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Modélisation statistique pour la recherche de gènes différentiellement ex-
primés: modèles de variance-covariance, analyse séquentielle et méta-analyse

Les puces à ADN permettent d’étudier simultanément l’expression de plusieurs milliers de gènes à par-
tir de peu d’individus biologiques. Trois approches sont considérées dans cette thèse pour résoudre
les problèmes de sensibilité dans la recherche de gènes différentiellement exprimés: la modélisation
des variances-covariances, l’analyse séquentielle et la méta-analyse. La première et la troisième partie
reposent principalement sur des approches dites de ’shrinkage’ qui estiment les valeurs de chaque gène
à partir de l’information provenant de l’ensemble des gènes. En diminuant le nombre de paramètres
à estimer, elles permettent d’augmenter la sensibilité. La modélisation des variances se révèle partic-
ulièrement utile dans le cas d’expériences avec de petits échantillons. La modélisation des covariances
est quant à elle particulièrement pertinente pour les études de suivi longitudinal où les mesures sont
répétées sur les mêmes individus au cours du temps. Côté analyse séquentielle, la sensibilité est étudiée
en tant que règle d’arrêt. On cherche alors à arrêter une expérience en cours dès que ce critère dépasse
un certain seuil, afin d’en diminuer les coûts. La méta-analyse est ensuite étudiée dans un contexte
beaucoup plus général que celui de l’analyse séquentielle où on combinait les analyses intermédiaires.
Elle permet de gagner de la sensibilité en regroupant des résultats d’études individuelles qui ne sont
pas comparables directement mais qui répondent à une même question biologique. La méta-analyse
est abordée à la fois sous l’angle fréquentiste (combinaison de grandeurs des effets ou combinaison de
p-values) et sous l’angle bayésien.

Mots clefs: puces à ADN, analyse différentielle, modélisation des variances-covariances, dépendance
au cours du temps, analyse séquentielle, méta-analyse.

Statistical modelling for differential gene expression studies:
variance-covariance models, sequential and meta-analysis.

Microarrays enable to simultaneously study gene expression levels from several thousands of genes with
very few samples. Three approaches are considered in this PhD work in order to overcome sensitivity
problems in differential gene expression studies: variance-covariance modelling, sequential and meta-
analysis. The first and the third parts mainly rely on shrinkage approaches, which consist in estimating
each individual gene value by taking into account information from all genes of the experiment. By
decreasing the total number of parameters to estimate, this increases sensitivity, that is to say the
proportion of true positives among the truly differentially expressed genes. While variance modelling
is always useful with small sample size designs, covariance modelling is especially important in time
course studies where measures are repeated on the same individuals. Concerning sequential analysis,
sensitivity is studied as a stopping rule. The aim is to stop the experiment before the scheduled end as
soon as this criterion is higher than a given threshold, which enables to decrease costs. Meta-analysis is
then studied in a wider context than sequential analysis where intermediate analyses were combined. It
increases sensitivity by gathering results from individual studies, for which a direct comparison would
be impossible, but answering the same biological question. Meta-analysis is studied both from the
frequentist (effect size and p-value combinations) and the bayesian points of view.

Keywords: microarrays, differential analysis, variance-covariance modelling, time course studies, se-
quential analysis, meta-analysis.
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Résumé substantiel

Les études transcriptomiques basées sur des expériences de puces à ADN sont
devenues un outil standard dans les sciences de la vie au cours de ces dix
dernières années. Cependant, le coût de ces expériences reste élevé, ce qui se
traduit souvent par un manque d’échantillons disponibles. Ma thèse étudie le
problème de dimension élevée (très grand nombre de gènes/variables) associée
à un très faible nombre d’échantillons impliqués dans la recherche de gènes
différentiellement exprimés. Trois approches principales sont considérées:
la modélisation des variances-covariances, l’analyse séquentielle et la méta-
analyse.

Shrinkage

Les modélisations des variances-covariances et la méta-analyse proposées ici
sont basées sur des approches dites de shrinkage. Ce mot clef est utilisé
à chaque fois qu’un estimateur est un compromis entre deux estimateurs.
De manière générale, l’estimateur de shrinkage θ̃g peut s’écrire comme une
fonction d’un estimateur gène à gène θ̂g et d’un estimateur commun de la
population globale θ̂c:

θ̃g = θ̂c + b(θ̂g− θ̂c) (1)

où b est le facteur de shrinkage. Quand b = 1, θ̃g = θ̂g (estimateur empirique
gène à gène). Quand b = 0, θ̃g = θ̂c (estimateur commun). Les approches
de shrinkage diminuent considérablement le nombre de paramètres à estimer
tout en gardant une certaine flexibilité avec une valeur par gène.

Modélisation des variances-covariances

La modélisation de la variance joue un rôle important dans les études de
gènes différentiellement exprimés. Quand très peu d’échantillons sont con-
sidérés et que l’analyse est réalisée gène à gène, les tests statistiques man-
quent de puissance; dans ce contexte, cela veut dire que très peu de gènes
différentiellement exprimés peuvent être détectés. Une alternative est de
supposer une variance commune à tous les gènes. Cependant, cela conduit
souvent à une augmentation du nombre de faux positifs. Au cours de mon
stage de fin d’étude de l’Ecole Nationale de la Statistique et de l’Analyse de
l’Information (ENSAI), j’ai programmé une nouvelle approche de shrinkage
basée sur le modèle structural mixte pour les variances. Dans ce cas, θ de
l’équation (2) correspond au log des variances et s’écrit comme un modèle
mixte avec un effet condition fixe et un effet gène aléatoire. Le facteur de
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shrinkage est estimé via une approche bayésienne empirique. Au début de
ma thèse, j’ai étendu le modèle de variance à la modélisation de matrices de
covariance, ce qui est particulièrement intéressant pour les études au cours
du temps quand les mesures sont répétées sur les mêmes individus. Avec F.
Jaffrézic et J.-L. Foulley, nous avons proposé une approche de shrinkage basée
sur un modèle structural mixte via une décomposition en valeurs propres ou
une décomposition de Cholesky des matrices de variance-covariance. Les es-
timateurs de shrinkage ont été calculés sur trois niveaux i) les valeurs propres
ii) les variances d’innovation iii) à la fois les variances et les paramètres de
corrélation d’une matrice de corrélation empirique gène à gène. Nous avons
trouvé que les méthodes proposées se comportaient bien par rapport aux ap-
proches Bayésiennes empiriques déjà existantes et étaient meilleures, dans la
plupart des cas, que les méthodes gène à gène ou les approches supposant
une covariance commune.

Analyse séquentielle

L’analyse séquentielle considère le problème de taille d’échantillonage d’un
autre point de vue. L’idée pour réduire les coûts des expériences est d’être ca-
pable d’arrêter une expérience une fois que suffisamment de résultats ont été
obtenus. Les approches séquentielles ont une longue tradition dans les essais
cliniques pour réduire la taille d’échantillonnage tout en gardant une puis-
sance statistique raisonnable. Ces méthodes sont caractérisées par des analy-
ses intermédiaires à des étapes pré-définies et une règle d’arrêt qui détermine
à chaque étape si on doit continuer l’échantillonnage ou non. Au cours d’un
séjour en Ecosse pendant ma thèse, j’ai proposé avec C.-D. Mayer (BioSS) une
approche séquentielle pour les puces à ADN. Une caractéristique intéressante
d’une telle approche est que, contrairement au cas univarié, le grand nombre
de variables (gènes) testées simultanément empêche l’introduction d’un biais
considérable des p-values finales. Ainsi, les résultats des différentes étapes
peuvent être combinés par des méthodes de méta-analyse et les taux d’erreurs
contrôlés en appliquant les procédures classiques (par exemple correction de
Benjamini Hochberg) aux p-values résultant de la combinaison des différentes
étapes. Nous avons proposé des règles d’arrêt basées soit sur l’estimation du
nombre de vrais positifs soit sur l’estimation de la sensibilité, c’est-à-dire
la proportion de vrais positifs parmi les gènes réellement différentiellement
exprimés. Nous avons comparé plusieurs modèles de mélange pour estimer
la sensibilité et montré qu’il était difficile d’estimer ce critère. Grâce à des
simulations, nous avons aussi trouvé que les approches séquentielles étaient
capables de réduire les tailles d’échantillonnage et par conséquent les coûts
dans les expériences de puces à ADN.
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Méta-analyse

Cette dernière partie de ma thèse prolonge directement la partie précédente
puisqu’elle permet de combiner des données de différentes étapes. Elle est
aussi basée sur les approches de shrinkage développées dans la première par-
tie de ma thèse. Ici, la méta-analyse est étudiée dans un contexte plus général
permettant de combiner des données d’études pour lesquelles une comparai-
son directe serait impossible mais répondant à une même question biologique.
La méta-analyse offre la possibilité d’accroître considérablement la puissance
statistique et donne des résultats plus précis. J’ai proposé une approche pour
combiner des grandeurs des effets ’modérées’ (moderated effect sizes) et l’ai
comparée à d’autres approches de méta-analyse (combinaison des grandeurs
des effets programmée dans la librairie GeneMeta de Bioconductor, combi-
naison des p-values par méthode inverse normale). J’ai simulé différentes
variabilités inter-études. Bien que la méthode proposée de combiner des
grandeurs des effets modérées soit meilleure que les autres approches déjà
existantes pour combiner des grandeurs des effets, nous avons montré que
les combinaisons de p-values étaient plus performantes que les autres méth-
odes de méta-analyse en terme de sensibilité. Nous avons aussi étudié des
méthodes Bayésiennes pour mieux estimer la variabilité inter-étude, difficile
à estimer avec les approches fréquentistes. Ces méthodes Bayésiennes sem-
blent prometteuses pour l’avenir mais nécessitent une mise au point et un
temps de calcul très long.

Programmation

J’ai développé des packages R pour chacune de ces questions statistiques.
SMVar et metaMA sont diponibles sur le CRAN, site officiel de R
(http://cran.r-project.org/).
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Introduction

Gene expression data represent nowadays an essential stake in human and
animal genetics. Hope is allowed that thanks to them and other new tech-
nologies, people will be able to model the functioning of cells and genes and
consequently, understand the development of individuals, the causes of dis-
eases, etc.

Statistical modelling for microarray data has been a widespread research
subject over the past few years and has been dealt within several phD the-
ses, e.g. Delmar (2005), Neuvial (2008), Lê Cao (2008). My thesis brings
a contribution to this field, and more precisely to the research for differen-
tially expressed genes. This research often relies on t-tests. While variance
modelling from denominators of such test statistics has already been investi-
gated by several authors (Tusher et al., 2001; Kerr et al., 2002; Smyth, 2004;
Delmar et al., 2005), the approach I present which takes into account the
variance heterogeneity across conditions is new in the microarray analysis
context, as well as the extension to variance-covariance matrices. The origi-
nality of my PhD especially comes from sequential and meta-analysis. Until
now, sequential analysis had never been applied to microarray experiments
and meta-analysis is a field which is rapidly expanding with the growing
amount of data available. Before explaining in dedicated chapters all these
statistical aspects and the developments we propose for microarrays, the next
section describes the biological experiments studied in this PhD.

Microarray presentation
The term ‘microarrays’ refers to various types of experiments with a broad
range of applications (e.g. comparative genomic hybridization1, gene expres-
sion profiling, ChIP on chip, tiling arrays, SNP or alternative splicing de-
tection). In this section, I will only present microarrays which measure gene

1A glossary is given in Appendix
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expression levels since my PhD is only concerned by this type of experiments.
Since the first gene expression product is a messenger RNA (mRNA), mi-

croarrays measuring gene expression are experiments which study the tran-
scriptome. Figure 1 recalls the relationship between genome, transcriptome,
proteome, metabolome.

Figure 1: Schematic representation of gene expression study levels
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If DNA is not transcribed in mRNA then there is no possible translation
and absence of protein often means absence of associated function. Varia-
tions in transcriptome can be physiological (during growth, daily situations
as adaptation to effort) or pathological (diseases can be caused by abnormal
gene regulations). As for a given individual, genes are identical from a tis-
sue to another one, a cell to another one, it is important to look at relative
gene expression levels to distinguish functions of cells and understand the
mechanism of regulation. In the same way, the differences between the gene
expression levels from healthy patients and the ones from ill patients are ex-
planations of disregulations which could be the cause of the studied disease.
That is why people are interested in studying the transcriptome. Quantifi-
cation of gene expression levels can be performed via microarrays. Thus,
one application of these experiments is to look for differentially expressed
genes, that is to say genes which would be up or down regulated between
two ‘conditions’. Note that the term ‘conditions’ is often used whenever the
studied problem is formalised statistically. It refers to the different origins
of the harvested samples (e.g. normal/tumoral samples). Microarrays can
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measure the expression of thousands of genes simultaneously.
The principle of microarrays is based on a property of DNA and RNA: the

hybridization (recognition and interaction of two complementary sequences
of RNA or DNA). The principle of these experiments is shown in Figure 2
(Duggan et al., 1999).

Figure 2: Principle of microarray experiments

Chips are solid supports (e.g. glass slide, nylon membrane) on which
what is called ‘probes’ are spotted. Probes can be oligonucleotides (synthe-
sized directly on the array surface for oligonucleotides arrays or prior to the
deposition on the array for spotted arrays), cDNA clones (much longer than
oligos, they can be thousands of nucleotides long). Many steps (not detailed
here for simplicity) are satisfied to have good quality chips. What is common
between all the different types of probes is that they only have one strand
and will be able to capture ‘targets’. Targets are the mRNA harvested from
the studied cells. They are marked either by fluorescence or radioactivity so
that when they hybridize with probes, the quantity can easily be measured
by scanner. The example given in Figure 2 represents a two-color array. In
this case, cells from the two conditions (e.g. control/target cells) have been
tagged by two different fluorophores: Cyanine 3 (Cy3) and Cyanine 5 (Cy5).
The scanner generates an image with levels of grey depending on the flu-
orochrome intensity read. A representation with false colors is often used.
These colors vary from green, which caracterizes samples marked with Cy3
to red for Cy5. Thus, if target cells have been fluorophored with Cy3 then a
green spot underlines an over-expression of the corresponding gene in these
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cells compared to the control ones. The spot is yellow when no differential
expression is observed. In addition to differences observed on supports and
probes, the type of microarrays also depends on the number of channels con-
sidered. In my PhD report, there are two channels for two-color arrays and
one channel for nylon membrane chips. The data that I have downloaded on
public repositories mostly come from one channel microarrays since they most
often correspond to commercial Affymetrix chips (oligonucleotide arrays).

Statistical problem
Microarrays generate a large quantity of data (thousands of genes studied at
the same time) with very few samples (less than ten per condition most of the
time). In the following of this report, the terminology adopted for ‘samples’
is ‘replicates’. Biological replicates are distinguished from technical repli-
cates. Biological replicates are samples coming from different individuals
with caracteristics from the same condition while technical replicates come
from the same individuals and should give the same results. When not pre-
cised, the term ‘replicates’ refers to biological replicates. From the statistical
point of view, this is a typical ‘n � p’ problem with a much larger number
of variables (p: number of genes) than experimental units (n: number of
individuals/replicates). Until now, when looking for differentially expressed
genes, this problem has mostly been considered from the multiple testing
side. Indeed, since many tests (one per gene) are performed simultaneously,
there are many false positives (genes which are declared differentially ex-
pressed while they are not). Solutions to this problem have been brought
by Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001), Storey
and Tibshirani (2003), McLachlan et al. (2006), Robin et al. (2007) and oth-
ers. In the following, I will mostly use the Benjamini Hochberg correction
(Benjamini and Hochberg, 1995) to adjust p-values for multiple testing and
thus control the False Discovery Rate (FDR), the expected proportion of
false positives. Other authors have contributed to the microarray field devel-
oping methods to reduce high dimensionality, which is particularly needed
when people perform classifications or when the aim of the experiment is to
predict the belonging of a sample to one condition from a subset of genes
(Lê Cao, 2008; Mary-Huard, 2006).

The purpose of my PhD is a bit different from the previous ones. I most
often consider high dimensionality as an advantage and try to gain informa-
tion from it in order to palliate the small sample size problem. All my work
is concerned with the research of differentially expressed genes and the aim is
to increase sensitivity, that is to say the expected proportion of true positives
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(both declared significant and truly differentially expressed genes) among the
truly differentially expressed genes. The first part of my PhD concentrates on
variance-covariance modelling. Sensitivity is increased thanks to shrinkage
approaches. After that, sequential analysis is developed in order to save sam-
ples as soon as significant results are obtained. The notion of stopping rule is
explained in the corresponding part. It is sometimes achieved by looking at
sensitivity but we will see the difficulties to estimate this criterion. Finally,
the last part of my PhD takes advantage of shrinkage approaches presented
in the first part to extend meta-analysis approaches introduced in the second
part. The aim is to increase sensitivity by gathering several studies where
only few samples are involved in each of them.

The following of this report will only develop my specific contributions to
the statistical analysis of microarray data. For a classical analysis of microar-
ray data, I would advise people to read books like Speed (2003), Wit and
McClure (2004), Mary-Huard et al. (2006). In particular, I always assume
that data have already been normalised. This point will not be developed
since I did not bring any new contribution but it is really an important step
of microarray analysis. For two-color arrays, this normalisation most often
consists in at least correcting for dye effects (by loess correction (Yang et al.,
2002) for example) and block effects induced by prints of the robot used for
spotting. For many types of microarrays, intensity levels are log-transformed
during the normalisation process, which explains that comparing the ratio
between two conditions can be achieved by a simple difference between gene
expression normalised levels. Affymetrix arrays need a normalisation which
takes into account the special design (Perfect Match/Mismatch probe strat-
egy) of oligonucleotide arrays. In all cases, only one normalised value is kept
for each replicate in each condition for each gene. This is what is called later
the gene expression level. When data are paired (for example for two color
arrays where the two conditions are on the same chip), it is preferable to
directly consider the log-ratio that is to say the difference between the gene
expression levels of the two conditions.
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Part I

Variance-covariance modelling for
differential gene expression

studies
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Transcriptomic studies using microarray technology have become a stan-
dard tool in life sciences over the past decade. However, the cost of these
experiments remains high, which often results in a lack of samples available.
When very few samples are considered and the analysis is performed gene-
by-gene, statistical tests lack of power; in this context, it means that very
few differentially expressed genes can be detected. One alternative to that is
to assume a common variance between all genes. However, it often results in
an increase of false positives. To overcome these problems, we investigated
shrinkage approaches.

Shrinkage is a key-word, which will be very often used in this report
since both variance-covariance modelling and meta-analysis rely on shrinkage
approaches. Historically, the shrinkage concept comes from James and Stein
(1961) who proposed a nonlinear estimator which outperforms the ordinary
least squares technique. The shrinkage procedure improves the efficiency of
the resulting estimator with respect to Mean Square Error. Actually, the
word ’shrinkage’ is used whenever an estimator is a compromise between two
estimators. In a general situation, the shrinkage estimator θ̃g can be written
as a function of a gene-by-gene estimator θ̂g and a common estimator of the
whole population θ̂c:

θ̃g = θ̂c + b(θ̂g− θ̂c) (2)

where b is the shrinkage factor. When b = 1, θ̃g = θ̂g (gene-by-gene empirical
estimator). When b = 0, θ̃g = θ̂c (common estimator). Shrinkage approaches
considerably decrease the number of parameters to estimate while still keep-
ing a certain flexibility with one value per gene.

Variance modelling plays an important role in differential gene expression
studies. When very few samples are considered and the analysis is performed
gene-by-gene, statistical tests lack of power; in this context, it means that
very few differentially expressed genes can be detected. One alternative to
that is to assume a common variance between all genes. However, it often
results in an increase of false positives. During my end of study ENSAI
internship, I implemented a novel shrinkage approach based on a structural
mixed model for variances. In this case, θ in equation 2 corresponds to the
log of the variances and is written as a mixed model with a fixed condition
effect and a random gene effect. The shrinkage factor is estimated via an
empirical Bayesian approach. This approach is presented at the beginning of
Chapter 1. At the beginning of my PhD, I extended this variance modelling to
covariance modelling, which is particularly important for time-course studies
when measures are repeated on the same individuals. With F. Jaffrézic and
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J.-L. Foulley (INRA), we proposed to apply a shrinkage approach based on
a structural mixed model via an eigenvalue and a Cholesky decomposition of
the variance-covariance matrices. Shrinkage estimators were derived at three
levels i) the eigenvalues, ii) the innovation variances, iii) both the variances
and correlation parameters of a gene-by-gene covariance matrix. This natural
extension to variance-covariance modelling is provided in Chapter 2.
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Chapter 1

Modelling of variances

Differential gene expression studies often rely on t-tests or F-tests. Due to
the high number of parameters involved in microarray experiments and the
small number of samples available, variance-covariance modelling plays an
important role. Following the work of Tusher et al. (2001), Kerr et al. (2002),
Smyth (2004), Delmar et al. (2005) on variance modelling, we proposed a
’shrinkage’ method based on a structural model.

1.1 A sructural mixed model for variances in
differential gene expression studies
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Summary

The importance of variance modelling is now widely known for the analysis of microarray data.
In particular the power and accuracy of statistical tests for differential gene expressions are highly
dependent on variance modelling. The aim of this paper is to use a structural model on the
variances, which includes a condition effect and a random gene effect, and to propose a simple
estimation procedure for these parameters by working on the empirical variances. The proposed
variance model was compared with various methods on both real and simulated data. It proved to
be more powerful than the gene-by-gene analysis and more robust to the number of false positives
than the homogeneous variance model. It performed well compared with recently proposed
approaches such as SAM and VarMixt even for a small number of replicates, and performed
similarly to Limma. The main advantage of the structural model is that, thanks to the use of a
linear mixed model on the logarithm of the variances, various factors of variation can easily be
incorporated in the model, which is not the case for previously proposed empirical Bayes methods.
It is also very fast to compute and is adapted to the comparison of more than two conditions.

1. Introduction

Detection of differentially expressed genes relies on
statistical tests, typically t-tests. A key and critical
aspect of these tests is the modelling of the residual
variances. The most commonly used approach is to
test for differential gene expression one gene at a time.
This approach has, in general, low power due to the
lack of information on each individual gene (Callow
et al., 2000). On the other hand, assuming that all the
variances are equal and using a common variance
estimator can increase the power (Kerr et al., 2000)
but generates a high rate of false positives when the
assumption of homoskedasticity is not true (Cui et al.,
2005). A number of papers have been devoted to the
problem of choosing a suitable variance model for
microarray data. In the SAM t-test (Tusher et al.,
2001) a small constant is added to the gene-specific
variance estimates in order to stabilize the small
variances. Kerr et al. (2002) proposed an intensity-
dependent variance model where the gene-specific

residual variances are modelled as a non-parametric
function of the log-intensity. Delmar et al. (2005a)
proposed a mixture model on the gene-variance
distributions to identify clusters of genes with
equal variances. Cui et al. (2005) presented a shrink-
age estimator of variance components, using the
James–Stein shrinkage concept. Several authors have
also proposed hierarchical Bayesian methods, in-
cluding Lewin et al. (2006), Newton et al. (2001),
Baldi & Long (2001), Lönnstedt & Speed (2002),
Wright & Simon (2003), Smyth (2004) and Feng
et al. (2006).

The aim of this paper is to propose a simple and
biologically interpretable model for the variances.
The idea is to consider a structural model (Foulley
et al., 1992) which includes a condition effect and a
random gene effect. This model will allow estimation
of gene-specific residual variances that will take into
account information from all the genes in the data set
in a simple and parsimonious way. Two estimation
procedures are considered in this paper to estimate
the variance parameters : a stochastic approach based* Corresponding author. e-mail : florence.jaffrezic@jouy.inra.fr
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on MCMC techniques and a simple approximate
method.

In a simulation study, our method was compared
with five other approaches for variance modelling:
gene-specific variances, common variance model,
SAM (Tusher et al., 2001), VarMixt (Delmar et al.,
2005b) and Limma (Smyth, 2004). The proposed
structural model was also applied to a real functional
genomics study on bovine embryos before implan-
tation to find differentially expressed genes according
to the reproduction mode, and to a microarray ex-
periment to study the response of the mouse spleen to
in vivo whole body irradiation.

2. Materials and methods

(i) Hierarchical model

Let yijk be the expression level for gene i (i=1, …, N),
replicate j (j=1, …, ni) and condition k (k=1, …, K).
Data are assumed to have been previously normal-
ized. Observations yijk are modelled with the simple
linear model (Delmar et al., 2005a) :

yijk=mik+eijk: (1)

The residual terms eijk are assumed to be independent
and normally distributed with mean zero and a
variance which can vary both by gene and condition:
eijkyN (0, sik

2 ).
Estimating one residual variance for each gene

within each condition is often not possible due to the
lack of replications within each interaction cell. The
second step of the proposed hierarchical modelling
is therefore to consider a model on the variances
that will retain flexibility while keeping the number of
parameters reasonably low. As suggested by Foulley
et al. (1992), a structural model is therefore assumed
on the logarithm of the residual variances:

ln (s2
ik)=mk+dik, (2)

where mk is a condition effect (assumed fixed) and dik
is the gene effect in condition k. Here we will assume
that the gene effects are independent and normally
distributed with mean zero and variance tk

2 , i.e.
dikyN (0, tk

2). Considering the gene effects as random
allows us to take into account this source of variation
parsimoniously and leads, as shown later, to a shrunk
estimator of the variance.

(ii) Simple estimation procedure

Analytical forms of the likelihood function are diffi-
cult to obtain in the model presented above, and
estimation of the parameters in such a structural
model for the variances usually requires the use of
stochastic estimation procedures based on MCMC

methods. Lewin et al. (2006), for example, proposed
using Gibbs sampling and estimated the parameters in
a Bayesian framework. These stochastic estimation
procedures are, however, quite time-consuming due
to the large number of simulations required to obtain
accurate estimates of the parameters.

Here we propose a simple and efficient approximate
method to obtain estimates of the parameters in the
structural model for the variances. These estimates
were compared with those obtained with Gibbs sam-
pling using the software WINBUGS (Spiegelhalter
et al., 2004). The idea of the proposed estimation
procedure is to base inference of the variance par-
ameters on the empirical variances.

For each gene i, let sik
2 be the empirical variance

defined as

s2ik=
1

nikx1
g
nik

j=1
(yijkxyik:)

2, (3)

where yijk represents the expression level for replicate
j of gene i in condition k. Let yik. be the average
expression level for gene i over all replicates in
condition k : yik:= 1

nik
gnik

j=1yijk: For the proposed esti-

mation procedure, the structural model is assumed on
the logarithm of the empirical variances :

ln (s2ik)=mk+dik+eik, (4)

where eik is a sampling error due to the estimation
of the true variances sik

2 by the empirical variances
sik
2 . Residuals eik are assumed independent and
normally distributed with mean zero and variance
vik

2 : eikyN (0, vik
2 ). According to the asymptotic

theory (Layard, 1973), the sampling variances vik
2 can

be estimated by vik
2 =2/dik, where dik corresponds to

the degrees of freedom for gene i in condition k.
Usually dik=nikx1, where nik represents the number
of replicates for gene i in condition k. As previously,
dik is assumed to be a random gene effect in condition
k : dikyN (0, tk

2 ), and mk is a fixed effect which rep-
resents the condition effect. Both parameters tk

2 and
mk can be estimated by classical linear mixed model
estimation procedures.

Due to the use of normal conjugate distributions –
ln sik

2 |ln sik2 yN (ln sik
2 , vik

2 ) and ln sik
2 yN (mk, tk

2) – it
follows that the best predictor of ln sik

2 is

dln s2
ikln s2
ik=mk+lik( ln s

2
ikxmk), (5)

where lik=tk
2/(tk

2+vik
2 ) is a shrinkage factor of ln sik

2

towards mk. When parameters tk
2 tend to zero, we ob-

tain a pooled estimator and a common variance for all
genes within each condition: m̂k =g

i
(dik ln s

2
ik)=gi

dik.

On the other hand, if parameters tk
2 tend to infinity,

the shrinkage factors lik become 1. There is no
shrinkage, and one variance is estimated for each gene

in each condition as: dln s2
ikln s2
ik= ln s2ik.
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(iii) Degrees of freedom of the T statistic

To test whether gene i is differentially expressed
between condition k and condition l the test statistic is

ti, kl=
mikxmilffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ 2
ik=nik+ ŝ 2

il=nil

q , (6)

where ŝ 2
ik and ŝ 2

il are estimations under the proposed
structural model presented above. The exact distri-
bution of this test statistic under the null hypothesis
is unknown and determination of the p values can be
obtained by permutations. As pointed out by Cui
et al. (2005) permutations are, however, very time-
consuming, especially when a large number of genes
are analysed. To obtain a fast and efficient procedure,
we therefore propose considering an approximate
Student distribution. In fact, under the structural
model, the test statistic corresponds to the so-called
Welch’s statistic which follows approximately a
Student distribution (Moser & Stevens, 1992) with
ni degrees of freedom. For each gene, we propose
calculating the degrees of freedom of the T statistic
by the classically used Satterthwaite’s method, as
follows:

ni=
2(ŝ 2

ik+ŝ 2
il)

2

Var(ŝ 2
ik)+Var( ŝ 2

il )
, (7)

where ŝ 2
ik and ŝ 2

il are the variance parameter esti-
mations obtained with the structural model and the
variances of these estimations can be calculated

as: Var(ŝ 2
ik)=(ŝ 2

ik)
2Var( dln s2

ikln s2
ik), where Var( dln s2

ikln s2
ik) �

(1=t2k+dik=2)
x1 with dik=(nikx1) for condition k.

An R function ‘SMVar’ implementing the struc-
tural model for the detection of differentially ex-
pressed genes is available upon request from the first
or second author.

3. Application

The proposed structural model was applied here to
two sets of real data to find differentially expressed
genes in bovine embryos according to the repro-
ductive mode and in mice to study the spleen response
to irradiation.

(i) Reproductive mode in bovine embryos

(a) Presentation of the data. This variance modelling
was applied to a functional genomics study on bov-
ine embryos before implantation. The experimental
protocol is described in detail by Degrelle (2006).
The aim of this study was to find differentially
expressed genes in the embryos according to the
reproductive mode. Three reproductive modes were
investigated: artificial insemination (AI), in vitro
fertilization (IVF) and cloning (somatic cell nuclear

transfer, SCNT). Three different lines of clones were
studied. They were established from ear skin biopsies
of three Holstein heifers. In total, 10 Holstein
embryos were available for AI, IVF and each of
the three lines of clones. In total, 10 214 unique
cDNA were spotted onto Nylon N+ membranes
(Amersham Biosciences) at the CRB GADIE
platform (INRA, Jouy-en-Josas). The bovine 10K
array will be fully described in a forthcoming paper
(Degrelle et al., unpublished). For each embryo
(n=50), RNA was isolated, amplified (MessageAmp
aRNA Kit, Ambion) and hybridized onto the
array. The membranes were exposed to phosphor
screens for 7 days. The hybridization signals
were quantified using Imagene 5.5 software (Bio-
Discovery) on the PICT platform (INRA, Jouy-
en-Josas). Gene expression data were log2 transformed.
Data were centred by membrane and by gene. No
further normalization was needed on this bovine
data set.

(b) Variance parameter estimations. For the struc-
tural model, the list of differentially expressed genes
found with the approximated estimation method
was compared with the list obtained with the exact
MCMC estimations using Gibbs sampling with
WINBUGS software (Spiegelhalter et al., 2004). As
the posterior distributions of the variance parameters
were highly asymmetrical, we chose the posterior
mode with a uniform prior on the standard devi-
ations (Gelman, 2005) as a point estimate of the
variance parameters, which is close to the REML
estimation of the variance parameters. The structural
model was compared with the mixture model
approaches proposed by Delmar et al. (2005b) : VM
and VM2. In VM2, each gene is assigned to one of
the groups of homogeneous variance determined by
the mixture model. VM is more flexible as it does
a partial assignment of genes to variance groups,
taking into account the probabilities of belonging
to each group. Classical methods such as Limma
(Smyth, 2004), SAM (Tusher et al., 2001), gene-by-
gene analysis and the homogeneous variance model
were also applied to this data set. To make each
method comparable, a Benjamini & Hochberg (1995)
correction (BH correction) was performed on the
raw p values to correct for multiple tests.

The proposed structural model is similar in spirit
to that of Baldi & Long (2001), except that the use
of log-normal distributions instead of Gamma gives
the possibility of directly estimating the shrinkage
parameter, which is a crucial parameter for the
variance estimations, whereas it has to be specified a
priori by the user in Cyber-T. Moreover, the struc-
tural model allows the easy incorporation of factors
of variation other than the gene and condition
effects. Analyses performed here will therefore not be
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compared with the method presented by Baldi &
Long (2001).

(c) Results. The Venn diagram presented in Fig. 1
illustrates the list of differentially expressed genes
found with the different methods at a 10% BH
threshold. With the structural model and the pro-
posed approximate estimation method, 11 genes
were found which were all included in the 12 genes
found with Gibbs sampling estimations using pos-
terior mode estimates.

The SAM approach detected 8 genes at 10% which
were all included in the 11 genes detected with the
structural model. In this analysis, VM and VM2 were
found to lack power as no gene was detected with VM
and only 3 genes were detected with VM2. This may
be due to the fact that the VarMixt methods were
designed for comparing only two conditions as the
variance of the gene expression difference is modelled,
whereas in this example five conditions were com-
pared. In contrast, the structural approach models the
variances in each condition and can therefore readily
be applied to the comparison of more than two
conditions. At a 30% BH threshold, 9 genes were
detected with VM and 6 with VM2. All of them were
included in the 11 genes detected with the structural
model. Similarly, Limma detected only 1 differentially
expressed gene at a BH threshold of 10% as well
as 30%.

The homogeneous variance model found far more
genes than other methods, but a histogram of the
p values showed that the assumption of a common
variance is not appropriate for these data, as shown in
Fig. 2. In fact, the distribution of the p values was not
uniform under the null hypothesis. It is therefore

expected that a large proportion of the detected genes
are false positives.

(ii) Mouse spleen data

(a) Presentation of the data. These data were pres-
ented and analysed by Delmar et al. (2005a), and
are publicly available in the R VarMixt package
(Delmar et al., 2005b). The goal of this experiment
was to study the response of the mouse spleen to
in vivo whole-body irradiation. Experimental data
were generated with two-colour complementary
DNA microarray assays comparing the spleen of
irradiated (treated) and normal (control) mice. The
data consist of three dye-swaps. The ‘treated’ sam-
ples were obtained from three independent mice (one
mouse per swap) 3 hours after irradiation at 1 Gy.
The ‘control ’ sample was obtained from pooling
several normal mice. The same control sample was
used in all the hybridization experiments. There are
4360 genes in each array. Composition of the arrays
is described in Preisser et al. (2004). Data were pre-
viously normalized as described by Delmar et al.
(2005a).

