the analytical expectation for each value (black), and the maximum of the
value under the null hypothesis, with P-value of 10™* (red). Only the first singular value
is above the theoretical threshold, so that X = 1. Simulated distributions (not shown)
give very similar estimations to those displayed in the figure.
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Figure 6.8: Resulting estimation of the state vector from the multi-session data.
This time course is a kind of summary of the input data. It remains somewhat noisy, due to
the innovation process, but there is undoubtedly a relationship between the experimental
paradigm and the dynamics of the state time course.
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Figure 6.9: Robustness of the estimation of the state in presence of noise.
The state of the system has been re-estimated on data, where half of the sessions have
been replaced by gaussian white noise. The estimate of the state (red) remains close to
the original one, given in figure 6.8 (displayed in blue) -which serves as a ground truth.
In contrast, the average time course (in green) is quite contaminated by noise.
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6.3.2 Analyzing data locally

This application is based on the same model (6.31-6.32), but uses the time courses in the
neighborhood of a given voxel instead of different sessions. The underlying hypothesis is
that the hemodynamic response to the stimulus varies slowly within this neighborhood.
This method can be seen as a regularization procedure for the estimation of the hemody-
namic response at the voxel. The potential advantage is that the method is not isotropic
(each time course has a natural weight given by the mixing model). Note that a very
similar setting, termed mazimum correlation modeling has been presented in [71] and
improved in [73].

The neighborhood model can be based on the 3D structure of the data, or anatomically
informed distances, or parcels.

One application in retinotopy Retinotopy by fMRI [196] is potentially a good field
for the application of local estimation techniques:

e It relies heavily on the spatial structure of the dataset.

e It involves a parameter estimation, which can be improved by introduction of spatial
constraints.

e [t yields relatively short time series, making signal extraction challenging. This is
related to the fact that retinotopy is now considered as a calibration experiment for
studies of cortical vision, hence should be performed quickly. T"= 72 in the dataset
studied here.

We use here the dataset described in appendix A.4. Let us recall that retinotopy
through fMRI essentially amounts to the computation of the phase at each voxel time
course at the stimulus frequency w. The state dynamics are thus constrained to belong to
the space defined by (sin(wt), cos(wt)). We apply here the state-space model with A; =0
(no autoregressive term). An example of the time courses of 7 neighboring voxels together
with the fitted sinusoid is given in figure 6.10.

From that study, one can obtain retinotopic maps of the subject for both eccentric-
ity and polar representations of the visual field. In figure 6.11, we give the eccentricity
maps obtained from the standard univariate procedure, the standard procedure applied
to smoothed data, and our local estimation procedure, respectively. Next, in figure 6.12,
we give the polar maps obtained from the standard univariate procedure, the standard
procedure applied to smoothed data, and our local estimation procedure, respectively. In
both cases, functional results have been projected on the inflated left hemisphere of the
subject. Results are symmetrical on the right hemisphere.

The results of these experiments suggest that local estimations improve the quality of
the resulting maps, without introducing too much bias. This can be checked by looking
at reference maps for both experiments (see figure 6.13). The state-space model is a
satisfactory framework for such purpose.

6.3.3 Analyzing data globally

Last, the most general use is to deal with the whole dataset. As explained previously, it can
be done only after severe dimension reduction. The application starts thus with a Singular
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Figure 6.10: Example of state-space model for local data
The time courses of 7 neighboring voxels are represented, together with the best-fitting
sinusoid obtained through the state-space procedure. The phase estimate of the sinusoid
provided by the method has less dispersion than the traditional univariate estimate, pro-
vided that there is not too much discrepancy between neighboring voxels (this is a key
hypothesis for retinotopy).
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(d)

Figure 6.11: Eccentricity maps obtained from dataset A.4 with three spatial models
(a) standard univariate method, (b) standard univariate method after spatial smoothing,
(c) local state estimation procedure. The color code of the maps is given in (d). The local
procedure yields more activated areas without blurring too much the initial map. The
resulting map conforms itself to current knowledge about retinotopy and to our reference
result (see figure 6.13). In theory, one expects a monotonic variation of the phase from
left to right.
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(d)

Figure 6.12: Polar maps obtained from dataset A.4 through 3 estimation procedures
(a) standard univariate method, (b) standard univariate method after spatial smoothing,
(c) local state estimation procedure. The color code of the maps is given in (d). The local
procedure yields more activated areas without blurring too much the initial map. The
resulting map conforms itself to current knowledge about retinotopy and to our reference
result (see figure 6.13). Changes in the monotonicity of the variation of the polar angle
are used to indicate different visual areas.
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(a) (b)

Figure 6.13: Reference maps for the wedge (a) and ring (b) experiments.
These maps have been obtained on the same subject, but with a twice longer experiment.
The functional data have been smoothed.

N |10 15 20 25 30 35 40 45 50 60 70
pl 1 1 2 2 2 2 2 3 3 3 4
K|3 3 4 4 4 5 5 4 4 4 4

Table 6.2: Estimation of the rank of state of the real dataset.

Value Decomposition (SVD) of the data. But up to 7'/2 components can now be retained
for further analysis, in contrast with the basic procedure [72]. The state-space model
extracts a low dimension of the data that retains most of the dynamical (task-related, or
autocorrelated) information of the data.

There remains an intrinsic difficulty in the method: the exploitation of the state model
for interpretation. Indeed, there is no best choice of a particular state value and corre-
sponding spatial maps (provided by the mixing matrix). Finding the best representation
can be made by exogenous methods: temporal ICA, spatial ICA or clustering. We develop
some ideas about such methods in the next chapters. However, the state-space model gives
a good starting point for such advanced procedures, since it reliably estimates the state
dimension.

For example, we have applied the procedure to one session of the dataset presented
in A.2. The session data is first corrected for the presence of trends and then reduced to
dimension N by SVD, and the algorithm is applied.

Rank estimation. The challenge in the estimation of the rank of the system is the
presence of temporal correlation in the data. Our hypothesis is that a low-dimensional
signal space can account for it. X has been estimated for different values N = 10 to 70 -
given that 7' = 120. The number p of recursions in the estimation of the state, as well as the
results for K are given in table 6.2. One can expect that the estimated value of K should
increase with V. In fact, we rather observe that this number is stationary, indicating that
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Figure 6.14: Approximation of a time course of interest (blue) by the state model
(green, dashed) Reconstructed time course, after reduction to N = 20 components by
PCA; (red, dashed-dotted) the same, after reduction to N = 40 components by PCA.
Clearly, the main dynamical feature of this time course have been well preserved by the
State-space model; the differences between both reconstructions are small.

probably most of the autocorrelated components lie in the subspace generated by the first
principal components of the data. It is not clear whether ' = 4 or 5. In the following, we
choose K = 4.

Data fit. It is interesting to compare the state estimations for different values of N.
Since there is no obvious criterion for such a comparison, we can qualitatively study how
both models approximate the signal of a voxel of interest. The time courses of a voxel
X, (t) of interest, as well as the reconstructed time courses (after reduction to N = 20 and
40) M,,Z(t) are displayed in figure 6.14. We notice that both state-spaces provide a good
reconstruction model for the data, in the sense that the activation pattern is well fitted.

The state-space. We present the state basis given by the algorithm in figure 6.15.
There is one consistently task-related component, one which is at least transiently task-
related. The two remaining ones seem to be dynamically coupled; they could be related
to some biologically rhythm. All four components are predominantly low frequency.

Are there motion-related artifacts in the data? Another question of interest is the
effect of body motion. To study this, we can simply make a correlation analysis between
the state and motion spaces, i.e. the six rigid realignment parameters estimated by the
software of Roche et al. (see [70] for related work). The projection of the motion esti-
mation onto the state-space shows that two components can be viewed as common; they
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Figure 6.15: A basis of the state-space for one session of the dataset A.2, after detrending
and dimension reduction.

(a) Two task-related components, the blue one being consistently task-related, and the red
one only transiently task-related. (b) Two remaining components without obvious inter-
pretation. Note that they appear to be tightly coupled -i.e. dynamically and statistically
dependent. All four components are predominantly low-frequency signal.

are displayed in figure 6.16. Fortunately, they are not correlated with task-related activity.

Finally, one can notice that the space representation is a summary of the main features
of the dataset, which is much easier to use thanks to its low dimension. Moreover, we have
found practical solutions for the estimation of the state dimension, which solves a very
difficult problem in fMRI data analysis. This also avoids blind data reduction by PCA.
There remains the concern of optimal state representation, which has not been solved so
far.

6.3.4 Conclusion: State-space models of fMRI data

First of all, we can notice that the state-space formalism is essentially a reformulation of
existing techniques, e.g. temporal canonical correlation analysis, applied for fMRI data.
The pleasant feature is that it is naturally interpreted in terms of generative process,
the latter being any cause of the observed signal (task-related response, body motion,
biological rhythms). The scheme that we propose for the estimation of the state-space
and its dimension is moreover computationally efficient.

The problem of optimal state representation requires other approaches. Though ICA
seems a natural solution, we propose in 7.3.2 an alternative based on kernel PCA.

Last, since the simple formulation that we have chosen does not allow for the precise
characterization of the hemodynamic response, in chapter 9, we use state-space models
for the detection and suppression of autocorrelated confounds, and use explicit (FIR)
models for the hemodynamic response.
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Figure 6.16: Two patterns are common to both the state-space and the realignment pa-
rameters.

They have been obtained through the CCA technique explained in 5.1.4.
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Chapter 7

Kernel PCA and non-linear
mixing

Our next proposition is the introduction of non-linearities in the mixing model through
the method of kernels. Indeed, it has been shown in chapter 4 that decomposition methods
based on linear mixing models (PCA, CCA, ICA) were not able to disentangle the structure
of even simple signal spaces, such as the space represented by the example defined in A.1.
Then chapter 5 has shown that we were able to isolate a low dimensional representation of
the data that keeps all the -temporal- information of interest; but the problem of optimal
state representation was not solved. Its is likely that a nonlinear mixing method could
yield some solutions to that problem.

Several issues need to be addressed when dealing with nonlinear methods: the choice of
a non-linearity model that should be meaningful; the possibility of estimating such a model
from empirical data; the computational load. Our proposition [208] is the introduction
of kernel PCA, which has the advantage of an explicit model for the non-linearity, which
can be well controlled, and the clear definition of the solution. We first present the kernel
PCA model and show on a synthetic example the unmixing ability of the method; then
we develop some more technical points. We end this chapter with three examples that
show how to use the methods on real datasets, in different frameworks: 1) the study of
preprocessed time courses, 2) the derivation of an adequate overcomplete representation
for the state-space model and 3) a comparison between the Multivariate Linear Model
(MLM) and kernel PCA, both being based on a standard analysis performed with the
General Linear Model.

7.1 Kernel PCA

7.1.1 Nonlinear mixing, overcomplete representation and feature space

As we have mentioned, the difficulties encountered with PCA and ICA in chapter 5 can
be overcome by the introduction of kernel PCA [194]. To understand this, we have to
introduce the concepts of feature space and overcomplete representation, and link them
with the concept of nonlinear mixing.
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Feature space and nonlinear mixing Let X be our input data - an fMRI dataset. It
can be seen as a collection of voxel time series X,,(t), which are N items of a given space.
One would like to analyze X through a generative model approach (as in 6.2-6.3)

X=MS+E (7.1)

But this linear mixing model may be inadequate. For example, temporal signals X,,(¢) may
stem from different effects in data generation (brain activity, other physiological events,
data acquisition, artifacts, preprocessing, see chapter 3), so that it is awkward to consider
all these effects at the same level of analysis. Rather, it may be worth considering that
the true data generation involves a complex -multi-layer, high dimensional- structure,
the data X, (t) being a kind of embedding of this high dimensional underlying process
into the observation space. Of course, nothing is known about this complex generative
process - but the data itself. Kernel PCA relies on the following conjecture: Assuming
that one can access the data in the feature space F through a certain mapping @, then the
independent components of the process are provided by Principal Components Analysis of
(®(Xn))n=1,..n € F. Consequently , the problem becomes the specification of

Kij =< q)(Xi),(I)(Xj) > (7.2)

which represents the empirical covariance (or Gram) matrix of the data in F. The inter-
esting thing is that only x, not ®, is necessary for the solution of this problem. The trick
consists in deriving £ directly from the input items (X, ), bypassing the specification of ®:

Iﬁ:i,j = I((X“X]) (73)

Where K is the kernel that accounts for the nonlinearity associated to the non-linearity
of ®. This is fortunate, since the specification of ® is in fact very cumbersome: F can
be infinite dimensional, the only requirement being that it has an Hilbertian structure.
The feature space is fully determined by the definition of a metric, or equivalently, by
the definition of a generalized covariance K (X;, X;) for any (é,j) € [1,N] x [1, N]. Then
the decomposition consists in diagonalizing the covariance matrix x(i,j) = K(X;, X;) for
i,j € [1,N] x [1, N]. The eigenvectors w of £ will represent the spatial modes of coherent
dynamical activity in the input data X.

Overcomplete representations and nonlinear mixing More realistically, one can
simply consider the following argument: the usual bilinear covariance structure in R’
yields a Gram matrix £ = (< X;, Xj >)(; j)=1.n of rank T. Instead, the matrix (7.3)
has a higher rank, and possibly full rank N (in which case there are as many dimensions
as data items, so that the dimension of F is potentially infinite). Letting (w;);=1.n be
a basis of RN that diagonalizes &, it is clear that this generative family is overcomplete
once considered in the original space R .

Finally, Kernel PCA is then nothing but a way to produce an overcomplete repre-
sentation of the signal. This may be disadvantageous for the sake of sparsity in data
representation, but it has been shown in some works [138] that it has better representa-
tion properties when the data is not gaussian.
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Choosing a kernel The important question now is: what choice for K will produce
meaningful eigenvectors? We start with the idea that distinct time courses are the real-
ization of different underlying dynamical phenomena, and thus should be distinguished
by the kernel (this is not actually the case with PCA). Let X;(¢) and X;(t) be two time
courses from the dataset. First, let us notice that it will be useful to replace them by
models (i.e. after noise removal), denoted by z; and z; respectively; these models can
be derived with the techniques presented in chapters 4 and 6. The classical covariance,
noted Koo -Koo(2, 25) =< 2;,2; >- can be written as Ko(z;, 2j) = cc(2, 25)|%i|2;], where
ce(z;, z5) € [—1,1] is the correlation between the time courses. cc(z;, z;) = 1 means that
the time courses are identical, up to a positive factor, cc(z;,2;) = —1 that they are op-
posite, up to a positive factor, and cc(z;,z;) = 0 that they are uncorrelated. In fact,
correlation can be thought of in terms of shared information between the time courses.
We propose to introduce the non-linearity by penalizing the values of cc that are far
from 1. To do that, we multiply the usual covariance matrix K (z;,2;) by a function
P(ce(zi, z5)) so that ¢(1) =1 and ¢(cc) decreases to 0 rapidly when cc gets smaller. The
fact that K(z;,2;) = Koo(2i,25).0(cc(z;, 2;)) decreases rapidly when the correlation de-
creases, means that the time courses will be viewed as orthogonal features as soon as their
correlation will be under a given threshold, say 1 — 3¢. This is justified if one thinks that
these time courses are the realization of different underlying dynamical phenomena. Here

we choose
ce(z; 52 )—1

Oolcc(zi 25)) = e =, (7.4)
yielding the kernel-covariance

cc(zi,z]-)fl

kij = Ko(Xi, Xj) = Koo(2i, 2j) o (cc(zi, 25)) =< 2,2 > e @ (7.5)

Let us notice that the parameter ¢ controls the amount of nonlinearity in the kernel:
o — oo corresponds to the classical PCA (K = K), while ¢ — 0 means that any
two distinct -up to a positive factor- time courses are orthogonal. A particularity of our
choice is that opposite time courses (cc = —1) are treated as orthogonal, hence distinct
phenomena. This is related to the hypothesis that an effect present in the dataset should
not appear as positive for some voxels and negative for some others (which makes sense if
one avoids some corrections as global scaling, that induce the artefactual opposite signals).

Choice of 0, and sensitivity with respect to this parameter The choice for the
optimal value of o should be guided by the interpretation of this parameter. Given our
model (7.4), the role of ¢ is to cancel the correlation values below 1 —30. Consequently, a
smaller value for o yields more scattering of the data variance into the different components
(see figure 7.1), which does not mean that more components are actually of great interest.

Two strategies are possible: first, to compute and diagonalize the kernel with different
values of o (given that in practice the useful values lie in the range of [0.02,0.2]); second
to decide a pertinent value by plotting the histogram of the empirical correlation between
all pairs of fitted signals across the dataset (see section 7.3.1).

Running the method Kernel PCA of the data is then performed by the following
steps:
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Figure 7.1: Number of components that are necessary to account for 95% of the total
kernel-covariance as a function of o.

This is taken from the data presented in section A.2. For comparison, the number for a
PCA decomposition would be only 6 components. Note that this is not necessarily the
number of components of interest in the dataset.

1. Derivation of the kernel-covariance matrix x by (7.5).
2. Diagonalization of k. this yields eigenvectors wy, .., wy sorted by decreasing energy,
3. Selection of the first I components, and study of the spatial maps (w;)i=1,._ 1.

7.1.2 On kernels

An important concern is to ensure that F is indeed a Hilbert space, that is that the kernel-
Gram matrix x is a covariance matrix, i.e. a positive definite matrix. This implies some
conditions on the kernel K. Of course, the kernel should be symmetric K(x,y) = K(y, x)
and satisfy Cauchy-Schwartz inequality

K(x,y)* < K(z,2)K(y,y). (7.6)

The additional conditions that defines admissible kernels is precisely the positivity condi-

tion: if 21, .., 2" are a dataset, then for any set w,..,uy of real numbers,
N
Z wiu; K (', 27) >0 (7.7)
ij=1

Consequently, the set of admissible kernels is stable by some operations (see [91] for ex-
ample):

e Convexity: letting K; and Ky be two admissible kernels, and « and 3 two positive
numbers then
K = aK; + K> is also admissible.
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e Multiplication: with the same notations, K = KK, is also an admissible kernel.

e Consequently, for any real polynomial with positive coefficients IT, TI( K') is admissible
if K is admissible.

e Consequently, the exponential of an admissible kernel is admissible.

e Moreover, for any real-valued function f, K(x,y) = f(x)f(y) is a valid kernel, and
sois Ki(f(z), f(y)), if K is an admissible kernel.

e Of course, any positive symmetric matrix A yields an admissible kernel by K (x,y) =
T
Tt Ay.

The kernel given in (7.5) is thus valid, since it is the product of two valid kernels.
Though we will not use it, let us mention the spectral representation theorem from [24]
that is useful to decide for the admissibility of some kernels:

A stationary, i.e. translation invariant kernel K(x,y) = K(x —y) is admissible if and

only if
Kz —y) = /R cos(w" (z — ) F(de) (7.8)

where F' 1s a positive measure.

The nice thing is that (7.8) is nothing but the Fourier transform of F, so that a stationary
kernel is admissible if and only if it has a positive Fourier transform. This is in particular
the case for gaussian kernels

202

K(z,y) = exp (_M> (7.9)

7.1.3 From theory to empirical data

Before going into more issues on kernel PCA, we propose now to give an illustration of
the power of the method to disentangle some activation patterns. Once again, we use
the synthetic example dataset described in A.1. To show the interest and the limits
of the method, we compare the data decompositions obtained by processing with four
different methods. The differences between the four methods lie in the definition of the
corresponding kernels: in particular, for the data item X;(¢), we introduce a fitted model
z;i(t) which is the time course after projection on a subspace of interest. z; represents then
a temporally pre-processed version of X;.

