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Synopsis (English)

Abstract

An accurate analysis of functional MRI measurements requires a precise understanding
of the physiological processes involved in this measure. This PhD work shows both in-
vestigations in hemodynamic models and algorithms to use such models in the analysis
of brain imaging measurements.

A particular concern with functional MRI is the temporal modelling of the responses
to neural activity. Today, the most standard analysis methods use the General Linear
Model framework, which supposes a linear relationship between brain activity and the
BOLD response. We show how it is possible alternatively to use nonlinear models in
data analysis. Our estimation of parameters by energy minimization is the equivalent
to linear regression, and our adaptation of the Fisher statistical test enables activation
detection, hypothesis testing, and eventually comparison between different models.

We then have extended our methods to the analysis of multiple modalities data, and
in particular, proposed a method to estimate the cortical activity underlying simulta-
neous fMRI and EEG measurements. We were able to achieve accurate estimation on
synthetic data.

Additionally to these methodological researches, we have investigated the model
equations with an Optical Imaging experiment. We have focused on the dynamic of
the blood flow, which is at a crossroad between electrical, metabolism and oxygenation
processes. We have identified specific questioning facts about this dynamic, such as
nonlinearity with respect to electrical synaptic activity, and delays with respect to the
blood volume response. Furthermore, we have conceived a new method for estimating
fast erythrocyte motions in the blood from intrinsic optical imaging signal, which might
provide a new useful measurement of this blood flow.

In the following synopsis, we summarize the main features of this PhD work, through
highlighting the purposes, methods, conclusions and implications of each chapter (please
note that the first part, which entails three chapter, is an introduction to the PhD).
Also, we try to present an objective criticism of this work, through mentioning both
its original contributions and its weaknesses. We hope that this summary will help the
reader to rapidly navigate through the thesis, while understanding the relations between
its different components.
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PART II: USING NONLINEAR MODELS IN fMRI

Chapter 4: Model Identification

Objectives

• To estimate the parameters of physiological models from fMRI signals.

• To evaluate the estimation precision.

• To evaluate the ability of specific physiological models to fit real datasets.

Methods

• Physiological models are expressed as dynamical equation systems.

• An intuitive and a more mathematical approach to study the stability around
equilibrium of a dynamical system are proposed.

• Our estimation algorithm relies on a Maximum Likelihood (least square) estima-
tion.

• A classical sensitivity analysis quantifies the system identifiability through inves-
tigating its sensitivity to variations of the parameters.

• Synthetic data is used to validate the methods, and compare the Maximum Like-
lihood estimation to a Kalman Likelihood algorithm.

• An fMRI experiment is done to compare a linear model with eight variations of
the models proposed by Buxton et al.[33, 32] and Friston et al.[59]: a damped
oscillator modelling of the flow response [59] is compared to a convolution with
a gamma-variate function [32], the effects of compliance and neural habituation
models are investigated [32], and we tried to fix the values of some parameters.
Parameter estimation is achieved both on “high-quality” average responses to the
stimulation, and on individual-voxel raw time courses.

Results

• The Kalman Likelihood algorithm did not produce better estimations than the
Maximum Likelihood one on synthetic data; we thus used the latter in the real
data analysis since it is much faster.

• The physiological models can account for the measured BOLD responses: the
Signal to Noise Ratios of their fit to the data are all better than the one of the
linear model, and they vary according to which particular model is used.

• All these models are poorly identifiable, i.e. the parameter values can vary sig-
nificantly while producing very small changes in the BOLD output. All the more
since we estimated the output scaling factor, which interacts with the input scal-
ing factor? This seems to be a particular concern, since it prevents us from being
able to find the exact values of some parameters, because of their interactions with
others.
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Original contributions

• Our analytical computation of the derivative of the system output with respect to
parameters allows a faster and more precise likelihood maximization algorithm.

• We underline in this chapter problems about the identifiability of parameters: the
estimation cannot guarantee the values of the estimated parameters to be exact
(anyway, who would use fMRI signal to estimate the oxygen extraction ratio at
rest or other physiological parameter?) The next chapter shows how the most
important thing we need is to be able to characterize the system dynamic rather
than finding the exact parameter values.

Weaknesses

• There is currently no model for the BOLD measure at 3 Tesla. Since our ex-
periment was done with a 3T scanner, we used the model proposed for a 1.5T
scanner in the literature [32], y = V0(a1(q− 1)− a2(v− 1)), but we considered its
parameters unknowns (we actually supposed a2/(a1 + a2) = 1/10).

• The algorithm did not use priors on the parameters, which is probably the only
way to increase the identifiability of parameters.

Conclusion and implications

• Accurate fits can be obtained between BOLD measurements and physiological
model predictions, even though the exact parameter values of these models cannot
be extracted. It opens the way to using nonlinear models more widely in the
analysis of fMRI datasets, which is investigated in the next chapter.

• Using priors is probably the only way to provide exact estimations of the parameter
values from fMRI signals.

• The different models we used showed different fits to the measured data. The
statistical comparison between models will be investigated in the next chapter.
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Chapter 5: Nonlinear Hypothesis Testing and Model Selec-
tion

Objectives

• To develop statistical methods to analyze fMRI data in a physiological models
framework instead of a linear convolution one.

• To evaluate them for detection activation purposes.

• To use them also for the selection between different physiological models.

Methods

• Because our models are nonlinear, and in order to use the same Fisher test as in
the SPM software, we first estimate the model parameters and then linearize the
equation with respect to parameters.

• We developed a non-hierarchical test to enable the comparison between two non-
hierarchical models (i.e. where none is a particular case of the other), which
was not possible with the original F-test. This non-hierarchical test relies on the
building of a third more general model such that the two models to compare are
particular cases of the former.

• These tests were applied to the same data as in the previous chapter.

Results

• There was no difference between the activation detection obtained with non-linear
models or with linear models.

• All model enhancements were judged statistically significant by the tests when
applied on the high-quality average responses or even on the time courses of the
most activated voxels: the hypothesis of a volume compliance effect, and of neural
habituation were validated.

• Friston’s damped oscillator modelling of the flow response was preferred to Bux-
ton’s convolution with a gamma-variate function, though the difference was not
great.

• The linear model and the simpler physiological models were selected when the
tests were applied to noisier voxel time courses, because the entail less degrees of
freedom.

Original contributions

• This work shows how nonlinear models can be used in fMRI studies.

• We recommend to use statistical tests based on Signal to Noise Ratios, such as the
Fisher test we have developed, rather than on the a posteriori distribution of one
specific parameter as was proposed by Friston et al.[58]. The non-identifiability
of the parameters indeed implies that their a posteriori distribution are very flat.

• The hierarchical and non-hierarchical tests allow model selection.
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Weaknesses

• Because of the linearization, the p-values computed using our statistical tests
may not be exact, since the models are strongly nonlinear with respect to their
physiological parameters. More accurate methods should scan the whole space of
parameters (Metropolis-Hastings Markov-Chain Monte Carlo [127]).

• We supposed a white measure noise instead of estimating noise autocorrelations
which could change the p-values also.

Conclusion and implications

• This chapter is a first step toward the use of nonlinear models in the analysis of
fMRI data. We have shown the possibility to adapt statistical tests in the nonlinear
framework, which is an encouragement to pursue efforts for the modelling of the
BOLD response.

• We addressed the identifiability issue raised in the previous chapter: the most
important thing with parameter estimation is that it allows an accurate charac-
terization of the system dynamic, even though the parameter estimates are not
exact.

• Several enhancements of the first model proposed by Buxton et al.were validated
by the statistical tests. This raises some questions in terms of physiological models:
Do in vivo measurements confirm the compliance effect? The neural habituation
effect? Could the nonlinearities observed in fMRI in the short time range be
caused by nonlinearities in the flow response rather than by neural habituation
processes? Aren’t both Friston’s and Buxton’s modelling of the flow response
over-simplistic? The next chapter addresses some of these questions.

• The use of linear models for some applications with noisy data, such as localization,
is justified.
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PART III: INVESTIGATION ON THE CEREBRAL BLOOD
FLOW IN OPTICAL IMAGING

Chapter 6: Dynamics and Nonlinearities of the Flow Re-
sponse

Objectives

• To investigate whether the nonlinearities we observed in fMRI could not be at-
tributed to nonlinear effects in the relation between neural activity and the flow
response, rather than to neural habituation, using more informative Optical Imag-
ing measurements.

• To investigate the temporal relation between the flow and volume responses.

Methods

• We use concurrent recordings of blood volume (with intrinsic optical signals mea-
sured at one isosbestic wavelength) and blood flow (with a laser-Doppler probe),
and additional recordings of neural electrical activity using Voltage-Sensitive Dye
(VSD).

• We copied the experimental design used in the fMRI experiment, excepted we
explored responses to shorter stimulations.

• The measurements are described qualitatively first, and then used to fit new mod-
els including some nonlinear saturation effects.

Results

• We found a linear relation between the stimulus length and the amplitude of the
electrical neural activity as measured with the VSD technique, a nonlinear relation
between the amplitudes of electrical activity and flow activity, and a linear relation
between flow and volume amplitudes.

• The flow response appears to be delayed with respect to the blood volume re-
sponse, which is in contradiction with models supposing of flow-driven volume
response. Moreover, we observed initial undershoots in the flow responses.

• The addition of some nonlinear saturation effect to Buxton’s or Friston’s linear
models of the flow response enabled us to better predict the amplitudes of the
flow, but not the delays.

Original contributions

• We have shown that existing linear models for the flow response cannot account
for the responses we measured, which suggests it is highly important today to
study the blood flow dynamic.
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Weaknesses

• Only one animal was used for this experiment.

• The nonlinear model we propose remains too simple.

Conclusion and implications

• Two main reasons can explain the nonlinearities between VSD and flow measure-
ments. Either the flow response depends on an additional neural activity not
detected by the VSD (e.g. spiking), which is nonlinear with respect to the stimu-
lation length. Or there are nonlinearities in the mechanisms involved in the flow
response.

• The delay between volume and flow responses, and the initial undershoot observed
in the flow responses, might have an explanation already proposed by Lauritzen
et al.[115]: the increase in the blood volume in the arterioles is linked to a decrease
of the outflow rather than an increase of the inflow.

• These questions highlight the necessity for modelling each compartment sepa-
rately. It would be very profitable then to have a spatial measure of the flow,
which would allow distinguishing the different compartments, rather than a mea-
sure at a unique point. The next chapter will propose a method that intends to
produce such a spatial measure.
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Chapter 7: Bi-dimensional Flowmetry with Intrinsic Record-
ings

Objectives

• To estimate the velocity of the blood inside the vessels and the variations in time
of this velocity, through tracking the motion of Red Blood Cells (RBCs).

Methods

• The method uses image processing techniques to estimate the motion produced
by Red Blood Cells (RBCs) along the blood vessels in volume images (intrinsic
signals at 570nm).

• We first co-register the frames of the image sequences to correct for brain move-
ments, and apply temporal and spatial filterings to enhance them.

• The data is extracted from manually-segmented vessels as 2D time-space arrays

• We use the structure tensor technique to estimate the directions of trajectory lines
inside these arrays. The structure tensor is a common tool in image processing
usually used for detecting directions.

• We tested the ability of the method to detect the blood pulsation in a first exper-
iment with no particular stimulation, and where laser-Doppler flow and intrinsic
signal volume were acquired simultaneously.

• We tested the ability of the method to detect sensory-induced responses in a
second experiment with visual stimulations and volume recordings only.

Results

• The technique detected accurately the velocity changes induced by the heart pul-
sation.

• We also obtained responses evoked by a visual stimulation. The responses among a
same category of vessels had similarities: arteries showed an early blood velocity
response; arterioles and venules showed a later response, often preceded by an
initial undershoot; veins showed very little response.

Original contributions

• The motion of RBCs have already been observed in vasculature recordings of the
brain or the eye [73], and some studies aimed at estimating an average velocity
of the RBCs. We used image processing techniques to investigate the variations
over time of this velocity.

• The technique we used and our implementation had to be optimized to take into
account the high dimensionality of the data. Indeed, the co-registration and veloc-
ity estimation procedures have to be repeated over all frames, all trial repetitions,
and all vessels (velocity estimation only), and the data have high temporal and
spatial resolutions are needed (sampling at 200Hz and pixels are 10µm size).
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Weaknesses

• The structure tensor estimates an average gradient direction instead of a maximum
gradient direction, which can leads to errors when several directions are present in
the 2D time-space images (movement artefact, aliasing effects...). We are currently
developing Gabor filters to overcome this problem.

• The method does not take into account the whole width of the vessels, but only a
one-dimensional cut along them.

• The experiment was done with only one monkey, which is not enough to validate
the obtained time courses.

Conclusion and implications

• This method is promising for estimating the blood velocity - and hence blood flow
- responses in different vascular compartments (not the smaller ones however).

• Further developments in the image processing techniques are necessary for more
precise estimates of the RBCs’ velocity.

• The first stimulation-induced responses we obtained raise several interesting ques-
tions. In particular, they show the necessity to consider the different vascular
compartments in hemodynamic models for the BOLD response rather than the
venous compartment only.
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PART IV: USING NONLINEAR MODELS IN EEG-fMRI
FUSION

Chapter 8: EEG-fMRI Fusion using Kalman Filtering

Objectives

• To develop an algorithm for the “fusion” of simultaneous EEG and fMRI mea-
surements, to estimate the spatio-temporal neural activity on the cortical surface
which underlies these measurements.

Methods

• The framework includes physiological models for the EEG and fMRI measures, as
well as an auto-regressive model for the neural activity. These models are gathered
in a unique stochastical differential equations system.

• The Kalman filter and smoother techniques take into account the spatial and
temporal information from both modalities, and integrate them in a symmetric
manner.

• The method is demonstrated on synthetic data, where the input is the sum of a
neural activity generated according to the auto-regressive model, and an impulse
with much larger amplitude. This checks the algorithm’s ability to estimate a
neural activity that does not fit the model.

• Though this data is simulated, it relies on a realistic head model obtained from an
anatomical MRI image, which allows to investigate how the method can handle
large amounts of data.

Results

• The Kalman filter and smoother can be applied to either the EEG measurements
alone, the fMRI measurements alone, or all together. We compared the estimation
results in the three cases. The EEG alone result shows an accurate temporal
localization of the activity peak, but a diffuse spatial localization on the cortex.
Symmetrically, the estimation using the fMRI alone shows a diffuse temporal
localization of the peak, but a focused spatial localization. In the EEG+fMRI
estimation, the spatial localization is exact, whereas the temporal localization
looks like a compromise between EEG alone and fMRI alone solutions.

• The activity peak, which was not generated according to the auto-regressive model
for neural activity, was not estimated completely accurately, which indicates that
the estimation highly depends on the model supposed for neural activity.

• The fMRI and EEG brought very complementary information in the estimation
of the activity outside the peak: the fMRI gives information on the low-frequency
content of the activity time courses, and the EEG brings additional information
on their high-frequency content.
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Original contributions

• Choice of the Kalman filter as an efficient way to solve a huge inverse problem.

• We developed a cortex downsampling algorithm which keeps track of an interpo-
lation between original and decimated mesh (it is based on the edge contraction
technique, which originates from the algorithmic geometry community).

• Important code development in C++ was necessary to optimize the time and
memory costs of the algorithm.

Weaknesses

• The method was only tested on synthetic data.

• The relationship between electrical and metabolic activities was assumed to be
only a linear gain, which is not realistic (power relations would be preferable for
example). It is probable that the original Kalman filter could have difficulties
to handle a strongly nonlinear relationship, and that enhancements (Sigma-Point
Kalman Filter, Particle Filter... [165]) should be considered also.

• We did not design a proper EM algorithm to estimate the physiological parameters
and noise variances of the models. Rather, we used the same parameters for the
estimation as for the generation of data. Note that the estimation took hours even
though.

Conclusion and implications

• This chapter demonstrates that fMRI and EEG, despite of their very different
temporal and spatial resolutions, can theoretically be associated to estimate an
underlying cortical activity, and be very complimentary for such an estimation.

• It also demonstrates that the high dimensionality of the corresponding inverse
problem can be addressed thanks to adequate estimation choice and implementa-
tion.

• The road toward real data application will probably require improvements in the
models of the neural activity, and the electrical / metabolic relationships. Other
filtering techniques than the Kalman filter may be considered too.
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General Conclusion

The PhD work addressed two kinds of questions about hemodynamic models:

Why use biologically plausible models in brain imaging analysis?

• In chapters 4 and 5 we proved the superiority of hemodynamic models on linear
convolution models for predicting the signals measured in fMRI.

• Analysis methods generally used in the General Lineal Model (GLM) framework
can be adapted to the nonlinear dynamical models framework: linear regression
becomes model identification (chapter 4), and statistical tests become model se-
lection (chapter 5).

• Dynamic models should be used to address specific questions on temporal as-
pects of the cortical activity (e.g. neural habituation), but linear models are still
preferable to address simple cognitive questions (e.g. activation detection).

• There is another advantage of using biologically plausible models for the integra-
tion of data issued from different imaging modalities (such as EEG-fMRI fusion
as in chapter 8). They enable the estimation of the underlying cortical activity,
again in the dynamical model framework, which appears to be both rigorous and
simple.

Which additional modelling are required?

• In chapter 6, we proved that existing models of the blood flow are over-simplistic:
they should take into account non-linear phenomena such as flow saturation, and
include complex interactions between flow and blood volume, instead of a simple
inductive interaction.

• It is necessary in particular to consider each vascular compartment separately:
arteries, capillaries, veins. This observation is confirmed by the technique we
developed in chapter 7 to estimate the blood flow in individual vessels.

• It ought to be noted that this new technique is an original result of a fruitful
interaction between neuroscience and computer vision.

• In addition to this mechanical aspect of hemodynamics, it is necessary to better
understand on which component of the neurones electrical activity the blood flow
response depends.

It is probable that future progresses in both modelling and analysis techniques will
result in a more and more acute interpretation of fMRI data and of other data relying
on hemodynamic processes.



Synopsis (Français)

Résumé

L’enjeu de la présente thèse est de proposer de nouvelles méthodes d’analyse des données
d’imagerie cérébrale acquises en Imagerie par Résonance Magnétique fonctionnelle (IRMf).
Elle s’est concentrée en particulier sur la compréhension des signaux temporels mesurés
en IRMf et leur lien avec l’activité cérébrale. En effet, les variations du signal que l’on
observe en IRMf sont dues à des changements de l’afflux du sang dans le cerveau et de
l’oxygénation de ce sang. Ces changements sont liés à l’activité des neurones, et l’on
nomme ce phénomène la réponse hémodynamique. Cette réponse hémodynamique fait
l’objet d’un important effort de modélisation, de manière à mieux pouvoir interpréter les
données d’IRMf. Et cette thèse contient des travaux liés à la fois à la modélisation pour
elle-même, avec l’étude de certains détails des modèles hémodynamiques, et à la fois
à l’utilisation de ces modèles pour l’analyse des données, avec en particulier l’analyse
des données IRMf et la fusion entre des données d’IRMf et d’Electroencéphalographie
(EEG).

Ainsi, la première partie de la thèse est consacrée à l’utilisation de modèles hémodynamiques
en IRMf. En effet, aujourd’hui, les méthodes standard d’analyse de données d’IRM fonc-
tionnelle utilisent le Modèle Général Linéaire (GLM), qui suppose une relation linéaire
entre l’activité des neurones, la réponse hémodynamique et les mesures IRMf. Nous
montrons qu’il est aussi possible d’utiliser des modèles plus plausibles du point de vue
biologique, et éventuellement non linéaires pour analyser les données. A la place de la
régression linéaire utilisée habituellement, nous proposons une identification de modèle
basées sur une minimisation d’énergie, et nous proposons d’adapter les tests de Fisher
utilisés habituellement dans le cadre du GLM pour pouvoir réaliser dans le nouveau
cadre la détection d’activations, le test d’hypothèses cognitives, ainsi que des compara-
isons entre différents modèles.

La seconde partie quant à elle est expérimentale : nous avons étudié les équations
de différents modèles hémodynamiques grâce à des expérience d’Imagerie Optique chez
le singe éveillé, dans le cadre d’une collaboration avec Ivo Vanzetta dans l’équipe “Dy-
namique de la perception visuelle et de l’action” au CNRS Marseille. Nous nous sommes
intéressés en particulier à la dynamique du flux sanguin, qui est de première importance
car elle fait le lien entre les activités électriques et métaboliques et les changements
du volume et de l’oxygénation du sang. Nous avons mis en évidence des aspects de la
réponse hémodynamique qui ne sont pas prévus par les modèles actuels, tels qu’une non
linéarité de cette réponse du flux par rapport à l’intensité de la réponse électrique. Par
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ailleurs, dans le cadre de la même collaboration, nous avons conçu une méthode pour
estimer la vitesse des globules rouges dans les vaisseaux sanguins filmés en Imagerie
Optique, qui constitue une nouvelle technique de mesure de ce flux sanguin.

Enfin, dans la troisième partie, nous avons étendu les méthodes présentées dans la
première partie à l’analyse de données de modalités multiple, et en particulier, proposons
une méthode pour estimer l’activité cérébrale à partir d’enregistrements simultanés en
IRMf et en EEG. Cette méthode est validée sur des données synthétiques.

Le présent synopsis résume les points importants de ces travaux : les objectifs, les
méthodes, les conclusions et conséquences pour chaque chapitre (en-dehors des trois
premiers chapitres qui sont consacrés à introduire le travail). Nous avons également
tenté d’en présenter une critique objective, en mentionnant à la fois ce qui constitue
des contributions originales et les faiblesses restantes. Nous espérons que ce résumé
permettra au lecteur de se repérer rapidement dans cette thèse, et de bien comprendre
les relations entre ses différentes composantes.
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PARTIE II: UTILISATION DE MODELES NON-LINEAIRES
EN IRMf

Chapitre 4: Identification de Modèles

Objectifs

• Estimer les paramètres d’un modèle physiologique (de la réponse hémodynamique)
à partir de mesures en IRM fonctionnelle.

• Evaluer la précision d’une telle estimation.

• Evaluer l’adéquation entre des modèles hémodynamiques et les réponses réelles
observées.

Méthodes

• Le formalisme des systèmes dynamiques est utilisé pour décrire des modèles phys-
iologiques.

• Deux approches sont proposées pour étudier la stabilité d’un tel système dy-
namique autour de l’équilibre (l’une intuitive et la seconde plus mathématiques).

• Notre algorithme d’estimation des paramètres repose sur un critère de maximum
de vraisemblance.

• Une analyse de sensibilité permet de quantifier l’identifiabilité du système, en
étudiant sa sensibilité aux variations des paramètres.

• Cette méthode est validée sur des données synthétiques, et est comparée à une
seconde reposant sur un critère de vraisemblance de Kalman.

• Une expérience est réalisée en IRM fonctionnelle pour comparer un modèle linéaire
et huit variations des modèles proposés par Buxton et al.[33, 32] et Friston et al.[59] :
nous comparons deux modélisations différentes du flux sanguin (l’une de la forme
d’un oscillateur amorti [59] et l’autre d’une convolution avec une fonction gamma
[32], nous étudions les effets de viscosité du volume sanguin et d’habituation neu-
ronale [32], et nous essayons de fixer les valeurs de certains paramètres. Ces
estimations de paramètres sont réalisées à la fois sur des données de haute qualité
(réponses moyennées pour toutes les stimulations et tous les sujets), et sur les
décours temporels individuels.

Résultats

• L’algorithme reposant sur le critère de vraisemblance de non linéaires ne produit
pas de meilleurs résultats que celui reposant sur un simple maximum de vraisem-
blance; nous avons donc utilisé le second pour l’analyse de données réelles en raison
de sa rapidité.

• Les modèles physiologiques se révèlent en adéquation avec les réponses mesurées :
ils ont tous un meilleur rapport signal sur bruit par rapport aux données réelles
que le modèle linéaire, ce rapport lui-même pouvant varié d’un modèle à l’autre.
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• Tous les modèles sont peu identifiables, c’est à dire que les valeurs de leurs
paramètres peuvent varier beaucoup sans que cela n’induise de variations im-
portantes en sortie du modèle. Cela est du en partie au fait que nous estimons
à la fois un facteur d’échelle en entré et en sortie. Cela empêche de déterminer
les valeurs exactes de certains paramètres, à cause de leurs interactions avec les
autres paramètres.

Contributions originales

• Notre méthode analytique pour le calcul de la dérivée de la sortie du système par
rapport aux paramètres augmente la rapidité et la précision de l’algorithme de
maximisation de la vraisemblance

• Nous mettons en évidence dans ce chapitre des problèmes liés à l’identifiabilité
des paramètres : on ne peut pas garantir d’estimation exacte de la valeur des
paramètres (ce qui n’est pas si étonnant pour certains paramètres : comment
pourrait-on espérer que l’IRMf seule puisse permettre d’estimer par exemple la
valeur de la fraction d’extraction d’oxygène au repos ?). Le chapitre suivant
montre comment cette non identifiabilité n’est pas incompatible avec une car-
actérisation correcte de la dynamique du système.

Faiblesses

• Notre expérience a été réalisée sur un scanner 3 Tesla, mais il n’existe actuellement
que des modèles de la mesure BOLD à 1.5 Tesla. Nous avons donc utilisé un
modèle à 1.5 Tesla [32], y = V0(a1(q−1)−a2(v−1)), en supposant ses paramètres
inconnus (modulo la relation a2/(a1 + a2) = 1/10).

• Nous n’avons pas utilisé d’a prioris pour l’estimation des paramètres, ce qui serait
probablement l’unique moyen d’augmenter leur identifiabilité.

Conclusion et conséquences

• Les modèles physiologiques permettent de prédire correctement les mesures BOLD,
mais dans le même temps il n’est pas possible d’estimer les valeurs exactes des
paramètres de ces modèles. Cela ouvre la voie à l’utilisation de modèles non
linéaires pour l’analyse de données d’IRMf, ce qui est l’objet du chapitre suivant.

• L’utilisation d’a prioris sur les paramètres est probablement le seul moyen d’estimer
plus exactement leurs valeurs à partir des signaux IRMf.

• Les différents modèles utilisés montrent des différences dans la qualité de la prédiction.
La comparaison statistique entre différents modèles est également étudiée dans le
chapitre suivant.
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Chapitre 5: Test d’Hypothèses et Sélection de Modèle dans
le Cadre non Linéaire

Objectifs

• Développer des méthodes statistiques pour analyser des données IRMf en utilisant
des modèles physiologiques plutôt que des modèles de convolution linéaire.

• Evaluer ces méthodes dans le cadre de la détection d’activation.

• Utiliser ces méthodes également pour la sélection entre différents modèles physi-
ologiques.

Méthodes

• Pour pouvoir utiliser les mêmes tests de Fisher que dans le logiciel SPM dans le
nouveau contexte d’un modèle non linéaires, nous estimons d’abord les paramètres
du modèle, puis linéarisons les équations par rapport aux paramètres autour de
l’estimée.

• Comme ce test de Fisher ne permet pas de comparer des modèles non hiérarchiques
(c’est à dire telle que le premier est un cas particulier du second), nous pro-
posons un test non hiérarchique basé sur la construction d’un troisième modèle
plus général dont les deux premiers sont des cas particuliers.

• Ces tests sont appliqués aux données du chapitre précédent.

Résultats

• Il n’y a pas de différence entre les résultats de détection d’activation en utilisant
des modèles linéaires ou non linéaires

• Toutes les complexifications des modèles que nous avons étudiés - à savoir l’hypothèse
d’un effet de viscosité du volume sanguin, et celle d’une habituation neuronale -
ont été validées par les tests statistiques, appliqués aux réponses moyennées ou
même aux décours temporels des voxels les plus activés.

• La modélisation du flux proposée par Friston (oscillateur amorti) a été préférée
à celle proposée par Buxton (convolution avec une fonction gamma), quoique la
différence fût faible.

• Le modèle linéaire et les modèles physiologiques les plus simples en revanche sont
préférés lorsque les tests sont appliquée aux décours temporels de voxels bruités
ou peu activés, car ces modèles ont moins de degrés de liberté.

Contributions originales

• Ce travail montre que l’on peut utiliser des modèles non linéaires dans l’analyse
d’expériences en IRM fonctionnelles.
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• Nous recommandons d’utiliser des tests statistiques basés sur un critère de rap-
port signal sur bruit, tel que le test de Fisher, plutôt que des test basés sur une
distribution a posteriori marginale d’un paramètre spécifique, comme le proposent
Friston et al.[58]. En effet, la non identifiabilité d’un tel paramètre implique que
sa distribution a posteriori est très plate.

• Les tests hiérarchique et non hiérarchique que nous proposons permettent de
choisir le modèle le plus statistiquement significatif.

Faiblesses

• A cause de l’étape de linéarisation des modèles, les p-values calculées pour réaliser
les test statistiques peuvent ne pas être exactes, car les modèles sont fortement non
linéaires par rapport aux paramètres physiologiques. Des méthodes plus robustes
devraient être envisagées comme l’utilisation d’un critère d’information d’Akaike
(AIC), ou même l’échantillonnage de tout l’espace des paramètres (Metropolis-
Hastings Markov-Chain Monte Carlo [127]).

• Nous supposons un bruit blanc au lieu d’estimer des autocorrélations qui pour-
raient également modifier la valeur de la p-value.

Conclusion et conséquences

• Ce chapitre est une première étape vers l’utilisation de modèles non linéaires
dans l’analyse de données d’IRM fonctionnelle. Nous avons montré la possibilité
d’adapter des tests statistiques à ce contexte non linéaires, ce qui constitue un
encouragement à poursuivre les efforts de modélisation de la réponse BOLD.

• Nous avons pu contourner le problème d’identifiabilité des modèles signalé dans
le chapitre précédent : le plus important au sujet de l’estimation des paramètres
est qu’elle permette une caractérisation exacte du système dynamique, tandis que
la valeur exacte des paramètres importe moins.

• Plusieurs ajouts par rapport au modèle initial de Buxton et al.ont été validés par
les tests statistiques. Cependant, ils soulèvent encore des questions d’ordre phys-
iologiques : Est-ce que les mesures in vivo confirment l’hypothèse de viscosité ?
Celle de l’habituation neuronale ? Les non linéarité observées en IRMf dans les
échelles de temps courtes ne pourraient-elles pas être causées par une non linéarité
de la réponse du flux plutôt qu’un phénomène d’habituation neuronale ? Est-ce
que donc les deux modèles du flux proposés par Friston et Buxton ne seraient pas
trop simples ? Ces deux questions sont l’objet du chapitre suivant.

• L’utilisation de modèles linéaire quant à elle est justifiée pour certaines applica-
tions sur des données fort bruitées, par exemple pour la localisation d’activité.
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PARTIE III: ETUDE DU FLUX SANGUIN EN IMAGERIE
OPTIQUE

Chapitre 6: Dynamique et Non-linéarités de la Réponse du
Flux Sanguin

Objectifs

• Etudier si les non linéarités observées en IRM fonctionnelle ne peuvent pas être
attribuées à des effets non linéaires dans la réponse du flux sanguin à l’activité neu-
ronale plutôt qu’à une habituation neuronale, grâce à une expérience en Imagerie
Optique.

• Etudier les relations temporelles entre les réponses du flux et du volume sanguin.

Méthodes

• Nous utilisons des enregistrements simultanés du volume sanguin (mesuré avec
des signaux optiques intrinsèques à une longueur d’onde isosbestique) et du flux
sanguin (mesuré avec une sonde non hiérarchique), et des enregistrements séparés
de l’activité électrique (mesurée grâce à un gel sensitif au voltage - technique
VSD).

• Le protocole expérimentale est similaire à celui des expériences précédentes en
IRMf, excepté qu’il se concentre sur de courtes durées de stimulation visuelle.

• Les mesures sont d’abord décrites de manière qualitative, puis nous proposons un
nouveau modèle non linéaire du flux pour tenter de capturer les effets non linéaires
de saturation.

Résultats

• Nous avons observé une relation linéaire entre la durée de la stimulation visuelle et
l’amplitude de l’activité électrique des neurones mesurée avec la technique VSD,
une relation non linéaires entre les amplitude de cette activité électrique et de la
réponse du flux, et une relation linéaire entre les amplitudes du flux et du volume.

• La réponse du flux apparâıt en retard par rapport à la réponse du volume, ce
qui est en contradiction avec les modèles qui supposent une réponse du volume
déterminée par celle du flux. De plus, nous observons une petite réponse négative
initiale du flux.

• La modélisation d’un phénomène de saturation permet de mieux prédire l’amplitude
du flux, mais pas les délais.

Contributions originales

• Nous avons montré que les modèles linéaires actuellement proposés pour la réponse
du flux sanguin ne peuvent pas rendre compte de certains phénomènes, ce qui
suggère d’étudier prioritairement cette réponse du flux.
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Faiblesses

• Cette expérience n’a été réalisée que sur un seul animal.

• Le modèle de saturation que nous proposons est probablement encore trop simple.

Conclusion et conséquences

• Principalement, deux raisons permettent d’expliquer les non linéarité observées
entre les réponses électriques (VSD) et hémodynamiques (flux et volume). Soit
la réponse hémodynamique dépend d’autres aspects de l’activité neuronale non
détectés par la technique VSD (par exemple, l’émission de spikes), qui eux-mêmes
seraient sujet à une habituation neuronale. Soit la réponse du flux sanguin à
l’activité neuronale présente des effets non linéaires de saturation.

• Le délais entre les réponses du volume et du flux sanguin, et la réponse initiale
négative du flux, pourraient avoir une explication déjà proposée par hiérarchique
et al.[115] : le volume sanguin augmente d’abord dans les capillaires et les artérioles
non pas sous l’effet d’une augmentation du flux entrant, mais sous celui d’une
diminution du flux sortant.

• L’ensemble de ces questions souligne l’importance de modéliser chaque comparti-
ment vasculaire séparément. Il serait très intéressant pour cela d’avoir une mesure
spatiale du flux à la place d’une mesure en un seul point, ce qui permettrait de
distinguer ces différents compartiments. Le chapitre suivant propose une méthode
qui produit une telle mesure spatiale.
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Chapitre 7: Mesure Bidimensionnelle du Flux en Enreg-
istrements Intrinsèques

Objectifs

• Estimer la vitesse du sang à l’intérieur des vaisseaux et les variations de cette
vitesse dans le temps, grâce à la détection du mouvement des globules rouges
(RBCs).

Méthodes

• Le principe est d’utiliser des techniques de traitement d’image classiques pour
estimer le mouvement des globules rouges le long des vaisseaux dans des images
de volume mesurées avec des signaux optiques intrinsèques à 570nm.

• Les séquences d’images sont tout d’abord recalées pour corriger les mouvements
de l’ensemble du cerveau, puis des filtrages temporels et spatiaux permettent de
mieux faire ressortir le mouvement le long des vaisseaux.

• Les données de vaisseaux individuels segmentés manuellement sont extraites dans
des matrices 2D temps-espace.

• Nous utilisons la techniques du tenseur de structure pour détecter les directions
des lignes de trajectoires à l’intérieur de ces matrices. Le tenseur de structure est
un outil classique pour la détection de directions en traitement d’image.

• La méthode a été utilisée avec une première expérience sans stimulation, pour
détecter les pulsations cardiaques, avec en contrôle une mesure simultanée du flux
grâce à une sonde non hiérarchique

• Elle a ensuite été testée dans une seconde expérience utilisant des stimulations
visuelles.

Résultats

• La technique a permis de détecter correctement des changement de la vitesse du
sang induits par la pulsation cardiaque.

• Elle a également permis de détecter correctement des réponses évoquées par une
stimulation visuelle. Les réponses observées sont similaires à l’intérieur d’une
même catégorie de vaisseaux : on observe une réponse rapide dans les artères, une
réponse plus tardive dans les artérioles et les vénules (voire une courte réponse
négative initialement), et peu de réponse dans les veines.

Contributions originales

• Le mouvement des globules rouges avait déjà été observé en imagerie optique [73],
et certaines études avaient déjà estimé une vitesse moyenne des globules rouges.
Nous avons montré qu’il est possible d’estimer les variations dans le temps de cette
vitesse grâce à des techniques de traitement d’image.
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• Le choix que nous avons fait du tenseur de structure et son implémentation ont
été optimisés pour tenir compte de la très grande dimensionnalité des données. En
effet, les procédures de recalage et d’estimation de la vitesse doivent être répétées
pour toutes les images de tous les essais, et pour tous les vaisseaux, alors que
les données elles-mêmes ont une haute résolution temporelle (200Hz) et spatiale
(10µm).

Faiblesses

• Le tenseur de structure estime une direction moyenne du gradient dans les images
2D temps-espace, et non la direction dans laquelle le gradient est maximal, ce qui
peut conduire à des erreurs lorsque plusieurs directions sont présentes (artefacts de
mouvements, effets d’aliasing, ...). D’autres techniques pourraient être envisagées
pour palier ce problème (filtre de Gabor).

• La méthode ne prend pas en compte toute l’épaisseur des vaisseaux, mais seule-
ment une coupe unidimensionnelle le long d’eux. La encore des algorithmes plus
complexes peuvent être envisagés.

• L’expérience n’a été réalisée que sur un animal, ce qui n’est pas suffisant pour
valider les décours temporels obtenus.

Conclusion et conséquences

• Cette méthode est prometteuse pour l’estimation de la vitesse du sang - et de
là du flux sanguin - et ce dans différents compartiments vasculaire (mais pas les
capillaires cependant qui sont trop petits).

• De nouveaux développements des techniques de traitement d’image appliquées à
ce problème pourront probablement améliorer les réponses obtenues.

• Les premières réponses évoquées que nous avons obtenues soulèvent d’intéressantes
questions physiologiques, et prouvent à nouveau l’importance de considérer les
différents compartiments vasculaire dans la modélisation de la réponse hémodynamique
plutôt que le seul compartiment veineux.
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PARTIE IV: UTILISATION DE MODELES NON LIN-
EAIRES POUR LA FUSION EEG-IRMf

Chapitre 8: Fusion EEG-IRMf avec le filtrage de Kalman

Objectifs

• Développer un algorithme pour la “fusion” d’enregistrements simultanés en EEG
et IRMf, de manière à estimer l’activité spatio-temporelle des neurones sur la
surface du cortex sous-jacente à ces mesures.

Méthodes

• Nous utilisons des modèles physiologiques des mesures EEG et IRMf, ainsi qu’un
modèle autorégressif simple de l’activité neuronale. Ces modèles sont regroupés
sous le formalisme d’un unique système d’équations différentielles stochastiques.

• Les techniques du filtre et du lisseur de Kalman permettent de tenir en compte
les informations à la fois temporelles et spatiales des deux modalités, et de les
intégrer d’une manière symétrique.

• La méthode est validée sur des données synthétique, où l’entrée du modèle (l’activité
neuronale) a été choisie comme la somme d’une activité générée selon le modèle
autorégressif, plus une activité impulsionnelle de forte amplitude. Ainsi, nous
pouvons observer la capacité de l’algorithme à estimer une activité neuronale qui
ne respecte pas le modèle autorégressif a priori.

• Ces données sont synthétiques, mais reposent néanmoins sur un modèle de tête
réaliste obtenu à partir d’une image IRM anatomique, ce qui permet de tester la
capacité de la méthode à gérer des données de dimensionnalité réaliste.

Résultats

• L’algorithme (filtre et lisseur de Kalman) peut être appliqué soit aux mesures
EEG seules, soit aux mesures IRMf seules, soit aux deux ensemble. Nous avons
comparé les résultats obtenus dans les trois cas. Les résultat en EEG seule sont
précis en terme de localisation temporelle du pic d’activité, mais sa localisation est
diffuse sur le cortex. De manière symétrique, l’estimation basée sur l’IRMf seule
est focale sur le plan spatial, mais diffuse sur le plan temporel. Pour l’estimation
en EEG+IRMf, la localisation spatiale est exacte, tandis que la localisation tem-
porelle montre un compromis entre les solutions EEG seule et IRMf seule.