(b) Results. Three methods have been applied to
find differentially expressed genes in these data,
namely Limma (Smyth, 2004), VM (Delmar et al.,
2005b) and the structural model proposed here. The
Benjamini & Hochberg (1995) procedure at a 5%
threshold was used to correct for multiple tests. In
total 112 genes were detected with Limma, 113 with
VM and 125 with the structural model. Among
them, 104 genes were found by all three methods, as
shown in the Venn diagram in Fig. 3.

4. Simulation study

A simulation study was performed to compare the
proposed structural model with the variance model-
ling implemented in Limma (Smyth, 2004), SAM
(Tusher et al., 2001) and VarMixt (Delmar et al.,
2005b), as well as with the simple gene-by-gene
analyis and homogenenous variance model. In the
first simulation, paired data were studied from the
‘two-colour’ experiment in mice presented by Delmar
et al. (2005a) and analysed in the previous section.
The second simulation study is based on the real
bovine data presented above; these are therefore un-
paired data. For each of the methods, a BH correction
was performed on the raw p values to account for
multiple tests.

(i) Simulation 1

(a) Data. The first simulation was performed with
the same parameters as used by Delmar et al.

Structural (mode)

Structural (approx)

SAM

VM2
3 genes

1 gene

3 genes

5 genes

Fig. 1. Venn diagram for the differentially expressed genes
detected at a 10% BH threshold in the real bovine data set
with four methods: structural model using the posterior
mode in the Gibbs sampling estimations, structural model
with the approximate method, SAM and VM2.
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(2005a), which were obtained from the real mouse
data set analysed above. The simulated data had
4360 genes which were assumed normally dis-
tributed. One per cent of the genes were simulated
with a non-zero mean log-ratio. These 43 genes were
simulated with a mean log-ratio ranging uniformly
from 0.25 to 0.9. Gene variances were estimated
from the real data by a gene-by-gene analysis and
were randomly assigned to the differentially ex-
pressed genes in each simulated data set as in
Delmar et al. (2005a).

(b) Model fitting. In this data set, each array is
hybridized with both a control and a treated sample.
Therefore, for each gene the two observations from
the same array were treated as paired data. Each
model was fitted on the logarithm of the ratio of
observed intensity (log-ratio). Let yij be the log-ratio
for gene i in replicate j. It is modelled by

yij=mi+eij, (8)

where eijyN (0, si
2). For the structural model, the

residual variances are now modelled as: ln si
2=m+di,

where diyN (0, t2). For these paired data, the
measure of differential expression for gene i between
the two conditions is now defined as the mean log-
ratio for gene i :

Di=
1

ni
g
ni

j=1
yij: (9)

In this first simulation study, the paired Limma, VM,
VM2, SAM, gene-by-gene and homoskedastic models
were also used. The results were averaged over 100
simulated data sets and are presented in Table 1 for a
5% BH threshold.

(c) Results. It was found that for relatively large
numbers of replicates (eight or more), all four
methods (Limma, SAM, VarMixt and structural
model) perform quite well. The homogeneous model,
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Fig. 2. Histogram of the raw p values for the real bovine data analysis with four different models : the common variance
model, the proposed structural model, VM and SAM.

Fig. 3. Venn diagram for the differentially expressed genes
detected at a 5% BH threshold in the real mouse data set
with three methods: structural model, VM and Limma.
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however, had a very large rate of false positives,
which shows that this assumption is here highly
unrealistic. The structural model still performs quite
well for fewer replicates (five replicates), even with
the approximate estimation method based on empiri-
cal variances. As already observed by Delmar et al.
(2005a), however, the paired SAM method performs
very poorly for five replicates as it detects no differ-
entially expressed genes. As expected, the gene-by-
gene analysis showed a lack of power with this small
number of replicates and the homogeneous variance
model still had a large number of false positives.

(ii) Simulation 2

(a) Data. This second simulation was based on the
parameters estimated on the real data set presented
above on bovine embryos. Due to the required com-
puting time, only three conditions among the five
were considered and 5000 genes among the 10 214.
Among them, 100 genes were simulated to be differ-
entially expressed for one of the conditions com-
pared with the two others. For these genes, the mean
log-ratio was simulated according to a Gamma
(10.8,0.07). These parameters were determined from
the real data set. Gene variances used for the simu-
lations were estimated from the real data by a gene-by-
gene analysis and were randomly distributed within
the set of differentially expressed genes for each
simulation. In this study, only unpaired methods
were used as the real data came from a membrane

experiment and not a ‘two-colour’ experiment.
Results were averaged over 100 simulated data
sets and are presented in Table 2 for a 10% BH
threshold.

(b) Results. In the case of the comparison of more
than two conditions, as already observed in the real
data analysis, the structural model had more power
than VM and SAM, especially in the case of a small
number of replicates (five replicates here). In fact,
19 true positives were detected on average with the
structural model at a 10% BH threshold, whereas
fewer than seven genes were detected with VM2,
fewer than 11 with VM and 12 with SAM. This is
due to the fact that the structural approach models
directly the variance of each gene within each
condition, whereas the VarMixt methods model the
variance of the difference in gene expression in two
conditions. On the other hand, the Limma approach
also works quite well in this case with 18 true posi-
tives detected. In the case of 10 replicates the same
pattern is oberved, although the differences between
methods are slightly smaller than for five replicates.

5. Discussion

The first simulation study showed that the proposed
structural model for paired data performed similarly
to the VarMixt approach. The paired SAM method,
however, showed a considerable lack of power in this

Table 1. Results of the simulations based on the
mouse paired data set at a 5% BH threshold

No. of replicatesa

5 8 10

No. of true positives
Structural model 29.4 (3.1) 39.8 (1.6) 41.4 (1.2)
VM 33.7 (2.4) 40.2 (1.4) 41.6 (1.1)
VM2 32.5 (2.7) 39.7 (1.7) 41.3 (1.3)
SAM 0.0 (0.0) 39.9 (1.7) 40.9 (1.5)
Limma 33.0 (2.5) 40.0 (1.6) 41.4 (1.2)
Gene-specific 13.8 (4.2) 37.1 (2.2) 39.9 (1.7)
Homoskedastic 39.9 (1.4) 42.4 (0.8) 42.8 (0.5)

No. of false positives
Structural model 1.7 (1.5) 2.0 (1.3) 2.2 (1.8)
VM 2.0 (1.6) 2.3 (1.6) 2.4 (1.8)
VM2 2.0 (1.7) 2.2 (1.4) 2.1 (1.7)
SAM 0.0 (0.0) 1.7 (1.5) 2.1 (1.7)
Limma 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Gene-specific 0.8 (1.0) 1.9 (1.2) 2.4 (1.8)
Homoskedastic 49.8 (7.9) 50.0 (7.9) 51.7 (8.7)

Values are the mean (SD) over 100 simulations.
a Replicates correspond to the number of measurements for
each gene within each condition.

Table 2. Results of the simulations based on a subset
of the bovine reproductive data set at a 10% BH
threshold

No. of replicatesa

5 8 10

No. of true positives
Structural model 18.7 (6.6) 53.9 (5.6) 56.2 (4.6)
VM 10.4 (5.5) 47.7 (5.2) 60.2 (4.7)
VM2 6.4 (5.1) 43.1 (5.5) 58.2 (4.8)
SAM 11.5 (5.5) 50.6 (5.5) 63.3 (4.8)
Limma 17.8 (6.0) 49.3 (5.0) 61.2 (4.4)
Gene-specific 6.2 (4.1) 39.2 (5.0) 54.1 (4.4)
Homoskedastic 37.5 (4.43) 63.2 (4.4) 73.5 (3.9)

No. of false positives
Structural model 6.2 (4.2) 14.8 (5.3) 16.8 (5.1)
VM 2.0 (1.9) 8.7 (3.7) 11.6 (4.0)
VM2 1.3 (1.7) 7.3 (3.6) 10.3 (3.7)
SAM 2.3 (2.2) 11.2 (4.5) 13.7 (4.6)
Limma 5.0 (3.4) 14.0 (4.9) 16.8 (5.0)
Gene-specific 1.2 (1.5) 7.9 (3.6) 11.3 (4.3)
Homoskedastic 89.1 (11.7) 102.1 (10.6) 104.5 (11.2)

Values are the mean (SD) over 100 simulations.
a Replicates correspond to the number of measurements for
each gene within each condition.
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analysis when the number of replicates was small.
As expected, the structural model clearly out-
performed the homogeneous variance model and the
gene-by-gene analysis. The proposed approximate
estimation procedure, based on empirical variances,
still performed well for a small number of replicates
(five replicates).

In the first real data analysis and the second simu-
lation study, the structural model was found to be
more powerful than VM, VM2 and SAM. This was
due to the fact that more than two conditions were
compared whereas VM and VM2 were initially de-
veloped for the comparison of only two conditions.
In fact, the mixture model is based directly on the
variance of the gene expression difference instead of
modelling the variance in each condition.

The structural model was found here to perform
similarly to the Limma approach (Smyth, 2004). The
main advantage of the structural model is, however,
that the use of a linear mixed model on the log of the
variances provides a larger modelling flexibility. In
fact, here a condition and gene effects were included in
the model, but it could easily be extended to other
mixed models including, for example, a sex effect or
even functions of time. This is much more difficult to
achieve when considering an inverse chi-square dis-
tribution on the variances, as proposed by Smyth
(2004).
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1.2 Complementary results
Most of the results of this paper were obtained at the end of my Master
studies at ENSAI (National School of Statistic and Information Analysis)
just before the beginning of my PhD. During this internship, I implemented
the approximated estimation procedure of the structural model in R and com-
pared it to Varmixt (Delmar et al., 2005) and SAM (Tusher et al., 2001). The
analysis with the exact estimation procedure with WinBUGS had already
been performed by F. Jafffrézic and J.-.L Foulley. I performed the compari-
son with the limma model during my PhD after the EADGENE (European
Animal Disease Genetics Network of Excellence for Animal Health and Food
Safety) workshop on microarray data analysis, where we realised that it was
the mostly used package in the microarray community. This EADGENE
workshop is presented in de Koning et al. (2007) given in Appendix. In brief,
the workshop on microarray data analysis was organised in the context of the
EADGENE european network. It gathered researchers from 10 countries. All
participants received the same two datasets, the first one simulated and the
second one coming from real dairy cattle microarray experiments. Among
the three other papers written after this workshop, my work contributed to
two of them (Watson et al., 2007; Jaffrézic et al., 2007). These papers are
also given in Appendix. In this section, only complementary results about
the simulated dataset (Watson et al., 2007) are presented since the results for
the real dataset have not been biologically validated yet and it is thus more
difficult to interpret the results that we found. The simulated dataset offered
the advantage to have been simulated independently from people who anal-
ysed it, which eliminates the simulation bias which consists in analysing the
data with the same model used to generate them. Simulated differentially
expressed genes were only known after the workshop. As far as we were
concerned, we presented at the workshop results from 6 different models:
the structural model SMVar, SAM (Tusher et al., 2001), VM, VM2 (Delmar
et al., 2005), the gene-by-gene model and the common variance model. For
the paper, we only kept the structural model since it appeared to be a good
compromise between the other models. For the workshop in itself, all par-
ticipants were asked to bring the lists of the 250 top genes detected. That is
why my work for this workshop relied on the comparison of such top lists for
the 6 models cited before. These models were computed with the siggenes,
Varmixt and SMVar packages of the R 2.2.1 version. Between the 6 top
lists of differentially expressed genes, 170 genes were found in common. The
top list of VM was the closest one to the top list of SMVar with 230 genes
in common. The other models had at least 200 genes in common with the
structural model : 226 for VM2, 224 for the common variance model, 206
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for the gene-by-gene model and 203 for SAM. Figure 1.1 illustrates the fact
that SMVar was a good compromise between all models.

Figure 1.1: Venn diagrams for the comparison between the 250 top genes
detected with the structural model (SMVar) and two other models (gene-by-
gene and common variance model, or VM and SAM).

Only 3 genes that were detected by the structural model were not detected
by either the gene-by-gene model or the common variance model, and only
5 genes were not detected by either SAM or VM.

This simulated data set was a very good example to show the performance
SMVar had compared to the other models, especially for gene ranking as we
only considered the 250 top gene lists. Once the simulated list of differentially
expressed genes was given after the workshop, we realised that there were
no false positives in any of these top lists. When entire lists of differentially
expressed genes at a 5% Benjamini Hochberg threshold were considered, all
methods performed quite well (see table 1.1).

Table 1.1: Comparison of lists of differentially expressed genes at 5%-BH -
EADGENE simulated data set

No Correct FP FN
SMVar 663 614 49 10

VM 646 612 34 12
VM2 648 614 34 10
SAM 660 603 57 21

Common variance 655 615 40 9
Gene-by-gene 626 594 32 30

The best method on this simulated data set was Varmixt. During my
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internship, this model was found to perform very well on paired data but can
not be easily extended to more than two conditions as the structural model.
This is due to the fact that it models the difference between two conditions
and does not offer the flexibility to have one variance per condition. SAM
was found here to be the worst model as it is the one detecting the most false
positives with still a large number of false negatives. Thus, the results on this
EADGENE simulated data set confirm the Varmixt and SAM performances
on paired data that were already presented in the previous paper (Jaffrézic
et al., 2007). The good results obtained here for the common variance and
the gene-by-gene models are due to the way data were simulated. In fact,
the software SIMAGE (Albers et al., 2006) does not offer the possibility to
have heterogeneous variances across genes which considerably advantaged the
common variance model. Moreover, ten biological replicates were simulated
per condition and because the two technical replicates had a small correlation,
they could be considered as independent. Since twenty measures per gene
is large, this favoured the gene-by-gene model. One way to show that all
models were adequate for this simulated data set is to look at the histograms
of raw p-values given in figure 1.2.

If the assumptions made by the model are reasonnable, the p-value dis-
tribution has to be uniform for non differentially expressed genes, which is
the case for all models here. The pick near 0 represents the p-values of dif-
ferentially expressed genes. The histogram corresponding to the common
variance model is far from the one observed on the real data set of Jaffrézic
et al. (2007). This illustrates the fact that all models were adapted for these
simulations and that the way of simulating data did not seem to be the most
appropriate to compare variance modellings. This simulated dataset, how-
ever, confirmed the advantages of the structural model, showing that its top
differentially expressed gene list was a good compromise between the other
models.
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Figure 1.2: Histograms of raw p-values on the EADGENE simulated data
set
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Chapter 2

Modelling of covariance matrices

After the promising results of the structural model on variances, it was natu-
ral to extend it to covariance matrices. What is more, biologists from INRA
Nouzilly (Benoit Guyonnet, Jean-Luc Gatti) brought us a dataset where re-
peated measures were performed on the same individuals. They were study-
ing the pig fertility and were looking for differentially expressed genes along
the epididymis (long tube where spermatozoa acquire maturation). They cut
the epididymis into eleven zones and looked for differentially expressed genes
between zones. Samples for different zones were harvested from the same in-
dividuals. More details about this project can be found in Guyonnet (2008).
From the statistical point of view, it was important to model the covariance
matrix between zones. The approaches we proposed are presented in the
following paper published in the CSDA special issue ‘Statistical Genetics &
Statistical Genomics’

2.1 A structural mixed model to shrink covari-
ance matrices
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a b s t r a c t

Time-course microarray studies require a particular modelling of covariance matrices
when measures are repeated on the same individuals. Taking into account the within-
subject correlation in the test statistics for differential gene expression, however, requires
a large number of parameters when a gene-specific approach is used, which often results
in a lack of power due to the small number of individuals usually considered in microarray
experiments. Shrinkage approaches can improve this detection power in differential gene
expression studies by reducing the number of parameters, while offering a good flexibility
and a small rate of false positives. A natural extension of the shrinkage approach based on a
structural mixedmodel to variance–covariancematrices is proposed. The structural model
was used in three configurations to shrink (i) the eigenvalues in an eigenvalue/eigenvector
decomposition, (ii) the innovation variances in a Cholesky decomposition, (iii) both the
variances and correlation parameters of a gene-by-gene covariance matrix using a Fisher
transformation. The proposed methods were applied both to a publicly available data
set and to simulated data. They were found to perform well, compared to previously
proposed empirical Bayesian approaches, and outperformed the gene-specific or common-
covariance methods in many cases.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Microarray experiments have been widely used over the past few years to study the expression of thousands of genes
simultaneously and to detect differentially expressed genes under various conditions. The understanding ofmany biological
processes such as embryonic development or evolution of a disease often relies on time-course experiments. Detection of
differentially expressed genes is an essential preliminary step to expression profile clustering and gene network studies in
order to reduce the number of genes and focus only on the biologically relevant ones.
Differential expression in time-course experiments has been studied from different points of view. Twomain approaches

have been considered. First, several authors have focussed ondifferential gene expression profiles (Storey et al., 2005; Conesa
et al., 2006; Angelini et al., 2007). In this framework, they consider global trends, using for example, spline functions, rather
than differential gene expression between specific time points. This approach is especially useful when a large number of
measurement times has to be analysed.
An alternative to differential expression profiles is to use modified F-tests, which are an extension of themodified t-tests

developed for classical differential expression studies (Tusher et al., 2001; Smyth, 2004; Delmar et al., 2005; Jaffrézic et al.,
2007).While pairedmodified t-tests have been proposed in these papers and arewell adapted for comparing two correlated
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conditions, modified F-tests have until now been less investigated. They are, however, themethod of choice to analyse time-
course experiments, since they allow comparison of three or more conditions with a complex covariance structure.
In order to take into account the within-subject correlation for the analysis of longitudinal gene expression data, Guo

et al. (2003) proposed a robust Wald statistic based on an extension of the generalised estimating equations (Liang and
Zeger, 1986), using a working correlation matrix. To avoid singularity problems, they suggested adding in the test statistic,
similar to the SAM approach (Tusher et al., 2001), a diagonal matrix with positive elements.
A modified F-test was also presented by Smyth (2004) and is implemented in the Bioconductor R package ‘Limma’. They

proposed including a subject effect in the linear model fitted to the data, and constructing the F-test statistics based on
empirical gene-by-gene covariance matrices with shrunk diagonal variance terms. Variance parameters were shrunk, as in
the univariate case, using an empirical Bayesian approach.
The aim of this paper was to propose several other F-type statistics for time-course microarray studies based on an

extension of the structuralmixedmodel presentedby Jaffrézic et al. (2007) to themultivariate case.We focussed on twomain
decompositions of the empirical gene-by-gene covariancematrices: eigenvalue/eigenvector and Cholesky decomposition. A
structural mixedmodel was used in three configurations to shrink (i) the eigenvalues, (ii) the innovation variances, (iii) both
the variances and the correlation coefficients. The F-statistics based on these shrunk covariance matrices were compared to
a gene-by-gene analysis, a common covariance model and the modified Limma F-test both on simulated and real data sets.

2. Materials and methods

Let ygrt be the expression level for gene g (g = 1, . . . ,G), replicate r (r = 1, . . . , Rg ) and time t (t = 1, . . . , T ). Data are
assumed to have been previously normalised.

Ygr ∼ N (µg,Σg ), (1)

with Ygr = (ygr1, . . . , ygrt , . . . , ygrT )′ and µg = (µg1, . . . , µgt , . . . , µgT )
′. The test hypotheses for differential expression

of gene g between several times can be written as H0: Lµg = 0 vs H1: Lµg 6= 0 with L a given contrast matrix. The Wald
statistic can be written as

Wg = (Lµ̂g )
′
[LV̂gL]−1(Lµ̂g ), (2)

where µ̂g and V̂g are the maximum likelihood estimation of µg and its sampling variance, respectively.

2.1. Gene-by-gene and common covariance models

A first possibility is to perform a simple gene-by-gene analysis. In this case, µ̂g = Ȳg = (ȳg1, . . . , ȳgt , . . . , ȳgT )′,

with ȳgt = 1
Rg

∑Rg
r=1 ygrt , and matrix Vg is estimated by Ŝg/Rg , where Ŝg is the empirical variance–covariance matrix

Ŝg = (Rg − 1)−1
∑Rg
r=1(Ygr − Ȳg )(Ygr − Ȳg)

′.
The test statistic is then defined as (Rao, 1973):

F∗g = λg(Wg/q), (3)

with λg =
Rg−q
Rg−1

and q = rank(L). Under the null hypothesis, F∗ ∼ Fisher(q, Rg − q). The main difficulty for this
approach inmicroarray studies is the estimation of a large number of parameters, due to the large number of genes analysed
simultaneously, with only a few biological replicates. This issue tends to lead to a lack of detection power for the gene-by-
gene approach.
On the contrary, a common covariance structure could be assumed for all genes, considering for example themean of the

empirical gene-by-gene covariancematrices. This increases the detection power but also considerably increases the number
of false positives when the homogeneity assumption is not fulfilled.
To overcome these drawbacks, various shrinkage methods have been proposed in the literature (Cui et al., 2005; Lewin

et al., 2006; Baldi and Long, 2001) when independence was assumed between conditions. We propose here to extend
the structural mixed model approach presented by Jaffrézic et al. (2007) to time-course microarray studies to shrink
variance–covariance matrices.

2.2. Structural model for both variances and correlation parameters

The empirical gene-by-gene covariance matrix can be written as:

Ŝg = D1/2g RgD1/2g , (4)

where Dg is a diagonal matrix of dimension (T × T ) with the empirical variances as diagonal terms and Rg is the empirical
gene-by-gene correlation matrix. Let ln(Dg) = diag(ln(d2g1), . . . , ln(d

2
gT )). The most straightforward extension of the
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structural model approach (Jaffrézic et al., 2007; Foulley et al., 1992) to covariance matrices is to shrink the empirical gene-
by-gene variances using the following model:

ln d2gt = µt + δgt , (5)

where µt is a condition (or time) effect, assumed fixed, and δgt is a gene effect in condition t . Gene effects are assumed to
be independent and normally distributed with mean zero and variance τ 2t , i.e. δgt ∼ N (0, τ 2t ).
In order to extend the structural approach to shrink the correlation terms we propose to apply a Fisher transformation

to gene-by-gene empirical correlations rgst (for times s and t) such as:

ρgst =
1
2
ln
(
1+ rgst
1− rgst

)
= arcth(rgst). (6)

The proposed structural mixed model to shrink the correlation terms is then:

ρgst = µst + δgst , (7)

where δgst ∼ N (0, τ 2st).

2.3. Structural model for an eigenvalue decomposition

Another possible extension of the structural mixed model to covariances would be to shrink the eigenvalues via an
eigenvalue/eigenvector decomposition. Let Ŝg = Ug1gUg ′ be the eigenvalue decomposition of the empirical gene-by-gene
covariance matrices, where1g is a diagonal matrix of dimension (T × T ) with eigenvalues λgt as elements. The columns of
matrix Ug correspond to the eigenvectors of Ŝg . A structural mixed model can easily be applied to shrink the eigenvalues
across genes such as: ln λgt = µt + δgt , where µt is a time effect, assumed fixed, and δgt is a gene effect in time t . As
previously, gene effects are assumed independent and normally distributedwithmean zero and variance ν2t to be estimated,
i.e. δgt ∼ N (0, ν2t ). This shrinkage of the eigenvalues is also quite similar to the approach presented by Daniels and Kass
(2001).

2.4. Structural model for a Cholesky decomposition

A third possibility to shrink the empirical variance–covariance matrices is to apply the Cholesky decomposition as
in Daniels and Pourahmadi (2002):

Tg ŜgT ′g = Wg , (8)

where Tg is a lower triangular matrix with 1s on the diagonal andWg is a diagonal matrix with positive diagonal entries.
In the antedependence models (Gabriel, 1962), terms of matrix Tg correspond to antedependence parameters, and terms of
matrixWg are the innovation variancesw2gt , as defined below. The antedependence model for gene g can be written as:

ygrt =
t−1∑
j=1

φgjt ygrj + εgrt , (9)

where εgrt ∼ N (0, w2gt). Let ln(Wg ) = diag(ln(w2g1), . . . , ln(w
2
gT )). A structural mixedmodel can be used for the innovation

variances such that for gene g at time t:

lnw2gt = µt + δgt , with δgt ∼ N (0, σ 2t ). (10)

For these three configurations of shrinkage, the empirical estimation procedure presented by Jaffrézic et al. (2007) can
almost readily be applied. The residual variance in this approximated estimation approach will be fixed to 2/(Rg − 1)when
working on the log of the eigenvalues or variances, and equal to 1/(Rg − 3) for the correlation parameters using the Fisher
transformation.

3. Application

The proposed extensions of the structural model for time-course microarray studies were applied to a real data set, pub-
licly available in the GEO (Gene Expression Omnibus) database (http://www.ncbi.nlm.nih.gov/projects/geo/). Its GEO acces-
sion number is GSE1440. Human UVC (short-wavelength UV light) irradiated RKO cells were collected and RNA from either
whole cell or polysomal fractions was extracted at 0 (control), 3, 6 and 12 h after irradiation. RNA, after reverse transcription
and radiolabelling, was hybridised on human cDNA arrays. The experiment was repeated independently three times (A, B,
C). We only used here the normalised data from the polysomal fractions of experiment A. We therefore had 11 replicates at
each time, each replicate coming from one of the 11 polysomal fractions. There were in total 9600 genes. Since the samples
were collected on the same polysomal fractions across time, one can expect a high correlation between time. The different
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Fig. 1. Venn diagrams comparing the top 1000 gene lists obtained with the different methods on the real data set GSE1440. EigenVal: corresponds to
the eigenvalue decomposition of the covariance matrices with a shrinkage of the eigenvalues using a structural mixed model; Cholesky: corresponds
to a Cholesky decomposition where the innovation variances were shrunk using a structural model; Arcth: shrinkage of both variances and correlation
parameters; Gene-by-gene: corresponds to gene-by-gene empirical covariance matrices; Common: assumes a common covariance structure for all the
genes; Limma: modified F-test implemented in the Limma Bioconductor R library (Smyth, 2004) with an individual effect previously fitted in the linear
model.

covariance modellings presented above were applied to this data set to find differentially expressed genes between at least
two of the four times. They were compared to the gene-by-gene approach, the common covariance model and the modified
F-test computed in the Limma R library. The top 1000 gene lists, which correspond to the number of differentially expressed
genes foundwith Limma at a 1% Benjamini–Hochberg threshold, were compared and Venn diagrams are presented in Fig. 1.
It was found here that the common covariance model provided a list for the top 1000 genes that was very different from

the othermethods. Indeed, only 187 geneswere found in common between all sixmodels whereas 554 geneswere common
between the five other models. The assumption of a common covariance structure for all the genes may therefore not be
realistic for this data set. As shown in Fig. 1B, the model based on a Fisher transformation to shrink both the variances and
correlations (‘‘Arcth’’) appears as a good compromise between Limma and the model based on eigenvalue decomposition
(‘‘EigenVal’’). In fact, only 67 genes in the top 1000 gene list of Arcth are not detected either by Limma or EigenVal (Fig. 1B).
The shrinkage approach based on a Cholesky decomposition was found to provide very similar results to the eigenvalue
model since only 44 genes differed between the two methods (Fig. 1A). Both methods were also quite close to the Limma
approach with almost 600 genes in common among the top 1000 genes (Fig. 1A). These methods were also found in this
example to be quite close to the gene-by-genemodel (Fig. 1C), which is due to the quite large number of replicates available
in this data set (11 replicates per time).
Since the real top 1000 genes were not known for this data set, it was difficult to assess which modelling was the best.

In the next section we therefore present a simulation study which was aimed at evaluating the influence of heterogeneity
of the covariances across genes, the number of times and replicates on the performances of the different models.

4. Simulation study

Two large sets of simulations were conducted. The first one compared the different models for various numbers of
measurement times (3, 4 and 5 times) and various numbers of replicates per time (6, 8 and 11 replicates). In this first
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set of simulations, individual sampling covariance matrices were simulated gene by gene using a Wishart distribution. In
the second set of simulations, an additional between-gene heterogeneity of covariances was considered using an inverse
Wishart distribution as described below. For each data set, 3000 covariancematrices were simulated corresponding to 3000
genes. Among them, 100 genes were simulated to be differentially expressed between the first time point and another time,
with an equal proportion for all time points. For these genes, the logratio between the first time and the other time point
was simulated with a uniform [0.5, 2.0].

4.1. Simulation of the covariance matrices

For the first set of simulations, 3000 covariancematriceswere simulatedwith aWishart distribution of parameters (d,m)
where d is the number of degrees of freedom usually equal to (R − 1), with R the number of replicates. Depending on the
number of times considered, matrixm equalsm3,m4 orm5, as defined below. Each simulated matrix was then divided by d
to be close to the originalmmatrix.

m3 =

( 1 0.8 0.6
0.8 1 0.8
0.6 0.8 1

)
m4 =

 1 0.8 0.6 0.5
0.8 1 0.8 0.6
0.6 0.8 1 0.8
0.5 0.6 0.8 1

 m5 =


1 0.8 0.6 0.5 0.4
0.8 1 0.8 0.6 0.5
0.6 0.8 1 0.8 0.6
0.5 0.6 0.8 1 0.8
0.4 0.5 0.6 0.8 1

 .
In the second set of simulations, the variability between genes was simulated with an inverse Wishart distribution of

parameters ν and m. In order to keep the ratio ρ of between-gene and sampling variability close to a ratio found in a
previously analysed real data set (bovine data presented in Jaffrézic et al. (2007)), we chose ρ = 2/3. As explained in
the Appendix, parameter ν was then defined as ν = max(d/2, (T + 2)). To obtain simulated matrices centered around m,
all the inverseWishart matrices weremultiplied by (ν−T −1). Then, one observation was simulated for each of these 3000
newmatrices (M1, . . . ,M3000)with aWishart distribution of parameter (d,Mi)(i=1,...,3000) in order to simulate an additional
sampling variability. Once again, each matrix obtained was divided by d to be close to the originalm structure.

4.2. Results

As Opgen-Rhein and Strimmer (2007), we used receiver-operator characteristic (ROC) curves to compare the ranking of
the genes obtainedwith the differentmethods. For this, we computed the number of False Positives (FP), True Positives (TP),
FalseNegatives (FN) andTrueNegatives (TN) for all possible cut-offs in the gene list (1-200). This procedurewas repeated 150
times for each test statistic to obtain estimates of the ROC curves describing the dependency between sensitivity E( TP

TP+FN )

and specificity E( TN
TN+FP ). The results from the first set of simulations are given in Fig. 2. The best model is the one which

maximises the area under the curve.
Since only sampling variabilitywas simulated in this first set of data using a standardWishart distribution, themodel that

was found to fit these data the best was the common covariance model for any number of times and replicates considered
here. Among the proposed shrinkage approaches, the model based on the Fisher transformation where both the variances
and correlation parameters were shrunk using a structural model (‘‘Arcth’’) appeared to perform the best in this case. Limma
was found to perform quite well for small numbers of replicates. For more than 8 replicates, however, it did not seem to
be quite appropriate. In fact, even the gene-by-gene model was found to perform better for more than 8 replicates at 4
or 5 times. These simulations confirmed, as observed on the real data set, that the proposed methods based either on the
shrinkage of the eigenvalues or innovation variances provide quite similar results. Both were found to perform better here
than the simple gene-by-gene approach and were also found to perform better than Limma for 8 replicates and more.
ROC curves corresponding to the second set of simulations are presented in Fig. 3. It can be observed that between-gene

heterogeneity induced by the inverse Wishart distribution has a direct consequence on the performance of the common
covariance model, meaning that it now becomes the worst model whatever the number of times and replicates considered.
Limma also shows quite poor results in this situation of large covariance heterogeneity. The shrinkage approach where
both the variances and correlation parameters were shrunk, although better than Limma for most cases, was not found to
perform better than the gene-by-gene approach. On the other hand, the proposed methods based either on the shrinkage
of the eigenvalues or of the innovation variances were found to perform better than all the other methods for any number
of times or replicates considered.

5. Discussion

The extension of the structural mixedmodel on variances to variance–covariancematrices was a natural way to take into
account the within-subject correlations in time-course microarray studies. The structural model proved to be particularly
useful when the number of times and replicates increased (more than 4 times, more than 8 replicates). The two sets
of simulations showed that the ranking of methods was highly dependent on the degree of heterogeneity between the
covariances across genes. In fact, the simple common covariance model performed well when only sampling variability
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Fig. 2. ROC curves for the first set of simulations with covariance matrices simulated with a Wishart distribution. Names of the different methods are the
same as in Fig. 1.

was simulated but very poorly for a large between-gene variability. Similarly, the shrinkage approach on both variance and
correlation parameters behaved better when little heterogeneity was simulated, but still outperformed Limma in the case of
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Fig. 3. ROC curves for the second set of simulations where between-gene heterogeneity of covariances was simulated with an additional inverse Wishart
distribution. Names of the different methods are the same as in Fig. 1.

higher covariance heterogeneity. The proposed methods based on the shrinkage of the eigenvalues or innovation variances
were found, in this simulation study, to be able to adapt to a higher degree of between-gene covariance heterogeneity. The
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advantage of the Cholesky decomposition over the eigenvalue decomposition can be seen for ordered time points since
the parameters can then have a biological interpretation in terms of antedependence coefficients (Daniels and Pourahmadi,
2002). It can also be noted that the proposed shrinkage approach could be extended to structured antedependence models
(Nunez-Anton and Zimmerman, 2000), which would allow to further reduce the number of parameters to estimate.
As proposed by Daniels and Kass (2001), it could also be possible to extend the shrinkage approach in the eigenvalue
decomposition to both eigenvalues and eigenvectors,which is expected to improve themodelling ability for a smaller degree
of heterogeneity. The extension of the structural approach in this case is, however, not straightforward and remains an area
of investigation.
The estimation procedure used here for the shrinkage parameters was an empirical Bayesian approach as presented by

Jaffrézic et al. (2007). It is based on the calculation of empirical variance–covariance matrices, which can sometimes be
close to singularity as pointed out by Guo et al. (2003) due to the small number of replicates in microarray experiments.
Furthermore, an important issue in longitudinal data analysis is the problem of missing values. In the context of microarray
experiments it is expected, however, that most of the missing values will be due to technical problems and will therefore
be considered as ‘‘missing completely at random’’. In this case, the proposed empirical approach will still be consistent.
To overcome the problem of singularity or in the case of too large a number of missing values, a fully Bayesian estimation
procedure could be used based onMCMCmethods, as implemented for variances by Jaffrézic et al. (2007) with theWinbugs
software (Spiegelhalter et al., 2004), which will provide more robust estimates. These estimation procedures are, however,
much more time consuming.
Another issue that needs to be further investigated is the calculation of the degrees of freedom of the Fisher distribution

under thenull hypothesiswhenusing these structural shrunk covariancematrices. In fact, although Smyth (2004)was able to
directly refer to a number of degrees of freedom calculated for the modified t-test statistic in the modified F-test, we found
it very difficult to extend the usual approximations (Satterthwaite’s approach used by Jaffrézic et al. (2007), or Kenward
and Roger (1997)’s procedure) to our shrinkage methods in the multivariate case. In order to obtain the p-values based on
the proposed modified F-statistics with the structural models we would therefore advise to use permutations. These were,
however, too time consuming for the extensive simulation study presented here, which is the reason why we based the
comparison of methods on ROC curves.
It can be further noted that the proposed covariance modellings could also be useful in differential expression profile

studies where very simple covariance structures are usually considered (either diagonal or with only a simple random
intercept).