The parameter o is set to 0.1 for both K3 and Kj.

Results To select the number of final components, we plot the amount of variance
contained in each component, for all techniques, and select the number of components
as the inflection points in the decreasing curve (see figure 7.2). Both kernels K and
K> yield two main components, while the kernel Ky yields three main components. For
K3, it is not clear whether a particular subspace can be defined. In this case we display
three components by analogy with K4. We also checked that our selection procedure
did not leave apart any structured spatio-temporal component for either method. The
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method | temporal processing | procedure corresponding kernel
1 none PCA Ki(X;, X;) =< X;, X; >
2 fitted time course PCA Ko(Xi, Xj) =< 2,25 >
(-
3 none KPCA | K3(X;,X;) =< X;, X; > e” \ %]
1 (<zi,zj> _1)
4 fitted time course KPCA Ky(X;i, Xj) =< 2,2 > e \ 55!

Table 7.1: Four different kernels used for comparison on synthetic data.
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Figure 7.2: Relative amount of fitted variance of the first components.
The square root of the variance associated with each component is plotted after normal-
ization with respect to the first component. The four curves represent the components
obtained after the covariance estimate from K; (blue), Ky (green), K3 (black) and K4
(magenta).
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resulting temporal patterns are displayed in figure 7.3, and have to be compared with
those presented in figure A.1.

The corresponding maps, overlayed on the “ground truth” from figure A.1, are dis-
played in figure 7.4.

Comparison and interpretation. First, it is noticeable that kernel K3, which per-
forms the kernel PCA without prior analysis, gives the worst description of the dataset in
terms of time courses. The reason is clear from figure 7.4: the spatial maps are reduced to
one voxel. Clearly, the kernel K3 overfits the data. This indicates that under low signal
to noise ratio, the use of kernel PCA without a related modeling of the data will perform
poorly.

The comparison of the time courses provided by kernels K; and Ky shows that the
introduction of a temporal model of the data prior to PCA greatly reduces the noise
embedded within the components. But both methods perform poorly in unmixing the
spatial components, as can be seen in figure 7.4.

Last, kernel K4 is the only method that clearly indicates that the signal distribution has
three main modes, and identifies the corresponding spatio-temporal components correctly.
A reason is that the three “modes”, represented by the three time curves of figure A.1, lie
within a two dimensional space, which makes their identification problematic for a linear
method, as PCA. In fact, PCA is optimal for gaussian distributed data, an hypothesis
which is not met here.

7.2 Making it work in practice

In this section, we develop some technical details about the kernel PCA method: Compu-
tational problems related to the size of real datasets, the question of data centering and
-last but not least- of dimension selection.

7.2.1 Size of the system

The main problem with kernel PCA is the amount of computation in the diagonalization
of the kernel-covariance matrix (this is nothing but the counterpart of the additional
ability of the method to detect more subtle spatial modes of activity): this comes from
the fact that the NV x N matrix « has to be diagonalized, N being the number of voxels
(ranging from 10* to 10° in practice !). This problem is the main bottleneck for the
practical use of the method, since the Singular value Decomposition of a N X N matrix
has complexity O(N?); on a standard PC, it currently takes around one hour for N' = 4000.
We successively explore two solutions to overcome the difficulty: i) The reduction of the
dataset to reach a reasonable N value, and 7i) The approximation of the first I components
by an EM method.

Data reduction The first way to deal with the problem is to arbitrarily reduce the
number N of voxels in the kernel estimation. The solution may seem crude, but it offers
several advantages:
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Figure 7.4: Spatial maps that define the main components of the decomposition for the
different kernels.

These maps are thresholded at a significance value P = 0.05, using a gaussian random
variable approximation. The first row contains the two maps obtained with K7, the second
row the two maps obtained with K5, the third row, the first three maps of K3, the fourth
row, the three maps obtained with K.
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e [t does not only reduce the computation time, but also the storage cost for the
matrix .

e The particular kernel that we have chosen in equation (7.5) is not very sensitive for
weakly informative voxels: since k;; = |2|2j|ce(2i, 25)e ™ =, ki is small Vj if

|z;|] is. Thus eliminating the i"* row and column of x does not change significantly
the result of the PCA (this is the case for classical and kernel PCA). Consequently,
eliminating voxels that carry little effect of interest does bias neither the eigenvalues
of the PCA neither the associated spatio-temporal modes.

e The eliminated voxels can be reintegrated in the images wy by the following formula:

N
wi(i) = 575 > K (X, Xi)wi(n) (7.10)

where (X,),n = 1,..,N is the reduced training set, wy, is the k' spatial map, A(k)
the associated eigenvalue of K and i a voxel that has not been included in (1, .., N).

Let us mention that there could be some different ways to undersample more properly
the data; for example, replacing voxels by regions of interest that have greater size reduces
N without losing too much information ([66], [127]).

Using an approximation of the solution Recently, a method has been proposed
in [159] for the approximation of the first components in a kernel PCA approach. The
corresponding subspace W; = (wq,..,wy) is obtained in an Expectation-Maximization
(EM) fashion by the following iterations:

v = (Wiwp 'wik (7.11)
W = kU(TET)! (7.12)

whose complexity is no more than O(IN?) for each iteration. This simple procedure
converges quickly towards the first eigencomponents of x. Additionally, a whitening of
W at each step greatly reduces numerical instabilities. This procedure can reduce the
computation time by a factor 4 with respect to the SVD.

7.2.2 Centering the data

So far, it has been assumed implicitly that equation (7.5) represents the covariance of
the data after applying the ® function. In fact this is true only if E(®(X)) = 0. This
is not necessarily satisfied, especially with kernels like (7.9). Consequently, a centering
procedure has been introduced in [194] to correct for non-centering of the data; using the
following approximation,

> B(X,) =0, (7.13)
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such that the matrix x is then slightly modified: Let [ be the N x N matrix such that
I; ; =1VY(i,j). We define the centered matrix & = (&; ;) by

N N
- 1 1
Rij = <O(X) =) ®(X), B(X)) - = > B(Xn) > (7.14)
n=1 n=1
1 N 1 N 1 N
= Kiyj — N nZl Hi,nfin,j - N TLZI Iii,an,j + m nmz_l Hi,mfim,nﬂn,j (715)
I+ kI 1kl
= (k- N W)Z,j (7.16)

We have not applied this procedure with kernel (7.5).

7.2.3 Choosing the dimension

Choosing the optimal rank (the number of components kept in the final description of
the dataset) for a data decomposition is a difficult problem. For PCA decompositions in
neuroimaging, two methods have been proposed (see also section 5.1.2):

e The use of a sphericity criterion to control that the eigenvalues rejected into the
null space can be considered as equivalent (the noise dispersion being approximately
isotropic in the signal space) [224].

e The introduction of a generalization error criterion that includes a data fit and a rank
penalty term, based on asymptotic approximations [103]. It is reported there that
the analytical rank estimate obtained from the training dataset is too optimistic,
and that data splittings are better suited for rank estimation than the analytical
method.

However, these methods do not match the hypotheses introduced with our kernel PCA.
For example, in [103], the authors assume that the signal space is gaussian, as well as the
noise space. Here, we propose a different procedure: we compute the goodness of fit of
the decomposition at rank r by the following formula:

G(r) = 3 2t C0nt) = Ticy Esul®)? | rlog() 717)
n=1

27T ||=™ || 2
where ||<"||? is an estimate of the variance of the residual noise found at voxel (n), e.g.
the stochastic variance defined in section 4.2.2. If one assumes that the residuals are
independent among voxels, and that the estimate of the noise variance is unbiased, this
criterion is known as the Bayesian Information Criterion (BIC), and is in fact analogous
to the MDL criterion used for the temporal model. The minimum of G with respect to r
gives the optimal number of components.

Let us also mention the original procedure proposed in [107] which is based on the
iteration of kernel PCA and ICA.
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Figure 7.5: Histogram of the empirical correlations obtained from the dataset, after pre-
processing of the time course
ce(i,j) = S252 1 < i < j < N. The width of the histogram bins is 0.01, and the
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population in each bin has been divided by the total number of pairs, i.e. 5

7.3 Results with real data and discussion

7.3.1 Use in combination with a univariate model

We have applied the kernel PCA to a dataset which had been pre-processed. We have
used the dataset described in A.2.

Materials and results

The dataset is first reduced by selection of the most relevant voxels. The criterion is the
complexity criterion (4.39). This yields N = 4079 instead of 12320 '. Then a dynamic
model z; is derived for each voxel, by using the multi-session analysis method described
in 6.3.1. The histogram of empirically obtained correlations is given in figure 7.5.

This histogram contains essentially a wide mode centered at 0, and a narrow peak
around 0.95. This narrow peak contains the activated voxels, which are mutually positively
correlated. Kernel PCA can then be used i) to separate the voxels contributing to this
mode from the other voxels, and i) to see whether there are separable models within
this mode (one can notice that very few pairs have correlation equal to 1). A generalized
covariance is then derived through the kernel (7.5), with ¢ = 0.03. After computation
of the first components of , the rank is estimated with the function (7.17). This yields

nterestingly, using N = 2898 yielded exactly the same results as N = 4079; this indicates that the
results are not very sensitive to the addition of weakly informative voxel time courses.
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Figure 7.6: Selection of the number of components with the criterion G(r) (equation
(7.17)).
The minimum of the functional is reached for » = 9.

r = 9 components for the data, as can be seen in figure 7.6. We use this number for
practical purposes, acknowledging the fact that there is no clear-cut indication of a true
dimensionality.

The associated temporal patterns are then derived by least squares solution:

N
se(t) = wi(n) X, (t) (7.18)
n=1

The 9 patterns associated with the first components are presented in figure 7.7. For the
sake of readability, they have been divided into three groups, organized according to their
similarity.

To simplify the presentation of the associated spatial patterns, we present three corre-
lation maps associated with the average of the three groups presented in figure 7.7. The
maps, shown in figure 7.8, are derived by correlation of the voxel time course with the pat-
tern time course, and thresholded at the level P = 0.05, Bonferroni-corrected for multiple
comparisons.

Interpretation and discussion

On the spatial maps. In figure 7.8 we have plotted the color (blue, red, green) coded
maps associated with the three main groups of patterns, together with a map of the motion-
static contrast obtained from SPM analysis. There is a good correspondence between the
positive activation areas and the green- and blue-labeled voxels; but also between the red-
labeled and the areas that respond negatively to the t-test. It is noticeable that the labeled
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Figure 7.7: Main temporal patterns associated with the decomposition.

They have been sorted into three groups according to their similarities; the first group
comprises six components, which present an activation for both experimental conditions,
in a relatively homogeneous way. The differences among them concern only secondary
features, e.g. the response shape or the amount of noise within the time course. The
second group comprises two components, which are only driven by the motion condition
(time onset: 20,60,100). The difference between them (timing or shape) is less interesting
to interpret. The last group comprises only one component. It is noticeably anti-correlated
with the first group, but the task-related pattern is less consistent than what can be seen
within the first group.
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Figure 7.8: Results of kernel PCA as applied to dataset A.2
(top) Eight axial slices (a-h) of the label map associated with the first three components.
The slices are presented in two main columns, each one showing our labels (left), and the
corresponding SPM map of the (M-S) moving-static contrast (right). Both spatial maps
are thresholded at a significance value of P = 0.05, corrected for multiple comparisons.
Bottom: temporal patterns associated with the labels. The colors of the label map are
the same as those of the temporal patterns.



146 CHAPTER 7. KERNEL PCA AND NON-LINEAR MIXING

areas are wider than the thresholded t-maps; this is understandable, given the fact that
the conjunction of three models fitted to the data is likely to uncover more information
than a single contrast. However, KPCA makes more precise some information provided
in the SPM t-map:

e First, the distinction between the blue- and green-labeled areas: the time curve as-
sociated with the spatial maps recalls that the green activation pattern is uniquely
driven by the motion condition, while the blue pattern was driven by both condi-
tions, though much more by the motion condition. Our map shows a distinction
between the blue-labeled primary visual areas (V1, parts of V2, V3, V4 and TE),
and the green-labeled areas (MST, MT/V5). This confirms the selectivity of MT/V5
to motion stimulation, but also the observation that primary visual areas respond
positively to the SPM contrast motion-static (in [218], it is reported that some layers
of V1, V3 and some stripes of V2 contain a non-negligible proportion of direction-
selective neurons). Though compatible with the SPM analysis, the label map gives
thus a finer description of the responses of the visual system.

e Second, the areas that exhibit consistently negative responses to the SPM t-test
yield difficulties in the interpretation of the experimental results. Clearly, these
areas, that include the cerebellum and the parietal cortex, are not part of the visual
system. If we identify them with the red-labeled areas, we see that the associated
temporal pattern shows indeed a clear static-motion effect, which is nevertheless
combined with a kind of trend. Consequently, this pattern is not consistently task-
related, and thus could be the result of the combination of different effects (motion
of the animal correlated to the task, biased motion estimate/correction, or even the
competition between neural/hemodynamic events). We have noticed that the use of
the standard SPM motion correction routine yielded systematically more consistent
and wider negative areas (data not shown).

On the temporal patterns: Figure 7.7 illustrates the ability of kernel PCA to derive
over-complete representations of the data. In particular, no linear decomposition method
could yield such results, since all the components are (positively or negatively) correlated.
One might ask whether such redundancy in the decomposition is really interesting; in
particular, the first group of 6 time courses has been advantageously replaced by one model
for the study of the spatial maps. However, this is because we mostly concentrate on the
static-motion contrast. In a different context, or with different priors, finer description of
the signal space may be interesting. Moreover, the distinction between group 1 and group
2 (or equivalently, between blue- and green-labeled areas in figure 7.8) is fundamental,
though it cannot be achieved by usual methods (including spatial ICA): it can be obtained
only by introducing temporal-preprocessing, and, in the case of KPCA, a narrow (o =
0.03) kernel.

Finally, this study mainly outlines the potential of kernel PCA as an exploratory tool
(even if it uses temporal pre-processing), rather than an inferential tool (it does neither
produce a true generative model of the data nor statistically validated maps as SPM).
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7.3.2 Use of kernel PCA in combination with the state-space model

Now we present how kernel PCA can be used in order to solve a problem encountered
with state-space model (see chapter 6) : the problem of state representation.

A kernel for state-space models Let us assume that a state-space representation has
been derived for a dataset Y, as given by equations (6.2-6.3). The problem is to find a
meaningful representation of the dataset, which shows how the main dynamical features
of the dataset are organized spatially. As noticed earlier, the state-space model alone does
not solve the issue; we propose here to derive an overcomplete representation of the state
X and the mixing matrix M of the model.

Within the state-space framework, each voxel n has a natural feature representation
f(n) = (MX),. One can thus use an admissible kernel to derive x; ; = K(f(i), f(j))-
But, in order to keep the advantage of the low dimensional representation of the dataset
provided by the state-space, and also to show the generality of kernel method, we will use
a different setting than previously. We choose the kernel

ki = K(f(i), () =< fi. f; >° (7.19)

The advantage of the polynomial kernel is that the feature space remains finite dimen-
sional, which allows for an explicit computation of the mapping ® and avoids in fact the
computation of k. Besides, the cubic polynomial preserves the sign of the scalar product,
avoiding a centering procedure. Let ) be the dimension of the state-space; the dimension

of the feature space, i.e. the rank of k, is here d = w. Indeed,

3

< fi fj >*

Q
> fila)fila)
q=1

Q Q
= > L@@ 430 > fila) file2) fi(a) Fila2) +
q=1

a=1q¢<q

Q
+6> > > filan) filaz) filas) fi(a) Fi(a2) f(gs) (7.20)

q1=1q2<q1 q3<q2
= <O(fi),(f;) > (7.21)

where

Q Q
o(fi) = (i@, V3D Y fila) fila2) V6 > D > fila)filaa) filgs)) (7.22)

1=1q2<q1 q1=1q2<q1 93<q2

is of dimension d = Q + Q(Q{D + Q(Qflﬁ)(Qﬁ) = Q(QHG)(QH) (it is in fact the dimension
of the space of homogeneous polynomials of degree 3 in @ variables).

Here the KPCA method boils down to the SVD of the feature data ®(f;). The advan-
tage is that no dimension reduction is necessary.
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Figure 7.9: A particular basis of the state space obtained for the dataset.
If the interpretation of the first component is obvious in terms of task-related activity, it
is not clear that the other temporal patterns are meaningful. The question is thus: how
to relate these patterns to the empirical dynamics encountered in the dataset 7

Application to real data We use once again the dataset presented in A.2. The state-
space model is applied to the data averaged over the different sessions, after reduction to
N = 20 components by PCA. This results in a () = 4 dimensional state-space. A basis of
the time courses that span the state space is given in figure 7.9.

If the first time course is easily interpreted in terms of task-related activity, the in-
terpretation of the other time courses is somehow more difficult; one of the reasons for
that is that the time courses are not dynamically independent, as explained in chapter 6.
This raises a natural question: what is/are the model(s) that best describe(s) the actual
dynamical patterns within the dataset 7 Let us study the answer given by kernel PCA.
Since () = 4, the dimension of the kernelled data is d = 20. The SVD of the matrix
®(f;),i = 1..N provides d spatial maps for the data. We now study the first three com-
ponents, that make up 99% of the kernel variance. The three time courses s, (t),n = 1..3
associated to the three maps are given in figure 7.10.

As expected, the first time course represents the main mode of activation (compare
with figure 7.7). The second time course is largely more jittered; in fact it is essentially
the derivative of the first pattern with respect to time: the correlation between sy(t) and
%(t) is 0.66. We face here a usual feature of the multivariate decomposition of time
courses: a difference in timing results in a modulation through the time derivatives:

s1(t+dt) = 51() + dt%(t) +o(dt) = s1(t) + dtsa(t) + oldt) (7.23)
the sign of the spatial map associated with s»(¢) will indicate this timing difference for
each voxel. The third time course s3(t) is then the more interesting modulation according
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Figure 7.10: Time course associated with the first three components obtained by kernel
PCA on the feature data.

The first model is the main activation pattern within the dataset; the second one is
essentially its derivative with respect to time, and the third one presents a modulation
with respect to the activation condition, much similar to what has been reported in 7.3.1.
As usually with kernel PCA, these time courses are mutually correlated.
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to the contrast stimulusl-stimulus 2 (see section 7.3.1). The spatial maps provided by
kernel PCA are displayed in figure 7.11.

Discussion The interpretation of the maps is complicated by the difficulty of finding
equivalent z-maps for the spatial components. We have used the method described in
appendix B to derive an equivalent z-map based on robust statistics. In particular, we
have applied the correction for non-normality of the null distribution for all maps, since
there were in all cases strong deviations from normality. However, the resulting z values
are probably conservative. Anyway, some important characteristics of the spatial maps
displayed in figure 7.11 can be outlined:

e The first map is positive almost everywhere, by contrast with the others; as noticed
from the time courses, the first component represents the main response within the
dataset, so that it is not surprising that it is positive everywhere. This does not
preclude the presence of negative patterns (see figure 7.8); but the latter are thus
not exactly anti-correlated with the positive pattern, so that they are absent from
the above map (this is a kernel effect).

e The second map represents essentially a left-right contrast. From the observation
of the time course, one can deduce that a positive value indicates a delay in the
response, while negative values indicate an anticipation in the response, with respect
to pattern 1. Here, this may simply reflect slice acquisition order, which has not been
corrected.

e The third map represents the effect of interest, namely the modulation by the con-
trast moving-static. Negative responses indicate a greater impact of motion condition
on the time course, while positive values indicate a weaker impact. Spatially, this
provides a nice interior/exterior contrast, with peripheral regions being less sensitive
to motion than interior regions. This map is coherent with the spatial components
displayed in figure 7.8, though the latter showed a more exclusive delineation of
MT/V5 areas. A more thorough study of maps 1 and 3 of figure 7.11 would indeed
confirm that these are the areas selectively activated by the motion condition.