• L’IRMf et l’EEG apportent des informations complémentaires également pour
l’estimation de l’activité autorégressive (en-dehors du pic d’activité) : l’IRMf
donne une information sur le contenu basse fréquence des décours temporels de
l’activité, tandis que l’EEG apporte une information supplémentaire sur leur con-
tenu haute fréquence.
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Contributions originales

• Le choix du filtre de Kalman comme un moyen efficace de résoudre un problème
inverse de dimensionnalité très grande.

• Nous avons développé parallèlement un algorithme de décimation de cortex qui
conserve les paramètres de l’interpolation entre les maillages original et décimé,
basé sur la technique de contraction d’arête, connue dans la communauté de
géométrie algorithmique.

• Un important développement en C++ a été nécessaire pour optimiser les coût en
temps et en mémoire de l’algorithme.

Faiblesses

• La méthode a été testée sur des données synthétiques seulement.

• La relation entre les activités électrique et métabolique est supposée linéaire, ce
qui n’est pas réaliste (une loi de puissance par exemple serait déjà préférable). En
fait, le filtre de Kalman pourrait avoir des difficultés dans le cas d’une relation
très non linéaires, et il serait préférable alors d’utiliser des techniques de filtrage
plus élaborées (filtre particulaire [165], ...).

• Nous n’avons pas utilisé d’algorithme EM pour estimer également les paramètres
physiologiques et les variances des bruits dans le modèle. Au contraire, nous avons
utilisé pour l’estimation les mêmes paramètres que pour la génération des données.
Cela est du au problème du temps d’estimation qui déjà dans ce contexte simple
s’élevait à plusieurs heures.

Conclusion et conséquences

• Ce chapitre montre que l’IRM fonctionnelle et l’EEG, malgré les importantes
différences de leurs résolutions temporelles et spatiales, peuvent théoriquement
être associées pour l’estimation de l’activité corticale sous-jacente, et être alors
très complémentaires.

• Il montre également que la haute dimensionnalité du problème inverse correspon-
dant peut être gérée grâce à de bons choix d’estimation et d’implémentation.

• L’application à des données réelles demandera probablement au préalable d’améliorer
les modèles de l’activité électrique et de la relations entre les activités électrique
et métabolique. D’autres techniques de filtrage que le simple filtre de Kalman
devraient être envisagées également.
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Conclusion générale

Ce travail de thèse a abordé deux grandes questions autour des modèles hémodynamiques

Quel est l’intérêt d’utiliser des modèles hémodynamiques en imagerie
cérébrale ?

• Les chapitres 4 et 5 prouvent la supériorité des modèles dynamiques sur les modèles
de convolution linéaire pour prédire les réponses observées en IRMf.

• Les méthodes d’analyse utilisée dans le cadre du Modèle Linéaire Général (GLM)
peuvent être adaptées aux modèles dynamiques non linéaires: la régression linéaire
devient de l’identification de modèle (chapitre 4) et les tests statistiques deviennent
de la sélection de modèle (chapitre 5).

• Les modèles dynamiques devraient donc être utilisés pour répondre à des questions
précises sur des aspects temporels de l’activité corticale (par exemple, concer-
nant une adaptation neuronale), mais les modèles linéaires restent préférable pour
répondre à des questions simples (par exemple, pour détecter des activations).

• Il y a un autre avantage à utiliser des modèles biologiquement plausibles, pour
l’intégration de plusieurs modalités (la fusion EEG-IRMf entre autres dans le
chapitre 8). Ils permettent en effet d’estimer l’activité neuronale dans un cadre
rigoureux et finalement simple, celui encore des systèmes dynamiques.

Quels futurs efforts de modélisations ?

• Dans le chapitre 6, on a montré que les modèles actuels pour le flux sanguin étaient
trop simples : il devraient d’une part tenir compte de phénomènes non linéaires de
saturation du flux, et prévoir des interactions complexes (au lieu de simplement
inductive) entre le flux et le volume sanguin.

• Il est nécessaire en particulier de considérer séparément les différents comparti-
ments sanguins : artères, capillaires, veines. Cette constatation est confirmée par
la technique mise en oeuvre dans le chapitre 7 pour estimer le flux sanguin dans
chaque vaisseau individuel.

• On note d’ailleurs que cette nouvelle technique est le résultat original d’une inter-
action fructueuse entre les neurosciences et la vision par ordinateur.

• En plus de cet aspect mécanique de la modélisation hémodynamique, il est nécessaire
de mieux comprendre de quelles composantes de l’activité électrique dépend ex-
actement le flux sanguin.

On peut espérer que les prochains progrès concernant à la fois la modélisation et sa prise
en compte dans l’analyse du signal permettront une utilisation de plus en plus fine des
techniques d’imagerie comme l’IRMf basées sur des phénomènes hémodynamiques.
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Chapter 1

Brain Imaging

In this chapter, we propose a brief overview of different brain investigation techniques,
as well as their physiological support. Then, we shall describe in more detail the three
modalities we were more interested in, Electro-Encephalography, functional Magnetic
Resonance Imaging and Optical Imaging. We will also explain how the measures pro-
vided by these modalities are analyzed.

1.1 Physiological and Physical Basis of Measure Modali-
ties

Neuroscientists sometimes like to define the ultimate goal of their research as “decipher-
ing the neural code”. It is tempting indeed to consider the brain as a machine whose
mechanisms could be dissected, analyzed and at last explained. However, notwith-
standing the fact that the brain complexity cannot be compared to that of any of our
computers, a first major obstacle to its comprehension is the difficulty to observe the
way it manipulates “information”. Existing techniques for the measure of the cortical
activity rely upon very modern and diverse sciences and technologies. However, each of
them can only access a part of the desired information. As a consequence it is necessary
to optimize the precision of the analysis based on each technique, and to know how to
benefit from their diversity.

It is usual to classify these brain measurement techniques according to the following
criteria:

• the spatial resolution (please note that in addition to the minimum spatial
resolution, some techniques are also limited by the maximum spatial extent they
can investigate at the same time)

• the temporal resolution

• the invasiveness (how aggressive is the technique for the subject?)

Of course, no technique can simultaneously offer the best spatial and temporal res-
olutions (and be non-invasive at the same time). Each one has its specific advantages.
Figure 1.1 shows a summary of these criteria for the most usual techniques. We shall
present now the necessary physiological and physical notions needed to describe these
techniques, beginning with the best spatial resolution.
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Figure 1.1: Temporal and spatial resolution of the most usual brain investigation techniques.
The colour expresses how much invasive they are (from white: non invasive, to dark grey: highly
invasive).

1.1.1 The Neuron

Neurons are the basic units of the cortical network. Their number is about 1011 in
the brain. A single neuron integrates information collected from other neurons by its
dendrites through synaptic connections, and then sends itself excitatory or inhibitory
signals via strong discharges (action potentials, or spikes), that propagate through its
axon and are transmitted to other neurons dendrites. More precisely, synaptic excitation
consists of ionic channels opening, which induce changes in the intracellular potential
(variations are negative or positive according to the excitatory or inhibitory nature of
the synaptic connection). The unbalance between intra- and extra-cellular potentials is
then called membrane polarization. When this polarization reaches a certain threshold
(around -40mV), additional ionic channels are opened and cause the spike emission,
which propagates through the axon afterward. The mechanisms that govern membrane
depolarization are subject to a high modelling effort [82, 105].

Neurons activity can be monitored in vivo by introducing electrodes in animals cor-
tex (usually rats, cats or monkeys, anesthetized or awake), which measure variations of
the extra-cellular potential. Spikes emitted by the surrounding neurons are clearly visi-
ble in the recorded electrophysiological signals, and it is possible to move the electrode
close enough to a single cell to record its activity. Spikes offer a measure of neuron
activity.

Besides, the low-frequency content of electrodes measurement (low field potential,
LFP) is admitted to represent a sum of the intracellular potential variations of every
neurons in a small region. The intracellular potential of a single neuron can hardly be
recorded in vivo; this can be done however with cells cultures.

1.1.2 Macroscopic Electrophysiology

Ionic currents described above (displacement of charged particles) are the source of the
Electro- and Magneto-encephalography (EEG and MEG) measures on the scalp. Spike
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Figure 1.2: Examples of the variability of neurones shapes (left, adapted from [138]), and of
the intra-cellular potential time course (right, adapted from [175]).

propagations are not detected, because they actually generate two currents in opposite
directions. These ionic currents are called primary, and they generate secondary currents
throughout the whole head, which close current loops. The potential differences between
two EEG scalp electrodes are mainly caused by these secondary currents. On the
contrary, the contribution of secondary currents to the magnetic field is small compared
to that of primary currents, so MEG is usually assumed to measure intracellular primary
currents.

Actually, ionic currents in single neurons cannot be detected on the scalp, unless
they are synchronized and add themselves to each other in a constructive way. This is
actually the case in the cerebral cortex, where assemblies of 104 neurons with similar
functions are organized in macro-columns. This is not the case however for the central
grey kernels, which have a star organization.

Today, EEG measure is done through the use of a latex helmet on which electrodes
are set. Electrical contact with the scalp is ensured by the use of a conductor gel. The
number of electrodes is about 20 in the common displays, but can go up to 64, 128 or
even 256. Since EEG only measures potential differences between electrodes, the choice
of a reference electrode is of crucial importance. Sometimes, additional electrodes are
placed below the ears to serve as reference.

The MEG measure requires more costly installations: magnetic sensors are displayed
in a bowl above the head. Because of the very low level of the magnetic field created
by the brain, supra-conductors metals are required, and are to be maintained at cold
temperatures with liquid helium.

EEG and MEG have the great advantage of being totally non-invasive, and as such
can be used on humans. They also benefit from a high temporal resolution, since the
measured signals can be sampled at arbitrary rates. 1KHz sampling is enough to get
the fastest features like evoked responses or oscillations. On the spatial side however,
cortical sources localization is a serious concern, and its precision does not go below a
few centimetres.

1.1.3 Metabolism

In the last 20 years, brain imaging has known a rapid development with the use of
new imaging techniques. These techniques do not measure directly neural activity, but
secondary effects that take place in the metabolic chain to supply the brain in energy.
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Brain energy consumption represents 20 percents of the whole body consumption. It
is believed that the most energy consuming effects are the activation of the sodium pump
to create the cell polarization and the repacking of neurotransmitters after synaptic
communications. This energy is supplied by the consumption of glucose and oxygen.

Thus, during the activation of a region, glucose and oxygen consumption increase.
At the same time, complex signalling mechanisms lead to an increased blood flow in the
vasculature that drains the region. This flow response actually exceeds the metabolic
demand, so that the blood in the brain vasculature is finally more oxygenated during ac-
tivations than during rest periods. All the effects related to the blood (increased vessels
volume, variation of blood oxygenation) are referred as the hemodynamic response. The
temporal aspect of these effects is an important concern, since they are not immediate,
can last for up to 30 seconds, and exhibit characteristic shapes.

Several imaging techniques attempt to measure variations of these quantities. Ini-
tially, the Tomography by Emission of Positrons (TEP) was used to measure variations
of the blood volume. It had the disadvantage to require the absorption of radioactive
substances that played the role of markers.

Its usage has been replaced progressively by the Magnetic Resonance Imaging (MRI),
which produces three-dimensional images of the head, while being completely non-
invasive. The physical principles of MRI are exposed section 1.3.1. Basically, the MRI
signal originates in the hydrogen atoms, mostly present in water molecules. However,
under particular settings for the MRI acquisition sequence (T2* ponderation), it is pos-
sible to obtain a signal modulated by the blood deoxygenation. This measure, called
functional MRI (fMRI), offers a high spatial resolution (under the usual magnetic field
strength of 1.5 or 3 Tesla, it is possible to obtain one millimetre side voxels). Besides,
the temporal aspect is weak, since it requires 2 seconds or more to acquire the images
of a whole brain (at most, one can go down to hundred milliseconds when acquiring a
few planar slices only).

MRI scanners can also be used for Magnetic Resonance Spectroscopy (MRS). This
procedure skims through a large spectrum of resonance frequencies, and thus recovers
signals for other atoms than hydrogen. It allows measures of other metabolic quan-
tities such as glucose, lactate... that are more closely related to neural activity than
hemodynamic variables, and moreover could inform on the nature of the activity. Un-
fortunately, MRS acquisition times are long (several minutes at least), which makes its
temporal resolution much worse than that of fMRI.

These non-invasive imaging modalities aside, there are also invasive techniques that
allow recording the dynamics of various metabolic and hemodynamic quantities on an-
imals. Among them, Optical Imaging consists in monitoring the brain surface with an
optical camera. The brain should be illuminated with light at the appropriate wave-
length; then it is possible to measure blood volume and blood oxygenation dynamics in
the first layers of the cortex. It is also possible to dispose on the brain surface a voltage-
sensitive dye (VSD), which allows recordings of the brain’s electrical activity: when
illuminated at a specific wavelength, this dye has fluorescence properties that depend
on the electrical potential of the neurons. The recorded fluorescence signals are believed
to be connected to the LFP measures. Lastly, the use of a Laser-Doppler probe, which
measures particles dispersion velocities, allows one to record blood flow dynamics.
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1.2 EEG Methods

Since EEG collects a signal by the mean of electrodes on the scalp, the localization in
the brain of measured activity is a major issue. Solving this localization problem, also
called inverse problem supposes knowing how electrical sources in the brain generate
currents that propagate throughout the head and lead to the electrical potentials being
measured on the scalp in EEG (or magnetic field being measured in MEG). This is called
the forward problem, which is determined by the quasi-static approximation of Maxwell
equations. Note that on account of the quasi-static approximation it is not necessary to
consider time evolutions in these two problems: measures at a given time t only depend
on the brain’s electrical activity at the same time t. An overview and unified analysis
of different forward and inverse problems can be found in (Mosher et al.[142]).

1.2.1 Physics of EEG and MEG

We consider the head to be a volume conductor with a non-uniform anisotropic con-
ductivity tensor σ. Three equations systems have to be considered. First, the general
Maxwell equations in the medium:





ε∇E = ρ

∇×E + ∂B
∂t = 0

∇B = 0
µ∇×B− ∂E

∂t = J.

(1.1)

E and B are the electric and magnetic fields, ρ and J are the charge and current
densities, and ε and µ the medium permittivity and permeability constants (µ = µ0,
the permeability of free space).

Secondly the charges conservation equation:

∇J +
∂ρ

∂t
= 0. (1.2)

Thirdly, the determination of propagation currents (notated J(v)) in a conductor
medium:

J(v) = σE. (1.3)

Since the primary currents in the cortex vary slowly compared to propagation speeds
in the Maxwell equations, the time derivative terms in (1.1) and (1.2) can be ignored,
which constitutes the quasi-static approximation. In particular, the second Maxwell
equation states that the electrical field curling is zero; then it can be expressed as the
gradient of an electrical potential:

E = −∇V.

It is convenient to split the currents in the brain J into two terms: the primary
currents (J(p)) are those of the sources located on the cortex, whereas the secondary
currents (J(v)) are those resulting of the propagation throughout the head (1.3):

J = J(p) + J(v) = J(p) + σE = J(p) − σ∇V. (1.4)
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Figure 1.3: Realistic head model: the skin, the two surfaces of the skull and the cortex surfaces
were segmented in the anatomic MRI. The spots on the skin surface indicate the positions of
the EEG electrodes. The cortical electrical sources are supposed to be positioned on the brain
surface and oriented orthogonally to it.

We can then re-write that the current divergence is zero (equation (1.2), where the
time derivative term has been dropped according to the quasi-static assumption):

∇J(p) −∇(σ∇V ) = 0. (1.5)

This last equation relates the electrical potential (and in particular its values at the
EEG electrodes) to the currents generated on the cortex.

We also give a brief insight into the MEG (Magneto-Encephalography) equations.
In a similar way as for electrical field, the fourth Maxwell equation (“magnetic field
divergence is zero”) allows B to be written as the curl of a potential: B = ∇ × A.
Then the third Maxwell equation can be solved analytically [78], for A and then for B,
leading to the following integral expression of magnetic field at position x:

B(x) =
µ0

4π

∫
J(x′)× x− x′

‖x− x′‖3
dx′ (1.6)

Once equation (1.5) has been solved for the electrical potential V , it is straightfor-
ward to obtain the magnetic field at the MEG sensor locations, by replacing the current
term J by its decomposition between primary and secondary currents in (1.4). Actually,
the major contribution comes from the primary currents, and it would be the only one
if conductivities were homogeneous.

1.2.2 Forward Problem

The forward problem consists in predicting the electric potentials on the scalp measured
in EEG, and the magnetic field outside the head measured in MEG, given sources
activity on the cortex. In other words, it consists in solving equations (1.5) for the
potential V given the primary currents J and the conductivities σ, and then (1.6) for
the magnetic field B. As there is no analytical solution to the first equation, it needs
to be solved numerically.
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Two main methods can be distinguished: Finite Elements Method (FEM) consists in
dividing the whole head volume in small tetrahedra with a given conductivity; equation
(1.5) is applied to each tetrahedron, which produces a linear system of equations that
can be solved numerically [142, 52]. This system is sparse because each tetrahedron
interacts only with its neighbours.

Boundary Elements Method (BEM), in turns, takes advantage of the conductivities
homogeneity of the brain compartments: the head is divided into nested regions with
constant conductivities: brain, skull, scalp (figure 1.3). These regions can be segmented
in anatomical MRI images. Then, only the boundaries between these compartments
need to be tessellated.

Indeed, in the BEM framework, one can derive from (1.5) equations involving the
boundaries potentials only. Let us denote by Ω0, Ω1, ... the different compartments
(sources being all located in Ω0), σ0, σ1, ... their conductivities, and S01, S12, ... their
boundaries. Then the potential on surface Si(i+1) verifies [64]:

(σi + σi+1)V (x) = 2σ0V0(x) +
1
2π

∑

j

(σj+1 − σj)
∫

Sj(j+1)

V (x′)dS(x′), (1.7)

where V0(x) is the potential created by the primary currents:

V0(x) = 1
4πσ0

∫
Ω0

J(p) x−x′
‖x−x′‖3 dx′.

Equations on all boundaries form a linear system. Once it is solved [25, 1], it gives
the potential values on each boundary. The magnetic field then can also be determined
by a boundaries derivation of (1.6):

B(x) = B0(x) +
µ0

4π

∑

i

(σi+1 − σi)
∫

Si(i+1)

V (x′)
x− x′

‖x− x′‖3
dS(x′), (1.8)

where B0(x) is the magnetic field created by the primary currents:

B0(x) = µ0

4π

∫
Ω0

J(p) × x−x′
‖x−x′‖3 dx′.

1.2.3 Inverse Problem

The inverse problem consists, conversely, in estimating the electrical activity of the
sources given EEG and/or MEG measures (note that it can thus achieve, in a natural
manner, “fusion” between EEG and MEG data). However, there are different sorts
of inverse problems, depending on the nature of the sources we are looking for (see
Hämäläinen et al., 1993 [78] and Baillet et al., 2001 [14] for review, and Grova et al.[74]
for a comparison of methods). Basically, we can distinguish between dipole models,
beamforming and distributed dipoles models.

We saw in section 1.1 that the electrical activity in the brain that can be detected
in EEG/MEG takes place in the grey matter, and requires assemblies of 104 neurons to
have a synchronized activity. In the dipole models, the sum of synchronized activities
of such a neuron assembly in a small region is approximated by a dipole of current.
Inverse problem consists then in localizing a dipole inside the brain, or a small set of
dipoles, that best explains the measured data.
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In distributed models, electric activity in the brain is modelled with a large set of
small current dipoles. These dipoles are located in the grey matter, and approximate
the local cortical column organization. Since the grey matter has nearly a constant
small width (2,5mm), it can be approximated by a surface, and hence the dipoles are
all positioned on this surface. Moreover, on account of the vertical cortical columns
organization, the currents should always be orthogonal to that surface.

The beamforming methods are slightly different, since they scan each source inde-
pendently and compute their activation, in order to optimize a certain criterion. In
contrast to the distributed models, they do not try to fit all the observed data at once.
Concerning these methods, we will let the reader refer to reviews in [167, 166].

It is possible to use a common formalization for dipole and distributed models that
takes into account the fact that the forward model is linear with respect to source
intensities and nonlinear with respect to source localizations and orientations. Let’s
denote here by j = (ji)i≤n the intensities of the sources, l = (li)i≤n their localizations
and o = (oi)i≤n their orientations. We also denote by z(l, o, j) the EEG/MEG measure
predicted by the forward model, which depends on the source characteristics, and z the
actual measure. The forward model allows constructing a matrix G, called the lead field
matrix, which depends (non-linearly) on source localizations and orientations, such that
the predicted measure is:

z(l, o, j) = G(l, o)j (1.9)

The inverse problem for dipole models consists in estimating all the characteristics
l̂, ô and ĵ of a small number of dipoles, by minimizing the prediction error:

(l̂, ô, ĵ) = Argmin‖z −G(l, o)j‖.
Since the lead field matrix G(l, o) depends nonlinearly on the positions and orienta-

tions of the sources, minimization necessitates to use iterative methods.
The inverse problem for distributed models consists in estimating the intensities of a

large number of dipoles whose locations and orientations are fixed. The matrix G, which
depends on these locations and orientations, is already determined. Thus we have:

ĵ = Argminj‖z −Gj‖. (1.10)

But this inverse problem is under-determined: the number of unknowns in the source
vector j is much larger than the number of measures in z. There are infinity of solutions
such that the prediction error is zero. It is necessary then to introduce an additional
constraint on the sources, by using a regularization term in the minimized energy:

ĵ = Argminj‖z −Gj‖2 + R(j). (1.11)

Please note that it is possible to use a specific a priori covariance C on the noise at
the electrodes, which defines another norm (z − Gj)T C(z − Gj) instead of ‖z − Gj‖2.
This appears naturally when using a Bayesian framework [13].

ĵ = Argminj(z −Gj)T C−1(z −Gj) + R(j).

When the regularization term is bilinear (R(j) = jT Σ−1j), it is called a Tikhonov
regularization, and the estimation can be obtained directly:
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ĵ = (GT C−1G + Σ−1)−1GT C−1z.

The regularization term can have several different expressions:

• The simpler regularization term is the norm of j, scaled with an appropriate
constant λ. It may have several drawbacks: for example, an activity deep inside
a cortical sulcus will tend to be explained by more superficial and smaller norm
sources.

• Using a bilinear regularization term with Σ = (diag(GT G))−1 normalizes the
columns of the matrix G to account for deep sources by penalizing sources too
close to the sensors [91].

• The regularization can include other anatomical constraints, in particular, im-
pose a continuity of the activity over the cortex. Adde et al.[2] worked also on
anisotropic smoothness energies, that assumed a spatial continuity, though per-
mitting discontinuities between adjacent regions. Since the regularization was not
bilinear, energy minimization required iterative methods.

• Functional constraints can be used also, by the means of an a priori ponderation
of sources variances based on other imaging modalities like fMRI [11].

1.2.4 Real Data Processing

The signal measured in EEG actually contains a large amount of noise. This noise has
many possible origins:

• There are a lot of physiological noises, i.e. potential fluctuations that are not due
to neural activity (respiration, muscles contraction, ...); eye blinking in particular
generates currents that are hundred times stronger than those related to neural
activity.

• Additional measure noises can be induced, by electrode movements for example.

• Lastly, during a cognitive experiment, the signal related to the experimental par-
adigm is drowned amidst those of all other ongoing cerebral activities.

To recover a signal of interest from experimental data, the electrode time courses
are often averaged over all repetitions of the experimental stimulus, this averaging being
triggered by the times of stimulus presentation. The averaged electrode time courses
obtained by this method are called evoked potentials. This allows keeping the signal
component related to the stimulation and repeated identically at each presentation,
while other independent signals tend to be cancelled by summation.

The evoked potentials usually show one or several specific features, such as a response
peak after a constant delay, or oscillations. Then, one can apply the inverse problem at
each time point, or alternatively, select only a few remarkable time instants according
to these features. At every selected time, the inverse problem will estimate the cortical
electric activity that accounts for electrode potentials at that time.

The evoked potentials technique drawback is that it only keeps activities induced
by the stimulation that are repeated identically at each trial. For example, it will tend
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Figure 1.4: Diagram of an MRI scanner: the magnet produces the static magnetic field B0; the
gradient coil produces linear spatial variations of this static field, in order to achieve the slice
selection, as well as the encoding in the Fourier space of the measured resonance signals; the RF
coil produces the transient excitatory radio-frequency pulse and detects the resonance signals.
Figure issued from Jezzard and Clare, 2001 [93].

to suppress activities whose latencies with respect to the stimulus vary between trials.
Other methods like time-frequency analysis overcome these problems.

Before averaging the data, some pre-processing can be operated to it also: frequen-
cies filtering can remove undesirable effects like low-frequency drifts, or artefacts due to
electrical installation at the sector frequency (50Hz in France). Also, a selection can be
done manually in the data, to discard trials containing large artefacts (like those where
eye blinking is observed).

1.3 fMRI Methods

1.3.1 Physics of the Magnetic Resonance Imaging

Nuclear Magnetic Resonance (NMR) is the basic physical phenomenon used for Mag-
netic Resonance Imaging. Though this is a quantic phenomenon, it can be explained by
using classical analogies. Nucleus particles (protons and neutrons) have a quantic prop-
erty called spin that can be considered as a magnetic dipole moment (i.e. it behaves like
a tiny magnet). Basically, a MRI scanner creates a strong constant magnetic field, with
which the particles spins align. Image acquisition consists first in exciting the spins by
a transient perturbation of the magnetic field, called the Radio Frequency (RF) pulse,
that induces a rotative movement of the spins; then one measures the radio frequency
signal produced by the rotating spins. The contrasts obtained in the resulting image
originate in the differences between return to equilibrium time constants of the various
tissues. A review of these phenomena and of the specific techniques for acquiring MRI
images can be found in [93].ting the spins by a transient perturbation of the magnetic
field, called the Radio Frequency (RF) pulse, that induces a rotative movement of the
spins; then one measures the radio frequency signal produced by the rotating spins. The
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contrasts obtained in the resulting image originate in the differences between return to
equilibrium time constants of the various tissues. A review of these phenomena and of
the specific techniques for acquiring MRI images can be found in [93].

Nuclear Magnetic Resonance Principle

Let us describe this more precisely. In the absence of magnetic field, the spins of the
particles do not have a preferred direction, and the average magnetic moment M in a
sample of molecules is zero. But in the presence of a magnetic field B0, the possible
energy states of the nucleus spin are quantized, i.e. only a small number of states are
allowed. For the hydrogen atom, which is the one on which most MRI techniques focus
upon, two states are possible, and correspond to the alignment of the spin magnetic
moment parallel or anti-parallel to the external magnetic field. As the anti-parallel
state has a higher energy level than the parallel state, there will be a small preference
for the parallel state, so that there will be a resulting magnetic moment aligned with
B0. Note however that this preference is very small: as an example, at 1.5 Tesla, and
at physiological temperatures, only 10 spins in every 1,000,000 contribute to the net
magnetic moment of the sample. Scanner currently used on humans create a 1.5 Tesla
or 3 Tesla static magnetic field. However scanners with higher fields exist, which are
usually used on animals (5T, 7T, and up to 12T).

The second important phenomenon is magnetic resonance. When the external mag-
netic field is perturbed, the spin magnetic moments will precess around their average
direction at a frequency ν0 determined by the field intensity and the gyromagnetic ratio
of the atom, according to the Larmor law:

ν0 = γ|B0|.
The Radio Frequency pulse (RF) technique consists in applying in addition to B0 a

small oscillating field B1 that is transverse (i.e. orthogonal) to B0: if the frequency of
these oscillations is equal to the Larmor frequency above, then the nucleus spins in the
sample will have a coherent behaviour, resulting in a net magnetization vector rotating
at the Larmor frequency. The transverse component of this vector is rotating in the
(x, y) plane, and thus induces a radio signal, while the longitudinal component (in the
same direction z as B0) is stationary. The angle of inclination of the vector away from
the z axis is proportional to the length of the RF pulse: a short RF pulse tips the
magnetization by a few degrees and only a feeble radio signal is observed. A longer 90◦

pulse brings the magnetization totally in the transverse plane, and the signal observed is
maximal. On the contrary, a 180◦ pulse, of twice the length, inverts the magnetization
on the z axis and produces no component in the transverse plane.

The Free Induction Decay

After the Radio Frequency excitation is switched off, the net magnetization returns to
its equilibrium state, i.e. aligns with B0, and the radio signal observed resulting from
the transverse component decays to zero. This return to equilibrium is exponential, and
is characterized by several time constants called relaxation times that are at the origin
of MRI contrasts:

• The T1 relaxation time characterizes the recovery of the longitudinal magnetiza-
tion due to the static magnetic field B0. It may vary across tissues, because it
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Figure 1.5: Pulse sequence diagram (left) and k-space representation (right) of the FLASH
acquisition sequence. Figure issued from Jezzard and Clare, 2001 [93].

depends on thermal agitations and their frequencies (whether they are close to
the Larmor frequency or not).

• The T2 and T2* relaxation times characterize the decay of the transverse mag-
netization. They are actually shorter than the T1 relaxation because they are
not only due to the re-inclination of spin moments toward the z axis, but also to
the dephasing of the rotating components in the transverse (x, y) plane, due to
random fluctuations of the Larmor frequencies inside the sample. These fluctua-
tions have two main causes: local inhomogeneities of the static magnetic field and
fluctuations at a molecular level. It is actually possible to cancel the dephasing
caused by magnetic field local inhomogeneities by using the spin echo technique.
For that reason, there are two different relaxation times: T2 is the one when using
the spin echo, and thus characterizes the signal decay due to fluctuation at the
molecular level only, whereas T2* is shorter and reflects mostly the effect of the
magnetic field’s local inhomogeneities. The T2 process is sensitive to molecular
motions, but depends less on their frequencies than T1. The T2* process is sensi-
tive to features that perturb the magnetic field, like boundaries between different
tissues, or agents with particular paramagnetic properties. This is the basis of the
BOLD contrast used in fMRI.

Slice Selection

We now see how it is possible to measure the resonance of nuclei so as to produce
three-dimensional images whose contrast will reflect the relaxation properties of the
different tissues, and how to adjust the ponderation between these different relaxations
(T1,T2,T2*). The key idea for that is to make the Larmor resonance frequency of atoms
vary spatially by modifying the static field B0 with the application of an additional mag-
netic field, called magnetic gradient, oriented in the same direction and whose intensity
varies along one spatial dimension. The same coil can be used for the transmission of
the gradient and the reception of the radio signal.

It is possible first to induce resonance in one slice only of the measured tissues: this
is called the slice selection technique. For example, by applying a magnetic gradient Gz

along the z direction, the static magnetic field becomes:
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Figure 1.6: Pulse sequence diagram (left) and k-space representation (right) of the EPI acqui-
sition sequence. Figure issued from Jezzard and Clare, 2001 [93].

B(z) = B0 + Gzz,

and the Larmor frequencies of atoms depend of their positions:

ν(z) = γB0 + γGzz.

Then, the Radio Frequency pulse is chosen to contain only a specific range of frequen-
cies, to excite the atoms with specific z coordinates. Usually a sinus cardinal excitation
pulse is chosen, because its Fourier transform is a car box: the frequencies it entails are
uniformly distributed in the chosen range. An excitation in the frequency range f ± df
will induce resonance in the slice

z =
f − γB0

γGz
± df

γGz
.

The Concepts of Spatial Encoding and k-Space

It is also possible to apply magnetic gradients during the relaxation, along the other
directions (x and y in our example). Then the frequencies of the magnetization vector
precession vary spatially, and it becomes possible to encode the signal issued from every
pixels of the slice in the Fourier space. Let us show this more precisely. We denote
by ρ(x, y) the contribution to signal of the point of the slice in position (x, y). In the
absence of magnetic gradient, the radio signal received by the coil is:

S(t) =
∫∫

ρ(x, y) e2πiγB0t dxdy .

When adding to B0 two gradients in the x and y directions that can vary during
time Gx(t) and Gy(t), the static magnetic field becomes:

B(x, y, t) = B0 + Gx(t)x + Gy(t)y,

the precession frequency at time position (x, y) and at time t:

ν(x, y, y) = γB0 + γGx(t)x + γGy(t)y,

and the signal received by the coil:
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S(t) =
∫∫

ρ(x, y) e2πi(γB0t+γ
R t
0 Gx(u)du x+γ

R t
0 Gy(u)du y)dxdy .

For convenience, we use the notation:

kx(t) = γ

∫ t

0
Gx(u)du

ky(t) = γ

∫ t

0
Gy(u)du .

It appears then that the measured signals are Fourier transforms of the intensity ρ,
modulated by the ν0 frequency:

S(t) =
∫∫

ρ(x, y) e2πi(kx(t)x+ky(t)y)dxdy e2πiν0t.

Slice Acquisition

A slice acquisition consists then in demodulating the signal by the ν0 frequency, and
measuring signals for values of kx and ky spanning the so-called k−space, i.e. the space
of all frequencies of the 2D Fourier transform of the ρ intensity. Then the image ρ is
obtained by the inverse Fourier transform of measures in this k-space.

Figures 1.5 and 1.6 show two standard scanning sequences: the gradient echo se-
quences FLASH and EPI. During a FLASH sequence, one line in the k-space is acquired
after each RF pulse:

• The sequence begins with the slice selection described above, where a gradient is
applied in the z direction during the pulse.

• There is also a slice refocus negative gradient, called gradient echo, which ensures
that the spins at the top and at the bottom of the slice have the same phase (since
the initial gradient induced dephasing).

• Immediately following this slice selection, the k-space coordinate of the signal for
the slice is kx = ky = 0.

• Then the selection of the line in the k-space is achieved by applying a gradient in
the y direction, which is called phase encoding.

• At the same time a negative gradient in the x direction is applied to move toward
the origin of the kx coordinates.

• During the acquisition, a gradient is applied in the x direction so that a whole
line is acquired for all kx coordinates: this is called the frequency encoding.

During an EPI (Echo Planar Imaging) sequence, the whole k-space is sampled, which
means one entire slice is acquired, after each RF pulse. It is of particular interest for
fast fMRI acquisitions (see below). To acquire a whole volume using EPI sequences,
two main choices are possible concerning the slice acquisition order: sequential (in the
natural increasing or decreasing order) or interleaved (first the odd numbers and then
the even numbers). The interleaved method intends to avoid artefacts due to imprecise
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slice selection: when a slice is selected with the gradient method, it is possible that some
atoms in the neighbouring slices are excited also, because of local field distortions. Then
it leads to artefacts if one of these slices is acquired just after. However the interleaved
method also has drawbacks, in particular for the motion correction pre-processing in
fMRI described below.

fMRI Signal

In functional MRI, the signal of interest relies in the T2* contrast. Indeed, the oxy-
hemoglobin is diamagnetic and has little influence on the local magnetic field, whereas
the deoxyhemoglobin (i.e. hemoglobin that delivered its oxygen molecule to the brain)
is paramagnetic, and distorts the magnetic field in its neighbourhood, thus shorten-
ing the T2* relaxation time and decreasing the MR signal. There is in permanence
a substantial amount of deoxyhemoglobin in the venous vessels, yielding an attenua-
tion of the MR signal. When the brain is activated, as discovered by the pioneering
works of Ogawa and his colleagues [148], the local blood flow increases more than the
oxygen metabolism, which results in a more oxygenated blood. This reduction of de-
oxyhemoglobin concentration leads to a signal increase (a few percents at 1.5 Tesla, and
5∼10% at 3 Tesla).

Typically, EPI acquisition sequences are used for fMRI, because they have the ad-
vantage of being fast: one slice can be acquired in 30 to 100ms, and a whole brain in 2
to 4s. The drawback is that these image cannot have a high spatial resolution: usual
fMRI slices have 64 by 64 pixels.

1.3.2 Pre-processing

fMRI data consists in a set of functional 3D images acquired with a given repetition
time (RT). Before analyzing these images a number of pre-processing is required. The
two most drastic effects that need to be corrected are the motion of the head inside
the scanner during acquisition and the different acquisition times of the slices in a same
volume. Unfortunately, it is very difficult to correctly take into account these two effects
simultaneously.

The registration of head movements consists of two steps:

• Motion estimation: this motion is often supposed rigid (which is actually an ap-
proximation since intrinsic artefacts of the EPI sequence introduce non-rigid dis-
tortion in the images). Giving an estimate of it consists then in the estimation
of six parameters (three translation parameters and three rotation parameters).
This is usually achieved by minimizing the square difference of successive images
with a reference image. A more robust method was proposed in [56], who reduced
the impact of regions with large intensity differences by the use of a non-quadratic
and slow-increasing energy function.

• Motion correction: it consists in re-interpolating the images by using the estimated
motion parameters. However, Freire et al. [55] recommended not to correct mo-
tions if they are smaller than voxel sizes. Indeed motion correction may introduce
undesired changes in the data.

Each slice in an fMRI volume is acquired at a different time. However it is convenient
for the analysis to suppose that each volume corresponds to a measure at a given instant.
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For that reason, data pre-processing often includes a temporal re-interpolation of each
voxel time courses, also called slice timing. The interpolation proposed by the SPM
software consists in applying a dephasing to the signals by passing by the Fourier space.
As it does not bring new information in the data but on the contrary may delete some, an
alternative simply consists in including the slice acquisition delays in the data analysis.

There is an unavoidable problem that arises when the subject head moved inside
the scanner during acquisition: What should be applied first ? Should it be slice timing
? But in that case the temporal interpolation is realized with measures belonging to
different locations in the brain. Should it be motion correction ? But in that case,
the spatial interpolation will mix voxels from different slices and the subsequent slice
timing will prove improper, more especially if slices are acquired in interleaved order.
The best choice is probably the first when slices were acquired in interleaved order, and
the second when they were acquired in sequential order.

Additional pre-processing may be desired, depending on the subsequent analysis:

• Normalization: it is often necessary to register the data issued from single subjects
between each other and onto some reference coordinates, in order to perform
group analysis, i.e. ask cognitive questions over a population, investigate intra-
subject variability, or eventually compare results with standard knowledge on
the brain functions based on anatomy. This normalization consists of a non-
rigid transformation based on the correlation between the anatomical image of
the subjects and a template image. However, the accuracy of such registration in
terms of anatomical, and a fortiori of functional correspondence can be contestable.

• Spatial smoothing: it is sometimes interesting to smooth the data, to increase the
Signal to Noise Ratio of the voxels time courses, on condition that the patterns
of activity encompass a cluster of voxels. It relies on the fact that the sum-
mation cancels the uncorrelated noises in different voxels, while it consolidates
activity patterns. However it will reduce the spatial resolution of fMRI and tend
to make activity patterns with a small spatial extent disappear. Also, it proves
useful when smoothing the data to include anatomical information rather than
using an isotropic filter. Andrade et al.[7] proposed to use an anisotropic smooth-
ing parallel to the brain surface, to avoid mixing signals from different tissues.
Other anatomically-informed method have been proposed, like parcellation [53]
and anatomical basis functions [100].

• Removing global effects consists in subtracting its average value to each image.
It is intended to remove some nuisance effects occurring in the whole image. But
studies showed that it may also remove activation patterns if the latter have a
large spatial extent [46].

• Temporal filtering: whereas low-pass filtering can be employed to improve Signal
to Noise Ratio, but reduce the temporal resolution of the signals, high-pass filtering
is used to remove undesired slow-varying trends from the signals. These nuisance
effects can have several origins: scanner varying parameters like the warming of
the gradient coils during an experiment, biological rhythms like respiration [92],
metabolic processes like the decline of oxygen reserve in a region [9]. It can be
performed by removing low-frequency compounds in a basis of functions, by using
the Fourier transform, or by applying recursive filters. Since some part of the
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Figure 1.7: Typical data analysis performed with the SPM software. Figure and caption issued
from the PhD thesis of Bertrand Thirion [162].

activation may have been affected by this filtering, it often proves important to
take it into account during the analysis.