Appendix

A.1. Choice of the parameter of the inverse Wishart distribution

To choose an appropriate value for parameter ν, the aim is to keep ratio ρ of the between-gene and sampling variability
close to a ratio found in a real data set. The link between parameters ρ and ν can be calculated as:

ρ =
σ 2g

σ 2g + 2/d
, (11)

where σ 2g is the between-gene variability and d is usually equal to (R − 1) where R is the number of biological replicates.
This is equivalent to writing:

σ 2g =
2ρ

d(1− ρ)
. (12)

On the other hand, parameter ν of the Wishart distribution can be approximated by 2/σ 2g (Foulley et al., 2004), i.e.

ν =
1− ρ
ρ
d. (13)

Since we chose ρ = 2/3 (as in a microarray experiment analysed before for the detection of differentially expressed genes
in bovine embryos (Jaffrézic et al., 2007)), then ν = d/2 and in the simulations, we used

ν = max(d/2, (T + 2)),

where T is the total number of times.
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2.2 Complementary results
This paper essentially treated the gene ranking without giving any p-values
resulting from the model proposed. These p-values, after adjustement for
multiple testing, would have been interesting to evaluate the false discovery
rate for a given list of genes. However, it was too difficult to calculate the
number of degrees of freedom of the distribution under the null hypothe-
sis. Preliminary work about that question is given in 2.2.1. The following
subsection deals with the possibility to extend the shrinkage approach to
antedependence parameters.

2.2.1 Calculation of the number of degrees of freedom

How to compute Satterthwaite degrees of freedom?

Our first initiative was to make an analogy between the formula presented
in equation (7) in Jaffrézic et al. (2007) and the one used in SAS (SAS
help, version 9.2). Indeed, we thought that compared to our formula, their
computing way could be easier to extend from a gene-by-gene approach to a
shrinkage approach in the case of the F-test.

We first considered the t-statistic case. The model is:

Y = Xβ+ ε

where Y denotes the vector of observed values, X is the known fixed effects
design matrix, and β is the unknown fixed effects parameter vector. While
assuming that ε∼ N (0,V ), suppose θ is the vector of unknown parameters
in V and suppose C = (X′V −1X)−, where − denotes a generalized inverse.
Let Ĉ and θ̂ be the corresponding estimates. Consider l a vector defining an
estimable linear combination of β. The Satterthwaite degrees of freedom for
the t-statistic

t =
lβ̂√
lĈl′

is computed in SAS as

ν =
2(lĈl′)2

g′Ag

where g is the gradient of lCl′ with respect to θ, evaluated at θ̂, and A
is the asymptotic variance-covariance matrix of θ̂ obtained from the second
derivative matrix of the likelihood equations.

51



For the structural model for variances (Jaffrezic et al., 2007), we computed
for each gene the number of degrees of freedom νg as:

νg =
2(lĈl

′
)
2

V (lĈl
′
)

(2.1)

νg =
2(σ̂gi

2 + σ̂gj
2)2

V (σ̂gi
2) + V (σ̂gj

2)
(2.2)

where σ̂gi2 and σ̂gj2 are the estimators of the variances for gene g in conditions
c = i, j and their variances can be approximated by:

V (σ̂gc
2) = (σ̂gc

2)2V ( ̂lnσ2
gc) (2.3)

with V ( ̂lnσ2
gc) ≈ (1/τ 2

c + (Rc − 1)/2)−1, τ 2
c the variance of the random gene

effect in the structural model and Rc the number of replicates in condition c.

As far as the F-statistic

F =
β̂
′
L′(LĈL′)−1Lβ̂

q

is concerned (with q the rank of the contrast matrix L) , it is computed in
SAS by first performing the spectral decomposition

LĈL
′
= P ′DP

where P is an orthogonal matrix of eigenvectors and D is a diagonal matrix
of eigenvalues, both of dimension q ∗ q. Define lm to be the mth row of PL,
and let

νm =
2(Dm)2

gm
′Agm

whereDm is themth diagonal element ofD and gm is the gradient of lmClm′

with respect to θ, evaluated at θ̂.
Then, letting

E =
∑

m

νm
νm − 2

I(νm > 2)

the degrees of freedom for F are computed as

ν =
2E

E − q
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provided E > q; otherwise ν is set to zero.

To be able to know the number of degrees of freedom of any F-statistic,
we wanted to calculate the denominator in the F-statistic case with the same
idea as for the t-statistic, that is to say to estimate V ar(lmĈlm

′
). Let f(u) =

lCl′. The idea was to calculate the sampling variability of the estimator of
f(u). Considering the following equation,

V ar(f(u)) = EY (V ar(f(u)|Y )) + V arY (E(f(u)|Y )) (2.4)

(1) = (2) + (3)

it might be easier to calculate (2) by (1) − (3). We tried this approach on
data studying the bovine embryo development (Degrelle, 2006) obtained with
similar chips and similar pre-processing as in Jaffrézic et al. (2007). Four time
points were considered. Since embryos were killed when harvesting the RNA,
measures at different times were not performed on the same individuals, we
thus did not expect a high correlation. That is why this dataset was not
used for illustration of our approach in the CSDA paper while it had been
investigated for research work before. For the t-statistic case, we only looked
at the difference between time 1 and time 4.

To calculate (3), let vg = f̂(u). If we assume that variability between
replicates for a gene equals to variability between genes within the sample
then

(3) =
∑

g

(vg − v)2

G− 1

With all vg calculated on the real data set as the sums of the shrunk variances
for time 1 and time 4, I obtained (3)=0.051926.

To calculate (1), I made simulations of f(u) and then calculated its vari-
ance. We assumed that lnσ2

gc ∼ N (µc, τ
2
c )

On the bovine embryos data set, µ1 = −1.870210, µ4 = −2.03337, τ 2
1 =

0.8317, τ 2
4 = 0.5948. With 10 000 000 simulations, (2)= 0.044.

This number was to be compared to the denominator of the number of
degrees of freedom obtained by the SMVar use which equalled 0.0314. When
we used the 0.044 denominator we had about 8 degrees of freedom and when
we used the 0.0314 denominator we had about 12 degrees of freedom. This
difference being too large to validate the approach by simulations, we did not
try to apply it to the F-statistic case. The number of degrees of freedom for
shrinkage statistics remains an open question.
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Satterthwaite’s formula for unequal sample sizes

When searching to extend the Satterthwaite approach from the t-statistic
case to the F-statistic case, I realised that the formula given in Jaffrézic
et al. (2007) was a particular case and was valid only for data sets where
sample sizes were equal between conditions.

In a more general case, we would have

νg =
2( σ̂gi

2

ni
+ σ̂gj

2

nj
)2

1
n2

i
(σ̂gi

2)2V (lnσ̂gi
2) + 1

n2
j
(σ̂gj

2)2V (lnσ̂gj
2)

(2.5)

This derives from the following equation:

νg =
( σ̂gi

2

ni
+ σ̂gj

2

nj
)2

σ̂gi
4

n2
i

1
νi

+ σ̂gj
4

n2
j

1
νj

(2.6)

where νi are the degrees of freedom associated with the calculation of σ̂gi2

Since the model was on the log of the variances,

νi =
2

V (lnσ̂gi
2)

νi =
2

τ 2
k

+ dik =
2

τ 2
k

+ (n− 1)

The correction given in equation 2.5 has been taken into account since
the version 1.2 of the SMVar package.

2.2.2 Shrinkage of antedependence parameters

Another possible extension, not discussed in the paper, is the modelling of
the antedependence parameters in the Cholesky decomposition which would
seem natural keeping the same idea of shrinking more than only diagonal
values. We actually did implement an approximated estimation to shrink
antedependence parameters. We modelled the antedependence parameters
similarly to the innovation variances that is to say that for gene g, order of
antedependence j and time t:

φgjt = φjt + γgjt, with γgjt ∼ N (0, ω2
jt). (2.7)

The implementation used to estimate these antedependence parameters was
similar to the one used for the logarithms of the innovation variances.
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We compared on 150 simulations the ROC curve obtained with the ap-
proach shrinking both innovation variances and antedependence parameters
with ROC curves from all the models presented in the paper but the one
using Fisher transformation. Results are presented in Figure 2.1.

While the results from the set of simulations with heterogeneous covari-
ances are not surprising, that is to say that the C-Cholesky curve stands
between the gene-by-gene curve and the common covariance curve, the top
graph of ROC curves indicates that there is a problem in the calculation
of the shrinkage estimates for the antedependence parameters. Indeed, one
would expect that the area under the curve for the approach shrinking both
innovation variances and antedependence parameters is higher than the ar-
eas under the curves for approaches shrinking only diagonal values since the
best model in the case of homogeneity of covariance matrices is the model
assuming a common covariance matrix. Actually, we found out that the
problem came from the estimation of the residual variance in the structural
mixed model assumed on the antedependence parameters. While the resid-
ual variance can be fixed to 2/(Rg − 1) with Rg the number of replicates
when shrinking diagonal values, this estimation is wrong for the shrinkage of
antedependence parameters. Since we do not know how to fix the residual
variance in this last case, we left out this model and considered the alterna-
tive model using Fisher transformation for correlation parameters presented
in the paper. In this case, the residual variance is fixed to 1/(Rg − 3). To
conclude, this example warned us against the abusive use of the structural
mixed model with fixing the residual variance. Particular care has to be
taken when estimating it.
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Figure 2.1: Supplementary ROC curves to compare the shrinkage approach
on both the antedependance parameters and innovation variances with the
previous models
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EigenVal: corresponds to the eigenvalue decomposition of the covariance matrices with a shrinkage of the

eigenvalues using a structural mixed model; D-Cholesky: corresponds to a Cholesky decomposition where

the innovation variances (Diagonal terms) were shrunk using a structural model; C-Cholesky: shrinkage

of both the innovation variances and antedependence parameters (Complete shrinkage); Gene-by-gene:

corresponds to gene-by-gene empirical covariance matrices; Homogeneous: assumes a common covariance

structure for all the genes; Limma: modified F-test implemented in the Limma Bioconductor R library

(Smyth (2004)) with an individual effect previously fitted in the linear model.
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2.3 Application to INRA datasets
Variance-covariance modelling has provided an interesting extension of the
structural model for variances presented in Chapter 1. Unfortunately for us,
we were not able to apply covariance modelling on the real dataset produced
by Benoit Guyonnet and Jean-Luc Gatti (INRA Nouzilly) which initiated
the corresponding statistical question. Indeed, since the number of repli-
cates (4 per zone) was lower than the number of measures (11) alongside
the epididymis, it was impossible to calculate the gene-by-gene empirical
variance-covariance matrices using all measures separately. At first, we gath-
ered several zones together to reduce the total number of zones. This solved
the numerical problem of estimating gene-by-gene covariance matrices. Nev-
ertheless, the problem of choosing a cut-off to declare which genes were dif-
ferentially expressed remained since we did not have any numbers of degrees
of freedom for the null distribution. That is why we decided to apply the
Limma procedure including an animal effect when looking for differentially
expressed genes between at least one zone and the other ones in the pig
epididymis real dataset. Concerning the structural model for variances, it
was widely applied in this biological study when performing t-tests to find
differentially expressed genes between two zones. During my PhD, I built a
package SMVar implementing the structural model for variances and shared
it with the whole scientific community via the CRAN website. I received
some advice from people who used it, which helped me to correct some ini-
tial mistakes. For example, my initial version could not handle too many
missing data implying a null variance for a given gene. The following ver-
sions took into account this possibility excluding genes with a null variance
from the analysis. My package was also used by people from INRA Jouy-
en-Josas who work on bovine embryos reproduction (Isabelle Hue, Séverine
Degrelle, Damien Valour, etc.). This collaboration has resulted in several
coauthorships for presentations.

To conclude this part, empirical Bayesian approaches proved to be useful
to overcome the problem of small number of individuals in microarray ex-
periments. The following part will consider the high dimensionality problem
from another point of view. The small number of samples available is most
of the time due to money constraints. In the next part, we will study the
possibility to save samples from some experiments to use them for other ones.
This takes place in the more general context of sequential analysis.
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Part II

Sequential analysis
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0This part results from my work with C.-D. Mayer (BioSS). Most results were obtained
during a 6-month stay in Scotland during my PhD and further collaboration
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Chapter 3

Sequential analysis

Sequential analysis refers to statistical analysis where sample size is not fixed
in advance. Data are evaluated as they are collected and the experiment is
stopped when enough significant results are obtained according to a stop-
ping rule. For those who are not familiar with sequential analysis (espe-
cially concerning the stopping of the experiment), details will be given in the
first section. This section will also present what sequential analysis usually
means, listing and explaining some frequent related words. Then, prelimi-
nary results will be shown, extending classical sequential analysis to the field
of microarray analysis. These results are not included in the SAGMB (Sta-
tistical Applications in Genetics and Molecular Biology) paper which follows,
since we discovered that sequential analysis was very particular and not as
complicated as in the classical case for the microarray data context due to
the high dimensionality of these experiments. We however decided to keep
some of these results in this PhD report since 1) it explains our research in a
chronological way and helps us to better point out why the first results in our
paper are so important, 2) it can be useful for other situations where Student
statistics are involved without high dimensionality. Section 3.3 consists of
the paper accepted in SAGMB and the next one gives complementary results
essentially obtained after reviewers’ comments.

3.1 Introduction

3.1.1 Terminology of sequential analysis

Sequential analysis was first introduced by Wald as a tool for more effi-
cient industrial quality control during World War II. The principle of the
Sequential Probablility Ratio Test (Wald, 1947) and of the triangular test
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(Anderson, 1960) is to determine, after each inclusion of a new individual
whether the data available are sufficient to choose between H0 and H1, two
single hypotheses. These first methods were adapted for a comparison of an
observed proportion with a theoretical value, and of two proportions. For
the last case, the analysis is performed after the inclusion of each pair of
subjects. If the collected data are sufficient, no more individuals are added
in the analysis. Sequential analysis is then defined as an analysis where data
is evaluated as it is collected and further sampling is stopped in accordance
with a pre-defined stopping rule as soon as significant results are observed.
The stopping rule is the mechanism which tells the statistician when to stop
sampling. Sequential testing appeared in the field of medical statistics with
the book ‘Sequential Medical Trials’ (Armitage, 1960). Ideas from this book
are given in the overview of Todd (2007). Armitage argued that ethical con-
siderations demand a trial to be stopped as soon as there is clear evidence
that one of the treatments is to be preferred. He described a number of tech-
niques and their application to trials comparing two alternative treatments.
Ethics is nowadays not the only motivation for sequential analysis. The cost
of continuing the experiment is another good reason as sequential analysis
often reduces the number of samples needeed. In microarray analysis, the
cost of an experiment is the main reason which motivated us to develop a se-
quential approach for this type of data. After the book of Armitage, clinical
trials became a big field of research for sequential analysis. As performing
one analysis after each inclusion was not reasonnable, people developed what
is now called ‘group sequential trials’ or ‘repeated significance tests’. Designs
allowed groups of patients being included between each analysis.

As pointed out in Spiessens et al. (2000), two approaches are generally
distinguished in group sequential methods. The first one is the ‘boundaries’
approach of Whitehead and Stratton (1983), where data are monitored con-
tinuously. He suggests to monitor trials in terms of information and not
sample size. This approach relies on a graphical rule and is based on two
statistics ‘Z’ and ‘V’. ‘Z’ is a measure for the difference between the two
treatments and is represented on the vertical axis. ‘V’ is a measure for the
amount of information gathered up to the performed interim analysis and is
on the horizontal axis. Graphs and more details are given in the overview
of Sébille and Bellissant (2003). The second approach of group sequential
methods is the one we considered at first for our microarray analyses. It
is based on the repeated significance testing principle where at each interim
analysis the significance level is adjusted to control for the overall probability
of a type I error (Spiessens et al., 2000). Armitage et al. (1969) showed that,
without correction, the probability of a type I error rate is seriously inflated
when repeated significance tests are applied at a nominal level. Moreover,

62



the stopping rule in itself biases the final p-values. They are not uniformly
distributed under the null hypothesis (Chang et al., 1995). Several authors
have proposed specific significance levels α′ < α for each interim analysis,
(given that the total maximum number of analyses is known), such that the
overall significance level α remains inferior to the chosen one, for example
5%. Levels of Peto et al. (1976) are very stringent at the first analysis in
order to keep a significance level of 0.05 at the last analysis. There are very
few chances to conclude the analysis prematurely. Later, Pocock (1977) and
O’Brien and Fleming (1979) gave levels which are still widely used. Con-
trary to Pocock who gives constant levels, O’Brien and Fleming give slowly
increased levels. Thus, it is less likely with the boundaries of O’Brien and
Fleming to conclude differently from the conclusion which would have been
hold in the case of a unique analysis. Pocock’s approach allows for an earlier
termination of the study than O’Brien and Fleming. But as pointed out
by Sébille and Bellissant (2003), one drawback of Pocock’s method is that
the expected number of subjects required to conclude can be substantially
increased when compared with the sample size required by the single-stage
design of the same power.

These methods were generalized by Lan and DeMets (1983), who pro-
posed a method where the number of analyses did not need to be fixed
in advance. Their method, called α-spending, uses an increasing function
α∗(t) with α∗(0), α∗(1) = α, where t is the fraction of the total information
available at each analysis. Several functions can be found in the literature
(Sébille and Bellissant, 2003): α∗(t) = αln(1 + (e− 1)t) as an approximation
of Pocock’s significance levels, α∗(t) = 2− 2Φ(zα/2/

√
t) as an approximation

of O’Brien and Fleming’s significance levels (where Φ is the standard normal
distribution and zα/2 is the α/2-fractile of N (0, 1)). Given the α-spending
function, people define boundaries {b1, . . . , bk} such that the experiment is
stopped at the kth interim analysis if the statistic |S(k)| exceeds a chosen
boundary value bk. Under H0,

P0{|S(1)| ≤ b1, . . . , |S(k − 1)| ≤ bk−1, |S(k)| > bk} = α∗(tk)− α∗(tk−1) = πk
(3.1)

where πk is the probability to stop the experiment at the kth analysis (Lee,
1994).

π1 + . . .+ πk = α

Thus, α∗(tk) is the probability to cross a boundary at or before the kth anal-
ysis (Spiessens et al., 2000).
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3.1.2 Calculation of b-values for Student distributions

Concerning the implementation of these methods, the α-spending methods
are implemented in the function ldBands belonging to the R package Hmisc.
It seems, however, that a normal distribution is always assumed to calculate
b-values bk(1 ≤ k ≤ K) (with K the maximum number of analyses), which
is reasonable in clinical trials but less meaningful for differential analysis in
gene expression studies. As far as the microarrays are concerned, it is more
usual to use the Student distribution because most of the time, very few sam-
ples are available. We looked in the literature and did not find any relevant
paper suggesting a method to calculate b-values when the statistic follows a
Student distribution. That is why we developed R-code ourselves to quickly
calculate b-values for Student distributions by simulation.

Our approach is based on equation 3.1. To calculate the values of the
boundaries bk(1 ≤ k ≤ K) for Student test statistics, we choose
⇒ K the number of analyses which will be performed
⇒ πk(1 ≤ k ≤ K) with alpha spending methods (O’Brien and Fleming, 1979;
Pocock, 1977)
⇒ n the number of observations by time and a large number of simulations

• For each simulation, we generate 2n N(0, 1)

• We calculate S(1) and keep it if |S(1)| ≤ b1
with b1 = (1− π1/2)- quantile of t2n−2

• At each step, if S(k− 1) is kept, we generate 2n N(0, 1) and bind new
data with precedent simulated data

• We calculate S(k) and keep it if |S(k)| ≤ bk
with bk = (1− πk

2(1−
∑(k−1)

j=1
πj)

) - empirical quantile

Once these b-values were calculated, we checked that with a large number
of observations at each timepoint, they were close to b-values calculated
initially by the function ldBands when normality was assumed.

For example, with K = 3 analyses, n = 50 observations by time, 100000
simulations, Pocock’s method, b-values for Normal distributions are b1 =
2.279, b2 = 2.295, b3 = 2.296 and b-values for Student distributions are
b1 = 2.316, b2 = 2.305, b3 = 2.302. In this case, we would suggest to use the
original Pocock value of 2.3.

On the contrary, with a few number of observations by time, b-values
are different, which shows the importance to calculate special b-values for
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Student statistics. WithK = 4 analyses, n = 5 observations by time, 100 000
simulations, O’Brien and Fleming method, b-values for Normal distributions
are b1 = 4.333, b2 = 2.963, b3 = 2.359, b4 = 2.014 and b-values for Student
distributions are b1 = 9.783, b2 = 3.429, b3 = 2.503 and b4 = 2.085.

3.1.3 P-value combination

Another problem in sequential analysis is that there might be variance het-
erogeneity across the different stages of the analysis. This issue has led to
meta-analysis methods being used in this context. Lehmacher and Wassmer
(1999), instead of combining expression values up to the kth analysis and cal-
culating boundaries for the test statistic, suggest to combine p-values from
the different analyses. They use the test statistic that results from the in-
verse normal method of combining independent p-values (Hedges and Olkin,
1985)

1√
K

K∑

k=1

Φ−1(1− pk) (3.2)

Lehmacher and Wassmer suggest then to take the classical group boundaries
for the test statistic. The advantage of their method is that they do not have
the problem of unknown variances and like in our previous method, they can
have a Student distribution to calculate interim p-values. Their method is
more general as they can use any distribution they want without calculating
new b-values. They also allow for unequal samples sizes. In fact, combining
p-values had already been proposed by Bauer and Kohne (1994), who focused
on a two stage design and used Fisher’s combination method:

S = −2
K∑

k=1

ln(pk) ∼ χ2
2K

They did not use classical boundaries but calculated new boundaries for up
to two analyses.

These methods that combine p-values and allow modification of the sam-
ple size of the second stage based on the predicted power of the trial at the
end of the first stage are now called adaptive designs. An overview of such
designs is given in Schäfer et al. (2006).

We did not investigate Bauer and Kohne (1994) method as Fisher’s com-
bination method requires to separate under and over-expressed genes.

The important question was then to know if there was a loss (and if yes,
if it was big) of information when combining p-values by the inverse normal
method rather than expression values. That is what we investigate in the
next section.
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3.2 Application to a simulated data set
We simulated one data set of 3000 genes with 100 over-expressed genes. The
method and the parameters of simulation are given in Marot and Mayer
(2009) (see section 3.3).

3.2.1 Genes studied separately

At first, we decided to make a gene-by-gene sequential analysis with a clas-
sical t-test, without any shrinkage or correction for multiple testing. Each
gene was studied separately. We compared the two approaches described
previously. The first method (‘Student b-values’) combines expression values
up to the kth analysis and calculates boundaries for the test statistic to stop
the experiment before the end scheduled. The second one (‘p-value combina-
tion’) combines p-values from the different analyses. For this last method, as
Lehmacher and Wassmer (1999) pointed out, it is necessary to use one-sided
p values for both one-sided and two-sided cases to avoid directional conflicts,
i.e. the case that opposite effects at previous stages may lead to the rejec-
tion of H0 at some stage k of the procedure. For example, if a gene is a
bit over-expressed at the first stage and a bit under-expressed at the second
stage, then its test statistic is big at the first stage, small at the second one
and there is no overall effect. If p-values are two sided, then p-values from
both first and second stage are small and if they are combined they can lead
to a rejection of the null hypothesis. If they are one-sided, one will be big
whereas the other one will be small and this will avoid a spurious conclusion.

We compared in table 3.1 the ‘Student b-values’ and ‘p-value combination’
methods on a dataset where we added 5 replicates per time and performed
4 analyses. We counted the number of genes which would have been de-
clared significant at each stage. In this analysis, as it was performed gene by
gene, once the gene was declared significant, it was kept significant without
checking if it was still significant in the following stage.

Both methods seem to be correct and almost all significant genes are
found from the second stage. There is no loss of True Positives (TP) because
of a combination of p-values rather than expression values. As we do not
correct for multiple testing, we expect 5/100*3000=150 False Positives (FP)
We see that both methods have a number of FP close to 150, a bit higher for
the first one (Student b-values) and a bit smaller for the other one. Other
simulations were performed and similar results were obtained.

As the second method performed very well, we decided to only use it
in the following as it is more convenient for microarray data sets. Indeed,
contrary to the first method, it does not raise difficult questions for normal-
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Table 3.1: Results for 4 times with 5 observations per time - 3000 genes, 100
over-expressed, Pocock’s boundaries

stage 1 2 3 4
Student b-values TP 78 92 95 98

FP 56 95 131 160
FDR 0.42 0.51 0.58 0.62

p-value combination TP 76 91 96 98
FP 49 86 113 139

FDR 0.39 0.49 0.54 0.59

ization. Combining expression values requires to normalize after each stage
all data together. However, data obtained from different hybridizations are
difficult to combine. Would we have to normalize each stage separately and
then normalize them overall? The question would be how to normalize cor-
rectly without losing too much information. Another advantage of p-value
combination is the possibility to use any desired modified t-test to test the
differential expression.

As Victor and Hommel (2007) pointed out, controlling the FDR in adap-
tive designs has been considered in only few publications so far. They suggest
to use the explorative Simes procedure (Simes, 1986). This requires an a pri-
ori on the number of differentially expressed genes N0. Then, instead of using
directly α to calculate the boundaries for sequential analyses, they calculate
αSimes = N0

N
α with N the total number of tests. We thus calculated Pocock’s

boundaries with this new αSimes and combined p-values by the inverse nor-
mal method. With an a priori of 100 differentially expressed genes, α = 0.05,
αSimes = 100/3000 ∗ 0.05 = 0.0016667. We made an analysis with the same
data as previously, keeping 4 analyses and 5 observations by time. Results
are presented in table 3.2.

Table 3.2: Results for 4 times with 5 observations by time - 3000 genes, 100
over-expressed, FDR threshold 0.05, Pocock’s boundaries

stage 1 2 3 4
TP 42 74 89 92
FP 1 1 2 4

FDR 0.02 0.01 0.02 0.04
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We notice that the FDR is controlled and there is still a high number of
true positives declared from the second stage. The major drawback of this
method is that an a priori on the number of differentially expressed genes is
needed.

To have a less conservative method than the Simes procedure, it would
have been interesting to investigate the definition of the global p-value of
Victor and Hommel (2007). They generalised the definition of Brannath et al.
(2002) which was the probability that a p-value combination from the first
and second stage would occur that was at least as extreme as the combination
which was observed. Nevertheless, using their method required one decision
by gene as all the analyses we did previously. At this stage, we were more
interested in investigating further in one decision for the whole analysis rather
than one decision gene by gene. Indeed, in microarray experiments, the
decision about stopping or continuing the experiment has to be made for all
genes simultaneously.

3.2.2 Multi-dimensional analysis

There are two directions to increase the dimensionality of an analysis. Either
the number of variables or measurements for one individual are increased or
the number of null hypotheses tested is higher than two. Clinical trials have
been a wide field of research for both. We had only an interest in the number
of hypotheses tested but more information about multivariate or longitudinal
sequential analyses can be found in Wei et al. (1990), Spiessens et al. (2000),
Todd (2007). In clinical trials, multiple null hypotheses simultaneously tested
are often called ‘multiple endpoints’. Tang et al. (1989) showed that a sample
size based on multiple endpoints is smaller than the one based on any single
endpoint when there are multiple endpoints. However, their situation is
not directly applicable as they search to show that globally, treatment A is
different from treatment B by comparing k multiple correlated endpoints. As
far as we were concerned, we also wanted one decision at the end but we could
not wait that our first condition would be different from the second as most
of the genes are not differentially expressed. Another approach to multiple
endpoints was given by Kieser et al. (1999). They considered the situation of
a priori ordered hypotheses to end the experiment. As in the previous section,
even if they considered multiple endpoints, they could stop for one endpoint
separately from the other ones. Concerning the multiple testing when no
ordering is possible, they controlled the Family Wise Error Rate (probability
of making one or more false discoveries) which is more conservative than
the False Discovery Rate. More recently, Xiong et al. (2005) proposed an
intersection-union test which gives the minimum statistical power from the
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individual tests. Their null hypothesis is the union of all endpoint-specific
null hypotheses from the multiple endpoints. The corresponding alternative
hypothesis is the intersection of all alternative hypotheses. Once more, this
method was not applicable in our situation as we did not know a priori which
genes we wanted differentially expressed. We could neither have only null
hypotheses with non differentially expressed genes. The stopping criterion
we were looking for was a summary of significance of all individual tests but
without knowing a priori which ones were significant.

On the same simulated data set as previously, we studied how continuing
the experiments for all genes influenced the outcome. The bottom of table 3.3
gives the same results as table 3.1 in order to compare a sequential analysis
where differentially expressed genes were kept from one stage to the following
one with a sequential analysis where they are tested at each stage.

Table 3.3: Results for 4 times with 5 observations by time - 3000 genes, 100
over-expressed, Pocock’s boundaries

stage 1 2 3 4
All genes tested at each stage TP 76 91 96 98

FP 49 52 51 62
Differentially expressed genes kept at each stage TP 76 91 96 98

FP 49 86 113 139

In the case where all genes were tested at each stage, we calculated the
number of differentially expressed genes which were not declared at the pre-
vious stage or at the following stage. Thus, 34 (resp. 31, 25) genes which
were declared at the first (resp. second, third) stage were not anymore at
the second stage (resp. third, fourth) but 52 (resp. 35, 38) other genes were
found differentially expressed. We notice that on this example, only false
positives disappeared from a stage to the following one. The consequence
was that when they were kept, there were many more false positives. The
number of false positives at the final stage was, however, far smaller than the
expected number of 145. As the stopping rule was made from the summary
of 3000 genes without stopping for each individual gene, one could ask if it
was not too much to correct both for multiple testing and bias implied by
the stopping rule.

It is reasonable to think that as the stopping rule is based on the distribu-
tion of all p-values or test-statistics, the more genes there are, the less indi-
vidual value is biased by this rule. The following paper presents histograms

69



illustrating this idea. Assuming that the stopping decision and the final p-
value are nearly independent, the problem of sequential analysis is simplified
and classical methods to calculate boundaries are not needed. This leads to
a new definition of sequential analysis for microarray data. That is what we
developed in the following paper (Marot and Mayer, 2009).

3.3 Sequential analysis for microarray data based
on sensitivity and meta-analyses
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Sequential Analysis for Microarray Data
Based on Sensitivity and Meta-Analysis∗
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Abstract

Motivation: Transcriptomic studies using microarray technology have become a standard
tool in life sciences in the last decade. Nevertheless the cost of these experiments remains high
and forces scientists to work with small sample sizes at the expense of statistical power. In many
cases, little or no prior knowledge on the underlying variability is available, which would allow
an accurate estimation of the number of samples (microarrays) required to answer a particular bi-
ological question of interest. We investigate sequential methods, also called group sequential or
adaptive designs in the context of clinical trials, for microarray analysis. Through interim analyses
at different stages of the experiment and application of a stopping rule a decision can be made as
to whether more samples should be studied or whether the experiment has yielded enough infor-
mation already.

Results: The high dimensionality of microarray data facilitates the sequential approach. Since
thousands of genes simultaneously contribute to the stopping decision, the marginal distribution
of any single gene is nearly independent of the global stopping rule. For this reason, the interim
analysis does not seriously bias the final p-values. We propose a meta-analysis approach to com-
bining the results of the interim analyses at different stages. We consider stopping rules that are
either based on the estimated number of true positives or on a sensitivity estimate and particularly
discuss the difficulty of estimating the latter. We study this sequential method in an extensive sim-
ulation study and also apply it to several real data sets. The results show that applying sequential
methods can reduce the number of microarrays without substantial loss of power. An R-package
SequentialMA implementing the approach is available from the authors.

KEYWORDS: microarrays, sequential analysis, meta-analysis

∗Guillemette Marot’s PhD is supported by INRA, Département de Génétique Animale and INRA,
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1 Introduction
Sequential methods and adaptive designs have a long standing tradition in clin-
ical trials and overviews may be found in Lee (1994), Spiessens et al. (2000),
Sébille and Bellissant (2003), Schäfer et al. (2006), Todd (2007). These meth-
ods are characterised by interim analyses at pre-defined stages and a stopping
rule which determines at each stage whether to stop or continue sampling.
Naturally, this stopping rule is based on data collected up to the current stage
only. Sequential methods thus have the potential to reduce the required sam-
ple size. This is important in clinical trials or animal experiments where it
might be unethical to collect more samples than necessary, but it is also an
interesting feature in situations where either collecting or analysing a sample
is very expensive or time-consuming.

Microarray experiments are a typical example of the latter situation. Al-
though prices have come down, commercial microarrays remain costly, whereas
home-spotted two-colour arrays might be cheaper but typically involve a very
time-consuming scanning process. Microarray experiments also often have
technical limits with respect to the number of samples that can be analysed
simultaneously. For example a hybridisation chamber will only be able to
accommodate a limited number of arrays. This means that not all samples
might be available for data analysis at the same time but that they arrive in
a staggered fashion. Rather than waiting until all data are available it seems
natural to analyse the data present at each stage and potentially stop the
process once the results fulfil certain criteria, which we will discuss in detail
later. Hence microarray analysis lends itself naturally to the application of
sequential methods.

Even though keeping costs small is desirable, the main objective of any bio-
logical experiment is to detect effects, which in a statistical testing framework
corresponds to the notion of statistical power. Since sample size reduction
automatically decreases the power of an experiment it is clearly important to
find a balance between these two contrasting aims.

The classical way of finding this balance is to perform a sample size/power
calculation prior to the experiment. However, this calculation requires prior
knowledge of effect sizes and variability that is often lacking in real life sit-
uations. The sequential approaches that we discuss can be interpreted as
designing an experiment that contains its own pilot study (or studies) and
then utilises the information obtained from these pilot studies to update the
power calculation.

Classical sequential methods deal with the analysis of one variable only. A
review on generalisations to the multivariate case can be found in Lee (1994).
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That paper, however, focuses on a repeated measurement situation where the
same variable is measured at different timepoints. Recently, Victor and Hom-
mel (2007) studied the use of interim analyses in high dimensional cases. A
fundamental difference between their experimental structure and a microarray
experiment is that they consider a case where each variable has an individual
stopping rule, whereas in a microarray experiment the sampling process has to
be stopped or continued for all genes simultaneously. Due to this difference,
the problems in developing a sequential method turn out to be very different
from the ones studied in Victor and Hommel (2007). In fact the sequential
strategies for microarray experiments are relatively simple. This is due to the
fact that stopping rules in this context do not depend on specific single genes
but on the distribution of statistics or p-values across all genes. As a result,
the type 1 error/false disccovery rate is not inflated, one of the main problems
in the classical situation.

