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aussi pour m’avoir guidé vers le monde passionnant de la recherche, au fil de mes années
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Cette section ne serait pas complète si je n’évoquais pas les heureux événements qui ont
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Titre : Contributions méthodologiques et appliquées à la méthode des modèles

déformables.

Résumé : Les modèles déformables fournissent un cadre flexible pour traiter divers

problèmes de reconstruction de forme en traitement d’images. Ils ont été proposés ini-

tialement pour la segmentation d’images, mais ils se sont aussi révélés adaptés dans de

nombreux autres contextes en vision par ordinateur et en imagerie médicale, notamment

le suivi de régions, la stéréovision, le “shape from shading” et la reconstruction à partir

d’un nuage de points. Les élément clés de cette méthodologie sont l’élaboration d’une

fonctionnelle d’énergie, le choix d’une procédure de minimisation et d’une représentation

géométrique.

Dans cette thèse, nous abordons ces trois éléments, avec pour but d’élargir le champ

d’application des modèles déformables et d’accrôıtre leur performance. En ce qui con-

cerne la représentation géométrique, nous venons à bout de la perte de la correspondance

ponctuelle et de l’impossibilité de contrôler les changements de topologie avec la méthode

des ensembles de niveau. Nous proposons deux applications associées dans le domaine

de l’imagerie médicale : la génération de représentations dépliées du cortex cérébral avec

préservation de l’aire, et la segmentation de plusieurs tissus de la tête à partir d’images

par résonance magnétique anatomiques. En ce qui concerne la procédure de minimisation,

nous montrons que la robustesse aux minima locaux peut être améliorée en remplaçant

une descente de gradient traditionnelle par un flot de minimisation spatialement cohérent.

Enfin, en ce qui concerne l’élaboration de la fonctionnelle d’énergie, nous proposons une

nouvelle modélisation de la stéréovision multi-caméras et de l’estimation du mouvement

tridimensionnel non-rigide, fondée sur un critère de mise en correspondance global et basé

image.

Mots clés : modèle déformable, contour actif, ensembles de niveau, méthode varia-

tionnelle, correspondance ponctuelle, topologie, segmentation, dépliement, cerveau, cortex,

stéréovision, mouvement.
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Title: Methodological and applied contributions to the deformable models framework.

Abstract: Deformable models constitute a flexible framework to address various shape

reconstruction problems in image processing. They have been initially proposed for the

purpose of image segmentation, but they have also proven successful in many other con-

texts in computer vision and in medical imaging, including region tracking, stereovision,

shape from shading and shape from unstructured point sets. The key elements of this

framework are the design of an energy functional, the choice of a minimization procedure

and of a geometric representation.

In this thesis, we tackle these three elements, with the objective of increasing the appli-

cability and efficiency of deformable models. With regard to the geometric representation,

we overcome the loss of the point correspondence and the inability to control topology

changes with the level set method. We propose two associated applications in the field of

medical imaging: the generation of unfolded area preserving representations of the cerebral

cortex, and the segmentation of several head tissues from anatomical magnetic resonance

images. With regard to the minimization procedure, we show that the robustness to lo-

cal minima can be improved by substituting a spatially coherent minimizing flow to a

traditional gradient descent. Finally, with regard to the design of the energy functional,

we propose a novel modeling of multi-view stereovision and scene flow estimation with

deformable models, relying on a global image-based matching score.

Keywords: deformable model, active contour, level set, variational method, point

correspondence, topology, segmentation, unfolding, brain, cortex, stereovision, motion.
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1.1.2 Modèles implicites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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1.4.1 Contributions méthodologiques . . . . . . . . . . . . . . . . . . . . . 27

1.4.2 Contributions appliquées . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.3 Contributions logicielles . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Introduction 31

2.1 Geometric representation of deformable models . . . . . . . . . . . . . . . . 32

2.1.1 Explicit models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2 Implicit models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Minimization of the energy functional . . . . . . . . . . . . . . . . . . . . . 35

2.3 Major trends in the design of the energy functional . . . . . . . . . . . . . . 37

2.3.1 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Multi-view stereovision . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.1 Methodological contributions . . . . . . . . . . . . . . . . . . . . . . 42

2.4.2 Applied contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.3 Software contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11



I Methods 45

3 Maintaining the Point Correspondence in the Level Set Framework 47

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Previous work on region tracking . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Previous work on transport and diffusion of a material quantity . . . 50

3.2.3 LSID: Level sets with some interfacial data . . . . . . . . . . . . . . 50

3.2.4 LSPC: Level sets with a point correspondence . . . . . . . . . . . . . 51

3.3 Numerical algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Level set reinitialization and data extension . . . . . . . . . . . . . . 52

3.3.2 Keeping the point correspondence onto the initial interface . . . . . 54

3.3.3 Finite-difference schemes . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.4 Overview of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Definition of the error measures . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 2D experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.3 3D experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.4 Comments on the errors . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Contributions of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Controlling Topology Changes in the Level Set Framework 65

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.2 Digital topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.3 The topology preserving level set method . . . . . . . . . . . . . . . 68

4.2 The topology preserving nested level set method . . . . . . . . . . . . . . . 71

4.2.1 Digital topology criterion . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 The genus preserving level set method . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 From simple points to multisimple points . . . . . . . . . . . . . . . 74

4.3.2 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.2 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Contributions of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Improving the Robustness to Local Minima with Spatially Coherent

Minimizing Flows 85

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Abstract study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Designing new inner products . . . . . . . . . . . . . . . . . . . . . . 87

12



5.2.2 Designing new minimizing flows . . . . . . . . . . . . . . . . . . . . . 88

5.3 Spatially coherent minimizing flows . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 The H1 gradient flow . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.2 Motion decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.3 Intrinsic Gaussian smoothing . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Shape warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Contributions of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 93

II Applications 97

6 Area Preserving Cortex Unfolding 99

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Area preserving surface motion . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 The total, local and relative area preserving conditions . . . . . . . . 101

6.2.2 Designing a relative area preserving tangential motion . . . . . . . . 102

6.2.3 The area relaxation term . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.4 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.2 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Contributions of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Head Segmentation from MRI under Topological Constraints 109

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.3 Goals of our approach . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.1 Hidden Markov random field classification . . . . . . . . . . . . . . . 112

7.2.2 Topology preserving nested level sets . . . . . . . . . . . . . . . . . . 113

7.2.3 Bayesian region-based deformable models evolution . . . . . . . . . . 114

7.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.4 Contributions of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Multi-View Stereo Reconstruction and Scene Flow Estimation with a

Global Image-Based Matching Score 119

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

13



8.1.2 Common photometric and geometric assumptions used for shape and

motion estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.1.3 Previous work on multi-view complete stereovision . . . . . . . . . . 121

8.1.4 Previous work on scene flow estimation . . . . . . . . . . . . . . . . 123

8.1.5 Motivations of our approach . . . . . . . . . . . . . . . . . . . . . . . 124

8.2 Minimizing the prediction error . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.2.1 Stereovision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.2.2 Scene flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3 Some similarity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.1 Cross correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3.2 Mutual information . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4.1 Stereovision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.4.2 Stereovision + scene flow . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5 Contributions of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Conclusion 139

Conclusion (version française) 141

Appendices 143

A Formulas of Geometric and Differential Calculus 145

A.1 Some useful identities of intrinsic differential geometry . . . . . . . . . . . . 145

A.2 Some useful expressions for implicit interfaces . . . . . . . . . . . . . . . . . 145

B Numerical Schemes 149

B.1 Evolution schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.1.1 Normal propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.1.2 Passive advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.1.3 Mean curvature motion . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.1.4 Reinitialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.1.5 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.2 High-order WENO finite-difference schemes . . . . . . . . . . . . . . . . . . 151

B.2.1 Third-order WENO scheme . . . . . . . . . . . . . . . . . . . . . . . 151

B.2.2 Fifth-order WENO scheme . . . . . . . . . . . . . . . . . . . . . . . 151

B.3 Finite-difference discretization of the Laplace-Beltrami operator . . . . . . . 152

C Publications of the Author 153

Bibliography 155

14



Chapter 1

Introduction (version française)

Les modèles déformable, également connus sous le nom de “snakes”, contours actifs, sur-

faces actives, contours et surfaces déformables, sont une technique informatique très prisée

pour aborder divers problèmes de reconstruction de forme en traitement d’images. Un

modèle déformable est une courbe, une surface, ou un objet géométrique de dimension

supérieure, qui est positionné initialement par l’utilisateur et qui se déplace sous certaines

contraintes et sous l’influence des données d’entrée, jusqu’à converger vers une solution

plausible du problème considéré.

Cette méthodologie a plusieurs caractéristiques remarquables. Elle est très polyvalente

à travers le choix d’une représentation de forme, et l’élaboration de l’équation d’évolution.

De ce fait, elle peut être appliquée à de multiples types de données d’entrée (images

bi-dimensionnelles, tri-dimensionnelles et 4D, données de stéréovision multi-caméras, nu-

ages de points, . . . ) et à un large spectre de problèmes. Elle fut initialement proposée

pour la segmentation d’images par Kass, Witkin et Terzopoulos dans [77], mais elle s’est

révélée efficace dans de nombreux autres contextes en vision par ordinateur et en im-

agerie médicale, notamment pour le suivi de régions [115, 101], la reconstruction 3D par

stéréoscopie [50, 75, 45, 88, 69, 57], le “shape from shading” [53, 74, 182], et la reconstruc-

tion 3D à partir d’un nuage de points [188, 10, 160].

De plus, l’utilisation d’une formulation géométrique et continue est très avantageuse.

Elle conduit a un cadre mathématique rigoureux, elle procure une précision sub-voxelique,

elle modélise correctement la continuité de la forme, et permet d’incorporer des hypothèses

de régularité et des connaissances a priori complexes sur la forme recherchée. Il en découle

une bonne robustesse aux données bruitées et incomplètes. Finalement, cette formulation

permet d’intégrer naturellement de nombreuses informations locales dans une description

mathématique cohérente d’une forme.

Les éléments clés de la méthode des modèles déformables sont l’élaboration de la fonc-

tionnelle d’énergie, le choix d’une procédure de minimisation, et d’une représentation

géométrique. Dans cette thèse, nous abordons ces trois éléments, avec pour but d’élargir

le champ d’application des modèles déformables et d’accrôıtre leur performance. Parmi

les divers types de modèles déformables existant, nous nous concentrons sur les évolutions

15



géométriques provenant de la théorie des évolutions de courbe [54], et nous mettons par-

ticulièrement l’accent sur la représentation par ensembles de niveau (level sets) [112].

En ce qui concerne la représentation géométrique, nous venons à bout de la perte de la

correspondance ponctuelle et de l’impossibilité de contrôler les changements de topologie

avec la méthode des ensembles de niveau. Nous proposons deux applications associées

dans le domaine de l’imagerie médicale : la génération de représentations dépliées du cor-

tex cérébral avec préservation de l’aire, et la segmentation de plusieurs tissus de la tête

à partir d’images par résonance magnétique (IRM) anatomiques. En ce qui concerne la

procédure de minimisation, nous montrons que la robustesse aux minima locaux peut être

améliorée en remplaçant une descente de gradient traditionnelle par un flot de minimi-

sation spatialement cohérent. Enfin, en ce qui concerne l’élaboration de la fonctionnelle

d’énergie, nous proposons une nouvelle modélisation de la stéréovision multi-caméras et

de l’estimation du mouvement tridimensionnel non-rigide, fondée sur un critère de mise

en correspondance global et basé image.

Le reste de ce chapitre introductif est organisé comme suit. Dans la section 1.1, nous

discutons les avantages et les inconvénients des différentes représentations géométriques

des modèles déformables. En particulier, nous mettons en lumière plusieurs limitations

de la méthode des ensembles de niveau, qui motivent certaines de nos contributions

méthodologiques. La section 1.2 est consacrée à l’équation d’évolution, et souligne la

dommageable sensibilité des modèles déformables aux conditions initiales, à laquelle nous

nous attaquons dans cette thèse. La section 1.3 traite de l’élaboration de la fonctionnelle

d’énergie. Comme ce sujet est très dépendant des détails propres à chaque application,

nous présentons seulement les tendances majeures dans deux applications importantes de

la méthode des modèles déformables auxquelles notre travail contribue : la segmentation

d’images et la stéréovision multi-caméras. Finalement, dans la section 1.4, nous résumons

les contributions importantes de cette thèse et nous décrivons le contenu des chapitres

suivants.

1.1 Représentation géométrique des modèles déformables

La littérature des modèles déformables regorge de différentes représentations géométriques.

Le lecteur est prié de se reporter à [105] pour une revue complète de ces représentations.

Souvent, on les divise en deux catégories : les modèles “paramétriques” et les

modèles “géométriques”. Mais nous pensons que ces deux termes portent à confu-

sion. Tout d’abord, nous préconisons d’utiliser “paramétré” plutôt que “paramétrique”

pour désigner les objets géométriques donnés par une paramétrisation, et de réserver le

terme “paramétrique” aux familles d’objets indexées par un petit nombre de paramètres.

Deuxièmement, dans la littérature, les modèles géométriques réfèrent souvent exclusive-

ment à la méthode des ensembles de niveau. De sorte que des représentations comme

les maillages surfaciques non-structurés se retrouveraient classés comme “paramétriques”,

alors qu’ils ne sont ni paramétriques, ni paramétrisés. . .
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Dans cette thèse, nous faisons la distinction entre les représentations “explicites” et

“implicites”. Les modèles explicites sont donnés sous la forme d’un ensemble de coor-

données tandis que les modèles implicites sont définis comme le niveau zéro d’une fonc-

tion scalaire de dimension supérieure. Parallèlement, nous distinguons les lois d’évolution

“géométriques” et “non-géométriques”. Les évolutions géométriques ne dépendent pas

d’une paramétrisation particulière. Elles ont pour origine la théorie des évolutions de

courbe [54]. Dans ce type d’évolution, le champ de vitesse du modèle dépend typique-

ment de quantités géométriques intrinsèques comme la normale, la courbure, ainsi que des

données d’entrée.

Les évolutions géométriques peuvent être implémentées très naturellement avec une

représentation par ensembles de niveau, mais l’usage d’autres représentations, y com-

pris explicites, est possible. Le choix d’une représentation explicite ou implicite pour

implémenter une évolution géométrique est fortement relié au choix d’une perspective

lagrangienne ou eulérienne.

1.1.1 Modèles explicites

Paramétrisation

Les courbes et les surfaces paramétrées sont un type important de modèles explicites. C’est

ce type de représentation qui est proposé dans le modèle snake initial de Kass, Witkin

et Terzopoulos [77]. Une multitude d’autres représentations paramétrées existent dans

la littérature, fondées sur des fonctions de base (éléments finis [32, 96], B-splines [132],

harmoniques de Fourier [151], etc.), ou sur une famille paramétrique (superquadriques

[161, 9, 10]).

Un problème typique des modèles déformables paramétrés est que leur évolution et la

reconstruction finale dépendent de la paramétrisation de la forme initiale. Plus exacte-

ment, ce problème est davantage lié à la définition de la fonctionnelle d’énergie qu’à la

représentation géométrique elle-même : dans la plupart des cas, les distorsions métriques

entre l’espace des paramètres et le modèle sont négligées. De ce fait, l’énergie n’est pas

intrinsèque au modèle.

Il est à noter que certains modèles explicites ne sont pas paramétrisés. C’est le cas

des systèmes de particules orientées [159], et des maillages non-structurés (triangulations

[104], maillages simplexes [39], polyèdres [147]).

Topologie

Une limitation sérieuse de la plupart des modèles explicites est que leur topologie ne peut

pas changer au cours de l’évolution pour s’adapter à la topologie des données. Plusieurs

tentatives ont été faites pour résoudre ce problème. McInerney et Terzopoulos [98, 99] pro-

posent des courbes et des triangulations de topologie adaptative, surnommées T-snakes

et T-surfaces. Pendant l’évolution, le modèle est périodiquement rééchantillonné en cal-

culant ses intersections avec une décomposition simpliciale de l’espace. Un étiquetage des
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sommets de la grille simpliciale comme étant à l’intérieur ou à l’extérieur du modèle est

maintenue. Outre qu’elle est coûteuse en temps de calcul, cette procédure impose une

résolution spatiale fixe et uniforme. De plus, tous les mouvements ne sont pas admissibles

: cette approche ne fonctionne que quand le modèle gonfle ou dégonfle partout.

Lachaud et Montanvert [85] ont recours au concept de δ-triangulation. Un paramètre

de longueur δ est utilisé pour contrôler l’échantillonnage de la triangulation et pour détecter

les auto-intersections en surveillant la distance entre les paires de sommets voisins et non-

voisins. Cette approche est coûteuse, même lorsque les calculs sont optimisés par une

structure d’octree.

Delingette et Montagnat [39, 40] proposent de modifier la topologie d’un maillage

simplexe dynamique grâce à des opérations topologiques élémentaires, mais leur approche

nécessite des interventions manuelles en 3D.

Ainsi, une gestion entièrement automatique et efficace des changements de topologie

des modèles explicites, en trois dimensions et plus, reste un problème ouvert. Cela explique

le grand intérêt suscité par la représentation par ensembles de niveau dans la littérature

des modèles déformables.

1.1.2 Modèles implicites

Les modèles implicites ne se limitent pas à la méthode des ensembles de niveau [112]. Les

surfaces algébrique polynômiales [160] et les superquadriques/hyperquadriques implicites

[9, 30] font également partie de cette catégorie. Pourtant, parmi les modèles implicites,

la méthode des ensembles de niveau est de loin la plus puissante. Elle couvre un spectre

beaucoup plus large d’applications, car elle peut gérer des géométries complexes, alors que

les autres se limitent à une famille réduite de formes.

La méthode des ensembles de niveau, introduite par Osher et Sethian dans [112] (un

travail similaire dans le domaine de la mécanique des fluides [41, 42] a récemment refait

surface), est une technique établie pour représenter des interfaces en mouvement en deux

dimensions ou plus. Elle consiste à représenter l’interface implicitement comme le niveau

zéro d’une fonction scalaire de dimension supérieure. Le mouvement de l’interface se

traduit alors en une évolution de la fonction de niveau selon une EDP (équation aux

dérivées partielles) eulérienne.

D’un côté, cette approche a plusieurs avantages par rapport à une représentation la-

grangienne explicite de l’interface : il n’y pas besoin de paramétrisation, les changements

de topologie sont gérés automatiquement, n’importe quel nombre de dimensions est possi-

ble, les propriétés géométriques intrinsèques comme la normale ou la courbure se calculent

aisément à partir de la fonction de niveau. Enfin, et ce n’est pas le moins important,

la théorie des solutions de viscosité [34] fournit des schémas numériques robustes et de

puissants résultats mathématiques pour l’EDP d’évolution.

D’un autre côté, plusieurs limitations restreignent le domaine d’application de la

méthode des ensembles de niveau. D’abord, la dimensionnalité supérieure rend la méthode

des ensembles de niveau beaucoup plus coûteuse en temps de calcul que les représentations
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explicites. Beaucoup d’efforts ont été faits pour atténuer ce problème, conduisant à la

méthodologie de bande mince [1] et plus récemment à la méthode des ensembles de niveau

rapide et locale par EDP [118].

De plus, dans sa formulation initiale, la méthode des ensembles de niveau ne peut

représenter que des variétés de codimension un sans bords, telles que des courbes fermées

dans R2 et des surfaces fermées dans R3. Plusieurs approches ont été proposées pour

gérer une codimension strictement supérieure à un. Ambrosio et Soner [5] proposent de

faire évoluer une hypersurface correspondant à un ε-voisinage de la variété. Par exemple,

dans le cas d’une courbe dans R3, cela revient à faire évoluer un voisinage tubulaire

de la courbe de faible rayon ε. Cette idée a été utilisée dans [90] pour segmenter des

vaisseaux sanguins à partir d’images médicales. Un inconvénient de cette approche est

que la variété considérée ne peut être localisée précisément. Une approche plus rigoureuse

de Burchard, Cheng, Merriman et Osher [20] consiste à représenter une courbe comme

l’intersection de deux hypersurfaces, et d’exprimer son mouvement comme l’évolution de

deux fonctions de niveau. Dans [59], l’auteur envisage l’extension de cette idée à n’importe

quelle codimension k par l’évolution simultanée de k fonctions de niveau, au prix de

difficultés numériques grandissantes. Une idée similaire est proposée par Solem et Heyden

[149] afin de représenter des surfaces à bords avec la méthode des ensembles de niveau.

D’autres écueils de la méthode des ensembles de niveau ont émergé récemment. L’un

d’eux est intimement lié au point de vue implicite et à l’absence de paramétrisation : la

correspondance ponctuelle est perdue pendant l’évolution. En d’autres termes, on ne sait

pas comment chaque point ou chaque partie de l’interface bouge. Ce n’est pas une suprise,

puisque la fonction de niveau véhicule une description purement géométrique de l’interface.

Plus généralement, il est impossible de gérer des données associées à l’interface en mou-

vement dans le cadre traditionnel des ensembles de niveau. Cela réduit considérablement

le spectre des applications possibles. Dans le chapitre 3, nous proposons une méthode,

fondée sur un système couplé d’EDP eulériennes, pour venir à bout de cette limitation.

La faculté de gérer automatiquement les changements de topologie a longtemps été

un argument en faveur de la méthode des ensembles de niveau, par rapport aux modèles

déformables explicites. Mais ce comportement n’est pas souhaitable dans certaines appli-

cations où l’on dispose d’une connaissance a priori de la topologie cible. C’est typiquement

le cas pour la segmentation des images biomédicales, pour laquelle la topologie des organes

et leurs relations topologiques mutuelles sont prescrites par les connaissances anatomiques.

Le chapitre 4 traite de méthodes, inspirées de la topologie digitale, visant à exercer un

contrôle sur la topologie pendant une évolution par ensembles de niveau.

1.2 Minimisation de la fonctionnelle d’énergie

L’élaboration de l’équation d’évolution régissant le mouvement des modèles déformables

suit deux approches principales. Dans la formulation variationnelle, le problème s’exprime

comme la minimisation d’une fonctionnelle d’énergie. Cette fonctionnelle est définie de
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sorte que des configurations de faible énergie indiquent une bonne adéquation avec les

données d’entrée et l’information a priori (typiquement des hypothèses de régularité). La

solution est définie comme une forme réalisant un minimum global de l’énergie. Dans la

formulation par force dynamique, le mouvement est donné ad hoc, souvent comme une

combinaison de forces internes, définies à partir du modèle lui-même et destinées à le

garder lisse pendant la déformation, et de forces externes, définies à partir des données

d’entrée. La solution est alors vue comme un équilibre de ces forces.

Dans cette thèse, nous donnons notre préférence à la formulation variationnelle, car

elle offre plusieurs avantages. Premièrement, elle semble moins empirique et apporte une

meilleure compréhension de la modélisation. Ceci est particulièrement vrai quand la fonc-

tionnelle d’énergie dérive d’une modélisation statistique, comme le maximum a posteriori

(MAP) d’une fomulation bayésienne [157]. Deuxièmement, dans certains cas, on peut

prouver mathématiquement l’existence d’un minimum global de l’énergie et le caractère

bien posé de la procédure de minimisation. Enfin, une fois que le problème variationnel

est posé, il peut être traité avec diverses procédures de minimisation, selon l’information

a priori et le temps dont on dispose. Cette section porte sur le choix de cette procédure

de minimisation.

En général, une minimisation exacte de la fonctionnelle d’énergie est intractable de

par le nombre considérable d’inconnues. Le recuit simulé [152] et la programmation dy-

namique [6] ont été proposés pour calculer un minimum global, mais le premier est très

lent en pratique et le deuxième ne s’applique qu’à une forme particulière de fonctionnelles

d’énergie. Plus récemment, les graph cuts se sont révélés être une puissante méthode de

minimisation d’énergie permettant de trouver un minimum global ou un minimum local

au sens fort. Au cours des dernières années, cette méthode a été appliquée avec succès à

plusieurs problèmes de la vision par ordinateur, notamment la stéréovision multi-caméras

[80] et la segmentation d’images [18]. Mais les graph cuts ont deux importantes limitations

: ils ne s’appliquent pas à n’importe quelle énergie [81], et lorsqu’ils s’appliquent, ils sont

coûteux en temps de calcul.

Par conséquent, dans la plupart des cas, une stratégie sous-optimale est adoptée, fondée

sur le calcul des variations. Une condition nécessaire d’optimalité déduite de la fonc-

tionnelle dénergie est substituée au problème variationnel initial. Il s’agit de l’équation

d’Euler-Lagrange, qui caractérise les minima et les maxima locaux de l’énergie. Celle-ci

ne peut être résolue exactement, tout comme le problème variationnel initial. Aussi, il

faut utiliser une méthode évolutive partant d’une estimation initiale de la solution. De ce

fait, une notion artificielle de temps est ajoutée au problème, ce qui constitue le principe

central de la méthode des modèles déformables : ainsi, la résolution du problème se traduit

par l’évolution temporelle d’un objet géométrique.

Lorsqu’il s’agit de modèles déformables paramétrés, la résolution de l’équation d’Euler-

Lagrange est effectuée typiquement en mettant à jour les paramètres du modèle avec une

descente de gradient, ou un schéma numérique à convergence rapide tel que la méthode du

gradient conjugué, la méthode de Newton, ou la méthode de Levenberg-Marquardt. Ces
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évolutions sont non-géométriques, car elles dépendent de la paramétrisation du modèle.

Elles sortent donc du cadre de cette thèse.

Une autre procédure de minimisation a été inaugurée par Chan et Vese dans [25]. Elle

consiste à utiliser la méthode des ensembles de niveau à la fois comme une représentation

géométrique et comme un cadre d’optimisation. En d’autres termes, la fonctionnelle

d’énergie est définie directement à partir de la fonction de niveau φ, et la minimisation

s’opère également par rapport à φ. Dans cette approche, l’intégrale d’une quantité f le

long de la frontière du modèle ou dans la région intérieure/extérieure s’expriment à l’aide

de la distribution de Dirac δ et de la fonction de Heaviside H :

∫

Γ
f(x) dx =

∫

Rn
δ(φ(x)) f(x) ‖∇φ(x)‖ dx , (1.1)

∫

in
f(x) dx =

∫

Rn
[1−H(φ(x))] f(x) dx , (1.2)

∫

out
f(x) dx =

∫

Rn
H(φ(x)) f(x) dx . (1.3)

Cette approche a acquis une certaine popularité en segmentation d’images [25, 170, 114, 56,

130]. Pourtant, elle soulève plusieurs problèmes pratiques et conceptuels. Tout d’abord,

elle est spécifique à une représentation géométrique particulière. Ensuite, le recours à

une version ε-régularisée de δ et H dans l’implémentation est assez inélégante. Enfin,

l’évolution qui en découle est non-géométrique. Elle dépend des valeurs initiales de φ en

dehors du niveau zéro. Des composantes déconnectées du modèle peuvent apparâıtre, ce

qui n’est pas compatible avec une évolution de courbe.

De plus, une erreur fréquente avec cette approche est de supposer que la propriété

de distance signée est préservée dans le calcul de la variation de l’énergie par rapport à

une variation de φ. Par exemple, dans [56], les auteurs proposent de segmenter le cortex

cérébral avec deux modèles déformables couplés, et avec un a priori sur leur distance

mutuelle. Cette distance est obtenue comme la valeur absolue de la fonction distance

signée représentant chaque interface. À cause de l’abus mentionné ci-dessus, la dérivation

de la fonctionnelle d’énergie dans ce travail est erronée. Une dérivation le long de l’espace

des fonctions distances n’est pas possible non plus, car cet espace n’est pas une variété

différentielle.

Dans cette thèse, nous nous concentrons sur une procédure de minimisation appelée flot

géométrique de gradient. Il s’agit de l’évolution géométrique obtenue en suivant la direction

de descente la plus rapide d’une énergie intrinsèque. Sa signification mathématique est

détaillée au chapitre 5. Par exemple, la minimisation de l’aire d’un modèle conduit au

fameux mouvement par courbure moyenne [54]. Un autre important flot géométrique de

gradient s’obtient en minimisant l’aire du modèle dans un espace de Riemann, doté d’une

métrique dépendante d’une image : ce sont les contours actifs géodésiques proposés par

Caselles, Kimmel et Sapiro dans [24] pour la détection des contours d’une image.

La plupart des fonctionnelles d’énergie étant non-convexes, les flots géométriques de

gradient ont une forte probabilité d’être piégés dans un minimum local. De plus, ce
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minimum local dépend de la position de la forme initiale. Si cette dernière est trop éloignée

de la configuration finale attendue, l’évolution peut rester coincée dans un état abérrant.

Cette sensibilité aux conditions initiales restreint sérieusement le champ d’application et

la performance des méthodes à base de modèles déformables.

Il y a essentiellement deux manières de traiter ce problème : positionner le modèle

initial très près de la configuration finale attendue, ou bien utiliser une stratégie multi-

résolution en allant du grossier vers le plus fin, c’est à dire réaliser l’optimisation sur

une série de formes et de données lissées et sous-échantillonnées. Dans le chapitre 5, nous

introduisons une troisième manière d’approcher le problème des minima locaux indésirables

: une élaboration soigneuse de nouveaux flots géométriques de minimisation.

1.3 Tendances majeures dans l’élaboration de la fonction-

nelle d’énergie

1.3.1 Segmentation d’images

Les multiples méthodes à base de modèles déformables dédiées à la segmentation d’images

peuvent être classées en deux catégories : les méthodes basées contour et les méthodes

basées région. Tandis que les méthodes basées contour se fient uniquement au gradient de

l’image à la position courante du modèle, les méthodes basées région utilisent une informa-

tion globale d’intensité des différents segments de l’image. Nous passons également en re-

vue des travaux importants sur l’introduction d’information de forme a priori dans le pro-

cessus d’extraction, dans le but de lever l’ambigüité du problème de segmentation. Il est à

noter que l’information de contour, l’information de région et les informations a priori peu-

vent être avantageusement combinées dans une même fonctionnelle d’énergie, à l’instar de

[70]. Dans la suite, pour plus de clarté, nous présentons ces composants séparément. Nous

renvoyons le lecteur à [174, 97] pour des articles consacrés spécifiquement à l’utilisation

des modèles déformables pour la segmentation des images médicales.

Méthodes basées contour

Le modèle “snake” de Kass, Witkin et Terzopoulos [77] fait partie de cette catégorie.

Cet article fondateur propose de trouver les contours d’une image I : Ω ⊂ R2 → R en

déplaçant une courbe paramétrée C : [0, 1] → Ω sous l’influence de forces internes et

externes, dérivant de la minimisation de la fonctionnelle d’énergie suivante :

E(C) =

∫ 1

0
α(p)|C ′(p)|2dp+

∫ 1

0
β(p)|C ′′(p)|2dp

︸ ︷︷ ︸
Eint(C)

+λ

∫ 1

0
P (C(p)) dp

︸ ︷︷ ︸
Eext(C)

. (1.4)

L’énergie interne rend compte de l’élasticité et de la rigidité de la courbe, qui peuvent être

localement modulées avec les paramètres de pondération α(p) et β(p). L’énergie externe

est l’intégrale le long de la courbe d’une fonction de potentiel P qui prend des valeurs

faibles aux endroits de fort gradient de l’image.
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Cette approche procure une remarquable robustesse au bruit et aux donnée man-

quantes. Cependant, elle présente d’importantes limitations. Premièrement, comme

nous l’avons mentionné précédemment, l’évolution et les résultats dépendent de la

paramétrisation, car l’énergie n’est pas intrinsèque à la courbe. Dans (1.4), cette

dépendance se manifeste par les dérivées de C et par les intégrales par rapport au

paramètre de la courbe. Pour rendre cette formulation intrinsèque, une paramétrisation

par l’abscisse curviligne devrait être maintenue tout au long de l’évolution, ce que

l’approche ci-dessus ne peut accomplir. Deuxièmement, elle est très sensible à

l’initialisation. Étant donnée la portée locale de l’information de gradient, elle peut

facilement converger vers de faux contours si la forme initiale n’est pas très proche de

la configuration désirée.

Plusieurs extensions ont été proposées dans la littérature pour surmonter ces limita-

tions. L’indépendance vis à vis de la paramétrisation a été obtenue par plusieurs auteurs

simultanément [23, 29, 94] grâce à des évolutions géométriques, dérivant du flot par cour-

bure moyenne, et implémentées avec la méthode des ensembles de niveau. Une force ballon,

qui peut faire gonfler ou dégonfler le modèle, a été proposée par Cohen dans [31] pour lever

la contrainte d’initialiser le modèle près des contours de l’objet recherché. En combinant

ces deux approches, l’évolution du modèle Γ est de la forme

∂Γ

∂t
= g(−H + c) N . (1.5)

Dans l’équation ci-dessus, N est le vecteur normal unitaire pointant vers l’extérieur, H est

la courbure moyenne du modèle, c est l’amplitude de la force ballon, et g est une fonction

positive prenant des valeurs faibles aux endroits d’intérêt. Par exemple, si le modèle est

censé s’arrêter sur les contours d’une image, on définit généralement g tel que

{
g → 0 if ‖∇I‖ → +∞,

g → 1 if ‖∇I‖ ≈ 0.
(1.6)

Le flot (1.5) et l’équation d’évolution associée de la fonction de niveau s’appliquent à un

nombre quelconque de dimensions. Γ peut être une courbe en 2D, une surface en 3D, et

ainsi de suite. Nous notons n le nombre de dimensions. Un problème de cette approche est

que le modèle peut ralentir sans complètement s’arrêter sur les contours de faible contraste.

