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Introduction





Since the development of mechanics, one has wondered how far any task could be auto-
mated and performed by a machine. One has often tried to give machines a human facet,
either by copying superficially and roughly the appearance of humans, or trying to model
more deeply their internal mechanisms. The myths or dreams of robots or machines that
behave like humans are much older than the technological breakthroughs that have led to
the creation of computers. These ones however, due to their still increasing huge capacities
in terms of quantity of information and programming, have aroused a great, productive
enthusiasm for algorithmics. Nevertheless, the question of delimiting which tasks can be
solved by a computer is still addressed, and people usually disagree on the possibility of
the creation of an artificial “intelligence”. Over time, the notion of “intelligence” has much
evolved, loosing certainty, as the computer science has succeeded in resolving harder tasks.
The best definition of “intelligence” seems to simply be “everything that can not be done
by a machine (yet)”. For instance the ability to defeat a human chess champion had been
for a long time considered as requiring intelligence, but the intensive use of raw calculation
power has changed the perspective. Beside these philosophical or scientific questions on the
potentiality of machines, the industry has been asking for the automatization of more and
more intricate tasks in order to decrease their costs or the required time to achieve them.
An example of a domain where a lot of things remain to be done, from both practical and
cognitive point of view, is the image processing. Indeed at the optimistic era of early com-
puter programming the recognition of objects in images was thought to be an easy task,
but still after decades the state of the art is not very satisfying, even if some methods have
shown their efficiency in some limited applications.

The goal of image processing, or computer vision, consists in a first step in solving
usual visual tasks that human beings accomplish everyday very naturally without even
thinking of them. Examples of such tasks are : finding the contour of an object, following
it, identifying it, seeing it in three dimensions whereas the eyes get only two-dimensional
images, imagining its missing parts if it is partially occluded. And then, in a second step,
some visual tasks require a little more reflexion, like analyzing and describing visual scenes
with a few words. These tasks are respectively referred to as image segmentation, tracking,
object classification, stereo reconstruction, inpainting and scene interpretation. They show
themselves very useful in many applications, such as in medical imaging, video monitoring,
and character recognition (known as OCR). For example the detection and identification
of characters in an image allows to numerize scanned books and to sort letters at the post
office by their ZIP code. Obviously the time gained for these repetitive tasks is huge.

The (static) image segmentation is often considered as being a low-level first step that
needs to be done before going on towards more “semantic” tasks. This approach is known as
“bottom-up”. However, on one hand, the segmentation of a tracked object is really helped
by the information coming from the motion (optical flow), which brings up the problem of
what exactly should be considered as a low-level tool, and on the other hand, high-level
information on objects or scene interpretation can also help the segmentation process. This
last point of view is named “top-down”.

How to find the contour of an object in an image ? Without any information about the



8

object, one standard method consists in searching for the regions of greatest homogeneity,
with highest differences between them. Of course the quantity that is supposed to be homo-
geneous has to be precised. A possible homogeneity criterion is the spatial coherence of the
color or the texture. Texture descriptors are local and based on the intensity of the image
in the neighborhood of the point of interest and can involve multi-scale convolutions, like
wavelets, or statistical tools, like Markov fields. The minimization of the chosen criterion
should be made amongst all possible contours, but this set is far too huge to be entirely
explored. If the criterion to minimize admits a simple enough formula that satisfies some
conditions, then the global minimum can be found in a low-degree polynomial time thanks
to the graph cuts technique. Depending on the criterion, other minimization methods consist
in dealing with regions and successively merging or splitting them.

However in general the only method available is the gradient descent with respect to
the boundaries, and this has naturally led to the variational approach where an arbitrary
contour is initially drawn and then evolves in order to minimize the energy. This contour can
be represented by a polygon or list of points (snake), or by splines, etc., or by the zero-level
of a function defined on the whole image. In this last case the whole function evolves, even
if the only center of interest is its zero-level, and this allows topological changes. A great
advantage of the gradient descent method is that the minimized energy can explicitly deal
with criteria dedicated to the contour itself. For instance the contour could be asked to
be attracted by regions of high intensity gradient, which is a model of heterogeneity of an
image at the boundary between two homogeneous regions. But, above all, criteria concerning
the shape of the object can be used. For instance its smoothness is easily described by the
curvature of the boundary, and this restriction that the boundary should be smooth (or
should not) can be seen as a prior on the shape of the object.

Without more information about the object to be found, it is difficult to find better suited
criteria. In fact the search for the best criterion without any knowledge about the object
could be seen as an attempt to describe as best as possible the properties of usual objects
in the real world and consequently it is already a prior on the usual world or more precisely
on the objects of interest that it contains. Obviously in the case where more information
about the object is available, its incorporation into the previous framework will improve the
results, but this could be done in several manners. For example the programmer could build
a model ex nihilo of the object, for example a mechanical model with rigid parts of fixed
length and rotation centers, and then a small number of parameters naturally arise so that
the minimization now depends only on these parameters. The color or the texture of the
object could also be known. In all cases, the additional information removes some variables
or sets more precisely their probability distribution.

The main point here is that these probability distributions could be learned rather
than fixed by hand. Ideally the learning would be completely unsupervised, that is to say
that one could expect the computer to elaborate progressively heuristics as the number of
images that it has been given grows. However, to my knowledge, the art of successfully
extracting heuristics from raw images without any prior on their structure and without any
given example of segmentation does not exist yet and could be considered as a part of the
“artificial intelligence” concept. Less ambitious but more realistic, the supervised or semi-
supervised learning usually consists in bringing a sample set of examples already segmented
and in estimating the probability distributions of some predefined variables (color, texture,
area, diameter, etc.). Priors on the shape of the contour itself are however more intricate
to deal with since a shape is not naturally equipped with a small number of parameters. A
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simplistic approach consists in fixing a particular shape and searching for the best location
of it in a new image by minimizing usual criteria with respect to the translation, rotation
and scaling parameters. Of course such a prior do not take into account any kind of shape
variability except rigid motion and is not well designed for learning. Most often, some shape
parameters are introduced by hand by associating manually to some chosen points on a
reference shape their correspondences on all other samples, and then some basic statistics
like PCA (principal component analysis) are applied to the obtained coordinate vectors.
The issue would then be to manage to automatically find the correspondences, that is to
say, to establish meaningful correspondences between any two shapes. In a more intrinsic
point of view, the whole shape rather than some points only could be considered, and this
avoids the quest for particular points on shapes and their manual matching. However the
notion of shape statistics supposes the ability to compare shapes in some manner, so that
a possible way to start would be to establish correspondences between whole shapes, which
is often done via shape warping.

Warping any shape onto any other one is a difficult problem also. More precisely, the
difficulty is to warp shapes automatically so that the obtained correspondences seem quite
intuitive to a human eye. Different approaches have been proposed, notably the mathemati-
cal morphology, based on dilatation and erosion, and the variational method, based on the
gradient descent of the distance between the shapes. In the variational method, the choice
of the distance to be minimized is crucial since it will act qualitatively on the obtained
evolution paths. Amongst most used distances are the Hausdorff distance, the symmetric
difference area, and the L2 or W 1,2 norm between the associated signed distance functions.
A variation where the distance depends on the whole path between the shapes allows to
consider path-based metrics and consequently geodesics.

In any case, the problem of computing shape statistics from a sample set of shapes and
their associated correspondences is addressed. Contrary to the usual case of vectors in Rn

where PCA can be applied or histograms can be drawn, the set of all deformations that a
shape may undergo is intrinsically infinite dimensioned, and therefore either a dimensiona-
lity reduction or a way to deal with infinite dimensions is needed. In practice, some tools like
kernel methods (support vector machine) or graph Laplacian are designed to classify high-
dimensioned data or to represent it in a low-dimensional space, and indeed in this purpose
some authors have applied SVM techniques to images, which are then seen as pixel vectors.
However such an application lacks the image structure and looses important notions such
as the continuity or the curvature of a shape (not to say the notion of shape itself), and the
related information that has been thus scattered is much more difficult to retrieve, especially
if the training set is small. The point is that kernel methods show themselves helpful when
there is no inherent structure or particular quantity of interest that can be previously des-
cribed and modeled. As long as the dimensionality reduction tools are not efficient enough,
or as long as there is no “artificial intelligence” that can guess the quantities of interest, the
task addressed to the machine has to be deeply thought and precisely modeled.

The design of shape priors for the image segmentation consequently starts with an
investigation of the notion of shape, a definition of the set of admissible shapes, coming
along with a study of this set and a way to compare shapes, that is to say intrinsic distances
between shapes. Then the way to move into this set can be also investigated and this
naturally leads to the notions of deformation and shape gradient. Finally, the question of
modeling shape distributions can be thought in terms of deformation distributions so that
usual statistics can be performed on them.
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This framework is followed here. The thesis is divided into three parts. In the first one
the notion of shape is explored, with particular attention to sets of shapes and associated
distances. The second part deals with shape warping, and more precisely with shape deri-
vatives, which happens to be an inspiring topic. In the last part a definition of the mean
shape of a sample set of shapes is given, as well as the one of characteristic deformations
that convey the shape variability, and then this shape variability is turned into a shape prior
for the image segmentation task. In order to make the reading easier, a small abstract has
been added to the head of each chapter.

More precisely, the first part Shapes and Distances begins with the description of several
distances between subsets of R2 that are often considered in the computer vision litera-
ture, namely the L2 norm of the difference of characteristic functions, the L∞ and W 1,2

norms of the difference of distance functions and the Hausdorff distance. The set S of all
shapes is introduced as the set of curves with smooth boundaries, with bounded curvature
and positive Federer reach. The topologies related to the three previous distances are then
shown to be equivalent on this set. In chapter 2, a family of smooth approximations of the
Hausdorff distance is built and studied. In particular it is shown that with suitable choices
of parameters, these approximations can be as close as desired to the Hausdorff distance.
These approximations are then shown to be continuous with respect to the previously stu-
died topologies. The notion of shape is the subject of Chapter 3, which proposes different
concepts of shape and associated distances. The relation between the Hausdorff distance of
full objects and the Hausdorff distance of their boundaries is described and they are shown
to be equal for close enough shapes in S. Then the Hausdorff distance is extended in order
to take into account more information, like color, local orientation or other local shape des-
criptors. A criterion between images, namely the local cross-correlation, is also introduced
and shown to be closely related to a distance. The part ends with a brief study of “static”
statistics that can be computed with the only knowledge of distances between shapes wi-
thout any shape warping. The technique of the graph Laplacian is applied to sample sets of
curves and leads to low-dimensional maps of them, whereas shapes are intrinsically infinite
dimensioned. However in the case of sparse data this kind of technique seems limited.

A more dynamical way to explore the set of shapes and to compare them consists in
warping any shape onto any other one. This is the subject of the second part, Shape Warping.
Its first chapter introduces the notion of differentiation in S and after a brief theoretical
study of this new structure on S, the shape gradient of the approximation of the Hausdorff
distance is computed and used to warp a shape onto another one by minimizing the distance
with respect to one shape in a gradient descent framework. Chapter 6 is a small digression
on the implementation of shape gradient in practice. Shapes are often represented by a
finite number of parameters, such as the position of the vertices of a polyhedron, but the
differentiation of a criterion with respect to these parameters introduces a prior which is
specific to the representation. An intrinsic differentiation is proposed instead. Back to the
shape matching task, chapter 7 presents a way to incorporate priors on minimization flows
into the gradient descent framework. This is done by changing the inner product that defines
the notion of gradient. The usual gradients in the computer vision literature are indeed
related to the L2 inner product but the consideration of other structures allows to set
priors on the minimization flows. This is of great interest for usual variational methods
since in practice the local minima to which they lead are then qualitatively different. This
framework is applied to induce several degrees of spatial consistency in the warping flow,
such as a Gaussian smoothing or a rigidification, while keeping the properties of a gradient



11

descent. Chapter 8 goes further and states an equivalent definition of the gradient which
allows to consider more general priors. The gradient is seen itself as the minimizer of a
criterion which can take into account any reasonable prior on the deformation field. An
example which favors locally rigid motions is shown.

Finally, in part Shape Statistics and Priors, the tools developed in the two previous parts
are used to build shape statistics which are themselves incorporated into shape priors. In
chapter 9, a definition of the mean of a sample set of shapes is proposed, as well as the
definition of characteristic modes of deformation that express the shape variability. These
modes are computed from the knowledge of the gradients of the chosen distance between
the mean shape and each of the sample shapes with respect to the mean shape. Examples
are shown. Chapter 10 carries on the same spirit but with application to sample sets of
images instead of contours. The Hausdorff distance is replaced by the local cross-correlation,
and the instantaneous deformation fields by diffeomorphisms of the whole image. A mean
image is defined, as well as eigenmodes of deformation which include both spatial and
intensity variations. The example of a face database is shown. Then statistics on the spatial
deformation fields are used to classify faces and recognize their expressions via SVM. The
thesis ends with a chapter dedicated to the definition of shape priors that use shape statistics
and to their application to an image segmentation task. Different probability distributions
are proposed, such as a kernel method based on shape gradients and the Mahalanobis
distance of the shape gradient with knowledge of eigenmodes and their associated standard
deviations. The shape priors are then adapted in order to be invariant with respect to
rigid motion. Since their minimization involves the second cross-derivative of the chosen
distance, this one is computed in the case of the approximation of the Hausdorff distance.
The importance of shape priors is then illustrated by examples.

Most of chapters 1, 2, 5 and 9 comes from the article [18] Approximations of Shape Me-
trics and Application to Shape Warping and Empirical Shape Statistics with Olivier Faugeras
and Renaud Keriven published in the journal Foundations of Computational Mathematics,
2004, and turned into a chapter [20] with the same title in the book Statistics and Analysis
of Shapes, H. Krim & A. Yezzi editors, 2006, with an additional extension to surfaces in R3

by Pierre Maurel. A short and preliminary version of this work can be found in the article
[17] Shape Metrics, Warping and Statistics in the proceedings of the International Confe-
rence on Image Processing held in 2003. Most of chapters 7 and 8 comes from the article [23]
Generalized Gradients : Priors on Minimization Flows with Pierre Maurel, Jean-Philippe
Pons, Renaud Keriven and Olivier Faugeras, published in the International Journal of Com-
puter Vision, 2007. It is the continuation of the work begun in the article [21] Designing
Spatially Coherent Minimizing Flows for Variational Problems Based on Active Contours
with Jean-Philippe Pons, Renaud Keriven and Olivier Faugeras, in the proceedings of Inter-
national Conference on Computer Vision held in 2005. Chapter 10 comes from the article
[19] Image Statistics based on Diffeomorphic Matching with Olivier Faugeras and Renaud
Keriven, in the proceedings of the same conference, except the last part concerning expres-
sion recognition, which comes from the ENPC research report of the same title and to which
Jean-Yves Audibert has also contributed, providing classification tools. The technique ex-
posed in chapter 4 is briefly presented in the article [22] Distance-Based Shape Statistics
with Pierre Maurel, Renaud Keriven and Olivier Faugeras, in the proceedings of the Inter-
national Conference on Acoustics, Speech, and Signal Processing, Special Session Statistical
Inferences on Nonlinear Manifolds with Applications in Signal and Image Processing held
in 2006.
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Most programs make intensive use of C++ libraries1 developed by the Odyssee Team,
namely the Level-Set library (LSLIB) and the WinLib. Computations in chapters 7 and
11 use some additions by Pierre Maurel to the LSLIB. Figures 7.2, 7.4, 7.5 and 7.6 by
Pierre Maurel, who appears on figure 8.4. Computations in chapter 10 use at some level a
source code by Jean-Philippe Pons based on yar++, another Odyssee Team image library,
developed by Gerardo Hermosillo.

1http ://cermics.enpc.fr/˜keriven/software/
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Motivation

Le but de cette thèse est de construire un terme d’a priori sur la forme pour aider la
segmentation d’images lorsque l’on dispose d’un ensemble d’exemples de contours auxquels
on voudrait que le résultat de la segmentation ressemble. Pour cela on cherche tout d’abord
à exprimer des statistiques sur ces contours, puis à déduire de ces statistiques un critère
exprimant la probabilité d’une nouvelle forme étant donné l’échantillon d’apprentissage.

Rappel sur l’approche variationnelle

L’approche variationnelle en segmentation d’images consiste à définir un critère E dépen-
dant d’une courbe C ou surface, de choisir une certaine position initiale C0 et de minimiser
ce critère par descente de gradient :

C(0) = C0

∂tC(t) = −∇CE
(
C(t)

)
afin de trouver le meilleur contour C pour ce critère. Malheureusement une descente de gra-
dient garantit seulement de trouver un minimum local et en pratique les résultats dépendent
beaucoup de l’initialisation. Par ailleurs les critères sont assez difficiles à déterminer, le choix
de l’énergie à minimiser dépend fortement du type de données et de la tâche précise que
l’on cherche à accomplir en segmentant l’image.

Les critères usuels sont basés soit sur des propriétés locales le long de la contour C,
telle que l’estimation de la présence éventuelle de bords en un point de ce contour à partir
du gradient de l’intensité de l’image en ce point, soit sur des propriétés propres aux deux
régions délimitées par le contour, telles que l’homogénéité de la couleur ou de la texture
dans chacune des deux régions en question.

Ces critères ne porte aucune information ou restriction sur la forme que doit avoir le
résultat de la segmentation, sinon éventuellement sa régularité (grâce à des termes portant
sur la longueur de la courbe) ou quelques paramètres tels que son diamètre.

On souhaiterait ici construire un nouveau critère qui ne dépende que de la forme de la
courbe (et non pas de l’intensité de l’image) et qui exprime à quel point cette courbe est
typique ou non des exemples observés auparavant (fournis éventuellement par une segmen-
tation manuelle de quelques images analogues).

Exigences

Il serait hautement souhaitable que l’approche et le critère à définir vérifient un certain
nombre de propriétés :

– que l’approche soit bien posée mathématiquement ;
– que les quantités exprimées soient intrinsèques aux formes et non dépendant de leur

paramétrisation ;
– que l’approche soit facilement généralisable au cas d’hypersurfaces dans un Rn quel-

conque, notamment au cas de surfaces dans un environnement tri-dimensionnel ;
– que le critère rende compte au mieux de la variabilité de la forme ;
– que le critère soit dérivable afin que l’on puisse effectuer une descente de gradient ;
– que le critère puisse être invariant aux transformations rigides (translation, rotation,

changement d’échelle).
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Travaux déjà existants sur ce sujet

Méthode Parzen

Il faut mentionner ici les travaux de Cremers [28, 29, 27] qui consistent à appliquer la
méthode Parzen aux courbes : une distance d étant choisie sur l’espace des courbes, on
définit le critère

E(C) =
N∑
i=1

exp−
d(C,Ci)

2

2σ2

où Ci est l’ensemble des N courbes de l’ensemble d’apprentissage et σ un paramètre à
fixer. L’un des problèmes de cette approche est qu’elle nécessite un ensemble d’apprentissage
très dense, sans quoi pour les petites valeurs de σ la courbe C sera attirée vers un échantillon
déjà observé et pour les grandes valeurs de σ la courbe C ne sera certes pas exactement
sur un des exemples Ci mais la déformation qui relie ces deux courbes sera quelconque et
non nécessairement représentative des déformations que l’on peut observer dans l’ensemble
échantillon. C’est justement au fait que la déformation entre la courbe C et les échantillons
Ci doit être typique que l’on s’attache dans cette thèse.

ACP sur fonction distance

Un certain nombre de travaux, tels ceux de Leventon [73, 74] ou de Rousson et Paragios
[94, 98] s’appuient sur la représentation par fonction distance signée de la forme et expriment
des statistiques via l’application d’une analyse en composantes principales de ces fonctions
distance. Le problème ici est qu’une combinaison linéaire de fonctions distance n’est généra-
lement pas elle-même une fonction distance ; or la décomposition en composantes principales
suppose intrinsèquement que les combinaisons linéaires de fonctions distances font sens. Des
phénomènes assez étranges peuvent survenir lorsque l’on moyenne ainsi des fonctions dis-
tance.

Plan de la thèse

La thèse se découpe en trois parties : en premier lieu, une étude mathématique de
l’ensemble des formes et des métriques que l’on peut poser dessus, ainsi qu’une brève étude
de ce que l’on peut faire lorsque l’on ne peut disposer que des distances entre les formes
(sans aucun déplacement dans l’espace des formes, c’est-à-dire sans déformation). En second
lieu, une étude de la notion de dérivation d’une énergie par rapport à une courbe et plus
généralement des déformations dans l’espace des formes : le gradient de forme se révèle
dépendre fortement du produit scalaire posé dans l’espace tangent ; ce produit scalaire est
alors vu comme un a priori sur les déformations d’un intérêt primordial. La troisième partie
combine les résultats des deux parties précédentes afin de définir la moyenne d’un ensemble
de formes ainsi que les modes de déformation caractéristiques associés. Sur ces statistiques
l’on construit un a priori sur la forme qui est illustré par un exemple de segmentation
d’image. Des statistiques similaires sont également définies pour un ensemble d’images (et
non de formes) et illustrées sur une base de données de visages ; l’application est cette fois
la reconnaissance d’expressions de visages.
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Première partie : Formes et distances

Cette première partie est consacrée à l’ensemble des formes et à ses métriques.
Nous définissons tout d’abord (chapitre 1) mathématiquement l’ensemble de “toutes

les formes” S et nous étudions plusieurs métriques sur cet ensemble. En particulier nous
montrons que trois des métriques les plus courantes sont topologiquement équivalentes.

Nous choisissons parmi elles la distance de Hausdorff qui a l’avantage d’exprimer plus
d’information géométrique au sens où, si l’on essaye de déformer une courbe de façon à
minimiser sa distance à une autre courbe, le champ de déformation à suivre se révèle dans
certains cas plus naturel que la distance L2 entre les fonctions distance par exemple. Nous
étudions alors plus précisément cette distance (chapitre 3) et proposons quelques extensions
pour prendre en considération d’autres notions telles que l’orientation locale de la courbe.
Nous proposons également (chapitre 2) une approximation dérivable de cette distance afin
de pouvoir effectuer une descente de gradient par la suite.

Que peut-on obtenir comme statistiques sur un ensemble de formes si l’on a accès seule-
ment à la distance entre tout couple de formes ? On peut représenter un échantillon de
N courbes comme un graphe dont chaque courbe est un noeud (chapitre 4). Les fonctions
propres du laplacien de ce graphe peuvent alors être utilisées comme un système de coor-
données, ce qui permet d’avoir une représentation de faible dimension de l’ensemble des N
courbes.

Chapitre 1 : Ensembles de formes et métriques usuelles

Pour définir l’ensemble des formes dans lequel on va travailler, on s’inspire des travaux
de Delfour et Zolésio [33]. Étant donné un domaine compact D de Rn (l’image qui contient
les formes), on considère l’ensemble S des ensembles de points de D qui sont à la fois :

– dans C2 : au sens où leur frontière est non vide et peut-être localement représentée
comme le graphe d’une fonction C2 ;

– dans l’ensemble de Federer F(h0) : la fonction distance signée à la forme est à distance
> h0 de son squelette.

Les métriques les plus courantes sur les ensembles de formes sont :
– la distance de Hausdorff
– l’aire de la différence symétrique
– la norme L2 ou W 1,2 de la différence des fonctions distance associées.
Le point important de ce chapitre est que l’on prouve que les topologies relatives au trois

distances ci-dessus sont équivalentes sur S. Il est à noter que la contrainte F(h0) y joue un
rôle primordial et que l’équivalence n’a plus lieu sans.

Un des résultats de compacité obtenus lors de l’étude de S permet également de prou-
ver que l’enveloppe semi-continue inférieurement d’une fonction continue sur S atteint son
minimum sur S (quelle que soit la topologie choisie parmi les trois).

L’équivalence entre les trois topologies n’implique pas pour autant que les trois distances
se comportent de façon similaire à plus grande échelle. On s’intéressera désormais en particu-
lier à la distance de Hausdorff, car celle-ci semble exprimer plus d’information géométrique
que les autres (à des échelles non epsilonesques).

Chapitre 2 : Approximations de distances de formes

La distance de Hausdorff entre deux courbes n’étant pas dérivable par rapport à ces
courbes, on définit dans ce chapitre une famille d’approximation de la distance de Hausdorff
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qui consiste à remplacer les infx∈A f(x) et supx∈A f(x) où x est un point de la courbe A et
f une fonction régulière par

Ψ−1

(
1
|A|

∫
A

Ψ(f(x)) dx
)

avec Ψ fonction croissante pour approximer le sup et décroissante pour approximer l’inf.
Cette astuce n’est pas sans rappeler l’approximation ‖ · ‖p −→ ‖ · ‖∞ quand p tend vers
l’infini.

L’on montre que ces approximations sont continues pour les topologies étudiées au cha-
pitre précédent.

Une astuce similaire peut être utilisée pour approximer de façon dérivable et continue
la norme L2 ou W 1,2 des fonctions distance signée associées aux courbes.

Le cas de l’approximation de la distance de Hausdorff est étudié plus particulièrement,
et l’on quantifie l’erreur entre la distance et son approximation en fonction des paramètres
de celle-ci (les paramètres sont les analogues de p dans ‖ · ‖p −→ ‖ · ‖∞). En particulier
l’on montre la convergence de l’approximation vers la vraie distance quand les paramètres
tendent vers l’infini. Nous n’avons cependant pas étudié la convergence du gradient de
l’approximation vers le “gradient” de la distance de Hausdorff (en supposant que l’on puisse
définir celui-ci) vu que les calculs nécessaires seraient bien fastidieux. Ce point cependant
mériterait d’être étudié plus précisément vu l’usage intensif des gradients qui est fait par
la suite. On peut néanmoins conjecturer, vu les résultats obtenus en pratique, que cette
convergence semble bien avoir lieu. Il est à noter que dans les applications pratiques l’on
considèrera de relativement faibles valeurs des paramètres, afin que les déformations soient
suffisamment lisses, plutôt que des valeurs élevées, ce qui aurait pour conséquence de faire
ressembler les gradients à une somme de pics pointus (et qui n’est guère souhaitable pour
construire des chemins entre des formes).

Chapitre 3 : Différentes notion de forme et distances associées

La notion intuitive de forme peut prendre plusieurs aspects : contour d’un objet, l’objet
lui-même, avec ou sans couleur... Dans ce chapitre on essaye de mathématiser ces différentes
notions et de poser des distances sur les ensembles de formes correspondants.

On étudie tout d’abord le lien entre la distance de Hausdorff entre les “formes pleines”,
c’est-à-dire les objets, et la distance de Hausdorff entre les frontières de ces objets. On montre
notamment que sur l’espace S introduit précédemment, si l’une de ces deux distances est
suffisamment petite, alors l’autre également et elles sont alors égales.

On présente ensuite une façon d’étendre la distance de Hausdorff pour qu’elle puisse
prendre en compte des descripteurs locaux de la forme, telles la courbure, l’orientation
(c’est-à-dire la normale à la forme au point considéré), la couleur... Pour cela on troque la
distance euclidienne d(x, y) qui est la brique de construction de la distance de Hausdorff
pour une distance qui prend également en compte ces descripteurs locaux. On montre en
particulier que cette extension de la distance de Hausdorff est toujours une distance.

L’on compare enfin la notion d’objet “plein” à la notion d’image. On présente la cor-
rélation croisée locale, critère régulièrement utilisé dans la littérature pour comparer deux
images. On montre que ce critère découle d’une distance (au sens mathématique du terme).
On présente également la technique dite de multi-résolution, qui permet d’éviter un certain
nombre de minima locaux lors de la déformation d’une image vers une autre par minimisa-
tion de la corrélation croisée locale.
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Chapitre 4 : Statistiques basées sur la seule connaissance des distances

L’étude d’espaces des formes et des distances que l’on peut définir dessus mène naturel-
lement à la question de savoir ce que l’on peut extraire comme type de statistiques à partir
de la seule connaissance des distances entre les formes (c’est-à-dire sans aucune déformation
de forme, sans aucun mouvement dans cet espace des formes).

Étant donné un échantillon de formes et les distances entre elles, on peut construire un
graphe où chaque forme est un noeud du graphe qui est relié à ses K plus proches voisins
(pour une valeur prédéfinie de K). Sur ce graphe on peut définir une version discrète du
laplacien et calculer ses fonctions propres, qui ont la particularité d’être les “meilleures”
fonctions pouvant servir de système de coordonnées (pour un certain critère simple de ré-
gularité). L’on peut alors représenter l’ensemble de formes étudié dans un espace de faible
dimension grâce aux premières fonctions propres.

Utiliser cette représentation pour construire un a priori de forme pour la segmentation
d’images n’est pas chose aisée. Quelques pistes peut-être du côté des extensions des cartes
harmoniques qui permettent d’affecter à un nouveau point des coordonnées, en supposant
que l’on puisse dériver simplement ces coordonnées par rapport à la courbe afin de la “pro-
jeter” sur la “variété” des courbes déjà observées. Cependant il est difficile de concevoir
comment se mouvoir dans l’espace des formes sans avoir étudié préalablement la déforma-
tion de formes, d’où la partie suivante.

Deuxième partie : Déformation de contours

Cette partie est consacrée à la définition d’un “meilleur” champ de déformation à appli-
quer à une forme pour minimiser une énergie.

Tout d’abord (chapitre 5) la dérivation d’une énergie par rapport à une forme est mathé-
matiquement définie. On peut alors appliquer une descente de gradient à la distance entre
deux formes pour construire un chemin les reliant. Des exemples dans le plan et en trois
dimensions sont montrés.

La notion de dérivation intrinsèque est alors abordée (chapitre 6) : il existe en effet une
certaine manière de calculer, discrétiser et implémenter le gradient d’une énergie par rapport
à une forme de façon à ce que le résultat dépende le moins possible du choix particulier de
discrétisation et de représentation de la forme.

Le gradient dépend du produit scalaire choisi dans l’espace tangent à la forme. Cette
dépendance est explorée (chapitre 7) et d’autres produits scalaires sont proposés afin de
poser des a priori sur les déformations.

Une extension de la définition de gradient est alors proposée (chapitre 8) afin de prendre
en compte des critères plus variés.

Chapitre 5 : Gradient de forme et déformation de forme

Pour minimiser un critère E dépendant d’une forme Γ par descente de gradient, il faut
tout d’abord savoir exprimer le gradient en question. L’espace tangent à une courbe (ou
surface, etc.) est l’ensemble des déformations infinitésimales que l’on peut appliquer à cette
courbe, ce sont donc des champs de déformation définis sur la courbe. On définit tout d’abord
la dérivée directionnelle dans une direction v (qui est un de ces champs de déformation
infinitésimaux) par la dérivée de Gâteaux :

GΓ(E(Γ, Γ0),β) = lim
ε→0

E(Γ + εβ, Γ0)− E(Γ, Γ0)
ε

.
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L’addition d’une courbe et d’un champ de déformation peut être définie simplement
si l’on voit la courbe comme une fonction du cercle (ou autre chose selon sa topologie) à
valeurs dans R2 (ou Rn plus généralement) : la somme de la courbe et du champ est la
fonction définie sur ce même cercle mais qui renvoie la somme de l’ancienne valeur dans
R2 et du champ de déformation. L’ensemble obtenu par cette somme ne dépend pas de la
paramétrisation choisie.

Dans le cas où cette dérivée directionnelle est linéaire et continue en v, le théorème
de Riesz permet de représenter la dérivée par un champ de déformation, nommément le
gradient :

GΓ(E(Γ, Γ0),β) = 〈∇E(Γ, Γ0), β〉.

Ce gradient dépend naturellement du produit scalaire que l’on a choisi dans l’espace
tangent. Le plus couramment, c’est le produit L2(Γ) qui est choisi.

Pour effectuer une descente de gradient il faut d’abord avoir défini la notion de dérivée
d’une famille (continue) de courbes indexée par un paramètre par rapport à ce paramètre (le
temps t dans le cas de la descente de gradient). Il existe deux manières naturelles de définir
cette dérivée, en utilisant la distance de Hausdorff ou en utilisant la métrique reliée aux
produits scalaires des espaces tangents. Heureusement il se trouve que les deux définitions
coïncident ici. Par analogie avec les variétés, on étudie également une notion proche de celle
du transport ainsi que les géodésiques dans l’espace des formes. En particulier, une descente
de gradient effectuée pour minimiser la distance entre deux courbes ne conduit généralement
pas à une géodésique.

La descente de gradient sur la distance d(Γ,Γ2) entre deux courbes par rapport à Γ
permet de construire progressivement un chemin reliant Γ à Γ2, et donc de transformer l’une
en l’autre. En pratique la restriction que les courbes devrait rester dans l’espace S introduit
au premier chapitre, en particulier la contrainte de Federer F(h0), n’a pas été implémentée.
Il est alors possible qu’une descente de gradient fasse sortir de ce cadre théorique, on perd
alors l’équivalence des topologies liées aux métriques étudiées aux moments précis où la
courbe qui évolue change de topologie (i.e. de nombre de composantes connexes).

On calcule le gradient de l’approximation dérivable de la distance de Hausdorff et on
l’utilise pour construire des chemins reliant deux courbes par descente de gradient sur cette
énergie. Le tout est implémenté avec la technique des level-sets et illustré par de exemples.
Le gradient d’une approximation de la norme W 1,2 entre les fonctions distance signée est
également calculé.

Chapitre 6 : Dérivation intrinsèque

Ce court chapitre est une réflexion sur la façon d’implémenter les descentes de gradient.
En pratique, les courbes sont souvent représentées par un nombre fini (petit) de paramètres,
comme les positions des sommets d’un polygone ou les paramètres des splines. Calculer le
gradient de l’énergie par rapport aux paramètres induit un a priori spécifique à la représen-
tation de la courbe dans les déformations obtenues.

Il est possible de définir un gradient plus intrinsèque au sens où le choix de discrétisation
de la courbe jouera un rôle plus faible. Pour cela on exprime l’ensemble des déformations
possibles (par exemple, si la courbe est représentée par un polygone, l’ensemble généré par
les déplacements de ses sommets) et l’on projette sur cet ensemble le gradient usuel, qui est,
lui, intrinsèque (il ne dépend pas de la représentation choisie). On obtient ainsi le meilleur
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champ de déformation disponible vu la représentation choisie, qui soit le plus proche possible
du vrai gradient par rapport à la courbe (en tant que courbe quelconque, sans la restriction
qu’elle doive rester un polygone). On montre que le champ de déformation obtenu résulte en
fait d’un choix particulier de produit scalaire et peut être vu comme un gradient lui-même.

Chapitre 7 : Gradients généralisés comme a priori sur les flots de minimisation

On a vu précédemment lors de la définition du gradient que celui-ci dépend du produit
scalaire. Dans ce chapitre l’on étudie différents produits scalaires possibles ainsi que les
conséquences sur le gradient.

Bien que l’énergie minimisée soit la même, une descente de gradient effectuée pour deux
produits scalaires différents n’empruntera pas nécessairement les mêmes chemins et aboutira
éventuellement dans des minima locaux différents. Le choix du produit scalaire peut être
alors vu comme un a priori sur le type de chemin à prendre, ou plus exactement sur le type
de déformation instantanée que subit la courbe.

Quelques produits scalaires particuliers sont étudiés. Par exemple le produit scalaire H1

permet d’obtenir un champ de déformation plus lisse. Etant donné un sous-espace vectoriel
de transformations “préférées”, il est possible de définir un produit scalaire qui va natu-
rellement privilégier les transformations de ce sous-espace. Ainsi l’on peut privilégier les
similitudes (translation, rotation, homothétie) afin que la forme de la courbe évoluant soit
au mieux préservée lors de l’évolution. L’intérêt de passer par un changement de produit
scalaire pour cela est que le cadre théorique de la descente de gradient reste identique et
que l’on a les mêmes garanties que pour le flot minimisant habituel L2 d’aboutir dans un
minimum local de l’énergie minimisée. L’espoir est que les minima locaux trouvés soient
“meilleurs” grâce aux a priori ainsi introduits sur le chemin à suivre. Le lissage d’un champ
par une gaussienne peut être vu comme l’application d’une transformation linéaire symé-
trique définie positive à ce champ, ce qui permet de conserver également les mêmes propriétés
de convergence vers un minimum local.

On ne peut cependant appliquer successivement deux transformations linéaires symé-
triques définies positives à un même champ vu que la transformation composée qui en ré-
sulte n’est elle pas symétrique. On propose une solution générique pour ce faire, ainsi qu’une
autre solution particulière adaptée au cas de la rigidification du mouvement combinée au
lissage du “bruit” restant.

D’un point de vue pratique, ces nouveaux flots minimisants sont spatiallement plus
cohérents et induisent des évolutions beaucoup plus intuitives.

Chapitre 8 : Gradients étendus : des a priori plus généraux

Les changements de produit scalaire étudiés au chapitre précédent peuvent être vus
comme des transformations linéaires que l’on applique au gradient usuel. On peut cependant
étendre la définition de gradient de façon à poser des a priori plus généraux sur les champs
de déformation.

Etant donné un produit scalaire F , le gradient ∇FE qui lui est associé vérifie la propriété
suivante :

−∇FE(Γ) = arg min
v

[
δE(Γ, v) +

1
2
‖v‖2

F

]
Cette propriété est intéressante puisqu’elle ne fait intervenir que la norme associée à F

et non pas le produit scalaire lui-même, et que l’on peut voir le gradient comme le meilleur



26 CONTENTS

champ de déformation qui minimise au mieux l’énergie pour un coût (sa norme F ) le plus
faible possible. La norme F est ainsi un critère sur le coût des déformations ; on peut choisir
un critère R plus général, non nécessairement découlant d’un produit scalaire, et définir :

−∇RE(Γ) = arg min
v

[ δE(Γ, v) + R(v) ]

Pour calculer ce champ ∇RE, il peut être nécessaire dans certains cas de résoudre le
problème de minimisation ci-dessus par la méthode variationnelle. Il se trouve que si R
atteint son minimum global en 0, alors si l’on stoppe la minimisation en cours de route au
lieu d’attendre la convergence, le champ obtenu fera quand même décroître (strictement)
l’énergie, ce qui est utile en pratique.

Comme exemple on définit un critère R qui favorise les déformations “localement ri-
gides”, c’est-à-dire les déformations composées de rotations, translations, homothéties qui
ne concernent qu’une partie de la courbe. Le calcul du gradient de l’approximation de la
distance de Hausdorff associé à ce critère R particulier s’est révélé instable à cause d’une
minimisation difficile (du critère ci-dessus), donc il serait intéressant soit de trouver une
meilleure méthode de minimisation pour calculer ce gradient, soit de changer le critère de
façon adéquate pour que la minimisation soit plus stable. Néanmoins même avec ce problème
de stabilité les résultats obtenus sont encourageants.

Troisième partie : Statistiques et a priori de formes

Les outils développés dans les parties précédentes permettent de définir la moyenne et les
modes de variations d’un ensemble de formes, ou, de façon relativement similaire, d’images.
Ces statistiques sont utilisées dans des applications de classification et de segmentation.

La moyenne empirique M est définie (chapitre 9) comme le centre de masse des N formes
de l’ensemble d’apprentissage. Le gradient de la distance entre la moyenne M et une des
formes Ci par rapport à la moyenne est un champ de déformation défini sur M , noté αi.
Ces champs constituent la brique de base de toute la suite. Une analyse en composantes
principales permet d’obtenir des modes propres de déformation.

De façon similaire (chapitre 10) l’on peut définir la moyenne d’un ensemble d’images
via l’introduction de difféomorphismes. Des statistiques peuvent être obtenues sur ces dif-
féomorphismes et sont appliquées à la reconnaissance d’expression de visages.

Des statistiques de forme calculées précédemment grâce aux champs αi l’on peut construire
un critère exprimant la “probabilité” empirique d’un champ de déformation défini sur la
moyenne (chapitre 11). Ainsi pour estimer la probabilité d’une nouvelle forme l’on estimera
la probabilité de son champ de déformation α associé. Ce critère permet d’avoir un a priori
sur la forme du contour qui évolue lors d’une segmentation d’images, et l’on montre l’intérêt
de cet a priori en pratique par un exemple de segmentation d’images.

Chapitre 9 : Statistiques de formes : moyenne empirique et modes de variation

Considérons un ensemble de N contours Ci. On définit la moyenne M de ces contours de
façon classique comme le nouveau contour qui minimise

∑
i

d(M,Ci)2 (formule du centre de

masse). Pour la distance d on choisit comme précédemment l’approximation de la distance
de Hausdorff. On calcule la moyenne par descente de gradient (sur M) grâce aux outils
exposés dans la partie précédente.
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L’inconvénient de cette formulation (somme toute classique) est qu’il est a priori possible
qu’il existe plusieurs minima locaux ou globaux. Ceci dit, d’expérience, dans les cas testés,
la moyenne semble être unique.

Chaque contour Ci induit sur la courbe M un champ de déformation :

αi = −∇Md(M,Ci)2.

Comme tous ces champs αi sont définis dans le même espace (l’espace tangent à la courbe
M), il est possible de les comparer les uns aux autres et d’exprimer des statistiques. Une
analyse en composantes principales effectuée sur ces champs permet en particulier d’obtenir
des modes propres de déformation, notés βk, qui ont la particuliarité d’être orthogonaux
entre eux et d’avoir chacun une valeur propre associée σk. L’analyse en composantes prin-
cipales repose sur l’extraction des vecteurs propres de la matrice de corrélation des champs
αi ; cette corrélation entre deux champs αi et αj n’est autre que le produit scalaire 〈αi |αj 〉
(même produit scalaire que celui utilisé pour calculer les gradients αi, de préférence).

Des exemples de moyennes et de modes sont montrés. D’un certain point de vue, le
point fondamental de cette approche statistique est l’espoir que les combinaisons linéaires
de champs de déformations infinitésimaux dans l’espace tangent à la courbe M font sens.
L’espace tangent étant un espace vectoriel, l’approche est validée.

Chapitre 10 : Statistiques d’images et classification d’objets

De manière similaire au chapitre précédent, on peut s’intéresser au problème de la dé-
finition (et du calcul) de la moyenne et des modes de déformation caractéristiques d’un
ensemble donné de N images Ii (et non pas de contours, à la différence du reste de la thèse).
A chaque image Ii on associe un difféomorphisme hi, et l’on considère la corrélation croisée
locale comme critère de ressemblance de deux images ainsi déformées LCC(Ii ◦ hi, Ij ◦ hj).
On cherche à maximiser la ressemblance entre toutes les paires d’images déformées par des-
cente de gradient sur les déformations hi. Pour cela on prend également en compte un critère
de régularité

∑
iR(hi) afin que les déformations restent régulières.

A la convergence, les images Ii◦hi observées se correspondent pixel à pixel, et l’on définit
alors la moyenne de l’ensemble des images Ii comme la moyenne (pixel par pixel) des images
déformées Ii ◦ hi.

L’approche est testée sur la base de visage de Yale et les résultats montrent que le gain
en netteté (par rapport à une moyenne directe sans déformations préalables) est énorme.

On calcule alors des statistiques sur les déformations spatiales hi (via une ACP comme
précédemment) ainsi que sur les variations d’intensité Ii ◦ hi −M , voire sur les deux en
même temps. Sur la base de visages, les modes obtenus paraissent sensés.

On utilise la moyenne M pour effectuer une tâche de classification de visages selon leur
expression (joie, surprise, tristesse, etc.). Pour ce faire on applique SVM (Support vector
machine) aux déformations spatiales obtenues lors de la mise en correspondance de M et
des images. La classification qui en résulte est bonne (24 erreurs sur 65 sachant qu’un tirage
aléatoire ferait 52 erreurs). Pour mieux faire, on suppose que l’on dispose d’une information
supplémentaire, à savoir que l’on connait non seulement l’image à classer mais également
le même visage avec une expression neutre. On calcule la déformation qui envoie le visage
neutre sur le visage expressif et l’on ramène cette déformation sur la moyenne grâce au
calcul de la déformation envoyant la moyenne sur le visage neutre. Appliquer SVM à ces
nouvelles déformations fait descendre le nombre d’erreurs à 12.
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Un point méritant d’être étudié davantage ici est l’incorporation des statistiques obtenues
par ACP dans la tâche de classification.

Chapitre 11 : Segmentation d’images avec a priori de forme

On reprend maintenant les statistiques de formes exprimées au chapitre 9 et l’on en
déduit un a priori de forme pour la segmentation d’images.