We mainly discuss stopping rules based on sensitivity, i.e. at each stage
we estimate the percentage of truly differentially expressed genes among those
declared significant. We propose to stop the experiment if this estimated
sensitivity exceeds a pre-defined threshold. This seems a sensible approach in
situations where we expect only a small to moderate number of genes to show
changes. In cases with many differentially expressed genes, sensitivity remains
low unless the sample size is large and in these cases we propose to use the
estimated number of true positives that have been detected.

Because sensitivity, sometimes also called the expected discovery rate (EDR,
cf. Gadbury et al. (2004)), plays such a central role in the proposed sequen-
tial design, a considerable part of our paper discusses a number of different
sensitivity estimators.

In addition to finding a stopping rule, the second major issue in our ap-
proach is how to combine the data from the different stages of the experiment.
One possibility would be to simply re-analyse the complete data set after each
stage. Since some microarray normalisation tools like for example GCRMA
(Wu et al., 2004) use information across all arrays for normalisation, this would
typically mean re-normalising the arrays at each stage, which would lead to
inconsistency in the data. Another problem with this approach is that there
might be stage effects (for example arrays hybridised simultaneously tend to
show higher correlations) which would both affect normalisation and subse-
quent analysis. For these reasons we propose a meta-analysis type approach,
in which data from each stage are analysed separately and only the p-values
from each stage are combined in the end.

In the next section we will give a more detailed description of the sequential
analysis we propose, chronologically following the different steps from planning
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of the experiment to sensitivity estimation based on combined p-values. Sec-
tion 3 presents simulations of certain aspects of our methods as well as the
overall effects of the sequential approach and also an application to two real
data sets. We summarise our findings and give an outlook on further research
topics in section 4.

2 Methods
We now describe our sequential approach in more detail. In this paper we
only consider the standard two-sample problem, i.e. that we have samples be-
ing taken under two different experimental conditions or from two groups of
phenotypes. In principle, other more complex designs like the k-sample prob-
lem, more-factorial situations etc. can also be treated in a sequential fashion
and we will touch upon this briefly in our discussion. We assume these samples
to be independent biological replicates. Further, we assume that the microar-
ray technology used will give us a single expression value per gene and sample,
which could either be an absolute measurement of gene expression obtained
from a single channel microarray (for example an Affymetrix chip) or a rela-
tive measurement of gene expression with respect to a common reference on a
two-colour array. Let G denote the number of genes (probes) spotted on the
array, which are indexed by g = 1, . . . , G. We want to allow for a maximum of
K interim analyses (indexed by k) with sample sizes n1(k), n2(k) in groups 1
and 2 at stage k and with n(k) = n1(k) + n2(k) denoting the total number of
samples for stage k. The maximum sample size will thus be N =

∑K
k=1 n(k).

A sequential analysis plan will then consist of the following steps

1. Designing the experiment: How many arrays N will be maximally used?
What is the choice of K and n1(k), n2(k)?

2. Analyses of the current stage: This will produce p-values p̃g(k) for gene
g and stage k, which corresponds only to the n(k) samples analysed at
this stage.

3. Analyses up to stage k: This will produce p-values pg(k) that are based
on all

∑k
j=1 n(j) samples that are available so far.

4. Stopping decision: Based on the current p-value vector (p1(k), . . . , pG(k))
we decide to proceed with stage k+1 or to stop the experiment. If k = K
the experiment is stopped anyway.

3

Marot and Mayer: Sequential Analysis for Microarray Data

Published by The Berkeley Electronic Press, 2009



5. Final analyses: Once the experiment has been stopped at a stage k ≤ K,
we have to make a final decision for each gene whether we declare it to
be differentially expressed or not. This decision should take the multiple
testing problem into account, which arises from the fact that thousands
of decisions have to be made simultaneously.

Below, we will discuss different options for each of the 5 steps. These
options are mainly already established methods within microarray statistics.
Although we have preferences for certain methods ourselves, they may be
chosen flexibly. The following list gives an overview for the methods we discuss
for the five steps explained as well as some of our personal recommendations.

1. Power calculation tools for microarrays can be used to determine a max-
imal number of samples/arrays. Examples are PowerAtlas (Page et al.,
2006) or sizepower of Lee and Whitmore (2002), see also section 2.1. We
recommend at least 4 arrays per group for the first stage (note that we
consider smaller sample sizes for illustration purposes in our examples
though).

2. We suggest to use the Bioconductor limma package Smyth (2004) to
analyse the arrays within a stage, cf. section 2.2.

3. We use the inverse normal method to combine p-values from different
stages, see section 2.3.

4. We propose a stopping criterion based on either an estimator of the
sensitivity (defined in Formula 2.4.1) or on the estimated number of true
positives. The estimation methods are listed in Table 1 and discussed
in detail in section 2.4. Based on our observations we cannot give a
clear recommendation on which method to use. If sensitivity is used for
the stopping criterion the choice of threshold is up to the user and the
aim of the experiment but we think that values in the range of 60% to
90% will be typically used. In cases with many differentially expressed
genes, sensitivity will only increase very slowly and in such a situation
a criterion based on the estimated number of true positives seems more
appropriate.

5. We suggest to use the Benjamini-Hochberg method to control for false
discovery rate, when selecting significant genes.
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2.1 Experimental Design

The issue of power and sample size calculations for microarray data has already
been studied by several authors, cf. Lee and Whitmore (2002), Page et al.
(2006), Liu and Gene Hwang (2007). Some tools are available in packages like
the R sizepower library of Lee and Whitmore (2002) or as web-based software
like PowerAtlas (Page et al., 2006). However, typically these calculations
require prior knowledge of effect sizes and variability, which may be obtained
from pilot studies. PowerAtlas (Page et al., 2006) is interesting in this respect
since it allows the user to find a microarray data set from the GEO-database
(Edgar et al., 2002) that is similar to the planned experiment and bases the
power calculation on this experiment.

These tools could be used to estimate a maximal total sample size initially
and PowerAtlas also allows using the data collected up to a given stage to
predict power for later stages and thus could be used to choose the sample
sizes for these latter stages adaptively. In practice, however, this maximal
number is often determined by external considerations, like the budget for the
study or the number of available samples. Similarly the number of arrays that
will be analysed in each interim analysis is often not chosen by the scientist but
depends on how many hybridisations are possible simultaneously. In general
we suggest using a balanced design, i.e. to choose equal sample sizes n1(k) =
n2(k) = n(k)/2 at each stage, since this tends to maximise power. Note
that for a statistical analysis, at least 2 replicates per group are needed at
any stage. We would recommend larger sample-sizes per stage though as the
methods discussed in the following assume that we obtain valid p-values from
the data collected at each stage and it is known that p-values tend to be not
exact for very small sample-sizes. We recommend a sample-size of at least 4
per group in particular for the first stage.

2.2 Analysis of the current stage

Once the data from the hybridisations at stage k are available for analysis, we
suggest normalising and analysing them with standard methods developed for
microarrays. If the normalisation uses information across arrays (e.g. GCRMA
Wu et al. (2004)), only the n(k) hybridisations from the current stage will be
normalised simultaneously. This avoids re-normalising arrays from previous
stages, which might lead to conflicting results. It also takes into account that
arrays hybridised at different stages might have different properties, which
makes a joint normalisation questionable anyway.

When testing for differences between the two groups we suggest using the
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moderated t-test offered in the Bioconductor package limma, Smyth (2004).
Alternative methods are possible too as long as they give a uniform p-value
distribution for non-differentially expressed genes. Note that the moderated t-
test in limma has a larger number of degrees of freedom than the classical t-test
and thus is more stable than a classical t-test. It assumes normally distributed
data in the calculation of p-values, an assumption that we have found to hold
reasonably well in many cases, see also paragraph 6.2.2 in Wit and McClure
(2004), who state ".., it is our experience that the misspecification made by
using a normal approximation is typically negligible". The limma t-test is
widely used for microarray data with small sample-sizes and we have found it
to produce sufficiently valid p-values in most cases. Still it is recommendable
to study p-value histograms for diagnostic purposes for each stage. Examples
of "correct" and "uncorrect" histograms of p-values are given in Page et al.
(2006). We find that "strange" p-value distributions are usually not caused
by small sample sizes or lack of normality but by sources of variation that are
either unknown or have not been taken into account by the statistical model.

2.3 Combining different experiments

2.3.1 Controlling the false discovery rate

One fundamental problem in sequential analyses is that the results obtained
once stage k is complete have to be analysed conditionally given that the
experiment was not stopped at stages 1, . . . , k − 1. As a consequence of this,
the p-value distribution is no longer uniform under the null hypothesis in
latter stages, c.f. Chang et al. (1995). To illustrate this, let us consider a
univariate sequential study with maximally two stages, that yields p-values p1

from stage 1 and p2 from the cumulative analysis of stages 1 and 2. Assume
that the study is stopped if the first p-value is below a significance level α and
continues otherwise. If p denotes the final p-value of this procedure, we can
write its distribution as

P (p ≤ t) = P (p1 ≤ t|p1 ≤ α)π + P (p2 ≤ t|p1 > α)(1− π) (1)

with π = P (p1 ≤ α). We see that this is a mixture of two distributions, none
of which will be uniform even if p1 and p2 are uniformly distributed. Note that
the two p-values are not independent since the data from stage 1 are present
in both.

In a microarray situation we have p-values pg(k), for each gene g and stage
k. The stopping rules we consider always depend on the empirical distribution
of p-values only and do not utilise the knowledge of which p-value corresponds
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to which gene. As the number of genes increases, the empirical distribution
of all p-values contains less and less information about each individual one
and thus the dependence between the p-values and the stopping decision van-
ishes asymptotically, e.g. the correlation of a single p-value with the empirical
distribution function converges to zero at a rate of 1/

√
G (see Appendix) .

To see how this asymptotic result holds for different values of G, we sim-
ulated p-values from an analysis of normally distributed data with known
variances, i.e. we chose

p1g = 1− Φ(S1g), p2g = 1− Φ((S1g + S2g)/
√

2), (2)

where the Sig were independent standard normally distributed under the null
hypothesis and had mean 1 under the alternative. As a stopping rule we
chose to end the experiment if there was at least one significant result at the
first stage after adjusting p-values by the Benjamini-Hochberg (BH) method.
Figures 1-3 show histograms of the final p-value for one particular gene in the
situation where there are 1, 5 or 1000 genes on the array. This particular gene
as well as all other genes were assumed to follow the null hypothesis, i.e. being
non-differentially expressed.

Figure 1: Distribution of the final p-value after a two-stage sequential analysis
with G = 1 gene on an array (Distribution estimated from 1000 simulations).
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Figure 2: Distribution of the final p-value after a two-stage sequential analysis
with G = 5 genes on an array (Distribution estimated from 1000 simulations).
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Figure 3: Distribution of the final p-value after a two-stage sequential analysis
with G = 1000 genes on an array (Distribution estimated from 1000 simula-
tions).
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We see that for G = 1 and G = 5 genes there is a clear bias towards small
p-values, whereas for G = 1000 (which is a small number in a microarray
context), this bias is not detectable any more. The simulated situation is a
worst-case scenario in the sense that the presence of differentially expressed
genes will reduce the bias of the p-value distribution of non differentially ex-
pressed genes. Also, a stricter stopping rule, e.g. demanding more than one
significant gene, will result in fewer experiments being stopped at the first
stage and thus reduce bias. Only increasing the number of interim analy-
ses would increase the bias but other simulations (not presented here) showed
that in realistic situations with 3-5 stages and more than 1000 genes, the effect
remains negligible.

The fact that the stopping decision and the final p-value are nearly inde-
pendent simplifies the sequential design a lot. In the classical univariate case
it is difficult to control the type-I-error in a sequential test. One approach to
deal with this issue is the ”α-spending methods” discussed by Lan and DeMets
(1983). Victor and Hommel (2007) developped a method to control the false
discovery rate in an interim analysis approach, where the decision to stop
the experiment is made individually for each variable. As their paper shows,
this situation is considerably more complex than the univariate situation. In
microarray analysis, however, the experiment is stopped or continued for all
genes simultaneously and thus controlling the false discovery rate is straight-
forward. We can simply apply the Benjamini-Hochberg method to the final
p-value vector.

2.3.2 Combining p-values from different stages

Microarray data are influenced by many unwanted sources of variation and
ideally all other parameters apart from the experimental conditions of interest
should be kept as constant and homogeneous as possible. In a sequential
study, data obtained at different stages will inevitably have slightly different
characteristics. If these effects are mild they possibly can be eliminated by
joint normalisation of all data or be taken into account by including a stage
effect in the statistical analysis. In more severe cases though, where data from
different stages differ in more complex ways than a simple shift or change of
scale of the data distribution, a joint analysis of all data can be challenging.

This is related to the statistical field of meta-analysis, which investigates
approaches to combine data from different studies or centres and to model
the inter-study variation. Choi et al. (2003) were among the first authors to
address this problem in a microarray context and some of their methods are
implemented in the Bioconductor library GeneMeta described by Gentleman
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et al. (2006). Following their work, Conlon et al. (2007) compared Bayesian
meta-analysis models, whereas Stevens and Doerge (2005) studied the spe-
cial case of combining Affymetrix data from different studies. In all these
approaches, the expression values themselves are combined.

An alternative approach to meta-analysis is to combine the p-values ob-
tained from different studies instead of combining the expression values them-
selves. Unlike the full data, p-values are always comparable across different
studies and they implicitly contain information about within-study variability.
The disadvantage is that using p-values only means a loss of information and
thus might cause a reduction in power. We regard a p-value combination ap-
proach as a conservative method, that will be less affected by between study
differences. We consider two different methods. The first is Fisher’s method,
which combines the p-values for gene g up to stage k in this way:

Sg = −2
k∑

j=1

ln(p̃g(j)). (3)

Under the null hypothesis Sg follows a chi-square distribution with 2k de-
grees of freedom. This combination method has been used before for microar-
ray statistics by Hess and Iyer (2007) but in the completely different context
of combining p-values obtained for individual probes within a probeset for
Affymetrix data.

The second method considered here is the inverse normal method, cf.
Hedges and Olkin (1985):

Sg(k) =
1√
k

k∑

j=1

Φ−1(1− p̃g(j)) (4)

Under the null hypothesis Sg(k) follows a standard normal distribution.
This combination of p-values was suggested for group sequential trials by
Lehmacher and Wassmer (1999) and yields a statistic that follows a standard
normal distribution under the null hypothesis. As Lehmacher and Wassmer
(1999) point out, it is necessary to use one-sided p-values p̃g to avoid contra-
dictory results from different stages leading to significant findings. For the
inverse normal method, consistently low (high) p-values across all stages will
lead to a high (low) value of the combination statistic. An overall two-sided
p-value can then be obtained by

pg(k) = 2(1− Φ(|Sg(k)|)), (5)
whereas Fisher’s combination method demands a separate combination of one-
sided p-values for up or down-regulation. Another advantage of the inverse
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normal method is that the combination of the p-values is identical to sum-
ming up the original test-statistics for the case of normally-distributed statis-
tics. When testing for differences between normal means with known common
variance, this method thus yields the optimal test statistic, if the sample sizes
are the same at each stage. A weighted variant of the inverse normal method
using

Sg(k) =
k∑

j=1

wjΦ
−1(1− p̃g(j)) (6)

with

wj =

√√√√ n(j)
∑k

i=1 n(i)

maintains this property also for unequal sample sizes at different stages. Under
the null hypothesis Sg(k) follows a standard normal distribution. In contrast
to the unweighted case and Fisher’s method this combination method gives
more weight to stages with more samples, which seems to be sensible, as long
as we assume that there is no change in variance between different stages.
Hedges and Olkin (1985) discuss such weighted inverse normal approaches in
more detail. Loughin (2004) compares different p-value combination methods
in a simulation study and states that the (unweighted) inverse normal method
works well in cases where the evidence against the null-hypothesis is spread
equally across the different studies. This is a reasonable assumption in our
application where instead of different studies we are dealing with different
stages of the same experiment.

To decide which genes are significant after stage k, we propose to apply
the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) to adjust
the p-values pg(k) for multiple testing. For the remainder of the paper a gene
will be regarded as differentially expressed or significant, if its adjusted p-value
is below a threshold α, for example α = 5%.

2.4 Stopping Criteria

The decision at which stage to stop the experiment is the most crucial com-
ponent of our sequential approach. Whether one considers the information
collected up to a given stage as sufficient depends on the context and the aim
of the study. We differentiate between two principal situations. In the first sce-
nario the microarray experiment serves as an initial screening step to filter out
the most differentially expressed genes, which will then be analysed in more
detail in a follow-up experiment involving other technologies (e.g. quantitative
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RT-PCR analysis). Often only a small number of genes can be followed up
in this way, so that it seems natural to stop the experiment as soon as this
number of differentially expressed genes has been found with high confidence.

In the second and probably more common situation, the experiment is con-
ducted to obtain a global picture on which genes and pathways are changing
between different experimental conditions. In this case it is not a fixed num-
ber of significant genes we are interested in, but the aim is to find a large
proportion of all genes that are differentially expressed genes, i.e. to ensure
a good sensitivity of our method. We thus suggest estimating the sensitivity
based on the current set of p-values after each stage and stop the experiment if
this estimate exceeds a user-defined threshold. The remainder of this section
discusses different ways of estimating sensitivity, most of which are based on
fitting mixture distributions to the histogram of observed p-values.

2.4.1 Estimation of sensitivity or EDR

The Expected Discovery Rate (EDR) was introduced to microarray analysis by
Gadbury et al. (2004), but we will mainly follow the nomenclature of Pawitan
et al. (2005) and refer to the EDR as sensitivity. For a proper definition of
the EDR/sensitivity, we consider a collection of genes/p-values, which can
be grouped in two ways: they can either correspond to the null hypothesis,
i.e. be negatives or the alternative (positives); secondly they can be declared
significant or not. As a result, we have four groups of genes, i.e. any gene will
either be a true negative (TN), a false negative (FN), a false positive (FP) or
a true positive (TP) and we will use the same abbreviations for the number of
genes falling into these categories.

Not a real effect Real effect
Not declared significant TN FN
Declared significant FP TP

Note that here TN, TP, FP and FN are counts and not proportions. Also
note that these 4 numbers are random variables, since the decision of declaring
them significant depends on the data. The sum of these four figures is the total
number of genes in the experiment, and we know the number of significant
genes TP + FP and the number of non-significant genes TN + FN , but in
real life situations we do not know how many true positives and true negatives
there are, so we will have to estimate these quantities from the data. Using
the convention 0/0 := 0 we define the false discovery rate (FDR) and expected
discovery rate (EDR) as
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FDR = E(
FP

TP + FP
) (7)

and

sensitivity = EDR = E(
TP

FN + TP
). (8)

Note that the word sensitivity and power are often used synonymously and
will be used by us that way too at times to make the text more readable. In
a strict sense this is a misuse of terminology since power refers to a single test
for one gene, whereas sensitivity characterises the overall testing procedure for
all genes. The estimation of this EDR or sensitivity requires the estimation
of TP and FN. We consider different estimation approaches that have been
proposed before.

Allison et al. (2002) modelled the p-value distribution as a mixture of
ν + 1 beta distributions on the interval [0, 1]. Gadbury et al. (2004) used
this mixture to estimate the number of TP, TN and EDR. For a single set of
p-values these estimates can be obtained by using the web-based poweratlas
software (www.poweratlas.org). Since we used the programming language R
for our simulations, we were not able to include this method in our simulation
study.

A similar and simpler approach is the Beta Uniform Model (BUM) devel-
oped by Pounds and Morris (2003), which is based on the mixture of only two
beta distributions and is available in a collection of R libraries called OOMPA
(http://bioinformatics.mdanderson.org/Software/OOMPA/). The probability
distribution function fitted by BUM is

f(p|a, λ) = λ + (1− λ)apa−1 (9)

for 0 < p ≤ 1, 0 < λ < 1, and 0 < a < 1. Since the non-uniform part of this
mixture is strictly positive even at p = 1 Pounds and Morris (2003) did not
use the fitted mixture parameter λ̂ as an estimate for the proportion of non
differentially expressed but the upper bound given by

π̂ub = λ̂ + (1− λ̂)â.

If h is a given p-value threshold, TP, TN, FP and FN can be estimated as

T̂P = G(F̂ (h)− π̂ubh) (10)
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F̂N = G(1− F̂ (h)− (1− h)π̂ub)

F̂P = Gπ̂ubh

T̂N = G(1− h)π̂ub,

where G is the total number of genes and F̂ (h) = λ̂h + (1− λ̂)hâ is the distri-
bution function corresponding to the fitted density. Our sensitivity estimate
then is

ÊDR =
T̂P

T̂P + F̂N
. (11)

The p-value threshold h0 we suggest to use is the one that controls the FDR
according to the Benjamini-Hochberg rule. Note that the sum of estimated
true positives and false positives does not equal the number of significant
genes since the fitted distribution function is not identical to the empirical
distribution.

As an alternative, we thus considered an approach that does not use a fitted
mixture but only the empirical distribution and an estimate of the proportion
π0 of non differentially expressed genes. To estimate this proportion, we used
the method of Langaas et al. (2005), which is implemented in the function
convest in the Bioconductor package limma (Smyth, 2004). This estimator π̂0

is based on a non parametric maximum likelihood estimation of the p-value
density. We then used the previous equations replacing F̂ with the empirical
cumulative distribution function and π̂ub by π̂0. We will refer to this proportion
based empirical approach as the ”PE method”.

Other mixture models were used by Efron (2004) and McLachlan et al.
(2006). We would like to stress that most of these models were originally
introduced to estimate the (local) FDR in a multiple testing situation, but
will be used by us to estimate the EDR. Both do not fit a distribution to
the p-values themselves but fit normal mixtures to transformed p-values. One
of the advantages of such a transformation is that it allows to use a wide
range of mixture fitting tools which have been specifically developed for normal
distributions.

McLachlan et al. (2006) converted the two sided p-values to z-scores via
z = Φ−1(1 − p2sided) where Φ is the N(0, 1) distribution function. High z-
scores correspond to small p-values and thus differentially expressed genes in
this approach.

Efron (2004) used a similar transformation based on one sided p-values
by defining z = Φ−1(p1sided) (up to a sign this is identical to the p-value
transformation used in our p-value combination approach in (4) and (6)).
Here very high or very low z-scores both indicate differential expression.
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In both methods the distribution of z-scores is modelled using a mixture

f(z) = π0f0(z) + (1− π0)f1(z), (12)

where π0 denotes the proportion of non differentially expressed genes, f0 is the
density of transformed p-values under the null hypothesis and f1 models the
p-value distribution of differentially expressed genes.

Let φ denote the density of a normal distribution. McLachlan assumes that

f(z) = π0φ(z; μ0, σ
2
0) + (1− π0)φ(z; μ1, σ

2
1) (13)

He suggests two different procedures: the ”theoretical null procedure”, which
assumes μ0 = 0, σ2

0 = 1, and the ”empirical null procedure”, which estimates μ0

and σ2
0 from the data. For estimation we used the EM algorithm as described

in McLachlan et al. (1999). As an initial value π
(0)
0 for π0, we chose π

(0)
0 = π̂0

estimated by the method of Langaas et al. (2005). The other initial parameters
were derived based on π

(0)
0 using the equations given in McLachlan et al. (2006).

We will refer to the two approaches as ”NT” and ”NE”.
Efron (2004) earlier had proposed a more general method for his z-transformed

one-sided p-values, which has been implemented in the locfdr package in Bio-
conductor. It offers the same two options for the null hypothesis distribution,
i.e. f0 can be modelled either as a standard normal distribution or as a general
normal, where the parameters are estimated from the data (as above we will
refer to these two options as the ”theoretical” and ”empirical” method), but
in contrast to McLachlan’s method though the second component f1 is not
specified but estimated non-parametrically. This obviously makes the estima-
tion problem more complex and we refer to Efron (2004) for details. The two
methods will be abbreviated as ”LT” and ”LE” below.

Note that in both methods the ”empirical” option corresponds to a non-
uniform distribution of p-values under the null-hypothesis. Efron (2004) dis-
cusses in more detail in what situations this might be advantageous. In this
article we assume that the p-values obtained are exact or at least approxi-
mately exact, so that we would expect the p-value distribution to show only
minor deviations from uniformity under the null hypothesis. As we show below
all methods discussed will not only give us an estimate of sensitivity but also
of the FDR. Under our assumption, a large difference between an FDR esti-
mate and the nominal level controlled by the BH method indicates a problem
with the FDR estimation method and thus the comparison between nominal
and estimated FDR can be used to decide which estimation method should
be used. We will come back to this point, when applying our method to real
data sets in section 3.2.
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Once the parameters and functions of these models have been estimated,
let f̂ = π̂0f̂0 + (1− π̂0)f̂1 denote the estimated density. We can then estimate
the posterior probability τ0 of a gene with a transformed p-value z being non-
differentially expressed as

τ̂0(z) = (π̂0f̂0)/f̂(z). (14)

Note that τ0 is sometimes called the local false discovery rate (” locfdr ”),
although Efron refers to the upper bound f0/f as locfdr. Based on this estimate
we follow McLachlan et al. (2006) to obtain the following estimates:

T̂N =
G∑

g=1

τ̂0(zg)I]c0,∞[(τ̂0(zg)) (15)

F̂N =
G∑

g=1

(1− τ̂0(zg))I]c0,∞[(τ̂0(zg))

F̂P =
G∑

g=1

τ̂0(zg)I[0,c0](τ̂0(zg))

T̂P =
G∑

g=1

(1− τ̂0(zg))I[0,c0](τ̂0(zg))

The threshold c0 here is chosen in such a way that the number of significant
genes FP + TP equals the number of genes being declared significant by
the Benjamini-Hochberg rule. Note that the genes with zg > τ̂0(zg) will not
necessarily be identical to the ones declared significant by the BH method, if
τ̂0 is not a monotonically decreasing function of the original two-sided p-value.
In McLachlan’s method this monotonicity can be affected if the variances of
f0 and f1 are very different, whereas Efron’s method will also be affected by a
lack of symmetry of up and down-regulated genes. For all these methods the
sensitivity (EDR) is estimated according to equation (11).

We remark that the list of estimation methods discussed here is not ex-
haustive since we primarily focussed on approaches that were available within
R at the time of writing. An interesting alternative might be the approach of
Robin et al. (2007), which, similarly to Efron’s method, allows to fit a mixture,
where one of the mixture components is known and the other one is not. An-
other possibility is to use not only the proportion estimate from Langaas et al.
(2005), but make use of the non-parametric density estimation it is based on.
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3 Results
Having described the sequential analysis approach and the options within it, we
will now study our method applied to data. We start with several simulations
to compare the different options within specific components of our approach.
In a second step we demonstrate how the overall method behaves when applied
to real microarray data. All simulations and calculations were performed using
R 2.4.0.

3.1 Simulation study

We conducted two sets of simulations. Our first objective was to compare
the different options for the stopping criterion, i.e. we compared the different
sensitivity estimation methods described above. Secondly we studied the com-
plete sequential approach, where we first compared the different meta-analysis
approaches to combine p-values from different stages and then simulated a
whole sequential study using one specific stopping criterion. This simulation
allowed us to study a) whether there is a substantial loss in power by using a
p-value combination approach instead of combining the original data, and b),
what reduction in sample size a sequential approach might achieve.

3.1.1 Details of simulation strategy

We used the simulation strategy described in Delmar et al. (2005). In all simu-
lations the number of genes was G = 3000. We simulated normally distributed
gene expression values, where the parameters were calculated from the spleen
data given in the R Varmixt library (Delmar et al., 2005). Let μ1g, μ2g, σ

2
1g, σ

2
2g

be the empirical means and variances for gene g in the two different conditions
of this real data set and let μg = (μ1g +μ2g)/2 denote the average of the means.

Differentially expressed genes were generated with N(μg, σ
2
1g) for the 1st

condition and N(μg + δ, σ2
2g) for the 2nd condition, where, following Delmar

et al. (2005), |δ| was simulated as a uniformly distributed random variable on
the interval (0.25, 0.9). In all simulations the number of over-expressed and
under-expressed genes were chosen to be equal. Non differentially expressed
genes were simulated under an N(μg, σ

2
1g) distribution for the first condition

and N(μg, σ
2
2g) for the second condition. For each simulated data set we cal-

culated p-values by using the default settings of the moderated t-test in the
limma library. All results are based on 500 simulated data sets.
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3.1.2 Sensitivity estimation

As a first step, we simulated a data set with 8 replicates per group and 100
differentially expressed genes. For each of 500 simulations a set of p-values
was calculated with the limma package and genes were declared significant if
their Benjamini-Hochberg (BH) adjusted p-values were below 5%. For this
p-value cut-off we then estimated sensitivity and other quantities relating to it
according to the methods discussed in Section 2.4.1. Table 1 lists these meth-
ods together with names and labels we used for them and the corresponding
references.

Table 1: Table of sensitivity estimation methods
Method Abbr. Reference
Local false discovery rate, empirical approach LE Efron (2004)
Local false discovery rate, theoretical approach LT Efron (2004)
Normal mixture, empirical approach NE McLachlan et al. (2006)
Normal mixture, theoretical approach NT McLachlan et al. (2006)
Beta Uniform Model BUM Pounds and Morris (2003)
Proportion based empirical method PE Langaas et al. (2005)

Table 2 presents means and standard deviations obtained from the 500
simulations. The first column gives the true observed quantities where ”SG”
denotes the number of genes found to be significant. The other six columns
represent the methods as given in Table 1.

As described before, the number of genes detected was forced to be the
same in all methods except when using the Bayesian Uniform Model, so that
only that entry varies in the first row of the table. We observe that the
number of estimated true positives was fairly similar for all methods, which
was also reflected by similar values for the FDR across the different methods.
However, the number of estimated false negatives varied considerably, causing
similar variation in the sensitivity estimates. We see that, in this simulation,
Efron’s locfdr methods gave the best result. McLachlan’s method seemed
to over-estimate sensitivity, whereas ”PE” and particularly the BUM method
underestimated it.

In a second step we varied sample sizes (n = 4, 8, 12) and the number of
differentially expressed genes (30, 100, 200), but now only studied the sensitiv-
ity estimates. The results in Table 3 show the expected increase in sensitivity
as sample size and the number of truly differentially expressed genes go up.
Otherwise the results confirmed those of table 2, i.e. again Efron’s method
gave the best results.
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Table 2: Sensitivity estimation from 500 simulated data sets with 8 replicates
and 100 differentially expressed genes; the table shows average counts of genes
found to be significant (SG), true positives (TP), false negatives (FN), as well
as values for the false discovery rate (FDR) and sensitivity (Sens). Standard
deviations are given in brackets.

Truth LE LT NE NT BUM PE
SG 84.7 84.7 84.7 84.7 84.7 78.1 84.7

(5.3) (5.3) (5.3) (5.3) (5.3) (4.8) (5.3)
TP 79.9 81.6 81.8 79.6 80.3 74.5 81.1

(4.3) (4.9) (4.9) (4.8) (4.7) (4.5) (5.0)
FN 20.1 26.5 26.9 9.4 11.7 71.2 48.5

(4.3) (9.1) (10.0) (7.8) (7.4) (6.8) (37.1)
FDR 0.06 0.04 0.03 0.06 0.05 0.05 0.04

(0.03) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
Sens 0.80 0.76 0.76 0.90 0.88 0.51 0.67

(0.04) (0.06) (0.07) (0.06) (0.07) (0.02) (0.15)

These results should be interpreted with caution though, as they might
be biased by the way we simulated the micorarray data sets. Robin et al.
(2007) already pointed out that the empirical locfdr sometimes gave unsatis-
factory results. We also saw that the order of the sensitivity estimates (with
McLachlan’s method giving the highest and BUM giving the lowest values)
can be quite different when applying the same methods to real data sets. Our
main conclusion from this simulation is that the number of false negatives and
thus the simulation of sensitivity is quite difficult and that the estimates can
vary considerably depending on which method is being used. One possible
quality check is to study the FDR estimates. Since our cut-off is based on the
Benjamini-Hochberg method, an estimated FDR very different from the prede-
fined threshold is an indication of some problem in the estimation. We found
this to be a helpful criterion, particularly when it came to deciding between
the theoretical and empirical option in Efron’s and McLachlan’s approaches.

In subsequent simulations we used Efron’s empirical local FDR method for
sensitivity estimation since at least for this type of simulated data, it appeared
to have good properties.
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Table 3: Sensitivity estimation from 500 simulated data sets for varying num-
bers of replicates (rep) and differentially expressed genes (DE). The table
shows average estimated sensitivity (standard deviations).

DE rep Truth LE LT NE NT BUM PE
30 4 0.34 0.34 0.23 0.49 0.36 0.10 0.20

(0.12) (0.18) (0.15) (0.28) (0.26) (0.04) (0.12)
8 0.74 0.56 0.51 0.82 0.76 0.40 0.46

(0.09) (0.15) (0.16) (0.18) (0.21) (0.5) (0.20)
12 0.86 0.64 0.63 0.92 0.89 0.56 0.53

(0.07) (0.12) (0.13) (0.10) (0.13) (0.04) (0.22)
100 4 0.48 0.52 0.41 0.66 0.58 0.22 0.39

(0.07) (0.10) (0.10) (0.15) (0.14) (0.03) (0.12)
8 0.80 0.76 0.76 0.90 0.88 0.51 0.67

(0.04) (0.06) (0.07) (0.06) (0.07) (0.02) (0.15)
12 0.89 0.84 0.84 0.95 0.95 0.65 0.74

(0.03) (0.06) (0.06) (0.03) (0.04) (0.02) (0.14)
200 4 0.57 0.64 0.56 0.77 0.67 0.29 0.51

(0.04) (0.05) (0.07) (0.09) (0.08) (0.02) (0.09)
8 0.84 0.86 0.85 0.93 0.91 0.58 0.76

(0.03) (0.04) (0.04) (0.03) (0.04) (0.02) (0.11)
12 0.91 0.90 0.90 0.97 0.96 0.70 0.83

(0.02) (0.04) (0.04) (0.02) (0.02) (0.01) (0.11)

3.1.3 P-value combination methods and simulation of sequential
studies

Our next objective was to study how the inverse normal method of combining
p-values from different stages performed for simulated data. In a first simu-
lation we compared it against both Fisher’s p-value combination method and
a limma (moderated t-test) analysis that was based on the expression values
from all stages (refered to "joint" in tables). We again simulated 3000 genes,
of which 100 were over-expressed. There were 6 replicates overall sub-divided
into two stages with 3 replicates per group. We emphasise that we did not
simulate a stage effect here, i.e. we simulated the optimal situation for the
joint limma analysis. Table 4 shows the results from 500 data sets.
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Table 4: Comparison of 3 different types of meta analysis in simulations of
6 replicates, that were splitted up into 2 stages with 3 replicates per stage.
Three thousand genes were simulated 500 times with 100 of them being up-
regulated. The table shows average values and standard deviations of counts
of significant genes (SG), true positives (TP), false negatives (FN) as well as
observed FDR and sensitivity.