1.3.3 Hypothesis-Driven Analysis Methods

In this section we describe the standard analysis in the General Linear Model (GLM)
framework, as it is implemented in the Statistical Parametric Mapping (SPM) software.
A complete description can be found in [181].

Let us recall that an fMRI acquisition consists of a four-dimensional data set with
images acquired with a given repetition time TR. Actually, we are particularly inter-
ested in the variations of the MR signal across time, which reflect - partly at least - the
variations of the blood oxygenation, hence the name Blood Oxygenation Level Depen-
dent (BOLD) signal. On the contrary, the absolute values of the measures and their
variation inside the images are less interesting, since they also reflect other causes of the
local field distortions responsible for the T2* contrast such as tissues properties, which
bear no relation with the brain activity. It is important to keep in mind which effects
are responsible for these temporal fluctuation of the signals:

• The BOLD signal variations reflect the sum of all brain activities that induce
changes in the metabolism of a region as well as, through mechanism that are
still misunderstood, in the blood flow that irrigates the region; please note that
some changes in the brain activity may also induce zero or negative hemodynamic
changes.
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• There are several other physiological causes for hemodynamic fluctuations, such
as heart beat and respiration.

• Artefacts may appear because of the subject motion, if it has not been corrected
properly during the pre-processing step: the measured time courses in a given
voxel then comes from different brain regions, and the signal can change drastically
because of the different tissue properties.

• The scanner measure also introduces artefact fluctuations: blank measure noises
and slow-varying drifts due to the heating of the gradients.

This list is not exhaustive, but it reminds us that the neural activity we want to
study, and especially the one that is in relation with the experiment, only represents a
small part of the measured signals. Under this condition, there are two main approaches
to the analysis of fMRI data:

• The exploratory methods intend - as the name indicates - to explore the different
signals present in the data and decompose them in order to isolate the effects of
different physiological or measure nuisances, and time courses possibly caused by
a neural activity; generally, they are multivariate, which means they are applied to
every voxels together, to take advantage on the repetition of same signals across
them; they may be useful for a preliminary analysis of experimental data, to
sharpen the intuitions of experimenters on the nature of the cerebral activity.

• On the other hand, the hypothesis-driven methods are dedicated to answer spe-
cific questions on the cortical activation; generally, they consist in validating or
rejecting a model of the response to the experimental conditions; these models
can be often assessed voxel-wise and the question becomes a localization question:
where does the stimulation elicit an activation? which cortical area is implicated
in a particular cognitive task ? such methods are then called univariate.

We shall focus here on hypothesis-driven methods, which are the basis of most
fMRI studies. We shall briefly present their different steps: first, one builds a model of
the fMRI signals based on the experimental conditions, the hypothesis to test, and a
modelling of the hemodynamic processes; secondly, one fits this model to the measured
signals voxel-wise; and thirdly, one assesses with statistical tests the significance of the
different parts of the model on account of the accuracy of the fit and the quantity of
noise in the dataset.

These steps are greatly simplified when one considers that the BOLD effect consec-
utive to neural activity can be obtained with a linear convolution, as we shall explain
below. This constitutes the General Linear Model (GLM) framework. As a consequence,
the effects of different activities are supposed to add themselves up with no particular
interactions.

Experimental Design

Since fMRI analysis relies on the temporal variations of the signals to infer on the
underlying activity rather than on absolute values, it is important that the experiment
include control conditions along with the experimental conditions, the only difference
between the two conditions being the presence or not of the particular cognitive task that
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is studied. Historically, experiment consisted of alternating periods (or epochs) where
the subject endured different conditions, for example experiencing visual stimulations,
performing a specific motor action, or - which is the simplest control condition - just
resting inside the scanner.

Other types of experimental designs have appeared since. As an alternative to
epochs, instantaneous activities can also be used, which are then called events (e.g.
very fast stimulation or action, or transition between two conditions). It is also possible
to make a parameter vary in a stimulation, like for example the intensity of a contrast
in a visual stimulation; such experiments are called parametric. The activity does not
even need to rely on external stimulations. This is the case with acquisitions on the
fMRI correlates of EEG rhythms [68], or with studies on epileptic patients [69]. Then
the fMRI signals will be predicted through the use of the measurements from other
brain acquisition modalities, the EEG in particular.

In all cases, what we call the experimental design is the set of condition sequences.
These sequences are functions of time; they will be box-car functions in the case of
epoch conditions, sets of Dirac impulses in the case of event conditions, or real-valued
functions in the case of parametric paradigms or other modalities measurement.

Model Construction

The principle of hypothesis-driven methods is to predict the shape the BOLD signal
should have in response to each experimental condition. Then, thanks to the linear
approximation, the signal in each voxel should be a pondered sum of the responses to
the different conditions, plus noise.

Let us denote by u1, u2,.. the different condition sequences. It is supposed that
the response to the condition ui should be proportional to the convolution product
h∗ui, where h is an empirical Hemodynamic Response Function (HRF), which accounts
for the different metabolic, hemodynamic and physical effects involved in the BOLD
response. This HRF h is chosen by experience, its estimation being the subject of
numerous studies. It is often modelled as the difference of two gamma functions [112]
parameterized to fit the general empirical shape, with a first positive response that
reaches its maximum at about four seconds, followed by a smaller undershoot that lasts
for about twenty seconds (see chapter 2). It is possible however to add some flexibility
in the model by allowing this response function to be itself a pondered sum of basis
functions h1,h2,..: the response to condition ui is then (

∑
k αijhj) ∗ ui.

As a result, and according to the assumption that the BOLD signal responds linearly
to neural activity, the signal y in a given voxel is modelled as the sum of the responses
to the different conditions, plus a constant uninteresting value, plus noise:

y(t) =
∑

i,j

αij (hj ∗ ui)(t) + α0 + η(t).

η is then the sum of all the other signal components, including physiological and
physical noises. It is generally assumed to be Gaussian, and may be coloured. Since
among theses nuisance effects there are often low-frequency drifts, it is convenient to
add to the model a set of low-frequency basis functions that will capture them. We
denote by c1,..,cm these basis functions (usually polynomial or sinus basis functions are
used), and α′1,..,α

′
m their ponderations in the signal, which leads to
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y(t) =
∑

i,j

αij (hj ∗ ui)(t) +
∑

k

α′k ck(t) + η(t).

Let us note that if there is a constant component among the ck basis functions, the
constant α0 is not needed any more.

This last model can be displayed in a matrix form: we denote by X the matrix
whose column are all the hj ∗ ui and all the ck time courses, and β the vector of all the
αik and all α′k. We get

y = Xβ + η. (1.12)

Linear Regression

The linear regression consists then in estimating the model parameters entailed in β
given the measured signal y. We suppose here that η is a white Gaussian noise process.

η ∼ N (0, σ2I)

If it is not the case (i.e. η ∼ N (0,Σ) with a non-trivial variance matrix Σ), then it
is possible to whiten the signal y by multiplying the left and right parts of the equation
by the “inverse root square” of Σ (i.e. a matrix Σ−1/2 such that Σ−1/2Σ−1/2 = Σ−1):

Σ−1/2y = (Σ−1/2X)β + Σ−1/2η.

We get an equivalent equation, where the new noise Σ−1/2η is white.
Under the Gaussian and whiteness assumption for η, the Maximum Likelihood esti-

mator of β is given by the pseudo-inverse matrix multiplication

β̂ = (XT X)−1XT y.

It is a non-biased estimator of β (i.e. its mean is β), and its variance is

E(β̂β̂T ) = (XT X)−1XT σ2X(XT X)−1 = σ2(XT X)−1.

Please note that we will also need to estimate the noise variance for deriving the
statistical tests below. A non-biased estimator is

σ̂2 =
(y −Xβ̂)T (y −Xβ̂)

n− p
,

where n is the number of sampling points of the measure y, p is the rank of the
matrix X, and ν = n− p is the number of degrees of freedom associated with the linear
regression. Please note that y − Xβ̂ is the orthogonal projection of the noise η in a
subspace of Rn whose dimension is ν. Hence σ̂2, which is its square norm normalize by
ν, follows a χ2 law with ν degrees of freedom.
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Hypothesis Testing

The General Linear Model framework naturally provides two useful statistical tests that
can be used to assess hypothesis on the Model. They have different roles. The Fisher
test on the one hand serves to test a subspace of the model, i.e. test whether some
part of the model is significantly present in the measures. In particular, testing the
whole model is equivalent to asking whether there is any activity in the considered
voxel that is related to the experimental paradigm. The Student test on the other hand
is used to test a contrast, i.e. a linear combination of the parameters, and to test its
positivity. For example, one can use a contrast on one parameter only, to test whether it
is significantly positive; or it can be used to test whether one parameter is significantly
larger than another.

Let us begin with the Student test. It is defined by a contrast γ, the question asked
being: is γT β significantly positive? The tests consist in supposing a null hypothesis
H0, which specifies that γT β is actually zero, and compute the probability under this
hypothesis of the value γT β̂ obtained after parameter estimation. More accurately,
the Student test examines the probability of this product normalized by its estimated
variance:

T =
γT β̂√

γT σ̂2(XT X)−1γ
∼ T (ν).

Under hypothesisH0, the statistic T follows a Student law with ν degrees of freedom.
The test hence consists in calculating the p-value of the obtained value for T , i.e. the
probability that a random variable with a distribution T (ν) exceeds this value. If this
probability is below a certain threshold, the hypothesis H0 is invalidated, and the test
is positive.

We now present the Fisher test. Basically, it is used to test a null hypothesis H0,
which specifies that only a subpart of the model is sufficient to describe the measured
time courses y:

y = X1β1 + η1,

where X1 is a matrix with q < p columns and whose image is a sub-space of the
image of X. The signal can then be decomposed in three orthogonal terms: the part
explained by the two models, the part explained by the original model but not by the
new simpler one, and the part that remains unexplained by the two models:

y = X1β̂1 + (Xβ̂ −X1β̂1) + (y −Xβ̂).

Under the hypothesis H0, the terms (Xβ̂ − X1β̂1) and (y − Xβ̂) are two indepen-
dent Gaussian distributions, and the ratio of their square norms, corrected by their
dimensions follows a Fisher law with q and n− p degrees of freedom:

F =
n− p

q

(Xβ̂ −X1β̂1)T (Xβ̂ −X1β̂1)

(y −Xβ̂)T (y −Xβ̂)
∼ F(q, n− p).

To test whether the hypothesis H0 is acceptable, it is necessary to calculate the
p-value of the F statistic under the F(q, n− p) distribution, i.e. the probability that a
variable that follows this distribution exceed the obtained value of F . If it is less than a
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threshold probability, the hypothesis is rejected. Please note that different expressions
exist for this F-test.

In the SPM software, the F-test is defined by a set of linear combinations of the
model regressors. For example, let us consider q such linear combinations γ1, γ2,..,γq.
We denote by γ the p × q matrix formed by these vectors. Then the square matrix
Γ = γ(γT γ)−1γT defines an orthogonal projector, such that X(I − Γ) is the projection
of X on a sub-model that ignores the additional modelling in Xγ. X(I −Γ) defines the
null hypothesis H0: it is a square matrix whose dimension is p but whose rank is q, and
which plays the same role as X1 above.

In the two statistical tests we have described, activation is determined voxel-wise,
and the threshold value of the test has been chosen so that the probability of false
positive is small (for example < 0.05). However, when considering all the voxels as a
whole, the same statistical threshold would lead to a much higher probability of false
positives. Indeed, the probability, under the hypothesis there is actually no activation
in the whole cortex, that at least one voxel is declared activated will be much higher.
The statistical thresholds need then to be adjusted (lowered). However, this adjustment
should take into consideration the spatial smoothness in the data. Worsley et al.[183,
182] calculated the accurate adjustment through the use of the random field theory [3].

modelling of Nonlinear Interactions

Since nonlinear effects prove to happen in fMRI [24, 41, 20, 67, 139, 173], especially
when experimental conditions are presented closely, it is necessary to take them into
account in fMRI analysis. As an alternative to using non-linear physiological models
(that we will present later), some authors proposed to build regressors in the GLM
framework that account for nonlinear interactions.

Friston et al.[60] proposed to keep only bilinear interaction terms, according to a
Volterra expansion of the BOLD response truncated to the second order. The method
they propose to estimate these bilinear interactions is similar to that for estimating
the linear HRF response: the second order Volterra kernel is supposed to be possibly
decomposed in a small number of basis functions, which are convolved bi-linearly with
the condition sequences, in exactly the same way as the HRF can be expressed over a
small number of basis functions that are convolved with the condition sequence. The
resulting time courses serve as additional regressors for the fMRI analysis.

Since these Volterra kernels do not have much physiological meaning, Wager et al.[176]
proposed to model nonlinear effects in SPM studies by adding a small set of specific
regressors that have a less general form than Volterra kernels, but are designed accord-
ing to usually observed nonlinearities in data. They estimated which nonlinear effects
were generally present in the signals, and the resulting regressors they obtained included
amplitude attenuation or delay effects.

One of our major work has been to show that it is possible to use nonlinear models
in fMRI analysis rather than additional linear regressors which are supposed to account
for the possible nonlinear effects.

1.4 Optical Imaging Methods

Optical imaging entails new imaging techniques that allow us to visualize the functioning
brain at unprecedented resolutions. Specifically, there are two techniques; the first is
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Figure 1.8: A comparison of ocular dominance maps derived from oximetry and blood volume
changes: the contrast between the signal changes when either the contralateral or the ipsilateral
eye is open makes the ocular dominance cortical columns become apparent. Left: contrast ob-
tained with oxymetric changes (recorded at 605nm); right: with blood volume changes (570nm).
Figure modified from Vanzetta et al., 2001 [172].

Figure 1.9: Absorption spectrums of oxygenated (HbO2) and deoxygenated (HbR) hemoglobin.

based on intrinsic signals, and the second is based on voltage-sensitive dyes. These two
techniques consist in video monitoring the brain surface, and produce observations at
the scale of assemblies of neurons. Indeed, the spatial resolution mainly depends on the
optical properties of the magnifying lens and of the video camera, and can be superior
to 50 microns. The recording in a single pixel is thus composed of activity contributions
from 250-500 neurons. In particular, optical imaging allows the visualization of the
functional organization of the cortical columns in a given cortical region. Understanding
the functional processing performed by a given ensemble of neurons is a necessary step
before being able to discover the principles underlying the neural code. General reviews
on the optical imaging methods can be found in [70, 72]. Figure 1.8 show an example
result with optical imaging, which enables the visualization of the cortical columns
organization of the V1 cortex.
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1.4.1 Physics of the Optical Imaging

The activity-dependent intrinsic signals originate in the light absorption properties of
the various substances in the brain tissues. In particular, the fluctuations of hemody-
namic quantities such as hemoglobin induce changes in the reflected light, which was
discovered by the pioneering experiments of Kelin [96] and Millikan [140] (see [38] for a
detailed review on these light absorption and scattering effects). These intrinsic signals
can be detected by optical monitoring [71].

These light absorption changes depend on the wavelength at which the brain surface
is illuminated, according to the respective absorption spectra of oxygenated and deoxy-
genated hemoglobin (figure 1.9). The basic intrinsic imaging then consists in selecting
which specific wavelength should be used according to the variations of hemodynamic
quantity measures. In order to record the total amount of hemoglobin (blood volume),
one has to choose a so-called isosbestic wavelength, i.e. at which oxy- and deoxyhe-
moglobin have the same absorption ratio (green light, λ=570nm). Conversely, to record
oxygenation changes, it is necessary to use the wavelength at the peak of the difference
spectra between the two quantities (orange light, λ=600nm).

A power-law relates the intensity of reflected light to the concentration of the chro-
mophore (i.e. the substance which absorbs the light at the used wavelength), known as
the Beer-Lambert law. The detected intensity I depends of the illumination intensity
I0, the concentration of chromophore c and its absorption coefficient γ, and the length
of the path travelled by the photons through the tissues L.

I = I0e
−γLc. (1.13)

As a result, the relative variations of the chromophore concentration can be determined
only up to an unknown constant:

∆I

I
= −γL∆c.

On the other hand, it is possible to illuminate the brain surface with white light, and
then use optical imaging spectroscopy [130] to decompose the reflected light according
to frequencies, through the use of a spectrograph positioned between the cortex and the
camera (the camera then records “‘spatiospectral” 2D images, in which one dimension
stands for the wavelengths, and only one dimension is left for space, which implies it is
only possible to monitor a one-dimensional slice of the image at the same time). The
analysis of spectroscopy data consists in estimating the absorption spectrum at each
time point, and then fit it to the theoretical absorption spectra of oxy- and deoxyhe-
moglobin, in order to estimate both quantities. This spectrum estimation is actually
quite difficult and requires specific calculations, since it must take into account the non-
linear variations with wavelength of the optical path length [134, 137, 106]. However,
provided this estimation is achieved accurately, then it is possible to bypass the problem
of the unknown scaling constant mentioned above.

Intrinsic signals, since they are related to slow hemodynamic processes, do not en-
able the exploration of cortical dynamics and the time visualization of neuronal activity.
However, it is possible to use fast extrinsic probes: the cortex preparation can be stained
with a suitable voltage-sensitive dye (VSD) [39, 161]. The dye molecules bind to the
external surface of neurons and act as molecular transducers that transforming changes
in membrane potential into optical signals. Optical imaging with voltage-sensitive dyes
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permits the visualization of cortical activity with a time resolution below the millisec-
ond and a spatial resolution of 50-100 microns [89, 83]. It is important to note that
this VSD technique measures a sum of the intra-cellular potentials rather than their
spiking activity. Hence, it provides an information on neuronal processing, including
sub-threshold activities and focused in particular on the synaptic potentials since the
dye preferentially binds to the dendritic terminations of neurons. As a consequence,
the VSD signals should be closer to the electrophysiological measurements of low-field
potential (LFP) than to those of multi-unit activity (MUA). Nevertheless, VSD should
have a better spatial resolution than LFP, since the dye molecules are directly bound to
the cell membranes, whereas the LFP is an extra-cellular measure and thus represents
an average of cell potentials over a larger region. A study by Jin et al.[94] has shown
a good concordance between the two measurements, highlighting however differences
in the waveforms during different activities, which suggests that they are sensitive to
different aspects of the synchronization across the population.

Lastly, since the preparation of animals for optical imaging experiments is very
similar to the conventional preparation for in vivo electrophysiological experiments, it is
possible to acquire to insert an electrode and acquire electrical measures simultaneously
with optical imaging recordings. It is also possible to insert a laser-Doppler probe,
which allows estimating microcirculatory blood flow in a small tissue sample, through
a measure of molecules dispersion based on the Doppler effect [49]. Such a probe does
not penetrate inside the tissue, but it is approached to the cortical surface at a distance
of about one millimetre.

1.4.2 Acquisition Methods

Animal Preparation

Optical imaging can be used on small animals such as rats, cats or monkeys. The
animal needs to endure a surgical operation and a trepanation of the skull: a small hole
is drilled in the skull. The dura mater, which is a natural protective membrane between
the cortex and the skull, is replaced by a transparent silicone sheet to guarantee optical
access while properly protecting the brain against infections and mechanical traumas.
A chamber is sealed onto the bone using dental cement (figure 1.10). This chamber
is closed with a transparent Plexiglas cover and filled with a transparent gel (agar).
If it is filled perfectly, i.e. without any air bubbles or cerebrospinal fluid droplets,
this arrangement provides an ideal optical interface and, at the same time, stabilizes
the brain. Opening and re-closing the chamber allows experimenters to perform routine
cleaning and eventual treatment of the implant. For a detailed description of all surgical
and maintenance procedures see [8]. The European and NIH guidelines stipulate the
way animals have to be taken care of, and imposes limitations on treatments which
might injure them.

It is possible to work with anesthetized or awake animals. It is preferable in general
to use awake animals since their behaviour is closer to real conditions. However, anes-
thetized animals permit easier experimentation procedures since they are unconscious
and thus do not move. In particular, it not possible with awake animals to acquire
signals for long times (more than 7∼8 seconds) during visual stimulation where they
are asked to fixate a target point. Let us note that, to maintain the animal motivation
to keep the fixation, it is usual to reward him after each successful trial, with fruit juice
for example.
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Figure 1.10: Cranial window and artificial dura mater (figure and caption issued from Shtoy-
erman et al., 2000 [158]). (A) The exposed cortex as seen through the transparent silicon
membrane. The lunate sulcus is in the top left part of the cranial window. V1 and V2 are thus
available for optical imaging. This picture was taken 5 months after insertion of the artificial
dura over the exposed cortex. (B) Enlargement of the artificial silicon dura in the cranial win-
dow shown in (A). The silicon ring in the center stabilizes the artificial dura and prevents the
real dura from growing on the imaging area.

Experimental Setup

The figure 1.11 shows the experimental setup generally used for optical imaging ex-
periments. The animal head is held rigidly in a stereotaxic frame in the case of the
anesthetized animal or a head holder for the awake animal. It is recommended to use a
vibration isolation table to attenuate vibrational noises. A computer controls the stim-
ulation (usually, visual presentations are projected on a screen), the cortex illumination
and the video camera acquisitions.

To attenuate the signal noises due to physiological rhythms (heart beat and respira-
tion especially), it is useful to synchronize the stimulations and acquisitions with them.
Heart-beat synchronization is achieved by making each new trial begin at the time of a
heart pulsation, detected with any pulse-monitoring device.

Optical Recording and Illumination

The optical setup consists of a macroscope, which can generally obtained by using two
lenses separated with the appropriate distance, and a video camera. Digital CCD camera
have the advantage on traditional video camera to have a better signal to noise ratio
(close to 1000:1) at low light levels. This is quite important since the signal variations can
be very small compared to baseline values. And the light level is a major limiting factor,
and when one needs high resolutions (for VSD acquisitions for instance), a compromise
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Figure 1.11: The experimental setup. Figure adapted from Ts’o et al., 1990 [164].

needs to be found between frame acquisition rate, number of pixels, magnification and
signal-to-noise ratio.

Only the cortex should be illuminated, which can be achieved by the use of light
guides. The light must be stable across time (fluctuation should be less than 1:1000),
which requires a high-quality regulated power supply. The wavelength selection is
achieved by the use of interference filters. When experimenting with high light in-
tensities, it is desirable to control the illumination so that the cortex is illuminated only
during data acquisitions. This can be achieved through using electromechanical shutter.

The details specific to the voltage-sensitive dye technique (preparation and data
acquisition) can be found in Slovin and Grinvald, 2002 [160].

1.4.3 Data Analysis

A dataset from optical imaging measurements consist in a set of tri-dimensional images
(space×space×time, and as many images as trials). Adequate averaging is required to
isolate the signals which are related to the experimental conditions.

Trial Averaging

The trials corresponding to a specific condition are averaged, to keep the part of recorded
signals that is evoked by this condition, while the other components should tend to cancel
by summations.

However, the obtained time courses might entail features that are not specific to the
stimulation, but rather to the acquisition procedure (e.g. heart beat response when the
acquisition is synchronized with the heart pulsation, or response to the presentation of
the fixation point) For that reason, it is necessary to use and estimate the response to a
blank condition, i.e. to the acquisition procedure alone, with no particular stimulation.
The spatio-temporal response specific to a given stimulation is obtained by dividing
the average response to that condition by the average response to the blank condition
(division is used instead of subtraction on account of the Beer-Lambert power law
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(1.13) which relates the measured signals to actual hemodynamic changes). Since the
acquisition conditions can change across experimental sessions, it is necessary to realize
this correction with the blank condition independently for each session.

It is also possible to divide the responses to two different conditions in order to stress
the contrast between the responses to these two conditions (in the same way as contrasts
are formed in fMRI analysis). As an example, the figure 1.8 displays the results of an
ocular dominance experiment [172]. Here, the two conditions consists of visual stimu-
lations presented to only one eye. The responses for each eye have been averaged over
trials as explained above, and then the average response to the contralateral stimulation
(ipsilateral eye was shut) has been divided by the average response to the ipsilateral
stimulation (contralateral eye was shut). The displayed maps show a temporal aver-
aging of the responses between 1 and 9s, and make ocular dominance cortical columns
appear.

Estimation Standard Deviation

It is often necessary to quantify the error in the estimated response, i.e. the noise which
has not been suppressed by trial averaging (see for example the figure 6.2 in chapter
6). This error is estimated through the variance of individual responses. Because of
the normalization with the blank condition, it is necessary to bin the trials in packets
containing both stimulated and blank conditions, and to compute an estimated response
for each bin using the averaging and normalization by the blank condition explained
above. Let us notate y1, .., yk these estimations in each bin, and y their mean. The
variance σ̂ of the yi can be estimated as:

σ̂2(t) = var(fi(t)) =
1

k − 1

k∑

i=1

(y(t)− fi(t))2.

And the standard error e on the final estimation y is:

e2(t) = var(y(t)) = 1
k

∑k
i=1 var(fi(t))

e(t) = 1√
k
σ̂(t).



Chapter 2

Physiological Models of the
hemodynamic response

In this chapter, we will detail the different mechanisms involved in the BOLD response
to neural activity. They include changes in the metabolism, the cerebral blood flow,
volume and oxygenation, and the magnetic resonance properties of the vessels and
tissues.

Additionally, we will show with simulations how these models can account for the
different features of the empirically observed hemodynamic response.

2.1 Physiological Models

The figure 2.1 summarizes the main phenomena responsible for the BOLD response,
which we shall describe here.

Basically, the neuron glucose and oxygen consumptions increase during energy-
demanding tasks. This consumption is referred as Cerebral Metabolism Rate of glucose
and oxygen (CMRGL and CMRO2). The two molecules are extracted from the blood
during its transit inside the capillaries.

In order to meet this need for additional glucose and oxygen supply, the cerebral
blood flow (CBF) increases within a small delay, in a much larger proportion than
CMRGL or CMRO2 (the mechanisms underlying this flow response appear to be much
complex, and are not directly linked to the lacks of glucose or oxygen). Under this
flow pressure, the venous vessels dilate, according to their visco-elastic properties: the
“Balloon Model” describes how the cerebral blood volume (CBV) is related to the CBF.

The main consequence for the cerebral deoxyhemoglobin content (HbR for “reduced”
hemoglobin) dynamic is that the CBF effect predominates over those of CMRO2 and
CBV: blood becomes more oxygenated (HbR decreases). At last, this results in an
increased MRI signal, since the T2∗ decay due to the venous HbR content is attenuated.

We shall give more details on these processes, and in particular present various
modelling attempts in the form of dynamical models. Reviews of the BOLD signal and
its underlying neurovascular regulations can be found in [81, 124, 144].

2.1.1 Neural Basis of the BOLD Signal

In the human brain, when a particular area is recruited to carry out a task, a group
of neurons in this area fires action potentials. However, there may be groups of neu-
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Figure 2.1: The physiological processes underlying the BOLD response essentially involve the
neurons, the brain vasculature, and the astrocytes (small cells playing an important role in the
different exchanges of molecules and ions between the two former cells). The following questions
are critical for modelling these processes. 1. Neural basis of the hemodynamic response: Which
aspect of the neural activity (spikes, synaptic activity... ) is the most directly linked to the
hemodynamic changes? 2. Metabolism: Which are the most energy-demanding tasks and how
is the energy produced? 3. Arterial vessel dilatation and cerebral blood flow response: Which
kind of signals do control the resistance of the arterial vessels and how closely are they related
to the metabolic demand? 4. Oxygen extraction from the capillaries: To what extent does the
extraction of oxygen from the hemoglobin molecules depend on the blood flow, the metabolic
demand, and possible tissue reserves? 5. Visco-elastic properties of the vessels: What is the
dynamic relation between blood flow and blood volume in the vessels in general, and what is the
implication for the venous deoxyhemoglobin content (HbR)? 6. Measure in fMRI: How does the
BOLD signal depend on blood volume and deoxyhemoglobin, and can it be reasonably assumed
that the major part of the signal comes from the veins?
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rons which do not fire action potentials, but nevertheless utilize oxygen. For instance,
neurons at sub-threshold levels of activation, or neurons with simultaneous excitation
and inhibition inputs. As a consequence, it is valuable to ask which changes in neural
activity do influence the BOLD signal.

It is possible to acquire electrophysiological measures by the means of electrodes
inserted in the animal brain (they may be used on humans too, under particular cir-
cumstances such as epilepsy diagnosis). The measured electrical signals can be separated
into two parts according to their frequency content. The high-frequency (300-1500Hz)
multi-unit activity (MUA) captures the spiking activity of neurons in a small neigh-
bourhood of the electrode tip [118]. The low-frequency (40-130Hz) low-field potential
(LFP), on the other hand, is believed to reflect the superposition of synchronized den-
dritic currents, averaged over a larger volume of tissue [141].

Several studies have shown significant correlations between the amplitudes of the
BOLD responses and both the MUA and LFP activities in a same region [102]. Some
of these studies achieved fMRI measures on humans and electrophysiological measures
on monkeys [79, 80, 151]. Others also used EEG [147, 27], or optical imaging and
Laser-Doppler flow recordings [135, 6].

Logothetis et al.[122] used simultaneous electrophysiological and fMRI acquisitions
on macaque monkeys to compare how well LFP and MUA could predict the fMRI
measurements. Whereas in some recording sites, LFP and MUA were similar and both
predicted the fMRI response well, in some others, the two differed, and LFP signals
were found to better correlate fMRI than MUA. In particular, in those sites, MUA
showed transient responses which returned to baseline within 2-4s though the stimulus
stayed on for a longer time; at the same time the LFP and fMRI signals were both
sustained throughout the stimulus presentations, which lasted for up to 20 seconds.
Hence, Logothetis et al.concluded that BOLD fMRI signals, “reflect the input and
intracortical processing of a given area rather than its spiking output.”

Whereas a good concordance was generally found between LFP and hemodynamic
responses, some nonlinear relations between the two of them have been identified as well.
In some cases, a threshold effect was highlighted [90, 48, 157]. Mathiesen et al.[135, 115]
even found a sigmoid dependence of the CBF measurements with the LFP measurements
when varying the frequency of electric stimulations.

In addition, the BOLD response may reflect the activity of a network in a region,
which in some cases is more than just the sum of the activities of each individual unit.
For instance, the fMRI signal may reflect changes in neuronal synchrony without a
concomitant rise in mean firing rate [57]. Also, Kilner et al.[101] proposed a heuristic
model of the dependence of fMRI on the oscillations of a network. They concluded that
an increased BOLD signal should correspond to an acceleration of the oscillations, and
thus to a shift in the measured oscillations toward the high frequencies.

2.1.2 Metabolism

In the empirical observations we have mentioned, it appeared that the BOLD response
depends more on intracortical processing than on neuron firing rates, even though in
many situations, both are correlated.

In accordance with these observations, the studies on brain metabolism showed that
the most energy-consuming tasks are related to the synaptic activity, rather than to
the spike generation (Creutzfeld [40] estimated the latter to represent a maximum of
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Figure 2.2: Brain metabolism: The upper part of the figure, issued from Aubert and Costa-
lat, 2002 [9], illustrates the main processes of the metabolism, including glucose aerobic and
anaerobic consumptions (respiration and glycolisis), ATP production and the Na+ pump. The
bottom part of the figure, issued from Magistretti and Pellerin, 1999 [128], depicts in detail the
glycolisis and the on the cycle of the glutamate neurotransmitter.
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3% of the cortical energy consumption). This synaptic activity can be summarized as
(1) when action potentials arrive in the axonic termination of the source neuron, the
latter releases neurotransmitters into the synaptic cleft and (2) these neurotransmitters
activate receptors on the target neuron and induce changes in ionic gradients. To
maintain a continuous neural activity, energy-consuming processes restore the ionic
gradients and repack the neurotransmitter molecules into the source neuron [144].

These processes involve both the neurons and the astrocytes. Astrocytes are stellate
cells that have ramifications around the neurone synapses and around the capillary
vessels. There are about ten astrocytes for one neuron, and they play an important role
in the various chemical reactions as well as molecular and ionic exchanges with neurons
and capillaries. In particular, they possess receptors to glutamate, one of the most
current neurotransmitters, and participate in its reuptake toward the source neuron.

A detailed review of the cell metabolism can be found in [128]. In summary, the
energy is supplied by glucose consumption, which is achieved by both aerobic and anaer-
obic processes. The aerobic process is called glycolisis, and is thought to take place in
the astrocytes, while the anaerobic process, also called respiration, occurs in the mito-
chondria of the neuron. The glucose is transformed into lactate, and serves to produce
ATP molecules, which will themselves bring energy to various processes - including in
particular the Na+, K+ pump which restores ionic gradients, and the reuptake system
of glutamate and other neurotransmitters. The blood circulating in the brain provides
the glucose and oxygen molecules needed by these processes, and drains the produced
lactate. These exchanges take place around the capillary vessels. Figure 2.2 shows two
diagrams issued from [9] and [128] which illustrate these various mechanisms.

As a result, the metabolism of a brain region can be characterized by the consump-
tion of glucose and oxygen, usually denoted by CMRGL and CMRO2. As far as the
BOLD response is concerned, we are particularly interested in the dynamic of oxygen.
Upon neural activation, one would expect CMRO2 to increase, and hence also the de-
oxyhemoglobin in the capillaries and the veins, which should result in a decrease of
the BOLD signal. The contrary happens, due to an increase in the cerebral blood flow
(CBF) that overcompensates for the decrease in oxygen, delivering an oversupply of
oxygenated blood [54]. On the other hand, the glucose supply does appear to match
the consumption. See [66] for a review on the changes in oxygen metabolism under
increased neural activity.

The different mechanisms involved in metabolism have been put in equation by
Aubert and Costalat [9]. In particular, they simulated the BOLD responses obtained
with various neural activity patterns and various hypothesis on the CMRO2 changes.
However, this modelling was very complex and implied at least 15 evolving variables.
For some applications, it is desirable to model the changes related to neural activation
more simply, all the more since the only metabolism quantity we are interested in for
models of the BOLD response is CMRO2. For instance, Davis et al.[45] proposed to
model the CMRO2 response with a step function, while Buxton et al.[32] proposed a
convolution of the neural activity with a gamma-variate function:

{
CMRO2 = 1 + (m1 − 1)hm ∗ u

hm(t) = 1
6τm

( t
τm

)3e−
t

τm ,
(2.1)

where two parameters are used: m1 controls the scaling of the response (it is equal
to the plateau value of the CMRO2 response to long stimulations), and τm controls its
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Figure 2.3: Control on the blood flow. Figure issued from the review on neurovascular regula-
tion by Iadecola [88].

speed.

2.1.3 Flow Response

As previously mentioned, the CBF response to neural activity does not match the need
for additional oxygen supply, but exceeds it. Moreover, it appears that the control of
blood flow is not directly linked to the metabolism; rather, it is originated, at least partly,
from the synaptic communications. Basically, the flow is regulated by the contractions
and extensions of smooth muscle cells which surround the arteriole vessels. The tension
of these muscles itself can be modulated by a wide range of vasodilator substances. The
review by Iadecola [88] highlights the fact that activity-induced flow responses require
complex signalling mechanisms that involve not only neurons but also astrocytes and
vascular cells.

As a matter of fact, among the vasoactive agents, there are substances which are
also involved in the generation of the extracellular ionic currents (such as K+ and H+),
neurotransmitters (such as acetylcholine, GABA, catecholamines and neuropeptides).
Other neurotransmitters, such as glutamate, are not vasoactive, but stimulate the pro-
duction of powerful vasodilators, including nitric oxide (NO), through calcium-mediated
enzymatic activation. The increase in ATP metabolism that is associated with neural
activation also leads to production of the potent vasodilator adenosine. Moreover, it
was recently found that, though synaptic signalling and not energy deficit is the main
cause of the flow response, there exist other factors which are linked to the intracel-
lular energy metabolism. Indeed, the lactate/pyruvate ratio, which is an indicator of
energy needs, regulates CBF through signalling that involves NO and protein kinase C.
Numerous references can be found in [88] (references 10-43).
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In addition, observations on the spatial extent of the CBF increase highlighted the
concurrent effects of several mechanisms. The existence of a fast and very localized
flow responses observed in some cases cannot be explained uniquely by the diffusion
of vasoactive metabolites in the tissues, and requires a specific action of astrocytes
releasing vasoactive factors close to the vessels. At the same time, it appears that
the vasodilation in the area of activity is propagated upstream by ‘intramural’ vascular
signalling, in order to increase the blood supply in the whole region irrigated by upstream
pial arteries. Otherwise the local CBF increase would result in a CBF drop in the
neighbouring areas.

Because these mechanisms are highly complex, and since a large part of them is
still unknown, there exists no precise dynamic model of the flow response to neural
activity. Actually, when it is used fMRI models, the flow dynamic is often modelled
quite roughly with a trapezoidal shape: for instance Aubert and Costalat [9], who were
mainly interested in slow metabolic dynamics, used in their simulations a flow response,
which increased linearly during 5 seconds after the stimulation begin, then reached a
plateau and decreased linearly after the stimulation end.

More elaborated models describe the flow response as a linear function of neural
activity. Friston et al.[59] proposed a damped oscillator model, by introducing the
notion of a “flow inducing signal” s, which is actually the flow derivative:

{
ḟ = s
ṡ = εu− κss− κf (f − 1).

(2.2)

In this model, u denotes the neural activity, supposed to be zero at rest state, f
denotes the flow value relative to (i.e. divided by) its value at rest state, and three para-
meters are used: neural efficacy ε, decay time constant κs and autoregulatory feedback
time constant κf . This system is able to produce plausible time courses, with an initial
increase and a slower return to baseline.

Buxton et al.[32] proposed a convolution of the neural activity with a gamma-variate
function, similar to (2.1):

{
f = 1 + (f1 − 1)hf ∗ u

hf (t) = 1
6τf

( t
τf

)3e
− t

τf .
(2.3)

Like above, f1 controls the scaling of the response and τf controls its speed.

2.1.4 Oxygen Extraction from the Capillaries

As mentioned above, the exchanges between the brain and the blood occur around
the capillary vessels. We are particularly interested in the extraction of oxygen from
hemoglobin molecules, since it turns the latter into deoxyhemoglobin molecules whose
paramagnetic properties are responsible for the BOLD signal. Inside the blood, most
of the oxygen molecules are bound to hemoglobin molecules; however a small amount
of remaining O2 molecules are free inside the blood plasma. These molecule can pass
through the pores of the capillary wall and then diffuse into the brain tissues.

For hemodynamic models, the quantity which is important to determine concerning
this transit in the capillaries, is the ratio of oxygen extracted from the blood, denoted
by E. At steady state, it is related to the metabolism of oxygen, i.e. its consumption
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by the brain cells, according to the equation [148]

E.CBF
CMRO2

=
E0.CBF0

CMRO20
, (2.4)

where the zero subscript denotes values at rest. This equation has been widely used
to estimate CMRO2 given measures of CBF and inferences on E in optical imaging
[136, 95] - actually E cannot be calculated directly, but the ratio between oxygenated
and deoxygenated blood measurements can give information on it.

Buxton and Frank [31] proposed a model of the dynamic of this oxygen delivery to the
brain. The particularity of their model is that they supposed the large imbalance of flow
and oxygen metabolism to reflect a tight coupling in the presence of a limitation of O2

availability. This means that all oxygen that diffuses from the capillaries is effectively
metabolized, and there is no back-flux from the tissues to the blood. In addition to
this first hypothesis (a), they used the following assumptions: (b) the volume of the
capillaries remains constant when the flow increases (there is no capillary recruitment),
(c) the ratio between the pool of dissolved O2 in the plasma and O2 bound to hemoglobin
is constant (this means that exchanges between the two pools are very rapid), (d) the
diffusivity of oxygen across the capillary wall is constant: each O2 molecule in plasma
has a probability per unit time k of being extracted (in particular, it implies that the
oxygen concentration in the tissues is zero).