L’a priori étudié ici consiste à attribuer à un contour C une probabilité en fonction
de la plausibilité du champ de déformation instantané α de la moyenne M vers C : α =
−∇Md

2(M,C).
Etant donné les modes de déformations βk et leur écart-types associés σk, un critère

simple est le suivant :

P (C) = P (α) =
∏
k

e
−
〈βk|α 〉2L2

2σ2
k × e

− ‖Rem.(α)‖22
2σ2

noise

où Rem.(α) = α −
∑

k 〈α |βk 〉L2 est la partie de α qui ne peut s’expliquer par les modes
propres, et où σnoise est un paramètre décrivant l’amplitude typique de ce bruit.

La minimisation de ce critère par rapport à la courbe C implique notamment le calcul
de la dérivée de α par rapport à C, qui n’est autre que ∇C∇Md

2(M,C), la dérivée seconde
croisée de la distance. Dans le cas de l’approximation de la distance de Hausdorff, cette
dérivée seconde est particulièrement fastidieuse à obtenir et le résultat fait plusieurs pages.

Enfin, il serait souhaitable que ce critère soit invariant par rapport aux similitudes (trans-
lations, rotations et homothéties) afin que deux mêmes formes à des emplacements différents
d’une image puissent être considérées comme une unique même forme. Pour cela, on remplace
dans tous les critères définis précédemment toute occurrence d’un contour C par l’infimum
sur toutes les similitudes possibles infR ...R(C) de ce critère. En pratique on associe à toute
courbe une similitude, et aux dérivées par rapport aux courbes (lors des minimisations) on
ajoute une dérivée par rapport à la similitude associée. Ainsi la définition de la moyenne M
d’un ensemble de courbes Ci devient la courbe M qui minimise∑

i

inf
Ri
d
(
M,Ri(Ci)

)2
et de même le critère de forme P (C) devient inf

R
P
(
R(C)

)
.

L’intérêt de ce critère est montré par la segmentation d’une image comportant une étoile
de mer, connaissant un échantillon de 12 contours d’autres étoiles de mer. L’a priori sur la
forme permet en effet de ne pas suivre certaines déformations demandées par le critère
de segmentation (basé sur l’homogénéité des histogrammes d’intensité des deux régions
délimitées par le contour) mais non caractéristiques d’une étoile de mer.

Conclusion

La définition et l’étude d’un ensemble de “toutes les formes” a permis d’établir l’équi-
valence topologique des métriques habituelles sur les formes. En s’appuyant sur une ap-
proximation dérivable de l’une d’entre elles, la distance de Hausdorff, on a pu construire des
chemins (par descente de gradient) reliant une forme initiale à une forme cible. Pour cela il a
fallu définir le gradient d’une énergie dépendant d’une forme, et il est apparu que le produit
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scalaire auquel est lié ce gradient joue un rôle primordial dans le type d’évolution obtenue.
Le gradient de l’approximation de la distance est ensuite considéré comme une brique de
base pour définir les notions de moyenne, modes caractéristiques d’un ensemble de contours,
et pour construire un critère d’a priori sur la forme pour la segmentation d’images. Une pa-
renthèse a été également ouverte pour exprimer des statistiques sur des images. Une piste
intéressante serait de concilier les statistiques sur les images et sur les courbes pour à la fois
segmenter et classer une image en disposant ainsi d’un maximum d’information a priori.
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Part I

Shapes and Distances





Chapter 1

Shape Sets and Basic Distances

Abstract

This chapter is dedicated to the definition of relevant sets of shapes and that of defining
a metric on them. Following a recent research monograph by Delfour and Zolesio [33], we
consider the characteristic functions of the subsets of R2 and their distance functions. The
L2 norm of the difference of characteristic functions, the L∞ and the W 1,2 norms of the
difference of distance functions define interesting topologies, in particular the well-known
Hausdorff distance. Because of practical considerations arising from the fact that we deal
with image shapes defined on finite grids of pixels we restrict our attention to subsets of R2

of positive reach in the sense of Federer [45], with smooth boundaries of bounded curvature.
For this particular set of shapes we show that the three previous topologies are equivalent.

1.1 Introduction

Learning shape models from examples, using them to recognize new instances of the same
class of shapes are fascinating problems that have attracted the attention of many scientists
for many years. Central to this problem is the notion of a random shape which in itself
has occupied people for decades. Frechet [48] is probably one of the first mathematicians
to develop some interest for the analysis of random shapes, i.e. curves. He was followed
by Matheron [76] who founded with Serra the french school of mathematical morphology
and by David Kendall [57, 65, 66] and his colleagues, e.g. Small [104]. In addition, and
independently, a rich body of theory and practice for the statistical analysis of shapes has
been developed by Bookstein [10], Dryden and Mardia [39], Carne [13], Cootes, Taylor
and colleagues [26]. Except for the mostly theoretical work of Frechet and Matheron, the
tools developed by these authors are very much tied to the point-wise representation of the
shapes they study: objects are represented by a finite number of salient points or landmarks.
This is an important difference with our work which deals explicitly with curves as such,
independently of their sampling or even parametrization.

In effect, our work bears more resemblance with that of several other authors. Like in
Grenander’s theory of patterns [53, 54], we consider shapes as points of an infinite dimen-
sional manifold but we do not model the variations of the shapes by the action of Lie groups
on this manifold, except in the case of such finite-dimensional Lie groups as rigid displace-
ments (translation and rotation) or affine transformations (including scaling). For infinite
dimensional groups such as diffeomorphisms [41, 112] which smoothly change the objects’
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shapes previous authors have been dependent upon the choice of parameterizations and
origins of coordinates [118, 119, 114, 113, 81, 55]. For them, warping a shape onto another
requires the construction of families of diffeomorphisms that use these parameterizations.
Our approach, based upon the use of the distance functions, does not require the arbitrary
choice of parameterizations and origins. From our viewpoint this is already very nice in two
dimensions but becomes even nicer in three dimensions and higher where finding parame-
terizations and tracking origins of coordinates can be a real problem: this is not required
in our case. Another piece of related work is that of Soatto and Yezzi [105] who tackle the
problem of jointly extracting and characterizing the motion of a shape and its deformation.
In order to do this they find inspiration in the above work on the use of diffeomorphisms
and propose the use of a distance between shapes (based on the set-symmetric difference
described in section 1.2.2). This distance poses a number of problems that we address in the
same section where we propose two other distances which we believe to be more suitable.
They also use a signed distance score but it is non-symmetric with respect to the two regions
and is not an approximation to a distance.

Some of these authors have also tried to build a Riemannian structure on the set of
shapes, i.e. to go from an infinitesimal metric structure to a global one. The infinitesimal
structure is defined by an inner product in the tangent space (the set of normal deformation
fields) and has to vary continuously from point to point, i.e. from shape to shape. The
Riemannian metric is then used to compute geodesic curves between two shapes: these
geodesics define a way of warping either shape onto the other. The distance between the
shapes is then given by the length of the geodesic path. This is dealt with in the work
of Trouvé and Younes [118, 119, 112, 114, 113, 120] and, more recently, in the work of
Klassen and Srivastava [68], again at the cost of working with parameterizations. The
problem with these approaches, beside that of having to deal with parameterizations of
the shapes, is that there exist global metric structures on the set of shapes (see section
1.2.2) which are useful and relevant to the problem of the comparison of shapes but that
do not derive from an infinitesimal structure. Our approach can be seen as taking the
problem from exactly the opposite viewpoint from the previous one: we start with a global
metric on the set of shapes and build smooth functions (in effect smooth approximations of
these metrics) that are dissimilarity measures, or energy functions; we then minimize these
functions using techniques of the calculus of variation by computing their gradient and
performing infinitesimal gradient descent (see part II): this minimization defines another
way of warping either shape onto the other. In this endeavor we build on the seminal
work of Delfour and Zolesio who have introduced new families of sets, complete metric
topologies, and compactness theorems. This work is now available in book form [33]. The
book provides a fairly broad coverage and a synthetic treatment of the field along with
many new important results, examples, and constructions which have not been published
elsewhere. Its full impact on image processing and robotics has yet to be fully assessed.

Section 1.2 sets the stage and introduces some notations and tools. In particular in
section 1.2.2 we discuss three of the main topologies that can be defined on sets of shapes
and motivate the choice of two of them. In section 1.3 we introduce the particular set of
shapes we work with in this chapter, show that it has nice compactness properties and that
the three topologies defined in the previous section are in fact equivalent on this set of
shapes.
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1.2 Shapes and shape topologies

To define fully the notion of a shape is beyond the scope of this chapter in which we use
a limited, i.e purely geometric, definition. It could be argued that the perceptual shape of
an object also depends upon the distribution of illumination, the reflectance and texture of
its surface; these aspects are not discussed here. In our context we define a shape to be a
measurable subset of R2. Since we are driven by image applications we also assume that all
our shapes are contained in a hold-all open bounded subset of R2 which we denote by D.
The reader can think of D as the "image".

In the next section we will restrict our interest to a more limited set of shapes but
presently this is sufficient to allow us to introduce some methods for representing shapes.

1.2.1 Definitions

Since, as mentioned in the introduction, we want to be independent of any particular
parametrization of the shape, we use two main ingredients, the characteristic function of a
shape Ω

χΩ(x) = 1 if x ∈ Ω and 0 if x /∈ Ω,

and the distance function to a shape Ω

dΩ(x) = inf
y∈Ω

|y − x| = inf
y∈Ω

d(x, y) if Ω 6= ∅ and +∞ if Ω = ∅.

Note the important property [33, chapter 4, theorem 2.1]:

(1.1) dΩ1 = dΩ2 ⇐⇒ Ω1 = Ω2

Also of interest is the distance function to the complement of the shape, d{Ω and the distance
function to its boundary, d∂Ω. In the case where Ω = ∂Ω and Ω is closed, we have

dΩ = d∂Ω d{Ω = 0

We note Cd(D) the set of distance functions of nonempty sets of D. Similarly, we note
Ccd(D) the set of distance functions to the complements of open subsets of D (for technical
reasons which are irrelevant here, it is sufficient to consider open sets).

Another function of great interest is the oriented distance function bΩ defined as

bΩ = dΩ − d{Ω

Note that for closed sets such that Ω = ∂Ω, one has bΩ = dΩ.
We briefly recall some well known results about these two functions. The integral of the

characteristic function is equal to the measure (area) m(Ω) of Ω:∫
Ω
χΩ(x) dx = m(Ω)

Note that this integral does not change if we add to or subtract from Ω a measurable set of
Lebesgue measure 0 (also called a negligible set).

Concerning the distance functions, they are continuous, in effect Lipschitz continuous
with a Lipschitz constant equal to 1 [31, 33]:

|dΩ(x)− dΩ(y)| ≤ |x− y| ∀x, y, ∈ D.
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Thanks to the Rademacher theorem [42], this implies that dΩ is differentiable almost every-
where in D, i.e. outside of a negligible set, and that the magnitude of its gradient, when it
exists, is less than or equal to 1

|∇dΩ(x)| ≤ 1 a.e..

The same is true of d{Ω and bΩ (if ∂Ω 6= ∅ for the second), [33, Chapter 5, theorem 2.1].
Closely related to the various distance functions (more precisely to their gradients) are

the projections associated with Ω and {Ω. These are also related to the notion of skeleton.
We recall some definitions. The first one is adapted from [33, Chapter 4 definition 3.1]:

Definition 1 (Projections and skeletons).

• Given Ω ⊂ D, Ω 6= ∅ (resp. {Ω 6= ∅), the set of projections of x ∈ D on Ω (resp. on
{Ω) is given by

ΠΩ(x)
def
= {p ∈ Ω : |p− x| = dΩ(x)}

(resp.Π{Ω(x)
def
= {p ∈ {Ω : |p− x| = d{Ω(x)})

The elements of ΠΩ(x) (resp. Π{Ω(x)) are called projections onto Ω (resp. {Ω).

• Given Ω ⊂ D, Ω 6= ∅ (resp. {Ω 6= ∅), the set of points where the projection on Ω
(resp. {Ω) is not unique is called the exterior (resp. interior) skeleton Skext(Ω) (resp.
Skint(Ω)). We define Sk(Ω) = Skext(Ω) ∪ Skint(Ω).

The following properties of the skeletons can be found e.g. in [33, Chapter 4, theorems
3.1 and 3.2]

Proposition 2. The exterior (resp. interior) skeleton is exactly the subset of {Ω (resp.
of int(Ω)) where the function dΩ (resp. d{Ω) is not differentiable. Moreover the exterior
and interior skeletons and the boundary ∂Ω is exactly the subset of D where d∂Ω is not
differentiable.

At each x of {Ω\Skext(Ω), the gradient of the distance function d∂Ω is well-defined, of
unit norm, and points away from the projection y = ΠΩ(x) of x onto Ω, see figure 1.1.
Similar considerations apply to the case where x ∈ Ω.

We introduce an additional definition that will be useful in the sequel.

Definition 3. Given Ω ⊂ D, Ω 6= ∅, and a real number h > 0, the h-tubular neighborhood
of Ω is defined as

Uh(Ω)
def
= {y ∈ D : dΩ(y) < h}

1.2.2 Some shape topologies

The next question we want to address is that of the definition of the similarity between two
shapes. This question of similarity is closely connected to that of metrics on sets of shapes
which in turn touches that of what is known as shape topologies. We now briefly review
three main similarity measures between shapes which turn out to define three distances.
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Ω

Skeint(Ω)

Skeext(Ω)
x

∇dΩ(x)

y = ΠΩ(x)

Figure 1.1: An example of skeletons.

Ω2

∂Ω2

C1 C2

C3

Ω1 = Ω2\{C1, C2, C3}

Figure 1.2: Two shapes whose distance ρ2 is equal to 0; Ω1 is obtained by removing from
the disk Ω2 the three curves C1, C2, C3: ρ2(Ω1,Ω2) = 0

Characteristic functions

The similarity measure we are about to define is based upon the characteristic functions of
the two shapes we want to compare. We denote by X(D) the set of characteristic functions
of measurable subsets of D.

Given two such sets Ω1 and Ω2, we define their distance

ρ2(Ω1, Ω2) = ‖χΩ1 − χΩ2‖L2 =
(∫

D
(χΩ1(x)− χΩ2(x))

2 dx

)1/2

This definition also shows that this measure does not "see" differences between two shapes
that are of measure 0 (see figure 1.2 adapted from [33, Chapter 3, Figure 3.1]) since the
integral does not change if we modify the values of χΩ1 or χΩ2 over negligible sets. In other
words, this is not a distance between the two shapes Ω1 and Ω2 but between their equivalence
classes [Ω1]m and [Ω2]m of measurable sets. Given a measurable subset Ω of D, we define
its equivalence class [Ω]m as [Ω]m = {Ω′|Ω′ is measurable and Ω ∆ Ω′ is negligible}, where
Ω ∆ Ω′ is the symmetric difference

Ω∆Ω′ = {ΩΩ′ ∪ {Ω′Ω.

The proof that this defines a distance follows from the fact that the L2 norm defines a
distance over the set of equivalence classes of square integrable functions (see e.g. [100, 42]).
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This is nice and one has even more ([33, Chapter 3, Theorem 2.1]): the set X(D) is
closed and bounded in L2(D) and ρ2(·, ·) defines a complete metric structure on the set
of equivalence classes of measurable subsets of D. Note that ρ2 is closely related to the
symmetric difference:

(1.2) ρ2(Ω1, Ω2) = m(Ω1 ∆ Ω2)
1
2

The completeness is important in applications: any Cauchy sequence of characteristic func-
tions {χΩn} converges for this distance to a characteristic function χΩ of a limit set Ω.
Unfortunately in applications not all sequences are Cauchy sequences, for example the min-
imizing sequences of the energy functions defined in section 2.1, and one often requires more,
i.e. that any sequence of characteristic functions contains a subsequence that converges to a
characteristic function. This stronger property, called compactness, is not satisfied by X(D)
(see [33, Chapter 3]).

Distance functions

We therefore turn ourselves toward a different similarity measure which is based upon the
distance function to a shape. As in the case of characteristic functions, we define equivalent
sets and say that two subsets Ω1 and Ω2 of D are equivalent iff Ω1 = Ω2. We note [Ω]d the
corresponding equivalence class of Ω. Let T (D) be the set of these equivalence classes. The
application

[Ω]d → dΩ T (D) → Cd(D) ⊂ C(D)

is injective according to (1.1). We can therefore identify the set Cd(D) of distance functions
to sets of D with the just defined set of equivalence classes of sets. Since Cd(D) is a subset
of the set C(D) of continuous functions on D, a Banach space1 when endowed with the
norm

‖f‖C(D) = sup
x∈D

|f(x)|,

it can be shown (e.g. [33]), that the similarity measure

(1.3) ρ([Ω1]d, [Ω2]d) = ‖dΩ1 − dΩ2‖C(D) = sup
x∈D

|dΩ1(x)− dΩ2(x)|,

is a distance on the set of equivalence classes of sets which induces on this set a complete
metric. Moreover, because we have assumed D bounded, the corresponding topology is
identical to the one induced by the well-known Hausdorff metric (see [76, 102, 33])

(1.4) ρH([Ω1]d, [Ω2]d) = max
{

sup
x∈Ω2

dΩ1(x), sup
x∈Ω1

dΩ2(x)
}
.

In fact we have even more than the identity of the two topologies, see [33, Chapter 4,
Theorem 2.2]:

Proposition 4. If the hold-all set D is bounded ρ = ρH .

An important improvement with respect to the situation in the previous section is the
(see [33, Chapter 4, Theorem 2.2])

1A Banach space is a complete normed vector space.
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Figure 1.3: Two shapes in the sequence {Ωn}, see text: (left) Ω4 and (right), Ω8.

Theorem 5. The set Cd(D) is compact in the set C(D) for the topology defined by the
Hausdorff distance.

In particular, from any sequence {dΩn} of distance functions to sets Ωn one can extract a
sequence converging toward the distance function dΩ to a subset Ω of D.

It would appear that we have reached an interesting stage and that the Hausdorff distance
is what we want to measure shape similarities. Unfortunately this is not so because the
convergence of areas and perimeters is lost in the Hausdorff metric, as shown in the following
example taken from [33, Chapter 4, Example 4.1 and Figure 4.3].

Consider the sequence {Ωn} of sets in the open square ]− 1, 2[2:

Ωn = {(x, y) ∈ D :
2k
2n

≤ x ≤ 2k + 1
2n

, 0 ≤ k < n}

Figure 1.3 shows the sets Ω4 and Ω8. This defines n vertical stripes of equal width 1/2n each
distant of 1/2n. It is easy to verify that, for all n ≥ 1, m(Ωn) = 1/2 and |∂Ωn| = 2n + 1.
Moreover, if S is the unit square [0, 1]2, for all x ∈ S, dΩn(x) ≤ 1/4n, hence dΩn → dS in
C(D). The sequence {Ωn} converges to S for the Hausdorff distance but since m(Ωn) =
m(Ωn) = 1/2 9 1 = m(S), χΩn 9 χS in L2(D) and hence we do not have convergence for
the ρ2 topology. Note also that |∂Ωn| = 2n+ 1 9 |∂S| = 4.

Distance functions and their gradients

In order to recover continuity of the area one can proceed as follows. If we recall that the
gradient of a distance function is of magnitude equal to 1 except on a subset of measure 0 of
D, one concludes that it is square integrable on D. Hence the distance functions and their
gradients are square-integrable, they belong to the Sobolev space W 1,2(D), a Banach space
for the vector norm

‖f − g‖W 1,2(D) = ‖f − g‖L2(D) + ‖∇f −∇g‖L2(D),

where L2(D) = L2(D)× L2(D). This defines a similarity measure for two shapes

ρD([Ω1]d, [Ω2]d) = ‖dΩ1 − dΩ2‖W 1,2(D)

which turns out to define a complete metric structure on T (D). The corresponding topology
is called the W 1,2-topology. For this metric, the set Cd(D) of distance functions is closed in
W 1,2(D), and the mapping

dΩ → χΩ = 1− |∇dΩ| : Cd(D) ⊂W 1,2(D) → L2(D)
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is "Lipschitz continuous":

(1.5) ‖χΩ1
− χΩ2

‖L2(D) ≤ ‖∇dΩ1 −∇dΩ2‖L2(D) ≤ ‖dΩ1 − dΩ2‖W 1,2(D),

which indeed shows that areas are continuous for the W 1,2-topology, see [33, Chapter 4,
Theorem 4.1].

Cd(D) is not compact for this topology but a subset of it of great practical interest is,
see section 1.3.

1.3 The set S of all shapes and its properties

We now have all the necessary ingredients to be more precise in the definition of shapes.

1.3.1 The set of all shapes

We restrict ourselves to sets of D with compact boundary and consider three different sets
of shapes. The first one is adapted from [33, Chapter 4, definition 5.1]:

Definition 6 (Set DZ of sets of bounded curvature). The set DZ of sets of bounded
curvature contains those subsets Ω of D, Ω, {Ω 6= ∅ such that ∇dΩ and ∇d{Ω are in BV (D)2,
where BV (D) is the set of functions of bounded variations.

This is a large set (too large for our applications) which we use as a "frame of reference".
DZ was introduced by Delfour and Zolésio [31, 32] and contains the sets F and C2 introduced
below. For technical reasons related to compactness properties (see section 1.3.2) we consider
the following subset of DZ.

Definition 7 (Set DZ0). The set DZ0 is the subset of DZ such that there exists c0 > 0
such that for all Ω ∈ DZ0,

‖D2dΩ‖M1(D) ≤ c0 and ‖D2d{Ω‖M1(D) ≤ c0

M1(D) is the set of bounded measures on D and ‖D2dΩ‖M1(D) is defined as follows. Let Φ
be a 2× 2 matrix of functions in C1(D), we have

‖D2dΩ‖M1(D) = sup
Φ∈C1(D)2×2, ‖Φ‖C≤1

∣∣∣∣∫
D
∇dΩ · divΦ dx

∣∣∣∣ ,
where

‖Φ‖C = sup
x∈D

|Φ(x)|R2×2 ,

and
divΦ = [divΦ1, divΦ2],

where Φi, i = 1, 2 are the row vectors of the matrix Φ.

The set DZ0 has the following property (see [33, Chapter 4, Theorem 5.2])

Proposition 8. Any Ω ∈ DZ0 has a finite perimeter upper-bounded by 2c0.

We next introduce three related sets of shapes.
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Ω

∂Ω

Ω = ∂Ω

d > h0

d > h0

κ ≤ κ0 = 1
h0

Figure 1.4: Examples of admissible shapes: a simple, closed, regular curve (left); a simple,
open regular curve (right). In both cases the curvature is upperbounded by κ0 and the
pinch distance is larger than h0.

Definition 9 (Sets of smooth shapes). The set C0 (resp. C1, C2) of smooth shapes is the
set of subsets of D whose boundary is non-empty and can be locally represented as the graph
of a C0 (resp. C1, C2) function. One further distinguishes the sets Cci and Coi , i = 0, 1, 2 of
subsets whose boundary is closed and open2, respectively.

Note that this implies that the boundary is a simple regular curve (hence compact)
since otherwise it cannot be represented as the graph of a C0 (resp. C1, C2) function in the
vicinity of a multiple point. When Ω ∈ Coi , the set is identical to its boundary: Ω = ∂Ω = Γ.
Also note that C2 ⊂ C1 ⊂ DZ ([31, 32]).

The third set has been introduced by Federer [45].

Definition 10 (Set F of shapes of positive reach). A nonempty subset Ω of D is said to
have positive reach if there exists h > 0 such that ΠΩ(x) is a singleton for every x ∈ Uh(Ω).
The maximum h for which the property holds is called the reach of Ω and is noted reach(Ω).

We will also be interested in the subsets, called h0-Federer’s sets and noted Fh0 , h0 > 0,
of F which contain all Federer’s sets Ω such that reach(Ω) ≥ h0. Note that Ci, i = 1, 2 ⊂ F
but Ci 6⊂ Fh0 .

We are now ready to define the set of shapes of interest.

Definition 11 (Set of all shapes). The set, noted S, of all shapes (of interest) is the
subset of C2 whose elements are also h0-Federer’s sets for a given and fixed h0 > 0.

S def
= C2 ∩ Fh0

This set contains the two subsets Sc and So obtained by considering Cc2 and Co2 , respectively.

Note that S ⊂ DZ. Note also that the curvature of ∂Ω is well defined and upperbounded
by 1/h0, noted κ0. Hence, c0 in definition 7 can be chosen in such a way that S ⊂ DZ0.

At this point, we can represent regular (i.e. C2) simple curves with and without bound-
aries that do not curve or pinch too much (in the sense of κ0 and h0, see figure 1.4). Polygons

2Meaning here without and with endpoints, respectively.
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and other non-smooth structures are not explicitly included in our theory which assumes
smooth shapes. In practice they are, thanks to the fact that we intersect C2 with Fh0 . If
h0 is chosen to be smaller than the smallest distance between pixels, we will not see the
difference between a polygon or a non-smooth shape and its approximation by an element
of S.

There are two reasons why we choose S as our frame of reference. The first one is because
our implementations work with discrete objects defined on an underlying discrete square grid
of pixels. As a result we are not able to describe details smaller than the distance between
two pixels. This is our unit, our absolute yardstick, and h0 is chosen to be smaller than
or equal to it. The second reason is that S is included in DZ0 which, as shown in section
1.3.2, is compact. This will turn out to be important when minimizing shape functionals.

In the remaining of this chapter, the distances ρ (ρH) and ρD use the distance functions
of the boundaries of the sets we consider.

The question of the deformation of a shape by an element of a group of transformations
could be raised at this point. What we have in mind here is the question of deciding whether
a square and the same square rotated by 45 degrees are the same shape. There is no real
answer to this question, more precisely the answer depends on the application. Note that
the group in question can be finite dimensional, as in the case of the Euclidean and affine
groups which are the most common in applications, or infinite dimensional. In this work we
will, for the most part, not consider the action of groups of transformations on shapes.

1.3.2 Compactness properties

Interestingly enough, the definition of the set DZ0 (definition 7) implies that it is compact
for all three topologies. This is the result of the following theorem whose proof can be found
in [33, Chapter 4, Theorems 8.2, 8.3].

Theorem 12. Let D be a nonempty bounded regular3 open subset of R2 and DZ the set
defined in definition 6. The embedding

BC(D) = {dΩ ∈ Cd(D) ∩ Ccd(D) : ∇dΩ, ∇d{Ω ∈ BV (D)2} →W 1,2(D),

is compact.

This means that for any bounded sequence {Ωn}, ∅ 6= Ωn of elements of DZ, i.e. for
any sequence of DZ0, there exists a set Ω 6= ∅ of DZ such that there exists a subsequence
Ωnk such that

dΩnk
→ dΩ and d{Ωnk

→ d{Ω in W 1,2(D).

Since bΩ = dΩ − d{Ω, we also have the convergence of bΩnk to bΩ, and since the mapping
bΩ → |bΩ| = d∂Ω is continuous in W 1,2(D) (see [33, Chapter 5, Theorem 5.1 (iv)]), we also
have the convergence of d∂Ωnk

to d∂Ω. The convergence for the ρ2 distance follows from
equation (1.5):

χΩnk
→ χΩ in L2(D),

and the convergence for the Hausdorff distance follows from theorem 5, taking subsequences
if necessary.

In other words, the set DZ0 is compact for the topologies defined by the ρ2, Hausdorff
and W 1,2 distances.

3Regular means uniformly Lipschitzian in the sense of [33, Chapter 2, Definition 5.1].
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Note that, even though S ⊂ DZ0, this does not imply that it is compact for either one
of these three topologies. But it does imply that its closure S for each of these topologies is
compact in the compact set DZ0.

1.3.3 Comparison between the three topologies on S

The three topologies we have considered turn out to be closely related on S. This is sum-
marized in the following

Theorem 13. The three topologies defined by the three distances ρ2, ρD and ρH are equiv-
alent on Sc. The two topologies defined by ρD and ρH are equivalent on So.

This means that, for example, given a set Ω of Sc, a sequence {Ωn} of elements of Sc
converging toward Ω ∈ Sc for any of the three distances ρ2, ρ (ρH) and ρD also converges
toward the same Ω for the other two distances.

We now proceed with the proof of theorem 13. Being a bit lengthy, we have split it in a
series of lemmas and propositions.

We start with a lemma.

Lemma 14. Let {fn} be a sequence of uniformly Lipschitz functions K → Rm, K a compact
of R2, converging for the L2 norm toward a Lipschitz continuous function f . Then, the
convergence is uniform.

Proof. The L2 convergence of continuous functions implies the convergence a.e.. Let us
show that this implies the convergence everywhere. We note L the Lipschitz constant. Let
x0 be a point of K such that fn(x0) does not converge toward f(x0). There exists ε0 > 0
such that for all n0 ≥ 0, ∃n > n0, |fn(x0)− f(x0)| > ε0.

f being continuous at x0, there exists η > 0 such that for all y inK such that d(x0, y) < η,
|f(y)− f(x0)| < ε0/3.

Consider now the ys of K such that d(x0, y) < inf(ε0/3L, η). There exists at least one
of them, noted y0, such that fn(y0) converges to f(y0) because the convergence is a.e..

We write

|fn(x0)− f(x0)| ≤ |fn(x0)− fn(y0)|+ |fn(y0)− f(y0)|+ |f(y0)− f(x0)|

The first term in the right handside of this inequality is less than or equal to ε0/3 because of
the uniform Lipschitz hypothesis. Because fn(y0) converges to f(y0) there exists N0(ε0, y)
such that for all n ≥ N0, |fn(y0)− f(y0)| ≤ ε0/3. The third term is also less than or equal
to ε0/3 because of the hypothesis on f . Hence

|fn(x0)− f(x0)| ≤ ε0 ∀n ≥ N0,

a contradiction. The sequence {fn} converges toward f everywhere in K and since the fns
are uniformly Lipschitz, the convergence is uniform (see e.g. [35]).

This lemma is useful for proving the following

Proposition 15. In S, the W 1,2 convergence of sequences of distance functions implies
their Hausdorff convergence.

Proof. The W 1,2 convergence implies the L2 convergence of the distance functions. Accord-
ing to lemma 14 this implies the uniform convergence of the distance functions and hence
the Hausdorff convergence.
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We also have the converse

Proposition 16. In S, the Hausdorff convergence of sequences of distance functions implies
their W 1,2 convergence.

Proof. We consider the boundary Γ of a shape Ω of S. The inequality

‖dΓ1 − dΓ2‖L2 ≤ ρ(Γ1, Γ2)m(D)1/2

shows that the Hausdorff convergence implies the L2 convergence of the distance functions.
For the W 1,2 topology we also need the convergence of the L2 norm of the gradient.

Consider a sequence {Ωn} of elements of S whose boundaries Γn converge for the Haus-
dorff distance toward Γ ∈ S. If we prove the convergence a.e. of ∇ (dΓn − dΓ) to 0, the
Lebesgue dominated convergence theorem will give us the L2 convergence toward 0 since

|∇ (dΓn − dΓ) | ≤ 2 a.e.

Because we are in S, all skeletons are negligible (zero Lebesgue measure), [24]. Consider
the union Sk = Γ ∪ Sk(Γ) ∪n Sk(Γn) ∪n Γn; as a countable union of negligible sets it is
negligible. Let x be a point ofD\Sk, yn its projection on Γn, y its projection on Γ. According
to definition 1 and proposition 2, all distance functions of interest are differentiable at x.
We prove that the angle between the vectors →

xyn and →
xy goes to 0 by proving that yn → y.

By compactness of D there exists a subsequence {ynk} of {yn} converging toward z ∈ Γ.
If z = y we are done. If z 6= y we prove a contradiction. Indeed, since the distance is
continuous

lim
k→∞

d(x, ynk) = d(x, y).

But we also have, by definition, d(x, ynk) = dΓnk
(x); since Γnk → Γ for the Hausdorff

distance, dΓnk
→ dΓ everywhere in D and therefore limk→∞ dΓnk

(x) = dΓ(x). Hence
d(x, y) = d(x, z) and x ∈ Sk(Γ), a contradiction.

We have shown that all converging subsequences of {yn} converged to z = ΠΓ(x). In
order to conclude, we must show that the sequence {yn} converges to z. Indeed, let us
assume that there exists a subsequence {ynk} not converging. There exists an ε0 > 0 such
that there is an infinity of values of k for which ynk is outside the open disc B(z, ε0). Let
us note {ynl} the corresponding subsequence. Because of compactness again there exists a
converging subsequence of {ynl} which has to converge toward z but this is impossible since
all ynl are outside of B(z, ε0). Hence the sequence {yn} converges toward z and we have
proved that ∇(dΓn − dΓ) → 0 a.e..

We now compare the topologies induced by the ρ2 and the Hausdorff distances. This
makes only sense in Sc. The first result is in the following

Proposition 17. In Sc, the Hausdorff convergence of sequences of distance functions to the
boundaries implies the L2 convergence of the corresponding characteristic functions of the
sets.

Proof. The proof is based on the proof of proposition 23 below where we show that if
ρH(Γ1,Γ2) < ε < h0, given a C2 parametrization p ∈ [0, 1] → Γ1(p) of Γ1, we can
build a C2 parametrization p ∈ [0, 1] → Γ2(p) of Γ2 such that the vector

−−−−−−−→
Γ1(p)Γ2(p) is

normal to Γ2 for all p’s. Let s2 be the arc-length on Γ2, L2 its length. The integral
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∫ L2

0 ‖
−−−−−−−−−→
Γ1(s2)Γ2(s2)‖ ds2 is equal to m(Ω1∆Ω2), hence to (ρ2(Ω1,Ω2))2 (equation (1.2)). Since

‖
−−−−−−−−−→
Γ1(s2)Γ2(s2)‖ ≤ maxp dΓ2(Γ1(p)) ≤ ρH(Γ1,Γ2), we have (ρ2(Ω1,Ω2))2 ≤ εL2 ≤ 2εc0, ac-

cording to proposition 8.

We also prove the converse in the

Proposition 18. In Sc, the ρ2 convergence of sequences of characteristic functions implies
the Hausdorff convergence of the distance functions of the boundaries of the corresponding
sets.

In the proof we will need the following two lemmas and proposition.

Lemma 19. Let Γ be a C2 curve whose curvature is upperbounded by κ0. Let C1 and C2

be two points of Γ, δ the length of the curve between C1 and C2:

(1.6) 0 ≤ δ − d(C1, C2) ≤
δ2κ0

2

Proof. The first inequality in (1.6) follows from the fact that the straight line is the shortest
path between two points in the plane.

We parameterize Γ with its arc length s. We recall the Frenet formulae

dΓ
ds

= t
dt
ds

= κn
dn
ds

= −κt,

where t and n are the unit tangent and normal vectors to Γ, respectively. We then write
the second order Taylor expansion without remainder of Γ(s2) = C2 at Γ(s1) = C1

(1.7)

C2 = C1 + (s2 − s1)t(s1) + (s2 − s1)2
∫ 1

0
(1− ζ)κ(s1 + ζ(s2 − s1))n(s1 + ζ(s2 − s1)) dζ.

The second inequality in (1.6) follows from the fact that |κ| ≤ κ0 and δ = |s2 − s1|.

An easy consequence of this lemma is the

Proposition 20. The length of a closed curve in S is greater than or equal to 2h0.

Proof. We use the second inequality in (1.6) with d(C1, C2) = 0 from which the conclusion
follows.

The second lemma tells us that in a disc of small enough radius we cannot have too
large a piece of a boundary of an element of S.

Lemma 21. Let ε > 0 be such that 2εκ0 << 1. Then any disc of radius ε does not contain
a connected piece of boundary of an element of S of length greater than h0.

Proof. The proof follows from the previous lemma. Let us first assume that the piece in ques-
tion has a boundary, hence two different endpoints C1 and C2. By definition, d(C1, C2) ≤ 2ε.
Using (1.6) we conclude that the length δ of the curve between C1 and C2 must satisfy

δ2κ0

2
− δ + 2ε ≥ 0.
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The lefthand side is a second degree polynomial in the variable δ, noted P (δ), which has
two positive roots δ1 ≤ δ2:

δ1 = h0(1−
√

1− 2εκ0)

Since P (0) > 0, δ can continuously vary from 0 to its maximal value, and δ1 < δ2, we must
have δ ≤ δ1. Moreover, since 2εκ0 << 1, δ1 < h0/2.

Let us now assume that the connected piece does not have a boundary, hence is a closed
simple curve. We choose two distinct arbitrary points C1 and C2 on the curve, apply the
previous analysis to the each of the two connected components, and conclude that the length
of the curve is less than h0. Because of proposition 20, this is impossible.

We now prove proposition 18.

Proof. Let Ω1 and Ω2 two shapes of Sc with boundaries Γ1 and Γ2, ε > 0 such that
ρ2(Ω1, Ω2) ≤ ε and 2κ0ε << 1. We assume that there exists a point A of Γ1 such that
dΓ2(A) > ε and prove a contradiction.

Consider the open disc B(A, ε) of center A and radius ε. This disc does not contain
any point of Γ2 by hypothesis, since otherwise we would have dΓ2(A) ≤ ε. Moreover, the
curve Γ1 is not included in B(A, ε) because of the hypothesis 2κ0ε << 1 and lemma 21,
therefore there must be a strictly positive even number of points of intersection between Γ1

and the border of B(A, ε). If there are more than two, the same reasoning as in the proof of
proposition 23 below shows that there is a piece of skeleton of Γ1 within B(A, ε) and hence
Ω1 /∈ Fh0 .

Let A1 and A2 be the endpoints of the arc of Γ1 going through A. This arc divides
B(A, ε) in two parts, one of them belongs to Ω1∆Ω2. The idea is that since 2εκ0 << 1, the
arc A1AA2 is equivalent to a line segment and each area is approximately equal to πε2/2,
hence ‖χΩ1 − χΩ2‖L2 ≥ ε

√
π/2 > ε, a contradiction.

In order to prove this, we parameterize Γ1 between A1 and A2 by its arc-length s and
compute an upperbound on the distance of A(s) to the tangent line to ∂Ω1 at A. We choose
A as the origin of arclength on Γ1 and use equation (1.7):

A(s) = A+ st(s) + s2
∫ 1

0
(1− ζ)κ(ζs)n(ζs) dζ.

The distance of A(s) to the line (A, t(0)) is given by

(A(s)−A) · n(0) = s2
∫ 1

0
(1− ζ)κ(ζs)n(ζs) · n(0) dζ.

We obtain an upper bound on its magnitude by

(1.8) |(A(s)−A) · n(0)| ≤ s2

2
κ0

The upper bound is maximal for s = s1 (A1 = A(s1) and |s1|
def= δ1) or s = s2 (A2 = A(s2)

and s2
def= δ2). We obtain upper bounds from (1.6); δ1 and δ2 must satisfy

δ2
κ0

2
− δ + ε ≥ 0.

In order for this to be true we must have

0 ≤ δ ≤ 1
κ0

(1−
√

1− 2εκ0)
def= δm or δ ≥ 1

κ0
(1 +

√
1− 2εκ0)
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The second alternative is impossible since B(A, ε) cannot contain an arc whose length is
larger than 1/κ0 (lemma 21). There remains only the first alternative. Returning to (1.8),
we find that δ2mκ0/2 is an upper bound on the distance of A(s) to the tangent. Referring
to figure 1.5 we conclude that the area of interest is bounded below by

πε2

2
− εκ0δ

2
m

Since 2εκ0 << 1, we have δm = 1
κ0

(εκ0 + o(εκ0) and therefore

εκ0δ
2
m =

ε

κ0
((εκ0)2 + o((εκ0)2) = ε2(εκ0 + o(εκ0)).

The area of interest is lower bounded by

ε2(
π

2
− εκ0 + o(εκ0)),

and therefore, for εκ0 sufficiently small, its square root is strictly larger than ε.

A

A2

2δmA1

ε

Figure 1.5: A lower bound on the area of Ω1∆Ω2 (see text).

This completes the proof of theorem 13.

1.3.4 Minima of a continuous function defined on S

An interesting and practically important consequence of this analysis of the space S is the
following. We know that S is included in DZ0, consider its closure S for any one of the
three topologies of interest. S is a closed subset of the compact metric space DZ0 and is
therefore compact as well. Given a continuous function f : S → R we consider its lower
semi-continuous (l.s.c.) envelope f defined on S as follows

f(x) =
{

f(x) if x ∈ S
lim infy→x, y∈S f(y)

The useful result for us is summarized in the

Proposition 22. f is l.s.c. in S and therefore has at least a minimum in S.
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Proof. In a metric space E, a real function f is said to be l.s.c. if and only if

f(x) ≤ lim inf
y→x

f(y) ∀x ∈ E.

Therefore f is l.s.c. by construction. The existence of minimum of an l.s.c. function defined
on a compact metric space is well-known (see e.g. [25, 42]) and will be needed later to prove
that some of our minimization problems are well-posed.



Chapter 2

Shape Distance Approximations

Abstract

As in the next part we will need to take the derivative of the distances with respect to
the shapes, and as the distances are not differentiable because they involve an infimum, we
propose a family of smooth approximations of them which are continuous with respect to
the Hausdorff topology, and hence with respect to the other two topologies.

2.1 How to approximate shape distances

The goal of this section is to provide smooth approximations of some of these distances. We
start with some notations.

2.1.1 Averages

Let Γ be a given curve in C1 and consider an integrable function f : Γ → Rn. We denote by
〈f〉Γ the average of f along the curve Γ:

(2.1) 〈f〉Γ =
1
|Γ|

∫
Γ
f =

1
|Γ|

∫
Γ
f(x) dΓ(x)

For real positive integrable functions f , and for any continuous strictly monotonous (hence
one to one) function ϕ from R+ or R+∗ to R+ we will also need the ϕ-average of f along Γ
which we define as

(2.2) 〈f〉ϕΓ = ϕ−1

(
1
|Γ|

∫
Γ
ϕ ◦ f

)
= ϕ−1

(
1
|Γ|

∫
Γ
ϕ(f(x)) dΓ(x)

)
Note that ϕ−1 is also strictly monotonous and continuous from R+ to R+ or R+∗. Also note
that the unit of the ϕ-average of f is the same as that of f , thanks to the normalization by
|Γ|.

The discrete version of the ϕ-average is also useful: let ai, i = 1, . . . , n be n positive
numbers, we note

(2.3) 〈a1, · · · , an〉ϕ = ϕ−1

(
1
n

n∑
i=1

ϕ(ai)

)
,

their ϕ-average.



50 Shape Distance Approximations

2.1.2 Approximations of the Hausdorff distance

We now build a series of smooth approximations of the Hausdorff distance ρH(Γ, Γ′) of two
shapes Γ and Γ′. According to (1.4) we have to consider the functions dΓ′ : Γ → R+ and
dΓ : Γ′ → R+. Let us focus on the second one. Since dΓ is Lipschitz continuous on the
bounded hold-all set D it is certainly integrable on the compact set Γ′ and we have [100,
Chapter 3, problem 4]

(2.4) lim
β→+∞

(
1
|Γ′|

∫
Γ′
dβΓ(x′) dΓ′(x′)

) 1
β

= sup
x′∈Γ′

dΓ(x′).

Moreover, the function R+ → R+ defined by β →
(

1
|Γ′|
∫
Γ′ d

β
Γ(x′) dΓ′(x′)

) 1
β is monotonously

increasing [100, Chapter 3, problem 5].
Similar properties hold for dΓ′ .
If we note pβ the function R+ → R+ defined by pβ(x) = xβ we can rewrite (2.4)

lim
β→+∞

〈dΓ〉
pβ
Γ′ = sup

x′∈Γ′
dΓ(x′).

〈dΓ〉
pβ
Γ′ is therefore a monotonically increasing approximation of supx′∈Γ′ dΓ(x′). We go one

step further and approximate dΓ′(x).
Consider a continuous strictly monotonously decreasing function ϕ : R+ → R+∗. Be-

cause ϕ is strictly monotonously decreasing

sup
x′∈Γ′

ϕ(d(x, x′)) = ϕ( inf
x′∈Γ′

d(x, x′)) = ϕ(dΓ′(x)),

and moreover

lim
α→+∞

(
1
|Γ′|

∫
Γ′
ϕα(d(x, x′)) dΓ′(x′)

) 1
α

= sup
x′∈Γ′

ϕ(d(x, x′)).