Once can conclude from this that the supplementary degrees of freedom afforded by
the kernel PCA technique allow for the derivation of more interpretable components from
the state-space model presented in chapter 6. The use of a cubic kernel is advantageous,
since it avoids the dimension explosion induced by non-polynomial kernel. Besides, it
enhances strongly covarying structures, yielding almost binary maps that allow for simple
interpretation.

7.3.3 Comparison with the MLM

The setting

We perform a comparison of linear and non-linear PCA methods -MLM and KPCA-
on a real dataset (see also [211]). The latter is described in [42] and is taken from an
experiment on 9 subjects analyzed in [126]. The information of interest is reduced to a
contrast between two experimental conditions. In order to improve the estimation of the
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Figure 7.11: Seven slices of the first three spatial maps obtained with the state-space
approach followed by KPCA technique.

As shown on the right hand side color bar, red-yellow clusters indicate positive values of
the maps, blue colors indicate negative values of the maps.



152 CHAPTER 7. KERNEL PCA AND NON-LINEAR MIXING

time course associated with the contrast

_2 1 1 1 1 1 1 1 1 1
50 20 40 60 80 100 120 140 160 180 200

time (scans)

Figure 7.12: Time courses associated with the 3 contrasts studied here.
Voxel-based responses to these contrasts make up the feature space fi(n), .., f3(n).

latter, one proposes to introduce a 3-dimensional hemodynamic space that contains the
SPM standard hrf and its first two time derivatives.

We work here on the analysis of a subject which has been shown to have low activation
values. The number of voxels considered in the analysis for this subject is N = 17721.

The data is reduced to the regressors and residual noise by standard procedures (see
section 3.3). Each voxel is then represented by a vector X(n) = ($1(n),.., Br(n),e(n)),
where (/) are the results of SPM regression, and ¢(n) the residual variance (see equations
(3.3)-(3.4)). Then for both methods, a 3-dimensional contrast is derived. The contrast
amplitudes estimated at each voxel are normalized by the standard deviation of the noise
level £(n) . The resulting 3-dimensional vector is now considered as the feature f(n) =
(f1, f2, f3)(n). This feature has the structure of a signal to noise ratio, so that a feature
with a high norm is a priori strongly informative. It is defined at each voxel; both KPCA
and MLM are used to derive spatial maps m(n),n = 1..N of the feature distribution.

For KPCA, we choose the kernel

K, (i,§) =< fi, f; > exp (%(% _ 1)), (7.24)

for 7,7 = 1..N’, with N’ = 3020 results from the selection of the voxels that respond to
the “effects of interest” with a P-value< 1073, uncorrected for multiple comparisons. Here
o =0.05. K is then diagonalized

K, = MAM, (7.25)

where A = diag(61,..,0n) is a diagonal variance matrix. Each resulting map can be
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associated with a feature by
N . .
iz (D)F ()
6(m)
Next, the reduced representation can be extended back to the whole dataset by the gen-
eralization formula

f(m) = (7.26)

/ N
X(Z) > Ko(fo, fi)m(i), n=1..N, (7.27)

=1

m(n) =

For KPCA, the maps are far from gaussian, and there is no well-defined way to make them
gaussian (as in appendix B). For example, the maps are much more contrasted than what
could be expected from a normal model. However, the thresholds derived in the normal
case are still helpful to isolate the main clusters of coherent activity. This is due to the
normalization of the map. We thus keep a similar setting and interpretation in terms of
z—values.

For the MLM, the setting is much simpler, since no dimension reduction is necessary.
Three maps are derived by diagonalization of the 3 x 3 feature covariance matrix; they
can be analyzed as indicated in appendix B.

Results

MLM The three squared singular values, once properly normalized [126], yield map-wise
feature squared norm averages of of 4.32, 2.02 and 0.98 respectively. This is significant for
the first two ones. The three time courses (adjusted and fitted effect), reconstructed from
the spatial maps in a standard way, are displayed in figure 7.13.

MLM mapl is represented in figure 7.17 with the first two KPCA maps; one slice of
MLM map?2 is represented in figure 7.18; in both cases, low thresholds have been used
(z > 3 and z > 2 respectively). Spatial map 1 is associated with the strongest effect
present within the dataset. Although there are clearly positive and negative clusters of
points, only one cluster (on the negative side) is beyond the threshold z = 4.7, which
corresponds to a corrected P-value P = 0.05; on the positive side z < 3.4 uniformly. For
MLM map2, no voxel exceeds the absolute z-value z = 3.8. This means that the extrema
of the maps are weak, i.e., that the SNR is very low in the dataset.

Note that the results are invariant if the same analysis is performed on a reduced
dataset- as KPCA. This is logical, since the features close to 0 have low impact on the
global covariance structure (data not shown).

<[fi,fi>
. . . . . . . . |fl||f]‘ ' . . .
7.14. The statistical distribution of correlations is important if one considers equation

(7.24), which indicates that correlations that fall below 1 — 30 are canceled (K ~ 0). The
histogram shows the presence of two peaks, one around 1 and the other one around -1,
indicating that the distribution of the data is essentially bimodal. Second, the fact that
the histogram reaches nowhere 0 indicates the spread of the data around the two modes.
o = 0.05 seems to yield a correct characterization of the peaks. Note that considering the
entire dataset would yield a different correlation histogram, probably with another mode
around 0.

KPCA An histogram of the empirical correlations ¢ # 7 is shown in figure
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Figure 7.13: Set of time courses obtained with the MLM method.
Three components are represented, with for each a fitted (blue) and adjusted (green) time
course for each component. They are associated with decreasing amounts of variance
within the data.
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Figure 7.14: Histogram of the empirical cross-correlation of the dataset.
The maxima at cc =1 and cc = —1 indicate that the data is dominated by two opposite
components.
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Figure 7.15: This curve characterizes the norm of the feature associated with each com-
ponent.

The first two values are far above the others, indicating that there are two main modes
in the signal distribution. They are also the two statistically significant ones. Further
studies indicate that these two modes are approximately opposite in the feature space. In
the sequel, we consider the first three components.
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The amount of variance associated with each component is given in figure 7.15. It is
clear that the first two components are far above the others and have significant values
(note that these values are analogous to F' statistics); nevertheless, we have decided to
study the first three components. The associated time courses are given in figure 7.16.
A particularity of kernel (7.24) is that opposite effects appear as different components,
whereas they appear as one subspace with MLM. It is easy to deduce that the first com-
ponent found by MLM is thus associated with the first two components obtained by KPCA,
whose temporal time courses are almost opposite, as can be seen in figure 7.16. Therefore,
we plot together (—1x)MLM mapl, KPCA mapl and KPCA map2 in figure 7.17. One
slice of KPCA map3 is represented in figure 7.18 together with MLM map2; unlike the
latter, it contains supra-threshold clusters of voxels.

Discussion

MLM and KPCA: similarities First of all, it is important to keep in mind that the
methods perform comparable analyses of the data. Moreover, choosing ¢ = co in kernel
PCA yields exactly the MLM decomposition. Besides this definition, and setting MLM
TC i for the i temporal component obtained with MLM, and the same notation for
kernel PCA there is a striking similarity between :

e MLM TC1 and (-1x) KPCA TC1,
e MLM TC1 and KPCA TC2
e MLM TC2 and KPCA TC3,

Logically, these similarities are also true in the spatial domain. While this is evident
in the first case ((—1x)MLM mapl and KPCA mapl), this is also true in the other cases,
but hidden by the weakness of the MLM maps. The fact that component 1 of MLM is
overwhelming is shown by both the distribution of the singular values in MLM and the
structure of the kernel PCA solution (in terms of eigenvalue and fitted variance). This is
of course consistent with the observations made on the histogram in figure 7.14.

MLM and KPCA: differences The introduction of a non-linearity in kernel PCA is

related to the form of selectivity, which is clear from the study of the function <|]}:z”J}"> =
illJj

cc € [-1,1] — exp (%(cc — 1)) In other words, the components provided by kernel
PCA are narrowed by the parameter . While this induces additional difficulties, e.g. in
terms of computational load, selection of the number of components, this has advantages
in terms of denoising and separation of effects. For example, KPCA TC1 and TC2 are
not exactly opposite; TC1 has a stronger contribution of the first coordinate, while TC2
contains more information from the derivatives -and is thus probably less reliable than
TC1 in terms of signal interpretation. The fact that the two components are gathered in
the MLM model implies that their detection is less accurate.

Moreover, a consequence of the kernel higher selectivity is that the spatial maps are
better defined in terms of activation clusters than with MLM. This is true both in the
cases of MLM mapl and MLM map2 with respect to KPCA map2 and KPCA map3:
these maps are similar, but the KPCA maps are more contrasted, and thus yield more
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Figure 7.16: First three time courses -fitted (blue) and adjusted (green) effects- obtained
by the kernel PCA decomposition.

Note that they are not constrained to be orthogonal. Moreover, the second model is
approximately the opposite of the first one.
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(-1)MLM m1 KPCAml  KPCAm2 (-1)MLMml KPCAml  KPCA m?

Figure 7.17: Main spatial maps given by the MLM, and by KPCA.
These maps have been reduced to 8 axial slices. The color map, identical in the 3 cases,
is scaled from z = 3(red) to z = 5 (yellow-white). For MLM only the negative part of
map 1 ((—1x)MLM mapl) is represented, since only 1 voxel reached the threshold in the
positive part of MLM mapl; for KPCA, only the positive part of the maps is significant.
Clearly the maps ((—1x)MLM mapl) and (KPCA mapl) coincide. Conversely, (KPCA
map2) would coincide with(MLM map1), if the maxima of the latter were higher.

KPCA map3 MLM map?2

Figure 7.18: One slice of KPCA map3, and the same for MLM map2.
The color code for voxel intensity ranges from 2 to 5. So the structure is similar, the
height of the central peak is 3.11 for MLM and 6.04 for KPCA.
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Figure 7.19: Time courses represented in figure 7.16 before filtering and fitting with the
linear model

Obviously, components 2 and 3 are strongly mixed with non task-related effects: spikes
on the second time course, and trend on the first half of the third time course.

supra-threshold clusters of voxels. This is not attributable to the selection of a subset of
N' voxels in the case of KPCA. Indeed, performing the same selection with MLM does
not change the outcome.

This difference is visible here because the SNR in the data is low: it has been noted
from standard studies that activations are weak on this subject. To explain this, one could
argue that

e The hemodynamic response to the experimental paradigm are weak, because the
experiment did not work well (the subject did not respond,...).

e There are some confounds in the data that shadow the activation peaks.

Given our experience with kernel PCA and observation of the empirical time courses, i.e.
before temporal processing (see figure 7.19), we plead for the second answer: activation
patterns are indeed present, but they are shadowed by some confounds.

7.3.4 Conclusion

We have shown that the potential of kernel PCA to produce overcomplete data represen-
tations can be used to study datasets in greater detail than what is allowed by traditional
linear methods (PCA, SVD). This comes at the price of an heavier computational cost.
In particular, section 7.3.3 shows that there is a balance between i) the simplicity of
the MLM and i) the additional power of kernel PCA to concentrate on some areas of the
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signal space, which is also an immunity against confounds.

let us also recall the tradeoff between the ability of the MLM to reduce optimally
(in terms of variance) high dimensional feature spaces and the capability of kernel PCA
to unmix data components when the mixture is not gaussian. In parallel, the statisti-
cal interpretation of SVD-based decompositions is clear in terms of multivariate normal
distribution, while kernel PCA is not simply associated to a particular statistical structure.

Kernel PCA can be recommended to analyze experiments where results are poor, or if
more than one meaningful components can be expected from the dataset (e.g. in the case
of many experimental conditions). It is thus essentially an exploratory tool. For example,
we have shown in 7.3.2 that kernel PCA is an interesting post-processing after dynamical
state-space analysis of the dataset: although all the information is indeed present within
the state-space decomposition , kernel PCA usefully reveals some important features that
are not obvious if one uses a naive signal basis.

Last, as in indicated in recent works [107], there is a great potential of the joint
use of kernel PCA and ICA (see section 5.2): while kernel PCA produces overcomplete
data bases, I[CA finds more meaningful directions than those obtained by standard PCA
techniques. The application of this idea to fMRI data has still to be done.



Chapter 8

The signal space as a manifold :
exploration through the Laplacian
graph technique

This chapter presents a new alternative in the study of nonlinear mixing models for fMRI
data. This stems from the fact that kernel PCA lacks some guarantees of optimality in
the representation of the data: the latter should be sparse and low dimensional. The final
choice of the dimension is not necessarily robust with respect to the occurrence of non triv-
ial data structures. The kernel parameters control the complexity of the representation,
but there is little control on the tuning of the parameters. The Laplacian graph technique
is a recent tool for nonlinear dimension reduction that can possibly optimize the repre-
sentation of the signal space. Though it is closely related to some well-known techniques,
as Multi Dimensional Scaling (MDS), Locally Linear Embedding (LLE) and Isomap al-
gorithms (see section 8.2.1), it additionally has a meaningful geometrical interpretation,
which makes it easier to interpret.

In the first section, we explain in detail the algorithm and its interpretation. Then we
discuss briefly its particularities with respect to some closely related methods, and some
technical details. We end this chapter with different applications of this technique to fMRI
data. Another possible application of this technique for data visualization is presented in
[28], for example.

8.1 Nonlinear dimension reduction with Laplacian graphs

We state here the main characteristics of the Laplacian graph technique. Most of this
development comes from [16] [17]. As for kernel PCA, we consider a set of data items
(X,,n = 1..N) that belong to a certain feature space F. The question is to find a low-
dimensional representation of the latter space that preserves the metric of the data within
the feature space. More precisely, the key assumption is that the data is sampled from
an unknown manifold M C F. For fMRI data, the feature space is naturally the signal
space, endowed with an adequate metric. The input data is provided by voxel-based time
courses.
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8.1.1 The algorithm

Given the N points, we first construct a graph with N nodes, and derive the embedding
map by computing the lowest eigenvectors of the graph Laplacian. Note that the graph
and the graph Laplacian are nothing but the discrete counterparts of M and its associated
Laplace-Beltrami operator L.

Construction of the graph Two alternatives are possible: the first one, which we will
refer to as the metric construction, consists in creating an edge between nodes ¢ and j of
the graph if X; and X; are close within . A possible construction is to connect ¢ and j if

IX: - X% < (8.1)

This procedure may yield a graph with several connected components, which is not neces-
sarily a problem (each connected component can then be analyzed as a graph). The second
alternative (which will be called henceforth the topological construction) is to create an
edge between each node i and its k nearest neighbors (e.g. k = 10).

Choosing the weights The edges of the graph are given a weight W;;. Typically

W — 4 €Xp —% if 7 and j are connected, (8.2)

Y10 otherwise. '
Note the similarity with some kernel PCA methods, equation (7.9). However, the choice
of o is far from crucial here, so that o = oo is possible (in which case all the neighbors of
a given point have equal weight).

Eigenmaps For each connected component of the graph, we form the matrices D and
L so that D;; = Z]- Wi, and L = D — W is the Laplacian matrix of the graph; L is
diagonally dominant, hence it is positive semidefinite. The eigenmaps (m;),7 = 1..d of the
graph are derived through the generalized eigensystem

Lm = ADm (8.3)

We sort the solutions of equation (8.3) by increasing A. Note that \g = 0, since by
construction Lmgy = 0 for the constant map mg = 1. Then i — (mq(7),..,mq(7)) is a
low dimensional representation of the dataset. If d is chosen adequately, the geometrical
interpretation is that X; — M(i) = (my(i),..,mq(i)) is a map of the data manifold
in F. We now investigate the properties and the optimality of this mapping for data
representation.

8.1.2 The variational approach

Given the graph that represents the signal, the question is to find a d-dimensional em-
bedding of the latter that preserves most of its structure. In particular, ||M (i) — M(5)]|
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Signal space

Representation axis

Figure 8.1: Illustration of the optimization problem solved by the Laplacian graph ap-
proach
Find the low dimensional embedding of the data that minimizes metric distortions.

should be small if || X; — X|| is. Let us consider a one-dimensional embedding M =m. A
natural objective function is then

N o 12 N
S S (i) - mli) exp (—u) = S () - mG) Wy, (84)
)

Ls L 202 <
1=1 jEN(i 1,j=1

where N(i) is a neighborhood of i, defined in the metric or topological way as previously.
But, with the same notations as previously, we have % Ei\;:l(m(z) —m(5))>W;; =mTLm
(this simply results from the definition of L). Thus the optimal embedding -the one that
minimizes 8.4- is provided by

argmingm! Lm (8.5)

Of course there is an arbitrary scale factor in the embedding, that can be removed by the
constraint m?m =1 or m” Dm = 1; the latter is preferable, since it gives more weight to
highly connected voxels. With this normalization, the problem boils down to (8.3). The
fact that the constant solution my is trivial is clear in terms of embedding (the whole
graph is mapped to a single point). An illustration of the general problem is given in
figure 8.1.

The extension to a d-dimensional embedding M is straightforward: the optimal solu-
tion is spanned by the first d eigenvectors of equation (8.3).

8.1.3 Geometrical point of view: the signal space as a manifold

As mentioned before, the underlying model of this technique is that the signal lies within
a low dimensional manifold M of F, the graph being simply a discrete representation of
the manifold. The natural metric on M is inherited from F. Let us consider a twice
differentiable one dimensional mapping m : M — R. Let (z,y) € M x M. We have the
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property
im(y) —m(@)| < distp(z,y)[Vm(x)|| + oldistr(z, y)), (8.6)

where distpq(x,y) is the geodesic distance between x and y on M. But distyp(x,y) =
|z = yll + o(]]z — y||) if the embedding of M in F is isometric (see [17] for more detailed
explanations). Equation (8.6) implies that the locality preserving property of m is related
to the minimality of the norm of its gradient: in other words, m yields an accurate
representation of M if its gradient is small . Preservation of the locality on average yields
the minimization of

/ IVim(@) |2z, m]? =1, (8.7)
M

which is in turn equivalent to the minimization of m’Lm = f(m; — m;)?W;; on the
associated graph. We can also notice that the solution of (8.7) is equivalent to finding the
eigenfunctions of the Laplace-Beltrami operator £ on M. Indeed, applying integration by

parts, one has

m(2)||2dx = — m(x)div(Vm(x))dx = m)mdzx .
/Muv ()2 /M (2)div(Vin(z))d /Ma yimd (.8)

Thus the minimization of (8.7) is achieved for the first eigenfunctions of £ on M.
As a classical result of Riemannian geometry, M being compact, the spectrum of the
operator L is discrete. The fact that M is compact is an ad hoc hypothesis, which
nevertheless makes sense for empirically derived data. The operator L defined on the
functions of the graph is formally and in practice the discrete counterpart of £. The
first eigenfunction of £ is the constant function that maps M to a single point. This
is of course the counterpart of Lmgy = 0 in section 8.1.2. If we denote the next eigen-
functions of £ by M = (my,..,mg), we obtain an optimal d dimensional embedding for M.