SG TP FN FDR Sensitivity
Limma 74.95 70.75 29.25 0.06 0.71

(5.55) (4.83) (4.83) (0.03) (0.05)
Fisher 83.58 77.11 22.89 0.08 0.77

(5.68) (4.57) (4.57) (0.03) (0.05)
Hedges and Olkin 79.78 73.37 26.63 0.08 0.73

(5.83) (4.76) (4.76) (0.03) (0.05)

As we can see, the sensitivity is nearly identical between the three methods,
so we found no serious loss in power when combining p-values instead of using
the full data set. Since Fisher’s combination method requires an independent
analysis of under-expression and over-expression, we used the inverse normal
method in the following. We will refer to it as ”meta” in our tables.

In a second simulation we studied how this p-value combination method
affects the sensitivity estimation in a sequential set-up. Again 3 replicates
were added per group and stage, but a total of 4 stages were studied. We
compared the limma analysis of the full data set up to each stage with the
”meta” method of combining p-values. For both approaches we observed the
number of significant genes (”SG”) and the true numbers for TP, FDR and sen-
sitivity as well as the corresponding estimated values when using the empirical
locfdr method. The table shows means (and standard deviations) across 500
simulations. The results (given in Table 5) confirm that the combination of
p-values does not cause a serious loss in sensitivity.

The meta method behaved slightly liberal in these simulations, i.e. the
observed FDR was higher than the nominal one. The most plausible expla-
nation for this is that the p-values calculated by limma are not exact for
small sample sizes, so that a method combining these p-values will be more
affected than the limma analysis which increases sample size at each stage.
Still the observed average FDR values remained well below 10%, which we
found acceptable. The estimated sensitivity values were below the observed
ones for both methods, so our stopping decision behaved conservatively, i.e.
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Table 5: Comparison of the meta analysis method with a joint limma analysis
in a sequential study with 4 stages and 3 replicates per stage. Three thousand
genes with 100 of them being differentially expressed were simulated 500 times.
The table shows mean and standard deviation of counts of significant genes
(SG), true positives (TP) as well as observed FDR and sensitivity (Sens). For
all quantities we give the true value as well as the one estimated by the LE
method.

Stage Truth joint LE joint Truth meta LE meta
SG 1 23.48(8.61) 23.48(8.61) 23.48(8.61) 23.48(8.61)

2 75.13(5.86) 75.13(5.86) 79.78(5.76) 79.78(5.76)
3 88.70(4.81) 88.70(4.81) 94.45(5.00) 94.45(5.00)
4 94.48(4.35) 94.48(4.35) 100.57(4.95) 100.57(4.95)

TP 1 22.22(7.97) 21.73(7.84) 22.22(7.97) 21.73(7.84)
2 70.88(5.09) 71.5(5.53) 73.54(4.88) 76.45(5.51)
3 83.64(3.94) 85.57(4.58) 86.42(3.59) 91.54(4.72)
4 89.30(3.27) 91.40(3.95) 91.71(3.06) 97.57(4.44)

FDR 1 0.05(0.05) 0.07(0.03) 0.05(0.05) 0.07(0.03)
2 0.06(0.03) 0.05(0.02) 0.08(0.03) 0.04(0.01)
3 0.06(0.03) 0.04(0.01) 0.08(0.03) 0.03(0.01)
4 0.05(0.03) 0.03(0.01) 0.09(0.03) 0.03(0.01)

Sens 1 0.22(0.08) 0.29(0.13) 0.22(0.08) 0.29(0.13)
2 0.71(0.05) 0.67(0.08) 0.74(0.05) 0.64(0.07)
3 0.84(0.04) 0.79(0.06) 0.86(0.04) 0.74(0.07)
4 0.89(0.03) 0.84(0.06) 0.92(0.03) 0.77(0.08)

the experiment was rather continued too long than being stopped prematurely.

For the same simulations we also studied at which stage we would have
stopped the experiment according to two different stopping rules. In the first
case we stopped if the true or estimated number of true positives exceeded 40,
in the second case the criterion was whether the true or estimated sensitivity
was at least 60%. The results are summarised in Table 6.

All methods would have stopped at stage 2, when using the first criterion.
When using the sensitivity, again most studies would have stopped at stage
2 if the true values had been available. With estimated sensitivity values a
small number (2.2%) of all studies would have ended too early, but a larger
number of them would have proceeded to stage 3. This again confirmed the
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Table 6: For the simulation of table 5 this shows the percentage of studies
which have ended at each given stage. The upper part corresponds to a stop-
ping criterion using the estimated number of true positives (TP>40), the lower
part uses a sensitivity based criterion (sensitivity > 60%)

Stop. Crit. Stage Truth joint LE joint Truth meta LE meta
TP 1 0 0 0 0

2 100 100 100 100
3 0 0 0 0
4 0 0 0 0

Sensitivity 1 0 2.2 0 2.2
2 97.8 78.4 99.4 68
3 2.2 19.2 0.6 28.2
4 0 0.2 0 1.4

conservative nature of the estimation method. Only in very few cases would
the full number of stages have been used, which shows the potential of our
sequential approach to reduce sample sizes.

3.2 Application to real data sets

Our sequential analysis approach was applied to two real and publicly available
data sets, where we artificially split the data into different stages and studied
how a sequential analysis would have behaved, if the data had been generated
in such a sequential manner. The first experiment was the ApoAI data set,
which compares gene expression between apolipoprotein AI (apo AI) knock-out
mice and 8 wild type mice from Callow et al. (2000). This data set has also been
used by Dudoit et al. (2002). We used the R package limma of Bioconductor to
analyse the data, both for the normalisation (print-tip loess normalisation) and
the modified t-test and followed the analysis as described in the limma tutorial
(http://www.bioconductor.org/workshops/2005/labs/lab01/ApoAI.html). We
split the data into 3 stages, where the first stage used 4 replicates and stages
two and three added two more replicates each.

As in our simulations, we compared the meta-analysis method using the
inverse normal combination of p-values with a joint limma analysis combining
all the expression values up to a given stage. A Benjamini-Hochberg threshold
of 0.01 was used in this case. We estimated sensitivity also using the theoretical
locfdr method for this study (results not given here), but obtained very high
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Table 7: Sequential analysis of the ApoAI data set: The table compares a joint
limma analysis of the stages with a meta analysis, where sensitivity estimates
are based on the LE method. The table gives the numbers of significant genes
(SG), true positives (TP), FDR and sensitivity after each stage.

Stage Joint Meta
SG 1 2 2

2 7 7
3 8 8

TP 1 1.97 1.97
2 6.63 6.69
3 7.69 7.78

FDR 1 0.01 0.01
2 0.05 0.04
3 0.04 0.03

Sensitivity 1 0.36 0.36
2 0.94 0.76
3 1 1

estimates for the FDR, whereas the empirical locfdr approach (cf. table 7) gave
reasonable estimates. For this reason our decision criterion used the empirical
locfdr method.

Both approaches gave a high sensitivity after stage 2 already and in any
case we would have stopped the experiment after the 3rd stage, even if it had
been possible to add more samples. Here the sets of 2, 7 and 8 significant
genes are nested, e.g. the set of 2 genes is a subset of the 7, which again is
a subset of the 8 genes. Figure 4 shows a histogram of final p-values for this
data set.
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Figure 4: Histogram of final p-values for the Apo AI data set after a 3 stage
sequential analysis

As a second data set we used the well-known Golub data (Golub et al.,
1999). We took the already normalised subset given in the Bioconductor li-
brary multtest and reduced the data set to 11 patients with acute lymphoblas-
tic leukemia (ALL) and 11 patients with acute myeloid leukemia (AML). We
again subdivided the data into three stages with 5, 3 and 3 samples per stage
and used a Benjamini-Hochberg threshold of 5%.

When using the empirical locfdr method we obtained FDR estimates above
80% after stages 2 and 3. We then investigated the theoretical locfdr, which
gave estimates below 5%, which were also confirmed by some of the other
estimation methods previously discussed as we can see in table 8. This again
demonstrates how problematic the estimation of sensitivity can be but also
that it can be very useful to check the corresponding FDR estimate as an
indicator for such problems.

Figures 5 and 6 illustrate this point very well. The histogram of p-values
(Figure 5) has a very distinct peak near zero, clearly indicating a high number
of differentially expressed genes. When transforming these p-values to z-scores
(Figure 6) they seem to form a unimodal distribution though. The empirical
locfdr method estimates a null distribution with a large variance in this case
(shown on the lower plot in figure 6), that leaves only a very few differentially
expressed genes. The theoretical locfdr method on the other hand forces the
null distribution to be standard normal and thus calls a large number of genes
with values in the tails of the overall distribution to be significant (as can be
seen in the upper plot of Figure 6).
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Table 8: Estimation of sensitivity at each of the three stages of a meta-analysis
for the Golub data set. Four different sensitivity estimation methods (LT, NT,
BUM, PE) are compared at each stage.

Stage LT NT BUM PE
SG 1 13 13 11.77 13

2 216 216 205.67 216
3 533 533 525.08 533

TP 1 12.56 12.47 11.48 12.69
2 208.47 209.6 199.29 209.4
3 516.49 522.49 511.59 518.5

FDR 1 0.03 0.04 0.02 0.02
2 0.03 0.03 0.03 0.03
3 0.03 0.02 0.03 0.03

Sensitivity 1 0.02 0.01 0.01 0.01
2 0.22 0.17 0.16 0.18
3 0.42 0.30 0.34 0.38

Figure 5: Histogram of p-values for the Golub data set after a 3 stage sequential
analysis
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Figure 6: Mixtures fitted to the transformed p-values of the Golub data set
using the LT (above) and LE (below) method.

Histogram of final step z scores

The dashed line represents the standard normal null distribution, the solid line the
empirical one.
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Since the estimates for the number of genes detected were much higher
in this example, the sensitivity estimates were lower, i.e. with a high number
of differentially expressed genes it is more difficult to detect them all. In
this example it thus would seem more appropriate to use the number of true
positives as a stopping criterion since quite a high sample size would be needed
to achieve a sensitivity of, say, 80%.

We believe that scientists frequently have an idea whether they are only
expecting a very small number of differentially expressed genes like in the Apo-
AI data, or whether the two conditions will cause massive changes. But even if
this was not the case our sequential approach would give them some indication
of the number of differential genes to expect once data from the first stage are
available and thus enable them to adapt the strategy and stopping criterion
accordingly.

4 Discussion
We suggested a novel strategy that allowed the sequential design and anal-
ysis of microarray experiments, an approach that utilised the fact that very
often only a limited number of microarrays can be hybridised simultaneously,
and allowed us to stop an experiment once sufficient information had been
obtained. One key observation is that due to the high number of variables in
transcriptomic studies, the stopping decision does not seriously bias the result
and thus the main problem of univariate sequential trials does not occur in
this context.

Our strategy was based on two main components:

1. At each stage we estimated the sensitivity and the number of true posi-
tives as measures of the information obtained up to this stage.

2. We analysed data from different stages by a meta-analysis approach that
combined the stage specific p-values

As discussed above, estimation of sensitivity is a difficult problem and
different approaches gave varying results. Even though we found that the em-
pirical locfdr method gave the best results in our simulations, we saw that it
could also produce misleading results, as for example with the Golub data. For
this reason we do not recommend a single automatic strategy for sensitivity es-
timation. This should rather be a supervised process that might take different
methods and diagnostic plots into account. One useful criterion in this context
is checking the estimation of the FDR. We suggested controlling the FDR by
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the Benjamini-Hochberg method, which performs well under relatively general
assumptions and makes no assumptions about how p-values of differentially
expressed genes are distributed. All sensitivity estimation procedures we con-
sidered allowed estimation of the FDR so a comparison of this estimate with
the nominal FDR level could help to detect problems in the estimation as we
saw in the Golub data example. The estimation of the (local) FDR, sensitivity
and other related quantities is a very active area of research and we expect
that in future more refined approaches will be available for this part of our
analysis strategy.

For the combination of data from different stages, we suggested using the
inverse normal method, which had been proposed by Lehmacher and Wassmer
(1999) for interim analyses. This p-value combination approach avoids re-
normalising data from previous stages and the complication of having to model
stage effects within the analysis. Our simulations showed that the price that
had to be paid for this in terms of power/sensitivity was surprisingly small.
We note that this method might also be of interest in a real meta-analysis
situation, where microarray experiments from genuinely different studies are
to be analysed together.

We would like to stress though that the main contribution made by this
paper is not the comparison of sensitivity estimation methods or meta-analysis
approaches but to present a fairly generic framework that allows a sequential
analysis of microarray experiments. We have preferences for options within
this framework, but it can be flexibly used. This for example also concerns
the type of test being used to detect differential expression. We suggested
using the moderated t-test in limma but there are a number of alternative
approaches that could be used, for example resampling tests or the structural
modelling approach in Jaffrézic et al. (2007). The only necessary requirement
for a test to be used within our strategy, is that it yields valid p-values, i.e.
that the p-value distribution under the null hypothesis is uniform.

In this paper we only considered a two-sample problem, but in principle a
sequential type of analysis could be used for more complex situations as well.
In a situation where more than one effect is being tested (e.g. two different
treatments are compared with a control) we will have a p-value distribution
and sensitivity estimate for each effect. Based on this, we will have to decide
not only whether to add samples but also to which part of the design these
samples should be added.

In general, sequential strategies and interim analyses have many potential
applications outside the context of clinical trials, for which they were origi-
nally developed. In particular our method can be easily adapted to other high
throughput technologies.
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APPENDIX

We will show why the correlation between an individual p-value and the em-
pirical distribution function of all p-values converges to zero at rate 1/

√
G,

where G is the number of genes and thus p-values. To illustrate this we as-
sume that the p-values from different genes are independent from each other
and we study the empirical distribution function

F̂ (u) =
1

G

G∑

i=1

1(pi<=u)

of all p-values for 0 < u < 1. By the central limit theorem we know that√
G(F̂ (u)) converges to a normal distribution under regularity conditions and

so we conclude that Var(
√

GF̂ (u)) converges to a positive constant as G goes
to infinity. Now consider an individual p-value (without loss of generality we
choose the one for gene 1). Since both p1 and (F̂ (u)) are bounded, so is the
covariance between the two variables. We thus get for their correlation

√
GCor(p1, F̂ (u)) =

Cov(p1, F̂ (u))√
Var(

√
GF̂ (u))Var(p1)

,

which is asymptotically bounded and thus proves the statement.
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3.4 Complementary results
During the reviewing process of this article, we were asked to perform com-
plementary analyses. In this section, we provide the results which we could
not add in the paper due to space constraints.

3.4.1 Normalisation within stages

One of the referees suggested to conduct a within-stage normalisation of
the Golub data, but unfortunately the original cel-files for this data set did
not seem to be available. In our paper, we used the version of the data
provided by the Bioconductor library multtest, which had been pre-processed
by the authors of the library to have mean 0 and variance 1 across genes for
each array (after log10 and filtering). We thus tried to add a stage effect
to the data set by performing a within-stage quantile normalisation on the
data instead of scaling each array to have mean 0 and variance 1 (we kept
the same other normalisation steps: log10 and filtering). The following two
tables give results for an analysis where a) all arrays were quantile normalised
simultaneously (see table 3.4) and b) when they were quantile normalised
within stages (see table 3.5).

As one can see the differences between the two tables are marginal, but
there is quite a difference compared to the non-quantile normalized version
presented in our paper. We thus decided not to use this new analysis in the
paper as it does not give new insights and we also think that readers might
be rather confused if we had used a differently normalised version of a well
known data set.
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Table 3.4: Sequential analysis of the Golub data after global quantile nor-
malisation

Stage Locfdr theo
SG 1 17

2 200
3 563

TP 1 16.24
2 193.38
3 545.28

FDR 1 0.04
2 0.03
3 0.03

Sensitivity 1 0.02
2 0.19
3 0.43

Table 3.5: Sequential analysis of the Golub data after within stage quantile
normalisation

Stage Locfdr theo
SG 1 18

2 206
3 568

TP 1 17.18
2 198.93
3 549.85

FDR 1 0.05
2 0.03
3 0.03

Sensitivity 1 0.02
2 0.20
3 0.43
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3.4.2 Different design

We were also asked how changing the design would affect our analysis. To an-
swer that question, we repeated one of our analyses for the ApoAI data with
different per stage sample sizes (3+3+2 instead of 4+2+2). Corresponding
results are given in the following table:

Table 3.6: Sequential analysis of the ApoAI data: the experiment begins
with three replicates, three then two replicates are added at the following
stages

Stage Joint Meta
SG 1 1 1

2 7 7
3 8 8

TP 1 0.99 0.99
2 6.64 6.75
3 7.65 7.68

FDR 1 0.01 0.01
2 0.05 0.04
3 0.04 0.03

Sensitivity 1 0.45 0.45
2 0.94 0.79
3 1 1

Changing the number of replicates in the first stage does not influence the
results of the last stage where as many replicates as in the previous design
are used. The same 8 genes are detected differentially expressed. The main
difference that we observe is the number of differentially expressed genes
found at the first stage. The reduction from 4 to 3 replicates leads to one
gene less being called significant. Sensitivity found at the first stage in table
3.6 does not seem reliable (it is here overestimated) and generally we would
not advise to begin a sequential analysis with only three replicates.

To summarize this part, the sequential analysis of microarray data is to
some extent simpler than in the univariate case as the stopping rule does
not bias p-values due to the high dimensionality of the data. Thus, results
from different stages can be combined by meta-analysis methods and error
rates can be controlled by applying standard procedures (e.g. the Benjamini-
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Hochberg rule) to the p-values from the combined stages. We suggested
stopping rules based on either the estimated number of true positives or
the estimated sensitivity. As in clinical trials, sequential designs allow to
stop some experiments before the scheduled end and thus save samples. Of
course, such an analysis can not be performed when only very few samples
are available as it is often the case in animal genetics. It is, however, of
great interest in medical studies which can be conducted on more than 10
individuals per condition. Additionally to the cost reduction resulting from
a reduced sample size, sequential analysis is also interesting for studies where
technical limits cause a staggered availability of the data anyway. This work
also provides interesting results in comparing different sensitivity estimation
methods which are useful even outside the context of sequential analysis.
Although, as our study shows, sensitivity is very difficult to estimate, it is
still a useful number to give biologists a rough idea how informative their
experiment is. The R package I built for sequential analysis can also be
used for sensitivity estimation in a non-sequential design. As we will see in
the next chapter, meta-analysis for microarray studies is also an interesting
topic itself. Thus this part of the thesis has not only introduced sequential
methods to microarray experiments, but also yielded interesting insights into
two other areas of general interest: sensitivity estimation and meta-analysis
for high-dimensional gene expression data.

108



Part III

Meta-Analysis
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Meta-analysis was the logical follow up of the two previous parts of this
PhD. It directly extends sequential analysis since it enables to combine data
from different stages. It is also based on shrinkage approaches developped in
the first part of my PhD.

Thanks to the high dimensionality of microarray data, the sequential anal-
ysis problem was transformed in a need of an appropriate stopping rule and
a use of usual meta-analysis methods to combine data from different stages.
In the previous paper, data collected at different stages were combined using
the inverse normal p-value combination. This p-value combination can also
be applied in a more general context to gather data from different studies
rather than simple stages. It can combine summary results from studies for
which a direct comparison is impossible but which still address the same
biological question. The aim of meta-analysis is then double: since the num-
ber of replicates is small in most of microarray studies, meta-analysis will
increase the sensitivity of the whole experiment including the different stud-
ies. What is more, results obtained in the end will be more accurate and
common patterns will be drawn. Thus, over the past few years, researchers
have tried to combine data from different studies and sometimes across dif-
ferent platforms to gain information. As far as we are concerned, we first
concentrate on experiments including studies involving similar platforms and
similar chips to avoid problems of annotation which differ between chips. We
ask the different studies to answer the same biological question.

Our methodology is presented in Chapter 4 and Chapter 5 presents an
extension to Bayesian models.
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Chapter 4

Moderated effect size combination

4.1 Moderated effect size and p-value combi-
nations for microarray meta-analyses

Several approaches are usually considered to combine data. Either data are
cross-study normalised and then analysed as a single dataset or summariza-
tion results like p-values are combined, using for example Fisher transfor-
mation or inverse normal combination detailed in the previous part. An
intermediate approach is to model the available expression data including a
study effect. The bioconductor package GeneMeta implements one of these
modellings (Choi et al., 2003) performing a gene by gene analysis. Since we
proved the efficiency of shrinkage approaches in differential gene expression
studies (see part I of this PhD), it was natural to try to improve this pack-
age by shrinking information from all genes towards common values. The
following paper has been submitted to Bioinformatics.
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1INRA, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, F-78350, France.
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ABSTRACT
Motivation: With the proliferation of microarray experiments and their
availability in the public domain, the use of meta-analysis methods
to combine results from different studies increases. In microarray
experiments, where the sample size is often limited, meta-analysis
offers the possibility to considerably increase the statistical power and
give more accurate results.
Results: A moderated effect size combination method was proposed
and compared to other meta-analysis approaches. All methods were
applied to real publicly available datasets on prostate cancer, and
were compared in an extensive simulation study for various amounts
of inter-study variability. Although the proposed moderated effect size
combination improved already existing effect size approaches, the
p-value combination was found to provide a better sensitivity and
a better gene ranking than the other meta-analysis methods, while
effect size methods were more conservative.
Availability: An R package metaMA is available on the CRAN.
Contact: guillemette.marot@jouy.inra.fr

1 INTRODUCTION
Meta-analysis, which consists in combining data or results from
different studies, has been widely used in medicine and health
policy to interpret contradictory results from various studies or
overcome the problem of reduced statistical power in studies with
small sample sizes. Hedges and Olkin (1985) and Stangl and Berry
(2000) provide good reviews of meta-analysis techniques.

Microarray experiments are a typical example of small sample
size designs. These experiments, which enable us to study gene
expressions from thousands of genes at a time, often rely on very
few samples due to their high cost or the lack of biological replicates
available. Choi et al. (2003) and Rhodes et al. (2002) were among
the first authors to raise the issue of meta-analysis in the context of
microarray data to find differentially expressed genes. Some of Choi
et al. (2003) methods are implemented in the Bioconductor package
GeneMeta described by Lusa et al. (2008). These approaches rely
either on combinations of expression values themselves and the
modelling of the inter-study variation using effect size calculations
(Choi et al., 2003) or on the combination of p-values (Rhodes et al.,

∗to whom correspondence should be addressed

2002). Conlon et al. (2007), Scharpf et al. (2007) also proposed
Bayesian methods to combine microarray data.

In the last few years, several authors such as Smyth (2004)
or Jaffrézic et al. (2007) showed that, in single study analyses,
shrinkage approaches leading to moderated t-tests were more
powerful than gene-by-gene methods to detect differentially
expressed genes when small numbers of biological replicates are
available. Indeed, shrinkage consists in estimating each individual
gene value by taking into account information from all genes of
the experiment. By decreasing the total number of parameters to
estimate, this increases sensitivity, that is to say the proportion
of true positives among the truly differentially expressed genes.
In the previously mentioned meta-analyses studies, authors based
the calculation of the p-values or effect sizes to be combined on
standard t-tests, i.e. on gene-by-gene analyses. They therefore
gained sensitivity for gene detection by combining different studies
but it is expected that even more sensitivity could be obtained
using shrinkage approaches. The aim of this paper is to propose
a method to calculate moderated effect sizes and to compare
their performance with the combination of standard effect sizes or
of p-values from standard and moderated t-tests. These methods
were applied to publicly available datasets on prostate cancer and
compared in an extensive simulation study.

2 METHODS
2.1 Effect size calculation
Let Ysigr and Ysjgr be the expression levels for gene g in conditions
i and j for study s and replicate r. The data are assumed to
be normally distributed as Ysigr ∼ N (µsig, σ

2
sg) and Ysjgr ∼

N (µsjg, σ
2
sg). A simple effect size is the standardized difference:

δsg = (µsig − µsjg)/σsg (1)

For effect size calculations, the procedure described by Choi et al.
(2003) was applied to estimate the study effect and obtain a test
statistic for differential expression. The corresponding hierarchical
model used was therefore:

dsg = θsg + esg, esg ∼ N (0, w2
sg)

θsg = µg + vsg, vsg ∼ N (0, τ2
g ) (2)

c© Oxford University Press 2009. 1
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where dsg is the estimation of the effect size for study s and
gene g, τ2

g represents the variability between studies while w2
sg

are the within-study variances. These within-study variances have
already been estimated in the same stage as the estimation of
the effect size. They are therefore assumed to be known in the
hierarchical model, which makes the difference with a linear mixed
model. An estimation of the between-study variances τ2

g can be
obtained using the method of moments as suggested by Choi et al.
(2003). Parameter µg is estimated as in the generalized least squares
method: µ̂g(τ2

g ) =
∑

(w2
sg + τ2

g )−1dsg/
∑

(w2
sg + τ2

g )−1,
with V ar(µ̂g(τ2

g )) = 1/
∑

(w2
sg + τ2

g )−1. A z-score to test for
differentially expressed genes is then constructed as follows:

zg =
µ̂g(τ

2
g )√

V ar(µ̂g(τ2
g ))

(3)

Although Choi et al. (2003) advise permutations to calculate p-
values and estimate the FDR, a faster solution is suggested in
the Bioconductor package GeneMeta, which assumes a normal
distribution on the z-scores after checking the reliability of this
hypothesis by a q-q plot.

Moderated effect sizes for unpaired data To estimate the effect
size defined in equation (1) for unpaired data, Choi et al.
(2003) considered the unbiased estimator of the standardized mean
difference (for more clarity, indices g and s are omitted in this
section) :

d′ = d(1− 3/(4(n− 2)− 1)) (4)

where d = (Ȳi − Ȳj)/Sp for conditions i and j, and Sp are pooled
standard deviations. These d effect sizes can easily be linked to
Student t-tests via the relationship:

t = d
√
ñ (5)

with ñ = ninj/(ni + nj) where ni (resp. nj) is the number of
replicates in condition i (resp. j).

We propose to extend these effect sizes to account for moderated
t-tests. We first consider the popular shrinkage approach proposed
by Smyth (2004) and implemented in the Bioconductor R package
limma. We will also accomodate the effect size calculation to
another shrinkage approach proposed by Jaffrézic et al. (2007),
which allows us to analyze data with heterogenenous variances
between conditions. This method is implemented in the R package
SMVar available on the CRAN.

As the same variance is assumed for both conditions in limma, in
this case the moderated effect size can be estimated as:

dLimma = tLimma/
√
ñ (6)

For SMVar, different variances are assumed in each condition i
and j such that: Yir ∼ N (µi, σ

2
i ) and Yjr ∼ N (µj , σ

2
j ). In this

case, we rely on the effect size definition proposed by Kulinskaya
and Staudte (2007) where the denominator σ is:

σ = {qσ
2
i + (1− q)σ2

j

q(1− q) }1/2 (7)

with q = nj/n and n = ni + nj . This parameter can be rewritten

as σ2 = (njσ
2
i + niσ

2
j )/

ninj

n
so that σ

2

n
=

σ2
i
ni

+
σ2

j

nj
. This effect

size can therefore be linked to the Welch statistic as:

tWelch =
√
n dKulinskaya (8)

As SMVar relies on a Welch statistic, a natural moderated effect size
would be:

dSMV ar = tSMV ar/
√
n (9)

To apply the meta-analysis procedure described in the previous
paragraph, variances of effect sizes are also needed. The estimator
of the variance V ar(d) = (n−1

i +n−1
j ) + d2(2(ni +nj))

−1 given
in Choi et al. (2003) is, however, an asymptotic estimator. As the
number of replicates is often limited in microarray experiments, we
decided to compute the exact form of the variances for moderated
effect sizes. Using the distribution of effect sizes provided by
Hedges (1981), it can be shown that:

V ar(d) =
m

(m− 2)ñ
[1 + ñδ2]− δ2/[c(m)]2 (10)

with

c(m) =
Γ(m

2
)√

m
2

Γ(m−1
2

)
. (11)

In these formulae, δ is the effect size defined in equation (1), ñ
is equal to ninj/(ni + nj) for limma and to n = ni + nj for
SMVar, and m is the number of degrees of freedom. Note that for
both estimators given in equations (6) and (9), the calculation of
this variance is possible using equation (10) thanks to the degrees of
freedom of the moderated t-statistics provided in both procedures.
For limma (Smyth, 2004), m equals to the sum of prior degrees
of freedom and residual degrees of freedom for the linear model
for gene g. For SMVar, degrees of freedom are calculated by
Satterthwaite’s approach as:

m =
( σ̂i

2

ni
+

σ̂j
2

nj
)2

σ̂i
4

n2
i

V (lnσ̂i
2)

2
+

σ̂j
4

n2
j

V (lnσ̂j
2)

2

. (12)

This generalizes the formula given in Jaffrézic et al. (2007) for the
case where the number of replicates is the same for both conditions.

Unbiased estimators of effect sizes Using the distribution of effect
sizes provided by Hedges (1981), unbiased estimators can be
defined from the previously proposed moderated effect sizes as:

d′moderated = c(m)dmoderated. (13)

with c(m) given in equation (11). Equation (13) can be seen as an
extension of equation (4) with d′ = c(m)d where c(m) = 1 −
3/(4m− 1) and m = n− 2.
Assuming that V ar(c(m)) = 0, which holds exactly for standard
effect sizes and works quite well in practice for moderated effect
sizes, the variance of the unbiased effect sizes is computed as c(m)2

times the variance of the biased estimators given in equation (10).
Since c(m) < 1, unbiased estimators have a smaller variance than
biased ones.

Moderated effect sizes for paired data For both moderated t-tests
with limma and SMVar, the unbiased effect size for paired data is
obtained via the relationship:

d′paired = c(m)
tmoderated√
npaired

(14)

with npaired the number of replicates.
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2.2 p-value combination
Many authors such as Rhodes et al. (2002) and Hu et al. (2006)
use Fisher’s combined probability test to combine p-values across
studies. The main disadvantage of this approach is that, as pointed
out by Hong and Breitling (2008), it requires to treat over and
under-expressed genes separately. We therefore suggest to use the
inverse normal method in this study, which is symmetric in the
sense that p-values near zero are accumulated in the same way
as p-values near unity (Hedges and Olkin, 1985), and is therefore
suitable for combining results for differentially expressed genes
when the direction of deviation from the null hypothesis is not
known. Loughin (2004) compared different p-value combination
methods in a simulation study and stated that the (unweighted)
inverse normal method worked well in cases where the evidence
against the null-hypothesis is spread equally across the different
studies. The inverse normal method, so-called by Hedges and Olkin
(1985), refers to the averaging of transformed individual p-values
to normal scores. This procedure was first introduced independently
by Stouffer et al. (1949) and by Liptak (1958). Let Ns be the total
number of studies to be combined and p̃g(s) the individual p-value
calculated for study s and gene g.

Sg =
1√
Ns

Ns∑

s=1

Φ−1(p̃g(s)) (15)

To avoid directional conflicts, it is necessary to use one-sided p-
values for each study. Under the null hypothesis Sg follows a
standard normal distribution. An overall two-sided p-value can then
be obtained by

pg = 2(1− Φ(|Sg|)) (16)

An alternative to (15) is to use the weighted method by Marot and
Mayer (2009), which is implemented in the R package metaMA.

Sg =

Ns∑

s=1

wsΦ
−1(1− p̃g(s)) (17)

with

ws =

√
n(s)∑Ns
i=1 n(i)

where n(s) is the number of replicates in study s.

3 APPLICATION TO REAL DATASETS
These different methods were compared on real data sets on
prostate cancer. Datasets from Singh et al. (2002), LaTulippe et al.
(2002), Stuart et al. (2004) were downloaded from public websites.
All these experiments were generated from the same Affymetrix
HG U95Av2 platform. Data from CEL files were normalized using
RMA (Irizarry et al., 2003). In the following, datasets are referred
to by the name of the corresponding first author. The Singh dataset
contains 102 samples, 50 of which are non tumor prostate samples,
the other 52 being prostate tumors. LaTulippe provides 3 normal
samples and 23 cancer samples while there are 50 normal and
38 cancer samples in the Stuart dataset. Only the 12600 genes
in common between the three datasets were kept for the analysis.
Although these datasets are not representative of small sample
size designs, we used them to extract real inter-study variation

and to illustrate how the methods proposed here can be applied.
Simulations with smaller sample size designs are presented in the
next section.

We first performed standard limma analyses for each of the three
studies and applied a Benjamini Hochberg (BH) correction to take
into account the multiple testing problem. At a 1% Benjamini-
Hochberg (BH) threshold, 1852 genes were significant, 1142 of
which in the Singh study, 423 and 982 in the LaTulippe and Stuart
studies, respectively. As shown in the venn diagramm given in
figure 1, only 111 genes were found in common between these three
datasets.

Fig. 1. Venn diagram comparing the lists of differentially expressed genes
at a 1% BH threshold obtained by each individual study

When binding all the expression data together and including a
study effect in the limma linear model, 2422 genes were found
significant at the same BH threshold. We compared this gene list
with the ones obtained with 1) effect size combination; 2) weighted
inverse normal p-value combination, both procedures being based
on limma moderated t-tests. For the effect size combination, 1487
genes were found to be differentially expressed at a 1% BH
threshold and for the p-value combination, 2637 genes were found
significant. Venn diagram corresponding to the comparison of these
methods is given in Figure 2. It was found that 1427 genes were
common between the three approaches. It can also be noticed that
the p-value combination method detected all the genes found with
the effect size combination method and all but 101 with the limma
including study effect analysis. On the other hand, 256 genes were
detected only by the p-value combination approach.

Fig. 2. Venn diagram comparing the lists of differentially expressed genes at
a 1% BH threshold obtained by combining p-values, effect sizes or binding
expression data together
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More results obtained with the standard and the proposed
moderated effect sizes, p-value combination or a global analysis
using standard and moderated t-tests are given in Table 1. Since
many replicates were involved, we could not observe on these real
datasets the gain of differentially expressed genes usually found
with shrinkage approaches. We could check that, in this case,
using the exact variance for standard effect sizes did not change
much the number of differentially expressed genes compared to
using the asymptotic variance. Indeed, the proposed effect size
combination based on usual t-tests and the exact variance detected
1507 differentially expressed genes while the z-score given by
the GeneMeta package found 1498 differentially expressed genes.
Table 1 also points out that p-value combination methods detected
more genes than either expression data combination or effect size
combination.