As a consequence of these assumptions, the extraction of oxygen E at time t only
depends on the flow at the same time. They could obtain its value by writing an
equation of the diffusion of oxygen at a given time and location inside the capillary, and
integrating this equation along the path of an amount of blood through the capillary:

E = 1− (1− E0)CBF0/CBF.

Actually, this tight coupling between flow and oxygen metabolism contradicts many
observations of an initial dip in fMRI or optical imaging (see next section), which is
thought to be due to an early increase of CMRO2, before the flow response. Please
note that recently, Buxton and his colleagues [32] admitted that oxygen extraction does
not necessarily need to be coupled with the flow, and they proposed a more complete
model where they used the steady-state relation (2.4) to determine oxygen extraction
and allowed CMRO2 to have a time course independent on CBF (equations (2.1) and
(2.3)).

Zheng et al.[185] proposed a more detailed model, the “Oxygen tissue transport”
(OTT) model, where several assumptions of the Buxton and Frank model were relaxed.
In particular, they supposed that the concentration of O2 in the tissues is non-zero, so
that the diffusivity from the capillaries depends on that concentration, and the changes
of this concentration depend both on the oxygen diffusion and on the metabolic de-
mand, which is independent on the flow. As a consequence, their model entails two
more dynamic variables: the ratio of tissue oxygen concentration and the plasma oxy-
gen concentration at the arterial end g, and the average oxygen concentration in the
capillaries C

c. Moreover, they considered that the mean transit time inside the capil-
laries was non-negligible, and thus took into account the fact that a small amount of
blood that leaves the capillaries at time t had entered them at a time t− τ where CBF,
g and C

c were possibly different. As a result, they obtained the system:
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φ

f
Ė = −E + (1− g)

(
1−

(
1− E0

1− g0

)1/f
)

φ

f
Ċ

c = −C
c − CaE

log
(

1− E
1− g

) + Cag

ρ

E0
ġ =

(
C

c − gCa

C
c
0 − g0Ca

− 1

)
−M,

where M is the metabolic demand (CMRO2), and the parameters are: g0, C̄B0, E0,
are the values at rest of the varying quantities, φ is the inverse of transit time at rest,
Ca is the concentration of oxygen at the arterial end, and ρ is a constant taking into
account the volumes of capillary and tissue, transit time and transport lags.

2.1.5 Visco-Elastic Properties of the Vessels and the Venous Balloon

We saw how neural activation induces changes in the cerebral blood flow and the ex-
traction of oxygen from the capillaries, according to mechanisms which are still under
investigation. The last variable we need to characterize in order to fully account for
the BOLD signals is the density of blood in a fixed volume, usually referred as cere-
bral blood volume (CBV) or perfusion. Blood is a viscous fluid travelling inside vessel
which themselves have specific visco-elastic properties. As a result, the flow and volume
dynamics depend on each other, according to more or less complex relations.

CBV Dynamics

At steady-state, numerous studies were in agreement with an early work of Grubb
et al.[75], who found a power-law relation between flow and volume:

V = Fα, (2.5)

where the Grubb’s parameter α is generally estimated between 0.25 and 0.4.
However, during transient phases, this steady-state relation makes no sense, since

when the volume is varying, the flow cannot be the same throughout. Indeed, the
variation of the blood volume V inside a given vascular compartment can be expressed
as the difference between entering and exiting flows:

V̇ = Fin − Fout.

When using relative quantities (i.e. normalized by the values at rest), denoted by
lower-case letters, it gives:

v̇ =
1
τ
(f − fout), (2.6)

where τ = CBV0/CBF0 is the mean transit time in the compartment.
There exist mainly two reference models: the Balloon model proposed by Buxton

et al.[33], and the Windkessel model proposed by Mandeville et al.[131]. The Balloon
Model uses equation (2.6) to determine the volume dynamic, which is controlled by the
definition of the fout term. The Windkessel model proposes an analogy between blood
pressions and flows in the vessels on the one hand, and potential differences and current
intensities in an electrical circuit on the other hand.
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We focus here on the Balloon model. Buxton and colleagues supposed the flow
leaving the arteries and entering the capillaries given, and assumed that the volume of
capillaries remained unchanged upon activation, which implies that the flow entering
the veins is the same as that entering the capillaries. On the other hand, the volume
of the veins increases under the pressure of a larger inflow, hence the name “balloon”.
They ran simulations with various definitions for the fout function. Whereas Friston
et al.[59] used the steady state expression in their dynamical model fout = v1/α, where
α is the Grubb’s parameter, Buxton et al.[30] proposed to add a resistance of the vessel
to volume changes, with the introduction of a viscosity term τvisc:

fout = v1/α +
1

τvisc
v,

Moreover, as this resistance to fast variation can differ whether volume is increasing
or decreasing, τvisc was allowed to take two different values, leading to the final hysteresis
scheme

v̇ =





1
τ
(f − v

1
α − 1

τ+
visc

v̇) if v̇ ≥ 0

1
τ
(f − v

1
α − 1

τ−visc

v̇) if v̇ ≤ 0.
(2.7)

This viscosity parameter allowed the model to account for compliance effects, i.e. a
delay of the changes of volume with respect to those of flow, which is generally admitted
to be the cause of the poststimulus undershoot observed in fMRI.

Alternatively, Mayhew and his colleagues proposed a modified Balloon/Windkessel
model which used an additional state variable to model this delayed compliance [107].
They also proposed, in their “three-compartment” model, to model a balloon effect in
the arteries (but with no compliance), which allowed them to better tune the dependence
of optical imaging volume and oxygenation measurements on the arterial, capillary and
venous compartments [184]. However, though CBV is presumably delayed with respect
to CBF in the veins, it might be different in other compartments. As a matter of
fact, Malonek et al.found in a study on anesthetized cats that CBF changes lagged after
CBV changes by one to two seconds [129]. They suggested an early capillary recruitment
which would be obtained by a momentary reduction of the outflow from the capillaries.

Venous Deoxyhemoglobin Content

In order to predict the BOLD signal measured in a cortical region, it is necessary to
determine the deoxyhemoglobin content HbR of the veins. Like the vein volume, its
variations are determined as the difference between entering and exiting quantities.
The entering deoxyhemoglobin is the product between the entering flow Fin and the de-
oxyhemoglobin concentration at the end of the capillaries E Ca. Conversely, the exiting
deoxyhemoglobin is the product between the outflow Fout and the deoxyhemoglobin con-
centration in the veins (it is assumed that the blood inside the veins is mixed sufficiently
fast to be homogeneous with a deoxyhemoglobin concentration equal to HbR/V ):

˙HbR = ECaFin − HbR
V

Fout.
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Using relative values (we denote by q the deoxyhemoglobin content relative to rest
q = HbR/HbR0), it yields:

q̇ =
1
τ
(

E

E0
f − q

v
fout), (2.8)

2.1.6 The BOLD Signal

The BOLD signal is due to the paramagnetic property of deoxyhemoglobin, which short-
ens the T∗2 relaxation time of the MR signals because of the increased inhomogeneity
of the magnetic field it induces. This effect was first described by Ogawa and his col-
leagues [148]. Then several studies developed precise models of this phenomenon, and
proposed estimations or calibration methods for the parameters of the models [23, 44].
More recently, Buxton et al.proposed a simple expression, which we shall briefly present
here.

Basically, the MR signal can be modelled with an exponential

S = Smaxe
−TE R∗2 ,

where Smax is the effective spin density, and R∗
2 = 1/T∗2 is the transverse relaxation

rate constant. Actually, only a small part of R∗
2 should be attributed to the deoxyhe-

moglobin. However, this part remains sufficient to produce observable signal variations.
We denote by R∗

2(0) the value of R∗
2 if no deoxyhemoglobin was present, R the addi-

tional relaxation produced by deoxyhemoglobin, and R0 this additional relaxation at
rest state. We have:

S

S0
= e−TE (R−R0) ≈ 1− TE (R−R0).

The relaxation produced by deoxyhemoglobin should be proportional to the mag-
nitude of the field distortion, and hence to the deoxyhemoglobin content of the voxel.
However, because of diffusion effects, which affect the smaller vessels, two different
power-law relationships are more accurate to model the dependencies of the relaxation
on the blood volume and on the deoxyhemoglobin concentration in the blood. Addi-
tionally, since these diffusion attenuate the effects of deoxyhemoglobin in small vessels,
the signals due to capillaries are usually ignored, and only the veins are considered.
The final expression for the BOLD signal we will use is the linear approximation as it
appears in [32]:

S

S0
= 1 + V0(a1(1− q)− a2(1− v)),

where v and q are the relative venous volume and deoxyhemoglobin changes, V0 is the
ratio of blood per unit of volume at rest, and a1 and a2 are two constants which depend
on the oxygen extraction at rest E0 and on some scanner and acquisition properties.
The values estimated by Obata et al.[146] for a magnetic field of 1.5 Tesla with TE
= 40ms and E0 = 0.4 are a1 = 3.4 and a2 = 1.0. It appears that, as expected, the
major part of the BOLD signal is due to the venous deoxyhemoglobin content; however,
volume also plays a non-negligible role, since for two similar deoxyhemoglobin contents,
the one which is enclosed in the smallest volume (i.e. the most concentrated one) is the
one which attenuates the signal the most. This is due to diffusion effects (these effects
become less effective at higher magnetic fields).



44
CHAPTER 2. PHYSIOLOGICAL MODELS OF THE HEMODYNAMIC

RESPONSE

%
s
ig

n
a

l 
c
h

a
n

g
e

%
s
ig

n
a

l 
c
h

a
n

g
e

Figure 2.4: Time course of the BOLD response. Left: measurements from experiments in the
motor cortex (Liu et al., 2000 [119]) (circles) and in the visual motor cortex (Glover et al., 1999
[67]) (squares), in response to a movement or a visual stimulation of 2s. Right: Theoretical
hemodynamic response functions modelled by two gamma-variate functions. The distributions
of curves were created by randomly perturbing the parameters by 10%. Figure adapted from
the review by Logothetis, 2004 [124].

There is currently no model for the BOLD measure at 3T. In our work, we choose to
use the equation above as an approximation for the measure of the BOLD signal at 3T,
and we impose a relationship between a1 and a2, to avoid too many unknown parameters.
On account on the fact that diffusion effects, and hence volume effects are smaller when
the intensity of the magnetic field increases, we suppose a2/(a1 + a2) = 1/10 (instead
of a2/(a1 + a2) = 1/4.4 at 1.5T), and introduce the new parameter b = V0(a1 + a2), so
that the new measure equation can write:

∆S

S0
= b(.9(1− q)− .1(1− v)).

2.2 Empirical Observations and Predictions of the BOLD
Response

The Hemodynamic Response Function (HRF) is the theoretical BOLD response to a
short neural activity (figure 2.4 on the left). The linearity assumption used in most fMRI
analysis states that the BOLD response to any neural activity pattern can be obtained
by convolving this pattern with the HRF (this linearity hypothesis is discussed in the
next section). Thus, if the linearity assumption did hold, it would be sufficient to know
the HRF shape to interpret, and even de-convolve [67], the measured time courses.

The two main characteristic features of the HRF are a strong positive response
which starts 1∼2s after the stimulation and reaches its maximum at 4∼5s after the
stimulation, and a subsequent drop below baseline which can last for twenty seconds.
Lange and Zeger [112] proposed to use the difference of two Gamma distributions to
respectively model the positive response and negative undershoot of this HRF (figure
2.4 on the right). It involves five parameters (n1, t1, n2, t2, a):

h(t) =
(

t

n1t1

)n1

e
− t

t1 − a

(
t

n2t2

)n2

e
− t

t2 .
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Now we shall discuss several characteristic features of this response, and show sim-
ulation results from the models previously described, either issued from the literature
or from our own simulations. We will pay a particular attention to the departures from
the nonlinearity assumptions which have been reported in several studies.

Positive Response and Undershoot

To better understand the Balloon Model, we ran some simple simulations and tried to
isolate specific features of the BOLD response, displayed in figure 2.5.

In the part A of the figure, the flow was simulated using the damped oscillator
proposed by Friston and colleagues ( equation (2.2)), the oxygen metabolism was ob-
tained by the derivations by Buxton and Frank, 1997 CMRO2 = f(1− E0)1/f/E0, the
cerebral blood volume was obtained with (2.7) but with no compliance effect, and the
deoxyhemoglobin content was obtained with (2.8). In the part B of the figure, the flow
and oxygen metabolism were simulated using the gamma-variate convolutions proposed
by Buxton and colleagues (equations (2.3) and (2.1)), but CBF and CMRO2 were still
tightly coupled since the same functions were used (only the amplitude differed, by the
ratio CBF/CMRO2 = 2.5). Actually, neither of the two simulations appears to be sat-
isfying: in A, we can observe the characteristic BOLD undershoot, but this undershoot
is already present in the flow time course, which is not the typical shape observed for
CBF. In B, on the contrary, no undershoot is present at all.

All subsequent stimulations use the second flow modelling. In the parts C and D we
investigated the role of the compliance parameter τvisc in equation (2.7). We separated
the effect of τ+

visc, which denotes a resistance against volume increase (in C: little effect
is observed on the BOLD signal), and the effect of τ−visc, which denotes a resistance
against volume decrease. The latter had a strong influence on the BOLD and induced
a prolonged undershoot, because of a higher deoxyhemoglobin content than at rest.

The Initial Dip

The question of the initial dip is particularly important. In optical imaging it has
been possible to observe reliably an increase in deoxygenated blood in the first seconds
of neural activity [169, 158, 171], probably caused by an early increase in CMRO2,
before the CBF response had the time to bring new oxygenated blood. Moreover, it
appeared in these studies that this early activity-dependent increase in deoxyhemoglobin
concentration was much more colocalized with the neural activity than the delayed
increase in oxyhemoglobin concentration, such suggesting that imaging based on the
negative dip response in fMRI studies could significantly increase their spatial resolution.
We show in our simulation (parts E and F of the figure) how changes in the delay of the
CMRO2 response with respect to that of the flow response, but also in its amplitude,
can produce such an initial dip. Please note however that there is not an agreement yet
on the reliability on this initial dip in the BOLD responses [29].

Nonlinearities of the BOLD Response

Most fMRI data analysis rely on the fact that the BOLD signal are supposed to respond
linearly to neural activity. In fact, numerous fMRI studies have considered the question
of the validity range of this linearity hypothesis. They agreed on the fact that the
assumption holds for stimulation durations or interstimulus intervals (ISI) larger than a
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Figure 2.5: Simulations of hemodynamic and BOLD time courses using the Balloon Model (see
text).
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Figure 2.6: By comparing responses to a given stimulation length with the linear prediction
from responses to stimulations twice shorter, one can assess the nonlinearities of the model
dynamic. Here, the maximum nonlinear effect occurs for the 4s/8s comparison.

threshold. The value of this threshold varies among studies : 2-3 seconds [24, 41] to 4-6
seconds [20, 67, 139, 173]. Studies involving other measurement modalities established
that some nonlinearities in the BOLD were not present at the neural level, and hence
were due to hemodynamic effects: blood flow measurement in humans via Arterial Spin
Labelling [139, 146], or electrical activity in animals [90].

Therefore, it is highly valuable to ask physiological questions about these nonlinear-
ities: How can they be explained ? At which level do they occur: neural, signalling,
vascular? We showed on a simulations (figure 2.6) that the Balloon model can produce
some nonlinearities also, by comparing responses to specific stimulation lengths with
their predictions from the responses to shorter stimulations. These questions shall be
developed in the chapters 4, 5 6.





Chapter 3

State of the Art of
EEG/MEG-fMRI Fusion

Our work on hemodynamic models was intended in particular to enable new analysis
methods of data issued from different brain imaging modalities. We were particularly
interested in the fusion of EEG, MEG and fMRI data, since they are today the most
powerful, non-invasive techniques which can be used on human. We propose here a
review of existing methods for the integration of EEG/MEG and fMRI, and try to give
a better understanding of the subject.

3.1 Understanding the problem

Brain imaging modalities span a very large panel of spatial and temporal resolutions,
from microns to centimetres, and from milliseconds to years. However, no technique
alone gathers all these resolutions together; only a subset of them. It is of great interest
then to know how to integrate data issued from multiple modalities in order to benefit
higher spatial and temporal resolutions.

On the one hand, EEG and MEG have a high temporal resolution, down to the
millisecond, but the localization is much more problematic, since measures of electric
potentials and magnetic field are done outside the head, and signals recorded on each
sensor potentially depend on activities everywhere on the cortex. The inverse problem
intends to localize the activities on the cortex, but this estimation remains uncertain. On
the other hand, fMRI offers a much better spatial resolution, since the BOLD signals
are already measured voxel-wise. At the same time, its temporal resolution is only
several seconds, due to the smoothing by the hemodynamic process, and to the sparse
sampling (100ms to acquire a single slice, and up to 3s for an entire brain). By the way,
let us note that the fusion between EEG and MEG data has a natural formulation in
the inverse problem, since they are driven by the same currents on the cortical surface.
For that reason, from now on, the notation EEG/MEG will represent indifferently both
or only one of the two modalities.

Hence, fusion between EEG/MEG and fMRI is potentially very valuable. However,
it is not a straightforward thing. The two modalities measure very different consequences
of the neural activity indeed, and the gap between their resolutions (temporal resolution
particularly) makes designing fusion methods difficult. As a result, to develop fusion
methods, it is necessary to ask the three following questions:
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• How are the measures related physiologically ?

• Which information do we want to extract from multimodal data ?

• And only thereafter: How can this information be extracted ?

3.1.1 Physiological Relation between Electrical and Hemodynamic Re-
sponses

EEG/MEG is a measure of synchronized electrical activities, while the BOLD effect
in fMRI is related to the metabolism (energy consumption) and delayed by the hemo-
dynamic processes. Some activities are likely to be detected by only one of the two
modalities. For example:

• An energy consuming activity which does not imply the synchronization of local
neuronal assemblies, or which occurs deep inside a cortical sulcus, will probably
only elicit a BOLD response.

• Inversely, some changes in the electrical dynamics of the brain could occur at a
constant metabolism level, and then only be seen in EEG.

Next comes the question of how electrical activity is related to metabolic changes: is
it for example the current intensity, or the power in a given frequency band, which best
correlates the energy consumption [133, 101]? And then, how is the BOLD dynamic
related to this energy consumption (see the previous chapter)?

3.1.2 EEG/MEG-fMRI fusion: what should be estimated ?

In neuropsychiatric experiments, the problem of estimating neuronal activity always
comes with a specific cognitive question. For instance, in EEG/MEG, the data process-
ing will not be the same whether one is interested in evoked potentials, i.e. activities
time-locked to the experimental paradigm, or in responses in the frequency domain,
or in an ongoing activity which is independent on any stimulation. Nor when one is
interested in the temporal aspects only (latencies, frequencies...), or in sources localiza-
tion (need to solve the inverse problem). Also, in typical parametric fMRI analysis, for
instance, the purpose is often to find regions performing a specific cognitive task by the
means of statistical tests, rather than by estimating neuronal activity in every voxel.

In a similar way, the various methods proposed for EEG/MEG-fMRI fusion do not
estimate the same aspects of the brain activity. Basically, we observed two main criteria
to classify different fusion approaches.

First, it is critical to know whether the method estimates an activity linked to a re-
peated external stimulation or not. In that case, electrical and hemodynamic measures
do not need to be acquired simultaneously, since the activity patterns are supposed to
be reproduced identically at every stimulus presentation (of course, this is on condition
that the environment - inside the scanner or not - does not influence the subject behav-
iour). On the contrary, if the random trial-by-trial variations of the responses are to be
taken into account, or if there is no deterministic repeated stimulation, simultaneous
acquisition is necessary, so that both modalities can measure the same activity fluctua-
tions. In that case, the only possible electrical measure is EEG, since concurrent MEG
and fMRI acquisition is not really feasible !
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Secondly, approaches can be distinguished according to whether they suppose that
the different modalities share spatial, temporal or spatio-temporal information. Indeed,
some methods will suppose that both EEG/MEG and fMRI give information on source
locations, but that only the electrical measures give a pertinent information on their
time courses. Inversely, others will consider that EEG signals at the electrodes can
have - in a sense to be specified - a correlation with BOLD time courses, but will use
fMRI only for sources localization (no inverse problem). Note that in these two cases,
even though the shared information is only spatial or temporal, the estimation result
will combine the two aspects. Please also note that there is a logical link between the
two criteria presented in this subsection: doing simultaneous EEG-fMRI acquisition
implicitly implies that they share some temporal information.

3.1.3 Methodology

Several authors have described different levels of integration between multiple-modality
data. Horwitz and Poeppel [86] proposed to distinguish between three stages. The
first one, called convergence validation only consists in comparing analysis results ob-
tained on each modality data alone (activation maps essentially), and in discussing their
similarities. Despite their simplicity, it is necessary to conduct such observations in or-
der to validate the hypothesis concerning the link between electrical and hemodynamic
measures of cerebral activity.

Next, so-called asymmetric integration methods consist in using the result of a first
analysis with one of the modalities, and then utilizing this result as a constraint for
the analysis of the second one. Historically, the first fusion attempts consisted in con-
straining the inverse problem in EEG/MEG by using the activation map found in fMRI
(Friston and colleagues call this integration through constraint [101]). More recently, the
inverse was explored also, where the EEG signals recorded during simultaneous acqui-
sitions were used to build fMRI regressors (Friston and colleagues call this integration
through prediction).

These approaches do not suppose explicitly an unknown cortical activity underpin-
ning the diverse measures. On the contrary, symmetric integration methods do require
a common forward model that links underlying neuronal dynamics to measured hemo-
dynamic and electrical responses; this dynamic is estimated by a concurrent integration
of both measures.

Table 3.1.3 classifies the different existing fusion approaches (convergence validations
excluded), according to all the considerations above.

We shall now present these methods, classified according to the shared information
criterion. This does not mean that they will appear in an order of increasing complexity
or modelling effort. Other reviews on methods for the fusion between EEG/MEG and
fMRI can be found in [63, 76]. The review by Nunez and Silberstein [145] focuses on
the physiological basis of the relation between the electrophysiological (EEG/MEG) and
the hemodynamic (fMRI) measures. The review by Salek-Haddadi et al.[155] focuses
on methods which have applications in epilepsy.

3.2 EEG/MEG and fMRI Share a Spatial Information

As we mentioned above, assuming that EEG and fMRI only share spatial information
(no temporal mapping between the two measures) implies that there is no need for si-
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multaneous data acquisition. Thus, all the methods in this section deal with estimations
of an activity related to a specific repeated stimulation.

3.2.1 Convergence Evidence

Numerous studies showed similarities between electrical and hemodynamic analysis in
the localization of regions which participate in a specific cognitive task. An extensive list
of such experiments that used EEG/MEG and fMRI conjointly is given in the review by
Halchenko et al.[76]. They involve a large variety of perceptual and cognitive functions:
visual perception [159, 168], motor activation [4, 116, 156], somatosensory mapping
[156], auditory [85] or visual oddball tasks [109], target detection [143], face perception
[84], sleep [87], language [174]. Generally, the electrophysiological and fMRI measure-
ments do agree on the location of the activity [4]. However, some studies reported a
significant (1-5cm) displacements between the locations obtained from fMRI analysis or
EEG/MEG inverse problem [16, 117]. Furthermore, such displacements could be very
consistent across the experiments of different researchers (for instance motor activations
[108, 104, 156]).

Results showing such displacements are not easy to interpret. They indicate that
fMRI and EEG do find an activity in a same (extended) region. But it is not clear
whether the difference in the precise localization is due to a bias in the estimation or
whether there really are two foci of activity implicated in the same task. In any case,
fusion algorithm should be flexible enough to allow estimations of activities seen by the
EEG or the fMRI only.

3.2.2 fMRI-Guided EEG/MEG

The first attempts in integrating fMRI and EEG data were made by constraining the
ill-posed inverse problem in EEG/MEG with activation maps obtained in a former fMRI
analysis. This has a simple formulation using a Bayesian framework for the EEG/MEG
inverse problem, and by tuning the a priori variance of the sources according to the
fMRI analysis results (see the first chapter, section 1.2.3). The EEG/MEG measure m
is a linear function of current intensities on the cortex surface, s, as described by the
forward problem, plus additional measure noise n:

z = Gj + η.

If the measure noise η is supposed Gaussian with variance Σ, and if the a priori
distribution of the sources is Gaussian also, with variance C, i.e.

p(η) = N (0,Σ)
p(j) = N (0, C),

then the a posteriori distribution of the sources given the measure is

p(j|z) = N ((GT Σ−1G + C−1)−1GT Σ−1z, (GT Σ−1G + C−1)−1).

A priori on the activation of sources issued from the fMRI study can be set by
tuning the diagonal terms Cii of their variance matrix C. The inverse problem will
locate primary currents responsible for the measures, preferentially in the sources with
high variance. To allow some activities to be seen by the electric measures only, all
sources should have a minimum variance, even in regions not activated in fMRI [62].
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Figure 3.1: Forward model for EEG and fMRI in [43]. (1) A vector w represents the spatial
profile of sources intensities, common to EEG and fMRI measures. (2) Electrical and hemody-
namic temporal patterns of the response to the stimulation, X and Z, are supposed independent
from each other. The brain surface is divided in regions (about twenty) according to the Broca
classification: X and Z can vary across regions, but are supposed constant in a same region
- this is the way to express that there can be several activity loci, but the activity in a given
locus is synchronized. (3) By multiplying these electrical and hemodynamic temporal patterns
X and Z by the voxels activity intensities w, one gets specific electrical and hemodynamic time
courses in every voxels, notated S and H. (4) EEG signals M are obtained by applying the
forward problem to S. (5) fMRI signals Y are obtained by convolving the stimulation sequence
by H.

As an example, Babiloni et al.[11, 10] set

Cii = 1 + λαi,

where αi is the statistically significant percentage signal increase of the fMRI signal
during the task compared to the rest state, and λ is a hyper-parameter that controls
the fMRI constraint.

Several variants have been proposed [42, 13, 120]. Ahlfors and Simpson proposed a
“subspace regularization” technique [5], in which the cortical sources are chosen from
all possible solutions describing the EEG/MEG measures as the one which minimizes a
distance to a subspace defined by the fMRI data. Actually, all these techniques can be
reformulated in order to match the Bayesian derivation above.

3.2.3 Symmetric Spatial Integration

Asymmetric methods rely on two steps: first, a weight is computed for every cortex
element according to their fMRI activation, then these weights are updated during
the EEG/MEG analysis to result in a map of cortical activity informed by the two
modalities.

A symmetric integration of the modalities would rather consist in estimating these
weights from the two measures together. Daunizeau et al.[43] proposed such a method.
They first constructed a forward model where the electrical and hemodynamic temporal
patterns were independent, but their intensities depended on a common spatial profile
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w. Figure 3.1 depicts this model. These temporal and spatial patterns are estimated
using Bayesian inference, according to an iterative algorithm. The advantages of using
a Bayesian framework is that the estimation algorithm can be derived simply from
the model formulation. Hyper-parameters, like noise variances, can be estimated as
well. Finally, it enables statistical test derivations to assess the activation of individual
sources.

3.3 EEG/MEG and fMRI Share a Temporal Information

Techniques integrating electrical and fMRI temporal aspects have emerged with the
advent of simultaneous EEG and fMRI acquisitions. Though one could imagine appli-
cations on evoked responses, the existing methods presented here are rather interested
in an ongoing activity during stimulation-free experiments. There is of course no MEG
recordings in these cases.

3.3.1 EEG-Guided fMRI

The principle of integration through prediction is to use EEG measures to build regres-
sors for the fMRI analysis. Namely, one or several time courses are extracted from the
EEG measures at the electrodes, or from a subset of electrodes. The signal(s) is(are)
convolved with a canonical hemodynamic function, and serve(s) as (a) regressors(s) for
the General Linear Model. Standard fMRI analysis then finds regions whose BOLD
signals are correlated - positively or negatively - with the EEG prediction(s).

For the moment, this has been applied successfully under two main experimental
conditions. The first one consisted in leaving a subject with his eyes closed inside the
scanner, and then using the power of EEG signal in a specific frequency band (par-
ticularly, for α oscillations) to correlate fMRI measures [37, 68, 113, 114]. Negative
correlations were found between alpha oscillations and the BOLD signal in parietal and
frontal areas, while positive correlations were found, but were contradictory between
studies. Please note that these result do not necessarily locate the generators of oscil-
lations, but rather regions whose activity is related to them. Note also that Kilner and
Friston [101] have predicted heuristically that increased activity leads to a frequency
shift of signals spectral signatures towards higher frequencies, which is in accordance
with these negative correlations between the BOLD signals and the low-frequency α
oscillations.

The second experimental condition is concerned with the diagnosis of epileptic sub-
jects [178, 117, 21, 69, 177], who are asked to remain sedentary inside the scanner.
These people experience abnormal electrical activity in the regions of the brain affected
by epilepsy, manifested by frequent discharges or spikes. Thus, acquiring simultaneously
EEG and BOLD signals is highly valuable. Indeed, EEG time courses serve to detect
the times at which these discharges occur. The signal extracted from EEG is then a
succession of instants (diracs), which is convolved with the HRF and serves as an fMRI
regressor. This method offers new opportunities to locate epileptogenic regions (more
detail can be found in chapter 8).
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3.3.2 Symmetric Temporal Integration

The methods exposed above were asymmetric, in the sense that time courses were im-
posed by the EEG, and the fMRI was then used to locate the sources based on these
signals. Martinez-Montes et al.[133] proposed a method to extract temporal features
common to simultaneously acquired EEG and fMRI signals in a symmetric manner.
fMRI data was considered a 2D array (voxels by time), whereas EEG data was consid-
ered a 3D array (electrodes by frequencies by time). The EEG data, expressed in the
frequency domain is first convolved with a standard HRF, to make the signals compa-
rable. Then the signals were decomposed as sums of atoms: an fMRI atom yk is the
product of a single spatial pattern usk by a temporal pattern vtk: it is actually a rank
1 matrix,

yk = uskv
T
tk.

(the authors actually did not use the transposition sign). In a similar way, an EEG
atom zk is the product of spatial (electrodes), frequencies and temporal patterns adk,
bwk and ctk. It is a 3D array, hence in mathematical terms it would be defined with a
tensor product.

zk = adkbwkctk

The authors proposed an algorithm which realized the atom decompositions by im-
posing the temporal patterns in EEG and fMRI decompositions to be maximally corre-
lated (the vectors vtk and ctk must have maximum covariance).

They estimated these atoms using a tri-linear Partial Least Square algorithm. As a
result, they were able to extract time courses present both in the EEG frequency powers
and in the fMRI signals. They produced the maps corresponding to estimated temporal
patterns by doing a GLM study in fMRI, and solving the inverse problem in EEG, and
compared the two results. It is important to note that the algorithm did not use any
constraint on similarity of these maps.

3.4 EEG/MEG and fMRI Share a Spatio-Temporal Infor-
mation

Now, we want to take into account the fact that both temporal and spatial information
given by electrical and hemodynamic measures can be integrated concurrently.

3.4.1 Trial by Trial Variations in Response Amplitude

Lahaye et al.presented an original method to integrate simultaneously-acquired EEG
and fMRI in a stimulation-controlled experiment [111]. They proposed to take into
account the fact that, during an experimental study, the neural responses to successive
repetitions of the same condition might vary in amplitude, due to attention modula-
tions for example. Thus EEG and fMRI measurements were supposed to share spatial
information on source locations, as well as a simple temporal information, which was
the amplitude variations of successive responses.

The method is close to the asymmetric integration-through-constraint methods pre-
sented above, i.e. the inverse problem in EEG is tuned by source covariance priors issued
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from fMRI analysis (more precisely they tune the electrode measures covariance instead
of sources covariance, but it is actually equivalent). The difference is that these covari-
ances are not imposed straight ahead; an iterative algorithm discerns for every source
whether the fMRI constraint should really be applied to it, depending on whether trial-
by-trial amplitude variations for this source are correlated in EEG and fMRI or not.
Although the formulation is quite complex, this method is a good way to take advantage
on the simultaneous acquisition of EEG and fMRI.

3.4.2 Concurrent Estimation of the Spatio-Temporal Neural Activity

A more general integration of all the information contained in EEG/MEG and fMRI
was proposed by Trujillo et al.[163]. They gathered forward models for all modalities
in a single Bayesian framework and derived algorithms to estimate the spatio-temporal
unknown, i.e. neural activity time courses of every source on the cortical surface. Their
method can be applied indifferently on average evoked responses obtained in (non-
simultaneous) EEG, MEG and fMRI experiments, or on an ongoing activity recorded
by simultaneous EEG-fMRI measurements.

In their forward model, the relation between electrical activity on the cortex and
that measured in EEG and MEG was given by the usual electrophysiological forward
model, while that between metabolic activity and the BOLD measure was given by an
HRF convolution. But they admitted ignorance about the link between these electrical
and metabolic activities and an upstream common neural activity and supposed a sim-
ple linear link. The results on simulated and experimental data from a somatosensory
MEG/fMRI experiment confirmed the applicability of Bayesian formalism to the mul-
timodal analysis, even under the set of simplifying assumptions mentioned above. In
particular, they had to face extensively large matrices.

Halchenko et al.[77] proposed a linear programming algorithm to solve the EEG/MEG-
fMRI inverse problem. It enabled them in particular to use a nonlinear quadratic re-
lation between electrical and hemodynamic activities. As a matter of fact, traditional
least-square minimization techniques would not perform accurately on account of such
a heavily nonlinear dependence. Their approximations allowed them to re-write the
system in the form of a linear minimization problem under constraints. They applied
their methods successfully to a reduced synthetic dataset, and are currently on the way
to apply it to real-experiment data.

Kiebel and Friston [98, 99] recently proposed to apply the Statistical Parametric
Mapping (SPM) techniques to EEG data. Hence they built a common framework for
the EEG and fMRI measures that they believe will enable them to achieve fusion be-
tween the two modalities in a near future. Among the choices about this framework
they had to deal with, they preferred to achieve parameter estimation on a voxel-by-
voxel basis (mass-univariate framework) rather than on all voxels together (multivariate
framework). This choice was motivated by the drop of the number of variance parame-
ters that needed to be estimated then. However, it implies to first solve the EEG inverse
problem and thereafter analyze each voxel independently. Consequently, the covariance
information between the distributions of sources (which states in particular that several
sources configurations can account for the same EEG measure) is ignored. All the same,
though it looses this covariance information, the method appears to take into account
spatial and temporal information from the EEG and fMRI measures.

We shall propose in chapter 8 a method for fusion between EEG and fMRI that



58 CHAPTER 3. STATE OF THE ART OF EEG/MEG-FMRI FUSION

belongs to this category. The forward model for fMRI however will rely on a physiology-
related dynamical system, and the algorithm we use, based on Kalman filtering, will
allow the reduction of data dimensionality.



Part II

Using Nonlinear Models in fMRI





Chapter 4

Model Identification

In this chapter, we will show how to estimate the physiological parameters of a hemo-
dynamic model using brain imaging measures (we will use fMRI in this chapter, and
optical imaging in chapter 6). There are several complexity levels in such an estimation,
depending on the assumptions on the noise in the data, and on various priors on the
parameter values. Besides, whatever the method used, parameter estimation remains
limited on behalf of the noise in the data and intrinsic identifiability properties of the
dynamical systems.

To begin with, we will present the general mathematical framework for hemodynamic
models: stochastic differential equations systems. It will be applied to two different ver-
sions of the Balloon Model (we will actually see that models expressed with convolutions
do not strictly fit this framework), and show how to address some dynamical properties
of such systems like their stability around equilibrium.

Secondly, we will present the Maximum Likelihood estimation method we have de-
veloped, accompanied with examples on simulation data, as well as other possible esti-
mation frameworks.

Lastly, we will address the more difficult question of the estimation accuracy: is it
possible to completely characterize the a posteriori distribution of parameters ? Some
approximations will be presented, and in particular we propose an analysis that quan-
tifies the sensitivity of model output with respect to each parameter.

All these methods have been applied to a flashing checkerboard experiment that will
be the subject of the fourth part.

4.1 Model Formulation

4.1.1 Stochastic Differential Equations (SDE) Terminology

The physiological models we described in chapter 2 can be viewed as input-state-output
systems [59]:

{
ẋ(t) = F (x(t), u(t), θ) + ξ(t)
y(t) = G(x(t), θ) + η(t),

(4.1)

where

• The input u is the external stimulation driving neural activity.
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• The state x denotes the set of all hidden variables associated with the hemody-
namic process, such as metabolism, blood flow, venous deoxyhemoglobin content;
in this chapter we will consider that there is an independent process at each spatial
location (in practice each voxel), which means that x denotes the hidden variables
at one particular location.

• The output y is the set of measures obtained by brain imaging techniques; in this
chapter y will be the fMRI signal at the same location.

• F is the evolution function, which accounts for all physiological processes driving
the system.

• ξ is an evolution noise, which accounts for random perturbations of these physio-
logical processes; in the strict SDE formalism, it is assumed white and Gaussian.

• G is the measure function, explaining how the measure y depends on the hidden
variables; in this chapter, it will describe the dependence of the MR signal on
hemodynamic quantities.

• η is a measure noise, which accounts for physiological and physical effects randomly
altering this measure; it is also assumed white and Gaussian.

• θ is a set of physiological and physical parameters on which evolution and measure
functions depend.

We are particularly interested in the parameters of this system. Indeed, whereas F
and G describe general dynamical properties of the physiological processes, it is the set
of parameters θ that tunes this dynamic. These parameters can account for biological
and physical properties of the body and measurement equipment, which may vary across
experimentations, subjects or even cortical regions; they can also quantify the cognitive
response of the brain to stimulation (e.g. intensity, latency of the activation). The prob-
lem of estimating these parameters from the measured data is a system identification
problem, and it will be the topic of this chapter.

4.1.2 A First Model

The Balloon Model proposed by Buxton and al. [33] and completed by [59] (flow dy-
namic) describes the dynamics of a “flow inducing signal” s, the blood flow f , the blood
venous volume v, the veins deoxyhemoglobin content q (these values are normalized and
thus equal 1 at rest), and the BOLD signal y:





ṡ = ε u− κss− κf (f − 1)
ḟ = s

v̇ = 1
τ (f − v1/α)

q̇ = 1
τ (f 1−(1−E0)1/f

E0
− v1/α−1q)

y = V0(a1(1− q)− a2(1− v)).

(4.2)

Here, the set of hidden variables x is a four-elements vector

x =




s
f
v
q


 .
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Please note that we did not make noises appear in the equation. Also note that the
two first equations stand for a unique second order equation for the flow, but it was
necessary to add the flow derivative s = ḟ to the state variables to match the general
formulation in (4.1):

f̈ = ε u− κsḟ − κf (f − 1).

Let us describe the set of parameters θ. The neural efficiency parameter ε quantifies
the activation since it determines to what extent the system does respond to stimulation.
Then there are physiological parameters: the flow decay κs, the flow time constant
κf , the venous transit time τ , Grubb’s parameter α, the oxygen extraction at rest
E0 and the blood volume fraction at rest V0, which may vary across brain regions
and across subjects; and scanner-dependent parameters: a1 and a2 (as we mentioned
in the introduction , we will either use the known values for a1 and a2 at 1.5T, or
suppose a2/(a1 + a2) = 1/10 at 3T, which implies we need to estimate the product
b = V0(a1 + a2)).

4.1.3 System Stability

We are interested here in assessing the stability of a dynamical system: the hemody-
namic main effect should be roughly a smoothing of the input; for that reason, there
should not be any special dynamics like bifurcations, limit cycles... rather, when the
input becomes constant, the system should converge toward a unique stable equilibrium
point.

As an example, we shall examine here each equation of the Balloon Model above.
The flow dynamic equation is a pure linear damped oscillator. It can then be com-

puted exactly by a convolution

f(t) = 1 + k ∗ u(t).