On parle souvent de problème de “fuite”. Un autre problème est que (1.5) ne dérive pas

d’une formulation variationnelle.

Les contours actifs géodésiques, proposés par Caselles, Kimmel et Sapiro dans [24] et

par Kichenassamy et al. dans [78, 179], ont représenté un grand progrès. Ils reposent sur

la minimisation de la fonctionnelle d’énergie suivante :

E(Γ) =

∫

Γ
g(x) dx , (1.7)

où dx désigne l’élément d’aire du modèle (sa longueur en 2D, son aire en 3D, et ainsi

de suite). Il est intéressant de constater que cette énergie peut être interprétée comme
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l’aire géodésique du modèle dans un espace de Riemman doté de la métrique g. Le flot

géométrique de gradient associé, donné par

∂Γ

∂t
= [−∇g ·N− (n− 1)gH] N , (1.8)

est plus robuste aux contours de faible contraste que les approches précédentes, du fait du

terme de rappel ∇g ·N qui retient le modèle s’il dépasse le contour. Cependant, le domaine

d’attraction est encore limité, à cause de la portée locale de l’information de gradient. De

ce fait, le modèle se déforme difficilement dans les grandes concavités.

Pour atténuer ce problème, Siddiqi et al. proposent des flots minimisant l’aire et la

longueur [146]. Xu et Prince élaborent une nouvelle force appelée flots vectoriels de gra-

dient [176]. Leur approche consiste à lisser le champ de gradient d’une carte des contours

de l’image au moyen d’une EDP non-linéaire, étendant ainsi le domaine d’attraction des

frontières à toute l’image.

Malgré de significatives améliorations, les méthodes basées contour nécessitent encore

une initialisation manuelle précise. Cette limitation a favorisé l’émergence des méthodes

basées région.

Méthodes basées région

La méthode proposée par Chan et Vese dans [25] a sans doute été le travail le plus remarqué

dans cette catégorie. Cette approche dérive de la minimisation de la fonctionnelle de

Mumford-Shah [108], avec la procédure de minimisation par ensembles de niveau discutée

dans la section 1.2. Une partition de l’image en 2n régions supposées d’intensité constante

est effectuée en faisant évoluer n fonctions de niveau. Les régions sont identifiées par les

différentes combinaisons de signe des fonctions de niveau. Dans le cas le plus simple de

bi-partition, la fonctionnelle d’énergie s’écrit :

E(φ, c1, c2) =

∫

Ω
|I(x)− c1|2H(φ(x)) dx +

∫

Ω
|I(x)− c2|2 [1−H(φ(x))] dx

+ λ

∫

Ω
δ(φ(x)) ‖∇φ(x)‖ dx , (1.9)

où H et δ désignent les fonctions de Heaviside et la distribution de Dirac. c1 et c2 sont

les estimations des constantes d’intensité dans les deux régions. Leurs valeurs optimales à

φ constant sont les moyennes empiriques de l’intensité dans les régions correspondantes.

Dans [170], les mêmes auteurs proposent une extension de cette approche à des images

lisses par morceaux.

Rousson, Paragios et Deriche [114, 130, 115] encapsulent la segmentation basée région

dans une formulation bayésienne. La fonctionnelle d’énergie provient de la maximisation

de la probabilité postérieure du modèle, ce qui est plus connu sous le nom de technique

de maximum a posteriori (MAP). Les statistiques d’intensité des différentes régions sont

modélisées par des densités Gaussiennes ou des mélanges de densités Gaussiennes. Ces

statistiques sont soit apprises une fois pour toutes avant le lancement de l’algorithme, soit

rééstimées itérativement avec un algorithme de maximisation de l’espérance (EM).
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Parallèlement à ces approches reposant sur une procédure de minimisation par ensem-

bles de niveau, des approches très similaires reposant sur des flots géométriques de gradient

ont été proposées [190, 165, 71]. Dans le chapitre 7, nous combinons une méthode de seg-

mentation basée région de ce type avec la méthode des ensembles de niveau avec contrôle

de la topologie du chapitre 4, pour extraire plusieurs tissus de la tête à partir d’images

par résonance magnétique (IRM).

Information de forme a priori

La segmentation d’images est un problème éminemment mal posé, du fait de facteurs de

perturbation tels le bruit, les occultations, etc. Pour pouvoir traiter des images complexes,

une connaissance a priori de la forme peut être requise afin de réduire l’ambigüité du

problème. L’usage d’une telle information au sein de la méthode des modèles déformables

s’est longtemps limité à une hypothèse de régularité ou à des familles paramétriques simples

de formes. Mais la tendance récente est à l’intégration dans les modèles déformables d’un

a priori de forme plus élaboré.

Un travail important dans cette direction est le active shape model de Cootes et al. [33].

Cette approche réalise une analyse en composantes principales (ACP) sur les positions de

points d’amer placés de manière cohérente sur tous les contours de la base d’apprentissage.

Le nombre de degrés de liberté du modèle est réduit en ne considérant que les principaux

modes de variation. Cette approche est assez générale et a pu être appliquée à divers types

de formes (mains, visages, organes). Toutefois, le recours à une représentation paramétrée

et le positionnement manuel des points d’amer, particulièrement fastidieux dans les images

3D, limitent sérieusement son applicabilité.

Leventon, Grimson et Faugeras [86] contournent ces limitations en calculant des statis-

tiques de forme indépendantes de la paramétrisation, par le biais de la représentation

par ensembles de niveau. Fondamentalement, ils effectuent une ACP sur les fonctions

distance signées des contours d’apprentissage, et le modèle statistique obtenu est intégré

dans des contours actifs géodésiques. L’équation d’évolution contient un terme qui at-

tire le modèle vers un a priori de forme optimal. Ce dernier est la combinaison de la

forme moyenne et des principaux modes de variation. Les coefficients des différents modes

et les paramètres de pose sont mis à jour par un processus secondaire d’optimisation.

Plusieurs améliorations à cette approche ont été proposées depuis [131, 28, 164], et en

particulier une élégante intégration du modèle statistique de forme dans une unique opti-

misation bayésienne. Mentionnons également une autre formulation bayésienne d’a priori

de forme, reposant sur une représentation B-spline, proposée par Cremers, Kohlberger et

Schnörr dans [35].

1.3.2 Stéréovision multi-caméras

La méthode des modèles déformables a été appliquée à la reconstruction 3D complète d’une

scène à partir d’un grand nombre de vues. Le travail le plus marquant dans cette catégorie
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est sans doute la stéréovision par ensembles de niveau de Keriven et Faugeras [50]. Dans

cette approche, le problème de stéréovision est formulé comme la recherche d’une surface

minimale, à l’instar de la méthode des contours actifs géodésiques [24]. En d’autres termes,

la fonctionnelle d’énergie s’écrit comme l’intégrale sur la surface recherchée d’un critère de

fidélité aux données. Ce critère est la corrélation croisée normalisée entre les différentes

paires d’images. Enfin, l’évolution de la surface est implémentée avec la méthode des

ensembles de niveau [112].

Il y a eu plusieurs variations autour cette approche : une implémentation avec des

maillages surfaciques non-structurés [45], l’ajout d’une information de points 3D [45, 88]

et d’une information de silhouette [69, 88], et une extension aux scènes spatio-temporelles

[57]. La méthode proposée dans [75] pour traiter les scènes non-lambertiennes constitue

une amélioration plus significative. Cette méthode est capable d’estimer à la fois la forme

et la réflectance non-lambertienne de la scène. Elle fournit en sortie un modèle géométrique

et photométrique qui permet de prédire l’apparence de nouvelles vues. La déformation de

la surface est pilotée par la minimisation du rang d’un tenseur de radiance.

Dans le chapitre 8, nous remédions à plusieurs limitations communes à toutes ces

méthodes, comme l’impossibilité d’incorporer des informations globales d’intensité dans

le processus de mise en correspondance, le manque de latitude dans le choix du critère

d’appariement, ou la complexité de l’implémentation lorsque la mesure d’appariement

dépend de la normale à la surface. Notre approche permet également d’estimer le champ

de vitesse non-rigide tri-dimensionnel d’une scène, connu sous le nom de flot de scène

[167], à partir de plusieurs séquences vidéos.

1.4 Contributions de cette thèse

Cette thèse est divisée en deux parties et chaque partie est composée de trois chapitres.

La première partie renferme nos contributions méthodologiques à la méthode des modèles

déformables, en ce qui concerne la représentation géométrique et la procédure de min-

imisation. Ces apports élargissent le champ d’application des modèles déformables, et

peuvent accrôıtre leur performance. Le chapitre 3 et le chapitre 4 traitent de la méthode

des ensembles de niveau, tandis que le chapitre 5 aborde la procédure de minimisation.

La deuxième partie de cette thèse est consacrée à des applications spécifiques dans les

domaines de la vision par ordinateur et de l’imagerie médicale : le dépliement de cortex

dans le chapitre 6, la segmentation de la tête à partir de l’IRM dans le chapitre 7, et

la stéréovision multi-caméras et l’estimation du flot de scène dans le chapitre 8. Une

évaluation expérimentale poussée sur des données réelles est effectuée pour chacune de

ces applications. Toutes nos expériences numériques reposent sur une implémentation par

ensembles de niveau, mais nous soulignons que la plupart de ces contributions ne sont pas

spécifiques à une représentation géométrique particulière.

Il est à noter que l’ordre des chapitres ne reflète pas parfaitement l’ordre chronologique

des contributions. En particulier, la procédure de minimisation du chapitre 5 est notre
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plus récent apport. C’est la raison pour laquelle les applications des chapitres 6-8 n’avaient

pas encore bénéficé de cette méthodologie lorsque cette thèse a été écrite.

1.4.1 Contributions méthodologiques

Chapitre 3

Dans ce chapitre, nous proposons une méthode complètement eulérienne pour surmonter

la perte de la correspondance ponctuelle pendant une évolution par ensembles de niveau.

Nous décrivons une implémentation numérique robuste de notre approche, compatible

avec la technique de bande mince. Nous montrons dans un large éventail d’expériences

numériques qu’elle peut gérer à la fois les vitesses normales et tangentielles, les grandes

déformations, les chocs, les raréfactions, et les changements de topologie. Dans le chapitre

6, nous utilisons notre méthode pour produire des représentations dépliées du cortex

cérébral avec préservation de l’aire.

Chapitre 4

Dans ce chapitre, nous présentons deux nouvelles méthodes pour exercer un contrôle sur

la topologie pendant une évolution par ensembles de niveau. Notre première méthode

permet de faire évoluer simultanément plusieurs interfaces imbriquées tout en interdisant

les changements de topologie et les intersections mutuelles. Contrairement aux méthodes

existantes pour les modèles déformables explicites, qui reposent soit sur des forces de

répulsion, soit sur une vérification coûteuse de l’absence d’intersection entre deux mail-

lages, notre approche garantit strictement l’absence d’intersections et ne nécessite que des

calculs locaux et efficaces. Dans le chapitre 7, nous utilisons notre méthode pour extraire

simultanément les interfaces internes et externes du cortex cérébral à partir de l’IRM.

Notre deuxième méthode comble le vide existant entre la méthode des ensembles de

niveau standard et la méthode des ensembles de niveau avec préservation de la topolo-

gie de Han, Xu et Prince [64]. Notre nouvelle méthode des ensembles de niveau avec

préservation du genre permet aux différentes composantes connexes de l’objet de fusion-

ner et de se scinder, tout en garantissant qu’aucune nouvelle poignée n’est générée et

qu’aucune poignée existante n’est fermée. En comparaison avec la méthode des ensem-

bles de niveau avec préservation de la topologie, la sensibilité aux conditions initiales est

grandement réduite. Nous montrons dans des expériences numériques l’intérêt que présente

notre méthode des ensembles de niveau avec préservation du genre pour la segmentation

des images médicales.

Chapitre 5

Dans ce chapitre, nous abordons un aspect important des modèles déformables variation-

nels, qui a souvent été négligé jusqu’ici : l’optimisation par les flots de gradient. Nous

cherchons à savoir s’il est pertinent d’utiliser d’autres produits scalaires que le produit

scalaire canonique L2, ce qui conduit à d’autres descentes de gradient, mais aussi d’autres
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flots géometriques de minimisation ne dérivant d’aucun produit scalaire. En particulier,

nous montrons comment induire différents degrés de cohérence spatiale dans le flot de

minimisation, afin de réduire les risques d’être piégé dans des minima locaux inappro-

priés. Nous montrons dans des expériences numériques que la sensibilité de la méthode

des modèles déformables aux conditions initiales est réduite par nos flots géométriques de

minimisation spatialement cohérents.

1.4.2 Contributions appliquées

Chapitre 6

Dans ce chapitre, nous proposons une nouvelle méthode à base de modèles déformables

pour générer des représentations dépliées du cortex cérébral avec préservation de l’aire.

Nous faisons évoluer la surface corticale avec un mouvement normal dépendant de

l’application, et avec un mouvement tangentiel construit de sorte à assurer une préservation

exacte de l’aire tout au long de l’évolution. Nous décrivons la formulation continue de notre

méthode, et son implémentation numérique par ensembles de niveau. Une implémentation

directe par ensembles de niveau est impossible du fait de l’absence de paramétrisation.

Nous utilisons la méthode proposée au chapitre 3 pour contourner cette écueil. Nous

démontrons la faisabilité de notre approche en calculant des représentations gonflées du

cortex à partir de données réelles de cerveau.

Chapitre 7

Dans ce chapitre, nous présentons une méthode pour extraire automatiquement et

avec précision des maillages surfaciques de différents tissus de la tête à partir d’image

IRM anatomiques. Notre méthode met l’accent sur la garantie de certaines propriétés

topologiques des maillages, comme la topologie sphérique, l’absence d’auto-intersections

et d’intersections mutuelles. Notre méthode est une habile combinaison d’une classifi-

cation par champs de Markov cachés [185], d’une méthode de modèle déformable basée

région, et de notre méthode des ensembles de niveau imbriqués proposée au chapitre 4.

Cette dernière permet d’empêcher les intersections mutuelles entre les interfaces internes

et externes du cortex cérébral. Nous faisons une démonstration de chaque étape de notre

approche sur des données réelles de cerveau.

Chapitre 8

Dans ce chapitre, nous présentons une nouvelle méthode à base de modèles déformables

pour la stéréovision multi-caméras et l’estimation du flot de scène. Notre méthode min-

imise l’erreur de prédiction en se servant d’un score de mise en correspondance global et

basé image. Nous transformons les vues d’entrée de manière à soustraire la distorsion

projective, et nous recalons les images ainsi obtenues avec une mesure de similarité choisie

par l’utilisateur, qui peut incorporer des informations d’intensité de voisinage ou globales.

Aucune approximation de la forme, du mouvement, ou de la visibilité n’est faite durant
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la mise en correspondance. Nous obtenons des résultats comparables ou supérieurs aux

meilleurs méthodes existantes, même sur des images de scènes réelles complexes, com-

portant des spécularités et de la transparence. Grâce à notre algorithme d’estimation du

mouvement, nous parvenons à reconstruire le mouvement 3D d’une scène non-rigide et à

synthétiser des séquences 3D interpolées dans le temps.

1.4.3 Contributions logicielles

Le développement logiciel constitue un troisième type de contribution de cette thèse. D’une

part, nous avons développé une librairie C++ flexible et efficace, dédiée aux évolutions

de courbes et de surfaces par ensembles de niveau. Cette librairie intègre les tech-

niques de bande mince, de réinitialisation, de fast marching, et certaines de nos contribu-

tions méthodologiques, comme la gestion des données d’interface et de la correspondance

ponctuelle, et le contrôle de la topologie. Ce code a servi de brique de base à d’autres mem-

bres du projet de recherche Odyssée pour diverses applications, comme la segmentation

d’images IRM de diffusion.

D’autre part, notre programme consacré à la segmentation de tissus de la tête à partir

d’images IRM, décrit au chapitre 7, est utilisé quotidiennement au sein du projet Odyssée

et dans la Section de Neurophysiologie de l’Université Catholique de Leuven, en Belgique.

À la fin de chaque chapitre, nous rappellerons les contributions principales et nous

indiquerons les publications associées. L’annexe A rassemble des formules utiles de calcul

géométrique et différentiel. L’annexe B décrit les schémas numériques nécessaires pour

implémenter nos EDP. Enfin, l’annexe C est une liste de nos publications.
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Chapter 2

Introduction

Deformable models, also known in the literature as snakes, active contours/surfaces, de-

formable contours/surfaces, constitute a widely used computerized technique to address

various shape reconstruction problems in image processing. A deformable model is a curve,

a surface, or a higher-dimensional geometric object, initially positioned by the user, which

moves under some constraints and under the influence of the input data, until it converges

to a candidate solution to the problem.

This methodology has several outstanding features. It is highly versatile through the

choice of a shape representation and the design of the evolution equation. As a result,

it can be applied to various types of input data (two-dimensional, three-dimensional and

four-dimensional images, multi-view stereovision datasets, unstructured point sets, . . . )

and to a large range of problems. It has been initially proposed for the purpose of image

segmentation by Kass, Witkin and Terzopoulos in [77], but it has proven successful in

many other contexts, in computer vision and in medical imaging, including region tracking

[115, 101], shape from stereo [50, 75, 45, 88, 69, 57], shape from shading [53, 74, 182], and

shape from point clouds [188, 10, 160].

Moreover, the use of a continuous geometric formulation has many benefits. It leads

to a neat mathematical framework. It provides a subpixel accuracy. It correctly models

the continuity of shape, and allows to incorporate some regularity assumptions or some

complex prior information about the target shape, thereby yielding a good robustness to

noisy and incomplete data. Finally, it succeeds in naturally integrating many input local

features into a consistent mathematical shape description.

The key elements of the deformable models framework are the design of an energy

functional, the choice of a minimization procedure and of a geometric representation. In

this thesis, we tackle these three elements, with the objective of increasing the applicability

and efficiency of deformable models. Among the various existing types of deformable mod-

els, we concentrate on geometric evolutions originating from the theory of curve evolution

[54] and we put a particular emphasis on the level set representation [112].

With regard to the geometric representation, we overcome the loss of the point corre-

spondence and the inability to control topology changes with the level set method. We
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propose two associated applications in the field of medical imaging: the generation of

unfolded area preserving representations of the cerebral cortex, and the segmentation of

several head tissues from anatomic magnetic resonance images. With regard to the min-

imization procedure, we show that the robustness to local minima can be improved by

substituting a spatially coherent minimizing flow to a traditional gradient descent. Fi-

nally, with regard to the design of the energy functional, we propose a novel modeling of

multi-view stereovision and scene flow estimation with deformable models, relying on a

global image-based matching score.

The rest of this introductive chapter is organized as follows. In Section 2.1, we examine

the advantages and the drawbacks of the different geometric representations of deformable

models. In particular, we point out several limitations of the level set method, which

motivate some of our methodological contributions. Section 2.2 focuses on the evolution

equation and emphasizes the detrimental sensitivity of deformable models to initial con-

ditions, which we tackle in this thesis. Section 2.3 deals with the design of the energy

functional. As this matter is highly dependent on the details of each application, we only

report the major trends in two important applications of the deformable models framework

to which our work contributes: image segmentation and multi-view stereovision. Finally,

in Section 2.4, we sum up the important contributions of this thesis and we describe the

content of the next chapters.

2.1 Geometric representation of deformable models

Many different geometric representations have been proposed in the deformable models

literature. The interested reader may refer to [105] for a thorough review. Often, these

representations are divided into two categories: “parametric” models and “geometric”

models. However, we believe that these two terms are a source of confusion. First, we

suggest to use “parameterized” instead of “parametric” to deal with geometric objects

given by a parameterization, and to keep the term “parametric” for the families of objects

indexed by a small number of parameters. Second, in the literature, “geometric” models

often refer exclusively to the level set representation. As a result, some representations

like unstructured surface meshes would be classified as “parametric”, whereas they are

neither parametric nor parameterized. . .

In this thesis, we make a distinction between “explicit” and “implicit” representations.

Explicit models are given through a set of coordinates while implicit models are defined

as the zero set of a higher-dimensional scalar function. In parallel, we make a difference

between “geometric” and “non-geometric” evolution laws. Geometric evolutions are not

dependent on a particular parameterization. They find their origin in the theory of curve

evolution [54]. In this type of evolution, the velocity field of the model typically depends

on intrinsic geometric quantities such as normal, curvature, and on the input data.

Geometric evolutions can be implemented very naturally with a level set representation,

but the use of other representations, including explicit models, is possible. Choosing an

32



explicit or an implicit representation to implement a geometric evolution is closely related

to choosing a Lagrangian or an Eulerian perspective.

2.1.1 Explicit models

Parameterization

Parameterized curves and surfaces are an important type of explicit models. This kind

of representation is the one proposed in the original snake model of Kass, Witkin and

Terzopoulos [77]. A variety of other parameterized representations are found in the litera-

ture, either based on some basis functions (finite elements [32, 96], B-splines [132], Fourier

harmonics [151], etc.), or on a parametric family (superquadrics [161, 9, 10]).

A typical problem of parameterized deformable models is that their evolution and the

final reconstruction are dependent on the parameterization of the initial shape. To be

more exact, this problem is related to the definition of the energy functional rather than

to the geometric representation itself: in most cases, the metric distortions between the

parameterization space and the model are disregarded. As a consequence, the energy is

not intrinsic to the model.

Not all explicit models are parameterized. Oriented particle systems [159] and unstruc-

tured meshes (triangulated surfaces [104], simplex meshes [39], polyhedrons [147]) do not

have an underlying parameterization.

Topology

A serious limitation of most explicit models is that their topology cannot change during

the evolution to fit the data topology. Several attempts have been made to overcome this

problem. McInerney and Terzopoulos [98, 99] propose topology adaptative deformable

curves and triangulations, called T-snakes and T-surfaces. During the evolution, the model

is periodically resampled by computing its intersections with a simplicial decomposition

of space. A labeling of the vertices of the simplicial grid as inside or outside of the model

is maintained. Besides being computationally expensive, this procedure imposes a fixed

uniform spatial resolution. Also, not all motions are admissible: this approach only works

when the model inflates or deflates everywhere.

Lachaud and Montanvert [85] use the concept of δ-triangulation. A length parameter

δ is used to control the sampling of the triangulation and to detect self-intersections,

by monitoring the distance between pairs of neighbor and non-neighbor vertices. This

approach is costly, even when optimizing the computations with an octree structure.

Delingette and Montagnat [39, 40] propose to modify the topology of an evolving sim-

plex mesh with some elementary topological operators, but their approach needs manual

interaction in 3D.

Thus, a fully automatic and efficient handling of topology changes with explicit models,

in three dimensions and more, remains an open issue. This is one important reason why

the level set representation has received much interest in the deformable models literature.
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2.1.2 Implicit models

Implicit models are not limited to the level set method [112]. Algebraic polynomial surfaces

[160] and implicit superquadrics/hyperquadrics [9, 30] also fall into this category. However,

among implicit models, the level set method is by far the most powerful. It is applicable

to a considerably wider range of applications, because it can handle complex geometries

while the others are limited to a small family of shapes.

The level set method, introduced by Osher and Sethian in [112] (a similar work in

the area of fluid mechanics [41, 42] has recently surfaced), is an established technique to

represent moving interfaces in two or more dimensions. Basically, it consists in representing

the interface implicitly as the zero level set of a higher-dimensional scalar function. The

movement of the interface can be cast as an evolution of the embedding level set function

by an Eulerian PDE (partial differential equation).

On the one hand, this approach has several advantages over an explicit Lagrangian rep-

resentation of the interface: no parameterization is needed, topology changes are handled

automatically, any number of dimensions is accommodated, intrinsic geometric properties

such as normal or curvature can be computed easily from the level set function. Last

but not least, the theory of viscosity solutions [34] provides robust numerical schemes and

strong mathematical results to deal with the evolution PDE.

On the other hand, several serious shortcomings limit the applicability of the level set

method. First, the higher dimensional embedding makes the level set method much more

expensive computationally than explicit representations. Much effort has been done to

alleviate this drawback, leading to the narrow band methodology [1] and more recently to

the PDE-based fast local level set method [118].

Also, in its basic formulation, the level set method can only represent manifolds of

codimension one without borders, such as closed curves in R2 and closed surfaces in R3.

Several approaches have been proposed to handle a codimension strictly greater than

one. Ambrosio and Soner [5] propose to evolve an hypersurface corresponding to an ε-

neighborhood of the manifold. For instance, in the case of a curve in R3, it consists in

evolving a tubular neighborhood of the curve which has a small radius ε. This idea was

used in [90] to segment blood vessels from medical images. A drawback of this approach is

that the manifold of interest cannot be accurately positioned. A more principled approach

by Burchard, Cheng, Merriman and Osher [20] consists in representing the curve as the

intersection of two hypersurfaces, and to express its motion as the evolution of two level set

functions. In [59], the author investigates the extension of this idea to any codimension

k by simultaneously evolving k level set functions, at the expense of facing increasing

numerical difficulties. A similar idea is proposed by Solem and Heyden [149] to represent

surfaces with borders with the level set method.

Some other shortcomings of the level set method have recently surfaced. One is inti-

mately related to the implicit point of view and to the absence of parameterization: the

point-wise correspondence is lost during the evolution. In other words, we do not know

how each point and each part of the interface moves. This is not a surprise, since the level
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set function conveys a purely geometric description of the interface. More generally, it

is not possible to handle some data associated with the moving interface, in other words

some interfacial data, in the traditional level set framework. This considerably restricts

the range of possible applications. In Chapter 3, we propose a method, based on a system

of coupled Eulerian PDEs, to overcome this limitation.

The ability to automatically handle topology changes is a long claimed advantage of

the level set method over explicit deformable models. But it may not be desirable in

some applications where some prior knowledge of the target topology is available. This

is typically the case in biomedical image segmentation, where the topology of the organs

and their mutual topological relations is prescribed by anatomical knowledge. Chapter 4

deals with some methods, inspired by digital topology, to exert a control on the topology

during a level set evolution.

2.2 Minimization of the energy functional

The design of the evolution equation driving the motion of deformable models follows two

main approaches. In the variational formulation, the problem is cast as the minimization

of an energy functional. The latter is defined so that low-energy configurations indicate a

good fit with the input data and the prior information (typically some regularity assump-

tions), and the solution is defined as a shape achieving a global minimum of the energy.

In the dynamic force formulation, the motion is designed ad hoc, often as a combination

of internal forces, defined from the model itself and dedicated to keep the model smooth

during the deformation, and of external forces, defined from the input data. The solution

is seen as an equilibrium of the forces.

In this thesis, we favor the variational formulation, because it has several advantages

over the dynamic force formulation. First, it appears less empirical and often enables

a better understanding of the model. This is particularly true when the energy func-

tional derives from a statistical modeling, such as the maximum a posteriori (MAP) of a

Bayesian formulation [157]. Second, in some cases, the existence of a global minimum of

the energy and the well-posedness of the minimization procedure can be mathematically

proven. Finally, once the variational problem is defined, it can be tackled with a variety

of minimization procedures, depending on the available prior information and on the allo-

cated computational time. In this section, we deal with the choice of such a minimization

procedure.

In general, an exact minimization of the energy functional is computationally unfeasible

due to the huge number of unknowns. Simulated annealing [152] and dynamic programming

[6] have been proposed to compute a global minimum, but the former is very slow in

practice and the latter only applies to a particular form of energy functionals. More

recently, graph cuts have emerged as a powerful energy minimization method allowing to

find a global minimum or a strong local minimum. In the last few years, this method

has been successfully applied to several problems in computer vision, including multi-view
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stereovision [80] and image segmentation [18]. However, it has two severe limitations: it

cannot be applied to any energy function [81], and, when applicable, is computationally

expensive.

Hence, in most cases, a suboptimal strategy is adopted, based on the calculus of varia-

tions. A necessary condition of optimality deduced from the energy functional, called the

Euler-Lagrange equation, is solved instead. The Euler-Lagrange equation characterizes the

local minima and the local maxima of the energy. Just like the original variational prob-

lem, it cannot be solved exactly, so an evolutive method starting from an initial guess is

necessary. As a result, an artificial notion of time is added to the problem. This is the core

principle of the deformable models framework: the resolution of the problem translates

into the time evolution of a geometric object.

When using parameterized deformable models, the resolution of the Euler-Lagrange

equation is typically done by updating the model parameters with a gradient descent

or with fast convergence numerical schemes such as the conjugate gradient method, the

Newton method or the Levenberg-Marquardt method. These evolutions are non-geometric,

i.e. they are dependent on a parameterization of the model, so they fall out of the scope

of this thesis.

Another minization procedure was pioneered by Chan and Vese in [25]. It consists

in using the level set method at the same time as a geometric representation and as

an optimization framework. In other words, the energy functional is defined directly

from the level function φ, and the minimization is also performed with respect to φ. In

this approach, the integral of a quantity f along the boundary of the model or over the

inside/outside region write with the Dirac distribution δ and the Heaviside function H:

∫

Γ
f(x) dx =

∫

Rn
δ(φ(x)) f(x) ‖∇φ(x)‖ dx , (2.1)

∫

in
f(x) dx =

∫

Rn
[1−H(φ(x))] f(x) dx , (2.2)

∫

out
f(x) dx =

∫

Rn
H(φ(x)) f(x) dx . (2.3)

This approach has become popular in image segmentation [25, 170, 114, 56, 130]. However,

it raises several conceptual and practical problems. First, it is specific to a particular

geometric representation. Second, the need for an ε-regularized version of δ and H in

the implementation is quite inelegant. Last but not least, the resulting evolution is non-

geometric. It depends on the initial values of φ off the zero level. Disconnected components

of the model can appear, which is definitely not compatible with a curve evolution.

Moreover, a mistake commonly done with this approach is to assume the preservation

of the signed distance property when computing the variation of the energy with respect to

a variation of φ. For example, in [56], the authors propose to segment the cerebral cortex

with two coupled deformable models, and with a prior on their mutual distance. This

distance is taken as the absolute value of the signed distance function representing each

interface. Because of the aforementioned abuse, the derivation of the energy functional in
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this work is not exact. A derivation along the space of signed distance functions is neither

possible, because this space is not a well-behaved manifold.

In this thesis, we focus on a minimization procedure called geometric gradient flows.

It is the geometric evolution obtained by following the direction of steepest descent of an

intrinsic energy. Its mathematical meaning is detailed in Chapter 5. For instance, the

minimization of the area of the model leads to the well-known motion by mean curvature

[54]. Another important geometric gradient flow is obtained by minimizing the area of

the model in a Riemannian space with an image-based metric: it is the geodesic active

contours approach proposed by Caselles, Kimmel and Sapiro in [24] for the detection of

image boundaries.

Due to the highly non-convex nature of most energy functionals, geometric gradient

flows are very likely to be trapped in a local minimum. Also, this local minimum depends

on the position of the initial shape. If the latter is far from the expected final configu-

ration, the evolution may be trapped in a completely irrelevant state. This sensitivity to

initial conditions seriously limits the applicability and efficiency of the deformable models

framework.

There are essentially two ways of dealing with this problem: positioning the initial

model very close to the expected final configuration, or using a multiresolution coarse-

to-fine strategy, in other words running the optimization on a series of smoothed and

subsampled models and input data. In Chapter 5, we pioneer a third way to tackle the

problem of unwanted local minima: the careful design of new geometric minimizing flows.

2.3 Major trends in the design of the energy functional

2.3.1 Image segmentation

The many deformable models methods dedicated to image segmentation can be di-

vided into two categories: boundary-based methods and region-based methods. Whereas

boundary-based methods only rely on the gradient of the image at the current position of

the model, region-based methods use global intensity information of the different image

segments. We also review some important works on introducing prior shape information

in the extraction process, in order to cope with the highly ambiguous nature of the image

segmentation problem. Note that boundary-based information, region-based information

and complex prior information can advantageously be combined in a same energy func-

tional, as in [70]. Here, for sake of clarity, we present these components separately. The

reader may also refer to [174, 97] for some specific surveys on deformable models in medical

image segmentation.

Boundary-based methods

The original snake model of Kass, Witkin and Terzopoulos [77] falls into this category.

This seminal work proposes to find the boundaries of an image I : Ω ⊂ R2 → R by moving

37



a parameterized curve C : [0, 1] → Ω under the influence of some internal and external

forces deriving from the minimization of the following energy functional:

E(C) =

∫ 1

0
α(p)|C ′(p)|2dp+

∫ 1

0
β(p)|C ′′(p)|2dp

︸ ︷︷ ︸
Eint(C)

+λ

∫ 1

0
P (C(p)) dp

︸ ︷︷ ︸
Eext(C)

. (2.4)

The internal energy accounts for the elasticity and the rigidity of the curve, which can

be locally modulated with the weighting parameters α(p) and β(p). The external energy

is the integral along the curve of a potential function P which takes smaller values at

locations of high image gradient.

This approach yields a remarkable robustness to noise and missing data. However, it

has important limitations. First, as we mentioned earlier, the evolution and the results

are dependent on the parameterization, because the energy is not intrinsic to the curve.

In (2.4), this dependency is visible in the derivatives of C and in the integrals with respect

to the parameter of the curve. To make the formulation intrinsic, an arc-length param-

eterization ought to be maintained throughout the evolution, which the above approach

cannot achieve. Second, it is very sensitive to initialization. Due to the local relevance of

gradient information, it may easily converge towards false edges if the initial shape is not

very close to the desired configuration.