The last thing that remains to be explained is the particular choice of weight attribution
(8.2) for the edges of the graph. In our geometrical framework, this choice receives a nice
justification: using the connection of the Laplace-Beltrami operator with the heat equation
(dd—l‘f = LM), one can use a Taylor expansion of the solution

M(t) = M(0) + dt%—ﬂf + o(dt) = M(0) + dtLM + o(dt), (8.9)

and the explicit solution M (t) of the heat equation by means of convolution with a gaussian
kernel to estimate LM . This yields:

LM(z) N% M(x) — (4rt) /M exp (-%) M(y)dy] (8.10)

for small ¢t. The discretization of the latter formula yields

LM(X;) ~

~ | =

d xr — 2
M(X,) - %(m)*a S e (—M>M(Xj) (8.11)

4t
JXi=X;|<e
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If one chooses M = mg =1, then Lmg = 0, which implies that

%(47#)_% Zj/HXﬁX,-||<e exp—% = 1. Thus, given our choice (8.2) for Wj;, and re-

placing ¢ by 202, we obtain, up to a scale factor

LM(X;) ~ Y Wi (M(X;) — M(X;)) (8.12)
J
This justifies a posteriori our choice (8.2) for W;;.

8.2 Discussion and technical points

8.2.1 Other strategies: MDS, LLE, Isomap, KPCA

The Laplacian eigenmap method is a nonlinear dimension reduction technique, and can
be compared to closely related methods: Multi Dimensional Scaling (MDS), which is a
now well-established technique, especially for data visualization, but also Locally Linear
Embedding (LLE) or Isomap methods. We also make a quick comparison with the Kernel
PCA approach described in chapter 7. Note that there exist also some connections with
the normalized cuts technique for images segmentation [129], but this is out of the scope of
this discussion. Last, the discussion could also include Self-Organizing Maps (SOM) and
Principal Manifolds, as in [109]. However, these methods are derived from different points
of view, and do not enjoy as elegant and simple solutions as the embedding approaches.

Multi Dimensional Scaling Multi Dimensional Scaling (MDS) is a well-established
technique for high-dimensional data visualization [25]. It has been used for the visualiza-
tion of different fMRI datasets representing a population of subjects [125]. Technically, it
is also based on the minimization of distortion criterion, which is called a stress. With the
same notations as in the previous paragraph, it is formulated as:

N

(M) = MG = FUX = X50)) (8.13)

1,7=1

where f is some monotonic nonlinear (often bounded) function. This is an alternative
to functional (8.4). In some way, Laplacian eigenmaps solve the indeterminacy of MDS
techniques about the structure of the penalty term. Moreover, with Laplacian eigenmaps,
the problem is solved with a spectral technique, while classical MDS approaches require
heavy non-convex functional minimizations [131]. Last, MDS does not put the same
emphasis as Laplacian eigenmaps on the neighborhood in the definition of f: this means
that the precise structure of the dataset in F is not really taken into account.

Locally Linear Embedding Locally Linear Embedding (LLE) techniques [190] rely on
3 steps:

e For each input point X;, find out its neighbors (X;), j € D(i) (e.g. its k closest
neighbors).
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e Compute empirical embedding weights W;; by minimizing

N
SOIXE) = > WX (8.14)
=1

]GD(Z

under the constraint that } ;. ;)
of local barycentric coordinates.

W;; = 1. (W;;) can thus be thought of as a system

e Derive the embedding i — M (i) by minimizing

N
doIMG) = Y Wi M) (8.15)
i=1

JjED(3)

Though this technique is evidently close to MDS and Laplacian eigenmaps, it has some par-
ticular characteristics: the emphasis on the neighborhood relationships (which is related
to the geometrical interpretation of the method), the choice of a locally linear represen-
tation. The practical solution also boils down to a sparse eigenvalue problem. But the
interpretation of the resulting embedding is strictly local; moreover, the local linearity
constraint may become a problem if the neighboring system is ill-specified.

Isomap The last algorithm of the family, Isomap puts more emphasis on the global
geometrical structure [204]. Indeed, after performing the first step of LLE and deriving
local distance, Isomap uses global distances using the theory of shortest paths within a
graph. Then a spectral decomposition is performed on the matrix HAH , where A;; =
|X; — X;||? and H; j = & j — . The main disadvantage of this method is that it does not
solve a sparse eigenvalue system, making the practical solution difficult when N is high.

Kernel PCA The kernel PCA approach, presented in the previous chapter, is quite
different from the above mentioned methods. However, the comparison makes sense. In
some instances, kernel PCA performs the decomposition of a matrix analogous to W,
with W defined as in (8.2). The main difference is that kernel PCA searches for the
direction in the input space where a maximum of data is present, while nonlinear dimension
reduction techniques are more devoted to the derivation of sparse representation and on
the preservation of the structure of the data.

8.2.2 Choosing the hidden parameters

In practice, there remains to deal with the hidden parameters in the method. There are
two such parameters with the Laplacian embedding method: in the metric approach the
neighborhood size parameter ¢ in (8.1) and the kernel parameter o in (8.2) and in the
topological approach, the number k of neighbors considered, and o.

In the metric approach, the kernel parameter ¢ has almost no impact as soon as o > ¢
(it is even possible to choose o = oo without creating inconsistencies in the solution);
conversely, ¢ is fundamental, since it defines the neighborhood relationship, e.g. the graph
or manifold structure of the data. It should thus be chosen taking into account the priors
on the data generative process; for example, considering that the input vectors X (i) are
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time series, it could be reasonable to normalize them with respect to their stochastic
variance, and then to choose ¢ = 2 or 3. The neighborhood size is thus related to the
probability of a common underlying process for the two time series.

For the topological approach, choosing k between 5 and 20 seems satisfactory for the
construction of the manifold, and ¢ = oo is an acceptable default solution. We study the
impact of k in section 8.3.3.

Another implicit parameter of the method is related to the sampling of the manifold M:
the method performs correctly only if the data points are sampled at least approximately
regularly on the yet unknown signal manifold; this is far from certain with fMRI data.
A possibility is to cancel all the data points of non-interest that are grouped into a kind
of null cluster. As could be expected, we have noticed from our experiments that the
topological method is less sensitive to sampling variations in the feature space than the
metric method.

8.2.3 Computational issues

Computationally, the main problem is the diagonalization of D~ 'L (or D-Y2Lp-1/2 it
one wants to keep the symmetry of the system). Though a solution by SVD is possible
for reasonable numbers N of entries, the problem is more efficiently solved by iterative
methods.

Solution by SVD

Let us recall that this solution remains acceptable for N < 4000. While this is not the
case for fMRI datasets, it can be used for reduced datasets.

We have also mentioned the possibility that the data graph could be disconnected. In that
case, the problem is split into 2 smaller problems, allowing for a computationally lighter
solution. This situation is not unrealistic: in certain experiments, one can obtain positive
and negative responses to a certain stimulation (those negative responses can be related
to artifacts), yielding two components. We have noticed that this is more frequent in the
metric approach than in the topological approach.

However, the solution by SVD is a bit awkward, given the sparsity of the graph, hence of
the matrix L.

Iterative solution

By construction the normalized Laplacian matrix D~'L has the following property
Vm, |D1Lm —m|; < |mls, (8.16)

where [m|; = S22 |mi(n)|. Letting Iy be the N x N identity matrix , this implies that
the eigenvalues of D~ 'L — Iy lie within [—1,1]. In fact, the smallest eigenvalues of DL
are the greatest eigenvalues of Iy — D7'L, all of which are smaller than 1 in absolute
value; in other words, this application is contracting. This implies that the iteration of
m « m — D™'Lm yields the solution of the problem (moreover, one can show easily
that Iy — D-Y2LD~1/2 is positive, so that Iy — DL is also positive. There is thus no
problem with possible negative eigenvalues ). The greatest advantage of this method is
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that it can be completed with a sparse coding for L: only the neighbors of an entry have
to be coded. Hence the system can be solved for real datasets N € [10%,105]. Moreover,
the convergence towards the solution is certain.

8.3 Application to fMRI data

8.3.1 Exploratory analysis

The first application we will consider is an unsupervised (hypothesis-free) description of
datasets using the low-dimensional representation capabilities of the method. The idea is
analogous to Self-Organizing Map or clustering methods presented in [144] [143]: build
a representation of the raw data that preserves its topology. The difference is that our
method converges deterministically towards its solution, and that no prior data reduction
is necessary. We apply the Laplacian eigenmap method using the version that uses the
n = 10 closest neighbors of each voxel, and ¢ = oo in (8.2), i.e. all closest neighbors have
equal weight.

Synthetic data

We present a first experiment on the synthetic dataset described in A.1. We start by
studying the distribution of the Laplacian eigenvalues in equation (8.3); these are given
in figure 8.2. While the first one is 0, as expected, the next three ones are close to each
other, and far below the following ones. This hints at a three dimensional representation
of the data. Indeed, looking at the resulting three dimensional mapping of the data shows
that the three-mode structure of the synthetic dataset has been correctly accounted for
(see figure 8.2).

The study of the spatial maps (not shown) and associated temporal patterns (in figure
8.2 (bottom)) shows indeed that the Laplacian eigenmaps describe the dataset with much
accuracy. Note that in contrast with the example given in 7.1.3, this is achieved without
any prior modeling of the data.

This illustration shows that the Laplacian eigenmap is able to detect the main features
of the dataset, even in the absence of pre-processing. Unlike kernel PCA, it is not subject
to overfitting.

Real data

We now study the ability of the Laplacian eigenmaps techniques to reveal structures from
a real dataset. We use the first session of the dataset A.2 (this implies relatively low
SNR conditions, since other sessions are available for this dataset). In order to allow
for a comparison, we compare it with PCA, which also performs an “optimal” dimension
reduction, but in the sense of the data covariance. In both cases, we consider arbitrarily a
2D representation of the data. This arbitrariness is acceptable, since this analysis is purely
exploratory; the Laplacian eigenvalues, not shown, simply indicate that the first dimension
is much more informative than the other ones. Figure 8.3 gives the joint distribution of the
N voxels on the main 2D maps obtained by PCA and Laplacian embedding (N = 12320).

It is striking that the Laplacian eigenmap representation is much more structured than
the PCA representation. Moreover, the cluster shape in the case of PCA is curved, so
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Figure 8.2: Analysis of a raw synthetic dataset with the Laplacian embedding method.
(left) Sequence of eigenvalues obtained with the Laplacian eigenmaps method applied
to unprocessed synthetic data; the first eigenvalue is 0 while the next three ones are
close to each other; consequently, we opt for a 3D representation of the dataset. (right)
3D Laplacian map of the data; it results in a three-armed distribution, which describes
the three modal data. (bottom) Consequently, the estimated components allow for a
reconstruction of the time courses of the three activation patterns which is very close to
the ground truth -see figure A.1.
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Figure 8.3: 2D representation of the real dataset, obtained through the Laplacian eigenmap
embedding (left), and PCA (right).
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Figure 8.4: Main time courses obtained with both methods
(left) Two main time courses obtained from Laplacian embedding technique; they corre-
spond to the first two Laplacian maps that are the axes of the feature space in figure 8.3.
(right) Two main time course associated with the PCA decomposition.

that the representation in terms of main axes of the data does not fit well the data. The
situation with the Laplacian eigenmap is much more simple, with a three arms star-shaped
cluster.

Next we study the time courses obtained with both methods. In the case of PCA,
these are the time courses of the two main axes. In the case of Laplacian eigenmaps, we
similarly compute map-wise time courses by weighting the voxel time courses by the map
value of each voxel. This results in figure 8.4.

There is a good correspondence between the first time course obtained with PCA
and with the Laplacian embedding method. The latter describes -with an opposite sign-
precisely the voxels of the west arm in figure 8.3. The difference is that there is much more
noise reduction with the Laplacian model than with the PCA model; this is related to the
stronger selectivity of the Laplacian map. Once again we meet the usual mean task-related
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pattern present within this dataset. The second pattern also approximately matches the
second PCA component. This gives -with a change of sign- a good description of the
voxels from the north and south arms of figure 8.3. The interpretation of this temporal
component is not obvious; it is more noisy than the first one, and the fundamental pattern
has slightly lower frequency.

Next, we present the spatial maps obtained from the Laplacian embedding technique
in figure 8.5. Those have been transformed into z-scores with the method described in ap-
pendix B. Both positive and negative significant z-scores are presented, after thresholding
at an estimated false discovery rate FDR = 0.05, corresponding to |z| ~ 3.5.

The first spatial map is mainly associated with negative areas (in blue), as could be
expected from the joint map in figure 8.3. It encompasses the main visual areas (without
making any visible difference about motion sensitivity). The second map outlines some
regions at the rear part of the visual areas. Since the map is positive there, this region
can be identified as the north arm in figure 8.3. Considering figure 8.4, it can indicate
a different hemodynamic response within this region. The negative cluster of the second
map reflects an inverse effect in the parietal cortex. This situation has already been
described in chapter 7. The second map thus seems to correct slightly the first one, as
can be deduced from the negative clusters within the primary visual cortex. This is also
consistent with figure 8.3 where the arms are not exactly horizontal nor vertical.

These examples show that the Laplacian eigenmaps can reveal the main structures of
a dataset, even without prior modeling of the data. However, priors are necessary in order
to obtain finer descriptions of the signal space of interest.

8.3.2 Pre-processed data

Let us consider the following problem: given a space of signals of interest, one would like
to model how the individual voxel responses are organized throughout this space for a
given dataset. To do this, we can use a finite impulse response (FIR) filter model for the
signal space as described in chapter 4, and then study the empirical signal manifold within
the filter space.

Once again we consider the dataset A.2; a task-related signal space is defined through
the filter approach described in 4.3.3. The dimension of the signal space is L + C — 1,
where L is the length of the filter, and C' the number of experimental conditions in the
experiment. Moreover, the dataset is reduced according to the criterion (4.39), yielding
N = 1320 filter models. To study the organization of these models, we use the optimal
2D representation of the dataset allowed by the Laplacian eigenmap technique (we use the
topological construction with a & = 10 neighbor system) . The eigenvalues of equation
(8.3) are given in figure 8.6. The embedding dimension is not clearly indicated by figure
8.6, but we found that the third dimension did not add much information on the manifold
structure. Keeping the first two dimensions of the decomposition results in the cluster
displayed in figure 8.7(a). The color code is arbitrarily defined as the polar angle of each
point on the 2D map (we found that it gives a good representation of the data manifold).
An arbitrary (but topology preserving) segmentation of the manifold in polar sectors
yielded 8 clusters, each of which is represented in figure 8.7(b) by an average time course
(reduced to T' = 40 time samples; note that the signals are periodical).

The study of the individual models shows that the first eigenmap essentially introduces
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Figure 8.5: Eight axial slices (a-h) of the first two Laplacian maps of the dataset.
Those have been transformed into z-scores with the method described in appendix B.
Both positive and negative significant z-scores are presented in blue and red-yellow color
respectively, after thresholding at |z| ~ 3.5 (FDR = 0.05).
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Figure 8.6: First eigenvalues obtained in equation (8.3).
Note that the eigenvalues can be interpreted as a measure of distortion . As could be
expected, the first eigenvalue is 0 (and the associated map is uninformative). We keep for
further study the second and third eigenvalues.

a distinction between two kinds of patterns, which can be unambiguously identified as
the positive (purple-yellow) and negative (blue-green) task-related patterns. Note the
discrepancy between the two types of patterns in figure 8.7 (b), and the different locations
in figure 8.7 (c¢). The interpretation of the second map is more complex; the vertical arm
in the feature distribution seems to indicate a slight shift in activation timing - the voxels
of the arm (yellow) respond a little bit earlier than the central cluster (red). Last, the
voxels at the bottom of the figure (purple cluster), are distinguished from the other by a
modulation by the second condition (motion) selectively. All these characteristics can be
read in figure 8.7(b), which presents the averaging of each cluster response. We display
the cluster map in figure 8.7 (¢). The color of the voxel corresponds to the color of the
time model and the cluster in the feature space.

Additionally, a projection of the ray maps on the grey/white matter interface of the
monkey is provided in figure 8.8. The three maps comprise a representation of the areas
that are negative for components 1, negative for component 2, and positive for component
2.

Discussion [t is probably not necessary to describe in detail those findings, which are
coherent -and redundant- with those obtained with kernel PCA, section 7.3.1, State-space
analysis followed by kernel PCA, section 7.3.2 and the Laplacian eigenmaps obtained from
raw data, section 8.3.1, as well as SPM analysis, section 7.3.1. Let us only point out some
interesting facts:

e As can be seen clearly in figure 8.7(b)(c), there are symmetric regions that respond
uniquely to the second stimulus, i.e. the passive viewing moving of a static texture
(purple regions). So far, this point had been made clear only in 7.3.1, with an
overcomplete representation of the dataset.
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Figure 8.7: Analysis of a real dataset with the Laplacian embedding method

(a) Optimal 2D representation of the signal space derived through Laplacian eigenmaps
approach. The Boomerang-shaped manifold has been divided into smaller clusters by color
coding by the hue the polar angle of each point- we find that is a satisfactory representation
of the manifold; we keep the same color coding for subsequent interpretation. A 3D map
of the cluster of points does not bring much more information. (b) Temporal models
associated with the different sub-clusters. They illustrate the variability of the task-related
responses within the dataset. The different experimental conditions are indicated by the
background color. (¢) 8 axial slices of the corresponding spatial maps; the color code is
similar. Let us insist that colors do not indicate an intensity, but rather a qualitative
behavior of the impulse response. Note the symmetry of the maps.



176 CHAPTER 8: LAPLACIAN EMBEDDING OF FMRI DATA

(b) (c)

Figure 8.8: Projections of the Laplacian eigenmaps on the cortical surface (grey matter-
white matter interface)

(a) map 1: the negative areas are displayed in yellow/red; in the other figures, they have
been identified as the red cluster; it corresponds to the parietal cortex, and the task-related
pattern is shown to be negative. (b) map 2: the negative areas are displayed in yellow/red;
they can be identified with the V5/MT area; in the other figures, they are also identified
as the purple/black cluster. (c¢) map 2: the positive areas are displayed in red/yellow; in
the other figure, these areas correspond to the green pattern. Interestingly, it is the only
part of the spatial maps that is not symmetric.
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e Interestingly, the Laplacian embedding uncovers an asymmetry between the left and
right hemispheres, i.e. in the yellow pattern in figure 8.7. One can notice that this
corresponds to a slight time shift in the response.

e Introducing a third dimension does not fundamentally change the setting. If we trust
the Laplacian eigenmap analysis, this means that the data structure is essentially
embedded in a U-shaped cluster.

One can conclude from this study that Laplacian eigenmaps yield an easy qualitative
account of the task-related patterns that appear within the dataset. This method is eco-
nomical in practice, since it tries to embed a maximum of information within a minimum
number of dimensions. A development of interest would be to allow for an explicit formula
for the mapping from the low dimensional space towards the feature space, which we have
not addressed here.

8.3.3 Dependence on the neighborhood size

We investigate here the dependence of the method on the size of the neighborhood (noted
k in the text) of each voxel !. Note that this is in fact the only parameter that has to
be tuned for Laplacian eigenmaps (the influence of o in (8.2) is quite negligible). To
study the effect of £, we have done the same analysis as previously on the real dataset for
k =5,10,15,20.

We study the impact of k ) in the eigenvalues of the Laplacian matrix (equation (8.3)),
and i) on the structure of the optimal 2-dimensional representation of the data.