Because ϕ is continuous and strictly monotonously decreasing, it is one to one and ϕ−1 is
strictly monotonously decreasing and continuous. Therefore

dΓ′(x) = lim
α→+∞

ϕ−1

((
1
|Γ′|

∫
Γ′
ϕα(d(x, x′)) dΓ′(x′)

) 1
α

)

We can simplify this equation by introducing the function ϕα = pα ◦ ϕ:

(2.5) dΓ′(x) = lim
α→+∞

〈d(x, ·)〉ϕαΓ′

Any α > 0 provides us with an approximation, noted d̃Γ′ , of dΓ′ :

(2.6) d̃Γ′(x) = 〈d(x, ·)〉ϕαΓ′

We have a similar expression for d̃Γ.

Note that because
(

1
|Γ′|
∫
Γ′ ϕ

α(d(x, x′)) dΓ′(x′)
) 1
α increases with α toward its limit supx′ ϕ(d(x, x′)) =

ϕ(dΓ′(x)), ϕ−1

((
1
|Γ′|
∫
Γ′ ϕ

α(d(x, x′)) dΓ′(x′)
) 1
α

)
decreases with α toward its limit dΓ′(x).
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Examples of functions ϕ are

ϕ1(z) =
1

z + ε
ε > 0, z ≥ 0(2.7)

ϕ2(z) = µ exp(−λz) µ, λ > 0, z ≥ 0

ϕ3(z) =
1√

2πσ2
exp(− z2

2σ2
) σ > 0, z ≥ 0

Putting all this together we have the following result

sup
x∈Γ

dΓ′(x) = lim
α, β→+∞

〈
〈d(·, ·)〉ϕαΓ′

〉pβ
Γ

sup
x∈Γ′

dΓ(x) = lim
α, β→+∞

〈
〈d(·, ·)〉ϕαΓ

〉pβ
Γ′

Any positive values of α and β yield approximations of supx∈Γ dΓ′(x) and supx∈Γ′ dΓ(x).
The last point to address is the max that appears in the definition of the Hausdorff

distance. We use (2.3), choose ϕ = pγ and note that, for a1 and a2 positive,

lim
γ→+∞

〈a1, a2〉pγ = max(a1, a2).

This yields the following expression for the Hausdorff distance between two shapes Γ and Γ′

ρH(Γ, Γ′) = lim
α, β, γ→+∞

〈〈
〈d(·, ·)〉ϕαΓ′

〉pβ
Γ
,
〈
〈d(·, ·)〉ϕαΓ

〉pβ
Γ′

〉pγ
This equation is symmetric and yields approximations ρ̃H of the Hausdorff distance for all
positive values of α, β and γ:

(2.8) ρ̃H(Γ, Γ′) =
〈〈
〈d(·, ·)〉ϕαΓ′

〉pβ
Γ
,
〈
〈d(·, ·)〉ϕαΓ

〉pβ
Γ′

〉pγ .

2.1.3 Continuity

This approximation is "nice" in several ways, the first one being the obvious one, stated in
the following

Proposition 23. For each triplet (α, β, γ) in (R+∗)3 the function ρ̃H : S×S → R+ defined
by equation (2.8) is continuous for the Hausdorff topology.

We first recall the following properties of the squared distance function η∂Ω of the boundary
of an element Ω of S (see [3]):

Proposition 24. η∂Ω is smooth, i.e. C2, in Uh0(∂Ω) and for all x ∈ ∂Ω, the Hessian
matrix ∇2η∂Ω(x) is the (matrix of) orthogonal projection onto the normal to ∂Ω at x.

We now prove proposition 23.

Proof. For each shape Ω of S, we consider the square of the distance function of ∂Ω, noted
η∂Ω. We next prove that the length is continuous for the Hausdorff topology on S. Consider
two shapes Ω1 and Ω2 of S, their boundaries Γ1 and Γ2 and assume that ρH(Γ1, Γ2) < ε.
Let p ∈ [0, 1] → Γ1(p) be a C2 parametrization of Γ1, we prove that the mapping

(2.9) p ∈ [0, 1] → Γ2(p) = Γ1(p)−
1
2
∇ηΓ2(Γ1(p)),
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is a one to one parametrization of Γ2. If we choose ε < h0, ∇ηΓ2(Γ1(p)) is well-defined and
continuous for all ps (proposition 24), hence p→ Γ1(p)− 1

2∇ηΓ2(Γ1(p)) is continuous.
It is injective: assume that there exist p1 and p2 in [0, 1], p1 6= p2 such that Γ2(p1) =

Γ2(p2), see figure 2.1 (if Γ1 and Γ2 are closed, p1, p2 /∈ {0, 1}). Since the curvature of Γ1

and Γ2 is bounded by 1/h0, we choose ε << h0. The two points Γ1(p1) and Γ1(p2) are
in the disc of center Γ2(p1) and radius ε since their distances to Γ2 are by construction
equal to d(Γ1(p1),Γ2(p1)) and d(Γ1(p2),Γ2(p2)), respectively, and are less than ε. Because
of our choice of ε, the curvatures of the two curves within the disc are negligible and we can
consider they are straight lines, as shown in figure 2.1. Therefore there must be a piece of
the skeleton of Ω1 within the disc and this contradicts the hypothesis that Ω1 ∈ Fh0 .

Sk(Ω1)

Γ1(p1)

Γ2(p1) = Γ2(p2)

Γ1(p2)

Figure 2.1: The mapping is injective.

It is surjective: we proceed by contradiction. Let us assume it is not surjective. Since
the mapping (2.9) is continuous its image is connected and compact. Its complement Γ̂2

(assumed here to be non empty) is thus an open interval of Γ2 (possibly two, if Γ2 is an
open curve). Let Γ0

2 be one of the endpoints of this interval. There exists a value p0 of p
such that

Γ0
2 = Γ1(p0)−

1
2
∇ηΓ2(Γ1(p0))

Two cases can occur. Either Γ0
2 = Γ1(p0) and this implies that Γ2 is not simple (see figure

2.2, left), or Γ0
2 6= Γ1(p0) and this implies that Γ1(p0) is on the skeleton of Γ2, a contradiction

if ε is small with respect to h0 (see figure 2.2, right).
Using this parameterization, we now prove that the length is continuous for the Hausdorff

metric. Given a shape Ω and a sequence {Ωn} of shapes of S such that the boundaries Γn are
converging to the boundary Γ of Ω for the Hausdorff topology, we show that limn→∞ ||Γn|−
|Γ|| = 0. If n is large enough, we use the first part of the proof to parametrize Γn:

(2.10) Γn(p) = Γ(p)− 1
2
∇ηΓn(Γ(p)),
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Γ1

Γ2

Γ2

Γ1
p Γ1(p0) = Γ0

2

Γ̂2

Γ0
2

p Γ1(p0)

Γ2(p
+
0 )

Γ2

Γ2

Γ2

Γ̂2

Figure 2.2: The mapping is surjective: The dotted line represents a piece of Γ̂2, see text.

and proceed from there:

| |∂Ωn| − |∂Ω| | =
∣∣∣∣∫ 1

0
|Γ′n(p)| dp−

∫ 1

0
|Γ′(p)| dp

∣∣∣∣ ≤ ∫ 1

0
| |Γ′n(p)| − |Γ′(p)| | dp ≤∫ 1

0
|Γ′n(p)− Γ′(p)| dp.

We take the derivative of (2.10) with respect to p:

Γ′n(p) = Γ′(p)− 1
2
∇2ηΓn(Γ(p))Γ′(p),

where ∇2ηΓn is the second order derivative of ηΓn .
We are only interested in comparing the lengths of Γ and Γn where they differ. We can

therefore exclude from the integral
∫
|Γ′n(p)−Γ′(p)| dp the values of p for which Γn(p) = Γ(p)

and assume that Γn(p) 6= Γ(p). At these points, the first and second order derivatives of
the distance function dΓn are well-defined and (because Γn ∈ S and ε << h0) there exists
M > 0, independent of n, such that

| ∇2dΓn(x) |≤M ∀x /∈ Γn

Using the chain rule we obtain

1
2
∇ηΓn = dΓn∇dΓn

1
2
∇2ηΓn = dΓn∇2dΓn +∇dΓn(∇dΓn)

T ,

and therefore

(2.11) |Γ′n(p)− Γ′(p)| ≤ |∇dΓn(Γ(p)) · Γ′(p)| |∇dΓn(Γ(p))|+
dΓn(Γ(p)) ‖∇2dΓn(Γ(p))Γ′(p)‖ ≤ |∇dΓn(Γ(p)) · Γ′(p)|+MdΓn(Γ(p)) |Γ′(p)|

Consider the term ∇dΓn(Γ(p)) · Γ′(p). We write the following first order Taylor expansion
without remainder

0 = dΓn(Γn(p)) = dΓn(Γ(p))+(∫ 1

0
(1− ζ)∇dΓn(Γ(p) + ζ(Γn(p)− Γ(p))) dζ

)
· (Γn(p)− Γ(p))
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We take the derivative with respect to p:

∇dΓn(Γ(p)) · Γ′(p) +
(∫ 1

0
(1− ζ)∇dΓn(Γ(p) + ζ(Γn(p)− Γ(p))) dζ

)
· (Γ′n(p)− Γ′(p))+(∫ 1

0
(1− ζ)∇2dΓn(Γ(p) + ζ(Γn(p)− Γ(p)))(Γ′(p) + ζ(Γ′n(p)− Γ′(p))) dζ

)
·(Γn(p)−Γ(p)),

and obtain the upper bound

|∇dΓn(Γ(p)) · Γ′(p)| ≤ 1
2
|Γ′n(p)− Γ′(p)|+Ad(Γn(p),Γ(p)).

We use it in (2.11) to obtain

1
2
|Γ′n(p)− Γ′(p)| ≤ Ad(Γn(p),Γ(p)) +MdΓn(Γ(p)) |Γ′(p)|,

from which follows

(2.12) | |Γn| − |Γ| | ≤ 2(A+M |Γ|)ε.

We next prove that for all Lipschitz continuous functions f onD, the integral
∫
Γ f(x) dΓ(x)

is continuous for the Hausdorff topology. Consider a shape Ω and a sequence {Ωn} of shapes
of S whose boundaries Γn are converging to the boundary Γ of Ω for the Hausdorff topol-
ogy; we show that limn→∞

∣∣∣∫Γn f(x) dΓn(x)−
∫
Γ f(y) dΓ(y)

∣∣∣ = 0. We use once more the
parametrization (2.10) and write∣∣∣∣∫

Γn

f(x) dΓn(x)−
∫

Γ
f(y) dΓ(y)

∣∣∣∣ =∣∣∣∣∫ 1

0

(
f(Γn(p))|Γ′n(p)| − f(Γ(p))|Γ′(p)|

)
dp

∣∣∣∣ ≤∫ 1

0

∣∣f(Γn(p))|Γ′n(p)| − f(Γ(p))|Γ′(p)|
∣∣ dp ≤∫ 1

0
|f(Γn(p))| ||Γ′n(p)| − |Γ′(p)|| dp+

∫ 1

0
|f(Γn(p))− f(Γ(p))| |Γ′(p)| dp

f is continuous on the compact set D and is therefore upperbounded, |f(x)| ≤ K, ∀x ∈ D.
It is also Lipschitz continuous, hence |f(Γn(p)) − f(Γ(p))| ≤ Ld(Γn(p), Γ(p)) ≤ Lε. We
combine this with (2.12) and obtain∣∣∣∣∫

Γn

f(x) dΓn(x)−
∫

Γ
f(y) dΓ(y)

∣∣∣∣ ≤ ε((L+ 2KM)|Γ|+ 2KA).

We have used the Lipschitz hypothesis in the proof. It easy to verify that this hypothesis
is satisfied since we are integrating along curves functions of the type ϕ ◦ d(·, x). The
functions ϕ are defined and at least C1, hence Lipschitz continuous on [0, diam(D)], where
diam(D) is the diameter of D. Hence |ϕ◦d(x1, x)−ϕ◦d(x2, x)| ≤ Lϕ|d(x1, x)−d(x2, x)| ≤
Lϕd(x1, x2).
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2.1.4 A possible extension of the approximation by changing the measure

The basic trick of the approximation of the Hausdorff distance relies on an integration of
an application over the shape. This integration implies the choice of a particular measure
on each shape, and so far was considered the canonical, intrinsic measure dΓ(x) (sometimes
improperly denoted by dx in this report for the sake of simplicity) expressing the local area
of the shape Γ. However, there exist many other intrinsic measures (in the sense that they
do not depend on the choice of the parameterization), such as

(
1 + κ(x)2

)
dΓ(x) where κ

is the curvature.
The new family of approximations would write, for any measure µ:

〈f〉Γ,Ψ, µ = Ψ−1

(
1∫

Γ dµ

∫
Γ

Ψ ◦ f dµ
)

which rewrites, if µ is absolutely continuous with respect to the usual measure (dµ = q d
Gamma):

〈f〉Γ,Ψ, q = Ψ−1

(
1∫

Γ q(x) dΓ(x)

∫
Γ
q(x) Ψ ◦ f(x) dΓ(x)

)
However, giving to some points x a higher value of q means that these points are more

important and have a greater impact on the integral. Since these integrals are used here to
approximate the infimum of d(x,y) for a fixed point y and a variable point x on the shape
Γ, this is not necessarily a very good idea to give more importance to some points x which
are not geometrically linked to y. That is the reason why in the rest of the report the usual
intrinsic measure dΓ is considered. Note that, nevertheless, the choice of another intrinsic
measure could be justified when the integral approximates the supremum of an application
of y over the shape B. One could indeed arbitrarily choose to give more importance to the
distance to Γ of the high-curvature points of the shape if the desired aim is to bring more
attention to the corners of the shapes.

2.1.5 Other alternatives related to the Hausdorff distance

There exist several alternatives to the method presented in the previous sections if we use
ρ (equation (1.3)) rather than ρH (equation (1.4)) to define the Hausdorff distance. A first
alternative is to use the following approximation

ρ̃(Γ,Γ′) = 〈|dΓ − dΓ′ |〉pαD ,

where the bracket 〈 f(.) 〉ϕD is defined the obvious way for any integrable function f : D → R+

〈 f 〉ϕD = ϕ−1

(
1

m(D)

∫
D
ϕ(f(x)) dx

)
,

and which can be minimized, as in section 5.1.8, with respect to dΓ. A second alternative
is to approximate ρ using:

(2.13) ρ̃(Γ, Γ′) = 〈|〈d(·, ·)〉ϕβΓ′ − 〈d(·, ·)〉
ϕβ
Γ |〉pαD ,

and to compute its derivative with respect to Γ as we did in the previous section for ρ̃H .
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2.1.6 Approximations to the W 1,2 norm

The previous results can be used to construct approximations ρ̃D to the distance ρD defined
in section 1.2.2:

(2.14) ρ̃D(Γ1, Γ2) = ‖d̃Γ1 − d̃Γ2‖W 1,2(D),

where d̃Γi , i = 1, 2 is obtained from (2.6).
This approximation is also "nice" in the usual way and we have the

Proposition 25. For each α in R+∗ the function ρ̃D : S × S → R+ is continuous for the
W 1,2 topology.

Its proof is left to the reader.

2.2 Quality of the approximation

Our hope is that, starting from Γ1, we will follow the gradient (5.6) and smoothly converge
to the curve Γ2 where the minimum of ρ̃H is attained. Let us examine more closely these
assumptions. First, it is clear from the expression (2.8) of ρ̃H that in general ρ̃H(Γ, Γ) 6= 0,
which implies in particular that ρ̃H , unlike ρH , is not a distance. But worse things can
happen: there may exist a shape Γ′ such that ρ̃H(Γ, Γ′) is strictly less than ρ̃H(Γ, Γ) or
there may not exist any minima for the function Γ → ρ̃H(Γ, Γ′)! This sounds like the end of
our attempt to warp a shape onto another using an approximation of the Hausdorff distance.
But things turn out not to be so bad. First, the existence of a minimum is guaranteed by
proposition 23 which says that ρ̃H is continuous on S for the Hausdorff topology, theorem
12 which says that DZ0 is compact for this topology, and proposition 22 which tells us that
the l.s.c. extension of ρ̃H(·, Γ) has a minimum in the closure S of S in DZ0.

We show in the next section that phenomena like the one described above are for all
practical matters "invisible" since confined to an arbitrarily small Hausdorff ball centered
at Γ.

2.2.1 Quality of the approximation ρ̃H of ρH

In this section we make more precise the idea that ρ̃H can be made arbitrarily close to ρH .
Because of the form of (5.5) we seek upper and lower bounds of such quantities as 〈f〉ψΓ ,
where f is a continuous real function defined on Γ. We note fmax and fmin the maximum
and minimum values of f on Γ.

The expression

〈f〉ψΓ = ψ−1

(
1
|Γ|

∫
Γ
ψ ◦ f

)
,

yields, if ψ is strictly increasing:

〈f〉ψΓ 6 ψ−1

(
1
|Γ|

∫
Γ
ψ ◦ fmax

)
= fmax

and, similarly:
〈f〉ψΓ > fmin
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If f > fmoy on a set F of the curve Γ, of length |F | (6 |Γ|):

〈f〉ψΓ = ψ−1

(
1
|Γ|

∫
F
ψ ◦ f +

1
|Γ|

∫
Γ\F

ψ ◦ f

)

> ψ−1

(
|F |
|Γ|

ψ ◦ fmoy +
|Γ| − |F |
|Γ|

ψ ◦ fmin

)
> ψ−1

(
|F |
|Γ|

ψ ◦ fmoy

)

To analyze this lower bound, we introduce the following notation. Given ∆, α > 0, we
note P(∆, α) the following property:

P(∆, α) : ∀x ∈ R+, ∆ψ(x) > ψ(αx)

This property is satisfied for ψ(x) = xβ, β ≥ 0. The best pairs (∆, α) verifying P are such
that ∆ = αβ . In the sequel, we say that a function ψ is admissible for P if

∀∆ ∈]0; 1[, ∃α ∈]0; 1[,P(∆, α),

and, conversely,
∀α ∈]0; 1[, ∃∆ ∈]0; 1[,P(∆, α)

Let us assume that ψ is admissible and note that we can rewrite P(∆, α)

∀x ∈ R+, ψ−1 (∆ψ(x)) > αx.

For ∆ = |F |
|Γ| and x = fmoy we obtain for the largest α(∆) the following lowerbound

〈f〉ψΓ > ψ−1 (∆ψ(fmoy)) > αfmoy.

In words, for each arbitrary percentage ∆ there exists an α such that if |{f > fmoy}| > ∆|Γ|,
then 〈f〉ψΓ > αfmoy. Conversely, for a given value of α, there exists a ∆ such that it is
sufficient that |{f > fmoy}| > ∆|Γ| to have 〈f〉ψΓ > αfmoy.

For each choice of (∆, α), the bracket 〈f〉ψΓ acts as a filter which only "looks" at the
values of f along Γ such that the subset F of Γ where they are reached is of relative length
|F |
|Γ| > ∆, meaning that one neglects the "details of relative importance 6 ∆", and that the
accuracy of the filter is relative, since it depends upon the product of α (6 1) with fmoy.

One has even more: the above admissible family of functions ψ allows one to select an
arbitrary accuracy, i.e. to choose both ∆ as close as possible to 0, and α as close as possible
to 1, the best pairs (α, ∆) for ψ(x) = xβ satisfying ∆ = αβ , it is sufficient to choose β large
enough.

Similar properties hold for such brackets as 〈f〉ϕΓ where ϕ is strictly decreasing. We have,
as in the previous case:

fmin 6 〈f〉ϕΓ 6 fmax

Proceeding as before,if |{f 6 fmoy}| > ∆|Γ| and the pair (∆, α) satisfies P for the function
ϕ, we obtain:

1
|Γ|

∫
Γ
ϕ ◦ f > ∆ϕ(fmoy)

〈f〉ϕΓ 6 ϕ−1 (∆ϕ(fmoy))
〈f〉ϕΓ 6 αfmoy
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Admissible functions are ϕ(x) = x−β , β > 0; the accuracy increases when α tends to 1−

and ∆ to 0+; this is always possible by choosing large values of β, and ∆ = α−β .
We now have all the ingredients for comparing ρ̃H and ρH . We start with two definitions.

Definition 26. Let Γ be a shape. For each point P of D we note (see figure 2.3):

d∆(P,Γ) = inf
{
x ∈ R+; |{Q ∈ Γ; d(P,Q) 6 x}| > ∆|Γ|

}
Γ

∆ |Γ|
P

d∆(P, Γ)

Figure 2.3: Geometric interpretation of d∆(P,Γ): ∆ is the "percentage" of points of Γ whose
distance to P is less than d∆(P,Γ).

Definition 27. Let Γ and Γ′ be two shapes, we define (see figure 2.4)

d∆(Γ′,Γ) = sup
{
x ∈ R+; |{Q ∈ Γ; d(Q,Γ′) > x}| > ∆|Γ|

}

Γ
Γ′

d∆(Γ′, Γ)

∆|Γ|

Figure 2.4: Geometric interpretation of d∆(Γ′,Γ): ∆ is the "percentage" of points of Γ
whose distance to Γ′ is greater than d∆(Γ′,Γ).

If ϕ (respectively ψ) is an admissible function, we note (∆ϕ, αϕ) (respectively (∆ψ, αψ))
a pair (∆, α) for the bracket 〈·〉ϕΓ (respectively, 〈·〉ψΓ).

The following proposition relates ρ̃H to d∆ and d∆.
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Proposition 28. The following relation is satisfied by ρ̃H , d∆ and d∆:

αψαψ max
(
d∆ψ(Γ,Γ′), d∆ψ(Γ′,Γ)

)
6 ρ̃H(Γ,Γ′) 6 αϕ max

(
sup
P∈Γ′

d∆ϕ(P,Γ), sup
P∈Γ

d∆ϕ(P,Γ′)
)

Proof. We notice that

∀P ∈ R2, d(P,Γ) 6 〈d(P, ·)〉ϕΓ 6 αϕd∆ϕ(P,Γ),

and therefore

αψ d∆ψ(Γ,Γ′) 6
〈
〈d(·, ·)〉ϕΓ

〉ψ
Γ′

6 αϕ sup
P∈Γ′

d∆ϕ(P,Γ).

ρ̃H is a discrete bracket 〈·, ·〉θ of two such terms, θ an increasing function. We note αθ an α
associated to ∆ = 1

2 through P for θ. For all positive a and b we have

θ−1

(
1
2
θ(max(a, b))

)
6 〈a, b〉θ 6 max(a, b)

αθ max(a, b) 6 〈a, b〉θ 6 max(a, b),

from where the conclusion follows.

We now relate d∆ and d∆ to the Hausdorff distance ρH .

Proposition 29. For all P ∈ D and for all shapes Γ and Γ′ we have

d(P,Γ) 6 d∆(P,Γ) 6 d(P,Γ) +
∆
2
|Γ|,

and
dH(Γ,Γ′)−∆

|Γ|+ |Γ′|
2

6 d∆(Γ′,Γ) 6 dH(Γ,Γ′) + ∆
|Γ|+ |Γ′|

2
Proof. The lowerbound on d∆(P,Γ) is easy to obtain, the upperbound can be obtained by
contradiction as follows: let us assume that there exists a point P and a curve Γ such that
the upperbound is not satisfied. Hence

d∆(P,Γ) > d(P,Γ) +
∆
2
|Γ|

Γ being compact, there exists a point Q of Γ such that d(P,Q) = d(P,Γ). Let us now
consider Γ as a C2 function from [0, 1] to R2 such that |Γ′(p)| = cste = |Γ| for all ps in [0, 1].
Let q ∈ [0, 1] such that Γ(q) = Q, and consider the image by Γ of I = {p| |p − q| 6 ∆/2}
(assuming q ∈]∆/2, 1−∆/2[, otherwise the proof can be easily modified). By construction

|Γ(I)| = |I||Γ| = ∆|Γ|,

and for all point R of Γ(I) of parameter r

PR 6 PQ+QR 6 d(P,A) + |r − q||Γ| 6 d(P,A) +
1
2
∆|A|.

We have found a measurable subset of the curve Γ of length larger than or equal to ∆|Γ|
such that all its points are at a distance of P less than d(P,Γ) + 1

2∆|Γ|, a contradiction.
The proof of the second set of inequalities proceeds in a similar fashion by considering

subsets of the curves Γ and Γ′ centered at points P of Γ and Q of Γ′ such that ρH(Γ,Γ′) =
d(P,Q); this is always possible since Γ and Γ′ are compact.
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By combining propositions 28 and 29 we obtain the

Proposition 30. ρ̃H(Γ,Γ′) has the following upper and lower bounds

(2.15) αθαψ(ρH(Γ,Γ′)−∆ψ
|Γ|+ |Γ′|

2
) ≤ ρ̃H(Γ,Γ′) ≤ αϕ(ρH(Γ,Γ′) + ∆ϕ

|Γ|+ |Γ′|
2

).

We can now characterize the shapes Γ and Γ′ such that

(2.16) ρ̃H(Γ, Γ′) < ρ̃H(Γ, Γ).

Theorem 31. The condition (2.16) is equivalent to

ρH(Γ,Γ′) < 4c0∆,

where the constant c0 is defined in definition 7 and theorem 8, and ∆ in the proof.

Proof. We use the upper and lower bounds (2.15) derived in proposition 30 and write

αθαψ(ρH(Γ,Γ′)−∆ψ
|Γ|+ |Γ′|

2
) < αϕ∆ϕ|Γ|

To simplify the analysis, let us assume that αθαψ = αϕ and ∆ψ = ∆ϕ = ∆, we obtain

ρH(Γ,Γ′) < (
3
2
|Γ|+ 1

2
|Γ′|)∆,

and hence (proposition 8)
ρH(Γ,Γ′) < 4c0∆,

Conversely, if Γ′ is not in the Hausdorff ball with center Γ and radius 4c0∆, we necessarily
have ρ̃H(Γ, Γ′) > ρ̃H(Γ, Γ).

From this we conclude that, since ∆ can be made arbitrarily close to 0, and the length
of shapes is bounded, strange phenomena such as a shape Γ′ closer to a shape Γ than Γ
itself (in the sense of ρ̃H) cannot occur or rather will be "invisible" to our algorithms.

For completeness we now present an example of such a phenomenon. In detail, we
construct a pair (Γ1,Γ2) of curves of S such that ρ̃H(Γ1, Γ2) < ρ̃H(Γ1, Γ1). We assume for
simplicity that the function θ in (5.5) is the identity. Let O be a point in the plane and
consider the family (Cr), r > 0 of circles of center O and radius r. We note T (r) the distance
ρ̃H(Cr, Cr) and, for all point P , D(P, r) = 〈d(P, ·)〉ϕCr . Notice that T (r) = 〈D(·, r)〉ψCr . For
symmetry reasons (rotation invariance) D(P, r) is constant on Cr, we note D(r) this value.
Hence we have T (r) = D(r). Let us compute D(r) (see figure 2.5):

D(r) = ϕ−1

(
1

2πr

∫ 2π

0
ϕ

(
2r sin

θ

2

)
rdθ

)
= ϕ−1

(
1
2π

∫ 2π

0
ϕ

(
2r sin

θ

2

)
dθ

)
The function r → r sin θ

2 is strictly increasing for each 0 < θ < 2π, the functions ϕ and ϕ−1

are strictly decreasing, hence r → T (r) is strictly increasing. In particular, Cr is not a local
minimum of Γ → ρ̃H(Γ,Γ) and hence not a local minimum of Γ → ρ̃H(Cr,Γ). Therefore
there exists ε > 0 such that ρ̃H(Cr, Cr−ε) < ρ̃H(Cr, Cr), see figure 2.5.
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r
P

O θ
O

r
r − ε

Cr−εCr

Q

Cr

2r sin θ
2

Figure 2.5: The curves Cr and Cr−ε satisfy ρ̃H(Cr, Cr−ε) < ρ̃H(Cr, Cr).

2.2.2 Some basic invariance properties of the approximation

The Hausdorff distance satisfies several natural basic properties, such as the invariance to
a global rigid motion:

Proposition 32. Let A and B be two shapes, and R a rigid motion. Then

ρH(R(A), R(B)) = ρH(A,B).

and a simple relation for a scale transformation:

Proposition 33. Let A and B be two shapes, and S a scale transformation with scale factor
s. Then

ρH(S(A), S(B)) = s ρH(A,B).

These properties are easily proved since the Hausdorff distance is based on the euclidean
distance between points and that the effect of the studied deformations on the euclidean
distance between points is simple.

The good news is that first property is also satisfied by the proposed family of approxi-
mations (for any applications ϕ,ψ and θ) and the second one is satisfied for the particular
family we work with in practice (applications x 7→ xα).

Proposition 34. Let A and B be two shapes, and R a rigid motion. Then

ρ̃H(R(A), R(B)) = ρ̃H(A,B).

This comes from the invariance of the basic constituent of the approximation. We recall

that ρ̃H(A ,B) =
〈〈
〈d(·, ·)〉ϕB

〉ψ
A
,
〈
〈d(·, ·)〉ϕA

〉ψ
B

〉θ
:

Lemma 35. Let A be a shape, and R a rigid motion. Then for any point x,

〈d(R(x), ·)〉ϕR(A) = 〈d(x, ·)〉ϕA .

Proof.

〈d(R(x), ·)〉ϕR(A) = ϕ−1

(
1

|R(A)|

∫
R(A)

ϕ(d(R(x), z)) dz

)
= ϕ−1

(
1
|A|

∫
A
ϕ(d(R(x), R(y))) dy

)
(since the Jacobian of R is 1)

= ϕ−1

(
1
|A|

∫
A
ϕ(d(x,y)) dy

)
= 〈d(x, ·)〉ϕA
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We can now consider the second property:

Proposition 36. Let A and B be two shapes, and S a scale transformation with scale factor
s. We consider the particular case of approximation where there exist three real numbers
α, β, γ such that ϕ : x 7→ xα, ψ : x 7→ xβ, θ : x 7→ xγ. Then

ρH(S(A), S(B)) = s ρH(A,B).

Once again, this comes from the basis constituent of the approximation:

Lemma 37. Let A be a shape, f any application from A to R+, s a real positive number,
and ϕ : x 7→ xα. Then

〈s f(·)〉ϕA = s 〈f(·)〉ϕA .

Proof. Indeed:

〈s f(·)〉ϕA =
(

1
|A|

∫
A
(sf(x))αdx

)1/α

=
(
sα

1
|A|

∫
A
f(x)αdx

)1/α

= s 〈f(·)〉ϕA .
The initial consideration of f(x) = d(x,y) with d(sx, sy) = s d(x,y) ends the proof.



Chapter 3

Different Notions of Shape and
Associated Distances

Abstract

The intuitive notion of a shape has many facets. This chapter is an attempt to model
these different aspects that have been forgotten so far and to make more explicit the links
between the models. The Hausdorff distance between regions with non-empty interior is
compared to the Hausdorff distance between their boundaries. Then local shape descriptors
are incorporated into the distance between shapes.

3.1 Full shapes vs boundaries

3.1.1 Definitions

The set S of all shapes (of interest) introduced in chapter 1, definition 11, contains shapes
that are linked to two different intuitive notions of “shape”. The first notion of a “shape”
is the boundary of an object, for instance a curve in the plane R2 or a two-dimensioned
manifold in the space R3, like an empty sphere. The other notion of a “shape” is the object
itself, that is to say not only its boundary but also its interior.

Definition 38. The set F of full shapes is the subset of all shapes in S which satisfy that
the closure of their interior is themselves.

Definition 39. The set B of boundaries is the subset of all shapes in S which can be written
as the boundary of an element of F .

Before going on, one elementary property of these sets has to be checked:

Proposition 40. The boundary of any full shape is in S and consequently in B.

Proof. This is quite straightforward since S is defined by properties of the distance function
and the boundary of the shapes, and since a full shape and its boundary share the same
distance function (except for a sign) and the same boundary.

This duality between the full objects and their boundaries naturally leads to the question:
if Ω1 and Ω2 are two full objects, then is their Hausdorff distance dH(Ω1,Ω2) linked to the
Hausdorff distance dH(∂Ω1, ∂Ω2) of their boundaries ?
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3.1.2 Hausdorff distance between boundaries of shapes

The first remark to do is that they are not the same in the most general case, even if the two
shapes are topologically homotope. On figure 3.1 are represented a disk (with boundary in
dotted line) and a (thick) snake lying on the boundary of the disk. The Hausdorff distance
between the two “full” shapes is high, since the snake is far from the middle of the disk.
However the Hausdorff distance between the boundaries is low since the boundary of the
snake is close to the circle.

Figure 3.1: Example of two shapes whose the “full” Hausdorff distance is greater than the
Hausdorff distance of the boundaries.

By contrast, the Hausdorff distance between the boundaries can be high while the Haus-
dorff distance between the “full” shapes is small (see figure 3.2).

Figure 3.2: Example of two shapes whose the “full” Hausdorff distance is smaller than the
Hausdorff distance of the boundaries.

Nevertheless these two distances appear to be often the same, for example for convex
objects. The relation between them can be made more explicit. The reader not interested
in details can skip to the corollary 43.

Given two full shapes Ω1 and Ω2 in F and a pair of points p1 ∈ Ω1 and p2 ∈ Ω2 which
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realizes the Hausdorff distance:

dH(Ω1,Ω2) = d(p1,p2) = sup

(
sup
x∈Ω1

d(x,Ω2), sup
y∈Ω2

d(y,Ω1)

)
with either p1 being the projection of p2 onto Ω2, or p2 being the projection of p1 onto
Ω1, the projections being not necessarily unique. In the first case, p1 is the projection of
p2, so it is on the boundary of Ω1. Indeed, if it was not, then there would be a small open
set Σ including p1 and included in Ω1; but the function which associates to any point of
Σ its distance to the point p2 is differentiable at point p1 – if d(p1,p2) is not zero, i.e. if
dH(Ω1,Ω2) is not null, which is assumed here – and its gradient is not zero. Therefore there
would exist other points in Σ ⊂ Ω1 nearer from p2 than p1, which would contradict the
hypothesis. The point p1 is consequently on the boundary of Ω1. What about the point p2

? p2 realizes the maximum in Ω2 of the distance function to Ω1. Therefore p2 either is on
the boundary of Ω2 or realizes a local maximum (in Rn) of the distance function to Ω1. In
this last case, p2 appears to belong to the skeleton (see definition 1), since anywhere else the
gradient of this distance function is well-defined and non-zero. The point p2 consequently
belongs either to ∂Ω2 or to Sk(Ω1)∩Ω2, with the previous constraint that it also belongs to
the complement {Ω1 of Ω1; on the other side, the point p1 belongs to ∂Ω1. Note that the
skeleton of Ω1 is the part of the skeleton of ∂Ω1 which is not in Ω1. Let us rewrite this in
order, with the convention that the distance to the empty set and the supremum over the
empty set are zero:

dH(Ω1,Ω2) = sup

(
sup
x∈Ω1

d(x,Ω2), sup
y∈Ω2

d(y,Ω1)

)

sup
x∈Ω1

d(x,Ω2) = sup
x∈∂Ω1∪Ω1∩Sk(Ω2)

d(x,Ω2)

= sup
x∈{Ω2∩(∂Ω1∪Ω1∩Sk(Ω2))

d(x,Ω2)

= sup
x∈{Ω2∩(∂Ω1∪Ω1∩Sk(Ω2))

d(x, ∂Ω2)

= sup

(
sup

x∈∂Ω1∩{Ω2

d(x, ∂Ω2), sup
x∈Sk(Ω2)∩Ω1

d(x, ∂Ω2)

)
Consequently:

Proposition 41. Let Ω1 and Ω2 be two shapes in F . Then dH(Ω1,Ω2) is equal to:

sup
(

sup
x∈∂Ω1∩{Ω2

d(x, ∂Ω2), sup
x∈Sk(Ω2)∩Ω1

d(x, ∂Ω2), sup
y∈∂Ω2∩{Ω1

d(y, ∂Ω1), sup
y∈Sk(Ω1)∩Ω2

d(y, ∂Ω1)
)
.

Remark 42. This splitting into four terms is to be compared to the expression of the Haus-

dorff distance between the boundaries dH(∂Ω1, ∂Ω2) = sup

(
sup

x∈∂Ω1

d(x, ∂Ω2), sup
y∈∂Ω2

d(y, ∂Ω1)

)
which is equal to:

sup
(

sup
x∈∂Ω1∩{Ω2

d(x, ∂Ω2), sup
x∈∂Ω1∩Ω2

d(x, ∂Ω2), sup
y∈∂Ω2∩{Ω1

d(y, ∂Ω1), sup
y∈∂Ω2∩Ω1

d(y, ∂Ω1)
)
.
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Two terms among the four ones are identical in the expressions of dH(Ω1,Ω2) and
dH(∂Ω1, ∂Ω2), and the other ones are not correlated in the sense that we can find shapes so

that sup

(
sup

x∈Sk(Ω2)∩Ω1

d(x, ∂Ω2), sup
y∈Sk(Ω1)∩Ω2

d(y, ∂Ω1)

)
is high whereas

sup

(
sup

x∈∂Ω1∩Ω2

d(x, ∂Ω2), sup
y∈∂Ω2∩Ω1

d(y, ∂Ω1)

)
is small, and reciprocally.

The conclusion is that dH(Ω1,Ω2) is sometimes strictly greater than dH(∂Ω1, ∂Ω2),
sometimes strictly smaller, but they are equal one to the other when the term
sup

(
sup

x∈∂Ω1∩{Ω2

d(x, ∂Ω2), sup
y∈∂Ω2∩{Ω1

d(y, ∂Ω1)
)

dominates.

Corollary 43. The Hausdorff distances dH(Ω1,Ω2) and dH(∂Ω1, ∂Ω2) between two close
enough shapes in F or B are equal one to the other, assuming in the case of the only
knowledge of the boundaries that the associated full shapes are such that any point far enough
(in comparison with the distance between the boundaries) from the two boundaries either
belongs to both full shapes or belongs to none. This property is needed because the only
knowledge of the boundaries does not carry information about where the interior and exterior
of the associated full shapes are. This property is probably always true for bounded full shapes
in Rn. It will be denoted by:

P(Ω1,Ω2) : {
(
[∂Ω1 +B(η)] ∪ [∂Ω2 +B(η)]

)
⊂ [Ω1 ∩ Ω2] ∪

[
{Ω1 ∩ {Ω2

]
where B(η) stands for the ball of radius η = 2dH(∂Ω1, ∂Ω2) and ∂Ω1 + B(η) for the set of
points whose distance to ∂Ω1 is less than η. Then:

∀Ω1 ∈ F , ∃ε > 0, ∀Ω2 ∈ F ,
dH(Ω1,Ω2) < ε
or
dH(∂Ω1, ∂Ω2) < ε and P(Ω1,Ω2)

=⇒ dH(Ω1,Ω2) = dH(∂Ω1, ∂Ω2).

Moreover, in that case the Hausdorff distance is symmetric in the sense that:

dH(Ω1,Ω2) = dH(∂Ω1, ∂Ω2) = sup
y∈∂Ω2

d(y, ∂Ω1) = sup
x∈∂Ω1

d(x, ∂Ω2).

Proof. This result is not true for any subsets of Rn. The condition of being shapes in F is
very important here.

The definition of the set of shapes S, which F and B are part of, implies that any
shape Ω1 ∈ S is far enough from its (exterior) skeleton: the euclidean distance between
any point of Sk(Ω1) and any point of Ω1 is greater than h0. Consequently, if the Hausdorff
distance between Ω1 and Ω2 is less than h0, then Ω2 and Sk(Ω1) do not intersect, and

sup
x∈Sk(Ω2)∩Ω1

d(x, ∂Ω2) = sup
y∈Sk(Ω1)∩Ω2

d(y, ∂Ω1) = 0. Therefore:

dH(Ω1,Ω2) < h0 =⇒ dH(Ω1,Ω2) = sup
(

sup
x∈∂Ω1∩{Ω2

d(x, ∂Ω2), sup
y∈∂Ω2∩{Ω1

d(y, ∂Ω1)
)
.

The same property stands if dH(∂Ω1, ∂Ω2) < h0/2. Indeed if x belongs to Sk(Ω1) ⊂
Sk(∂Ω1)∩{Ω1 and to Ω2, then the property P implies that d(x, ∂Ω1) < 2dH(∂Ω1, ∂Ω2) since
x is in Ω2 and not in Ω1. But d(x, ∂Ω1) = d(x,Ω1) > h0 > 2dH(∂Ω1, ∂Ω2). So Sk(Ω1)∩Ω2

is empty and:
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dH(∂Ω1, ∂Ω2) < h0/2 and P(Ω1,Ω2)

=⇒ dH(Ω1,Ω2) = sup
(

sup
x∈∂Ω1∩{Ω2

d(x, ∂Ω2), sup
y∈∂Ω2∩{Ω1

d(y, ∂Ω1)
)
.

Thus, if these terms are shown to dominate in the expression of dH(∂Ω1, ∂Ω2) when this
quantity is small enough, the proof is completed.

Let us suppose that dH(∂Ω1, ∂Ω2) is reached in the part sup
x′∈∂Ω1

d(x′, ∂Ω2), or else swap

Ω1 and Ω2. Let x ∈ ∂Ω1 be such that d(x, ∂Ω2) = dH(∂Ω1, ∂Ω2). In the proof of proposition
24 it has been shown that there exists a point y on ∂Ω2 whose projection on ∂Ω1 is x if
dH(∂Ω1, ∂Ω2) is small enough. Consequently: dH(∂Ω1, ∂Ω2) = d(x, ∂Ω2) 6 d(x,y) =
d(y, ∂Ω1) 6 supy′∈∂Ω2

d(y′, ∂Ω1) 6 dH(∂Ω1, ∂Ω2). Therefore d(y, ∂Ω1) = dH(∂Ω1, ∂Ω2). If
x does not belong to Ω2 or y does not belong to Ω1 then the terms that dominate in the
expression of dH(∂Ω1, ∂Ω2) are the good ones and consequently the distance between the
full shapes is equal to the distances between the boundaries. If not, then x ∈ Ω2 and y ∈ Ω1,
and the configuration is awkward. The vector xy is normal to both ∂Ω1 at point x and
∂Ω2 at point y. Let us consider the point z on the straight line (xy) such that the vector
xz is equal to 4xy. As z is on the normal to ∂Ω1 at x and |xz| = 4dH(∂Ω1, ∂Ω2) < h0,
its projection onto ∂Ω1 is unique and is x, and consequently d(z, ∂Ω1) > 2dH(∂Ω1, ∂Ω2).
Similarly d(z, ∂Ω2) = d(z,y) > 2dH(∂Ω1, ∂Ω2) and the property P implies that z belongs
either to both Ω1 and Ω2, or none of them. As there can be no point of ∂Ω1 on the segment
)xz) since all the projection of all these points onto ∂Ω1 is x, and as y ∈ Ω1, then z ∈ Ω1.
Similarly z is not in Ω2. Hence a contradiction. To sum up, either x ∈ {Ω2 or y ∈ {Ω1 and
there exists ε > 0 such that:

dH(∂Ω1, ∂Ω2) < ε and P(Ω1,Ω2)

=⇒ dH(∂Ω1, ∂Ω2) = sup
(

sup
x∈∂Ω1∩{Ω2

d(x, ∂Ω2), sup
y∈∂Ω2∩{Ω1

d(y, ∂Ω1)
)
.