If we assume ∆ = κ2
s − 4κf < 0, we have:

k(t) = εe−
κs
2

tcos(

√
4κf − κ2

s

2
t)

(if we had had ∆ > 0, k would have been of a different form, with exponentials only).
Since it is a linear convolution, the flow does not have any special dynamic (when the

input is constant, the flow converges necessarily to the equilibrium point 1 + εu0/κf ).
Volume only depends on flow. If we note v(f) = fα, v̇ in (4.2) has the same sign

as v(f) − v. The equation looks like an exponential decay to steady state, though it
is nonlinear. If the input is constant, the flow and the volume necessarily converge to
their equilibrium points (1 + εu0/κf ) and (1 + εu0/κf )α. In a similar way, if we note

q(v, f) = f 1−(1−E0)1/f

E0
v1−1/α, q̇ is the same sign as q(v, f)− q. If the input is constant

the deoxyhemoglobin content eventually converges to an equilibrium point.
As a conclusion, the Balloon Model (4.2) is stable since it will always converge

toward an equilibrium when its input becomes constant.

From a more mathematical point of view, the system stability can be assessed
through examining the eigenvalues of the Jacobian of the evolution function F at the
equilibrium point x0. Again, we show this in the example.
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When the system is driven by a constant input u0, then there is a unique x0 such
that F (x0, u0, θ) = 0:

x0 =




0
1 + εu0

κf

(1 + εu0
κf

)α

1−(1−E0)
1/(1+

εu0
κf

)

E0
(1 + εu0

κf
)α




.

This equilibrium point is called stable when the system evolution converges back
toward it after small perturbations. This is the case if and only if the Jacobian of the
evolution function with respect to x has real negative or complex with negative-real-part
eigenvalues. In our example, this Jacobian is:

∂F
∂x =




−κs −κf 0 0
1 0 0 0

0 1
τ −x

1/α−1
3
ατ 0

0 ∂F4
∂x2

1
τ (1− 1

α)x1/α−2
3 x4 −x

1/α−1
3
τ




,

with
∂F4
∂x2

= 1
τ (1− (1−E0)1/x2

E0
+ log(1− E0)(1−E0)1/x2

E0x2
),

and its eigenvalues evaluated at x0 are

{−κs+
√

κ2
s−4κf

2 ,−κs−
√

κ2
s−4κf

2 ,−
(1+

εu0
κf

)1−α

ατ ,−
(1+

εu0
κf

)1−α

τ }

(they can be obtained as follows: note that the matrix ∂F
∂x is trigonal by blocks with

block sizes equal to 2, 1, and 1; the four eigenvalues are respectively the 2 eigenvalues
of the first 2x2 block, and the third and fourth diagonal terms). Since the physiological
parameters are always positive, either these eigenvalues are real and negative or they
have negative real parts: the system is always stable around the equilibrium.

4.1.4 A Second Model

We will apply our system identification procedures not only to the Balloon Model above,
but also to several enhancements of it, as they appear in [32]. Here we show how to
bring these enhancements together in a single system formulation and how to simplify
it.

Three more variables are considered: the metabolism (CMRO2) m becomes an inde-
pendent variable instead of the flow-locked expression f 1−(1−E0)1/f

E0
; the neural activity

N is the output of a simple habituation model (with a neural inhibition I) instead of
the stimulus-locked expression εu. Flow and metabolism are not described by an evo-
lution equation any more, but as convolutions (denoted by ∗) of neural activity with
gamma-variate functions:
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N = max(ε u− I,−N0)

İ =
1
τI

(κnN − I)

f = 1 + (f1 − 1) hf (t− δt) ∗N
m = 1 + (m1 − 1)hm(t) ∗N

v̇ =
1
τ
(f − (v1/α + τviscv̇))

q̇ =
1
τ
(m− q

v
(v1/α + τviscv̇))

y = V0(a1(1− q)− a2(1− v)),

(4.3)

with





hf (t) = 1
6τf

( t
τf

)3e
− t

τf

hm(t) = 1
6τm

( t
τm

)3e−
t

τm .

Additional parameters are the steady-state neural activity N0, the inhibitory time
constant τI , the inhibitory gain factor κn, the normalized CBF and CMRO2 responses
to sustained activity f1 and m1, the delay δt between CMRO2 and CBF responses,
the widths τf and τm of the CBF and CMRO2 impulse responses, and the volume
viscoelastic time constants τ+

visc and τ−visc (a hysteresis rule is authorized for the volume
dynamics: the viscosity parameter τvisc can take 2 different values whether ∂v

∂t > 0
(τvisc = τ+

visc) or ∂v
∂t < 0 (τvisc = τ−visc)).

We notice that the new dynamical system includes temporal convolutions that can-
not be expressed in terms of differential equations. We will need then to keep a hybrid
form with both differential equations and convolutions, which means that the model
does not strictly satisfy the SDE formalism. We shall mention later how to handle these
convolutions for parameter estimation. For now we shall propose some simplifications
of these equations.

First, the neural habituation model can be analytically solved in

N = max(ε hN ∗ u,−N0),

with

hN (t) = D − κn

τI
e
−κn+1

τI
t

and D denotes the Dirac impulse at t = 0.
Secondly, to eliminate the indetermination that exists between the parameters ε, f1

and m1, we will use two new parameters instead: ξ = ε(f1−1) and n = (f1−1)/(m1−1),
which is the steady-state flow-metabolism ratio.

Thirdly, let us note that the volume evolution equation can be transformed in

v̇ =
1

τ + τvisc
(f − v

1
α ) =





1
τ+τ+

visc

(f − v
1
α ) if fα > v

1
τ+τ−visc

(f − v
1
α ) if fα < v.

Hence, the new Balloon Model formulation (4.3) is equivalent to
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v̇ =
1

τ + τvisc
(1 + ξ hf ∗max(hN ∗ u,−N0)− v1/α)

q̇ =
1
τ
(1 +

ξ

n
hm ∗max(hN ∗ u,−N0)− q

v
(v1/α + τviscv̇))

y = V0(a1(1− q)− a2(1− v)).

(4.4)

4.1.5 A Note on Integration

In order to solve the differential equations, we used a discretization step of 5ms in
our implementations of models. We did not need to use a more computationally costly
Runge-Kutta method because physiological quantities, and hence the evolution function,
are changing slowly.

Please also note that we always suppose that the variables are at rest state at the
beginning of integration, which implied for our experiment that the fMRI acquisition
starts after a sufficiently long resting period in the scanner.

4.2 Parameter Estimation

We describe here the more general parameter estimation framework. However, the
procedure we chose assumes some simplifications of this framework, which we will justify.
We will also describe other existing methods at different moments in this chapter.

Let us be reminded of the stochastic differential equations system:
{

ẋ(t) = F (x(t), u(t), θ) + ξ(t)
y(t) = G(x(t), θ) + η(t),

The system noises ξ and η are white Gaussian noises:

ξ(t) ∼ N (0, Q) and η(t) ∼ N (0, R).

θ denotes the parameters of the system, and variances Q and R are hyper-parameters.
We denote θ̃ = {θ, Q, R}.

The most complete parameter estimation procedure would consist in determining
the a posteriori probability distribution of parameters given the measure p(θ|y). It
requires to have a priori distributions of parameters and hyper-parameters values, p(θ̃),
but if it is not the case, it is also possible to use degenerate non-informative a priori
distributions. Then the a posteriori distribution is obtained by the Bayes rule:

p(θ̃|y) =
p(y|θ̃)p(θ̃)∫

θ̃′ p(y|θ̃′)p(θ̃′)
.

Nevertheless, this calculation is highly difficult and cannot be obtained exactly,
owing to the nonlinearity of the system. In particular, a complete estimation procedure
would require the following steps:

• To take into account the SDE formulation in the computation of conditional prob-
ability p(y|θ̃) - and in particular the presence of evolutive noise, it is necessary
to use the Kalman filter. The extended Kalman filter, to be more accurate, since
the F and G functions are nonlinear with respect to the state x. Anyway these
functions will be linearized locally by the extended Kalman filter, so that all prob-
abilities remain Gaussian.



4.2. PARAMETER ESTIMATION 67

• Since the system equations are not linear with respect to parameters either, the
a posteriori distribution of θ cannot be obtained by the Gaussian calculus. The
only known way to approach it is to span the whole space of possible parameter
values, by the use of adequate Monte Carlo Markov Chains (MCMC).

These methods have a high computational cost, whereas we would rather need fast
estimation procedures that could be applied in every voxels in a masked brain. It
motivated us to use several simplifications that appeared to be reasonable.

4.2.1 The Least Square Approach

The major assumption we made was to ignore the evolution noise ξ. As a matter of fact,
if the nonlinear effects of the model with respect to input and hidden states are small
enough, it is possible to approximate this evolution noise by an additional coloured
measure noise. Indeed, let us use a linear approximation, where functions F and G are
replaced by matrices multiplications:

{
ẋ(t) = Ax(t) + B u(t) + ξ(t)
y(t) = C x(t) + η(t).

This system solves in:

x(t) =
∫ t

0
eA(t−s)B u(s) + ξ(s)ds

y(t) = C

∫ t

0
eA(t−s)B u(s) + ξ(s)ds + η(t)

= [C
∫ t

0
eA(t−s)B u(s)ds] + [C

∫ t

0
eA(t−s)ξ(s)ds + η(t)].

(4.5)

The system output can thus be decomposed into two terms, the first one being the
output of a system with no noise; the second one being a coloured Gaussian noise.

Although the models we use are nonlinear, we shall assume that their output can
still be expressed as the sum of a deterministic term and a coloured Gaussian noise. This
deterministic term is the result of integrating the differential system and is nonlinear
with respect to input and parameters.

y = f(u, θ) + e, e ∼ N (0, Σ). (4.6)

Besides, we do not try to compute the whole a posteriori distribution of parameters,
but only to find the Maximum Likelihood estimate, i.e. θ that maximizes the conditional
probability of the measured data:

θ̂ = argmaxθ p(y|θ)
= argminθ − log p(y|θ)
= argminθ

1
2(f(u, θ)− y)T Σ−1(f(u, θ)− y).

At this point, it is necessary to have information on the noise temporal variance Σ.
For example, it is possible to assume :

Σ = σ2Σ0,
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where Σ0 determines the autocorrelation, possibly estimated from the data, and σ2

is an unknown parameter. Under such assumption, we need to minimize the energy

E(θ) = (f(u, θ)− y)T Σ−1
0 (f(u, θ)− y). (4.7)

To minimize this quadratic energy E(θ), we use a Levenberg Marquardt algorithm
[149, 132], implemented in the Matlab function ’lsqcurvefit’. The algorithm needs at
each iteration step the Jacobian ∂f

∂θ of the system output with respect to the parameters.
We will show now how to compute this derivation exactly by solving a new differential
system issued from the system definition.

4.2.2 Derivative of the System Output with respect to Parameters

f(u, θ) denotes the output (i.e. the set of all y(u, θ, t)) of the deterministic system
{

ẋ(u, θ, t) = F (x(u, θ, t), u(t), θ)
y(u, θ, t) = G(x(u, θ, t), θ).

(4.8)

Since x(t, u, θ) and y(t, u, θ) are defined by a differential system, it is also possible
to compute ∂x

∂θ (t, u, θ) and ∂y
∂θ (t, u, θ) with a new differential system .

Differentiating both sides of (4.8) with respect to θ, we get the new system




∂̇x

∂θ
=

∂F

∂x
(x, u(t), θ)

∂x

∂θ
+

∂F

∂θ
(x, u(t), θ)

∂y

∂θ
=

∂G

∂x
(x, θ)

∂x

∂θ
+

∂G

∂θ
(x, θ).

This system can be integrated numerically, using the initial conditions ∂x
∂θ (t = 0) = 0

(at time t = 0, the state variables are at rest and do not depend upon θ), which leads
to an exact evaluation of ∂f

∂θ = (∂y
∂θ (t, u, θ))0≤t≤T .

We saw above, on an example model formulations (4.4), that the evolution function
F can entail temporal convolutions of the input u. It is actually not a problem, since
the derivative of such terms with respect to parameters is easily given by:

∂(H ∗ u)
∂θ

=
∂H

∂θ
∗ u + H ∗ ∂u

∂θ
=

∂H

∂θ
∗ u.

It is more computationally efficient and rigorous to use this method than computing
this derivative by finite differences. Indeed, the new differential system state, ∂x

∂θ , is
a nx (number of hidden states) by np (number of parameters) matrix, and it is faster
to integrate the new system (4.2.2) once than integrating at least np times the initial
system equation (4.1) with an nx vector state.

4.2.3 Handling Confound Effects

It is often useful when estimating parameters to ignore a certain set of time course
components in real datasets, such as low frequencies.

Let us note C the matrix whose columns are the undesirable components. Then
pC = I − C(CT C)−1CT is the projector orthogonal to these confounds. Ignoring them
consists in fitting pCf(u, θ) to pCy instead of fitting f(u, θ) to y.

The new energy to minimize with respect to θ writes
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Exact parameter values used for simulation
ε κs κf τ α E0

.1 .65 .4 1 .4 .4
Estimation on exact model output

initial guess .2 1 1 2 .6 .6
2 iterations .41 1.24 .97 1.31 .56 .49
8 iterations .32 1 .69 1.10 .6 .49
50 iterations .11 .65 .4 .92 .47 .42
150 iterations .1 .65 .4 .99 .41 .4

Estimation on noisy model output
initial guess .2 1 1 2 .6 .6
2 iterations .4 1.32 .98 1.25 .55 .48
8 iterations .36 1.15 .72 .99 .62 .47
50 iterations .23 .6 .32 .41 .65 .52
150 iterations .27 .59 .31 .35 .64 .56

Table 4.1: Parameter values corresponding to estimations in figure 4.1.

E(θ) = (pC(f(u, θ)− y))T Σ−1
0 (pC(f(u, θ)− y)),

and the gradient of pCf(u, θ) against parameters for using Levenberg-Marquardt
algorithm is pC

∂f
∂θ (u, θ), with ∂f

∂θ (u, θ) computed as explained above.

4.2.4 Simulations

We show some example estimations on simulated data. We used a stimulation time
course with many different durations and inter-stimulus intervals, sampled from suitable
exponential distributions, in order to elicit various response patterns. The system input
was thus the box-car function displayed in the upper left-hand corner of figure 4.1, and
we used the model (4.2) to generate the synthetic BOLD response. We generated two
time courses: one is the deterministic output of the system without noise; the other is
the output of the same system, where we included some evolution and measure noises
(measure noise standard deviation was 40% of that of the model output), and we used
the parameter values found in [59]. Parameters ε, κs, κf , τ , α and E0 were estimated,
while measure parameters V0, a1 and a2 were fixed to the values indicated in [33].

The figure 4.1 shows several iterations of the estimation, starting with initial para-
meter values distant from the solution. Estimated values are displayed in table 4.1. A
first estimation was run to fit the deterministic simulation (part B of the figure): then
the true parameter values could be found exactly. A second estimation was run to fit
the noisy simulation (part C of the figure). In this example, it is notable that the esti-
mated parameters were quite different from the true ones, whereas the fitted response
is quite similar to the deterministic simulation (both time courses are compared in part
D of figure 4.1: the standard deviation of the difference is 9% of that of either signal),
which means that different parameter sets can produce similar dynamics. Note however
that some parameters however are estimated correctly: for example, we shall prove later
in this chapter that parameters κf and κs estimates are more accurate than others in
general.
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Figure 4.1: Parameter estimation on simulated data. (A) input used for the stimulation. (B)
several steps of the estimation procedure on the noiseless model output. (C) same steps for the
estimation on a model output with evolution and measure noises. (D) comparison between the
last fitting curves of the two estimations: they are very similar though the parameter estimate
are much different.
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4.2.5 Including Evolutive Noise: Kalman Filtering

Here we give a brief insight into how it is possible to estimate the hidden state time
courses, and use this information to compute the likelihood of the measured data. This
methodology was used in [153] in order to estimate the model parameters.

Extended Kalman Filter: Estimating Hidden-State Time Courses

The Kalman filter is used to estimate the hidden states of a SDE system given its input
and output. Originally it is intended to be applied to linear systems, and then allows
to determine explicitly the (Gaussian) distribution of the hidden states at every time t
given all the measures of outputs until t. For nonlinear models, the extended Kalman
filter consists in approximating the system equations to their Taylor expansion at the
first order at each iteration step. We will describe these techniques in more details’ in
chapter 8, and we also recommend the lecture notes by Max Welling [180]. Here, we
shall summarize the main results and show an example with the same simulation as
above.

For convenience’ sake, we shall write the system in a discretized form:

{
xk+1 = xk + F (xk, uk, θ)dt + ξk

yk = G(xk, θ) + ηk,

with

ξk ∼ N (0, Q) and ηk ∼ N (0, R).

The Kalman filter is an iterative algorithm that estimates in turn the probability
distributions of xk given measures before instant k, and that of xk given measures until
instant k. The two repeated procedures are called evolution update and measure update.
All these probabilities are always Gaussian, thanks to the linearization procedures:

p(xk|y1, .., yk−1, θ̃) ∼ N (x̂k−1
k , P k−1

k )

p(xk|y1, .., yk, θ̃) ∼ N (x̂k
k, P

k
k )

To compute the distribution of hidden-states given all measures (past and future),
p(xk|y, θ̃), it is necessary to apply a second backward iterative algorithm called the
Kalman smoother.

p(xk|y1, .., yn, θ̃) ∼ N (x̂n
k , Pn

k )

Kalman Likelihood of the Measure

We want to derive the likelihood of the measure given the parameters and hyper-
parameters, p(y|θ̃), without ignoring evolutive noise. It is possible to derive it by making
the hidden-state distributions estimated by the Kalman filter appear in its development
[180]. It consists in splitting the likelihood into the conditional likelihoods of every
individual measure:
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p(y|θ) = p(y1|θ̃) p(y2|y1, θ̃) p(y3|y1, y2, θ̃) ... p(yn|y1..yn−1, θ̃)

=
n∏

k=1

p(yk|y1..yk−1, θ̃)

=
n∏

k=1

∫
p(yk, xk|y1..yk−1, θ̃)dxk

=
n∏

k=1

∫
p(yk|xk, y1..yk−1, θ̃)p(xk|y1..yk−1, θ̃)dxk

=
n∏

k=1

∫
p(yk|xk, θ̃)p(xk|y1..yk−1, θ̃)dxk .

Since the Kalman filter allows to determine the Gaussian probability

p(xk|y1..yk−1, θ̃) ∼ N (x̂k−1
k , P k−1

k ),

and since we have
p(yk|xk, θ̃) ∼ N (G(xk), R),

it is possible to show, after approximating G at the first order around x̂k−1
k :

G(xk) = G(x̂k−1
k ) + C(xk − x̂k−1

k )

C =
∂G

∂x
(x̂k−1

k ),

that the terms inside the product have the Gaussian distributions

p(yk|y1..yk−1, θ̃) ∼ N (G(x̂k−1
k ), C R + P k−1

k CT ).

This proves that the likelihood of the measure p(y|θ̃) can be computed. It is then
possible to estimate the model parameters and hyper-parameters by maximizing this
likelihood.

We propose an intuitive explanation of the difference between the “deterministic”
likelihood we used in (4.2.1) for our estimation procedure and this new Kalman like-
lihood. In the first case, the hidden-states are supposed to depend deterministically
on the model input and model parameters, so that the likelihood only expresses how
distant the predicted fMRI signal is from the actual measure. In the second case,
hidden-states are allowed to be driven by random fluctuations, so that computing the
likelihood consists first in estimating these fluctuations with the Kalman filter, and then
the likelihood expresses how important these fluctuations are, and how distant the fMRI
signal predicted by the estimated hidden-states is from the actual measure.

Algorithm

We summarize the estimation procedure using the Kalman likelihood

1. Start with a first guess of parameters and hyper-parameters.
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Figure 4.2: Comparison of the hidden-state time courses. (A) actual time courses from the
simulation. (B) prediction using the deterministic parameter estimates. (C) Kalman filter
estimation using the Kalman likelihood parameter estimates.

2. Estimate the hidden-state a posteriori distribution with the extended Kalman
filter.

3. Compute the Kalman likelihood of the measured data.

4. Update the estimation: this is achieved using the simplex search method [110]
implemented in the Matlab function fminsearch.

5. Steps 2-4 are repeated until the simplex diameter is less than a specified tolerance.

Simulations

Figure 4.2 shows an example estimation on the same simulation as in figure 4.1, and table
4.2 shows the estimated parameter values. In the column (A) of the figure, the three
first displays show the actual hidden-states time courses from the simulation, and the
last display compares the fMRI signal predicted by volume and deoxyhemoglobin time
course (in black) with the actual time course obtained through adding measure noise (in
red). In the column (B) are displayed the hidden-states obtained with the deterministic
estimation in the last section - by applying the system equations to the input and the
estimated parameters - and its bottom panel compares the fMRI signal predicted by
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Exact parameter values used for simulation
ε κs κf τ α E0

.1 .65 .4 1 .4 .4
Deterministic estimation on noisy model output

.27 .59 .31 .35 .64 .56
Kalman likelihood estimation on noisy model output
.25 .63 .34 .46 .65 .53

Table 4.2: Comparison of parameter estimates obtained by the deterministic and Kalman
likelihood methods (see figure 4.2).

these hidden-states with the noisy simulation result. The column (C) shows hidden-
states estimated by the Kalman filter after Kalman likelihood estimation of parameters
and hyper-parameters has been achieved and again compares the estimated versus actual
fMRI courses.

It first appears in this figure that both estimation procedures did not estimate ac-
curately the hidden states: the response of the flow to the stimulation, characterized
by the neural efficiency parameter ε is too strong, even though it leads to variations of
deoxyhemoglobin and BOLD with a correct amplitude, thanks to the tuning of other
parameters. Besides, some details of the actual hidden-state time courses were found
by the Kalman method and not by the simpler method. For example, at the end of
the stimulation period, the deterministic estimation returns to baseline because there is
no more input (first display in column (B)), but actually there was still some random
ongoing activity (same display in (A)) that the Kalman method could partly recover
(in (C)). Some more subtle details can also be found.

On the other hand, the Kalman prediction of the BOLD response overfits the noisy
stimulation: it is closer to it (last display in (C)) than the prediction from actual hidden-
states (in (A)). And the parameter estimation accuracy is not better than that of the
first estimation.

As a result, we did not found a striking superiority of the Kalman likelihood methods,
as far as parameters are concerned. On the contrary, these methods imply a large
number of degrees of freedom since the whole hidden-states time courses are estimated
along with model parameters and hyper-parameters, which makes the appreciation of
results more difficult. Moreover they are less computationally efficient, since they require
to run a Kalman filter at each iteration step, and since there is no easy way to compute
the energy gradient with respect to parameters as we did in section 4.2.2. These are
the reasons why we chose to use our Maximum Likelihood estimation procedure that
ignores evolution noises.

4.3 Quantifying Estimation Precision

We saw in our simulations that parameter estimation encounters a serious obstacle
in terms of accuracy of the obtained values. It seems that quite different parameter
sets can produce very similar system output. This asks the question of the system
identifiability: do we have enough information once we know the system input u and
output y to determine the parameter values? Is there a unique solution θ to the equation
y = f(u, θ)?
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More precisely, the question is rather to quantify the identifiability or non-identifiability:
how much can we change θ while keeping f(u, θ) close enough to y ? Indeed, there might
be only one solution to the equation y = f(u, θ), since we saw, when the estimation
was performed of a noiseless simulation, that it was able to find the exact values of
parameters. But in the same time, it appears that the effects on the output of some of
the parameters do interfere with those of others, making the system little identifiable.

The extreme case with a non-unique solution would be for example if the scale
factor on the input (neural efficacy ε) and that on the output (V0) were estimated from
data with an input low enough to make the linear approximation of the model hold.
Indeed, increasing the first could be compensated by decreasing the second by the same
factor to produce exactly the same output. It would not be possible to estimate these
2 parameters, but only their product.

We propose here an analysis that inspects the sensitivity of the model to variations
of parameters. This analysis, since it is based on a linearization of the system around the
Maximum Likelihood estimate, leads naturally to a framework for deriving a posteriori
probabilities of the parameters, according to the Bayesian principles. However we must
keep in mind that this linearization with respect to parameters is a coarse simplification.

4.3.1 A Sensitivity Analysis

We want to investigate to what extent the system output is sensitive to changes in
one given parameter. Let us note θi this parameter, and θ2 the rest of parameters
(θ = {θi, θ2}). Let us also notate J = ∂f

∂θ (u, θ) the derivative of system output (ob-
tained according to the calculation in section 4.2.2, Ji its ith column and J2 the matrix
consisting of the remaining columns. For a small parameter change dθ we have

f(u, θ + dθ) = f(u, θ) + Jdθ = f(u, θ) + Jidθi + J2dθ2.

For a small change dθi of θi, f varies by Jidθi; however, if Ji is not orthogonal
to the other Jacobian components J2, part of this variation can be compensated by a
change in the other parameters: dθ2 = −J+

2 Jidθi, where J+
2 = (JT

2 J2)−1JT
2 denotes the

pseudo-inverse of J2. We then have:

min
dθ2

‖f(u, θ + dθ)− f(u, θ)‖ = ‖(I − J2J
+
2 )Jidθi‖ = πi|dθi|,

with

πi = ‖(I − J2J
+
2 )Ji‖ =

√
JT

i (I − J2J
+
2 )Ji.

πi denotes how much the system output is sensitive to variations of parameter θi.
Hence, the bigger πi, the more identifiable θi is. This also means that, for a given
percentage x, if θi changes less than π−1

i x‖f(u, θ)‖, one can adjust the other parameters
θ2 to make the model output vary by less than x%. Given an input u and an initial
parameter set θ0, our sensitivity analysis consists in considering the sensitivity intervals
[θ0i−π−1

i x‖f(u, θ0)‖, θ0i+π−1
i x‖f(u, θ0)‖ ], with x = 1 to 5%. They are not confidence

intervals for parameter estimation. Rather they indicate that the system output is very
little sensitive to changes of θi inside these intervals. πi can actually be expressed in a
simpler manner from the Fisher information matrix JT J , as we shall show below:



76 CHAPTER 4. MODEL IDENTIFICATION

0 0.5 1 1.5 2 2.5 3 3.5

0 0.5 1 1.5 2 2.5 3 3.5

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

6

8

10
x 10

−3

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

6

8

10

12
x 10

−3

2.5 3 3.5 4 4.5 5

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

x 10
−3

2.5 3 3.5 4 4.5 5
8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

x 10
−3

κs

κf

τ

α

E0

b

α

τ

κf

κs

ε

E0

b

ε

Figure 4.3: Sensitivity analysis for two different system inputs around a given θ0. Top: response
to an impulse. Bottom: response to 2 consecutive impulses. Left: 2%-signal-change sensitivity
intervals - colour stars show different parameter sets with one parameter constrained to be at the
edge of its sensitivity interval (e.g., red corresponds to ε being fixed and the other parameters
computed with dθ2 = −J+

2 Jidθi). Right: output variations for these parameter sets compared
to the output for the reference θ0 (bold dashed line). Values of all parameters and percentages
of signal changes are given in table 4.3.

πi =
1√

((JT J)−1)ii

.

Figure 4.3 shows such a sensitivity analysis with x = 2% for two different inputs (a
single impulse and two successive impulses). The sensitivity intervals are represented
in the left column of the figure. Each of the seven parameters (encoded with different
colours) was fixed to one of the two bounds of its sensitivity interval; then the values
of the other six parameters where computed from dθ2 = −J+

2 Jidθi and resulting time
course were plotted (with the same colour code). The figure clearly shows that very
different parameter sets can result in very similar system outputs (table 4.3 shows the
obtained parameter sets and the output variations). It also appears that the sensitivity
depends on the input complexity: in the second case the parameters are more identifi-
able, because the effects of the different parameters can be more diverse and hence less
correlated. For that reason, the experimental design we present later uses a large panel
of ISI and stimulus duration to increase identifiability.
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parameter ε κs κf τ α E0 b % output change

θ0 1 .65 .4 1 .4 .4 .1
ε fixed 2.13 .66 .46 1.39 .29 .5 .05 2.1%
κs fixed .98 .72 .44 1.08 .38 .4 .11 3.3%
κf fixed 1 .7 .44 1.1 .38 .4 .11 2.3%
τ fixed 1.54 .69 .58 1.65 .41 .35 .09 9.4%
α fixed 1.48 .65 .44 0.97 .8 .18 .15 2.2%
E0 fixed 2.06 .57 .41 1.03 .26 .8 .08 7.9%
V0(a1 + a2) fixed 0.49 .62 .36 .69 .52 .45 .26 2%
parameter ε κs κf τ α E0 b % output change

θ0 1 .65 .4 1 .4 .4 .1
ε fixed 1.67 .65 .43 1.2 .34 .45 .07 1.48%
κs fixed 1 .69 .41 0.99 .4 .4 .1 1.7%
κf fixed 1.22 .66 .43 1.19 .4 .24 .07 1.4%
τ fixed 1.32 .7 .54 1.44 .39 .31 .09 4.5%
α fixed 1 .62 .41 1 .74 .1 .15 2.9%
E0 fixed 1.41 .6 .39 1.1 .2 .8 .1 3.8%
V0(a1 + a2) fixed 0.48 .65 .4 1 .29 .53 .19 1.3%

Table 4.3: Parameter values for the sensitivity analysis in figure 4.3: quite different parameter
sets can lead to similar system outputs. The output variation is not exactly 2% when one
parameter is fixed to the edge of its sensitivity interval, because these intervals were calculated
using first order approximations with respect to parameters.

As a precaution, we must finally insist upon the fact that we only discussed iden-
tifiability at a local scale, i.e. we only considered one minimum of the energy and
approximated locally the shape of possible model outputs with the tangent plane. How-
ever, since the shape can be more complicated, indetermination can be even worse than
the one resulting from the discussion above.

4.3.2 A Posteriori Probabilities on Parameters in a Linearized Frame-
work

To estimate the a posteriori distribution of the model parameters, we will use the same
assumption as above, i.e. ignore the evolutive noise and only consider a coloured measure
noise e. Of course, to derive an a posteriori distribution, first it is necessary to have
an a priori information. However, we can use a flat a priori distribution, or even a
non-informative degenerate uniform distribution. See [97] on the use of such methods
in fMRI data analysis and [22] for more theoretical details.

y = f(u, θ) + e,
e ∼ N (0, Σ)
θ ∼ U(R).

At this point, it is necessary to use the same linearization of the system output as
above with respect to parameters:

f(u, θ) = f(u, θ̂) + Jθ̂(θ − θ̂). (4.9)

Then we can calculate the a posteriori distribution of parameter θ using Bayesian
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parameters. The surface displayed here was obtained by varying two Balloon Model parameters:
ε and τ ; each closest point f(u, θ) is represented by its values at 3 selected instants. The
maximum likelihood estimate θ̂ is such that f(u, θ̂) is the closest point on the surface to measured
data y. Then, in our linearization, the manifold is approximated to its tangent surface at point
f(u, θ̂). (B) Actual a posteriori distribution of θ on the surface. (C) The same distribution
is displayed in the θ space. (D) The a posteriori distribution of θ when approximating the
manifold to its tangent surface. (E) The same distribution is displayed in the θ space: its
variations are similar to those in (C) around θ̂, but become wrong for distant values of θ. (F)
Marginal a posteriori distributions of θ1 = ε and θ2 = τ under the approximation: they are
pretty flat. Also, they allow negative values for the parameters, whereas actually, ε < 0 is much
less probable and τ < 0 is impossible.

inference. It is important however to understand what this linearization will mean for
the a posteriori probabilities. Figure 4.4 shows that the obtained probabilities might
be wrong for θ distant from θ̂, and, as a consequence, so might be the normalization
constant.

We notate ỹ = y − f(u, θ̂). A posteriori distribution can be obtained from Bayes’
rule:

p(θ|y) = p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ)

∝ e−
1

2σ2 (ỹ−J(θ−θ̂))T Σ−1(ỹ−J(θ−θ̂))

∝ e−
1

2σ2 (θ−θ̂−(JT Σ−1J)−1JT Σ−1ỹ)T (JT Σ−1J)(θ−θ̂−(JT Σ−1J)−1JT Σ−1ỹ).

We note that JT Σ−1ỹ is actually zero, by definition of θ̂. Indeed, if derivate the
energy E(θ) in (4.7) we get:
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∂E(θ)

∂θ̂
= 2(y − f(θ̂))T Σ−1J ;

and since θ̂ minimizes E , this derivative equals zero when evaluated on θ̂.
We thus found that under the linearization procedure, θ follows a Gaussian distrib-

ution:

(θ|y) ∼ N (θ̂, σ2(JT Σ−1J)−1). (4.10)

We are now interested in the marginal distribution of parameter θi. It is still
Gaussian with mean and variance obtained in a straightforward manner from the above
equation:

(θi|y) ∼ N (θ̂, (σ2(JT Σ−1J)−1)ii).

But it can be computed too by integrating the θ distribution with respect to the
other parameters (we suppose that Σ = σ2I for convenience’ sake):

p(θi|y) =
∫

p(θi, θ2|y)dθ2

∝ ∫
e−

1
2σ2 (θ−θ̂)T JT J(θ−θ̂)dθ2

∝ ∫
e−

1
2σ2 (Ji(θi−θ̂i)+J2(θ2−θ̂2))T (Ji(θi−θ̂i)+J2(θ2−θ̂2)dθ2

∝ ∫
e−

1
2σ2 (θ2−θ̂2+(JT

2 J2)−1JT
2 Ji(θi−θ̂i))

T JT
2 J2(θ2−θ̂2+(JT

2 J2)−1JT
2 Ji(θi−θ̂i))

e−
1

2σ2 (θi−θ̂i)
T JT

i (I−J2(JT
2 J2)−1JT

2 )Ji(θi−θ̂i)dθ2

∝ e−
1

2σ2 (θi−θ̂i)
T JT

i (I−J2J+
2 )Ji(θi−θ̂i)

(θi|y) ∼ N (E(θ)i, σ
2(JT

i (I − J2J
+
2 )Ji)−1)

∼ N (E(θ)i, σ
2π−2).

This way, it appears that our sensitivity factor πi is proportional to the a posteriori
precision (which is the variance inverse) of parameter θi in a Bayesian framework when
we assume a white measure noise. The difference is that the sensitivity factor describes
dynamical system properties, and as such does not depend upon the quantity of noise
in measured data. We also proved the formula mentioned above:

πi =
1√

((JT J)−1)ii

.

4.4 Experimental Results

4.4.1 Experimental Design

We conducted fMRI experiments in order to question the validity of the Balloon model
and the estimation and sensitivity analysis described above. The stimulus consisted of
a full screen binocular flashing checkerboard (12 Hz). A red cross fixation point was
used throughout the experiment. Resting condition consisted of a grey screen with the
fixation cross. Eight volunteers were used for this study (6 males and 2 females, from
19 to 25 years old, with no vision problem). Brain anatomy and fMRI images were
acquired in the La Timone Hospital, Marseille, France, on a 3T scanner with surface
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Figure 4.5: Experimental design. (A) 7 stimulation designs (B) first paradigm (stimulations
are separated by 25s’-rest periods). (C) second paradigm (stimulation are separated by 10s’-rest
periods or less).

coil. The functional scans consisted in 11 coronal occipital slices, each voxel being 2 x
2 x 2 mm, with inter-scan interval TR = 825ms.

In order to test the validity of the Balloon Model, we wanted to use an experimental
design that operates in the nonlinear regimes of the BOLD fMRI response with respect
to stimulus duration and inter-stimulus-spacing. Moreover, we wanted these nonlinear-
ities to be due mostly to vascular effects, and minimize neuronal nonlinearities such as
habituation. For this purpose, we varied the stimulus durations by using repetitions of
a 1s checkerboard presentation. We used from 1 up to 8 successive presentations sep-
arated by half a second. We preferred such block repetitions to prolonged stimulation
to prevent as much as possible neural habituation. Indeed, if there is a strong tran-
sient activity at the start of the stimulation, there is more chance that this transient be
replicated at each repetition, whereas it would only appear once in the case of a longer
stimulation. We also used one 200ms presentation, 5 successive 200ms presentations
spaced by 200ms blank, and a sequence of two 1s blocks spaced by 5s (figure 4.5A).
These seven designs provide complementary information that will be discussed below.

We combined the stimuli in two different paradigms. The first one consisted of two
15-minute’ runs, each one containing 5 repetitions in random order of 6 different designs
(200ms - 1s - 2×1s - 4×1s - 8×1s - 5×200ms (first run) or 2×1s with 5s ISI (second
run)), followed by a 25-second return to baseline (figure 4.5B). The second paradigm
consisted of one 10-minute run containing the 7 designs described above, but separated
only by 10s or less. It allows to compare the results when responses are overlapping
(figure 4.5C).

Five subjects endured the two paradigms explained above (the first and third runs
were dedicated to the first paradigm, and the middle one to the second). In a preliminary
experiment, one additional subject endured the first paradigm but the data had to be
discarded due to the weakness of the response, and two endured the second paradigm.
The functional images were corrected for time delays. One subject needed to be motion-
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Figure 4.6: Extracted data on 40 voxels in one subject primary visual cortex. (A) Voxels
selected (cyan) according to SPM F-test (light yellow) and anatomical information. (B) First
eigenvector of extracted time courses in the left hemisphere.

corrected. For other subjects, motion was small relative to voxel size (2mm), and
according to recommendations in [55] we did not apply motion correction to their time
series.

4.4.2 Data Analysis

We first applied our methods on averaged responses to the seven stimulation patterns. In
order to achieve this averaging, a first classical SPM study was done, using the stimulus
convolved with three basis functions (HRF, HRF time derivative and HRF dispersion).
For each subject, a cluster of voxels above a statistical threshold was selected, focusing
on V1 since it is probably the region where neurons respond the most linearly to visual
stimulations (V1 was selected through locating the calcarine sulci on anatomical images
in both cortices, see figure 4.6A). Then a mean time course was extracted from every
cluster (using the SPM first PCA eigenvalue selection, see figure 4.6B). For each subject,
responses to each of the seven designs in the first paradigm were time-locked averaged
(figure 4.7A), and a global mean over all subjects was calculated as well (figure 4.7B).
We did not apply any high-pass filter, to preserve possible physiological low-frequency
components. The baseline signal was estimated through averaging the signal over the
4s before each stimulation.

Once average responses to the stimulation patterns were calculated, we fitted to
them through linear regression a simple linear model with three regressors (the stimulus
convolved with a default HRF, the HRF time derivative and the HRF time dispersion,
as defined in SPM) , and seven different variations of the Balloon Model by using our
nonlinear least square algorithm. These Balloon Model variations were obtained from
equations (4.2) or (4.4) by fixing some of the parameters to physiologically plausible
values and estimating the remaining ones. Results are shown in figure 4.9 and table 4.4.
We assigned for convenience letters to these different models: A for the linear one and
B-I for the others.

We also applied our sensitivity analysis to three models (E, G and I), to investigate
the uncertainty of estimated parameters.

Secondly, we ran linear model regression and nonlinear model identifications on every
voxel time course in masked brains, and applied our sensitivity analysis to these signals.
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Figure 4.7: Estimated responses to the 7 designs - mean on 5 subjects. (A) inter-subjects vari-
ability (response to the 1s stimulation). (B) mean responses. (C) estimation of an overlapping
return to baseline from previous responses. (D) corrected responses.

4.4.3 Qualitative Description of the Estimated Responses

We comment here the estimated responses to the experimental conditions shown in
figure 4.7B, and in particular we discuss the presence of nonlinearities.

First let us note that the intensity of the signal changes is quite large: in the part
B of figure 4.6, we can observe 11% signal changes in a cluster of 40 voxels. BOLD
signal changes are usually smaller in the literature. However, some signal changes by
10% were reported in [121] in the monkey brain at 4.7 T, and even 20% in a single
voxel. The amplitude of the signals we measured could be attributed to three reasons:
they were acquired at 3T, with surface coil, and our stimulation pattern (a full-screen
flashing checkerboard) was particularly intense.