Several extensions have been proposed in the literature to overcome these limita-

tions. The parameterization independence was achieved concurrently by several authors

[23, 29, 94] with some geometric evolutions, deriving from the mean curvature flow, and

implemented with the level set method. A balloon force that can either inflate or deflate

the model was proposed by Cohen in [31] to remove the requirement to initialize the model

near the desired object boundaries. When combining these two approaches, the evolution

of the model Γ is of the form
∂Γ

∂t
= g(−H + c) N . (2.5)

In the above equation, N is the outward normal vector, H is the mean curvature of the

model, c is the amplitude of the balloon force, and g is a positive function which takes

smaller values at features of interest. For instance, if the model should stop on the edges

of the image, g is generally defined such that

{
g → 0 if ‖∇I‖ → +∞,

g → 1 if ‖∇I‖ ≈ 0.
(2.6)

The flow (2.5) and the associated level set evolution equation apply to any number of

dimensions. Γ may denote a curve in 2D, a surface in 3D, and so on. Below, let n be

the number of dimensions. A problem with this approach is that the model may slow

down but not completely stop on low contrast edges. This is often referred as the leakage

problem. Also, (2.5) does not derive from a variational formulation.

A significant step was made with the geodesic active contours method proposed by

Caselles, Kimmel and Sapiro in [24] and by Kichenassamy et al. in [78, 179]. It is based
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on the minimization of the following intrinsic energy functional:

E(Γ) =

∫

Γ
g(x) dx , (2.7)

where dx denotes the area element of the model (its length in 2D, its area in 3D, and so

on). Interestingly, this energy can be interpreted as the geodesic area of the model in a

Riemannian space with metric g. The associated geometric gradient flow, given by

∂Γ

∂t
= [−∇g ·N− (n− 1)gH] N , (2.8)

is more robust to low contrast edges than the previous approach, due to the stopping term

∇g ·N that pulls back the model if it passes the boundary. However, the attraction range

is still limited, due to the local relevance of gradient information. As a result, the model

has difficulties to deform into large concavities.

To address this problem, Siddiqi et al. propose area and length minimizing flows [146].

Xu and Prince work out a new force called gradient vector flows [176]. Their approach

consists in smoothing the gradient field of an edge map of the image with a non-linear

PDE, thereby extending the attraction range of image boundaries to the whole image

domain.

Despite significant improvements, boundary-based methods still require an accurate

manual initialization. This limitation has motivated the emergence of region-based meth-

ods.

Region-based methods

A popular work in this category is the active contours without edges method proposed by

Chan and Vese in [25]. This approach derives from the minimization of the Mumford-

Shah functional [108] with the level set based optimization procedure discussed in Section

2.2. A partitioning of the image in 2n regions assuming to have a constant intensity is

performed by evolving n level set functions. The regions are tagged by the different sign

combinations of the level set functions. In the simplest case of bi-partitioning, the energy

functional writes:

E(φ, c1, c2) =

∫

Ω
|I(x)− c1|2H(φ(x)) dx +

∫

Ω
|I(x)− c2|2 [1−H(φ(x))] dx

+ λ

∫

Ω
δ(φ(x)) ‖∇φ(x)‖ dx , (2.9)

where H and δ denote the usual Heaviside and Dirac functions. c1 and c2 are the estimated

intensity constants in the two regions. Their optimal value at constant φ are the empirical

intensity means in the corresponding regions. In [170], the same authors propose an

extension of this approach to piecewise smooth images.

Rousson, Paragios and Deriche [114, 130, 115] embed region-based segmentation in

a Bayesian formulation. The energy functional originates from the maximization of the
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posterior probability of the model. This is known as a maximum a posteriori (MAP) tech-

nique. The intensity statistics of the different regions are modeled by Gaussian densities

or mixtures of Gaussian densities. These statistics are either learned offline or iteratively

reestimated with an expectation-maximization (EM) algorithm.

In parallel to these approaches relying on a level set based optimization procedure, very

similar approaches relying on geometric gradient flows have been proposed [190, 165, 71].

In Chapter 7, we combine such a region-based image segmentation method with the level

set method under topology control of Chapter 4 to extract several head tissues from

magnetic resonance imaging (MRI).

Prior shape information

Image segmentation is an ill-posed problem due to various perturbing factors such as noise,

occlusions, missing parts, cluttered data, etc. When dealing with complex images, some

prior shape knowledge may be necessary to disambiguate the segmentation process. The

use of such prior information in the deformable models framework has long been limited

to a smoothness assumption or to simple parametric families of shapes. But a recent and

important trend in this domain is the development of deformable models integrating more

elaborate prior shape information.

An important work in this direction is the active shape model of Cootes et al. [33].

This approach performs a principal component analysis (PCA) on the position of some

landmark points placed in a coherent way on all the training contours. The number of

degrees of freedom of the model is reduced by considering only the principal modes of

variation. The active shape model is quite general and has been successfully applied to

various types of shapes (hands, faces, organs). However, the reliance on a parameterized

representation and the manual positioning of the landmarks, particularly tedious in 3D

images, seriously limits it applicability.

Leventon, Grimson and Faugeras [86] circumvent these limitations by computing

parameterization-independent shape statistics within the level set representation. Ba-

sically, they perform a PCA on the signed distance functions of the training shapes, and

the resulting statistical model is integrated into a geodesic active contours framework.

The evolution equation contains a term which attracts the model towards an optimal

prior shape. The latter is a combination of the mean shape and of the principal modes

of variation. The coefficients of the different modes and the pose parameters are up-

dated by a secondary optimization process. Several improvements to this approach have

been proposed [131, 28, 164], and in particular an elegant integration of the statistical

shape model into a unique MAP Bayesian optimization. Let us also mention another

neat Bayesian prior shape formulation, based on a B-spline representation, proposed by

Cremers, Kohlberger and Schnörr in [35].
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2.3.2 Multi-view stereovision

The deformable models framework has been used to obtain a complete 3D reconstruction of

a scene from a high number of input views. The most inspiring work in this category is the

level set stereovision method of Keriven and Faugeras [50]. In this work, the stereovision

problem is formulated as a minimal surface approach, in the spirit of the geodesic active

contours method [24]. In other words, the energy functional is written as the integral on

the unknown surface of a data fidelity criterion. This criterion is the normalized cross

correlation between image pairs. The surface evolution is implemented with the level

method [112].

Several variations to this approach have been proposed: an implementation with un-

structured surface meshes [45], the addition of 3D points data [45, 88] and of silhouette

information [69, 88], and an extension to spatio-temporal scenes [57]. More original is the

method proposed in [75] to cope with non-Lambertian scenes. This method can estimate

both the shape and the non-Lambertian reflectance of the scene. It outputs a geometric

and photometric model which allows to predict the appearance of novel views. The surface

deformation is driven by the minimization of the rank of a radiance tensor.

In Chapter 8, we tackle several limitations shared by all these methods, like the inability

to incorporate global intensity information in the matching process, the lack of flexibility

in the choice of the matching criterion, or the complexity of the implementation when the

matching measure depends on the surface normal. Our approach also allows to estimate

the dense non-rigid 3D motion field of a scene, often called scene flow [167], from multiple

video sequences.

2.4 Contributions of this thesis

This thesis is organized in two parts and each part is composed of three chapters. The

first part consists in our methodological contributions to the deformable models framework,

with regard to the geometric representation and to the minimization procedure. These

contributions widen the range of applications of deformable models, and can increase their

efficiency. Chapter 3 and Chapter 4 deal with the level set method, while Chapter 5 tackles

the minimization procedure.

The second part of this thesis is dedicated to some specific applications in the fields of

computer vision and medical imaging, which we believe our work advances: cortex unfold-

ing in Chapter 6, head segmentation from MRI in Chapter 7, and multi-view stereovision

and scene flow estimation in Chapter 8. A thorough experimental evaluation on real data

is given for each of these applications. All our numerical experiments are based on a level

set implementation, but we insist on the fact that most of these contributions are not

specific to a particular geometric representation.

Note that the order of the chapters does not reflect perfectly the chronological order

of the contributions. In particular, the minimization procedure of Chapter 5 is our more

recent contribution. That is the reason why the applications of Chapters 6-8 did not
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benefit from this methodology at the time of the writing of this thesis.

2.4.1 Methodological contributions

Chapter 3

In this chapter, we propose a completely Eulerian method to overcome the loss of the point

correspondence during a level set evolution. We describe in details a robust numerical

implementation of our approach, in accordance with the narrow band methodology. We

show in a variety of numerical experiments that it can handle both normal and tangential

velocities, large deformations, shocks, rarefactions and topology changes. In Chapter 6,

we use our method to generate unfolded area preserving representations of the cerebral

cortex.

Chapter 4

In this chapter, we present two novel methods to exert a control on the topology during a

level set evolution. Our first method enables to concurrently evolve several nested inter-

faces while preventing topology changes as well as mutual intersections. Unlike existing

methods with explicit deformable models, either based on repulsion forces or on a com-

putationally intensive mesh-to-mesh intersection checking, our approach guarantees the

absence of intersections and only requires efficient local computations. In Chapter 7, we

use our method to simultaneously extract the inner and outer interfaces of the cerebral

cortex from MRI.

Our second method fills the gap between the standard level set method and the topol-

ogy preserving level set method of Han, Xu and Prince [64]. Our novel genus preserving

level set method allows the different connected components of the object to merge and

split while ensuring that no new handle is generated and no existing handle is closed.

Compared to the topology preserving level set method, the sensitivity to initial conditions

is greatly alleviated. We show in some numerical experiments the interest of using our

genus preserving level set method for the segmentation of medical images.

Chapter 5

In this chapter, we tackle an important aspect of variational deformable models which

has been largely overlooked so far: the optimization by gradient flows. We investigate

the relevance of using other inner products than the canonical L2 product, yielding other

gradient descents, and some other geometric minimizing flows not deriving from any inner

product. In particular, we show how to induce different degrees of spatial coherence

into the minimizing flow, in order to decrease the probability of getting trapped into

irrelevant local minima. We show in some numerical experiments that the sensitivity of

the deformable models framework to initial conditions is alleviated by our application-

specific spatially coherent geometric minimizing flows.
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2.4.2 Applied contributions

Chapter 6

In this chapter, we propose a novel deformable models method to generate unfolded area

preserving representations of the cerebral cortex. The cortical surface is evolved with

an application-specific normal motion, and an adequate tangential motion is constructed

in order to ensure an exact area preservation throughout the evolution. We describe

the continuous formulation of our method as well as its numerical implementation with

level sets. A straightforward level set implementation of cortex unfolding is not feasible

due to the absence of parameterization. We use the method proposed in Chapter 3 to

circumvent this limitation. We show the applicability of our approach by computing

inflated representations of the cortex from real brain data.

Chapter 7

In this chapter, we present a method to automatically and accurately extract surface

meshes of several head tissues from anatomical MR images. The emphasis of our method

is on guaranteeing some topological properties of the meshes, such as spherical topology,

absence of self-intersections and mutual intersections. Our method is a successful com-

bination of hidden Markov random field classification [185], of a region-based deformable

models method, and of our topology preserving nested level set method proposed in Chap-

ter 4. The latter allows to prevent mutual intersections between the inner and outer in-

terfaces of the cerebral cortex. We demonstrate each step of our approach on real brain

data.

Chapter 8

In this chapter, we present a novel deformable models method for multi-view stereovision

and scene flow estimation. Our method minimizes the prediction error using a global

image-based matching score. We adequately warp the input views and we register the

resulting distortion-free images with a user-defined image similarity measure, which can

include neighborhood and global intensity information. No approximation of shape, motion

or visibility is made in the matching process. We obtain results comparing favorably with

state-of-the-art methods, even on complex non-Lambertian real-world images including

specularities and translucency. Using our algorithm for motion estimation, we success-

fully recover the 3D motion of a non-rigid scene and we synthesize time-interpolated 3D

sequences.

2.4.3 Software contributions

A third type of contribution of this thesis is software development. First, we have written

a flexible and efficient C++ templated library to implement curve and surface evolutions

with the level set method. This library includes narrow banding, reinitialization, fast
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marching, and some of our methodological contributions, such as the handling of interfacial

data, of the point correspondence and of topology control. This code is used as a building

block by the other members of the Odyssée Laboratory, for various applications, such as

the segmentation of DT (Diffusion Tensor) images.

Second, our program dedicated to the segmentation of head tissues from MRI, described

in Chapter 7, is used routinely both in the Odyssée Laboratory and in the Neurophysiology

Section of the Katholieke Universiteit Leuven, Belgium.

At the end of each chapter, we will recall the main contributions that were presented

and we will indicate the associated publications. In Appendix A, we have gathered some

useful formulas of geometric and differential calculus. Appendix B describes the numerical

schemes needed to implement our PDEs. Finally, Appendix C lists all our publications.

44



Part I

Methods
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Chapter 3

Maintaining the Point

Correspondence in the Level Set

Framework

In this chapter, we tackle a major shortcoming of the level set method: the loss of the

point correspondence and the inability to handle interfacial data. We propose an approach

to maintain an explicit backward correspondence from the evolving interface to the initial

one. Our method consists in advecting the initial point coordinates with the same velocity

as the level set function. It leads to a system of coupled Eulerian partial differential

equations.

We describe in details a robust numerical implementation of our approach, in accor-

dance with the narrow band methodology. We show in a variety of numerical experiments

that it can handle both normal and tangential velocities, large deformations, shocks, rar-

efactions and topology changes. Our method has a very wide range of applications since

it can be used to upgrade virtually any level set evolution.

In Chapter 6, we will use this method to generate unfolded area preserving represen-

tations of the cerebral cortex.

3.1 Motivation

A serious shortcoming of the level set method, which has been studied only recently, is

intimately related to the implicit point of view and to the absence of parameterization:

the point-wise correspondence is lost during the evolution. In other words, we do not know

how each point and each part of the interface moves. This is not a surprise, since the level

set function conveys a purely geometric description of the interface. More generally, it

is not possible to handle some data associated with the moving interface, in other words

some interfacial data, in the traditional level set framework. This considerably restricts

the range of possible applications.

Some hybrid Lagrangian-Eulerian methods have been proposed to circumvent this
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limitation in some particular applications such as the unfolding of the surface of the cere-

bral cortex [68], the construction of transverse lines in grid generation [143], and image

registration with level sets [169]. Basically, in these works, the level set equation is comple-

mented with a set of Lagrangian ODEs which track the points during the evolution. This

particle-based approach leads to well-known numerical difficulties. Most of the advantages

of using an implicit representation are lost. For sake of numerical stability and topology

independence, a completely Eulerian approach must be preferred.

The earliest Eulerian approach related to the handling of some interfacial data in the

level set framework appears in [14]. This method allows to track a region on a deforming

level set interface. But it cannot handle either the explicit point correspondence or some

arbitrary interfacial data. As a result, it has a rather limited range of applications. Also

related is a method to evolve a curve in three dimensions with a level set approach [20].

More recently, some Eulerian methods have been proposed to evolve an interfacial material

quantity in the level set framework [177, 3]. The data are simultaneously advected, scaled

by the local compression/expansion of the interface as a result of mass conservation, and

diffused along the interface. But mass conservation is not relevant to all types of interfacial

data. Moreover, the explicit point correspondence is not addressed. In other words, the

mapping between the initial and the final interface is not available.

In this chapter, we propose a method to maintain an explicit point correspondence

during a level set evolution. Our method consists in a system of coupled Eulerian PDEs.

Our approach has a very wide range of applications, since it can be used to upgrade

virtually any level set evolution. The rest of this chapter is organized as follows. In

Section 3.2, we analyze in details the previous work on level sets with some interfacial

data and we elaborate a novel method for handling passively advected interfacial data,

and above all for maintaining an explicit point correspondence. Section 3.3 describes in

detail its numerical implementation. Finally, in Section 3.4, we report on some numerical

experiments that demonstrate the effectiveness of our method in a wide range of situations

including normal and tangential velocity fields, large deformations, shocks, rarefactions

and topology changes.

3.2 Methods

In the following, we note Γ(t), t ∈ R+ a moving closed and embedded hypersurface in Rn.

Γ is represented by a level set function φ : Rn × R+ → R such that:





φ(x, t) < 0 if x is inside Γ(t),

φ(x, t) = 0 if x ∈ Γ(t),

φ(x, t) > 0 if x is outside Γ(t).

(3.1)

The geometric properties of Γ can be easily expressed from the φ function:

• The outward unit normal at any point of the interface is given by N =
∇φ
‖∇φ‖ .
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• The mean curvature is given by H =
1

n− 1
div

( ∇φ
‖∇φ‖

)
.

For the reader’s convenience, we have gathered in Appendix A.2 some other useful formulas

of geometric and differential calculus in the implicit framework.

A deformation of Γ with a velocity field v has a direct counterpart in the level set

representation:
∂φ

∂t
+ v · ∇φ = 0. (3.2)

It is well known that the geometry of the interface is only affected by the normal compo-

nent of the velocity. The corresponding property in the level set formulation is that the

tangential component of the velocity cancels in (3.2). That is the reason why the velocity

is often taken normal to the interface: v = βN, where N denotes the outward normal.

This can be done without any loss of generality when geometry only is of interest. Given

that N = ∇φ/‖∇φ‖, we get the classical form of the level set evolution equation:

∂φ

∂t
+ β‖∇φ‖ = 0 . (3.3)

A tangential velocity does not affect the geometry, but it does affect the point cor-

respondence and the data associated with the interface. Hence, in this work, it would

be erroneous to restrict to a normal velocity field. We refer the reader to [143, 110, 111]

for more details about the theory, the recent developments, the implementation and the

applications of the level set method.

3.2.1 Previous work on region tracking

In [14], the problem of tracking a region in Γ during the level set evolution is addressed.

The boundary of the region of interest is represented as the intersection of Γ with the

interior of an auxiliary hypersurface Γ̂ defined as the zero level set of a function φ̂. The

two functions φ and φ̂ are evolved according to the following system of coupled Eulerian

PDEs: 



∂φ

∂t
+ β ‖∇φ‖ = 0 ,

∂φ̂

∂t
+


β ∇φ‖∇φ‖ ·

∇φ̂∥∥∥∇φ̂
∥∥∥



∥∥∥∇φ̂

∥∥∥ = 0 .
(3.4)

where β is again the magnitude of the outward normal speed of the interface. Rewriting

(3.4) using a form similar to (3.2) allows an easier interpretation:




v = β
∇φ
‖∇φ‖ , (3.5a)

∂φ

∂t
+ v · ∇φ = 0 , (3.5b)

∂φ̂

∂t
+ v · ∇φ̂ = 0 . (3.5c)

(3.5)

So (3.5b) and (3.5c) simply state that Γ and Γ̂ move with the same velocity field v.

In [14], only a normal velocity is considered. But a tangential component is perfectly
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possible. Again, we emphasize that a tangential velocity does not affect the geometry of

the interface, but it does affect the motion of Γ̂ and hence of the region of interest.

This method is closely related to the work of [20] on the motion of a curve in three

dimensions with a level set approach. The curve is represented as the intersection of Γ

and Γ̂ and its motion can be expressed as the evolution of the two level set functions φ

and φ̂ according to (3.5b) and (3.5c). But in contrast with region tracking and (3.5a),

the velocity then depends on the geometric properties of the curve (e.g. tangent, normal,

binormal, curvature, torsion), and not only on Γ.

3.2.2 Previous work on transport and diffusion of a material quantity

In [177, 3], two similar methods are proposed to model the evolution of a material quantity

f along a moving interface in the level set framework. Besides being passively advected,

the interfacial data are also scaled due to the local compression/expansion of the interface,

as a result of mass conservation, and diffused along the interface. This is achieved by the

following system of coupled Eulerian PDEs:





∂φ

∂t
+ v · ∇φ = 0 ,

∂f

∂t
+ divΓ(fv) = ∆Γf ,

(3.6)

where divΓ is the intrinsic divergence operator and ∆Γ is the intrinsic Laplacian operator

on the interface, often called the Laplace-Beltrami operator.

This method requires to define the material quantity on the whole space. Just like

the definition of the level set function off Γ is arbitrary, any extension f which agrees

with the data on the interface can be considered. Such an embedding of the data was

previously used to solve variational problems and PDEs on fixed implicit interfaces [13].

In some applications, the data may have a natural extension off the interface. In other

applications, one may build an extension f by some numerical procedure, that we discuss

in Section 3.3.

The mass conservation behavior, responsible for the divergence form in (3.6), and the

diffusion behavior are both related to the physical interpretation of the data as concen-

trations. However, this interpretation is not relevant to all types of interface data. For

example, mass conservation does not make sense in the case of an evolving textured sur-

face. In the next subsection, we study the case of passively advected interfacial data by

taking the region tracking method of Subsection 3.2.1 as a source of inspiration.

3.2.3 LSID: Level sets with some interfacial data

If we go back to Subsection 3.2.1 and take a closer look at (3.5), we notice that the zero

level set of φ̂ does not play a particular role. All the level sets of φ̂ evolve according to v.

Actually, the evolution equation for φ̂ is nothing but a passive advection equation with an

extrinsic velocity field.
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Hence we can go beyond the interpretation of φ̂ as the level set function of a hyper-

surface and substitute to it a general scalar or vector-valued function f coding for some

interfacial data. This slight change immediately generalizes the tracking method of [14]

to the evolution of any quantity passively advected with a moving level set interface. The

corresponding PDEs are 



∂φ

∂t
+ v · ∇φ = 0 , (3.7a)

∂f

∂t
+ v · ∇f = 0 . (3.7b)

(3.7)

In the sequel, we will refer to this approach as level sets with some interfacial data (LSID).

We can now regard (3.4) and (3.5) as a particular case of LSID with f restricted to a scalar

function, the sign of which tags the region of interest. Interestingly, the above method

can be used to upgrade a traditional level set evolution without any modification of the

existing PDE.

At first sight, the level set function and the data play symmetric roles in (3.7) and the

two sub-equations are decoupled. Actually, this is only the case when the velocity field is

given a priori. In most problems, the velocity field depends on the geometric properties of

Γ (e.g. normal and curvature) and hence on φ. In some problems, the velocity field may

also depend on the values of the interfacial data.

3.2.4 LSPC: Level sets with a point correspondence

LSID is versatile but it suffers from several limitations. First, it does not provide an

explicit point correspondence, which makes it inadequate for some applications. Second,

it requires to solve a PDE for each scalar component of the data, which may be prohibitive

in some applications.

In order to overcome these problems we propose to maintain, rather than the interfacial

data themselves, some unambiguous coordinates of the points of the interface. This implies

a choice of a coordinate system, for example a global parameterization of the interface.

However, obtaining a global parameterization of a complex shape is difficult. Moreover,

critical points and periodic conditions would be tricky to handle. Finally, reintroducing a

parameterization is quite unnatural in the implicit framework.

A very convenient alternative is to use the initial Cartesian coordinates of the points of

the interface in the embedding space Rn. We regard them as vector-valued interfacial data

that we evolve with LSID. This is equivalent to considering a function ψ : Rn ×R+ 7→ Rn

such as

ψ(x, 0) = x (3.8)

and 



∂φ

∂t
+ v · ∇φ = 0 , (3.9a)

∂ψ

∂t
+Dψ v = 0 , (3.9b)

(3.9)

where Dψ stands for the Jacobian matrix of ψ. For each point x of the interface at time

t, ψ(x, t) holds the position that this point was occupying at time t = 0. In other words,

51



ψ(., t) provides an explicit backward point correspondence from the current interface Γ(t)

to the initial one Γ(0). Off the interface, the point correspondence is driven by the exten-

sion of the velocity. In most applications, the latter is arbitrary, so the values of ψ off Γ(t)

do not have a physical meaning.

Once the point correspondence is available, the evolution of any other passively ad-

vected interfacial data with (3.7b) can be bypassed. We build any such data by composition

of the initial data f0 with the correspondence function ψ. As a matter of fact, f = f0 ◦ ψ
formally satisfies (3.7b):

∂f

∂t
+ v · ∇f = (∇f0 ◦ ψ) ·

(
∂ψ

∂t
+Dψ v

)
= 0 . (3.10)

In the sequel, we will refer to this approach as level sets with a point correspondence

(LSPC). Equation (3.9b) is the Eulerian counterpart of the Lagrangian ODE which gives

the forward point correspondence. The latter can be represented by a function ψ̂ : Rn ×
R+ 7→ Rn such as 




ψ̂(x, 0) = x ,

∂ψ̂

∂t
= v ◦ ψ̂ .

(3.11)

This Lagrangian approach is used in [143, 68, 169] to circumvent the loss of the point

correspondence in the level set method. But the Eulerian PDE (3.9b) has two important

advantages over the Lagrangian ODE (3.11). First, it is numerically more stable since

the computations are performed on a fixed grid. More importantly, it performs automatic

deleting of merging characteristics, whereas this task requires intricate delooping algo-

rithms in the Lagrangian approach. Moreover, a forward correspondence may not exist if

the evolution forms shocks; the interface may even collapse and merely disappear. In such

cases, (3.11) is not relevant. That is the reason why LSPC only focuses on the backward

point correspondence. In some applications however, the forward correspondence is needed

and it is necessary to invert the ψ map at a postprocessing stage.

If the velocity field is sufficiently smooth [46, 163], (3.9b) generates a one-parameter

family of diffeomorphisms. So does (3.11) and by the chain rule we get ψ(., t) ◦ ψ̂(., t) =

ψ̂(., t) ◦ψ(., t) = Id, ∀t. This is not true in general, as illustrated in some of the numerical

experiments that we report in Section 3.4. Typically, ψ fails to be surjective and develops a

discontinuity in the presence of a shock (see Experiments 2 and 4) and fails to be injective

in the presence of a rarefaction (see Experiment 3).

3.3 Numerical algorithms

In this section, we describe in details a numerical implementation of LSID and LSPC.

3.3.1 Level set reinitialization and data extension

On the one hand, the definition of the level set function and of the data off the interface

is arbitrary in the continuous formulation. But on the other hand, from a numerical point
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of view, flat and/or steep regions that develop in the level set function and in the data

during the evolution can dramatically decrease the accuracy of the computed solution.

This motivates the use of the signed distance function to the interface as the level set

function.

The signed distance function to the interface is defined by:





φ(x, t) = −d(x,Γ(t)) if x is inside Γ(t),

φ(x, t) = 0 if x ∈ Γ(t),

φ(x, t) = d(x,Γ(t)) if x is outside Γ(t),

(3.12)

where d(x,Γ(t)) = miny∈Γ(t) ‖x− y‖. The signed distance function verifies

‖∇φ‖ = 1 (3.13)

almost everywhere (more precisely outside of the skeleton of the interface).

Similarly, an extension of the data constant along the normal to the isolevels of φ, i.e.

of the form

∇f · ∇φ = 0 (3.14)

is numerically advantageous.

An interesting approach to counteract the loss of resolution of the level set function is

to use a particular extension of the velocity that maintains the signed distance property

[2, 60]. However, this approach does not have a counterpart for the data function. A more

common approach is to occasionally apply a reinitialization procedure which restores the

signed distance property. This can be done either by applying a Fast Marching technique

[142] or by considering the steady state solution to the following PDE [156]:

∂φ

∂τ
+ sign(φ0) (‖∇φ‖ − 1) = 0 . (3.15)

Similarly, an extension of the data fulfilling (3.14) can be obtained either in combination

with a reinitialization by Fast Marching [2] or by running the following PDE [187]:

∂f

∂τ
+ sign(φ) (∇f · ∇φ) = 0 . (3.16)

Independently of numerical accuracy, a reinitialization procedure and an extension

procedure are required when using a localized version of the level set method, such as the

narrow band methodology [1] or the PDE-based fast local level set method [118]. Indeed,

when the narrow band is rebuilt, proper values must be assigned to the level set function

and to the data at the new active grid points.

In our implementation, we perform both the reinitialization and the extension with

a single pass of Fast Marching, as proposed in [2]. In this work, the authors build an

extension of the velocity and a temporary signed distance function as a byproduct, at

each iteration. In our case, we run the Fast Marching procedure only occasionally: when

the narrow band needs rebuilding, and otherwise periodically to keep the interface and

the data well-resolved.
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3.3.2 Keeping the point correspondence onto the initial interface

This subsection specifically applies to LSPC. In this case, the interfacial data are the

coordinates of the points of the initial interface. Moreover, due to the extension procedure

described in Subsection 3.3.1, the values of ψ in the whole domain belong to Γ(0).

We show that if the initial correspondences belong to the zero level set of φ0, this

remains true throughout the evolution. We note ν = φ0 ◦ ψ. We obtain from (3.9b)

∂ν

∂t
+ v · ∇ν = 0 . (3.17)

So if ν(., 0) ≡ 0, we have ν(., t) ≡ 0, ∀t. However, a numerical scheme for (3.9b) will in

general move ψ outside of Γ(0). We propose two adaptations to counteract this numerical

drift. We take our inspiration in the work of [100] on solving PDEs mapping into an

implicitly-defined target manifold.

The first adaptation consists in projecting the variation of ψ on the tangent plane of

the initial interface. Without loss of generality, we can assume that φ0 is a signed distance

function. In this case, the projection operator can be written in a very simple form. Thus,

(3.9b) is replaced with

∂ψ

∂t
+
[
I− (∇φ0 ◦ ψ) (∇φ0 ◦ ψ)T

]
Dψ v = 0 . (3.18)

Equation (3.18) is mathematically equivalent to (3.9b), but it turns out to be numerically

advantageous. In particular, the preservation of ν is enforced more directly than in (3.17)

since we now have
∂ν

∂t
= (∇φ0 ◦ ψ) · ∂ψ

∂t
= 0 . (3.19)

The second adaptation consists in projecting the correspondences on the initial inter-

face, in other words replacing each values of ψ by the closest point on Γ0.

ψ ← PΓ0 ◦ ψ . (3.20)

Generally, a closest point algorithm must be used to compute the projection operator PΓ0 .

However, if φ0 is a signed distance function, a simple expression can be used outside of

the skeleton of Γ0:

PΓ0(x) = x− φ0(x)∇φ0(x) . (3.21)

In our implementation of LSPC, we use these two adaptations in combination. We

apply the modified PDE (3.18) at each iteration, and we reproject the values of the corre-

spondence function with (3.21) before starting each reinitialization/extension procedure.

3.3.3 Finite-difference schemes

On the one hand, the proper numerical scheme for the level set evolution equation (3.7a)

and (3.9a) depends on the properties of the velocity field. All the schemes needed in the

numerical experiments of Section 3.4 are taken from [112, 143, 156, 187] and are described

in details in Appendix B.1. On the other hand, a passive advection scheme (cf Appendix
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B.1) can be adopted for (3.7b) and (3.9b) as soon as the velocity field does not depend

either on the interfacial data or on the correspondence, in other words as soon as v is

extrinsic to f and ψ.

Moreover, to estimate one-sided space derivatives we adopt the third-order weighted

essentially non-oscillatory (WENO) scheme derived in [73, 72] (cf Appendix B.2). Finally,

with respect to time differencing, a simple Euler scheme has proven sufficient in our ex-

periments. Of course, we could resort to higher-order schemes, such as the total-variation

diminishing Runge-Kutta scheme of third order devised in [145].

3.3.4 Overview of the algorithm

For sake of clarity, we give an overview of our implementation of LSPC in Algorithm 1

below.

Algorithm 1 Algorithm for level sets with a point correspondence

for all iterations do

Compute the velocity field.

Evolve the level set function by (3.9a).

Evolve the correspondence function by (3.18).

if the narrow band need rebuilding, otherwise periodically then

Reproject the correspondence function by (3.21).

Run the reinitialization/extension procedure.

3.4 Experimental results

In this section, we report on some numerical experiments that demonstrate the robustness

and accuracy of LSID and LSPC in a wide range of situations, including normal and

tangential velocity fields, large deformations, shocks, rarefactions and topology changes.

Whenever the exact solution for the position of the interface, for the data and for the

correspondence are known, we measure and we discuss the numerical error.

3.4.1 Definition of the error measures

The computation of the numerical error is not straightforward. In particular, a direct

comparison of the computed data and correspondence with the exact solution is not pos-

sible since the computed interface and the exact interface differ. In all our experiments,

the error is measured as follows.

To get the error on the position of the interface, we extract the zero isocontour of the

computed level set function using the marching cubes algorithm [89]. At the resulting

vertices, we compute the distance to the exact interface. Then we accumulate the point-

wise errors along the contour to get the mean error (L1 norm), the mean square error (L2

norm), and the maximum error (L∞ norm).
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To get the error of LSID on the interfacial data, we sample the exact interface and we

interpolate the computed data at these points using cubic spline interpolation. Due to the

extension procedure (Subsection 3.3.1), this is equivalent to evaluating the computed data

at the closest points on the computed interface. Then we substract the exact data and we

compute the L1, L2 and L∞ norms. We proceed similarly to get the error of LSPC on the

correspondence.

3.4.2 2D experiments
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Figure 3.1: Results of LSID (column B) and LSPC (columns C&D) in several 2D test

cases.
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Figure 3.2: Some detailed views of Figure 3.1-C2 (left) and Figure 3.1-C4 (right).

Throughout this subsection, the spatial domain is the unit square [0, 1] × [0, 1] and

we use a time step of ∆t = ∆x/10 and a 6∆x-thick narrow band. The reinitializa-

tion/extension procedure is started when the distance of the interface to the borders of

the narrow band gets below 3∆x. In all five experiments, the initial data are a function

of the central angle θ: f0(θ) = sin(3θ).

Figure 3.1 demonstrates LSID and LSPC in several 2D test cases. The curves displayed

in this figure are obtained from the computed level set function using a marching squares

algorithm [89]. At the resulting vertices, we sample the computed data and correspondence

function using cubic spline interpolation.