Table 1. Number of differentially expressed genes for the real dataset
provided by the different meta-analysis approaches at a 1% BH threshold

effect size p-value
combination combination

T-test 1507 2623
Limma 1487 2637
SMVar 1647 2730

As far as gene rankings were concerned, they were very similar.
Spearman rank correlations equalled 0.81 between the expression
data and effect size combination absolute values of test statistics
and equalled 0.92 and 0.91 between the p-value combination and
each of the two other methods, respectively. Only 33 genes differed
between limma including study effect and p-value combination top
1000 gene lists. Effect size combination appeared to have a slightly
different ranking with 353 out of its top 1000 genes not found in the
other top gene lists. Between the three methods, 554 differentially
expressed genes were found in common in the top 1000 gene lists.

4 SIMULATIONS
Expression data were simulated using a hierarchical model:

ysigr = Θsig + εsigr, εsigr ∼ N (0, V intrag)

Θsig = µig + usig, usig ∼ N (0, V interg) (18)

where ysigr is the expression level for replicate r of gene g in
condition i and study s. Note that the variances specified in (2)
are related but not identical to (18) because the equations in (2)
model effect sizes while the equations in (18) model expression
values. Parameters of simulation were obtained from the three real
datasets analyzed in the previous section. For µig , we considered
the empirical means of gene expression values observed in each
condition (tumor/normal) of these datasets. Mean expression values
were supposed to be equal for all genes but the 1427 genes
previously found in common between the limma including study
effect analysis, the effect size and p-value combination methods
(Figure 2). For the genes simulated as non-differentially expressed,
means in both conditions were equal to the average of the empirical

means of the two conditions of the Singh dataset. Variance
parameters were calculated from the three real datasets and kept
different for each gene. The within-study variances were equal
to the gene-by-gene empirical estimations of variances in these
datasets and were kept different per gene, condition and study.
Between-study variance was simulated as the observed between-
study variance averaged over the two conditions.

Expression data combination, standard and moderated effect size
combination, as well as p-value combination based both on standard
and moderated t-tests were compared in a simulation study with
300 runs. For each method, the number of True Positives (TP),
False Positives (FP), False Negatives (FN) and Sensitivity were
calculated. All these criteria were defined as in Marot and Mayer
(2009). In particular sensitivity was defined as follows:

Sensitivity = E(
TP

FN + TP
) (19)

As a compromise between False Discovery Rate and Sensitivity,
we also calculated the area under the ROC curve (AUC) for each
method. A few plots of ROC curves are given later in the paper. To
draw ROC curves, the number of False Positives, True Positives,
False Negatives and True Negatives were computed for all possible
cut-offs in the gene list (1-5000). This procedure was repeated for
the 300 simulations and the curves describe the dependency between
sensitivity E( TP

TP+FN
) and specificity E( TN

TN+FP
). The higher the

area under the curve is, the better the gene ranking is.
In these simulations we considered 3 or 5 studies and 6, 8 or

10 replicates for each study. When five studies were simulated,
parameters from the third and the fourth study equalled the ones
extracted from the Singh and LaTulippe datasets, respectively. For
simplicity, the same number of replicates was simulated in each
condition for all studies.

Table 2. Influence of the number of studies and replicates (Rep) on the
comparison of meta-analysis methods using moderated effect size (ES)
estimators for a BH threshold of 5%. The table shows average estimated
sensitivity (Sens), FDR and area under ROC curve (AUC) as well as their
estimated standard deviations into brackets on 300 simulations.

Rep (%) ES ESLimma ESSMV ar

3 studies 6 Sens 1.1(0.5) 4.8(0.9) 7.7(1)
FDR 0.2(1) 0.8(1.1) 1.3(1)
AUC 82.7(0.6) 83.3(0.6) 83.4(0.6)

8 Sens 7.0(1.1) 11.0(1.2) 13.8(1.3)
FDR 0.9(0.9) 1.2(0.9) 1.5(0.9)
AUC 86.4(0.5) 86.8(0.5) 86.9(0.5)

10 Sens 14.2(1.3) 17.5(1.3) 20.0(1.4)
FDR 1.4(0.8) 1.6(0.8) 1.8(0.8)
AUC 89.0(0.5) 89.3(0.5) 89.4(0.5)

5 studies 6 Sens 14.3(1.2) 22.9(1.4) 26.7(1.4)
FDR 0.5(0.4) 1.0(0.5) 1.5(0.7)
AUC 91.2(0.5) 91.6(0.4) 91.6(0.4)

10 Sens 47.2(1.4) 50.4(1.3) 52.1(1.3)
FDR 1.6(0.5) 1.7(0.5) 1.9(0.5)
AUC 95.8(0.3) 95.9(0.3) 95.9(0.3)
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It can be seen from Table 2 that the fewer replicates there were,
the larger the gain in sensitivity due to the shrinkage of effect sizes
was. Indeed, for five studies and six replicates in each condition, the
average sensitivity when using classical effect sizes was 14.3% and
it increased to 22.9% and 26.7% when shrinking with limma and
SMVar, respectively. All false discovery rates were below the 5%
threshold that was required, slightly higher for the SMVar approach
and lower for the standard effect size method. Similar ranking of
the methods was observed when changing from five to three studies,
with an increase in sensitivity for all methods for a given number
of replicates. For example, the sensitivity for the standard effect
size approach with ten replicates per condition was 47.2% for five
studies while only 14.2% when based on three studies. This was
expected since the total number of replicates used in the meta-
analysis was smaller in the latter case. Gene ranking was very
slightly improved by using moderated effect sizes. For example,
when only six replicates and three studies were considered, the AUC
calculated after a gene-by-gene meta-analysis equalled to 0.827 and
increased to 0.834 with a moderated effect size combination.

In the second set of simulations, we studied the influence
of between-study variability, comparing all the methods either
on datasets where no-inter study was simulated or on datasets
simulated as previously, accounting for between-study variation.
When simulating an homogeneous dataset, among the previous
1427 genes, only the genes significant at a 1% BH threshold in the
Singh dataset were simulated differentially expressed.

As shown in Table 3, presence of inter-study variability especially
influenced the performance of data expression combination
analyses. In these simulations, sophisticated meta-analysis methods
were compared to naive methods denoted ”joint” which gathered all
the expression data together whithout taking into account any study
effect. Since the limma package allows to include a study effect
in the linear model, we defined two types of limma joint analyses.
JointL1 referred to the very naive approach, while JointL2 was the
limma global analysis including the study effect in the linear model.
This second approach can be viewed as an alternative meta-analysis
method. As expected, when there was no inter-study variability, it
was better to bind the expression data from all studies and perform
a joint analysis, whatever the method chosen, to find differentially
expressed genes than to combine effect sizes. Indeed, the area under
the curve was higher for the joint analyses (0.994) than for the
effect size combination methods. Since effect size combinations
are more conservative, a larger difference was observed in terms
of sensitivity: it was around 84% for joint analyses, whereas it
was only around 70% for effect size methods. When simulating
between-study variability with parameters extracted from the real
prostate cancer datasets, the situation was reversed and meta-
analysis methods gave better sensitivities and better AUC than joint
analyses. The p-value combination methods outperformed effect
size combination methods with a sensitivity around 69 to 72% for
the first ones and 47 to 52% for the latter ones. False discovery rates
were a bit higher for p-value combination methods, which reflects
the fact that the expression value and effect size combinations
were much more conservative than the p-value combination. These
False Discovery Rates were, however, still around the required
5% Benjamini-Hochberg threshold. We also noticed that shinkage
improved the meta-analysis approaches within the same scheme
(either p-value or effect size combination). The AUC results
confirmed the good performance of p-value combination methods,

showing that the gain in sensitivity is not uniquely an artefact of a
higher False Discovery Rate.

Table 3. Influence of the presence of between-study variability (inter)
on 300 simulations with 10 replicates for both conditions in each of the
5 studies. Joint and JointSMV ar denote the t-test and the SMVar
global analyses, respectively. JointL1 and JointL2 are the global limma
analyses, the first one only gathering the expression data, the second one
including a study effect in the linear model. ES stands for effect size
combination and pv for p-value combination.

inter Sens (%) FDR (%) AUC (%)
no Joint 83.7(1.4) 4.7(0.9) 99.4(0.1)

JointSMV ar 84.8(1.4) 4.7(0.9) 99.4(0.1)
JointL1 84.2(1.5) 4.7(0.9) 99.4(0.1)
JointL2 84.1(1.4) 4.7(0.9) 99.4(0.1)
ES 66.8(1.9) 1.5(0.5) 99.2(0.2)
ESSMV ar 71.6(1.8) 2.2(0.7) 99.2(0.2)
ESLimma 69.8(1.8) 1.9(0.6) 99.2(0.2)
pv 82.8(1.5) 4.8(0.9) 99.3(0.1)
pvSMV ar 87.1(1.3) 6.1(0.9) 99.5(0.1)
pvLimma 84.8(1.4) 4.9(0.9) 99.4(0.1)

yes Joint 3.9(0.6) 0.1(0.4) 89.8(0.4)
JointSMV ar 3.9(0.7) 0.0(0.3) 90.0(0.4)
JointL1 3.8(0.7) 0.0(0.3) 90.0(0.4)
JointL2 57.2(1.2) 4.3(0.7) 93.9(0.4)
ES 47.2(1.4) 1.6(0.5) 95.8(0.3)
ESSMV ar 52.1(1.3) 1.9(0.5) 95.9(0.3)
ESLimma 50.4(1.3) 1.7(0.5) 95.9(0.3)
pv 69.3(1.1) 4.7(0.7) 96.4(0.3)
pvSMV ar 72.9(1) 5.3(0.7) 96.6(0.3)
pvLimma 71.2(1) 4.6(0.6) 96.6(0.3)

AUC numbers were illustrated by the ROC curves plotted in
Figure 3 (see a. and b.), which show the performance in terms of
gene ranking. We only focused on meta-analysis methods based
on the limma moderated t-test, since limma is the most commonly
used package for differential expression. While all curves were
similar when no inter-study variability was simulated, p-value
combination slightly outperformed the other approaches as soon as
between-study variability was introduced.

Similar results on the relative performance of meta-analysis
methods were obtained with fewer replicates or different numbers
of replicates per studies and conditions. For example, we simulated
3 studies with 6 replicates in each (see Figure 3 c.). We also tested
another design with 10 replicates in both conditions of study 1, 10
(resp.8) replicates in condition 1 (resp.2) of study 2 and 3 and 9
replicates in study 3 (see Figure 3 e.). With these settings, effect
size combination also outperformed a joint limma analysis including
a study effect, which was already observed in Table 3. It has to be
pointed out that this simulation study tends to favour the last method
as a simple additive study effect was considered. The p-value and
effect size combination methods might perform much better than
the simple limma linear study effect model in more complicated
settings. Nevertheless, we found particularly interesting the fact that
when adopting the real application design, that is to say 50 and 52
replicates in study 1, 3 and 23 in study 2 and 50 and 38 in study 3,
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Fig. 3. ROC curves comparing gene ranking with various settings for number of replicates and inter-study variability:
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the position of the curves was reversed between the last two methods
(see Figure 3 d.). In all cases, the p-value combination provided a
better gene ranking than the other combination approaches.

To evaluate the performance of meta-analysis methods, Choi
et al. (2003) and Conlon et al. (2007) defined the integration-driven
discovery rate (IDR) as the proportion of genes that are identified
as differentially expressed (DE) in the meta-analysis that were not
identified in any of the individual studies alone. In the same way,
Stevens and Doerge (2005) and Conlon et al. (2007) defined the
integration-driven revision rate (IRR) as the percentage of genes
that are declared DE in individual studies but not in meta-analysis.
While IDR represents the information gained by meta-analysis, IRR

measures the loss due to it.

IDR =
#genes[DE in MA and non DE in any IS]

#genes[DE in MA]
(20)

IRR =
#genes[DE in at least one IS and non DE in MA]

#genes[DE in at least one IS]
(21)

In these formulae MA refers to Meta-Analysis and IS to Individual
Studies. We found that interpretating Integration Discovery Rates
was quite misleading since they are highly dependent on the
number of differentially expressed genes found with each method.
Discoveries or Revisions, which correspond to the numerators of
the previous quantities are therefore given here in addition to these
rates.
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In this last part of the simulation study, we considered five studies,
with 10 replicates per study and between-study variability close to
the one observed in the real application. Results presented in Table
4 show that, in this setting, individual studies missed out many
genes. Even if all studies had the same number of replicates, large
differences could still be observed between the different studies,
depending on the within-study variances adopted for each study.
In particular, the first and the fourth studies, whose within-study
variances had been simulated from the Singh dataset, detected very
few genes compared to the other ones, with 16.5 genes DE on
average over the 300 simulations, corresponding to a sensitivity of
1.1%. On the other hand, the second and fourth studies, whose
within-study variances had been simulated from the LaTulippe
dataset, had the highest sensitivity, equal to 18.4%. From the
last column ”summary” of the table it can be noticed that most
of the genes found in the individual analyses were different from
one study to the other since there was an average of 469.6 genes
found in total when pooling the individual lists. In this global list,
the False Discovery Rate was higher than the 5% BH required
threshold, which was expected as there was no further correction
after combining gene lists.

Table 4. Results with limma analyses for individual studies (10 replicates
for both conditions in each study). Column ”summary” shows the number of
genes obtained when pooling the lists of DE genes from individual studies.

Study 1 Study 2 Study 3 Study 4 Study 5 Summary
DE 16.5(8.9) 273.7(16.7) 162.3(9.9) 16.0(8.7) 273.6(17.2) 469.6(18.8)

Sens. 1.1(0.6) 18.4(1.1) 10.7(0.6) 1.1(0.6) 18.4(1.1) 30.5(1.1)
FDR 4.4(5.4) 4.2(1.2) 6.1(2) 4(5.3) 4.2(1.2) 7.4(1.1)

On the other hand, Table 5 shows that performing meta-analysis
considerably increased the number of differentially expressed genes
and the number of true discoveries. As previously, the p-value
combination method had the best sensitivity, equal to 71.2% with
an FDR of 4.6%, higher than the FDR for effect size combination
(1.7%), but still below 5%. In terms of gene ranking, the p-value
combination also slightly outperformed the other methods with an
AUC of 0.966. The limma analysis including a study effect and the
moderated effect size approach also performed quite well with AUC
of 0.939 and 0.959, respectively. The three methods outperformed a
simple limma analysis on the combined expression values, that did
not take into account the between-study variability.

Although the IDR criterion has been used by several authors in
the literature, it does not check if the additional genes detected with
the meta-analyses are actually true positives. In order to compare the
different methods we therefore used the number of TP Discoveries.
Thus, for the effect size combination method, among the 426 genes
detected only with the meta-analysis and not with single study
analyses, about 414 were true positives, whereas there were 589 out
of 635 with the p-value combination method. This result confirms,
as previously observed on sensitivities, that p-value combination
outperforms effect size combination. Note that these Discoveries
would be even larger if gene-by-gene analyses had been performed
for individual studies as in Choi et al. (2003), instead of limma
analyses.

Table 5. Comparison of global limma analyses - the first one (JointL1)
only gathering the expression data, the second one (JointL2) including a
study effect in the linear model - with p-value and effect size combinations.
The number of differentially expressed genes (DE), FDR, Sensitivity (Sens.),
area under ROC curve (AUC), IDR, the number of discoveries (Disc.), IRR
and the number of revisions (Revis.) are averaged on 300 simulations, 10
replicates were simulated for both conditions in each study.

JointL1 JointL2 pvLimma ESLimma
DE 54.8(9.3) 853.1(19.1) 1064.3(17.7) 732.0(20.2)
Sens. 3.8(0.7) 57.2(1.2) 71.2(1) 50.4(1.3)
FDR 0.0(0.3) 4.3(0.7) 4.6(0.6) 1.7(0.5)
IDR 25.5(6.2) 54.8(1.8) 59.7(1.5) 58.2(1.8)
Disc. 14.1(4.3) 467.2(21.2) 635.1(21.8) 426.4(19.4)
TP Disc. 14.0(4.3) 432.7(18.8) 589.4(19.7) 413.8(18.4)
IRR 91.3(1.5) 17.8(1.6) 8.6(1.2) 34.9(2.1)
Revis. 428.8(18.2) 83.8(9.4) 40.4(6.5) 164(13.2)
TP Revis. 43.3(2.5) 8.2(2.7) 4.0(2.1) 16.3(3.6)
AUC 90.0(0.4) 93.9(0.4) 96.6(0.3) 95.9(0.3)

Concerning the loss of information due to the meta-analysis,
among the 470 genes identified by pooling the lists from the
individual studies, about 428 genes were dropped on average
when jointly analyzing the expression data from the five studies
in a simple limma analysis, whereas only about 40 (resp.
164) when combining p-values (resp. effect sizes). The p-value
combination method therefore eliminated fewer genes already found
by individual studies than the alternative methods. It is, however,
interesting to note that the genes which were lost by meta-
analysis were mainly false positives. In particular, even if about 40
significant genes found in single analyses were lost by the effect
size combination, the true positives among them represented only
4 genes. Therefore, more false positives were lost thanks to the
effect size combination than with the p-value combination, which
might explain the lower false discovery rate for the former method.
The same phenomenon was observed for meta-analysis methods
when applying the real application design. Since the number of
replicates was large, meta-analysis influenced more accuracy than
sensitivity. In this case, IRR was higher than IDR (e.g. with p-value
combination: 12.3% vs 9.6%). Concerning the naive global limma
analysis, conclusions were completely different from the previous
ones. With this setting, there were a lot of discoveries (3457 genes
on average) but many of them (3382 genes) were false positives.
That explains why the corresponding ROC curve plotted in Figure 3
d. was badly positionned compared to the other ones.

5 DISCUSSION
Extension of shrinkage approaches from moderated t-tests to effect
sizes was a natural way to take into account the small sample
size in microarray experiments. Thus, not only sensitivity is
gained via meta-analysis but also no sensitivity is lost due to the
inefficiency of gene-by-gene analyses, especially when there are few
replicates. The proposed moderated effect size combination were
able to improve traditional effect size meta-analysis approaches.
In the comparison study it was found, however, that p-value
combination methods usually outperformed effect size combination
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approaches. The simulation study showed that in various settings,
for different numbers of studies, replicates per study and between-
study variability close to the one observed between real prostate
cancer datasets, the p-value combination methods outperformed the
other meta-analysis methods regarding sensitivity and gene ranking.
It is to be noted that for interpretability reasons p-values have
to come from the same statistic, and preferably from moderated
t-tests such as limma (Smyth, 2004) or SMVar (Jaffrézic et al.,
2007). Effect size combination methods were found to be more
conservative and offered more accurate results in terms of false
positives. A limma analysis including a study effect in the linear
model also appeared to be a valuable alternative for meta-analysis.
Bayesian meta-analysis methods (Conlon et al., 2007; Scharpf et al.,
2007) have not been compared in this simulation study due to very
large computing time requirements. However, this does not preclude
their potential usefulness in the future.

When comparing the different methods, we found it necessary to
report the number of True Discoveries, and not only the number of
Discoveries or the Integration Discovery Rate criterion. It is indeed
usual to find new genes with meta-analysis, but it has to be checked
that they are not false positives. Of course, exact number of True
Discoveries can only be known in simulations; for real datasets,
only very few genes tend to have their status validated in additional
experiments. The number of Revisions or the Integration Revision
Rates also have to be considered to evaluate the number of genes
lost in the meta-analysis compared to single study analyses. IRR
might be higher than IDR in cases where large number of replicates
are involved in each individual study.

In this paper, unbiased estimates were given for the proposed
moderated effect sizes. Both bias and exact variance of the effect
sizes could be calculated with limma and SMVar because both
methods give the distribution of the test statistic under the null
hypothesis and provide the associated degrees of freedom. The
method could not easily be extended to variance modelling papers
where the null distribution is not known, such as SAM (Tusher et al.,
2001) where the authors use permutations. We also think that the
good knowledge of the number of degrees of freedom improved the
p-value inverse normal transformations before their combinations
and also explains the excellent results of these methods in this paper.
In a way, the ability of effect sizes to handle variance components
was matched by p-value combination using these moderated t-tests.

With the growing amount of publicly available microarray
databases, there will be an increasing interest in combining data
from different platforms. Technically our metaMA package allows
this integration of different platforms as contrary to the GeneMeta
package it can handle missing data. Thus genes not spotted
onto some arrays could be treated as missing. Moreover, p-value
combination facilitates cross-platform studies. We would however
recommend to avoid mixing data from different platforms, if the
aim is to increase sensitivity. The minimum we would advise is to
only keep genes which could correspond to a common identifier
in order to delete missing not at random data. In the case of
cross-platform studies, the most difficult job is to match identifiers
between platforms; it must be kept in mind that meta-analysis
requires a certain data quality (Larsson et al., 2006).
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4.2 Complementary results

4.2.1 Regarding effect sizes

Effect sizes d are distributed as (1/
√
ñ) times a non central t-variate with m

degrees of freedom (m = ni+nj−2 = n−2) and noncentrality parameter
√
ñδ

Hedges (1981). For shrinkage effects sizes, m corresponds to the degrees of
freedom driven from the associated moderated t-statistics, ñ = ninj/(ni+nj)
for limma and n = ni + nj for SMVar. From the mean of the noncentral dis-
tribution (Johnson and Welch, 1939), we obtain:

E(d) = δ/c(m)

with
c(m) =

Γ(m
2

)
√

m
2

Γ(m−1
2

)
.

This leads to equation (13) of the previous paper: the unbiased estimators
of effect sizes are: d′ = c(m)d.

An accurate approximation for c(m) is given in Hedges (1981):

c(m) ≈ 1− 3

4m− 1
.

This approximation has a maximum error of 0.007 when m = 2, and is
accurate to within .00033 when m ≥ 10.
When m = n − 2, we obtain the formula given in Choi et al. (2003) and
implemented in GeneMeta:

d′ = d− 3d

4(n− 2)− 1
.

Note that the variance of the noncentral distribution (Johnson and Welch,
1939) directly provides the exact form of the variance given in equation (10) of
our previous paper. Figure 4.1 plots the exact and the asymptotic variances
for effect size estimates when the number of replicates per condition n is
lower than 30 and d = 2.

Red points correspond to n ≥ 10. To illustrate the difference between re-
sults induced by the use of each variance, we artificially split the Singh dataset
with 10 replicates in each condition, leaving out the two last prostate tumor
samples. We then applied the effect size combination with only changing
the variance. Although the difference does not look important for n = 10 in
Figure 4.1, 116 genes were lost. We can easily imagine the difference people
would have with less replicates for which the difference between variances is
significant.
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Figure 4.1: Exact variance vs. asymptotic variances for effect size estimates
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4.2.2 AUC vs. sensitivity

We used both AUC and sensitivity to compare different methods. Indeed,
for the same Benjamini-Hochberg threshold, the observed False Discovery
Rate in simulations was lower for the effect size combination methods than
for the p-value combination methods. Looking at AUC enables to compare
sensitivities at similar observed False Discovery Rates. This is of great in-
terest when only gene ranking is interesting. Of course, there is always a
price to pay in sensibility when the False Discovery Rate is decreased. Nev-
ertheless, Table 3 in the previous paper emphasizes the limitations of the use
of the AUC as a criterion to discriminate between methods. In fact, when
inter-study variability was simulated, the AUC was still found to be equal to
89.8% for the naive joint analysis, whereas the sensitivity was extremely poor
(equal to 3.9%). This is a very important drawback for practical biological
applications. Indeed, even if the real problem comes from the fact that the
Benjamini Hochberg correction after effect size combination is too conserva-
tive, in practice, when people use R packages, they most of the time choose
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the option by default. In metaMA, we choose to use the BH correction.
Therefore, sensitivity in simulations might be a better criterion to discrimi-
nate between methods if it is compared at the same BH required threshold.
It is necessary to check that the corresponding False Discovery Rates are
around the required one to avoid to overstate the strength of the results.
Since in our case, they were all below or around the required threshold for
meta-analyses methods, we clearly advise p-value combination to biologists
who use metaMA. Indeed, when they ask for a given FDR, they have more
sensitivity while keeping this reasonable FDR with p-value combination than
with effect size combination.

In conclusion, when comparing frequentist methods, p-value combination
was found to outperform effect size combination methods. This was especially
true since we considered moderated tests to calculate p-values. Care has to
be taken, however, when calculating p-values. As we saw in the first chap-
ter, variance modelling is really important. In gene expression analysis, the
change of the null distribution, for example the use of normal distributions
instead of Student distributions and their appropriate number of degrees of
freedom has a large impact, leading to losses or gains of hundreds of genes.
Concerning the effect size calculations, the between-study variability was here
estimated using the method of moments. Effect size combination associated
to other methods to estimate between-study variability might give better re-
sults than p-value combination. In the next chapter, we will adopt Bayesian
approaches to estimate the inter-study variability. In particular, this vari-
ability will be modelled in order to enable different inter-study variabilities
over conditions.
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Chapter 5

Bayesian meta-analysis

Bayesian-based meta-analysis methods for gene expression studies have shown
a great promise in the literature (Conlon et al. (2007),Scharpf et al. (2007)).
We did not include any of these methods in the comparison study of the
previous chapter due to the very large computing time required for these
methods. We were, however, interested in testing at least one of these meth-
ods, hoping that Bayesian approach could help estimating more precisely the
between-study variance.

5.1 XDE: a Bayesian model for cross-study dif-
ferential expression

The XDE package is a Bioconductor package and thus belongs to this project
gathering many tools for gene expression studies accessible via the R software.

The statistical method implemented in this package is presented in Scharpf
et al. (2007). While we used to note the expression level ygcsr for gene g, study
s, replicate r, and condition c (c = 1, 2), we kept the notations of the paper.
Thus, ygcsr becomes xgsp, p corresponds to the study while s denotes the
sample (replicate). An indicator variable ψsp indicates to which condition
belongs the sample s of study p: ψsp ∈ {0, 1}. A binary parameter δg indi-
cates the state of differential expression (δg = 1 if the gene is differentially
expressed, δg = 0 if not). The basic model is written as follows:

xgsp|νgp, δg,∆gp, σ
2
g0p, σ

2
g1p ∼ N (νgp + δg(2ψsp − 1)∆gp, σ

2
gψspp)

∆gp represents half the average difference between expression levels across
phenotypes for gene g in study p.

If the gene is differentially expressed (δg = 1), then

xgsp|νgp, δg = 1,∆gp, σ
2
g0p, σ

2
g1p ∼ N (νgp + ∆gp, σ

2
g1p)
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For the next levels of the model specification, we refer to Scharpf et al.
(2007). Since this Bayesian model involves a lot of parameters, we first used
the ones by default. It was impossible for us to run the main function with
a dataset of 12625 genes, the R session crashing before the end. Since the
use of the package was experimental, we created a subset of 500 genes simu-
lated as in our previous paper with 25 differentially expressed genes. When
analysing this subset with metaMA, using the Limma p-value combination
method and a 5% Benjamini Hochberg threshold, 23 genes were differentially
expressed. All were true positives, only two genes were missing. The IDR
equalled to 78% and there was no gene found in individual studies which
was lost by meta-analysis. While the results with metaMA were obtained
in less than two seconds, running the main function in XDE asking 25000
iterations on the same dataset took a CPU time of 16 hours and 25 minutes.
In addition to that, this main function (‘xde’) stores the MCMC iterations
in an object and in written files but does not immediately give the differen-
tially expressed genes over studies. For that, at least two more functions are
needed (‘calculateBayesianEffectSize’ and ‘PosteriorAvg’, ‘Avg’ standing for
‘Average’). Since R met memory problems when running these last functions,
I wrote to Robert Scharpf, the first author of the paper. He answered me
very kindly that the problem occured because some of the parameters are in-
dexed by gene, sample, and mcmc iteration and files grow large very quickly.
One approach is to set the thinning parameter to 10, which means save every
10th iteration to file. In our specific case, that would mean that posterior
averages are only calculated on 2000 iterations since I chose a burn-in of
5001 iterations that is to say that the first 5000 iterations are not taken into
account in the calculations. Robert Scharpf also told me that they mostly
worked with 3 studies. With 5 studies the covariance matrix for νg and ∆g

are much slower mixing. They are working on improvements to the propos-
als for the covariance matrices that will improve mixing when combining a
larger number of studies. As far as I was concerned, I then only kept three
studies with 500 genes out of the five I initially simulated. Analysing these
3 studies with metaMA, 19 true positives were found at a 5% Benjamini
Hochberg threshold. Once again, there were no false positives and no genes
lost due to meta-analysis. IDR was 74%. Using XDE with 25000 iterations
comprising a burn-in of 5001 and only saving 1 out of 10 also gave good re-
sults. There were 23 genes having a posterior probability to be differentially
expressed higher than 0.5. Among them, 22 genes were true positives. The
0.5 threshold was chosen arbitrary, it was kept because its related False Dis-
covery Rate was reasonnable (1/23=4.3%). In other cases or datasets, the
threshold could be a higher a posteriori probability. In fact, it is not possible
to require a given FDR before the analysis (as it is with metaMA) but several
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thresholds have to be tried and then False Discovery Rates calculated. If I
similarly process with metaMA and keep the 23 top differentially expressed
genes, then 21 genes are true positives. On this example, the Bayesian ap-
proach performed slightly better than the frequentist one with the price of a
higher computing time. XDE also offers other advantages like the possibility
to study discordances (when a gene is up-regulated in one or more studies
and down-regulated in others) and concordances between studies and thus
detect studies which should be removed from meta-analysis.

5.2 Simplification of the Bayesian hierarchical
model

In parallel from the XDE use, we tried to simplify the model in order to gain
computing time. The model we proposed for gene g, study s, replicate r,
and condition c (c ∈ {1, 2}) is the following:

ygcsr ∼ N (µgcs, σ
2
gcs)

µgcs ∼ N (θg + δg(1− 2Kc), τ
2
gc)

Kc is the indicator variable denoting the condition (Kc = 1 for condition 1,
0 for condition 2). It has the same role as the previous ψsp. The following
δ must not be confounded with the previous one, which we now prefer to
note I since it represents an indicator to know if the gene is differentially
expressed. The difference between conditions δ is modelled as follows:

δg = Igδ
∗
g

Ig ∼ Ber(p)

(p represents the proportion of differentially expressed genes)

δ∗g ∼ N (0, φ2)

p ∼ beta(a, b)

θg ∼ U [a1, a2]

In the next level, all variances follow inverse gamma distibutions, that is
to say that the inverse of variances follow a gamma distribution. Parameters
were chosen uninformative (0.001 and 0.001). We used either WinBUGS14 or
OpenBUGS 3.0.3 to estimate parameters. To avoid ‘traps’ (Winbugs crashs)
after 2000 iterations which were thus not linked to badly specified inits, we
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had to shrink within and between variances over genes. For each condition
c ∈ {1, 2}

ln(σ2
gcs) ∼ N (mintracs, tintracs)

ln(τ 2
gc) ∼ N (minterc, tinterc)

Means minter and mintra were given normal distributions as priors while
standard errors were assumed to follow uniform distributions. We adjusted
parameters of the distribution so that they still stay uninformative but with-
out allowing too large variability to avoid traps due to infinite inter-study
variances. Figure 5.1 illustrates a bad choice of parameters for between study
standard errors.

Figure 5.1: Densities of shrinkage parameters sdintra for within-study vari-
ability and of inverse of between study variability ‘tau.squared.cond2’

When the parameter of the uniform is too small, we clearly see that the
a posteriori distribution has been truncated. This leads to infinite variances.
Indeed, knowing that in Winbugs, the second parameter of a normal disti-
bution is the precision (inverse of the variance), ‘tau.squared.cond2’ which is
very close to zero represents the inverse of τ 2 which here is infinite for the 7th

gene. On the contrary, figure 5.2 reflects good choices of shrinkage parame-
ters: a posteriori distributions differ from a priori distributions. Histories of
iterations look correct as shown in the example given at the bottom of the
figure.

Despite these good results on shrinkage parameters, we had many diffi-
culties to detect the true differentially expressed genes. Actually, this was
not surprising since posterior distributions looked like the prior distributions
for p, φ2 and δ∗. Even when forcing p to be very close to the true proportion
of simulated differentially expressed genes by decreasing the variance of the
beta distribution and leaving its mean equal to the true proportion, δ∗ had a
posterior distribution similar to the prior one. At least, decreasing the vari-
ance of the beta distribution improved the shape of the p autocorrelations.
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Figure 5.2: Densities of shrinkage parameters and an example of good history
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Figure 5.3: Autocorrelations of p and of the inverse of τ 2

On figure 5.3, we can see that a thin of four iterations (only saving one
out of four iterations) was not enough (see a)). When decreasing the variance
of the beta (see b)), autocorrelations diminish more quickly. The autocorre-
lations of the inverse of τ 2 (see c)) are given as an example of good shape for
autocorrelations. We tried different priors for δ∗ (uniform, normal distribu-
tions with different variances) and had to eliminate uniform priors leading to
WinBUGS traps. We then left normal priors in order to have conjugate laws.
Concerning φ2, we first assumed it to be dependent on the gene and each φ2

g

followed an inverse gamma distribution. We also assumed a uniform on the
φ2
g variance, which did not work either. We then assumed one common φ2

for all genes, replacing it by different fixed values. Since the problem was not
solved, we tried another model without the indicator variable I and assuming
either uniform or log-normal distributions for φ2 which becomes the variance
of the δ distribution (δ∗ having disappeared at the same time as I). At that
point, posterior distributions for φ2 were different from the prior ones (see
figure 5.4) but the value found for φ2 was very small, whatever the prior
distribution chosen was. This led to bad histories and to strange δ densities.
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Figure 5.4: Densities, statistic and histories of φ2
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We do not know yet how to improve the model which clearly does not
work as it is. We are trying to look in another direction: Bayesian mixture
models. Indeed, since 95% of the genes are not differentially expressed, their
φ2 value is really 0. The following graph (figure 5.5) represents the true
distribution of δ, that is to say the simulated difference between conditions.

Figure 5.5: Simulated differences between conditions

We thus want to include in the hierarchical model 3 distributions in
the mixture separating non differentially expressed genes, under and over-
expressed genes. This is an outgoing work.

To conclude this chapter, Bayesian analysis proved to be able to perform
as well as or even better than frequentist analysis as shown with the use of
the XDE package. We thus hope that it will help analysing datasets where
a common inter-study variance can not be assumed for both conditions and
datasets for which frequentist analysis is not adapted. Bayesian analysis is,
however, very time consuming and trying to simplify a complex model also
requires expertise and time.
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Discussion

Three main approaches have been developed in order to solve the small sam-
ple size problem in microarray experiments: variance-covariance modelling,
sequential and meta-analysis. The main application considered was the re-
search of differentially expressed genes and we especially concentrated on
studies where differences were low and very few differentially expressed genes
were expected. Thus, an important criterion used in this PhD was sensitivity,
which was more relevant than gene ranking in our applications.