Effect of k£ on the eigenvalues Let us emphasize once again that the eigenvalues of
the Laplacian matrix can be interpreted as a measure of distortion when representing
the dataset by a low dimensional map. Intuitively, one can expect that this distortion
increases with k, since the neighborhood structure becomes then more complex. The
empirical distribution obtained by letting & = 5,10,15,20 is displayed in figure 8.9; it
shows a discrepancy between k& = 5 and k& = 10,15,20, with & = 5 giving very low
distortion values. This may be a hint that the structure with 5 neighbors is not sufficient
to model the data properly.

Effect of £ on the 2D maps As can be seen in figure 8.10, the study of the resulting
cluster gives confirms this impression; while the clusters obtained for k£ = 10, 15,20 have
the familiar structure described in section 8.3.2, the cluster obtained for & = 5 is quite
different; in fact, all the voxels that have been characterized as negative for the first
map, are here scattered throughout the plane, which indicates that the dataset is almost
shattered into several connected components, so that the global manifold is no longer
apparent. Put more simply, this shows that £ =5 is not enough to describe this dataset.

Finally, once can conclude from this study that, provided that k is sufficient to account
for the connectivity of the data manifold (k£ > 10), there is little impact of k on the results.

!Note that a neighbor matrix has to be symmetric, so that the numbers of neighbors considered for
each voxel are greater than k; in fact the neighboring system considered in the topological construction of
the graph is the smallest symmetric system that contains the k nearest neighbors of each voxel.
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Figure 8.9: First eigenvalues obtained in equation (8.3) for different values of k
k =5 (black), £ = 10 (blue), &k = 15 (red) and k& = 20 (green); note that the last three
ones are very close to each other, in contrast with the first model.

8.3.4 Conclusion on Laplacian embedding technique

The Laplacian embedding technique yields a structured representation of datasets based
on geometrical concepts. It is comparable in its result to Self-Organizing Maps. However,
this representation offers several advantages:

e The optimal embedding is theoretically well defined and easy to compute in practice,
even for real size datasets.

e The parameters of the method are fairly easy to tune, since only one parameter (k
in the topological model) has an impact on the final result, and that a reasonable
choice is not difficult to find.

e The embedding dimension can be determined from the dataset. However, we ac-
knowledge that the Laplacian eigenvalues do not give very precise information with
this respect.

Tt is thus a classification tool that enables a local-to-global approach of fMRI data: treating
each voxel-based data as a sample of information, it builds a global framework that contains
and summaries all the information of interest about the dataset. It can be used either for
unsupervised /data-driven analysis or after a first temporal modeling of the data.
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Figure 8.10: Optimal 2-D maps obtained with for different values of k
k=5 (a), k =10(b), k = 15(c), k = 20(d). Note the scattered structure of the first map,
and the similarity of the latter maps.
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Chapter 9

Putting things together

This chapter presents a synthesis of our work and a discussion of some important issues.
First, we conclude on the temporal modeling of the data by making the junction between
the state-space models (i.e. chapter 6) and information theory (chapter 4). Second, we
propose a global framework for the analysis of multi-session data; this framework uses
many points developed in this thesis (temporal modeling, state-space modeling, optimal
embedding through Laplacian eigenmaps). We end the chapter by discussing some fun-
damental aspects of fMRI data analysis (integration of anatomical priors, multi-subject
studies, multi-modality integration).

9.1 Multi-session data analysis: reconciling state-space and
information theory
9.1.1 Rewriting the equations

Let us consider the following situation: given a number S of repetitions of a certain
dynamical system X (¢), endowed with a prediction model (4.37):

x(t) = () +e(t) (9.1)
L M

) = D @t =0+ D> BuyelPe(t —m) (9.2)
=1 m=0 c=1

One would like to estimate the parameters 6 = ((«), (), (7)) of the model.
As in section 6.3.1, we propose to use a state-space representation of the datas:

z(t) = &) +o(t) (9.3)
X(s,t) = Msx(t)+w(s,t) (9.4)

Where #(t) is defined as in equation (9.2), v() is an innovation process, w(t) an observation
noise, My a S X 1 mixing matrix.

Next, we drop the autoregressive term in equation (9.2), at least for two reasons. First,
the hemodynamic model we consider is quite complete, so that there is no need for cor-
recting it by an additional autoregressive term. Second, typically autoregressive patterns
(oscillations, biologically rhythms) are supposed not to be reproducible for independently
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Figure 9.1: Extraction of a task-related component from the set of S = 12 time series
displayed in figure 6.6.

The state vector (black) can be used to infer a task-related pattern (blue), but direct
estimation of the task-related pattern from the data gives a better (more detailed) model
of the response (red).

acquired data, and thus can be treated as noise. Since the goal of the state estimation
is to derive optimally a task-related response using many data sessions, we will thus not
further consider the autoregressive term in the equations.

A straightforward solution to the estimation problem would be to compute first the
quantities involved in the state-space model (state vector, mixing matrix, transition ma-
trix, noise and innovation covariance, see section 6.3.1), and then to infer the parameter
f from the state vector as in section 4.3.3. However, this is potentially suboptimal: the
state estimation is not known to give a precise hemodynamic model, but rather a rough
estimate based on an AR-1 scheme. As a consequence, some information of interest can
be lost during the state vector estimation. In contrast, a direct estimation of @ from the
multiple time series may yield a more precise model. This is illustrated in figure 9.1.

Therefore, we propose to estimate a task-related model from multi-session data by
generalizing the complexity criterion developed in section 4.3.
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9.1.2 The model

The equations of the model

m=0 ¢

x(t) = &(t) +v(t) )
X(s,t) = Msx(t)+w(s,t)
are equivalent to

M C
Bt) = D BuyePelt —m) (9.8)

m=0 c=1
X(s, ) = M(&(t) +0(t)) + w(t) (9.9)
= Mi(t)+ ' (st) (9.10)

where w'(s,t) = w(s,t)+ Msv(t) is a generalized residual of the model. As a consequence,
the estimation of (My), (), () is relatively simple: letting X = (X (s,¢)) and P = P.(t —
m) be the data and predictor matrices, performing the SVD of (X PT(PPT)~1/2) yields a
least squares solution. Letting

(U, 2, D) = SVD(XPT(PPT)1/?), (9.11)

the first column of D is nothing but the vector #(t) of span(P.(t —m)) that contains most
of the data variance. The first column of U provides the mixing vector. Note that this is
very close to the CCA procedure, except that the data X has not been whitened (because
the residuals w'(s, t) of the model are assumed independent for different values of s). The
amount of variance fitted by the model is the squared first eigenvalue o2. Note that the
whitened predictor basis PT(PPT)~ 1/2 can be replaced by any orthonormal basis that
spans the same space, whose dimension is M C.
However, this simple procedure is not satisfactory:

e The ensuing task-related model & does not have exactly the desired form
Z%:o 2521 BmYePe(t —m). We need to apply a correction (see equation (4.49).)

e The model overfits the data: for example, a task-related model & is derived by this
procedure even if there is no significant task-related component within the input
data. Since our goal is to describe the generative process of the data, we need to
make a distinction between the cases where the task-related pattern is plausible or
not. We thus reintroduce complexity penalties as in section 4.3.

e Last, the signal space is large (its dimension being M + C'). This induces the possi-
bility of physiologically irrelevant patterns, and if no care is taken, of false positive.
From this stems the necessity of priors on the hemodynamic model. We develop this
in section 9.1.4.
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9.1.3 A multi-session complexity criterion

Here we derive a criterion to control over-fitting in the derivation of . We use again the
BIC-MDL heuristic and formalism (see chapter 4). As in 4.3.3, we denote the temporal
regressors -i.e. a temporal basis that spans the same space as PT(PPT)_1/2— by Q =
(wi(t)),1 = 1..MC'. Since the searched state-space is of dimension 1, we consider only
the first column of U and D in (9.11). The first column of U yields the mixing model,
while the first columns of D describes the state X in the basis €. The idea is to prune
this description of & in order to keep only the significant coordinates. We denote these
coordinates by 01, .., 7.

The amount of variance not fitted by the model is then Y7 , X(s,t)* — o7 S 62,
Using the notations of appendix D, this can be identified with the extensive entropy

Zs‘tX(s,t)Q - U% 25:1 63)

(9.12)

1
Hy = 3 log (271'6 T

The parameters of the model are 6 = ((M,), (6;)), the number of independent parameters
is g =5+ I —1, and the associated structural entropy is

H = %log ST (9.13)

So that the multi-session complexity criterion is

Es,tX(Svt)Q _0%25163>+S+I—1

log ST
ST 5 1o8S

C(X,I, ((Sl)) =STHy+H, = S7T log (27T6

(9.14)
The minimization of this criterion over I is then carried out easily. The response model
is then corrected by equation (4.49) (for our current datasets, this correction has mild
effects). The result (red curve) displayed in figure 9.1 has been obtained by applying
this multi-session criterion. One can observe that it models the hemodynamic response in

greater detail than the two-steps (state estimation; parameter estimation) approach.

9.1.4 On priors

The need for more priors stems from the fact that the signal space is relatively high
dimensional, so that the methods can yield many false positives. In fact, the space spanned
by P.(t —m) or (w;) contains many regions of no interest (the word region does not refer
to anatomical space but to signal space; see in figure 9.2 that some regressors of the basis
are typically high-frequency, and thus physiologically not relevant). To introduce priors
on the feature space, one can alternatively:

e Reduce the numbers of regressors (w;) by keeping only those that match a given
criterion; for example, high frequency regressors can be suppressed.

e Add some spatial constraint in the model; for example, one can force the hemody-
namic model to be uniform within some regions of the dataset.
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S 1 2 3 4 > 7 10 12
a (%) | 172 315 922 3.13 1.24 0.24 0.02 0.001

Table 9.1: Rate of false positives (in percent) obtained by minimum complexity description
of synthetic data, as a function of the number S of sessions or realizations of the data.
The rate is high for S = 1, due to the choice of I = 4 and the use of highly correlated data.
Nevertheless, it drops rapidly when S increases. This means that minimum complexity
description should be used with an adapted statistical test when only one or few sessions
are available.

e Use a part of the data (e.g., half of the sessions) to estimate prior probabilities on the
hemodynamic functions that represent the data, and use another part of the data
to estimate posterior probabilities of the hemodynamic model (Bayesian approach).

The first method is easy to use. For example, taking the regressors (w;) from a SVD of
P.(t —m), it is clear that the high frequency regressors are likely to fit noise, and can be
given a low prior probability. At the risk of slightly biasing the estimate of the response,
they can be canceled.

9.1.5 Minimum complexity and control of false positives

Clearly, modeling the data by a minimal complexity heuristic does not provide any control
on the false positive rates of the method. This is true for the univariate model presented
in 4.3 as well as the multi-session model presented in 9.1.1. For time series of length T,
one can even show that the number of false positive -under white noise hypothesis- will be
a =~ 2(1—=®(y/log(T)))I where ® is the gaussian cumulative density and I is the dimension
of the basis that represents the activation space. For example, for T'= 130, o = 0.0274.1.
Moreover this negative result worsens if there is autocorrelation within the data. The fact
that the false positive rate increases linearly with I is an approximation, true for o small.
Anyway, this shows why it is safer under general conditions to reduce the dimension of
the signal space. However, this clearly shows that using a nontrivial signal space yields
unacceptable false positive rates.

The solution to that problem is either the restriction of the activation space (with
priors on the hemodynamic response, as in a Bayesian framework) or the use of an external
criterion to deal with this problem. For example, repeatability of the activation pattern
over several sessions is a potential way to overcome this problem.

We illustrate the solution on a synthetic example generated as follows: x4, (t) =
b(t) + e(t), where b and € are a centered Brownian and white noise of equal variance,
respectively. The data is then adaptatively filtered by x7;(t) = 2raw(t) — (Traw * go)(t)
where ¢, is a gaussian filter of width ¢ = 10 scans. This process is replicated S times, S
being the assumed number of sessions. Then a model is built assuming a block design with
10 scans long blocks. Similarly as in 9.1.4, the number of temporal regressors is reduced
to I = 4 by keeping the smoothest regressors. Finally the S sessions of data are analyzed
according to criterion (9.14). We study the fraction of false positives for different values
of S, by simulating N = 10 such voxel-based sets of time courses. The result is given in
table 9.1.
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Figure 9.2: From the paradigm to temporal regressors.

This figure illustrates how an experimental paradigm can be converted to a temporal basis:
(a) Basic OFF-ON-OFF sequence of a fictive stimulus condition P.(t). (b) Activation space
obtained by using time-delayed versions of the experimental paradigm: (P.(t—m))m=1,._ -
(c) Orthonormal basis -noted (w;);—1,.. 7 in the text- constructed by SVD of (P.(t — m)).
Note the resemblance with a Fourier basis of (P.(t — m)). (d) The first five vectors fit
99.93 % of the variance of the classical hemodynamic response function. The first four
vectors fit 99.66 % of the variance. This means that the other vectors can be omitted to
avoid data overfitting.
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This simple simulation shows that the procedure yields low false positive rate for S > 7.
This miracle results from the fact that the random occurrence of a certain pattern becomes
less and less probable if one considers many realizations of the data. This observation is
the reason why we present results obtained with this criterion on multi-session data. In
the case of one or few sessions, an additional statistical test should be used to avoid false
positives.

Let us insist on one point: the presence of false positives for S small should not be
interpreted as an inconsistency in the model. Modeling by complexity minimization does
not afford any control on the false positive rate. In fact, this is a feature shared with some
recently proposed Bayesian approaches [87] [86] [170]. The current methodological trend
in activation detection is to assess that the activation present on each voxel time series
overcomes a certain level, in contrast with classical methods that reject the null hypothesis
given a certain signal to noise ratio. The complexity approach is, with this respect, an
asymptotic formulation of the Bayesian approach. The advantage is the computational
cost and the easier specification of priors. The disadvantage is that the final description is
less complete: it yields a kind of Maximum [likelihood] a Posteriori (MAP) model of the
data, without confidence intervals.

9.2 Multi-session data analysis: a fully adaptable model

9.2.1 The general setting

In the preceding chapters, we have mainly considered fMRI datasets as (voxels x scans)
matrices. A session dimension has now to be integrated within the model. Indeed, for the
sake of SNR improvement, and given that repeatability is taken as the most convincing
argument in favor of any predictive data model, fMRI datasets are often multi-session.
We adapt here and generalize the signal model given in chapter 6. The general idea is the
following:

e The task-related signal can be defined at the voxel level, since it represents the re-
sponse of a given cortical region to the stimulation. This response should then be
reproducible from session to session , though with a possible modulation in ampli-
tude.

e By contrast, other dynamical signals within the datasets are either attributable to
biological rhythms or to experimental setting, and are probably not reproduced from
one session to the next; but they have probably multiple locations, so that they can
be searched for within the entire dataset.

In terms of equation, this gives the following model
J(s)
X"t s) =65(n) DD e(n)Bi(n)Pelt = 1)+ Y Gi(n,5)Yj(t,s) +2(n,t,5)  (9.15)
e=11=1 j=1
where

e P.(t—1),c=1..C 1l =1..L is the delayed time course of experimental condition c,



188 CHAPTER 9. PUTTING THINGS TOGETHER

time (scans)

Session 1 Session S

voxel-based
I —— -
W activation model

voxels

M\/\/\f\/\/\/\/ time courses of confounds

Figure 9.3: Graphical interpretation of the multi-session model.

e (7.(n)),c =1..C is the impact of condition ¢ on the time course of the voxel n,

Bi(n),l = 1..L is the response filter at voxel n,

e 0s(n) is a session effect on the response of voxels n to the stimulation

°
o

(t,s),] ., J(s) is a set of confounds during session s,

°
i\r

i(n,s),J , .-, J(s) modulate the impact of the confounds on voxel n
e =(n,t,s) is the residual of the model

An advantage of this model with respect to previous versions ((6.31)-(6.32), (4.37))
is that the modeling of each voxel time course is simplified by the suppression of autore-
gressive terms. One can indeed think -and check empirically- that the autocorrelation
of the voxel time courses is significantly decreased after session-wise removal of the main
autocorrelated confounds of the dataset. A graphical interpretation of the model is given
in figure 9.3.

We have to derive an estimation procedure. First, the multi-session voxel-wise task-
related response estimation has been solved in section 9.1. There remains essentially to
estimate the session-wise confounds. But this problem has received a simple solution with
the state-space approach described in chapter 6. There only remains to connect both
steps. Once again, we use an EM-like procedure:
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e For each voxel n, estimate (v.(n)),(fi(n)),(65(n)), given ({;(n,s)) and (Y;(t,s)).
From a theoretical viewpoint, the knowledge (and removal) of these confounds allows
for the interpretation of e(n) as the true stochastic residual of the Wold model.

e For each session, estimate ((;(n,s)) and (Yj(¢,s)) given the individual voxel task-
related responses. The latter are subtracted from the voxel time courses, and the
state of the resulting dataset is estimated, with a purely autoregressive scheme, after
adapted PCA reduction.

Though the convergence of this procedure is not guaranteed, we have obtained convergence
after only one iteration on our datasets.

One might be concerned with the multiplicity of the task-related patterns obtained
for a given dataset. We next propose to identify some structures within these multiple
models: the Laplacian eigenmap seems perfectly suited for such a task.

9.2.2 Complete analysis of a synthetic dataset

In this section, we investigate the validity of the activity /confounds mixture model on a
synthetic dataset. We address the following questions:

e Does confound estimation improve the detection of activated voxels ?

e [s our data-driven model more or less sensitive than a procedure based on the general
linear model ?

e Is the estimation of the confounds accurate 7

e Does the method allow for a meaningful reconstruction/representation of the signal
space 7

To simplify the analysis and the interpretation of our experiment, we use a very simple
dataset: one slice of data, one session and one experimental condition of interest (the
design being event-related). We proceed as follows. First, we describe the generative
process for the synthetic dataset. Second, we make a detailed review of our analysis
scheme. Third, we concentrate on the difficult problem of the statistical assessment in
our data-driven framework -as shown in section 9.1.5, this issue remains unsolved with
our usual procedure, and yields unacceptable false positive rates for mono-session data.
Third, we describe our experimental results by answering the four questions above. We
conclude this section with a discussion of our algorithms and the validity of this synthetic
experiment.

The dataset

We have created a synthetic dataset by simulating one slice of fMRI data containing
N = 1963 brain voxels. The length of the series is 7' = 200, and the simulated sampling
time is TR = 2s.

The simulated paradigm comprises one condition of interest in an event-related design.
Three small activation foci of 21 voxels are created; the activation time courses are obtained
by convolution of the experimental condition time courses with three slightly distinct
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hemodynamic filters hy(t), ho(t), h3(t). hi is simply the canonical model of SPM sampled
at TR=2s [77]. ha(t) =hi(t + 1) mimics a time-shifted activation pattern, and hs(t) =
2(h1(t = 1) + hq(t + 1)) presents a blurred response with respect to h;(t). The activation
time courses for each focus f is obtained as a(t) = [hy * P](t). The experimental design,
and the three activation models are represented in figure 9.4 (a). The spatial organization
of the foci is given in figure 9.4 (b).

Then three independent Brownian motions B(t) = (Bj, Bz, Bs3)(t) are simulated, and
mixed into the data with a random gaussian mixture matrix. They are represented in
figure 9.4 (c). Their amplitude is slightly higher than that of the task-related signal.
Finally, an i.i.d. gaussian noise is added to all voxels.