Each row shows a different experiment. In each experiment, column A shows the initial

interface colored with the initial data. Column B shows the interface at t = 0.2 colored

with the data computed with LSID. The last two columns show the results of LSPC at

the same time instant. In column C, the correspondence function is plotted at one out of

ten vertices. The initial and the current interfaces are plotted too, with a dotted line and

a dashed line respectively. Column D shows the interface colored with the transformed

data f0 ◦ ψ.

The errors for the different experiments at t = 0.2 for different grid sizes (502, 1002,

2002) are given in Tables 3.1-3.5. In the next paragraphs, we describe in detail the purpose,

the setting and the results of each experiment.

Experiment 1: a rotating and shrinking circle.

The initial interface is a circle with radius 0.4 centered at (0.5, 0.5) and the velocity field is

a combination of a unit inward normal speed and of an extrinsic rigid rotation of angular

velocity 5. This example demonstrates that both normal and tangential velocities can be

handled.

Experiment 2: a shrinking square.

The initial interface is a square with side length 0.4 centered at (0.5, 0.5) and the velocity

field is a unit inward normal speed. The evolution forms shocks at the angles of the square.
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Discontinuities develop in the data and in the correspondence. Figure 3.2-left provides a

detailed view of Figure 3.1-C2 with a denser representation for the correspondence. It

shows that the expected discontinuities are fairly well recovered by LSPC.

Experiment 3: an expanding square.

The initial interface is a square with side length 0.2 centered at (0.5, 0.5) and the velocity

field is a unit outward normal speed. The evolution forms rarefactions cones at the angles

of the square. The many-to-one correspondence is successfully recovered by LSPC.

Experiment 4: the merging of two expanding circles.

The initial interface is composed of two circles with radius 0.1 centered at (1/3, 0.5) and

(2/3, 0.5) and the velocity field is a unit outward normal speed. The two circles merge

at t = 2/15 and two discontinuities develop in the data and in the correspondence. With

no surprise, the topology change is handled automatically by the level set method. The

discontinuities in the correspondence are also recovered by LSPC, as illustrated in Figure

3.2-right.

Experiment 5: a circle in a vortex velocity field.

The initial interface is a circle with radius 0.15 centered at (0.5, 0.75) and the evolution

is driven by a non-constant vorticity velocity field that varies sinusoidally in time. It is

defined by

v(x, y) = 4 cos
πt

T

(
sin2(πx) sin(2πy)

− sin(2πx) sin2(πy)

)
. (3.22)

This velocity field at t = 0 is shown in Figure 3.3. This experiment is numerically more
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0
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0.75

1

Figure 3.3: Velocity field used in Experiment 5.

challenging than the previous ones because the flow considerably stretches the interface.

The exact solution is not available at all time, so at first sight we cannot measure the

error. But the velocity reverses at time T/2, so the initial interface and the initial data

should be recovered at time T . This provides a convenient way to evaluate the accuracy

of our results. We take T = 0.4. The errors at t = 0.4 are given in Table 3.5.
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3.4.3 3D experiments

We now demonstrate our method in three dimensions. In this subsection, the spatial

domain is the unit cube [0, 1] × [0, 1] × [0, 1] and we use a time step of ∆t = ∆x/5. In

order to test the robustness to large deformations, we consider the following incompressible

velocity field proposed by LeVeque [87]:

v(x, y, z) = cos
πt

T




2 sin2(πx) sin(2πy) sin(2πz)

− sin(2πx) sin2(πy) sin(2πz)

− sin(2πx) sin(2πy) sin2(πz)


 . (3.23)

This flow is a surimposition of a deformation in the xy plane with a deformation in the xz

plane. As in Experiment 5, the initial interface and the initial data should be recovered

at time T . In the next paragraphs, we apply this velocity field to two different interfaces.

Experiment 6: a deforming plane.

The initial interface is the plane x = 0.5 and the initial data are given by

f0(x, y, z) = sin(10πy) sin(10πz) . (3.24)

In this experiment, we take T = 0.8. Figure 3.4 shows the computed interface, the data

and the correspondence at t=0, 0.2 and 0.4. Rather than plotting the point correspondence

which is difficult to visualize in three dimensions, we color the interface with a checkerboard

texture obtained by composition with ψ. The errors at t = 0.8 for different grid sizes (503,

1003 and 2003) are given in Table 3.6.

Experiment 7: a deforming sphere.

The initial interface is a sphere with radius 0.15 centered at (0.35, 0.35, 0.35) and the initial

data are given by

f0(x, y, z) = (x− 0.35) (y − 0.35) (z − 0.35) / 0.153 . (3.25)

In this experiment, we take T = 1.6. Figure 3.5 shows the results at t=0, 0.4 and 0.8. The

errors at t = 1.6 are given in Table 3.7.

3.4.4 Comments on the errors

In Tables 3.1-3.7, we observe a regular decrease of the L1, L2 and L∞ norms of the errors

of LSID and LSPC when the dimension of the computational grid increases. There are

a few exceptions to this behavior, shown in bold fonts. They can be explained easily: in

Experiment 2 and Experiment 4, the discontinuities that develop in the data and in the

correspondence cause a stagnation of the L∞ norm of the error.
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t = 0 t = 0.2 t = 0.4

Figure 3.4: Results of LSID (top) and LSPC (bottom) in Experiment 6 at different times.

t = 0 t = 0.4 t = 0.8

Figure 3.5: Results of LSID (top) and LSPC (bottom) in Experiment 7 at different times.
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Grid size 50× 50 100× 100 200× 200

L1 2.6e-4 1.6e-4 1.1e-4

Surface error L2 2.7e-4 1.7e-4 1.2e-4

L∞ 3.9e-4 3.0e-4 1.9e-4

LSID L1 1.8e-2 1.2e-2 6.3e-3

Data error L2 2.1e-2 1.4e-2 7.3e-3

L∞ 3.9e-2 2.1e-2 1.2e-2

LSPC L1 7.3e-4 4.7e-4 2.7e-4

Correspondence error L2 8.5e-4 5.6e-4 3.3e-4

L∞ 1.4e-3 1.3e-3 6.4e-4

Table 3.1: Errors for Experiment 1 at t = 0.2.

Grid size 50× 50 100× 100 200× 200

L1 2.0e-5 6.3e-6 3.6e-6

Surface error L2 3.4e-5 1.7e-5 7.4e-6

L∞ 1.0e-4 6.7e-5 4.0e-5

LSID L1 2.4e-2 1.3e-2 6.5e-3

Data error L2 1.1e-1 7.7e-2 5.5e-2

L∞ 7.4e-1 6.7e-1 6.5e-1

LSPC L1 7.1e-3 3.2e-3 1.6e-3

Correspondence error L2 3.1e-2 2.0e-2 1.4e-2

L∞ 1.6e-1 1.4e-1 1.4e-1

Table 3.2: Errors for Experiment 2 at t = 0.2.

Grid size 50× 50 100× 100 200× 200

L1 3.1e-3 1.5e-3 7.2e-4

Surface error L2 4.7e-3 2.3e-3 1.1e-3

L∞ 9.1e-3 4.4e-3 2.1e-3

LSID L1 1.9e-2 1.0e-2 5.4e-3

Data error L2 3.1e-2 1.8e-2 9.6e-3

L∞ 1.0e-1 6.6e-2 4.3e-2

LSPC L1 5.8e-3 2.8e-3 1.4e-3

Correspondence error L2 8.2e-3 4.3e-3 2.3e-3

L∞ 1.9e-2 1.3e-2 8.3e-3

Table 3.3: Errors for Experiment 3 at t = 0.2.

61



Grid size 50× 50 100× 100 200× 200

L1 2.6e-4 7.7e-5 3.8e-5

Surface error L2 3.8e-4 1.4e-4 6.5e-5

L∞ 1.3e-3 1.3e-3 6.8e-4

LSID L1 6.7e-2 1.8e-2 5.6e-3

Data error L2 8.3e-2 5.4e-2 2.7e-2

L∞ 3.7e-1 5.2e-1 3.9e-1

LSPC L1 4.3e-3 1.6e-3 8.1e-4

Correspondence error L2 2.6e-2 1.4e-2 9.8e-3

L∞ 2.1e-1 1.9e-1 1.9e-1

Table 3.4: Errors for Experiment 4 at t = 0.2.

Grid size 50× 50 100× 100 200× 200

L1 6.3e-3 2.2e-3 1.1e-3

Surface error L2 7.0e-3 2.6e-3 1.3e-3

L∞ 1.1e-2 5.3e-3 3.1e-3

LSID L1 2.7e-1 8.5e-2 3.1e-2

Data error L2 3.4e-1 1.3e-1 5.3e-2

L∞ 7.2e-1 3.7e-1 1.9e-1

LSPC L1 1.4e-2 4.2e-3 2.2e-3

Correspondence error L2 2.2e-2 6.7e-3 3.3e-3

L∞ 5.7e-2 2.0e-2 9.8e-3

Table 3.5: Errors for Experiment 5 at t = 0.4.

Grid size 503 1003 2003

L1 5.5e-3 2.9e-3 1.5e-3

Surface error L2 7.4e-3 3.9e-3 2.1e-3

L∞ 1.9e-2 9.5e-3 5.5e-3

LSID L1 1.3e-1 5.6e-2 2.4e-2

Data error L2 1.9e-1 7.3e-2 3.1e-2

L∞ 5.6e-1 1.9e-1 1.1e-1

LSPC L1 2.1e-3 1.6e-3 9.7e-4

Correspondence error L2 2.5e-3 1.9e-3 1.1e-3

L∞ 6.3e-3 6.2e-3 3.9e-3

Table 3.6: Errors for Experiment 6 at t = 0.8.
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Grid size 503 1003 2003

L1 7.2e-3 3.4e-3 1.9e-3

Surface error L2 1.1e-2 5.2e-3 2.8e-3

L∞ 4.4e-2 2.4e-2 1.2e-2

LSID L1 4.5e-2 1.7e-2 7.1e-3

Data error L2 5.6e-2 2.1e-2 9.1e-3

L∞ 1.5e-1 8.3e-2 3.6e-2

LSPC L1 1.5e-2 6.3e-3 3.4e-3

Correspondence error L2 1.8e-2 7.2e-3 4.0e-3

L∞ 4.4e-2 2.0e-2 1.2e-2

Table 3.7: Errors for Experiment 7 at t = 1.6.

3.5 Contributions of this chapter

In this chapter, we have extended the applicability of the level set method to the problems

involving interfacial data and/or an explicit point correspondence.

• We have proposed two systems of coupled Eulerian PDEs:

– the first one can handle passively advected interfacial data,

– the second one can maintain an explicit backward point correspondence from

the current interface to the initial one.

• We have described in details a robust numerical implementation of our approach:

– a procedure for reinitializing the level set function and for extending the inter-

facial data and the point correspondence,

– two adaptations to keep the point correspondence onto the initial interface,

– the adequate numerical finite-difference schemes for the different PDEs.

• We have successfully tested our approach, in 2D and in 3D, in a wide range of

situations, including normal and tangential velocities, large deformations, shocks,

rarefactions and topology changes.

• In all our experiments, we have computed the numerical error and we have com-

mented its variation with respect to the grid size.

A preliminary version of this work has appeared in the International Conference on

Computer Vision [119] and in a technical report [120]. A journal version has been sub-

mitted to Journal of Computational Physics [121].
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Chapter 4

Controlling Topology Changes in

the Level Set Framework

In this chapter, we present two novel methods to exert a control on the topology during a

level set evolution. The ability to automatically handle topology changes is a long claimed

advantage of the level set method over explicit deformable models, but may not be desirable

in some applications where some prior knowledge of the target topology is available. This

is typically the case in biomedical image segmentation, where the topology of the organs

and their mutual topological relations is prescribed by anatomical knowledge.

A topology preserving variant of the level set method has been proposed in [64] to

overcome this problem. The level set function is evolved using a modified update procedure

based on the concept of simple point, borrowed from digital topology [15]. The final mesh

is extracted with a modified topology-consistent marching cubes algorithm. This method

ensures that the resulting mesh has the same topology as the user-defined initial level set.

In this chapter, we propose two improvements to the topology preserving level set

method. Our first extension allows to concurrently evolve several nested interfaces while

preventing topology changes as well as mutual intersections. Unlike existing methods with

explicit deformable models, either based on repulsion forces [116] or on a computationally

intensive mesh-to-mesh intersection checking [91], our approach guarantees the absence

of intersections and only requires efficient local computations. In Chapter 7, we will use

this method to simultaneously extract the inner and outer interfaces of the cerebral cortex

from MRI.

Our second extension applies specifically to the three-dimensional case. It allows to

exert a more subtle control on the topology during a level set evolution. As a matter of

fact, while a strict topology preservation is desired in some applications, it is often too

restrictive. Since the different components of the object are not allowed to merge or to

split up, the number of connected components remains constant throughout the evolution.

This number must be known by the user a priori and the initial interface must be designed

accordingly. Also, the sensitivity to initial conditions, which already limits the applicability

and efficiency of the deformable models framework, is considerably increased. The initial
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model must both have the same topology as the target shape and be close enough to the

final configuration, otherwise the evolution is likely to be trapped in topological deadlocks

including large geometric inconsistencies (see Figure 4.6 and Figure 4.7, row 4, column B).

In contrast, with our method, some prior knowledge of the target topology can be

integrated without requiring that the topology be known exactly. Compared to [64],

the sensitivity to initial conditions is greatly alleviated. Our method allows connected

components to merge and split under certain conditions that ensure that no new handle is

generated and no existing handle is closed. For example, an initial object with a spherical

topology may split into several pieces, go through one or several mergings, and finally

produce a certain number of surfaces, all of which are topologically equivalent to a sphere.

Our approach is based on an extension of the concept of simple point to multi-label

images, that we have called multisimple point. It fills the gap between the standard level

set method and the topology preserving level set method. We demonstrate the strength

of our method in a wide range of numerical experiments, including the segmentation of

the cortical surface and of blood vessels from medical images.

4.1 Background

4.1.1 Topology

Topology is the branch of mathematics that studies the properties of geometric figures

that are invariant through homeomorphisms (bijective bicontinuous mappings), and in

particular without regard to size and absolute position.

In two dimensions, the situations is particularly simple: any closed connected curve

is homeomorphic to a circle. In three dimensions, a strong result of this theory is that

any closed connected orientable surface is homeomorphic to a sphere with some number of

handles. This number of handles is a topological invariant called the genus. For example,

a sphere is of genus 0 and a torus is of genus 1. The genus g is directly related to another

topological invariant called the Euler characteristic χ by the formula χ = 2 − 2g. The

Euler characteristic is of great practical interest because it can be calculated from any

polyhedral decomposition of the surface by χ = V − E + F , where V , E and F denote

respectively the number of vertices, edges and faces of the polyhedron.

The curves and surfaces accounted for by the level set representation are closed and

embedded, so they are ruled by the above results. However, this notion of topology based

on homeomorphisms is unadapted to solid objects, because it completely disregards the

embedding space. For this reason, it is sometimes referred as intrinsic topology.

For instance, a hollow disk has the same intrinsic topology as two disks, a hollow ball

as two balls, and a knotted torus as a simple torus. We have to substitute the notion of

homotopy to the notion of homeomorphism to be able to differentiate between these solids:

two solids are said to be homotopic if one can be continuously deformed into the other.

This alternate notion of topology satisfies our needs. For more details on homotopies, we

refer the reader to an excellent course on algebraic topology [65].
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4.1.2 Digital topology

The purpose of digital topology is to transpose the continuous concepts of topology to

discrete spaces, for example to assign a precise topological meaning to binary images. In

this theory, the central concept of homotopic deformation is clearly defined through the

notion of simple point. An extensive discussion of these concepts can be found in [95].

In this section, some basic notions of digital topology are presented. All the following

definitions are from [15].

A binary image I is composed of a foreground object X and its complement X. Before

trying to define a notion of topology, we need the concept of connectivity, which specifies

the condition of adjacency that two points must fulfill to be regarded as connected. In

2D, two types of connectivity are commonly used: 4- and 8- connectivity. Two pixels are

4-adjacent if they share a face and 8-adjacent if they share at least a corner. In 3D, three

types of connectivity prevail: 6-, 18- and 26-connectivity. Two voxels are 6-adjacent if

they share a face, 18-adjacent if they share at least an edge and 26-adjacent if they share

at least a corner. We note Nn(x) the n-neighborhood of a point x, i.e. the set of grid points

which are n-adjacent to x. We also set N ∗n(x) = Nn(x) \ x. The set of all n-connected

components of a set X is denoted by Cn(X).

In order to avoid topological paradoxes, different connectivities n and n, must be used

for X and X. This leaves us with two pairs of compatible connectivities in 2D, (4,8) and

(8,4), and four pairs in 3D, (6,26), (6,18), (18,6) and (26,6).

The concept of simple point is central to the method of [64] and to our work. A point

of a binary object is said to be simple if it can be added or removed without changing

the topology of both the object and the background, i.e. without changing the number of

connected components, cavities and handles of both X and X.

x

Figure 4.1: Illustration of the concept of simple point in a 2D example (see text).

Figure 4.1 illustrates in a simple 2D example the notion of simple point and its depen-

dency on the choice of a compatible connectivity pair. The binary object X is colored in

dark grey and the point x in light grey. If we choose the (4,8) connectivity pair, x is not

a simple point since its addition/removal connects/disconnects the two dark squares. On

the contrary, if we choose the (8,4) connectivity pair, x is a simple point: the two dark

squares are already connected because they share a corner.

To formally define simple points, we need a few more definitions. The geodesic neigh-
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borhood of x with respect to X of order k is defined recursively by:

N1
n(x,X) = N∗n(x) ∩X ,

Nk
n(x,X) = N∗M (x) ∩X ∩

⋃

y∈Nk−1
n (x,X)

Nn(y) ,

where M = 8 in 2D and M = 26 in 3D.

Finally, the topological numbers of a point x relative to X are:

• In 2D:
T4(x,X) =

∣∣C4

[
N2

4 (x,X)
]∣∣ ,

T8(x,X) =
∣∣C8

[
N1

8 (x,X)
]∣∣ .

(4.1)

• In 3D:
T6(x,X) =

∣∣C6

[
N2

6 (x,X)
]∣∣ ,

T6+(x,X) =
∣∣C6

[
N3

6 (x,X)
]∣∣ ,

T18(x,X) =
∣∣C18

[
N2

18(x,X)
]∣∣ ,

T26(x,X) =
∣∣C26

[
N1

26(x,X)
]∣∣ .

(4.2)

The topological numbers are the number of connected components within certain

geodesic neighborhoods. Following [15], in the above definition of topological numbers

in the 3D case, there are two notations for the 6-connectivity: the notation “6+” and “6”

are used when the dual connectivity is 18 and 26, respectively.

Interestingly, the topological numbers Tn(x,X) and Tn(x,X) with respect to a binary

object X and a compatible connectivity pair (n, n) allow to differentiate between isolated,

interior and border points as well as different kinds of junctions. For instance, an iso-

lated point is unambiguously characterized by Tn(x,X) = 0 while an interior point by

Tn(x,X) = 0. Similarly, a point is simple if and only if

Tn(x,X) = Tn(x,X) = 1 . (4.3)

The computation of the topological numbers is described in [16]. It only involves the 8-

neighborhood and 2D and the 26-neighborhood in 3D, so it is very cheap computationally.

4.1.3 The topology preserving level set method

In [64], the authors use the concept of simple point to design a topology preserving variant

of the level set method. The binary object of interest is the interior of the interface, i.e. the

domain where the level set function φ is strictly negative: X = {x | φ(x) < 0}. The digital

topology of X is preserved during the evolution thanks to a modified update procedure

detailed in Algorithm 2. Basically, the algorithm prevents non-simple grid points from

changing sign in order to retain the initial digital topology throughout the evolution.

The isocontour extraction step also has to be adapted, in order to ensure that the

topology of the generated explicit mesh representation is the same as the digital topology

of the embedding level set function. A standard marching squares or marching cubes
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Algorithm 2 Algorithm for the topology preserving level set method of [64]

for all iterations do

for all grid points do

Compute the new value of the level set function

if the sign does not change then

Accept the new value

else {sign change}
Compute the topological numbers

if the point is simple then

Accept the new value

else

Discard the new value

Set instead a small value of the adequate sign

algorithm [89] does not meet this critical requirement. As a consequence, a topology-

consistent isocontour algorithm must be designed.

The marching cubes algorithm is an efficient isocontour algorithm which generates a

triangulated surface by tessellating each cubic cell of the domain depending on the sign of

the level set function at its corners. The vertices of the triangulated surface are generated

on the cell edges intersecting the isosurface, in other words on those having values of

different signs, and the position of a vertex along an intersected edge is determined by

linear interpolation of the two edge values. The way the vertices are connected to form

triangles is stored in a case table generated off-line. In 3D, the 256 existing cases can be

reduced, modulo symmetries, rotations and sign inversion, to the 15 representative cases

shown in Figure 4.2. The corresponding algorithm in 2D is called the marching squares

algorithm.

In [64], the authors work out a topology-consistent variant of the marching cubes

algorithm by building a specialized case table for each choice of connectivity pair. Each

case table is designed carefully to ensure that the topology of the output triangulated

surface is the same as the digital topology of the level set function. Figure 4.3 illustrates

that the mesh generated by this algorithm highly depends on the chosen connectivity

pair. In this example, when using the (6,26), (6,18), (18,6) or (26,6) pairs, we obtain four

different meshes from the same level set function.

Using the topology preserving level set method and the topology-consistent marching

cubes algorithm in conjunction, with the same connectivity pair (n, n) throughout the

process, guarantees that the output mesh is topologically equivalent to the user-defined

initial level set.
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Figure 4.2: The 15 representative cases of the marching cubes algorithm.

(6,18) (6,26) (18,8) (26,6)

Figure 4.3: Mesh extracted from the same level set function by the topology-consistent

marching cubes algorithm, when using different connectivity pairs.

70



4.2 The topology preserving nested level set method

In this section, we propose an extension of the topology preserving level set method which

allows to concurrently evolve several nested interfaces in the level set framework, while

preventing topology changes as well as mutual intersections. Unlike existing methods with

explicit deformable models, either based on repulsion forces [116] or on a computationally

intensive mesh-to-mesh intersection checking [91], our approach guarantees the absence of

intersections and only require efficient local computations.

4.2.1 Digital topology criterion

We consider N nested digital objects X1,X2, . . . ,XN such that

X1 ⊂ X2 ⊂ . . . ⊂ XN . (4.4)

In order to avoid topological paradoxes, subsequent objects are assigned dual connectivity

pairs. More precisely, the connectivity pair used for Xi is (ni, ni) where

• if i is odd, (ni, ni) = (n, n).

• if i is even, (ni, ni) = (n, n).

Moreover, the borders of the subsequent objects do not intersect. In other words,

∀1 ≤ i < N, ∀x ∈ Xi, x is not ni-adjacent toXi+1. (4.5)

In the above condition, the relevant connectivity types for Xi and Xi+1 coincide thanks

to the alternation of the connectivity pairs. An equivalent condition is

∀1 ≤ i < N, ∀x ∈ Xi, Nni(x) ⊂ Xi+1. (4.6)

The conditions for the preservation of the digital topology of each object and the

prevention of mutual intersections are the following:

• x can be added to Xi if and only if Nni(x) ⊂ Xi+1 and x is a simple point relatively

to Xi and the (ni, ni) connectivity pair.

• x can be removed from Xi if and only if Nni(x) ⊂ Xi−1 and x is a simple point

relatively to Xi and the (ni, ni) connectivity pair.

4.2.2 Description of the algorithm

We now describe our algorithm for topology preserving nested level sets. The principle

of our approach is similar to Subsection 4.1.3. We consider N interfaces represented as

the zero level sets of some functions φi, 1 ≤ i ≤ N , and we monitor the topology of the

digital objects Xi = {x |φi(x) < 0}. Basically, the algorithm prevents the sign changes

that do not satisfy the conditions stated in the previous subsection. See Algorithm 3 for
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more details. For the algorithm to work properly, the initial level set interfaces must be

strictly nested, in the sense that

∀1 ≤ i < N, ∀x, φi(x) < 0 ⇒ ∀y ∈ Nni(x), φi+1(y) < 0 (4.7)

Algorithm 3 Algorithm for the topology preserving nested level set method

for all iterations do

for all grid points do

for all 1 ≤ i ≤ N do

Compute the new value of the level set function φi

if the sign does not change then

Accept the new value

else {sign change}
if strictly negative value then

if ∀y ∈ Nni(x), φi+1(y) < 0 and x is a simple point then

Accept the new value

else

Discard the new value, set instead a small positive value

else {positive value}
if ∀y ∈ Nni(x), φi−1(y) ≥ 0 and x is a simple point then

Accept the new value

else

Discard the new value, set instead a small negative value

The isocontour extraction step also has to be considered. We propose to run the

topology-consistent marching cubes algorithm separately on each level set function, using

the relevant connectivity pairs. However, we have to check carefully that this procedure

guarantees the absence of mutual intersections between the different output meshes. To

this purpose, we examine all the sign configurations of φi and φi+1 in a cubic cell, for

all the possible connectivity pairs. First, we note that an intersection is possible only if

several level set functions change sign in the same cell, so that some triangles of several

interfaces are generated in this cell. Due to the strictly nested property (4.7), this happens

only in a subset of the cases. More precisely:

• in 2D, it only happens when ni = 4 and with the sign configuration shown in Figure

4.4. In this figure, the points of Xi are marked with black dots and the points of

Xi+1 with both black and white dots. The corresponding tessellations, plotted with

a dashed line and a dotted line, do not intersect.

• In 3D:

– When ni = 26, only a single level set function can change sign in the same cubic

cell.
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Figure 4.4: The only sign configuration in 2D yielding two interfaces in a same cubic cell.

As expected, there is no intersection between the two output tessellations.

– When ni = 18, two interfaces can traverse a same cell only in the sign configu-

ration shown in Figure 4.5. Again, there is no intersection.

���
�

Figure 4.5: (see text).

– When ni = 6, the representative cases 1, 2, 3, 5, 7 and 9 for Xi (cf Figure

4.2) must be examined, for all the possible configurations of Xi+1. We do not

display all the cases here. The interested reader can make sure himself that no

intersection is generated.

Finally, we have shown that using our topology preserving nested level set method

along with the modified topology-consistent marching cubes algorithm, with the adequate

connectivity pairs (ni, ni) throughout the process, allows to evolve several nested interfaces

and obtain some mutual intersection free meshes with a certified topology.

4.3 The genus preserving level set method

The simple point condition is a very efficient way to detect and prevent topology changes

during a level set evolution. However, in many applications, a strict topology preservation

is too restrictive.

On the one hand, preventing the creation of topological defects such as handles, which

are difficult to retrospectively correct [63, 51, 82], is very advantageous. But on the other

hand, the changes in the number of connected components during the evolution are less

problematic, because the different components can easily be identified at post-processing

time using standard region growing algorithms. This is also the case for the cavities, which

can be interpreted as background n-connected components.
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Consequently, in three dimensions, we extend the simple point criterion to allow the

different connected components of the object and of the background to merge, split, appear

or disappear while ensuring that no new handle is generated and no existing handle is

closed. Hence, the total genus is preserved during the evolution. With our criterion,

for example, an initial object with a spherical topology may undergo various topology

changes and finally produce a certain number of objects, potentially including one or

several cavities. Our method ensures that all the surfaces of these objects are topologically

equivalent to a sphere, whatever the number and history of splittings, mergings, etc. In

some cases, at post-processing time, a subset of these components is selected by the user

as the final output, typically the largest one if a single spherical component is needed, the

others being imputable to some noise in the input data.

4.3.1 From simple points to multisimple points

We say that a point is multisimple if it can be added or removed without changing the

number of handles. Contrarily to the case of simple points, the addition/removal of a

multisimple point may merge/split the connected components of X and X.

We note Cn(x,X) the set of n-connected components of X \{x} that are n-adjacent to

a point x. If the cardinality of this set is strictly greater than one, the addition or removal

of x involves a merge or a split in X respectively. In order to capture these connectivity

changes, we define two numbers, T+
n (x,X) and T+

n (x,X), which we call extended topological

numbers. The extended topological numbers of a point x relatively to an object X and a

compatible connectivity pair (n, n) are

T+
n (x,X) = |Cn(x,X)| ,
T+
n (x,X) = |Cn(x,X)| .

(4.8)

It can be proven that a point is multisimple if and only if
{
T+
n (x,X) = Tn(x,X) ,

T+
n (x,X) = Tn(x,X) .

(4.9)

The interested reader may refer to [136] for a complete proof by Florent Ségonne. We

note that an isolated point of the object or the background is a multisimple point, so that

foreground components or cavities can be created or disappear during the evolution.

4.3.2 Description of the algorithm

With the concept of multisimple point in hand, we are now ready to describe our genus

preserving level set method. Once again, the principle of our approach is similar to Sub-

section 4.1.3. Some additional bookkeeping is required to maintain a map L of labels

encoding the different connected components of X and X. The detailed procedure is

given in Algorithm 4. When a point changes sign, the simple point condition, more re-

strictive, is checked first, because it is computationally cheaper. If the point is non-simple,

then Cn(x,X) and Cn(x,X) are computed in order to check the multisimple criterion.
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Algorithm 4 Algorithm for the genus preserving level set method

for all iterations do

for all grid points do

Compute the new value of the level set function

if the sign does not change then

Accept the new value

else {sign change}
Compute the topological numbers

if the point is simple then

Accept the new value

Update the map of connected components

else {non-simple point}
Compute the extended topological numbers

if the point is multisimple then

Accept the new value

Update the map of connected components

else

Discard the new value

Set instead a small value of the adequate sign

If the point x is candidate for addition to X, Cn(x,X) can be deduced directly from

the map L, while Cn(x,X) must be computed using a region growing algorithm. Indeed,

the addition of x can change the global connectivity of X, and the number of resulting

connected components generally cannot be determined with local computations. Recipro-

cally, if the point x is candidate for removal from X, Cn(x,X) can be deduced directly

from the map L, while Cn(x,X) must be entirely recomputed.

Hopefully, these non-local computations are not necessary when dealing only with

spherical components, the most common situation in practice. In this case, the compu-

tation of the extended topological numbers only involves local computations. Since no

handle is present in the initial volume, the geodesic neighborhood N k
n(x,X) contains the

necessary information about the connectivity of the different components of Cn(x,X).

Some care must be taken in order to ensure that the map of labels L is correctly

updated. In particular, when new connected components of X or X are created by the

addition or the removal of a multisimple point, some unused labels must be assigned to

them.

Using our variant of the level set method along with the modified topology-consistent

marching cubes algorithm of [64], with the same connectivity pair (n, n) throughout the

process, guarantees that the total genus of the output mesh is equal to the number of

handles of the initial user-defined level set, while the number of connected components

(including cavities) can vary.
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4.4 Experimental results

Our topology preserving nested level set method is not demonstrated in this chapter. We

will use it in Chapter 7 to simultaneously extract the inner and outer interfaces of the

cerebral cortex from MRI.

In this section, we show the interest of using the genus preserving level set method

for image segmentation. We present some numerical experiments on phantom and real

data. In the following, we use a simplistic velocity field, which is a combination of an

intensity-based term and a mean curvature term:

v(x, t) = [λ(I(x)− Ithres)−H(x, t)] N(x, t) , (4.10)

where I denotes the scalar image to be segmented, Ithres is a suitable intensity thresh-

old which we assume to separate the object from the background, and λ is a weighting

coefficient. Note that this evolution law, often called the signed pressure force, must be

regarded as a special case of the region-based image segmentation methods reviewed in

Subsection 2.3.1. The corresponding level set evolution equation is

∂φ

∂t
=

[
−λ(I − Ithres) +

1

n− 1
div

( ∇φ
‖∇φ‖

)]
‖∇φ‖ . (4.11)

More complex images would require more elaborate evolution laws, like the ones de-

scribed in Subsection 2.3.1. However, the choice of a particular segmentation method is

not the matter here. We rather focus on the improvements brought by our approach, with

respect to the management of topology, relatively to the standard level set method and to

the topology preserving method of [64].

4.4.1 Synthetic data

Experiment 1: Segmentation of a ’C’ shape

Figure 4.6 and Figure 4.7 show the segmentation of a phantom ’C’ shape. We compare

the behavior of three different methods: the standard level set method with automated

topology changes (column A), the topology preserving level set method of [64] (column

B) and our genus preserving level set method (column C). The differences of behavior

are circled in the images. We have used two different initializations (a little sphere in

Figure 4.6 and a larger box in Figure 4.7) to test the sensitivity of each method to initial

conditions.

In this simple synthetic example, both standard level sets and genus preserving level

sets yield the expected result. With the first initialization (Figure 4.6), these two methods

behave exactly the same, because no handle is to be created: the surface splits into three

pieces, one piece disappears and the two other pieces eventually merge. With the second

initialization (Figure 4.7), they behave differently: whereas standard level sets temporarily

generate a toroidal topology (row 3, column A), our method prevents the formation of a
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handle (row 3, column B) by delaying a merging until a splitting in an other part of the

object eliminates this eventuality.

In contrast, topology preserving level sets yield poor results. For the two different

initializations, they get trapped in a topological deadlock. Although the final surface has

the correct topology, it has large geometric errors (Figure 4.6 and Figure 4.7, row 4, column

B): a filament linking the two ends of the ’C’ and a separating membrane at the middle

of the ’C’. These topological barriers, generated during the evolution to prevent topology

changes, are difficult to retrospectively correct.

The behavior of our approach corresponds to a trade-off in between standard level sets

and topology preserving level sets. Compared to the former, the formation or closing of

handles is prevented. Compared to the latter, the ability to change topology under certain

conditions greatly alleviates the sensitivity to initial conditions.