Last and least, does this equality still stand for the condition dH(Ω1,Ω2) < ε ? Let
x ∈ ∂Ω1 be such that d(x, ∂Ω2) = dH(∂Ω1, ∂Ω2) (with a swap between Ω1 and Ω2 before
if necessary). If x /∈ Ω2 then the proof is finished. Else x ∈ Ω2. A way to solve the
problem is to prove that dH(∂Ω1, ∂Ω2) is small enough and apply the previous framework.
The ball centered on x with radius dH(∂Ω1, ∂Ω2) is included in Ω2 since x ∈ Ω2 and
d(x, ∂Ω2) = dH(∂Ω1, ∂Ω2). Besides, the projection onto ∂Ω1 of all points belonging to the
normal to ∂Ω1 at point x and at distance < h0 from x is x. The segment they form go
through ∂Ω1 only at point x so that one of its two halves is included in {Ω1. For any point
p of this half of the segment, d(p,Ω1) = d(p, ∂Ω1) = d(p,x). There is a point y on this half
which is at distance min(h0, dH(∂Ω1, ∂Ω2))/3 from x. To sum up: y is in Ω2 and d(y,Ω1) =
min(h0, dH(∂Ω1, ∂Ω2))/3. So dH(Ω1,Ω2) > min(h0, dH(∂Ω1, ∂Ω2))/3. If dH(Ω1,Ω2) < h0/3
then necessarily dH(∂Ω1, ∂Ω2) 6 3dH(Ω1,Ω2) and consequently the previous paragraph can
be applied again if P is shown to be also satisfied. As dH(Ω1,Ω2) < h0, the first implication
stated in this proof gives dH(Ω1,Ω2) 6 dH(∂Ω1, ∂Ω2). But to prove P, it is sufficient to
show that any point that is in one of the full shape and not in the other is necessarily at
distance 6 2dH(∂Ω1, ∂Ω2) from the boundary of the full shape which it does not belong to.
Let z be in Ω1 and not in Ω2. Then d(z, ∂Ω2) = d(z,Ω2) 6 dH(Ω1,Ω2) 6 dH(∂Ω1, ∂Ω2).
So P is satisfied and
dH(Ω1,Ω2) < ε =⇒ dH(∂Ω1, ∂Ω2) = sup

(
sup

x∈∂Ω1∩{Ω2

d(x, ∂Ω2), sup
y∈∂Ω2∩{Ω1

d(y, ∂Ω1)
)
.
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Remark 44. Since the skeleton of a shape is naturally built from the boundary of the shape
(and not from the “full” shape), the proposition 41 gives a simple way to compute the Haus-
dorff distance between the “full” shapes based on the only knowledge of their boundaries.
Note that all suprema are taken among subsets of null measure (for the measure in the space
which embeds the shape).

The same framework as before (in chapter 2) can be applied to obtain a smooth, differ-
entiable approximation of the “full” Hausdorff distance with respect to the boundary. The
only new point here is the skeleton, or more precisely the subset of the (exterior) skeleton
which is made of local extrema of the distance function to the boundary. These points can be
expressed as the ones where the the derivative of the approximation of the distance function
is zero. I do not know if the application which associates this subset to any boundary is con-
tinuous and differentiable with respect to the boundary. However, in the worst case, in order
to ensure that the approximation of the “full” distance is smooth, one can use a variation
on the same trick as before (‖ · ‖p → ‖ · ‖∞) and replace the consideration of these extremal
points by the consideration of all points, but with weights strongly depending on the norm of
the gradient of the approximation of the distance function.

3.2 Incorporating shape descriptors

3.2.1 Motivation

To the notion of shape are associated many different kinds of considerations which have not
been evoked so far: shape descriptions, such as the curvature, oscillations, rigidity, corners...
and shape attributes, such as color and texture. The choice of the set of shapes and of
the distance which is defined on it should reflect as much as possible the intuitive notion of
shape, since they will play a decisive role in the evolution of shapes when matching one shape
onto another by minimizing the distance between them. Generally speaking, the design of
the set of objects and of the relations between them is the central task of the model maker.
So, how to incorporate these considerations in the model of shape ?

In practice, the minimization of the Hausdorff distance between two shapes A and B with
respect to A (see part II) sometimes leads to less than satisfying evolutions, particularly
when a part of the moving contour is attracted by several different parts of the target
contour, which occurs when the target contour shows large, high frequency oscillations. An
example of this phenomenon can be observed when matching a rectangle to a hand, where
the length of the fingers is far bigger than their thickness.

A way to try to avoid this kind of evolution consists in modifying the Hausdorff distance
so that the induced correspondences reflect our intuition. Indeed, the Hausdorff distance
consider implicitly that each point x of a shape A is attracted by its closest neighbor on the
other shape B and by all the points of B whose projection on A is x, and that the more
meaningful points are those with biggest euclidean distance to their associated points. One
could wonder if this straight distance is the only good one, or if one would not be wise to
search for more information than the euclidean distance between any two points.

3.2.2 A first extension of the Hausdorff distance to boundary orientation

For instance, let us imagine that we would like to take into account the local orientation of
the shapes when comparing two points. If we denote by nA(x) the normal of the shape A at
point x, then the (positive) angle α(nA(x),nB(y)) between them carries information about
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the relative orientation of the shapes at these two points. It is then reasonable to think
that, for a same euclidean distance between x and y, the cost of the deformation that the
shape A has to locally undergo in order to reach B should increase with the angle between
the normals nA(x) and nB(y), since it requires a local rotation, or torsion, of the shape.
Hence the idea of incorporating this information with the euclidean distance d(x,y) in a
new, more meaningful, distance, denoted by d1(x,y) = ‖x − y‖2 +Kα

(
nA(x),nB(y)

)
, so

that the distance between any points of any two curves depends on both euclidean distance
and local orientation (with a relative importance expressed by factor K). The important
point is that the new modified Hausdorff distance related to d1 is still a distance between
shapes.

Proposition 45. Let d∗ be a distance on Rn × Sn−1 where Sn−1 is the unit sphere of Rn.
Then the application which associates to any pair of shapes (A,B) embedded in Rn the real
number

d∗H(A,B) = max
{

sup
x∈A

inf
y∈B

d∗
(
(x,nA(x)), (y,nB(y))

)
,

sup
y∈B

inf
x∈A

d∗
(
(x,nA(x)), (y,nB(y))

) }
is a distance on the set of shapes.

Note that we can see it as a change of the embedding space, where a point is a pair
(x,n), and into which any shape can be “ lifted ”. This kind of process is usual in differential
geometry or more exactly in algebraic topology.

Proof. The properties that make the usual Hausdorff distance a distance are still satisfied
by this extension. First, d∗ is a distance on Rn × Sn−1, as d was on Rn, and secondly the
syntax (with max, sup and inf) has been preserved.

1. ∀A, B, d∗H(A,B) = d∗H(B,A) (straightforward)

2. ∀A, d∗H(A,A) = 0 since for any x on A, infy∈A d∗
(
(x,nA(x)), (y,nA(y))

)
is reached

for y = x and d∗ is a distance, so for any x this quantity is zero. Similarly, if
d∗H(A,B) = 0 then A = B since it implies that each point of each shape also belongs
to the other shape.

3. ∀A,B,C, d∗H(A,B)+d∗H(B,C) > d∗H(A,C) : same proof as the one for the Hausdorff
distance. Let us denote by A∗ = {(x,nA(x)) ∈ A× Sn−1} the “lifted” version of A.
If the “ lifted ” shapes A∗, B∗, C∗ are closed, bounded subsets of Rn × Sn−1 (if not
closed, just consider their closure), then the distance d∗H(A,C) is reached for a pair
(a, c) ∈ (A∗ ×C∗). Either a is the projection of c onto A∗, or c is the projection of a
onto C∗. Let us consider the second case (the first one being symmetric). If b stands
for the point that minimizes infb∈B∗ d∗(a,b), then on one hand d∗(a,b) 6 d∗H(A,B)
and on the other hand the distance between b and C∗ is smaller than d∗H(B,C), so,
as the projection of a onto C∗ is the shortest path from a to C∗, we have:

d∗H(A,C) = d∗(a, C∗) 6 d∗(a,b) + d∗(b, C∗) 6 d∗H(A,B) + d∗H(B,C).
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3.2.3 Extension of the Hausdorff distance to shape local descriptors

In a farther perspective, this highlights the process and the meaning of the Hausdorff dis-
tance. First, to each point x of the shapes, it implicitly associates a corresponding point on
the other shape, which is the nearest neighbor of x on this other shape for the chosen dis-
tance d∗. These pairs of corresponding points are not symmetric in the sense that if b ∈ B∗

is the projection onto B∗ of a ∈ A∗, then a is not necessarily itself the projection of b onto
A∗. Then, among all these pairs, it returns the maximum distance between each point and
its associated point. The design of the distance d∗ should consequently be carefully studied
since it defines the correspondences between the two shapes (or more exactly two sets of
correspondences via the pairs of corresponding points) from which the final distance d∗H is
directly built.

A substitution of an other distance d∗ for the usual euclidean distance allows to define
more precisely the notion of similarity between two small parts of shapes. For instance,
the previously proposed distance d1 takes into account the local orientation of the shapes.
For any local descriptor of a shape (curvature, wavelet coefficients, shape patches, color,
texture, ...) and a related distance, the Hausdorff distance can be similarly adapted:

Proposition 46. Let f be an application (which should be seen as a shape local descriptor)
which associates to any shape A (embedded in Rn) and any point x of A an element in a
space named D. Let dD be a distance on D. Then the application which associates to any
pair of shapes (A,B) embedded in Rn the real number

dDH(A,B) = max
{

sup
x∈A

inf
y∈B

d(x,y) + dD(f(x, A), f(y, B)),

sup
y∈B

inf
x∈A

d(x,y) + dD(f(x, A), f(y, B))
}

is a distance on the set of shapes.

Proof. The same as in Proposition 45. The proof of additional lemmas if D is not finite-
dimensioned or f not bounded is left to the reader. Another (very similar) way to con-
sider the problem is to note that dDH(A,B) is the “natural” Hausdorff distance between the
“ lifted ” shapes AD and BD where AD = {(x, f(x, A)) ∈ Rn ×D for x ∈ A} for the distance
dRn×D = dRn + dD.

3.2.4 A distance in the set of local descriptions: the local cross-correlation

Descriptors such as the color require to be associated with a different kind distance from
the euclidean one. The relevant information when comparing two shapes in the case of the
color descriptor is indeed more related to the local variation of the intensity than to the
value of the intensity itself, because of usual phenomena such as contrast variations between
two images of a same object.

The local cross-correlation is well suited for such descriptors. It is introduced in next
section in the case of images but can easily be adapted to compare descriptors defined on
two shapes at two (different) points.
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3.3 Shapes as images, images as shapes

3.3.1 Full shapes and images

The previous sections have introduced a way of incorporating local descriptors into the
Hausdorff distance, and a way to go easily from the distance between boundaries to the
distance between full shapes thanks to their skeletons. One could be tempted to deduce,
from a mixture of these two remarks, a new method to include considerations about the
color (or other information) of the interior of the shapes into the distance between their
(colored) boundaries (and skeletons). The point is that, in the “lifted” spaces where one or
several axes are added to take the color into account, the boundary of a shape is not its
former euclidean boundary; it turns out that its new boundary is the whole shape.

Full shapes with local descriptors defined on them are strongly similar to parts of images.
It is then natural to study distances and matching processes between (parts of) images. One
may even think of a shape as the whole image embedding the shape. In that case the notion
of boundaries disappears, making room to the notion of high-gradient zones. A natural way
to reintroduce contours consists in searching for the boundaries of homogeneous regions. A
first attempt in that spirit could be to consider the level curves of the intensity. However
these curves hardly reflect the boundaries of the real, intuitive shapes in the images for
the already previously presented reason: the local changes of contrast often makes the level
value of the intensity irrelevant, without mentioning that the texture (or even variation of
texture in a single object) often causes as much variation of the intensity inside the object
itself as between the object and the background. Therefore it is necessary to design carefully
local descriptors of the image, such as color, color variation, texture descriptors, value of
local filters such as wavelets, norm of the gradient of the intensity, etc. in order to search
then for homogeneous regions. If the number of descriptors is high, then this may need
statistical or learning tools in order to find which descriptors (or combination of them) are
relevant for the current task. The definition of homogeneity itself is a challenging problem
of great interest.

But, for the moment, let us study image distances. Given a bounded, regular domain
Ω of the space Rn, and a destination metric space D (R if the image is grey-leveled, or
something more complicated for more complicated descriptors), an image is defined as a
function defined on Ω with values in D. For the sake of simplicity, D will be R in the sequel,
and the usual measure dΩ(x) on Ω will be denoted by dx.

3.3.2 Local cross-correlation

The local cross-correlation is a criterion which takes into account the local changes of con-
trast which appear when comparing two images. From this correlation can be extracted a
distance between images, if any two images that differ just in the contrast are considered to
be the same.

Given a scale σ, the cross-correlation of two images A and B at point x is defined by:

CC(A,B, x) =
vAB(x)2

vA(x) vB(x)

where vA(x) is the local spatial variance of A in a Gaussian neighborhood of size σ centered
on x, and vAB(x) the local covariance of A and B on the same neighborhood, i.e. we define:

g(x, y) = e−frac‖x−y‖
22σ2
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µ(x) =
∫
y∈Ω

g(x, y) dy

Ā(x) =
1

µ(x)

∫
y∈Ω

A(y) g(x, y) dy

vA(x) = ε+
1

µ(x)

∫
y∈Ω

(A(y)− Ā(x))2 g(x, y) dy

vAB(x) =
1

µ(x)

∫
Ω
(A(y)− Ā(x))(B(y)− B̄(x)) g(x, y) dy

The positive constant ε is added only not to have a null divider in the expression of
CC(A,B, x). The criterion CC(A,B, x) returns the relative correlation of variations of the
two images in the neighborhood of point x. If σ is small, i.e. if the neighborhood is small,
then these variations can be approximated by a hyperplane around x and consequently CC
happens to be a function of the gradients of A and B at point x; more precisely it is a
function of the angle between the two directions ∇A(x) and ∇B(x). When σ increases,
CC gets more and more information on the neighborhood of x to compare locally A and B,
which are then considered as intensity distributions.

The local cross-correlation on the whole images are defined by [60]:

LCC(A,B) =
1
|Ω|

∫
x∈Ω

CC(A,B, x) dx

Note that this criterion is not a distance in itself, since its value increases with the
similarity of the images.

3.3.3 Distance related to the local cross-correlation

The criterion gives values between 0 and 1, so 1 − LCC(A,B) could be a good candidate
for a distance. It is in fact the square of a distance.

Lemma 47. For any x, 1−
√
CC(·, ·, x) is the square of a pseudo-distance, or more precisely

of a distance on the set of functions with zero local mean and unit local variance at this point
x.

Proof. Let x be a point, and A and B two images such that Ā(x) = B̄(x) = 0 and vA(x) =
vB(x) = 1. Then√

CC(A,B, x) = |vAB(x)|

=
1

µ(x))

∣∣∣∣∫
Ω
A(y)B(y) g(x, y) dy

∣∣∣∣
=

1
µ(x)

∣∣∣∣∫
Ω

1
2
(
A(y)2 +B(y)2 − (A(y)−B(y))2

)
g(x, y) dy

∣∣∣∣
= 1− 1

2

∥∥∥∥(A−B)2
g(x, ·)
µ(x)

∥∥∥∥
L1

= 1− 1
2

∥∥∥∥∥(A−B)

√
g(x, ·)
µ(x)

∥∥∥∥∥
2

L2
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since the local variance at point x of A and B is 1. Therefore 1 −
√
CC(A,B, x) =

1
2

∥∥∥∥∥(A−B)

√
g(x, ·)
µ(x)

∥∥∥∥∥
2

L2

. As g(x, y) > 0 for any y, ‖I‖g(x,·)/µ(x) =

∥∥∥∥∥I
√
g(x, ·)
µ(x)

∥∥∥∥∥
L2

is a

norm for any x. Consequently, for any x, 1−
√
CC(·, ·, x) is the square of a distance on the

specified set, or of a pseudo-distance on the whole set of all images.

Lemma 48. If 1 −
√
f(·, ·) is the square of a distance, then 1 − f(·, ·) is the square of a

distance also.

Proof. Let be f(·, ·) such that 1 −
√
f(·, ·) is the square of a distance. Necessarily, f is

symmetric and 0 6 f 6 1. Therefore 0 6 1− f 6 1.

• 1− f(·, ·) is symmetric;

• ∀A,B : 1− f(A,B) = 0 ⇐⇒ f(A,B) = 1 ⇐⇒ 1−
√
f(A,B) = 0 ⇐⇒ A = B

• ∀A,B,C :
√

1− f(A,B) 6
√

1− f(A,C) +
√

1− f(C,B). Indeed, if the distance√
1−

√
f is denoted by d, then f = (1−d2)2 = 1−2d2+d4 so that

√
1− f = d

√
2− d2.

Consequently it is sufficient to prove that d(A,B) 6 d(A,C) + d(C,B) implies the
same inequality with d

√
2− d2 instead of d. With some more concise notations: it is

sufficient to prove that for any real numbers a, b, c between 0 and 1, then a 6 b + c
implies h(a) 6 h(b) + h(c) with h : x 7→ x

√
2− x2. As h is positive, increasing and

concave between 0 and 1, the last assertion is true.

Corollary 49. For any x, 1−CC(·, ·, x) is the square of a pseudo-distance, or more precisely
of a distance on the set of functions with zero local mean and unit local variance at this point
x.

Hence the result:

Proposition 50. 1− LCC(·, ·) is the square of a distance on the set of images quotiented
by the relation of a change of contrast.

Proof.

1− LCC(·, ·) =
1
Ω

∫
Ω

1− CC(·, ·, x)dx =
1
Ω

∫
Ω
d2
x(·, ·)dx

where for each x, dx is a pseudo-distance. This implies that the application d =
√

1− LCC
still satisfies the triangular inequality: indeed, if A, B and C are three images, then:

d2(A,B) =
1
Ω

∫
Ω
d2
x(A,B)dx

6
1
Ω

∫
Ω

(dx(A,C) + dx(C,B))2 dx

6 d2(A,C) + d2(C,B) + 2
1
Ω

∫
Ω
dx(A,C) dx(C,B)dx

6 d2(A,C) + d2(C,B) + 2

√
1
Ω

∫
Ω
d2
x(A,C)dx

√
1
Ω

∫
Ω
d2
x(C,B)dx

6 (d(A,C) + d(C,B))2
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Moreover, d(A,B) = 0 ⇐⇒ dx(A,B) = 0 a.e., dx(A,B) being seen as a function

of x. But dx(A,B) = 0 implies ∀y a.e.,
1

vA(x)
(A(y) − Ā(x)) =

1
vB(x)

(B(y) − B̄(x)).

Consequently A and B are linked together by a simple change of contrast. Even if the
initially chosen neighborhood was not Gaussian and did not induce a function g(x, y) that
satisfies that it is strictly positive everywhere, then, despite the fact that the set of images
which are at distance 0 for the pseudo-distance dx would be much bigger, it would have
been sufficient that there exists for each x an open set including x such that g(x, y) > 0 on
this open set to infer that A and B are locally linked by an affine application, i.e. linked
on each connected component of Ω by an affine application, and consequently linked by a
change of contrast if Ω is a connected set.

3.3.4 Distances and deformation

As previously in the case of contours, there exists a diffeomorphic approach, where the dis-
tance between two images is the length of the shortest path from one to the other, the dis-
tance being the integral over the path of the norm of the infinitesimal deformation field for a
suitable choice of norm. This is done in the work of Trouvé and Younes [115, 49, 41, 81, 112].
On the other side, the equivalent of the Hausdorff distance, i.e. a computationally straight-
forward distance, is the local cross-correlation. The L2 norm of the difference between the
intensity of the two images was rejected previously as being irrelevant.

There is an hybrid method joining diffeomorphisms and straightforward distances. It
consists in defining a new criterion between any two images A and B:

RLCC(A,B) = inf
deformations f

{
R(f)− αLCC(f(A), B)

}
where R(f) is a regularizing term and α a positive number. This induces a very natural
way to match the image A onto the image B, that consists in minimizing, by gradient
descent to respect to f , the quantity R(f) − αLCC(f(A), B) which takes into account the
resemblance between the warped image f(A) and its target B (with weight α), and the cost
of the deformation.

The field f should be smooth enough and consequently invertible, i.e. it should be
a diffeomorphism from the rectangular subset Ω to itself, which can be guaranteed by the
assumption that the diffeomorphism f equals the identity on the image boundary ∂Ω. Other
possibilities are offered by extending the images to a larger subset Ω1 in order to let the
boundary of Ω evolve.

In order to keep f continuous, the regularizing term R(f) is necessary. It can be
for example R(f) = ‖f − Id‖H1

Ω where Id is the identity function on Ω and ‖a‖H1

Ω =∫
x∈Ω ‖a(x)‖

2 + ‖Da(x)‖2 dx. If one prefers to be sure that f remains invertible, the choice
of ‖f − Id‖H1

Ω + ‖f−1 − Id‖H1

Ω , where f−1 is the inverse of f , presents also the advantage of
being symmetric when swapping A for B.

Note however that RLCC(A,B) has no reason to be symmetric (because of the Jacobian
of f that is not present in the expression LCC(f(A), B)) and consequently is not a distance.
A simple way to correct this would be to add LCC(A, f−1(B)) inside the infimum. Con-
cerning the triangular inequality, it still stands if R satisfies some properties concerning the
composition law of deformations, more precisely R(g ◦ f) 6 R(g) +R(f).
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3.3.5 Multiscale

The criterion RLCC(A,B) depends on two parameters: α and σ. The parameter σ is the
standard deviation of the local Gaussian neighborhood, and α is the weight between the
smoothing and the resemblance terms. A small value of σ induces a higher precision in the
comparison of f(A) to B but, during the matching process by minimization of the criterion
with respect to f , it will lack important, global information if f(A) is not very close to B:
this is the everlasting problem of gradient descents which get stuck in local minima. On
the contrary, a very high value of σ will allow a global comparison of the two images but
will lack precision. Concerning α, the lower the value, the smoother the deformation field
f , which means that when α is low, the field f expresses a global coherent deformation,
whereas a high value of α induces local, quasi-independent, irregular deformations. It is
consequently relevant to let α be correlated with σ: global deformations are obtained for a
high σ and a low α, whereas high-precision deformations when ending the convergence of
an evolution are obtained with a low σ and a high α.

A multiscale approach appears to be suitable here. Either a new criterion is defined
as a weighted sum (in practice, the successive considerations) of RLCC(A,B) for different
values of the parameters, either the parameters are constant but the images are considered
successively at different scales. The two approaches are very similar and, depending on the
design of the criterion, even identical.
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Chapter 4

Shape Statistics Based on the only
knowledge of Distances

Abstract

This chapter deals with the statistics that can be extracted from the only knowledge of the
distance matrix on a sample set of shapes. The approach is based on the Hausdorff distance
between shapes, which choice is itself not fundamental since the same framework could be
applied with another distance. The shape distances are used to represent the sample set
of shapes by a graph, which with the technique of the graph Laplacian leads to a way of
projecting shapes onto a low dimensional space.

4.1 Exact representation of a set of shapes in a finite dimen-
sioned vector space

In the previous chapters have been introduced general sets of shapes and associated dis-
tances which can be straightforwardly computed (without building paths between shapes
or searching for an infimum) and which are intrinsic in the sense that they do not depend
on the parameterization of the shapes. These shapes are for instance hypersurfaces with
the Hausdorff distance or images with the local cross-correlation. Now, given a real sample
set of shapes, denoted by D = {Γi / 1 6 i 6 n}, included in one of these studied sets, the
mutual distance d(Γi,Γj) between any pair of shapes can be computed. From the only
knowledge of this distance matrix, is it possible to build some shape statistics, without any
shape warping ?

Without shape warping, the natural general set of shapes into which D is included can
not be explored and its properties are not useful. Thus, the only knowledge of distances
leads to a purely static geometrical point of view of the sample set D, which is then often
naturally seen as a cloud of points in a finite dimensioned vector space Rk embedded with
the euclidean distance. For a set of n shapes, which are most often in an intrinsically
infinite dimensioned space, the dimension of this embedding space is often k ' n. However,
generally speaking, it is not always even possible to build such a cloud of points. For
example, the set of positive integers written with the binary notation can be equipped with
the distance that associates to any two such binary integers the number of digits that are
different in the two writings. The distance between 0000 and any of 0010, 0100, 1000 is one,
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whereas the distance between any two of 0010, 0100, 1000 is two. This is problematic since
there is no such a quartet of points in any Rk for the euclidean distance L2. Note however
that it is feasible with the L1 distance.

Anyway, even when embedding the sample set D in a Rk is possible, the question of
interest is to find structure in D, like principal axes, and to build statistics. In this perspec-
tive, a good start would be to search for the best map of D into a Rk, best in the sense that
the map should preserve as much as possible the distances and that the coordinate axes
should be also the principal axes.

4.2 Graph Laplacian and best approximative map

It is possible to build such a map using the graph Laplacian technique [5]. The graph
Laplacian technique or similar methods have already been applied recently to images for
the L2 distance between their grey levels by Tenenbaum et al [109] or Donoho and Grimes
[37, 38]. However it does not appear to have been done for shapes (as boundaries).

The trick consists first in building a neighborhood graph. For a choice of a positive
integer K, the search for the K nearest neighbors N i

16l6K of each shape Γi leads to the
definition of a symmetric weight matrix W :

Wi,j = δi,j e−
d(Γi,Γj)

2

2σ2

where

δi,j =
{

1 if i ∈ N j or j ∈ N i

0 otherwise

and we have chosen for σ the mean distance between neighbors:

σ =

∑
i,j d(Γi,Γj) δi,j∑

i,j δi,j
.

Then, the symmetric negative semi-definite matrix L = W−D whereDi,j =
∑

i Wi,j δi,j
is a discrete approximation of the Laplacian operator. Thus, as explained in [5, 4], its eigen-
vectors Fk of highest (negative) non-zero eigenvalues are the best functions from the shapes
Γi to R that could be used as coordinate system of the set of shapes in the sense that they
are the smoothest functions f from D to R: they minimize

∑
i

(f(i)− f(j))2Wi,j for a fixed

unit L2 norm of f . Moreover, since they are eigenvectors of the Laplacian operator, they
are orthogonal. We obtain consequently a map in Rm where each shape Γi is represented by
a dot with coordinates (F16k6m(Γi)), the first coordinates being the most significant ones.

4.3 Examples of maps

Let us try this approach on an artificial dataset. We build a set of rectangles with same
center and width but different lengths and orientations, so there are two natural parameters
we would expect the algorithm to find. The orientation varies between −π

6 and +π
6 , and

the length between 2 and 4 times the width. Rectangles are randomly chosen such that
the distribution of their corners is the uniform law in the authorized area. Results vary
depending on the distribution density and the value of K: the higher the density, the better
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the results. Fig. 4.1 has been computed for 700 rectangles and shows that the representation
of the rectangles by their two first coordinates (F1, 2(Γi)) leads to a natural map of the sample
set. For sparse data however, the results are globally coherent in the sense that the points
are relatively well ordered, but the built map shows too much irregularity.

Figure 4.1: Map from the graph Laplacian method for a set of rectangles whose length and
orientation have been chosen randomly (K = 15).

Let us now study the more complicated case of some different classes in a same con-
nected component. We consider a set of 111 fish from the database (www.ee.surrey.ac.uk/
Research/VSSP/imagedb/demo.html) of fish silhouettes collected by the researchers of the
University of Surrey at the center for Vision, Speech and Signal Processing (www.ee.surrey
.ac.uk/Research/VSSP). This database contains 1100 silhouettes. The resulting map for
the two first coordinates (see Fig. 4.2) shows some clusters of fish families.

In conclusion, this technique is interesting in the case of high density database to build
maps, and in the case of sparse data to let clusters appear. Note that there exist many
techniques similar to the Laplacian eigenmaps, for instance LLE (locally linear embedding),
LPP (locality preserving projections), Isomap or Hessian eigenmaps [99, 38, 37, 59, 58, 30].

To go further on in this direction, one might get inspiration from recent works by Memoli
and Sapiro[79, 78] on point cloud data and distance functions on submanifolds, or by Lafon
et al.[72, 71] on diffusion maps, in order to extract from spectral techniques a way to
perform classification tasks, or, further, to build a shape prior for segmentation. We will not
investigate the spectral direction more here; however for this last aim (image segmentation),
the use of such a graph technique will also require to move in the set of shapes, i.e., to
perform shape evolutions. This is the subject of the next part.
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Figure 4.2: Two first coordinates for a set of 111 fish from different classes. The elements
from each family are got together into clusters (K = 25).
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Shape Warping





Chapter 5

Shape Gradient and Shape Warping

Abstract

This chapter is dedicated to warping a shape onto another one using the minimization of
the distance between them with respect to the shape in a gradient descent framework. The
differentiation of an energy with respect to a curve is introduced and applied to the case of
the approximation of the Hausdorff distance. Results of warping are shown.

5.1 Deforming shapes

The problem of continuously deforming a shape so that it turns into another is central to
this chapter. The reasons for this will become more clear in the sequel. Let us just mention
here that it can be seen as an instance of the warping problem: given two shapes Ω1 and
Ω2, how do I deform Ω1 onto Ω2? The applications in the field of medical image processing
and analysis are immense (see for example [111, 110]). It can also be seen as an instance of
the famous (in computer vision) correspondence problem: given two shapes Ω1 and Ω2, how
do I find the corresponding point P2 in Ω2 of a given point P1 in Ω1? Note that a solution
of the warping problem provides a solution of the correspondence problem if we can track
the evolution of any given point during the smooth deformation of the first shape onto the
second.

In order to make things more quantitative, we assume that we are given a function
E : C0 × C0 → R+, called the Energy, which is continuous on S × S for one of the shape
topologies of interest. This Energy can also be thought of as a measure of the dissimilarity
between the two shapes. By smooth, we mean that it is continuous with respect to this
topology and that its derivatives are well-defined in a sense we now make more precise.

5.1.1 Derivatives of an energy and gradient

We first need the notion of a normal deformation flow of a curve Γ in S. This is a smooth
(i.e. C2) function β : [0, 1] → R (when Γ ∈ Sc, one further requires that β(0) = β(1)). Let
Γ : [0, 1] → R2 be a parameterization of Γ, n(p) the unit normal at the point Γ(p) of Γ;
the normal deformation flow β associates the point Γ(p) + β(p)n(p) to Γ(p). The resulting
shape is noted Γ+β, where β = βn. There is no guarantee that Γ+β is still a shape in S in
general but if β is such that βn is C2 (β being C2 is not sufficient since n may be only C1)
and ε is small enough, then Γ + εβ is in C2. Given two shapes Γ and Γ0, the corresponding



84 Shape Gradient and Shape Warping

Energy E(Γ, Γ0), and a normal deformation flow β of Γ, the Energy E(Γ + εβ, Γ0) is now
well-defined for ε sufficiently small. The derivative of E(Γ, Γ0) with respect to Γ in the
direction of the flow β is then defined, when it exists, as

(5.1) GΓ(E(Γ, Γ0),β) = lim
ε→0

E(Γ + εβ, Γ0)− E(Γ, Γ0)
ε

This kind of derivative is also known as a Gâteaux semi-derivative. In our case the func-
tion β → GΓ(E(Γ, Γ0),β) is linear and continuous (it is then called a Gâteaux derivative)
and defines a continuous linear form on the vector space of normal deformation flows of
Γ. This is a vector subspace of the Hilbert space L2(Γ) with the usual Hilbert product
〈β1, β2〉 = 1

|Γ|
∫
Γ β1 β2 = 1

|Γ|
∫
Γ β1(x)β2(x) dΓ(x), where |Γ| is the length of Γ. Given such

an inner product, we can apply Riesz’s representation theorem [100] to the Gâteaux deriva-
tive GΓ(E(Γ, Γ0),β): There exists a deformation flow, noted ∇E(Γ, Γ0), such that

GΓ(E(Γ, Γ0),β) = 〈∇E(Γ, Γ0), β〉.

This flow is called the gradient of E(Γ, Γ0).
We now return to the initial problem of smoothly deforming a curve Γ1 onto a curve

Γ2. We can state it as that of defining a family Γ(t), t ≥ 0 of shapes such that Γ(0) = Γ1,
Γ(T ) = Γ2 for some T > 0 and for each value of t ≥ 0 the deformation flow of the current
shape Γ(t) is equal to minus the gradient ∇E(Γ, Γ2) defined previously. The usual descent
gradient framework leads to the following PDE:

Γt = −∇E(Γ, Γ2)n(5.2)
Γ(0) = Γ1

However such a PDE supposes a definition of Γt, which has not been introduced yet.

5.1.2 Derivatives in the metric space S

The set S of all shapes which is considered has now two different structures. It first has
the structure of a metric space, with the Hausdorff distance between shapes, whose induced
topology was previously shown to be equivalent to two other proposed topologies (theorem
13). But now it also has a structure similar to the one of a manifold, with for each shape Γ
a set of admissible deformation fields (with associated shapes) which remembers the notion
of chart or tangent space with its inner product, here L2(Γ). We have indeed introduced for
each shape Γ a mean to associate to any deformation field β the resulting shape Γ + β, and
we can conjecture that for each shape Γ (in the interior of S in the sense that the inequality
reach(Γ) > h0 is strict) there exists a positive real number ε (depending on reach(Γ)) such
that if the deformation field β is C2 and if its amplitude ‖β‖L∞ and its second derivative
along the shape ‖d2β‖L∞ are upper-bounded by ε, then the resulting shape Γ + β is in S.
Anyway we will define the set of all admissible deformation fields as the set of all deformation
fields which are normal to Γ and which application leads to a shape in S. The interest of
fields with a tangential component is limited here since the tangential component does not
alter the shape.

We will not try here to prove that the set S with these structures is a manifold for any
meaning of the term manifold in infinite dimensions (for example Hilbert, Banach or Finsler
manifolds) but we will introduce successively the tools that we need. As it has been defined,
the set of admissible deformation fields is here even not a vector space since the application
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of a field with too high second derivative can induce a new shape with a too high maximum
curvature which is consequently not in S, so that the multiplication of an admissible field
by a real number greater than 1 can lead to a non-admissible field. Nevertheless the set of
admissible deformation fields has locally the structure of a vector space. A proper definition
of a tangent space with considerations on directions of paths in S would deal with that and
lead to a vector space, but it would not be complete and hence not an Hilbert space and it
is out of the scope of this chapter.

The previous definition of the sum of a shape and a small-normed deformation field
leads to a natural way of defining correspondences between close enough shapes. Indeed the
proposition 24 in chapter 2 introduces a continuous point-to-point correspondence between
any two close curves thanks to their distance functions, and this result can be extended to
the case of higher-dimensioned shapes. This associates to any shape Γ′ near Γ (“near” in
the sense of the Hausdorff distance) a normal deformation field vΓ→Γ′ defined on Γ such
that Γ+vΓ→Γ′ = Γ′, and such a field is necessarily unique, so this induces a simple relation
between the set of admissible deformation fields on Γ and the neighborhood of Γ in S. Note
that the field vΓ→Γ′ is invertible but its inverse is rarely vΓ′→Γ since this last one is normal
to Γ′ and not to Γ.

Then, how to define the derivative with respect to a real t of a family of shapes Γ(t)
indexed by t ? The intuitive notion of being tangent to a path is the one of a direction which
best fits locally the path Γ(t). The application β 7→ Γ′ = Γ + εβ and its inverse function
Γ′ 7→ vΓ→Γ′ define the notion of direction. However the notion of “best fitting” can here
have several meanings: one for the Hausdorff metric and one for the norm of deformation
fields, related to the inner product L2(Γ). In usual (euclidean) spaces, the derivative would

have been defined as
d

dt
Γ(t) = lim

ε→0

1
ε

[Γ(t+ ε)− Γ(t)] but the subtraction of shapes makes
no sense here, so this definition should rather be taken upside down and rewritten

(5.3) d ( Γ(t+ ε), Γ(t) + εβ) = o(ε)

if such a deformation field d
dtΓ(t) = β exists and is unique. The distance d here can either

stand for the Hausdorff distance between the shapes Γ(t+ε) and Γ(t)+εβ, or for the L2 norm
of the deformation field

∥∥vΓ(t+ε)→Γ(t)+εβ

∥∥
L2(Γ(t+ε))

or even
∥∥vΓ(t)+εβ→Γ(t+ε)

∥∥
L2(Γ(t)+εβ)

.
Happily, all these choices lead to equivalent definitions ! This is essentially due to the
equivalence of the studied topologies on S. Indeed, by definition of the Hausdorff distance
and by construction of the normal field vΓ→Γ′ for any two close enough shapes Γ and Γ′:

dH(Γ,Γ′) = sup
(
‖vΓ→Γ′‖L∞(Γ) , ‖vΓ′→Γ‖L∞(Γ′)

)
.

The corollary 43 even gives:

dH(Γ,Γ′) = ‖vΓ→Γ′‖L∞(Γ) = ‖vΓ′→Γ‖L∞(Γ′) .

But, as the curvature of all shapes S is bounded by a same constant number, so is the
second derivative of admissible fields vΓ→Γ′ , and as the area (or length) of shapes in S
in a neighborhood (for the Hausdorff distance) of any Γ is also bounded, the L2 norm of
admissible fields is equivalent to their L∞ norm (same considerations as in the comparison
of the three topologies on S)!

Thus, all the introduced definitions of the derivative of a path with respect to its
parameter are the same. The problem of the uniqueness of the derivative can then be
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solved. If v and v′ are two fields satisfying equation 5.3, then on one side
∥∥εv − εv′

∥∥
L∞

=
O
(
dH
(
Γ(t) + εv,Γ(t) + εv′

))
and on the other side the triangular inequality gives

dH
(
Γ(t) + εv,Γ(t) + εv′

)
6 dH

(
Γ(t) + εv,Γ(t+ ε)

)
+ dH

(
Γ(t) + εv′,Γ(t+ ε)

)
6 o(ε)

so that ε ‖v − v′‖L∞ = o(ε), which implies v = v′.
The derivative of a path Γ(t) with respect to t is consequently well defined and so is the

gradient descent (5.2). We do not address here the question of the existence of solutions to
this equation.

5.1.3 A word on transports

Another interesting notion in usual (finite-dimensioned) differential geometry is the one
of being Riemannian. This notion expresses the continuity of the inner product and its
derivatives with respect to the point of the manifold. The investigation of the continuity of
L2(Γ) or its derivatives with respect to Γ supposes a mean to “transport” any deformation
field defined on Γ onto any close shape. One possibility would be to define a local transport
by associating to any deformation field w on Γ the field w ◦ v−1

Γ→Γ′ defined on Γ′. However
the transported field w ◦v−1

Γ→Γ′ is supposed to be normal to the shape Γ′, so a choice should
be made to suitably adapt w ◦ v−1

Γ→Γ′(x) so that it becomes a vector which is collinear
to n(x) = nΓ′(x), for example

[
w ◦ v−1

Γ→Γ′(x) · n(x)
]
n(x), or

[
(w · nΓ)(v−1

Γ→Γ′(x))
]
n(x), or

even
‖w ◦ v−1

Γ→Γ′(x)‖
2

w ◦ v−1
Γ→Γ′(x) · n(x)

n(x).

1 - Projection 2 - Constant norm 3 - Component
preservation

Figure 5.1: Illustration of some possible transports

Each of these choices can be justified and leads to qualitatively different transports.
The second one keeps constant the norm of the normal deformation, whereas the first one
projects the vector w(v−1

Γ→Γ′(x)) onto the new normal n(x). The third one keeps constant
the component of the deformation in the direction of the initial field. The choice of the “local
transport” is important in practice at the computational level, for example when following
a “constant” direction in order to build a geodesic (for the L2 structure) since it defines
the notion of being “constant”. By the way, note that the choice of transport may also act
on the meaning of the second derivative with respect to the time t and consequently on
the expression of the PDE which rules geodesics. Indeed, the notion of the continuity and
derivatives of a field of deformation fields defined on S with respect to the shape, the notion
of transport of a deformation field and the notion of variation of the inner product L2(Γ)
with respect to Γ are strongly linked. The associated key-word in differential geometry
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is (Levi-Civita) connection. Happily, the three local transports described above become
arbitrarily close when the distance between the shapes tends to zero: given an admissible
field v1 and any field v2 defined on Γ, and a small ε, the results of the different transports of
v2 on Γ+εv1 from a point x ∈ Γ are all normal to the new shape and their respective length
are v2(x) and v2(x)

√
1± ε2‖dxv1(x)‖2 ' v2(x)(1±2ε2‖dxv1(x)‖2). The order 2 in ε of the

difference between them is important. The first consequence is that the derivative of a field
of deformation fields over S at shape Γ in the direction v1 can be defined and this derivative
does not depend on the choice among the three local transports. The second consequence is
that the transport of any field over any (smooth enough) path can be defined and that it is
also independent from the choice of the local transport. Indeed, given two fixed shapes Γ,Γ′

and a path between them, any discretization of the path into a finite sequence of enough close
shapes Γn leads to a way to associate to any field defined on Γ a new field on Γ′ by successively
“locally transporting” the field from Γn to Γn+1. Then the resulting field on Γ′ depends less
and less on the choice of the “local transport” when the discretization gets finer. We can
conjecture that if the path is smooth enough (i.e. if its second derivative is bounded) then
the resulting field converges when the discretization gets finer, and this defines the transport
of the field over the given path. A third remark concerns the non-conservation of the L2

metric. Indeed, if two points on a shape are tracked when its undergoes a deformation, the
arclength between them changes, but this time the order of the variation is not 2 but 1, so
that the inner product between two fields v1,v2 defined on Γ and transported on Γ + v3

(with v3 small enough) changes also and is '
∫

Γ
(v1 ·v2) dΓ+

∫
Γ
(v1 ·v2)(v3 ·n)κ dΓ. If this

phenomenon is not desirable, then it is sufficient to change the local transport and multiply
the previous one by (1 − vΓ→Γ′ · κn/2), so that the L2 energy

∫
v2dΓ is conserved when

a field v is transported on any shape near Γ. Of course such a choice would modify the
meaning of the derivative of a field of deformation fields.

5.1.4 A word on geodesics

Coming back to the gradient descent framework 5.2 that we would like to apply in order
to warp any shape onto any other one, natural candidates for the Energy function E to
be minimized are the distances defined in section 1.2.2. The problem we are faced with is
that none of these distances are Gâteaux differentiable. This is why in the previous part a
chapter was devoted to the definition of smooth approximations of some of them.

When E is a distance between shapes, it could be interesting to know whether the
evolution path obtained by the gradient descent is a geodesic or not. A geodesic between
two shapes Γ0 and Γ1 is here defined as being a path Γ(t) with fixed extremities Γ(0) = Γ0

and Γ(1) = Γ1 that is a local minimum of
∫ 1
0 ‖Γt(t)‖N dt for a chosen norm ‖ · ‖N . The

global infimum of this quantity over such paths is called the geodesic distance between Γ0

and Γ1:

dGN (Γ0,Γ1) = inf
Γ, Γ(0)=Γ0,Γ(1)=Γ1

∫ 1

0
‖Γt(t)‖N dt.

In mathematical morphology a different notion of geodesics is used. For instance in [101]
Serra considers geodesics in a metric space, which are defined as parametrized paths Γ such
that:

∀t, d
(
Γ(0),Γ(t)

)
+ d
(
Γ(t),Γ(1)

)
= d
(
Γ(0),Γ(1)

)
.

Such geodesics will here be referred as geometric geodesics whereas the previously introduced
ones will be refereed as path-based geodesics.
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Proposition 51. Any path-based geodesic is a geometric geodesic.

Proof. If Γ(·) is a path-based geodesic for the norm N between Γ0 and Γ1, then:

dGN (Γ0,Γ1) =
∫ 1

0
‖Γt(t)‖N dt

=
∫ u

0
‖Γt(t)‖N dt+

∫ 1

u
‖Γt(t)‖N dt

=
∫ 1

0

∥∥∥∥1
u

Γt′(ut′)
∥∥∥∥
N

u dt′ +
∫ 1

0

∥∥∥∥ 1
1− u

Γt′((1− u)t′ + u)
∥∥∥∥
N

(1− u)dt′

=
∫ 1

0

∥∥Γ0→u
t′ (t′)

∥∥
N
dt′ +

∫ 1

0

∥∥Γu→1
t′ (t′)

∥∥
N
dt′

> dGN
(
Γ(0),Γ(u)

)
+ dGN

(
Γ(u),Γ(1)

)
for any u. The triangular inequality upgrades this inequality into an equality.

The reciprocal proposition is not true. For example, for N = L∞, consider two quadri-
laterals that share two whole sides: only one corner differs, and moving this corner from
one location to the other builds a path of quadrilaterals which is a dGL∞ geodesic for the two
meanings of “geodesic”. But when the geodesic evolution is stopped at middle path between
the two quadrilaterals, there exist deformations that keep constant the distance to the two
quadrilaterals, for instance the one consisting in moving a little the opposite corner and
then moving it back to its usual position. These deformations have a non-zero L∞ cost and
adding them to the path increases the integral expression (so that the new path is not a
path-based geodesic) but as the distance to the two extremities is kept constant, the new
path is still a geometric geodesic.