Let us insist on the following features:

e The temporal model of the data seems quite realistic, if one accepts that the temporal
correlation of the data can be modeled by a few sources. If yes, Brownian noise is
a good candidate, since it models incremental processes, e.g. body motion. The
hemodynamic model deviates mildly from the known models. Note that it can be
written exactly as equation (9.15), with 65(n) being the characteristic function of
the foci of activation. C' =1, (3(n)) = h(n), S =1, J(1) = 3, ¢;(n) ~ N(0,1) and
Y; =B.

e Conversely, the spatial model is not realistic, since no spatial correlation is taken
into account. The reason is that we do not use it in either the General Linear Model
or in our analysis framework. In particular, due to the weak number of voxels, we
use uncorrected P-values.

e The hemodynamic filter space is 3-dimensional.

e The choice of 2D data is only for the sake of visualization.

Analysis scheme

The dataset is analyzed with two different methods: the G.L.M. as implemented in the
SPM99 Software, and our procedure described in 9.2.1.
In the detail of the SPM analysis, we have used a model comprising:

e The specified experimental paradigm with the standard hemodynamic response func-
tion and its time derivative. This is assumed to correct for the possible shifts in the
response delays.

e The data is high-passed with a cut-off period of 7 = 80s (note that this cancels most
of the Brownian deviation).

e The data is low-passed by convolution with the standard hrf.
e Additional correlations are not integrated within the model.

e Statistical inference consists in a F-test based on the two regressors of interest. The
P-value is 10~3 uncorrected.
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Figure 9.4: Description of the synthetic dataset built and analyzed in 9.2.2.
(a) Simulated experimental paradigm (vertical bars) and activation patterns in the syn-
thetic dataset. (b) Spatial layout of the activations simulated in the experiment. The

colors of figures (a) and (b) match. (¢) Brownian confounds added to the data by random
mixing.
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Figure 9.5: Time courses of the four filters used for activation detection in the experiment
9.2.2.

These 4 filters are obtained with gamma density functions with parameters (3,0.9), (6,0.9),
(9,0.9) and (12,0.9) respectively, sampled at a 2s rate.

One can notice that the specified analysis model matches very well the hypotheses
used in the generation of the data, so that SPM results can then be considered almost as
a gold standard for any analysis scheme.

Our analysis procedure follows closely the scheme described in 9.2.1. Let us be more
precise:

e The data is first detrended by non-linear gaussian fitting (see equation (2.2)). The
width parameter is ¢ = 10 scans, which does not bias the activation patterns. This
step is not conjoint with activation detection.

e Voxel-based activation patterns are then estimated using the complexity criterion
(9.14). In order to avoid over-fitting, we use a 4-dimensional basis built with gamma
functions of different latencies. This basis is represented in figure 9.5.

e The confound estimation is based upon a dimension reduction of the dataset to 40
components by PCA.

e After convergence of the joint confounds/activation estimation procedure, we obtain
many voxel-based temporal patterns, many of which are not statistically significant.
This is due to the fact that our analysis is based on many regressors, and only one
session. Thus we add a probabilistic selection procedure based on permutation in
order to keep the patterns whose amplitude is significant at P = 10~2 uncorrected.
This procedure is described next.

e Last, the surviving voxel-based signals are classified with a Laplacian eigenmap
procedure.
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Probabilistic selection

Our procedure for probabilistic assessment of the response amplitude is exactly the proce-
dure described in [185]: we consider ) random permutations of the experimental paradigm
(which is nothing but a binary variable). We derive the amplitude of each voxel-based
response after the same complexity analysis and confounds removal. This yields an em-
pirical voxel-based density of the amplitude of null responses. Finally we retain all the
voxels that have a task-related response above P = 1073. We used Q = 10%.

Results

We order the presentation of the results according to the four questions formulated at the
beginning of the section:

a. Influence of confound estimation on the detection of activated voxels We
have performed the previous analysis on the dataset with and without confounds estima-
tion. One can notice that, at the significance P-value considered, there is no difference.
Among 63 truly activated voxels, 54 and 55 are identified by the procedure, and there are
2 false positives in both cases. The map of detected voxels is presented in figure 9.6 (left).

b. Comparison with the SPM procedure We show our results together with the
SPM results in figure 9.6. Both methods work well, with a good detection rate (8 false
negative for our method, 2 for SPM), and reasonably few false positives (2 and 6). Once
can notice that our testing method achieves the nominal rate of errors, in contrast with
SPM. This is however at the expense of more false negatives. Both results could be
enhanced by the use of spatial information, but in that case, one would also need to use
spatially structured confounds in the simulation, which has not been done.

c. Accuracy of confound estimation The estimated confound space is of dimension
3, which is the number of Brownian components in our generative procedure. Due to the
detrending/high-pass filtering procedure before the analysis, it is not possible to compare
the input Brownian components and the results. Therefore, we detrend the Brownian
inputs as in equation (2.2) and compare the resulting components with our confound
estimations. The canonical correlations obtained between the two sets are respectively
(0.8992,0.7915,0.0258). This means that two nuisance components have been correctly
identified, while the third results from a false identification. By looking at this component,
we observed that it was a residual of the unfitted activation signal. Hence, it results from
a slight misspecification of the activation space.

d. Resulting signal maps The Laplacian eigenvalues for the data embedding is dis-
played in figure 9.7 (top left). It clearly shows that the structure of the dataset is intrinsi-
cally two-dimensional. A quick look on the feature space (see figure 9.7 (top right)) shows
the 3-modal structure of the feature space. The first 30 time samples of time courses
associated with each of the three clusters are given in figure 9.7 (middle left), and the
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Figure 9.6: Spatial activation maps obtained from our method (left) and the standard
SPM procedure (right).

The supra-threshold voxels are displayed in red, the threshold being set to a P-value of
103, uncorrected in both cases.

spatial maps in figure 9.7 (middle right). For comparison, the first 30 time samples of the
three input signals are given in figure 9.7 (bottom).

Discussion

The fact that the confound estimation does not help much for voxel detection is at-
tributable to the choice of assessing the results through empirically derived null distri-
bution of the data. Indeed, the empirical distribution, unlike an analytical one, adapts
itself to nuisance present within the data. Moreover, this can be attributable to an over-
simplistic definition of the structure of temporal correlations. For example, the autocorre-
lation attributable to confounds is removed by detrending/high pass filtering of the data,
so that the remaining autocorrelation is weak.

Second, the comparison between SPM and our data-driven procedure gives qualita-
tively equally good results, with SPM being more sensitive and our method slightly more
robust. It should be emphasized that SPM had been specified the correct linear model for
this data; such a model is not available in practice ! Our main conclusion here is that the
additional difficulty of estimating the temporal effects does not affect the detection power
of our method.

Third, we have introduced a useful non-parametric assessment procedure, based on
random permutations of the experimental paradigm. It was necessary here, because com-
plexity analysis of mono-session data would yield over-fitting in general (see table 9.1).
The principle limit of this method is the computational cost (for the data presented the
computation time was 30 minutes on a PC, with QQ = 10* iterations). Note that in [185],
the authors use the method with fewer iterations. Finally, computation can be speeded up
by considering only the voxels for which the complexity criterion has identified a compo-
nent of interest. Anyway, we acknowledge the usefulness and the precision of this method.

Fourth, confound estimation has correctly identified two of the three input Brownian
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Figure 9.7: Results of the analysis of the synthetic dataset.
(left) Laplacian eigenvalues obtained in the analysis of the signal space resulting from the
analysis. This clearly indicates that 2 dimensions are pertinent in the description of the
dataset. (right) Resulting feature space. Note the three-modal structure of that space.
This seems to fit the generative process of the data. The 30 first samples time courses
(middle left) and spatial maps (middle right) indicate that the main features of the input
data have been identified by the algorithm. (bottom) “True” (i.e. input) time series for
the corresponding region are given for comparison with the estimated ones.
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session |1 2 3 4 6 7 8 9 10 11
K |6 5 6 4 6 5 5 5

5
8 6 5

Table 9.2: Estimation of the dimension of the confound space for dataset 1. This is
obtained with the procedure described in section 6.2.2.

components. While one Brownian component was not identified, our procedure has identi-
fied a fraction of the signal space that had not been modeled correctly in our hemodynamic
response space. This indicates that it is always worth looking carefully at the structured
parts of a dataset, even if they are not interesting a priori.

Last, the Laplacian embedding method gives an accurate and simplified representa-
tion of the data, solving the difficult issue of building a global model from multivariate,
scattered information pieces.

9.2.3 Real dataset 1

The integrated approach has been applied to the 11 sessions of the dataset A.2; here
T =120, S =11 and N = 12320. The results of this experiment comprise two parts: first,
a description of the confounds in terms of session-wise models, second a description of the
signal space using Laplacian eigenmaps.

The confounds Concerning the confounds, the information is twofold: first, the session-
wise dimension of the confound space, and then the corresponding time courses. The
dimensions are given in table 9.2. Let us notice that the session datasets are reduced to
40 components by PCA prior to confounds estimation.

A probably more instructive way to consider the effect of confound removal is to assess
its effect on the autocorrelation of the voxel time series. We have computed the coefficient
of order 1 of each voxel time course

_ BT @)Xt - 1))

pln) = =g (9.16)

The average value of p over the dataset is 0.1004 and 0.0414 before and after removal of
the confounds. This is not anecdotal, since p < 0.09 with P = 0.999 under the white
residual hypothesis. The effect of confound removal is illustrated in figure 9.8. The fact
that the autocorrelation level is considerably reduced on most voxel time courses suggests
that the estimation of task-related effects is less biased.

The signal space An optimal representation of the signal space is derived, similarly as
in 8.3.2. The number of input voxels is higher now (N = 1572 instead of 1320), since the
characterization of confounds allows for a less conservative detection of activated voxels.
The sequence of Laplacian eigenvalues of the data embedding is given in 9.9 (left); they do
not yield an evident dimension for the representation of the dataset; however the second
and third eigenvalues are clearly lower than the others; a two dimensional embedding
seems thus adequate; we use once again a 2-dimensional embedding. The cluster of points,
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Figure 9.8: Removal of confounds and reduction of autocorrelation
(left) Histogram of the autoregressive coefficient of order 1 of the residuals throughout
the dataset analyzed in 9.2.3 before (blue) and after (red) removal of the confounds. The
vertical bar indicates the confidence value p so that |p| < p with P =1 — 1073, (middle
and right) Map of the p coefficient on an axial slice, thresholded at the significance level p,
before and after confound removal. These maps illustrate also that autoregressive patterns
are anatomically organized throughout the cortex.
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Figure 9.9: Integrated analysis of dataset A.2: results
(left) Sequence of eigenvalues obtained in equation (8.3). Note that the eigenvalues can
be interpreted as a measure of distortion. As could be expected, the first eigenvalue is
0 (and the associated map is uninformative). For further study, we keep the second and
third eigenvalues. (right) Optimal 2D representation obtained for the dataset. Note that
the general structure is quite similar to figure 8.7 (a), though minor changes are visible.
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Figure 9.10: Average impulse response to the experimental task within the dataset.
Note that the interscan interval is 2.976 s, so that the temporal resolution of this model
is rather coarse. The response peaks roughly 9s after the beginning of stimulation. Note
that this is not a BOLD response, but a CBV response.

session |1 2 3 4 5 6 7 &8 9 10 11 12
K |7 7 4 5 7 6 6 5 6 9 7 6

Table 9.3: Estimation of the dimension of the confound space for dataset 2. This is
obtained with the procedure described in section 6.2.2.

displayed in 9.9 (right), is much similar as the cluster obtained in section 8.3.2, and so is
the interpretation of the feature distribution, as well as spatial maps.

Our analysis can also provide an estimation of the average impulse response in the
dataset. Given the average response pattern, it suffices to find the coefficients that gen-
erated this model. It is of interest since this response is not the standard hemodynamic
response, due to the use of a contrast agent. The shape of the actual response is given
in figure 9.10. Of course, this model has to be taken with caution, due to the variability
within the dataset.

9.2.4 Real dataset 2

We have performed the same processing on the dataset presented in A.3. The dataset
is resampled and coregistered onto the anatomical model so that we have N = 77968.
Moreover, T'= 160 and S = 12. Confound estimation has been performed on each session
after PCA reduction to 40 components. The dimension of the confound space for each
session is given in table 9.3. It varies from 4 to 9.

More importantly, the removal of confounds has a filtering effect on the data. As
an illustration, we plot the histogram of the empirical AR(1) coefficient p of each time
course within the dataset in figure 9.11. It appears that confound removal reduces the
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Figure 9.11: Reduction of autocorrelation by confounds removal
Histogram of the autoregressive coefficient of order 1 of the residuals throughout the
dataset analyzed in 9.2.4 before (blue) and after (red) removal of the confounds. The
vertical bars indicate the confidence values p so that |p| < p with P =1 — 103.

value of p almost everywhere, shifting the global distribution towards the null hypothesis
distribution (even though the tail for p > 0 remains too strong, so that the correction is
not complete).

The number of activated vozels (according to criterion (9.14)) is N’ = 1148 before
confound removal and N’ = 1312 after confound removal. Laplacian eigenmaps are then
derived for the description of the signal space. We have chosen the model with £ = 10
neighbors. As often with empirical data, the distribution of Laplacian eigenvalues does
not give very precise information on the true dimensionality of the data -if such a thing
exists; this can be checked in figure 9.12.

There is no clear-cut distinction between low and high eigenvalues. We have worked
on a 3D embedding of the dataset. However, the first component of this embedding was
dominated by a component of no interest, i.e. a component that belonged to the activation
space, but could not be interpreted as a realistic hemodynamic response (it did not contain
the fundamental frequency of each stimulus, but the first harmonic). We interpret this
component as an oscillating confound present within the dataset. For this reason, we
study next the embedding obtained with the second and third non-trivial components.

The 2D feature space shown in figure 9.13 (left) is structured as a dense cluster with
more scattered components. To describe it more easily, we use a color encoding of the
features, the color being defined by the direction in the 2D feature space. Then, we derive
the average time course in the different regions of the feature space and display them in
figure 9.13 (right). The eight resulting temporal patterns seem to be with respect to the
delay in the response and with respect to the relative impact of the control condition (2D
visual stimulation). Roughly speaking, the axis of the feature space labeled component
2 modulates the relative impact of the experimental conditions, while the axis labeled
component 3 modulates the delay in the response: the orange and yellow curves are selec-
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Figure 9.12: Sequence of eigenvalues obtained in equation (8.3) for the second real dataset.
Note that the eigenvalues can be interpreted as a measure of distortion . As could be
expected, the first eigenvalue is 0 (and the associated map is uninformative). For further
study, we keep the second, third and fourth eigenvalues.

tively activated by the motion condition, while the blue and green ones show equivalent
contribution of both conditions; the purple and red components show earlier responses
than the green, yellow and orange patterns.

Then, the voxels selected within the signal classification process can receive a label
according to their position within the feature space. This yields the maps displayed in
figure 9.13 (bottom). Note that less than 2% of the voxels are color coded, which explains
the scattered aspect of the map. Surprisingly, while no spatial information has been
introduced in the method, the maps show an homogeneous and quite symmetrical cluster
organization.

To give an account of the spatial location of the activations on the cortical surface, we
display in figure 9.14 a projection of the map 2 onto the cortical surface. The maxima of
this map correspond to the regions where the activity for the 2D stimulus is weaker, i.e.
where the 3D-2D contrast is higher.

9.2.5 A conclusion on data modeling

We finally propose the model (9.15)- see also figure 9.3- as the most general one of this
thesis for fMRI data modeling: it is based on local estimates of task-related response and
global estimation of the confounds or nuisance space. The multi-session procedure for the
estimation of the task-related response can also be replaced by the joint study of one voxel
and its neighbors, as proposed in section 6.3.2. Otherwise, an adapted statistical procedure
(as in section 9.2.2) has to be used to avoid the presence of too many false positives. This
model is completed by the local-to-global step, i.e. the Laplacian embedding technique
that builds a data manifold from the empirical data.

Once again, let us outline that this model results from the compromise between flexi-
bility (let the data define the main task-related patterns present within the dataset) and
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Figure 9.13: Integrated analysis of the dataset A.3: results.

(left) 2D representation obtained for the dataset described in 9.2.4 with components 2 and
3 of the dataset. (right) Time courses representing the different regions of the manifold,
color coded as on the left. Note the differences in activation timing and in the relative
impact of the two experimental conditions. For clarity, we limit the temporal window to
one period of the stimulation, since the signals are periodic.(bottom) Spatial representation
of data embedding on eight axial slices. The color code is identical to the code of the two
upper figures.
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Figure 9.14: Projection of map 2 onto the left and right hemispheres of the grey-white
interface.

The areas red/black correspond to the main foci of 3D stimulation selectively. Note
that the maps are not symmetric, with the right hemisphere showing a stronger focus of
activation. Moreover, given the difficulty of obtaining the 3D grey/white interface, some
activations cannot be displayed properly on this surface.
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pertinence (use the information of the experimental paradigm). To complete the picture,
a study of the main confounds (non task-related structured patterns) could be interesting.

9.3 Generalization of our work

We finish this chapter with the discussion of two possible extensions of our work. The
first one is the introduction of prior information in inference procedure, which is one of
the goal of neuroimaging methodology; second, we discuss the extension of our estimation
and exploration procedures to the case of multi-subject studies.

9.3.1 On inference

If signal estimation is one of the major concerns of fMRI data analysis, inference, i.e. the
validation of biological hypotheses on the data is the ultimate goal of analysis. We thus
show here how our analyses scheme can be used in inferential procedures. Since the work
presented in this chapter is devoted to the joint estimation of task-related components
and confounds, we can then derive a design matrix for the experiment and use it in an
inferential procedure. In the case of task-related signal, a minimized model is necessary
for numerical concerns, so that we limit ourselves to estimating a dataset-derived impulse
response function (hrf) and then uniform task-related regressors from this model.

One can question the validity of this approach: is it relevant to include in a design
matrix a set of data-driven confounds? We believe that the answer is yes. Indeed, the
confounds have been defined as the non-white and non task-related components of the
data, i.e. the components that deviate from the implicit assumption in noise definition:
whiteness or non-predictability. The remowval of these components has been shown in
the previous section to correct -at least partially- the autocorrelation of the time series,
which in the general case is far from its null distribution. We conjecture that removing
these effects suppresses non-stochastic components of the signal, and thus improves the
adequacy of the model. The advantage of this procedure is that, assuming that the time
series autocorrelation is essentially canceled, no whitening or pre-coloring procedure is
necessary for the estimation of the noise variance.

We study this procedure on the dataset A.3, by comparing two instances of the general
linear model. In both cases, regressors are derived by convolution of the task function with
an empirically derived impulse function. The data is high-pass filtered by the standard
SPM procedure (removal of all frequencies below the stimulation fundamental frequency).

Case 1: The data is additionally low-pass filtered with an empirically derived hrf de-
scribed in [218]. Some regressors are added to the design matrix: SPM-derived body
motion estimates, and eye motion of the monkey, which had been recorded during the
acquisition.

Case 2: We include in the design matrix (besides the task-related regressors) the regres-
sors associated with the confounds derived in 9.2.4, whose rank per session is displayed in
table 9.3. These regressors may be viewed as data-driven estimates of the confounds, in
contrast with case 1, where confounds estimates are from exterior observations (monitor-

ing).
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The map of the contrast of interest (stimulus 1-stimulus2) is presented in figure 9.15.
Note that the maxima for the two cases are ¢ = 9.69 and ¢t = 12.37 respectively. The
thresholds used are identical for both maps: ¢ = 5.09 corresponds to P = 0.05, corrected
for multiple comparisons, from SPM99.