A B C

Figure 4.6: Segmentation of a ’C’ shape with standard level sets (column A), with topology

preserving level sets (column B) and with genus preserving level sets (column C).
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A B C

Figure 4.7: Segmentation of a ’C’ shape with standard level sets (column A), with topology

preserving level sets (column B) and with genus preserving level sets (column C).

78



Experiment 2: Formation of cavities

The second synthetic experiment, shown in Figure 4.8, illustrates the ability of our ap-

proach to generate cavities. The object to be segmented is a cube containing 3 large

cavities. The initialization is composed of 10 seed points randomly selected in the whole

domain. During the evolution, the components merge, vanish and produce cavities. As

expected, the final surface is composed of 4 spherical components: the 3 cavities and the

main object. Note that these different components can be easily extracted from the map

of labels maintained during the evolution (cf Algorithm 4).

Figure 4.8: Segmentation of a cube containing three cavities with the genus preserving

level set method, starting from 10 random seed points. The bottom right image shows one

of the reconstructed cavities in some slices of the object along the three axes.

4.4.2 Real data

Experiment 3: Segmentation of the cortical surface

To illustrate the strength of our approach, we apply it to the difficult problem of cortical

surface extraction from MRI. Excluding pathological cases, the cerebral cortex, which is

a highly-folded thin sheet of gray matter, has the topology of a sphere. The extraction of

accurate and topologically correct cortical representations is still an active research area

[51, 63, 82].

Some slices of the input anatomical MR image used in this experiment are displayed

in Figure 4.9. The initial surface is composed of 55 spherical components, automatically

selected in a greedy manner, such that every point is located at a minimal distance of

10mm from the previous ones. Topology preserving level sets could not handle such an

initialization, since the number of components would remain constant throughout the

evolution. As a consequence, only one initial seed could be used, leading to a slower
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segmentation process and potentially to topological deadlocks. As regards standard level

sets, in this experiment they yield a final surface with 18 handles. In contrast, with

our approach, illustrated in Figure 4.10, the components progressively merge and enclose

cavities, without generating handles. The final surface has 6 spherical components: the

cortical surface and 5 small cavities. In this experiment, these are very small cavities due

to image noise. In some other cases, some larger cavities could be caused by pathological

diseases such as tumors.

Figure 4.9: Some slices of the input anatomical MR image used in Experiment 3.

Figure 4.10: Segmentation of the cortical surface from MRI, starting from 55 seed points.

Experiment 4: Segmentation of blood vessels

Finally, we apply our method to the segmentation of blood vessels from MRA (Magnetic

Resonance Angiography). In our study image, the expected topology of the vessels is the

one of several components with no handles. Figure 4.11 shows the surface evolution with

our approach, starting from two very different initializations.

In a first run (top row), the initial surface is composed of 20 seed points, automatically

selected at the brightest locations in the image. The evolution iteratively merges most

of the components, while preserving the total genus. The final surface has 3 spherical

components.

In a second run (bottom row), the surface is initialized with the bounding box of the

image. During the evolution, 9 mergings and 99 splittings occur. The final surface has 91

spherical components, 53 of which are isolated voxels due to image noise.
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Note that despite very different initializations, the final representation is consistent in

both cases. In contrast, topology preserving level sets would require to choose a priori the

number of components, which is very difficult in this experiment Moreover, when using

an initialization with a bounding box, topology preserving level sets yield a final surface

with many geometrical inconsistencies due to topological barriers, displayed in Figure

4.12-right.

Figure 4.11: Segmentation of blood vessels from MRA, starting from two different initial-

izations: 20 seed points (top row) and a bounding box (bottom row).

Figure 4.12: Comparison of the results of the topology preserving level set method of [64]

(left) and of the genus preserving level set method (right) for segmenting blood vessels

from MRA starting from a bounding box.
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4.5 Contributions of this chapter

In this chapter, we have presented two novel methods to exert a control on the topology

during a level set evolution. Our work significantly improves the topology preserving

level set method of [64]. Our first extension allows to concurrently evolve several nested

interfaces in the level set framework while preventing topology changes as well as mutual

intersections. Our method outputs several mutual intersection free meshes with a certified

topology.

Our second extension realizes a trade-off in between standard level sets and topology

preserving level sets. Compared to the former, the formation of new handles and the

closing of existing handles are prevented. Compared to the latter, the ability to change

topology under certain conditions greatly alleviates the sensitivity to initial conditions.

Below, we list the contributions of this chapter:

• We have introduced a new criterion for the preservation of the topology and the

prevention of mutual intersections of several nested digital objects.

• We have described an algorithm to evolve several nested level sets, based on the above

criterion, and we have checked its consistency with the topology-wise marching cubes

algorithm.

• We have introduced a new concept of digital topology called multisimple point, and

we have characterized multisimple points with the topological numbers and some

extended topological numbers. When dealing only with spherical components, the

most common situation in practice, the multisimple point criterion can be checked

efficiently.

• We have described an algorithm for genus preserving level sets, based on the multi-

simple point criterion.

• In some numerical experiments on synthetic data and on real MR images, we have

demonstrated the advantages of the genus preserving level set method over the stan-

dard level set method and the topology preserving level set method.

The content of this chapter is a joint work with Florent Ségonne, from the CSAIL

(Computer Science and Artificial Intelligence Laboratory) at the MIT (Massachusetts

Institute of Technology) and the Athinoula Martinos Center for Biomedical Imaging, at

the MGH (Massachusetts General Hospital), Boston, USA.

The extension of the topology preserving level set method to several nested interfaces

is by Jean-Philippe Pons. As regards the genus preserving level set method, the concept

of multisimple point was initially proposed by Florent Ségonne, with the disadvantage of

being asymmetric with respect to foreground and background. The symmetric version

presented in this thesis was suggested by Jean-Philippe Pons. The level set aspects of
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the implementation are by Jean-Philippe Pons, while the digital topology aspects are by

Florent Ségonne.

Part of this work has previously appeared in a technical report from the CSAIL [138],

and was presented at a workshop of The International Conference on Computer Vision

[139].
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Chapter 5

Improving the Robustness to

Local Minima with Spatially

Coherent Minimizing Flows

This chapter tackles an important aspect of variational deformable models, which has been

largely overlooked so far: the optimization by gradient flows. Classically, the definition

of a gradient depends directly on the choice of an inner product structure. This consid-

eration is largely absent from the deformable models literature. Most authors, overtly or

covertly, assume that the space of admissible deformations is ruled by the canonical L2

inner product. The classical geometric gradient flows reported in the literature are relative

to this particular choice.

In this chapter, we investigate the relevance of using other inner products, yielding

other gradient descents, and some other geometric minimizing flows not deriving from any

inner product. In particular, we show how to induce different degrees of spatial coherence

into the minimizing flow, in order to decrease the probability of getting trapped into irrel-

evant local minima. We show with some numerical experiments that the sensitivity of the

deformable models framework to initial conditions, which seriously limits its applicability

and its efficiency, is alleviated by our application-specific spatially coherent minimizing

flows.

5.1 Motivation

In the following we note Γ a deformable model in Rn and E(Γ) the energy functional to

be minimized. In order to define the gradient of the energy functional, the first step is to

compute its Gâteaux derivatives in all directions, i.e. for all admissible velocity fields v:

δE(Γ, v)
def
= lim

ε→0

E(Γ + εv)− E(Γ)

ε
. (5.1)

Then, we would like to pick the gradient as the direction of steepest descent of the en-

ergy. However, it is not yet possible at this stage: to be able to assess the steepness of
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the energy, the deformation space needs additional structure, namely an inner product

introducing the geometrical notions of angles and lengths. This consideration is largely

absent from the deformable models literature: most authors, overtly or covertly, assume

that the deformation space is ruled by the canonical L2 inner product on Γ:

〈u, v〉L2 =

∫

Γ
u(x) · v(x)dx ,

where dx is the infinitesimal area element (the length in 2D, the area in 3D and so on).

Here, for sake of generality, we model the space of admissible deformations as an inner

product space (F, 〈, 〉F ). If there exists a vector u ∈ F such that

∀v ∈ F, δE(Γ, v) = 〈u, v〉F ,

then u is unique, we call it the gradient of E relative to the inner product 〈, 〉F , and we

note u = ∇FE(Γ). Clearly, each choice of inner product yields its own gradient. This is

often neglected and most authors improperly refer to the gradient of the energy. Thus,

the classical geometric gradient flows reported in the literature (mean curvature flow [54],

geodesic active contours [24, 58, 150], etc.) are relative to the L2 inner product.

A slightly different definition of the gradient, based on a representation of the space

of admissible shapes as a differential manifold, is proposed in [150]. However, this defini-

tion requires the shapes and the deformations to be smooth, the energy functional to be

differentiable, and the deformation space to be a separable Hilbert space. Our definition

is more general since it only demands the existence of the directional derivatives.

The gradient descent method consists in deforming an initial shape Γ0 in the opposite

direction of the gradient. 



Γ(0) = Γ0

dΓ

dt
= −∇FE(Γ)

(5.2)

The problem of the existence and the uniqueness of this minimizing flow is out of the scope

of this article. Indeed, it is highly dependent on the properties of each particular energy

functional. If this evolution exists, it decreases the energy:

dE(Γ)

dt
= −‖∇FE(Γ)‖2F ≤ 0 .

The standard choice for F is the Hilbert space of square integrable velocity fields

L2(Γ,Rn) equipped with its canonical inner product. Very few authors in the deformable

models area have considered using other inner products, whereas this is an established

technique in image registration [163]. Very recently, in the context of shape representation

and analysis, [102, 180] have shown that slightly modifying the L2 inner product allows to

build well-behaved metrics in the space of curves.

Minimizing flows not deriving from any inner product, that is to say evolutions that

decrease the energy, without any gradient interpretation, have also been overlooked so far.

Note that any evolution fulfilling the condition

dE(Γ)

dt
=

〈
∇FE(Γ),

dΓ

dt

〉

F

≤ 0 (5.3)
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is a candidate to solve the minimization problem. This idea, proposed in [150], is applied

by the same authors to the alignment of curves in images in [113]: a complicated term in

the gradient is safely neglected after checking that the evolution still decreases the energy.

The spirit of our work is different. We do not focus either on a specific inner product

or on a particular energy functional. We rather explore general procedures to build some

new inner products and to compute the associated gradients. We also address the design

of non-gradient minimizing flows.

Our motivation is also different. Our primary concern in this work is the sensitivity

of the deformable models framework to initial conditions. There are essentially two ways

of dealing with this problem: positioning the initial shape very close to the expected final

configuration, or using a multiresolution coarse-to-fine strategy, in other words running

the optimization on a series of smoothed and subsampled shapes and input data. In this

chapter, we pioneer a third way to tackle the problem of unwanted local minima: the

careful design of the minimizing flow.

We do not modify the energy, hence the relief of the energy landscape and in particular

the “number” of local minima remains unchanged. But by using an evolution that favors

certain types of directions, we expect to decrease the probability of falling into unwanted

energy basins.

Typically, in many applications, spatially coherent motions are to be preferred over

erratic evolutions. For example, in the tracking problem, the object of interest is likely to

have similar shapes in consecutive frames. So if we init the contour with the result of the

previous frame, it makes sense to encourage the motions which preserve its overall appear-

ance. This way, it may be easier to dodge unexpected local low-energy configurations. A

traditional L2 gradient descent definitely does not have this desirable property since the

L2 inner product completely disregards the spatial coherence of the velocity field.

The rest of this chapter is organized as follows. In Section 5.2, we carry out an ab-

stract study of gradient and non-gradient minimizing flows. In Section 5.3, we propose

some particular flows that yield different degrees of spatial coherence. Finally, in Section

5.4, we show in some numerical experiments that the robustness of the deformable mod-

els framework to local minima is improved by our application-specific spatially coherent

minimizing flows.

5.2 Abstract study

5.2.1 Designing new inner products

We suppose that the space F of admissible deformations is initially equipped with the

inner product 〈, 〉F . Then, for any symmetric positive definite linear operator L : F → F ,

a new inner product can be defined by

〈u, v〉L = 〈Lu, v〉F . (5.4)
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Here, for simplicity, we assume that the domain and the range of L are equal to F . A

similar study is possible if they are strictly smaller than F , under certain conditions, using

the Friedrichs extension of L [4]. But these technical details are out of the scope of this

work.

The following observation is central to our work: if∇FE(Γ) exists and if L is invertible,

then ∇LE(Γ) also exists and we have

∇LE(Γ) = L−1∇FE(Γ) . (5.5)

Indeed:

∀v ∈ F, δE(Γ, v) = 〈∇FE(Γ), v〉F
=
〈
LL−1∇FE(Γ), v

〉
F

=
〈
L−1∇FE(Γ), v

〉
L
.

The above procedure is of great practical interest because it allows to upgrade any

existing L2 gradient flow. However, it is not completely general in the sense than all inner

products cannot be expressed in this form. This construction is illustrated in Subsections

5.3.1 and 5.3.2 by some particular inner products yielding spatially coherent gradient flows.

This said, if F is a separable Hilbert space (i.e. a separable inner product space

complete with respect the norm ‖‖F ), the Riesz representation theorem tells us that any

inner product 〈, 〉L such that

∃C > 0, ∀u ∈ F, ‖u‖L < C ‖u‖F

can be written in the form of (5.4). This suggests that our procedure accounts for a wide

range of inner products.

5.2.2 Designing new minimizing flows

In this subsection, we follow the inverse approach. Instead of working on the inner product,

we apply a linear operator L : F → F to the gradient, and we study the properties of the

resulting flow:
dΓ

dt
= −L ∇FE(Γ) . (5.6)

This naturally sets up a hierarchy among different types of operators:

• if L is positive, the energy is non-increasing along the flow (5.6). Indeed,

dE(Γ)

dt
= −〈∇FE(Γ), L∇FE(Γ)〉F ≤ 0 .

• if L is positive definite, the energy strictly decreases along the flow (5.6) until a

critical point of the original gradient flow (5.2) is reached.

• if L is symmetric positive definite and invertible, the flow (5.6) coincides with a

gradient descent relative to the inner product 〈, 〉L−1 , as defined in 5.4).
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The third case is contained in Subsection 5.2.1. The second case is illustrated in Subsection

5.3.3 by a Gaussian smoothing of the gradient along the deformable model, in order to

generate a smoother minimizing flow.

5.3 Spatially coherent minimizing flows

In this section, we propose some minimizing flows yielding different degrees of spatial

coherence. We insist on the fact that this spatial coherence has nothing to do with an

eventual regularity term in the energy functional. We do not modify the energy, so the

regularity constraint on the deformable model remains unchanged. We modify the tra-

jectory of the minimizing flow, by favoring spatially coherent motions, but this does not

condition the regularity of the final shape.

In the following, we make an intense use of differential geometry. We refer the reader

to [43] for the basic notions.

5.3.1 The H1 gradient flow

A first way to introduce a notion of spatial coherence is to use an inner product that

penalizes not only the length of the velocity field, but also its variations along the de-

formable model. To this end, we consider the canonical inner product of the Sobolev

space H1(Γ,Rn) of square integrable velocity fields with square integrable derivatives:

〈u, v〉H1 =

∫

Γ
u(x) · v(x)dx +

∫

Γ
∇Γu(x) · ∇Γv(x)dx ,

where ∇Γ denotes the intrinsic gradient on Γ. The H1 inner product is related to the L2

inner product by (5.4) with L(u) = u − ∆Γu, where ∆Γ denotes the intrinsic Laplacian

operator on Γ, often called the Laplace-Beltrami operator.

As a result, ∇H1E is a smoothed version of ∇L2E which can be obtained either by

solving an intrinsic heat equation with a data attachment term:

∆Γu = u−∇L2E , (5.7)

or by finding the optimum of:

arg min
u

∫

Γ
|∇Γu(x)|2dx +

∫

Γ
|u(x)−∇L2E(x)|2dx .

To sum up, using the H1 inner product instead of the L2 inner product leads to a smoother

gradient flow.

5.3.2 Motion decomposition

Another simple and useful procedure to design new inner products yielding spatially coher-

ent flows, is to decompose the deformation space into a sum of several mutually orthogonal

linear subspaces, and to apply different penalty factors to the different types of motions.
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Typically, the subspaces are chosen according to an application-specific hierarchy of the

motions. For example, rigid/non-rigid, affine/non-affine, etc.

We suppose that such an orthogonal (with respect to 〈, 〉F ) decomposition of the de-

formation space F into N closed linear subspaces is available:

F = F1 ⊥ · · · ⊥ FN .

Then a new inner product is derived from 〈, 〉F by applying the procedure of Subsection

5.2.1 with

L =
N⊕

i=1

λi IdFi ,

where ∀i, λi > 0. The lower is λi, the shorter is the length of the velocity fields of Fi, and

the stronger will be this type of motion in the new gradient flow.

Obviously, L is symmetric positive definite and invertible. If ∇FE exists, so does ∇LE
and

∇LE =

N∑

i=1

1

λi
ΠFi∇FE , (5.8)

where ΠFi denotes the orthogonal projection on the ith subspace. Of course, if all λi are

equal to 1, ∇LE coincides with ∇FE.

We apply this idea to two useful cases. In the first case, we decompose the velocity field

into a translation, an instantaneous rotation, a rescaling motion and a non-rigid residual.

In the second case, we isolate the instantaneous affine motion.

In the following, we note M(Γ) =
∫

Γ dx the mass of the deformable model (its length

in 2D, its area in 3D and so on) and f =
(∫

Γ f(x)dx
)
/M(Γ) the average of a scalar or

vector quantity on Γ. With this notation in hand, the centroid of the deformable model

writes x.

Translation, rotation and scaling

In this paragraph, we focus on the two-dimensional and three-dimensional cases. The

expressions below are for the 3D case, but can easily be adapted to 2D.

We note T , R and S the subspaces of the translations, the instantaneous rotations

around the centroid, and the scaling motions centered on the centroid, respectively:

T =
{
u : x 7→ t | t ∈ R3

}
,

R =
{
u : x 7→ (x− x) ∧ ω | ω ∈ R3

}
,

S = {u : x 7→ s(x− x) | s ∈ R} .

These subspaces are mutually orthogonal for the L2 inner product. We suppose that

they are included in the space of admissible deformations F , and that the latter is ruled

by the L2 inner product. We note G the orthogonal complement of these subspaces:
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F = T ⊥ R ⊥ S ⊥ G. The orthogonal projection of a velocity field u on T , R and S

writes:

ΠTu(x) = u ,

ΠRu(x) = (x− x) ∧
∫

Γ u(x) ∧ (x− x)∫
Γ ‖x− x‖2

,

ΠSu(x) =

∫
Γ u(x) · (x− x)∫

Γ ‖x− x‖2
(x− x) .

The new gradient is deduced from the L2 gradient by (5.5) with

L−1 = Id +

(
1

λT
− 1

)
ΠT +

(
1

λR
− 1

)
ΠR +

(
1

λS
− 1

)
ΠS .

The weights λT , λR and λS are adapted to the user’s needs in each particular applica-

tion. For example:

• Boost rigid+scaling motions: λT , λR, λS � 1,

• Boost rigid motions: λT , λR � 1, λS = 1,

• Boost translations: λT � 1, λR = λS = 1.

Affine motion

We can apply this same idea to the subspace A of instantaneous affine motions:

A =
{
u : x 7→ Ax + b | A ∈ Rn×n, b ∈ Rn

}
.

The L2 orthogonal projection on this subspace writes:

ΠAu(x) = Ax + b ,

where

A =

[∫

Γ
u(x)(x− x)T

] [∫

Γ
(x− x)(x− x)T

]−1

,

b = u−Ax .

5.3.3 Intrinsic Gaussian smoothing

We apply the procedure of Subsection 5.2.2 to design a smoothed version of the L2 gradient

flow. To some extent, it resembles the H1 gradient flow of Subsection 5.3.1. However,

here, we apply an ad hoc procedure to the L2 gradient, a Gaussian smoothing along the

deformable model, without resorting to an inner product.

We define a linear intrinsic smoothing operator which may be seen as the counterpart

on Γ of Gaussian smoothing in Rn−1, by considering the solution ũ of the intrinsic heat

equation on Γ with initial condition u:




ũ(., 0) = u
∂ũ

∂τ
= ∆Γ ũ

. (5.9)
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We then note Lτ u its solution ũ(., τ) at time τ ≥ 0. We use a flow (5.6) based on Lτ

to drive the deformable model. In other words, to get the new flow, we diffuse the L2

gradient isotropically along Γ during a time τ . The larger is τ , the smoother is the flow.

On the one hand, Lτ is symmetric positive. In particular, the new flow decreases the

energy.

• Lτ is symmetric:

〈L0(u), v〉L2 = 〈u,L0(v)〉L2 = 〈u, v〉L2 ,
∂

∂τ
〈Lτ (u), v〉L2 =

∂

∂τ
〈u,Lτ (v)〉L2 = −〈∇Γu,∇Γv〉L2 .

• Lτ is positive:

〈Lτ (u), u〉L2 =
〈
Lτ/2Lτ/2(u), u

〉
L2 =

∥∥Lτ/2(u)
∥∥
L2 ≥ 0 .

But the other hand, the inversion of Lτ for τ > 0 is an ill-posed anti-diffusive process. So

a gradient interpretation is not available.

5.4 Experimental results

Our approach can be applied to virtually any deformable model evolution. Below, we show

some particular applications which demonstrate its interest.

The content of this work is not specific to a particular geometric representation of the

deformable model. In our experiments, we use the level set method (cf Subsection 2.1.2),

motivated by its numerical stability and its ability to handle topology changes automati-

cally. The implicit representation also offers an elegant expression of the Laplace-Beltrami

operator [13] (cf Appendix B.3), and of the average of a quantity along the deformable

model [118] (cf Appendix A.2).

The additional computational cost of our approach depends on the type of minimizing

flow we consider. The extra time is barely noticeable for the rigid plus scaling and affine

flows of paragraphs 5.3.2 and 5.3.2. The latter only require to compute a handful of

integrals on the deformable model. The smooth minimizing flows of Subsections 5.3.1

and 5.3.3 are more demanding. In 2D, the implicit diffusion equations (5.7) and (5.9) are

equivalent to some convolutions with respect to the curvilinear coordinate on Γ. In 3D

and more, they must be solved with some iterative methods, for each time step.

5.4.1 Shape warping

We illustrate our approach in the problem of shape warping. In this context, the energy

functional to be minimized is a measure of dissimilarity between the evolving shape and a

target shape. The study of shape metrics is still an active research area [183, 181, 26, 180],

and there are many candidates for the dissimilarity measure. In our experiments, we use

a differentiable approximation of the well-known Hausdorff distance, as proposed in [26],

to warp the contours of two different hands.
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Figure 5.1 compares the evolution of the deformable model when using the L2 gradient

descent (top row) and a modified gradient descent favoring rigid plus scaling motions

(bottom row) as in paragraph 5.3.2. Both evolutions achieve a perfect warping. However,

despite the similarity of the two input shapes, the L2 gradient flow goes through some

states of completely different appearances. The trajectory followed by this flow looks

particularly inefficient and unnatural, because the notion of length contained in the L2

inner product is very far from our intuition. In contrast, the behavior of our gradient flow

is natural and visually pleasing.

In Figure 5.2, we show a three-dimensional warping example from a Teddy bear to

Hayao Miyazaki’s character Totoro. We use here the W 1,2-norm of the difference of the

distance functions as proposed in [26]. Once again, a modified gradient descent favoring

rigid plus scaling motions yields better results than the L2 gradient descent.

This suggests that our approach can infer relevant correspondences between the two

shapes, as a byproduct of the warping process. This point-to-point matching is obtained

by tracking the points along the evolution. It does not make much sense with a L2 gradient

flow, because the latter yields a strictly normal velocity field. But when using our approach,

the velocity field has a meaningful tangential part. Maintaining the point correspondence

during the evolution is straightforward with an explicit geometric representation. It is also

feasible with a level set representation, with the extension proposed in Chapter 3.

5.4.2 Tracking

We now illustrate the better robustness of spatially coherent minimizing flows to local

minima, in the problem of tracking an object in a monocular video sequence. We have

used the boundary-based energy of the geodesic active contours method [24], to track a

moving hand. Note that a region-based segmentation method, as the ones described in

Subsection 2.3.1, could give better results on our particular test sequence. However, our

concern here are not the results themselves but rather the improvements brought by our

approach.

Figure 5.3 compares the evolution of the deformable model when using the L2 gradient

descent (top row) and a modified gradient descent favoring affine motions (bottom row)

as in paragraph 5.3.2. Due to large displacements between consecutive frames, the L2

gradient flow fails and the deformable model finally locks between two fingers, whereas

our gradient flow manages to dodge this unwanted low-energy configuration.

5.5 Contributions of this chapter

The contributions of this chapter span three different levels:

• At the conceptual level, we have highlighted the impact of the inner product structure

of the deformation space on the behavior of the deformable models framework.
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Figure 5.1: Shape warping with the L2 gradient descent (top) and with a modified gradient

descent favoring rigid plus scaling motions (bottom): λT = λR = λS = 0.025.

Figure 5.2: 3D shape warping with the L2 gradient descent (top) and with a modified

gradient descent favoring rigid plus scaling motions (bottom): λT = λR = λS = 0.025.

Figure 5.3: Tracking a hand in a video sequence with the L2 gradient descent (top) and

with a modified gradient descent favoring affine motions (bottom): λA = 0.025.
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• At the methodological level, we have proposed some general procedures to build

several families of inner products as well as some minimizing flows not deriving from

any inner product.

• At the application level, we have proposed some particular minimizing flows which

introduce different degrees of spatial coherence in the evolution. We have shown

in some numerical experiments that these evolutions, as they better fit our intuitive

notion of deformation cost, and as they mimic the behavior of the objects of interest,

are at the same time more pleasing visually and more robust to local minima.

The content of this chapter is a joint work with Guillaume Charpiat, from the ENS

(École Normale Supérieure), Paris, France. The initial idea and the abstract study pre-

sented in this thesis were done concurrently by Guillaume Charpiat and Jean-Philippe

Pons. The motion decomposition approach is by Jean-Philippe Pons. The implementa-

tion and experiments are by Guillaume Charpiat and the redaction is by Jean-Philippe

Pons. This work has been presented at the International Conference on Computer Vision

[27].
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Part II

Applications
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Chapter 6

Area Preserving Cortex Unfolding

In this chapter, we propose a novel deformable models method to generate unfolded area

preserving representations of the cerebral cortex. The cortical surface is evolved with

an application-specific normal motion, and an adequate tangential motion is constructed

in order to ensure an exact area preservation throughout the evolution. We describe

the continuous formulation of our method as well as its numerical implementation with

triangulated surfaces and level sets. A straightforward level set implementation of cortex

unfolding is not feasible due to the absence of parameterization. The use of the level set

representation for this application is made possible by the contribution of Chapter 3 for

maintaining a point correspondence during the evolution. We show the applicability of

our approach by computing inflated representations of the cortex from real brain data.

6.1 Motivation

Building unfolded representations of the cerebral cortex has become an important area

of research in medical imaging. On a simplified geometry, it becomes easier to visualize

and analyze functional or structural properties of the cortex, particularly in previously

hidden sulcal regions. Moreover, if some metric properties of the cortical surface can be

preserved while eliminating folds, it makes sense to map the data from different subjects

in a canonical space for building brain atlases [141].

Three types of unfolded reprentations have been proposed in the literature: inflated,

that is to say a smoothed version of the cortex retaining its overall shape, spherical and

flattened (see [52] and references therein). Three metric properties have been considered:

geodesic distances, angles and areas. Unfortunately, preserving distances exactly is im-

possible because the cortical surface and its simplified version will have different Gaussian

curvature [43]. Moreover, it is not possible to preserve angles and areas simultaneously.

As a consequence, early methods for cortex unfolding have settled for variational ap-

proaches, leading to a variety of local forces encouraging an approximate preservation of

area and angle while smoothing the surface [36, 22]. In [52], the authors point out that

the result of such methods are not optimal with respect to any metric property, and work
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out a method which focuses on distances only and minimizes their distortion.

A lot of work has focused on building conformal representations of the cortical surface,

i.e. one-to-one, onto, and angle preserving mappings between the cortex and a target

surface, often a sphere or a plane (see [61, 7] and references therein). These approaches use

a well known fact from Riemannian geometry that a surface without any handles, holes

or self-intersections can be mapped conformally onto the sphere, and any local portion

thereof onto a disk.

In our work we focus on area preservation, motivated by a general result which ensures

the existence of an area preserving mapping between two diffeomorphic surfaces of the

same total area [107]. A method for building such an area preserving mapping for the

visualization of medical structures has been proposed in [189, 8]. In addition, this method

allows to pick, among all existing area preserving mappings, a local minimum of metric

distortion. This minimum is in some sense the nearest area preserving map to a conformal

one. This mathematical formulation is very promising but few numerical experiments

are presented in the paper. Moreover, the numerical implementation of their method is

feasible only for planar or spherical maps.

We propose a method to evolve the cortical surface while preserving local area, and we

use it to build area preserving inflated representations of the cortex. Our method relates

both to [189, 8] and [36, 22, 106]. We evolve a surface in time as in [36, 22, 106], whereas

the method of [189, 8] is static and generates a single mapping between the cortex and a

sphere. We achieve an exact area preservation as in [189, 8], whereas in [36, 22, 106] area

preservation is only encouraged by tangential forces. Furthermore, the latter approaches

only have a discrete formulation and are specific to one type of deformable model, whereas

ours is continuous and can be applied numerically both to triangulated surfaces and level

sets.

To achieve this, we treat the normal and the tangential components of the motion

differently. On the one hand, the normal motion controls the geometry of the surface. It

is application-specific and is chosen by the user. For example, it can be a mean curvature

motion in order to obtain a multiresolution representation of the cortex, or it can be a

force pulling the surface towards a target shape, typically a sphere. On the other hand,

given the selected normal motion, an adequate tangential motion is constructed in order

to ensure an exact area preservation throughout the evolution.

The rest of the chapter is organized as follows. In Section 6.2, we present a general

method for building an area preserving motion for a codimension one manifold in any

number of dimensions. Given a desired normal motion, we compute a non-trivial tangential

motion such that the evolution is area preserving. In Section 6.3, we demonstrate the

applicability of our method by computing area preserving inflated representations of the

cortex from real brain data.
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6.2 Area preserving surface motion

In this section we first explicitly state the mathematical condition for the preservation

of the local area of an evolving codimension one manifold in any number of dimensions.

This condition ensures that the total area, as well as the area of any patch, is preserved.

When the total area needs not to be preserved, we can nonetheless preserve the relative

local area, i.e. the ratio between the area of any patch and the total area. We then derive

a procedure to build an area preserving or relative area preserving tangential motion.

Finally we describe the numerical implementation of our method with two major types

of deformable models: triangulated surfaces and level sets. In the following, we make an

intensive use of differential geometry. We refer the reader to [43, 38] for the basic theory.

Note that, contrary to conformal approaches, our formulation is not limited to a genus

zero surface and applies to any topology.

6.2.1 The total, local and relative area preserving conditions

Let us consider an hypersurface Γ in Rn evolving with a velocity field v. We define the

local areal factor J at a point of Γ as the ratio between the initial area and the current area

of an infinitesimal patch around this point. So an increasing J indicates a local shrinkage

and a decreasing one indicates a local expansion. The preservation of total area, local

area, and relative area respectively write

J̄ = 1 (6.1a) ; J = 1 (6.1b) ; J = J̄ (6.1c) , (6.1)

where ¯ is the average of a quantity along Γ. J̄ is related to the variation of the total area

through A0 = A J̄ . The local areal factor J of a material point evolves according to

DJ

Dt
+ J divΓv = 0 , (6.2)

where D/Dt denotes the material derivative, and divΓ denotes the intrinsic divergence

operator on Γ. As a consequence, the condition to be verified by the velocity field for the

preservation of total area, local area and relative area are respectively

divΓ v = 0 (6.3a) ; divΓ v = 0 (6.3b) ; divΓ v = divΓ v (6.3c) . (6.3)

Note that the right-hand side of (6.3c) is spatially constant but is time-varying. Also, the

preservation of local area is the combination of the preservation of total and relative area,

so in the sequel we focus on (6.3a,c) only.

If we decompose v into its outward normal component vN and its tangential part vT ,

(6.3a,c) become

H vN = 0 (6.4a) ; divΓ vT + (n− 1)H vN = (n− 1)H vN (6.4b) , (6.4)

where N is the outward normal and H is the mean curvature. In the left-hand side of

(6.4b), we now better see the two different sources of local expansion/shrinkage: one is

tangential motion, the other is the association of normal motion and curvature.
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For a plane curve C embedded in R2 deforming with velocity v = αT + βN, the

relative area preservation condition boils down to ∂α
∂s + κβ = κβ , where κ denotes the

curvature of C. This particular case has been used (with the inward normal convention) in

[103] in the Lagrangian curve evolution framework: the authors build a tangential velocity

that achieves a uniform redistribution of grid points along the curve, in order to overcome

numerical instabilities caused by merging of grid points or by formation of the so-called

swallow tails.

In [106], the authors design tangential forces which tend to equalize the surface of the

faces of an evolving 3D simplex mesh, in order to maintain its geometric quality. Their

approach is successful but, in contrast with our work, it only has a discrete formulation

and cannot be generalized to other types of deformable models.