If a distance is L2 differentiable, that is to say if there exists a gradient for the canonical
L2(Γ) inner product defined on any shape, then the gradient descent method 5.2 can be
applied in order to build a path between two shapes. The question is: is this path a
geodesic, at least in the geometrical sense ? And the answer is no in general. Indeed the
gradient which is computed is related to a particular inner product (generally L2) which is
itself in general not related to the norm N from which the minimized distance d = dGN is
built. More precisely, when walking one step forward in the direction of the opposite of the
gradient, the distance to the target shape decreases, and the distance to the previous shape
(infinitesimally close) increases, but this distance variations have no reason to be equal one
to the other. Indeed the first one is GΓ

(
d(Γ,Γ1), εΓt(t)

)
= 〈∇Γd(Γ,Γ1) |ε∇Γd(Γ,Γ1)〉L2 =

ε ‖∇Γd(Γ,Γ1)‖2
L2 whereas the second one is ‖εΓt(t)‖N = ε ‖∇Γd(Γ,Γ1)‖N . If N and L2 are

not obviously related, then, in the case where the geodesic to the target Γ1 is unique and
the corresponding direction is β, it may happen that the L2 norm of this direction ‖β‖L2

is really high so that the gradient will prefer another direction with a smaller L2 norm. To
make things more explicit, imagine that N is the norm of the Sobolev space H1. Then the
direction β is constrained to be smooth enough, but ∇Γd(Γ,Γ1) is not and can have a very
high H1 norm, so it may be a typical irregular deformation from L2 if such a deformation
is shown to decrease d(Γ,Γ1) faster than β (seen as a function in L2). It will be the best L2

deformation such that once applied to Γ, the resulting shape is as close as possible to the
target for dGH1 , but without considering that this deformation could add an heavy H1 cost
between Γ and the resulting shape. A possible solution to this problem would be to change
the inner product so that it is related to N . However, if the norm N does not come from
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an inner product, this is not possible. Note that the extension of the notion of gradient
in chapter 8 could be applied to any norm N to solve this particular point. Besides, all
distances are not path-based and such considerations happens to be not always possible.
Such a direct minimization of a distance by a gradient descent is indeed interesting mainly
when the distance admits an explicit expression, which allows a fast computation of the
gradient without any path-based considerations.

Let us briefly study the case where a given distance is differentiable and such that all
minimizing paths by gradient descents (5.2) for a particular inner product P are geodesics
(if such a distance exists). A consequence of proposition 51 is that, for any such path:

(5.4) GΓ′

(
d(Γ(0),Γ′) + d(Γ′,Γ(1)), Γt(t)

)∣∣∣
Γ′=Γ(t)

= 0.

If a stands for ∇Γ′d(Γ(0),Γ′)|Γ′=Γ(t) and b for ∇Γ′d(Γ′,Γ(1))|Γ′=Γ(t), which is equal to
Γt(t), then it writes: 〈a+ b |−b〉P (Γ(t)) = 0. Moreover, a new geodesic between Γ(0) and
Γ(1) can be defined by following the path Γ between from Γ(1) to Γ(t) and then by follow-
ing another gradient descent from Γ(t) to the target Γ(0), which allows to state also that
〈a+ b |−a〉P (Γ(t)) = 0. A sum of these equalities leads to a = −b, which means that, at any
time t, the directions from Γ(t) to the extremities Γ(0) and Γ(1) are exactly opposite. Conse-
quently, given any two shapes, the path obtained by gradient descent from one shape to the
other one is the same as the gradient descent path starting from the second shape and going
to the first shape. Of course the hypothesis that the distance is differentiable everywhere is
very important in this result. In the case of a gradient descent based on the approximation
of the Hausdorff distance, this is not true at all. However, when the approximation tends to
the Hausdorff distance, the property 5.4 becomes true for both directions. The explanation
is that the Hausdorff distance admits directional derivatives (so 5.4 is satisfied), but the
function that associates to any direction the corresponding directional derivative is not even
linear, so that the gradient can not be defined and the conclusion a = −b does not hold
anymore.

5.1.5 From the theoretical framework to the practice

In the particular case that is studied here, namely a L2 gradient descent for a family of
differentiable approximations of the Hausdorff distance, things might be not so bad. I believe
that the resulting minimizing path tends towards a geodesic for the Hausdorff distance when
the approximation becomes nearer and nearer from the distance, if the constraint that the
path should belong to S is relaxed. This is however not an easy thing to prove. In fact
I believe that in most cases the evolution path obtained by gradient descent of any of
these approximations of the Hausdorff distance is very close to a geodesic for the Hausdorff
distance. A suggestion for proof would be to check how far the gradient of the approximation
is from being a L∞ gradient in the sense of equation 8.2 in chapter 8. Note that there are
continuous infinities of geodesics between any two shapes for the Hausdorff distance (which
helps a lot).

In practice, the constraint that any shape should belong to S has not been implemented.
Consequently a gradient descent might go through shapes not in S, which happens neces-
sarily if boundaries merge to vanish or if a topological change occurs. At those particular
moments, the equivalence between the three topologies studied in chapter 1 is lost, but the
gradient descent framework still stands because the approximation of the Hausdorff distance
is smooth enough and its expression does not change during topological changes, which is
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of great practical interest. In fact, the implementation of the constraint that shapes should
remain in S is not really desirable since it would act only when the gradient descent hits
a shape on the boundary of S and would not modify the path before that. It might even
happen that evolution gets thus stuck into a local minimum. If the constraint is really im-
portant then the distance to minimize should be changed so that a gradient descent would
(more) naturally remain in S, because the Hausdorff distance does not naturally deal with
such considerations.

A few reasonable conjectures about the larger set of shapes without the Federer and
smoothness constraints are that any L2 geodesic is a Lp geodesic for any finite value of p
and reciprocally; that any L2 geodesic is also a L∞ geodesic (but not reciprocally), that dH =
dGL∞ , and that the evolution path obtained by the gradient descent of the approximation of
the Hausdorff distance converges towards a L∞ geodesic when the approximation converges
towards the Hausdorff distance, that is to say when the parameters of the approximation
tend to the infinite. On the opposite, it seems that the L2 gradient descent evolution path is
far from being a L2 geodesic. By the way, Michor and Mumford showed in [80] that dGL2 = 0
between any two shapes. The maximum curvature hypothesis in S prevents S from this
pathological behavior. However another consequence of the smoothness constraints in S is
that the assumption dH = dGL∞ is not true anymore. See for example figure 5.2.

2dH(A,B)

dH(∂A, ∂B)
dGL∞

(> 2h0)

Figure 5.2: In the set of shapes S, the L∞ path-based geodesics do not coincide anymore
with the Hausdorff distance (between full shapes or boundaries) because of the constraint
reach(Ω) > h0.

5.1.6 Computing the gradient of the approximation to the Hausdorff dis-
tance

We now proceed with showing that the approximation ρ̃H(Γ, Γ0) of the Hausdorff distance
ρH(Γ, Γ0) is differentiable with respect to Γ and compute its gradient ∇ ρ̃H(Γ, Γ0), in the
sense of section 5.1. To simplify notations we rewrite (2.8) as

(5.5) ρ̃H(Γ, Γ0) =
〈〈

〈d(·, ·)〉ϕΓ0

〉ψ
Γ
,
〈
〈d(·, ·)〉ϕΓ

〉ψ
Γ0

〉θ
,

and state the result, the reader interested in the proof being referred to the appendix 5.3.1.
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Proposition 52. The gradient of ρ̃H(Γ, Γ0) at any point y of Γ is given by

(5.6) ∇ρ̃H(Γ, Γ0)(y) =
1

θ′(ρ̃H(Γ, Γ0))
(α(y)κ(y) + β(y)) ,

where κ(y) is the curvature of Γ at y, the functions α(y) and β(y) are given by

(5.7) α(y) = ν

∫
Γ0

ψ′

ϕ′
(
〈d(x, ·)〉ϕΓ

) [
ϕ ◦ 〈d(x, ·)〉ϕΓ − ϕ ◦ d(x, y)

]
dΓ0(x)

+ |Γ0|η
[
ψ

(〈
〈d(·, ·)〉ϕΓ0

〉ψ
Γ

)
− ψ

(
〈d(·, y)〉ϕΓ0

) ]
,

(5.8) β(y) =
∫

Γ0

ϕ′ ◦d(x, y)
[
ν
ψ′

ϕ′
(
〈d(x, ·)〉ϕΓ

)
+ η

ψ′

ϕ′

(
〈d(·, y)〉ϕΓ0

)] y − x

d(x, y)
·n(y) dΓ0(x),

where ν =
1

|Γ| |Γ0|
θ′

ψ′

(〈
〈d(·, ·)〉ϕΓ

〉ψ
Γ0

)
and η =

1
|Γ| |Γ0|

θ′

ψ′

(〈
〈d(·, ·)〉ϕΓ0

〉ψ
Γ

)
.

Note that the function β(y) is well-defined even if y belongs to Γ0 since the term y−x
d(x,y)

is of unit norm.
The first two terms of the gradient show explicitly that minimizing the energy implies

homogenizing the distance to Γ0 along the curve Γ, that is to say the algorithm will take
care in priority of the points of Γ which are the furthest from Γ0.

Also note that the expression of the gradient in proposition 52 still stands when Γ and
Γ0 are two surfaces (embedded in R3), if κ stands for the mean curvature.

5.1.7 Computation of the gradient of the approximation to the W 1,2 norm

The gradient ∇ρ̃D(Γ, Γ0), of our approximation ρ̃D(Γ, Γ0) of the distance ρD(Γ, Γ0) given
by (2.14) in the sense of section 5.1 can be computed. The interested reader is referred to
appendix 5.3.2. We simply state the result in the

Proposition 53. The gradient of ρ̃D(Γ, Γ0) at any point y of Γ is given by

(5.9) ∇ρ̃D(Γ, Γ0)(y) =∫
D

[
B(x, y)

(
C1(x)−

ϕ”

ϕ′
(d̃Γ(x))

(
C2(x) · ∇d̃Γ(x)

))
+ C2(x) · ∇B(x, y)

]
dx,

where
B(x, y) = κ(y) (〈ϕ ◦ d(x, ·)〉Γ − ϕ ◦ d(x, y)) + ϕ′(d(x, y))

y − x

d(x, y)
· n(y),

κ(y) is the curvature of Γ at y,

C1(x) =
1

|Γ| ϕ′(d̃Γ(x))
‖d̃Γ − d̃Γ0‖−1

L2(D)

(
d̃Γ(x)− d̃Γ0)(x)

)
,

and
C2(x) =

1
|Γ| ϕ′(d̃Γ(x))

‖∇(d̃Γ − d̃Γ0)‖−1
L2(D)

∇(d̃Γ − d̃Γ0)(x),
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5.1.8 Direct minimization of the W 1,2 norm

An alternative to the method presented in the previous section is to evolve not the curve Γ
but its distance function dΓ. Minimizing ρD(Γ, Γ0) with respect to dΓ implies computing
the corresponding Euler-Lagrange equation EL. The reader will verify that the result is

(5.10) EL =
dΓ − dΓ0

‖dΓ − dΓ0‖L2(D)
− div

(
∇ (dΓ − dΓ0)

‖∇(dΓ − dΓ0)‖L2(D))

)
To simplify notations we now use d instead of dΓ. The problem of warping Γ1 onto Γ0 is
then transformed into the problem of solving the following PDE

dt = −EL
d(0, ·) = dΓ1(·).

The problem that this PDE does not preserve the fact that d is a distance function is
alleviated by "reprojecting" at each iteration the current function d onto the set of distance
functions by running a few iterations of the "standard" restoration PDE [108]

dt = (1− |∇d|)sign(d)
d(0, ·) = d0

5.2 Application to curve evolutions: Hausdorff warping

In this section we show a number of examples of solving equation (5.2) with the gradient
given by equation (5.6).

5.2.1 Applying the theory

In practice, the Energy that we minimize is not ρ̃H but in fact a "regularized" version
obtained by combining ρ̃H with a term EL which depends upon the lengths of the two
curves. A natural candidate for EL is max(|Γ|, |Γ′|) since it acts only if |Γ| becomes larger
than |Γ′|, thereby avoiding undesirable oscillations. To obtain smoothness, we approximate
the max with a Ψ-average:

(5.11) EL(|Γ|, |Γ′|) =
〈
|Γ|, |Γ′|

〉Ψ
We know that the function Γ → |Γ| is in general l.s.c.. It is in fact continuous on S (see the
proof of proposition 23) and takes its values in the interval [0, 2c0], hence

Proposition 54. The function S → R+ given by Γ → EL(Γ, Γ′) is continuous for the
Hausdorff topology.

Proof. It is clear since EL is a combination of continuous functions.

We combine EL with ρ̃H the expected way, i.e. by computing their Ψ̃ average so that
the final energy is

(5.12) E(Γ, Γ′) =
〈
ρ̃H(Γ, Γ′), EL(|Γ|, |Γ′|)

〉Ψ̃
The function E : S×S → R+ is continuous for the Hausdorff metric because of propositions
23 and 54 and therefore
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Proposition 55. The function Γ → E(Γ, Γ′) defined on the set of shapes S has at least a
minimum in the closure S of S in L0.

Proof. This is a direct application of proposition 22 applied to the function E.

We call the resulting warping technique the Hausdorff warping. A first example, the
Hausdorff warping of two circles, is shown in figure 5.3. A second example, the Hausdorff
warping of two hand silhouettes, is shown in figure 5.4

Figure 5.3: The result of the Hausdorff warping of two circles. The two circles are represented
in continuous line while the intermediate shapes are represented in dotted lines.

We have borrowed the example in figure 5.5 from the database (www.ee.surrey.ac.uk/Research/
VSSP/imagedb/demo.html) of fish silhouettes collected by the researchers of the University of
Surrey at the center for Vision, Speech and Signal Processing (www.ee.surrey.ac.uk/Research/VSSP).
This database contains 1100 silhouettes. A few steps of the result of the Hausdorff warping
of one of these silhouettes onto another are shown in figure 5.5. Another similar example is
shown in figure 5.6. Note that, prior to warping, the two shapes have been normalized in
such a way as to align their centers of gravity and their principal axes.

Figures 5.7 and 5.8 give a better understanding of the behavior of Hausdorff warping. A
slightly displaced detail “warps back” to its original place (figure 5.7). Displaced further, the
same detail is considered as another one and disappears during the warping process while
the original one reappears (figure 5.8).

Finally, figures 5.9 and 5.11 show the Hausdorff warping between two open curves and
between two closed surfaces, respectively. Figure 5.11 and the whole 3D framework has been
computed by Pierre Maurel.

Note also that other warpings are given by the minimization of other approximations of
the Hausdorff distance. Figure 5.10 shows the warping of a rough curve to the silhouette
of a fish and bubbles given by the minimization of the W 1,2 norm as explained in section
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Figure 5.4: The result of the Hausdorff warping of two hand silhouettes. The two hands are
represented in continuous line while the intermediate shapes are represented in dotted lines.

Figure 5.5: Hausdorff warping of a fish onto another.
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Figure 5.6: Another example of fish Hausdorff warping.

5.1.8. Our “level sets” implementation (see section 5.2.2) can deal with the splitting of the
source curve while warping onto the target one.

Figure 5.7: Hausdorff warping boxes (i). A translation-like behavior.

Heuristically a Hausdorff warping never gets stuck into a local minimum and always
converges towards its target. However it happens that the evolving path is sometimes not
satisfying, especially when warping a straight line onto large oscillations (see figure 5.12).
Happily, for relatively close shapes, this phenomenon does not appear. The question of
setting priors on the paths to avoid this kind of evolution is the subject of several following
chapters.

5.2.2 Some remarks about our implementation

There are several choices for the definition of ρ̃H and the implementation of the motion of
a curve Γ under a velocity field v: Γt = v. When Γ is composed of one or more closed
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Figure 5.8: Hausdorff warping boxes (ii). A different behavior: a detail disappears while
another one appears.

Figure 5.9: Hausdorff warping an open curve to another one.

Figure 5.10: Splitting while warping.
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Figure 5.11: Hausdorff warping a closed surface to another one.

Figure 5.12: Example of an evolution, from a rectangle to a hand, which converges to the
target but whose path is not very satisfying. A snapshot of the evolving shape just before
convergence is shown on the right part.
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connected components, we use the level set method introduced by Osher an Sethian in 1987
[86, 103, 85].

The approximation of the Hausdorff distance

We need to decide on the parameters appearing in the definition (2.8) of ρ̃H , i.e. the values
of α, β and γ, and on the function ϕ. γ controls how well we approximate the max operator
that occurs in the definition of the Hausdorff distance (1.4). In our implementation we have
used the value of 2. The parameters α and β control the accuracy with which we approximate
the sup and inf operators that appear in equation (1.4). The higher they are are, the better
the approximation, but the better the approximation, the higher the numerical difficulties
due to the "stiffness" of the function which is of course due the non-differentiability of the
Hausdorff distance. As explained in section 2.2.1, the values of α and β, together with the
function ϕ, can be ultimately related to the coarseness with which one analyzes the values
of the distance function of one curve at points on the other curve, see figures 2.3 and 2.4. In
our implementation we use the values α = β = 4 which we found to be a good compromise
between the amount of smoothness of ρ̃H and the quality of the approximation of ρH . The
function ϕ is equal to ϕ1 given by equation (2.7).

Closed curves: the level set method

The key idea of the level set method is to represent the curve Γ(t) implicitly, i.e. as the zero
level of some function u(x, t) defined for x ∈ D. Usually, u if negative inside Γ and positive
outside. It can be easily proved that, if u evolves according to

∂u(x, y)
∂t

+ v∇u = 0

then, its zero level {x|Γ(x, t) = 0} evolves according to the required equation Γt = v. Here,
v is the desired velocity on Γ and is arbitrary elsewhere (see below).

Often, only the normal velocity field βn is important. As n = ∇u/|∇u|, the evolution
of u becomes:

∂u(x, y)
∂t

+ β|∇u| = 0

The advantages of the level set method are well known: stability, accuracy, convergence
to the correct solution, easy extension to higher dimensions, correct handling of topological
changes such as breaking and merging.

An important issue is that β is only defined on curve Γ in the partial differential equation
Γt = βn. In many cases, β has a natural extension everywhere in domainD, so that equation
ut+β|∇u| = 0 is defined. For instance, when β(x) is the curvature of Γ at point x ∈ Γ, one
could choose, at each point x ∈ D, β(x) equal to the curvature of the level set of u going
through x. In some other cases, like ours, β can only be computed on Γ and some extension
procedure has to be used to get β everywhere in D. This is now classical [95, 1, 52].

It should be noted that the zero level set of function u(., t) is only extracted to visualize
Γ(t), usually with the Marching Cubes algorithm [75] which interpolates its position and
gives a nice polygonal approximation of it (a triangulated mesh in 3D). For obvious speed
and accuracy reasons, it is important not to rely on this approximation to compute the
velocity β. Useful quantities can generally be computed directly from u. So it is for the
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normal and the curvature:

n = ∇u/|∇u|
κ = −∇ · (∇u/|∇u|)

and for the integral of some quantity f(x) over Γ:∫
Γ
f(x)dΓ(x) =

∫
D
f(x)δ(u(x))|∇u|dx

where δ(.) is a one dimensional Dirac function. Our β also involves the distance function
to the curve Γ which has to be known without extracting the zero level set of function u.
Usually, one takes the signed distance to the initial curve Γ(0) as an initial value of u. Thus,
u(., 0) can be used to compute β at time t = 0. Yet, u(., t) has no reason to remain the
distance to Γ(t)... except in some implementations where β is extended in such a way that
the distance function is preserved during the evolution of u (see [52]): this is exactly what
we need. And what we use!

Figure 5.13: Graphic representation of the signed distance to a curve

As a conclusion, in the case of closed curves, the Hausdorff warping (section 5.2) and
the shape statistics (chapter 9) are implemented with a Level Set Method with: (i) velocity
extension, (ii) distance function preserving, and (iii) no need to extract the zero level set
(except for visualization).

The minimization of the W 1,2 norm (section 5.1.8 and figure 5.10) is also implemented
with the Level Set Method. As already mentioned, the reprojection on the set of distance
functions is a “standard” Level Set technique [108].

Open curves

For open curves (figure 5.9), the level set method cannot be used. A straight Lagrangian
approach and polygonal approximations of the curves were used as a first step toward more
refined methods like the ones described in [8].

5.2.3 Comparison with other approaches

It is interesting to recall the fact that our approach can be seen as the opposite of that
consisting in first building a Riemannian structure on the set of shapes, i.e. going from an
infinitesimal metric structure to a global one. The infinitesimal structure is defined by an
inner product in the tangent space (the set of normal deformation fields) and has to vary
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continuously from point to point, i.e. from shape to shape. As mentioned before, this is
mostly dealt with in the work of Miller, Trouvé and Younes [81, 112, 120]. The problem
with these approaches, beside that of having to deal with parameterizations of the shapes,
is that there exist global metric structures on the set of shapes (see section 1.2.2) which are
useful and relevant to the problem of the comparison of shapes but that do not arise from
an infinitesimal structure.

Our approach can be seen as taking the problem from exactly the opposite viewpoint
from the previous one: we start with a global metric on the set of shapes (ρH or the
W 1,2 metric) and build smooth functions (in effect smooth approximations of these metrics)
that we use as dissimilarity measures or energy functions and minimize using techniques of
the calculus of variation by computing their gradient and performing infinitesimal gradient
descent. We have seen that in order to compute the gradients we need to define an inner-
product of normal deformation flows and the choice of this inner-product may influence the
way our algorithms evolve from one shape to another. This last point is related to, but
different from, the choice of the Riemannian metric in the first approach. Its investigation
is the topic of a next chapter.

5.3 Computations

5.3.1 Computation of ∇ ρ̃H(Γ, Γ0)

We prove proposition 52.

Proof. We make a few definitions to simplify notations:

mϕ,ψ
Γ0,Γ

=
〈
〈d(·, ·)〉ϕΓ0

〉ψ
Γ

mϕ,ψ
Γ,Γ0

=
〈
〈d(·, ·)〉ϕΓ

〉ψ
Γ0

We also define the corresponding functions

mϕ
Γ(x) = 〈d(x, ·)〉ϕΓ

mϕ
Γ0

(x) = 〈d(x, ·)〉ϕΓ0
.

We then proceed with

G(ρ̃H(Γ, Γ0),β) =
1

2θ′(ρ̃H(Γ, Γ0))

[
θ′
(
mϕ,ψ

Γ0,Γ

)
G
(
mϕ,ψ

Γ0,Γ
,β
)
+θ′

(
mϕ,ψ

Γ,Γ0

)
G
(
mϕ,ψ

Γ,Γ0
,β
)]

,

because of (2.3).

Computation of the first term G
(
mϕ,ψ

Γ0,Γ
, β
)

We apply the chain rule and (2.2) to obtain

G
(
mϕ,ψ

Γ0,Γ
,β
)

=
1

ψ′
(
mϕ,ψ

Γ0,Γ

)[ 1
|Γ|

G
(∫

Γ
ψ
(
〈d(·, ·)〉ϕΓ0

)
,β

)
+

(∫
Γ
ψ
(
〈d(·, ·)〉ϕΓ0

))
G
(

1
|Γ|
,β

)]
.
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We now compute G
(

1
|Γ| ,β

)
:

G
(

1
|Γ|
,β

)
= − 1

|Γ|2
G (|Γ|,β)

= − 1
|Γ|2

G
(∫ 1

0
|Γ′(p)|dp,β

)
= − 1

|Γ|2

∫ 1

0

Γ′(p)
|Γ′(p)|

· β′(p) dp

=
1
|Γ|2

∫ 1

0
κ(p)n(p) · β(p) |Γ′(p)|dp.

The last line is obtained by integrating by parts and using the hypothesis that β is
parallel to n. κ(p) is the curvature of Γ at the point Γ(p). This yields

(5.13)
(∫

Γ
ψ
(
〈d(·, ·)〉ϕΓ0

))
G
(

1
|Γ|
,β

)
=

1
|Γ|
ψ(mϕ,ψ

Γ0,Γ
)
∫

Γ
κ(y)n(y) · β(y) dΓ(y)

We continue with

G
(∫

Γ
ψ
(
〈d(·, ·)〉ϕΓ0

)
,β

)
= G

(∫ 1

0
ψ
(
〈d(Γ(p), ·)〉ϕΓ0

)
|Γ′(p)|dp,β

)
=∫ 1

0

ψ′

ϕ′

(
〈d(Γ(p), ·)〉ϕΓ0

) 1
|Γ0|

lim
τ→0

∫
Γ0

(ϕ(d(Γ(p) + τβ(p), ·)− ϕ(d(Γ(p), ·)))
τ

|Γ′(p)|dp+∫ 1

0
ψ
(
〈d(Γ(p), ·)〉ϕΓ0

)
lim
τ→0

|Γ′(p) + τβ′(p)| − |Γ′(p)|
τ

dp.

The last term is equal to (using the hypothesis that β(p) is parallel to n(p) for all p’s):

−
∫ 1

0
ψ
(
〈d(Γ(p), ·)〉ϕΓ0

)
κ(p)n(p) · β(p) |Γ′(p)|dp.

The first term can be written:∫ 1

0

ψ′

ϕ′

(
〈d(Γ(p), ·)〉ϕΓ0

) 1
|Γ0|

(∫
Γ0

ϕ′(d(Γ(p), x))
Γ(p)− x

d(Γ(p), x)
· β(p) dΓ0(x)

)
|Γ′(p)|dp

Combining them we obtain

(5.14)
∫

Γ

(
ψ′

ϕ′

(
mϕ

Γ0
(y)
)
〈ϕ′(d(y, ·)) y − ·

d(y, ·)
〉Γ0 − ψ

(
mϕ

Γ0
(y)
)
κ(y)n(y)

)
·β(y) dΓ(y)

We finally combine (5.13) and (5.14)

(5.15) G
(
mϕ,ψ

Γ0,Γ
,β
)

=
1

ψ′
(
mϕ,ψ

Γ0,Γ

)
|Γ|

∫
Γ

(
ψ′

ϕ′

(
mϕ

Γ0
(y)
)〈

ϕ′(d(y, ·)) y − ·
d(y, ·)

〉
Γ0

+

(
ψ
(
mϕ,ψ

Γ0,Γ

)
− ψ

(
mϕ

Γ0
(y)
))

κ(y)n(y)

)
· β(y) dΓ(y)
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Computation of the second term G
(
mϕ,ψ

Γ,Γ0
,β
)

Because of (2.2) we can write

G
(
mϕ,ψ

Γ,Γ0
,β
)

=
1

ψ′
(
mϕ,ψ

Γ,Γ0

) 1
|Γ0|

×
∫

Γ0

ψ′

ϕ′
(
〈d(x, ·)〉ϕΓ

)
G
(

1
|Γ|

∫ 1

0
ϕ (d(x,Γ(p))) |Γ′(p)|dp,β

)
dΓ0(x).

Using the chain rule

G
(

1
|Γ|

∫ 1

0
ϕ (d(x,Γ(p))) |Γ′(p)|dp,β

)
=
(∫

Γ
ϕ ◦ d(x, ·)

)
1
|Γ|2

∫ 1

0
κ(p)n(p)·β(p) |Γ′(p)|dp+

1
|Γ|

∫ 1

0
ϕ′(d(Γ(p), x))

Γ(p)− x

d(Γ(p), x)
· β(p) |Γ′(p)|dp+

1
|Γ|

∫ 1

0
ϕ (d(x,Γ(p)))

Γ′(p)
|Γ′(p)|

· β′(p)dp .

Under the same hypothesis for β, the last term is equal to:

− 1
|Γ|

∫ 1

0
ϕ (d(Γ(p), x)) κ(p)n(p) · β(p) |Γ′(p)|dp

The expression of G(ρ̃H(Γ, Γ0),β) is obtained by reordering these terms. This yields

G(ρ̃H(Γ, Γ0),β) =

1
2θ′(ρ̃H(Γ, Γ0))

∫
Γ

[[
νκ(p)

∫
Γ0

ψ′

ϕ′
(
〈d(x, ·)〉ϕΓ

) [
ϕ ◦ 〈d(x, ·)〉ϕΓ − ϕ ◦ d(x, y)

]
dΓ0(x)

+ |Γ0|ηκ(p)
[
ψ

(〈
〈d(·, ·)〉ϕΓ0

〉ψ
Γ

)
− ψ

(
〈d(·, y)〉ϕΓ0

) ]]
n(p)

+
∫

Γ0

ϕ′ ◦ d(x, y)
d(x, y)

[
ν
ψ′

ϕ′
(
〈d(x, ·)〉ϕΓ

)
+ η

ψ′

ϕ′

(
〈d(·, y)〉ϕΓ0

)]
(y − x) dΓ0(x)

]
· β(p)dΓ(y)

where ν =
1

|Γ| |Γ0|
θ′

ψ′

(〈
〈d(·, ·)〉ϕΓ

〉ψ
Γ0

)
and η =

1
|Γ| |Γ0|

θ′

ψ′

(〈
〈d(·, ·)〉ϕΓ0

〉ψ
Γ

)
.

The gradient ∇ ρ̃H(Γ, Γ0) is obtained by identifying the previous expression as an inner
product of normal deformation flows

∫
Γ∇ ρ̃H(Γ, Γ0)(y)β(y) dΓ(y)

∇ ρ̃H(Γ, Γ0)(y) =

1
θ′(ρ̃H(Γ, Γ0))

[
νκ(p)

∫
Γ0

ψ′

ϕ′
(
〈d(x, ·)〉ϕΓ

) [
ϕ ◦ 〈d(x, ·)〉ϕΓ − ϕ ◦ d(x, y)

]
dΓ0(x)

+ |Γ0|ηκ(p)
[
ψ

(〈
〈d(·, ·)〉ϕΓ0

〉ψ
Γ

)
− ψ

(
〈d(·, y)〉ϕΓ0

) ]
+
∫

Γ0

ϕ′ ◦ d(x, y)
d(x, y)

[
ν
ψ′

ϕ′
(
〈d(x, ·)〉ϕΓ

)
+ η

ψ′

ϕ′

(
〈d(·, y)〉ϕΓ0

)]
(y − x) · n(p) dΓ0(x)

]
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We should note that all these results hold independently of the fact that the curves are open
or closed since we only used in the integration by parts the fact that the field β was parallel
to the normal field n.

5.3.2 Computation of ∇ρ̃D(Γ, Γ0)

We prove proposition 53

Proof. From the definitions

G(ρ̃D(Γ, Γ0),β) = G(‖d̃Γ − d̃Γ0‖L2(D), β) + G(‖∇(d̃Γ − d̃Γ0‖L2(D), β),

and

G(‖d̃Γ − d̃Γ0‖L2(D), β) =
1

‖d̃Γ − d̃Γ0‖L2(D)

∫
D
|d̃Γ(x)− d̃Γ0(x)|G(d̃Γ(x), β) dx,

and

G(‖∇(d̃Γ − d̃Γ0)‖L2(D), β) =
1

‖∇(d̃Γ − d̃Γ0)‖L2(D))

∫
D
∇(d̃Γ(x)− d̃Γ0(x)) · ∇(G(d̃Γ(x), β)) dx.

We now compute G(d̃Γ(x), β) and its gradient. Starting with (2.6), we readily obtain

G(d̃Γ(x), β) =
1

|Γ| ϕ′(d̃Γ(x))

[(∫
Γ
κ(y)n(y) · β(y) dΓ(y)

)
〈ϕ ◦ d(x, ·)〉Γ+∫

Γ
ϕ′(d(x, y))

y − x

d(x, y)
· β(y) dΓ(y)−∫

Γ
ϕ(d(x, y))κ(y)n(y) · β(y) dΓ(y)

]
According to our initial hypothesis, β(y) = β(y)n(y). We define

B(x, y) = κ(y) (〈ϕ ◦ d(x, ·)〉Γ − ϕ ◦ d(x, y)) + ϕ′(d(x, y))
y − x

d(x, y)
· n(y),

so that

G(d̃Γ(x), β) =
1

|Γ| ϕ′(d̃Γ(x))

∫
Γ
B(x, y)β(y) dΓ(y).

Let us compute the gradient of this expression with respect to the x variable:

∇G(d̃Γ(x), β) =

− ϕ”(d̃Γ(x))
|Γ| ϕ′2(d̃Γ(x))

(∫
Γ
B(x, y)β(y) dΓ(y)

)
∇d̃Γ(x)+

1
|Γ| ϕ′(d̃Γ(x))

∫
Γ
∇B(x, y)β(y) dΓ(y)
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After some manipulation, we find that

∇B(x, y) =

κ(y)
(〈

ϕ′ ◦ d(x, ·) x− ·
d(x, ·)

〉
Γ

− ϕ′ ◦ d(x, y) x− y

d(x, y)

)
+
(
ϕ”(d(x, y))− ϕ′(d(x, y)

d(x, y)

)
n(y),

where we have used in particular the fact that

∇d̃Γ(x) =
1

ϕ′(d̃Γ(x))

〈
ϕ′ ◦ d(x, ·) x− ·

d(x, ·)

〉
Γ

.

We also define

C1(x) =
1

|Γ| ϕ′(d̃Γ(x))
‖d̃Γ − d̃Γ0‖−1

L2(D)

(
d̃Γ(x)− d̃Γ0)(x)

)
,

so that

(5.16) G(‖d̃Γ − d̃Γ0‖L2(D), β) =
∫
D

∫
Γ
B(x, y)C1(x)β(y) dΓ(y) dx =∫

Γ

(∫
D
B(x, y)C1(x) dx

)
β(y) dΓ(y).

We then define the vector quantity

C2(x) =
1

|Γ| ϕ′(d̃Γ(x))
‖∇(d̃Γ − d̃Γ0)‖−1

L2(D)
∇(d̃Γ − d̃Γ0)(x),

so that

(5.17) G(‖∇(d̃Γ − d̃Γ0)‖L2(D), β) =

−
∫
D

∫
Γ

ϕ”

ϕ′
(d̃Γ(x))

(
C2(x) · ∇d̃Γ(x)

)
B(x, y)β(y) dΓ(y) dx+∫

D

∫
Γ

(C2(x) · ∇B(x, y))β(y) dΓ(y) dx =∫
Γ

(∫
D

(
C2(x) · ∇B(x, y)− ϕ”

ϕ′
(d̃Γ(x)) (C2(x) · ∇d(x,Γ))B(x, y)

)
dx

)
β(y) dΓ(y)

Combining equations (5.16) and (5.17) we obtain the corresponding gradient ∇ρ̃D(Γ, Γ0):

∇ρ̃D(Γ, Γ0)(y) =∫
D

[
B(x, y)

(
C1(x)−

ϕ”

ϕ′
(d̃Γ(x))

(
C2(x) · ∇d̃Γ(x)

))
+ C2(x) · ∇B(x, y)

]
dx,

and this completes the proof.



Chapter 6

Intrinsic Differentiation

Abstract

This chapter is dedicated to preliminary remarks on how to compute the gradient of a shape.
For a given representation of a shape (often a finite set of parameters), what should one
take the derivative with respect to ? How should one use the computed gradient to let the
shape evolve ? The intuitive answers are sometimes misleading.

6.1 Differentiation with respect to parameters

In practice, an evolving shape S is often modeled as a polyhedron. The coordinates (pi)
of its vertices are easy, intuitive parameters to deal with. Shapes represented by splines
are also easily characterized by their spline parameters. Shapes defined as plots or zeros
of polynomials have for natural parameters the coefficient of these polynomials. One could
also consider, that, concerning the level-sets method, the shapes are embedded in a higher
dimension space and their “parameters” are the values of their distance function on a grid.
In a word, all practical representations of shapes are based on some kind of parameters
which are often confused with the shapes themselves. This should not be a problem since
giving the values of the parameters is equivalent to giving the shape.

However, when it comes to take the derivative of an energy E with respect to the shape
in a minimization framework, the temptation to differentiate with respect to the parameters
pi is very attractive. But one should be aware that this way of differentiating is absolutely
not a neutral choice or without consequences.

In order to set things clearly, let S be a shape, entirely characterized (possibly redun-
dantly) by n parameters (pi)16i6n. The energy to be minimized is a function of the shape S
which can be seen as a function of the parameters: E(S) = E(S((pi)i)) = E((pi)i). Three
notions of differentiation arise:

1. ∇L2E(S)

2. ∂piE(S((pj)j))

3. dpiE(S((pj)j)).

The meaning of the first one is that, for any infinitesimal deformation field δS on the
shape S, the variation of the energy is DE(S)(δS) = 〈∇L2E(S) |δS 〉L2 .
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The meaning of the second derivative, which is the partial derivative with respect to the
i-th argument of S and which should be noted ∂i to avoid confusion, is that a variation δa
of this argument increases the function by DE(S) (∂iS(p1, p2, ..., pi, ...) · δa).

The meaning of the third derivative, which is the total derivative with respect to param-
eter pi, is that the variation of the energy for a variation δpi of the parameter pi increases
the energy by DE(S)

(
dpiS((pj)j) · δpi

)
. The point is that, if there is a constraint, like

p1 + pi = 0, which has to be taken into account, then this derivative involves also ∂1.
More generally, when the parameters pi are “fake” parameters in the sense that they can
themselves be described as functions of other, subjacent, independent parameters (which
are possibly part of the mentioned pi), then the total derivative with respect to these “real”,
independent parameters should be carefully computed.

What are the links between those derivatives ? If the parameters are not independent,
the partial and total derivatives differs in that:

dpiS((pj)j) · δpi =
∑
j

∂jS(p1, p2, ..., pj , ...) · dpipj · δpi

For the next point, let us suppose that the parameters are independent, for the sake
of readability. The deformation field on S induced by a variation (δpi) of all parameters
simultaneously is

∑
i

dpiS · δpi. Consequently, the induced variation of the energy is:

DE(S)

(∑
i

dpiS · δpi

)
=
∑
i

DE(S) (dpiS · δpi)

which can be seen directly as a linear function of the parameter variation:

L : (δpi)i ∈ Rn 7→ L((δpi)i) =
∑
i

DE(S) (dpiS · δpi)

Until now, nothing really surprising. But now, let us consider the respectively associated
inner products. The intuitive gradient descent method would consist in considering the
variation of the parameters as a element of Rn, naturally embedded with the L2 inner
product. The Riesz theorem is then applied to the continuous linear form L from Rn to R
and gives an existing, unique vector L∗ of Rn such that, for any parameter variation (δpi)i:

〈L∗ |(δpi)i 〉L2(Rn) = DE((pj)j)((δpi)i).

It seems then very natural to choose (δpi)i = L∗, i.e. δpi = DE(S)(dpiS)∗. So now, if there
is a problem, where is it ? It lies on the fact that the L2 inner product on Rn gives the same
importance to all parameters pi, that is to say, that all deformations caused by the same
variation of any parameter pi are considered to have the same importance, without taking
into account that this same variation could induce small or big shape variations (for a given
norm in the tangent space, set of all shape variations) depending on the chosen parameter
pi which undergoes this parameter variation. This intuitive method is consequently not
neutral at all, but on the contrary sets a significant prior on the typical deformations that
the evolving shape will undergo, and this prior comes from the choice of the parameterization
of the shape. Consequently, two different representation methods (for instance, polyhedron
versus splines) will lead to qualitatively different evolutions.

Is it feasible to build a “neutral” gradient, which would depend as little as possible on
the shape representation method ?
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6.2 Intrinsic differentiation

Let us consider the tangent space of the shape S, set of all admissible deformation fields on
S, embedded with an inner product, typically the L2(S → R) one. The associated gradient
∇L2E(S) does not need any introduction anymore: it is the unique field satisfying, for all
deformation fields δS defined on the shape:

DE(S)(δS) = 〈∇L2E(S) |δS 〉L2 .

∇L2E(S) is the best direction to maximize the energy E, best direction being taken in the
sense of the L2 inner product on S. This notion of best direction does not depend on any
shape representation, it is an entirely intrinsic notion (oppositely to L∗); that’s why this is
the one which deserves consideration.

The gradient ∇L2E(S) is the deformation field that the shape should undergo if its
representation method could allow it to. However, due to discretization problems, the
shape is characterized by a finite number of parameters. The natural thing to do then is to
search for the best deformation field which is admissible for the current representation, that
is to say the projection of the gradient ∇L2E(S) onto the set of computable deformations

D =

{∑
i

dpiS(p1, p2..., pn) · δpi, with (δpi)i ∈ Rn

}
= Span (dpiS(p1, p2..., pn)), which is

the vector subspace of L2(S → R) generated by the n deformations dpiS.
In order words, if δS is a deformation field of D, associated to a parameter variation

(δpi)i by δS =
∑

i dpiS · δpi = DS( (δpi)i ), and if the projection of any field defined on S
onto the subspace D (for the L2 inner product) is denoted by PD, then:

DE( (δpi)i ) = DE(S)(δS)
= 〈∇L2E(S) | δS 〉L2(S)

= 〈PD (∇L2E(S)) | δS 〉L2(S)

= 〈PD (∇L2E(S)) | δS 〉L2(D)

=
〈
DS
(

(DS)−1 ◦ PD (∇L2E(S))
) ∣∣∣ DS ((δpi)i)

〉
L2(D)

=
〈
(DS)−1 ◦ PD (∇L2E(S)) | (δpi)i

〉
DS(Rn)

with the new inner product defined on Rn:〈
(δpi)i

∣∣ (δ′pi)i 〉DS(Rn)
=
〈
DS( (δpi)i ) | DS( (δ′pi)i )

〉
L2(D)

This inner product takes into account the real cost of the shape variations induced by
a parameter variation. The natural, shape-intrinsic “parameter gradient” that appears is
consequently

(DS)−1 ◦ PD (∇L2E(S)) ,

where DS−1 is the inverse function of the derivative of S (seen as a function of (δpi)i)
and associates to each realizable field (i.e. in D) the corresponding parameter variation
(δpi)i. The observed deformation of S when applying this gradient will be the projection of
the usual L2 gradient into the set of all admissible shape deformations for the given shape
representation, which fits the intuition of “best deformation field”.

This gradient is to be compared to the previous, non-intrinsic “parameter gradient”
L∗ = DE(S) ◦ DS∗ = (∇L2E(S) · DS(·))∗ which leads to the shape deformation DS ◦
(∇L2E(S) ·DS(·))∗.
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Discretization

Some people compute the intrinsic shape gradient ∇L2E(S) with respect to the shape S
and then evaluate it at the vertices vi of the polyhedron that results from the discretization
of the shape. The obtained field f = (∇L2E(S)(vi))i differs from the one obtained by the
projection of the shape gradient onto the subspace S of admissible, discretized deformation
fields, and without additional hypotheses there is no reason why this field f should increase
the energy, on the opposite of the field L∗ which is a gradient (for a different inner product
that the recommend, intrinsic one). However, with a smoothness hypothesis, the field f can
be shown to increase the energy. For example, in the case of planar curves, if the absolute
value of the second derivative (with respect to the arc length) of the gradient g = ∇L2E(S)
is known to be bounded, then it is sufficient that the maximum distance between two

successive vertices is smaller than

√
‖g‖L2

supS |g′′|
to guarantee the positivity of DE(S)(f).

Conclusion

The intuition, which at first glance may guide to directly differentiate with respect to the
parameters (for the usual L2 inner product in the space of these parameters), is misleading.
Happily there happens to be a “more intrinsic” way to compute the gradient, whose only
restriction towards the usual shape gradient is that it belongs to the set of admissible
deformations imposed by the choice of shape representation.



Chapter 7

Generalized Gradients: Priors on
Minimization Flows

Abstract

This chapter tackles an important aspect of the variational problem underlying active con-
tours: optimization by gradient flows. Classically, the definition of a gradient depends
directly on the choice of an inner product structure. This consideration is largely absent
from the active contours literature. Most authors, explicitly or implicitly, assume that the
space of admissible deformations is ruled by the canonical L2 inner product. The classi-
cal gradient flows reported in the literature are relative to this particular choice. Here,
we investigate the relevance of using (i) other inner products, yielding other gradient de-
scents, and (ii) other minimizing flows not deriving from any inner product. In particular,
we show how to induce different degrees of spatial consistency into the minimizing flow,
in order to decrease the probability of getting trapped into irrelevant local minima. We
report numerical experiments indicating that the sensitivity of the active contours method
to initial conditions, which seriously limits its applicability and efficiency, is alleviated by
our application-specific spatially coherent minimizing flows. We show that the choice of the
inner product can be seen as a prior on the deformation fields.