Discussion From the observation of figure 9.15, one can conclude that the differences
between the resulting maps are not very important: the supra-thresholds regions are sim-
ilarly located. The data-driven procedure has simply higher scores, and slightly wider
regions. Once can straightforwardly conclude that this method is more sensitive. Inter-
estingly, the increase in sensitivity does not seem to have induced false positives, at least
at the threshold level considered. The difference in sensitivity is attributable to different
estimations of the variance: in the standard case, it is likely that body motion and eye
motion estimated do not include all the potential correlations of the time series. This
is corrected by performing low-pass filtering of the data. The second procedure removes
the main sources of autocorrelation of the data and takes the residual as the variance;
in practice, the variance estimate seems to be smaller than in the first case. From our
observation of the empirical scores distribution (symmetry of the activation patterns), this
more optimistic estimation is not undue.

9.3.2 On multi-subject studies

Though we do not explicitly deal with multi-session data in this work, it seems important
not to overlook completely the problem. In fact, meaningful neurophysiological conclu-
sions can be drawn only from multi-subject studies, since one can expect that a particular
subject may not execute well the task, use alternative strategies, or have some particu-
larities that modulate the structure of the data or the response level. Technically, this
problem splits into two distinct ones: ) Assuming that all the subjects are coregistered
anatomically and 4i) Avoiding that assumption. The first case is the most frequent one,
since it allows for easier inference. However, it is plagued by the difficulty of obtaining a
correct anatomical registration (an issue that we will not discuss here; some solutions for
the robustness against mis-registration are given in [67]). Our contribution here is simply
to suggest how one can generalize our estimation procedures to that case.

Coregistered case

We are in the following situation: one dataset X(s,t) is available for each subject s, a
dataset being the now familiar N x 7" matrix. In fact this situation can be modeled
exactly by equation (9.15), where the index s stands for different subjects instead of
different sessions. Each voxel is then associated with a given (eventually null) response and
hemodynamic model, while some confounds are present within each dataset independently.
The hypothesis of an identical hemodynamic response from subject to subject may seem
too optimistic, but it seems necessary in practice for making inference on a multi-subject
level. Then all the estimation procedures described in 9.2.1 applies - of course this implies
that the experiment is reproduced exactly.

One might be concerned with the fact that sewveral sessions are acquired for each
subject, so that the dataset is indexed by voxel n € [1,.., N], subject s € [1,..,S], time
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standard procedure our procedure standard procedure our procedure

Figure 9.15: Data-driven vs hypothesis based inference
SPM t-map of the contrast stimulusl-stimulus 2 with inclusion of body motion+eye mo-
tion confounds -the standard procedure -(left) and data-driven confounds -our procedure-
(right). The color-map of the activation ranges from t = 5.09(red) to ¢ = 9.7(white).
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t €[1,..,T], and session o € [1,..,%]. First, we can suggest that the confound space could
be defined session-wise and not subject-wise, so that we may forget the subject effect, and
treat each of the S x X sessions independently.

If the hypothesis of no subject effect -besides the hemodynamic response- is rejected,
the problem should be treated hierarchically, with subject-wise confounds for example.
This is an alternative to the hierarchical Bayesian model of Friston et al. [87] [81].

Non coregistered case

If, for some reason, the datasets are not aligned, estimation of response patterns becomes
more difficult. Let us simply suggest the following model: let X, .., Xg be datasets with
N(s) voxels, s = 1..S. Then

I(s)
Xu() = 3 Yailt) + MR(1) (9.17)
=1

where
e Y, ;(t) are session-wise confounds (i.e. a space of dimension I(s) for each session s).

e R(t) is a set of decorrelated temporal patterns which are reproducible from one
session to another one (task-related or not).

e M, is a mixing matrix that relates R to each session-wise dataset.

The estimation of all the quantities involved here can be performed by the same procedure
as previously:

e Step 0: All the datasets are reduced by PCA to a given number of temporal com-
ponents.

e Step 1: A set of temporal patterns common to all datasets is derived by the CCA
procedure 5.1.4. This yields (M), s =1,..,.S and R.

e Step 2: After removal of the reproducible patterns, confounds are estimated by the
standard state-space procedure.

Of course, step 1 and step 2 can be iterated. This method should be quick, since it works
in a low dimensional space. Once can also add some constraints within the CCA procedure
(step 1) to obtain only task-related patterns. Note that this procedure is much weaker
than the procedure described earlier on coregistered data. In particular, no estimation is
made on a voxel basis. This is logical, since voxel-based cannot be generalized here.

These sketchy suggestions are simply intended to show that the generalization of our
procedure to multi-subject studies can be done within a similar framework and/or with
similar concepts.
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Chapter 10

Conclusion

As a conclusion, we would like to make a quick review of the main novel technical contri-
butions of these work and to explain in which situation they can help and, if necessary,
which supplementary development would improve them. As a complement, a graphical
representation of all the methods used in this thesis are presented in figure 10.1, with their
links and particular function.

Temporal model: the Wold decomposition. This model aims at separating deter-
ministic and stochastic components of the signal, and thus provides an attractive concep-
tual framework in signal analysis. We believe that, associated with the BIC-MDL criterion,
it can provide a useful alternative to recent Bayesian models, that are computationally
much more heavy and require the prior tuning of non trivial hyper-parameters. The main
weakness of this model is probably the lack of physiological relevance of task-related pat-
terns: introducing a physiologically relevant parameterization would certainly enhance its
interest.

Clustering: the Information Bottleneck method. The Information Bottleneck
method offers a well-grounded framework for data clustering. Besides being well-adapted
to fMRI data (noise model, incorporation of priors in the feature space modeling), it
probably introduces the most relevant variable to tune the bias/robustness tradeoff. For
practical reasons the use of analytically derived approximations of the Kullback-Leibler
divergence would bypass the problem of probability density sampling on finite grids. We
recommend this method when a good temporal model of the data is available, but when
the voxel-based responses to the different conditions are complex.

State-space model. The state-space model used here provides a multivariate descrip-
tion of the dataset that takes into account temporal structure of the components of interest
within the data. It provides in a computationally economic way a rough model of the main
structured patterns of the dataset. As in chapter 9, we may keep it for nuisance space
estimation, since it seems to greatly enhance the whiteness of voxel-based residuals. An
interesting problem is also the identification of the nuisance components given their spatial
location and their structure in the frequency domain. Recalling that state-space estima-
tion minimizes functional 6.9, it can be viewed as an alternative to bayesian temporal
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Figure 10.1: List and relationship of the methods used in this thesis.
The methods(black titles) written in bold style are original contribution of the thesis.
The arrows indicate the succession of the different steps. Blue and green titles represent
respectively the main steps of data analysis and the output of each method. Dashed arrows
indicate steps that have not been presented in the thesis but that are worth investigating.
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models, especially suitable for temporally correlated data. This thesis has thus probably
not completely exhausted the potential of this framework.

Nonlinear decomposition: kernel PCA. Kernel PCA uses the potential of over-
complete signal bases to account for subtle effects within the data. It is of great interest
when signal bases produced by simple SVD do not fit well the non-Gaussian structure of
the data. However, given the difficulty of assessing the number of components used in
data decomposition and the difficulty in thresholding the heavily non-Gaussian resulting
maps, we believe that it is limited to descriptive purposes-at least with non-polynomial
kernels. Note also that it provides an interesting solution to the problem of state-space
basis choice. The interest of this method could be enhanced by combination with ICA.

Nonlinear decomposition: Laplacian maps. Within the non linear methods,
Laplacian embedding much more wisely searches for the low dimensional representation
of the data that preserves its -metric or topological structure. We found that the
topological point of view was better suited for fMRI data, probably due to the certainly
uneven sampling of the signal space by empirical data. It gives a practical contribution
to the actual trend towards functional connectivity investigation- functional connectivity
being nothing but empirical time series correlation. The main strength of this method
is its weak sensitivity to local perturbations of the data and to noise, and its main
weakness is probably the difficulty in making explicit the embedding of the data in the
natural signal space. It could still be enhanced by the introduction of spatial information
(spatio-temporal clustering). Moreover, given the robustness of the method, it is a
potential tool for the comparison of multiple datasets. We prefer it to Kernel PCA for
data representation.

The final combination of the methods that we propose in chapter 9 is intended to
propose a viable alternative to hypothesis-driven approach of fMRI data, that make up the
mainstream in current neurological studies. Our main achievement is perhaps to propose
a data-driven and pertinent -in the sense that it takes into account the experimental
paradigm- approach. In practice we propose

e Purely exploratory approaches (ICA, Laplacian eigenmaps, CCA) that may be used
when little prior knowledge is available on the dataset

e The semi exploratory approach described in chapter 9 which is an alternative to the
GLM, especially useful for cross validation purposes.

In a near future, we will address the question of multi-subject studies.

Sur ce, qu’il me soit permis de ne pas en dire davantage.
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Appendix A

Presentation of the datasets used
in this work

A.1 Synthetic dataset

We have created a synthetic dataset by simulating one slice of fMRI data containing
N = 1963 brain voxels. The length of the series is T' = 200. The simulated paradigm
comprises two alternating conditions in a block design (see figure A.1(a)). 3 small activa-
tion foci of 21 voxels are created; the activation time courses are obtained by convolution
of the experimental condition time courses with the canonical hemodynamic filter of SPM
sampled at TR=2s [77].

ag(t) = [hx (v (1)1 +77(2) P)](2) (A.1)

where v7(1),77(2) and thus as(t) are defined for each focus of activation. The simulated
time courses, (as), f = 1..3 are given in figure A.1(b) and spatial maps are presented in
figure A.1(c). Next, a gaussian white noise is independently added to all voxels, so that
the SNR is 0.5 in the activated areas.

The data is smoothed spatially as commonly done for fMRI (FWHM = 4.5mm = 1.5
voxel).

Let us insist on the following features

e The model is not realistic; for example, the non-signal part is white, which is not
true for general fMRI data. Hence this simulation is not useful to test temporal
models.

e However, the generative model A.1 is not unrealistic, and a question of interest
could be which region of the slice responds (selectively or not) to the experimental
conditions.

e The SNR is not higher than for true fMRI data, and the activated areas are relatively
small, making signal activation a challenging task.

e The choice of 2D data is only for the sake of visualization
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conditionl condition2

6 20 40 80 120
time (scans)

Figure A.1: Description of the synthetic dataset.
(a) Simulated experimental paradigm (two conditions, alternating block design with rest-
ing periods). (b) Synthetic activations time courses. The three patterns are obtained by
convolving the canonical hrf with three different linear combination of the stimuli time
courses. (c¢) Spatial layout of the activations simulated in the experiment. The colors are
those of the time course. The colors of figures (b) and (c¢) match.
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Condition 1 : static texture

Condition 2 : moving texture

time (scans)

|

0 10 20 30 40 80 120

Figure A.2: Experimental paradigm used in the real data experiment described in A.2.
This experiment is typically a motion localizer through the subtraction of the two alter-
nating activation conditions.

A.2 Real dataset 1

Described in [218], this dataset belongs to a study on monkey vision : The task performed
by the Rhesus monkey is the passive viewing of moving and static textures. The experi-
mental paradigm consists in 3 repetitions of the following stimulation sequence: viewing of
a static texture (random dots) during 10 scans, rest during 10 scans, viewing of a moving
texture during 10 scans and rest during 10 scans, thus yielding 120 scans long sessions
(see figure A.2 for a representation of the experimental paradigm). The dataset considered
here comprises 11 sessions. It was acquired with a 1,5T scanner. The repetition time is
TR=2.976 seconds. One volume has 64x64x32 voxels and the spatial resolution is 2x2x2
mm; it comprises the whole brain.

Before the experiment, the monkey had undergone an injection of MION (monocrys-
talline iron oxide nanoparticle) contrast agent of 4 mg/kg, so that the measured signal is
not the BOLD contrast, but is related to the local cerebral blood volume [218]. Using this
contrast agent is known to increase the contrast to noise ratio, but challenges the hypothe-
ses used for standard models of fMRI data: it changes the sign of the activation pattern,
and the shape of the response is modified, since it reflects mainly the local Cerebral Blood
Volume (CBV), and not the standard BOLD effect.

In practice, the dataset is reduced to N = 12320 voxels by retaining only the brain
voxels. For visualization of the activation maps, it is coregistered with an anatomical
image through the method described in [111].

A.3 Real dataset 2

Described in [217], this dataset is devoted to another important feature of monkey vision:
the ability to distinguish between the perception of motions in 2 dimensions, and motions
in 3 dimensions. The experimental paradigm consists in 4 repetitions of the following
stimulation sequence: viewing of a 2 dimensional motion during 10 scans, rest during 10
scans, viewing of a 3 dimensional motion during 10 scans and rest during 10 scans, thus
yielding 160 scans long sessions (see figure A.3 for a representation of the experimental
paradigm). The dataset considered here comprises 12 sessions. It was acquired with a
1,5T scanner. The repetition time is TR=2.368 seconds. In this case the dataset has been
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- Condition 1 : 3D motion
Condition 2 : 2D motion
Baseline: static stimulus

| g
T Lo

0 10 20 30 40 80 120 160 time (scans)

Figure A.3: Experimental paradigm used in the real data experiment described in A.3.
The signal difference between the two alternating activation conditions gives the sensitivity
to 3D stimulation.

pre-registered with the anatomy of the monkey with the method [111], yielding images of
1mm resolution, of size 71 x 86 x 56 voxels.

Before the experiment, the monkey had undergone an injection of MION (monocrys-
talline iron oxide nanoparticle) contrast agent, as described in A.2.

In practice, the dataset is reduced to N = 77968 voxels by retaining only the brain
voxels.

A.4 real dataset 3

This dataset is based on an fMRI retinotopy experiment described in [225]. Working on a
3T Bruker Medspec 30/80 Avance scanner, with a full body magnet, functional EPI images
are acquired in 4 sessions; each session comprises 90 images acquisition, with TR = 1.5s.
Each image is in turn a volume of 18 slices, with a thickness of 3mm, with interleaved
acquisition; these slices are chosen in order to encompass the occipital cortex. The first and
last nine scans (without stimulation) are then discarded. A high resolution 1 x 1 x 1mm3
anatomical image of the subject is also acquired during the same session.

As usually for retinotopy ([197]) the stimulation is the display of either a rotating edge
or a contracting/expanding ring; a simplified presentation of them is given in figure A.4
. The key information is the frequency wg of the stimulus; here the period Ty = 3)—7; is 18
scans, i.e. 27s, so that 4 complete periods are acquired for each stimulus. The subject is
instructed to passively look at the display and to concentrate on a fixation red cross at
the center of the image.

The 4 sessions of acquisition comprise one session of clockwise rotating wedge, one
session of anti clockwise rotating wedge, one session of expanding ring and one session
of contracting ring. The analysis of such datasets is usually performed by estimating the
component of each voxel time course that has the same frequency as the stimulus. The
amplitude of this signal can be used for testing the presence of the response, while its
phase yields an estimate of the activation timing. The fact that the stimulus is performed
alternatively in two opposite directions can be used to eliminate the hemodynamic offset.
Finally, a value of eccentricity and polar angle can be associated to each voxel, yielding
the retinotopic mapping.

The resulting maps can then be projected on an anatomical image; cortex segmentation
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Figure A.4: Typical stimuli used in the retinotopy experiment
(top) the wedge stimulus in different position, (bottom) the ring stimulus in different
positions.

and inflating are then used to derive inflated maps. In the present case, these steps have
been performed with the Brainvisa [46] software.
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Appendix B

Generating spatial maps from
multivariate methods

Here we explain how we can give a statistical interpretation of spatial maps derived by
multivariate analysis methods; note that this problem stems from many practical situa-
tions; for example, many procedures end up with the diagonalization of a matrix, whose
eigenvectors are interpreted as spatial maps: this is the case for PCA, CCA, Kernel PCA,
Laplacian eigenmaps, or more generally when spatial maps are manipulated as multivari-
ate vectors, e.g. in state-space models or ICA. Note that what we present here are some
practical solutions used in this work, and not systematic approaches.

In general, each map is represented by a unitary N x 1 vector M:

Y Mn)?=1 (B.1)

The most simple way to handle the problem is to consider that by (B.1), M(n)
results from a normalization procedure applied to a random variable. Indeed, under the
hypotheses
Hy : All the samples are drawn randomly from the same population (i.e. from one law),
Hy : they are drawn independently,

VL X(0)?

it becomes possible to handle the map. In particular, adding the next hypothesis

i.e., there exists a random variable X (n) such that Yn € [1, N], M (n) =

Hs : The random distribution is gaussian with 0 mean, the variable 7 defined by

M(n) M(n) X(n)
T(n):m—ZM—: N—-—1 ————
\/ 2izn M(1)? 1 —M(n)? \/ 2izn X (1)

(B.2)
has a Student distribution with N — 1 degrees of freedom. The fact that the expected
value is zero stems in our case from prior assumptions or processing on the data. We will
consider that it holds here. Otherwise, the mean value can be estimated.
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Consequently, we can handle 7(n) as a Student variable, and make inference on its
value, introducing tests and thresholds th to assess that P(7(n) > th) is below a certain
value.

An additional simplification of the problem arises for low values of N - which is not
unrealistic: first the student distribution gets very close to the normal one, second 7(n) ~
M (n)v/'N — 1; this may allow for quick computations.

However, this simple analysis can go wrong for several reasons:

e First, assumption (H3) of statistically independent variables is usually false, and
thus simple procedures ignore real spatial correlations.

e Second, the assumption (H;) that all voxels are drawn from the same distribution is
precisely the hypothesis that one searches to reject. While this is not necessarily a
problem in univariate procedures, this becomes a problem here, because, if a fraction
of them (say, the activated voxels) are not drawn from the null distribution, their
presence biases the normalization procedure, i.e. it reduces 7(n) values.

e Last, more classically, one can reject the gaussian hypothesis for the variables; here,
we will make distinction between linear and nonlinear procedures: the linear pro-
cedures yield approximately normal maps, while non-linear procedures may yield
maps that are far from normal.

The first problem can be considered as solved in the literature in different manners:
For example, one can warp the Student distribution to a normal one, and consider the data
as the realization of a smooth gaussian field structure (see section 3.2.1; [178]); however,
the validity of these models requires intensive smoothing of the data. Alternatively,
applying a Bonferroni correction on P-values is probably a conservative way to solve the
issue; however, the most practical solution of the problem is to use False Discovery Rates
[90] instead of classical P-values; this allows for voxel-based inference.

The second problem involves the correction of 7 due to the statistical heterogeneity of
the voxels; however it cannot be done a priori.

Last, the third problem is to associate 7 with a P-value; Assuming that the data is
normally distributed under the null hypothesis, all linear methods can be assumed to
yield normally distributed data. For this reason, we distinguish PCA, CCA and ICA from
Kernel PCA, the latter being highly non-linear, while the former can reveal only small
deviations from normality (even though ICA explicitly emphasizes non-normality of the
data). We continue our development by separating the two cases.

B.1 When Null data is approximately Gaussian

B.1.1 Mixture modeling

A possibility is to consider mixture models (see [58], [15]) for the distribution, with one
mode being the null distribution; But this solution poses some new problems: the mixture
estimation may be difficult; one needs to choose the number of modes; for example, one
can prefer a small number of modes to avoid over-fitting, but few modes can be suboptimal
to model the non-gaussian part of the distribution.
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Figure B.1: An iterative scheme for the correction of spatial maps under mild deviation
form normality.