We observed an ascending trend in the estimation of the responses to short duration
stimuli, and the signal level before stimulus presentation seems to increase with stimulus
duration. This is probably because responses to long stimulations last more than 25s
after stimulation ends, so that responses to short stimulations are meddled with return
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Figure 4.8: Fit between responses to long durations and their prediction by shorter durations
responses. We used the corrected responses in 4.7D.

to baseline of the previous ones. We tried to correct this defect through estimating and
removing a linear return to baseline (figure 4.7C,D). Nevertheless, subsequent remarks
are robust to this trend removing: the analysis in figure 4.8 shows the same qualitative
behaviours whether the trend has been subtracted or not.

Nonlinearities are clearly present in the short durations range: responses to 1s or
5×200ms stimulations are much smaller than 5 times the response to the 200ms stim-
ulation. We shall call this a sub-linearity effect below. Moreover, the response to the
1s stimulation is itself smaller than that to the 5×200ms stimulation. For longer stim-
ulations, we study linearity as shown in figure 4.8: the response to k×n repetitions
is predicted by the sum of k shifted responses to n repetitions. We observe that the
response to the 1s stimulus overpredicts that to the 2×1s stimulus (see figures 4.8A and
B, upper right-hand corners), which itself overpredicts that to the 4×1s stimulus (see
figures 4.8A and B, lower left-hand corners). It is not clear whether the response to
the 4×1s stimulus overpredicts that to the 8×1s stimulus, but anyway, the shapes are
different (see figures 4.8A and B, lower right-hand corners). These results are coher-
ent with other studies [24, 41, 20, 67, 139, 173]: when comparing positive responses,
the linear assumption for the BOLD response is acceptable for stimulus durations > 4
seconds, and does not hold for durations < 2 seconds.

Last, there seem to be nonlinear effects in the poststimulus undershoots too: the
undershoots after longer stimulations appear to last longer than what would be pre-
dicted from shorter stimulations (even more than 25s, the time we chose to separate our
presentations).
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Linear Model
SNR HRF HRF time derivative HRF dispersion

A 3.21 .1 .19 -.04

First Balloon Model
SNR ε κs κf τ α τ+

visc τ−visc E0 b

B 3.26 .89 .49 .19 .27 0.63 [0] [0] .33 .16
C 6.73 .94 .76 .48 3.72 .42 11.91 34.34 .34 .21
D 6.66 .93 .77 .48 3.65 [.4] 11.42 34.94 [.4] .22

Second Balloon Model
SNR κn τI ξ n τf τm τ α τ+

visc τ−visc b

E 6.35 [0] [] 1.22 2.13 1.96 1.90 4.48 .43 6.11 10.76 1.80
F 4.08 [0] [] 1.26 2.69 5.12 10.24 .20 .20 [0] [0] .29
G 6.27 [0] [] 1.52 [2.5] 2.24 [= τf ] 3.89 [.4] 6.84 16.15 .73
H 6.12 [0] [] 0.89 4.58 4.13 3.47 .20 .48 50 50 [.3]

I 6.82 2.83 1.17 2.18 [2.5] 2.34 [= τf ] 3.86 [.4] 7.90 17.57 .95

Table 4.4: Parameter values and signal to noise ratios corresponding to estimations in figure 4.9.
Values inside brackets were fixed a priori (the corresponding parameters were not estimated).
For the second Balloon Model, we observed that, when estimated, the delay parameter δt in
equations (4.3) always came out null, so that we did not include it in our estimation. The signal
to noise ratios have been calculated as SNR = ‖ymodel‖/‖y − ymodel‖.

4.4.4 Fitting Models to Mean Responses

We fitted different models to the estimated responses by minimizing the least square
errors over the seven juxtaposed curves. Figure 4.9 shows time courses and table 4.4
parameter values.

The results obtained with the linear model are shown in part A of the figure. Sub-
linearities can be clearly observed: the best fit is to the 2s stimulation response, but the
response peak after the 200ms stimulation is underestimated while those after longer
stimulations are overpredicted. Moreover poststimulus undershoots are not well fitted.

The first physiological model we fit to the data (part B of the figure) is the original
Balloon Model given by equation (4.2). It effectively appears to better capture some
nonlinearities (peak amplitudes), but does not account for short time range nonlineari-
ties (200ms and 5×200ms stimulations). Poststimulus undershoot is not captured well
either. Adding the two viscosity terms (τ+

visc/τ−visc) in the volume dynamic results in a
more prolonged poststimulus undershoot (part C of the figure). Part D of the figure
shows that very little of the fit quality is lost when values of the Grubb parameter α and
the extraction at rest E0 are not estimated, but fixed to some physiologically plausible
value (see the next sections on statistical tests and sensitivity analysis).

The next estimations use linear convolutions to model the flow and metabolic re-
sponses as in equation (4.4). Part E of the figure shows an estimation according to (4.4),
except that no neural habituation was assumed. The fit to measured BOLD is compa-
rable to that above, but it is interesting to see that the estimated flow time courses are
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Figure 4.9: Fit of different models to the mean responses (corrected curves in figure 4.7D).
Estimated parameters are shown in table 4.4.
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Figure 4.10: Time courses of some hidden state variables. Top and center panels show the
estimated flows corresponding to models C and E in figure 4.9: they compare Friston’s model
with a damped oscillator and Buxton’s convolution with a Gamma-variate function. Bottom
panel show the neural activity estimated in the last model (I: second Balloon model with neural
habituation).

quite different between Friston’s damped oscillator modelling and Buxton’s convolution
with a Gamma-variate function (figure 4.10 top and center). We also tried some special
cases of this model: first an estimation with no viscosity term in the volume dynamics
(part F of the figure), but the poststimulus undershoot was not well predicted then. On
the other hand, we found that some parameter values could be fixed to physiologically
plausible values (α = 0.4, τf = τm and n = (f1− 1)/(m1− 1) = 2.5) without significant
loss in the quality of the fit (part G of the figure). As in parts E,F,G of the figure the
estimated values for the output scaling b = V0(a1 + a2) were a bit larger than expected,
we tried a new estimation where we imposed the more physiologically plausible values
V0 = 0.03 and a1 + a2 = 10 (i.e. b = .3, part H of the figure), but it resulted in a poorer
fit and less realistic values for the other parameters.

Lastly, we added to the model the simple neural habituation proposed by [32]. In-
cluding the parameters κn and τn into the estimation, i.e. allowing neural habituation,
appears to be the only way to predict correctly the 200ms and 5×200ms stimulations
responses (part I of the figure). Bottom of figure 4.10 shows the corresponding neural
activity time course.

4.4.5 Sensitivity Analysis of the Mean Responses

As we mentioned before, activation detection through the use of hemodynamic models
and model comparison tests can be achieved successfully, even though the estimation
results in some uncertainty about parameter values. Here, we applied our sensitivity
analysis to estimations E, G and I in figure 4.9: figure 4.11 shows results with 2%
sensitivity intervals. Let us be reminded of the definition of the sensitivity intervals:
“for every value v of the ith parameter in this interval, under a linear approximation
of the system output with respect to the parameters, there exists a parameter set θ′

verifying θ′i = v such that ‖y(θ′) − y(θ)‖ is less that 2% of ‖y(θ)‖”. To visualize this
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Figure 4.11: Sensitivity analysis for parameter estimation on the estimated mean responses
(similar to figure 4.3). Left column: parameter sensitivity intervals for 2%-output variations;
for any value of the corresponding parameter in these intervals, it is possible (in the linear
approximation case) to choose the set of other parameters in such a way that the system output
shall change by less than 2% with respect to the output with the middle-of-interval values;
such parameter sets are represented with coloured stars. Right: measured responses (bold
line), and outputs corresponding to these sets (same colour codes as for the stars). From
top to bottom, graphics show different choices for which parameters are estimated or fixed
to a canonical physiological value (between brackets). As expected, the less parameters are
estimated, the more identifiable they are.
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Figure 4.12: Model to data fits comparison between the GLM and the Balloon Model. (A):
plot of the signal to noise ratios for the GLM and the Balloon model at all voxels (SNR =
‖ymodel‖/‖y − ymodel‖ - voxels are sorted by their GLM SNR). (B),(C),(D): details of the fit
for three voxels corresponding to the worst, medium and best SNR (red: measured signal, blue:
predicted signal by the GLM, green: predicted signal by the Balloon Model).

assertion, for every estimated parameter, we give an example of a new estimation where
this parameter value is fixed to that of the edge of the sensitivity interval (colour stars
in the figure) and plot the new time course obtained.

It appears that we cannot estimate many parameters together correctly from the
fMRI data (top and bottom rows in the figure) since many sensitivity intervals are very
large. To increase the system identifiability, we must reduce the number of estimated
parameters. This is the reason why, when statistical tests do validate them, we will
prefer models D (for the initial Balloon Model formulation) and G (for the second one),
that entail fewer parameters, for subsequent estimations on every voxels.

4.4.6 Estimation on Voxel Raw Time Course

We estimated the parameters of the model G (the second Balloon Model described in
(4.4) with no neural habituation and a subset of fixed parameters) at every voxel for
the three runs of each subject. As before with the mean responses, we compared the
resulting fit with the one of the linear model with three regressors (canonical HRF +
time derivative + time dispersion). Results on the first paradigm are shown for one
subject in figure 4.12: the signal to noise ratio (SNR) is on average 22% stronger for
the Balloon Model (upper left-hand corner of the figure). The figure shows details of
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the predictions of the two models for three voxels (activated, questionable and non-
activated). The Balloon Model improvement is mostly in the poststimulus undershoot
prediction.

Besides, it appears that parameters unidentifiability is even stronger on voxel time
courses than on the means used above: figure 4.13, to be compared with the last row of
figure 4.11, shows the fits and the sensitivity analysis around estimated parameters, on
one activated voxel, for the first and second paradigms.

4.5 Conclusion

Our conclusion about parameter estimations in the physiological models framework is
two-folds:

• On the one hand, it appears that our algorithm is able to tune model parameters
in order to fit the dynamical system output to simulated or real data. And, for
the latter, the Balloon Model seems to explain accurately the BOLD response,
with different degrees of precision depending on which particular model version is
used.

• On the other hand, it seems that the estimations lack precision on the exact values
of some parameters. This is due to intrinsic system characteristics: the dynamical
system will be little sensitive to variations of a given parameter as far as the
changes of that parameter can be compensated by adjusting the others.

For that reason, parameter estimation cannot be used on fMRI measurements to
study the values of a specific physiological or behavioural parameter - unless a very
little number of parameters are left unknown, which is not the case yet in consideration
of actual physiology knowledge. Please note, however, that parameter values can be
investigated with more accuracy through the use of other measurement techniques, as
we shall do in chapter 6 with Optical Imaging.

Nevertheless, it is still useful to use nonlinear physiological models because of their
global dynamical characterization of the hemodynamic processes and of the BOLD
signal. First, the methods we developed to fit a given model to fMRI measurements can
be applied to the validation and selection of models, i.e. it can help the modelling efforts
by deciding which particular models are the most relevant with respect to measured
data. Second, if nonlinear models prove to better describe fMRI signals than linear
convolution, it would be natural to use them for current fMRI analysis such as activation
detection and hypothesis testing. These two points are the topic of the next chapter,
where we shall propose statistical tests applicable to nonlinear models.



Chapter 5

Nonlinear Hypothesis Testing
and Model Selection

In the previous chapter and the present one, we intend to prove that well-established
fMRI analysis techniques, which usually rely on a simple temporal modelling of the
BOLD signal with a linear convolution, can also be achieved by using more physiology-
related nonlinear dynamical models.

The previous chapter was dedicated to the identification of dynamical models, i.e.
the estimation of their parameters, and to the quantification of their identifiability. This
was the counterpart of linear regression.

Now, we will see how hypothesis testing can be achieved in the framework of nonlin-
ear dynamical models. It will actually have two distinct application domains. Like in
the linear SPM framework, statistical tests will enable us to address cognitive questions,
the simplest of them being to detect where the stimulation elicited an activation. Ad-
ditionally, they will allow us to address modelling questions, by testing the significance
of a model in relation to another one, which we will call model selection.

5.1 Statistical Test on Nonlinear Models

Nonlinear hypothesis testing is actually close to its linear counterpart, since we will
again need to linearize the models with respect to their parameters. The central part
of our statistical methods is the comparison between two hierarchical models, i.e. when
one model is a special case of the other one.

Note that Friston et al.[58] proposed similar statistical tests in a Bayesian framework.
However, these tests were relying on the marginal a posteriori distributions of model
parameters, and we saw in our sensitivity analysis that individual parameter estimations
lack accuracy, and in figure 4.4 that their marginal a posteriori distributions provide
little information.

On the contrary, the tests we propose here directly rely on the time courses predicted
by the models. Basically, they consist in Fisher tests that compare the fits to data of
the two tested models, and select the most significant one, while taking into account
their number of degrees of freedom.
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5.1.1 Hierarchical Model Comparison

We show here how to compare two hierarchical models, i.e. when one of the two models
is a particular case of the other one. Namely, if we denote by θ the whole set of
parameters, a first subset θ1 is estimated in the two models, and the remaining subset
θ2 is free in the more general model, while it is set to zero (or some other a priori value)
in the simpler one. Comparing the two models means testing, under the more general
assumption H1, the null hypothesis H0, where:

H1: y = f(θ1, θ2) + e1

H0: y = f(θ1, 0) + e0.

As for our Maximum Likelihood estimation, we ignore evolution noises. Also, from
now on, we will suppose that the measure noises is a white Gaussian noise. It would
be possible however to first whiten the signals if one has previously estimated the noise
autocorrelations.

We denote by θ̂H1 and θ̂H0 the Maximum Likelihood estimated parameters under
the two hypotheses, p1 and p2 the sizes of θ1 and θ2 and n the number of measure points.
Then we linearize the model around the H1 estimate:

f(θ1, θ2) = f(θ̂H1) + J1(θ1 − θ̂H1
1 ) + J2(θ2 − θ̂H1

2 ).

By doing so, the model becomes affine. We make it linear by a change of origin; let
us use notations:

g(θ) = f(θ)− f(θ̂H1) + J1θ̂
H1
1 + J2θ̂

H1
2 = J1θ1 + J2θ2

ỹ = y − f(θ̂H1) + J1θ̂
H1
1 + J2θ̂

H1
2 .

With this simplification, the two hypotheses become:

H1: ỹ = J1θ1 + J2θ2 + e1

H0: ỹ = J1θ1 + e0.

We can now apply usual statistics for the General Linear Model [18]. Basically, we
can obtain them by a suitable orthogonalization of the space Rn where y lives in :

Rn = X1 ⊕X2 ⊕X3.

X1 is the subspace defined by the columns of J1, X2 is the subspace orthogonal to
X1 such that X1 ⊕ X2 is the subspace defined by the columns of J1 and J2, and X3

is the orthogonal of X1 ⊕X2. Their dimensionalities are then p1, p2 and n − p1 − p2,
respectively. Then ỹ can be decomposed as:

ỹ = ỹ1 + ỹ2 + ỹ3, ỹi ∈ Xi,∀i.
These values are:

ỹ1 = g(θ̂H0), ỹ2 = g(θ̂H1)− g(θ̂H0) and ỹ3 = ỹ − g(θ̂H1)

= f(θ̂H1)− f(θ̂H0) = y − f(θ̂H1).
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The hypothesis H0 means that ỹ2 and ỹ3 are independents and follow the distribu-
tions ỹ2 ∼ N (0, σ2Ip2) and ỹ3 ∼ N (0, σ2In−p1−p2), where σ2 is the unknown measure
noise variance. Then it is well-known that the ratio of their square norms normalized
by their dimensions follows a Fisher law with p2 and ν = n− p1− p2 degrees of freedom
[18]:

F =
n− p1 − p2

p2

‖ỹ2‖2

‖ỹ3‖2
∼ F(p2, n− p1 − p2).

Because of the linear approximation of the model, it is preferable for computing ‖ỹ2‖
to use the difference of model fits:

‖ỹ2‖2 = ‖ỹ2 + ỹ3‖2 − ‖ỹ3‖2 (since ỹ2⊥ỹ3)

= ‖y − f(θ̂H0)‖2 − ‖y − f(θ̂H1)‖2,

which gives the statistic

F =
n− p1 − p2

p2

‖y − f(θ̂H0)‖2 − ‖y − f(θ̂H1)‖2

‖y − f(θ̂H1)‖2
.

We have shown that, under the null hypothesis H0, F follows a Fisher distribution
F(p2, ν). If fp2,ν is the Fisher cumulative distribution function (fp2,ν(z) = P (F < z)),
then comparing the two dynamical models will consist in calculating the p-value, of this
statistic, that we will denote by H0 /H1:

H0 /H1 = 1− fp2,n−p1−p2(F ).

The hypothesis H0 will be rejected (i.e. the more general model will be selected) if
and only if this p-value is less than some threshold.

5.1.2 Application to Activation Detection

It is straightforward to use this statistical test for activation detection. Indeed, it
consists in comparing a hemodynamic model with a zero (no output) model:

H1: y = f(θ) + e1 (activation + noise)
H0: y = e0 (noise only).

Activation detection consists then in calculating in each voxel the statistic

F =
n− p

p

‖y‖2 − ‖y − f(θ̂)‖2

‖y − f(θ̂)‖2
, (5.1)

where n and p are the number of measure points and model parameters, respectively.
Under the null hypothesis, F follows a Fisher law with parameters p and n− p, F(p, ν).
The test will consist in calculating the p-value 1−fp,n−p(F ) of this statistic and declare
the voxel activated if this p-value is less than some probability.

In a similar way, it is possible to take low-frequency confounds into account for acti-
vation detection, if we denote by (Ci)1≤i≤k the used basis of low-frequency components
and set the two hypotheses
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H1: y = f(θ) +
∑

βiCi + e1 (activation + confounds + noise)
H0: y =

∑
βiCi + e0 (confounds + noise).

5.1.3 Application to Other Cognitive Questions

Cognitive questions often compare the responses of a brain region to different stimula-
tion patterns. We note that it is possible indeed for the dynamical systems to have sev-
eral inputs, corresponding to these different stimulation designs; therefore there should
be additional “neural efficiency” parameters, each one controlling the response to one
specific stimulation. For instance, the first equation of the initial Balloon Model (4.2)
would become:

ṡ =
∑

i

εiui − κss− κf (f − 1).

Let us recall that in usual linear fMRI analysis, Student T-tests are often used to
address cognitive questions, since they allow to test the positiveness of a given con-
trast, i.e. decide whether a linear combination of the parameters

∑
i αiθi (the efficiency

parameters εi being of particular interest) is significantly positive. The framework we
developed does not allow us to perform such Student tests. However, it is always possible
to replace a Student test by a Fisher test [181]: a tested contrast is significantly positive
if and only if it is declared significantly different from zero by the corresponding F-test
(i.e. the hierarchical test between the model and a sub-model where the contrast is
imposed to be zero) and its evaluation on the Maximum Likelihood estimate is positive.

5.1.4 Non-Hierarchical Model Comparison

We now want to design a second test to compare two models that are not hierarchical.
It is not possible here to build a single statistic derived from a first model to test the
second model hypothesis. However, it is possible to make the two models special cases
of a third more general model, test them in relation to it, and then compare the two
obtained p-values. We propose to construct this third model from the linearization of
the first two; if we have the following linearization schemes:

H1: y = f1(θ1) + e1 ≈ f(θ̂1) + J1(θ1 − θ̂1) + e1

H2: y = f2(θ2) + e2 ≈ f(θ̂2) + J2(θ2 − θ̂2) + e2,

then we build the third model as a weighted sum of the two linearizations, using an
additional parameter γ:

H3: y = γf(θ̂1) + (1− γ)f(θ̂2) + J1(θ1 − θ̂1) + J2(θ2 − θ̂2) + e3.

The parameters of this third model are then γ, θ1 and θ2 (note that the actual
number of degrees of freedom may be less than 1 + p1 + p2 however, since J1, J2 and
(f(θ̂1)− f(θ̂2)) may have linear dependencies). Since it is a linear model, its Maximum
Likelihood estimate is obtained straightforward by pseudo-inverse multiplication. Then
the hierarchical test (5.1.1) is applied twice to test under this third model the H1 and
H2 hypothesis (using the appropriate number of degrees of freedom), and the hypothesis
with the best p-value is then retained. We will denote by H1 ¦ H2 the ratio between
these two p-values: H1 ¦ H2 = (H1 /H3)/(H2 /H3).
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Note that this non-hierarchical test is rather qualitative than quantitative: it is not
easy indeed to interpret the value of the ratio between the p-values, except for the fact
that it is larger or less than one.

5.2 Experimental Results

We continue here the analysis of the fMRI experiment that we began in the last chapter,
by applying the statistical tests described above. These tests will be used to compare
the different models we identified (figure 4.9), and to derive activation maps.

To better illustrate the model comparison technique, we will address some specific
physiological questions:

• Are physiological models statistically significant compared to a simple three-
regressors linear model ?

• Which methods for flow and metabolism modelling perform best among those
offered by (4.2) and (4.4)?

• Does the introduction of volume viscosity significantly improve the models?

• Does the introduction of neural habituation significantly improve the models?

• Is it possible to fix the values of some parameters to physiologically plausible
values with no significant loss in model precision?

5.2.1 Model Selection on Average Responses

We applied our Fisher test to compare the models and to select the one which most
significantly predicts the average responses to stimulations (figure 4.9). We used the
hierarchical test between two models when the first one was a special case of the second
one (i.e. entailed the same equations but less free parameters). The procedure consisted
then in computing the statistic (5.1.1) and its p-value, and selecting the more general
model (i.e. declare the additional modelling in it statistically significant) if this p-value
was less than 0.01. In other cases, we used the non-hierarchical test, which is the
ratio between two hierarchical test p-values, and selected the model with the strongest
p-value. Table 5.1 shows the hierarchical relations between models and the test results.

All of the test results are consistent with the hierarchical orders. This means that
any increase in the model complexity was declared statistically significant, even if it
required additional parameters. If we refer to the physiological questions asked above, it
implies that the volume viscosity and neural habituation modelling are both statistically
significant (p-values B /C, F /E and G / I were all below statistical threshold), and that
every parameter does contribute significantly to the model fit, and thus should be kept
free in estimations procedures (p-values D /C, G /E and H /E are below statistical
threshold).

The non-hierarchical comparisons show the superiority of physiological models over
the linear model when they entail volume viscosity (A ¦D<1 and A ¦G<1), but the
original Balloon Model with no volume viscosity is considered less significant than the
linear model (A ¦B>1), the improvement in SNR being not large enough to counter-
balance the increased number of degrees of freedom. Finally, to fairly compare the flow
and metabolism modelling methods, we need to compare model C or D against model
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Figure 5.1: Activation maps with p-value 0.001.

E or G (since these models all include volume viscosity but no neural habituation).
The four corresponding tests (C ¦E, D ¦E, C ¦G and D ¦G) all agreed to select the
original formulation (flow evolution described by a damped oscillator and flow-locked
metabolism). The best model, however, remains I, which includes neural habituation.

5.2.2 Activation Maps

We applied the activation detection test in every voxel of masked brains, by selecting
activated voxels with the statistical threshold p=0.001 for the statistic (5.1). Then we
compared activation maps obtained with the different models. They actually appeared
to all be very similar (see figure 5.1 for a comparison between the activation maps
obtained with the linear model and model G). A possible explanation is that our stimu-
lation was very efficient: the full-screen flashing checkerboard elicited a strong response
with a large spatial extent, which was clearly identified by all the models. Another point
of view is that, although it was possible to rank the different models by comparisons on
average responses, their efficiency become similar when the signals become noisier, and
as a result they give similar results in terms of activation detection.

5.2.3 Model Comparison on Voxel Raw Time Courses

We applied the same model comparisons as above to single voxel time courses. As
a first example, table 5.2 shows SNR and comparison tests for two voxels from one
subject in the first paradigm (one with a high and the other with a medium SNR)
and the right column in figure 5.2 shows their time courses. It appears that the more
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A

Linear model

C

B D

First Balloon model

F

E I

H G

Second Balloon model

SNR=3.21

SNR=6.66 SNR=6.27SNR=6.12SNR=4.08SNR=3.26

SNR=6.35 SNR=6.82SNR=6.73

Hierarchical tests: Nonhierarchical tests:
B /C = 0 F /E = 0 A ¦B = 40.6 C ¦E = 78.4 D ¦E = 169.2
D /C = 0.0024 G /E = 0.00044 A ¦D = 0 C ¦G = 12.5 D ¦G = 47.8

H /E = 4.6 10−13 A ¦G = 0 C ¦ I = 0.12 D ¦ I = 0.36
G / I = 0

Table 5.1: Model selection tests applied to models in figure 4.9. The top figure shows the
dependencies between models, along with the signal to noise ratio of each model fit. Circles are
thicker for preferred models. Below, hierarchical and non-hierarchical test results are presented.
For each test, the selected model is underlined. Selection is applied as follows: hierarchical tests
produce p-values of the first model hypothesis tested in relation to the second one, we thus
chose the first model if this p-value is above 0.01; non-hierarchical tests are the ratio between
the p-values of the two models in relation to a more general one, we thus chose the first model
if this ratio is above 1, see text.

A

Linear model

C

B D

First Balloon model

F

E I

H G

Second Balloon model

SNR=1.49

SNR=1.57 SNR=1.548SNR=1.48SNR=1.52SNR=1.52

SNR=1.552 SNR=1.547SNR=1.59

Hierarchical tests: Nonhierarchical tests:
B / C = 1.9 10−15 F / E = 2.5 10−7 A ¦B = 5.8 10−4 C ¦E = 2.7 107 D ¦E = 2.9 104

D / C = 3.6 10−5 G / E = 0.19 A ¦D = 0 C ¦G = 9.1 106 D ¦G = 9402

H / E = 3.9 10−10 A ¦G = 1.5 10−9 C ¦ I = 3.4 107 D ¦ I = 4.8 104

G / I = 0.87

A

Linear model

C

B D

First Balloon model

F

E I

H G

Second Balloon model

SNR=.475

SNR=.475 SNR=.488SNR=.484SNR=.477SNR=.474

SNR=.489 SNR=.485SNR=.476

Hierarchical tests: Nonhierarchical tests:
B /C = 0.013 F /E = 0.005 A ¦B = 6659 C ¦E = 0.003 D ¦E = 0.012
D /C = 0.86 G /E = 0.18 A ¦D = 65.1 C ¦G = 0.0014 D ¦G = 0.0057

H /E = 0.44 A ¦G = 0.19 C ¦ I = 0.008 D ¦ I = 0.036
G / I = 0.88

Table 5.2: Model selection tests applied to two voxels (one with high SNR and one with medium
SNR), see text.
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linear model (A) versus first Ballon model (D)

Figure 5.2: Models identification and comparisons for three models on the 1000 most activated
voxels for one subjects, sorted in decreasing order of linear model Signal to Noise Ratio (top
left - SNR = ‖ymodel‖/‖y − ymodel‖). Comparison tests are plotted in the left column: first
model is considered more significant than the second one when the test result is above 1. The
right column shows details of the fit to measure for two voxels with strong and medium SNR
(corresponding to the yellow starts in the left column graphs).
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noisy the data, the more simpler models are preferred, because the fit improvement
obtained with more complex models becomes less statistically significant. Indeed, in
both cases the most complex model with neural habituation (I) is not selected any
more, whereas it was selected on the average responses in the last section. However, the
volume viscosity significance remains unchanged (p-values B /C and F /E are below the
threshold). For the first voxel, the preferred model is C (first Balloon Model formulation
+ viscosity with all 9 parameters estimated). For the second voxel, it is H (second
Balloon Model formulation with imposed output factor), but the simple linear model
with three regressors also has a good rank. Model G appears to be a good compromise
of significance between the two voxels.

Figure 5.2 also compares the linear model (A) and two Balloon Model formulations
(D and G) in the 1000 most activated voxels for the same run. For voxels with higher
SNR, the selection order is the same as the SNR order (D - G - linear model). For
voxels with lower SNR, the SNR order is on average: G - D - linear model, while the
selection order (which gives more importance to models with few degrees of freedom) is
on average: G - linear model - D.

5.3 Discussion

5.3.1 Choice of Hemodynamic Model

The physiological questions we raised above deal with the statistical significance of
several features in the models: What is the significance of different dynamical models
against a simple linear model? Which flow and metabolism is the most significant be-
tween equations (4.2) and (4.4)? What is the significance of volume viscosity modelling
and neural habituation? What is the significance of keeping all parameters free against
fixing the values of some of them?

We actually found that these significances, and thus the model selection result, was
highly dependent on the data quality: complex physiological models are validated by
the measure when the signal to noise ratio is high, while simpler models are preferred
on noisier or less activated voxels. On one hand, it means that in order to ask precise
questions about hemodynamic models it is necessary to work with high-quality signals;
this is obvious. On the other hand, it implies that when analyzing noisier fMRI signals,
the model to use does not need to be the most precise with respect to hemodynamic
features, but the one that finds a good compromise between precision and a reasonable
number of parameters. A good candidate appears to be the model denoted by the
letter G: using the model (4.4) proposed by [32], but assuming no neural habituation,
fixing Grub’s parameter (α = .4), and fixing the flow-metabolism coupling in terms of
amplitudes (n = (f1−1)/(m1−1) = 2.5), time constants (τf/τm = 1) and delay (δt = 0),
which leads to six degrees of freedom. However, since the quality of fMRI signals is likely
to improve in the future, it argues in favour of pursuing detailed modelling efforts.

We now address the questions above and discuss their physiological meaning, relying
mostly on the analysis of the average responses (figure 4.9, and tables 4.4,5.1). We
recall that significant improvement brought by a new modelling does not prove that
the latter is physiologically grounded; for that reason we will often recommend further
investigations with other brain imaging modalities to confirm some of our answers.

First, it appeared that the major improvement brought by dynamical models over
linear models was their ability to fit the poststimulus undershoot, thanks to the in-
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troduction of viscosity parameters for the volume dynamic τ+
visc and τ−visc and their

hysteresis behaviour (equation (4.3)). For that matter, the statistical test validated this
hypothesis, even on signals with lower SNR. We thus think it would be very interesting
to confirm it with other imaging modalities like ASL or Optical Imaging on animals.
Besides, we observed in our data that the return to baseline after the poststimulus
undershoot can be very slow, resulting in drifts in the signal that may need further
modelling if they are confirmed: for example, [9] proposed a decline of a tissue oxygen
buffer during sustained or repeated activations to explain these long-lasting decreases
of the BOLD signal.

The question of neural habituation belongs to the more general issue of the nonlin-
earities in the fMRI signal with respect to stimulation. Comparisons in figure 4.8 show
that nonlinearities appeared in our data. And only the modelling of a neural habitua-
tion was able to capture nonlinearities in the short time ranges: model I in figure 4.9
was the only one to correctly fit responses to 200ms and 5×200ms stimulations. This
improvement in the fit was judged significant by our statistical test. When no neural
habituation was supposed, however, the other Balloon Model variations did account
for nonlinearities between responses to 1, 2, 4 and 8 repetitions of the 1s stimulation,
thus giving a vascular explanation to them: the blood vessel cannot inflate linearly with
the flow, and the deoxyhemoglobin content cannot decrease until it is negative. These
results suggest that vascular nonlinearities occur for stimulations longer than 1s, while
nonlinearities occurring for shorter stimulations should have a neural origin. However
we think this conclusion should be considered cautiously, because models are susceptible
to be improved. In particular we notice that in the two Balloon Model formulations
the flow response is considered linear with respect to neural activity, whereas a nonlin-
ear term could be introduced, as proposed by [67]. We will investigate these questions
about the flow dynamic more thoroughly in chapter 6 with the Optical Imaging (see
also [139, 37, 15] for studies on blood flow).

We now endeavour to discuss the comparison between flow and metabolism mod-
elling methods. As shown in figure 4.10, the estimated flow time courses for example
are very different depending on which model is used: the damped oscillator proposed by
[59] allows flow oscillations while there is no flow undershoot in the convolution with a
gamma-variate function proposed by [32]. Our comparison tests applied on average sig-
nals selected the first modelling. We should keep in mind that the flow and metabolism
mechanisms are probably more complex than either of these models, and are still under
investigation.

At last, it appeared that some parameters (Grub’s parameter α, and extraction at
rest E0 for the first Balloon Model or metabolic-vascular coupling ratios n and τf/τm for
the second Balloon Model) could be fixed to some physiological a priori values without
much decrease in the Signal to Noise Ratio. This is consistent with our sensitivity
analysis, which shows that when many parameters are estimated together, their values
can be varied much with only small changes of the system output. But all the same, the
statistical tests selected the full models with every parameters estimated, meaning that
every parameter carries at least a bit of relevant information. Note also that it would be
of great help to be able to fix the output scaling parameters of the BOLD measure, i.e.
the volume fraction at rest V0 (estimation may be achieved using the VASO technique
[125, 126]) and the scanner-dependent terms a1 and a2 [33, 148, 44, 32], which would
improve the sensitivity of other parameters, in particular, the neural efficiency ε.
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5.3.2 Using Dynamical Models in fMRI

We have shown that physiological models expressed as dynamical systems can be used
in fMRI analysis to fit predicted responses to the data, and replace the linear regression
with empirical basis functions. In particular, it is possible to obtain activation maps
that rely on a Fisher test computed after a linearization of the model with respect to
parameters around the maximum likelihood estimate. The activation maps obtained
using linear and nonlinear methods are very similar, actually, and this can be regarded
as a justification for using linear convolution today. Another argument for using linear
models would be that nonlinear methods are still expensive in terms of computation
time: our algorithm was implemented in C++ and took up to 10 seconds (100 iterations)
to perform parameter estimation at one voxel.

But the advantage of using dynamical models is that they are more related to phys-
iology. Also, they can handle nonlinear effects of the hemodynamic processes. Lastly,
dynamical model offer more flexibility that linear ones, which in mathematical terms is
expressed by the fact that the manifold of all possible outputs of a dynamical model
does no need to be a vector space. As a result, dynamical models can more easily
account for precise characteristics of the BOLD dynamic, even with a reduced num-
ber of parameters, and, at the same time, forbid dynamics that are not physiologically
plausible.

Therefore it is probable that new advances in modelling and acquisition techniques
will make their use highly valuable to detect activations, and also for other kinds of
analysis; in particular those which require a detailed characterization of the temporal
aspects of fMRI, such as estimation of neural time courses or fusion with EEG [153, 152,
47]. Moreover, advances in modelling and validation with other modalities will enable
us to increase the constraints by imposing some parameter values, or assuming a priori
distributions which can be used for estimation in a Bayesian framework [58].

5.3.3 Assumptions Used

For our parameter estimation and statistical test, we have used several approximations
and assumptions.

We have already discussed the problems of the linearization with respect to the
parameters in the last chapter. Our statistical test has the advantage of being quite
robust to imprecision in parameter estimations. However it may be biased by the
linearization: the actual distribution of this statistic may be much more complicated
than a Fisher law.

There is another concern with our assumption on the noise: since we ignored evolu-
tion noises, it is probable that the actual resulting measure noise is coloured, whereas
we considered it white. Further studies should try to use a regressive noise, relying
on estimation of the autocorrelations in the data, and then whiten the signals before
applying the statistical tests.

5.4 Conclusion

In the last chapter and the present one, we have shown methods that enable the use
of dynamical models to analyze fMRI signals: a scheme to examine evolution equations
and their stability, a new Maximum Likelihood procedure for system identification, a
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sensitivity analysis to study the estimation precision, and a statistical tests that can be
used to compare models or detect activation.

By applying the statistical model comparison methods to the results of a flashing
checkerboard experiment, we could determine which one, among a small set of hemo-
dynamic models, was the most statistically significant. We found it to be the Balloon
Model proposed by [32], mostly on account of its volume viscosity and neural habituation
models. However, its flow and metabolism models were judged slightly less significant
than those found in [59]. More generally, our study raised many questions about some
hemodynamic features, many of them concerning the flow response to brain activity.
These questions led us to investigate the flow dynamic in more detail using Optical
Imaging, which is the topic of the next chapter.

On the other hand, we found that, when working on noisier signals, it was necessary
to use simpler models; an example choice is to ignore the neural habituation process
and fix a chosen subset of parameters from the former model. Of course, it will be
interesting to apply our comparison tests to other existing or future models.

Also, we were able to obtain activation maps by using these dynamical models.
They were actually very similar to those obtained with a linear model, thus indicating
that for detecting activation, linear models may be sufficient today. Nevertheless we
think that, because of the rapid improvements in acquisition and modelling, realistic
physiological models will become necessary for a better temporal characterization of the
fMRI signals.



Part III

Investigation on the Cerebral
Blood Flow in Optical Imaging





Chapter 6

Dynamics and Nonlinearities of
the Flow Response

This chapter presents an experimental study in Optical Imaging which addresses certain
questions raised by our work with hemodynamic models in fMRI. We chose to focus on
the dynamics and the modelling of the cerebral blood flow (CBF). Indeed, although
the CBF-induced wash-out in activated brain regions is the main cause of the BOLD
response observed in fMRI, today there is little knowledge on the mechanisms responsi-
ble for it, and the models used for the CBF dynamics appear to have less physiological
background than others and are eventually oversimplified.

This study was performed with Ivo Vanzetta at the INCM-CNRS Marseille. There,
he and Frédéric Chavane, who both belong to the team “Equipe Dynamique de la Vision
et de l’Action” (headed by Guillaume Masson), set up the first Optical Imaging facility
in France, operative since end 2004 as the first European Optical Imaging facility for
the awake monkey.

6.1 Introduction

The CBF increase, which has been observed since the pioneering studies of Roy and
Sherrington in 1890 [154], is the main cause of the overshoot consecutive to neural acti-
vation observed in fMRI signals. Indeed, there is an additional blood flow through the
cerebral vasculature, providing an increased oxygen supply in a much larger proportion
than the actual increase of the oxygen metabolism; thus the total deoxyhemoglobin
content in the vessels decreases, resulting in an increased BOLD signal.

As a consequence, the blood flow that enters the brain vasculature is of particular
importance in hemodynamic models: it is generally assumed to completely determine
the dynamic of blood volume changes, and has a major influence on that of oxygenation.
Therefore, an accurate modelling of the blood flow response is critical.

However, we saw in chapter 2 that the regulation of the blood flow by the neural
activity depends on an extensive number of factors, and that detailed knowledge about
these factors is limited. In consequence, models are based on empirical observations
rather than on physiology, with different precision levels depending on the needs for
temporal resolution. In most studies with long stimulation periods or low temporal
resolution (above one second), the flow response has been modelled with a trapezoidal
shape [33, 9]. In the previous chapters we used more precise modelling approaches:
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the damped oscillator proposed by Friston et al.[59], and the convolution with an ap-
propriate gamma-variate function proposed by Buxton et al.[32]. However, not enough
systematic experimental studies have been conducted to adequately question either of
these models.

Furthermore, all mentioned models assume a linear relation between neural activity
and flow response. Yet, our fMRI study showed that, under such an assumption, among
nonlinear effects reported by fMRI studies [24, 41, 173, 17, 67, 20, 139], those in the
short time ranges (i.e. for which stimulation repetition times are below one second)
cannot be ascribed to vascular effects and hence should probably already exist at the
neuronal level. This would imply that fMRI may be used to investigate the nonlinearities
of the cortical activity. On the other hand, it is also likely that nonlinear effects exist in
the mechanisms that regulate blood flow. In this context, a first nonlinear model was
proposed by Glover et al.[67], with a trapezoidal response shape whose ramp up/down
times were assumed to be independent on the stimulus duration and whose plateau
duration was a nonlinear Fermi function of the stimulus.