7.1. Introduction

Many problems in computer vision can advantageously be cast in a variational form, i.e. as
a minimization of an energy functional. In this chapter, we focus on variational methods
dedicated to the recovery of contours. In this case, the problem amounts to finding a contour
which corresponds to a global minimum of the energy. Unfortunately, in most cases, the
exact minimization of the energy functional is computationally unfeasible due to the huge
number of unknowns.

The graph cuts method is a powerful energy minimization method which allows to find a
global minimum or a strong local minimum of an energy. In the last few years, this method
has been successfully applied to several problems in computer vision, including stereovision
[69] and image segmentation [11]. However, it has a severe limitation: it cannot be applied
to an arbitrary energy function [70], and, when applicable, is computationally expensive.

Hence, in most cases, a suboptimal strategy must be adopted. A common minimization
procedure consists in evolving an initial contour, positioned by the user, in the direction of
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steepest descent of the energy. This approach, known in the literature as active contours
or deformable models, was pioneered by Kass. et al. in [64] for the purpose of image
segmentation. Since, it has been applied in many domains of computer vision and image
analysis (image segmentation [14], surface reconstruction [121, 40], stereo reconstruction
[44, 62, 50], etc.).

However, due to the highly non-convex nature of most energy functionals, a gradient
descent flow is very likely to be trapped in a local minimum. Also, this local minimum
depends on the position of the initial contour. If the latter is far from the expected final
configuration, the evolution may be trapped in a completely irrelevant state. This sensitivity
to initial conditions seriously limits the applicability and efficiency of the active contours
method.

We detail in section 7.2 the general gradient descent process so as to emphasize the
crucial role of the inner product. After an abstract study in section 7.3 on how to handle
inner products and minimizing flows, we propose, in section 7.4, various inner products and
show how they induce different degrees of spatial coherence in the minimizing flow with
numerical examples of shape warping in section 7.5.

7.2. Minimization and inner product
In the following we consider a shape Γ, seen as a manifold of dimension k embedded in Rn,
for example a planar curve or a surface in the space R3. We denote by E(Γ) the energy
functional to be minimized. In order to define the gradient of the energy functional, the first
step is to compute its Gâteaux derivatives δE(Γ, v) in all directions, i.e. for all admissible
velocity fields v defined on the shape Γ with values in Rn. The deformation space, set of
all these fields v, can be seen as the tangent space of Γ, considered itself as a point in the
manifold of all admissible shapes.

(7.1) δE(Γ, v)
def
= lim

ε→0

E(Γ + εv)− E(Γ)
ε

.

where Γ + εv is the shape defined, for any parametrization of Γ, say PΓ : σ ∈ S ⊂ Rk 7→
PΓ(σ) ∈ Γ ⊂ Rn, by the parametrization PΓ+εv : σ ∈ S 7→ PΓ+εv(σ) = PΓ(σ)+ εv(PΓ(σ)) ∈
Rn.

Then, we would like to pick the gradient as the direction of steepest descent of the
energy. However, it is not yet possible at this stage: to be able to assess the steepness
of the energy, the deformation space needs additional structure, namely an inner product
introducing the geometrical notions of angles and lengths. This consideration is largely
absent from the active contours literature: most authors, explicitly or implicitly, assume
that the deformation space is ruled by the canonical L2 inner product on Γ, which is, for
two deformation fields u and v:

〈u |v 〉L2 =
1
|Γ|

∫
Γ
u(x) · v(x) dΓ(x) ,

where dΓ(x) stands for the area element of the contour so that the integral over Γ is intrinsic
and does not depend on the parametrization.

Here, for sake of generality, we model the space of admissible deformations as an inner
product space (F, 〈| 〉F ). If there exists a deformation field u ∈ F such that

∀v ∈ F, δE(Γ, v) = 〈u |v 〉F ,
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then u is unique, we call it the gradient of E relative to the inner product 〈| 〉F , and we
denote by u = ∇FE(Γ). The existence of u is related to the smoothness of E, or more
exactly to the continuity of δE(Γ, v) with respect to v (Riesz representation theorem, see
[100] for more details).

Clearly, each choice of inner product yields its own gradient. This is often neglected and
most authors improperly refer to the gradient of the energy. Thus, the classical gradient
flows reported in the literature (mean curvature flow, geodesic active contours [14, 51, 106],
multi-view 3D reconstruction [44, 62, 50]) are relative to the L2 inner product.

The gradient descent method consists in deforming an initial contour Γ0 in the opposite
direction of the gradient.

(7.2)

{
Γ(0) = Γ0

dΓ
dt

= −∇FE(Γ)

The problem of the existence and the uniqueness of this minimizing flow is out of the scope
of this chapter. Indeed, it is highly dependent on the properties of each particular energy
functional. If this evolution exists, it decreases the energy:

dE(Γ)
dt

= −‖∇FE(Γ)‖2
F ≤ 0 .

The standard choice for F is the Hilbert space of square integrable velocity fields
L2(Γ,Rn) equipped with its canonical inner product. Very few authors in the active contours
area have considered using other inner products, whereas this is an established technique in
image registration, as in [112] where Trouvé designs specifically an inner product to help a
gradient descent. Very recently, in the context of shape representation and analysis, Michor
and Mumford [80] and Yezzi and Mennucci [116] have shown that slightly modifying the
L2 inner product allows to build well-behaved metrics in the space of curves; the particular
case of the H1 inner product has been simultaneously and independently investigated by us
[21] and by Sundaramoorthi et al. [107].

The variations on the gradient descent theme, as in [9], will still be applicable to the
new gradients we propose, since these methods are in fact not specific to the particular L2

gradient.
Minimizing flows not deriving from any inner product, that is to say evolutions that

decrease the energy, without any gradient interpretation, have also been overlooked so far.
Note that any evolution fulfilling the condition

(7.3)
dE(Γ)
dt

=
〈
∇FE(Γ)

∣∣∣∣dΓdt
〉
F

≤ 0

is a candidate to solve the minimization problem. This idea, proposed in [106], is applied
by the same authors to the alignment of curve in images in [87]: a complicated term in the
gradient is safely neglected after checking that the evolution still decreases the energy.

The spirit of our work is different. We do not focus either on a specific inner product
or on a particular energy functional. We rather explore general procedures to build some
new inner products and to compute the associated gradients. We also address the design of
non-gradient minimizing flows.

Our motivation is also different. Our primary concern in this work is the sensitivity of the
active contours method to initial conditions. There are essentially two ways of dealing with
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this problem: positioning the initial contour very close to the expected final configuration,
or using a multiresolution coarse-to-fine strategy, in other words running the optimization
on a series of smoothed and subsampled contours and input data. In this chapter, we
pioneer a third way to tackle the problem of unwanted local minima: the careful design of
the minimizing flow.

We do not modify the energy, hence the relief of the energy landscape and in particular
the “number” of local minima remains unchanged. But by using an evolution that favors
certain types of directions, we expect to decrease the probability of falling into unwanted
energy basins.

Typically, in many applications, spatially coherent motions are to be preferred over
erratic evolutions. For example, in the tracking problem, the object of interest is likely to
have similar shapes in consecutive frames. So if we initialize the contour with the result
of the previous frame, it makes sense to encourage the motions which preserve its overall
appearance. This way, it may be easier to dodge unexpected local low-energy configurations.
A traditional L2 gradient descent definitely does not have this desirable property since the
L2 inner product completely disregards the spatial coherence of the velocity field.

7.3. New Inner Products and New Flows

In this section, we suppose that the space F of all admissible deformations of the shape Γ
is initially equipped with the inner product 〈| 〉F , for example L2 in the standard case, and
we study how to build new inner products or new minimizing flows from the given one.

7.3.1. Designing new inner products

Definition 56. For any symmetric positive definite linear operator L : F → F , a new inner
product can be defined by

(7.4) 〈u |v 〉L = 〈Lu |v 〉F .

Here, for simplicity, we assume that the domain and the range of L are equal to F . A
similar study is possible if they are strictly smaller than F , under certain conditions, using
the Friedrichs extension of L (see [2] for details). But these technical details are out of the
scope of this chapter.

The following observation is central to our work:

Proposition 57. If ∇FE(Γ) exists and if L is also invertible, then ∇LE(Γ) also exists and
we have

(7.5) ∇LE(Γ) = L−1 (∇FE(Γ)) .

Proof. Indeed:

∀v ∈ F, δE(Γ, v) = 〈∇FE(Γ) |v 〉F
=
〈
LL−1∇FE(Γ) |v

〉
F

=
〈
L−1∇FE(Γ) |v

〉
L .



7.3. New Inner Products and New Flows 113

The above procedure is of great practical interest because it allows to upgrade any
existing L2 gradient flow. However, it is not completely general in the sense than all inner
products cannot be expressed in this form.

Nevertheless, if F is a separable Hilbert space (i.e. complete with respect to the norm
‖·‖F ), the Riesz representation theorem tells us that any inner product 〈| 〉L such that

∃C > 0, ∀u ∈ F, ‖u‖L 6 C ‖u‖F

can be written in the form of equation (7.4). This suggests that our procedure accounts for
a wide range of inner products.

7.3.2. Designing new minimizing flows
In this subsection, we follow the inverse approach. Instead of working with the inner product,
we apply a linear operator L : F → F to the gradient, and we study the properties of the
resulting flow:

(7.6)
dΓ
dt

= −L
(
∇FE(Γ)

)
.

This naturally sets up a hierarchy among different types of operators:

• if L is positive, the energy is non-increasing along the flow (7.6). Indeed,

dE(Γ)
dt

= −〈∇FE(Γ) |L∇FE(Γ)〉F 6 0 .

• if L is positive definite, the energy strictly decreases along the flow (7.6) until a critical
point of the original gradient flow (7.2) is reached.

• if L is symmetric positive definite and invertible, the flow (7.6) coincides with a gra-
dient descent relative to the inner product 〈| 〉L−1 , as defined in equation (7.4).

The third case is contained in Subsection 7.3.1. A useful example of the second case is given
in Subsection 7.4.3.

7.3.3. Adding an orthogonal term
The rate of decrease of the energy when following the direction of descent dΓ

dt is given by:

dE(Γ)
dt

=
〈
∇FE(Γ)

∣∣∣∣dΓdt
〉
F

6 0 .

In particular, for the usual evolution dΓ
dt = −∇FE(Γ), we have:

dE(Γ)
dt

= −‖∇FE(Γ)‖2
F

If we denote by v any vector field defined on Γ such as 〈∇FE(Γ) |v 〉F = 0, then adding such
a vector field v to the usual gradient descent term will not change the amount of decreased
energy:

dE(Γ)
dt

= 〈∇FE(Γ) |−∇FE(Γ) + v 〉F = −‖∇FE(Γ)‖2
F
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so we can choose the field v which we would like to add to the initial gradient. Rather
than choosing v = 0 as usual, we could for example choose one, noted v̂, that minimizes a
regularizing criterion R(−∇FE(Γ) + v):

(7.7) v̂ = arg min
v⊥∇FE(Γ)

R(−∇FE(Γ) + v)

In fact this remark still stands when the choice of the direction of descent is not the gradient
itself. If we denote by u the initially proposed deformation field dΓ

dt , then adding a vector
field which is orthogonal to the gradient ∇FE(Γ) will not change the amount of decreased
energy at this step of the gradient descent (but will change the evolution):

dE(Γ)
dt

= 〈∇FE(Γ) |−u+ v 〉F = 〈∇FE(Γ) |−u〉F

Note that the notion of being orthogonal to the gradient is independent from the chosen
inner product. Indeed, if F and G are two different inner products, ∇FE and ∇GE the
associated gradients, and ⊥F and ⊥G the associated notions of orthogonality, we have:

〈∇FE(Γ) |v 〉F = δE(Γ, v) = 〈∇GE(Γ) |v 〉G

so, consequently:

〈∇FE(Γ) |v 〉F = 0 ⇐⇒ 〈∇GE(Γ) |v 〉G = 0
∇FE(Γ) ⊥F v ⇐⇒ ∇GE(Γ) ⊥G v .

7.4. Some Spatially Coherent Minimizing Flows

This theoretical study has brought us the tools we need to better apprehend minimizing
flows and build new ones. We now propose some minimizing flows yielding different degrees
of spatial coherence. We insist on the fact that this spatial coherence has nothing to do
with an eventual regularity term in the energy functional. We do not modify the energy, so
the regularity constraint on the contour remains unchanged. We modify the trajectory of
the minimizing flow, by favoring spatially coherent motions, but this does not condition the
regularity of the final contour.

In the following, we sometimes use differential geometry. We refer the reader to [36] for
the basic notions.

7.4.1. Motion decomposition
A simple and useful procedure, to design new inner products yielding spatially coherent
flows, is to decompose the deformation space into a sum of several mutually orthogonal
linear subspaces, and to apply different penalty factors to the different types of motions.
Typically, the subspaces are chosen according to an application-specific hierarchy of the
motions. For example, rigid/non-rigid, affine/non-affine, etc.

We suppose that such an orthogonal (with respect to 〈| 〉F ) decomposition of the defor-
mation space F into N closed linear subspaces is available:

F = F1 ⊥ F2 ⊥ · · · ⊥ FN .
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Then a new inner product is derived from 〈| 〉F by applying the procedure of Subsection
7.3.1 with

L =
N⊕
i=1

λi IdFi ,

where ∀i, λi > 0. The lower is λi, the shorter is the norm of the velocity fields of subspace
Fi, and the stronger will be this type of motion in the new gradient flow.

Obviously, L is symmetric positive definite and invertible. If ∇FE exists, so does ∇LE
and

(7.8) ∇LE =
N∑
i=1

1
λi

ΠFi (∇FE) ,

where ΠFi denotes the orthogonal projection on the ith subspace Fi. Of course, if all λi are
equal to 1, ∇LE coincides with ∇FE.

We apply this general construction to two useful cases. In the first case, we decompose
the velocity field into a translation, an instantaneous rotation, a rescaling motion and a
non-rigid residual. In the second case, we isolate the instantaneous affine motion.

In the following, we denote by G =
(∫

Γ x dΓ(x)
)
/
∫
Γ dΓ(x) the center of mass of the

shape.

Translation, rotation and scaling

In this paragraph, we focus on the two-dimensional and three-dimensional cases. The ex-
pressions below are for the 3D case, but can easily be adapted to 2D.

We denote by T , R and S the subspaces of the translations, the instantaneous rotations
around the centroid, and the scaling motions centered on the centroid, respectively, defined
on the shape Γ:

T =
{
v : x ∈ Γ 7→ t | t ∈ R3

}
,

R =
{
v : x 7→ (x−G) ∧ ω | ω ∈ R3

}
,

S = {v : x 7→ s(x−G) | s ∈ R} .

These subspaces are mutually orthogonal for the L2 inner product. Indeed, the L2 product
of any two fields of any two different subspaces (among T , R and S) is zero. For instance,
if v1 : x 7→ t1 is an element of T and v2 : x 7→ (x−G) ∧ ω2 an element of R, then:

〈v1 |v2 〉L2 =
1
|Γ|

∫
Γ
t1 ·

(
(x−G) ∧ ω2

)
dΓ(x) = t1 ·

([
1
|Γ|

∫
Γ
x dΓ(x)−G

]
∧ ω2

)
= 0.

We suppose that these subspaces are included in the space of admissible deformations
F , and that the latter is ruled by the L2 inner product. We denote by N the orthogonal
complement of these subspaces: F = T ⊥ R ⊥ S ⊥ N . The orthogonal projection of a
velocity field u on one of these subspaces can be found by minimizing ‖u−v‖F with respect
to v in the considered subspace. As an example, we detail the computation of (ΠR u).

As for each element v of R there exists an ω such that v(x) = (x−G) ∧ ω for all x, we
minimize the quantity ‖u− (· −G) ∧ ω‖L2 with respect to ω.

∂ω

(∫
Γ
‖u(y)− (y −G) ∧ ω‖2 dΓ(y)

)
=
∫

Γ
−
(
u(y)− (y −G) ∧ ω

)
∧ (y −G) dΓ(y)
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= −
∫

Γ
u(y) ∧ (y −G) dΓ(y) +

(∫
Γ
‖y −G‖2dΓ(y)

)
ω −

[∫
Γ
(y −G)(y −G)TdΓ(y)

]
ω

As this quantity is zero for the ωu which minimizes ‖u− (· −G) ∧ ω‖L2 , we have:

ωu =
[(∫

Γ
‖y −G‖2dΓ(y)

)
Id−

∫
Γ
(y −G)(y −G)TdΓ(y)

]−1(∫
Γ
u(y) ∧ (y −G) dΓ(y)

)
To guarantee that the linear application between brackets is invertible, we prove it is a
symmetric positive definite matrix M . We have indeed for any x:

xTMx =
∫

Γ
‖x‖2‖y −G‖2 −

(
x · (y −G)

)2
dΓ(y)

As for any x and z we have (x · z) 6 ‖x‖‖z‖, with equality only if the two vectors are
collinear, and as x cannot be collinear with all y −G for y in Γ, we obtain xTMx > 0 for
any x, so M is positive definite and consequently invertible.

Note that if we had not taken for u the L2 gradient but the gradient for another inner
product F , we would have to ensure the subspaces are orthogonal for that inner product F ,
and compute new projections by minimizing ‖u− v‖F .

We apply the method we detailed for the subspace R to the other subspaces T and S,
and obtain:

(ΠT u) (x) = u :=
1
|Γ|

∫
Γ
u(y) dΓ(y),

(ΠR u) (x) = (x−G) ∧ ωu ,

(ΠS u) (x) =

∫
Γ u(y) · (y −G) dΓ(y)∫

Γ ‖y −G‖2 dΓ(y)
(x−G) ,

(ΠN u) (x) = u(x)− (ΠT + ΠR + ΠS) (u)(x) .

In the two-dimensional case, the expressions of the projections are the same, and the
expression of ωu can be simplified in:

ωu =

∫
Γ(y −G) ∧ u(y) dΓ(y)∫

Γ ‖y −G‖2 dΓ(y)
.

The new gradient is deduced from the L2 gradient by equation (7.5) with

L−1 = Id +
(

1
λT

− 1
)

ΠT +
(

1
λR

− 1
)

ΠR +
(

1
λS

− 1
)

ΠS .

The weights λT , λR and λS are adapted to the user’s needs in each particular application.
For example:

• Boost rigid+scaling motions: λT , λR, λS � 1,

• Boost rigid motions: λT , λR � 1, λS = 1,

• Boost translations: λT � 1, λR = λS = 1.
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Affine motion

We can apply this same idea to the subspace A of instantaneous affine motions:

A =
{
v : x ∈ Γ 7→ Ax + b | A ∈ Rn×n, b ∈ Rn

}
.

The L2 orthogonal projection on this subspace writes:

(ΠA u) (x) = Ax + b ,

where

A =
[∫

Γ
u(y)(y −G)T dΓ(y)

] [∫
Γ
(y −G)(y −G)T dΓ(y)

]−1

,

b = u−A G .

7.4.2. The Sobolev H1 gradient flow
We consider the canonical inner product of the Sobolev space H1(Γ,Rn) of square integrable
velocity fields with square integrable derivatives, defined on the shape Γ with values in Rn.
For two such fields u and v its expression is:

〈u |v 〉H1 =
1
|Γ|

∫
Γ
u(x) · v(x)dΓ(x) +

1
|Γ|

l2
∫

Γ
Dxu(x) ·Dxv(x)dΓ(x) ,

where Dx denotes the intrinsic derivatives on the contour and l is a characteristic length for
the derivation which acts as a weight between the two integrals. The second term of this
expression introduces a notion of spatial coherence: not only the length of the velocity field,
but also its variations along the contour are penalized. Indeed, Dxu(x) stands for the matrix
of the derivative of the vector field u at the point x on the manifold Γ and consequently
expresses how much the field u varies at point x. In the two-dimensional case, Dxu(x) is
simply a vector. In the general case, Dxu(x) ·Dxv(x) =

∑
i,j (Dxu(x))i,j (Dxv(x))i,j is the

usual inner product between matrices.

By definition of the gradients of E(Γ), and then by integrating by parts on the manifold
Γ, we have:

∀ v , 〈∇L2E(Γ) | v〉L2 = δE(Γ, v) = 〈∇H1E(Γ) | v〉H1

= 〈∇H1E | v〉L2 + l2 〈Dx∇H1E | Dxv 〉L2

=
〈
∇H1E − l2∆∇H1E

∣∣ v〉
L2

Thus the H1 inner product is related to the L2 inner product as proposed in Subsection
7.3.1 through the linear operator L(u) = u− l2∆u, where ∆ denotes the intrinsic Laplacian
operator on the contour, often called the Laplace-Beltrami operator. As a consequence, the
H1 gradient can be obtained from the L2 gradient by solving an intrinsic heat equation with
a data attachment term:

(7.9) l2 ∆u = u−∇L2E .

Interestingly, the solution of equation (7.9) coincides with

(7.10) arg min
u

∫
Γ
‖u(x) − ∇L2E(Γ)(x)‖2 dΓ(x) + l2

∫
Γ
‖Dxu(x)‖2 dΓ(x)
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Intuitively, the H1 gradient is a smoothed version of the L2 gradient and can be obtained
by a process similar to the image restoration process on a manifold Γ, a problem familiar to
the image processing community. The factor l2 acts as a parameter balancing the influences
of the data term and the regularizing term. Actually, smoothing a gradient using this
particular inner product is a standard "trick", well-known in numerical analysis. As we
mentioned previously, this idea has been introduced in computer vision simultaneously by us
[21] and by Sundaramoorthi et al. [107]. However, the main point remains that, introducing
this smoothing via a modification of the gradient rather than directly from equation (7.10),
warrants that the gradient descent will decrease the energy.

In the two-dimensional case, the shape is a curve which can be parametrized by its arc
length σ, so that any field u defined on Γ can be seen as an application from [ 0, |Γ| ] to R2,
where |Γ| is the length of the curve. The explicit solution of the equation ∆u = u − v is
then known and given by:

(7.11) u(σ) =
1
2l

(
eσ/l

(
A−

∫ σ

0
e−τ/l v(τ) dτ

)
+ e−σ/l

(
B +

∫ σ

0
eτ/l v(τ) dτ

))

with A =
e|Γ|/l

e|Γ|/l − 1

∮
Γ
e−τ/l v(τ) dτ

and B =
1

e|Γ|/l − 1

∮
Γ
eτ/l v(τ) dτ .

Of course, the choice of the initial point on Γ in order to define its parametrization by the
arc length does not interfere with the resulting solution considered as an application from
Γ into R2.

In greater dimensions, we can obtain in practice the H1 gradient, solution of equation
(7.9), from an iterative minimization induced by (7.10). Since the work introduced in [7],
implementing a PDE on a surface is affordable in the implicit framework with the level set
method [34, 86].

7.4.3. Intrinsic Gaussian smoothing

We apply the procedure of Subsection 7.3.2 to design a useful minimizing flow: it is a
smoothed version of the L2 gradient flow. Hence, to some extent, it resembles the H1

gradient flow of Subsection 7.4.2. However, here, we apply an ad hoc procedure to the L2

gradient without resorting to an inner product.
We define a linear intrinsic smoothing operator which may be seen as the counterpart

on the contour of Gaussian smoothing in Rn−1, by considering the solution ũ of the intrinsic
heat equation on Γ with initial condition u:

(7.12)

{
ũ(., 0) = u
∂ũ

∂τ
= ∆ ũ

,

where ∆ denotes the Laplace-Beltrami operator. We then denote by Lτ u its solution ũ(., τ)
at time τ ≥ 0.

On the one hand, Lτ is symmetric positive. In particular, a flow (7.6) based on this
operator decreases the energy. The larger is τ , the smoother is the flow.
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Lτ is symmetric:

〈L0(u) |v 〉L2 = 〈u |L0(v)〉L2 = 〈u |v 〉L2 ,
∂

∂τ
〈Lτ (u) |v 〉L2 =

∂

∂τ
〈u |Lτ (v)〉L2 = −〈Dxu |Dxv 〉L2

Lτ is positive:

〈Lτ (u) |u〉L2 =
〈
Lτ/2Lτ/2(u) |u

〉
L2 =

∥∥Lτ/2(u)∥∥L2 ≥ 0

But on the other hand, the inversion of Lτ for τ > 0 is an ill-posed anti-diffusive process.
So a gradient interpretation is not available.

7.5. Numerical Experiments With The New Inner Products
The approach presented in this chapter can be applied to virtually any active contour
evolution. In this section, we have chosen some particular applications to demonstrate the
interest of our contribution.

Moreover, the content of this chapter is not specific to a particular implementation
of the contour evolution. In our experiments, we have used the level set framework [34,
86, 103, 84, 85], motivated by its numerical stability and its ability to handle topological
changes automatically. The implicit framework also offers an elegant formulation of the
Laplace-Beltrami operator [6] and of the average of a quantity along the contour [95].

The additional computational cost of our approach depends on the type of minimizing
flow we consider. The extra time is barely noticeable for the rigid plus scaling and affine
flows of paragraphs 7.4.1 and 7.4.1. The latter only require to compute a handful of integrals
on the contour. The smooth minimizing flows of Subsections 7.4.2 and 7.4.3 are more
demanding. In 2D, the implicit diffusion equations (7.9) and (7.12) are equivalent to some
convolutions with respect to the curvilinear coordinate on Γ. In 3D and more, they must
be solved with some iterative methods, for each time step.

7.5.1. Shape warping
We illustrate our approach in the problem of shape warping. In this context, the energy
functional to be minimized is a measure of dissimilarity between the evolving contour and a
target contour. The study of shape metrics is still an active research area [118, 117, 18, 116],
and there are many candidates for the dissimilarity measure. We use the differentiable
approximation of the Hausdorff distance to warp the contours of two different hands.

Figure 7.1 compares the evolution of the contour when using the L2 gradient descent
(top row) and a modified gradient descent favoring rigid plus scaling motions (bottom row)
as in paragraph 7.4.1. Both evolutions achieve a perfect warping. However, despite the sim-
ilarity of the two input shapes, the L2 gradient flow goes through some states of completely
different appearances. The trajectory followed by this flow looks particularly inefficient and
unnatural, because the notion of length contained in the L2 inner product is very far from
our intuition. In contrast, the behavior of our gradient flow is natural and visually pleasing.
Some movies of these evolutions are available in our additional submission data.

In Figure 7.2, we show a three-dimensional warping example from a teddy bear to
Hayao Miyazaki’s character Totoro. We use here the W 1,2-norm of the distance functions as
proposed in section 5.1.8 in chapter 5. Despite an initial rigid registration, the L2 gradient
descent is unable to give satisfying results. A modified gradient descent favoring rigid plus
scaling motions leads to better results.
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Figure 7.1: Shape warping with the L2 gradient descent (top) and with a modified gradient
descent favoring rigid plus scaling motions (bottom): λT = λR = λS = 0.025.

Figure 7.2: 3D shape warping with the L2 gradient descent (top) and with a modified
gradient descent favoring rigid plus scaling motions (bottom): λT = λR = λS = 0.025.
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Figure 7.3: Tracking a hand in a video sequence with the L2 gradient descent (top) and
with a modified gradient descent favoring affine motions (bottom): λA = 0.025.

This suggests that our approach can infer relevant correspondences between the two
contours, as a byproduct of the warping process. This point-to-point matching is obtained
by tracking the points along the evolution. It does not make much sense with a L2 gradient
flow, because the latter yields a strictly normal velocity field. But when using our approach,
the velocity field has a meaningful tangential part. Maintaining point correspondences
during the evolution is straightforward in an implementation with meshes. It is also feasible
in a level set implementation, with an extension proposed in [97].

7.5.2. Tracking
We now illustrate the better robustness to local minima of spatially coherent minimizing
flows with a naive experiment. We insist on the fact that this example is illustrative: we
did not look for the method and the energy that gave the best results of tracking for the
particular sequence we worked on; we focus more on the improvements brought by our
change of inner product rather than on the results themselves.

We track a moving hand in a monocular video sequence. For each frame, we minimize
the contour-based energy of the original geodesic active contours method [14], starting from
the result of the segmentation of the previous frame. Note that a region-based approach
[91] or a background subtraction method would give better results on our particular test
sequence.

Figure 7.3 compares the evolution of the contour when using the L2 gradient descent (top
row) and a modified gradient descent favoring affine motions (bottom row) as in paragraph
7.4.1. Due to large displacements between consecutive frames, the L2 gradient flow fails and
the contour finally locks between two fingers, whereas our gradient flow manages to dodge
this unwanted low-energy configuration.

7.5.3. Landmarks-guided shape warping
Let us study the case of an energy which does not admit a usual L2 gradient because its
formal computation leads to an expression with Dirac peaks in the space of distributions.
The problem with such a gradient is that it is not implementable in practice. However, with
a suitable choice of another inner product, we naturally obtain a smoothed version of this
gradient.

The following work in the next two pages about landmarks has been done by Pierre
Maurel and is given here as an example of application of the change of inner product. A
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more complete version of his work can be found in [77].
We consider two shapes Γ1 and Γ2, and we would like to warp Γ1 onto Γ2. It can be

useful to consider a small set of landmarks in order to improve the evolution. Provided
by the user (anatomical landmarks), or automatically extracted (geometric landmarks), we
assume that we are given p pairs of corresponding points on the initial and on the target
shapes, {(x1i,x2i) ∈ Γ1 × Γ2, 1 ≤ i ≤ p}. We would like to use the information given by
these correspondences to guide the evolution.

Choice of the energy and of the inner product

The usual variational approach consists in minimizing the distance between the evolving
shape Γ(t) and the target one Γ2, with initial condition Γ(0) = Γ1. This distance Ed could
be for example the approximation of the Hausdorff distance presented in chapter 2 or the
W 1,2 norm of the signed distance functions over the embedding space. We would like to
add to this distance a landmark term EL ; the energy to minimize would be consequently:

E(Γ,Γ2) = Ed(Γ,Γ2) + EL (Γ,Γ2)

We follow each landmark x1i from the initial shape Γ1 during the evolution and denote
by xi(t) its corresponding point on Γ(t). We simply choose for the landmark term:

(7.13) EL =
∑
i

d(xi(t),x2i)2

Formally, the energy given by equation (7.13) yields Dirac peaks in the expression of the
gradient of the energy:

(7.14) ∀x ∈ Γ, ∇L2E(Γ)(x) = ∇L2Ed(Γ)(x) +
∑
i

δxi(t)(x)(xi(t)− x2i)

where δx denotes the Dirac function centered at point x. This is indeed not a good candidate
for a gradient descent.

The trick consists in changing the inner product which appears in the definition of the
gradient. We use H1(Γ,Rn), the Sobolev space of square integrable velocity fields with
square integrable derivatives, defined and studied in section 7.4.2.

Starting from the irregular gradient ∇L2E(Γ) given by equation (7.14), we obtain a
smooth gradient ∇H1E(Γ), given by the PDE (7.9) and mathematically justified by an
adapted choice of inner product that guarantees a decrease of the energy. In practice and in
detail, when solving (7.9), we substitute for each Dirac peak in the expression of ∇L2E(Γ)
a Gaussian with a very small standard deviation.

In the two-dimensional case, the equation (7.11) gives us an explicit expression of the
H1 gradient from the L2 one thanks to a convolution. In the three-dimensional case we
have to deal with the minimization process proposed in section 7.4.2.

Experiments

As a benchmark, we warp some artificial two-dimensional curves with the original energy
Ed = dW 1,2 and test how our landmark-guided force modifies the warping and the final
matching. To begin with a simple example, we show in figure 7.4 the warping of a rectangle
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Figure 7.4: Warping of a rectangle shape onto another one. Top row: evolution with
E = dW 1,2 . Bottom row: evolution with the same energy, augmented with four provided
landmarks, marked by color spots. The colors on the evolving curve shows the evolution of
different parts of it. See text for comments.

onto another one. The different parts of the curves are shown with different colors, so
that their respective evolution can be followed. Although the initial warping without any
landmark seems natural, it fails to discover the matching between the edges of the rectangles,
a matching indeed recovered when providing landmarks. Let us now study the case of
some real, complex shapes. Figure 7.5 shows the warping between two hands. The energy
E = dW 1,2 yields an unnatural warping. Adding spatially coherent flows improves the
warping but still fails in some parts, mainly because the difference between the two shapes
can not be summed up to a global motion. With three landmarks only, both a satisfying
warping and a good matching are recovered. Figure 7.6 shows the warping of a teddy bear
onto a cartoon character. Without any landmarks, the top row evolution fails matching the
ears and arms of the characters. The bottom row shows the evolution with four landmarks.
Red spots allow to check a good matching between landmarks.

7.6 Combination of the effects of two different inner products

As introduced in part 7.3.1, a gradient related to an other inner product that the usual
L2 inner product can often be obtained by applying a symmetric positive definite linear
operator on the usual gradient. More generally, the application of such an operator on
the usual gradient guarantees that its results is strictly positively correlated with the usual
gradient. The choice of a particular operator allows to set priors on the desired field. For
instance, a convolution with a Gaussian function will smooth the field with a characteristic
length given by its standard deviation, and the rigidification process previously studied will
increase the importance of translations, rotations and scalings.

A question one could be interested in would be the combination of two of these symmetric
positive definite operators, in order to benefit from effects of both operators. Does the
successive application of two different operators make sense ? If not, how to combine these
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Figure 7.5: Warping of a hand shape onto another one. Top row: evolution with E = dW 1,2 .
Middle row: evolution with the same energy plus spatially coherent flows. Bottom row:
evolution with the same energy plus coherent flows plus three provided landmarks. See text
for comments.

operators ?
The answer to the first question is negative in the general case. If R and N are symmetric

positive definite operators defined on the set of deformation fields (the tangent space of the
current shape), if E is the energy to be minimized and v = ∇L2E denotes the usual gradient,
then 〈v |R(v)〉L2 = DE(R(v)) > 0 since R is positive definite, and so on for N , but there
is no reason why DE(N ◦ R(v)) = 〈v |N ◦R(v)〉L2 should be positive since N ◦ R has no
reason to be itself symmetric positive definite. For an example of such a phenomenon, it is
sufficient to consider the simple case of symmetric positive definite operators on the plane
R2. They can be written as symmetric matrices 2 × 2, and the product of two of them is
generally not even symmetric:(

a b
b d

)
×
(
e f
f h

)
=
(
ae+ bf af + bh
be+ df bf + dh

)

7.6.1 Nothing but a symmetric way to preserve the symmetry

However, there is many ways to combine two such operators R and N in a new one with
the same properties:

Proposition 58. Let R and N be two symmetric positive definite operators on a linear
space X . Then R ◦N ◦ R and N ◦ R ◦N are also symmetric positive definite operators on
X .
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Figure 7.6: Warping of a teddy bear onto a cartoon character. Top row: evolution with
E = dW 1,2 . Bottom row, first image: four landmarks provided on the two shapes, indicated
by blue spots. Bottom row, remaining images: evolution with E = dW 1,2 plus the provided
landmarks. In red, some parts of the shapes are tracked. See text for comments.

These new operators can consequently be used to build new minimizing flows incorpo-
rating some aspects of both transformations R and N .

Proof. In two words, the symmetry of operator R implies:

∀v,w ∈ X , 〈v |R ◦N ◦R(w)〉X = 〈R(v) |N ◦R(w)〉X

so that R ◦N ◦R, as a bilinear operator, is:

1. symmetric: 〈v |R ◦N ◦R(w)〉X = 〈w |R ◦N ◦R(v)〉X using also the symmetry of
N .

2. positive and definite: 〈v |R ◦N ◦R(v)〉X = 〈u |N(u)〉X with u = R(v).
〈u |N(u)〉X is always positive (since N is positive) and zero if and only if u = 0, which
happens if and only if v = 0 (since N and R are definite).

7.6.2 Better weights in the symmetry for parameterized groups

The operators which are proposed to be applied to the usual gradient are often param-
eterized, as members of operator families. For example, the Gaussian convolutions are
parameterized by their standard deviation, and the rigidification operators by their projec-
tion coefficient. These families are generally semigroups for the composition product law,
which expresses itself as an addition of the parameters of the two multiplied operators (or
sometimes a product of the parameters, which is the same as an addition if the logarithm
of the parameters is considered instead) . In this case, the square root of a member Oλ of
an operator family (Oλ)0<λ<+∞ is easily obtained, since Oλ/2 ◦Oλ/2 = Oλ. The same way,
the n-root is Oλ/n. The notation R1/2 or R1/n can consequently be used if the operator R
belongs to such a family.
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The first difference between R ◦ N ◦ R and N ◦ R ◦ N is the relative (and absolute)
importance of R and N . If N stands for a convolution with a Gaussian of a given standard
deviation, one feels that the second possibility is an operator that smooths twice too much
compared to the action of N alone, and compared to R which appears only once. The
solution simply consists in considering R1/2 ◦N ◦R1/2 and N1/2 ◦R ◦N1/2 instead.

Now, the difference between R1/2 ◦ N ◦ R1/2 and N1/2 ◦ R ◦ N1/2 is the order of the
successive application of fragments of N and R. Should one rather smooth a little, rigidify,
and smooth a little again, or rather rigidify a little, smooth, and rigidify a little again ?

7.6.3 Extension towards homogeneity

If there is no particular reason to use N or R first and last, then it may make sense to
consider the sequences

An = R1/nN1/nR1/nN1/n... N1/nR1/n

(with n occurrences of R1/n and n− 1 of N1/n) and

A′n = N1/nR1/nN1/nR1/n... R1/nN1/n,

or, in order to keep constant and equal to one the total weight of each operator, as said
previously,

Bn = R1/nN1/(n−1)R1/nN1/(n−1)... N1/(n−1)R1/n

and
B′
n = N1/nR1/(n−1)N1/nR1/(n−1)... R1/(n−1)N1/n.

The hope is that these four sequences of symmetric positive definite operators may converge
together and towards the same asymptotic operator. A first remark is that, as R1/n and
N1/n converge towards the identity operator, the sequences An and A′n, if they converge,
converge towards the same operator, since N1/nAn = A′nR

1/n. The sequences Bn and B′
n

are more difficult to deal with, and, more generally, it is not easy to state any convergence
result, all the more in such non-countable infinite dimensioned spaces if the operators do
not commute or are not simultaneously diagonalizable.

However, this case can be solved with some inspiration from the basis of the spectral
theory and semigroups. If the norm of the operator R−Id is strictly less than 1, that is to say
if there exists a constant C < 1 such that for any deformation field v, ‖Rv−v‖X 6 C‖v‖X ,
then the logarithm of the operator R can be defined by using the series expansion of the

analytic logarithm function. Indeed, for any field v, since the series −
∞∑
i=1

xn

n
converges

towards ln(1 − x) if |x| < 1, then the series −
∞∑
i=1

1
n

(Id − R)n(v), where the notation

(Id − R)n stands for the composition of the operator (Id − R) n times, converges for
any v towards a field named ln(R)(v). The convergence comes from the inequality ‖(Id−
R)n(v)‖X 6 Cn‖v‖X . The application ln(R) thus defined for any v is a linear operator on
X . Moreover, as for any v, ‖ ln(R)(v)‖ 6 | ln(C)| ‖v‖X , the operator ln(R) is bounded with
norm 9 ln(R)9 6 | ln(9R− Id9)|.

Symmetrically, the exponentiation of a (bounded) linear operator can be defined with

the serer
∞∑
i=0

xn

n!
, and it satisfies exp (ln(R)) = R. The interest of these operators is that
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they also satisfy exp
(

1
n

ln(R)
)

= R1/n, which brings us back to the studied sequences of

operators. The sequence An writes:

An = R1/nN1/nR1/nN1/n... N1/nR1/n =
(
R1/nN1/n

)n−1
R1/n

Since R1/nN1/n = exp
(

1
n

ln(R)
)

exp
(

1
n

ln(N)
)

, it could be useful to consider the proper-

ties of the exponentiation. Unluckily, the exponentials of two operators that do no commute
do not commute themselves, and more generally exp(R+N) is not equal to exp(R) exp(N).

However, as, for high values of n, R1/n is near the identity operator, and
1
n

ln(R) near the
zero operator, the development into series of exp and ln can show itself useful. Denoting
the operator ln(R) by r, we obtain:

exp
(

1
n
r

)
=

∞∑
k=0

1
k!

(
1
n
r

)k
= Id +

1
n
r +

1
n2

( ∞∑
k=2

1
k!

1
nk−2

rk

)

= Id +
1
n
r + O

(
1
n2

)

and consequently:

R1/nN1/n =
(
Id +

1
n

ln(R) + O

(
1
n2

))
◦
(
Id +

1
n

ln(N) + O

(
1
n2

))
= Id +

1
n

ln(N) +
1
n

ln(R) ◦
(
Id+O

(
1
n

))
+ O

(
1
n2

)
= Id +

1
n

(ln(R) + ln(N)) + O

(
1
n2

)
(linearity of ln(R))

= exp
(

1
n

(ln(R) + ln(N)) + O

(
1
n2

))
(for a different O).

Hence:

(
R1/nN1/n

)n−1
= exp

(
(n− 1)

(
1
n

(ln(R) + ln(N)) + O

(
1
n2

)))
= exp

(
ln(R) + ln(N) + O

(
1
n

))

To conclude, we need the continuity of the exponentiation.

Lemma 59. The exponentiation of bounded operators is continuous.
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Proof. If L and M are bounded linear operators, and ε 6 1 a small real number, then:

exp(L+ εM)− exp(L) =
∞∑
n=0

1
n!

((L+ εM)n − Ln)

=
∞∑
n=1

1
n!

Ln +
∑

εMappears at least once
[product ofn terms] − Ln


= ε

∞∑
n=1

1
n!

∑
Mappears at least once

[product ofn terms]

so that

9 exp(L+ εM)− exp(L)9 6 |ε|
∞∑
n=1

1
n!

∑
Mappears at least once

max(9L9, 9M9)n

6 |ε|
∞∑
n=1

1
n!

2n max(9L9, 9M9)n

6 |ε| exp (2 max(9L9, 9M9))

and the exponentiation of bounded operators is consequently continuous.

The conclusion states:

An = exp
(

ln(R) + ln(N) + O

(
1
n

))
◦ exp

(
1
n

ln(R)
)

−→
n→∞

exp (ln(R) + ln(N))

The proof of the convergence of the three other sequences (A′n, Bn and B′
n) is similar. To

sum up:

Proposition 60. If two linear operators R and N are such that 9R− Id9 < 1 and 9N −
Id9 < 1, then the previously introduced sequences An, A′n, Bn and B′

n all converge towards
the same limit, which is exp (ln(R) + ln(N)).

Corollary 61. If (Rλ)0<λ<∞ and (Nσ)0<σ<∞ are two semigroups of linear operators, such
that 9R1− Id9 < 1 and 9N1− Id9 < 1 , then ∀λ, σ > 0, the following sequence converges:

An = (R1/n
λ N1/n

σ )n−1R
1/n
λ −→

n→∞
exp (λ ln(R) + σ ln(N)) .

and so do the associated sequences A′n, Bn and B′
n.

Remark 62. If
⊕

0<i6n

Vi is an orthogonal decomposition of the current vector space into a

finite number of subspaces Vi, and (λi)0<i6n a corresponding set of n strictly positive real

numbers, then the logarithm of the linear operator R =
n∑
i=1

λi PVi (where PW stands for the

projection onto the subspace W ) is

ln(R) =
n∑
i=1

ln(λi)PVi
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and it satisfies

exp(t ln(R)) =
n∑
i=1

λti PVi .

This last remark is of course dedicated to the family of operators introduced in part 7.4.1.

7.6.4 The smoothed rigidification case

Let us consider the particular case of the combination of the rigidification operator R and
the Gaussian convolution N . If the initial L2 gradient is a little too noisy, it may be
relevant not only to favor rigid motion due to the rigidification operator, but also to smooth
the rest of the deformation. However, the smoothing of a rigid part, such as a rotation
or a scaling, would not be appropriate, since a pure rigid motion should not be altered.
Therefore, instead of considering the operator R1/2 ◦N ◦R1/2 or N1/2 ◦R ◦N1/2, one might
think of splitting the initial gradient into two parts, the rigid one and the remaining noise,
and of applying the rigidification magnification process to the first part, and a smoothing
to the other part. The problem is that the obtained operator is not symmetric, and this
comes from the fact that the smoothing of the remaining part can make a new rigid motion
arise, which is not very desirable. The solution consists in the projection of the smoothed
remaining part orthogonally to the rigid motions. Let us denote by PV the projection
onto the set V of rigid motions, and PW the projection to the orthogonal W of V , with
consequently PV + PW = Id. Then the rigidification operator, introduced in part 7.4.1,
writes R = MV ◦PV +αPW with 0 < α < 1; the application MV is an endomorphism on V
that potentially changes the weights of the different parts Vi of the rigid motion and writes
MV =

∑
i λiPVi . The proposed new operator is:

RN = MV ◦ PV + PW ◦N ◦ PW .