The first part of this PhD proposed shrinkage approaches to model variance-
covariance matrices. Shrinkage enables to decrease the number of parameters
to estimate - which increases sensitivity - while still keeping a certain flexi-
bility. Information of one particular gene is enriched from information from
all other genes. We saw that even if the modelling was completely different
from mixture models, it performed similarly to already existing approaches
like Varmixt (Delmar et al., 2005). Thanks to the SMVar package which
implements the structural model for variances, the approach we proposed
has been used not only by biologists we work with but also by people we do
not know, as revealed by the questions I received. Concerning the covari-
ance structure modelling, the proposed methods were found to perform well
compared to previously proposed empirical Bayesian approaches, and outper-
formed the gene-specific or common-covariance methods in many cases. The
application is, however, not straightforward. In addition to constraints on
the number of replicates which must be higher than the number of measures
when adopting an empirical bayesian approach, the question about null dis-
tibutions and their associated degrees of freedom remains open and turns out
to be very important in the context of multiple testing. The paper accepted
in CSDA however illustrates the advantage of the use of a structural model
on diverse parameters of covariance matrix decompositions when measures
are highly correlated.

The second part of this PhD pioneered an innovative approach to mi-
croarray experiment designs. While sequential analysis has a long standing
tradition in clinical trials in order to reduce costs of the experiments, this
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concept had never been introduced for microarrays. Sequential approach
enables us to readdress the question of sample size after each stage, which
is useful when there is no or little prior knowledge available, which would
allow an accurate power calculation. What is more, the stopping rule guar-
antees to keep a reasonable power when reducing sample size. One inter-
esting feature of the sequential approach for microarrays is that, in contrast
to a univariate situation, the large number of genes tested simultaneously
prevents the interim analysis from introducing a serious bias to the final p-
values. Thus, results from different stages can be combined by meta-analysis
methods and error rates can be controlled by applying standard procedures
(e.g. the Benjamini-Hochberg rule) to the p-values from the combined stages.
We suggested stopping rules based on either the estimated number of true
positives or the estimated sensitivity and compared several mixture mod-
els that can be used for sensitivity estimation. Our results on simulations
and real data sets showed that the application of sequential methods was
able to reduce sample-sizes and thus costs in microarray experiments. The
hope is then to better organize experiments by including samples saved from
some experiments in other ones which would need more samples to increase
sensitivity.

The first two parts of this PhD thesis have been linked in the third part on
meta-analysis. Indeed, meta-analysis was introduced in sequential analysis
in order to combine analyses coming from different stages. In the last part,
we extended this meta-analysis to different studies. We especially based our
comparison on sensitivity estimates since we assumed that the main problem
was the lack of sensitivity in individual studies due to the lack of samples
available. In this case, p-value combination outperforms effect size combi-
nation. Concerning the gain in accuracy and the loss of false positives, we
found that performance in terms of gene ranking was almost similar between
moderated effect size and p-value combination. Thus, both methods present
similar interest for people who already have enough differentially expressed
genes in individual studies and who integrate data in order to provide better
predictors rather than increasing sensitivity. In our case, since we sometimes
found less than 10 differentially expressed genes per study at a 5 % Ben-
jamini Hochberg rate, we were very interested in sensitivity and thus advise
p-value combination. Of course, increasing sensitivity has a cost in terms of
false discovery rate which often increases at the same time but our simulation
studies checked that FDR stayed below a required threshold. We prefer to
combine studies coming from similar platforms to avoid important revision
rates caused by difficulties to match identifiers between platforms but do not
exclude the possibility to integrate data from different platforms. We also
noticed that commercial chips provided better quality than home-made chips
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and sometimes the cost paid for the time lost to clean data would be simi-
lar to the additionnal cost of commercial chips. We are continuing working
on Bayesian analysis in order to provide a better estimation for inter-study
variability.

To conclude, although technological progresses have been achieved to
produce high quality microarrays, their use for transcriptome analysis still
has some limits. While deep sequencing technics are more and more improved
and less and less expensive, they offer an alternative to microarrays since
they offer many advantages like detection of small RNAs or rare transcripts
and non dependence of the genome annotation. Nowadays, they are more
used as complementary technics rather than replacement ones but maybe one
day, microarrays will become rare experiments. No matter what happens,
statistical methods developped in this PhD can be easily fitted to these other
types of high dimension biological data.
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Glossary

Alternative splicing: Process by which the exons of the RNA produced by
transcription of a gene are reconnected in multiple ways during RNA splic-
ing. The resulting different mRNAs may lead to different proteins.

CGH (Comparative genomic hybridization): Method for the analy-
sis of copy number changes (gains/losses) in the DNA content of a given
subject’s DNA and often in tumor cells. Array CGH detects genomic copy
number variations at a higher resolution level than chromosome-based CGH.

ChIP on chip: Chromatin immunoprecipitation on Chip. Technique used
to investigate interactions between proteins and DNA in vivo.

Copy number variation (CNV): Segment of DNA in which copy-number
differences have been found by comparison of two or more genomes.

Exon: DNA region within a gene that is translated into protein.

Fluorophore: Component which causes a molecule to be fluorescent.

Functional genomic: Study of gene functions, and their expression regu-
lation and interactions.

Hybridization: Recognition and interaction of two complementary sequences.

Intron: DNA region within a gene that is not translated into protein.

Metabolome: Collection of all the organic compounds in a biological or-
ganism.
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mRNA: messenger ribonucleic acid. Macromolecule formed by a single
helical strand of similar structure as one of the two strands which consti-
tute DNA. RNA differs from DNA with the replacement of a sugar, the
deoxyribose, by another one, the ribose and the replacement of a nucleobase,
thymine, by uracil.

Polymerase Chain Reaction: Amplification technique to increase DNA
quantity from a given sample.

Proteome: Collection of all the proteins of an organism.

RNA splicing: Modification of an RNA after transcription, in which in-
trons are removed and exons are joined.

SNP: Single Nucleotide polymorphism. DNA sequence variation occurring
when a single nucleotide in the genome (or other shared sequence) differs
between members of a species (or between paired chromosomes in an indi-
vidual).

Tiling arrays: Genome tiling arrays consist of overlapping probes designed
to densely represent a genomic region of interest, sometimes as large as an
entire human chromosome. The purpose is to empirically detect expression
of transcripts or alternatively splice forms which may not have been previ-
ously known or predicted.

Traduction: Synthesis of a protein from a mRNA.

Transcription: Process by which the nucleotides sequence of a gene is
copied as one strand of RNA.

Transcriptome: Collection of all mRNA.
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of real and simulated 2-colour microarray data that were distributed among participants. The
real data consisted of 48 microarrays from a disease challenge experiment in dairy cattle, while
the simulated data consisted of 10 microarrays from a direct comparison of two treatments
(dye-balanced). While there was broader agreement with regards to methods of microarray nor-
malisation and significance testing, there were major differences with regards to quality control.
The quality control approaches varied from none, through using statistical weights, to omitting
a large number of spots or omitting entire slides. Surprisingly, these very different approaches
gave quite similar results when applied to the simulated data, although not all participating
groups analysed both real and simulated data. The workshop was very successful in facilitating
interaction between scientists with a diverse background but a common interest in microarray
analyses.

gene expression / two colour microarray / statistical analysis

1. INTRODUCTION

The recent development of high throughput gene-expression technologies,
such as microarrays, has given rise to a plethora of new research hypothe-
ses and possibilities. Extensive reviews are available about the application [3],
design [6], and analysis [12] of microarray studies. In livestock, microarrays
have been proposed to study gene-expression in the parasite (Malaria [13];
Trypanosomosis [8]) as well as host response following infection (e.g. My-
cobacterium paratuberculosis infection in cattle [7]; Eimeria infection in poul-
try [11]). Other applications in livestock include the evaluation of the effects
of diet on gene expression in beef cattle [4] and gene expression differences
related to differences of muscling in pigs [5].

In a recent review, Allison et al. outline the areas of consensus and out-
standing questions with regards to microarray analysis [2]. Some points of
consensus regarding data analysis as presented by those authors [2] were the
following: (1) many methods exist for the pre-processing (normalisation, etc.)
of two-colour microarrays, but there is no clear winner and none were dis-
cussed in detail; (2) using fold-change alone as a test for differential expres-
sion is inefficient; (3) false discovery rate is a good alternative to conventional
multiple testing; and (4) unsupervised classification is overused and should be
validated using re-sampling techniques. The most relevant outstanding ques-
tions were [2] the following: (1) the best image processing algorithm; (2) the
evaluation of data quality; and (3) the assessment of intersections between sets
of findings within and between experiments.

Given the lack of consensus in many areas, especially for the two-colour
arrays that are abundant in livestock research, we organised a workshop on the
analysis of microarrays. Conferences dealing with the statistical analyses of
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microarrays using common sets of data have been successfully organised annu-
ally in the United States since 2000 [10] (http://www.camda.duke.edu/). These
conferences have been large scale events, attracting 250 or more participants.
In contrast, the present workshop was limited to 35 participants to maximise
interaction and focussed on microarray experiments in the context of the ge-
netics of host-pathogen interaction in livestock. The workshop was organised
through the EC-funded network of excellence (NoE) EADGENE (European
Animal Disease Genetics Network of Excellence for Animal Health and Food
Safety; http://www.eadgene.info/).

2. WORKSHOP GOALS

The main aim of the workshop was to bring together scientists from within
the EADGENE network with an interest in microarray analyses and to facil-
itate interaction and future collaboration between these scientists. In order to
focus the discussions, the workshop was organised around two sets of data, real
and simulated, that were distributed among the participants prior to the work-
shop. The methods of analysis, the interpretation of results and how to use
the (quite complex) real experimental design were left to the participants. This
was advantageous as it led to very different approaches by different groups.
The diversity of approaches was a major contributor to our ability to identify
outstanding questions in the treatment of microarray data.

The statistical aspects of a microarray study include the design of the study,
the quantification of the hybridisation intensities, the pre-processing and nor-
malisation of data, the inference and classification of results, the biological in-
terpretation and finally the validation of differentially expressed genes as well
as other follow-up studies. For practical reasons this workshop only dealt with
the following aspects of microarray analysis: (1) some of the pre-processing
of the raw microarray intensities (mainly quality control); (2) normalisation of
the microarray data; (3) the detection of differentially expressed genes; (4) the
clustering and classification analyses of the differentially expressed genes as
well as the biological interpretation (real data only).

The workshop format allowed comparison of results for a real microarray
experiment that was relevant to the remit of EADGENE as well as simulated
data with known parameters, which facilitated a comparison of performance
between groups. However, it must be stressed that the interaction among sci-
entists, facilitated through common data sets, was the main objective.
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Table I. Overview of workshop participants and acronyms used to describe the groups
throughout the four articles.

Acronym Affiliation Group Real Simulated
size data data

AARHUS University of Aarhus, Tjele, Denmark 6 x
CDB University of Córdoba, Spain 3 x
IAH_C Institute for Animal Health, Compton, UK 1 x
IAH_P Institute for Animal Health, Pirbright, UK 1 x
IDL Animal Sciences Group Wageningen UR, 2 x x

Lelystad, NL
INRA_J INRA, Jouy-en-Josas, France 3 x x
INRA_T INRA, Castanet-Tolosan, France (8, 6)a x (8) x (6)
ULg University of Liege, Liege, Belgium 2 x 1b x
PTP Parco Tecnologico Padano, Lodi, Italy 3 x
RIBFA Research Institute for the Biology of Farm Animals, 5c x

Dummerstorf, Germany
ROSLIN Roslin Institute, Roslin, UK 4 x x
SLN University of Ljubljana, Slovenia 2 x x
WUR Wageningen University and Research Centre, NL 2 x

a This group included six members for the analysis of simulated data (four from INRA-Station
d’amélioration génétique des animaux and two from INRA-Laboratoire de génétique cellulaire)
and eight members for the analysis of real data (four from INRA-Station d’amélioration géné-
tique des animaux, three from INRA-Laboratoire de génétique cellulaire and one from the Paul
Sabatier University).
b Two members from different groups within the University of Liege analysed and presented
independently.
c This group included two members from Ludwig-Maximilian University in München, and one
member of the University of Veterinary Medicine in Hannover.

3. THE WORKSHOP PARTICIPANTS

The data was analysed by 42 participants, representing 14 research
groups from 11 EADGENE partners. During a 3-day workshop, attended by
31 participants, all groups presented and discussed their findings. The details
of the different groups as well as their acronym and group sizes are presented
in Table I. While all participants had shared interests through their involve-
ment in EADGENE, they had varying levels of experience in the analyses of
microarray data and different interests in taking part.

Some participants were routinely involved in the analyses of microarrays in
their own institutes while others were using this workshop to gain ‘hands-on’
experience with the analyses of microarray data. Some groups had developed
sophisticated tools to deal with a specific aspect of microarray analyses and
used the workshop to demonstrate or test-drive their approach. Because the
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real data was from a mastitis experiment, some participants had a particular
interest in this disease and its study via microarray analyses.

The detailed results on the analyses of the real data are given by Jaffrézic
et al. [9] for the quality control, the normalisation and statistical testing and
Sørensen et al. [14] for the multiple gene analyses. The detailed results of the
simulated data analyses are presented by Watson et al. [15].

4. OVERVIEW OF DATA

4.1. Real data

The real data consisted of 48 microarrays from an artificial infection ex-
periment in dairy cattle with several time points and two different infectious
agents: Escherichia coli and Staphylococcus aureus.

For further details on the experimental procedures see Jaffrezic et al. [9].
The microarray experiment was carried out using the Bovine 20K

array (ARK-Genomics: http://www.ark-genomics.org/). A reference de-
sign, without dye-swap, was used and the reference sample was made
up of a pool of all 48 RNA samples. The resulting microarrays
were scanned and data were extracted using BlueFuse (BlueGnome,
http://www.cambridgebluegnome.com/bluefuse.htm). No further adjustments
or normalisations were made to these data prior to distribution to the partici-
pants. The distributed data included an automated annotation of the microarray
provided by Mark Fell (Roslin Institute).

4.2. Simulated data

The microarray data were simulated using Simage [1] (http://bioinformatics.
biol.rug.nl/websoftware/simage/simage_start.php). This provides a menu-
driven interface in which the user can define gene effects as well as numerous
noise factors. Using “Simage-R Parameter” we estimated summary statistics
from a randomly selected microarray slide from the real data and used this to
simulate 10 slides of a direct comparison (A versus B) where every second
slide had treatments reversed for dyes. Although the parameter settings for the
simulated data were derived from a real microarray, a lot of noise was added to
really test the QC and normalisation approaches of the various groups. From
the 2400 genes that were simulated, 624 were differentially expressed (264 up
regulated from A to B and 360 down regulated).
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4.3. Differences between real and simulated data

While the simulated data provided a simple A versus B comparison, the real
data had the components of time and type of bacteria that were used to infect
the cows. The researcher could ask different questions: e.g. which genes are
differentially expressed following infection with a specific pathogen? At what
time post infection is the differential expression most prominent? What genes
are only differentially expressed following infection with one pathogen and not
the other? Although unintended as a discussion area for the workshop, the real
data did illustrate a problem in experimental design, which was not discovered
by a pilot experiment, namely the dependence in gene expression between the
udder quarters in the real data.

The results from the workshop may at first glance seem contradictory: the
real data results were quite different between groups (both in numbers of dif-
ferentially expressed genes and gene order) [9] while the results from the sim-
ulated data indicate that most of the approaches gave good and comparable
results [15]. It could be argued that methods that give similar results for sim-
ulated data should give similar results for real data, if the two sets of data are
comparable. The difference between the results from real and simulated data
is most likely due to differences in the expected statistical power to detect dif-
ferentially expressed genes between the two sets of data: while the real data
consisted of 48 microarrays, any comparison between two time points within
an infection had only four microarrays contributing to each time point, while
the contrast was indirect via a reference design. The simulated data consisted
of 10 microarrays for a direct A versus B comparison making it more powerful
than the comparisons within the real data. It could be argued retrospectively
that for comparison of methods the real data had too little power and too many
possible scenarios to be tested, while the simulated data had too much power
to reveal subtle differences between methods. This emphasises the benefits of
this kind of workshop, since this finding was only apparent after combining
and contrasting the approaches and results of the different groups, and the ob-
servation will be fed forward into future workshops.

In the simulated data only two levels of differential expression were simu-
lated: one for up-regulated genes and one for the down-regulated genes. Even
so, the mixture model distributions of test statistics showed that the various
noise contributions produced symmetrical distributions for the up and down
regulated genes. The simulated data was notably different from real data [15],
but still allowed valuable comparisons of approaches to analysis. The simu-
lated data did confirm that when the power of an experiment is high, many
of the specific differences between the methods that are applied may become
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less crucial, provided that they deal adequately with high levels of technical
bias or noise. At the same time, many microarray experiments have moderate
to low power and hence comparison of methods on the basis of real data has
considerable merit.

5. QUESTIONS, CONSENSUS, AND RECOMMENDATIONS

5.1. Quality Control (QC)

The approaches presented during the workshop showed most divergence at
the QC stage. In terms of QC of the real data, several groups used the spot
quality indicators provided by the scanning software (Bluefuse) to make deci-
sions about excluding spots from the analysis. Other groups indicated that they
would normally take account of background intensities for quality control but
Bluefuse does not use a measure of background intensity from pixels around
the spot, nor does it make an explicit estimate from within-spot pixels, and
therefore the background intensities were not provided for the real data. One
group re-estimated background from the data provided and used ratios between
signal and inferred background to exclude bad spots while another group ex-
cluded spots on the basis of absolute intensity (mainly for the simulated data).
Further to omitting bad spots based on quality indicators or (relative) intensity,
some groups omitted entire slides from further analyses based on QC criteria.
As an alternative to using quality indicators to include or omit spots from fur-
ther analyses, one group used quality indicators as statistical weights in both
normalisation and analysis of the microarrays.

The different approaches for QC led to some groups omitting no spots at
all while other groups omitted many spots and even entire slides (up to two or
three slides for the simulated data). Removing spots from subsequent analyses
often renders the statistical model unbalanced and reduces the degrees of free-
dom, and hence the power of the test for a single gene. The effect of removing
spots on normalisation, shrinkage of gene variance and multiple testing may
counterbalance the loss of power, but these effects are less predictable. There-
fore, approaches that utilise all spots but account for different quality of spots
deserve further attention.

Another point of discussion was when to apply the QC: It was argued that
outlier spots can only be identified after normalisation has taken account of
spatial effects but the counter argument was that spots with saturated intensity
measurements would bias the normalisation and should be removed before
normalisation. It was suggested that QC should be applied at several stages of
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the analyses but this was not implemented by any of the groups. Although QC
was widely debated during the workshop, we did not define a ‘best practise’
for QC, although we can make a recommendation to evaluate the effect of
various levels of spot editing. Again, the benefits of the workshop are shown
by the unexpected identification of QC and data editing as critical factors for
discussion and further study. Many publications concentrate on the statistical
analysis of simulated or established datasets. While comparison showed that
the statistics are generally well understood or accepted; how real experimental
data is pre-processed remains a matter for further study.

5.2. Normalisation, significance testing and multi-gene analyses

For the normalisations, many groups removed intensity related bias (when
the relationship between average intensity and the ratio between the two colour
intensities is non-linear) by LOWESS (or LOESS) regression. One group did
additional spatial smoothing while few groups included across-slide normali-
sation. The latter is emphasised in the results for the simulated data [15] as a
way of making slides more comparable, especially for the noisy data in this
study. The gene expression contrasts were mainly estimated using linear mod-
els or mixed linear models with various approaches to shrink the gene variance
prior to significance testing. To address the multiple testing issues, most groups
used some variant of the false discovery rate (FDR) but there were also some
standard and novel approaches based on mixture distributions. The main prob-
lem of comparing gene lists between groups is that it could not be determined
what stage of the different analysis pipelines caused the results to differ.

The only three approaches that performed very poorly in detecting differ-
entially expressed genes in the simulated data was one approach based on
fold-changes only, and two using ANOVA combined with the lowest level of
normalisation – chip median correction. Because of the prominent print-tip
effects in the simulated microarray data, failure to account for these will re-
sult in many spurious effects when using only chip-median correction and/or
analysing fold-changes only [15].

With regards to the recent review by Allison et al. [2], the workshop echoed
the points regarding the current lack of agreement in pre-processing (although
the main differences were in QC rather than normalisation), in particular that
fold-changes are not good criteria, and that the FDR, as well as some other
novel multiple testing approaches, provide an attractive alternative to conven-
tional multiple testing strategies. We did not address the outstanding questions
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on image processing algorithms because we only used results from a single
processing algorithm for the workshop.

The multi-gene analyses were too diverse for a meaningful comparison al-
though some trends are described by Sørensen et al. [14]. Those analyses that
were aimed at assigning biological meaning to the differentially expressed
genes were hampered by the limited annotation that was available for the
clones on the microarray. This will improve over time with the ongoing an-
notation of the cow genome sequence.

5.3. Recommendations

While the participants agreed that the workshop had been very useful, we
also debated recommendations for potential future workshops on the same
topic. The following recommendations were made: (1) Provide different levels
of pre-processed data for different analyses. You can provide raw image files
to compare image processing algorithms, while you also provide normalised
data to compare different models to obtain gene lists or to compare different
clustering approaches. Likewise, when comparing bioinformatics tools for the
biological interpretation of microarray results, you provide a pre-set common
gene list, preferably for a model species with good bioinformatics resources.
(2) Ask participants to analyse specific contrasts or scenarios. For the present
workshop, we gave real data on 48 slides as well as experimental details, but
the participants could decide on what part of the data they would use and what
contrasts they would estimate. (3) Simulate microarrays that are more simi-
lar to real data and if possible, include a range of gene effects and variances
as well as a correlation structure among genes. (4) Because of limited pre-
sentation time at the workshop, some details of the analyses were missed, in
particular analyses that were initially done, but not carried further. One op-
tion is to have a pre-meeting participant survey that includes what approaches
were tested and how they performed. Other ways of having a more uniform
reporting structure among groups may also benefit the comparisons.

6. CONCLUSIONS

The workshop succeeded in its main aim of sharing expertise and experience
among statisticians and biologists using microarrays in livestock research. At
least one group used it as a starting point to re-visit their own data analysis
pipeline in the view of analyses and expectations of other groups. Furthermore,
the three companion papers with details on the various analyses and results will
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provide pointers for colleagues in the wider community regarding the options
available for microarray analyses [9, 14, 15].

While a direct comparison of results between groups remained challenging,
it was extremely useful to discuss microarray analyses on the basis of two com-
mon data sets. In many conferences or workshops, participants only present
their own data and hence any conclusions about methods cannot be separated
from the experiments to which these methods were applied. The joint analyses
of the same data that was done during the workshop will also have added value
to the original experiment. Furthermore, the workshop is not an endpoint but
the starting point of new collaborations among researchers analysing microar-
ray data but also between these researchers and biologists that ultimately give
meaning to the results.
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Abstract – A large variety of methods has been proposed in the literature for microarray data
analysis. The aim of this paper was to present techniques used by the EADGENE (European
Animal Disease Genomics Network of Excellence) WP1.4 participants for data quality control,
normalisation and statistical methods for the detection of differentially expressed genes in order
to provide some more general data analysis guidelines. All the workshop participants were
given a real data set obtained in an EADGENE funded microarray study looking at the gene
expression changes following artificial infection with two different mastitis causing bacteria:
Escherichia coli and Staphylococcus aureus. It was reassuring to see that most of the teams
found the same main biological results. In fact, most of the differentially expressed genes were
found for infection by E. coli between uninfected and 24 h challenged udder quarters. Very little
transcriptional variation was observed for the bacteria S. aureus. Lists of differentially expressed
genes found by the different research teams were, however, quite dependent on the method used,
especially concerning the data quality control step. These analyses also emphasised a biological
problem of cross-talk between infected and uninfected quarters which will have to be dealt with
for further microarray studies.

quality control / differentially expressed genes / mastitis resistance / microarray data /
normalisation

1. INTRODUCTION

Microarray analyses have been highlighted as an area of high priority within
the European Animal Disease Genomics Network of Excellence (EADGENE),
to study host-pathogen interactions in animals. Microarrays give the possibil-
ity to study the changes of expression of thousands of genes simultaneously
depending on the pathogen.

A large variety of methods for normalising and analysing microarray data
has, however, been proposed in the literature, and there is still no clear con-
sensus about which analysis process is recommended. The aim of this joint
research work was to review the methods and software packages used by the
EADGENE partners and to provide some general guidelines for further anal-
yses. To achieve this goal, a real data set was distributed among the workshop
participants. The real data was provided by an EADGENE funded microar-
ray study looking at the gene expression changes following artificial infec-
tion of cows with two different mastitis causing bacteria: Escherichia coli and
Staphylococcus aureus. The effect of artificial infection was tested over time in
12 dairy cows using three udder quarters in each cow for different time points
following infection and one for the control sample. The study included two
species of bacteria as well as several time-points, resulting in a true analytical
challenge (48 microarrays in total). The EADGENE partners who provided the
data were RIBFA and the Roslin Institute.



Detection of differentially expressed genes 635

In this paper three main steps of microarray data analysis will be discussed:
data quality control, normalisation and statistical methods for the detection of
differentially expressed genes. For each of these steps, the techniques used by
the workshop participants will be presented and compared.

2. MATERIALS AND METHODS

2.1. Presentation of the data

2.1.1. Comparison of E. coli vs. S. aureus elicited mastitis in cows using
transcriptomic profiling

The outcome of an udder infection (mastitis) is influenced by the species
of the infecting bacteria. Coliform bacteria, e.g. E. coli, tend to cause acute
infections with severe inflammatory symptoms, while others, like S. aureus
often result in chronic infections with less severe symptoms. The molecular
causes underpinning these differences in host pathogen interactions are largely
unknown. Here, we established a strictly controlled animal model to allow for
a systematic analysis of the different immune responses elicited by E. coli vs.
S. aureus, using strains of both pathogen species previously isolated from field
cases of mastitis. Healthy heifers were infected in the fourth month of their
first lactation. None of the cows had suffered a previous udder infection and
their somatic cell counts were well below 100 000 cells per mL of milk.

Three trials were conducted, each comprising four animals. First, 500 CFU
of our asseverated E. coli strain 1303 were infected into udder quarters at time
0, 12 and 18 h. The fourth quarter was kept as a control. The animals were
culled after 24 h and sampled. All animals showed signs of acute clinical mas-
titis by 12 h after challenge: increased somatic cell count (SCC), decreased
milk yield, leucopenia, fever and udder swelling. Quantitative RT-PCR analy-
sis revealed that the expression of Toll-like receptor (TLR) 2, TLR4 and beta-
defensin-encoding genes was greatly enhanced in the 24 h infected quarters,
while the relative mRNA copy numbers remained low in the uninfected con-
trol quarters, which is coherent with the microarray results presented below.
Secondly, animals infected with 10 000 CFU of the S. aureus strain 1027 in a
similar scheme over 24 h (n = 4) showed no or only modest clinical signs of
mastitis. No evidence of alteration in TLR or beta-defensin-encoding indicator
genes for activated innate immune defense was found. In the third trial, four
animals were infected with the S. aureus pathogen. For each of them (i) two
quarters were infected at time 0, (ii) a third quarter at time 60 h, and animals
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were killed after 72 h. Hence, there were two quarters per animal with S. au-
reus inoculated for 72 h, one quarter with the pathogen inoculated for 12 h and
again one control quarter. S. aureus caused clinical symptoms and increased
expression of the TLR and beta-defensin-encoding indicator genes in this third
group of animals, infected over 72 h (n = 4).

Assignment of the animals to become inoculated with E. coli or S. au-
reus was completely at random and arbitrary. The three trials were conducted
at three different days. Inter-animal transmission can be excluded, thanks to
proper handling of the inoculates. The identity of the pathogens were verified
from re-isolates of milk samples. In addition to the classical microbiological
verification, strain identity was verified using diagnostic digests of pathogen
residential plasmids as criteria.

The clinical and qRT-PCR data proved that the E. coli infected animals all
developed symptoms of acute mastitis, earlier than 24 h after infection. S. au-
reus pathogens, however, needed more time to elicit not only clear infection
related symptoms of mastitis, but also the activation of the immune defense
within the udder. We also noted a clear host-individual influence in this re-
gards. Samples from all these udder quarters were carefully asseverated and
stored in liquid nitrogen, for subsequent DNA-microarray analyses.

The microarray experiment was carried out using the Bovine 20K array
(ARK-Genomics). A common reference design was used and the reference
sample was made up of all 48 RNA samples. The reference sample was la-
belled with Cy3 and the treatment with Cy5 on each microarray slide. All
samples were collected in Hannover (Germany) by Holm Zerbe, Hans-Joachim
Schuberth, and Wolfram Petzl, and had been validated by Hans-Martin Seyfert
in Dummerstorf (Germany). The samples were shipped to the Roslin Institute
for transcriptome profiling by Elizabeth Glass and Kirsty Jensen.

The Bovine 20K microarray was subdivided in 48 blocks, with 12 rows and
4 columns. Each of the 48 resulting blocks was printed with its own unique
print-tip (i.e. there are 48 print-tips). Each block consisted of 30 sub-grid rows
and 30 sub-grid columns. Almost all (19 705) features were printed in duplicate
within the same block, 324 printed 4 times and 2 printed 12 times. Annotations
were provided by Mark Fell of the Roslin Institute and were distributed among
the workshop participants. The microarrays were scanned and data were ex-
tracted using Bluefuse (http://www.cambridgebluegnome.com/bluefuse.htm).
Bluefuse does not provide an estimate of the background intensity, and there-
fore no further background correction was possible on these data.
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2.2. Normalisation of the data

2.2.1. Data quality control

Several quality control procedures were used by the authors and Table I
presents an overview of these techniques. Most of the teams used the spot
quality indicators provided by the scanning software (Bluefuse) to make de-
cisions about excluding spots from the analysis. There are several indicators
of quality provided by the Bluefuse software: (a) the probability that a clone
is expressed in the tissue studied (PON) with a value between 0 and 1; (b) a
manual quality flag from A (good) to E (bad); (c) a compound ‘confidence’
quality indicator between 0 and 1; and (d) a binary quality indicator that is 0
(bad) or 1 (good). The simplest approaches were to remove spots with manual
flags or with Bluefuse flag values equal to D or E because their confidence
levels were lower than 0.30 (meaning a poor quality of spot). In more sophisti-
cated approaches, raw data were visualised using R-LimmaGUI [15] to check
the overall quality by several criteria, such as M boxplots, M-A plots, and
Cy5-Cy3 scatter plots. INRA_T pointed out, using simple descriptive statistics
that array BTK2-74 was different from the other slides given the mean, mini-
mum and maximum, and should be deleted from the analysis. M-A plots of the
raw data were atypical and showed a clear ‘fishtail’ pattern for low intensity
spots, where the log-ratios (M) diverged, as shown in Figure 1. This indicated
relatively noisy data due to many spots with low intensities. ROSLIN there-
fore proposed to add 28 to all the channel intensities. IDL deleted spots with
intensities above 65 000 (oversaturated spots) or with values within the exper-
imental error, i.e. spots smaller than 400 [8]. AARHUS suggested a quality
weighting of the data [9] by down-weighting the spots with low quality based
on Bluefuse ‘Confidence’ or ‘P ON’ measurements. For all teams, data were
log2 transformed and the log-ratio between Cy5 and the reference Cy3 was
considered as the observed intensity.

2.2.2. Correction for spatial and intensity-dependent bias

Normalisation of the data is a two-step process including first a correction
for spatial bias, and second a correction for intensity-dependent bias. Correc-
tion for spatial bias was usually carried out separately for each block (print-tip)
of each array, by either subtracting the median for each block, or by subtracting
the corresponding row and column means (RC correction, excluding control
spots) [1]. The intensity dependent bias was removed by either block-Loess
correction [14], or by a global Loess correction [17]. Two levels for each of
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Figure 1. The “fishtail” appearance of M-A plots for the raw data for slides 1–4. Lines
are Loess curves for each of the 48 print-tips. Control spots were omitted.

the two normalisation steps were examined by ROSLIN to check whether these
steps should be global (i.e., chip-wide) or local (i.e., print-tip). The choice was
informed by comparisons of summary measures of M-A plots, spatial heat dia-
grams and print-tip box-plots for the raw data and all four normalisations. The
local spatial bias (RC correction) and local intensity-bias (MA normalisation)
were found here to perform consistently well regarding the spatial plot in the
F-test of differences between blocks in M values, the M-A plot in the F-test of a
block MA correction versus a chip-wide MA correction, and the print-tip box-
plots in the mean inter-quartile range of M. This local RC-MA normalisation
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Figure 2. M-A plots after normalisation for ROSLIN team with a print-tip Loess cor-
rection for slides 1 to 4.

was therefore chosen by this team for normalising the data. Figure 2 shows
the corresponding M-A plots after normalisation. Since E. coli and S. aureus
samples were hybridised always at the same channel and against a common
reference, the setup of this experiment requires no dye swap effect correction,
which is often a source of experimental noise.

Another possible approach for data normalisation is to use an ANOVA
model. This approach was used here by two teams (ULg1 and PTP) using a
two-stage mixed-model approach [5] with the Proc Mixed SAS� procedure.
In the first stage, initial models were fitted to each array separately to take
account of the experimental systematic effects on the base-2 logarithm of the



Detection of differentially expressed genes 641

pixel values. The model included a fixed dye effect, a random print-tip ef-
fect and an interaction between dye and print-tip effects. Effects of print-tip
were considered as random because of the manufacturing variation expected
between print-tips. Residuals obtained from this model were then analysed to
find differentially expressed genes.

It has to be emphasised that all the genes were used in the normalisation
procedures presented above, based on the underlying assumption that most of
the genes are not differentially expressed and that the observed differences are
only due to technical artefacts. This assumption has to be checked for every ex-
periment and may sometimes not be verified, especially when using dedicated
chips.

2.2.3. Software packages used for the data normalisation

Four teams (ROSLIN, AARHUS, IDL, WUR) used the Bioconductor pack-
age Limma – Linear Models for Microarray Analysis [13] in R for data nor-
malisation. A bioinformatics pipeline was developed by IDL to handle both
data normalisation and detection of differentially expressed genes accessible at
http://www.ASGbioinformatics.wur.nl. The SAS� software was used for nor-
malisation using an ANOVA model.

2.3. Methods used to find differentially expressed genes

Three main biological questions were investigated on this data set: which
genes are differentially expressed (1) between the two types of infection
(E. coli and S. aureus); (2) over time within each bacteria; and (3) across time
and bacteria. Table II presents an overview of the statistical methods used by
each team to find differentially expressed genes.