For these reasons, the main objective of our study was to question the possible non-
linearities of the CBF response with respect to neural activity. This was made possible
by the recourse to Optical Imaging, with which hemodynamic as well as electrical time
courses can be monitored - at high spatio-temporal resolution - on the same animal.
We recorded electrical (i.e. neuronal) signals with the fluorescent voltage-sensitive dye
(VSD) technique, blood flow with a laser-Doppler probe, and blood volume in intrinsic
optical imaging. We found that, indeed, such nonlinearities exist.

Additionally, our experimental data allowed us to study the interactions between the
dynamics of CBF and of the cerebral blood volume (CBV). This is another critical issue
for modelling the BOLD response, since these interactions result in the characteristic
undershoot of the late BOLD response. Indeed, this undershoot is generally attributed
to a delayed return to baseline of the venous volume compared to the flow, which results
in an increased deoxyhemoglobin content in the veins. In particular, in our fMRI study
we observed that an additional delay (and hence a more prolonged BOLD undershoot)
could be modelled by a compliance of the volume. More generally, in every vascular
compartment, one should expect the volume dynamics to follow that of the flow, for
the simple reason that volume dynamics can be expressed as the difference between
incoming and outgoing flows. However, our Optical Imaging data appears to be in
contradiction with it: in our measurements, the volume time courses preceded those of
the flow. We shall present these results and discuss how they could be explained.

6.2 Methods

6.2.1 Experimental Paradigm

Our experimental paradigm was inspired by numerous studies on linearity and non-
linearity of the BOLD signal, as well as by the fMRI experiment we presented in the
previous chapter. A way to introduce nonlinearities in the neural and/or hemodynamic
responses is to use stimulations with a wide range of possible durations. That way the
nonlinearities of each measured quantity with respect to the stimulation length can be
easily checked by comparing the responses to these different conditions. The question
then is to know whether nonlinearities observed at the hemodynamic level are already
present at the neuronal level.
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In our experiment, we used visual stimulations of various durations: 100ms, 200ms,
300ms, 600ms, 1s, 1.2s and 2s. We also used an additional “blank” condition, i.e., with
no stimulation. The choice of these lengths was motivated by the following considera-
tions:

• On the one hand, we wanted to explore a large span of durations, to increase the
nonlinear effects.

• On the other hand, it was necessary to find a compromise between the number of
stimulated conditions and the number of repetitions of each (and hence the signal
to noise ratio of estimated responses).

• Also, the stimulation lengths were limited by acquisition, which should not exceed
6 or 7 seconds, due to a limited fixation time (after which the monkey breaks the
fixation).

• Luckily, we were mostly interested in short durations, since in our fMRI study
they produced nonlinearities which could not be explained by vascular effects
when both the neural and the flow responses were supposed linear.

• Lastly, to easily compare predicted and measured responses it is convenient to use
stimulus durations that are multiples of each other.

The visual stimulation consisted in drifting vertical and horizontal sinusoidal grat-
ings, with temporal and spatial frequency known to reliably and optimally elicit re-
sponses in the primary visual cortex (V1) of the macaque.

The experiment was split into sixteen acquisition days: there were twelve acquisition
sessions for simultaneous blood flow and volume recordings, for an overall total of 400
repetitions of each stimulation condition, and four acquisition sessions with the voltage-
sensitive dye, for an overall total of 85 repetitions of each stimulation condition.

6.2.2 Optical Imaging Setup

Animal

A male adult macaque monkey was used for these experiments (M. mulatta, 6-7 Kg),
with a 2cm diameter circular trepanation above the right visual cortex (V1/V2 border,
at about 2.5◦ eccentricity of the visual field). All surgical procedures were performed in
agreement with European and NIH guidelines (see [8] for detail).

Acquisition

The macaque was awake during experiments while his head is maintained stable via a
head-holder. He was trained to fixate on the center of the screen, marked by a small red
fixation spot appearing at the beginning of each trial. If he kept the fixation until the
fixation spot disappeared (i.e. during the whole trial acquisition time) he was rewarded
with a drop of juice. Data acquisition was synchronized with the heartbeat, which
was recorded independently by a pulse-oximeter. A trial started when the monkey
began fixating on the fixation point (0.08-0.1◦), displayed on a CRT screen. After a
variable (1-2s) delay, the stimulus (the drifting grating) appeared and the monkey had
to continue to fixate until the fixation point disappeared, for a total fixation period of
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Figure 6.1: Cortex vasculature image of the monkey, as it is observed by intrinsic Optical
Imaging at wavelength l = 570nm (used for blood volume recording) and the laser-Doppler
probe (arrow) used for blood flow recording.

about 8s. “Blank” trials were identical with stimulated ones, except that no stimulus
was presented. An isoluminant uniform, grey screen, was shown between the trials. The
inter-trial intervals were at least 10s. To avoid visually-evoked noise, data from trials
when the monkey broke fixation were rejected.

Optical Recordings

The intrinsic measure of blood volume consisted in monitoring the brain surface with a
high-precision CCD camera, while it is illuminated at a specific, so called “isosbestic”
wavelength (green light, λ = 570nm). Images were acquired at 200Hz using a commer-
cial, CCD-based, imaging system (Imager 3001, Germantown, USA).

Laser-Doppler Recordings

We use a Periflux 5001 (Perimed, Stockholm; wavelength of 780 nm) laser Doppler
flowmeter to which a needle probe (Perimed PF 411; outer diameter, 450 micron; fiber
separation, 150 micron - estimated sample volume: ∼1mm3) was attached. The probe
was positioned ∼1 mm from the brain surface.

Voltage-Sensitive Fluorescence Dye

The stimulation paradigm for the VSD recordings was the same as for optical imaging of
intrinsic signals, with the exception of data acquisition times being much shorter ( 4s),
due to the fast decay of the neuronal responses. All details concerning VSD imaging
are given in Slovin and Grinvald, 2002 [160].

6.2.3 Signal Processing

For the CBV, CBF and VSD acquisitions, the signals were averaged according to exper-
imental conditions, and then responses to the different stimulations were normalized by
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Figure 6.2: Hemodynamic responses to the seven stimulation durations: blood volume (left)
and blood flow(right).

those recorded during the blank condition (see chapter 1, section 1.4, for more details).
We also stress that the CBV and VSD signals were acquired as two series of images,
while the CBF signal was acquired as a single-point time course (the laser-Doppler probe
actually measures an average flow in a volume of about 1mm3). Hence, we averaged
CBV and VSD signals over space as well.

However, below we shall also display CBV responses at single locations. To obtain
these signals, it was necessary to register the images from different acquisition days.
This was achieved by selecting control points in the images and finding the linear trans-
formations which minimized the distances between corresponding points in two images.

6.3 Results

6.3.1 Responses to the Stimulations

The figure 6.2 displays the average responses of CBV and CBF to the seven stimulation
durations. Determining the precise link between blood volume and light absorption
presupposes an accurate knowledge of the average photon path length in tissue, which
is largely unknown in monkey cortex (although several studies have tried to estimate
it in rat: [137]). For this reason, the variations reported here are defined up to an
unknown multiplicative constant. Moreover, the CBF responses we show have been
previously low-pass filtered at a cut-off frequency of 2Hz, to eliminate the remaining
heart beat oscillations. Whereas a clear stimulus-induced increase of both CBV and
CBF was observed, in several cases we could also observe a small initial undershoot in
the flow responses, which, however, on the average remained below the error tolerance.
Currently we don’t have an explanation for this initial negative deflection of the laser
Doppler signal, which has to be further investigated with experimental and stimulation
paradigms especially designed for this purpose.

The figure 6.3 displays the electrical responses measured with the VSD technique.
The recorded fluorescence variations reflect variations in the polarization state of the
neuronal membranes, and are thus commonly thought to reflect mostly dendritic po-
tential changes, caused by synaptic activity. Even after averaging, these responses were
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Figure 6.3: Electrical responses to the seven stimulation durations. There were large low-
frequency drifts in theses responses that needed to be carefully removed (left; see figure 6.4
also), in order to correctly estimate the responses (right).

endowed with strong, artifactual, low-frequency drifts. We thus had to establish a
procedure to remove these drifts without altering the shape of the responses, since a
basic high-pass filtering would have necessarily smoothed the steps up and down of the
responses. This procedure is explained in figure 6.4 and caption.

6.3.2 Non-linearities

We first tested the linearity of the different responses with respect to the stimulation
length. We used comparisons between responses to a given stimulation length and the
linear prediction obtained by adding shifted responses to a smaller stimulation length.
The volume and flow responses clearly exhibit non-linearities shown in figure 6.5: the
responses to long stimulations are smaller than their predictions from responses to
shorter stimulations. We refer to this phenomenon as sub-linearity. Let us however stress
that the contrary happens for the shortest stimulation lengths: the response to 200ms is
stronger that its prediction from response to 1s. We call this super-linearity. Altogether,
the results suggest that the mechanisms linking electrical to hemodynamic responses are
quite complex. Besides, the electrical responses either do not show such non-linearities,
or they are much less perceptible. Although, on account of a slight overlap between
the VSD responses, the predictions do not fit exactly the actual measurements, the
global amplitudes of these measurements are not significantly different from those of
the predictions.

We also used response amplitudes to explore linear and nonlinear behaviours (figure
6.6). Amplitudes of the electrical (VSD) responses were calculated as the area below
the responses. For the hemodynamic measurements, however, it was not possible to use
the area below the responses, since the acquisition time was not long enough for the
signals to return to baseline. We thus used the peak values instead. This choice appears
reasonable because stimulation lengths are relatively short. The underlying reasoning
here is that, although even in the linear case the peak values do not increase linearly
with the stimulation length (they rather saturate at a certain stimulus duration), in the
present case stimulation was short, and only the response to the 2s stimulation is possibly
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Figure 6.4: Estimation of the drift to be removed from the Voltage Sensitive Dye responses.
The upper row shows how the drift is estimated for the responses to 100ms, 200ms, 300ms and
600ms stimulations. The bottom row shows how the drift is estimated for the responses to the
1s, 1.2s and 2s stimulations. (A) The drift is assumed to be a linear combination of appropriate
basis functions. (B) This combination is estimated to minimize the distance between the drift
and the measure. However, this distance is calculated only using time points where the electrical
activity is assumed to be zero (solid lines in the upper right display), otherwise the part of the
signal with the response (dashed lines) would have been altered. (C) For longer responses, it
is necessary to estimate the slow variations even during the response. So, in addition to the
former assumptions, the response is assumed to reach a plateau 500ms after the stimulation
begin (depicted by the box car function). (D) The value of this plateau is estimated at the same
time as the drift coefficients, by considering only time points assumed to have zero or plateau
values (solid lines in the bottom right display).
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Figure 6.5: Non-linearity comparisons: responses to the longer stimulations (red lines in the
displays) are compared to their predictions from responses to shorter stimulations (blue solid
lines), obtained as the sum of several shifted responses (blue dashed lines). We observe sub-
linearities for the hemodynamic responses (volume and flow): predictions are larger than actual
responses, except for the comparison between the 200ms response and its prediction by the
100ms response, in which case the contrary occurs (super-linearity). These non-linearities of the
volume and flow responses appear to be similar. On the other hand, the electrical (i.e. VSD)
responses have a much more linear behaviour: in spite of some differences, the areas below the
curves were identical between prediction and actual measure.
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Figure 6.6: Amplitudes of the different response are plotted against stimulation lengths or
against each other and linear regression results are displayed. For these amplitudes we used
the peak values of the hemodynamic responses, and the area below the responses for electrical
VSD responses. Stimulation length / electrical responses and flow / volume couples are in linear
relation, whereas the couples electrical responses (or stimulation lengths) / either hemodynamic
responses exhibit non-linear slope-decreasing patterns.

underestimated when using the peak value. We also tried using other estimations of
the amplitude, such as the area under the response of extrapolated time courses, or
the area under the response until the response peak, and obtained similar results (not
shown). In addition, a linear regression was applied to each of the curves. As a result,
the VSD amplitude appears to be a linear function of the stimulation length (correlation
coefficient is 99% and the regression errors look random), whereas the CBF and CBV
amplitudes show a nonlinear dependence on the stimulation length (smaller correlations,
and the residuals exhibit more significant patterns). As a consequence, CBF and CBV
also appear to be nonlinear with respect to the neural activity (or at least with respect
to its VSD measure). Interestingly, CBF and CBV amplitudes are proportional.

At last, we emphasized these nonlinearities by fitting different dynamical models
to the measured CBF responses. We used the neural activity measured with the VSD
technique as the input of these models, denoted by N . Results are shown in figure
6.7. The first two rows show the fit of linear models: the damped oscillator proposed
by Friston and his colleagues [59], and the convolution with a Gamma-variate function
proposed by Buxton and his colleagues [32] (see chapter 2, section 2.1.3). In the two
subsequent models, we added nonlinearities in the neurovascular coupling using the
same equations as in the neural habituation model proposed by Buxton and colleagues
(please note however that these equations do not model neural habituation any more,
since the neural activity measured with the VSD technique appeared to be linear with
the stimulation). For that purpose, we introduce a new intermediary variable, denoted
by w, and additional parameters τw and κw. In addition, for the four models we added
the possibility of a delay in the responses, denoted by δt. For clarity’s sake, below are
written the three equation systems, displaying the estimated parameter values:
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Figure 6.7: Fit of different models (in red) to the measured CBF responses (in blue). The two
first rows show results with linear models, and the two next with nonlinear models. The graphs
on the right compare the response-peak values of model and measurements. Note that for the
linear models, the small departures from linearity are the same as those of the voltage sensitive
dye, since VSD measures were used as the input of models.
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The results show some similarities with those of our fMRI study. The two linear
models fail to accurately capture the amplitude variations of the different responses,
and the compromise that is found under-fits responses to short stimulations and over-
fits responses to longer stimulations. The nonlinear models do fit the amplitude better,
but do not exactly account for the temporal dynamics of the flow yet, in particular for
the responses to short stimulations.
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6.3.3 Flow and Volume Dynamics

A close look at figure 6.2 shows that CBV responses begin between 500ms and 1s earlier
than those of CBF. Figure 6.8 underscores this fact by plotting volume against the flow
for the seven responses, which constitutes a dynamic equivalent for the usual graphs
that establish the Grubb’s law at steady state. It clearly appears in this figure that the
dynamics of the volume precedes that of the flow. As we shall see in the discussion, this
is in contradiction with Buxton’s Balloon model, at least when considering a single vas-
cular compartment. In this model indeed the volume dynamics inside a given vascular
compartment cannot be in advance on the flow either entering or leaving the compart-
ment. A possible explanation for the detected delay might be that our measurements
do not originate from the same spatial location or from the same vascular compartment.
However, we compared the CBF measures to CBV time courses at different locations in
the image, and we always observed the same delay. Actually, the CBV responses were
very similar at different locations, and we were not able to isolate responses specific
from the different compartments. This is probably because the different compartments
have been mixed together, because of the motion of the vasculature, which have not
been registered.

6.4 Discussion

6.4.1 Non-Linearity of the Hemodynamic Response

In this experimental study, we found a nonlinear relation between the responses to
a visual stimulation of the cerebral blood flow and the neural electrical activity as
measured by the voltage sensitive dye technique. These results argue against existing
models of the flow response to brain activity. This is of particular importance concerning
the application of such models in brain imaging, in fMRI for example. Indeed, it implies
that nonlinearities observed in the short time ranges in fMRI are not necessarily present
at the neuronal level.

These nonlinearities were manifested by the fact that the amplitude of the hemody-
namic responses does not increase linearly with that of the VSD measurements; rather,
we found a complex relation between the responses to different stimulation lengths,
where the response intensity increased faster than linearly for stimulus durations shorter
than 200ms, and slower than linearly for longer durations.

Let us discuss the possible origins of these nonlinearities, although our knowledge
of the mechanisms driving the flow response is limited. First, it cannot be excluded
that they correspond to some neuronal nonlinear effects that do not appear in the VSD
measurements. Both the flow response and the VSD measurements are thought to be
caused mostly by the synaptic activity of neurons and to correlate with the LFP. It
remains possible however that the flow response is also partly influenced by a transient
spiking activity which does not affect the voltage-sensitive dye.

The nonlinearities may also arise in the multiple vasoactive signals which control
the flow response through the dilatation of arterial vessels. In such case, it may be
possible to model a flow-inducing signal, in the spirit of the one proposed in [59], which
would respond non-linearly to the neural activity and metabolism needs, with a response
function looking like the fourth graph in figure 6.6.

Lastly, the nonlinearities may have vascular causes, through threshold and ceiling
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effects in the vessel dilatation, or in the upstream pressure. In such case, new modelling
should require a precise understanding of the mechanic properties of the vessels, and of
the relations between flow and volume in general.

6.4.2 Blood Flow Dynamics

We observed additional surprising facts on the cerebral blood flow dynamics. First, we
observed an initial undershoot before signal increase in the CBF responses. These vari-
ations are below the estimation error and might be attributed to noise effects. However
they may also have a relation with our further observations. Next, it appears that the
delay of the positive response increases with stimulation lengths, which constitutes a
second nonlinear effect that is not captured by the predictions with simple nonlinear
habituation models.

Besides, our major observation is that the CBF responses are delayed with respect
to the CBV responses. This delay has been observed in other studies [129, 95]. However,
it is in contradiction with the different versions of the Balloon Model, which all require
that the flows entering and leaving a vascular compartment should be in advance on
the compartment’s volume.

Let us recall the Balloon model equation: it is based on the conservation of matter
inside a given compartment:

v̇ =
1
τ
(fin − fout),

where fin and fout are the flow entering and leaving the compartment, respectively.
The simpler of these models was proposed by Buxton et al.[31] and defines fout with

its steady-state value:

v̇ =
1
τ
(fin − v1/α), (6.1)

where α is the Grubb’s parameter. Since this equation models a return to steady
state, it involves in particular that the volume cannot depart from this steady state
unless the inflow changes first. Hence the inflow should precede the volume, whereas
the outflow, in this expression, is locked to the volume.

Furthermore, the additional compliance effect introduced in [30] models an increased
delay of the volume with respect to the flow:

v̇ =
1
τ
(fin − v1/α − τviscv̇).

We saw in chapter 4 that this equation is equivalent to:

v̇ =
1

τ + τvisc
(fin − v1/α).

Like for equation (6.1), the volume changes should follow those of the inflow. Con-
cerning the outflow, is:

fout = v1/α + τviscv̇ = v1/α +
τvisc

τ + τvisc
(fin − v1/α),

and, since fin is in advance on v/α, fout should also precede v.
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Last, similar considerations can lead to the same conclusion using modelling of
compliance with an additional differential equation proposed by Kong et al.[107].

To explain the delay we observed between volume and flow responses, we could
argue that the various vascular compartments do not contribute with the same weights
to our measurements. E.g. it may be possible that the flow leaving the venous balloon
is delayed with respect to the capillaries’ volume. Actually, it is our intention to test
our data with respect to the three-compartment model proposed by Zheng et al.[184].

We also intend to reconsider the equations for the flow dynamic, in particular in the
arterial compartment. We think it would be instructive to test models where the control
on the volume dynamics by the outflow is directly modulated by signals in relation with
neuronal activity. As proposed already at the end of the previous section, this would
lead to a volume dynamics that depends directly on brain activity, rather than through
the variations of inflow. Such new models may account for early volume responses.

6.5 Conclusion

The study we have presented raises several questions on the vascular dynamics and
their relations to neuronal activity, in terms of nonlinear effects and delays between
the different responses. To adequately address those questions, we are planning both
additional measurements and modelling efforts.

On the other hand, in order to address the questions concerning the blood flow
dynamics in the different vascular compartment, high-spatial resolution data are needed.
With this respect, the laser-Doppler technique has the disadvantage of giving only single-
point measurements (in contrast to intrinsic optical imaging recordings that allows to
record time courses from every pixel in the image). Hence, the flow measured by the
laser Doppler probe is an unknown combination of the flow in different parts of the
vasculature. In the next chapter we shall thus present a new method using intrinsic
signals to estimate the flow time courses in individual vessels.



Chapter 7

Bi-dimensional Flowmetry with
Intrinsic Recordings

Accurate investigations on hemodynamic physiological models require a high spatio-
temporal resolution. In particular, a good understanding of the interplays between CBF,
CBV, and the electrical activity of the brain should rely on separate measurements of the
flow and volume in the different vascular compartments. So far, however, CBF has been
measured mostly using the Laser Doppler technique, which only provides single-point
measurements.

In this chapter, we shall present a new method which allows recording CBF at micro-
vascular resolution with intrinsic optical imaging. Indeed, with high spatio-temporal
resolution optical imaging recordings, it is possible to track erythrocytes moving inside
individual vessels. We developed an automatic method which extracts the erythro-
cyte motion information from the noisy optical signals. Validation was obtained by
comparison with simultaneous Laser Doppler CBF measurements, using the heart-beat
pulsation as a test signal. We also detected visually-evoked CBF responses, in several
individual elements of the cortical micro-vasculature.

7.1 Introduction

Baseline blood flow and its sensory-evoked changes are measured mostly using the Laser
Doppler technique, which takes advantage of the Doppler shift in back-reflected light
when a monochromatic laser beam illuminates the moving red blood cells (RBC). In
spite of the high signal-to-noise ratio (SNR) obtainable with Laser Doppler flowmetry,
only single-point measurements are possible with this technique; moreover, its spatial
resolution is limited, since the recorded signals are averaged over ∼ 1mm3 of cortical
tissue, thus containing several different vessel types.

Recently, Laser-speckle flowmetry, a method based on the same principle underlying
the Laser Doppler technique [26] has become available. This allows studying CBF
and its activity-evoked responses with high temporal resolution in two dimensions over
comparatively large samples of cortex (in the order of tens of mm2 [50]). However, to
our knowledge, this new technique provides estimations of the cerebral flow inside the
capillary bed rather than in the micro-vessels.

Grinvald and his colleagues [73] proposed to use the hemoglobin packed in RBCs
as an intrinsic contrast agent giving information about the blood velocity in individual
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Figure 7.1: Left: (top) Raw image of the brain vasculature; (bottom) The same frame “en-
hanced” by the pre-processing step and displayed with an increased contrast. Black (white) dots
correspond to loci of increased (decreased) local RBC concentration in the single frame with
respect to average. Right: Zooms onto individual small vessels (rectangles in the left images).
For each time-sequence (row), the four frames (time shown on top) show the motion of RBCs
through a small blood vessel: note the shift with time of the blue and red arrows, respectively
pointing to clusters of RBCs and RBC-free blood plasma regions in the vessel.

vessels, across the entire imaged area (figure 7.1 highlights examples of RBCs motions
in vessels). They could measure the blood flow in several single vessels distributed
over large portions of the retina in humans and anesthetized cats. However, baseline
CBF values were reported, but not its temporal modulations, neither due to the heart-
pulsation, nor due to a sensory stimulus.

Using two-photon fluorescence microscopy, two groups (Kleinfeld et al., 1998 [103]
and Chaigneau et al., 2003 [34]) have succeeded to record CBF as well as its activity-
evoked changes in single vessels. Indeed, the ultra high spatial resolution of two-photon
fluorescence enabled us to separately measure the velocity and the quantity of moving
RBCs, both of which contribute to blood flow (flow = speed x RBC density). The two-
photon fluorescence approach is very useful for exploring the neuro-vascular interactions
at the micro-mechanism scale, especially in view of the possibility to add important
anatomical details (e.g., proximity of astrocytes, pericytes etc.). On the other hand,
the technique involves finite scanning times and the typical dimensions of the imaged
samples are much smaller than a cortical column; its applicability is thus essentially
limited to the observation of one vessel at a time. This shortcoming hampers the
investigation of relations between neuronal activity and the vascular dynamics in the
various vascular compartments.

Our technique extends the two approaches above, in the sense that it provides an
automatic estimation of the motion of RBCs in individual vessels and the temporal
variations of this motion, and that it can be applied to optical imaging signals, (though
the latter have less spatial resolution and signal to noise ratio than two-photon fluores-
cence). It relies on several data processing features, part of them being evoked by the
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computer vision domain. Our two major contributions were first a robust estimation
and correction of movement of the brain, and second the use of the tensor product to
estimate directions in bi-dimensional images.

In a first experiment, we confirmed with Laser Doppler measurements performed
simultaneously with optical imaging that CBF modulations by the cardiac pulsation can
be clearly detected by this method. In a second experiment, we obtained sensory-evoked
responses, which appeared to have different SNR and different temporal characteristics,
according to which vascular compartment the vessels belonged.

7.2 Method

Blood is not a homogeneous fluid; rather, hemoglobin travels through blood vessels,
packed in red blood cells (RBCs). When the vasculature is imaged at sufficiently high
resolution, these RBCs (or clusters thereof) are visible in the recorded images as small
contrast changes which shift along the vasculature with time. Example are displayed in
figure 7.1. Since, however, the large differences in reflected light intensity between blood
vessels and parenchyma are much larger than the small intra-vascular light-intensity dif-
ferences due to the presence or not of RBCs, raw images (upper left-hand panel) do not
allow to appreciate single RBCs’ contrasts. These large differences can be eliminated by
adequate pre-processing of the light-intensity images, including correction of movement
and spatial and temporal smoothing (bottom left hand panels shows the pre-processing
result and zooms highlight some RBC motions). We shall now present the different
steps of our estimation procedure, which are summarized in figure 7.2.

7.2.1 Data Pre-processing

Co-Registration of Images

Since the flow estimation focuses on vessels, it is critical that their position in the images
does not change during the totality of the acquisition sequence. Besides, since our data
was acquired on the awake monkey, we could not avoid shifts in the images, mainly due
to brain movements within the skull (which can be quite large, considered the scale is
10µm per pixel). Therefore, it is necessary to register the various acquisitions, on a
frame by frame basis, in order to estimate and correct these movements.

We estimated rigid motions in the images, defined by a translation vector t and
a rotation angle θ. Please note that ideally a non-rigid estimation should be used,
since the vessels (and especially the larger ones) do move slightly with respect to the
cortical surface because of the blood-pressure variations. In our case, however, rigid
transformations were enough in most (99%) of the cases and thus we did not try the
much more complex non-rigid transformations, also because of the massive user input
they require.

The estimation was achieved by an energy minimization technique: the energy we
used was the square distance between a reference frame I1 (which was chosen as the
very first frame of the whole experimental acquisition) translated and rotated according
to t and θ and the considered frame I2:

(θ̂, t̂) =argmin
θ,t

‖I2 − Tt ◦ Rθ(I1)‖2
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Figure 7.2: Summary of the flow estimation procedure (see text).
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Figure 7.3: The image co-registration procedure (see text).
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Please note that we used a linear interpolation to calculate the transformed images
Tt ◦ Rθ(I1). Then, we used the Matlab function fminsearch, which implements the
simplex search method [110], for minimizing this energy. Once the parameter had been
estimated, the frame was re-calculated using a linear interpolation.

The figure 7.3 shows the co-registration results. First please note that in order
to speed up the estimation procedure (which needed to be applied for nearly 250.000
frames), we actually used only a small part of the points in the image in the energy
computation, which appears brightest on the display of the reference image. On the left,
the estimated translation and rotation parameters are displayed for all trial repetitions
and details are shown for the trial which contained the most movements. On the right
we display the details for the frame, which corresponds to the peak of movement (at
0.8s): the frame, its distance to the reference, and the result of subsequent normaliza-
tion (see below for details on this pre-processing step) are displayed, before and after
movements have been corrected for. The registration appeared to work accurately, and
the large corrections needed for the last images underscore the importance of this step.
Incidentally, the increase in the images’ shift is most likely due to a slow readjustment
of the intracranial pressure. Indeed, the cranial chamber had been opened for cleaning
just before imaging.

Filtering

Let us be reminded that hemoglobin - the main absorber in the blood - is contained
in RBCs, which travel along vessels either alone or grouped in small clusters. At their
specific location in the vessel, they cause local decreases in reflected light intensity.
When the vasculature is imaged at appropriate wavelengths and at sufficiently high
resolution, these RBCs (or clusters thereof) thus appear in the recorded images as local
contrast variations which drift along the vasculature with time. In the raw images, those
small contrast gradients are obviously masked by the much larger contrast differences
existing between blood vessels and parenchyma (figure 7.2, displays A before and B
after the re-alignment step). Since those latter patterns are, however, nearly constant
in time, they can be eliminated by normalizing for the static light intensity differences
among different parts of the image, dividing, on a pixel by pixel basis, each frame by
its mean value, calculated over an acquisition sequence (trial), allowing us thereby to
“flatten the images” (figure 7.2, display C).

Afterwards, the intravascular contrasts can still be reinforced by adequate spatial
filtering: first the global light-intensity variations inside the images can be eliminated
using a high-pass filter. Second, the signal to noise ratio can be increased by a low-pass
filter that smoothes the images in small neighbourhoods, and thus cancels the random
independent noises of the pixels in such neighbourhoods. Please note that we used
an anisotropic smoothing that preferentially operated orthogonally to the vessels, so
as not to decrease the RBC contrasts in the vessel directions. The vessel directions
were obtained by the same tensor structure technique as that which we shall describe
below for the estimation of RBCs’ speed (display D), and the anisotropic smoothing
was achieved through using a family of directional Gaussian kernels (filter half-widths
were 3 pixel in the principal dimension and 1 pixel in the orthogonal dimension). As
a result, the intravascular contrasts are largely enhanced (display E), and it becomes
possible to track individual clusters of RBCs moving along single vessels (see the zooms
in figure 7.1).
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Extraction of Vessel Data

Although common image segmentation algorithms allow automatic detection of the
vasculature, here, we preferred to select individual vessels by hand, mostly to be able
to avoid RBC motion tracking ambiguities arising at the crossings of different vessels
or at vascular branching points (display F in figure 7.2).

Since RBCs travel inside blood-vessels, the direction of their velocity-vector in each
individual vessel is obviously determined by the vascular anatomy and is assumed to
be parallel to the vessel’s axis. Next, the amplitude of the RBCs’ velocity (i.e. their
speed in the vessel) must be extracted from the spatio-temporal data, at each position
x along the particular vessel and at each time point t. For each vessel and for each
individual trial, we thus cast the data into a 2D array (display G and zoom in display
H), containing the recorded light intensity values I(x, t) for each of the nt time points
(i.e. the number of frames) and for each of the nx spatial points along the vessel.

In this image, thin oblique lines can be observed. They represent the spatio-temporal
trajectories of RBCs in the vessel and contain the relevant motion information. Indeed,
they indicate how the spatial RBC contrasts move along the vessel during time. The
slope of these lines is directly related to the RBCs’ speed: if a RBC moves from position
x to position x′ between times t and t + 1, then its speed along the vessel direction is
(x′ − x)/(t + 1 − t) = x′ − x. The higher the speed, the more these lines approach a
horizontal direction.

As a consequence, we aim at estimating the directions of these lines. We first
enhanced them by 2-D low-pass filtering, to enhance the signal to noise ratio (display
I). Please note however that this filtering could have been applied equivalently on the
images, before vessel data extraction (it would have consisted in a temporal low-pass
filtering and an additional anisotropic spatial smoothing). The reason why we applied
them on these 2-D matrices is that the filter parameters could be more easily chosen
through the visualization of the obtained lines.

7.2.2 Detecting Hemoglobin Trajectories with the Structure Sensor

We present here how to estimates these line directions. Let’s notate I as the image
representing intensity time courses in the vessel, It and Ix as its derivatives with re-
spect to time and space. Then the gradient vector at point (x, t) is (Ix(x, t), It(x, t)),
and, if we ignore noises, the direction of trajectories lines is its orthogonal vector
(−It(x, t), Ix(x, t)). RBC speed is then given by the inverse of this trajectories slope,
v(x, t) = −It(x, t)/Ix(x, t).

Formally, we can prove this formula by writing the optical flow equation [28], which
states that reflected light intensity does not change along particle trajectories: if we
notate x(t) the position of a given particle at time t, we have

d
dt

I(x(t), t) = 0
vIx + It = 0

v = −It/Ix.

(7.1)

This formula for RBC speed, however, cannot be applied directly because of noise in
the image. It is necessary to stabilize the algorithm by using a neighbourhood averaging
system. The goal is to find an average direction of trajectories over a small neighbour-
hood (we used a neighbourhood of about 30 time points by 5 pixels length), which can
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be achieved with the structure tensor. The structure tensor is known for enabling the
determination of a local mean orientation for intensity gradient in an image [19].

Let us define the following degenerate symmetric matrix:

A(x, t) =
(

Ix(x, t)
It(x, t)

)
(Ix(x, t) It(x, t)) =

(
I2
x IxIt

Ix.It I2
t

)
.

The first eigenvector of A is the gradient direction (Ix, It) and its second eigenvector
(with zero eigenvalue) is our trajectories direction (−It, Ix). The structure tensor is
defined by averaging matrix A over a small neighbourhood

S(x, t) =
∑

(x′,t′)∈V(x,t)

A(x′, t′).

Then the first eigenvector of S gives the direction in which image intensity varies
the most ; the second one gives the direction in which image intensity varies the least
(which is precisely the direction we are looking for) and the inverse of its slope is the
estimated RBCs velocity.

The displays J and K in figure 7.2 show the variations of these matrices A and S
in the image. To better understand them, let us recall that each of these symmetric
matrices defines a scalar product and a distance in R2. The ellipses shown in the
displays represent scaled unit bowls for these distances. Their major and minor axis
are respectively the second and first eigenvectors of the matrices. Since the matrix A
is degenerate, the corresponding ellipses (display J) are actually segments pointing in
the direction orthogonal to the image gradient. The average direction of these segments
is that of the lines, but there are large random fluctuations due to the noise in the
image. On the other hand, the spatial averaging included in the structure tensor (display
K) allows detecting an average direction. Please note that the noisier the data, the
more ellipses tend to become circles, which eventually would preclude the estimation of
direction.

At this stage, RBC-motion time courses can be extracted from the line direction
information, given by the singular value decomposition of the structure tensor. One
time course can be estimated for each point of the vessel (i.e. for each column of the
lines image), and a mean time course can be computed for the whole vessel. The left
part of figure 7.4 shows an example of a signal estimated from a single trial. A first way
to average over all the trials from a same experimental condition would be to extract
these RBCs motion time courses for every trial, and then average them, in order to
produce an estimated response to the condition. However, it happened in our dataset
that the estimation procedure failed for a few trial repetitions: at some spatio-temporal
points, the lines were not clearly visible, and the structure tensor was much closer to
a circle, resulting sometimes in estimated orientations that approached the horizontal
direction and hence to values of the flow approaching infinity and causing divergences,
even in the average responses. As a consequence, it turned out to be valuable to average
the structure tensor itself over trials (instead than averaging the inverse of its principal
direction slope). The displays L and M show these averaging for the two conditions in
our experiment (L: stimulated condition, M: blank), and the displays N and O show
the line directions obtained through the singular value decomposition of these average
structure tensors. As a result, the responses to the stimulated and blank conditions,
estimated from every trial and averaged on every points of the vessel, are shown in the
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display P, and their subtraction (stimulated - blank), which gives the sensory-evoked
response, is shown in display Q.

7.2.3 Conducted Experiments

Experimental Setup

The experimental setup for simultaneous optical imaging and laser-Doppler acquisitions
was similar to that described in the previous chapter, except for the resolution of the
optical recordings. As a matter of fact, higher spatial and temporal resolutions were
required: spatial precision was needed to focus on the vessels, and temporal precision
was needed so that RBC motions inside the vessels remained at acceptable levels (not
much faster than one pixel per frame). We imaged a square ∼3.5x3.5 mm (10µ m per
pixel) of cortex at 200Hz. Additionally, to allow for an optimal identification of vascular
activity, the optical system [150] was focused onto the cortical vasculature, rather than
300µm below the surface as traditionally done.

Experimental Paradigm

We conducted two experiments to assess the validity of our technique. The first experi-
ment aimed at testing the technique on the detection of CBF modulations by the heart
beat. We thus simultaneously recorded optical and laser-Doppler signals. The monkey
endured no particular stimulation during this experiment. However, he was asked to
fixate a small red fixation point to avoid visual responses due to eye-movements, and,
moreover, recordings were synchronized with the heart beat recorded independently by
a pulse-oximeter. Around one hundred trials were acquired.

In the second experiment, we used a visual stimulation, consisting in a drifting square
grating that was displayed for 0.6s. Stimulated trials were alternated randomly with
“blank conditions (no grating). There were 136 repetitions of the stimulated condition,
and 68 repetitions of the blank condition.

7.3 Results

7.3.1 Extraction of RBC-Motion Information

The figure 7.4 shows results from our first experiment, through comparing the extracted
motion signal (blue traces) with the simultaneous CBV (green traces) and laser-Doppler
CBF measurements. The left part of the figure displays these time courses for a single
vessel and a single trial. The right part of the figure superimposes the estimations
and measurements for several vessels, calculated over every trial as explained in the
Method section. The same cardiac pulsation frequency was obtained with all three
measurements (as well as by a commercial pulse oximeter applied on the monkey’s ear,
not shown), strongly supporting the reliability of our method. Please note that the
decay of oscillations in the right part of the figure is due to that the following: since the
acquisition is synchronized with heart-beat pulsation, the oscillating signals for every
trial are in phase at the start of acquisition, and thereafter this synchronization decreases
with time due to small physiological variations in the cardiac rhythm.

Interestingly, the phase of the cardiac pulsation differed in the three measurements.
To test whether the different spatial localization of the measurements might explain the
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Figure 7.4: Heart beat estimation The flow estimations conducted for the first experiment (no
stimulation) shows the fluctuation due to the heart pulsation. Left: result for one trial repetition
in one vessel (blue line). Right: average response for all trial repetitions; the responses in several
vessels are superimposed (blue lines). They are to be compared with the volume time courses
(green), obtained directly from the optical signals, and the laser-Doppler measurements (red).
The frequency of the heart pulsation was found accurately by our method. The small phase
shift between our estimation and laser-Doppler measures is most likely due to different locations
of the laser-Doppler probe and the vessels considered.

observed phase-lag, in figure 7.4 we compared the RBC speed time-courses obtained in
6 different vessels, averaged over trials to increase the SNR. Part of these phase differ-
ences can be explained by the different spatial localization of the measurements, and,
as a matter of fact, we also found phase differences between the RBC-motion signals
in different vessels, suggesting different delays in blood transfer. However, the observed
phase-lags were only small and are thus unlikely to explain the large dephasings, in par-
ticular between Laser-Doppler and RBC-speed signals. Its precise origin thus remains
to be understood.

7.3.2 Sensory-Evoked Changes in RBCs’ Speed

We calculated sensory-evoked responses to the visual presentations in 45 vessels. Figure
7.5 shows these responses for 7 representative vessels: the RBCs-motion responses (blue
traces) are super-imposed with CBV responses (in green) in the same vessels. Error
bars were calculated by gathering the trials in groups of 16 repetitions of the stimulated
condition and 8 repetitions of the blank condition. The qualitative aspects of the results
were quite different depending on the nature of the vessel. The arteries showed the best-
quality responses. These responses occurred early on and returned to baseline while the
volume was still increasing. Conversely, no sustainable response was found in the veins,
possibly because of lower RBCs contrasts (lines appeared less clearly in the images).
In smaller vessels, response patterns could be seen too, although they were noisier, and
additional acquisitions would probably be necessary to bring more evidence to these
responses. In particular, in these vessels, the RBC-speed often initially dropped after the
stimulus onset, before it began to increase. Currently, we do not have a clear explanation
of this phenomenon, which has not been reported by Laser Doppler flowmetry studies.
One possible explanation for the discrepancy is that, here, we specifically measure RBC
speed, whereas blood flow as measured by the Laser Doppler technique depends both
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on RBC speed and density.

7.4 Discussion

7.4.1 RBCs-Motion Estimation

We proved that, by tracking erythrocytes moving through the vasculature, it is possible
to use intrinsic optical imaging to estimate the fluctuation of cerebral blood flow in
micro-vessels. Our method relies upon two facts: first of all, it is possible to extract the
data from individual vessels in order to produce 2D images where the motion of RBCs
can be casted into oblique lines. Secondly, it is possible to automatically estimate the
directions of these lines by the use of standard image analysis methods, and hence
estimate the speed of RBCs inside the vessels.