6.2.2 Designing a relative area preserving tangential motion

We now outline our method to build a relative area preserving velocity field. We are

given a normal speed vN . Let us consider the solution η of the following intrinsic Poisson

equation on Γ:

∆Γ η = (n− 1)
(
H vN −H vN

)
, (6.5)

where ∆Γ denotes the Laplace-Beltrami operator on Γ. Finding a solution of (6.5) is

possible because the right-hand side is of zero average [128]. Moreover, the solution η is

unique up to a constant. Then one can check that

v = vNN−∇Γ η (6.6)

verifies (6.4). Note that the normal motion is not altered since ∇Γ η, the intrinsic gradient

of η, is purely tangential, and that the resulting velocity field is non local: it depends on

the whole shape and motion of the interface.

For a given normal speed, there are in general an infinity of admissible area preserving

tangential velocity fields. The particular solution derived from (6.5) is a reasonable choice

since our method outputs a null tangential motion if the normal motion is already area

preserving.

In general, the given normal speed vN does not preserve total area, and our method

can only enforce a relative area preservation. If a strict area preservation is required, we

can either apply an adequate rescaling at a post processing step, or integrate in the normal

motion a rescaling motion −H vN (x ·N)N so that the total area is preserved.

6.2.3 The area relaxation term

Numerical implementations of the above method may yield deceiving results. Indeed, in

practice, (6.5) can only be solved up to a certain tolerance, and the surface evolution is

subject to discretization errors. As a consequence, the area preserving condition cannot be

fulfilled exactly and the area of interface patches may drift slowly from its expected values.

Thus, area preservation is likely to be broken when the number of iterations increases.
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We augment our method with an area relaxation term which encourages a uniform

area redistribution whenever area preservation is lost. This feature is crucial to counteract

local drifts in area due to numerical errors. We insist on the fact that this additional term

is not a numerical heuristic: it is fully consistent with the mathematical formulation given

above. Let us now seek the solution of

∆Γ η = (n− 1)
(
H vN −H vN

)
+ λ(1− J

J̄
) , (6.7)

where λ is a weighting parameter. We build the velocity field from (6.6) as previously.

Using (6.2) we get that

D(J̄/J)

Dt
= λ(1− J̄/J) . (6.8)

Hence the ratio J̄/J relaxes exponentially towards unity with time constant 1/λ. In our

problem we have J = J̄ = 1 for t = 0 so that the solution of (6.8) is J = J̄ for all t as

desired. This was already the case without the relaxation term, so at first sight this term

is of no use. But in practice, numerical errors can make J̄/J incidently deviate from unity.

Thanks to the area relaxation term, it is now possible to recover from this numerical drift.

6.2.4 Numerical methods

For each time step we have to solve the intrinsic Poisson equation (6.7). Apparently it

represents a huge computational cost. Hopefully, only the very first iteration is expensive.

Indeed, for subsequent iterations, we use the solution η of time t − 1 as the initial guess

for time t. If the shape and the normal motion change slowly relatively to the chosen

time step, the guess is likely to be very close to the actual solution, and solving (6.7) is

computationally cheap.

Triangulated surfaces

Solving a Poisson equation on a triangulated surface can be done with a finite element

technique as proposed in [7]. Equation (6.7) then translates into a linear system with a

sparse symmetric positive semi-definite matrix and can be solved efficiently with numerical

iterative methods such as the conjugate gradient method [11].

Level sets

At first sight, a level set implementation of cortex unfolding is not feasible. Indeed, as

discussed in Chapter 3, a level set representation conveys a purely geometric description

of the interface. The tangential part of the velocity vanishes in the level set evolution

equation. As a consequence, it is impossible to maintain a point correspondence or to

handle interfacial data with the straightforward level set method. We use the LSPC

method (Level Sets with a Point Correspondence) of Subsection 3.2.4 to make the level

set method applicable to cortex unfolding.
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In order to solve the Poisson equation in the implicit representation, we use a finite-

difference discretization of the Laplace-Beltrami operator proposed in [13], and detailed in

Appendix B.3. Equation (6.7) then translates into a linear system with a sparse symmetric

indefinite matrix suited for a minimum residual method [11]. To compute the average of

a quantity along the interface, we use a smoothed version of the Dirac function on the

Cartesian grid as in [118] (cf Appendix A.2).

6.3 Experimental results

In this section, we focus on a level set representation of the deformable model and we

demonstrate the strength of our approach in some numerical experiments on synthetic

and real data.

6.3.1 Synthetic data

In Figure 6.1 we study the test case of a shrinking (left) or expanding (right) square with

a null tangential velocity (top) and with a relative area preserving tangential velocity

computed with our method (bottom). The graphical conventions are similar to the exper-

iments of Section 3.4: the initial curve and the final curve are plotted with a dotted line

and a dashed line respectively, and the correspondence from the final curve to the initial

one is represented with arrows.

As discussed in Chapter 3, when using a null tangential velocity (top), a discontinuity in

the correspondence develops in the presence of a shock and a many-to-one correspondence

appears in the presence of a rarefaction (cf Section 3.4, Experiments 2&3 respectively).

In contrast, when using a relative area preserving tangential velocity (bottom), the data

are uniformly redistributed along the curve as expected.

In Figure 6.2 we study the case of a textured free-hand folded figure evolving under

the averaged mean curvature flow, with (bottom) and without (top) an area preserving

tangential velocity. This latter case illustrates that interfacial data may be considerably

altered without an adequate tangential velocity. Indeed, note how the large interior part

with high curvature of the initial curve (first column) turns into a much smaller patch

on the final curve (columns 2&3, top row). The corresponding data are unacceptably

distorted. We insist on the fact that this phenomenon is generated by the evolution itself.

It is not an artefact of our method for maintaining the point correspondence in the level

set framework.

We finish with a synthetic cortex unfolding example in Figure 6.3. We simulate a tumor

on the left temporal gyrus of a subsampled human brain (left). The area of the tumor

is considerably underestimated if the cortex is unfolded with a regular mean curvature

flow (middle). This does not occur if we use a relative area preserving tangential velocity

(right).
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Figure 6.1: A shrinking (left) or expanding (right) square with (bottom) and without (top)

a relative area preserving tangential velocity.

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Figure 6.2: 2D unfolding with (bottom) and without (top) a relative area preserving

tangential velocity.
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Figure 6.3: Unfolding a synthetic cortex with (right) or without (middle) a relative area

preserving tangential velocity.

6.3.2 Real data

We now compute inflated representations of the cortex from real brain data. Our method

is quite flexible through the choice of the normal motion, and we could obtain a sphere

or any target shape by designing a force pulling the surface towards the target. In order

to obtain smoothed versions of the cortex, we use the well-known and easy-to-implement

motion by mean curvature vN = −H or a variant with an additional rescaling motion

vN = −H +H2 (x ·N) in order to preserve the total area.

In the following experiments, the input of our algorithm is a 128×128×128 level set of

the pial surface of a human brain extracted from a 256×256×256 anatomical T1-weighted

MR image with the segmentation algorithm presented in Chapter 7. To give an idea of

the resolution of the surface, the marching cubes algorithm [89] produces roughly 100000

triangles from this level set.

In Figure 6.4, in order to show the benefits of area preservation, we compare three

inflated representations. The first one (row 2) was obtained with the nice method of

Fischl et al. [52]. This method minimizes metric distortion but does not consider area.

The second inflated cortex (row 3) was obtained with a standard mean curvature motion

with a null tangential motion. The third one (row 4) was obtained with a mean curvature

motion plus an area preserving tangential motion computed with our method. As expected,

the geometries of last two representations are identical since the normal motion is the same

in both cases. We display the histograms of the normalized areal factor J/J̄ in each case

(column d). Not surprisingly, area distortion is far smaller when using our method. In

this example, it is less that 5 percent almost everywhere. More interestingly, the overall

aspect all the representations is similar, which suggests that our method does not induce

a blow-up in metric distortion. Moreover, as shown in Table 6.1, the amount of area

distortion decreases when the area relaxation parameter λ increases. On the other hand,

higher values of λ require to use smaller time steps and hence to perform a larger number

of iterations.
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Figure 6.4: Several views (columns A-D) of the initial surface (row 1) and of the inflated

representations obtained with the popular method of Fischl et al. (row 2), with a stan-

dard mean curvature motion (row 3) and with our method (row 4). Histograms of the

normalized areal factor J/J̄ in each case (column D).

λ 1 3 5 10

σ(J/J̄) 0.060 0.041 0.035 0.027

Table 6.1: Standard deviation of J/J̄ against λ when using our method.
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6.4 Contributions of this chapter

In this chapter, we have presented a novel method to generate unfolded area preserving

representations of the cerebral cortex: depending on the normal motion driving the ge-

ometry, an adequate tangential motion is computed to ensure an exact area preservation.

The contributions of this chapter are the following:

• We have stated the mathematical condition for the preservation of the local area of

an evolving codimension one manifold in any number of dimensions.

• We have proposed a procedure to build an area preserving tangential velocity field

from a given normal speed. We have described an implementation of this procedure

with triangulated surfaces and with the level set method.

• We have applied this procedure to cortex unfolding with a preservation of the relative

area throughout the evolution. We have demonstrated the efficiency of the approach

on real brain data and we have compared it with a popular existing method.

This work has been published in the International Conference on Medical Imaging and

Computer-Assisted Intervention [122].
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Chapter 7

Head Segmentation from MRI

under Topological Constraints

We have designed a method to automatically and accurately extract surface meshes of

several head tissues from anatomical MR images. The emphasis of our method is on guar-

anteeing some topological properties of the output meshes, such as spherical topology,

absence of self-intersections and mutual intersections. Our method is a successful com-

bination of hidden Markov random field classification [185], of a region-based deformable

models method, and of the topology preserving nested level set method proposed in Chap-

ter 4. The latter allows to prevent mutual intersections between the inner and outer

interfaces of the cerebral cortex. We demonstrate each step of our approach on real brain

data.

7.1 Motivation

7.1.1 Problem statement

In brain imaging, the extraction of geometrical models of the head and of brain structures,

in particular of the cortical surface, is often a first step in the study of brain anatomy and

function. The morphometric study of sulcal and gyral patterns of an individual subject or

of a population is useful for the clinical diagnosis of pathological diseases or for the gener-

ation of brain atlases. Moreover, geometric modeling is necessary for the reconstruction,

visualization, analysis and interpretation of the brain activity obtained from functional

imaging. For example, mapping the measurements obtained from positron emission to-

mography (PET) or functional magnetic resonance imaging (fMRI) to the cortical surface

permits a better understanding of brain functional organization [36]. Also, the reconstruc-

tion of brain electrical activity from the measurements of electro-encephalography (EEG)

or magneto-encephalography (MEG) outside the head requires to model the spatial dis-

tribution and the electrical conductivity of the different head tissues [48]. As a manual

slice by slice labeling of the different tissues in MR images is tedious and inaccurate, an

automatic, reliable and efficient 3D segmentation method is of particular importance.
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This task is generally made difficult by the high complexity of anatomical structures

and by various artefacts in the imaging process such as noise, partial volume effects, and

intensity inhomogeneities related to the non-uniformity of the RF field. The segmentation

of the cortical surface is particularly challenging due to its convoluted nature. The cerebral

cortex is a highly folded sheet of gray matter (GM) at the surface of the brain. It is

bounded by the cerebrospinal fluid (CSF) on the outside, and by the white matter (WM)

on the inside. The human cortex has been reported to be 1.5 to 5.0 mm thick [191].

The reconstruction of the cortex from MRI has received much interest in the literature.

The deformable models framework is particularly relevant to address this problem because

it provides a consistent geometrical representation suitable for a surface-based analysis,

contrarily to the voxel-wise labelings output by statistical classification methods [173, 66,

185].

7.1.2 Previous work

Before reviewing the previous work on cortex segmentation with deformable models, we

invite the reader to go back to Subsection 2.3.1 for an overview of image segmentation with

deformable models. The reader may also refer to [174, 97] for some surveys on deformable

models in medical image segmentation.

An early work on cortex segmentation with deformable models appears in [37]. In this

work, the center of the gray matter layer is reconstructed by evolving a parameterized

deformable surface. The external forces driving the deformation are based on a binary

indicator function of the gray matter. This binary mask is obtained by preprocessing the

image with morphological operations and with a statistical classification method.

The idea of using two coupled surfaces to simultaneously extract the inner and outer

interfaces of the cortex was concurrently introduced in [184, 91]. This coupled approach

has several advantages over an approach with a single surface. First, when needed, it

allows to compute directly the cortical thickness. Second, it improves the robustness to a

low GM/WM contrast and to the partial volume effect. For instance, it helps the outer

surface to enter into deep narrow sulci. It also prevents the inner surface from collapsing

into CSF and the outer surface from penetrating non-brain tissue.

In [184], the two surfaces are represented by two level set functions, and their mutual

distance is constrained to stay in a certain range. The evolution laws of the two level sets

are based on boundary-based information, in the spirit of the geometric active contours

method [23, 29, 94]. The intensity of each tissue is modeled by a Gaussian distribution,

and an edge indicator function is computed as a measure of the likelihood of the voxels

lying on the boundary between two tissues.

In [91], the formulation is variational and the geometric representation consists in two

polyhedral surfaces. Self-intersections and mutual intersections are prevented by monitor-

ing the distance between non-adjacent polygons, which makes this approach very expensive

computationally. A term in the energy functional encourages a preferred distance between

the two surfaces, which is likely to bias a posterior measurement of the cortical thick-
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ness. The image term is the distance to the nearest edge of a precomputed statistical

classification of the image.

In [60], a method similar to [184] is proposed. The major difference is a procedure to

maintain the signed distance property of the two level set functions along the evolution.

The evolution laws of the level sets rely on two intensity thresholds, as in (4.10), and should

be regarded as a special case of the region-based image segmentation methods reviewed in

Subsection 2.3.1.

A reformulation in a variational form of the methods proposed in [184, 60], in the spirit

of the geodesic active contours method [24], has been proposed in [56]. Unfortunately, as

discussed in Subsection 2.2, this work makes an abuse in the computation of the variation

of the energy with respect to a variation of the level set function.

In [175], the reconstruction of the medial surface of the cortex is performed in several

successive stages. First, the images are preprocessed to remove skin, bone, fat and other

non-brain tissues. This step is often referred as skull stripping (see [137] and references

therein). Second, a fuzzy c-means classification is computed, yielding a fuzzy member-

ship function for each tissue. Third, an explicit deformable surface is initialized with an

isosurface of the WM membership function. Finally, the deformable surface is evolved

towards the maximum values of the GM membership function. In [64], the above method

is upgraded with a topology preserving level set representation of the deformable surface,

as described in Subsection 4.1.3, in order to obtain a final mesh with a certified spherical

topology.

Recently, in [62], an extension of the methods of [175, 64] to the joint extraction

of the inner, the central and the outer surfaces of the cortex has been proposed. This

approach includes a procedure to guarantee the nesting of the different interfaces. The

level set function of the central surface is prevented from becoming larger at any point

than the level set function of the GM/WM boundary. Similarly, the level set function

of the GM/CSF boundary is prevented from becoming larger at any point than the level

set function of the central surface. However, contrarily to the topology preserving nested

level set method proposed in Chapter 4, this procedure does not strictly prevent mutual

intersections between the final meshes, because it is not consistent with the isocontour

extraction step.

More precisely, we can easily find some level set functions φ1, φ2 : R3 → R such that

∀x ∈ Ω, φ1(x) > φ2(x)

and such that there is still an intersection between the two triangulated surfaces output

by the topology-consistent marching cubes algorithm described in Subsection 4.1.3.

For example, we consider the level set function φ1 of the cortical surface displayed

in Figure 6.4. The corresponding triangulation obtained with a (26,6) connectivity pair

has 133 584 triangles and is of spherical topology. The triangulation obtained from φ2 =

φ1−0.5 with the same connectivity pair has 133 768 triangles and is mostly outside of the

first surface. But actually, the two triangulations intersect.
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7.1.3 Goals of our approach

In this chapter, we propose a new method to reconstruct the boundary of several head

tissues from MR images. The input of our algorithm is a T1-weighted anatomical MR image

and the approximate intensities of the main head tissues: air, skin, cerebrospinal fluid,

gray matter and white matter. It robustly generates triangulated surfaces of the outer

skin interface, of the brain contour and of the inner and outer interfaces of the cortex. In

the future, we plan to extend it to the skull and to some subcortical structures of interest.

The emphasis of our method is on guaranteeing some topological properties of the output

meshes, such as spherical topology, absence of self-intersections and mutual intersections.

These properties are crucial in some applications such as cortex unfolding/flattening (cf

Chapter 6). They are also necessary for building volume meshes of the head from the

extracted surface meshes. Such volume meshes can be used in the source reconstruction

problem from MEG/EEG [48].

Our method alleviates several limitations of existing approaches. First, unlike [62], we

strictly guarantee that the final triangulations do not intersect. Second, in most works, the

evolution of the deformable models is driven by a precomputed voxel-wise classification,

and not directly by the MR intensities. This precludes a subvoxel accuracy. Also, a clear

link between the deformation and the image formation process cannot be established. In

our approach, a statistical classification method is used to provide a good initialization of

the deformable models, to estimate the tissue parameters and to correct the effects of the

bias field. Then, the evolution is driven by the intensity of the bias-corrected MR image,

according to a Bayesian region-based formulation [190, 165, 114, 130, 71, 115].

7.2 Methods

7.2.1 Hidden Markov random field classification

The first step of our approach is a statistical classification of the voxels into a small number

N of tissue classes chosen a priori. As proposed in [185], we use a hidden Markov random

field classification, coupled with an automatic estimation of the tissue parameters and of

the bias field with the expectation-maximization (EM) algorithm.

The tissue distribution is modeled by a Markov random field (MRF) [55] L encouraging

neighboring voxels to have the same class labels, while the observed intensity of each tissue

class i ∈ {1, . . . , N} is modeled by a Gaussian distribution with mean µi and with standard

deviation σi:

p(I(x) = y | L(x) = i) =
1√

2πσ2
i

exp

(
−(y − µi)2

2σ2
i

)
. (7.1)

The labels of the voxels are estimated from the observed intensities with a maximum a

posteriori (MAP) criterion:

L̂ = arg max
L

P (L|I) = arg max
L

P (I|L)P (L). (7.2)

112



Moreover, the conditional independence of the intensities at the different voxels is assumed,

yielding

P (I|L) =
∏

x∈Ω

p(I(x)|L(x)) , (7.3)

while P (L) is the Gibbs distribution associated to the MRF.

The MAP estimation then translates into the minimization of an energy functional. An

exact minimization is computationally unfeasible due to the huge number of unknowns.

As a consequence, a greedy strategy yielding a suboptimal solution is adopted: the deter-

ministic iterated conditional modes (ICM) algorithm [17].

The parameters of the statistical model are the mean and the standard deviation of

each tissue class, and a bias field accounting for the inhomogeneities in the RF field. In

our method, this bias is taken as affine against intensities and smooth and non-parametric

over space. In other words:

∀x ∈ Ω, I(x) = α(x) I?(x) + β(x), (7.4)

where I and I? respectively denote the observed and ideal intensities, and α, β are two

smooth functions.

An initial estimate of the tissue parameters is provided by the user. Then, iteratively,

class labels are estimated by MAP, then the tissue parameters and the bias field are

updated with the EM algorithm. The different outputs of this step are:

• a labeling L of image voxels,

• the mean µi and the standard deviation σi of each tissue class i ∈ {1, . . . , N},

• a bias-corrected image, which is an estimation of the ideal image I?.

7.2.2 Topology preserving nested level sets

The HMRF classification is powerful as regards automatic parameter estimation but it is

not sub-voxel accurate and disregards topology. Extracting an isosurface of the labeling

L would give a very coarse reconstruction with a lot of topological defects. Hence we feed

the output of the previous step into a deformable models segmentation task, implemented

with the topology preserving nested level set method proposed in Section 4.2.

This way, we can benefit from the advantages of both methods while discarding their

respective drawbacks. The labeled image is used to position the initial deformable surfaces,

thereby avoiding the problem of robustness to distant initializations. A set of topology

preserving nested level sets are fit to the labeling L, before starting the deformable models

evolution itself, in order to obtain a close and topologically consistent initialization. Later

in the algorithm, the labels are no more taken into account, and the surfaces are evolved

according to the intensities of the bias-corrected image.

The topology preserving nested level set method requires the choice of a connectivity

pair for the different interfaces. In our method, this choice is motivated by the typical
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aspect of sulcal and gyral patterns, illustrated in a close up of an anatomical MR image in

Figure 7.1. This image reveals that the white matter and the cerebrospinal fluid feature

Figure 7.1: Close up of sulcal and gyral patterns in an anatomical MR image.

many sheet-like parts. In typical anatomical MR images, the thickness of these parts is of

the order of one voxel while the thickness of the gray matter exceeds two or three voxels

almost everywhere.

In order to correctly recover the connectivity of these sheet-like parts, the highest

possible digital connectivity must be chosen for WM and CSF. Finally, the compatible

connectivity pairs used for the different brain tissues are:

• WM: (26,6),

• GM: (6,26),

• CSF: (26,6).

Note that the alternation of the connectivity pairs, needed by the topology preserving

nested level set method, is fulfilled.

7.2.3 Bayesian region-based deformable models evolution

Since the image inhomogeneities have been removed, the boundaries between the different

tissues can be found robustly with a Bayesian region-based method, as proposed in [190,

165, 114, 130, 71, 115].

More precisely, let S1, S2, . . . , SN−1 be the surfaces separating the different tissues. We

note Xi the region of space inside Si. The surfaces are nested in the sense that

X1 ⊂ X2 ⊂ . . . ⊂ XN−1 . (7.5)

The different tissues are located in the regions Ω1,Ω2, . . . ,ΩN comprised between two

consecutive surfaces.




Ω1 = X1 ,

Ωi = Xi \Xi−1 , ∀ 1 < i < N ,

ΩN = Ω \XN−1 .

(7.6)
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Given the bias-corrected image, which we note I in the following, we want to estimate

the partition P(Ω) = {Ω1, . . . ,ΩN}. Again, we use a MAP estimation: we try to maximize

P (P(Ω)|I) ∝ P (I|P(Ω))P (P(Ω)) (7.7)

with respect to the partition. The independence of the different regions and of the inten-

sities at the different voxels is assumed, yielding

P (I|P(Ω)) =
∏

x∈Ω1

p(I(x)|Ω1)
∏

x∈Ω2

p(I(x)|Ω2) . . .
∏

x∈ΩN

p(I(x)|ΩN ) , (7.8)

while P (P(Ω)) favors partitions with boundaries of small areas:

P (P(Ω)) ∝ exp


−

∑

1≤i<N
λi area(Si)


 . (7.9)

The MAP estimation then translates into the minimization of the following energy

functional:

E({Ω1, . . . ,ΩN}) =
∑

1≤i<N
−
∫

Ωi

log p(I(x)|Ωi) dx + λi area(Si) . (7.10)

The intensity statistics of the different regions are the Gaussian distributions estimated

during the HMRF classification. Finally, the geometric gradient flows driving the defor-

mation of the different surfaces are given by

∂Si
∂t

=

(
(I − µi+1)2

2σ2
i+1

− (I − µi)2

2σ2
i

− 2 log
σi+1

σi
− λiHi

)
Ni , (7.11)

where Ni is the outward normal and Hi is the mean curvature of Si.

7.3 Experimental results

In our experiments, the input of our algorithm is a 256×256×256 anatomical T1-weighted

MR image. Some slices of this image are displayed in Figure 7.2.

In Figure 7.3, we show some slices of the labeling of brain tissues output by the HRMF

classification step.

Figure 7.4 shows several views of the inner and outer boundaries of the cortex recon-

structed with our method. The output meshes for the GM/WM and GM/CSF interfaces

have 712244 and 947960 triangles, respectively. As expected, these meshes have a spher-

ical topology (i.e. one connected component and an Euler number of 2), and do not

have self-intersections or mutual intersections. Note how well the sheet-like parts of the

GM/WM interface at the extremities of the gyri are recovered, including very thin parts

in the cerebellum.

In order to evaluate the accuracy of the reconstruction, we display our results in some

slices of the original MR data in Figure 7.5. Finally, in Figure 7.6, we show in a same 3D

view the two interfaces of the cortex and the skin surface.
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Figure 7.2: An axial (left), sagittal (middle) and coronal (right) slice of the input anatom-

ical MR image used in our experiments.

Figure 7.3: Slices of the labeling output by the HMRF classification step.

Figure 7.4: Several views of the GM/WM (top) and CSF/GM (bottom) interfaces.
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Figure 7.5: Some cuts of the different output interfaces, surimposed on some slices of the

original MR image.

Figure 7.6: Combined view of the different interfaces.
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7.4 Contributions of this chapter

In this chapter, we have presented a novel method to extract several head tissues from

anatomical MR images. The contributions of our approach with respect to the existing

literature are the following:

• The intersections between the different output meshes are strictly prevented, thanks

to the topology preserving nested level set method proposed in Chapter 4.

• The deformable surfaces are evolved directly according to the bias-corrected MR

intensities, thanks to a Bayesian region-based formulation.

• The thin sheet-like parts of WM and CSF bounding the cortex are recovered, thanks

to an adequate choice of the digital connectivity pairs of the different tissues.

Our software is used routinely in the Odyssée Laboratory to obtain the surfaces needed

for the analysis of fMRI signals and for the reconstruction of brain activity from MEG/EEG

measurements. It has also been deployed at the Neurophysiology Section of the Katholieke

Universiteit Leuven, Belgium, to segment the cortical surface of monkeys, in the context of

the European MAPAWAMO Project: “Mapping visual cortex regions in awake, behaving

monkey using functional MRI”. An example of the results obtained with our algorithm is

displayed in Figure 7.7.

Figure 7.7: Segmentation of the cortical surface of a monkey with our method.

The content of this chapter is a joint work with Florent Ségonne, from the CSAIL

(Computer Science and Artificial Intelligence Laboratory) at the MIT (Massachusetts

Institute of Technology) and the Athinoula Martinos Center for Biomedical Imaging, at

the MGH (Massachusetts General Hospital), Boston, USA. This work has appeared in a

special issue of NeuroImage [48]
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Chapter 8

Multi-View Stereo Reconstruction

and Scene Flow Estimation with a

Global Image-Based Matching

Score

In this chapter, we present a new variational method for multi-view stereovision and non-

rigid three-dimensional motion estimation from multiple video sequences. Our method

minimizes the prediction error of the shape and motion estimates. Both problems then

translate into a generic image registration task. The latter is entrusted to a global mea-

sure of image similarity, chosen depending on imaging conditions and scene properties.

Contrarily to existing deformable models methods, which integrate a matching measure

computed independently at each surface point, our approach computes a global image-

based matching score between the input images and the predicted images. The matching

process fully handles projective distortion and partial occlusions. Neighborhood as well

as global intensity information can be exploited to improve the robustness to appearance

changes due to non-Lambertian materials and illumination changes, without any approx-

imation of shape, motion or visibility. Moreover, our approach results in a simpler, more

flexible, and more efficient implementation than in existing methods. The computation

time on large datasets does not exceed thirty minutes on a standard workstation. Finally,

our method is compliant with a hardware implementation with graphics processor units.

Our stereovision algorithm yields very good results on a variety of datasets including spec-

ularities and translucency. We have successfully tested our motion estimation algorithm

on a very challenging multi-view video sequence of a non-rigid scene.
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8.1 Introduction

8.1.1 Problem statement

Recovering the geometry of a scene from several images taken from different viewpoints,

namely stereovision, is one of the oldest problems in computer vision. More recently, some

authors have considered estimating the dense non-rigid three-dimensional motion field of a

scene, often called scene flow 1 [167], from multiple video sequences. In this case, the input

data are a two-dimensional array of images, in which each row is a multi-view stereovision

dataset for a given time instant, and each column is a video sequence captured by a given

camera. Combining stereovision and scene flow allows to build a spatio-temporal model

of a dynamic scene. Once such a model is available, some novel virtual views of the scene

can be generated by interpolation across space and time [166].

Stereovision and scene flow estimation both require to match different images of the

same scene, in other words to find points in different cameras and in different frames

corresponding to a same physical point. Once the correspondence problem is solved, the

shape and the three-dimensional motion of the scene can be recovered easily by triangu-

lation. Unfortunately, the correspondence problem is a very difficult task in computer

vision because a scene patch generally has different shapes and appearances when seen

from different points of view and at different times. To overcome this difficulty, most

existing stereovision and scene flow algorithms rely on unrealistic simplifying assumptions

that disregard either/both shape/appearance changes.

8.1.2 Common photometric and geometric assumptions used for shape

and motion estimation

The oldest and most naive assumption about the photometric properties of a scene is

brightness constancy : corresponding pixels are assumed to have the same color. This only

applies to strictly Lambertian objects and requires a precise photometric calibration of the

cameras. Yet this assumption is still popular in the stereovision literature. It motivates

the multi-view photo-consistency measure used in voxel coloring [140], space carving [84],

and in some deformable models methods [45, 88]. Similarly, the variational formulation of

[154] relies on square intensity differences. In a later paper [153], the same authors model

the intensity deviations from brightness constancy by a multivariate Gaussian. However,

this does not remove any of the severe limitations of this simplistic assumption.

This assumption is also present in many methods for scene flow estimation, through the

use of the spatio-temporal derivatives of the input images [186, 21, 109]. Due to the bright-

ness constancy assumption and to the local relevance of spatio-temporal derivatives, these

differential methods apply mainly to slowly-moving scenes under constant illumination.

For a better robustness to noise and to realistic imaging conditions, matching mea-

1The scene flow should not be confused with the optical flow, which is the two-dimensional motion field

of points in an image. The optical flow is the projection of the scene flow in the image plane of a camera.
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sures embedded in stereovision and scene flow algorithms have to aggregate neighborhood

intensity information. In return, they are confronted with geometric distortion between

the different views and the different time instants. Some stereovision methods disregard

this difficulty and use fixed matching windows. The underlying assumption is called the

fronto parallel hypothesis: the retinal planes of the cameras are identical and the scene

is an assembly of planes parallel to them. This assumption can still be found in recent

work [88, 69]. To minimize the impact of projective distortion, these authors compute the

stereo discrepancy of a scene patch with its most front-facing cameras only. However, this

approximation is questionable in most camera setups.

Some methods go beyond this hypothesis by taking into account the tangent plane

to the object [50, 75, 45, 57], or by using adaptive matching windows [76, 133]. More

generally, most techniques trade robustness to realistic photometric conditions for an ap-

proximation of shape and motion in the computation of the matching measure. As a result,

the robustness of the matching process is uncertain in the parts of the scene that do not

verify these approximations. For example, using fixed matching windows for stereo corre-

spondence leads to an oversmoothing of depth discontinuities. Similarly, using a tangent

plane approximation to compute the matching measure as in [50, 75, 45, 57], even if the

tangent plane at nearby points does not have to be the same, is not relevant in the regions

of high curvature of the objects.

8.1.3 Previous work on multi-view complete stereovision

Doing a complete review of the stereovision area is out of the scope of this thesis. We

limit ourselves to the methods that allow to obtain a complete reconstruction of a scene

from a high number of input views. The methods in which the geometry is represented by

one or several depth maps or disparity maps are not of interest here, because they only

yield partial models of the scene. Several such models can be fused at post-processing,

but anyway these methods cannot handle visibility globally and consistently during the

estimation. For sake of completeness, let us mention two recent important works in this

category: the graph cuts method of [80] and the PDE-based method of [154]. The inter-

ested reader can also refer to [134] for a good taxonomy of dense two-frame rectified stereo

correspondence algorithms.

Thus, in the following, we focus on multi-view complete stereovision methods. These

methods fall into two categories: the space carving framework and the deformable models

framework.

Space carving

In the space carving framework [84], the scene is represented by a three-dimensional array

of voxels. Each voxel can be labeled empty or occupied. When the algorithm starts, all

voxels are occupied. Then the volume is traversed in an adequate order. If a voxel is not

consistent with all the input images, it is relabeled empty. The order of the traversal is
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important because the visibility of the voxels is taken into account in the consistency test.

In an earlier method called voxel coloring [140], there was a constraint on the placement

of the cameras, and the algorithm required only a single pass. Space carving handles

arbitrary camera configurations but is a little more expensive computationally.

The space carving framework suffers from several important limitations. First, it makes

hard decisions. Once a voxel is carved away, it cannot be recovered. And if one voxel is

removed in error, further voxels can be erroneously removed in a cascade effect. This

limitation is partially alleviated by the probabilistic space carving method [19]. Second, in

the original space carving algorithm, the photo-consistency test derives from a brightness

constancy constraint, and the choice of the global threshold on the color variance is often

problematic. Recently, there have been some attempts to relax these photometric con-

straints [162, 178]. The robustness to calibration errors is also addressed in [83]. Third,

the voxel-based representation disregards the continuity of shape, which makes it very

hard to enforce any kind of spatial coherence. As a result, space carving is very sensitive

to noise and outliers, and typically yields very noisy reconstructions.

Deformable models

Here, contrarily to the space carving framework, the formulation is continuous and has a

geometric interpretation. The unknown scene is modelled by a two-dimensional surface,

and scene reconstruction is stated in terms of an energy minimization. In Subsection

2.3.2, we have already mentioned the major multi-view stereovision deformable models

methods [50, 75, 45, 88, 69, 57]. These approaches share several limitations. First, in all

these methods, the matching measure is computed independently at each surface point,

then these quantities are integrated on the surface. The matching measure at a point

relies on a local approximation of the surface, either by a fronto-parallel plane [88, 69]

or at best by the tangent plane [50, 75, 45, 57]. Moreover, the visibility of the whole

neighborhood is assumed to be the same as the reference point. For example, in [50], the

cross correlation between two slanted matching windows is computed without taking into

account the eventual partial occlusions of the windows. The primary purpose of these

assumptions is a simplification of the modelling and of the resulting computations. They

are clearly not valid in real-world scenes, which typically include many occlusions, depth

discontinuities and sharp angles. Thus, these simplifying assumptions make the robustness

of the matching process on real data very uncertain.