It writes more symmetrically, since M is an endomorphism on V :

RN = PV ◦MV ◦ PV + PW ◦N ◦ PW
= MV � N |W .

MV and the restriction N |W of N to W act independently as two endomorphisms on the
two subspaces V and W , which are orthogonal complements.

Lemma 63. Let V and W be two orthogonal complements in a given linear space X , and
MV and MW two symmetric positive definite endomorphisms of V and W , respectively.
Then the linear operator

MV �MW : x ∈ X 7→ MV (PV (x)) + MW (PW (x))

is a symmetric positive definite operator on X .

The proof is straightforward but it implies that:

Corollary 64. The previously introduced rigidification and smoothing operator

RN = MV ◦ PV + PW ◦N ◦ PW

is symmetric positive definite and can consequently be used to help the gradient descent
process.
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Chapter 8

Extended Gradient: more General
Priors

Abstract

This chapter is dedicated to an extension of the definition of the gradient towards more
general priors. The gradient is then not related to an inner product structure but to an
energy that can be seen as a prior on the cost of deformation fields. An example is shown
for an energy that favors locally rigid motions.

8.1. The meaning of the gradient
In this section, we go further and consider the definition of the gradient of an energy from a
new point of view, which leads us to a larger class of minimization algorithms. The thread
we follow is the fact that the gradient of the energy can be obtained as the result of another
minimization problem.

To help in developing the reader’s intuition let us recall that the usual gradient descent
method can be seen, up to first order, as minimizing E(Γ+u) with respect to the deformation
field u through the linearization of the energy E in the neighborhood of the shape Γ:

E(Γ + u) ' E(Γ) + δE(Γ, u)

But since δE(Γ, u) is linear with respect to the deformation field u, there is no minimum.
This is of course a direct consequence of the first-order approximation. It is therefore more
sensible to speak in terms of the direction of the deformation field u. The notion of direction
implies the choice of a norm: the set of all directions is the set of all fields with norm equal
to 1. Once a norm F has been chosen (related to an inner product preferably), a natural
solution appears as the direction uF that minimizes the energy δE(Γ, v):

(8.1) uF = arg min
{v s.t. ‖v‖F=1}

[ δE(Γ, v) ] = − ∇FE(Γ)
‖∇FE(Γ)‖F

The main point here is that the opposite of the gradient −∇FE(Γ) of the energy E for
the inner product related to the norm F is precisely in the direction uF . This gradient has
been introduced previously as the deformation field linked to the continuous linear form
δE(Γ, ·) for the inner product F thanks to the Riesz theorem. Note that the influence of
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the inner product F upon the best direction uF lies in the fact that it changes the shape of
the unit sphere (the set of all directions u with unit norm ‖u‖F = 1).

It turns out that the gradient itself (not only its direction) can be obtained as the
solution of a minimization problem. This also explicits the link between the norm F and
the gradient. This is shown in the following

Theorem 65. The gradient ∇FE(Γ) for the inner product F satisfies:

−∇FE(Γ) = arg min
v

[
δE(Γ, v) +

1
2
‖v‖2

F

]
Proof. We have indeed, for any v:

δE(Γ, v) +
1
2
‖v‖2

F =
1
2
[
‖v‖2

F + 2 〈v |∇FE(Γ)〉F
]

=
1
2

[
‖v +∇FE(Γ)‖2

F − ‖∇FE(Γ)‖2
F

]
So that:

arg min
v

[
δE(Γ, v) +

1
2
‖v‖2

F

]
= arg min

v

[
‖v +∇FE(Γ)‖2

F

]
= −∇FE(Γ).

The expression between brackets breaks up into two parts: the first one, δE(Γ, v), comes
from the energy E(Γ) and stands for the quantity to minimize, whereas the second one,
R(v) = 1

2‖v‖
2
F , is a regularizing term which imposes to the solution to be smooth and small

enough in the sense of the norm F . Different choices of the smoothing term due to different
choices of the norm F imply different final gradients ∇FE(Γ).

For example, the choice of the H1 inner product leads to the regularizing term R(v) =
1
2‖v‖

2
L2 + 1

2 l
2‖Dv‖2

L2 and consequently the gradient ∇H1E(Γ) is the deformation field which
minimizes δE(Γ, v) + 1

2‖v‖
2
L2 + 1

2 l
2‖Dv‖2

L2 . This leads us to an elegant proof of a property
of the H1 gradient stated in section 7.4.2, without considering PDEs:

Proposition 66. The opposite of the H1 gradient is the solution of:

arg min
v

[
‖u− v‖2

L2 + l2‖Dv‖2
L2

]
where u = −∇L2E(Γ) is the opposite of the usual gradient.

Proof. Indeed, for any v:

‖u− v‖2
L2 = ‖u‖2

L2 − 2 〈u |v 〉L2 + ‖v‖2
L2

hence
‖u− v‖2

L2 + l2‖Dv‖2
L2 = ‖u‖2

L2 + 2 δE(Γ, v) + ‖v‖2
H1

since by definition of u, δE(Γ, v) = 〈−u |v 〉L2 ; so the H1-gradient can naturally be seen
as a smoothed version of the standard gradient u, thanks to theorem 65:

arg min
v

[
‖u− v‖2

L2 + l2‖Dv‖2
L2

]
= arg min

v

[
δE(Γ, v) +

1
2
‖v‖2

H1

]
= −∇H1E(Γ)
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8.2. Generalization of the regularizing term
We have stressed the influence of the choice of an inner product 〈| 〉F on the associated
gradient:

−∇FE(Γ) = arg min
v

[ δE(Γ, v) + R(v) ]

where R(v) = 1
2‖v‖

2
F , and ‖ · ‖F is the norm related to the chosen inner product. Since

the choice of the inner product is equivalent to the choice of the regularizing term R(v)
and acts qualitatively upon the gradient descent paths, we can see R(v) as a prior on the
deformation fields.

Let us now generalize our framework and allow R(v) to be (almost) any positive real
function, not necessarily related to an inner product, and compute (when it exists) the
associated field which we will denote, with a slight abuse of notation, by −∇RE(Γ) (note
that if R is related as previously to the inner product F , then ∇FE = ∇RE):

(8.2) −∇RE(Γ) = arg min
v

[ δE(Γ, v) + R(v) ]

Under some reasonable assumptions about R(v), the new “gradient” ∇RE(Γ) exists and has
interesting properties.

First, the existence of ∇RE(Γ), which is the solution of an infimum problem, is guaran-
teed if R is positive, superlinear and convex. The solution is then not necessarily unique;
nevertheless, the set of solutions is convex, reduced to a single point in most cases. How-
ever, the question of the existence and unicity of ∇R in general is not the main point here,
it depends on the particular chosen application R. Here, R is supposed to stand for an
application approximatively “looking like” the square of a norm; for reasonable choices of R
from this point of view, the existence is guaranteed, and so is the uniqueness in most cases.

We now present the fundamental property of the extended gradient ∇RE as the

Theorem 67. If R is differentiable and reaches its global minimum at the zero field, then
the flow −∇RE(Γ), if it exists, decreases the energy E.

Proof. We prove that δE(Γ,−∇RE(Γ)) 6 0.
We have −∇RE(Γ) = arg minv [ δE(Γ, v) + R(v) ], so, in particular, considering the

zero field v = 0:

δE(Γ,−∇RE(Γ)) + R(−∇RE(Γ)) 6 δE(Γ, 0) + R(0)

δE(Γ,−∇RE(Γ)) 6 R(0)−R(−∇RE(Γ))

As v = 0 is the global minimum of R, we have R(−∇RE(Γ)) > R(0), so:

δE(Γ,−∇RE(Γ)) 6 0

Moreover, this last inequality is strict if the usual gradient ∇L2E(Γ) is not zero. Indeed,
in that case, as R(v) reaches its global minimum at the zero field v = 0, its derivative is zero
for v = 0. Consequently, the L2 gradient of δE(Γ, v) + R(v) with respect to v at the zero
field equals ∇L2E(Γ), which is not zero by hypothesis. Therefore infv [ δE(Γ, v) + R(v) ]
is not reached at v = 0 and all inequalities in the proof are strict.
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Note that the application R is specific to the shape Γ (or, more exactly, to its tangent
space) and there is no assumption about a “regularity” of the applications RΓ with respect
to Γ. However, as in the previous part where we had to associate to each shape an inner
product and naturally chose the same general expression for all of them, we will restrict
ourselves to the case where the application RΓ has the same general expression R(Γ) for all
shapes Γ and consequently will commit a slight abuse of notation between R and RΓ.

8.3. Remarks

8.3.1 Addition of an orthogonal term

Note that the method proposed in section 7.3.3, which consists in adding an orthogonal term
to the gradient (see equation (7.7)), can be seen as a variation on the extended gradient
theme, where the search for the infimum has been restricted to the affine hyperplane H
containing the opposite of the gradient −∇FE and orthogonal to it. Indeed:

arg min
v∈H

[δE(Γ, v) +R(v)] = arg min
w;w⊥∇FE

[δE(Γ,−∇FE + w) +R(−∇FE + w)]

= arg min
w;w⊥∇FE

R(−∇FE + w)

8.3.2 Directional formulation

We have seen earlier (equation (8.1)) that the direction of the gradient could be defined as
the field v of the unit sphere UF = {v s.t. ‖v‖F = 1} which most decreases the energy, and
that changing the inner product F was precisely acting on the gradient by changing the unit
sphere. One way to generalize the notion of gradient could have been to set any hypersurface
S instead of the unit sphere UF and to search for the best field v in S. However, this would
lead to some difficulties in practice (how to search for a minimum on an hypersurface of
infinite dimension, how to represent this hypersurface?). A slightly better way to do this
would be to focus on the hypersurfaces of the form UR = {v s.t. R(v) = 1}, which is in
the spirit of the level-set method. Note that this approach would be very close in practice
to the one we described, the main difference being that we would only obtain a direction,
without the magnitude.

8.3.3 Temporal coherence

The application R(v) does not necessarily only deal with spatial coherence and can also be
designed to favor temporally coherent motions. For example, at time step t of an evolution,
one could force the new deformation field ut to resemble the previous one ut−1. If we
transport ut−1 from the previous shape Γt−1 to the new one Γt, we obtain a new field noted
T (ut−1) defined on the same space as ut, and we can compare them, e.g., with ‖T (ut−1)−ut‖.
We are thus led to define R(v) = ‖T (ut−1)− v‖. This function however does not satisfy in
general the condition R(0) = 0 which is necessary in theorem 67. Nevertheless this problem
can be solved by defining R(v) to be the norm of the projection of v orthogonally to T (ut−1).

8.4. Computing the extended gradient

If R is simple enough so that the inverse application of v 7→ ∇L2R(v) is easily computable,
then the computation of the extended gradient ∇RE is immediate from the knowledge of
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the usual L2-gradient. Indeed, the application v 7→ δE(Γ, v) + R(v) has a local minimum
at v = −∇RE(Γ), so its derivative with respect to v is zero at this point:

Dv

(
δE(Γ, v) +R(v)

)∣∣
v=−∇RE

= 0

∇L2

(
〈∇L2E(Γ) |v 〉L2 + R(v)

)∣∣
v=−∇RE

= 0

∇L2E(Γ) + ∇L2R
(
−∇RE(Γ)

)
= 0

−∇RE(Γ) = (∇L2R)−1 (−∇L2E(Γ)
)

This formula generalizes the one obtained previously in proposition 57 in section 7.3
concerning the relation between the gradient for an inner product P and the usual L2

gradient. Now, for the extended gradient, the application (∇L2R)−1 which stands in for L
in this proposition is not supposed to be linear anymore.

In more general cases, if we cannot compute the application (∇L2R)−1, we can still solve
the infimum problem with a Partial Differential Equation (PDE) which is equivalent to a
. . . infinitesimal gradient descent! The definition in equation (8.2) can be seen indeed as a
minimization problem which leads to the evolution:

(8.3)

{
v(0) = 0
dv

dt
= −∇L2E(Γ)−∇L2R(v)

This evolution leads to a local minimum of δE(Γ, v)+R(v). Even if this local minimum
is not the global one (if R has not been well-chosen) or if the evolution is stopped before the
convergence, the final flow v computed will strictly decrease the energy E(Γ) (same proof as
in theorem 67). This point may be important in practice. Note also that there exist many
other methods [9] than the usual gradient descent to solve that kind of problem, since the
quantity to minimize is a sum of a linear term δE(Γ, v) and another term R(v) which “looks
like” a quadratic term since it is supposed to play a role similar to the square of a norm.

8.5. Application: the semi-local rigidification
We now present an example for which the previous framework appears to be useful. We
consider an energy E(Γ) defined on plane curves. These curves are assumed to lie in an
image Ω, in fact a bounded subset of R2. Instead of following a usual gradient descent in
order to minimize E(Γ) with respect to Γ, we would like to favor the deformation fields
which preserve the rigidity of the shape as much as possible, or, more exactly, we would
like to favor more rigid deformations, so that some kinds of local minima could be avoided.
In section 7.4.1 we showed how to change the inner product so as to favor global rigid
transformations. In case of articulated movement, this global method may not be sufficient,
so we would like to favor fields containing parts close to rigid motions; this leads us to the
notion of “semi-local rigidification”. We use the expression “semi-local” in order to emphasize
the contrast with usual smoothing methods such as Gaussian smoothing or H1 smoothing,
which we will qualify of “local”.

Let us consider a shape Γ and any field v defined on it. We would like to find the parts,
if any, of the field v which are well approximated by a translation or a rotation acting on the
corresponding parts of Γ. In order to model this, we associate to each point x of Γ a rigid
deformation wx defined on the whole image Ω. In order to describe wx we introduce three
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functions defined on Γ: a translation T (x), a center of rotation C(x) and the magnitude
A(x) of the instantaneous rotation, so that:

∀y ∈ Ω, wx(y) = A(x) (y − C(x))⊥ + T (x)

where a⊥ stands for the vector a rotated by +π/2. We suppose that this rigid deformation
wx varies slowly with respect to x, that is to say we suppose the L2(Ω,R2) norm of its
derivative ‖Dxwx(·)‖L2 to be small for each point x of the curve Γ. We consider the L2(Γ,R)
norm of this application defined on Γ and obtain the criterion

∥∥‖Dxwx(·)‖L2(Ω,R2)

∥∥
L2(Γ,R)

to quantify the smoothness of the field wx of rigid deformations on Γ.
It is always possible to express any field v on Γ as a member of the class rigid motions:

(8.4) ∀x ∈ Γ, v(x) = wx(x) = A(x)(x− C(x))⊥ + T (x)

The field v is then completely defined by the knowledge of T , A and C. For a given field v,
there exist of course many triplets (T,A,C) satisfying (8.4), the simplest one being (v, 0, G),
where GΩ is the center of mass of the image Ω. In order to lift this ambiguity we define a
deformation prior R which depends on T , A and C that should be seen as parameters of v:

R(T,A,C) = ‖v‖2
L2 +

∥∥‖Dxwx(·)‖L2(Ω,R2)

∥∥2

L2

which in fact can also be written simpler (by expanding and integrating the expression
‖Dxwx(y)‖2) as:

R(T,A,C) = ‖v‖2
L2 +

∥∥∥DT +DA (GΩ − C)⊥ −A DC⊥
∥∥∥2

L2
+ σ2

Ω‖DA‖L2

where σ2
Ω =

∫
Ω(y − GΩ)2dy is a characteristic squared “length” of the image. The middle

term represents the interaction between T , A and C; for example, changing the center of
rotation DC(x) has no consequence on the rigid motion wx if it is compensated by the
adequate added translation DT = A DC⊥. Note that the quantities GΩ and σΩ are the
only ones where the influence of the image Ω appears.

In order to compute the generalized gradient ∇R of an energy E(Γ), we first compute
the usual L2 gradient ∇L2E, initialize (T,A,C) = (0, 0, GΩ) so that the corresponding
field v(T,A,C) is zero, as required in equation (8.3), and let (T,A,C) evolve to minimize
δE(Γ, v) +R(T,A,C). The corresponding PDEs are

∂tT (x) = −
(
∇L2E(Γ)(x) + v(x)

)
+ ∆wx

∂tA(x) = −
(
∇L2E(Γ)(x) + v(x)

)
·
(
x− C(x)

)⊥
+
(
GΩ − C(x)

)⊥ ·∆wx + σ2
Ω∆A(x)

∂tC(x) = −A(x)
(
∇L2E(Γ)(x) + v(x)

)⊥ + A(x)∆wx
⊥

where wx = wx(GΩ) is the mean of the linear application y 7→ wx(y) on Ω. Note that if we
had considered only translations T (and not rotations), we would have wx = T (x) = v(x)
and the algorithms would act as an H1 smoothing.

8.6. Numerical Example
We now apply this method to a specific choice of the energy E to minimize. We would like
to warp a given initial shape Γ1 onto a given target shape Γ2, that is to say, we would like
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Figure 8.1: Warping the red shape onto the blue one (top) with the L2 gradient descent
(first row), with a H1 gradient descent (second row) and with a modified gradient descent
favoring semi-local rigid motion (third row) for the same energy (Hausdorff distance). All
evolutions converge to the same shape, but with different paths.

Figure 8.2: Comparison of the correspondences between the initial curve (left) and two
final curves resulting from the H1 gradient evolution (middle) and from the semi-local
rigidification (right). The different parts of the curves are shown with different colors, so
that their respective evolutions can be followed. The correspondences for the semi-local
rigidification case are more geometrically meaningful.
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Figure 8.3: Comparison with a L2 gradient descent on the L2 norm of the signed distance
functions associated to the curves. The gradient is naturally smooth but lacks geometric
information.

to minimize the shape distance between Γ1 and Γ2 with respect to Γ1. We choose for E
the smooth approximation of the Hausdorff distance described in chapter 2 which we will
denote here by dH(Γ1,Γ2).

This energy E achieves generally good warping between any two shapes which are rel-
atively close one to the other, but, in case of large deformations, it can suffer from an
important lack of spatial coherence if a part A of the moving shape Γ1 has to cross a part
B of the target one on its way to another parallel part C of the target shape (see figure 8.1
for an example), because the part A tries to minimize its distance to both parts B and C
at the same time.

A global coherence can nonetheless be recovered by an adequate change of inner product
which favors rigid transformations, as presented before. However, this is not sufficient for
dealing with local deformations. The methods of Gaussian or H1 smoothing studied in
sections 7.4.3 and 7.4.2 could be helpful, since their action is local. But even if their influence
is appreciable, these smoothing techniques do not favor semi-locally rigid deformations like
the movements of an articulated object. We have noticed that, in practice, the quality of the
matching between two shapes Γ1 and Γ2 generally depends on the quality of the path that
has been followed during the evolution from one shape to the other, or, more precisely, on
how natural a human observer would judge this path. This statement is very intuitive and
qualitative but we believe that this quality precisely relies on notions such as articulated
motion. There is clearly room here for further work. In any case this is the reason why we
think that methods like the ones proposed in this chapter, which allow to set priors on the
deformation fields, can have interesting practical applications.

We use the framework presented above and compare the evolutions resulting from three
different approaches on a difficult example of shape warping in the case of the Hausdorff
distance: the usual L2 gradient method, the H1 smoothing method of section 7.4.2 (for the
best value of the smoothness parameter l in equation (7.10)) and the semi-local rigidification
method (Figure 8.1). The last one achieves the best path and the best correspondences
(Figure 8.2).

The gradient descent framework in the case of an extended gradient ∇R could have
needed some important additional time if we had to wait until the evolution of ∇R con-
verges at each time step of the global evolution of Γ1. Fortunately, when necessary, thanks
to the remark in section 8.4, we can choose to stop the evolution of ∇R before convergence
in order to keep the additional cost into reasonable limits. The result presented here was
computed so that the total evolution time was multiplied by two, but the effect of the semi-
local rigidification is already noticeable for an added cost time of 10%. The minimization
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of the particular proposed criterion R appears to be difficult in practice due to some unex-
pected (and not understood) unstabilities of the rotation center C(x). Other minimization
techniques, like graph cuts, might be investigated to compute ∇R. However other criteria
could be proposed and the main point here is that such priors on the deformation flows can
be taken into account.

For the particular example presented in figure 8.1, one could object that we should have
considered other distances, such as the L2 norm between the signed distance functions of the
shapes, which always leads to very smooth evolutions. However, those smooth evolutions are
not very sensible, in that they often miss entirely the similarity between the two shapes to
match (see figure 8.3). As a consequence their gradient does not contain a lot of geometric
information and cannot be very much improved by changes of inner products. This is
why, despite the sometimes irregular behavior of the gradient of the Hausdorff distance, we
prefer to use it in combination with new inner products, because this has both advantages
of guaranteeing smoothness and making geometric sense.

In figure 8.4 we show an example with real contours from hand segmentation of pic-
tures. As in the previous example, we show the evolution path obtained by minimization
of the approximation of the Hausdorff distance between the two curves, with the semi-local
rigidification approach. The evolution mainly consists in four local rotations (arms and
legs), which fits well our intuition. We have colored, as previously, different parts of the
initial curve in order to follow them through the evolution and notice how relevant the
correspondences are. A usual gradient descent for this energy would have faced the same
irregularity problems as in the first evolution presented in figure 8.1, and the choice of other
usual energies, like the L2 norm between the signed distance functions to the curves, would
lack geometric sense, as in figure 8.3.

8.7. Conclusion
The impact of the inner product structure of the deformation space on the behavior of
the active contours method had been overlooked so far in the computer vision community.
We have explored several families of inner products, as well as some minimizing flows not
deriving from any inner product by extending the notion of gradient. Given an energy, we
now have several ways to minimize it, each of the proposed flows being a minimizing flow
but leading to different kinds of evolutions. The inner products and the extended gradients
should consequently be seen as priors on the deformation fields, that is to say priors on the
evolution paths. They can be used to introduce different degrees of spatial coherence (local,
semi-local or global) in the evolution of the contour.

We have shown, with some numerical experiments, that these evolutions better fit our
intuitive notion of deformation cost and that they can mimic the behavior of the objects
of interest. As a result, they are at the same time more meaningful and more robust to
irrelevant local minima attraction.
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Figure 8.4: Warping real contours by minimization of the approximation of the Hausdorff
distance with the semi-local rigidification approach. The colors show the correspondences
between the moving curve and the initial one.
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Chapter 9

Shape Statistics: Empirical Mean and
Modes of Variation

Abstract

This chapter is dedicated to the computation of the empirical mean and covariance of a set
of shape examples. We now use the previously developed tools to define several concepts
relevant to a theory of stochastic shapes as well as to provide the means for their effective
computation. They are based on the use of the function E defined by (5.12) which is the
smooth approximation of a distance.

9.1 Empirical mean

The first task is to define and compute the mean of a set of shapes. Inspired by the work
of Fréchet [46, 47], Karcher [63], Kendall [67], and Pennec [96], we provide the following
(classical)

Definition 68. Given Γ1, · · · ,ΓN , N shapes, we define their empirical mean as any shape
Γ̂ that achieves a local minimum of the function µ : S → R+ defined by

Γ → µ(Γ,Γ1, · · · ,ΓN ) =
1
N

∑
i=1,··· ,N

E2(Γ, Γi)

Note that there may exist several means. We know from proposition 55 that there exists
at least one. An algorithm for computing approximations to an empirical mean of N shapes
readily follows from the previous section: start from an initial shape Γ0 and solve the PDE

Γt = −∇µ(Γ,Γ1, · · · ,ΓN )n(9.1)
Γ(0, .) = Γ0(.)

We show some examples of means computed by this algorithm in figure 9.1.
We have not explored the problem of the number of possible local minima in great detail

but observed that the following heuristics led to "visually satisfying" results.
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Figure 9.1: Examples of means of several curves: a square and a circle (left), two ellipses
(middle), and two hands (right).

Suppose that the example shapes are given in some order, according to the way they are
indexed from 1 to N . Initialize Γ̂(1) to Γ1, solve

Γ(i+1)
t = −∇

(
E2(Γ,Γi+1) + iE2(Γ, Γ̂(i))

)
n

Γ(i+1)(0, .) = Γ̂i(.),

and choose Γ̂(i+1) = Γ(i+1) at convergence, for i = 1, · · · , N − 1. Of course, there is not
guarantee that either the result will be independent of the order of presentation (this may
or may not be important, depending on the application) or that it will indeed be a local
minimum of µ(Γ,Γ1, · · · ,ΓN ). Another alternative is to solve (9.1) by choosing Γ0 to be
one of the given shapes. In all cases heuristically we have not found local minima.

We show the result of computing the mean of nine hands with this method in figure 9.2
Another example of mean is obtained from the previous fish silhouettes database: we

have used eight silhouettes, normalized them so that their centers of gravity and principle
axes were aligned, and computed their mean, as shown in figure 9.3. The initial curve, Γ0

was chosen to be an enclosing circle.

9.2 Empirical covariance

We can go beyond the definition of the mean and in effect define something similar to the
covariance matrix of a set of N shapes.

The function S → R+ defined by Γ → E2(Γ, Γi) has a gradient which defines a normal
velocity field, noted βi, defined on Γ, such that if we consider the infinitesimal deformation
Γ − βindτ of Γ, it decreases the value of E2(Γ, Γi). Each such βi belongs to L2(Γ), the
set of square integrable real functions defined on Γ. Each Γi defines such a normal velocity
field βi. We consider the mean velocity β̂ = 1

N

∑N
i=1 βi and define the linear operator

Λ : L2(Γ) → L2(Γ) such that β →
∑

i=1,N < β, βi − β̂ > (βi − β̂). We have the following

Definition 69. Given N shapes of S, the covariance operator of these N shapes relative to
any shape Γ of S is the linear operator of L2(Γ) defined by

Λ(β) =
∑
i=1,N

< β, βi − β̂ > (βi − β̂),
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Figure 9.2: The mean (the dashed curve) of nine hand silhouettes (the continuous curves)
obtained by the sequential suboptimal method described in the text: first step (mean of the
two first curves), fifth step (weighted mean of the sixth curve and of the mean of the five
first curves from the previous step), and final result.
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Figure 9.3: The mean of eight fishes.

where the βi are defined as above, relatively to the shape Γ.

This operator has some interesting properties which we study next.

Proposition 70. The operator Λ is a continuous mapping of L2(Γ) into L2(Γ).

Proof. We have ‖
∑

i=1,N < β, βi − β̂ > (βi − β̂)‖2 ≤
∑

i=1,N | < β, βi − β̂ > |‖βi − β̂‖2

and, because of Schwarz inequality, | < β, βi − β̂ > | ≤ ‖β‖2‖βi − β̂‖2. This implies that
‖
∑

i=1,N < β, βi − β̂ > (βi − β̂)‖2 ≤ K‖β‖2 with K =
∑

i=1,N ‖βi − β̂‖2
2.

Λ is in effect a mapping from L2(Γ) into its Hilbert subspace A(Γ) generated by the N
functions βi− β̂. Note that if Γ is one of the empirical means of the shapes Γi, by definition
we have β̂ = 0.

This operator acts on what can be thought of as the tangent space to the manifold of
all shapes at the point Γ. We then have the

Proposition 71. The covariance operator is symmetric positive semi definite.

Proof. This follows from the fact that < Λ(β), β >=< β,Λ(β) >=
∑

i=1,N < β, βi −
β̂ >2.

It is also instructive to look at the eigenvalues and eigenvectors of Λ. For this purpose
we introduce the N ×N matrix Λ̂ defined by Λ̂ij =< βi − β̂, βj − β̂ >. We have the
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Proposition 72. The N ×N matrix Λ̂ is symmetric positive semi definite. Let p ≤ N be
its rank, σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

p > 0 its positive eigenvalues, u1, · · · ,uN the corresponding
eigenvectors. They satisfy

ui · uj = δij i, j = 1, · · · , N
Λ̂ui = σ2

i ui i = 1, · · · , p
Λ̂ui = 0 p+ 1 ≤ i ≤ N

Proof. The matrix Λ̂ is clearly symmetric. Let now α = [α1, · · · , αN ]T be a vector of RN ,
αT Λ̂α = ‖β‖2

2, where β =
∑N

i=1 αi(βi − β̂). The remaining of the proposition is simply a
statement of the existence of an orthonormal basis of eigenvectors for a symmetric matrix
of RN .

The N -dimensional vectors uj , j = 1, · · · , p and the p eigenvalues σ2
k, k = 1, · · · , p define

p modes of variation of the shape Γ. These modes of variation are normal deformation flows
which are defined as follows. We note uij , i, j = 1, · · · , N the ith coordinate of the vector
uj and vj the element of A(Γ) defined by

(9.2) vj =
1
σj

N∑
i=1

uij(βi − β̂)

In the case Γ = Γ̂, β̂ = 0. We have the proposition

Proposition 73. The functions vj, j = 1, · · · , p are an orthonormal set of eigenvectors of
the operator Λ and form a basis of A(Γ).

Proof. Let us form the product < vj , vk >:

< vj , vk >=
1

σjσk
<

N∑
l=1

ulj(βl − β̂),
N∑
m=1

umk(βm − β̂) >=

1
σjσk

N∑
l=1

ulj

N∑
m=1

< βl − β̂, βm − β̂ > umk =
1

σjσk

N∑
l=1

ulj(Λ̂uk)l =
1

σjσk
uj · (Λ̂uk)

According to proposition 72, Λ̂uk = σ2
kuk and uj ·uk = δjk, which proves the orthonormality

and therefore the linear independence. There remains to show that they generate the whole
of A(Γ). In order to see this, we consider the element β =

∑N
i=1 αi(βi− β̂) of A(Γ) and look

for the coefficients µk, k = 1, · · · , p such that

(9.3)
N∑
i=1

αi(βi − β̂) =
p∑

k=1

µkvk

We take the Hilbert product of both sides of this equation with βj − β̂ to obtain

(9.4) (Λ̂α)j =
p∑

k=1

µk < vk, βj − β̂ > .
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We then use (9.2), replace vk with

vk =
1
σk

N∑
i=1

uik(βi − β̂),

and obtain

< vk, βj − β̂ >=
1
σk

N∑
i=1

uik < βi − β̂, βj − β̂ >=
1
σk

(Λ̂uk)j = σkukj .

Replacing this value in (9.4) yields

(Λ̂α)j =
p∑

k=1

µkσkukj ,

or, in matrix form
Λ̂α = U diag(σ1, · · · , σp)µ

where theN×pmatrix U is equal to [u1, · · · ,up]. Because the matrix U satisfies UTU = Ip,
the p× p identity matrix, and Λ̂U = Udiag(σ2

1, · · · , σ2
p), we obtain the values of the µk:

diag(σ1, · · · , σp)µ = UT Λ̂α = (Λ̂U)Tα = (Udiag(σ2
1, · · · , σ2

p))
Tα,

hence
µ = diag(σ1, · · · , σp)UTα.

Conversely, if we replace the µk by these values in the right handside of (9.3), we verify that
we obtain the left handside.

It remains to verify that Λ(vj) = σ2
j vj , j = 1, · · · , p. By definition

Λ(vj) =
N∑
i=1

< vj , βi − β̂ > (βi − β̂).

We replace in the right handside of this equation vj by its expression (9.2), use proposition
72, and obtain the desired result.

The velocities vk, k = 1, · · · , p can be interpreted as modes of variation of the shape and
the σ2

k’s as variances for these modes. Looking at how the mean shape varies with respect
to the kth mode is equivalent to solving the following PDEs:

(9.5) Γt = ±vk n

with initial conditions Γ(0, .) = Γ̂(.). Note that vk is a function of Γ through Λ which has
to be reevaluated at each time t. One usually solves these PDEs until the distance to Γ̂
becomes equal to σk.

9.3 Examples of modes of variation

An example of this evolution for the case of the fingers is shown in figure 9.4. Another
interesting case, drawn from the example of the eight fish of figure 9.3, is shown in figure
9.5 where the first four principal modes of the covariance operator corresponding to those
eight sample shapes are displayed.
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Figure 9.4: The first three modes of variation for the nine sample shapes and their mean
shown in figure 9.2. The mean is shown in thick continuous line, the solutions of equation
(9.5) for k = 1, 2, 3 are represented in dotted lines.
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Figure 9.5: The first four modes of variation for the eight sample shapes and their mean
shown in figure 9.3. The mean is shown in thick continuous line, the solutions of equation
(9.5) for k = 1, · · · , 4 are represented in dotted lines.
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Figure 9.6: The mean of eight silhouettes of corpus callosum (middle, thick line).

Figure 9.7: From top to bottom, the first three principal modes of variation for the eight
sample shapes. They are the solutions of equation (9.5) for k = 1, 2, 3.
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9.4 Comparison with other approaches

We have presented in section 1.1 the similarities and dissimilarities of our work with that
of others. We would like to add to this presentation the fact that ours is an attempt to
generalize to a nonlinear setting the work that has been done in a linear one by such scientists
as Cootes, Taylor and their collaborators [26] and by Leventon et al. who, like us, proposed
to use distance functions to represent shapes in a statistical framework but used a first-order
approximation by assuming that the set of distance functions was a linear manifold [74, 73]
which of course it is not. Our work shows that dropping the incorrect linearity assumption
is possible at reasonable costs, both theoretical and computational.

In this respect we would also like to emphasize that in our framework the process of linear
averaging shape representations has been more or less replaced by the linear averaging of
the normal deformation fields which are tangent vectors to the manifold of all shapes (see
the definition of the covariance operator in section 9.2) and by solving a PDE based on these
normal deformation fields (see the definition of a mean in section 9.1 and of the deformation
modes in section 9.2).

Another advantage of our viewpoint is that it apparently extends graciously to higher
dimensions thanks to the fact that we do not rely on parameterizations of the shapes and
work intrinsically with their distance functions (or approximations thereof).



Chapter 10

Image Statistics and Object
Classification

Abstract

We would like now to apply to the case of images an approach similar to the one previously
presented for curves and surfaces. We propose a way to deal with the first and second
order statistics of a set of images. These statistics take into account the images charac-
teristic deformations and their variations in intensity. The central algorithm is based on
non-supervised diffeomorphic image matching (without landmarks or human intervention).
As they convey the notion of the mean shape and colors of an object and the one of its
common variations, such statistics of sets of images may be relevant in the context of object
recognition. The proposed approach has been tested on a small database of face images
to compute a mean face and second order statistics. The results are encouraging since,
whereas the algorithm does not need any human intervention and is not specific to face im-
age databases, the mean image looks like a real face and the characteristic modes of variation
(deformation and intensity changes) are sensible. As a step further toward the evaluation of
the approach, we present facial expression recognition experiments. We test the recognition
of the facial expression of someone with and without the knowledge of his/her face with no
expression.

10.1. Introduction

How to find or recognize an object in an image? This is one of the most outstanding open
problems in computer vision. Its solution will require a better understanding of the various
possible visual aspects of a given object or a class of objects. For example, in the case of
faces the description should include variations due to viewpoint, illumination, expression
(happiness, surprise, . . . ), or the identity of the person. Like [53, 56] we think that statistics
on images are necessary in order to tackle this problem. What we propose in this article is in
a sense an extension to the set of images of an object of the work done on the statistics of 2D
or 3D shapes [81, 18, 68]: by computing, from a set of images of a class of objects, the various
ways these images can be warped onto one another we define and compute a mean image
for that class and its second order statistics. Note that unlike previous approaches, e.g., [56]
our approach does not require any manual intervention to identify landmarks or regions of
interest. We work directly on the deformation fields which establish the correspondences
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between the whole images, since these fields are the fundamental elements of the problem.
In order to do this we build upon previous work on non-supervised algorithms that build
such correspondence fields between images, e.g., [81, 115, 60, 43]

In Section 10.2 we model the matching problem between two images and describe a
variation of a matching algorithm proposed in [60] and analyzed in [43]. In Section 10.3 we
use it to define and compute the mean image of a set of images and in Section 10.4 to define
and compute its second order statistics. Then in Section 10.5 we show how to use the mean
image in an expression recognition task.

10.2. Image matching
The main difficulty when defining the mean of several images is that this mean is supposed
to look like each one of the images. This implies that the images have been registered and
supposes the knowledge of a way to estimate the similarity of any couple of images. This is
why we consider now the matching problem between only two images.

Let A and B be two images. We think of them as positive real functions functions defined
in a rectangular subset Ω of the plane R2. We search for a deformation field f such that
the warped image A ◦ f resembles B. More precisely, we would like the field f to be smooth
enough and invertible, i.e. it should be a diffeomorphism from the rectangular subset Ω to
itself, which leads us to assume that the diffeomorphism f equals the identity on the image
boundary ∂Ω. Other possibilities are offered by extending the images to a larger subset Ω1.

In order to keep f continuous, we have to consider a regularizing term R(f) on f ,
for example R(f) = ‖f − Id‖H1

Ω where Id is the identity function on Ω and ‖a‖H1

Ω =∫
x∈Ω ‖a(x)‖

2 + ‖Da(x)‖2 dx. If we prefer to be sure f is a diffeomorphism and remains
invertible, we can consider ‖f − Id‖H1

Ω + ‖f−1 − Id‖H1

Ω , where f−1 is the inverse of f .
The choice of a similarity criterion between two images has already been studied in

part 3.3.2 and we will consider here the local cross-correlation. Note that there exist many
other local criteria, for instance the mutual information, to quantify the similarity between
variations.

The two-image matching algorithm consists in minimizing with respect to the deforma-
tion field f (initialized to the identity) through a multi-scale gradient descent as proposed
in paragraph 3.3.5 the following energy (see [43] for details)

E(A,B, f) = LCC(A ◦ f , B) +R(f).

Thus we obtain a field f which establishes the correspondences between the two images A
and B.

10.3. The mean of a set of images
Now that we know how to compute a diffeomorphic matching between two images, we can
try to infer from this a new algorithm for the computation of the mean of n images Ai
indexed by i ∈ {1, . . . , n}. This is not as easy as one could guess. We present here three
different methods, from the simplest, naive one, to a less intuitive but far better one.

10.3.1. An intuitive algorithm: find the mean
We can first define the mean as the image M which looks the most like all the warped
images, i.e., if we introduce n diffeomorphisms fi in order to warp each image Ai on the
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mean M , we could minimize ∑
i

E(Ai ◦ fi,M, fi)

with respect to both M and the fields fi. But how do we choose the initial image M?
Besides, here is the main problem: we should not minimize the energy E with respect to
an image. Indeed, if we consider the case where n = 2 and the two images are the same
one translated by a few pixels, the gradient term due to the diffeomorphisms should move
them so as to find the translation, but this is prevented by the minimization with respect
to the mean image M , which, by averaging the intensities, introduces new contours induced
by those in the two images. Consequently, at the first step of the minimization the contours
from any of the two images start appearing in M at the same location, and at the second
step the diffeomorphisms will not evolve from the identity anymore.

10.3.2. Another intuitive algorithm
We can then try to substitute in E an expression for M as a function of the diffeomorphisms
and images, thus effectively eliminating the unknown M , in order not to have to take the
derivative of E with respect to an image. For example, we can choose M = 1

n

∑
iAi ◦ fi and

minimize with respect to the fi the following criterion:∑
i

E(Ai ◦ fi,
1
n

∑
k

Ak ◦ fk, fi)

We then encounter another problem: we do not take the derivative of E with respect to
an image, but we try to match for each i the warped image Ai ◦ fi and 1

n

∑
iAi ◦ fi. As

1
n

∑
iAi ◦ fi is the sum of the warped images, it contains in particular all the contours of

Ai ◦ fi, which means that we still have the same problem as before: the diffeomorphisms are
immediately stuck in a local minimum.

10.3.3. The final word: eliminating the mean
The problem comes mostly from the fact that we are trying to work directly on the mean of
the images, whereas we should work only with the fields fi, which carry all the information
about the problem. Indeed, the mean M contains much less information than the diffeo-
morphisms fi: for example the mean of a white disk on a black background and a black disk
on a white background is uniformly grey and consequently has not a large LCC-correlation
with the initial images. Therefore we should rather deal with pairs of warped images than
with pairs of a warped image and the mean. The mean then becomes an auxiliary quantity,
just computed at the end when the diffeomorphisms are known.

The algorithm proceeds as follows: initialize all deformation fields fi to the identity, and
let them evolve in a multiscale framework in order to minimize

1
n− 1

∑
i6=j

LCC(Ai ◦ fi, Aj ◦ fj) +
∑
k

R(fk)

Thus, at the end of the evolution, each Ai ◦ fi is supposed to look like each of the others, and
the mean is naturally computed as M = 1

n

∑
iAi◦fi. The regularizing term

∑
iR(fi) implies

that if several sets of fields fi conduct to approximatively the same energy
∑

i6=j LCC(Ai ◦
fi, Aj ◦ fj) (for example by adding a common diffeomorphism fc to every field and replacing
fi with fi ◦ fc), then the most intuitive one is chosen (the one of least regularizing cost). In
order to accelerate the process in practice, we also impose the condition

∑
i fi = 0 at each

time step by subtracting the mean of the fields 1
n

∑
i fi to each of them.
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Figure 10.1: The ten face images.

Figure 10.2: The ten warped images Ai ◦ fi.

10.3.4. Example
We have tested this algorithm on a face database from Yale1. More precisely, we have
computed the mean face out of photographs of ten different people with similar expressions,
approximatively the same illumination and position conditions, and the same size (195 *
231 pixels). The ten image Ai are shown in figure 10.1, the ten warped images Ai ◦ fi in
figure 10.2, and their mean in figure 10.3.

Note the accuracy of the mean: it looks like a real face, its features are very sharp,
not blurred at all (except the ears), thanks to the simultaneous accurate matching of all
images. If we had used one of the algorithm centered on the mean image instead of the
diffeomorphisms themselves, we would have obtained a completely blurred image because
of non-corresponding edges of different images (the fields being stuck in local minima before
starting to evolve), not far better than a bad simple average of every pixel of all initial
images without warping.

The strange white curved line below the eyes of the mean comes from the reflects of the
light into the eighth man’s glasses, which the algorithm probably confused (and matched)
with the brightness of the top of the other cheeks.

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Figure 10.3: The mean of the previous ten faces.

This computation took about 10 minutes on a standard workstation. Note once again
the good job done by the diffeomorphisms fi, on figure 10.2, with in mind the fact that
there is no human intervention to help the algorithm find the good correspondences, that
the algorithm is absolutely not specific to face databases, and that there is no use of any
kind of prior on the images.

10.4. Second order statistics of a set of images
Now that we are able to compute the mean image of a set of images, we would like to study
its characteristic modes of variation. Indeed, the knowledge of only the mean may be not
sufficient to have a good idea of the whole set of images. For example, there may exist
some relevant typical kinds of changes in the shape or the intensity of an object, without
the knowledge of which you may not be able to discuss the belonging of a new image to the
class defined by the set of images you studied before.

As the information about the shape variations in the set of images Ai lies in the dif-
feomorphisms hi, we compute statistics on these warping fields. The same way, as the
information about the intensity variations (changes of skin texture, of hair color...) lies
in the intensity of the warped images Ai ◦ fi, since when they are warped their pixels are
corresponding, we also compute statistics on the intensity of the warped images. Finally, as
there could be links between shape variations and intensity variations, we compute combined
statistics.

10.4.1. Definition and computation
These deformation fields are functions from a subset Ω of the plane R2 to itself, therefore
the natural way to express correlation between two fields a and b is to compute their inner
product for the usual norm L2(Ω → R2):

〈a |b〉L2(Ω→R2) =
1
|Ω|

∫
Ω

a(x) · b(x) dx

Since the mean f̄ of the fields fi is 0 (see above), the (shape-)correlation matrix SCM defined
by

SCMi,j =
〈
fi − f̄

∣∣fj − f̄
〉
L2(Ω→R2)

can be simplified in
SCMi,j = 〈fi |fj 〉L2(Ω→R2) .

Then we diagonalize the correlation matrix SCM (its size n× n depends on the number of
images, not the number of pixels), and extract its eigenvalues σk and normalized eigenvectors
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vk. We obtain n− 1 modes of deformation (one being null because of the linear constraint∑
i fi = 0), and the kth mode mk is given by the coefficients of vk:

mk =
∑
i

(vk)i fi.