As far as data extraction is concerned, it is essential to spatially co-register all the
recorded frames. As a matter of fact, in vivo, the cortical vasculature is not static,
but moves under the effects of respiration and heart-beat pulsation and, in the case of
awake preparations, as a result of the animal’s movements. We found that estimating
rigid transformations was sufficient to account for the largest motions observed in these
images and extract reliably information from the vessel data. However there are not
only global motions, but also local deformation that would require more sophisticated,
nonlinear image registrations. These local effects could be observed on large vessels,
as artefacts related to the movements of these vessels affected by strong heart-beat
pulsation.

Although beyond the scope of the present study, the development of efficient opti-
mization procedures for estimating non-rigid image deformation is clearly of primary
importance. It would also enable the co-registration of datasets acquired in different
imaging sessions, where the position and angle of the camera with respect to the cortex
is often not exactly reproducible.

Next, we proposed a method based on the structure tensor to estimate directions
in the lines’ images. The structure tensor provided a natural way to average directions
in an image, which were calculated in every pixel as the direction orthogonal to image
gradient. It thus enables us to overcome noises in the lines’ images. To produce accu-
rate results, high temporal and spatial resolutions were needed: our acquisitions were
sampled at 200Hz, and pixels were 10x10 microns.

The methods proved adequate to accurately estimate the value of RBCs’ speed, and
even its temporal fluctuations. As a matter of fact, we could capture the heart pulsation
in the vessels, and the estimated oscillations were in agreement with those observed on
CBV signals and CBF acquired with the laser-Doppler technique. Additionally, we
could observe sensory-evoked responses, with estimation qualities depending on the
nature of the vessels. As a caveat, please note that additional work will be necessary to
definitively rule out stimulation-induced artefacts (such as vessel movements under an
increased blood pressure) as contributions to the responses we found. .

Since the tensor structure is a quite standard image analysis tool, many improve-
ments in the method are probable. For instance, a disadvantage of this method is that
it is not robust to the presence of several distinct directions in a same image, which can
occur because of vessel crossing or artefacts due to local deformations of the vasculature.
Other methods such as wavelet analysis and Gabor filter may be better suited to choose
a maximum likelihood direction rather than averaging the several directions present in
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the image. Even more, we have only considered one spatial dimension so far, i.e. the
direction of the vessels. However, more accurate optical flow techniques could operate
on the full width of the vessels rather than extracting signals along one-dimensional
lines. This may be decisive to obtain reliable signals in vessels (veins in particular) for
which the line directions did not appear clearly in the extracted spatio-temporal 2D
images.

7.4.2 Application for Physiological modelling

As opposed to standard methods providing only point-like blood flow measurements, our
method allows us to determine blood flow and its modulations across a 2 dimensional
image. This should prove useful to study the neurally-evoked blood flow responses, and
in particular, the blood-flow in different vascular compartments.

Still, the responses we obtained in small arteries, which were the ones estimated with
the highest reliability, already lead to interesting physiological observations. In these
vessels, the blood velocity reaches a maximum and then returns to baseline while at the
same time the blood volume is still increasing. Conversely, the signals in the venules
appear to be more synchronized with volume variations, or even slightly delayed. This
can be put in relation with the results of the study we presented in the previous chapter
on CBV and its relation with CBF, where we observed that the CBV response preceded
that of CBF. It could suggest that the measurements acquired with laser-Doppler origi-
nated more from the non-arterial rather than from the arterial compartments. Moreover,
in the two studies we could observe initial drops in the flow responses. Though currently
we do not have an explanation for these observations, they suggest complex interactions
between the various hemodynamic parameters (CBV, CBF, RBC speed, RBC density),
which constitute an interesting subject for further investigations.

In conclusion, it appears that in order to address modelling questions, it is highly
valuable to separate the signals issued from the different vascular compartments. Lastly,
we point out that the method we presented here (concerning blood flow in individual
micro-vessels) is complementary to the recently developed laser-speckle flowmetry [35,
179] which appears to be sensitive mainly to cerebral blood flow in parenchyma, i.e. in
the capillary bed.

7.4.3 Conclusion

The method we have presented appears promising for recording the blood velocity in
the cerebral vasculature with standard intrinsic optical recording. We would like first to
consolidate the method with robust image processing techniques. Then we will address
modelling questions on the microvascular blood circulation.
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Figure 7.5: Sensory-evoked responses The response of CBF (blue) and CBV (green) are dis-
played superimposed for a few chosen vessels. The quality of sensory-evoked flow responses
depend on the vascular compartment they originate from: there are significant responses in the
arteries, which appear to be much in advance on those of the volume. Responses in arterioles
and venules seem to exhibit some characteristic patterns that could be sensory-evoked responses,
but the level of noise is more important. Lastly, no response is detected in the veins.





Part IV

Using Nonlinear Models in
EEG-fMRI Fusion





Chapter 8

EEG-fMRI Fusion using Kalman
Filtering

We have seen how the framework of stochastic dynamical equations, which we used for
parameter estimation in fMRI, can be extended to measures from other modalities. In
this chapter, we extend our models to the EEG measure by adding the spatial dimension
(i.e. considering all cortical locations as a whole instead of studying each point inde-
pendently), and propose to use the Kalman filtering technique to estimate the unknown
cortical activity.

This method can be seen as a possible answer to a very large inverse problem, where
fMRI and EEG are noisy and partial measures of the neuronal signals. As a result,
it can also be applied to fMRI or EEG alone, in which case it could be considered as
a deconvolution method [67] for fMRI analysis, or as an inverse problem that ensures
temporal smoothness for EEG analysis.

8.1 Methods

8.1.1 Why Choose the SDE Formulation ?

We would like to present the reflection that led us to use the SDE formulation and
temporal filtering techniques, because it may be instructive to better understand the
problems underlying the EEG-fMRI fusion, and maybe imagine new methods.

The principle of EEG-fMRI fusion relies on the assumption that there exists some
kind of neural activity, denoted by N , which is seen by the two modalities. Our aim
is to estimate this activity. This N has a very high dimensionality since it gathers
the time courses of brain activity at all cortical locations, the spatial and temporal
resolution being those of fMRI and EEG, respectively. Basically, one could consider the
two measures as noisy functions of this neural activity:

{
z = feeg(N) + ηeeg

y = ffmri(N) + ηfmri,
(8.1)

where the noises ηeeg and ηfmri would be sums of physiological effects and measure
artefacts. Please not that in the physiological effects we include activities seen by only
one of the two modalities. All the variables in this system are matrices whose spatial
dimensions are the number of cortical sources (for N , y, ηfmri) or the number of EEG
electrodes (for z, ηeeg), and whose temporal dimensions are the number of samples of the



136 CHAPTER 8. EEG-FMRI FUSION USING KALMAN FILTERING

EEG (for N , z, ηeeg) or of the fMRI (for y, ηfmri). The figure 8.1, which represents the
physiological models that we will describe below, shows these matrices. If the functions
feeg and ffmri are known, estimating N becomes an inverse problem that one could try
to solve by minimizing an adequate energy containing fit to data and smoothness terms.

But minimization over such a large unknown would be very long. It is worth then to
consider that the system (8.1) has some structure. In particular, the EEG measure at a
given instant t only depends on the neural activity at the same instant over the whole
cortex, thanks to the quasi-static approximation of Maxwell’s equations. At the same
time, we could consider that, in a first approximation, the BOLD signal measured at a
given spatial location s only depends on the neural time course at the same location.
Hence we write:

{
z(t) = f

(t)
eeg(N(t)) + ηeeg(t)

y(s) = f
(s)
fmri(N(s)) + ηfmri(s).

Now the variables in this system are vectors, represented by the blue sections in
figure 8.1. EEG measure function f

(t)
eeg and the distribution of the noise ηeeg(t) are

actually the same for all t. On the other hand, fMRI measure function f
(s)
fmri and noise

ηfmri(s) distribution may vary across regions.
There appears to be some symmetry between time and space, and EEG and fMRI.

However, there is a major difference between them: while the EEG measure in one
electrode really depends on neural activity at all cortical locations, the fMRI signal at a
given time t only depends on neural signals in the about last thirty seconds. As a conse-
quence, estimations of neural activity at two sufficiently distant moments should be in-
dependent. This is the reason why we came to temporal-filtering and belief-propagation
techniques. It consists in considering only all locations together instead of all locations
and all instants together; and then running the estimation for increasing times, while
the filtering technique ensures that the temporal interactions are respected.

Temporal filtering methods rely on a stochastic differential equations formulation,
where this space/time symmetry is broken:

{
Ẋ(t) = F(X(t)) + ξ(t)
Y (t) = G(X(t)) + η(t).

(8.2)

• X denotes the system hidden-states: the neural activity N and the other quantities
that participate to the EEG and fMRI signals, like hemodynamic variables. Note
that when we identified dynamical systems in fMRI in the chapter 4, we approx-
imated the neural activity by the stimulation sequence u, which was an external
input to the system. Now there is no more system input and the neural activity
N belongs to the hidden states X. The temporal evolution of X is characterized
by the evolution function F and the evolution noise ξ.

• Y embeds the EEG and fMRI measures, characterized by the measure function G
and the measure noise η. G operates directly on the neural activity at time t, or
on the other hidden-states.

We will first describe the physiological equations used for this system, and then the
Kalman filter and Kalman smoother used to estimate X given the measures Y .



8.1. METHODS 137

fMRI (y)

flow inducing signal (s)

venous volume (v)neural activity (N)

EEG (z)

blood flow (f)

venous deoxyhemoglobin (q)

sources

electrodes

time

time

time

BOLD measure

forward problem

autoregressive evolution

hemodynamic model

Figure 8.1: Fusion model. EEG measure is described by the forward problem, while a physio-
logical dynamical system involving neural activity and hidden hemodynamic quantities underlies
fMRI measure. Our fusion algorithm estimates the whole spatio-temporal time course of neural
activity, but also of all hemodynamic variables.

8.1.2 Physiological Models

We denote by ns the number of cortical sources considered, ne the number of EEG
electrodes, T the number of EEG samples and ni the number of fMRI samples.

At the heart of our model, we suppose that the cortical activity N , which is seen
by both the EEG and fMRI measures, can be described by the electrical activity of
synchronous assemblies of neurons. We thus suppose it is equal to the electrical activity
on the cortical surface (N = j).

In order to assume temporal and spatial smoothness of this sources activity, we
model a simple autoregressive evolution:

Ṅ(t) = −λN(t) + ξN (t),

where λ > 0 is a feedback term (return to zero) ξN is a Gaussian evolutive noise
ξN (t) ∼ N (0, QN). QN is constructed according to geometrical constraints to ensure
the spatial smoothness of the cortical activity. The temporal smoothness can be tuned
through the value of λ and the scaling of QN.

Since N denotes electrical activity, the EEG measure is obtained directly by the
forward problem:

z(t) = GN(t) + ηeeg(t),

where G is the ne×ns Lead-Field matrix for the EEG forward problem, and ηeeg(t) ∼
N (0, Σeeg).

Let us consider the BOLD responses now. It is described by the hemodynamic
models studied in the previous chapters. We consider that there is an independent
hemodynamic process in every cortical location s:
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{
ẋ(s, t) = F (x(s, t), φ(N(s, t))) + ξfmri(s, t)
y(s, t) = G(x(s, t)) + ηfmri(s, t).

We recognize in this system the set of hemodynamic variables x, the evolution and
measure functions F and G, the evolution and measure noises ξfmri and ηfmri that are
supposed white and Gaussian. The model input should not be the electrical activity
N directly, but rather a metabolic activity derived from N according to a - possibly
nonlinear - function φ(N). For the simulations shown below, we used the Balloon model
(4.2) formulated by Friston et al. in [59], and we supposed a simple linear interaction
between electrical and metabolic activities φ(N) = εN .

To clarify our notations, we re-write these equations together, to fit the general
system formulation in (8.2):





Ṅ(t) = −λN(t) + ξN (t)
ṡ(t) = εN(t)− κss(t)− κf (f(t)− 1) + ξs(t)
ḟ(t) = s(t) + ξf (t)
v̇(t) = 1

τ (f(t)− v(t)1/α) + ξv(t)

q̇(t) = 1
τ (f(t)1−(1−E0)1/f(t)

E0
− v(t)1/α−1q(t)) + ξq(t)

z(t) = GN(t) + ηeeg

y(t) = V0(k1(1− q(t)) + k2(1− q(t)/v(t)) + k3(1− v(t))).

(8.3)

Hidden states N(t), s(t), f(t), v(t), q(t) are all vectors of dimension ns. They are
concatenated in a unique hidden-state vector X(t) which dimension is thus 5ns. All
operations above (multiplications, divisions, power laws) are performed element-wise.
The EEG and fMRI measure vectors z and y have respectively ne and ns elements. Note
also that fMRI has much fewer sampling points than EEG. However, we observed that
the Kalman filter we present now was more robust if we interpolated the fMRI measure
at every EEG sampling point. At last, we suppose that at time t = 0, all variables are
at rest state (i.e. N = s = z = y = 0 and f = v = q = 1).

8.1.3 Kalman Filter and Kalman Smoother

Given the measure Y , we can estimate the hidden state X recursively for increasing
times, by using an extended Kalman filter [180, 36]: if both evolutive and measure
noises are Gaussian, and if at each sampling instant the nonlinear evolution and measure
functions are approximated up to first order, then the a posteriori distribution of the
hidden states is also Gaussian; the Kalman filter calculates the mean and variance of
this distribution.

We chose to expose here mathematical details of the Kalman methods. However,
the most important point of this section is that the Kalman filter iteratively calculates
a posteriori means and variances of the hidden-states given the measures in the past
and the present, and that the Kalman smoother is a second iterative filter that operates
backward (from the future toward the past) and calculates a posteriori means and
variances given all the measures.

We re-write the system equations in their discretized form (please pay caution we
use the same notations F and G as in (8.2), but only G is really the same function):

{
Xk+1 = F(Xk) + ξk+1

Yk = G(Xk) + ηk.
(8.4)
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The Kalman filter computes the distributions p(Xk|Y1..Yk), and the Kalman smoother,
the distributions p(Xk|Y1..YT ). We will use the following notations for means and vari-
ances:

X̂ l
k = E(Xk|Y1..Yl)

P l
k = V (Xk|Y1..Yl) = E((Xk − X̂ l

k)(Xk − X̂ l
k)

T |Y1..Yl).

Kalman Filter

The Kalman filter starts with an a priori distribution on X1: p(X1) ∼ N (X̂0
1 , P 0

1 ). Then
it iteratively applies the two update steps:

• Measure update: update the a posteriori distribution p(Xk|Y1..Yk−1) by the mea-
sure Yk, to obtain the a posteriori distribution p(Xk|Y1..Yk); during this step,
the a posteriori variance decreases since additional information is brought by the
measure.

• Evolution update, also called belief propagation: use the known distribution
p(Xk|Y1..Yk) to predict that of hidden-states at the next instant, p(Xk+1|Y1..Yk);
during this step, the a posteriori variance increases on account of the unknown
evolution noise.

Evolution Update

We suppose known the a posteriori distribution of state Xk−1 given measures until
instant k, p(Xk−1|Y1..Yk−1) ∼ N (X̂k−1

k−1 , P k−1
k−1 ), and want to predict that of Xk.

First, the extended Filter algorithm needs to linearize the evolution equation around
the a posteriori mean:

Xk ≈ F(X̂k−1
k−1 ) + A(Xk−1 − X̂k−1

k−1 ) + ξk,

with A =
∂F
∂X

(X̂k−1
k−1 ).

(Xk|Y1..Yk−1) is the sum of Gaussian variables, hence it is Gaussian too with mean
and variance

E(Xk|Y1..Yk−1) = F(X̂k−1
k−1 ) + A(E(Xk−1)− X̂k−1

k−1 ) + E(ξk)

V (Xk|Y1..Yk−1) = V (AXk−1) + V (ξk).

X̂k−1
k = F(X̂k−1

k−1 )
P k−1

k = AP k−1
k−1 AT + Q.

Measure Update

During the measure update, a posteriori mean and variance of Xk are adjusted to take
into account the new information from the measure Yk.

Again, we need to linearize the measure equation:
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Yk ≈ G(X̂k−1
k ) + C(Xk − X̂k−1

k ) + ηk,

with C =
∂G
∂X

(X̂k−1
k ).

The a posteriori distribution of Xk given measures until Yk is determined using the
Bayes rule:

p(Xk|Y1..Yk) =
p(Yk|Xk, Y1..Yk−1)p(Xk|Y1..Yk−1)

p(Yk|Y1..Yk−1)

The denominator is an uninteresting constant, and thanks to the Markov chain
property of the system, we have p(Yk|Xk, Y1..Yk−1) = p(Yk|Xk) (conditionally to Xk,
Yk is independent of measures before the instant k). For convenience, we denote X̃k =
Xk − X̂k−1

k and Ỹk = Yk − G(X̂k−1
k ).

log(p(Xk|Y1..Yk)) = log(p(ηk = Ỹk − CX̃k|Xk)) + log(p(Xk|Y1..Yk−1))

= −1
2
((Ỹk − CX̃k)T R−1(Ỹk − CX̃k) + X̃T

k [P k−1
k ]−1X̃k) + cte

= −1
2
(X̃k − (CT R−1C + [P k−1

k ]−1)−1CT R−1Ỹk)T (CT R−1C + [P k−1
k ]−1)

(X̃k − (CT R−1C + [P k−1
k ]−1)−1CT R−1Ỹk) + cte.

We found that p(Xk|Y1..Yk) is a Gaussian law with mean X̂k−1
k + (CT R−1C +

[P k−1
k ]−1)−1CT R−1(Yk − G(X̂k−1

k )) and variance (CT R−1C + [P k−1
k ]−1)−1. Actually,

it is possible to show by matrices transformations [180] that they are equal to

X̂k
k = X̂k−1

k + K(Yk − G(X̂k−1
k ))

P k
k = (I −KC)P k−1

k

K = P k−1
k CT (R + CP k−1

k CT )−1.

Also, Max Welling in [180] argued that in practice the obtained matrix P k
k may not

be symmetric positive-definite due to numerical imprecision, and recommends to use
the following form instead:

P k
k = (I −KC)P k−1

k (I −KC)T + KRKT .

Kalman Smoother

The Kalman filter does not use all the information from the measures to derive a pos-
teriori probabilities, since it only takes the past and present into account. The Kalman
smoother operates backward to include the missing information from measures in the
future, starting with the last Kalman filter estimate, p(XT |Y1..YT ).

Indeed, it is possible, once we know the a posteriori distribution of Xk+1, p(Xk+1|Y1..YT ),
to deduce that of Xk. However, the derivation is quite complex and we only give the
results here. Again, please refer to [180] for a complete demonstration.

The mean and variance of the distribution p(Xk|Y1..YT ) are given by:
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X̂T
k = X̂k

k + J(X̂T
k+1 − X̂k

k+1)
P T

k = P k
k + J(P T

k+1 − P k
k+1)J

T

J = P k
k AT [P k

k+1]
−1,

with A =
∂F
∂X

(X̂k
k ).

Because more observations are included in the estimation of the state, the result will
be less noisy compared to the Kalman filter result, hence the name “smoother”.

8.1.4 Implementation

8.3.2
We already mentioned that, for numerical reasons, we interpolated the fMRI time

course to the sampling of the EEG (20Hz for our simulations). We noticed on prelimi-
nary simulations with small datasets that the linear approximations of the model could
be used without significant change in the results:





F(X) =
(

∂F
∂X

)

X=0

X

G(X) =
(

∂G
∂X

)

X=0

X

We notice then that under this linearization the evolution of the a posteriori variances
P k

k is independent of the measurements (neither the measures, neither the estimated
means do appear in the update steps), and it ultimately converges to a limit variance
matrix. It is also the case for P T

k . They can thus be pre-computed until the convergence
occurs (in less than two hundred iterations). Then only the evolution of a posteriori
means needs to be computed by filtering the measures forward and backward, which is
much faster.

8.2 Results on Synthetic Data

8.2.1 Cortex Mesh Downsampling

Our simulations are based on a realistic head model based on the segmentation of an
anatomical MRI image, which was acquired by Anne-Lise Paradis at the CEA-SHFJ in
Orsay. The number of sources on the cortex is currently limited by memory constraints:
indeed, the hidden-states dimension in the model (the length of vector X̂k) is equal
to the number of sources ns times the number of variables for one source (5ns for the
model we used), and the main limitation comes from the square matrices of this size
used by the algorithm (P k−1

k , P k
k , J). Thus we used a model with 1000 sources on the

cortex.
Besides, the forward problem matrix G was computed using a realistic head model,

with the symmetric boundary elements method implemented in the OpenMEEG soft-
ware developed by Geoffray Adde in the Odyssée Team [1], after the different tissues
had been segmented on the anatomical MRI image. To preserve the quality of the
forward problem, it was necessary to work with a high-resolution mesh (about 45000
vertices) rather than a decimated mesh. Hence the need to design a decimation proce-
dure which allowed us to interpolate between the 45000 vertices of the full mesh and
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Figure 8.2: Mesh decimation by contractions of edges: the decimation iteratively chooses a set
of independent edges (B), i.e. edges whose points are not neighbours in the graph; then these
edges are contracted into single points, and connections with other neighbours are updated
(C); the algorithm also updates an interpolation function between the edges which have been
deleted (blue rings) and the other old and new ones. (D) shows the result of interpolation on
the high-resolution cortex of activities on the decimated cortex: in the left column, four sources
have been set to one and the others to zero; in the right column, the thousand sources have a
random activity; the two rows compare two types of interpolation (we used the nearest neighbour
interpolation for our synthetic data).

the 1000 vertices of the decimated one. The figure 8.2 shows the decimation algorithm
by contractions of edges we used [51, 61], and results of a piece-wise constant compared
to a smooth interpolation.

8.2.2 Artificial Data

We simulated cortex activity according to the auto-regressive model (8.1.2):

Ṅ(t) = −λN(t) + ξN (t).

To this random activity, we added a large sinusoidal impulse, to test the algorithm
ability to handle fast and strong variations. Then the EEG and fMRI signals were
simulated according to the models summarized in system (8.3), including evolution and
measure noise. Figure 8.3 shows the stimulated sources activity, and EEG and fMRI
measures.

Then we ran the Kalman filter and smoother. We did not estimate the physiological
parameters.
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Figure 8.3: Artificial data. Top: (left) plot of the time courses of all cortical sources; neural
activity was generated according to the evolutive model (8.1.2) and a rapid burst (1s half width)
was added to a few sources; (right) activity mapped on the cortex at instants represented by
dotted vertical lines. Bottom: EEG and fMRI measures generated by the forward problem
(8.1.2) and the Balloon Model (8.1.2).

8.2.3 Results

Our algorithm can work with EEG or fMRI measures alone, or with both of them
simultaneously. To assess the improvement brought by the fusion, we ran the algorithm
on each modality separately. Figures 8.4 and 8.6, and table 8.4 show the results for EEG,
fMRI and EEG+fMRI estimations. Besides, figure 8.5 shows details of hidden-states
estimates after the filter and smoother steps.

We first describe the latter figure, which allows a better understanding of the specific
roles of the two filters. There are two peaks in the neural activity estimated by the
Kalman filter (upper lefthand display). The first one is due to the EEG measure updates
and occurs at the correct instant. The second one is due to the fMRI measures updates,

source estimation accuracy EEG prediction fMRI prediction
EEG estimation 25.0 % 100 % 24.9 %
fMRI estimation 88.0 % 86.1 % 97.2 %
EEG+fMRI estimation 88.8 % 100 % 97.1 %

Table 8.1: Correlation coefficients between actual and estimated/predicted time courses.
Through the shape of the neural time course obtained with the EEG+fMRI estimation sig-
nificantly changed from the shape of those obtained with the fMRI-alone estimation, there is
not an obvious superiority in terms of estimation accuracy.
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Figure 8.4: Estimated cortical activity when using the Kalman filter estimation on EEG and
fMRI measures, both separately and together. Left: estimated cortical-source time courses.
Right: estimated activities at two specific instants are mapped onto the cortex.
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Figure 8.5: Kalman filter and smoother comparisons: we show here all the hidden-states es-
timations after the Kalman filter step and after the subsequent Kalman smoother step. This
illustrates why it is necessary to apply the smoother, which includes information coming from
the future in the estimation of hidden-states at a given instant (see text).
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Figure 8.6: Estimated time courses of a few cortical sources are shown, and compared to their
true values. (A) fMRI alone was able to detect a spread out activity of an actually activated
source; the fusion estimation is slightly more focal, but cannot violate more the smoothness
constraint. (B) The inverse situation: EEG found activation in a non-activated source, and
fMRI turns down this estimation. (C) A typical example of how fMRI alone recovers the low
frequency fluctuations, whereas EEG brings a complementary information on fast variations.
(D) Here, EEG was unable to give any information on the source activity; fusion estimation is
then the same as that of fMRI alone.

and occurs later, because of the delay in the BOLD response. After the application of
the Kalman smoother however, since the information coming from the future propagates
these estimations back in time, the two peaks are combined into a single one which
accounts for the two measurements.

Now, in figure 8.4, the respective qualities of EEG and fMRI in term of temporal
and spatial resolutions are clearly illustrated. Indeed, in the EEG sole estimation,
the temporal pattern of activation peak around t=8.5s is recovered exactly, but its
localisation is quite diffuse (more sources are activated than in the original data, and
the activation powers are reduced). On the other hand, in the fMRI sole estimation, it is
the estimated time course that is diffuse, whereas the method found the right activation
foci. The fusion algorithm then finds a compromise between the two estimations, and
the smoothness of neural sources time courses. However, it was not able to find the
exact amplitude of the activity peak as in figure 8.3, but this is not surprising since the
algorithm used an a priori auto-regressive model for sources activity (equation (8.1.2)),
which supposes a temporal smoothness.

Figure 8.6 shows details of the estimated time courses of a few cortical sources with
different characteristics. We can observe that, when they are applied to fMRI only, the
Kalman filter and smoother perform a deconvolution of the BOLD signal for each source
location, that lead to a quite accurate estimation already (center row in figure 8.4 and
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cyan time courses in figure 8.6). In comparison, the EEG estimation (top row in 8.4
and green time courses in 8.6) is much worse, due to the ill-posedness of the inverse
problem. In the fusion context (bottom row in 8.4 and red time courses in 8.6), EEG
brings a complementary information in terms of rapid fluctuations, leading to a better
estimation of ongoing neural activity. In particular, it brings more precision in the
temporal shape of the activity peak. However, the changes it brings in the estimation of
the rest of the ongoing neural activity are not much significant, as shown also in table
8.1, where the increase in the correlation coefficients between estimated and actual time
courses appears to be limited.

8.3 Discussion

Our work illustrates how information coming from simultaneous EEG and fMRI mea-
sures can be integrated together for a more efficient estimation of the ongoing neural
activity. At the same time, we are aware that many hypothesis used in our simula-
tion may not be verified in the reality. This is why we shall summarize first, the ideas
brought by our method, and second, the improvements it would probably require.

8.3.1 Combining EEG and fMRI Measures with Filtering Techniques

The major interest of our fusion method and simulation results is probably to show that,
in spite of their pronounced differences in terms of temporal and spatial resolutions,
EEG and fMRI can be used in the same framework to infer on the underlying cortical
activity. We proposed the stochastic differential equations framework, however others
have already been studied [77].

In particular, both measurements can bring temporal and spatial information, whereas
in numerous existing methods, the two modalities are supposed to share an informa-
tion on only one of the two aspects (see chapter 3). More precisely, we observed that
the effect of adding fMRI information into an estimation achieved with EEG only is to
reduce the extent of activation patterns; and conversely, the effect of the EEG measure-
ments when achieving fusion is that the estimated time courses are more focused on the
activity periods, compared to those obtained with fMRI alone.

Besides, it appears that the SDE framework is useful for the analysis of each modality
alone: applied to the EEG alone, the Kalman filter and smoother technique solves an
inverse problem that constraints the cortical sources to be smooth in time. Applied to
fMRI alone, it performs a signal deconvolution.

At last, it has the advantage of easily taking into accounts physiological models
thanks to its use of dynamic models.

8.3.2 Open Questions

Regarding algorithmic and implementation, the filters described in this chapter allow to
greatly simplify a very large inverse problem. However, their execution time increases
drastically with the number of cortical sources used, mainly because of the size of vari-
ance matrices and other matrices involved in their computation, which is the square of
the number of sources time the number of hidden-states per source. In our implementa-
tion in C++, the convergence of these variances described in section takes less than one
second when using 30 cortical sources, about ten minutes with 300 sources, and several
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hours with 1000 sources. These expensive calculation times are just the reason why
we could not additionally estimate the noise parameters using a proper EM algorithm
[65]. However, there may be possibilities to find some structure in these matrices which
would allow a sparse representation and therefore a reduction of memory usage and
computation times.

Considering physiological models, we supposed a proportionality relation between
electrical and metabolic processes. It is very simplified, and we would rather desire a
dependence of the metabolism on some powers of the electrical activity in the frequency
domain. But this would introduce strong nonlinearities in the equations, and it is likely
that the local linearizations needed by the extended Kalman filter would lead to errors
in the estimation. It would be interesting, then, to try other filtering methods that are
more robust to nonlinearities (particle filters [165], unscented Kalman filter...).

At last, we would like to discuss how our method could be applied to real data.
Let us first note that, in the form as it was presented, it estimates an ongoing activity
rather than an event-related activity. As a matter of fact, the model does not include
any external input such as stimulation patterns. For that reason, it may be indicated to
estimate activity directly from EEG and fMRI signals, rather than on evoked signals.
This would have applications on experiment that study a non-triggered activity (for
example, the activity of the resting brain), or the activities elicited by single trials,
which is the case, for example, in the experiments on epileptic subjects that we will
describe in the next section.

However, non-evoked signals are obviously much noisier than evoked signals, since
in the latter, the averaging over repetitions of the same stimulation reduces all the
signals and noises that are not related to that stimulation. Our method, of course, is
still applicable on such evoked signals. It would suppose to first estimate an average
response to the stimulation at each electrode for the EEG measurements and in each
voxel for the fMRI measurements. Then use these responses as the measures of our
model and estimate the neural activity evoked by the stimulation.

8.4 Conclusion

The EEG-fMRI fusion method we have presented in this chapter shows that the hemo-
dynamic models which we have investigated in this thesis can be very useful to build a
general framework for the analysis of measurements issued from very different modali-
ties.

The algorithm presented in this chapter is likely to be used on real data since it is
able to handle high dimensionalities at usual EEG and fMRI resolutions.

However, its use on real data will probably require new investigations in two direc-
tions. First a better modelling of the link between electrical and metabolic activities in
the cortex. Actually, this point is a topic on its own, which is currently under investi-
gation by several teams [123, 12, 170]. Secondly, more robust algorithm such as particle
filters [165] should be explored in order to handle stronger nonlinearities in the models.



General Conclusion

As a whole, the PhD work addressed two kinds of questions about hemodynamic models:

“Why use biologically plausible models in brain imaging analysis?”

This was the topic of chapters 4, 5 and 8.
Nowadays, most fMRI analysis rely on the linear convolution with an empirical

hemodynamic response function (HRF). We proved in chapters 4 and 5, using statisti-
cal tests which were designed for that purpose, that linear convolution models cannot
predict the BOLD response as well as nonlinear dynamical models do. They obviously
cannot predict nonlinear aspects of the BOLD response due to neural habituation or
vascular saturation. Also, they are less efficient at handling some variabilities of the
response among regions or subjects, such as the post-stimulus undershoot, whereas
dynamical models can capture this variability with a reduced number of parameters.

Moreover, we proved in the same chapters that it is possible to use dynamical models
for the analysis of fMRI data. The counterpart of linear regression from the general
linear model (GLM) framework is the model identification in the dynamical model
framework (chapter 4), and the counterpart of statistical tests from the GLM framework
is the model selection in the dynamical model framework (chapter 5). Please note that
our model selection algorithm was based on Fisher tests applied to linearized models;
other algorithm could be proposed however, such as the Akaike Information Criterion
(AIC).

However, this does not mean that dynamical models should always be preferred
to linear models. On the contrary, linear models, which entail the smaller number of
parameters, should be used to address simple cognitive questions, such as localizing
activation in a sensory or motor evoked experiment. All the more since calculation time
is still heavy with nonlinear methods. On the other hand, precise hemodynamic models
become necessary when addressing more complex questions on the temporal aspect of
the BOLD responses, such as the presence or absence of neural habituation.

Dynamical models have a second advantage on linear models. Since they are a more
natural way to quantify physiological processes, they provide a convenient framework
for the combination of different imaging modalities. We proved in chapter 8 that,
using biological models, it is possible to consider the EEG and fMRI measures as noisy
outputs of a global dynamical system relying on a hidden cortical activity, and to use
them together to better estimate this activity, i.e. estimate the time courses of every
cortical source.
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“Which additional modelling is required?”

This was the topic of chapters 6 and 7.
Experiments described in chapter 6 were motivated by the probably over-simplistic

models used for the flow response to neural activity. Indeed, they suppose that the flow
responds linearly to the neural activity, and then that the volume response is driven
solely by the flow. On the contrary, our data suggests a nonlinear interaction between
neural electrical activity and the flow response (e.g. including saturation effects), and
a more subtle interaction between the flow and volume responses. A first improvement
in such models would be to consider several vascular compartments, at least three with
the arteries, capillaries and veins, instead of the venous compartment alone.

These results are confirmed by our new technique, presented in chapter 7, to estimate
the blood flow in single blood vessels. Indeed, using this technique, we can observe quite
different responses in the different compartments: we observe early responses in the
arteries, and we observe later responses in the small vessels, accompanied occasionally
with a first early dip, whereas we cannot observe responses in the larger veins.

Please note that the technique itself is a very interesting fruit of the connexions
between computer science and neuroscience communities, since it is based on the appli-
cation of image processing techniques on biological image sequences.

As a result, the future directions that should be investigated in hemodynamic mod-
elling are the mechanical dynamics of the flow (its variations related to those of volume
in the different compartments), the processes involved in the flow induction, and to
which part of the electrical activity they are related (membrane potential or spikes?
how does it depend on amplitudes, frequencies?...).

As a final word, this work shows how biophysiological modelling and analysis tech-
niques in imaging are connected and question each other. New models call for new
methods to take them into account in the analysis of the data, and progress in analysis
techniques and imaging performances appeal new improvements in the models. It is
probable that in the coming years, the analysis of data acquired using fMRI or other
imaging techniques dependent on hemodynamic effects, will rely more and more on an
acute understanding of the underlying processes and their variability among cortical
regions and among subjects.
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A symmetrical bayesian model for fMRI and EEG/MEG neuroimage fusion. In-
ternational Journal on Bioelectromagnetism, 3(1), 2001.

[164] D Y Ts’o, R D Frostig, E E Lieke, and A Grinvald. Functional organization
of primate visual cortex revealed by high resolution optical imaging. Science,
249(4967):417–420, Jul 1990.

[165] R. van der Merwe. Sigma-point kalman filters for probabilistic inference in dy-
namic state-space models. In Workshop on Advances in Machine Learning, Mon-
treal, June 2003.

[166] B. D. van Veen, van Dronglen. W., M. Yuchtman, and A. Suzuki. Localization of
brain electrical activity via linearly constrained minimum variance spatial filtering.
IEEE Trans Biomed Eng, 44:867–880, 1997.

[167] B.D. van Veen and K.M. Buckley. Beamforming: A versatile approach to spatial
filtering. IEEE ASSP Magazine, 5(2):4–23, April 1988.

[168] S Vanni, J Warnking, M Dojat, C Delon-Martin, J Bullier, and C Segebarth. Se-
quence of pattern onset responses in the human visual areas: an fMRI constrained
vep source analysis. Neuroimage, 21:801–817, 2004.

[169] I Vanzetta and A Grinvald. Increased cortical oxidative metabolism due to sensory
stimulation: implications for functional brain imaging. Science, 286(5444):1555–
1558, Nov 1999.

[170] Ivo Vanzetta, Thomas Deneux, Guillaume Masson, and Olivier Faugeras. Linear-
ity and non-linearity of sensory-evoked neuronal and hemodynamic responses in
awake monkey v1. In INCM workshop, Marseille, October 2005.



166 BIBLIOGRAPHY

[171] Ivo Vanzetta, Rina Hildesheim, and Amiram Grinvald. Compartment-resolved
imaging of activity-dependent dynamics of cortical blood volume and oximetry. J
Neurosci, 25(9):2233–2244, Mar 2005.

[172] Ivo Vanzetta, Hamutal Slovin, and Amiram Grinvald. Spatio-temporal charac-
teristics of neurovascular coupling in the anesthetized cat and the awake monkey.
In International Symposium Brain Activation and CBF Control, pages 145–153,
Tokyo, 2001.

[173] A. L. Vazquez and D. C. Noll. Nonlinear aspects of the BOLD response in func-
tional mri. NeuroImage, 7(2):108–118, 1998.

[174] D. Vitacco, D. Brandeis, R. Pascual-Marqui, and E. Martin. Correspondence of
event-related potential tomography and functional magnetic resonance imaging
during language processing. Hum Brain Mapp, 17(1):4–12, 2002.

[175] Maxim Volgushev, Joachim Pernberg, and Ulf T Eysel. A novel mechanism of
response selectivity of neurons in cat visual cortex. J Physiol, 540(Pt 1):307–320,
Apr 2002.

[176] T. D. Wager, A. Vazquez, L. Hernandez, and D. C. Noll. Accounting for nonlinear
BOLD effects in fMRI: parameter estimates and a model for prediction in rapid
event-related studies. NeuroImage, 25(1):206–18, Mar 2005.

[177] Anthony B Waites, Marnie E Shaw, Regula S Briellmann, Angelo Labate, David F
Abbott, and Graeme D Jackson. How reliable are fMRI-EEG studies of epilepsy?
A nonparametric approach to analysis validation and optimization. Neuroimage,
24(1):192–199, Jan 2005. Case Reports.

[178] S Warach, J R Ives, G Schlaug, M R Patel, D G Darby, V Thangaraj, R R Edel-
man, and D L Schomer. EEG-triggered echo-planar functional MRI in epilepsy.
Neurology, 47(1):89–93, Jul 1996. Case Reports.

[179] B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck.
Optical imaging of the spatiotemporal dynamics of cerebral blood flow and ox-
idative metabolism in the rat barrel cortex. European Journal of Neuroscience,
20:2664–2670, 2004.

[180] Max Welling. Max welling’s classnotes in machine learning.
http://www.cs.toronto.edu/~welling/classnotes/papers_class/KF.ps.gz.

[181] K. J. Worsley. Statistical analysis of activation images. In SM Smith P Jezzard,
PM Matthews, editor, Functional Magnetic Resonance Imaging: An Introduction
to Methods, pages 251–270. Oxford Univ. Press, York, 2001.

[182] K.J. Worsley, S. Marrett, P. Neelin, and A.C. Evans. Searching scale space for
activation in pet images. Human Brain Mapping, 4:74–90, 1996.

[183] K.J. Worsley, S. Marrett, P. Neelin, A.C. Vandal, K.J. Friston, and A.C. Evans. A
unified statistical approach for determining significant signals in images of cerebral
activation. Human Brain Mapping, 4:58–73, 1996.



BIBLIOGRAPHY 167

[184] Ying Zheng, David Johnston, Jason Berwick, Danmei Chen, Steve Billings, and
John Mayhew. A three-compartment model of the hemodynamic response and
oxygen delivery to brain. NeuroImage, 28:925–939, 2005.

[185] Ying Zheng, John Martindale, David Johnson, Myles Jones, Jason Berwick, and
John Mayhew. A model of hemodynamic response and oxygen delivery to brain.
NeuroImage, 16:617–637, 2002.