Second, all these methods follow a minimal surface approach. One drawback of this

approach is that data fidelity and regularization are mixed. As a result, it is difficult to

tune the regularizing behavior. A good discussion of this topic can be found in [148].

The authors show in some numerical experiments that the results of [75] can be further

improved by integrating the matching measure on the images rather than on the surface.

Third, they lack flexibility in the choice of the matching criterion. Photo-consistency

[45, 88], the normalized cross correlation [50, 57, 69] and lastly the radiance tensor [75]

have been considered. These matching measures are hard-wired in their respective method
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and cannot be upgraded to cope with different imaging conditions.

Finally, the dependency of the matching measure on the surface normal leads to a

complex implementation. It requires to handle matching windows of different shapes or a

tessellation of the tangent plane, at each surface point. It also results in a very complex

minimizing flow involving second-order derivatives of the matching score [58, 150]. More

precisely, the energy has the following form:

E(S) =

∫

S
g(x,N) dx , (8.1)

where S denotes the surface and g the matching measure. The gradient writes

∇E(S) = [∇g ·N + 2gH − divS(gN)] N , (8.2)

where N is the normal, H is the mean curvature of the surface, gN is the derivative of

the matching measure with respect to the orientation of the tangent plane and divS is the

intrinsic divergence operator on the surface.

The computation of the last term of (8.2) is tricky, time-consuming and unstable, and,

to our knowledge, all authors have resigned to ignore it.

8.1.4 Previous work on scene flow estimation

Three-dimensional motion estimation from multiple video sequences has long been limited

to rigid or piecewise-rigid scenes [155, 44, 172] or parametric models [186, 93]. The prob-

lem of computing a dense non-rigid three-dimensional motion field from multiple video

sequences has been addressed only recently. Two types of methods prevail in the scene

flow literature.

The first family of methods [186, 21, 109] relies on the spatio-temporal derivatives of

the input images. As pointed out in [167], estimating the scene flow from these deriva-

tives without regularization is an ill-posed problem. Indeed, the associated normal flow

equations only constrain the scene flow vector to lie on a line parallel to the iso-brightness

contour on the object. This is nothing but a 3D version of the aperture problem for optical

flow [12]. In [21, 109], several samples of the spatio-temporal derivatives are combined in

order to overconstrain the scene flow, whereas in [186], the aperture problem is solved

by complementing the normal flow constraint with a Tikhonov smoothness term. How-

ever, due to the underlying brightness constancy assumption, and to the local relevance

of spatio-temporal derivatives, these differential methods apply mainly to slowly-moving

Lambertian scenes under constant illumination.

In the second family of methods [167, 186, 144], the optical flow is computed inde-

pendently in each camera, then these estimations are combined to get the scene flow.

This approach is not optimal since it disregards the consistency between the different

corresponding optical flows. Moreover, the noise in the different optical flows and the

bias introduced by the heuristic spatial smoothness constraints alter the scene flow in an

unpredictable manner.
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Finally, there has been an attempt to extend the space carving framework to the

simultaneous estimation of shape and scene flow [168] by using a plane-sweep algorithm

in a 6D space. However, this approach again relies on a brightness constancy assumption,

has a very high computational and memory cost, and is unable to enforce the smoothness

of the recovered shape and motion.

8.1.5 Motivations of our approach

In this chapter, we propose a common variational framework for multi-view complete

stereovision and scene flow estimation which overcomes most of the limitations listed

above. The metric used in our framework is the ability to predict the other input views

from one input view and the estimated shape or motion. This is related to the methodology

proposed in [158] for evaluating the quality of motion estimation and stereo correspondence

algorithms. But in our method, the prediction error is used for the estimation itself rather

than for evaluation purposes.

Contrarily to existing deformable models approaches, which compute a matching mea-

sure independently at each surface point and integrate these quantities on the surface, or

on the image domain as in [148], our approach computes a global image-based matching

score between the input images and the predicted images. The matching process fully han-

dles projective distortion and partial occlusions. Neighborhood as well as global intensity

information can be exploited to improve the robustness to appearance changes, without

any approximation of shape, motion or visibility.

Our formulation is completely decoupled from the nature of the image similarity mea-

sure used to assess the quality of the prediction. It can be the normalized cross correlation,

some statistical measures such as the correlation ratio [129], mutual information [171, 92],

or any other application-specific measure. Through this choice, we can make the esti-

mation robust to camera spectral sensitivity differences, non-Lambertian materials and

illumination changes. Also, any user-defined regularity constraint can be used.

Our method computes global matching scores on entire images from which projective

distortion and semi-occluded regions have been removed, thereby avoiding the complex

machinery usually needed to handle many matching windows of different shapes, or many

tessellations of the tangent plane. The pixels used in the computation of the matching

score are exactly the ones that are visible, judging from the current position of the surface.

Moreover, the minimizing flow is much simpler than in [50, 75, 45, 57], in the sense that

it only involves first-order derivatives of the matching score. This results in elegant and

efficient algorithms.

Our scene flow method does not fall into the two existing categories. It works directly

in 3D object space. It evolves a 3D vector field to register the input images captured at

different times.

The rest of this chapter is organized as follows. In Section 8.2, we present our varia-

tional formulation of multi-view complete stereovision and non-rigid 3D motion estimation.

In Section 8.3, we detail two particular similarity measures that can be used in our frame-
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work: normalized cross correlation and mutual information. Section 8.4 describes our

implementation with level sets and graphics card hardware acceleration, and presents our

experimental results.

8.2 Minimizing the prediction error

Our method consists in maximizing, with respect to shape and motion, the similarity

between each input view and the predicted images coming from the other views. We

adequately warp the input images to compute the predicted images, which simultaneously

removes projective distortion. Numerically, this can be done at a low computational cost

using texture-mapping graphics hardware (cf Section 8.4). For example, in the case of

stereovision, it corresponds to what is classically known as the reprojection error: we

back-project the image taken by one camera on the surface estimate, then we project it

to the other cameras to predict the appearance of the other views. The closer the shape

estimate is to the actual geometry, the more similar the reprojected images will be to

the corresponding input images, modulo noise, calibration errors, appearance changes and

semi-occluded areas. This is the core principle of our approach. Although the expression

“reprojection error” is more common in the stereovision literature, we use “prediction

error” in the following, because it has the advantage of being relevant to both shape and

motion estimation.

In our framework, both shape and motion estimation are formulated as a generic image

registration task. This analogy is widely used in the context of rectified stereovision and

optical flow. But it has fewer illustrations in multi-view stereo with arbitrary camera

configurations, and it is definitely novel in the context of scene flow estimation. The

registration task is entrusted to a global measure of image similarity, chosen depending

on imaging conditions and scene properties. This measure is basically a function mapping

two images to a scalar value. The more similar the two images are, the lower the value of

the measure is. Neighborhood as well as global intensity information can be used in this

measure.

We incorporate the similarity measure and a regularization term in an energy func-

tional. The regularization term is required to make the problem well-posed. It is

application-specific. For example, it could be designed to preserve shape or motion dis-

continuities. Here we focus primarily on the design of the matching term and we propose

a basic smoothing regularization term.

To minimize our energy functionals, we use a geometric gradient flow, embedded in a

multi-resolution coarse-to-fine strategy to decrease the probability of getting trapped in

irrelevant local minima. We run the optimization on a series of smoothed and subsampled

images.
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Figure 8.1: The camera setup and our notations.

8.2.1 Stereovision

In the following, let a surface S ⊂ R3 model the shape of the scene. We note Ii : Ωi ⊂
R2 → Rd the image captured by camera i. In practice d = 1 for grayscale images or

d = 3 for color images. The perspective projection performed by camera i is denoted by

Πi : R3 → R2. Our method takes into account the visibility of the surface points. In

the sequel, we will refer to Si as the part of S visible in image i. The reprojection from

camera i onto the surface is denoted by Π−1
i,S : Πi(S) → Si. With this notation in hand,

the reprojection of image j in camera i via the surface writes Ij ◦Πj ◦Π−1
i,S : Πi(Sj)→ Rd.

We note M a generic measure of similarity between two images.

The matching term M is the sum of the dissimilarity between each input view and

the reprojected images coming from all the other cameras. Thus, for each ordered pair of

cameras (i, j), we compute the similarity between Ii and the reprojection of Ij in camera

i via S, on the domain where both are defined, i.e. Ωi ∩ Πi(Sj), in other words after

discarding semi-occluded regions:

M(S) =
∑

i

∑

j 6=i
Mij(S) , (8.3)

Mij(S) = M |Ωi∩Πi(Sj)

(
Ii , Ij ◦Πj ◦Π−1

i,S

)
. (8.4)

Following [148], and for the reasons given in Subsection 8.1.3, we depart from the

minimal surface approach. Our energy functional is the sum of a matching term computed

in the images and of a user-defined regularization term. But our approach goes further

than [148], in the sense that the matching process is global and completely image-based.

In contrast, in [148], the matching measure was computed independently at each surface

point, using an object-based tangent plane approximation, and later integrated on the

image domain.

We now compute the variation of the matching term with respect to an infinitesimal

vector displacement δS of the surface. Figure 8.1 displays the camera setup and our nota-

tions. We neglect the variation related to visibility changes. Indeed, the latter would yield

an additional term confined to the horizons of the surface in the different cameras. Hence,

this term only has a codimension-two support and its influence would be considerably

decreased by the regularity constraint. This technical assumption is commonly used in
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the stereovision literature [50, 75, 45, 88]. Using the chain rule, we get

∂Mij(S + ε δS)

∂ε

∣∣∣∣
ε=0

=

∫

Ωi∩Πi(Sj)
∂2M(xi)︸ ︷︷ ︸

1×d

DIj(xj)︸ ︷︷ ︸
d×2

DΠj(x)︸ ︷︷ ︸
2×3

∂Π−1
i,S+ε δS(xi)

∂ε

∣∣∣∣∣
ε=0︸ ︷︷ ︸

3×1

dxi ,

where xi is the position in image i and D. denotes the Jacobian matrix of a function. To

guide the reader, we have indicated the dimensions of the different matrices appearing in

the product.

When the surface moves, the reprojected image changes. Hence the variation of the

matching term involves the derivative of the similarity measure with respect to its second

argument, denoted by ∂2M . Its meaning is detailed in Section 8.3. Throughout this

section, for sake of conciseness, we have omitted the images for which this derivative is

evaluated. But the reader must be aware that the reprojected images, as well as the

domains where the similarity measures are computed, change along the minimizing flow.

We then use a relation between the motion of the surface and the displacement of the

reprojected surface point x = Π−1
i,S(xi):

∂Π−1
i,S+ε δS(xi)

∂ε

∣∣∣∣∣
ε=0

=
NT δS(x)

NTdi
di ,

where di is the vector joining the center of camera i and x, and N is the outward surface

normal at this point. Finally, we rewrite the integral in the image as an integral on the

surface by the change of variable

dxi = −NTdi dx/z
3
i ,

where zi is the depth of x in camera i, and we obtain

∂Mij(S + ε δS)

∂ε

∣∣∣∣
ε=0

=

−
∫

Si∩Sj

[
∂2M(xi)DIj(xj)DΠj(x)

di
z3
i

] [
NT δS(x)

]
dx .

In other words, the gradient of the matching term is

∇Mij(S)(x) = −δSi∩Sj (x)

[
∂2M(xi)DIj(xj)DΠj(x)

di
z3
i

]
N , (8.5)

where δ. is the Kronecker symbol. As expected, the gradient cancels in the regions not

visible from both cameras. Note that the term between square brackets is a scalar function.

The regularization term is typically the area of the surface, and the associated min-

imizing flow is a mean curvature motion. The evolution of the surface is then driven

by

∂S

∂t
=


−λH +

∑

i

∑

j 6=i
δSi∩Sj ∂2M DIj DΠj

di
z3
i


N , (8.6)

where H denotes the mean curvature of S, and λ is a positive weighting factor.
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8.2.2 Scene flow

Let now St model the shape of the scene and I ti be the image captured by camera i at

time t. Let vt : St → R3 be a 3D vector field representing the motion of the scene between

t and t+ 1. The matching term F is the sum over all cameras of the dissimilarity between

the images taken at time t and the corresponding images at t + 1 warped back in time

using the scene flow.

F(vt) =
∑

i

Fi(vt) , (8.7)

Fi(vt) = M
(
Iti , I

t+1
i ◦Πi ◦ (Id + vt) ◦Π−1

i,St

)
. (8.8)

Its gradient writes

∇TFi(vt)(x) =

− δSti (x)
NTdi
z3
i

∂2M(xi)︸ ︷︷ ︸
1×d

DIt+1
i

(
Πi(x + vt(x))

)
︸ ︷︷ ︸

d×2

DΠi(x + vt(x))︸ ︷︷ ︸
2×3

. (8.9)

Here, the regularization term is typically the harmonic energy of the flow over the

surface, and the corresponding minimizing flow is an intrinsic heat equation based on the

intrinsic Laplacian, often called the Laplace-Beltrami operator. The evolution of the scene

flow is then driven by

∂vt

∂τ
= µ∆Stv

t +
∑

i

δSti
NTdi
z3
i

[
∂2M DIt+1

i DΠi

]T
, (8.10)

where τ is the fictitious time of the minimization, ∆St denotes the Laplace-Beltrami op-

erator on the surface, and µ is a positive weighting factor.

8.3 Some similarity measures

In this section, we present two similarity measures that can be used in our framework:

normalized cross correlation and mutual information [171, 92]. Cross correlation assumes

a local affine dependency between the intensities of the two images, whereas mutual infor-

mation can cope with general statistical dependencies. We have picked these two measures

among a broader family of statistical criteria proposed in [67] for multimodal image reg-

istration.

Whereas mutual information is an established matching measure in image registration,

it has been seldom used for the stereo problem. To our knowledge, apart from our work,

it only appears in the context of classical binocular rectified stereovision [79, 47].

In the following, we consider two scalar images I1, I2 : Ω ⊂ R2 → R. The mea-

sures below can be extended to vector (e.g. color) images by summing over the different

components.
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Note that the shape of Ω can be very complex. In practice, it corresponds to the

domain where both an input image and an associated prediction are defined. In other

words, semi-occluded regions are discarded from Ω.

The minimizing flows given in Section 8.2 involve the derivative of the similarity mea-

sure with respect to the second image, denoted by ∂2M . The meaning of this derivative is

the following: given two images I1, I2 : Ω→ Rd, we note ∂2M(I1, I2) the function mapping

Ω to the row vectors of Rd, verifying for any image variation δI:

lim
ε→0

M(I1, I2 + ε δI)−M(I1, I2)

ε
=

∫

Ω
∂2M(I1, I2)(x) δI(x) dx . (8.11)

8.3.1 Cross correlation

Cross correlation is still the most popular stereovision matching measure. Most methods

settle for fixed rectangular correlation windows. In this case, the choice of the window size

is a difficult trade-off between match reliability and oversmoothing of depth discontinuities

due to projective distortion [134]. Some authors alleviate this problem by using adaptive

windows [76, 133]. In our method, we match distortion-free images, so the size of the

matching window is not related to a shape approximation. The matter here is in how big

a neighborhood the assumption of affine dependency is valid. Typically, non-Lambertian

scenes require to reduce the size of the correlation window, making the estimation less

robust to noise and outliers. In our implementation, instead of hard windows, we use

smooth Gaussian windows. They make the continuous formulation of our problem more

elegant and they can be implemented efficiently with fast recursive filtering.

Thus, we gather neighborhood information using convolutions by a Gaussian kernel of

standard deviation σ. The local mean, variance, covariance and cross correlation of the

two images respectively write

µi(x) =
Gσ ? Ii(x)

ω(x)
, vi(x) =

Gσ ? I
2
i (x)

ω(x)
− µ2

i (x) + β2 ,

v1,2(x) =
Gσ ? I1I2(x)

ω(x)
− µ1(x)µ2(x) , cc(x) =

v1,2(x)√
v1(x)v2(x)

,

where ω is a normalization function accounting for the shape of the domain: ω(x) =∫
ΩGσ(x − y) dy. The β constant prevents the denominator from being zero. Beyond its

numerical usefulness, this constant has a rigorous justification, as shown in [67]. It is re-

lated to the Parzen Gaussian kernel used to estimate the local joint probability distribution

of the two images [117].

We aggregate the opposite of the local cross correlation to get a similarity measure

corresponding to our needs:

MCC(I1, I2) = −
∫

Ω
cc(x) dx . (8.12)

The minimizing flow involved by our method includes the derivative of the similarity

measure with respect to the second image. In this case, it writes

∂2M
CC(I1, I2)(x) = α(x) I1(x) + β(x) I2(x) + γ(x) , (8.13)
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where

α(x) = Gσ ?
−1

ω
√
v1 v2

(x) , β(x) = Gσ ?
cc

ω v2
(x) ,

γ(x) = Gσ ?

(
µ1

ω
√
v1 v2

− µ2 cc

ω v2

)
(x) .

In practice, along the minimizing flow, the α, β, γ functions change slowly relative to I1

and I2. So, in our implementation, we update them only every ten iterations to reduce

the computational burden.

8.3.2 Mutual information

Mutual information is based on the joint probability distribution of the two images, esti-

mated by the Parzen window method [117] with a Gaussian kernel of standard deviation

β:

P (i1, i2) =
1

|Ω|

∫

Ω
Gβ (I1(x)− i1 , I2(x)− i2) dx . (8.14)

We note P1, P2 the marginals:

P1(i1) =

∫

R
P (i1, i2) di2 , P2(i2) =

∫

R
P (i1, i2) di1 .

Our measure is the opposite of the mutual information of the two images:

MMI(I1, I2) = −
∫

R2

P (i1, i2) log
P (i1, i2)

P1(i1)P2(i2)
di1 di2 . (8.15)

Its derivative with respect to the second image writes [67, 49]:

∂2M
MI(I1, I2)(x) = ζ(I1(x), I2(x)) , (8.16)

where

ζ(i1, i2) =
1

|Ω| Gβ ?
(
∂2P

P
− P ′2
P2

)
(i1, i2) .

In our implementation, the ζ function is updated only every ten iterations.

8.4 Experimental results

We have implemented our method in the level set framework [112], motivated by its

numerical stability and its ability to handle topology changes automatically. However,

our method is not specific to a particular surface model: an implementation with meshes

would be straightforward.

The predicted images can be computed very efficiently thanks to graphics card

hardware-accelerated rasterizing capabilities. In our implementation, we determine the

visibility of surface points in all cameras using OpenGL depth buffering, we compute the

reprojection of an image to another camera via the surface using projective texture map-

ping, and we discard semi-occluded areas using shadow-mapping [135]. The bottleneck in

our current implementation is the computation of the similarity measure. Since it only
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involves homogeneous operations on entire images, we could probably resort to a graphics

processor unit based implementation with fragment shaders (see http://www.gpgpu.org).

The only parameters inherent to our framework are the regularization coefficients λ

and µ in equations (8.6) and (8.10). This being said, the similarity measure embedded

in our method may have its own parameters: the size of the correlation window for cross

correlation, the standard deviation of the Parzen kernel for mutual information, etc.

In all the following experiments, we have used a matching window with a standard

deviation of 2 pixels (σ = 2) for cross correlation, and a Parzen kernel of variance 10

(β2 = 10) for both cross correlation and mutual information.

8.4.1 Stereovision

Table 8.1 describes the stereovision datasets used in our experiments. All datasets are

color images except “Hervé” which is grayscale. All are real images except “Buddha”.

“Cactus” and “Gargoyle” are courtesy of Pr. Kyros Kutulakos (University of Toronto).

“Buddha” and “Bust” are publicly available from the OpenLF software (LFM project,

Intel).

Name #Images Image size #Pairs Measure Level set size Time (sec.)

Hervé 2 512× 512 2 MI 1283 107

Cactus 30 768× 484 60 CC 1283 1670

Gargoyle 16 719× 485 32 MI 1283 905

Buddha 25 500× 500 50 CC 1283 530

Bust 24 300× 600 48 CC 128x128x256 1831

Table 8.1: Description of the stereovision datasets used in our experiments.

We have used either cross correlation (CC) or mutual information (MI), with σ = 2 and

β2 = 10. Both perform well on these complex scenes. “Buddha” and “Bust” are probably

the more challenging datasets: “Buddha” is a synthetic scene simulating a translucent

material and “Bust” includes strong specularities.

Using all possible camera pairs is not necessary since, when two cameras are far apart,

no or little part of the scene is visible in both views. Consequently, in practice, we only

pick pairs of neighboring cameras. The number of camera pairs used in each experiment

is given in Table 8.1.

The number of iterations is 600 for all datasets. However, in most of our experiments,

the convergence is attained earlier, so the computation time could be reduced using an

appropriate stopping criterion. The only exception is the “Hervé” dataset, where the rear

part of the face, not visible from any of the two cameras, is only driven by a mean curvature

motion, and has not yet converged after 600 iterations, causing a rounded shape behind

the face instead of a join of minimal area.

In all our experiments, the regularizer is a mean curvature motion, and the initial

surface is an approximate bounding box of the scene. Although this initial guess is very
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Figure 8.2: “Hervé” stereo pair and our results.

far from the objects, we manage to converge to the expected shape and to recover its

concavities thanks to the coarse-to-fine strategy. We use four levels in the multi-resolution

pyramid. So the level set size at the coarser resolution is 163 for most datasets and

16x16x32 for the “Bust” dataset.

We show our results in Figures 8.2, 8.3, 8.4, 8.5 and 8.6. For each dataset, we display

some of the input images, the ground truth when available, then some views of the esti-

mated shape, and finally the same views after reprojecting the texture coming from the

most front-facing camera. Note that this texture-mapped representation does not aim at

photorealism. In particular, it generates artifacts at the places where the source of the

texture changes. It is only intended to show the validity of the output of our method for

more sophisticated image-based rendering techniques.

In all our experiments, the overall shape of the objects is successfully recovered, and a

lot of details are captured: the eyes and the mouth of “Hervé”, the stings of “Cactus”, the

ears and the pedestal of “Gargoyle”, the nose and the collar of “Buddha”, the ears and the

mustache of “Bust”. A few defects are of course visible. Some of them can be explained.

The hole around the stick of “Gargoyle” is not fully recovered. This may be due to the

limited number of images (16): some parts of the concavity are visible only in one camera.

The depression in the forehead of “Bust” is related to a very strong specularity: intensity is

almost saturated in some images. In Figure 8.7, we illustrate the multi-resolution evolution

of the surface for the “Bust” dataset, starting from a coarse bounding box.

Finally, in Table 8.2, we compare our results with the non-Lambertian stereovision

method of [75] on the “Buddha” and the “Bust” datasets. We adopt the same shape error

measure than in their work: the ratio between the volume of the symmetric difference

between the estimated shape and the true shape and the volume of the true shape. The

errors on the “Buddha” dataset are comparable. Our method performs significantly better

than [75] on the “Bust” dataset. Moreover, visually, our reconstructions are slightly more
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Figure 8.3: Some images from the “Cactus” dataset and our results.

detailed. But above all, our computation time is considerably smaller. It does not exceed

thirty minutes on a 2 GHz Pentium IV PC under Linux, versus several hours.

8.4.2 Stereovision + scene flow

We have tested our scene flow algorithm on a challenging multi-view video sequence of a

non-rigid scene. The “Yiannis” sequence is taken from a collection of datasets that were

made available to the community by Dr. Patrick Baker and Dr. Jan Neumann (University

of Maryland) for benchmark purposes. This sequence shows a character (Pr. Yiannis

Aloimonos) talking while rotating his head. It was captured by 22 cameras at 54 fps plus

8 high-resolution cameras at 6 fps. Here we focus on the 30 synchronized sequences at the

lower frame rate to demonstrate that our method can handle large displacements.

We have applied successively our stereovision and scene flow algorithms: once we know

the shape St, we compute the 3D motion vt with our scene flow algorithm. Since St+vt is

a very good estimate of St+1, we use it as the initial condition in our stereovision algorithm

and we perform a handful of iterations to refine it. This is mush faster than restarting the

optimization from scratch. We also compute the backward motion from t+ 1 to t for the

purpose of time interpolation.

In this experiment, we use cross correlation with the value of the parameters given

earlier. The level set size is 1283 and the number of levels of the multi-resolution pyramid

is 4.
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Figure 8.4: Some images from the “Gargoyle” dataset and our results.

Figure 8.8 displays the first four frames of one of the input sequence and our estimation

of shape and 3D forward motion at corresponding times. We successfully recover the

opening and closing of the mouth, followed by the rotation of the head while the mouth

opens again. Moreover, we capture displacements of more than twenty pixels.

We use our results to generate time-interpolated 3D sequences of the scene. To syn-

thesize images at intermediate time instants, we can either use the previous shape and

texture warped by the forward motion, or the next shape and texture warped by the

backward motion. Ideally the two should coincide exactly, but of course this is never the

case in practice. As a consequence, we linearly interpolate between forward and back-

ward extrapolated images to guarantee a smooth blending between frames. In return it

causes “crossfading” artifacts in some places where forward and backward extrapolation

significantly diverge.

We display a short excerpt of such a time-interpolated sequence in Figure 8.9. Note

the progressive opening and closing of the mouth. Please see the Odyssée Laboratory web

page for more results.
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Figure 8.5: Some images from the “Buddha” dataset, ground truth and our results.

Method Error on “Buddha” Error on “Bust”

[75] 3.5 % 5.7 %

Our method 4.0 % 3.0 %

Table 8.2: Quantitative comparison between our method and the non-Lambertian stereo-

vision method of [75].
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Figure 8.6: Some images from the “Bust” dataset, pseudo ground truth and our results.

Figure 8.7: Multi-resolution shape evolution for the “Bust” dataset.
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Figure 8.8: First images of one sequence of the “Yiannis” dataset and our results.

Figure 8.9: An excerpt of the time-interpolated 3D sequence for the “Yiannis” dataset.
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8.5 Contributions of this chapter

In this chapter, we have presented a novel method for multi-view stereovision and scene

flow estimation which minimizes the prediction error using a global image-based matching

score. We adequately warp the input views and we register the resulting distortion-free

images with a user-defined image similarity measure, which can include neighborhood and

global intensity information. No approximation of shape, motion or visibility is made in

the matching process.

We have implemented our stereovision method with the level set method and we have

obtained results comparing favorably with state-of-the-art methods, even on complex non-

Lambertian real-world images including specularities and translucency. Using our algo-

rithm for motion estimation, we have successfully recovered the 3D motion of a non-rigid

scene and we have synthesized time-interpolated 3D sequences.

Part of this work has been presented in computer vision conferences [124, 126] and has

appeared in a book chapter [125] and a technical report [123]. A journal version has been

submitted to The International Journal of Computer Vision [127].
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Conclusion

In this thesis, we have made the deformable models framework progress along a number of

axes, with the goal of a wider applicability and a greater efficiency. Our contributions span

three key elements: the geometric representation, the minimization procedure, and the

design of the energy functional. All along this thesis, we have pointed out the shortcomings

concealed in several established components of the deformable models framework, such as

the level set method, geometric gradient flows and the geodesic active contours approach.

Departing from these standard tools have permitted us to consider new applications or to

shed a different light on some classical problems:

• We have overcome the loss of the point correspondence with the level set method.

As a result, we have been able to apply the level set framework to cortex unfolding.

• We have improved the control of topology changes with the level set method, so that

we have been able to segment medical images with a certified topology.

• We have proposed new minimizing flows which are likely to increase the robustness

to local minima of many deformable models methods.

• We have revisited multi-view stereovision with deformable models. We have sub-

stituted a global image-based matching score to the widely used minimal surface

approach, to obtain a more exact and more flexible modeling, and a more efficient

implementation.

Throughout these studies, implementation issues have been a major concern, because we

are convinced that disregarding numerical aspects can lead the most promising modelings

to a failure.

Of course, there is still place for improvement in most parts of this thesis. Although

we believe that many problems in computer vision and in medical imaging can potentially

benefit from our methodological proposals, a detailed inventory of these problems and a

thorough experimental evaluation should be carried out. We are currently exploring other

fields of application of the methodological contributions of this thesis. For example, a

work on shape statistics of the cortical surface with landmark points is in progress, based

on our level set method with a point correspondence.

In the second part of this thesis, our future challenge is certainly an in depth evaluation

of our approaches for area preserving cortex unfolding and head segmentation from MRI
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on a large real dataset. The validation of our results by experts would also be desirable.

Finally, as regards multi-view stereovision and scene flow estimation, our future work

includes a hardware implementation with graphics processor units to further reduce the

computation time, and the fusion of shape and motion estimations in order to exploit their

redundancy.
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Conclusion (version française)

Dans cette thèse, nous avons fait progresser la méthode des modèles déformables selon

plusieurs axes, avec pour but d’élargir leur champ d’application et d’accrôıtre leur perfor-

mance. Nos contributions s’étendent à trois éléments clés: la représentation géométrique,

la procédure de minimisation et l’élaboration de la fonctionnelle d’énergie. Tout au long

de cette thèse, nous avons mis en évidence les insuffisances que renferment plusieurs com-

posantes bien établies de la méthode des modèles déformables, comme la méthode des

ensembles de niveau, les flots géométriques de gradient, et la méthode des contours ac-

tifs géodésiques. En nous écartant de ces outils standards, nous avons pu envisager de

nouvelles applications, ou jeter un regard neuf sur des problèmes classiques :

• Nous sommes venus à bout de la perte de la correspondance ponctuelle avec la

méthode des ensembles de niveau. Du coup, nous avons pu appliquer ce cadre au

dépliement de cortex.

• Nous avons amélioré le contrôle des changements de topologie avec la méthode des

ensembles de niveau, ce qui nous a permis de segmenter des images médicales avec

une topologie certifiée.

• Nous avons proposé de nouveaux flots de minimisation susceptibles d’accrôıtre la ro-

bustesse aux minima locaux de nombreuses méthodes à base de modèles déformables.

• Nous avons revisité la stéréovision multi-caméras par modèles déformables. Nous

avons substitué un critère de mise en correspondance global et basé image à

l’approche très prisée par surface minimale, afin d’obtenir une modélisation plus

fidèle et plus flexible, et une implémentation plus efficace.

Dans tous ces travaux, les questions d’implémentation ont eu une place majeure, car nous

sommes convaincus que négliger les aspects numériques peut faire échouer les modélisations

les plus prometteuses.

Bien sûr, des améliorations sont possibles dans de nombreuses parties de cette thèse.

Ainsi, nous pensons que nos propositions méthodologiques peuvent bénéficier à de nom-

breux problèmes en vision par ordinateur et en imagerie médicale, mais un inventaire

précis et une évaluation expérimentale complète devraient être menés. Actuellement, nous

explorons d’autres champs d’application des contributions méthodologiques de cette thèse.

Par example, un travail sur des statistiques de forme de la surface corticale au moyen de
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points d’amer est en cours, sur la base de notre méthode des ensembles de niveau avec une

correspondance ponctuelle.

Dans la deuxième partie de cette thèse, le défi à relever est certainement une évaluation

en profondeur, sur un grand nombre de jeux de données réelles, de nos approches de

dépliement de cortex avec préservation de l’aire et de segmentation de la tête à partir

d’images IRM. La validation de nos résultats par des experts serait également souhaitable.

Enfin, en ce qui concerne la stéréovision multi-caméras et l’estimation du flot de scène,

nos travaux futurs comprennent une implémentation matérielle sur carte graphique, pour

réduire encore davantage le temps de calcul, et la fusion des estimations de la forme et du

mouvement, afin d’exploiter leur redondance.
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Appendix A

Formulas of Geometric and

Differential Calculus

Throughout this appendix, we note Γ a closed embedded codimension-one interface in Rn.

We also consider a scalar function f : Γ→ R and a vector function v : Γ→ Rn defined on

the interface.