As statistics were made in the linear space L2(R2 → R2), we can continuously apply
a mode mk to the mean image M with an amplitude α (∈ R) by computing the image
M ◦ (Id + α(mk − Id)), and then produce animations of the deformations. Note however
that a linear combination of such modes is not guaranteed anymore to be a diffeomorphism
since it may happen not to be invertible, even if such a phenomenon was not observed in
the studied example for reasonable values of the components α.

10.4.2. Example
These modes are illustrated in figure 10.4. Each column represents a mode, starting from
the main one (leftmost column) to the one with the smallest eigenvalue, which is actually
0 since one mode is null (rightmost column). Each column is divided in five images: in the
central image of each column, we represent the mean we computed before; in the images
just above and underneath the mean, we represent the mode applied to the mean with
amplitude +σk and σk; and then with amplitude +2σk and −2σk in first and last image of
each column, in order to exaggerate and better visualize the deformations.

Note that the images on the second and fourth lines still look like normal faces of various
people; it is a very good point since they are supposed to be characteristic examples of what
shape variations the mean face can undergo without getting out of the class of face images.

On the contrary, images on the first and last lines are stranger: even if we still recognize
they look human a bit, we see immediately that there are not real; which is not the case of
the other lines. This is also a good point, since these images have been obtained by applying
the characteristic modes twice too far (with amplitude 2σk instead of σk), which shows that
the amplitudes of the deformations (the values of σk) are right, and shows that a set of
images is well described by its characteristic shape variations.

10.4.3. Intensity variations
In order to take all the face variations into account, we should not only consider the shape
variations (i.e. the diffeomorphisms) but also the intensity variations. As before, we can
define an intensity-correlation matrix ICM on the intensity variations Ii:

Ii = Ai ◦ fi −M

for the L2(R2 → R) inner product. Thus, we can compute the principal modes of intensity
variations, which correspond to skin or hair changes for a shape-fixed head (see figure 10.5).

We can also combine shape and intensity variations. If we note σ2
S = 1

n

∑
i ‖fi‖2 and

σ2
I = 1

n

∑
i ‖Ii‖2 the standard deviations of shapes and intensities, we can define a combined

correlation matrix CCM by

CCM =
1
σ2
S

SCM +
1
σ2
I

ICM

and proceed as before, compute and display principal modes of variations. This matrix can
be considered as resulting from a inner product on the set of variations (shape and intensity):
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Figure 10.4: The shape modes of deformation of the previous set of images. Each column rep-
resents a mode, applied to the mean image with amplitude α = {2σk, σk, 0,−σk,−2σk}.The
(relative) values of the eigenvalues are, from left to right, 1, 0.5, 0.3, 0.1,. . . , 0.05, 0.

Figure 10.5: The characteristic modes of variation of the intensity (same set of im-
ages). Each column represents a mode, applied to the mean image with amplitude
α = {2σk, σk, 0,−σk,−2σk}.
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from two elements (fi, Ii) and (fj , Ij) in this set, we can compute their correlation:

〈fi, Ii |fj , Ij 〉 =
1
σ2
S

〈fi |fj 〉+
1
σ2
I

〈Ii |Ij 〉

where the two coefficients stand for the relative variability of each component. The results
are shown on figure 10.6. Note again how these faces are realistic and diversified (hair, skin,
illumination, mustache). We can see more various attitude than before, when we considered
only shape variations. This is partly due to the fact that illumination and shadow carry
information on the 3D shape (for example, the shape of the cheeks) which is not directly
retrievable from the sharpest edges of 2D images.

Figure 10.6: The eight non-zero combined modes of deformation of the same set of images
without the subject with glasses. Each column represents a mode, applied to their mean
image with amplitude α = {σk,−σk}. The (relative) values of the eigenvalues are, from left
to right, 1, 0.555, 0.505, 0.424, 0.286, 0.232, 0.162, 0.135.

10.5. Classification: Expression Recognition
Let us now consider the facial expression recognition task. The goal is to associate with any
new face its expression. We still use the Yale database. We remove from this database the
2 subjects wearing glasses and we consider the 5 following facial expressions: happy, sad,
sleepy, surprised and winking, beside the "normal" one.

10.5.1. From the mean image
The following simulations show that deformations from a mean face can be used to classify
facial expressions. More precisely we choose as a reference face the mean "normal" face of
the first 9 subjects of the database. Our first classification procedure uses a Support Vector
Machine with Gaussian kernel2 on the deformations from this face to expressive faces. To
measure the efficiency of the method, we cross-validate the errors by taking out one subject
among the 13 subjects in the database and consequently using 60 faces labeled by their
expression to deduce the expression of the five remaining faces3.

2The bandwidth of the kernel is equal to the median of the norms of the difference between 2 deformations
of the training set.

3Thus we have no prior information on the subject to classify his facial expressions.
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The cross-validation error is 24 upon 65 faces. For comparison purposes, we trained a
Support Vector Machine with Gaussian kernel4 using only the gray level intensity informa-
tion. In this case we obtained a larger cross-validation error of 27 upon 65 faces which shows
the interest of using the diffeomorphisms.

10.5.2. With knowledge of the face without expression
The advantage of using the deformations instead of the gray level intensities is even larger
when we know whose face it is that we want to process. More precisely, if we use the subject’s
"normal" face to compute the deformation between the expressive one and classify this
"expression" deformation after alignment on the mean face (using the "subject" deformation
between the mean face and the face without expression), the cross validation error goes
down to 12 (upon 65), whereas the classification using the difference of gray level intensities
between the expressive face and the normal one leads to 17 errors.

These results, although preliminary, indicate that the mean image can be very useful
in a classifying task, considering that the database is small, that the procedures were not
specialized to faces, and that even a human classifier may have problem with some of the
considered faces (see figure (10.7) again)!

They also stress the importance of the notion of deformation: from the raw gray level im-
ages we extracted spatial deformations, and from the only knowledge of these deformations
(without even the knowledge of the intensity variations !) we obtained better results with
SVM than the direct application of SVM to the gray level images, whereas there is a priori
more information in the whole initial images. The design of the quantities of interest when
trying to build statistics via such tools as kernel methods is consequently fundamental, even
if in the case of these particular experiments SVM on raw images appears to be surprisingly
efficient.

10.6. Summary and Conclusions
We have defined and computed first and second order statistics of a set of images with a
diffeomorphic matching approach (without landmarks or human intervention), and shown
how to use them in a classification task. We have tested this general approach on a face
database, and the results are encouraging: the mean face looks like that of a real human
being, with sharp contours, the modes of variations (shape and intensity) are very sensible,
and the expression recognition results are good, especially if we are also given a "normal"
image of the face to classify. We insist on the fact that our methods are not specific to faces
and do not use any prior on the kind of images.

Acknowledgments
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Inference for Machine Learning of the Max Planck Institute for biological cybernetics.
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Chapter 11

Image Segmentation with Shape
Priors

Abstract

The definition of shape priors based on the previously computed shape statistics and to
their application to an image segmentation task is now addressed. Several kinds of priors
are considered, some necessary heavy calculi are computed, and some results are shown.

11.1 Image Segmentation

Finding the contour of an object in an image is a very difficult and ill-posed task. We
are here interested in the precise task of finding an object in an image with the knowledge
of a set of examples, i.e. a set of images such that in each of them the object appears
and has already been segmented. Usually, the only information retrieved from the set of
examples comes from statistics on the intensity of the two regions (the inside of the object
and the background), which does not carry any information about the shape of the object.
Consequently, during an active-contour based evolution in order to segment a new image,
the only restriction concerning shape will be brought by the regularity term which imposes
the smoothness of the contour. Nevertheless, priors about the shape of the object that is
looked for in an image can greatly improve these established techniques.

We present here some ways to take into account the shape statistics computed in chapter
9 into the standard active-contour algorithms for segmentation.

Given a set of n shapes D = (Γi)16i6n and their mean M , let us denote by αi the defor-
mation field −∇ME

2(M,Γi) defined on M . As studied before, each αi is a best deformation
field whose application to M moves it closer to the shape Γi. As all these fields αi belong to
the same space, the tangent space of the mean curve M , we can easily compare them and
compute statistics, as done in chapter 9. Besides, drawing directly an histogram of these
warping fields αi is not easy for the simple reason that these fields are infinite dimensioned.
The next section is devoted to the definition of several shape priors based on different ways
to introduce a distance to the shape distribution D.
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11.2 Shape Priors

11.2.1 Context

Let C be the evolving curve which we would like to fit the contour of the object in the new
given image I. We can express any energy minimization as a probability maximization, the
two approaches being essentially the same. We would like to maximize the probability:

P (C|I)

with respect to C. By the way:

P (C|I) =
P (C, I)
P (I)

= P (I|C)
P (C)
P (I)

' P (I|C) P (C).

Then P (I|C) is given by the standard approach (based on intensity gradients, statistics
on textures and so on), while P (C) expresses the probability that C has such shape. In
the sequel P (C) will stand for any positive, upper-bounded energy depending on C, and its
total mass will not necessarily be equal to one.

11.2.2 Shape Probability

A simplistic method

Given a distance or energy E between shapes, for instance the approximation of the Haus-
dorff distance, a new distance between C and the whole shape distribution D = (Γi) could
be defined as: ∑

i

E2(C,Γi).

But the global minimum of this energy has already been studied and it is the mean
shape M , so that this energy is not really more interesting than E(C,M). In particular the
shape variations in D are not taken into account.

Parzen method

Another way to express the probability of belonging to the set D is to estimate the density
of sample shapes around C. The Parzen method sets:

P (C) =
∑
i

exp−
E2(C,Γi)

2σ2

for a given scale parameter σ. At scale σ, if the sample density is low around C, then C
is trapped into a low potential area around its nearest neighbor and the maximization of
P (C) by gradient ascent will lead to this nearest neighbor. On the contrary if the sample
density is high with respect to the scale σ then C will be attracted towards a local mean of
its nearest neighbors. Some variations on this kind of prior have been proposed by Cremers
and Schnörr and colleagues [28, 29, 27].
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Kernel method based on the gradient

Another way to estimate the probability of the shape C is to compare the deformation field
α = −∇ME

2(M,C) which “links” the mean M to the curve C with the observed fields
αi = −∇ME

2(M,Γi) which “link” M to each one of the sample curves Γi. There is a
natural norm in this tangent space, the one that comes from the inner product with respect
to which the gradients are computed, say ‖·‖L2 for the sake of readability. With Parzen-like
considerations, this probability can then be given by

P (C) =
1
N

∑
i

K(α− αi)

where K(α − αi) expresses the difference between α and αi, for example one can choose
the Gaussian kernel K(β) = e

− 1
2σ2 ‖β‖2L2 . Note that the maximization of this probability

(as well as the following ones) requires the computation of the derivative of the field α =
−∇ME

2(M,C) with respect to C, i.e. the second order cross-derivative of E.

Gaussian Eigenmodes (PCA on gradients)

It is also possible to include second order statistics (from section 9.2) into the design of the
shape probability. The eigenmodes βk of deformation of the set of shapes are obtained by
PCA applied to the set of observed fields αi. The most significant modes βk are the ones
with highest associated standard deviation σk; therefore you can take only the very first
modes into account. However the issue to determine the number of modes of interest is not
fundamental since the importance of each mode will be related to its standard deviation
and consequently the consideration of some extra modes with low standard deviation will
not change significantly the distribution.

The PCA decomposition supposes implicitly that linear combinations of instantaneous
deformation fields αi make sense (which is precisely the expectation of such an approach) and
that their distribution is Gaussian, that is to say, that for any mode βk, the distribution of
the k-th principal component 〈βk |αi 〉L2 of the observed fields αi is Gaussian, which implies
that the shape probability should be of the form

P (C) =
∏
k

e
−
〈βk|α 〉2L2

2σ2
k × e

− ‖Rem.(α)‖22
2σ2

noise

where Rem.(α) stands for the remaining part α −
∑

k 〈α |βk 〉L2 that cannot be described
by the eigenmodes. Note that the corresponding distance between a shape and the shape
distribution is: √∑

k

1
σ2
k

〈α |βk 〉2 +
1

σ2
noise

‖Rem.(α)‖2
2.

From a certain point of view, the level sets of this distance are ellipsoidal. This distance is
a variation on the Mahalanobis distance.

Eigenmode Histograms

However the distribution is generally not Gaussian. Then the modes can be computed
with ICA (independent component analysis) instead of PCA, and for each mode k the



166 Image Segmentation with Shape Priors

histogram hk of the observed components 〈βk |αi 〉 can be drawn. The histograms may need
some smoothing if the density of the distribution is low. Then the empirical probability is
given by:

P (C) = P (α) =
∏
k

hk(〈βk |α〉).

11.2.3 Invariance with respect to Rigid Motion

In most cases one may prefer the shape probability P (C) to be invariant with respect to
rotations, translations and scalings of the shape C. Let us denote by t a translation in the
plane R2, by θ the angle of a rotation and by s the factor of a scaling centered on the inertial
center of C. To be concise the rigid motion with these parameters is denoted by Rt,θ,s = R.
Thus we introduce:

P (C, t, θ, s) = P (Rt,θ,sC) = P (RC)

which leads to a new probability distribution:

P2(C) = max
t,θ,s

P (C, t, θ, s) = max
R

P (RC)

However, in practice, the estimation of the best parameters t, θ and s for the curve C
could be progressively computed at the general level at the same time as the curve C itself,
rather than completely at each step of the maximization algorithm (for each successive value
of C). Hence we have the choice between two slightly different possibilities, induced by these
two ways of writing the expression to minimize:

log
[
max
C

P (C|I)
]

= max
C

log [P (I|C)] + max
C

log
[
max
R

P (RC)
]

or
log
[

max
C,t,θ,s

P (C|I)
]

= max
C

log [P (I|C)] + max
C,t,θ,s

log [P (RC)] .

11.2.4 Pre-Computing

In the three last cases, α stands in the expression of the probability to maximize, which
implies that the derivative of α with respect to C will have to be computed. For example
in the kernel method based on the gradient, we need the expression of the gradient of
P (C) with respect to the curve C (more exactly, of P (C, t, θ, s) with respect to each of its
variables, which essentially leads to the same calculus):

∇CP (C) =
1
N

∑
i

∇βK(β)|β=∇ME2(M,C)−αi × ∇C∇ME
2(M,C).

Hence we need to compute part of the second order derivative of E, which requires some
bravery in the case of the approximation of the Hausdorff distance... Many authors have
considered signed distance functions as a mean to express shape priors [94, 98]. Here, the
calculations happen to be sometimes much simpler if the energy is based not on a shape but
on its distance function, that is to say if you consider that the real object of interest is now
a function defined on the whole space Rn and not only its zero level, regardless of whether
it is a distance function or not. In the case of the W 1,2 norm of the distance functions
of the shapes, if the derivatives are directly computed with respect to the function itself



11.2 Shape Priors 167

(which does not guarantee that the evolving function should remain a distance function),
the obtained probability gradient is:

∇dCP (dC) =
∑
i

(Id−∆)
(
∇β K(β)|β=(Id−∆)(dC−dΓi )

)
and for the L2 norm only the gradient is:

∇dCP (dC) =
∑
i

∇β K(β)|β=dC−dΓi
.

This last criterion is very similar to the one developed by Leventon, Grimson and Faugeras
in [73, 74], which consists in the application of PCA to signed distance functions. However
such an approach is questionable since a linear combination of signed distance functions is
generally not a signed distance function and has sometimes a really unexpected zero level.

11.2.5 Influence of the inner product

The choice of an inner product in the tangent space to a shape defines the notion of gradient.
As shape priors involve the gradient α as well as statistics about the observed gradients in
the sample, it could be interesting to study more precisely the influence of this choice on
the prior. In the spirit of the section 7.3.1, if the chosen inner product P is related to the
L2 inner product through a symmetric definite operator S by 〈u |v 〉P =

〈
S−1u |v

〉
L2 , then

the proposition 57 states that the gradient of any energy E(Γ) is linked to the L2 gradient
through the expression: ∇PE(Γ) = S

(
∇L2

E(Γ)
)
.

The quantities of interest here are derivatives with respect to the average shape M :
α = −∇L2

ME2(M,C) and αi = −∇L2

ME2(M,Γi). For another inner product P , they are
respectively:

αP = −∇P
ME

2(M,C) = Sα and αPi = −∇P
ME

2(M,Γi) = Sαi .

Then, for any field β,
〈
αP |β

〉
P

= 〈α |β 〉L2 and, if S1/2 is such that tS1/2S1/2 = S:〈
αPi
∣∣αPj 〉P =

〈
αi
∣∣αPj 〉L2 =

〈
αPi
∣∣αj〉L2 =

〈
S1/2αi

∣∣∣S1/2αj

〉
L2
.

If S stands for a smoothing operator (or rigidifying, etc.) then the correlation between the
smoothed fields

〈
αPi

∣∣∣αPj 〉
P

is in fact the L2 correlation between the half-smoothed fields〈
S1/2αi

∣∣S1/2αj
〉
L2 .

In the case of the L2 inner product, the eigenmodes βk are obtained by diagonalization
of the correlation matrix A =

(
〈αi |αj 〉L2

)
16i,j6n. More exactly, A is a n × n symmetric

positive semi definite matrix and admits n eigenvectors vk, which are in Rn and satisfy
〈vk |vk′ 〉L2(Rn) = δk=k′ . Then the modes βk are defined by βk =

∑
i (vk)i αi and conse-

quently satisfy 〈βk |βk′ 〉L2 =
∑
i,j

(vk)i 〈αi |αj 〉L2 (vk′)j = tvkAvk′ = δk=k′σ
2
k.

With the inner product P , the new eigenmodes are related to the matrix

AP =
(〈
αPi
∣∣αPj 〉P)16i,j6n

=
(〈
S1/2αi

∣∣∣S1/2αj

〉
L2

)
16i,j6n

.

The new eigenvectors vk (different from the previous ones) are still orthogonal for the L2

inner product in Rn. Then new eigenmodes βk can be defined by βk =
∑

i (vk)i αi, or
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equivalently, they can be defined by βPk =
∑

i (vk)i α
P
i = Sβk. They satisfy

〈
βPk
∣∣βPk′ 〉P =〈

S1/2βk
∣∣S1/2βk′

〉
L2 =

〈
βk
∣∣βPk′ 〉L2 =

∑
i,j (vk)i

〈
αPi

∣∣∣αPj 〉
P

(vk′)j = tvkAPvk′ = δk=k′σ
2
k.

Thus, given a set of shapes (Γi) and their associated modes (βPk ), the component of a
new field αP on the kth mode can be computed in several manners:〈

αP
∣∣βPk 〉P =

〈
α
∣∣βPk 〉L2 =

〈
αP
∣∣βk〉L2 =

〈
S1/2α

∣∣∣S1/2βk

〉
L2
.

11.3 Hausdorff second order derivative

We need the literal expression of the second order derivative of the approximation of the
Hausdorff distance with respect to the curves in order to include into the usual image
segmentation framework an a priori term involving second-order statistics of shapes. More
exactly, we need the expression of ∂B∂AdH(A,B). This is the subject of the four following
pages.
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11.3.1 Notations
A, B two planar curves

d(x, y) usual Euclidean distance between points x and y

φ a strictly decreasing application R+ 7→ R+

ψ,Ψ strictly increasing applications R+ 7→ R+

Φ
ψ′

φ′

Θ
Ψ′

ψ′

〈f(x)〉x∈A , 〈f(·)〉A
1
|A|

∫
A
f(x) dx (mean of application f on curve A)

σA(f(·), y) 〈f〉A − f(y) (deviation of application f at point y of curve A)

φ ◦ d(·) φ (d(·))

〈d〉φA φ−1 (〈φ ◦ d(·)〉B) mean on A of application d(·) in the sense of function φ

〈a, b〉Ψ Ψ−1

(
1
2
Ψ(a) +

1
2
Ψ(b)

)
mean of two real values in the sense of function Ψ

ΦBφ(y) Φ
(
〈d(·, y)〉φB

)
ΘBφAψ Θ

(〈
〈d(·, ·)〉φB

〉ψ
A

)
= Θ

(〈
〈d(x, y)〉φx∈B

〉ψ
y∈A

)
−→
D(y, x)

y − x

d(x, y)
φ′(d(x, y))

dH(A,B)
〈〈

〈d(·, ·)〉φA
〉ψ
B
,
〈
〈d(·, ·)〉φB

〉ψ
A

〉Ψ

smooth approximation of the Hausdorff distance

−→n (y) (unit vector) normal to the current curve at point y

κ(y) curvature of the current curve at point y

ξ(a) 1− a
Ψ′′(a)
Ψ′(a)

U(y, x)(δy)(δx) = Dx

[−→
D (y, x) · −→n (y) −→n (y) · δy

]
· δx (symmetric)

= φ′′(d(x, y))
(
x− y

d(x, y)
· δx
)(

y − x

d(x, y)
· δy
)

+
φ′(d(x, y))
d(x, y)

[
−δx · δy +

(
x− y

d(x, y)
· δx
)(

y − x

d(x, y)
· δy
)]
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11.3.2 First order derivative

The first order derivative of a functional with respect to a curve A is a vector field defined
on this curve, that is, an application that associates to each point y of curve A a vector.
Note we consider here the derivative of the square of dH . We recall its expression:

∇Ad
2
H(A,B) =

1
2|A|

dH(A,B)
Ψ′(dH(A,B))

[
ΘBφAψ σA (ψBφ(·), y) κ(y)−→n (y)

+
〈

(ΦBφ(y) ΘBφAψ + ΦAφ(x) ΘAφBψ)
−→
D(y, x) · −→n (y)

〉
x∈B

−→n (y)

+ ΘAφBψ 〈 ΦAφ(x) σA (φ ◦ d(x, ·), y) 〉x∈B κ(y)−→n (y)
]

11.3.3 Second order derivative

The second order cross-derivative ∂B
[
∂A d

2
H(A,B)

]
(δA)(δB) is an application that asso-

ciates a real value to any couple of two fields δB and δA defined respectively on B and A.
This application is supposed to be symmetric (∂A∂B = ∂B∂A and dH(A,B) is symmetric).

It can be rewritten as:

∂B

[〈
∇A d

2
H(A,B)(y)

∣∣ δA(y)
〉
y∈A

]
(δB)

hence
∂B
[
∇A d

2
H(A,B)

]
(y)

is an application that associates to any field δB a field defined on A.

With a slight abuse of notations:

∇B

[
∇A d

2
H(A,B)

]
(y)(z)

is a kind of super-matrix which for any two points y on A and z on B is a 2× 2 matrix. For
two fields δA and δB,

∇B

[
∇Ad

2
H(A,B)

]
(y)(z) (δA(y)) (δB(z))

is a real value for each (y, z). In the sequel, ∇B

[
∇A d

2
H(A,B)

]
(y)(z) will be proportional

to the tensor product −→n (y) −→n (z), where −→n (y) is to be thought as −→n (y) · δA(y), and −→n (z)
as −→n (z) · δB(z).
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Theorem 74. With the previous notations, the second order cross-derivative of the approx-
imation of the Hausdorff distance is:

∇B

[
∇A d

2
H(A,B)

]
(y)(z)

=

ξ(dH(A,B)) ∇B [dH(A,B)] (z) ∇A [dH(A,B)] (y)

+
1

2|A| |B|
dH(A,B)

Ψ′(dH(A,B))
×
[

ΘAφBψ ΦAφ(z) σA

(−→
D(z, ·), y

)
· −→n (z) −→n (z) κ(y)−→n (y)

+ ΘAφBψ σB (ΦAφ(·) σA (φ ◦ d(·, ·), y) , z) κ(z)−→n (z) κ(y)−→n (y)

+ ΘAφBψ

(
Φ′

φ′

)
Aφ

(z) σA (φ ◦ d(z, ·), y)
〈−→
D (z, ·)

〉
A
· −→n (z) −→n (z) κ(y)−→n (y)

+
(

Θ′

ψ′

)
AφBψ

ΦAφ(z) 〈ΦAφ(·) σA (φ ◦ d(·, ·), y)〉B
〈−→
D (z, ·)

〉
A
· −→n (z) −→n (z) κ(y)−→n (y)

+
(

Θ′

ψ′

)
AφBψ

σB (ψAφ(·), z) 〈ΦAφ(·) σA (φ ◦ d(·, ·), y)〉B κ(z)−→n (z) κ(y)−→n (y)

+ ΘAφBψ

(
Φ′

φ′

)
Aφ

(z)
〈−→
D (z, ·)

〉
A
· −→n (z) −→n (z)

−→
D (y, z) · −→n (y) −→n (y)

+ ΘAφBψ σB

(
ΦAφ(·)

−→
D (y, ·), z

)
· −→n (y) −→n (y) κ(z)−→n (z)

+
(

Θ′

ψ′

)
AφBψ

ΦAφ(z)
〈
ΦAφ(·)

−→
D (y, ·)

〉
B
· −→n (y) −→n (y)

〈−→
D (z, ·)

〉
A
· −→n (z) −→n (z)

+
(

Θ′

ψ′

)
AφBψ

σB (ψAφ(·), z)
〈
ΦAφ(·)

−→
D (y, ·)

〉
B
· −→n (y) −→n (y) κ(z)−→n (z)

+ ΘAφBψ ΦAφ(z) U(y, z) (−→n (y)) (−→n (z))

+ symmetric term (A 7→ B, y 7→ z)]
.
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11.3.4 Calculi

In order to compute ∇B

(
∇Ad

2
H(A,B)(y)

)
(z), where z is a point of the curve B, the fol-

lowing derivatives have been used:

∇B

(
1

2|A|
dH(A,H)

Ψ′(dH(A,B))

)
=

1
2|A|

Ψ′(dH)−Ψ′′(dH)
Ψ′(dH)2

∇BdH(A,B)

∇B (〈f〉B) (y) =
1
|B|

[
σB(f, y)κ(y) + f ′(y) · n(y)

]
n(y)

∇B (〈f(B, ·)〉B) (y) = 〈∇1f(B, x)(y)〉x∈B +
1
|B|

[σB(f(B, ·), y)κ(y) + ∇2f(B, y) · n(y)] n(y)

∇B

(
〈d(·, y)〉Bφ

)
(z) =

1
|B|φ′(〈d(·, y)〉Bφ)

[σB (φ ◦ d(·, y), z)κ(z) + U(z, y) · n(z)] n(z)

∇B (ΦBφ(y)) (z) = Φ′
(
〈d(·, y)〉Bφ

)
∇B

(
〈d(·, y)〉Bφ

)
(z)

∇B (ΘBφAψ) (z) =
Θ′

ψ′

(〈
〈d〉Bφ

〉
Aψ

)
×〈

1
|B|

ΦBφ(y) [ σB (φ ◦ d(·, y), z)κ(z) + U(z, y) · n(z) ]
〉
y∈A

n(z)

∇B (ΘAφBψ) (z) =
Θ′

ψ′

(〈
〈d〉Aφ

〉
Bψ

)
×

1
|B|

[
σB

(
ψ
(
〈d(·, ·)〉Aφ

)
, z
)
κ(z) + ΦAφ(z) 〈U(z, y) · n(z)〉y∈A

]
n(z)

U is a derivative: U(y, x) · (δy) = ∇y (φ(d(y, x))) (δy) so ∇x (U(y, x)) is a second order
(symmetric) derivative:

∇x (U(y, x)) (δx)(δy) = φ′′(d(x, y))
(
x− y

d(x, y)
· δx
)(

y − x

d(x, y)
· δy
)

+
φ′(d(x, y))
d(x, y)

[
−δx · δy +

(
x− y

d(x, y)
· δx
)(

y − x

d(x, y)
· δy
)]

∇x (σA (φ(d(x, ·)), y)) = 〈U(x, z)〉z∈A −U(x, y) = σA (U(x, ·), y)
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11.4 Examples of Segmentation with Shape Priors

A few experiments are now computed in order to validate some of the shape priors introduced
in section 11.2.2.

11.4.1 Rigid registration of a fixed shape

A set of 12 images of sea-stars1 (see figure 11.1) has been segmented by hand. This could
be automatized in the general case if the examples of the sample set are chosen so that they
are easy images to segment with usual algorithms. The sea-stars have then be registered
so that their center of mass and average radius coincide, that is to say that they have been
scaled and translated automatically to predefined values of these two quantities.

The mean curve of the set of sea-stars has been computed by estimating the best rigid
deformation for each sea-star (translation, scaling, but rotation also) and moving it ac-
cordingly (as in section 11.2.3) while computing the mean shape of the thus-rigidly-warped
sea-stars (as in section 9.1). More quantitatively, to each sample Si a rigid motion Ri with
parameters (ti, θi, si) is associated. Each Ri is initialized so that the center of mass and the
mean radius of the warped shape Ri(Si) are predefined values, and the angle parameter θi
is initialized to 0. The mean shape M is arbitrary initialized (experience seems to confirm
that the result does not depend on this initialization), for instance as being the first example
S1. The criterion, where E stands for the approximation of the Hausdorff distance,∑

i

E2(M,Ri(Si))

is minimized (by gradient descent) at the same time with respect to M and to all parameters
(ti, θi, si)i∈I .

At convergence of the mean shape M , the computed rigid motions Ri associated to each
sample are deliberately left out, while all these translation, rotation and scaling parameters
could have been useful if one had wished to express statistics about the location, orientation
and size of sea-stars in images. Here however the algorithm is designed to be invariant with
respect to rigid motion.

The shape prior in the image segmentation task is chosen to be equal to E2(M,R(C)),
where C is the current evolving shape and R a rigid motion. The shape C and the parameters
of R are estimated simultaneously within a framework similar to the previous one.

There exist many approaches to image segmentation in the computer vision literature,
for instance the Mumford-Shah functional [83, 82], geodesic active contours [14, 16, 15], or
region histograms [92, 12, 61, 89, 90, 93, 88].

A new image of a sea-star is segmented using a region intensity histogram criterion with
and without this shape prior (see figure 11.2). More precisely, as the image has “naturally”
256 grey levels, the intensity histograms of the inside hI and outside hO of the contour C
are real-valued functions of an integer which can have 256 possible values. They associate
to any grey level the number of such colored pixels in the corresponding region. The two
histograms are supposed to be relatively homogeneous and as much different one from the
other as possible. The segmentation criterion to minimize which is considered here is a
weighted sum of the length |C| of the contour C plus the correlation between a slightly

1found via Google Images
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Figure 11.1: The learning set of sea-stars.
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smoothed version of the intensity probability distributions of the two regions pI = hI/|I|
and pO = hO/|O| (where |I| is the area of the region I):

1
256

∑
a∈J0,255K

(Gσ ? pI) (a) (Gσ ? pO) (a) + |C|

where Gσ? is the Gaussian smoothing with parameter σ.
In figure 11.2, the location of the sea-star is found, but of course the shape variability

of the sample set has not been taken into account. Consequently, either the result of the
segmentation is exactly the mean without any non-rigid deformation (if the weight of the
shape prior is huge), or it is the mean plus any small deformation (without any priors on
this deformation).

This algorithm is simplistic since the prior is a fixed shape (up to rigid motion), but
it helps finding a not-too-varying object as well as an occluded, shape-fixed object. Note
also that the rigid registration process could be partly handled by the use of the rigidified
gradient.

11.4.2 Parzen method with the Hausdorff distance

To illustrate the Parzen method, three pictures (figure 11.4) of a same object under slightly
different points of view have been segmented by hand and the obtained contours have been
considered as a (tiny) sample set of examples. A new picture of the same object under
a new point of view is then segmented (see figure 11.5) using a criterion based on region
intensity histograms, with or without the shape prior previously introduced as inspired from
the “Parzen method”.

The segmentation of the new image without the shape prior lacks the mouse’s contour
because the lightest gray levels inside the mouse are indeed lighter than the darkest gray
levels in the remaining part of the image. An approach based on the intensity gradient
may have led to better results in this case. The segmentation with the same initialization
and intensity criterion but with the Parzen-like shape prior is quite good. The method
works well here because the contour to find is not very far from one of the given examples.
However if a higher shape variability has to be taken into account, this method requires
to be previously given a dense enough sample of examples. Obviously this is problematic
when the intrinsic dimension of the shape variability gets higher. This is due to the fact
that, in the best case, this method is only able to build a local mean between examples (if
the parameter σ and the weight between the two terms of the segmentation criterion are
well suited to). Consequently in the case of sparse data it cannot infer from the observed
deformations new combinations of them. Depending on the aim of the user, this can be seen
as a good point or as a limitation.

In comparison, the eigenmode method (computed next) has the advantage that it can
deal with sparser data. If the purpose is to depict accurately the observed sample, then
the ICA method with component histograms may show itself useful; but if the aim is to
infer as most as possible from a non-exhaustive sample, then the eigenmode decomposition
also provides an appropriate framework by potentially allowing combinations of observed
deformations. For example this is the case with the Gaussian distribution assumption.

Another drawback of the Parzen method is that is the data sampling is dense, then the
algorithm will be slow since it requires at each time step the successive consideration of each
sample, whereas in the Gaussian eigenmodes approach, the number of considered modes can
be easily limited if necessary.
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Figure 11.2: Top left: any reasonable initialization for the region intensity histogram crite-
rion. A part of the image has been erased in order to increase the difficulty. Top middle:
automatic change for the mean at the same location with similar size. Rest: some steps of
the segmentation process with knowledge of the mean shape. This rigid criterion finds the
location of sea-star but lacks information about how to adapt the final shape. Indeed for
a smaller weight of the prior, the result will include the small white balls connected to the
sea-star, as in figure 11.3.

Figure 11.3: Top left: same initialization as before. Rest: some steps of segmentation
process without any shape prior, for the same region criterion. The result lacks the global
shape of the sea-star and include the small white balls.
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Figure 11.4: The sample set of pictures whose extracted contours are given to the algorithm.

Figure 11.5: Top: new picture to be segmented and initial contour. Left: result of the image
segmentation for a criterion based on region histograms. Right: result of the segmentation
for the same initialization and the same criterion based on histograms, but also with the
Parzen-like shape prior.
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11.4.3 Gaussian Eigenmodes

The mean shape computed in section 11.4.1 is considered again. But this time, at conver-
gence, the mean shape M as well as the instantaneous deformation fields ∂ME2(M,Ri(Si))
from M to each of the finally-rigidly-warped examples are constituents of the shape prior,
while possible statistics on the rigid motions Ri are still ignored. The Gaussian eigenmodes
βk related to the instantaneous deformation fields are computed. The shape prior that is
used for these experiments is the square of the Mahalanobis distance.

Starting with a toy example to show the strength of this approach, a small set of four
similar rectangles with two kinds of outgrowths is considered. For this particular example,
the mean shape was computed without simultaneous registration of the samples and there
was no optimization concerning rigid motion between the mean shape and the evolving
shape during the segmentation process, that is to say that the mean had a fixed location.
Indeed this toy example is not designed to show how the algorithm could be invariant to rigid
motion, but to show how the shape variability can be taken into account. The segmentation
of a new rectangle that combines the two outgrowths as well as a third new one leads to a
shape which can be described as a new combination of the two already observed outgrowths,
ignoring the third one (figure 11.6).

One interesting point of this method is that one does not need to choose the number
of relevant eigenmodes since the importance of each of them is naturally described by its
associated standard deviation. In order to show the interest of these characteristic modes
of deformation, the standard deviation associated to the noise has been chosen to be equal
to 5.10−3 times the standard deviation associated to the highest eigenmode, that is to say
that a “noisy” deformation field with null component on each mode will cost 200 times more
than a field of same norm but collinear to the first mode. In order to be coherent, if there
exist eigenmodes with eigenvalues smaller than the one associated to the noise, then they
have to be forgotten and considered as noise. In particular in the case of figure 11.6, the
first two eigenmodes were found to have nearly the same eigenvalue and the two others were
about a hundred times smaller, and indeed the segmentations with all modes or only the
first two modes were the same.

Independently on the value of the weight of the shape prior providing this one is high
enough, the qualitative behavior of the shape prior on the evolution is to “project” the
evolving shape onto a linear combination of the eigenmodes, in the sense that the gradient
of E from the mean M to the evolving shape C will progressively reduce its components
on eigenmodes (and remaining noisy part) according to their standard deviation. As the
distribution is here supposed to be Gaussian, any increasing of the weight of the shape prior
will make the result a little nearer to the mean shape. However in the case of component
histograms as proposed in section 11.2.2 this phenomenon would not appear since the shape
with highest a priori probability is not the mean anymore.

We go back to the sea-star example presented in section 11.4.1. The mean and the
first eigenmodes of this set are displayed on figure 11.7. The results of the segmentation
of the original image for different shape priors are shown in figure 11.8. On the top row
are shown typical results for the segmentation criterion without any shape prior, for various
initializations. As the region based criterion has many local minima, the segmentation result
depends strongly on the initialization. Not that the small white balls around the sea-star are
difficult to distinguish from the sea-star, and the shaded regions of the sea-star have colors
similar to the background. Then, on the middle row (left handside) is shown the result
obtained with a rigid registration of the mean shape (as in figure 11.2). This result is much
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Figure 11.6: Top row: the four shapes that compose the sample set. Middle, left: the
mean of these shapes (in blue), with the two first eigenmodes (in purple), successively.
Middle, right: the new image to be segmented, built approximately as a new combination of
the previously observed deformations added to a new non-observed deformation. Bottom:
segmentation with the only knowledge of the mean, eigenmodes and eigenvalues, under
the Gaussian distribution assumption which is obviously not satisfied (left: initialization;
middle: some steps of the evolution; right: result at convergence).

more “stable” in the sense that it can be obtained from any reasonable initialization. The
reason for this is that the minimization is processed with respect to only few parameters
(translation, orientation, scaling) instead of a whole shape (which is infinite-dimensioned).
Therefore in practice the space to be explored in order to find the solution is much smaller in
the case of rigid registration. In order to allow some deformations around the registered mean
shape, we start from the result of the rigid registration, and minimize the sum of the square
of the distance to the mean shape and of the region histogram criterion. This minimization
is computed with respect to both the evolving shape and the location parameters of the
mean. For high values of the weight of the shape prior, the result is of course close to
the one obtained by only rigid registration. For low values, the result is close to the one
obtained without shape prior, that is to say to one similar to the ones on the top row. A
typical example is shown (middle row, right handside) for a middle value of the weight:
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as there is no prior on the deformations applied to the mean shape, the algorithm leads
to outgrowths that are non-sensible for a sea-star. For instance it includes the white balls
within the sea-star and let a deformation grow far inside the sea-star in order to get rid of
the shadow regions.

Finally, still starting from the result of the rigid registration, we minimize the sum of
the Gaussian eigenmode shape prior and of the region histogram criterion with respect to
both the evolving shape (in red) and the location parameters of the mean shape (in blue).
The deformations that are required for the inclusion of the white balls within the sea-star
have a heavy cost for the shape prior since they are not characteristic deformations of the
mean shape. Consequently the algorithm finds globally the shape of the sea-star, except a
part of its shadowed regions which the region intensity criterion considers as included into
the background (see top row). Note however that the deformations due to the shadow have
been described as best as possible as resulting from a combination of eigenmodes. Therefore
they have been reduced to a reasonable deformation that a sea-star can undergo, and they
look far better than the observed ones in the other segmentation results.

For all presented examples, the added computational cost due to the shape prior is
reasonable. In these experiments, the total time cost with the prior was found to be about
three to four times the total time cost without prior. Most of the time cost is due to the
computation of a double integration needed by the approximation of the Hausdorff distance.
As these integrations approximate the infimum or the supremum of a function defined on the
shape that depends very strongly on the Euclidean distance to particular point of interest,
the time cost could be reduced by estimating which small part of the shape has a non-
negligible weight in the integration.
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Figure 11.7: The mean of the set of sea-stars with its first six eigenmodes.



182 Image Segmentation with Shape Priors

Figure 11.8: Segmentation results for different priors. See text for details. Top row: two
examples of results obtained without any shape prior, for two different initializations. Middle
row, left: result of rigid registration. Middle row, right: result of the segmentation (in red)
with the (non-rigid) mean shape prior (whose estimated location is also shown, in blue).
Bottom: result (in red) for the Gaussian eigenmode prior (with estimated location of the
mean in blue).



Discussion





We have shown that it is possible to build shape statistics based on instantaneous de-
formation fields and to include them into a rigid-motion-invariant shape prior for image
segmentation at a reasonable cost.

In the first part Shapes and Distances the topologies related to three usual shape metrics
were shown to be equivalent on the set S of smooth shapes with lower-bounded Federer
reach. In practice during shape warping the evolving shape generally remains in this set
S, except when a topological change occurs, that is to say when the number of connected
components of the shape changes. The question of the equivalence of the three topologies
at these precise moments is still addressed since, even if the topologies are generally not
equivalent outside S, there might exist a large subset including part of these moments of
interest for which the equivalence would be still satisfied.

In the next chapter a family of differentiable approximations of the Hausdorff distance
was proposed and shown to converge towards the Hausdorff distance when its parameters get
closer to the infinite. The gradient of this approximation is an infinitesimal deformation field
and is the fundamental tool in most of the thesis, except in chapter 4 which is an attempt to
classify shapes with the only knowledge of the mutual distances. Several similar techniques
such as the graph Laplacian lead to a low-dimensional representation of a set of shapes, but
the quality of the result strongly depends on the sample density. The application of such
“static” approaches in a segmentation task is still addressed. One notable drawback is that
the addition of a new shape into an already drawn map requires the whole re-computation
of the map. Another drawback is that the intuitive segmentation criterion related to a
graph-based approach is nothing but one very close to the “Parzen method” which does not
require the computation of the map. The design of a suitable, non-trivial criterion based on
such maps and its differentiation with respect to an evolving curve still need to be studied.

The warping and statistical framework introduced thereafter is not specific to the Haus-
dorff distance. Other distances (or approximations of them) can be considered, although
the most often used ones in the computer vision literature were shown to have equivalent
topologies. In particular an extension of the Hausdorff distance which takes into account
local shape descriptors has been proposed. However the search for the best such descriptors,
as well as the implementation and validation of this extension, have still to be done.

In the second part Shape Warping, the notion of differentiation in S was detailed, as
well as the ones of shape gradient and intrinsic gradient. The differentiation tools allowed
to warp a shape onto another one by minimizing the chosen distance by gradient descent.
The approximation of the Hausdorff distance was found to lead to sensible warpings, except
in the presence of non-registered large narrow oscillations (like moving fingers on a hand)
on the target shape. The usual L2 inner product in the tangent space of each shape was
changed in order to favor spatially coherent motions, such as rigid or smooth motions,
which helped much the matching process while keeping the mathematical framework of the
gradient descent. The choice of the inner product was seen as a prior on the deformation
flow. As a change of inner product can be expressed as a linear transform of the usual
gradient, an extension of the definition of the gradient was given in order to take non-linear
priors into account. An example with locally rigid motions was given. Although the results
were satisfying, the particular related prior happened to be difficult to minimize in practice
by variational method. The design of more stable similar priors or the search for other
minimization methods such as graph cuts for the proposed criterion should be investigated.
More generally, the incorporation of linear or non-linear flow priors into the gradient descent
framework can probably lead to interesting further developments.
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The third part Shape Statistics and Priors introduced a definition of the mean of a
sample set of shapes and its characteristic modes of variations via PCA of the observed
instantaneous deformation fields. The mean thus introduced is not necessarily unique; its
uniqueness is an open question. The modes of variations were then included in an image
segmentation prior, and the shape variability that they convey showed itself useful to im-
prove classical segmentation tools. A way to build statistics on images was also presented.
Based on diffeomorphic matching, the definition of the mean image and of the eigenmodes
is similar to the previous ones, except that the image intensity has to be taken into account.
Linear combinations of these modes are however not guaranteed to be diffeomorphisms. A
way to deal with that would be to build statistics on the associated infinitesimal deformation
fields (the “logarithm” of the diffeomorphisms) instead of the diffeomorphisms themselves.
However the point is that, in an image classification task, SVM gave better results on diffeo-
morphisms (without even intensity variations) than on the raw images. Consequently the
relevant information (or at least a relevant part of it) stands in these computed diffeomor-
phisms.

Statistics on images and statistics on shapes could be incorporated together in a same
framework. For example it might be interesting to study how a set of images could be
segmented simultaneously while the images are themselves warped in order to compute
their mean. The thus obtained statistics could then be used in both segmenting a new
image and warping it in order to classify it at the same time, with the hope that each of
the two processes would help the other.
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