2.3.1. ANOVA approach with different variance models

Three teams (ROSLIN, AARHUS, IDL) used for this part of the analyses
the Bioconductor R package Limma [13], which allows complex designs and
provides robust t- and F-statistics for differential gene expression by the use
of empirical Bayes methods (eBayes) for shrinking the residual variances of
genes towards their approximate median value. This approach is based on an
inverse chi-square prior on the variances [12]. The linear model used here ac-
counted for within-array replicate spots and included the effects of time and
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challenging bacteria. Differentially expressed genes between types of infec-
tion were tested based on the robust t-statistics and differential expression of
genes over the different time points used a moderated F-test. Another approach
also based on an ANOVA model but with a different variance model was used
by INRA_J. It is based on a structural mixed model on the variances [7] and
is implemented in R in the ‘SMVar’ function. Here, a fixed condition effect
and a random gene effect were considered to model the log of the variances.
Two other teams (WUR and ULg2) used TIGR Multiple Experimental Viewer
v4.0 [11] and the BAMarray software [6] for Bayesian analysis of variance, re-
spectively. In the latter approach, genes are clustered into groups of equal vari-
ances and data are rescaled to satisfy the equal variance assumption. Then, a
hierarchical Bayesian model is used to synthesise information across all genes
simultaneously, and estimated effects for genes unlikely to be differentially
expressed are shrinked to zero to enhance patterns of interest.

2.3.2. Models for time-course study

In the ANOVA models presented above, observations were assumed to be
independent, which was not the case in this time-course study since measure-
ments were made at different time points for each animal. Three longitudinal
approaches were proposed here to take these correlations into account and find
differentially expressed genes over time in the two infections.

The first approach was performed by PTP using the Mixed procedure of
SAS�. A gene-by-gene analysis was performed on the residuals obtained from
the normalisation process. The effects included in this linear mixed model were
the following: a fixed bacteria effect, a non-parametric mean curve by fitting
the time effect as a qualitative variable or a parametric function of time (linear
and quadratic regression on time), and the interactions between bacteria and
these time effects. A linear random regression model was considered (using a
random cow effect and an interaction with time). A quadratic random regres-
sion model was also investigated but did not converge. For each gene-specific
model, custom hypothesis tests were constructed to determine whether gene
expression was different between healthy and infected quarters, or between
quarters infected with E. coli and S. aureus at different times.

The second longitudinal approach considered in this workshop by INRA_J
was based on the Edge package [3]. In this gene-specific model, the population
average time curve was modelled using a natural cubic spline function and
the correlation structure was fitted with a random intercept. Two biological
questions can be addressed with this approach. First, is the effect for each gene
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constant for each infection. Second, is the expression pattern over time, i.e. the
average time curve, for each gene the same in the two infections.

In the last approach, an ANOVA was performed by INRA_T on the expres-
sion value for each E. coli clone, with the time factor as an explanatory variable
(4 levels: 0, 6, 12 and 24 h). A standard Fisher test was used to test the effect
of time on each gene. After selection of the differentially expressed genes over
time, a clustering approach based on smoothed expression curves [4,10] was
used to find clusters of genes with similar expression profiles. This second step
is presented in the post-analysis paper.

2.3.3. Correction for multiple tests

Regarding the correction for multiple tests, all teams used the classical
Benjamini and Hochberg [2] correction at a 5% False Discovery Rate (FDR)
threshold, either using R functions or the SAS� Multitest procedure.

3. RESULTS

Although various methods were applied for normalising and analysing the
data, it was reassuring to see that most of the teams found similar biological
results. First, it was found that the largest number of differentially expressed
genes was obtained when comparing samples from udder tissue challenged
for 24 h with E. coli to non-challenged tissue. In contrast, challenging with
S. aureus did not result in a dramatic transcriptional response. Second, quite
a large number of differentially expressed genes were detected at time zero
between the two groups of infections. This showed a cross-talk between udder
quarters or an invasion by immune cells from the infected quarters, since all
udders were collected simultaneously at the end of exposure. We will present
here the results obtained with the Bioconductor Limma package (ROSLIN in
Tab. II) which was used by many teams and was shown to perform well for
differential gene expression analysis.

The uninfected quarters from the E. coli infection exhibited differential ex-
pression in 402 clones representing 359 genes compared to the S. aureus un-
infected quarters. The most up-regulated genes included metallothioneins and
lipopolysaccharide binding protein, indicating that an immune response has
been triggered in the uninfected quarters. Furthermore, the MHC class II in-
variant chain molecule, CD74, was down-regulated, suggesting that the cell
populations present in the mammary gland quarter had altered in response to
the infection of neighbouring quarters. Considerable overlap was observed in
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the gene lists from the E. coli uninfected quarters and the 331 genes declared to
be differentially expressed at 6 h post E. coli infection. More than 600 clones,
representing 538 genes exhibited differential expression at 12 h post infection,
and the number of differentially expressed genes reached a maximum at 24 h
post infection when the transcription of 1190 genes was affected. Many of the
most up-regulated genes at this time point are associated with the influx of
neutrophils into the infected gland, including S100 calcium binding proteins
A8, A9 and A12, colony stimulating factor 3 and several chemoattractants for
neutrophils, e.g. interleukin 8 and chemokine (C-X-C motif) ligand 1 and 2.

No gene was identified as being significantly differentially expressed during
S. aureus infection using the cut-off FDR value of 0.05. This lack of statistical
support principally results from high levels of variation between the biolog-
ical replicates. This may be an artefact of the experimental procedure; large
mammary gland samples were collected for RNA extraction which may have
comprised variable amounts of S. aureus infected tissue, because the bacteria
causes a localised infection. Therefore the gene lists were expanded to include
those genes with t-test p-values less than or equal to 0.01 and a fold change
greater than or equal to 1.5. At 6 h post S. aureus infection, 154 genes ex-
hibited differential expression. The most highly up-regulated gene was lacto-
transferrin, an antimicrobial protein secreted in milk. Interestingly, this gene
was only observed to be up-regulated at 24 h post E. coli infection. At 12
and 24 h post infection 182 and 266 genes were declared differentially ex-
pressed, respectively. However, the number decreased to 97 by 72 h post in-
fection. There was some overlap between the lists of differentially expressed
genes during E. coli and S. aureus infections, including the up-regulation of
superoxide dismutase and the down-regulation of interleukin 7. The analysis
of the microarray data identified two putative genes that may be indicative of
S. aureus infection. Leucine rich repeat kinase 2 was down-regulated at all
4 time points during S. aureus infection but not during E. coli infection. In ad-
dition, a clone (AJ814901) whose sequence currently only matches EST was
also down-regulated during S. aureus infection.

Various comparisons of lists of differentially expressed genes found by the
EADGENE teams were performed. We focussed mainly on the comparison of
the differentially expressed genes found between time 0 and 24 h for the E. coli
infection, which exhibited the largest transcriptional response. It was found
that although all the teams found a large number of differentially expressed
genes between these two time points, the lists of genes were still dependent
on the method chosen. Figure 3 gives the Venn diagram for the differentially
expressed genes found by three of the teams. They used different data quality
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Figure 3. Venn diagram for the lists of differentially expressed genes found for E. coli
between times 0 and 24 h after infection at a 5% Benjamini and Hochberg threshold
for IDL, INRA_J and PTP teams. Normalisation and analyses methods used by these
teams are presented in Tables I and II.

control procedures and different normalisation and analyses methods: the IDL
team used a print-tip Loess normalisation and the Limma package, INRA_J
used a global Loess normalisation and the structural model for variances, and
PTP used the global Loess and a 2-step mixed model approach with SAS�.
It was found that 468 genes were detected in common for these three teams,
and 790 genes were detected in common for IDL and INRA_J. It is interesting
to also note that IDL and PTP teams, despite using very different approaches,
found 658 genes in common among the 761 genes detected by PTP. When fo-
cussing only on the 500 most differentially expressed genes found by the three
teams, only 206 genes were found in common for the three approaches, as
shown in Figure 4. A larger consistency in the ranking of the genes could have
been expected, especially between IDL and INRA_J which used Limma and
SMVar shrinkage approaches, respectively. In fact, both teams found here only
272 genes in common among the first 500, although the two methods were
found in previous studies [7] to provide very similar results in the detection of
differentially expressed genes. The main difference in the analyses performed
by these two teams was in the data quality control step. On the contrary, 323
were found in common between IDL and PTP teams, who used very different
statistical approaches for the detection of differentially expressed genes but a
more similar approach for data quality control, with the removal of oversatu-
rated and low quality spots. The data quality control step therefore appears here
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Figure 4. Venn diagram for the 500 first differentially expressed genes found for
E. coli between times 0 and 24 h after infection for IDL, INRA_J and PTP teams.

to be essential for microarray data analysis but a consensus for best practice
still has to be reached.

It has to be emphasised that this study presented the number of genes that
were declared to be differentially expressed by statistical methods, at a 5%
Benjamini-Hochberg threshold. A biological validation still has to be per-
formed, however, for most of these genes to be able to differentiate between
the true positives and the false positives.

4. DISCUSSION

Quality control of the data proved, in this workshop, to be an important first
step. Simple summary statistics for each slide, as well as print-tip box-plots,
MA and spatial plots can be used for quality checks. Recommendation would
be to delete spots that were flagged as low quality, or to perform some quality
weighting [9]. It was found here that one of the slides was of very poor quality
and had to be deleted from the analysis. Bluefuse does not use a measure of
background intensity from pixels around the spot, nor does it make an explicit
estimate from within-spot pixels, and therefore the background intensities were
not provided.

Following quality control, the normalisation step is divided into two steps:
a correction for spatial bias and a correction for intensity-dependent bias. The
first step is performed on each block (print-tip) for each array separately either



648 F. Jaffrézic et al.

by subtracting the median for each block, subtracting the corresponding row
and column means (excluding control spots) or by including a random array
block effect in the Wolfinger et al. [16] two-step mixed model approach. The
second step is performed using either a local or global Loess correction. Us-
ing various quality control plots, one of the teams found that the local Loess
correction was the most adapted for this data set. Many teams used the Bio-
conductor R package Limma to perform this normalisation. More diversity
was observed among the teams for the data quality control step than for the
normalisation step.

Two main approaches were used for the statistical analysis of these data.
The first approach was based on ANOVA models and allowed the detection
of differentially expressed genes using two by two comparisons with robust
t-tests. The construction of these robust t-statistics was based either on the
eBayes Limma shrinkage [13] or on a structural mixed model on variances [7]
– SMVar function in R. These analyses provided lists of genes that were dif-
ferentially expressed within each infection at different time points, as well as
between the two infections. The second approach was based on longitudinal
models and took into account the correlations between measurements involved
in this time-course study. For this second set of analyses, a random regres-
sion model was used with SAS� in a two-step mixed model approach, and the
EDGE package developed by Dabney et al. [3] was applied to these data. These
analyses allowed the detection of genes that had a pattern of expression chang-
ing over time or that differed for both infections. Since these data come from
a longitudinal study, it is advisable here to use the latter approaches that take
into account correlation between measurements rather than the ANOVA based
models which assume independence of the observations. Correction for mul-
tiple tests was performed by all the teams using Benjamini and Hochberg [2]
FDR approach at a 5% threshold.

Although various quality control procedures, data normalisation and anal-
ysis methods were used, all the teams generally obtained the same main bi-
ological results. In fact, all participants found that most of the differentially
expressed genes were found between the uninfected group and quarters that
had been challenged by the E. coli pathogens for 24 h. On the contrary, very
little transcriptional response was observed for the S. aureus infection.

It can be argued, however, that the robustness observed here concerning the
biological results may be due to the extremely large transcriptional response
with the E. coli infection. These conclusions may therefore not be generalised
to other experiments with only small transcriptional changes. Moreover, sev-
eral methods used here such as the shrinkage approaches (Limma, SMVar,
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BAMarray) were designed to improve the performance under high-noise, low
replicate, small-change settings. The E. coli data, which exhibited a very large
transcriptional response, may therefore not allow pointing out the subtle dif-
ferences between these various methods.

All the teams pointed out the heterogeneity between the two uninfected
groups which should have been comparable but exhibited an unexpectedly
large number of differentially expressed genes. This observation raised an im-
portant biological and experimental design problem about cross-talking be-
tween udder quarters. This issue will be studied more thoroughly by the EAD-
GENE biologists in further experiments.

A comparison of the lists of differentially expressed genes found by the
workshop participants was performed for E. coli between times 0 and 24 h. Due
to the various methods used for normalising and analysing the data, the lists
were not exactly similar. It was reassuring, however, to find that even using two
very different approaches, (1) normalisation by print-tip Loess and analysis
with Limma in R; and (2) global Loess and Wolfinger’s two-step mixed model
approach in SAS�, the lists of differentially expressed genes still remained
quite similar.

Here all participants had the same raw data set to analyse. Comparison of
methods may have been easier, however, if each step had been evaluated sep-
arately: first, data quality control, then normalisation on a common previously
cleaned data set and finally detection of differentially expressed genes on a
common previously normalised set of data. Criteria to compare procedures
for data quality control is still an open and essential issue for microarray data
analysis.
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multiple testing. Most variety in performance resulted from differing approaches to data quality
and the use of different statistical tests. Very few of the methods used any kind of background
correction. A number of approaches achieved a success rate of 95% or above, with relatively
small numbers of false positives and negatives. Applying stringent spot selection criteria and
elimination of data did not improve the false positive rate and greatly increased the false negative
rate. However, most approaches performed well, and it is encouraging that widely available
techniques can achieve such good results on a very noisy data set.

gene expression / two colour microarray / simulation / statistical analysis

1. INTRODUCTION

Microarrays have become a standard tool for the exploration of global gene
expression changes at the cellular level, allowing researchers to measure the
expression of thousands of genes in a single experiment [16]. The hypothesis
underlying the approach is that the measured intensity for each gene on the ar-
ray is proportional to its relative expression. Thus, biologically relevant differ-
ences, changes and patterns may be elucidated by applying statistical methods
to compare different biological states for each gene. However, before com-
parisons can be made, a number of normalisation steps should be taken in
order to remove systematic errors and ensure the gene expression measure-
ments are comparable across arrays [15]. There is no clear consensus in the
community about which methods to use, though several reviews have been
published [8, 12]. After normalisation and statistical tests have been applied,
there is an additional problem of multiple testing. Due to the high number of
tests taking place (many thousands in most cases), the resulting P-values must
be adjusted in order to control or estimate the error rate (see [14] for a review).

The aim of this paper was to summarise and compare the many methods
used throughout the EADGENE network (http://www.eadgene.org) for mi-
croarray analysis, and compare the results, with the final aim of producing
a guide for best practice within the network [4]. This paper describes a variety
of methods applied to a simulated data set produced by the SIMAGE pack-
age [1]. The data set is a simple comparison of two biological states on ten
arrays, with dye-balance. A number of data quality, normalisation and analysis
steps were used in various combinations, with differing results.

1.1. The data

SIMAGE takes a number of parameters, which were produced using a slide
from the real data set as an example [4]. The input values that were used for
the current simulations are given in Table I. The simulated data consists of
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ten microarrays each of which represent a direct comparison between differ-
ent biological samples from situation A and B with a dye balance. SIMAGE
assumes a common variance for all genes, something which may not be true
for real data. Each slide had 2400 genes in duplicate, with 48 blocks arranged
in 12 rows and 4 columns (100 spots per block). Each block was “printed”
with a unique print tip. In the simulated data 624 genes were differentially
expressed: 264 were up-regulated from A to B while 360 were down regu-
lated. This information was only provided to the participants at the end of the
workshop. The simulated data are available upon request from D.J. de Koning
(DJ.dekoning@bbsrc.ac.uk).

The data are very noisy with high levels of technical bias and thus provided
a serious challenge for the various analysis methods that were applied. Many
spots reported background higher than foreground, and others reported a zero
foreground signal. Image plots of the arrays showed clear spatial biases in both
foreground and background intensities (Fig. 1). Spots, scratches and stripes of
background variation are clearly visible, which have been simulated using the
“hair” and “disc” parameters of SIMAGE.

All of the slides show a clear relationship between M (log ratio) and A
(average log intensity), and the plots in Figure 2 are exemplars. Slides 3, 5,
6, 7, 9 and 10 displayed a negative relationship between M and A, whilst the
others displayed a positive relationship. Slides 6 and 9 showed an obvious non-
linear relationship between M and A, but only slide 2 levels off with higher
values of A. Finally, Figure 3 shows the range of M values for each array
under three different normalisation strategies: none (Fig. 3a), LOESS (Fig. 3b)
and LOESS followed by scale normalisation between arrays (Fig. 3c) [17,19].
It can be seen that before normalisation there is a clear difference in both the
median log ratios and the range of log ratios across slides.

This data set was subject to a total of 12 different analysis methods, encom-
passing a variety of techniques for assessing data quality, normalisation and
detecting differential expression. These methods are described in detail and
the results of each presented and compared. The results are then discussed in
relation to the best methods to use for analysing extremely noisy microarray
data.

2. MATERIALS AND METHODS

2.1. Preprocessing and normalisation procedures

A variety of pre-processing and normalisation procedures were used in
combination with the twelve different methods, and these are summarised in
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Table I. Settings for Simage simulation software.

Array number of grid rows 12
Array number of grid columns 4
Number of spots in a grid row 10
Number of spots in a grid column 10
Number of spot pins 48
Number of technical replicates 2
Number of genes 0
Number of slides 10
Perform dye swaps yes
Gene expression filter yes
Reset gene filter for each slide no
Mean signal 10.33
Change in log2 ratio due to upregulation 1.07
Change in log2 ratio due to downregulation –1.26
Variance of gene expression 2.7
% of upregulated genes 15
% of downregulated genes 11
Correlation between channels 1
Dye filter yes
Reset dye filter for each slide yes
Channel variation 0.2
Gene × Dye 0
Error filter yes
Reset error filter for each slide yes
Random noise standard deviation 0.62
Tail behaviour in the MA plot 0.108
Non-linearity filter yes
Reset non-linearity filter for each slide yes
Non-linearity parameter curvature 0.2
Non-linearity parameter tilt 4.5
Non-linearity from scanner filter yes
Reset non-linearity scanner filter for each slide yes
Scanning device bias 0.04
Spotpin deviation filter yes
Reset spotpin filter for each slide no
Spotpin variation 0.32
Background filter yes
Reset background filter for each slide yes
Number of background densities 5
Mean standard deviation per background density 0.2
Maximum of the background signal relative to the non-background signals 50
Standard deviation of the random noise for the background signals 0.1
Background gradient filter no
Reset gradient filter for each slide yes
Maximum slope of the linear tilt 700
Missing values filter yes
Reset missing spots filter for each slide yes
Number of hairs 3
Maximum length of hair 20
Number of discs 4
Average radius disc 10
Number of missing spots 50
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Figure 1. Example background plots. The top two images show the background for
Cy5 and Cy3 in slide 9, and the bottom two images show the same for slide 10.

Table II. Only one method, IDL1, chose to perform background correction.
Some methods chose to eliminate spots, or give them zero weighting, depend-
ing on particular data quality statistics; these included having foreground less
than a given multiple of background, saturated spots and spots whose inten-
sity was zero. IAH_P1 and IDL1 also removed entire slides considered to have
poor data quality. Both IAH_P and IDL submitted two approaches, one based
on strict quality control and normalisation, and the second less strict.

Most approaches applied a version of LOWESS or LOESS normalisation,
either globally or per print-tip [19]. This is in recognition of the clear rela-
tionship between M and A. Only ROSLIN (assessed normalisation by row and



674 M. Watson et al.

Figure 2. MA-plots of slides 1, 5 and 6. These slides are examples of the three pat-
terns displayed by the simulated data in the MA-space: positive correlation, negative
correlation and a more pronounced non-linear correlation.

Figure 3. Boxplots of M values (log2(cy5/cy3)) across the 10 arrays for three nor-
malisation strategies: (A) Unnormalised data, (B) LOESS normalised data, and (C)
LOESS followed by scale normalised data.

column and found not needed) and INRA_J (correction by block) applied any
further spatial normalisation. SLN1 and SLN2 applied median normalisation.
Finally, only IDL attempted any correction between arrays by fitting a mono-
tonic spline in MA-space to correct for heterogeneous variance. The smooth-
ing function was fitted to the absolute log ratios (M-values) across the log
mean intensities (A-values), and corrected for. This ensured that the variance
in M values was consistent across arrays.
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Table II. Summary of the 12 methods used for analysing the simulated data. “Anal-
ysis name” is the name of the analysis method, “Data quality procedures” describe
the methods approach to data quality, “Background correction” whether background
correction was carried out, “Normalisation” describes the normalisation method and
“Differential expression” describes the method’s approach to finding differentially ex-
pressed genes.

Analysis
name

Data quality
procedures

Background
correction

Normalisation Differential
expression

IAH_P1 Eliminated spots with net
intensity < 0.
Slides 5, 6 and 9 deleted

No global LOWESS Limma;
FDR correction

IAH_P2 Slides 5, 6 and 9 deleted No global LOWESS Limma;
FDR correction

IDL1 Eliminated
• control spots
• null spots
• oversaturated spots
• values < 3* SD bgnd. printtip LOWESS; Limma;
Slides 5 and 7 deleted Yes monotonic spline correction FDR correction

IDL2 No global LOWESS;
monotonic spline correction

Limma;
FDR correction

INRA_J Spots == zero removed No LOWESS;
median normalisation by block

structural mixed model;
FDR correction

INRA_T1 Spots == zero removed No global LOWESS Student statistic;
FDR correction

INRA_T2 Spots == zero removed No global LOWESS Student statistic;
Duval correction

INRA_T3 Spots == zero removed No global LOWESS Student statistic;
Bordes correction

ROSLIN Spots == zero removed No printtip LOWESS;
row-column normalisation

Limma;
FDR correction

SLN2 Only use data where FG >
1.5* BG

No median normalisation Anova (Orange)

CDB Elimination of spots with
huge M-values

No printtip LOWESS fold change cut-off
(+/–0.9)

SLN1 Excluded BG > FG No median normalisation Anova (GeneSpring)

2.2. Methods for finding differentially expressed genes

Table II summarises the twelve methods used for analysing the simulated
data set. Most variation in the methods came from the area of quality control,
with different groups excluding different genes/arrays based on a wide variety
of criteria, and correction for multiple testing.

Almost all analysis methods used some variation of linear modelling fol-
lowed by correction for multiple testing to find differentially expressed genes.
The most common of those used was the limma package, which adjusts the
t-statistics by empirical Bayes shrinkage of the residual standard errors to-
ward a common value (near to the median) [17]. IAH_P and ROSLIN fitted
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a coefficient for the dye-effect for each gene, which was found to be non-
significant. IAH_P also adjusted the default estimated proportion of differen-
tially regulated genes in the eBayes procedure to 0.2 once it became clear that
a high percentage of the genes in the dataset were differentially regulated. This
ensured a good estimate of the posterior probability of differential expression.

Of those that did not use limma, both SLV and SLN2 used an ANOVA
approach, implemented in GeneSpring [9] and Orange [5] respectively.
INRA_J used a structural mixed model, more completely described in Jaffrézic
et al. [11]. CDB employed a cut-off value for the mean log ratio to define the
proportion of differentially expressed genes [10, 18]. INRA_T presented three
methods all based on a classic Student statistic and an empirical variance cal-
culated for each gene, but with the P-values adjusted according to Benjamini
and Hochberg [2], Duval et al. (partial sums of ordered t-statistics) [6, 7] and
Bordes et al. (mixture of central and non-central t-statistics) [3]. Apart from
INRA_T, those methods that corrected P-values for multiple testing did so us-
ing the FDR as described by Benjamini and Hochberg [2]. All corrections for
multiple testing were carried out at the 5% level.

All methods treated the 10 arrays as separate, biological replicates apart
from ROSLIN, who treated the dye-swaps as technical replicates. The INRA_J
and the three INRA_T methods treated replicate spots as independent mea-
sures, resulting in up to 20 values per gene, whereas the other methods aver-
aged over replicate spots. INRA_T reported that preliminary analysis showed
very few differences between treating duplicates as independent or by averag-
ing them.

3. RESULTS

Table III summarises the results for the analysis of the simulated data set. In
terms of the total number of errors made (false positives + false negatives),
methods INRA_T2 and INRA_T3 excelled with only 17 and 12 errors re-
spectively. In terms of the least number of false negatives, methods IDL2 and
INRA_T1 performed best, having both missed only one gene that was dif-
ferentially expressed. Many of the analysis methods scored upwards of 95%
correctly identified genes. Of those that did not, IAH_P1 and IDL1 operated
strict quality control measures, and may have eliminated a number of differ-
entially expressed genes from the analysis. When the number of correct genes
is expressed as a percentage of the number of genes each method identified,
these methods too show greater than 95% correctly identified genes. Those
methods based on traditional statistics performed less well than those methods
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Table III. Summary of the results of the analysis of the simulated data set. Table
shows the number of genes identified by each method as differentially expressed, the
number correct, the number of false positives and negatives, the number of correctly
identified genes as a % of the total number of differentially expressed genes (624) and
as a % of the number of genes identified for each method.

Analysis No Correct False + False – Correct/total Correct/identified
IAH_P1 499 485 14 139 77.72 97.19
IAH_P2 608 592 16 32 94.87 97.37
IDL1 304 289 15 335 46.31 95.07
IDL2 642 623 19 1 99.84 97.04
INRA_J 663 614 49 10 98.40 92.61
INRA_T1 649 623 26 1 99.84 95.99
INRA_T2 629 618 11 6 99.04 98.25
INRA_T3 622 617 5 7 98.88 99.20
ROSLIN 628 600 28 24 96.15 95.54
SLN2 171 128 43 496 20.51 74.85
CDB 67 44 23 580 7.05 65.67
SLN1 3 3 0 621 0.48 100.00

specifically designed with microarray data in mind. CDB chose a fold-change
cut-off above which genes were flagged as significant, set at a log2 ratio of
+/– 0.9. SLN1 analysed the dye-swap slides separately, which will have re-
duced the statistical power of the analysis, combining the results afterwards.
This resulted in only three genes identified as differentially expressed; how-
ever, all were correct. SLN2 identified 171 genes as differentially expressed,
but also showed a relatively high number of false positives and negatives.

Table IV shows the top ten differentially expressed genes that were missed
by the 12 methods (false negatives). One gene, gene 203, was missed by every
analysis method. Genes 2221 and 465 were missed by all but two methods,
those being IDL2 and INRA_T1 in both cases. These genes are characterised
by log ratios that do not necessarily match their direction of regulation and
very large standard deviations relative to the normalised mean log ratios.

Table V shows the top ten genes wrongly identified as differentially ex-
pressed by the 12 analysis methods (false positives). Gene 1819 was identified
as differentially expressed in 8 of the 12 methods; however, given that CDB,
SLN1 and SLN2 identified very few genes in total, this means that only one
of the more accurate methods correctly called this gene as not differentially
expressed, and that is INRA_T3. Moving further down, there are four genes
called as false positives in six of the methods, though there is no consistency
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Table IV. The top ten genes identified as false negatives in the 12 analysis methods.
Table contains the gene id (gene), mean and standard deviation of the unnormalised
log ratio (M and SD), mean and standard deviation of the LOESS normalised log ratio
(M LOESS and SD LOESS), the number of methods in which the gene was a false
negative (Count) and the direction of regulation from SIMAGE (Regulated).

Gene M SD M LOESS SD LOESS Count Regulated

gene203 –1.35 3.25 –0.01 0.65 12 up

gene2221 –1.71 3.14 –0.40 0.39 10 up

gene465 –0.70 3.00 –0.39 0.59 10 up

gene1411 2.74 6.80 –0.48 0.67 9 up

gene352 0.63 3.97 –0.39 0.84 8 up

gene1448 –4.24 6.26 –1.32 1.87 7 down

gene1580 –2.12 3.58 –0.58 0.89 7 up

gene1667 2.59 6.61 0.69 0.78 7 up

gene1704 –2.26 4.16 –0.46 1.11 7 up

gene90 3.06 6.53 –0.47 1.01 7 up

Table V. The top ten genes identified as false positives in the 12 analysis methods. The
table contains the gene id (gene), mean and standard deviation of the unnormalised
log ratio (M and SD), mean and standard deviation of the LOESS normalised log ratio
(M LOESS and SD LOESS) and the number of methods in which the gene was a false
positive (Count).

Gene M SD M LOESS SD LOESS Count

gene1819 1.93 4.67 0.50 0.42 8

gene2262 –0.65 3.45 0.65 0.67 6

gene555 0.72 3.75 –0.55 0.65 6

gene995 0.18 2.93 0.60 0.65 6

gene999 –0.18 3.30 0.54 0.38 6

gene1258 1.98 5.04 0.48 0.52 5

gene1324 –0.12 3.34 0.60 0.44 5

gene1654 0.33 3.69 0.52 0.61 4

gene2069 –0.35 4.04 –0.33 0.51 4

gene2110 3.40 5.07 0.49 0.61 4
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shown in which methods identified those four correctly or incorrectly. These
genes are characterised by standard deviations that are about equal to the nor-
malised log ratios, in contrast to the false negatives.

4. DISCUSSION

After the comparison, we are in the unique position of knowing a priori
which and how many genes were differentially expressed, however before
starting the analysis none of the groups had the information and only a very
noisy data set was provided. Each group applied a different variety of tech-
niques to find the differentially expressed genes. In some cases, the data were
put into a standardised pipeline, and in others the analysis was customised to
this data set.

It is interesting to note that only one method used any kind of background
subtraction. This was due to researchers recognising that although some slides
displayed high background, there was little relationship with spot foreground,
and therefore subtracting background would have removed many spots from
the analysis with no resulting benefit. A consensus in the wider community
on background correction has yet to be reached, however the partners within
the EADGENE network appeared to have done so, with all but one partner
deciding not to correct for local background when analysing this data set.

Applying stringent spot quality procedures and subsequent elimination of
both spots and slides from the analysis, as seen in IAH_P1 and IDL1, did not
greatly lessen the number of false positives, but greatly increased the number
of false negatives. The increase in false negatives was much larger than the cor-
responding decrease in false positives. This suggests that, when dealing with
noisy data, care must be taken to eliminate only data for which a real physical
source of error can be identified, e.g. detector saturation during scanning. In
the case of the data analysed here some of the simulated backgrounds were
high, leading some groups to reject those spots; in fact, rejecting the estimated
backgrounds was the best approach, since eliminating data from the analysis
leads to the elimination of significantly differentially expressed genes with no
associated benefit.

It is clear from the relationship between M and A that an intensity depen-
dent normalisation should be used on these data and most groups reflected
that by choosing to use LOWESS/LOESS normalisation. The spatial biases
shown in the background suggest that perhaps a spatial normalisation tech-
nique should be used, yet only two investigated the need for it: INRA_J and
ROSLIN. The differences seen in the range of raw log ratios between slides
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suggest that a between-slides normalisation method would have been appro-
priate, yet only IDL attempted to do so. Figure 3 shows the range of M values
for each array under three different normalisation strategies: none (Fig. 3a),
LOESS (Fig. 3b) and LOESS followed by scale normalisation between arrays
(Fig. 3c) [17, 19]. Figure 3a shows that there is a large amount of variation in
the range of M values between slides, and Figure 3b shows that that variation
is not entirely removed by LOESS normalisation alone. Figure 3c shows the
most uniform distribution of M values across arrays, as can be expected given
the normalisation strategy. Whether or not this is desirable depends on the con-
text of the experiment. For example, one would expect technical replicates to
have very similar distributions, whereas biological replicates may not. In this
experiment, if we assume that the dye-swapped arrays are technical replicates,
then array pairs 5 and 6, and 9 and 10, represent technical replicates of one an-
other, yet show vastly differing ranges of M values (Fig. 3a), adding weight to
the argument for between array normalisation. The failure to apply additional
normalisation steps after the first may have been due to fears of “over-fitting”
the data. However, ROSLIN report that additional analyses were carried out
on the data with between-slides variation-standardisation applied, and an addi-
tional 23 genes were identified, 12 of which were differentially expressed, the
other 11 being false positives (data not shown).

The approaches may be split into traditional and more sophisticated methods
of analysis. SLN1, SLN2 and CDB employed more traditional methods (analy-
sis of variance and fold-change cut-off), whereas the others employed methods
shown to be of particular use with microarray data. The authors from CDB
wish it to be known that theirs was only a preliminary analysis. DNMAD [18]
and GEPAS [10] are sophisticated tools for the analysis of microarray data,
and it is unfortunate that some of their more sophisticated methods were not
brought to bear on the simulated data. The more traditional methods were also
more conservative, identifying fewer genes in total as differentially regulated.
They did not, however, have correspondingly smaller false positive rates.

Examination of the genes consistently appearing as false negatives or false
positives reveals predictable trends. Consistent false negatives showed very
high variation about the mean, whereas consistent false positives showed much
less. The simulation software, SIMAGE, gives the same ratio to all genes des-
ignated up- or down-regulated, therefore any difference between genes desig-
nated as up- or down-regulated is solely down to noise modelled by the soft-
ware. Those genes consistently identified as false negatives simply received
more noise, and those consistently identified as false positives received less.
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Overall, given that this was a noisy data set, it is promising that such high
numbers of correctly identified genes can be achieved. The trade off between
false positives and false negatives can clearly be seen and suggests that elim-
ination of data due to poor spot quality measures does not pay off in terms of
the decrease in false positives given the large increase in false negatives. Cor-
rection for the false discovery rate (FDR) [2] was the most commonly used
technique for adjusting P-values. However, a direct comparison of multiple
testing procedures occurred in the INRA_T analyses, with the two novel meth-
ods presented out-performing the FDR procedure proposed by Benjamini and
Hochberg [2] in terms of error rate; the mixture model described by Bordes
et al. [3] performed particularly well. The performance of the INRA_T meth-
ods is of note given that similar gene-by-gene methods have been shown to
lack power in comparison to shrinkage methods such as limma [17] and the
structural model [11]. It may be that the data was sufficiently well replicated to
overcome this. In addition, this data set has been simulated with homogeneous
variances, and this assumption may not hold true for real data sets.

It should be noted that the simulated data represents a well replicated exper-
iment, with ten replicates for a single comparison. This no doubt lends a great
deal of power to the analyses. Additional power was achieved by INRA_J and
the three INRA_T methods by treating replicate spots as independent mea-
sures, resulting in up to twenty measurements per gene. Although these four
techniques showed very good results, comparable results were achieved by
ROSLIN, IAH_P2 and IDL2, showing that the increase in replication from ten
to twenty did not greatly improve the results. In fact, the IAH_P2 analysis,
which eliminated 3 out of the 10 slides but still achieved very high success
rates, showed that this data set was probably over-endowed with replicates,
beyond what would normally be found in a real experiment. Repeating the
analyses with a smaller number of replicates may be informative. Kooperberg
et al. [13] compared methods for analysing microarray experiments with small
numbers of replicates and concluded that the best methods were those which
took an empirical Bayes approach (e.g. [17], used in some analyses presented
here) and those that combined similar experiments.
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