Note that mixture modeling is not much different from the Information Bottleneck
method presented in 5.3.2, which does note use hypotheses on the modeled distribution;
but the method involves the difficult choice of the parameter [ -which we have not solved-
and assumes that each voxel based information M (n) or 7(n) is itself a density, not a
scalar.

However, we prefer the following simpler procedure.

B.1.2 A quick procedure

What we propose is an iterative procedure that alternatively recomputes the 7 map, the
P values and the number of voxels for which the null hypothesis is not rejected (see figure
B.1). The key point is that equation B.2 is replaced by

r(n) = VN -1 —— 21

7 (B.3)
\/Ei;énmso M(i)?

Where Sy is the null set.

The fact that this procedure converges is evident since the number of activated voxels
always increases. In practice, A False Discovery Rate testing (set to 0.05, for example) is
conservative enough to ensure that the procedure will not start to prune the null distri-
bution. An example of this procedure is given on a synthetic example (in figure B.2), and
on an ICA example taken from section 5.2.4 in figure B.3.

This procedure seems to yield valid corrections on the normalized spatial maps. It
is probably a bit conservative. Once again, it is advisable when linear decomposition
procedures are used -i.e. with mild deviations from normality (PCA, CCA, ICA).
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Figure B.2: Thresholding of a mixture map containing both null and activated data.
The two populations are represented by 1800 and 200 samples generated from A/(0,1) and
N (5,1) by the FDR procedure (FDR =0.05, indicated by the vertical bar in both cases).
Due to the normalization of the map, the naive approach (left) is over-conservative (only
63 voxels detected), while the iteratively corrected normalization provides a more realistic,
though conservative, threshold (178 detections). Note the correction of ¢ values.
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Figure B.3: Thresholding of the first map obtained in figure 5.2 by the FDR procedure
FDR =0.05, indicated by the vertical bar in both cases. Due to the normalization of the
map, the naive approach (left) is over-conservative (41 voxels detected), while the iter-
atively corrected normalization provides a more realistic, though conservative, threshold
(57 detections). Note the correction of ¢ values.
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B.2 When Null data is not Gaussian

In this case the P-values under the null hypothesis are not available. There is a solution
only if a simple transformation can warp the null distribution into a gaussian one. For
example, in section 7.3.2, the cubic kernel makes the distribution of the data non-gaussian;
but applying the function M (n) — M(n)'/? to the map approximately solves the issue:
one can apply the previous method to the map, as illustrated in figure B.4.

For the more general case (section 7.3.1) where the deviation from normality cannot be
corrected, there is no practical solution, apart simulating numerically the null distribution
of the map to estimate the null P-values; note that we have used in figure 7.8 another way
to represent spatially the data. In the case of 7.3.3, there are mild differences between
PCA and KPCA, so that PCA threshold can be used for thresholding KPCA maps. This
effect is due to the small dimensional input space.
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Figure B.4: Thresholding of the first map obtained in figure 7.11 by the FDR procedure
FDR =0.05, indicated by the vertical bar in images (b) and (c): (a) original values, that
are not student-distributed, (b) distribution after the correction M(n) — M(n)Y/?; the
null distribution is properly more gaussian, but the t values are under-estimated, making
the threshold over-conservative; (c¢) the iteratively corrected normalization provides a more
realistic threshold. Note the correction of ¢ values.
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Appendix C

Information theory: a survivor’s
guide

We give here some basic definitions of information theory, which are used in this document.
Proofs and complementary explanations are available in [48].

C.1 Some basic definitions

C.1.1 Entropy

Let X be a random vector of dimension d > 1, and let x(1),..,2(N) be N samples or
random realizations of this random vector. Let px be the probability density function of
X. We assume that it is a function of L'(R?) that satisfies

px > 0 everywhere (C.1)

[ pxtin = 1 o2
Rd

The entropy of X is the quantity

H(X) = ~Blloglpx)) = = [ px(u)log(px (w)du (©3)

Note that the entropy and all the quantities encountered here depend on the density and
not on the random variable or vector- however one can use expressions like entropy of a
random variable without risk of confusion. We assume that this quantity is defined for
all the densities encountered in this document. This is true in particular for empirically
estimated densities which are either gaussian or mixtures of gaussians (see section C.2).
The entropy can be considered as the measure of the dispersion of the random variable or
vector X. If the law of X is gaussian with mean g and covariance X, i.e. py = N (i, X),
then the entropy depends only on X:

H(X) = %log(det(Zﬂ'eZ})) (C.4)

The entropy of various densities can be found in [48, chapter 16].
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Assuming that X is not gaussian, its negentropy is the difference between its entropy
and its gaussian entropy H"9(X) = H9(X) — H(X), HY being computed from the mean
p and variance ¥ of X. This quantity is always positive, since it is equal to K[px |N (1, 2)]
(see section C.1.2). Tt is thus a possible measure for the deviation from normality of X.

Let X and Y be two random vectors. The conditional entropy of X given Y, defined
as H(X|Y) = [H(X|Y = y)P(Y = y)dy, is the difference between the entropy of the
joint distribution of X and Y and the entropy of Y.

H(X|Y) = H(X,Y) - H(Y) (C.5)

It can be interpreted as a measure of the residual randomness of X when Y is known. The
following holds : H(X|Y) < H(X), with an equality if X and Y are independent.

C.1.2 Kullback-Leibler divergence, mutual information

If X and Y are two random variables or vectors with laws px and py, the Kullback-Leibler
divergence between their laws is defined as follows:

Klpx|py] = Epx (log px(u)> = /Rd px(u)log pX(u)du (C.6)

py (u) py (u)

The Kullback-Leibler divergence is not a distance, since it is not symmetric. However,
the following result holds [48, chapter 9]: given two densities p and ¢, K[p|q] = 0 only
if and only if p = ¢. Intuitively, one may think that K[p|¢] quantifies the additional
randomness that appears when a vector of true law p is assumed to have the law ¢.

Given two random variables or vectors X and Y, the mutual information between X
and Y is the Kullback-Leibler divergence between the product density Px Py and the joint
density Pxy .

I(X,Y) = K[Pxy|PxPy] (C.7)
= [ pxr@los P2y ()

R4 xRd PXPY
— H(X)+H(Y) - HX,Y) (C.9)

Note that given (C.5), one has also Z(X,Y) = H(X) — H(X|Y). Moreover, Z(X,Y) > 0
since it is defined as a divergence, and Z(X,Y) = 0 if and only if pxy = pxpy, which
means that the random vectors X and Y are independent. Hence, the mutual information
is a measure of the statistical dependence between two random variables.

C.1.3 Score vector, score function

Here we assume that the law px of X is differentiable. To simplify matters, we also assume
that d =1 (X is a variable), but the setting adapts straightforwardly to d > 1. The score
function of X is the function

1 dpx(u)
px(u) du

Ux(u) = —ilogpx(u) = - (C.10)

du
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Formally it is the derivative of the log-density of X. It can be shown that, if Y is another
random variable,

H(X +¢€Y)=H(X)+ eE(Yx (X)Y) + o(e), (C.11)

Given N samples x(1),..,2(N) of the random variable X, the associated score vector of
X is the vector (¢x(x(i)))i=1,.. n. Given (C.11), the score vector can be thought of as
the gradient vector of the entropy: moving each sample along the score vector locally
maximizes the entropy of the resulting vector.

C.1.4 Entropy of temporal processes

The case of temporal processes X (t),t = 1..T can be treated as any random vector, and
the emphasis is put on the serial dependences that arise between successive samples. The
key concept is the entropy rate of temporal processes [48, chapter 4,11]:

n(X) = lim H(@(1),..a(T)) (C.12)
= lim H(a(D)la(1), ,a(T = 1)) (C.13)

n(X) can be interpreted as the additional randomness of each new sample when one has
an exhaustive knowledge of the past of the process. In other words, it is the intrinsic
randomness of the process. If the samples are i.i.d. it is simply the marginal entropy.

In the case of gaussian processes, the entropy rate can be expressed with the spectral
density f of the process:

n(X) = @ + ﬁ /Rlog(f)(u)du (C.14)

This formula, known as Kolmogorov’s formula, has been first proved by Szegé (see also
[27]).

C.2 On estimation

The computation of the entropy and associated quantities requires the estimation of prob-
ability densities -unless one makes a gaussian hypothesis, but this is rejected in some
methods, like ICA (see 5). Given N samples (x(1),..,2(N)) one needs to estimate px.
To avoid confusion, we note the estimated density by D, px being the true density. The
standard method consists in using a mixture approximation:

D(u) == gou— X(t)), (C.15)

where g — o is the gaussian kernel of parameter o. Note that E(D)(u) = (g, * px)(u),
so that it should be ideal to use ¢ = 0. On the other hand, the estimation should not
be dependent on the particular samples available, so that ¢ should be high enough. This
is a typical bias/variance tradeoff. In practice, given e.g. the results presented in [26],

o= var(X)Ndlﬁ is a good choice. The practical estimation of equation (C.15) can be
made quick by the use of recursive filters [52].
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Figure C.1: Empirical estimations of a density and of the corresponding score function.
A set of N = 10* samples are generated with a bimodal gaussian mixture model. The
samples are then discretized on a finite grid (100 bins) and the resulting density is smoothed
in order to yield the estimate (C.15). This results in the density in blue. In parallel, the
score function is derived. (in black), using the same method. Note that the score function
deviates from linearity in the regions where the density deviates from normality.
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The estimation of the score vector follows exactly the same way. An illustration is
given in figure C.1.

Let us finally point out the curse of dimensionality: Although the method presented
here adapts to any dimension d, the estimation worsens rapidly for ¢ > 1. This problem
is known as the curse of dimensionality. However, many algorithms (e.g. ICA) require
only marginal, i.e. one-dimensional densities. For high-dimensional densities, gaussian or
gaussian mixtures approximations are better suited than empirically estimations.
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Appendix D

Information and prediction:
choosing the best model

D.1 Joint entropy of a time series

We give here a derivation of the asymptotic entropy of a time series given a prediction
model as in chapter 4; this development is inspired from [20].
Let X = (z(t)),t =1,..,T be a time series, endowed with a prediction model of order
q. Let H(X) be the joint entropy of X. Then , under conditions that will be made precise
later
HX) =~ TpX)+ glog (T) + o(log(T)) (D.1)
T — o0

where 7(X) is the entropy rate or extensive entropy of the time series (see C.1.4). To show
this result, let us first compute the joint probability of the time series, P(X). We assume
that the prediction model is defined by a g—dimensional parameter €, and that the data
has been generated by a particular # € R?.

P(X) = /P(Q)P(X|0)d0 (D.2)
- P(X
- P(X|9)/P(9) (X1) 4 (D.3)
P(X]0)
= P(X|§)/P(9)exp(—TE(T, 6))do (D.4)
Where E(T,0) = —% log Ilzglgg is the natural energy of the system. It can be estimated
by its expectation given the true generative parameter # plus a fluctuation term:

1 - P(X10) 1 ~
E(T,0) = —= | P(X|0)] —dX + —e(X,0,0 D.5
T0) = g [ PO o A + el X600 (0.5)

1 ~ 1 _

= ?K[P(X|9)|P(X|9)] + TB(X’ 0,0) (D.6)

Where KT|| stands for the Kullback-Leibler divergence between the two densities given
in argument; note that this divergence is computed within the T-dimensional space of
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the signal X. In the sequel, we i) neglect the fluctuation term %e(X,G,G_) around the
expected value, and 4i) introduce a new hypothesis:

(Condition 1:) We assume that limp_... =K [P(X|0)|P(X|0)] exists and note this
limit d(6,0); moreover, we assume that d(6,0) is a smooth (at least C*) function of 6.

In fact this condition is not restrictive at all, since most prediction mod-
els depend smoothly on their parameter. Let us assume e.g. a model
w(t) =S 0la(t — 1)+ M 02 u(t —m) + e(t), where 6 = (0',6%), ¢ = L + M, u(t) is
an auxiliary explanatory variable, and ¢ is a gaussian i.i.d noise; then P(X6) is T-variate
normal law with mean py and covariance Xy. It is then straightforward to check that
LK[P(X|0)|P(X|0)] has a finite limit for T — oc.

As a consequence, E(T,0) has a finite limit when 7" — oo. This implies that the integral
J P(0)exp (—TE(T,0))df essentially reduces to its value on a domain that surrounds the
value of 6 that minimizes E(T,0). Neglecting the fluctuations, we will consider that
the solution of the estimation problem in terms of # is indeed § (which is true only
asymptotically), we use a saddle-point approximation of E around its minimum:
1 _ _ _

5(9 —0)A(0 —0)+ o((6 — 6)) (D.7)

where A is the Hessian of d(6,0) in . This implies that

E(T,0) ~ d(0,0) ~

/ P(6) exp (—TE(T, 0))d0 ~ P(f) / exp (-%(9 _G)A(0 - 9)) o (D)

The latter integral is known to be (2m)2|TA| Y2 = (27)3T 3| A|"Y/2, where |A| is the
determinant of A. Finally, for T" — oo,

P(X) ~ P(X|0)P(0)(2m)iT~%|A|71/? (D.9)

We can now estimate the entropy H(X) = E(—log P(X)) of the time series. We have

log (P(X)) ~ log P(8) + log P(X|A) + log (|4]~Y/2(2m)3) — glogT (D.10)
Thus
H(X) = —E(log P(0) + log P(X|0)) — log (|A|~"/*(27m)%) + %logT (D.11)
Only the first two terms are non-trivial
E(log P(0) + log P(X|0)) = /P (log P(6) + log P(X0)) dX (D.12)
= / (X|6)P(6) (log P(9) +log P(X|0)) dXdf (D.13)

- /P [logP) /P(X|§)logP(X|§)dX dfD.14)

_ _H(e)—|-/P(Q)/P(X|9)logP(X|9)dXd9 (D.15)
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At this point, we need a second technical hypothesis: (Condition 2:) Let
1 _ _
n(X) = — lim ?/P(X|9)logP(X|9)dX, (D.16)

be the entropy rate of the process; n(X) exists and is non zero in general; we further
assume that
H; = — lim (/ P(X|0)log P(X|0)dX +Tn(X)> (D.17)

T—o0

exists and 1s finite.

This condition simply means that the subextensive entropy of the true generative pro-
cess is of order unity, which is true whenever there do not exist any long-range correlations
within the data [20]; this holds for all models encountered in practice -for fMRI data anal-
ysis, at least after data detrending. The extensive term corresponds intuitively to the
stochastic variance of the process, as defined in Wold decomposition.

Given Condition 2, we obtain

H(X) ~ H(0) + Tn(X) + Hy + log (|A]"/?(27)%) — % log T (D.18)
The non-constant terms in the asymptotic development are thus
H(X) =~ Ty(X) + %logT (D.19)

The first term Tn(X) is the extensive entropy that increases linearly in the number
of the samples, and is related to the variability in the observation of the variable; the
second term £ log T is the leading subextensive term, and can be identified as a structure
term, since it is related to the dimension ¢ of the generating process. We use it as a
general complexity measure in data modeling. Last, one can notice that the conditions
1 and 2 introduced here are met in very general situations (Markov, ARMA models),
so that the asymptotic formula can be viewed as a fundamental structure of many time
models. However, one might be concerned by the deviation from the asymptotic model:
first, data scattering around the expectation value may be important ( assuming that
T — oo is optimistic for fMRI data); second, the saddle point approximation may become
inaccurate whenever multiple minimizers of the energy exist; last, the constant terms in
the asymptotic development may be non-negligible with respect to £ log T' for finite values
of T.

D.2 Bayesian approach in model selection

Let assume now that different prediction models M;,¢ € Z are possible; we follow a
Bayesian approach to select the most likely one: Vi € 7,

P(M;|X) o< P(M;)P(X|M;) (D.20)

P(X|M;) is known as the Bayes factor in the literature (this justifies the name Bayesian
Information Criterion (BIC) applied for H(X|M;) in the literature). In many situations
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each model as the same prior likelihood; thus the winning model is the one that maximizes
P(X|M;). But in fact —E(log(P(X|M;))) is precisely H(X) given the model M;; this
means that the minimization of the criterion

H(X|M;) = Tn(X)(M;) + %logT (D.21)

where ¢; is the number of parameters in model M;, solves the problem of model selection,
at least asymptotically (for 7" — o).



Appendix E

Coding and implementation

E.1 Techniques presented in this document

Essentially, the techniques presented in this thesis (see figure 10.1 for a summary) have
been implemented in C++. The main exception is the General Linear Model used
for statistical inference, for which we use the implementation proposed in the SPM99
software [77] in Matlab environment.

More technically, we use the Lapack library for the operations of linear algebra
(matrix inversion, singular values decomposition, determinant). Among others, they are
used in sections 4.3.3, 5.1.4, 6.2.2, 9.1 and 9.2.

The estimation of densities, entropies and score vectors (see appendix C) is performed
mainly as described in [110]. Let us recall that these methods are based on the estimation
followed by the smoothing of histograms. All the smoothing operations are done very
quickly with the help of Deriche recursive filters [52].

The ICA algorithm presented in 5.2 is based on the empirical estimation for the score
vector, and uses the efficient approximation of the exponential of matrices described in
equation (5.29).

The algorithmically more advanced methods are the Laplacian graph algorithm de-
scribed in chapter 8, and the information bottleneck algorithm described in 5.3.2.

e In the case of the Laplacian graph algorithm, the difficulties are i) the definition of
the neighboring system, 7i) the definition of the different connected components of
the graph and éiz) the construction of a sparse Laplacian matrix (a full matrix cannot
in general be stored on a standard PC). The solution of the problem results from
simple iteration of matrix/vector products. We have coded all these steps -using
sparse vectors and matrices- in order to reduce memory and computation load.

e The information bottleneck algorithm relies on equation (5.37), which involves the
estimation of probability densities. The latter are approximately sampled on finite
grids, but the resulting computation is prohibitive as soon as the densities have to
be approximated in R?> or R3. For this reason, it is preferable to code explicitly the
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support of each probability density function within the grid. We have thus coded
adapted routines.

Let us notice that the basic statistical -density, cumulative density- functions (Normal,
Student, Fisher, Chi square) used in fMRI data analyses can be coded in C/C++ using
standard routines [179]. The derivation of inverse cumulative densities follows simply, e.g.
through dichotomy methods.

Moreover, we have coded the kernel PCA method in Matlab, yielding a SPM-
compatible version. We are currently recoding many of the different methods -Laplacian
embedding, information bottleneck- in order to yield a SPM-compatible toolbox. Some
routines, e.g. the algorithm presented in appendix B, or the EM Kalman method presented
in section 6.2.1, have also been coded directly in Matlab environment.

E.2 Some other technical contributions

E.2.1 Display softwares

The 2D maps presented in this document have been generated in C++ with local routines.
We have indicated as often as possible the color code used.

The 3D maps presented in figures 6.11, 6.12, 8.8 and 9.14 as well as the 2D maps
presented in figures 7.17 and 9.15 have been created using the Anatomist software
(http://brainvisa.free.fr/).

E.2.2 Registration softwares

Let us recall that the spatial registration of the functional volumes has been performed with
the INRIAlign software (http://www-sop.inria.fr/epidaure/software/INRIAlign/), while
the anatomical/functional coregistration has been performed with softwares developed by
Gerardo Hermosillo and Christophe Chef d’Hotel [111].
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