A.1 Some useful identities of intrinsic differential geometry

In this thesis, we use the following identities, taken from [43, 38]:

• The intrinsic Laplacian (Laplace-Beltrami operator) is defined from the intrinsic

gradient and the intrinsic divergence:

∆Γf = divΓ∇Γf . (A.1)

• The classical formula for the divergence of a product of functions holds with intrinsic

differential operators:

divΓ(fv) = f divΓv +∇Γf · v . (A.2)

• The intrinsic divergence of the field of normals equals the total curvature:

divΓN = (n− 1)H . (A.3)

• The intrinsic divergence of a normal vector field has a simple form:

divΓ(fN) = (n− 1)f H . (A.4)

A.2 Some useful expressions for implicit interfaces

In this section, the interface is represented by an embedding level set function φ : Rn → R
such that 




φ(x) < 0 if x is inside Γ,

φ(x) = 0 if x ∈ Γ,

φ(x) > 0 if x is outside Γ.
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By a slight abuse of notation, f and v now denote some extensions of the interfacial quan-

tities in the whole space. Then, the common geometric properties and intrinsic differential

operators are given by the following formulas:

• Outward unit normal:

N =
∇φ
‖∇φ‖ . (A.5)

• Mean curvature:

H =
1

n− 1
div

( ∇φ
‖∇φ‖

)
. (A.6)

In 2D, it leads to the following expression:

κ =
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

. (A.7)

In 3D:

H =

{
(φyy + φzz)φ

2
x + (φxx + φzz)φ

2
y + (φxx + φyy)φ

2
z

−2φxφyφxy − 2φxφzφxz − 2φyφzφyz

}

2(φ2
x + φ2

y + φ2
z)

2
. (A.8)

• Projection of a vector u ∈ Rn on a plane orthogonal to v ∈ Rn:

Pvu = u− u · v
‖v‖2 v . (A.9)

• Intrinsic gradient:

∇Γf = P∇φ∇f (A.10)

= ∇f − ∇f · ∇φ‖∇φ‖2 ∇φ . (A.11)

• Intrinsic Laplacian (Laplace-Beltrami operator):

∆Γf =
1

‖∇φ‖ div(‖∇φ‖P∇φ∇f) . (A.12)

Below, we transform this expression to get an alternative formula:

∆Γf =
1

‖∇φ‖div(‖∇φ‖∇f)− 1

‖∇φ‖div

(
(∇φ · ∇f)

∇φ
‖∇φ‖

)

= ∆f +
1

‖∇φ‖∇(‖∇φ‖) · ∇f − ∇(∇φ · ∇f)

‖∇φ‖ · ∇φ‖∇φ‖ −
∇φ · ∇f
‖∇φ‖ div

( ∇φ
‖∇φ‖

)

= ∆f +
D2φ∇φ
‖∇φ‖2 · ∇f −

∇φTD2f∇φ
‖∇φ‖2 − D2φ∇φ

‖∇φ‖2 · ∇f − (n− 1)H
∇φ · ∇f
‖∇φ‖

= ∆f − ∇φ
TD2f∇φ
‖∇φ‖2 − (n− 1)H

∇φ · ∇f
‖∇φ‖ , (A.13)

where D2f denotes the Hessian matrix of f .
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• Intrinsic Jacobian:

DΓv = Dv

(
I− ∇φ∇φ

T

‖∇φ‖2
)
, (A.14)

where Dv denotes the Jacobian matrix of v.

• Intrinsic divergence:

divΓv = trDΓv (A.15)

= div v − ∇φ
T Dv∇φ
‖∇φ‖2 . (A.16)

• Average along the interface:

f =

∫

Rn
f(x) δε(φ(x))‖∇φ(x)‖ dx
∫

Rn
δε(φ(x))‖∇φ(x)‖ dx

, (A.17)

where δε is a smoothed version of the Dirac function:

δε(d) =





1

2ε

(
1 + cos

(
πd

ε

))
if |d| < ε,

0 otherwise.
(A.18)
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Appendix B

Numerical Schemes

B.1 Evolution schemes

In this section, we detail the numerical schemes necessary to implement the evolution of

the level set function φ, depending on the properties of the velocity field v. In some cases,

the velocity field is a sum of several motions of different nature (e.g. the sum of a normal

propagation and of a mean curvature motion). In this case, each part of the velocity field

is treated with the adequate scheme and the total variation of the level function is the

sum of these different contributions.

All the schemes below are taken from [112, 143, 156, 187]. We give their expression in

3D, but they can easily be adapted to any number of dimensions. We note φijk the grid

values of the level set function. Let φ±xijk, φ
±y
ijk, φ

±z
ijk denote its decentered spatial derivatives.

They can be computed either with a simple decentered difference of the form

φ+x
ijk =

φi+1 jk − φijk
∆x

,

where ∆x is the size of a grid step, or with the high-order WENO finite-difference schemes

described in Appendix B.2.

B.1.1 Normal propagation

The evolution equation for a normal propagation with speed β is:

∂φ

∂t
+ β‖∇φ‖ = 0 .

The corresponding numerical scheme is:

∂φijk
∂t

= −
[
max(βijk, 0)∆+

ijk + min(βijk, 0)∆−ijk

]
,

where

∆+
ijk = [max(φ−xijk, 0)

2
+ min(φ+x

ijk, 0)
2
+

max(φ−yijk, 0)
2

+ min(φ+y
ijk, 0)

2
+

max(φ−zijk, 0)
2

+ min(φ+z
ijk, 0)

2
]1/2

,
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∆−ijk = [max(φ+x
ijk, 0)

2
+ min(φ−xijk, 0)

2
+

max(φ+y
ijk, 0)

2
+ min(φ−yijk, 0)

2
+

max(φ+z
ijk, 0)

2
+ min(φ−zijk, 0)

2
]1/2

.

B.1.2 Passive advection

The evolution equation for a passive advection with a velocity field v is:

∂φ

∂t
+ v · ∇φ = 0 .

The corresponding numerical scheme is:

∂φijk
∂t

= −[ max(vxijk, 0)φ−xijk + min(vxijk, 0)φ+x
ijk+

max(vyijk, 0)φ−yijk + min(vyijk, 0)φ+y
ijk+

max(vzijk, 0)φ−zijk + min(vzijk, 0)φ+z
ijk] .

B.1.3 Mean curvature motion

The evolution equation for a mean curvature motion is:

∂φ

∂t
=

1

n− 1
div

( ∇φ
‖∇φ‖

)
‖∇φ‖ .

The corresponding numerical scheme is based on the formulas (A.7) or (A.8), with all the

first-order and the second-order spatial derivatives computed with central differences. For

example,

φ0x
ijk =

φi+1 jk − φi−1 jk

2∆x
.

B.1.4 Reinitialization

The reinitalization PDE is:

∂φ

∂t
+ sign(φ0) (‖∇φ‖ − 1) = 0 .

The corresponding numerical scheme derives from the scheme for normal propagation:

∂φijk
∂t

= Sε −
[
max(Sε, 0)∆+

ijk + min(Sε, 0)∆−ijk

]
,

where Sε is a smoothed version of sign(φ0):

Sε =
φ0 ijk√
ε2 + φ2

0 ijk

.
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B.1.5 Extension

The extension PDE is:
∂f

∂t
+ sign(φ) (∇f · ∇φ) = 0 .

The corresponding numerical scheme derives from the scheme for passive advection, with

the following velocity field:

vxijk = Sε φ
0x
ijk , vyijk = Sε φ

0y
ijk , vzijk = Sε φ

0z
ijk .

B.2 High-order WENO finite-difference schemes

In our implementation, for a greater accuracy, the decentered spatial derivatives involved in

the evolution schemes of Appendix B.1 are computed with the high-order WENO (weighted

essentially non-oscillatory) finite difference schemes derived in [73, 72]. Below, we give the

formulas for the derivatives of φ in the x direction for the WENO schemes of third-order

and fifth-order. These formulas can easily be adapted to the derivatives in the other

directions.

B.2.1 Third-order WENO scheme

φ+x
i = ΦWENO3

(
φi+2 − φi+1

∆x
,
φi+1 − φi

∆x
,
φi − φi−1

∆x

)
,

φ−xi = ΦWENO3

(
φi−1 − φi−2

∆x
,
φi − φi−1

∆x
,
φi+1 − φi

∆x

)
,

where

ΦWENO3(a, b, c) =
b+ c− ω(a− 2b+ c)

2
, ω =

1

1 + 2r2
, r =

ε+ (a− b)2

ε+ (b− c)2
.

B.2.2 Fifth-order WENO scheme

φ+x
i = ΦWENO5

(
φi+3 − φi+2

∆x
,
φi+2 − φi+1

∆x
,
φi+1 − φi

∆x
,
φi − φi−1

∆x
,
φi−1 − φi−2

∆x

)
,

φ−xi = ΦWENO5

(
φi−2 − φi−3

∆x
,
φi−1 − φi−2

∆x
,
φi − φi−1

∆x
,
φi+1 − φi

∆x
,
φi+2 − φi+1

∆x

)
,

where

ΦWENO5(a, b, c, d, e) =
ω0(2a− 7b+ 11c) + ω1(−b+ 5c+ 2d) + ω2(2c+ 5d− e)

6(ω0 + ω1 + ω2)
,

ω0 =
1

(ε+ r0)2
, ω1 =

6

(ε+ r1)2
, ω2 =

3

(ε+ r2)2
,

r0 =
13

12
(a− 2b+ c)2 +

1

4
(a− 4b+ 3c)2 ,

r1 =
13

12
(b− 2c+ d)2 +

1

4
(b− d)2 ,

r2 =
13

12
(c− 2d+ e)2 +

1

4
(3c− 4d+ e)2 .
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B.3 Finite-difference discretization of the Laplace-Beltrami

operator

Following [13], we have computed explicitly a finite-difference discretization of the Laplace-

Beltrami operator by averaging complementary schemes which alternate backward and

forward derivatives for the computation of the gradient and the divergence. We have

obtained the following expression in 3D:

Ni,j,k =
1

2
(φi+1,j,k − φi−1,j,k , φi,j+1,k − φi,j−1,k , φi,j,k+1 − φi,j,k−1)

c+x =
(
‖Ni,j,k‖ −Nx

i,j,k
2/‖Ni,j,k‖+ ‖Ni+1,j,k‖ −Nx

i+1,j,k
2/‖Ni+1,j,k‖

)
/2

c−x =
(
‖Ni,j,k‖ −Nx

i,j,k
2/‖Ni,j,k‖+ ‖Ni−1,j,k‖ −Nx

i−1,j,k
2/‖Ni−1,j,k‖

)
/2

c+y =
(
‖Ni,j,k‖ −Ny

i,j,k
2
/‖Ni,j,k‖+ ‖Ni,j+1,k‖ −Ny

i,j+1,k
2
/‖Ni,j+1,k‖

)
/2

c−y =
(
‖Ni,j,k‖ −Ny

i,j,k
2
/‖Ni,j,k‖+ ‖Ni,j−1,k‖ −Ny

i,j−1,k
2
/‖Ni,j−1,k‖

)
/2

c+z =
(
‖Ni,j,k‖ −N z

i,j,k
2/‖Ni,j,k‖+ ‖Ni,j,k+1‖ −N z

i,j,k+1
2/‖Ni,j,k+1‖

)
/2

c−z =
(
‖Ni,j,k‖ −N z

i,j,k
2/‖Ni,j,k‖+ ‖Ni,j,k−1‖ −N z

i,j,k−1
2/‖Ni,j,k−1‖

)
/2

c+xy = Nx
i+1,j,kN

y
i+1,j,k / ‖Ni+1,j,k‖ c−xy = Nx

i−1,j,kN
y
i−1,j,k / ‖Ni−1,j,k‖

c+xz = Nx
i+1,j,kN

z
i+1,j,k / ‖Ni+1,j,k‖ c−xz = Nx

i−1,j,kN
z
i−1,j,k / ‖Ni−1,j,k‖

c+yx = Ny
i,j+1,kN

x
i,j+1,k / ‖Ni,j+1,k‖ c−yx = Ny

i,j−1,kN
x
i,j−1,k / ‖Ni,j−1,k‖

c+yz = Ny
i,j+1,kN

z
i,j+1,k / ‖Ni,j+1,k‖ c−yz = Ny

i,j−1,kN
z
i,j−1,k / ‖Ni,j−1,k‖

c+zx = N z
i,j,k+1N

x
i,j,k+1 / ‖Ni,j,k+1‖ c−zx = N z

i,j,k−1N
x
i,j,k−1 / ‖Ni,j,k−1‖

c+zy = N z
i,j,k+1N

y
i,j,k+1 / ‖Ni,j,k+1‖ c−zy = N z

i,j,k−1N
y
i,j,k−1 / ‖Ni,j,k−1‖

∆Γ fi,j,k = −(c+x + c−x + c+y + c−y + c+z + c−z) fi,j,k

+c+x fi+1,j,k + c−x fi−1,j,k + c+y fi,j+1,k

+c−y fi,j−1,k + c+z fi,j,k+1 + c−z fi,j,k−1 +

[−(c+xy + c+yx) fi+1,j+1,k + (c−xy + c+yx) fi−1,j+1,k

+(c+xy + c−yx) fi+1,j−1,k − (c−xy + c−yx) fi−1,j−1,k

−(c+xz + c+zx) fi+1,j,k+1 + (c−xz + c+zx) fi−1,j,k+1

+(c+xz + c−zx) fi+1,j,k−1 − (c−xz + c−zx) fi−1,j,k−1

−(c+yz + c+zy) fi,j+1,k+1 + (c−yz + c+zy) fi,j−1,k+1

+(c+yz + c−zy) fi,j+1,k−1 − (c−yz + c−zy) fi,j−1,k−1] /4

The above expression is further simplified if φ is a signed distance function.
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Appendix C

Publications of the Author

Book chapters

• J.-P. Pons, R. Keriven and O. Faugeras. Modelling non-rigid dynamic scenes

from multi-view image sequences. In N. Paragios, Y. Chen and O. Faugeras,

eds, Mathematical Models in Computer Vision: The Handbook, chapter 27, Springer,

2005.

Journal papers

• J.-P. Pons, G. Hermosillo, R. Keriven and O. Faugeras. Maintaining the point

correspondence in the level set framework. Submitted to Journal of Compu-

tational Physics, 2005.

• J.-P. Pons, R. Keriven and O. Faugeras. Multi-view stereo reconstruction and

scene flow estimation with a global image-based matching score. Submitted

to The International Journal of Computer Vision, 2005.

Conference papers

• G. Charpiat, R. Keriven, J.-P. Pons and O. Faugeras. Designing spatially coher-

ent minimizing flows for variational problems based on active contours.

In International Conference on Computer Vision, volume 2, pages 1403-1408, 2005.

• J.-P. Pons, R. Keriven and O. Faugeras. Modelling dynamic scenes by regis-

tering multi-view image sequences. In International Conference on Computer

Vision and Pattern Recognition, volume 2, pages 822-827, 2005.

• J.-P. Pons, R. Keriven and O. Faugeras. Area preserving cortex unfolding.

In International Conference on Medical Image Computing and Computer Assisted

Intervention, volume 1, pages 376-383, 2004.
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• J.-P. Pons, G. Hermosillo, R. Keriven and O. Faugeras. How to deal with point

correspondences and tangential velocities in the level set framework. In

International Conference on Computer Vision, volume 2, pages 894-899, 2003.

• J.-P. Pons. R. Keriven, O. Faugeras and G. Hermosillo. Variational stereovi-

sion and 3D scene flow estimation with statistical similarity measures. In

International Conference on Computer Vision, volume 2, pages 597-602, 2003.

Technical reports

• F. Ségonne, J.-P. Pons, E. Grimson and B. Fischl. A novel active contour frame-

work. Multi-component level set evolution under topology control. Tech-

nical report AIM-2005-020, CSAIL/MIT, 2005.

• J.-P. Pons, R. Keriven and O. Faugeras. Modelling dynamic scenes by regis-

trating multi-view image sequences. Technical report 5321, INRIA, 2004.

• J.-P. Pons, G. Hermosillo, R. Keriven and O. Faugeras. How to deal with point

correspondences and tangential velocities in the level set framework. Tech-

nical report 4857, INRIA, 2003.

Others

• F. Ségonne, J.-P. Pons, E. Grimson and B. Fischl. A novel level set framework

for the segmentation of medical images under topology control. To ap-

pear in Workshop on Computer Vision for Biomedical Image Applications: Current

Techniques and Future Trends, 2005.

• N. Wotawa, J.-P. Pons, L. Lopez, R. Deriche and O. Faugeras. fMRI data smooth-

ing constrained to the cortical surface: a comparison of the level-set and

mesh-based approaches. In Human Brain Mapping, 2004.
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thesis, Université de Nice Sophia-Antipolis, 2001.

[60] J. Gomes and O. Faugeras. Reconciling distance functions and level sets. Journal

of Visual Communication and Image Representation, 11(2):209–223, 2000.

[61] X. Gu, Y. Wang, T.F. Chan, P.M. Thompson, and S.-T. Yau. Genus zero surface

conformal mapping and its application to brain surface mapping. IEEE Transactions

on Medical Imaging, 23(7):949–958, 2004.

[62] X. Han, D.L. Pham, D. Tosun, M.E. Rettmann, C. Xu, and J.L. Prince. CRUISE:

Cortical reconstruction using implicit surface evolution. NeuroImage, 23(3):997–

1012, 2004.

[63] X. Han, C. Xu, U. Braga-Neto, and J.L. Prince. Topology correction in brain cortex

segmentation using a multiscale, graph-based algorithm. IEEE Transactions on

Medical Imaging, 21(2):109–121, 2002.

[64] X. Han, C. Xu, and J.L. Prince. A topology preserving level set method for geo-

metric deformable models. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25(6):755–768, 2003.

[65] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[66] K. Held, E.R. Kops, B.J. Krause, W.M. Wells, and R. Kikinis. Markov random

field segmentation of brain MR images. IEEE Transactions on Medical Imaging,

16(6):878–886, 1997.

159



[67] G. Hermosillo, C. Chefd’hotel, and O. Faugeras. Variational methods for multimodal

image matching. The International Journal of Computer Vision, 50(3):329–343,

2002.

[68] G. Hermosillo, O. Faugeras, and J. Gomes. Unfolding the cerebral cortex using level

set methods. In Scale-Space Theories in Computer Vision, pages 58–69, 1999.

[69] C. Hernández Esteban and F. Schmitt. Silhouette and stereo fusion for 3D object

modeling. Computer Vision and Image Understanding, 96(3):367–392, 2004.

[70] X. Huang, D. Metaxas, and T. Chen. Metamorphs: Deformable shape and texture

models. In International Conference on Computer Vision and Pattern Recognition,

volume 1, pages 496–503, 2004.

[71] S. Jehan-Besson, M. Barlaud, and G. Aubert. DREAM2S: Deformable regions driven

by an Eulerian accurate minimization method for image and video segmentation. The

International Journal of Computer Vision, 53(1):45–70, 2003.

[72] G.-S. Jiang and D. Peng. Weighted ENO schemes for Hamilton-Jacobi equations.

SIAM Journal of Scientific Computing, 21(6):2126–2143, 2000.

[73] G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted ENO schemes.

Journal of Computational Physics, 126(1):202–228, 1996.

[74] H. Jin, D. Cremers, A.J. Yezzi, and S. Soatto. Shedding light on stereoscopic segmen-

tation. In International Conference on Computer Vision and Pattern Recognition,

volume 1, pages 36–42, 2004.

[75] H. Jin, S. Soatto, and A. Yezzi. Multi-view stereo reconstruction of dense shape and

complex appearance. The International Journal of Computer Vision, 63(3):175–189,

2005.

[76] T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive win-

dow: Theory and experiment. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 16(9):920–932, September 1994.

[77] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. The

International Journal of Computer Vision, 1(4):321–331, 1987.

[78] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi. Gradient

flows and geometric active contour models. In Proceedings of the 5th International

Conference on Computer Vision, pages 810–815, Boston, MA, June 1995. IEEE

Computer Society Press.

[79] J. Kim, V. Kolmogorov, and R. Zabih. Visual correspondence using energy mini-

mization and mutual information. In International Conference on Computer Vision,

volume 2, pages 1033–1040, 2003.

160



[80] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts. In

European Conference on Computer Vision, volume 3, pages 82–96, 2002.

[81] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph

cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–

159, 2004.

[82] N. Kriegeskorte and R. Goeble. An efficient algorithm for topologically correct seg-

mentation of the cortical sheet in anatomical MR volumes. NeuroImage, 14(2):329–

346, 2001.

[83] K.N. Kutulakos. Approximate N-view stereo. In European Conference on Computer

Vision, volume 1, pages 67–83, 2000.

[84] K.N. Kutulakos and S.M. Seitz. A theory of shape by space carving. The Interna-

tional Journal of Computer Vision, 38(3):199–218, 2000.

[85] J.-O. Lachaud and A. Montanvert. Deformable meshes with automated topology

changes for coarse-to-fine 3D surface extraction. Medical Image Analysis, 3(2):187–

207, 1999.

[86] M. Leventon, E. Grimson, and O. Faugeras. Statistical Shape Influence in Geodesic

Active Contours. In Proceedings of the International Conference on Computer Vision

and Pattern Recognition, pages 316–323, Hilton Head Island, South Carolina, June

2000. IEEE Computer Society.

[87] R. LeVeque. High-resolution conservative algorithms for advection in incompressible

flow. SIAM Journal of Numerical Analysis, 33(2):627–665, 1996.

[88] M. Lhuillier and L. Quan. Surface reconstruction by integrating 3D and 2D data of

multiple views. In International Conference on Computer Vision, volume 2, pages

1313–1320, 2003.

[89] W.E. Lorensen and H.E. Cline. Marching cubes: A high-resolution 3D surface re-

construction algorithm. ACM Computer Graphics, 21(4):163–170, 1987.

[90] L.M. Lorigo, O.D. Faugeras, W.E.L. Grimson, R. Keriven, R. Kikinis, A. Nabavi,

and C.-F. Westin. CURVES: Curve evolution for vessel segmentation. Medical Image

Analysis, 5(3):195–206, 2001.

[91] D. MacDonald, N. Kabani, D. Avis, and A.C. Evans. Automated 3-D extraction of

inner and outer surfaces of cerebral cortex from MRI. NeuroImage, 12(3):340–356,

2000.

[92] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multimodality

image registration by maximization of mutual information. IEEE Transactions on

Medical Imaging, 16(2):187–198, 1997.

161



[93] S. Malassiotis and M.G. Strintzis. Model based joint motion and structure estimation

from stereo images. Computer Vision and Image Understanding, 65(1):79–94, 1997.

[94] R. Malladi, J.A. Sethian, and B.C. Vemuri. Shape modeling with front propaga-

tion: A level set approach. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 17(2):158–175, February 1995.

[95] J.-F. Mangin, V. Frouin, I. Bloch, J. Regis, and J. Lopez-Krahe. From 3D mag-

netic resonance imaging to structural representations of the cortex topography us-

ing topology preserving deformations. Journal of Mathematical Imaging and Vision,

5:297–318, 1995.

[96] T. McInerney and D. Terzopoulos. A dynamic finite element surface model for

segmentation and tracking in multidimensional medical images with application to

cardiac 4D image analysis. Computerized Medical Imaging and Graphics, 19(1):69–

83, 1995.

[97] T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: a

survey. Medical Image Analysis, 1(2):91–108, 1996.

[98] T. McInerney and D. Terzopoulos. Topology adaptive deformable surfaces for medi-

cal image volume segmentation. IEEE Transactions on Medical Imaging, 18(10):840–

850, 1999.

[99] T. McInerney and D. Terzopoulos. T-snakes: Topology adaptive snakes. Medical

Image Analysis, 4(2):73–91, 2000.

[100] F. Mémoli, G. Sapiro, and S. Osher. Solving variational problems and partial differ-

ential equations mapping into general target manifolds. Journal of Computational

Physics, 195(1):263–292, 2004.

[101] D.N. Metaxas and D. Terzopoulos. Shape and nonrigid motion estimation through

physics-based synthesis. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 15(6):580–591, 1993.

[102] P.W. Michor and D. Mumford. Riemannian geometries of space of plane curves.

Preprint, 2005.

[103] K. Mikula and D. Sevcovic. Evolution of plane curves driven by a nonlinear function

of curvature and anisotropy. SIAM Journal of Applied Mathematics, 61(5):1473–

1501, 2001.

[104] J.V. Miller, D.E. Breen, W.E. Lorensen, R.M. O’Bara, and M.J. Wozny. Geomet-

rically deformed models: a method for extracting closed geometric models form

volume data. In SIGGRAPH, pages 217–226, 1991.

162



[105] J. Montagnat, H. Delingette, and N. Ayache. A review of deformable surfaces:

Topology, geometry and deformation. Computer Vision and Image Understanding,

19(14):1023–1040, 2001.

[106] J. Montagnat, H. Delingette, N. Scapel, and N. Ayache. Representation, shape,

topology and evolution of deformable surfaces. Application to 3D medical image

segmentation. Technical Report 3954, INRIA, 2000.

[107] J. Moser. On the volume elements on a manifold. AMS Transactions, 120(2):286–

294, 1965.

[108] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions

and associated variational problems. Communications on Pure and Applied Mathe-

matics, 42:577–684, 1989.

[109] J. Neumann and Y. Aloimonos. Spatio-temporal stereo using multi-resolution sub-

division surfaces. The International Journal of Computer Vision, 47:181–193, 2002.

[110] S. Osher and R. Fedkiw. The Level Set Method and Dynamic Implicit Surfaces.

Springer-Verlag, 2002.

[111] S. Osher and N. Paragios, editors. Geometric Level Set Methods in Imaging, Vision

and Graphics. Springer Verlag, 2003.

[112] S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: Al-

gorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics,

79(1):12–49, 1988.

[113] N.C. Overgaard and J.E. Solem. An analysis of variational alignment of curves in

images. In International Conference on Scale Space and PDE Methods in Computer

Vision, pages 480–491, 2005.

[114] N. Paragios and R. Deriche. Geodesic active regions and level set methods for

supervised texture segmentation. The International Journal of Computer Vision,

46(3):223–247, 2002.

[115] N. Paragios and R. Deriche. Geodesic active regions and level set methods for motion

estimation and tracking. Computer Vision and Image Understanding, 97(3):259–282,

2005.

[116] J.-Y. Park, T. McInerney, D. Terzopoulos, and M.-H. Kim. A non-self-intersecting

adaptive deformable surface for complex boundary extraction from volumetric im-

ages. Computer and Graphics, 25(3):412–440, 2001.

[117] E. Parzen. On estimation of a probability density function and mode. Annals

Mathematical Statistics, 33:1065–1076, 1962.

163



[118] D. Peng, B. Merriman, S. Osher, H.-K. Zhao, and M. Kang. A PDE-based fast local

level set method. Journal of Computational Physics, 155(2):410–438, 1999.

[119] J.-P. Pons, G. Hermosillo, R. Keriven, and O. Faugeras. How to deal with point

correspondences and tangential velocities in the level set framework. In International

Conference on Computer Vision, volume 2, pages 894–899, 2003.

[120] J.-P. Pons, G. Hermosillo, R. Keriven, and O. Faugeras. How to deal with point cor-

respondences and tangential velocities in the level set framework. Technical Report

4857, INRIA, 2003.

[121] J.-P. Pons, G. Hermosillo, R. Keriven, and O. Faugeras. Maintaining the point

correspondence in the level set framework. Journal of Computational Physics, 2005.

submitted.

[122] J.-P. Pons, R. Keriven, and O. Faugeras. Area preserving cortex unfolding. In

International Conference on Medical Image Computing and Computer Assisted In-

tervention, volume 1, pages 376–383, 2004.

[123] J.-P. Pons, R. Keriven, and O. Faugeras. Modelling dynamic scenes by registrating

multi-view image sequences. Technical Report 5321, INRIA, 2004.

[124] J.-P. Pons, R. Keriven, and O. Faugeras. Modelling dynamic scenes by registering

multi-view image sequences. In International Conference on Computer Vision and

Pattern Recognition, volume 2, pages 822–827, 2005.

[125] J.-P. Pons, R. Keriven, and O. Faugeras. Modelling non-rigid dynamic scenes from

multi-view image sequences. In N. Paragios, Y. Chen, and O. Faugeras, editors, The

Handbook of Mathematical Models in Computer Vision, chapter 27. Springer, 2005.

[126] J.-P. Pons, R. Keriven, O. Faugeras, and G. Hermosillo. Variational stereovision

and 3D scene flow estimation with statistical similarity measures. In International

Conference on Computer Vision, volume 2, pages 597–602, 2003.

[127] JP. Pons, R. Keriven, and O. Faugeras. Mathematical Models in Computer Vision:

The Handbook, chapter Modelling Non-Rigid Dynamic Scenes from Multi-View Im-

age Sequences. Springer, 2005.

[128] J. Rauch. Partial Differential Equations. Springer-Verlag, New York, 1991.

[129] A. Roche, G. Malandain, X. Pennec, and N. Ayache. The correlation ratio as new

similarity metric for multimodal image registration. In W.M. Wells, A. Colchester,

and S. Delp, editors, Medical Image Computing and Computer-Assisted Intervention-

MICCAI’98, number 1496 in Lecture Notes in Computer Science, pages 1115–1124,

Cambridge, MA, USA, October 1998. Springer.

164



[130] Mikael Rousson and Rachid Deriche. Adaptative segmentation of vector valued

images. In S. Osher and N. Paragios, editors, Geometric Level Set Methods in

Imaging Vision and Graphics. Springer, 2003.

[131] Mikael Rousson and Nikos Paragios. Shape priors for level set representations. In

A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors, Proceedings of the 7th

European Conference on Computer Vision, volume 2, pages 78–92, Copenhagen,

Denmark, May 2002. Springer–Verlag.

[132] P. Saint-Marc, H. Rom, and G.G. Medioni. B-spline contour representation and sym-

metry detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

15(11):1191–1197, 1993.

[133] D. Scharstein and R. Szeliski. Stereo matching with nonlinear diffusion. The Inter-

national Journal of Computer Vision, 28(2):155–174, 1998.

[134] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms. The International Journal of Computer Vision, 47(1):7–

42, 2002.

[135] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Haeberli. Fast shadows

and lighting effects using texture mapping. Computer Graphics, 26(2):249–252, 1992.

[136] F. Ségonne. Segmentation of Medical Images under Topological Constraints. PhD

thesis, CSAIL, MIT, 2005. to appear.

[137] F. Ségonne, A.M. Dale, E. Busa, M. Glessner, D. Salat, H.K. Hahn, and B. Fischl.

A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22(3):1060–

1075, 2004.

[138] F. Ségonne, J.-P. Pons, F. Fischl, and E. Grimson. A novel active contour framework:

Multi-component level set evolution under topology control. AI memos AIM-2005-

020, CSAIL, MIT, 2005.

[139] F. Ségonne, J.-P. Pons, E. Grimson, and B. Fischl. A novel level set framework for the

segmentation of medical images under topology control. In Workshop on Computer

Vision for Biomedical Image Applications: Current Techniques and Future Trends,

2005. to appear.

[140] S.M. Seitz and C.R. Dyer. Photorealistic scene reconstruction by voxel coloring. The

International Journal of Computer Vision, 35(2):151–173, 1999.

[141] M.I. Sereno, A.M. Dale, A. Liu, and R.B.H. Tootell. A surface-based coordinate

system for a canonical cortex. NeuroImage, 3(3):S252, 1996.

[142] J.A. Sethian. A fast marching sevel set method for monotonically advancing fronts.

In Proceedings of the National Academy of Sciences, volume 93, pages 1591–1694,

1996.

165



[143] J.A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces

in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Sci-

ences. Cambridge Monograph on Applied and Computational Mathematics. Cam-

bridge University Press, 1999.

[144] Y.Q. Shi, C.Q. Shu, and J.N. Pan. Unified optical flow field approach to motion

analysis from a sequence of stereo images. Pattern Recognition, 27(12):1577–1590,

1994.

[145] C.-W. Shu. Total-variation-diminishing time discretizations. SIAM Journal of Sci-

entific and Statistical Computing, 9(6):1073–1084, 1988.

[146] K. Siddiqi, Y. Lauzière, A. Tannenbaum, and S. Zucker. Area and length minimizing

flows for shape segmentation. IEEE Transactions on Image Processing, 7(3):433–443,

1998.

[147] G.G. Slabaugh and G.B. Unal. Active polyhedron: Surface evolution theory applied

to deformable meshes. In International Conference on Computer Vision and Pattern

Recognition, volume 2, pages 84–91, 2005.

[148] S. Soatto, A.J. Yezzi, and H. Jin. Tales of shape and radiance in multi-view stereo.

In International Conference on Computer Vision, volume 2, pages 974–981, 2003.

[149] J.E. Solem and A. Heyden. Reconstructing open surfaces from unorganized data

points. In International Conference on Computer Vision and Pattern Recognition,

volume 2, pages 653–660, 2004.

[150] J.E. Solem and N.C. Overgaard. A geometric formulation of gradient descent for

variational problems with moving surfaces. In International Conference on Scale

Space and PDE Methods in Computer Vision, pages 419–430, 2005.

[151] L.H. Staib and J.S. Duncan. Boundary finding with parametrically deformable mod-

els. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(11):1061–

1075, 1992.

[152] G. Storvik. A Bayesian approach to dynamic contours through stochastic sampling

and simulated annealing. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 16(10):976–986, 1994.

[153] C. Strecha, R. Fransens, and L. Van Gool. Wide-baseline stereo from multiple

views: a probabilistic account. In International Conference on Computer Vision

and Pattern Recognition, volume 2, pages 552–559, 2004.

[154] C. Strecha, T. Tuytelaars, and L. Van Gool. Dense matching of multiple wide-

baseline views. In International Conference on Computer Vision, volume 2, pages

1194–1201, 2003.

166



[155] C. Strecha and L. Van Gool. Motion-stereo integration for depth estimation. In

European Conference on Computer Vision, volume 2, pages 170–185, 2002.

[156] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions

to incompressible two-phase flow. Journal of Computational Physics, 114(1):146–159,

1994.

[157] R. Szeliski. Bayesian modeling of uncertainty in low-level vision. The International

Journal of Computer Vision, 5(3):271–301, 1990.

[158] R. Szeliski. Prediction error as a quality metric for motion and stereo. In Interna-

tional Conference on Computer Vision, volume 2, pages 781–788, 1999.

[159] R. Szeliski and D. Tonnesen. Surface modeling with oriented particle systems. In

SIGGRAPH, pages 185–194, 1992.

[160] G. Taubin, F. Cukierman, S. Sullivan, J. Ponce, and D.J. Kriegman. Parameter-

ized families of polynomials for bounded algebraic curve and surface fitting. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 16(3):287–303, March

1994.

[161] D. Terzopoulos and D.N. Metaxas. Dynamic 3D models with local and global de-

formations: Deformable superquadrics. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 13(7):703–714, 1991.

[162] A. Treuille, A. Hertzmann, and S.M. Seitz. Example-based stereo with general

BRDFs. In European Conference on Computer Vision, volume 2, pages 457–469,

2004.
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